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Preface

This text originated from the lecture notes I gave teaching the ho-
nours undergraduate-level real analysis sequence at the University
of California, Los Angeles, in 2003. Among the undergraduates
here, real analysis was viewed as being one of the most difficult
courses to learn, not only because of the abstract concepts being
introduced for the first time (e.g., topology, limits, measurability,
etc.), but also because of the level of rigour and proof demanded
of the course. Because of this perception of difficulty, one was
often faced with the difficult choice of either reducing the level
of rigour in the course in order to make it easier, or to maintain
strict standards and face the prospect of many undergraduates,
even many of the bright and enthusiastic ones, struggling with
the course material.

Faced with this dilemma, I tried a somewhat unusual approach
to the subject. Typically, an introductory sequence in real analy-
sis assumes that the students are already familiar with the real
numbers, with mathematical induction, with elementary calculus,
and with the basics of set theory, and then quickly launches into
the heart of the subject, for instance the concept of a limit. Nor-
mally, students entering this sequence do indeed have a fair bit
of exposure to these prerequisite topics, though in most cases the
material is not covered in a thorough manner. For instance, very
few students were able to actually define a real number, or even
an integer, properly, even though they could visualize these num-
bers intuitively and manipulate them algebraically. This seemed
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to me to be a missed opportunity. Real analysis is one of the first
subjects (together with linear algebra and abstract algebra) that
a student encounters, in which one truly has to grapple with the
subtleties of a truly rigorous mathematical proof. As such, the
course offered an excellent chance to go back to the foundations
of mathematics, and in particular the opportunity to do a proper
and thorough construction of the real numbers.

Thus the course was structured as follows. In the first week,
I described some well-known “paradoxes” in analysis, in which
standard laws of the subject (e.g., interchange of limits and sums,
or sums and integrals) were applied in a non-rigorous way to give
nonsensical results such as 0 = 1. This motivated the need to go
back to the very beginning of the subject, even to the very defin-
ition of the natural numbers, and check all the foundations from
scratch. For instance, one of the first homework assignments was
to check (using only the Peano axioms) that addition was asso-
ciative for natural numbers (i.e., that (a+b) +c=a+ (b+c) for
all natural numbers a, b, c: see Exercise 2.2.1). Thus even in the
first week, the students had to write rigorous proofs using math-
ematical induction. After we had derived all the basic properties
of the natural numbers, we then moved on to the integers (ini-
tially defined as formal differences of natural numbers); once the
students had verified all the basic properties of the integers, we
moved on to the rationals (initially defined as formal quotients of
integers); and then from there we moved on (via formal limits of
Cauchy sequences) to the reals. Around the same time, we covered
the basics of set theory, for instance demonstrating the uncount-
ability of the reals. Only then (after about ten lectures) did we
begin what one normally considers the heart of undergraduate real
analysis - limits, continuity, differentiability, and so forth.

The response to this format was quite interesting. In the first
few weeks, the students found the material very easy on a con-
ceptual level, as we were dealing only with the basic properties
of the standard number systems. But on an intellectual level it
was very challenging, as one was analyzing these number systems
from a foundational viewpoint, in order to rigorously derive the
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more advanced facts about these number systems from the more
primitive ones. One student told me how difficult it was to ex-
plain to his friends in the non-honours real analysis sequence (a)
why he was still learning how to show why all rational numbers
are either positive, negative, or zero (Exercise 4.2.4), while the
non-honours sequence was already distinguishing absolutely con-
vergent and conditionally convergent series, and (b) why, despite
this, he thought his homework was significantly harder than that
of his friends. Another student commented to me, quite wryly,
that while she could obviously see why one could always divide
a natural number n into a positive integer g to give a quotient
a and a remainder r less than ¢ (Exercise 2.3.5), she still had,
to her frustration, much difficulty in writing down a proof of this
fact. (I told her that later in the course she would have to prove
statements for which it would not be as obvious to see that the
statements were true; she did not seem to be particularly consoled
by this.) Nevertheless, these students greatly enjoyed the home-
work, as when they did persevere and obtain a rigorous proof of
an intuitive fact, it solidifed the link in their minds between the
abstract manipulations of formal mathematics and their informal
intuition of mathematics (and of the real world), often in a very
satisfying way. By the time they were assigned the task of giv-
ing the infamous “epsilon and delta” proofs in real analysis, they
had already had so much experience with formalizing intuition,
and in discerning the subtleties of mathematical logic (such as the
distinction between the “for all” quantifier and the “there exists”
quantifier), that the transition to these proofs was fairly smooth,
and we were able to cover material both thoroughly and rapidly.
By the tenth week, we had caught up with the non-honours class,
and the students were verifying the change of variables formula for
Riemann-Stieltjes integrals, and showing that piecewise continu-
ous functions were Riemann integrable. By the conclusion of the
sequence in the twentieth week, we had covered (both in lecture
and in homework) the convergence theory of Taylor and Fourier
series, the inverse and implicit function theorem for continuously
differentiable functions of several variables, and established the
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dominated convergence theorem for the Lebesgue integral.

In order to cover this much material, many of the key foun-
dational results were left to the student to prove as homework;
indeed, this was an essential aspect of the course, as it ensured
the students truly appreciated the concepts as they were being in-
troduced. This format has been retained in this text; the majority
of the exercises consist of proving lemmas, propositions and theo-
rems in the main text. Indeed, I would strongly recommend that
one do as many of these exercises as possible - and this includes
those exercises proving “obvious” statements - if one wishes to use
this text to learn real analysis; this is not a subject whose sub-
tleties are easily appreciated just from passive reading. Most of
the chapter sections have a number of exercises, which are listed
at the end of the section.

To the expert mathematician, the pace of this book may seem
somewhat slow, especially in early chapters, as there is a heavy
emphasis on rigour (except for those discussions explicitly marked
“Informal”), and justifying many steps that would ordinarily be
quickly passed over as being self-evident. The first few chapters
develop (in painful detail) many of the “obvious” properties of the
standard number systems, for instance that the sum of two posi-
tive real numbers is again positive (Exercise 5.4.1), or that given
any two distinct real numbers, one can find rational number be-
tween them (Exercise 5.4.5). In these foundational chapters, there
is also an emphasis on non-circularity - not using later, more ad-
vanced results to prove earlier, more primitive ones. In particular,
the usual laws of algebra are not used until they are derived (and
they have to be derived separately for the natural numbers, inte-
gers, rationals, and reals). The reason for this is that it allows the
students to learn the art of abstract reasoning, deducing true facts
from a limited set of assumptions, in the friendly and intuitive set-
ting of number systems; the payoff for this practice comes later,
when one has to utilize the same type of reasoning techniques to
grapple with more advanced concepts (e.g., the Lebesgue integral).

The text here evolved from my lecture notes on the subject,
and thus is very much oriented towards a pedagogical perspec-
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tive; much of the key material is contained inside exercises, and
in many cases I have chosen to give a lengthy and tedious, but in-
structive, proof instead of a slick abstract proof. In more advanced
textbooks, the student will see shorter and more conceptually co-
herent treatments of this material, and with more emphasis on
intuition than on rigour; however, I feel it is important to know
how to do analysis rigorously and “by hand” first, in order to truly
appreciate the more modern, intuitive and abstract approach to
analysis that one uses at the graduate level and beyond.

The exposition in this book heavily emphasizes rigour and
formalism; however this does not necessarily mean that lectures
based on this book have to proceed the same way. Indeed, in my
own teaching I have used the lecture time to present the intuition
behind the concepts (drawing many informal pictures and giving
examples), thus providing a complementary viewpoint to the for-
mal presentation in the text. The exercises assigned as homework
provide an essential bridge between the two, requiring the student
to combine both intuition and formal understanding together in
order to locate correct proofs for a problem. This I found to be
the most difficult task for the students, as it requires the subject
to be genuinely learnt, rather than merely memorized or vaguely
absorbed. Nevertheless, the feedback I received from the students
was that the homework, while very demanding for this reason,
was also very rewarding, as it allowed them to connect the rather
abstract manipulations of formal mathematics with their innate
intuition on such basic concepts as numbers, sets, and functions.
Of course, the aid of a good teaching assistant is invaluable in
achieving this connection.

With regard to examinations for a course based on this text,
I would recommend either an open-book, open-notes examination
with problems similar to the exercises given in the text (but per-
haps shorter, with no unusual trickery involved), or else a take-
home examination that involves problems comparable to the more
intricate exercises in the text. The subject matter is too vast to
force the students to memorize the definitions and theorems, so
I would not recommend a closed-book examination, or an exami-



xviii 7 Preface

nation based on regurgitating extracts from the book. (Indeed, in
my own examinations I gave a supplemental sheet listing the key
definitions and theorems which were relevant to the examination
problems.) Making the examinations similar to the homework as-
signed in the course will also help motivate the students to work
through and understand their homework problems as thoroughly
as possible (as opposed to, say, using flash cards or other such de-
vices to memorize material), which is good preparation not only
for examinations but for doing mathematics in general.

Some of the material in this textbook is somewhat periph-
eral to the main theme and may be omitted for reasons of time
constraints. For instance, as set theory is not as fundamental
to analysis as are the number systems, the chapters on set theory
(Chapters 3, 8) can be covered more quickly and with substantially
less rigour, or be given as reading assignments. The appendices
on logic and the decimal system are intended as optional or sup-
plemental reading and would probably not be covered in the main
course lectures; the appendix on logic is particularly suitable for
reading concurrently with the first few chapters. Also, Chapter
16 (on Fourier series) is not needed elsewhere in the text and can
be omitted.

For reasons of length, this textbook has been split into two
volumes. The first volume is slightly longer, but can be covered
in about thirty lectures if the peripheral material is omitted or
abridged. The second volume refers at times to the first, but can
also be taught to students who have had a first course in analysis
from other sources. It also takes about thirty lectures to cover.

I am deeply indebted to my students, who over the progression
of the real analysis course corrected several errors in the lectures
notes from which this text is derived, and gave other valuable
feedback. I am also very grateful to the many anonymous refer-
ees who made several corrections and suggested many important
improvements to the text.

Terence Tao



Chapter 1

Introduction

1.1 What is analysis?

This text is an honours-level undergraduate introduction to real
analysis: the analysis of the real numbers, sequences and series of
real numbers, and real-valued functions. This is related to, but
is distinct from, complex analysis, which concerns the analysis of
the complex numbers and complex functions, harmonic analysis,
which concerns the analysis of harmonics (waves) such as sine
waves, and how they synthesize other functions via the Fourier
transform, functional analysis, which focuses much more heavily
on functions (and how they form things like vector spaces), and so
forth. Analysis is the rigourous study of such objects, with a fo-
cus on trying to pin down precisely and accurately the qualitative
and quantitative behavior of these objects. Real analysis is the
theoretical foundation which underlies calculus, which is the col-
lection of computational algorithms which one uses to manipulate
functions.

In this text we will be studying many objects which will be fa-
miliar to you from freshman calculus: numbers, sequences, series,
limits, functions, definite integrals, derivatives, and so forth. You
already have a great deal of experience of computing with these
objects; however here we will be focused more on the underlying
theory for these objects. We will be concerned with questions such
as the following:



"2 1. Introduction

1. What is a real number? Is there a largest real number?
After 0, what is the “next” real number (i.e., what is the
smallest positive real number)? Can you cut a real number
into pieces infinitely many times? Why does a number such
as 2 have a square root, while a number such as -2 does
not? If there are infinitely many reals and infinitely many
rationals, how come there are “more” real numbers than
rational numbers?

2. How do you take the limit of a sequence of real numbers?
Which sequences have limits and which ones don’t? If you
can stop a sequence from escaping to infinity, does this mean
that it must eventually settle down and converge? Can you
add infinitely many real numbers together and still get a
finite real number? Can you add infinitely many rational
numbers together and end up with a non-rational number?
If you rearrange the elements of an infinite sum, is the sum
still the same?

3. What is a function? What does it mean for a function to be
continuous? differentiable? integrable? bounded? can you
add infinitely many functions together? What about taking
limits of sequences of functions? Can you differentiate an
infinite series of functions? What about integrating? If a
function f(z) takes the value 3 when z = 0 and 5 when
z =1 (i.e., f(0) =3 and f(1) = 5), does it have to take every
intermediate value between 3 and 5 when z goes between 0
and 17 Why?

You may already know how to answer some of these questions
from your calculus classes, but most likely these sorts of issues
were only of secondary importance to those courses; the emphasis
was on getting you to perform computations, such as computing
the integral of z sin(z2) from z = 0 to z = 1. But now that you
are comfortable with these objects and already know how to do all
the computations, we will go back to the theory and try to really
understand what is going on.
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1.2 Why do analysis?

It is a fair question to ask, “why bother?”, when it comes to
analysis. There is a certain philosophical satisfaction in know-
ing why things work, but a pragmatic person may argue that one
only needs to know how things work to do real-life problems. The
calculus training you receive in introductory classes is certainly
adequate for you to begin solving many problems in physics, chem-
istry, biology, economics, computer science, finance, engineering,
or whatever else you end up doing - and you can certainly use
things like the chain rule, L’Hopital’s rule, or integration by parts
without knowing why these rules work, or whether there are any
exceptions to these rules. However, one can get into trouble if one
applies rules without knowing where they came from and what
the limits of their applicability are. Let me give some examples
in which several of these familiar rules, if applied blindly without
knowledge of the underlying analysis, can lead to disaster.

Example 1.2.1 (Division by zero). This is a very familiar one
to you: the cancellation law ac = bc => a = b does not work
when ¢ = 0. For instance, the identity 1 x 0 = 2 x 0 is true, but
if one blindly cancels the 0 then one obtains 1 = 2, which is false.
In this case it was obvious that one was dividing by zero; but in
other cases it can be more hidden.

Example 1.2.2 (Divergent series). You have probably seen geo-
metric series such as the infinite sum

S=lts+i+=+—+
TS24 78 16 777
You have probably seen the following trick to sum this series: if
we call the above sum S, then if we multiply both sides by 2, we

obtain

1 1 1
23—2+1+§+Z+§+...—2+S

and hence S = 2, so the series sums to 2. However, if you apply
the same trick to the series

S=1+2+4+8+16+...
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one gets nonsensical results:
2§=24+4+8+416+...=5-1 = S=-1.

So the same reasoning that shows that 1 + % + % +...=2also
gives that 1+2+4+ 8 +... = —1. Why is it that we trust the
first equation but not the second? A similar example arises with
the series

S=1-1+1-141-1+..;

we can write
S=1-(1-1+1-14..)=1-8
and hence that S = 1/2; or instead we can write
S=1-1D)+1-1)+10-1)+...=040+...
and hence that S = 0; or instead we can write
S=1+(-1+1)+(-1+1)+...=14+0+0+...

and hence that S = 1. Which one is correct? (See Exercise 7.2.1
for an answer.)

Example 1.2.3 (Divergent sequences). Here is a slight variation
of the previous example. Let z be a real number, and let L be the
limit
L= lim z".
n—0o0

Changing variables n = m + 1, we have

L= lim z™'!'= lim zxz™=z lim z™
m+1—00 m+1—o00 m+1—00

But if m + 1 — oo, then m — oo, thus

lim z™ = lim 2™ = lim 2" =L,
m+1—o0 m—o0 n—oo

and thus
zL = L.
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At this point we could cancel the L’s and conclude that z = 1
for an arbitrary real number z, which is absurd. But since we are
already aware of the division by zero problem, we could be a little
smarter and conclude instead that either x = 1, or L = 0. In
particular we seem to have shown that

lim z" =0 for all z # 1.

n—oo

But this conclusion is absurd if we apply it to certain values of
z, for instance by specializing to the case z = 2 we could con-
clude that the sequence 1,2,4,8,... converges to zero, and by
specializing to the case z = —1 we conclude that the sequence
1,—-1,1,—1,... also converges to zero. These conclusions appear
to be absurd; what is the problem with the above argument? (See
Exercise 6.3.4 for an answer.)

Example 1.2.4 (Limiting values of functions). Start with the
expression lim;_,o sin(z), make the change of variable z =y + 7
and recall that sin(y + m) = —sin(y) to obtain

,,,lg& sin(z) = y_l}}rlgoo sin(y + ) = yll)ngo (—sin(y)) = — ylg& sin(y).
Since limg_, o0 sin(z) = limy_, sin(y) we thus have
zlgrg() sin(z) = —zll’ngo sin(z)
and hence
lim sin(z) = 0.
T—00

If we then make the change of variables z = 7/2 — z and recall
that sin(m/2 — 2) = cos(z) we conclude that

zlglolo cos(z) = 0.
Squaring both of these limits and adding we see that
Jim (sin?(z) + cos?(z)) = 0% + 0% = 0.

On the other hand, we have sin?(z) + cos?(x) = 1 for all z. Thus
we have shown that 1 = 0! What is the difficulty here?
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Example 1.2.5 (Interchanging sums). Consider the following
fact of arithmetic. Consider any matrix of numbers, e.g.

= e
oo Ot N
© W

and compute the sums of all the rows and the sums of all the
columns, and then total all the row sums and total all the column
sums. In both cases you will get the same number - the total sum
of all the entries in the matrix:

1 2 3 6
4 5 6 15
7 8 9 24
12 15 18 45

To put it another way, if you want to add all the entries in an
mXxn matrix together, it doesn’t matter whether you sum the rows
first or sum the columns first, you end up with the same answer.
(Before the invention of computers, accountants and book-keepers
would use this fact to guard against making errors when balancing
their books.) In series notation, this fact would be expressed as

i=1 j=1 j=1i=1

if a;; denoted the entry in the i** row and j%* column of the matrix.
Now one might think that this rule should extend easily to

infinite series:

[o <IN e o] [ <o o]

) I 9 3L

i=1 j=1 j=1i=1
Indeed, if you use infinite series a lot in your work, you will find
yourself having to switch summations like this fairly often. An-

other way of saying this fact is that in an infinite matrix, the
sum of the row-totals should equal the sum of the column-totals.



1.2. Why do analysis? 7

However, despite the reasonableness of this statement, it is actu-
ally false! Here is a counterexample:

1 0 0 O
-1 1 0 0
0 -1 1 0
0 0 -1 1
1

0 0 0 -

If you sum up all the rows, and then add up all the row totals,
you get 1; but if you sum up all the columns, and add up all the
column totals, you get 0! So, does this mean that summations
for infinite series should not be swapped, and that any argument
using such a swapping should be distrusted? (See Theorem 8.2.2
for an answer.)

Example 1.2.6 (Interchanging integrals). The interchanging of
integrals is a trick which occurs in mathematics just as commonly
as the interchanging of sums. Suppose one wants to compute the
volume under a surface z = f(z,y) (let us ignore the limits of
integration for the moment). One can do it by slicing parallel
to the z-axis: for each fixed value of y, we can compute an area
J f(z,y) dz, and then we integrate the area in the y variable to

obtain the volume
v [ [ f@)dody.

Or we could slice parallel to the y-axis for each fixed z and com-
pute an area [ f(z,y) dy, and then integrate in the z-axis to

obtain
V=//f(z,y)dyda:.

This seems to suggest that one should always be able to swap
integral signs:

/ / f(z,y) dedy = / / f(z,y) dydz.
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And indeed, people swap integral signs all the time, because some-
times one variable is easier to integrate in first than the other.
However, just as infinite sums sometimes cannot be swapped, in-
tegrals are also sometimes dangerous to swap. An example is with
the integrand e~*¥ —xye~*Y. Suppose we believe that we can swap
the integrals:

oo prl 1 poo
/ / (e™ —zye ™) dy dz = / / (e™¥ — zye™™) dzx dy.
o Jo o Jo

Since
/ (6 w —a:ye zy) dy ye zyly—O —w)

the left-hand side is f;° e~ dz = —e~®|3° = 1. But since
oo
/0 (™ — zye™™) dz = ze ™Y|T=3° = 0,

the right-hand side is fol 0 dz = 0. Clearly 1 # 0, so there is an
error somewhere; but you won’t find one anywhere except in the
step where we interchanged the integrals. So how do we know
when to trust the interchange of integrals? (See Theorem 19.5.1
for a partial answer.)

Example 1.2.7 (Interchanging limits). Suppose we start with
the plausible looking statement

2 2

lim lim — = lim lm—;v— (1.1)
z—0y—0 +y y—»O:z:—»O.’ZI +y

But we have )

lim i .
y—0z2+y2 72402
so the left-hand side of (1.1) is 1; on the other hand, we have

) 2 02
i‘l}})wz_'_yz BT
so the right-hand side of (1.1) is 0. Since 1 is clearly not equal
to zero, this suggests that interchange of limits is untrustworthy.

But are there any other circumstances in which the interchange
of limits is legitimate? (See Exercise 13.2.9 for a partial answer.)

=1,

=0,



1.2. Why do analysis? 0

Example 1.2.8 (Interchanging limits, again). Consider the plau-
sible looking statement
lim lim 2" = lim lim z"
T—1— n—00 n—00 g—1—

where the notation £ — 1~ means that z is approaching 1 from
the left. When z is to the left of 1, then lim,,_,o, " = 0, and hence
the left-hand side is zero. But we also have lim,_,;- 2" = 1 for
all n, and so the right-hand side limit is 1. Does this demonstrate

that this type of limit interchange is always untrustworthy? (See
Proposition 14.3.3 for an answer.)

Example 1.2.9 (Interchanging limits and integrals). For any real
number y, we have

/oo ! dz = arctan(z — y)|52_, = T_ (—E) =.
o 1+ (z—y)? * 2 2
Taking limits as y — oo, we should obtain
0 1 o0 1
[om e = in ) rem T
But for every z, we have limy_, Wl—y)f = 0. So we seem to

have concluded that 0 = . What was the problem with the
above argument? Should one abandon the (very useful) technique
of interchanging limits and integrals? (See Theorem 14.6.1 for a
partial answer.)

Example 1.2.10 (Interchanging limits and derivatives). Observe
that if € > 0, then

d ( &\ _ 3PP +2%) -2t
dz \e2+z2) (€2 + 22)?

and in particular that

d z3 _
dr \ 2 + 22 |$.=0 =0
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Taking limits as € — 0, one might then expect that

d z° _
oo \01a2)l=0=0

But the right-hand side is a%m = 1. Does this mean that it is
always illegitimate to interchange limits and derivatives? (See
Theorem 14.7.1 for an answer.)

Example 1.2.11 (Intercha,ngmg derivatives). Let! f(z,y) be the

function f(z,y) := —;—y—; A common maneuvre in analysis is to
interchange two part1al derivatives, thus one expects

0% f 32 f
377 0.0) = 52-(0,0).
But from the quotient rule we have
2 2a:y4
_( ) = a:2 T yz T (@ + 422
and in particular
of 0 0
a—y(w,O) = 2 -2 =0.
Thus o
5e(0,0) =0

On the other hand, from the quotient rule again we have

of OF (g,y) = v B 272y3
0z Y T 2 T2 T (@2 y2)2
and hence af 0
Yow=5-%=u

y4
1One might object that this function is not defined at (z,y) = (0,0), but
if we set f(0,0) := (0,0) then this function becomes continuous and differ-

entiable for all (z,y), and in fact both partial derivatives 55, 51 are also
continuous and differentiable for all (z,y)!
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Thus 62f
(0 0)=1.

Since 1 # 0, we thus seem to have shown that interchange of deriv-

atives is untrustworthy. But are there any other circumstances in

which the interchange of derivatives is legitimate? (See Theorem

17.5.4 and Exercise 17.5.1 for some answers.)

Example 1.2.12 (L’Hopital’s rule). We are all familiar with the
beautifully simple L’Hépital’s rule
!/
@ f@

2 @) o g(a)’

but one can still get led to incorrect conclusions if one applies it
incorrectly. For instance, applying it to f(z) := z, g(z) :=1 + =z,
and zo := 0 we would obtain

. .1
il_l’% 14z - :}:—»0 I 1,
but this is the incorrect answer, since limg, .o ﬁ = % = 0.
Of course, all that is going on here is that L’Hopital’s rule is
only applicable when both f(z) and g(z) go to zero as z — zo,
a condition which was violated in the above example. But even
when f(z) and g(z) do go to zero as £ — xo there is still a
possibility for an incorrect conclusion. For instance, consider the
limit o . s _4

lim & sin(z )

z—0 z
Both numerator and denominator go to zero as z — 0, so it seems
pretty safe to apply L'Hopital’s rule, to obtain

2 i (o —4 (=4 _ 43 -4
lim & sin(z™*%) ~ lim 2z sin(z™*%) — 4z7° cos(z™*)
z—0 z z—0 1
= lim 2z sin(z™4) — lim 4273 cos(z ™).
z—0 z—0

The first limit converges to zero by the squeeze test (since the func-
tion 2z sin(z~4) is bounded above by 2|z| and below by —2|z|,
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both of which go to zero at 0). But the second limit is di-
vergent (because =3 goes to infinity as £ — 0, and cos(z™%)
does not go to zero). So the limit lim; .o 2z sin(z—4)- 4’”_2 cos(z”%)
diverges. One might then conclude using L’Hopltal’s rule that
lim,_,o %—)— also diverges; however we can clearly rewrite this
limit as lim,_,o z sin(z~4), which goes to zero when z — 0 by the
squeeze test again. This does not show that L’Hopital’s rule is un-
trustworthy (indeed, it is quite rigourous; see Section 10.5), but
it still requires some care when applied.

Example 1.2.13 (Limits and lengths). When you learn about
integration and how it relates to the area under a curve, you were
probably presented with some picture in which the area under the
curve was approximated by a bunch of rectangles, whose area was
given by a Riemann sum, and then one somehow “took limits” to
replace that Riemann sum with an integral, which then presum-
ably matched the actual area under the curve. Perhaps a little
later, you learnt how to compute the length of a curve by a simi-
lar method - approximate the curve by a bunch of line segments,
compute the length of all the line segments, then take limits again
to see what you get.

However, it should come as no surprise by now that this ap-
proach also can lead to nonsense if used incorrectly. Consider
the right-angled triangle with vertices (0, 0), (1,0), and (0,1), and
suppose we wanted to compute the length of the hypotenuse of
this triangle. Pythagoras’ theorem tells us that this hypotenuse
has length v/2, but suppose for some reason that we did not know
about Pythagoras’ theorem, and wanted to compute the length
using calculus methods. Well, one way to do so is to approximate
the hypotenuse by horizontal and vertical edges. Pick a large
number N, and approximate the hypotenuse by a “staircase” con-
sisting of IV horizontal edges of equal length, alternating with vV
vertical edges of equal length. Clearly these edges all have length
1/N, so the total length of the staircase is 2N/N = 2. If one takes
limits as N goes to infinity, the staircase clearly approaches the
hypotenuse, and so in the limit we should get the length of the
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hypotenuse. However, as N — oo, the limit of 2N/N is 2, not V2,
so we have an incorrect value for the length of the hypotenuse.
How did this happen?

The analysis you learn in this text will help you resolve these
questions, and will let you know when these rules (and others)
are justified, and when they are illegal, thus separating the use-
ful applications of these rules from the nonsense. Thus they can
prevent you from making mistakes, and can help you place these
rules in a wider context. Moreover, as you learn analysis you
will develop an “analytical way of thinking”, which will help you
whenever you come into contact with any new rules of mathemat-
ics, or when dealing with situations which are not quite covered
by the standard rules, For instance, what if your functions are
complex-valued instead of real-valued? What if you are working
on the sphere instead of the plane? What if your functions are
not continuous, but are instead things like square waves and delta
functions? What if your functions, or limits of integration, or lim-
its of summation, are occasionally infinite? You will develop a
sense of why a rule in mathematics (e.g., the chain rule) works,
how to adapt it to new situations, and what its limitations (if any)
are; this will allow you to apply the mathematics you have already
learnt more confidently and correctly.



Chapter 2

Starting at the beginning: the natural
numbers

In this text, we will review the material you have learnt in high
school and in elementary calculus classes, but as rigourously as
possible. To do so we will have to begin at the very basics -
indeed, we will go back to the concept of numbers and what their
properties are. Of course, you have dealt with numbers for over
ten years and you know how to manipulate the rules of algebra
to simplify any expression involving numbers, but we will now
turn to a more fundamental issue, which is: why do the rules of
algebra work at all? For instance, why is it true that a(b + ¢)
is equal to ab + ac for any three numbers a,b,c? This is not an
arbitrary choice of rule; it can be proven from more primitive,
and more fundamental, properties of the number system. This
will teach you a new skill - how to prove complicated properties
from simpler ones. You will find that even though a statement
may be “obvious”, it may not be easy to prove; the material here
will give you plenty of practice in doing so, and in the process
will lead you to think about why an obvious statement really is
obvious. One skill in particular that you will pick up here is the
use of mathematical induction, which is a basic tool in proving
things in many areas of mathematics.

So in the first few chapters we will re-acquaint you with various
number systems that are used in real analysis. In increasing order
of sophistication, they are the natural numbers N; the integers Z;
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the rationals Q, and the real numbers R. (There are other number
systems such as the complez numbers C, but we will not study
them until Section 15.6.) The natural numbers {0,1,2,...} are
the most primitive of the number systems, but they are used to
build the integers, which in turn are used to build the rationals.
Furthermore, the rationals are used to build the real numbers,
which are in turn used to build the complex numbers. Thus to
begin at the very beginning, we must look at the natural numbers.
We will consider the following question: how does one actually
define the natural numbers? (This is a very different question
from how to use the natural numbers, which is something you of
course know how to do very well. It’s like the difference between
knowing how to use, say, a computer, versus knowing how to build
that computer.) ‘

This question is more difficult to answer than it looks. The ba-
sic problem is that you have used the natural numbers for so long
that they are embedded deeply into your mathematical thinking,
and you can make various implicit assumptions about these num-
bers (e.g., that a + b is always equal to b+ a) without even aware
that you are doing so; it is difficult to let go and try to inspect
this number system as if it is the first time you have seen it. So
in what follows I will have to ask you to perform a rather difficult
task: try to set aside, for the moment, everything you know about
the natural numbers; forget that you know how to count, to add,
to multiply, to manipulate the rules of algebra, etc. We will try to
introduce these concepts one at a time and identify explicitly what
our assumptions are as we go along - and not allow ourselves to use
more “advanced” tricks such as the rules of algebra until we have
actually proven them. This may seem like an irritating constraint,
especially as we will spend a lot of time proving statements which
are “obvious”, but it is necessary to do this suspension of known
facts to avoid circularity (e.g., using an advanced fact to prove a
more elementary fact, and then later using the elementary fact to
prove the advanced fact). Also, this exercise will be an excellent
way to affirm the foundations of your mathematical knowledge.
Furthermore, practicing your proofs and abstract thinking here
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will be invaluable when we move on to more advanced concepts,
such as real numbers, functions, sequences and series, differen-
tials and integrals, and so forth. In short, the results here may
seem trivial, but the journey is much more important than the
destination, for now. (Once the number systems are constructed
properly, we can resume using the laws of algebra etc. without
having to rederive them each time.)

We will also forget that we know the decimal system, which
of course is an extremely convenient way to manipulate numbers,
but it is not something which is fundamental to what numbers are.
(For instance, one could use an octal or binary system instead of
the decimal system, or even the Roman numeral system, and still
get exactly the same set of numbers.) Besides, if one tries to fully
explain what the decimal number system is, it isn’t as natural
as you might think. Why is 00423 the same number as 423, but
32400 isn’t the same number as 3247 Why is 123.4444... a real
number, while ...444.321 is not? And why do we have to carry
of digits when adding or multiplying? Why is 0.999... the same
number as 17 What is the smallest positive real number? Isn’t it
just 0.00...0017 So to set aside these problems, we will not try
to assume any knowledge of the decimal system, though we will
of course still refer to numbers by their familiar names such as
1,2,3, etc. instead of using other notation such as LILIII or 0++,
(0++)++, ((0++)++)++ (see below) so as not to be needlessly
artificial. For completeness, we review the decimal system in an
Appendix (§B).

2.1 The Peano axioms

We now present one standard way to define the natural num-
bers, in terms of the Peano azioms, which were first laid out by
Guiseppe Peano (1858-1932). This is not the only way to define
the natural numbers. For instance, another approach is to talk
about the cardinality of finite sets, for instance one could take a
set of five elements and define 5 to be the number of elements in
that set. We shall discuss this alternate approach in Section 3.6.
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However, we shall stick with the Peano axiomatic approach for
now.

How are we to define what the natural numbers are? Infor-
mally, we could say

Definition 2.1.1. (Informal) A natural number is any element of

the set
N:={0,1,2,3,4,...},

which is the set of all the numbers created by starting with 0 and
then counting forward indefinitely. We call N the set of natural
numbers.

Remark 2.1.2. In some texts the natural numbers start at 1 in-
stead of 0, but this is a matter of notational convention more than
anything else. In this text we shall refer to the set {1,2,3,...} as
the positive integers Z* rather than the natural numbers. Natural
numbers are sometimes also known as whole numbers.

In a sense, this definition solves the problem of what the nat-
ural numbers are: a natural number is any element of the set!
N. However, it is not really that satisfactory, because it begs the
question of what N is. This definition of “start at 0 and count
indefinitely” seems like an intuitive enough definition of N, but it
is not entirely acceptable, because it leaves many questions unan-
swered. For instance: how do we know we can keep counting
indefinitely, without cycling back to 07 Also, how do you perform
operations such as addition, multiplication, or exponentiation?

We can answer the latter question first: we can define compli-
cated operations in terms of simpler operations. Exponentiation
is nothing more than repeated multiplication: 53 is nothing more
than three fives multiplied together. Multiplication is nothing
more than repeated addition; 5 x 3 is nothing more than three
fives added together. (Subtraction and division will not be cov-
ered here, because they are not operations which are well-suited

1Strictly speaking, there is another problem with this informal definition:
we have not yet defined what a “set” is, or what “element of” is. Thus for the
rest of this chapter we shall avoid mention of sets and their elements as much
as possible, except in informal discussion.
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to the natural numbers; they will have to wait for the integers
and rationals, respectively.) And addition? It is nothing more
than the repeated operation of counting forward, or increment-
ing. If you add three to five, what you are doing is incrementing
five three times. On the other hand, incrementing seems to be
a fundamental operation, not reducible to any simpler operation;
indeed, it is the first operation one learns on numbers, even before
learning to add.

Thus, to define the natural numbers, we will use two funda-
mental concepts: the zero number 0, and the increment operation.
In deference to modern computer languages, we will use n++ to
denote the increment or successor of n, thus for instance 3++ = 4,
(3++)++ = 5, etc. This is a slightly different usage from that in
computer languages such as C, where n++ actually redefines the
value of n to be its successor; however in mathematics we try not
to define a variable more than once in any given setting, as it can
often lead to confusion; many of the statements which were true
for the old value of the variable can now become false, and vice
versa.

So, it seems like we want to say that N consists of 0 and
everything which can be obtained from 0 by incrementing: N
should consist of the objects

0,0+, (04++)++, ((04++)++)++, ete.

If we start writing down what this means about the natural num-
bers, we thus see that we should have the following axioms con-
cerning 0 and the increment operation ++:

Axiom 2.1. 0 is a natural number.

Axiom 2.2. Ifn is a natural number, then n4+ is also a natural
number.

Thus for instance, from Axiom 2.1 and two applications of
Axiom 2.2, we see that (0++)++ is a natural number. Of course,
this notation will begin to get unwieldy, so we adopt a convention
to write these numbers in more familiar notation:
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Definition 2.1.3. We define 1 to be the number 0++, 2 to be
the number (0++)++, 3 to be the number ((04++)++)++, ete. (In
other words, 1 := 0++, 2 := 144, 3 := 24+, etc. In this text I
use “z := y” to denote the statement that z is defined to equal y.)

Thus for instance, we have
Proposition 2.1.4. 3 is a natural number.

Proof. By Axiom 2.1, 0 is a natural number. By Axiom 2.2,
04++ = 1 is a natural number. By Axiom 2.2 again, 14++ = 2
is a natural number. By Axiom 2.2 again, 24+ = 3 is a natural
number. d

It may seem that this is enough to describe the natural num-
bers. However, we have not pinned down completely the behavior
of N:

Example 2.1.5. Consider a number system which consists of the
numbers 0,1,2,3, in which the increment operation wraps back
from 3 to 0. More precisely 0++ is equal to 1, 14++ is equal to 2,
2++ is equal to 3, but 3++ is equal to 0 (and also equal to 4, by
definition of 4). This type of thing actually happens in real life,
when one uses a computer to try to store a natural number: if one
starts at 0 and performs the increment operation repeatedly, even-
tually the computer will overflow its memory and the number will
wrap around back to 0 (though this may take quite a large number
of incrementation operations, for instance a two-byte representa-
tion of an integer will wrap around only after 65,536 increments).
Note that this type of number system obeys Axiom 2.1 and Ax-
iom 2.2, even though it clearly does not correspond to what we
intuitively believe the natural numbers to be like.

To prevent this sort of “wrap-around issue” we will impose
another axiom:

Axiom 2.3. 0 is not the successor of any natural number; i.e.,
we have n++ # 0 for every natural number n.
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Now we can show that certain types of wrap-around do not
occur: for instance we can now rule out the type of behavior in
Example 2.1.5 using

Proposition 2.1.6. 4 is not equal to 0.

Don’t laugh! Because of the way we have defined 4 - it is
the increment of the increment of the increment of the increment
of 0 - it is not necessarily true a priori that this number is not
the same as zero, even if it is “obvious”. (“a priori” is Latin for
“beforehand” - it refers to what one already knows or assumes
to be true before one begins a proof or argument. The opposite
is “a posteriori” - what one knows to be true after the proof or
argument is concluded.) Note for instance that in Example 2.1.5,
4 was indeed equal to 0, and that in a standard two-byte computer
representation of a natural number, for instance, 65536 is equal to
0 (using our definition of 65536 as equal to 0 incremented sixty-five
thousand, five hundred and thirty-six times).

Proof. By definition, 4 = 3++. By Axioms 2.1 and 2.2, 3 is a
natural number. Thus by Axiom 2.3, 3++ # 0, i.e., 4 # 0. O

However, even with our new axiom, it is still possible that our
number system behaves in other pathological ways:

Example 2.1.7. Consider a number system consisting of five
numbers 0,1,2,3,4, in which the increment operation hits a “ceil-
ing” at 4. More precisely, suppose that 04+ = 1, 144 = 2,
2++ = 3, 3++ = 4, but 4++ = 4 (or in other words that 5 = 4,
and hence 6 = 4, 7 = 4, etc.). This does not contradict Ax-
ioms 2.1,2.2,2.3. Another number system with a similar problem
is one in which incrementation wraps around, but not to zero, e.g.
suppose that 44+ = 1 (so that 5 =1, then 6 = 2, etc.).

There are many ways to prohibit the above types of behavior
from happening, but one of the simplest is to assume the following
axiom:
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Axiom 2.4. Different natural numbers must have different suc-
cessors; i.e., if n, m are natural numbers and n # m, then n++ #
m-+. Equivalently?, if n++ = m++, then we must have n = m.

Thus, for instance, we have
Proposition 2.1.8. 6 is not equal to 2.

Proof. Suppose for sake of contradiction that 6 = 2. Then 54+ =
14+, so by Axiom 2.4 we have 5 = 1, so that 44+ = 0++. By Ax-
iom 2.4 again we then have 4 = 0, which contradicts our previous
proposition. O

As one can see from this proposition, it now looks like we can
keep all of the natural numbers distinct from each other. There
is however still one more problem: while the axioms (particularly
Axioms 2.1 and 2.2) allow us to confirm that 0,1,2,3,... are dis-
tinct elements of N, there is the problem that there may be other
“rogue” elements in our number system which are not of this form:

Example 2.1.9. (Informal) Suppose that our number system N
consisted of the following collection of integers and half-integers:

N :={0,0.5,1,15,2,2.5,3,3.5,...}.

(This example is marked “informal” since we are using real num-
bers, which we’re not supposed to use yet.) One can check that
Axioms 2.1-2.4 are still satisfied for this set.

What we want is some axiom which says that the only numbers
in N are those which can be obtained from 0 and the increment
operation - in order to exclude elements such as 0.5. But it is
difficult to quantify what we mean by “can be obtained from”
without already using the natural numbers, which we are trying
to define. Fortunately, there is an ingenious solution to try to
capture this fact:

2This is an example of reformulating an implication using its contrapositive;
see Section A.2 for more details.
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Axiom 2.5 (Principle of mathematical induction). Let P(n) be
any property pertaining to a natural number n. Suppose that P(0)
is true, and suppose that whenever P(n) is true, P(n++) is also
true. Then P(n) is true for every natural number n.

Remark 2.1.10. We are a little vague on what “property” means
at this point, but some possible examples of P(n) might be “n
is even”; “n is equal to 3”; “n solves the equation (n + 1) =
n? 4+ 2n + 17; and so forth. Of course we haven’t defined many of
these concepts yet, but when we do, Axiom 2.5 will apply to these
properties. (A logical remark: Because this axiom refers not just
to variables, but also properties, it is of a different nature than
the other four axioms; indeed, Axiom 2.5 should technically be
called an aziom schema rather than an aziom - it is a template
for producing an (infinite) number of axioms, rather than being a
single axiom in its own right. To discuss this distinction further
is far beyond the scope of this text, though, and falls in the realm
of logic.)

The informal intuition behind this axiom is the following. Sup-
pose P(n) is such that P(0) is true, and such that whenever
P(n) is true, then P(n++) is true. Then since P(0) is true,
P(0++) = P(1) is true. Since P(1) is true, P(1++) = P(2) is
true. Repeating this indefinitely, we see that P(0), P(1), P(2),
P(3), etc. are all true - however this line of reasoning will never
let us conclude that P(0.5), for instance, is true. Thus Axiom
2.5 should not hold for number systems which contain “unneces-
sary” elements such as 0.5. (Indeed, one can give a “proof” of this
fact. Apply Axiom 2.5 to the property P(n) = n “is not a half-
integer”, i.e., an integer plus 0.5. Then P(0) is true, and if P(n)
is true, then P(n++) is true. Thus Axiom 2.5 asserts that P(n)
is true for all natural numbers n, i.e., no natural number can be a
half-integer. In particular, 0.5 cannot be a natural number. This
“proof” is not quite genuine, because we have not defined such
notions as “integer”, “half-integer”, and “0.5” yet, but it should
give you some idea as to how the principle of induction is supposed
to prohibit any numbers other than the “true” natural numbers
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from appearing in N.)

The principle of induction gives us a way to prove that a prop-
erty P(n) is true for every natural number n. Thus in the rest of
this text we will see many proofs which have a form like this:

Proposition 2.1.11. A certain property P(n) is true for every
natural number n.

Proof. We use induction. We first verify the base case n = 0,
i.e., we prove P(0). (Insert proof of P(0) here). Now suppose
inductively that n is a natural number, and P(n) has already
been proven. We now prove P(n++). (Insert proof of P(n++),
assuming that P(n) is true, here). This closes the induction, and
thus P(n).is true for all numbers n. a

Of course we will not necessarily use the exact template, word-
ing, or order in the above type of proof, but the proofs using induc-
tion will generally be something like the above form. There are
also some other variants of induction which we shall encounter
later, such as backwards induction (Exercise 2.2.6), strong in-
duction (Proposition 2.2.14), and transfinite induction (Lemma
8.5.15).

Axioms 2.1-2.5 are known as the Peano azioms for the natural
numbers. They are all very plausible, and so we shall make

Assumption 2.6. (Informal) There erists a number system N,
whose elements we will call natural numbers, for which Azioms
2.1-2.5 are true.

We will make this assumption a bit more precise once we have
laid down our notation for sets and functions in the next chapter.

Remark 2.1.12. We will refer to this number system N as the
natural number system. One could of course consider the possi-
bility that there is more than one natural number system, e.g., we
could have the Hindu-Arabic number system {0,1,2,3,...} and
the Roman number system {O,I,II,II11,IV,V,VI,...}, and if
we really wanted to be annoying we could view these number sys-
tems as different. But these number systems are clearly equivalent
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(the technical term is isomorphic), because one can create a one-
to-one correspondence 0 « O, 1 <« I, 2 & II, etc. which maps
the zero of the Hindu-Arabic system with the zero of the Roman
system, and which is preserved by the increment operation (e.g.,
if 2 corresponds to II, then 24+ will correspond to II+4+). For
a more precise statement of this type of equivalence, see Exer-
cise 3.5.13. Since all versions of the natural number system are
equivalent, there is no point in having distinct natural number
systems, and we will just use a single natural number system to
do mathematics.

We will not prove Assumption 2.6 (though we will eventually
include it in our axioms for set theory, see Axiom 3.7), and it will
be the only assumption we will ever make about our numbers.
A remarkable accomplishment of modern analysis is that just by
starting from these five very primitive axioms, and some additional
axioms from set theory, we can build all the other number systems,
create functions, and do all the algebra and calculus that we are
used to.

Remark 2.1.13. (Informal) One interesting feature about the
natural numbers is that while each individual natural number is
finite, the set of natural numbers is infinite; i.e., N is infinite
but consists of individually finite elements. (The whole is greater
than any of its parts.) There are no infinite natural numbers; one
can even prove this using Axiom 2.5, provided one is comfortable
with the notions of finite and infinite. (Clearly 0 is finite. Also,
if n is finite, then clearly n++ is also finite. Hence by Axiom
2.5, all natural numbers are finite.) So the natural numbers can
approach infinity, but never actually reach it; infinity is not one
of the natural numbers. (There are other number systems which
admit “infinite” numbers, such as the cardinals, ordinals, and p-
adics, but they do not obey the principle of induction, and in any
event are beyond the scope of this text.)

Remark 2.1.14. Note that our definition of the natural num-
bers is aziomatic rather than constructive. We have not told you
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what the natural numbers are (so we do not address such ques-
tions as what the numbers are made of, are they physical objects,
what do they measure, etc.) - we have only listed some things
you can do with them (in fact, the only operation we have defined
on them right now is the increment one) and some of the prop-
erties that they have. This is how mathematics works - it treats
its objects abstractly, caring only about what properties the ob-
jects have, not what the objects are or what they mean. If one
wants to do mathematics, it does not matter whether a natural
number means a certain arrangement of beads on an abacus, or
a certain organization of bits in a computer’s memory, or some
more abstract concept with no physical substance; as long as you
can increment them, see if two of them are equal, and later on do
other arithmetic operations such as add and multiply, they qual-
ify as numbers for mathematical purposes (provided they obey the
requisite axioms, of course). It is possible to construct the natural
numbers from other mathematical objects - from sets, for instance
- but there are multiple ways to construct a working model of the
natural numbers, and it is pointless, at least from a mathemati-
cian’s standpoint, as to argue about which model is the “true” one
- as long as it obeys all the axioms and does all the right things,
that’s good enough to do maths.

Remark 2.1.15. Historically, the realization that numbers could
be treated axiomatically is very recent, not much more than a
hundred years old. Before then, numbers were generally under-
stood to be inextricably connected to some external concept, such
as counting the cardinality of a set, measuring the length of a
line segment, or the mass of a physical object, etc. This worked
reasonably well, until one was forced to move from one number
system to another; for instance, understanding numbers in terms
of counting beads, for instance, is great for conceptualizing the
numbers 3 and 5, but doesn’t work so well for —3 or 1/3 or v/2 or
3+4i; thus each great advance in the theory of numbers - negative
numbers, irrational numbers, complex numbers, even the number
zero - led to a lot of unnecessary philosophical anguish. The great
discovery of the late nineteenth century was that numbers can be
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understood abstractly via axioms, without necessarily needing a
concrete model; of course a mathematician can use any of these
models when it is convenient, to aid his or her intuition and un-
derstanding, but they can also be just as easily discarded when
they begin to get in the way.

One consequence of the axioms is that we can now define se-
quences recursively. Suppose we want to build a sequence ap, a1,
asg, ... of numbers by first defining ap to be some base value, e.g.,
ap := c for some number ¢, and then by letting a; be some func-
tion of ag, a; := fo(ao), az be some function of a1, a2 := fi(ay),
and so forth. In general, we set an4t := fn(an) for some func-
tion f, from N to N. By using all the axioms together we will
now conclude that this procedure will give a single value to the
sequence element a,, for each natural number n. More precisely®:

Proposition 2.1.16 (Recursive definitions). Suppose for each
natural number n, we have some function f, : N — N from
the natural numbers to the natural numbers. Let c be a natural
number. Then we can assign a unique natural number a, to each
natural number n, such that ag = ¢ and an++ = fn(an) for each
natural number n.

Proof. (Informal) We use induction. We first observe that this
procedure gives a single value to ap, namely c. (None of the other
definitions an4++ = fn(an) will redefine the value of ag, because
of Axiom 2.3.) Now suppose inductively that the procedure gives
a single value to a,. Then it gives a single value to ap4+, namely
an++ = fn(an). (None of the other definitions amt = fm(am)
will redefine the value of an++, because of Axiom 2.4.) This com-
pletes the induction, and so a,, is defined for each natural number
n, with a single value assigned to each a,. a

3Strictly speaking, this proposition requires one to define the notion of
a function, which we shall do in the next chapter. However, this will not
be circular, as the concept of a function does not require the Peano axioms.
Proposition 2.1.16 can be formalized more rigourously in the language of set
theory; see Exercise 3.5.12.
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Note how all of the axioms had to be used here. In a system
which had some sort of wrap-around, recursive definitions would
not work because some elements of the sequence would constantly
be redefined. For instance, in Example 2.1.5, in which 3++ =0,
then there would be (at least) two conflicting definitions for ao,
either c or f3(az)). In a system which had superfluous elements
such as 0.5, the element ag s would never be defined.

Recursive definitions are very powerful; for instance, we can
use them to define addition and multiplication, to which we now
turn.

2.2 Addition

The natuial number system is very bare right now: we have only
one operation - increment - and a handful of axioms. But now we
can build up more complex operations, such as addition.

The way it works is the following. To add three to five should
be the same as incrementing five three times - this is one increment
more than adding two to five, which is one increment more than
adding one to five, which is one increment more than adding zero
to five, which should just give five. So we give a recursive definition
for addition as follows.

Definition 2.2.1 (Addition of natural numbers). Let m be a
natural number. To add zero to m, we define 0 + m := m. Now
suppose inductively that we have defined how to add n to m. Then
we can add n++ to m by defining (n4++) + m := (n + m)++.

Thus 0+ m is m, 1+ m = (0+) + m is m++; 2+ m =
(14++) +m = (m++)++; and so forth; for instance we have 243 =
(3++)++ = 4++ = 5. From our discussion of recursion in the
previous section we see that we have defined n + m for every
integer n. Here we are specializing the previous general discussion
to the setting where a, = n +m and fn(a,) = ap++. Note that
this definition is asymmetric: 3 4+ 5 is incrementing 5 three times,
while 5 + 3 is incrementing 3 five times. Of course, they both
yield the same value of 8. More generally, it is a fact (which we
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shall prove shortly) that a +b = b+ a for all natural numbers a, b,
although this is not immediately clear from the definition.

Notice that we can prove easily, using Axioms 2.1, 2.2, and
induction (Axiom 2.5), that the sum of two natural numbers is
again a natural number (why?).

Right now we only have two facts about addition: that 0+m =
m, and that (n++)+m = (n+m)++. Remarkably, this turns out
to be enough to deduce everything else we know about addition.

We begin with some basic lemmas?.

Lemma 2.2.2. For any natural number n, n+0 =n.

Note that we cannot deduce this immediately from 0+m =m
because we do not know yet that a + b= b+ a.

Proof. We use induction. The base case 0 + 0 = 0 follows since
we know that 0 +m = m for every natural number m, and 0
is a natural number. Now suppose inductively that n + 0 = n.
We wish to show that (n++) + 0 = n++. But by definition of
addition, (n++) + 0 is equal to (n + 0)++, which is equal to n++
since n + 0 = n. This closes the induction. a

Lemma 2.2.3. For any natural numbers n and m, n+ (m+4+) =
(n+ m)4++.

Again, we cannot deduce this yet from (n++)+m = (n+m)++
because we do not know yet that a + b= b+ a.

Proof. We induct on n (keeping m fixed). We first consider the
base case n = 0. In this case we have to prove 0 + (m++) = (0 +

“From a logical point of view, there is no difference between a lemma,
proposition, theorem, or corollary - they are all claims waiting to be proved.
However, we use these terms to suggest different leve]s of importance and
difficulty. A lemma is an easily proved claim which is helpful for proving
other propositions and theorems, but is usually not particularly interesting in
its own right. A proposition is a statement which is interesting in its own right,
while a theorem is a more important statement than a proposition which says
something definitive on the subject, and often takes more effort to prove than
a proposition or lemma. A corollary is a quick consequence of a proposition
or theorem that was proven recently.
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m)++. But by definition of addition, 0+ (m++) = m++ and 0+
m = m, so both sides are equal to m+4+ and are thus equal to each
other. Now we assume inductively that n + (m-++) = (n+m)++;
we now have to show that (n++)+ (m-++) = ((n++)+m)++. The
left-hand side is (n + (m++))++ by definition of addition, which
is equal to ((n+m)-++)++ by the inductive hypothesis. Similarly,
we have (n++)+m = (n+m)++ by the definition of addition, and
so the right-hand side is also equal to ((n+m)++)++. Thus both
sides are equal to each other, and we have closed the induction. O

As a particular corollary of Lemma 2.2.2 and Lemma 2.2.3 we
see that n-++ =n + 1 (why?).
As promised earlier, we can now prove that a+b=">+ a.

Proposition 2.2.4 (Addition is commutative). For any natural
numbersn and m, n+m=m+n.

Proof. We shall use induction on n (keeping m fixed). First we do
the base case n = 0, i.e., we show 0+m = m+0. By the definition
of addition, 0 + m = m, while by Lemma 2.2.2, m + 0 = m. Thus
the base case is done. Now suppose inductively that n+m = m+n,
now we have to prove that (n4++) +m = m + (n++) to close the
induction. By the definition of addition, (n++)+m = (n+m)++.
By Lemma, 2.2.3, m + (n++) = (m + n)-+, but this is equal to
(n + m)++ by the inductive hypothesis n + m = m +n. Thus
(n++) + m = m + (n++) and we have closed the induction. O

Proposition 2.2.5 (Addition is associative). For any natural
numbers a, b, c, we have (a +b) +c=a+ (b+c).

Proof. See Exercise 2.2.1. g

Because of this associativity we can write sums such as a+b+c
without having to worry about which order the numbers are being
added together.

Now we develop a cancellation law.

Proposition 2.2.6 (Cancellation law). Let a, b, ¢ be natural num-
bers such that a + b= a + c. Then we have b = c.
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Note that we cannot use subtraction or negative numbers yet
to prove this proposition, because we have not developed these
concepts yet. In fact, this cancellation law is crucial in letting
us define subtraction (and the integers) later on in these notes,
because it allows for a sort of “virtual subtraction” even before
subtraction is officially defined.

Proof. We prove this by induction on a. First consider the base
case a = 0. Then we have 0 + b = 0 + ¢, which by definition of
addition implies that b = c as desired. Now suppose inductively
that we have the cancellation law for a (so that a+b = a+c implies
b = c); we now have to prove the cancellation law for a++. In other
words, we assume that (a++) + b = (a++) + ¢ and need to show
that b = c. By the definition of addition, (a++) + b = (a + b)++
and (a++) +c¢ = (a+ ¢)++ and so we have (a+b)++ = (a+¢)++.
By Axiom 2.4, we have a + b = a + c. Since we already have the
cancellation law for a, we thus have b = ¢ as desired. This closes
the induction. a

We now discuss how addition interacts with positivity.

Definition 2.2.7 (Positive natural numbers). A natural number
n is said to be positive iff it is not equal to 0. (“iff” is shorthand
for “if and only if” - see Section A.1).

Proposition 2.2.8. If a is positive and b is a natural number,
then a + b is positive (and hence b + a 1is also, by Proposition
2.2.4).

Proof. We use inductionon b. If b =0,thena+b=a+0 =
a, which is positive, so this proves the base case. Now suppose
inductively that a + b is positive. Then a + (b++) = (a + b)++,
which cannot be zero by Axiom 2.3, and is hence positive. This
closes the induction. O

Corollary 2.2.9. If a and b are natural numbers such that a+b =
0, thena =0 and b= 0.
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Proof. Suppose for sake of contradiction that a # 0 or b # 0.
If a # 0 then a is positive, and hence a + b = 0 is positive by
Proposition 2.2.8, a contradiction. Similarly if b # 0 then b is
positive, and again a + b = 0 is positive by Proposition 2.2.8, a
contradiction. Thus a and b must both be zero. O

Lemma 2.2.10. Let a be a positive number. Then there exists
exactly one natural number b such that b++ = a.

Proof. See Exercise 2.2.2. O

Once we have a notion of addition, we can begin defining a
notion of order.

Definition 2.2.11 (Ordering of the natural numbers). Let n and
m be natural numbers. We say that n is greater than or equal to
m, and write n > m or m < n, iff we have n = m + a for some
natural number a. We say that n is strictly greater than m, and
write n > m or m < n, iff n > m and n # m.

Thus for instance 8 > 5, because 8 = 5+ 3 and 8 # 5. Also
note that n++ > n for any n; thus there is no largest natural
number n, because the next number n+4+ is always larger still.

Proposition 2.2.12 (Basic properties of order for natural num-
bers). Let a,b,c be natural numbers. Then

(a) (Order is reflexive) a > a.

(b) (Order is transitive) If a > b and b > c, then a > c.

(¢) (Order is anti-symmetric) Ifa > b and b > a, thena = b.
(d) (Addition preserves order) a > b if and only ifa+c > b+c.
(e) a < b if and only if a++ < b.

(f) a < b if and only if b = a + d for some positive number d.

Proof. See Exercise 2.2.3. a



32 2. The natural numbers

Proposition 2.2.13 (Trichotomy of order for natural numbers).
Let a and b be natural numbers. Then ezactly one of the following
statements is true: a < b, a =b, or a > b.

Proof. This is only a sketch of the proof; the gaps will be filled in
Exercise 2.2.4.

First we show that we cannot have more than one of the state-
ments a < b, a = b, a > b holding at the same time. If a < b
then a # b by definition, and if a > b then a # b by definition.
If a > b and @ < b then by Proposition 2.2.12 we have a = b, a
contradiction. Thus no more than one of the statements is true.

Now we show that at least one of the statements is true. We
keep b fixed and induct on a. When a = 0 we have 0 < b for
all b (why?), so we have either 0 = b or 0 < b, which proves the
base case. Now suppose we have proven the proposition for a, and
now we prove the proposition for a4+. From the trichotomy for
a, there are three cases: a < b, a = b, and a > b. If a > b, then
a++ > b (why?). If a = b, then a++ > b (why?). Now suppose
that a < b. Then by Proposition 2.2.12, we have a++ < b. Thus
either a++ = b or a4+ < b, and in either case we are done. This
closes the induction. 0O

The properties of order allow one to obtain a stronger version
of the principle of induction:

Proposition 2.2.14 (Strong principle of induction). Let mq be
a natural number, and Let P(m) be a property pertaining to an
arbitrary natural number m. Suppose that for each m > myg, we
have the following implication: if P(m') is true for all natural
numbers my < m’ < m, then P(m) is also true. (In particular,
this means that P(my) is true, since in this case the hypothesis is
vacuous.) Then we can conclude that P(m) is true for all natural
numbers m > my.

Remark 2.2.15. In applications we usually use this principle
with mg =0 or mg = 1.

Proof. See Exercise 2.2.5. O
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Ezercise 2.2.1. Prove Proposition 2.2.5. (Hint: fix two of the variables
and induct on the third.)

Ezercise 2.2.2. Prove Lemma 2.2.10. (Hint: use induction.)

Egzercise 2.2.3. Prove Proposition 2.2.12. (Hint: you will need many of
the preceding propositions, corollaries, and lemmas.)

Ezercise 2.2.4. Justify the three statements marked (why?) in the proof
of Proposition 2.2.13.

Ezercise 2.2.5. Prove Proposition 2.2.14. (Hint: define Q(n) to be the
property that P(m) is true for all m¢ < m < n; note that Q(n) is
vacuously true when n < myg.)

Egercise 2.2.6. Let n be a natural number, and let P(m) be a property
pertaining to the natural numbers such that whenever P(m-++) is true,
then P(m) is true. Suppose that P(n) is also true. Prove that P(m)
is true for all natural numbers m < n; this is known as the principle of
backwards induction. (Hint: apply induction to the variable n.)

2.3 Multiplication

In the previous section we have proven all the basic facts that we
know to be true about addition and order. To save space and
to avoid belaboring the obvious, we will now allow ourselves to
use all the rules of algebra concerning addition and order that we
are familiar with, without further comment. Thus for instance
we may write things like a + b+ ¢ = ¢ + b+ a without supplying
any further justification. Now we introduce multiplication. Just
as addition is the iterated increment operation, multiplication is
iterated addition:

Definition 2.3.1 (Multiplication of natural numbers). Let m be
a natural number. To multiply zero to m, we define 0 x m := 0.
Now suppose inductively that we have defined how to multiply n
to m. Then we can multiply n++ to m by defining (n4++) x m :=
(n x m) +m.

Thus for instance 0 xm =0, 1 xm = 04+m, 2xm = 0+m-+m,
etc. By induction one can easily verify that the product of two
natural numbers is a natural number.
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Lemma 2.3.2 (Multiplication is commutative). Let n,m be nat-
ural numbers. Thenn X m =m X n.

Proof. See Exercise 2.3.1. O

We will now abbreviate n x m as nm, and use the usual con-
vention that multiplication takes precedence over addition, thus
for instance ab + ¢ means (a X b) + ¢, not a x (b+ ¢). (We will
also use the usual notational conventions of precedence for the
other arithmetic operations when they are defined later, to save
on using parentheses all the time.)

Lemma 2.3.3 (Natural numbers have no zero divisors). Let n,m
be natural numbers. Then n x m = 0 if and only if at least one of
n,m is equal to zero. In particular, if n and m are both positive,
then nm 1is also positive.

Proof. See Exercise 2.3.2. O

Proposition 2.3.4 (Distributive law). For any natural numbers
a,b,c, we have a(b+ c) = ab+ ac and (b+ c)a = ba + ca.

Proof. Since multiplication is commutative we only need to show
the first identity a(b + ¢) = ab + ac. We keep a and b fixed,
and use induction on c. Let’s prove the base case ¢ = 0, i.e.,
a(b+ 0) = ab + a0. The left-hand side is ab, while the right-hand
side is ab+ 0 = ab, so we are done with the base case. Now let us
suppose inductively that a(b+ ¢) = ab+ ac, and let us prove that
a(b+ (c++)) = ab+a(c++). The left-hand side is a((b+c)++) =
a(b+c)+a, while the right-hand side is ab+ac+a = a(b+c)+a by
the induction hypothesis, and so we can close the induction. O

Proposition 2.3.5 (Multiplication is associative). For any nat-
ural numbers a, b, c, we have (a X b) x c=a X (b X c).

Proof. See Exercise 2.3.3. d

Proposition 2.3.6 (Multiplication preserves order). If a,b are
natural numbers, such that a < b, and c is positive, then ac < be.
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Proof. Since a < b, we have b = a + d for some positive d. Multi-
plying by c and using the distributive law we obtain bc = ac + dc.
Since d is positive, and c is positive, dc is positive, and hence
ac < bc as desired. O

Corollary 2.3.7 (Cancellation law). Let a, b, ¢ be natural numbers
such that ac = bc and c is non-zero. Then a = b.

Remark 2.3.8. Just as Proposition 2.2.6 will allow for a “vir-’
tual subtraction” which will eventually let us define genuine sub-
traction, this corollary provides a “virtual division” which will be
needed to define genuine division later on.

Proof. By.the trichotomy of order (Proposition 2.2.13), we have
three cases: a < b, a = b, a > b. Suppose first that a < b, then by
Proposition 2.3.6 we have ac < bc, a contradiction. We can obtain
a similar contradiction when a > b. Thus the only possibility is
that a = b, as desired. O

With these propositions it is easy to deduce all the familiar
rules of algebra involving addition and multiplication, see for in-
stance Exercise 2.3.4.

Now that we have the familiar operations of addition and mul-
tiplication, the more primitive notion of increment will begin to
fall by the wayside, and we will see it rarely from now on. In any
event we can always use addition to describe incrementation, since
nt+H=n+1.

Proposition 2.3.9 (Euclidean algorithm). Let n be a natural
number, and let q be a positive number. Then there exist natural
numbers m, r such that 0 <r < q andn=mq+r.

Remark 2.3.10. In other words, we can divide a natural number
n by a positive number ¢ to obtain a quotient m (which is another
natural number) and a remainder r (which is less than ¢). This
algorithm marks the beginning of number theory, which is a beau-
tiful and important subject but one which is beyond the scope of
this text.
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Proof. See Exercise 2.3.5. a

Just like one uses the increment operation to recursively define
addition, and addition to recursively define multiplication, one can
use multiplication to recursively define exponentiation:

Definition 2.3.11 (Exponentiation for natural numbers). Let m
be a natural number. To raise m to the power 0, we define m? :=
1. Now suppose recursively that m™ has been defined for some
natural number n, then we define m™t := m™ x m.

Examples 2.3.12. Thus for instance z! = 20 xz =1 x z = x;

2=z xz=2xz; 23 =22 Xz =z X z X z; and so forth. By
induction we see that this recursive definition defines z™ for all

natural numbers n.

We will not develop the theory of exponentiation too deeply
here, but instead wait until after we have defined the integers and
rational numbers; see in particular Proposition 4.3.10.

FExzercise 2.3.1. Prove Lemma 2.3.2. (Hint: modify the proofs of Lemmas
2.2.2, 2.2.3 and Proposition 2.2.4.)

Ezercise 2.3.2. Prove Lemma 2.3.3. (Hint: prove the second statement
first.)

Ezercise 2.3.3. Prove Proposition 2.3.5. (Hint: modify the proof of
Proposition 2.2.5 and use the distributive law.)

Ezercise 2.3.4. Prove the identity (a+b)? = a% + 2ab+ b? for all natural
numbers a, b.

FEzercise 2.3.5. Prove Proposition 2.3.9. (Hint: fix ¢ and induct on n.)



Chapter 3

Set theory

Modern analysis, like most of modern mathematics, is concerned
with numbers, sets, and geometry. We have already introduced
one type of number system, the natural numbers. We will intro-
duce the other number systems shortly, but for now we pause to
introduce the concepts and notation of set theory, as they will be
used increasingly heavily in later chapters. (We will not pursue a
rigourous description of Euclidean geometry in this text, prefer-
ring instead to describe that geometry in terms of the real number
system by means of the Cartesian co-ordinate system.)

While set theory is not the main focus of this text, almost
every other branch of mathematics relies on set theory as part of
its foundation, so it is important to get at least some grounding in
set theory before doing other advanced areas of mathematics. In
this chapter we present the more elementary aspects of axiomatic
set theory, leaving more advanced topics such as a discussion of
infinite sets and the axiom of choice to Chapter 8. A full treatment
of the finer subtleties of set theory (of which there are many!) is
unfortunately well beyond the scope of this text.

3.1 Fundamentals

In this section we shall set out some axioms for sets, just as we did
for the natural numbers. For pedagogical reasons, we will use a
somewhat overcomplete list of axioms for set theory, in the sense
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that some of the axioms can be used to deduce others, but there is
no real harm in doing this. We begin with an informal description
of what sets should be.

Definition 3.1.1. (Informal) We define a set A to be any un-
ordered collection of objects, e.g., {3,8,5,2} is a set. If z is
an object, we say that z is an element of A or z € A if z lies

in the collection; otherwise we say that x ¢ A. For instance,
3€{1,2,3,4,5} but 7 ¢ {1,2,3,4,5}.

This definition is intuitive enough, but it doesn’t answer a
number of questions, such as which collections of objects are con-
sidered to be sets, which sets are equal to other sets, and how one
defines operations on sets (e.g., unions, intersections, etc.). Also,
we have no axioms yet on what sets do, or what their elements
do. Obtaining these axioms and defining these operations will be
the purpose of the remainder of this section.

We first clarify one point: we consider sets themselves to be a
type of object.

Axiom 3.1 (Sets are objects). If A is a set, then A is also an
object. In particular, given two sets A and B, it is meaningful to
ask whether A is also an element of B.

Example 3.1.2. (Informal) The set {3, {3,4},4} is a set of three
distinct elements, one of which happens to itself be a set of two
elements. See Example 3.1.10 for a more formal version of this
example. However, not all objects are sets; for instance, we typ-
ically do not consider a natural number such as 3 to be a set.
(The more accurate statement is that natural numbers can be the
cardinalities of sets, rather than necessarily being sets themselves.
See Section 3.6.)

Remark 3.1.3. There is a special case of set theory, called “pure
set theory”, in which all objects are sets; for instance the number 0
might be identified with the empty set § = {}, the number 1 might
be identified with {0} = {{}}, the number 2 might be identified
with {0,1} = {{},{{}}}, and so forth. From a logical point of
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view, pure set theory is a simpler theory, since one only has to
deal with sets and not with objects; however, from a conceptual
point of view it is often easier to deal with impure set theories
in which some objects are not considered to be sets. The two
types of theories are more or less equivalent for the purposes of
doing mathematics, and so we shall take an agnostic position as
to whether all objects are sets or not.

To summarize so far, among all the objects studied in mathe-
matics, some of the objects happen to be sets; and if z is an object
and A is a set, then either z € A is true or z € A is false. (If A is
not a set, we leave the statement z € A undefined; for instance,
we consider the statement 3 € 4 to neither be true or false, but
simply meaningless, since 4 is not a set.)

Next, we define the notion of equality: when are two sets con-
sidered to be equal? We do not consider the order of the ele-
ments inside a set to be important; thus we think of {3,8,5,2}
and {2,3,5,8} as the same set. On the other hand, {3,8,5,2}
and {3,8,5,2,1} are different sets, because the latter set contains
an element that the former one does not, namely the element 1.
For similar reasons {3, 8, 5,2} and {3, 8,5} are different sets. We
formalize this as a definition:

Definition 3.1.4 (Equality of sets). Two sets A and B are equal,
A = B, iff every element of A is an element of B and vice versa.
To put it another way, A = B if and only if every element z of A
belongs also to B, and every element y of B belongs also to A.

Example 3.1.5. Thus, for instance, {1,2,3,4,5} and {3,4,2,1,5}
are the same set, since they contain exactly the same elements.
(The set {3,3,1,5,2,4,2} is also equal to {1,2,3,4,5}; the rep-
etition of 3 and 2 is irrelevant as it does not further change the
status of 2 and 3 being elements of the set.)

One can easily verify that this notion of equality is reflexive,
symmetric, and transitive (Exercise 3.1.1). Observe that if z € A
and A = B, then z € B, by Definition 3.1.4. Thus the “is an

element of” relation € obeys the axiom of substitution (see Section
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A.7). Because of this, any new operation we define on sets will
also obey the axiom of substitution, as long as we can define that
operation purely in terms of the relation €. This is for instance the
case for the remaining definitions in this section. (On the other
hand, we cannot use the notion of the “first” or “last” element
in a set in a well-defined manner, because this would not respect
the axiom of substitution; for instance the sets {1,2,3,4,5} and
{3,4,2,1,5} are the same set, but have different first elements.)

Next, we turn to the issue of exactly which objects are sets
and which objects are not. The situation is analogous to how we
defined the natural numbers in the previous chapter; we started
with a single natural number, 0, and started building more num-
bers out of 0 using the increment operation. We will try something
similar here, starting with a single set, the empty set, and building
more sets out of the empty set by various operations. We begin
by postulating the existence of the empty set.

Axiom 3.2 (Empty set). There ezists a set ), known as the empty
set, which contains no elements, i.e., for every object x we have

z 0.

The empty set is also denoted {}. Note that there can only
be one empty set; if there were two sets () and (' which were both
empty, then by Definition 3.1.4 they would be equal to each other
(why?).

If a set is not equal to the empty set, we call it non-empty. The
following statement is very simple, but worth stating nevertheless:

Lemma 3.1.6 (Single choice). Let A be a non-empty set. Then
there exists an object x such that x € A.

Proof. We prove by contradiction. Suppose there does not exist
any object = such that z € A. Then for all objects z, we have
z ¢ A. Also, by Axiom 3.2wehavez ¢ 0. Thusz € A <= z €0
(both statements are equally false), and so A = ) by Definition
3.1.4, a contradiction. ]

Remark 3.1.7. The above Lemma asserts that given any non-
empty set A, we are allowed to “choose” an element z of A which
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demonstrates this non-emptyness. Later on (in Lemma 3.5.12)
we will show that given any finite number of non-empty sets, say
Aj,.--,An, it is possible to choose one element z,...,z, from
each set Aj,..., Ap; this is known as “finite choice”. However, in
order to choose elements from an infinite number of sets, we need
an additional axiom, the aziom of choice, which we will discuss in
Section 8.4.

Remark 3.1.8. Note that the empty set is not the same thing
as the natural number 0. One is a set; the other is a number.
However, it is true that the cardinality of the empty set is 0; see
Section 3.6.

If Axiom 3.2 was the only axiom that set theory had, then set
theory could be quite boring, as there might be just a single set
in existence, the empty set. We now present further axioms to
enrich the class of sets available.

Axiom 3.3 (Singleton sets and pair sets). If a is an object, then
there exists a set {a} whose only element is a, i.e., for every object
y, we have y € {a} if and only if y = a; we refer to {a} as the
singleton set whose element is a. Furthermore, if a and b are
objects, then there ezists a set {a,b} whose only elements are a
and b; i.e., for every object y, we have y € {a,b} if and only if
y=a ory = b; we refer to this set as the pair set formed by a
and b.

Remarks 3.1.9. Just as there is only one empty set, there is
only one singleton set for each object a, thanks to Definition 3.1.4
(why?). Similarly, given any two objects a and b, there is only
one pair set formed by a and b. Also, Definition 3.1.4 also ensures
that {a,b} = {b,a} (why?) and {a,a} = {a} (why?). Thus the
singleton set axiom is in fact redundant, being a consequence of
the pair set axiom. Conversely, the pair set axiom will follow from
the singleton set axiom and the pairwise union axiom below (see
Lemma 3.1.13). One may wonder why we don’t go further and
create triplet axioms, quadruplet axioms, etc.; however there will
be no need for this once we introduce the pairwise union axiom
below.
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Examples 3.1.10. Since 0 is a set (and hence an object), so is
singleton set {0}, i.e., the set whose only element is 0, is a set
(and it is not the same set as 0, {0} # 0 (why?). Similarly, the
singleton set {{0}} and the pair set {0, {0}} are also sets. These
three sets are not equal to each other (Exercise 3.1.2).

As the above examples show, we can now create quite a few
sets; however, the sets we make are still fairly small (each set that
we can build consists of no more than two elements, so far). The
next axiom allows us to build somewhat larger sets than before.

Axiom 3.4 (Pairwise union). Given any two sets A, B, there
erists a set AU B, called the union AU B of A and B, whose
elements consists of all the elements which belong to A or B or
both. In other words, for any object z,

z€ AUB < (z€ Aorz€B).

Recall that “or” refers by default in mathematics to inclusive
or: “X or Y is true” means that “either X is true, or Y is true,
or both are true”. See Section A.l.

Example 3.1.11. The set {1,2}U{2, 3} consists of those elements
which either lie on {1,2} or in {2, 3} or in both, or in other words

the elements of this set are simply 1, 2, and 3. Because of this,
we denote this set as {1,2} U {2,3} = {1,2,3}.

Remark 3.1.12. If A, B, A’ are sets, and A is equal to A, then
AU B is equal to AU B (why? One needs to use Axiom 3.4 and
Definition 3.1.4). Similarly if B’ is a set which is equal to B, then
AU B is equal to AU B’. Thus the operation of union obeys the
axiom of substitution, and is thus well-defined on sets.

We now give some basic properties of unions.

Lemma 3.1.13. If a and b are objects, then {a,b} = {a} U {b}.
If A, B,C are sets, then the union operation is commutative (i.e.,
AUB = BUA) and associative (i.e., (AUB)UC = AU(BUCQ)).
Also, we have AUA=AUD=0UA = A.
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Proof. We prove just the associativity identity (AU B) U C =
AU(BUC), and leave the remaining claims to Exercise 3.1.3. By
Definition 3.1.4, we need to show that every element z of (AU B)U
C is an element of AU (B U C), and vice versa. So suppose first
that = is an element of (AU B) U C. By Axiom 3.4, this means
that at least one of z € AU B or z € C is true. We now divide
into two cases. If z € C, then by Axiom 3.4 again z € BUC, and
so by Axiom 3.4 again we have x € AU (B U C). Now suppose
instead £ € AU B, then by Axiom 3.4 again z € A or z € B.
If z € Athenz € AU (BUC) by Axiom 3.4, while if z € B
then by consecutive applications of Axiom 3.4 we have z € BUC
and hence £ € AU (BUC). Thus in all cases we see that every
element of (AU B)UC lies in AU (BUC). A similar argument
shows that every element of AU (BUC) lies in (AU B)UC, and
so (AUB)UC = AU (BUQC) as desired. O

Because of the above lemma, we do not need to use parentheses
to denote multiple unions, thus for instance we can write AUBUC
instead of (AUB)UC or AU(BUC). Similarly for unions of four
sets, AUBUC U D, etc.

Remark 3.1.14. While the operation of union has some simi-
larities with addition, the two operations are not identical. For
instance, {2} U {3} = {2,3} and 2 + 3 = 5, whereas {2} + {3} is
meaningless (addition pertains to numbers, not sets) and 2 U 3 is
also meaningless (union pertains to sets, not numbers).

This axiom allows us to define triplet sets, quadruplet sets, and
so forth: if a, b, c are three objects, we define {a, b, ¢} := {a}U{b}U
{c}; if a, b, ¢, d are four objects, then we define {a,b, c,d} := {a}U
{b}u{c}u{d}, and so forth. On the other hand, we are not yet in a
position to define sets consisting of n objects for any given natural
number n; this would require iterating the above construction
“n times”, but the concept of n-fold iteration has not yet been
rigourously defined. For similar reasons, we cannot yet define sets
consisting of infinitely many objects, because that would require
iterating the axiom of pairwise union infinitely often, and it is
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not clear at this stage that one can do this rigourously. Later on,
we will introduce other axioms of set theory which allow one to
construct arbitrarily large, and even infinite, sets.

Clearly, some sets seem to be larger than others. One way to
formalize this concept is through the notion of a subset.

Definition 3.1.15 (Subsets). Let A, B be sets. We say that A is
a subset of B, denoted A C B, iff every element of A is also an
element of B, i.e.

For any object z, z€ A — =z €B.

We say that A is a proper subset of B, denoted A C B,if AC B
and A # B.

Remark 3.1.16. Because these definitions involve only the no-
tions of equality and the “is an element of” relation, both of which
already obey the axiom of substitution, the notion of subset also
automatically obeys the axiom of substitution. Thus for instance
if AC Band A= A/, then A’ C B.

Examples 3.1.17. We have {1,2,4} C {1,2,3,4,5}, because
every element of {1,2,4} is also an element of {1,2,3,4,5}. In fact
we also have {1,2,4} C {1,2,3,4,5}, since the two sets {1,2,4}
and {1,2,3,4,5} are not equal. Given any set A, we always have
A C A (why?) and @ C A (why?).

The notion of subset in set theory is similar to the notion of
“less than or equal to” for numbers, as the following Proposition
demonstrates (for a more precise statement, see Definition 8.5.1):

Proposition 3.1.18 (Sets are partially ordered by set inclusion).
Let A,B,C be sets. f ACBand BCC then ACC. IfACB -
and B C A, then A = B. Finadlly, if A C B and B C C then
ACC.

Proof. We shall just prove the first claim. Suppose that A C B
and B C C. To prove that A C C, we have to prove that every
element of A is an element of C. So, let us pick an arbitrary
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element  of A. Then, since A C B, z must then be an element
of B. But then since B C C, z is an element of C. Thus every
element of A is indeed an element of C, as claimed. . a

Remark 3.1.19. There is a relationship between subsets and
unions: see for instance Exercise 3.1.7.

Remark 3.1.20. There is one important difference between the
subset relation C and the less than relation <. Given any two
distinct natural numbers n, m, we know that one of them is smaller
than the other (Proposition 2.2.13); however, given two distinct
sets, it is not in general true that one of them is a subset of the
other. For instance, take A := {2n : n € N} to be the set of even
natural numbers, and B := {2n+ 1 : n € N} to be the set of odd
natural numbers. Then neither set is a subset of the other. This
is why we say that sets are only partially ordered, whereas the
natural numbers are totally ordered (see Definitions 8.5.1, 8.5.3).

Remark 3.1.21. We should also caution that the subset relation
C is not the same as the element relation €. The number 2 is
an element of {1,2,3} but not a subset; thus 2 € {1,2,3}, but
2 ¢ {1,2,3}. Indeed, 2 is not even a set. Conversely, while {2}
is a subset of {1,2,3}, it is not an element; thus {2} C {1, 2,3}
but {2} & {1,2,3}. The point is that the number 2 and the set
{2} are distinct objects. It is important to distinguish sets from
their elements, as they can have different properties. For instance,
it is possible to have an infinite set consisting of finite numbers
(the set N of natural numbers is one such example), and it is also
possible to have a finite set consisting of infinite objects (consider
for instance the finite set {N, Z, Q, R}, which has four elements,
all of which are infinite).

We now give an axiom which easily allows us to create subsets
out of larger sets.

Axiom 3.5 (Axiom of specification). Let A be a set, and for each
T € A, let P(z) be a property pertaining to z (i.e., P(z) is either
a true statement or a false statement). Then there ezists a set,
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called {x € A : P(x) is true} (or simply {z € A : P(z)} for short),
whose elements are precisely the elements x in A for which P(z)
is true. In other words, for any object y,

y € {zx € A: P(z) is true} <> (y € A and P(y) is true).

This axiom is also known as the aziom of separation. Note that
{z € A: P(z) is true} is always a subset of A (why?), though it
could be as large as A or as small as the empty set. One can
verify that the axiom of substitution works for specification, thus
if A=A then {zx € A: P(z)} ={z € A’ : P(z)} (why?).

Example 3.1.22. Let S := {1,2,3,4,5}. Then theset {n€ S:
n < 4} is the set of those elements n in S for which n < 4 is true,
i.e., {n€S:n<4}={1,2,3}. Similarly, theset {n € S:n <7}
is the same as S itself, while {n € S : n < 1} is the empty set.

We sometimes write {z € A|P(a:)} instead of {x € A: P(z)};

this is useful when we are using the colon “:” to denote something
else, for instance to denote the range and domain of a function
f: X->Y).

We can use this axiom of specification to define some further
operations on sets, namely intersections and difference sets.

Definition 3.1.23 (Intersections). The intersection S; N Sz of
two sets is defined to be the set

5105'2:={1‘€5'1:$652}.

In other words, S; N Sz consists of all the elements which belong
to both S and S;. Thus, for all objects z,

z€SINSy < z€8S;and z €Y.

Remark 3.1.24. Note that this definition is well-defined (i.e., it
obeys the axiom of substitution, see Section A.7) because it is
defined in terms of more primitive operations which were already
known to obey the axiom of substitution. Similar remarks apply to
future definitions in this chapter and will usually not be mentioned
explicitly again.
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Examples 3.1.25. We have {1,2,4} N{2,3,4} = {2,4}, {1,2}n
{3,4} =0,{2,3}U0={2,3}, and {2,3} N0 =0.

Remark 3.1.26. By the way, one should be careful with the
English word “and”: rather confusingly, it can mean either union
or intersection, depending on context. For instance, if one talks
about a set of “boys and girls”, one means the union of a set of
boys with a set of girls, but if one talks about the set of people who
are single and male, then one means the intersection of the set of
single people with the set of male people. (Can you work out the
rule of grammar that determines when “and” means union and
when “and” means intersection?) Another problem is that “and”
is also used in English to denote addition, thus for instance one
could say that “2 and 3 is 5”, while also saying that “the elements
of {2} and the elements of {3} form the set {2,3}” and “the el-
ements in {2} and {3} form the set §”. This can certainly get
confusing! One reason we resort to mathematical symbols instead
of English words such as “and” is that mathematical symbols al-
ways have a precise and unambiguous meaning, whereas one must
often look very carefully at the context in order to work out what
an English word means.

Two sets A, B are said to be disjoint if AN B = (). Note
that this is not the same concept as being distinct, A # B. For
instance, the sets {1,2,3} and {2,3,4} are distinct (there are el-
ements of one set which are not elements of the other) but not
disjoint (because their intersection is non-empty). Meanwhile, the
sets @) and 0 are disjoint but not distinct (why?).

Definition 3.1.27 (Difference sets). Given two sets A and B, we
define the set A — B or A\B to be the set A with any elements of
B removed:

A\B:={ze€ A:z ¢ B};
for instance, {1,2,3,4}\{2,4,6} = {1,3}. In many cases B will
be a subset of A, but not necessarily.

We now give some basic properties of unions, intersections,
and difference sets.
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Proposition 3.1.28 (Sets form a boolean algebra). Let A, B,C
be sets, and let X be a set containing A, B,C as subsets.

(a) (Minimal element) We have AUQ = A and AND = 0.

(b) (Mazimal element) We have AUX =X and ANX = A,
(c) (Identity) We have ANA=A and AUA=A.

(d) (Commutativity) We have AUB = BUA and ANB = BNA.

(e) (Associativity) We have (AUB)UC = AU(BUC) and
(ANB)NC=ANn(BNC).

(f) (Distributivity) We have AN (BUC)=(ANB)U(ANC)
and AU(BNC)=(AUB)N(AUOQ).

(9) (Partition) We have AU (X\A) = X and AN(X\A) =0.

(k) (De Morgan laws) We have X\(AU B) = (X\:A) N (X\B)
and X\(AN B) = (X\A) U (X\B).

Remark 3.1.29. The de Morgan laws are named after the lo-
gician Augustus De Morgan (1806-1871), who identified them as
one of the basic laws of set theory.

Proof. See Exercise 3.1.6. O

Remark 3.1.30. The reader may observe a certain symmetry in
the above laws between U and N, and between X and (. This is
an example of duality - two distinct properties or objects being
dual to each other. In this case, the duality is manifested by
the complementation relation A — X\A; the de Morgan laws.
assert that this relation converts unions into intersections and vice
versa. (It also interchanges X and the empty set.) The above laws
are collectively known as the laws of Boolean algebra, after the
mathematician George Boole (1815-1864), and are also applicable
to a number of other objects other than sets; it plays a particularly
important rdle in logic.



9.1. Fundamentals 49

We have now accumulated a number of axioms and results
about sets, but there are still many things we are not able to do
yet. One of the basic things we wish to do with a set is take each of
the objects of that set, and somehow transform each such object
into a new object; for instance we may wish to start with a set
of numbers, say {3,5,9}, and increment each one, creating a new
set {4,6,10}. This is not something we can do directly using only
the axioms we already have, so we need a new axiom:

Axiom 3.6 (Replacement). Let A be a set. For any object z €
A, and any object y, suppose we have a statement P(z,y) per-
taining to ¢ and y, such that for each x € A there is at most
one y for which P(z,y) is true. Then there exists a set {y :
P(z,y) is true for some z € A}, such that for any object z,

z €{y: P(z,y) is true for some = € A}
<= P(z,z) is true for some z € A.

Example 3.1.31. Let A := {3,5,9}, and let P(z,y) be the state-
ment y = z++, i.e., y is the successor of z. Observe that for every
z € A, there is exactly one y for which P(z,y) is true - specifi-
cally, the successor of z. Thus the above axiom asserts that the
set {y : y = z++ for some = € {3,5,9}} exists; in this case, it is
clearly the same set as {4,6,10} (why?).

Example 3.1.32. Let A = {3,5,9}, and let P(z,y) be the state-
ment y = 1. Then again for every x € A, there is exactly one y
for which P(z,y) is true - specifically, the number 1. In this case
{y : y = 1 for some z € {3,5,9}} is just the singleton set {1};
we have replaced each element 3,5,9 of the original set A by the
same object, namely 1. Thus this rather silly example shows that
the set obtained by the above axiom can be “smaller” than the
original set.

We often abbreviate a set of the form

{y : y = f(z) for some z € A}
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as {f(z) : ¢ € A} or {f(:z:)l:z: € A}. Thus for instance, if
A = {3,5,9}, then {z++ : = € A} is the set {4,6,10}. We
can of course combine the axiom of replacement with the ax-
iom of specification, thus for instance we can create sets such as
{f(z) : z € A; P(z) is true} by starting with the set A, using the
axiom of specification to create the set {x € A : P(z) is true},
and then applying the axiom of replacement to create {f(z) : z €
A; P(z) is true}. Thus for instance {n++ : n € {3,5,9};n < 6} =
{4,6}.

In many of our examples we have implicitly assumed that nat-
ural numbers are in fact objects. Let us formalize this as follows.

Axiom 3.7 (Infinity). There exists a set N, whose elements are
called natural numbers, as well as an object 0 in N, and an object
n++ assigned to every natural number n € N, such that the Peano
azioms (Azioms 2.1 - 2.5) hold.

This is the more formal version of Assumption 2.6. It is called
the axiom of infinity because it introduces the most basic example
of an infinite set, namely the set of natural numbers N. (We will
formalize what finite and infinite mean in Section 3.6.) From the
axiom of infinity we see that numbers such as 3, 5, 7, etc. are
indeed objects in set theory, and so (from the pair set axiom and
pairwise union axiom) we can indeed legitimately construct sets
such as {3,5,9} as we have been doing in our examples.

One has to keep the concept of a set distinct from the elements
of that set; for instance, the set {n +3:n € N,0 <n < 5} is not
the same thing as the expression or function n + 3. We emphasize
this with an example:

Example 3.1.33. (Informal) This example requires the notion
of subtraction, which has not yet been formally introduced. The ,
following two sets are equal,

{n+3:neN,0<n<5}={8-n:neN,0<n <5}, (3.1)

(see below), even thougll'l the expressions n + 3 and 8 — n are
never equal to each other for any natural number n. Thus, it
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is a good idea to remember to use those curly braces {} when
you talk about sets, lest you accidentally confuse a set with its
elements. One reason for this counter-intuitive situation is that
the letter n is being used in two different ways on the two sides
of (3.1). To clarify the situation, let us rewrite the set {8 —n :
n € N,0 < n < 5} by replacing the letter n by the letter m, thus
giving {8 —m : m € N,0 < m < 5}. This is exactly the same set
as before (why?), so we can rewrite (3.1) as

{n+3:neN,0<n<5}={8—m:meN,0<m<5}.

Now it is easy to see (using (3.1.4)) why this identity is true: every
number of the form n + 3, where n is a natural number between
0 and 5, is also of the form 8 — m where m := 5 —n (note that m
is therefore also a natural number between 0 and 5); conversely,
~ every number of the form 8 — m, where n is a natural number
between U and 5, is also of the form n+ 3, where n := 5 —m (note
that n is therefore a natural number between 0 and 5). Observe
how much more confusing the above explanation of (3.1) would
have been if we had not changed one of the n’s to an m first!

Ezercise 3.1.1. Show that the definition of equality in (3.1.4) is reflexive,
symmetric, and transitive.

Ezercise 3.1.2. Using only Definition 3.1.4, Axiom 3.2, and Axiom 3.3,
prove that the sets 0, {0}, {{0}}, and {0, {0}} are all distinct (i.e., no
two of them are equal to each other).

Ezercise 3.1.3. Prove the remaining claims in Lemma 3.1.13.
Ezercise 3.1.4. Prove the remaining claims in Proposition 3.1.18.

Ezercise 3.1.5. Let A, B be sets. Show that the three statements A C B,
AUB = B, AN B = A are logically equivalent (any one of them implies
the other two).

Ezercise 3.1.6. Prove Proposition 3.1.28. (Hint: one can use some of
these claims to prove others. Some of the claims have also appeared
previously in Lemma 3.1.13.)

Ezercise 3.1.7. Let A, B, C be sets. Show that ANB C A and ANB C B.
Furthermore, show that C C Aand C C Bifand onlyif C C ANB. In
a similar spirit, show that A C AU B and B C AU B, and furthermore
that ACCand BC Cifandonlyif AUBCC.
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Erzercise 3.1.8. Let A, B be sets. Prove the absorption laws AN(AUB) =
Aand AU(ANB) = A.

Ezercise 3.1.9. Let A, B, X be sets such that AUB = X and ANB =),
Show that A = X\B and B = X\A.

Exercise 3.1.10. Let A and B be sets. Show that the three sets A\B,
AN B, and B\A are disjoint, and that their union is AU B.

Ezercise 3.1.11. Show that the axiom of replacement implies the axiom
of specification.

3.2 Russell’s paradox (Optional)

Many of the axioms introduced in the previous section have a
similar flavor: they both allow us to form a set consisting of all the
elements which have a certain property. They are both plausible,
but one might think that they could be unified, for instance by
introducing the following axiom:

Axiom 3.8 (Universal specification). (Dangerous!) Suppose for
every object x we have a property P(z) pertaining to x (so that
for every z, P(z) is either a true statement or a false statement).
Then there exists a set {x : P(z) is true} such that for every object
Y,

y € {z: P(z) is true} < P(y) is true.

This axiom is also known as the aziom of comprehension. 1t as-
serts that every property corresponds to a set; if we assumed that
axiom, we could talk about the set of all blue objects, the set of all
natural numbers, the set of all sets, and so forth. This axiom also
implies most of the axioms in the previous section (Exercise 3.2.1).
Unfortunately, this axiom cannot be introduced into set theory,
because it creates a logical contradiction known as Russell’s para-
doz, discovered by the philosopher and logician Bertrand Russell
(1872-1970) in 1901. The paradox runs as follows. Let P(z) be
the statement

P(z) <= “zis aset,and z € 2”;
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i.e., P(z) is true only when z is a set which does not contain itself.
For instance, P({2, 3,4}) is true, since the set {2,3,4} is not one
of the three elements 2, 3, 4 of {2, 3,4}. On the other hand, if we
let S be the set of all sets (which we would know to exist from
the axiom of universal specification), then since S is itself a set,
it is an element of S, and so P(S) is false. Now use the axiom of
universal specification to create the set

Q:={z: P(z) is true} = {z : z is a set and z ¢ z},

i.e., the set of all sets which do not contain themselves. Now ask
the question: does € contain itself, i.e. is Q € Q7 If Q did contain
itself, then by definition this means that P(Q2) is true, i.e.,  is
a set and Q € Q. On the other hand, if 2 did not contain itself,
then P(Q2) would be true, and hence 2 € Q. Thus in either case
we have both 2 € Q and Q2 ¢ Q, which is absurd.

The problem with the above axiom is that it creates sets which
are far too “large” - for instance, we can use that axiom to talk
about the set of all objects (a so-called “universal set”). Since
sets are themselves objects (Axiom 3.1), this means that sets are
allowed to contain themselves, which is a somewhat silly state of
affairs. One way to informally resolve this issue is to think of
objects as being arranged in a hierarchy. At the bottom of the
hierarchy are the primitive objects - the objects that are not sets?,
such as the natural number 37. Then on the next rung of the
hierarchy there are sets whose elements consist only of primitive
objects, such as {3, 4, 7} or the empty set @; let’s call these “primi-
tive sets” for now. Then there are sets whose elements consist only
of primitive objects and primitive sets, such as {3,4,7,{3,4,7}}.
Then we can form sets out of these objects, and so forth. The
point is that at each stage of the hierarchy we only see sets whose
elements consist of objects at lower stages of the hierarchy, and so
at no stage do we ever construct a set which contains itself.

To actually formalize the above intuition of a hierarchy of ob-
jects is actually rather complicated, and we will not do so here.

'In pure set theory, there will be no primitive objects, but there will be .
one primitive set ) on the next rung of the hierarchy.
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Instead, we shall simply postulate an axiom which ensures that
absurdities such as Russell’s paradox do not occur.

Axiom 3.9 (Regularity). If A is a non-empty set, then there is
at least one element x of A which is either not a set, or is disjoint

from A.

The point of this axiom (which is also known as the aziom
of foundation) is that it is asserting that at least one of the el-
ements of A is so low on the hierarchy of objects that it does
not contain any of the other elements of A. For instance, if
A = {{3,4},{3,4,{3,4}}}, then the element {3,4} € A does not
contain any of the elements of A (neither 3 nor 4 lies in A), al-
though the element {3,4,{3,4}}, being somewhat higher in the
hierarchy, does contain an element of A, namely {3,4}. One par-
ticular consequence of this axiom is that sets are no longer allowed
to contain themselves (Exercise 3.2.2).

One can legitimately ask whether we really need this axiom
in our set theory, as it is certainly less intuitive than our other
axioms. For the purposes of doing analysis, it turns out in fact
that this axiom is never needed; all the sets we consider in analysis
are typically very low on the hierarchy of objects, for instance
being sets of primitive objects, or sets of sets of primitive objects,
or at worst sets of sets of sets of primitive objects. However it is
necessary to include this axiom in order to perform more advanced
set theory, and so we have included this axiom in the text (but in
an optional section) for sake of completeness.

Ezercise 3.2.1. Show that the universal specification axiom, Axiom 3.8,
if assumed to be true, would imply Axioms 3.2, 3.3, 3.4, 3.5, and 3.6. (If
we assume that all natural numbers are objects, we also obtain Axiom
3.7.) Thus, this axiom, if permitted, would simplify the foundations of
set theory tremendously (and can be viewed as one basis for an intuitive
model of set theory known as “naive set theory”). Unfortunately, as we
have seen, Axiom 3.8 is “too good to be true”!

Ezercise 3.2.2. Use the axiom of regularity (and the singleton set axiom)
to show that if A is a set, then A € A. Furthermore, show that if A and
B are two sets, then either A € B or B € A (or both).
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Ezercise 3.2.3. Show (assuming the other axioms of set theory) that
the universal specification axiom, Axiom 3.8, is equivalent to an axiom
postulating the existence of a “universal set” €2 consisting of all objects
(i.e., for all objects z, we have € ). In other words, if Axiom 3.8 is
true, then a universal set exists, and conversely, if a universal set exists,
then Axiom 3.8 is true. (This may explain why Axiom 3.8 is called the
axiom of universal specification). Note that if a universal set Q existed,
then we would have © € Q by Axiom 3.1, contradicting Exercise 3.2.2.
Thus the axiom of foundation specifically rules out the axiom of universal
specification.

3.3 Functions

In order to do analysis, it is not particularly useful to just have
the notion of a set; we also need the notion of a function from one
set to another. Informally, a function f : X — Y from one set
X to another set Y is an operation which assigns to each element
(or “input”) z in X, a single element (or “output”) f(z) in Y; we
have already used this informal concept in the previous chapter
when we discussed the natural numbers. The formal definition is
as follows.

Definition 3.3.1 (Functions). Let X,Y be sets, and let P(z,y)
be a property pertaining to an object z € X and an object y €Y,
such that for every z € X, there is exactly one y € Y for which
P(z,y) is true (this is sometimes known as the vertical line test).
Then we define the function f : X — Y defined by P on the
domain X and range Y to be the object which, given any input
z € X, assigns an output f(z) € Y, defined to be the unique
object f(z) for which P(z, f(z)) is true. Thus, for any z € X and
yey,
y = f(z) <= P(z,y) is true.

Functions are also referred to as maps or transformations, de-
pending on the context. They are also sometimes called mor-
phisms, although to be more precise, a morphism refers to a more
general class of object, which may or may not correspond to actual
functions, depending on the context.
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Example 3.3.2. Let X = N, Y = N, and let P(z,y) be the
property that y = x++. Then for each z € N there is exactly one
y for which P(z,y) is true, namely y = z++. Thus we can define
a function f : N — N associated to this property, so that f(z) =
z++ for all z; this is the increment function on N, which takes
a natural number as input and returns its increment as output.
Thus for instance f(4) = 5, f(2n + 3) = 2n + 4 and so forth.
One might also hope to define a decrement function g : N —
N associated to the property P(z,y) defined by y++ = z, i.e.,
g(z) would be the number whose increment is z. Unfortunately
this does not define a function, because when z = 0 there is no
natural number y whose increment is equal to z (Axiom 2.3). On
the other hand, we can legitimately define a decrement function
h : N\{0} — N associated to the property P(z,y) defined by
y++ = z, because when z € N\{0} there is indeed exactly one
natural number y such that y4++ = z, thanks to Lemma 2.2.10.
Thus for instance h(4) = 3 and h(2n + 3) = h(2n+ 2), but h(0) is
undefined since 0 is not in the domain N\{0}.

Example 3.3.3. (Informal) This example requires the real num-
bers R, which we will define in Chapter 5. One could try to define
a square root function Ve R — R by associating it to the property
P(z,y) defined by y% = z, i.e., we would want /Z to be the num-
ber y such that y2 = z. Unfortunately there are two problems
which prohibit this definition from actually creating a function.
The first is that there exist real numbers = for which P(z,y) is
never true, for instance if £ = —1 then there is no real number
y such that y? = z. This problem however can be solved by re-
stricting the domain from R to the right half-line [0, +00). The
second problem is that even when z € [0, 400), it is possible for
there to be more than one y in the range R for which y2 = z, for
instance if x = 4 then both y = 2 and y = —2 obey the property
P(z,y), i.e., both +2 and —2 are square roots of 4. This problem
can however be solved by restricting the range of R to [0, +00).
Once one does this, then one can correctly define a square root
function ,/ : [0,+00) — [0,+00) using the relation y? = z, thus
V/Z is the unique number y € [0, +00) such that y? = z.
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One common way to define a function is simply to specify its
domain, its range, and how one generates the output f(z) from
each input; this is known as an ezplicit definition of a function.
For instance, the function f in Example 3.3.2 could be defined
explicitly by saying that f has domain and range equal to N,
and f(z) := z++ for all z € N. In other cases we only define a
function f by specifying what property P(z,y) links the input z
with the output f(z); this is an implicit definition of a function.
For instance, the square root function /= in Example 3.3.3 was
defined implicitly by the relation (/z)? = z. Note that an implicit
definition is only valid if we know that for every input there is
exactly one output which obeys the implicit relation. In many
cases we omit specifying the domain and range of a function for
brevity, and thus for instance we could refer to the function f in
Example 3.3.2 as “the function f(z) := z-++”, “the function z —
z++", “the function z++”, or even the extremely abbreviated
“++”. However, too much of this abbreviation can be dangerous;
sometimes it is important to know what the domain and range of
the function is.

We observe that functions obey the axiom of substitution: if
z = z', then f(z) = f(z') (why?). In other words, equal in-
puts imply equal outputs. On the other hand, unequal inputs do
not necessarily ensure unequal outputs, as the following example
shows:

Example 3.3.4. Let X = N, Y = N, and let P(z,y) be the
property that y = 7. Then certainly for every z € N there is
exactly one y for which P(z,y) is true, namely the number 7. Thus
we can create a function f : N — N associated to this property;
it is simply the constant function which assigns the output of
f(z) = 7 to each input £ € N. Thus it is certainly possible for
different inputs to generate the same output.

Remark 3.3.5. We are now using parentheses () to denote several
different things in mathematics; on one hand, we are using them to
clarify the order of operations (compare for instance 2+ (3 x 4) =
14 with (2 + 3) x 4 = 20), but on the other hand we also use
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parentheses to enclose the argument f(z) of a function or of a
property such as P(z). However, the two usages of parentheses
usually are unambiguous from context. For instance, if a is a
number, then a(b + ¢) denotes the expression a x (b+ c), whereas
if f is a function, then f(b+ c) denotes the output of f when the
input is b + ¢. Sometimes the argument of a function is denoted
by subscripting instead of parentheses; for instance, a sequence of
natural numbers ag, a1, az, as, . .. is, strictly speaking, a function
from N to N, but is denoted by n +— a, rather than n — a(n).

Remark 3.3.6. Strictly speaking, functions are not sets, and sets
are not functions; it does not make sense to ask whether an object
z is an element of a function f, and it does not make sense to
apply a set A to an input z to create an output A(z). On the
other hand, it is possible to start with a function f : X —» Y
and construct its graph {(z, f(z)) : £ € X}, which describes the
function completely: see Section 3.5.

We now define some basic concepts and notions for functions.
The first notion is that of equality.

Definition 3.3.7 (Equality of functions). Two functions f : X —
Y, g: X — Y with the same domain and range are said to be
equal, f = g, if and only if f(z) = g(z) for all z € X. (If f(z)
and g(z) agree for some values of z, but not others, then we do
not consider f and g to be equal?.)

Example 3.3.8. The functions z +— 2242z +1 and z — (z +1)?
are equal on the domain R. The functions z — z and z — |z|
are equal on the positive real axis, but are not equal on R; thus
the concept of equality of functions can depend on the choice of
domain.

Example 3.3.9. A rather boring example of a function is the
empty function f : ) — X from the empty set to an arbitrary
set X. Since the empty set has no elements, we do not need

2In Chapter 19, we shall introduce a weaker notion of equality, that of two
functions being equal almost everywhere.
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to specify what f does to any input. Nevertheless, just as the
empty set is a set, the empty function is a function, albeit not
a particularly interesting one. Note that for each set X, there is
only one function from @ to X, since Definition 3.3.7 asserts that
all functions from 0 to X are equal (why?).

This notion of equality obeys the usual axioms (Exercise 3.3.1).
A fundamental operation available for functions is composition.

Definition 3.3.10 (Composition). Let f : X =Y andg:Y — Z
be two functions, such that the range of f is the same set as the
domain of g. We then define the composition go f : X — Z of the
two functions g and f to be the function defined explicitly by the
formula,
(g0 f)(x) := g(f(x)).

If the range of f does not match the domain of g, we leave the
composition g o f undefined.

It is easy to check that composition obeys the axiom of sub-
stitution (Exercise 3.3.1).

Example 3.3.11. Let f : N — N be the function f(n) := 2n,
and let g : N — N be the function g(n) :=n+3. Then go f is
the function

go f(n) = g(f(n)) =.9(2n) = 2n +3,

thus for instance go f(1) = 5, go f(2) = 7, and so forth. Mean-
while, f o g is the function

fog(n)=f(g9(n))=f(n+3)=2(n+3)=2n+6,
thus for instance f o g(1) =8, f o g(2) = 10, and so forth.

The above example shows that composition is not commuta-
tive: fog and go f are not necessarily the same function. However,
composition is still associative:

Lemma 3.3.12 (Composition is associative). Let f: X =Y, g:
Y- Z, andh: Z — W be functions. Then fo(goh) = (fog)oh.
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Proof. Since g o h is a function from Y to W, fo(goh) is a
function from X to W. Similarly f o g is a function from X to Z,
and hence (f o g) o h is a function from X to W. Thus f o (goh)
and (f o g) o h have the same domain and range. In order to check
that they are equal, we see from Definition 3.3.7 that we have to
verify that (f o (goh))(z) = ((fog)oh)(z) for all z € X. But by
Definition 3.3.10

(fo(goh)(z) = F((goh)(=))
= f(g(h(z))
= (fog)(h(z))
= ((fog) o h)(z)

as desired. O

Remark 3.3.13. Note that while g appears to the left of f in the
expression go f, the function go f applies the right-most function
f first, before applying g. This is often confusing at first; it arises
because we traditionally place a function f to the left of its input z
rather than to the right. (There are some alternate mathematical
notations in which the function is placed to the right of the input,
thus we would write zf instead of f(z), but this notation has
often proven to be more confusing than clarifying, and has not as
yet become particularly popular.)

We now describe certain special types of functions: one-to-one
functions, onto functions, and invertible functions.

Definition 3.3.14 (One-to-one functions). A function f is one-
to-one (or injective) if different elements map to different elements:

z#z = f(z) # f(@).
Equivalently, a function is one-to-one if

f@)=f) = z=4.
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Example 3.3.15. (Informal) The function f : Z — Z defined
by f(n) = n? is not one-to-one because the distinct elements
-1, 1 map to the same element 1. On the other hand, if we
restrict this function to the natural numbers, defining the function
g: N — Z by g(n) := n?, then g is now a one-to-one function.
Thus the notion of a one-to-one function depends not just on what
the function does, but also what its domain is.

Remark 3.3.16. If a function f : X — Y is not one-to-one,
then one can find distinct £ and z’ in the domain X such that
f(z) = f(z'), thus one can find two inputs which map to one
output. Because of this, we say that f is two-to-one instead of
one-to-one.

Definition 3.3.17 (Onto functions). A function f is onto (or sur-
jective) if f(X) =Y, i.e., every element in Y comes from applying
f to some element in X:

For every y € Y, there exists z € X such that f (z)=y.

Example 3.3.18. (Informal) The function f : Z — Z defined
by f(n) := n? is not onto because the negative numbers are not
in the image of f. However, if we restrict the range Z to the set
A := {n? : n € Z} of square numbers, then the function g : Z — A
defined by g(n) := n? is now onto. Thus the notion of an onto
function depends not just on what the function does, but also
what its range is.

Remark 3.3.19. The concepts of injectivity and surjectivity are
in many ways dual to each other; see Exercises 3.3.2, 3.3.4, 3.3.5
for some evidence of this.

Definition 3.3.20 (Bijective functions). Functions f: X —» Y
which are both one-to-one and onto are also called bijective or
invertible.

Example 3.3.21. Let f : {0,1,2} — {3,4} be the function
f(0) := 3, f(1) := 3, f(2) := 4. This function is not bijec-
tive because if we set y = 3, then there is more than one z in
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{0,1,2} such that f(z) = y (this is a failure of injectivity). Now
let g : {0,1} — {2,3,4} be the function g(0) := 2, g(1) :=
then g is not bijective because if we set y = 4, then there is no
z for which g(z) = y (this is a failure of surjectivity). Now let
h : {0,1,2} — {3,4,5} be the function h(0) := 3, h(1) :=
h(2) := 5. Then h is bijective, because each of the elements 3, 4,
5 comes from exactly one element from 0, 1, 2.

Example 3.3.22. The function f : N — N\{0} defined by
f(n) := n++ is a bijection (in fact, this fact is simply restating
Axioms 2.2, 2.3, 2.4). On the other hand, the function g: N — N
defined by the same definition g(n) := n++ is not a bijection.
Thus the notion of a bijective function depends not just on what
the function does, but also what its range (and domain) are.

Remark 3.3.23. If a function z — f(z) is bijective, then we
sometimes call f a perfect matching or a one-to-one correspon-
dence (not to be confused with the notion of a one-to-one func-
tion), and denote the action of f using the notation z « f(z)
instead of z — f(z). Thus for instance the function h in the
above example is the one-to-one correspondence 0 « 3, 1 « 4,
2 <5,

Remark 3.3.24. A common error is to say that a function f :
X — Y is bijective iff “for every  in X, there is exactly one
y in Y such that y = f(z).” This is not what it means for f °
to be bijective; rather, this is merely stating what it means for
f to be a function. A function cannot map one element to two
different elements, for instance one cannot have a function f for
which f(0) =1 and also f(0) = 2. The functions f, g given in the
previous example are not bijective, but they are still functions,
since each input still gives exactly one output.

If f is bijective, then for every y € Y, there is exactly one z
such that f(z) = y (there is at least one because of surjectivity,
and at most one because of injectivity). This value of z is denoted

f~Yy); thus f! is a function from Y to X. We call f~! the
inverse of f.
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Exercise 3.3.1. Show that the definition of equality in Definition 3.3.7 is
reflexive, symmetric, and transitive. Also verify the substitution prop-
erty: if f,f: X —>Y and g,§:Y — Z are functions such that f = f
and g=g, then fog=fog.

Egercise 3.3.2. Let f: X - Y and g: Y — Z be functions. Show that
if f and g are both injective, then so is g o f; similarly, show that if f
and g are both surjective, then so is g o f.

Egercise 3.3.3. When is the empty function injective? surjective? bijec-
tive?

Egercise 3.3.4. In this section we give some cancellation laws for com-
position. Let f: X —Y, f:X>Y, g:Y—>Z andj:Y — Z be
functions. Show that if go f =go f and g is injective, then f = f Is
the same statement true if g is not injective? Show that if go f = go f
and. f is surjective, then g = §. Is the same statement true if f is not
surjective?

Ezercise 3.3.5. Let f: X — Y and ¢g:Y — Z be functions. Show that
if go f is injective, then f must be injective. Is it true that g must also
be injective? Show that if g o f is surjective, then g must be surjective.
Is it true that f must also be surjective?

Ezercise 3.3.6. Let f : X — Y be a bijective function, and let f~!
Y — X be its inverse. Verify the cancellation laws f~1(f(z)) = = for
all z € X and f(f~!(y)) = y for all y € Y. Conclude that f~! is also
invertible, and has f as its inverse (thus (f~1)~! = f).

Ezercise 3.3.7. Let f : X - Y and g : Y — Z be functions. Show that if
f and g are bijective, then so is go f, and we have (go f)~! = f~log™1.
Ezercise 3.3.8. If X is a subset of Y, let tx_,y : X — Y be the inclusion
map from X to Y, defined by mapping z +— z for all z € X, i.e.,
tx—y(z) =z for all z € X. The map ¢ LX—X is in particular called the
identity map on X.

(a) Show that if X CY C Z then ty_,z0txy =tx—z-

(b) Show that if f : A — B is any function, then f = fotg_4 =
LBB© f’

(c) Show that, if f : A — B is a bijective function, then fo f~!
tppand f~lo f=144.

(d) Show that if X and Y are disjoint sets, and f : X — Z and

g : Y — Z are functions, then there is a unique function h :
XUY — Z such that hotx_,xuy = f and hoty_xuy = g.

I
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3.4 Images and inverse images

We know that a function f: X — Y from a set X to a set Y can
take individual elements z € X to elements f(z) € Y. Functiong
can also take subsets in X to subsets in Y:

Definition 3.4.1 (Images of sets). If f : X — Y is a function
from X to Y, and S is a set in X, we define f(S) to be the set

f(8) ={f(z) : z € S}

this set is a subset of Y, and is sometimes called the image of §
under the map f. We sometimes call f(S) the forward image of
S to distinguish it from the concept of the inverse image f~1(S)
of S, which is defined below.

Note that the set f(S) is well-defined thanks to the axiom
of replacement (Axiom 3.6). One can also define f(S) using the
axiom of specification (Axiom 3.5) instead of replacement, but we
leave this as a challenge to the reader.

Example 3.4.2. If f : N — N is the map f(z) = 2z, then the
forward image of {1,2,3} is {2,4,6}:

f({1,2,3}) = {2,4,6}.

More informally, to compute f(S), we take every element z of S,
and apply f to each element individually, and then put all the
resulting objects together to form a new set.

In the above example, the image had the same size as the
original set. But sometimes the image can be smaller, because f
is not one-to-one (see Defiition 3.3.14):

Example 3.4.3. (Informal) Let Z be the set of integers (which
we will define rigourously in the next section) and let f : Z — Z
be the map f(z) = z2, then

f({-1,0,1,2}) ={0,1,4}.
Note that f is not one-to-one because f(—1) = f(1).



§.4. Images and inverse images 65

Note that
zeS = f(z) € f(S)

put in general

fz)ef(S)»zeSs;
for instance in the above informal example, f(—2) lies in the set
f{-1,0, 1,2}), but —2 is not in {—1,0,1,2}. The correct state-

ment is
y€ f(S) < y= f(z)forsomez €S

(why?) .

Definition 3.4.4 (Inverse images). If U is a subset of Y, we define
the set f~1(U) to be the set

YU :={zeX: f(x) eU}.

In other words, f~1(U) consists of all the elements of X which

map into U:
" f@)eU < ze fYU).

We call f~1(U) the inverse image of U.

Example 3.4.5. If f : N — N is the map f(z) = 2z, then
f({1,2,3}) = {2,4,6}, but f71({1,2,3}) = {1}. Thus the forward
image of {1,2,3} and the backwards image of {1,2,3} are quite
different sets. Also note that

F(F71{1,2,3)) # {1,2,3}
(why?).
Example 3.4.6. (Informal) If f : Z — Z is the map f(z) = 2,

then
f~1{o,1,4}) = {-2,-1,0,1,2}.

Note that f does not have to be invertible in order for f~1(U)
to make sense. Also note that images and inverse images do not
quite invert each other, for instance we have

FHF(-1,0,1,2})) # {-1,0,1,2}
(why?).



Remark 3.4.7. If f is a bijective function, then we have defingq
1 in two slightly different ways, but this is not an issue becaus,
both definitions are equivalent (Exercise 3.4.1).

As remarked earlier, functions are not sets. However, we d,
consider functions to be a type of object, and in particular we
should be able to consider sets of functions. In particular, we
should be able to consider the set of all functions from a set X
to a set Y. To do this we need to introduce another axiom to set
theory:

Axiom 3.10 (Power set axiom). Let X andY be sets. Then there
exists a set, denoted YX, which consists of all the functions from
X toY, thus

feYX « (f is a function with domain X and rangeY).

Example 3.4.8. Let X = {4,7} and Y = {0,1}. Then the set
Y X consists of four functions: the function that maps 4 — 0 and
7 — 0; the function that maps 4 — 0 and 7 — 1; the function
that maps 4 — 1 and 7 — 0; and the function that maps 4 — 1
and 7 — 1. The reason we use the notation YX to denote this set
is that if Y has n elements and X has m elements, then one can
show that YX has n™ elements; see Proposition 3.6.14(f).

One consequence of this axiom is

Lemma 3.4.9. Let X be a set. Then the set
{Y :Y is a subset of X}
s a set.
Proof. See Exercise 3.4.6. O

Remark 3.4.10. The set {Y : Y is a subset of X} is known as
the power set of X and is denoted 2X. For instance, if a, b, c are
distinct objects, we have

2(2be} = {0, {a}, {6}, {c},{a, 5}, {a, ¢}, {b,c}, {a,b,}}.
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Note that while {a,b,c} has 3 elements, 2{abe} has 23 = 8 ele-
ments. This gives a hint as to why we refer to the power set of X
as 2% ; we return to this issue in Chapter 8.

For sake of completeness, let us now add one further axiom to
our set theory, in which we enhance the axiom of pairwise union
to allow unions of much larger collections of sets.

Axiom 3.11 (Union). Let A be a set, all of whose elements are
themselves sets. Then there exists a set | J A whose elements are
precisely those objects which are elements of the elements of A,
thus for all objects x

erA < (z €S for some S € A).

Example 3.4.11. If A = {{2,3},{3,4},{4,5}}, then YA =
{2,3,4,5} (why?).

The axiom. of union, combined with the axiom of pair set,
implies the axiom of pairwise union (Exercise 3.4.8). Another
important consequence of this axiom is that if one has some set
I, and for every element o € I we have some set A,, then we can
form the union set | J,c; Aa by defining

UAO, :=U{Aa:a€I},

a€cl

which is a set thanks to the axiom of replacement and the axiom
of union. Thus for instance, if I = {1,2,3}, 4; := {2,3}, 43 :=
{3,4}, and A3 := {4,5}, then U,e(1,9,3) Ao = {2,3,4,5}. More
generally, we see that for any object y,

y € UAa <= (y € A, for some a € I). (3.2)
a€cl

In situations like this, we often refer to I as an indez set, and the
elements a of this index set as labels; the sets A, are then called
a family of sets, and are indexed by the labels a € A. Note that
if I was empty, then |J,c; Ax Would automatically also be empty
(why?).
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We can similarly form intersections of families of sets, as long
as the index set is non-empty. More specifically, given any non-
empty set I, and given an assignment of a set A, toeach a € I, we
can define the intersection (), Aq by first choosing some element
B of I (which we can do since I is non-empty), and setting

ﬂAa ={recdg:z€ A, foral acl}, (3.3)
a€l

which is a set by the axiom of specification. This definition may
look like it depends on the choice of 8, but it does not (Exercise
3.4.9). Observe that for any object y,

Y€ [)Aa < (Y€ Agforallacl) (3.4)
a€l

(compare with (3.2)).

Remark 3.4.12. The axioms of set theory that we have intro-
duced (Axioms 3.1-3.11, excluding the dangerous Axiom 3.8) are
known as theZermelo-Fraenkel azioms of set theory’, after Ernest
Zermelo (1871-1953) and Abraham Fraenkel (1891-1965). There
is one further axiom we will eventually need, the famous aziom
of choice (see Section 8.4), giving rise to the Zermelo-Fraenkel-
Choice (ZFC) azioms of set theory, but we will not need this
axiom for some time.

Ezercise 3.4.1. Let f : X — Y be a bijective function, and let f~1 :
Y — X be its inverse. Let V be any subset of Y. Prove that the forward
image of V under f~1 is the same set as the inverse image of V under
f; thus the fact that both sets are denoted by f~!(V) will not lead to
any inconsistency.

Ezercise 3.4.2. Let f : X — Y be a function from one set X to another
set Y, let S be a subset of X, and let U be a subset of Y. What, in
general, can one say about f~!(f(S)) and S? What about f(f~(U))
and U?

3These axioms are formulated slightly differently in other texts, but all the
formulations can be shown to be equivalent to each other.
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Egercise 3.4.3. Let A, B be two subsets of a set X, and let f: X —»Y
pe & function. Show that f(AN B) C f(A) N f(B), that f(A)\f(B) C
£ A\B), f(AU B) = f(A)U f(B). For the first two statements, is it
true that the C relation can be improved to =?

Egercise 3.4.4. Let f: X — Y be a function from one set X to another
set Y, and let U,V be subsets of Y. Show that f~(UUV) = f~1(U)U
f7U(V), that FFHUNnv) =Y U)N f~Y(V), and that f~Y({U\V) =
FHON V)

Egercise 3.4.5. Let f : X — Y be a function from one set X to another
set Y. Show that f(f~1(S)) = S for every S C Y if and only if f is
surjective. Show that f ~1(f(S)) = S for every S C X if and only if f is
injective.

Ezercise 3.4.6. Prove Lemma 3.4.9. (Hint: start with the set {0,1}*
and .apply the replacement axiom, replacing each function f with the
object f~1({1}).) See also Exercise 3.5.11.

Ezercise 3.4.7. Let X,Y be sets. Define a partial function from X to
Y to be any function f : X’ — Y’ whose domain X' is a subset of X,
and whose range Y’ is a subset of Y. Show that the collection of all
partial functions from X to Y is itself a set. (Hint: use Exercise 3.4.6,
the power set axiom, the replacement axiom, and the union axiom.)
Ezercise 3.4.8. Show that Axiom 3.4 can be deduced from Axiom 3.3
and Axiom 3.11.

Ezercise 3.4.9. Show that if § and 3’ are two elements of a set I, and
to each o € I we assign a set A,, then

{zreAp:ze€A forallacl}={x€Ag :z€ Ay for all a € I},
and so the definition of (,¢; Ao defined in (3.3) does not depend on S.

Also explain why (3.4) is true.

Ezercise 3.4.10. Suppose that I and J are two sets, and for alla € TUJ
let A be a set. Show that (U,er Aa) U (Uacy 4a) = Uncruy Aa- I T
and J are non-empty, show that (N,c; Aa) N (Nacs Aa) = Nacrus Aa-

Ezercise 3.4.11. Let X be a set, let I be a non-empty set, and for all
a €I let A, be a subset of X. Show that

X\ U Aoz = n(X\Aa)
a€el a€l
and

X\ n A= U(X\Aa)'

a€l a€l
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This should be compared with de Morgan’s laws in Proposition 3.1.93
(although one cannot derive the above identities directly from de Mor.
gan’s laws, as I could be infinite).

3.5 Cartesian products

In addition to the basic operations of union, intersection, anq
differencing, another fundamental operation on sets is that of the
Cartesian product.

Definition 3.5.1 (Ordered pair). If z and y are any objects (pos-
sibly equal), we define the ordered pair (z,y) to be a new object,
consisting of z as its first component and y as its second compo-
nent. Two ordered pairs (z,y) and (z',y’) are considered equal if
and only if both their components match, i.e.

(z,9) = (z,y') <= (z=12"andy=1y). (3.5)

This obeys the usual axioms of equality (Exercise 3.5.3). Thus for
instance, the pair (3,5) is equal to the pair (2 + 1,3 + 2), but is
distinct from the pairs (5, 3), (3,3), and (2,5). (This is in contrast
to sets, where {3,5} and {5, 3} are equal.)

Remark 3.5.2. Strictly speaking, this definition is partly an ax-
iom, because we have simply postulated that given any two objects
z and y, that an object of the form (z,y) exists. However, it is
possible to define an ordered pair using the axioms of set theory
in such a way that we do not need any further postulates (see
Exercise 3.5.1).

Remark 3.5.3. We have now “overloaded” the parenthesis sym-
bols () once again; they now are not only used to denote grouping
of operators and arguments of functions, but also to enclose or-
dered pairs. This is usually not a problem in practice as one can
still determine what usage the symbols () were intended for from
context.

Definition 3.5.4 (Cartesian product). If X and Y are sets, then
we define the Cartesian product X x Y to be the collection of



9.5. Cartesian products 71

ordered pairs, whose first component lies in X and second com-
ponent lies in Y, thus

XxY={(z,y):z€ X,ye Y}
or equivalently
a€(XXY) & (a=(z,y) forsomez € X andy€Y).

Remark 3.5.5. We shall simply assume that our notion of or-
dered pair is such that whenever X and Y are sets, the Cartesian
product X x Y is also a set. This is however not a problem in
practice; see Exercise 3.5.1.

Example 3.5.6. If X := {1,2} and Y := {3,4,5}, then
X xY ={(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)}

and
Y x X ={(3,1),(4,1),(5,1),(3,2),(4,2),(5,2)}

Thus, strictly speaking, X xY and Y x X are different sets, al-
though they are very similar. For instance, they always have the
same number of elements (Exercise 3.6.5).

Let f: X XY — Z be a function whose domain X x Y is a
Cartesian product of two other sets X and Y. Then f can either be
thought of as a function of one variable, mapping the single input
of an ordered pair (z,y) in X x Y to an output f(z,y) in Z, or as
a function of two variables, mapping an input z € X and another
input y € Y to a single output f(z,y) in Z. While the two notions
are technically different, we will not bother to distinguish the two,
and think of f simultaneously as a function of one variable with
domain X XY and as a function of two variables with domains X
and Y. Thus for instance the addition operation + on the natural
numbers can now be re-interpreted as a function + : Nx N — N,
defined by (z,y) — z + y.

One can of course generalize the concept of ordered pairs to
ordered triples, ordered quadruples, etc:
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Definition 3.5.7 (Ordered n-tuple and n-fold Cartesian prod-
uct). Let n be a natural number. An ordered n-tuple (z:)1<i<,
(also denoted (z1,...,z,)) is a collection of objects z;, one for
every natural number i between 1 and n; we refer to z; as the ith
component of the ordered n-tuple. Two ordered n-tuples (z;)1<i<n
and (y;)1<i<n are said to be equal iff z; = y; for all 1 < i < n. If
(Xi)1<i<n is an ordered n-tuple of sets, we define their Cartesian
product []; <;<,, Xi (also denoted [[i; X; or X1 x ... x X») by

H X; = {(zi)lsisn ;€ X;foralll <i < n}
1<i<n

Again, this definition simply postulates that an ordered n-
tuple and a Cartesian product always exist when needed, but using
the axioms of set theory one can explicitly construct these objects
(Exercise 3.5.2).

Remark 3.5.8. One can show that [];;<, X; is indeed a set.
Indeed, from the power set axiom we can consider the set of all
functions i — z; from the domain {1 < ¢ < n} to the range
Ui<i<n Xi, and then we can restrict using the axiom of specifica-
tion to restrict to those functions i — z; for which z; € X; for
all 1 < ¢ < n. One can generalize this construction to infinite
Cartesian products, see Definition 8.4.1.

Example 3.5.9. Let a1, b1, a2, b, a3, b3 be objects, and let X; :=
{a1,b1}, X3 := {a2,b2}, and X3 := {a3,b3}. Then we have

X1 x X x X3 ={(a1,a2,a3), (a1, a2, b3), (a1, b2, a3), (a1, bz, bs3),
(bl) az, a3)$ (bl’ as, b3), (bh b2a a3)) (bl) b2’ b3)}

(X] X Xz) x X3 =
{((a1,02), a3),((a1, a2), b3), ((a1, b2), a3), ((a1, b2), bs),
((b1, a2), a3),((b1, a2), b3), (b1, b2), as), (b1, b2), b3) }

X1 X (Xz X X3) =
{(a1, (a2,a3)),(a1, (a2, b3)), (a1, (b2, a3)), (a1, (b2, b3)),
(bl, (02, a3)),(b1, (a'2’ b3))a (bla (b2’ 0'3))’ (bl’ (b2’ b3))}'
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Thus, strictly speaking, the sets X3 x X3 x X3, (X1 x X2) x X3, and
X1 x (X2 xX 3) are distinct. However, they are clearly very related
to each other (for instance, there are obvious bijections between
any two of the three sets), and it is common in practice to neglect
the minor distinctions between these sets and pretend that they
are in fact equal. Thus a function f : X; x Xo x X3 — Y can be
thought of as a function of one variable (1, z2, z3) € X1 x X2 x X3,
or as a function of three variables z; € X, z2 € X3, 3 € Xj,
or as a function of two variables z; € X, (z2,z3) € X3, and so
forth; we will not bother to distinguish between these different
perspectives.

Remark 3.5.10. An ordered n-tuple zi,...,z, of objects is also
called an ordered sequence of n elements, or a finite sequence for
short. In Chapter 5 we shall also introduce the very useful concept
of an infinite sequence.

Example 3.5.11. If z is an object, then (z) is a 1-tuple, which
we shall identify with z itself (even though the two are, strictly
speaking, not the same object). Then if X; is any set, then the
Cartesian product [],;<; Xi is just X1 (why?). Also, the empty
Cartesian product [],<;<o Xi gives, not the empty set {}, but
rather the singleton set {()} whose only element is the 0-tuple (),
also known as the empty tuple.

If n is a natural number, we often write X" as shorthand
for the n-fold Cartesian product X" := [];<;<, X. Thus X! is
essentially the same set as X (if we ignore the distinction between
an object = and the 1-tuple (z)), while X? is the Cartesian product
X x X. The set X0 is a singleton set {()} (why?).

We can now generalize the single choice lemma (Lemma 3.1.6)
to allow for multiple (but finite) number of choices.

Lemma 3.5.12 (Finite choice). Let n > 1 be a natural number,
and for each natural number 1 < i < n, let X; be a non-empty
set. Then there exists an n-tuple (z;)1<i<n Such that z; € X; for
all 1 < i < n. In other words, if each X; is non-empty, then the
set [11<i<n Xi is also non-empty.
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Proof. We induct on n (starting with the base case n = 1; the
claim is also vacuously true with n = 0 but is not particularly
interesting in that case). When n = 1 the claim follows from
Lemma 3.1.6 (why?). Now suppose inductively that the claim hag
already been proven for some n; we will now prove it for n+4+,
Let X;,...,Xn4++ be a collection of non-empty sets. By induction
hypothesis, we can find an n-tuple (z;)1<i<n such that z; € X; for
all 1 <i < n. Also, since X,,++ is non-empty, by Lemma 3.1.6 we
may find an object a such that a € X,,4+. If we thus define the
n++-tuple (¥;)1<i<n++ by setting y; := z; when 1 < 4 < n and
¥i '= a when ¢ = n+4+ it is clear that y; € X for all 1 <4 < n+4+4,
thus closing the induction. O

Remark 3.5.13. It is intuitively plausible that this lemma should
be extended to allow for an infinite number of choices, but this
cannot be done automatically; it requires an additional axiom, the
aziom of choice. See Section 8.4.

Ezercise 3.5.1. Suppose we define the ordered pair (z,y) for any objects
z and y by the formula (z,y) := {{z}, {z,y}} (thus using several appli-
cations of Axiom 3.3). Thus for instance (1,2) is the set {{1}, {1,2}},
(2,1) is the set {{2},{2,1}}, and (1,1) is the set {{1}}. Show that such
a definition indeed obeys the property (3.5), and also whenever X and Y
are sets, the Cartesian product X x Y is also a set. Thus this definition
can be validly used as a definition of an ordered pair. For an additional
challenge, show that the alternate definition (z,y) := {z, {z,y}} also
verifies (3.5) and is thus also an acceptable definition of ordered pair.
(For this latter task one needs the axiom of regularity, and in particular
Exercise 3.2.2.)

Ezercise 3.5.2. Suppose we define an ordered n-tuple to be a surjective
function z : {i € N:1 < ¢ <n} — X whose range is some arbitrary set
X (so different ordered n-tuples are allowed to have different ranges);
we then write z; for x(), and also write = as (zi)i<i<n. Using this
definition, verify that we have (z;)1<i<n = (¥i)1<i<n if and only if z; =
y; for all 1 <4 < n. Also, show that if (X;)1<i<n are an ordered n-tuple
of sets, then the Cartesian product, as defined in Definition 3.5.7, is
indeed a set. (Hint: use Exercise 3.