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Preface

The importance of empirical economics and econometric methods has greatly in-
creased during the last 20 years due to the availability of better data and the
improved performance of computers. In an information-driven society such as ours
we need quickly to obtain complete and convincing statistical results. This is only
possible if the appropriate econometric methods are applied.

Traditional econometric analysis concentrates on classical methods which are far
from suitable for handling actual economic problems. They can only be used as a
starting point for students to learn basic econometrics and as a reference point for
more advanced methods. Modern Econometrics tries to develop new approaches
from an economic perspective. A consequence is that we have less of a unified
econometric theory than in former times. Specific branches which require specific
methods have been established. Nowadays, nobody has complete knowledge of every
area of econometrics. If someone is interested to learn more about a field, relatively
unknown to them, they will require support.

This volume is intended to be both an introduction to new econometric methods
and a reference for professional econometricians and graduate students. The book
provides concise surveys have been carefully selected of many relevant new develop-
ments in econometrics. Nevertheless, the contributions are selective. We have asked
leading German econometricians to write papers about their specific research fields
with emphasis on their own area of interest. Nearly all of them have responded with
enthusiasm and we are very pleased with the outcome. Hopefully, the reader will
share this positive impression. The papers cover the methods used in simultaneous
equation models over modern time series, the use of duration and panel data analy-
sis, microeconometrics, and specific data problems. The reader will find discussion
of the benefits and pitfalls as well as the statistical properties of the methods pre-
sented. The authors emphasize the advantages and disadvantages. They outline
the progress which has been made is made in the last few years and the problems
which remain unsolved. It is not our intention to demonstrate the workability of
the methods by specific applications. For this purpose the reader should consult
other publications. Nevertheless, in some chapters advices can be found. All of the
contributions in this book are also published in the Journal of the German Statis-
tical Society (Allgemeines Statistisches Archiv), Volume 90 (2006), Issue 1.

‘We would like to thank all the authors who have produced a superb series of papers
and the referees who have contributed to a lot of improvements. The support of
the German Statistical Society, particularly of Karl Mosler, the president of the
society, is gratefully acknowledged. Last but not least we thank the Springer Pub-
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lishers and especially Werner A. Miiller for their cooperation, and their prompt and
professional editorial assistance.

Olaf Hiibler, Hannover
Joachim Frohn, Bielefeld March 2006
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1 Developments and New
Dimensions in Econometrics

Olaf Hiibler! and Joachim Frohn?
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Summary. This book presents 14 papers with surveys on the development and
new topics in econometrics. The articles aim to demonstrate how German econo-
metricians see the discipline from their specific view. They briefly describe the main
strands and emphasize some recent methods.

1.1 Introduction

75 years ago on the 30th of December in 1930 the Econometric Society was founded
and two years later the Society has decided to establish its own journal ‘Economet-
rica’. This was the birth of econometrics, but the roots lie in the mathematical and
statistical economics of the nineteenth century. The 1930s were determined by the
enthusiasm of an international group of young people. National style and theoreti-
cal allegiance seemed to matter less than their common methodological programme.
Ragnar Frisch (1970, p. 152), the first editor of Econometrica, describes this feeling
when he talks about the First European Meeting of the Econometric Society in
1931 in Lausanne: ‘We, the Lausanne people, were indeed so enthusiastic all of us
about the new venture, and so eager to give and take, that we had hardly time to eat
when we sat together at lunch or at dinner with all our notes floating around on the
table to the despair of the waiters’. The first years can definitely be characterized
by mathematical models and methods to describe macroeconomic problems and a
lack of suitable data sets. Since this time we have observed a rapid and sustainable
development. Was it a success story or a chain of frustrations? Both is true.

On the one hand the enthusiasm has vanished, the belief that large econometric
models can completely explain the economic development has given way to a more
skeptical view. The strategy of the Cowles Commission was criticized and alterna-
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tive approaches were presented as ‘general to specific modelling’ by Hendry (1980),
‘sensitivity analysis’ by Leamer (1985) or ‘reduced form vector autoregressive mod-
els’ by Sims (1980). Forecasts are not always satisfactory. Many researchers believe
that it is not really possible to estimate structural models. Summers (1991), for
example, is convinced that applied econometrics is ineffective, not more than ex-
plorative data analysis can be done by econometrics. Nevertheless, many econome-
tricians still have the objective to estimate structural models. Some of the following
contributions demonstrate the progress in this field, especially the first and the fifth
paper.

On the other hand the data situation has significantly improved. Not only are
aggregated yearly time series available, but quarterly, monthly, weekly and even
daily or tick-by-tick data can be used. Furthermore, large cross-sectional, panel,
duration and multilevel data are the basis of many applied econometric studies.
Computers give us the chance to process such large information. This was and is
a good motivation to develop estimation methods and testing procedures for these
specific data constellations.

In particular progress in time series analysis has been made, since this field is
considered in the perspective of econometric regression models. Nowadays, unit
roots and co-integration investigations are standard in single equations models and
vector autoregressive models. This means non-stationary in contrast to traditional
time series are feasible; the bridge is made between economic theory of equilibria and
the econometricians, whose models concentrated on the short-run dynamics, and
poor performance of simultaneous macroeconometric models has improved. Recent
developments tackle the problem for structural multivariate models, but seasonal
models are also considered and structural shifts are in discussion. Econometricians
also try to benefit from traditional multivariate statistical methods, like factor
analysis and combine these with modern time series methods.

While in the 1930’s and over a period of 40 years macroeconometric models with
many equations have dominated our discipline, in the 1970’s the situation changed.
The beginning of this new phase is characterized by the new interest in microe-
conomic questions and the availability of large cross-sectional data sets, but in
applied econometrics the old methods were still used. A little later a revolution of
new approaches started in many fields and is still continuing. First, the range of
estimation methods extends enormously. Besides the traditional least squares, max-
imum likelihood methods and methods of moments we find several further methods
in the literature: instrumental variable methods, generalized methods of moments,
quasi maximum likelihood, quantile estimators, extremum estimator, generalized
estimating equations, simulation based estimators. Non- and semi-parametric pro-
cedures are developed. Second, researchers pay more attention to testing. Especially
the spectrum of specifications tests is extended. Incorrect omission of regressors,
inclusion of other variables that are proxies for the omitted variables and a false
functional form of the econometric relationship are leading sources of biased estima-
tions. Third, nonlinear approaches become more relevant. Specific microeconomic
data lead to binary, multinomial and ordered probit or logit, count data, duration
and tobit models. All of them have a specific nonlinear character and the problem of
unobserved heterogeneity has to be solved. Fourth, econometricians analyze specific
data problems in more detail. These include measurement errors, anonymization of
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data and missing values. Fifth, evaluation methods of policy intervention and the
measurement of treatment effects are more important in economically difficult pe-
riods. In Germany, this phase started some years after the German reunification.
The main problem is to compare two situations where only one is observable.

1.2 Contributions

This book contains 14 contributions. Most of the new developments are more or
less intensively reviewed.

The first paper, presented by Pu Chen and Joachim Frohn, is'in some sense a reha-
bilitation of large scale structural macroeconometric models. The authors emphasize
the relevance for empirical economics. Apart from traditional aspects like identifica-
tion and estimation of simultaneous approaches the paper integrates non-stationary
variables and co-integration. In detail, statistical inference in large systems is dis-
cussed. The paper argues that until now the modern statistical inference is not fully
integrated into the simultaneous structural approach. Chen and Frohn describe the
state of the art of large scale simultaneous econometric models, identify the major
unsolved problems and suggest a combined data-theory strategy to look for the
specification of the models.

The second paper also focusses on empirical macroeconomic models. Jorg Breitung
and Sandra Eickmeier discuss large dimensional dynamic factor models which have
recently become popular in this field, especially in macroeconomic policy analy-
sis. The basic idea is to reduce the dimensionality. The large number of available
macroeconomic variables is combined with factors that should be interpretable. The
paper gives a short survey on factor models and considers different procedures for
determining the number of factors. The main new aspect is the introduction of dy-
namic factor models and procedures to estimate the innovations (error terms) of the
factors where VAR models are used. Furthermore, the authors present an overview
of economic applications and add their own empirical contribution to co-movements
in Europe.

Jiirgen Wolters and Uwe Hassler address problems of unit root testing, which nowa-
days is the starting point of most empirical studies of time series. First, the most
popular approach, the Dickey-Fuller and the augmented Dickey-Fuller test includ-
ing the distribution of the test statistics is presented. Additionally, the authors
describe the selection of the lag length, the treatment of the deterministic part in
the augmented Dickey-Fuller regression and problems with the variation of time
span and frequency of observations. Most important is the overview to unit root
testing under structural shifts. Consequences of ignoring breaks, suggestions of cor-
rections under situations with breaks, smooth and multiple breaks are the content
of this section.

Co-integration in single equation models within an autoregressive distributed lag
framework is the topic of the next contribution. Uwe Hassler and Jiirgen Wolters
start their paper with different representations of autoregressive distributed lag
model including the error correction model. Inference to a co-integration vector and
co-integration testing follows using error correction models. Several approaches and
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asymptotic propositions are discussed. A Monte Carlo study based on a generated
bivariate process demonstrates finite sample properties. The main simulation results
are the following: In most cases the t-type co-integration test is just as powerful
as the F-type one. Co-integration tests for conditional error correction models are
more powerful than those for unconditional ones.

Helmut Liitkepohl’s article gives a review of the structural vector autoregressive
models for co-integrated variables. This contribution extends the analysis of the
last one and is related to the first and the second paper. VAR models which explic-
itly take into account the co-integration structure of the variables are considered.
Impulses, innovations and shocks are shown in a response function. The estima-
tion of vector error corrections models and of the impulse response function are
at the centre of the article. The coefficients of the reduced form and those of the
structural form are determined. The author does not only consider just identified
but also overidentified models. Identifying restrictions are then also required for
the impulses and their responses. Co-integration properties can help to determine
these restrictions.

While the first five contributions concentrate on models with aggregated time series,
the rest emphasizes approaches and problems of microeconometric models, although
some aspects are also relevant for macroeconometric models. We have to distinguish
between several types of data, specific data problems and some practical issues.
Apart from cross section data, applied econometrics uses multilevel and panel data,
duration data and high frequency data. For each type of data specific problems
exist and therefore the literature has developed separated models and estimation
methods. The next three chapters consider approaches for panel, duration and high
frequency data.

Some aspects of the frequency of observations were already discussed by Wolters
and Hassler. However, high frequency or tick-by-tick data are only now available
and recently the relevant methods were developed. A special issue of the Journal of
the German Statistical Society (Vol. 86, 2002) has discussed these problems in more
detail where applications of financial transactions were at the centre of the analysis.
Now Helmut Herwartz presents a new survey. He focusses his article on new methods
of strongly disaggregated time series where the time span of new observations is not
equidistant. Apart from market macrostructure modelling, high frequency data have
recently attracted large interest in econometrics as a mean to estimate conditional
volatility. As in Liitkepohl’s contribution vector error correction models are used.
Furthermore, Herwartz considers parameter estimation with incomplete samples
and realized volatilities.

Duration analysis is widely used in social sciences, labor and health economics.
Several surveys and text books exist on this topic. It is not the intention of Bernd
Fitzenberger and Ralf Wilke’s paper to add a further one in this general context. In-
stead, they restrict their considerations to the quantile regressions for exploring the
distribution of duration data. Recently, the interest in linear and nonlinear quantile
regressions has increased enormously, as these methods are robust and flexible. The
contribution compares quantile regression to standard duration models, considers
the issue of right censoring and the estimation of hazard rates in quantile models. A
brief application with German data on unemployment duration for younger workers
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demonstrates the workability of the methods. The authors show that the conven-
tional proportional hazard model is rejected empirically as the estimated quantile
regression coefficients change sign across the quantiles.

Meanwhile panel data analysis is standard in applied econometrics of micro data.
Most applications are restricted to linear models where pooled, fixed or random
effects estimators are employed. Olaf Hiibler focusses his contribution on multilevel

. and nonlinear panel data models where the latter are separated between specific and
unspecific nonlinearities. He starts with parametric linear models under alternative
error term structures. Multilevel approaches follow. The parametric nonlinear panel
data analysis is based on typical microeconometric models and concentrates on logit
and probit. Until now, non- and semi-parametric models are not so widespread in
applications and several open problems exist. The paper fills some missing links.
The presentation emphasizes fixed effects models where new estimation methods
are necessary. :

Goran Kauermann presents a more general survey on non- and semi-parametric
models and their estimation. He discusses smoothing procedures including the
Nadaraya-Watson approach and spline smoothing. Within non- and semi-parametric
models the author focusses on generalized additive and varying coeflicient models.
Starting with Hastie and Tibshirani’s suggestions the paper extends the standard
additive models by combining them with McCullagh and Nelder’s ideas of gener-
alized linear models. Some further approaches and model diagnostics supplement
the presentation. As an application, data of more than a thousand new founded
firms are used to determine the success rate. The study compares the results of
parametric and nonparametric estimates.

Microeconometric models are the subject of Gerd Ronning’s paper. Apart from a
short review to the principles of probit, logit, count data, duration and tobit models,
the special emphasis is laid on problems to make micro data anonymous in these
models. This aspect is of special interest as many micro data sets are not pub-
licly available due to confidentiality. Recently, researchers have developed methods
to anonymize these data in order to minimize the risk of disclosure and to save
statistical properties of the original data. Good progress is made for quantitative
variables while for qualitative and censored data the problems are not completely
solved. The paper discusses the case of post randomization for binary variables in
a probit model. ’

Another field, the ordered response models, is widely neglected in microeconometrics.
Commonly, continuous and binary or multinomial endogenous variables are consid-
ered. In their article Stefan Boes and Rainer Winkelmann give a brief survey of
several strands and review standard ordered response models. They then discuss
more general approaches. The authors relax three assumptions of the standard mod-
els: single index, constant threshold and distributional assumptions. The extension
includes random coeflicients, finite mixture and sequential models. Furthermore,
they illustrate the methods by an analysis of the relationship between income and
happiness using data from the German Socio-Economic Panel. The study shows
that the results of standard and generalized ordered models differ substantially.

Hans Schneeweiss and Thomas Augustin’s paper is concerned with recent advances
in measurement error methods. Of course, measurement errors are not restricted to
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microeconomic data, but have more practical relevance for this type of data. Three
elements are constitutional for measurement error models: the true unobservable
regression model, the measurement model and the distribution of the latent re-
gressor. The main problem is the estimation apart from the identification of the
coefficient of the latent variable. The authors provide a systematic treatment of
this topic. Naive, corrected score, and simulation-extrapolation estimators are the
subject of this section. In addition, structural estimation methods are presented,
which use information given in the distribution of latent variable. Finally, the au-
thors report on efficiency comparisons, extend the methods to survival analysis and
discuss misclassification problems of categorical variables.

In the last 20 years the development of new evaluation methods has made enormous
progress. The analysis concentrates on microeconometric estimates of treatment ef-
fects. Marco Caliendo and Reinhard Hujer give an overview of these developments.
They present the most important estimation methods, identifying assumptions and
compare the different approaches. The paper is restricted to non-experimental eval-
uation methods and distinguishes between matching regression methods which use
observed information for selection. For unobservable variables the authors split their
consideration into difference-in-differences, instrumental variables and selection es-
timators. Apart from these standard methods, the paper also presents dynamic
evaluation concepts including sequential matching procedures, considerations to
duration models and matching with time-varying treatment indicators.

A further data problem in applied econometrics is item non-response. What are the
consequences and what can we do in this situation? Susanne Réssler and Regina
Riphahn review the literature on this topic and demonstrate the prevalence of item
non-response in the German Socio-Economic Panel. They report on determinants
and effects. At the centre of the article is the way with which item non-response can
be dealt. The authors present four approaches: casewise deletion of observations,
weighting, imputation and model-based procedures. Emphasis is on the imputa-
tion techniques where multiple imputation is allowed. Simulation studies illustrate
the implications of alternative imputation procedures. In the conclusion applied
researchers find recommendations to handle problems with item non-response.

References
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Summary. This paper surveys the state of the art of the analysis and application
of large scale structural simultaneous econometric models (SSEM). First, the im-
portance of such models in empirical economics and especially for economic policy
analysis is emphasized. We then focus on the methodological issues in the applica-
tion of these models like questions about identification, nonstationarity of variables,
adequate estimation of the parameters, and the inclusion of identities.

In the light of the latest development in econometrics, we identify the main un-
solved problems in this area, recommend a combined data-theory-driven procedure
for the specification of such models, and give suggestions how one could overcome
some of the indicated problems.

2.1 Introduction

Simultaneity and structure are two key concepts in econometrics that help the
econometricians to look at a statistical model from an economic point of view and
to go beyond the analysis of statistical parameters to estimating and analyzing
econormic structural relations.

Simultaneous structural econometric models (SSEMs) - the implementation of these
concepts - became the most important research object of econometrics in its early
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time. The Cowles Commission methodology became the main paradigm of empirical
research in macroeconomics. Simultaneous structural models, especially large scale
simultaneous structural models, became very popular in the 1960s and the 1970s.
During the 1970s, however, the scientific community became sceptic against these
models due to its methodological deficits. Lucas (1976) questioned the constancy of
parameters of SSEM in case of policy changes and thus the suitability of the SSEM
for policy simulation. Naylor et al. (1972) and Nelson (1972) doubted the pre-
dictive ability of SSEMs in comparison with alternative simple time series models.
Granger and Newbold (1976) pointed out the improper treatment of the time series
properties in SSEMs. Sims (1980) and Sims (1982) finally criticized the ‘incredible’
identification restrictions in the specification of SSEMs!. Since then simultaneous
structural models stepped back from the forefront of econometric research.

Despite of this serious and justified criticism towards simultaneous structural mod-
els, large scale SSEMs are still widely used among practitioners and policy consul-
tants. In Germany, for instance, large scale econometric models were applied in the
late 1990s at Deutsche Bundesbank, RWI, DIW, HWWA, Ifo-Institute and IWH,
and some models are still applied today. For more information about these models
see ‘www.macromodels.de’.

Why are SSEMs still in use? There are several reasons, and all have to do with
the ‘economic’ appeal of these models: (1) Policy makers often want to find out
the impact of certain policies in different areas of economic life. An SSEM seems
to be capable of taking into account various related aspects of the policy, while its
scientific competitors VAR and VECM are much too small to answer the question
asked. (2) Furthermore, structural models are more revealing of the manner in which
an economy is operating?, contrary to reduced form models.

The main purpose of this paper is to survey relevant new developments in economet-
rics concerning the methodology of SSEMs and to identify the leftover problems.

Applying an approach by Spanos (1990) (see also Chen, 2001)® we reinterpret si-
multaneous structural equations as an economic theory motivated representation
of a general statistical model that describes the probability law of the observed
data. In this way we provide a coherent framework for integrating the concept of
statistical adequacy in the concept of simultaneity and structural modeling.

The paper is organized as follows: In Section 2 we summarize the main method-
ological deficits of the simultaneous structural approach from the perspective of
statistical inadequacy. In Section 3 we survey the relevant new developments in
econometrics and address the open problems*. Then we provide a general statisti-
cal framework to encompass simultaneous structural models. We also discuss the
issues of statistical inference in simultaneous structural models. In Section 4 we
conclude with an outlook for further research.

1See Granger (1990) for an overview of the methodological debate.

28ee Dhrymes (1993) for more discussions.

3Similar ideas can be found in Hendry and Mizon (1990) and Hendry and Mizon (1993).
4See Frohn (1999) for more discussion.
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2.2 SSEMs - the State of the Art
2.2.1 Modeling Procedures of SSEMs

An SSEM is denoted as

Blyt -+ Fl$t = €¢, [Et]Xt} ~ NI(O, 2), te T, (21)

where y: and z; are vectors of jointly dependent and predetermined variables, re-
spectively. The parameter matrices B’ (gxg) and IV (gxk) are subject to usual
a priori restrictions which represent the structural information based on economic
considerations as well as behavioral hypotheses on the economy.

The Cowles Commission methodology that is applied to construct such SSEMS
consists mainly of the following steps®:

e The dichotomy between endogenous and exogenous variables is decided be-
forehand based on the purpose of the modeling and economic reasoning with-
out referencing to statistical properties of the data.

e The specification of regression equations is carried out equation by equation
by using the implication of economic theoretical hypotheses and/or economic
intuitions and by combining these with some statistical tests (typically t-test
and Durbin-Watson-test).

e The estimated model is subject to extensive simulations for possible modifi-
cations. The simulation model consists of the behavior equations (2.1) and
identities.

Most structural simultaneous macroeconometric models contain long persistent
variables such as price, wage rate, GDP, interest or other I(1) variables. In some
models error-correction mechanisms are implemented on an ad hoc basis, i.e. the
rank of cointegration is not determined statistically and also the specific introduc-
tion of error terms in an equation is ad hoc. In some models there is no explicit
treatment of I(1) variables, even if the residuals show significant autocorrelations.
There is rarely an explicit documentation of the estimation of the unconstrained
reduced form. Many of these models would fail to pass the overidentification test
(see for instance Blanchard, 2000). We will now discuss these aspects in the next
subsection.

2.2.2 Statistical Adequacy of SSEMs

Spanos (1990) studies the problem of SSEMs and calls it the problem of statistical
adequacy of SSEMs. He suggests to free the reduced form by interpreting it as a
statistical model in the context of which the structural form can be considered. In
particular he proposes to start the modeling of an SSEM from the unconstrained
reduced form

Y = HIII?t -+ Ut, [ut|Xt] ~ NI(O, Q), te T, (22)

5See Charemza (1997) for an interesting summary of the Cowles Commission method-
ology.
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with the following underlying assumptions:

1. The density D(y:|X:) is normal.

2. B(y|X:) = II'z; is linear in z:.

3. Cov(y| Xt = z:) = E(usut| Xt = 2:) = Q is homoscedastic.

4. The statistical parameters of interest: § = (II, Q), where IT = 35,'¥2; and
Q = Ty — L1205, oy, are time invariant (with Y1 = cov(y:), Tz =
cov(ys, X¢) and Yz2 = cov(Xt)).

5. (y1,Y2,..-y7) is an independent sample sequentially drawn from
D(ytht; (9), i= 1, 2, ceny T.

If the sample information indicates a departure from the assumption of temporal in-
dependence of the residuals, Spanos (1990) suggests to use a dynamic unconstrained
reduced form as the general statistical model:

L
ye = oz + Y [Mye—s + Magme ]+ up, [we]Xe, Yo, X ] ~ NI(0,9).
i=1

2.3)

This approach can be used as basis for a concrete modeling procedure to come to
a statistically adequate SSEM®.

2.2.3 Statistical Adequacy with Respect to the
Criticisms Towards SSEMs

Applying this approach to SSEMs the structural information according to eco-
nomic considerations is no longer a priori for statistical inference. It becomes a
set of statistically testable hypotheses, namely as restrictions on the parameters
of the unconstrained reduced form?. Now we focus on the question, how this new
approach to SSEMs can help to cope with the above mentioned criticisms towards
the traditional Cowles Commission methodology.

First of all Sims’ (1980) critique on the ‘incredible’ identification conditions has,
obviously, no relevance to this approach to SSEMs: Structural restrictions are no
longer a priori. By contrast they will be tested within the unconstrained reduced
form. If tests do not reject these restrictions, their credibility is guaranteed by the
sample information. Furthermore, after the test for statistical adequacy, the SSEM
will encompass the conditional VAR, parsimoniously®. Moreover, it helps to solve
the problem of too many insignificant parameters in unconstrained VARs and makes
. the statistical inference more effectively, giving a more precise description of the
data.

As far as the forecast performance of SSEMs is concerned, (2.3) certainly encom-
passes every univariate ARMA model of the relevant variables, which is already

6see Chen (2001) for details.
"For detailed discussion see Chen (2002).
8For details see Dhaene (1997) and Chen and Hsiao (2004c).
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pointed out in Zellner (1979) and Zellner and Palm (1974). Also, the concerns
of Granger and Newbold (1976) can be taken into account in the determination
of (2.2). Time series aspects of the sample information can be integrated in the
specification of (2.3). The problem of nonstationarity of relevant variables will be
considered later in this paper.

Lucas’ critique (1976) concerns the invariance of the parameters with respect to
policy changes. In this context an SSEM is immune against Lucas’ critique if the
structural parameters are super-exogenous® with respect to the parameters of the
marginal process on which the SSEM is conditioned. Statistical adequacy is only a
necessary condition for immunity against Lucas’ critique but not sufficient. How-
ever, the super-exogeneity can be formulated as a property of the data generating
process (DGP); hence sample information can be used to test the immunity against
Lucas’ critique. In this sense immunity against Lucas’ critique forms a further statis-
tical hypothesis on the properties of the DGP. At this point it is clear that whether
an SSEM can be used for policy simulations depends crucially on the behavior of
the economy from which we sample the data, but not on the ‘philosophy’ that was
used to construct the model.

2.2.4  Limits of Statistical Adequacy

In studying the statistical adequacy of a structural model, we examine the possible
misspecification in the framework of a general statistical model. Given that we can-
not find a most general statistical model, we have to make a decision how general
we would like our statistical model to be. Spanos (1990) uses the Haavelmo distri-
bution family as the general statistical model under which the statistical adequacy
is investigated. To take the nonstationarity of variables into account, we will use
unconstrained VARs as the most general statistical model.

2.3 Statistical Adequacy of SSEMs with
I(1) Variables

2.3.1 A Classification of SSEMs

In order to identify the problems of SSEMs concerning the statistical adequacy,
we first classify the most often used SSEMs according to the following five basic
features of their constituting elements: the functional form of the equations, i.e.
whether they are linear or nonlinear; the stationarity of the endogenous and the
exogenous variables, 1. e. whether they are I(0) or I(1) variables; the distribution of
the disturbance, i. e. whether they are normal or not; and the presence of identities.

If we take only those models into account that have linear behavioral equations with
normal disturbances, we get the following six different types of models!®. In Table

9See Engle et al. (1983) for the definition of super exogeneity.
100Models with I(1) exogenous variables and 1{0) endogenous variable are rarely used in
practice. Therefore they are not considered here.
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1 we now list the most relevant statistical problems for these six models and poten-
tial solutions offered in the literature. The unsolved problems are symbolized by ‘7.

Table 2.1: Solved and Open Problems in SSEMs

Typ | End.-/Exog.Var. | Identities | Identification | Estimation | Simulation | Notice
I 1(0)/1(0) No c1e Cl1 C1
I 1(0)/1(0) Yes Brown® Malinvaud® Cl
III I(1)/1(0) No Johansen Johansen® Hendry*® ssmf
v I(1)/1(0) Yes ? ? ?
A% I(1)/1(1) No Hsiao? Hsiao® Stock® SSM
VI I{1),1(0)/ Yes ? ? ? SSM
I(1),1(0)

“C] symbolizes the classic textbooks of econometrics, such as Theil (1971), Judge
et al. (1985), and Schmidt (1976)

bSee Brown (1983) and Brown (1985).

¢See Malinvaud (1980) and Chow (1983) for details.

93ee Johansen (1995).

€See Hendry (1995).

fSSM refers to small scale models.

9See Hsiao (1997), Breitung (1995), Bierens (1997).

hSee Hsiao (1997), Habro et al. (1998), and Johansen (1992) for details.

‘See Stock and Watson (1988)

As for model Type I, i. e. models without identities and no consideration of nonsta-
tionarity of variables, the classic textbooks on econometrics, such as Theil (1971),
Greene (1993), Judge et al. (1985), and Amemiya (1985) present the standard treat-
ment. As we stated in the introduction the most practically relevant SSEMs are
not of this type.

For models of Type II, Malinvaud (1980) and Chow (1983) provide a treatment of
SSEMs with linear identities. Brown (1983) and Brown (1985) consider the identi-
fication problems of SSEMs with nonlinear identities. Hausman (1975), Chen and
Hsiao (2004a) and Chen et al. (2005) consider the issues concerning the influence
of identities on the estimation of SSEMs.

The modern time series econometrics textbooks such as Johansen (1995), Hamilton
(1994) and Hendry (1995) deal with models of Type III, where all I(1) variables
are taken as endogenous, and only deterministic variables like a constant or a trend
are considered exogenous. Besides an intensive treatment of the methodological is-
sues of empirical research, Hendry (1995) emphasizes the use of VECM to conduct
a dynamic empirical analysis. Johansen (1992), Habro et al. (1998) and Johansen
{1995) consider conditional processes of a cointegrated system as a specific struc-
tural model, where the structural information is formulated as the restrictions on
the parameters in the cointegration space and on the parameters of the short run
dynamics, respectively.

Several solutions for diverse special cases in Table 2 exist in the literature. Engle
et al. (1983) deal with the concept of exogeneity in econometric models in general
and for SSEMs in particular. For models of Type V, Hsiao (1997) and Breitung
(1999) consider the problem of identification and estimation of parameters. Hsiao
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(1997) emphasizes the difference between the role of a priori information for the
SSEM approach on one side and the role of availability of data for the VAR and
VECM approach on the other, where he implicitly assumes weak exogeneity of
the exogenous variables. Breitung (1995) shows that there always exists an SSEM
representation for a VECM, and that the traditional estimation methods used for
stationary SSEMs, such as 2SLS and 3SLS, are still valid. As far as we know,
however, there is not yet an econometric solution for the most relevant cases, i.e.
the SSEMs of Type VI, especially for large scale SSEMs of this type.

The analysis of the statistical adequacy of SSEMs of TypeI and Type II can be done
in two steps: first application of misspecification tests of the unconstrained reduced
form and then the overidentification tests. Models of Type III are usually specified
as vector error correction models. Hence they are already formulated as a general

" statistical model. The issue of statistical adequacy is to conduct misspecification
tests of the unconstrained VAR. Because this type of models is constructed using
a data driven approach from the very beginning, the more relevant issue is here to
work out the structural information contained in these VECMs.

Models of Type V are generally a difficult statistical problem, because the most
often used test statistics are nonstandard and depend on nuisance parameters that
describe the marginal process of the exogenous variables'!. This problem may be
solved by using nonparametric techniques'?. The issues of identities, especially the
nonlinear identities, in models of Type IV to Type VI are not yet thoroughly dis-
cussed in the literature. One problem with nonlinear identities is that they may
contradict the general linear structure among the variables which is an essential as-
sumption of the linear models discussed here. Furthermore they may be in conflict
with assumptions on the disturbance.

As far as the statistical analysis of large scale systems is concerned, two specific
problems will normally arise. Although the Johansen procedure provides a standard
procedure to run a multivariate cointegration analysis, it is, unfortunately, only ap-
plicable in small systems due to its data intensive specification. The determination
of cointegration rank and the estimation of cointegration relations for large scale
systems is still an unsolved problem in econometrics.

A further problem concerning the scale of the system is the valid reduction of the
number of free parameters in the system in case of undersampling. A general data-
driven procedure to reduce the dimension of a model is not yet available, even not
for small scale models*®.

2.3.2  SSEMs with I(1) Variables

The Basic Idea. An SSEM will be a sound description of the economic phe-
nomenon, if it integrates, on one hand, the sample information of the data and an
intuitive interpretation of the model structure on the other. This implies that the
SSEM under investigation must parsimoniously encompass the general statistical

113ee Habro et al. (1998) for details.
12g3ee Chen and Hsiao (2004b), Choi (2003) and Bierens (1997).
135ee Hendry and Krolzig (2001) and Winker and Maringer (2004).
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model that can be used to summarize the sample information**. In this context the
statistical adequacy of an SSEM with I(1) variables can be tested in the framework
of a general statistical model.

The General Statistical Model. For a concrete economic policy issue an
economist may be interested in modeling the dependence of one group of variables
y: on another group of variables z; as well as on the past values of all these variables:
Zi—1*%. The dimensions of y; and : are Gy and G respectively.

We call (y;,7;) the variables of primary interest. Their components may be I(1)
and I(0). We denote the I(1)- and the I(0)- components by subindexes 1 and 2
respectively: (vi,2:) = (¥ls, Y2¢, The, Te)'. To give a general representation of the
DGP for (y},z;)’, we transform the variables of primary interest (y;,z:)’ by sum-
ming up the I(0) components to I(1) variables z which are now called relevant
variables z;. In this way we define the relation between the variables of primary
interest and the relevant variables as follows:

Y1z Yiz
t ~

= () = | e o [P (24)
Zt Tit T1t
St war Zat

Generally we assume that the relevant variable z has a VAR(p) presentation:
Assumption 3.1: The relevant n x 1 I{1)-vector z has o VAR representation

zn=Ayz + Aszp o+ .+ Apzt_p + € (2.5)
" with € o white noise process.

Because the essential relations among I(1) variables are the cointegration relations,
we reformulate (2.5) in vector error correction form according to Granger’s repre-
sentation theorem'®:

Az = H(O)zt_l 2OV AZ 4. - H(p_l)Azt_IH_l + €, (2.6)

where TI(®) = 8¢/ 8 and « are n x h matrices with h < n and rank(8ca’) = h which

is the cointegration rank.
E(ed) = Yoy Dys
Ezy Ezz

L4 For the definition of encompassing see Dhaene (1997).
15Zt—-1 = (yékl ’ $,i,_15 '“y,i,_p) z{f—p)l‘
}6See Hamilton (1994, p. 582) for details.
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The existence of k cointegration relations implies restrictions on the VAR(p) pa-
rameters in (2.5):

rank(y Ai — 1) = h. (2.7)

Structural and Reduced Forms of SSEMs. An SSEM motivated by eco-
nomic theory has the following structural form (for simplicity of the presentation
but without loss of generality we limit the lag-length to 3):

Byi+Tizi+Toye—1+ T3z 1+ Taye— 2+ Tsze2+Teye—3+ a3 = ug .
(2.8)

The structural relations are formulated in the following ‘a priori’ identification

restrictions®”:

rank((B, Fl, Fz, F3,F4,F5,F6,F7)\Di) = Gy for i = 1, 2, ...,Gy

(2.9)
where ¥; is a known matrix.
Solving (2.8) for y;, we get:
ys = —B iz — B 'Tays 1 — B™'Tsz1 ~ B™ ' Taye 2
——B_1F5£Z,'t_2 - B_lI‘ﬁyt_g - B_1F7£Z,'t_3 + B_lut . (210)
The reduced form of the SSEM is
yr = y1ze + Myoye—1 + yaze—1 + Hyays—2 + Hysz 2
+yey—3 + Myrze—s + B us . (2.11)

Now we identify the conditions under which the general statistical model (2.6)
has an SSEM representation like (2.8) and (2.9). We call (2.8) the SFSSEM(y,x)
presentation, (2.10) the DRSSEM(y,x) representation, and (2.11) the RFSSEM (y,x)
representation respectively'®.

17See Judge et al. (1985, p. 577) for details of identification.
18SFSSEM, DRSSEM and RFSSEM refer to structural form, derived reduced form and
reduced form of the SSEM, respectively.
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The Condition for a Valid SSEM Representation. An SFSSEM(y,x)
representation like (2.8) with (2.9) is a valid representation of the DGP (2.6), if
the restrictions on the parameter of the DGP can be reformulated as (2.8) and
(2.9)*°. Because SFSSMM(x,y) describes only the conditional process of y; given

Io, C
Tgy Ze—1, -..Zt—p, we factorize (2.6) accordingly ( gy I ):
Gy

Azyy = ~CAzgy + (I,C)Bc 21 + (I, O)YTP Azg_y + ...
+(LCMP DAz pi1 + €y (2.12)

Azgs = (0,1)8¢ 21 + (0, I)H(I)Azt_l + ...
+(0, DIP YAz i1 + € (2.13)

with C = *EWE;EI. The condition for an efficient statistical inference on the
parameters of the conditional process without consulting the total process is that
z; should be weakly exogenous with respect to the parameters of the conditional

process?0.

When cointegration relations are present in the system, according to Johansen
(1992) the necessary and sufficient condition for weak exogeneity of x; with respect
to the parameter of the conditional process is

B =0, (2.14)

where (By, Bz) = B is the partition of 3 according to the corresponding variables of
y¢ and z¢. Under this condition the conditional process can be reformulated:

Azg = (0,1) (%y) &z 4+ O, DIV Azy + ...

+(Oa I)H(p_l)Azt—zH—l + €x
=0, NIV Az_1 4 ...+ (0, DIIP YAz 11 +es. (2.15)

Because o does not appear in the marginal process, the modeling of the marginal
process {2.13) will provide no information for the inference on the parameters of
(2.12). Under the assumption of weak exogeneity of z; the restriction on the DGP
due to cointegration is

19More precisely: An SSEM(x,y) representation is valid, only if it represents the condi-
tional process of the DGP, and if the conditioning variables are weakly exogenous for the
parameters of the conditional process. See Hendry (1995, p. 350). :
20See Engle et al. (1983) for detailed discussion.
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rank(Bya’) = h. (2.16)

To get the SFSSEM(y,x) we transform (2.12) in terms of y; und z;:

Yit—1
Y1t — Yie—1 Tit — Tit—1 Got—1
= ~C + By
Y21 T2t T1t—1
Tot-1
Yiz—1 — Y12 Yit—2 — Yit-3
Y2t—1 Y2t—2
+I13, +13, + €y)z (2.17)
Tit—1 — T1t—2 Tit—2 — Lix-3
Tot—1 T2t—2

where 1T}, = (I, C)IY and 113, = (I,C)[12.

Because §ar—1 = Zi_:ll yor and For—1 = Zi_:ll zor do not appear in the SF-
SSMM(y,x), a cointegration system with g2;—1 and Z2,—, will not have a SF-
SSMM(y,x) representation. Therefore a necessary condition for (2.6) to have an
SFSSMM(y,x) representation is

O{I = ((1?,4170,05;1,0). (218)
The cointegration restriction is now
rank(By (g1, 041)) = h. (2.19)

Under the conditions in (2.14) and (2.18) the DGP (2.6) has a Cointegration Con-
strained Conditional Process representation (CCCP(yx)).

Because there are usually some exclusion conditions on some lag components in
the unconstrained reduced form of an SSEM - RFSSEM(y,x), the CCCP(y,x) rep-
resentation can be taken as RFSSEM(y,x) only if these exclusion restrictions are
satisfied. If this is the case, the DGP has a cointegration constrained reduced form
representation (CCRFSSEM(y,x)).

It is generally known that®* an overidentified SSEM places some rank conditions on
the unconstrained reduced form. Therefore the DGP (2.6) will have a Constrained
Structural Form representation (CCSFSSEM(y,x)) only if the parameters of the
DGP satisfy these overidentification restrictions.

Summing up the discussion above, a cointegration system (2.6) will have a CCSF-
SSEM(y,x) if the following conditions are satisfied:

® 2 is weakly exogenous with respect to the parameters in (2.12).

21See e.g. Frohn (1995) and Schmidt (1976).
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e The I(1)-components in SSEM (y1:, z1:) span the cointegration space of the
DGP.

e The DGP satisfies the exclusion restrictions.

e The DGP satisfies the overidentification restrictions, if there is any.

It is worth to notice that the presence of cointegration relations places restrictions
on the conditional process and henceforth also on the SFSSEM(y,x) representation.
These restrictions make sure that the SSEM represents a cointegration system. They
become unbinding if the dimension of y; equals the dimension of the cointegration
space Gy = h. This is due to the fact that under Gy = h the condition (2.16) will
be satisfied for almost all estimated values.

In addition, we would like to note that the set of conditions listed above is the
condition under which a cointegration system such as (2.6) with h cointegration re-
lations has an (overidentified) CCSFSSEM(y,x) representation (2.8) and (2.9). The
main concern here is to find out whether the DGP has this SSEM representation as
suggested by the relevant economic theory, but not to find ‘a’ SSEM representation
for the DGP*,

2.3.3 The Role of Economic Theory in SSEMs

An SSEM is parsimonious if it places a large number of restrictions on the general
representation of the DGP, such as exclusion and overidentification restrictions.
Economic theory and behavioral hypotheses can be used to formulate such restric-
tions. They provide an intuitive economic interpretation for the SSEM. It should
be stressed that contrary to the text book simultaneous equations approach the
structural information is not the starting point of the statistical analysis, but just a
statistical hypothesis which will be tested based on sample information. The struc-
tural information will not become the structure of the SSEM unless it is justified
by the sample information via some statistical tests.

2.4 Statistical Inference of Large Scale
SSEMs

The target of the statistical inference of large scale SSEMs is to investigate the
statistical adequacy of SSEMs in question. It focuses on the tests of the four condi-
tions for a valid CCSFSSEM(y,x) representation and the misspecification of CCSF-
SSEM(y,x) against a possible departure from the basic assumptions of the general
DGP.

Because Johansen procedure is not applicable for large systems, we would like to
propose the following strategy to cope with this problem:

The basic idea follows the two step strategy of Engle and Granger (1987): In Step
1 we try to identify the cointegration rank and the cointegration relations of the

22 According to Breitung (1995) a VECM has always a SSEM presentation.
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large scale system by subsampling. In Step 2 we test the four conditions for the
valid CCSFSSEM(y,x) representation. At the end we carry out misspecification
tests based on the CCRFSSEM(y,x).

Testing the Cointegration Rank in Large Systems. In the literature
there are now some parametric and nonparametric procedures that can be used to
test the cointegration rank in large systems. Applying the subsampling approach?®,
we are able to determine the cointegration rank and the cointegration relations,
i.e. we can get estimate &. Our investigation® can indicate that this approach -
contrary to the Johansen procedure - can deal with large scale SSEMs (up to about
50 equations).

24.1 Test of Exclusion Restrictions

Here we test the restrictions for a valid CCSFSSEM(y,x) representation. We sub-
stitute the estimated & z—1 by wi—1 and rewrite (2.6) as follows:

Aze=PBwi1 + TV Az 1 + ..+ TPAz 114 e. (2.20)

Because the I(1) variable z;—1 is replaced by the stationary variable w;_1, (2.20)
contains only stationary variables. Hence we could apply the conventional methods
to (2.20) if we had enough data.

The way out of this data-dilemma can only be found in the data themselves. It
is well known that empirically unconstrained VAR-Models are characterized by
large numbers of insignificant parameters. This means that the unconstrained VAR
models are overparameterized for economic data, which implies that the number of
free parameters of the data generating VAR is significantly lower. In other words:
the unconstrained VAR parameters are subject to a large number of restrictions. If
we knew these restrictions we could estimate and test the VAR with less data.

Now the task is to formulate the ‘correct’ restrictions. A necessary and sufficient
condition for restrictions to be ‘correct’ is that under these restrictions the residuals
€; are white noise. This property can be used to test the correctness of the exclusion
restrictions, i.e. we test whether under the hypothetic restriction the estimated
residuals are still white noise. This can be done in the system or equation by

equation 25,

We denote the VAR parameters under exclusion restrictions by o@x,
i= 1,2,...,p, and we have a VECM under the exclusion restrictions:

Azy = Pwi—1 + H(l)*AZt41 + ...+ H@_l)*AZtAzH_l + €1 (2.21)

Now a test of white noise can be applied to the residuals in (2.21) to verify the
correctness of the exclusion restrictions.

23See Chen and Hsiao (2004b) for details.
243ee Chen and Hsiao (2004b) for details.
25For the determination of the lag length for VAR Model (2.6) we apply the same logic.
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2.4.2 Test of Sufficient Cointegration

After we have identified the correct exclusion restrictions a reduced rank regression
procedure can be applied under these restrictions. To find out whether Z2; and
Y2t enter the cointegration space we can apply the standard likelihood ratio test
according to Johansen (1995).

Test of Weak Exogeneity. To test weak exogeneity of x; we can run an F-test
in (2.22) for the hypothesis: Ho : S =0 v.s. H1 : B # O:

A *
Byt = ﬁy Wi—1 + H(l)*AZt_‘l -+ ...H(p) Azt,m_l + €. (2.22)
Azxt ﬁx

If the null is not rejected, we say that the CCRFSSEM(y,x) representation is jus-
tified.

2.4.3 Test of Overidentification

After these tests the CCRFSSEM(y,x) can be formulated as follows:
Azys = ~Clzgy + Bywi_y + T Az + TP Az 5 + ey . (2.23)

The parameters in the CCRFSSEM(y,x) representation satisfy already the coin-
tegration restrictions. It is now to test whether the overidentification restrictions
implied by the structural form are valid. An LR test can be applied for this.

2.4.4 An Integrated Modeling Procedure

We can summarize the foregoing discussion in the following modeling procedure:

1. Description of the economic phenomenon in question and formulation of the
target of modeling.

2. Determination of the variables of primary interest (y:,x:) and the relevant
variables (z:).

3. Study of the time series properties of the variables yiz, Z1¢, y2: and xa;.

4. Formulation of a general statistical model (26)

5. Estimation of the cointegration rank A by using subsampling procedures and
determination of the error term.

6. Formulation of the economic theoretical hypotheses and determination of the
conditioning variable x:.

7. Estimation of (2.22) with OLS and testing the residuals for white noise prop-
erties. If this hypothesis is rejected, go back to Step 6 and reconsider the
economic hypothesis.

8. Other misspecification tests of the CCRFSSEM(y,x).

9. Test of overidentification.

10. Summary of all restrictions on the general statistical model.
11. Estimation of (2.8) subject to the restrictions (2.9).
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2.5 Concluding Remarks

In this paper we emphasize the statistical adequacy of SSEMs with respect to
general properties of the observed economic data. We summarize the critiques on the
traditional Cowles Commission methodology as a critique of not implementing the
principle of statistical adequacy in this methodology. A multi-step testing procedure
is developed to check the statistical adequacy of an SSEM.

Principally, a more general statistical model can usually accommodate more prop-
erties of data and henceforth is more adequate to describe a set of data. On the
other hand, a more general model will be less efficient in conducting statistical in-
ference, because potential a priori information is not used. A more parsimonious
model may be more efficient, if it incorporates a priori information.

A useful empirical model has to meet both the requirement of statistical adequacy
and the requirement of parsimony. It is the art of econometrics to synthesize these
two conflicting principles in an empirical model.

Simultaneous structural econometric models provide a natural framework to convey
economic considerations into statistical models and to represent structural infor-
mation. The testing procedures developed in this paper can be used to check the
statistical adequacy of a large scale SSEM, but it can not be used to formulate
structural hypotheses. The special difficulty in modeling large scale SSEMs is that
we cannot estimate the unconstrained general statistical model. Consequently, we
may not obtain any hint on potential structural information from the unconstrained
general model.

Therefore, creative conjecture of structural hypotheses is of great importance in con-
struction of large scale SSEMs. The constructive process of modeling starts with
a conjecture of a structural model or behavioral equations in which the economic
theory and the understanding of empirical economic phenomena are combined. An
iterative process of obtaining evidence, revising the framework, and reinterpreting
the evidence, will be essential for the construction of SSEMs.
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Summary. Factor models can cope with many variables without running into
scarce degrees of freedom problems often faced in a regression-based analysis. In
this article we review recent work on dynamic factor models that have become pop-
ular in macroeconomic policy analysis and forecasting. By means of an empirical
application we demonstrate that these models turn out to be useful in investigating
macroeconomic problems.

3.1 Introduction

In recent years, large-dimensional dynamic factor models have become popular in
empirical macroeconomics. They are more advantageous than other methods in
various respects. Factor models can cope with many variables without running into
scarce degrees of freedom problems often faced in regression-based analyses. Re-
searchers and policy makers nowadays have more data at a more disaggregated
level at their disposal than ever before. Once collected, the data can be processed
easily and rapidly owing to the now wide-spread use of high-capacity computers.
Exploiting a lot of information can lead to more precise forecasts and macroeco-
nomic analyses. The use of many variables further reflects a central bank’s practice
of ‘looking at everything’ as emphasized, for example, by Bernanke and Boivin
(2003). A second advantage of factor models is that idiosyncratic movements which
possibly include measurement error and local shocks can be eliminated. This yields
a more reliable signal for policy makers and prevents them from reacting to id-
iosyncratic movements. In addition, the estimation of common factors or common
shocks is of intrinsic interest in some applications. A third important advantage is
that factor modellers can remain agnostic about the structure of the economy and
do not need to rely on overly tight assumptions as is sometimes the case in struc-
tural models. It also represents an advantage over structural VAR models where the
researcher has to take a stance on the variables to include which, in turn, determine
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the outcome, and where the number of variables determine the number of shocks:

In this article we review recent work on dynamic factor models and illustrate the
concepts with an empirical example. In Section 2 the traditional factor model is
considered and the approximate factor model is outlined in Section 3. Different test
procedures for determining the number of factors are discussed in Section 4. The
dynamic factor model is considered in Section 5. Section 6 gives an overview of
recent empirical work based on dynamic factor models and Section 7 presents the
results of estimating a large-scale dynamic factor model for a large set of macroe-
conomic variables from European Monetary Union (EMU) member countries and
Central and Eastern European Countries (CEECs). Finally, Section 8 concludes.

3.2 The Strict Factor Model

In an r-factor model each element of the vector ¥: = [y1s,...,ynt]’ can be repre-
sented as

Yir = Mrfie+ o+ Nirfre tu, t=1,...,T
- )\goft + Uit 5
where A,y = [Ai1,...,Air] and fi = [f1z,.--, frt]. The vector u; = [u1t,. .., un:)
comprises N idiosyncratic components and f; is a vector of r common factors.

In matrix notation the model is written as

yr = Afe +us
Y = FA + U,
where A = [A1ey. .., AN, Y = [y1,...,u7), F = [fi,-. ., fr] and U = [uy, ..., ur]’.

For the strict factor modelit is assumed that u; is a vector of mutually uncorrelated
errors with E(u;) = 0 and E(usu;) = % = diag(o?,...,0%). For the vector of
common factors we assume E(f;) = 0 and E(f; f{) = Q.! Furthermore, E(f:u}) = 0.
>From these assumptions it follows that?

U = E(ysys) = AQA + X

The loading matrix A can be estimated by minimizing the residual sum of squares:

T
> (v ~ Bf) (ye ~ Bf:) (3.1)

t=1

1 That is we assume that F(y;) = 0. In practice, the means of the variables are subtracted
to obtain a vector of mean zero variables.

2In many applications the correlation matrix is used instead of the covariance matrix
of y:. This standardization affects the properties of the principal component estimator,
whereas the ML estimator is invariant with respect to a standardization of the variables.
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subject to the constraint B'B = I,. Differentiating (3.1) with respect to B and
F yields the first order condition (ulny — S)Bx = 0 for k = 1,...,r, where S =
Tt Ethl vy, and §; is the #'th column of B, the matrix that minimizes the cri-
terion function (3.1). Thus, the columns of B result as the eigenvectors of the r
largest eigenvalues of the matrix S. The matrix B is the Principal Components
{PC) estimator of A.

To analyse the properties of the PC estimator it is instructive to rewrite the PC
estimator as an instrumental variable (IV) estimator. The PC estimator can be
shown to solve the following moment condition:

T o~
> By =0, (3.2)
t=1

where ¢ = B’ ys and B isan N x (N —r) orthogonal complement of B such that
B’ B = 0. Specifically,

B, =Iy-B(B'B)"'B' =1y - BF,

where we have used the fact that B'B =1I. Therefore, the moment condition can be
written as Ei\]:l feiil, where @y = y: — B’ f: and f; = B'y:. Since the components of
ft are linear combinations of y;, the instruments are correlated with 4, in general.
Therefore, the PC estimator is inconsistent for fixed N and 7" — oo unless £ = ¢271.%

An alternative representation that will give rise to a new class of IV estimators is
given by choosing a different orthogonal complement B, . Let A = [A], A5] such
that A; and Az are (N — r) X r and » x r submatrices, respectively. The matrix
U = [u1,...,un] is partitioned accordingly such that U = [U1,U3] and Uy (Us)
are T x (N — r) (T x r) submatrices. A system of equations results from solving
Y2 = FA% + Us for F' and inserting the result into the first set of equations:

Vi = (Y= U2)(AD) AL+ UL

= Y,0' +V, (3.3)

il

where © = A1A;? and V = U; — Uz©’. Accordingly © yields an estimator for the
renormalized loading matrix B* = [©’, )" and B} = [L.,©]".

The #’th equation of system (3.3) can be consistently estimated based on the fol-
lowing N —r — 1 moment conditions

Eygiv) =0, k=1,...,i-1,i+1,...,N—r, (3.4)

that is, we do not employ y;: and Yn+1,,-..,Ynt as instruments as they are corre-
lated with vi. Accordingly, a Generalized Method of Moments (GMM) estimator
based on (N — r){N — r — 1) moment conditions can be constructed to estimate
the n - r parameters in the matrix ©. An important problem with this estimator is

37To see that the PC estimator yields a consistent estimator of the factor space for & =
21y let B denote the matrix of 7 eigenvectors of ¥. It follows that B'W B = B'AQA'B .
The latter expression becomes zero if B = AQ, where Q is some regular 7 X 7 matrix.
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that the number of instruments increases rapidly as N increases. It is well known
that, if the number of instruments is large relative to the number of observations,
the GMM estimator may have poor properties in small samples. Furthermore, if
n? —n > T, the weight matrix for the GMM estimator is singular. Therefore it is
desirable to construct a GMM estimator based on a smaller number of instruments.
Breitung (2005) proposes a just-identified IV etimator based on equation specific
instruments that do not involve vy and ypt1,,. .., Y-

In the case of homogeneous variances (i.e. ¥ = 02iy) the PC estimator is the max-
imum likelihood (ML) estimator assuming that y; is normally distributed. In the
general case with ¥ = diag(c?,...,0%) the ML estimator minimizes the function
25 = tr(SE 1) +log | (cf. Jéreskog, 1969). Various iterative procedures have been
suggested to compute the ML estimator from the set of highly nonlinear first order
conditions. For large factor models (with N > 20, say) it has been observed that
the convergence of the usual maximization algorithms is quite slow and in many
cases the algorithms have difficulty in converging to the global maximum.

3.3 Approximate Factor Models

The fairly restrictive assumption of the strict factor model can be relaxed if it is
assumed that the number of variables (V) tends to infinity (cf. Chamberlain and
Rothshild, 1983; Stock and Watson, 2002a and Bai, 2003). First, it is possible to
allow for (weak) serial correlation of the idiosyncratic errors. Thus, the PC estimator
remains consistent if the idiosyncratic errors are generated by (possibly different)
stationary ARMA processes. However, persistent and non-ergodic processes such as
the random walk are ruled out. Second, the idiosyncratic errors may be weakly cross-
correlated and heteroskedastic. This allows for finite ‘clusters of correlation’ among
the errors. Another way to express this assumption is to assume that all eigenvalues
of E(utu}) = ¥ are bounded. Third, the model allows for weak correlation among
the factors and the idiosyncratic components. Finally, N"'A’A must converge to
a positive definite limiting matrix. Accordingly, on average the factors contribute
to all variables with a similar order of magnitude. This assumption rules out the
possibility that the factors contribute only to a limited number of variables, whereas
for an increasing number of remaining variables the loadings are zero.

Beside these assumptions a number of further technical assumptions restrict the mo-
ments of the elements of the random vectors fr and u;. With these agssumptions Bai
(2003) establishes the consistency and asymptotic normality of the PC estimator
for A and f;. However, as demonstrated by Bovin and Ng (2005a) the small sample
properties may be severely affected when (a part of) the data is cross-correlated.

3.4 Specifying the Number of Factors

In practice, the number of factors necessary to represent the correlation among the
variables is usually unknown. To determine the number of factors empirically a
number of criteria were suggested. First, the eigenvalues of the sample correlation
matrix R may roughly indicate the number of common factors. Since ¢r(R) =
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N = Zf\; ; 1i, where p; denotes the ’th eigenvalue of R (in descending order), the
fraction of the total variance explained by k common factors is 7(k) = ( le wi)/N.
Unfortunately, there is no generally accepted limit for the explained variance that
indicates a sufficient fit. Sometimes it is recommended to include those factors with
an eigenvalue larger than unity, since these factors explain more than an ‘average
factor’.

In some applications (typically in psychological or sociological studies) two or three
factors explain more than 90 percent of the variables, whereas in macroeconomic
panels a variance ratio of 40 percent is sometimes considered as a reasonable fit.

A related method is the ‘Scree-test’. Cattell (1966) observed that the graph of the
eigenvalues (in descending order) of an uncorrelated data set forms a straight line
with an almost horizontal slope. Therefore, the point in the eigenvalue graph where
the eigenvalues begin to level off with a flat and steady decrease is an estimator of
the sufficient number of factors. Obviously such a criterion is often fairly subjective
because it is not uncommon to find more than one major break in the eigenvalue
graph and there is no unambiguous rule to use.

Several more objective criteria based on statistical tests are available that can be
used to determine the number of common factors. If it is assumed that r is the
true number of common factors, then the idiosyncratic components u: should be
uncorrelated. Therefore it is natural to apply tests that are able to indicate a
contemporaneous correlation among the elements of u;. The score test is based on
the sum of all relevant N (N —1)/2 squared correlations. This test is asymptotically
equivalent to the LR test based on (two times) the difference of the log-likelihood
of the model assuming 7o factors against a model with an unrestricted covariance
matrix. An important problem of these tests is that they require T >> N >>
r. Otherwise the performance of these tests is quite poor. Therefore, in typical
macroeconomic panels which include more than 50 variables these tests are not
applicable.

For the approximate factor model Bai and Ng (2002) suggested information criteria
that can be used to estimate the number of factors consistently as N and T tend
to infinity. Let V(k) = (NT)"' 3T 1 Gizli; denote the (overall) sum of squared
residuals from a k-factor model, where G; = y¢ — B ft is the N x 1 vector of estimated
idiosyncratic errors. Bai and Ng (2002) suggest several variants of the information
criterion, where the most popular statistic is

ICpa(k) = log[V (k)] + k ( NT ) log[min{ N, T}].

The estimated number of factors (k) is obtained from minimizing the information
criterion in the range k = 0,1,..., kmaz where kmaz is some pre—spec1ﬁed upper
bound for the number of factors As N and T tend to infinity, & 2 r, i.e., the
criterion is (weakly) consistent.
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3.5 Dynamic Factor Models

The dynamic factor model is given by
Yye =Aogt + A1ge—1+ -+ Angrm + ue, (3.5)

where Ag,...,Am are N X ¢ matrices and g¢; is a vector of g stationary factors.
As before, the idiosyncratic components of u; are assumed to be independent (or
weakly dependent) stationary processes.

Forni et al. (2004) suggest an estimation procedure of the innovations of the factors

ne = gt — E(gtlge—1,9t—2,--.). Let fi = [9,9¢ 1,-- -, gt—m]  denote the r = (m+1)g
vector of ‘static’ factors such that

=Afi o, (3.6)

where A" = [Ao,...,Amn]. In a first step the static factors f; are estimated by PC.
Let f; denote the vector of estimated factors. It is important to note that a (PC)
estimator does not estimate the original vector f; but some ‘rotated’ vector Q f:
such that the components of (Qf:) are orthogonal. In a second step a VAR model
is estimated:

fi=Aifir+ 4 Apfipter. (3.7)

Since f; includes estimates of the lagged factors, some of the VAR equations are
identities (at least asymptotically) and, therefore, the rank of the residual covariance
matrix S, = T} E;‘F p11618t 18 ¢, as N — oo. Let W, denote the matrix of ¢

eigenvectors associated with the g largest eigenvalues of . The estimate of the
innovations of the dynamic factors results as 7; = W é:. These estimates can be
used to identify structural shocks that drive the common factors (cf. Forni et al,
2004, Giannone et al., 2002).

An important problem is to determine the number of dynamic factors ¢ from the
vector of r static factors. Forni et al. (2004) suggest an informal criterion based on
the portion of explained variances, whereas Bai and Ng (2005) and Stock and Wat-
son (2005) suggest consistent selection procedures based on principal components.
Breitung and Kretschmer (2005) propose a test procedure based on the canonical
correlation between ft and ft 1. The #’th elgenvalue from a canonical correlation
analysis can be seen as an R? from a regression of ¥; ft on ft_1, where ¥; denotes
the associated eigenvector. If there is a linear combination of ft that corresponds to
a lagged factor, then this linear combination is perfectly predictable and, therefore,
the corresponding R2 (i.e. the eigenvalue) will tend to unity. On the other hand,
if the linear combination reproduces the innovations of the original factor, then
this linear combination is not predictable and, therefore, the eigenvalue will tend
to zero. Based on this reasoning, information criteria and tests of the number of
factors are suggested by Breitung and Kretschmer (2005).

Forni et al. (2000, 2002) suggest an estimator of the dynamic factors in the frequency
domain. This estimator is based on the frequency domain representation of the
factor model given by

fy(@) = fx(@) + fulw),
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where x: = Aof: + -+ + Amfi—m denotes the vector of common components of
yt, fx is the associated spectral density matrix, fy is the spectral density matrix
of y: and fu is the {diagonal) spectral density matrix of u;. Dynamic principal
components analysis applied to the frequencies w € [0, n] (Brillinger, 1981) yields
a consistent estimate of the spectral density matrix fy(w). An estimate of the
common components iz is obtained by computing the time domain representation
of the process from an inversion of the spectral densities. The frequency domain
estimator y1e1ds a two-sided filter such that ft = Z]"i_m kI'] Y:—j, where, in practice,
the infinite limits are truncated. Forni et al. (2005) also suggest a 0ne~sided filter
which is based on a conventional principal component analysis of the transformed
vector J; = sV 245, where % is the (frequency domain) estimate of the covariance
matrix of u¢. This one-sided estimator can be used for forecasting based on the
common factors.

3.6 Overview of Existing Applications

Dynamic factor models were traditionally used to construct economic indicators and
for forecasting. More recently, they have been applied to macroeconomic analysis,
mainly with respect to monetary policy and international business cycles. We briefly
give an overview of existing applications of dynamic factor models in these four
fields, before providing a macro analytic illustration.

3.6.1 Construction of Economic Indicators

The two most prominent examples of monthly coincident business cycle indicators,
to which policy makers and other economic agents often refer, are the Chicago Fed
National Activity Index* (CFNAI) for the US and EuroCOIN for the Euro area.
The CFNATI estimate, which dates back to 1967, is simply the first static principal
component of a large macro data set. It is the most direct successor to indicators
which were first developed by Stock and Watson but retired by the end of 2003.
EuroCOIN is estimated as the common component of Euro-area GDP based on
dynamic principal component analysis. It was developed by Altissimo et al. (2001)
and is made available from 1987 onwards by the CEPR.® Measures of core inflation
have been constructed analogously (e.g. Cristadoro et al., 2001, and Kapetanios,
2004, for the Euro area and Kapetanios, 2004, for the UK).

3.6.2 Forecasting

Factor models are widely used in central banks and research institutions as a fore-
casting tool. The forecasting equation typically has the form

yien =p+a(L)ys + (L) fe + eln (3.8)

where y; is the variable to be forecasted at period ¢+ h and es, denotes the h-step
ahead prediction error. Accordingly, information used to forecast y; are the past of

4See http://www.chicagofed.org/economic_research_and_data/cfnai.cfm.
5See http://www.cepr.org/data/eurocoin/.
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the variable and the common factor estimates ft extracted from an additional data
set. :

Factor models have been used to predict real and nominal variables in the US
(e. g. Stock and Watson, 1999, 2002a,b; Giacomini and White, 2003; Banerjee and
Marecellino, 2003), in the Euro area (e.g. Forni et al., 2000, 2003; Camba-Mendez
and Kapetanios, 2004; Marcellino et al., 2003; Banerjee et al., 2003), for Germany
(Schumacher and Dreger, 2004; Schuhmacher, 2005), for the UK (Artis et al., 2004)
and for the Netherlands (den Reijer, 2005). The factor model forecasts are generally
compared to simple linear benchmark time series models, such as AR models, AR
models with single measurable leading indicators and VAR models. More recently,
they have also been compared with pooled single indicator forecasts or forecasts
based on ‘best’ single indicator models or groups of indicators derived using au-
tomated selection procedures (PCGets) (e. g. Banerjee and Marcellino, 2003; Wat-
son, 2003). Pooling variables versus combining forecasts is a particularly interesting
comparison, since both approaches claim to exploit a lot of information.®

Overall, results are quite encouraging, and factor models are often shown to be more
successful in terms of forecasting performance than smaller benchmark models.
Three remarks are, however, in order. First, the forecasting performance of factor
models apparently depends on the types of variable one wishes to forecast, the
countries/regions of interest, the underlying data sets, the benchmark models and
horizons. Unfortunately, a systematic assessment of the determinants of the relative
forecast performance of factor models is still not available. Second, it may not be
sufficient to include just the first or the first few factors. Instead, a factor which
explains not much of the entire panel, say, the fifth or sixth principal component,
may be important for the variable one wishes to forecast (Banerjee and Marcellino,
2003). Finally, the selection of the variables to be included in the data set is ad hoc
in most applications. The same data set is often used to predict different variables.
This may, however, not be adequate. Instead, one should only include variables
which exhibit high explanatory power with respect to the variable that one aims to
forecast (see also Bovin and Ng, 2005b).

3.6.3 Monetary Policy Analysis

Forni et al. (2004) and Giannone et al. (2002, 2004) identify the main macroe-
conomic shocks in the US economy and estimate policy rules conditional on the
shocks. Sala (2003) investigates the transmission of common Euro-area monetary
policy shocks to individual EMU countries. Cimadomo (2003) assesses the prolif-
eration of economy-wide shocks to sectors in the US and examines if systematic
monetary policy has distributional and asymmetric effects across sectors. All these
studies rely on the structural dynamic factor model developed by Forni et al. (2004).
Bernanke et al. (2005), Stock and Watson (2005) and Favero et ol. (2005) use a dif-
ferent but related approach. The two former papers address the problem of omitted

8The models are further used to investigate the explanatory power of certain groups
of variables, for example financial variables (Forni et al., 2003) or variables summarizing
international influences for domestic activity (see, for example, Banerjee et al., 2003) who
investigate the ability of US variables or factors to predict Euro-area inflation and output
growth.
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-variables bias inherent in many simple small-scale VAR models. They show for the
US that the inclusion of factors in monetary VARs, denoted by factor-augmented
VAR (FAVAR) models, can eliminate the well-known price puzzle in the US. Favero
et al. (2005) confirm these findings for the US and for some individual Euro-area
economies. They further demonstrate that the inclusion of factors estimated from
dynamic factor models in the instrument set used for estimation of Taylor rules
increases the precision of the parameters estimates.

3.6.4  International Business Cycles

Malek Mansour (2003) and Helbling and Bayoumi (2003) estimate a world and,
respectively, a G7 business cycle and investigate to what extent the common cycle
contributes to economic variation in individual countries. Eickmeier (2004) investi-
gates the transmission of structural shocks from the US to Germany and assesses
the relevance of the various transmission channels and global shocks, thereby rely-
ing on the Forni et al. (2004) framework. Marcellino et al. (2000) and Eickmeier
(2005) investigate economic comovements in the Euro-area. They try to give the
common Euro-area factors an economic interpretation by relating them to individ-
ual countries and variables using correlation measures.

3.7 Empirical Application

Our application sheds some light on economic comovements in Europe by fitting
the large-scale dynamic factor model to a large set of macroeconomic variables
from European monetary union (EMU) member countries and central and east-
ern European countries (CEECs). We determine the dimension of the Euro-area
economy, i.e. the number of macroeconomic driving forces which are common to
all EMU countries and which explain a significant share of the overall variance in
the set and we make some tentative interpretation. Most importantly, our appli-
cation addresses the recent discussion on whether the CEECs should join the EMU.

One of the criteria that should be satisfied is the synchronization of business cy-
cles. In what follows, we investigate how important Euro-area factors are for the
CEECs compared to the current EMU members. In addition, the heterogeneity of
the influences of the common factors across the CEECs is examined.”

7A more comprehensive study based on a slightly different data set is provided by
Eickmeier and Breitung (2005).



34 3 Dynamic Factor Models

Table 3.1: Criteria for selecting the number of factors.

Bai and Ng criteria Variance shares of PCs
r ICy: ICys ICps3 Static PCs Dynamic PCs
1| -0.096 -0.091 -0.109 0.159 0.211
2 | =0.105* -0.095* -0.131 0.248 0.326
3 | -0.100 -0.084 -0.138* 0.317 0.418
4 | -0.082 -0.061 -0.133 0.371 0.494
5 | -0.065 -0.039 -0.129 0.423 0.555
6 | -0.037 -0.006 -0.114 0.464 0.608
7 | -0.014 0.023 -0.103 0.504 0.656
8 0.012 0.054 -0.090 0.541 0.698
9 0.036 0.084 -0.078 0.575 0.734
10 | 0.066 0118 -0.062 | 0.604 0.768

Note: The maximal number of factors for the Bai and Ng (2002)
criteria i8 Tmax = 10. The cumulative variance shares present the
variance share explained by the first r principal components (PC).
An asterisk indicates the minimum.

Our data set contains 41 aggregate Huro-area time series, 20 key variables of each
of the core Euro-area countries (Austria, Belgium, France, Germany, Italy, Nether-
lands, Spain), real GDP and consumer prices for the remaining Euro-area economies
(Finland, Greece, Ireland, Luxembourg, Portugal) and for eight CEECs (Czech Re-
public, Estonia, Hungary, Lithuania, Latvia, Poland, Slovenia, Slovak Republic) as
well as some global® variables.®

Overall, we include N = 208 quarterly series. The sample ranges from 1993 Q1
to 2003 Q4. The factor analysis requires some pre-treatment of the data. Series
exhibiting a seasonal pattern were seasonally adjusted. Integrated series were made
stationary through differencing. Logarithms were taken of the series which were not
in rates or negative, and we removed outliers. We standardized the series to have a
mean of zero and a variance of one.

8 Among the global variables are US GDP and world energy prices. Studies have shown
that fluctuations in these variables may influence the Euro area (see, for example, Jiménez-
Rodriguez and Sanchez, 2005; Peersman, 2005).

9The aggregate Euro-area series are taken from the data set underlying the ECB’s area
wide model (for a detailed description see Fagan et al., 2001). The remaining series mainly
stem from OECD and IMF statistics.
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b ) — First factor
...... EuroCOMN
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Note: The monthly EuroCOIN series was converted into a quarterly series. It was nor-
malized to have a mean of zero and a variance of one.

Figure 3.1: Euro-area business cycle estimates.

The series are collected in the vector N x 1 vector y: (¢t =1,2,...,T). It is assumed
that y; follows an approximate dynamic factor model as described in Section 3.
The r common Euro-area factors collected in f; are estimated by applying static
principal component analysis to the correlation matrix of y;. On the basis of the
ICps criterion of Bai and Ng (2002), we choose r = 3, although the other two criteria
suggest r = 2 (Table 1). One reason is that factors are still estimated consistently
if the number of common factors is overestimated, but not if it is underestimated
(Stock and Watson, 2002b; Kapetanios and Marcellino, 2003; Artis et al., 2004).
Another reason is that two factors explain a relatively low share of the total variance
(25 percent), whereas three factors account for 32 percent which is more consistent
with previous findings for macroeconomic Euro-area data sets (Table 1).1°

The common factors f; do not bear a direct structural interpretation. One reason
is that f; may be a linear combination of the ¢ ‘true’ dynamic factors and their
lags. Using the consistent Schwarz criterion of Breitung and Kretschmer (2005),
we obtain ¢ = 2, conditional on r = 3. That is, one of the two static factors
enter the factor model with a lag. Informal criteria are also used in practice. Two
dynamic principal components explain 33 percent (Table 1). This is comparable
to the variance explained by the r static factors. The other criterion consists in
requiring each dynamic principal component to explain at least a certain share, for
example 10 percent, of the total variance. This would also suggest ¢ = 2.

10Those range between 32 and 55 percent (Marcellino et al., 2000; Eickmeier, 2005;
Altissimo et al., 2001).
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Even if the dynamic factors were separated from their lags, they could not be given
a direct economic meaning, since they are only identified up to a linear transforma-
tion. Some tentative interpretation of the factors is given nevertheless. In business
cycle applications, the first factor is often interpreted as a common cycle. Indeed,
as is obvious from Figure 1, our first factor is highly correlated with EuroCOIN
and can therefore be interpreted as the Euro-area business cycle. To facilitate the
interpretation of the other factors, the factors may be rotated to obtain a new set
of factors which satisfies certain identifying criteria, as done in Eickmeier (2005).
Another possibility consists in estimating the common structural shocks behind f;
using structural vector autoregression (SVAR) and PC techniques as suggested by
Forni et al. (2004). This would also allow us to investigate how common Euro-area
shocks spread to the CEECs.

Table 3.2: Variance shares explained by the common factors.

A GDP A GDP

| AUT 0.42 Cz 0.03

BEL 0.60 ES 0.08

FIN 0.19 HU 0.18

FRA 0.66 LT 0.03

GER 0.60 v 0.03

GRC 0.07 PL 0.07

IRE 0.27 SI 0.11

ITA 0.44 SK 0.05

LUX 0.44

NLD 0.54

PRT 0.09

ESP 0.14

Mean all countries 0.25 Std. all countries 0.22

Mean EMU 0.37 Std. EMU 0.21

Mean EMU - GPI 0.45 Std. EMU - GPI 0.18

Mean CEECs 0.07 Std. CEECs 0.05

Note: EMU - GPI denotes the Euro area less Greece, Portugal and Ireland.

Table 2 shows how much of the variance of output growth in CEECs and EMU
countries is explained by the Euro-area factors. On average, the common factors
explain a larger part of output growth in EMU economies (37 percent) compared to
the CEECs (7 percent). Interestingly, the shares of the peripheral countries (Greece,
Portugal and Ireland) are smaller than the corresponding shares in a number of
CEECs. Of the latter, Hungary and Slovenia exhibit the largest variance shares
explained by the Euro-area factors. The dispersion across EMU countries is about
four times as large as the dispersion across the CEECs. The difference is somewhat
lower when Greece, Portugal and Ireland are excluded from the EMU group.!?

HThese small peripheral countries were found to exhibit a relatively low synchronization
with the rest of the Euro area and are sometimes treated separately (e.g. Korhonen, 2003).
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3.8 Conclusion

In this paper we have reviewed and complemented recent work on dynamic factor
models. By means of an empirical application we have demonstrated that these
models turn out to be useful in investigating macroeconomic problems such as the
economic consequences for central and eastern European countries of joining the
European Monetary Union. Nevertheless, several important issues remain unsettled.
First it turns out that the determination of the number of factors representing the
relevant information in the data set is still a delicate issue. Since Bai and Ng (2002)
have made available a number of consistent information criteria it has been observed
that alternative criteria may suggest quite different number of factors. Furthermore,
the results are often not robust and the inclusion of a few additional variables may
. have a substantial effect on the number of factors.

Even if dynamic factors may explain more than a half of the total variance it is
not clear whether the idiosyncratic components can be treated as irrelevant ‘noise’.
It may well be that the idiosyncratic components are important for the analysis of
macroeconomic variables. On the other hand, the loss of information may even be
more severe if one focusses on a few variables (as in typical VAR studies) instead
of a small number of factors. Another important problem is to attach an economic
meaning to the estimated factors. As in traditional econometric work, structural
identifying assumptions may be employed to admit an economic interpretation of
the factors (cf. Breitung, 2005). Clearly, more empirical work is necessary to assess
the potentials and pitfalls of dynamic factor models in empirical macroeconomic.
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Summary. The occurrence of unit roots in economic time series has far reaching
consequences for univariate as well as multivariate econometric modelling. There-
fore, unit root tests are nowadays the starting point of most empirical time series
studies. The oldest and most widely used test is due to Dickey and Fuller (1979).
Reviewing this test and variants thereof we focus on the importance of modelling the
deterministic component. In particular, we survey the growing literature on tests
accounting for structural shifts. Finally, further applied aspects are addressed, for
instance, how to get the size correct and obtain good power at the same time.

4.1 Introduction

A wide variety of economic time series is characterized by trending behaviour. This
raises the important question how to statistically model the long-run component.
In the literature, two different approaches have been used. The so-called trend sta-
tionary model assumes that the long-run component follows a time polynomial,
which is often assumed to be linear, and added to an otherwise stationary autore-
gressive moving average (ARMA) process. The difference stationary model assumes
that differencing is required to obtain stationarity, i.e. that the first difference of a
time series follows a stationary and invertible ARMA. process. This implies that the
level of the time series has a unit root in its autoregressive (AR) part. Unit root
processes are also called integrated of order 1, I(1).

Since the seminal paper by Nelson and Plosser (1982) economists know that mod-
elling the long-run behaviour by trend or difference stationary models has far-
reaching consequences for the economic interpretation. In a trend stationary model

*We thank Mu-Chun Wang for producing the figures, and an anonymous referee for
comments improving the presentation.
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the effects of shocks are only temporary implying that the level of the variable is not
influenced in the long run. In contrast a shock has permanent effects in a difference
stationary model, meaning that the level of the variable will be shifted permanently
after the shock has occurred.

Traditional econometrics assumes stationary variables {constant means and time-
independent autocorrelations). This is one of the reasons why applied economists
very often transform non-stationary variables into stationary time series. According
to the two above-mentioned models this can be done by eliminating deterministic
trends in the case of a trend stationary model or by taking first differences in the
case of a difference stationary model. But what happens if the wrong transformation
is applied? The papers by Chan et al. (1977), Nelson and Kang (1981) and Durlauf
and Phillips (1988) investigate this problem. Eliminating the non-stationarity in
a trend stationary model by taking first differences has two effects: one gets rid
of the linear trend, but the stationary stochastic part is overdifferenced, implying
spurious short-run cycles. If, on the other hand, it is tried to eliminate the non-
stationarity in a difference stationary model by taking the residuals of a regression
on a constant and on time as explanatory variables, spurious long-run cycles are
introduced. These depend on the number of observations used in the regression.
In this case artificial business cycles are produced that lead to wrong economic
interpretations.

Moreover, regressing independent difference stationary processes on each other leads
to the problem of spurious regressions as Granger and Newbold (1974) have demon-
strated in a simulation study. Later on Phillips (1986) gave the theoretical reason-
ing for this phenomenon: The usual t-statistics diverge to infinity in absolute value,
while the R? does not converge to zero, hence indicating spurious correlation be-
tween independent difference stationary processes. Granger (1981) and Engle and
Granger (1987) offered a solution to the spurious regression problem by introducing
the concept of cointegration.

The above discussion clearly indicates that the analysis of non-stationary time
series requires a serious investigation of the trending behaviour. Therefore, formal
tests are needed which allow to distinguish between trend stationary and difference
stationary behaviour of time series. Such tests have first been developed by Fuller
(1976) and Dickey and Fuller (1979, 1981) (DF test, or augmented DF test, ADF).
In the meantime a lot of extensions and generalizations have been published which
also are presented in different surveys such as Dickey et al. (1986), Diebold and
Nerlove (1990), Campbell and Perron (1991), Hassler (1994), Stock (1994) and
Phillips and Xiao (1998).

Due to page limitations we will present here only the (augmented) Dickey-Fuller
approach for testing the null hypothesis of difference stationarity. The related semi-
parametric approach developed by Phillips (1987) and Phillips and Perron (1988)
is not presented, and the extension to panel unit root tests is not considered, see
Breitung and Pesaran (2005) for a recent overview. Furthermore, we do not deal
with tests for seasonal unit roots as proposed e.g. by Hylleberg et al. (1990), or
tests having stationarity in the maintained hypothesis as Kwiatkowski et al. (1992).
We rather focus on modelling the deterministic part of the time series under in-
vestigation. This is very important in case of structural breaks, since neglecting
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deterministic shifts may result in misleading conclusions.

The paper is structured as follows. In Section 2, Dickey-Fuller unit root tests are
described and discussed. The third section deals with important applied aspects
regarding size and power. Section 4 turns to the handling of structural breaks.

4.2 Dickey-Fuller Unit Root Tests
42.1  Model

For the rest of the paper we assume the following data generating process (DGP):
yt:dt—l—:vt, tzl,...,T. (41)

The observed variable (y;) is composed of a deterministic component d; and a purely
stochastic component x;. The deterministic part may consist of a constant, seasonal
dummy variables, a linear trend or a step dummy. The stochastic component is
assumed to be a zero mean AR(p) process,

Ty = 01Ty—1 + Q2Ts—2 + ... + QpTi_p + Uz, (4.2)

with ap # 0 and u; being white noise. The AR(p) model in (4.2) can be reparame-
terized as

p—1
Ty = pTi—1 + Z AT + Ut (4.3)

i=1
with
p p
p:Zaj and a; = — Z a;j,i=1,..,p—1.
i=1 j=it1
If the lag polynomial of z;
1—aiz—a22’ — ... —apz’ =0
has a unit root, then it holds
p
p=> a;=1. (4.4)
Jj=1

Substituting (4.3) in (4.1) we get the following expression for the observable variable
Yi:

p—1 p—1
Yt =ds — pde—1 — ZaiAdt-—i + pYt—1 + Z @AY + U .
i=1 i—1

Subtracting y:;—1 on both sides of this equation, we obtain the Augmented Dickey-
Fuller (ADF) regression:

p-1 p—1

Ay, = dy — pdi—1 —Z aiAdy—i+(p—1) ys—1 -l-Z ai Ay +ug . (4.5)

i=1 =1
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Note that in addition to the (lagged) level of the deterministic part its lagged
changes are included, too.

In the case that d; = ¢, a constant, the ADF regression is given as

k
Ayt=a+(p—1)yt~1+ZaiAyt*i+ut, t=k+2,....,7, (4.6)

=1

with a == (1—p)c, meaning that under the null hypothesis the process is I{1) without
drift. If the stochastic component z; follows an AR(p) process then k = p —1in
{(4.6). More generally, however, z: may be an ARMA process with invertible moving
average component. In that case, Said and Dickey (1984) propose to approximate
the ARMA stucture by autoregressions of order k& where the lag length k£ has to
grow with the sample size.

In the case of a linear trend, d; = ¢ + m¢, we get from (4.5) as ADF regression

k
Ays = a+bt+(p—Dys1+ Y @by i+ur, t=k+2,...,T, (4.7)

i=1
with
k
a:c(l—p)+pm~mZai and b=m(1 — p).

i=1

Under the null of a unit root (p = 1) the trend term in (4.7) vanishes, while the
constant term contains not only the slope parameter m but also the coefficients a;
of the short run dynamic. Under the null it holds that F(Ay;) # 0, and hence y:
displays a stochastic trend, I(1), as well as a deterministic one because E(y;) grows
linearly with ¢. Such series are called integrated with drift.

4.2.2 Distribution

The null hypothesis to be tested is that z; and hence y; is integrated of order one.
Under the null hypothesis there is a unit root in the AR polynomial and we have
because of (4.4):

Hy:p—1=0.

This hypothesis can be tested directly by estimating (4.5) with least squares and
using the t-statistic of j—1. It is a one-sided test that rejects in favour of stationarity
if p — 1 is significantly negative. The limiting distribution was discovered by Fuller
(1976) and Dickey and Fuller (1979). It turned out that it is not centered around
zero (but rather shifted to the left) and not symmetrical. In particular, limiting
standard normal theory is invalid for p = 1, while it does apply in case of stationarity
(lpl < 1). Similarly, the t-distribution is not a valid guideline for unit root testing in
finite samples. The limiting distribution is very sensitive to the specification of ds.
Fuller (1976) and Dickey and Fuller (1979) consider three cases: No deterministics
(d¢ = 0), just a constant, and a constant and a linear trend. Critical values for
these cases have first been provided by simulation in Fuller (1976, Table 8.5.2,
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Figure 4.1: Estimated density functions (T = 100) and standard normal.

p. 373). Nowadays, somewhat more precise critical values are widely employed,
which have been derived using more intensive simulations by MacKinnon (1991, p.
275). For a test with 7" = 100 at the 5 % level the critical values are -2.89 and
-3.46, respectively, if d: contains only a constant and if d; includes a constant and
a linear trend. These values are larger in absolute terms than the corresponding
critical value of the t-distribution which is -1.65. Using the incorrect t-distribution
the null hypothesis would be rejected much too often. The decision would wrongly
be in favour of stationarity or trendstationarity despite the fact that the time series
contains an I(1) component.

Theoretically, p = 1 is a singularity in the parameter space in that for any |p| < 1
limiting normality holds true, while p = 1 results in the non-normal Dickey-Fuller
distributions. Some economists blame this as being artificial and claim that the
true p equals 1 with probability zero. According to this, the normal approximation
should be applied throughout. In practice however, and that means in finite samples,
the distinction between stationarity and I(1) is not so clear-cut?®. Evans and Savin
(1981, p. 763) observed that for p ‘near but below unity this distribution function is

1 Critical values for polynomials in ¢ up to order 5 are derived in Quliaris et al. (1989).
2In fact, Phillips (1987a) presented a unifying local-to-unity theory bridging the gap
from stationarity to I(1) by introducing a time dependent p, p7 = exp ().
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very poorly approzimated by the limiting normal even for large values of T°. Similar
evidence has been collected by Evans and Savin (1984) and Nankervis and Savin
(1985). Evans and Savin (1981, 1984) considered a normalization different from the
t-statistic, while Nankervis and Savin (1985) considered the usual studentization
but did not provide graphs for the t-statistics. Therefore, we want to add the results
of a small Monte Carlo study here®. The true DGP is (with yo = 0)

Yt = pye—1 + us,  ur ~ N(0,1),
fort =1,...,T = 100. Relying on
Ay = a4 (p— Dyp—1 + Gz,

the usual t-statistic is computed. Figure 1 displays density estimates that are con-
structed from 10,000 replications by smoothing with a normal kernel. From these
results we learn that even for p considerably smaller than 1 the standard normal
approximation may be a very bad guideline in finite samples.

4.3 Size and Power Considerations

Since the work by Schwert (1989) it has been documented in several papers that the
DF test may be over-sized in situations of practical importance®*. Hence, proposals
how to control for the probability of a type I error have attracted a lot of attention
in the last decade. At the same time DF tests are blamed for poor power®, and
many papers tackled the problem to increase power. Several aspects related to
those topics are addressed next.

4.3.1 Lag Length Selection

The lag length % in (4.6) and (4.7) has to be chosen to ensure that the residuals
empirically follow a white noise process. Said and Dickey (1984) prove that the ADF
test in (4.5) is valid if the true DGP is an ARMA process of unknown order, provided
that the lag length % in the autoregression increases with the sample size but at a
lower rate. A proof under more general conditions was recently provided by Chang
and Park (2002). In practice, the choice of & is a crucial and difficult exercise. On the
one hand, a growing number of lags reduces the effective sample while the number
of estimated parameters is increased, and this reduction in degrees of freedom will
result in a loss of power. On the other hand, £ has to be large enough for the
residuals to be approximately uncorrelated in order for the limiting theory to be

3 All programming was done by Mu-Chun Wang in MATLAB.

4Kim and Schmidt (1993) established experimentally that conditionally heteroskedastic
errors have little effect on DF tests as long as there is only moderate heteroskedasticity.
But Valkanov (2005) showed that with strongly heteroskedastic data the use of asymptotic
critical DF values leads to grossly oversized tests.

5Gonzalo and Lee (1996), in contrast, illustrated by means of Monte Carlo experiments
that testing for p = 1 results in rejection frequencies very similar to those available if
Ip| < 1. In case of fractionally integrated alternatives, however, Hassler and Wolters (1994)
showed that the ADF test has little power.
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valid. Empirical researchers often start with a maximum lag length kpmqq and follow
a sequential general-to-specific strategy, i.e. reduce lags until reaching significance at
a prespecified level. Here, significance testing builds on arlimiting standard normal
distribution. Alternatively, ¥ may be determined relying on information criteria.
The performance of the two strategies in finite samples has been investigated by
Ng and Perron (1995). In particular, information criteria tend to choose k too
small to get the size correct. Therefore, Ng and Perron (2001) proposed adequately
modified criteria.

The AR approximation is particularly poor in case of moving average roots close
to one. Consider as DGP

Ay =a+u —Oupq, 6] <1.

With 6 close to one the polynomial 1 — 6L almost cancels with A = 1 — L, and
the true null of integration will be rejected frequently, resulting in a test where the
empirical size is above the nominal one, cf. Schwert (1989). In such a situation one
may use the procedure proposed by Said and Dickey (1985) that explicitly takes
into account the MA component of a series.

4.3.2 Deterministic Components

When performing unit root tests an appropriate specification of the deterministics
in (4.5) is of crucial importance. First, consider the case where the true DGP is
trend stationary. If the ADF regression without detrending is applied, then the
test has asymptotically no power, which was shown by West (1987) and Perron
(1988). In finite samples the null hypothesis of a unit root is rarely rejected, and is
never rejected in the limit. Hence, we propose to include a linear trend as in (4.7)
whenever a series is suspicious of a linear trend upon visual inspection®. Notice that
the decision about time as regressor may not build on the standard t-statistic of the
estimate b. Second, assume the other way round that a detrended test is performed
from (4.7) while the data does not contain a linear trend. In this situation a test from
(4.6) without detrending would be more powerful. The effect of ignoring eventual
mean shifts in the DGP when specifying d; will be discussed in the following section,
while the effect of neglected seasonal deterministics will be touched upon in the next
subsection.

The treatment of the deterministic component plays a major role when it comes
to power of unit root tests. Elliott et ol. (1996) and Hwang and Schmidt (1996)
proposed point optimal unit root tests with maximum power against a given local
alternative pr = 1 — £ for some specified constant ¢ > 0. Power gains are obtained
by efficiently removing the deterministic component under the alternative (using
Generalized Least Squares, GLS). Use of GLS, however, amounts to the following
procedure, see also Xiao and Phillips {1998). First, compute quasi-differences of the
observed variable and the deterministic regressors,

Aoy =y — (1 - %) yt—l? Aczy = 2t — (1 - %) Z-1,

6 Ayat and Burridge (2000) investigated a more rigorous sequential procedure to deter-
mine the appropriate deterministics when testing for unit roots.
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where z; is a deterministic vector such that d¢ from (4.1) is parameterized as d; =
+'z;. Second, estimate the vector by simply regressing A.y: on Acz;. Third,
apply the ADF test without deterministics to the residuals from the second step.
The distribution and hence critical values depend on the choice of ¢. Yet another
‘approach to obtain more powerful unit root tests has been advocated by Shin and
So (2001). They proposed to estimate y by 4 with information only up to ¢, and
remove the deterministic component from y; as follows: § = y:—4s_12:+—1. Applying
an ADF type regression to §; results in a limiting distribution again different from
Dickey-Fuller. Critical values have been provided by Shin and So (2001, Table IT)
for the simplest case of a constant where z; = 1.

Leybourne et al. (2005) explored both asymptotic and finite-sample properties of
five more powerful modifications of the DF test. They favoured two tests studied
by Taylor (2002) and Leybourne (1995). The latter relies on the usual DF statistic
and the test statistic computed from the reversed time series. The test proposed by
Taylor (2002) builds on recursive detrending by ordinary least squares.

4.3.3 Span vs. Frequency

In practice, it often happens that data are available only for a fixed time span due
to some structural breaks or institutional changes. In such a situation it is often
recommended to use data with higher frequency to increase the number of obser-
vations and hence the power of tests. To that end people often work with monthly
data instead of quarterly or annual observations. Perron (1989) has analyzed the
power of some unit root tests when the sampling interval is varied but the time span
is hold fixed. A general outcome of his computer experiments is that tests over short
time span have low power, which is not significantly enhanced by choosing a shorter
sampling interval. For related results see also Shiller and Perron (1985).

Moreover, in many cases higher frequency of observations comes at the price of
additional seasonal dynamics that have to be modelled. In case of deterministic
seasonal patterns it is important to remove the seasonality by including seasonal
dummies in the regression. Dickey et al. (1986) prove that the inclusion of seasonal
dummies instead of a constant does not affect the limiting distribution of DF tests,
while Demetrescu and Hassler (2005) demonstrate that neglecting seasonal deter-
ministic results in tests with low power and bad size properties at the same time.
Another way of removing seasonal deterministics is simply to work with seasonal
differences, which, however, can not be recommended in general. Hassler and Deme-
trescu (2005) argue that seasonal differencing may introduce artificial persistence
into a time series and may hence create spurious unit roots.

Given a fixed time span of data the purpose of unit root testing is not to investigate
the true nature of some abstract economic process but to describe the degree of
persistence in a given sample. Even if difference stationarity is not a plausible theo-
retical model as T' — oo for economic series such as inflation rates, interest rates or
unemployment rates, the unit root hypothesis may still provide an empirically valid
description. In that sense the significance against Hg : p = 1 may be understood
as strength of mean-reversion in a given sample. Similarly, Juselius (1999, pp. 264)
argues that ‘the order of integration of a variable is not in general a property of an
economic variable but a convenient statistical approximation to distinguish between
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H

the short-run, medium-run and long-run veriation in the data’.

4.4 Structural Breaks
4.4.1  Ignoring Breaks

Consider for the moment a regression with a constant only,
Aye=a+ (p—1)ye-1 + G- (4.8)

It is now assumed that the regression (4.8) is misspecified: The true process is I(0),
but it displays a break in the mean at time AT,

zt, t<AT
= y X NIO, 4v9
b {xtw,tzw e~ 10 (4.9)

where A € (0,1), and ¢ # 0. Given (4.9), neither the null nor the alternative
hypothesis of the DF test holds true. Perron (1990) proves that j converges to a
value that approaches 1 as the break |y > 0 is growing. A corresponding result is
found in Perron (1989a) in case of the detrended version of the DF test,

Ays =a+bt+ (p—1)ye1 + 4. (4.10)

This means that for a considerable break p # 0 the wrong null of a unit root
is hardly rejected. A high probability of a type II error arises because the DF
regression is misspecified in that it does not account for the structural break in the
data. See also the intuitive discussion in Rappoport and Reichlin (1989). Moreover,
Perron (1989a) investigates the situation of trend stationary series with a break:

6t t < AT
y:{ rt+0t, < 2 ~ 1(0) .

e (Fp)+ @+, t > AT

For 7 # 0 we have a break in the slope of the trend, while there may be an additional
shift in the level (i # 0) or not. With this assumption Perron (1989a) investigates
p from the detrended DF test (4.10). His asymptotic formulae were corrected by
Montafiés and Reyes (1998), but without changing the empirically relevant fact:
Given a trend stationary series with a break in the linear trend there is little
chance to reject the false null hypothesis of integration. Those results opened a
new research avenue aiming at the discrimination between unit roots and structural
shifts as potential causes of economic persistence.

Quite surprisingly, the opposite feature to that discovered by Perron (1989a, 1990)
has been established by Leybourne et al. (1998a): If a unit root process is subject
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to a mean shift, then the probability of rejecting the null of a unit root is not equal
to the level of the test”. The authors assume

T, t<AT
Yy = ’ , @~ I(1),
CBt‘l‘/L,tZ}\T

with u % 0. Leybourne et al. (1998a) prove that the limiting distribution of the DF
statistic depends on A if p is growing with T' . Experimentally, they establish that
the empirical level is well above the nominal one in case of an early break, A < 0.1;
if, however, the break occurs in the second half of the sample, then the DF test is
conservative in the sense that the rejection frequency is below the nominal level.
More generally, Kim et al. (2004) have shown that the results of the ADF test (4.6)
including only a constant term is highly unpredictable, if the true deterministic is
a broken trend.

4.4.2 Correcting for Breaks

To avoid spurious unit roots due to structural breaks, Perron (1989a, 1990) sug-
gested to test for integration after removing structural breaks®. Unfortunately, this
changes the limiting distributions depending on the break fraction A € (0,1). To
correct for a break in the level we need the step dummy

0, t< AT
St()\): .
1,t> AT

Now, all the deterministic components are removed from the observed series in a
first step by an OLS regression®,

ys=a—+ ps:(\) (+bt) + Fs. (4.11)

Next, the zero mean residuals Z; are tested for a unit root. However, the validity
of the asymptotic percentiles requires the inclusion of the impulse dummy

Asi(A) = s¢(N) — si—1(N) .
The necessity to include (lagged values of) As:(A) has been recognized only by
Perron and Vogelsang (1992, 1993) although it is well motivated by (4.5):

k k
AZy = (p— DEs1+ Y 6l + » _ &lsis(A) + 8. (4.12)
t=1 i=0

"This, however, is only true in finite samples or if the break is growing with the number
of observations. If in contrast the break is finite, then the level of the DF test is not affected
asymptotically, see Amsler and Lee (1995). Still, power considerations suggest a correction
for potential breaks.

8Perron (1994) provides a very accessible survey.

9Liitkepohl et al. (2001) and Saikkonen and Liitkepohl (2001) suggested to remove the
deterministic components efficiently in the sense of Elliott et al. (1996). This approach of
working with quasi-differences has the advantage of yielding limiting distributions inde-
pendent of A. The same property has the test by Park and Sung (1994).
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Critical values when testing for p = 1 in (4.12) are found in Perron (1989a, 1990).
They depend on the break fraction A that is assumed to be known. Similarly, Perron
(1989a) considered modifications of the detrended DF test allowing for a shift in
the slope of the linear time trend.

If A is not known the break point can be estimated from the data. Zivot and
Andrews (1992) e.g. suggested to vary A and to compute the test statistic ADE(A)
for each regression. Then the potential break point can be determined as A=
argminy ADF(A). Confer also Banerjee et al. (1992) and Christiano (1992).

4.4.3 Smooth Transitions and Several Breaks

When defining the step dummy s:(\) we assumed a sudden change at ¢ = AT But
even if the cause of a change occurs instantaneously, its effect most likely evolves
gradually over a period of transition. To account for that effect Perron (1989a)
proposed the so-called innovational outlier model, which assumes that ‘the economy
responds to a shock to the trend function the same way as it reacts to any other
shock’, Perron (1989a, p. 1380). This amounts to adding a step dummy variable
to the augmented Dickey-Fuller regression instead of applying the ADF test after
removing all deterministics. Leybourne et al. {1998b) considered unit root testing
in the presence of more general deterministic smooth transition functions, see also
Lin and Terdsvirta (1994), however without providing asymptotic theory. Limiting
results under smooth transitions have been established in Saikkonen and Liitkepohl
{(2001) for known breakpoint, and in Saikkonen and Liitkepohl (2002) in case the
date of the break is not known a priori. For a comparison of related tests see also
Lanne et al. (2002).

Lumsdaine and Papell (1997) allowed for two break points where both break dates
are assumed to be unknown. Park and Sung (1994) dealt with the case of several
breaks, however at known time. Kapetanios (2005) combined both features, i.e.
more than two breaks occuring at unknown break points. Our personal opinion,
however, is that the data-driven estimation of m break dates for a given series
should not be a recommended strategy unless it is possible to reveal an economic
event or institutional change behind each eventual break.
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Summary. This paper considers cointegration analysis within an autoregressive
distributed lag (ADL) framework. First, different reparameterizations and inter-
pretations are reviewed. Then we show that the estimation of a cointegrating vec-
tor from an ADL specification is equivalent to that from an error-correction (EC)
model. Therefore, asymptotic normality available in the ADL model under exogene-
ity carries over to the EC estimator. Next, we review cointegration tests based on
EC regressions. Special attention is paid to the effect of linear time trends in case
of regressions without detrending. Finally, the relevance of our asymptotic results
in finite samples is investigated by means of computer experiments. In particular,
it turns out that the conditional EC model is superior to the unconditional one.

5.1 Introduction

The autoregressive distributed lag model (ADL) is the major workhorse in dynamic
single-equation regressions. One particularly attractive reparameterization is the
error-correction model (EC). Its popularity in applied time series econometrics has
even increased, since it turned out for nonstationary variables that cointegration is
equivalent to an error-correction mechanism, see Granger’s representation theorem
in Engle and Granger (1987). By differencing and forming a linear combination of
the nonstationary data, all variables are transformed equivalently into an EC model

*We thank Vladimir Kuzin for excellent research assistance and Surayyo Kabilova for
skillful word processing. Moreover, we are grateful to an anonymous referee for clarifying
comments.
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with stationary series only.

Working on feedback control mechanisms for stabilization policy, Phillips (1954,
1957) introduced EC models to economics. Sargan (1964) used them to estimate
structural equations with autocorrelated residuals, and Hendry popularized their
use in econometrics in a series of papers®. According to Hylleberg and Mizon (1989,
p- 124) ‘the error correction formulation provides an excellent framework within
which it is possible to apply both the data information and the information available
from economic theory’. A survey on specification, estimation and testing of EC
models is given by Alogoskoufis and Smith (1995). The present paper contributes to
this literature in that it treats some aspects of testing cointegration and asymptotic
normal inference of the cointegrating vector estimated from an EC format.

The rest of the paper is organized as follows. The next section reviews different
reparameterizations and interpretations of ADL models. Then we use that the
cointegrating vector computed from the ADL model is equivalent to the one es-
timated from EC in order to use results by Pesaran and Shin (1998) on asymptotic
normality. Section 4 turns to cointegration testing from EC regressions. We review
t-type and F-type test statistics, and pay particular attention to the role of linear
time trends. The relevance of our asymptotic results in finite samples is investigated
through Monte Carlo experiments in Section 5. A detailled summary is contained
in the final section.

5.2 Assumptions and Representations

The autoregressive distributed lag model of order p and n, ADL(p,n), is defined for
a scalar variable y; as

D n
Ye = Z ai Yr—i -+ Z Ci Te—i + ¢, (5.1)
=1 =0

where €; is a scalar zero mean error term and z: is a K-dimensional column vector
process. Typically, a constant is included in (5.1), which we neglect here for brevity.
The coefficients a; are scalars while ¢} are row vectors. Using the lag operator L
applied to each component of a vector, L* z; = x4y, it is convenient to define the
lag polynomial a(L) and the vector polynomial ¢(L),

a(ly =1—a L —...—ap L7,
L) =cot+crl+...+cy L.

Now, it is straightforward to write (5.1) more compactly:

a(LYy: = ¢ (L)xt + &5 .

'Davidson et al. (1978), Hendry (1979), and Hendry et al. (1984). It is noteworthy
that A.W. Phillips, Sargan as well as Hendry were professors at the London School of
Economics. A personal view on the history of EC models is given in the interview of
Hendry by Ericsson (2004).
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In order to obtain dynamic stability, it is maintained that
a(z)=0 = |z|>1 forzeC. (5.2)

Under this condition there exists an absolutely summable infinite expansion of the
inverted polynomial a™*(L):

—1 1 = * j > *
a L) = = > a;L’?, aj| < oo.
( ) a(L) Jgo ¥ J;)’J

Invertibility of a(L) hence yields the following representation:

(L)

vyt:"aTL—)-'xt‘f‘et, ca(L)er =es,

where e; has a stable autoregressive structure of order p. Expanding a ™! (1) provides
an infinite distributed lag representation,

oo n 4 00
b= (Z a;LJ) (Z ¢j Lj> xp ey = Z bize—;+er, (5.3)
j=0 =0 i=0

where b; are the vectors of dynamic multipliers derived by the method of indeter-
mined coefficients. The vector of long-run multipliers of the ADL(p,n) model may
therefore be easily computed from:

@) Nty
ﬂ.“.aﬁj._g;bj. (5.4)

It is worth mentioning that (5.1) is suitable for estimation but in order to obtain
an economic interpretation of the parameters one has to consider a transformation
like (5.3).

Different reparameterizations have been discussed in the literature, see e.g. Wickens

and Breusch (1988). By re-arranging the z’s one obtains with A =1 — L:

n

P n—1 /
Y = Z ails—i + a(1) 2 — Z ( Z Cj> Axi_i + e, (5.5)
i=1

i=0 \j=it1

where y; is related to its own past, to contemporaneous x; and differences Ax;—s.
The use of this specification has been suggested for cointegration analysis by Pe-
saran and Shin (1998). A further variant relates y: to x; and differences of both
variables. By subtracting (3°7_, ai) y: and re-normalizing, (5.5) yields:

n

p—1 P n—1 4

j=it1 =i+l

This representation due to Bewley (1979) has the advantage that the long-run
multipliers 3 are the coefficients of z;. However, the contemporaneous Ay; on the



60 5 Autoregressive Distributed Lag Models and Cointegration

right-hand side is correlated with &;, which renders OLS invalid. Nevertheless, the
use of y¢—1,...,Yt—p—1 and Zy,...,Tt—nt1 as instruments allows for consistent in-
strumental variable estimation.

One further transformation will turn out to be fruitful for cointegration testing and
estimation. Notice that

14
Zazyt iy = —a(l)ye 1-2(2 ) Aysi.

=1 =1 j=i+1

Using this result and z; = z:—1 + Ax¢, (5.5) yields the error-correction format:

i=1 \j=i+1

+ (a(l)ﬁ~i0j> Az —ni ( i Cj) Azy_; + et

i=1 \j=i+l

p=1 P
Ay = —a(1) (ys-1 — B'we1) — Y ( > aj) Ayt

The interpretation relies on a long-run equilibrium relation, y = 8’z. The error-
correction mechanism is the adjustment of y; via a(1) to equilibrium deviations
in the previous period, 4:—1 — 8 z:—1. In the following, this equation will often be
rewritten as

p—1 n—1
Ayt =yye1 + 0z 1+ Y oilyr i+ Y GiAT i+ ey, (5.6)
i=1 =0
where
y=-a(l), 0=0a(l)B=—78, (5.7)

and «; as well as ¢; are defined in an obvious manner.

Since the work by Engle and Granger (1987), cointegration of nonstationary pro-
cesses is known to be equivalent to a data generating error-correction process. For
the rest of the paper we assume that y¢ and z: are integrated of order one, I(1), i.e
differencing is required to obtain stationarity. If there exists a linear combination
of the nonstationary processes, y: — 8'x:, 8 # 0, which is stationary, then y: and
z:¢ are called cointegrated. The cointegration rank is at most one, and z: does not
adjust towards equilibrium.

Assumption: (i) The vector (y:,z%)" of length K + 1 is I(1). (ii) The vector z:
alone is not cointegrated. (iii) In case of cointegration, x: does not adjust to past
equilibrium deviations (y:—1 — B8’ z1—1)-

Further, we assume a correctly specified error-correction equation in the following
sense.

Assumption: (i) The errors ¢; are serially independent with variance o2, & ~
iid(0, 0?). (ii) The errors are uncorrelated with A z:44, for all A € Z.
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These assumptions summarize (Al) through (A5) in Pesaran and Shin (1998, p.
375). The ¢ase of several linearly independent cointegrating vectors or the situation
where Az, adjusts to lagged deviations, too, is beyond the scope of a single-equation
framework, see e.g. Liitkepohl (2006) in this volume.

Assumption 2 (ii) was made to ensure exogeneity of Az;. It may seem very restric-
tive for applied work. Working with normally distributed data, however, we do not
need it because Johansen (1992) proved assuming a Gaussian vector EC model for
(y:,7:) that Assumption 1 (iii) alone is sufficient for weak exogeneity of Az, cf.
also Urbain (1992, Prop. 1). In fact, he thus showed that under Assumption 1 (iii)
alone the single-equation analysis is equivalent to maximum likelihood estimation
of the full system (Johansen, 1992, Corollary 1).

5.3 Inference on the Cointegrating Vector

In this section we assume that y; and z; are cointegrated, and the interest focusses
on estimating and testing § given T" observations. It is well known since Phillips
and Durlauf (1986) or Stock (1987) that the static OLS estimator,

Ge=a+ 0z, t=1,...,T,

is super-consistent. Under exogeneity, it further holds (cf. Phillips and Park, 1988)
that T'(3— ) converges to a normal distribution, where the variance depends on the
long-run variance (or spectral density at frequency zero) of y:— 8’ x:. This parameter
may be difficult to estimate in finite samples. Moreover, already Banerjee et al.
(1986) observed that static OLS may be biased in finite samples due to ignoring
short-run dynamics. An alternative approach dating back to Stock (1987) relies on
estimating (5.6):

p—1 n—1
Ay =é+yr—1+0 21 + Z i Ays—i + Z ¢ Azy; + €. (5.8)
=1 =0

A natural candidate for estimating 3 is now from (5.8) because of (14.2.2)

~

- )
Bec = “5 (5.9)

Below we will obtain limiting normality of T(Bzc — 3) under exogeneity by drawing
upon results by Pesaran and Shin (1998), who consider the OLS estimation of (5.5):

P n—1
Y =G+ ) @iyi+ 0+ Yy $iATi +E. (5.10)
i=1 =0

As estimator for 8 they propose because of (14.2.2):

_ 7
1-3F a
Pesaran and Shin (1998, Theorem 2.4 or 3.2) establish limiting normality under the
stated assumptions.

Brs = (5.11)
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Proposition: Under Assumptions 1 and 2 and under cointegration it holds as
T — oo

T o5 o2
Z (zo — &) (T — 53)/} (IBPS - /3> ~ Nk (Oa WIK> )

t=1

where Ix denotes the identity matrix.

Remark: A It is noteworthy that 3 (x: — ) (x; — &)’ diverges with T2, so that Bps
converges with the expected super-consistent rate T". Although normality arises just
like in the stationary case, the rate of convergence differs from the situation where
; is 1(0). Moreover, o and a(1) may be estimated consistently:

1 = b
&2:T_m &, a(l):l—;ai,

t=1

where m = K(n+1)+p+1 denotes the number of estimated parameters including a
constant. Finally, by demeaning x; in Proposition 1, we assume that the regression
equation contains an intercept. The result continues to hold, if a linear time trend
as additional regressor is allowed for.

Remark: B In practice, Assumption 2 (ii) may be too restrictive, and (lagged
values of) Az; may be correlated with ;. To account for that, Pesaran and Shin
(1998) propose to simply include the corresponding difference A z,_ as additional
regressor in (5.10) in case that £ > n.

Since (5.6) is a linear transformation of (5.5), it turns out that the regression (5.8)
is a linear transformation of (5.10). Using the techniques by Wickens and Breusch
(1988) we can establish the following result. The proof is tedious but not difficult,
details are available upon request.

Proposition: For the OLS regressions (5.10) and (5.8) it holds:
p A -
F=>ai—1, 0=0, & =4,
=1

and consequently: BEC = ,(§ps .

As a corollary to Propositions 1 and 2, ,@’Ec follows a limiting normal distribution.
Consider a t type statistic testing for the kth component B8* k=1,2,... K:

. 14l (Bizg — 8%)
o1 (@ — 2)(we — 2))kr

where ||z denotes the entry on the principal diagonal of a matrix, and, obviously:
62 = = 2?:1 £2 where again m= K(n+1) +p+ 1.

Corollary: Under the assumptions of Proposition 1 it holds for k =1,..., K:

T ~ N(Oal))
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as T' — oo.

Concluding this section it should be noticed that estimation of and inference about
B from linear or nonlinear dynamic regressions similar to (5.8) and (5.10) has been
discussed by Stock (1987), Phillips (1988), Phillips and Loretan (1991), and Boswijk
(1995), too.

5.4 Cointegration Testing

We consider tests for the null hypothesis of no cointegration building on the error-
correction equation (5.6) augmented by a constant intercept and estimated by OLS,
t=1,2,...,T,

p—1 n—1
Ay =T+ Juye—1 + 0,261 + Z AN Z ¢iAzs—i + & . (5.12)
i=1 i=0

Sometimes empirical researchers wish to work with detrended series, which amounts
to adding a linear time trend to the set of regressors®:

p—1 n—1
Ay, =C+ 0t +7r yeo1 + Orme1 + Z Qi AYs—i + Z diATs—; H5:13)
i=1 i=0

Clearly, the linear trend will change all parameter estimates. For that reason v and
# are now indexed with 7, while all other estimates are denoted by the same symbols
as in (5.12) for convenience. Sometimes, (5.12) and (5.13) are called conditional (or
structural) error-correction models, while unconditional (reduced form) models are
obtained by restricting ¢o = 0 and excluding contemporaneous differences, Ax;.

Given Assumption 1, the null hypothesis of no cointegration® may be parameterized
as follows:

Ho:v, =0 or 7r=0.
Under the alternative of cointegration equilibrium adjustment implies
Hy:y, <0 or v <0.

Therefore, Banerjee et al. (1998) proposed the use of the conventional studentized
t statistic relying on an OLS estimation of (5.12) or (5.13):

ECty = ty,—0 or ECt; =ty .

2This is not so much a question of choosing the ‘right model’ but rather the economically
more meaningful one, cf. Hassler (1999) for a discussion.

3Pesaran et al. (2001) consider a more general procedure where the order of integration
of z; is not assumed to be known. The null hypothesis then reads as ‘there is no stable
level relationship between y; and z;’. The limiting distribution depends on the I(0) or I(1)
assumption, but Pesaran et al. (2001) propose to use critical values from both distributions
as bounds: If the test statistic falls outside the bounds, a conclusive inference may be drawn
without having to know the integration status of the underlying variables.
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The null hypothesis is rejected for too small (negative) values.
Similarly, Boswijk (1994) suggested an F' type test for
Hy:9%.=0,6.=0 or v.=0,0,=0.

Let Fy s denote the conventional F' statistics from (5.12) or (5.13) testing for lack
of significance. Then Boswijk (1994) considered

ECF, = (K +1)F, or ECF, = (K + 1)F,, . .

L

Here, the null hypothesis is rejected for too large values. Boswijk (1994) suggested
a further variant for (5.13), where the linear trend is restricted under Ho:

Hy:v: =0, 6,=0, 6§=0.
The corresponding F type statistic tests for K + 2 restrictions:

ECE; = (K +2)Fy, 0,6

In many economic applications it may occur that z; is I(1) with drift,

Still, empirical workers often wish to regress without detrending. However, the linear
trend is growing with T while the stochastic trend is only of order T°-3. Hence, the
linear trend in the data,

e = zo+dt+I(1)
Op(1) + 05 (T) + 0, (T°F),

i

dominates the stochastic trend and hence affects the limiting distribution of ECt,
from (5.12). Fortunately, critical values are nevertheless readily available.

Proposition Under Assumptions 1 and 2 and the null hypothesis of no cointegra-
tion, it holds as T — oo

a) ECt, 4 BDM . (K) for any E(Az:);
b) ECt, -5 BDM,(K) for B(Az:) = 0;

¢) ECt, % BDM.(K — 1) for BE(Az:) # 0, where BDM,(0) stands for the
detrended Dickey-Fuller distribution.

Convergence in distribution is denoted by % The following variables BDM (K
and BDM . (K') represent functionals of vector standard Brownian motions of length
K, which are demeaned and detrended, respectively. K denotes the number of vari-
ables contained in the vector ;. Detailed expressions of those limiting distributions
and simulated critical values can be found in Banerjee et al. (1998), who prove
a) and b). The third result was established by Hassler (2000), and by detrended
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Dickey-Fuller distribution we mean the limit of 7 in the notation by Dickey and
Fuller (1979).

Remark: C In applied work it may be not so clear whether z; is dominated by a
linear trend or not. It hence may be dubious whether to use Proposition 3 b) or c)
for inference. Looking at corresponding percentiles in Table 1, we learn that critical
values from BDM, (K — 1) are smaller than those from BDM,(K) for K being
fixed. Usage of BDM (K — 1) in case of regressions without detrending therefore
results in a conservative test avoiding over-rejection, which may be the advisable
strategy in practice.

Similar results to Proposition 3 are available for the F type statistics.

Proposition: Under Assumptions 1 and 2 and the null hypothesis of no cointegra-
tion, it holds as T' — co:

a) ECF, 5 B, (K) for any E(Ax;);
b) ECF; 3 B:(K) for any E(Azy);

¢) ECF, % B,(K) for E(Az:) = 0.

Boswijk (1994) characterized the stochastic limits of the type B depending again
on the number of I(1)-variables z; and on the deterministics (with or without
linear trend). However, there remains one question. How do linear trends in the
data affect the limiting distribution of the F type test ECF), without detrending?
Without proof we state motivated by Proposition 3 ¢) the following conjecture (a
proof could follow the lines in Hassler, 2000).

Conjecture: When E(A z;) # 0, we conjecture under the assumptions of Propo-
sition 4 for the regression without detrending:

ECF, % Bi(K —1), (5.14)

where in case of K = 1, B;(0) is understood to be twice the limiting distribution of
the ®3 statistic from Dickey and Fuller (1981); see Table VI in Dickey and Fuller

. d *
(1981) for percentiles: &3 = B2 (0).

The applicability of (5.14) in finite samples will be established by computer ex-
periments in Section 5. The intuition behind this claim is again that the process
x; follows one common linear time trend and K stochastic I(1) trends. The linear
trend dominates one stochastic trend. Therefore, in case of linear trends the fol-
lowing holds asymptotically: testing for 8, = 0 in (5.12) with 6, being of length
K amounts to the same as if we tested for § = 0 and 0, = 0 where . was only
(K — 1)-dimensional in (5.13).

Examples of critical values of the distributions encountered in this section are given
in Table 1. We observe that critical values of By (K — 1) are shifted to the right
relative to B, (K). Analogously to Remark C the use of B (K —1) instead of B, (K)
in case of regressions without detrending hence results in a conservative procedure.
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Table 5.1: Critical Values

BDMu(K) | BDM.(K -1) | Bu(K) | Bi(K - 1)

K=1

1% -3.78 -3.96 15.22 16.54

5% -3.19 -3.41 11.41 12.50

10 % -2.89 -3.13 9.54 10.68
K=2

1% -4.06 -4.27 18.68 19.30

5% -3.48 -3.69 14.38 15.24

10 % -3.19 -3.39 12.22 13.22
K=3

1% -4.46 -4.51 21.43 22.50

5% -3.74 -3.91 17.18 18.03

10 % -3.42 -3.62 14.93 15.85
K=4

1% 457 -4.72 24.63 25.46

5% -3.97 -4.12 19.69 20.66

10 % -3.66 -3.82 17.38 18.45
K=5

1% 470 -4.89 27.11 28.51

5% -4.27 -4.30 22.48 23.33

10 % -3.82 -4.00 19.87 20.76

Note: The asymptotic critical values of BDM,(K) and BDM (K — 1) are taken from
Banerjee et al. (1998, Table I), except for BDM (0) from Fuller (1996, Table 10.A.2).
The percentiles of B, (K) and B (K —1) are from Tables B.2 and B.5 in Boswijk (1994),
except for B%(0). The latter quantiles are twice the values found in Dickey and Fuller

(1981, Table VI).
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5.5 Monte Carlo Evidence

For simulation purposes we generated a bivariate process (K = 1) as

Ays Y [ -m i Ayea
(Awt>_<w (wosmen) (51 Loy ) o0

(5.15)

sww\/((O) (1”)), t=1,2,...,T. (5.16)
0 pl

We consider the conditional error-correction regression,

(NI T

Ays = é4+Fys 140z 1461 Ays 1+ doAzs + 1 Azy 1+, (5.17)
as well as the unconditional one without contemporaneous Ax::
Ays =+ Fye1 + 0z 1+ 81 Aye1 + ¢1 Amy_1 + & (5.18)

Clearly, the unconditional regression (5.18) is only appropriate if p = 0; if p # 0,
however, the inclusion of Ax; is required to account for simultaneous correlation.

Throughout we present rejections at the nominal 5 % level that are obtained from
50 000 replications. All programming?* was done in Ox ProressioNaL 3.30.

Table 2 contains results for the asymptotically normal cointegration estimator
Bec, see Corollary 1. For the upper and the middle panel we assume v, = 0
and 11 € {0.2,0.4,0.6}. With growing 71 (i.e. error-correction adjustment) the ex-
perimental size improves. For T' = 100 the test is oversized. With T' = 250, the
experimental level of the conditional regression is fairly close to the nominal one,
and the correspondence is very good for T' = 1000. Moreover, for p > 0, Assumption
2 (ii) is violated because Az; and the regression error are correlated. This turns
the unconditional regression (5.18) invalid, while the conditional regression is not
affected by p. This supports the proposal by Pesaran and Shin (1998) to add (lags
of) Az; in case that Assumption 2 (ii) does not hold in order to maintain limiting
normality, cf. Remark B. In the lower panel Assumption 1 (iii) is violated because
v2 =71 # 0. In this situation Az, is not exogeneous as proven by Johansen (1992).
Therefore, even the conditional regression does not result in a limiting A(0,1)
distribution as is well demonstrated for 7" = 1000.

Table 3 displays findings for the cointegration tests ECt and ECF with T' = 100
only. In the column ‘y = 0’ it holds 74 = 772 = 0, and the null hypothesis is
true. The next three columns assume 2 = 0 and 71 € {0.05,0.1,0.2}. The power
increases with 71, and the ¢ and F tests behave very similarly. The conditional
regression including Axz; produces tests that are robust with respect to p, while
(5.18) results in dramatic power losses as p grows. In the next three columns (y1 = 0,
~2 € {0.05,0.1,0.2}) we do have cointegration but y: does not adjust. Hence, the
unconditional regression provides no power, while (5.17) still allows to reject, as long
as p # 0. Only here it turns out that the F type test is slightly more powerful. In

4We thank Vladimir Kuzin for computational help.
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Table 5.2: Asymptotically Normal Cointegration Vector

T =100 T = 250 T = 1000

M= 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
Y2 =0 Conditional regression (5.17)

p=0 114 9.0 7.8 7.2 6.4 6.1 5.5 5.3 5.2
p=03 11.1 9.1 8.0 7.3 6.5 6.2 5.6 5.3 5.3
p=06 11.1 88 8.3 7.3 6.4 6.1 5.7 5.3 5.2
Y2 =10 Unconditional regression (5.18)
.p=0 109 85 7.4 7.0 6.2 5.9 5.5 5.3 5.1
p=03 12.2 102 94 9.2 .83 8.1 7.5 7.3 7.4
p=06 i 178 16.0 154 | 15.1 142 141 | 138 139 137
Y2 =1 : Conditional regression (5.17)

p=0 226 209 210|190 183 184 | 179 176 175
p=0.3 18.1 169 16.3 | 151 146 14.6 | 13.8 13.8 13.9
p=0.6 13.7 127 12,5 | 114 10.7 105 | 10.2 10.0 10.1

Note: The true DGP is (7.1) with {5.16). We report the frequency of rejection of a
two-sided test as in Corollary 1 at the 5 % significance level.

the last three columns Assumption 1 (iii) does not hold (v2 = 1 € {0.05,0.1,0.2}).
If p # 0, the power increases with growing p for the tests based on conditional
regressions compared with «2 = 0, while in case of unconditional regressions the
power is reduced.

Finally, Table 4 supports our conjecture. Here, we simulated (K + 1)-dimensional
random walks (i, z;) independent of each other. Moreover, x; contains a drift,
which is identical in all components:

1 i

1 =1

Application of ECF,, from (5.17) with critical values from B}(K — 1) provides a
valid approximation as 7" increases.

5.6

We reviewed different parameterizations of the autoregressive distributed lag (ADL)
model and stressed the equivalence with error-correction (EC) mechanisms. This
motivates the following finding: the cointegrating vector and the residuals computed
from the EC model are numerically identical to the ones constructed from the ADL

Summary
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Table 5.3: Cointegration Tests

7=0}1 m (12=0) P (m=0) =72
Hy 0.05 0.1 0.2 | 005 0.1 0.2 | 0.05 0.1 0.2
Conditional regression (5.17)

p=0
ECt, 6.1 |300 754 996} 27 1.5 07 |221 481 79.8
ECFE, 6.4 202 71.6 992 | 55 4.3 4.1 |204 454 80.0
’ p=03
ECt, 57 262 680 989 | 66 7.7 85 |320 67.7 94.0
ECFE, 6.4.1239 640 984 86 10.0 131|306 66.6 94.1
p=0.6
ECt, 5.8 25.6 67.3- 98.8 | 14.6 26.7 45.1 } 48.2 87.3 99.2
ECE, 6.7 1233 63.0 982177 31.3 51.1|474 869 99.2
Unconditional regression (5.18)

p=0
ECt, 6.0 304 761 996 2.7 17 07 {241 3551 89.0
ECFE, 6.4 |291 723 993 5.7 43 42 |22.0 51.8 884
p=03
ECHt, 55 1229 608 963} 23 14 07 |16.1 357 7038
ECFE, 6.8 |21.8 581 959 56 45 3.9 | 170 373 726
p=0.6
ECt, 44 136 341 76.0| 1.8 11 05 | 80 17.0 39.7
ECF, 64 | 153 387 809 )| 55 45 41 |124 244 484

Note: The true DGP is (7.1} with (5.16) and T = 100. We report the frequency of
rejection at the 5 % significance level.

. regression. Therefore, under the exogeneity conditions of Pesaran and Shin (1998)
the limiting normality of the estimated cointegrating vector carries over to the
EC model. Next, we review t-type and F-type tests for the null hypothesis of no
cointegration proposed in an EC framework by Banerjee et al. (1998) and Boswijk
(1994), respectively. Hassler (2000) treated the t-type test in the presence of linear
trends in the data when regressions are run without detrending. Here, we treat the
F-type test in the same situation. We refrain from proving the limiting distribution
but support a conjecture by means of simulation evidence instead.

The main results of our Monte Carlo study are the following. First, in most cases
the the t-type cointegration test is just as powerful as the F-type one. Second,
we investigate the case that is of particular interest in applied work where Az,
is correlated with the regression error. In this situation, the conditional regression
(including contemporaneous Azx; as regressor) still provides valid inference about
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Table 5.4: Conjecture

T =100 - T =250 T =1000
K=1K=2 K=3|K=1K=2 K=3|K=1K=2 K=3
1% | 135 184 189 |1.06 149 146 | 098 134 1.26
5% || 540 618 660 | 517 580 577 | 489 550 547
10 % | 10.37 1145 11.78 | 996 1104 11.18 | 9.72 10.70 10.53

Note: The true DGP is a random walk with drift. We report rejection frequencies of
the F test applied to (5.17) with critical values from B (K — 1).

the cointegration vector relying on the normal approximation. For this result to
hold true it is crucial that Az; is exogenous in the sense that it does not adjust
to past equilibrium deviations. Moreover, cointegration tests from the conditional
regression are more powerful than those from unconditional ones. A general finding
hence is that the conditional error-correction regression outperforms the uncondi-
tional one.
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Summary: Vector autoregressive (VAR) models are capable of capturing the dy-
namic structure of many time series variables. Impulse response functions are typ-
ically used to investigate the relationships between the variables included in such
models. In this context the relevant impulses or innovations or shocks to be traced
out in an impulse response analysis have to be specified by imposing appropriate
identifying restrictions. Taking into account the cointegration structure of the vari-
ables offers interesting possibilities for imposing identifying restrictions. Therefore
VAR models which explicitly take into account the cointegration structure of the
variables, so-called vector error correction models, are considered. Specification, es-
timation and validation of reduced form vector error correction models is briefly
outlined and imposing structural short- and long-run restrictions within these mod-
els is discussed.

6.1 Introduction

In an influential article, Sims (1980) advocated the use of vector autoregressive
(VAR)) models for macroeconometric analysis as an alternative to the large simul-
taneous equations models that were in common use at the time. The latter models
often did not account for the rich dynamic structure in time series data of quar-
terly or monthly frequency. Given that such data became more common in macro
economic studies in the 1960s and 1970s, it was plausible to emphasize modelling
of the dynamic interactions of the variables of interest. Sims also criticized the
way the classical simultaneous equations models were identified and questioned the
exogeneity assumptions for some of the variables which often reflect the prefer-

*1 thank an anonymous reader for comments on an earlier draft of this paper that helped
me to improve the exposition.
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ences and prejudices of the model builders and are not necessarily fully backed by
theoretical considerations. In contrast, in VAR models all observed variables are .
typically treated as a priori endogenous. Restrictions are imposed to a large extent
by statistical tools rather than by prior beliefs based on controversial theories.

In a VAR analysis, the dynamic interactions between the variables are usually
investigated by impulse responses or forecast error variance decompositions. These
quantities are not unique, however. To identify those shocks or innovations and
the associated impulse responses that reflect the actual ongoings in a given system
of variables, usually also requires a priori assumptions which cannot be checked
by statistical tools. Therefore structural VAR (SVAR) models were developed as a
framework for incorporating identifying restrictions for the innovations to be traced
out in an impulse response analysis.

In a parallel development it was discovered that the trending properties of the vari-
ables under consideration are of major importance for both econometric modelling
and the associated statistical analysis. The spurious regression problem pointed out
by Granger and Newbold (1974) showed that ignoring stochastic trends can lead to
seriously misleading conclusions when modelling relations between time series vari-
ables. Consequently, the stochastic trends, unit roots or order of integration of the
variables of interest became of major concern to time series econometricians and
the concept of cointegration was developed by Granger (1981), Engle and Granger
(1987), Johansen (1995) and many others. In this framework, the long-run relations
are now often separated from the short-run dynamics. The cointegration or long-run
relations are of particular interest because they can sometimes be associated with
relations derived from economic theory. It is therefore useful to construct models
which explicitly separate the long-run and short-run parts of a stochastic process.
Vector error correction or equilibrium correction models (VECMs) offer a conve-
nient framework for this purpose. They also open up the possibility to separate
shocks or innovations with permanent and transitory effects. This distinction may
be helpful in identifying impulse responses of interest. Therefore these models will
be used as the framework in the following exposition.

A variable will be called integrated of order d (I1(d)) if stochastic trends or unit roots
can be removed by differencing the variable d times and a stochastic trend still
remains after differencing only d — 1 times. In line with this terminology, a variable
without a stochastic trend or unit root is sometimes called I(0). In the following,
all variables are assumed to be either I(0) or I(1) to simplify matters. Hence, for a
time serie$ variable ygs, it is assumed that the first differences, Ayrs = Yrs ~ Yb,e—1,
have no stochastic trend. A set of I(1) variables is called cointegrated if a linear
combination exists which is I{0). If a system consists of both 7{0) and I(1) variables,
any linear combination which is I(0) is called a cointegration relation. Admittedly,
this terminology is not in the spirit of the original idea of cointegration because
it can happen that a linear combination of I{0) variables is called a cointegration
relation. In the present context, this terminology is a convenient simplification,
however. Therefore it is used here.

Although in practice the variables will usually have nonzero means, polynomial
trends or other deterministic components, it will be assumed in the following that
deterministic terms are absent. The reason is that deterministic terms do not play
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a role in impulse response analysis which is the focus of this study. Moreover,
augmenting the models with deterministic terms is usually straightforward.

In the next section the model setup for structural modelling with cointegrated VAR
processes will be presented. Estimation of the models is discussed in Section 3 and
issues related to model specification are considered in Section 4. Conclusions follow
in Section 5. The structural VECM framework of the present article was proposed
by King et al. (1991) and a recent more general survey of structural VAR and VECM
analysis with some examples was given by Breitung et al. (2004). Further references
will be given in the following. The present article draws heavily on Liitkepohl (2005,
Chapter 9), where further details can be found.

The following general notation will be used. The natural logarithm is abbreviated
as log. For a suitable matrix A, rk(A) and det(A) denote the rank and determinant
of A, respectively. Furthermore, for n > m, the (n x (n — m)) matrix A, denotes
an orthogonal complement of the (n x m) matrix A of rank m, that is, A, is such
that rk(4:) =n —m and A’ A = 0. The orthogonal complement of a nonsingular
square matrix is zero and the orthogonal complement of a zero matrix is an identity
matrix of suitable dimension. Moreover, vec is the column stacking operator which
stacks the columns of a matrix in a column vector and vech is the column stacking
operator for symmetric square matrices which stacks the columns from the main
diagonal downwards only. The (n x n) identity matrix is signified as I, and Dy,
denotes the (n® x 1n(n + 1)) duplication matrix defined such that for a symmetric
(n x n) matrix A, vec(A) = Dy vech(A). The Kronecker product is denoted by ®.

6.2 The Model Setup

As mentioned earlier, it is assumed that all variables are at most I(1) and that the
data generation process can be represented as a VECM of the form

Ayt :aﬁ/yt_l +F1Ayt_1 +---+Fp_1Ayt_p+1+ut, t=1,2,..., (21)

where y; is a K-dimensional vector of observable variables and o and 8 are (K x
r) matrices of rank r. More precisely, 8 is the cointegration matrix and r is the
cointegrating rank of the process. The term o3 y:—1 is sometimes referred to as error
correction term. The T';'s, § = 1,...,p—1, are (K x K') short-run coefficient matrices
and u: is a white noise error vector with mean zero and nonsingular covariance
matrix Ly, uz ~ (0,5,). Moreover, y_p41,-..,Yo0 are assumed to be fixed initial
conditions. Rewriting (2.1) in the levels of the variables gives a VAR(p) model of
the form
Y = Arye—1 4+ -+ ApYr_p + us,

where A; = 04[3/+IK+F1, Az =T "Fi—l, 7= 2,...,]3— 1, and Ap = —Fp_1.
Thus, the levels VAR form includes p lags when p — 1 lagged differences are used
in the VECM (2.1).

6.2.1 The Identification Problem

Impulse responses are often used to study the relationships between the variables
of a dynamic model such as (2.1). In other words, the marginal effect of an impulse
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to the system is traced out over time. The residuals u; are the 1-step ahead forecast
errors associated with the VECM (2.1). Tracing the marginal effects of a change in
one component of u; through the system may not reflect the actual responses of the
variables because.in practice an isolated change in a single component of u; is not
likely to occur if the component is correlated with the other components. Hence, in
order to identify structural innovations which induce informative responses of the
variables, uncorrelated or orthogonal impulses or shocks or innovations are usually
considered.

In a VAR analysis the so-called AB-model of Amisano and Giannini (1997) provides
a general framework for imposing structural restrictions. If cointegrated variables
and VECMs are considered, the special case of a B-model setup is typically used.
We will therefore focus on the B-model in the following. In that setup it is assumed
that the structural innovations, say &:, have zero mean and identity covariance
matrix, € ~ (0, Ix), and they are linearly related to the u: such that

U = BEt .

Hence, X, = BB’. Without further restrictions, the (K x K) matrix B is not
uniquely specified by these relations. In fact, due to the symmetry of the covariance -
matrix, %,, = BB’ represents only %K (K +1) independent equations. For a unique
specification of the K2 elements of B we need at least + K (K —1) further restrictions.
Some of them may be obtained via a more detailed examination of the cointegration
structure of the model, as will be seen in the following.

According to Granger’s representation theorem (see Johansen, 1995), the process
y: has the representation

t oo
yt:EZUi—}'ZE;UtAj +y5, t=1,2,..., (2.2)

i=1 7=0
where the term yg contains the initial values and the EJ’s are absolutely summable
s0 that the infinite sum is well-defined. Absolute summability of the =}’s implies
that these matrices converge to zero for j — oc. Notice that the term z; =
EZ=1 %y = Zp1 + tg, £ = 1,2,..., is a K-dimensional random walk. The long-
run effects of shocks are represented by the term =3 /_, u; which captures the
common stochastic trends. The matrix = can be shown to be of the form

p—1 -1
E=81 {al (IK‘“ZFz) ﬂl:! ali.
i=1

It has rank K —r. Thus, there are K —r independent common trends. Substituting
Be; for u; in the common trends term in (2.2) gives Z5°r_,u; = EBY.._ &
Clearly, the long-run effects of the structural innovations are given by =B because

the effects of an e; impulse vanish in > 72, Ej Bet—; in the long-run.

The structural innovations e; represent a regular random vector with nonsingular
covariance matrix. Hence, the matrix B has to be nonsingular. Thus, rk(EB) = K —
r and there can at most be r zero columns in the matrix ZB. In other words, at most
r of the structural innovations can have transitory effects and at least K —r of them
must have permanent effects. If a cointegrating rank r is diagnosed and r transitory
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shocks can be justified, r columns of =B can be restricted to zero. Because the
matrix has reduced rank K — r, each column of zeros stands for K — r independent
restrictions only. Thus, the r transitory shocks represent r(X — r) independent
restrictions only. Still, it is useful to note that restrictions can be imposed on the
basis of knowledge of the cointegrating rank of the system which can be determined
by statistical means, provided as many transitory shocks can be justified as there
are linearly independent cointegration relations. For a unique specification of B,
further theoretical considerations are required for imposing additional restrictions,
however. .

For just-identification of the structural innovations in the B-model we need a total
of K(K — 1)/2 independent restrictions. Given that r(K — r) restrictions can be
derived from the cointegration structure of the model, this leaves us with 2K (K —
1) — r(K — r) further restrictions for just-identifying the structural innovations.
More precisely, r(r — 1)/2 additional restrictions are required for the transitory
shocks and (K —r)((K —r) —1)/2 restrictions are needed to identify the permanent
shocks (see, e.g., King et al.,, 1991; Gonzalo and Ng, 2001). Together this gives a
total of 2r(r—1)+1(K ~r)((K —r)—1) = 4K (K — 1) —r(K —7) restrictions. The
transitory shocks may be identified, for example, by placing zero restrictions on B
directly and thereby specifying that certain shocks have no instantaneous impact
on some of the variables. Clearly, it is not sufficient to impose arbitrary restrictions
on B or EB. They have to be such that they identify the transitory and permanent
shocks. For instance, the transitory shocks cannot be identified through restrictions
on ZB because they correspond to zero columns in that matrix. In other words,
r(r—1)/2 of the restrictions have to be imposed on B directly. Generally, identifying
restrictions are often of the form

Czpvec(EB) =¢; and Cyvec(B) = c¢s, (2.3)

where C=p and C; are appropriate selection matrices to specify the long-run and
contemporaneous restrictions, respectively, and ¢; and ¢, are vectors of suitable
dimensions. In applied work, they are typically zero vectors. In other words, zero
restrictions are specified in (2.3) for B and B. The first set of restrictions can be
written alternatively as

Cyvec(B) = ¢, (2.4)
where C) = C=p(Ix ® E) is a matrix of long-run restrictions on B.

So far we have just discussed a ‘counting rule’ and, hence, a necessary condition
for identification. Even though the restrictions in (2.4) are linear restrictions, the
full set of equations we have for B is a nonlinear one because the relation %, =
BB’ is nonlinear. Hence, the matrix B will only be identified locally in general.
In particular, we may reverse the signs of the columns of B to find another valid
matrix. If restrictions of the form

Civec(B)=¢; and Csvec(B) = cs (2.5)

are available for B, a necessary and sufficient condition for local identification is

that
2D} (B ® Ix)

rk o/ = K?,
Cs
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where D7, is the Moore-Penrose inverse of the (K? x 1 K (K +1)) duplication ma-
trix Dx (see Liitkepohl, 2005, Proposition 9.4). Although the unknown parameter
matrix B appears in this condition, it is useful in practice because it will fail every-
where in the parameter space or be satisfied everywhere except on a set of Lebesgue
measure zero. Thus, if a single admissible B matrix can be found which satisfies
the restrictions in (2.5) and for which also the rank condition holds, then local
identification is ensured almost everywhere in the parameter space. Thus, trying
an arbitrary admissible B matrix is a possibility for checking identification.

As an example, consider a model for K = 3 variables. Assuming that all variables are
I(1) and the cointegrating rank r = 2, then there can be two transitory shocks and
one permanent shock. If two transitory shocks are assumed, the permanent shock
is identified in this situation without further assumptions because K —r = 1 and,

" hence, the number of additional restrictions is (K —7)((K —r)—1)/2 = 0. Moreover,
only 1 (= ' r(r - - 1)/2)
further restriction is necessary to identify the two transitory shocks. Assuming a
recursive structure for the two transitory shocks and placing the permanent shock
first in the &; vector, the following restrictions are obtained:

) >_|<OO _ * % %
EB=1x%00 and B=|xx0
* 00 . * % ok

In these matrices the asterisks denote unrestricted elements. The two zero columns
in =B represent two independent restrictions only because =B hasrank K—r =1. A
third restriction is placed on B. The way it is specified, the third shock does not have
an instantaneous effect on the second variable. Hence, there are K(K —1)/2 = 3
independent restrictions in total and the structural innovations are locally just-
identified. In this case, uniqueness can be obtained, for instance, by fixing the signs
of the diagonal elements of B.

In this example, with two zero columns in =B, it is also easy to see that it does
not suffice to impose a further restriction on this matrix to identify B locally. To
diseritangle the two transitory shocks, we have to impose a restriction on B. In fact,
it is necessary to restrict an element in the last two columns of B.

In the standard B-model with three variables which does not take into account
the cointegration structure, at least —%—K (K — 1) = 3 restrictions are needed for
identification. In contrast, in the present VECM case, assuming that r = 2 and that
there are two transitory shocks, only one restriction is required because two columns
of EB are zero. Thus, the long-run restrictions from the cointegration structure of
the variables may help in the identification of shocks of interest. As another example
consider a bivariate system with one cointegrating relation. No further restriction
is required to identify the permanent and transitory shocks in this case, if, say,
the first shock is allowed to have permanent effects and the second one can have
transitory effects only. Further examples may be found in Breitung et al. (2004)
and more discussion of partitioning the shocks in permanent and transitory ones is
given in Gonzalo and Ng (2001) and Fisher and Huh (1999) among others.
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6.2.2 Computation of Impulse Responses and
Forecast Error Variance Decompositions

If the matrix B is uniquely specified, impulse responses can be computed easily
from the structural form parameters. Rewriting the VECM (2.1) in levels VAR
form as

» ye = A1ye—1 + - + ApYe—p + Bey,

and computing matrices

2

L B=) @Ay, =12,

j=1

with ®o = Ix and 4; = 0 for j > p, the structural impulse response coefficients
can be shown to be the elements of the matrices

©;,=%;B, 7j=012,... (2.6)

(see Liitkepohl, 2005, for details).

Forecast error variance decompositions are alternative tools for analyzing the dy-
namic interactions between the variables of a VAR model. Denoting by wy;(h) the
percentage contribution of variable j to the h-step forecast error variance of variable
k, it can be shown that

K
wij(h) = (9%9‘,0 + el%j,h—l) Z(el%j,o oo O 1)
j=1

where ;1 is the kj-th element of ©;. Because these forecast error variance com-
ponents depend on the structural impulse responses, they also require identified
innovations, that is, a uniquely specified matrix B, for a meaningful interpretation.

In practice, the parameters of the VECM are unknown and have to be estimated
from the given time series data. This issue will be considered next. Computing the
impulse responses and forecast error variance components from estimated rather
than known parameters gives estimates of these quantities. Some implications of
working with estimated impulse responses will also be considered in the next section.

6.3 Estimation

If the lag order and the cointegrating rank as well as structural identifying restric-
tions are given, estimation of a VECM can proceed by first estimating the reduced
form parameters and then estimating B as described in the following.

6.3.1 Estimating the Reduced Form

The parameters of the reduced form VECM (2.1) can be estimated by the Johansen
(1995) Gaussian maximum likelihood (ML) procedure. In presenting the estimators,



80 6 Cointegrated Structural VAR Analysis

the following notation will be used, where a sample of size 7" and p presample
values are assumed to be available: AY = [Ay1,...,Ayr], Y_1 = [yo,...,y7—1],

U = [ul,... ,uT], I'= [Fl NI Fp_l] and X = [X(),... ,XT_.l] with
Ays1
X1 =
Ayrpia

Using this notation, the VECM (2.1) can be written compactly as
AY =af'Y_1 +TX +U. (3.1)

Given a specific matrix af’, the equationwise least squares estimator of I is easily

seen to be R
T'=(AY - af Y_ 1) X' (XX)71. (3:2)

Substituting this matrix for " in (3.1) and rearranging terms gives
AYM =afY_ 1M+, (3.3)

where M = I - X’(XX")~' X. Estimators for o and 3 can be obtained by canonical
correlation analysis (see Anderson, 1984) or, equivalently, a reduced rank regres-
sion based on the model (3.3). Following Johansen (1995), the estimator may be
determined by defining

Soo =T 'AYMAY’, Sor =T 'AYMY.,, Su=T"'Y MY,

and solving the generalized eigenvalue problem

det(AS11 ~ 851570 So1) = 0. (3.4)
Denote the ordered eigenvalues by A1 > .-+ > Ax and the associated matrix of
eigenvectors by V = [b1,...,br]. The generalized eigenvectors satisfy A\;S11b; =

56150_01501@ and they are assumed to be normalized such that V'S1;V = Ix. An
estimator of 8 is then obtained by choosing
B=1bi,...,b]
and « is estimated as
&=AYMY'  BBY. MY ' )1, (3.5)
that is, @ may be regarded as the least squares estimator from the model.

AYM =of'Y_ M +U.

Using (3.2) a feasible estimator of T'is T = (AY ~&8'Y. 1) X' (X X')~!. Under Gaus-
sian assumptions, these estimators are ML estimators conditional on the presample
values (Johansen, 1991, 1995). They are consistent and jointly asymptotically nor-
mal under more general assumptions than Gaussianity. The asymptotic distribution
of ' is nonsingular so that standard inference may be used for the short-term pa-
rameters I';.
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Notice that for any nonsingular (r x r) matrix C, we may define o* = aC’ and
B8* = BC™! and get o = o*B*. In order to estimate the matrices o and 8
consistently, it is necessary to impose identifying (uniqueness) restrictions. Without
such restrictions, only the product a3’ can be estimated consistently. An example of
identifying restrictions which has received some attention in the literature, assumes
that the first part of 8 is an identity matrix, 8’ = [Ir : B{x_,)], where Bk ) is a
((K =) xr) matrix. For instance, for r = 1, this restriction amounts to normalizing
the coefficient of the first variable to be one. By a suitable rearrangement of the
variables it can always be ensured that the normalization §' = [I, : B{x_.] is
possible. Test procedures exist for checking the normalization empirically if a proper
ordering of the variables is not known a priori (Boswijk, 1996; Saikkonen, 1999).

Using this normalization, the parameters S(x_,y are identified so that inference
becomes possible. Generally, if uniqueness restrictions are imposed, it can be shown
that T(8 — 8) and VT(@ — a) converge in distribution (Johansen, 1995). Hence,
the estimator of § converges with the fast rate T and is therefore sometimes called
superconsistent. In contrast, the estimator of o converges with the usual rate VT.
It has an asymptotic normal distribution under general assumptions and, hence, .
it behaves like usual estimators in a model with stationary variables. In fact, its
asymptotic distribution is the same that would be obtained if § were replaced by
the true cointegration matrix 8 and « were estimated by least squares from (3.3).

Although inference for o and [ separately requires identifying restrictions, such
constraints for oo and B are not necessary for the impulse response analysis. In
particular, the same matrices = and ©;, j = 0,1,2,..., are obtained for any pair
of (K x r) matrices o and 3 that gives rise to the same product matrix a8’

6.3.2 Estimating the Structural Parameters

Replacing the reduced form parameters by their ML estimators gives the concen-
trated log-likelihood function

log I.(B) = constant — g log |BJ* — %tr(B'“lB_lflu), (3.6)

where 5, = 7! Zthl 4,7; and the 7:’s are the estimated reduced form residuals.
Maximization of this function with respect to B subject to the structural restrictions
has to be done by numerical methods because a closed form solution is usually not
available.

Suppose the structural restrictions for a VECM are given in the form of linear
restrictions as in (2.5). For computing the parameter estimates, we may replace =
by its reduced form ML estimator,

p—1 -1
E=01 [a; (IK -3 Fi) mJ &\,
i=1

and the restricted ML estimator of B can be obtained by optimizing the concen-
trated log-likelihood function (3.6) with respect to B, subject to the restrictions in
(2.5), with C; replaced by N

Ci=Cap(Ix ® E)
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(see Vlaar, 2004). Although this procedure results in a set of stochastic restric-
tions, from a numerical point of view we have a standard constrained optimization
problem which can be solved by a Lagrange approach. Due to the fact that for a
just-identified structural model the log-likelihood maximum is the same as for the
reduced form, a comparison of the log-likelihood values can serve as a check for a
proper convergence of the optimization algorithm used for structural estimation.

Under usual assumptions, the ML estimator of B, B say, is consistent and asymp-
totically normal,
VTvec(B — B) 3 N(0,%5).

Thus, the t-ratios of elements with regular asymptotic distributions can be used for
assessing the significance of individual parameters if setting the associated element
of B to zero is a valid restriction which leads to a nonsingular B matrix. The
asymptotic distribution of Bis singular, however, because of the restrictions that
have been imposed on B. Therefore F-tests will in general not be valid and have to
be interpreted cautiously. Expressions for the covariance matrices of the asymptotic
distributions in terms of the model parameters can be obtained by working out
the corresponding information matrices (see Vlaar, 2004). For practical purposes,
bootstrap methods are in common use for inference in this context.

Although in structural VAR and VECM analysis just-identified models are often
used to minimize the risk of misspecification, the same approach can be used if
there are over-identifying restrictions for B. In that case, BB’ will not be equal to
the reduced form white noise covariance estimator X, however. Still the estimator
of B will be consistent and asymptotically normal under general conditions. The
LR statistic, . ~

Arr = T(log |BB'| — log [Z4]), (3.7)
can be used to check the over-identifying restrictions. It has an asymptotic x*-
distribution with degrees of freedom equal to the number of over-identifying re-
strictions if the null hypothesis holds.

6.3.3 Estimation of Impulse Responses

The impulse responses are estimated by replacing all unknown quantities in (2.6)
by estimators. Suppose the structural form coefficients are collected in a vector o
and denote its estimator by &. For inference purposes it is important to note that
any specific impulse response coefficient § is a (nonlinear) function of « and it is
estimated as

6=06(a). (3.8)
If & is asymptotically normal, that is,
VT — a) 3 N(0,%a), (3.9)
then 6 is also asymptotically normally distributed,
VIO — 0) 5 N(0,03), (3.10)
and the variance of the asymptotic distribution is
s 06 oo

(3.11)

05 = — Xa=—-
"~ Ba’ "% da
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Here 80/8a denotes the vector of first order partial derivatives of # with respect
to the elements of cv. The result (3.11) holds if o3 is nonzero, which follows if Ta
is nonsingular and 86/8a # 0. In general the covariance matrix Yz will not be
nonsingular for cointegrated systems, however, due to the superconsistency of ,/B\
Moreover, the impulse responses generally consist of sums of products of the VAR
coefficients and, hence, the partial derivatives will also be sums of products of such
coefficients. Therefore the partial derivatives will also usually be zero in parts of
the parameter space. Thus, o3 = 0 may hold and, hence, # may actually converge
at a faster rate than /T in parts of the parameter space (cf. Benkwitz et al., 2000).

It was found, however, that even under ideal conditions where the asymptotic the-
ory holds, it may not provide a good guide for small sample inference. Therefore
bootstrap methods are often used to construct confidence intervals for impulse re-
sponses (e.g., Kilian, 1998; Benkwitz et al., 2001). In the present context, these
methods have the additional advantage that they avoid deriving explicit forms of
the rather complicated analytical expressions for the asymptotic variances of the
impulse response coefficients. Unfortunately, bootstrap methods generally do not
overcome the problems due to zero variances in the asymptotic distributions of the
impulse responses and they may provide confidence intervals which do not have the
desired coverage level even asymptotically (see Benkwitz et al., 2000, for further
discussion).

Although we have discussed the estimation problems in terms of impulse responses,
similar problems arise for forecast error variance components. In fact, these quan-
tities are proportions and they are therefore always between zero and one. In other
words, they are bounded from below and above. Moreover, the boundary values are
possible values as well. This feature makes inference even more delicate.

So far it was assumed that a model and identifying structural restrictions are given.
In practice this is usually not the case. While the structural restrictions normally
come from theoretical considerations or institutional knowledge, there is a range
of statistical tools for specifying the reduced form of a VECM. These tools will be
summarized briefly in the next section.

6.4 Model Specification and Validation

The general approach to structural VECM analysis is to specify a reduced form first
and then impose structural restrictions that can be used in an impulse response
analysis. To specify the reduced form VECM, the lag order and the cointegrating
rank have to be chosen. Most procedures for specifying the latter quantity require
that the lag order is already known whereas order selection can be done without
prior knowledge of the cointegrating rank. Therefore lag order selection is typically
based on a VAR process in levels without imposing a cointegration rank restriction.
Standard model selection criteria of the form

Cr(m) = log det(£,(m)) -+ cre(m) (4.1)

can be used for that purpose. Here ,(m) = T Zle U, is the residual co-
variance matrix estimator for a model with lag order m and ¢(m) is a function
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which penalizes large VAR orders. For instance, @(m) may represent the number
of parameters which have to be estimated in a VAR(m) model. The quantity cr
is a sequence that depends on the sample size T. For example, for Akaike’s AIC,
¢ = 2/T and for the popular Hannan-Quinn criterion, cr = 2loglogT/T. The
term log det (3, (m)) measures the fit of a model with order m. It decreases (or at
least does not increase) when m increases because there is no correction for degrees
of freedom in the covariance matrix estimator. The criterion chosen by the analyst
is evaluated for m = 0, . .., Pmax, Where Pmax is a prespecified upper bound and the
order p is estimated so as to minimize the criterion. Rewriting the levels VAR(p)
model in VECM form, there are p — 1 lagged differences that may be used in the
next stage of the analysis, where the cointegrating rank is chosen.

Once the lag order is specified the cointegrating rank can be chosen by defining
the matrix IT == a8’ and testing a sequence of null hypotheses Ho(0) : rk(IT) = 0,
Ho(1) : rk(Il) =1, ..., Ho(K — 1) : tk(II) = K — 1 against the rank being greater
than the one specified in the null hypothesis. The rank for which the null hypothesis
cannot be rejected for the first time is then used in the next stages of the analysis.
A range of test statistics is available for use in this testing sequence (see, e.g.,
Hubrich et al., 2001, for a recent survey). The most popular tests in applied work
are Johansen’s (1995) likelihood ratio tests. They are easy to compute because the
Gaussian likelihood function is easy to maximize for any given cointegrating rank,
as shown in Section 3.1.

When a reduced form model has been specified, a range of tools can be used for
model checking. For example, tests for residual autocorrelation and structural sta-
bility may be used (see Liitkepohl, 2005, for details). Finally, once a satisfactory
reduced form is available, the structural restrictions may be imposed and the model
can then be used for impulse response analysis.

6.5 Conclusions

In this article a brief overview of some important issues related to structural mod-
elling based on VARs with cointegrated variables was given. Generally, using a
standard VAR analysis, the impulse responses are the relevant tools for interpret-
ing the relationships between the variables. Unfortunately, they are not unique and
subject matter knowledge is required to specify those impulses and their associ-
ated responses which reflect the actual ongoings in the system of interest. It was
discussed how the cointegration properties of the variables can help in specifying
identifying restrictions properly. In particular, the cointegrating rank specifies the
maximum number of transitory shocks in a system with cointegrated variables.
This rank in turn can be determined by statistical procedures. As a final note it
may be worth mentioning that the software JMulTi (Liitkepohl and Kritzig, 2004)
provides easy access to the necessary computations for a structural VECM analysis.
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Summary: Owing to enormous advances in data acquisition and processing tech-
nology the study of high (or ultra) frequency data has become an important area of
econometrics. At least three avenues of econometric methods have been followed to
analyze high frequency financial data: Models in tick time ignoring the time dimen-
sion of sampling, duration models specifying the time span between transactions
and, finally, fixed time interval techniques. Starting from the strong assumption
that quotes are irregularly generated from an underlying exogeneous arrival pro-
cess, fixed interval models promise feasibility of familiar time series techniques.
Moreover, fixed interval analysis is a natural means to investigate multivariate dy-
namics. In particular, models of price discovery are implemented in this venue of
high frequency econometrics. Recently, a sound statistical theory of 'realized volatil-
ity’ has been developed. In this framework high frequency log price changes are seen
as a means to observe volatility at some lower frequency.

7.1 Introduction

With the enormous advances in computer technology, data acquisition, storage and
processing has become feasible at higher and higher frequencies. In the extreme case
of ultra high frequency financial data the analyst has access to numerous character-
istics, called marks, of each transaction (price and quantity traded, corresponding
bid and ask quotes etc.) and to the time of its occurrence, measured in seconds.
As a consequence, numerous financial market microstructure hypotheses undergo
empirical tests based on ultra frequency data. Typical issues in this vein of mi-
crostructure analysis are, for instance, the informational content of traded volumes
for (future) prices (Karpoff, 1987), the relation between prices and clustering of
transactions (Easley and O’Hara, 1992), or the significance of bid ask spreads as a
means to identify the presence of informed traders in.the market (Admati and Pflei-
derer, 1988). From an econometric perspective such hypotheses naturally require an
analysis of the marks in tick time, and, eventually motivate a duration model. The
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methodology for the analysis of marked point processes as well as durations has ex-
perienced substantial progress since the introduction of Autoregressive Conditional
Duration (ACD) models by Engle and Russell (1998). For a recent overview the
reader may consult Engle and Russell (2005).

Another area of market microstructure modeling is information diffusion across
markets trading the same asset or close substitutes. Then, it is of interest if inde-
pendent price discovery (Schreiber and Schwartz, 1986) takes place in some major
market or, alternatively, if the efficient price is determined over a cross section of
interacting exchanges. Following Harris et al. (1995) or Hasbrouck (1995) price dis-
covery is investigated by means of vector error correction models (VECM) mostly
after converting transaction time to fixed time intervals of 1, 10 or 30 minutes, say.
Although the latter conversion goes at the cost of loosing information on the trading
intensity, it appears inevitable since the price quotations of interest are collected as
a vector valued variable. Owing to irregular time spacing of quotes the statistical
analysis of fixed interval data has to cope with methodological issues arising from
the incidence of missing values. A condensed review over econometric approaches
to model price discovery will be given in Section 7.2.

Apart from market microstructure modeling high frequency data have recently at-
tracted large interest in econometrics as a means to estimate conditional volatility
of asset prices at lower frequencies (Anderson et al., henceforth, ABDL, 2001, 2003).
Owing to its consistency for the process of conditional variances this estimator has
particular appeal since it makes the latent volatility observable in the limit. A sound
statistical theory on ‘realized volatility’ is now available making it a strong com-
petitor to parametric approaches to modeling time varying second order moments.
Section 7.3 will provide theoretical and empirical features of 'realized volatility’.

7.2 Price Discovery

A particular issue in empirical finance is the analysis of dynamic relationships
between markets trading simultaneously a given security. Since cross sectional price
differentials cannot persist, it is of interest, if the involved market places contribute
jointly to the fundamental value of the asset or if particular markets lead the other.
The process of incorporating new information into the efficient price has become
popular as price discovery (Schreiber and Schwartz, 1986).

Starting from stylized features of high frequency data this section will first discuss
the scope of fixed interval techniques. Then, the VECM is motivated as a means to
address price discovery and a few empirical results are provided. A formal measure
of a particular market’s contribution to price discovery is derived along with a brief
formalization of the VECM. Finally, parameter estimation in case of missing values
is discussed.
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7.2.1 Nonsynchronous Trading and Fixed Interval
Analysis

Financial markets do not operate continuously but rather show strong concentra-
tion of activity. Intraday periodicity of marks has been documented e.g. by Engle
and Russell (1998). On stock markets, for instance, volatility and trade frequency
show distinct U-shaped patterns over the trading day. Intradaily seasonality is also
typical for the decentralized foreign exchange (FX) markets which are open 24 hours
a day, seven days a week (Dacorogna et al., 1993). Making the strong assumption
that marks are irregularly generated from an underlying discrete time process such
that the order arrival and the quote process are independent (Ghysels et al., 1997)
quotations are conveniently obtained as the last observation recorded in a particu-
lar time interval of fixed length, one minute say. Alternatively some interpolation
scheme may be applied.

Although the analysis of intradaily return processes conditional on observed pat-
terns of quoting might suffer from interdependence between quotes and intensity
such an approach is almost indispensable if relationships between informationally
linked markets are investigated. The extent to which time dependence affects the
stochastic properties of marks remains an empirical question. Goodhart and O’Hara,
(1997) conclude that, empirically, time dependence is still an open issue and is likely
problem specific. Jord4 and Marcellino (2003) argue that numerous features which
are typically reported for high frequency FX rates, e.g. intraday seasonality and
volatility clustering, may be attributed to irregular sampling from a homogeneous
and continuous log price process, as, for instance, a random walk. Interestingly,
they find by means of Monte Carlo simulation that sampling at fixed equidistant
. intervals best recovers the properties of the underlying process.

7.2.2 Motivation and Applications of VECM

To characterize the dynamics of price discovery VECM (Engle and Granger, 1987;
Johansen, 1995) have been motivated by Harris et ol. (1995). For the econometric
analysis it is assumed that (log) price processes are integrated of order one, i.e.
stationary after taking first differences. Arbitrage trading will guarantee that cross
sectional prices do not persistently deviate from each other. Thus, the VECM rep-
resentation for cointegrated time series variables is a suggestive framework for the
econometric analysis of price discovery.

De Jong et al. (1998) and Herwartz (2001) analyze joint dynamics of the JPY/DEM
quotes and an implied price constructed from the USD exchange rates of these cur-
rencies. It is found that the highly liquid USD markets and the JPY/DEM market
both contribute to JPY/DEM price formation. Grammig et ol. (2005) confirm for
three major German stocks with cross listed counterparts at the New York Stock
Exchange (NYSE) that the home market (Frankfurt Stock Exchange) is the major
source of price discovery but fails to determine the fundamental asset price com-
pletely. Adopting a VECM specified in tick time Harris et al. (1995) investigate
discovery of IBM stock prices by the NYSE and other US stock exchanges in the
Midwest and Pacific area. According to their findings NYSE prices show a stronger
response to interregional price differentials in comparison with the remaining mar-
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ket places. Huang (2002) estimates the contribution of two particular electronic
communication networks (ECN) and Nasdaq market makers to price discovery for
the 30 most heavily traded shares at Nasdaq in June 1998 and November 1999. It
is found that the purely anonymous trade operating via ECN contributes substan-
tially to price formation, and, in addition, the relative contribution of ECN has
vastly increased over time.

7.2.3 The Vector Error Correction Model

Let p; = (p1s,pat, - - -, Pns) denote a vector of prices for one security observed in
time £ over a cross section of N markets. The VECM of order (g—1) is derived from
an unrestricted vector autoregression of order ¢ and reads as (Johansen, 1995):

Ap; =Hpe—1 +T1Ape—1 + ...+ Tp—1Aps—py1 + ug . (7.1)

The error vector u; is serially uncorrelated with covariance matrix Eluzui] = Q =
Jwisl, 4,5 = 1,..., N. In the present context u; may be interpreted as innovations
to the fundamental value of the asset. Market efficiency will ensure that differentials
between integrated log prices, as e.g.
pit — P2, Pit — P3¢, ---, P1t — PNt, will be stationary, and thereby provide N — 1
cointegrating relationships. Owing to cointegration the matrix II in (7.1) has rank
N — 1 and allows the factorization IT = af’, where @ is a N x (N — 1) matrix and

B is eg.
g =150, (7.2)

with 1 and II(V——)I denoting a unit column vector and minus the identity matrix
of dimension N — 1, respectively. Weak exogeneity of a particular market j will
result in rowwise zero restrictions in «, a; = 0, and implies that market j does not
adjust towards a new equilibrium in direct response to price differentials. Apart
from this assessment of market j’s short run contribution to price discovery, the
market specific impact on equilibrium prices is also of interest. Formalizing the
latter Hasbrouck (1995) introduced a measure closely related to the forecast error
variance decompositions. To derive the relative contribution of market j to prices
in the long run it is convenient to start from the MA-representation of stationary
price changes

Apy = AL)ug, ALYy =Ao+AL+AL% +. ... (7.3)

Integrating (7.3) one obtains the so-called common trend representation of p:, i.e.
t
pe = po+ ADE + A (Lyus, & = i, (7.4)
i=1

where A*(z) contains scalar polynomials in z. According to the interpretation of u;
carrying market news the quantity A(1) 2221 u; measures the permanent impact
of news on prices. Owing to cointegration linking the variables in p; 8'A(1) = 0
(Engle and Granger, 1987). From the particular structure of 8’ given in (7.2} it
follows that the N rows in A(1) are identical. Let A denote any row of A(1) and
A; its typical element. Then, the total variance of the common stochastic trend is
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AQN. In case of a diagonal structure of €2 the latter is comprised by N distinct
sources of news and, thus, the share of total variance going back to the j-th market
is

2
AQN
In empirical practice, however, (2 is likely not diagonal, i.e. error terms in u; exhibit

contemporaneous correlation. Therefore one may use a Cholesky factorization of Q2
to isolate the underlying structural innovations e; as

(7.5)

8j

e = C luy & 1y = Cey, Q = CC’, C lower triangular.
Then, the contribution of market j to price discovery is

. _ ((A0);)?
Similar to orthogonalized impulse responses (Liitkepohl, 1991), however, sj will
depend on the ordering of markets in p;. Therefore alternative orderings of the
variables in p; should be studied to obtain upper and lower bounds for sj. Has-
brouck (1995) points out that contemporaneous correlation in 2 is likely to be a
consequence of temporal aggregation. Thus, sampling at very high frequencies will
to some extent guard against spurious interpretations of the information shares de-
fined above. Frijns and Schotman (2003) propose an information criterion assessing
the prevalence of microstructure noise in dealer quotes. Owing to its dependence
on the employed calendar time intervals it could be used to determine a particular
sampling frequency in a data driven way.

7.2.4 Parameter Estimation with Incomplete
Samples

Fixed interval samples may consist of both, price quotations and missing values. To
cope with such sampling schemes de Jong and Nijman (1997) introduce a moment
estimator for VECM. As a competing procedure one may regard quasi maximum
likelihood (QML) estimation using the Kalman Filter for recursive log likelihood
evaluation of a state space representation implied by (7.1) (Kohn and Ansley, 1986;
Jones, 1980). Apart from capturing irregular sampling, the state space form will
allow numerous generalizations of linear VECM which are natural when analyzing
dynamics of empirical price processes.

Within the state space framework an observable output (x:) depends on the state
of a dynamic system in time ¢ (&:), exogenous influences (w:), and some unpre-
dictable zero mean errors (7;). The state itself depends on the previous state and
an unpredictable error (e;). Formally these dependencies are denoted by means of
the so-called observation and state equation, respectively:

xx = B w + H & + n, (7.7)
(nx1) (nxw)(wx1) (nxr){rx1l) (nx1)
& = F S+t e (7.8)

(rx1) (rxr)(rx1) (rx1)
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For QML estimation both vector processes 7: and €; are assumed to follow a mul-
tivariate normal distribution and

Elnng] = { Qifi=s

0 else 0 else

, Bl egel] = { Rift=s , Elntes] =0 for all ¢,s.
Setting B = @ = 0 the model in (7.1) can be given as a special case of (7.7)
and (7.8). In this case the dynamic model is specified for the log price series. The
observation equation becomes an identity and R is just a zero matrix except for
its upper left block which is equal to ). The specification in (7.7) and (7.8) is
already sufficient to nest a variety of dynamic models including cointegrated moving
average (MA) specifications employed by De Jong et al. (1998). Notwithstanding,
it is worthwhile to mention a few veins of generalizations that may be particularly
fruitful for an analysis of fixed interval financial data.

Firstly, it should be noted that all parameter matrices B, H, F, @ and R may exhibit
deterministic or stochastic time dependence. In the former case one may think of pe-
riodic systems formalizing intraday seasonalities. Stochastic parameter variation is
typically implemented by relating model parameters to predetermined variables. To
provide a particular example, the assumption of time invariant covariances @ and
R may be criticized when modeling financial returns, often showing marked volatil-
ity clustering. Popular models to account for time varying second order moments,
as the family of (generalized) autoregressive conditional heteroskedastic (G)ARCH
models (Engle, 1982; Bollerslev, 1986) or stochastic volatility (SV) models {Taylor,
1986), may be implemented via a state space model (Goodhart et al., 1993). The
normality assumption may be justified by means of QML theory but, secondly, it
is likely at odds with stylized features of high frequency data. The Kalman Filter,
however, may also be generalized to take non normality of innovations explicitly
into account when implementing the iterative updating schemes. Thirdly, the linear
relationships characterizing the conditional mean of the model in (7.1) can be gen-
eralized to capture nonlinear error correction dynamics formalized, for instance, by
means of smooth transition (Terdsvirta, 1994) as in Herwartz (2001). Taking trans-
action costs implicitly into account one may also formalize a threshold cointegration
model (Lo and Zivot, 2001).

7.3 Realized Volatility

Volatility clustering characterizes price processes observed at speculative markets
at ultra (by transaction), high, intermediate (daily) to lower frequencies (weekly,
monthly). In the sequel of its introduction the GARCH model and its numerous
parametric, semi- and nonparametric variants as well as SV models have been
successfully applied in empirical studies of higher order dynamics of speculative
prices. Merely the number of competing approaches capturing some but hardly all
stylized facts of empirical returns indicates that merits and weaknesses of particular
models are to some degree sample specific. Therefore one may a-priori opt for a
model free approach to volatility estimation which has recently been popularized
under the notion of 'realized volatility’ by ABDL (2001, 2003) or Barndorff-Nielsen
and Shephard, henceforth BS, (2002a,b).
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This section will first note some early applications and recent contributions to the
theory of realized volatility. Then, two asymptotic features of the variance estimator
will be discussed in turn, namely consistency and conditional normality. Empirical
properties of realized variance are collected in an own subsection, as well as recent
modifications of the estimator.

7.3.1.  Measuring Volatility from High Frequency
Data

The basic idea of estimating lower frequency variances by summing up the squares
of uncorrelated higher frequency returns has some tradition in empirical finance.
For instance, Schwert (1989) constructs monthly (stock) variance estimates as a
sum over squared daily returns and, similarly, Schwert (1990) exploits intraday
returns to estimate daily variances. A sound statistical theory on realized volatility
is, however, the focus of numerous recent contributions to financial econometrics as
e.g. ABDL (2001, 2003), BS (2002a,b). For a detailed review over the field the reader
may consult Andersen et al. (2005). Owing to both, computational feasibility and
theoretical underpinning, realized volatility methods suggest themselves also for
an analysis of (realized) conditional covariances (BS 2004, Andersen et al., 2004,
henceform ABDW) - an area of empirical finance where multivariate parametric
models, GARCH or SV, crucially suffer from the curse of dimensionality.

Since the statistical theory on realized variance has gained substantially from the
central limit theory in BS (2002a,b) going beyond the consistency of realized vari-
ance (ABDL, 2001, 2003) the discussion of asymptotic properties is mostly taken
from BS (2002a). The statistical concepts are provided for the univariate case. To
familiarize with the theory of realized covariation or reahzed beta the reader is
referred to BS (2004) or ABDW (2004).

7.3.2 Consistency of Realized Variances

It is assumed that in continuous time the log price process of a speculative asset
(p(r),7 > 0) is a special semimartingale (Back, 1991) and may be given as the
solution of a stochastic differential equation (SDE)

dp(r) = p(r)dr + s(r)dW(r), (7.9)

where 11(7) is a possibly time varying drift term. The spot volatility process(s(r), 7 >
0) is strictly stationary by assumption, locally square integrable and independent
of the standard Brownian motion W (7). Possible candidates to formalize the spot
variance process are provided, for instance, within the class of constant elasticity
of variance processes nesting in particular the GARCH diffusion model (Nelson,
1990). Positive Ornstein-Uhlenbeck processes are considered by BS (2002a, b). It is
worthwhile to point out that the model in (7.9) allows (1) to depend on s%(7), e. g.
w(T) = at + Bs*(7), thereby formalizing a risk premium. Note that in case with
constant drift and variance the SDE in (7.9) collapses to the model introduced by
Merton (1973).

Discrete compounded returns measured over a sequence of intervals of length & (one
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day, say) are obtained as
re = p(td) — p((t —1)8), t=1,2,.... (7.10)

>From the specification in (7.9) it is apparent that the latter will exhibit a mixed
normal distribution, i. e.

r

relo? ~ N(0,02), 02 = 0*(t8) — o?((t — 1)8), 0%(7) :/0 2(w)du
(7.11)

Following BS (2002a) o7 will be referred to as the actual variance. As specified,
the log price process p(1) = fOT dp(u)du allows to recover the integrated variance
o3(r) = fOT ds?(u)du. For this purpose consider a sequence of partitions of the
interval [0,7], 0 =75 <7 <...,<7j =T, where sup,,(77., — %) — 0 as ¢ —
oo. Then, the theory of quadratic variation (Protter, 1990) yields asymptotically

plim,_, | > (p(rd) = p(r5,_))?| =o°(7).

m=1

Note that asymptotic theory applies with regard to the number of intra-interval
price observations (M,). The latter result may be specialized to estimate actual
daily variances from intraday returns (rm,:). To formalize the latter, sampling at
an equidistant grid of time instants ¢ — [od,t — 014,...,

t— Imd,l; = (M —i)/M, is assumed without loss of generality, i. e.

rm,t=p<(t—1)5+mﬁ5>fp<(tfl)5+w>,m:l,...,M.

(7.12)
Then, the sum of intraday squared price changes
M
6= 1oy (7.13)
m=1

is an estimate of o7 called realized variance. To illustrate the basic mechanism
obtaining &7 as a consistent estimator of o7 consider the issue of estimating the
daily constant variance, ds°, in the Merton (1973) model by means of rescaled

intradaily returns observed over day ¢:

5 M 5 —1 M
&? = 5-§2 = M Z T"r2n,t <M> = Z T"r2n,t . (714)

m=1

Since
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the variance of squared intraday returns is seen to be
WERS §\?
2 2 2
: = - 4 -} . .
Var[ry, ] = 2s (M) +4ps (M) (7.15)

Now, Var[$?] B 0 as M — oo such that §3% is consistent for the actual daily
variance §s%. Note that the realized variance is unbiased in case p(r) = 0.

The former observation that the use of high frequency returns will deliver a con-
sistent estimator for the variance parameter (7.14) is well established since Merton
(1973). A central contribution of the theory underlying realized volatility is that
basically the same arguments carry over to the case of time varying but continuous
spot variance. Moreover, it is worthwhile to point out that realized variance remains
consistent even in case the log price differential in (7.9) is augmented with a jump
component (ABDL, 2001, 2003). Similar to the speciality of the SDE in (7.9), it is
essential that potentially deterministic parts of the jump process are offset by jump
innovation risk to keep the risk return relationship balanced. Although consistency
of realized variance is maintained in presence of jumps there is not yet a central
limit theory of realized volatility available allowing for jumps. For this reason the
less general class of log price processes in (7.9) is considered here.

In the construction of the realized variance, apparently, possible intra-interval sea-
sonalities of the spot variance s?(7) is safely ignored. Intraday seasonality of volatil-
ity is, however, well documented and deserves particular attention when adopting
parametric volatility models. In case of constant spot variance the result in (7.15)
is also informative for the rate of convergence. Rescaling §% by v M will deliver an
estimator with nondegenerate variance.

For the more general class of stochastic volatility models BS (2002a) start from
defining a realized variance error as

us = 8¢ —0; (7.16)

M
53 oheleme — 1), Eme ~id N(0,1). (7.17)
m=1

It is seen that unconditionally

Varfu:] = ZME[(O'%,t )2
2M (Var[o? o] + (Elo1 1)),

i

where intradaily variances U?n,t are similarly defined as returns in (7.12), i.e.

5 ~1)0
U?n,t:<72<(t*1)5+mﬁ>—02<(t—1)5+£m]\4————)—>,m:1,...,M.

The unconditional moments of O'it will depend on the corresponding quantities of
s%(7). Taking the expectation one has immediately

MEo3,] = §Bls*()].
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Moreover, as shown in BS (2002a),

A}iinoo(MZVar{ait]) = §*Var[s*(7)]. (7.18)

Combining the latter two results it turns out that for appropriately rescaled realized
variance errors a nondegenerate distribution is obtained, since

Jim Var|[VVM(67 — o)) = 26°(Var[s*(7)] + (E[s*(1)])?) . (7.19)

7.3.3 Conditional Normality of Realized Variances |

So far, consistency of realized variance has been derived mainly under the assump-
tion of local square integrability of the spot variance process s%(7). To derive the
asymptotic distribution of the realized variance error in (7.19) BS (2002a) make the
stronger assumption that s?(7) is of locally bounded variation, implying the (local)
existence of fourth order moments of s(7). Note that the strategy of strengthening
the underlying set of assumptions to obtain stronger asymptotic results parallels
the case of dependent linear processes (White, 1984). In case s*(7) is of locally
bounded variation as M — oo

% ts
\/_ZM;______(%\/U_;:) 2 N(0,1), of =/(t_1)5 s*(u)du . (7.20)

Practical application of the result in (7.20) is, however, infeasible since the process
of fourth order moments, s*(), is not observed. Similar to the quadratic variation
result, however, a consistent estimator for of is available from

M M
5 D e B 307 (7.21)

m=1

After substitution of unknown guantities in (7.20) by consistent estimators given
in (7.21) a feasible counterpart of (7.20) is obtained as

\/3 (6% — ai

) N(O, 1). (7.22)
m 1 m t
It is worthwhile to underscore that the result in (7.20) holds even in case of a nonzero
drift term p(7) in (7.9) such that the deterministic part of the SDE has only third
order effects on realized variance. An implication of the central limit result in (7.20)
is that unconditionally realized variance errors will have a mixed normal distribution
as M — co. Investigating the accuracy of the asymptotic approximation for finite
M BS (2005) simulate volatility diffusions as positive Ornstein-Uhlenbeck processes
and find that for moderate values of M the tails of the conditional distribution
in (7.22) differ considerably from the normal limit. For log transformed realized
variances, however, the implied asymptotic results

\/' (ln(a?) 1n<at>> 4 N
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with feasible counterpart

(In(62) — In(c?)) 4 4 N(0,1)
\fV

m 1 mt /(Ut)

are almost achieved for M = 48.

7.3.4 Stylized Features of Realized Volatility

In the following, stylized facts of realized variances estimated throughout for the
daily frequency are provided. Moreover, some results on realized covariance and
correlation are stated briefly.

Constructing realized variance measures from 30 minute log changes of the DEM /
USD and JPY / USD exchange rates ABDL (2003) document firstly that over a ten
year period the unconditional distribution of daily log FX rate changes standard-
ized by realized volatility 6; is well described by the Gaussian distribution. It is
worthwhile to point out that parametric volatility models, GARCH or SV, mostly
deliver innovation estimates which exhibit significant excess kurtosis. The latter
experience has motivated the use of leptokurtic innovation distributions in para-
metric volatility models (Bollerslev, 1987) or semiparametric treatment (Engle and
Gonzalez-Rivera, 1991). The unconditional distribution of realized volatility (&) is
skewed to the right which is even more pronounced for the realized variances (7).
In contrast, the distribution of the natural logarithm of realized volatility (In(6;)) is
(almost) symmetric and may be well approximated by a normal distribution. ABDL
(2001) confirm the latter results for realized variances and its transformations based
on five minute intraday returns.

Turning to conditional dynamics of realized variances, volatilities and log volatilities
strong persistence is diagnosed. For instance, regarding the autocorrelation function
of log volatility significant autocorrelations are found for both FX rates up to lag 70
or more. Interestingly, the autocorrelation pattern becomes almost uninformative
after fractionally differentiating log volatility. To cope with the apparent long mem-
ory feature stationary, fractionally integrated time series models (Granger, 1980)
have been successfully employed to model and forecast the conditional mean of log
realized volatility (ABDL, 2003). With respect to the comovement of the two major
USD rates ABDL (2001) illustrate that realized covariances are skewed to the right
while the unconditional distribution of realized correlations is almost symmetric
and approximately normal. The autocorrelation function of the latter reveals long
memory.

ABDE (2001) use five minute returns to determine daily variances, covariances and
correlations of the 30 US stocks listed in the DOW Jones Industrial Average over a
period of five years. Remarkably, it turned out that stylized features characterizing
the FX markets’ realized second order moments carry over to the stock market
as well. Particular summary statistics for standardized returns or log volatilities
turned out to be quite homogeneous over the cross section of 30 stocks. The esti-
mated degree of fractional integration observed over the stock markets’ log realized
volatilities varied closely around d = 0.35 whereas corresponding estimates reported
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in ABDL (2003) for the DEM/USD and JPY/USD markets are 0.39 and 0.41, re-
spectively. Moreover, stock market correlations appear to be positively related with
the level of realized volatilities such that the gains of portfolio diversification are
reduced in periods of high volatility. ABDE (2001) also analyze correlation between
lagged returns and realized variances. The so-called leverage effect (Black, 1976)
describing that asset prices show higher variation in the sequel of bad news in com-
parison with good news of comparable size is also found for realized variances, but
of minor quantitative importance.

7.3.5 Bias Correction

In principal, the accuracy of realized variance estimates increases with the fre-
quency of intradaily returns. Sampling at very high frequencies, however, is likely
to be affected by microstructure noise going back e.g. to bid-ask bounces (neg-
ative autocorrelation), splitting of large orders into a sequence of smaller orders
(positive autocorrelation) or inventory adjustments. In this case the assumption of
an underlying semi martingale approximating the (log) price process is clearly not
appropriate. High frequency return autocorrelation will cause realized variance to
underestimate (positive autocorrelation) or overestimate (negative autocorrelation)
the underlying actual variance. Ait-Sahalia et al. (2005) discuss in detail microstruc-
ture effects on realized variance estimates. To guard against microstructure noise
ABDE (2001) whiten high frequency returns by means of an MA(1) filter. Starting
from the decomposition

M 2 M
m=1 m=1

Oomen (2003) illustrates that in presence of market microstructure noise the sec-
ond term in (7.23), a sum of realized autocovariances, is likely to be substantial
when M is large but will disappear when the sampling frequency decreases. A suit-
able intraday sampling frequency making realized variance an unbiased estimator
of the actual variance is the highest possible frequency with approximately zero au-
tocovariance component. When sampling at lower frequencies, however, unbiased
estimation goes at the cost of efficiency, which in principle is increasing with the
sampling frequency. Therefore, Zhang et al. (2003) and Ait-Sahalia et al. (2005) ad-
vocate subsampling schemes allowing consistent volatility estimation even if high
frequency returns are serially correlated. Hansen and Lunde (2004) recommend to
sample at the highest feasible frequency and propose an adjustment of the realized
variance that depends on autocovariances up to some lag gq.

M—1

— M
DT rmira (7.23)

m=1 n=m+1
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Summary: Quantile regression methods are emerging as a popular technique in
econometrics and biometrics for exploring the distribution of duration data. This
paper discusses quantile regression for duration analysis allowing for a flexible spec-
ification of the functional relationship and of the error distribution. Censored quan-
tile regression addresses the issue of right censoring of the response variable which is
common in duration analysis. We compare quantile regression to standard duration
models. Quantile regression does not impose a proportional effect of the covariates
on the hazard over the duration time. However, the method cannot take account
of time-varying covariates and it has not been extended so far to allow for unob-
served heterogeneity and competing risks. We also discuss how hazard rates can be
estimated using quantile regression methods.

8.1 Introduction

Duration data are commonly used in applied econometrics and biometrics. There is
a variety of readily available estimators for popular models such as the accelerated
failure time model and the proportional hazard model, see e. g. Kiefer (1988) and
van den Berg (2001) for surveys. Quantile regression is recently emerging as an
attractive alternative to these popular models {Koenker and Bilias, 2001; Koenker
and Geling, 2001; Portnoy; 2003). By modelling the distribution of the duration in a

*This paper benefitted from the helpful comments by an anonymous referee. Due to
space constraints, we had to omit the details of the empirical application. These can be
found in the long version of this paper, Fitzenberger and Wilke (2005). We gratefully
acknowledge financial support by the German Research Foundation (DFG) through the
research project ‘Microeconometric modelling of unemployment durations under considera-
tion of the macroeconomic situation’. Thanks are due to Xuan Zhang for excellent research
assistance. All errors are our sole responsibility.
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flexible semiparametric way, quantile regression does not impose modelling assump-
tions that may not be empirically valid, e.g. the proportional hazard assumption.
Quantile regression models are more flexible than accelerated failure time models
or the Cox proportional hazard model because they do not restrict the variation
of estimated coefficients over the quantiles. Estimating censored quantile regression
allows to take account of right censoring which is present in typical applications of
duration analysis (Powell, 1984; Fitzenberger, 1997). However, quantile regression
involves three major disadvantages. First, the method is by definition restricted to
the case of time-invariant covariates. Second, there is no competing risks frame-
work yet and third, so far quantile regression does not account for unobserved
heterogeneity, which is a major ingredient of the mixed proportional hazard rate
model.

Quantile regression models the changes of quantiles of the conditional distribution
of the duration in response to changes of the covariates. In actual applications of
duration analysis, researchers are often interested in the effects on the hazard rate
after a certain elapsed duration and how the hazard rate changes with the elapsed
duration (duration dependence). Machado and Portugal (2002) and Guimardes et
al. (2004) have introduced a simple simulation method to obtain the conditional
hazard rates implied by the quantile regression estimates. In this paper, we present
a slightly modified version of their estimator. The modifications are necessary to
overcome difficulties in the case of censored data and to fix a general smoothing
problem. Using this method, it is straightforward to analyze duration dependence
without having to assume that the pattern estimated for the so-called baseline
hazard in proportional hazard rate models applies uniformly to all observations
with different covariates.

Section 2 discusses important aspects of quantile regression methods for duration
analysis and shows how conditional hazard rates can be obtained from estimated
quantile regression coefficients. Section 3 summarizes.

8.2 Quantile Regression and Duration
Analysis

This section discusses quantile regression as an econometric tool to estimate du-
ration models and addresses various issues involved. Quantile regression models
are contrasted with the popular proportional hazard rate model. Our discussion
includes selected results from an empirical application taken from the long version
of this paper, Fitzenberger and Wilke (2005).
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8.2.1 Quantile Regression and Proportional Hazard
Rate Model

Koenker und Bassett (1978) introduced quantile regressions’ as a regression based
method to model the quantiles of the response variable conditional on the covari-
ates. Our focus is on linear quantile regression for duration data involving the
estimation of the accelerated failure time model h(13) = z:8% + ¢ at different
quantiles § € (0,1) for the completed duration T} of spell ¢, where the 6-quantile
of € conditional on ;, go(el|x:), is zero and h(.) is a strictly monotone trans-
formation preserving the ordering of the quantiles. The most popular choice is
the log-transformation h(.) = log(.). The transformation can either be chosen a
priori (e.g. as being the log-transformation) or it can be estimated by choosing
among a class of transformation functions (e.g. among the set of possible Box—
Cox-transformations, see e.g. Buchinsky, 1995, or Machado and Mata, 2000) due
to the invariance of quantiles under positive monotone transformations. Quantile
regression models are not restricted to a linear specification of the conditional quan-
tiles.? In fact, quantile regression models the conditional quantile of the response
variable gg(h(T})|z:) = 3% or, alternatively, due to the equivariance property of
quantiles go (T3|z;) = h™*(z}3%). Modelling conditional quantiles is an indirect way
to model the conditional distribution function of log(7;) given z;. The linear spec-
ification allows for differences in the impact of covariates z; across the conditional
distribution of the response variable. However, the specification imposes that the
coefficient is the same for a given quantile & irrespective of the actual value of

g0 (h(T3)z:).

We will discuss the asymptotic distribution for linear quantile regression in the next
subsection for the case of censored quantile regression which nests the case with-
out censoring. The asymptotic distribution in the case of a smooth transformation
function h(.) depending on unknown parameters to be estimated can be found in
Powell (1991), Chamberlain (1994), or Fitzenberger et al. (2004), who treat the spe-
cial case of Box—Cox transformation. The asymptotic results generalize in a straight
forward manner to other smooth transformation functions.

A possible problem of quantile regression is the possibility that the coefficient esti-
mates can be quite noisy (even more so for censored quantile regression) and often
non-monotonic across quantiles. To mitigate this problem, it is possible to obtain
smoothed estimates through a minimum-distance approach. One can investigate,
whether a parsimonious relation describes the movement of the coefficients across
quantiles by minimizing the quadratic form (3 — £[6]) ¥ (8 — f[6]) with respect
to &, the coefficients of a smooth parametric specification of the coefficients as a
funtion of 6. ,3 is the stacked vector of quantile regression coefficient estimates ,30 at

1See Buchinsky (1998) and Koenker and Hallock (2002) for surveys. The collection
of papers in Fitzenberger et al. (2001) comprises a number of economic applications of
quantile regressions, among others, the paper by Koenker and Bilias (2001) using quantile
regression for duration analysis.

2gince the transformation h(.) is monontone, estimation of a Box—Cox transformation is
an attractive alternative. Chamberlain (1994) and Buchinsky (1995) suggest a simple two
step procedure to implement Box—Cox quantile regressions. However, this procedure can
exhibit numerical problems which are analyzed in Fitzenberger et al. (2004). The latter
study suggests a modified estimator for Box—Cox quantile regressions.
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different quantiles and U is the estimated covariance matrix of ,5, see next subsec-
tion for the asymptotic distribution. This approach is not pursued in the application
below. We are not aware of any application of this approach in the literature.

The most popular parametric Cox proportional hazard model (PHM), Kiefer (1988),
is based on the concept of the hazard rate conditional upon the covariate vector x;
given by

fi(®) 5
(1) = =22 = - ¢ 1
where f;(t) is the density of T; at duration t and Ag(¢) is the so called baseline
hazard rate. The hazard rate is the continuous time version of an instantaneous
transition rate, i. e. it represents.approximately the conditional probability that the
spell i ends during the next period of time after ¢ conditional upon survival up to
period t.

There is a one-to-one correspondence between the hazard rate and the survival func-
tion, S;(¢t) = P (I} > t), of the duration random variable, S;(t) = exp (— fot A,(s)ds).

A prominent example of the parametric® proportional hazard model is the Weibull
model where Ao(t) = ptP~' with a shape parameter p > 0 and the normalizing
constant is included in ,5 The case p = 1 is the special case of an exponential
model with a constant hazard rate differentiating the increasing (p > 1) and the
decreasing (0 < p < 1) case. Within the Weibull family, the proportional hazard
specification can be reformulated as the accelerated failure time model

log{Ty) = B8 + € (8.2)

where 8 = —p ™3 and the error term ¢; follows an extreme value distribution,
Kiefer (1988, Sections IV and V).

The main thrust of the above result generalizes to any PHM (8.1). Define the
integrated baseline hazard Ao(t) = fot Xo(%)df, then the following well known gen-
eralization of the accelerated failure time model holds

log(Ao(T2)) = zi + e, (8.3)

with ¢; again following an extreme value distribution and 8 = —,3, see Koenker and
Bilias (2001) for a discussion contrasting this result to quantile regression. Thus,
the proportional hazard rate model (8.1) implies a linear regression model for the a
priori unknown transformation h(T}) = log(Ao(T3)). This regression model involves
an error term with an a priori known distribution of the error term and a constant
coefficient vector across quantiles.

>From a quantile regression perspective, it is clear that these properties of the PHM
are quite restrictive. Provided the correct transformation is applied, it is possible
to investigate whether these restrictions hold by testing for the constancy of the
estimated coefficients across quantiles. Testing whether the error term follows an
extreme value distribution is conceivable though one has to take account of possible

3Cf. Kiefer (1988, Section II1.A) for nonparametric estimation of the baseline hazard
Xo(t).
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shifts and normalizations implied by the transformation. However; if a researcher
does not apply the correct transformation in (8.3), e.g. the log transformation
in (8.2) is used though the baseline hazard is not Weibull, then the implications
are weaker. Koenker and Geling (2001, p. 462) show that the quantile regression
coefficients must have the same sign if the the data is generated by a PHM.

A strong and quite apparent violation of the proportional hazard assumption occurs,
if for two different covariate vectors z; and x5, the survival functions 9;(¢) and S5 (%),
or equivalently the predicted conditional quantiles, do cross. Crossing occurs, if
for two quantiles 1 < 62 and two values of the covariate vector z; and z;, the
ranking of the conditional quantiles changes, e.g. if ga, (Ti|z:i) < go, (I5|z;) and
qoy (T3|zs) > qo,(T5]z5). Our empirical application below involves cases with such
a finding. This is a valid rejection of the PHM, provided our estimated quantile
regression provides a sufficient goodness-of-fit for the conditional quantiles.

There are three major advantages of PHMs compared to quantile regressions as
discussed in the literature. PHMs can account for unobserved heterogeneity, for time
varying covariates, and for competing risks in a straight forward way (Wooldridge,
2002, Chapter 20). The issue of unobserved heterogeneity will be discussed at some
length below. The estimation of competing risks models with quantile regression
has not been addressed in the literature. This involves a possible sample selection
bias, an issue which has only be analyzed under much simpler circumstances for
quantile regression (Buchinsky, 2001). In fact, this is a dynamic selection problem
which, also in the case of a PHM, requires fairly strong identifying assumptions.

It is natural to consider time varying covariates when the focus of the analysis is
the hazard rate as a proxy for the exit rate during a short time period. This is
specified in a PHM as

Ai(t) = exp(@i 18)Mo(t) (8.4)

and there are readily available estimators for this case. It is not possible anymore
to transform this model directly into an accelerated failure time model which could
be estimated by regression methods.

Assuming strict exogeneity of the covariates, it is straightforward to estimate pro-
portional hazard models with time varying coefficients (Wooldridge, 2002, Chapter
20). If under strict exogeneity the complete time path of the covariates is known,
it is conceivable — though often not practical — to condition the quantile regres-
sion on the entire time path to mimick the time varying effect of the covariates. A
natural example in the analysis of unemployment durations would be that eligibil-
ity for unemployment benefits is exhausted after a certain time period and this is
known ex ante. In fact, in such a case quantile regression also naturally allow for
anticipation effects which violates specification (8.4). In many cases, the time path
of time—varying covariates is only defined during the duration of the spell, which
is referred to as internal covariates (Wooldridge, 2002, p. 693). Internal covariates
typically violate the strict exogeneity assumption and it is difficult to relax the
strict exogeneity assumption when also accounting for unobserved heterogeneity.

The case of time varying coefficients 8; can be interpreted as a special case of
time—varying covariates by interacting the covariates with dummy variables for
different time periods. However, if the specification of the baseline hazard function
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is very flexible then an identification issue can arise. Time varying coefficients /; are
similar in spirit to quantile regressions with changing coefficients across conditional
quantiles. While the former involves coefficients changes according to the actual
elapsed duration, the latter specifies these changes as a function of the quantile. It
depends on the application as to which approach can be better justified.

Summing up the comparison so far, while there are some problems when using the
PHM with both unobserved heterogeneity and time-varying covariates, the PHM
can take account of these issues in a somewhat better way than quantile regression.
Presently, there is also a clear advantage of the PHM regarding the estimation of
competing risk models. However, the estimation of a PHM comes at the cost of the
proportional hazard assumption which itself might not be justifiable in the context
of the application of interest.

8.2.2 Censoring and Censored Quantile Regression

Linear censored quantile regression, introduced by Powell (1984, 1986), allow for
semiparametric estimation of quantile regression for a censored regression model in
a robust way. A survey on the method can be found in Fitzenberger (1997). Since
only fairly weak assumptions on the error terms are required, censored quantile
regression- (CQR) is robust against misspecification of the error term. Horowitz
and Neumann (1987) were the first to use CQR’s as a semiparametric method for
an accelerated failure time model of employment duration.

Duration data are often censored. Right censoring occurs when we only observe that
a spell has survived until a certain duration (e.g. when the period of observation
ends) but we do not know exactly when it ends. Left censoring occurs when spells
observed in the data did start before the beginning of the period of observation.
Spells who started at the same time and who finished before the beginning of the
period of observation are not observed. Quantile regression can not be used with
left censored data.* Left censoring is also difficult to handle for PHMs since strong
assumptions have to be invoked to estimate the model. In the following, we only
consider the case of right censoring which both PHM and CQR. are well suited for.
Thus, we can only analyze so—called flow samples (Wooldridge, 2002, Chapter 20)
of spells for which the start of the spells lies in the time period of observation.®

Let the observed duration be possibly right censored in the flow sample, i.e. the
observed completed duration T; is given by T; = min{T;,yc;}, where T} is the
true duration of the spell and yc; is the spell specific threshold value (censoring
point) beyond which the spell cannot be observed. For the PHM, this can be in-
corporated in maximum likelihood estimation analogous to a censored regression
model (Wooldridge, 2002, Chapter 20) and it is not necessary to know the poten-
tial censoring points yc; for uncensored observations. In contrast, CQR requires
the knowledge of yc; irrespective of whether the observation is right censored. CQR.

4Two-limit censored quantile regression (Fitzenberger, 1997) can be used in the rare
situation when all spells are observed which start before the start of the observation period
and, in case they end before the start of the observation period, the exact length of the
spell is not known.

5 Analyzing all spells observed at some point of time during the period of observations
involves a so—called stock sample also including left—censored observations.
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provide consistent estimates of the quantile regression coefficients 8% in the pres-
ence of fairly general forms of fixed censoring.® The known censoring points can
either be deterministic or stochastic and they should not bunch in a certain way on
or around the true quantile regression line, see the discussion in Powell (1984).

Estimating linear CQR involves minimizing the following distance function

3" pain(T:) ~ min(zig, yer) (8.5)

with respect to 8%, where the so-called ‘check function’ pe(z) = 6 - |2| for z > 0
and pg(z) = (1 — 0) - |2| for z < 0 and ye; denotes the known observation specific
censoring points. A quantile regression without censoring is nested as the special
case with yc; = +o00.

Powell (1984, 1986) showed that the CQR estimator 3° is +/N-consistent and
asymptotically normally distributed, see also Fitzenberger (1997) for a

detailed discussion of the asymptotic distribution. A crucial feature of this result is
that the asymptotic distribution depends only upon those observations where the
fitted quantiles are not censored, i.e. I(z;3° < ye;) = 1.

The actual calculation of the CQR~estimator based on individual data is numeri-
cally very difficult, since the distance function (8.5) to be minimized is not convex.
This is in contrast to quantile regression without censoring. There are a number of
procedures suggested in the literature to calculate the CQR-estimator (Buchinsky,
1998; Fitzenberger, 1997, and Fitzenberger and Winker, 2001).7

For heteroscedasticity—consistent inference, researchers often resort to bootstrap-
ping, see e.g. Buchinsky (1998) and Fitzenberger (1997, 1998), using the Design-
Matrix-Bootstrap (often also denoted as ‘pairwise bootstrap’). The covariance of
the CQR estimates across quantiles can easily be estimated by basing those esti-
mates on the same resample. Bilias et al. (2000) suggest a simplified version of the
bootstrap for CQR by showing that it suffices asymptotically to estimate a quantile
regression without censoring in the resample based only on those observations for
which the fitted quantile is not censored, 1. e. x%,@e < YG;.

The long version of this paper (Fitzenberger and Wilke, 2005) contains a compre-
hensive application of censored quantile regression to the duration of unemployment
among young West German workers. Figure 8.1 presents estimated quantile regres-
sion coefficients for two selected covariates. The confidence bands are obtained
by the Bilias et al (2000) bootstrap method. It is apparent that the estimated
coefficients change their sign across quantiles and therefore they do not support
empirically the proportional hazard model.

SRefer to Buchinsky and Hahn (1998) for a semiparametric extension of CQR to the
case when the censoring points are not known for the uncensored observations (random
censoring).

"In light of the numerical difficulties, a number of papers have, in fact, suggested to
change the estimation problem t0 make it convex (Buchinsky and Hahn, 1998; Cher-
nozhukov and Hong, 2002; and Portnoy, 2003).
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Figure 8.1: Estimated quantile regression coefficients for the covariates dummy
for being married (left) and unemployment spell starting in the winter (right) with
90% bootstrap confidence bands (see Fitzenberger and Wilke, 2005, for further ez-
planations).

8.2.3 Estimating the Hazard Rate Based on
Quantile Regression

Applications of duration analysis often focus on the impact of covariates on the
hazard rate. Quantile regression estimate the conditional distribution of T; condi-
tional on covariates and it is possible to infer the estimated conditional hazard rates
from the guantile regression estimates.

A direct approach is to construct a density estimate from the fitted conditional
quantiles go(T;|z:) = ™1 (2;3%). A simple estimate for the hazard rate as a linear
approximation of the hazard rates between the different 6—quantiles would be

Mit) = (0> — 6) (8.6)

(A1) — h2(25")) (1~ 0.5(6: +62))

where ;\1(t) approximates the hazard rates between the estimated #;—quantile and
92-quantile.® Two points are noteworthy. First, the estimated conditional quantiles
are piecewise constant due to the linear programming nature of quantile regression
(Koenker and Bassett, 1978; Fitzenberger, 1997). Second, it is not guaranteed that
the estimated conditional quantiles are ordered correctly, i.e. it can occur that
do, (Ti|z:i) > 4o, (Ti|z:) even though 61 < 62. Therefore, 61 and 92 have to be chosen
sufficiently far apart to guarantee an increase in the conditional quantiles.

In order to avoid these problems, Machado and Portugal (2002) and Guimaries et
al. (2004) suggest a resampling procedure (henceforth denoted as GMP) to obtain
the hazard rates implied by the estimated quantile regression. The main idea of

8A similar estimator based on the estimate of the sparsity function is described in
Machado and Portugal (2002). It shares the same problems discussed for the estimator
presented in (8.6).



8.2 Quantile Regression and Duration Analysis 111

GMP is to simulate data based on the estimated quantile regressions for the con-
ditional distribution of T; given the covariates and to estimate the density and the
distribution function directly from the simulated data.

In detail, GMP works as follows (see Machado and Portugal, 2002, and Guimaraes
et al., 2004), possibly only simulating non-extreme quantiles:

1. Generate M independent random draws 8y, m = 1,..., M, from a uniform
distribution on (8;,0.,), i. e. extreme quantiles with 6 < 6, or § > 6, are not
considered here. §; and 8, are chosen in light of the type and the degree of
censoring in the data. Additional concerns relate to the fact that quantile re-
gression estimates at extreme quantiles are typically statistically less reliable,
and that duration data might exhibit a mass point at zero or other extreme
values. The benchmark case with the entire distribution is given by 6; = 0
and 8, = 1. '

2. For each 6., estimate the quantile regression model obtaining M vectors Bom
(and the transformation h(.) if part of the estimation approach).

3. For a given value of the covariates zo, the sample of size M with the simulated
_durations is obtained as Ty, = ga,, (Ti|zo) = B~} (zh5%™) with m = 1, ..., M.,

4. Based on the sample {T},,m = 1,..., M}, estimate the conditional density
F*(t|zo) and the conditional distribution function F*(¢|zo).

5. We suggest to estimate the hazard rate conditional on zg in the interval
(61,0u) by’

(0u = 01) f* (t]zo)
-0, — (0, — 0 F+ (tlxo) )

%@:1

Simulating the full distribution (6 = 0 and 0, = 1), one obtains the usual
expression: Ao(t) = f*(t|zo)/[1 — F*(t|zo)].

This procedure (Step 3) is based on the probability integral transformation theorem
from elementary statistics implying 7% = F~'(0m) is distributed according to the
conditional distribution of T; given xo if F(.) is the conditional distribution function
and 6,, is uniformly distributed on (0,1). Furthermore, the fact is used that the
fitted quantile from the quantile regression provides a consistent estimate of the
population quantile, provided the quantile regression is correctly specified.

The GMP procedure uses a kernel estimator for the conditional density f*(t|zo) =
1/(M h) Zﬂmlzl K ((t —T5)/h), where h is the bandwidth and K (.) the kernel func-
tion. Based on this density estimate, the distribution function estimator is

F*(tlzo) = 1/ MM _ K ((t~T)/h) with K(u) = [} K(v)dv.

9f*(t|zp) estimates the conditional density in the quantile range (6;,64), i.e.
Fltlgs, (T|zo) < T < gg,(Tlxo),z0), and the probability of the conditioning event is
0y — 8; = P(gg,(T|z0) < T < gp, (T|20)|zo). By analogous reasoning, the expression in
the denominator corresponds to the unconditional survival function, see Zhang (2004) for
further details.
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Figure 8.2: Estimated conditional hazard rates evaluated at sample means of the
other regressors. See Figure 8.1 for further explanations.

Machado and Portugal (2002) and Guimardes et ol (2004) suggest to start the
integration at zero (a = 0), probably because durations are strictly positive. How-
ever, the kernel density estimator also puts probability mass into the region of
negative durations, which can be sizeable with a large bandwidth, see Silverman
(1986, Section 2.10). Using the above procedure directly, it seems more advisable
to integrate starting from minus infinity, & = —oco. A better and simple alternative
would be to use a kernel density estimator based on log durations. This is possible
when observed durations are always positive, there is no mass point at zero. Then,
the estimates for density and distribution function for the duration itself can easily
be derived from the density estimates for log duration by applying an appropriate
transformation. '°

Figure 8.2 presents estimates of four conditional hazard rates using again the sample
of unemployment durations among the young workers in West-Germany. It is ap-
parent that a flexible econometric method can reveal interesting results that would
not show up under stronger conditions. Since the estimated hazard rates even cross,
a proportional hazard model is inappropriate in this case.

8.2.4 Unobserved Heterogeneity

In duration analysis, unobserved heterogeneity in the form of spell specific, time-
invariant location shifts of the hazard rate or the duration distribution play a
key role (Wooldridge, 2002, Chapter 20.3.4; van den Berg, 2001). The popular
mixed proportional hazard model (MPHM) assumes that the spell specific effect
« enters the specification of the hazard rate in a multiplicative fashion: A;(¢) =
ewp(wé/é))\o (t)exp(a). Under the assumptions of the MPHM, « is a random effect
which is distributed independently from the vector of covariates. It is well known
that ignoring the presence of the random effect o will lead to misleading evidence
on the shape of the baseline hazard Ao(¢) inducing spurious duration dependence
due to the sorting of spells with respect to «. Spells with a low value of « tend to

105ilverman (1986, Section 2.10) discusses further alternatives for this problem.
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survive relatively long and, thus, one might conclude that the hazard rate declines
with elapsed duration when ignoring the influence of «. In general, ignoring the
random effect « also biases the estimated coefficients for the covariates (Lancaster,
1990, p. 65), though the impact is typically small. In the accelerated failure time
model (Equations 8.2 and 8.3), the random effect results in another component
of the error term which is independent of the covariates. Therefore, with known
integrated baseline hazard (Ao(.)), quantile regression (or even OLS in the absence
of censoring) can estimate consistently the coefficient estimates.

Quantile regression estimates the conditional quantile go(73|z;). Clearly, the in-
crease in the conditional quantiles gp(Ti|zs) for given z; with increasing & corre-
sponds to the shape of the hazard rate as a function of elapsed duration. Thus, the
increase in the conditional quantile is affected by the presence of unobserved het-
erogeneity. If the data generating process is an MPHM, then 9gy(T;|z;)/00 differs

from the average increase E, {8%( o (Tilwi, )/ 89} evaluated at the same duration

level go(T;|z;) corresponding to the quantile position 6(a) for each . This is due
to the well known sorting effects in @ (‘low &’ types tend to survive longer) and,
therefore, the former term 9gg(T5|x:)/00 is typically larger than the latter averaged
version across a for small durations and smaller for larger durations. However,
for an MPHM, the presence of a random effect typically causes only a small bias
on the point estimates of the estimated quantile regression coefficients of the co-
variates because of the following argument.!' Applying the implicit function to
Si(ge(T31C3)|Ci) = 1 — 0, both for C; = (z:,a) and C; = z;, results in

dqe(T3|Cs) 88, (t|Cs) 88 (tlC)
9z == 5t |t:qe (T:1C3) 2, !t:QG(TiiCi) :
(8.7)
Since
S(t|zi, ) = exp{—exp(zifB)exp(a)Ao(t)} EalS (tlzi, @)},
it follows that
8qe(T:|Cs) _ —BAo(t) (8.8)

Oz Ao (t)

for t = ¢o(T3|C;) and C; = (a3, ) or C; = x; . This argument applies in an analo-
gous way using a smooth monotonic transformation of the response variable. Thus,
the estimated quantile regression coeflicients only depend upon the coefficients B
and the shape of the baseline hazard. The quantile regression coefficients conditional
upon « are the same for the same elapsed duration t irrespective of its rank 8, i.e.
the estimated quantile regression coefficients for some unconditional quantile of the
elapsed duration reflect the sensitivity of the respective quantile lying at this elapsed
duration conditional upon the random effect. Put differently, some fixed duration
T in general corresponds to two different ranks 6 or 8(c), respectively, when condi-
tioning on C; = (x4, o) or C; = m3, T = go(Ti|%:) = go(ay(Ti|@i, ). Then, Equation

tlgee Zhang (2004) for detailed Monte Carlo evidence.
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(8.8) implies that the partial effects for the different corresponding quantile regres-

" sions at this duration ¢ are the same, i.e. 8qo(Ts|2:) /03 = Bqo(oy(Tilzs, ) /Oxs .
In this sense, a quantile regression on z; provides meaningful estimates of partial
effects, although the data are generated by an MPHM.

Evidence based on quantile regression can also be informative about the validity of
the MPHM. Analogous to the PHM, a finding of crossings of conditional quantiles
constitutes a rejection of the MPHM. If z;'8 < z;'8 for a pair (z;,z;), then the
hazard is higher for z; than for x; for all & and therefore S(t|xs, ) > S(t|z;, ),
see line before Equation (8.8). Integrating out the distribution of ¢, one obtains
the inequality S(t|xz;) > S(t|z;) for all ¢. Thus, qo(Tilx:) > qo(Tj|z;) for all @ and
therefore the MPHM implies that there should not be any crossings when just
conditioning on the observed covariates. Intuitively, the independence between o
and z; implies that a change in covariates changes the hazard rate in the same
direction for all o’s. Therefore all quantiles conditional on (z;,) move into the
opposite direction. The latter implies that the quantile conditional on only z; must
also move into that direction.

Instead of assuming that the random effect shifts the hazard rate by a constant
factor as in the MPHM, a quantile regression with random effects for log durations
could be specified as the following extension of the accelerated failure time model
in equation (8.2)**

log(T;) = =i’ + o+ ¢, (8.9)

where the random effect o enters at all quantiles. The entire distribution of log
durations is shifted horizontally by a constant «, i.e. log(T;) — @ exhibits the same
distribution conditional on z;. « is assumed independent of z; and ef . The latter
is defined as € = log(T;)—qo(log(Ti)|zs,a).'® The regression coefficients 5% now
represent the partial effect of z; also conditioning upon the random effect a. Such
a quantile regression model with random effects has so far not been considered in
the literature. It most likely requires strong identifying assumptions when applied

to single spell data. Here we use the model in (8.9) purely as point of reference.

How are the estimated quantile regression coefficients affected by the presence of «,
when just conditioning on observed covariates z;? Using S(log(t)|z:) = Ea{S(log(t)|
x;,a)} and result (8.7), it follows that!*

Ozi B f(E|ze)le:)
for t = qo(log(T)|x:), where f(.) and F(.) are the pdf and the cumulative of
the duration distribution, respectively, G(.) is the distribution of o, and (o) =
F(qo(log(T;)|zs)| s, ). All expressions are evaluated at the duration  correspond-
ing to the f-quantile of the duration distribution conditioning only upon z;. Hence,

Oqe(log(Ti)lws) [ f(t|zs)lws, @) 57 4G(a) (8.10)

12The following line of arguments applies analogously to the case with a general trans-
formation h{.).

131f ¢? is independent of (zs,c), then all coefficients, except for the intercept, can be
estimated consistently by a quantile regression on just z;. Also in this case, all slope
coeflicients are constant across quantiles.

14 After submitting this paper, we found out that the result (8.10) is basically a special
case of Theorem 2.1 in Hoderlein and Mammen (2005).
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I (ge(log(T3)|x:)|xs, @) is the pdf conditional on both z; and o, f(ge(log(Ti)|x:)|zs)
the pdf just conditional on z; both evaluated at the value of the quantile conditional
on z;. For the derivation of (8.10), note that

flae(log(Ty)lx:)lm:) = [ flae(log(Ti)|x:)|zs, o) dG(a).

For the value t = gg(log(T;)|:), 0(cx) is the corresponding quantile position (rank)
in the distribution conditioning both upon z; and a. According to Equation (8.10),
the quantile regression coefficients conditioning only on x; estimate in fact a weighted
average of the 3% in Equation (8.9) where the weight is given by the density ratio for
the duration g¢(T;|z;) conditioning on both z; and « and only on z;, respectively.
Since these weights integrate up to unity, the quantile regression estimate condi-
tioning on x; correspond to a weighted average of the true underlying coefficients
in Equation (8.9).

One can draw a number of interesting conclusions from the above result. First, if Jixd
does not change with 0, then the estimated coefficients are valid estimators for the
coefficients in Equation (8.9). Second, if 3 only change monotonically with 6, then
the estimated coefficients will move in the same direction, in fact, understating
the changes in 3°. In this case, the random effect results in an attenuation bias
regarding the quantile specific differences. Third, if one finds significant variation
of the coefficients across quantiles, then this implies that the underlying coefficients
in (8.9) exhibit an even stronger variation across quantiles. If the variation in the
estimates follows a clear, smooth pattern, then it is most likely that the underlying
coefficients in (8.9) exhibit the same pattern in an even stronger way.

Though being very popular in duration analysis, the assumption that the random
effect and the covariates are independent, is not credible in many circumstances,
for the same reasons as in linear panel data models (Wooldridge, 2002, Chapters
10 and 11). However, fixed effects estimation does not appear feasible with single
spell data. Identification is an issue here.

Summing up, though as an estimation method quantile regression with random
effects has not yet been developed, it is clear that quantile regression conditioning
just on the observed covariates yields meaningful results even in the random effects
case. Changing coefficients across quantiles implies that such differences are also
present in the underlying model conditional upon the random effect. Such a finding
and the even stronger finding of crossing of predicted quantiles constitute a rejection
of the mixed proportional hazard model, analogous to the case without random
effects as discussed in Section 8.2.1.

8.3 Summary

This survey summarizes recent estimation approaches using quantile regression for
(right-censored) duration data. We provide a discussion of the advantages and draw-
backs of quantile regression in comparison to popular alternative methods such as
the (mixed) proportional hazard model or the accelerated failure time model. We
argue that quantile regression methods are robust and flexible in a sense that they
can capture a variety of effects at different quantiles of the duration distribution.
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Our theoretical considerations suggest that ignoring random effects is likely to have
a smaller effect on quantile regression coefficients than on estimated hazard rates
of proportional hazard models. Quantile regression does not impose a proportional
effect of the covariates on the hazard. The proportional hazard model is rejected
empirically when the estimated quantile regression coefficients change sign across
quantiles and we show that this.holds even in the presence of unobserved hetero-
geneity. However, in contrast to the proportional hazard model, quantile regression
can not. take account of time-varying covariates and it has not been extended so
far to allow for unobserved heterogeneity and competing risks. We also discuss and
slightly modify the simulation approach for the estimation of hazard rates based
on quantile regression coefficients, which has been suggested recently by Machado
and Portugal (2002) and Guimaraes et al. (2004).

We motivate our theoretical considerations with selected results of an application
to unemployment duration data. It shows that estimated coefficients vary or change
sign over the quantiles. Estimated hazard rates indicate that the proportional haz-
ard assumption is violated in the underlying application. A detailed presentation of
the results and the data can be found in the long version of this paper (Fitzenberger
and Wilke, 2005).
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Summary: This paper presents a selective survey on panel data methods. The
focus is on new developments. In particular, linear multilevel models, specific non-
linear, nonparametric and semiparametric models are at the center of the survey.
In contrast to linear models there do not exist unified methods for nonlinear ap-
proaches. In this case conditional maximum likelihood methods dominate for fixed
effects models. Under random effects assumptions it is sometimes possible to employ
conventional maximum likelihood methods using Gaussian quadrature to reduce a
T-dimensional integral. Alternatives are generalized methods of moments and sim-
ulated estimators. If the nonlinear function is not exactly known, nonparametric or
semiparametric methods should be preferred.

9.1 Introduction

Use of panel data regression methods has become popular as the availability of
longitudinal data sets has increased. Panel data usually contain a large number
of cross section units which are repeatedly observed over time. The advantages of
panel data compared to cross section data and aggregated time series data are the
large number of observations, the possibility to separate between cohort, period
and age effects. Furthermore, we can distinguish between intra- and interindividual
effects and we can determine causal effects of policy interventions. New problems
with panel data arise in comparison to cross section data by attrition, time-varying
sample size and structural changes.

The modelling of panel data approaches distinguishes in the time dependence, in
the assumptions of the error term and in the measurement of dependent variables.
Due to the specific assumption consequences for the estimation methods follow.
Apart from classical methods like least squares and maximum likelihood estima-
tors, we find in panel data econometrics conditional and quasi ML estimators, GEE

*Helpful comments and suggestions from an unknown referee are gratefully acknowl-
edged.
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(generalized estimating equations), GMM (generalized methods of moments), sim-
ulated, non- and semiparametric estimators. For linear panel data models with
predetermined regressors we can apply conventional techniques. The main objec-
tive is to determine and to eliminate unobserved heterogeneity. Two situations are
distinguished: regressors and unobserved heterogeneity are independent or interact.
Much less is known about nonlinear models. In many models not only simple first
differences methods, but also conditional likelihood approaches fail to eliminate un-
observed heterogeneity. As the specification of nonlinearity is often unknown, non-
and semiparametric methods are preferred.

We distinguish between several types of panel data models and proceed from general
to more specific models. The endogenous variable y;: can be determined by the
observed exogenous time invariant (#;) and time-varying (zs ) variables, unobserved
time invariant regressors (o«) and a time-varying error term (us). The term m(-)
tells us that the functional relation is unknown, i.e. nonparametric approaches
are formulated, which may vary between the periods (m¢(-)). If yi is not directly
determined by #;, T, i« and uy, but across an unobservable variable, we call this
a latent model, expressed by g(-). Furthermore, this relation may be time-varying
(g¢(+)). This generalized time-varying nonparametric latent model can be presented
by

yit = ge|me(Ei, Tot, Oin, Ust)] . (9.1)

Simplifications are possible and can lead to conventional linear models with indi-
vidual effects and time varying coeflicients.

9.2 Parametric Linear and Multilevel
Models

Standard panel data analysis starts with linear models
Uit = Tip B + Uit i=1,..N t=1,..,T, (9.2)

where y is the dependent variable, z is a Kx1 regressor vector, 8 is a Kx1 vector
of coefficients and u is the error term. The number of cross section observations
is N and these units are repeatedly measured. When the cross sectional data are
only pooled over T periods the coefficients can be estimated by OLS under classical
assumptions about the error term. If an unobserved time invariant individual term
o is incorporated, model (9.2) turns into

Yit = m:tﬂ 4+ + € =0 m:tﬂ + ugt . (9'3)

The methods which are developed for this purpose depend on the assumptions of
the error term, the regressand, the regressors and the coefficients of the model.
Some panel data sets cannot be collected every period due to lack of resources or
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cuts in funding. This missing value problem leads to unbalanced panels. Wands-
beek and Kapteyn (1989) or Davis (2002) for example study various methods for
this unbalanced model. If we assume under classical conditions of €;; that o; is
uncorrelated with €;; and the observed regressors z;;, we call this a ‘random effects
model - REM’. This definition follows Wooldridge (2002, p. 252) who argues that
conventional discussions about whether the individual effect should be treated as
a random variable or as a parameter are wrongheaded for microeconometric panel
data applications. The coefficient vector 8 = (84, B*l) is determined by OLS of the
transformed model

Cyie — 0% = (1 = 8)B1 + (mie — 64)' 8" + use — b0, (94)

where § = 1 — [62/(8% 4+ T62)]*/2. The variance of & can be estimated by the
residuals of the within estimator, the OLS estimator of (9.4), and the estimated
variance of & follows by 62 = [1/(N — K)]3_, 4 — (1/T)62, where the average
residuals 4 are determined by the between estimator, i.e. the OLS estimator of
Ui = Eszz ZikBr+Us. If ; and the regressors are correlated we denote the approach
‘fixed effects model - FEM’. In this case the OLS estimator of the transformed model

Yie — T = (Tir — &)’ B° + wie — s (9.5)

is determined, where (3% is the coefficient vector without a constant term. The
estimated individual effect is

& = (ye — §i) — (Tar — fz‘)lé*- (9.6)

The significance of individual effects can be tested by an F test. The null hypothesis
of model

Yit — 0Fi = (x4 — 6%:) B+ (Tir — Fs) B + wie 9.7)

is Ho : f* = 0.

First order serial correlation and heteroscedasticity can be allowed. For example,
a four step procedure solves the problem of determining the autocorrelation coefli-
cient, p, and  where two transformations are necessary (Hiibler, 1990). If lagged
dependent or jointly dependent variables or errors in the exogenous variables ex-
ist, a GMM estimator suggested by Arellano and Bond (1991) is preferred. Several
other alternatives are usually less efficient or even inconsistent. However, Ahn and
Schmidt (1995) and Blundell and Bond (1998) have formulated further conditions
of moments which lead to better estimators. Hsiao et al. (2002) have presented a
maximum likelihood estimator which is more efficient than the GMM estimator. If
the simple lagged dependent model

Yit = VYi,t—1 + 0 + &t = YYi,e—1 + Ust (9-8)
exists, conventional first differences eliminate the individual term. However, such

an OLS estimator is biased compared to IV estimators. GMM estimators which in-
corporate all valid instruments are preferred. Valid instruments are those which
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are uncorrelated with the error term. This ‘means that if observations from T
waves are available, valid instruments Z fulfill the following orthogonality condi-
tions: E(Z’u) = 0. Coeflicients are determined by a minimum distance estimator

arg min(€ — E(6))'W(€ — E(&:)) = arg ming'We, (9.9)

where W is a weighting matrix and: estimation of ~ is based on the empirical
moments. The optimal weighting matrix W is the inverse of the covariance matrix
of fz

—1

(9.10)

1 N
— { Ly, } - [% S Zdada} 2

i=1

This procedure can be extended to models with additional regressors. Until now we
have assumed that all coefficients including the individual effect are time invariant.
The following modification is less restrictive

Vit = Yelit—1 + B + e + €5t (9.11)

where the individual effect 1:p; is time-varying in contrast to conventional panel
data models. One can argue that the effect varies e. g. with cyclical ups and downs,
although individual characteristics stay the same. Chamberlain (1984, p. 1263)
suggests a solution to determine the coefficients in (9.11). This equation in period
t-1 is multiplied by r; = :/¢:—1 and this expression is subtracted from (9.11),
i.e. yit — 74¥i,e—1. Then the individual effect disappears. A simultaneous equation
system results

yiz = (3 + r3)yiz — rayeyir + T30 — razis fe + (€i3 — ragi2)
Yia = (Va + Ta)Yiz — Tay3Yiz + TiafBa — TaTis B3 + (€ia — Tags3)

YiT = (yr + 7)Y, 7—1 — PTYT-1Yi,T—2 + Tip Br
—rrx; p_1Br—1 + (gir — rTELT 1), (9.12)

Equations y;1 and y;2 are suppressed as we have no information about y;0 and y;,—1.
As the error terms and the lagged dependent variables are correlated, instrumental
variables are used. Therefore, y;3 is also eliminated, because not enough instruments
can be constructed. Consequently, only the equations of period 4 to T can be used
to determine the coefficients.

A critical assumption of the previous models, with exception of the last one, is the
general constancy of individual effects. We cannot expect that unobserved individ-
ual abilities have the same effects in different situations. One possibility, the time
dependence, is described in (9.11). A natural extension is obtained when units are
not only separated by one criterion, i=1,...,N, and then repeatedly observed over
time (t==1,...,T), but further levels are considered, e.g. establishments and indus-
tries. We call this a ‘multilevel model’. Recently, especially two-level models, i.e.
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linked employer-employee panel data (LEEP) models, have been introduced in the
literature (Abowd et al., 2002; Abowd and Kramarz, 1999; Abowd et al., 1999;
Goux and Maurin, 1999). In this context the basic model assumes fixed effects and
is described by

y=XB+Da+F¢+e, (9.13)

where y is a N-Tx1 vector, X is a N-TxK matrix. The design matrix for the
individual effects D has the order N-TxN containing unit vectors. Analogously,
the design matrix for the firm effects F is a N-TxJ matrix. The firm effect is
expressed by % (s, This means individual i in period t is assigned to one of the
j=1,...,J establishments. The conventional technique to estimate 3, o and % in a
partitioned regression (9.13) does not work. The usual way to ‘sweep out’ the D
matrix and then to determine the firm effects, cannot be used in practice. The
F matrix is too large a non-patterned matrix due to the large number of firms.
Identification of the individual and firm effects in order to estimate using the exact
least squares estimator requires finding the conditions under which equation (9.13)
can be solved for some subset of the person and firm effects. Abowd et al. (2002)
present a procedure by applying methods from graph theory to determine groups
of connected individuals and firms. Within a connected group identification can be
determined using conventional methods from the analysis of covariance. A group
contains all workers who have ever worked for any of the firms in the group and all
the firms at which any of the workers were ever employed. The algorithm constructs
G mutually-exclusive groups of connected observations from the N workers in J
firms observed over the sample period. However, usually approximate solutions to
(9.13) are employed (Abowd et al., 1999). For this purpose an extended system is
formulated, which is more easily manageable under specific restrictions

y=XB+Da+Zx+ MzF} +e¢, (9.14)

where A = (Z’'Z)™1Z' F1) denotes an auxiliary parameter, Mz = I — Z(Z'Z)"* 7.
The new matrix Z contains specific columns of X, D and F. The intention behind
creating Z is to incorporate all relevant variables which determine interaction effects
between X, F and D so that under the condition of Z, orthogonality conditions can
be formulated. The selection of this information is a similar problem to the choice
of instrumental variables. The following restrictions are imposed: (i) X and D are
orthogonal, given Z, (ii) D and F are orthogonal, given Z. Then a four-step procedure
can be applied.

If the model is extended by a further level, e.g. by industry effects, we have to
consider that each establishment is assigned to only one industry. The gross firm
effect F?) has to be separated into the net firm effect (F¢p — F'Ax) and an industry
effect (FAx) Therefore, model (9.13) passes into

y=XB+ Da+ FAk + (Fp — FAx) + ¢. (9.15)

Matrix A assigns firms to a specific industry (a;; = 1, if firm j belongs to industry
l; aj; = 0 otherwise).
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If firm effects and individual effects are suppressed and if they are effective, the
industry effect. is biased except when FA and MraF are orthogonal. The bias is
described by a weighted average of the individual and the firm effects. Hildreth and
Pudney (1999) discuss issues of non-random missing values and Goux and Maurin
(1999) emphasize the use of instrumental variables estimators, which are necessary
if the variables are jointly dependent or if errors in variables exist.

While Hausman tests usually reject the random effects model (REM), the fixed
effects model (FEM) has the problem that the within transformation of a model
wipes out time invariant regressors as well as the individual effect, so that it is
not possible to estimate the effects of those regressors on the dependent variable.
One way to solve this problem is to replace random individual effects by estimated
FE. The basic idea follows the sample selection approach. Heckman (1979) has
substituted the conditional expected error term by an estimate, which is employed
as an artificial regressor. Let us manage this issue in a two-level model without pure
individual effects ‘

Yijt = ngt,B + oy + g+ €5t - (9.16)

In the first step the general firm effects a; and the firm specific individual effects
oi; are estimated by the within estimator of a FEM

& = (F—9) — @ -8,

i = (s —95) — (@5 — 55)'B", (9.17)

where 3 is the coefficient vector without the constant term. The conventional RE
estimator is inadequate if firm effects and regressors are correlated. In the second
step the firm effects are substituted by the estimates of (14.18). We incorporate the
firm effects as linear combinations (a1d; and b1di;) and expect & = 1,b = 1. OLS
estimation of

Yijt = Tijt B + adj + béuj + €ije (9.18)

leads to new estimates of the firm effects &; = g; — %6 and &s; = Fij — 7, 8.

9.3 Parametric Nonlinear Models

The major problem of nonlinear panel data models is the removal of the individual
effect. The main limitation of much of the literature on nonlinear panel data meth-
ods is that the explanatory variables are assumed to be strictly exogenous. The
discussion focusses on models, in which the parameter that is usually interpreted
as an intercept is allowed to be specific of the individual level. Unfortunately, the
features of the model that do not depend on «; tend to be different for the differ-
ent nonlinear functional forms. Therefore the resulting estimation procedures are
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different for different models. This is somewhat unsatisfactory. Many methods with
fixed effects rely on the method of conditional ML. Under random effects, one can
attempt to employ conventional ML methods. However, the combination of typical
nonlinear models with panel structures often yields too complex models to use this
procedure. Two alternatives exist. On the one hand, simulated ML estimation is
manageable. On the other hand, the GMM approach is a good alternative.

The most popular examples in microeconometric nonlinear models are logit, probit,
count data, censored and selection models. This is due to the fact that the major-
ity of panel data on individual and firms level are not continuously measured. In
the meanwhile there exist a lot of empirical applications using specific nonlinear
approaches (see Hiibler, 2005). Specially in labor economics, but also in other fields
of applied microeconomics many problems are based on qualitative, discrete or cen-
sored variables and subgroups are considered. The paper concentrates on methods
of binary dependent variables. Others are discussed in Hiibler (2003, 2005). Condi-
tional maximum likelihood estimators are right for logit models with fixed effects
(Hsiao, 2004). The basic model is

Ui = Teh + i + € = T+ Ui,
1,if 45 >0
it = . 9.19
Yir { 0 , otherwise, ( )
and the probability is
! .
Py =1) = —=F G R) (9.20)

1+ exp (3,8 + i)’

where ¢ = 1,..., N;t = 1,...,7. A simple ML estimator is inconsistent, as FEM’s
allow a correlation between = and «. The literature has developed alternative es-
timation strategies. The general idea is that, although the model does not have
features that are linear in the «;’s, it is nonetheless sometimes possible to find fea-
tures of the model that do not depend on «;. One way is to use the conditional
maximum likelihood estimation (CML).

A generalization of the standard logit panel data model is presented by Revelt and
Train (1998). They analyze a multinomial panel model and allow the parameters
associated with each observed variable to vary randomly across individuals. Con-
ditional on 3;, the probability that person i has the observed sequence of choices is
the product of standard logits (S:(8;) = 1. P;:(67)). Exact maximum likelihood es-
timation is not possible since the integral cannot be calculated analytically. Instead,
it is possible to approximate the probability by simulation and maximize the simu-
lated log likelihood. The average of the replicated results is taken as the estimated
choice probability. The estimated parameters of the simulated log likelihood func-
tion are consistent and asymptotically normal under regularity conditions. These
mixed logit approaches do not require the independence of irrelevant alternatives
and a general pattern of correlation over alternatives and time are allowed.
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As not so much is known about how to deal with fixed effects, it is often appealing
to make assumptions on the distribution of individual effects. We cannot find sim-
ple functions for the parameters of interest that are independent of the nuisance
parameter «; for probit models. To obtain the ML estimator we must evaluate
T-dimensional integrals. Butler and Moffitt (1982) simplify the computation by

P =yn,...Yir =yir) = /jo Flai) [ 1F (o0les) — F(—s Bles)ldes; . (9.21)

t=1

A more efficient- alternative suggested by Chamberlain (1984) yields the minimum
distance estimator which avoids numerical integration.

In the pure random effects model one can also estimate the model by a pseudo-
maximum likelihood method that ignores the panel structure altogether. The basic
idea can be described as follows: the time correlation structure is seen as ‘nuisance’
only with subordinated interest. Due to possible misspecification of this correlation
structure, the application of the ML method is not completely valid. Therefore, this
approach is called a quasi- or pseudo-ML estimation (QML) in the literature. The
objective is to minimize

S = Z(yi — Fi(z:.8)) Q; (i — Fi(1.8)) (9.22)
where

vi = (yir, o yir) s Fi() = (F@EuB),. ... Flirp)) .

If © is known, the LS estimator fulfills the equation

> 8?'[3(')@1(% — Fi(1)) =0. (9.23)

If © is unknown, a ‘working correlation matrix-€2’ is employed, which is usually
misspecified, e.g. R(§) = I or it is assumed that the correlations outside the main
diagonals are equal. The equations are then called ‘generalized estimating equations
- GEE’ and the solution is in accordance with a QML estimation. If the specification
of F'(z7,8) is correct the QML estimator is consistent and asymptotically normally
distributed, provided that the estimation of the covariance matrix 3 is robust.

If we consider a multinomial probit panel data model, the CML method fails. The
Butler-Moffitt approach is restricted because of the underlying multidimensional
integral. As mentioned in the introduction of nonlinear models, two alternatives
exist: simulated estimation methods and GMM approaches.

GMM estimators are based on the orthogonality conditions implied by the single
equation conditional mean functions

E(yit — F(m;t,@|X1)) =0, (9.24)
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where F(-) denotes the CDF of the univariate normal distribution. By combining
classical estimation methods and simulators, several approaches were developed.
For example, simulated maximum likelihood methods (SMLM), including the GHK
estimator, can be used (Geweke et al., 1997). Keane (1994) derived a computation-
ally practical simulator for the panel probit model. Simulation methods replace
the intractable integrals by unbiased Monte Carlo probability simulators. Further
possibilities are the method of simulated moments, simulated scores and Markov
chain Monte Carlo including Gibbs and Metropolis-Hastings algorithm. Geweke et
al. (1997) find that Gibbs sampling, simulated moments and maximum likelihood
method using the GHK estimator, all perform reasonably well in point estimation
of parameters in a three alternative 10-period probit model. Monte Carlo studies of
nonlinear panel data models (Bertschek and Lechner, 1998; Breitung and Lechner,
1999) reveal that among different GMM estimators the ranking is not so obvious,
while MLE performs best followed by the GMM estimator based on the optimal
instruments derived from the conditional mean restrictions. Greene (2004) also find
that the GMM estimator performs fairly well compared to the ML estimation.

9.4 Non- and Semiparametric Models

In many cases economic theory cannot help to specify an exact nonlinear relation-
ship. Usually, one can only argue that saturation, production and growth processes
or other mechanisms suggest a nonlinear approach without predetermined func-
tional form. Nonparametric models should be a natural consequence. Nevertheless
so far, the number of applications in this field is restricted (Hiibler, 2005). One
reason is that the estimation methods are less known than parametric approaches
among empirical researchers and that these methods are not implemented in conven-
tional software packages. Especially, we need more spread and further developments
of non- and semiparametric methods for panel data. In a general formulation the
causal dependence of the dependent variable y;; on independent variables and the
error term is typically described by

Yir = glm(wat) + wit] , (9.25)

where g(-) calls a mapping which induces the variable y;:. Possibly, y;: depends
on an unobserved endogenous variable yj; = m(xs + use). If ys¢ is directly created
by zi and us the relation can be simplified by yi+ = m(zs) + ui: and the linear
model results if m(zs:) = z;:3. While parametric models assume a known structural
relation under unknown parameters and an error term, a simple nonparametric
panel data model formulates a mean regression

Yit = E(yat|Tse) + i = m{Ta) + wie - (9.26)

The higher degree of flexibility motivates to use nonparametric rather than para-
metric methods. The basic problem is the enormous amount of calculations, espe-
cially if the number of regressors increase. Furthermore, it is difficult to interpret
the estimation. This is called ‘the curse of dimension’. Two possibilities exist to
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solve this problem. Additive or partial linear models are assumed. The former are
discussed in Hastie and Tibshirani (1997). We focus on the presentation of partial
linear models. :

If a pooled estimation of panel data is employed, the same procedures as with cross
section data can be used. It is necessary to test whether the pooled procedure is
convernient. Parametric procedures are described by Baltagi (2001). Baltagi et al.
(1996) present a nonparametric test. Li and Hsiao (1998) test whether individual
effects exist. If the test does not reject the null hypothesis of poolability, the indi-
vidual effects can be neglected. Starting point is a partial linear approach of panel
data

- Yit .2 Z;t’)’ -+ m(xzt) + Ut . (927)

The basic idea is to eliminate the nonparametric part. Then the linear term can
be estimated separately following Robinson (1988). In other words, the new re-
gressand is the difference between y and the conditional expected value, which is
induced by the nonparametric regressors. Due to the identity E[m(z)iz] = m(z),
the nonparametric term vanishes by first differences

y— Eylz) = (2 — E(zlz)) v+ u. (9.28)

Before we can estimate -, the conditional expected value has to be determined by
a nonparametric procedure (Pagan and Ullah, 1999, p. 199)

Mz
M=
=

Uit = E(yzt|$zt) = ~NT. 7 < Yit (9.29)

where fi; = = Zjvzl Zf:l K (2221 ) is the kernel density estimator and h is the
bandwidth. If we do not only consider a univariate nonparametric term, a multi-
variate kernel is necessary. A simplified form can be assumed in this case, namely
the product of the univariate kernels, i.e. K(zi) = 12, K(24it). The differences
model (9.28) has to be weighted

fz‘t (yir — Giz) = fit(zit — 22’1&)/’)’ + fituz’t . (9.30)
The least squares estimator of v follows
N T X N T R
F= 00D (zie—2a) (20— 2) FR) Q1 D (e — 2o (win — 9) f2) -
i=1 t=1 =1 t=1
(9.31)

This OLS estimator is consistent. However, a GLS estimator presented by Li and
Ullah (1998) achieves the semiparametric efficiency border and is therefore superior.
In the second step we obtain the multivariate nonparametric term m(z) under a
Taylor series approximation

yir — 2y = m(za) + B(x) (@i — @) + R(@is, ) + 212 (7 — 4) + vt
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= m(zit) + B(x) (zir — x) + Bt - (9.32)

The parameter vector 3(z) = (m(z), B(z)’) results from

N T
2 . 1 ’ A
Blz) = argmin—— E E Kt (yi — 2y

g=1 t=1

—m(z) — (za — ) B(z))?, (9.33)

where Ky = K(*%—%). Now the local linear least squares estimator is determined.

If the following simple nonparametric model is extended by individual effects oy,
all conditional moment procedures can be used to estimate the nonparametric term
i (242 ), if a random effects model is convenient. A known distribution of the individ-
ual effects is assumed and «; are identical, independent distributed. Furthermore,
the individual effects are independent of the regressors. Under unspecific time de-
pendence of E(y;:|zs) it is possible to estimate the parameters separately for each
wave. If time invariance is assumed, i.e. m:(zsz) = m(z:), the pooled procedure
can be employed to determine the nonparametric term. A local linear approach is
possible. In order to determine the nonparametric terms m(z) and B(x), we can
choose Ullah and Roy’s (1998) GLS approach. This corresponds to the conventional
within transformation,where « is eliminated. Under semiparametric partial linear
panel data models

yir = (@) + 2ipy + o + € (9.34)
we can follow Li and Stengos (1996) analogously to pooled models.

The estimator of the time invariant nonparametric term of a balanced panel can be
assigned to an unbalanced panel (Kénig, 1997). An extension to models with time
variable nonparametric models is also possible (Kénig, 2002). In this case a wave
specific procedure is suggested. An alternative to Li and Stengos is developed by
Konig (2002, p. 176fF). It is also possible to model a time variable nonparametric
term. Conventional first differences and within estimators, well-known from pure
linear models, can be applied. This approach is independent from the sensitivity of
bandwidth.

The partial linear model may be interpreted as a simple linear model with fixed
effects if nonparametric regressors are time invariant (z; = z;). The parameter
vector 7y is determined by first differences or within estimators if the linear regressors
are strictly exogenous. Biased estimators result from a direct application to time
variable regressors. The bias can be reduced significantly, if we follow a suggestion
by Konig (2002, p. 182).

In contrast to random effects models there exists an additional problem in nonpara-
metric panel data models with fixed effects. Due to the allowed correlation between
a; and zj: the conditional expected value of y;: differs from the nonparametric
term. Instead we obtain

E(yisles) = mxi) + E(ou|zs) . (9.35)
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Therefore, it is not possible to determine the nonparametric part by the condi-

tional moment approach. The conventional solution by first differences or within

estimators breaks down, The individual effect is eliminated but not identified by

this procedure. Ullah and Roy (1998) suggest a Taylor series of the nonparametric

expression as a starting point

/ Bm(xn) , 8*m(%)
Ozozx!

Yir = m(x) + (xzt - 37) ‘xit stz (xz‘t - 33) ($it - 33) + o + €

=: m(z) + (zst — =)' B(z) + Ralwst, ) + s + €t

=:m(z) + (zie — 3)' B(z) + o + &z, (9.36)

where Z is assumed to be within the range z and z;;. It is intended to estimate 5(z) of
this local linear model. A local within estimator with simple kernel function weights
gives biased and inconsistent estimates due to residual terms E{Ra(x; |z = ) #
0). The same problem follows under analogous first differences estimators. However,
a double weighting of first differences eliminates the bias (K6nig 2002, p. 61iF). We
define the product kernel from period t and t-1

Tit — L Tip—1 — L
h h

Lit—1 — &

K( —

) = K(Z5) K(

- Kz‘t Ki,tﬁl 5 (937)

where once again h is the bandwidth. Instead of weighting with K (®%-=) asin a
conventional differences estimator, the weight is the product of the local kernels

N T N T
B($>D = {Z Z KitKi,t—1 AxitAxgt}_l Z Z KitKi,t“1 Aa:q;tAyit s (9.38)

i=1 t=2 =1 t=2

where Az;y = Zit — Tis—1 and Ayie = Y — Yi,s—1. This estimator is not only
consistent, but also asymptotically normally distributed with a null vector as the
expected value vector and an asymptotic sandwich covariance matrix. A similar .
weighting is possible in the within model.

Semiparametric partial linear models with fixed individual effects can be described
by

yie = m(z) + z3:8(z) + 2y + o + Eit, (9.39)

where &: = € + R(zit,z), m(z) = m(z) — ' B(z). The individual term «; may
be correlated with z;; and z;;. The nonparametric term m(z) is developed by a
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Taylor series. In this case the problem of the parameter estimation (vy) also persists
in the conditional expected value of i :

E(yut|zan) = m(z) + £5,8(x) + E(zit|za)y + E(ou|ms) . (9.40)

Differences, i.e. yit — E{(yst|Ts), eliminate the nonparametric term, but not the
individual term. Therefore, it is necessary to remove oy in the first step. Li and
Stengos (1996) employ a differences estimator of y where the estimator is weighted
by the Nadaraya-Watson kernel estimator

N T ) N T .
ip = {Z Z AéitAéfIitf(xity Tig—1)’} ! Z Z AZi Ay F(@is, mas—1)?, (9.41)

i=1 t=2 f=1 1=2

where f(zit, s 1) is the kernel density estimator and
Aéit = Zit T Zit—1 [E(Zit|$it, mi,t71) - E(Zi,t—1|$ityxi,t-»—»l)] .

Analogously, Aﬁit is defined. By first differences «; disappears, but the nonpara-
metric term does not. In order to remove the difference M (zy) — M(zii—1) we
additionally have to subtract the difference of the expected values. If AZ; =
zit — 2y 1 — [E(zit|Zit, Tig—1) — B(2i4—1]Zst, Tie—1)] and the error terms are cor-
related, AZ; has to be instrumented. Kénig (2002, p. 215) suggests an alternative
estimator without kernel weights.

Manski (1975, 1987) has developed nonparametric maximum score estimators for
panel data models with fixed effects and dichotomous endogenous variables. Fur-
ther models and an estimator are presented by Lee (1999) and Honore and Lewbel
(2002). A survey on Tobit panel data models with nonparametric components,
which include the standard case of censored endogenous variables, selection mod-
els and censored multivariate models can be found in Kyriazidou (1995, 1997) and
Honore and Kyriazidou (2000). They also develop some new variants which do not
require the parametrization of the distribution of the unobservables. However, it is
necessary that the explanatory variables are strictly exogenous. Therefore, lagged
dependent variables as regressors are excluded. Kyriazidou (1997) obtains values
near zero by differences between pairs of observations, because pairs with a large
difference obtain small weights. Honore (1992) suggests trimmed least absolute de-
viation and trimmed least squares estimators for truncated and censored regression
models with fixed effects. He exploits the symmetry in the distribution of the la-
tent variables and finds that when the true values of the parameters are known,
trimming can transmit the same symmetry in distribution to observed variables.
One can define pairs of residuals that depend on the individual effect in exactly the
same way so that differencing the residuals eliminates the fixed effects.

9.5 Concluding Remarks

Many new methods to estimate panel data models have been developed in the past.
The focus in this paper was directed on multilevel and nonlinear models. As the
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functional form of nonlinearity is usually unknown, nonparametric estimates are
corollary. Nowadays several methods are implemented in conventional packages,
but others still require programming. In contrast to linear fixed effects panel data
models, it is more difficult to manage the individual term in combination with a
nonparametric term. Conventional differences and within estimators do not help
to eliminate the latter. There do not exist uniform methods of nonlinear models.
We have only specific estimation methods for several forms of nonlinearity and
- the results depend on the agsumptions. While estimation of random effects panel
data models is based on a fully specified model in which one can determine all the
quantities of interest, fixed effects panel data models typically result in the esti-
mation of some finite dimensional parameters from which one cannot calculate all
the functions of the distribution. Nevertheless, progress can also be observed in the
estimation of fixed effects panel data models. Estimates of random effects models
are usually more efficient. However, very often the violation of the distributional
assumptions yields inconsistent estimates. Fixed effects models make fewer assump-
tions and they react less sensitive to violations of the assumptions. Random effects
models are usually preferable for prediction.

In future we have to analyze the dynamic character of the panel data models more
completely. Almost nothing is known about nonlinear models with lagged dependent
variables. Furthermore, non- and semiparametric methods should also be applied
to multilevel models. In many situations it seems helpful to start with nonpara-
metric estimates. However, the next step would be to derive more fully specified
parametric models based on the results of the first step.
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Summary: Nonparametric models have become more and more popular over the
last two decades. One reason for their popularity is software availability, which
easily allows to fit smooth but otherwise unspecified functions to data. A benefit of
the models is that the functional shape of a regression function is not prespecified
in advance, but determined by the data. Clearly this allows for more insight which
can be interpreted on a substance matter level.

This paper gives an overview of available fitting routines, commonly called smooth-
ing procedures. Moreover, a number of extensions to classical scatterplot smoothing
are discussed, with examples supporting the advantages of the routines.

10.1  Introduction

Statistics and Econometrics have been dominated by linear or parametric models
over decades. A major reason for this were the numerical possibilities which simply
forbid to fit highly structured models with functional and dynamic components.
These constraints have disappeared in the last 15 to 20 years with new computer
technology occurring and with statistical software developed side by side with more
flexible statistical models. In particular models with smooth and nonparametrically
specified functions became rather popular in the last years and the models are now
easily accessible and can be fitted without deep expert knowledge. A milestone for
the propagation of the models with smooth components was the introduction to
generalized additive models by Hastie and Tibshirani (1990). The presentation of
the models was accompanied by its implementation in the software package Splus.
In contrast to linear models, in additive models, a response variable y is modelled
to depend additively on a number of covariates and in a smooth but otherwise un-
specified manner. In this respect, additive models are a flexible way to estimate in
a regression setting the influence of a number of covariates x, say, on a response or
outcome variable y. Allowing the outcome variable to be non-normally distributed
but distributed according to an exponential family (like binomial, Poisson etc.) leads
to generalized additive models. The idea of allowing covariates to have nonparamet-
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ric influence was extended to varying coeflicient models in Hastie and Tibshirani
(1993). Here, interaction effects of covariates, particularly between factorial and
metrical quantities, are modelled functionally but nonparametrically. Further con-
tributions were proposed including the wide class of semiparametric models. Here,
parts of the covariate effects are modelled parametrically while others are included
nonparametrically in the model.

Applications of non- or semiparametric models are versatile and found in nearly all
scientific fields. Nonetheless, the classical econometric field is interestingly enough
still somewhat dominated by classical parametric models and nonparametric models
are not common standard. This is, however, changing rapidly now. Nonparametric
ideas for time series data have been recently proposed in Fan and Yao (2003) (see
also Hirdle et al., 1997). For financial data, Ruppert (2004) shows how nonpara-
metric routines can be used to achieve insight beyond the parametric world. We
also refer to Pagan and Ullah (1999), Hérdle et al. (2004) or Akritas and Politis
(2003) for further developments of nonparametric routines in econometrics. In this
paper we add some further applications in the economic context, primarily though
for demonstrational purpose.

The paper is organized as follows. First we give a sketch of the different scatterplot
smoothing methods, like local smoothing, spline smoothing and the new proposal
of penalized spline smoothing. In Section 3 we present different smoothing models.
Data examples are provided as motivation why nonparametric models are worth-
while to be used. A discussion concludes the paper.

10.2  Scatterplot Smoothing
10.2.1  Sketch of Local Smoothing

An early starting point for smoothing was the local estimate formally proposed by
Nadaraya (1964) and Watson (1964). The idea is to estimate a regression function
m(z), say, locally as weighted mean. Consider data (z;,%:), ¢ =1,...,n, with z as
(metrically scaled) covariate and y as response. We assume the regression model

Yi :m(:]:i)—q‘-si, i=1,...,n (101)

with &; as independent residuals and m(-) as unknown and not further specified re-
gression function. Postulating smoothness for m(-), that is continuity and sufficient
differentiability, one can estimate m(z) at a target point = (within the support of
i, 1 =1,...,n) by the locally weighted mean

m(z) = Z Wil - (10.2)

Here wz; are weights summing up to 1 mirroring the local estimation. This means
that weights wq; take large values if |z; — x| is small while wg; gets smaller if |z; — x|
increases. A convenient way to construct such weights is to make use of a so called
kernel function K(-), where K(-) is typically chosen as positive, symmetric function
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around zero. Convenient choices are the Gaussian shape kernel K(u) = exp(—u?)
or the Epanechnikov kernel K(u) = (1 — u?); with (u)+ = u for u > 0 and 0
otherwise. The weights wg; are then constructed through

K(52)

e (25)

1

Wxq =

7

with & called the smoothing parameter or bandwidth, respectively. The role of A
is to specify the amount of smoothness of the fit. If & is large, then neighbouring
observations have weights of similar size and the resulting fit /7(-) is flat and smooth.
In contrast, if h is small, then 7h(-) will be wiggled.

Several practical procedures have been suggested to choose (or estimate) the smooth-
ing parameter from the data at hand. An early discussion is found in Rice (1984).
In principle, there are three approaches which have been suggested to choose band-
width h. First, one can apply cross validation by leaving out one observation at
a time and predicting its value with the smooth fit based on the remaining ob-
servations (see Stone, 1974). The resulting prediction error is known as cross vali-
dation. Let i_; »(z;) be the estimate of m(z;) based on data points (z;, ) with
Il=1,...,i—1,i+1,...,n and calculated with smoothing parameter h. We define

CV{(h) = Z {yi — s n(z:)}? /n

as cross validation function. Since y; and rh_; »(z:) are independent, CV (h) is
unbiased for the integrated mean squared error of (). Hence, minimizing CV (h)
with respect to h yields a plausible data driven choice of h. Defining with S the
n X n smoothing matrix with entries

K (352

S ()

1=1

Shij =

we obtain nih(:m) = Z;L:I Sh,i;y; and m_;p = Z?.—,éz Sh,ijyj/(l — Sh,ii), which
allows to calculate CV (h) quite easily. A second possibility to choose h is using the
Akaike (1970) criterion, which balances the goodness of fit with the complexity of
the fitted model. This is expressed in the Akaike information function

AIC(h) = log (Z {y:i — mh(m,-)}Q) + 2df(h)/n (10.3)

with df (h) = tr{Sk} as measure for the degree of freedom, that is the complexity
of the fitted function. The main idea of the Akaike criterion is, that the complexity
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of the fit, contained in the last component in (10.3) is set as counterweight to
the goodness of fit, exhibited in the first component in (10.3). The small sample
behavior for AIC(h) can be improved by replacing the latter component in (10.3)
by the modified term 2{df(h) + 1}/{n — df (h) — 2} as suggested in Hurvich et al.
,(1998). Again, a suitable choice for h is obtained by minimizing ATC(h). In the same
style as the Akaike criterion generalized cross validation has been suggested by Gu
and Wahba (1991). The idea is again to choose h by a compromise of goodness of fit
and complexity of the fit. Finally, a third method to obtain a bandwidth estimate
is to minimize the mean squared error analytically, and then use a plug-in estimate
to obtain the optimal bandwidth estimate (see Hirdle et al., 1992). Regardless of
the method being used, it can be shown theoretically and in simulations, that the
convergence of the bandwidth estimate is slow (see also Hirdle et al., 1988). As a
consequence, one should not blindly accept an automatically selected bandwidth
but assess the smoothness of the resulting fit /(-) by eye as well. In principle this
means, one should play with different bandwidths around the data driven optimal
one to validate the sensitivity of the fit on the bandwidth choice. This approach
has been developed more formally in Marron and Chaudhuri (1999).

The breakthrough of the local estimation approach came with a simple but practical
extension. Instead of estimating locally a constant one can fit locally a polynomial
model (see Fan and Gijbels, 1996). This idea proved to behave superior, in particular
at boundaries of the support of z, if local linear smoothing is used. Moreover,
local linear (or polynomial) smoothing allows not only to estimate the regression
function itself but also its derivatives. This results simply as by product of the
estimation routine. If locally a linear model is fitted then the fitted local slope
serves as estimate for the smooth estimation of the first derivative. Local polynomial
smoothing techniques have been en vogue in the late nineties, but have been less
focussed the last years. This is, at least partly, due to the numerical hurdles one
easily faces with this approach. The local idea says that one locally fits a polynomial
model to data. This means, in order to visualize the functional shape of a regression
function m(-) one has to estimate m(z) at a number of points z and then connect the
resulting estimates. If the local fit is complex and numerically intensive, then local
estimation at a number of points can readily lead to the borderline of numerical
feasibility. Nonetheless, local estimation is simple in its structure which still justifies
the approach. For more information and a general introduction to the ideas of local
smoothing we refer to Simonoff (1996) or Loader (1999).

10.2.2  Sketch of Spline Smoothing

Parallel to the kernel and local polynomial smoothing, spline smoothing has been
on the market for a while. As standard references we cite here Eubank (1988) and
Wahba (1990). These books pursue a more mathematical viewpoint, while Hastie
and Tibshirani (1990) or Green and Silverman (1994) present a more practical
guideline. The idea leading to spline estimates is that function m(z) in (10.1) is
estimated through the penalized criterion

17}11(11)1 {ZZ:; {yi —m(z:)}? — h/ {m” (at:)}2 da:} : (10.4)
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The main idea behind (10.4) is that the goodness of fit, measured with the first com-
ponent, is penalized by the complexity of the function, measured by the second order
derivative. It is due to Reinsch (1967) who showed that m = (m(z1),...,m(zxn))
as minimizer of (10.4) can be written as m = Ca, with C as cubic spline basis and
« as spline coefficient. Then, minimizing (10.4) is equivalent to minimizing

min {(Y —Ca)T(Y — Ca) + haTDa} , (10.5)

where Y = (y1,...,yn) and D is a penalty matrix resulting by mathematical the-
ory (see Fahrmeir and Tutz, 2001, for more details). This form easily allows for
numerical implementation and like for local smoothing, coefficient h plays the role
of the smoothing parameter, also called penalty parameter in this context. The pa-
rameter h penalizes the complexity of the function, with A — oo leading to a linear
fit, since for linear functions m”(z) = 0. On the other hand, for A — 0 the fitted
curve becomes wiggled and interpolating. A data driven choice of h is available
with the same means as for kernel smoothing, that is with cross validation or an
Akaike criterion. Additionally, one can comprehend (10.5) as component of a log
likelihood in a mixed model with a priori normal distribution on coefficient c. In
this case, the smoothing parameter h plays the role of a variance ratio which can
be estimated within a likelihood framework (see e.g. Efron, 2001, for more details).
For spline smoothing a number of numerical adjustments have been suggested. The
necessity for this is due to the fact that the cubic spline basis C' grows with the
same order as the sample size so that for large samples the spline estimate would
require the inversion of an n x n matrix, with n as sample size. This numerical
hurdle can be circumvented by reducing the dimension of the basis to achieve nu-
merical feasibility, which has led to the so called pseudo splines (Hastie, 1996, see
also Wood, 2003).

10.2.3  Sketch of Penalized Spline (P-Spline)
Smoothing

A powerful modification of spline smoothing is available by reformulating (10.5) in
the following way. For estimation one sets m = Bo with B as high dimensional
basis with fixed number of basis functions. For instance one may construct B as
B-Spline basis (see de Boor, 1978) with generously chosen number of basis functions
(30-60). Unlike spline smoothing, the dimension of the basis is now fixed and does
not grow with the sample size n. For fitting, the spline coefficients are penalized
like in (10.5) with appropriately chosen penalty matrix D leading to the criterion

mo%n {(Y — Ba)'(Y — Ba) + haTDa} .

The approach is nowadays known under the phrase penalized spline smoothing, or
shortly P-spline smoothing. Originally introduced by O’Sullivan (1986) the method
gained attention with Eilers and Marx (1996) and the recent book by Ruppert et
al. (2003). Even though the approach is similar to spline smoothing, it is different
in so far, that the basis and its fixed dimension is chosen in advance. The benefits
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achieved therewith are attractive simple numerical performance as well as practical .
advantages in smoothing parameter selection by exploiting a methodological link to
linear mixed models (see Wand, 2003). In fact, mixed model software can be used to
fit smooth nonparametric models and the delicate issue of selecting an appropriate
bandwidth is sourced out, since in the linear mixed model the smoothing parameter
plays the role of a variance component. This means, maximum likelihood theory
can be used for smoothing parameter selection (see Kauermann, 2004).

10.2.4  Software for Smoothing

The parallel development of sophisticated statistical models and available software
which allows to fit them to the applicants data brought a wide acceptance of the
new statistical technology. Software availability nowadays makes it easy to apply
nonparametric smooth models to real data. The leading products are here the public
domain package R (see www.r-project.org or Dalgaard (2002) for an introduction)
or the commercial origin Splus (see Ripley and Venables, 2002). Implementations
of innovative estimation procedures are also available in XploRe (see Hérdle et al.,
2000).

USA Data for 1971 to 1983 USA Data for 1984 to 2003
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Figure 10.1: Unemployment rate and wage inflation for USA for two different time
intervals. Smooth estimate is plotted with confidence interval, dashed line gives the
standard least squares estimate in a linear model.

10.2.5  Example (Scatterplot Smoothing)

Exemplary for a smoothing model of type (10.1), we consider a simple wage Phillips
curve (see for instance Chiarella and Flaschel, 2000) with z as unemployment rate
and y as wage inflation. The data shown in Figure 10.2.4 are for the USA for the
years 1971 to 1983 quarterly and 1984 to 2003, respectively. Note that the cut of
the data at year 1983 is primarily made for presentation reasons and not necessarily
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based on economic theory. The traditional paper by Phillips (1958) discusses data
for United Kingdom where he advocates a convex shape of the functional relation-
ship between wage inflation and unemployment rate. It is clear that wages do not
exclusively depend on the unemployment rate but on further economic quantities
and since its original publication, the relationship, now known as Phillips curve,
has been extended in numerous ways. Moreover, a discussion about the shape has
been focussed by a large number of authors (see Flaschel et al., 2005, for details
and references). It is beyond the scope of this paper to contribute to this discussion.
Instead we look at the traditional curve to demonstrate non-linearity, in particu-
lar concavity for the first time period. This can be seen in Figure 10.2.4 where we
plot a local estimate, with smoothing parameter selected by the Akaike information
criterion. The estimate is shown as smooth curve with pointwise confidence bands
(95% level) included. For comparison we also include a parametric fit by setting

m(z) = Po+ z0x . (10.6)

This is shown as dashed line. Apparently, there is evidence for a concave behavior,
that is, that the wage pressure is high but somewhat stable for small up to medium
unemployment. If, however, the unemployment rate is large, the pressure on wage
decreases with increasing unemployment rate. The picture looks different for data
from the mid 80th onwards. Here, the Akaike criterion choses a bandwidth such that
the local estimate and the parametric linear fit (10.6) coincide (Bo = 0.008 (std =
0.002), B, = —0.025 (std = 0.037)). Now the pressure on wage depends only slightly
on the unemployment rate on a low level.

10.3  Non and Semiparametric Models

10.3.1  Generalized Additive and Varying Coeflicient
Models

The simple scatterplot smoothing model (10.1) can be extended in various ways.
First, the assumption of normality can be generalized. For parametric models this
has led to generalized linear models (see McCullagh and Nelder, 1989). The idea
is to generalize the linear regression model (10.6) by allowing y for given = to be
distributed according to an exponential family distribution with mean structure

E(ylz) = 9(Bo + z0:) , (10.7)
where g(-) is a known link function. Clearly (10.7) is a parametric model. If we re-

place the linear relationship by a nonparametric function we obtain the generalized
nonparametric model

E(y|z) = g(m(z)) (10.8)

with m(-) as an unknown but smooth function in z.
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The next extension is achieved by allowing y to depend on more than one (metrically
scaled) covariate, e. g.  and u. Modelling the influence of x and v nonparametrically
leads to the Generalized Additive Model (GAM)

‘E(ylx,U) = g{ma(z) + mu(u)}, (10.9)

where m () and m,(-) are unknown but smooth functions to be estimated from the
data. This model has achieved tremendous popularity with the book by Hastie and
_Tibshirani (1990) and the Splus software allowing to fit it. The advantage of (10.9)
is that estimation is easy by using a backfitting algorithm, i. e. we keep all smooth
components except of one as fixed and estimate the remaining one. Circulating
over the functions provides the corresponding fit. The benefit of additive modelling
is that the so called curse of dimensionality is avoided. The latter occurs if high
dimensional functions are fitted from data and it says that the required sample size
grows exponentially with the dimension of the function fitted. This is avoided if
additivity is assumed.

So far we have only considered models with purely metrically scaled covariates.
The combination of metrical scale and nominal covariates (like indicator variables)
can be modelled flexibly with a so called Varying Coeflicient Model (Hastie and
Tibshirani, 1993). For this purpose, let z be a nominal covariate (i.e. a factor) and
z is as before metrical. A nonparametric model is then

E(ylz, z) = g{mo(z) + zm.(z)} - (10.10)

Now mo(x) is the influence of x while m;(x) mirrors the multiplicative smooth
interaction effect of x and z. If the covariates effect of z does not interact with =
we get m,(x) = B. as constant function and model (10.10) simplifies to

E(ylz,z) = g{mo(z) + 20} . (10.11)

This model is parametric and nonparametric at the same time and it is typically
referred to as Semiparametric Model or Partly Linear Model in the literature. From
a statistical viewpoint it has been of interest to find efficient ways to fit models
(10.9), (10.10) and (10.11), respectively (see e.g. Wood, 2003, Kauermann and Tutz,
2000).

10.3.2  Example (Generalized Additive Models)

As illustrative example we look at data taken from the Munich Founder Study (see
Kauermann et al., 2005). We consider data of 1235 firms founded between the years
1985 to 86 in Munich metropolitan area. In particular, we focus on the three year
success rate by defining the outcome variable y; = 1 for the i-th firm, if the firm
went out of business within its first three years of business while y; = 0 otherwise.
As explanatory variables we include z = age of the founder as metrical quantity
and the following binary factors coded 0 or 1:

e z1 = plan =1 if business was planned > 1/2 year
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Main Effect Age

Effect of Age

Interaction Effect of Plan with Age

Interaction Effect Plan/Age

Figure 10.2: Main effect of age on the three year success rate of newly founded
enterprises (left plot) and the interactive effect of plan. Constant effects are shown

as horizontal line.

Table 10.1: Parametric estimates for Munich founder study.

variable estimate std dev  p-value
(intercept) 0.305 0.174 0.080
plan -0.512 0.218 0.019
test -1.047 0.412 0.011
sex -0.087 0.161 0.587

branch -0.832 0.147 < 0.001
specialist -0.338 0.148 0.022
innovation -0.483 0.156 0.002
school -0.460 0.155 0.003
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e 2, = test = 1 if business had a test phase of > 1/2 year

e 23 = sex = 1 for male founder

e 24 =branch =1 for branch knowledge of founder

e z5 = specialist = 1 for firm aiming for specialized market

e zg = innovation = 1 for new product produced or sold by the firm

e 27 = school =1 for high school degree.

For each of the factorial covariates we checked multiplicative interaction with age
applying a forward selection. For covariate plan the varying coefficient model looks
for instance like

E@ylz, z1,...,27) = h{mo(z) + 21ma(x) — 22082 + ... + 2767} ,(10.12)

i.e. plan and age interact. This is also the final model, since no other covariate
effects were found to interact with age = based on the resulting selected smoothing
parameter. The parametric estimates are provided in Table 10.1. For estimation we
decompose mqg(z) and mi(z) to Bo + moeo(z) and By + mo1(z), respectively, with
identifiability constraint [mgei(z)dz = 0 for I = 0,1. This means that 3 is the
average plan effect while mgo1(z) mirrors the orthogonal interaction with age. As
can be read from Table 10.1, significant quantities are whether the enterprise was
planned and tested, whether the entrepreneur had branch knowledge and whether
he or she was aiming for a specialized market or bringing an innovative product
to the market. Moreover, school education has a significant effect, all of the effects
are risk reducing. The effect of sex clearly is not significant. Next we study the
fitted interaction effects moi(z), { = 0,1. As can be seen, elderly entrepreneurs
have less risk of failing with their company, while the risk increases more or less
linearly for younger founders. If the firm was planned for longer than 1/2 year, the
risk is reduced. This holds particularly for younger founders, as the effect interacts
with age. In fact, the smoothing parameter chosen by cross validation indicates a
nonparametric interaction effect. Smoothing parameters are chosen by generalized
cross validation using the implemented version in the gam(.) procedure in R. Note
that 7y (z) = B+ ror (), so that 7y (x) = 0 holds if —F; = mo(z). To indicate the
area of z-values where the effect vanishes we include —,él as dashed horizontal line
in the plot. It appears that the risk reducing effect of plan is particularly active for
entrepreneurs aged 35 to 40 and younger.

10.3.3  Further Models

A potentially useful class of models to include nonparametric effects are duration
time models. Here, the Cox (1972) model is playing the dominant role by setting
the hazard function (¢, z) for covariates x as

A, ) = Xo(t) exp(z8), (10.13)

where X\o(%) is known as baseline hazard. In particular, in (10.13) one assumes that
covariate effects are constant over time. This can be doubtful, in particular for
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economic datasets, where duration time can be long and can even exceed years. In
this case a more realistic scenario is to allow the covariate effects to change with
time. This leads to the model

Alt, z) = Ao (%) exp(zm(t)) (10.14)

with m(t) as covariate effect varying smoothly in ¢. Models of this kind are presented
in Grambsch and Therneau (2000), an economic example is found for instance in
Kauermann et al. (2005).

A second direction to extend nonparametric models is to allow for correlated resid-
uals in a time series framework (Fan and Yao, 2003). Generally, smoothing with
correlated errors is more cumbersome as demonstrated in Opsomer et al. (2001).
The major problem here is that standard smoothing parameter selection fails.

10.3.4  Multivariate and Spatial Smoothing

So far we have discussed models where the smooth function has a univariate argu-
ment. This can be extended by assuming that z = (z1,...,2,) is multivariate, so
that model (10.8) becomes

E(y|z1,...,2p) = g(m(zi, ..., zp)). (10.15)

Now m(-) is an unspecified function, smooth in all components. Models of this type
are hard to estimate if p is large, which is known under the phrase curse of dimen-
sionality (see Hastie and Tibshirani, 1990). The reason for this problem is, that the
amount of information necessary to obtain a fit with postulated bounds of error
increases exponentially with p. On top of that, the function is nearly impossible to
be visualized if p > 2. Therefore, multivariate smoothing is usually restricted to bi-
variate or spatial smoothing where one takes p = 2. The multivariate aspect thereby
relates to spatial smoothing if z, and z2 are location coordinates, but in principle,
z1 and z2 can be any continuous measure as the subsequent example shows. Fitting
the model is carried out in the same fashion as for univariate smoothing with some
minor modifications. In particular, for spatial smoothing kriging is more familiar
than spline smoothing, even though the ideas are related (see Nychka, 2000, or
Ruppert et al., 2003, Chapter 13).

10.3.5  Example (Bivariate Smoothing)

Exemplary for a bivariate smooth we consider data taken from the German So-
cio Economic Panel. We consider n = 4501 individuals aged 18 to 60 who were
domiciled in West Germany and who became unemployed during 1983 and 2001.
We model the probability 7 of returning to professional life within 12 months of
unemployment. For individuals in the panel with more than one spell of unemploy-
ment we randomly select one of the spells which guarantees independence among
our observations. As covariates we consider age, gender and nationality. The model
fitted is

logit(7) = m{age, start) + nationalityBn + genderfy ,
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Figure 10.3: Interactive smooth effect of age and start as calendar time plotted as
contour and perspective plot. Fstimated degree of freedom is 4.2.

where start is starting time of the unemployment. Figure 10.3.4 displays the fitted
curve m(-, -) centered around zero by subtracting the fitted intercept -1.28. As can
be seen, the chances of finding work within a year decreases with age in a nonlinear
form. Moreover, the chances decrease with calendar time, where younger individuals
experienced a stronger descent compared to older individuals. The parametric ef-
fects show that Germans have higher chances to find a job within a year {8, = 0.24
{sd = 0.07) for nationality = 1 for Germans, 0 otherwise) and males have higher
chances (8, =1.03 (sd=0.07) for gender = 1 for males, 0 for females).

10.3.6  Model Diagnostics

Smoothing offers an insightful option for model diagnostics and model checking. In
its standard form this boils down to testing the parametric model (10.7) against its
smooth generalization (10.8). Due to the unconstrained structure of the alternative
model (10.8), a test constructed via smoothing is likely to have power against a
wide range of alternatives. The principle idea is to compare the difference in the
fit in the two models using an appropriate reference distribution. The latter is non
standard, which makes smooth tests a little delicate. A number of authors have
contributed to this field proposing different tests based on smoothing (see Hirdle
and Mammen, 1993, or Kauermann and Tutz, 2001, and references given there). Re-
cently, Crainiceanu et al. (2005) propose a likelihood ratio test for penalized spline
smoothing showing that the reference distribution for the test statistics collapses
to a mixture of x> distributions. Their result can also be applied in smoothing.
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Of more exploratory style are the local smoothing ideas published in Bowman and
Azzalini (1997).

10.4  Discussion

. In this paper we gave a brief overview about smoothing techniques and models with
smooth components. We demonstrated the generality of the approach and provided
examples as illustration. It should be pointed out that all examples were fitted with
R (www.r-project.org) so that the results can not only be easily reproduced, more-
over, the reader is invited to ”"smooth” his or her data as well.
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Summary: The paper first provides a short review of the most common microe-
conometric models including logit, probit, discrete choice, duration models, models
for count data and Tobit-type models. In the second part we consider the situation
that the micro data have undergone some anonymization procedure which has be-
come an important issue since otherwise confidentiality would not be guaranteed.
We shortly describe the most important approaches for data protection which also
can be seen as creating errors of measurement by purpose. We also consider the
possibility of correcting the estimation procedure while taking into account the
anonymization procedure. We illustrate this for the case of binary data which are
anonymized by ‘post-randomization’ and which are used in a probit model. We
show the effect of ‘naive’ estimation, i.e. when disregarding the anonymization pro-
cedure. We also show that a ‘corrected’ estimate is available which is satisfactory
in statistical terms. This is also true if parameters of the anonymization procedure
have to be estimated, too.

11.1  Introduction

Empirical research in economics has for a long time suffered from the unavailability
of individual ‘micro’ data and has forced econometricians to use (aggregate) time
series data in order to estimate, for example, a consumption function. On the con-
trary other disciplines like psychology, sociology and, last not least, biometry have
analyzed micro data already for decades. Therefore it is not surprising that most of
the by now well-known microeconometric methods have been invented long time ago
by biometricians and psychometricians. However, it is the merit of econometricians

*Research in this paper is related to the project "Faktische Anonymisierung wirtschafts-
statistischer Einzeldaten" financed by German Ministry of Research and Technology.
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that they have provided the underlying behavioral or structural model. For exam-
ple, the probit model can be seen as an operational version of a linear model which
explains the latent dependent variable describing, say, the unobservable reservation
wage. Moreover, the discrete choice model results from the hypothesis that choice
among alternatives is steered by maximization of utility of these alternatives.

The software for microeconometric models has created growing demand for micro
data in economic research, in particular data describing firm behavior. However,
such data are not easily available when collected by the Statistical Office because
of confidentiality. On the other hand these data would be very useful for test-
ing microeconomic models. This has been pointed out recently by KVI commis-
sion.’ Therefore, the German Statistical Office initiated research on the question
whether it is possible to produce scientific use files from these data which have to
be anonymized in a way that re-identification is almost impossible and, at the same
time, distributional properties of the data do not change too much. Published work
on anonymization procedures and its effects on the estimation of microeconometric
models has concentrated on continuous variables where a variety of procedures is
available. See, for example, Ronning and Gnoss (2003) for such procedures and the
contribution by Lechner and Pohlmeier (2003) also for the effects on estimation.
Discrete variables, however, mostly have been left aside in this discussion. The only
stochastic-based procedure to anonymize discrete variables is post-randomization
(PRAM) which switches categories with prescribed probability. In this paper we
consider anonymization by PRAM and its effect on the estimation of the microe-
conometric probit model. Thus, we consider an anonymized binary variable which
is used as dependent variable in a probit model whereas the explanatory variables
remain in their original form.

In Section 11.2 we describe the most important microeconometric models which by
now should be well known so that details on estimation and testing are omitted
and only principles of modelling are sketched. Section 11.3 presents anonymization
procedures and possible strategies to incorporate them into the estimation of mi-
croeconometric models. Finally Section 11.4 will illustrate these general remarks
for the special case that the binary dependent variable in a probit model has been
anonymized by PRAM. We also consider the case that the user is not informed
about details of the anonymization procedure.

11.2  Principles of Microeconometric
Modelling

Consider the following linear model:
Y'=a+fz+e (11.1)

with Efe] = 0 and V[e] = ¢Z2. Here the * indicates that the continuous variable Y
is latent or unobservable. This model asserts that the conditional expectation of
Y™ but not the corresponding conditional variance depends on z. If the dependent

1See Kommission zur Verbesserung der statistischen Infrastruktur (2001).
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variable Y™ is observable, that is if ¥ = Y™, then we have the standard simple
regression model with just one regressor and unknown parameters o, 3 and o2. For
example, Y may be expenditure for a certain good and = may be some indicator of
quality of the good. It is reasonable to assume a priori that 8 > 0 holds.

11.2.1  Binary Probit (and Logit) Model

Now assume that it is only known whether the good has been purchased or not. If
we interpret Y* as the utility of the good and assume that purchase w111 be made
if utility crosses a certain threshold 7, we get formally

0ifY™ <
y — 1 =7 (11.2)
1 else

for the observed variable Y. It can be shown that two of the four parameters o, 3
o2 and 7 have to be fixed in order to attain identification of the two remaining
ones. Usually we set 7 = 0 and oZ=1 assuming additionally that the error term
¢ is normally distributed. This is the famous probit model. Note that only the
probability of observing Y =1 for a given = can be determined. If we alternatively
assume that the error term follows a logistic distribution, we obtain the closely
related binary logit model.

11.2.2  Ordinal Probit Model

Some minor modification leads then to the ordinal probit model. Assume that
instead of the binary indicator a trichotomous (and ordered) indicator is observed
which is assumed to be generated from latent variable Y* as follows:

0 (no purchase) if Yy*<n
Y = ¢ 1 (one unit of the good) if m<Y " <mn
2 (more than one unit of the good) else.

This model has two thresholds instead of only one. Note that the probability is not
a monotonic function of # with regard to ‘middle’ alternatives which is a well-known
problem when interpreting estimation results.

11.2.3  Discrete Choice Model

A different situation is met if the indicator variable contains only information from
a nominal scale. For example, it may be observed which brand of a certain good
is purchased. In this case we get Y € {A, B,C} where A, B and C denote three
different brands. Furthermore assume that z; is the quality indicator for brand j
and the linear model now is written as

Ui=a+ Bz; +€,7=1,...,7,

where U; denotes utility of brand j and r the number of alternatives. Note that
we now have r error terms. Under the random utility maximization hypothesis
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we assume that the consumer chooses the alternative which offers maximal utility.
However, since U; is a random variable, we can only obtain the probability of
observing alternative j. More formally we assume that

PlY =jlz1,...,2r] = PlU; > Uy, k # j]

where P[A] denotes the probability of event A. If we assume that the random vari-
ables U; are jointly normally distributed we have the multinomial probit model.
If one alternatively assumes the otherwise seldom used extreme value distribution
(Gumbel distribution), then we arrive at the multinomial logit model first intro-
duced by Daniel McFadden which is much easier to estimate than the probit version
for » > 3. However, the latter mentioned model can assume a flexible correlation
structure for the error terms mimicking the similarity of pairs of brands. Both
distributional versions are known as ‘discrete choice model’.

11.2.4  Count Data Models

Consider again the situation described for the ordinal probit model where Y con-
tains information from an ordinal scale. If we switch to the situation where the
number of units of the good purchased is known, then we have Y € {0,1,2,3,...},
that is, Y is a nonnegative integer. The easiest but also most restrictive model
describing such a data set is the Poisson distribution. Note that no longer an un-
derlying latent variable is assumed. However, again we want to estimate the impact
of the quality of the good (denoted by z) on the number of units purchased, that
is we assume that the conditional expectation of Y given x depends on x. Clearly
a distribution with only nonnegative realizations will have a positive expectation.
In particular for the Poisson distribution we obtain E[Y] = V[Y] = A > 0 where
A is the only parameter of this distribution. Note that the first equation often is
termed ‘equidispersion’. For the conditional model we use

E[Y|z] = Mz) = exp(a + Bx),

which relates the single parameter X to the explanatory variable z in a way that the
expected value is nonnegative for any x. The resulting model is called the Poisson
(regression) model. If the slightly more flexible negative binomial distribution is
used, the oftén observed ‘overdispersion’ (V[Y]z] > E[Y]|z]) can be handled more
adequately.

11.2.5  Duration Models

Many if not most economic variables are nonnegative. Therefore the probability
mass of the corresponding distribution should be restricted to the RT. However
only in duration analysis this aspect has been recognized properly.? For example,
the duration or ‘spell’ of unemployment may be described by one of the following
distributions: gamma with exponential as a special case, lognormal or Weibull.®

2The only other model where a nonnegative distribution has been employed is the
Gamma distribution when estimating frontier functions. See, for example, Greene (2000,
Chapter 9.7).

33ee, for example, Appendix A in Ronning (1991) for a description of these distributions.
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It turns out that Weibull is easiest to handle since its distribution function has a
closed form:

Fy)=1-—exp (*ffye) , #,0>0. (11.3)

A conditional distribution describing, for example, the impact of age on the unem-
ployment spell can be derived by letting one of the two parameters of this distri-
bution depend on z. For example, we may assume*

k(z) = expla + pz)

and then estimate the unknown parameters o, 8 and 8 from this conditional distri-
bution.

However, usually the model is formulated in terms of the hazard rate which is given
by

My) = 1—% (11.4)

and is also termed ‘survivor function’ since it describes the ‘probability’ that an
event of duration y will last longer than y. Now it is evident that the Weibull
distribution is an attractive candidate since from inserting the distribution function
(11.3) and the corresponding density function into (11.4) we obtain the simple
expression

Ay) = ry’

and for the conditional hazard rate we obtain

Mylz) = exp(a + Bz)0y® "

Duration analysis faces the special problem of censoring since the true value of
a duration or spell may be unknown for two reasons: (i) the start of the spell of
unemployment may not be recognized; (ii) the spell is incomplete at the time of
observation: All persons unemployed at the time of sampling will - unfortunately
- stay longer in this state. The second case called ‘right censoring’ therefore is
the more important case in duration analysis. Formally we have for the observed
random variable Y in case of right censoring

11.5
T ifY* > 7, ( )

a { Yy <7
where Y™ is the ‘true’ duration. For censored observation we only know the proba-
bility P[Y™* > 7] =1 — F(r). Please note that usually 7 is known but varies over
the sampling units.

4See Ronning (1991, Chapter 4.3.4).
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11.2.6  Tobit Models

Finally we shortly look at Tobit-type models which are closely related to duration
models under censoring as noted, for example, by Amemiya (1985) although in this
case we typically have left censoring. James Tobin analyzed expenditure data for
durables and noted that expenditures could only be observed in case of purchase.
Therefore in order to explain expenditures Y by income z he considered the ‘latent
linear model’ (11.1) together with

ey <
D B ‘1fY <7 (11.6)
Y ifY* > 71,

which defines left-censoring. However, there is a fundamental difference to the du-
ration model: Usually 7 is an unknown paraineter not varying over sampling units
which has to be fixed a priori in order to estimate the remaining parameters «, g
and ¢2.5 Here P[Y* < 7] denotes the probability that the good is not purchased.
(11.1) together with (11.6) assuming normality for ¢ is called the censored Tobit
model.

Another situation arises if only data for buyers are available. In this case we consider
the conditional distribution given the event Y* > 7. In other words, we consider a
distribution which is ‘truncated from below’ and satisfies

PlY">71]=1

A simple transformation of an unrestricted distribution characterized by density
function f(y) and distribution function F(y) leads to the desired density

fy)

In case of the normal distribution expectation and variance of this truncated dis-
tribution are easily derived.® If again we assume normality for & in (11.1) then we
arrive at the ‘truncated Tobit model’ or just truncated regression model.

In connection with the Tobit model often the ‘selectivity bias’ is mentioned. In the
censored version of the model above this problem only arises if the inappropriate
least-squares estimation procedure is applied. The phenomenon of selectivity can
arise in any model considered above in Section 11.2. More generally, this problem
is termed ‘endogenous sampling’ which will not be treated in detail in this survey.”

11.2.7  Estimation and Testing

We have presented all models in this section without any discussion of estima-
tion. Ronning (1991), for example, presents the maximum likelihood estimation for
all these models together with some aspects of testing hypotheses. However, it is
widely acknowledged that this estimation principle may be too restrictive in most

53ee, for example, Ronning (1991, p. 125) for a discussion.
6See, for example, Ronning (1991, p. 13).
7See, for example, Ronning (1996, p. 86).
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applications. More adequate methods are provided today using non-parametric
and semi-parametric methods. Verbeek (2000) and Cameron and Trivedi (2005)
may be consulted for some of these modern approaches. Additionally, some of the
other contributions in this book consider estimation methods and other aspects of
microeconometric models: Boes and Winkelmann consider other models for ordi-
nal response. Caliendo and Hujer deal with microeconometric evaluation models.
Fitzenberger and Wilke analyze duration models in terms of quantile regression.
Hiibler extends microeconometric models to the panel case. Kauermann treats es-
timation of non- and semi-parametric models in general terms. Réssler and Riphan
are concerned with non-response which should be incorporated into estimation of
microeconometric models if possible.

11.3  Anonymization of Micro Data
11.3.1  General Remarks

As already mentioned in the introduction, many sets of micro data are not available
due to confidentiality. For some time now research has been done on the question of
how to anonymize these data in such a way that the risk of disclosure is small and,
at the same time, the distributional properties of the data are not too much biased.
A handbook on anonymization published recently (see Ronning et al., 2005b) gives
an overview about procedures used in this field. For continuous variables both
microaggregation and addition of noise seem to be good procedures since they
both compromise in a satisfactory manner between guaranteeing confidentiality and
conserving statistical properties. However, this has been established only for linear
models whereas for (nonlinear) microeconometric models so far no general results
have been derived. For example, addition of noise leads to the well-known errors-in-
variables model for which proper estimation approaches are available in the linear
case. See Subsection 11.3.2 for some more details. Since for all microeconometric
models given in Section 11.2 the dependent variable is discrete or censored, other
anonymization procedures should be applied in these cases. However, so far only
anonymization of a binary variable by ‘post randomization’ (PRAM) has been
treated more thoroughly. We describe all three methods in the following subsections.
A more detailed exposition is given in Ronning et al. (2005b) where also other
procedures such as rank swapping are described.

11.3.2  Microaggregation

This procedure assigns each observational unit from a cluster of observations to
the arithmetic mean of this cluster. Therefore after anonymization the intra-class
variance is zero implying a reduction of variance in general. One distinguishes be-
tween ‘joint’ microaggregation and individual microaggregation. In the first case
the same cluster structure is used with regard to all variables whereas in the second
case the aggregation is done for each variable individually. Of course, also subsets
of variables may be aggregated by the same clustering or some subsets may be left
unchanged.
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We now demonstrate the effect of microaggregation on the estimation of the linear
model® which we write in the usual way:

y = X8 + u. (11.7)

Let Dy be the aggregation matrix applied to y and Dx be the aggregation matrix
applied to all columns of X. Note that both matrices are symmetric idempotent.
When estimating the parameter vector § from the anonymized data, we obtain

B = (X'DxX) 'X'DxD,y.

This shows that the estimator will only be unbiased if either Dx = D, (joint mi-
croaggregation of all variables) or if Dy = I (only the set of regressors is microaggre-
gated). Interestingly the case that only the dependent variable is aggregated creates
problems. Schmid and Schneeweifs (2005) discuss this case and show consistency of
the estimator under certain conditions. However, no general results are available
for nonlinear models such as logit and probit models.

11.3.3  Addition of Noise

Let ey be a vector of errors with expectation zero and positive variance correspond-
ing to y and let Ex be a matrix of errors corresponding to X in the linear model
(11.7). Addition of noise means that we have to estimate the unknown parameter
vector from the model

v+e, = (X+Ex)f + u.

This is the well-known errors-in-variables model for which anonymization of right-
hand variables creates estimation problems whereas anonymization of the depen-
dent variable only increases the error variance® which should be compared with
the case of microaggregation where (separate) anonymization of the dependent
variable creates problems. Lechner and Pohlmeier (2005) consider nonparametric
regression models where the regressors are anonymized by addition of noise. They
show that from the simulation-extrapolation method (SIMEX) reliable estimates
can be obtained. However for microeconometric models such as logit and probit
models general results regarding the effect of noise addition and the suitability of
the SIMEX method are not yet established.

Additive errors have the disadvantage that greater values of a variable are less
protected. Take as an example sales of firms. If one firm has sales of 1 million
and another sales of 100 million then addition of an error of 1 doubles sales of the
first but leaves nearly unchanged sales of the second firm. Therefore research has
been done also for the case of multiplicative errors which in this case should have
expectation one. Formally this leads to

y@ey = (X@EX),B + u,

where ® denotes element-wise multiplication (Hadamard product). For results re-
garding estimation of this linear model see Ronning et al. (2005b).

8See Lechner and Pohimeier (2003) for details.
9See Lechner and Pohlmeier (2003) for details.



11.4 The Probit Model under PRAM 161

11.3.4 Randomized Response and Post
Randomization

Randomized response originally was introduced to avoid non-response in surveys
containing sensitive questions on drug consumption or AIDS disease, see Warner
(1965). Sarndal et al. (1992, p. 573) suggested use of this method ‘to protect the
anonymity of individuals’. A good description of the difference between the two
(formally equivalent) approaches is given by van den Hout and van der Heijden
(2002): In the randomized response setting the stochastic model has to be defined
in advance of data collection whereas in post randomization this method will be
applied to the data already obtained.

Randomization of the binary variable ¥ can be described as follows: Let Y™ de-
note the ‘masked’ variable obtained from post randomization. Then the transition
probabilities can be defined by pjx := P(Y™ = j|Y = k) with j,k € {0,1} and
pjo +pj1 = 1 for 5 = 0,1 . If we define the two probabilities of no change by
poo =: mo and p11 =: 71, respectively, the probability matrix can be written as

follows:
P, — ( mm 11— 7r0> )
1- 1 Tl

Since the two probabilities of the post randomization procedure usually are known*
and there is no argument not to treat the two states symmetrically, in the following
we will consider the special case

o = 7. 11.8
: (11.8)

o]

When the variable Y has undergone randomization, we will have a sample with
n observations y;" where ;" is the dichotomous variable obtained from y; by the
randomization procedure.

In the handbook on anonymization (Ronning et al., 2005b) we also discuss the
extension of PRAM to more than two categories. If the categories are ordered as,
for example, in the case of ordinal variables or count data switching probabilities for
adjoining categories should be higher since otherwise the ordering would be totally
destroyed. Of course, PRAM could also be extended to joint anonymization of two
or more discrete variables.

11.4  The Probit Model under PRAM
11.4.1 Estimation of the Model

‘We now consider in more detail estimation of an important microeconometric model
in case of anonymized data: the binary probit model as defined by (11.1) and
(11.2) observing the normalizations mentioned in Subsection 11.2.1.}! The sample

10We discuss the case of unknown probabilities in Subsection 11.4.3.
11See also Ronning (2005) and Ronning et al. (2005a).
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information is given by m pairs (z;,y;) where y; € {0,1} and z; is an arbitrary
real number. Maximum likelihood estimation of the two unknown parameters o
and B is straightforward.!'? In the following we confine ourselves to the case of
just one regressor which is assumed to be continuous. The results, however, also
apply to the more general case of an arbitrary number of explanatory variables
after minor modifications. We consider randomization of the dichotomous variable

y which switches its values with some-prescribed transition probability (leaving the
explanatory variable z in its original form).

- ~J34
7 -36 35

_ep -39 =3B 2

Figure 11.1: Surface of Loglikelihood Function for Simulated Data with m = 0.70

Under randomization of the dependent observed variable we have the following data
generating process:

v 1 with probability ®;7 + (1—®;) (1 — =) (11.9)
* | 0 with probability ®;(1—7) + (1 —®;)x. '
Here ®; denotes the conditional probability under the normal distribution that

the unmasked dependent variable Y; takes on the value 1 for given z;, i.e. ®;
(P(Ot + ,sz) = P(Y;* >0 I .’Ez)

From (11.9) we obtain the following likelihood function:

Lo, By )i = 1,...,n)

= ﬁ (s + (1 — &;)(1 — W))y:n (®:1—m)+ (1~ @i)ﬂ)(l_yr) (11.10)

125¢e some standard text as, for example, Greene (2003) or Ronning (1991).
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Global concavity of this function with respect to « and 8 may be checked by deriving
first and second (partial) derivatives of the log-likelihood function. Ronning (2005)
derives the Hessian matrix of partial derivatives. Since this matrix is more complex
than in the standard case, the proof of negative definiteness used in the standard
probit case'® does not go through here. This is also illustrated by Figure 11.4.1
which shows the surface of loglikelihood function for a simulated data set with
7w =0.70.

A simple formula for the information matrix can be derived from which it is im-
mediately apparent that maximum likelihood estimation under randomization is
consistent but implies an efficiency loss which is greatest for values of 7 near 0.5,
see Ronning (2005).

11.4.2  Marginal Effect in Case of the ‘Naive’ Probit
Estimator

It is intuitively clear that the ‘naive’ probit estimator will be biased if the values
of the dependent variable have been randomized although no analytic results are
available. However it can be shown quite easily that application of a standard probit
estimator will under-estimate the (true) marginal effect which is given by

OP(Y =1]z)
ox -

where we refer to our probit model given in (11.1) and (11.2). It follows from (11.9)
that

$la+ Br)8, (11.11)

PY™ =1fz) = ®m+ (1— &;)(1—7) = (2r — 1)@+ (1 —7), (11.12)

where we disregard the observation index ¢. From this we obtain the marginal effect
of the ‘naive’ estimator as follows:

oP(Y™ =1jz) _ (2r — D)p(a + Bz)3,
Oz
which may be also written as
OP(Y™ =1lz) _ (OP(Y =1[z)
g = 2 - ) (11.13)

Therefore the naive estimator will under-estimate the true marginal effect as long
as 1/2 < w < 1 and will even reverse the sign of the marginal effect when the
PRAM-parameter 7 satisfies 0 < 7w < 1/2.

11.4.3 Estimation of Unknown Randomization
Probabilities

Until now discussion is not finished on the question whether the details of the
anonymization procedure should be made available when offering anonymized data

133ee, for example, Amemiya (1985, p. 274) or Ronning (1991, p. 46).
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sets. We therefore also consider the case that the switching probabilities g and m
(defined in Subsection 11.3.4 and restricted by (11.8)) are not known to the user.
Fortunately also in this case estimation can be done in a proper way as demon-
strated by Hausman et al. (1998) in quite another context under the heading ‘mis-
classification’. There it is assumed that a respondent has to answer a two-category
question and erroneously chooses the wrong category. For example, employees could
be asked whether they have changed their job during the last half year.

First note that the properly estimated probit function employing the ‘corrected’
likelihood (11.10) has a special property which may be used to estimate the prob-
ability 7 in case this would be unknown. Using (11.12) we obtain the following
inequalities:*

l—r<PF™=1lz)<n if 7r>%

(11.15)

A< PE™=1|z)<1—n if 7r<%.

Theréfore the estimated probit function will have a smaller range if 7 < 1. For ex-
ample, if 7 = 0.25 the probit function will only vary within the range [0.25;0.75] .
In a certain way this result mirrors the increasing variance of the maximum likeli-
hood estimator when m moves toward 1/2: Since the ‘middle range’ of the probit
function is becoming much smaller, the estimation will become more inaccurate.

Hausman et al (1998) have shown that it is possible to estimate the unknown prob-
abilities via maximum likelihood jointly with the ‘structural’ parameters. However,
they recommend a more flexible approach which in a first step uses Han’s (1987)
maximum rank correlation (MRC) estimator to determine the ‘index’

dwnc = X S\RC -

In a second step then the fact is exploited that the response function F'(§) is mono-
tonic with respect to the index {urc. Therefore isotonic regression is used to fit the
response function F(@MRC). Then the unknown misclassification probabilities can
be read off from the fitted function using the inequality generalizing (11.14), see,
for example, Figure 5b in Hausman et al. (1998).

M For the general case, i.e. without restriction (11.8), we obtain the inequality
l—m < P(Y™ =1]z) < m (11.14)

assuming « > 0.5.
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Summary: We discuss regression models for ordered responses, such as ratings
of bonds, schooling attainment, or measures of subjective well-being. Commonly
used models in this context are the ordered logit and ordered probit regression
models. They are based on an underlying latent model with single index function
and constant thresholds. We argue that these approaches are overly restrictive and
preclude a flexible estimation of the effect of regressors on the discrete outcome
probabilities. For example, the signs of the marginal probability effects can only
change once when moving from the smallest category to the largest one. We then
discuss several alternative models that overcome these limitations. An application
illustrates the benefit of these alternatives.

12.1  Introduction

Regression models for ordered responses, i.e. statistical models in which the out-
come of an ordered dependent variable is explained by a number of arbitrarily scaled
independent variables, have their origin in the biometrics literature. Aitchison and
Silvey (1957) proposed the ordered probit model to analyze experiments in which
the responses of subjects to various doses of stimulus are divided into ordinally
ranked classes. Snell (1964) suggested the use of the logistic instead of the normal
distribution as an approximation for mathematical simplification. The first compre-
hensive treatment of ordered response models in the social sciences appeared with
the work of McKelvey and Zavoina (1975) who generalized the model of Aitchison
and Silvey to more than one independent variable. Their basic idea was to assume
the existence of an underlying continuous latent variable — related to a single index
of explanatory variables and an error term — and to obtain the observed categorical
outcome by discretizing the real line into a finite number of intervals.

McCullagh (1980) developed independently the so-called cumulative model in the
statistics literature. He directly modelled the cumulative probabilities of the ordered

*We are grateful to an anonymous referee for valuable comments.
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outcome as a monotonic increasing transformation of a linear predictor onto the
unit interval, assuming a logit or probit link function. This specification yields the
same probability function as the model of McKelvey and Zavoina, and is therefore
observationally equivalent. Both papers spurred a large literature on how to model
ordered dependent variables, the former mostly in the social sciences, the latter
predominantly in the medical and biostatistics literature.

On the one hand, a number of parametric generalizations have been proposed. These
include alternative link functions, prominent examples being the log-log or the
complementary log-log function (McCullagh, 1980), generalized predictor functions
that include, for example, quadratic terms or interactions, or dispersion parameters
(Cox, 1995). Olsson (1979) and Ronning and Kukuk (1996) discuss estimation of
models in which both dependent and independent variables are ordered in the con-
text of multivariate latent structural models, i. e. an adaptation of log-linear models
to ordinal data. On the other hand, semi- and nonparametric approaches replace
the distributional assumptions of the standard model, or the predictor function, by
flexible semi- or nonparametric functional forms. General surveys of the parametric
as well as the semi- and nonparametric literature are given, for example, in Agresti
(1999), Barnhart and Sampson (1994), Clogg and Shihadeh (1994), Winship and
Mare (1984), Bellemare et al. (2002), and Stewart (2004), the two latter references
in particular for the semi- and nonparametric treatments of ordered data.

When thinking about the usefulness of these alternative models, it is inevitable to
make up one’s mind on the ultimate objective of the analysis. It is our perception
that in most applications of ordered response models the parameters of the latent
model do not have direct interpretation per se. Rather, the interest lies in the shift
of the predicted discrete ordered outcome distribution as one or more of the re-
gressors change, i. e. the marginal probability effects. Perhaps surprisingly, standard
ordered response models are not very well suited to analyze these marginal prob-
ability effects, because the answer is to a large extent predetermined by the rigid
parametric structure of the model. Therefore, we consider a number of general-
izations that allow for flexible analyses of marginal probability effects. In addition
to the generalized threshold model (Maddala, 1983; Terza, 1985; Brant, 1990) and
the sequential model (Fienberg, 1980; Tutz, 1990, 1991), we show how additional
flexibility can be gained by modeling individual heterogeneity either by means of a
random coefficients model or as a finite mixture/latent class model.

The remainder of the paper is organized as follows. In the next section we provide a
short review of the standard model, before turning to the generalizations in Section
3. In Section 4 we illustrate the methods with an analysis of the relationship between
income and happiness using data from the German Socio-Economic Panel. Qur
results show that marginal probability effects in the generalized alternatives are
substantially different from those in the standard model. For example, the standard
model implies that the probability of being completely satisfied increases on average
by about 0.017 percentage points by a one-percentage increase in income, while it
is decreasing or constant in the generalized models. Section 5 concludes.
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12.2  Standard Ordered Response Models

Consider the following examples. In a survey, respondents have been asked about
their life-satisfaction, or their change in health status. Answer categories might
range from 0 to 10 where 0 means completely dissatisfied and 10 means completely
satisfied, or from 1. to 5, where 1 means greatly deteriorated and 5 means greatly tm-
proved, respectively. The objective is to model these ordered responses as functions
of explanatory variables.

Formally, let the ordered categorical outcome y be coded, without loss of generality,
in a rank preserving manner, i.e. y € {1,2,...,J} where J denotes the total num-
ber of distinct categories. Furthermore, suppose that a (k x 1)-dimensional vector
z of covariates is available. In standard ordered response models the cumulative
probabilities of the discrete outcome are related to a single index of explanatory
variables in the following way

Prly <jlz]=F(x; —2'8) j=1,...,J, (12.1)

where r; and B(xx1) denote unknown model parameters, and F' can be any mono-
tonic increasing function mapping the real line onto the unit interval. Although
no further restrictions are imposed a priori on the transformation F' it is stan-
dard to replace F' by a distribution function, the most commonly used ones being
the standard normal (which yields the ordered probit) and the logistic distribution
(associated with the ordered logit model), and we assume in what follows that F'
represents either the standard normal or logistic distribution. In order to ensure
well-defined probabilities, we require that x; > k;—1, Vj, and it is understood that
kg = oo such that F(co) = 1 as well as kg = —o0 such that F(—o0) = 0.

Ordered response models are usually motivated by an underlying continuous but
latent process y* together with a response mechanism of the form

y =7 if and only if ki1 <y =2'8+u < K; i=1,...,J,

where kKo, ...,k are introduced as threshold parameters, discretizing the real line,
represented by y*, into J categories. The latent variable y* is related linearly to
observable and unobservable factors and the latter have a fully specified distribution
function F{u) with zero mean and constant variance.

The cumulative model (12.1) can be postulated without assuming the existence of
a latent part and a threshold mechanism, though. Moreover, since y* cannot be
observed and is purely artificial, its interpretation is not of interest. The main focus
in the analysis of ordered data should be put on the conditional cell probabilities
given by

Prly = jlz] = F(k; — 2'8) — F(xj—1 — 2'8) . (12.2)

In order to identify the parameters of the model we have to fix location and scale
of the argument in F, the former by assuming that z does not contain a con-
stant term, the latter by normalizing the variance of the distribution function F.
Then, equation (12.2) represents a well-defined probability function which allows for
straightforward application of maximum likelihood methods for a random sample
of size n of pairs (y, z).
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The most natural way to interpret ordered response models (and discrete probability
models in general) is to determine how a marginal change in one regressor changes
the distribution of the outcome variable, i. e. all the outcome probabilities. These
marginal probability effects can be calculated as
oPrly = jlz

MPEu(w) = P (50— a'8) - sy —o/9)] 1, (120)
where f(z) = dF(z)/dz and z; denotes the I-th (continuous) element in . With
respect to a discrete valued regressor it is more appropriate to calculate the change
in the probabilities before and after the discrete change Axy,

APrly = jlz] = Prly = jlo + Azy] — Prly = jia]. (12.4)

In general, the magnitude of these probability changes depends on the specific values
of the ith observation’s covariates. After taking expectation with respect to = we
obtain average marginal probability effects, which can be estimated consistently by
replacing the true parameters by their corresponding maximum likelihood estimates
and taking the average over all observations.

However, if we take a closer look at (12.3) and (12.4) it becomes apparent that
marginal probability effects in standard ordered response models have two restric-
tive properties that limit the usefulness of these models in practice. First, the ratio
of marginal probability effects of two distinct continuous covariates on the same
outcome, i.e. relative marginal probability effects, are constant across individuals
and the outcome distribution, because from (12.3) we have that

MPEj(z) _ B
MPEjm(z)  Bm’

which does not depend on i and j. Second, marginal probability effects change their
sign exactly once when moving from the smallest to the largest outcome. More pre-
cisely, if we move stepwise from the lowest category y = 1 to the highest category
y = J, the effects are either first negative and then positive (5; > 0), or first positive
and then negative (8, < 0). This ‘single crossing property’ follows directly from the
bell-shaped density functions of the standard normal and the logistic distribution.
Therefore, if we are interested in the effect of a covariate on the outcome probabili-
ties, i. e. if we turn our attention to the effects on the full distribution of outcomes,
the standard models preclude a flexible analysis of marginal probability effects by
design.

12.3  Generalized Ordered Response Models

Three assumptions of the standard model are responsible for its limitations in ana-
lyzing marginal probability effects: First, the single index assumption, second, the
constant threshold assumption, and third, the distributional assumption which does
not allow for additional individual heterogeneity between individual realizations.
While relaxing these assumptions we want to retain the possibility of interpreting
the model in terms of marginal probability effects. Therefore, we need to search for a
richer class of parametric models that does not impose restrictions such as constant
relative effects or single crossing. In this section we present four such alternatives.
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12.3.1 Generalized Threshold Model

The first model we consider relaxes the single index assumption and allows for
different indices across outcomes. This model was introduced by Maddala (1983)
and Terza (1985) who proposed to generalize the threshold parameters by making
them dependent on covariates

~ !
kj =FRj =2,

where -y; is a k x 1-dimensional vector of response specific parameters. Plugging this
into (12.1) we get the cumulative probabilities in the generalized threshold model

Prly < jlo] = F(&; + o'y —a'B) = F(&; —2'8;)  j=1,...,J,
(12.5)

where it is understood that Ro = —oo and & = o0, as before. The last equality in
(12.5) follows because y; and 8 cannot be identified separately with the same z en-
tering the index function and the generalized thresholds, and we define 3; := 8—-;.
The cumulative probabilities define a probability density function in the same man-
ner as in (12.2) and parameters can be estimated directly by maximum likelihood.
A non-linear specification can be used to ensure that &j_1 — 2'3j-1 < &; — 2'B3;
for all %, 8 and z (e.g. Ronning, 1990). We observe that the generalized threshold
model nests the standard model under the restrictions 51 = ... = [s-1 and there-
fore both models can be tested against each other by performing a likelihood ratio
(LR) test.

The generalized threshold model provides a framework in which marginal probabil-
ity effects can be analyzed with much more flexibility than in the standard model,
since

MPE;(z) = f(Rj-1 —2'Bi-1)Bj-1u — f(R; — 2'B;)Bs (12.6)

does not rely anymore on a single crossing property or constant relative effects.
Nevertheless, this generalization comes at a cost. The model now contains {J — 2)k
parameters more than before which reduces the degrees of freedom considerably, in
particular when J is large.

12.3.2 Random Coefficients Model

As a second alternative we discuss the class of random coefficients models. The
basic idea is to randomize the parameters of interest by adding an error term
that is correlated with the unobserved factors in u. Thus, we translate individual
heterogeneity into parameter heterogeneity, writing the vector of slopes as

ﬂ:ﬂ~+5a

where ¢ is an individual specific (k x 1)-dimensional vector of error terms. Moreover,
we assume for the joint error term v := (¢’ u)’ that

Elylz] =0 and E[yylz]=% with © = (Z "glb) ,
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where € is the (k x k)-dimensional covariance matrix of &, ¥ is the (k x 1)-
dimensional covariance vector between the slope parameters and u, and Var[ulz] =
1, as before. The consequences of this modification are easiest seen from the latent
variable representation, where we now have y* = 2’8 + 4 with ‘new’ error term
4= z'e 4+ u, such that

Efalz] =0 and E[a@|s] =2'Qz +22'¢+1 =02,

and 4/og is distributed with distribution function F. If € and u are jointly nor-
mal with covariance structure given by X, we obtain an ordered probit model with
unobserved heterogeneity. However, in principle, we do not need to know the distri-
butions of € or u, as long as F' is a well-defined distribution function. In this case,
we can express the cumulative probabilities in the random coefficients model as

by <t = F (2222) = ), (127)

where g5 = /2'Q2z 4+ 2z’% + 1 can be seen as dispersion parameter. The standard
model is a special case of the random coefficients model under the assumption £2 = 0
and 9 = 0. Thus, a simple LR test can be used to test for parameter heterogeneity.

The probability density function of y is obtained in the same way as in (12.2), and
one can calculate marginal probability effects in the random coefficients model as

MPEu(@) = [f1(0) - fy@)] 2

2’ +
3

U

+ [fim1@) (531 = 2'8) — fy(@) (v — 2'B)] (12.8)

by using product and chain rules. In (12.8), £2; denotes the I-th column in Q2 and ¥
the I-th element in 1, respectively, and f(z) = dF(z)/dz. The first term in (12.8)
corresponds to the marginal probability effects in the standard model corrected for
the standard deviation of the disturbance . The second term arises because we
assume a specific form of heteroscedasticity which makes the error term dependent
on z. Consequently, marginal probability effects in the random coefficient model
are more flexible than those in the standard model since the sign of the second
term is indeterminate.

The random coefficients model can be estimated directly by the method of max-
imum likelihood with heteroscedasticity corrected index function. However, some
caution is required in running the optimization routines. Although the parameters
of the model are identified by functional form, the specific structure of the model
might cause problems in some datasets. Specifically, certain values of 2, ¥ and z
can drive o2 to be negative or its square root to be almost lincar in the parame-
ters, such that the argument in F' gets complex or is not identified, respectively.
Nevertheless, if the data support the model, we should find reasonable estimates of
the elements in Q2 and .
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12.3.3  Finite Mixture Model

The third approach is a finite mixture model for ordered data (Everitt, 1988; Everitt
and Merette, 1990; Uebersax, 1999) which provides a very flexible way of modeling
heterogeneity among groups of individuals. It is supposed that the population is
split into C distinct latent classes and each class has its own data-generating process,
i.e. we relax the distributional assumption of the standard model and its implied
homogeneity. To fix ideas, let ¢ = 1,..., C denote the index of classes and write the
cumulative probabilities for class ¢ as

Prlye < jla] = Flke; — 2'8e) =: Foj(x).

However, individual class membership is not observable and we assume that each
individual belongs to a certain class ¢ with probability .. Thus, we can write the
cumulative probabilities of the observed outcomes as a mixture of class specific
cumulative probabilities

rly < jla] = Z ToFoj(z), (12.9)

where the 7.’s sum up to unity. The probability density function of the ordered
outcome is given by Prly = jlz] = > e Te (ch (z) — ch_l(m)> and marginal prob-
ability effects can be obtained, as before, by taking the first order derivative with
respect to x;

Q

MPE;(x) =Y mo( fo1(x) = fes () B (12.10)

c=1

Again, the sign of marginal probability effects is indeterminate because of the de-
pendence on 7. and By which might differ in magnitude and sign among classes.
The statistical significance of these differences can be tested by conducting a LR
test with restrictions 7y =.... = w¢ and B1 = ... = f¢, that is, a total number
of (C —1)(k + 1) restrictions. Uebersax (1999) gives conditions for identification of
class specific thresholds and slope parameters.

The parameters of the finite mixture model can be estimated directly via maximum
likelihood. This requires maximization of a (in general multimodal) log-likelihood
function of the form

In L(8, n|y,z,2) = i iy” In { Z (ch(mi) — ch—l(ﬂﬁi))} ,

i=1 j=1 c=1

where 6 and 7 is shorthand notation for the vectors of class specific parameters
6. (which include thresholds and slopes) and probabilities n., respectively, and
y; is a binary variable indicating whether y = j. The multimodality of the log-
likelihood function and the large number of parameters for increasing C might cause
the optimization routines to be slow in finding the global maximum. Furthermore,
although the probability function of the complete mixture might be well-defined,
the probabilities in a subset of classes can turn negative. An alternative approach
of getting the maximum likelihood estimates that circumvents these problems is to
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formulate the model as an incomplete data problem and to apply the EM algorithm
of Dempster et al. (1977).

To be more specific, let m. denote a binary variable indicating individual class
membership which can be interpreted as independent realizations of a C-component
multinomial distribution with component probabilities 7., the prior probability
of belonging to class c¢. The (complete-data) log-likelihood function for a random
sample of size n conditional on observed class membership m can be written as

In L0, wly,z,m) = Z Z Yi me{lnwc +1In (Fc] (z5) — Fej— 1(:1%))}

=1 j=1 c=1

(12.11)

Since we cannot observe individual class membership, that is the data are incom-
plete, we cannot maximize this log-likelihood function directly.

The EM algorithm proceeds iteratively in two steps, based on an E-step in which the
expectation of (12.11) is taken with respect to m given the observed data and the
current fit of  and 7, and an M-step in which the log-likelihood function (12.11) is
maximized with respect to € and 7 given expected individual class membership. The
linearity of the complete-data log-likelihood in m allows for direct calculation of the
expected individual class membership given the observed data and the parameters
obtained in the g-th iteration step. This expectation corresponds to the probability
of the ith entity belonging to class ¢, henceforth called posterior probability 7.
From the assumptions above or simply by Bayes’ theorem it can be shown that

w0 (FP @) - FL, (@)

50 (R @) - FSL @)

T (y, z; 09, w“”) (12.12)

where F(q) denotes the value of F evaluated at the parameters obtained in the
g-th 1terat10n step. These probabilities can be used to anaylze the characteristics of
each class, i. e. we can assign each individual to the class for which its probability
is the highest and then derive descriptive statistics or marginal probability effects
per class.

The M-step replaces m. in (12.11) by its expectation, 7¢, and therefore considers the
expected log-likelihood to be maximized. Again, the linearity in (12.11) provides a
substantial simplification of the optimization routine. First, updated estimates of
7Y can be obtained directly by taking the sample average ™' 3", 7¢(.) where
0 g Te(.) <1 (see (12.12)). Secondly, each class can be maximized separately with
respect to 6. to get updated estimates glatt) taking into account the multiplicative
factor 7¢. In other words, we can estimate C simple ordered probits or logits while
weighting the data appropriately and alter the E- and M-steps repeatedly until the
change in the difference between the log-likelihood values is sufficiently small.

12.3.4  Sequential Model

The last alternative for a flexible ordered response model adopts methods from the
literature on discrete time duration data. In this literature, the main quantity of



12.8 Generalized Ordered Response Models 175

interest is the conditional exit probability (or ‘hazard rate’) Prly = jly > j, =],
where y is the duration of the spell and j is the time of exit. The key insight is
that such discrete time hazard rate models can be used for any ordered response
y. Once the conditional transition probabilities are determined, the unconditional
probabilities are obtained from the recursive relationship

Prly = jlo] = Prly = jly = joal Pely 2 jlol  j=1,...,J, (1213)
where
Prly >'1|a] = 1,

j—1
h {1—Pr[y:r|y2 r,x]} j=2,...,J, (12.14)

r=1

Prly > jlz]

and it is understood that Prly = Jly > J, ] = 1. Using (12.13) and (12.14) the
whole probability function of y can be expressed in terms of conditionals, or more
precisely, as a sequence of binary choice models where each decision is made for a
specific category j conditional on refusing all categories smaller than j. This kind
of model can be motivated by a sequential response mechanism where each of the
J outcomes can be reached only step-by-step, starting with the lowest category,
and therefore the model is referred to as sequential model. This model implicitly
accounts for the ordering information in y without assuming any cardinality in the
threshold mechanism.

To complete the model we specify the conditional transition probabilities as
Prly = jly > j,z] = F(o; + 2’ B;) = Fj(=) j=1,...,J, (12.15)

where «; is a category specific constant, 3; is a category specific slope parameter,
and it is understood that a; = oo such that F;(co) = 1. Therefore, in contrast to
previously discussed models, we do not parameterize the cumulative probabilities
but rather the conditional transition probabilities. The parameters can be estimated
by running j consecutive binary choice models where the dependent variable is
the binary indicator y; defined in the previous section, and only observations with
y > j are included. Therefore, estimation is simplified considerably compared to the
generalized threshold and the random coefficients model since no further restrictions
on the parameter space are required. The downside is that computation of the
marginal probability effects is now more complicated. It can be shown that

MPEM(CE) = f1($)ﬂll7
j—1

MPEyu(z) = f;(x)B;i Prly > jla] — Fy(@) Y MPEn(z), j=2,...,J.
r=1

(12.16)

Clearly, these effects are very flexible, as they can vary by category and do not
rely on a single crossing property or constant relative effects. The sequential model
and the standard model are nonnested models and one may use information based
measures like the Akaike Information Criterion (AIC) as a model selection criterion.
Moreover, for the problem of choosing among the generalized alternatives the same
strategy is advisable.
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Table 12.1: Model selection .

Ordered Generalized Sequential Random Finite

~ Probit Threshold Probit  Coefficients ~ Mixture

No. of param. [13] [49] [49] [15] [26]

InL -3040.58 -2999.59 -2999.12 -3035.88  -3024.65

AIC 6107.16 6097.18 6096.24 6101.76 6101.30
No. of obs. 1735

Notes: The data were drawn from the 1997 wave of the German Socio-Economic Panel,
the dependent variable happiness with originally eleven categories (0-10) was recoded
to avoid cells with low frequency; we subsumed categories 0-2 in j=1, categories 3/4
in j=2, the remaining in ascending order up to j=8.

12.4  Empirical Illustration

In order to illustrate the benefit of the generalized ordered response models we ana-
lyze the effect of income on happiness using data from the German Socio-Economic
Panel (GSOEP; see also Boes and Winkelmann, 2004). The relationship between
income and happiness was studied before in a number of papers (see, for example,
Easterlin, 1973, 1974; Scitkovsky, 1975; Frey and Stutzer, 2000, 2002; Shields and
Wheatley Price, 2005, and the references therein) and has gained renewed interest
in the recent literature because of its use for valuation of public goods or intangibles
(see, for example, Winkelmann and Winkelmann, 1998; Frey et ol., 2004; van Praag
and Baarsma, 2005).

We used data from the 1997 wave of the GSOEP and selected a sample of 1735
men aged between 25 and 65. The dependent variable happiness with originally 11
categories was recoded to avoid cells with low frequency and, after merging the
lower categories 0/1/2 and 3/4, we retained a total of J = 8 ordered response
categories. We included among the regressors logarithmic family income and loga-
rithmic household size as well as a quadratic form in age, and two dummy variables
indicating good health status as well as unemployment.

In our regression analysis, we assumed that F is the cumulative density function of
the standard normal distribution. The random coefficients model was simplified by
restricting © and v such that 02 = Qua? + 2z + 1, where x; is assumed to be log-
arithmic income, €2;; denotes the I-th diagonal element in © and 4; the {-th element
in . Thus, we confine our analysis to parameter heterogeneity in the income coef-
ficient, with all other parameters being deterministic. In the finite mixture model,
we considered only two latent classes (C' = 2). The following discussion proceeds
in two steps: First, we evaluate the models by means of likelihood ratio tests and
selection criteria, and second, we examine the implications for interpretion in terms
of marginal probability effects.

The first question we address is whether one of the models presented above uses
the information inherent in the data optimally. For this purpose, we perform like-
lihood ratio tests or AIC comparisons, depending on the situation. For example,
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Table 12.2: Marginal probability effects of income on happiness .

Ordered Generalized Sequential Random Finite
Probit Threshold Probit Coefl. Mixture

Class'1 Class 2
j=1 -0.0076 -0.0098 -0.0083  -0.0165 -1.3e-07 -0.0245
j=2 -0.0228 -0.0096 -0.0155  -0.0391  -0.0076 -0.0092
j=3 -0.0223 -0.0352 -0.0338  -0.0297 -0.0024 -0.0565
j=4 -0.0160 -0.0444 -0.0410  -0.0140 -0.0026 -0.0285
j=>5 -0.0090 0.0039 0.0095 0.0135 -0.0030  0.0198
j=6 0.0328 0.0680 0.0697 0.0589  0.0028  0.0920
j=7 0.0275 0.0403 0.0334 0.0234  0.0073  0.0069
j=8 0.0173 -0.0133 -0.0140 0.0035 0.0056 5.7¢-08

Notes: The table reports average marginal probability effects of logarithmic income
on happiness responses, AM PEj i1 (income)- FOr example, in the ordered probit model
AMPEg 11 (incomey = 0.0328 means that the probability of § = 6 increases by about
0.0328 percentage points given an increase in logarithmic income by 0.01 (which
corresponds to an increase in income by about 1 percent).

the differences between the generalized threshold and the standard ordered probit
model are statistically significant if we can reject the null hypothesis of no category
specific parameters. This can be investigated by running a likelihood ratio test with
minus two times the difference between the log-likelihoods of the standard and the
generalized model as appropriate test statistic, showing a value of 79.98. The test
statistic is asymptotically x*-distributed with 36 degrees of freedom. Thus, we can
reject the null hypothesis, and thereby the standard orderd probit model. Likewise,
we can compare the random coefficients model as well as the finite mixture model
with the ordered probit, the latter being rejected in both cases. The sequential
model and the standard ordered probit are nonnested models which rules out the
application of an LR test. Instead, we may calculate the AIC for each model, show-
ing values of 6 107.96 and 6096.24 for the ordered probit and the sequential probit,
respectively. A smaller value indicates a better fit while penalizing for the prolif-
eration of parameters, and, although 36 parameters. more, we favor the sequential
probit to the ordered probit model. Furthermore, among the generalized alterna-
tives the generalized threshold and the sequential model have the smallest AIC
values, followed by the finite mixture model and the random coefficients model.

We now turn our attention to average marginal probability effects of income on
happiness. The M PE’s of the ordered probit model are reported in the first column
of Table 2. Our results show a positive coefficient of logarithmic income, implying a
negative sign of the M P E’s for low happiness responses, switching into the positive
for j > 6. The interpretation of, for example, M PE¢ = 0.0328 is that a one-percent
increase in income raises the probability of happiness = 6 by approximately 0.0328
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percentage points. Compared to the standard model, the generalized threshold and
the sequential model vield substantially different effects (see Columns 2 and 3).
First, the sign of M PFs changes, indicating a positive effect also for the fifth
category. Second, the magnitude of some MPE’s are clearly underestimated by
the standard model. For example, the estimated M PFEs in the generalized ordered
response models is more than twice as large as in the ordered probit. Third, and
probably most important, the sign of the marginal probability effect in the utmost
right part of the outcome distribution turns out to be negative, violating the single
crossing requirement of the simple model. This means that an increase in income
actually reduces the probability of being very happy, a result consistent with the
view that ‘money does not buy happiness’.

The results of the random coefficients model are reported in the fourth column
of Table 2, The calculated M PE’s tend to support the results of the generalized
threshold and the sequential model, although there is no negative effect on the
highest happiness response. However, the random coefficient specification provides
further insights into the relationship between income and happiness. We estimated
Qu = 0.60 and f&l = —0.77, the latter implying that unobservables in the happi-
ness equation are negatively correlated with the random coefficient. This can be
interpreted as follows: If unobservables in the happiness equation tend to increase
. the probability of higher responses, then the effect of income is lower for these
individuals.

In the finite mixture model we can make use of the posterior probabilities to obtain
marginal probability effects per class (see Columns 5 and 6). The results indicate
that the effect of income on happiness can be neglected for one class (the rela-
tively happy class with average happiness of 5.71) whereas for the class of relatively
unhappy people (average happiness of 4.25) income plays a much more important
role.

12.5  Concluding Remarks

In this paper we argued that the standard ordered probit and ordered logit mod-
els, while commonly used in applied work, are characterized by some restrictive
and therefore non-desirable properties. We then discussed four generalized mod-
els, namely the generalized threshold, the random coefficients, the finite mixture,
and the sequential model. All of them are substantially more flexible in analyzing
marginal probability effects since they do not rely on constant relative effects or a
single crossing property.

An illustrative application with data from the 1997 wave of the GSOEP dealt
with the relationship between income and happiness. We asked how a one-percent
increase in income is predicted to change the happiness distribution, ceteris paribus.
The analysis showed that the estimated marginal probability effects differed markedly
between the standard ordered probit model and the probit-specified alternatives.
For example, a negative marginal effect for the highest answer category (as pre-
dicted by the generalized threshold model) is ruled out by assumption in the stan-
dard model.
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As is not uncommon with such generalizations, they can be computationally bur-
densome due to the larger number of parameters, restrictions on the parameter
space, or a multimodality of the likelihood function. Nevertheless, the greater flexi-
bility and enhanced interpretation possibilities should render these alternative mod-
els indispensable tools in all research situations, where an accurate estimation of
the marginal probability effects over the entire range of the outcome distribution is
of interest.
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Summary: A measurement error model is a regression model with (substantial)
measurement errors in the variables. Disregarding these measurement errors in esti-
mating the regression parameters results in asymptotically biased estimators. Sev-
eral methods have been proposed to eliminate, or at least to reduce, this bias, and
the relative efficiency and robustness of these methods have been compared. The
paper gives an account of these endeavors. In another context, when data are of a
categorical nature, classification errors play a similar role as measurement errors in
continuous data. The paper also reviews some recent advances in this field.

13.1  Introduction

A measurement error model is a — linear or non-linear — regression model with
(substantial) measurement error in the variables, above all in the regressor vari-
able. Disregarding these measurement errors in estimating the regression param-
eters (naive estimation) results in asymptotically biased, inconsistent, estimators.
This is the motivation for investigating measurement error models. Measurement
errors are found in almost all fields of application. A classical example in econo-
metrics is Friedman’s (1957) ‘permanent income hypothesis’. Another example is
the measurement of schooling as a predictor of wage earnings (Card, 2001). In epi-
demiology, various studies may be cited where the impact of an exposure to noxious
substances on the health status of people is studied (e.g., Heid et al., 2002). In en-
gineering, the calibration of measuring instruments deals with measurement errors
by definition (Brown, 1982). Many more examples can be found in the literature,

*This work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the
frame of the Sonderforschungsbereich SFB 386. We thank two anonymous referees for their
helpful comments.
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in particular in the monographs by Schneeweiss and Mittag (1986), Fuller (1987),
Carroll et al. (1995), Cheng and Van Ness (1999), Wansbeek and Meijer (2000).
Recently measurement error methods have been applied in the masking of data to
assure their anonymity (Brand, 2002). The data are artificially distorted in various
ways including through the addition of random errors.

Several estimation methods have been proposed to eliminate, or at least to reduce,
the bias of the naive estimation method. The present paper reviews some of these
methods and compares their efficiencies.

Section 13.2 introduces the measurement error model. In Section 13.3 we discuss
briefly the identification problem. Sections 13.4 to 13.6 deal with various estimation
procedures, and Section 13.7 compares their efficiencies. Section 13.8 addresses
survival models. A special type of measurement errors, viz., misclassification errors
is dealt with in Section 13.9. Section 13.10 has some concluding remarks.

13.2  Measurement Error Models

A measurement error model consists of three parts:

1. A regression model relating an unobservable (generally vector-valued, but here for
simplicity scalar) regressor variable £ to a response variable y given by a conditional
distribution f(y|¢;8), where 8 is an unknown parameter vector. Quite often only the
conditional mean function E(y|¢) = m* (&, 8), the regression in the narrower sense, is
given, supplemented by a conditional variance function V(y|¢) = v* (&, B, ), where
8 comprises 8 and ¢ plus possibly other parameters describing the distribution of
Y.

Two major examples, that we will often refer to, are the polynomial model (for a
survey see Cheng and Schneeweiss, 2002),

y=Po+ P&+ + B +e

with m*(€,8) = Bo+ i€+ -+ Fxt® and v* = 02, and the log-linear Poisson model

yl€ ~ Po(A), X = exp(fo+ B1€)

with m*(&,3) = v*(&,8) = A. Survival models are considered separately in Sec-
tion 13.8.

2. A measurement model that relates the unobservable £ to an observable surro-
gate variable z, given by a conditional distribution g(z|¢; ). The so-called non-
differentiality property requires that f(y|&, ) = f(y|¢). The classical measurement
model assumes an additive random error § with mean zero, which is independent
of £ and (by non-differentiality) of y

z=£&494.
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An alternative is the so-called Berkson model, where § is independent of z instead
of being independent of £ {e.g., Kiichenhoff et al., 2003). Here we shall only consider
the classical model. Typically 4 is assumed to be normally distributed: § ~ N(0, o).

3. A distribution of the latent regressor variable £&. The distribution may be speci-
fied by a density h(£;y) with an unknown parameter vector y. We then have the
structural variant of the model. Another possibility is that £ is not considered a
random variable but rather an unknown parameter pertaining to the observation
z. In this case, which is called the functional variant, the number of parameters
¢ grows with the sample size. We do not deal with this case here (but see Cheng
and Van Ness, 1999). Instead, following Caroll et al. (1995), we distinguish between
structural and functional estimation methods. The former use the distribution of
&, the latter do not, even if such a distribution exists. Estimation of 8 is based on
an iid. sample of data-(x;,¥4:), i = 1,-++ ,n. For an example of estimation in the
context of time series see Nowak (1993).

13.3  Identifiability

Since £ is latent, the parameters of the model may not be identified. This is the case
in the linear model and in the probit model both with normally distributed regressor
and error variables. In such cases additional pieces of information are necessary in
order to be able to construct consistent estimators for 8, for more details see Cheng
and Van Ness (1999). But even if the model is identified (as is often the case in
non-linear models - for the logistic model see Kiichenhoff, 1995; for the quadratic
regression model, see Huang and Huwang, 2001), additional information may be of
great help to enhance the efficiency of estimation. The most prominent pieces of
extra information are knowledge of the error process, in particular the measurement
error variance o7, and knowledge of instrumental variables. Here we will only deal
with the first type of information (for the second, see Schneeweiss and Mittag,
1986, and Wansbeck and Meijer, 2000). Knowledge of o2 may come from repeated
measurements or from a validation subsample. For an example where knowledge of
h(§) is used see Hu and Ridder (2005).

13.4  Naive Estimation and Bias Correction

Suppose that a consistent estimator ﬁ for the original, error-free model is available.
Simply replacing £ with z in this estimator gives rise to the so-called naive estimator
B . Simple as it is, this estimator is almost always not consistent.

As an example consider the linear model y = a + B¢ + €. The naive estimator of 3
is the LS estimator By = sy/s2, which has the bias —(02/02)8. Note that |8] is
systematically underestimated by |G| (attenuation effect). This has the undesirable
consequence that a strong effect of the covariate £ on y may not be detectable
anymore once the covariate has been corrupted by measurement errors. In the
multiple linear model, measurement errors have a more complicated effect (see
Schneeweiss and Mittag, 1986). In the quadratic model the attenuation effect is
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expressed as a flattening of the curvature at the peak of the parabola (Kuha and
Temple, 2003). A segmented linear regression shows a smooth curve connecting the
two segments instead of the sharp kink of the error-free model (Kiichenhoff and
Caroll, 1997).

When the (asymptotic) bias B = plimBy — B can be evaluated (typically as a
function of § and possibly other parameters), it is sometimes possible to correct
the naive estimator such that a consistent estimator results For instance, the bias
of ,GN in the linear model can be easily corrected if o7 is known:

o= /3’ =

s2 — 52 — 03

is a consistent estimator of 4. Another example is the bias correction of the naive
ML estimator in a logistic model (Kiichenhoff, 1992).

13.5  Functional Estimation Methods

Functional estimators do not use the distribution of £. They are therefore immune
against possible misspecifications of h(£) and they are also valid when ¢ is non-
stochastic. In this latter case the problem of estimating the incidental parameters
&; arises (Cheng and Van Ness, 1999). However, one can circumvent this problem
and can directly find estimators for the parameter of interest 5. We present two
such estimators: CS and SIMEX.

13.5.1  Corrected Score (CS) Estimator

Suppose we have a (vector-valued) unbiased estimating (or simply: score) function
¥(y,&;b) such that b = § is the only solution to the equation E [¢(y,&;b)] = 0.
Then the solution 8 of S (v, & B) = 0, assuming that it exists uniquely, is
{(under general regularity conditions) a consistent estimator of 5. However, as £
is unobservable, this estimator is not feasible. Therefore, one may try to find a
so-called corrected score function ¥4 (y, x; b) such that

E [Yos(y, 2 b)|y, €] = ¥(y, ;D)

{Nakamura, 1990). With the help of the iterative expectation principle, ¥, can be
seen to be an unbiased estimating function, and so, under mild regularity conditions,

Bes solving
i A
Z Yos (Vi Ti3 Bos) = 0
i=1

is a consistent and asymptotically normal estimator (the CS estimator). Its asymp-
totic covariance matrix is given by the sandwich formula

_ . 0 T
Yos = A B Acs , with Ao = ~E (%) » Bos =E(Yostos)s
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where ¥, .= ¥, (y,z;8). A common score function of the error-free model is

Gy, &b) = [y — m*(€,b)] U**l?_”i‘a_%éi) .

We then need to find functions fi and f> such that
E{fi(z,b)l€] = v" 7 mi,  Elfe(z,b)E] = m"v* T Imi,

where mj is short for dm™*(£,b)/0b. Stefanski (1989) gives conditions for the exis-
tence of such functions. If they exist, then ¥4 = yf1 — fa.

In the polynomial model one can construct polynomials #.(z) of degree r such
that E [t-(z)|¢] = € (Cheng and Schneeweiss, 1998, and Cheng et al., 2000). The
corrected score function is then given by

Yos (Y, 7 b) = H(z)b — yt(z),

where t(z) = (to(m), ()" and H(z) is a (k+1) x (k+1) matrix with H (ac)
trps(z), 7,8 = 0,--- ,k, from which the CS estimator is found as 8., = ™'y,
where the bar denotes averaging over the sample values (z, y;).

In the Poisson model (see Shklyar and Schneeweiss, 2005), the corrected score
function is given by

Yos (asbo,ba) = (= e P190) (1,2) T+ Absode 24897 (0,1)7

13.5.2  Simulation-Extrapolation (SIMEX) Estimator

One cannot subtract the measurement error, but one can add a random error to
the z; and thereby study the effect of measurement errors on the estimate of 3.
This idea gives rise to the following method (Cook and Stefanski, 1994):

1. Compute the naive estimate Sy =: ,3(0).
2. Add random noise to the z;: zj(a) = z; + di{a), 5i{a) ~ N(0,ac?)
and compute the naive estimate with these artificial data (y;, z7).

3. Repeat this step m times with a fixed a and average the m naive estimates
to get an estimate ().

4. Do this f01: a series of a’s, a = 0.1,0.2,--- ,2. One may plot the resulting
points (a, Ba)).

5. Fit a curve through these points by least squares using some convenient
function, e. g., a quadratic one.

6. Extrapolate this curve to a = —1, wh1ch corresponds to the situation of no
measurement error. Then Bsryex = ,3( -
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This procedure is easy to apply, as it uses only the naive estimation method given
from the original error-free model. It is, however, very computer intensive and it
only gives a consistent estimator if the correct extrapolation curve has been used
(see Carroll et al., 1996). The quadratic curve may be convenient, but it is rarely the
correct curve. SIMEX estimators are therefore often biased, but the bias is typically
greatly reduced as compared to the bias of the naive estimator {Wolf, 2004).

13.6  Structural Estimation Methods

Structural estimation methods use the information given in the distribution of
the regressor variable. Note, however, that this distribution h(¢;v) contains the
unknown (nuisance) parameter vector . Typically ¥ can be estimated from the data
z; alone without recourse to the regression model. For instance, if ¢ ~ N(u¢, 0f) the
nuisance parameters ue and 052 can be estimated by Z and s2 — ¢2, respectively. For
how to estimate « in a distribution which is a mixture of normals see Thamerus
(2003). Replacing v with a consistent estimate 4 does not alter the consistency
property of B, though it does have an effect on the asymptotic variance (cf. Caroll
et al., 1995). For simplicity, let us assume in the sequel that ~ is known. We will

consider three estimators: ML, QS, and RC.

13.6.1  Maximum likelihood (ML) Estimator

The joint density of x and y is given by
wvit,000) = [ 1 09(a (e .

Maximizing it with respect to &, «,~ gives the ML estimator. Though being the
most efficient estimator, it has two drawbacks: it relies on the complete joint dis-
tribution of  and y and is therefore sensitive to any kind of misspecification and,
due to the integral, it is in most cases extremely difficult to compute, not the least
because all the parameters have to be estimated simultaneously. Although the com-
putational burden can be greatly alleviated by using simulation methods (simulated
ML, simulated LS, see Wansbeek and Meijer, 2000; Li, 2000, or Hsiao and Wang,
2000), there is still demand for simpler, and more robust, estimation methods. Two
of these, QS and RC, will now be discussed.

13.6.2  The Quasi Score (QS) Estimator

The (structural) quasi score (QS) estimator is constructed by means of the condi-
tional mean and variance function of y given z:

E(ylz) =m(z; 8),  V(ylz) = v(z; 8, ¢).

These are computed starting {rom the original mean and variance functions given

&
m(xz; 8) =E[m" (& B)lx], v(z;B8,0) =V[m* (& B)lz] + E[v™ (&8, p)ix].
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For these computations we need the conditional distribution of £ given z. In some
cases this distribution may be found directly from validation data. In most other
cases it is computed from g(z|¢; ) and h(&;7). Therefore m and v do not only
depend on G (and ) but also on « and . Here we assume that a and - are given.
In the classical measurement error model with § ~ N(0,03) and € ~ N(u¢, o) the
conditional distribution of £ given z is simply given by

ele ~ NGu(e), ) with (e) = o+ (1- ﬂ) (@), 7=t (1- ?) |

O’% x
The quasi score function for 8 then is
bos (U, T3 b, 0) = [y — m(z;b)] v (w3 b, @)ms (z,) .

This should be supplemented by a quasi score function for ¢, which we have sup-
pressed for ease of presentation. Given ¢, the QS estimator is found as the solution
to

n
Z wQs (s, %43 IBQS ) = 0.
i=1

As 9,¢ is an unbiased estimating function, ,éQ s 18, under appropriate regularity
conditions, a consistent, asymptotically normal estimator with an asymptotic co-
variance matrix that is again given by a sandwich formula (Kukush and Schneeweif,
2005).

For the polynomial model, first construct E({"|z) = ur(z), which is a polynomial
of degree r. The QS estimator is then found from the heteroscedastic regression
equations

y = Bo+ Brpr(x) + - + Bupr () + u,

kK
o 0'62 + Z Z (prs(z) — pr(@)ps(x)) BrBs

=0 8=0

by applying an iteratively reweighted least squares procedures (Kukush et al., 2001).
For the Poisson model (see Shklyar and Schneeweiss, 2005),

m(z; ) = exp(Bo + fiu(z) + 3617%),
v(w; f) = m(w; ) + [exp(8i7°) — 1] m*(; 6) .

13.6.3  The Regression Calibration (RC) Estimator

The regression calibration estimator is even simpler to compute than the QS esti-
mator (see Carroll ef al., 1995). One replaces the variable z in the naive estimator
by p(z), which is the best linear predictor of £ given z (Gleser, 1990).
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Thus in the polynomial model, the RC estimator is the LS estimator of the regres-
sion

y = Bo + Bipu(z) + - -+ Bep(x)* + €.

In the Poisson model, the RC estimator is the ML estimator of a Poisson model
with A = exp{Bo + B1pu(x)}.

Unfortunately, the RC estimator is inconsistent in general, an exception being the
linear model, where RC = QS = CS. But in most cases the bias is greatly reduced
as compared to the naive estimator and often negligible (Wolf, 2004).

13.7  Efficiency Comparison

In this section we compare CS and QS with respect to their relative efficiencies.
Various results that have been found in the last years will be summarized (Kukush
and Schneeweit, 2005; Shklyar and Schneeweiss, 2005; Schneeweiss and Cheng,
2006; Shklyar et al., 2005).

We assume that § ~ N(0,0%) and & ~ N(u¢, 07). Thus we are in the structural case.
In addition, a very general regression model of the exponential family is assumed:

1016) e (2= o)), with A= aE0).

This model comprises the polynomial and the Poisson model as well as other gen-
eralized linear models. Note that in this model m* = ¢/(\) and v* = @c”()), which
will be the basis for constructing the CS and QS estimators. Clearly, the ML esti-
mator is the most efficient one. One might speculate that QS is more efficient than
CS, as the latter ignores the information inherent in the distribution of £. However,
this is not at all clear, as QS is not ML. Nevertheless one can, indeed, prove that
the presumption is correct, i.e. ¥ < Ygs < Teos, at least as long as the nuisance
parameters p¢e and 052 are given and need not be estimated. Thus if ML is avoided
because of its complexity, QS seems to be the estimator of ones choice.

But QS depends on the distribution f(£) of the latent regressor. If this distribution is
misspecified, then ﬁQ s will typically be biased. Suppose that the true distribution
is a finite mixture of normals which cluster around a single normal, erroneously
assumed to be the true distribution, and suppose the average distance ¢ of the
modes (and the variances) of the mixture components is small and tends to zero,
then the misspecification bias of ﬁQ s is of the order 92, Therefore, in most cases,
the bias is practically negligible. There are, however, other forms of misspecification
which are not that benign. In any case, misspecification of the regressor distribution
is a serious problem with QS.

>From that point of view, one might prefer CS as the more robust estimator. Even
more so, as for small meagsurement errors, QS and CS and also ML become almost
equally efficient anyway. More precisely:

Yos = Xmr + O(U?), Ygs =XpmL + O(U?).
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One can also compare CS and QS to the naive method (N). Of course, N is biased.
But according to a general rule of thumb one might surmise that the bias of N is
compensated by a smaller covariance matrix. Most often this is true, but there are
cases where ¥, — X is indefinite or where 3, < 3.

13.8  Survival Analysis

In survival analysis the time until a certain event occurs (‘survival time’) is consid-
ered. The characteristic issue making survival analysis a separate area of research
is the problem of censoring: Typically not all survival times 73, ¢ = 1,--- ,n, can
be observed completely; for a subset of the units it is only known that unit i is still
alive at some censoring time C;.

13.8.1 Measurement Error in Cox-type Models

Mainly two classes of regression models have been studied. The first one, which is
due to Cox (1972), relates the individual hazard rate A(t|£) to the covariates £ and
the regression parameter 8 according to the relationship A(¢]€) = Ao(t) - exp(BE).
The so-called baseline hazard rate Ao (¢) characterizes the dynamic development of
risk over time, and is assumed not to depend on ¢, the hazards are proportional to
each other. Most often, Ao(f) is seen as an unspecified nuisance function making
the model semiparametric. In particular in econometrics, also parametric versions
are of interest (Flinn and Heckman, 1982).

There are two classical papers on measurement errors in Cox-type models, namely
the work by Prentice (1982) and by Nakamura (1992), both providing - to some
extent - negative results. Prentice (1982), who relies on the structural case, has
shown that a simple likelihood-based correction along the lines of Section 13.6.1 is
not possible (see also Augustin and Schwarz, 2002): The resulting induced relative
risk has the form

At]z) = Ao(t) - Elexp(8€) |z, {T > t}]. (13.1)

Via the event {T > t} appearing in the conditional expectation, the second factor
depends on the previous history of the process, and so the characteristic multiplica-
tive form of the Cox model is lost. As a consequence partial likelihood maximiza-
tion, the usual estimation method for the Cox model, cannot be directly applied
anymore.

However, as Prentice also argued, the effect of this time dependence can be expected
to be small if the failure intensity is very low. Under this so-called rare disease
assumption the condition {T" > t} is almost always satisfied, and so (13.1) can be
solved analytically for normal measurement errors. Then the resulting estimator for
[ coincides with that obtained from regression calibration, which moreover turns
out to be the same as the naive estimator multiplied by the simple deattenuation
factor known from linear regression (cf. Section 13.4). Pepe et al. (1989) discuss the
accuracy of this approximation (see also Hughes, 1993) and derive further results
on handling (13.1) directly.
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Further structural approaches are provided by Hu et al. (1998). In general, struc-
tural approaches appear promising for dealing with Berkson errors, which, for in-
stance, occurs in cohort studies on exposure to risk factors (Bender et al., 2005;
Kiichenhoff et al., 2003).

The classical paper from the functional point of view is Nakamura (1992), who tries
to apply his general method of corrected score function (Nakamura, 1990; see also
Section 2) to partial likelihood estimation. However, the partial likelihood has a
singularity in the complex plain, and so - according to a general result from Ste-
fanski (1989) - a corrected score function cannot exist. Nakumara (1992) therefore
proposes to correct first and second order approximations, instead. The resulting
estimators behave not only well in simulation studies, but, surprisingly, the esti-
mator based on first order correction even turned out to be consistent (Kong and
Gu, 1999). Moreover, Kong et al. (1998) derive a corresponding correction of the
cumulative baseline hazard rate Ao(t) := fot Ao(u)du. Both results are extended
in Kong and Gu (1999) to the case of non-normal measurement error. Huang and
Wang (2000) suggest a nonparametric variant based on replication data.

A different justification of Nakamura’s method for the Cox model and related work
is provided by Augustin (2004). He shows that these seemingly approximate cor-
rections are exact corrections, indeed, arising in a straightforward manner when
Nakamura’s original concept of corrected score function is applied to the so-called
Breslow likelihood instead of partial likelihood. This approach immediately extends
to those proportional hazards models where the baseline hazard rate is parameter-
ized and to almost arbitrary measurement error distributions.

Alternative functional correction methods include Buzas’ (1998) approach and ap-
plications of the so-called conditional score principle in longitudinal Cox models
(see, in particular, Tsiatis and Davidian, 2004).

13.8.2  Accelerated Failure Time Models

The second class of survival models assumes a linear relationship between the log-
survival time and the predictor: InT = By + B¢ + ce. This model provides a su-
perstructure upon the common parametric duration models like the Weibull, log-
logistic, log-normal and gamma models, which are obtained by appropriate speci-
fication of €. Recently, also the non-parametric variant, where the distribution of ¢
is left unspecified, has experienced a renaissance.

Correction methods for the Weibull model under covariate measurement error have
been presented and compared by Gimenez et al. (1999). Skinner and Humphreys
(1999), Wolff and Augustin (2003), and Augustin and Wolff (2004) discuss Weibull
regressions under error-prone or heaped lifetimes.

The simple linear structure in the logarithm of T also suggests to use mean and
variance function models. Augustin (2002, Chapter 5f.) derives the corresponding
corrected estimating equations to adjust for measurement errors, both from the
structural as well as from the functional point of view. The methods obtained al-
low for a unified treatment of all the commonly used parametric duration models
and are the first to handle measurement errors in the covariates and lifetimes si-
multaneously. Censoring, however, needs additional attention (cf. Augustin, 2002,
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Theorem 6.2.2), since the estimation equations do not rely on the likelihood any-
more.

13.9  Misclassification

Misclassification of categorical variables is another type of measurement error. As
an example, consider a generalized linear model (GLM) for a dichotomous response
variable y taking values 0 and 1 with

Ply = 1lz) = G(k), &=28,

and suppose the response y is occasionally misclassified as y*. Then using y™* instead
of the unknown y in estimating 3 will produce a bias.

Define the misclassification probabilities
my =Py =iy =4,%) =P(y" = ily = j),

where the second equality is a consequence of the nondifferentiality postulate. If the
75; are known (as, when misclassification is used as a masquing device to anonymize
data, see Ronning, 2005), or if they can be estimated, (through a validation study,
see Schuster, 1998), then consistent estimators can be constructed. Just observe
that

P(y" = 1]z) = m1G(k) + mo(l — G(x)) =: H(k)

is again a GLM and can be estimated by conventional methods. For further details
see Hausman et al. (1998).

Recently Kiichenhoff et al. (2005) developed a variant of the SIMEX method (see
Section 13.5.2) to be applied to models of the above kind and to more complicated
ones. By artificially contorting the data y* through further misclassification and
estimating the resulting models in a naive way, as if the data were not misclassified,
one gets an idea of the amount of bias due to misclassification. One can then
extrapolate to the state of no misclassification.

13.10 Concluding Remarks

In this survey we restricted our presentation to parametric regression models in
explicit form. We should like to mention a few other approaches.

Functional relations between variables & and &g, say, can also be given in the
implicit form f(&1,82;8) = 0. If instead of & and & we observe surrogates
and z, with additive measurement errors: z; = & -+ 6;, 2 = 1,2, and if the error
variances are known to be equal, then orthogonal, or total, least squares (TLS) is the
method of choice. TLS works nicely in linear models (Cheng and Van Ness, 1999),
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but leads to biased estimation in nonlinear models. But there is an asymptotic
small-os theory (Fuller, 1987; Amemiya and Fuller, 1988). For the quadratic model,
consistent estimators exist (Kukush et al., 2004).

We mentioned that masquing of data can be seen as a method of adding artificial
measurement errors to the data. However, these measurement errors are often of a
quite different type than those considered in this paper. In particular, microaggre-
gation is such a method, which may lead to biased regression estimators. In order
to deal with this bias new methods have been developed (Schmid et al., 2005a,b).
A related field, deserving further attention, is the analysis of rounding and heaping
errors (Wolff and Augustin, 2003).

References

AMEMIYA, Y., FULLER, W. (1988). Estimation for the nonlinear functional rela-
tionship. Annals of Statistics 16 147-160.

AucusTIN, T. (2002). Survival Analysis under Measurement Error. Habilitations-
schrift (post-doctoral thesis). University of Munich.

AugusTIN, T. (2004). An exact corrected log-likelihood function for Cox’s propor-
- tional hazards model under measurement error and some extensions. Scandina-
vian Journal of Statistics 31 43-50.

AugusTIN, T., ScHWARZ, R. (2002). Cox’s proportional hazards model under co-
variate measurement error — A review and comparison of methods. In Total
Least Squares and Errors-in- Variables Modeling: Analysis, Algorithms and Ap-
plications (S. Van Huffel, P. Lemmerling, eds.), 175-184. Kluwer, Dordrecht.

AuGUsTIN, T., WOLFF, J. (2004). A bias analysis of Weibull models under heaped
data. Statistical Papers 45 211-229.

BENDER, R., AuGusTIN, T., BLETTER, M. (2005). Simulating survival times for
Cox regression models. Statistics in Medicine 24 1713-1723.

BrowN, P.J. (1982). Multivariate calibration. Journal of the Royal Statistical So-
ciety, Series B 44 287-321.

BRrAND, R. (2002). Microdata protection through noise addition. In Inference Con-
trol in Statistical Databases - From Theory to Practice. (J. Doningo-Ferrer ed.),
Lecture Notes in Computer Science 2316. Springer, Berlin.

Buzas, J.S. (1998). Unbiased scores in proportional hazards regression with co-
variate measurement error. Journal of Statistical Planning and Inference 67
247-257.

CaRrD, D. (2001). Estimating the return to schooling: Progress on some persistent
econometric problems. Econometrica 69 1127-1160.

CARROLL, R. J., RurpERT, D., STEFANSKI, L. A. (1995). Measurement Error in
Nonlinear Models. Chapman and Hall, London.



13.10  Concluding Remarks : 195

CarroLL, R.J., KUcHENHOFF, H., LoMBARD, F., STEFaNskI, L. A. (1996).
Asymptotics for the Simex estimator in structural measurement error models.
Journal of the American Statistical Association 91 242-250.

CuENg, C.-L., ScuNEEWEISS, H. (1998). Polynomial regression with errors in the
variables. Journal of the Royal Statistical Society, Series B 60 189-199.

Cueng, C.-L., ScENEEWEISS, H., THAMERUS, M. (2000). A small sample esti-
mator for a polynomial regression with errors in the variables. Journal of the
Royal Statistical Soctety, Series B 62 699-709.

CHENG, C.-L., SCcHNEEWEISS, H. (2002). On the polynomial measurement error
model. In Total Least Squares and Errors-in-Variables Modeling (S. van HufTel,
P. Lemmerling, eds.), 131-143. Kluwer, Dordrecht.

CHENG, C.-L., VaN NEss, J. W. (1999). Statistical Regression with Measurement
Error. Arnold, London.

Cook, J., STEFANSKI, L. A. (1994). Simulation-extrapolation estimation for para-
metric measurement error models. Journal of the American Statistical Associa-
tion 89 1314-1328.

Cox, D.R. (1972). Regression models and life tables (with discussion). Journal of
the Royal Statistical Society, Series B 34 187-220.

FLinN, C.J., HECkMAN, J. J. (1982). Models for the analysis of labor force dy-
namics. Advances in Econometrics 1 35-95.

FRrIEDMAN, M. (1957). A Theory of the Consumption Function. Princeton Univer-
sity Press, Princeton.

FULLER, W. A. (1987). Measurement Error Models. Wiley, New York.

GIMENEZ, P., BoLFARINE, H., CoLosimo, E. A. (1999). Estimation in Weibull re-
gression model with measurement error. Communications in Statistics — Theory
and Methods 28 495-510.

GLESER, L. J. (1990). Improvement of the naive estimation in nonlinear errors-in-
variables regression. In Statistical Analysis of Measurement Error Models and
Application (P.J. Brown, W.A. Fuller, eds.), Contemporary Mathematics 112
99-114.

HAUSMAN, J. A., ABREVAYA, J., SCOTT-MORTON, F. M. (1998). Misclassification
of the dependent variable in a discrete-response setting. Journal of Econometrics
87 239-269.

Hem, I., KOcueEnnorr, H., WELLMANN, J., GERKEN, M., KREIENBROCK, L.
(2002). On the potential of measurement error to induce differential bias on odds
ratio estimates: An example from radon epidemiology. Statistics in Medicine 21
3261-3278.



196 13 Measurement Error Models and Methods

Hsiao, C., Wang, Q.K. (2000). Estimation of structural nonlinear errors-in-
variables models by simulated least-squares method. International Economic
Review 41 523-542.

Hu, P., Tsiatis A. A., Davipian M. (1998). Estimating the parameters in the
Cox model when covariate variables are measured with error. Biometrics 54
1407-1419.

Hu, Y., RipDER, G. (2005). Estimating o nonlinear model with measurement error
using marginal information. http://www-rcf.usc.edu/ ~ridder / Wpapers/ EIV-
marg-final.pdf.

Huang, H.S., Huwang, L. (2001). On the polynomial structural relationship.
The Canadian Journal of Statistics 29 493-511.

Huang, Y., Wang, C.7Y. (2000). Cox regression with accurate covariates unascer-
tainable: A nonparametric-correction approach. Journal of the American Sta-
tistical Association 95 1209-1219 (Correction: 98 779).

HucHrs, M. D. (1993). Regression dilution in the proportional hazards model.
Biometrics 49 1056-1066.

Konag, F.H., Gu, M. (1999). Consistent estimation in Cox proportional hazards
model with covariate measurement errors. Statistica Sinica 9 953-969.

Konag, F. H., Huanag, W., L1, X. (1998). Estimating survival curves under propor-
tional hazards model with covariate measurement errors. Scandinavian Journal
of Statistics 25 573-587.

KtcHeNHOFF, H., (1992). Estimation in generalized linear models with covariate
measurement error using the theory of misspecified models. In Statistical Mod-
elling (P. van der Heijden, W. Jansen, B. Francis, G. Seeber, eds.), 185-193.
Elsevier, Amsterdam.

KtcuenuoFF, H. (1995). The identification of logistic regression models with errors
in the variables. Statistical Papers 36 41-48.

KUcHENHOFF, H., BENDER, R., LANGER, 1., LENZ-T6NJES, R. (2003). Effect of
Berkson measurement error on parameter estimates in Cox regression models.
Discission Paper 346, Sonderforschungsbereich 386, University of Munich.

KtcHENHOFF, H., CARrROLL, R.J. (1997). Segmented regression with errors in
predictors: semiparametric and parametric methods. Statistics in Medicine 16
169-188.

KUcHENHOFF, H., MwaLiL1, S., LESAFFRE, E. (2005). A general method for deal-
ing with misclassification in regression: The misclassification SIMEX. Biomet-
rics (to appear).

Kuna, J.T., TempLE, J. (2003). Covariate measurement error in quadratic re-
gression. International Statistical Review 71 131-150.



13.10 Concluding Remarks 197

KukusH, A., MARKOVSKY, 1., VAN HUFFEL, S. (2004). Consistent estimation in
an implicit quadratic measurement error model. Computational Statistics &
Data Analysis 47 123-147.

KukusH, A., SCHNEEWEISS, H., WoLF, R. (2001). Comparison of three estima-
tors in a polynomial regression with measurement errors. Discussion Paper 233,
Sonderforschungsbereich 386, University of Munich.

KukusH, A., SCHNEEWEISS, H. (2005). Comparing different estimators in a non-
linear measurement error model. I and II. Mathematical Methods of Statistics
14 53-79 and 203-223.

L1, T. (2000). Estimation of nonlinear errors-in-variables models: A simulated min-
imum distance estimator. Statistics and Probability Letters 47 243-248.

NakaMURA, T. (1990). Corrected score functions for errors-in-variables models:
Methodology and application to generalized linear models. Biometrika 77 127-
137.

NaxaMURA, T. (1992). Proportional hazards model with covariates subject to
measurement error. Biometrics 48 829-838.

Nowak, E. (1993). The identification of multivariate linear dynamic error-in-
variables models. Journal of Econometrics 59 213-227.

PeEPE, M. S., SELF, M. S., PRENTICE, R. L. (1989). Further results in covariate
measurement errors in cohort studies with time to response data. Statistics in
Medicine 8 1167-1178.

PRENTICE, R.L. (1982). Covariate measurement errors and parameter estimation
in a failure time regression model. Biometrike 69 331-342.

RonnNING, G. (2005). Randomized response and the binary probit model. Eco-
nomics Letters 86 221-228.

ScHMID, M., SCHNEEWEISS, H., KUCHENHOFF, H. (2005a). Consistent estima-
tion of a simple linear model under microaggregation. Discussion Paper 415,
Sonderforschungsbereich 386, University of Munich.

ScumIip, M., ScHNEEWEISS, H., KUcHENHOFF, H. (2005b). Statistical inference
in a simple linear model under microaggregation. Discussion Paper 416, Son-
derforschungsbereich 386, University of Munich.

Scuneeweiss, H., Cueng, C.-L. (2006). Bias of the structural quasi-score es-
timator of a measurement error model under misspecification of the regressor
distribution. Journal of Multivariate Analysis 97 455-473.

ScuHNEEWEISS, H., Mr1tTac, H.J. (1986). Lineare Modelle mit fehlerbehafteten
Daten. Physica, Heidelberg.

SCHUSTER, G. (1998). ML estimation from binomial data with misclassifications -
a comparison: Internal validation versus repeated measurements. In Economet-
rics in Theory and Practice (R. Galata, H. Kiichenhoff, eds.), 45-58. Physika,
Heidelberg.



198 18 Measurement Error Models and Methods

SHKLYAR, S., SCHNEEWEISS, H. (2005). A comparison of asymptotic covariance
matrices of three consistent estimators in the Poisson regression model with
measurement errors. Journal of Multivariate Analysis 94 250-270.

SHKLYAR, S., SCHNEEWEISS, H., KukusH, A. (2005). Quasi score is more efficient
than corrected score in a polynomial measurement error model. Discussion Pa-
per 445, Sonderforschungsbereich 386, University of Munich.

SKINNER, C. J., HumpaREYS, K. (1999). Weibull regression for lifetimes measured
with error. Lifetime Data Analysis 5 23-37.

STEFANSKI, L. A. (1989). Unbiased estimation of a nonlinear function of a nor-
mal mean with application to measurement error models. Communications in
Statistics - Theory and Methods 18 4335-4358.

THAMERUS, M. (2003). Fitting a mixture distribution to a variable subject to
heteroscedastic measurement errors. Computational Statistics 18 1-17.

TSIATIS A., DavIpian, M. (2004). Joint modeling of longitudinal and time-to-event
data: An overview. Statistica Sinice 14 809-834.

WansBeek, T., MeUER, E. (2000). Measurernent Error and Latent Variables in
Econometrics. Elsevier, Amsterdam.

WoLr, R.. (2004). Vergleich von funktionalen und strukturellen Messfehlerverfahren.
Logos Verlag, Berlin.

WorrrF, J., AugusTin, T. (2003). Heaping and its consequences for duration anal-
ysis - a simulation study. Allgemeines Statistisches Archiv — Journal of the Ger-
man Statistical Society 87 1-28.



14 The Microeconometric
Estimation of Treatment
Effects - An Overview™

Marco Caliendo! and Reinhard Hujer?

! DIW Berlin, Abteilung Staat

mcaliendo@diw.de

2 Institut fiir Statistik und Okonometrie, J.W.Goethe Universitit
hujer@wiwi.uni-frankfurt.de

Summary: The need to evaluate the performance of active labour market poli-
cies is not questioned any longer. Even though OECD countries spend significant
shares of national resources on these measures, unemployment rates remain high
or even increase. We focus on microeconometric evaluation which has to solve the
fundamental evaluation problem and overcome the possible occurrence of selection
bias. When using non-experimental data, different evaluation approaches can be
thought of. The aim of this paper is to review the most relevant estimators, discuss
their identifying assumptions and their (dis-)advantages. Thereby we will present
estimators based on some form of exogeneity (selection on observables) as well as
estimators where selection might also occur on unobservable characteristics. Since
the possible occurrence of effect heterogeneity has become a major topic in evalu-
ation research in recent years, we will also assess the ability of each estimator to
deal with it. Additionally, we will also discuss some recent extensions of the static
evaluation framework to allow for dynamic treatment evaluation.

14.1  Introduction

The need to evaluate the performance of active labour market policies (ALMP) is
not questioned any longer. Even though OECD countries spend significant shares
of national resources on these measures, unemployment rates remain high or even
increase. The ideal evaluation process can be looked at as a series of three steps (Fay,
1996): First, the impacts of the programme on the individual should be estimated
(MICROECONOMETRIC EVALUATION). Second, it should be examined if the impacts
are large enough to yield net social gains (MACROECONOMIC EVALUATION). Third, it

*The authors thank Stephan L. Thomsen, Christopher Zeiss and one anonymous referee
for valuable comments. The usual disclaimer applies.
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should be answered if this is the best outcome that could have been achieved for the
money spent (COST-BENEFIT ANALYSIS). In this paper we focus on the first step. The
main question in microeconometric evaluation is if the outcome for an individual is
affected by the participation in an ALMP programme or not. We would like to know
the difference between the value of the participant’s outcome in the actual situation
and the value of the outcome if he had not participated in the programme. The
fundamental evaluation problem arises because we can never observe both states
(participation and non-participation) for the same individual at the same time, 1. e.
one of the states is counterfactual. Therefore finding an adequate control group and
solving the problem of selection bias is necessary to make a comparison possible.

Depending on the data at hand, different evaluation strategies can be thought of.
Since in most European countries - unlike in the US - experimental data are not
available, researchers have to use non-experimental data. A lot of methodological
progress has been made to develop and justify non-experimental evaluation esti-
mators which are based on econometric and statistical methods to solve the funda-
mental evaluation problem (see e.g. Heckman et al, 1999). The aim of this paper
is to give an overview of the most relevant evaluation approaches and provide some
guidance on how to choose between them. Thereby we will also discuss the possible
occurrence of effect heterogeneity, which has become a major focus of evaluation
research in the last years, and the ability of each estimator to deal with it.

Two broad categories of estimators can be distinguished according to the way se-
lection bias is handled. The first category contains approaches that rely on the
so-called unconfoundedness or selection on observables assumption. If one believes
that the available data is not rich enough to justify this assumption, one has to rely
on the second category of estimators which explicitly allows selection on unobserv-
ables, too. We will discuss different approaches for both situations in Section 14.3
where we also present some recent extensions of the static evaluation framework to
dynamic concepts. Before we do so, we are going to introduce the evaluation frame-
work in Section 14.2, where we especially present the potential outcome approach,
discuss parameters of interest, selection bias on observable and on unobservable
characteristics as well as heterogeneous treatment effects. Finally, Section 14.4 con-
cludes.

14.2  The Evaluation Framework

14.2.1  Potential Outcome Approach and the
Fundamental Evaluation Problem

Inference about the impact of a treatment on the outcome of an individual involves
speculation about how this individual would have performed in the labour market,
if he had not received the treatment. The framework serving as a guideline for the
empirical analysis of this problem is the potential outcome approach, also known
as the Roy (1951) — Rubin (1974) — model.

The main pillars of this model are individuals, treatment (participating in a pro-
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gramme or not) and potential outcomes, that are also called responses.! In the
basic model there are two potential outcomes (Y, Y) for each individual, where
Y'! indicates a situation with treatment and Y° without. To complete the notation,
we additionally denote variables that are unaffected by treatment by X. Attributes
X are exogenous in the sense that their potential values for different treatment
states coincide (Holland, 1986). Furthermore we define a binary assignment indica-
tor D, indicating whether an individual actually received treatment (D = 1), or not
(D = 0). The treatment effect for each individual ¢ is then defined as the difference
between his potential outcomes:

A=Y =Y (14.1)

The fundamental problem of evaluating this individual treatment effect arises be-
cause the observed outcome for each individual is given by:

Y; = D;Yi + (1 - D)YY. (14.2)

This means that for those individuals who participated in treatment we observe
Y! and for those who did not participate we observe Y. Unfortunately, we can
never observe Y and Y° for the same individual simultaneously and therefore we
cannot estimate (14.1) directly. The unobservable component in (14.1) is called the
counterfactual outcome.

Concentration on a single individual requires that the effect of the intervention on
each individual is not affected by the participation decision of any other individual,
i. e. the treatment effect A; for each person is independent of the treatment of other
individuals. In statistical literature this is referred to as the stable unit treatment
value assumption (SUTVA)? and guarantees that average treatment effects can be
estimated independently of the size and composition of the treatment population.
In particular, it excludes peer-effects as well as cross-effects and general equilibrium
effects (Sianesi, 2004).

14.2.2 Treatment Effects and Selection Bias

Since there will never be an opportunity to estimate individual effects in (14.1) with
confidence, we have to concentrate on population averages of gains from treatment.
Two treatment effects are dominantly used in empirical studies. The first one is the
(population) average treatment effect (ATE)

Aare = E(A) = E(Y') — E(Y?), (14.3)

which answers the question which would be the outcome if individuals in the popu-
lation were randomly assigned to treatment. The most frequently used parameter is
the so called average treatment effect on the treated (ATT) and focusses explicitly
on the effects on those for whom the programme is actually intended. It is given by

Aarr =E(A|D=1)=EX"'|D=1)-EY°|D=1). (144)

11t should be clear, that this framework is not restricted to the evaluation of labour
market programmes. It applies for every situation where one group of units, e. g. individuals
or firms or other entities, receive some form of treatment and others do not.

?See Holland (1986) for a further discussion of this concept.



202 14 Microeconometric Estimation of Treatment Effects

In the sense that this parameter focuses directly on participants, it determines
the realised gross gain from the programme and can be compared with its costs,
helping to decide whether the programme is successful or not (Heckman et al.,
1999). Given Equation (14.4), the problem of selection bias can be straightforwardly
seen since the second term on the right hand side is unobservable as it describes
the hypothetical outcome without treatment for those individuals who received
treatment. Since with non-experimental data the condition E(Y® | D = 1) =
E(Y® | D = 0) is usually not satisfied, estimating ATT by the difference in sub-
population means of participants E(Y' | D = 1) and non-participants E(Y° |
D = 0) will lead to a selection bias. This bias arises because participants and non-
participants are selected groups that would have different outcomes, even in absence
of the programme. It might be caused by observable or unobservable factors.

14.2.3  Potential Outcome Framework and
Heterogeneous Treatment Effects

For the further discussion it will be helpful to relate the potential outcome frame-
work to familiar econometric notation. To do so, we follow Blundell and Costa Dias
(2002) and define the following outcome equations

Vit = g4 (Xa) + Uk and Yi=gf(Xy)+Us, (14.5)

where the subscripts ¢ and t index the individual and the time period, respectively.
The functions g° and g* represent the relationship between potential outcomes and
the set of observable characteristics. U° and U?! are error terms which have zero
mean and are assumed to be uncorrelated with regressors X. For the familiar case
of linear regression, the g functions specialise to g'(X) = X 81, and ¢°(X) = Xfq.

Heckman and Robb (1985) note that the decision to participate in treatment may
be determined by a prospective participant, by a programme administrator, or
both. Whatever the specific content of the rule, it can be described in terms of an
index function framework. Let I N; be an index of benefits to the relevant decision
maker from participating in the programme. It is a function of observed (Z;) and
unobserved (V;) variables. Therefore

IN; = f(Z:) + V3, (14.6)

with enrolment in the programme D; given by

b1 i INe>0,
“7 )10 otherwise.

Under this specification and the further assumption that treatment takes place in
period k, one can define the individual-specific treatment effect for any X; as

Air(Xi) = Vi — Vi = g7 (Xi) — g0 (Xa)] + [Uie — Ul witht > k. (14.7)
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The ATT measured in the post-treatment period ¢ > k is then defined as
Aarr = E(Au | Dy =1). . (14.8)

The assignment process to treatment is most probably not random. Consequently,
the assignment process will lead to non-zero correlation between enrolment (D;) and
the outcome’s error term (U, U°). This may occur because of stochastic dependence
between (U',U%) and V; in (14.6) or because of stochastic dependence between
U 1, U%) and Z;. In the former case we have selection on unobservables, whereas in
the latter case selection on observables is prevalent (Heckman and Robb, 1985).

We can use this discussion to highlight the problem of heterogeneous treatments, i. e.
situations where the impact of a programme differs across individuals, in a common
and intuitive way.® If treatment impacts vary across individuals this may come
systematically through the observables’ component or be part of the unobservables
and we can re-write equation (14.5) as

Yie = g2(X:) + Au(Xi) Dis + [Ug, + Das(UL — UR)], (14.9)
where
Au(Xi) = E[Au(X0)] = g: (Xa) — 97 (X0) (14.10)

is the expected treatment effect at time ¢ for individuals characterised by X; (Blun-
dell and Costa Dias, 2002). Since abandoning the assumption of homogeneous treat-
ment effects and identifying the individuals that benefit from programmes provides
some scope to improve their future efficiency, we will assess for each estimation
method that we will present in the following its capability to deal with heteroge-
neous treatment effects.

14.3  Non-Experimental Evaluation Methods

The discussion in Subsections 14.2.2 and 14.2.3 has made clear that the problem
of selection bias is a severe one and cannot be solved with more data, since the
fundamental evaluation problem will not disappear. We have a distorted represen-
tation of a true population in a sample as a consequence of a sampling rule, which is
the essence of the selection problem (Heckman, 2001). Hence, we have to use some
identifying assumptions to draw inference about the hypothetical population based
on the observed population. In the following subsections we will present several
evaluation approaches. Each approach invokes different identifying assumptions to
construct the required counterfactual outcome. We will start the discussion with
two estimators (matching and regression) that are based on the selection on ob-
servables assumption.* Following that we introduce three estimators that allow for
selection on unobservables, too, namely difference-in-differences, instrumental vari-
ables and selection models. Finally, we also briefly discuss regression discontinuity
models and the estimation of treatment effects in a dynamic framework.

3See e.g. the discussion in Smith (2000).
4See Tmbens (2004) for an extensive overview of estimating average treatment effects
under unconfoundedness. .
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14.3.1  Matching Estimator

Matching is based on the identifying assumption that conditional on some covari-
ates X, the outcome Y is independent of D.? In the notation of Dawid (1979) this is

AssuMPTION 1 Unconfoundedness: Y° Y'IID| X,

where 11 denotes independence. If Assumption 1 is true, then F(Y° | X,
D=1)=F¥°X,D=0)and F(Y'|X,D = 1) = F(Y'| X, D = 0). This means,
that conditionally on X, non-participant outcomes have the same distribution that
participants would have experienced if they had not participated in the programme
and vice versa (Heckman et al., 1997). Similar to randomisation in a classical ex-
periment, matching balances the distributions of all relevant, pre-treatment charac-
teristics X in the treatment and comparison group.® Thus it achieves independence
between the potential outcomes and the assignment to treatment.

AssumpTION 2 Querlap: 0< P(D=1|X) <1, for all X.

This implies that the support of X is equal in both groups, i.e. S = Support(X|D =
1) = Support{X|D = 0). Assumption 2 prevents X from being a perfect predictor
in the sense that we can find for each participant a counterpart in the non-treated
population and vice versa. If there are regions where the support of X does not over-
lap for the treated and non-treated individuals, matching has to be performed over
the common support region only. The estimated effects have then to be redefined as
the mean treatment effect for those individuals falling within the common support
(Blundell et al., 2004). Rosenbaum and Rubin (1983) call Assumptions 1 and 2 to-
gether ‘strong ignorability’ under which ATT and ATE can be defined for all values
of X. If one is interested in AT'T only, it is sufficient to assume Y°II D | X and the
weaker overlap Assumption P(D = 1| X) < 1. The mean impact of treatment on
the treated can be written as

AP =EY'X,D=1) - Ex[E(Y°|X,D=0)[D=1], (14.11)

where the first term can be estimated from the treatment group and the second term
from the mean outcomes of the matched comparison group. The outer expectation is
taken over the distribution of X in the treated population. The method of matching
can also be used to estimate ATT at some points X = x, where x is a particular
realisation of X. Two things have to be mentioned: First, it should be clear that
conditioning on all relevant covariates is limited in case of a high dimensional vector
X. For that case Rosenbaum and Rubin (1983) suggest the use of so-called balancing

5These are the covariates which also appear in Z as defined in Equation (14.6).
6If we say relevant we mean all those covariates that influence the assignment to treat-
ment as well as the potential outcomes.
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scores to overcome this dimensionality problem.” Second, there are several different
matching algorithms suggested in the literature, e.g. kernel or nearest-neighbour
matching, and the choice between them is not trivial since it involves a trade-off
between bias and variance (see Smith and Todd, 2005, for an overview).

14.3.2  Linear Regression Approach

Even though regression and matching both rely on the unconfoundedness assump-
tion, there are some key differences between both approaches which are worth to be
discussed. One key difference is that matching, due to its non-parametric nature,
avoids functional form assumptions implicit in linear regression models. The poten-
tial outcomes in a linear regression framework can be written as Y! = X + U*
and Y° = X3 + U° and ATT under regression is given by®:

ARG = E(Y'-Y°|X,D =1)= X (1 - o)+ E(U' —U°|X,D = 1).
(14.12)

The identifying assumption needed to justify regression under unconfoundedness is
analogue to Assumption 1 and can be re-written as:

AssumPTION 3 Unconfoundedness in Regression: U°,U'IID | X.

In the matching framework, the goal is to set the bias B(X) = 0 which basically
only requires that the mean of the error terms in the treatment group given a co-
variate cell X equals the corresponding mean in the control group, that is B(X) =
E(UYX,D = 1)~ E(U° X, D = 0) = 0. This means that it is possible to match on
variables that are correlated with the error term in the outcome equation (Hui and
Smith, 2002). In the regression framework, however, we need to eliminate the de-
pendence between (U°,U') and X, that is E(U*|X, D =1) = E(U°|X,D =0) =0
(Heckman et al., 1998). Of course, as Smith (2000) notes, the difference between
both approaches fades with the inclusion of a sufficient number of higher-order and
interaction terms in the regression. However, not only is such an inclusion not very
common in practice, it is also not straightforward to choose these terms. Moreover,
whereas matching estimators do rely on the common support assumption, regres-
sion estimators do not and will produce estimates even in the absence of similar
comparison units, since the linear functional form assumption fills in for the miss-
ing data (Smith, 2004). Another key difference between regression and matching is
the way both approaches handle heterogeneous treatment effects. As Lechner (2002)
notes, the non-parametric matching approach leaves the individual causal effect un-
restricted and allows individual effect heterogeneity in the population. This is not
true for the regression approach which will not recover ATT, although, at times it
might provide a close approximation as shown by Angrist (1998) and Blundell et
al. (2004).

"One possible balancing score is the propensity score. See Rosenbaum (2002) or Caliendo
and Kopeinig (2005) for an introduction into propensity score matching estimators and
some guidance for their implementation.

$For notational convenience we drop individual subscript 4 and time subscript ¢.
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14.3.3  Instrumental Variables Estimator

Let us now turn to estimators that account for selection on unobservables, too. We
will start with the method of instrumental variables (IV). Its underlying identifica-
tion strategy is to find a variable which determines treatment participation but does
not influence the outcome equation. The instrumental variable affects the observed
outcome only indirectly through the participation decision and hence causal effects
can be identified through a variation in this instrumental variable. IV methods are
extensively discussed in Imbens and Angrist (1994) and Angrist et al. (1996) among
others. In terms of the discussion in Subsection 14.2.3, IV requires the existence
of at least one regressor to the decision rule, Z*, that satisfies the following three
conditions (Blundell and Costa Dias, 2000):

e 7~ determines programme participation. For that to be true, it has to have
a non-zero coeflicient in the decision rule in Equation (14.6).

e We can find a transformation, s, such that s(Z7) is uncorrelated with the
error terms (U, V) and (U°, V), given the exogenous variables X.

e 7" is not completely determined by X.

The variable Z* is then called the instrument. In providing variation that is corre-
lated with the participation decision but does not affect potential outcomes from
treatment directly, it can be used as a source of exogenous variation to approximate
randomised trials (Blundell and Costa Dias, 2000).

Clearly, a major problem with this estimator is to find a good instrument. In the
treatment evaluation problem it is hard to think of variables that satisfy all three
above mentioned assumptions. The difficulty lies mainly in the simultaneous re-
quirement that the variable has to predict participation but does not influence
the outcome equation. As pointed out by Blundell and Costa Dias (2000), a sec-
ond drawback arises when considering the heterogeneous treatment framework.
Recall that the error term from Equation (14.9) in Subsection 14.2.3 is given by
[US + Dy (UL — U2)]. Even if Z* is uncorrelated with Us:, the same cannot be
true by definition for U + Di (U} — UY,) since Z* determines D; by assumption.
The violation of this assumption invalidates the application of IV methodology in
a heterogeneous framework (Blundell and Costa Dias, 2000). However, in this sit-
uation it might still be possible to provide a potentially interesting parameter of
the IV estimation - called local average treatment effect (LATE) by Imbens and
Angrist (1994). This estimator identifies the treatment effect for those individuals
(with characteristics X) who are induced to change behaviour because of a change
in the instrument.® It should be clear that each instrument implies its own LATE,
and LATEs for two different instruments may differ substantially depending on the
impacts realised by the persons each instrument induces to participate (Hui and
Smith, 2002).

9 Additionally to those assumptions already made, we further have to assume that the
instrument has the same directional effect on all those whose behaviour it changes. This as-
sumption rules out the co-existence of defiers and compliers and is known as ‘monotonicity
assumption’ (Imbens and Angrist, 1994).
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14.3.4  Selection Model

This method is also known as the Heckman selection estimator (Heckman, 1978).
It is more robust than the IV method but also more demanding in the sense that it
imposes more assumptions about the structure of the model. Two main assumptions
are required (Blundell and Costa Dias, 2000):

e There has to be one additional regressor in the decision rule which has a
non-zero coeflicient and which is independent of the error term V.

e Additionally, the joint density of the distribution of the errors U;; and V; has
to be known or can be estimated.

The basic idea of this estimator is to control directly for the part of the error term
in the outcome equation that is correlated with the participation dummy variable.
It can be seen as a two-step-procedure. First, the part of the error term Uj; that is
correlated with D; is estimated. Second, this term is then included in the outcome
equation and the effect of the programme is estimated. By construction, the remains
of the error term in the outcome equation are not correlated with the participation
decision any more (Blundell and Costa Dias, 2000).*°

The Heckman selection estimator is not without critique, which rests mainly on the
following point (see e.g. Puhani, 2000): If there are no exclusion restrictions, the
models are identified only by assumptions about functional form and error distri-
butions. This may lead to large standard errors and results that are very sensitive
to the particular distributional assumptions invoked. This point of criticism is very
closely related to the problem of finding a good instrument as described for the
IV method. In fact, in a recent paper Vytlacil (2002) shows that the identifying
assumptions for the selection model are equivalent to those invoked by Imbens and
Angrist (1994) in the linear instrumental variables context.

14.3.5  Difference-in-Differences Estimator

The difference-in-differences (DID) estimator requires access to longitudinal data
and forms simple averages over the group of participants and non-participants be-
tween pre-treatment period t' and post-treatment period ¢, that is, changes in the
outcome variable Y for treated individuals are contrasted with the corresponding
changes for non-treated individuals (Heckman et al., 1998):

APTP — iyt —Y2 | D=1]-[¥°-Y? | D=0]. (14.13)
The identifying assumption of this method is
EY-Y) | D=1)=EY. -Y) | D=0). (14.14)

The DID estimator is based on the assumption of time-invariant linear selection ef-
fects, so that differencing the differences between participants and non-participants
eliminates the bias (Heckman et al., 1998). To make this point clear, we can re-write

10Blundell and Costa Dias (2000) also show that this approach is capable of identifying
ATT if effects are assumed to be heterogeneous.
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the outcome for an individual 4 at time ¢ as Yis = my + Dis - Y3 + (1 — D) - Y32,
where m;; captures the effects of selection on unobservables. The validity of the DID
estimator then relies on the assumption m;; = m;, where it is not required that
the bias vanishes completely, but that it remains constant (Heckman et al., 1998).
One problem when using DID is Ashenfelter’s dip, i.e. a situation where shortly
before participation in an ALMP programme the employment situation of future
participants deteriorates (Ashenfelter, 1978). If the ‘dip’ is transitory and the dip
is eventually restored even in the absence of participation in the programme, the
bias will not average out. To allow a more detailed discussion, Blundell and Costa
Dias (2002) further decompose 7 in three parts: an individual-specific fixed ef-
fect, a common macroeconomic effect and a temporary individual-specific effect.
Clearly, for the DID to be unbiased it is sufficient that selection into treatment
is independent from the temporary individual-specific effect, since the other two
effects vanish in the sequential differences. They also discuss the case where the
macroeconomic effect has a differential impact across the group of participants and
~ non-participants. This may happen when both groups differ on unobserved charac-
teristics which make them react differently to macroeconomic shocks. To overcome
this problem they propose a differential trend adjusted DID estimator (Blundell
and Costa Dias, 2002). Heckman et ol. (1998) combine the DID approach with
the already presented matching estimator by comparing the before-after outcome
of participants with those of matched non-participants. Smith and Todd (2005)
show that this ‘conditional DID estimator’ is more robust than traditional cross-
section matching estimators, as it allows for selection on observables as well as
time-invariant selection on unobservables.

14.3.6  Regression Discontinuity Model

The regression discontinuity model (RDM) can be seen as a particular type of
instrumental variable identification strategy. It uses discontinuities in the selection
process to identify causal effects. In this model, treatment depends on some observed
variable, Z, according to a known, deterministic rule, such as D = 1 if Z > Z and
D = 0 otherwise (Heckman et al., 1999). The variable Z has direct impact on Y
as well as an indirect impact on Y through D. This indirect impact is the causal
effect we would like to identify. Frélich (2002) notes that this effect is identified if
the direct and indirect impacts of Z on Y can be separated.

There are several things to note about RDM (see e. g. Heckman et al., 1999). First,
it is assumed that selection is on observable characteristics only. Second, it should
be clear that there is no common support for participants and non-participants
making matching impossible. Hence, RDM takes over when there is selection on
observables (here: the deterministic rule) but the overlapping support condition
required for matching breaks down (with a certain Z you either belong to the
participant or the non-participant group). Finally, the selection rule is assumed
to be deterministic and known and that variation in the relevant variable Z is
exogenous.
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14.3.7  Dynamic Evaluation Concepts

Sequential Matching Estimators. What we have discussed so far is basically
a static evaluation framework where an individual can participate in one programme
(or not). A recent extension of this framework for matching estimators considers
the case, where individuals can participate in subsequent treatments. Lechner and
Miquel (2002) discuss identifying assumptions for so-called sequential matching es-
timators. These estimators mimic the matching estimators described above but
allow to estimate effects in a dynamic causal model. Their framework can be made
clear in a three-periods-two-treatments model. We follow the discussion in Lechner
(2004) and present the needed additional notation in the following. First, we intro-
duce a time index ¢t € {0,1,2} and extend the treatment indicator D by this time
index, that is D = (Dg, D1, D2). It is further assumed that in period 0 everybody
is in the same treatment state Do = 0, whereas from -the second period on D;
can take two values. Realisations of D; are denoted by d: € {0,1}. So in period
1 an individual is observed in exactly one of these two treatments (0, 1), whereas
in period 2 an individual participates in one of four possible treatment sequences
{(0,0), (1,0),(0,1),(1,1)}. Additionally, the history of variables up to period t are
denoted by a bar below a variable, e. g. d, = (d1,d2). The potential outcomes are in-
dexed by treatments and the time period, i.e. Yt = (Yo’d“ , Ylit , Yzét). The observed
outcomes are given by the following equation

Y, = DYy + (1 - DYy = DiDoY;" + Di(1 - D)V + (14.15)
(1= D)DY, ! + (1~ D1)(1 — D2)Y,°.

As in the static model, variables that influence treatment selection and potential
outcomes are called attributes and are denoted by X. An important distinction
has to be made regarding the exogeneity of these variables. Whereas in the static
model exogeneity is assumed, in the dynamic model the X-variables in later periods
can be influenced by treatment realisations. Hence, there are potential values of
these variables as well: X% = (X3 X% X&) where e.g. X! may contain V!
or functions of it. The sequential matching framework is a powerful tool and is
applicable for situations where individuals can participate more than once in a
programme and where it is possible to identify treatment sequences.

Duration Models. Another methodology for modelling dynamically assigned
treatments is the application of duration models (Abbring and van den Berg,
2003). In these models not only the information if an individual participates in
a programme is considered, but also the timing of the treatment within the unem-
ployment spell. To introduce the notation we normalise the point in time when an
individual enters unemployment to zero, denote the duration until the individual
enters regular employment with 7, and the duration until the individual enters
a programme with T, (realisations are denoted by t. and %, respectively). Both
durations are assumed to vary with observable characteristics © and unobservable
characteristics ve and vp. Abbring and van den Berg (2003) assume that the reali-
sation t, affects the distribution of Te in a deterministic way from ¢, onwards. For
the specification of the hazard rates a mixed proportional hazard model is used.



210 14 Microeconometric Estimation of Treatment Effects

Basic feature of this model is that the duration dependence, observable covariates
and unobservable components enter the hazard rate multiplicatively:

Be(ttp, 2, ve) = Ao (t) explz’ Be + pt — tp)I(t > tp) + ve]. (14.16)

The hazard rate for the transition into regular employment 6. consists of the base-
line hazard A.(t) that determines the duration dependence, the systematic part
exp(z’B.) and the unobserved heterogeneity term exp(ve). The treatment effect
exp[p(t — tp)I(t > tp)] with I(t > ¢p) as an indicator function taking the value 1 if
t > tp is specified as a function of the difference ¢t — ¢,. In general, the treatment
effect is allowed to vary over time after the treatment has started and can be in-
terpreted as a shift of the hazard rate by exp(u(¢ — tp)). The transition rate from
unemployment into programmes 6, is analogously specified as a mixed proportional
hazard model:

Op(tz, vp) = Ap(t) explz’' By + vp] . (14.17)

Identifying the treatment effect requires to consider selectivity which is present
if individuals with a relatively high transition rate into employment also have a
relatively high transition into programme participation (Abbring and van den Berg,
2003). In this case we obviously would observe a positive correlation between v,
and vp and the joint distribution G(ve,vp) has to be specified. Abbring and van den
Berg (2003) show that the bivariate model (14.16) and (14.17) and especially the
treatment effect is nonparametrically identified, since no parametric assumptions
with respect to the baseline hazard and the unobserved heterogeneity distribution
are required. Furthermore the identification does not require exclusion restrictions
on x which are often hardly to justify from a theoretical point of view.!!

Matching with Time-Varying Treatment Indicators. An alternative
concept of modelling dynamic treatment effects is presented by Fredriksson and
Johansson (2004) and Sianesi (2004). They introduce a non-parametric matching
estimator that takes the timing of events into account but does not rely on pro-
portionality assumptions. An important topic in this framework is the choice of
an appropriate control group. Instead of defining control individuals as those who
never participate, Sianesi (2004) defines control individuals as those who did not
participate until a certain time period. Fredriksson and Johansson (2004) formalise
her approach and argue that the standard way of defining a control group, i. e. those
individuals who never participated in a given time interval, might lead to biased
results, because the unconfoundedness assumption might be violated as the treat-
ment indicator itself is defined conditional on future outcomes. Following Sianesi
(2004), the key choice faced by the unemployed in this framework is not whether
to participate at all, but whether to participate in a programme or not now. In the
latter case, the individual searches longer in open unemployment. The correspond-
ing parameter of interest in this setting is then defined as the effect of joining a
programme now in contrast to waiting longer. The population of interest at time u
are those still openly unemployed after u months. Treatment receipt in u is denoted
by D™ =1. The comparison group consists of all persons who do not join at least

111t should be noted that anticipatory programme effects are ruled out in the above
mentioned specification (Abbring and van den Berg, 2003).
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up to u, denoted by D™ = 0, The outcome of interest is defined over time ¢ and
is given by Yt(”). The potential outcome if an individual joins in u is denoted by
Y;"™ and if he does not join at least up to u by Y;™. For each point of elapsed
unemployment duration the parameter of interest is

AL =B ™ - DM =1) = B |D™ =1) (14.18)
— B D™ = 1), for t=wu,u+1,...,7.

This is the average impact at time ¢, for those joining a programme in their "

month of unemployment compared to waiting longer in open unemployment. Sianesi
(2004) notes that the treatment effects are based on a comparison of individuals
who have reached the same elapsed duration of unemployment. Measurement starts
at time u, the start of the programme and therefore possible locking-in effects might
encounter. The second term on the right hand side of (14.18) is not identified and
the CIA needed in that case is given by

YYOUDWXx =2 for t=wuu+1,...,T, (14.19)

which means that given a set of observed characteristics X, the counterfactual
distribution of Yto(”) for individuals joining in u is the same as for those not joining
in u and waiting longer. The estimated treatment effect is then the effect for those
who participate in a programme at some time in their unemployment spell instead of
waiting longer. Even though this is not a standard evaluation parameter of interest,
it still shows whether a programme was effective or not.

14.4  Summary - Which Estimator to
Choose?

We have presented several different evaluation strategies in this paper. The final
question to be answered is: Which strategy to choose when evaluating labour market
programmes? Unfortunately, there is no ‘one’ answer to this question because there
is no ‘magic bullet’ that will solve the evaluation problem in any case. As described
above, different strategies invoke different identifying assumptions and also require
different kinds of data for their implementation. When those assumptions hold, a
given estimator will provide consistent estimates of certain parameters of interest
(Smith, 2004). The literature provides a lot of guidance for making the right choice,
based either on experimental datasets to benchmark the performance of alternative
evaluation estimators or Monte-Carlo simulations.

The different estimators can be classified with respect to two dimensions. The first
dimension is the required data for their implementation. Except the DID estima-
tor, the presented methods for the static evaluation framework require only cross-
sectional information for the group of participants and non-participants. However,
longitudinal information might help to justify the unconfoundedness assumption,
enables the researcher to combine e.g. matching with DID estimators and allows
an extension to dynamic concepts of treatment evaluation. The second dimension
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concerns the handling of selection bias. We have presented three estimators that
are based on the unconfoundedness assumption. Clearly, the most crucial point for
these estimators is that the identifying assumption is in general a very strong one
and they-are only as good as the used control variables X (Blundell et al., 2004). If
the assumption holds, both, matching and regression, can be used. Since regression
analysis ignores the common support problem, imposes a functional form for the
outcome equation, and is not as capable as matching of handling effect heterogene-
ity, matching might be preferred. If there is no common support at all, regression
discontinuity models can be applied. For the situation where there is selection on
unobservables, too, we have presented three strategies. Whereas selection models
try to model the selection process completely, IV methods focus on searching a
source of independent variation affecting the participation decision (but not the
outcome) and DID methods erase a time-invariant selection effect by differenc-
ing outcomes of participants and non-participants before and after treatment took
place. The crucial assumption for the latter approach is that the selection bias is
time invariant. Finding a suitable and credible instrument and heterogeneous treat-
ment effects are possible drawbacks for the IV method. The latter point is not a
problem for selection models, even though this flexibility comes at a price, because
a full specification of the assignment rule and stronger assumptions are required.
Hence, if the common effect assumption is plausible in a given context, the IV
estimator might be preferred (Smith, 2004). Finally, we have also presented some
recent extensions of the static evaluation framework to analyse dynamic treatment
effects, e.g. to allow for subsequent treatments and to take the timing of events
into account.
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Summary: One of the most salient data problems empirical researchers face is the
lack of informative responses in survey data. This contribution briefly surveys the
literature on item nonresponse behavior and its determinants before it describes
four approaches to address item nonresponse problems: Casewise deletion of obser-
vations, weighting, imputation, and model-based procedures. We describe the basic
approaches, their strengths and weaknesses and illustrate some of their effects us-
ing a simulation study. The paper concludes with some recommendations for the
applied researcher.

15.1  Introduction

Survey data can be imperfect in various ways. Sampling and noncoverage, unit
nonresponse, interviewer error as well as the impact of survey design and admin-
istration can affect data quality. For the applied researcher item nonresponse, i.e.,
missing values among respondents’ answers present a regular challenge. This prob-
lem receives increasing attention in the literature, where problems of statistical
analysis with missing data have been discussed since the early 1970’s (e. g., Hartley
and Hocking, 1971; Rubin, 1972, 1974; or see Madow et al., 1983).

Even though there exist numerous alternative approaches, most statistical software
packages ‘solve’ the problem of item nonresponse by deleting all observations with
incomplete data. This so-called ‘complete case analysis’ does not only neglect avail-
able information but may also yield biased estimates. In their eminent textbook
Little and Rubin (1987, 2002) categorize the approaches to deal with missing data

*We are grateful to an anonymous referee who provided helpful comments. Also we like
to thank Donald B. Rubin for helpful comments and always motivating discussions as well
as Ralf Miinnich for inspiring discussions about raking procedures.
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in four main groups. Besides complete case analysis there are weighting, imputa-
tion, and model-based procedures. Weighting approaches are typically applied to
correct for unit nonresponse, i. e., the complete refusal of single respondents to pro-
vide information, which may lead to biased estimates as well. The basic idea is
to increase the weights of respondents in some subsamples (e. g., among providers
of complete data) in order to compensate for missing responses from respondents
in other subsamples (e.g., incomplete data providers). Weighting procedures can
consider population or sampling weights to align the observable sample with the
relevant population.

In contrast, imputation techniques insert values for missing responses and gen-
erate an artificially completed dataset. A large number of alternative procedures
are applied to choose the values by which missing values are replaced: hot deck
imputations use values from other observations in the sample, mean imputation
fills missing variables using the mean of appropriate sub-samples, and regression
imputation generates predicted values from regression models. Besides these sin-
gle imputation methods, multiple imputation procedures impute more than one
value for each missing value, in order to reflect the uncertainty of missingness and
imputation.

Finally, model-based procedures rely on a specified model of the observed data. In-
ference is based on the likelihood or - in the Bayesian framework - on the posterior
distribution under that model. In general, predictions of the missing data are gen-
erated based on the respondents’ observed characteristics by taking advantage of
correlation patterns measured for respondents without missing values. These value
substitutions can occur at different levels of complexity.

An evaluation of the properties of the four approaches hinges on the assumptions
regarding the nature of the missing values. The crucial role of this missing data
mechanism was largely ignored until its concept was formalized by Rubin (1976).
Modern statistical literature now distinguishes three cases: missing completely at
random (MCAR), missing at random (MAR.), and not missing at random (NMAR).

MCAR refers to missing mechanisms which are unrelated to the survey variables,
missing or observed. If, for instance, the probability that income is reported is the
same for all individuals, regardless of, e. g., their age or income itself, then the
missing income data are said to be MCAR. Data are labeled MAR, if the missing
mechanism is dependent on observed but not on unobserved variables. This is the
case, e. g., if special socio-economic groups are disproportionately subject to missing
values and the missingness can be explained by observed variables. Finally, data
are termed NMAR, if the missingness depends on the values of the variables that
are actually not observed. This might be the case for income reporting, where
individuals with higher incomes tend to be less likely to respond, even conditional
on their observed data.

The next section describes the prevalence, determinants, and effects of item non-
response using the German Socioeconomic Panel Survey (GSOEP) as an example.
Section 3 discusses the strengths and weaknesses of the alternative approaches to
solve the item nonresponse problem. The paper concludes with recommendations
for applied researchers.
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15.2  Item Nonresponse in the German
Socioeconomic Panel

15.2.1  Prevalence of Item Nonresponse in the

GSOEP

The German Socioeconomic Panel is a household panel survey covering a broad
range of issues. Its questionnaire has been administered annually since 1984. It now
covers over 20,000 individual respondents. The extent of item nonresponse in the
GSOEP varies considerably across items. Averaging across the available 19 annual
panel waves (1984-2002) we obtain 0.4 percent item nonresponse for subjective
health satisfaction, 0.5 percent for political party preference, 8.9 percent for gross
monthly labor earnings, and 1.3 percent for the question on whether an individual
has disability status.!

Riphahn and Serfling (2002, 2005) compared the item nonresponse rates across fi-
nancial variables in the GSOEP cross-section of 1988. At the individual level item
nonresponse rates varied between 2.6 percent e. g., for retirement benefits and 15.3
percent for income from self-employment. Among variables measured at the house-
hold level they observe more than 30 percent item nonresponse for questions about
interest and annuity payments. In contrast, certain questions on social transfers
such as child or welfare benefits yielded nonresponse rates of below one percent.

Schripler (2004) describes the development of item nonresponse behavior with re-
spect to individual gross labor income. He compares the nonresponse rates of a
sample of respondents over the years and finds declining nonresponse rates which
differ depending on the method of data collection and respondent characteristics.
Other studies confirm that individuals with a low propensity to continue responding
to a panel survey are also less likely to disclose their income.

15.2.2  Determinants and Effects of Item Nonresponse

The theoretical literature on item nonresponse mainly applies two explanatory ap-
proaches, the cognitive and the rational choice model (see e. g., Schripler 2004). Ex-
tending theoretical approaches from cognitive psychology to the interview situation,
the cognitive model conceptualizes individual response behavior as a multi-stage
process (Sudman et al., 1996): after hearing a question it must be interpreted and
understood. Next, the respondent gathers the relevant information, a stage which
is affected by the complexity of the question. Finally, the information is translated
to the answer format required by the questionnaire and possibly adjusted based on
objectives such as self representation or social desirability.

In contrast, rational choice theory focuses only on this last stage, when respondents
evaluate behavioral alternatives based on their expected costs and benefits (Esser,
1984). Benefits of responding consist of supporting a potentially appreciated cause,
and of avoiding the negative effects of refusal such as breaking social norms gener-
ated by the interview situation or violating courtesy towards the interviewer. Key

1We thank Oliver Serfling for generating these figures.
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costs of answering a survey consist of the potential negative consequence of provid-
ing private information (e. g., from tax authorities or through breach of privacy) as
well as of the necessary effort to recall the desired facts.

The hypotheses that can be derived from these theories regarding the determinants
of item nonresponse behavior relate to the nature of the question (i.e., cognitive
complexity and sensitivity), to the relationship between respondent and interviewer,
to the interview situation, and finally to the characteristics of the respondent. Dill-
man et al. (2002) provide a classification of seven causes of item nonresponse (INR):

e Survey Mode: INR is higher in self-administered questionnaires than in face-
to-face interviews.

e Interviewers: if the interviewer is able to develop a high level of rapport with
respondents, difficult answers may be given willingly. Interviewers’ response
to unanswered questions affects nonresponse outcomes.

e Question Topic and Structure: certain contents such as finances, drug use,
criminal and sexual behavior are notorious for INR. Also, open-ended or
multiple-part questions, as well as those with complex branching structures
produce more INR.

o Question Difficulty: cognitive difficulty of questions or coverage of long time
horizons generate more INR.

e Institutional Policies: sensitive information e. g., sales or investment in busi-
ness surveys have high INR rates. Offering a ‘don’t know’ answer option also
increases INR. NRespondents’ Attributes: in many surveys older and less
educated people are less likely to respond.

Schripler (2004), Frick and Grabka (2003), and Riphahn and Serfling (2005) es-
timated multivariate models of item nonresponse behavior controlling for relevant
indicators. The studies differ in their empirical approach, the subsample taken from
the GSOEP, the number of items considered, and in the key issues addressed.

Nevertheless some general findings can be summarized as follows: (i) there is signif-
icant heterogeneity in the processes determining item nonresponse behavior across
items; (ii) the association between interviewer and respondent characteristics does
not appear to be influential for item nonresponse behavior; (iii) item nonresponse
rates are higher when the interviewer is female and when a new interviewer is as-
signed to respondents; (iv) item nonresponse on income is higher at low and high
income levels; (v) face-to-face interviews yield lower nonresponse rates than self-
reporting or computer assisted interviewing; (vi) item nonresponse and ‘don’t know’
answers are determined by different mechanisms.

As item nonresponse behavior appears to affect financial variables most severely,
analyses of income and wealth issues may be most subject to biases deriving from
missing data. Given that item nonresponse may indeed bias the results of empirical
analyses in general, correction methods need to be considered.
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15.3  Dealing with Item Nonresponse

This section discusses four frequently applied methods for the analysis of data with
missing values due to item nonresponse:

15.3.1 Complete Case Analysis

Software packages often handle incomplete data by deleting all cases with at least
one missing item (listwise deletion or complete case analysis, CC). This practice is
inefficient and often leads to substantially biased inferences. Listwise deletion can
reduce the available data considerably, so that they are no longer representative of
the population of interest.

Thus, CC analysis can be wasteful, as informative data are discarded when they
belong to records that have missing values on other variables. As an alternative
for univariate analyses often all values that are observed for a variable of interest
are used independent of missing values on other variables (available case analysis,
AC). A major disadvantage of AC analysis is that different analyses from a given
dataset will be performed on different samples, depending on which observations
have complete data for each analysis. This can lead to inconsistent estimates es-
pecially when comparisons are made using estimates from different subsamples. In
general, basing inferences only on the complete cases implies the tacit assumption
that the missing data are missing completely at random, which is typically not the
case. The size of the resulting bias depends on the degree of violation of the MCAR,
assumption, the share of missing data, and the specifics of the analysis.

15.3.2  Weighting

The most common procedure to correct for (unit) nonresponse in official statis-
tics and survey research is weighting. In general, weighting is applied to address
problems of nonresponse and to adjust the sample when unequal probabilities of
selection have been used. Therefore, two types of weights for a unit ¢, the nonre-
sponse or poststratification weights g; and the inverse-probability or design weights
d; = 1/m;, should be distinguished (Gelman and Carlin, 2002). The former are typ-
ically used to correct for differences between sample and population and have to
be estimated. The latter are usually known in advance, and are needed to gener-
ate unbiased estimates for the population target quantity under repeated sampling
given a specific sampling design.

There is common agreement that for estimating population totals, means, and
ratios, weighted averages are appropriate. An example are Horvitz-Thompson type
estimators which are, e.g., for a population total given by

Y = Z 71'_1 = Z dilfs -
g=1 i=1

In combination with complete case analysis weights may also be used to address

2For a discussion of procedures to avoid item nonresponse in advance, such as interviewer
training, questionnaire structure, or administration, see e.g., Groves et al. (2002).
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nonresponse problems. If the probabilities of response for each responding unit were
known, then

P(selection and response) = P(selection)” (response|selection)

(Little and Rubin, 2002) and the individual weights w; for a unit ¢ are given by w; =
d:g;. In practice, the response probability is unknown and a standard approach, e. g.,
is to form adjustment cells based on background variables measured for respondents
and nonrespondents. The nonresponse weight for individuals in an adjustment cell
is then the inverse of the response rate in that cell.

For illustration, let the sample be divided into J homogeneous cells or groups with

respect to the assumed response generating process. Let n; denote the expected or

planned sample size in group or cell j, j =1,2,...,J, e. g., among young working

women, and m; the number of respondents in this group. The individual weight w;
. N . . .. ns

of an observation i within a cell 7 is computed as d;g; = d%—}]

If only sample counts are used in the weighting procedure, weighting can be in-
terpreted as a single conditional mean imputation. To illustrate this, consider the
so-called weighting-class estimator (Oh and Scheuren, 1983) which is given by

N N e N J sy b
Y:?ZEJJ—. Yis :?Z:: ." A—Z;(;yij‘f—(n] m])o )

where N/n is the sampling fraction. This weighting-class estimator is identical to
the estimate derived by single conditional mean imputation. Thus, naive estimates
of standard errors and confidence intervals will be biased downwards as it is typically
the case with single imputation. The derivation of an unbiased variance estimator
is cumbersome.®

In practice, the population totals of the cells, one wants to adjust for, are often
unknown, but the marginals of different weighting variables are known for the
population. In this situation, a set of weighting vectors can be estimated, which
satisfies the constraints given by the population margins: this procedure is termed
raking. It applies iterated proportional fitting (IPF) to obtain weighted sample
counts that match the population on the set of margins. Approaches that make
use of auxiliary information comprise regression and ratio estimates; for these and
extensions see Deville and Sirndal (1992) and Deville et al. (1993). To sum up,
calibration and raking procedures which include the generalized regression (GREG)
estimator and iterative proportional fitting are widely used in the case of unit
nonresponse. If, e. g., only a population quantity such as the total is to be estimated,
they may also be used in the presence of item nonresponse.

While weighting methods are often relatively easy to implement, they face three
major disadvantages: (i) especially in the presence of outliers weighted estimates
can have high variances, (ii) variance estimation for weighted estimates can be

3Notice that often additional information is available and instead of weighting a multiple
imputation procedure (see Section 3.5) can be applied successfully, see Rissler and Schnell
(2004).
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computationally expensive, if, e.g., linearization or jackknife methods have to be
used (see Gelman and Carlin, 2002), and (iii) weighting methods typically do not
model the joint distribution of the data as is done by multiple imputation or model-
based approaches.

15.3.3 Imputation Techniques

Imputation techniques fill in one or more plausible values for each missing datum
so that one or more completed datasets are created (i. e., single vs. multiple impu-
tation). Often it is easier to first impute missing values and to then use standard
complete-data methods of analysis than to develop statistical techniques that al-
low the analysis of incomplete data directly. Imputation allows to use information
not available to the analyst. Imputation of survey data can be performed sepa-
rately from the analysis, which is appealing. The application of standard methods
on data with singly imputed values will result in underestimated standard errors,
if the uncertainty of the imputation procedure is ignored. Due to its operational
convenience, single imputation has long been used, especially by statistical offices.
Among the key challenges for single imputation is to preserve the covariance struc-
tures in the data and at the same time to appropriately reflect the uncertainty
due to the imputation process. Usually this means that for every point estimate
based on singly imputed data its frequency valid variance estimate has to be derived
separately; see Lee et al. (2002).

Multiple imputation (MI), introduced by Rubin (1978) and discussed in detail in
Rubin (1987, 2004), retains the advantages of imputation while allowing the data
analyst to make valid assessments of uncertainty. Multiple imputation reflects un-
certainty in the imputation of the missing values through wider confidence intervals
and larger p-values than under single imputation. MI is a Monte Carlo technique
that replaces the missing values by m > 1 simulated versions, generated according
to a probability distribution which indicates how likely the true values are given
the observed data. Typically m is small, e.g., m = 5, although with increasing
computational power m can be 10 or 20. In general, this depends on the amount of
missingness and on the distribution of the parameters to be estimated.

To illustrate this, let Y,ps denote the observed components of any uni- or multi-
variate variable Y, and Y,,;s its missing components. Then, m values are imputed
for each missing datum according to some distributional assumpt1ons creating m >
1 independent simulated imputations (Yops, Y, 75m) (Yoss, Y, 751,3), e (Y},bs,y;fm))
Standard complete-case analysis can be performed for each of the m imputed
datasets, enabling us to calculate the imputed data estimate 0" = 6(}’},1,3, YSZ)S)
along with its estimated variance var(e(t)) = var(e(}’},bs, mzs)), t=1,2,.

The complete-case estimates are combined according to the MI rule that the MI
point estimate for ¢ is simply the average

5 _ 1N
em_mge. (15.1)

To obtain a standard error 1/5ar (8, wmr1) for the MI estimate O 1, we first calculate
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the ‘between-imputation’ variance
—~ m —~
GG (Q)petween = B = ——— > (0P — Ou1)?, (15.2)
and then the ‘within-imputation’ variance
5T O within = W = — im(at)). (15.3)
» m iz

Finally, the estimated total variance is defined by

P A 1o o~ 1
var(Omr) =T = var(@)withm—l—(l—l—E)var(&)between =W+ Ln_r:nt_B‘

For large sample sizes, tests and two-sided (1 — «)100% interval estimates can be
based on Student’s ¢-distribution

(5}\41 - 9)/\/T ~ 1, and ’Q\MI + tu,l_a/z\/T (15.4)

with degrees of freedom

v=(m-1) (1+%)2- (15.5)

MI is in general applicable when the complete-data estimates are asymptotically
normal (e. g., ML estimates) or ¢ distributed; see Rubin and Schenker (1986), Rubin
(1996), Barnard and Rubin (1999), or Little and Rubin (1987, 2002).

The theoretical motivation for multiple imputation is Bayesian, although the result-
ing multiple imputation inference is usually also valid from a frequentist viewpoint.
Basically, MI requires independent random draws from the posterior predictive dis-
tribution of the missing data given the observed data. Usually this is performed by
a two-step procedure. First, we take random draws of the parameters according to
their observed-data posterior distribution. Second, we perform random draws of the
missing data according to their conditional predictive distribution. This is done m
times. If only one variable has missing values, such a specification is rather straight-
forward and univariate (Bayesian) regression models may be applied. When the data
have a multivariate structure and different missing data patterns, the observed-data
posteriors are often not standard distributions from which random numbers can
easily be generated. However, with increasing computational power simpler meth-
ods have been developed to enable multiple imputation based on Markov Chain
Monte Carlo (MCMC) techniques. Common concerns with multiple imputation ad-
dress the model-based assumptions and the complexity of the Bayesian posterior
predictions. Clearly, there is no assumption-free imputation method but multiple
imputation explicitly formulates and evaluates these assumptions. For a broad dis-
cussion of advantages and disadvantages of imputation procedures see Groves et al.
(2002, Chapter 22 and 23).
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15.3.4 Model-based Procedures

Model-based procedures to adjust for nonresponse simultaneously have to model
the distribution of the data Y and the response mechanism R. Without any further
assumptions regarding the response mechanism, the joint distribution fv,z(y,7;8, )
has to be modelled. In so-called nonignorable nonresponse models this is done in
two slightly differing ways. On the one hand, selection models as considered by
Heckman (1976), specify fv,r(y,7;0,&) as

fr.r(y,r:6,8) = fv (y;0) friv (rly; €) (15.6)

and have to formulate an explicit model for the distribution of the response missing-
data mechanism fgjy (r|y; §) where 6 and & are the unknown parameters or in the
Bayesian context are random variables as well. Keeping the notation simple, with
missing data the likelihood of (15.6) is

L(97 &; y:"“) = /ngbsmeis (yobSaymis; e)fR!Yobs,Ymis (leobm Ymis; g)dymis .
(15.7)

On the other hand, pattern-mixture models as discussed by Glynn et al. (1986)
factor the joint distribution in a different way:

fr.r(y,r56,€) = fyvir(ylr; 0)fr(r;€), (15.8)

where the distribution of Y is conditioned on the missing data pattern R. Therefore,
the resulting marginal distribution of ¥ will be a mixture of distributions.

Under the MCAR, assumption expressions (15.6) and (15.8) are equivalent. If dis-
tributional assumptions are added and the data are not MCAR, these specifications
can lead to different models. Maximum-likelihood estimates are found by maximiz-
ing the likelihood functions with respect to € and &. In the Bayesian context the
posterior distribution is obtained by incorporating a prior distribution and per-
forming the necessary integrations.

In general, either way has its merits and demerits. Specification models usually
require the existence of identifying restrictions, are very sensitive to model mis-
specification, and the results are often claimed to be unstable. Pattern-mixture
models are often under-identified and also require identifying restrictions. Typi-
cally, pattern-mixture models are suggested to be used for sensitivity analyses, see,
e.g., Little (1993).

Since the assumption of MAR cannot be contradicted by the observed data, more
often the observed-data likelihood, which is also called the likelihood ignoring the
missing data mechanism, is considered:

L(e$ yObS) = / fYobs Yomis (yob57 Ymis; e)dymzs - (159)
Inferences about # can be based on (15.9) rather than on the full likelihood (15.7) if

the missing data mechanism is ignorable. Notice that ignorable Bayesian inference
would add a prior distribution for 4. Rubin (1976) has shown that an ignorable
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missing data mechanism is given when two conditions hold. First, the parameters
and £ have to be distinct, i. e., they are not functionally related or - in the Bayesian
framework - are a priori independent. Second, the missing data are MAR.

Ignorable ML methods focussing on the estimation of § have a couple of advantages.
Usually the interest is in 6 and not in . Then the explicit modeling of the response
mechanism can be cumbersome and easily misspecified. Also, often information for
the joint estimation of 8 and £ is limited. Thus, estimates assuming MAR data turn
out to be more robust in many cases.

However, in many missing data problems, even the observed-data likelihood (15.9)
is complicated and explicit expressions for the ML estimate cannot be derived. Here,
the Expectation-Maximization (EM) algorithm is a broadly applicable approach to
the iterative computation of maximum likelihood estimates. On each iteration of
the EM algorithm there are two steps, called the expectation or E-step and the
maximization or M-step. The basic idea of the EM algorithm is first (E-step) to
fill in the missing data Ymis by their conditional expectation given the observed
data and an initial estimate of the parameter # to achieve a completed likelihood
function, and second (M-step) to recalculate the maximum likelihood (ML) estimate
of 0 given the observed values yobs and the filled-in values of Yinis = Ymis. The E-
step and M-step are iterated until convergence of the estimates is achieved.

More precisely, it is the log likelihood In L(6; y) of the complete-data problem that
is manipulated in the E-step. As it is based partly on unobserved data, it is replaced
by its conditional expectation

E(In L(6; Y)|yovs; 0)

given the observed data yobs and a current fit 6 for the unknown parameters. Thus
the E-step consists of calculating this conditional expectation E(In L(0; Y)|yoss; 0).
The simpler M-step computation can now be applied to this completed data and a
new actual value 60T for the ML estimate is computed therefrom. Now let plt+y
be the value of # that maximizes E(In L(0;Y)|yoss; 0). Dempster et al. (1977)
have shown that 1) then also maximizes the observed-data likelihood L(6; yobs)
in the sense that the observed-data likelihood of #®*? is at least as high as that of
0® i ey, LOHD; yoba) > L(OY; yobs)-

Starting from some suitable initial parameter values 0(0), the E- and the M-steps
are repeated until convergence, for instance, until |§¢+D — 9| < ¢ holds for some
fixed € > 0. Not all the problems are well-behaved, however, and sometimes the
EM does not converge to a unique global maximum.*

15.3.5  Evidence from a Comparison Study

In this section we present a simple simulation study to illustrate the implications
of alternative imputation procedures. We compare moments of a random variable
(income) when applying multiple imputation (MI), simple single mean imputation

4Forr a detailed description of the EM algorithm and its properties see McLachlan and
Krishnan (1997), Schafer (1997), Little and Rubin (2002), and the fundamental paper of
Dempster et al. (1977).
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(SI), single mean imputation within classes (also known as conditional mean impu-
tation and here equivalent to a weighting procedure as shown in Section 3.2) (SI
CM), and .complete case analysis (CC).

Assume that a randomly drawn variable which we label age (AGE) is normally
distributed with mean 40 and standard deviation 10, and another randomly drawn
variable labelled income (INC) is normally distributed with mean 1500 and stan-
dard deviation 300. Becausé real income variables do not generally follow a normal
distribution, often their log transformation log(INC) is used to achieve approximate
normality. Let the correlation between age and income be 0.8, then®

(ace,incy~nN ([ © 10> 0.8-3000
’ 1500 ) /\ \ 0.8-3000 3002 .

A sample of n = 2000 is drawn from this universe. After being generated, the AGE
variable is recoded into 6. categories, 1 < 20 years, 2 = over 20 - 30 years, ..., 6
> 60 years. First, the complete cases are analyzed, the mean income estimate, its
standard error (s.e.), and the 95% confidence interval are calculated. Then different
missingness mechanisms (MCAR, MAR, NMAR) are applied on income. Under
MAR, income is missing with higher probability when age is higher, under NMAR,
the probability that income is missing is higher the higher income is itself.

After discarding 30% of the income data, first the complete cases are analyzed,
then a simple mean imputation is performed, and, finally, a proper multiple im-
putation procedure with m = 5 is used according to Rubin (1987, p. 167). The
whole simulation process of creating the data, applying the missingness, perform-
ing the imputations, and analyzing the sample is repeated 1000 times. The coverage
(cvg.) is counted, i. e., the number of confidence intervals out of 1000 that cover the
true mean value. The average bias, the standard errors, and the usual correlation
estimates between age (recoded) and income are given in Table 1.

The results in Table 15.1 show how precision is reduced when only the complete
cases are used under MCAR, and how biased the complete case estimate (CC)
gets when the missingness is MAR, or NMAR.® The table also shows how biased a
simple mean imputation is and how this bias is corrected when conditional means
are imputed instead of the overall mean (cf. the means in Rows 7 and 8 and 11
and 12). However, this conditional mean imputation requires that the missingness
depends on the variable conditioned on. The single mean imputation within classes
also leads to an overestimation of the correlation between recoded AGE and INC
though the simple single imputation underestimates it (see the last column of Table
1). Moreover, with single imputation the standard errors are always too small to
get the nominal coverage.

Even if the missingness is MCAR, a simple mean imputation affects standard er-
rors and correlations. Under MAR and even under NMAR, multiple imputation

5For robustness checks this study was also run with lower correlation values. However,
that did not change the main message. Notice that the lower the correlation the less efficient
are the procedures under NMAR.

6For the precision compare the standard errors in Row 1 to those of the CC analyses
in Rows 2, 6, and 10. For bias compare the means in Rows 2, 6 and 10.



226 15 Survey Item Nonresponse and its Treatment

yields results much closer to the true values. Particularly in a NMAR scenario MI
borrows strength from the correlation between age and income. Standard errors,
correlation, and the nominal coverage are well reproduced by MI. Notice that con-
fidence intervals under MI can be even narrower than confidence intervals based on
complete case analysis (CC). This is especially true if the imputed sample is sub-
stantially larger than the complete case sample. Therefore, typically, the following
comparisons hold for most surveys and most estimates of standard errors:

s.e.(SI) < s.e.(truth) < s.e.(MI) < s.e.(CC).

More elaborate comparisons by simulation studies are provided, e.g., by Schafer
(1997), Raghunathan and Rubin (1998), or Miinnich and Rissler (2005). The latter
are comparing especially GREG and Horvitz-Thompson estimators using nonre-
sponse corrections as well as MI procedures.

Table 15.1: Results of the simulation study.

| No|Missing| Proc.|Mean(INC) Bias(INC) S.e.(INC) Cvg. Cor(AGE, INC)]|

| 1|None | 1500.21 0.21 6.71 0.96 0.77]
2|MCAR| CC| 1500.14 0.14 8.01 0.95 0.77
3|MCAR|  SI|  1500.14 0.14 5.61 0.82 0.64
4|MCAR [SICM|  1500.20 0.20 6.28 0.91 0.82
5|MCAR| MI|  1500.24 0.24 7.34 0.95 0.77
6| MAR CcC| 147035  -29.65 7.98 0.04 0.77
7|MAR SI| 147035  -20.65 5.58 0.01 0.63
8|MAR [SICM|  1499.90 -0.10 6.28 0.88 0.82
9|MAR MI|  1499.82 -0.18 7.43 0.93 0.77
10[NMAR]| CC| 147429  -25.71 7.99 0.11 0.77
11{NMAR|  SI| 147429  -25.71 5.59 0.03 0.64
12|NMAR [SI CM|  1489.33  -10.66 6.26 0.59 0.82
13|NMAR| MI| 1480.30  -10.70 7.36 0.71 0.77

15.4

Conclusions and Recommendations

Ttem nonresponse is a common problem in empirical analyses. Research on the
determinants of nonresponse behavior yields a catalogue of relevant factors. The
evidence on German data confirms that data collection methods and respondent
characteristics affect nonresponse behavior. Extant studies also confirm that dif-
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ferent ways of dealing with ‘item nonresponse may affect the results of empirical
analyses.

We discuss the strengths and weaknesses of four commonly used approaches to
deal with item nonresponse and provide a simulation study. This simulation yields
that the most commonly used approach, which considers only observations without
missing values, can lead to substantial biases in the estimates. The performance of
single imputation procedures depends on whether there are patterns in the missing-
ness of the data and on whether the information is missing (completely) at random.
Multiple imputation procedures appear to yield the best coverage of the true value
and the best reflection of existing correlation patterns.

Casewise deletion can only be an appropriate procedure if the missing data are
missing completely at random. In all other cases it involves biased estimates and
other procedures are preferable. Weighting is a first step to correct for nonresponse
and disproportionalities. The literature suggests that multiple imputation under
MAR often is quite robust against violations of the MAR assumption. Only when
NMAR is a serious concern and the share of missing information is substantial it
seems necessary to jointly model the data and the missingness using model-based
procedures. Since missing values cannot be observed, there is no direct evidence in
the data to test a MAR assumption. Therefore, it seems useful to consider alterna-
tive models and to explore the sensitivity of resulting inferences. We conclude that a
multiple imputation procedure seems to be the best alternative at hand to account
for missingness and to exploit all available information. In particular it generates
the only format with correct standard errors allowing valid inference from standard
complete case analysis.

It is recommendable that empirical researchers step beyond standard complete or
available case analysis and investigate the robustness of findings by applying alter-
native procedures. This is aided by the fact that various single imputation tech-
niques, such as mean imputation, conditional mean imputation, or regression impu-
tation, are now available in commercial statistical software packages. Free programs
and routines comprise the stand-alone Windows program NORM or the S-PLUS
/ R libraries NORM, CAT, MIX, PAN, and MICE which are all basically data
augmentation algorithms. NORM uses a normal model for continuous data, CAT
a log-linear model for categorical data. MIX relies on a general location model for
mixed categorical and continuous data. PAN is created for panel data applying a
linear mixed-effects model. Moreover, there are the free SAS-callable application
IVEware as well as a STATA packet MVIS which are, like MICE, based on the
very flexible sequential regression approach. The SAS procedures PROC MI with
PROC MIANALYZE provide a parametric and a nonparametric regression impu-
tation approach, as well as the multivariate normal model. Finally, there is the free
Windows or Gauss version AMELIA, With increasing computational power, more
and more multiple imputation techniques are now implemented in available statis-
tics software to create multiply-imputed datasets for further analyses.”

“For links and further details see www.multiple-imputation.com, Horton and Lipsitz
(2001), or Réssler et al. (2003).
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