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Preface

Psychiatric disorders are highly complex and multifactorial. Moreover, the
disorders are characterized by being heterogeneous with a significant degree of both
overlap and co-morbidity. All these characteristics render research attempting to
unravel the underlying psychophysiological processes rather complex and difficult.
The only way forward is the incremental elucidation of physiological aberrations
and attempting to identify the clinical correlates of the identified deviations.

Psychophysiological/electrophysiological methodologies have proven very
useful in probing the physiological aberrations in psychiatric disorders and guiding
towards effective and/or novel interventions. Given the extremely wide scope of
psychiatric aberrations from personality deviations and substance dependence to the
frank psychoses with both cognitive disintegration and affective dysregulations a
rather large volume of research currently exists.

The first 12 chapters in this volume (Part I) provide updates regarding current
understanding of the psychophysiological processes seen to be deviant in a par-
ticular disorder or in association with a particular set of symptoms within a disorder
spectrum. The last five chapters (Part II) focus on techniques and methodologies
that are highly promising as tools to further strengthen the impact of psycho-
physiological investigations on bringing the field closer to a full understanding of
the pathophysiologies of the various neuropsychiatric disorders.

Part I of the volume starts with a contribution from Petr Bob focused on dis-
turbances of neural mechanisms of consciousness which, through attentional
mechanisms and memory processes, are linked to specific changes that occur in
psychiatric disorders. The disturbances of consciousness and mental disintegration
are closely connected with influence of stressful experiences and enable us to
understand certain psychopathological mechanisms manifesting in a number of
disorders. The contribution by Michael Stone provides a neurophysiological view
of the spectrum of Borderline Personality Disorder (BPD). In the last two decades
neurophysiological data, including MRI and fMRI, have established correlates in
various brain regions, particularly those involving the frontal lobes and various
limbic structures, that show promise of providing a more substantial basis for
diagnosis relying primarily on identified brain changes. This chapter addresses the
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possible interrelationships between BPD and Bipolar Disorder. In the next chapter,
Tim Outreth, Andrew Kemp and Gin Malhi examine electroencephalogram (EEG)
and event-related potential (ERP) measures along with neuroimaging and peripheral
physiological measures that both characterize and differentiate Bipolar Spectrum
Disorders and their response to treatment. They provide a thoughtful framework for
understanding these findings and stress their importance in improving assessment
and therapeutic decision making in this population.

The two subsequent contributions are provided by the Galderisi/Vignapiano/
Mucci/Boutros group and address, in Chap. 1, the physiological correlates of
positive symptoms in schizophrenia. This chapter highlights the findings of elec-
trophysiological studies in schizophrenia dealing with early sensory perception and
attention, automatic sensory detection of stimuli changes and cognitive evaluation
and integration of information, relevant to the pathophysiological mechanisms
underpinning hallucinations and delusions. Results of electrophysiological studies
investigating the neural correlates of positive symptoms suggest aberrant intrinsic
organization of functional brain networks. The following contribution by the same
group highlights the electrophysiological aberrations associated with negative
symptoms in schizophrenia. While a number of studies have appeared over the
years examining the electrophysiological correlates of the cluster of negative
symptoms in schizophrenia, only a few studies have actually focused on the Deficit
Syndrome (DS). In this chapter, electrophysiological investigations utilizing EEG,
Evoked Potentials (EPs), polysomnography (PSG), or magnetoencephalography
(MEG) to probe “negative symptoms”, or “Deficit Syndrome” are reviewed.

Dean Acheson, Mark Geyer and Victoria Risbrough then offer a comprehensive
review of the current state of knowledge on psychophysiological outcomes in
Posttraumatic Stress Disorder (PTSD), with particular attention to their use as
markers of current symptoms as well as markers of PTSD-related processes (e.g.
fear extinction), and their sensitivity and selectivity for PTSD symptoms versus
other anxiety and mood disorders and co-morbid disorders. They highlight potential
future avenues for integrating psychophysiology into emerging areas of PTSD
research and discuss the use of new wearable physiological monitoring technolo-
gies in treatment outcome studies. Wenzel Schicho and Oliver Pogarell provide a
review and commentary on the physiological aberrations in Panic Disorder (PD)
with a focus on the less frequently explored contribution of isolated epileptic dis-
charges (IEDs) to symptomatology in the absence of epilepsy. It is not known
exactly which role IEDs play in the genesis of behavioural aberrations. In this
chapter, attention is directed towards this issue and its relevance to managing
psychiatric patients suffering from PD, as well as understanding the complex
relationship between IEDs and the pathophysiology of PD. The chapter by Chris-
topher Patrick discusses the constructs of psychopathy and antisocial personality
disorder (ASPD), their relations with one another and with violent behaviour, and
provides an in-depth review of physiological correlates of psychopathy and ASPD
with a focus on the features that these conditions share and those that distinguish
them.
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The two subsequent chapters address a topic that is not commonly included in
standard psychophysiology texts, namely premenstrual and postmenopausal phys-
iological and psychophysiological changes. The first of these, by Inger Sundstrom
Poromaa, focuses on premenstrual dysphoric disorder (PMDD). PMDD is common
with onset of symptoms in the late luteal phase of the menstrual cycle and provides
an important model for our understanding of the influence of ovarian steroids on
mood and anxiety in women. She discusses physiological findings in PMDD
women (e.g. altered cardiovascular responses to stress) that appear to represent
vulnerability traits for PMDD (i.e. also present in asymptomatic menstrual phases),
or alternatively, vulnerability traits for the depressive and anxiety disorders that are
commonly associated with PMDD. She also presents a number of state-related
findings (e.g. lower luteal phase prepulse inhibition) in PMDD. The next contri-
bution by Robert Freedman addresses postmenopausal physiological changes. The
hallmark of menopause is the marked reduction of estradiol levels due to ovarian
failure. This, among other factors results in hot flashes, the most common meno-
pausal symptom. This chapter reviews the pathophysiology of hot flashes and
highlights the contribution of brain structures like the brainstem, the insula and the
prefrontal cortex.

The next chapter, by Ian Kodish, Carol Rockhill and Sara Webb, reviews psy-
chophysiological and neuroimaging findings in Autism Spectrum Disorder (ASD),
describing alterations in local brain regions as well as coordination of brain activity
during both rest and activation paradigms in ASD. They propose that new drug
therapies for ASD should aim to realign ‘trajectories of network specialization
across development’ by acting together with behavioural therapies to enhance social
and emotional learning by potentiating the effect of experience-induced plasticity
on neuronal network connectivity. The last contribution to this part of the volume
comes from Timothy Rhoers and colleagues who provided an analysis of the
physiological correlates of insomnia. This chapter describes the physiological
correlates of insomnia expressed during sleep and during the daytime. Together, the
data from nighttime and daytime electrophysiology, event-related brain potential
recording, neuroimaging studies, sympathetic nervous system and HPA axis
monitoring all suggest insomnia is a 24-h disorder of hyperarousal.

Part II of the volume starts with a contribution from Gregory Light and Neal
Swerdlow. They propose a remarkable parading shift (focus more on what is “right”
and less on what is “wrong” with the patients) and convincingly argue, with clear
examples of more normal-like performance in specific neurophysiological and
psychophysiological measures predicting a positive response to specific therapeutic
interventions, for an alternative strategy of using psychophysiological measures to
identify ‘spared neural and cognitive function’ and then using this information to
optimize clinical outcomes in schizophrenia patients. The next contribution to this
section comes from Susan Bowyer and addresses connectivity measurements for
network imaging. As is well known, communication across the brain networks is
dependent on neuronal oscillations. Detection of the synchronous activation of
neurons can be used to determine the well being of the connectivity in the human
brain networks. Well connected highly synchronous activity can be measured by
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MEQG, EEG, fMRI and PET and then analysed with several types of mathematical
algorithms. A further contribution by Petr Bob provides a review of topics related to
nonlinear measures and dynamics in psychophysiology of consciousness that rep-
resent important tools to understand certain specific changes in neural systems
implicated in psychiatric disorders. These methods enable us to describe various
levels of complex interactions that may influence patterns of temporal and spatial
disorganization with decreased or increased functional connectivity and complexity
that underlie specific perceptual and cognitive changes in psychopathological states.
Martijn Arns and Sebastian Olbrich explore the role of pharmaco-EEG in person-
alized medicine for Attention Deficit Hyperactivity Disorder (ADHD) and
Depression. This chapter summarizes recent developments on personalized medi-
cine in psychiatry with a focus on ADHD and depression and their associated
biomarkers and phenotypes. Several neuro-physiological subtypes in ADHD and
depression and their relation to treatment outcome are reviewed. The final contri-
bution to this volume comes from Nikolaj Bak and Bob Oranje. They describe the
benefits of psychophysiology-informed imaging, an approach also advocated by
many others in this volume, in particular how a combination of EEG and fMRI
complements each other, allowing both high temporal (EEG) and spatial (fMRI)
resolution to be achieved. They also discuss various approaches to combine psy-
chophysiology (EEG, EMG) with fMRI and the issues that need to be dealt with
when combining the two methodologies.

We hope this volume, with chapters from leaders in the field, will make a
valuable contribution to the literature on proven utility as well as future applications
of psychophysiological measures, combined with other methodologies, in the
context of improved understanding, prevention and effective treatment of neuro-
psychiatric disorders.

Veena Kumari
Petr Bob
Nash N. Boutros
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Psychophysiology of Dissociated
Consciousness

Petr Bob

Abstract Recent study of consciousness provides an evidence that there is a limit
of consciousness, which presents a barrier between conscious and unconscious
processes. This barrier likely is specifically manifested as a disturbance of neural
mechanisms of consciousness that through distributed brain processing, attentional
mechanisms and memory processes enable to constitute integrative conscious
experience. According to recent findings a level of conscious integration may
change during certain conditions related to experimental cognitive manipulations,
hypnosis, or stressful experiences that can lead to dissociation of consciousness. In
psychopathological research the term dissociation was proposed by Pierre Janet for
explanation of processes related to splitting of consciousness due to traumatic
events or during hypnosis. According to several recent findings dissociation of
consciousness likely is related to deficits in global distribution of information and
may lead to heightened levels of “neural complexity” that reflects brain integra-
tion or differentiation based on numbers of independent neural processes in the
brain that may be specifically related to various mental disorders.
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1 Introduction

According to current findings in psychophysiology and cognitive neuroscience
there is growing evidence that neural correlate of consciousness likely represents
coherent neural process that connects distributed brain activities into a coherent
whole (Bob 2009; Crick and Koch 1992; John 2002). In agreement with this
concept, consciousness could be understood as an integrative experience con-
necting various mental events that enable self-recognition, interpretative activity
and related adaptive mental and behavioral responses. Essential characteristics of
this self-representational dimension of consciousness is interpretation of certain
inner states of own body as mental and somatic identity, while other bodily signals
are interpreted as perceptions of the external world. What typically enable to
uncover these interpretative processes that provide an understanding of the world
on a level of individual experience is a process of “misinterpretation” that disturbs
relationship between self and nonself and leads to experience of an inner conflict.
For example, typical process of misinterpretation occurs during projection (or
transference) when inner psychic states are interpreted as external parts of other
persons, or during hallucinations when certain internally generated voices or
images may be interpreted as sensory signals from the external world (Feinberg
1978; Feinberg and Guazzelli 1999; Ford et al. 2001). These findings suggest that
the self-recognition is a specific cognitive process typically involving conscious
activity and experience which is closely related to mechanisms of selective
attention and reflects intentionality and interpretation of bodily signals reflecting
inner and outside stimuli.

According to the modern definition selective attention can be defined as a
selection among potential conscious contents and specific function of attentional
mechanisms is to bring different events to consciousness (Baars 1999, 2002). This
process enables global distribution of information that is located in brain regions
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underlying conscious processing and separated from those involved in the selec-
tion of visual objects and events (Baars 1997, 1999, 2002). Recent behavioral
evidence indicates that perceptual awareness involves not only activation of the
relevant perceptual properties but also further constructions of an organized rep-
resentation in which these visual properties are attributed to their sources in
external objects and events that represent basic mechanisms for interpretative
activity (Baars 1997; Kanwisher 2001; Hudson 2009).

2 Neural Correlate of Consciousness

More than three centuries ago, Rene Descartes looked for “the seat of the soul”
within the brain that could integrate “res cogitans” representing inner world with
the outside world— “res extensa.” Descartes thought that this special place is
involved in sensation, imagination, memory, and the causation of bodily move-
ments, and described the mind as an extracorporeal entity. In his “Passions of the
Soul” he intuitively postulated that information from various sensory sources is
fused and thought that “...although the soul is joined to the whole body there is a
certain part where it exercises its functions more than all the others” (Barrera-
Mera and Barrera-Calva 1999; Smith 1998). For example, he thought that when we
sense only one image with two eyes, only one sound with two ears or only one
object by two hands, the sensations from two sources must be fused somewhere. In
this theoretical concept Descartes intuitively anticipated the so-called “binding
problem” of consciousness. This problem means that there is a neural correlate of
consciousness as a part of the nervous system that transforms neural activity into
reportable subjective experiences. A major and still actual hypothesis is that this
neural correlate of consciousness can compare and bind activity patterns only if
they arrive simultaneously at the neural correlate of a conscious experience (Van
De Grind 2002). Based on these processes consciousness may combine the present
multimodal sensory information with relevant elements of the past and creates
spatio-temporal memory.

The hypothetical center for information convergence was later termed
“Cartesian theatre” (Crick and Koch 1992; Dennett 1991; Bob 2009). Recent
neuroscience, however, has not located a distinct place in which distributed
information in the brain comes together. Additionally, there is evidence that neo-
cortical processing is distributed during all sensory and motor functions (Singer
1993, 2001). Following these findings Dennett (1991) proposed “a multiple drafts”
theory of consciousness that does not define consciousness as a unitary process
but rather a distributed one. Instead of a single central place called “Cartesian
theatre,” there are various events of content fixation that occur in various places at
various times in the brain [see (Dennett 1991), p. 365]. This new conceptual
framework mainly issued from experimental studies that examined relationship
between visual consciousness and synchronization among large groups of
neurons. Crick and Koch (Crick and Koch 1992) expressed the view that the main
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problem of visual consciousness in principle may not be resolved without expla-
nation of the so-called binding problem, which means that a seen object in the brain
is represented by groups of synchronized excited neurons that are located at dif-
ferent parts of the brain without unifying spatial convergence. This binding problem
of consciousness has emerged in connection to findings that features of an object
such as color, shape, texture, size, brightness, etc. produce activity in separate areas
of the visual cortex (Crick and Koch 1992; Felleman and Van Essen 1991; Singer
1993, 2001). For example, there are only a few neural connections between specific
visual areas that correlate with color and motion (Bartels and Zeki 2006; Larock
2006; Zeki 2003). The evidence for this view of consciousness represents a whole
series of experimental results in cognitive neuroscience and psychology (Larock
2006; van der Velde and de Kamps 2006; Varela and Thompson 2003; Bob 2009).

Following these findings recent evidence indicates that integration of multiple
and disparate neural activities underlying cognitive brain functions requires
mechanisms of multiregional functional interaction that enables binding of dis-
tributed information (Singer 2001; Varela et al. 2001; John 2002; Bob 2009).
Accumulating evidence from experimental studies (Leisman and Koch 2009; Bob
2009; Bob and Mashour 2011; Mashour 2013) also shows that this process of
dynamic binding is related to transient and precise synchronization of neuronal
activities that is significantly disturbed in certain pathological conditions, such as
in schizophrenia (Lee et al. 2003; Tononi and Edelman 2000; Bob et al. 2010; Bob
and Mashour 2011).

3 Divided Consciousness
3.1 Threshold of Consciousness and Subliminal Perception

Recent findings in neuroscience of consciousness strongly suggest that a level of
synchronization and binding between various parts of the brain to some extent
reflects accessibility of various mental contents into the consciousness in accor-
dance with an understanding of consciousness as a gateway to brain integration
(Baars 2002). These findings may implicate existence of a threshold of con-
sciousness that reflects levels of information transmission and integration between
distributed brain areas that act as a barrier between actual consciousness and
unconscious processes.

In this context, modern study of cognitive unconscious phenomena defined
explicit and implicit perception, i.e., explicit perception means perception
immediately presented to consciousness of a subject while implicit perception is
not accessible for the awareness of the subject and cannot be verified immediately
in the response of the subject but only indirectly by observation or measurement of
subject’s behavior or physiological response (Bob 2003a; Kihlstrom 1987, 2004).
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Great interest in implicit perception and subliminal phenomena arose from an
experiment performed in 1957. During a movie presentation two verbal messages
were projected: “Drink Coke” and “Eat popcorn” which led to increased popcorn
consumption about 58 % and Coca-Cola consumption about 18 % (Wortman et al.
1992). The experiment caused controversial discussions but subsequent findings
confirmed the existence of subliminal perception and information processing (Bob
2003a; Bunge et al. 2001; Crick and Koch 1995; Gawronski et al. 2006; Kanwisher
2001; Kihlstrom 1987, 2004; Marcel 1983).

Although in principle we may consider a threshold of consciousness presenting
absolute subliminality at which all discriminative responses disappear (Wortman
et al. 1992; Erdelyi 2004a, b; Reingold 2004), it seems to be that various sensory
stimuli that have an importance for cognitive processes and adaptive behavioral
responses may be influenced by various mechanisms of cognitive modulation and
that subliminality may present relative phenomenon characterized by a sensitivity
of discriminative responses (Kihlstrom 2004).

3.2 Divided Consciousness and Hypnosis

Typical experimental conditions that enable experimenters to assess modulatory
influences on discriminative processes or attentional filtering represent various
methods of hypnotic suggestion, and several data indicate that threshold of con-
sciousness may change with respect to experimental conditions during hypnosis.
For example, Stross and Shevrin (1962, 1968, 1969) have shown alterations of
thought contents under hypnosis in investigation of “freely evoked images” after
the subliminal presentation. These and other findings suggest that hypnosis leads to
heightened access to subliminal stimuli and that thought organization during
hypnosis shares some common elements with thought organization during
dreaming (Bob 2004). This finding corresponds to similar reported data when
subliminally presented images were found in dreams (Fisher 1954; Poetzl 1960).
Another example represents also various methods of manipulation with intensity
of subjectively experienced pain in hypnosis (Bob 2008a; Villemure and Bushnell
2002).

These findings indicate that highly hypnotizable persons possess stronger
attentional filtering abilities than low-hypnotizable persons and that these differ-
ences are reflected in underlying brain dynamics such as an interplay between
cortical and subcortical structures (Bob 2008a; Crawford 1994; Eccleston and
Crombez 1999; Feldman 2004). Highly hypnotizable persons can better focus and
sustain their attention as well as better ignore irrelevant stimuli from the envi-
ronment (Crawford 1994). This clinical experience corresponds to findings that
descend inhibitory pathways, parallel to ascending sensory systems, can modulate
quite early responses related to sensory information. Together these findings
suggest that high hypnotizables can better inhibit incoming sensory stimuli. This
inhibition likely emerges due to influence of the frontal cortex that regulates limbic
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system structures in processes of active gating of incoming sensory stimuli (Bob
2008a; Crawford 1994).

Modulation of attention in hypnotic states is coupled to global changes in
subjective experience and markedly influences regulation and monitoring body
and mental state, experiencing of the self and underlying process of self-repre-
sentation. In this context, self-representation as a mental structure creating identity
and awareness can be defined as a result of interpretation of certain inner states of
own body as parts of mental and somatic identity, while other bodily signals
are interpreted as perceptions of the external world. These alterations in “self-
representation” that underlie the changes in subjective experience are likely linked
to great and abrupt changes in patterns of neural activity (Bob 2008a). This sup-
ports a concept that hypnosis, because of significant attentional shift, leads to a
distinct “state” of consciousness with specific neural correlate (Rainville et al.
1997, 2002; Villemure and Bushnell 2009) and the hypnotic lack of the self-
representation can be observed as dissociated or divided consciousness (Bob 2007,
2008a; Crawford 1994; Vermetten and Douglas 2004).

3.3 Dissociated Consciousness and Traumatic Stress

Similar conditions that lead to modulation of discriminative processes in hypnosis
occur also in cases of traumatic dissociation. Dissociation is defined as a distur-
bance or alteration of normal integrated functions of consciousness, memory or
identity that leads also to characteristic somatoform changes (Bob 2003b, 2008a,
b; Hall and Powell 2000; Nijenhuis et al. 1998; Nijenhuis 2000; Putnam 1997; Van
Der Hart et al. 1985, 2005). Heightened levels of dissociation in most cases occur
due to a traumatic event and typical symptoms include memory losses, frag-
mentation of knowledge of the self and experience, splitting of emotional and/or
cognitive aspects of experiences, numbing of affect, psychological escape from
unpleasant stimuli, trance-like states, increased suggestibility and greater hypno-
tizability (Hall and Powell 2000; Putnam 1997; Spiegel 1997; Van Der Hart and
Friedman 1989).

Dysfunctions in accessibility of memory traces that represent traumatic and
other negative past experiences as well as intrusive autobiographical memories of
childhood abuse are linked to an effort to eliminate these negative memories and
intrusive thoughts connected to inner conflict due to contradictory tendencies when
unacceptable or traumatic memories are released into consciousness (Bob 2007;
Brewin 2007; Vermetten and Douglas 2004). According to recent evidence, stress
related conditions frequently affect both episodic and autobiographical memories.
For example, Kenardy et al. (2007) reported clinical results in a group of
eighty-seven children aged 7-15 years exposed to a traumatic event requiring
hospitalization which indicate that specifically, children who showed temporal
disorganization, but not absence of emotion or dissociative amnesia, in narrative
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themes were more likely to report concurrent subsyndromal PTSD symptoms at
4-7 weeks post-trauma (Kenardy et al. 2007). Other similar data also demonstrate
that exposure to a significant psychological stressor preserves or even enhances
memory for emotional aspects of an event, and simultaneously disrupts memory
for nonemotional aspects of the same event (Payne et al. 2006). Further evidence
indicates that individuals who are victims of a trauma are unable to register pain
during painful affects or self-injury, which is in agreement with clinical evidence
that patients with dissociative disorders frequently report amnesia for self-injury
(Bob 2008a; Butler et al. 1996; Ebrinc 2002; Orbach et al. 1997; Saxe et al. 2002).
These findings suggest that the amnesic barrier likely is due to profound changes in
affect state, memory, and sense of identity in response to environmental stress
injury (Bob 2008a; Saxe et al. 2002).

According to recent evidence dissociation as a response to psychological
stressors and traumas has various neurobiological consequences (Bob 2003b,
2008b; Bremner 1999; Spiegel 1991; Teicher et al. 2003, 2006). Repeated stressors
and reexperiencing of the traumatic event in childhood often cause delayed effects
of severe psychological trauma that may lead to long lasting enhancement of self-
preservative catecholamine states related to anger, fear, meaninglessness and a
blunting of emotional responses associated with dysfunction of the locus coeru-
leus, amygdala, and hippocampal systems (Henry 1997; Schore 1997, 2002).
Additionally, there is evidence that stress may significantly influence reparative
processes and neurogenesis of hippocampal neurons and cause decreased volume
of the hippocampus, corpus callosum, and other brain structures (Bremner 1999,
2006; Bremner et al. 2008; Teicher et al. 2003, 2006). Although in most cases of
pathological dissociation, the loss of episodic and/or emotional memories is
related to traumatic stress (Bob 2008a; Brewin 2007; Butler et al. 1996; Frankel
1996; Sar 2006; Sar and Ross 2006; Spiegel 1997; Van Der Hart et al. 2005), brain
insult, injury, or other organic brain disease may also play a role in this process
(Kihlstrom 2005; Spiegel 1991).

4 Dissociation and Traumatic Memory
4.1 History of the Term Dissociation

Historical development of the term dissociation began with work of Thedédule
Ribot, who in his clinical studies investigated patients with diseases of memory,
will, and personality. He adopted basic neurological principle of evolution and
dissolution proposed by Hughlings Jackson (Ellenberger 1970). This principle
states that functions which appeared last in evolution and that emerge later in
human development, are much more fragile with respect to various types of
injuries, which cause that due to damages later developed function are lost earlier
than developmentally older functions. He called this process “dissolution,” which
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represents a reverse of evolution. Behavior of an individual due to dissolution is
more automatic with less voluntary control and performed in a manner that is less
complex than in normal state (Ellenberger 1970; Meares 1999). Ribot applied this
principle to psychopathology of memory and will, and his reformulated principle
states that more recent memories disappear before earlier ones (Ribot’s Law). This
principle also became a main resource of dissociation theory proposed by Pierre
Janet (Ellenberger 1970).

Janet initially elaborated the concept of dissociation in his work Psychological
Automatism (Ellenberger 1970; Haule 1983; Havens 1966; Van Der Hart and
Friedman 1989), where he outlined his notion of psychic functions and structures
and studied psychological phenomena observable in hysteria, hypnosis, and states
of suggestion or possession. During complete psychological automatism (Van Der
Hart and Friedman 1989), consciousness is totally dominated by repeating past
experiences, such as in somnambulism or hysterical crises. In the case of partial
automatism, only a part of the consciousness is dominated. In the case of complete
or partial automatism systems of unconscious fixed ideas play an important role
and repress conscious control and perception. According to Janet’s findings the
fixed ideas may emerge in many forms of psychopathological or somatoform
symptoms, for example paroxysm, which may be understood as a representation of
psychological trauma when a fixed idea is transformed into hallucinations and
body movements (Van Der Hart and Friedman 1989). Fixed ideas also may be
represented in dreams and dissociative episodes (e.g., hysterical attacks) or during
hypnosis as a secondary consciousness. A characteristic feature of these states is a
lowering of the mental level (abaissement du niveau mental), which is manifested
by increased dissociation and mental depression connected to a reduction of
psychological tension.

4.2 Dissociation and Abreactive Experience

Recent evidence indicates that pathogenic traumatic memories are at the roots of
dissociative disorders. Therapy of these memory disorders is historically linked to
the term abreaction (van der and Brown 1992). According to the definition of the
American Psychiatric Association abreaction is defined as: “...an emotional
release or discharge after recalling a painful experience that has been repressed
because it was consciously intolerable. A therapeutic effect sometimes occurs
through partial discharge or desensitization of the painful emotions and increased
insight (American Psychiatric Association 1980). This definition embodies his-
torical controversy between French school of dissociation and later studies by
Joseph Breuer and Sigmund Freud, who for an understanding of abreactive process
utilized the concept of repression in their “Studies of Hysteria” (Breuer and Freud
1895). First literary documented utilization of this method is described by Janet in
his patient Lucie in 1886 (Breuer and Freud 1895; Ellenberger 1970; Janet 1886)
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and by Joseph Breuer in his famous patient Anna (Breuer and Freud 1895).
Although Freud initially also used the concept of dissociation (i.e., splitting of
consciousness) for understanding and treatment of traumatic memories, he later
defined principle of constancy, as a consequence of his neurological hypothesis,
which states that repressed neural excitation connected to a trauma must be
expressed by emotional discharging coupled to verbal and motor activities, i.e.,
quantity of excitation must be kept constant (Van Der Hart and Brown 1992).
Definition of a nature of abreactive experience has key consequences for under-
standing of therapeutic process as an integration of dissociative state (“double
conscience”) or on the contrary as discharging of repressed energy linked to
traumatic memory. Later Jung, following Janet, suggested that integration of
traumatic memory represents a key process in the treatment of traumatized
patients. From his point of view therapeutically effective reliving the traumatic
memory and emotional discharge need to lead to reintegration of the traumatic
complex (Jung 1907). Further research and clinical practice suggest that repeated
abreaction without reintegration of dissociated states of mind often has malignant
effect without any improvement of the patient state and leads to strengthening
intrusive symptoms (Van Der Hart and Brown 1992). In this context, Putnam
described an integrative view of abreactive process (Van Der Hart and Brown
1992; Putnam 1992) that includes therapeutically controlled abreactions and also
spontaneous abreactions or abreaction-like phenomena such as flashbacks, vivid
dreams, and other recalls of traumatic experiences. For the purpose of therapeu-
tically controlled abreactions, Putnam emphasized importance of reliving of
traumatic experiences as well as discharge of related affects and integration of
traumatic material into conscious awareness during and after the abreactive
experience. Similarly Brown and Fromm (1986) critically reviewed the role of
abreactive techniques based on Freud’s “hydraulic model”, in which posttraumatic
symptoms are understood as a consequence of repressed emotions which lead to
“overpressure”. As primary treatment focus of therapeutically controlled abreac-
tions they, similarly as Horowitz (1986), emphasized progressive uncovering and
integration which enables to control emotional expressions linked to intrusive
experiences. Similarly, Braun (1986) warned against activation of traumatic
memories during abreactive experiences without an appropriate cognitive frame-
work which is necessary for adequate defenses or coping skills and recommended
to express trauma related emotions in a planned, safer, and controlled manner.
According to Ross (1989), a meaningful framework is necessary for successful
abreactive treatment and is malignant when it consists of chaotic and uncontrolled
screaming linked to self-abusive or regressed behavior.

According to recent clinical evidence abreaction may represent useful clinical
instrument for treatment of some dissociative disorders. This evidence also sug-
gests the expression and discharge of affect during the revivification of traumatic
memories (often under hypnosis) must enable reintegration of dissociated parts of
the traumatic memory and assimilate the traumatic event into the whole of the
personality (Van Der Hart and Brown 1992; Bob 2007).
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4.3 Dissociation and Memory Consolidation

Recent findings suggest that dissociative states may be understood as conse-
quences of disturbances in memory consolidation and could be explained in the
framework of this process. According to these findings stress may influence
atypical consolidation of short-term memory into long-term memory (McGaugh
2000; Nadel and Jacobs 1998; Debiec and Altemus 2006) and cause dissociation of
memory systems concerned with encoding emotion and context at psychological,
physiological, and anatomical levels (LeDoux 1992, 1993, 1994; Nadel and Jacobs
1998; Phillips and LeDoux 1992; Bechara et al. 1995).

Generally, this process on a molecular level is linked to protein synthesis that
requires involvement of brain derived neurotrophic factor (BDNF), transcription
factor CREB (cAMP response element-binding protein) and other molecular
processes that participate in global processes of network consolidation mainly in
the hippocampus but also in other brain structures (Debiec and Altemus 2006;
Nadel and Jacobs 1998; Debiec et al. 2006; Lee et al. 2004). BDNF plays a crucial
role in this process. BDNF is a polypeptide growth factor that influences differ-
entiation and survival of neurons in the nervous system and also plays an important
role in regulating synaptic plasticity and connectivity in the CNS and mechanisms
of memory storage and mood control (Bath and Lee, 2006; Bramham and
Messaoudi 2005). BDNF is an activity dependent modulator of excitatory trans-
mission and synaptic plasticity with predominant effective localization of BDNF
and its receptor tyrosine kinase TrkB (tropomyosin receptor kinase B) on gluta-
mate synapses (Bramham and Messaoudi 2005; Soule et al. 2006). Endogenous
BDNEF-TrkB signaling in synaptic consolidation by long-term potentiation (LTP)
needs new gene expression and protein synthesis that enable immediate early gene
Arc (activity-regulated cytoskeleton associated protein) (Bath and Lee 2006;
Bramham and Messaoudi 2005; Soule et al. 2006). Important factor in this new
gene expression is the transcription factor CREB, which is required for hippo-
campus-dependent long term memory formation (Mizuno and Giese 2005). The
CREB is activated by signaling pathways that include Ca(2+)/calmodulin kinases
(CaMK(s), protein kinase A (PKA) and the mitogen activated protein/extracellular
signal-regulated kinases (MAPK or ERKs) (Mizuno and Giese 2005; Rattiner et al.
2005).

Recent molecular genetic and behavioral studies demonstrate that spatial and
contextual types of hippocampus-dependent formation of long-term memory
require different signaling molecules implicating distinct types of hippocampus-
dependent long term memory that differ in their underlying molecular mechanisms
(Mizuno and Giese 2005). As a part of these signaling pathways a basic mechanism
of BDNF is that it may modulate both excitatory and inhibitory neurotransmitter
systems (Savitz et al. 2006), and also influences functions of serotonergic and
dopaminergic systems (Savitz et al. 2006; Narita et al. 2003; Mossner et al. 2000).
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Recent findings also indicate that this relationship between BDNF and cognitive
processes is significantly influenced by stress (Savitz et al. 2006). Stress, and
especially chronic stress, influences excessive release of glucocorticoids from the
adrenal gland that cause cell death or atrophy of vulnerable neurons through the
cortisol action and inhibitory influence on BDNF synthesis and influences modi-
fication of synaptic plasticity, transmission and memory formation especially in
the hippocampus and neocortex (Thomas and Davies 2005; Savitz et al. 2006;
Binder and Scharfman 2004). These processes likely play a significant role in
specific formation of dissociative states and according to recent findings an
important structure in this process is amygdala that also participates in modulation
of memory consolidation and has a specific role in consolidation of the traumatic
memory (Bob 2007, 2008b; Payne et al. 2006; Cahill 1997; Cahill and McGaugh
1998).

Typical feature of traumatic memories is that they are not acceptable for
conscious awareness because of coupled strong negative emotions (Bob 2007;
Nadel and Jacobs 1998; Payne et al. 2006). According to current findings extre-
mely negative emotional experience during traumatic events or inescapable stress
likely may block induction of long-term potentiation in medial prefrontal cortex
(PFC) and hippocampus, and influences atypical memory consolidation that is
characterized by consolidation process predominantly on implicit (subliminal)
level in the amagdala. This blocking of higher-order behavior mediated by hip-
pocampus and PFC allows more automatic responses dependent on subcortical
structures, mainly the amygdala (Bob 2007; Debiec and Altemus 2006; Nadel and
Jacobs 1998; Payne et al. 2006; Vermetten and Douglas 2004; Maroun and
Richter-Levin 2003; Bob 2008b). These findings are also in accordance with
neuroimaging data which suggest that characteristic changes in the perfusion of
limbic brain structures, such as the amygdala and the hippocampus, coincide with
the high arousal and/or anxiety during traumatic recall (Vermetten and Douglas
2004) that likely extremely focus attention and this attentional shift may produce
fragmented memories (Bob 2007; Vermetten and Douglas 2004), psychological
automatisms and lowering of mental level (Bob 2003a, 2008a; Ellenberger 1970;
Frankel 1996; Havens 1966; Putnam 1997; Van Der Hart et al. 2005).

These data have important consequences for psychotherapy that in principle
influences memory reconsolidation in safe and nondangerous conditions, which
lead to neurobiological reprocessing of traumatic memory traces. This recondi-
tioning and reconsolidation is therefore possible only by reexperiencing of the
traumatic memory in a new and safe situation that enables integration of the
dissociative state (Bob 2007). During this process implicitly consolidated trau-
matic memory in subcortical structures, mainly in the amygdala, is probably
transformed from automatic into higher level of conscious experience by long-
term potentiation in higher-level structures of CNS such as medial PFC and
hippocampus.

Without memory reconsolidation traumatic memories cannot be reprocessed in
an integrated mode of consciousness. In this context, neuroscience research of
memory and emotional processes during traumatic recall induced by abreactive
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process strongly suggests that successful therapeutic work with a dissociative state
helps the individual both psychologically and physiologically and that measurable
physiology (Kandel 1998, 1999; Gabbard 2000, 2007; Bob 2007, Bob and
Mashour 2011; Abbas et al. 2014; Beauregard 2014) is related to these changes
induced by psychotherapeutic process. Neural process of reconsolidation in prin-
ciple may represent potential existence of a new integrated and adaptive level in
neurophysiological process, which is actualized, for example, during successful
therapy. Memory reconsolidation therefore likely represents a process that enables
successful transformation from dissociated, automatic, and implicitly consolidated
traumatic memory mainly in the amygdala, to higher level of conscious experience
in higher-level structures such as medial PFC and hippocampus. This view cor-
responds to Janet’s definition of dissociative state as an automatic process which
does not fit into current cognitive scheme and without successful reprocessing (or
reconsolidation) remains dissociated also during recall of dissociative state
because of the specific neural substrate of dissociated memories (Bob 2007).

The process of memory reconsolidation is again related to BDNF synthesis and
other molecular processes that influence modification of synaptic plasticity,
transmission and new memory formation especially in the hippocampus and PFC,
which include also new gene expression that is required for hippocampus-
dependent long term memory formation (Mizuno and Giese 2005; Morris et al.
2003; Savitz et al. 2006). These findings indicate that learning and memory pro-
cesses including a wide variety of environmental factors may also influence
development of synaptic connections through new gene expression and that psy-
chotherapy represents a special learning process that may specifically influence
and modify brain functions, metabolism in specific brain structures and also
genetic processes (Kandel 1998, 1999; Gabbard 2000, 2007). From this point of
view in the future a new era of psychotherapy research and practice may develop
specific modes of psychotherapy that can be designed to target specific sites of
brain functioning (Gabbard 2000).

5 Conclusion

According to historical and recent clinical evidence repeated stress and especially
traumatic stress experiences may disturb mental integrity and lead to dissociation
of memory and mental experience (Bob 2008a; Brewin 2007; Brown et al. 1996;
Ellenberger 1970; Frankel 1996; Haule 1983; Kenardy et al. 2007; Sar 2006; Sar
and Ross 2006; Spiegel 1997; Van Der Hart et al. 2005). This clinical evidence is
consistent with experimental findings of differential effects of stress on brain
systems responsible for encoding and retrieving emotional memories in the
amygdala and nonemotional memories in the hippocampal formation. Together
these findings indicate that memories formed under high-levels of stress are not
qualitatively the same as those formed under ordinary emotional circumstances but
display typical forms of disorganization, fragmentation, and incompleteness
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(Bechara et al. 1995; Brewin 2007; Debiec and Altemus 2006; Kenardy et al.
2007; LeDoux 1992, 1993, 1994; Nadel and Jacobs 1998; Payne et al. 2006).

These findings also suggest a hypothesis that neurophysiological processes
related to dissociation of conscious experience decrease levels of synchronization
and integration between brain areas involved in memory consolidation, and that
active neural assemblies are dynamically segregated, which means that small
subsets of brain system tend to behave independently and display decrease in syn-
chronous activity (Seth, Izhikevich, Reeke, and Edelman, Seth et al. 2006; Sporns
et al. 2000a, b; Tononi et al. 1994). These changes in neural synchronization related
to dissociation may also be reflected using concept of the dynamical complexity that
in neural systems could explain and characterize a dynamic equilibrium between
differentiation and integration in the complex neuronal dynamics responsible for
cognitive processes (Seth et al. 2006; Tononi and Edelman 1998, 2000). This
hypothesis is in agreement with findings which indicate that the spatio-temporal
structure in certain pathological brain states may be more regular, with excessive
order and lower complexity than normal, or more irregular, as uncorrelated ran-
domness with higher complexity (Dawson 2004; Tononi and Edelman 2000).
According to these findings increased neural complexity observed using EEG and
other psychophysiological measures reflects processes during activity of indepen-
dent areas that enables fast parallel information processing which runs in a dis-
tributed mode (Klonowski et al. 1999; Sammer 1996, Elbert et al. 1992; Svetlak
et al. 2009; Bob et al. 2009, 2010) and this desynchronized neural state likely is
related to active information processing in the cortex (Tirsch et al. 2004).

An increase in complexity is often associated with symmetry breaking and the
ability of a system to have different states, which is also associated with decrease
in coherence in space over the long range (Weng et al. 1999). This suggests that
more irregular neural states of higher complexity could negatively affect syn-
chronization phenomena in the brain that are closely linked to integration of
different neural events into a coherent whole and integrated experience of con-
sciousness. These findings likely could explain why an increase in the number of
simultaneously active mental states may be correlated with higher neural
fragmentation.

From this point of view dissociation reflects loss of effective connectivity and
functional neural interconnections essential for conscious processing (Bob et al.
2009, 2010). Analogically, the mechanisms of “cognitive unbinding” has been
proposed to explain loss of consciousness in anesthesia (Mashour 2004, 2005,
2006, 2008), which suggests that a common neurophysiology may underlie dis-
sociative states, loss of consciousness and anesthetic-induced unconsciousness.
This connection between neural synchronization and conscious integration is in
agreement with data suggesting that consciousness may enable brain integration
and access between otherwise separated neuronal functions (Baars 2002). In this
context, there are few reported studies that show changes in synchronization and
complexity in relationship to certain psychopathological states of conscious
disintegration (Bob et al. 2009, 2010; Fingelkurts et al. 2007; Lee et al. 2003;
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Tononi and Edelman 2000; Bob 2008c). Together these findings suggest a pos-
sibility to integrate neuroscience of consciousness with subjective experiences and
clinical evidence that consciousness may be disintegrated due to various condi-
tions related to experimental cognitive manipulations, hypnosis, influences of
psychosocial stressors and other conditions related to brain insult or disease.
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The Spectrum of Borderline Personality
Disorder: A Neurophysiological View

Michael H. Stone

Abstract Borderline Personality Disorder (BPD) has been defined as a personality
disorder in all editions of DSM since 1980; namely, DSM III through V. The
criteria are a mixture of symptoms and traits; the etiology, a heterogeneous array of
genetic, constitutional, and environmental factors. Until recently the diagnosis
relied on clinical descriptions. In the last two decades, neurophysiological data,
including MRI and fMRI, have established correlates in various brain regions,
particularly those involving the frontal lobes and various limbic structures, that
show promise of providing a more substantial basis for diagnosis—relying pri-
marily on (internal) brain changes, rather than on (external) clinical observation.
Some of the changes in BPD consist of decreased volume in the orbitofrontal and
dorsolateral prefrontal cortices and smaller volume in both the amygdala and
hippocampus, though with heightened reactivity in the amygdala. Similar abnor-
malities have been noted in bipolar disorders (BDs) and in ADHD, both of which
often accompany BPD and share certain clinical features. Persons with strong
genetic predisposition to BDs can develop BPD even in the absence of adverse
environmental factors; those with extreme adverse environmental factors (chiefly,
early sexual molestation) can develop BPD in the absence of bipolar vulnerability.
In some BPD patients, both sets of factors are present. As ideal treatment depends
on careful analysis of these factors, neurophysiological testing may permit both
more rational, brain-based diagnostic decisions and more appropriate therapeutic
strategies.
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1 A Historical Note

Borderline Personality Disorder (BPD) as a clinical diagnosis has its origins a little
over a century ago, though it was not originally called a “personality disorder”;
rather, a condition intermediate between the then widely used concepts of neurosis
and psychosis. The term evolved out of a kind of triage, where it was recognized
that in between better-functioning patients who had a good grip on reality and the
seriously disturbed (i.e., psychotic) patients whose hold on reality was critically
weakened, there was a third group whose symptoms and everyday function fell
somewhere in the middle of neurosis and psychosis. Kraepelin, for example, wrote
of a Zwischengebiet—and in-between territory—where he situated the tempera-
ments noted in some of the relatives in the families of manic-depressive persons
(Kraepelin 1905, 1921). Persons exhibiting one of the temperaments: depressive,
manic, irritable, and cyclothymic—often showed a clinical picture reminiscent of
our contemporary BPD patients. [Irritable temperament was associated, for
example, with irascibility, lability of mood, impulsivity, and mild paranoid ten-
dencies—which map onto four of the criteria for the current definition of BPD
(Stone 1980, pp. 326-327). Some patients in this intermediate realm were
understood as inhabiting the borderland touching clear-cut manic-depression (such
as those with the Kraeplinian temperaments); others, whose symptoms were more
cognitive than behavioral in nature, were seen as occupying the borderland of
schizophrenia. There was a strong conviction within psychiatry that there was a
hereditary component to both the obvious psychoses and to their less serious close-
cousins—the “borderline” conditions. Whatever it was that was going on in the
brain in these conditions remained, however, elusive. Freud, who started out as a
neurologist, had speculated along such lines in his 1895 Project for a Scientific
Psychology. Kraepelin was similarly convinced of a hereditary predisposition for
both major psychoses [his dementia praecox, superseded terminologically by
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Bleuler’s schizophrenia; and manic-depression, now more often subsumed under
the heading of Bipolar Disorder (BD)]. But their hunches remained at the spec-
ulative level: the neurology of their times could not as yet pinpoint areas of the
brain peculiarities of which might underlie the illnesses on which they focused.
Not for want of trying: Kraepelin hoped that his neurologist-associate, Alzheimer,
might discover some neuroanatomical correlates of the major psychoses, but his
success lay only in the area of the eponymous dementia.

Absent superior ways of finding brain correlates to the major psychiatric dis-
orders during the first three-quarters of the last century, diagnostic distinctions
tended to remain at the descriptive/phenomenological level. Definitions offered by
various groups within psychiatry differed in many instances in accordance with the
primary interest and primary treatment methods used by one or another group. The
definitions of “borderline” formulated by psychoanalysts relied upon certain
qualities that affected one’s amenability to psychoanalytic treatment. Stern’s
definition (Stern 1938) relied on such criteria as psychic bleeding (paralysis in the
face of crisis), organic insecurity (constitutional incapacity to tolerate much
stress), and difficulties in reality testing (but short of gross psychosis). The term
“borderline” also signified that the patient in question was not capable of toler-
ating conventional psychoanalysis, with its multiple weekly sessions on the couch.
Until the 1950s psychiatrists, whether psychoanalytic in their orientation or
otherwise, tended to assume that schizophrenia was the psychosis upon whose
border their “borderline” patients were situated. Zilboorg (1941) spoke of a
borderline variant of schizophrenia that he called “ambulatory schizophrenia”—
where patients were able to preserve an adequate social fagade and did not require
hospitalization. To have any trait associated with schizophrenia was more
important in Zilboorg’s nosology, than was embodying the schizophrenic state.
This approach dominated psychiatry in the US at mid-century, and led to what we
would now see as a widespread overuse of the term “schizophrenia”, and to the
unrealistic assumption that the so-called borderline cases likewise belonged to the
domain of schizophrenia.

The analyst Edith Jacobson realized that this conception was too narrow, and in
the 1953 paper expressed the view that certain “borderline” patients were within
the penumbra of manic-depression. Some milder cases, that is, of depression and
hypomania could best be understood as within the (hereditarily predisposed)
province of the manic-depressive disorders. Even so, she understood the psychoses
as representative of various stages of psychosexual development, oriented linearly,
such that schizophrenia harkened back to a more primitive stage of development,
whereas the manic-depressive subtypes answered to a more advanced (and thus
less primitive, less “ill”") stage—for which reason they seemed more amenable to
therapy.

The competing definitions of “borderline” that were ultimately to converge
toward our current conception of BPD varied, during the 1960s and 1970s, in their
emphasis on hereditary factors, primary observable traits, descriptions of typical
signs and symptoms, or on treatment response. Kernberg (1967) deemphasized
heredity, placing reliance more on a constellation of signs and symptoms: an
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enfeebled sense of identity though with adequate preservation of reality testing,
along with impulsivity and weakened ability to handle anxiety-laden situations.
Gunderson also focused on signs and symptoms: impulsivity, manipulative sui-
cidal threats, mild/brief psychotic episodes, and disturbances in close relationships
(Gunderson and Singer 1975). The inclusion of suicidal threats could be under-
stood as an acknowledgement of the importance of an affective factor (in line with
Jacobson’s view), since patients with depression or other mood disorders are more
prone to suicidal gestures than are most other types of patients. Kohut (1971) used
the term borderline as a label for patients who proved unable to withstand, or to
improve via, conventional psychoanalytic treatment. Despite these competing and
often parochial views as to what constituted the essence of “borderline” condi-
tions, the red thread that ran through all the definitions was impulsivity.

The viewpoints emerging in the 70s culminated in the inclusion of “border-
line”—now as BPD—in the next edition of our Diagnostic and Statistical Manual
of Psychiatric Disorders [DSM-III] (1980). Those DSM definitions were to be
considered atheoretic, since there was not enough information in the field to speak
authoritatively about underlying causes. There was, nevertheless, a kind of
unspoken acceptance that the new BPD was built more along the lines of the mood
disorders; viz., manic-depression, than along the lines of schizophrenia. Indeed,
aberrations of personality that were more reminiscent of schizophrenia were now
divided off into the new definition of Schizotypal Personality Disorder.

As it is not in the nature of scientific enterprises to avoid the search for
underlying causes, controversy about the etiology of BPD became animated during
the last quarter of the last century, particularly in regard to a possible allegiance to
the more severe mood disorders of manic-depressive psychosis—a group of dis-
orders now more often referred to as the BDs. Some investigators espoused the
idea that a fair percentage, though by no means all, patients with BPD could
be viewed as formes frustres of BD (Akiskal 1981; Stone 1981). This led to the
emergence of two camps: one group taking a more extreme view and seeing BPD
as the other side of the same coin as BD; the other group downplaying the con-
nection to an almost opposite extreme. A more sober note was sounded by
(Gunderson 2001; Gunderson et al. 2006) who, though tending to deemphasize the
connection, acknowledged that, given an initial diagnosis of BPD, about 10 % of
the patients could also (or eventually) be diagnosed with Bipolar-II disorder and
another 5 % with Bipolar-I. Conversely, given an initial diagnosis of a BD, 20 %
of the Bipolar-II patients were “co-morbid” for BPD and another 15 % of Bipolar-
I patients could likewise be diagnosed with BPD (2001, p. 39). As for patients with
Major Depression, about 15 % also met criteria for BPD, whereas half the patients
in whom BPD was diagnosed first, half could also be considered to suffer from
Major Depression. My own impressions (Stone 1990a, p. 74) regarding the overlap
between BPD and BDs is similar to the observations of Gunderson just cited,
though I have always emphasized the connection more vigorously. That Gun-
derson cites the percentages that he does reflects the tighter definition he has
formulated for BPD—quite similar to that of DSM, both these definitions mapping
out a smaller territory on the psychpathological map than is occupied by
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Kernberg’s “Borderline Personality Organization” (BPO). BPO, with its broad
criteria of weakened identity sense, adequate reality-testing, impulsivity and poor
ability to handle stress—reaches out to some 10 or 11% of the general population.
BPO will include antisocial persons (including psychopaths), narcissistic persons
who tend not to indulge in self-harm or suicidal behaviors, and other persons with
marked aberrations of personality. The percentage of patients meeting these broad
criteria—who in addition show the signs of BD—is of course lower than will be
found among the more narrowly defined group with (DSM’s or Gunderson’s)
BPD. These distinctions are important, for if we are to pan for the “gold” of
bipolarity in the waters of the “borderline”, our yield will be considerably higher
(perhaps by a factor of four) if we begin with a sample of BPD patients, rather than
of one with BPO. This has relevance when, in the next section, we review the
findings of studies on the neurophysiology of borderline conditions (which indeed
do rely on samples of BPD patients). There is an added factor pertaining to
variations in sample. The overlap percentages for BPD and BD mentioned by
Gunderson were derived from carefully analyzed samples: he referred to those,
among others, of Fyer et al. (1988), Gunderson et al. (1999), and Zanarini et al.
(1988). But there are other samples composed of borderline patients from gener-
ally higher socioeconomic class and from cultural backgrounds where parental
neglect, brutality, and incest are quite rare: patients (females in particular) from
these more protected settings may show a heightened overlap-ratio with BD—
there being little else to account for their (dual) pathology apart from risk genes for
bipolarity. Patients with BPD from settings of an opposite sort, where adverse
environmental factors (sexual molestation, especially) are present to a marked
degree, appear to develop their borderline clinical picture primarily from the early
traumata; a family history of BDs may be quite uncommon in such samples—
where even Gunderson’s somewhat conservative percentages would seem much
too high. Perhaps most common are BPD patients who occupy a middle ground in
the nature/nurture debate—in whom the brain systems regulating impulsivity and
emotion may partly have their origin in the “nature” side, but in whom the full-
blown picture of BPD is pushed into clinical recognizability by adverse envi-
ronmental factors (Pally 2002). I have, for example, served as consultant to a
hospital unit devoted to BPD patients in Brisbane, Australia—where the family
history of BDs was negligible, but where a history of incest and parental brutality
was near universal (Stone et al. 1988). Clinicians attached to centers with sample
differences of this kind are prone to develop hypotheses about the origins of BPD
that were indeed “correct” for their clinic or hospital—but widely divergent from
the hypotheses generated by clinicians from other centers. It was sample differ-
ences of this sort that, I believe, helped to account for the often acrimonious
disputes about the degree to which BD, PTSD, incest, or dissociative identity
disorder should be awarded “pride of place” in the etiological hierarchy of BPD.
This disputation was common, if not inevitable, in the era antedating the neuro-
physiological studies of the past two decades: studies which have begun to shed at
least a little light into the inner workings of the brain in BPD and in a number of
other conditions that either overlap with, or could be confused with, BPD.
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Before we address the data from these neurophysiological studies, we should
pay attention to another stream of data, stemming from recent studies in evolu-
tionary psychiatry—for it is these that help us to understand the erstwhile puzzling
but long-known lopsided sex distribution among BPD patients. They are mostly
female (Oglodek 2011). Women with BPD are more prone to experience pre-
menstrual dysphoric disorder (with its temporarily heightened depressed mood,
irritability, anxiety, and lability of affect—as outlined in DSM-V 2013). In some
women, not previously regarded as “borderline”, the symptoms may be particu-
larly intense and may be accompanied by suicidal feelings or self-injurious
behaviors, along with the “inordinate anger” that suggest to the clinician the
presence of BPD. The syndrome tends to be a more regular feature, and more
pronounced in its intensity, in women with BDs (such as Bipolar-II)—each con-
dition alerting the clinician to the possible presence of the other. One will, to be
sure, encounter other women with certain gynecological conditions (e.g., poly-
cystic ovary) who experience severe premenstrual dysphoria (sometimes with
endometriosis as well), who do not show the additional features of either BPD or
BD. But mood disorders characterized primarily by depression are more common
in women—in a way that appears to have implications for our evolution as a
species. Annette Schirmer in her comprehensive chapter on sex and emotion
(2013) summarizes the sex differences in this way: “For some emotions, men show
stronger subjective feelings, cognitive, and/or behavioral effects than women
(e.g., anger and contempt), whereas for other (emotions) we find the opposite
(e.g., sadness, fear, disgust),” (p. 605) (the latter emotions being more often
stronger in women). She adds: “...territorial behavior, in humans and other pri-
mates, is more strongly developed in males. Thus, emotional responses that
facilitate aggression (anger, contempt) may have been of greater value to
men...Conversely, early female typical tasks such as food gathering and child care
were less confrontation and dangerous... Women present more often than men with
disorders of prosocial emotions. That is, they are more likely than men to suffer
from intense and prolonged feelings of fear and sadness” (ibid, p. 605). This sex-
difference factor, coupled with the far greater vulnerability of daughters, compares
with sons, to childhood sexual molestation by older-generation relatives (which
can promote the later development of BPD symptomatology) helps one understand
why many of the neurophysiological studies of BPD are based preponderantly on
female subjects (Stone 1990b).

2 Neurophysiological Studies in the Borderline Domain

Since the last quarter of the last century, the biological aspects of psychiatry have
become increasingly important. Electroencephalography (EEG) had already been
in use for a long time. As for BPD, electrophysiological studies, until recently,
offered only modest help in our understanding of the relevant brain changes
(Boutros et al. 2003).
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But newer techniques have now been brought more and more into use, such
as Single Photon Emission Computed Tomography (SPECT) and Magnetic
Resonance Imaging (MRI). These and related techniques have helped to establish
a deeper understanding of brain correlates in many of the major psychiatric dis-
orders. They have also shown promise in enabling us to base diagnostic distinc-
tions along more objectifiable lines, rather than having to depend solely on the
external criteria discernible to the clinician. In traditional psychiatry, that is, only
the patterns of thought-emotion-behavior were available for making diagnostic
decisions—patterns that often show confusing degrees of overlap between one
supposedly “distinct” entity and another.

The use of MRI for medical purposes began in the 1970s (Goldstein and Price
2004) but has blossomed in the last 15 years. The spotlight in this article is on
BPD, though MRI and other imaging studies relative to conditions that often
overlap of co-occur are also included.

3 MRI and Related Findings in BPD

One of the earliest MRI studies of BPD reported smaller frontal lobe volumes in
the patients, though the authors (Lyoo et al. 1998) mentioned that findings were
inconsistent in other reports. Electroencephalographic studies of event-related
potentials (ERPs) have demonstrated abnormalities in fluctuations 300 millisec-
onds after the presentation of certain (auditory or visual) “events”—the P300
response—in various psychiatric disorders, including BPD. But the P300 changes
are not very specific, since they are noted in such other conditions as panic-
disorder, substance abuse, schizophrenia, and PTSD (Kuperberg 2004). Viewed
from one perspective, it is not surprising that unanimity was not found in the
neuroimaging and EEG studies. BPD has long been recognized as heterogeneous
from an etiological standpoint, better viewed as an array of dimensions (i.e., as a
syndrome) rather than as a specific disorder (Stone 1980; Schmabhl et al. 2002). We
have alluded earlier to a number of routes that may converge into the BPD syn-
drome: genetic factors, parental neglect or brutality, early sexual abuse, and
serious traumata of other sorts. There are also cases where maternal abuse of illicit
drugs in the first trimester of pregnancy, very low birth weight or fetal hypoxia at
delivery can also predispose to a clinical picture of BPD later on. Yet despite all
this heterogeneity, there is widespread consensus that the essential clinical features
of BPD are impulsivity and emotional dysregulation. These abnormalities occur in
BPD, as Hughes et al. (2012) mention, almost invariably within an interpersonal
context. But this consensus about the key features has spawned an outpouring of
studies dedicated to discovering what brain peculiarities may underlie impulsivity
and emotional dysregulation.

Many investigators of brain changes in BPD have drawn attention to the kind of
frontolimbic dysfunction Hughes regarded as the predominant neural substrate
underlying the personality disorder. The “fronto” aspect has been characterized in
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general as a diminished “top-down” control of affective responses; specifically,
because of decreased responsiveness of certain midline areas of the prefrontal
cortex (New et al. 2008). As these authors mention, besides neuroanatomical
abnormalities there may also be a neuroendocrine factor, such as reduced serotonin
availability—with a resultant dysregulation in the form of emotional disinhibition.
In agreement with these impressions are the observations of Dell’Osso et al. (2010),
how noted alterations in the serotonin system, but also in dopaminergic and glut-
aminergic systems, appear to play a role in the impulse dyscontrol and aggressivity
in borderline patients. In a more recent study, Kamphausen et al. (2013) pinpoints
ventromedial prefrontal cortex (vmPFC) dysfunction as the “top-down” element
and, in their fMRI analysis of female BPD patients exposed to visual “threat”
stimuli, a prolonged amygdala response, as the “bottom-up” component (Herpertz
et al. 2001). The patients also showed an increased connectivity between the
amygdala and the vmPFC. In a similar study higher connectivity was noted, during
an fMRI “fear-scan”, between the amygdala and the rostral portion of the anterior
cingulate cortex (ACC) (Cullen et al. 2011). Borderline patients were shown to
make more mistakes on fMRI than did the controls in a task involving distin-
guishing emotional from neutral faces in other areas as well, such as the insula,
amygdala, and fusiform gyrus (Guitart-Masip et al. 2009; Koenigsberg et al. 2009).
Abnormalities of this sort were seen as contributing to the heightened sensitivity in
BPD to negative emotion, with consequent social disturbances: particularly, the
tendency in borderline patients to become too angry too quickly in interpersonal
situations others handle more calmly (Domes et al. 2009). Similar difficulties in
suppressing their reaction to negative emotion was noted also in an ERP study of
borderline patients (Marissen et al. 2010). In another study, reduced gray matter in
female BPD patients was noted in the dorsolateral prefrontal cortex (dI-PFC)
(bilaterally) and in the left orbitofrontal cortex (OFC); the prefrontal cortical
changes did not, however, appear specific to BPD, insofar as similar changes were
observed in a control group of other psychiatric disorders (Brunner et al. 2010), and
also in a still wider array of psychiatric disorders including panic disorders and
other Cluster-B personality disorders (Jackowski et al. 2012). White-matter
abnormalities have also been implicated: BPD patients were shown to have
abnormalities in the long association bundles connecting the association cortex with
the hippocampus and thalamus—of a sort that appeared to play a role in the dis-
ruption of emotional regulation in BPD (Maier-Hein et al. 2014). In general, it is the
OFC that plays a major role in top-down inhibitory control via “reverse-learn-
ing”—where maladaptive impulses and choices are suppressed in favor of more
adaptive/socially appropriate choices (Jentsch 2012; Jentsch et al. 2002). This has
relevance to BPD, but also to abuse of certain drugs such as cocaine and meth-
amphetamine—which cause blockade of the dopamine-related D-2 receptors and
impairment of the inhibitory control otherwise exercised by the OFC. Abuse of such
drugs is common in BPD, aggravating a problem in top-down control typical of
BPD psychopathology even in the absence of drug-abuse.

Neuroanatomically, size appears to matter, as in the study of Ruocco et al. (2012),
in whose meta-analysis of MRI research in BPD—volume reductions of about 11 %
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were noted in the amygdala, with comparable reductions also in the hippocampus.
Similar reduction in amygdalar volume (from 11 to 17 %) was noted by Tebartz van
Elst et al. (2007), who also found an increased creatine concentration in the left
amygdala.The latter correlated with the patient’s anxiety level, and might provide
another clue to the emotional dysregulation in BPD—this time in the form of a
neurochemical abnormality. Volume reduction in amygdala and hippocampus has
been seen as correlates of other “bottom-up” (i.., limbic) abnormalities in BPD that
lead to impulsivity and heightened aggression associated with this disorder (Nunes
et al. 2009). Berdahl (2010) has advocated that we include even deeper—in effect,
sublimbic—regions in the circuitry relevant to BPD: a network involving not only
the Anterior Cingulate and ventromedial prefrontal cortex (ACC/vmPFC) and the
amygdala, but also the brain-stem center—the periaqueductal gray. Panksepp and
Biven (2012) have underlined the importance of the periaqueductal gray as con-
stituting the first portal of entry for incoming stimuli affecting the emotions in
humans and in other animals, including the negative emotions of fear, rage, and
panic/grief. Unregulated feelings of the PANIC/GRIEF system may, in their view,
underlie the stormy social relationships, depression, and avoidance of abandonment
that plague the patients we label as BPD (Panksepp and Biven 2012, p. 75).

A number of authors have drawn attention to the ironical situation of reduced
amygdala volume in BPD patients, yet hyperactivity in the amygdala’s responses
when confronted with emotion-related stimuli (Stein 2009; Siever and Weinstein
2009; O’Neill and Frodl 2012). Allele differences in the 5-hydroxytryptamine-1la
receptor (5-HTR-1a) gene may account for some of the disagreement in the lit-
erature about amygdala-size: BPD patients with the G allele had smaller amygdala
sizes than did those with the C/C genotype, and may be more prone to the
impulsive and aggressive behavior that characterizes BPD (Zetzsche et al. 2007).
Presumably, however, it is ultimately dysfunction in the top-down centers that
should be held responsible for the dysregulation of impulse and affect in BPD
(Soloff et al. 2008), since the amygdala (and perhaps before that—the periaqu-
eductal gray) are the earlier recipients of stimuli carrying negative emotional
valence, thence broadcast to the higher centers for evaluation and reaction.

Another peculiarity noted in many BPD patients, besides their emotional over-
reactivity etc., is a comparative insensitivity to pain. This, too, may answer to
abnormalities in cortico-limbic centers: Kluetsch et al. (2012) noted that painful
stimulation is handled differently in normals than in borderline patients. In their
study of 25 women with BPD, almost all of whom (23) had a history of self-harm,
showed altered pain-processing in regions (such as the cingulate- and left dorso-
lateral prefrontal cortices) involved in cognitive and affective evaluation of pain.
This paradoxical reaction may underlie the tendency in many BPD patients to self-
cut: they are less sensitive than other people to the sheer physical pain but able to
use the (for them, milder) physical pain to distract them from the often over-
whelming psychological pain of their everyday life.

Although contemporary research on brain changes associated with BPD has relied
on MRI, Several groups using EEG have also made notable contributions. Brain
activation as assessed by EEG-vigilance, for example, was noted to be lower in a
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sample of BPD patients (compared with OCD patients); the lowered vigilance has, in
turn, been associated with the impulsivity and sensation-seeking manifested by many
borderline patients (Hegerl et al. 2008). In another study EEG was used along with
thyrotropin-releasing hormone (TSH), neurological soft-signs, and dexamethasone
suppression in a search for associations between otherwise seemingly unrelated
variables (De la Fuente et al. 2011). EEG and TSH emerged as the variables that
influenced most of the others, in their Bayesian network model, raising the hope that
such measures might strengthen subsequent diagnostic criterion-sets for BPD.

4 Borderline Personality Disorder and Aggression

Although violence per se is not among the DSM criteria for BPD, many BPD
patients manifest the “items”: inappropriate intense anger, impulsivity, and tran-
sient paranoid ideation under stress. These attributes may culminate in outbursts of
violence. In less dramatic instances the violence may be limited to punching a
lover or mate, or to smashing glassware. But in the forensic hospital where I work,
most of the female patients carry the BPD diagnosis (often with “antisocial”
comorbidity), and were remanded to the hospital following acts of greater vio-
lence: assault, arson, or murder. The same “top-down” and “bottom-up” abnor-
malities mentioned earlier are usually operative in such case: hyper-responsivity in
the amygdala, and concomitant failure of the “braking system” in the prefrontal
cortex (Siever 2008). The predisposition to violence may be aggravated by
insufficient availability of serotonin, upon which the cortical braking system is
partly dependent (Brendel et al. 2005; Siever 2008). These findings are mirrored in
the important work by Coccaro and his colleagues on impulsive aggression and on
the syndrome of Intermittent Explosive Disorder (IED): disorders noted frequently
in persons comorbid for both BPD and antisocial personality disorder (ASPD),
such as the female forensic patients just mentioned (Coccaro et al. 2007, 2011).

5 Borderline Personality Disorder and Childhood Abuse

A group of Québec researchers interested in BPD, aware of the importance of
building a bridge between neurophysiological data and psychological material, brain
and mind being two sides of the same coin, have drawn attention to the way in which
childhood abuse can aggravate, or perhaps bring about de novo, the executive and
frontal dysregulation that underlay the BPD syndrome (Bouchard et al. 2010).
Severe and prolonged childhood abuse (especially physical and sexual) has been
implicated in epigenetic changes—where otherwise silent genes become activated
(here: in response to the abuse) but without any actual change in the sequence of
DNA (Lewin 2008, p. 819). Such changes, as part of the body’s mechanism in
coping with the abuse, may take on the kind of permanence as though the child had
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inherited the genome transformations that developed as a consequence. Minzenberg
et al. (2008) found a linkage between BPD patients with an abuse history and
executive dysfunction; specifically, attachment-avoidance that correlated with
temporo-limbic dysfunction (whether brought about, or made worse by the abuse).
The avoidance apparently served in such patients as a compensatory mechanism
whereby they could sidestep the kinds of interpersonal stresses that would otherwise
reawaken the abnormal frontal lobe processing to which the earlier abuse had pre-
disposed them. The various brain regions involved were outlined in an earlier fMRI
study that dealt with facial emotion processing in BPD (Minzenberg et al. 2007).

6 Borderline Personality Disorder and Dissociative States

From a neurophysiological perspective, dissociative disorders, which often
accompany BPD, have been connected with abnormalities in the parietal lobe. In a
study out of Géttingen in Germany, young women with BPD who had been the
victims of childhood sexual and physical abuse were shown, via structural MRI, to
have a 9 % smaller volume in the right-precuneus area of the parietal lobe, and a
13 % increased volume in the left post-central gyrus of the superior lobe. The
latter finding was correlated with the clinical conditions of dissociative amnesia
and dissociative identity disorder (akin to the former “multiple personality”) (Irle
et al. 2007). A different brain area was implicated in another study: abnormalities
in the function of the OFC appeared linked to the impulsivity, over-reaction to
negative emotion, and to difficulty in retrieving autobiographical memories in
BPD patients. The latter type of impairment was correlated with the dissociative
symptoms that frequently occur in BPD (Poletti 2009). These brain areas are
involved in memory, such that abnormalities in size or function might predispose
to the varieties of dissociative and related memory disturbances seen in BPD,
especially in patients who had been subjected to early abuse. Issues concerning
causation versus correlation remain to be further elucidated. Irle et al. speculated
that some BPD patients might have a neurodevelopmental defect of the right
cerebral hemisphere that could render them more susceptible to the effects of early
abuse. If so, this would suggest that being born with such a defect might heighten
the vulnerability to abuse during childhood, as opposed to a situation where the
early abuse somehow caused volume changes in key brain areas.

7 Borderline Personality Disorder and Post-Traumatic
Stress Disorder

Women (and to a much smaller extent, men) who had been exposed to severe
sexual abuse, especially by an older male relative, may develop the clinical picture
of post-traumatic stress disorder (PTSD), with its chronic anxiety, flashback
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memories, nightmares, and startle-responses. Some of course will show disso-
ciative symptoms or depersonalization as well. Irle et al. (2005) noted in women
with both BPD and PTSD a 17 % smaller hippocampal size. They also noted a
leftward asymmetry in the parietal cortex, which correlated with a greater
vulnerability to schizoid traits and to psychotic symptoms. In a similar study
hippocampal volumes were reduced in BPD patients in general, but particularly so
in those with concomitant PTSD (Rodrigues et al. 2011). Also in the combined
BPD with PTSD women, marked reduction (34 %) was found in the amygdala
size: a greater reduction than was noted in the BPD patients who had experienced
trauma, but did not show the PTSD picture—where the reduction is size was about
22 % (Weninger et al. 2011). The question about amygdalar size remains con-
troversial, inasmuch as a Brazilian group, in their meta-analysis, noted smaller
amygdala size in BPD where PTSD was not an accompaniment; they suggested
that the reduced amygdalar volume in BPD might not be explainable as a con-
sequence of concomitant PTSD (de-Ameida et al. 2012). In their observation about
stress, in general, and its effect on limbic structures, Wingenfild et al. (2010)
viewed that stress exerted damaging effects on the hippocampus, which had spe-
cial relevance to BPD. These authors underlined the importance of studying fur-
ther the hypothalamus-pituitary-adrenal (HPA) axis and its vicissitudes vis-a-vis
BPD patients who have endured marked stresses, whether from abuse or neglect,
in their formative years. The role of the HPA axis in BPD has been studied
extensively by (Teicher et al. 2003), who point out that the major brain-structural
consequences of stress related to childhood traumata concern not only the neo-
cortex, amygdala, and hippocampus, but also the corpus callosum (CC) (where
reduced size has been noted in its mid-portion—in children with a history of
PTSD). Regarding hippocampal changes, severe early stress may be more asso-
ciated with dissociative symptoms than simply withy declarative memory (Stein
1997), and thus have particular relevance to BPD.

On the neuropeptide side, Prossin et al. (2010) have shown greater regional mu-
opioid non-displaceable binding potential (BP-ND) via PET scan in female
patients with BPD, when compared with normal subjects. Brain regions involved
included the amygdala, caudate, N accumbens, and OFC. Negative emotion
challenges (sadness induction) led to greater reductions in BP-ND in the BPD
patients, especially in left-sided regions. The authors did not focus on BPD with
comorbid PTSD. The differences in response to negative emotion and the
accompanying stress did, however, appear related to some of the typical stress-
related phenomena in BPD patients. In their commentary on such stresses as
rejection and abandonment, Stanley and Siever (2010) drew attention to how the
reactions elicited by these stresses in BPD patients (viz., impulsive and self-
destructive/suicidal behaviors) suggest a malfunction of psychological systems
oriented to attachment and affiliation. This in turn lends an importance, for
enhancing our understanding BPD, to certain neuropeptides that play a role in
these interpersonal actions; specifically, opioids (in pain-related phenomena),
oxytocin (in affiliative responses), and vasopressin (in homeostasis and memory
formation).
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8 Bipolar Disorder: Neurophysiological Aspects
and Relation to BPD

Compared with the etiologically heterogeneous BPD, BDs represent a more uni-
fied nosologic construct, since genetic factors appear to play the primary role in
their origin. Confusion and controversy in the domain of bipolar and borderline
conditions stem from the observation of similarities in symptom presentation,
similarities in neurophysiological underpinnings, and the fact, as mentioned in
Gunderson’s work cited earlier, that an impressive proportion of persons diag-
nosed in adolescence or early adult life with BPD are seen later to show the
characteristics of a BD, and mutatis mutandis, persons diagnosed as “bipolar” in
their teens frequently meet, later on, criteria for BPD.

Some of the similarities are outlined by Antoniadis et al. (2012), who point to the
main clinical features of BD; namely, impulsivity and affective instability—the
same as found in BPD. Alterations in the limbic system have been found on MRI in
both, though amygdala size has been reported as smaller in BPD; larger, in BD.
Heritability, clearer significant in BD, has been found in some studies of BPD, but
there do not appear to be genes specific in any way for the disorder. Environmental
factors, meanwhile, appear to be more important in BPD than in BD. At the clinical
level, Benazzi (2006a, b) takes the position, in the dispute whether BPD is a bipolar
“spectrum” condition or is a separate entity, that the DSM-IV (1994) definition of
BPD may be conflating two sets of unrelated features: an emotional instability
related more to BD (especially to the milder form of Bipolar-II disorder), and an
impulsivity dimension more applicable to BPD. In Bipolar-II patients cyclothymic
temperament (an inherited quality) and borderline traits (short of meeting full cri-
teria for BPD) clustered more with Bipolar-II Disorder than with Major Depressive
Disorder. Among the BPD traits, lability of affect (unstable mood), unstable inter-
personal relationships, identity weakness (unstable self-image), and chronic anger
sorted in factor analysis—more with Bipolar-1I, but impulsivity did not (Benazzi
2006a). Coulston (2012) was also struck by the clinical similarity between BD and
BPD, the presence of one predicting the (sooner or later) presence of the other. In his
view, childhood trauma predisposed to both conditions, and also to rapid cycling (in
BD) or to the analogous quickly fluctuating “mood lability” in traumatized BPD
patients. But in BPD the mood changes tend to be briefer and vary between anxiety,
on the one side, versus anger and depression, on the other. This in contrast with the
rapid cycling in BD, where the shifts tend to vary between elation and sadness
(Fiedorowicz and Black 2010). Mackinnon and Pies (2006) also comment on the
similarity between the rapid cycling in BD and the affective instability/mood lability
in BPD, adding that anticonvulsant medications are regularly helpful in BD and
often so in BPD as well. They regard this as pointing to a biological overlap, though
do not buttress their argument with data from neurophysiological research.

What neurophysiological data do exist are also equivocal regarding the ques-
tion: are BD and BPD separate conditions—or two sides of the same coin. Rossi
et al. (2012), using an MRI technique, studied 26 mostly female BPD patients and
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15 mostly male BD patients. The BPD group showed smaller hippocampal vol-
umes bilaterally; in the Bipolar patients, there was smaller right-hippocampal
volume (of the right dentate gyrus that lies between the fimbria of the hippo-
campus and the hippocampal gyrus). The authors speculated that these volumetric
differences might be related to the clinical phenomenology of each disorder. In a
subsequent paper (Rossi et al. 2013) where gray and white matters were compared
in the two conditions, it was noted that gray-matter density changes were more
diffuse and severe in BD than in BPD. Each disorder had specific regions of
abnormality involving both cortical and subcortical structures in BD; in BPD—
mainly fronto-limbic regions. Despite areas of overlap in gray matter changes,
the topography in those changes appeared more consistent with a “separate-
conditions” hypothesis. The separate-conditions hypothesis finds support in a
psychological study of set-shifting and reversal learning in BPD (Barker et al.
2014). BPD patients in this study did not show significant deficits in extra-
dimensional shift (EDS) or in reversal learning; this appeared to distinguish them
from bipolar subjects—who did demonstrate deficits in tests of EDS. MRI suggests
that performances on reversal learning reflects OFC functioning, whereas EDS
relies on prefrontal cortex function. Since deficits in these tasks were not found in
the BPD patients, the authors suggested that, in contrast to the bipolar patients, the
limbic system was the primary locus of pathology in BPD (Barker et al. 2014, p. 9).

In some patients there is a convergence clinically between the symptoms and
traits of BPD and Bipolar Depression. Patients with (depressive) mood disorder
are known to have a higher prevalence of BPD—the combined condition showing
marked instability of mood and poorer response to medication (Radaelli et al.
2012). When MRI data were obtained from patients with Bipolar Depression alone
and with those diagnosed with both conditions, the Depression + BPD group
showed a lower activation of the dIPFC than in the Depression-only patients.
Emotional dysregualtion appeared greater in the combined group. In contrast, MRI
data from another research group found an important abnormality in the ACC
(Brodmann Area #24), whose function is ordinarily to assess the salience of
emotional information and to help regulate emotional responses. This gray matter
(but not white) in this area was shown to be smaller in patients with BPD ado-
lescents with Major Depression (Goodman et al. 2011). Still, there are many areas
of overlap on the biologic side between BPD and Major Depression: amygdala
hyper-reactivity, smaller ACC volume, and diminished serotonergic function, such
that the data that might help firm up the similarities and also make more mean-
ingful distinctions between the two are not as yet available (Goodman et al. 2010).

9 The Spotlight on Bipolar-I Disorder

The mood dysregulation characteristic of BD has been ascribed to dysfunction in
the prefrontal cortex, leading to inhibitory dyscontrol (Anticevic et al. 2012). In
their study, based on BD patients with psychosis, there was reduced medial
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prefrontal cortex (mPFC) connectivity within the prefrontal cortex as a whole, and
also reduced connectivity between the amygdala and the dI-PFC. The mPFC is
considered the key region for emotional regulation. Dysconnectivity was also
noted even in remitted bipolar patients, suggesting that this abnormality might
constitute a risk factor for the phasic (mood-fluctuating) features of BD. The
memory deficits sometimes associated with BD were linked, in another study, to
the lowered hippocampal volume, as documented above by a number of other
investigators (Chepenik et al. 2012). Improvement in memory was noted in some
BD patients following treatment with antidepressant medications, though whether
the memory improvement was associated with morphological changes in the
hippocampus (such as regaining its volume) was not assessed. The hyper-reactivity
of the amygdala to emotional stimuli (looking at sad faces, for example, in fMRI
experiments) was noted in BD and linked to deficient activation in the dI-PFC
(Garrett et al. 2012)—as a factor in the emotional dysregulation in BD—compa-
rable, however, to what has been noted in BPD as well. Amygdalar hyperactivity
to emotional facial expressions has been found to be particularly marked in
children and adolescents (aged 7-18) with BD (Kim 2012). Yet in a study of
Bipolar-1I patients with depression, Vizueta and colleagues (2012) found amy-
gdalar hypo-activity (which they felt might be state-dependent), though OFC
hypoactivation was similar to what has been observed in Bipolar-I—which might
therefore warrant consideration as a trait-marker of BDs in general.

Hajek et al. (2012, 2013a) have shown in an fMRI study that BD patients
underactivated the right inferior frontal gyrus (R-IFG) relative to a control group,
irrespective of current mood state. This suggested that the impaired response
inhibition to emotional stimuli (in effect: poorer top-down control) in BD may be a
biological marker for the condition. Oddly, the authors noted that the IFG was
significantly larger not only in the BD patients, but also in their family members
(with or without the disorder). Usually, abnormal function has been associated
with smaller-, rather than with larger volumes in the affected regions. Further
along in the course of bipolar illness, however, they noted that the IFG became
smaller than normal—possibly because of the neurotoxic effects of the illness on
gray matter (cf. also: Hajek et al. 2013a). But lithium-treated BD patients even-
tually were shown to have normal R-IFG volume, despite having had the condition
for a long time (Hajek et al. 2013b). Hippocampal volumes in BD, smaller in
volume at the outset, were also noted to appear normal in volume following two
years or more of lithium treatment (Hayek et al. 2013c). As for other higher
centers, a London-based group found evidence in their meta-analysis—of reduced
gray matter in BD in the right ventral prefrontal cortex (r VPRC), as well as in the
temporal cortex and insula (Selvaraj et al. 2012). Malhi et al. (2013), in a review
concerning the effects of lithium, mentioned that lithium may exert its beneficial
effects in BD via helping to preserve or even increase the volume of brain
structures involved in emotional regulation.

In an effort to develop a consensus concerning the evolution of BD and key
brain areas involved, a workgroup organized by the University of Cincinnati
Department of Psychiatry met to discuss their research. Their impression was that
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in the early development of BD there was disruption of brain networks that
modulate emotional responses. Because of what may be excessive prefrontal
pruning during adolescence, one finds decreased connectivity among ventral
prefrontal networks and the relevant limbic centers, especially the amygdala.
These changes appear to prepare the path for manic symptomatology (Strakowski
et al. (2012). In a study devoted to finding neurophysiological signs that might be
helpful in distinguishing BD from schizophrenia in a reliable way, Whalley et al.
(2012) examined the fMRI literature, from which they found evidence that over-
activation in the medial temporal lobe in emotion and memory tasks—occurred in
BD more so than in schizophrenia. As to the distinction between, versus the
similarity of, BD and schizophrenia, at least from the standpoint of pharmaco-
logical response, it is of interest that in a recent Danish study, clozapine proved
useful not just in schizophrenia, but also in refractory BD (Nielsen et al. 2012).
Vacheron-Trystram et al. (2004) found clozapine more useful in BD even than in
schizophrenia.

10 Attention-Deficit Disorder, BPD, and BD: Similarities
and Differences

The conceptual and, to an increasing extent, neurophysiological overlap between
BPD and the spectrum of BDs—in a significant percentage of cases—is also
pertinent to Attention-Deficit Hyperactivity Disorder (ADHD). This is because, in
the same way that BPD is over-represented in samples of BD and vice versa,
ADHD is over-represented in a similar way. Granted that ADHD tends to be over-
diagnosed in the US, nevertheless young persons with the genuine disorder are
more likely, as they enter adulthood, to be diagnosed also with either BPD or BD
or both (Makris et al. 2012). Similarly, in the background of adults with BPD or
BD, there is a higher proportion of ADHD histories than would be expected in the
general population (Faraone et al. 2012). (Philipsen 2006), besides mentioning the
clinical interconnection between ADHD and BPD, expressed the view, in the light
of recent neuroimaging studies, that ADHD and BPD may be not so much two
distinct disorders, but rather a manifestation of two aspects or dimensions of one
(underlying) disorder. In a like manner, Riisch et al. (2007) examined a group of
women with BPD who were comorbid also for ADHD. In their imaging study
the women with BPD had a narrower isthmus of the CC (i.e., the portion where the
anterior parts of the CC: rostrum, genu, and body and the posterior part: the
splenium—are fused during embryogenesis). A history of childhood sexual abuse
was associated with a thinner posterior body of the CC, indicating a possible loss
of some of the 190,000,000 axons that make up the CC and subserve interhemi-
spheric connectivity. This may account for some of the deficits in the combined
BPD/ADHD disorder. In the study of Posner et al. (2011) the focus was on the
amygdala and the lateral prefrontal cortex (LPFC) in their fMRI assessment (using
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subliminal presentation of fearful faces) of adolescents with ADHD. Their strategy
was based on the connection of the amygdala and the LPFC in monitoring emo-
tional reactivity. They found that activity in the right amygdala was greater in
adolescents with ADHD than in the control group, along with greater connectivity
between the amygdala and the LPFC. Parenthetically, they noted that stimulants
(a common treatment for ADHD) had a normalizing effect on the activity of the
right amygdala and on its connections with the LPFC. ADHD is associated with
deficits in cortical inhibition, as has been noted in BPD, but also in Gilles de la
Tourette syndrome. Barnow et al. (2009) used transcranial magnetic stimulation
(TMS) to assess whether BPD patients showed decreased cortical inhibition, or
else—increased cortical excitation. They controlled their result for ADHD
symptomatology and still noted an association between BPD and deficits in cor-
tical inhibition.

11 Discussion

There is fairly good agreement among investigators concerning the neurophysio-
logical alterations in BPD. The brain-regions chiefly implicated in BPD, along
with neurophysiological correlates noted in other disorders: Bipolar, Major
Depressive, and ADHD—are summarized in Table 1.

The various studies, relying primarily on MRI, invoke fronto-limbic malfunc-
tion as the most general way of addressing the impulsivity and emotional dys-
regulation that characterize BPD. Because of the widespread recognition that BPD,
BDs (whether fluctuating between manic and depressive episodes, or predomi-
nantly depressive), and Attention-Deficit/Hyperactivity Disorder often co-occur in
various combinations and sequences, imaging researchers who focus on one dis-
order often include patients with the related conditions as well. The very fact that
patients with all three disorders are well-known to clinicians has spurred interest in
finding possible commonalities at the deeper level of brain physiology. Eagerness
to explore this area has been heightened further following the recent discovery by
the Cross-Disorder Group of the Psychiatric Genomics Consortium (2013), that
five psychiatric disorders viewed as distinct from a clinical perspective never-
theless share certain genetic features in common; namely, single nucleotide
polymorphisms (SNPs) in two genes involved in calcium-channel activity.

Alessandro Serretti and Chiara Fabbri (2013) and colleagues from the Human
Genome Project contributed importantly to this work, which has been reviewed
recently by Smoller (2013). The five disorder: Autism, Attention Deficit-Hyper-
activity Disorder, BD, Major Depressive Disorder, and Schizophrenia include three
of relevance to the topic of BPD. Serretti and Fabbri have argued that there is
abundant pleiotropy in human complex disorders, such that the same genetic variant
may play a role in several diseases that—to the clinical eye—have appeared sep-
arate and unrelated.
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Table 1 Neurophysiological abnormalities noted in brain regions in BPD and related conditions

Disorder Cortical/subcortical regions Limbic regions

BPD Prefrontal cortex, orbitofrontal cortex, Amygdala size (decreased), amygdala
dorsolateral PFC (including reactivity (increased) hippocampus
decreased gray matter), size (decreased)

ventromedical PFC, parietal lobe,
right hemisphere, corpus callosum,
insula, N accumbens
Bipolar I, I Prefrontal cortex, dorsolateral PFC, Amygdala size (decreased), amygdala

middle prefrontal cortex, right reactivity (decreased; though
inferior frontal gyrus, medial increased in bipolar-II),
temporal lobe, right ventral hippocampal size (decreased)
prefrontal cortex

Major Dorsolateral prefrontal cortex, anterior Amygdala reactivity (increased)

depression cingulate cortex

ADHD Lateral prefrontal cortex, corpus Amygdala reactivity (increased)

callosum

Note The abnormalities observed in the cortical regions usually involved smaller than normal
volumes, though in Bipolar-I the R Inferior Frontal Gyrus was larger than normal initially, but
smaller—as the illness progressed (Hajek et al. 2013a)

The new research will enable us to move beyond a nosology based on
description of signs and symptoms, toward a classification based progressively
more on fundamental causes. An effort was recently made in regard to BPD by
Calati et al. (2013): she and her colleagues looked for serotonergic polymor-
phisms, but did not find a direct role in BPD for the three genetic polymorphisms
of interest. Perhaps this is less surprising—to the extent that BPD, as noted above,
is a markedly heterogeneous clinical syndrome based more on adverse environ-
mental factors than on putative genetic factors. There is in all likelihood a subset
of BPD cases where genetic factors play a major, not to say, a determinative, role
in predisposing to the development (usually discernible at puberty) of the bor-
derline syndrome (a la DSM). Persons with clear-cut and severe BD, who in
addition have a family history of bipolar disorders—but who have no history of
neglect, abuse (whether sexual, physical, or verbal), perinatal complications, drug
abuse, or head injury—would constitute the most concentrated pool of patients for
the assessment of a genetic linkage to BD, and also for whatever gene polymor-
phisms may be a part of the picture. There are also social-class and cultural factors
to take into account. Persons from economically poorer backgrounds are much
more likely to have experienced childhood physical abuse than their better-off
counterparts (Straus and Gelles 1992). Incest histories are common in certain
cultural settings; rare, in others. In many samples of BPD patients, including those
devoted to MRI and fMRI studies, these factors are not separated out, thus com-
plicating any search for specific gene peculiarities. Given the difficulties inherent
in carrying out MRI analyses in infants or very young children, it is not easy to
determine whether the brain-changes associated with bipolar disorder were already
detectable at birth (and later paved the way for development of BPD), or whether
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they were epiphenomena of adverse environmental factors. We still tend to be
divided into two camps: the “lumpers” and the “splitters”: diagnostic lumpers
who might argue that BPD, BD, and ADHD are three continents of the same
nosologic planet, and the splitters, who claim that they are diagnostically, and
perhaps even genetically, separable. As for the BPD question, the time is ripe for
further genetic analysis, based on patient-samples that have been more scrupu-
lously homogenized: borderline patients with no family history and no diagnostic
indications of bipolarity, versus bipolar patients with a strong family history of BD
and no signs at all of environmental adversity. Further neurophysiological and
genetic analysis of such groups will help resolve many of the as yet unanswered
questions in this domain.
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Physiological Correlates of Bipolar
Spectrum Disorders and their Treatment

Tim Outhred, Andrew H. Kemp and Gin S. Malhi

Abstract Bipolar spectrum disorders (BSDs) are associated with great personal
and socioeconomic burden, with patients often facing a delay in detection, mis-
diagnosis when detected, and a trial-and-error approach to finding the most
appropriate treatment. Therefore, improvement in the assessment and management
of patients with BSDs is critical. Should valid physiological measures for BSDs be
identified and implemented, significant clinical improvements are likely to be
realized. This chapter reviews the physiological correlates of BSDs and treatment,
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and in doing so, examines the neuroimaging, electroencephalogram, and event-
related potential, and peripheral physiological correlates that both characterize and
differentiate BSDs and their response to treatment. Key correlates of BSDs involve
underlying disturbances in prefrontal and limbic network neural activity, early
neural processing, and within the autonomic nervous system. These changes
appear to be mood-related and can be normalized with treatment. We adopt an
“embodied” perspective and propose a novel, working framework that takes into
account embodied psychophysiological mechanisms in which the physiological
correlates of BSD are integrated. This approach may in time provide the objective
physiological measures needed to improve assessment and decision making when
treating patients with BSDs. Future research with integrative, multimodal mea-
sures is likely to yield potential applications for physiological measures of BSD
that correlate closely with diagnosis and treatment.

Keywords Bipolar disorder - Bipolar spectrum disorders - Physiology - Psy-
chophysiology - Treatment - Heart rate and its variability - EEG - FMRI - GSR -
Embodied cognition
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1 Introduction

Determining the physiological correlates of psychiatric disorders and assessing the
potential clinical utility of physiological measures are major pursuits in biological
psychiatry research (Insel et al. 2010, 2013). The impetus for such research is
the promise of objective measures for assessment and predicting response to
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treatments, which would improve diagnostic validity and inform treatment
selection (Insel et al. 2010, 2013). To facilitate this goal, the National Institute of
Mental Health has proposed Research Domain Criteria (or RDoC), which provide
researchers with a novel framework in which research can be presented (Morris
and Cuthbert 2012). In this context, physiological measures provide an important
tool through which diagnosis could be improved and treatment options tailored.
Currently, the assessment and management of bipolar spectrum disorders (BSDs)
often entails misdiagnosis following a significant delay in detection (Hirschfeld
et al. 2003; Suppes et al. 2001), the inability to predict course (Crowe et al. 2012;
Malhi et al. 2012, 2013), trial and error in treatment selection (Malhi et al. 2009;
Sachs 2013), and a failure to implement long-term management strategies (Keck
2006; Malhi et al. 2009). Therefore, improvement in the assessment and treatment
of those with BSDs is critical given the great personal (Bonnin et al. 2012;
Merikangas et al. 2007) and socioeconomic burden associated with BSDs
(Merikangas et al. 2007). Critically, these disorders are associated with the highest
risk of suicide of any mental disorder (Nock et al. 2009), highlighting the need for
early and accurate detection with improved diagnosis and a more personalized
approach to effective treatment. Initiation of successful treatment early in the
course of the disorder will undoubtedly reduce morbidity (Baldessarini et al. 2003;
Post et al. 2010) and improve treatment outcomes (Berk et al. 2011; Ketter et al.
2006; Malhi 2012). Given the potential for these needs to be met with the trans-
lation of physiological measures into clinical practice (Morris and Cuthbert 2012),
identification of physiological markers that could be employed in assessment and
treatment selection remains an ambitious but worthy goal.

BSDs represent a cluster of disorders characterized by extreme changes in mood
(Malhi et al. 2012). Depression, mania, hypomania, and euthymia (periods of
remission) are phases of illness that are subjectively experienced by patients, and
objectively determined by clinicians (Tohen et al. 2009). These include cyclothy-
mia, Bipolar I disorder, Bipolar II disorder, and Bipolar Disorder Not Elsewhere
Classified (NEC) and are partitioned from major depression on the basis of cycling
into mood elevation such as (hypo)mania. The spectrum is conceptualized as
increasing in severity and burden from Bipolar Disorder NEC, Cyclothymia,
Bipolar II Disorder, through to Bipolar I Disorder (Merikangas et al. 2007), but in
reality, this does not always hold true. Currently, there are no physiological tests that
can be employed to assist with the detection, assessment, and diagnosis of BSDs.
The physiological correlates implicated in cognitive and emotional disturbances
underlying BSDs and the different phases of illness have thus far been investigated
using neuroimaging and peripheral physiology techniques. Studies have revealed
disturbances in prefrontal and limbic network neutral activity (see Strakowski et al.
2012), neural activity states and early neural processing (see Degabriele and
Lagopoulos 2009), and within the autonomic nervous system (ANS; Gruber et al.
2011; Lee et al. 2012), respectively. Understandably, most studies have considered
these neural and autonomic activation characteristics separately. Hence we now
consider the neural and autonomic characteristics of BSDs in the context of an
embodied (see Craig 2009; Niedenthal 2007; Price et al. 2011) disturbance affecting
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both the brain and body so as to develop a novel framework (see Fig. 1) in which the
physiological correlates of the disorder can be investigated.

In addition to characterizing the physiological correlates of the BSDs, we
further characterize the correlates—or markers—of treatment effect, and predic-
tors of response to treatment. Patients with BSDs are typically prescribed phar-
macological treatment (including lithium, antipsychotics [e.g., olanzapine,
risperidone, quetiapine], and anticonvulsants [e.g., valproate, carbazepine lamo-
trigine)] either alone or in combination) but first-line treatment is often ineffective
(Malhi et al. 2009) reflecting the fact that information gained from clinical
assessment alone is insufficient for planning and implementing treatment. If
physiological measures could anticipate treatment efficacy, then the trial and error
involved in first-line treatment strategies may be diminished or subsided alto-
gether. Therefore, the need to identify potential physiological markers of BSDs
and to ascertain their clinical utility is imperative.

2 Measuring the Physiological Correlates of Bipolar
Spectrum Disorders

Studies on BSDs have most often utilized neuroimaging techniques such as
functional magnetic resonance imaging (fMRI), positron emission tomography
(PET), and single-photon emission computed tomography (SPECT) and findings
from studies using these neuroimaging methods have been largely consistent
(Strakowski et al. 2005). The next most employed measures have been electro-
encephalography (EEG) and event-related potential (ERP). While neuroimaging
methods enable localization of regional responses to cognitive and emotional tasks
across the whole brain (Friston et al. 1998), EEG and ERP have higher temporal
resolution such that fluctuations in neural activity states (Davidson 1998, 2004)
and early information processing can be examined (Donchin and Coles 1988),
respectively. In terms of peripheral physiological measures, cardiovascular mea-
sures including heart rate (HR) and heart rate variability (HRV) gathered using
electrocardiography (ECG), and galvanic skin response (GSR) have been widely
employed. Within these, HR is a measure of overall ANS arousal (see Duschek
et al. 2013; Lopes and White 2006) under tonic inhibitory control by the para-
sympathetic nervous system (PNS; Saul 1990; Thayer et al. 2009), high frequency
HRYV measures PNS activity (see Duschek et al. 2013; Lopes and White 2006), and
galvanic skin response (GSR) measures reflect sympathetic nervous system (SNS)
activity (see Dawson et al. 2007). Notably, only GSR has been employed in
combination with other measures for multimodal investigations. Building toward a
more embodied perspective of BSDs, we delineate, examine, and then integrate the
cognitive neuropsychological (brain; fMRI and EEG, and ERP) “neurocorrelates”
and the peripheral physiological (body; HR and HRV, and GSR) correlates.

A methodological issue that has been discussed in most physiological studies of
BSDs is heterogeneity with respect to previous and current treatment effects,
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clinical course, and comorbidities. Though it is often not feasible to exclude or
stratify patients on all these bases, future research should report and, where pos-
sible, take these factors into account. Another self-evident issue that has chal-
lenged researchers is the difficulty in recruiting and testing manic bipolar patients
in laboratory settings, explaining why there are relatively fewer studies of this
phase of illness (Small et al. 1999). With technological advances, future research
will likely take advantage of less invasive, ambulatory sensors including smart-
phone (Heathers 2013) and sensorized clothing (e.g., Mariani et al. 2012; Quintana
et al. 2012; Siegel 2013), which will enable the collection of longitudinal physi-
ological data across illness and treatment phases within BSD patients.

3 Neurocorrelates of Bipolar Spectrum Disorders
and Their Treatment

3.1 Functional Neuroimaging Correlates

3.1.1 Characterization and Differentiation
Characterization

Characterization of the functional neuroanatomy of BSDs has been extensive,
systematic, and consistent for the last two decades (see Table 1). The results and
conclusions obtained across neuroimaging modalities—including fMRI, PET, and
SPECT—have been largely consistent and non-modality specific (see Strakowski
et al. 2005). Overall, BSDs display prefrontal cortex (PFC) hypoactivity and
limbic hyperactivity during emotional and cognitive tasks, and these findings
correlate with trait and state emotional lability and mood disturbances in BSDs
(see Strakowski et al. 2012). In addition, bipolar disorder is characterized by
dysfunctional connectivity among ventral prefrontal networks and limbic brain
regions, particularly the amygdala (Blond et al. 2012; Chen et al. 2011; Houenou
et al. 2011; Strakowski et al. 2012; Townsend et al. 2012) indicating both difficulty
in regulating mood alongside a dysfunction of emotion processing. Impaired PFC
regulation subsequently leads to a loss of neurological emotional homeostasis,
emotional lability, and mood disturbances (Strakowski et al. 2012). It is posited
that a disruption of frontal regulatory networks allows for extreme mood states,
switching among mood states, and mixed states (Strakowski et al. 2012). These
abnormalities have been conceptualized as dysfunction within oscillatory mech-
anisms, which perhaps worsen over time, and result in the many manifestations of
the illness (Schneider et al. 2012).

Interestingly, bipolar patients have consistently decreased frontal activation
across the ventrolateral PFC (VLPFC), a region critical for emotional processing
and mood regulation (Blond et al. 2012; Chen et al. 2011; Houenou et al. 2011;
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Strakowski et al. 2012; Townsend and Altshuler 2012), and consistently decreased
inferior frontal gryus (IFG) activity, specifically the right IFG (R IFG), a region
associated with regulatory inhibition (Hajek et al. 2013). Furthermore, bipolar
patients have also increased activity within limbic regions including parahippo-
campus, hippocampus, and amygdala and basal ganglia (Blond et al. 2012; Chen
et al. 2011; Houenou et al. 2011; Strakowski et al. 2012; Townsend and Altshuler
2012), which may underpin abnormalities of primary emotion processing. Hence,
decreased IFG activity in bipolar disorder which is seen during both cognitive and
emotional processing, and increased limbic activation that is seen during emo-
tional processing (Chen et al. 2011; Hajek et al. 2013; Houenou et al. 2011;
Strakowski et al. 2012) may reflect trait-based correlates of BSDs.

With respect to the manic phase of bipolar disorder, IFG activity is decreased in
mania but not in euthymic or depressed states, and limbic activation increases
are not associated with mood states (Chen et al. 2011; Houenou et al. 2011;
Strakowski et al. 2012). However, amygdala activation varies as a function of mood
state and the valence of the emotional stimuli: hyperactivity to emotional stimuli in
mania; hyperactivity to negative stimuli and hypoactivity to positive stimuli in
depression, and normalized activations in euthymia (Townsend and Altshuler
2012). However, it is important to note that many of these findings are preliminary
and may be contingent on additional factors such as the tasks used and disorder
phenotype, but they do suggest that manic and depressed phases of bipolar disorder
can be differentiated on the basis of altered IFG activity and valence-mood con-
gruent activation of the amygdala (Strakowski et al. 2012; Townsend and Altshuler
2012). With respect to response inhibition, the manic phase is associated with
reduced performance, associated with decreased R IFG and medial frontal gyrus
(MFGQ) activation and increased bilateral basal ganglia activation (Hajek et al. 2013;
Houenou et al. 2011; Strakowski et al. 2012). In the euthymic phase, response
inhibition is not dysfunctional, although activity in left superior temporal and right
MFG is increased and basal ganglia activation decreased (Hajek et al. 2013;
Houenou et al. 2011; Strakowski et al. 2012). Therefore, euthymic patients com-
pensate for reduced inhibitory IFG activity with increased activation of adjacent
cortical areas, thereby yielding normalized inhibitory functions (Hajek et al. 2013).
During euthymia, recovery of frontal control, along with compensation from other
brain regions, temporarily restores neurological emotional homeostasis (Strakowski
et al. 2012). However, the underlying functional abnormalities in the VLPFC net-
works leave the risk for emotional and cognitive disruption, leading to manic,
depressed, or mixed phases, even under minor stress (Strakowski et al. 2012).

Differentiation

Over-activation in the medial temporal lobe during tasks involving emotion or
memory may differentiate patients with bipolar disorder from patients with
schizophrenia (Whalley et al. 2012). However, differential diagnosis with fMRI has
been less accurate with bipolar disorder than schizophrenia (Whalley et al. 2012).
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While promising preliminary findings have been reported suggesting that BSDs
may be distinguished from unipolar major depression in small samples (Diler et al.
2013; Grotegerd et al. 2013; Marchand et al. 2013), large-scale studies are needed
to determine the sensitivity and specificity of these findings.

3.1.2 Treatment

Effective treatment would be expected to normalize the state-based and trait-based
VLPFC-limbic network disturbances correlated with BSDs using fMRI. In com-
parison to the fMRI correlates characterizing and differentiating BSDs, fMRI
correlates of treatment are understudied. In the last decade, eight controlled studies
examining the impacts of treatment administration in BSDs on cognitive and
emotional stimuli have been published, with each demonstrating some sort of
normalization effect (Table 2). Lithium appears to have prophylactic effects on
cognition after 14 days’ treatment and acts on frontal regions in the euthymic
phase of BSDs with little impact during the depressed phase (Silverstone et al.
2005). After 12 weeks of lamotrigine administration during the euthymic phase,
there are increases in the prefrontal and cingulate regions, thereby normalizing the
activity of circuitry involved in emotion regulation (Haldane et al. 2008; Jogia
et al. 2008). In the depressed phase, 8 weeks of lamotrigine administration reduces
amygdala reactivity to negative stimuli, with greater reductions in reactivity being
correlated with reductions in depression symptoms after 8 weeks (Chang et al.
2008). When patients are given a 4-week course of antipsychotics and then a
14-week course of lamotrigine, decreases in mania symptoms following treatment
are associated with increased VLPFC and dorsolateral (DLPFC) activity during
cognitive-emotional (Pavuluri et al. 2010b) and response inhibition tasks (Pavuluri
et al. 2010a). In subsyndromal patients, there are no consistent differences after 12
weeks of valproate treatment (Chang et al. 2009). Finally, a study investigating the
effect of psychotherapy showed normalization of IFG hypoactivity after 12 weekly
sessions (Favre et al. 2013); however, it was difficult to differentiate the effect of
psychotherapy from improvement with the medication patients were already
receiving (Favre et al. 2013).

In sum, there appears to be normalization of the cognitive and emotional neural
networks implicated in BSDs with treatment when patients present in the
depressed or manic phases of illness. Additionally, prophylactic treatment appears
to affect these networks. However, the majority of investigations thus far have
small sample sizes (less than 20 patients) and many did not have a control group
for comparison (e.g., Chang et al. 2008; Haldane et al. 2008). Additionally, some
studies investigated adolescents (e.g., Chang et al. 2008, 2009; Pavuluri et al.
2010a, b), who are likely to have fundamentally different responses compared to
adults. Nevertheless, there are promising findings from this relatively new line of
research that should encourage future research with larger samples, across different
treatments. In doing so, clinically useful fMRI treatment markers for predicting
treatment response and treatment monitoring may be determined.
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3.2 EEG and ERP Correlates

3.2.1 Characterization and Differentiation

Within the EEG and ERP literature, there has been one systematic review on the
correlates that characterize and differentiate BSDs (Degabriele and Lagopoulos
2009). Here, we updated this review (Table 3). There have been 22 studies
examining the BSD characteristics with EEG and ERP measures. Overall, there
appears to be measurable correlates in frequency band, ERP component, and sleep
EEG characteristics (see Degabriele and Lagopoulos 2009), and network proper-
ties (Kam et al. 2013; Kim et al. 2013) that can characterize and differentiate BSD
phases and BSDs from unipolar depression and schizophrenia. Single electrode
EEG (see Iacono et al. 1983), clinical EEGs (see Cook et al. 1986; Small et al.
1999), and associating EEG data with neuroanatomical abnormalities from com-
puterized tomography images (see Dewan et al. 1988) are yet to produce in
measurable correlates characterizing and differentiating BSDs.

BSD studies employing EEG data show that differential power at specific
frequency bands, which are associated with different activity states, are correlated
with traits and states of BSDs. Specifically, differential activity in the alpha band
between the frontal lobe hemispheres, frontal alpha asymmetry—an index asso-
ciated with behavioral motivation (Davidson 1998, 2004)—correlates with BSD
phases. In the depressed phase, increased right-dominant, withdrawal-related,
frontal alpha asymmetry, relative to controls, is characteristic at rest (Nusslock
et al. 2012). Additionally, bipolar disorder patients with decreased functional
network integration and decreased optimal balance of network segregation in
functional fronto-central and centro-parietal networks had higher depression
scores (see Kim et al. 2013). In the manic phase, various frequency characteristics
can be observed during rest (see Clementz et al. 1994; Kano et al. 1992), with
increased ‘busy thinking’ related, beta activity correlating with increased mania
symptoms (Kam et al. 2013). Increased left-dominant, goal striving frontal alpha
asymmetry, relative to controls, appears to be characteristic of mania (Harmon-
Jones et al. 2008; Nusslock et al. 2012), opposing the activity characterizing the
depressed phase. In the hypomanic phase, increased left-dominant frontal alpha
asymmetry at rest is also observed (Harmon-Jones et al. 2008; Nusslock et al.
2012), an effect that also correlates with hypomanic personality (Peterson and
Harmon-Jones 2008; Wyczesany et al. 2010). In the euthymic phase, bipolar
patients appear to have more normalized frequency characteristics and frontal
alpha asymmetry relative to controls (Nusslock et al. 2012), though some residual
frequency characteristics remain suggesting some trait-based cognitive dysfunc-
tion (El-Badri et al. 2001).

ERP components, such as the commonly reported P300, provide an opportunity
to determine whether early information-processing is impaired in patient samples
(see Degabriele and Lagopoulos 2009; Donchin and Coles 1988; Kemp et al.
2009). In studies with bipolar patients in no specific phase, results show ERP
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component differences characteristic of disturbance in early executive functions
(Hall et al. 2007; Muir et al. 1991; O’Donnell et al. 2004; Souza et al. 1995) and
accentuation of the early processing of positive stimuli (Degabriele et al. 2011).
Furthermore, some ERP components appear to be heritable, endophenotypes for
bipolar disorder (Hall et al. 2007). Therefore, early processing deficits appear to be
measureable BSD traits.

Clinical course from unipolar to bipolar disorder has been predicted using EEG
sleep components (Rao et al. 2002), a finding that may be associated with
increasing or differential chronobiological disturbances in BSDs (see Malhi and
Kuiper 2013). Bipolar I conversion from cyclothymia and bipolar II is reliably
classified by increased manic-related, left-dominant frontal asymmetry at rest
(Nusslock et al. 2012). Finally, bipolar disorder can be differentiated from unipolar
disorder with specific ERP components (Muir et al. 1991) and network properties
(Koles et al. 1994), and from schizophrenia with specific ERP components
(O’Donnell et al. 2004; Souza et al. 1995) and network properties (Kam et al.
2013).

In summary, there are identifiable EEG and ERP characteristics that correlate
with the states and symptoms of depression and mania that may differentiate the
two poles of the illness: withdrawal or negative valence-related right-hemispheric
dominance for the depressed phase and approach or positive valence-related left-
hemispheric dominance for the manic phase, each related to changes in network
properties. In addition, frequency band and early processing disturbances consis-
tently appear to be trait-based characteristics of bipolar disorder, which can dif-
ferentiate it from unipolar disorder. Furthermore, early processing and network
disturbances differentiate bipolar disorder from schizophrenia. Given that classi-
fication and predicting clinical course using EEG has been successfully examined,
future directions in EEG and ERP research should concern classification of dif-
ferent phases and differential diagnosis using the aforementioned characteristics.

3.3 Treatment

Within the EEG and ERP literature, there has been one review examining corre-
lates of lithium treatment effect (Ikeda and Kato 2003). Here, we updated this
review and review other treatments (Table 4). The EEG and ERP characteristics
that correlate with the phases and symptoms and trait-based early processing
characteristics of BSDs would be expected to normalize with effective treatment.
Indeed, all six studies reviewed show that EEG and ERP can detect treatment-
related changes with commonly prescribed treatment. Although clinical EEG did
not appear to be a useful measure for characterizing BSDs, it appears that existing
EEG abnormalities (including, spikes and irregular beta, theta, and slow alpha
activity) is a predictor of 3-month lithium treatment non-response (Ikeda et al.
2002). Additionally, clinical EEG and ERP changes with anticonvulsant medica-
tion predict treatment response (Gerez and Tello 1992).



75

Physiological Correlates of Bipolar Spectrum Disorder and their Treatment

(panunuoo)

[reqppo A1oypny

00ed
srenuajod
POOAD TeNSTA
Apms 00¢d
SIY) Ul UONBUIqUIOD
juounjean Io juounEan sisougerp syuaned sutw ()¢
juounean renonied v JUBS[NAUOITIUR JO SSO[pIL3al ‘SJUBS[NAUODIIUR [ensn se Juaweal], JIapiosip rejodiq ‘arers 3unsay  (z661)
01 sosuodsar Juaunean Surioyuow 01 asuodsar yuounean Surpnpour ‘syuoned O[[oL
QUIULIRIOP Jouue)) I10J [njasn oq WS DI paorpaid sa3ueydp 0gd pue B0 SIUBS[NAUOOIIUY Jo opdwres paxtu (6 DA [PUURYI-6]  Pue ZdIon)
cerd
SIOpIOSIP 1e1g
U99M19q ILNUAIYIP Jou P[nod HHY eydry
B)[OP UL SISBAIOUL YIIM ey,
PAIL[ALI0d sem osuodsal juounean 1eled
{ZR19Q pue ‘BIAY) ‘BI[AP UT 1JI[
OSBAIOUI pUB [B}9q PIsLAIoUl Wiy S[onuod pue ‘qDO doars
PARNUAIIYIP 9q Jou 9 ‘eruarydoziyos 9| OS[e)  PUB SSAUISMOIP
pInoo asuodsar-uouyesuodsar ‘ejor ‘S9sBO QUWIOS UT
Apms PISBAIOAP PUE ‘SISBAIOUL PIPIS S[onuod G| ‘pue uone[NWNS
SIY) Ul UONBUIqUIOD -1y311 210w ‘suOI3al JOLIdIUE dY) Ul sjuoned onoyd
jusunean Io K)1anoe By[ap pasearour surdozeweqie) uorssaidop 2213-3nip G]  ‘uonenuaaradAy
juunean renonied e Sunoyruowr sjuaned ‘Suryepmy (6861)
01 sasuodsar jusunean BLELILEN] uoIssaIdop pue BIUBW UL SJUSWIRAL) wnyry S[onuod | ™1
QUIULIRIAP Jouue)) I0J [njasn aq WS HFF Suump poyosjep sadueyd HIq ourdozeweqre) sjuoned eruew 9d1y-3nip 4] DA [uueyd-7Z [rews
qInseaw
JuAWIWOD) uonejaidioyuy Surpurg JUAWIIBAL], sy100lqng K)epojA Apmis

juourjear) (IS UT JUSWISSASSE DFF JO SSUIPUY MITAI AINJRINTT § dqe],



T. Outhred et al.

(panunuoo)

sarouanbaiy eydje jueurwop

Ay} Jo SUIMOIS [eIOUAT © Sem Iy ],

‘uor3ar [ejorred-onued Y3 oy
ur 1omod eyde aATIE[aI PaseaIddp

osTe wnIyIy “Jomod eIy paseaIour

€=

g}

6=

U ‘uoneodipaw oN

= u ‘sondojomoN

u ‘uessaidopnuy
asn

uonesipaw snoraaxd
JNOWYIM puB M
(1€4 ‘01-QDI) $19pIOSIP

elog
eydpy
eRYL
L1ETq]

S109J0 oY} Jo wnyy UM POIR[OLIOD Sem [OAQ] ewse[d aAnoage Jejodiq paso[d sakg  (0007)
A)1[e1de] oY) QuUIUIEX Kq paonpur sem wnIyry "pasearour sem 1omod syjuou 4 Surpnjour ‘sIopIosip RLBE]
jou piq "dnoi3 jonuod oN  Iomod eioy) Ul oSUBYD)  BIOY) JATR[AI JUSUIEAN) WINII 10y 0] JUSUNLAT) WNIPIT aAnodpe im syuened 71 DJd [ouueyd-g Z[nydg
Paso[d sehg
=u
‘ouopradsTy 1mod e10],
-+ wnpry ©19q I8
g=1u ©)9q MO[S
‘[orpadorey + wnrpry eydpe Jseg
DA SlqenuaIpIp or=u eydre mo[g
W1 PIUIULIANAP 3q arom sdnoiS juounear], ‘ourdozeweqre) Bloy) 158
ued 1opiosip rejodiq ‘spueq eloq pue 81yl ‘BIQP + wnyry ®JOY) MO[S
J0J UOnERdIpaW JseJ oy} ur siopuodsar uey) (G, pue 10 noysem BI[AP IS
paqudsaxd ‘el ‘T.L ‘Td) sepmidwe [exodwo) 9 = u ‘ourdozewreqie)) JIo}je PajedIpow B[P MOIS  (8661)
A[uowrwod -0juolj 1J9 JoYSIy pey jusunean 10 Amou ‘sjuaned RCEE)
03 asuodsar Juouneal], o) siopuodsdr-uou ‘drduwres ojoym oy uf G = u ‘wniry orrewr pazipendsoy /¢ OFH [Uueyd-87 rews
amseowr
JuAWIWO)) uoneyadiouy Surpury JuouealL], s100[qng KiepolN Apmg

76

(PonUNUOd) § Aqe],



77

Physiological Correlates of Bipolar Spectrum Disorder and their Treatment

WS Y Yol T
£(/) sesougeIp 19y10 Wolj SJSH ILNUAIIP 10 S ANBNUIIPIP ‘PUB 9ZLIIRILYDS (7) 10 (/) SgSd 9Zue1oereyd (1) 01 Jdwane jey) SaIpnis Udamidq SALNUIIYIP MIIAI 3y} = JIJ/IeyD) 220N

[[eqppo [ensiA 00ed

eg
QOUQIQYIP SIY} PIZI[BUWLIOU S[0NU0d @ eydyy
Kdexayy, 4 pue ¢ e sdnoi3d ®IDYL,
U99M)9q JUSIJIP 1M Syusuodwod [ = u ‘sonkjorxuy Pasord
dnoi3 [onuod Surssoooxd anem aYI-00€d "00¢d ut sdnoid 7 = u ‘syuessardopnuy saka pue ‘uado
pajean oN ‘Apms uoneULIOJuT U9OMIQq SOOUIYPIP JUBOYIUSIS ON juouEaI) I9)JE § = u ‘sonoydAsdnuy saka ‘oje)s Sunsoy
SIY) Ul UONBUIqUIOd JUBAQ[I-UOU JO Pasoro sako Juump pue 910J9q Pa)ISA g = u ‘wnipry
juduELaI) IO UuoneANdE pajenud)e . 18 PIseaIdap sem Blaq ‘quaunean 1sod  ‘Afuo syuedronted 1 = U ‘SIdZI[Iqe)S POOJA (sons
juounean renonied v pue ‘ssourpeal S[ONUOD 0 QANE[AI ‘PISO[D SAKD rejodig ‘syoom g ApOMNdIR $d (T102)
0) sasuodsar juaunean [euonuane pasoxdur Suumnp ¢) pue ¢ e 819q pasealour ‘Kdexayy 2AnU00 pajesipaw ‘syuaned ‘ed ‘PO ‘€D ‘v ‘e 19
QUIULIAIOP Jouue)) Apys31ys Juouneal], pue ejay) paseardop pey sjuaned rejodrg Paseq-ssau[nypuIjy rejodiq otwAyING 71 ‘cq) DIH [ouuByd>-9 S[[PMOH
I9pIOSIP Ll =1u
1ejodiq ur osuodsar asuodsar jusunean ‘s1opuodsar-uou wnmpIry
-uou JudWIEdI) SOHH [euLlouqe pey s1opuodsal-uou wnpy jo joedur G = u ‘syopuodsar wnnpI Ddgd reow)  (2002)
wniyyn| jo 103o1pard wnIy)I| Ayl Jo AL 'SOHH [euLiou 0} uonesnsoAul ‘e 19
® 9q Aew HFH [eULIOUqY pey siopuodsar wnmpif Ayl Jo [y aanodadsonay syuaned 1ejodiq /7 DAH [auueyd-()7 epaY]
qInseawr
JuAWIWO)) uoneyadiouy Surpury JuouealL], s100[qng KiepolN Apmg

(PonUNUOd) § Aqe],



78 T. Outhred et al.

On the one hand, studies (Schulz et al. 2000; Small et al. 1989, 1998) that show
frequency band component changes with treatment do not interpret these changes
in the context of changes in neural activity or cognitive-emotional processing,
correlating with normalization of symptoms. Instead, these studies discuss the
potential utility of frequency band component changes as a tool to monitor and
measure treatment responses. On the other hand, studies (Howells et al. 2012;
Schulz et al. 2000; Small et al. 1989, 1998) showing laterality effects suggest that
the greater left-dominant frontal approach-related activity characterizing mania
may be normalized in treatment responders, relative to treatment non-responders.
After 20 weeks of lithium treatment, relative alpha power in the right centro-
parietal region is decreased (Schulz et al. 2000). Lithium, carbamazepine, and
risperidone treatment non-response are correlated with higher left fronto-temporal
amplitudes than responders in the fast delta, theta, and beta bands at baseline
(Small et al. 1998). After lithium treatment, betal and left delta, theta, and beta2
increase, and treatment response correlates with increases in delta (Small et al.
1989). Lithium plasma level is correlated with increased theta power.

After carbamazepine administration, delta activity in the anterior regions is
increased, with more right-sided increases, and theta is decreased (Small et al.
1989). Mindfulness-based cognitive therapy appears to decrease right frontal beta
at rest and normalize P300-like ERP components in already medicated euthymic
patients (Howells et al. 2012). Although the specificity of changes due to the
therapy is uncertain, this was interpreted as improvement in attentional readiness
and attenuation of non-relevant information processing (Howells et al. 2012).
Although network disturbances appear to characterize and differentiate BSDs (as
described in the previous section), the impacts of treatment on these networks are
yet to be investigated.

Overall, there appears to be measurable EEG and ERP correlates of general
treatment response that normalize phase and symptom-based characteristics of
BSDs; however, the specificity of these effects to a particular medication or phase
remains uncertain. Future directions would be to examine the specificity of
medication effects and consequent treatment responses on EEG, ERP components,
and network properties at each illness phase. Additionally, the relationships
between frequency band component changes and cognitive-emotional changes
with treatment should be determined. These developments would lay the foun-
dations for investigation into the clinical utility of EEG and ERP components as
markers of treatment response in BSDs.



Physiological Correlates of Bipolar Spectrum Disorder and their Treatment 79

4 Peripheral Physiological Correlates of Bipolar Spectrum
Disorders and their Treatment

4.1 Cardiovascular Correlates

4.1.1 Characterization and Differentiation

A systematic literature review of cardiovascular correlates in BSD is presented in
Table 5. Eight studies have examined cardiovascular measures and suggest that
BSDs are associated with a higher heart rate (HR), reflecting increased arousal and
reduced PNS function (see Duschek et al. 2013; Lopes and White 2006) can
characterize BSDs. This is important as high resting HR is associated with an
increased risk of suicide (Lemogne et al. 2011), which may be related to high
suicidality in BSDs (Nock et al. 2009). Studies further suggest that lower HRV can
characterize BSDs under tonic and phasic conditions. High frequency HRV
measures reflects activity within the PNS branch of the ANS (see Duschek et al.
2013; Lopes and White 2006). PNS activity at the heart during emotional
responding is associated with engagement of executive PFC control on the limbic
system, and thus afferent and efferent brainstem nuclei linked to the heart
(Duschek et al. 2013). Studies of BSDs suggest that low HRV are correlated with
BSD traits. This is important given that low HRYV is associated with poor mental
and physical health and psychological flexibility in the face of stress, increasing
the risk of cardiovascular disease and mental disorder, and overall morbidity and
mortality (see Duschek et al. 2013; Kemp and Quintana 2013).

Studies suggest that euthymic patients have higher HR (Iacono et al. 1983) and
lower HRV (Cohen et al. 2003; Lee et al. 2012) at rest than controls, reflecting
disturbed capacity to adapt and regulate autonomic arousal. Similarly, in manic
(Henry et al. 2010) and subsyndromal (Lee et al. 2012) depressed bipolar patients,
there appears to be increased HR and decreased HRV at rest, relative to controls.
Furthermore, decreases in HRV appear to be related to both mania (Henry et al.
2010) and depression severity (Lee et al. 2012; Migliorini et al. 2011). In controls
at risk for mania, however, there have been findings of increased HRV during
emotional films, relative to controls at low risk (Gruber et al. 2008). There has
been no comparison between, or within patients, differentiating BSD phases,
except for one pilot study showing that HRV seemed to differ from controls when
a patient was in a depressed state, rather than in a euthymic state (see Migliorini
et al. 2011). Studies that compare bipolar to unipolar (Iacono et al. 1983) and
schizophrenia (Henry et al. 2010) patients have not revealed any differential
findings. However, many studies have encountered measurement problems—
including poor consistency of findings across different HRV measures and short
recording times—when compared against established guidelines (Task Force of
the European Society of Cardiology the North American Society of Pacing
Electrophysiology [Task Force] 1996). These issues have been highlighted in the
“Comment” column in Table 5. Therefore, the results of these studies should be
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interpreted with caution. Given the resurgence of interest in this type of research,
future directions for research into cardiovascular measures in the characterization
and differentiation of BSDs should replicate findings across phases of illness
between, and within, patients and other diagnostic groups, in accordance with
established guidelines (Task Force 1996). Furthermore, given that cardiovascular
measures are some of the least costly, time-consuming, invasive, and most mobile
(see Heathers 2013; Mariani et al. 2012; Quintana et al. 2012) of commonly
employed measures, the potential clinical utility of HR and HRV in BSD
assessment and monitoring should be explored.

4.1.2 Treatment

A review of the cardiovascular literature focusing on the treatment of BSDs is
presented in Table 6. The cardiovascular findings of the increased HR and
decreased HRV characterizing BSD phases would expect to be normalized with
effective treatment. For example, lithium is known to decrease depolarization at
the sinoatrial node of the heart (Chong et al. 2001); thus, it could be predicted that
lithium administration increases HRV, in the context of the wider literature
(Duschek et al. 2013; see Lopes and White 2006). However, no study has directly
investigated this possibility. Decreased depolarization at the sinoatrial node could
be a direct effect of lithium or a more indirect, neural-ANS integration effect.

The impacts of commonly prescribed pharmacological treatment have been
documented as manipulation checks in studies that characterize BSDs using car-
diovascular measures. Additionally, there are some other potentially relevant
findings from pharmacological HRV studies. Both these types of findings are
provided in Table 6. Tricyclic antidepressants are known to decrease HRV in
unipolar patients (Kemp et al. 2010) and in a mixed sample of bipolar and unipolar
patients (Paclt et al. 2003). Promisingly, there appears to be some effect of lithium
on HRV (Henry et al. 2010), consistent with decreased depolarization at the sin-
oatrial node. This finding should be followed up in trials that investigate the impact
of lithium, along with other commonly prescribed medications, on tonic and phasic
changes in HR and HRV across BSD phases and in healthy controls. The potential
clinical utility of these HR and HRV measures for treatment monitoring in BSDs
should be explored. This is important given cardiovascular measures provide
insights into suicidality (Lemogne et al. 2011), health and wellbeing (Duschek
et al. 2013; Kemp and Quintana 2013), and morbidity and mortality (Kemp and
Quintana 2013).
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4.2 GSR and Multimodal Correlates

4.2.1 Characterization and Differentiation

Here, we present the first review of multimodal methods to study the physiological
correlates of BSDs (Table 7). If BSDs can be characterized and differentiated by
embodied dysfunction in brain-body integrated systems, multimodal studies would
be expected to show this dysfunction. GSR has been employed only in the context
of multimodal physiology measurement. In contrast to the parasympathic HRV
measures, GSR is used as a measure of tonic SNS activation at rest or during
experimental tasks, whereby task-related phasic changes in skin conductance can
be compared from a baseline (see Dawson et al. 2007 for full explanation).
Increased magnitude of GSRs—associated with the strength of SNS activation—
but not the number of responses has been shown in BSDs relative to controls
(Tacono et al. 1983; Malhi et al. 2005). Given that studies employing GSR phasic
responses in response to brief emotional stimuli could not make this differentiation
(Gruber et al. 2008, 2011), GSR magnitude appears to be a trait marker of bipolar
disorder. Though simultaneous GSR, EEG, and HR and HRV measures (Iacono
et al. 1983)—along with measurement of positive facial emotion expression
(Gruber et al. 2008, 2011)—have been utilized, results from these simultaneous
measures have been largely inconsistent within studies and thus have not provided
complementary information. However, this may be due to methodology (see
“Comment” column in Table 7), including lack of spatial resolution using single
electrode EEG (e.g., lacono et al. 1983) and short recording times for HRV
measures (e.g., Gruber et al. 2008, 2011).

With the improvement of MR-compatible GSR systems and techniques, pre-
liminary research on BSD with simultaneous fMRI and GSR measurement in BSDs
has been conducted (e.g., Malhi et al. 2005). This work suggests that bipolar
patients may have cognitive deficits related to arousal and appraisal of emotional
stimuli given simultaneous VLPFC hypoactivity and increased SNS activity during
an emotional stroop task (Malhi et al. 2005). The future research should examine
whether simultaneous and integrative neurological and peripheral physiological
measurement provides further insight into BSDs. Should integrative measurements
be employed, the neural responses when the central and peripheral ANSs (both
PNS and SNS) are concurrently active could be measured (see Gray et al. 2009),
and thus embodiment of cognitive and emotional processes can be observed.

With GSR-fMRI integration, for example, neural activity during periods of SNS
activity can be partitioned (Gray et al. 2009). This is promising given that PFC
activity—the disturbances of which are implicated in BSDs—is positively asso-
ciated with GSR amplitude (Critchley et al. 2000). Future work will employ these
methods given that BSDs may be characterized by a lack of inhibition of the
VLPFC on increased amygdala activity which relates to increased SNS activity,
which then may be related to the disengagement of the PFC regions involved in
appraisal during emotional stimuli, in accordance with aforementioned neural-ANS
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integration accounts (see Damasio 1996; Porges 2007; Thayer et al. 2009) and
preliminary findings (e.g., Malhi et al. 2005). In addition to neural-SNS integration,
dysfunctional prefrontal engagement of the inhibitive PNS might be involved in
BSDs. Thus, the future work in BSDs should explore the integration of the PNS
with integrative measurement (e.g., fMRI-HRV measurement; see Thayer et al.
2012). Finally, in order to provide a complete account of the neutral-autonomic
integration, longitudinal integrative measurement (e.g., fMRI-GSR-HRV; EEG-
GSR-HRYV) should be employed. A more complete embodied account and multi-
modal measurement techniques may provide objective measures of the mechanisms
through which emotional lability and mood disturbance occurs in BSDs. Consid-
eration of an embodied psychophysiological mechanism, not just examining indi-
vidual physiological correlates, may provide the clinically useful, objective
physiological measures needed to characterize and differentiate BSDs.

4.2.2 Treatment

Although there have been studies that employ multimodal physiology to charac-
terize BSDs, there are yet to be multimodal investigations of treatment effects and
responses. Additionally, treatment studies employing GSR are yet to be conducted.
Research has already employed simultaneous fMRI-GSR measurement (e.g.,
Malhi et al. 2005); thus, determining whether treatment normalizes these correlates
is a likely next step. In doing so, researchers may be able to illustrate the manner in
which treatment impacts the embodied neural-SNS integration of cognitive and
emotional stimuli, which in turn may be related to improvement in depressed and
manic symptoms, and prophylaxis in the euthymic phase.

5 An Embodied Framework for the Psychophysiology
of Bipolar Spectrum Disorders

Here, we interpret the physiological correlates of BSDs in line with embodied,
neural-autonomic integration perspectives (see Craig 2009; Niedenthal 2007),
particularly with respect to the crucial role for the body in emotion, motivation,
and cognition (see Price et al. 2011). Characterization of BSD as an embodied
disturbance is gaining some attention with consideration of molecular biological
correlates across circadian, homeostatic, and stress systems (see Malhi et al. 2012;
Malhi and Kuiper 2013). A previous review of BSDs (Green et al. 2007) has
discussed the potential impact of the neurological dysfunction on autonomic
arousal systems; however, the exact disturbance remains to be determined. Initial
support for an embodied perspective on BSD psychophysiological correlates
originates from preliminary multimodal investigations (e.g., Malhi et al. 2005).
These studies may provide the objective physiological measures needed to char-
acterize and differentiate, and make treatment decisions in patients with BSDs.
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Fig. 1 Embodied framework for the psychophysiology of bipolar spectrum disorders (BSDs).
This schematic provides a working framework, which enables the characterization of BSDs in an
embodied manner. It details the dysfunctional neural-autonomic integration of cognitive and
emotional processes and responses, which result in emotional lability and mood disturbances.
Within this framework, this dysfunction would be normalized by effective treatment. With respect
to noninvasive multimodal measurement of the physiological correlates, cortical neural activity
can be measured (but not limited to the measures reviewed; see in red) using electroencephalogram
(EEG) and functional magnetic resonance imaging (fMRI), the temporal information processing
stream from the cortex with event-related potential (ERP), subcortical neural activity with fMRI,
sympathetic nervous system activity with galvanic skin response (GSR), and parasympathetic
nervous system activity with high frequency heart rate variability (HRV)

After having provided overviews of the cardiovascular, EEG and ERP, fMRI,
and multimodal literatures that characterize and differentiate BSDs, we incorporated
these areas into a simplified, working embodied framework for the physiology of
BSDs (see Fig. 1). Accordingly, we suggest that BSDs may be considered as a
cluster of disorders characterized by dysfunctional embodied cognitive and emo-
tional neural integration with the ANS, resulting in emotional lability and mood
disturbances. In a simplified illustration, dysfunctional VLPFC connectivity
between the amygdala impacts the neural-autonomic integration of SNS and PNS
activity, through the brainstem, resulting in the core cognitive and emotional
dysfunctions of BSDs, which is the target of treatment. Dysfunctional neural-
autonomic integration will lead to decreased control over primary visceromotor
activity and decreased flexibility for adaptation to stress: SNS hyperactivation and
PNS hypoactivation. Dysregulated primary viscerosensory feedback from the
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periphery will then be inadequately regulated by hypoactivation of the medial
frontal regions involved in the appraisal of the stimuli, resulting in emotional lability
and mood disturbance characteristic of BSDs. It is perhaps through bidirectional
projections between brain and body that underpin core cognitive and emotional
dysfunction in BSDs: VLPFC may fail to regulate the amygdala effectively,
increasing SNS activity through visceral efferent pathways, leading to a state of
ANS rigidity, which subsequently impacts on the brain through afferent feedback,
resulting in the core dysfunctions. An embodied approach to better understanding
BSDs may, in time, provide clinically useful physiological measures needed to
improve assessment and make treatment decisions in patients with BSDs.

5.1 Novel Predictions Within the Embodied Framework

Within the simple, embodied framework for the physiology of BSDs, novel pre-
dictions regarding BSD psychophysiology arise. Within BSD patients during the
euthymic phase in comparison to other phases, increased VLPFC activity would be
associated with higher PNS and low SNS activity (e.g., greater HRV; lower GSR).
However, in comparison to healthy controls, the characteristic decreased VLPFC
activity would be associated with lower PNS and higher SNS activity (e.g., lower
HRYV; greater GSR). We further predict that neural and peripheral responses in
response to positive, approach-related stimuli will differ from those in response to
negative, withdrawal-related stimuli, and that these responses during mania will
differ from those in the depressed phase. We predict that manic phase will be
associated with decreased VLPFC and R IFG activity, in addition to increased left-
dominant alpha asymmetry, lower PNS and higher SNS activity (e.g., lower HRV;
higher GSR), and in turn medial PFC disengagement involved in appraisal of goal-
oriented positive stimuli, relative to negative stimuli. By contrast, during the
depressed phase, we predict the opposite: decreased VLPFC and R IFG, increased
right-dominant alpha asymmetry, low PNS and higher SNS activity (e.g., lower
HRV; higher GSR), and in turn medial PFC disengagement from appraisal of
withdrawal-oriented negative stimuli, relative to positive stimuli. We predict that
effective treatments will act on neural-autonomic integration, thereby normalizing
these differences.

6 Conclusions and Future Directions

In conclusion, there are measurable physiological correlates of BSDs and their
responses to treatment. Of particular promise, discernible fMRI and EEG and ERP
correlates that characterize and differentiate BSDs, and responses to treatment in
BSD patients are beginning to emerge. However, the ability to use these correlates to
aid classification of BSDs and to improve treatment selection and prediction of
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response requires further validation. Additionally, cardiovascular correlates of
BSDs and treatment response are still in the initial stages of investigation, but again
early findings hold promise especially when considered within the context of
the wider literature regarding autonomic disturbances and their relationship with
suicidality, and longer term morbidity and mortality. Other than the aforementioned
future directions specific to each physiological modality, a number of general future
initiatives for research are recommended.

From having developed a simplified integrative embodied framework of BSDs, a
major future direction for research into the physiological correlates of BSDs will be
to employ simultaneous recording techniques in order to determine dysfunction in
the neural-autonomic integration of cognitive and emotional responses. Such an
approach will aid our understanding of the adverse impact of BSDs on brain and
body function and facilitate the characterization of treatment targets. Building on
previous work on neural-autonomic integration in BSDs (e.g., Malhi et al. 2005),
future work could partial-out the inhibitory and excitatory neural activation asso-
ciated with the activity of both the inhibitory PNS and excitatory SNS, respectively.
Such work would illustrate the manner in which BSD patients attend to, process,
respond to, regulate responses, and recover from cognitive and emotional stimuli,
accounting for the bidirectional nature of the central and peripheral ANSs. In doing
so, the differential cognitive and emotional inhibition and activation changes
associated with the manic and depressed phases may be better integrated and
understood. Further, longitudinal and simultaneous multimodal physiological
assessment is likely to better differentiate phases of illness, characterize clinical
trajectory, and provide insights into the chronobiological changes associated with
phase and course in BSDs (see Malhi et al. 2012; Malhi and Kuiper 2013).

With the development of a simplified integrative framework reflecting the
current state of the literature, future work may be guided toward examining the
embodied, cognitive, and emotional dysfunction that is associated with BSD
emotional lability and mood disturbance in accordance with the aforementioned
novel predictions. Taking an embodied account of psychophysiological mecha-
nisms, and not just examining the physiological correlates of the dysfunctional
parts, is likely to yield more clinical meaningful and objective physiological
measures that will in turn improve assessment and therapeutic decision making in
patients with BSDs. Given complexity of assessment and the multitude of treat-
ment considerations associated with BSDs, and the fact that they continue to exert
an overwhelming burden because of their prevalence and poor response to treat-
ment, there remains a critical need to continue with such endeavors.
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Abstract Patients with schizophrenia have been hypothesized to have a func-
tional impairment in filtering irrelevant sensory information, which may result in
positive symptoms such as hallucinations or delusions. Many evidences suggest
that abnormalities in the event-related brain potentials (ERPs), resting state elec-
troencephalography (EEG) and synchronized oscillatory activity of neurons may
reflect core pathophysiological mechanisms of schizophrenia. Abnormalities in
amplitude and latency of the ERPs reflecting aberrations in gating and difficulties
in the detection of changes in auditory stimuli, as well as defects in stimuli
evaluation and integration of information are common in patients with schizo-
phrenia. This chapter highlights the findings of electrophysiological studies in
schizophrenia dealing with early sensory perception and attention, automatic
sensory detection of stimuli changes and cognitive evaluation and integration of
information, relevant to the pathophysiological mechanisms underpinning hallu-
cinations and delusions. Results of electrophysiological studies investigating the
neural correlates of positive symptoms suggest aberrant intrinsic organization of
functional brain networks.
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1 Introduction

Electroencephalography (EEG) was the first physiological method used to study
brain information processing organization in schizophrenia. It is a noninvasive
neurophysiological technique that allows, by its temporal resolution, to study the
fast changing of brain activity during information processing; it is able to record
changes of the electrical activity of the brain on a millisecond time scale, the same
time window of the neural activity. Unfortunately, the low spatial resolution of the
EEG does not allow to assess the corresponding neural sources of electrical
potentials with accuracy (van Lutterveld et al. 2011). Neurophysiological corre-
lates of hallucinations and delusions have been detected both in resting state EEG
and event-related brain potentials (ERPs) (Kayser and Tenke 2006; van Swam
et al. 2013). Furthermore, recent models have proposed that schizophrenia
symptoms may be associated with aberrant functional connectivity of multiple
neural networks, including those subserving speech perception and production,
social cognition and self-referential processing underlying the sense of agency
(Wible et al. 2009).

ERP and oscillatory rhythms, compared to other neurobiological indices, allow
a detailed analysis of information processing stages: the pre-attentive one, in
which redundant information is filtered out by the brain, the perceptive one,
modulated by voluntary attention, and later stages in which perceptual information
is integrated with the ongoing task and with the internal and external context to
guide behavior (Rissling et al. 2010). Furthermore, the use of magnetoencepha-
lography (MEG), which also has a high temporal resolution to record cortical brain
activity, is complementary to EEG as it can detect neural sources tangential to the
surface of the cortex accurately. In fact, magnetic fields, unlike electrical ones, are
minimally influenced by volume conductors, such as brain tissue, skull, and scalp
(Hamél4inen et al. 1993).
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In this chapter, we focus on ERPs findings related to early sensory perception
and attention (P50, N100, and N200), cognitive evaluation (P300), automatic
detection of deviant sensory characteristics [mismatch negativity (MMN)], and
integration of information at a semantic level (N400), as well as on fast and slow
oscillatory activity in order to discuss some key issues concerning pathophysio-
logical models of positive symptoms in schizophrenia.

2 ERP Findings
2.1 P50

The P50 waveform, identified 50 ms after stimulus onset, is a well-known measure
of early auditory processing. The attenuation of the P50 response to a second click
(S2) delivered within 500 ms from the first click (S1) is usually interpreted as
evidence for neuronal sensory gating and was well documented as dysfunctional in
schizophrenia (Olincy et al. 2010). The P50 suppression also termed ‘P50 gat-
ing,”’ is conventionally measured as the ratio of S2 to S1 P50 amplitude and is
thought to reflect an individual’s ability to screen out, or ‘‘gate,”’ trivial or
repetitive stimuli, in order to protect against information overload (Braff et al.
2007).

Although some earlier studies (Sartorius 1986; Andreasen and Flaum 1991) did
not report any significant association between the P50 gating alterations and
positive symptoms in subject with schizophrenia, recently Hirano et al. (2010)
showed that patients with increased left P50 ratios (i.e., deficit in gating) to the
human voice showed more severe auditory hallucinations. Smith et al. (2013)
showed a negative correlation between P50 amplitude to S1 and the severity of
auditory hallucinations traits, but no relationship of the same parameter with the
score on a scale measuring hallucinations during recording. The findings might
indicate that P50 gating abnormalities were related to trait but not state severity of
hallucinations (Table 1) and predominantly dependent on S1 P50 amplitude
reduction. In fact the interrelationship between S1 and S2 response amplitudes in
relationship to the assessment of gating is complex (Chang et al. 2011).

2.2 N100

N100 is a middle-latency, negative component of the ERPs, peaking between 80
and 120 ms after stimulus onset, it is investigated by presenting a series of tones
and is larger in response to “attended” than “unattended” stimuli. This compo-
nent, generated in the primary and secondary auditory cortex (Naatanen and Picton
1987), reflects earlier sensory and attentional processing, it is an excellent probe of
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auditory cortical activity, albeit affected by activity in other areas of the brain
(Ford et al. 2012). Its amplitude is strongly dependent on a number of factors such
as stimulus intensity, arousal, expectancy, and selective attention (Rosburg et al.
2008).

The N100 amplitude reduction was reported by many studies on schizophrenia
(Ford et al. 2001a; Sumich et al. 2006), and several authors investigated its rela-
tionship with positive symptoms.

As the N100 is a measure of auditory cortex activity, it can be used to compare
auditory cortex activity in the presence and in the absence of hallucinations (van
Lutterveld et al. 2011). During periods of auditory hallucinations, in subjects with
schizophrenia, Hubl et al. (2007) found smaller N100 amplitudes and a reduced
current density sources in the left temporal lobe. These findings could indicate a
competition between auditory stimuli and auditory hallucinations for physiological
resources in the primary auditory cortex, and that abnormal activation of this brain
region during internal verbal production could be a component of auditory hal-
lucinations. These results confirmed previous findings in which left temporal N100
amplitude negatively correlated with positive symptoms including hallucinations
(Gallinat et al. 2002; Valkonen-Korhonen et al. 2003). Together, these findings
indicated competition between auditory probes and hallucinations for auditory
resources, with activation of the primary auditory cortex reflecting the physical
acoustic image of verbal thoughts misperceived as voices (Hubl et al. 2007; Ford
et al. 2012). As a matter of fact, it has been demonstrated by a series of elegant
experiments that during vocalization and inner speech N100 was suppressed with
respect to passive listening to speech sounds. This was an evidence of the oper-
ation of a corollary discharge from speech production areas to speech reception
areas of the brain: an efference copy of the action (vocalization, thoughts) prepared
the sensory cortex and competed with the afferent sensory signal (resulting in a
suppression of the N100 to that signal), thus “informing” of the own nature of the
speech sounds or thoughts.

Ford et al. (2001b, c) hypothesized that a deficit in the corollary discharge could
be observed in patients suffering from auditory verbal hallucinations (AVH), who
misperceived their own thoughts as externally generated speech sounds. The
Authors demonstrated deficits in the corollary discharge, as reflected by the lack of
suppression of the N100 during speech production. However, the amount of N100
suppression did not correlate with AVH in this experiment, while neural synchrony
before speech onset was related to both subsequent N100 suppression during
talking in controls and AVH in patients. The data suggest that the deficit of the
corollary discharge is one of the possible mechanisms underlying AVH (Ford et al.
2012). Furthermore, the same authors found that EEG measures of coherence
indicated an absence of inter-dependence between frontal speech production and
temporal speech reception areas during talking in patients, especially those who
hallucinated. On the whole, these data suggest that AVH are related to a failure of
a corollary discharge which might be one of the reasons for the misattribution of
inner speech to external sources (Ford and Mathalon 2004).
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Heinks-Maldonado et al. (2007) conducted an elegant experiment to test the
forward model of corollary discharge function: in this model when subjects speak
(in the experiment uttering “Ah”) the vocal motor system sends the efference copy
to the auditory cortex so that when the subjects hear their self-produced speech
sound the auditory cortex is suppressed and the subject recognize his own verbal
production. In the experiment, they also altered the auditory feedback so that
during vocalization (again uttering “Ah”) the subjects heard their speech sound
unaltered or shifted by 2-semitones or substituted by unaltered or shifted alien
voice. As a control condition they also passively listened to the same speech
sounds (unaltered or shifted self-voice or unaltered or shifted alien voice). In
healthy controls N100 was suppressed only when receiving as feedback the
unaltered self-voice during vocalization. Hallucinating patients (HPs) did not show
the attenuation of N100 amplitude to unaltered self-voice. The lack of N100
suppression in the left hemisphere correlated with the Hallucination score on the
Scale for the Assessment of Positive Symptoms (SAPS). In non-hallucinators, the
pattern of suppression was heterogeneous with some subjects suppressing and
others not suppressing the N100 to unaltered self-voice. This could reflect dif-
ferences in hallucination history, suggesting that N100 suppression deficit might
be related to a “hallucination trait” (Ford et al. 2012). Summarizing the findings of
several studies support a role for the N100 (as well as for M100, the corresponding
MEG component) in the study of abnormalities of the corollary discharge and
AVH (Table 1). Although very often AVH are correlated with delusions, the
association of N100 abnormalities with delusions are less clear (Ford et al. 2012).

A relationship between N100 abnormalities and thought disorder was rarely
investigated and inconsistently reported (Laurent and Baribeau 1992; Ford et al.
1999; Bruder et al. 2001).

2.3 N200

The N200 is a negative deflection occurring at about 200 ms post-stimulus. It is
thought to reflect top—down regulatory processes involved in automatic detection
and recognition of novel stimuli (Tarbi et al. 2011). Some studies showed that in
subjects with recent-onset psychosis, left fronto-central N200 amplitude
enhancement was associated with poor insight/judgment, which could exacerbate
positive symptoms (Sumich et al. 2006); however no relationship between N200
amplitude and reality distortion was observed. Only in paranoid patients, Bruder
et al. (2001) found a greater N200, at fronto-central sites and at left lateral
temporo-parietal sites, during a phonetic task. These findings were consistent with
neuropsychological evidence of greater verbal abilities and left hemisphere
dominance in paranoid than nonparanoid schizophrenia. The results were also in
line with Guillem et al. (2003) that showed, in patients with high score on Reality
Distortion, an increased posterior N200. These Authors hypothesized that N200
increase could reflect the over-activity related to emotionally significant stimuli



Physiological Correlates of Positive Symptoms in Schizophrenia 115

during a state of reality distortion. Sumich et al. (2008) found in a nonclinical
population a relationship between unusual experiences and N200 amplitude
increase over left-anterior regions. As the unusual experiences were also associ-
ated with N100 decrease the Authors suggest that a poor bottom-up sensory
processing, indexed by N100 reduction, may give greater control over perception
to top—down processes, as indexed by increased N200 amplitude. The enhanced
N200 could reflect shared mechanisms between psychotic symptoms in patients
and unusual experiences in healthy subjects, such as inhibition of sensory input or
auditory hypersensitivity (Hooley and Campbell 2002), a phenomenon that is
observed in subjects with high scores for magical ideation (Dubal and Viaud-
Delmon 2008). N200 data suggest that reality distortion is the consequence of
several dysfunctions occurring in the cascade of cognitive and neural mechanisms
involved in information processing (Table 1).

2.4 P300

The P300 is a positive wave that occurs 300 ms after rare or task relevant stimuli
that are counted, detected or otherwise processed (Johnson 1986). The P300
amplitude is thought to reflect aspects of conscious processing of relevant stimuli.
A target stimulus elicits the maximal P300 (called ‘‘P3b’’) with centro-parietal
distribution that has been associated to controlled information processing, context
updating, and response-related decisional stages (Campanella and Guerit 2009).
While an infrequent distractor, novel or otherwise salient stimulus, with no task
relevance, generates a robust fronto-centrally maximal P300 (called ‘‘P3a’’), that
reflects a shift in attention and the processing of novelty (Ford et al. 2012; van
Swam et al. 2013).

P300 amplitude reduction in patients with schizophrenia versus healthy con-
trols, initially reported by Roth and Cannon (1972), has been consistently repli-
cated, independently from medication status, in both first-episode and chronic
patients (Galderisi et al. 2009) and proposed as a potential endophenotype (Ishii
et al. 2012). It has not been clarified, however, what kinds of clinical symptoms
can result from the disturbance in information processing related to this P300
abnormality. Several studies have reported associations between P300 amplitude
and the severity of negative symptoms (Pfefferbaum et al. 1989; Strik et al. 1993;
Preuss et al. 2010; Kim et al. 2014), fewer have reported associations between
P300 amplitude and positive symptoms (Juckel et al. 1996; Jeon and Polich 2003;
Higashima et al. 2003). Ford et al. (1999) analyzed P300 in two groups of patients
with schizophrenia that had a different degree of clinical severity. A marked
reduction of P300 amplitude was found in patients with the most severe clinical
picture; however, a relationship between P300 amplitude and Thought Disorder
was found only when patients were combined. However, other studies have failed
to find significant correlations between P300 amplitude and Thought Disorder or
positive symptom cluster of schizophrenia (Liu et al. 2004; Bruder et al. 2001).
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One reason for the inconsistent association between P300 and positive symptoms
could be a restricted range of symptom severity values. Mathalon et al. (2000a)
argued that inconsistent results in cross-sectional samples might be due to the trait
and state influences on P300 amplitude variance and that multiple observations
could be a better way to demonstrate a relationship between P300 and symptoms.
Studies using longitudinal data have demonstrated significant increases in P300
amplitude with symptoms improvement (Schall et al. 1998; Turetsky et al. 1998)
but most of these studies included only two time points, limiting their power to
detect correlations between changes in P300 and clinical state. Mathalon et al.
(2000b) carried out a longitudinal study with multiple observations discovering
that P300 amplitude reduction tracked brief psychiatric rating scale (BPRS) total
and positive symptom severity over time. Only auditory P3b amplitude reduction
tracked positive symptoms severity. In their opinion, this could suggest that
delusions and hallucinations interfered with fundamental information-processing
functions, such as effortful attention to target stimuli, deducting neural resources
generally available for processing environmental stimuli.

Some studies focused on the hypothesis that P300 amplitude reduction over the
left temporal region, positive symptoms, and left temporal lobe anatomic abnor-
malities represented a cohesive process in chronic patients with schizophrenia
(McCarley et al. 1991; O’Donnell et al. 1994; Egan et al. 1994) suggesting that the
neuronal systems underlying the alterations of P300 could also mediate positive
symptoms. McCarley et al. (1991) in their review reported a link between severity
of thought disorder and total SAPS score and left temporal P300 amplitude.
O’Donnell et al. (1994) reported correlations of P300 amplitude reduction with
SAPS delusions and thought disorder subscores. Also Egan et al. (1994) discov-
ered weaker but significant correlations between auditory P300 and measures of
left temporal lobe structures and an inverse correlation between auditory P300
amplitude and positive symptoms. Kawasaki et al. (1997) failed to replicate the
association between auditory P300 amplitude and left temporal lobe volume but
confirmed that the P300 amplitude was correlated with the severity of positive
thought disorder.

Turetsky et al. (1998) showed that, although the P300 deficits were relatively
stable over time, a P3b right parietal subcomponent increase was associated with
an improvement of delusions, a P3b left temporal subcomponent increase with an
improvement of negative symptoms and BPRS total scores, whereas P3a increase
correlated with auditory hallucinations reduction. This pattern of results suggest
that psychotic symptoms interfere with processes associated with both P3a and
P3b by diverting limited attentional resources from both automatically orienting
and effortful directing attention to auditory stimuli.

As most patients with schizophrenia who experience auditory hallucinations
and delusions also experience other symptoms, such as disorganization and neg-
ative symptoms, heterogeneous P3 findings may be related to diversity in symp-
tomatology (van Lutterveld et al. 2011).
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Authors investigating the relationship between P300 and AVH, showed that the
amplitude of the P300 was inversely correlated to AVH severity, indicating an
additional state dependency of P300 alterations (Havermans et al. 1999; Turetsky
et al. 1998; Papageorgiou et al. 2004).

Fisher et al. (2008a) proposed that patients with AVH have an impairment in
the processing of speech sounds that could be related to a competition between
external and internal auditory stimuli, and deficits in attributing significance to
incoming stimuli. They carried out a study comparing P3a amplitude, as an index
of involuntary shift to auditory changes and novelty processing between halluci-
nating (HPs) and non-hallucinating schizophrenia (NPs) patients (Fisher et al.
2010). Only in HPs was found a decreased P3a. Furthermore, they found a neg-
ative correlation in HPs between P3a amplitude at central area and scores on the
PSYRATS, which measures AVH as a trait, suggesting that the predisposition to
auditory hallucinations is associated with reduced P3a amplitude. The finding may
also provide additional evidence of AVH competing with incoming external
stimuli for neural resources (Ford et al. 2009) (Table 1).

2.5 MMN

MMN is an ERP component that reflects a largely automatic and preattentive form
of sensory processing. It is considered automatic because it does not require any
behavioral response and can be elicited in the absence of explicit instructions to
attend to the auditory stream (Lyytinen et al. 1992). MMN can be elicited by any
auditory event that is deviant from the preceding events in a sequence: its elici-
tation indicates that a sequence was learned and that an auditory change was
detected (Ford et al. 2012). The maximum of the amplitude difference between
standard and deviant stimuli is located at fronto-central regions and MMN gen-
erators are located bilaterally in the left and right supratemporal lobes (Naatanen
et al. 2007).

Marked MMN abnormalities are found in schizophrenia and appear to be robust
and reliable especially for duration-deviant stimuli (Umbricht et al. 2003).

Some studies have investigated relationship between MMN and delusions with
inconsistent results (Oades et al. 1997; Liu et al. 2007) but Authors only compared
paranoid and nonparanoid patients.

Many studies focused on auditory hallucinations and their association with
MMN (deficits as indices of frontal and temporal lobe dysfunction (Schall et al.
1998). Three studies showed a significant negative correlation between severity of
hallucinations and MMN abnormalities (amplitude or current source density
reduction) at left hemispheric sites (Hirayasu et al. 1998; Youn et al. 2002; Fisher
et al. 2011a, b). The correlation at left fronto temporal sites could reflect contri-
butions of superior temporal gyrus sources (Hirayasu et al. 1998) and the increased
asymmetry in patients with more severe positive symptoms (left < right) sug-
gested that positive symptoms might be associated with abnormalities of the left
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temporal structures for speech (Youn et al. 2002). The correlation between left
hemisphere MMN and positive symptomatology was not replicate in the study of
Kasai et al. (2002) in which MMN was lower in the right hemisphere under the
phoneme-duration condition and this was significantly associated with more severe
negative symptoms: The discrepancies may be at least partly explained by the
different methodologies (Fisher et al. 2008).

Fisher et al. (2008a) with the same paradigms used by Kasai et al. (2002)
compared MMN amplitudes and latencies, for speech and nonspeech stimuli,
between HPs and NPs. There was no difference between HPs and NPs on
amplitude of MMN to the different stimulus conditions. However, in the HP
subgroup, MMN amplitude in frontal area was negatively associated with AHs
clarity (but not the duration or loudness), suggesting a relationship between AHs
and preconscious auditory stimulus detection. Auditory hallucinations could
compete with incoming external stimuli for finite resources in the auditory cortex;
this was confirmed in a subsequent study by Fisher et al. (2008b), who used a
multifeature MMN paradigm and found smaller MMNs in HPs to duration devi-
ants vs. both healthy controls and NPs. In a more recent study, Fisher et al. (2012)
applied the same experimental task to evaluate the MMN during an acute psy-
chotic episode with severe degree of hallucinations. Patients showed deficits in
MMN amplitude across several deviant types, which negatively correlated with
state, trait, and frequency measures of AHs. Furthermore, the MMN to location
deviants correlated with perceived location of AHs. On the whole, these data
demonstrate that MMN may be a useful noninvasive tool for probing relationships
between hallucinations and neural dysfunctions in schizophrenia (Table 1).

2.6 N400

The N400 is a negative deflection, manifesting 400 ms following stimulus pre-
sentation, sensitive to modulations of meaning at the semantic/associative level. It
is widely spread across the scalp, usually with a maximum at centro-parietal
electrode sites. This component has been taken to index semantic integration
processes (Hagoort and Levelt 2009). Its amplitude is inversely proportional to the
extent to which the eliciting stimulus fits semantic expectancies (Kutas and Hillyard
1984).

Schizophrenia patients exhibit N400 semantic priming deficits, suggesting
impairment in using meaningful context to activate related concepts (Kiang et al.
2014), presumably resulting from impaired semantic memory associative networks
(Metzler et al. 2013). The failure of the integration of the new information could
explain the persistence of the delusions despite the awareness of contradictory
information (Misra and Holcomb 2003).

Some studies investigated the association between N400 amplitude, as an index
of information integration, and presence or severity of delusions, reporting dis-
crepant findings. Kostova et al. (2003) revealed a correlation with formal thought
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disorder but not with delusions. Debruille et al. (2007) reported that patients who
were more delusional displayed smaller N400 amplitude to category discrepant
target words than less delusional patients, confirming the hypothesis that subjects
with delusional beliefs do not properly process information that disconfirm any
idea or belief. Kiang et al. (2007) showed a correlation between SAPS-derived
Psychotic factor and reduction of the N400. They speculated that this relationship
might reflect an association of psychotic symptoms with either decreased context
use or broader spread of activation, suggesting that delusions could be related to a
smaller than normal difference in processing of typical versus atypical members of
a category, at least at a semantic level. Prevost et al. (2011) hypothesized that
smaller N400 amplitude could be related to paranoid feelings. Using the same
semantic task of Debruille et al. (2007) they induced paranoid feelings in healthy
controls and showed that greater delusional-like ideation scores were associated
with smaller N400 amplitudes. These findings suggested that the induction of
paranoid feelings promoted a cognitive strategy similar to that displayed by
patients (Debruille et al. 2007; Kiang et al. 2007), suggesting that inaccurate
beliefs or ideas, including delusions, are associated with a weakness of semantic
processes when participants experience paranoid feelings (Table 1).

3 Neural Oscillations in Schizophrenia

Synchronous rhythms represent a core mechanism for dynamic temporal coordi-
nation of neural activity in distributed brain networks (Wang 2010). Neural oscil-
lations at low- (theta, alpha) and high-(beta/gamma) frequency ranges facilitate the
transient formation of large-scale networks that represent the neural substrates of
cognitive processes (Varela et al. 2001). Lower EEG frequencies preferentially
establish synchronization over long distances, whereas oscillations in the beta and
gamma range create synchronization with great precision in more circumscribed
local cortical networks (Uhlhaas 2013). Consistent observations are that EEG
fluctuations in the beta and gamma bands are abnormal in schizophrenia as a result
of impaired interplay among many distributed cortical areas and their connections
(Uhlhaas and Singer 2010). Many studies attempted to directly assess the correla-
tion between synchrony, as assessed by power, amplitude or phase synchronization
of evoked and induced beta- and gamma-band activity, and positive symptoms of
schizophrenia (Lee et al. 2006; Spencer 2009). Spencer et al. (2004) found that
occipital response-locked gamma increase was significantly correlated with con-
ceptual disorganization on the positive and negative syndrome scale (PANSS),
visual hallucinations, delusion of thought withdrawal and global thought disorder
scores on the SAPS. Bucci et al. (2007) found a positive correlation between reality
distortion (sum of delusions and hallucinations subscales scores on SAPS) and
evoked gamma power, which is thought to be associated to early sensory and
attentional processes. Spencer et al. (2008) found that the overall hallucination
history of first-episode schizophrenia patients was positively correlated with the
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phase locking of the 40 Hz harmonic of 20 Hz auditory steady-state response.
Subsequently, they found that 40 Hz source evoked power and phase locking factor
(PLF) in the left auditory cortex were reduced in subjects with schizophrenia; PLF
positively correlated with auditory hallucinations (Spencer et al. 2009). Other
authors (Lee et al. 2008) found in patients prone to AVH a significant increased
gamma activity in left frontal, temporal, and parietal regions. Using MEG inves-
tigations in patients with schizophrenia with auditory hallucinations, Ropohl et al.
(2004) described an increase in fast dipole activity over the left temporal lobe
during auditory hallucinations and Reulbach et al. (2007) found a significant
increase of dipole activity in the fast frequency range during AVH in left frontal and
temporal regions. It has been speculated that increased fast oscillations during AVH
might index enhanced fronto-temporal synchronization, in main speech production
and perception areas. These findings were in line with results of a recent study by
Fujimoto et al. (2013) showing that the low gamma band imaginary coherence
between left occipital and right fronto-parietal lobes had a positive correlation with
hallucinations and delusions. Koenig et al. (2012), using a global measure of phase-
locking (GFS), observed a left-lateralized decrease of 40 Hz EEG activity during
stimulation only in the hallucinators suggesting a disruption of the normally
observed increased synchronization in the cortical networks.

The pattern of spontaneously occurring gamma-band oscillations may differ
from that associated with entrainment of neural activity through transcranial
magnetic stimulation (TMS). Ferrarelli et al. (2012) applied TMS over four cor-
tical areas and analyzed stimulus-evoked EEG-activity. In controls, TMS pulses
elicited robust activity in the 25- to 35-Hz frequency range over frontal electrodes.
In patients, the peak frequency of evoked oscillations over frontal leads was
characterized by a reduction of ~ 10 Hz and the prefrontal natural frequency was
inversely related with delusions PANSS sub-scores, suggesting a deficit of the
underlying prefrontal cortical/thalamocortical circuitry. In contrast to gamma-band
activity, the role of beta-band oscillations has been less explored. Ford et al. (2007)
suggested that the synchronized beta-band activity could reflect a forward model
which dampened auditory responsiveness to self-generated speech, and in patients
this mechanism could be impaired. The reduced pre-speech inter-trial coherence
negatively correlated with hallucination severity. In HPs, a significant increase of
beta frequency oscillations in speech-related areas was demonstrated (Lee et al.
2006), and a reduced beta-band synchrony in the pre-speech condition was found
(Ford et al. 2007).

The local increase of neural oscillations seen in schizophrenia patients with
positive symptoms, accompanied by a deficit in the precise synchronization of
these oscillations between cortical areas might be a neurophysiological correlate of
impairment in corollary discharge (Uhlhaas et al. 2008) (Table 1).
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4 Resting State EEG

Splitting EEG-resting state data into sub second time epochs is possible to
investigate microstates, (Lehmann et al. 1987) thought to be manifestations of
momentary global functional states of the brain. Distinct scalp fields are generated
by differently activated neural networks, thus altered microstates correspond to
altered brain functions (Lehmann et al. 2010).

In patients with schizophrenia, consistent differences to normative data were
reported in resting-state EEG microstates, with shorter microstate with fronto-
central distribution (Koenig et al. 1999; Lehmann et al. 2005). This shortening was
correlated to paranoid symptomatology (Koenig et al. 1999). Kindler et al. (2011)
investigated various microstate markers and compared periods with and without
auditory hallucinations for understanding if the alterations reflected positive
psychotic traits or present psychopathology. The fronto-central microstate was
significantly shorter in periods with hallucinations, suggesting that premature
termination of this microstate might facilitate the misattribution of self-generated
inner speech to external sources or inadequate processing of context information
(Table 1).

5 Conclusions

This chapter provided an overview of electrophysiological signs of aberrant
intrinsic organization of multiple functional networks in schizophrenia, which
correlate with the severity of positive symptoms, including hallucinations and
delusions and help in the refinement of pathophysiological hypotheses concerning
these complex phenomena.

In current diagnostic classification systems, the diagnostic categories used are not
based on neurobiological knowledge but rather on phenotypes, course, prognosis,
and therapy; therefore, it is not surprising that electrophysiological studies in
patients with schizophrenia demonstrate inconsistent and conflicting findings.
Patients with schizophrenia who experience delusions and/or auditory hallucina-
tions do experience also other symptoms such as disorganization or avolition,
dimensions which have different pathophysiology and electrophysiological corre-
lates (van Lutterveld et al. 2011). The dimensional or symptom capture approaches
demonstrated a more homogeneous pattern of electrophysiological findings (Fisher
et al. 2011a; Ford et al. 2012; van Swam et al. 2013; Boutros et al. 2014, this
volume). Several studies have fostered hypothesis on hallucinations, formal thought
disorders and delusions and demonstrated an association of these phenomena with
aberrant intrinsic organization of functional brain networks. The safety, noninva-
siveness, and limited costs of electrophysiological methods allow to study healthy
subjects and/or unaffected relatives and to carry out longitudinal investigations in
patients to test hypotheses and verify trait and state influences on the reported
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abnormalities, as well as degree of heritability to identify endophenotypes for
genetic studies. The standardization of methods might allow the design of large
multicenter studies, instrumental in the progress of research knowledge in hetero-
geneous disorders.
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Electrophysiological Aberrations
Associated with Negative Symptoms
in Schizophrenia

Nash N. Boutros, Armida Mucci, Annarita Vignapiano
and Silvana Galderisi

Abstract Clinical heterogeneity is a confound common to all of schizophrenia
research. Deficit schizophrenia has been proposed as a homogeneous disease entity
within the schizophrenia syndrome. The use of the Schedule for the Deficit Syn-
drome (SDS) has allowed the definition of a subgroup dominated by persistent and
primary negative symptoms. While a number of studies have appeared over the
years examining the electrophysiological correlates of the cluster of negative
symptoms in schizophrenia, only a few studies have actually focused on the Deficit
Syndrome (DS). In this chapter, electrophysiological investigations utilizing EEG,
Evoked Potentials (EPs), polysomnography (PSG), or magnetoencephalography
(MEG) to probe “negative symptoms,” or “Deficit Syndrome” are reviewed.
While this line of research is evidently in its infancy, two significant trends
emerge. First, spectral EEG studies link increased slow wave activity during
wakefulness to the prevalence of negative symptoms. Second, sleep studies point
to an association between decrease in slow wave sleep and prevalence of negative
symptoms. Several studies also indicate a relationship of negative symptoms
with reduced alpha activity. A host of other abnormalities including sensory gating
and P300 attenuation are less consistently reported. Three studies specifically
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addressed electrophysiology of the DS. Two of the three studies provided evidence
suggesting that the DS may be a separate disease entity and not simply a severe
form of schizophrenia.

Keywords Deficit syndrome - Negative symptoms - Schizophrenia - Evoked
potentials (EPs) - Electroencephalography (EEG) - Polysomnography (PSG)
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1 Introduction

Enduring negative symptoms in patients with chronic schizophrenia correlate with
decreased functional outcome (Tandon et al. 2000; Buchanan 2007; Green 2006;
Kirkpatrick et al. 2006) and are refractory to common pharmacological inter-
ventions (Buchanan 2007; Buchanan et al. 2007; Galderisi and Maj 2009). It has
long been recognized that negative symptoms can be secondary to medication
effects, co-morbid mood disorders, or even resulting from significant cognitive
disorganization. The development of the Schedule for the Deficit Syndrome (SDS)
(Kirkpatrick et al. 1989) has allowed the definition of a subgroup of schizophrenia
patients dominated by clusters of primary and enduring negative symptoms
(Kirkpatrick et al. 1989). This subgroup of patients (deficit schizophrenia, DS)
arguably suffers from the most severe and costly form of all of the subgroups of
schizophrenia (Galderisi and Maj 2009; Kirkpatrick and Galderisi 2008).
Functional or anatomical probing of individual psychiatric symptoms or
symptom clusters within a psychiatric syndrome is a relatively recent endeavor.
Schizophrenia symptomatology varies widely affecting the cognitive, affective, and
reality testing domains. Three sets of symptoms received particular attention:
positive, negative, and cognition-related symptoms. Based on the fundamental
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differences and likely brain structures involved in the generation of these symptom
clusters, an assumption can be made that the underlying physiopathologies medi-
ating these symptoms are different. Neuropathological findings associated with
schizophrenia in general have implicated most of brain structures but with signif-
icant emphasis on frontal, temporal, and thalamic regions. While the complete
understanding of the pathophysiology of the DS is not possible with the current
level of knowledge, most studies suggest pervasive bottom-up deficiencies that may
lead to cascading information processing problems. This tentative conclusion is
based on the observation that information processing abnormalities gleaned from
evoked potentials (EPs) studies tend to occur earlier in the sequence of EPs and
starting during periods that are commonly considered as “pre-attentive.”
Significant efforts are now being expended in attempting to ascertain whether
DS is a subgroup of schizophrenia with identified abnormalities proving to be only
quantitative and not qualitatively different from rest of schizophrenia subgroups.
On the other hand, it is suggested that if identified abnormalities closely associated
with the DS are qualitatively different then it would be possible to postulate DS as
a separate psychopathological entity. The clear demarcation of the DS and its early
identification could lead to better treatment and rehabilitation efforts.
Electrophysiological investigations, including electroencephalography (EEG),
magnetoencephalography (MEG), evoked potentials (EPs), and sleep studies rep-
resent investigative methodology that can assess chronology at a millisecond by
millisecond level of the information processing cascade in the intact behaving
human. Research utilizing this methodology has pointed out to a number of highly
replicable physiological aberrations in individuals suffering from schizophrenia.
None the less, no biological abnormality has proven to be diagnostic or even present
in a significant majority of patients. One reason commonly advanced
for such is the agreed upon heterogeneity of the syndrome. By identifying the
aberrations that are more specifically linked to a particular symptom (e.g., hallu-
cination) or to a symptom cluster (positive, negative or cognitive), advances can be
made toward better understanding of the neural circuitries subserving different
symptom clusters, as well as the disorder as a whole. Defining the electrophysio-
logical changes most closely linked to negative symptoms may allow guided
research to probe specific negative symptoms like avolition and emotional blunting.
Physiological probing of brain function and dysfunction uses two fundamen-
tally different technologies; functional (as contrasted to structural) neuroimaging
and electrophysiology. While neuroimaging has superior spatial resolution, elec-
trophysiology enjoys a superior temporal resolution. It is widely agreed upon that
the two methodologies are complementary (Boutros et al. 2011) and efforts are
underway for the simultaneous recording of both kinds of brain activity. In this
review, we focus on electrophysiological investigations probing negative symp-
toms or the deficit syndrome and attempt to leverage the existing electrophysiol-
ogy literature in schizophrenia in an attempt to investigate the possibility of a
unifying hypothesis for the pathophysiology of negative symptom in schizophrenia
patients. A testable hypothesis is whether positive symptoms represent a more
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localized dysfunction in the frontotemporal-thalamo-striatal-cortical circuitry
while negative symptoms (and more fully the DS) may be secondary to a more
widespread cortical-thalamo-striatal-cortical dysfunction. It is also quite possible
that the nature of involvement of the frontal cortex is different in groups of
schizophrenia patients with predominance of negative, positive, or cognitive
dysfunctions.

2 EEG Changes in Association with Negative Symptoms

EEG abnormalities in schizophrenia have been noted since the early days of
electroencephalography. The emergence of the ability to analyze EEG signals with
the aid of the computer allowed the intense and detailed interrogation of the rich
electrophysiological data. An increase of slow activity in the delta and theta range
(1-8 Hz) was consistently reported in schizophrenia (Galderisi and Maj 2009).
Spectral EEG studies have linked increased slow wave activity to the prevalence
of negative symptoms (Boutros et al. 2008a).

Table 1 lists studies that directly addressed the correlation between negative
symptoms and/or the deficit syndrome EEG changes. Table 1 also highlights the
varying EEG methodologies used in probing negative symptoms (and schizo-
phrenia in general) (Boutros et al. 2008a). Totally, 5 of the 11 studies using
spectral analysis point to an increased slow activity (mainly theta rhythms of
4-8 Hz frequency) in association with negative symptoms. A relatively recent
study supported the observation of a significant correlation between increased
theta activity and negative symptoms (Venables et al. 2009). In this study the
strongest correlations were obtained from frontal, central, and occipital regions
while correlation between EEG data obtained from temporal regions and negative
symptoms barely reached significance. This observation suggests that the
increased theta seen in association with negative symptoms may be more repre-
sented in certain brain regions and may have significant implications to the
eventual identification of the specific circuitry underlying the development of these
symptoms (Venables et al. 2009). These findings also underline the possibility that
the pathophysiology associated with negative symptoms may be widespread. The
computational role of theta oscillation has been linked to periodic modulation of
synaptic transmission and plasticity (Lengyel et al. 2005). Persistent theta neural
activity lasting for seconds after transient stimulation has been observed in several
brain regions. This activity has been taken to be indicative of the integration of
inputs on long time scales (Huhn et al. 2005).

As far as delta band activities are concerned, some studies have found enhanced
delta band activity in the prefrontal cortex in neuroleptic-naive subjects with
schizophrenia (Pascual-Marqui et al. 1999) or a generalized increase in delta band
activity, most prominently in the anterior cingulate gyrus and temporal lobes
(Mientus et al. 2002). Itoh et al. (2011) conducted the first study to assess, in first
episode drug-naive patients, if delta band activity would be increased in brain
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areas with a relevant relationship with the pathophysiology of schizophrenia and
its correlation with the symptomatology of schizophrenia (e.g., positive and neg-
ative symptoms). Low Resolution Brain Electromagnetic Tomography (LORETA)
was used to generate current source density images of delta, theta, alpha, and beta
activities and localize the difference in EEG activity between patients and healthy
controls. Current density for delta band activity was greater for patients in the left
inferior temporal gyrus, right middle frontal gyrus, right superior frontal gyrus,
right inferior frontal gyrus, and right parahippocampal gyrus. Current density
values for delta band at these brain regions showed a negative correlation with the
Scale for Assessment of Negative Symptoms (SANS) total score and no significant
correlation with Scale for Assessment of Positive Symptoms (SAPS) score. The
results of this study indicated that increased slow activity in frontal regions is not
associated with positive symptoms and is more marked in subjects with fewer
negative symptoms. In the light of recent conceptualization of increased delta band
over frontal regions as an electrophysiological sign of reduced attention to the
external input, the authors hypothesized that subjects with increased frontal delta
may be able to reduce external input, cope better with positive symptoms and have
less secondary negative symptoms. It is thus clear that further research is needed to
more fully understand the interrelationship between increased slow wave activity,
particularly in the frontal regions, and schizophrenia symptomatology.

A less consistently reported abnormality is altered reactivity and/or predomi-
nance of faster rhythms (beta activity). Noh et al. (2013) analyzed magnetoen-
cephalography (MEG) data in chronic patients with schizophrenia and found
reduced gamma power and increased beta band synchronization. Using an index of
intra and interregional cortical functional connectivity (the amount of coupled
local and global feedback (CLGF) circuits) they found that dysfunctional
connectivity was related to the abnormal synchronization of the beta band and to
negative symptoms.

Another important approach of describing dynamical systems is nonlinear
analysis, called chaos theory, which allows researchers to determine changes in the
dimensionality of the system over time (Kotini and Anninos 2002). A higher rate
of phase-state transitions (i.e., higher dimensionality) characterizes more complex
systems. Earlier work revealed that nonlinearity scores were significantly lower
during awake state in schizophrenia patients compared to control subjects sug-
gesting that there may be diminished interplay between different generators of the
various EEG rhythms (Keshavan et al. 2004). Decreased nonlinear complexity
correlated with neurocognitive deficits. Other groups found an increase in the
dimensional complexity in schizophrenia patients (Koukkou et al. 1993; Rockstroh
et al. 1997). Kotini and Anninos (2002) when using MEG to examine nonlinearity
in schizophrenia patients also reported lower dimensional complexity. One pos-
sible contributor to the discrepancy is heterogeneity of study samples. A readily
testable hypothesis would be that decreased dimensionality would correlate with
increased cognitive deficit and possibly negative symptoms.
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Yet another recently evolving methodology is to stimulate the cortex using
transcranial magnetic stimulation (TMS) and examine the resultant EEG effects.
While yet to be applied specifically to probe the deficit syndrome, Guller et al.
(2012) used this methodology to test the hypothesis that direct physiological
stimulation of the cortex will produce an abnormal thalamic response in individ-
uals with schizophrenia. They stimulated the precentral gyrus with single pulse
TMS (spTMS) and measured the response to this pulse in synaptically connected
regions (thalamus, medial superior frontal cortex, insula) using concurrent func-
tional magnetic resonance imaging. Compared with healthy subjects, patients with
schizophrenia showed a reduced response to spTMS in the thalamus, medial
superior frontal cortex, and in the insula. Functional connectivity analyses revealed
weaker thalamus—medial superior frontal cortex and thalamus—insula connectivity
in patients with schizophrenia compared with control subjects. Subsequently, the
same group utilized the same technology probing EEG effects to assess the natural
frequency of the posterior parietal, motor, premotor, and prefrontal cortices in
patients with schizophrenia and healthy control subjects. High-density EEG
recordings during TMS of four cortical areas were performed. Several TMS-
evoked EEG oscillation parameters, including synchronization, amplitude, and
natural frequency, were compared between the schizophrenia and control groups.
Patients with schizophrenia showed a slowing in the natural frequency of the
frontal/prefrontal regions compared with control subjects (from an average of a
2-Hz decrease for the motor area to an almost 10-Hz decrease for the prefrontal
cortex). The prefrontal natural frequency of individuals with schizophrenia was
slower than in any healthy comparison subject and correlated with both positive
and negative syndrome scale scores suggesting that these abnormalities may be
common between patients dominated by positive or negative symptoms and fur-
ther implicates thalamic abnormalities in schizophrenia. It could be speculated that
frontothalamo-striatal-frontal circuit dysfunctions are common to all schizophrenia
patients and perhaps contributing to the common coexistence of the varying
manifestations of the disorder. According to our hypothesis advanced above, the
development of a DS picture may require involvement of other cortical regions
beyond frontal and perhaps temporal regions.

3 Evoked Potentials (EP) Changes Associated
with Negative Symptoms

Disturbances in sensory processing have been suggested as significant contributors
to the deficit state in both clinical and neurophysiological studies (Turetsky et al.
1998; Mucci et al. 2007; Li et al. 2013). Two studies have thus far demonstrated
qualitative differences between DS and NDS (nondeficit) patients utilizing EP
measures (Turetsky et al. 1998; Mucci et al. 2007). Thus, surrogate markers of
sensory information processing are promising tools for probing the pathophysiology
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of the DS as well as delineating differences between DS and NDS physiological
aberrations. Table 2 lists studies that directly examined the correlation between
negative symptoms and evoked potential changes.

3.1 Mid-Latency Auditory Evoked Responses and Sensory
Gating

The mid-latency auditory evoked responses (MLAERs) have been extensively
used to study information processing both in mental health and disease. Numerous
studies have shown two particular components to be abnormally reduced in
amplitude in patients with schizophrenia. These two components are the N100
(anegative component seen approximately 100 ms following an auditory stimulus)
and the P50 (a positive component seen about 50 ms after the presentation of an
auditory stimulus) (Erwin et al. 1991). The N100 component has been extensively
examined in schizophrenia patients. The majority of studies report decreased
amplitude of the N100 which is not readily attributable to medication effects
(Rosburg et al. 2008). N100 amplitude is commonly (but not invariably) found to be
reduced in patients with schizophrenia (Rosburg et al. 2008) and in unaffected first-
degree relatives of the same patients (Ahveninen et al. 2006). The relationship
between N100 amplitude and specific schizophrenia symptoms remains unclear
(Rosburg et al. 2008).

The P50 MLAER has also been used extensively to examine the phenomenon
of amplitude attenuation with stimulus repetition. The term “sensory gating” has
been linked with studies of sensory inhibition utilizing the P50 MLAER in a paired
stimulus paradigm (PSP). Abnormal sensory gating has been proposed as a fun-
damental mechanism by which psychotic symptoms evolve (Freedman et al.
1991). In a PSP, two identical stimuli (S1 and S2) are delivered with short
interstimulus interval of 500 ms and a longer interpair interval of 8-10 s (Adler
et al. 1982). A sensory gating deficit has been repeatedly demonstrated in
schizophrenia patients (Adler et al. 1982; Boutros et al. 1991). Meta-analysis of
the P50 gating deficit in groups of nonselective schizophrenia, patients found the
effect size to be more modest than earlier reports suggested (Patterson et al. 2008).
Heterogeneity of both methodology and composition of patient groups were
suggested as possible causes for variation in results. A number of studies suggest
that the gating deficit, particularly of the N100 component, may be more strongly
found in association with negative symptoms (Boutros et al. 2009).

The gating deficit as assessed by the P50 component was examined in rela-
tionship to negative symptoms and was not found to correlate with any symptom
cluster in earlier studies (Adler et al. 1990; Boutros et al. 2004). Subsequent
investigations of gating of the P50 MLAER component reported a significant
correlation with negative symptoms (Ringel et al. 2004; Louchart-de la Chapelle
et al. 2005; Arnfred 2006). More recently Santos et al. (2010) investigated P50
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gating in patients with DS and in those with nondeficit schizophrenia (NDS). These
authors did not find differences in P50 gating between the two groups of patients,
but found an association between the abnormality of P50 gating and poor functional
outcome. These contradictory findings suggest that the relationship between
primary, enduring negative symptoms and the P50 gating deficit are not simple or
straightforward and may depend strongly on the specific composition of the study
sample. Given the documented high prevalence of smoking among schizophrenia
patients it is also important to control for smoking status of the patient and the time
elapsed between the last cigarette and P50 testing as transient improvement in
P50 gating following nicotine/cigarette smoking has been demonstrated (Leonard
et al. 2007). It is also possible that the effect size of the observation is not robust
enough to be detected in smaller samples or in the presence of a high noise to signal
ratio as is common in P50 studies due to the relative small amplitude of the
component (Boutros et al. 2009). Furthermore, the specific scale or instrument used
to assess the negative symptoms (or for that matter any symptom cluster) may also
influence the correlations identified (Boutros et al. 2009). An alternative hypothesis
is that a mediating variable (not as yet identified), cross-correlated with negative
symptoms and gating deficits (e.g., poor outcome), is responsible for the association
between P50 gating deficit and negative symptoms. Further studies are needed to
clarify the issue.

Evidence for a frontal cortex role in mediating both auditory and somatosensory
habituation has been provided by MEG studies (Bowyer et al. 2007; Weiland et al.
2008), EEG studies (Korzyukov et al. 2007; Garcia-Rill et al. 2008) and from
direct brain recordings (Grunwald et al. 2003; Boutros et al. 2008a, b). Physio-
logical data have indicated that the inability to suppress irrelevant inputs, coupled
with difficulty in novelty detection (which may be related and indexed here by the
MMN), impairs the coding at the beginning and ending of discrete events.
Information is stored with incorrect spatiotemporal tags (Knight et al. 1995). A
number of studies documented a working memory deficit in schizophrenia patients
(Goldman-Rakic 1999). It has further been postulated that it is the inability to gate
irrelevant information during the recall period, that causes the deficit to become
manifest. Chao and Knight (1995) tested this hypothesis in a number of patients
with dorsolateral prefrontal cortex (DLPFC), temporal—parietal junction (TPJ), or
posterior hippocampus lesions. They showed that patients with prefrontal lesions
were significantly impaired by distractors at all delays while patients with temp-
oro-parietal lesions performed similar to control subjects. Individuals with DLPFC
lesions exhibited increased amplitudes of the mid-latency auditory evoked
responses (MLAERSs) beginning 25-35 ms following auditory stimulation (Knight
et al. 1989). It is possible to speculate that the preattentive gating abnormality
(mediated by the P50) may be common to all schizophrenias while the later
occurring (or early attentive) gating abnormalities (reflected by either the N100 or
the P200 EPs) may be more linked to negative symptoms (also a readily testable
hypothesis).

Smucny et al. (2013) most recently used time—frequency analysis to compare
sensory gating at the beta (15-26 Hz) and gamma (30-50 Hz) frequencies
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between schizophrenia patients and healthy controls. Relative to controls, patients
showed impaired gating of total beta and gamma power. Poor beta gating was
associated with negative symptoms. Time—frequency analysis of beta and gamma
gating may thus be a translational method of assessing the genetic basis of gating
deficits in schizophrenia.

3.2 Mismatch Negativity

The mismatch negativity (MMN) is an early EP (with latency around 150 ms from
the stimuli onset) related to automatic probing of auditory sensory traces of a
repetitious stimulus by a deviant one elicited in an oddball paradigm (Nidétidnen
et al. 1978; Sams et al. 1985). MMN is considered a preattentive process and thus
mainly a bottom-up function. While MMN has been shown to be diminished in a
number of studies of schizophrenia patients, not all studies find similar deviations
(some find duration and others find frequency deviation MMN alterations). We
propose that one possible explanation of the variance in the findings is related to
inclusion of different patient samples and not paying specific attention to negative
versus positive symptoms as well as not paying attention to enduring primary
negative versus secondary negative symptoms. The MMN has not yet been spe-
cifically investigated in well-characterized DS patients. Based on the assumption
that DS patients suffer from an early (preattentive and bottom-up) sensory pro-
cessing deficit, we fully expect that future MMN investigation will reveal
abnormalities of this component in DS patients. At the time of preparing this
chapter, only a relationship between diminished frequency MMN and executive
dysfunction has been reported (Toyomaki et al. 2008).

3.3 The P300

The P300 response is a positive deflection appearing around 300 ms from stimuli
onset in response to rare novel or deviant stimuli in an auditory oddball paradigm.
Its amplitude is proportional with the amount of attentional resources allocated to
the task and memory performance (Polich 2007). The P300 as well as the MMN
have been found to be abnormally small (and sometimes delayed) in schizophrenia
populations (Javitt et al. 1993; Néitinen and Kéhkonen 2009; Jeon and Polich
2003; Gjini et al. 2010). The P300 response represents processing of information at
more advanced cognitive levels, such as a shift of attention, context updating, or
orienting to a relatively novel or deviant stimulus (Polich and Kok 1995). Exam-
ination of the P300 is of particular importance as evidence suggests that it may be
relatively spared in DS patients (Mucci et al. 2007; Jeon and Polish 2003). It is
of importance to note that a meta-analysis of the P300 ERP in schizophrenia found
a correlation with positive but not negative symptoms (Jeon and Polish 2003).
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Mucci et al. (2007) were able to corroborate this finding in a group of well-
characterized DS patients. Confirmation of this important observation would
significantly contribute to the delineation of the neural circuitry implicated in DS.
Engagement of frontal attention mechanisms during evaluation of novel incoming
stimuli produces the P3a response with a midline centrofrontal maximum as
compared to the classic P300 (i.e., P3b) activity to attended target stimuli showing a
midline parietal maximum and has been related to context updating operations and
subsequent memory storage (Polich 2007). A recent fMRI study (Wolf et al. 2008)
showed a negative correlation of novelty-induced BOLD signal in the left frontal
cortex with SANS scores, indicating lower levels of activation in patients with more
severe negative symptoms. No significant correlations were identified for novel-
induced BOLD signal and positive symptoms; also no significant correlations for
target-induced BOLD with either positive or negative symptoms. Based on the
limited available literature examining the correlations between P3 and negative
symptoms we predict that DS patients will exhibit deficit in the ability to respond to
novelty reflected by generating lower amplitude P3a components, but preserved
target P300 (P3b).

Kim et al. (2013) analyzed four event-related potential (ERP) components
(P100, N170, N250, and P300) and their source activities using EEG data acquired
from 23 schizophrenia patients while they were presented with facial emotion
picture stimuli. Correlations between positive and negative syndrome scale
(PANSS) scores and source activations during facial emotion processing were
calculated to identify the brain areas affected by symptom scores. Analysis dem-
onstrated that PANSS positive scores were negatively correlated with major areas
of the left temporal lobule for early ERP components (P100, N170) and with the
right middle frontal lobule for a later component (N250), which indicates that
positive symptoms affect both early face processing and facial emotion processing.
On the other hand, PANSS negative scores were negatively correlated with several
clustered regions, including the left fusiform gyrus (at P100), most of which are
not overlapped with regions showing correlations with PANSS positive scores.
These recent results suggest that positive and negative symptoms affect indepen-
dent brain regions during facial emotion processing.

3.4 Error-Related and Correct-Response Negativity (ERN
and CRN)

Deficits in self monitoring are a core feature of cognitive dysfunction in schizo-
phrenia, and may be the basis for disturbances of self and lack of insight, ulti-
mately impacting social functioning. DS patients are characterized by a significant
lack of insight. However, the functional and structural neural correlates of such
deficits in self monitoring are not well understood (Araki et al. 2013). This group
of researchers investigated this issue using measurements of neurophysiological
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and structural brain indices, i.e., error-related and correct-response negativity
(ERN and CRN) ERPs, and gray matter volume of the anterior cingulate cortex
(ACC), and tested whether the association between these indices is altered in
patients with schizophrenia compared to healthy controls. The two groups did not
differ in ERN amplitude. In contrast, schizophrenia patients showed significantly
larger CRN amplitudes than did healthy subjects. Although the two groups did not
significantly differ in gray matter volume of the ACC subregions, a significant
negative correlation was found between ERN amplitudes at the frontocentral
electrodes and absolute gray matter volumes of the left region of ACC only in
healthy controls. These results suggest a disruption of function—structure coupling
of the brain regions subserving self monitoring in schizophrenia. A direct com-
parison between DS and non-DS schizophrenia patients would be informative in
this regards.

3.5 Anticipatory Components: Contingent Negative
Variation (CNV) and Stimulus-Preceding Negativity
(SPN)

The negative symptoms construct has been refined with the modern conceptuali-
zation identifying 5 core component that have been shown to separate into two
domains: 1) a motivational dimension consisting of anhedonia, avolition, and
asocialty and 2) a diminished expressivity dimension consisting of restricted affect
and alogia (Strauss et al. 2013). In schizophrenia reward deficits involve more than
just anhedonia (Foussias and Remington 2010). In some cases, while the ability to
experience pleasure may even remain intact, patients with schizophrenia more
consistently demonstrate an impaired anticipation of reward, not immediately
available (Gold et al. 2008) and impairments in several other facets of reward
processing involved in motivation (Strauss et al. 2013).

ERP components studied in relation to anticipation of reward include the con-
tingent negative variation (CNV), a slow negative brain wave shown to reflect the
anticipation of or orienting to the upcoming stimulus and response preparation, and
has been related to preparatory attention, motivation, and response readiness
(Walter et al. 1964), and the stimulus-preceding negativity (SPN), a negative ERP
detected in paradigms that involve anticipation of feedback about the correctness of
prior performance or stimuli that are motivationally significant (van Boxtel and
Bocker 2004). Schevernels et al. (2014) showed that reward anticipation was linked
to early cue processing components, as well as the early and later parts of the CNV.
Wynn et al. (2010) investigated anticipatory deficits in subjects with schizophrenia
in a paradigm involving a cued motor response (CNV) and no motor response
(SPN) and the relationships of these ERP components abnormalities with self-
reported trait anhedonia or anticipatory pleasure and clinically rated negative
symptoms. Patients demonstrated generally lower CNV and SPN across pleasant,
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neutral, and unpleasant conditions; SANS total score did not correlate with the ERP
variables; higher trait anhedonia was related at a trend-level to lower overall SPN.

Other facets of motivation found to be impaired in schizophrenia include
difficulties using internal representations of emotional experiences, previous
rewards, and motivational goals to drive current and future behavior, deficits that
have major clinical significance in terms of functional capacity (Barch and Dowd
2010). The feedback-related negativity (FRN) is an ERP component that has
been localized to the ACC (Nieuwenhuis et al. 2005) and has been hypothesized
to reflect the function of a performance monitoring/evaluative system that rapidly
assesses the motivational impact and/or salience of environmental feedback
(Segalowitz et al. 2010). Fitting this view, the FRN has been found to be sen-
sitive to both errors in reward prediction, negative valence of emotional stimuli
(Pfabigan et al. 2011) and the magnitude of outcome (Holroyd and Krigolson
2007; Holroyd et al. 2004). In their study, Horan et al. (2012) tried to clarify the
scope of feedback processing impairments in schizophrenia analyzing FRN
during a simple monetary gambling task. The authors also investigated the
relationships between FRN abnormalities and negative symptoms, assessed using
the BPRS. They showed that patients and controls demonstrated comparable
FRN differentiation between reward and nonreward feedback and higher positive
symptoms were associated with greater differences between FRN to positive and
negative feedback. There were no significant or trend-level correlations for
negative symptoms. In their opinion the use of the BPRS may have limited
ability to detect an association between negative symptoms and reward pro-
cessing because the BPRS negative symptom subscale focuses on expressive
symptoms (e.g., blunted affect) whereas experience-related symptoms (e.g.,
avolition, asociality) have a stronger theoretical link to feedback and reward
processing (Blanchard et al. 2011).

3.6 Loudness Dependence of Auditory Evoked Potentials
(LDAEP)

There is an evidence that alterations of serotonin (5-HT) system functioning also
play a crucial role in the pathophysiology of disabling negative symptoms. From
post mortem and genetic studies on patients with negative symptoms a 5-HT dys-
function is documented. In addition, atypical neuroleptics and some antidepressants
improve negative symptoms via serotonergic action. So far, no research has been
done to directly clarify the association between the serotonergic functioning and the
extent of negative symptoms. Wysse et al. (2013) based on the above, examined
the status of brain 5-HT level in negative symptoms in schizophrenia by means of the
loudness dependence of auditory evoked potentials (LDAEP). The LDAEP provides
a well-established and noninvasive in vivo marker of the central 5-HT activity. They
investigated 13 patients with schizophrenia with predominant negative symptoms
treated with atypical neuroleptics and 13 healthy controls. The LDAEP of the N1/P2
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component was evaluated by dipole source analysis and single electrode estimation
at Cz. Psychopathological parameters, nicotine use, and medication were assessed to
control for additional influencing factors. Schizophrenia patients showed signifi-
cantly higher LDAEP in both hemispheres than controls. Furthermore, the LDAEP
in the right hemisphere in patients was related to higher scores in scales assessing
negative symptoms. A relationship with positive symptoms was not found. These
data might suggest a diminished central serotonergic neurotransmission in patients
with predominant negative symptoms.

It should be noted that only three papers specifically addressed ERPs in the
deficit syndrome (Turetsky et al. 1998; Mucci et al. 2007; Li et al. 2013). Two
studies provided data suggestive that the deficit syndrome is not simply a severe
form of schizophrenia but more likely a separate clinical entity. Turetsky et al.
(1998) while not employing the SDS, used the BPRS, SANS, and SAPS to address
the criteria for the deficit syndrome. They examined the P300 component and
found two patterns that cannot be seen as different grades of the same process.
Patients with NDS showed the greatest reduction over the left temporal regions
while the deficit subgroup showed the greatest reduction over the right parietal
region. The second study specifically addressing DS, using the SDS, found a
double dissociation where only NDS patients exhibited the asymmetrical left
temporal P300 amplitude deficiency, while DS patients exhibited a decreased
amplitude of the N100 (Mucci et al. 2007). Most recently, Li et al. (2013) com-
pared a number of EPs between 21 patients with DS, 38 patients with NDS
schizophrenia and 50 healthy control subjects. They included the P300 (both P3a
and P3b), MMN, amplitudes and gating of the P50 MLAER, and the contingent
negative variation (CNV). To our knowledge this is the only report examining the
CNV in relationship to negative symptoms schizophrenia. The authors reported a
great deal of similarity between the two schizophrenia groups. As compared to the
healthy controls both patient groups exhibited delayed N1, N2, MMN, and P3a
latencies as well as reduced N1, N2, and CNV amplitudes. Similarly, P50 gating
was decreased in both groups. Only NDS, when compared to controls, showed
delayed latency of P3b. Only DS patients showed delayed point A in CNV which
correlated with poorer Global Assessment of Functioning scale but not with any
individual negative symptom. These recent data suggest a significant overlap
between the DS and NDS syndromes but with some distinctive characteristics that
need further explorations in larger and perhaps unmedicated patients (Li et al.
2013).

4 Sleep Changes in Association with Negative Symptoms

Table 3 lists studies that directly reported on the association between sleep
architectural changes and negative schizophrenia symptoms.

Decreased delta sleep in association with negative symptoms has been a rela-
tively consistent finding in schizophrenia patients (Tandon et al. 2000). Of the
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13 studies identified, 10 reported decreased slow wave sleep (SWS) in association
with negative symptoms. Of these 10 papers, seven found a significant negative
correlation between the severity of negative symptoms and percent of SWS
(i.e., with increased severity of negative symptoms, less SWS is noted).

Recent sleep studies depend heavily on computer-based analysis. Sekimoto
et al. (2007) utilized a specialized program (the Medilog Sleep Analyzing
Computer) to perform period-amplitude analysis of the delta wave count (delta
half-wave analysis). They reported that schizophrenia patients in general exhibited
a significant decrease in the percent of stage 2 sleep and a marked decrease of
SWS. The delta half-wave count in the bilateral frontal regions was inversely
correlated with BPRS negative symptoms scores. Poulin et al. (2008) reported a
negative correlation between sleep absolute alpha activity and negative symptoms
scores. Sarkar et al. (2010) reported a significant decrease in SWS, stages one and
two as well as total sleep time in general but with no correlation with negative
symptoms. On the other hand, Yetkin et al. (2011) found no evidence of a SWS
abnormality in a group of 13 male schizophrenia patients (undifferentiated type).

Relatively more recently, Sekimoto et al. (2011) reported a significant inverse
correlation between negative symptoms scores and delta wave counts in all regions
examined (frontal, central, parietal, occipital). Utilizing self-report (Pittsburgh
Sleep Quality Index), Lunsford-Avery et al. (2013) observed a strong association
between negative symptoms severity (and not positive symptoms) and increased
sleep dysfunction (no PSG data obtained).

5 Conclusions

Progress in the investigation of negative symptoms pathophysiology has been
hindered by intrinsic heterogeneity of this symptom cluster. Primary and enduring
negative symptoms are recognized as distinct disease processes with respect to
broadly defined negative symptoms. Recent conceptualizations and factor analytic
studies of both primary and broadly defined negative symptoms support two
distinct domains: avolition and impaired emotional expression, probably related to
separate pathophysiological mechanisms (Cohen et al. 2007). These sources of
heterogeneity have seldom been considered in the electrophysiological literature.
However, the field is rapidly changing and studies of the deficit syndrome as well
as investigations of the separate domains of negative symptoms are rapidly
increasing.

Two prominent/reasonably consistent electrophysiological correlates of nega-
tive symptoms emerge through this review: increased slow frequencies during
wakefulness (as assessed by awake spectral EEG) and decreased slow wave sleep
during night time recording.

While the largest group of studies identified were those related to EP/ERP
findings, a consistent or strong trend was difficult to identify perhaps due to the
tendency of different research groups to examine one particular EP component like
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P300, MMN, or sensory gating. Studies examining a number of EP components
simultaneously are sparse (Li et al. 2013). Despite the small number of studies and
the varying EPs examined, the literature points to a deficit in the sensory gating
of the mid-latency evoked responses reported from more than one laboratory
(Boutros et al. 2009; Ringel et al. 2004; Louchart-de la Chapelle et al. 2005).
Furthermore, a decreased amplitude of the N100 response has also been linked to
the deficit syndrome (Mucci et al. 2007). It is of importance to note that a meta-
analysis of the P300 ERP in schizophrenia found a correlation with positive but not
negative symptoms (Jeon and Polich 2003). Mucci et al. (2007) were able to
corroborate this finding in a group of well-characterized DS patients.

As is a direct reflection of the research expertise represented in a particular
laboratory, most research groups tend to probe one physiological variable (e.g.,
ERP, EEG, or sleep). Multicomponent electrophysiological studies will help fur-
ther define the abnormalities detected. For example, if an EEG or EP abnormality
disappears during sleep this would influence the understanding of its pathophys-
iology as compared to the abnormality being persistent during sleep. If an EP
abnormality is linked to a particular EEG state, this finding would be of signifi-
cance for the identification of the neural circuitry mediating this abnormality.

The current level of knowledge is inadequate to propose a unifying theory of
the pathophysiology underlying the described anomalies associated with the DS.
However, most studies suggest pervasive bottom-up deficiencies that may lead to
cascading information processing problems. This tentative conclusion is based on
the observation that information processing abnormalities gleaned from EP studies
(the only investigative methodology that can assess chronology at a millisecond
by millisecond level in the intact behaving human), tend to occur earlier in the
sequence of EPs and starting during periods that are commonly considered as
“pre-attentive.” Sleep deviations suggest a serious abnormality of the restorative
deep sleep stages and the awake EEG abnormality suggest difficulty generating the
faster frequencies, reflecting decreased ability to generate efficient smaller neu-
ronal ensembles to deal with more focused or effective information processing.

A unifying hypothesis of the deviant oscillations during wakefulness (increased
slow activity) and decreased slow wave sleep (SWS), could point to a dysfunction
involving thalamocortical circuitry (Pinault 2011; Sekimoto et al. 2011). Thala-
mocortical circuits exhibit two fundamentally different modes of operation across
the sleep-wake cycle: a state of tonic activation (desynchrony) during waking and
REM sleep and a state of rhythmic synchronized activity during SWS (Steriade
and Llinas 1988). Thalamic relay receives significant input from a number of brain
stem structures and thus are subject to changes with a number of ascending
neurotransmitter inputs. Furthermore, thalamic relay neurons also send collateral
projections to the thalamic reticular nucleus which are reciprocally inhibitory
(GABAergic) with thalamic nuclei (Siegel 2011). The thalamus (and more spe-
cifically the reticular nucleus) has been proposed to be important for the function
of sensory gating which has been repeatedly shown to be deficient in schizophrenia
and may be more specifically associated with negative symptoms (Krause et al.
2003). Kirkpatrick and Buchanan (1990) proposed a neural circuit that may be at
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the heart of the DS. Components of this circuit include the amygdala, peri-
amygdalar cortex, and parts of the prefrontal cortex. A number of thalamic nuclei
(including the anterior, midline, mediodorsal, lateral anterior, and lateral dorsal as
well as the intralaminar) have extensive connections with all these components
(Clarke et al. 2010). The involvement of the thalamus is also supported by
observation of worsening of somatosensory gating in patients with thalamic
strokes with recovery of the function over time (Stain et al. 2002). Recent reviews
suggest a central role for thalamic abnormalities in the generation of schizophrenia
symptomatology (Byne and Hazlett 2009). Recent studies suggested an association
between DS and genuine movement disorders (unrelated to antipsychotic treat-
ment) pointing to cortico-striatal-thalamic circuits (Peralta et al. 2014). It could be
hypothesized that abnormalities of the latter circuits might be related to avolition,
while those concerning the limbic-thalamic circuits to the emotional expression
domain of the negative symptoms.

Based on the above, it can be stated that while research on the electrophysio-
logical correlates of the deficit syndrome and enduring negative symptoms remains
minimal, available data strongly support the need and likely profitability of this
line of investigation. Most notably is the absence of studies where EPs, EEGs and
sleep studies are performed in the same individuals in order to examine the
correlation and interrelationships among these deviations.
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Psychophysiology in the Study
of Psychological Trauma: Where Are
We Now and Where Do We Need to Be?

D.T. Acheson, M.A. Geyer and V.B. Risbrough

Abstract Posttraumatic stress disorder (PTSD) is a major public health concern,
which has been seeing increased recent attention partly due to the wars in Iraq and
Afghanistan. Historically, research attempting to understand the etiology and
treatment of PTSD has made frequent use of psychophysiological measures of
arousal as they provide a number of advantages in providing objective, non-self-
report outcomes that are closely related to proposed neurobiological mechanisms
and provide opportunity for cross-species translation. Further, the ongoing shift in
classification of psychiatric illness based on symptom clusters to specific biological,
physiological, and behavioral constructs, as outlined in the US National Institute of
Mental Health (NIMH) Research Domain Criteria project (RDoC), promises that
psychophysiological research will continue to play a prominent role in research on
trauma-related illnesses. This review focuses on the current state of the knowledge
regarding psychophysiological measures and PTSD with a focus on physiological
markers associated with current PTSD symptoms, as well as markers of constructs
thought to be relevant to PTSD symptomatology (safety signal learning, fear
extinction), and psychophysiological markers of risk for developing PTSD fol-
lowing trauma. Future directions and issues for the psychophysiological study of
trauma including traumatic brain injury (TBI), treatment outcome studies, and new
wearable physiological monitoring technologies are also discussed.
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1 Introduction

Posttraumatic stress disorder (PTSD) is a major public health concern with lifetime
prevalence rates in the USA estimated to be 6.8-12.2 %, and 12-month prevalence
rates estimated to be 3.5 % (Breslau 2009). Due to the wars in Iraq and Afghanistan,
PTSD has received significant attention in the past 10—13 years, in terms of both
popular media coverage and funds directed toward its research. This attention is
warranted, given that rates of PTSD have increased in service members by 656 %
since 2001 and the cost to the US Department of Defense (DoD) for treating these
service members doubled between 2007 and 2012 (Blakeley and Jansen 2013 Con-
gressional Research Service Report). In addition, it is important to note that PTSD
affects more than just combat veterans and occurs in civilians following physical
and sexual assaults, forced captivity, muggings/robberies, motor vehicle accidents,
natural disaster, and life-threatening illness among other events (Breslau 2009). The
DSM-IV classification of PTSD consisted in exposure to the traumatic event, as well
as 3 clusters of symptoms: re-experiencing, avoidance and numbing, and hyper-
arousal. With the recent publication of DSM-5, the definition has expanded into 4
symptom clusters: intrusion, avoidance, negative alterations in cognitions and mood,
and alterations in arousal and reactivity. This expansion recognizes broader, more
heterogeneous symptom expressions (such as dysphoria and anger) while allowing
for more dynamic changes in arousal and reactivity. Current treatments for PTSD are
mainly psychotherapy based (e.g., exposure therapy and cognitive therapy). Phar-
macological treatments, such as serotonin-selective and serotonin-norepinephrine
reuptake inhibitors (SSRI/SNRIs), have also achieved modest efficacy (Committee on
treatment of posttraumatic stress disorder [oMotNA 2007).

There is a clear need for the development of novel preventive and therapeutic
treatment strategies for PTSD via increased understanding of etiological and
maintaining factors of the disorder (Baker et al. 2009). To this end, there is a new
focus on utilization of biological, physiological, and behavioral tools to enable a
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“paradigm shift” from sole reliance on self-report measures to assess symptom
status and diagnosis for psychiatric disorders such as PTSD. The US National
Institute of Mental Health (NIMH) Research Domain Criteria project (RDoC)
represents a framework for research in this area, with an emphasis on developing a
diagnostic classification scheme based upon valid observable markers of common
biological processes across the range of currently identified diagnostic categories.
The negative valence system (NVS) domain suggested by the NIMH contains the
constructs of acute threat of “fear,” potential harm or “anxiety,” and sustained
threat. The 2011 NVS working group meeting identified many of the physiological
measures reviewed below as important research tools for understanding these
constructs. Psychophysiological measures may have utility as static markers of
these constructs, as well as dynamic markers of change enabling the elucidation of
the roles of learning and memory processes in the expression of these constructs.
Thus, psychophysiological measures are poised to play an important role in the
future understanding of mental illness generally, and traumatic stress-related dis-
order characterized by negative valence states more specifically.
Psychophysiological outcome measures have a number of advantages in neu-
ropsychiatric research. (1) Psychophysiological measures provide objective, non-
self-report outcomes and thus are less subject to bias by the subject and/or
researcher. (2) Physiological measures are quantifiable. (3) Compared to self-report
symptom scales, physiological measures may represent more discrete symptom
domains that probe specific neurobiological pathways enabling mechanistic study
of neurobiological abnormalities underlying symptoms. (4) Physiological measures
enable cross-species translation to examine causal mechanisms of psychophysio-
logical abnormalities linked to trauma exposure that cannot be achieved with self-
report measures. The current manuscript will review the current state of knowledge
on psychophysiological outcomes in PTSD with attention to their use as markers of
current symptoms as well as markers of PTSD-related processes. We will also
discuss these variables in terms of their sensitivity and selectivity for PTSD
symptoms versus other anxiety and mood disorders and comorbid disorders such as
traumatic brain injury (TBI). Further, we will discuss potential future avenues for
integrating psychophysiology into emerging areas of PTSD research. We have
limited our review to relatively common psychophysiological measures of arousal/
threat, including cardiovascular, electromyographic, and electrodermal measures.

2 Psychophysiological Markers of Current PTSD
Symptoms

2.1 Cardiovascular Activity

Baseline: Current conceptualizations of PTSD, reflected in the Diagnostic and
Statistical Manual of the American Psychiatric Association (DSM 5; APA 2014)
criteria, recognize that PTSD has a complex phenomenology expressed not just as
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fear-based hyperarousal, but also as anhedonic and dysphoric emotional states. In
contrast, earlier conceptualizations of the disorder, reflected in DSM-III through IV
criteria, placed a larger emphasis on fear-related arousal. Given the past emphasis
on arousal-related symptoms, research has long focused on identifying and
understanding the psychophysiological basis of elevated arousal. Though studies
have assessed the construct of arousal across a number of psychophysiological
measures, an extensive body of work has focused on the cardiovascular system.
Cardiovascular physiology is a convenient domain to focus on since it can be
measured relatively easily using a number of different methods and equipment
typically present in an emergency department or urgent care clinic. Further, some
elements of cardiac physiology can be interpreted as a readout of sympathetic/
parasympathetic balance, which has long been theorized to be disrupted in PTSD
(see below).

Blanchard et al. (1982) observed that Vietnam veterans with PTSD had higher
resting baseline heart rate (HR) and blood pressure (BP) than Vietnam veterans
without PTSD. These initial observations were later largely confirmed in a meta-
analysis by Buckley and Kaloupek (2001), which reviewed 34 studies of resting
cardiovascular activity in PTSD conducted up to that time. This meta-analysis
found support for elevated resting HR and diastolic blood pressure (BP), though
systolic BP levels were similar across PTSD subjects and healthy controls. A more
recent meta-analysis of psychophysiological studies in PTSD (Pole 2007) reviewed
55 studies conducted until that time and also supported increased resting HR in
PTSD relative to healthy controls. However, elevations in systolic and diastolic BP
were only present under relaxed criteria for statistical significance.

While the evidence for altered cardiovascular activity at rest in PTSD appears
fairly strong, some researchers have suggested a more nuanced relationship. First,
some studies (i.e., Shalev et al. 1992) have failed to find HR differences in new-
onset PTSD. Further, Buckley and Kaloupek (2001) showed a greater effect size for
HR in patients with chronic PTSD (>13 years). Taken together, these findings
suggest that elevated HR may be a consequence of physiological changes driven by
long-term PTSD. Second, studies monitoring cardiovascular activity over 24-h
periods have suggested that HR and BP may fluctuate widely across the day,
complicating previous studies (Muraoka et al. 1998; Buckley et al. 2004). One
study using 24-h HR monitoring did, however, confirm increased HR in veterans
with PTSD, with more pronounced effects during the night, perhaps related to the
sleep disturbances commonly associated with PTSD (Agorastos et al. 2013). Third,
there is disagreement among researchers regarding whether resting state activity is
actually being measured in these studies, or if what is actually being captured are
cardiovascular responses to a stressful situation/challenge induced by the testing
environment (see below; Zoladz and Diamond 2013). Other studies suggest that
PTSD subjects are hyperresponsive to stress or threat across a number of physio-
logical markers, including HR, startle, and skin conductance (see below). Further,
increased HR is not specific to PTSD, but is also reported in panic disorder and
depression (Cohen et al. 2000; Blechert et al. 2007; Kamphuis et al. 2007).
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An additional marker of resting-state cardiovascular activity that is altered in
PTSD is heart rate variability (HRV). HRV is a measure of the variation in time
between heart beats, which indicates autonomic flexibility (the higher the variation,
the more flexibility). HRV is most accurately measured via electrocardiogram;
however, photoplethysmography is also utilized. HRV is measured as time-domain
variables (e.g., changes in the standard deviation of beat-beat interval) and fre-
quency domains using power spectral density analysis methods. Frequency com-
ponents are thought to represent sympathetic and parasympathetic control over HR,
with the high frequency domain (HF; 0.15-0.4 Hz) representing parasympathetic or
vagal tone, while the low frequency (LF; 0.04-0.15 Hz) is comprised of both
parasympathetic and some sympathetic elements (see Heathers 2014; Berntson
et al. 1997 for review). Finally, respiratory sinus arrhythmia, HRV due to respi-
ration, is another measure of vagal control of autonomic activity. Reduced HRV is
associated with mortality and cardiovascular symptoms in patients with PTSD,
highlighting the clinical importance of these measures (Kubzansky et al. 2007).
There is growing evidence that both LF and HF are reduced in PTSD patients,
which may be suggestive of an imbalance between sympathetic and parasympa-
thetic drive on cardiovascular output (Cohen et al. 2000; Blechert et al. 2007;
Jovanovic et al. 2009), though exceptions have been reported (Sahar et al. 2001). In
a recent twin study of combat-related PTSD in Vietnam era veterans, Shah et al.
(2013) found that HRV abnormalities (lower LF and HF) were present only in the
twin with PTSD, suggesting that reduced HRV is an acquired consequence of the
disorder. They also suggested that HRV abnormalities were not present in subjects
with remitted PTSD, suggesting HRV reductions are indicative of symptom state.
We have recently shown that HRV reductions (reduced HF) are also associated with
new-onset PTSD symptoms in active duty marines who served in Irag/Afghanistan,
suggesting that reduced HRYV is not related to age or chronicity of PTSD (Minassian
et al. 2014). These studies have also shown that reductions in HRV in these pop-
ulations are not due to depression or TBI, nor are they related to degree of combat
exposure or deployment history per se (Shah et al. 2013; Minassian et al. 2014).
Finally, reduced HRV is reported in untreated subjects (Minassian et al. 2014;
Chang et al. 2013), indicating that this phenotype is not due simply to medication
side effects. Although HRV measures appear to be sensitive to PTSD symptoms,
they are not specific to PTSD. Indeed, reduced HRV, in particular HF, may be a
more general marker of anxiety disorders (Pittig et al. 2013) or even mental illness,
as it is reduced across multiple disorders including anxiety, depression, bipolar
disorder, and schizophrenia (Moon et al. 2013). It is possible that multiple mech-
anisms underlie the reductions in HRV across these diverse patient groups, or that
reductions in HRV are due to the higher stress or allostatic load experienced by
those with neuropsychiatric illness (McEwen 2000).

Response to Challenge: In contrast to resting-state cardiovascular markers, sev-
eral studies have assessed cardiovascular activity in response to challenges from
either loud acoustic stimuli (startle) or trauma-related cues. A large body of literature
documents larger HR reactivity to startling sounds in PTSD patients (Pallmeyer et al.
1986; Shalev et al. 1992; Orr et al. 2002). Pole (2007) investigated 10 studies
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measuring HR response to loud acoustic stimuli and found that elevated HR
response was among the most robust effects found using this paradigm. Pitman et al.
(2006) examined elevated HR reactivity to sudden loud tone presentation in a twin
sample of Vietnam veterans. They found elevated HR reactivity only in the twin with
PTSD, indicating HR response is an acquired consequence of the disorder rather
than a predisposing trait.

HR response to trauma-related reminder cues has also been examined, which
may probe biological mechanisms relevant to fear memory processes. These studies
typically involve either “standardized” cues, such as combat sounds (Liberzon et al.
1999) that are held constant across the sample being studied, or “ideographic” cues
which are tailored to be specific to each subject’s traumatic experience. Pole (2007)
reviewed 16 studies investigating HR response to standardized trauma cues and
another 22 investigating HR response to ideographic trauma-related cues. Elevated
HR response to standardized cues in PTSD emerged as one of the more robust
effects in these paradigms. Support for increased HR responses to ideographic
trauma cues was also found, though less robust than that for standardized cues.
Recent studies have also supported these findings in both standardized (Adenauer
et al. 2010; Suendermann et al. 2010; Ehlers et al. 2010) and ideographic trauma
cues (Barkay et al. 2012). Barkay et al. (2012) have investigated the neurobiological
correlates of this effect using PET imaging and found correlations between HR and
rCBF in the orbitofrontal, precentral, and occipital regions of the cortex only in
patients with PTSD and not in trauma-exposed non-PTSD subjects. These findings
are suggestive that increased HR responses to trauma reminders may overlap in
neural substrates (orbitofrontal cortex) with the reduced ability to inhibit fear
responses (Shin et al. 2006). In PTSD, there are correlations between HR response to
trauma and norepinephrine concentrations in cerebrospinal fluid (Geracioti et al.
2008), suggesting that central noradrenergic hypersignaling could play a role in this
phenotype. It is unclear whether increased HR or other cardiovascular abnormalities
are ameliorated by treatment, however, despite the use of noradrenergic reuptake
inhibitors (Hoge et al. 2012) as well as clinical trials of the alpha 1 receptor
antagonist prazosin (Raskind et al. 2013). Whether increases in HR are an epiphe-
nomenon of increased centrally mediated fear responses, or are a core feature of
PTSD pathology is unclear. One intriguing recent finding suggests that inhibitors of
angiotensin I signaling, commonly given for hypertension, are associated with fewer
PTSD symptoms in a cross-sectional sample of highly traumatized civilian popu-
lations (Khoury et al. 2012). Other common hypertension medications were not
associated with fewer symptoms, suggesting that the angiotensin pathway may play
a role in PTSD-related pathology. Thus, more research is clearly needed to further
elucidate pathways involved in elevated cardiovascular responses in PTSD.

Summary of Cardiovascular Markers of PTSD Symptom State: Cardiovascular
physiology is an active and important area of research in PTSD, especially given
reported links between PTSD and increased incidence of cardiovascular disease
(Wentworth et al. 2013). While there is strong evidence that resting-state cardio-
vascular activity, as well as HR response to standardized and ideographic trauma
cues, is altered in PTSD, this is still an active area of research that is not without
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controversy. Specifically, the degree to which the testing situation contributes to
findings of elevated HR in PTSD is unclear. The extent to which elevated HR is a
feature of core PTSD pathology versus simply a consequence of chronic stress is
also unknown. Some studies have suggested that HR soon after trauma may predict
development of PTSD, suggestive of HR being a proxy for biological risk factors
for PTSD (see below). However, a recent study suggests that HR is not altered in
relatively “recent” PTSD cases after combat (Minassian et al. 2014), arguing
against elevated HR as a risk factor. HR increases are also not specific to PTSD, but
are increased in other anxiety disorders more generally. Research investigating the
time course and neurobiological correlates of altered cardiovascular activity in
PTSD is needed to further clarify these issues.

Many questions still remain for the association of HRV with PTSD symptoms.
Although twin studies suggest that altered HRV is specific to PTSD symptom state,
prospective studies are needed to confirm HRV measures as symptom dependent or
markers of risk for PTSD (Baker et al. 2012). Similarly, although there is some
evidence from cross-sectional analysis in small samples for symptom remission to be
associated with normalization of HRV (Shah et al. 2013), longitudinal treatment
studies are required to best address this question. The biological mechanisms
responsible for HRV reductions in PTSD are also unclear. However, dysregulated
sympathetic output (e.g., via increased noradrenergic tone, Geracioti et al. 2001,
2008; Pietrzak et al. 2013) and abnormalities in stress and immune systems have
been identified as candidate mediators (Risbrough and Stein 2006; Eraly et al. 2014).

2.2 Exaggerated Startle Response

Baseline: The startle response is a sensitive, noninvasive measure of central nervous
system activity that is typically accessed via electromyographic (EMG) measure-
ment of strength of contraction of the orbicularis oculi muscle controlling eyeblink
in response to a sudden acoustic or tactile stimulus (Blumenthal et al. 2005).
Exaggerated startle is a symptom of PTSD according to the DSM 5 (APA 2014).
Thus, it follows that larger baseline startle responding should be detectable in
PTSD. However, evidence for increased startle reactivity under “baseline” condi-
tions in PTSD is mixed, with some studies finding evidence for increased startle in
PTSD relative to healthy controls and others finding equivalent startle responses
(see Zoladz and Diamond 2013 for a recent review of this literature). There are also
some suggestions that increases in baseline startle may only occur in chronic PTSD
patients or following certain forms of trauma, such as combat (Grillon and Baas
2003). A significant problem with assessments of “baseline” startle is that it is very
difficult to accurately assess this phenomenon. Startle reactivity is extremely plastic,
and it is sensitive to many rapid and dynamic modes of inhibition such as habituation
and sensorimotor gating, to emotional valence or experimental context, and of course
is extremely sensitive to stimulus parameters such as intensity and duration of
the startling stimulus, all of which will influence the detection of putative differences.
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For example, startle is higher in PTSD patients under low-intensity startle stimuli but
not high intensity (Butler et al. 1990), which may reflect a lowering of startle
thresholds rather than an exaggeration of startle responses elicited by supra-threshold
stimuli. Thus, more robust and reliable startle phenotypes in PTSD and other disor-
ders are measured when comparing startle across multiple stimulus conditions and
emotional contexts. Startle has also generally only been explored in terms of
magnitude of the response (muscle contraction) compared to controls. However, self-
reports of “increased startle” from patients may not simply reflect magnitude, but the
probability of aresponse under subthreshold conditions, which has yet to be explored.

In Response to Challenge: Given the inconsistency of baseline startle changes in
PTSD, it has been suggested that startle reactivity is higher in PTSD patients only
when under threat; thus, this phenomenon is indicative of mechanisms related to
increased stress responding rather than disruption of baseline arousal (Grillon and
Baas 2003). Grillon et al. (1998) reported normal baseline but increased startle
magnitude in Vietnam combat veterans with PTSD during anticipation of experi-
mental electrical shock relative to non-PTSD veterans, demonstrating a higher
response in situations of threat or stress in PTSD. Startle is also elevated in response
to trauma reminders (imagery, trauma scripts) in PTSD patients (e.g., Cuthbert et al.
2003; McTeague et al. 2010); however, these tasks are relatively unique to indi-
vidual laboratories and more difficult to generalize across studies. As a whole, these
studies suggest that exaggerated startle in PTSD is not indicative of increased
arousal at baseline, but is a physiological marker of heightened response to threat
and heightened fear responses in the presence of trauma cues. Thus, startle is
increasingly used as a quantitative measure of fear responding that complements
self-report data on anxiety and stress to identify biological mechanisms underlying
PTSD symptoms.

Studies have recently suggested that elevated startle to challenge in PTSD may
be subject to gender differences. Kamkwalala et al. (2012) showed that women with
PTSD had higher startle in a dark environment relative to a light environment than
men and women without PTSD. However, this elevated “dark-enhanced” startle
was not present in male subjects with PTSD. Further, dark-enhanced startle has
been shown to be associated with pituitary adenylate cyclase-activating polypeptide
receptor (PAC1) genotypes in females, a gene that interacts with estrogen and has
also been associated with PTSD in females (Ressler et al. 2011). These studies
represent a new avenue of PTSD research that is just coming to fruition in utilizing
physiological markers as intermediate phenotypes to identify biological pathways
related to PSTD risk.

Startle Habituation: Habituation is a non-associative learning process whereby
an organism displays a reduction in some innate orienting or defensive response
following repeated presentation of a stimulus (Halberstadt and Geyer 2009). Shalev
et al. (2000) examined habituation of the startle and electrodermal response to loud
acoustic stimulus in a sample of traumatized Israeli civilians tested at 1 week and 1
and 4 months following the traumatic event. Those who developed PTSD began to
show reduced habituation in both measures beginning 1 month post-trauma, sug-
gesting that reduced habituation may be an acquired sign of PTSD. The reduced
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startle habituation finding is confounded, however, as the methodology used to
detect startle was flawed, with sample rates that were much too slow (50 Hz) to
visualize the very fast on and off rate of a startle response which is typically
measured with 1,000 Hz sampling rates. The reduced electrodermal habituation,
however, supported earlier findings by this group (Shalev et al. 1992). Other studies
had failed to detect reduced startle habituation in PTSD but were compromised by
their use of inappropriately slow sampling rates (Pitman et al. 1987, 1993; Orr and
Pitman 1993). A more recent study in Croatian combat veterans found that PTSD
and control groups did not differ in startle habituation as assessed by quantitative
analysis of EMG reduction across trial; however, there was a reduction in PTSD
subjects compared to controls when using nonparametric comparisons of a number
of subjects who met criteria for habituation (lowest responding at the last trial)
(Jovanovic et al. 2009). This study also did not replicate habituation of the elec-
trodermal response, a physiological marker of sympathetic nervous system arousal
based on electrical conductivity across the skin due to sweat (see below). Thus,
taken together across studies, evidence for differences in startle habituation in PTSD
subjects is weak. PTSD subjects may exhibit reduced habituation of fear-potentiated
startle during fear association training (Ressler et al. 2011). However, it is unclear
whether this effect reflects reduced habituation to startling sounds or increased
reactivity to the aversive stimuli used during fear conditioning. Reductions in
habituation have been detected in other neuropsychiatric disorders (schizophrenia,
panic disorder); thus, it is possible that reductions in habituation of the response
may represent a pathology in a subset of patients across disorders, as such a
phenotype would have substantial consequences for multiple behavioral functions
(Geyer and Braff 1982; Ludewig et al. 2002a, b, 2003, 2005). Habituation is
another “intermediate phenotype” that is being used to identify potential gene
pathways disrupted in these disorders (Greenwood et al. 2012, 2013).

Prepulse Inhibition of the Startle Response: Prepulse inhibition (PPI), the
unlearned suppression of the startle reflex to an intense acoustic stimulus when
immediately preceded by a weaker acoustic prepulse, is an operational measure of
sensorimotor gating (Geyer et al. 1990; Geyer and Braff 1987). PPI has been shown
to be a robust but non-specific biomarker of psychiatric diagnosis. PPI performance
is reduced compared to healthy controls in a number of neuropsychiatric disorders
including panic disorder, obsessive compulsive disorder, schizophrenia, bipolar
disorder, Tourette’s disorder, and Huntington’s disorder (Braff et al. 2001;
Swerdlow et al. 2006; Castellanos et al. 1996; Perry et al. 2001; Ahmari et al. 2012;
Ludewig et al. 2002a, b). Many of these disorders are linked to cortico-limbic
circuit abnormalities (Kohl et al. 2013). Given the evidence for PTSD to have
disruptions in this circuit (Shin et al. 2006), PPI in PTSD subjects has also been
examined. However, PPI associations with PTSD are inconsistent, with some
studies showing significantly reduced PPI in PTSD patients (Ornitz and Pynoos
1989; Grillon et al. 1996, 1998), while others detected no differences or only
marginal differences (Butler et al. 1990; Morgan et al. 1997; Lipschitz et al. 2005;
Holstein et al. 2010; Vrana et al. 2013). Thus, additional research is needed to
clarify or refute the presence of PPI deficits in PTSD.
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Summary of altered startle plasticity in PTSD: Exaggerated startle responding in
PTSD patients is seen fairly consistently, most predominantly under conditions of
challenge or threat. Pole (2007) conducted a meta-analysis of 20 studies measuring
startle response via orbicularis oculi EMG both at baseline and after manipulation
of contextual threat. This analysis supported a significant increase in startle
responses in PTSD; however, this effect was not as robust as elevated cardiovas-
cular responses. Furthermore, increased startle response to threat is also not specific
to PTSD, but is also reported in other disorders that are characterized by high
physiological arousal and fear (e.g., panic disorder) but not generalized anxiety
disorder (Grillon et al. 2009; Grillon 2008). These findings suggest that disorders
characterized by exaggerated startle may share an overlapping biological pathway.
It is not clear, however, whether these effects are due to increased fear responses per
se (e.g., via increased amygdala and/or insula circuit activation), or reduced ability
to inhibit or modulate these responses appropriately (e.g., reduced modulation of
amygdala output by hippocampal and cortical circuits; see below; Acheson et al.
2012; Klumpers et al. 2007).

Habituation and PPI are both measures of fundamental aspects of information
processing that are disrupted in a number of psychiatric disorders and are to some
degree heritable (Greenwood et al. 2007). However, there is relatively weak evi-
dence at present for disruptions in PTSD. It is possible that disruption in these
processes may indicate one of potentially many biological risk traits for neuro-
psychiatric disorders. Hence, further understanding of the genetic and neurobio-
logical mechanisms underlying these phenotypes and their relationship to PTSD
risk is worth further investigation. Indeed, PTSD is thought to share polygenic risk
with other disorders that exhibit information processing deficits, such as bipolar
disorder and schizophrenia (Nievergelt et al. in review; Solovieff et al. 2014).

While exaggerated startle per se is not unique to PTSD, it nonetheless represents
a powerful method for exploring mechanisms underlying the development of PTSD
symptoms. In animals, exaggerated startle phenotypes have long been utilized to
test causal hypotheses of potential mechanisms underlying development of anxiety
and fear-related behaviors after severe stress, including corticotropin-releasing
factor and noradrenergic abnormalities (e.g., Risbrough and Stein 2006; Davis et al.
2010; Grillon et al. 2009). In humans, utilization of startle plasticity as an inter-
mediate phenotype is just now beginning to be exploited (Greenwood et al. 2012).
Further, questions of exaggerated startle magnitude versus reduced startle threshold
in PTSD remain to be answered (Butler et al. 1990). Finally, surprisingly few
pharmacological studies have thus far utilized startle to examine potential biological
mechanisms of increased physiological responses in PTSD. Using a pharmaco-
logical challenge with the alpha 2 antagonist yohimbine, Morgan et al. (1995)
showed that startle reactivity in PTSD patients may be via increased sensitivity to
noradrenergic signaling.
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2.3 Other Physiological Measures

Electrodermal Level/Response: In addition to HR and startle, researchers have
examined electrodermal levels in PTSD both at resting baseline and in response to
challenge. Electrodermal response, or the increase in electrical conductivity across
the skin due to sweat, is a physiological marker of sympathetic nervous system
arousal. A meta-analysis by Pole (2007) looked across 31 studies that measured
resting electrodermal levels in subjects with PTSD versus controls and found
support for significantly higher levels associated with PTSD, although the effect
size was small. Blechert et al. (2007) found that PTSD subjects had higher resting
baseline electrodermal level relative to both healthy controls and subjects with
panic disorder, suggesting some diagnostic specificity. Resting electrodermal level
has historically been reported to be reduced in subjects with depression versus
healthy controls (Argyle 1991), further suggesting that this measure may hold some
diagnostic specificity.

Electrodermal response to challenge by standardized and ideographic trauma
cues has also been examined in relation to PTSD. Pole (2007) looked across 22
studies and found medium effect sizes for elevated electrodermal response to both
standard and ideographic cues in PTSD versus controls. Interestingly, Blechert et al.
(2007) found blunted electrodermal response in PTSD when subjects were under
threat of electrical shock, suggesting that there may be a difference in effect between
challenge by reminder cue versus challenge by contextual threat (experimental
shock). Similarly, McTeague et al. (2010) found that PTSD subjects with multiple
traumas and more severe, chronic PTSD showed blunted defensive responses to
ideographic imagery. More recently, Glover et al. (2011) showed overall elevations
in fear-potentiated startle in a classical conditioning paradigm in PTSD subjects
relative to controls; however, no differences were found in electrodermal responses.
It is possible that startle reactivity measures may offer a wider measurable range to
detect increased reactivity than skin conductance measures because startle baseline
can be controlled by the experimenter (i.e., via adjustments of the intensity of
acoustic pulse). Thus, it is possible that startle may be more sensitive to detecting
differences in responses even under relatively high arousal states (e.g., under
threat). Skin conductance, however, offers other significant advantages over startle,
since it does not require a relatively invasive stimulus (e.g., acoustic pulse) for
measurement. The passive nature of this measurement has also supported its use as
a complementary tool in imaging studies in which subject movement must be
severely limited (i.e., startle response movement can disrupt image processing).

Facial EMG: Facial EMG has been used as a physiological measure of emotional
response and typically involves measurement of activity in the frontalis, corrugator,
and zygomaticus major muscles involved in emotional facial expressions such as
smiling and frowning. Pole (2007) found support for increased frontalis and cor-
rugator EMG activity while viewing ideographic trauma cues (12 and 5 studies,
respectively). Pole (2007) found no support for altered facial EMG activity at resting
baseline, or in response to standardized trauma cues (12 and 6 studies, respectively).
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Because these measures are (1) more sensitive to artifact (e.g., non-specific facial
and head movements, talking) and (2) are not easily controlled or evoked para-
metrically compared to reflexive responses such as changes in HR, skin conduc-
tance, and startle, they have not been utilized widely. They do not offer cross-species
translation nor have well-defined circuits; thus, they may have less utility in
understanding biological mechanisms of PTSD.

Summary of Other Physiological Measures Associated with PSTD: Elevated
resting-state electrodermal level may be a psychophysiological measure that is
relatively specific to PTSD. However, this measure is susceptible to the same
methodological difficulties as resting HR or baseline startle response, namely that it
is difficult to eliminate contextual factors that may influence stress and thus elec-
trodermal activity. Electrodermal response to challenge presents a complicated
picture with findings varying dependent upon both subject-specific and testing
protocol variables. There is support for an association between increased facial
EMG reactivity specifically in response to idiographic trauma cues; however, the
utility of this measure for further biological research is limited.

3 Psychophysiological Markers of PTSD-Relevant
Constructs: Fear and Sustained Anxiety

Safety Signal Learning: Safety signal learning is the process by which an individual
learns to inhibit a learned fear response in the presence of a cue signaling absence of
danger. This process is directly relevant to PTSD phenomenology insofar as PTSD is
in part characterized by altered reactivity to trauma-related cues even in ‘“‘safe”
environments. Safety signal learning can be measured by assessing responses to a
CS— that is never associated with an aversive event versus a CS+ that is contiguous
with an aversive event, or via a specific CS that predicts absence of the aversive
event when given in conjunction with the CS+. Using the latter paradigm, Jovanovic
et al. (2010) recently tested this process in a sample of trauma-exposed civilians who
were healthy, had PTSD, had major depression, or had comorbid PTSD and major
depression with fear-potentiated startle as the primary outcome variable. Subjects
learned that a cue predicted a blast of air to the throat, but that when this cue was
presented along with another cue (the safety signal), the blast of air would not occur.
Subjects with PTSD and comorbid PTSD/major depression failed to show inhibition
of the potentiated startle response in the presence of the safety cue. Inability of
subjects with PTSD to inhibit responding to a safety signal was also confirmed in the
former paradigm, a simple CS+/CS— discrimination learning task (Jovanovic et al.
2013). Andero et al. (2013) found associations between the ability to learn to dis-
criminate between the CS+ (danger) and CS— (safety) are impaired in subjects with a
single nucleotide polymorphism (SNP) on the opioid receptor 1-like gene which
encodes for the amygdala nociception/orphanin FQ receptor involved in pain pro-
cessing. This SNP was also associated with greater PTSD symptoms, providing
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further evidence for impaired safety signal processing in PTSD as well as a putative
biological pathway for this effect. These results, though preliminary and in need of
replication, suggest that failure to learn to distinguish between environmental cues
signaling danger versus safety may be an important process that is impaired in
PTSD.

Fear Extinction: Fear extinction is the process by which an organism learns that a
cue that once signaled threat no longer does so, thus resulting in a progressive
reduction in defensive physiological responding in the presence of this cue.
Extinction of psychophysiological fear responding has long been considered a
putative model of PTSD process due to its similarity to naturalistic recovery from
trauma experience. Orr et al. (2000) and Peri et al. (2000) showed that PTSD patients
failed to extinguish a conditioned electrodermal response to a cue signaling electrical
shock or loud acoustic stimuli, respectively. Subsequent studies using electrodermal
responses as the dependent variable have largely supported these original findings
(e.g., Wessa and Flor 2007; Blechert et al. 2007). Norrholm et al. (2011) examined
fear extinction in PTSD using fear-potentiated startle to a cue signaling an aversive
air puff to the throat and found that PTSD patients showed greater potentiated startle
in the early and middle portions of extinction training. This finding suggests that
enhanced initial fear conditioning produced a greater “fear load” that the PTSD
patients had to extinguish. This increased fear responding is also associated with
specific symptom clusters of PTSD, re-experiencing (Glover et al. 2011), indicating
this paradigm likely probes neural mechanisms of trauma memory.

Not all studies have found evidence for delay of fear extinction learning in
PTSD. Milad et al. (2008) found equal levels of extinction performance, as mea-
sured by electrodermal response, in combat-related PTSD compared to combat-
exposed monozygotic twins without PTSD and controls. However, the PTSD twins
failed to recall this fear extinction learning when tested 24 h later. These results
suggest that PTSD is not associated with a fear extinction learning deficit, but rather
a fear extinction memory deficit. Further, this deficit appears to be an acquired sign
of PTSD rather than an inherited trait. This difference in within-session learning
results across these studies may be due to the physiological measures of fear used,
startle versus skin conductance. The higher magnitude of the startle response to the
conditioned cue in PTSD patients is providing a behavioral window to detect
reduced/delayed extinction within session, which is not detectable via skin con-
ductance responses (Glover et al. 2011). Taken together, these data suggest overall
that there is higher fear responding in PTSD patients, which subsequently takes
longer to extinguish fully and is less likely to be fully extinguished upon retesting.
Additional research will be needed to determine the time point at which extinction
deficits may occur, the most effective method for capturing such deficits, and the
specific role these deficits play in PTSD symptomatology.

Summary of Psychophysiological Markers of PTSD-relevant Constructs: Psy-
chophysiological markers have emerged as critical measures of unbiased fear
responding to understand fear and anxiety domains disrupted in PTSD. These
markers provide quantifiable assessments of autonomic processes that may not be
adequately probed by self-report. They have been critical behavioral measures that
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complement studies of the neural circuits underlying PTSD pathology, such as
cortico-hippocampal-amygdala circuit function (Quirk et al. 2006), that can be
translated across species for further study of causal factors for PTSD symptoms or
PTSD risk. The intriguing preliminary evidence for safety signal learning to be
disrupted specifically in PTSD versus depression patients may indicate this is a
potential “biomarker” of PTSD, but needs further research and replication. Extinc-
tion has shown to be impaired in a number of neuropsychiatric disorders as well as
PTSD, including obsessive—compulsive disorder and schizophrenia (Holt et al.
2009; Milad et al. 2013), suggesting that extinction learning may probe common
pathological circuits across these disorders. Impairment in these processes is further
supported by imaging research showing impaired function and structure of the
ventromedial prefrontal/orbitofrontal cortex in PTSD subjects, which are structures
known to be central to fear extinction learning and memory (Shin et al. 2006).
Recent research suggests involvement of these areas in safety signal learning as well
(Jovanovic et al. 2013). Finally, more recently, these paradigms have been utilized in
healthy controls or PTSD patients to serve as proof of concept tests for novel
treatments for fear-related disorders such as PTSD, with recent or ongoing tests of
cannabinoid agonists (Rabinak et al. 2013), oxytocin (Acheson et al. 2013), glu-
cocorticoids (de Quervain et al. 2011), and dopamine agonists (Haaker et al. 2013),
among others. It remains to be determined how predictive these paradigms will be
for treatment efficacy; however, this is an exciting avenue for PTSD drug discovery.

4 Psychophysiological Markers of Risk for Developing
PTSD Following Trauma

Trait Markers: Given that elevated physiological reactivity is a common finding in
those with current PTSD, researchers have explored the possibility that this elevated
reactivity might serve as a marker of risk prior to or immediately following the
traumatic experience. Several studies examined the relationship between HR shortly
following trauma and later development of PTSD and found that elevated HR
following trauma predicted development of PTSD symptoms (Bryant et al. 2000;
Kassam-Adams et al. 2005; Shalev et al. 1998; Zatzick et al. 2005; Kuhn et al.
2006; Gould et al. 2011). Though numerous exceptions have been reported
(Blanchard et al. 2002; Buckley et al. 2004; Ehring et al. 2008; Roitman et al. 2013;
Price et al. 2014). In a related study, Suendermann et al. (2010) found that HR
response to trauma-related images in motor vehicle accident survivors 1 month after
trauma predicted PTSD severity at 6 months after trauma. The inconsistency in
these findings may be due to the fact that cardiovascular activity assessed imme-
diately post-trauma in the ambulance or emergency department may be subject to
too many contextual variables, methodological inconsistencies, or ceiling effects
that may limit reproducibility of findings. Newer technology allowing for ambu-
latory monitoring in the days following trauma (see below) may prove more useful
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in determining at which time points and under what circumstances post-trauma HR
may be most predictive of future PTSD.

While these studies of peri-traumatic HR suggest potential clinical utility as a
marker of risk in traumatized individuals, they tell us little about who might be at risk
for trauma before the event happens. Toward answering this question, Pitman et al.
(2006) examined HR responses to a series of loud tones in Vietnam veterans with
PTSD and their non-combat-exposed monozygotic twins. Only the twin with PTSD
showed elevated HR response relative to combat-exposed veterans without PTSD
and their non-exposed twins, suggesting that elevated HR response is an acquired
sign of PTSD rather than a risk factor. However, further longitudinal studies where
HR response is measured prior to trauma will be necessary to definitively rule out
HR as a prospective marker of risk for PTSD. Pole et al. (2009) measured a number
of physiological indices (startle, electrodermal response, HR) in response to startling
tones under conditions of varying contextual threat (low, medium, and high threat of
electrical shock) in new police academy cadets. These cadets were then later
assessed for PTSD symptoms following one year of police work. They found that
elevated startle measured by eyeblink EMG (with appropriate sampling rate), ele-
vated electrodermal response, and slower habituation of the electrodermal response
predicted PTSD symptom severity, but that HR response did not. Further, the
associations between physiological reactivity and PTSD severity varied as a con-
dition of the contextual threat: Greater electrodermal response was associated with
PTSD symptom severity under low and high threat, and eyeblink EMG under
medium threat was associated with symptom severity. These findings support the
hypothesis that increased physiological reactivity to threat may be a useful marker
for understanding biological mechanisms of PTSD risk.

Markers of Fear and Anxiety Constructs: Little is known about how abnor-
malities in safety learning and fear extinction may function as preexisting markers
of risk for PTSD. A recent study found that impaired ability to inhibit fear-
potentiated startle responding in the presence of a safety cue was associated with
PTSD symptoms 2 and 9 months after combat-related trauma (Sijbrandij et al.
2013). These findings suggest that impaired safety signal learning may be important
in predicting the maintenance of PTSD symptoms over time. It is not clear, how-
ever, whether reductions in safety signal learning predict PTSD prospectively.
Investigators have also begun to look at impaired fear extinction processes as risk
factors for developing PTSD following trauma. A twin study of combat-related
PTSD by Milad et al. (2008) suggested that reduced recall of fear extinction
memory is an acquired sign of PTSD rather than a preexisting risk factor. Guthrie
and Bryant (2006) examined initial fear extinction learning of an aversively con-
ditioned corrugator EMG response in a sample of firefighter trainees. They found
that slower extinction while in training predicted PTSD severity after later exposure
to trauma. Lommen et al. (2013) showed similar effects in a sample of Dutch
combat veterans, though they only assessed explicit contingency awareness rather
than physiological response. Further prospective-longitudinal studies assessing
both habituation and extinction prior to trauma are needed to confirm whether or not
these are robust markers of PTSD risk.
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Summary of Risk Markers: While peri-traumatic physiological response may
provide some information regarding who is at risk for developing chronic PTSD,
more research is needed to solidify the extant findings and to link elevated phys-
iology following trauma to specific biological changes underlying chronic disorder.
Much less is known about using physiological markers to predict risk for PTSD
prior to traumatic experience, though the results of Pole et al. (2009) provide
promising avenues for future research in this area and suggest the possibility of
achieving superior prediction by the integration of multiple psychophysiological
domains into a single marker for risk. Knowing who is at risk for PTSD prior to
trauma may have utility for screening of soldiers and first responders such as
firefighters and police officers. Identification of pretrauma risk factors that are
modifiable can inform prevention efforts in these and other populations at high risk
for trauma exposure and may also point toward fruitful targets for novel treatment
efforts.

S Future Areas of Application for Psychophysiological
Research

Psychophysiological Markers of Treatment Response: Beyond serving as markers
of PTSD state or risk for developing the disorder, psychophysiological outcomes
may have potential to provide objective markers of treatment response. This utility
is particularly relevant as the NIMH now requires treatment studies to include
biological and/or physiological markers along with standard symptom scales. To
date, however, relatively few studies have made use of physiological outcome
measures. To our knowledge, there are no reports of psychophysiological responses
in PTSD patients during standard pharmacotherapies, e.g., serotonin reuptake
inhibitors. Two recent studies using psychotherapy have included physiological
markers. Robinson-Andrew et al. (2014) assessed potentiated startle responding in
the presence of trauma-related visual cues in a small number of combat veterans
with PTSD before, during, and after either prolonged exposure or “present-centered
therapy” treatment. Treatment responders showed a dynamic pattern of increasing
and then decreasing startle potentiation across treatment, while non-responders did
not change. In another recent study, Rothbaum et al. (2014) compared the effects of
d-cycloserine, alprazolam, and placebo on response to 5 sessions of prolonged
exposure therapy for PTSD. Outcomes consisted of both self-reported diagnostic
assessments as well as potentiated startle response to trauma-related images. The
patients receiving d-cycloserine showed significantly lower startle potentiation
post-treatment, and magnitude of startle reduction was associated with self-reported
treatment response in this group only. However, groups did not differ on self-
reported response to the treatment overall. There is no research yet on treatment
effects on PTSD-related constructs of fear extinction or safety signal learning.
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One earlier area of study where psychophysiological outcomes appeared
promising was in predicting potential prophylactic efficacy of propranolol, a beta-
adrenergic receptor antagonist. Pitman et al. (2002) originally showed that
propranolol given immediately after trauma reduced physiological arousal (HR,
electrodermal response, facial EMG) to script-driven traumatic imagery 3 months
later, as well as showing a nonsignificant trend toward reduced PTSD symptom
severity 1 month following trauma. In a larger study, Hoge et al. (2012) showed
mixed results when propranolol or placebo was given to emergency department
patients for 19 days following trauma. In “high-medication adherence” subjects,
those who took the active drug showed reduced physiological reactivity to trauma
imagery across three domains (electrodermal response, HR, lateral frontalis EMG)
at 1 month following trauma relative to those who received placebo. However, this
difference was not found at 3 months post-trauma, nor was there an effect of
treatment on PTSD symptoms. Given the very mixed literature for treatment effi-
cacy of propranolol as a prophylactic treatment for PTSD (Vaiva et al. 2003; Stein
et al. 2007; McGhee et al. 2009), the predictive validity of psychophysiological
measures for propranolol prevention of PTSD symptoms is inconclusive. Current
studies have now shifted to examination of propranolol effects on memory recon-
solidation in PTSD patients (www.clinicaltrials.gov), based in part on recent
findings that propranolol given immediately after reactivation of the trauma
memory via script preparation reduces physiological responding to the same script
one week later (Brunet et al. 2009).

Psychophysiological outcomes have also seen limited use in studies investigating
potential novel treatments. Jovanovic et al. (2011) showed that dexamethasone
treatment reduces fear-potentiated startle in PTSD patients, suggesting that this
treatment could reduce physiological symptoms of fear in these patients. These
results provide preliminary support for the predictive validity of fear-potentiated
startle in PTSD, since glucocorticoid agonists may reduce PTSD symptoms (Aerni
et al. 2004; Steckler and Risbrough 2012). An ongoing study is also assessing the
efficacy of corticotropin-releasing factor receptor antagonist treatment on both PTSD
symptoms and fear-potentiated startle (Dunlop et al. 2014). We expect that more
studies will utilize this complementary approach of physiological and self-report
measures to assess treatment efficacy in the future.

Overall, psychophysiological outcomes have not been utilized in treatment
studies and thus remain largely untested for sensitivity to treatment effects for PTSD.
An important caveat is that some studies have shown a pattern of treatment-induced
reductions in psychophysiological arousal, but not in self-reported PTSD symptom
severity. This pattern of findings suggests several possibilities. First, psychophysi-
ological alterations may not be powerful enough to generalize into symptom change
per se (e.g., Hoge et al. 2012). Second, psychophysiological alterations may be one
of the several potential mechanisms of change occurring within the same treatment
protocol (e.g., Rothbaum et al. 2014). These conclusions suggest that psycho-
physiological assessment may be used as an objective marker of treatment response
and have utility in elucidating mechanism/process of change that may vary across
subjects being treated with the same protocol. Further, psychophysiological
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assessment may have utility for understanding which patients may benefit from
among several treatment modalities aimed at the same overt condition (Aikens et al.
2011). More research is required before this approach can be considered a realistic
possibility in the near term.

Consideration of Mild Traumatic Brain Injury (mTBI) in Psychophysiological
Investigations of Trauma-related Pathology: Many of the traumatic experiences that
might result in development of PTSD (motor vehicle accident, physical assault,
combat) also involve potential for physical harm. The large numbers of blast-related
injuries coming out of the wars in Iraq and Afghanistan (Hoge et al. 2008) have
brought into recent focus the potential relationship between mTBI and PTSD. A
prospective study of service members deployed in these conflicts suggests a strong
association between deployment-related mTBI and post-deployment PTSD symp-
toms (Yurgil et al. 2014). These findings suggest that mTBI may need to be con-
sidered as an important factor in assessing psychophysiological outcomes in PTSD,
similar to its potential effects on neurocognitive symptoms in PTSD (Vasterling et al.
2009, 2012). Little research has been conducted on how mTBI affects the physio-
logical markers discussed here, with the exception of HRV. HRV is reduced in some
TBI patients, with alterations related to time since injury and injury severity (Keren
et al. 2005; Baguley et al. 2006). One study in active duty marines with PTSD
suggests that HRV is reduced in PTSD subjects even when controlling for TBI
although TBI was also independently associated with reduced HRV (Minassian et al.
2014). Williamson et al. (2013) have suggested that in cases of mTBI-induced
damage to white matter tracts involved in emotional behavior (e.g., uncinate
fasciculus and the anterior limb of the internal capsule) may cause disruption of top-
down control of autonomic nervous system activity reflected in psychophysiological
measurements. These forms of disruption could also explain the higher risk for
development of PTSD in individuals exhibiting mTBI (Yurgil et al. 2014). Inter-
estingly, recent animal studies have also supported that mild TBI could result in
sensitization of fear learning processes (Heldt et al. 2014). Thus, mTBI should be
carefully considered in future assessments of PTSD-related physiology, particularly
in abnormalities of cortical-mediated inhibitory processes and fear learning con-
structs, to understand its modulating or mediating role in psychophysiological
abnormalities in PTSD.

Wearable Physiological Monitoring Technology: Although the specific physio-
logical abnormalities linked to trauma symptoms are becoming more clear as
reviewed above, one of the next steps for the field is to determine whether these
measures can translate to clinical applications, such as prediction of symptom
development, symptom class, and/or treatment response. Moving these measures to
clinical applications faces significant hurdles, one of which is the development of
more usable devices that are not dependent on narrow laboratory-specific parameters
or expensive and complicated hardware. One potential area for psychophysiology
variables in mental health in the future is use of “wearable” devices in subjects that
have experienced, or at risk for, trauma (Darwish and Hassanien 2011).
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There is a strong push both in private and academic medical sectors to imple-
ment wearable devices for a host of medical purposes including diabetes, cardio-
vascular disease management, cognitive therapy aids, and other lifestyle aids for
better wellness. Predictive psychophysiological variables relevant to PTSD phe-
notypes that may be conducive to wearable technology are measures of physical
activity via accelerometers (e.g., Fukukawa et al. 2004), sleep (Suzuki et al. 2014),
skin conductance (Rajan et al. 2012), HR and HRV (Billeci et al. 2014), EMG
(Grenier et al. 2012), and EEG (Zao et al. 2014). The development of these wea-
rables will enable assessment of dynamics of physiology in naturalist settings, at
rest (i.e., sleep) as well as during stress. These devices may help answer the
question of which physiological variable, or combination of variables, might be
able to predict development of PTSD symptoms after trauma exposure (e.g., after
discharge from the ER/hospital). Another question is if physiological markers are
sensitive to treatment, and when in the recovery process does this happen (i.e.,
could these markers serve as early predictors of treatment response?). Many of
these variables are not “static,” for example, longer-term assessment of sleep var-
iance across multiple nights will enable a much more comprehensive picture than
can feasibly be obtained in laboratory settings. Similarly, HRV over long time
periods will provide greater fidelity in the assessment of cardiovascular changes
after trauma. Some wearable devices may also be utilized in “at-risk” populations,
such as rescue service and military personnel, to develop algorithms of risk based
on physiological response and recovery after trauma exposure. This approach is
currently being examined in the military (Tharion et al. 2013). However, a number
of hurdles must be considered in terms of feasibility/practicality of the technology,
the data quality, storage capacity, and of course the ethical component of resulting
data being used or stored improperly.

One example of current status of technology is assessment of continuous HR.
HRYV can now be obtained via sophisticated wearable devices (e.g., pulse oximeter
introduced into a wrist watch) over long periods of time with little burden to the
subject. However, technical challenges must be addressed, including the high
sampling rate needed for HRV assessments that can produce power and data storage
limitations for continuous monitoring. Data quality is also affected significantly by
movement artifact for many of these devices. Thus, despite significant promise,
many technical limitations must be addressed before these devices will produce
reliable physiological assessments for utility in prediction and intervention.

6 Conclusion

As discussed above, there are now a number of well-validated physiological phe-
notypes that are reliable across multiple studies/laboratories, including increased and
poorly inhibited physiological responses to threat (electrodermal and EMG), as well
as altered HRV. We are just now beginning to understand these measures in a larger
context of symptom domains, as well as comorbid symptoms (depression, TBI, etc.).
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Much more work is needed, however, to refine these phenotypes in terms of specific
associations with PTSD symptoms versus other anxiety disorders and comorbid
symptoms (depression, TBI). Importantly, many of these phenotypes are now well
mapped to circuitry that supports translational research across species for mecha-
nisms driving these phenotypes, which will support development of novel treatment
targets. To this end, psychophysiological measures are increasingly being used as
complementary measures for integration with both self-report and other biological
assessments (e.g., blood-based or genetic markers). We expect much more research
in the years to come with these tools for objective assessment of treatment outcome.
Finally, in the long term, wearable technology could accelerate the feasibility of
these markers as tools to identify risk and symptom development in clinical settings.
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Physiological Aberrations in Panic
Disorder

Wenzel Schicho and Oliver Pogarell

Abstract Panic disorder is a frequent and clinically relevant medical entity with a
high lifetime prevalence and significant impact on psychosocial stability and
function. Regarding the clinical presentation, there are obvious similarities in
paroxysmal neurological disorders such as seizures and focal epilepsies. In this
context, the detection of EEG abnormalities during the attacks or in asymptomatic
intervals, continuously or rhythmical, is of significant interest. Likewise, isolated
epileptic discharges (IEDs) are important components of epilepsy. On the other
hand, IEDs are also common in non-epileptic psychiatric patients. It is not known
exactly which role IEDs play in the genesis of behavioural aberrations. In this
chapter, attention is directed towards this issue and its relevance to managing
psychiatric patients suffering from panic disorder (PD), as well as understanding the
complex relationship between IEDs and the pathophysiology of PD. Two main
conclusions are being proposed. First, patients suffering from PD may show a
higher rate of unspecific EEG abnormalities and increased beta power, pointing to a
state of hyperarousal. Secondly, if first-line treatment of PD fails, the use of anti-
epileptic drugs (AEDs) should be considered. There is enough evidence to suggest
that IEDs play a significant role in the genesis of PD and that this relationship is far
from clear, warranting more research in 