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Preface

Principles of Econometrics, Fifth Edition, is an introductory book for undergraduate students in

economics and finance, as well as first-year graduate students in economics, finance, accounting,

agricultural economics, marketing, public policy, sociology, law, forestry, and political science.

We assume that students have taken courses in the principles of economics and elementary statis-

tics. Matrix algebra is not used, and we introduce and develop calculus concepts in an Appendix.

The title Principles of Econometrics emphasizes our belief that econometrics should be part of

the economics curriculum, in the same way as the principles of microeconomics and the prin-

ciples of macroeconomics. Those who have been studying and teaching econometrics as long

as we have will remember that Principles of Econometrics was the title that Henri Theil used

for his 1971 classic, which was also published by John Wiley & Sons. Our choice of the same

title is not intended to signal that our book is similar in level and content. Theil’s work was, and

remains, a unique treatise on advanced graduate level econometrics. Our book is an introductory

level econometrics text.

Book Objectives
Principles of Econometrics is designed to give students an understanding of why econometrics is

necessary and to provide them with a working knowledge of basic econometric tools so that

i. They can apply these tools to modeling, estimation, inference, and forecasting in the context

of real-world economic problems.

ii. They can evaluate critically the results and conclusions from others who use basic econo-

metric tools.

iii. They have a foundation and understanding for further study of econometrics.

iv. They have an appreciation of the range of more advanced techniques that exist and that may

be covered in later econometric courses.

The book is neither an econometrics cookbook nor is it in a theorem-proof format. It emphasizes

motivation, understanding, and implementation. Motivation is achieved by introducing very sim-

ple economic models and asking economic questions that the student can answer. Understanding

is aided by lucid description of techniques, clear interpretation, and appropriate applications.

Learning is reinforced by doing, with clear worked examples in the text and exercises at the end

of each chapter.

Overview of Contents
This fifth edition is a major revision in format and content. The chapters contain core material and

exercises, while appendices contain more advanced material. Chapter examples are now identi-

fied and separated from other content so that they may be easily referenced. From the beginning,

we recognize the observational nature of most economic data and modify modeling assump-

tions accordingly. Chapter 1 introduces econometrics and gives general guidelines for writing an

empirical research paper and locating economic data sources. The Probability Primer preceding

Chapter 2 summarizes essential properties of random variables and their probability distributions

and reviews summation notation. The simple linear regression model is covered in Chapters 2–4,

while the multiple regression model is treated in Chapters 5–7. Chapters 8 and 9 introduce econo-

metric problems that are unique to cross-sectional data (heteroskedasticity) and time-series data
v
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(dynamic models), respectively. Chapters 10 and 11 deal with endogenous regressors, the failure

of least squares when a regressor is endogenous, and instrumental variables estimation, first in

the general case, and then in the simultaneous equations model. In Chapter 12, the analysis of

time-series data is extended to discussions of nonstationarity and cointegration. Chapter 13 intro-

duces econometric issues specific to two special time-series models, the vector error correction,

and vector autoregressive models, while Chapter 14 considers the analysis of volatility in data

and the ARCH model. In Chapters 15 and 16, we introduce microeconometric models for panel

data and qualitative and limited dependent variables. In appendices A, B, and C, we introduce

math, probability, and statistical inference concepts that are used in the book.

Summary of Changes and New Material
This edition includes a great deal of new material, including new examples and exercises using

real data and some significant reorganizations. In this edition, we number examples for easy ref-

erence and offer 25–30 new exercises in each chapter. Important new features include

• Chapter 1 includes a discussion of data types and sources of economic data on the Internet.

Tips on writing a research paper are given “up front” so that students can form ideas for a

paper as the course develops.

• A Probability Primer precedes Chapter 2. This Primer reviews the concepts of random vari-

ables and how probabilities are calculated from probability density functions. Mathematical

expectation and rules of expected values are summarized for discrete random variables.

These rules are applied to develop the concepts of variance and covariance. Calculations of

probabilities using the normal distribution are illustrated. New material includes sections on

conditional expectation, conditional variance, iterated expectations, and the bivariate normal

distribution.

• Chapter 2 now starts with a discussion of causality. We define the population regression

function and discuss exogeneity in considerable detail. The properties of the ordinary least

squares (OLS) estimator are examined within the framework of the new assumptions. New

appendices have been added on the independent variable, covering the various assumptions

that might be made about the sampling process, derivations of the properties of the OLS

estimator, and Monte Carlo experiments to numerically illustrate estimator properties.

• In Chapter 3, we note that hypothesis test mechanics remain the same under the revised

assumptions because test statistics are “pivotal,” meaning that their distributions under the

null hypothesis do not depend on the data. In appendices, we add an extended discussion of

test behavior under the alternative, introduce the noncentral t-distribution, and illustrate test

power. We also include new Monte Carlo experiments illustrating test properties when the

explanatory variable is random.

• Chapter 4 discusses in detail nonlinear relationships such as the log-log, log-linear, linear-log,

and polynomial models. We have expanded the discussion of diagnostic residual plots and

added sections on identifying influential observations. The familiar concepts of compound

interest are used to motivate several log-linear models. We add an appendix on the concept

of mean squared error and the minimum mean squared error predictor.

• Chapter 5 introduces multiple regression in the random-x framework. The Frisch–Waugh–

Lovell (FWL) theorem is introduced as a way to help understand interpretation of the mul-

tiple regression model and used throughout the remainder of the book. Discussions of the

properties of the OLS estimator, and interval estimates and t-tests, are updated. The large

sample properties of the OLS estimator, and the delta method, are now introduced within

the chapter rather than an appendix. Appendices provide further discussion and Monte Carlo
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properties to illustrate the delta method. We provide a new appendix on bootstrapping and

its uses.

• Chapter 6 adds a new section on large sample tests. We explain the use of control vari-

ables and the difference between causal and predictive models. We revise the discussion

of collinearity and include a discussion of influential observations. We introduce nonlin-

ear regression models and nonlinear least squares algorithms are discussed. Appendices are

added to discuss the statistical power of F-tests and further uses of the Frisch–Waugh–Lovell

theorem.

• Chapter 7 now includes an extensive section on treatment effects and causal modeling in

Rubin’s potential outcomes framework. We explain and illustrate the interesting regres-

sion discontinuity design. An appendix includes a discussion of the important “overlap”

assumption.

• Chapter 8 has been reorganized so that the heteroskedasticity robust variance of the OLS

estimator appears before testing. We add a section on how model specification can ameliorate

heteroskedasticity in some applications. We add appendices to explain the properties of the

OLS residuals and another to explain alternative robust sandwich variance estimators. We

present Monte Carlo experiments to illustrate the differences.

• Chapter 9 has been reorganized and streamlined. The initial section introduces the differ-

ent ways that dynamic elements can be added to the regression model. These include using

finite lag models, infinite lag models, and autoregressive errors. We carefully discuss auto-

correlations, including testing for autocorrelation and representing autocorrelations using a

correlogram. After introducing the concepts of stationarity and weak dependence, we dis-

cuss the general notions of forecasting and forecast intervals in the context of autoregressive

distributed lag (ARDL) models. Following these introductory concepts, there are details of

estimating and using alternative models, covering such topics as choosing lag lengths, testing

for Granger causality, the Lagrange multiplier test for serial correlation, and using models for

policy analysis. We provide very specific sets of assumptions for time-series regression mod-

els and outline how heteroskedastic and autocorrelation consistent, robust, standard errors

are used. We discuss generalized least squares estimation of a time-series regression model

and its relation to nonlinear least squares regression. A detailed discussion of the infinite lag

model and how to use multiplier analysis is provided. An appendix contains details of the

Durbin–Watson test.

• Chapter 10 on endogeneity problems has been streamlined because the concept of random

explanatory variables is now introduced much earlier in the book. We provide further anal-

ysis of weak instruments and how weak instruments adversely affect the precision of IV

estimation. The details of the Hausman test are now included in the chapter.

• Chapter 11 now adds Klein’s Model I as an example.

• Chapter 12 includes more details of deterministic trends and unit roots. The section on unit

root testing has been restructured so that each Dickey–Fuller test is more fully explained

and illustrated with an example. Numerical examples of ARDL models with nonstationary

variables that are, and are not, cointegrated have been added.

• The data in Chapter 13 have been updated and new exercises added.

• Chapter 14 mentions further extensions of ARCH volatility models.

• Chapter 15 has been restructured to give priority to how panel data can be used to cope with

the endogeneity caused by unobserved heterogeneity. We introduce the advantages of having

panel data using the first difference estimator, and then discuss the within/fixed effects esti-

mator. We provide an extended discussion of cluster robust standard errors in both the OLS

and fixed effects model. We discuss the Mundlak version of the Hausman test for endogeneity.

We give brief mention to how to extend the use of panel data in several ways.
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• The Chapter 16 discussion of binary choice models is reorganized and expanded. It now

includes brief discussions of advanced topics such as binary choice models with endogenous

explanatory variables and binary choice models with panel data. We add new appendices on

random utility models and latent variable models.

• Appendix A includes new sections on second derivatives and finding maxima and minima

of univariate and bivariate functions.

• Appendix B includes new material on conditional expectations and conditional variances,

including several useful decompositions. We include new sections on truncated random vari-

ables, including the truncated normal and Poisson distributions. To facilitate discussions of

test power, we have new sections on the noncentral t-distribution, the noncentral Chi-square

distribution, and the noncentral F-distribution. We have included an expanded new section

on the log-normal distribution.

• Appendix C content does not change a great deal, but 20 new exercises are included.

• Statistical Tables for the Standard Normal cumulative distribution function, the t-distribution

and Chi-square distribution critical values for selected percentiles, the F-distribution critical

values for the 95th and 99th percentiles, and the Standard Normal density function values

appear in Appendix D.

• A useful “cheat sheet” of essential formulas is provided at the authors’ website,

www.principlesofeconometrics.com, rather than inside the covers as in the previous

edition.

For Instructors: Suggested Course Plans
Principles of Econometrics, Fifth Edition is suitable for one or two semester courses at the under-

graduate or first year graduate level. Some suitable plans for alternative courses are as follows:

• One-semester survey course: Sections P.1–P.6.2 and P.7; Sections 2.1–2.9; Chapters 3 and

4; Sections 5.1–5.6; Sections 6.1–6.5; Sections 7.1–7.3; Sections 8.1–8.4 and 8.6; Sections

9.1–9.4.2 and 9.5–9.5.1.

• One-semester survey course enhancements for Master’s or Ph.D.: Include Appendices for

Chapters 2–9.

• Two-semester survey second course, cross-section emphasis: Section P.6; Section 2.10;

Section 5.7; Section 6.6; Sections 7.4–7.6; Sections 8.5 and 8.6.3–8.6.5; Sections 10.1–10.4;

Sections 15.1–15.4; Sections 16.1–16.2 and 16.6;

• Two-semester survey second course, time series emphasis: Section P.6; Section 2.10;

Section 5.7; Section 6.6; Sections 7.4–7.6; Sections 8.5 and 8.6.3–8.6.5; Section 9.5;

Sections 10.1–10.4; Sections 12.1–12.5; Sections 13.1–13.5; Sections 14.1–14.4;

• Two-semester survey course enhancements for Master’s or Ph.D.: Include Appendices from

Chapters 10, Chapter 11, Appendices 15A–15B, Sections 16.3–16.5 and 16.7, Appendices

16A–16D, Book Appendices B and C.

Computer Supplement Books
There are several computer supplements to Principles of Econometrics, Fifth Edition. The sup-

plements are not versions of the text and cannot substitute for the text. They use the examples in

the text as a vehicle for learning the software. We show how to use the software to get the answers

for each example in the text.



�

� �

�

Preface ix

• Using EViews for the Principles of Econometrics, Fifth Edition, by William E. Griffiths,

R. Carter Hill, and Guay C. Lim [ISBN 9781118469842]. This supplementary book presents

the EViews 10 [www.eviews.com] software commands required for the examples in Princi-
ples of Econometrics in a clear and concise way. It includes many illustrations that are student

friendly. It is useful not only for students and instructors who will be using this software as

part of their econometrics course but also for those who wish to learn how to use EViews.

• Using Stata for the Principles of Econometrics, Fifth Edition, by Lee C. Adkins and

R. Carter Hill [ISBN 9781118469873]. This supplementary book presents the Stata 15.0

[www.stata.com] software commands required for the examples in Principles of Economet-
rics. It is useful not only for students and instructors who will be using this software as part

of their econometrics course but also for those who wish to learn how to use Stata. Screen

shots illustrate the use of Stata’s drop-down menus. Stata commands are explained and the

use of “do-files” illustrated.

• Using SAS for the Principles of Econometrics, Fifth Edition, by Randall C. Campbell and

R. Carter Hill [ISBN 9781118469880]. This supplementary book gives SAS 9.4 [www.sas

.com] software commands for econometric tasks, following the general outline of Principles
of Econometrics, Fifth Edition. It includes enough background material on econometrics so

that instructors using any textbook can easily use this book as a supplement. The volume

spans several levels of econometrics. It is suitable for undergraduate students who will use

“canned” SAS statistical procedures, and for graduate students who will use advanced pro-

cedures as well as direct programming in SAS’s matrix language; the latter is discussed in

chapter appendices.

• Using Excel for Principles of Econometrics, Fifth Edition, by Genevieve Briand and R. Carter

Hill [ISBN 9781118469835]. This supplement explains how to use Excel to reproduce most

of the examples in Principles of Econometrics. Detailed instructions and screen shots are

provided explaining both the computations and clarifying the operations of Excel. Templates

are developed for common tasks.

• Using GRETL for Principles of Econometrics, Fifth Edition, by Lee C. Adkins. This free

supplement, readable using Adobe Acrobat, explains how to use the freely available statistical

software GRETL (download from http://gretl.sourceforge.net). Professor Adkins explains in

detail, and using screen shots, how to use GRETL to replicate the examples in Principles of
Econometrics. The manual is freely available at www.learneconometrics.com/gretl.html.

• Using R for Principles of Econometrics, Fifth Edition, by Constantin Colonescu and

R. Carter Hill. This free supplement, readable using Adobe Acrobat, explains how to

use the freely available statistical software R (download from https://www.r-project.org/).

The supplement explains in detail, and using screen shots, how to use R to replicate the

examples in Principles of Econometrics, Fifth Edition. The manual is freely available at

https://bookdown.org/ccolonescu/RPOE5/.

Data Files
Data files for the book are provided in a variety of formats at the book website www.wiley.com

/college/hill. These include

• ASCII format (*.dat). These are text files containing only data.

• Definition files (*.def). These are text files describing the data file contents, with a listing of

variable names, variable definitions, and summary statistics.

• EViews (*.wf1) workfiles for each data file.

• Excel (*.xls) workbooks for each data file, including variable names in the first row.
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• Comma separated values (*.csv) files that can be read into almost all software.

• Stata (*.dta) data files.

• SAS (*.sas7bdat) data files.

• GRETL (*.gdt) data files.

• R (*.rdata) data files.

The author website www.principlesofeconometrics.com includes a complete list of the data files

and where they are used in the book.

Additional Resources
The book website www.principlesofeconometrics.com includes

• Individual data files in each format as well as ZIP files containing data in compressed format.

• Book errata.

• Brief answers to odd number problems. These answers are also provided on the book web-

site at www.wiley.com/college/hill.

• Additional examples with solutions. Some extra examples come with complete solutions so

that students will know what a good answer looks like.

• Tips on writing research papers.

Resources for Instructors
For instructors, also available at the website www.wiley.com/college/hill are

• Complete solutions, in both Microsoft Word and *.pdf formats, to all exercises in the text.

• PowerPoint slides and PowerPoint Viewer.
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CHAPTER 1

An Introduction to
Econometrics

1.1 Why Study Econometrics?
Econometrics is fundamental for economic measurement. However, its importance extends far

beyond the discipline of economics. Econometrics is a set of research tools also employed in

the business disciplines of accounting, finance, marketing, and management. It is used by social

scientists, specifically researchers in history, political science, and sociology. Econometrics plays

an important role in such diverse fields as forestry and agricultural economics. This breadth of

interest in econometrics arises in part because economics is the foundation of business analysis

and is the core social science. Thus, research methods employed by economists, which includes

the field of econometrics, are useful to a broad spectrum of individuals.

Econometrics plays a special role in the training of economists. As a student of economics,

you are learning to “think like an economist.” You are learning economic concepts such as oppor-

tunity cost, scarcity, and comparative advantage. You are working with economic models of

supply and demand, macroeconomic behavior, and international trade. Through this training you

become a person who better understands the world in which we live; you become someone who

understands how markets work, and the way in which government policies affect the marketplace.

If economics is your major or minor field of study, a wide range of opportunities is open to

you upon graduation. If you wish to enter the business world, your employer will want to know

the answer to the question, “What can you do for me?” Students taking a traditional economics

curriculum answer, “I can think like an economist.” While we may view such a response to be

powerful, it is not very specific and may not be very satisfying to an employer who does not

understand economics.

The problem is that a gap exists between what you have learned as an economics student

and what economists actually do. Very few economists make their livings by studying economic

theory alone, and those who do are usually employed by universities. Most economists, whether

they work in the business world or for the government, or teach in universities, engage in economic

analysis that is in part “empirical.” By this we mean that they use economic data to estimate

economic relationships, test economic hypotheses, and predict economic outcomes.

Studying econometrics fills the gap between being “a student of economics” and being

“a practicing economist.” With the econometric skills you will learn from this book, including

how to work with econometric software, you will be able to elaborate on your answer to the

employer’s question above by saying “I can predict the sales of your product.” “I can estimate the

effect on your sales if your competition lowers its price by $1 per unit.” “I can test whether your

new ad campaign is actually increasing your sales.” These answers are music to an employer’s

ears, because they reflect your ability to think like an economist and to analyze economic data.

1
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Such pieces of information are keys to good business decisions. Being able to provide your

employer with useful information will make you a valuable employee and increase your odds of

getting a desirable job.

On the other hand, if you plan to continue your education by enrolling in graduate school or

law school, you will find that this introduction to econometrics is invaluable. If your goal is to earn

a master’s or Ph.D. degree in economics, finance, data analytics, data science, accounting, mar-

keting, agricultural economics, sociology, political science, or forestry, you will encounter more

econometrics in your future. The graduate courses tend to be quite technical and mathematical,

and the forest often gets lost in studying the trees. By taking this introduction to econometrics

you will gain an overview of what econometrics is about and develop some “intuition” about how

things work before entering a technically oriented course.

1.2 What Is Econometrics About?
At this point we need to describe the nature of econometrics. It all begins with a theory from your

field of study—whether it is accounting, sociology, or economics—about how important vari-

ables are related to one another. In economics we express our ideas about relationships between

economic variables using the mathematical concept of a function. For example, to express a rela-

tionship between income and consumption, we may write

CONSUMPTION = 𝑓 (INCOME)

which says that the level of consumption is some function, f (•), of income.

The demand for an individual commodity—say, the Honda Accord—might be expressed as

Qd = 𝑓 (P,Ps
,Pc

, INC)

which says that the quantity of Honda Accords demanded, Qd, is a function f (P, Ps, Pc, INC) of

the price of Honda Accords P, the price of cars that are substitutes Ps, the price of items that are

complements Pc (like gasoline), and the level of income INC.

The supply of an agricultural commodity such as beef might be written as

Qs = 𝑓

(
P,Pc

,P𝑓
)

where Qs is the quantity supplied, P is the price of beef, Pc is the price of competitive products

in production (e.g., the price of hogs), and Pf is the price of factors or inputs (e.g., the price of

corn) used in the production process.

Each of the above equations is a general economic model that describes how we visualize

the way in which economic variables are interrelated. Economic models of this type guide our
economic analysis.

Econometrics allows us to go further than knowing that certain economic variables are inter-

related, or even the direction of a relationship. Econometrics allows us to assign magnitudes to

questions about the interrelationships between variables. One aspect of econometrics is predic-
tion or forecasting. If we know the value of INCOME, what will be the magnitude of CONSUMP-
TION? If we have values for the prices of Honda Accords, their substitutes and complements, and

income, how many Honda Accords will be sold? Similarly, we could ask how much beef would

be supplied given values of the variables on which its supply depends.

A second contribution of econometrics is to enable us to say how much a change in one

variable affects another. If the price for Honda Accords is increased, by how much will quantity

demanded decline? If the price of beef goes up, by how much will quantity supplied increase?

Finally, econometrics contributes to our understanding of the interrelationships between variables

by giving us the ability to test the validity of hypothesized relationships.
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Econometrics is about how we can use theory and data from economics, business, and the

social sciences, along with tools from statistics, to predict outcomes, answer “how much”

type questions, and test hypotheses.

1.2.1 Some Examples
Consider the problem faced by decision makers in a central bank. In the United States, the Federal

Reserve System and, in particular, the Chair of the Board of Governors of the FRB must make

decisions about interest rates. When prices are observed to rise, suggesting an increase in the

inflation rate, the FRB must make a decision about whether to dampen the rate of growth of the

economy. It can do so by raising the interest rate it charges its member banks when they borrow

money (the discount rate) or the rate on overnight loans between banks (the federal funds rate).

Increasing these rates sends a ripple effect through the economy, causing increases in other interest

rates, such as those faced by would-be investors, who may be firms seeking funds for capital

expansion or individuals who wish to buy consumer durables like automobiles and refrigerators.

This has the economic effect of increasing costs, and consumers react by reducing the quantity of

the durable goods demanded. Overall, aggregate demand falls, which slows the rate of inflation.

These relationships are suggested by economic theory.

The real question facing the Chair is “How much should we increase the discount rate to

slow inflation and yet maintain a stable and growing economy?” The answer will depend on

the responsiveness of firms and individuals to increases in the interest rates and to the effects

of reduced investment on gross national product (GNP). The key elasticities and multipliers are

called parameters. The values of economic parameters are unknown and must be estimated using

a sample of economic data when formulating economic policies.

Econometrics is about how to best estimate economic parameters given the data we have.

“Good” econometrics is important since errors in the estimates used by policymakers such as the

FRB may lead to interest rate corrections that are too large or too small, which has consequences

for all of us.

Every day, decision-makers face “how much” questions similar to those facing the FRB Chair:

• A city council ponders the question of how much violent crime will be reduced if an addi-

tional million dollars is spent putting uniformed police on the street.

• The owner of a local Pizza Hut must decide how much advertising space to purchase in the

local newspaper and thus must estimate the relationship between advertising and sales.

• Louisiana State University must estimate how much enrollment will fall if tuition is raised

by $300 per semester and thus whether its revenue from tuition will rise or fall.

• The CEO of Proctor & Gamble must predict how much demand there will be in 10 years for

the detergent Tide and how much to invest in new plant and equipment.

• A real estate developer must predict by how much population and income will increase to the

south of Baton Rouge, Louisiana, over the next few years and whether it will be profitable to

begin construction of a gambling casino and golf course.

• You must decide how much of your savings will go into a stock fund and how much into the

money market. This requires you to make predictions of the level of economic activity, the

rate of inflation, and interest rates over your planning horizon.

• A public transportation council in Melbourne, Australia, must decide how an increase in fares

for public transportation (trams, trains, and buses) will affect the number of travelers who

switch to car or bike and the effect of this switch on revenue going to public transportation.
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To answer these questions of “how much,” decision-makers rely on information provided by

empirical economic research. In such research, an economist uses economic theory and reasoning

to construct relationships between the variables in question. Data on these variables are collected

and econometric methods are used to estimate the key underlying parameters and to make pre-

dictions. The decision-makers in the above examples obtain their “estimates” and “predictions”

in different ways. The FRB has a large staff of economists to carry out econometric analyses. The

CEO of Proctor & Gamble may hire econometric consultants to provide the firm with projec-

tions of sales. You may get advice about investing from a stock broker, who in turn is provided

with econometric projections made by economists working for the parent company. Whatever the

source of your information about “how much” questions, it is a good bet that there is an economist

involved who is using econometric methods to analyze data that yield the answers.

In the next section, we show how to introduce parameters into an economic model and how

to convert an economic model into an econometric model.

1.3 The Econometric Model
What is an econometric model, and where does it come from? We will give you a general

overview, and we may use terms that are unfamiliar to you. Be assured that before you are too

far into this book, all the terminology will be clearly defined. In an econometric model we must

first realize that economic relations are not exact. Economic theory does not claim to be able

to predict the specific behavior of any individual or firm, but rather describes the average or

systematic behavior of many individuals or firms. When studying car sales we recognize that the

actual number of Hondas sold is the sum of this systematic part and a random and unpredictable

component e that we will call a random error. Thus, an econometric model representing the

sales of Honda Accords is

Qd = 𝑓 (P,Ps
,Pc

, INC) + e

The random error e accounts for the many factors that affect sales that we have omitted from this

simple model, and it also reflects the intrinsic uncertainty in economic activity.

To complete the specification of the econometric model, we must also say something about

the form of the algebraic relationship among our economic variables. For example, in your first

economics courses quantity demanded was depicted as a linear function of price. We extend that

assumption to the other variables as well, making the systematic part of the demand relation

𝑓 (P,Ps
,Pc

, INC) = β1 + β2P + β3Ps + β4Pc + β5INC

The corresponding econometric model is

Qd = β1 + β2P + β3Ps + β4Pc + β5INC + e

The coefficients β1, β2,…,β5 are unknown parameters of the model that we estimate using eco-

nomic data and an econometric technique. The functional form represents a hypothesis about the

relationship between the variables. In any particular problem, one challenge is to determine a

functional form that is compatible with economic theory and the data.

In every econometric model, whether it is a demand equation, a supply equation, or a pro-

duction function, there is a systematic portion and an unobservable random component. The

systematic portion is the part we obtain from economic theory, and includes an assumption about

the functional form. The random component represents a “noise” component, which obscures

our understanding of the relationship among variables, and which we represent using the random

variable e.

We use the econometric model as a basis for statistical inference. Using the econometric

model and a sample of data, we make inferences concerning the real world, learning something

in the process. The ways in which statistical inference are carried out include the following:

• Estimating economic parameters, such as elasticities, using econometric methods

azato
Underline
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• Predicting economic outcomes, such as the enrollment in two-year colleges in the United

States for the next 10 years

• Testing economic hypotheses, such as the question of whether newspaper advertising is better

than store displays for increasing sales

Econometrics includes all of these aspects of statistical inference. As we proceed through this

book, you will learn how to properly estimate, predict, and test, given the characteristics of the

data at hand.

1.3.1 Causality and Prediction
A question that often arises when specifying an econometric model is whether a relationship can

be viewed as both causal and predictive or only predictive. To appreciate the difference, consider

an equation where a student’s grade in Econometrics GRADE is related to the proportion of class

lectures that are skipped SKIP.

GRADE = β1 + β2SKIP + e

We would expect β2 to be negative: the greater the proportion of lectures that are skipped, the

lower the grade. But, can we say that skipping lectures causes grades to be lower? If lectures are

captured by video, they could be viewed at another time. Perhaps a student is skipping lectures

because he or she has a demanding job, and the demanding job does not leave enough time for

study, and this is the underlying cause of a poor grade. Or, it might be that skipping lectures comes

from a general lack of commitment or motivation, and this is the cause of a poor grade. Under

these circumstances, what can we say about the equation that relates GRADE to SKIP? We can

still call it a predictive equation. GRADE and SKIP are (negatively) correlated and so information

about SKIP can be used to help predict GRADE. However, we cannot call it a causal relationship.

Skipping lectures does not cause a low grade. The parameter β2 does not convey the direct causal

effect of skipping lectures on grade. It also includes the effect of other variables that are omitted

from the equation and correlated with SKIP, such as hours spent studying or student motivation.

Economists are frequently interested in parameters that can be interpreted as causal. Honda

would like to know the direct effect of a price change on the sales of their Accords. When there is

technological improvement in the beef industry, the price elasticities of demand and supply have

important implications for changes in consumer and producer welfare. One of our tasks will be

to see what assumptions are necessary for an econometric model to be interpreted as causal and

to assess whether those assumptions hold.

An area where predictive relationships are important is in the use of “big data.” Advances

in computer technology have led to storage of massive amounts of information. Travel sites on

the Internet keep track of destinations you have been looking at. Google targets you with adver-

tisements based on sites that you have been surfing. Through their loyalty cards, supermarkets

keep data on your purchases and identify sale items relevant for you. Data analysts use big data

to identify predictive relationships that help predict our behavior.

In general, the type of data we have impacts on the specification of an econometric model

and the assumptions that we make about it. We turn now to a discussion of different types of data

and where they can be found.

1.4 How Are Data Generated?
In order to carry out statistical inference we must have data. Where do data come from? What

type of real processes generate data? Economists and other social scientists work in a complex

world in which data on variables are “observed” and rarely obtained from a controlled experiment.

This makes the task of learning about economic parameters all the more difficult. Procedures for

using such data to answer questions of economic importance are the subject matter of this book.
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1.4.1 Experimental Data
One way to acquire information about the unknown parameters of economic relationships is to

conduct or observe the outcome of an experiment. In the physical sciences and agriculture, it is

easy to imagine controlled experiments. Scientists specify the values of key control variables and

then observe the outcome. We might plant similar plots of land with a particular variety of wheat,

and then vary the amounts of fertilizer and pesticide applied to each plot, observing at the end of

the growing season the bushels of wheat produced on each plot. Repeating the experiment on N
plots of land creates a sample of N observations. Such controlled experiments are rare in business

and the social sciences. A key aspect of experimental data is that the values of the explanatory

variables can be fixed at specific values in repeated trials of the experiment.

One business example comes from marketing research. Suppose we are interested in the

weekly sales of a particular item at a supermarket. As an item is sold it is passed over a scanning

unit to record the price and the amount that will appear on your grocery bill. But at the same

time, a data record is created, and at every point in time the price of the item and the prices of

all its competitors are known, as well as current store displays and coupon usage. The prices and

shopping environment are controlled by store management, so this “experiment” can be repeated

a number of days or weeks using the same values of the “control” variables.

There are some examples of planned experiments in the social sciences, but they are rare

because of the difficulties in organizing and funding them. A notable example of a planned

experiment is Tennessee’s Project Star.1 This experiment followed a single cohort of elementary

school children from kindergarten through the third grade, beginning in 1985 and ending in 1989.

In the experiment children and teachers were randomly assigned within schools into three types

of classes: small classes with 13–17 students, regular-sized classes with 22–25 students, and

regular-sized classes with a full-time teacher aide to assist the teacher. The objective was to deter-

mine the effect of small classes on student learning, as measured by student scores on achievement

tests. We will analyze the data in Chapter 7 and show that small classes significantly increase

performance. This finding will influence public policy toward education for years to come.

1.4.2 Quasi-Experimental Data
It is useful to distinguish between “pure” experimental data and “quasi”-experimental data. A

pure experiment is characterized by random assignment. In the example where varying amounts

of fertilizer and pesticides are applied to plots of land for growing wheat, the different applications

of fertilizer and pesticides are randomly assigned to different plots. In Tennessee’s Project Star,

students and teachers are randomly assigned to different sized classes with and without a teacher’s

aide. In general, if we have a control group and a treatment group, and we want to examine the

effect of a policy intervention or treatment, pure experimental data are such that individuals are

randomly assigned to the control and treatment groups.

Random assignment is not always possible however, particularly when dealing with human

subjects. With quasi-experimental data, allocation to the control and treatment groups is not ran-

dom but based on another criterion. An example is a study by Card and Krueger that is studied

in more detail in Chapter 7. They examined the effect of an increase in New Jersey’s minimum

wage in 1992 on the number of people employed in fast-food restaurants. The treatment group

was fast-food restaurants in New Jersey. The control group was fast-food restaurants in eastern

Pennsylvania where there was no change in the minimum wage. Another example is the effect on

spending habits of a change in the income tax rate for individuals above a threshold income. The

treatment group is the group with incomes above the threshold. The control group is those with

incomes below the threshold. When dealing with quasi-experimental data, one must be aware that

the effect of the treatment may be confounded with the effect of the criterion for assignment.

............................................................................................................................................

1See https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/10766 for program description, public use

data, and extensive literature.



�

� �

�

1.5 Economic Data Types 7

1.4.3 Nonexperimental Data
An example of nonexperimental data is survey data. The Public Policy Research Lab at Louisiana

State University (www.survey.lsu.edu) conducts telephone and mail surveys for clients. In a tele-

phone survey, numbers are selected randomly and called. Responses to questions are recorded

and analyzed. In such an environment, data on all variables are collected simultaneously, and the

values are neither fixed nor repeatable. These are nonexperimental data.

Such surveys are carried out on a massive scale by national governments. For example, the

Current Population Survey (CPS)2 is a monthly survey of about 50,000 households conducted

by the U.S. Bureau of the Census. The survey has been conducted for more than 50 years. The

CPS website says “CPS data are used by government policymakers and legislators as important

indicators of our nation’s economic situation and for planning and evaluating many govern-

ment programs. They are also used by the press, students, academics, and the general public.”

In Section 1.8 we describe some similar data sources.

1.5 Economic Data Types
Economic data comes in a variety of “flavors.” In this section we describe and give an example

of each. In each example, be aware of the different data characteristics, such as the following:

1. Data may be collected at various levels of aggregation:

⚬ micro—data collected on individual economic decision-making units such as individuals,

households, and firms.

⚬ macro—data resulting from a pooling or aggregating over individuals, households, or

firms at the local, state, or national levels.

2. Data may also represent a flow or a stock:

⚬ flow—outcome measures over a period of time, such as the consumption of gasoline dur-

ing the last quarter of 2018.

⚬ stock—outcome measured at a particular point in time, such as the quantity of crude oil

held by ExxonMobil in its U.S. storage tanks on November 1, 2018, or the asset value of

the Wells Fargo Bank on July 1, 2018.

3. Data may be quantitative or qualitative:

⚬ quantitative—outcomes such as prices or income that may be expressed as numbers or

some transformation of them, such as real prices or per capita income.

⚬ qualitative—outcomes that are of an “either-or” situation. For example, a consumer either

did or did not make a purchase of a particular good, or a person either is or is not married.

1.5.1 Time-Series Data
A time-series is data collected over discrete intervals of time. Examples include the annual price

of wheat in the United States and the daily price of General Electric stock shares. Macroeconomic

data are usually reported in monthly, quarterly, or annual terms. Financial data, such as stock

prices, can be recorded daily, or at even higher frequencies. The key feature of time-series data is

that the same economic quantity is recorded at a regular time interval.

For example, the annual real gross domestic product (GDP) for the United States is depicted

in Figure 1.1. A few values are given in Table 1.1. For each year, we have the recorded value.

The data are annual, or yearly, and have been “deflated” by the Bureau of Economic Analysis to

billions of real 2009 dollars.

............................................................................................................................................

2www.census.gov/cps/
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FIGURE 1.1 Real U.S. GDP, 1994–2014.3

T A B L E 1.1
U.S. Annual GDP (Billions
of Real 2009 Dollars)

Year GDP
2006 14,613.8

2007 14,873.7

2008 14,830.4

2009 14,418.7

2010 14,783.8

2011 15,020.6

2012 15,354.6

2013 15,583.3

2014 15,961.7

1.5.2 Cross-Section Data
A cross-section of data is collected across sample units in a particular time period. Examples are

income by counties in California during 2016 or high school graduation rates by state in 2015. The

“sample units” are individual entities and may be firms, persons, households, states, or countries.

For example, the CPS reports results of personal interviews on a monthly basis, covering items

such as employment, unemployment, earnings, educational attainment, and income. In Table 1.2,

we report a few observations from the March 2013 survey on the variables RACE, EDUCATION,
SEX, and WAGE (hourly wage rate).4 There are many detailed questions asked of the respondents.

............................................................................................................................................

3Source: www.bea.gov/national/index.htm

4In the actual raw data, the variable descriptions are coded differently to the names in Table 1.2. We have used

shortened versions for convenience.
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T A B L E 1.2 Cross-Section Data: CPS, March 2013

Variables
Individual RACE EDUCATION SEX WAGE

1 White Assoc Degree Male 10.00

2 White Master’s Degree Male 60.83

3 Black Bachelor’s Degree Male 17.80

4 White High School Graduate Female 30.38

5 White Master’s Degree Male 12.50

6 White Master’s Degree Female 49.50

7 White Master’s Degree Female 23.08

8 Black Assoc Degree Female 28.95

9 White Some College, No Degree Female 9.20

1.5.3 Panel or Longitudinal Data
A “panel” of data, also known as “longitudinal” data, has observations on individual micro-units

that are followed over time. For example, the Panel Study of Income Dynamics (PSID)5 describes

itself as “a nationally representative longitudinal study of nearly 9000 U.S. families. Following the

same families and individuals since 1969, the PSID collects data on economic, health, and social

behavior.” Other national panels exist, and many are described at “Resources for Economists,” at

www.rfe.org.

To illustrate, data from two rice farms6 are given in Table 1.3. The data are annual observa-

tions on rice farms (or firms) over the period 1990–1997.

The key aspect of panel data is that we observe each micro-unit, here a farm, for a number of

time periods. Here we have amount of rice produced, area planted, labor input, and fertilizer use.

If we have the same number of time period observations for each micro-unit, which is the case

here, we have a balanced panel. Usually the number of time-series observations is small relative

to the number of micro-units, but not always. The Penn World Table7 provides purchasing power

parity and national income accounts converted to international prices for 182 countries for some

or all of the years 1950–2014.

1.6 The Research Process
Econometrics is ultimately a research tool. Students of econometrics plan to do research or they

plan to read and evaluate the research of others, or both. This section provides a frame of reference

and guide for future work. In particular, we show you the role of econometrics in research.

Research is a process, and like many such activities, it flows according to an orderly pattern.

Research is an adventure, and can be fun! Searching for an answer to your question, seeking new

knowledge, is very addictive—for the more you seek, the more new questions you will find.

A research project is an opportunity to investigate a topic that is important to you. Choosing

a good research topic is essential if you are to complete a project successfully. A starting point

is the question “What are my interests?” Interest in a particular topic will add pleasure to the

............................................................................................................................................

5http://psidonline.isr.umich.edu

6These data were used by O’Donnell, C.J. and W.E. Griffiths (2006), Estimating State-Contingent Production Frontiers,

American Journal of Agricultural Economics, 88(1), 249–266.

7www.rug.nl/ggdc/productivity/pwt
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T A B L E 1.3 Panel Data from Two Rice Farms

FARM YEAR PROD AREA LABOR FERT

1 1990 7.87 2.50 160 207.5

1 1991 7.18 2.50 138 295.5

1 1992 8.92 2.50 140 362.5

1 1993 7.31 2.50 127 338.0

1 1994 7.54 2.50 145 337.5

1 1995 4.51 2.50 123 207.2

1 1996 4.37 2.25 123 345.0

1 1997 7.27 2.15 87 222.8

2 1990 10.35 3.80 184 303.5

2 1991 10.21 3.80 151 206.0

2 1992 13.29 3.80 185 374.5

2 1993 18.58 3.80 262 421.0

2 1994 17.07 3.80 174 595.7

2 1995 16.61 4.25 244 234.8

2 1996 12.28 4.25 159 479.0

2 1997 14.20 3.75 133 170.0

research effort. Also, if you begin working on a topic, other questions will usually occur to you.

These new questions may put another light on the original topic or may represent new paths to

follow that are even more interesting to you. The idea may come after lengthy study of all that

has been written on a particular topic. You will find that “inspiration is 99% perspiration.” That

means that after you dig at a topic long enough, a new and interesting question will occur to you.

Alternatively, you may be led by your natural curiosity to an interesting question. Professor Hal

Varian8 suggests that you look for ideas outside academic journals—in newspapers, magazines,

etc. He relates a story about a research project that developed from his shopping for a new TV set.

By the time you have completed several semesters of economics classes, you will find your-

self enjoying some areas more than others. For each of us, specialized areas such as health

economics, economic development, industrial organization, public finance, resource economics,

monetary economics, environmental economics, and international trade hold a different appeal.

If you find an area or topic in which you are interested, consult the Journal of Economic Liter-
ature (JEL) for a list of related journal articles. The JEL has a classification scheme that makes

isolating particular areas of study an easy task. Alternatively, type a few descriptive words into

your favorite search engine and see what pops up.

Once you have focused on a particular idea, begin the research process, which generally

follows steps like these:

1. Economic theory gives us a way of thinking about the problem. Which economic variables

are involved, and what is the possible direction of the relationship(s)? Every research project,

given the initial question, begins by building an economic model and listing the questions

(hypotheses) of interest. More questions will arise during the research project, but it is good

to list those that motivate you at the project’s beginning.

2. The working economic model leads to an econometric model. We must choose a functional

form and make some assumptions about the nature of the error term.

............................................................................................................................................

8Varian, H. How to Build an Economic Model in Your Spare Time, The American Economist, 41(2), Fall 1997,

pp. 3–10.
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3. Sample data are obtained and a desirable method of statistical analysis chosen, based on

initial assumptions and an understanding of how the data were collected.

4. Estimates of the unknown parameters are obtained with the help of a statistical software

package, predictions are made, and hypothesis tests are performed.

5. Model diagnostics are performed to check the validity of assumptions. For example, were

all of the right-hand side explanatory variables relevant? Was an adequate functional form

used?

6. The economic consequences and the implications of the empirical results are analyzed and

evaluated. What economic resource allocation and distribution results are implied, and what

are their policy-choice implications? What remaining questions might be answered with

further study or with new and better data?

These steps provide some direction for what must be done. However, research always includes

some surprises that may send you back to an earlier point in your research plan or that may even

cause you to revise it completely. Research requires a sense of urgency, which keeps the project

moving forward, the patience not to rush beyond careful analysis, and the willingness to explore

new ideas.

1.7 Writing an Empirical Research Paper
Research rewards you with new knowledge, but it is incomplete until a research paper or report

is written. The process of writing forces the distillation of ideas. In no other way will your

depth of understanding be so clearly revealed. When you have difficulty explaining a concept

or thought, it may mean that your understanding is incomplete. Thus, writing is an integral part

of research. We provide this section as a building block for future writing assignments. Con-

sult it as needed. You will find other tips on writing economics papers on the book website,

www.principlesofeconometrics.com.

1.7.1 Writing a Research Proposal
After you have selected a specific topic, it is a good idea to write up a brief project summary, or

proposal. Writing it will help to focus your thoughts about what you really want to do. Show it to

your colleagues or instructor for preliminary comments. The summary should be short, usually

no longer than 500 words, and should include the following:

1. A concise statement of the problem

2. Comments on the information that is available, with one or two key references

3. A description of the research design that includes

a. the economic model

b. the econometric estimation and inference methods

c. data sources

d. estimation, hypothesis testing, and prediction procedures, including the econometric

software and version used

4. The potential contribution of the research

1.7.2 A Format for Writing a Research Report
Economic research reports have a standard format in which the various steps of the research

project are discussed and the results interpreted. The following outline is typical.
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1. Statement of the Problem The place to start your report is with a summary of the questions

you wish to investigate as well as why they are important and who should be interested in the

results. This introductory section should be nontechnical and should motivate the reader

to continue reading the paper. It is also useful to map out the contents of the following

sections of the report. This is the first section to work on and also the last. In today’s busy

world, the reader’s attention must be garnered very quickly. A clear, concise, well-written

introduction is a must and is arguably the most important part of the paper.

2. Review of the Literature Briefly summarize the relevant literature in the research area

you have chosen and clarify how your work extends our knowledge. By all means, cite the

works of others who have motivated your research, but keep it brief. You do not have to

survey everything that has been written on the topic.

3. The Economic Model Specify the economic model that you used and define the economic

variables. State the model’s assumptions and identify hypotheses that you wish to test.

Economic models can get complicated. Your task is to explain the model clearly, but as

briefly and simply as possible. Don’t use unnecessary technical jargon. Use simple terms

instead of complicated ones when possible. Your objective is to display the quality of your

thinking, not the extent of your vocabulary.

4. The Econometric Model Discuss the econometric model that corresponds to the economic

model. Make sure you include a discussion of the variables in the model, the functional

form, the error assumptions, and any other assumptions that you make. Use notation that is

as simple as possible, and do not clutter the body of the paper with long proofs or deriva-

tions; these can go into a technical appendix.

5. The Data Describe the data you used, as well as the source of the data and any reservations

you have about their appropriateness.

6. The Estimation and Inference Procedures Describe the estimation methods you used and

why they were chosen. Explain hypothesis testing procedures and their usage. Indicate the

software used and the version, such as Stata 15 or EViews 10.

7. The Empirical Results and Conclusions Report the parameter estimates, their interpreta-

tion, and the values of test statistics. Comment on their statistical significance, their relation

to previous estimates, and their economic implications.

8. Possible Extensions and Limitations of the Study Your research will raise questions about

the economic model, data, and estimation techniques. What future research is suggested by

your findings, and how might you go about performing it?

9. Acknowledgments It is appropriate to recognize those who have commented on and con-

tributed to your research. This may include your instructor, a librarian who helped you find

data, or a fellow student who read and commented on your paper.

10. References An alphabetical list of the literature you cite in your study, as well as references

to the data sources you used.

Once you’ve written the first draft, use your computer’s spell-check software to check for spelling

errors. Have a friend read the paper, make suggestions for clarifying the prose, and check your

logic and conclusions. Before you submit the paper, you should eliminate as many errors as pos-

sible. Your work should look good. Use a word processor, and be consistent with font sizes,

section headings, style of footnotes, references, and so on. Often software developers provide

templates for term papers and theses. A little searching for a good paper layout before beginning

is a good idea. Typos, missing references, and incorrect formulas can spell doom for an otherwise

excellent paper. Some do’s and don’ts are summarized nicely, and with good humor, by Deidre

N. McClosky in Economical Writing, 2nd edition (Prospect Heights, IL: Waveland Press, Inc.,

1999).

While it is not a pleasant topic to discuss, you should be aware of the rules of plagiarism.

You must not use someone else’s words as if they were your own. If you are unclear about what

you can and cannot use, check with the style manuals listed in the next paragraph, or consult
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your instructor. Your university may provide a plagiarism-checking software, such as Turnitin

or iThenticate, that will compare your paper to millions of online sources and look for problem

areas. There are some free online versions as well. The paper should have clearly defined sections

and subsections. The pages, equations, tables, and figures should be numbered. References and

footnotes should be formatted in an acceptable fashion. A style guide is a good investment. Two

classics are the following:

• The Chicago Manual of Style, 16th edition, is available online and in other formats.

• A Manual for Writers of Research Papers, Theses, and Dissertations: Chicago Style for Stu-
dents and Researchers, 8th edition, by Kate L. Turabian; revised by Wayne C. Booth, Gregory

G. Colomb, and Joseph M Williams (2013, University of Chicago Press).

1.8 Sources of Economic Data
Economic data are much easier to obtain since the development of the World Wide Web. In this

section we direct you to some places on the Internet where economic data are accessible. During

your study of econometrics, browse some of the sources listed to gain some familiarity with data

availability.

1.8.1 Links to Economic Data on the Internet
There are a number of fantastic sites on the World Wide Web for obtaining economic data.

Resources for Economists (RFE) www.rfe.org is a primary gateway to resources on

the Internet for economists. This excellent site is the work of Bill Goffe. Here you will find links

to sites for economic data and sites of general interest to economists. The Data link has these

broad data categories:

• U.S. Macro and Regional Data Here you will find links to various data sources such as the

Bureau of Economic Analysis, Bureau of Labor Statistics, Economic Reports of the Presi-
dent, and the Federal Reserve Banks.

• Other U.S. Data Here you will find links to the U.S. Census Bureau, as well as links to

many panel and survey data sources. The gateway to U.S. government agencies is FedStats

(fedstats.sites.usa.gov). Once there, click on Agencies to see a complete list of U.S. govern-

ment agencies and links to their homepages.

• World and Non-U.S. Data Here there are links to world data, such as at the CIA World

Factbook and the Penn World Tables, as well as international organizations such as the Asian

Development Bank, the International Monetary Fund, the World Bank, and so on. There are

also links to sites with data on specific countries and sectors of the world.

• Finance and Financial Markets Here are links to sources of U.S. and world financial data

on variables such as exchange rates, interest rates, and share prices.

• Journal Data and Program Archives Some economic journals post data used in articles.

Links to these journals are provided here. (Many of the articles in these journals will be

beyond the scope of undergraduate economics majors.)

National Bureau of Economic Research (NBER) www.nber.org/data provides

access to a great amount of data. There are headings for

• Macro Data

• Industry Productivity and Digitalization Data

• International Trade Data
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• Individual Data

• Healthcare Data—Hospitals, Providers, Drugs, and Devices

• Demographic and Vital Statistics

• Patent and Scientific Papers Data

• Other Data

Economagic Some websites make extracting data relatively easy. For example, Econo-

magic (www.economagic.com) is an excellent and easy-to-use source of macro time series (some

100,000 series available). The data series are easily viewed in a copy and paste format, or graphed.

1.8.2 Interpreting Economic Data
In many cases it is easier to obtain economic data than it is to understand the meaning of the data.

It is essential when using macroeconomic or financial data that you understand the definitions

of the variables. Just what is the index of leading economic indicators? What is included in per-

sonal consumption expenditures? You may find the answers to some questions like these in your

textbooks. Another resource you might find useful is A Guide to Everyday Economic Statistics,

7th edition, by Gary E. Clayton and Martin Gerhard Giesbrecht, (Boston: Irwin/McGraw-Hill,

2009). This slender volume examines how economic statistics are constructed, and how they can

be used.

1.8.3 Obtaining the Data
Finding a data source is not the same as obtaining the data. Although there are a great many

easy-to-use websites, “easy-to-use” is a relative term. The data will come packaged in a variety

of formats. It is also true that there are many, many variables at each of these websites. A primary

challenge is identifying the specific variables that you want, and what exactly they measure. The

following examples are illustrative.

The Federal Reserve Bank of St. Louis 9 has a system called FRED (Federal Reserve Eco-

nomic Data). Under “Categories” there are links to financial variables, population and labor vari-

ables, national accounts, and many others. Data on these variables can be downloaded in a number

of formats. For reading the data, you may need specific knowledge of your statistical software.

Accompanying Principles of Econometrics, 5e, are computer manuals for Excel, EViews, Stata,

SAS, R, and Gretl to aid this process. See the publisher website www.wiley.com/college/hill, or

the book website at www.principlesofeconometrics.com for a description of these aids.

The CPS (www.census.gov/cps) has a tool called DataFerrett. This tool will help you find

and download data series that are of particular interest to you. There are tutorials that guide you

through the process. Variable descriptions, as well as the specific survey questions, are provided

to aid in your selection. It is somewhat like an Internet shopping site. Desired series are “ticked”

and added to a “Shopping Basket.” Once you have filled your basket, you download the data to use

with specific software. Other Web-based data sources operate in this same manner. One example

is the PSID.10 The Penn World Tables11 offer data downloads in both Excel and Stata formats.

You can expect to find massive amounts of readily available data at the various sites we have

mentioned, but there is a learning curve. You should not expect to find, download, and process

the data without considerable work effort. Being skilled with Excel and statistical software is a

must if you plan to regularly use these data sources.

............................................................................................................................................

9https://fred.stlouisfed.org

10http://psidonline.isr.umich.edu

11www.rug.nl/ggdc/productivity/pwt
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L E A R N I N G O B J E C T I V E S

Remark
Learning Objectives and Keywords sections will appear at the beginning of each chapter. We

urge you to think about, and possibly write out answers to the questions, and make sure you

recognize and can define the keywords. If you are unsure about the questions or answers,

consult your instructor. When examples are requested in Learning Objectives sections, you

should think of examples not in the book.

Based on the material in this primer, you should be able to

1. Explain the difference between a random

variable and its values, and give an example.

2. Explain the difference between discrete and

continuous random variables, and give

examples of each.

3. State the characteristics of a probability density

function (pdf ) for a discrete random variable,

and give an example.

4. Compute probabilities of events, given a discrete

probability function.

5. Explain the meaning of the following statement:

‘‘The probability that the discrete random

variable takes the value 2 is 0.3.’’

6. Explain how the pdf of a continuous random

variable is different from the pdf of a discrete

random variable.

7. Show, geometrically, how to compute

probabilities given a pdf for a continuous

random variable.

8. Explain, intuitively, the concept of the mean, or

expected value, of a random variable.

9. Use the definition of expected value for a

discrete random variable to compute expec-

tations, given a pdf f (x) and a function g(X) of X.

10. Define the variance of a discrete random

variable, and explain in what sense the values of

a random variable are more spread out if the

variance is larger.

11. Use a joint pdf (table) for two discrete random

variables to compute probabilities of joint

events and to find the (marginal) pdf of each

individual random variable.

12. Find the conditional pdf for one discrete random

variable given the value of another and their

joint pdf .

13. Work with single and double summation

notation.

14. Give an intuitive explanation of statistical

independence of two random variables, and

state the conditions that must hold to prove

statistical independence. Give examples of two

independent random variables and two

dependent random variables.

15
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15. Define the covariance and correlation between

two random variables, and compute these

values given a joint probability function of two

discrete random variables.

16. Find the mean and variance of a sum of random

variables.

17. Use Statistical Table 1, Cumulative Probabilities

for the Standard Normal Distribution, and your

computer software to compute probabilities

involving normal random variables.

18. Use the Law of Iterated Expectations to find the

expected value of a random variable.

K E Y W O R D S

conditional expectation

conditional pdf
conditional probability

continuous random variable

correlation

covariance

cumulative distribution function

discrete random variable

expected value

experiment

indicator variable

iterated expectation

joint probability density function

marginal distribution

mean

normal distribution

population

probability

probability density function

random variable

standard deviation

standard normal distribution

statistical independence

summation operations

variance

We assume that you have had a basic probability and statistics course. In this primer, we review

some essential probability concepts. Section P.1 defines discrete and continuous random vari-

ables. Probability distributions are discussed in Section P.2. Section P.3 introduces joint probabil-

ity distributions, defines conditional probability and statistical independence. In Section P.4, we

digress and discuss operations with summations. In Section P.5, we review the properties of prob-

ability distributions, paying particular attention to expected values and variances. In Section P.6,

we discuss the important concept of conditioning, and how knowing the value of one variable

might provide information about, or help us predict, another variable. Section P.7 summarizes

important facts about the normal probability distribution. In Appendix B, “Probability Concepts,”

are enhancements and additions to this material.

P.1 Random Variables
Benjamin Franklin is credited with the saying “The only things certain in life are death and taxes.”

While not the original intent, this bit of wisdom points out that almost everything we encounter

in life is uncertain. We do not know how many games our football team will win next season. You

do not know what score you will make on the next exam. We don’t know what the stock market

index will be tomorrow. These events, or outcomes, are uncertain, or random. Probability gives

us a way to talk about possible outcomes.

A random variable is a variable whose value is unknown until it is observed; in other words,

it is a variable that is not perfectly predictable. Each random variable has a set of possible values it

can take. If W is the number of games our football team wins next year, then W can take the values

0, 1, 2, …, 13, if there are a maximum of 13 games. This is a discrete random variable since

it can take only a limited, or countable, number of values. Other examples of discrete random

variables are the number of computers owned by a randomly selected household, and the number

of times you will visit your physician next year. A special case occurs when a random variable

can only be one of two possible values—for example, in a phone survey, if you are asked if you

are a college graduate or not, your answer can only be “yes” or “no.” Outcomes like this can

be characterized by an indicator variable taking the values one if yes or zero if no. Indicator

variables are discrete and are used to represent qualitative characteristics such as sex (male or

female) or race (white or nonwhite).
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The U.S. GDP is yet another example of a random variable, because its value is unknown

until it is observed. In the third quarter of 2014 it was calculated to be 16,164.1 billion dollars.

What the value will be in the second quarter of 2025 is unknown, and it cannot be predicted

perfectly. GDP is measured in dollars and it can be counted in whole dollars, but the value is so

large that counting individual dollars serves no purpose. For practical purposes, GDP can take

any value in the interval zero to infinity, and it is treated as a continuous random variable.

Other common macroeconomic variables, such as interest rates, investment, and consumption,

are also treated as continuous random variables. In finance, stock market indices, like the Dow

Jones Industrial Index, are also treated as continuous. The key attribute of these variables that

makes them continuous is that they can take any value in an interval.

P.2 Probability Distributions
Probability is usually defined in terms of experiments. Let us illustrate this in the context of a

simple experiment. Consider the objects in Table P.1 to be a population of interest. In statistics and

econometrics, the term population is an important one. A population is a group of objects, such

as people, farms, or business firms, having something in common. The population is a complete

set and is the focus of an analysis. In this case the population is the set of ten objects shown

in Table P.1. Using this population, we will discuss some probability concepts. In an empirical
analysis, a sample of observations is collected from the population of interest, and using the

sample observations we make inferences about the population.

If we were to select one cell from the table at random (imagine cutting the table into 10

equally sized pieces of paper, stirring them up, and drawing one of the slips without looking), that

would constitute a random experiment. Based on this random experiment, we can define several

random variables. For example, let the random variable X be the numerical value showing on a

slip that we draw. (We use uppercase letters like X to represent random variables in this primer).

The term random variable is a bit odd, as it is actually a rule for assigning numerical values to

experimental outcomes. In the context of Table P.1, the rule says, “Perform the experiment (stir

the slips, and draw one) and for the slip that you obtain assign X to be the number showing.”

The values that X can take are denoted by corresponding lowercase letters, x, and in this case the

values of X are x = 1, 2, 3, or 4.

For the experiment using the population in Table P.1,1 we can create a number of random

variables. Let Y be a discrete random variable designating the color of the slip, with Y = 1 denoting

T A B L E P.1 The Seussian Slips: A Population

1 2 3 4 4

2 3 3 4 4

............................................................................................................................................

1A table suitable for classroom experiments can be obtained at www.principlesofeconometrics.com/poe5/extras/

table_p1. We thank Veronica Deschner McGregor for the suggestion of “One slip, two slip, white slip, blue slip” for this

experiment, inspired by Dr. Seuss’s “One Fish Two Fish Red Fish Blue Fish (I Can Read It All by Myself),” Random

House Books for Young Readers (1960).
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a shaded slip and Y = 0 denoting a slip with no shading. The numerical values that Y can take are

y = 0, 1.

Consider X, the numerical value on the slip. If the slips are equally likely to be chosen after

shuffling, then in a large number of experiments (i.e., shuffling and drawing one of the ten slips),

10% of the time we would observe X = 1, 20% of the time X = 2, 30% of the time X = 3, and

40% of the time X = 4. These are probabilities that the specific values will occur. We would say,

for example, P(X = 3) = 0.3. This interpretation is tied to the relative frequency of a particular

outcome’s occurring in a large number of experiment replications.

We summarize the probabilities of possible outcomes using a probability density function
(pdf ). The pdf for a discrete random variable indicates the probability of each possible value

occurring. For a discrete random variable X the value of the pdf f (x) is the probability that the

random variable X takes the value x, f (x) = P(X = x). Because f (x) is a probability, it must be true

that 0 ≤ f (x) ≤ 1 and, if X takes n possible values x1,…, xn, then the sum of their probabilities

must be one

𝑓

(
x1

)
+ 𝑓

(
x2

)
+ · · · + 𝑓

(
xn
)
= 1 (P.1)

For discrete random variables, the pdf might be presented as a table, such as in Table P.2.

As shown in Figure P.1, the pdf may also be represented as a bar graph, with the height of

the bar representing the probability with which the corresponding value occurs.

The cumulative distribution function (cdf ) is an alternative way to represent probabilities.

The cdf of the random variable X, denoted F(x), gives the probability that X is less than or equal

to a specific value x. That is,

F(x) = P(X ≤ x) (P.2)

T A B L E P.2

Probability
Density
Function of X

x f (x)

1 0.1

2 0.2

3 0.3

4 0.4

0.45

Pr
ob

ab
ili

ty

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05
1 2 3 4

X value

FIGURE P.1 Probability density function for X.
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E X A M P L E P.1 Using a cdf

Using the probabilities in Table P.2, we find that F(1) =
P(X ≤ 1) = 0.1, F(2) = P(X ≤ 2) = 0.3, F(3) = P(X ≤ 3) =
0.6, and F(4) = P(X ≤ 4) = 1. For example, using the pdf
f (x) we compute the probability that X is less than or equal

to 2 as

F(2) = P(X ≤ 2) = P(X = 1) + P(X = 2) = 0.1 + 0.2 = 0.3

Since the sum of the probabilities P(X = 1) + P(X = 2) +
P(X = 3) + P(X = 4) = 1, we can compute the probability

that X is greater than 2 as

P(X > 2) = 1 − P(X ≤ 2) = 1 − F(2) = 1 − 0.3 = 0.7

An important difference between the pdf and cdf for X is

revealed by the question “Using the probability distribution

in Table P.2, what is the probability that X = 2.5?” This prob-

ability is zero because X cannot take this value. The question

“What is the probability that X is less than or equal to 2.5?”

does have an answer.

F(2.5) = P(X ≤ 2.5) = P(X = 1) + P(X = 2)
= 0.1 + 0.2 = 0.3

The cumulative probability can be calculated for any x
between −∞ and +∞.

Continuous random variables can take any value in an interval and have an uncountable number

of values. Consequently, the probability of any specific value is zero. For continuous random

variables, we talk about outcomes being in a certain range. Figure P.2 illustrates the pdf f (x) of a

continuous random variable X that takes values of x from 0 to infinity. The shape is representative

of the distribution for an economic variable such as an individual’s income or wage. Areas under

the curve represent probabilities that X falls in an interval. The cdf F(x) is defined as in (P.2). For

this distribution,

P(10 < X < 20) = F(20) − F(10) = 0.52236 − 0.17512

= 0.34724 (P.3)

How are these areas obtained? The integral from calculus gives the area under a curve. We will

not compute many integrals in this book.2 Instead, we will use the computer and compute cdf
values and probabilities using software commands.

0
f(

x)

0 10 20 30 40 50
x

P(10 < X < 20)

FIGURE P.2 Probability density function for a continuous random
variable.

............................................................................................................................................

2See Appendix A.4 for a brief explanation of integrals, and illustrations using integrals to compute probabilities in

Appendix B.2.1. The calculations in (P.3) are explained in Appendix B.3.9.
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P.3 Joint, Marginal, and Conditional

Probabilities
Working with more than one random variable requires a joint probability density function. For

the population in Table P.1 we defined two random variables, X the numeric value of a randomly

drawn slip and the indicator variable Y that equals 1 if the selected slip is shaded, and 0 if it is

not shaded.

Using the joint pdf for X and Y we can say “The probability of selecting a shaded 2 is 0.10.”

This is a joint probability because we are talking about the probability of two events occurring

simultaneously; the selection takes the value X = 2 and the slip is shaded so that Y = 1. We can

write this as

P(X = 2 and Y = 1) = P(X = 2, Y = 1) = 𝑓 (x = 2, y = 1) = 0.1

The entries in Table P.3 are probabilities f (x, y) = P(X = x, Y = y) of joint outcomes. Like the pdf
of a single random variable, the sum of the joint probabilities is 1.

P.3.1 Marginal Distributions
Given a joint pdf , we can obtain the probability distributions of individual random variables,

which are also known as marginal distributions. In Table P.3, we see that a shaded slip, Y = 1,

can be obtained with the values x = 1, 2, 3, and 4. The probability that we select a shaded slip

is the sum of the probabilities that we obtain a shaded 1, a shaded 2, a shaded 3, and a shaded 4.

The probability that Y = 1 is

P(Y = 1) = 𝑓Y (1) = 0.1 + 0.1 + 0.1 + 0.1 = 0.4

This is the sum of the probabilities across the second row of the table. Similarly the probabil-

ity of drawing a white slip is the sum of the probabilities across the first row of the table, and

P(Y = 0) = fY(0) = 0 + 0.1 + 0.2 + 0.3 = 0.6, where fY(y) denotes the pdf of the random variable

Y . The probabilities P(X = x) are computed similarly by summing down across the values of Y .

The joint and marginal distributions are often reported as in Table P.4.3

T A B L E P.3

Joint Probability
Density Function
for X and Y

x
y 1 2 3 4

0 0 0.1 0.2 0.3

1 0.1 0.1 0.1 0.1

T A B L E P.4 Joint and Marginal Probabilities

y/x 1 2 3 4 f (y)
0 0 0.1 0.2 0.3 0.6

1 0.1 0.1 0.1 0.1 0.4

f (x) 0.1 0.2 0.3 0.4 1.0

............................................................................................................................................

3Similar calculations for continuous random variables use integration. See Appendix B.2.3 for an illustration.
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P.3.2 Conditional Probability
What is the probability that a randomly chosen slip will take the value 2 given that it is shaded?

This question is about the conditional probability of the outcome X = 2 given that the outcome

Y = 1 has occurred. The effect of the conditioning is to reduce the set of possible outcomes.

Conditional on Y = 1 we only consider the four possible slips that are shaded. One of them is a

2, so the conditional probability of the outcome X = 2 given that Y = 1 is 0.25. There is a one

in four chance of selecting a 2 given only the shaded slips. Conditioning reduces the size of the

population under consideration, and conditional probabilities characterize the reduced population.

For discrete random variables the probability that the random variable X takes the value x given
that Y = y is written P(X = x|Y = y). This conditional probability is given by the conditional pdf
f (x|y)

𝑓 (x|y) = P(X = x|Y = y) =
P(X = x,Y = y)

P(Y = y)
=

𝑓 (x, y)
𝑓Y (y)

(P.4)

where fY(y) is the marginal pdf of Y .

E X A M P L E P.2 Calculating a Conditional Probability

Using the marginal probability P(Y =1)= 0.4, the conditional

pdf of X given Y = 1 is obtained by using (P.4) for each value

of X. For example,

𝑓 (x = 2|y = 1) = P(X = 2|Y = 1)

= P(X = 2, Y = 1)
P(Y = 1)

=
𝑓 (x = 2, y = 1)

𝑓Y (1)

= 0.1

0.4
= 0.25

A key point to remember is that by conditioning we are considering only the subset of a population

for which the condition holds. Probability calculations are then based on the “new” population.

We can repeat this process for each value of X to obtain the complete conditional pdf given in

Table P.5.

P.3.3 Statistical Independence
When selecting a shaded slip from Table P.1, the probability of selecting each possible outcome,

x = 1, 2, 3, and 4 is 0.25. In the population of shaded slips the numeric values are equally likely.

The probability of randomly selecting X = 2 from the entire population, from the marginal pdf ,

is P(X = 2) = fX(2) = 0.2. This is different from the conditional probability. Knowing that the

slip is shaded tells us something about the probability of obtaining X = 2. Such random vari-

ables are dependent in a statistical sense. Two random variables are statistically independent,
or simply independent, if the conditional probability that X = x given that Y = y is the same

as the unconditional probability that X = x. This means, if X and Y are independent random

variables, then

P(X = x|Y = y) = P(X = x) (P.5)

T A B L E P.5 Conditional Probability of X Given Y = 1

x 1 2 3 4

𝑓 (x|y = 1) 0.25 0.25 0.25 0.25
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Equivalently, if X and Y are independent, then the conditional pdf of X given Y = y is the same

as the unconditional, or marginal, pdf of X alone.

𝑓 (x|y) =
𝑓 (x, y)
𝑓Y (y)

= 𝑓X(x) (P.6)

Solving (P.6) for the joint pdf , we can also say that X and Y are statistically independent if their

joint pdf factors into the product of their marginal pdf s

P(X = x,Y = y) = 𝑓 (x, y) = 𝑓X(x) 𝑓Y (y) = P(X = x) × P(Y = y) (P.7)

If (P.5) or (P.7) is true for each and every pair of values x and y, then X and Y are statistically
independent. This result extends to more than two random variables. The rule allows us to

check the independence of random variables X and Y in Table P.4. If (P.7) is violated for any

pair of values, then X and Y are not statistically independent. Consider the pair of values X = 1

and Y = 1.

P(X = 1, Y = 1) = 𝑓 (1, 1) = 0.1 ≠ 𝑓X(1) 𝑓Y (1) = P(X = 1) × P(Y = 1) = 0.1 × 0.4 = 0.04

The joint probability is 0.1 and the product of the individual probabilities is 0.04. Since these

are not equal, we can conclude that X and Y are not statistically independent.

P.4 A Digression: Summation Notation
Throughout this book we will use a summation sign, denoted by the symbol

∑
, to shorten alge-

braic expressions. Suppose the random variable X takes the values x1, x2, …, x15. The sum of

these values is x1 + x2 + · · · + x15. Rather than write this sum out each time we will represent

it as
∑15

i=1
xi, so that

∑15

i=1
xi = x1 + x2 + · · · + x15. If we sum n terms, a general number, then the

summation will be
∑n

i=1
xi = x1 + x2 + · · · + xn. In this notation

• The symbol
∑

is the capital Greek letter sigma and means “the sum of.”

• The letter i is called the index of summation. This letter is arbitrary and may also appear

as t, j, or k.

• The expression
∑n

i=1
xi is read “the sum of the terms xi, from i equals 1 to n.”

• The numbers 1 and n are the lower limit and upper limit of summation.

The following rules apply to the summation operation.

Sum 1. The sum of n values x1, …, xn is

n∑

i=1

xi = x1 + x2 + · · · + xn

Sum 2. If a is a constant, then

n∑

i=1

axi = a
n∑

i=1

xi

Sum 3. If a is a constant, then

n∑

i=1

a = a + a + · · · + a = na
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Sum 4. If X and Y are two variables, then

n∑

i=1

(
xi + yi

)
=

n∑

i=1

xi +
n∑

i=1

yi

Sum 5. If X and Y are two variables, then

n∑

i=1

(
axi + byi

)
= a

n∑

i=1

xi + b
n∑

i=1

yi

Sum 6. The arithmetic mean (average) of n values of X is

x =

n∑

i=1

xi

n
=

x1 + x2 + · · · + xn

n
Sum 7. A property of the arithmetic mean (average) is that

n∑

i=1

(
xi − x

)
=

n∑

i=1

xi −
n∑

i=1

x =
n∑

i=1

xi − nx =
n∑

i=1

xi −
n∑

i=1

xi = 0

Sum 8. We often use an abbreviated form of the summation notation. For example, if f (x) is a

function of the values of X,

n∑

i=1

𝑓

(
xi
)
= 𝑓

(
x1

)
+ 𝑓

(
x2

)
+ · · · + 𝑓

(
xn
)

=
∑

i
𝑓

(
xi
)
(“Sum over all values of the index i ”)

=
∑

x
𝑓 (x) (“Sum over all possible values of X”)

Sum 9. Several summation signs can be used in one expression. Suppose the variable Y takes

n values and X takes m values, and let f (x, y) = x + y. Then the double summation of

this function is m∑

i=1

n∑

j=1

𝑓

(
xi, yj

)
=

m∑

i=1

n∑

j=1

(
xi + yj

)

To evaluate such expressions work from the innermost sum outward. First set i = 1 and sum over

all values of j, and so on. That is,

m∑

i=1

n∑

j=1

𝑓

(
xi, yj

)
=

m∑

i=1

[

𝑓

(
xi, y1

)
+ 𝑓

(
xi, y2

)
+ · · · + 𝑓

(
xi, yn

) ]

The order of summation does not matter, so

m∑

i=1

n∑

j=1

𝑓

(
xi, yj

)
=

n∑

j=1

m∑

i=1

𝑓

(
xi, yj

)

P.5 Properties of Probability Distributions
Figures P.1 and P.2 give us a picture of how frequently values of the random variables will occur.

Two key features of a probability distribution are its center (location) and width (dispersion).

A key measure of the center is the mean, or expected value. Measures of dispersion are variance,

and its square root, the standard deviation.
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P.5.1 Expected Value of a Random Variable
The mean of a random variable is given by its mathematical expectation. If X is a discrete

random variable taking the values x1,… , xn, then the mathematical expectation, or expected
value, of X is

E(X) = x1P
(
X = x1

)
+ x2P

(
X = x2

)
+ · · · + xnP

(
X = xn

)
(P.8)

The expected value, or mean, of X is a weighted average of its values, the weights being the

probabilities that the values occur. The uppercase letter “E” represents the expected value
operation. E(X) is read as “the expected value of X.” The expected value of X is also called

the mean of X. The mean is often symbolized by μ or μX. It is the average value of the random

variable in an infinite number of repetitions of the underlying experiment. The mean of a ran-

dom variable is the population mean. We use Greek letters for population parameters because

later on we will use data to estimate these real world unknowns. In particular, keep separate the

population mean μ and the arithmetic (or sample) mean x that we introduced in Section P.4 as

Sum 6. This can be particularly confusing when a conversation includes the term “mean” without

the qualifying term “population” or “arithmetic.” Pay attention to the usage context.

E X A M P L E P.3 Calculating an Expected Value

For the population in Table P.1, the expected value of X is

E(X) = 1 × P(X = 1) + 2 × P(X = 2) + 3 × P(X = 3) + 4 × P(X = 4)
= (1 × 0.1) + (2 × 0.2) + (3 × 0.3) + (4 × 0.4) = 3

For a discrete random variable the probability that X takes the value x is given by its pdf f (x),

P(X = x) = f (x). The expected value in (P.8) can be written equivalently as

μX = E(X) = x1𝑓

(
x1

)
+ x2𝑓

(
x2

)
+ · · · + xn𝑓

(
xn
)

=
n∑

i=1

xi𝑓
(
xi
)
=
∑

x
x𝑓 (x) (P.9)

Using (P.9), the expected value of X, the numeric value on a randomly drawn slip from Table P.1 is

μX = E(X) =
4∑

x=1

x𝑓 (x) = (1 × 0.1) + (2 × 0.2) + (3 × 0.3) + (4 × 0.4) = 3

What does this mean? Draw one “slip” at random from Table P.1, and observe its numerical

value X. This constitutes an experiment. If we repeat this experiment many times, the values

x = 1, 2, 3, and 4 will appear 10%, 20%, 30%, and 40% of the time, respectively. The arithmetic

average of all the numerical values will approach μX = 3, as the number of experiments becomes

large. The key point is that the expected value of the random variable is the average value
that occurs in many repeated trials of an experiment.

For continuous random variables, the interpretation of the expected value of X is

unchanged—it is the average value of X if many values are obtained by repeatedly performing

the underlying random experiment.4

............................................................................................................................................

4Since there are now an uncountable number of values to sum, mathematically we must replace the “summation over all

possible values” in (P.9) by the “integral over all possible values.” See Appendix B.2.2 for a brief discussion.
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P.5.2 Conditional Expectation
Many economic questions are formulated in terms of conditional expectation, or the conditional
mean. One example is “What is the mean (expected value) wage of a person who has 16 years

of education?” In expected value notation, what is E(WAGE|EDUCATION = 16)? For a discrete

random variable, the calculation of conditional expected value uses (P.9) with the conditional pdf
𝑓 (x|y) replacing f (x), so that

μX|Y = E(X|Y = y) =
∑

x
x𝑓 (x|y)

E X A M P L E P.4 Calculating a Conditional Expectation

Using the population in Table P.1, what is the expected

numerical value of X given that Y = 1, the slip is shaded? The

conditional probabilities 𝑓 (x|y = 1) are given in Table P.5.

The conditional expectation of X is

E(X|Y = 1) =
4∑

x=1

x𝑓 (x|1) = 1 × 𝑓 (1|1) + 2 × 𝑓 (2|1)

+ 3 × 𝑓 (3|1) + 4 × 𝑓 (4|1)

= 1(0.25) + 2(0.25) + 3(0.25) + 4(0.25) = 2.5

The average value of X in many repeated trials of the exper-

iment of drawing from the shaded slips is 2.5. This example

makes a good point about expected values in general, namely

that the expected value of X does not have to be a value that

X can take. The expected value of X is not the value that you

expect to occur in any single experiment.

What is the conditional expectation of X given that Y = y if the random variables are statistically

independent? If X and Y are statistically independent the conditional pdf f (x|y) equals the pdf of

X alone, f (x), as shown in (P.6). The conditional expectation is then

E(X|Y = y) =
∑

x
x𝑓 (x|y) =

∑

x
x𝑓 (x) = E(X)

If X and Y are statistically independent, conditioning does not affect the expected value.

P.5.3 Rules for Expected Values
Functions of random variables are also random. If g(X) is a function of the random variable X,

such as g(X) = X2, then g(X) is also random. If X is a discrete random variable, then the expected

value of g(X) is obtained using calculations similar to those in (P.9).

E
[
g(X)

]
=
∑

x
g(x) 𝑓 (x) (P.10)

For example, if a is a constant, then g(X) = aX is a function of X, and

E(aX) = E
[
g(X)

]
=
∑

x
g(x) 𝑓 (x)

=
∑

x
ax𝑓 (x) = a

∑

x
x𝑓 (x)

= aE(X)

Similarly, if a and b are constants, then we can show that

E(aX + b) = aE(X) + b (P.11)

If g1(X) and g2(X) are functions of X, then

E
[
g1(X) + g2(X)

]
= E

[
g1(X)

]
+ E

[
g2(X)

]
(P.12)

This rule extends to any number of functions. Remember the phrase “the expected value of a
sum is the sum of the expected values.”
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P.5.4 Variance of a Random Variable
The variance of a discrete or continuous random variable X is the expected value of

g(X) =
[
X − E(X)

]2

The variance of a random variable is important in characterizing the scale of measurement and the

spread of the probability distribution. We give it the symbol σ2, or σ2
X , read “sigma squared.”

The variance σ2 has a Greek symbol because it is a population parameter. Algebraically, letting

E(X) = μ, using the rules of expected values and the fact that E(X) = μ is not random, we have

var(X) = σ2
X = E(X − μ)2

= E
(
X2 − 2μX + μ2

)
= E

(
X2

)
− 2μE(X) + μ2

= E
(
X2

)
− μ2 (P.13)

We use the letters “var” to represent variance, and var(X) is read as “the variance of X,”

where X is a random variable. The calculation var(X) = E
(
X2

)
− μ2 is usually simpler than

var(X) = E(X − μ)2, but the solution is the same.

E X A M P L E P.5 Calculating a Variance

For the population in Table P.1, we have shown that E(X) =
μ = 3. Using (P.10), the expectation of the random variable

g(X) = X2 is

E
(
X2

)
=

4∑

x=1

g(x) 𝑓 (x) =
4∑

x=1

x2
𝑓 (x)

=
[
12 × 0.1

]
+
[
22 × 0.2

]
+
[
32 × 0.3

]
+
[
42 × 0.4

]
= 10

Then, the variance of the random variable X is

var(X) = σ2
X = E

(
X2

)
− μ2 = 10 − 32 = 1

The square root of the variance is called the standard deviation; it is denoted by σ or

sometimes as σX if more than one random variable is being discussed. It also measures the spread

or dispersion of a probability distribution and has the advantage of being in the same units of

measure as the random variable.

A useful property of variances is the following. Let a and b be constants, then

var(aX + b) = a2var(X) (P.14)

An additive constant like b changes the mean (expected value) of a random variable, but it does

not affect its dispersion (variance). A multiplicative constant like a affects the mean, and it affects

the variance by the square of the constant.

To see this, let Y = aX + b. Using (P.11)

E(Y) = μY = aE(X) + b = aμX + b

Then

var(aX + b) = var(Y) = E
[(

Y − μY
)2
]

= E
[(

aX + b −
(
aμX + b

))2
]

= E
[(

aX − aμX
)2
]

= E
[

a2
(
X − μX

)2
]

= a2E
[(

X − μX
)2
]

= a2var(X)

The variance of a random variable is the average squared difference between the random variable

X and its mean value μX. The larger the variance of a random variable, the more “spread out” the
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FIGURE P.3 Distributions with different variances.

values of the random variable are. Figure P.3 shows two pdf s for a continuous random variable,

both with mean μ = 3. The distribution with the smaller variance (the solid curve) is less spread

out about its mean.

P.5.5 Expected Values of Several Random Variables
Let X and Y be random variables. The rule “the expected value of the sum is the sum of the

expected values” applies. Then5

E(X + Y) = E(X) + E(Y) (P.15)

Similarly

E(aX + bY + c) = aE(X) + bE(Y) + c (P.16)

The product of random variables is not as easy. E(XY) = E(X)E(Y) if X and Y are independent.

These rules can be extended to more random variables.

P.5.6 Covariance Between Two Random Variables
The covariance between X and Y is a measure of linear association between them. Think about

two continuous variables, such as height and weight of children. We expect that there is an asso-

ciation between height and weight, with taller than average children tending to weigh more than

the average. The product of X minus its mean times Y minus its mean is
(
X − μX

)(
Y − μY

)
(P.17)

In Figure P.4, we plot values (x and y) of X and Y that have been constructed so that

E(X) = E(Y) = 0.

The x and y values of X and Y fall predominately in quadrants I and III, so that the arithmetic

average of the values (x − μX)(y − μY) is positive. We define the covariance between two random

variables as the expected (population average) value of the product in (P.17).

cov(X,Y) = σXY = E
[(

X − μX
)(

Y − μY
)]

= E(XY) − μXμY (P.18)

We use the letters “cov” to represent covariance, and cov(X, Y) is read as “the covariance
between X and Y,” where X and Y are random variables. The covariance σXY of the random

variables underlying Figure P.4 is positive, which tells us that when the values x are greater

............................................................................................................................................

5These results are proven in Appendix B.1.4.
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FIGURE P.4 Correlated data.

than μX, then the values y also tend to be greater than μY; and when the values x are below μX, then

the values y also tend to be less than μY. If the random variables values tend primarily to fall in

quadrants II and IV, then
(
x− μX

)(
y− μY

)
will tend to be negative and σXY will be negative. If the

random variables values are spread evenly across the four quadrants, and show neither positive

nor negative association, then the covariance is zero. The sign of σXY tells us whether the two

random variables X and Y are positively associated or negatively associated.

Interpreting the actual value of σXY is difficult because X and Y may have different units of

measurement. Scaling the covariance by the standard deviations of the variables eliminates the

units of measurement, and defines the correlation between X and Y

ρ = cov(X,Y)
√

var(X)
√

var(Y)
=

σXY

σXσY
(P.19)

As with the covariance, the correlation ρ between two random variables measures the degree of

linear association between them. However, unlike the covariance, the correlation must lie between

–1 and 1. Thus, the correlation between X and Y is 1 or –1 if X is a perfect positive or negative

linear function of Y . If there is no linear association between X and Y , then cov(X, Y) = 0 and

ρ = 0. For other values of correlation the magnitude of the absolute value |ρ| indicates the

“strength” of the linear association between the values of the random variables. In Figure P.4,

the correlation between X and Y is ρ = 0.5.

E X A M P L E P.6 Calculating a Correlation

To illustrate the calculation, reconsider the population in

Table P.1 with joint pdf given in Table P.4. The expected

value of XY is

E(XY) =
1∑

y=0

4∑

x=1

xy𝑓 (x, y)

= (1 × 0 × 0) + (2 × 0 × 0.1) + (3 × 0 × 0.2)
+ (4 × 0 × 0.3) + (1 × 1 × 0.1)
+ (2 × 1 × 0.1) + (3 × 1 × 0.1) + (4 × 1 × 0.1)

= 0.1 + 0.2 + 0.3 + 0.4

= 1

The random variable X has expected value E(X)= μX = 3 and

the random variable Y has expected value E(Y) = μY = 0.4.

Then the covariance between X and Y is

cov(X, Y) = σXY = E(XY) − μXμY = 1 − 3 × (0.4) = −0.2

The correlation between X and Y is

ρ = cov(X,Y)
√

var(X)
√

var(Y)
= −0.2

√
1 ×

√
0.24

= −0.4082
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If X and Y are independent random variables, then their covariance and correlation are zero.

The converse of this relationship is not true. Independent random variables X and Y have zero

covariance, indicating that there is no linear association between them. However, just because the

covariance or correlation between two random variables is zero does not mean that they are neces-

sarily independent. There may be more complicated nonlinear associations such as X2 + Y2 = 1.

In (P.15) we obtain the expected value of a sum of random variables. There are similar rules

for variances. If a and b are constants, then

var(aX + bY) = a2var(X) + b2var(Y) + 2ab cov(X,Y) (P.20)

A significant point to note is that the variance of a sum is not just the sum of the variances. There

is a covariance term present. Two special cases of (P.20) are

var(X + Y) = var(X) + var(Y) + 2cov(X,Y) (P.21)

var(X − Y) = var(X) + var(Y) − 2cov(X,Y) (P.22)

To show that (P.22) is true, let Z = X − Y . Using the rules of expected value

E(Z) = μZ = E(X) − E(Y) = μX − μY

The variance of Z = X − Y is obtained using the basic definition of variance, with some

substitution,

var(X − Y) = var(Z) = E
[(

Z − μZ
)2
]

= E
[(

X − Y −
(
μX − μY

))2
]

= E
{[(

X − μX
)
−
(
Y − μY

)]2
}

= E
{(

X − μX
)2 +

(
Y − μY

)2 − 2
(
X − μX

)(
Y − μY

)}

= E
[(

X − μX
)2
]

+ E
[(

Y − μY
)2
]

− 2E
[(

X − μX
)(

Y − μY
)]

= var(X) + var(Y) − 2cov(X,Y)

If X and Y are independent, or if cov(X, Y) = 0, then

var(aX + bY) = a2var(X) + b2var(Y) (P.23)

var(X ± Y) = var(X) + var(Y) (P.24)

These rules extend to more random variables.

P.6 Conditioning
In Table P.4, we summarized the joint and marginal probability functions for the random variables

X and Y defined on the population in Table P.1. In Table P.6 we make two modifications. First, the

probabilities are expressed as fractions. The many calculations below are simpler using arithmetic

T A B L E P.6 Joint, Marginal, and Conditional Probabilities

y/x 1 2 3 4 f ( y) f ( y|x = 1) f ( y|x = 2) f ( y|x = 3) f ( y|x = 4)

0 0 1/10 2/10 3/10 6/10 0 1/2 2/3 3/4

1 1/10 1/10 1/10 1/10 4/10 1 1/2 1/3 1/4

f (x) 1/10 2/10 3/10 4/10

f (x|y = 0) 0 1/6 2/6 3/6

f (x|y = 1) 1/4 1/4 1/4 1/4
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with fractions. Second, we added the conditional probability functions (P.4) for Y given each of the

values that X can take and the conditional probability functions for X given each of the values that

Y can take. Now would be a good time for you to review Section P.3.2 on conditional probability.

For example, what is the probability that Y = 0 given that X = 2? That is, if we only consider

population members with X = 2, what is the probability that Y = 0? There are only two population

elements with X = 2, one with Y = 0 and one with Y = 1. The probability of randomly selecting

Y = 0 is one-half. For discrete random variables, the conditional probability is calculated as the

joint probability divided by the probability of the conditioning event.

𝑓 (y = 0|x = 2) = P(Y = 0|X = 2) =
P(X = 2,Y = 0)

P(X = 2)
=

1∕10

2∕10
= 1

2

In the following sections, we discuss the concepts of conditional expectation and conditional
variance.

P.6.1 Conditional Expectation
Many economic questions are formulated in terms of a conditional expectation, or the

conditional mean. One example is “What is the mean wage of a person who has 16 years

of education?” In expected value notation, what is E(WAGE|EDUC = 16)? The effect of

conditioning on the value of EDUC is to reduce the population of interest to only individuals

with 16 years of education. The mean, or expected value, of wage for these individuals may be

quite different than the mean wage for all individuals regardless of years of education, E(WAGE),

which is the unconditional expectation or unconditional mean.

For discrete random variables,6 the calculation of a conditional expected value uses

equation (P.9) with the conditional pdf replacing the usual pdf , so that

E(X|Y = y) =
∑

xx𝑓 (x|y) =
∑

xxP(X = x|Y = y)

E(Y|X = x) =
∑

yy𝑓 (y|x) =
∑

yyP(Y = y|X = x)
(P.25)

E X A M P L E P.7 Conditional Expectation

Using the population in Table P.1, what is the expected

numerical value of X given that Y = 1? The conditional

probabilities P(X = x|Y = 1) = 𝑓 (x|y = 1) = 𝑓 (x|1) are

given in Table P.6. The conditional expectation of X is

E(X|Y = 1) =
∑4

x=1
x𝑓 (x|1)

=
[
1 × 𝑓 (1|1)

]
+
[
2 × 𝑓 (2|1)

]
+
[
3 × 𝑓 (3|1)

]

+
[
4 × 𝑓 (4|1)

]

= 1(1∕4) + 2(1∕4) + 3(1∕4) + 4(1∕4) = 10∕4

= 5∕2

The average value of X in many repeated trials of the exper-

iment of drawing from the shaded slips (Y = 1) is 2.5. This

example makes a good point about expected values in gen-

eral, namely that the expected value of X does not have to be a

value that X can take. The expected value of X is not the value

that you expect to occur in any single experiment. It is the

average value of X after many repetitions of the experiment.

What is the expected value of X given that we only consider

values where Y = 0? Confirm that E(X|Y = 0) = 10∕3.

For comparison purposes recall from Section P.5.1 that the

unconditional expectation of X is E(X) = 3.

Similarly, if we condition on the X values, the condi-

tional expectations of Y are

E(Y|X = 1) =
∑

yy𝑓 (y|1) = 0(0) + 1(1) = 1

E(Y|X = 2) =
∑

yy𝑓 (y|2) = 0(1∕2) + 1(1∕2) = 1∕2

E(Y|X = 3) =
∑

yy𝑓 (y|3) = 0(2∕3) + 1(1∕3) = 1∕3

E(Y|X = 4) =
∑

yy𝑓 (y|4) = 0(3∕4) + 1(1∕4) = 1∕4

Note that E(Y|X) varies as X varies; it is a function of X. For

comparison, the unconditional expectation of Y , E(Y), is

E(Y) =
∑

yy𝑓 (y) = 0(6∕10) + 1(4∕10) = 2∕5

............................................................................................................................................

6For continuous random variables the sums are replaced by integrals. See Appendix B.2.
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P.6.2 Conditional Variance
The unconditional variance of a discrete random variable X is

var(X) = σ2
X = E

[(
X − μX

)2
]

=
∑

x

(
x − μX

)2
𝑓 (x) (P.26)

It measures how much variation there is in X around the unconditional mean of X, μX. For example,

the unconditional variance var(WAGE) measures the variation in WAGE around the unconditional

mean E(WAGE). In (P.13) we show that equivalently

var(X) = σ2
X = E

(
X2

)
− μ2

X =
∑

x
x2
𝑓 (x) − μ2

X (P.27)

In Section P.6.1 we discussed how to answer the question “What is the mean wage of a person who

has 16 years of education?” Now we ask “How much variation is there in wages for a person who

has 16 years of education?” The answer to this question is given by the conditional variance,

var (WAGE|EDUC = 16). The conditional variance measures the variation in WAGE around the

conditional mean E(WAGE|EDUC = 16) for individuals with 16 years of education. The con-

ditional variance of WAGE for individuals with 16 years of education is the average squared

difference in the population between WAGE and the conditional mean of WAGE,

var(WAGE |EDUC = 16)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

conditional variance

= E

{[
WAGE − E(WAGE |EDUC = 16)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

conditional mean

]2
|
|
|
|
|

EDUC = 16

}

To obtain the conditional variance we modify the definitions of variance in equations (P.26) and

(P.27); replace the unconditional mean E(X) = μX with the conditional mean E(X|Y = y), and the

unconditional pdf f (x) with the conditional pdf f (x|y). Then

var(X|Y = y) = E
{[

X − E(X|Y = y)
]2|
|
|
Y = y

}

=
∑

x

(
x − E(X|Y = y)

)2
𝑓 (x|y) (P.28)

or

var(X|Y = y) = E
(
X2|Y = y

)
−
[
E(X|Y = y)

]2 =
∑

x
x2
𝑓 (x|y) −

[
E(X|Y = y)

]2
(P.29)

E X A M P L E P.8 Conditional Variance

For the population in Table P.1, the unconditional variance of

X is var(X) = 1. What is the variance of X given that Y = 1?

To use (P.29) first compute

E
(
X2|Y = 1

)

=
∑

x
x2
𝑓 (x|Y = 1)

= 12(1∕4) + 22(1∕4) + 32(1∕4) + 42(1∕4) = 15∕2

Then

var(X|Y = 1) = E
(
X2|Y = 1

)
−
[
E(X|Y = 1)

]2

= 15∕2 −(5∕2)2 = 5∕4

In this case, the conditional variance of X, given that Y = 1,

is larger than the unconditional variance of X, var(X) = 1.

To calculate the conditional variance of X given that

Y = 0, we first obtain

E
(
X2|Y = 0

)
=
∑

x
x2
𝑓 (x|Y = 0)

= 12(0) + 22(1∕6) + 32(2∕6) + 42(3∕6)
= 35∕3

Then

var(X|Y = 0) = E
(
X2|Y = 0

)
−
[
E(X|Y = 0)

]2

= 35∕3 −(10∕3)2 = 5∕9

In this case, the conditional variance of X, given that Y = 0,

is smaller than the unconditional variance of X, var(X) = 1.

These examples have illustrated that in general the condi-

tional variance can be larger or smaller than the uncondi-

tional variance. Try working out var(Y|X = 1), var(Y|X = 2),

var(Y|X = 3), and var(Y|X = 4).
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P.6.3 Iterated Expectations
The Law of Iterated Expectations says that we can find the expected value of Y in two steps.

First, find the conditional expectation E(Y|X). Second, find the expected value E(Y|X) treating X
as random.

Law of Iterated Expectations∶E(Y) = EX
[
E(Y|X)

]
=
∑

xE(Y|X = x) 𝑓X(x) (P.30)

In this expression we put an “X” subscript in the expectation EX[E(Y|X)] and the probability

function fX(x) to emphasize that we are treating X as random. The Law of Iterated Expectations

is true for both discrete and continuous random variables.

E X A M P L E P.9 Iterated Expectation

Consider the conditional expectation E(X|Y = y) =
∑

x xf (x|y). As we computed in Section P.6.1, E(X|Y = 0)

= 10/3 and E(X|Y = 1) = 5/2. Similarly, the conditional

expectation E(Y|X = x) =
∑

y yf (y|x). For the population

in Table P.1, these conditional expectations were calculated

in Section P.6.1 to be E(Y|X = 1) = 1, E(Y|X = 2) = 1/2,

E(Y|X = 3)= 1/3 and E(Y|X = 4)= 1/4. Note that E(Y|X = x)

changes when x changes. If X is allowed to vary randomly7

then the conditional expectation varies randomly. The

conditional expectation is a function of X, or E(Y|X) = g(X),

and is random when viewed this way. Using (P.10) we can

find the expected value of g(X).

EX
[
E(Y|X)

]
= EX

[
g(X)

]
=
∑

xg(x)𝑓X(x) =
∑

xE(Y|X = x) 𝑓X(x)

=
[
E(Y|X = 1) 𝑓X(1)

]
+
[
E(Y|X = 2) 𝑓X(2)

]

+
[
E(Y|X = 3) 𝑓X(3)

]
+
[
E(Y|X = 4)𝑓X(4)

]

= 1(1∕10) + (1∕2)(2∕10) + (1∕3)(3∕10)

+ (1∕4)(4∕10) = 2∕5

If we draw many values x from the population in Table P.1,

the average of E(Y|X) is 2/5. For comparison the “uncondi-

tional” expectation of Y is E(Y) = 2/5. EX[E(Y|X)] and E(Y)

are the same.

Proof of the Law of Iterated Expectations To prove the Law of Iterated Expec-

tations we make use of relationships between joint, marginal, and conditional pdf s that we intro-

duced in Section P.3. In Section P.3.1 we discussed marginal distributions. Given a joint pdf
f (x, y) we can obtain the marginal pdf of y alone fY(y) by summing, for each y, the joint pdf
f (x, y) across all values of the variable we wish to eliminate, in this case x. That is, for Y and X,

𝑓 (y) = 𝑓Y (y) =
∑

x𝑓 (x, y)
𝑓 (x) = 𝑓X(x) =

∑
y𝑓 (x, y) (P.31)

Because f ( ) is used to represent pdf s in general, sometimes we will put a subscript, X or Y , to be

very clear about which variable is random.

Using equation (P.4) we can define the conditional pdf of y given X = x as

𝑓 (y|x) =
𝑓 (x, y)
𝑓X(x)

Rearrange this expression to obtain

𝑓 (x, y) = 𝑓 (y|x) 𝑓X(x) (P.32)

A joint pdf is the product of the conditional pdf and the pdf of the conditioning variable.

............................................................................................................................................

7Imagine shuffling the population elements and randomly choosing one. This is an experiment and the resulting number

showing is a value of X. By doing this repeatedly X varies randomly.
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To show that the Law of Iterated Expectations is true8 we begin with the definition of the

expected value of Y , and operate with the summation.

E(Y) =
∑

y
y𝑓 (y) =

∑

y
y
[
∑

x
𝑓 (x, y)

]
[
substitute for 𝑓 (y)

]

=
∑

y
y
[
∑

x
𝑓 (y|x) 𝑓X(x)

]
[
substitute for 𝑓 (x, y)

]

=
∑

x

[
∑

y
y𝑓 (y|x)

]

𝑓X(x)
[
change order of summation

]

=
∑

x
E(Y|x)𝑓X(x)

[
recognize the conditional expectation

]

= EX
[
E(Y|X)

]

While this result may seem an esoteric oddity it is very important and widely used in modern

econometrics.

P.6.4 Variance Decomposition
Just as we can break up the expected value using the Law of Iterated Expectations we can decom-

pose the variance of a random variable into two parts.

Variance Decomposition∶ var(Y) = varX
[
E(Y|X)

]
+ EX

[
var(Y|X)

]
(P.33)

This “beautiful” result9 says that the variance of the random variable Y equals the sum of the

variance of the conditional mean of Y given X and the mean of the conditional variance of Y
given X. In this section we will discuss this result.10

Suppose that we are interested in the wages of the population consisting of working adults.

How much variation do wages display in the population? If WAGE is the wage of a randomly

drawn population member, then we are asking about the variance of WAGE, that is, var(WAGE).

The variance decomposition says

var(WAGE) = varEDUC
[
E(WAGE|EDUC)

]
+ EEDUC

[
var(WAGE|EDUC)

]

E(WAGE|EDUC) is the expected value of WAGE given a specific value of education, such as

EDUC = 12 or EDUC = 16. E(WAGE|EDUC = 12) is the average WAGE in the population,

given that we only consider workers who have 12 years of education. If EDUC changes then the

conditional mean E(WAGE|EDUC) changes, so that E(WAGE|EDUC = 16) is not the same as

E(WAGE|EDUC = 12), and in fact we expect E(WAGE|EDUC = 16) > E(WAGE|EDUC = 12);

more education means more “human capital” and thus the average wage should be higher. The first

component in the variance decomposition varEDUC
[
E(WAGE|EDUC)

]
measures the variation in

E(WAGE|EDUC) due to variation in education.

The second part of the variance decomposition is EEDUC
[
var(WAGE|EDUC)

]
. If we

restrict our attention to population members who have 12 years of education, the mean wage

is E(WAGE|EDUC = 12). Within the group of workers who have 12 years of education we

will observe wide ranges of wages. For example, using one sample of CPS data from 2013,11

wages for those with 12 years of education varied from $3.11/hour to $100.00/hour; for

those with 16 years of education wages varied from $2.75/hour to $221.10/hour. For workers

with 12 and 16 years of education that variation is measured by var(WAGE|EDUC = 12) and

............................................................................................................................................

8The proof for continuous variables is in Appendix B.2.4.

9Tony O’Hagan, “A Thing of Beauty,” Significance Magazine, Volume 9 Issue 3 (June 2012), 26–28.

10The proof of the variance decomposition is given in Appendix B.1.8 and Example B.1.

11The data file cps5.
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var(WAGE|EDUC = 16). The term EEDUC
[
var(WAGE|EDUC)

]
measures the average of

var(WAGE|EDUC) as education changes.

To summarize, the variation of WAGE in the population can be attributed to two sources:

variation in the conditional mean E(WAGE|EDUC) and variation due to changes in education in

the conditional variance of WAGE given education.

P.6.5 Covariance Decomposition
Recall that the covariance between two random variables Y and X is cov(X,Y) =
E
[(

X − μX
)(

Y − μY
)]

. For discrete random variables this is

cov(X,Y) =
∑

x

∑

y

(
x − μX

)(
y − μY

)
𝑓 (x, y)

By using the relationships between marginal, conditional and joint pdf s we can show

cov(X,Y) =
∑

x

(
x − μX

)
E(Y|X = x) 𝑓 (x) (P.34)

Recall that E(Y|X)= g(X) so this result says that the covariance between X and Y can be calculated

as the expected value of X, minus its mean, times a function of X, cov(X, Y)=EX[(X −μX)E(Y|X)].

An important special case is important in later chapters. When the conditional expectation

of Y given X is a constant, E(Y|X = x) = c, then

cov(X,Y) =
∑

x

(
x − μX

)
E(Y|X = x) 𝑓 (x) = c

∑

x

(
x − μX

)
𝑓 (x) = 0

A special case is E(Y|X = x) = 0, which by direct substitution implies cov(X, Y) = 0.

E X A M P L E P.10 Covariance Decomposition

To illustrate we compute cov(X, Y) for the population in

Table P.1 using the covariance decomposition. We have

computed that cov(X, Y) = −0.2 in Section P.5.6. The ingre-

dients are the values of the random variable X, its mean

μX = 3, the probabilities P(X = x) = f (x) and conditional

expectations

E(Y|X = 1) = 1, E(Y|X = 2) = 1∕2,

E(Y|X = 3) = 1∕3 and E(Y|X = 4) = 1∕4

Using the covariance decomposition we have

cov(X, Y) =
∑

x

(
x − μX

)
E(Y|X = x) 𝑓 (x)

= (1 − 3)(1)(1∕10) + (2 − 3)(1∕2)(2∕10)
+ (3 − 3)(1∕3)(3∕10) + (4 − 3)(1∕4)(4∕10)

= −2∕10 − 1∕10 + 1∕10 = −2∕10 = −0.2

We see that the covariance decomposition yields the correct

result, and it is convenient in this example.

P.7 The Normal Distribution
In the previous sections we discussed random variables and their pdf s in a general way. In real

economic contexts, some specific pdf s have been found to be very useful. The most important is

the normal distribution. If X is a normally distributed random variable with mean μ and variance

σ2, it is symbolized as X ∼ N
(
μ, σ2

)
. The pdf of X is given by the impressive formula

𝑓 (x) = 1
√

2πσ2
exp

[
−(x − μ)2

2σ2

]

, −∞ < x < ∞ (P.35)
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f(
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FIGURE P.5 Normal probability density functions N
(
𝛍,𝛔2).

where exp(a) denotes the exponential12 function ea. The mean μ and variance σ2 are the param-

eters of this distribution and determine its center and dispersion. The range of the continuous

normal random variable is from minus infinity to plus infinity. Pictures of the normal pdf s are

given in Figure P.5 for several values of the mean and variance. Note that the distribution is

symmetric and centered at μ.

Like all continuous random variables, probabilities involving normal random variables are

found as areas under the pdf . For calculating probabilities both computer software and statistical

tables values make use of the relation between a normal random variable and its “standardized”

equivalent. A standard normal random variable is one that has a normal pdf with mean 0 and

variance 1. If X ∼ N
(
μ, σ2

)
, then

Z =
X − μ
σ

∼ N(0, 1) (P.36)

The standard normal random variable Z is so widely used that its pdf and cdf are given

their own special notation. The cdf is denoted Φ(z) = P(Z ≤ z). Computer programs, and

Statistical Table 1 in Appendix D give values of Φ(z). The pdf for the standard normal random

variable is

ϕ(z) = 1
√

2π
exp

(
−z2∕2

)
, −∞ < z < ∞

Values of the density function are given in Statistical Table 6 in Appendix D. To calculate normal

probabilities, remember that the distribution is symmetric, so that P(Z > a) = P(Z < −a), and

P(Z > a) = P(Z ≥ a), since the probability of any one point is zero for a continuous random

variable. If X ∼ N(μ, σ2) and a and b are constants, then

P(X ≤ a) = P
(

X − μ
σ

≤
a − μ
σ

)

= P
(

Z ≤
a − μ
σ

)

= Φ
(a − μ

σ

)

(P.37)

P(X > a) = P
(

X − μ
σ

>

a − μ
σ

)

= P
(

Z >

a − μ
σ

)

= 1 − Φ
(a − μ

σ

)

(P.38)

P(a ≤ X ≤ b) = P
(

a − μ
σ

≤ Z ≤
b − μ
σ

)

= Φ
(

b − μ
σ

)

− Φ
(a − μ

σ

)

(P.39)

............................................................................................................................................

12See Appendix A.1.2 for a review of exponents.
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E X A M P L E P.11 Normal Distribution Probability Calculation

For example, if X ∼ N(3, 9), then

P(4 ≤ X ≤ 6) = P(0.33 ≤ Z ≤ 1) = Φ(1) − Φ(0.33) = 0.8413 − 0.6293 = 0.2120

In addition to finding normal probabilities we sometimes must find a value zα of a standard nor-

mal random variable such that P
(
Z ≤ zα

)
= α. The value zα is called the 100𝛂-percentile. For

example, z0.975 is the value of Z such that P
(
Z ≤ z0.975

)
= 0.975. This particular percentile can be

found using Statistical Table 1, Cumulative Probabilities for the Standard Normal Distribution.

The cumulative probability associated with the value z =1.96 is P(Z ≤ 1.96) = 0.975, so that the

97.5 percentile is z0.975 = 1.96. Using Statistical Table 1 we can only roughly obtain other per-

centiles. Using the cumulative probabilities P(Z ≤ 1.64) = 0.9495 and P(Z ≤ 1.65) = 0.9505 we

can say that the 95th percentile of the standard normal distribution is between 1.64 and 1.65,

and is about 1.645.

Luckily computer software makes these approximations unnecessary. The inverse normal
function finds percentiles zα given α. Formally, if P

(
Z ≤ zα

)
= Φ

(
zα
)
= α then zα = Φ−1(α).

Econometric software, even spreadsheets, have the inverse normal function built in. Some

commonly used percentiles are shown in Table P.7. In the last column are the percentiles

rounded to fewer decimals. It would be useful for you to remember the numbers 2.58, 1.96,

and 1.645.

An interesting and useful fact about the normal distribution is that a weighted sum of normal

random variables has a normal distribution. That is, if X1 ∼ N
(
μ1, σ2

1

)
and X2 ∼ N

(
μ2, σ2

2

)
then

Y = a1X1 + a2X2 ∼ N
(
μY = a1μ1 + a2μ2, σ2

Y = a2
1
σ2

1
+ a2

2
σ2

2
+ 2a1a2σ12

)
(P.40)

where σ12 = cov
(
X1,X2

)
. A number of important probability distributions are related to the nor-

mal distribution. The t-distribution, the chi-square distribution, and the F-distribution are dis-

cussed in Appendix B.

T A B L E P.7 Standard Normal Percentiles

𝛂 z𝛂 = 𝚽−1(𝛂) Rounded

0.995 2.57583 2.58

0.990 2.32635 2.33

0.975 1.95996 1.96

0.950 1.64485 1.645

0.900 1.28155 1.28

0.100 −1.28155 −1.28

0.050 −1.64485 −1.645

0.025 −1.95996 −1.96

0.010 −2.32635 −2.33

0.005 −2.57583 −2.58
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P.7.1 The Bivariate Normal Distribution
Two continuous random variables, X and Y , have a joint normal, or bivariate normal, distribu-

tion if their joint pdf takes the form

𝑓 (x, y) = 1

2πσXσY
√

1 − ρ2
exp

{

−

[(
x − μX

σX

)2

− 2ρ
(

x − μX

σX

)(
y − μY

σY

)

+
(

y − μY

σY

)2
]/

2
(
1 − ρ2

)
}

where −∞ < x <∞, −∞ < y <∞. The parameters μX and μY are the means of X and Y , σ2
X and

σ2
Y are the variances of X and Y , so that σX and σY are the standard deviations. The parameter ρ

is the correlation between X and Y . If cov(X, Y) = σXY then

ρ = cov(X,Y)
√

var(X)
√

var(Y)
=

σXY

σXσY

The complex equation for f (x, y) defines a surface in three-dimensional space. In Figure P.6a13

we depict the surface if μX = μY = 0, σX = σY = 1, and ρ = 0.7. The positive correlation means

there is a positive linear association between the values of X and Y , as described in Figure P.4.

Figure P.6b depicts the contours of the density, the result of slicing the density horizontally, at a

given height. The contours are more “cigar-shaped” the larger the absolute value of the correla-

tion ρ. In Figure P.7a the correlation is ρ = 0. In this case the joint density is symmetrical and

the contours in Figure P.7b are circles. If X and Y are jointly normal then they are statistically

independent if, and only if, ρ = 0.
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(a) (b)

y

2 4
–4 –2 0

x

y

2 4

4

2

0

–2
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FIGURE P.6 The bivariate normal distribution: 𝛍X = 𝛍Y = 0, 𝛔X = 𝛔Y = 1, and 𝛒 = 0.7.

............................................................................................................................................

13“The Bivariate Normal Distribution” from the Wolfram Demonstrations Project http://demonstrations.wolfram.com/.

Figures P.6, P.7, and P.8 represent the interactive graphics on the site as static graphics for the primer. The site permits

easy manipulation of distribution parameters. The joint density function figure can be rotated and viewed from different

angles.
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FIGURE P.7 The bivariate normal distribution: 𝛍X = 𝛍Y = 0, 𝛔X = 𝛔Y = 1, and 𝛒 = 0.

There are several relations between the normal, bivariate normal, and the conditional distribu-

tions that are used in statistics and econometrics. First, if X and Y have a bivariate normal dis-

tribution then the marginal distributions of X and Y are normal distributions too, X ∼ N
(
μX , σ2

X
)

and Y ∼ N
(
μY , σ2

Y
)
.

Second, the conditional distribution for Y given X is normal, with conditional mean E(Y|X)=
α + βX, where α = μY − βμX and β = σXY∕σ2

X , and conditional variance var(Y|X) = σ2
Y
(
1 − ρ2

)
.

Or Y|X ∼ N
[
α + βX, σ2

Y
(
1 − ρ2

)]
. Three noteworthy points about these results are (i) that the

conditional mean is a linear function of X, and is called a linear regression function; (ii) the con-

ditional variance is constant and does not vary with X; and (iii) the conditional variance is smaller

than the unconditional variance if ρ ≠ 0. In Figure P.814 we display a joint normal density with

20

Bivariate normal density

(a) (b)

20
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15
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10

x

y

0
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x

0

0
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10
y

15
20

Conditional distribution of Y when X = x

FIGURE P.8 (a) Bivariate normal distribution with 𝛍X = 𝛍Y = 5, 𝛔X = 𝛔Y = 3,
and 𝛒 = 0.7; (b) conditional distribution of Y given X = 10.

............................................................................................................................................

14“The Bivariate Normal and Conditional Distributions” from the Wolfram Demonstrations Project

http://demonstrations.wolfram.com/TheBivariateNormalAndConditionalDistributions/. Both the bivariate distribution

and conditional distributions can be rotated and viewed from different perspectives.
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μX = μY = 5, σX = σY = 3, and ρ = 0.7. The covariance between X and Y is σXY = ρσXσY = 0.7

× 3 × 3 = 6.3 so that β = σXY∕σ2
X = 6.3∕9 = 0.7 and α = μY – βμX = 5 – 0.7 × 5 = 1.5. The

conditional mean of Y given X = 10 is E(Y|X = 10) = α + βX = 1.5 + 0.7X = 1.5 + 0.7 × 10 =
8.5. The conditional variance is var(Y|X = 10) = σ2

Y
(
1 − ρ2

)
= 32

(
1 − 0.72

)
= 9(0.51) = 4.59.

That is, the conditional distribution is (Y|X = 10) ∼ N(8.5, 4.59).

P.8 Exercises

Answers to odd-numbered exercises are on the book website www.principlesofeconometrics.com/poe5.

P.1 Let x1 = 17, x2 = 1, x3 = 0; y1 = 5, y2 = 2, y3 = 8. Calculate the following:

a.
∑2

i=1
xi

b.
∑3

t=1
xtyt

c. x =
(∑3

i=1
xi

)

∕3 [Note: x is called the arithmetic average or arithmetic mean.]

d.
∑3

i=1

(
xi − x

)

e.
∑3

i=1

(
xi − x

)2

f.
(∑3

i=1
x2

i

)

− 3x2

g.
∑3

i=1

(
xi − x

)(
yi − y

)
where y =

(∑3

i=1
yi

)

∕3

h.
(∑3

j=1
xjyj

)

− 3x y

P.2 Express each of the following sums in summation notation.

a.
(
x1∕y1

)
+
(
x2∕y2

)
+
(
x3∕y3

)
+
(
x4∕y4

)

b. y2 + y3 + y4

c. x1y1 + x2y2 + x3y3 + x4y4

d. x3y5 + x4y6 + x5y7

e.
(
x3∕y2

3

)
+
(
x4∕y2

4

)

f.
(
x1 − y1

)
+
(
x2 − y2

)
+
(
x3 − y3

)
+
(
x4 − y4

)

P.3 Write out each of the following sums and compute where possible.

a.
∑3

i=1

(
a − bxi

)

b.
∑4

t=1
t2

c.
∑2

x=0

(
2x2 + 3x + 1

)

d.
∑4

x=2
𝑓 (x + 3)

e.
∑3

x=1
𝑓 (x, y)

f.
∑4

x=3

∑2

y=1
(x + 2y)

P.4 Show algebraically that

a.
∑n

i=1

(
xi − x

)2 =
(∑n

i=1
x2

i

)
− nx2

b.
∑n

i=1

(
xi − x

)(
yi − y

)
=
(∑n

i=1
xiyi

)
− nx y

c.
∑n

j=1

(
xj − x

)
= 0

P.5 Let SALES denote the monthly sales at a bookstore. Assume SALES are normally distributed with a

mean of $50,000 and a standard deviation of $6000.

a. Compute the probability that the firm has a month with SALES greater than $60,000. Show a sketch.

b. Compute the probability that the firm has a month with SALES between $40,000 and $55,000.

Show a sketch.

c. Find the value of SALES that represents the 97th percentile of the distribution. That is, find the

value SALES0.97 such that P(SALES > SALES0.97) = 0.03.

d. The bookstore knows their PROFITS are 30% of SALES minus fixed costs of $12,000. Find the

probability of having a month in which PROFITS were zero or negative. Show a sketch. [Hint:
What is the distribution of PROFITS?]
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P.6 A venture capital company feels that the rate of return (X) on a proposed investment is approximately

normally distributed with a mean of 40% and a standard deviation of 10%.

a. Find the probability that the return X will exceed 55%.

b. The banking firm who will fund the venture sees the rate of return differently, claiming that venture

capitalists are always too optimistic. They perceive that the distribution of returns is V = 0.8X −
5%, where X is the rate of return expected by the venture capital company. If this is correct, find

the probability that the return V will exceed 55%.

P.7 At supermarkets sales of “Chicken of the Sea” canned tuna vary from week to week. Marketing

researchers have determined that there is a relationship between sales of canned tuna and the price

of canned tuna. Specifically, SALES = 50000 − 100 PRICE. SALES is measured as the number of

cans per week and PRICE is measured in cents per can. Suppose PRICE over the year can be con-

sidered (approximately) a normal random variable with mean μ = 248 cents and standard deviation

σ = 10 cents.

a. Find the expected value of SALES.

b. Find the variance of SALES.

c. Find the probability that more than 24,000 cans are sold in a week. Draw a sketch illustrating the

calculation.

d. Find the PRICE such that SALES is at its 95th percentile value. That is, let SALES0.95 be the 95th

percentile of SALES. Find the value PRICE0.95 such that P (SALES > SALES0.95) = 0.05.

P.8 The Shoulder and Knee Clinic knows that their expected monthly revenue from patients depends on

their level of advertising. They hire an econometric consultant who reports that their expected monthly

revenue, measured in $1000 units, is given by the following equation E(REVENUE|ADVERT) = 100

+ 20 ADVERT , where ADVERT is advertising expenditure in $1000 units. The econometric consultant

also claims that REVENUE is normally distributed with variance var(REVENUE|ADVERT) = 900.

a. Draw a sketch of the relationship between expected REVENUE and ADVERT as ADVERT varies

from 0 to 5.

b. Compute the probability that REVENUE is greater than 110 if ADVERT = 2. Draw a sketch to

illustrate your calculation.

c. Compute the probability that REVENUE is greater than 110 if ADVERT = 3.

d. Find the 2.5 and 97.5 percentiles of the distribution of REVENUE when ADVERT = 2. What is the

probability that REVENUE will fall in this range if ADVERT = 2?

e. Compute the level of ADVERT required to ensure that the probability of REVENUE being larger

than 110 is 0.95.

P.9 Consider the U.S. population of registered voters, who may be Democrats, Republicans or indepen-

dents. When surveyed about the war with ISIS, they were asked if they strongly supported war efforts,

strongly opposed the war, or were neutral. Suppose that the proportion of voters in each category is

given in Table P.8:

T A B L E P.8 Table for Exercise P.9

War Attitude
Against Neutral In Favor

Republican 0.05 0.15 0.25

Political Party Independent 0.05 0.05 0.05

Democrat 0.35 0.05 0

a. Find the “marginal” probability distributions for war attitudes and political party affiliation.

b. What is the probability that a randomly selected person is a political independent given that they

are in favor of the war?

c. Are the attitudes about war with ISIS and political party affiliation statistically independent or not?

Why?
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d. For the attitudes about the war assign the numerical values AGAINST = 1, NEUTRAL = 2, and IN
FAVOR = 3. Call this variable WAR. Find the expected value and variance of WAR.

e. The Republican party has determined that monthly fundraising depends on the value of WAR from

month to month. In particular the monthly contributions to the party are given by the relation (in

millions of dollars) CONTRIBUTIONS = 10 + 2 × WAR. Find the mean and standard deviation of

CONTRIBUTIONS using the rules of expectations and variance.

P.10 A firm wants to bid on a contract worth $80,000. If it spends $5000 on the proposal it has a 50–50

chance of getting the contract. If it spends $10,000 on the proposal it has a 60% chance of winning the

contract. Let X denote the net revenue from the contract when the $5000 proposal is used and let Y
denote the net revenue from the contract when the $10,000 proposal is used.

X f (x)

−5,000 0.5

75,000 0.5

y f (y)

−10,000 0.4

70,000 0.6

a. If the firm bases its choice solely on expected value, how much should it spend on the proposal?

b. Compute the variance of X. [Hint: Using scientific notation simplifies calculations.]

c. Compute the variance of Y .

d. How might the variance of the net revenue affect which proposal the firm chooses?

P.11 Prior to presidential elections citizens of voting age are surveyed. In the population, two characteristics

of voters are their registered party affiliation (republican, democrat, or independent) and for whom they

voted in the previous presidential election (republican or democrat). Let us draw a citizen at random,

defining these two variables.

PARTY =
⎧
⎪
⎨
⎪
⎩

−1 registered republican

0 independent or unregistered

1 registered democrat

VOTE =

{
−1 voted republican in previous election

1 voted democratic in previous election

a. Suppose that the probability of drawing a person who voted republication in the last election is

0.466, and the probability of drawing a person who is registered republican is 0.32, and the proba-

bility that a randomly selected person votes republican given that they are a registered republican

is 0.97. Compute the joint probability Prob[PARTY = −1, VOTE = −1]. Show your work.

b. Are these random variables statistically independent? Explain.

P.12 Based on years of experience, an economics professor knows that on the first principles of economics

exam of the semester 13% of students will receive an A, 22% will receive a B, 35% will receive a C,

20% will receive a D, and the remainder will earn an F. Assume a 4 point grading scale (A = 4, B = 3,

C = 2, D = 1, and F = 0). Define the random variable GRADE = 4, 3, 2, 1, 0 to be the grade of a

randomly chosen student.

a. What is the probability distribution f (GRADE) for this random variable?

b. What is the expected value of GRADE? What is the variance of GRADE? Show your work.

c. The professor has 300 students in each class. Suppose that the grade of the ith student is GRADEi
and that the probability distribution of grades f (GRADEi) is the same for all students. Define

CLASS_ AVG =
∑300

i=1
GRADEi∕300. Find the expected value and variance of CLASS_AVG.

d. The professor has estimated that the number of economics majors coming from the class is related

to the grade on the first exam. He believes the relationship to be MAJORS = 50 + 10CLASS_AVG.

Find the expected value and variance of MAJORS. Show your work.

P.13 The LSU Tigers baseball team will play the Alabama baseball team in a weekend series of two games.

Let W = 0, 1, or 2 equal the number of games LSU wins. Let the weekend’s weather be designated

as Cold or Not Cold. Let C = 1 if the weather is cold and C = 0 if the weather is not cold. The joint

probability function of these two random variables is given in Table P.9, along with space for the

marginal distributions.
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T A B L E P.9 Table for Exercise P.13

W = 0 W = 1 W = 2 f (c)

C = 1 (i) 0.12 0.12 (ii)

C = 0 0.07 0.14 (iii) (iv)

f (w) (v) (vi) 0.61

a. Fill in the blanks, (i)–(vi).

b. Using the results of (a), find the conditional probability distribution of the number of wins, W,

conditional on the weather being warm, C= 0. Based on a comparison of the conditional probability

distribution f (w|C = 0) and the marginal distribution f (w), can you conclude that the number of

games LSU wins W is statistically independent of the weather conditions C, or not? Explain.

c. Find the expected value of the number of LSU wins, W. Also find the conditional expectation

E(W|C = 0). Show your work. What kind of weather is more favorable for the LSU Tigers baseball

team?

d. The revenue of vendors at the LSU Alex Box baseball stadium depends on the crowds, which in

turn depends on the weather. Suppose that food sales FOOD = $10,000 − 3000C. Use the rules

for expected value and variance to find the expected value and standard deviation of food sales.

P.14 A clinic specializes in shoulder injuries. A patient is randomly selected from the population of all clinic

clients. Let S be the number of doctor visits for shoulder problems in the past six months. Assume the

values of S are s = 1, 2, 3, or 4. Patients at the shoulder clinic are also asked about knee injuries. Let

K = the number of doctor visits for knee injuries during the past six months. Assume the values of

K are k = 0, 1 or 2. The joint probability distribution of the numbers of shoulder and knee injuries is

shown in Table P.10. Use the information in the joint probability distribution to answer the following

questions. Show brief calculations for each

T A B L E P.10 Table for Exercise P.14

Knee = K
0 1 2 f (s)

1 0.15 0.09 0.06

Shoulder = S 2 0.06

3 0.02 0.10 0.2

4 0.02 0.08 0.10

f (k) 0.33

a. What is the probability that a randomly chosen patient will have two doctor visits for shoulder

problems during the past six months?

b. What is the probability that a randomly chosen patient will have two doctor visits for shoulder

problems during the past six months given that they have had one doctor visit for a knee injury in

the past six months?

c. What is the probability that a randomly chosen patient will have had three doctor visits for shoulder

problems and two doctor visits for knee problems in the past six months?

d. Are the number of doctor visits for knee and shoulder injuries statistically independent? Explain.

e. What is the expected value of the number of doctor visits for shoulder injuries from this population?

f. What is the variance of the number of doctor visits for shoulder injuries from this population?

P.15 As you walk into your econometrics exam, a friend bets you $20 that she will outscore you on the

exam. Let X be a random variable denoting your winnings. X can take the values 20, 0 [if there is a

tie], or −20. You know that the probability distribution for X, f (x), depends on whether she studied for
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the exam or not. Let Y = 0 if she studied and Y = 1 if she did not study. Consider the following joint

distribution Table P.11.

T A B L E P.11 Joint pdf for Exercise P.15

Y
0 1 f (x)

−20 (i) 0 (ii)

X 0 (iii) 0.15 0.25

20 0.10 (iv) (v)

f (y) (vi) 0.60

a. Fill in the missing elements (i)–(vi) in the table.

b. Compute E(X). Should you take the bet?

c. What is the probability distribution of your winnings if you know that she did not study?

d. Find your expected winnings given that she did not study.

e. Use the Law of Iterated Expectations to find E(X).

P.16 Breast cancer prevalence in the United Kingdom can be summarized for the population (data are in

1000s) as in Table P.12.

T A B L E P.12 Table for Exercise P.16

Sex
Female Male Total

Suffers from Breast Cancer 550 3 553

Not Suffering from Breast Cancer 30,868 30,371 61,239

Total 31,418 30,374 61,792

a. Compute the probability that a randomly drawn person has breast cancer.

b. Compute the probability that a randomly drawn female has breast cancer.

c. Compute the probability that a person is female given that the person has breast cancer.

d. What is the conditional probability function for the prevalence of breast cancer given that the person

is female?

e. What is the conditional probability function for the prevalence of breast cancer given that the person

is male?

P.17 A continuous random variable Y has pdf

𝑓 (y) =

{
2y 0 < y < 1

0 otherwise

a. Sketch the pdf .

b. Find the cdf , F(y) = P(Y ≤ y) and sketch it. [Hint: Requires calculus.]

c. Use the pdf and a geometric argument to find the probability P(Y ≤ 1/2).

d. Use the cdf from part (b) to compute P(Y ≤ 1/2).

e. Using the pdf and a geometric argument find the probability P(1/4 ≤ Y ≤ 3/4).

f. Use the cdf from part (b) to compute P(1/4 ≤ Y ≤ 3/4).

P.18 Answer each of the following:

a. An internal revenue service auditor knows that 3% of all income tax forms contain errors. Returns

are assigned randomly to auditors for review. What is the probability that an auditor will have to
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view four tax returns until the first error is observed? That is, what is the probability of observing

three returns with no errors, and then observing an error in the fourth return?

b. Let Y be the number of independent trials of an experiment before a success is observed. That is,

it is the number of failures before the first success. Assume each trial has a probability of success

of p and a probability of failure of 1 − p. Is this a discrete or continuous random variable? What is

the set of possible values that Y can take? Can Y take the value zero? Can Y take the value 500?

c. Consider the pdf f (y) = P(Y = y) = p(1 − p)y. Using this pdf compute the probability in (a). Argue

that this probability function generally holds for the experiment described in (b).

d. Using the value p = 0.5, plot the pdf in (c) for y = 0, 1, 2, 3, 4.

e. Show that
∑∞

y=0
𝑓 (y) =

∑∞
y=0

p(1 − p)y = 1. [Hint: If |r| < 1 then 1 + r + r2 + r3 + · · · = 1/(1−r).]

f. Verify for y = 0, 1, 2, 3, 4 that the cdf P(Y ≤ y) = 1 − (1 − p)y+1 yields the correct values.

P.19 Let X and Y be random variables with expected values μ = μX = μY and variances σ2 = σ2
X = σ

2
Y . Let

Z = (2X + Y)/2.

a. Find the expected value of Z.

b. Find the variance of Z assuming X and Y are statistically independent.

c. Find the variance of Z assuming that the correlation between X and Y is −0.5.

d. Let the correlation between X and Y be −0.5. Find the correlation between aX and bY , where a and

b are any nonzero constants.

P.20 Suppose the pdf of the continuous random variable X is f (x) = 1, for 0 < x < 1 and f (x) = 0 otherwise.

a. Draw a sketch of the pdf . Verify that the area under the pdf for 0 < x < 1 is 1.

b. Find the cdf of X. [Hint: Requires the use of calculus.]

c. Compute the probability that X falls in each of the intervals [0, 0.1], [0.5, 0.6], and [0.79, 0.89].

Indicate the probabilities on the sketch drawn in (a).

d. Find the expected value of X.

e. Show that the variance of X is 1/12.

f. Let Y be a discrete random variable taking the values 1 and 0 with conditional probabilities

P(Y = 1|X = x) = x and P(Y = 0|X = x) = 1 − x. Use the Law of Iterated Expectations to find

E(Y).

g. Use the variance decomposition to find var(Y).

P.21 A fair die is rolled. Let Y be the face value showing, 1, 2, 3, 4, 5, or 6 with each having the probability

1/6 of occurring. Let X be another random variable that is given by

X =

{
Y if Y is even

0 if Y is odd

a. Find E(Y), E
(
Y2
)
, and var(Y).

b. What is the probability distribution for X? Find E(X), E
(
X2

)
, and var(X).

c. Find the conditional probability distribution of Y given each X.

d. Find the conditional expected value of Y given each value of X, E(Y|X).

e. Find the probability distribution of Z = XY . Show that E(Z) = E(XY) = E
(
X2

)
.

f. Find cov(X, Y).

P.22 A large survey of married women asked “How many extramarital affairs did you have last year?” 77%

said they had none, 5% said they had one, 2% said two, 3% said three, and the rest said more than three.

Assume these women are representative of the entire population.

a. What is the probability that a randomly selected married woman will have had one affair in the past

year?

b. What is the probability that a randomly selected married woman will have had more than one affair

in the past year?

c. What is the probability that a randomly chosen married woman will have had less than three affairs

in the past year?

d. What is the probability that a randomly chosen married woman will have had one or two affairs in

the past year?

e. What is the probability that a randomly chosen married woman will have had one or two affairs in

the past year, given that they had at least one?
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P.23 Let NKIDS represent the number of children ever born to a woman. The possible values of NKIDS
are nkids = 0, 1, 2, 3, 4, . . . . Suppose the pdf is f (nkids) = 2nkids

/
(7.389nkids!), where ! denotes the

factorial operation.

a. Is NKIDS a discrete or continuous random variable?

b. Calculate the pdf for nkids= 0, 1, 2, 3, 4. Sketch it. [Note: It may be convenient to use a spreadsheet

or other software to carry out tedious calculations.]

c. Calculate the probabilities P[NKIDS ≤ nkids] for nkids = 0, 1, 2, 3, 4. Sketch the cumulative dis-

tribuiton function.

d. What is the probability that a woman will have more than one child.

e. What is the probability that a woman will have two or fewer children?

P.24 Five baseballs are thrown to a batter who attempts to hit the ball 350 feet or more. Let H denote the

number of successes, with the pd for having h successes being f (h) = 120 × 0.4h × 0.65−h∕[h!(5−h)!],

where ! denotes the factorial operation.

a. Is H a discrete or continuous random variable? What values can it take?

b. Calculate the probabilities that the number of successes h = 0, 1, 2, 3, 4, and 5. [Note: It may be

convenient to use a spreadsheet or other software to carry out tedious calculations.] Sketch the pdf .

c. What is the probability of two or fewer successes?

d. Find the expected value of the random variable H. Show your work.

e. The prizes are $1000 for the first success, $2000 for the second success, $3000 for the third success,

and so on. What is the pdf for the random variable PRIZE, which is the total prize winnings?

f. Find the expected value of total prize winnings, PRIZE.

P.25 An author knows that a certain number of typographical errors (0, 1, 2, 3, …) are on each book page.

Define the random variable T equaling the number of errors per page. Suppose that T has a Poisson

distribution [Appendix B.3.3], with pdf , f (t) = μt exp(−μ)/t!, where ! denotes the factorial operation,

and μ = E(T) is the mean number of typographical errors per page.

a. If μ = 3, what is the probability that a page has one error? What is the probability that a page has

four errors?

b. An editor independently checks each word of every page and catches 90% of the errors, but misses

10%. Let Y denote the number of errors caught on a page. The values of y must be less than or

equal to the actual number t of errors on the page. Suppose that the number of errors caught on a

page with t errors has a binomial distribution [Appendix B.3.2].

g(y|t, p = 0.9) = t!
y!(t − y)!

0.9y0.1t−y
, y = 0, 1,… , t

Compute the probability that the editor finds one error on a page given that the page actually has

four errors.

c. Find the joint probability P[Y = 3, T = 4].

d. It can be shown that the probability the editor will find Y errors on a page follows a Poisson distri-

bution with mean E(Y) = 0.9μ. Use this information to find the conditional probability that there

are T = 4 errors on a page given that Y = 3 are found.
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CHAPTER 2

The Simple Linear
Regression Model

L E A R N I N G O B J E C T I V E S

Remark
Learning Objectives and Keywords sections will appear at the beginning of each chapter. We

urge you to think about and possibly write out answers to the questions, and make sure you

recognize and can define the keywords. If you are unsure about the questions or answers,

consult your instructor. When examples are requested in Learning Objectives sections, you

should think of examples not in the book.

Based on the material in this chapter you should be able to

1. Explain the difference between an estimator and

an estimate, and why the least squares

estimators are random variables, and why least

squares estimates are not.

2. Discuss the interpretation of the slope and inter-

cept parameters of the simple regression model,

and sketch the graph of an estimated equation.

3. Explain the theoretical decomposition of an

observable variable y into its systematic and

random components, and show this

decomposition graphically.

4. Discuss and explain each of the assumptions of

the simple linear regression model.

5. Explain how the least squares principle is used

to fit a line through a scatter plot of data. Be able

to define the least squares residual and the least

squares fitted value of the dependent variable

and show them on a graph.

6. Define the elasticity of y with respect to x and

explain its computation in the simple linear

regression model when y and x are not

transformed in any way, and when y and/or x
have been transformed to model a nonlinear

relationship.

7. Explain the meaning of the statement ‘‘If

regression model assumptions SR1–SR5 hold,

then the least squares estimator b2 is

unbiased.’’ In particular, what exactly does

‘‘unbiased’’ mean? Why is b2 biased if an

important variable has been omitted from the

model?

8. Explain the meaning of the phrase ‘‘sampling

variability.’’

9. Explain how the factors σ2,
∑(

xi − x
)2

, and N
affect the precision with which we can estimate

the unknown parameter β2.

46
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10. State and explain the Gauss–Markov theorem.

11. Use the least squares estimator to estimate

nonlinear relationships and interpret the

results.

12. Explain the difference between an explanatory

variable that is fixed in repeated samples and an

explanatory variable that is random.

13. Explain the term ‘‘random sampling.’’

K E Y W O R D S

assumptions

asymptotic

biased estimator

BLUE

degrees of freedom

dependent variable

deviation from the mean form

econometric model

economic model

elasticity

exogenous variable

Gauss–Markov theorem

heteroskedastic

homoskedastic

independent variable

indicator variable

least squares estimates

least squares estimators

least squares principle

linear estimator

log-linear model

nonlinear relationship

prediction

quadratic model

random error term

random-x

regression model

regression parameters

repeated sampling

sampling precision

sampling properties

scatter diagram

simple linear regression analysis

simple linear regression function

specification error

strictly exogenous

unbiased estimator

Economic theory suggests many relationships between economic variables. In microeconomics,

you considered demand and supply models in which the quantities demanded and supplied of a

good depend on its price. You considered “production functions” and “total product curves” that

explained the amount of a good produced as a function of the amount of an input, such as labor,

that is used. In macroeconomics, you specified “investment functions” to explain that the amount

of aggregate investment in the economy depends on the interest rate and “consumption functions”

that related aggregate consumption to the level of disposable income.

Each of these models involves a relationship between economic variables. In this chapter, we

consider how to use a sample of economic data to quantify such relationships. As economists, we

are interested in questions such as the following: If one variable (e.g., the price of a good) changes

in a certain way, by how much will another variable (the quantity demanded or supplied) change?

Also, given that we know the value of one variable, can we forecast or predict the corresponding

value of another? We will answer these questions by using a regression model. Like all models,

the regression model is based on assumptions. In this chapter, we hope to be very clear about

these assumptions, as they are the conditions under which the analysis in subsequent chapters

is appropriate.

2.1 An Economic Model
In order to develop the ideas of regression models, we are going to use a simple, but important,

economic example. Suppose that we are interested in studying the relationship between household

income and expenditure on food. Consider the “experiment” of randomly selecting households

from a particular population. The population might consist of households within a particular city,

state, province, or country. For the present, suppose that we are interested only in households

with an income of $1000 per week. In this experiment, we randomly select a number of house-

holds from this population and interview them. We ask the question “How much did you spend

per person on food last week?” Weekly food expenditure, which we denote as y, is a random
variable since the value is unknown to us until a household is selected and the question is asked

and answered.
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Remark
In the Probability Primer and Appendices B and C, we distinguished random variables from

their values by using uppercase (Y) letters for random variables and lowercase (y) letters for

their values. We will not make this distinction any longer because it leads to complicated

notation. We will use lowercase letters, like “y,” to denote random variables as well as their

values, and we will make the interpretation clear in the surrounding text.

The continuous random variable y has a probability density function (which we will abbreviate as

pdf ) that describes the probabilities of obtaining various food expenditure values. If you are rusty
or uncertain about probability concepts, see the Probability Primer and Appendix B at the end of
this book for a comprehensive review. The amount spent on food per person will vary from one

household to another for a variety of reasons: some households will be devoted to gourmet food,

some will contain teenagers, some will contain senior citizens, some will be vegetarian, and some

will eat at restaurants more frequently. All of these factors and many others, including random,

impulsive buying, will cause weekly expenditures on food to vary from one household to another,

even if they all have the same income. The pdf f(y) describes how expenditures are “distributed”

over the population and might look like Figure 2.1.

The pdf in Figure 2.1a is actually a conditional pdf since it is “conditional” upon household

income. If x = weekly household income = $1000, then the conditional pdf is f(y|x = $1000).
The conditional mean, or expected value, of y is E(y|x = $1000) = μy|x and is our population’s

mean weekly food expenditure per person.

Remark
The expected value of a random variable is called its “mean” value, which is really a contrac-

tion of population mean, the center of the probability distribution of the random variable.

This is not the same as the sample mean, which is the arithmetic average of numerical values.

Keep the distinction between these two usages of the term “mean” in mind.

The conditional variance of y is var(y|x = $1000) = σ2, which measures the dispersion of house-

hold expenditures y about their mean μy|x. The parameters μy|x and σ2, if they were known,

would give us some valuable information about the population we are considering. If we knew

these parameters, and if we knew that the conditional distribution f (y|x = $1000) was normal,

y

f(y|x = 1000)
f(y|x = 1000)

μy|x

(a)

f(y|x) f(y|x = 1000) f(y|x = 2000)

μy|1000 μy|2000 y

(b)

FIGURE 2.1 (a) Probability distribution f (y|x = 1000) of food expenditure y given income
x = $1000. (b) Probability distributions of food expenditure y given incomes
x = $1000 and x = $2000.
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N
(
μy|x, σ2

)
, then we could calculate probabilities that y falls in specific intervals using properties

of the normal distribution. That is, we could compute the proportion of the household population

that spends between $50 and $75 per person on food, given $1000 per week income.

As economists, we are usually interested in studying relationships between variables, in this

case the relationship between y = weekly food expenditure per person and x = weekly household

income. Economic theory tells us that expenditure on economic goods depends on income. Conse-

quently, we call y the “dependent variable” and x the “independent” or “explanatory” variable.

In econometrics, we recognize that real-world expenditures are random variables, and we want

to use data to learn about the relationship.

An econometric analysis of the expenditure relationship can provide answers to some impor-

tant questions, such as: If weekly income goes up by $100, how much will average weekly food

expenditures rise? Or, could weekly food expenditures fall as income rises? How much would we

predict the weekly per person expenditure on food to be for a household with an income of $2000

per week? The answers to such questions provide valuable information for decision makers.

Using … per person food spending information … one can determine the similarities
and disparities in the spending habits of households of differing sizes, races, incomes,
geographic areas, and other socioeconomic and demographic features. This information
is valuable for assessing existing market conditions, product distribution patterns, con-
sumer buying habits, and consumer living conditions. Combined with demographic and
income projections, this information may be used to anticipate consumption trends. The
information may also be used to develop typical market baskets of food for special popu-
lation groups, such as the elderly. These market baskets may, in turn, be used to develop
price indices tailored to the consumption patterns of these population groups. [Blisard,
Noel, Food Spending in American Households, 1997–1998, Electronic Report from the
Economic Research Service, U.S. Department of Agriculture, Statistical Bulletin Number
972, June 2001]

From a business perspective, if we are managers of a supermarket chain (or restaurant, or health

food store, etc.), we must consider long-range plans. If economic forecasters are predicting that

local income will increase over the next few years, then we must decide whether, and how much,

to expand our facilities to serve our customers. Or, if we plan to open franchises in high-income

and low-income neighborhoods, then forecasts of expenditures on food per person, along with

neighborhood demographic information, give an indication of how large the stores in those areas

should be.

In order to investigate the relationship between expenditure and income, we must build an

economic model and then a corresponding econometric model that forms the basis for a quanti-

tative or empirical economic analysis. In our food expenditure example, economic theory suggests

that average weekly per person household expenditure on food, represented mathematically by the

conditional mean E(y|x) = μy|x, depends on household income x. If we consider households with

different levels of income, we expect the average expenditure on food to change. In Figure 2.1b,

we show the pdfs of food expenditure for two different levels of weekly income, $1000 and $2000.

Each conditional pdf f (y|x) shows that expenditures will be distributed about a mean value μy|x,

but the mean expenditure by households with higher income is larger than the mean expenditure

by lower income households.

In order to use data, we must now specify an econometric model that describes how the data

on household income and food expenditure are obtained and that guides the econometric analysis.

2.2 An Econometric Model
Given the economic reasoning in the previous section, and to quantify the relationship between

food expenditure and income, we must progress from the ideas in Figure 2.1, to an econometric
model. First, suppose a three-person household has an unwavering rule that each week they
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spend $80 and then also spend 10 cents of each dollar of income received on food. Let y = weekly

household food expenditure ($) and let x = weekly household income ($). Algebraically their

rule is y = 80 + 0.10x. Knowing this relationship we calculate that in a week in which the

household income is $1000, the household will spend $180 on food. If weekly income increases

by $100 to $1100, then food expenditure increases to $190. These are predictions of food

expenditure given income. Predicting the value of one variable given the value of another, or

others, is one of the primary uses of regression analysis.

A second primary use of regression analysis is to attribute, or relate, changes in one variable

to changes in another variable. To that end, let “Δ” denote “change in” in the usual algebraic

way. A change in income of $100 means that Δx = 100. Because of the spending rule y = 80 +
0.10x the change in food expenditure isΔy = 0.10Δx = 0.10(100) = 10. An increase in income of

$100 leads to, or causes, a $10 increase in food expenditure. Geometrically, the rule is a line with

“y-intercept” 80 and slope Δy∕Δx = 0.10. An economist might say that the household “marginal

propensity to spend on food is 0.10,” which means that from each additional dollar of income

10 cents is spent on food. Alternatively, in a kind of economist shorthand, the “marginal effect of

income on food expenditure is 0.10.” Much of economic and econometric analysis is an attempt

to measure a causal relationship between two economic variables. Claiming causality here, that

is, changing income leads to a change in food expenditure, is quite clear given the household’s

expenditure rule. It is not always so straightforward.

In reality, many other factors may affect household expenditure on food; the ages and sexes

of the household members, their physical size, whether they do physical labor or have desk jobs,

whether there is a party following the big game, whether it is an urban or rural household, whether

household members are vegetarians or into a paleo-diet, as well as other taste and preference

factors (“I really like truffles”) and impulse shopping (“Wow those peaches look good!”). Lots of

factors. Let e = everything else affecting food expenditure other than income. Furthermore, even

if a household has a rule, strict or otherwise, we do not know it. To account for these realities, we

suppose that the household’s food expenditure decision is based on the equation

y = β1 + β2x + e (2.1)

In addition to y and x, equation (2.1) contains two unknown parameters, β1 and β2, instead of

“80” and “0.10,” and an error term e, which represents all those other factors (everything else)

affecting weekly household food expenditure.

Imagine that we can perform an experiment on the household. Let’s increase the household’s

income by $100 per week and hold other things constant. Holding other things constant, or hold-

ing all else (everything else) equal, is the ceteris paribus assumption discussed extensively in

economic principles courses. Let Δx = 100 denote the change in household income. Assuming

everything else affecting household food expenditure, e, is held constant means that Δe = 0. The

effect of the change in income isΔy = β2Δx + Δe = β2Δx = β2 × 100. The change in weekly food

expenditure Δy = β2 × 100 is explained by, or caused by, the change in income. The unknown

parameter β2, the marginal propensity to spend on food from income, tells us the proportion of

the increase in income used for food purchases; it answers the “how much” question “How much

will food expenditure change given a change in income, holding all else constant?”

The experiment in the previous paragraph is not feasible. We can give a household an

extra $100 income, but we cannot hold all else constant. The simple calculation of the marginal

effect of an increase in income on food expenditure Δy = β2 × 100 is not possible. However,

we can shed light on this “how much” question by using regression analysis to estimate β2.

Regression analysis is a statistical method that uses data to explore relationships between

variables. A simple linear regression analysis examines the relationship between a y-variable

and one x-variable. It is said to be “simple” not because it is easy, but because there is only one

x-variable. The y-variable is called the dependent variable, the outcome variable, the explained

variable, the left-hand-side variable, or the regressand. In our example, the dependent variable is



�

� �

�

2.2 An Econometric Model 51

y = weekly household expenditure on food. The variable x = weekly household income is called

the independent variable, the explanatory variable, the right-hand-side variable, or the regressor.

Equation (2.1) is the simple linear regression model.

All models are abstractions from reality and working with models requires assumptions. The

same is true for the regression model. The first assumption of the simple linear regression model is

that relationship (2.1) holds for the members of the population under consideration. For example,

define the population to be three-person households in a given geographic region, say southern

Australia. The unknowns β1 and β2 are called population parameters. We assert the behavioral

rule y = β1 + β2x + e holds for all households in the population. Each week food expenditure

equals β1, plus a proportion β2 of income, plus other factors, e.

The field of statistics was developed because, in general, populations are large, and it is

impossible (or impossibly costly) to examine every population member. The population of

three-person households in a given geographic region, even if it is only a medium-sized city, is

too large to survey individually. Statistical and econometric methodology examines and analyzes

a sample of data from the population. After analyzing the data, we make statistical inferences.

These are conclusions or judgments about a population based on the data analysis. Great care

must be taken when drawing inferences. The inferences are conclusions about the particular

population from which the data were collected. Data on households from southern Australia

may, or may not, be useful for making inferences, drawing conclusions, about households from

the southern United States. Do Melbourne, Australia, households have the same food spending

patterns as households in New Orleans, Louisiana? That might be an interesting research topic.

If not, then we may not be able to draw valid conclusions about New Orleans household behavior

from the sample of Australian data.

2.2.1 Data Generating Process
The sample of data, and how the data are actually obtained, is crucially important for subsequent

inferences. The exact mechanisms for collecting a sample of data are very discipline specific (e.g.,

agronomy is different from economics) and beyond the scope of this book.1 For the household

food expenditure example, let us assume that we can obtain a sample at a point in time [these are

cross-sectional data] consisting of N data pairs that are randomly selected from the population.

Let
(
yi, xi

)
denote the ith data pair, i = 1,… ,N. The variables yi and xi are random variables,

because their values are not known until they are observed. Randomly selecting households makes

the first observation pair
(
y1, x1

)
statistically independent of all other data pairs, and each obser-

vation pair
(
yi, xi

)
is statistically independent of every other data pair,

(
yj, xj

)
, where i ≠ j. We

further assume that the random variables yi and xi have a joint pdf f
(
yi, xi

)
that describes their

distribution of values. We often do not know the exact nature of the joint distribution (such as

bivariate normal; see Probability Primer, Section P.7.1), but all pairs drawn from the same popu-

lation are assumed to follow the same joint pdf , and, thus, the data pairs are not only statistically

independent but are also identically distributed (abbreviated i.i.d. or iid). Data pairs that are iid
are said to be a random sample.

If our first assumption is true, that the behavioral rule y = β1 + β2x + e holds for all house-

holds in the population, then restating (2.1) for each
(
yi, xi

)
data pair

yi = β1 + β2xi + ei, i = 1,… ,N (2.1)

This is sometimes called the data generating process (DGP) because we assume that the observ-

able data follow this relationship.

............................................................................................................................................

1See, for example, Paul S. Levy and Stanley Lemeshow (2008) Sampling of Populations: Methods and Applications,

4th Edition, Hoboken, NJ: John Wiley and Sons, Inc.
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2.2.2 The Random Error and Strict Exogeneity
The second assumption of the simple regression model (2.1) concerns the “everything else”

term e. The variables
(
yi, xi

)
are random variables because we do not know what values they

take until a particular household is chosen and they are observed. The error term ei is also a

random variable. All the other factors affecting food expenditure except income will be different

for each population household if for no other reason that everyone’s tastes and preferences are

different. Unlike food expenditure and income, the random error term ei is not observable; it

is unobservable. We cannot measure tastes and preferences in any direct way, just as we cannot

directly measure the economic “utility” derived from eating a slice of cake. The second regres-

sion assumption is that the x-variable, income, cannot be used to predict the value of ei, the effect

of the collection of all other factors affecting the food expenditure by the ith household. Given

an income value xi for the ith household, the best (optimal) predictor2 of the random error ei is

the conditional expectation, or conditional mean, E
(
ei|xi

)
. The assumption that xi cannot be used

to predict ei is equivalent to saying E
(
ei|xi

)
= 0. That is, given a household’s income we can-

not do any better than predicting that the random error is zero; the effects of all other factors on

food expenditure average out, in a very specific way, to zero. We will discuss other situations in

which this might or might not be true in Section 2.10. For now, recall from the Probability Primer,

Section P.6.5, that E
(
ei|xi

)
= 0 has two implications. The first is E

(
ei|xi

)
= 0 =⇒ E

(
ei
)
= 0; if

the conditional expected value of the random error is zero, then the unconditional expectation
of the random error is also zero. In the population, the average effect of all the omitted factors

summarized by the random error term is zero.

The second implication is E
(
ei|xi

)
= 0 =⇒ cov

(
ei, xi

)
= 0. If the conditional expected value

of the random error is zero, then ei, the random error for the ith observation, has covariance zero

and correlation zero, with the corresponding observation xi. In our example, the random compo-

nent ei, representing all factors affecting food expenditure except income for the ith household,

is uncorrelated with income for that household. You might wonder how that could possibly be

shown to be true. After all, ei is unobservable. The answer is that it is very hard work. You

must convince yourself and your audience that anything that might have been omitted from the

model is not correlated with xi. The primary tool is economic reasoning: your own intellectual

experiments (i.e., thinking), reading literature on the topic and discussions with colleagues or

classmates. And we really can’t prove that E
(
ei|xi

)
= 0 is true with absolute certainty in most

economic models.

We noted that E
(
ei|xi

)
= 0 has two implications. If either of the implications is not true, then

E
(
ei|xi

)
= 0 is not true, that is,

E
(
ei|xi

)
≠ 0 if (i) E

(
ei
)
≠ 0 or if (ii) cov

(
ei, xi

)
≠ 0

In the first case, if the population average of the random errors ei is not zero, then E
(
ei|xi

)
≠ 0.

In a certain sense, we will be able to work around the case when E
(
ei
)
≠ 0, say if E

(
ei
)
= 3,

as you will see below. The second implication of E
(
ei|xi

)
= 0 is that cov

(
ei, xi

)
= 0; the ran-

dom error for the ith observation has zero covariance and correlation with the ith observation

on the explanatory variable. If cov
(
ei, xi

)
= 0, the explanatory variable x is said to be exoge-

nous, providing our first assumption that the pairs
(
yi, xi

)
are iid holds. When x is exogenous,

regression analysis can be used successfully to estimate β1 and β2. To differentiate the weaker

condition cov
(
ei, xi

)
= 0, simple exogeneity, from the stronger condition E

(
ei|xi

)
= 0, we say

that x is strictly exogenous if E
(
ei|xi

)
= 0. If cov

(
ei, xi

)
≠ 0, then x is said to be endogenous.

When x is endogenous, it is more difficult, sometimes much more difficult, to carry out statistical

inference. A great deal will be said about exogeneity and strict exogeneity in the remainder of

this book.

............................................................................................................................................

2You will learn about optimal prediction in Appendix 4C.
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E X A M P L E 2.1 A Failure of the Exogeneity Assumption

Consider a regression model exploring the relationship

between a working person’s wage and their years of

education, using a random sample of data. The simple

regression model is WAGEi = β1 + β2EDUCi + ei, where

WAGEi is the hourly wage rate of the ith randomly selected

person and EDUCi is their years of education. The pairs(
WAGEi,EDUCi

)
from the random sample are assumed to be

iid. In this model, the random error ei accounts for all those

factors other than EDUCi that affect a person’s wage rate.

What might some of those factors be? Ability, intelligence,

perseverance, and industriousness are all important charac-

teristics of an employee and likely to influence their wage

rate. Are any of these factors which are bundled into ei likely

to be correlated with EDUCi? A few moments reflection

will lead you to say “yes.” It is very plausible that those

with higher education have higher ability, intelligence,

perseverance, and industriousness. Thus, there is a strong

argument that EDUCi is an endogenous regressor in this

regression and that the strict exogeneity assumption fails.

2.2.3 The Regression Function
The importance of the strict exogeneity assumption is the following. If the strict exogeneity

assumption E
(
ei|xi

)
= 0 is true, then the conditional expectation of yi given xi is

E
(
yi|xi

)
= β1 + β2xi + E

(
ei|xi

)
= β1 + β2xi, i = 1,… ,N (2.2)

The conditional expectation E
(
yi|xi

)
= β1 + β2xi in (2.2) is called the regression function, or

population regression function. It says that in the population the average value of the dependent

variable for the ith observation, conditional on xi, is given by β1 + β2xi. It also says that given a

change in x, Δx, the resulting change in E
(
yi|xi

)
is β2Δx holding all else constant, in the sense

that given xi the average of the random errors is zero, and any change in x is not correlated with

any corresponding change in the random error e. In this case, we can say that a change in x leads

to, or causes, a change in the expected (population average) value of y given xi, E
(
yi|xi

)
.

The regression function in (2.2) is shown in Figure 2.2, with y-intercept β1 = E
(
yi|xi = 0

)

and slope

β2 =
ΔE

(
yi|xi

)

Δxi
=

dE
(
yi|xi

)

dxi
(2.3)

where Δ denotes “change in” and dE(y|x)∕dx denotes the “derivative” of E(y|x) with respect to x.

We will not use derivatives to any great extent in this book, and if you are not too familiar with

the concept you can think of “d” as a stylized version of Δ and go on. See Appendix A.3 for a

discussion of derivatives.
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E(y|x) = β1 + β2 x

β1

Δx

ΔE(y|x)

E( y|x)

β2 = Δx dx
ΔE(y|x) dE(y|x)

=

FIGURE 2.2 The economic model: a linear relationship between average
per person food expenditure and income.
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E X A M P L E 2.2 Strict Exogeneity in the Household Food Expenditure Model

The strict exogeneity assumption is that the average of

everything else affecting the food expenditure of the ith
household, given the income of the ith household, is zero.

Could this be true? One test of this possibility is the question

“Using the income of the ith household, can we predict the

value of ei, the combined influence of all factors affecting

food expenditure other than income?” If the answer is yes,

then strict exogeneity fails. If not, then E
(
ei|xi

)
= 0 may be a

plausible assumption. And if it is, then equation (2.1) can be

interpreted as a causal model, and β2 can be thought of as the

marginal effect of income on expected (average) household

food expenditure, holding all else constant, as shown in

equation (2.3). If E
(
ei|xi

)
≠ 0 then xi can be used to predict a

nonzero value for ei, which in turn will affect the value of yi.

In this case, β2 will not capture all the effects of an income

change, and the model cannot be interpreted as causal.

Another important consequence of the assumption of strict exogeneity is that it allows us to think

of the econometric model as decomposing the dependent variable into two components: one that

varies systematically as the values of the independent variable change and another that is ran-

dom “noise.” That is, the econometric model yi = β1 + β2xi + ei can be broken into two parts:

E
(
yi|xi

)
= β1 + β2xi and the random error, ei. Thus

yi = β1 + β2xi + ei = E
(
yi|xi

)
+ ei

The values of the dependent variable yi vary systematically due to variation in the conditional

mean E
(
yi|xi

)
= β1 + β2xi, as the value of the explanatory variable changes, and the values of the

dependent variable yi vary randomly due to ei. The conditional pdf s of e and y are identical except

for their location, as shown in Figure 2.3. Two values of food expenditure y1 and y2 for households

with x = $1000 of weekly income are shown in Figure 2.4 relative to their conditional mean. There

will be variation in household expenditures on food from one household to another because of

variations in tastes and preferences, and everything else. Some will spend more than the average

value for households with the same income, and some will spend less. If we knew β1 and β2, then

we could compute the conditional mean expenditure E
(
yi|x = 1000

)
= β1 + β2(1000) and also

the value of the random errors e1 and e2. We never know β1 and β2 so we can never compute e1

and e2. What we are assuming, however, is that at each level of income x the average value of all

that is represented by the random error is zero.

2.2.4 Random Error Variation
We have made the assumption that the conditional expectation of the random error term is

zero, E
(
ei|xi

)
= 0. For the random error term we are interested in both its conditional mean,

E(e∣x = 1000) = 0

f (∙∣x = 1000)

f (e∣x = 1000)

E(y∣x = 1000) =
               β1 + β2(1000)

f (y∣x = 1000)

FIGURE 2.3 Conditional probability densities for e
and y.
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y

f(y∣x = 1000)
f(y∣x = 1000)

E(y∣x = 1000) = β1 + β2(1000)

e1

y1 y2

e2

FIGURE 2.4 The random error.

or expected value, and its variance. Ideally, the conditional variance of the random error is

constant.

var
(
ei|xi

)
= σ2 (2.4)

This is the homoskedasticity (also spelled homoscedasticity) assumption. At each xi the

variation of the random error component is the same. Assuming the population relationship

yi = β1 + β2xi + ei the conditional variance of the dependent variable is

var
(
yi|xi

)
= var

(
β1 + β2xi + ei|xi

)
= var

(
ei|xi

)
= σ2

The simplification works because by conditioning on xi we are treating it as if it is known and

therefore not random. Given xi the component β1 + β2xi is not random, so the variance rule (P.14)

applies.

This was an explicit assumption in Figure 2.1(b) where the pdf s f (y|x = 1000) and

f (y|x = 2000) have the same variance, σ2. If strict exogeneity holds, then the regression function

is E
(
yi|xi

)
= β1 + β2xi, as shown in Figure 2.2. The conditional distributions f (y|x = 1000) and

f (y|x = 2000) are placed along the conditional mean function in Figure 2.5. In the household

expenditure example, the idea is that for a particular level of household income x, the values

of household food expenditure will vary randomly about the conditional mean due to the

assumption that at each x the average value of the random error e is zero. Consequently, at each

level of income, household food expenditures are centered on the regression function. The con-

ditional homoskedasticity assumption implies that at each level of income the variation in food

f(y∣x)

Household income

Food expenditure

μy∣1000
μy∣2000

x

y

x =1000 x =
2000

f(y∣

x = 1000)

f(y∣

x = 2000)

β1 + β2x = E(y∣x)

FIGURE 2.5 The conditional probability density functions for y, food
expenditure, at two levels of income.
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expenditure about its mean is the same. That means that at each and every level of income we are

equally uncertain about how far food expenditures might fall from their mean value, E
(
yi|xi

)
=

β1 + β2xi. Furthermore, this uncertainty does not depend on income or anything else. If this

assumption is violated, and var
(
ei|xi

)
≠ σ2, then the random errors are said to be heteroskedastic.

2.2.5 Variation in x
In a regression analysis, one of the objectives is to estimate β2 = ΔE

(
yi|xi

)
∕Δxi. If we are to hope

that a sample of data can be used to estimate the effects of changes in x, then we must observe

some different values of the explanatory variable x in the sample. Intuitively, if we collect data

only on households with income $1000, we will not be able to measure the effect of changing

income on the average value of food expenditure. Recall from elementary geometry that “it takes

two points to determine a line.” The minimum number of x-values in a sample of data that will

allow us to proceed is two. You will find out in Section 2.4.4 that in fact the more different values

of x, and the more variation they exhibit, the better our regression analysis will be.

2.2.6 Error Normality
In the discussion surrounding Figure 2.1, we explicitly made the assumption that food expen-

ditures, given income, were normally distributed. In Figures 2.3–2.5, we implicitly made the

assumption of conditionally normally distributed errors and dependent variable by drawing clas-

sically bell-shaped curves. It is not at all necessary for the random errors to be conditionally

normal in order for regression analysis to “work.” However, as you will discover in Chapter 3,

when samples are small, it is advantageous for statistical inferences that the random errors, and

dependent variable y, given each x-value, are normally distributed. The normal distribution has a

long and interesting history,3 as a little Internet searching will reveal. One argument for assum-

ing regression errors are normally distributed is that they represent a collection of many different

factors. The Central Limit Theorem, see Appendix C.3.4, says roughly that collections of many

random factors tend toward having a normal distribution. In the context of the food expenditure

model, if we consider that the random errors reflect tastes and preferences, it is entirely plausible

that the random errors at each income level are normally distributed. When the assumption of con-

ditionally normal errors is made, we write ei|xi ∼ N
(
0, σ2

)
and also then yi|xi ∼ N

(
β1 + β2xi, σ2

)
.

It is a very strong assumption when it is made, and as mentioned it is not strictly speaking neces-

sary, so we call it an optional assumption.

2.2.7 Generalizing the Exogeneity Assumption

So far we have assumed that the data pairs
(
yi, xi

)
have been drawn from a random sample and

are iid. What happens if the sample values of the explanatory variable are correlated? And how

might that happen?

A lack of independence occurs naturally when using financial or macroeconomic time-series
data. Suppose we observe the monthly report on new housing starts, yt, and the current 30-year

fixed mortgage rate, xt, and we postulate the model yt = β1 + β2xt + et. The data
(
yt, xt

)
can be

described as macroeconomic time-series data. In contrast to cross-section data where we have

observations on a number of units (say households or firms or persons or countries) at a given

point in time, with time-series data we have observations over time on a number of variables. It is

customary to use a “t” subscript to denote time-series data and to use T to denote the sample size.

In the data pairs
(
yt, xt

)
, t = 1,… ,T, both yt and xt are random because we do not know the values

............................................................................................................................................

3For example, Stephen M. Stigler (1990) The History of Statistics: The Measurement of Uncertainty, Reprint Edition,

Belknap Press, 73–76.
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until they are observed. Furthermore, each of the data series is likely to be correlated across time.

For example, the monthly fixed mortgage rate is likely to change slowly over time making the

rate at time t correlated with the rate at time t − 1. The assumption that the pairs
(
yt, xt

)
represent

random iid draws from a probability distribution is not realistic. When considering the exogeneity

assumption for this case, we need to be concerned not just with possible correlation between xt
and et, but also with possible correlation between et and every other value of the explanatory

variable, namely, xs, s = 1, 2,… ,T. If xs is correlated with xt, then it is possible that xs (say, the

mortgage rate in one month) may have an impact on yt (say, housing starts in the next month).

Since it is xt, not xs that appears in the equation yt = β1 + β2xt + et, the effect of xs will be included

in et, implying E
(
et|xs

)
≠ 0. We could use xs to help predict the value of et. This possibility is

ruled out when the pairs
(
yt, xt

)
are assumed to be independent. That is, independence of the pairs

(
yt, xt

)
and the assumption E

(
et|xt

)
= 0 imply E

(
et|xs

)
= 0 for all s = 1, 2,… ,T.

To extend the strict exogeneity assumption to models where the values of x are correlated,

we need to assume E
(
et|xs

)
= 0 for all (t, s) = 1, 2,… ,T. This means that we cannot predict the

random error at time t, et, using any of the values of the explanatory variable. Or, in terms of

our earlier notation, E
(
ei|xj

)
= 0 for all (i, j) = 1, 2,… ,N. To write this assumption in a more

convenient form, we introduce the notation 𝐱 =
(
x1, x2,… , xN

)
. That is, we are using x to denote

all sample observations on the explanatory variable. Then, a more general way of writing the

strict exogeneity assumption is E
(
ei|𝐱

)
= 0, i = 1, 2,… ,N. From this assumption, we can also

write E
(
yi|𝐱

)
= β1 + β2xi for i = 1, 2,… ,N. This assumption is discussed further in the con-

text of alternative types of data in Section 2.10 and in Chapter 9. The assumption E
(
ei|𝐱

)
= 0,

i = 1, 2,… ,N, is a weaker assumption than assuming E
(
ei|xi

)
= 0 and that the pairs

(
yi, xi

)
are

independent, and it enables us to derive a number of results for cases where different observations

on x may be correlated as well as for the case where they are independent.

2.2.8 Error Correlation

In addition to possible correlations between a random error for one household
(
ei
)

or one time

period
(
et
)

being correlated with the value of an explanatory variable for another household
(
xj
)

or time period
(
xs
)
, it is possible that there are correlations between the random error terms.

With cross-sectional data, data on households, individuals, or firms collected at one point in

time, there may be a lack of statistical independence between random errors for individuals who

are spatially connected. That is, suppose that we collect observations on two (or more) individuals

who live in the same neighborhood. It is very plausible that there are similarities among people

who live in a particular neighborhood. Neighbors can be expected to have similar incomes if the

homes in a neighborhood are homogenous. Some suburban neighborhoods are popular because

of green space and schools for young children, meaning households may have members similar in

ages and interests. We might add a spatial component s to the error and say that the random errors

ei(s) and ej(s) for the ith and jth households are possibly correlated because of their common

location. Within a larger sample of data, there may be clusters of observations with correlated

errors because of the spatial component.

In a time-series context, your author is writing these pages on the tenth anniversary of Hur-

ricane Katrina, which devastated the U.S. Gulf Coast and the city of New Orleans, Louisiana, in

particular. The impact of that shock did not just happen and then go away. The effect of that huge

random event had an effect on housing and financial markets during August 2005, and also in

September, October, and so on, to this day. Consequently, the random errors in the population re-

lationship yt = β1 + β2xt + et are correlated over time, so that cov
(
et, et+1

)
≠ 0, cov

(
et, et+2

)
≠ 0,

and so on. This is called serial correlation, or autocorrelation, in econometrics.

The starting point in regression analysis is to assume that there is no error correlation. In

time-series models, we start by assuming cov
(
et, es|𝐱

)
= 0 for t ≠ s, and for cross-sectional data

we start by assuming cov
(
ei, ej|𝐱

)
= 0 for i ≠ j. We will cope with failure of these assumptions

in Chapter 9.
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2.2.9 Summarizing the Assumptions
We summarize the starting assumptions of the simple regression model in a very general way.

In our summary we use subscripts i and j but the assumptions are general, and apply equally to

time-series data. If these assumptions hold, then regression analysis can successfully estimate

the unknown population parameters β1 and β2 and we can claim that β2 = ΔE
(
yi|xi

)
∕Δxi =

dE
(
yi|xi

)
∕dxi measures a causal effect. We begin our study of regression analysis and econo-

metrics making these strong assumptions about the DGP. For future reference, the assumptions

are named SR1–SR6, “SR” denoting “simple regression.”

Econometrics is in large part devoted to handling data and models for which these assump-

tions may not hold, leading to modifications of usual methods for estimating β1 and β2, testing

hypotheses, and predicting outcomes. In Chapters 2 and 3, we study the simple regression model

under these, or similar, strong assumptions. In Chapter 4, we introduce modeling issues and diag-

nostic testing. In Chapter 5, we extend our model to multiple regression analysis with more than

one explanatory variable. In Chapter 6, we treat modeling issues concerning the multiple regres-

sion model, and starting in Chapter 8 we address situations in which SR1–SR6 are violated in

one way or another.

Assumptions of the Simple Linear Regression Model

SR1: Econometric Model All data pairs
(
yi, xi

)
collected from a population satisfy the

relationship

yi = β1 + β2xi + ei, i = 1,… ,N

SR2: Strict Exogeneity The conditional expected value of the random error ei is zero. If

𝐱 =
(
x1, x2,… , xN

)
, then

E
(
ei|x

)
= 0

If strict exogeneity holds, then the population regression function is

E
(
yi|x

)
= β1 + β2xi, i = 1,… ,N

and

yi = E
(
yi|x

)
+ ei, i = 1,… ,N

SR3: Conditional Homoskedasticity The conditional variance of the random error is

constant.

var
(
ei|x

)
= σ2

SR4: Conditionally Uncorrelated Errors The conditional covariance of random errors ei
and ej is zero.

cov
(
ei, ej|x

)
= 0 for i ≠ j

SR5: Explanatory Variable Must Vary In a sample of data, xi must take at least two dif-

ferent values.

SR6: Error Normality (optional) The conditional distribution of the random errors is

normal.

ei|x ∼ N
(
0, σ2

)

The random error e and the dependent variable y are both random variables, and as we have

shown, the properties of one variable can be determined from the properties of the other. There

is, however, one interesting difference between them: y is “observable” and e is “unobservable.”
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If the regression parameters β1 and β2 were known, then for any values yi and xi we could

calculate ei = yi −
(
β1 + β2xi

)
. This is illustrated in Figure 2.4. Knowing the regression function

E
(
yi|𝐱

)
= β1 + β2xi we could separate yi into its systematic and random parts. However, β1 and

β2 are never known, and it is impossible to calculate ei.

What comprises the error term e? The random error e represents all factors affecting y other

than x, or what we have called everything else. These factors cause individual observations yi
to differ from the conditional mean value E

(
yi|𝐱

)
= β1 + β2xi. In the food expenditure example,

what factors can result in a difference between household expenditure per person yi and its con-

ditional mean E
(
yi|𝐱

)
= β1 + β2xi?

1. We have included income as the only explanatory variable in this model. Any other economic

factors that affect expenditures on food are “collected” in the error term. Naturally, in any

economic model, we want to include all the important and relevant explanatory variables in

the model, so the error term e is a “storage bin” for unobservable and/or unimportant factors

affecting household expenditures on food. As such, it adds noise that masks the relationship

between x and y.

2. The error term e captures any approximation error that arises because the linear functional

form we have assumed may be only an approximation to reality.

3. The error term captures any elements of random behavior that may be present in each indi-

vidual. Knowing all the variables that influence a household’s food expenditure might not

be enough to perfectly predict expenditure. Unpredictable human behavior is also contained

in e.

If we have omitted some important factor, or made any other serious specification error, then

assumption SR2 E
(
ei|𝐱

)
= 0 will be violated, which will have serious consequences.

2.3 Estimating the Regression Parameters

E X A M P L E 2.3 Food Expenditure Model Data

The economic and econometric models we developed in the

previous section are the basis for using a sample of data

to estimate the intercept and slope parameters, β1 and β2.

For illustration we examine typical data on household food

expenditure and weekly income from a random sample of

40 households. Representative observations and summary

statistics are given in Table 2.1. We control for household

size by considering only three-person households. The

values of y are weekly food expenditures for a three-person

household, in dollars. Instead of measuring income in dol-

lars, we measure it in units of $100, because a $1 increase in

income has a numerically small effect on food expenditure.

Consequently, for the first household, the reported income

is $369 per week with weekly food expenditure of $115.22.

For the 40th household, weekly income is $3340 and weekly

food expenditure is $375.73. The complete data set of

observations is in the data file food.

T A B L E 2.1 Food Expenditure and Income Data

Observation
(household)

Food
Expenditure ($)

Weekly
Income ($100)

i yi xi

1 115.22 3.69

2 135.98 4.39

⋮

39 257.95 29.40

40 375.73 33.40

Summary Statistics

Sample mean 283.5735 19.6048

Median 264.4800 20.0300

Maximum 587.6600 33.4000

Minimum 109.7100 3.6900

Std. dev. 112.6752 6.8478
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Remark
In this book, data files are referenced with a descriptive name in italics such as food.

The actual files which are located at the book websites www.wiley.com/college/hill and

www.principlesofeconometrics.com come in various formats and have an extension that

denotes the format, for example, food.dat, food.wf1, food.dta, and so on. The corresponding

data definition file is food.def .

We assume that the expenditure data in Table 2.1 satisfy the assumptions SR1–SR5. That is, we

assume that the regression model yi = β1 + β2xi + ei describes a population relationship and that

the random error has conditional expected value zero. This implies that the conditional expected

value of household food expenditure is a linear function of income. The conditional variance of y,

which is the same as that of the random error e, is assumed constant, implying that we are equally

uncertain about the relationship between y and x for all observations. Given x the values of y for

different households are assumed uncorrelated with each other.

Given this theoretical model for explaining the sample observations on household food

expenditure, the problem now is how to use the sample information in Table 2.1, specific values

of yi and xi, to estimate the unknown regression parameters β1 and β2. These parameters represent

the unknown intercept and slope coefficients for the food expenditure–income relationship. If we

represent the 40 data points as
(
yi, xi

)
, i = 1,… ,N = 40, and plot them, we obtain the scatter

diagram in Figure 2.6.

Remark
It will be our notational convention to use i subscripts for cross-sectional data observations,

with the number of sample observations being N. For time-series data observations, we use

the subscript t and label the total number of observations T . In purely algebraic or generic

situations, we may use one or the other.
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FIGURE 2.6 Data for the food expenditure example.
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Our problem is to estimate the location of the mean expenditure line E
(
yi|𝐱

)
= β1 + β2xi. We

would expect this line to be somewhere in the middle of all the data points since it represents

population mean, or average, behavior. To estimate β1 and β2, we could simply draw a freehand

line through the middle of the data and then measure the slope and intercept with a ruler. The

problem with this method is that different people would draw different lines, and the lack of a

formal criterion makes it difficult to assess the accuracy of the method. Another method is to draw

a line from the expenditure at the smallest income level, observation i = 1, to the expenditure

at the largest income level, i = 40. This approach does provide a formal rule. However, it may

not be a very good rule because it ignores information on the exact position of the remaining

38 observations. It would be better if we could devise a rule that uses all the information from all

the data points.

2.3.1 The Least Squares Principle
To estimate β1 and β2 we want a rule, or formula, that tells us how to make use of the sample

observations. Many rules are possible, but the one that we will use is based on the least squares
principle. This principle asserts that to fit a line to the data values we should make the sum of the

squares of the vertical distances from each point to the line as small as possible. The distances are

squared to prevent large positive distances from being canceled by large negative distances. This

rule is arbitrary, but very effective, and is simply one way to describe a line that runs through the

middle of the data. The intercept and slope of this line, the line that best fits the data using the

least squares principle, are b1 and b2, the least squares estimates of β1 and β2. The fitted line

itself is then

ŷi = b1 + b2xi (2.5)

The vertical distances from each point to the fitted line are the least squares residuals. They are

given by

êi = yi − ŷi = yi − b1 − b2xi (2.6)

These residuals are depicted in Figure 2.7a.

Now suppose we fit another line, any other line, to the data. Denote the new line as

ŷ∗i = b∗
1
+ b∗

2
xi

where b∗
1

and b∗
2

are any other intercept and slope values. The residuals for this line, ê∗i = yi − ŷ∗i ,

are shown in Figure 2.7b. The least squares estimates b1 and b2 have the property that the sum of

their squared residuals is less than the sum of squared residuals for any other line. That is, if

SSE =
N∑

i=1

ê2

i

is the sum of squared least squares residuals from (2.6) and

SSE∗ =
N∑

i=1

ê∗
2

i =
N∑

i=1

(
yi − ŷ∗i

)2

is the sum of squared residuals based on any other estimates, then

SSE < SSE∗

no matter how the other line might be drawn through the data. The least squares principle says

that the estimates b1 and b2 of β1 and β2 are the ones to use, since the line using them as intercept

and slope fits the data best.

The problem is to find b1 and b2 in a convenient way. Given the sample observations on y
and x, we want to find values for the unknown parameters β1 and β2 that minimize the “sum of

squares” function

S
(
β1, β2

)
=

N∑

i=1

(
yi − β1 − β2xi

)2
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FIGURE 2.7 (a) The relationship among y, ê, and the fitted
regression line. (b) The residuals from another
fitted line.

This is a straightforward calculus problem, the details of which are given in Appendix 2A. The

formulas for the least squares estimates of β1 and β2 that give the minimum of the sum of squared

residuals are

The Ordinary Least Squares (OLS) Estimators

b2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2
(2.7)

b1 = y − b2x (2.8)

where y =
∑

yi∕N and x =
∑

xi∕N are the sample means of the observations on y and x.

We will call the estimators b1 and b2, given in equations (2.7) and (2.8), the ordinary least
squares estimators. “Ordinary least squares” is abbreviated as OLS. These least squares estima-

tors are called “ordinary,” despite the fact that they are extraordinary, because these estimators

are used day in and day out in many fields of research in a routine way, and to distinguish them
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from other methods called generalized least squares, and weighted least squares, and two-stage
least squares, all of which are introduced later in this book.

The formula for b2 reveals why we had to assume [SR5] that in the sample xi must take at least

two different values. If xi = 5, for example, for all observations, then b2 in (2.7) is mathematically

undefined and does not exist since its numerator and denominator are zero!

If we plug the sample values yi and xi into (2.7) and (2.8), then we obtain the least squares

estimates of the intercept and slope parameters β1 and β2. It is interesting, however, and very

important, that the formulas for b1 and b2 are perfectly general and can be used no matter what

the sample values turn out to be. This should ring a bell. When the formulas for b1 and b2 are

taken to be rules that are used whatever the sample data turn out to be, then b1 and b2 are random

variables. When actual sample values are substituted into the formulas, we obtain numbers that

are the observed values of random variables. To distinguish these two cases, we call the rules or

general formulas for b1 and b2 the least squares estimators. We call the numbers obtained when

the formulas are used with a particular sample least squares estimates.

• Least squares estimators are general formulas and are random variables.

• Least squares estimates are numbers that we obtain by applying the general formulas to the

observed data.

The distinction between estimators and estimates is a fundamental concept that is essential to

understand everything in the rest of this book.

E X A M P L E 2.4a Estimates for the Food Expenditure Function

Using the least squares estimators (2.7) and (2.8), we can

obtain the least squares estimates for the intercept and slope

parameters β1 and β2 in the food expenditure example using

the data in Table 2.1. From (2.7), we have

b2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2
= 18671.2684

1828.7876
= 10.2096

and from (2.8)

b1 = y − b2x = 283.5735 − (10.2096)(19.6048) = 83.4160

A convenient way to report the values for b1 and b2 is to write

out the estimated or fitted regression line, with the estimates

rounded appropriately:

ŷi = 83.42 + 10.21xi

This line is graphed in Figure 2.8. The line’s slope is 10.21,

and its intercept, where it crosses the vertical axis, is 83.42.

The least squares fitted line passes through the middle of the

data in a very precise way, since one of the characteristics of

the fitted line based on the least squares parameter estimates

is that it passes through the point defined by the sample

means,
(
x, y

)
= (19.6048, 283.5735). This follows directly

from rewriting (2.8) as y = b1 + b2x. Thus, the “point of the

means” is a useful reference value in regression analysis.

Interpreting the Estimates

Once obtained, the least squares estimates are interpreted

in the context of the economic model under consideration.

The value b2 = 10.21 is an estimate of β2. Recall that x,

weekly household income, is measured in $100 units. The

regression slope β2 is the amount by which expected weekly

expenditure on food per household increases when house-

hold weekly income increases by $100. Thus, we estimate

that if weekly household income goes up by $100, expected

weekly expenditure on food will increase by approximately

$10.21, holding all else constant. A supermarket executive

with information on likely changes in the income and the

number of households in an area could estimate that it will

sell $10.21 more per typical household per week for every

$100 increase in income. This is a very valuable piece of

information for long-run planning.

Strictly speaking, the intercept estimate b1 = 83.42 is

an estimate of the expected weekly food expenditure for a

household with zero income. In most economic models we

must be very careful when interpreting the estimated inter-

cept. The problem is that we often do not have any data points

near x = 0, something that is true for the food expenditure

data shown in Figure 2.8. If we have no observations in the

region where income is zero, then our estimated relationship

may not be a good approximation to reality in that region.

So, although our estimated model suggests that a household

with zero income is expected to spend $83.42 per week on

food, it might be risky to take this estimate literally. This is

an issue that you should consider in each economic model

that you estimate.
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FIGURE 2.8 The fitted regression.

Elasticities Income elasticity is a useful way to characterize the responsiveness of consumer

expenditure to changes in income. See Appendix A.2.2 for a discussion of elasticity calculations

in a linear relationship. The elasticity of a variable y with respect to another variable x is

ε =
percentage change in y
percentage change in x

=
100(Δy∕y)
100(Δx∕x)

=
Δy
Δx

•
x
y

In the linear economic model given by (2.1), we have shown that

β2 =
ΔE(y|x)
Δx

so the elasticity of mean expenditure with respect to income is

ε =
ΔE(y|x)
Δx

•
x

E(y|x)
= β2

•
x

E(y|x)
(2.9)

E X A M P L E 2.4b Using the Estimates

To estimate this elasticity we replace β2 by b2 = 10.21. We

must also replace “x” and “E(y|x)” by something, since in

a linear model the elasticity is different on each point on the

regression line. Most commonly, the elasticity is calculated at

the “point of the means”
(
x, y

)
= (19.60, 283.57) because it is

a representative point on the regression line. If we calculate

the income elasticity at the point of the means, we obtain

ε̂ = b2

x
y
= 10.21 × 19.60

283.57
= 0.71
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This estimated income elasticity takes its usual interpretation.

We estimate that a 1% increase in weekly household income

will lead to a 0.71% increase in expected weekly household

expenditure on food, when x and y take their sample mean

values,
(
x, y

)
= (19.60, 283.57). Since the estimated income

elasticity is less than one, we would classify food as a “ne-

cessity” rather than a “luxury,” which is consistent with what

we would expect for an average household.

Prediction

The estimated equation can also be used for prediction or

forecasting purposes. Suppose that we wanted to predict aver-

age weekly food expenditure for a household with a weekly

income of $2000. This prediction is carried out by substitut-

ing x = 20 into our estimated equation to obtain

ŷi = 83.42 + 10.21xi = 83.42 + 10.21(20) = 287.61

We predict that a household with a weekly income of $2000

will on average spend $287.61 per week on food.

Computer Output

Many different software packages can compute least squares

estimates. Every software package’s regression output looks

Dependent Variable: FOOD_EXP
Method: Least Squares

Sample: 1 40

Included observations: 40

Coefficient Std. Error t-Statistic Prob.

C 83.41600 43.41016 1.921578 0.0622

INCOME 10.20964 2.093264 4.877381 0.0000

R-squared 0.385002 Mean dependent var 283.5735

Adjusted R-squared 0.368818 S.D. dependent var 112.6752

S.E. of regression 89.51700 Akaike info criterion 11.87544

Sum squared resid 304505.2 Schwarz criterion 11.95988

Log likelihood −235.5088 Hannan-Quinn criter 11.90597

F-statistic 23.78884 Durbin-Watson stat 1.893880

Prob(F-statistic) 0.000019

FIGURE 2.9 EViews regression output.

different and uses different terminology to describe the out-

put. Despite these differences, the various outputs provide the

same basic information, which you should be able to locate

and interpret. The matter is complicated somewhat by the fact

that the packages also report various numbers whose meaning

you may not know. For example, using the food expenditure

data, the output from the software package EViews is shown

in Figure 2.9.

In the EViews output, the parameter estimates are in

the “Coefficient” column, with names “C,” for constant term

(the estimate b1) and INCOME (the estimate b2). Software

programs typically name the estimates with the name of the

variable as assigned in the computer program (we named

our variable INCOME) and an abbreviation for “constant.”

The estimates that we report in the text are rounded to

two significant digits. The other numbers that you can

recognize at this time are SSE =
∑

ê2

i = 304505.2, which

is called “Sum squared resid,” and the sample mean of y,

y =
∑

yi∕N = 283.5735, which is called “Mean depen-

dent var.”

We leave discussion of the rest of the output until later.

2.3.2 Other Economic Models
We have used the household expenditure on food versus income relationship as an example to

introduce the ideas of simple regression. The simple regression model can be applied to estimate
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the parameters of many relationships in economics, business, and the social sciences. The appli-

cations of regression analysis are fascinating and useful. For example,

• If the hourly wage rate of electricians rises by 5%, how much will new house prices increase?

• If the cigarette tax increases by $1, how much additional revenue will be generated in the

state of Louisiana?

• If the central banking authority raises interest rates by one-half a percentage point, how much

will consumer borrowing fall within six months? How much will it fall within one year? What

will happen to the unemployment rate in the months following the increase?

• If we increase funding on preschool education programs in 2018, what will be the effect on

high school graduation rates in 2033? What will be the effect on the crime rate by juveniles

in 2028 and subsequent years?

The range of applications spans economics and finance, as well as most disciplines in the social

and physical sciences. Any time you ask how much a change in one variable will affect another

variable, regression analysis is a potential tool.

Similarly, any time you wish to predict the value of one variable given the value of another

then least squares regression is a tool to consider.

2.4 Assessing the Least Squares Estimators
Using the food expenditure data, we have estimated the parameters of the regression model

yi = β1 + β2xi + ei using the least squares formulas in (2.7) and (2.8). We obtained the least

squares estimates b1 = 83.42 and b2 = 10.21. It is natural, but, as we shall argue, misguided,

to ask the question “How good are these estimates?” This question is not answerable. We will

never know the true values of the population parameters β1 or β2, so we cannot say how close

b1 = 83.42 and b2 = 10.21 are to the true values. The least squares estimates are numbers that

may or may not be close to the true parameter values, and we will never know.

Rather than asking about the quality of the estimates we will take a step back and examine

the quality of the least squares estimation procedure. The motivation for this approach is this: if

we were to collect another sample of data, by choosing another set of 40 households to survey, we

would have obtained different estimates b1 and b2, even if we had carefully selected households

with the same incomes as in the initial sample. This sampling variation is unavoidable. Different

samples will yield different estimates because household food expenditures, yi, i = 1,… , 40, are

random variables. Their values are not known until the sample is collected. Consequently, when

viewed as an estimation procedure, b1 and b2 are also random variables, because their values

depend on the random variable y. In this context, we call b1 and b2 the least squares estimators.

We can investigate the properties of the estimators b1 and b2, which are called their sampling
properties, and deal with the following important questions:

1. If the least squares estimators b1 and b2 are random variables, then what are their expected

values, variances, covariances, and probability distributions?

2. The least squares principle is only one way of using the data to obtain estimates of β1 and β2.

How do the least squares estimators compare with other procedures that might be used, and

how can we compare alternative estimators? For example, is there another estimator that has

a higher probability of producing an estimate that is close to β2?

We examine these questions in two steps to make things easier. In the first step, we investigate the

properties of the least squares estimators conditional on the values of the explanatory variable in

the sample. That is, conditional on x. Making the analysis conditional on x is equivalent to saying

that, when we consider all possible samples, the household income values in the sample stay the
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same from one sample to the next; only the random errors and food expenditure values change.

This assumption is clearly not realistic but it simplifies the analysis. By conditioning on x, we are

holding it constant, or fixed, meaning that we can treat the x-values as “not random.”

In the second step, considered in Section 2.10, we return to the random sampling assumption

and recognize that
(
yi, xi

)
data pairs are random, and randomly selecting households from a pop-

ulation leads to food expenditures and incomes that are random. However, even in this case and

treating x as random, we will discover that most of our conclusions that treated x as nonrandom

remain the same.

In either case, whether we make the analysis conditional on x or make the analysis gen-

eral by treating x as random, the answers to the questions above depend critically on whether

the assumptions SR1–SR5 are satisfied. In later chapters, we will discuss how to check whether the

assumptions we make hold in a specific application, and what we might do if one or more assump-

tions are shown not to hold.

Remark
We will summarize the properties of the least squares estimators in the next several sections.

“Proofs” of important results appear in the appendices to this chapter. In many ways, it is

good to see these concepts in the context of a simpler problem before tackling them in the

regression model. Appendix C covers the topics in this chapter, and the next, in the familiar

and algebraically easier problem of estimating the mean of a population.

2.4.1 The Estimator b2

Formulas (2.7) and (2.8) are used to compute the least squares estimates b1 and b2. However,

they are not well suited for examining theoretical properties of the estimators. In this section, we

rewrite the formula for b2 to facilitate its analysis. In (2.7), b2 is given by

b2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2

This is called the deviation from the mean form of the estimator because the data have their

sample means subtracted. Using assumption SR1 and a bit of algebra (Appendix 2C), we can

write b2 as a linear estimator,

b2 =
N∑

i=1

wiyi (2.10)

where

wi =
xi − x

∑(
xi − x

)2
(2.11)

The term wi depends only on x. Because we are conditioning our analysis on x, the term wi is

treated as if it is a constant. We remind you that conditioning on x is equivalent to treating x as

given, as in a controlled, repeatable experiment.

Any estimator that is a weighted average of yi’s, as in (2.10), is called a linear estimator.

This is an important classification that we will speak more of later. Then, with yet more algebra

(Appendix 2D), we can express b2 in a theoretically convenient way,

b2 = β2 +
∑

wiei (2.12)

where ei is the random error in the linear regression model yi = β1 + β2xi + ei. This formula is

not useful for computations, because it depends on β2, which we do not know, and on the ei’s,
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which are unobservable. However, for understanding the sampling properties of the least squares

estimator, (2.12) is very useful.

2.4.2 The Expected Values of b1 and b2

The OLS estimator b2 is a random variable since its value is unknown until a sample is collected.

What we will show is that if our model assumptions hold, then E
(
b2|𝐱

)
= β2; that is, given x the

expected value of b2 is equal to the true parameter β2. When the expected value of any estimator of

a parameter equals the true parameter value, then that estimator is unbiased. Since E
(
b2|𝐱

)
= β2,

the least squares estimator b2 given x is an unbiased estimator of β2. In Section 2.10, we will show

that the least squares estimator b2 is unconditionally unbiased also, E
(
b2

)
= β2. The intuitive

meaning of unbiasedness comes from the sampling interpretation of mathematical expectation.

Recognize that one sample of size N is just one of many samples that we could have been selected.

If the formula for b2 is used to estimate β2 in each of those possible samples, then, if our assump-

tions are valid, the average value of the estimates b2 obtained from all possible samples will

be β2.

We will show that this result is true so that we can illustrate the part played by the assump-

tions of the linear regression model. In (2.12), what parts are random? The parameter β2 is not

random. It is a population parameter we are trying to estimate. Conditional on x we can treat xi
as if it is not random. Then, conditional on x, wi is not random either, as it depends only on the

values of xi. The only random factors in (2.12) are the random error terms ei. We can find the con-

ditional expected value of b2 using the fact that the expected value of a sum is the sum of the

expected values:

E
(
b2|x

)
= E

(
β2 +

∑
wiei|x

)
= E

(
β2 + w1e1 + w2e2 + · · · + wNeN|x

)

= E
(
β2

)
+ E

(
w1e1|x

)
+ E

(
w2e2|x

)
+ · · · + E

(
wNeN|x

)

= β2 +
∑

E
(
wiei|x

)

= β2 +
∑

wiE
(
ei|x

)
= β2

(2.13)

The rules of expected values are fully discussed in the Probability Primer, Section P.5, and
Appendix B.1.1. In the last line of (2.13), we use two assumptions. First, E

(
wiei|𝐱

)
= wiE

(
ei|𝐱

)

because conditional on x the terms wi are not random, and constants can be factored out of ex-

pected values. Second, we have relied on the assumption that E
(
ei|𝐱

)
= 0. Actually, if

E
(
ei|𝐱

)
= c, where c is any constant value, such as 3, then E

(
b2|𝐱

)
= β2. Given x, the OLS

estimator b2 is an unbiased estimator of the regression parameter β2. On the other hand, if

E
(
ei|𝐱

)
≠ 0 and it depends on x in some way, then b2 is a biased estimator of β2. One leading

case in which the assumption E
(
ei|𝐱

)
= 0 fails is due to omitted variables. Recall that ei

contains everything else affecting yi other than xi. If we have omitted anything that is important

and that is correlated with x then we would expect that E
(
ei|𝐱

)
≠ 0 and E

(
b2|𝐱

)
≠ β2. In

Chapter 6 we discuss this omitted variables bias. Here we have shown that conditional on x,

and under SR1–SR5, the least squares estimator is linear and unbiased. In Section 2.10, we show

that E
(
b2

)
= β2 without conditioning on x.

The unbiasedness of the estimator b2 is an important sampling property. On average, over

all possible samples from the population, the least squares estimator is “correct,” on average, and

this is one desirable property of an estimator. This statistical property by itself does not mean that

b2 is a good estimator of β2, but it is part of the story. The unbiasedness property is related to what

happens in all possible samples of data from the same population. The fact that b2 is unbiased

does not imply anything about what might happen in just one sample. An individual estimate

(a number) b2 may be near to, or far from, β2. Since β2 is never known we will never know, given
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one sample, whether our estimate is “close” to β2 or not. Thus, the estimate b2 = 10.21 may be

close to β2 or not.

The least squares estimator b1 of β1 is also an unbiased estimator, and E
(
b1|𝐱

)
= β1 if the

model assumptions hold.

2.4.3 Sampling Variation
To illustrate how the concept of unbiased estimation relates to sampling variation, we present

in Table 2.2 least squares estimates of the food expenditure model from 10 hypothetical random

samples (data file table2_2) of size N = 40 from the same population with the same incomes as

the households given in Table 2.1. Note the variability of the least squares parameter estimates

from sample to sample. This sampling variation is due to the fact that we obtain 40 different
households in each sample, and their weekly food expenditure varies randomly.

The property of unbiasedness is about the average values of b1 and b2 if used in all possi-

ble samples of the same size drawn from the same population. The average value of b1 in these

10 samples is b1 = 96.11. The average value of b2 is b2 = 8.70. If we took the averages of esti-

mates from more samples, these averages would approach the true parameter values β1 and β2.

Unbiasedness does not say that an estimate from any one sample is close to the true parameter

value, and thus we cannot say that an estimate is unbiased. We can say that the least squares

estimation procedure (or the least squares estimator) is unbiased.

2.4.4 The Variances and Covariance of b1 and b2

Table 2.2 shows that the least squares estimates of β1 and β2 vary from sample to sample. Under-

standing this variability is a key to assessing the reliability and sampling precision of an estimator.

We now obtain the variances and covariance of the estimators b1 and b2. Before presenting the

expressions for the variances and covariance, let us consider why they are important to know. The

variance of the random variable b2 is the average of the squared distances between the possible

values of the random variable and its mean, which we now know is E
(
b2|𝐱

)
= β2. The conditional

variance of b2 is defined as

var
(
b2|x

)
= E

{[
b2 − E

(
b2|x

)]2|
|
|
x
}

T A B L E 2.2 Estimates from 10 Hypothetical Samples

Sample b1 b2

1 93.64 8.24

2 91.62 8.90

3 126.76 6.59

4 55.98 11.23

5 87.26 9.14

6 122.55 6.80

7 91.95 9.84

8 72.48 10.50

9 90.34 8.75

10 128.55 6.99
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β2

f1(b2∣x)

f2(b2∣x)

FIGURE 2.10 Two possible probability density
functions for b2.

It measures the spread of the probability distribution of b2. In Figure 2.10 are graphs of two

possible probability distributions of b2, f1
(
b2|𝐱

)
and f2

(
b2|𝐱

)
, that have the same mean value but

different variances.

The pdf f2
(
b2|𝐱

)
has a smaller variance than f1

(
b2|𝐱

)
. Given a choice, we are interested in

estimator precision and would prefer that b2 have the pdf f2
(
b2|𝐱

)
, rather than f1

(
b2|𝐱

)
. With the

distribution f2
(
b2|𝐱

)
, the probability is more concentrated around the true parameter value β2 giv-

ing, relative to f1
(
b2|𝐱

)
, a higher probability of getting an estimate that is close to β2. Remember,

getting an estimate close to β2 is a primary objective of regression analysis.

The variance of an estimator measures the precision of the estimator in the sense that it tells

us how much the estimates can vary from sample to sample. Consequently, we often refer to

the sampling variance or sampling precision of an estimator. The smaller the variance of an

estimator is, the greater the sampling precision of that estimator. One estimator is more precise

than another estimator if its sampling variance is less than that of the other estimator.

We will now present and discuss the conditional variances and covariance of b1 and b2.

Appendix 2E contains the derivation of the variance of the least squares estimator b2. If the

regression model assumptions SR1–SR5 are correct (assumption SR6 is not required), then the

variances and covariance of b1 and b2 are

var
(
b1|x

)
= σ2

[ ∑
x2

i

N
∑(

xi − x
)2

]

(2.14)

var
(
b2|x

)
= σ2

∑(
xi − x

)2
(2.15)

cov
(
b1, b2|x

)
= σ2

[

−x
∑(

xi − x
)2

]

(2.16)

At the beginning of this section we said that for unbiased estimators, smaller variances are bet-

ter than larger variances. Let us consider the factors that affect the variances and covariance

in (2.14)–(2.16).

1. The variance of the random error term, σ2, appears in each of the expressions. It reflects the

dispersion of the values y about their expected value E(y|x). The greater the variance σ2, the

greater is that dispersion, and the greater is the uncertainty about where the values of y fall

relative to their conditional mean E(y|x). When σ2 is larger, the information we have about β1

and β2 is less precise. In Figure 2.5, the variance is reflected in the spread of the probability

distributions f (y|x). The larger the variance term σ2, the greater is the uncertainty in the

statistical model, and the larger the variances and covariance of the least squares estimators.
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y

x

(a) (b)

xi xix

yi = b1 + b2 xi

y

yiyi

FIGURE 2.11 The influence of variation in the explanatory variable x on precision of
estimation: (a) low x variation, low precision: (b) high x variation, high
precision.

2. The sum of squares of the values of x about their sample mean,
∑(

xi − x
)2

, appears in each

of the variances and in the covariance. This expression measures how spread out about their

mean are the sample values of the independent or explanatory variable x. The more they are

spread out, the larger the sum of squares. The less they are spread out, the smaller the sum of

squares. You may recognize this sum of squares as the numerator of the sample variance of

the x-values. See Appendix C.4. The larger the sum of squares,
∑(

xi − x
)2

, the smaller the

conditional variances of the least squares estimators and the more precisely we can estimate

the unknown parameters. The intuition behind this is demonstrated in Figure 2.11. Panel (b)

is a data scatter in which the values of x are widely spread out along the x-axis. In panel (a),

the data are “bunched.” Which data scatter would you prefer given the task of fitting a line

by hand? Pretty clearly, the data in panel (b) do a better job of determining where the least

squares line must fall, because they are more spread out along the x-axis.

3. The larger the sample size N, the smaller the variances and covariance of the least squares

estimators; it is better to have more sample data than less. The sample size N appears in

each of the variances and covariance because each of the sums consists of N terms. Also,

N appears explicitly in var
(
b1|𝐱

)
. The sum of squares term

∑(
xi − x

)2
gets larger as N

increases because each of the terms in the sum is positive or zero (being zero if x happens

to equal its sample mean value for an observation). Consequently, as N gets larger, both

var
(
b2|𝐱

)
and cov

(
b1, b2|𝐱

)
get smaller, since the sum of squares appears in their denomina-

tor. The sums in the numerator and denominator of var
(
b1|𝐱

)
both get larger as N gets larger

and offset one another, leaving the N in the denominator as the dominant term, ensuring that

var
(
b1|𝐱

)
also gets smaller as N gets larger.

4. The term
∑

x2
i appears in var

(
b1|𝐱

)
. The larger this term is, the larger the variance of the least

squares estimator b1. Why is this so? Recall that the intercept parameter β1 is the expected

value of y given that x = 0. The farther our data are from x = 0, the more difficult it is to

interpret β1, as in the food expenditure example, and the more difficult it is to accurately

estimate β1. The term
∑

x2
i measures the squared distance of the data from the origin, x = 0.

If the values of x are near zero, then
∑

x2
i will be small, and this will reduce var

(
b1|𝐱

)
. But

if the values of x are large in magnitude, either positive or negative, the term
∑

x2
i will be

large and var
(
b1

)
will be larger, other things being equal.

5. The sample mean of the x-values appears in cov
(
b1, b2|𝐱

)
. The absolute magnitude of the

covariance increases with an increase in magnitude of the sample mean x, and the covariance

has a sign opposite to that of x. The reasoning here can be seen from Figure 2.11. In panel (b)
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the least squares fitted line must pass through the point of the means. Given a fitted line

through the data, imagine the effect of increasing the estimated slope b2. Since the line must

pass through the point of the means, the effect must be to lower the point where the line hits

the vertical axis, implying a reduced intercept estimate b1. Thus, when the sample mean is

positive, as shown in Figure 2.11, there is a negative covariance between the least squares

estimators of the slope and intercept.

2.5 The Gauss–Markov Theorem
What can we say about the least squares estimators b1 and b2 so far?

• The estimators are perfectly general. Formulas (2.7) and (2.8) can be used to estimate the

unknown parameters β1 and β2 in the simple linear regression model, no matter what the

data turn out to be. Consequently, viewed in this way, the least squares estimators b1 and b2

are random variables.

• The least squares estimators are linear estimators, as defined in (2.10). Both b1 and b2 can

be written as weighted averages of the yi values.

• If assumptions SR1–SR5 hold, then the least squares estimators are conditionally unbiased.

This means that E
(
b1|𝐱

)
= β1 and E

(
b2|𝐱

)
= β2.

• Given x we have expressions for the variances of b1 and b2 and their covariance. Furthermore,

we have argued that for any unbiased estimator, having a smaller variance is better, as this

implies we have a higher chance of obtaining an estimate close to the true parameter value.

Now we will state and discuss the famous Gauss–Markov theorem, which is proven in

Appendix 2F.

Gauss–Markov Theorem:
Given x and under the assumptions SR1–SR5 of the linear regression model, the estimators

b1 and b2 have the smallest variance of all linear and unbiased estimators of β1 and β2. They

are the best linear unbiased estimators (BLUE) of β1 and β2.

Let us clarify what the Gauss–Markov theorem does, and does not, say.

1. The estimators b1 and b2 are “best” when compared to similar estimators, those that are

linear and unbiased. The theorem does not say that b1 and b2 are the best of all possible
estimators.

2. The estimators b1 and b2 are best within their class because they have the minimum variance.

When comparing two linear and unbiased estimators, we always want to use the one with

the smaller variance, since that estimation rule gives us the higher probability of obtaining

an estimate that is close to the true parameter value.

3. In order for the Gauss–Markov theorem to hold, assumptions SR1–SR5 must be true. If any

of these assumptions are not true, then b1 and b2 are not the best linear unbiased estimators

of β1 and β2.

4. The Gauss–Markov theorem does not depend on the assumption of normality (assumption

SR6).

5. In the simple linear regression model, if we want to use a linear and unbiased estimator, then

we have to do no more searching. The estimators b1 and b2 are the ones to use. This explains
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why we are studying these estimators (we would not have you study bad estimation rules,

would we?) and why they are so widely used in research, not only in economics but in all

social and physical sciences as well.

6. The Gauss–Markov theorem applies to the least squares estimators. It does not apply to the

least squares estimates from a single sample.

The results we have presented so far treat x as given. In Section 2.10 we show that the Gauss–

Markov theorem also holds in general, and it does not depend on a specific x.

2.6 The Probability Distributions of the Least

Squares Estimators
The properties of the least squares estimators that we have developed so far do not depend in any

way on the normality assumption SR6. If we also make this assumption, that the random errors

ei are normally distributed, with mean zero and variance σ2, then the conditional probability

distributions of the least squares estimators are also normal. This conclusion is obtained in two

steps. First, given x and based on assumption SR1, if ei is normal then so is yi. Second, the least

squares estimators are linear estimators of the form b2 =
∑

wiyi. Given x this weighted sum of

normal random variables is also normally distributed. Consequently, if we make the normality

assumption (assumption SR6 about the error term), and treat x as given, then the least squares

estimators are normally distributed:

b1|x ∼ N

(

β1,

σ2∑ x2
i

N
∑(

xi − x
)2

)

(2.17)

b2|x ∼ N

(

β2,
σ2

∑(
xi − x

)2

)

(2.18)

As you will see in Chapter 3, the normality of the least squares estimators is of great importance

in many aspects of statistical inference.

What if the errors are not normally distributed? Can we say anything about the probability

distribution of the least squares estimators? The answer is, sometimes, yes.

A Central Limit Theorem:
If assumptions SR1–SR5 hold, and if the sample size N is sufficiently large, then the least

squares estimators have a distribution that approximates the normal distributions shown in

(2.17) and (2.18).

The million-dollar question is “How large is sufficiently large?” The answer is that there is no

specific number. The reason for this vague and unsatisfying answer is that “how large” depends

on many factors, such as what the distributions of the random errors look like (are they smooth?

symmetric? skewed?) and what the xi values are like. In the simple regression model, some would

say that N = 30 is sufficiently large. Others would say that N = 50 would be a more reasonable

number. The bottom line is, however, that these are rules of thumb and that the meaning of “suffi-

ciently large” will change from problem to problem. Nevertheless, for better or worse, this large
sample, or asymptotic, result is frequently invoked in regression analysis. This important result

is an application of a central limit theorem, like the one discussed in Appendix C.3.4. If you are

not familiar with this important theorem, you may want to review it now.
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2.7 Estimating the Variance of the Error Term
The variance of the random error term, σ2, is the one unknown parameter of the simple linear

regression model that remains to be estimated.

The conditional variance of the random error ei is

var
(
ei|x

)
= σ2 = E

{[
ei − E

(
ei|x

)]2|
|
|
x
}

= E
(
e2

i |x
)

if the assumption E
(
ei|x

)
= 0 is correct. Since the “expectation” is an average value, we might

consider estimating σ2 as the average of the squared errors

σ̂2 =
∑

e2
i

N
This formula is unfortunately of no use since the random errors ei are unobservable! However,

although the random errors themselves are unknown, we do have an analog to them—namely, the

least squares residuals. Recall that the random errors are

ei = yi − β1 − β2xi

From (2.6) the least squares residuals are obtained by replacing the unknown parameters by their

least squares estimates:

êi = yi − ŷi = yi − b1 − b2xi

It seems reasonable to replace the random errors ei by their analogs, the least squares residuals,

so that

σ̂2 =
∑

ê2

i

N
This estimator, though quite satisfactory in large samples, is a biased estimator of σ2. But there

is a simple modification that produces an unbiased estimator:

σ̂2 =
∑

ê2

i

N − 2
(2.19)

The 2 that is subtracted in the denominator is the number of regression parameters
(
β1, β2

)
in the

model, and this subtraction makes the estimator σ̂2
unbiased, so that E

(

σ̂2
|x
)

= σ2.

2.7.1 Estimating the Variances and Covariance of the Least
Squares Estimators

Having an unbiased estimator of the error variance means we can estimate the conditional vari-

ances of the least squares estimators b1 and b2 and the covariance between them. Replace the

unknown error variance σ2 in (2.14)–(2.16) by σ̂2
to obtain

var
⋀(

b1|x
)
= σ̂2

[ ∑
x2

i

N
∑(

xi − x
)2

]

(2.20)

var
⋀(

b2|x
)
= σ̂2

∑(
xi − x

)2
(2.21)

cov
⋀(

b1, b2|x
)
= σ̂2

[

−x
∑(

xi − x
)2

]

(2.22)
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The square roots of the estimated variances are the “standard errors” of b1 and b2. These quantities

are used in hypothesis testing and confidence intervals. They are denoted as se
(
b1

)
and se

(
b2

)

se
(
b1

)
=
√

var
⋀(

b1|x
)

(2.23)

se
(
b2

)
=
√

var
⋀(

b2|x
)

(2.24)

E X A M P L E 2.5 Calculations for the Food Expenditure Data

Let us make some calculations using the food expenditure

data. The least squares estimates of the parameters in the

food expenditure model are shown in Figure 2.9. First, we

will compute the least squares residuals from (2.6) and use

them to calculate the estimate of the error variance in (2.19).

In Table 2.3 are the least squares residuals for the first five

households in Table 2.1.

T A B L E 2.3 Least Squares Residuals

x y ŷ ê = y − ŷ

3.69 115.22 121.09 −5.87

4.39 135.98 128.24 7.74

4.75 119.34 131.91 −12.57

6.03 114.96 144.98 −30.02

12.47 187.05 210.73 −23.68

Recall that we have estimated that for the food expenditure

data the fitted least squares regression line is ŷ = 83.42 +
10.21x. For each observation, we compute the least squares

residual êi = yi − ŷi. Using the residuals for all N = 40 obser-

vations, we estimate the error variance to be

σ̂2 =
∑

ê2

i

N − 2
= 304505.2

38
= 8013.29

The numerator, 304505.2, is the sum of squared least squares

residuals, reported as “Sum squared resid” in Figure 2.9. The

denominator is the number of sample observations, N = 40,

minus the number of estimated regression parameters, 2;

the quantity N − 2 = 38 is often called the degrees of
freedom for reasons that will be explained in Chapter 3. In

Figure 2.9, the value σ̂2
is not reported. Instead, EViews

software reports σ̂ =
√

σ̂2 =
√

8013.29 = 89.517, labeled

“S.E. of regression,” which stands for “standard error of the

regression.”

It is typical for software not to report the estimated

variances and covariance unless requested. However, all

software packages automatically report the standard errors.

For example, in the EViews output shown in Figure 2.9

the column labeled “Std. Error” contains se
(
b1

)
= 43.410

and se
(
b2

)
= 2.093. The entry called “S.D. depen-

dent var” is the sample standard deviation of y, that is,
[∑(

yi − y
)2∕(N − 1)

]1∕2

= 112.6752.

The full set of estimated variances and covariances for

a regression is usually obtained by a simple computer com-

mand, or option, depending on the software being used. They

are arrayed in a rectangular array, or matrix, with variances

on the diagonal and covariances in the “off-diagonal”

positions.

[
var
⋀(

b1|x
)

cov
⋀(

b1, b2|x
)

cov
⋀(

b1, b2|x
)

var
⋀(

b2|x
)

]

For the food expenditure data, the estimated covariance

matrix of the least squares estimators is

C INCOME

C 1884.442 −85.90316

INCOME −85.90316 4.381752

where C stands for the “constant term,” which is the esti-

mated intercept parameter in the regression, or b1; similarly,

the software reports the variable name INCOME for the col-

umn relating to the estimated slope b2. Thus

var
⋀(

b1|x
)
= 1884.442, var

⋀(
b2|x

)
= 4.381752,

cov
⋀(

b1, b2|x
)
= −85.90316

The standard errors are

se
(
b1

)
=

√

var
⋀(

b1|x
)
=

√
1884.442 = 43.410

se
(
b2

)
=

√

var
⋀(

b2|x
)
=

√
4.381752 = 2.093

These values will be used extensively in Chapter 3.
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β2 b2

f (b2∣x)

var(b2∣x)

FIGURE 2.12 The conditional probability density
function of the least squares estimator b2.

2.7.2 Interpreting the Standard Errors
The standard errors of b1 and b2 are measures of the sampling variability of the least squares

estimates b1 and b2 in repeated samples. As illustrated in Table 2.2, when we collect different

samples of data, the parameter estimates change from sample to sample. The estimators b1 and

b2 are general formulas that are used whatever the sample data turn out to be. That is, the estima-

tors are random variables. As such, they have probability distributions, means, and variances. In

particular, if assumption SR6 holds, and the random error terms ei are normally distributed, then

b2|x ∼ N
(

β2, var
(
b2|x

)
= σ2

/∑(
xi − x

)2
)

. This pdf f
(
b2|𝐱

)
is shown in Figure 2.12.

The estimator variance, var
(
b2|𝐱

)
, or, its square root σb2

=
√

var
(
b2|x

)
, which we might

call the true standard deviation of b2, measures the sampling variation of the estimates b2 and

determines the width of the pdf in Figure 2.12. The bigger σb2
is the more variation in the least

squares estimates b2 we see from sample to sample. If σb2
is large, then the estimates might

change a great deal from sample to sample. The parameter σb2
would be a valuable number to

know, because if it were large relative to the parameter β2 we would know that the least squares

estimator is not precise, and the estimate that we obtain may be far from the true value β2 that

we are trying to estimate. On the other hand, if σb2
is small relative to the parameter β2, we know

that the least squares estimate will fall near β2 with high probability. Recall that for the normal

distribution, 99.9% of values fall within the range of three standard deviations from the mean, so

that 99.9% of the least squares estimates will fall in the range β2 − 3σb2
to β2 + 3σb2

.

To put this in another context, in Table 2.2 we report estimates from 10 samples of data. We

noted in Section 2.4.3 that the average values of those estimates are b1 = 96.11 and b2 = 8.70.

The question we address with the standard error is “How much variation about their means do the

estimates exhibit from sample to sample?” For those 10 samples, the sample standard deviations

are std. dev.
(
b1

)
= 23.61 and std. dev.

(
b2

)
= 1.58. What we would really like is the values of

the standard deviations for a very large number of samples. Then we would know how much

variation the least squares estimates exhibit from sample to sample. Unfortunately, we do not

have a large number of samples, and because we do not know the true value of the variance of

the error term σ2 we cannot know the true value of σb2
.

Then what do we do? We estimate σ2, and then estimate σb2
using

se
(
b2

)
=

√

var
⋀(

b2|x
)
=

√
√
√
√ σ̂2

Σ
(
xi − x

)2

The standard error of b2 is thus an estimate of what the standard deviation of many estimates b2

would be in a very large number of samples and is an indicator of the width of the pdf of b2 shown

in Figure 2.12. Using our one sample of data, food, the standard error of b2 is 2.093, as shown in
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the computer output in Figure 2.9. This value is reasonably close to std. dev.
(
b2

)
= 1.58 from the

10 samples in Table 2.2. To put this to a further test, in Appendix 2H, we perform a simulation

experiment, called a Monte Carlo experiment, in which we create many artificial samples to

demonstrate the properties of the least squares estimator and how well se
(
b2

)
reflects the true

sampling variation in the estimates.

2.8 Estimating Nonlinear Relationships
The world is not linear. Economic variables are not always related by straight-line relationships; in

fact, many economic relationships are represented by curved lines and are said to display curvilin-
ear forms. Fortunately, the simple linear regression model y = β1 + β2x + e is much more flexible

than it looks at first glance, because the variables y and x can be transformations, involving loga-

rithms, squares, cubes, or reciprocals, of the basic economic variables, or they can be indicator
variables that take only the values zero and one. Including these possibilities means the simple

linear regression model can be used to account for nonlinear relationships between variables.4

Nonlinear relationships can sometimes be anticipated. Consider a model from real estate

economics in which the price (PRICE) of a house is related to the house size measured in square

feet (SQFT). As a starting point, we might consider the linear relationship

PRICE = β1 + β2SQFT + e (2.25)

In this model, β2 measures the increase in expected price given an additional square foot of living

area. In the linear specification, the expected price per additional square foot is constant. However,

it may be reasonable to assume that larger and more expensive homes have a higher value for an

additional square foot of living area than smaller, less expensive homes. How can we build this

idea into our model? We will illustrate the use of two approaches: first, a quadratic equation in

which the explanatory variable is SQFT2; and second, a log-linear equation in which the depen-

dent variable is ln(PRICE). In each case, we will find that the slope of the relationship between

PRICE and SQFT is not constant, but changes from point to point.

2.8.1 Quadratic Functions

The quadratic function y = a + bx2 is a parabola.5 The y-intercept is a. The shape of the curve

is determined by b; if b > 0, then the curve is U-shaped; and if b < 0, then the curve has an

inverted-U shape. The slope of the function is given by the derivative6 dy/dx = 2bx, which changes

as x changes. The elasticity or the percentage change in y given a 1% change in x is ε = slope ×
x∕y = 2bx2∕y. If a and b are greater than zero, the curve resembles Figure 2.13.

2.8.2 Using a Quadratic Model
A quadratic model for house prices includes the squared value of SQFT , giving

PRICE = α1 + α2SQFT2 + e (2.26)

This is a simple regression model, y = α1 + α2x + e, with y = PRICE and x = SQFT 2. Here, we

switch from using β to denote the parameters to using α, because the parameters of (2.26) are

not comparable to the parameters of (2.25). In (2.25) β2 is a slope, but α2 is not a slope. Because

............................................................................................................................................

4The term linear in “linear regression” means that the parameters are not transformed in any way. In a linear regression

model, the parameters must not be raised to powers or transformed, so expressions like β1β2 or ββ1

2
are not permitted.

5This is a special case of the more general quadratic function y = a + bx + cx2.

6See Appendix A.3.1, Derivative Rules 1–5.
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y
0
x

FIGURE 2.13 A quadratic function, y = a + bx2.

SQFT > 0, the house price model will resemble the right side of the curve in Figure 2.13. Using ^

to denote estimated values, the least squares estimates α̂1 and α̂2, of α1 and α2, are calculated using

the estimators in (2.7) and (2.8), just as earlier. The fitted equation is PRICE
⋀

= α̂1 + α̂2SQFT2. It

has slope

d
(

PRICE
⋀)

dSQFT
= 2α̂2SQFT (2.27)

If α̂2 > 0, then larger houses will have larger slope, and a larger estimated price per additional

square foot.

E X A M P L E 2.6 Baton Rouge House Data

The data file br contains data on 1080 houses sold in Baton

Rouge, Louisiana, during mid-2005. Using these data,

the estimated quadratic equation is PRICE
⋀

= 55776.56 +

0.0154SQFT2. The data scatter and fitted quadratic relation-

ship are shown in Figure 2.14.
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FIGURE 2.14 A fitted quadratic relationship.
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The estimated slope is slope
⋀

= 2(0.0154) SQFT (esti-

mated price per additional square foot), which for a 2000-

square-foot house is $61.69, for a 4000-square-foot house is

$123.37, and for a 6000-square-foot house is $185.05. The

elasticity of house price with respect to house size is the

percentage increase in estimated price given a 1% increase

in house size. Like the slope, the elasticity changes at each

point. In our example

ε̂ = slope
⋀

× SQFT
PRICE

=
(
2α̂2SQFT

)
× SQFT

PRICE

To compute an estimate, we must select values for

SQFT and PRICE on the fitted relationship. That is,

we choose a value for SQFT and choose for price the

corresponding fitted value PRICE
⋀

. For houses of 2000,

4000, and 6000 square feet, the estimated elasticities are

1.05 [using PRICE
⋀

= $117,461.77], 1.63 [using PRICE
⋀

=
$302,517.39], and 1.82 [using PRICE

⋀

= $610,943.42],

respectively. For a 2000-square-foot house, we estimate that

a 1% increase in house size will increase price by 1.05%.

2.8.3 A Log-Linear Function
The log-linear equation ln(y) = a + bx has a logarithmic term on the left-hand side of the equation

and an untransformed (linear) variable on the right-hand side. Both its slope and elasticity change

at each point and are the same sign as b. Using the antilogarithm, we see that exp[ln(y)] = y =
exp(a + bx), so that the log-linear function is an exponential function. The function requires y > 0.

The slope7 at any point is dy/dx = exp(a + bx) × b = by, which for b > 0 means that the marginal

effect increases for larger values of y. An economist might say that this function is increasing at

an increasing rate, as shown in Figure 2.15.

The elasticity, the percentage change in y given a 1% increase in x, at a point on this curve is

ε = slope × x∕y = bx.

Using the slope expression, we can solve for a semi-elasticity, which tells us the percentage

change in y given a one-unit increase in x. Divide both sides of the slope dy/dx by y, then multiply

by 100 to obtain

η =
100(dy∕y)

dx
= 100b (2.28)

In this expression, the numerator 100(dy/y) is the percentage change in y; dx represents the change

in x. If dx = 1, then a one-unit change in x leads to a 100b percentage change in y. This interpre-

tation can sometimes be quite handy.

0
y

0
x

FIGURE 2.15 A log-linear function.

............................................................................................................................................

7See Appendix A.3.1, Derivative Rule 7.



�

� �

�

80 CHAPTER 2 The Simple Linear Regression Model

2.8.4 Using a Log-Linear Model
The use of logarithms is very common in economic modeling. The log-linear model uses the

logarithm of a variable as the dependent variable, and an independent, explanatory variable, that

is not transformed, such as8

ln(PRICE) = γ1 + γ2SQFT + e (2.29)

What effects does this have? First, the logarithmic transformation can regularize data that is

skewed with a long tail to the right. In Figure 2.16(a), we show the histogram of PRICE and in

Figure 2.16(b) the histogram of ln(PRICE). The median house price in this sample is $130,000,
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FIGURE 2.16 (a) Histogram of PRICE. (b) Histogram of ln(PRICE).

............................................................................................................................................

8Once again we use different symbols for the parameters of this model, γ1 and γ2, as a reminder that these parameters

are not directly comparable to β’s in (2.25) or α’s in (2.26).
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and 95% of house prices are below $315,000, but there are 24 houses out of the 1080 with

prices above $500,000, and an extreme value of $1,580,000. The extremely skewed distribution

of PRICE becomes more symmetric, if not bell-shaped, after taking the logarithm. Many eco-

nomic variables, including prices, incomes, and wages, have skewed distributions, and the use of

logarithms in models for such variables is common.

Second, using a log-linear model allows us to fit regression curves like that shown in

Figure 2.15.

E X A M P L E 2.7 Baton Rouge House Data, Log-Linear Model

Using the Baton Rouge data, the fitted log-linear model is

ln(PRICE)
⋀

= 10.8386 + 0.0004113 SQFT

To obtain predicted price, take the antilogarithm,9 which is

the exponential function

PRICE
⋀

= exp
[

ln(PRICE)
⋀]

= exp(10.8386

+ 0.0004113 SQFT )

The fitted value of PRICE is shown in Figure 2.17.

The slope of the log-linear model is

d
(

PRICE
⋀)

dSQFT
= γ̂2PRICE
⋀

= 0.0004113 PRICE
⋀

For a house with a predicted PRICE of $100,000, the

estimated increase in PRICE for an additional square foot

of house area is $41.13, and for a house with a predicted

PRICE of $500,000, the estimated increase in PRICE for

an additional square foot of house area is $205.63. The

estimated elasticity is ε̂ = γ̂2 SQFT = 0.0004113 SQFT. For

a house with 2000 square feet, the estimated elasticity is

0.823: a 1% increase in house size is estimated to increase

selling price by 0.823%. For a house with 4000 square feet,

the estimated elasticity is 1.645: a 1% increase in house

size is estimated to increase selling price by 1.645%. Using

the “semi-elasticity” defined in equation (2.28), we can

say that, for a one-square-foot increase in size, we estimate

a price increase of 0.04%. Or, perhaps more usefully, we

estimate that a 100-square-foot increase will increase price

by approximately 4%.
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FIGURE 2.17 The fitted log-linear model.

............................................................................................................................................

9In Chapter 4 we present an improved predictor for this model.



�

� �

�

82 CHAPTER 2 The Simple Linear Regression Model

2.8.5 Choosing a Functional Form
For the Baton Rouge house price data, should we use the quadratic functional form or the

log-linear functional form? This is not an easy question. Economic theory tells us that house

price should be related to the size of the house, and perhaps that larger, more expensive homes

have a higher price per additional square foot of living area. But economic theory does not

tell us what the exact algebraic form of the relationship should be. We should do our best to

choose a functional form that is consistent with economic theory, that fits the data well, and

that is such that the assumptions of the regression model are satisfied. In real-world problems,

it is sometimes difficult to achieve all these goals. Furthermore, we will never truly know the

correct functional relationship, no matter how many years we study econometrics. The truth is

out there, but we will never know it. In applications of econometrics, we must simply do the best

we can to choose a satisfactory functional form. At this point, we mention one dimension of the

problem used for evaluating models with the same dependent variable. By comparing the sum

of squared residuals (SSE) of alternative models, or, equivalently, σ̂2
or σ̂, we can choose the

model that is a better fit to the data. Smaller values of these quantities mean a smaller sum of

squared residuals and a better model fit. This comparison is not valid for comparing models with

dependent variables y and ln(y), or when other aspects of the models are different. We study the

choice among functions like these further in Chapter 4.

2.9 Regression with Indicator Variables
An indicator variable is a binary variable that takes the values zero or one; it is used to repre-

sent a nonquantitative characteristic, such as gender, race, or location. For example, in the data

file utown.dot we have a sample of 1,000 observations on house prices (PRICE, in thousands

of dollars) in two neighborhoods. One neighborhood is near a major university and called Uni-

versity Town. Another similar neighborhood, called Golden Oaks, is a few miles away from the

university. The indicator variable of interest is

UTOWN =

{
1 house is in University Town

0 house is in Golden Oaks

The histograms of the prices in these two neighborhoods, shown in Figure 2.18, are revealing.

The mean of the distribution of house prices in University Town appears to be larger than the

mean of the distribution of house prices from Golden Oaks. The sample mean of the 519 house

prices in University Town is 277.2416 thousand dollars, whereas the sample mean of the 481

Golden Oaks houses is 215.7325 thousand dollars.

If we include UTOWN in a regression model as an explanatory variable, what do we have?

The simple regression model is

PRICE = β1 + β2UTOWN + e

If the regression assumptions SR1–SR5 hold, then the least squares estimators in (2.7) and (2.8)

can be used to estimate the unknown parameters β1 and β2.

When an indicator variable is used in a regression, it is important to write out the regression

function for the different values of the indicator variable.

E(PRICE|UTOWN) = β1 + β2UTOWN =

{
β1 + β2 if UTOWN = 1

β1 if UTOWN = 0

In this case, we find that the “regression function” reduces to a model that implies that the pop-

ulation mean house prices in the two subdivisions are different. The parameter β2 is not a slope
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FIGURE 2.18 Distributions of house prices.

in this model. Here β2 is the difference between the population means for house prices in the

two neighborhoods. The expected price in University Town is β1 + β2, and the expected price in

Golden Oaks is β1. In our model, there are no factors other than location affecting price, and the

indicator variable splits the observations into two populations.

The estimated regression is

PRICE
⋀

= b1 + b2UTOWN = 215.7325 + 61.5091UTOWN

=
{

277.2416 if UTOWN = 1

215.7325 if UTOWN = 0

We see that the estimated price for the houses in University Town is $277,241.60, which is also

the sample mean of the house prices in University Town. The estimated price for houses outside

University Town is $215,732.50, which is the sample mean of house prices in Golden Oaks.

In the regression model approach, we estimate the regression intercept β1, which is the

expected price for houses in Golden Oaks, where UTOWN = 0, and the parameter β2, which

is the difference between the population means for house prices in the two neighborhoods. The

least squares estimators b1 and b2 in this indicator variable regression can be shown to be

b1 = PRICEGolden Oaks

b2 = PRICEUniversity Town − PRICEGolden Oaks

where PRICEGolden Oaks is the sample mean (average) price of houses in Golden Oaks and

PRICEUniversity Town is the sample mean price of houses from University Town.

In the simple regression model, an indicator variable on the right-hand side gives us a way

to estimate the differences between population means. This is a common problem in statistics,

and the direct approach using samples means is discussed in Appendix C.7.2. Indicator variables

are used in regression analysis very frequently in many creative ways. See Chapter 7 for a full

discussion.
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2.10 The Independent Variable10

Earlier in this chapter we specified a number of assumptions for the simple regression model and

then used these assumptions to derive some properties of the least squares estimators of the coef-

ficients in the model. In the household food expenditure example, we assumed a DGP where pairs(
yi, xi

)
are randomly drawn from some population. We then went on to make a strict exogeneity

assumption E
(
ei|𝐱

)
= 0 to accommodate other types of DGPs. Using this and other assumptions,

we derived properties of the least squares estimator conditional on the sample values x. In this

section, we say more about different possible DGPs, explore their implications for the assumptions

of the simple regression model, and investigate how the properties of the least squares estimator

change, if at all, when we no longer condition on x.

Our regression model y = β1 + β2x + e has five components, three of which are unobserv-

able: β1, β2, and e. The two observable components are y the random outcome, or dependent

variable, and x the explanatory, independent variable. Is this explanatory variable random or not

and why does it matter? We address these questions in this section.

How do we obtain values for the observable pair of variables (y, x)? In an experimental DGP,

a scientist under carefully controlled conditions specifies the values of x, performs an experiment,

and observes the outcomes y. For example, an agronomist might vary the number of pounds of

pesticide spread per acre of cropland and observe the resulting yield. In this case, the independent

variable, pounds of pesticide, is in fact an independent factor and not random. It is fixed. It is not

affected by random influences and the treatment can be replicated time and time again. Laboratory

and other controlled experiments can claim that the values of the independent variable are fixed.

In the world of economics and business, there are few examples of laboratory and controlled

experiments.11 One exception is retail sales. Merchants display the prices of goods and services

and observe consumer purchases. The merchant controls the prices, store displays, advertising

and the shopping environment. In this case, we can argue that x, the price of a product in a retail

store, is fixed and not random; it is given. When x is fixed and not random, the idea of repeated

experimental trials makes intuitive sense. The sampling properties of the least squares estimators

are a summary of how the estimators perform under a series of controlled experiments with fixed

values for the independent variables. We have shown that the least squares estimator is the best

linear unbiased estimator, given x, and we have variance equations (2.14) and (2.15) that describe

how much variation the estimates exhibit from sample to sample.

In the next three sections, we treat cases in which x-values are random. Each of these cases

represents a different type of DGP. We start with the strongest assumption about random-x and

then look at weaker cases.

2.10.1 Random and Independent x
Suppose our agronomist takes another strategy, using a random number between 0 and 100 to

determine the amount of pesticide applied to a given acre of land. In this case, x is random, as its

value is unknown until it is randomly selected. Why might a scientist use this approach? Well,

no one could imply that such an experiment was rigged to produce a particular outcome. It is

a “fair” experiment because the scientist keeps “hands off” the controls. What are the sampling

properties of the least squares estimator in this setting? Is the least squares estimator the best,

linear unbiased estimator in this case?

............................................................................................................................................

10This section contains a more advanced discussion of the assumptions of the simple regression model.

11Economists understand the benefits of controlled experiments. The field of experimental economics has grown

tremendously in the past 20 years. Also, there have been some social experiments. One example is Tennessee’s Project

STAR that examined the consequences on school children of having small classes rather than larger ones. This example

is explored further in Chapter 7.5.



�

� �

�

2.10 The Independent Variable 85

In order to answer these questions, we make explicit that x is statistically independent of the

error term e. The assumptions for the independent random-x model (IRX) are as follows:

Assumptions of the Independent Random-x Linear Regression Model

IRX1: The observable variables y and x are related by yi = β1 + β2xi + ei, i = 1,… ,N,

where β1 and β2 are unknown population parameters and ei is a random error term.

IRX2: The random error has mean zero, E
(
ei
)
= 0.

IRX3: The random error has constant variance, var
(
ei
)
= σ2.

IRX4: The random errors ei and ej for any two observations are uncorrelated, cov
(
ei, ej

)
= 0.

IRX5: The random errors e1, e2,… , eN are statistically independent of x1,… , xN, and xi
takes at least two different values.

IRX6: ei ∼ N
(
0, σ2

)
.

Compare the assumptions IRX2, IRX3, and IRX4 with the initial assumptions about the simple

regression model, SR2, SR3, and SR4. You will note that conditioning on x has disappeared.

The reason is because when x-values and random errors e are statistically independent E
(
ei|xj

)
=

E
(
ei
)
= 0, var

(
ei|xj

)
= var

(
ei
)
= σ2 and cov

(
ei, ej|𝐱

)
= cov

(
ei, ej

)
= 0. Refer back to the Prob-

ability Primer Sections P.6.1 and P.6.2 for a discussion of why conditioning has no effect on the

expected value and variance of statistically independent random variables. Also, it is extremely

important to recognize that “i” and “j” simply represent different data observations that may be

cross-sectional data or time-series data. What we say applies to both types of data.

The least squares estimators b1 and b2 are the best linear unbiased estimators of β1 and β2

if assumptions IRX1–IRX5 hold. These results are derived in Appendix 2G.2. The one appar-

ent change is that an “expected value” appears in the formulas for the estimator variances. For

example,

var
(
b2

)
= σ2E

[

1
∑(

xi − x
)2

]

We must take the expected value of the term involving x. In practice, this actually changes nothing,

because we estimate the variance in the usual way.

var
⋀(

b2

)
= σ̂2

∑(
xi − x

)2

The estimator of the error variance remains σ̂2 =
∑

ê2

i ∕(N − 2) and all the usual interpretations

remain the same. Thus, the computational aspects of least squares regression do not change. What

has changed is our understanding of the DGP. Furthermore, if IRX6 holds then, conditional on x,

the least squares estimators have normal distributions.12

As we will see in Chapter 3, procedures for inference, namely interval estimators and hypoth-

esis tests, will work in this independent random-x model the same way as in a fixed-x model. And,

thanks to the central limit theorem, cited in Section 2.6, it will still be true that in large samples
the least squares estimator has an approximate normal distribution whether x is fixed or random.

This will be explored further in Chapter 5.

............................................................................................................................................

12If we do not condition on x, no longer treating it as fixed and given, the exact distribution of the least squares estimator

is not normal and is in fact unknown. Equation (2.12) shows that b2 is a complicated combination of x’s and random

errors, e. Even if we know the distributions of x and e the product of random variables wi and ei has an unknown

distribution.
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2.10.2 Random and Strictly Exogenous x
Statistical independence between xi and ej, for all values of i and j (which may denote time-series

or cross-sectional observations) is a very strong assumption and most likely only suitable in exper-

imental situations. A weaker assumption is that the explanatory variable x is strictly exogenous.

The phrases “strictly exogenous” and “strict exogeneity” refer to a particular technical, statistical

assumption. You have no doubt heard the term exogenous before in your principles of economics

classes. For example, in a supply and demand model, we know that the equilibrium price and

quantity in a competitive market are jointly determined by the forces of supply and demand.

Price and quantity are endogenous variables that are determined within the equilibrium system.

However, we know that consumer income affects the demand equation. If income increases, the

demand for a normal good increases. Income is not determined within the equilibrium system

that determines equilibrium price and quantity; it is determined outside this market and is said to

be exogenous. The exogenous variable income affects market demand, but market demand does

not affect consumer income. In regression analysis models, the independent, explanatory variable

x is also termed an exogenous variable because its variation affects the outcome variable y, but

there is no reverse causality; changes in y have no effect on x.

Because interrelationships among economic variables and forces can be complex, we

wish to be very precise about exogenous explanatory variables. The independent variable x is

strictly exogenous if E
(
ei|xj

)
= 0 for all values of i and j, or equivalently, E

(
ei|x1, x2,… , xN

)
=

E
(
ei|𝐱

)
= 0. This is exactly assumption SR2. If i = 3, for example, then E

(
e3|x1

)
= 0, and

E
(
e3|x3

)
= 0, and E

(
e3|x7

)
= 0. The conditional expectation of the ith error term ei is zero

given any and all xj. If it will help you remember them, relabel SR1–SR6 as SEX1–SEX6, where

SEX stands for “strictly exogenous-x.” Let the phrase “simple regression is sexy” remind you

that Strictly Exogenous-X is the baseline regression assumption.

What are the properties of the least squares estimator under the assumption of strict exogene-

ity? They are the same as in the case of statistical independence between all xj and ei. The least

squares estimators are the best linear unbiased estimators of the regression parameters. These

results are proved in Appendix 2G.3. This is a nice finding because while still strong, strict exo-

geneity is less strong than assuming x and e are statistically independent. Furthermore, if the

errors are normally distributed, then the least squares estimator b2|x has a normal distribution.

The Implications of Strict Exogeneity Strict exogeneity implies quite a bit. If x is

strictly exogenous, then the least squares estimator works the way we want it to and no fancier or

more difficult estimators are required. Life is simple. If, on the other hand, strict exogeneity does

not hold, then econometric analysis becomes more complicated, which, unfortunately, is often

the case. How can we tell if the technical, statistical assumption called “strict exogeneity” holds?

The only sure way is to perform a controlled experiment in which x is fixed in repeated samples or

chosen randomly as described in Section 2.10.1. For most economic analyses, such experiments

are impossible or too expensive.

Are there perhaps some statistical tests that can be used to check for strict exogeneity? The

answer is yes, but using statistics it is much easier to determine if something is probably false

rather than to argue that it is true. The common practice is to check that the implications of

strict exogeneity are true. If these implications don’t seem to be true, either based on economic

logic or statistical tests, then we will conclude that strict exogeneity does not hold and deal with

the consequences, making life more difficult. The two direct implications of strict exogeneity,

E
(
ei|x1, x2,… , xN

)
= E

(
ei|𝐱

)
= 0, derived in Appendix 2G.1, are as follows:

Implication 1: E
(
ei
)
= 0. The “average” of all factors omitted from the regression model is

zero.

Implication 2: cov
(
xi, ej

)
= 0. There is no correlation between the omitted factors associated

with observation j and the value of the explanatory variable for observation i.
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If x satisfies the strict exogeneity condition, then E
(
ei
)
= 0 and cov

(
xi, ej

)
= 0. If either of these

implications is not true, then x is not strictly exogenous.

Can we check Implication 1: E
(
ei
)
= 0? Is the average of all omitted factors equal to zero?

In practice, this usually reduces to the question “Have I omitted anything important from the

model?” If you have it is likely to be because you didn’t know it was important (weak economic

theory) or because, while you know it is an important factor (such as an individual’s average

lifetime income or an individual’s perseverance in the face of adversity), it cannot be easily or

well measured. In any event, omitted variables damage the least squares estimator only when

Implication 2 is violated. Consequently, Implication 2 draws the most attention.

Can we check Implication 2: cov
(
xi, ej

)
= 0? Yes, we can, and we show some statistical

tests in Chapter 10. However, logical arguments, and thought experiments, should always come

before any statistical tests. In some cases, we can anticipate the failure of strict exogeneity, as the

following examples in models using time-series data illustrate. In these cases, we usually index

the observations using the subscript t, so that xt is the value of the explanatory variable at time t
and es is the value of the random error in time period s. In this context, strict exogeneity would

be expressed as E
(
es|xt

)
= 0 for all s and t. The zero covariance implication of strict exogeneity

is cov
(
xt, es

)
= 0.

Example 1. Suppose that xt represents a policy variable, perhaps public spending on roads

and bridges in month or quarter t. If the area is “shocked” by a hurricane, tornado, or other

natural disaster at time s, then some time later (t > s) we may very well expect public spend-

ing on roads and bridges to increase, not only for one time period but perhaps for many. Then,

cov
(
xt = s+1, es

)
≠ 0, cov

(
xt = s+2, es

)
≠ 0, and so on. Strict exogeneity fails in this case because

the shock to the error term, the natural disaster, is correlated with a subsequent change in the

explanatory variable, public spending, implying E
(
es|xt

)
≠ 0.

Example 2. Suppose the quarterly sales by a firm are related to its advertising expenditures.

We might write SALESt = β1 + β2ADVERTt + et. However, advertising expenditures at time t
may depend on sales revenues in the same quarter during the previous year, at time t − 4. That is,

ADVERTt = f
(
SALESt−4

)
. Because SALESt−4 = β1 + β2ADVERTt−4 + et−4, it follows that there

will be a correlation, and covariance, between ADVERTt and et−4. Therefore, the strict exogeneity

condition fails, and E
(
et−4|ADVERTt

)
≠ 0. Note the similarities between this example and the

first. The effect of a past error es is carried forward to affect a future value of the explanatory

variable, xt, t > s.

Example 3. Let Ut represent the unemployment rate in quarter t, and we suppose that it is

affected by the governmental expenditures, Gt. The regression might be specified as Ut = β1 +
β2Gt + et. However, we might imagine that the unemployment rate in this quarter is affected by

government spending in previous quarters, such as Gt−1. Because Gt−1 is not included in the model

specification, it makes up a portion of the error term, et = f
(
Gt−1

)
. Furthermore, we expect that

there is a strong positive correlation and covariance between government spending this quarter

and in previous quarters, so that cov
(
Gt,Gt−1

)
> 0. This means that we can anticipate a cor-

relation between the error term in time t and previous levels of government spending, so that

cov
(
et,Gt−1

)
≠ 0. Therefore, cov

(
et|Gt

)
≠ 0 and the strict exogeneity assumption fails.

The implications of a failure of the strict exogeniety assumption for least squares esti-

mation, and the introduction of weaker assumptions to accommodate situations like those in

Examples 1–3, are considered in Chapters 5, 9, and 10.

2.10.3 Random Sampling
The food expenditure example we have carried through this chapter is another case in which the

DGP leads to an x that is random. We randomly sampled a population and selected 40 house-

holds. These are cross-sectional data observations. For each household, we recorded their food

expenditure
(
yi
)

and income
(
xi
)
. Because both of these variables’ values are unknown to us

until they are observed, both the outcome variable y and the explanatory variable x are random.
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The same questions are relevant. What are the sampling properties of the least squares estimator

in this case? Is the least squares estimator the best, linear unbiased estimator?

Such survey data is collected by random sampling from a population. Survey methodology

is an important area of statistics. Public opinion surveys, market research surveys, government

surveys, and censuses are all examples of collecting survey data. Several important ones are car-

ried out by the U.S. Bureau of Labor Statistics (BLS).13 The idea is to collect data pairs
(
yi, xi

)

in such a way that the ith pair [the “Smith” household] is statistically independent of the jth pair

[the “Jones” household]. This ensures that xj is statistically independent of ei if i ≠ j. Then, the

strict exogeneity assumption reduces to concern about a possible relationship between xi and ei.

If the conditional expectation E
(
ei|xi

)
= 0, then x is strictly exogenous, and the implications are

E
(
ei
)
= 0 and cov

(
xi, ei

)
= 0. Note also that if we assume that the data pairs are independent,

then we no longer need make the separate assumption that the errors are uncorrelated.

What are the properties of the least squares estimator under these assumptions? They are

the same as in the cases of statistical independence between all xj and ei (Section 2.10.1) and

strict exogeneity in the general sense (Section 2.10.2). The least squares estimators are the best

linear unbiased estimators of the regression parameters and conditional on x they have a normal

distribution if SR6 (or IRX6) holds.

One final idea associated with random sampling is that the data pairs,
(
yi, xi

)
, i = 1,… ,N,

have the same joint pdf , f (y,x). In this case, the data pairs are independent and identically dis-

tributed, iid. In statistics, the phrase random sample implies that the data are iid. This is a

reasonable assumption if all the data pairs are collected from the same population.

When discussing examples of the implications of strict exogeneity, we showed how the strict

exogeneity assumption can be violated when using time-series data if there is correlation between

es and a future or past value xt (t ≠ s). For an example of how strict exogeneity fails with random

sampling of cross-sectional data, we need an example of where ei is correlated with a value xi
corresponding to the same ith observation.

Assumptions of the Simple Linear Regression Model Under Random Sampling

RS1: The observable variables y and x are related by yi = β1 + β2xi + ei, i = 1,… ,N, where

β1 and β2 are unknown population parameters and ei is a random error term.

RS2: The data pairs
(
yi, xi

)
are statistically independent of all other data pairs and have the

same joint distribution f
(
yi, xi

)
. They are independent and identically distributed.

RS3: E
(
ei|xi

)
= 0 for i = 1,… ,N; x is strictly exogenous.

RS4: The random error has constant conditional variance, var
(
ei|xi

)
= σ2.

RS5: xi takes at least two different values.

RS6: ei ∼ N
(
0, σ2

)
.

Example 4. Suppose that xi is a measure of the quantity of inputs used in a production process by

a randomly chosen firm in an equation designed to explain a firm’s production costs. The error

term ei may contain unmeasured features associated with the ability of the firm’s managers. It

is possible that more able managers are able to use fewer inputs in the production process, so

we might expect cov
(
xi, ei

)
< 0. In this case, strict exogeneity fails. The ith firm’s input usage is

correlated with unmeasured characteristics of firm managers contained in the ith error, ei. A firm’s

input usage is not strictly exogenous, and in econometric terms, it is said to be endogenous.

Explanatory variables are endogenous if they are correlated with the error term.

............................................................................................................................................

13http://www.bls.gov/nls/home.htm
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2.11 Exercises

2.11.1 Problems

2.1 Consider the following five observations. You are to do all the parts of this exercise using only a

calculator.

x y x − x
(
x − x

)2 y − y
(
x − x

)(
y − y

)

3 4

2 2

1 3

–1 1

0 0

∑
xi =

∑
yi =

∑(
xi − x

)
=

∑(
xi − x

)2 =
∑(

yi − y
)
=

∑(
xi − x

)(
yi − y

)
=

a. Complete the entries in the table. Put the sums in the last row. What are the sample means x and y?

b. Calculate b1 and b2 using (2.7) and (2.8) and state their interpretation.

c. Compute
∑5

i=1
x2

i ,
∑5

i=1
xiyi. Using these numerical values, show that

∑(
xi − x

)2 =
∑

x2
i − Nx2

and
∑(

xi − x
)(

yi − y
)
=

∑
xiyi − Nxy.

d. Use the least squares estimates from part (b) to compute the fitted values of y, and complete the

remainder of the table below. Put the sums in the last row.

Calculate the sample variance of y, s2
y =

∑N
i=1

(
yi − y

)2∕(N − 1), the sample variance of x,

s2
x =

∑N
i=1

(
xi − x

)2∕(N − 1), the sample covariance between x and y, sxy =
∑N

i=1

(
yi − y

)(
xi − x

)
∕

(N − 1), the sample correlation between x and y, rxy = sxy∕
(
sxsy

)
and the coefficient of variation

of x, CVx = 100
(
sx∕ x

)
. What is the median, 50th percentile, of x?

xi yi ŷi êi ê2

i xiêi

3 4

2 2

1 3

–1 1

0 0

∑
xi =

∑
yi =

∑
ŷi =

∑
êi =

∑
ê2

i =
∑

xiêi =

e. On graph paper, plot the data points and sketch the fitted regression line ŷi = b1 + b2xi.

f. On the sketch in part (e), locate the point of the means
(
x, y

)
. Does your fitted line pass through

that point? If not, go back to the drawing board, literally.

g. Show that for these numerical values y = b1 + b2x.

h. Show that for these numerical values ŷ = y, where ŷ =
∑

ŷi∕N.

i. Compute σ̂2
.

j. Compute var
⋀(

b2|x
)

and se
(
b2

)
.

2.2 A household has weekly income of $2000. The mean weekly expenditure for households with this

income is E(y|x = $2000) = μy|x=$2000 = $220, and expenditures exhibit variance var(y|x = $2,000) =
σ2

y|x=$2,000
= $121.

a. Assuming that weekly food expenditures are normally distributed, find the probability that a house-

hold with this income spends between $200 and $215 on food in a week. Include a sketch with your

solution.
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b. Find the probability that a household with this income spends more than $250 on food in a week.

Include a sketch with your solution.

c. Find the probability in part (a) if the variance of weekly expenditures is var(y|x = $2,000) =
σ2

y|x=$2,000
= 144.

d. Find the probability in part (b) if the variance of weekly expenditures is var(y|x = $2,000) =
σ2

y|x=$2,000
= 144.

2.3 Graph the following observations of x and y on graph paper.

T A B L E 2.4 Exercise 2.3 Data

x 1 2 3 4 5 6

y 6 4 11 9 13 17

a. Using a ruler, draw a line that fits through the data. Measure the slope and intercept of the line you

have drawn.

b. Use formulas (2.7) and (2.8) to compute, using only a hand calculator, the least squares estimates

of the slope and the intercept. Plot this line on your graph.

c. Obtain the sample means y =
∑

yi∕N and x =
∑

xi∕N. Obtain the predicted value of y for x = x
and plot it on your graph. What do you observe about this predicted value?

d. Using the least squares estimates from (b), compute the least squares residuals êi.

e. Find their sum,
∑

êi, and their sum of squared values,
∑

ê2

i .

f. Calculate
∑

xiêi.

2.4 We have defined the simple linear regression model to be y = β1 + β2x + e. Suppose, however, that we

knew, for a fact, that β1 = 0.

a. What does the linear regression model look like, algebraically, if β1 = 0?

b. What does the linear regression model look like, graphically, if β1 = 0?

c. If β1 = 0, the least squares “sum of squares” function becomes S
(
β2

)
=

∑N
i=1

(
yi − β2xi

)2
. Using

the data in Table 2.4 from Exercise 2.3, plot the value of the sum of squares function for enough

values of β2 for you to locate the approximate minimum. What is the significance of the value of

β2 that minimizes S
(
β2

)
? [Hint: Your computations will be simplified if you algebraically expand

S
(
β2

)
=

∑N
i=1

(
yi − β2xi

)2
by squaring the term in parentheses and carrying through the summa-

tion operator.]

d. Using calculus, show that the formula for the least squares estimate of β2 in this model is b2 =∑
xiyi∕

∑
x2

i . Use this result to compute b2 and compare this value with the value you obtained

geometrically.

e. Using the estimate obtained with the formula in (d), plot the fitted (estimated) regression function.

On the graph locate the point
(
x, y

)
. What do you observe?

f. Using the estimate obtained with the formula in (d), obtain the least squares residuals,

êi = yi − b2xi. Find their sum.

g. Calculate
∑

xiêi.

2.5 A small business hires a consultant to predict the value of weekly sales of their product if their weekly

advertising is increased to $2000 per week. The consultant takes a record of how much the firm spent

on advertising per week and the corresponding weekly sales over the past six months. The consultant

writes, “Over the past six months the average weekly expenditure on advertising has been $1500 and

average weekly sales have been $10,000. Based on the results of a simple linear regression, I predict

sales will be $12,000 if $2000 per week is spent on advertising.”

a. What is the estimated simple regression used by the consultant to make this prediction?

b. Sketch a graph of the estimated regression line. Locate the average weekly values on the graph.

2.6 A soda vendor at Louisiana State University football games observes that the warmer the temperature

at game time the greater the number of sodas that are sold. Based on 32 home games covering five

years, the vendor estimates the relationship between soda sales and temperature to be ŷ = −240 + 20x,

where y = the number of sodas she sells and x = temperature in degrees Fahrenheit.

a. Interpret the estimated slope and intercept. Do the estimates make sense? Why or why not?
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b. On a day when the temperature at game time is forecast to be 80∘F, predict how many sodas the

vendor will sell.

c. Below what temperature are the predicted sales zero?

d. Sketch a graph of the estimated regression line.

2.7 We have 2008 data on y = income per capita (in thousands of dollars) and x = percentage of the popu-

lation with a bachelor’s degree or more for the 50 U.S. states plus the District of Columbia, a total of

N = 51 observations. We have results from a simple linear regression of y on x.

a. The estimated error variance is σ̂2 = 14.24134. What is the sum of squared least squares residuals?

b. The estimated variance of b2 is 0.009165. What is the standard error of b2? What is the value of
∑(

xi − x
)2

?

c. The estimated slope is b2 = 1.02896. Interpret this result.

d. Using x = 27.35686 and y = 39.66886, calculate the estimate of the intercept.

e. Given the results in (b) and (d), what is
∑

x2
i ?

f. For the state of Georgia, the value of y = 34.893 and x = 27.5. Compute the least squares residual,

using the information in parts (c) and (d).

2.8 Professor I.M. Mean likes to use averages. When fitting a regression model yi = β1 + β2xi + ei
using the N = 6 observations in Table 2.4 from Exercise 2.3,

(
yi, xi

)
, Professor Mean calculates

the sample means (averages) of
(
yi, xi

)
for the first three and second three observations in the

data
(

y1 =
∑3

i=1
yi
/

3, x1 =
∑3

i=1
xi
/

3
)

and
(

y2 =
∑6

i=4
yi
/

3, x2 =
∑6

i=4
xi
/

3
)

. Then Dr. Mean’s

estimator of the slope is β̂2,mean =
(
y2 − y1

)/(
x2 − x1

)
and the Dr. Mean intercept estimator is

β̂1,mean = y − β̂2,meanx, where
(
y, x

)
are the sample means using all the data. You may use a spreadsheet

or other software to carry out tedious calculations.

a. Calculate β̂1,mean and β̂2,mean. Plot the data, and the fitted line ŷi,mean = β̂1,mean + β̂2,meanxi.

b. Calculate the residuals êi,mean = yi − ŷi,mean = yi −
(

β̂1,mean + β̂2,meanxi

)

. Find
∑6

i=1
êi,mean, and

∑6

i=1
xiêi,mean.

c. Compare the results in (b) to the corresponding values based on the least squares regression esti-

mates. See Exercise 2.3.

d. Compute
∑6

i=1
ê2

i,mean. Is this value larger or smaller than the sum of squared least squares residuals

in Exercise 2.3(d)?

2.9 Professor I.M. Mean likes to use averages. When fitting a regression model yi = β1 + β2xi + ei
using the N = 6 observations in Table 2.4 from Exercise 2.3,

(
yi, xi

)
, Professor Mean calculates

the sample means (averages) of
(
yi, xi

)
for the first three and second three observations in the

data
(

y1 =
∑3

i=1
yi
/

3, x1 =
∑3

i=1
xi
/

3
)

and
(

y2 =
∑6

i=4
yi
/

3, x2 =
∑6

i=4
xi
/

3
)

. Then Dr. Mean’s

estimator of the slope is β̂2,mean =
(
y2 − y1

)/(
x2 − x1

)
.

a. Assuming assumptions SR1–SR6 hold, show that, conditional on 𝐱 =
(
x1,… , x6

)
, Dr. Mean’s esti-

mator is unbiased, E
(

β̂2,mean|x
)

= β2.

b. Assuming assumptions SR1–SR6 hold, show that E
(

β̂2,mean

)

= β2.

c. Assuming assumptions SR1–SR6 hold, find the theoretical expression for var
(

β̂2,mean|x
)

. Is this

variance larger or smaller than the variance of the least squares estimator var
(
b2|𝐱

)
? Explain.

2.10 Consider fitting a regression model yi = β1 + β2xi + ei using the N = 6 observations in Table 2.4 from

Exercise 2.3,
(
yi, xi

)
. Suppose that based on a theoretical argument we know that β2 = 0.

a. What does the regression model look like, algebraically, if β2 = 0?

b. What does the regression model look like, graphically, if β2 = 0?

c. If β2 = 0 the sum of squares function becomes S
(
β1

)
=

∑N
i=1

(
yi − β1

)2
. Using the data in Table 2.4,

plot the sum of squares function for enough values of β1 so that you can locate the approximate

minimum. What is this value? [Hint: Your calculations will be easier if you square the term in

parentheses and carry through the summation operator.]

d. Using calculus, show that the formula for the least squares estimate of β1 in this model is β̂1 =(∑N
i=1

yi

)

∕N.

e. Using the data in Table 2.4 and the result in part (d), compute an estimate of β1. How does this

value compare to the value you found in part (c)?
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f. Using the data in Table 2.4, calculate the sum of squared residuals S
(

β̂1

)

=
∑N

i=1

(

yi − β̂1

)2

. Is

this sum of squared residuals larger or smaller than the sum of squared residuals S
(
b1, b2

)
=

∑N
i=1

(
yi − b1 − b2xi

)2
using the least squares estimates? [See Exercise 2.3 (d).]

2.11 Let y = expenditure ($) on food away from home per household member per month in the past quarter

and x = monthly household income (in hundreds of dollars) during the past year.

a. Using 2013 data from three-person households (N = 2334), we obtain least squares estimates

ŷ = 13.77 + 0.52x. Interpret the estimated slope and intercept from this relation.

b. Predict the expenditures on food away from home for a household with $2000 a month income.

c. Calculate the elasticity of expenditure on food away from home with respect to income when house-

hold income is $2000 per month. [Hint: Elasticity must be calculated for a point on the fitted

regression.]

d. We estimate the log-linear model to be ln(y)
⋀

= 3.14 + 0.007x. What is the estimated elasticity of

expenditure on food away from home with respect to income, if household income is $2000 per

month?

e. For the log-linear model in part (d), calculate ŷ = exp(3.14 + 0.007x) when x = 20 and when

x = 30. Evaluate the slope of the relation between y and x, dy∕dx, for each of these ŷ values. Based

on these calculations for the log-linear model, is expenditure on food away from home increasing

with respect to income at an increasing or decreasing rate?

f. When estimating the log-linear model in part (d), the number of observations used in the regression

falls to N = 2005. How many households in the sample reported no expenditures on food away from

home in the past quarter?

2.12 Let y = expenditure ($) on food away from home per household member per month in the past quarter

and x = 1 if the household includes a member with an advanced degree, a Master’s, or

Ph.D./Professional degree, and x = 0 otherwise.

a. Using 2013 data from three-person households (N = 2334), we obtain least squares estimates

ŷ = 44.96 + 30.41x. Interpret the coefficient of x and the intercept from this relation.

b. What is the per person sample mean of food expenditures away from home for a household includ-

ing someone with an advanced degree?

c. What is the per person sample mean of food expenditures away from home for a household that

does not include someone with an advanced degree?

2.13 Using 2011 data on 141 U.S. public research universities, we examine the relationship between aca-

demic cost per student, ACA (real total academic cost per student in thousands of dollars) and full-time

enrollment FTESTU (in thousands of students).

a. The least squares fitted relation is ACA
⋀

= 14.656 + 0.266FTESTU. What is the economic interpre-

tation of the estimated parameters? Why isn’t the intercept zero?

b. In 2011 Louisiana State University (LSU) had a full-time student enrollment of 27,950. Using the

fitted related in part (a), compute the predicted value of ACA.

c. The actual value of ACA for LSU that year was 21.403. Calculate the least squares residual for

LSU? Does the model overpredict or underpredict ACA for LSU?

d. The sample mean (average) full-time enrollment in U.S. public research universities in 2011 was

22,845.77. What was the sample mean of academic cost per student?

2.14 Consider the regression model WAGE = β1 + β2EDUC + e, where WAGE is hourly wage rate in U.S.

2013 dollars and EDUC is years of education, or schooling. The regression model is estimated twice

using the least squares estimator, once using individuals from an urban area, and again for individuals

in a rural area.

Urban
WAGE
⋀

= −10.76 + 2.46 EDUC, N = 986

(se) (2.27) (0.16)

Rural
WAGE
⋀

= −4.88 + 1.80 EDUC, N = 214

(se) (3.29) (0.24)

a. Using the estimated rural regression, compute the elasticity of wages with respect to education at

the “point of the means.” The sample mean of WAGE is $19.74.
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b. The sample mean of EDUC in the urban area is 13.68 years. Using the estimated urban regression,

compute the standard error of the elasticity of wages with respect to education at the “point of the

means.” Assume that the mean values are “givens” and not random.

c. What is the predicted wage for an individual with 12 years of education in each area? With 16 years

of education?

2.15 Professor E.Z. Stuff has decided that the least squares estimator is too much trouble. Noting that two

points determine a line, Dr. Stuff chooses two points from a sample of size N and draws a line between

them, calling the slope of this line the EZ estimator of β2 in the simple regression model. Algebraically,

if the two points are
(
x1, y1

)
and

(
x2, y2

)
, the EZ estimation rule is

bEZ =
y2 − y1

x2 − x1

Assuming that all the assumptions of the simple regression model hold:

a. Show that bEZ is a “linear” estimator.

b. Show that bEZ is an unbiased estimator.

c. Find the conditional variance of bEZ.

d. Find the conditional probability distribution of bEZ.

e. Convince Professor Stuff that the EZ estimator is not as good as the least squares estimator. No

proof is required here.

2.11.2 Computer Exercises

2.16 The capital asset pricing model (CAPM) is an important model in the field of finance. It explains

variations in the rate of return on a security as a function of the rate of return on a portfolio consisting

of all publicly traded stocks, which is called the market portfolio. Generally, the rate of return on any

investment is measured relative to its opportunity cost, which is the return on a risk-free asset. The

resulting difference is called the risk premium, since it is the reward or punishment for making a risky

investment. The CAPM says that the risk premium on security j is proportional to the risk premium

on the market portfolio. That is,

rj − r
𝑓
= βj

(
rm − r

𝑓

)

where rj and rf are the returns to security j and the risk-free rate, respectively, rm is the return on

the market portfolio, and βj is the jth security’s “beta” value. A stock’s beta is important to investors

since it reveals the stock’s volatility. It measures the sensitivity of security j’s return to variation in the

whole stock market. As such, values of beta less than one indicate that the stock is “defensive” since its

variation is less than the market’s. A beta greater than one indicates an “aggressive stock.” Investors

usually want an estimate of a stock’s beta before purchasing it. The CAPM model shown above is the

“economic model” in this case. The “econometric model” is obtained by including an intercept in the

model (even though theory says it should be zero) and an error term

rj − r
𝑓
= αj + βj

(
rm − r

𝑓

)
+ ej

a. Explain why the econometric model above is a simple regression model like those discussed in this

chapter.

b. In the data file capm5 are data on the monthly returns of six firms (GE, IBM, Ford, Microsoft,

Disney, and Exxon-Mobil), the rate of return on the market portfolio (MKT), and the rate of return

on the risk-free asset (RISKFREE). The 180 observations cover January 1998 to December 2012.

Estimate the CAPM model for each firm, and comment on their estimated beta values. Which firm

appears most aggressive? Which firm appears most defensive?

c. Finance theory says that the intercept parameter αj should be zero. Does this seem correct given

your estimates? For the Microsoft stock, plot the fitted regression line along with the data scatter.

d. Estimate the model for each firm under the assumption that αj = 0. Do the estimates of the beta
values change much?

2.17 The data file collegetown contains observations on 500 single-family houses sold in Baton Rouge,

Louisiana, during 2009–2013. The data include sale price (in thousands of dollars), PRICE, and total

interior area of the house in hundreds of square feet, SQFT .

a. Plot house price against house size in a scatter diagram.
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b. Estimate the linear regression model PRICE = β1 + β2SQFT + e. Interpret the estimates. Draw a

sketch of the fitted line.

c. Estimate the quadratic regression model PRICE = α1 + α2SQFT 2 + e. Compute the marginal

effect of an additional 100 square feet of living area in a home with 2000 square feet of living

space.

d. Graph the fitted curve for the model in part (c). On the graph, sketch the line that is tangent to the

curve for a 2000-square-foot house.

e. For the model in part (c), compute the elasticity of PRICE with respect to SQFT for a home with

2000 square feet of living space.

f. For the regressions in (b) and (c), compute the least squares residuals and plot them against SQFT .

Do any of our assumptions appear violated?

g. One basis for choosing between these two specifications is how well the data are fit by the model.

Compare the sum of squared residuals (SSE) from the models in (b) and (c). Which model has a

lower SSE? How does having a lower SSE indicate a “better-fitting” model?

2.18 The data file collegetown contains observations on 500 single-family houses sold in Baton Rouge,

Louisiana, during 2009–2013. The data include sale price (in thousands of dollars), PRICE, and total

interior area of the house in hundreds of square feet, SQFT .

a. Create histograms for PRICE and ln(PRICE). Are the distributions skewed or symmetrical?

b. Estimate the log-linear regression model ln(PRICE) = γ1 + γ2SQFT + e. Interpret the OLS esti-

mates, γ̂1 and γ̂2. Graph the fitted PRICE, PRICE
⋀

= exp
(
γ̂1 + γ̂2SQFT

)
, against SQFT , and sketch

the tangent line to the curve for a house with 2000 square feet of living area. What is the slope of

the tangent line?

c. Compute the least squares residuals from the model in (b) and plot them against SQFT . Do any of

our assumptions appear violated?

d. Calculate summary statistics for PRICE and SQFT for homes close to Louisiana State University

(CLOSE = 1) and for homes not close to the university (CLOSE = 0). What differences and/or

similarities do you observe?

e. Estimate the log-linear regression model ln(PRICE) = γ1 + γ2SQFT + e for homes close to

Louisiana State University (CLOSE = 1) and for homes not close to the university (CLOSE = 0).
Interpret the estimated coefficient of SQFT in each sample’s regression.

f. Are the regression results in part (b) valid if the differences you observe in part (e) are substantial?

Think in particular about whether SR1 is satisfied.

2.19 The data file stockton5_small contains observations on 1200 houses sold in Stockton, California, during

1996–1998. [Note: the data file stockton5 includes 2610 observations.] Scale the variable SPRICE to

units of $1000, by dividing it by 1000.

a. Plot house selling price SPRICE against house living area for all houses in the sample.

b. Estimate the regression model SPRICE = β1 + β2LIVAREA + e for all the houses in the sample.

Interpret the estimates. Draw a sketch of the fitted line.

c. Estimate the quadratic model SPRICE = α1 + α2LIVAREA2 + e for all the houses in the sample.

What is the marginal effect of an additional 100 square feet of living area for a home with 1500

square feet of living area.

d. In the same graph, plot the fitted lines from the linear and quadratic models. Which seems to fit the

data better? Compare the sum of squared residuals (SSE) for the two models. Which is smaller?

e. If the quadratic model is in fact “true,” what can we say about the results and interpretations we

obtain for the linear relationship in part (b)?

2.20 The data file stockton5_small contains observations on 1200 houses sold in Stockton, California, during

1996–1998. [Note: The data file stockton5 includes 2610 observations.]. Scale the variable SPRICE to

units of $1000, by dividing it by 1000.

a. Estimate the regression model SPRICE = β1 + β2LIVAREA + e using only houses that are on large

lots. Repeat the estimation for houses that are not on large lots. Finally, estimate the regression

using data on both large and small lots. Interpret the estimates. How do the estimates compare?

b. Estimate the regression model SPRICE = α1 + α2LIVAREA2 + e using only houses that are on large

lots. Repeat the estimation for houses that are not on large lots. Interpret the estimates. How do the

estimates compare?

c. Estimate a linear regression SPRICE = η1 + η2LGELOT + e with dependent variable SPRICE and

independent variable the indicator LGELOT , which identifies houses on larger lots. Interpret these

results.
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d. If the estimates in part (a) and/or part (b) differ substantially for the large lot and small lot sub-

samples, will assumption SR1 be satisfied in the model that pools all the observations together? If

not, why not? Do the results in (c) offer any information about the potential validity of SR1?

2.21 The data file stockton5_small contains observations on 1200 houses sold in Stockton, California, during

1996–1998. [Note: the data file stockton5 includes 2610 observations.] Scale the variable SPRICE to

units of $1000, by dividing it by 1000.

a. Estimate the linear model SPRICE = δ1 + δ2AGE + e. Interpret the estimated coefficients. Predict

the selling price of a house that is 30 years old.

b. Using the results in part (a), plot house selling price against AGE and show the fitted regression

line. Based on the plot, does the model fit the data well? Explain.

c. Estimate the log-linear model ln(SPRICE) = θ1 + θ2AGE + e. Interpret the estimated slope coeffi-

cient.

d. Using the results in part (c), compute SPRICE
⋀

= exp
(

θ̂1 + θ̂2AGE
)

, where θ̂1 and θ̂2 are the OLS

estimates. Plot SPRICE
⋀

against AGE (connecting the dots) and SPRICE vs. AGE in the same graph.

e. Predict the selling price of a house that is 30 years old using SPRICE
⋀

= exp
(

θ̂1 + θ̂2AGE
)

.

f. Based on the plots and visual fit of the estimated regression lines, which of the two models in (a)

or (c) would you prefer? Explain. For each model calculate
∑1200

i=1

(

SPRICE − SPRICE
⋀)2

. Is this at

all useful in making a comparison between the models? If so, how?

2.22 A longitudinal experiment was conducted in Tennessee beginning in 1985 and ending in 1989. A single

cohort of students was followed from kindergarten through third grade. In the experiment children

were randomly assigned within schools into three types of classes: small classes with 13–17 students,

regular-sized classes with 22–25 students, and regular-sized classes with a full-time teacher aide to

assist the teacher. Student scores on achievement tests were recorded as well as some information

about the students, teachers, and schools. Data for the kindergarten classes are contained in the data

file star5_small. [Note: The data file star5 contains more observations and variables.]

a. Using children who are in either a regular-sized class or a small class, estimate the regression

model explaining students’ combined aptitude scores as a function of class size, TOTALSCOREi =
β1 + β2SMALLi + ei. Interpret the estimates. Based on this regression result, what do you conclude

about the effect of class size on learning?

b. Repeat part (a) using dependent variables READSCORE and MATHSCORE. Do you observe any

differences?

c. Using children who are in either a regular-sized class or a regular-sized class with a teacher aide,

estimate the regression model explaining students’ combined aptitude scores as a function of the

presence of a teacher aide, TOTALSCORE = γ1 + γ2AIDE + e. Interpret the estimates. Based on

this regression result, what do you conclude about the effect on learning of adding a teacher aide

to the classroom?

d. Repeat part (c) using dependent variables READSCORE and MATHSCORE. Do you observe any

differences?

2.23 Professor Ray C. Fair has for a number of years built and updated models that explain and predict the

U.S. presidential elections. Visit his website at https://fairmodel.econ.yale.edu/vote2016/index2.htm.

See in particular his paper entitled “Presidential and Congressional Vote-Share Equations: November

2010 Update.” The basic premise of the model is that the Democratic Party’s share of the two-party

[Democratic and Republican] popular vote is affected by a number of factors relating to the econ-

omy, and variables relating to the politics, such as how long the incumbent party has been in power,

and whether the President is running for reelection. Fair’s data, 26 observations for the election years

from 1916 to 2016, are in the data file fair5. The dependent variable is VOTE = percentage share of

the popular vote won by the Democratic Party. Consider the effect of economic growth on VOTE. If

Democrats are the incumbent party (INCUMB = 1) then economic growth, the growth rate in real per

capita GDP in the first three quarters of the election year (annual rate), should enhance their chances

of winning. On the other hand, if the Republicans are the incumbent party (INCUMB = −1), growth

will diminish the Democrats’ chances of winning. Consequently, we define the explanatory variable

GROWTH = INCUMB × growth rate.

a. Using the data for 1916–2012, plot a scatter diagram of VOTE against GROWTH. Does there appear

to be a positive association?

b. Estimate the regression VOTE = β1 + β2GROWTH + e by least squares using the data from 1916

to 2012. Report and discuss the estimation result. Plot the fitted line on the scatter diagram from (a).
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c. Using the model estimated in (b), predict the 2016 value of VOTE based on the actual 2016 value

for GROWTH. How does the predicted vote for 2016 compare to the actual result?

d. Economy wide inflation may spell doom for the incumbent party in an election. The variable

INFLAT = INCUMB × inflation rate, where the inflation rate is the growth in prices over the first

15 quarters of an administration. Using the data from 1916 to 2012, plot VOTE against INFLAT .

e. Using the data from 1916 to 2012, report and discuss the estimation results for the model VOTE =
α1 + α2INFLAT + e.

f. Using the model estimated in (e), predict the 2016 value of VOTE based on the actual 2012 value

for INFLAT . How does the predicted vote for 2016 compare to the actual result?

2.24 Using data on the “Ashcan School”14 we have an opportunity to study the market for art. What factors

determine the value of a work of art? Use the data in ashcan_small. [Note: The file ashcan contains

more variables.] For this exercise, use data only on works that sold (SOLD = 1).
a. Using data on works that sold, construct a histogram for RHAMMER and compute summary statis-

tics. What are the mean and median prices for the artwork sold? What are the 25th and 75th

percentiles?

b. Using data on works that sold, construct a histogram for ln(RHAMMER). Describe the shape of

this histogram as compared to that in part (a).

c. Plot ln(RHAMMER) against the age of the painting at the time of its sale, YEARS_OLD =
DATE_AUCTN − CREATION. Include in the plot the least squares fitted line. What patterns do

you observe?

d. Use data on works that sold, estimate the regression ln(RHAMMER) = β1 + β2YEAR_SOLD + e.
Interpret the estimated coefficient of YEARS_OLD.

e. DREC is an indicator variable equaling 1 if the work was sold during a recession. Using data on

works that sold, estimate the regression ln(RHAMMER) = α1 + α2DREC + e. Interpret the esti-

mated coefficient of DREC.

2.25 Consumer expenditure data from 2013 are contained in the file cex5_small. [Note: cex5 is a larger

version with more observations and variables.] Data are on three-person households consisting of a

husband and wife, plus one other member, with incomes between $1000 per month to $20,000 per

month. FOODAWAY is past quarter’s food away from home expenditure per month per person, in

dollars, and INCOME is household monthly income during past year, in $100 units.

a. Construct a histogram of FOODAWAY and its summary statistics. What are the mean and median

values? What are the 25th and 75th percentiles?

b. What are the mean and median values of FOODAWAY for households including a member with an

advanced degree? With a college degree member? With no advanced or college degree member?

c. Construct a histogram of ln(FOODAWAY) and its summary statistics. Explain why FOODAWAY
and ln(FOODAWAY) have different numbers of observations.

d. Estimate the linear regression ln(FOODAWAY) = β1 + β2INCOME + e. Interpret the estimated

slope.

e. Plot ln(FOODAWAY) against INCOME, and include the fitted line from part (d).

f. Calculate the least squares residuals from the estimation in part (d). Plot them vs. INCOME. Do

you find any unusual patterns, or do they seem completely random?

2.26 Consumer expenditure data from 2013 are contained in the file cex5_small. [Note: cex5 is a larger

version with more observations and variables.] Data are on three-person households consisting of a

husband and wife, plus one other member, with incomes between $1000 per month to $20,000 per

month. FOODAWAY is past quarter’s food away from home expenditure per month per person, in

dollars, and INCOME is household monthly income during past year, in $100 units.

a. Estimate the linear regression FOODAWAY = β1 + β2INCOME + e. Interpret the estimated slope.

b. Calculate the least squares residuals from the estimation in part (b). Plot them vs. INCOME. Do

you find any unusual patterns, or do they seem completely random?

c. Estimate the linear regression FOODAWAY = α1 + α2ADVANCED + e. Interpret the estimated

coefficient of ADVANCED.

d. What are the sample means of FOODAWAY for households including a member with an advanced

degree? With no advanced degree member? How do these values relate to the regression in part (c)?

............................................................................................................................................................

14Robert B. Ekelund, Jr., John D. Jackson, and Robert D. Tollison “Are Art Auction Estimates Biased” published in

Southern Economic Journal, 80(2), 2013, 454–465; also http://en.wikipedia.org/wiki/Ashcan_School
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2.27 The owners of a motel discovered that a defective product was used in its construction. It took seven

months to correct the defects during which 14 rooms in the 100-unit motel were taken out of service

for one month at a time. For this exercise use the data file motel.
a. Graph y = MOTEL_PCT, percentage motel occupancy, against x = 100RELPRICE, which is the

percentage of the competitor’s price per room charged by the motel in question. Describe the

relationship between the variables based on the graph. Is there a positive association, an inverse

association, or no association?

b. Consider the linear regression MOTEL_PCTt = β1 + β2100RELPRICEt + et. What sign do you

predict for the slope coefficient? Why? Does the sign of the estimated slope agree with your expec-

tation?

c. Calculate the least squares residuals from the regression in (b). Plot the residuals against TIME =
1,… , 25 (month 1 = March 2003,… ,month 25 = March 2005). On the graph indicate residuals

when TIME = 17, 18,… , 23. These are the months of repair. Does the model overpredict or under-

predict the motel’s occupancy rates for those months?

d. Estimate the linear regression MOTEL_PCTt = α1 + α2REPAIRt + et, where REPAIRt = 1 for

months when repairs were occurring and REPAIRt = 0 otherwise. What was the motel’s mean

occupancy rate when there were no repairs being made? What was the motel’s mean occupancy

rate when repairs were being made?

2.28 How much does education affect wage rates? The data file cps5_small contains 1200 observations on

hourly wage rates, education, and other variables from the 2013 Current Population Survey (CPS).

[Note: cps5 is a larger version.]

a. Obtain the summary statistics and histograms for the variables WAGE and EDUC. Discuss the data

characteristics.

b. Estimate the linear regression WAGE = β1 + β2EDUC + e and discuss the results.

c. Calculate the least squares residuals and plot them against EDUC. Are any patterns evident? If

assumptions SR1–SR5 hold, should any patterns be evident in the least squares residuals?

d. Estimate separate regressions for males, females, blacks, and whites. Compare the results.

e. Estimate the quadratic regression WAGE = α1 + α2EDUC 2 + e and discuss the results. Estimate

the marginal effect of another year of education on wage for a person with 12 years of education

and for a person with 16 years of education. Compare these values to the estimated marginal effect

of education from the linear regression in part (b).

f. Plot the fitted linear model from part (b) and the fitted values from the quadratic model from

part (e) in the same graph with the data on WAGE and EDUC. Which model appears to fit the data

better?

2.29 How much does education affect wage rates? The data file cps5_small contains 1200 observations on

hourly wage rates, education, and other variables from the 2013 Current Population Survey (CPS).

[Note: cps5 is a larger version with more observations and variables.]

a. Create the variable LWAGE = ln(WAGE). Construct a histogram and calculate detailed summary

statistics. Does the histogram appear bell shaped and normally distributed? A normal distribution

is symmetrical with no skewness, skewness = 0. The tails of the normal distribution have a cer-

tain “thickness.” A measure of the tail thickness is kurtosis, discussed in Appendix C.4.2. For a

normal distribution, the kurtosis = 3, discussed in Appendix C.7.4. How close are the measures of

skewness and kurtosis for LWAGE to 0 and 3, respectively?

b. Obtain the OLS estimates from the log-linear regression model ln(WAGE) = β1 + β2EDUC + e
and interpret the estimated value of β2.

c. Obtain the predicted wage, WAGE
⋀

= exp
(
b1 + b2EDUC

)
, for a person with 12 years of education

and for a person with 16 years of education.

d. What is the marginal effect of additional education for a person with 12 years of education and

for a person with 16 years of education? [Hint: This is the slope of the fitted model at those two

points.]

e. Plot the fitted values WAGE
⋀

= exp
(
b1 + b2EDUC

)
versus EDUC in a graph. Also include in the

graph the fitted linear relationship. Based on the graph, which model seems to fit the data better,

the linear or log-linear model?

f. Using the fitted values from the log-linear model, compute
∑(

WAGE −WAGE
⋀)2

. Compare this

value to the sum of squared residuals from the estimated linear relationship. Using this as a basis

of comparison, which model fits the data better?
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2.30 In this exercise, we consider the amounts that are borrowed for single family home purchases in Las

Vegas, Nevada, during 2010. Use the data file vegas5_small for this exercise.

a. Compute summary statistics for AMOUNT , FICO, RATE, and TERM30. What is the sample aver-

age amount borrowed? What FICO score corresponds to the 90th percentile? What is the median

interest rate paid, and what percent of the mortgages were for 30-year terms?

b. Construct histograms for AMOUNT , ln(AMOUNT), FICO, and RATE. Are the empirical distribu-

tions symmetrical? Do they have one peak (unimodal) or two peaks (bimodal)?

c. Estimate regressions for dependent variables AMOUNT and ln(AMOUNT) against the independent

variable FICO. For each regression, interpret the coefficient of FICO.

d. Estimate regressions for dependent variables AMOUNT and ln(AMOUNT) against the independent

variable RATE. For each regression, interpret the coefficient of RATE.

e. Estimate a regression with dependent variable AMOUNT and explanatory variable TERM30.

Obtain the summary statistics for AMOUNT for transactions with 30-year loans and for those

transactions when the term was not 30 years. Explain the regression results in terms of the

summary statistics you have calculated.

Appendix 2A Derivation of the Least Squares

Estimates
Given the sample observations on y and x, we want to find values for the unknown parameters β1

and β2 that minimize the “sum of squares” function

S
(
β1, β2

)
=

∑N
i=1

(
yi − β1 − β2xi

)2
(2A.1)

Since the points
(
yi, xi

)
have been observed, the sum of squares function S depends only on the

unknown parameters β1 and β2. This function, which is a quadratic in terms of the unknown

parameters β1 and β2, is a “bowl-shaped surface” like the one depicted in Figure 2A.1.

Our task is to find, out of all the possible values β1 and β2, the point
(
b1, b2

)
at which the sum

of squares function S is a minimum. This minimization problem is a common one in calculus, and

the minimizing point is at the “bottom of the bowl.”

Those of you familiar with calculus and “partial differentiation” can verify that the partial

derivatives of S with respect to β1 and β2 are

∂S
∂β1

= 2Nβ1 − 2
∑

yi + 2
(∑

xi
)
β2

∂S
∂β2

= 2
(∑

x2
i

)
β2 − 2

∑
xiyi + 2

(∑
xi
)
β1 (2A.2)

FIGURE 2A.1 The sum of squares function and the
minimizing values b1 and b2.
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These derivatives are equations of the slope of the bowl-like surface in the directions of the axes.

Intuitively, the “bottom of the bowl” occurs where the slope of the bowl, in the direction of each

axis, ∂S∕∂β1 and ∂S∕∂β2, is zero.

Algebraically, to obtain the point
(
b1, b2

)
, we set (2A.2) to zero and replace β1 and β2 by b1

and b2, respectively, to obtain

2
[∑

yi − Nb1 −
(∑

xi
)
b2

]

= 0

2
[∑

xiyi −
(∑

xi
)
b1 −

(∑
x2

i

)
b2

]

= 0

Simplifying these gives equations usually known as the normal equations:

Nb1 +
(∑

xi
)
b2 =

∑
yi (2A.3)

(∑
xi
)
b1 +

(∑
x2

i

)
b2 =

∑
xiyi (2A.4)

These two equations have two unknowns b1 and b2. We can find the least squares estimates by

solving these two linear equations for b1 and b2. To solve for b2, multiply (2A.3) by
∑

xi, mul-

tiply (2A.4) by N, then subtract the first equation from the second, and then isolate b2 on the

left-hand side.

b2 =
N
∑

xiyi −
∑

xi
∑

yi

N
∑

x2
i −

(∑
xi
)2

(2A.5)

This formula for b2 is in terms of data sums, cross-products, and squares. The deviation from the

mean form of the estimator is derived in Appendix 2B.

To solve for b1, given b2, divide both sides of (2A.3) by N and rearrange.

Appendix 2B Deviation from the Mean Form of b2
The first step in the conversion of the formula for b2 into (2.7) is to use some tricks involving

summation signs. The first useful fact is that

∑(
xi − x

)2 =
∑

x2
i − 2x

∑
xi + Nx2 =

∑
x2

i − 2x
(

N 1

N

∑
xi

)

+ Nx2

=
∑

x2
i − 2Nx2 + Nx2 =

∑
x2

i − Nx2
(2B.1)

Should you ever have to calculate
∑(

xi − x
)2

, using the shortcut formula
∑(

xi − x
)2 =

∑
x2

i − Nx2
is usually much easier. Then

∑(
xi − x

)2 =
∑

x2
i − Nx2 =

∑
x2

i − x
∑

xi =
∑

x2
i −

(∑
xi

)2

N
(2B.2)

To obtain this result, we have used the fact that x =
∑

xi∕N, so
∑

xi = Nx.

The second useful fact is similar to the first, and it is

∑(
xi − x

)(
yi − y

)
=

∑
xiyi − Nxy =

∑
xiyi −

∑
xi
∑

yi
N

(2B.3)

This result is proven in a similar manner.

If the numerator and denominator of b2 in (2A.5) are divided by N, then using (2B.1)–(2B.3),

we can rewrite b2 in deviation from the mean form as

b2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2

This formula for b2 is one that you should remember, as we will use it time and time again in the

next few chapters.
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Appendix 2C b2 Is a Linear Estimator
In order to derive (2.10), we make a further simplification using another property of sums. The

sum of any variable about its average is zero; that is,

∑(
xi − x

)
= 0

Then, the formula for b2 becomes

b2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2
=

∑(
xi − x

)
yi − y

∑(
xi − x

)

∑(
xi − x

)2

=
∑(

xi − x
)

yi
∑(

xi − x
)2

=
∑
[ (

xi − x
)

∑(
xi − x

)2

]

yi =
∑

wiyi

where wi is given in (2.11).

Appendix 2D Derivation of Theoretical

Expression for b2
To obtain (2.12) replace yi in (2.10) by yi = β1 + β2xi + ei and simplify:

b2 =
∑

wiyi =
∑

wi
(
β1 + β2xi + ei

)

= β1

∑
wi + β2

∑
wixi +

∑
wiei

= β2 +
∑

wiei

We used two more summation tricks to simplify this. First,
∑

wi = 0; this eliminates the term

β1

∑
wi. Secondly,

∑
wixi = 1, so β2

∑
wixi = β2, and (2.10) simplifies to (2.12).

The term
∑

wi = 0 because

∑
wi =

∑
[ (

xi − x
)

∑(
xi − x

)2

]

= 1
∑(

xi − x
)2

∑(
xi − x

)
= 0

where in the last step we used the fact that
∑(

xi − x
)
= 0.

To show that
∑

wixi = 1 we again use
∑(

xi − x
)
= 0. Another expression for

∑(
xi − x

)2
is

∑(
xi − x

)2 =
∑(

xi − x
)(

xi − x
)

=
∑(

xi − x
)

xi − x
∑(

xi − x
)

=
∑(

xi − x
)

xi

Consequently,

∑
wixi =

∑(
xi − x

)
xi

∑(
xi − x

)2
=

∑(
xi − x

)
xi

∑(
xi − x

)
xi
= 1

Appendix 2E Deriving the Conditional Variance of b2
The starting point is equation (2.12), b2 = β2 +

∑
wiei. The least squares estimator is a random

variable whose conditional variance is defined to be

var
(
b2|x

)
= E

{[
b2 − E

(
b2|x

)]2|
|
|
x
}
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Substituting in (2.12) and using the conditional unbiasedness of the least squares estimator,

E
(
b2|𝐱

)
= β2, we have

var
(
b2|x

)
= E

{[
β2 +

∑
wiei − β2

]2|
|
|
x
}

= E
{[∑

wiei
]2|
|
|
x
}

= E

{[
∑

w2
i e2

i +
∑∑

i≠j
wiwjeiej

]|
|
|
|
|
|

x

}
[
square of bracketed term

]

= E
{[∑

w2
i e2

i

]|
|
|
x
}

+ E

{[
∑∑

i≠j
wiwjeiej

]|
|
|
|
|
|

x

}

=
∑

w2
i E

(
e2

i |x
)
+

∑∑

i≠j
wiwjE

(
eiej|x

) [
because wi not random given x

]

= σ2∑w2
i

= σ2

∑(
xi − x

)2

The next to last line is obtained by using two assumptions: First,

σ2 = var
(
ei|x

)
= E

{[
ei − E

(
ei|x

)]2|
|
|
x
}

= E
[(

ei − 0
)2|
|
|
x
]

= E
(
e2

i |x
)

Second, cov
(
ei, ej|x

)
= E

{[
ei − E

(
ei|x

)][
ej − E

(
ej|x

)]|
|
|
x
}

= E
(
eiej|x

)
= 0. Then, the very last

step uses the fact that

∑
w2

i =
∑

⎡
⎢
⎢
⎢
⎣

(
xi − x

)2

{∑(
xi − x

)2
}2

⎤
⎥
⎥
⎥
⎦

=
∑(

xi − x
)2

{∑(
xi − x

)2
}2

= 1
∑(

xi − x
)2

Alternatively, we can employ the rule for finding the variance of a sum. If X and Y are random

variables, and a and b are constants, then

var(aX + bY) = a2 var(X) + b2 var(Y) + 2abcov(X,Y)

Appendix B.4 reviews all the basic properties of random variables. In the second line below we

use this rule extended to more than two random variables. Then,

var
(
b2|x

)
= var

[(
β2 +

∑
wiei

)
|
|x
] [

since β2 is a constant
]

=
∑

w2
i var

(
ei|x

)
+

∑∑

i≠j
wiwjcov

(
ei, ej|x

) [
generalizing the variance rule

]

=
∑

w2
i var

(
ei|x

) [
using cov

(
ei, ej|x

)
= 0

]

= σ2∑w2
i

[
using var

(
ei|x

)
= σ2

]

= σ2

∑(
xi − x

)2

Carefully note that the derivation of the variance expression for b2 depends on assumptions SR3

and SR4. If the cov
(
ei, ej|𝐱

)
≠ 0, then we cannot drop out all those terms in the double summation.

If var
(
ei|𝐱

)
≠ σ2 for all observations, then σ2 cannot be factored out of the summation. If either

of these assumptions fails to hold, then the conditional variance var
(
b2|𝐱

)
is something else, and

is not given by (2.15). The same is true for the conditional variance of b1 and the conditional

covariance between b1 and b2.
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Appendix 2F Proof of the Gauss–Markov Theorem
We will prove the Gauss–Markov theorem for the least squares estimator b2 of β2. Our goal is to

show that in the class of linear and unbiased estimators the estimator b2 has the smallest variance.

Let b∗
2
=

∑
kiyi (where ki are constants) be any other linear estimator of β2. To make comparison

to the least squares estimator b2 easier, suppose that ki = wi + ci, where ci is another constant and

wi is given in (2.11). While this is tricky, it is legal, since for any ki that someone might choose

we can find ci. Into this new estimator, substitute yi and simplify, using the properties of wi in

Appendix 2D.

b∗
2
=

∑
kiyi =

∑(
wi + ci

)
yi =

∑(
wi + ci

)(
β1 + β2xi + ei

)

=
∑(

wi + ci
)
β1 +

∑(
wi + ci

)
β2xi +

∑(
wi + ci

)
ei

= β1

∑
wi + β1

∑
ci + β2

∑
wixi + β2

∑
cixi +

∑(
wi + ci

)
ei

= β1

∑
ci + β2 + β2

∑
cixi +

∑(
wi + ci

)
ei

(2F.1)

since
∑

wi = 0 and
∑

wixi = 1.

Take the mathematical expectation of the last line in (2F.1), using the properties of expecta-

tion and the assumption that E
(
ei|𝐱

)
= 0:

E
(
b∗

2
|x
)
= β1

∑
ci + β2 + β2

∑
cixi +

∑(
wi + ci

)
E
(
ei|x

)

= β1

∑
ci + β2 + β2

∑
cixi

(2F.2)

In order for the linear estimator b∗
2
=

∑
kiyi to be unbiased, it must be true that

∑
ci = 0 and

∑
cixi = 0 (2F.3)

These conditions must hold in order for b∗
2
=

∑
kiyi to be in the class of linear and unbi-

ased estimators. So we will assume that conditions (2F.3) hold and use them to simplify

expression (2F.1):

b∗
2
=

∑
kiyi = β2 +

∑(
wi + ci

)
ei (2F.4)

We can now find the variance of the linear unbiased estimator b∗
2

following the steps in

Appendix 2E and using the additional fact that

∑
ciwi =

∑
[

ci
(
xi − x

)

∑(
xi − x

)2

]

= 1
∑(

xi − x
)2

∑
cixi −

x
∑(

xi − x
)2

∑
ci = 0

Use the properties of variance to obtain

var
(
b∗

2
|x
)
= var

{[
β2 +

∑(
wi + ci

)
ei
]
|x
}

=
∑(

wi + ci
)2

var
(
ei|x

)

= σ2∑(
wi + ci

)2 = σ2∑w2
i + σ

2∑ c2
i

= var
(
b2|x

)
+ σ2∑ c2

i

≥ var
(
b2|x

)

The last line follows since
∑

c2
i ≥ 0 and establishes that for the family of linear and unbiased

estimators b∗
2
, each of the alternative estimators has variance that is greater than or equal to that

of the least squares estimator b2. The only time that var
(
b∗

2

)
= var

(
b2

)
is when all the ci = 0,

in which case b∗
2
= b2. Thus, there is no other linear and unbiased estimator of β2 that is better

than b2, which proves the Gauss–Markov theorem.
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Appendix 2G Proofs of Results Introduced

in Section 2.10

2G.1 The Implications of Strict Exogeneity
First, if x is strictly exogenous, then the unconditional expected value of the error term ei is zero.

To show this, we use the law of iterated expectations

E
(
ei
)
= Exj

[

E
(
ei|xj

)]

= Exj
(0) = 0

Second, the covariance between X and Y can be calculated as cov(X, Y) = EX
[(

X − μx
)

E(Y|X)
]
,

as discussed in Probability Primer Section P.6.5. Using this result, we obtain

cov
(
xj, ei

)
= Exj

{[

xj − E
(
xj
)]

E
(
ei|xj

)}

= Exj

{[

xj − E
(
xj
)]

0
}

= 0

If x is strictly exogenous, then the covariance between xj and ei is zero for all values of i and j.
Recall that zero covariance means “no linear association” but not statistical independence. Thus,

strict exogeneity rules out any covariance, any linear association, between any xj and any ei.

The covariance between xj and ei can be rewritten as a simpler expectation using the facts that

E
(
ei
)
= 0 and E

(
xj
)

is not random

cov
(
xj, ei

)
= E

{[

xj − E
(
xj
)][

ei − E
(
ei
)]}

= E
{[

xj − E
(
xj
)]

ei

}

= E
(
xjei

)
− E

[

E
(
xj
)

ei

]

= E
(
xjei

)
− E

(
xj
)

E
(
ei
)
= E

(
xjei

)

Strict exogeneity implies E
(
xjei

)
= 0 for all xj and ei.

Using the covariance decomposition we can show yet more. Let g
(
xj
)

be a function of xj.

Then

cov
[

g
(
xj
)
, ei

]

= Exj

{[

g
(
xj
)
− E

(

g
(
xj
))]

E
(
ei|xj

)}

= Exj

{[

g
(
xj
)
− E

(

g
(
xj
))]

0
}

= 0

= E
[

g
(
xj
)
ei

]

If x is strictly exogenous, then the covariance between a function of xj
[
like x2

j or ln
(
xj
)]

and

ei is zero for all values of i and j. Thus, strict exogeneity rules out any covariance, any linear

association, between a function of xj and any ei.

2G.2 The Random and Independent x Case
In Section 2.10.1 we considered the case in which x-values are random but statistically indepen-

dent of the random error e. In this appendix, we show the algebra behind our conclusions. Consider

b2 the least squares estimator of the slope parameter β2. b2 is a linear estimator and as shown

in (2.10) b2 =
∑N

i=1
wiyi, where wi =

(
xi − x

)/∑N
i=1

(
xi − x

)2
. Notice that wi = g

(
x1,… , xN

)
is a

function of all the random xi values and it is random. For notational ease, let x represent x1,… , xN
so wi = g

(
x1,… , xN

)
= g(𝐱). Because IRX5 makes clear that xi is random and is statistically

independent of the random error ei for all values of i and j, then wi = g(𝐱) is statistically indepen-

dent of each random error ei. Substituting yi = β1 + β2xi + ei, we obtain b2 = β2 +
∑

wiei and,

using the fact E
(
wiei

)
= E

(
wi

)
E
(
ei
)

because of independence, we have

E
(
b2

)
= β2 +

∑
E
(
wiei

)
= β2 +

∑
E
(
wi

)
E
(
ei
)
= β2 +

∑
E
(
wi

)
0 = β2

In the case in which x is random but statistically independent of the error terms, the least squares

estimator is unconditionally unbiased.
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The derivation of the variance of the least squares estimator changes in a similar way:

var
(
b2

)
= E

[(
b2 − β2

)2
]

= E
[(
β2 +

∑
wiei − β2

)2
]

= E
[(∑

wiei
)2
]

= E

(
∑

w2
i e2

i +
∑∑

i≠j
wiwjeiej

)

=
∑

E
(
w2

i

)
E
(
e2

i
)
+

∑∑

i≠j
E
(
wiwj

)
E
(
eiej

)

= σ2∑E
(
w2

i

)
= σ2E

(∑
w2

i

)
= σ2E

[

1
∑(

xi − x
)2

]

In the third line we used the statistical independence of wi and each random error ei twice. In the

fourth line we used the fact that the expected value of a sum is the sum of the expected values,

and finally that
∑

w2
i is known, as shown in Appendix 2E.

The usual estimator of the error variance is σ̂2 =
∑

ê2

i ∕(N − 2) and conditional on x this

estimator is unbiased, E
(

σ̂2
|x
)

= σ2. The proof is messy and not shown. This is a conditional

expectation saying given x1,… , xN the estimator σ̂2
is unbiased. Now we use the law of iterated

expectations from the Probability Primer Section P.6.3:

E
(

σ̂2
)

= Ex

[

E
(

σ̂2
|x
)]

= Ex
[
σ2

]
= σ2

where Ex( ) means the expected value treating x as random. Because the conditional expectation

E
(

σ̂2
|x
)

= σ2 is a constant that does not depend on x, its expectation treating x as random is also a

constant, σ2. So, in the case in which x is random and independent of the error, σ̂2
is conditionally

and unconditionally unbiased.

The variance of the least squares estimator is

var
(
b2

)
= σ2Ex

[

1
∑(

xi − x
)2

]

The usual variance estimator from (2.21) is

var
⋀(

b2|x
)
= σ̂2 1

∑(
xi − x

)2

It is an unbiased estimator of var
(
b2

)
conditional on x. Using the law of iterated expectations, we

have

Ex

{

E
[

var
⋀(

b2|x
)]}

= Ex

{

σ2 1
∑(

xi − x
)2

|
|
|
|
|
|

x

}

= σ2Ex

[

1
∑(

xi − x
)2

]

= var
(
b2

)

Thus, the usual estimator of var
(
b2

)
is unbiased.

What about the Gauss–Markov theorem? It says, for fixed x, or given x, var
(
b2|𝐱

)
, is less

than the variance var
(
b∗

2
|x
)

of any other linear and unbiased estimator b∗
2
. That is,

var
(
b2|x

)
< var

(
b∗

2
|x
)

Using the variance decomposition var
(
b2

)
= varx

[
E
(
b2|𝐱

)]
+ Ex

[
var

(
b2|𝐱

)]
= Ex

[
var

(
b2|𝐱

)]

because varx
[
E
(
b2|𝐱

)]
= varx

(
β2

)
= 0. Similarly, var

(
b∗

2

)
= Ex

[
var

(
b∗

2
|x
)]

. Then

var
(
b2

)
= Ex

[

var
(
b2|x

)]

< var
(
b∗

2

)
= Ex

[
var

(
b∗

2
|x
)]

The logic of the argument is that if var
(
b2|𝐱

)
is less than the variance of any other estimator

var
(
b∗

2
|x
)

for any given x, it must also be true for all x, and will remain true if we average over

all possible x, by taking the expected value treating x as random, Ex( ).
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Finally, what about normality? If IRX6 holds, ei ∼ N
(
0, σ2

)
, then what is the probability

distribution of the least squares estimator? We have used the fact that b2 = β2 +
∑

wiei. If wi is

constant, then we can assert that the least squares estimator has a normal distribution because

linear combinations of normal random variables are normal. However, in the random-x case,

even though x is independent of e, the distributions of wiei are not normal. The function wi =
g
(
x1,… , xN

)
has an unknown probability distribution and its product with the normally dis-

tributed ei results in an unknown distribution. What we can say is that b2|x is normal, since

conditioning on x1,… , xN means that they are treated as given, or fixed.

2G.3 The Random and Strictly Exogenous x Case
In Section 2.10.2 we examine the consequences of an assumption that is weaker than the statisti-

cal independence of x and e. There we assert that even with the weaker assumption called “strict

exogeneity” the properties of the least squares estimator are unchanged, and here we give the

proof. The least squares estimator of the slope parameter, b2, is a linear estimator and as shown

in (2.10) b2 =
∑N

i=1
wiyi, where wi =

(
xi − x

)/∑N
i=1

(
xi − x

)2
. Notice that wi = g

(
x1,… , xN

)
is a

function of all the random xi values and it is random. Substituting yi = β1 + β2xi + ei, we obtain

b2 = β2 +
∑

wiei. The strict exogeneity assumption says E
(
ei|xj

)
= 0 for all values of i and j, or

equivalently, E
(
ei|𝐱

)
= 0. Using the law of iterated expectations, we show that b2 is a condition-

ally unbiased estimator. First, find the conditional expectation of b2 given x,

E
(
b2|x

)
= β2 +

∑
E
(
wiei|x

)
= β2 +

∑
wiE

(
ei|x

)
= β2 +

∑
wi0 = β2

Conditional on x, which is equivalent to assuming x is given, the function wi = g
(
x1,… , xN

)

is treated like a constant and is factored out in the third equality. Applying the law of iterated

expectations, we find

E
(
b2

)
= Ex

[

E
(
b2|x

)]

= Ex
(
β2

)
= β2

The notation Ex( ) means take the expected value treating x as random. In this case, that is not

difficult because β2 is a constant, nonrandom parameter. The least squares estimator is unbiased,

both conditional on x and unconditionally, under strict exogeneity.

The derivation of the variance of the least squares estimator changes in a similar way. First

find the variance of b2 given x.

var
(
b2|x

)
= E

[(

b2 − E
(
b2|x

))2|
|
|
x
]

= E
[(
β2 +

∑
wiei − β2

)2|
|
|
x
]

= E
[(∑

wiei
)2|
|
|
x
]

= E

[(
∑

w2
i e2

i +
∑∑

i≠j
wiwjeiej

)|
|
|
|
|
|

x

]

=
∑

w2
i E

(
e2

i |x
)
+

∑∑

i≠j
wiwjE

(
eiej|x

)

= σ2∑w2
i =

σ2

∑(
xi − x

)2

The variance of b2 given x is exactly the same as when x was assumed random and statistically

independent of the random errors. Now find the variance of b2 using the variance decomposition

from the Probability Primer equation (P.29). For two random variables X and Y ,

var(Y) = varX[E(Y|X)] + EX[var(Y|X)]

Letting Y = b2 and X = 𝐱, we have

var
(
b2

)
= varx

[
E
(
b2|x

)]
+ Ex

[
var

(
b2|x

)]
= varx

(
β2

)
+ Ex

[

σ2

∑(
xi − x

)2

]

= σ2Ex

[

1
∑(

xi − x
)2

]

since varx
(
β2

)
= 0. This is exactly the same result as in the case in which xj and ei are statistically

independent.
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2G.4 Random Sampling

In the case of random sampling, data pairs
(
yi, xi

)
are iid, and the strict exogeneity assumption

reduces to E
(
ei|xi

)
= 0. The results in the previous section hold in exactly the same way because

it is still true that E
(
ei|𝐱

)
= 0.

Appendix 2H Monte Carlo Simulation
The statistical properties of the least squares estimators are well known if the assumptions in

Section 2.1 hold. In fact, we know that the least squares estimators are the best linear unbiased

estimators of the regression parameters under these assumptions. And if the random errors are nor-

mal, then we know that, given x, the estimators themselves have normal distributions in repeated
experimental trials. The meaning of “repeated trials” is difficult to grasp. Monte Carlo sim-

ulation experiments use random number generators to replicate the random way that data are

obtained. In Monte Carlo simulations, we specify a data generation process and create samples

of artificial data. Then, we “try out” estimation methods on the data we have created. We cre-

ate many samples of size N and examine the repeated sampling properties of the estimators.

In this way, we can study how statistical procedures behave under ideal, as well as not so ideal,

conditions. This is important because economic, business, and social science data are not always

(indeed, not usually) as nice as the assumptions we make.

The DGP for the simple linear regression model is given by

yi = E
(
yi|xi

)
+ ei = β1 + β2xi + ei, i = 1,… ,N

Each value of the dependent variable yi is obtained, or generated, by adding a random error ei
to the regression function E

(
yi|xi

)
. To simulate values of yi, we create values for the systematic

portion of the regression relationship E
(
yi|xi

)
and add to it the random error ei. This is analogous

to a physical experiment in which variable factors are set at fixed levels and the experiment run.

The outcome is different in each experimental trial because of random uncontrolled errors.

2H.1 The Regression Function

The regression function E
(
yi|xi

)
= β1 + β2xi is the systematic portion of the regression relation-

ship. To create these values we must select the following:

1. A sample size N. From the discussion in Section 2.4.4, we know that the larger the sample

size is, the greater is the precision of estimation of the least squares estimators b1 and b2.

Following the numerical examples in the book, we choose N = 40. This is not a large sam-

ple, but assuming SR1–SR5 are true, the least squares estimators’ properties hold for any

sample of size N > 2 in the simple regression model. In more complex situations, varying

the sample size to see how estimators perform is an important ingredient of the simulation.

2. We must choose xi values. For simplicity, we initially assume values of the explanatory vari-

able that are fixed in repeated experimental trials. Following the depiction in Figure 2.1,15

we set the values x1, x2,… , x20 = 10 and x21, x22,… , x40 = 20, using the chapter assumption

that x is measured in hundreds. Does it matter how we choose the xi values? Yes, it does.

The variances and covariances of the least squares estimators depend on the variation in xi,∑(
xi − x

)2
, how far the values are from 0, as measured by

∑
x2

i , and on the sample mean x.

Thus, if the values xi change, the precision of estimation of the least squares estimators

will change.

............................................................................................................................................

15This design is used in Briand, G. & Hill, R. C. (2013). Teaching Basic Econometric Concepts using Monte Carlo

Simulations in Excel, International Review of Economics Education, 12(1), 60–79.
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3. We must choose β1 and β2. Interestingly, for the least squares estimator under assumptions

SR1–SR5, the actual magnitudes of these parameters do not matter a great deal. The esti-

mator variances and covariances do not depend on them. The difference between the least

squares estimator and the true parameter value, E
(
b2

)
− β2 given in (2.13), does not depend

on the magnitude of β2, only on the xi values and the random errors ei. To roughly parallel

the regression results we obtained in Figure 2.10, we set β1 = 100 and β2 = 10.

Given the values above we can create N = 40 values E
(
yi|xi

)
= β1 + β2xi. These values are

E
(
yi|xi = 10

)
= 100 + 10xi = 100 + 10 × 10 = 200, i = 1,… , 20

E
(
yi|xi = 20

)
= 100 + 10xi = 100 + 10 × 20 = 300, i = 21,… , 40

2H.2 The Random Error
To be consistent with assumptions SR2–SR4, the random errors should have mean zero,

constant variance var
(
ei|xi

)
= σ2 and be uncorrelated with one another, so that cov

(
ei, ej|𝐱

)
= 0.

Researchers in the field of numerical analysis have studied how to simulate random numbers

from a variety of probability distributions, such as the normal distribution. Of course, the

computer-generated numbers cannot be truly random, because they are generated by a computer

code. The random numbers created by computer software are “pseudorandom,” in that they

behave like random numbers. The numbers created will begin to recycle after about 219937 values

are drawn, using the so-called Mersenne Twister algorithm. Each software vendor uses its own

version of a random number generator. Consequently, you should not expect to obtain exactly

the same numbers that we have, and your replication will produce slightly different results,

even though the major conclusions will be the same. See Appendix B.4 for a discussion of how

random numbers are created.

Following assumption SR6, we assume the random error terms have a normal distribution

with mean zero and a homoskedastic variance var
(
ei|xi

)
= σ2. The variance σ2 affects the pre-

cision of estimation through the variances and covariances of the least squares estimators in

(2.14)–(2.16). The bigger the value of σ2, the bigger the variances and covariances of the least

squares estimators, and the more spread out the probability distribution of the estimators, as shown

in Figure 2.11. We choose var
(
ei|xi

)
= σ2 = 2500, which also means that var

(
yi|xi

)
= σ2 = 2500.

2H.3 Theoretically True Values
Using the values above, we plot the theoretically true pdfs for yi in Figure 2H.1. The solid curve

on the left is N
(
200, 2500 = 502

)
. The first 20 simulated observations will follow this pdf . The

dashed curve on the right is N
(
300, 2500 = 502

)
, which is the pdf for the second 20 observations.

f (y |x = 10) f (y|x = 20)

σ = 50

0 100 200 300 400 500

FIGURE 2H.1 The true pdfs of the data.
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4 6 8 10

E (b2|x) = β2 = 10

f (b2)

12 14 16

var (b2|x) = 2.50 = 1.5811

FIGURE 2H.2 The true pdf of the estimator b2.

Given the parameter σ2 = 2500 and the xi values, we can compute the true conditional variances

of the estimators:

var
(
b1|x

)
= σ2

[ ∑
x2

i

N
∑(

xi − x
)2

]

= 2500
[

10000

40 × 1000

]

= 625

var
(
b2|x

)
= σ2

∑(
xi − x

)2
= 2500

1000
= 2.50

cov
(
b1, b2|x

)
= σ2

[

−x
∑(

xi − x
)2

]

= 2500
[ −15

1000

]

= −37.50

The true standard deviation of b2 is

√

var
(
b2|x

)
=

√
2.50 = 1.5811. The true pdf of b2|x is

N
(
β2 = 10, var

(
b2|𝐱

)
= 2.5

)
. Using the cumulative probabilities for the standard normal distri-

bution in Statistical Table 1, we find that 98% of values from a normal distribution fall within

2.33 standard deviations of the mean. Applying this rule to the estimates b2, we have

β2 ± 2.33 ×
√

var
(
b2|x

)
= 10 ± 2.33 × 1.5811 = [6.316, 13.684]

We expect almost all values of b2 (98% of them) to fall in the range 6.32–13.68. The plot of the

true pdf of the estimator b2 is shown in Figure 2H.2.

2H.4 Creating a Sample of Data
Most software will automatically create random values, zi, from the standard normal distribution,

N(0, 1). To obtain a random value from a N
(
0, σ2

)
distribution, we multiply zi by the standard

deviation σ. That is, ei = σ × zi. Given values zi from the standard normal distribution, we obtain

the N = 40 sample values from the chosen DGP as

yi = E
(
yi|xi = 10

)
+ ei = 200 + 50 × zi i = 1,… , 20

yi = E
(
yi|xi = 20

)
+ ei = 300 + 50 × zi i = 21,… , 40

One sample of data is in the data file mc1_fixed_x. Using these values, we obtain the least squares

estimates. It is convenient to display the coefficient estimates and standard errors together, with

the standard error reported below the coefficients:

ŷ = 127.2055 + 8.7325x
(se) (23.3262) (1.4753)

The estimate σ̂ = 46.6525. The estimated variances and covariance of b1 and b2 are var
⋀(

b1

)
=

544.1133, var
⋀(

b2

)
= 2.1765, and cov

⋀(
b1, b2

)
= −32.6468.
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For this one sample, the parameter estimates are reasonably near their true values. However,

what happens in one sample does not prove anything. The repeated sampling properties of the

least squares estimators are about what happens in many samples of data, from the same DGP.

2H.5 Monte Carlo Objectives
What do we hope to achieve with a Monte Carlo experiment? After the Monte Carlo experiment,

we will have many least squares estimates. If we obtain M = 10, 000 samples, we will have 10,000

estimates b1,1,… , b1,M , 10, 000 estimates b2,1,… , b2,M , and 10,000 estimates σ̂2

1
,… , σ̂2

M .

• We would like to verify that under SR1–SR5 the least squares estimators are unbiased.

The estimator b2 is unbiased if E
(
b2

)
= β2. Since an expected value is an average in many

repeated experimental trials, we should observe that the average value of all the slope esti-

mates, b2 =
∑M

m=1
b2m∕M, is close to β2 = 10.

• We would like to verify that under SR1–SR5 the least squares estimators have sampling

variances given by (2.14) and (2.16). The estimator variances measure the sampling variation

in the estimates. The sampling variation of the estimates in the Monte Carlo simulation can

be measured by their sample variance. For example, the sample variance of the estimates

b2,1,… , b2,M is s2
b2
=

∑M
m=1

(

b2,m − b2

)2

∕(M − 1). This value should be close to var
(
b2

)
=

2.50, and the standard deviation sb2
should be close to the true standard deviation of the

regression estimates 1.5811.

• We would like to verify that the estimator of the error variance (2.19) is an unbiased estimator

of σ2 = 2500, or that σ̂2 =
∑M

m=1
σ̂2

m∕M is close to the true value.

• Because we have assumed the random errors are normal, SR6, we expect the least squares

estimates to have a normal distribution.

2H.6 Monte Carlo Results
The numerical results of the Monte Carlo experiment are shown in Table 2H.1. The averages (or

“Sample Means”) of the 10,000 Monte Carlo estimates are close to their true values.

For example, the average of the slope estimates is b2 =
∑M

m=1
b2,m∕M = 10.0130 compared to

the true value β2 = 10. The sample variance of the estimates s2
b2
=

∑M
m=1

(

b2,m − b2

)2

∕(M − 1) =
2.4691 compared to the true value var

(
b2

)
= 2.50. The standard deviation of the estimates is

sb2
= 1.5713 compared to the true standard deviation

√

var
(
b2

)
=

√
2.50 = 1.5811. The the-

oretical 1st and 99th percentiles of b2 are [6.316, 13.684], which is reflected by the estimates

[6.3268, 13.6576].

As for the normality of the estimates, we see from the histogram in Figure 2H.3 that the

actual values follow the superimposed normal distribution very closely.16

T A B L E 2H.1 Summary of 10,000 Monte Carlo Samples

Mean Variance Std. Dev. Minimum Maximum 1st Pct. 99th Pct.

b1 (100) 99.7463 613.4323 24.7676 12.1000 185.5361 42.2239 156.5996

b2 (10) 10.0130 2.4691 1.5713 4.5881 16.5293 6.3268 13.6576

σ̂2
(2500) 2490.67 329964.7 574.4256 976.447 5078.383 1366.225 4035.681

............................................................................................................................................

16A normal distribution is symmetrical with no skewness, and for the estimates b2 the skewness is −0.0027. A normal

distribution has kurtosis of three, and for the estimates b2 the kurtosis is 3.02. The Jarque–Bera test statistic that

combines skewness and kurtosis measures is 0.1848 yielding a p-value of 0.91, meaning that we fail to reject the

normality. See Appendix C.7.4 for a discussion of the Jarque–Bera test.
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FIGURE 2H.3 The sampling distribution of b2 in 10,000 Monte Carlo samples
when x is fixed in repeated trials.

If you are replicating these results, some suggested exercises are as follows:

1. Test if mean of b2 is equal to β2 using the test described in Appendix C.6.1.

2. Calculate the percentage of estimates falling in a given interval, such as between 8 and 9,

and compare it to the probability based on the normal distribution.

2H.7 Random-x Monte Carlo Results
We used the “fixed-x” framework in the simulation results above. In each Monte Carlo sample,

the x-values were xi = 10 for the first 20 observations and xi = 20 for the next 20 observations.

Now we modify the experiment to the random-x case. The data generating equation remains yi =
100 + 10xi + ei with the random errors having a normal distribution with mean zero and standard

deviation 50, ei ∼ N
(
0, 502 = 2500

)
. We randomly choose x-values from a normal distribution

with mean μx = 15 and standard deviation σx = 1.6, so x ∼ N
(
15, 1.62 = 2.56

)
. We chose σx =

1.6 so that 99.73% of the random-x values fall between 10.2 and 19.8, which is similar in spirit

to the fixed-x simulation in the previous section.

One sample of data is in the file mc1_random_x. Using these values, we obtain the least

squares estimates and standard errors

ŷ = 116.7410 + 9.7628x
(se) (84.7107) (5.5248)

and the estimate σ̂ = 51.3349. The estimates are close to the true values.

The numerical results of the Monte Carlo experiment are shown in Table 2H.2. The averages (or

“Sample Means”) of the 10,000 Monte Carlo estimates are close to their true values.

For example, the average of the slope estimates is b2 =
∑M

m=1
b2,m∕M = 10.0313 compared

to the true value β2 = 10. In the random-x case, the true variance of the least squares estimator is

var
(
b2

)
= σ2E

[

1
∑N

i=1

(
xi − x

)2

]

= σ2

(N − 3) σ2
x

= 2500

(37)(2.56)
= 26.3936

Calculating the variance we use a special property resulting from the normality of x. When x
is normally distributed N

(
μx, σ2

x
)

the unbiased estimator of σ2
x is s2

x =
∑N

i=1

(
xi − x

)2∕(N − 1).
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T A B L E 2H.2 Summary of 10,000 Random-x Monte Carlo Samples

Mean Var. Std. Dev. Min. Max. 1st Pct. 99th Pct.

b1 (100) 99.4344 6091.4412 78.0477 −196.8826 405.8328 −83.1178 283.8266

b2 (10) 10.0313 26.8503 5.1817 −10.4358 29.3168 −2.2196 22.3479

var
⋀(

b2

)
(26.3936) 26.5223 78.9348 8.8845 7.8710 91.1388 11.8325 54.0177

σ̂2
(2500) 2498.4332 332622.6 576.7344 809.474 5028.047 1366.957 4056.279
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FIGURE 2H.4 The sampling distribution of b2 in 10,000 Monte Carlo samples
when x is random in repeated trials.

In Appendix C.7.1 we use the fact that (N − 1) s2
x∕σ

2
x ∼ χ

2
(N−1). This implies that V =

∑N
i=1

(
xi − x

)2 ∼ σ2
xχ

2
(N−1). Using the properties of the inverse chi-square distribution E(1∕V) =

E
[

1
/∑N

i=1

(
xi − x

)2
]

= 1
/[
(N − 3) σ2

x
]
.17 Note that the Monte Carlo mean of the estimated

var
(
b2

)
is 26.5223, confirming that var

⋀(
b2

)
= 2500∕[37(2.56)] = 26.3936 is an unbiased

estimator even in the random-x case.

Recall, however, that in the random-x case the distribution of the least squares estimator b2

is not normal. The histogram of the 10,000 Monte Carlo estimates is shown in Figure 2H.4. It is

symmetrical but there are too many central values, and the peak is too high. Statistically we can

reject that this distribution is normal.18

If you are replicating these results, some suggested exercises are as follows:

1. Test if mean of b2 is equal to β2 using the test described in Appendix C.6.1.

2. Calculate the percentage of estimates falling in a given interval, such as between 8 and 9,

and compare it with the probability based on the normal distribution.

............................................................................................................................................

17See Appendix B.3.6 and Appendix C.7.1 for the theory behind this result.

18A normal distribution is symmetrical with no skewness, and for the estimates b2 the skewness is −0.001. A normal

distribution has kurtosis of three, and for the estimates b2 the kurtosis is 3.14. The Jarque–Bera test statistic that

combines skewness and kurtosis measures is 8.32 yielding a p-value of 0.016, meaning that we reject the hypothesis of

normality at the 5% level of significance. See Appendix C.7.4 for a discussion of the Jarque–Bera test.
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CHAPTER 3

Interval Estimation
and Hypothesis Testing

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Discuss how ‘‘sampling theory’’ relates to

interval estimation and hypothesis testing.

2. Explain why it is important for statistical

inference that given x the least squares

estimators b1 and b2 are normally distributed

random variables.

3. Explain the ‘‘level of confidence’’ of an interval

estimator, and exactly what it means in a

sampling context, and give an example.

4. Explain the difference between an interval

estimator and an interval estimate. Explain how

to interpret an interval estimate.

5. Explain the terms null hypothesis, alternative

hypothesis, and rejection region, giving an

example and a sketch of the rejection region.

6. Explain the logic of a statistical test, including

why it is important that a test statistic has a

known probability distribution if the null

hypothesis is true.

7. Explain the term p-value and how to use a

p-value to determine the outcome of a

hypothesis test; provide a sketch showing a

p-value.

8. Explain the difference between one-tail and

two-tail tests. Explain, intuitively, how to choose

the rejection region for a one-tail test.

9. Explain Type I error and illustrate it in a sketch.

Define the level of significance of a test.

10. Explain the difference between economic and

statistical significance.

11. Explain how to choose what goes in the null

hypothesis and what goes in the alternative

hypothesis.

K E Y W O R D S

alternative hypothesis

confidence intervals

critical value

degrees of freedom

hypotheses

hypothesis testing

inference

interval estimation

level of significance

linear combination of parameters

linear hypothesis

null hypothesis

one-tail tests

pivotal statistic

point estimates

probability value

p-value

rejection region

test of significance

test statistic

two-tail tests

Type I error

Type II error

112
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In Chapter 2, we used the least squares estimators to develop point estimates for the parameters in

the simple linear regression model. These estimates represent an inference about the regression

function E(y|x) = β1 + β2x describing a relationship between economic variables. Infer means “to

conclude by reasoning from something known or assumed.” This dictionary definition describes

statistical inference as well. We have assumed a relationship between economic variables and

made various assumptions (SR1–SR5) about the regression model. Based on these assumptions,

and given empirical estimates of regression parameters, we want to make inferences about the

population from which the data were obtained.

In this chapter, we introduce additional tools of statistical inference: interval estimation and

hypothesis testing. Interval estimation is a procedure for creating ranges of values, sometimes

called confidence intervals, in which the unknown parameters are likely to be located. Hypothesis

tests are procedures for comparing conjectures that we might have about the regression parameters

to the parameter estimates we have obtained from a sample of data. Hypothesis tests allow us to

say that the data are compatible, or are not compatible, with a particular conjecture or hypothesis.

The procedures for hypothesis testing and interval estimation depend very heavily on assump-

tion SR6 of the simple linear regression model and the resulting conditional normality of the least

squares estimators. If assumption SR6 does not hold, then the sample size must be sufficiently

large so that the distributions of the least squares estimators are approximately normal. In this

case, the procedures we develop in this chapter can be used but are also approximate. In develop-

ing the procedures in this chapter, we will be using the “Student’s” t-distribution. You may want to

refresh your memory about this distribution by reviewing Appendix B.3.7. In addition, it is some-

times helpful to see the concepts we are about to discuss in a simpler setting. In Appendix C, we

examine statistical inference, interval estimation, and hypothesis testing in the context of estimat-

ing the mean of a normal population. You may want to review this material now or read it along

with this chapter as we proceed.

3.1 Interval Estimation
In Chapter 2, in Example 2.4, we estimated that household food expenditure would rise by $10.21

given a $100 increase in weekly income. The estimate b2 = 10.21 is a point estimate of the

unknown population parameter β2 in the regression model. Interval estimation proposes a range

of values in which the true parameter β2 is likely to fall. Providing a range of values gives a sense

of what the parameter value might be, and the precision with which we have estimated it. Such

intervals are often called confidence intervals. We prefer to call them interval estimates because

the term “confidence” is widely misunderstood and misused. As we will see, our confidence is

in the procedure we use to obtain the intervals, not in the intervals themselves. This is consistent

with how we assessed the properties of the least squares estimators in Chapter 2.

3.1.1 The t-Distribution
Let us assume that assumptions SR1–SR6 hold for the simple linear regression model. In this

case, we know that given x the least squares estimators b1 and b2 have normal distributions, as

discussed in Section 2.6. For example, the normal distribution of b2, the least squares estimator

of β2, is

b2|x ∼ N

(

β2,
σ2

∑(
xi − x

)2

)

A standardized normal random variable is obtained from b2 by subtracting its mean and dividing

by its standard deviation:

Z =
b2 − β2

√

σ2
/∑(

xi − x
)2

∼ N(0, 1) (3.1)
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The standardized random variable Z is normally distributed with mean 0 and variance 1. By

standardizing the conditional normal distribution of b2|𝐱, we find a statistic Z whose N(0, 1)

sampling distribution does not depend on any unknown parameters or on x! Such statistics are

called pivotal, and this means that when making probability statements about Z we do not have

to worry about whether x is fixed or random. Using a table of normal probabilities (Statistical

Table 1) we know that

P(−1.96 ≤ Z ≤ 1.96) = 0.95

Substituting (3.1) into this expression, we obtain

P

⎛
⎜
⎜
⎜
⎝

−1.96 ≤
b2 − β2

√

σ2
/∑(

xi − x
)2

≤ 1.96

⎞
⎟
⎟
⎟
⎠

= 0.95

Rearranging gives us

P
(

b2 − 1.96

√

σ2
/∑(

xi − x
)2

≤ β2 ≤ b2 + 1.96

√

σ2
/∑(

xi − x
)2

)

= 0.95

This defines an interval that has probability 0.95 of containing the parameter β2. The two end-

points

(

b2 ± 1.96

√

σ2
/∑(

xi − x
)2

)

provide an interval estimator. If we construct intervals this

way using all possible samples of size N from a population, then 95% of the intervals will contain

the true parameter β2. This easy derivation of an interval estimator is based on both assumption

SR6 and our knowing the variance of the error term σ2.

Although we do not know the value of σ2, we can estimate it. The least squares residuals are

êi = yi − b1 − b2xi, and our estimator of σ2 is σ̂2 =
∑

ê2

i ∕(N − 2). Replacing σ2 by σ̂2
in (3.1) cre-

ates a random variable we can work with, but this substitution changes the probability distribution

from standard normal to a t-distribution with N − 2 degrees of freedom,

t =
b2 − β2

√

σ̂2
/∑(

xi − x
)2

=
b2 − β2

√

var
⋀(

b2

)
=

b2 − β2

se
(
b2

) ∼ t(N−2) (3.2)

The ratio t =
(
b2 − β2

)
∕se

(
b2

)
has a t-distribution with N−2 degrees of freedom, which we

denote as t ∼ t(N−2). By standardizing the conditional normal distribution of b2|𝐱 and inserting

the estimator σ̂2
, we find a statistic t whose t(N−2) sampling distribution does not depend on any

unknown parameters or on x! It too is a pivotal statistic, and when making probability state-

ments with a t-statistic, we do not have to worry about whether x is fixed or random. A similar

result holds for b1, so in general we can say, if assumptions SR1–SR6 hold in the simple linear

regression model, then

t =
bk − βk

se
(
bk
) ∼ t(N−2) for k = 1, 2 (3.3)

This equation will be the basis for interval estimation and hypothesis testing in the simple linear

regression model. The statistical argument of how we go from (3.1) to (3.2) is in Appendix 3A.

When working with the t-distribution, remember that it is a bell-shaped curve centered at

zero. It looks like the standard normal distribution, except that it is more spread out, with a larger

variance and thicker tails. The shape of the t-distribution is controlled by a single parameter

called the degrees of freedom, often abbreviated as df . We use the notation t(m) to specify a

t-distribution with m degrees of freedom. In Statistical Table 2, there are percentile values of the

t-distribution for various degrees of freedom. For m degrees of freedom, the 95th percentile of

the t-distribution is denoted t(0.95, m). This value has the property that 0.95 of the probability falls

to its left, so P
[
t(m) ≤ t(0.95, m)

]
= 0.95. For example, if the degrees of freedom are m = 20, then,

from Statistical Table 2, t(0.95, 20) = 1.725. Should you encounter a problem requiring percentiles
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α/2 α/2

tc–tc

f (t)

t0

(1 – α)

t(m)

FIGURE 3.1 Critical values from a t-distribution.

that we do not give, you can interpolate for an approximate answer or use your computer software

to obtain an exact value.

3.1.2 Obtaining Interval Estimates
From Statistical Table 2, we can find a “critical value” tc from a t-distribution such that

P
(
t ≥ tc

)
= P

(
t ≤ −tc

)
= α∕2, where α is a probability often taken to be α = 0.01 or α = 0.05.

The critical value tc for degrees of freedom m is the percentile value t(1−α/2, m). The values tc
and −tc are depicted in Figure 3.1.

Each shaded “tail” area contains α∕2 of the probability, so that 1 − α of the probability is

contained in the center portion. Consequently, we can make the probability statement

P
(
−tc ≤ t ≤ tc

)
= 1 − α (3.4)

For a 95% confidence interval, the critical values define a central region of the t-distribution

containing probability 1 − α = 0.95. This leaves probability α = 0.05 divided equally between

the two tails, so that α∕2 = 0.025. Then the critical value tc = t(1−0.025, m) = t(0.975, m). In the simple

regression model, the degrees of freedom are m = N − 2, so expression (3.4) becomes

P
[
−t(0.975,N−2) ≤ t ≤ t(0.975,N−2)

]
= 0.95

We find the percentile values t(0.975, N−2) in Statistical Table 2.

Now, let us see how we can put all these bits together to create a procedure for interval

estimation. Substitute t from (3.3) into (3.4) to obtain

P

[

−tc ≤
bk − βk

se
(
bk
) ≤ tc

]

= 1 − α

Rearrange this expression to obtain

P
[

bk − tcse
(
bk
)
≤ βk ≤ bk + tcse

(
bk
)]

= 1 − α (3.5)

The interval endpoints bk − tcse
(
bk
)

and bk + tcse
(
bk
)

are random because they vary from sam-

ple to sample. These endpoints define an interval estimator of βk. The probability statement in

(3.5) says that the interval bk ± tcse
(
bk
)

has probability 1 − α of containing the true but unknown

parameter βk.

When bk and se
(
bk
)

in (3.5) are estimated values (numbers), based on a given sample of

data, then bk ± tcse
(
bk
)

is called a 100(1 − α)% interval estimate of βk. Equivalently, it is called

a 100(1 − α)% confidence interval. Usually, α = 0.01 or α = 0.05, so that we obtain a 99% con-

fidence interval or a 95% confidence interval.

The interpretation of confidence intervals requires a great deal of care. The properties of

the interval estimation procedure are based on the notion of sampling. If we collect all possible
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samples of size N from a population, compute the least squares estimate bk and its standard error

se
(
bk
)

for each sample, and then construct the interval estimate bk ± tcse
(
bk
)

for each sample,

then 100(1 − α)% of all the intervals constructed would contain the true parameter βk. In Appendix

3C, we carry out a Monte Carlo simulation to demonstrate this sampling property.

Any one interval estimate, based on one sample of data, may or may not contain the true

parameter βk, and because βk is unknown, we will never know whether it does or does not. When

“confidence intervals” are discussed, remember that our confidence is in the procedure used to

construct the interval estimate; it is not in any one interval estimate calculated from a sample

of data.

E X A M P L E 3.1 Interval Estimate for Food Expenditure Data

For the food expenditure data, N = 40 and the degrees of

freedom are N − 2 = 38. For a 95% confidence interval, α =
0.05. The critical value tc = t(1−α/2, N−2) = t(0.975, 38) = 2.024 is

the 97.5 percentile from the t-distribution with 38 degrees of

freedom. For β2, the probability statement in (3.5) becomes

P
[

b2 − 2.024se
(
b2

)
≤ β2 ≤ b2 + 2.024se

(
b2

)]

= 0.95

(3.6)

To construct an interval estimate for β2, we use the least

squares estimate b2 = 10.21 and its standard error

se
(
b2

)
=
√

var
⋀(

b2

)
=
√

4.38 = 2.09

Substituting these values into (3.6), we obtain a “95% confi-

dence interval estimate” for β2:

b2 ± tcse
(
b2

)
= 10.21 ± 2.024(2.09) = [5.97, 14.45]

That is, we estimate “with 95% confidence” that from an addi-

tional $100 of weekly income households will spend between

$5.97 and $14.45 on food.

Is β2 actually in the interval [5.97, 14.45]? We do not

know, and we will never know. What we do know is that when

the procedure we used is applied to all possible samples of

data from the same population, then 95% of all the interval

estimates constructed using this procedure will contain the

true parameter. The interval estimation procedure “works”

95% of the time. What we can say about the interval esti-

mate based on our one sample is that, given the reliability

of the procedure, we would be “surprised” if β2 is not in the

interval [5.97, 14.45].

What is the usefulness of an interval estimate of β2?

When reporting regression results, we always give a point

estimate, such as b2 = 10.21. However, the point estimate

alone gives no sense of its reliability. Thus, we might also

report an interval estimate. Interval estimates incorporate

both the point estimate and the standard error of the estimate,

which is a measure of the variability of the least squares

estimator. The interval estimate includes an allowance for

the sample size as well because for lower degrees of freedom

the t-distribution critical value tc is larger. If an interval

estimate is wide (implying a large standard error), it suggests

that there is not much information in the sample about β2.

If an interval estimate is narrow, it suggests that we have

learned more about β2.

What is “wide” and what is “narrow” depend on the

problem at hand. For example, in our model, b2 = 10.21 is

an estimate of how much weekly household food expenditure

will rise given a $100 increase in weekly household income.

A CEO of a supermarket chain can use this estimate to plan

future store capacity requirements, given forecasts of income

growth in an area. However, no decision will be based on this

one number alone. The prudent CEO will carry out a sensi-

tivity analysis by considering values of β2 around 10.21. The

question is “Which values?” One answer is provided by the

interval estimate [5.97, 14.45]. Though β2 may or may not

be in this interval, the CEO knows that the procedure used

to obtain the interval estimate “works” 95% of the time. If

varying β2 within the interval has drastic consequences on

company sales and profits, then the CEO may conclude that

there is insufficient evidence upon which to make a decision

and order a new and larger data sample.

3.1.3 The Sampling Context
In Section 2.4.3, we illustrated the sampling properties of the least squares estimators using

10 data samples. Each sample of size N = 40 includes households with the same incomes as

in Table 2.1 but with food expenditures that vary. These hypothetical data are in the data file

table2_2. In Table 3.1, we present the OLS estimates, the estimates of σ2, and the coefficient

standard errors from each sample. Note the sampling variation illustrated by these estimates. The



�

� �

�

3.1 Interval Estimation 117

T A B L E 3.1 Least Squares Estimates from 10 Hypothetical Random Samples

Sample b1 se
(
b1
)

b2 se
(
b2
)

�̂�2

1 93.64 31.73 8.24 1.53 4282.13

2 91.62 31.37 8.90 1.51 4184.79

3 126.76 48.08 6.59 2.32 9828.47

4 55.98 45.89 11.23 2.21 8953.17

5 87.26 42.57 9.14 2.05 7705.72

6 122.55 42.65 6.80 2.06 7735.38

7 91.95 42.14 9.84 2.03 7549.82

8 72.48 34.04 10.50 1.64 4928.44

9 90.34 36.69 8.75 1.77 5724.08

10 128.55 50.14 6.99 2.42 10691.61

T A B L E 3.2 Interval Estimates from 10 Hypothetical Random Samples

Sample b1 − tcse
(
b1
)

b1 + tcse
(
b1
)

b2 − tcse
(
b2
)

b2 + tcse
(
b2
)

1 29.40 157.89 5.14 11.34

2 28.12 155.13 5.84 11.96

3 29.44 224.09 1.90 11.29

4 −36.91 148.87 6.75 15.71

5 1.08 173.43 4.98 13.29

6 36.21 208.89 2.63 10.96

7 6.65 177.25 5.73 13.95

8 3.56 141.40 7.18 13.82

9 16.07 164.62 5.17 12.33

10 27.04 230.06 2.09 11.88

variation is due to the fact that in each sample household food expenditures are different. The 95%

confidence intervals for the parameters β1 and β2 are given in Table 3.2 for the same samples.

Sampling variability causes the center of each of the interval estimates to change with the

values of the least squares estimates, and it causes the widths of the intervals to change with the

standard errors. If we ask the question “How many of these intervals contain the true parameters,

and which ones are they?” we must answer that we do not know. But since 95% of all interval

estimates constructed this way contain the true parameter values, we would expect perhaps 9 or

10 of these intervals to contain the true but unknown parameters.

Note the difference between point estimation and interval estimation. We have used the least

squares estimators to obtain point estimates of unknown parameters. The estimated variance

var
⋀(

bk
)
, for k = 1 or 2, and its square root

√

var
⋀(

bk
)
= se

(
bk
)

provide information about the

sampling variability of the least squares estimator from one sample to another. Interval estima-

tors are a convenient way to report regression results because they combine point estimation with

a measure of sampling variability to provide a range of values in which the unknown parame-

ters might fall. When the sampling variability of the least squares estimator is relatively small,

then the interval estimates will be relatively narrow, implying that the least squares estimates are

“reliable.” If the least squares estimators suffer from large sampling variability, then the interval

estimates will be wide, implying that the least squares estimates are “unreliable.”
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3.2 Hypothesis Tests
Many business and economic decision problems require a judgment as to whether or not a param-

eter is a specific value. In the food expenditure example, it may make a good deal of difference

for decision purposes whether β2 is greater than 10, indicating that a $100 increase in income

will increase expenditure on food by more than $10. In addition, based on economic theory, we

believe that β2 should be positive. One check of our data and model is whether this theoretical

proposition is supported by the data.

Hypothesis testing procedures compare a conjecture we have about a population to the infor-

mation contained in a sample of data. Given an economic and statistical model, hypotheses are

formed about economic behavior. These hypotheses are then represented as statements about

model parameters. Hypothesis tests use the information about a parameter that is contained in a

sample of data, its least squares point estimate, and its standard error to draw a conclusion about

the hypothesis.

In each and every hypothesis test, five ingredients must be present:

Components of Hypothesis Tests

1. A null hypothesis H0

2. An alternative hypothesis H1

3. A test statistic

4. A rejection region

5. A conclusion

3.2.1 The Null Hypothesis
The null hypothesis, which is denoted by H0 (H-naught), specifies a value for a regression

parameter, which for generality we denote as βk, for k = 1 or 2. The null hypothesis is stated

as H0∶βk = c, where c is a constant, and is an important value in the context of a specific regres-

sion model. A null hypothesis is the belief we will maintain until we are convinced by the sample

evidence that it is not true, in which case we reject the null hypothesis.

3.2.2 The Alternative Hypothesis
Paired with every null hypothesis is a logical alternative hypothesis H1 that we will accept if

the null hypothesis is rejected. The alternative hypothesis is flexible and depends, to some extent,

on economic theory. For the null hypothesis H0∶βk = c, the three possible alternative hypotheses

are as follows:

• H1∶βk > c. Rejecting the null hypothesis that βk = c leads us to accept the conclusion that

βk > c. Inequality alternative hypotheses are widely used in economics because economic

theory frequently provides information about the signs of relationships between variables.

For example, in the food expenditure example, we might well test the null hypothesis

H0∶β2 = 0 against H1∶β2 > 0 because economic theory strongly suggests that necessities

such as food are normal goods and that food expenditure will rise if income increases.

• H1∶βk < c. Rejecting the null hypothesis that βk = c in this case leads us to accept the

conclusion that βk < c.

• H1∶βk ≠ c. Rejecting the null hypothesis that βk = c in this case leads us to accept the

conclusion that βk takes a value either larger or smaller than c.
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3.2.3 The Test Statistic
The sample information about the null hypothesis is embodied in the sample value of a test statis-
tic. Based on the value of a test statistic, we decide either to reject the null hypothesis or not

to reject it. A test statistic has a special characteristic: its probability distribution is completely

known when the null hypothesis is true, and it has some other distribution if the null hypothesis

is not true.

It all starts with the key result in (3.3), t =
(
bk − βk

)
∕se

(
bk
)
∼ t(N−2). If the null hypothesis

H0∶βk = c is true, then we can substitute c for βk and it follows that

t =
bk − c
se
(
bk
) ∼ t(N−2) (3.7)

If the null hypothesis is not true, then the t-statistic in (3.7) does not have a t-distribution with

N − 2 degrees of freedom. This point is elaborated in Appendix 3B.

3.2.4 The Rejection Region
The rejection region depends on the form of the alternative. It is the range of values of the test

statistic that leads to rejection of the null hypothesis. It is possible to construct a rejection region

only if we have

• A test statistic whose distribution is known when the null hypothesis is true

• An alternative hypothesis

• A level of significance

The rejection region consists of values that are unlikely and that have low probability of occurring

when the null hypothesis is true. The chain of logic is “If a value of the test statistic is obtained

that falls in a region of low probability, then it is unlikely that the test statistic has the assumed

distribution, and thus, it is unlikely that the null hypothesis is true.” If the alternative hypothesis is

true, then values of the test statistic will tend to be unusually large or unusually small. The terms

“large” and “small” are determined by choosing a probability α, called the level of significance
of the test, which provides a meaning for “an unlikely event.” The level of significance of the test

α is usually chosen to be 0.01, 0.05, or 0.10.

Remark
When no other specific choice is made, economists and statisticians often use a significance

level of 0.05. That is, an occurrence “one time in twenty” is regarded as an unusual or

improbable event by chance. This threshold for statistical significance is clung to as the

Holy Grail but in reality is simply a historical precedent based on quotes by Sir Ronald

Fisher who promoted the standard that t-values larger than two be regarded as significant.1

A stronger threshold for significance, such as “one time in a hundred,” or 0.01, might make

more sense. The importance of the topic is quickly evident with a web search. The issues

are discussed in The Cult of Statistical Significance: How the Standard Error Costs Us Jobs,
Justice, and Lives, by Stephen T. Ziliak and Deirdre N. McCloskey, 2008, The University of

Michigan Press.

If we reject the null hypothesis when it is true, then we commit what is called a Type I
error. The level of significance of a test is the probability of committing a Type I error, so

............................................................................................................................................

1Mark Kelly (2013) “Emily Dickinson and monkeys on the stair. Or: What is the significance of the 5% significance

level,” Significance, Vol. 10(5), October, 21–22.
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P(Type I error) = α. Any time we reject a null hypothesis, it is possible that we have made such

an error—there is no avoiding it. The good news is that we can specify the amount of Type I

error we will tolerate by setting the level of significance α. If such an error is costly, then we

make α small. If we do not reject a null hypothesis that is false, then we have committed a Type
II error. In a real-world situation, we cannot control or calculate the probability of this type of

error because it depends on the unknown true parameter βk. For more about Type I and Type II

errors, see Appendix C.6.9.

3.2.5 A Conclusion
When you have completed testing a hypothesis, you should state your conclusion. Do you reject

the null hypothesis, or do you not reject the null hypothesis? As we will argue below, you should

avoid saying that you “accept” the null hypothesis, which can be very misleading. Moreover,

we urge you to make it standard practice to say what the conclusion means in the economic

context of the problem you are working on and the economic significance of the finding. Statistical

procedures are not ends in themselves. They are carried out for a reason and have meaning, which

you should be able to explain.

3.3 Rejection Regions for Specific Alternatives
In this section, we hope to be very clear about the nature of the rejection rules for each of the

three possible alternatives to the null hypothesis H0∶βk = c. As noted in the previous section, to

have a rejection region for a null hypothesis, we need a test statistic, which we have; it is given in

(3.7). Second, we need a specific alternative, βk > c, βk < c, or βk ≠ c. Third, we need to specify

the level of significance of the test. The level of significance of a test, α, is the probability that we

reject the null hypothesis when it is actually true, which is called a Type I error.

3.3.1 One-Tail Tests with Alternative ‘‘Greater Than’’ (>)
When testing the null hypothesis H0∶βk = c, if the alternative hypothesis H1∶βk > c is true, then

the value of the t-statistic (3.7) tends to become larger than usual for the t-distribution. We will

reject the null hypothesis if the test statistic is larger than the critical value for the level of sig-

nificance α. The critical value that leaves probability α in the right tail is the (1 − α)-percentile

t(1−α, N−2), as shown in Figure 3.2. For example, if α = 0.05 and N − 2 = 30, then from Statistical

Table 2, the critical value is the 95th percentile value t(0.95, 30) = 1.697.

t(m)

α

Reject 
H0:βk = c

Do not
reject 

H0:βk = c

0 tc = t(1–α, N–2)

FIGURE 3.2 Rejection region for a one-tail test of H0∶𝛃k = c against
H1∶𝛃k > c.
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The rejection rule is

When testing the null hypothesis H0∶βk = c against the alternative hypothesis H1∶βk > c,

reject the null hypothesis and accept the alternative hypothesis if t ≥ t(1−α, N−2).

The test is called a “one-tail” test because unlikely values of the t-statistic fall only in one tail

of the probability distribution. If the null hypothesis is true, then the test statistic (3.7) has a

t-distribution, and its value would tend to fall in the center of the distribution, to the left of the

critical value, where most of the probability is contained. The level of significance α is chosen so

that if the null hypothesis is true, then the probability that the t-statistic value falls in the extreme

right tail of the distribution is small; an event that is improbable and unlikely to occur by chance.

If we obtain a test statistic value in the rejection region, we take it as evidence against the null

hypothesis, leading us to conclude that the null hypothesis is unlikely to be true. Evidence against

the null hypothesis is evidence in support of the alternative hypothesis. Thus, if we reject the null

hypothesis then we conclude that the alternative is true.

If the null hypothesis H0∶βk = c is true, then the test statistic (3.7) has a t-distribution and

its values fall in the nonrejection region with probability 1 − α. If t < t(1−α, N−2), then there is no

statistically significant evidence against the null hypothesis, and we do not reject it.

3.3.2 One-Tail Tests with Alternative ‘‘Less Than’’ (<)
If the alternative hypothesis H1∶βk < c is true, then the value of the t-statistic (3.7) tends to

become smaller than usual for the t-distribution. We reject the null hypothesis if the test statis-

tic is smaller than the critical value for the level of significance α. The critical value that leaves

probability α in the left tail is the α-percentile t(α, N−2), as shown in Figure 3.3.

When using Statistical Table 2 to locate critical values, recall that the t-distribution is

symmetric about zero, so that the α-percentile t(α, N−2) is the negative of the (1 − α)-percentile

t(1−α, N−2). For example, if α = 0.05 and N − 2 = 20, then from Statistical Table 2, the 95th per-

centile of the t-distribution is t(0.95, 20) = 1.725 and the 5th percentile value is t(0.05, 20) = −1.725.

The rejection rule is:

When testing the null hypothesis H0∶βk = c against the alternative hypothesis H1∶βk < c,

reject the null hypothesis and accept the alternative hypothesis if t ≤ t(α, N−2).

The nonrejection region consists of t-statistic values greater than t(α, N−2). When the null hypoth-

esis is true, the probability of obtaining such a t-value is 1 − α, which is chosen to be large. Thus

if t > t(α, N−2) then do not reject H0∶βk = c.

t(m)

Reject H0:βk = c

Do not reject 
H0:βk = c

0tc = t(α, N–2)

α

FIGURE 3.3 The rejection region for a one-tail test of H0∶𝛃k = c against
H1∶𝛃k < c.
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Remembering where the rejection region is located may be facilitated by the following trick:

Memory Trick
The rejection region for a one-tail test is in the direction of the arrow in the alternative. If

the alternative is >, then reject in the right tail. If the alternative is <, reject in the left tail.

3.3.3 Two-Tail Tests with Alternative ‘‘Not Equal To’’ (≠)
When testing the null hypothesis H0∶βk = c, if the alternative hypothesis H1∶βk ≠ c is true,

then the value of the t-statistic (3.7) tends to become either larger or smaller than usual for the

t-distribution. To have a test with the level of significance α, we define the critical values so that the

probability of the t-statistic falling in either tail is α∕2. The left-tail critical value is the percentile

t(α/2, N−2) and the right-tail critical value is the percentile t(1−α/2, N−2). We reject the null hypothesis

that H0∶βk = c in favor of the alternative that H1∶βk ≠ c if the test statistic t ≤ t(α/2, N−2) or

t ≥ t(1−α/2, N−2), as shown in Figure 3.4. For example, if α = 0.05 and N − 2 = 30, then α∕2 =
0.025 and the left-tail critical value is the 2.5-percentile value t(0.025, 30) = −2.042; the right-tail

critical value is the 97.5-percentile t(0.975, 30) = 2.042. The right-tail critical value is found in

Statistical Table 2, and the left-tail critical value is found using the symmetry of the t-distribution.

Since the rejection region is composed of portions of the t-distribution in the left and right

tails, this test is called a two-tail test. When the null hypothesis is true, the probability of obtaining

a value of the test statistic that falls in either tail area is “small.” The sum of the tail probabilities

is α. Sample values of the test statistic that are in the tail areas are incompatible with the null

hypothesis and are evidence against the null hypothesis being true. On the other hand, if the null

hypothesis H0∶βk = c is true, then the probability of obtaining a value of the test statistic t in

the central nonrejection region is high. Sample values of the test statistic in the central nonrejec-

tion area are compatible with the null hypothesis and are not taken as evidence against the null

hypothesis being true. Thus, the rejection rule is

When testing the null hypothesis H0∶βk = c against the alternative hypothesis H1∶βk ≠ c,

reject the null hypothesis and accept the alternative hypothesis if t ≤ t(α/2, N−2) or if

t ≥ t(1−α/2, N−2).

We do not reject the null hypothesis if t(α/2, N−2)< t < t(1−α/2, N−2).

Reject H0:βk = c
Accept H1:βk ≠ c

Reject H0:βk = c
Accept H1:βk ≠ c

α/2 α/2

tc = t(1–α/2, N–2)

Do not reject
H0:βk = c

f(t)

t

t(m)

–tc = t(α/2, N–2)

FIGURE 3.4 Rejection region for a test of H0∶𝛃k = c against H1∶𝛃k ≠ c.



�

� �

�

3.4 Examples of Hypothesis Tests 123

3.4 Examples of Hypothesis Tests
We illustrate the mechanics of hypothesis testing using the food expenditure model. We give

examples of right-tail, left-tail, and two-tail tests. In each case, we will follow a prescribed set of

steps, closely following the list of required components for all hypothesis tests listed at the begin-

ning of Section 3.2. A standard procedure for all hypothesis-testing problems and situations is

Step-by-Step Procedure for Testing Hypotheses

1. Determine the null and alternative hypotheses.

2. Specify the test statistic and its distribution if the null hypothesis is true.

3. Select α and determine the rejection region.

4. Calculate the sample value of the test statistic.

5. State your conclusion.

E X A M P L E 3.2 Right-Tail Test of Significance

Usually, our first concern is whether there is a relationship

between the variables, as we have specified in our model.

If β2 = 0, then there is no linear relationship between food

expenditure and income. Economic theory suggests that food

is a normal good and that as income increases food expendi-

ture will also increase and thus that β2 > 0. The least squares

estimate of β2 is b2 = 10.21, which is certainly greater than

zero. However, simply observing that the estimate has the

correct sign does not constitute scientific proof. We want to

determine whether there is convincing, or significant, statisti-

cal evidence that would lead us to conclude that β2 > 0. When

testing the null hypothesis that a parameter is zero, we are ask-

ing if the estimate b2 is significantly different from zero, and

the test is called a test of significance.

A statistical test procedure cannot prove the truth of

a null hypothesis. When we fail to reject a null hypothesis,

all the hypothesis test can establish is that the information

in a sample of data is compatible with the null hypothesis.

Conversely, a statistical test can lead us to reject the null

hypothesis, with only a small probability α of rejecting the

null hypothesis when it is actually true. Thus, rejecting a null

hypothesis is a stronger conclusion than failing to reject it.

For this reason, the null hypothesis is usually stated in such a

way that if our theory is correct, then we will reject the null

hypothesis. In our example, economic theory implies that

there should be a positive relationship between income and

food expenditure. We would like to establish that there is

statistical evidence to support this theory using a hypothesis

test. With this goal, we set up the null hypothesis that there

is no relation between the variables, H0∶β2 = 0. In the

alternative hypothesis, we put the conjecture that we would

like to establish, H1∶β2 > 0. If we then reject the null hypoth-

esis, we can make a direct statement, concluding that β2 is

positive, with only a small (α) probability that we are in error.

The steps of this hypothesis test are as follows:

1. The null hypothesis is H0∶β2 = 0. The alternative hypoth-

esis is H1∶β2 > 0.

2. The test statistic is (3.7). In this case, c = 0, so t =
b2∕se

(
b2

)
∼ t(N−2) if the null hypothesis is true.

3. Let us select α = 0.05. The critical value for the right-tail

rejection region is the 95th percentile of the t-distribution

with N – 2 = 38 degrees of freedom, t(0.95, 38) = 1.686.

Thus, we will reject the null hypothesis if the calculated

value of t ≥ 1.686. If t < 1.686, we will not reject the null

hypothesis.

4. Using the food expenditure data, we found that

b2 = 10.21 with standard error se
(
b2

)
= 2.09. The value

of the test statistic is

t =
b2

se
(
b2

) = 10.21

2.09
= 4.88

5. Since t = 4.88 > 1.686, we reject the null hypothesis

that β2 = 0 and accept the alternative that β2 > 0. That

is, we reject the hypothesis that there is no relationship

between income and food expenditure and conclude that

there is a statistically significant positive relationship

between household income and food expenditure.

The last part of the conclusion is important. When you report

your results to an audience, you will want to describe the
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outcome of the test in the context of the problem you are

investigating, not just in terms of Greek letters and symbols.

What if we had not been able to reject the null

hypothesis in this example? Would we have concluded that

economic theory is wrong and that there is no relationship

between income and food expenditure? No. Remember that

failing to reject a null hypothesis does not mean that the null

hypothesis is true.

E X A M P L E 3.3 Right-Tail Test of an Economic Hypothesis

Suppose that the economic profitability of a new supermarket

depends on households spending more than $5.50 out of each

additional $100 weekly income on food and that construction

will not proceed unless there is strong evidence to this effect.

In this case, the conjecture we want to establish, the one

that will go in the alternative hypothesis, is that β2 > 5.5. If

β2 ≤ 5.5, then the supermarket will be unprofitable and the

owners would not want to build it. The least squares estimate

of β2 is b2 = 10.21, which is greater than 5.5. What we want

to determine is whether there is convincing statistical evi-

dence that would lead us to conclude, based on the available

data, that β2 > 5.5. This judgment is based on not only the

estimate b2 but also its precision as measured by se
(
b2

)
.

What will the null hypothesis be? We have been

stating null hypotheses as equalities, such as β2 = 5.5. This

null hypothesis is too limited because it is theoretically

possible that β2 < 5.5. It turns out that the hypothesis testing

procedure for testing the null hypothesis that H0∶β2 ≤ 5.5

against the alternative hypothesis H1∶β2 > 5.5 is exactly
the same as testing H0∶β2 = 5.5 against the alternative

hypothesis H1∶β2 > 5.5. The test statistic and rejection

region are exactly the same. For a right-tail test, you can

form the null hypothesis in either of these ways depending

on the problem at hand.

The steps of this hypothesis test are as follows:

1. The null hypothesis is H0∶β2 ≤ 5.5. The alternative

hypothesis is H1∶β2 > 5.5.

2. The test statistic t =
(
b2 – 5.5

)
∕se

(
b2

)
∼ t(N−2) if the null

hypothesis is true.

3. Let us select α = 0.01. The critical value for the right-tail

rejection region is the 99th percentile of the t-distribution

with N − 2 = 38 degrees of freedom, t(0.99, 38) = 2.429.

We will reject the null hypothesis if the calculated value

of t ≥ 2.429. If t < 2.429, we will not reject the null

hypothesis.

4. Using the food expenditure data, b2 = 10.21 with stan-

dard error se
(
b2

)
= 2.09. The value of the test statistic

is

t =
b2 − 5.5

se
(
b2

) = 10.21 − 5.5

2.09
= 2.25

5. Since t = 2.25 < 2.429, we do not reject the null hypoth-

esis that β2 ≤ 5.5. We are not able to conclude that the

new supermarket will be profitable and will not begin

construction.

In this example, we have posed a situation where the choice

of the level of significance α becomes of great importance.

A construction project worth millions of dollars depends on

having convincing evidence that households will spend more

than $5.50 out of each additional $100 income on food.

Although the “usual” choice is α = 0.05, we have chosen a

conservative value of α = 0.01 because we seek a test that

has a low chance of rejecting the null hypothesis when it

is actually true. Recall that the level of significance of a

test defines what we mean by an unlikely value of the test

statistic. In this example, if the null hypothesis is true, then

building the supermarket will be unprofitable. We want the

probability of building an unprofitable market to be very

small, and therefore, we want the probability of rejecting

the null hypothesis when it is true to be very small. In

each real-world situation, the choice of α must be made on

an assessment of risk and the consequences of making an

incorrect decision.

A CEO unwilling to make a decision based on the avail-

able evidence may well order a new and larger sample of

data to be analyzed. Recall that as the sample size increases,

the least squares estimator becomes more precise (as mea-

sured by estimator variance), and consequently, hypothesis

tests become more powerful tools for statistical inference.
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E X A M P L E 3.4 Left-Tail Test of an Economic Hypothesis

For completeness, we will illustrate a test with the rejection

region in the left tail. Consider the null hypothesis that

β2 ≥ 15 and the alternative hypothesis β2 < 15. Recall our

memory trick for determining the location of the rejection

region for a t-test. The rejection region is in the direction of

the arrow < in the alternative hypothesis. This fact tells us

that the rejection region is in the left tail of the t-distribution.

The steps of this hypothesis test are as follows:

1. The null hypothesis is H0∶β2 ≥ 15. The alternative

hypothesis is H1∶β2 < 15.

2. The test statistic t =
(
b2 − 15

)
∕se

(
b2

)
∼ t(N−2) if the null

hypothesis is true.

3. Let us select α = 0.05. The critical value for the left-tail

rejection region is the 5th percentile of the t-distribution

with N – 2 = 38 degrees of freedom, t(0.05, 38) = −1.686.

We will reject the null hypothesis if the calculated value

of t ≤ −1.686. If t > −1.686, we will not reject the null

hypothesis. A left-tail rejection region is illustrated in

Figure 3.3.

4. Using the food expenditure data, b2 = 10.21 with stan-

dard error se
(
b2

)
= 2.09. The value of the test statistic

is

t =
b2 − 15

se
(
b2

) = 10.21 − 15

2.09
= −2.29

5. Since t = −2.29 < −1.686, we reject the null hypothesis

that β2 ≥ 15 and accept the alternative that β2 < 15. We

conclude that households spend less than $15 from each

additional $100 income on food.

E X A M P L E 3.5 Two-Tail Test of an Economic Hypothesis

A consultant voices the opinion that based on other simi-

lar neighborhoods the households near the proposed market

will spend an additional $7.50 per additional $100 income. In

terms of our economic model, we can state this conjecture as

the null hypothesis β2 = 7.5. If we want to test whether this

is true or not, then the alternative is that β2 ≠ 7.5. This alter-

native makes no claim about whether β2 is greater than 7.5 or

less than 7.5, simply that it is not 7.5. In such cases, we use a

two-tail test, as follows:

1. The null hypothesis is H0∶β2 = 7.5. The alternative

hypothesis is H1∶β2 ≠ 7.5.

2. The test statistic t =
(
b2 – 7.5

)
∕se

(
b2

)
∼ t(N−2) if the null

hypothesis is true.

3. Let us select α = 0.05. The critical values for this two-tail

test are the 2.5-percentile t(0.025, 38) = −2.024 and the

97.5-percentile t(0.975, 38) = 2.024. Thus, we will reject

the null hypothesis if the calculated value of t ≥ 2.024

or if t ≤ −2.024. If −2.024 < t < 2.024, then we will not

reject the null hypothesis.

4. For the food expenditure data, b2 = 10.21 with standard

error se
(
b2

)
= 2.09. The value of the test statistic is

t =
b2 − 7.5

se
(
b2

) = 10.21 − 7.5

2.09
= 1.29

5. Since –2.204 < t = 1.29 < 2.204, we do not reject the

null hypothesis that β2 = 7.5. The sample data are

consistent with the conjecture households will spend an

additional $7.50 per additional $100 income on food.

We must avoid reading into this conclusion more than it

means. We do not conclude from this test that β2 = 7.5,

only that the data are not incompatible with this parameter

value. The data are also compatible with the null hypothe-

ses H0∶β2 = 8.5 (t = 0.82), H0∶β2 = 6.5 (t = 1.77), and

H0∶β2 = 12.5 (t = −1.09). A hypothesis test cannot be used

to prove that a null hypothesis is true.

There is a trick relating two-tail tests and confidence

intervals that is sometimes useful. Let q be a value within

a 100(1 − α)% confidence interval, so that if tc = t(1−α/2, N−2),

then

bk − tcse
(
bk
)
≤ q ≤ bk + tcse

(
bk
)

If we test the null hypothesis H0∶βk = q against H1∶βk
≠ q, when q is inside the confidence interval, then we will

not reject the null hypothesis at the level of significance α.

If q is outside the confidence interval, then the two-tail test

will reject the null hypothesis. We do not advocate using

confidence intervals to test hypotheses, they serve a different

purpose, but if you are given a confidence interval, this trick

is handy.
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E X A M P L E 3.6 Two-Tail Test of Significance

While we are confident that a relationship exists between food

expenditure and income, models are often proposed that are

more speculative, and the purpose of hypothesis testing is to

ascertain whether a relationship between variables exists or

not. In this case, the null hypothesis is β2 = 0; that is, no linear

relationship exists between x and y. The alternative is β2 ≠ 0,

which would mean that a relationship exists but that there

may be either a positive or negative association between the

variables. This is the most common form of a test of signifi-
cance. The test steps are as follows:

1. The null hypothesis is H0∶β2 = 0. The alternative hypoth-

esis is H1∶β2 ≠ 0.

2. The test statistic t = b2∕se
(
b2

)
∼ t(N−2) if the null hypoth-

esis is true.

3. Let us select α = 0.05. The critical values for this

two-tail test are the 2.5-percentile t(0.025, 38) = −2.024

and the 97.5-percentile t(0.975, 38) = 2.024. We will reject

the null hypothesis if the calculated value of t ≥ 2.024 or
if t ≤ −2.024. If −2.024 < t < 2.024, we will not reject

the null hypothesis.

4. Using the food expenditure data, b2 = 10.21 with stan-

dard error se
(
b2

)
= 2.09. The value of the test statistic is

t = b2∕se
(
b2

)
= 10.21∕2.09 = 4.88.

5. Since t = 4.88 > 2.024, we reject the null hypothesis that

β2 = 0 and conclude that there is a statistically significant

relationship between income and food expenditure.

Two points should be made about this result. First, the value

of the t-statistic we computed in this two-tail test is the same

as the value computed in the one-tail test of significance in

Example 3.2. The difference between the two tests is the

rejection region and the critical values. Second, the two-tail

test of significance is something that should be done each

time a regression model is estimated, and consequently,

computer software automatically calculates the t-values

for null hypotheses that the regression parameters are zero.

Refer back to Figure 2.9. Consider the portion that reports

the estimates:

Standard
Variable Coefficient Error t-Statistic Prob.

C 83.41600 43.41016 1.921578 0.0622

INCOME 10.20964 2.093264 4.877381 0.0000

Note that there is a column-labeled t-statistic. This is the

t-statistic value for the null hypothesis that the corresponding

parameter is zero. It is calculated as t = bk∕se
(
bk
)
. Dividing

the least squares estimates (Coefficient) by their standard

errors (Std. error) gives the t-statistic values (t-statistic)

for testing the hypothesis that the parameter is zero. The

t-statistic value for the variable INCOME is 4.877381, which

is relevant for testing the null hypothesis H0∶β2 = 0. We

have rounded this value to 4.88 in our discussions.

The t-value for testing the hypothesis that the intercept

is zero equals 1.92. The α = 0.05 critical values for these

two-tail tests are t(0.025, 38) = −2.024 and t(0.975, 38) = 2.024

whether we are testing a hypothesis about the slope or inter-

cept, so we fail to reject the null hypothesis that H0∶β1 = 0

given the alternative H1∶β1 ≠ 0.

The final column, labeled “Prob.,” is the subject of the

following section.

Remark
“Statistically significant” does not necessarily imply “economically significant.” For

example, suppose that the CEO of a supermarket chain plans a certain course of action

if β2 ≠ 0. Furthermore, suppose that a large sample is collected from which we obtain

the estimate b2 = 0.0001 with se
(
b2

)
= 0.00001, yielding the t-statistic t = 10.0. We

would reject the null hypothesis that β2 = 0 and accept the alternative that β2 ≠ 0. Here,

b2 = 0.0001 is statistically different from zero. However, 0.0001 may not be “economically”

different from zero, and the CEO may decide not to proceed with the plans. The message

here is that one must think carefully about the importance of a statistical analysis before

reporting or using the results.

3.5 The p-Value
When reporting the outcome of statistical hypothesis tests, it has become standard practice to

report the p-value (an abbreviation for probability value) of the test. If we have the p-value of a
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test, p, we can determine the outcome of the test by comparing the p-value to the chosen level of

significance, α, without looking up or calculating the critical values. The rule is

p-Value Rule
Reject the null hypothesis when the p-value is less than, or equal to, the level of significance

α. That is, if p ≤ α, then reject H0. If p > α, then do not reject H0.

If you have chosen the level of significance to be α = 0.01, 0.05, 0.10, or any other value, you

can compare it to the p-value of a test and then reject, or not reject, without checking the critical

value. In written works, reporting the p-value of a test allows the reader to apply his or her own

judgment about the appropriate level of significance.

How the p-value is computed depends on the alternative. If t is the calculated value of the

t-statistic, then

• if H1∶βk > c, p = probability to the right of t
• if H1∶βk < c, p = probability to the left of t
• if H1∶βk ≠ c, p = sum of probabilities to the right of |t| and to the left of −|t|

Memory Trick
The direction of the alternative indicates the tail(s) of the distribution in which the p-value

falls.

E X A M P L E 3.3 (continued) p-Value for a Right-Tail Test

In Example 3.3, we tested the null hypothesis H0∶β2 ≤ 5.5

against the one-sided alternative H1∶β2 > 5.5. The calculated

value of the t-statistic was

t =
b2 − 5.5

se
(
b2

) = 10.21 − 5.5

2.09
= 2.25

In this case, since the alternative is “greater than” (>), the

p-value of this test is the probability that a t-random variable

with N – 2 = 38 degrees of freedom is greater than 2.25, or

p = P
[
t(38) ≥ 2.25

]
= 0.0152.

This probability value cannot be found in the usual

t-table of critical values, but it is easily found using the

computer. Statistical software packages, and spreadsheets

such as Excel, have simple commands to evaluate the cumu-
lative distribution function (cdf ) (see Appendix B.1) for

a variety of probability distributions. If FX(x) is the cdf for a

random variable X, then for any value x = c, the cumulative

probability is P[X ≤ c] = FX(c). Given such a function for

the t-distribution, we compute the desired p-value as

p = P
[
t(38) ≥ 2.25

]
= 1 − P

[
t(38) ≤ 2.25

]
= 1 − 0.9848

= 0.0152

Following the p-value rule, we conclude that at α = 0.01 we

do not reject the null hypothesis. If we had chosen α = 0.05,

we would reject the null hypothesis in favor of the alternative.

The logic of the p-value rule is shown in Figure 3.5. The

probability of obtaining a t-value greater than 2.25 is 0.0152,

p = P
[
t(38) ≥ 2.25

]
= 0.0152. The 99th percentile t(0.99, 38),

which is the critical value for a right-tail test with the level

of significance of α = 0.01 must fall to the right of 2.25.

This means that t = 2.25 does not fall in the rejection region

if α = 0.01 and we will not reject the null hypothesis at this

level of significance. This is consistent with the p-value rule:

When the p-value (0.0152) is greater than the chosen level

of significance (0.01), we do not reject the null hypothesis.

On the other hand, the 95th percentile t(0.95, 38), which

is the critical value for a right-tail test with α = 0.05, must

be to the left of 2.25. This means that t = 2.25 falls in the

rejection region, and we reject the null hypothesis at the level

of significance α = 0.05. This is consistent with the p-value
rule: When the p-value (0.0152) is less than or equal to the

chosen level of significance (0.05), we will reject the null

hypothesis.
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0 1 2 3 t

p = 0.0152

t = 2.25

t(38)

t(0.95, 38) = 1.686 t(0.99, 38) = 2.429

–3 –2 –1

FIGURE 3.5 The p-value for a right-tail test.

E X A M P L E 3.4 (continued) p-Value for a Left-Tail Test

In Example 3.4, we carried out a test with the rejection

region in the left tail of the t-distribution. The null hypoth-

esis was H0∶β2 ≥ 15, and the alternative hypothesis was

H1∶β2 < 15. The calculated value of the t-statistic was

t = –2.29. To compute the p-value for this left-tail test, we

calculate the probability of obtaining a t-statistic to the

left of −2.29. Using your computer software, you will find

this value to be P
[
t(38) ≤ −2.29

]
= 0.0139. Following the

p-value rule, we conclude that at α = 0.01, we do not reject

the null hypothesis. If we choose α = 0.05, we will reject the

null hypothesis in favor of the alternative. See Figure 3.6 to

see this graphically. Locate the 1st and 5th percentiles. These

will be the critical values for left-tail tests with α = 0.01 and

α = 0.05 levels of significance. When the p-value (0.0139)

is greater than the level of significance (α = 0.01), then

the t-value −2.29 is not in the test rejection region. When

the p-value (0.0139) is less than or equal to the level of

significance (α = 0.05), then the t-value −2.29 is in the test

rejection region.

p = 0.0139

t = –2.29

t(38)

–3 –2 –1 0 1 2 3 t

t(0.05, 38) = –1.686t(0.01, 38) = –2.429

FIGURE 3.6 The p-value for a left-tail test.
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E X A M P L E 3.5 (continued) p-Value for a Two-Tail Test

For a two-tail test, the rejection region is in the two tails of the

t-distribution, and the p-value is similarly calculated in the

two tails of the distribution. In Example 3.5, we tested the null

hypothesis that β2 = 7.5 against the alternative hypothesis

β2 ≠ 7.5. The calculated value of the t-statistic was t = 1.29.

For this two-tail test, the p-value is the combined probability

to the right of 1.29 and to the left of −1.29:

p = P
[
t(38) ≥ 1.29

]
+ P

[
t(38) ≤ −1.29

]
= 0.2033

This calculation is depicted in Figure 3.7. Once the p-value

is obtained, its use is unchanged. If we choose α = 0.05,

α = 0.10, or even α = 0.20, we will fail to reject the null

hypothesis because p > α.

At the beginning of this section, we stated the following

rule for computing p-values for two-tail tests: if H1∶βk ≠ c,

p = sum of probabilities to the right of |t| and to the left of

−|t|. The reason for the use of absolute values in this rule

is that it will apply equally well if the value of the t-statistic

turns out to be positive or negative.

–3 –2 –1 0 1 2 3 t

p  2 =
0.10165 

p  2 =
0.10165 

p = 0.2033 

t = 1.29

t(38)

t = –1.29

t(0.975, 38) = 2.024 t(0.025, 38) = –2.024 

FIGURE 3.7 The p-value for a two-tail test of significance.

E X A M P L E 3.6 (continued) p-Value for a Two-Tail Test of Significance

All statistical software computes the p-value for the two-tail

test of significance for each coefficient when a regression

analysis is performed. In Example 3.6, we discussed testing

the null hypothesis H0∶β2 = 0 against the alternative hypoth-

esis H1∶β2 ≠ 0. For the calculated value of the t-statistic

t = 4.88, the p-value is

p = P
[
t(38) ≥ 4.88

]
+ P

[
t(38) ≤ −4.88

]
= 0.0000

Your software will automatically compute and report this

p-value for a two-tail test of significance. Refer back to

Figure 2.9 and consider just the portion reporting the

estimates:

Standard
Variable Coefficient Error t-Statistic Prob.

C 83.41600 43.41016 1.921578 0.0622

INCOME 10.20964 2.093264 4.877381 0.0000

Next to each t-statistic value is the two-tail p-value, which is

labeled “Prob.” by the EViews software. Other software pack-

ages will use similar names. When inspecting computer out-

put, we can immediately decide if an estimate is statistically

significant (statistically different from zero using a two-tail

test) by comparing the p-value to whatever level of signif-

icance we care to use. The estimated intercept has p-value

0.0622, so it is not statistically different from zero at the level

of significance α = 0.05, but it is statistically significant if

α = 0.10.

The estimated coefficient for income has a p-value that is

zero to four places. Thus, p ≤ α = 0.01 or even α = 0.0001,

and thus, we reject the null hypothesis that income has no

effect on food expenditure at these levels of significance. The

p-value for this two-tail test of significance is not actually

zero. If more places are used, then p = 0.00001946. Regres-

sion software usually does not print out more than four places

because in practice levels of significance less than α = 0.001

are rare.

3.6 Linear Combinations of Parameters
So far, we have discussed statistical inference (point estimation, interval estimation, and hypoth-

esis testing) for a single parameter, β1 or β2. More generally, we may wish to estimate and test

hypotheses about a linear combination of parameters λ = c1β1 + c2β2, where c1 and c2 are con-

stants that we specify. One example is if we wish to estimate the expected value of a dependent
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variable E(y|x) when x takes some specific value, such as x = x0. In this case, c1 = 1 and c2 = x0,

so that, λ = c1β1 + c2β2 = β1 + x0β2 = E
(
y|x = x0

)
.

Under assumptions SR1–SR5, the least squares estimators b1 and b2 are the best linear

unbiased estimators of β1 and β2. It is also true that λ̂ = c1b1 + c2b2 is the best linear unbiased

estimator of λ = c1β1 + c2β2. The estimator λ̂ is unbiased because

E
(

λ̂|x
)

= E
(
c1b1 + c2b2|x

)
= c1E

(
b1|x

)
+ c2E

(
b2|x

)
= c1β1 + c2β2 = λ

Then, using the law of iterated expectations, E
(

λ̂
)

= Ex

[

E
(

λ̂|x
)]

= Ex[λ] = λ. To find the vari-

ance of λ̂, recall from the Probability Primer, Section P.5.6, that if X and Y are random variables,

and if a and b are constants, then the variance var(aX + bY ) is given in equation (P.20) as

var(aX + bY) = a2var(X) + b2var(Y) + 2ab cov(X,Y)

In the estimator
(
c1b1 + c2b2

)
, both b1 and b2 are random variables, as we do not know what their

values will be until a sample is drawn and estimates calculated. Applying (P.20), we have

var
(

λ̂|x
)

= var
(
c1b1 + c2b2|x

)
= c2

1
var

(
b1|x

)
+ c2

2
var

(
b2|x

)
+ 2c1c2cov

(
b1, b2|x

)
(3.8)

The variances and covariances of the least squares estimators are given in (2.14)–(2.16). We

estimate var
(

λ̂|x
)

= var
(
c1b1 + c2b2|x

)
by replacing the unknown variances and covariances

with their estimated variances and covariances in (2.20)–(2.22). Then

var
⋀

(

λ̂|x
)

= var
⋀(

c1b1 + c2b2|x
)
= c2

1
var
⋀(

b1|x
)
+ c2

2
var
⋀(

b2|x
)
+ 2c1c2cov

⋀(
b1, b2|x

)
(3.9)

The standard error of λ̂ = c1b1 + c2b2 is the square root of the estimated variance,

se
(

λ̂
)

= se
(
c1b1 + c2b2

)
=
√

var
⋀(

c1b1 + c2b2|x
)

(3.10)

If in addition SR6 holds, or if the sample is large, the least squares estimators b1 and b2 have

normal distributions. It is also true that linear combinations of normally distributed variables are

normally distributed, so that

λ̂|x = c1b1 + c2b2 ∼ N
[

λ, var
(

λ̂|x
)]

where var
(

λ̂|x
)

is given in (3.8). You may be thinking of how long such calculations will take

using a calculator, but don’t worry. Most computer software will do the calculations for you. Now

it’s time for an example.

E X A M P L E 3.7 Estimating Expected Food Expenditure

An executive might ask of the research staff, “Give me an

estimate of average weekly food expenditure by households

with $2,000 weekly income.” Interpreting the executive’s

word “average” to mean “expected value,” for the food

expenditure model this means estimating

E(FOOD_EXP|INCOME) = β1 + β2INCOME

Recall that we measured income in $100 units in this

example, so a weekly income of $2,000 corresponds to

INCOME = 20. The executive is requesting an estimate of

E(FOOD_EXP|INCOME = 20) = β1 + β220

which is a linear combination of the parameters.

Using the 40 observations in the data file food, in

Section 2.3.2, we obtained the fitted regression,

FOOD_EXP
⋀

= 83.4160 + 10.2096INCOME

The point estimate of average weekly food expenditure for a

household with $2,000 income is

E(FOOD_EXP|INCOME = 20)
⋀

= b1 + b220

= 83.4160 + 10.2096(20) = 287.6089

We estimate that the expected food expenditure by a house-

hold with $2,000 income is $287.61 per week.
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E X A M P L E 3.8 An Interval Estimate of Expected Food Expenditure

If assumption SR6 holds, and given x, the estimator λ̂ has a

normal distribution. We can form a standard normal random

variable as

Z = λ̂ − λ
√

var
(

λ̂|x
)
∼ N(0, 1)

Replacing the true variance in the denominator with the esti-

mated variance, we form a pivotal t-statistic

t = λ̂ − λ
√

var
⋀

(

λ̂
)
= λ̂ − λ

se
(

λ̂
) =

(
c1b1 + c2b2

)
−
(
c1β1 + c2β2

)

se
(
c1b1 + c2b2

)

∼ t(N−2) (3.11)

If tc is the 1 – α∕2 percentile value from the t(N−2) distribu-

tion, then P
(
−tc ≤ t ≤ tc

)
= 1 − α. Substitute (3.11) for t and

rearrange to obtain

P
[(

c1b1 + c2b2

)
− tcse

(
c1b1 + c2b2

)
≤ c1β1 + c2β2

≤
(
c1b1 + c2b2

)
+ tcse

(
c1b1 + c2b2

) ]

= 1 − α

Thus, a 100(1 − α)% interval estimate for c1β1 + c2β2 is
(
c1b1 + c2b2

)
± tcse

(
c1b1 + c2b2

)

In Example 2.5, we obtained the estimated covariance

matrix

[
var
⋀(

b1

)
cov
⋀(

b1, b2

)

cov
⋀(

b1, b2

)
var
⋀(

b2

)

]

=
C INCOME

C 1884.442 −85.9032

INCOME −85.9032 4.3818

To obtain the standard error for b1 + b220, we first calculate

the estimated variance

var
⋀(

b1 + 20b2

)
= var
⋀(

b1

)
+
(
202 × var

⋀(
b2

))

+
(
2 × 20 × cov

⋀(
b1, b2

))

= 1884.442 +
(
202 × 4.3818

)

+ (2 × 20 ×(−85.9032))

= 201.0169

Given var
⋀(

b1 + 20b2

)
= 201.0169, the corresponding stan-

dard error is2

se
(
b1 + 20b2

)
=
√

var
⋀(

b1 + 20b2

)
=
√

201.0169

= 14.1780

A 95% interval estimate of E(FOOD_EXP|INCOME =
20) = β1 + β2(20) is

(
b1 + b220

)
± t(0.975,38)se

(
b1 + b220

)
or

[287.6089 − 2.024(14.1780) , 287.6089 + 2.024(14.1780)]

=[258.91, 316.31]

We estimate with 95% confidence that the expected food

expenditure by a household with $2,000 income is between

$258.91 and $316.31.

3.6.1 Testing a Linear Combination of Parameters
So far, we have tested hypotheses involving only one regression parameter at a time. That is, our

hypotheses have been of the form H0∶βk = c. A more general linear hypothesis involves both

parameters and may be stated as

H0∶c1β1 + c2β2 = c0 (3.12a)

where c0, c1, and c2 are specified constants, with c0 being the hypothesized value. Despite the

fact that the null hypothesis involves both coefficients, it still represents a single hypothesis to be

tested using a t-statistic. Sometimes, it is written equivalently in implicit form as

H0∶
(
c1β1 + c2β2

)
− c0 = 0 (3.12b)

............................................................................................................................................

2The value 201.0169 was obtained using computer software. If you do the calculation by hand using the provided

numbers, you obtain 201.034. Do not be alarmed if you obtain small differences like this occasionally, as it most likely

is the difference between a computer-generated solution and a hand calculation.
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The alternative hypothesis for the null hypothesis in (3.12a) might be

i. H1∶c1β1 + c2β2 ≠ c0 leading to a two-tail t-test

ii. H1∶c1β1 + c2β2 > c0 leading to a right-tail t-test [Null may be “≤”]

iii. H1∶c1β1 + c2β2 < c0 leading to a left-tail t-test [Null may be “≥”]

If the implicit form is used, the alternative hypothesis is adjusted as well.

The test of the hypothesis (3.12) uses the pivotal t-statistic

t =
(
c1b1 + c2b2

)
− c0

se
(
c1b1 + c2b2

) ∼ t(N−2) if the null hypothesis is true (3.13)

The rejection regions for the one- and two-tail alternatives (i)–(iii) are the same as those described

in Section 3.3, and conclusions are interpreted the same way as well.

The form of the t-statistic is very similar to the original specification in (3.7). In the

numerator,
(
c1b1 + c2b2

)
is the best linear unbiased estimator of

(
c1β1 + c2β2

)
, and if the errors

are normally distributed, or if we have a large sample, this estimator is normally distributed

as well.

E X A M P L E 3.9 Testing Expected Food Expenditure

The food expenditure model introduced in Section 2.1 and

used as an illustration throughout provides an excellent

example of how the linear hypothesis in (3.12) might

be used in practice. For most medium and larger cities,

there are forecasts of income growth for the coming year.

A supermarket or food retail store of any type will consider

this before a new facility is built. Their question is, if income

in a locale is projected to grow at a certain rate, how much

of that will be spent on food items? An executive might say,

based on years of experience, “I expect that a household

with $2,000 weekly income will spend, on average, more

than $250 a week on food.” How can we use econometrics

to test this conjecture?

The regression function for the food expenditure

model is

E(FOOD_EXP|INCOME) = β1 + β2INCOME

The executive’s conjecture is that

E(FOOD_EXP|INCOME = 20) = β1 + β220 > 250

To test the validity of this statement, we use it as the alterna-

tive hypothesis

H1∶β1 + β220 > 250, or H1∶β1 + β220 − 250 > 0

The corresponding null hypothesis is the logical alternative

to the executive’s statement

H0∶β1 + β220 ≤ 250, or H0∶β1 + β220 − 250 ≤ 0

Notice that the null and alternative hypotheses are in the same

form as the general linear hypothesis with c1 = 1, c2 = 20,

and c0 = 250.

The rejection region for a right-tail test is illustrated

in Figure 3.2. For a right-tail test at the α = 0.05 level of

significance, the t-critical value is the 95th percentile of the

t(38) distribution, which is t(0.95, 38) = 1.686. If the calculated

t-statistic value is greater than 1.686, we will reject the null

hypothesis and accept the alternative hypothesis, which in

this case is the executive’s conjecture.

Computing the t-statistic value

t =
(
b1 + 20b2

)
− 250

se
(
b1 + 20b2

)

= (83.4160 + 20 × 10.2096) − 250

14.1780

= 287.6089 − 250

14.1780
= 37.6089

14.1780
= 2.65

Since t = 2.65 > tc = 1.686, we reject the null hypothesis

that a household with weekly income of $2,000 will spend

$250 per week or less on food and conclude that the

executive’s conjecture that such households spend more than

$250 is correct, with the probability of Type I error 0.05.

In Example 3.8, we estimated that a household with

$2,000 weekly income will spend $287.6089, which is

greater than the executive’s speculated value of $250. How-

ever, simply observing that the estimated value is greater

than $250 is not a statistical test. It might be numerically

greater, but is it significantly greater? The t-test takes

into account the precision with which we have estimated

this expenditure level and also controls the probability of

Type I error.
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3.7 Exercises

3.7.1 Problems

3.1 There were 64 countries in 1992 that competed in the Olympics and won at least one medal. Let

MEDALS be the total number of medals won, and let GDPB be GDP (billions of 1995 dollars).

A linear regression model explaining the number of medals won is MEDALS = β1 + β2GDPB + e.

The estimated relationship is

MEDALS
⋀

= b1 + b2GDPB = 7.61733 + 0.01309GDPB
(se) (2.38994) (0.00215) (XR3.1)

a. We wish to test the hypothesis that there is no relationship between the number of medals won and

GDP against the alternative there is a positive relationship. State the null and alternative hypotheses

in terms of the model parameters.

b. What is the test statistic for part (a) and what is its distribution if the null hypothesis is true?

c. What happens to the distribution of the test statistic for part (a) if the alternative hypothesis is

true? Is the distribution shifted to the left or right, relative to the usual t-distribution? [Hint:
What is the expected value of b2 if the null hypothesis is true, and what is it if the alternative is

true?]

d. For a test at the 1% level of significance, for what values of the t-statistic will we reject the null

hypothesis in part (a)? For what values will we fail to reject the null hypothesis?

e. Carry out the t-test for the null hypothesis in part (a) at the 1% level of significance. What is your

economic conclusion? What does 1% level of significance mean in this example?

3.2 There were 64 countries in 1992 that competed in the Olympics and won at least one medal. Let

MEDALS be the total number of medals won, and let GDPB be GDP (billions of 1995 dollars). A

linear regression model explaining the number of medals won is MEDALS = β1 + β2GDPB + e. The

estimated relationship is given in equation (XR3.1) in Exercise 3.1.

a. We wish to test the null hypothesis that a one-billion dollar increase in GDP leads to an increase

in average, or expected, number of medals won by 0.015, against the alternative that it does not.

State the null and alternative hypotheses in terms of the model parameters.

b. What is the test statistic for part (a) and what is its distribution if the null hypothesis is true?

c. What happens to the distribution of the test statistic in part (a) if the alternative hypothesis is true?

Is the distribution shifted to the left or right, relative to the usual t-distribution, or is the direction

of the shift uncertain? [Hint: What is the expected value of b2 if the null hypothesis is true, and

what is it if the alternative is true?]

d. For a test at the 10% level of significance, for what values of the t-statistic, will we reject the null

hypothesis in part (a)? For what values, will we fail to reject the null hypothesis?

e. Carry out the t-test for the null hypothesis in part (a). What is your economic conclusion?

f. If we carry out the test in part (a) at the 5% level of significance, what do we conclude? At the 1%

level of significance, what do we conclude?

g. Carry out the same test at the 5% level of significance, but changing the null hypothesis value of

interest to 0.016, then 0.017. What is the calculated t-statistic value in each case? Which hypotheses

do you reject, and which do you fail to reject?

3.3 There were 64 countries in 1992 that competed in the Olympics and won at least one medal. Let

MEDALS be the total number of medals won, and let GDPB be GDP (billions of 1995 dollars). A

linear regression model explaining the number of medals won is MEDALS = β1 + β2GDPB + e. The

estimated relationship is given in equation (XR3.1) in Exercise 3.1.

The estimated covariance between the slope and intercept estimators is −0.00181 and the esti-

mated error variance is σ̂2 = 320.336. The sample mean of GDPB is GDPB = 390.89 and the sample

variance of GDPB is s2
GDPB = 1099615.

a. Estimate the expected number of medals won by a country with GDPB = 25.

b. Calculate the standard error of the estimate in (a) using for the variance var
⋀(

b1

)
+(25)2var

⋀(
b2

)
+

(2)(25) cov
⋀(

b1, b2

)
.
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c. Calculate the standard error of the estimate in (a) using for the variance σ̂2

{

(1∕N) +
[(

25 − GDPB
)2/(

(N − 1) s2
GDPB

)
]}

.

d. Construct a 95% interval estimate for the expected number of medals won by a country with

GDPB = 25.

e. Construct a 95% interval estimate for the expected number of medals won by a country with

GDPB = 300. Compare and contrast this interval estimate to that in part (d). Explain the differences

you observe.

3.4 Assume that assumptions SR1–SR6 hold for the simple linear regression model, yi = β1 + β2xi + ei,

i = 1,… ,N. Generally, as the sample size N becomes larger, confidence intervals become narrower.

a. Is a narrower confidence interval for a parameter, such as β2, desirable? Explain why or why not.

b. Give two specific reasons why, as the sample size gets larger, a confidence interval for β2 tends to

become narrower. The reasons should relate to the properties of the least squares estimator and/or

interval estimation procedures.

3.5 If we have a large sample of data, then using critical values from the standard normal distribution for

constructing a p-value is justified. But how large is “large”?

a. For a t-distribution with 30 degrees of freedom, the right-tail p-value for a t-statistic of 1.66 is

0.05366666. What is the approximate p-value using the cumulative distribution function of the

standard normal distribution, Φ(z), in Statistical Table 1? Using a right-tail test with α = 0.05,

would you make the correct decision about the null hypothesis using the approximate p-value?

Would the exact p-value be larger or smaller for a t-distribution with 90 degrees of freedom?

b. For a t-distribution with 200 degrees of freedom, the right-tail p-value for a t-statistic of 1.97

is 0.0251093. What is the approximate p-value using the standard normal distribution? Using a

two-tail test with α = 0.05, would you make the correct decision about the null hypothesis using

the approximate p-value? Would the exact p-value be larger or smaller for a t-distribution with

90 degrees of freedom?

c. For a t-distribution with 1000 degrees of freedom, the right-tail p-value for a t-statistic of 2.58

is 0.00501087. What is the approximate p-value using the standard normal distribution? Using a

two-tail test with α = 0.05, would you make the correct decision about the null hypothesis using

the approximate p-value? Would the exact p-value be larger or smaller for a t-distribution with

2000 degrees of freedom?

3.6 We have data on 2323 randomly selected households consisting of three persons in 2013. Let

ENTERT denote the monthly entertainment expenditure ($) per person per month and let INCOME
($100) be monthly household income. Consider the simple linear regression model ENTERTi =
β1 + β2INCOMEi + ei, i = 1,… , 2323. Assume that assumptions SR1–SR6 hold. The least squares

estimated equation is ENTERT
⋀

i = 9.820 + 0.503INCOMEi. The standard error of the slope coefficient

estimator is se
(
b2

)
= 0.029, the standard error of the intercept estimator is se

(
b1

)
= 2.419, and the

estimated covariance between the least squares estimators b1 and b2 is −0.062.

a. Construct a 90% confidence interval estimate for β2 and interpret it for a group of CEOs from the

entertainment industry.

b. The CEO of AMC Entertainment Mr. Lopez asks you to estimate the average monthly entertain-

ment expenditure per person for a household with monthly income (for the three-person household)

of $7500. What is your estimate?

c. AMC Entertainment’s staff economist asks you for the estimated variance of the estimator

b1 + 75b2. What is your estimate?

d. AMC Entertainment is planning to build a luxury theater in a neighborhood with average monthly

income, for three-person households, of $7500. Their staff of economists has determined that in

order for the theater to be profitable the average household will have to spend more than $45 per

person per month on entertainment. Mr. Lopez asks you to provide conclusive statistical evidence,

beyond reasonable doubt, that the proposed theater will be profitable. Carefully set up the null and

alternative hypotheses, give the test statistic, and test rejection region using α = 0.01. Using the

information from the previous parts of the question, carry out the test and provide your result to

the AMC Entertainment CEO.

e. The income elasticity of entertainment expenditures at the point of the means is ε =
β2

(

INCOME
/

ENTERT
)

. The sample means of these variables are ENTERT = 45.93 and
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INCOME = 71.84. Test the null hypothesis that the elasticity is 0.85 against the alternative that it

is not 0.85, using the α = 0.05 level of significance.

f. Using Statistical Table 1, compute the approximate two-tail p-value for the t-statistic in part (e).

Using the p-value rule, do you reject the null hypothesis ε = β2

(

INCOME
/

ENTERT
)

= 0.85,

versus the alternative ε ≠ 0.85, at the 10% level of significance? Explain.

3.7 We have 2008 data on INCOME = income per capita (in thousands of dollars) and BACHELOR =
percentage of the population with a bachelor’s degree or more for the 50 U.S. States plus the District

of Columbia, a total of N = 51 observations. The results from a simple linear regression of INCOME
on BACHELOR are

INCOME
⋀

= (a) + 1.029BACHELOR
se (2.672) (c)
t (4.31) (10.75)

a. Using the information provided calculate the estimated intercept. Show your work.

b. Sketch the estimated relationship. Is it increasing or decreasing? Is it a positive or inverse relation-

ship? Is it increasing or decreasing at a constant rate or is it increasing or decreasing at an increasing

rate?

c. Using the information provided calculate the standard error of the slope coefficient. Show

your work.

d. What is the value of the t-statistic for the null hypothesis that the intercept parameter equals 10?

e. The p-value for a two-tail test that the intercept parameter equals 10, from part (d), is 0.572. Show

the p-value in a sketch. On the sketch, show the rejection region if α = 0.05.

f. Construct a 99% interval estimate of the slope. Interpret the interval estimate.

g. Test the null hypothesis that the slope coefficient is one against the alternative that it is not one at

the 5% level of significance. State the economic result of the test, in the context of this problem.

3.8 Using 2011 data on 141 U.S. public research universities, we examine the relationship between cost per

student and full-time university enrollment. Let ACA = real academic cost per student (thousands of

dollars), and let FTESTU = full-time student enrollment (thousands of students). The least squares fit-

ted relation is ACA
⋀

= 14.656 + 0.266FTESTU.

a. For the regression, the 95% interval estimate for the intercept is [10.602, 18.710]. Calculate the

standard error of the estimated intercept.

b. From the regression output, the standard error for the slope coefficient is 0.081. Test the null hypoth-

esis that the true slope, β2, is 0.25 (or less) against the alternative that the true slope is greater than

0.25 using the 10% level of significance. Show all steps of this hypothesis test, including the null

and alternative hypotheses, and state your conclusion.

c. On the regression output, the automatically provided p-value for the estimated slope is 0.001. What

is the meaning of this value? Use a sketch to illustrate your answer.

d. A member of the board of supervisors states that ACA should fall if we admit more students. Using

the estimated equation and the information in parts (a)–(c), test the null hypothesis that the slope

parameter β2 is zero, or positive, against the alternative hypothesis that it is negative. Use the

5% level of significance. Show all steps of this hypothesis test, including the null and alterna-

tive hypotheses, and state your conclusion. Is there any statistical support for the board member’s

conjecture?

e. In 2011, Louisiana State University (LSU) had a full-time student enrollment of 27,950. Based on

the estimated equation, the least squares estimate of E(ACA|FTESTU = 27, 950) is 22.079, with

standard error 0.964. The actual value of ACA for LSU that year was 21.403. Would you say that

this value is surprising or not surprising? Explain.

3.9 Using data from 2013 on 64 black females, the estimated linear regression between WAGE (earnings

per hour, in $) and years of education, EDUC is WAGE
⋀

= −8.45 + 1.99EDUC.

a. The standard error of the estimated slope coefficient is 0.52. Construct and interpret a 95% inter-

val estimate for the effect of an additional year of education on a black female’s expected hourly

wage rate.

b. The standard error of the estimated intercept is 7.39. Test the null hypothesis that the intercept

β1 = 0 against the alternative that the true intercept is not zero, using the α = 0.10 level of signifi-

cance. In your answer, show (i) the formal null and alternative hypotheses, (ii) the test statistic and
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its distribution under the null hypothesis, (iii) the rejection region (in a figure), (iv) the calculated

value of the test statistic, and (v) state your conclusion, with its economic interpretation.

c. Estimate the expected wage for a black female with 16 years of education, E(WAGE|EDUC = 16).
d. The estimated covariance between the intercept and slope is −3.75. Construct a 95% interval esti-

mate for the expected wage for a black female with 16 years of education.

e. It is conjectured that a black female with 16 years of education will have an expected wage of more

than $23 per hour. Use this as the “alternative hypothesis” in a test of the conjecture at the 10%

level of significance. Does the evidence support the conjecture or not?

3.10 Using data from 2013 on 64 black females, the estimated log-linear regression between WAGE (earn-

ings per hour, in $) and years of education, EDUC is ln(WAGE)
⋀

= 1.58 + 0.09EDUC. The reported

t-statistic for the slope coefficient is 3.95.

a. Test at the 5% level of significance, the null hypothesis that the return to an additional year of

education is less than or equal to 8% against the alternative that the rate of return to education

is more than 8%. In your answer, show (i) the formal null and alternative hypotheses, (ii) the

test statistic and its distribution under the null hypothesis, (iii) the rejection region (in a figure),

(iv) the calculated value of the test statistic, and (v) state your conclusion, with its economic

interpretation.

b. Testing the null hypothesis that the return to education is 8%, against the alternative that it is not

8%, we obtain the p-value 0.684. What is the p-value for the test in part (a)? In a sketch, show for

the test in part (a) the p-value and the 5% critical value from the t-distribution.

c. Construct a 90% interval estimate for the return to an additional year of education and state its

interpretation.

3.11 The theory of labor supply indicates that more labor services will be offered at higher wages. Suppose

that HRSWK is the usual number of hours worked per week by a randomly selected person and WAGE is

their hourly wage. Our regression model is specified as HRSWK = β1 + β2WAGE + e. Using a sample

of 9799 individuals from 2013, we obtain the estimated regression HRSWK
⋀

= 41.58 + 0.011WAGE.

The estimated variances and covariance of the least squares estimators are as follows:

INTERCEPT WAGE
INTERCEPT 0.02324 −0.00067

WAGE −0.00067 0.00003

a. Test the null hypothesis that the relationship has slope that is less than, or equal to, zero at the 5%

level of significance. State the null and alternative hypotheses in terms of the model parameters.

Using the results, do we confirm or refute the theory of labor supply?

b. Use Statistical Table 1 of normal probabilities to calculate an approximate p-value for the test in

(a). Draw a sketch representing the p-value.

c. Under assumptions SR1–SR6 of the simple regression model, the expected number of hours worked

per week is E(HRSWK|WAGE) = β1 + β2WAGE. Construct a 95% interval estimate for the expected

number of hours worked per week for a person earning $20/h.

d. In the sample, there are 203 individuals with hourly wage $20. The average number of hours worked

for these people is 41.68. Is this result compatible with the interval estimate in (c)? Explain your

reasoning.

e. Test the null hypothesis that the expected hours worked for a person earning $20 per hour is 41.68,

against the alternative that it is not, at the 1% level of significance.

3.12 Consider a log-linear regression for the weekly sales (number of cans) of a national brand of

canned tuna (SAL1 = target brand sales) as a function of the ratio of its price to the price of a

competitor, RPRICE3 = 100(price of target brand ÷ price competitive brand #3), ln(SAL1) = γ1 +
γ2RPRICE3 + e. Using N = 52 weekly observations the least squares estimated equation is

ln(SAL1) = 11.481 − 0.031RPRICE3

(se) (0.535) (0.00529)

a. The variable RPRICE3 is the price of the target brand as a percentage of the price of competitive

brand #3 or more simply “the relative price.” The sample mean of RPRICE3 is 99.66, its median
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is 100, its minimum value is 70.11, and its maximum value is 154.24. What do these summary

statistics tell us about the prices of the target brand relative to the prices of its competitor?

b. Interpret the coefficient of RPRICE3. Does its sign make economic sense?

c. Construct and interpret a 95% interval estimate for the effect on the weekly sales, SAL1, of a 1%

increase in the price of the target brand as a percentage of the price of competitive brand #3, which

is relative price RPRICE3.

d. Carry out a test of the null hypothesis H0∶γ2 ≥ −0.02 against the alternative H1∶γ2 < −0.02 using

the α = 0.01 level of significance. Include in your answer (i) the test statistic and its distribution

if the null hypothesis is true, (ii) a sketch of the rejection region, (iii) show the location of the test

statistic value, (iv) state your conclusion, and (v) show on the sketch the region that would represent

the p-value.

e. “Hypothesis tests and interval estimators for the regression model are valid as long as the regression

error terms are normally distributed.” Is this true or false? Explain.

3.13 Consider the following estimated area response model for sugar cane (area of sugar cane planted in

thousands of hectares in a region of Bangladesh), as a function of relative price (100 times the price of

sugar cane divided by the price of jute, which is an alternative crop to sugar cane, planted by Bangladesh

farmers), AREA
⋀

t = −0.24 + 0.50RPRICEt using 34 annual observations.

a. The sample average of RPRICE is 114.03, with a minimum of 74.9 and a maximum of 182.2.

RPRICE is the price of sugar cane taken as a percentage of the price of jute. What do these sample

statistics tell us about the relative price of sugar cane?

b. Interpret the intercept and slope of the estimated relation.

c. The t-statistic is −0.01 for the hypothesis that the intercept parameter is zero. What do you con-

clude? Is this an economically surprising result? Explain.

d. The sample mean area planted is 56.83 thousand hectares, and the sample mean for relative price

is 114.03. Taking these values as given, test at the 5% level of significance the hypothesis that the

elasticity of area response to price at the means is 1.0. The estimated variance of the coefficient of

RPRICE is 0.020346.

e. The model is re-estimated in log-linear form, obtaining ln
(
AREAt

)
⋀

= 3.21 + 0.0068RPRICEt.

Interpret the coefficient of RPRICE. The standard error of the slope estimate is 0.00229. What

does that tell us about the estimated relationship?

f. Using the model in (e), test the null hypothesis that a 1% increase in the price of sugar cane relative

to the price of jute increases the area planted in sugar cane by 1%. Use the 5% level of significance

and a two-tail test. Include (i) the test statistic and its distribution if the null hypothesis is true,

(ii) a sketch of the rejection region, (iii) show the location of the test statistic value, (iv) state your

conclusion, and (v) show on the sketch, the region that would represent the p-value.

3.14 What is the meaning of statistical significance and how valuable is this concept? A t-statistic is

t =(b − c)∕se(b), where b is an estimate of a parameter β, c is the hypothesized value, and se(b) is

the standard error. If the sample size N is large, then the statistic is approximately a standard normal

distribution if the null hypothesis β = c is true.

a. With a 5% level of significance, we assert that an event happening with less than a one in 20

chance is “statistically significant,” while an event happening with more than a one in 20 chance is

not statistically significant. True or False?

b. Would you say something happening one time in 10 by chance (10%) is very improbable or not

very improbable? Would you say something happening one time in 100 by chance (1%) is very

improbable or not?

c. If we adopt a rule that in large samples, a t-value greater than 2.0 (in absolute value) indicates

statistical significance, and we use Statistical Table 1 of standard normal cumulative probabilities,

what is the implied significance level? If we adopt a rule that in large samples, a t-value greater

than 3.0 (in absolute value) indicates statistical significance, what is the implied significance level?

d. Suppose that we clinically test two diet pills, one called “Reliable” and another called “More.”

Using the Reliable pill, the estimated weight loss is 5 lbs with a standard error of 0.5 lbs. With

the More pill, the estimated weight loss is 20 lbs with standard error 10 lbs. When testing whether

the true weight loss is zero (the null, or none, hypothesis), what are the t-statistic values? What

is the ratio of the t-values?

e. If the drugs Reliable and More were equivalent in safety, cost and every other comparison, and if

your goal was weight loss, which drug would you take? Why?
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3.15 In a capital murder trial, with a potential penalty of life in prison, would you as judge tell the jury to

make sure that we accidently convict an innocent person only one time in a hundred, or use some other

threshold? What would it be?

a. What is the economic cost of a Type I error in this example? List some of the factors that would

have to be considered in such a calculation.

b. What is the economic cost of a Type II error in this example? List some of the factors that would

have to be considered in such a calculation.

3.16 A big question in the United States, a question of “cause and effect,” is whether mandatory health care

will really make Americans healthier. What is the role of hypothesis testing in such an investigation?

a. Formulate null and alternative hypotheses based on the question.

b. What is a Type I error in the context of this question? What factors would you consider if you were

assigned the task of calculating the economic cost of a Type I error in this example?

c. What is a Type II error in the context of this question? What factors would you consider if you

were assigned the task of calculating the economic cost of a Type II error in this example?

d. If we observe that individuals who have health insurance are in fact healthier, does this prove that

we should have mandatory health care?

e. There is a saying, “Correlation does not imply causation.” How might this saying relate to part (d)?

f. Post hoc ergo propter hoc (Latin: “after this, therefore because of this”) is a logical fallacy discussed

widely in Principles of Economics textbooks. An example might be “A rooster crows and then the

sun appears, thus the crowing rooster causes the sun to rise.” How might this fallacy relate to the

observation in part (d)?

3.17 Consider the regression model WAGE = β1 + β2EDUC + e. Where WAGE is hourly wage rate in US

2013 dollars. EDUC is years of schooling. The model is estimated twice, once using individuals from

an urban area, and again for individuals in a rural area.

Urban
WAGE
⋀

= −10.76 + 2.46EDUC, N = 986

(se) (2.27) (0.16)

Rural
WAGE
⋀

= −4.88 + 1.80EDUC, N = 214

(se) (3.29) (0.24)

a. Using the urban regression, test the null hypothesis that the regression slope equals 1.80 against

the alternative that it is greater than 1.80. Use the α = 0.05 level of significance. Show all steps,

including a graph of the critical region and state your conclusion.

b. Using the rural regression, compute a 95% interval estimate for expected WAGE if EDUC = 16.

The required standard error is 0.833. Show how it is calculated using the fact that the estimated

covariance between the intercept and slope coefficients is −0.761.

c. Using the urban regression, compute a 95% interval estimate for expected WAGE if EDUC = 16.

The estimated covariance between the intercept and slope coefficients is −0.345. Is the interval

estimate for the urban regression wider or narrower than that for the rural regression in (b). Do you

find this plausible? Explain.

d. Using the rural regression, test the hypothesis that the intercept parameter β1 equals four, or more,

against the alternative that it is less than four, at the 1% level of significance.

3.18 A life insurance company examines the relationship between the amount of life insurance held by

a household and household income. Let INCOME be household income (thousands of dollars) and

INSURANCE the amount of life insurance held (thousands of dollars). Using a random sample of

N = 20 households, the least squares estimated relationship is

INSURANCE
⋀

= 6.855 + 3.880INCOME
(se) (7.383) (0.112)

a. Draw a sketch of the fitted relationship identifying the estimated slope and intercept. The sample

mean of INCOME = 59.3. What is the sample mean of the amount of insurance held? Locate the

point of the means in your sketch.

b. How much do we estimate that the average amount of insurance held changes with each additional

$1000 of household income? Provide both a point estimate and a 95% interval estimate. Explain

the interval estimate to a group of stockholders in the insurance company.
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c. Construct a 99% interval estimate of the expected amount of insurance held by a household with

$100,000 income. The estimated covariance between the intercept and slope coefficient is −0.746.

d. One member of the management board claims that for every $1000 increase in income the average

amount of life insurance held will increase by $5000. Let the algebraic model be INSURANCE =
β1 + β2INCOME + e. Test the hypothesis that the statement is true against the alternative that it is

not true. State the conjecture in terms of a null and alternative hypothesis about the model param-

eters. Use the 5% level of significance. Do the data support the claim or not? Clearly, indicate the

test statistic used and the rejection region.

e. Test the hypothesis that as income increases the amount of life insurance held increases by the same

amount. That is, test the null hypothesis that the slope is one. Use as the alternative that the slope is

larger than one. State the null and alternative hypotheses in terms of the model parameters. Carry

out the test at the 1% level of significance. Clearly indicate the test statistic used, and the rejection

region. What is your conclusion?

3.7.2 Computer Exercises

3.19 The owners of a motel discovered that a defective product was used during construction. It took

7 months to correct the defects during which approximately 14 rooms in the 100-unit motel were

taken out of service for 1 month at a time. The data are in the file motel.
a. Plot MOTEL_PCT and COMP_PCT versus TIME on the same graph. What can you say about

the occupancy rates over time? Do they tend to move together? Which seems to have the higher

occupancy rates? Estimate the regression model MOTEL_PCT = β1 + β2COMP_PCT + e. Con-

struct a 95% interval estimate for the parameter β2. Have we estimated the association between

MOTEL_PCT and COMP_PCT relatively precisely, or not? Explain your reasoning.

b. Construct a 90% interval estimate of the expected occupancy rate of the motel in question,

MOTEL_PCT , given that COMP_PCT = 70.

c. In the linear regression model MOTEL_PCT = β1 + β2COMP_PCT + e, test the null hypothesis

H0∶β2 ≤ 0 against the alternative hypothesis H0∶β2 > 0 at the α = 0.01 level of significance. Dis-

cuss your conclusion. Clearly define the test statistic used and the rejection region.

d. In the linear regression model MOTEL_PCT = β1 + β2COMP_PCT + e, test the null hypothesis

H0∶β2 = 1 against the alternative hypothesis H0∶β2 ≠ 1 at the α = 0.01 level of significance. If the

null hypothesis were true, what would that imply about the motel’s occupancy rate versus their

competitor’s occupancy rate? Discuss your conclusion. Clearly define the test statistic used and

the rejection region.

e. Calculate the least squares residuals from the regression of MOTEL_PCT on COMP_PCT and

plot them against TIME. Are there any unusual features to the plot? What is the predominant sign

of the residuals during time periods 17–23 (July, 2004 to January, 2005)?

3.20 The owners of a motel discovered that a defective product was used during construction. It took

seven months to correct the defects during which approximately 14 rooms in the 100-unit motel were

taken out of service for one month at a time. The data are in the file motel.
a. Calculate the sample average occupancy rate for the motel during the time when there were no

repairs being made. What is the sample average occupancy rate for the motel during the time when

there were repairs being made? How big a difference is there?

b. Consider the linear regression MOTEL_PCT = δ1 + δ2REPAIR + e, where REPAIR is an indica-

tor variable taking the value 1 during the repair period and 0 otherwise. What are the estimated

coefficients? How do these estimated coefficients relate to the calculations in part (a)?

c. Construct a 95% interval estimate for the parameter δ2 and give its interpretation. Have we estimated

the effect of the repairs on motel occupancy relatively precisely, or not? Explain.

d. The motel wishes to claim economic damages because the faulty materials led to repairs which cost

them customers. To do so, their economic consultant tests the null hypothesis H0∶δ2 ≥ 0 against the

alternative hypothesis H1∶δ2 < 0. Explain the logic behind stating the null and alternative hypothe-

ses in this way. Carry out the test at the α = 0.05 level of significance. Discuss your conclusions.

Clearly state the test statistic, the rejection region, and the p-value.

e. To further the motel’s claim, the consulting economist estimates a regression model

(MOTEL_PCT − COMP_PCT ) = γ1 + γ2REPAIR + e, so that the dependent variable is the

difference in the occupancy rates. Construct and discuss the economic meaning of the 95% interval

estimate of γ2.
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f. Test the null hypothesis that γ2 = 0 against the alternative that γ2 < 0 at the α = 0.01 level of

significance. Discuss the meaning of the test outcome. Clearly state the test statistic, the rejection

region, and the p-value.

3.21 The capital asset pricing model (CAPM) is described in Exercise 2.16. Use all available observations

in the data file capm5 for this exercise.

a. Construct 95% interval estimates of Exxon-Mobil’s and Microsoft’s “beta.” Assume that you are a

stockbroker. Explain these results to an investor who has come to you for advice.

b. Test at the 5% level of significance the hypothesis that Ford’s “beta” value is one against the alter-

native that it is not equal to one. What is the economic interpretation of a beta equal to one? Repeat

the test and state your conclusions for General Electric’s stock and Exxon-Mobil’s stock. Clearly

state the test statistic used and the rejection region for each test, and compute the p-value.

c. Test at the 5% level of significance the null hypothesis that Exxon-Mobil’s “beta” value is greater

than or equal to one against the alternative that it is less than one. Clearly state the test statistic used

and the rejection region for each test, and compute the p-value. What is the economic interpretation

of a beta less than one?

d. Test at the 5% level of significance the null hypothesis that Microsoft’s “beta” value is less than

or equal to one against the alternative that it is greater than one. Clearly state the test statistic used

and the rejection region for each test, and compute the p-value. What is the economic interpretation

of a beta more than one?

e. Test at the 5% significance level, the null hypothesis that the intercept term in the CAPM model

for Ford’s stock is zero, against the alternative that it is not. What do you conclude? Repeat the test

and state your conclusions for General Electric’s stock and Exxon-Mobil’s stock. Clearly state the

test statistic used and the rejection region for each test, and compute the p-value.

3.22 The data file collegetown contains data on 500 single-family houses sold in Baton Rouge, Louisiana,

during 2009–2013. The data include sale price (in $1000 units), PRICE, and total interior area in

hundreds of square feet, SQFT .

a. Using the linear regression PRICE = β1 + β2SQFT + e, estimate the elasticity of expected house

PRICE with respect to SQFT , evaluated at the sample means. Construct a 95% interval estimate

for the elasticity, treating the sample means as if they are given (not random) numbers. What is the

interpretation of the interval?

b. Test the null hypothesis that the elasticity, calculated in part (a), is one against the alternative that

the elasticity is not one. Use the 1% level of significance. Clearly state the test statistic used, the

rejection region, and the test p-value. What do you conclude?

c. Using the linear regression model PRICE = β1 + β2SQFT + e, test the hypothesis that the marginal

effect on expected house price of increasing house size by 100 square feet is less than or equal to

$13000 against the alternative that the marginal effect will be greater than $13000. Use the 5%

level of significance. Clearly state the test statistic used, the rejection region, and the test p-value.

What do you conclude?

d. Using the linear regression PRICE = β1 + β2SQFT + e, estimate the expected price,

E(PRICE|SQFT ) = β1 + β2SOFT, for a house of 2000 square feet. Construct a 95% interval

estimate of the expected price. Describe your interval estimate to a general audience.

e. Locate houses in the sample with 2000 square feet of living area. Calculate the sample mean (aver-

age) of their selling prices. Is the sample average of the selling price for houses with SQFT = 20

compatible with the result in part (d)? Explain.

3.23 The data file collegetown contains data on 500 single-family houses sold in Baton Rouge, Louisiana,

during 2009–2013. The data include sale price in $1000 units, PRICE, and total interior area in hun-

dreds of square feet, SQFT .

a. Using the quadratic regression model, PRICE = α1 + α2SOFT2 + e, test the hypothesis that the

marginal effect on expected house price of increasing the size of a 2000 square foot house by

100 square feet is less than or equal to $13000 against the alternative that the marginal effect will

be greater than $13000. Use the 5% level of significance. Clearly state the test statistic used, the

rejection region, and the test p-value. What do you conclude?

b. Using the quadratic regression model in part (a), test the hypothesis that the marginal effect on

expected house price of increasing the size of a 4000 square foot house by 100 square feet is less

than or equal to $13000 against the alternative that the marginal effect will be greater than $13000.
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Use the 5% level of significance. Clearly state the test statistic used, the rejection region, and the

test p-value. What do you conclude?

c. Using the quadratic regression model in part (a), estimate the expected price E(PRICE|SQFT ) =
α1 + α2SQFT 2 for a house of 2000 square feet. Construct a 95% interval estimate of the expected

price. Describe your interval estimate to a general audience.

d. Locate houses in the sample with 2000 square feet of living area. Calculate the sample mean (aver-

age) of their selling prices. Is the sample average of the selling price for houses with SQFT = 20

compatible with the result in part (c)? Explain.

3.24 We introduced Professor Ray C. Fair’s model for explaining and predicting U.S. presidential elections

in Exercise 2.23. Fair’s data, 26 observations for the election years from 1916 to 2016, are in the data file

fair5. The dependent variable is VOTE = percentage share of the popular vote won by the Democratic

party. Define GROWTH = INCUMB × growth rate, where growth rate is the annual rate of change

in real per capita GDP in the first three quarters of the election year. If Democrats are the incumbent

party, then INCUMB = 1; if the Republicans are the incumbent party then INCUMB = −1.

a. Estimate the linear regression, VOTE = β1 + β2GROWTH + e, using data from 1916 to 2016. Con-

struct a 95% interval estimate of the effect of economic growth on expected VOTE. How would you

describe your finding to a general audience?

b. The expected VOTE in favor of the Democratic candidate is E(VOTE|GROWTH) =
β1 + β2GROWTH. Estimate E(VOTE|GROWTH = 4) and construct a 95% interval estimate

and a 99% interval estimate. Assume a Democratic incumbent is a candidate for a second

presidential term. Is achieving a 4% growth rate enough to ensure a victory? Explain.

c. Test the hypothesis that when INCUMB = 1 economic growth has either a zero or negative effect

on expected VOTE against the alternative that economic growth has a positive effect on expected

VOTE. Use the 1% level of significance. Clearly state the test statistic used, the rejection region,

and the test p-value. What do you conclude?

d. Define INFLAT = INCUMB × inflation rate, where the inflation rate is the growth in prices over

the first 15 quarters of an administration. Using the data from 1916 to 2016, and the model VOTE =
α1 + α2INFLAT + e, test the hypothesis that inflation has no effect against the alternative that it does

have an effect. Use the 1% level of significance. State the test statistic used, the rejection region,

and the test p-value and state your conclusion.

3.25 Using data on the “Ashcan School,” we have an opportunity to study the market for art. What factors

determine the value of a work of art? Use the data in the file ashcan_small. [Note: the file ashcan
contains more variables.]

a. Define YEARS_OLD = DATE_AUCTN − CREATION, which is the age of the painting at the time

of its sale. Use data on works that sold (SOLD = 1) to estimate the regression ln(RHAMMER) =
β1 + β2YEARS_OLD + e. Construct a 95% interval estimate for the percentage change in real ham-

mer price given that a work of art is another year old at the time of sale. [Hint: Review the discussion

of equation (2.28).] Explain the result to a potential art buyer.

b. Test the null hypothesis that each additional year of age increases the “hammer price” by 2%,

against the two-sided alternative. Use the 5% level of significance.

c. The variable DREC is an indicator variable taking the value one if a sale occurred during a reces-

sion and is zero otherwise. Use data on works that sold (SOLD = 1) to estimate the regression

model ln(RHAMMER) = α1 + α2DREC + e. Construct a 95% interval estimate of the percentage

reduction in hammer price when selling in a recession. Explain your finding to a client who is

considering selling during a recessionary period.

d. Test the conjecture that selling a work of art during a recession reduces the hammer price by 2%

or less, against the alternative that the reduction in hammer price is greater than 2%. Use the 5%

level of significance. Clearly state the test statistic used, the rejection region, and the test p-value.

What is your conclusion?

3.26 How much does experience affect wage rates? The data file cps5_small contains 1200 observations on

hourly wage rates, experience, and other variables from the March 2013 Current Population Survey

(CPS). [Note: The data file cps5 contains more observations and variables.]

a. Estimate the linear regression WAGE = β1 + β2EXPER + e and discuss the results.

b. Test the statistical significance of the estimated relationship at the 5% level. Use a one-tail test.

What is your alternative hypothesis? What do you conclude?
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c. Estimate the linear regression WAGE = β1 + β2EXPER + e for individuals living in a metropolitan

area, where METRO = 1. Is there a statistically significant positive relationship between expected

wages and experience at the 1% level? How much of an effect is there?

d. Estimate the linear regression WAGE = β1 + β2EXPER + e for individuals not living in a

metropolitan area, where METRO = 0. Is there a statistically significant positive relationship

between expected wages and experience at the 1% level? Can we safely say that experience has no

effect on wages for individuals living in nonmetropolitan areas? Explain.

3.27 Is the relationship between experience and wages constant over one’s lifetime? We will investigate this

question using a quadratic model. The data file cps5_small contains 1200 observations on hourly wage

rates, experience, and other variables from the March 2013 Current Population Survey (CPS). [Note:

the data file cps5 contains more observations and variables.]

a. Create the variable EXPER30 = EXPER − 30. Describe this variable. When is it positive, negative

or zero?

b. Estimate by least squares the quadratic model WAGE = γ1 + γ2(EXPER30)2 + e. Test the null

hypothesis that γ2 = 0 against the alternative γ2 ≠ 0 at the 1% level of significance. Is there a

statistically significant quadratic relationship between expected WAGE and EXPER30?

c. Create a plot of the fitted value WAGE
⋀

= γ̂1 + γ̂2(EXPER30)2, on the y-axis, versus EXPER30,

on the x-axis. Up to the value EXPER30 = 0 is the slope of the plot constant, or is it increasing,

or decreasing? Up to the value EXPER30 = 0 is the function increasing at an increasing rate or

increasing at a decreasing rate?

d. If y = a + bx2 then dy∕dx = 2bx. Using this result, calculate the estimated slope of the fitted

function WAGE
⋀

= γ̂1 + γ̂2(EXPER30)2, when EXPER = 0, when EXPER = 10, and when

EXPER = 20.

e. Calculate the t-statistic for the null hypothesis that the slope of the function is zero, H0∶2γ2

EXPER30 = 0, when EXPER = 0, when EXPER = 10, and when EXPER = 20.

3.28 The owners of a motel discovered that a defective product was used during construction. It took 7

months to correct the defects during which approximately 14 rooms in the 100-unit motel were taken

out of service for 1 month at a time. The data are in the file motel.
a. Create a new variable, RELPRICE2 = 100RELPRICE, which equals the percentage of the com-

petitor’s price charged by the motel in question. Plot RELPRICE2 against TIME. Compute the

summary statistics for this variable. What are the sample mean and median? What are the min-

imum and maximum values? Does the motel in question charge more than its competitors for a

room, or less, or about the same? Explain.

b. Consider a linear regression with y = MOTEL_PCT and x = RELPRICE2. Interpret the estimated

slope coefficient. Construct a 95% interval estimate for the slope. Have we estimated the slope of

the relationship very well? Explain your answer.

c. Construct a 90% interval estimate of the expected motel occupancy rate if the motel’s price is 80%

of its competitor’s price. Do you consider the interval relatively narrow or relatively wide? Explain

your reasoning.

d. Test the null hypothesis that there is no relationship between the variables against the alternative

that there is an inverse relationship between them, at the α = 0.05 level of significance. Discuss

your conclusion. Be sure to include in your answer the test statistic used, the rejection region, and

the p-value.

e. Test the hypothesis that for each percent higher for the relative price that the motel in question

charges, it loses 1% of its occupancy rate. Formulate the null and alternative hypotheses in terms

of the model parameters, carry out the relevant test at the 5% level of significance, and state your

conclusion. Be sure to state the test statistic used, the rejection region, and the p-value.

3.29 We introduced Tennessee’s Project STAR (Student/Teacher Achievement Ratio) in Exercise 2.22. The

data file is star5_small. [The data file star5 contains more observations and more variables.] Three

types of classes were considered: small classes [SMALL = 1], regular-sized classes with a teacher aide

[AIDE = 1], and regular-sized classes [REGULAR = 1].
a. Compute the sample mean and standard deviation for student math scores, MATHSCORE, in small

classes. Compute the sample mean and standard deviation for student math scores, MATHSCORE,

in regular classes, with no teacher aide. Which type of class had the higher average score? What is

the difference in sample average scores for small classes versus regular-sized classes? Which type

of class had the higher score standard deviation?



�

� �

�

3.7 Exercises 143

b. Consider students only in small classes or regular-sized classes without a teacher aide. Estimate

the regression model MATHSCORE = β1 + β2SMALL + e. How do the estimates of the regression

parameters relate to the sample average scores calculated in part (a)?

c. Using the model from part (b), construct a 95% interval estimate of the expected MATHSCORE
for a student in a regular-sized class and a student in a small class. Are the intervals fairly narrow

or not? Do the intervals overlap?

d. Test the null hypothesis that the expected mathscore is no different in the two types of classes

versus the alternative that expected MATHSCORE is higher for students in small classes using the

5% level of significance. State these hypotheses in terms of the model parameters, clearly state the

test statistic you use, and the test rejection region. Calculate the p-value for the test. What is your

conclusion?

e. Test the null hypothesis that the expected MATHSCORE is 15 points higher for students in small

classes versus the alternative that it is not 15 points higher using the 10% level of significance. State

these hypotheses in terms of the model parameters, clearly state the test statistic you use, and the

test rejection region. Calculate the p-value for the test. What is your conclusion?

3.30 We introduced Tennessee’s Project STAR (Student/Teacher Achievement Ratio) in Exercise 2.22. The

data file is star5_small. [The data file star5 contains more observations and more variables.] Three

types of classes were considered: small classes [SMALL = 1], regular-sized classes with a teacher aide

[AIDE = 1], and regular-sized classes [REGULAR = 1].
a. Compute the sample mean and standard deviation for student math scores, MATHSCORE, in reg-

ular classes with no teacher aide. Compute the sample mean and standard deviation for student

math scores, MATHSCORE, in regular classes with a teacher aide. Which type of class had the

higher average score? What is the difference in sample average scores for regular-sized classes ver-

sus regular sized classes with a teacher aide? Which type of class had the higher score standard

deviation?

b. Consider students only in regular sized classes without a teacher aide and regular sized classes

with a teacher aide. Estimate the regression model MATHSCORE = β1 + β2AIDE + e. How

do the estimates of the regression parameters relate to the sample average scores calculated in

part (a)?

c. Using the model from part (b), construct a 95% interval estimate of the expected MATHSCORE
for a student in a regular-sized class without a teacher aide and a regular-sized class with a teacher

aide. Are the intervals fairly narrow or not? Do the intervals overlap?

d. Test the null hypothesis that the expected MATHSCORE is no different in the two types of classes

versus the alternative that expected MATHSCORE is higher for students in regular-sized classes

with a teacher aide, using the 5% level of significance. State these hypotheses in terms of the model

parameters, clearly state the test statistic you use, and the test rejection region. Calculate the p-value

for the test. What is your conclusion?

e. Test the null hypothesis that the expected MATHSCORE is three points, or more, higher for students

in regular-sized classes with a teacher aide versus the alternative that the difference is less than three

points, using the 10% level of significance. State these hypotheses in terms of the model parameters,

clearly state the test statistic you use and the test rejection region. Calculate the p-value for the test.

What is your conclusion?

3.31 Data on weekly sales of a major brand of canned tuna by a supermarket chain in a large midwest-

ern U.S. city during a mid-1990s calendar year are contained in the data file tuna. There are 52

observations for each of the variables. The variable SAL1 = unit sales of brand no. 1 canned tuna, and

APR1 = price per can of brand no. 1 tuna (in dollars).

a. Calculate the summary statistics for SAL1 and APR1. What are the sample means, minimum and

maximum values, and their standard deviations. Plot each of these variables versus WEEK. How

much variation in sales and price is there from week to week?

b. Plot the variable SAL1 (y-axis) against APR1 (x-axis). Is there a positive or inverse relationship? Is

that what you expected, or not? Why?

c. Create the variable PRICE1 = 100APR1. Estimate the linear regression SAL1 = β1 +
β2PRICE1 + e. What is the point estimate for the effect of a one cent increase in the price

of brand no. 1 on the sales of brand no. 1? What is a 95% interval estimate for the effect of a one

cent increase in the price of brand no. 1 on the sales of brand no. 1?

d. Construct a 90% interval estimate for the expected number of cans sold in a week when the price

per can is 70 cents.
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e. Construct a 95% interval estimate of the elasticity of sales of brand no. 1 with respect to the price of

brand no. 1 “at the means.” Treat the sample means as constants and not random variables. Do you

find the sales are fairly elastic, or fairly inelastic, with respect to price? Does this make economic

sense? Why?

f. Test the hypothesis that elasticity of sales of brand no. 1 with respect to the price of brand no. 1

from part (e) is minus three against the alternative that the elasticity is not minus three. Use the

10% level of significance. Clearly, state the null and alternative hypotheses in terms of the model

parameters, give the rejection region, and the p-value for the test. What is your conclusion?

3.32 What is the relationship between crime and punishment? We use data from 90 North Carolina counties

to examine the question. County crime rates and other characteristics are observed over the period

1981–1987. The data are in the file crime. Use the 1985 data for this exercise.

a. Calculate the summary statistics for CRMRTE (crimes committed per person) and PRBARR (the

probability of arrest = the ratio of arrests to offenses), including the maximums and minimums.

Does there appear to be much variation from county to county in these variables?

b. Plot CRMRTE versus PRBARR. Do you observe a relationship between these variables?

c. Estimate the linear regression model CRMRTE = β1 + β2PRBARR + e. If we increase the proba-

bility of arrest by 10% what will be the effect on the crime rate? What is a 95% interval estimate

of this quantity?

d. Test the null hypothesis that there is no relationship between the county crime rate and the probabil-

ity of arrest versus the alternative that there is an inverse relationship. State the null and alternative

hypotheses in terms of the model parameters. Clearly, state the test statistic and its distribution if

the null hypothesis is true and the test rejection region. Use the 1% level of significance. What is

your conclusion?

Appendix 3A Derivation of the t-Distribution
Interval estimation and hypothesis testing procedures in this chapter involve the t-distribution.

Here we develop the key result.

The first result that is needed is the normal distribution of the least squares estimator. Con-

sider, for example, the normal distribution of b2 the least squares estimator of β2, which we

denote as

b2|x ∼ N

(

β2,
σ2

∑(
xi − x

)2

)

A standardized normal random variable is obtained from b2 by subtracting its mean and dividing

by its standard deviation:

Z =
b2 − β2

√

var
(
b2|x

)
∼ N(0, 1) (3A.1)

That is, the standardized random variable Z is normally distributed with mean 0 and variance 1.

Despite the fact that the distribution of the least squares estimator b2 depends on x, the stan-

dardization leaves us with a pivotal statistic whose distribution depends on neither unknown

parameters nor x.

The second piece of the puzzle involves a chi-square random variable. If assumption SR6

holds, then the random error term ei has a conditional normal distribution, ei|𝐱 ∼ N
(
0, σ2

)
. Stan-

dardize the random variable by dividing by its standard deviation so that ei∕σ ∼ N(0, 1). The

square of a standard normal random variable is a chi-square random variable (see Appendix B.5.2)

with one degree of freedom, so
(
ei∕σ

)2 ∼ χ2
(1). If all the random errors are independent, then

∑(ei

σ

)2

=
(e1

σ

)2

+
(e2

σ

)2

+ · · · +
(eN

σ

)2

∼ χ2
(N) (3A.2)
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Since the true random errors are unobservable, we replace them by their sample counterparts, the

least squares residuals êi = yi − b1 − b2xi, to obtain

V =
∑

ê2

i

σ2
= (N − 2) σ̂2

σ2
(3A.3)

The random variable V in (3A.3) does not have a χ2
(N) distribution because the least squares resid-

uals are not independent random variables. All N residuals êi = yi − b1 − b2xi depend on the least

squares estimators b1 and b2. It can be shown that only N − 2 of the least squares residuals are inde-

pendent in the simple linear regression model. Consequently, the random variable in (3A.3) has

a chi-square distribution with N − 2 degrees of freedom. That is, when multiplied by the constant

(N − 2)∕σ2, the random variable σ̂2
has a chi-square distribution with N − 2 degrees of freedom,

V = (N − 2) σ̂2

σ2
∼ χ2

(N−2) (3A.4)

The random variable V has a distribution that depends only on the degrees of freedom, N − 2.

Like Z in (3A.1), V is a pivotal statistic. We have not established the fact that the chi-square

random variable V is statistically independent of the least squares estimators b1 and b2, but it is.

The proof is beyond the scope of this book. Consequently, V and the standard normal random

variable Z in (3A.1) are independent.

From the two random variables V and Z, we can form a t-random variable. A t-random

variable is formed by dividing a standard normal random variable, Z ∼ N(0, 1), by the square root

of an independent chi-square random variable, V ∼ χ2
(m), that has been divided by its degrees of

freedom, m. That is,

t = Z
√

V∕m
∼ t(m) (3A.5)

The t-distribution’s shape is completely determined by the degrees of freedom parameter, m, and

the distribution is symbolized by t(m). See Appendix B.5.3. Using Z and V from (3A.1) and (3A.4),

respectively, we have

t = Z
√

V∕(N − 2)
=

(
b2 − β2

)/
√

σ2
/∑(

xi − x
)2

√

(N − 2) σ̂2∕σ2

N − 2

=
b2 − β2

√
√
√
√ σ̂2

∑(
xi − x

)2

=
b2 − β2

√

var
⋀(

b2

)
=

b2 − β2

se
(
b2

) ∼ t(N−2) (3A.6)

The second line is the key result that we state in (3.2), with its generalization in (3.3).

Appendix 3B Distribution of the t-Statistic under H1
To better understand how t-tests work, let us examine the t-statistic in (3.7) when the null hypoth-

esis is not true. We can do that by writing it out in some additional detail. What happens to Z
in (3A.1) if we test a hypothesis H0∶β2 = c that might not be true? Instead of subtracting β2, we

subtract c, to obtain

b2 − c
√

var
(
b2

)
=

b2 − β2 + β2 − c
√

var
(
b2

)
=

b2 − β2
√

var
(
b2

)
+

β2 − c
√

var
(
b2

)
= Z + δ ∼ N(δ, 1)
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The statistic we obtain is the standard normal Z plus another factor, δ =
(
β2 − c

)/√

var
(
b2

)
,

that is zero only if the null hypothesis is true. A noncentral t-random variable is formed from

the ratio

t|x = Z + δ
√

V∕m
∼ t(m,δ) (3B.1)

This is a more general t-statistic, with m degrees of freedom and noncentrality parameter δ,

denoted t(m, δ). It has a distribution that is not centered at zero unless δ = 0. The non-central

t-distribution is introduced in Appendix B.7.3. It is the factor δ that leads the t-test to reject a

false null hypothesis with probability greater than α, which is the probability of a Type I error.

Because δ depends on the sample data, we have indicated that the non-central t-distribution is

conditional on x. If the null hypothesis is true then δ = 0 and the t-statistic does not depend on

any unknown parameters or x; it is a pivotal statistic.

Suppose that we have a sample of size N = 40 so that the degrees of freedom are N – 2 = 38

and we test a hypothesis concerning β2 such that β2 – c = 1. Using a right-tail test, the proba-

bility of rejecting the null hypothesis is P(t > 1.686), where t(0.95, 38) = 1.686 is from Statistical

Table 2, the percentiles of the usual t-distribution. If δ = 0, this rejection probability is 0.05. With

β2 – c = 1, we must compute the right-tail probability using the non-central t-distribution with

noncentrality parameter

δ =
β2 − c

√

var
(
b2

)
=

β2 − c
√

σ2
/∑(

xi − x
)2

=

√
∑(

xi − x
)2(β2 − c

)

σ
(3B.2)

For a numerical example, we use values arising from the simulation experiment used

in Appendix 2H. The sample of x-values consists of xi = 10, i = 1,… , 20 and xi = 20,

i = 21,… , 40. The sample mean is x = 15 so that
∑(

xi − x
)2 = 40 × 52 = 1000. Also,

σ2 = 2500. The noncentrality parameter is

δ =

√
∑(

xi − x
)2(β2 − c

)

σ
=

√
1000

(
β2 − c

)

√
2500

= 0.63246
(
β2 − c

)

Thus, the probability of rejecting the null hypothesis H0∶β2 = 9 versus H1∶β2 > 9 when the true

value of β2 = 10 is

P
(
t(38, 0.63246) > 1.686

)
= 1 − P

(
t(38, 0.63246) ≤ 1.686

)
= 0.15301

The probability calculation uses the cumulative distribution function for the non-central

t-distribution, which is available in econometric software and at some websites. Similarly, the

probability of rejecting the null hypothesis H0∶β2 = 8 versus H1∶β2 > 8 when the true value of

β2 = 10 is

P
(
t(38, 1.26491) > 1.686

)
= 1 − P

(
t(38, 1.26491) ≤ 1.686

)
= 0.34367

Why does the probability of rejection increase? The effect of the noncentrality parameter is to

shift the t-distribution rightward, as shown in Appendix B.7.3. For example, the probability of

rejecting the null hypothesis H0∶β2 = 9 versus H1∶β2 > 9 is shown in Figure 3B.1.

The solid curve is the usual central t-distribution with 38 degrees of freedom. The area under

the curve to the right of 1.686 is 0.05. The dashed curve is the non-central t-distribution with

δ = 0.63246. The area under the curve to the right of 1.686 is larger, approximately 0.153.

The probability of rejecting a false null hypothesis is called a test’s power. In an ideal world,

we would reject false null hypotheses always, and if we had an infinite amount of data we could.

The keys to a t-test’s power are the three ingredients making the noncentrality parameter larger.
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FIGURE 3B.1 Probability of rejecting H0∶𝛃2 = 9.

A larger noncentrality parameter shifts the t-distribution further rightward and increases the prob-

ability of rejection. Thus, the probability of rejecting a false null hypothesis increases when

1. The magnitude of the hypothesis error β2 − c increases.

2. The smaller the true error variance, σ2, that measures the overall model uncertainty.

3. The larger the total variation in the explanatory variable, which might be the result of a larger

sample size.

In a real situation, the actual power of a test is unknown because we do not know β2 or σ2, and the

power calculation depends on being given the x-values. Nevertheless, it is good to know the factors

that will increase the probability of rejecting a false null hypothesis. In the following section, we

carry out a Monte Carlo simulation experiment to illustrate the power calculations above.

Recall that a Type II error is failing to reject a hypothesis that is false. Consequently, the

probability of a Type II error is the complement of the test’s power. For example, the probability

of a Type II error when testing H0∶β2 = 9 versus H1∶β2 > 9 when the true value of β2 = 10 is

P
(
t(38, 0.63246) ≤ 1.686

)
= 1 − 0.15301 = 0.84699

For testing H0∶β2 = 8 versus H1∶β2 > 8, when the true value is β2 = 10, the probability of a

Type II error is P
(
t(38, 1.26491) ≤ 1.686

)
= 1 – 0.34367 = 0.65633. As test power increases, the

probability of a Type II error falls, and vice versa.

Appendix 3C Monte Carlo Simulation
In Appendix 2H, we introduced a Monte Carlo simulation to illustrate the repeated sampling

properties of the least squares estimators. In this appendix, we use the same framework to illustrate

the repeated sampling performances of interval estimators and hypothesis tests.

Recall that the data generation process for the simple linear regression model is given by

yi = E
(
yi|xi

)
+ ei = β1 + β2xi + ei, i = 1,… ,N
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The Monte Carlo parameter values are β1 = 100 and β2 = 10. The value of xi is 10 for the first 20

observations and 20 for the remaining 20 observations, so that the regression functions are

E
(
yi|xi = 10

)
= 100 + 10xi = 100 + 10 × 10 = 200, i = 1,… , 20

E
(
yi|xi = 20

)
= 100 + 10xi = 100 + 10 × 20 = 300, i = 21,… , 40

The random errors are independently and normally distributed with mean 0 and variance

var
(
ei|xi

)
= σ2 = 2,500, or ei|x ∼ N(0, 2500).

When studying the performance of hypothesis tests and interval estimators, it is necessary

to use enough Monte Carlo samples so that the percentages involved are estimated precisely

enough to be useful. For tests with probability of Type I error α = 0.05, we should observe true

null hypotheses being rejected 5% of the time. For 95% interval estimators, we should observe

that 95% of the interval estimates contain the true parameter values. We use M = 10,000 Monte

Carlo samples so that the experimental error is very small. See Appendix 3C.3 for an explanation.

3C.1 Sampling Properties of Interval Estimators
In Appendix 2H.4, we created one sample of data that is in the data file mcl_ fixed_x. The least

squares estimates using these data values are

ŷ = 127.2055 + 8.7325x
(23.3262) (1.4753)

A 95% interval estimate of the slope is b2 ± t(0.975, 38)se
(
b2

)
= [5.7460, 11.7191]. We see that for

this sample, the 95% interval estimate contains the true slope parameter value β2 = 10.

We repeat the process of estimation and interval estimation 10,000 times. In these repeated

samples, 95.03% of the interval estimates contain the true parameter. Table 3C.1 contains results

for the Monte Carlo samples 321–330 for illustration purposes. The estimates are B2, the standard

error is SE, the lower bound of the 95% interval estimate is LB, and the upper bound is UB.

The variable COVER = 1 if the interval estimate contains the true parameter value. Two of the

intervals do not contain the true parameter value β2 = 10. The 10 sample results we are reporting

were chosen to illustrate that interval estimates do not cover the true parameter in all cases.

The lesson is, that in many samples from the data generation process, and if assumptions

SR1–SR6 hold, the procedure for constructing 95% interval estimates “works” 95% of the time.

T A B L E 3C.1 Results of 10000 Monte Carlo Simulations

SAMPLE B2 SE TSTAT REJECT LB UB COVER

321 7.9600 1.8263 −1.1170 0 4.2628 11.6573 1

322 11.3093 1.6709 0.7836 0 7.9267 14.6918 1

323 9.8364 1.4167 −0.1155 0 6.9683 12.7044 1

324 11.4692 1.3909 1.0563 0 8.6535 14.2849 1

325 9.3579 1.5127 −0.4245 0 6.2956 12.4202 1

326 9.6332 1.5574 −0.2355 0 6.4804 12.7861 1

327 9.0747 1.2934 −0.7154 0 6.4563 11.6932 1

328 7.0373 1.3220 −2.2411 0 4.3611 9.7136 0

329 13.1959 1.7545 1.8215 1 9.6441 16.7478 1

330 14.4851 2.1312 2.1046 1 10.1708 18.7994 0
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3C.2 Sampling Properties of Hypothesis Tests
The null hypothesis H0∶β2 = 10 is true. If we use the one-tail alternative H1∶β2 > 10 and level of

significance α = 0.05, the null hypothesis is rejected if the test statistic t =
(
b2 − 10

)
∕se

(
b2

)
>

1.68595, which is the 95th percentile of the t-distribution with 38 degrees of freedom.3 For the

sample mc1_ fixed_x, the calculated value of the t-statistic is −0.86, so we fail to reject the null

hypothesis, which in this case is the correct decision.

We repeat the process of estimation and hypothesis testing 10,000 times. In these samples,

4.98% of the tests reject the null hypothesis that the parameter value is 10. In Table 3C.1, the

t-statistic value is TSTAT and REJECT = 1 if the null hypothesis is rejected. We see that samples

329 and 330 incorrectly reject the null hypothesis.

The lesson is that in many samples from the data generation process, and if assumptions

SR1–SR6 hold, the procedure for testing a true null hypothesis at significance level α = 0.05

rejects the true null hypothesis 5% of the time. Or, stated positively, the test procedure does not

reject the true null hypothesis 95% of the time.

To investigate the power of the t-test, the probability that it rejects a false hypothesis, we

tested H0∶β2 = 9 versus H1∶β2 > 9 and H0∶β2 = 8 versus H1∶β2 > 8. The theoretical rejection

rates we calculated in Appendix 3B are 0.15301 in the first case and 0.34367 in the second. In

10,000 Monte Carlo samples, the first hypothesis was rejected in 1515 samples for a rejection rate

of 0.1515. The second hypothesis was rejected in 3500 of the samples, a rejection rate of 0.35.

The Monte Carlo values are very close to the true rejection rates.

3C.3 Choosing the Number of Monte Carlo Samples
A 95% confidence interval estimator should contain the true parameter value 95% of the time in

many samples. The M samples in a Monte Carlo experiment are independent experimental trials in

which the probability of a “success,” an interval containing the true parameter value, is P = 0.95.

The number of successes follows a binomial distribution. The proportion of successes P̂ in M
trials is a random variable with expectation P and variance P(1 − P)∕M. If the number of Monte

Carlo samples M is large, a 95% interval estimate of the proportion of Monte Carlo successes is

P ± 1.96
√

P(1 − P) ∕M. If M = 10,000, this interval is [0.9457, 0.9543]. We chose M = 10,000

so that this interval would be narrow, giving us confidence that if the true probability of success

is 0.95 we will obtain a Monte Carlo average close to 0.95 with a “high” degree of confidence.

Our result that 95.03% of our interval estimates contain the true parameter β2 is “within” the

margin of error for such Monte Carlo experiments. On the other hand, if we had used M = 1000

Monte Carlo samples, the interval estimate of the proportion of Monte Carlo successes would

be, [0.9365, 0.9635]. With this wider interval, the proportion of Monte Carlo successes could

be quite different from 0.95, casting a shadow of doubt on whether our method was working as

advertised or not.

Similarly, for a test with probability of rejection α = 0.05, the 95% interval estimate of the

proportion of Monte Carlo samples leading to rejection is α ± 1.96
√
α(1 − α) ∕M. If M = 10,000,

this interval is [0.0457, 0.0543]. That our Monte Carlo experiments rejected the null hypothesis

4.98% of the time is within this margin of error. If we had chosen M = 1000, then the proportion

of Monte Carlo rejections is estimated to be in the interval [0.0365, 0.0635], which again leaves

just a little too much wiggle room for comfort.

The point is that if fewer Monte Carlo samples are chosen the “noise” in the Monte Carlo

experiment can lead to a percent of successes or rejections that has too wide a margin of error for

............................................................................................................................................

3We use a t-critical value with more decimals, instead of the table value 1.686, to ensure accuracy in the Monte Carlo

experiment.
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us to tell whether the statistical procedure, interval estimation, or hypothesis testing is “working”

properly or not.4

3C.4 Random-x Monte Carlo Results
We used the “fixed-x” framework in Monte Carlo results reported in Sections 3C.1 and 3C.2.

In each Monte Carlo sample, the x-values were xi = 10 for the first 20 observations and xi = 20

for the next 20 observations. Now we modify the experiment to the random-x case, as in

Appendix 2H.7. The data-generating equation remains yi = 100 + 10xi + ei with the

random errors having a normal distribution with mean zero and standard deviation 50,

ei ∼ N
(
0, 502 = 2500

)
. We randomly choose x-values from a normal distribution with mean

μx = 15 and standard deviation σx = 1.6, so x ∼ N
(
15, 1.62 = 2.56

)
.

One sample of data is in the data file mc1_random_x. Using these values, we obtain the least

squares estimates

ŷ = 116.7410 + 9.7628x
(84.7107) (5.5248)

A 95% interval estimate of the slope is b2 ± t(0.975, 38)se
(
b2

)
= [−1.4216, 20.9472]. For this sam-

ple, the 95% interval estimate contains the true slope parameter value β2 = 10.

We generate 10,000 Monte Carlo samples using this design and compute the least squares

estimates and 95% interval estimates. In these samples, with x varying from sample to sample,

the 95% interval estimates for β2 contain the true value in 94.87% of the samples. Table 3C.2

contains results for the Monte Carlo samples 321–330 for illustration purposes. The estimates

are B2, the standard error SE, the lower bound of the 95% interval estimate is LB, and the upper

bound is UB. The variable COVER = 1 if the interval contains the true parameter value. In the

selected samples, one interval estimate, 323, does not contain the true parameter value.

In the Monte Carlo experiment, we test the null hypothesis H0∶β2 = 10 against the alter-

native H1∶β2 > 10 using the t-statistic t =
(
b2 − 10

)
∕se

(
b2

)
. We reject the null hypothesis if

t ≥ 1.685954, which is the 95th percentile of the t(38) distribution. In Table 3C.2, the t-statistic

values are TSTAT and REJECT = 1 if the test rejects the null hypothesis. In 5.36% of the 10,000

Monte Carlo samples, we reject the null hypothesis, which is within the margin of error discussed

in Section 3C.2. In Table 3C.2, for sample 323, the true null hypothesis was rejected.

T A B L E 3C.2 Results of 10,000 Monte Carlo Simulations with Random-x

SAMPLE B2 SE TSTAT REJECT LB UB COVER

321 9.6500 5.1341 −0.0682 0 −0.7434 20.0434 1

322 7.4651 4.3912 −0.5773 0 −1.4244 16.3547 1

323 22.9198 5.6616 2.2820 1 11.4584 34.3811 0

324 8.6675 4.8234 −0.2763 0 −1.0970 18.4320 1

325 18.7736 5.2936 1.6574 0 8.0573 29.4899 1

326 16.4197 3.8797 1.6547 0 8.5657 24.2738 1

327 3.7841 5.1541 −1.2060 0 −6.6500 14.2181 1

328 3.6013 4.9619 −1.2896 0 −6.4436 13.6462 1

329 10.5061 5.6849 0.0890 0 −1.0024 22.0145 1

330 9.6342 4.8478 −0.0755 0 −0.1796 19.4481 1

............................................................................................................................................

4Other details concerning Monte Carlo simulations can be found in Microeconometrics: Methods and Applications,

by A. Colin Cameron and Pravin K. Trivedi (Cambridge University Press, 2005). The material is advanced.
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We conclude from these simulations that in the random-x cases there is no evidence that

inferences do not perform as expected, with 95% of intervals covering the true parameter value

and 5% of tests rejecting a true null hypothesis.

To investigate the power of the t-test, the probability that it rejects a false hypothesis,

we tested H0∶β2 = 9 versus H1∶β2 > 9 and H0∶β2 = 8 versus H1∶β2 > 8. In 10,000 Monte

Carlo samples, the first hypothesis was rejected in 7.8% of the time and the second hypothesis

was rejected 11.15% of the time. These rejection rates are far less than in the fixed-x results

studied in Appendix 3B and less than the empirical rejection rates in the simulation results in

Appendix 3C.2. We noted that the ability of the t-test to reject a false hypothesis was related to

the magnitude of the noncentrality parameter in (3A.8), δ =
√

∑(
xi − x

)2(β2 − c
)
∕σ. In these

experiments, the factors
(
β2 − c

)
= 1 and 2 and σ = 50 are the same as in the fixed-x example.

What must have changed? The only remaining factor is the variation in the x-values,
∑(

xi − x
)2

.

In the earlier example,
∑(

xi − x
)2 = 1000 and the x-values were fixed in repeated samples. In this

experiment, the x-values were not fixed but random, and for each sample of x-values, the amount

of variation changes. We specified the variance of x to be 2.56, and in 10,000 Monte Carlo

experiments, the average of the sample variance s2
x = 2.544254 and the average of the variation

in x about its mean,
∑(

xi − x
)2

, was 99.22591, or about one-tenth the variation in the fixed-x
case. It is perfectly clear why the power of the test in the random-x case was lower, it is because

on average
∑(

xi − x
)2

was smaller.
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CHAPTER 4

Prediction,
Goodness-of-Fit,
and Modeling Issues

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain how to use the simple linear regression

model to predict the value of y for a given value

of x.

2. Explain, intuitively and technically, why

predictions for x values further from x are less

reliable.

3. Explain the meaning of SST, SSR, and SSE, and

how they are related to R2.

4. Define and explain the meaning of the

coefficient of determination.

5. Explain the relationship between correlation

analysis and R2.

6. Report the results of a fitted regression equation

in such a way that confidence intervals and

hypothesis tests for the unknown coefficients

can be constructed quickly and easily.

7. Describe how estimated coefficients and other

quantities from a regression equation will

change when the variables are scaled. Why

would you want to scale the variables?

8. Appreciate the wide range of nonlinear functions

that can be estimated using a model that is

linear in the parameters.

9. Write down the equations for the log-log,

log-linear, and linear-log functional forms.

10. Explain the difference between the slope of a

functional form and the elasticity from a

functional form.

11. Explain how you would go about choosing a

functional form and deciding that a functional

form is adequate.

12. Explain how to test whether the equation

‘‘errors’’ are normally distributed.

13. Explain how to compute a prediction, a

prediction interval, and a goodness-of-fit

measure in a log-linear model.

14. Explain alternative methods for detecting

unusual, extreme, or incorrect data values.
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K E Y W O R D S

coefficient of determination

correlation

forecast error

functional form

goodness-of-fit

growth model

influential observations

Jarque–Bera test

kurtosis

least squares predictor

linear model

linear relationship

linear-log model

log-linear model

log-log model

log-normal distribution

prediction

prediction interval

R2

residual diagnostics

scaling data

skewness

standard error of the forecast

In Chapter 3, we focused on making statistical inferences, constructing confidence intervals, and

testing hypotheses about regression parameters. Another purpose of the regression model, and

the one we focus on first in this chapter, is prediction. A prediction is a forecast of an unknown

value of the dependent variable y given a particular value of x. A prediction interval, much like

a confidence interval, is a range of values in which the unknown value of y is likely to be located.

Examining the correlation between sample values of y and their predicted values provides a

goodness-of-fit measure called R2 that describes how well our model fits the data. For each

observation in the sample, the difference between the predicted value of y and the actual value is

a residual. Diagnostic measures constructed from the residuals allow us to check the adequacy

of the functional form used in the regression analysis and give us some indication of the

validity of the regression assumptions. We will examine each of these ideas and concepts in turn.

4.1 Least Squares Prediction
In Example 2.4, we briefly introduced the idea that the least squares estimates of the linear regres-

sion model provide a way to predict the value of y for any value of x. The ability to predict is

important to business economists and financial analysts who attempt to forecast the sales and rev-

enues of specific firms; it is important to government policymakers who attempt to predict the

rates of growth in national income, inflation, investment, saving, social insurance program expen-

ditures, and tax revenues; and it is important to local businesses who need to have predictions of

growth in neighborhood populations and income so that they may expand or contract their provi-

sion of services. Accurate predictions provide a basis for better decision making in every type of

planning context. In this section, we explore the use of linear regression as a tool for prediction.

Given the simple linear regression model and assumptions SR1–SR6, let x0 be a given value

of the explanatory variable. We want to predict the corresponding value of y, which we call y0.

In order to use regression analysis as a basis for prediction, we must assume that y0 and x0 are

related to one another by the same regression model that describes our sample of data, so that, in

particular, SR1 holds for these observations

y0 = β1 + β2x0 + e0 (4.1)

where e0 is a random error. We assume that E
(
y0|x0

)
= β1 + β2x0 and E

(
e0

)
= 0. We also assume

that e0 has the same variance as the regression errors, var
(
e0

)
= σ2, and e0 is uncorrelated with

the random errors that are part of the sample data, so that cov
(
e0, ei|x

)
= 0, i = 1, 2,… , N.

The task of predicting y0 is related to the problem of estimating E
(
y0|x0

)
= β1 + β2x0,

which we discussed in Section 3.6. The outcome y0 = E
(
y0|x0

)
+ e0 = β1 + β2x0 + e0 is

composed of two parts, the systematic, nonrandom part E
(
y0|x0

)
= β1 + β2x0, and a random
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component e0. We estimate the systematic portion using Ê
(
y0|x0

)
= b1 + b2x0 and add an

“estimate” of e0 equal to its expected value, which is zero. Therefore, the prediction ŷ0 is given by

ŷ0 = Ê
(
y0|x0

)
+ 0 = b1 + b2x0. Despite the fact that we use the same statistic for both ŷ0 and

Ê
(
y0|x0

)
, we distinguish between them because, although E

(
y0|x0

)
= β1 + β2x0 is not random,

the outcome y0 is random. Consequently, as we will see, there is a difference between the

interval estimate of E
(
y0|x0

)
= β1 + β2x0 and the prediction interval for y0.

Following from the discussion in the previous paragraph, the least squares predictor of y0

comes from the fitted regression line

ŷ0 = b1 + b2x0 (4.2)

That is, the predicted value ŷ0 is given by the point on the least squares fitted line where x = x0,

as shown in Figure 4.1. How good is this prediction procedure? The least squares estimators b1

and b2 are random variables—their values vary from one sample to another. It follows that the

least squares predictor ŷ0 = b1 + b2x0 must also be random. To evaluate how well this predictor

performs, we define the forecast error, which is analogous to the least squares residual,

𝑓 = y0 − ŷ0 =
(
β1 + β2x0 + e0

)
−
(
b1 + b2x0

)
(4.3)

We would like the forecast error to be small, implying that our forecast is close to the value we

are predicting. Taking the conditional expected value of f , we find

E(𝑓 |x) = β1 + β2x0 + E
(
e0

)
−
[

E
(
b1|x

)
+ E
(
b2|x

)
x0

]

= β1 + β2x0 + 0 −
[
β1 + β2x0

]

= 0

which means, on average, the forecast error is zero, and ŷ0 is an unbiased predictor of y0. How-

ever, unbiasedness does not necessarily imply that a particular forecast will be close to the actual

value. The probability of a small forecast error also depends on the variance of the forecast error.

Although we will not prove it, ŷ0 is the best linear unbiased predictor (BLUP) of y0 if assump-

tions SR1–SR5 hold. This result is reasonable given that the least squares estimators b1 and b2

are best linear unbiased estimators.

Using (4.3) and what we know about the variances and covariances of the least squares esti-

mators, we can show (see Appendix 4A) that the variance of the forecast error is

var(𝑓 |x) = σ2

[

1 + 1

N
+
(
x0 − x

)2

∑(
xi − x

)2

]

(4.4)

Notice that some of the elements of this expression appear in the formulas for the variances of the

least squares estimators and affect the precision of prediction in the same way that they affect the

precision of estimation. We would prefer that the variance of the forecast error be small, which

x0

y0

yi = b1 + b2 xi

FIGURE 4.1 A point prediction.



�

� �

�

4.1 Least Squares Prediction 155

x0

y0 + tc se( f ) 

y0

y0 – tc se( f )

y0 = b1 + b2 x0

x

y

FIGURE 4.2 Point and interval prediction.

would increase the probability that the prediction ŷ0 is close to the value y0, we are trying to

predict. Note that the variance of the forecast error is smaller when

i. the overall uncertainty in the model is smaller, as measured by the variance of the random

errors σ2

ii. the sample size N is larger

iii. the variation in the explanatory variable is larger

iv. the value of
(
x0 − x

)2
is small

The new addition is the term
(
x0 − x

)2
, which measures how far x0 is from the center of the

x-values. The more distant x0 is from the center of the sample data the larger the forecast variance

will become. Intuitively, this means that we are able to do a better job predicting in the region

where we have more sample information, and we will have less accurate predictions when we try

to predict outside the limits of our data.

In practice we replace σ2 in (4.4) by its estimator σ̂2
to obtain

var
⋀

(𝑓 |x) = σ̂2

[

1 + 1

N
+
(
x0 − x

)2

∑(
xi − x

)2

]

The square root of this estimated variance is the standard error of the forecast

se(𝑓 ) =
√

var
⋀

(𝑓 |x) (4.5)

Defining the critical value tc to be the 100(1 − α∕2)-percentile from the t-distribution, we can

obtain a 100(1 − α)% prediction interval as

ŷ0 ± tcse(𝑓 ) (4.6)

See Appendix 4A for some details related to the development of this result.

Following our discussion of var(𝑓 |x) in (4.4), the farther x0 is from the sample mean x, the

larger the variance of the prediction error will be, and the less reliable the prediction is likely to

be. In other words, our predictions for values of x0 close to the sample mean x are more reliable

than our predictions for values of x0 far from the sample mean x. This fact shows up in the size

of our prediction intervals. The relationship between point and interval predictions for different

values of x0 is illustrated in Figure 4.2. A point prediction is given by the fitted least squares

line ŷ0 = b1 + b2x0. The prediction interval takes the form of two bands around the fitted least

squares line. Because the forecast variance increases the farther x0 is from the sample mean x, the

confidence bands are their narrowest when x0 = x, and they increase in width as ||x0 − x|| increases.
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E X A M P L E 4.1 Prediction in the Food Expenditure Model

In Example 2.4, we predicted that a household with

x0 = $2,000 weekly income would spend $287.61 on food

using the calculation

ŷ0 = b1 + b2x0 = 83.4160 + 10.2096(20) = 287.6089

Now we are able to attach a “confidence interval” to this pre-

diction. The estimated variance of the forecast error is

var
⋀

(𝑓 |x) = σ̂2

[

1 + 1

N
+
(
x0 − x

)2

∑(
xi − x

)2

]

= σ̂2 + σ̂2

N
+
(
x0 − x

)2 σ̂2

∑(
xi − x

)2

= σ̂2 + σ̂2

N
+
(
x0 − x

)2
var
⋀(

b2|x
)

In the last line, we have recognized the estimated variance

of b2 from (2.21). In Example 2.5 we obtained the values

σ̂2 = 8013.2941 and var
⋀(

b2|x
)
= 4.3818. For the food

expenditure data, N = 40 and the sample mean of

the explanatory variable is x = 19.6048. Using these

values, we obtain the standard error of the forecast

se(𝑓 ) =
√

var
⋀

(𝑓 |x) =
√

8214.31 = 90.6328. If we select

1 − α = 0.95, then tc = t(0.975, 38) = 2.0244 and the 95%

prediction interval for y0 is

ŷ0 ± tcse(𝑓 ) = 287.6069 ± 2.0244(90.6328)
=[104.1323, 471.0854]

Our prediction interval suggests that a household with $2,000

weekly income will spend somewhere between $104.13 and

$471.09 on food. Such a wide interval means that our point

prediction $287.61 is not very reliable. We have obtained this

wide prediction interval for the value of x0 = 20 that is close

to the sample mean x = 19.60. For values of x that are more

extreme, the prediction interval would be even wider. The

unreliable predictions may be slightly improved if we col-

lect a larger sample of data, which will improve the precision

with which we estimate the model parameters. However, in

this example the magnitude of the estimated error variance

σ̂2
is very close to the estimated variance of the forecast error

var
⋀

(𝑓 |x), indicating that the primary uncertainty in the fore-

cast comes from large uncertainty in the model. This should

not be a surprise, since we are predicting household behav-

ior, which is a complicated phenomenon, on the basis of a

single household characteristic, income. Although income is

a key factor in explaining food expenditure, we can imagine

that many other household demographic characteristics may

play a role. To more accurately predict food expenditure, we

may need to include these additional factors into the regres-

sion model. Extending the simple regression model to include

other factors will begin in Chapter 5.

4.2 Measuring Goodness-of-Fit
Two major reasons for analyzing the model

yi = β1 + β2xi + ei (4.7)

are to explain how the dependent variable
(
yi
)

changes as the independent variable
(
xi
)

changes

and to predict y0 given an x0. These two objectives come under the broad headings of estimation

and prediction. Closely allied with the prediction problem discussed in the previous section is the

desire to use xi to explain as much of the variation in the dependent variable yi as possible. In the

regression model (4.7), we call xi the “explanatory” variable because we hope that its variation

will “explain” the variation in yi.

To develop a measure of the variation in yi that is explained by the model, we begin by

separating yi into its explainable and unexplainable components. We have assumed that

yi = E
(
yi|x
)
+ ei (4.8)

where E
(
yi|x
)
= β1 + β2

xi is the explainable, “systematic” component of yi, and ei is the random,

unsystematic, and unexplainable component of yi. While both of these parts are unobservable to

us, we can estimate the unknown parameters β1 and β2 and, analogous to (4.8), decompose the

value of yi into

yi = ŷi + êi (4.9)

where ŷi = b1 + b2xi and êi = yi − ŷi.
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x xi x

y

y y

(x, y)

y = b1 + b2x

yi – y = explained component

ei = yi – yi = unexplained component

(xi, yi)

(xi, yi)

yi – y

FIGURE 4.3 Explained and unexplained components of yi.

In Figure 4.3, the “point of the means”
(
x, y
)

is shown, with the least squares fitted line passing

through it. This is a characteristic of the least squares fitted line whenever the regression model

includes an intercept term. Subtract the sample mean y from both sides of the equation to obtain

yi − y =
(
ŷi − y

)
+ êi (4.10)

As shown in Figure 4.3, the difference between yi and its mean value y consists of a part that is

“explained” by the regression model ŷi − y and a part that is unexplained êi.

The breakdown in (4.10) leads to a decomposition of the total sample variability in y into

explained and unexplained parts. Recall from your statistics courses (see Appendix C4) that if we

have a sample of observations y1, y2,…, yN, two descriptive measures are the sample mean y and

the sample variance

s2
y =

∑(
yi − y

)2

N − 1

The numerator of this quantity, the sum of squared differences between the sample values yi
and the sample mean y, is a measure of the total variation in the sample values. If we square

and sum both sides of (4.10) and use the fact that the cross-product term
∑(

ŷi − y
)
êi = 0 (see

Appendix 4B), we obtain
∑(

yi − y
)2 =

∑(
ŷi − y

)2 +
∑

ê2

i (4.11)

Equation (4.11) gives us a decomposition of the “total sample variation” in y into explained and

unexplained components. Specifically, these “sums of squares” are as follows:

1.
∑(

yi − y
)2 = total sum of squares = SST: a measure of total variation in y about the sample

mean.

2.
∑(

ŷi − y
)2 = sum of squares due to the regression = SSR: that part of total variation in y,

about the sample mean, that is explained by, or due to, the regression. Also known as the

“explained sum of squares.”

3.
∑

ê2

i = sum of squares due to error = SSE: that part of total variation in y about its mean

that is not explained by the regression. Also known as the unexplained sum of squares, the

residual sum of squares, or the sum of squared errors.

Using these abbreviations, (4.11) becomes

SST = SSR + SSE
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This decomposition of the total variation in y into a part that is explained by the regression model

and a part that is unexplained allows us to define a measure, called the coefficient of determina-
tion, or R2, that is the proportion of variation in y explained by x within the regression model.

R2 = SSR
SST

= 1 − SSE
SST

(4.12)

The closer R2 is to 1, the closer the sample values yi are to the fitted regression equation

ŷi = b1 + b2xi. If R2 = 1, then all the sample data fall exactly on the fitted least squares line, so

SSE = 0, and the model fits the data “perfectly.” If the sample data for y and x are uncorrelated

and show no linear association, then the least squares fitted line is “horizontal,” and identical

to y, so that SSR = 0 and R2 = 0. When 0 < R2
< 1, it is interpreted as “the proportion of the

variation in y about its mean that is explained by the regression model.”

4.2.1 Correlation Analysis
In Appendix B.1.5, we discuss the covariance and correlation between two random variables x
and y. The correlation coefficient ρxy between x and y is defined in (B.21) as

ρxy =
cov(x, y)

√
var(x)

√
var(y)

=
σxy

σxσy
(4.13)

In Appendix B, we did not discuss estimating the correlation coefficient. We will do so now to

develop a useful relationship between the sample correlation coefficient and R2.

Given a sample of data pairs
(
xi, yi

)
, i = 1,… ,N, the sample correlation coefficient is

obtained by replacing the covariance and standard deviations in (4.13) by their sample analogs:

rxy =
sxy

sxsy
where

sxy =
∑(

xi − x
)(

yi − y
)/
(N − 1)

sx =
√
∑(

xi − x
)2/(N − 1)

sy =
√
∑(

yi − y
)2/(N − 1)

The sample correlation coefficient rxy has a value between −1 and 1, and it measures the strength

of the linear association between observed values of x and y.

4.2.2 Correlation Analysis and R2

There are two interesting relationships between R2 and rxy in the simple linear regression

model.

1. The first is that r2
xy = R2. That is, the square of the sample correlation coefficient between

the sample data values xi and yi is algebraically equal to R2 in a simple regression model.

Intuitively, this relationship makes sense: r2
xy falls between zero and one and measures the

strength of the linear association between x and y. This interpretation is not far from that

of R2: the proportion of variation in y about its mean explained by x in the linear regression

model.

2. The second, and more important, relation is that R2 can also be computed as the square of

the sample correlation coefficient between yi and ŷi = b1 + b2xi. That is, R2 = r2
yŷ. As such,

it measures the linear association, or goodness-of-fit, between the sample data and their

predicted values. Consequently, R2 is sometimes called a measure of “goodness-of-fit.” This

result is valid not only in simple regression models but also in multiple regression models
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that we introduce in Chapter 5. Furthermore, as you will see in Section 4.4, the concept

of obtaining a goodness-of-fit measure by predicting y as well as possible and finding the

squared correlation coefficient between this prediction and the sample values of y can be

extended to situations in which the usual R2 does not strictly apply.

E X A M P L E 4.2 Goodness-of-Fit in the Food Expenditure Model

Look at the food expenditure example, Example 2.4, and

in particular, the data scatter and fitted regression line in

Figure 2.8, and the computer output in Figure 2.9. Go ahead.

I will wait until you get back. The question we would like

to answer is “How well does our model fit the data?” To

compute R2, we can use the sums of squares

SST =
∑(

yi − y
)2 = 495132.160

SSE =
∑(

yi − ŷi
)2 =

∑
ê2

i = 304505.176

Then

R2 = 1 − SSE
SST

= 1 − 304505.176

495132.160
= 0.385

We conclude that 38.5% of the variation in food expenditure

(about its sample mean) is explained by our regression

model, which uses only income as an explanatory variable.

Is this a good R2? We would argue that such a question

is not useful. Although finding and reporting R2 provides

information about the relative magnitudes of the different

sources of variation, debates about whether a particular R2

is “large enough” are not particularly constructive. Microe-

conomic household behavior is very difficult to explain.

With cross-sectional data, R2 values from 0.10 to 0.40 are

very common even with much larger regression models.

Macroeconomic analyses using time-series data, which often

trend together smoothly over time, routinely report R2 values

of 0.90 and higher. You should not evaluate the quality of

the model based only on how well it predicts the sample

data used to construct the estimates. To evaluate the model,

it is as important to consider factors such as the signs and

magnitudes of the estimates, their statistical and economic

significance, the precision of their estimation, and the

ability of the fitted model to predict values of the dependent

variable that were not in the estimation sample. Other model

diagnostic issues will be discussed in the following section.

Correlation analysis leads to the same conclusions and

numbers, but it is worthwhile to consider this approach in

more detail. The sample correlation between the y and x sam-

ple values is

rxy =
sxy

sxsy
= 478.75

(6.848)(112.675)
= 0.62

The correlation is positive, indicating a positive associa-

tion between food expenditure and income. The sample

correlation measures the strength of the linear association,

with a maximum value of 1. The value rxy = 0.62 indicates

a non-negligible but less than perfect fit. As expected

r2
xy = 0.622 = 0.385 = R2.

E X A M P L E 4.3 Reporting Regression Results

In any paper where you write the results of a simple regres-

sion, with only one explanatory variable, these results can

be presented quite simply. The key ingredients are the coeffi-

cient estimates, the standard errors (or t-values), an indication

of statistical significance, and R2. Also, when communicat-

ing regression results, avoid using symbols like x and y. Use

abbreviations for the variables that are readily interpreted,

defining the variables precisely in a separate section of the

report. For the food expenditure example, we might have the

variable definitions:

FOOD_EXP = weekly food expenditure by a household of

size 3, in dollars

INCOME = weekly household income, in $100 units

Then the estimated equation results are as follows:

FOOD_EXP = 83.42 + 10.21 INCOME R2 = 0.385

(se) (43.41)∗ (2.09)∗∗∗

Report the standard errors below the estimated coefficients.

The reason for showing the standard errors is that an approx-

imate 95% interval estimate (if the degrees of freedom N – 2

are greater than 30) is bk ± 2(se). If desired, the reader may

divide the estimate by the standard error to obtain the value of

the t-statistic for testing a zero null hypothesis. Furthermore,

testing other hypotheses is facilitated by having the standard

error present. To test the null hypothesis H0∶β2 = 8.0, we

can quickly construct the t-statistic t = [(10.21 – 8)∕2.09] and

proceed with the steps of the test procedure.
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Asterisks are often used to show the reader the statisti-

cally significant (i.e., significantly different from zero using

a two-tail test) coefficients, with explanations in a table foot-

note:

* indicates significant at the 10% level

** indicates significant at the 5% level

*** indicates significant at the 1% level

The asterisks are assigned by checking the p-values from the

computer output, as shown in Figure 2.9.

4.3 Modeling Issues

4.3.1 The Effects of Scaling the Data
Data we obtain are not always in a convenient form for presentation in a table or use in a regression

analysis. When the scale of the data is not convenient, it can be altered without changing any of

the real underlying relationships between variables. For example, the real personal consumption

in the United States, as of the second quarter of 2015, was $12228.4 billion annually. That is,

$12,228,400,000,000 written out. While we could use the long form of the number in a table or

in a regression analysis, there is no advantage to doing so. By choosing the units of measurement

to be “billions of dollars,” we have taken a long number and made it comprehensible. What are

the effects of scaling the variables in a regression model?

Consider the food expenditure model. In Table 2.1 we report weekly expenditures in dollars
but we report income in $100 units, so a weekly income of $2,000 is reported as x = 20. Why

did we scale the data in this way? If we had estimated the regression using income in dollars, the

results would have been

FOOD_EXP = 83.42 + 0.1021 INCOME($) R2 = 0.385

(se) (43.41)∗(0.0209)∗∗∗

There are two changes. First, the estimated coefficient of income is now 0.1021. The interpretation

is “If weekly household income increases by $1 then we estimate that weekly food expenditure

will increase by about 10 cents.” There is nothing mathematically wrong with this, but it leads to a

discussion of changes that are so small as to seem irrelevant. An increase in income of $100 leads

to an estimated increase in food expenditure of $10.21, as before, but these magnitudes are more

easily discussed.

The other change that occurs in the regression results when income is in dollars is that the

standard error becomes smaller, by a factor of 100. Since the estimated coefficient is smaller by

a factor of 100 also, this leaves the t-statistic and all other results unchanged.

Such a change in the units of measurement is called scaling the data. The choice of the scale is

made by the researcher to make interpretation meaningful and convenient. The choice of the scale

does not affect the measurement of the underlying relationship, but it does affect the interpretation

of the coefficient estimates and some summary measures. Let us list the possibilities:

1. Changing the scale of x: In the linear regression model y = β1 + β2x + e, suppose we change

the units of measurement of the explanatory variable x by dividing it by a constant c. In

order to keep intact the equality of the left- and right-hand sides, the coefficient of x must

be multiplied by c. That is, y = β1 + β2x + e = β1 +
(
cβ2

)
(x∕c) + e = β1 + β∗2x∗ + e, where

β∗
2
= cβ2 and x∗ = x∕c. For example, if x is measured in dollars, and c = 100, then x∗ is

measured in hundreds of dollars. Then β∗
2

measures the expected change in y given a $100

increase in x, and β∗
2

is 100 times larger than β2. When the scale of x is altered, the only

other change occurs in the standard error of the regression coefficient, but it changes by the

same multiplicative factor as the coefficient, so that their ratio, the t-statistic, is unaffected.

All other regression statistics are unchanged.
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2. Changing the scale of y: If we change the units of measurement of y, but not x, then

all the coefficients must change in order for the equation to remain valid. That is,

y∕c =
(
β1∕c

)
+
(
β2∕c

)
x + (e∕c) or y∗ = β∗

1
+ β∗

2
x + e∗. In this rescaled model, β∗

2
measures

the change we expect in y∗ given a 1-unit change in x. Because the error term is scaled in

this process, the least squares residuals will also be scaled. This will affect the standard

errors of the regression coefficients, but it will not affect t-statistics or R2.

3. If the scale of y and the scale of x are changed by the same factor, then there will be no

change in the reported regression results for b2, but the estimated intercept and residuals

will change; t-statistics and R2 are unaffected. The interpretation of the parameters is made

relative to the new units of measurement.

4.3.2 Choosing a Functional Form
In our ongoing example, we have assumed that the mean household food expenditure is a linear

function of household income. That is, we assumed the underlying economic relationship to be

E(y|x) = β1 + β2x, which implies that there is a linear, straight-line relationship between E(y|x)
and x. Why did we do that? Although the world is not “linear,” a straight line is a good approxima-

tion to many nonlinear or curved relationships over narrow ranges. Moreover, in your principles of

economics classes, you may have begun with straight lines for supply, demand, and consumption

functions, and we wanted to ease you into the more “artistic” aspects of econometrics.

The starting point in all econometric analyses is economic theory. What does economics

really say about the relation between food expenditure and income, holding all else constant?

We expect there to be a positive relationship between these variables because food is a normal

good. But nothing says the relationship must be a straight line. In fact, we do not expect that as

household income rises, food expenditures will continue to rise indefinitely at the same constant

rate. Instead, as income rises, we expect food expenditures to rise, but we expect such expenditures

to increase at a decreasing rate. This is a phrase that is used many times in economics classes. What

it means graphically is that there is not a straight-line relationship between the two variables. For a

curvilinear relationship like that in Figure 4.4, the marginal effect of a change in the explanatory

variable is measured by the slope of the tangent to the curve at a particular point. The marginal

effect of a change in x is greater at the point
(
x1, y1

)
than it is at the point

(
x2, y2

)
. As x increases,

the value of y increases, but the slope is becoming smaller. This is the meaning of “increasing at a

decreasing rate.” In the economic context of the food expenditure model, the marginal propensity

to spend on food is greater at lower incomes, and as income increases the marginal propensity to

spend on food declines.

y

Slope at
point y1, x1

Slope at
point y2, x2

xx1 x2

FIGURE 4.4 A nonlinear relationship between food
expenditure and income.
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The simple linear regression model is much more flexible than it appears at first glance. By

transforming the variables y and x we can represent many curved, nonlinear relationships and

still use the linear regression model. In Section 2.8, we introduced the idea of using quadratic
and log-linear functional forms. In this and subsequent sections, we introduce you to an array of

other possibilities and give some examples.

Choosing an algebraic form for the relationship means choosing transformations of the orig-

inal variables. This is not an easy process, and it requires good analytic geometry skills and some

experience. It may not come to you easily. The variable transformations that we begin with are

as follows:

1. Power: If x is a variable, then xp means raising the variable to the power p; examples are

quadratic
(
x2
)

and cubic
(
x3
)

transformations.

2. The natural logarithm: If x is a variable, then its natural logarithm is ln(x).

Using just these two algebraic transformations, there are amazing varieties of “shapes” that we

can represent, as shown in Figure 4.5.

A difficulty introduced when transforming variables is that regression result interpretations

change. For each different functional form, shown in Table 4.1, the expressions for both the slope

and elasticity change from the linear relationship case. This is so because the variables are related

nonlinearly. What this means for the practicing economist is that great attention must be given to

Quadratic equations Cubic equations

(a) (b)

(c) (d)

(e) (f)

Log-log models Log-log models

Log-linear models Linear-log models

y = β1 + β2x2 y = β1 + β2x3

ln(y) = β1 + β2ln(x)

y = β1 + β2ln(x)ln(y) = β1 + β2x

ln(y) = β1 + β2ln(x)

y y

y y

y y

x x

x x

x x

β2 < 0

β2 > 1

0 < β2 < 1 –1 < β2 < 0

β2 < –1

β2 = –1

β2 < 0

β2 > 0

β2 > 0 β2 > 0

β2 < 0 β2 < 0

β2 > 0

FIGURE 4.5 Alternative functional forms.



�

� �

�

4.3 Modeling Issues 163

T A B L E 4.1
Some Useful Functions, Their Derivatives, Elasticities, and Other
Interpretation

Name Function Slope = dy/dx Elasticity

Linear y = β1 + β2x β2 β2

x
y

Quadratic y = β1 + β2x2 2β2x
(
2β2x

) x
y

Cubic y = β1 + β2x3 3β2x2
(
3β2x2

) x
y

Log-log ln(y) = β1 + β2ln(x) β2

y
x

β2

Log-linear ln(y) = β1 + β2x β2y β2x
or, a 1-unit change in x leads to (approximately) a 100β2% change in y

Linear-log y = β1 + β2ln(x) β2

1

x
β2

1

y
or, a 1% change in x leads to (approximately) a β2∕100 unit change in y

result interpretation whenever variables are transformed. Because you may be less familiar with

logarithmic transformations, let us summarize the interpretation in three possible configurations.

1. In the log-log model, both the dependent and independent variables are transformed by the

“natural” logarithm. The model is ln(y) = β1 + β2ln(x). In order to use this model, both y and

x must be greater than zero because the logarithm is defined only for positive numbers. The

parameter β2 is the elasticity of y with respect to x. Referring to Figure 4.5, you can see why

economists use the constant elasticity, log-log model specification so frequently. In panel (c),

if β2 > 1, the relation could depict a supply curve, or if 0 < β2 < 1, a production relation.

In panel (d), if β2 < 0, it could represent a demand curve. In each case, interpretation is

convenient because the elasticity is constant. An example is given in Section 4.6.

2. In the log-linear model ln(y) = β1 + β2x, only the dependent variable is transformed by

the logarithm. The dependent variable must be greater than zero to use this form. In this

model, a 1-unit increase in x leads to (approximately) a 100β2% change in y. The log-linear

form is common; it was introduced in Sections 2.8.3–2.8.4 and will be further discussed in

Section 4.5. Note its possible shapes in Figure 4.5(e). If β2 > 0, the function increases at an

increasing rate; its slope is larger for larger values of y. If β2 < 0, the function decreases, but

at a decreasing rate.

3. In the linear-log model y = β1 + β2ln(x) the variable x is transformed by the natural loga-

rithm. See Figure 4.5(f). We can say that a 1% increase in x leads to a β2∕100-unit change

in y. An example of this functional form is given in the following section.

Remark
Our plan for the remainder of this chapter is to consider several examples of the uses of

alternative functional forms. In the following section we use the linear-log functional form

with the food expenditure data. Then we take a brief detour into some diagnostic measures

for data and model adequacy based on the least squares residuals. After discussing the diag-

nostic tools we give examples of polynomial equations, log-linear equations, and log-log

equations.

4.3.3 A Linear-Log Food Expenditure Model
Suppose that in the food expenditure model, we wish to choose a functional form that is consis-

tent with Figure 4.4. One option is the linear-log functional form. A linear-log equation has a
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linear, untransformed term on the left-hand side and a logarithmic term on the right-hand side,

or y = β1 + β2ln(x). Because of the logarithm, this function requires x > 0. It is an increasing

or decreasing function, depending on the sign of β2. Using Derivative Rule 8, Appendix A, the

slope of the function is β2∕x, so that as x increases, the slope decreases in absolute magnitude. If

β2 > 0, then the function increases at a decreasing rate. If β2 < 0, then the function decreases at a

decreasing rate. The function shapes are depicted in Figure 4.5(f). The elasticity of y with respect

to x in this model is ε = slope × x∕y = β2∕y.

There is a convenient interpretation using approximations to changes in logarithms. Consider

a small increase in x from x0 to x1. Then y0 = β1 + β2ln
(
x0

)
and y1 = β1 + β2ln

(
x1

)
. Subtract-

ing the former from the latter, and using the approximation developed in Appendix A, equation

(A.3), gives

Δy = y1 − y0 = β2

[

ln
(
x1

)
− ln
(
x0

)]

=
β2

100
× 100

[

ln
(
x1

)
− ln
(
x0

)]

≅
β2

100
(%Δx)

The change in y, represented in its units of measure, is approximately β2∕100 times the percentage

change in x.

E X A M P L E 4.4 Using the Linear-Log Model for Food Expenditure

Using a linear-log equation for the food expenditure relation

results in the regression model

FOOD_EXP = β1 + β2 ln(INCOME) + e

For β2 > 0 this function is increasing but at a decreasing rate.

As INCOME increases the slope β2∕INCOME decreases. In

this context, the slope is the marginal propensity to spend

on food from additional income. Similarly, the elasticity,

β2∕FOOD_EXP, becomes smaller for larger levels of food

expenditure. These results are consistent with the idea that at

high incomes, and large food expenditures, the effect of an

increase in income on food expenditure is small.
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FIGURE 4.6 The fitted linear-log model.

The estimated linear-log model using the food expendi-

ture data is

FOOD_EXP
⋀

= −97.19 +132.17 ln(INCOME) R2 = 0.357

(se) (84.24) (28.80)∗∗∗
(4.14)

The fitted model is shown in Figure 4.6.

As anticipated, the fitted function is not a straight line.

The fitted linear-log model is consistent with our theoretical

model that anticipates declining marginal propensity to

spend additional income on food. For a household with

$1,000 weekly income, we estimate that the household

will spend an additional $13.22 on food from an additional
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$100 income, whereas we estimate that a household with

$2,000 per week income will spend an additional $6.61 from

an additional $100 income. The marginal effect of income

on food expenditure is smaller at higher levels of income.

This is a change from the linear, straight-line relationship we

originally estimated, in which the marginal effect of a change

in income of $100 was $10.21 for all levels of income.

Alternatively, we can say that a 1% increase in income

will increase food expenditure by approximately $1.32 per

week or that a 10% increase in income will increase food

expenditure by approximately $13.22. Although this inter-

pretation is conveniently simple to state, the diminishing

marginal effect of income on food expenditure is somewhat

disguised, though still implied. At $1,000 per week income,

a 10% increase is $100, while at $2,000 income a 10%

increase is $200. At higher levels of income, a larger dollar

increase in income is required to elicit an additional $13.22

expenditure on food.

In terms of how well the model fits the data, we see

that R2 = 0.357 for the linear-log model, as compared to

R2 = 0.385 for the linear, straight-line relationship. Since

these two models have the same dependent variable,

FOOD_EXP, and each model has a single explanatory

variable, a comparison of R2 values is valid. However, there

is a very small difference in the fit of the two models, and in

any case, a model should not be chosen only on the basis of

model fit with R2 as the criterion.

Remark
Given alternative models that involve different transformations of the dependent and inde-

pendent variables, and some of which have similar shapes, what are some guidelines for

choosing a functional form?

1. Choose a shape that is consistent with what economic theory tells us about the relation-

ship.

2. Choose a shape that is sufficiently flexible to “fit” the data.

3. Choose a shape so that assumptions SR1–SR6 are satisfied, ensuring that the least

squares estimators have the desirable properties described in Chapters 2 and 3.

Although these objectives are easily stated, the reality of model building is much more difficult.

You must recognize that we never know the “true” functional relationship between economic vari-

ables; also, the functional form that we select, no matter how elegant, is only an approximation.

Our job is to choose a functional form that satisfactorily meets the three objectives stated above.

4.3.4 Using Diagnostic Residual Plots
When specifying a regression model, we may inadvertently choose an inadequate or incorrect

functional form. Even if the functional form is adequate, one or more of the regression model

assumptions may not hold. There are two primary methods for detecting such errors. First, exam-

ine the regression results. Finding an incorrect sign or a theoretically important variable that is

not statistically significant may indicate a problem. Second, evidence of specification errors can

reveal themselves in an analysis of the least squares residuals. We should ask whether there is any

evidence that assumptions SR3 (homoskedasticity), SR4 (no serial correlation), and SR6 (normal-

ity) are violated. Usually, heteroskedasticity might be suspected in cross-sectional data analysis,

and serial correlation is a potential time-series problem. In both cases, diagnostic tools focus on

the least squares residuals. In Chapters 8 and 9, we will provide formal tests for homoskedasticity

and serial correlation. In addition to formal tests, residual plots of all types are useful as diagnostic

tools. In this section, residual analysis reveals potential heteroskedasticity and serial correlation

problems and also flawed choices of functional forms.

We show a variety of residual plots in Figure 4.7. If there are no violations of the assumptions,

then a plot of the least squares residuals versus x, y, or the fitted value of y, ŷ, should reveal no

patterns. Figure 4.7(a) is an example of a random scatter.
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FIGURE 4.7 Residual patterns.
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Figures 4.7(b)–(d) show patterns associated with heteroskedasticity. Figure 4.7(b) has a

“spray-shaped” residual pattern that is consistent with the variance of the error term increasing

as x-values increase; Figure 4.7(c) has a “funnel-shaped” residual pattern that is consistent

with the variance of the error term decreasing as x-values increase; and Figure 4.7(d) has a

“bow-tie” residual pattern that is consistent with the variance of the error term decreasing and

then increasing as x-values increase.

Figure 4.7(e) shows a typical pattern produced with time-series regression when the error

terms display a positive correlation, corr
(
et, et−1

)
> 0. Note that there are sequences of positive

residuals followed by sequences of negative residuals, and so on. If assumption SR4 holds there

should be no such sign patterns. Figure 4.7(f) shows a typical pattern produced with time-series

regression when the error terms display a negative correlation, corr
(
et, et−1

)
< 0. In this case,

each positive residual tends to be followed by a negative residual, which is then followed by a

positive residual and so on. The sequence of residuals tends to alternate in sign.

If the relationship between y and x is curvilinear, such as a U-shaped quadratic function, like

an average cost function, and we mistakenly assume that the relationship is linear, then the least

squares residuals may show a U-shape like in Figure 4.7(g). If the relationship between y and

x is curvilinear, such as a cubic function, like a total cost function, and we mistakenly assume

that the relationship is linear, then the least squares residuals may show a serpentine shape like

Figure 4.7(h).

The bottom line is that when least squares residuals are plotted against another variable there

should be no patterns evident. Patterns of the sorts shown in Figure 4.7, except for panel (a),

indicate that there may be some violation of assumptions and/or incorrect model specification.

E X A M P L E 4.5 Heteroskedasticity in the Food Expenditure Model

The least squares residuals from the linear-log food expendi-

ture model in (4.14) are plotted in Figure 4.8. These exhibit

an expanding variation pattern with more variation in the

residuals as INCOME becomes larger, which may suggest

heteroskedastic errors. A similar residual plot is implied by

Figure 2.8.

We must conclude that at this point we do not have a sat-

isfactory model for the food expenditure data. The linear and

linear-log models have different shapes and different implied

marginal effects. The two models fit the data equally well, but

both models exhibit least squares residual patterns consistent

with heteroskedastic errors. This example will be considered

further in Chapter 8.
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FIGURE 4.8 Residuals from linear-log food expenditure
model.

4.3.5 Are the Regression Errors Normally Distributed?
Recall that hypothesis tests and interval estimates for the coefficients rely on SR6 assumption,

that given x, the errors, and hence the dependent variable y, are normally distributed. Though our

tests and confidence intervals are valid in large samples whether the data are normally distributed

or not, it is nevertheless desirable to have a model in which the regression errors are normally

distributed, so that we do not have to rely on large sample approximations. If the errors are not

normally distributed, we might be able to improve our model by considering an alternative func-

tional form or transforming the dependent variable. As noted in the last “Remark,” when choosing
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a functional form, one of the criteria we might examine is whether a model specification satisfies

regression assumptions, and in particular, whether it leads to errors that are normally distributed

(SR6). How do we check out the assumption of normally distributed errors?

We cannot observe the true random errors, so we must base our analysis of their normality

on the least squares residuals, êi = yi − ŷi. Substituting for yi and ŷi, we obtain

êi = yi − ŷi = β1 + β2xi + ei −
(
b1 + b2xi

)

=
(
β1 − b1

)
+
(
β2 − b2

)
xi + ei

= ei −
(
b1 − β1

)
−
(
b2 − β2

)
xi

In large samples,
(
b1 – β1

)
and

(
b2 – β2

)
will tend toward zero because the least squares esti-

mators are unbiased and have variances that approach zero as N → ∞. Consequently, in large

samples, the difference êi − ei is close to zero, so that these two random variables are essentially

the same and thus have the same distribution.

A histogram of the least squares residuals gives us a graphical representation of the empirical

distribution.

E X A M P L E 4.6 Testing Normality in the Food Expenditure Model

The relevant EViews output for the food expenditure

example, using the linear relationship with no transformation

of the variables, appears in Figure 4.9. What does this

histogram tell us? First, notice that it is centered at zero.

This is not surprising because the mean of the least squares

residuals is always zero if the model contains an intercept,

as shown in Appendix 4B. Second, it seems symmetrical,

but there are some large gaps, and it does not really appear

bell shaped. However, merely checking the shape of the

histogram, especially when the number of observations is

relatively small, is not a statistical “test.”

There are many tests for normality. The Jarque–Bera
test for normality is valid in large samples. It is based on

two measures, skewness and kurtosis. In the present context,

skewness refers to how symmetric the residuals are around

Series: Residuals
Sample 140
Observations 40

–200 –100 2001000

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

Jarque–Bera
Probability

6.93e-15
–6.324473
212.0440

–223.0255
88.36190

–0.097319
2.989034

0.063340
0.968826

0

1
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4

5

6

7

8

9

FIGURE 4.9 EViews output: residuals histogram and summary statistics
for food expenditure example.

zero. Perfectly symmetric residuals will have a skewness of

zero. The skewness value for the food expenditure residuals

is −0.097. Kurtosis refers to the “peakedness” of the dis-

tribution. For a normal distribution, the kurtosis value is 3.

For more on skewness and kurtosis, see Appendices B.1.2

and C.4.2. From Figure 4.9, we see that the food expenditure

residuals have a kurtosis of 2.99. The skewness and kurtosis

values are close to the values for the normal distribution. So,

the question we have to ask is whether 2.99 is sufficiently dif-

ferent from 3, and −0.097 is sufficiently different from zero,

to conclude that the residuals are not normally distributed.

The Jarque–Bera statistic is given by

JB = N
6

(

S2 + (K − 3)2

4

)
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where N is the sample size, S is skewness, and K is kurtosis.

Thus, large values of the skewness, and/or values of kurto-

sis quite different from 3, will lead to a large value of the

Jarque–Bera statistic. When the residuals are normally dis-

tributed, the Jarque–Bera statistic has a chi-squared distribu-

tion with two degrees of freedom. We reject the hypothesis of

normally distributed errors if a calculated value of the statistic

exceeds a critical value selected from the chi-squared distri-

bution with two degrees of freedom. Using Statistical Table 3,

the 5% critical value from a χ2-distribution with two degrees

of freedom is 5.99, and the 1% critical value is 9.21.

Applying these ideas to the food expenditure example,

we have

JB = 40

6

(

(−0.097)2 + (2.99 − 3)2

4

)

= 0.063

Because 0.063 < 5.99, there is insufficient evidence from the

residuals to conclude that the normal distribution assumption

is unreasonable at the 5% level of significance. The same con-

clusion could have been reached by examining the p-value.

The p-value appears in Figure 4.9 described as “Probability.”

Thus, we also fail to reject the null hypothesis on the grounds

that 0.9688 > 0.05.

For the linear-log model of food expenditure reported

in Example 4.4, the Jarque–Bera test statistic value is 0.1999

with a p-value of 0.9049. We cannot reject the null hypoth-

esis that the regression errors are normally distributed, and

this criterion does not help us choose between the linear

and linear-log functional forms for the food expenditure

model.

In these examples, we should remember that the Jarque–Bera test is strictly valid only in large

samples. Applying tests that are valid in large samples to smaller samples, such as N = 40, is not

uncommon in applied work. However, we should remember in such applications that we should

not give great weight to the test significance or nonsignificance.

4.3.6 Identifying Influential Observations
One worry in data analysis is that we may have some unusual and/or influential observations.

Sometimes, these are termed “outliers.” If an unusual observation is the result of a data error,

then we should correct it. If an unusual observation is not the result of a data error, then under-

standing how it came about, the story behind it, can be informative. One way to detect whether

an observation is influential is to delete it and reestimate the model, comparing the results to the

original results based on the full sample. This “delete-one” strategy can help detect the influence

of the observation on the estimated coefficients and the model’s predictions. It can also help us

identify unusual observations.

The delete-one strategy begins with the least squares parameter estimates based on the sam-

ple with the ith observation deleted. Denote these as b1(i) and b2(i). Let σ̂2(i) be the delete-one

estimated error variance. The residual ê(i) = yi −
[
b1(i) + b2(i) xi

]
is the actual value of y for the

ith observation, yi, minus the fitted value that uses estimates from the sample with the ith obser-

vation deleted. It is the forecast error (4.3) with yi taking the place of y0 and xi taking the value

of x0 and using the estimates b1(i) and b2(i). Modifying the variance of the forecast error (4.4),

we obtain the variance of ê(i) (and its estimator) as

var
⋀[

ê(i)|x
]
= σ̂2(i)

⎡
⎢
⎢
⎣

1 + 1

(N − 1)
+

(
xi − x(i)

)2

∑
j≠i
(
xj − x(i)

)2

⎤
⎥
⎥
⎦

where x(i) is the delete-one sample mean of the x-values. The ratio

êstu

i = ê(i)
{

var
⋀[

ê(i)|x
]}1∕2

is called a studentized residual. It is the standardized residual based on the delete-one sample.

The rule of thumb is to calculate these values and compare their values to ±2, which is roughly
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a 95% interval estimate. If the studentized residual falls outside the interval, then the observation

is worth examining because it is “unusually” large.

After considerable algebra, the studentized residual can also be written as

êstu

i =
êi

σ̂(i)
(
1 − hi

)1∕2

where

hi =
1

N
+
(
xi − x

)2

∑(
xi − x

)2

The term hi is called the leverage of the ith observation, with values 0 ≤ hi ≤ 1. If the lever-

age value is high, then the value of the studentized residual is inflated. The second component

of hi is
(
xi − x

)2/∑(xi − x
)2

. Recall that the sample variance of the xi-values is estimated by

s2
x =

∑(
xi − x

)2/(N − 1) so that
∑(

xi − x
)2

is a measure of the total variation in the sample

xi-values about their mean. If one observation’s contribution
(
xi − x

)2
to the total is large, then

that observation may have a strong effect on the least squares estimates and fitted values. The

sum of the leverage terms hi is K, the number of parameters in the regression model. Thus, the

average value in the simple regression model is h = K∕N = 2∕N. When checking data, it is a

common rule of thumb to examine observations with leverage greater than two or three times

the average.

Another measure of the influence of a single observation on the least squares estimates is

called DFBETAS. For the slope estimate in the simple regression model, we calculate

DFBETAS2i =
b2 − b2(i)

σ̂(i)
/√

∑N
i=1

(
xi − x

)2

The effect of the ith observation on the slope estimate is measured by the change in the

coefficient estimate by dropping the ith observation and then standardizing. The magnitude of

DFBETAS2i will be larger when leverage is larger and/or the studentized residual is larger. A

common rule of thumb for identifying influential observations in the simple regression model is
|
|DFBETAS2i

|
| > 2

/√
N.

The effect of the ith observation on the fitted value from the least squares regression is again a

measurement using the delete-one approach. Let ŷi = b1 + b2xi and ŷ(i) = b1(i) + b2(i) xi with ŷ(i)
being the fitted value using parameter estimates from the delete-one sample. The measure called

DFFITS is

DFFITSi =
ŷi − ŷ(i)

σ̂(i) h1∕2

i

=
(

hi

1 − hi

)1∕2

êstu

i

This measure will be larger when leverage is larger and/or the studentized residual is larger. A rule

of thumb to identify unusual observations is ||DFFITSi
|
| > 2(K∕N)1∕2 or ||DFFITSi

|
| > 3(K∕N)1∕2

where K = 2 is the number of parameters in the simple regression model.

These constructs may look difficult to compute, but modern software usually computes

some or all of these measures. We are not suggesting that you toss out unusual observations. If

these measures lead you to locate an observation with an error, you can try to fix it. By looking

at unusual observations, ones that have a high leverage, a large studentized residual, a large

DFBETAS, or a large DFFITS, you may learn something about which data characteristics are

important. All data analysts should examine their data, and these tools may help organize such

an examination.
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E X A M P L E 4.7 Influential Observations in the Food Expenditure Data

Examining the influential observation measures for the food

expenditure data, using a linear relationship and no trans-

formations of the variables, reveals few real surprises. First

the leverage values have the average h = 2∕40 = 0.05. Isolat-

ing observations with leverage more than twice the average,

we have

obs h FOOD_EXP INCOME

1 0.1635 115.22 3.69

2 0.1516 135.98 4.39

3 0.1457 119.34 4.75

4 0.1258 114.96 6.03

40 0.1291 375.73 33.4

The observations with the greatest leverage are those with

the four lowest incomes and the highest income. The mean

of INCOME is 19.6.

The observations with studentized residuals,

EHATSTU, larger than two in absolute value are

obs EHATSTU FOOD_EXP INCOME

31 −2.7504 109.71 24.42

38 2.6417 587.66 28.62

These two observations are interesting because the food

expenditures for these two households are the minimum

and maximum, despite both incomes being above the mean.

In fact, the income for household 31 is the 75th percentile

value, and the income for household 38 is the third largest.

Thus, household 31 is spending significantly less on food

than we would predict, and household 38 more than we

would predict, based on income alone. These might be

observations worth checking to ensure they are correct. In

our case, they are.

The DFBETAS values greater than 2
/√

N = 0.3162 in

absolute value are

obs DFBETAS FOOD_EXP INCOME

38 0.5773 587.66 28.62

39 −0.3539 257.95 29.40

Again household 38 has a relatively large influence on the

least squares estimate of the slope. Household 39 shows up

because it has the second highest income but spends less than

the mean value (264.48) on food.

Finally, DFFITS values larger than 2(K∕N)1∕2 = 0.4472

are as follows:

obs DFFITS FOOD_HAT FOOD_EXP INCOME

31 −0.5442 332.74 109.71 24.42

38 0.7216 375.62 587.66 28.62

The observations with a high influence of the least squares

fitted values are the previously mentioned households 31

and 38, which also have large studentized residuals.

4.4 Polynomial Models
In Sections 2.8.1–2.8.2, we introduced the use of quadratic polynomials to capture curvilin-

ear relationships. Economics students will have seen many average and marginal cost curves

(U-shaped) and average and marginal product curves (inverted-U shaped) in their studies. Higher

order polynomials, such as cubic equations, are used for total cost and total product curves.

A familiar example to economics students is the total cost curve, shaped much like the solid

curve in Figure 4.5(b). In this section, we review simplified quadratic and cubic equations and

give an empirical example.

4.4.1 Quadratic and Cubic Equations

The general form of a quadratic equation y = a0 + a1x + a2x2 includes a constant term a0, a

linear term a1x, and a squared term a2x2. Similarly, the general form of a cubic equation is

y = a0 + a1x + a2x2 + a3x3. In Section 5.6, we consider multiple regression models using the
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general forms of quadratic and cubic equations. For now, however, because we are working with

“simple” regression models that include only one explanatory variable, we consider the simple

quadratic and cubic forms, y = β1 + β2x2 and y = β1 + β2x3, respectively. The properties of the

simple quadratic function are discussed in Section 2.8.1.

The simple cubic equation y = β1 + β2x3 has possible shapes shown in Figure 4.5(b). Using

Derivative Rules 4 and 5 from Appendix A, the derivative, or slope, of this cubic equation is

dy∕dx =3β2x2. The slope of the curve is always positive if β2 > 0, except when x = 0, yielding a

direct relationship between y and x like the solid curve shown in Figure 4.5(b). If β2 < 0, then the

relationship is an inverse one like the dashed curve shown in Figure 4.5(b). The slope equation

shows that the slope is zero only when x = 0. The term β1 is the y-intercept. The elasticity of y
with respect to x is ε = slope × x∕y = 3β2x2 × x∕y. Both the slope and elasticity change along

the curve.

E X A M P L E 4.8 An Empirical Example of a Cubic Equation

Figure 4.10 is a plot of average wheat yield (in tonnes per

hectare—a hectare is about 2.5 acres, and a tonne is a metric

ton that is 1000 kg or 2205 lb—we are speaking Australian

here!) for the Greenough Shire in Western Australia, against

time. The observations are for the period 1950–1997, and

time is measured using the values 1, 2, …, 48. These data

can be found in the data file wa_wheat. Notice in Figure 4.10

that wheat yield fluctuates quite a bit, but overall, it tends to

increase over time, and the increase is at an increasing rate,

particularly toward the end of the time period. An increase

in yield is expected because of technological improvements,

such as the development of varieties of wheat that are higher

yielding and more resistant to pests and diseases. Suppose

that we are interested in measuring the effect of technological

improvement on yield. Direct data on changes in technology

are not available, but we can examine how wheat yield has

changed over time as a consequence of changing technol-

ogy. The equation of interest relates YIELD to TIME, where

TIME = 1,… , 48. One problem with the linear equation

YIELDt = β1 + β2TIMEt + et
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FIGURE 4.10 Scatter plot of wheat yield over time.

is that it implies that yield increases at the same constant

rate β2, when, from Figure 4.10, we expect this rate to be

increasing. The least squares fitted line (standard errors in

parentheses) is

YIELD
⋀

t = 0.638 + 0.0210TIMEt R2 = 0.649

(se) (0.064) (0.0022)

The residuals from this regression are plotted against time

in Figure 4.11. Notice that there is a concentration of posi-

tive residuals at each end of the sample and a concentration

of negative residuals in the middle. These concentrations are

caused by the inability of a straight line to capture the fact that

yield is increasing at an increasing rate. Compare the residual

pattern in Figure 4.11 to Figures 4.7(g) and (h). What alter-

native can we try? Two possibilities are TIME2 and TIME3.

It turns out that TIME3 provides the better fit, and so we con-

sider the functional form

YIELDt = β1 + β2TIME3
t + et
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FIGURE 4.11 Residuals from a linear yield equation.
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The slope of the expected yield function is 3β2TIME2.

Thus, so long as the estimate of β2 turns out to be positive,

the function will be increasing. Furthermore, the slope is

increasing as well. Thus, the function itself is “increasing at

an increasing rate.” Before estimating the cubic equation,

note that the values of TIME3 can get very large. This variable

is a good candidate for scaling. If we define TIMECUBEt =(
TIMEt

/
100
)3

, the estimated equation is

YIELD
⋀

t = 0.874 + 9.682TIMECUBEt R2 = 0.751

(se) (0.036) (0.822)

The residuals from this cubic equation are plotted in

Figure 4.12. The predominance of positive residuals at the

ends and negative residuals in the middle no longer exists.

Furthermore, the R2 value has increased from 0.649 to 0.751,

indicating that the equation with TIMECUBE fits the data

better than the one with just TIME. Both these equations

have the same dependent variable and the same number

of explanatory variables (only 1). In these circumstances,

the R2 can be used legitimately to compare goodness-of-fit.
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FIGURE 4.12 Residuals from a cubic yield equation.

What lessons have we learned from this example? First, a plot of the original dependent variable

series y against the explanatory variable x is a useful starting point for deciding on a functional

form in a simple regression model. Secondly, examining a plot of the residuals is a useful device

for uncovering inadequacies in any chosen functional form. Runs of positive and/or negative

residuals can suggest an alternative. In this example, with time-series data, plotting the resid-

uals against time was informative. With cross-sectional data, using plots of residuals against both

independent and dependent variables is recommended. Ideally, we will see no patterns, and the

residual histogram and Jarque–Bera test will not rule out the assumption of normality. As we

travel through the book, you will discover that patterns in the residuals, such as those shown in

Figure 4.7, can also mean many other specification inadequacies, such as omitted variables, het-

eroskedasticity, and autocorrelation. Thus, as you become more knowledgeable and experienced,

you should be careful to consider other options. For example, wheat yield in Western Australia is

heavily influenced by rainfall. Inclusion of a rainfall variable might be an option worth consider-

ing. Also, it makes sense to include TIME and TIME2 in addition to TIME3. A further possibility

is the constant growth rate model that we consider in the following section.

4.5 Log-Linear Models
Econometric models that employ natural logarithms are very common. We first introduced the

log-linear model in Section 2.8.3. Logarithmic transformations are often used for variables that are

monetary values, such as wages, salaries, income, prices, sales, and expenditures, and, in general,

for variables that measure the “size” of something. These variables have the characteristic that

they are positive and often have distributions that are positively skewed, with a long tail to the

right. Figure P.2 in the Probability Primer is representative of the income distribution in the United

States. In fact, the probability density function f (x) shown is called the “log-normal” because ln(x)

has a normal distribution. Because the transformation ln(x) has the effect of making larger values

of x less extreme, ln(x) will often be closer to a normal distribution for variables of this kind. The

log-normal distribution is discussed in Appendix B.3.9.
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The log-linear model, ln(y) = β1 + β2x, has a logarithmic term on the left-hand side of the

equation and an untransformed (linear) variable on the right-hand side. Both its slope and elas-

ticity change at each point and are the same sign as β2. Using the antilogarithm, we obtain

exp[ln(y)] = y = exp
(
β1 + β2x

)
, so that the log-linear function is an exponential function. The

function requires y > 0. The slope at any point is β2y, which for β2 > 0 means that the marginal

effect increases for larger values of y. An economist might say that this function is increasing at an

increasing rate. The shapes of the log-linear model are shown in Figure 4.5(e), and its derivative

and elasticity given in Table 4.1. To make discussion relevant in a specific context, the slope can

be evaluated at the sample mean y, or the elasticity β2x can be evaluated at the sample mean x, or

other interesting values can be chosen.

Using the properties of logarithms, we can obtain a useful approximation. Consider an

increase in x from x0 to x1. The change in the log-linear model is from ln
(
y0

)
= β1 + β2x0

to ln
(
y1

)
= β1 + β2x1. Subtracting the first equation from the second gives ln

(
y1

)
− ln

(
y0

)
=

β2

(
x1 – x0

)
= β2Δx. Multiply by 100, and use the approximation introduced in Appendix A,

equation (A.3) to obtain

100
[

ln
(
y1

)
− ln
(
y0

)]

≅ %Δy = 100β2

(
x1 − x0

)
=
(
100β2

)
× Δx

A 1-unit increase in x leads approximately to a 100β2% change in y.

In the following two examples, we apply the familiar concept of compound interest to derive

a log-linear economic model for growth arising from technology, and a model explaining the

relation between an individual’s wage rate and their years of schooling. Recall the compound

interest formula. If an investor deposits an initial amount V0 (the principal amount) into an account

that earns a rate of return r, then after t periods the value V of the account is Vt = V0(1 + r)t. For

example, if r = 0.10, so that the rate of return is 10%, and if V0 = $100, after one period the

account value is V1 = $110; after two periods, the account value is V2 = $121, and so on. The

compound interest formula also explains the account growth from year to year. The accumulated

value earns the rate r in each period so that Vt = V0(1 + r)t = (1 + r)Vt−1.

E X A M P L E 4.9 A Growth Model

Earlier in this chapter, in Example 4.8, we considered an

empirical example in which the production of wheat was

tracked over time, with improvements in technology leading

to wheat production increasing at an increasing rate. We

observe wheat production in time periods t = 1,… , T.

Assume that in each period YIELD grows at the constant rate

g due to technological progress. Let the YIELD at time t = 0,

before the sample begins, be YIELD0. This plays the role of

the initial amount. Applying the compound interest formula

we have YIELDt = YIELD0(1 + g)t. Taking logarithms,

we obtain

ln
(
YIELDt

)
= ln

(
YIELD0

)
+
[
ln(1 + g)

]
× t

= β1 + β2t

This is simply a log-linear model with dependent variable

ln
(
YIELDt

)
and explanatory variable t, or time. We expect

growth to be positive, so that β2 > 0, in which case the

plot of YIELD against time looks like the upward-sloping

curve in Figure 4.5(c), which closely resembles the scatter

diagram in Figure 4.11.

Estimating the log-linear model for yield, we obtain

ln
(
YIELDt

)
⋀

= −0.3434 + 0.0178t
(se) (0.0584) (0.0021)

The estimated coefficient b2 = ln(1 + g)
⋀

= 0.0178. Using

the property that ln(1 + x) ≅ x if x is small [see Appendix A,

equation (A.4) and the discussion following it], we esti-

mate that the growth rate in wheat yield is approximately

ĝ = 0.0178, or about 1.78% per year, over the period of

the data.
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E X A M P L E 4.10 A Wage Equation

The relationship between wages and education is a key rela-

tionship in labor economics (and, no doubt, in your mind).

Suppose that the rate of return to an extra year of education is

a constant r. Let WAGE0 represent the wage of a person with

no education. Applying the compound interest formula to

the investment in human capital, we anticipate that the wage

of a person with one year of education will be WAGE1 =
WAGE0(1 + r). A second year of education will compound

the human capital so that WAGE2 = WAGE1(1 + r) =
WAGE0(1 + r)2. In general, WAGE = WAGE0(1 + r)EDUC,

where EDUC is years of education. Taking logarithms,

we have a relationship between ln(WAGE) and years of

education (EDUC)

ln(WAGE) = ln
(
WAGE0

)
+
[
ln(1 + r)

]
× EDUC

= β1 + β2EDUC

An additional year of education leads to an approximate

100β2% increase in wages.

Data on hourly wages, years of education, and other vari-

ables are in the file cps5_small. These data consist of 1200

observations from the May 2013 Current Population Survey

(CPS). The CPS is a monthly survey of about 50000 house-

holds conducted in the United States by the Bureau of the

Census for the Bureau of Labor Statistics. The survey has

been conducted for more than 50 years. Using these data, the

estimated log-linear model is

ln(WAGE)
⋀

= 1.5968 + 0.0988 × EDUC
(se) (0.0702) (0.0048)

We estimate that an additional year of education increases the

wage rate by approximately 9.9%. A 95% interval estimate for

the value of an additional year of education is 8.9% to 10.89%.

4.5.1 Prediction in the Log-Linear Model
You may have noticed that when reporting regression results in this section, we did not include

an R2 value. In a log-linear regression, the R2 value automatically reported by statistical soft-

ware is the percentage of the variation in ln(y) explained by the model. However, our objec-

tive is to explain the variations in y, not ln(y). Furthermore, the fitted regression line predicts

ln(y)
⋀

= b1 + b2x, whereas we want to predict y. The problems of obtaining a useful measure of

goodness-of-fit and prediction are connected, as we discussed in Section 4.2.2.

How shall we obtain the predicted value of y? A first inclination might be to take the antilog

of ln(y)
⋀

= b1 + b2x. The exponential function is the antilogarithm for the natural logarithm, so

that a natural choice for prediction is

ŷn = exp
(

ln(y)
⋀)

= exp
(
b1 + b2x

)

In the log-linear model, this is not necessarily the best we can do. Using properties of the

log-normal distribution it can be shown (see Appendix B.3.9) that an alternative predictor is

ŷc = E(y)
⋀

= exp
(

b1 + b2x + σ̂2
/

2
)

= ŷneσ̂
2∕2

If the sample size is large, the “corrected” predictor ŷc is, on average, closer to the actual value

of y and should be used. In small samples (less than 30), the “natural” predictor may actually

be a better choice. The reason for this incongruous result is that the estimated value of the error

variance σ̂2
adds a certain amount of “noise” when using ŷc, leading it to have increased variability

relative to ŷn that can outweigh the benefit of the correction in small samples.
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E X A M P L E 4.11 Prediction in a Log-Linear Model

The effect of the correction can be illustrated using the

wage equation. What would we predict the wage to be for a

worker with 12 years of education? The predicted value of

ln(WAGE) is

ln(WAGE)
⋀

= 1.5968 + 0.0988 × EDUC
= 1.5968 + 0.0988 × 12 = 2.7819

Then the value of the natural predictor is ŷn = exp
(

ln(y)
⋀)

=
exp(2.7819) = 16.1493. The value of the corrected predictor,

using σ̂2 = 0.2349 from the regression output, is

ŷc = E(y)
⋀

= ŷneσ̂
2∕2 = 16.1493 × 1.1246 = 18.1622

We predict that the wage for a worker with 12 years of edu-

cation will be $16.15 per hour if we use the natural predictor
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FIGURE 4.13 The natural and corrected predictors of wage.

and $18.16 if we use the corrected predictor. In this case,

the sample is large (N = 1200), so we would use the cor-

rected predictor. Among the 1200 workers, there are 307 with

12 years of education. Their average wage is $17.31, so the

corrected predictor is consistent with the sample of data.

How does the correction affect our prediction? Recall

that σ̂2
must be greater than zero and e0 = 1. Thus, the effect

of the correction is always to increase the value of the pre-

diction because eσ̂2∕2 is always greater than one. The natural

predictor tends to systematically underpredict the value of y
in a log-linear model, and the correction offsets the downward

bias in large samples. The “natural” and “corrected” predic-

tions are shown in Figure 4.13.

4.5.2 A Generalized R2 Measure
It is a general rule that the squared simple correlation between y and its fitted value ŷ, where

ŷ is the “best” prediction one can obtain, is a valid measure of goodness-of-fit that we can use

as an R2 in many contexts. As we have seen, what we may consider the “best” predictor can

change depending on the model under consideration. That is, a general goodness-of-fit measure,

or general R2, is

R2
g =
[
corr

(
y, ŷ
)]2 = r2

yŷ

In the wage equation R2
g =
[
corr

(
y, ŷc

)]2 = 0.46472 = 0.2159, as compared to the reported

R2 = 0.2577 from the regression of ln(WAGE) on EDUC. (In this case since the corrected and nat-

ural predictors differ only by a constant factor, the correlation is the same for both.) These R2 val-

ues are small, but we repeat our earlier message: R2 values tend to be small with microeconomic,

cross-sectional data because the variations in individual behavior are difficult to fully explain.
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4.5.3 Prediction Intervals in the Log-Linear Model
We have a corrected predictor ŷc for y in the log-linear model. It is the “point” predictor, or point

forecast, that is relevant if we seek the single number that is our best prediction of y.

If we prefer a prediction or forecast interval for y, then we must rely on the natural pre-

dictor ŷn.1 Specifically, we follow the procedure outlined in Section 4.1 and then take antilogs.

That is, compute ln(y)
⋀

= b1 + b2x and then ln (y)
⋀

± tcse(𝑓 ), where the critical value tc is the

100(1 − α∕2)-percentile from the t-distribution and se( f ) is given in (4.5). Then, a 100(1 − α)%
prediction interval for y is

[

exp
(

ln(y)
⋀

− tcse(𝑓 )
)

, exp
(

ln(y)
⋀

+ tcse(𝑓 )
)]

E X A M P L E 4.12 Prediction Intervals for a Log-Linear Model

For the wage data, a 95% prediction interval for the wage of

a worker with 12 years of education is

[
exp(2.7819 − 1.96 × 0.4850) , exp(2.7819 + 1.96 × 0.4850)

]

=[6.2358, 41.8233]

The interval prediction is $6.24–$41.82, which is so wide that

it is basically useless. What does this tell us? Nothing we did
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FIGURE 4.14 The 95% prediction interval for wage.

not already know. Our model is not an accurate predictor of

individual behavior in this case. In later chapters, we will see

if we can improve this model by adding additional explana-

tory variables, such as experience, that should be relevant.

The prediction interval is shown in Figure 4.14.

4.6 Log-Log Models
The log-log function, ln(y) = β1 + β2ln(x), is widely used to describe demand equations and pro-

duction functions. The name “log-log” comes from the fact that the logarithm appears on both

sides of the equation. In order to use this model, all values of y and x must be positive. Using the

............................................................................................................................................

1See Appendix 4A. The corrected predictor includes the estimated error variance, making the t-distribution no longer

relevant in (4A.1).
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properties of logarithms, we can see how to interpret the parameter of a log-log model. Consider

an increase in x from x0 to x1. The change in the log-log model is from ln
(
y0

)
= β1 + β2ln

(
x0

)
to

ln
(
y1

)
= β1 + β2ln

(
x1

)
. Subtracting the first equation from the second gives ln

(
y1

)
− ln

(
y0

)
=

β2

[
ln
(
x1

)
− ln

(
x0

)]
. Multiply by 100, and use the approximation introduced in Appendix A,

equation (A.3) to obtain 100
[
ln
(
y1

)
− ln

(
y0

)]
≅ %Δy and 100

[
ln
(
x1

)
− ln

(
x0

)]
≅ %Δx, so that

%Δy = β2%Δx, or β2 = %Δy∕%Δx = εyx. That is, in the log-log model, the parameter β2 is the

elasticity of y with respect to a change in x, and it is constant over the entire curve.

A useful way to think about the log-log model comes from a closer inspection of its slope. The

slope of the log-log model changes at every point, and it is given by dy∕dx = β2(y∕x). Rearrange

this so that β2 = (dy∕y)∕(dx∕x). Thus, the slope of the log-log function exhibits constant relative
change, whereas the linear function displays constant absolute change. The log-log function is

a transformation of the equation y = Axβ2 , with β1 = ln(A). The various shape possibilities for

log-log models are depicted in Figure 4.5(c), for β2 > 0, and Figure 4.5(d), for β2 < 0.

If β2 > 0, then y is an increasing function of x. If β2 > 1, then the function increases at an

increasing rate. That is, as x increases the slope increases as well. If 0 < β2 < 1, then the function

is increasing, but at a decreasing rate; as x increases, the slope decreases.

If β2 < 0, then there is an inverse relationship between y and x. If, for example, β2 = −1,

then y = Ax−1 or xy = A. This curve has “unit” elasticity. If we let y = quantity demanded and

x = price, then A = total revenue from sales. For every point on the curve xy = A, the area under

the curve A (total revenue for the demand curve) is constant. By definition, unit elasticity implies

that a 1% increase in x (price, for example) is associated with a 1% decrease in y (quantity

demanded), so that the product xy (price times quantity) remains constant.

E X A M P L E 4.13 A Log-Log Poultry Demand Equation

The log-log functional form is frequently used for demand

equations. Consider, for example, the demand for edible

chicken, which the U.S. Department of Agriculture calls

“broilers.” The data for this exercise are in the data file

newbroiler, which is adapted from the data provided

by Epple and McCallum (2006).2 The scatter plot of

Q = per capita consumption of chicken, in pounds, versus
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FIGURE 4.15 Quantity and price of chicken.

P = real price of chicken is shown in Figure 4.15 for 52

annual observations, 1950–2001. It shows the characteristic

hyperbolic shape that was displayed in Figure 4.5(d).

The estimated log-log model is

ln(Q)
⋀

= 3.717 − 1.121 × ln(P) R2
g = 0.8817

(se) (0.022) (0.049)
(4.15)

............................................................................................................................................

2“Simultaneous Equation Econometrics: The Missing Example,” Economic Inquiry, 44(2), 374–384.
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We estimate that the price elasticity of demand is 1.121: a 1%

increase in real price is estimated to reduce quantity con-

sumed by 1.121%.

The fitted line shown in Figure 4.15 is the “corrected”

predictor discussed in Section 4.5.3. The corrected predic-

tor Q̂c is the natural predictor Q̂n adjusted by the factor

exp
(

σ̂2∕2
)

. That is, using the estimated error variance

σ̂2 = 0.0139, the predictor is

Q̂c = Q̂neσ̂
2∕2 = exp

(

ln(Q)
⋀)

eσ̂
2∕2

= exp
(
3.717 − 1.121 × ln(P)

)
e0.0139∕2

The goodness-of-fit statistic R2
g = 0.8817 is the generalized

R2 discussed in Section 4.5.4. It is the squared correlation

between the predictor Q̂c and the observations Q

R2
g =
[

corr
(
Q, Q̂c

)]2

=[0.939]2 = 0.8817

4.7 Exercises

4.7.1 Problems

4.1 Answer each of the following:

a. Suppose that a simple regression has quantities N = 20,
∑

y2
i = 7825.94, y = 19.21, and

SSR = 375.47, find R2.

b. Suppose that a simple regression has quantities R2 = 0.7911, SST = 725.94, and N = 20, find σ̂2
.

c. Suppose that a simple regression has quantities
∑(

yi − y
)2 = 631.63 and

∑
ê2

i = 182.85, find R2.

4.2 Consider the following estimated regression equation (standard errors in parentheses):

ŷ = 64.29 + 0.99x R2 = 0.379

(se) (2.42) (0.18)
Rewrite the estimated equation, including coefficients, standard errors, and R2, that would result if

a. All values of x were divided by 10 before estimation.

b. All values of y were divided by 10 before estimation.

c. All values of y and x were divided by 10 before estimation.

4.3 We have five observations on x and y. They are xi = 3, 2, 1,−1, 0 with corresponding y values

yi = 4, 2, 3, 1, 0. The fitted least squares line is ŷi = 1.2 + 0.8xi, the sum of squared least squares

residuals is
∑5

i=1
ê2

i = 3.6,
∑5

i=1

(
xi − x

)2 = 10, and
∑5

i=1

(
yi − y

)2 = 10. Carry out this exercise with

a hand calculator. Compute

a. the predicted value of y for x0 = 4.

b. the se( f ) corresponding to part (a).

c. a 95% prediction interval for y given x0 = 4.

d. a 99% prediction interval for y given x0 = 4.

e. a 95% prediction interval for y given x = x. Compare the width of this interval to the one computed

in part (c).

4.4 The general manager of a large engineering firm wants to know whether the experience of techni-

cal artists influences their work quality. A random sample of 50 artists is selected. Using years of

work experience (EXPER) and a performance rating (RATING, on a 100-point scale), two models are

estimated by least squares. The estimates and standard errors are as follows:

Model 1:

RATING
⋀

= 64.289 + 0.990EXPER N = 50 R2 = 0.3793

(se) (2.422) (0.183)
Model 2:

RATING
⋀

= 39.464 + 15.312 ln(EXPER) N = 46 R2 = 0.6414

(se) (4.198) (1.727)
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a. Sketch the fitted values from Model 1 for EXPER = 0 to 30 years.

b. Sketch the fitted values from Model 2 against EXPER = 1 to 30 years. Explain why the four artists

with no experience are not used in the estimation of Model 2.

c. Using Model 1, compute the marginal effect on RATING of another year of experience for (i) an

artist with 10 years of experience and (ii) an artist with 20 years of experience.

d. Using Model 2, compute the marginal effect on RATING of another year of experience for (i) an

artist with 10 years of experience and (ii) an artist with 20 years of experience.

e. Which of the two models fits the data better? Estimation of Model 1 using just the technical artists

with some experience yields R2 = 0.4858.

f. Do you find Model 1 or Model 2 more reasonable, or plausible, based on economic reasoning?

Explain.

4.5 Consider the regression model WAGE = β1 + β2EDUC + e. WAGE is hourly wage rate in U.S. 2013

dollars. EDUC is years of education attainment, or schooling. The model is estimated using individu-

als from an urban area.

WAGE
⋀

= −10.76 + 2.461965EDUC, N = 986

(se) (2.27) (0.16)

a. The sample standard deviation of WAGE is 15.96 and the sum of squared residuals from the regres-

sion above is 199,705.37. Compute R2.

b. Using the answer to (a), what is the correlation between WAGE and EDUC? [Hint: What is the

correlation between WAGE and the fitted value WAGE
⋀

?]

c. The sample mean and variance of EDUC are 14.315 and 8.555, respectively. Calculate the leverage

of observations with EDUC = 5, 16, and 21. Should any of the values be considered large?

d. Omitting the ninth observation, a person with 21 years of education and wage rate $30.76, and

reestimating the model we find σ̂ = 14.25 and an estimated slope of 2.470095. Calculate DFBETAS

for this observation. Should it be considered large?

e. For the ninth observation, used in part (d), DFFITS = −0.0571607. Is this value large? The leverage

value for this observation was found in part (c). How much does the fitted value for this observation

change when this observation is deleted from the sample?

f. For the ninth observation, used in parts (d) and (e), the least squares residual is −10.18368. Calcu-

late the studentized residual. Should it be considered large?

4.6 We have five observations on x and y. They are xi = 3, 2, 1,−1, 0 with corresponding y values

yi = 4, 2, 3, 1, 0. The fitted least squares line is ŷi = 1.2 + 0.8xi, the sum of squared least squares

residuals is
∑5

i=1
ê2

i = 3.6 and
∑5

i=1

(
yi − y

)2 = 10. Carry out this exercise with a hand calculator.

a. Calculate the fitted values ŷi and their sample mean ŷ. Compare this value to the sample mean of

the y values.

b. Calculate
∑5

i=1

(
ŷi − y

)2
and

∑5

i=1

(
ŷi − y

)2/∑5

i=1

(
yi − y

)2
.

c. The least squares residuals are êi = 0.4,−0.8, 1, 0.6, and −1.2. Calculate
∑5

i=1

(
ŷi − y

)
êi.

d. Calculate 1 −
∑5

i=1
ê2

i

/∑5

i=1

(
yi − y

)2
and compare it to the results in part (b).

e. Show, algebraically, that
∑5

i=1

(
ŷi − y

)(
yi − y

)
=
∑5

i=1
ŷiyi − N y2

. Calculate this value.

f. Using
∑5

i=1

(
xi − x

)2 = 10, and previous results, calculate

r =
[∑5

i=1

(
ŷi − y

)(
yi − y

)]
/[√

∑5

i=1

(
ŷi − y

)2
√
∑5

i=1

(
yi − y

)2

]

What statistic is r? Calculate r2 and compare this value to the values in parts (d) and (b).

4.7 We have data on 2323 randomly selected households consisting of three persons in 2013. Let ENTERT
denote the monthly entertainment expenditure ($) per person per month and let INCOME ($100) be

monthly household income. Consider the regression model

ENTERTi = β1 + β2INCOMEi + ei, i = 1,… , 2323

Assume that assumptions SR1–SR6 hold. The OLS estimated equation is ENTERT
⋀

i = 9.820 +
0.503INCOMEi. The standard error of the slope coefficient estimator is se

(
b2

)
= 0.029, the standard
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error of the intercept estimator is se
(
b1

)
= 2.419, and the estimated covariance between the least

squares estimators b1 and b2 is −0.062. From the summary statistics, we find

∑2323

i=1

(

ENTERTi − ENTERT
)2

= 8691035,
∑2323

i=1

(

INCOMEi − INCOME
)2

= 3876440

ENTERT = 45.93, INCOME = 71.84

a. From the estimated regression, the sum of squared least squares residuals is 7711432. How well

does the regression model fit the data? How much of the household variation in entertainment

expenses have we explained using this regression model? Explain your answer.

b. The Jones household has income of $10,000 per month. Predict their per person household expen-

diture on entertainment.

c. Calculate a 95% prediction interval for the Jones household’s per person expenditure on entertain-

ment. Show your work.

d. Calculate a 95% prediction interval for the Jones household’s total household expenditure on enter-

tainment. Show your work.

4.8 Consider a log-linear regression for the weekly sales (number of cans) of a national brand of

canned tuna (SAL1 = target brand sales) as a function of the ratio of its price to the price of a

competitor, RPRICE3 = 100(price of target brand ÷ price competitive brand #3), ln(SAL1) = γ1 +
γ2RPRICE3 + e. Using N = 52 weekly observations, the OLS estimated equation is

ln(SAL1)
⋀

= 11.481 − 0.031RPRICE3

(se) (0.535) (0.00529)

a. The sample mean of RPRICE3 is 99.66, its median is 100, its minimum value is 70.11, and its

maximum value is 154.24. What do these summary statistics tell us about the prices of the target

brand relative to the prices of its competitor?

b. Interpret the coefficient of RPRICE3. Does its sign make economic sense?

c. Using the “natural” predictor, predict the weekly sales of the target brand if RPRICE3 takes its

sample mean value. What is the predicted sales if RPRICE3 equals 140?

d. The estimated value of the error variance from the regression above is σ̂2 = 0.405 and
∑52

i=1

(

RPRICE3i − RPRICE3
)2

= 14757.57. Construct a 90% prediction interval for the weekly

sales of the target brand if RPRICE3 takes its sample mean value. What is the 90% prediction

interval for sales if RPRICE3 equals 140? Is one interval wider? Explain why this happens.

e. The fitted value of ln(SAL1) is ln(SAL1)
⋀

. The correlation between ln(SAL1) and ln(SAL1)
⋀

is 0.6324,

the correlation between ln(SAL1)
⋀

and SAL1 is 0.5596, and the correlation between exp
[

ln(SAL1)
⋀]

and SAL1 is 0.6561. Calculate the R2 that would normally be shown with the fitted regression output

above. What is its interpretation? Calculate the “generalized-R2.” What is its interpretation?

4.9 Consider the weekly sales (number of cans) of a national brand of canned tuna (SAL1 =
target brand sales) as a function of the ratio of its price to the price of a competitor, RPRICE3 =
100(price of target brand ÷ price competitive brand #3). Using N = 52 weekly observations, and for

this exercise scaling SAL1∕1000 so that we have sales measured as thousands of cans per week, we

obtain the following least squares estimated equations, the first being a linear specification, the second

a log-linear specification, and the third a log-log specification.

SAL1

⋀

= 29.6126 − 0.2297RPRICE3

(se) (4.86) (4.81)
ln(SAL1)
⋀

= 4.5733 − 0.0305RPRICE3

(se) (0.54) (0.0053)

ln(SAL1)
⋀

= 16.6806 − 3.3020 ln(RPRICE3)
(se) (2.413) (0.53)

a. For the linear specification, the sum of squared residuals is 1674.92, the estimated skewness and

kurtosis of the residuals are 1.49 and 5.27, respectively. Calculate the Jarque–Bera statistic and test

the hypothesis that the random errors in this specification are normally distributed, at the 5% level

of significance. Specify the distribution of the test statistic if the null hypothesis of normality is

true and the rejection region.

b. For the log-linear specification, the estimated skewness and kurtosis of the residuals are 0.41 and

2.54, respectively. Calculate the Jarque–Bera statistic and test the hypothesis that the random errors

in this specification are normally distributed, at the 5% level of significance.
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c. For the log-log specification, the estimated skewness and kurtosis of the residuals are 0.32 and 2.97,

respectively. Calculate the Jarque–Bera statistic and test the hypothesis that the random errors in

this specification are normally distributed, at the 5% level of significance.

d. For the log-linear and log-log specifications, define a residual as SAL1 − exp
(

ln(SAL1)
⋀)

. For the

two models, the sum of the squared residuals as defined are 1754.77 for the log-linear model and

1603.14 for the log-log model. Based on these values, and comparing them to the sum of squared

residuals from the linear specification, which model seems to fit the data best?

e. Table 4.2 reports correlations between the regression model variables and predictions from the lin-

ear relationship (YHAT), predictions from the log-linear relationship
(

YHATL = exp
[

ln(SAL1)
⋀])

,

and predictions from the log-log model
(

YHATLL = exp
[

ln(SAL1)
⋀])

.

i. Why is the correlation between SAL1 and RPRICE3 the same as the correlation between YHAT
and SAL1 (except for the sign)?

ii. What is the R2 from the linear relationship model?

iii. Why is the correlation between YHAT and RPRICE3 a perfect—1.0?

iv. What is the generalized-R2 for the log-linear model?

v. What is the generalized-R2 for the log-log model?

f. Given the information provided in parts (a)–(e) which model would you select as having the best

fit to the data?

T A B L E 4.2 Correlations for Exercise 4.9

RPRICE3 SAL1 YHAT YHATL YHATLL

RPRICE3 1.0000

SAL1 −0.5596 1.0000

YHAT −1.0000 0.5596 1.0000

YHATL −0.9368 0.6561 0.9368 1.0000

YHATLL −0.8936 0.6754 0.8936 0.9927 1.0000

4.10 Using data on 76 countries, we estimate a relationship between the growth rate in prices, INFLAT ,

and the rate of growth in the money supply, MONEY . The least squares estimates of the model are as

follows:

INFLAT = −5.57 + 1.05MONEY R2 = 0.9917

(se) (0.70) (0.11)

The data summary statistics are as follows:

Mean Median Std. Dev. Min Max

INFLAT 25.35 8.65 58.95 −0.6 374.3

MONEY 29.59 16.35 56.17 2.5 356.7

Table 4.3 contains the data and some diagnostics for several observations.

a. Determine observations for which LEVERAGE is large. What is your rule?

b. Determine observations for which EHATSTU (the studentized residual) is large. What is your rule?

c. Determine observations for which DFBETAS is large. What is your rule?

d. Determine observations for which DFFITS is large. What is your rule?

e. Sketch the fitted relationship. On the graph locate the point of the means, and medians, and the

nine data points in Table 4.3. Which observations are remote, relative to the center of the data, the

point of the means and medians?
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T A B L E 4.3 Diagnostics for Selected Observations for Exercise 4.10

ID INFLAT MONEY LEVERAGE EHATSTU DFBETAS DFFITS

1 374.3 356.7 0.4654 1.8151 1.6694 1.6935

2 6.1 11.5 0.0145 −0.0644 0.0024 −0.0078

3 3.6 7.3 0.0153 0.2847 −0.0131 0.0354

4 187.1 207.1 0.1463 −5.6539 −2.2331 −2.3408

5 12.3 25.2 0.0132 −1.5888 0.0144 −0.1840

6 4.0 3.1 0.0161 1.1807 −0.0648 0.1512

7 316.1 296.6 0.3145 2.7161 1.8007 1.8396

8 13.6 17.4 0.0138 0.1819 −0.0046 0.0215

9 16.4 18.5 0.0137 0.4872 −0.0112 0.0574

4.11 Consider the regression model WAGE = β1 + β2EDUC + e where WAGE is hourly wage rate in U.S.

2013 dollars, EDUC is years of education attainment. The model is estimated twice, once using indi-

viduals from an urban area, and again for individuals in a rural area.

Urban
WAGE
⋀

= −10.76 + 2.46EDUC, N = 986

(se) (2.27) (0.16)

Rural
WAGE
⋀

= −4.88 + 1.80EDUC, N = 214

(se) (3.29) (0.24)

a. For the rural regression, compute a 95% prediction interval for WAGE if EDUC = 16, and the stan-

dard error of the forecast is 9.24. The standard error of the regression is σ̂ = 9.20 for the rural data.

b. For the urban data, the sum of squared deviations of EDUC about its sample mean is 8435.46

and the standard error of the regression is σ̂ = 14.25. The sample mean wage in the urban area is

$24.49. Calculate the 95% prediction interval for WAGE if EDUC = 16. Is the interval wider or

narrower than the prediction interval for the rural data? Do you find this plausible? Explain.

4.12 Consider the share of total household expenditure (TOTEXP) devoted to expenditure on food (FOOD).

Specify the log-linear relationship FOOD∕TOTEXP = β1 + β2ln(TOTEXP).
a. Show that the elasticity of expenditure on food with respect to total expenditure is

ε = dFOOD
dTOTEXP

× TOTEXP
FOOD

=
β1 + β2

[
ln(TOTEXP) + 1

]

β1 + β2 ln(TOTEXP)

[Hint: Solve the log-linear relationship as FOOD =
[
β1 + β2ln(TOTEXP)

]
TOTEXP and differen-

tiate to obtain dFOOD∕dTOTEXP. Then multiply by TOTEXP/FOOD and simplify.]

b. The least squares estimates of the regression model FOOD∕TOTEXP = β1 + β2ln(TOTEXP) + e,

using 925 observations from London, are as follows:

FOOD
⋀

TOTEXP
= 0.953 − 0.129 ln(TOTEXP) R2 = 0.2206, σ̂ = 0.0896

(t) (26.10) (−16.16)

Interpret the estimated coefficient of ln(TOTEXP). What happens to the share of food expenditure

in the budget as total household expenditures increase?

c. Calculate the elasticity in part (a) at the 5th percentile, and the 75th percentile of total expenditure.

Is this a constant elasticity function? The 5th percentile is 500 UK pounds, and the 75th percentile

is 1200 UK pounds.

d. The residuals from the model in (b) have skewness 0.0232 and kurtosis 3.4042. Carry out the

Jarque–Bera test at the 1% level of significance. What are the null and alternative hypotheses for

this test?
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e. In FOOD∕TOTEXP = β1 + β2ln(TOTEXP), take the logarithm of the left-hand side and simplify

the result to obtain ln(FOOD) = α1 + α2ln(TOTEXP). How are the parameters in this model related

to the budget share relation?

f. The least squares estimates of ln(FOOD) = α1 + α2ln(TOTEXP) + e are as follows:

ln(FOOD)
⋀

= 0.732 + 0.608 ln(TOTEXP) R2 = 0.4019 σ̂ = 0.2729

(t) (6.58) (24.91)

Interpret the estimated coefficient of ln(TOTEXP). Calculate the elasticity in this model at the 5th

percentile and the 75th percentile of total expenditure. Is this a constant elasticity function?

g. The residuals from the log-log model in (e) show skewness = −0.887 and kurtosis = 5.023. Carry

out the Jarque–Bera test at the 5% level of significance.

h. In addition to the information in the previous parts, we multiply the fitted value in part (b) by

TOTEXP to obtain a prediction for expenditure on food. The correlation between this value and

actual food expenditure is 0.641. Using the model in part (e) we obtain exp
[

ln(FOOD)
⋀]

. The cor-

relation between this value and actual expenditure on food is 0.640. What if any information is

provided by these correlations? Which model would you select for reporting, if you had to choose

only one? Explain your choice.

4.13 The linear regression model is y = β1 + β2x + e. Let y be the sample mean of the y-values and x the

average of the x-values. Create variables ỹ = y − y and x̃ = x − x. Let ỹ = α x̃ + e.

a. Show, algebraically, that the least squares estimator of α is identical to the least square estimator

of β2. [Hint: See Exercise 2.4.]

b. Show, algebraically, that the least squares residuals from ỹ = α x̃ + e are the same as the least

squares residuals from the original linear model y = β1 + β2x + e.

4.14 Using data on 5766 primary school children, we estimate two models relating their performance on a

math test (MATHSCORE) to their teacher’s years of experience (TCHEXPER).

Linear relationship

MATHSCORE
⋀

= 478.15 + 0.81TCHEXPER R2 = 0.0095 σ̂ = 47.51

(se) (1.19) (0.11)
Linear-log relationship

MATHSCORE
⋀

= 474.25 + 5.63 ln(TCHEXPER) R2 = 0.0081 σ̂ = 47.57

(se) (1.84) (0.84)

a. Using the linear fitted relationship, how many years of additional teaching experience is required

to increase the expected math score by 10 points? Explain your calculation.

b. Does the linear fitted relationship imply that at some point there are diminishing returns to addi-

tional years of teaching experience? Explain.

c. Using the fitted linear-log model, is the graph of MATHSCORE against TCHEXPER increasing at

a constant rate, at an increasing rate, or at a decreasing rate? Explain. How does this compare to

the fitted linear relationship?

d. Using the linear-log fitted relationship, if a teacher has only one year of experience, how many

years of extra teaching experience is required to increase the expected math score by 10 points?

Explain your calculation.

e. 252 of the teachers had no teaching experience. What effect does this have on the estimation of the

two models?

f. These models have such a low R2 that there is no statistically significant relationship between

expected math score and years of teaching experience. True or False? Explain your answer.

4.15 Consider a log-reciprocal model that relates the logarithm of the dependent variable to the recipro-

cal of the explanatory variable, ln(y) = β1 + β2(1∕x). [Note: An illustration of this model is given in

Exercise 4.17].

a. For what values of y is this model defined? Are there any values of x that cause problems?

b. Write the model in exponential form as y = exp
[
β1 + β2(1∕x)

]
. Show that the slope of this rela-

tionship is dy∕dx = exp
[
β1 +

(
β2∕x

)]
×
(
−β2∕x2

)
. What sign must β2 have for y and x to have a

positive relationship, assuming that x > 0?
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c. Suppose that x > 0 but it converges toward zero from above. What value does y converge to? What

does y converge to as x approaches infinity?

d. Suppose β1 = 0 and β2 = −4. Evaluate the slope at the x-values 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0.

As x increases, is the slope of the relationship increasing or decreasing, or both?

e. Show that the second derivative of the function is

d2y
dx2

=

(
β2

2

x4
+

2β2

x3

)

exp
[

β1 +
(
β2∕x

)]

Assuming β2 < 0 and x > 0, set the equation to zero, and show that the x-value that makes the

second derivative zero is –β2∕2. Does this result agree with your calculations in part (d)? [Hint:
exp
[
β1 +

(
β2∕x

)]
> 0. You have solved for what is called an inflection point.]

4.7.2 Computer Exercises

4.16 In Section 4.6, we considered the demand for edible chicken, which the U.S. Department of Agriculture

calls “broilers.” The data for this exercise are in the file newbroiler.

a. Using the 52 annual observations, 1950–2001, estimate the reciprocal model Q = α1 +
α2(1∕P) + e. Plot the fitted value of Q = per capita consumption of chicken, in pounds, versus

P = real price of chicken. How well does the estimated relation fit the data?

b. Using the estimated relation in part (a), compute the elasticity of per capita consumption with

respect to real price when the real price is its median, $1.31, and quantity is taken to be the corre-

sponding value on the fitted curve.

[Hint: The derivative (slope) of the reciprocal model y = a + b(1∕x) is dy∕dx = −b
(
1∕x2

)
].

Compare this estimated elasticity to the estimate found in Section 4.6 where the log-log functional

form was used.

c. Estimate the poultry consumption using the linear-log functional form Q = γ1 + γ2 ln(P) + e.

Plot the fitted values of Q = per capita consumption of chicken, in pounds, versus P = real price

of chicken. How well does the estimated relation fit the data?

d. Using the estimated relation in part (c), compute the elasticity of per capita consumption with

respect to real price when the real price is its median, $1.31. Compare this estimated elasticity to

the estimate from the log-log model and from the reciprocal model in part (b).

e. Estimate the poultry consumption using a log-linear model ln(Q) = ϕ1 + ϕ2P + e. Plot the fit-

ted values of Q = per capita consumption of chicken, in pounds, versus P = real price of chicken.

How well does the estimated relation fit the data?

f. Using the estimated relation in part (e), compute the elasticity of per capita consumption with

respect to real price when the real price is its median, $1.31. Compare this estimated elasticity to

the estimate from the previous models.

g. Evaluate the suitability of the alternative models for fitting the poultry consumption data, including

the log-log model. Which of them would you select as best, and why?

4.17 McCarthy and Ryan (1976) considered a model of television ownership in the United Kingdom and

Ireland using data from 1955 to 1973. Use the data file tvdata for this exercise.

a. For the United Kingdom, plot the rate of television ownership (RATE_UK) against per capita con-

sumer expenditures (SPEND_UK). Which models in Figure 4.5 are candidates to fit the data?

b. Estimate the linear-log model RATE_UK = β1 + β2ln(SPEND_UK) + e. Obtain the fitted values

and plot them against SPEND_UK. How well does this model fit the data?

c. What is the interpretation of the intercept in the linear-log model? Specifically, for the model

in (b), for what value of SPEND_UK is the expected value E(RATE_UK|SPEND_UK) = β1?

d. Estimate the linear-log model RATE_UK = β1 + β2ln(SPEND_UK − 280) + e. Obtain the fitted

values and plot them against SPEND_UK. How well does this model fit the data? How has the

adjustment (−280) changed the fitted relationship? [Note: You might well wonder how the value

280 was determined. It was estimated using a procedure called nonlinear least squares. You will

be introduced to this technique later in this book.]

e. A competing model is the log-reciprocal model, described in Exercise 4.15. Estimate the

log-reciprocal model ln(RATE_UK) = α1 + α2(1∕SPEND_UK) + e. Obtain the fitted values and

plot them against SPEND_UK. How well does this model fit the data?

f. Explain the failure of the model in (e) by referring to Exercise 4.15(c).
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g. Estimate the log-reciprocal model ln(RATE_UK) = α1 + α2(1∕[SPEND_UK − 280]) + e. Obtain

the fitted values and plot them against SPEND_UK. How well does this model fit the data? How

has this modification corrected the problem identified in part (f)?

h. Repeat the above exercises for Ireland, with correcting factor 240 instead of 280.

4.18 Do larger universities have lower cost per student or a higher cost per student? Use the data on 141 pub-

lic universities in the data file pubcoll for 2010 and 2011. A university is many things and here we only

focus on the effect of undergraduate full-time student enrollment (FTESTU) on average total cost per

student (ACA). Consider the regression model ACAit = β1 + β2FTESTUit + eit where the subscripts i
and t denote the university and the time period, respectively. Here, eit is the usual random error term.

a. Estimate the model above using 2010 data only, again using 2011 data only, and again using both

years of data together. What is the estimated effect of increasing enrollment on average cost per

student? Base your answer on both point and 95% interval estimates.

b. There are certainly many other factors affecting average cost per student. Some of them can

be characterized as the university “identity” or “image.” Let us denote these largely unob-

servable individual attributes as ui. If we could add this feature to the model, it would be

ACAit = β1 + β2FTESTUit +
(
θui + eit

)
. We place it in parentheses with eit because it is another

unobservable random error, but it is different because the character or identify of a university

does not change from one year to the next. Do you suppose that our usual exogeneity assumptions

hold in light of this new class of omitted variables? Might some unobservable characteristics of a

university be correlated with student enrollment? Give some examples.

c. With our two years of data, we can take “first differences,” by subtracting the model in 2010 from

the model in 2011, ΔACAi = β2ΔFTESTUi + Δei, where

ΔACAi = ACAi,2011 − ACAi,2010

ΔFTESTUi = FTESTUi,2011 − FTESTUi,2010

Δei = ei,2011 − ei,2010

Explain why the intercept and θui drop from the model. Explain how the exogeneity assumptions

might now hold.

d. Estimate ΔACAi = β2ΔFTESTUi + Δei and also ΔACAi = δ + β2ΔFTESTUi + Δei. What now is

the estimated effect of increasing enrollment on average cost per student? Base your answer on both

point and 95% interval estimates. Does adding an intercept to the model make any fundamental

difference in this case?

e. Estimate the model Δln
(
ACAi

)
= α + γΔln

(
FTESTUi

)
+ Δei where

Δln
(
ACAi

)
= ln

(
ACAi,2011

)
− ln

(
ACAi,2010

)

and

Δln
(
FTESTUi

)
= ln

(
FTESTUi,2011

)
− ln
(
FTESTUi,2010

)

Interpret the estimated coefficient of Δln
(
FTESTUi

)
.

[Hint: See equation (A.3) in Appendix A.]

4.19 The data file wa_wheat contains wheat yield for several shires in Western Australia from 1950 to 1997.

a. If the variable YIELD is “average wheat yield” in tonnes per hectare what is the interpretation of

RYIELD = 1∕YIELD?

b. For Northampton and Mullewa shires, plot RYIELD = 1∕YIELD against YEAR = 1949 + TIME.

Do you notice any anomalies in the plots? What years are most unusual? Using your favorite search

engine discover what conditions may have affected wheat production in these shires during these

years.

c. For Northampton and Mullewa shires, estimate the reciprocal model RYIELD = α1 + α2TIME + e.

Interpret the estimated coefficient. What does the sign tell us?

d. For the estimations in part (c), test the hypothesis that the coefficient of TIME is greater than or

equal to zero against the alternative that it is negative, at the 5% level of significance.

e. For each of the estimations in part (c), calculate studentized residuals, and values for the diagnostics

LEVERAGE, DFBETAS, and DFFITS. Identify the years in which these are “large” and include

your threshold for what is large.

f. Discarding correct data is hardly ever a good idea, and we recommend that you not do it. Later

in this book, you will discover other methods for addressing such problems—such as adding
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additional explanatory variables—but for now experiment. For each shire, identify the most

unusual observation. What grounds did you use for choosing?

g. Drop the most unusual observation for each shire and reestimate the model. How much do the

results change? How do these changes relate to the diagnostics in part (e)?

4.20 In the log-linear model ln(y) = β1 + β2x + e, the corrected predictor ŷc = exp
(
b1 + b2x

)
× exp

(

σ̂2/
2
)

is argued to have a lower mean squared error than the “normal” predictor ŷn = exp
(
b1 + b2x

)
. The

correction factor exp
(

σ̂2/
2
)

depends on the regression errors having a normal distribution.

a. In exponential form, the log-linear model is y = exp
(
β1 + β2x

)
exp(e). Assuming that the explana-

tory variable x and the random error e are statistically independent, find E(y).

b. Use the data file cps5_small for this exercise. [The data file cps5 contains more observations and

variables.] Estimate the model ln(WAGE) = β1 + β2EDUC + e using the first 1000 observations.

Based on this regression, calculate the correction factor c = exp
(

σ̂2/
2
)

. What is this value?

c. Obtain the 1000 least squares residuals ê from the regression in (b). Calculate the correction factor

d =
∑1000

i=1
exp
(
êi
)/

1000. What is this value?

d. Using the estimates from part (b), obtain the predictions for observations 1001–1200, using

ŷn = exp
(
b1 + b2x

)
, ŷc = cŷn, and ŷd = dŷn. Calculate the mean (average) squared fore-

cast errors MSEn =
∑1200

i=1001

(
ŷni − yi

)2/
200, MSEc =

∑1200

i=1001

(
ŷci − yi

)2/
200, and MSEd =

∑1200

i=1001

(
ŷdi − yi

)2/
200. Based on this criterion, which predictor is best?

4.21 The data file malawi_small contains survey data from Malawi during 2007–2008 on total household

expenditures in the prior month (in Malawian Kwacha) as well as expenditures on categories of goods

such as food, clothes, and fuel.

a. Locate Malawi and its neighboring countries on a map. Find the exchange rate between US $1 and

the Malawian Kwacha. What is the population size of Malawi? Which industry drives the Malawi

economy?

b. Define the proportion of expenditure on food as PFOOD = FOOD∕TOTEXP. Estimate the

linear-log regression model PFOOD = β1 + β2ln(TOTEXP) + e and report the estimation results.

What happens to the share of total expenditure devoted to food as total expenditure rises. Construct

a 95% interval estimate for β2. Have we estimated this coefficient relatively precisely or not? Does

the model fit the data well? Is there a problem?

c. The elasticity of expenditure on food with respect to total expenditure is

ε = dFOOD
dTOTEXP

× TOTEXP
FOOD

=
β1 + β2

[
ln(TOTEXP) + 1

]

β1 + β2 ln(TOTEXP)

This result is derived in Exercise 4.12. Calculate the elasticity at the 5th percentile and the 75th per-

centile of total expenditure. Is this a constant elasticity function? If your software permits, calculate

a standard error for the elasticity.

d. Calculate the least squares residuals from the model in (b). Construct a histogram of these residuals

and plot them against ln(TOTEXP). Are any patterns evident? Find the sample skewness and kur-

tosis of the least squares residuals. Carry out the Jarque–Bera test at the 1% level of significance.

What are the null and alternative hypotheses for this test?

e. Take the logarithm of the left-hand side of FOOD∕TOTEXP = β1 + β2ln(TOTEXP) and simplify

the result, and add an error term, to obtain ln(FOOD) = α1 + α2 ln(TOTEXP) + v. Estimate this

model. Interpret the estimated coefficient of ln(TOTEXP). What is the estimated elasticity of expen-

diture on food with respect to total expenditure?

f. Calculate the residuals from the model in (e). Construct a histogram of these residuals and plot

them against ln(TOTEXP). Are any patterns evident? Find the sample skewness and kurtosis of the

least squares residuals. Carry out the Jarque–Bera test at the 1% level of significance.

g. Estimate the linear-log model FOOD = γ1 + γ2ln(TOTEXP) + u. Discuss the estimation results.

Calculate the elasticity of food expenditure with respect to total expenditure when food expenditure

is at its 50th percentile and at its 75th percentile. Is this a constant elasticity function, or is elasticity

increasing or decreasing?

h. Calculate the residuals from the model in (g). Construct a histogram of these residuals and plot

them against ln(TOTEXP). Are any patterns evident? Find the sample skewness and kurtosis of the

least squares residuals. Carry out the Jarque–Bera test at the 1% level of significance.
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i. Calculate predicted values of expenditure on food from each model. Multiply the fitted value from

the model in part (b) to obtain a prediction for expenditure on food. Using the model in part (e)

obtain exp
[

ln(FOOD)
⋀]

. For the model in part (g), obtain fitted values. Find the correlations between

the actual value of FOOD and the three sets of predictions. What, if any, information is provided

by these correlations? Which model would you select for reporting, if you had to choose only one?

Explain your choice.

4.22 The data file malawi_small contains survey data from Malawi during 2007–2008 on total household

expenditures in the prior month (in Malawian Kwacha) as well as expenditures on categories of goods

such as food, clothes, and fuel.

a. Define the proportion of expenditure on food consumed away from home as PFOODAWAY =
FOODAWAY∕TOTEXP. Construct a histogram for PFOODAWAY and its summary statistics. What

percentage of the sample has a zero value for PFOODAWAY . What does that imply about their

expenditures last month?

b. Create the variable FOODAWAY = PFOODAWAY × TOTEXP. Construct a histogram for FOOD-
AWAY and another histogram for FOODAWAY if FOODAWAY > 0. Compare the summary statis-

tics for TOTEXP for households with FOODAWAY > 0 to those with FOODAWAY = 0. What

differences do you observe?

c. Estimate the linear regression model FOODAWAY = β1 + β2TOTEXP + e twice, once for the full

sample, and once using only households for whom FOODAWAY > 0. What differences in slope esti-

mates do you observe? How would you explain these differences to an audience of noneconomists?

d. Calculate the fitted values from each of the estimated models in part (c) and plot the fitted values,

and FOODAWAY values, versus TOTEXP. Think about how the least squares estimation procedure

works to fit a line to data. Explain the relative difference in the two estimations based on this

intuition.

4.23 The data file malawi_small contains survey data from Malawi during 2007–2008 on total household

expenditures in the prior month (in Malawian Kwacha) as well as expenditures on categories of goods

such as food, clothes, and fuel. Consider the following models.

i. Budget share: PTELEPHONE = β1 + β2ln(TOTEXP) + e
ii. Expenditure: ln(PTELEPHONE × TOTEXP) = α1 + α2ln(TOTEXP) + e

iii. Budget share: PCLOTHES = β1 + β2ln(TOTEXP) + e
iv. Expenditure: ln(PCLOTHES × TOTEXP) = α1 + α2ln(TOTEXP) + e
v. Budget share: PFUEL = β1 + β2ln(TOTEXP) + e

vi. Expenditure: ln(PFUEL × TOTEXP) = α1 + α2ln(TOTEXP) + e
a. Estimate each of the models (i) to (vi). Interpret the estimated coefficients of ln(TOTEXP). Is each

item a necessity, or a luxury?

b. For each commodity equation (ii), (iv), and (vi), calculate the expenditure elasticity with respect

to total expenditure at the 25th and 75th percentiles of TOTEXP.

c. For the budget share equations, (i), (iii), and (v), find the elasticities that are given by

ε =
β1 + β2

[
ln(TOTEXP) + 1

]

β1 + β2 ln(TOTEXP)
(see Exercise 4.12). Are the changes in elasticities between the two

percentiles, noticeable? [A standard log-log expenditure model can be obtained using the data,

by creating a dependent variable that is the logarithm of the budget share times total expenditure.

That is, for example, ln(TELEPHONE) = ln(PTELEPHONE × TOTEXP).]
4.24 Reconsider the presidential voting data (fair5) introduced in Exercises 2.23 and 3.24.

a. Using all the data from 1916 to 2012, estimate the regression model VOTE = β1 + β2GROWTH + e.

Based on these estimates, what is the predicted value of VOTE in favor of the Democrats in 2012?

At the time of the election, a Democrat, Barack Obama, was the incumbent. What is the least

squares residual for the 2012 election observation?

b. Estimate the regression in (a) using only data up to 2008. Predict the value of VOTE in 2012 using

the actual value of GROWTH for 2012, which was 1.03%. What is the prediction error in this

forecast? Is it larger or smaller than the error computed in part (a).

c. Using the regression results from (b), construct a 95% prediction interval for the 2012 value of

VOTE using the actual value of GROWTH = 1.03%.

d. Using the estimation results in (b), what value of GROWTH would have led to a prediction that the

nonincumbent party [Republicans] would have won 50.1% of the vote in 2012?
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e. Use the estimates from part (a), and predict the percentage vote in favor of the Democratic candi-

date in 2016. At the time of the election, a Democrat, Barack Obama, was the incumbent. Choose

several values for GROWTH that represent both pessimistic and optimistic values for 2016. Cite

the source of your chosen values for GROWTH.

4.25 The file collegetown contains data on 500 houses sold in Baton Rouge, LA during 2009–2013. Variable

descriptions are in the file collegetown.def .

a. Estimate the log-linear model ln(PRICE) = β1 + β2SQFT + e. Interpret the estimated model

parameters. Calculate the slope and elasticity at the sample means, if necessary.

b. Estimate the log-log model ln(PRICE) = α1 + α2ln(SQFT) + e. Interpret the estimated parameters.

Calculate the slope and elasticity at the sample means, if necessary.

c. Compare the R2 value from the linear model PRICE = δ1 + δ2SQFT + e to the “generalized” R2

measure for the models in (b) and (c).

d. Construct histograms of the least squares residuals from each of the models in (a)–(c) and obtain

the Jarque–Bera statistics. Based on your observations, do you consider the distributions of the

residuals to be compatible with an assumption of normality?

e. For each of the models in (a)–(c), plot the least squares residuals against SQFT . Do you observe

any patterns?

f. For each model in (a)–(c), predict the value of a house with 2700 square feet.

g. For each model in (a)–(c), construct a 95% prediction interval for the value of a house with 2700

square feet.

h. Based on your work in this problem, discuss the choice of functional form. Which functional form

would you use? Explain.

4.26 The file collegetown contains data on 500 houses sold in Baton Rouge, LA during 2009–2013. Variable

descriptions are in the file collegetown.def.
a. Estimate the log-linear model ln(PRICE) = β1 + β2SQFT + e for houses close to Louisiana State

University [CLOSE = 1] and again for houses that are not close to Louisiana State University. How

similar are the two sets of regression estimates. For each find the “corrected” predictor for a house

with 2700 square feet of living area. What do you find?

b. Using the sample of homes that are not close to LSU [CLOSE = 0], find any observations on

house sales that you would classify as unusual, based on the studentized residuals, LEVERAGE,

DFBETAS, and DFFITS. Can you identify any house characteristics that might explain why they

are unusual?

c. Estimate the log-linear model ln(PRICE) = β1 + β2SQFT + e for houses for which AGE < 7 and

again for houses with AGE > 9. Note that AGE is not the actual age of the house, but a category.

Examine the file collegetown.def for the specifics. How similar are the two sets of regression esti-

mates. For each find the “corrected” predictor of a house with 2700 square feet of living area. What

do you find?

d. Using the sample of homes with AGE > 9, find any observations on house sales that you would

classify as unusual, based on the studentized residuals, LEVERAGE, DFBETAS, and DFFITS. Can

you identify any house characteristics that might explain why they are unusual?

4.27 Does the return to education differ by race and gender? For this exercise use the file cps5. [This is a

large file with 9799 observations. If your software is a student version, you can use the smaller file

cps5_small if your instructor permits]. In this exercise, you will extract subsamples of observations

consisting of (i) white males, (ii) white females, (iii) black males, and (iv) black females.

a. For each sample partition, obtain the summary statistics of WAGE.

b. A variable’s coefficient of variation (CV) is 100 times the ratio of its sample standard deviation

to its sample mean. For a variable y, it is

CV = 100 ×
sy

y
It is a measure of variation that takes into account the size of the variable. What is the coefficient

of variation for WAGE within each sample partition?

c. For each sample partition, estimate the log-linear model

ln(WAGE) = β1 + β2EDUC + e

What is the approximate percentage return to another year of education for each group?
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d. Create 95% interval estimates for the coefficient β2 in each partition. Identify partitions for which

the 95% interval estimates of the rate of return to education do not overlap. What does this imply

about the population relations between wages and education for these groups? Are they similar or

different? For the nonoverlapping pairs, test the null hypothesis that the parameter β2 in one sample

partition (the larger one, for simplicity) equals the estimated value in the other partition, using the

5% level of significance.

e. Create 95% interval estimates for the intercept coefficient in each partition. Identify partitions for

which the 95% interval estimates for the intercepts do not overlap. What does this imply about the

population relations between wages and education for these groups? Are they similar or different?

For the nonoverlapping pairs, test the null hypothesis that the parameter β1 in one sample partition

(the larger one, for simplicity) equals the estimated value in the other partition, using the 5% level

of significance.

f. Does the model fit the data equally well for each sample partition?

4.28 The file wa-wheat.dat contains observations on wheat yield in Western Australian shires. There are 48

annual observations for the years 1950–1997. For the Northampton shire, consider the following four

equations:

YIELDt = β0 + β1TIME + et

YIELDt = α0 + α1 ln(TIME) + et

YIELDt = γ0 + γ1TIME2 + et

ln
(
YIELDt

)
= ϕ0 + ϕ1TIME + et

a. Estimate each of the four equations. Taking into consideration (i) plots of the fitted equations, (ii)

plots of the residuals, (iii) error normality tests, and (iii) values for R2, which equation do you think

is preferable? Explain.

b. Interpret the coefficient of the time-related variable in your chosen specification.

c. Using your chosen specification, identify any unusual observations, based on the studentized resid-

uals, LEVERAGE, DFBETAS, and DFFITS.

d. Using your chosen specification, use the observations up to 1996 to estimate the model. Construct

a 95% prediction interval for YIELD in 1997. Does your interval contain the true value?

4.29 Consider a model for household expenditure as a function of household income using the 2013 data

from the Consumer Expenditure Survey, cex5_small. The data file cex5 contains more observations.

Our attention is restricted to three-person households, consisting of a husband, a wife, plus one other.

In this exercise, we examine expenditures on a staple item, food. In this extended example, you are

asked to compare the linear, log-log, and linear-log specifications.

a. Calculate summary statistics for the variables: FOOD and INCOME. Report for each the sample

mean, median, minimum, maximum, and standard deviation. Construct histograms for both vari-

ables. Locate the variable mean and median on each histogram. Are the histograms symmetrical

and “bell-shaped” curves? Is the sample mean larger than the median, or vice versa? Carry out the

Jarque–Bera test for the normality of each variable.

b. Estimate the linear relationship FOOD = β1 + β2INCOME + e. Create a scatter plot FOOD versus

INCOME and include the fitted least squares line. Construct a 95% interval estimate for β2. Have

we estimated the effect of changing income on average FOOD relatively precisely, or not?

c. Obtain the least squares residuals from the regression in (b) and plot them against INCOME. Do

you observe any patterns? Construct a residual histogram and carry out the Jarque–Bera test for

normality. Is it more important for the variables FOOD and INCOME to be normally distributed,

or that the random error e be normally distributed? Explain your reasoning.

d. Calculate both a point estimate and a 95% interval estimate of the elasticity of food expenditure

with respect to income at INCOME = 19, 65, and 160, and the corresponding points on the fitted

line, which you may treat as not random. Are the estimated elasticities similar or dissimilar? Do

the interval estimates overlap or not? As INCOME increases should the income elasticity for food

increase or decrease, based on Economics principles?

e. For expenditures on food, estimate the log-log relationship ln(FOOD) = γ1 + γ2ln(INCOME) + e.

Create a scatter plot for ln(FOOD) versus ln(INCOME) and include the fitted least squares line.

Compare this to the plot in (b). Is the relationship more or less well-defined for the log-log model
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relative to the linear specification? Calculate the generalized R2 for the log-log model and compare

it to the R2 from the linear model. Which of the models seems to fit the data better?

f. Construct a point and 95% interval estimate of the elasticity for the log-log model. Is the elasticity of

food expenditure from the log-log model similar to that in part (d), or dissimilar? Provide statistical

evidence for your claim.

g. Obtain the least squares residuals from the log-log model and plot them against ln(INCOME). Do

you observe any patterns? Construct a residual histogram and carry out the Jarque–Bera test for

normality. What do you conclude about the normality of the regression errors in this model?

h. For expenditures on food, estimate the linear-log relationship FOOD = α1 + α2ln(INCOME) + e.

Create a scatter plot for FOOD versus ln(INCOME) and include the fitted least squares line. Com-

pare this to the plots in (b) and (e). Is this relationship more well-defined compared to the others?

Compare the R2 values. Which of the models seems to fit the data better?

i. Construct a point and 95% interval estimate of the elasticity for the linear-log model at INCOME =
19, 65, and 160, and the corresponding points on the fitted line, which you may treat as not random.

Is the elasticity of food expenditure similar to those from the other models, or dissimilar? Provide

statistical evidence for your claim.

j. Obtain the least squares residuals from the linear-log model and plot them against ln(INCOME).

Do you observe any patterns? Construct a residual histogram and carry out the Jarque–Bera test

for normality. What do you conclude about the normality of the regression errors in this model?

k. Based on this exercise, do you prefer the linear relationship model, or the log-log model or the

linear-log model? Explain your reasoning.

4.30 Consider a model for household expenditure as a function of household income using the 2013 data

from the Consumer Expenditure Survey, cex5_small. The data file cex5 contains more observations.

Our attention is restricted to three person households, consisting of a husband, a wife, plus one other.

In this exercise, we examine expenditures on alcoholic beverages.

a. Obtain summary statistics for ALCBEV . How many households spend nothing on alcoholic bev-

erages? Calculate the summary statistics restricting the sample to those households with positive

expenditure on alcoholic beverages.

b. Plot ALCBEV against INCOME and include the fitted least squares regression line. Obtain the least

squares estimates of the model ALCBEV = β1 + β2INCOME + e. Obtain the least squares residuals

and plot these versus INCOME. Does this plot appear random, as in Figure 4.7(a)? If the dependent

variable in this regression model is zero (ALCBEV = 0), what is the least squares residual? For

observations with ALCBEV = 0, is the least squares residual related to the explanatory variable

INCOME? How?

c. Suppose that some households in this sample may never purchase alcohol, regardless of their

income. If this is true, do you think that a linear regression including all the observations, even

the observations for which ALCBEV = 0, gives a reliable estimate of the effect of income on aver-

age alcohol expenditure? If there is estimation bias, is the bias positive (the slope overestimated)

or negative (slope underestimated)? Explain your reasoning.

d. For households with ALCBEV > 0, construct histograms for ALCBEV and ln(ALCBEV). How do

they compare?

e. Create a scatter plot of ln(ALCBEV) against ln(INCOME) and include a fitted regression line. Inter-

pret the coefficient of ln(INCOME) in the estimated log-log regression. How many observations

are included in this estimation?

f. Calculate the least squares residuals from the log-log model. Create a histogram of these residuals

and also plot them against ln(INCOME). Does this plot appear random, as in Figure 4.7(a)?

g. If we consider only the population of individuals who have positive expenditures for alcohol, do

you prefer the linear relationship model, or the log-log model?

h. Expenditures on apparel have some similar features to expenditures on alcoholic beverages. You

might reconsider the above exercises for APPAR. Think about part (c) above. Of those with no

apparel expenditure last month, do you think there is a substantial portion who never purchase

apparel regardless of income, or is it more likely that they sometimes purchase apparel but simply

did not do so last month?
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Appendix 4A Development of a Prediction Interval
The forecast error is 𝑓 = y0 − ŷ0 =

(
β1 + β2x0 + e0

)
−
(
b1 + b2x0

)
. To obtain its variance, let us

first obtain the variance of ŷ0 = b1 + b2x0. The variances and covariance of the least squares esti-

mators are given in Section 2.4.4. Using them, and obtaining a common denominator, we obtain

var
(
ŷ0|x

)
= var

[(
b1 + b2x0

)
|x
]

= var
(
b1|x

)
+ x2

0
var
(
b2|x

)
+ 2x0cov

(
b1, b2|x

)

= σ2

N
∑(

xi − x
)2

[∑
x2

i + Nx2
0
− 2N xx0

]

The term in brackets can be simplified. First, factor N from the second and third terms to obtain
∑

x2
i + Nx2

0
− 2N xx0 =

∑
x2

i + N
(
x2

0
− 2xx0

)
. Complete the square within the parentheses by

adding x2
, and subtracting Nx2

to keep the equality. Then the term in brackets is

∑
x2

i − Nx2 + N
(

x2
0
− 2xx0 + x2

)

=
∑(

xi − x
)2 + N

(
x0 − x

)2

Finally

var
(
ŷ0|x

)
= σ2

[

1

N
+
(
x0 − x

)2

∑(
xi − x

)2

]

Taking into account that x0 and the unknown parameters β1 and β2 are not random, you should be

able to show that var(𝑓 |x) = var
(
ŷ0|x

)
+ var

(
e0

)
= var

(
ŷ0|x

)
+ σ2. A little factoring gives the

result in (4.4). We can construct a standard normal random variable as

𝑓

√
var(𝑓 |x)

∼ N(0, 1)

If the forecast error variance in (4.4) is estimated by replacing σ2 by its estimator σ̂2
,

var
⋀

(𝑓 |x) = σ̂2

[

1 + 1

N
+
(
x0 − x

)2

∑(
xi − x

)2

]

then

𝑓

√
var
⋀

(𝑓 |x)
=

y0 − ŷ0

se(𝑓 )
∼ t(N−2) (4A.1)

where the square root of the estimated variance is the standard error of the forecast given in (4.5).

The t-ratio in (4A.1) is a pivotal statistic. It has a distribution that does not depend on x or any

unknown parameters.

Using these results, we can construct an interval prediction procedure for y0 just as

we constructed confidence intervals for the parameters βk. If tc is a critical value from the

t(N−2)-distribution such that P
(
t ≥ tc

)
= α∕2, then

P
(
−tc ≤ t ≤ tc

)
= 1 − α (4A.2)

Substitute the t-random variable from (4A.1) into (4A.2) to obtain

P
[

−tc ≤
y0 − ŷ0

se(𝑓 )
≤ tc

]

= 1 − α

Simplify this expression to obtain

P
[
ŷ0 − tcse(𝑓 ) ≤ y0 ≤ ŷ0 + tcse(𝑓 )

]
= 1 − α

A 100(1 − α)% confidence interval, or prediction interval, for y0 is given by (4.6). This prediction

interval is valid if x is fixed or random, as long as assumptions SR1–SR6 hold.
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Appendix 4B The Sum of Squares Decomposition
To obtain the sum of squares decomposition in (4.11), we square both sides of (4.10)

(
yi − y

)2 =
[(

ŷi − y
)
+ êi

]2

=
(
ŷi − y

)2 + ê2

i + 2
(
ŷi − y

)
êi

Then sum
∑(

yi − y
)2 =

∑(
ŷi − y

)2 +
∑

ê2

i + 2
∑(

ŷi − y
)
êi

Expanding the last term, we obtain
∑(

ŷi − y
)
êi =

∑
ŷiêi − y

∑
êi =

∑(
b1 + b2xi

)
êi − y

∑
êi

= b1

∑
êi + b2

∑
xiêi − y

∑
êi

Consider first the term
∑

êi
∑

êi =
∑(

yi − b1 − b2xi
)
=
∑

yi − Nb1 − b2

∑
xi = 0

This last expression is zero because of the first normal equation (2A.3). The first normal equation

is valid only if the model contains an intercept. The sum of the least squares residuals is always

zero if the model contains an intercept. It follows, then, that the sample mean of the least squares

residuals is also zero (since it is the sum of the residuals divided by the sample size) if the model

contains an intercept. That is, ê =
∑

êi∕N = 0.

The next term
∑

xiêi = 0, because

∑
xiêi =

∑
xi
(
yi − b1 − b2xi

)
=
∑

xiyi − b1

∑
xi − b2

∑
x2

i = 0

This result follows from the second normal equation (2A.4). This result always holds for the least

squares estimator and does not depend on the model having an intercept. See Appendix 2A for

discussion of the normal equations. Substituting
∑

êi = 0 and
∑

xiêi = 0 back into the original

equation, we obtain
∑(

ŷi − y
)
êi = 0.

Thus, if the model contains an intercept, it is guaranteed that SST = SSR + SSE. If, however,

the model does not contain an intercept, then
∑

êi ≠ 0 and SST ≠ SSR + SSE.

Appendix 4C Mean Squared Error: Estimation

and Prediction
In Chapter 2, we discussed the properties of the least squares estimator. Under assumptions

SR1–SR5, the least squares estimator is the Best Linear Unbiased Estimator (BLUE). There are

no estimators that are both linear and unbiased that are better than the least squares estimator.

However, this rules out many alternative estimators that statisticians and econometricians have

developed over the years, which might be useful in certain contexts. Mean squared error (MSE)

is an alternative metric for the quality of an estimator that doesn’t depend on linearity or unbi-

asedness, and hence is more general.

In the linear regression model y = β1 + β2x + e, suppose that we are keenly interested in

obtaining an estimate of β2 that is as close as possible to the true value. The mean squared error

of an estimator β̂2 is

MSE
(

β̂2

)

= E
[(

β̂2 − β2

)2
]

(4C.1)

The term
(

β̂2 − β2

)2

is the squared estimation error, that is, the squared difference or distance

between the estimator β̂2 and the parameter β2 of interest. Because the estimator β̂2 exhibits sam-

pling variation, it is a random variable, and the squared term
(

β̂2 − β2

)2

is also random. If we
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think of “expected value” as “the average in all possible samples,” then the mean squared error

E
[(

β̂2 − β2

)2
]

is the average, or mean, squared error using β̂2 as an estimator of β2. It measures

how close the estimator β̂2 is on average to the true parameter β2. We would like an estimator that

is as close as possible to the true parameter and one that has a small mean squared error.

An interesting feature of an estimator’s mean squared error is that it takes into account

both the estimator’s bias and its sampling variance. To see this we play a simple trick on

equation (4C.1); we will add and subtract E
(

β̂2

)

inside the parentheses and then square the

result. That is,

MSE
(

β̂2

)

= E
[(

β̂2 − β2

)2
]

= E

⎧
⎪
⎨
⎪
⎩

⎛
⎜
⎜
⎝

β̂2 − E
(

β̂2

)

+ E
(

β̂2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

− β2
⎞
⎟
⎟
⎠

2⎫
⎪
⎬
⎪
⎭

= E

{([

β̂2 − E
(

β̂2

)]

+
[

E
(

β̂2

)

− β2

])2
}

= E
{[

β̂2 − E
(

β̂2

)]2
}

+ E
{[

E
(

β̂2

)

− β2

]2
}

+ 2E
{[

β̂2 − E
(

β̂2

)][

E
(

β̂2

)

− β2

]}

= var
(

β̂2

)

+
[

bias
(

β̂2

)]2

(4C.2)

To go from the third to the fourth lines, we first recognize that E
{[

β̂2 − E
(

β̂2

)]2
}

= var
(

β̂2

)

.

Secondly, in the term E
{[

E
(

β̂2

)

− β2

]2
}

, the outside expectation is not needed because E
(

β̂2

)

is not random and β2 is not random. The difference between an estimator’s expected value and the

true parameter is called the estimator bias, so E
(

β̂2

)

− β2 = bias
(

β̂2

)

. The term
[

bias
(

β̂2

)]2

is

the squared estimator bias. The final term in the third line of (4C.2) is zero. To see this note again

that
[

E
(

β̂2

)

− β2

]

is not random, so that it can be factored out of the expectation

2E
{[

β̂2 − E
(

β̂2

)][

E
(

β̂2

)

− β2

]}

= 2
[

E
(

β̂2

)

− β2

]{

E
[

β̂2 − E
(

β̂2

)]}

= 2
[

E
(

β̂2

)

− β2

][

E
(

β̂2

)

− E
(

β̂2

)]

= 2
[

E
(

β̂2

)

− β2

]

0 = 0

We have shown that an estimator’s mean squared error is the sum of its variance and squared bias,

MSE
(

β̂2

)

= var
(

β̂2

)

+
[

bias
(

β̂2

)]2

(4C.3)

This relationship is also true if we use conditional expectations. The conditional MSE is

MSE
(

β̂2|x
)

= var
(

β̂2|x
)

+
[

bias
(

β̂2|x
)]2

(4C.4)

with bias
(

β̂2|x
)

= E
(

β̂2|x
)

− β2. Because the least squares estimator is unbiased under

SR1–SR5, its mean squared error is

MSE
(
b2|x

)
= var

(
b2|x

)
+
[

bias
(
b2|x

)]2

= var
(
b2|x

)
+[0]2 = var

(
b2|x

)
(4C.5)
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The mean squared error concept can also be applied to more than one parameter at once. For

example, the mean squared error of β̂1 and β̂2 as estimators of β1 and β2 is

MSE
(

β̂1, β̂2|x
)

= E

{[(

β̂1 − β1

)2

+
(

β̂2 − β2

)2
]|
|
|
|
|

x

}

= var
(

β̂1|x
)

+
[

bias
(

β̂1|x
)]2

+ var
(

β̂2|x
)

+
[

bias
(

β̂2|x
)]2

In the simple linear regression model, there are no estimators β̂1 and β̂2 of β1 and β2 that have

mean squared error MSE
(

β̂1, β̂2|x
)

smaller than the mean squared error for the least squares

estimator, MSE
(
b1, b2|𝐱

)
, for any and all parameter values. This statement turns out not to be

true in the multiple regression model.

We can apply the mean squared error concept to prediction situations too. Suppose that we

are predicting an outcome y0 using a predictor ŷ0(x), which is a function of the sample x. The

conditional mean squared error of the predictor is E
[(

y0 − ŷ0(x)
)2|
|
|
x
]

. We employ the same trick

as in (4C.2), adding and subtracting E
(
y0|x

)
, the conditional expected value of y0,

E
[(

y0 − ŷ0(x)
)2|
|
|
x
]

= E
[(

y0 − E
(
y0|x

)
+ E
(
y0|x

)
− ŷ0(x)

)2|
|
|
x
]

= E
[(

y0 − E
(
y0|x

))2|
|
|
x
]

+ E
[(

E
(
y0|x

)
− ŷ0(x)

)2|
|
|
x
]

+ 2E
{([

y0 − E
(
y0|x

)][
E
(
y0|x

)
− ŷ0(x)

]) |
|
|
x
}

= var
(
y0|x

)
+
{[

E
(
y0|x

)
− ŷ0(x)

]2|
|
|
x
}

(4C.6)

The third line in (4C.6) is zero because conditional on x the term E
(
y0|x

)
− ŷ0(x) is not random,

and it can be factored out of the expectation

2E
{([

y0 − E
(
y0|x

)][
E
(
y0|x

)
− ŷ0(x)

])|
|
|
x
}

= 2
(

E
(
y0|x

)
− ŷ0(x)

)

E
{([

y0 − E
(
y0|x

)])|
|
|
x
}

= 2
(

E
(
y0|x

)
− ŷ0(x)

)[

E
(
y0|x

)
− E
(
y0|x

)]

= 2
(

E
(
y0|x

)
− ŷ0(x)

)

× 0 = 0

The conditional mean squared error of our predictor is then

E
[(

y0 − ŷ0(x)
)2|
|
|
x
]

= var
(
y0|x

)
+
[(

E
(
y0|x

)
− ŷ0(x)

)2|
|
|
x
]

(4C.7)

Using the law of iterated expectations

E
[(

y0 − ŷ0(x)
)]2

= Ex

[

var
(
y0|x

)]

+ Ex

{[

E
(
y0|x

)
− ŷ0(x)

]2
}

(4C.8)

If we are choosing a predictor, then the one that minimizes the mean squared error is

ŷ0(x) = E
(
y0|x

)
. This makes the final term in (4C.8) zero. The conditional mean of y0 is the

minimum mean squared error predictor of y0.
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CHAPTER 5

The Multiple Regression
Model

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Recognize a multiple regression model and be

able to interpret the coefficients in that model.

2. Understand and explain the meanings of the

assumptions for the multiple regression model.

3. Use your computer to find least squares

estimates of the coefficients in a multiple

regression model, and interpret those estimates.

4. Explain the meaning of the Gauss–Markov

theorem.

5. Compute and explain the meaning of R2 in a

multiple regression model.

6. Explain the Frisch–Waugh–Lovell Theorem and

estimate examples to show how it works.

7. Use your computer to obtain variance and

covariance estimates, and standard errors, for

the estimated coefficients in a multiple

regression model.

8. Explain the circumstances under which

coefficient variances (and standard errors) are

likely to be relatively high, and those under

which they are likely to be relatively low.

9. Find interval estimates for single coefficients

and linear combinations of coefficients, and

interpret the interval estimates.

10. Test hypotheses about single coefficients and

about linear combinations of coefficients in a

multiple regression model. In particular,

a. What is the difference between a one-tail and

a two-tail test?

b. How do you compute the p-value for a

one-tail test, and for a two-tail test?

c. What is meant by ‘‘testing the significance of

a coefficient’’?

d. What is the meaning of the t-values and

p-values that appear in your computer

output?

e. How do you compute the standard error

of a linear combination of coefficient

estimates?

11. Estimate and interpret multiple regression

models with polynomial and interaction

variables.

12. Find point and interval estimates and test

hypotheses for marginal effects in polynomial

regressions and models with interaction

variables.

13. Explain the difference between finite and large

sample properties of an estimator.

14. Explain what is meant by consistency and

asymptotic normality.

196
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15. Describe the circumstances under which we can

use the finite sample properties of the least

squares estimator, and the circumstances

under which asymptotic properties are

required.

16. Use your computer to compute the standard

error of a nonlinear function of estimators. Use

that standard error to find interval estimates

and to test hypotheses about nonlinear

functions of coefficients.

K E Y W O R D S

asymptotic normality

BLU estimator

consistency

covariance matrix of least squares

estimators

critical value

delta method

error variance estimate

error variance estimator

explained sum of squares

FWL theorem

goodness-of-fit

interaction variable

interval estimate

least squares estimates

least squares estimation

least squares estimators

linear combinations

marginal effect

multiple regression model

nonlinear functions

one-tail test

p-value

polynomial

regression coefficients

standard errors

sum of squared errors

sum of squares due to regression

testing significance

total sum of squares

two-tail test

The model in Chapters 2–4 is called a simple regression model because the dependent variable y is

related to only one explanatory variable x. Although this model is useful for a range of situations,

in most economic models there are two or more explanatory variables that influence the dependent

variable y. For example, in a demand equation the quantity demanded of a commodity depends

on the price of that commodity, the prices of substitute and complementary goods, and income.

Output in a production function will be a function of more than one input. Aggregate money

demand will be a function of aggregate income and the interest rate. Investment will depend on

the interest rate and on changes in income.

When we turn an economic model with more than one explanatory variable into its corre-

sponding econometric model, we refer to it as a multiple regression model. Most of the results

we developed for the simple regression model in Chapters 2–4 can be extended naturally to this

general case. There are slight changes in the interpretation of the β parameters, the degrees of free-

dom for the t-distribution will change, and we will need to modify the assumption concerning the

characteristics of the explanatory (x) variables. These and other consequences of extending the

simple regression model to a multiple regression model are described in this chapter.

As an example for introducing and analyzing the multiple regression model, we begin with

a model used to explain sales revenue for a fast-food hamburger chain with outlets in small

U.S. cities.

5.1 Introduction

5.1.1 The Economic Model

We will set up an economic model for a hamburger chain that we call Big Andy’s Burger Barn.1

Important decisions made by the management of Big Andy’s include its pricing policy for dif-

ferent products and how much to spend on advertising. To assess the effect of different price

............................................................................................................................................

1The data we use reflect a real fast-food franchise whose identity we disguise under the name Big Andy’s.
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structures and different levels of advertising expenditure, Big Andy’s Burger Barn sets different

prices, and spends varying amounts on advertising, in different cities. Of particular interest to

management is how sales revenue changes as the level of advertising expenditure changes. Does

an increase in advertising expenditure lead to an increase in sales? If so, is the increase in sales

sufficient to justify the increased advertising expenditure? Management is also interested in pric-

ing strategy. Will reducing prices lead to an increase or decrease in sales revenue? If a reduction

in price leads only to a small increase in the quantity sold, sales revenue will fall (demand is

price-inelastic); a price reduction that leads to a large increase in quantity sold will produce an

increase in revenue (demand is price-elastic). This economic information is essential for effective

management.

The first step is to set up an economic model in which sales revenue depends on one or more

explanatory variables. We initially hypothesize that sales revenue is linearly related to price and

advertising expenditure. The economic model is

SALES = β1 + β2PRICE + β3ADVERT (5.1)

where SALES represents monthly sales (total) revenue in a given city, PRICE represents price in

that city, and ADVERT is monthly advertising expenditure in that city. Both SALES and ADVERT
are measured in terms of thousands of dollars. Because sales in bigger cities will tend to be greater

than sales in smaller cities, we focus on smaller cities with comparable populations.

Since a hamburger outlet sells a number of products—burgers, fries, and shakes—and each

product has its own price, it is not immediately clear what price should be used in (5.1). What

we need is some kind of average price for all products and information on how this average price

changes from city to city. For this purpose, management has constructed a single price index

PRICE, measured in dollars and cents, that describes overall prices in each city.

The remaining symbols in (5.1) are the unknown parameters β1, β2, and β3 that describe the

dependence of sales (SALES) on price (PRICE) and advertising (ADVERT). To be more precise

about the interpretation of these parameters, we move from the economic model in (5.1) to an

econometric model that makes explicit assumptions about the way the data are generated.

5.1.2 The Econometric Model
When we collect data on SALES, PRICE, and ADVERT from the franchises in different cities,

the observations will not exactly satisfy the linear relationship described in equation (5.1). The

behavior of Andy’s customers in different cities will not be such that the same prices and the same

level of advertising expenditure will always lead to the same sales revenue. Other factors not in

the equation likely to affect sales include the number and behavior of competing fast-food outlets,

the nature of the population in each city—their age profile, income, and food preferences—and the

location of Andy’s burger barns—near a busy highway, downtown, and so on. To accommodate

these factors, we include an error term e in the equation so that the model becomes

SALES = β1 + β2PRICE + β3ADVERT + e (5.2)

As discussed in Chapter 2, the way in which data are collected has a bearing on what assumptions

are relevant and realistic for the error term e, the explanatory variables PRICE and ADVERT , and

the dependent variable SALES. These assumptions in turn affect how we make inferences about

the parameters β1, β2, and β3.

Assume we take a random sample of 75 franchises in similar-sized cities in which Big Andy

operates, and we observe their monthly sales, prices, and advertising expenditure. Thus, we have

observations
(
SALESi,PRICEi,ADVERTi

)
for i = 1, 2,… , 75. Because we do not know which

cities will be chosen before we randomly sample, the triplet
(
SALESi,PRICEi,ADVERTi

)
is a

three-dimensional random variable with a joint probability distribution. Also, the fact that we

have a random sample implies that the observations from different cities are independent. That is,
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(
SALESi,PRICEi,ADVERTi

)
is independent of

(
SALESj,PRICEj,ADVERTj

)
for i ≠ j. Associ-

ated with each observation is another random variable, the unobservable error term ei that reflects

the effect of factors other than PRICE and ADVERT on SALES. The model for the ith observation

is written as

SALESi = β1 + β2PRICEi + β3ADVERTi + ei (5.3)

We assume that the effect of ei on sales, averaged over all cities in the population, is zero, and

that knowing PRICE and ADVERT for a given city does not help us predict the value of e for that

city. At each
(
PRICEi,ADVERTi

)
pair of values the average of the random errors is zero, that is,

E
(
ei|PRICEi, ADVERTi

)
= 0 (5.4)

This assumption, when combined with the assumption of independent observations generated

from a random sample, implies that ei is strictly exogenous. How do we check whether this is

a reasonable assumption? We need to ask whether ei includes any variables that have an effect

on SALES (are correlated with SALES), and are also correlated with PRICE or ADVERT . If the

answer is yes, strict exogeneity is violated. This might happen, for example, if the pricing and

advertising behavior of Andy’s competitors affects his sales, and is correlated with his own pricing

and advertising policies. At the moment, it is convenient if we abstract from such a situation and

continue with the strict exogeneity assumption.2

Using equations (5.3) and (5.4), we can write

E(SALES|PRICE, ADVERT ) = β1 + β2PRICE + β3ADVERT (5.5)

Equation (5.5) is the conditional mean or conditional expectation of SALES given PRICE and

ADVERT and is known as the multiple regression function or simply the regression function.

It shows how the population average or population mean value for SALES changes depending

on the settings for price and advertising expenditure. For given values of PRICE and ADVERT ,

some SALES values will fall above the mean and some below. We have dropped the subscript i
for convenience and to emphasize that we assume this relationship holds for all cities in the

population.

With this background, how do we interpret each of the parameters β1, β2, and β3? Mathemat-

ically, the intercept parameter β1 is the expected value of the dependent variable when each of the

independent, explanatory variables takes the value zero. However, in many cases this parameter

has no clear economic interpretation. In this particular case, it is not realistic to have a situation

in which PRICE = ADVERT = 0. Except in very special circumstances, we always include an

intercept in the model, even if it has no direct economic interpretation. Omitting it can lead to a

model that fits the data poorly and that does not predict well.

The other parameters in the model measure the change in the expected value of the dependent

variable given a unit change in an explanatory variable, all other variables held constant.

β2 = the change in expected monthly SALES ($1000) when the price index PRICE is in-

creased by one unit ($1), and advertising expenditure ADVERT is held constant

= ΔE(SALES|PRICE,ADVERT )
ΔPRICE

|
|
|
|(ADVERT held constant)

= ∂E(SALES|PRICE,ADVERT )
∂PRICE

The symbol “∂” stands for “partial differentiation.” Those of you familiar with calculus may have

seen this operation. In the context above, the partial derivative of average SALES with respect to

............................................................................................................................................

2How to cope with violations of this assumption is considered in Chapter 10.
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PRICE is the rate of change of average SALES as PRICE changes, with other factors, in this case

ADVERT , held constant. Further details can be found in Appendix A.3.5. We will occasionally

use partial derivatives, but not to an extent that will disadvantage you if you have not had a course

in calculus. Rules for differentiation are provided in Appendix A.3.1.

The sign of β2 could be positive or negative. If an increase in price leads to an increase in sales

revenue, then β2 > 0, and the demand for the chain’s products is price-inelastic. Conversely, a

price-elastic demand exists if an increase in price leads to a decline in revenue, in which case

β2 < 0. Thus, knowledge of the sign of β2 provides information on the price-elasticity of demand.

The magnitude of β2 measures the amount of change in revenue for a given price change.

The parameter β3 describes the response of expected sales revenue to a change in the level

of advertising expenditure. That is,

β3 = the change in expected monthly SALES($1000)when advertising expenditure ADVERT
is increased by one unit ($1000), and the price index PRICE is held constant

= ΔE(SALES|PRICE,ADVERT )
ΔADVERT

|
|
|
|(PRICE held constant)

= ∂E(SALES|PRICE,ADVERT )
∂ADVERT

We expect the sign of β3 to be positive. That is, we expect that an increase in advertising expen-

diture, unless the advertising is offensive, will lead to an increase in sales revenue. Whether or

not the increase in revenue is sufficient to justify the added advertising expenditure, as well as

the added cost of producing more hamburgers, is another question. With β3 < 1, an increase of

$1000 in advertising expenditure will yield an increase in revenue that is less than $1000. For

β3 > 1, it will be greater. Thus, in terms of the chain’s advertising policy, knowledge of β3 is very

important.

Critical to the above interpretations for β2 and β3 is the strict exogeneity assumption

E
(
ei|PRICEi,ADVERTi

)
= 0. It implies that β2, for example, can be interpreted as the effect of

PRICE on SALES, holding all other factors constant, including the unobservable factors that

form part of the error term e. We can say that a one-unit change in PRICE causes mean SALES
to change by β2 units. If the exogeneity assumption does not hold, the parameters cannot be

given this causal interpretation. When E
(
ei|PRICEi

)
≠ 0, a change in price is correlated with

the error term and hence the effect of a change in price cannot be captured by β2 alone. For

example, suppose that Big Andy’s main competitor is Little Jim’s Chicken House. And suppose

that every time Andy changes his burger price, Jim responds by changing his chicken price.

Because Jim’s chicken price is not explicitly included in the equation, but is likely to impact on

Andy’s sales, its effect will be included in the error term. Also, because Jim’s price is correlated

with Andy’s price, E
(
ei|PRICEi

)
≠ 0. Thus, a change in Andy’s price (PRICE) will impact on

SALES through both β2 and the error term. Note, however, if Jim’s price is added to the equation

as another variable, instead of forming part of the error term, and the new error term satisfies the

exogeneity assumption, then the causal interpretation of the parameter is retained.

Similar remarks can be made about the parameter for ADVERT , β3.

E X A M P L E 5.1 Data for Hamburger Chain

In the simple regression model in Chapters 2–4, the

regression function was represented graphically by a line

describing the relationship between E(y|x) and x. With the

multiple regression model with two explanatory variables,

equation (5.5) describes not a line but a plane. As illustrated

in Figure 5.1, the plane intersects the vertical axis at β1.

The parameters β2 and β3 measure the slope of the plane

in the directions of the “price axis” and the “advertising
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axis,” respectively. Representative observations for sales rev-

enue, price, and advertising for some cities are displayed in

Table 5.1. The complete set of observations can be found in

β3 = slope in ADVERT direction

β2 = slope in PRICE direction

SALES

ADVERT

PRICE

β1

E(SALES∣PRICE, ADVERT ) = β1 + β2PRICE + β3 ADVERT

FIGURE 5.1 The multiple regression plane.

T A B L E 5.1 Observations on Monthly Sales, Price, and Advertising

City
SALES

$1000 units
PRICE
$1 units

ADVERT
$1000 units

1 73.2 5.69 1.3

2 71.8 6.49 2.9

3 62.4 5.63 0.8

4 67.4 6.22 0.7

5 89.3 5.02 1.5

. . . .

. . . .

. . . .

73 75.4 5.71 0.7

74 81.3 5.45 2.0

75 75.0 6.05 2.2

Summary statistics

Sample mean 77.37 5.69 1.84

Median 76.50 5.69 1.80

Maximum 91.20 6.49 3.10

Minimum 62.40 4.83 0.50

Std. Dev. 6.49 0.52 0.83

the data file andy and is represented by the dots in Figure 5.1.

These data do not fall exactly on a plane but instead resemble

a “cloud.”
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5.1.3 The General Model
It is useful to digress for a moment and summarize how the concepts developed so far relate to

the general case. Working in this direction, let

yi = SALESi xi2 = PRICEi xi3 = ADVERTi

Then, equation (5.3) can be written as

yi = β1 + β2xi2 + β3xi3 + ei (5.6)

You might wonder why we have defined xi2 and xi3, and not xi1. We can think of the first term

on the right-hand side of the equation as β1xi1 where xi1 = 1, that is, xi1 is equal to 1 for all

observations; it is called the constant term.

In Chapter 2, we used the notation x to denote all sample observations on a single variable x.

Now that we have observations on two explanatory variables, we use the notation X to denote

all observations on both variables as well as the constant term xi1. That is, 𝐗 =
{(

1, xi2, xi3
)
,

i = 1, 2,… ,N
}

. In the Burger Barn example, N = 75. Also, it will sometimes be convenient to

denote the ith observation as 𝐱i =
(
1, xi2, xi3

)
. Given this setup, the strict exogeneity assump-

tion for the Burger Barn example, where we have a random sample with independent xi, is

E
(
ei|𝐱i

)
= 0. For more general data generating processes where the different sample observations

on xi are correlated with each other, the strict exogeneity assumption is written as E
(
ei|𝐗

)
= 0.

If you need a refresher on the difference between E
(
ei|𝐱i

)
= 0 and E

(
ei|𝐗

)
= 0, please go

back and reread Section 2.2. Correlation between different observations
(
different 𝐱i

)
typically

exists when using time-series data. In the Burger Barn example, it could occur if our sample

was not random, but taken as a collection of Barns from each of a number of states, and the

pricing-advertising policies were similar for all Barns within a particular state.

We have noted the implications of the strict exogeneity assumption for the interpretation of

the parameters β2 and β3. Later, we discuss the implications for estimator properties and inference.

There are many multiple regression models where we have more than two explanatory vari-

ables. For example, the Burger Barn model could include the price of Little Jim’s Chicken, and

an indicator variable equal to 1 if a Barn is near a major highway interchange, and zero otherwise.

The ith observation for the general model with K − 1 explanatory variables and a constant term

can be written as

yi = β1 + β2xi2 + · · · + βKxiK + ei

The definitions of X and xi extend readily to this general case with 𝐗 =
{(

1, xi2,… , xiK
)
,

i = 1, 2,… ,N
}

and 𝐱i =
(
1, xi2,… , xiK

)
. If strict exogeneity E

(
ei|𝐗

)
= 0 holds, the multiple

regression function is

E
(
yi|X

)
= β1 + β2xi2 + β3xi3 + · · · + βKxiK (5.7)

The unknown parameters β2, β3, … , βK correspond to the explanatory variables x2, x3, … , xK.

Because of this correspondence, we will also refer to β2, β3, … , βK as the coefficients of x2,

x3, … , xK. A single coefficient, call it βk, measures the effect of a change in the variable xk upon

the expected value of y, all other variables held constant. In terms of partial derivatives,

βk =
ΔE

(
y|x2, x3,… , xK

)

Δxk

|
|
|
|
|other x’s held constant

=
∂E
(
y|x2, x3,… , xK

)

∂xk

The parameter β1 is the intercept term. We use K to denote the total number of unknown param-

eters in (5.7). For a large part of this chapter, we will introduce point and interval estimation

in terms of the model with K = 3. The results generally hold for models with more explanatory

variables (K > 3).
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5.1.4 Assumptions of the Multiple Regression Model
To complete our specification of the multiple regression model, we make further assumptions

about the error term and the explanatory variables. These assumptions align with those made

for the simple regression model in Section 2.2. Their purpose is to establish a framework for

estimating the unknown parameters βk, deriving the properties of the estimator for the βk, and

testing hypotheses of interest about those unknown coefficients. As we travel through the book, we

discover that some of the assumptions are too restrictive for some samples of data, requiring us to

weaken many of the assumptions. We will examine the implications of changes to the assumptions

for estimation and hypothesis testing.

MR1: Econometric Model Observations on
(
yi, 𝐱i

)
=
(
yi, xi2, xi3,… xiK

)
satisfy the pop-

ulation relationship

yi = β1 + β2xi2 + · · · + βKxiK + ei

MR2: Strict Exogeneity The conditional expectation of the random error ei, given all

explanatory variable observations 𝐗 =
{
𝐱i, i = 1, 2,… ,N

}
, is zero.

E
(
ei|X

)
= 0

This assumption implies E
(
ei
)
= 0 and cov

(
ei, xjk

)
= 0 for k = 1, 2,… ,K and (i, j) = 1, 2,… ,N.

Each random error has a probability distribution with zero mean. Some errors will be positive,

some will be negative; over a large number of observations they will average out to zero. Also,

all the explanatory variables are uncorrelated with the error; knowing values of the explanatory

variables does not help predict the value of ei. Thus, the observations will be scattered evenly

above and below a plane like the one depicted in Figure 5.1. Fitting a plane through the data will

make sense. Another implication of the strict exogeneity assumption is that the multiple regression

function is given by

E
(
yi|X

)
= β1 + β2xi2 + β3xi3 + · · · + βKxiK

The mean of the conditional distribution of the dependent variable yi is a linear function of the

explanatory variables 𝐱i =
(
xi2, xi3,… , xiK

)
.

MR3: Conditional Homoskedasticity The variance of the error term, conditional on

X, is a constant.

var
(
ei|X

)
= σ2

This assumption implies var
(
yi|𝐗

)
= σ2 is a constant. The variability of yi around its conditional

mean function E
(
yi|𝐗

)
= β1 + β2xi2 + β3xi3 +…+ βKxiK does not depend on X. The errors are

not more or less likely to be larger for some values of the explanatory variables than for others.

Errors with this property are said to be homoskedastic.3

MR4: Conditionally Uncorrelated Errors The covariance between different error

terms ei and ej, conditional on X, is zero.

cov
(
ei, ej|X

)
= 0 for i ≠ j

............................................................................................................................................

3Because E
(
ei|X

)
= 0, the unconditional variance of ei is also constant. That is, var

(
ei
)
= σ2. We cannot make the

same statement about the unconditional variance for yi, however. See Appendix B, equation (B.27) for the relationship

between conditional and unconditional variances.
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All pairs of errors are uncorrelated. The covariance between two random errors corresponding to

any two different observations is zero for all values of X. There is no covariation or co-movement

in the errors in the sense that the size of an error for one observation has no bearing on the likely

size of an error for another observation. With cross-sectional data, this assumption implies that

there is no spatial correlation between the errors. With time-series data, it implies there is no

correlation in the errors over time. When it exists, correlation over time is referred to as serial or

autocorrelation. We typically use subscripts t and s with time-series data and hence the assumption

of no serial correlation can be written alternatively as cov
(
et, es|𝐗

)
= 0 for t ≠ s.4

MR5: No Exact Linear Relationship Exists Between the Explanatory
Variables It is not possible to express one of the explanatory variables as an exact linear

function of the others. Mathematically, we write this assumption as saying: The only values of

c1, c2, … , cK for which

c1xi1 + c2xi2 + · · · + cKxiK = 0 for all observations i = 1, 2,… ,N (5.8)

are the values c1 = c2 = · · · = cK = 0. If (5.8) holds and one or more of the ck’s can be nonzero,

the assumption is violated. To appreciate why this assumption is necessary, it is useful to con-

sider some special case violations. First, suppose c2 ≠ 0 and the other ck are zero. Then, (5.8)

implies xi2 = 0 for all observations. If xi2 = 0, then we cannot hope to estimate β2, which mea-

sures the effect of a change in xi2 on yi, with all other factors held constant. As a second special

case, suppose c2, c3, and c4 are nonzero and the other ck are zero. Then, from (5.8) we can write

xi2 = −
(
c3∕c2

)
xi3 –

(
c4∕c2

)
xi4. In this case, xi2 is an exact linear function of xi3 and xi4. This

relationship presents problems because changes in xi2 are completely determined by changes in xi3
and xi4. It is not possible to separately estimate the effects of changes in each of these three vari-

ables. Put another way, there is no independent variation in xi2 that will enable us to estimate β2.

Our third special case relates to assumption SR5 of the simple regression model, which stated

that the explanatory variable must vary. Condition (5.8) includes this case. Suppose that there is

no variation in xi3 such that we can write xi3 = 6 for all i. Then, recalling that xi1 = 1, we can

write 6xi1 = xi3. This outcome violates (5.8), with c1 = 6, c3 = −1 and the other ck equal to zero.

MR6: Error Normality (optional) Conditional on X, the errors are normally distributed

ei|X ∼ N
(
0, σ2

)

This assumption implies that the conditional distribution of y is also normally distributed,

yi|X ∼ N
(
E
(
yi|X

)
, σ2

)
. It is useful for hypothesis testing and interval estimation when samples

are relatively small. However, we call it optional for two reasons. First, it is not necessary for

many of the good properties of the least squares estimator to hold. Second, as we will see, if

samples are relatively large, it is no longer a necessary assumption for hypothesis testing and

interval estimation.

Other Assumptions In the more advanced material in Section 2.10, we considered

stronger sets of assumptions for the simple regression model that are relevant for some data

generating processes—nonrandom x’s, random and independent x, and random sampling, as well

as the random and strictly exogenous x case considered here. The properties and characteristics

of our inference procedures—estimation and hypothesis testing—established for the random and

strictly exogenous x case carry over to cases where stronger assumptions are applicable.

............................................................................................................................................

4In a similar way to the assumption about conditional homoskedasticity, we can show that cov
(
ei, ej|𝐗

)
= 0 implies

cov
(
yi, yj|𝐗

)
= 0 and cov

(
ei, ej

)
= 0, but the unconditional covariance cov

(
yi, yj

)
may not be zero.
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5.2 Estimating the Parameters of the Multiple

Regression Model
In this section, we consider the problem of using the least squares principle to estimate the

unknown parameters of the multiple regression model. We will discuss estimation in the context

of the model in (5.6), which we repeat here for convenience, with i denoting the ith observation.

yi = β1 + β2xi2 + β3xi3 + ei

This model is simpler than the full model, yet all the results we present carry over to the general

case with only minor modifications.

5.2.1 Least Squares Estimation Procedure
To find an estimator for estimating the unknown parameters we follow the least squares procedure

that was first introduced in Chapter 2 for the simple regression model. With the least squares prin-

ciple, we find those values of
(
β1, β2, β3

)
that minimize the sum of squared differences between

the observed values of yi and their expected values E
(
yi|X

)
= β1 + xi2β2 + xi3β3. Mathemati-

cally, we minimize the sum of squares function S
(
β1, β2, β3

)
, which is a function of the unknown

parameters, given the data

S
(
β1, β2, β3

)
=

N∑

i=1

(
yi − E

(
yi|X

))2

=
N∑

i=1

(
yi − β1 − β2xi2 − β3xi3

)2
(5.9)

Given the sample observations yi, and xi, minimizing the sum of squares function is a straight-

forward exercise in calculus. Details of this exercise are given in Appendix 5A. The solutions

give us formulas for the least squares estimators for the β coefficients in a multiple regression

model with two explanatory variables. They are extensions of those given in (2.7) and (2.8) for

the simple regression model with one explanatory variable. There are three reasons for relegating

these formulas to Appendix 5A instead of inflicting them on you here. First, they are complicated

formulas that we do not expect you to memorize. Second, we never use these formulas explicitly;

computer software uses the formulas to calculate least squares estimates. Third, we frequently

have models with more than two explanatory variables, in which case the formulas become even

more complicated. If you proceed with more advanced study in econometrics, you will discover

that there is one relatively simple matrix algebra expression for the least squares estimator that

can be used for all models, irrespective of the number of explanatory variables.

Although we always get the computer to do the work for us, it is important to understand

the least squares principle and the difference between least squares estimators and least squares

estimates. Looked at as a general way to use sample data, formulas for b1, b2, and b3, obtained by

minimizing (5.9), are estimation procedures, which are called the least squares estimators of the

unknown parameters. In general, since their values are not known until the data are observed and

the estimates calculated, the least squares estimators are random variables. Computer software

applies the formulas to a specific sample of data producing least squares estimates, which are

numeric values. These least squares estimators and estimates are also referred to as ordinary least

squares estimators and estimates, abbreviated OLS, to distinguish them from other estimators and

estimates such as weighted least squares and two-stage least squares that we encounter later in

the book. To avoid too much notation, we use b1, b2, and b3 to denote both the estimators and

the estimates.
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E X A M P L E 5.2 OLS Estimates for Hamburger Chain Data

Table 5.2 contains the least squares results for the sales

equation for Big Andy’s Burger Barn. The least squares

estimates are

b1 = 118.91 b2 = −7.908 b3 = 1.863

Following Example 4.3, these estimates along with their stan-

dard errors and the equation’s R2 are typically reported in

equation format as

SALES
⋀

(se)
= 118.91

(6.35)
− 7.908PRICE
(1.096)

+ 1.863ADVERT
(0.683)

R2 = 0.448
(5.10)

From the information in this equation, one can readily

construct interval estimates or test hypotheses for each of

the βk in a manner similar to that described in Chapter 3,

but with a change in the number of degrees of freedom for

the t-distribution. Like before, the t-values and p-values in

Table 5.2 relate to testing H0∶βk = 0 against the alternative

H1∶βk ≠ 0 for k = 1, 2, 3.

We proceed by first interpreting the estimates in (5.10).

Then, to explain the degrees of freedom change that arises

from having more than one explanatory variable, and to rein-

force earlier material, we go over the sampling properties of

the least squares estimator, followed by interval estimation

and hypothesis testing.

What can we say about the coefficient estimates in

(5.10)?

1. The negative coefficient on PRICE suggests that demand

is price elastic; we estimate that, with advertising held

constant, an increase in price of $1 will lead to a fall in

mean monthly revenue of $7908. Or, expressed differ-

ently, a reduction in price of $1 will lead to an increase

in mean revenue of $7908. If such is the case, a strategy

of price reduction through the offering of specials would

be successful in increasing sales revenue. We do need

to consider carefully the magnitude of the price change,

however. A $1 change in price is a relatively large change.

The sample mean of price is 5.69 and its standard devia-

tion is 0.52. A 10-cent change is more realistic, in which

case we estimate the mean revenue change to be $791.

T A B L E 5.2 Least Squares Estimates for Sales Equation for Big Andy’s Burger Barn

Variable Coefficient Std. Error t-Statistic Prob.

C 118.9136 6.3516 18.7217 0.0000

PRICE −7.9079 1.0960 −7.2152 0.0000

ADVERT 1.8626 0.6832 2.7263 0.0080

R2 = 0.4483 SSE = 1718.943 σ̂ = 4.8861 sy = 6.48854

2. The coefficient on advertising is positive; we estimate that

with price held constant, an increase in advertising expen-

diture of $1000 will lead to an increase in mean sales

revenue of $1863. We can use this information, along

with the costs of producing the additional hamburgers,

to determine whether an increase in advertising expendi-

tures will increase profit.

3. The estimated intercept implies that if both price and

advertising expenditure were zero the sales revenue

would be $118,914. Clearly, this outcome is not pos-

sible; a zero price implies zero sales revenue. In this

model, as in many others, it is important to recognize

that the model is an approximation to reality in the

region for which we have data. Including an intercept

improves this approximation even when it is not directly

interpretable.

In giving the above interpretations, we had to be careful to

recognize the units of measurement for each of the variables.

What would happen if we measured PRICE in cents instead

of dollars and SALES in dollars instead of thousands of dol-

lars? To discover the outcome, define the new variables mea-

sured in terms of the new units as PRICE* = 100 × PRICE
and SALES* = 1000 × SALES. Substituting for PRICE and

SALES, our new fitted equation becomes

SALES
⋀∗

1000
= 118.91 − 7.908

PRICE∗
100

+ 1.863ADVERT

Multiplying through by 1000, we obtain

SALES
⋀∗

= 118,910 − 79.08PRICE∗ + 1863ADVERT

This is the estimated model that we would obtain if we

applied least squares to the variables expressed in terms of

the new units of measurement. The standard errors would

change in the same way, but the R2 will stay the same. In

this form, a more direct interpretation of the coefficients is

possible. A one cent increase in PRICE leads to a decline in

mean SALES of $79.08. An increase in ADVERT of $1000

leads to an increase in mean sales revenue of $1863.



�

� �

�

5.2 Estimating the Parameters of the Multiple Regression Model 207

In addition to providing information about how sales

change when price or advertising change, the estimated

equation can be used for prediction. Suppose Big Andy is

interested in predicting sales revenue for a price of $5.50

and an advertising expenditure of $1200. Including extra

decimal places to get an accurate hand calculation, this

prediction is

SALES = 118.91 − 7.908PRICE + 1.863ADVERT
= 118.914 − 7.9079 × 5.5 + 1.8626 × 1.2

= 77.656

The predicted value of sales revenue for PRICE = 5.5 and

ADVERT = 1.2 is $77,656.

Remark
A word of caution is in order about interpreting regression results: The negative sign attached

to price implies that reducing the price will increase sales revenue. If taken literally, why

should we not keep reducing the price to zero? Obviously that would not keep increasing total

revenue. This makes the following important point: Estimated regression models describe

the relationship between the economic variables for values similar to those found in the

sample data. Extrapolating the results to extreme values is generally not a good idea. Pre-

dicting the value of the dependent variable for values of the explanatory variables far from

the sample values invites disaster. Refer to Figure 4.2 and the surrounding discussion.

5.2.2 Estimating the Error Variance σ2

There is one remaining parameter to estimate—the variance of the error term. For this parameter,

we follow the same steps that were outlined in Section 2.7. Under assumptions MR1, MR2, and

MR3, we know that

σ2 = var
(
ei|X

)
= var

(
ei
)
= E

(
e2

i |X
)
= E

(
e2

i
)

Thus, we can think of σ2 as the expectation or population mean of the squared errors e2
i . A natural

estimator of this population mean is the sample mean σ̂2 =
∑

e2
i ∕N. However, the squared errors

e2
i are unobservable, so we develop an estimator for σ2 that is based on their counterpart, the

squares of the least squares residuals. For the model in (5.6), these residuals are

êi = yi − ŷi = yi −
(
b1 + b2xi2 + b3xi3

)

An estimator for σ2 that uses the information from ê2

i and has good statistical properties is

σ̂2 =
∑N

i=1
ê2

i

N − K
(5.11)

where K is the number of β parameters being estimated in the multiple regression model. We can

think of σ̂2
as an average of ê2

i with the denominator in the averaging process being N – K instead

of N. It can be shown that replacing e2
i by ê2

i requires the use of N − K instead of N for σ̂2
to be

unbiased. Note that in equation (2.19), where there was only one explanatory variable and two

coefficients, we had K = 2.

To appreciate further why êi provide information about σ2, recall that σ2 measures the varia-

tion in ei or, equivalently, the variation in yi around the mean function β1 + β2xi2 + β3xi3. Since êi
are estimates of ei, big values of êi suggest σ2 is large while small êi suggest σ2 is small. When

we refer to “big” values of êi, we mean big positive ones or big negative ones. Using the squares

of the residuals ê2

i means that positive values do not cancel with negative ones; thus, ê2

i provide

information about the parameter σ2.
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E X A M P L E 5.3 Error Variance Estimate for Hamburger Chain Data

In the hamburger chain example, we have K = 3. The esti-

mate for our sample of data in Table 5.1 is

σ̂2 =
∑75

i=1
ê2

i

N − K
= 1718.943

75 − 3
= 23.874

Go back and have a look at Table 5.2. There are two quantities

in this table that relate to the above calculation. The first is the

sum of squared errors

SSE =
N∑

i=1

ê2

i = 1718.943

The second is the square root of σ̂2
, given by

σ̂ =
√

23.874 = 4.8861

Both these quantities typically appear in the output from your

computer software. Different software refer to it in different

ways. Sometimes σ̂ is referred to as the standard error of
the regression. Sometimes it is called the root mse (short

for the square root of mean squared error).

5.2.3 Measuring Goodness-of-Fit

For the simple regression model studied in Chapter 4, we introduced R2 as a measure of the

proportion of variation in the dependent variable that is explained by variation in the explanatory

variable. In the multiple regression model the same measure is relevant, and the same formulas

are valid, but now we talk of the proportion of variation in the dependent variable explained by

all the explanatory variables included in the model. The coefficient of determination is

R2 = SSR
SST

=
∑N

i=1

(
ŷi − y

)2

∑N
i=1

(
yi − y

)2
= 1 − SSE

SST
= 1 −

∑N
i=1

ê2

i
∑N

i=1

(
yi − y

)2
(5.12)

where SSR is the variation in y “explained” by the model (sum of squares due to regression),

SST is the total variation in y about its mean (sum of squares, total), and SSE is the sum of

squared least squares residuals (errors) and is that part of the variation in y that is not explained

by the model.

The notation ŷi refers to the predicted value of y for each of the sample values of the explana-

tory variables, that is,

ŷi = b1 + b2xi2 + b3xi3 + · · · + bKxiK

The sample mean y is both the mean of the yi and the mean of the ŷi, providing the model that

includes an intercept
(
β1 in this case

)
.

The value for SSE will be reported by almost all computer software, but sometimes SST is

not reported. Recall, however, that the sample standard deviation for y, which is readily computed

by most software, is given by

sy =

√

1

N − 1

N∑

i=1

(
yi − y

)2 =
√

SST
N − 1

and so

SST = (N − 1)s2
y
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E X A M P L E 5.4 R2 for Hamburger Chain Data

Using the results for Big Andy’s Burger Barn in Table 5.2,

we find that SST = 74 × 6.488542 = 3115.485 and SSE =
1718.943. Using these sums of squares, we have

R2 = 1 −
∑N

i=1
ê2

i
∑N

i=1

(
yi − y

)2
= 1 − 1718.943

3115.485
= 0.448

The interpretation of R2 is that 44.8% of the variation in sales

revenue about its mean is explained by the variation in price

and the variation in the level of advertising expenditure. It

means that, in our sample, 55.2% of the variation in revenue

is left unexplained and is due to variation in the error term

or variation in other variables that implicitly form part of the

error term.

As mentioned in Section 4.2.2, the coefficient of determination is also viewed as a measure of the

predictive ability of the model over the sample period, or as a measure of how well the estimated

regression fits the data. The value of R2 is equal to the squared sample correlation coefficient

between ŷi and yi. Since the sample correlation measures the linear association between two vari-

ables, if the R2 is high, that means there is a close association between the values of yi and the

values predicted by the model, ŷi. In this case, the model is said to “fit” the data well. If R2 is low,

there is not a close association between the values of yi and the values predicted by the model, ŷi,

and the model does not fit the data well.

One final note is in order. The intercept parameter β1 is the y-intercept of the regression

“plane,” as shown in Figure 5.1. If, for theoretical reasons, you are certain that the regression plane

passes through the origin, then β1 = 0 and it can be omitted from the model. While this is not

a common practice, it does occur, and regression software includes an option that removes the

intercept from the model. If the model does not contain an intercept parameter, then the measure

R2 given in (5.12) is no longer appropriate. The reason it is no longer appropriate is that, without

an intercept term in the model,

N∑

i=1

(
yi − y

)2
≠

N∑

i=1

(
ŷi − y

)2 +
N∑

i=1

ê2

i

or, SST ≠ SSR + SSE. To understand why, go back and check the proof in Appendix 4B. In the

sum of squares decomposition the cross-product term
∑N

i=1

(
ŷi − y

)
êi no longer disappears. Under

these circumstances, it does not make sense to talk of the proportion of total variation that is

explained by the regression. Thus, when your model does not contain a constant, it is better not

to report R2, even if your computer displays one.

5.2.4 Frisch–Waugh–Lovell (FWL) Theorem

The Frisch–Waugh–Lovell (FWL) Theorem5 is a useful and somewhat surprising result that we

use a number of times in the remainder of the book. It also helps understand in a multiple regres-

sion the interpretation of a coefficient estimate, all other variables held constant. To illustrate6

............................................................................................................................................

5Also known as the Frisch–Waugh Theorem or the decomposition theorem.

6An illustration is not a proof. For a nonmatrix algebra proof, see Michael C. Lovell (2008) “A Simple Proof of the

FWL Theorem,” Journal of Economic Education, Winter 2008, 88–91. A proof using matrix algebra is presented in

William H. Greene (2018) Econometric Analysis, Eighth Edition, Boston: Prentice-Hall, 36–38.
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this result, we use the sales equation SALESi = β1 + β2PRICEi + β3ADVERTi + ei and carry out

the following steps:

1. Estimate the simple regression SALESi = a1 + a2PRICEi + error using the least squares

estimator and save the least squares residuals.

SALES
∼

i = SALESi −
(
â1 + â2PRICEi

)
= SALESi −

(
121.9002 − 7.8291PRICEi

)

2. Estimate the simple regression ADVERTi = c1 + c2PRICEi + error using the least squares

estimator and save the least squares residuals.

ADVERT
∼

i = ADVERTi −
(
ĉ1 + ĉ2PRICEi

)
= ADVERTi −

(
1.6035 + 0.0423PRICEi

)

3. Estimate the simple regression SALES
∼

i = β3ADVERT
∼

i + ẽi with no constant term. The esti-

mate of β3 is b3 = 1.8626. This estimate is the same as that reported from the full regression

in Table 5.2.

4. Compute the least squares residuals from step 3, ̂̃ei = SALES
∼

i − b3ADVERT
∼

i. Compare these

residuals to those from the complete model.

êi = SALESi −
(
b1 + b2PRICEi + b3ADVERTi

)

You will find that the two sets of residuals ̂̃ei and êi are identical. Consequently, the sums of

squared residuals are also the same,
∑

ê2

i =
∑
̂̃e2

i = 1718.943.

What have we shown?

• In steps 1 and 2, we removed (or “purged” or “partialled out”) the linear influence of PRICE
(and a constant term) from both SALES and ADVERT by estimating least squares regressions

and computing the least squares residuals SALES
∼

and ADVERT
∼

. These residual variables are

SALES and ADVERT after removing, or “partialling out,” the linear influence of PRICE and

a constant.

• In step 3, we illustrate the first important result of the FWL theorem: the coefficient estimate

for β3 from the regression using the partialled-out variables SALES
∼

i = β3ADVERT
∼

i + ẽi
is exactly the same as that from the full regression SALESi = β1 + β2PRICEi +
β3ADVERTi + ei. We have explained β3 as “the change in monthly sales SALES ($1000)

when advertising expenditure ADVERT is increased by one unit ($1000), and the price index

PRICE is held constant.” The FWL result gives a precise meaning to “is held constant.” It

means that β3 is the effect of advertising expenditure on sales after the linear influence of

price and a constant term have been removed from both.

• In step 4, we note the second important result of the FWL theorem: the least squares resid-

uals and their sum of squares are identical when calculated from the full regression or the

“partialled-out” model.

A few cautions are in order. First, pay attention to the constant term. Here we have included it

with PRICE as a variable to be partialled out in steps 1 and 2. Consequently, a constant is not

included in step 3. Second, estimating the partialled-out regression is not completely equivalent

to estimating the original, complete model. When estimating SALES
∼

i = β3ADVERT
∼

i + ẽi, your

software will see only one parameter to estimate, β3. Consequently, when computing the estimate

of σ2, software will use the degrees of freedom N − 1 = 74. This means that the reported estimated

error variance will be too small. It is σ̃2 =
∑
̂̃e2

i ∕(N − 1) = 1718.943∕74 = 23.2290 compared to

the estimate from the previous section that uses divisor N − K = 75 − 3, σ̂2 =
∑

ê2

i ∕(N − 3) =
1718.943∕72 = 23.8742.7 Third, for illustration we have used estimates that are rounded to four

decimals. In practice, your software will use more significant digits. The results of the theorem

may suffer from rounding error if insufficient significant digits are used. The estimate in step 3 is

............................................................................................................................................

7This smaller error variance estimate means that the standard errors of the regression coefficients discussed in

Section 5.3.1 will be too small.
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accurate to four decimals in this example, but the least squares residuals in step 4 are off without

using more significant digits.

The Frisch–Waugh–Lovell Theorem also applies in the multiple regression model yi = β1 +
β2xi2 + β3xi3 + · · · + βKxiK + ei. Partition the explanatory variables into two groups. The theorem

works for any partition, but generally the variables that are not the primary focus of the analysis

are partialled out. This group is sometimes called the collection of control variables as they

are included for a proper specification of the regression model and “control for” the variables

that are not of primary interest. For example, suppose that x2 and x3 are the variables of primary

interest. Then the two groups are g1 =
(
xi2, xi3

)
and g2 =

(
xi1 = 1, xi4, xi5,… , xiK

)
. Note that we

have included the constant term in group two but not group one. Each variable must go into one

group or the other but not both. The FWL theorem is then applied in the following steps:

1. Estimate the least squares regression with dependent variable y and the explanatory variables

g2 =
(
xi1 = 1, xi4, xi5,… , xiK

)
. Compute the least squares residuals, ỹ.

2. Estimate the least squares regression for each variable in group one using explanatory vari-

ables g2 =
(
xi1 = 1, xi4, xi5,… , xiK

)
and compute the least squares residuals, x̃2 and x̃3.

3. Estimate the least squares regression using the partialled-out variables, ỹi = β2x̃i2 + β3x̃i3
+ ẽi. The coefficient estimates b2 and b3 will be identical to the estimates from the full

model.

4. The residuals from the partialled-out regression, ̂̃ei = ỹi −
(
b2x̃i2 + b3x̃i3

)
, are identical to

the residuals from the full model.

5.3 Finite Sample Properties of the Least

Squares Estimator
In a general context, the least squares estimators

(
b1, b2, b3

)
are random variables; they take on

different values in different samples and their values are unknown until a sample is collected and

their values computed. The differences from sample to sample are called “sampling variation”

and are unavoidable. The probability or sampling distribution of the OLS estimator describes

how its estimates vary over all possible samples. The sampling properties of the OLS estimator

refer to characteristics of this distribution. If the mean of the distribution of bk is βk, the estimator

is unbiased. The variance of the distribution provides a basis for assessing the reliability of the

estimates. If the variability of bk across samples is relatively high, then it is hard to be confident

that the values obtained in one realized sample will necessarily be close to the true parameters.

On the other hand, if bk is unbiased and its variability across samples is relatively low, we can be

confident that an estimate from one sample will be reliable.

What we can say about the sampling distribution of the least squares estimator depends on

what assumptions can realistically be made for the sample of data being used for estimation. For

the simple regression model introduced in Chapter 2 we saw that, under the assumptions SR1 to

SR5, the OLS estimator is best linear unbiased in the sense that there is no other linear unbiased

estimator that has a lower variance. The same result holds for the general multiple regression

model under assumptions MR1–MR5.

The Gauss–Markov Theorem: If assumptions MR1–MR5 hold, the least squares estima-

tors are the Best Linear Unbiased Estimators (BLUE) of the parameters in the multiple

regression model.8

............................................................................................................................................

8Similar remarks can be made about the properties of the least squares estimator in the multiple regression model under

the more restrictive, but sometimes realistic, assumptions explored for the simple regression model in Section 2.10.

Under the assumptions in that section, if all explanatory variables are statistically independent of all error terms, or if

the observations on
(
yi, xi2, xi3,… , xiK

)
are collected via random sampling making them independent, the BLUE

property still holds.
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The implications of adding assumption MR6, that the errors are normally distributed, are

also similar to those from the corresponding assumption made for the simple regression model.

Conditional on X, the least squares estimator is normally distributed. Using this result, and the

error variance estimator σ̂2
, a t-statistic that follows a t-distribution can be constructed and used

for interval estimation and hypothesis testing, along similar lines to the development in Chapter 3.

These various properties—BLUE and the use of the t-distribution for interval estimation and

hypothesis testing—are finite sample properties. As long as N > K, they hold irrespective of the

sample size N. We provide more details in the context of the multiple regression model in the

remainder of this section and in Sections 5.4 and 5.5. There are, however, many circumstances

where we are unable to rely on finite sample properties. Violation of some of the assumptions

can mean that finite sample properties of the OLS estimator do not hold or are too difficult to

derive. Also, as we travel through the book and encounter more complex models and assumptions

designed for a variety of different types of sample data, an ability to use finite sample properties

becomes the exception rather than the rule. To accommodate such situations we use what are

called large sample or asymptotic properties. These properties refer to the behavior of the sam-

pling distribution of an estimator as the sample size approaches infinity. Under less restrictive

assumptions, or when faced with a more complex model, large sample properties can be easier

to derive than finite sample properties. Of course, we never have infinite samples, but the idea

is that if N is sufficiently large, then an estimator’s properties as N becomes infinite will be a

good approximation to that estimator’s properties when N is large but finite. We discuss large

sample properties and the circumstances under which they need to be invoked in Section 5.7.

An example is the central limit theorem mentioned in Section 2.6. There we learnt that, if N is

sufficiently large, the least squares estimator is approximately normally distributed even when

assumption SR6, which specifies that the errors are normally distributed, is violated.

5.3.1 The Variances and Covariances of the
Least Squares Estimators

The variances and covariances of the least squares estimators give us information about the

reliability of the estimators b1, b2, and b3. Since the least squares estimators are unbiased,

the smaller their variances, the higher the probability that they will produce estimates “near” the

true parameter values. For K = 3, we can express the conditional variances and covariances in

an algebraic form that provides useful insights into the behavior of the least squares estimator.

For example, we can show that

var
(
b2|X

)
= σ2

(
1 − r2

23

)∑N
i=1

(
xi2 − x2

)2
(5.13)

where r23 is the sample correlation coefficient between the values of x2 and x3; see Section 4.2.1.

Its formula is given by

r23 =
∑(

xi2 − x2

) (
xi3 − x3

)

√
∑(

xi2 − x2

)2 ∑(
xi3 − x3

)2

For the other variances and covariances, there are formulas of a similar nature. It is important to

understand the factors affecting the variance of b2:

1. Larger error variances σ2 lead to larger variances of the least squares estimators. This is to be

expected, since σ2 measures the overall uncertainty in the model specification. If σ2 is large,

then data values may be widely spread about the regression function E
(
yi|𝐗

)
= β1 + β2xi2 +

β3xi3, and there is less information in the data about the parameter values. If σ2 is small, then

data values are compactly spread about the regression function E
(
yi|𝐗

)
= β1 + β2xi2 +

β3xi3, and there is more information about what the parameter values might be.
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2. Larger sample sizes N imply smaller variances of the least squares estimators. A larger value

of N means a larger value of the summation
∑(

xi2 − x2

)2
. Since this term appears in the

denominator of (5.13), when it is large, var
(
b2

)
is small. This outcome is also an intuitive

one; more observations yield more precise parameter estimation.

3. More variation in an explanatory variable around its mean, measured in this case by
∑(

xi2 − x2

)2
, leads to a smaller variance of the least squares estimator. To estimate β2

precisely, we prefer a large amount of variation in xi2. The intuition here is that if the

variation or change in x2 is small, it is difficult to measure the effect of that change. This

difficulty will be reflected in a large variance for b2.

4. A larger correlation between x2 and x3 leads to a larger variance of b2. Note that 1 − r2
23

appears in the denominator of (5.13). A value of |r23| close to 1 means 1 − r2
23

will be small,

which in turn means var
(
b2

)
will be large. The reason for this fact is that variation in xi2 about

its mean adds most to the precision of estimation when it is not connected to variation in the

other explanatory variables. When the variation in one explanatory variable is connected to

variation in another explanatory variable, it is difficult to disentangle their separate effects.

In Chapter 6, we discuss “collinearity,” which is the situation when the explanatory variables

are correlated with one another. Collinearity leads to increased variances of the least squares

estimators.

Although our discussion has been in terms of a model where K = 3, these factors affect the

variances of the least squares estimators in the same way in larger models.

It is customary to arrange the estimated variances and covariances of the least squares esti-

mators in a square array, which is called a matrix. This matrix has variances on its diagonal and

covariances in the off-diagonal positions. It is called a variance–covariance matrix or, more

simply, a covariance matrix. When K = 3, the arrangement of the variances and covariances in

the covariance matrix is

cov
(
b1, b2, b3

)
=
⎡
⎢
⎢
⎣

var
(
b1

)
cov

(
b1, b2

)
cov

(
b1, b3

)

cov
(
b1, b2

)
var
(
b2

)
cov

(
b2, b3

)

cov
(
b1, b3

)
cov

(
b2, b3

)
var
(
b3

)

⎤
⎥
⎥
⎦

Before discussing estimation of this matrix, it is useful to distinguish between the covariance

matrix conditional on the observed explanatory variables cov
(
b1, b2, b3|𝐗

)
, and the unconditional

covariance matrix cov
(
b1, b2, b3

)
that recognizes that most data generation is such that both y and

X are random variables. Given that the OLS estimator is both conditionally and unconditionally

unbiased, that is, E
(
bk
)
= E

(
bk|𝐗

)
= βk, the unconditional covariance matrix is given by

cov
(
b1, b2, b3

)
= EX

[
cov

(
b1, b2, b3|X

)]

Taking the variance of b2 as an example of one of the elements in this matrix, we have

var
(
b2

)
= EX

[
var

(
b2|X

)]
= σ2EX

[

1
(
1 − r2

23

)∑N
i=1

(
xi2 − x2

)2

]

We use the same quantity to estimate both var
(
b2

)
and var

(
b2|𝐗

)
. That is,

var
⋀(

b2

)
= var
⋀(

b2|X
)
= σ̂2

(
1 − r2

23

)∑N
i=1

(
xi2 − x2

)2

This quantity is an unbiased estimator for both var
(
b2

)
and var

(
b2|𝐗

)
. For estimating var

(
b2|𝐗

)
,

we replace σ2 with σ̂2
in equation (5.13). For estimating var

(
b2

)
, we replace σ2 with σ̂2 and

the unknown expectation EX

{[(
1 − r2

23

)∑N
i=1

(
xi2 − x2

)2
]−1
}

with
[(

1 − r2
23

)∑N
i=1

(
xi2 − x2

)2
]−1

.

Similar replacements are made for the other elements in the covariance matrix.
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E X A M P L E 5.5 Variances, Covariances, and Standard Errors for Hamburger
Chain Data

Using the estimate σ̂2 = 23.874 and our computer software

package, the estimated variances and covariances for b1, b2,

b3, in the Big Andy’s Burger Barn example are

cov
⋀(

b1, b2, b3

)
=
⎡
⎢
⎢
⎣

40.343 −6.795 −0.7484

−6.795 1.201 −0.0197

−0.7484 −0.0197 0.4668

⎤
⎥
⎥
⎦

Thus, we have

var
⋀(

b1

)
= 40.343 cov

⋀(
b1, b2

)
= −6.795

var
⋀(

b2

)
= 1.201 cov

⋀(
b1, b3

)
= −0.7484

var
⋀(

b3

)
= 0.4668 cov

⋀(
b2, b3

)
= −0.0197

Table 5.3 shows how this information is typically reported in

the output from computer software. Of particular relevance

are the standard errors of b1, b2, and b3; they are given by

the square roots of the corresponding estimated variances.

That is,

se
(
b1

)
=
√

var
⋀(

b1

)
=
√

40.343 = 6.3516

se
(
b2

)
=
√

var
⋀(

b2

)
=
√

1.201 = 1.0960

se
(
b3

)
=
√

var
⋀(

b3

)
=
√

0.4668 = 0.6832

Again, it is time to go back and look at Table 5.2. Notice that

these values appear in the standard error column.

These standard errors can be used to say something

about the range of the least squares estimates if we were

to obtain more samples of 75 Burger Barns from different

cities. For example, the standard error of b2 is approximately

T A B L E 5.3
Covariance Matrix for Coefficient
Estimates

C PRICE ADVERT

C 40.3433 −6.7951 −0.7484

PRICE −6.7951 1.2012 −0.0197

ADVERT −0.7484 −0.0197 0.4668

se
(
b2

)
= 1.1. We know that the least squares estimator is

unbiased, so its mean value is E
(
b2

)
= β2. Suppose b2 is

approximately normally distributed, then based on statistical

theory we expect 95% of the estimates b2, obtained by

applying the least squares estimator to other samples, to be

within approximately two standard deviations of the mean β2.

Given our sample, 2 × se
(
b2

)
= 2.2, so we estimate that

95% of the b2 values would lie within the interval β2 ± 2.2.

It is in this sense that the estimated variance of b2, or its

corresponding standard error, tells us something about the

reliability of the least squares estimates. If the difference

between b2 and β2 can be large, b2 is not reliable; if the

difference between b2 and β2 is likely to be small, then b2 is

reliable. Whether a particular difference is “large” or “small”

will depend on the context of the problem and the use to

which the estimates are to be put. This issue is considered

again in later sections when we use the estimated variances

and covariances to test hypotheses about the parameters and

to construct interval estimates.

5.3.2 The Distribution of the Least Squares Estimators
We have asserted that, under the multiple regression model assumptions MR1–MR5, listed in

Section 5.1, the least squares estimator bk is the best linear unbiased estimator of the parameter

βk in the model

yi = β1 + β2xi2 + β3xi3 + · · · + βKxiK + ei

If we add assumption MR6, that the random errors ei have normal probability distributions, then,

conditional on X, the dependent variable yi is normally distributed:

(
yi|X

)
∼ N

((
β1 + β2xi2 + · · · + βKxiK

)
, σ2

)

⇐⇒
(
ei|X

)
∼ N

(
0, σ2

)

For a given X, the least squares estimators are linear functions of dependent variables, which

means that the conditional distribution of the least squares estimators is also normal:

(
bk|X

)
∼ N

(

βk, var
(
bk|X

))

That is, given X, each bk has a normal distribution with mean βk and variance var
(
bk|𝐗

)
. By

subtracting its mean and dividing by the square root of its variance, we can transform the normal
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random variable bk into a standard normal variable Z with mean zero and a variance of one.

Z =
bk − βk

√

var
(
bk|X

)
∼ N(0, 1) , for k = 1, 2,… ,K (5.14)

What is particularly helpful about this result is that the distribution of Z does not depend on any

unknown parameters or on X. Although the unconditional distribution of bk will almost certainly

not be normal—it depends on the distributions of both e and X—we can use the standard normal

distribution to make probability statements about Z irrespective of whether the explanatory vari-

ables are treated as fixed or random. As mentioned in Chapter 3, statistics with this property are

called pivotal.
There is one remaining problem, however. Before we can use (5.14) to construct interval

estimates for βk or test hypothesized values for βk, we need to replace the unknown parameter

σ2 that is a component of var
(
bk|𝐗

)
with its estimator σ̂2

. Doing so yields a t random variable

given by

t =
bk − βk

√

var
⋀(

bk|X
)
=

bk − βk

se
(
bk
) ∼ t(N−K) (5.15)

Like Z in equation (5.14), the distribution of this t-statistic does not depend on any unknown

parameters or on X. It is a generalization of the result in equation (3.2). A difference is the degrees

of freedom of the t random variable. In Chapter 3, where there were two coefficients to be esti-

mated, the number of degrees of freedom was (N − 2). In this chapter, there are K unknown

coefficients in the general model and the number of degrees of freedom for t-statistics is (N − K).

Linear Combinations of Parameters The result in (5.15) extends to a linear com-

bination of coefficients that was introduced in Section 3.6. Suppose that we are interested in

estimating or testing hypotheses about a linear combination of coefficients that in the general

case is given by

λ = c1β1 + c2β2 + · · · + cKβK =
∑K

k=1
ckβk

Then

t = λ̂ − λ

se
(

λ̂
) =

∑
ckbk−

∑
ckβk

se
(∑

ckbk
) ∼ t(N−K) (5.16)

This expression is a little intimidating, mainly because we have included all coefficients to make

it general, and because hand calculation of se
(∑

ckbk
)

is onerous if more than two coefficients

are involved. For example, if K = 3, then

se
(
c1b1 + c2b2 + c3b3

)
=
√

var
⋀(

c1b1 + c2b2 + c3b3|X
)

where

var
⋀(

c1b1 + c2b2 + c3b3|X
)
= c2

1
var
⋀(

b1|X
)
+ c2

2
var
⋀(

b2|X
)
+ c2

3
var
⋀(

b3|X
)
+ 2c1c2cov

⋀(
b1, b2|X

)

+ 2c1c3cov
⋀(

b1, b3|X
)
+ 2c2c3cov

⋀(
b2, b3|X

)

In many instances some of the ck will be zero, which can simplify the expressions and the calcu-

lations considerably. If one ck is equal to one, and the rest are zero, (5.16) simplifies to (5.15).

What happens if the errors are not normally distributed? Then the least squares estimator will

not be normally distributed and (5.14), (5.15), and (5.16) will not hold exactly. They will, however,

be approximately true in large samples. Thus, having errors that are not normally distributed does

not stop us from using (5.15) and (5.16), but it does mean we have to be cautious if the sample

size is not large. A test for normally distributed errors was given in Section 4.3.5. An example of

errors that are not normally distributed can be found in Appendix 5C.
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We now examine how the results in (5.15) and (5.16) can be used for interval estimation and

hypothesis testing. The procedures are identical to those described in Chapter 3, except that the

degrees of freedom change.

5.4 Interval Estimation

5.4.1 Interval Estimation for a Single Coefficient
Suppose we are interested in finding a 95% interval estimate for β2, the response of average sales

revenue to a change in price at Big Andy’s Burger Barn. Following the procedures described in

Section 3.1, and noting that we have N − K = 75 − 3 = 72 degrees of freedom, the first step is to

find a value from the t(72)-distribution, call it tc, such that

P
(
−tc < t(72) < tc

)
= 0.95 (5.17)

Using the notation introduced in Section 3.1, tc = t(0.975, N−K) is the 97.5-percentile of the

t(N − K)-distribution (the area or probability to the left of tc is 0.975), and –tc = t(0.025, N − K) is

the 2.5-percentile of the t(N − K)-distribution (the area or probability to the left of –tc is 0.025).

Consulting the t-table (Statistical Table 2), we discover there is no entry for 72 degrees of

freedom, but, from the entries for 70 and 80 degrees of freedom, it is clear that, correct to two

decimal places, tc = 1.99. If greater accuracy is required, your computer software can be used to

find tc = 1.993. Using this value, and the result in (5.15) for the second coefficient (k = 2), we

can rewrite (5.17) as

P

(

−1.993 ≤
b2 − β2

se
(
b2

) ≤ 1.993

)

= 0.95

Rearranging this expression, we obtain

P
[

b2 − 1.993 × se
(
b2

)
≤ β2 ≤ b2 + 1.993 × se

(
b2

)]

= 0.95

The interval endpoints [

b2 − 1.993 × se
(
b2

)
, b2 + 1.993 × se

(
b2

)]

(5.18)

define a 95% interval estimator of β2. If this interval estimator is used in many samples from

the population, then 95% of them will contain the true parameter β2. We can establish this fact

before any data are collected, based on the model assumptions alone. Before the data are collected,

we have confidence in the interval estimation procedure (estimator) because of its performance

over all possible samples.

E X A M P L E 5.6 Interval Estimates for Coefficients in Hamburger Sales Equation

A 95% interval estimate for β2 based on our particular sam-

ple is obtained from (5.18) by replacing b2 and se
(
b2

)
by their

values b2 = −7.908 and se
(
b2

)
= 1.096. Thus, our 95% inter-

val estimate for β2 is given by9

(−7.9079 − 1.9335 × 1.096, 7.9079 + 1.9335 × 1.096)
= (−10.093,−5.723)

This interval estimate suggests that decreasing price by

$1 will lead to an increase in average revenue somewhere

between $5723 and $10,093. Or, in terms of a price change

whose magnitude is more realistic, a 10-cent price reduction

will lead to an average revenue increase between $572 and

$1009. Based on this information, and the cost of making

and selling more burgers, Big Andy can decide whether to

proceed with a price reduction.

............................................................................................................................................

9For this and the next calculation, we used more digits so that it would match the more accurate computer output.

You may see us do this occasionally.
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Following a similar procedure for β3, the response of

average sales revenue to advertising, we find a 95% interval

estimate is given by

(1.8626 − 1.9935 × 0.6832, 1.8626 + 1.9935 × 0.6832)
=(0.501, 3.225)

We estimate that an increase in advertising expenditure

of $1000 leads to an increase in average sales revenue of

between $501 and $3225. This interval is a relatively wide

one; it implies that extra advertising expenditure could

be unprofitable (the revenue increase is less than $1000)

or could lead to a revenue increase more than three times

the cost of the advertising. Another way of describing this

situation is to say that the point estimate b3 = 1.8626 is not

very reliable, as its standard error (which measures sampling

variability) is relatively large.

In general, if an interval estimate is uninformative because it is too wide, there is nothing

immediate that can be done. A wide interval for the parameter β3 arises because the estimated

sampling variability of the least squares estimator b3 is large. In the computation of an inter-

val estimate, a large sampling variability is reflected by a large standard error. A narrower

interval can only be obtained by reducing the variance of the estimator. Based on the variance

expression in (5.13), one solution is to obtain more and better data exhibiting more independent

variation. Big Andy could collect data from other cities and set a wider range of price and

advertising combinations. It might be expensive to do so, however, and so he would need to

assess whether the extra information is worth the extra cost. This solution is generally not

open to economists, who rarely use controlled experiments to obtain data. Alternatively, we

might introduce some kind of nonsample information on the coefficients. The question of

how to use both sample and nonsample information in the estimation process is taken up in

Chapter 6.

We cannot say, in general, what constitutes an interval that is too wide, or too uninformative.

It depends on the context of the problem being investigated, and on how the information is to

be used.

To give a general expression for an interval estimate, we need to recognize that the criti-
cal value tc will depend on the degree of confidence specified for the interval estimate and the

number of degrees of freedom. We denote the degree of confidence by 1 − α; in the case of a

95% interval estimate α = 0.05 and 1 – α = 0.95. The number of degrees of freedom is N − K;

in Big Andy’s Burger Barn example this value was 75 – 3 = 72. The value tc is the percentile

value t(1 − α/2, N − K), which has the property that P
[
t(N − K) ≤ t(1 − α∕2, N − K)

]
= 1 − α∕2. In the case

of a 95% confidence interval, 1 − α∕2 = 0.975; we use this value because we require 0.025 in

each tail of the distribution. Thus, we write the general expression for a 100(1 – α)% confidence

interval as

[

bk − t(1−α/2,N−K) × se
(
bk
)
, bk + t(1−α/2, N−K) × se

(
bk
)]

5.4.2 Interval Estimation for a Linear
Combination of Coefficients

The t-statistic in (5.16) can also be used to create interval estimates for a variety of linear com-

binations of parameters. Such combinations are of interest if we are considering the value of

E(y|𝐗) for a particular setting of the explanatory variables, or the effect of changing two or more

explanatory variables simultaneously. They become especially relevant if the effect of an explana-

tory variable depends on two or more parameters, a characteristic of many nonlinear relationships

that we explore in Section 5.6.
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E X A M P L E 5.7 Interval Estimate for a Change in Sales

Big Andy wants to make next week a big sales week. He

plans to increase advertising expenditure by $800 and drop

the price by 40 cents. If the prices before and after the

changes are PRICE0 and PRICE1, respectively, and those for

advertising expenditure are ADVERT0 and ADVERT1, then

the change in expected sales from Andy’s planned strategy is

λ = E
(
SALES1|PRICE1,ADVERT1

)

− E
(
SALES0|PRICE0,ADVERT0

)

=
[
β1 + β2PRICE1 + β3ADVERT1

]

−
[
β1 + β2PRICE0 + β3ADVERT0

]

=
[
β1 + β2

(
PRICE0 − 0.4

)
+ β3

(
ADVERT0 + 0.8

)]

−
[
β1 + β2PRICE0 + β3ADVERT0

]

= −0.4β2 + 0.8β3

Andy would like a point estimate and a 90% interval estimate

for λ.

A point estimate is given by

λ̂ = −0.4b2 + 0.8b3 = −0.4 ×(−7.9079) + 0.8 × 1.8626

= 4.6532

Our estimate of the expected increase in sales from Big

Andy’s strategy is $4653.

From (5.16), we can derive a 90% interval estimate for

λ = −0.4β2 + 0.8β3 as

[

λ̂ − tc × se
(

λ̂
)

, λ̂ + tc × se
(

λ̂
)]

=
[(
−0.4b2 + 0.8b3

)
− tc × se

(
−0.4b2 + 0.8b3

)
,

(
−0.4b2 + 0.8b3

)
+ tc × se

(
−0.4b2 + 0.8b3

)]

where tc = t(0.95, 72) = 1.666. Using the covariance matrix of

the coefficient estimates in Table 5.3, and the result for the

variance of a linear function of two random variables—see

equation (3.8)—we can calculate the standard error

se
(
−0.4b2 + 0.8b3

)
as follows:

se
(
−0.4b2 + 0.8b3

)

=
√

var
⋀(

−0.4b2 + 0.8b3|X
)

=
[

(−0.4)2var
⋀(

b2|X
)
+(0.8)2var

⋀(
b3|X

)

−2 × 0.4 × 0.8 × cov
⋀(

b2, b3|X
)]1∕2

=
[
0.16×1.2012+0.64 × 0.4668−0.64 × (−0.0197)

]1∕2

= 0.7096

Thus, a 90% interval estimate is

(4.6532 − 1.666 × 0.7096, 4.6532 + 1.666 × 0.7096)
= (3.471, 5.835)

We estimate, with 90% confidence, that the expected increase

in sales from Big Andy’s strategy will lie between $3471 and

$5835.

5.5 Hypothesis Testing
As well as being useful for interval estimation, the t-distribution result in (5.15) provides the

foundation for testing hypotheses about individual coefficients. As you discovered in Chapter 3,

hypotheses of the form H0∶β2 = c versus H1∶β2 ≠ c, where c is a specified constant, are called

two-tail tests. Hypotheses with inequalities such as H0∶β2 ≤ c versus H1∶β2 > c are called

one-tail tests. In this section, we consider examples of each type of hypothesis. For a two-tail
test, we consider testing the significance of an individual coefficient; for one-tail tests, some

hypotheses of economic interest are considered. Using the result in (5.16), one- and two-tail

tests can also be used to test hypotheses about linear combinations of coefficients. An example

of this type follows those for testing hypotheses about individual coefficients. We will follow the

step-by-step procedure for testing hypotheses that was introduced in Section 3.4. To refresh your

memory, here are the steps again:

Step-by-Step Procedure for Testing Hypotheses

1. Determine the null and alternative hypotheses.

2. Specify the test statistic and its distribution if the null hypothesis is true.

3. Select α and determine the rejection region.

4. Calculate the sample value of the test statistic and, if desired, the p-value.

5. State your conclusion.
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At the time these steps were introduced, in Chapter 3, you had not discovered p-values. Knowing

about p-values (see Section 3.5) means that steps 3–5 can be framed in terms of the test statistic

and its value and/or the p-value. We will use both.

5.5.1 Testing the Significance of a Single Coefficient
When we set up a multiple regression model, we do so because we believe that the explanatory

variables influence the dependent variable y. If we are to confirm this belief, we need to examine

whether or not it is supported by the data. That is, we need to ask whether the data provide any

evidence to suggest that y is related to each of the explanatory variables. If a given explanatory

variable, say xk, has no bearing on y, then βk = 0. Testing this null hypothesis is sometimes called

a test of significance for the explanatory variable xk. Thus, to find whether the data contain any

evidence suggesting y is related to xk, we test the null hypothesis

H0∶βk = 0

against the alternative hypothesis

H1∶βk ≠ 0

To carry out the test, we use the test statistic (5.15), which, if the null hypothesis is true, is

t =
bk

se
(
bk
) ∼ t(N−K)

For the alternative hypothesis “not equal to,” we use a two-tail test, introduced in Section 3.3.3,

and reject H0 if the computed t-value is greater than or equal to tc (the critical value from the

right side of the distribution) or less than or equal to −tc (the critical value from the left side of

the distribution). For a test with level of significance α, tc = t(1 − α/2, N − K) and −tc = t(α/2, N − K).

Alternatively, if we state the acceptance–rejection rule in terms of the p-value, we reject H0 if

p ≤ α and do not reject H0 if p > α.

E X A M P L E 5.8 Testing the Significance of Price

In the Big Andy’s Burger Barn example, we test, following

our standard testing format, whether sales revenue is related

to price:

1. The null and alternative hypotheses are H0∶β2 = 0 and

H1∶β2 ≠ 0.

2. The test statistic, if the null hypothesis is true, is

t = b2

/
se
(
b2

)
∼ t(N−K).

3. Using a 5% significance level (α = 0.05), and noting

that there are 72 degrees of freedom, the critical values

that lead to a probability of 0.025 in each tail of the

distribution are t(0.975, 72) = 1.993 and t(0.025, 72) = −1.993.

Thus, we reject the null hypothesis if the calculated

value of t from step 2 is such that t ≥ 1.993 or

t ≤ −1.993. If −1.993 < t < 1.993, we do not reject

H0. Stating the acceptance–rejection rule in terms of

the p-value, we reject H0 if p ≤ 0.05 and do not reject

H0 if p > 0.05.

4. The computed value of the t-statistic is

t = −7.908

1.096
= −7.215

From your computer software, the p-value in this case can

be found as

P
(
t(72) > 7.215

)
+ P

(
t(72) < −7.215

)
= 2 ×

(
2.2 × 10−10

)

= 0.000

Correct to three decimal places the result is p-value

= 0.000.

5. Since −7.215 < −1.993, we reject H0∶β2 = 0 and con-

clude that there is evidence from the data to suggest that

sales revenue depends on price. Using the p-value to per-

form the test, we reject H0 because 0.000 < 0.05.



�

� �

�

220 CHAPTER 5 The Multiple Regression Model

E X A M P L E 5.9 Testing the Significance of Advertising Expenditure

For testing whether sales revenue is related to advertising

expenditure, we have

1. H0∶β3 = 0 and H1∶β3 ≠ 0.

2. The test statistic, if the null hypothesis is true, is

t = b3

/
se
(
b3

)
∼ t(N−K).

3. Using a 5% significance level, we reject the null hypoth-

esis if t ≥ 1.993 or t ≤ −1.993. In terms of the p-value,

we reject H0 if p ≤ 0.05. Otherwise, we do not reject H0.

4. The value of the test statistic is

t = 1.8626

0.6832
= 2.726

The p-value is given by

P
(
t(72) > 2.726

)
+ P

(
t(72) < −2.726

)
= 2 × 0.004

= 0.008

5. Because 2.726 > 1.993, we reject H0; the data support

the conjecture that revenue is related to advertising

expenditure. The same test outcome can be obtained

using the p-value. In this case, we reject H0 because

0.008 < 0.05.

Note that the t-values −7.215 (Example 5.8) and 2.726

and their corresponding p-values 0.000 and 0.008 were

reported in Table 5.2 at the same time that we reported the

original least squares estimates and their standard errors.

Hypothesis tests of this kind are carried out routinely

by computer software, and their outcomes can be read

immediately from the computer output that will be similar to

Table 5.2.

When we reject a hypothesis of the form H0∶βk = 0, we say that the estimate bk is significant.

Significance of a coefficient estimate is desirable—it confirms an initial prior belief that a par-

ticular explanatory variable is a relevant variable to include in the model. However, we cannot

be absolutely certain that βk ≠ 0. There is still a probability α that we have rejected a true null

hypothesis. Also, as mentioned in Section 3.4, statistical significance of an estimated coefficient

should not be confused with the economic importance of the corresponding explanatory variable.

If the estimated response of sales revenue to advertising had been b3 = 0.01 with a standard error

of se
(
b3

)
= 0.005, then we would have concluded that b3 is significantly different from zero; but,

since the estimate implies increasing advertising by $1000 increases revenue by only $10, we

would not conclude that advertising is important. We should also be cautious about concluding

that statistical significance implies precise estimation. The advertising coefficient b3 = 1.8626

was found to be significantly different from zero, but we also concluded that the corresponding

95% interval estimate (0.501, 3224) was too wide to be very informative. In other words, we were

not able to get a precise estimate of β3.

5.5.2 One-Tail Hypothesis Testing for a Single Coefficient
In Section 5.1, we noted that two important considerations for the management of Big Andy’s

Burger Barn were whether demand was price-elastic or price-inelastic and whether the additional

sales revenue from additional advertising expenditure would cover the costs of the advertising.

We are now in a position to state these questions as testable hypotheses, and to ask whether the

hypotheses are compatible with the data.

E X A M P L E 5.10 Testing for Elastic Demand

With respect to demand elasticity, we wish to know whether

• β2 ≥ 0: a decrease in price leads to a change in sales rev-

enue that is zero or negative (demand is price-inelastic or

has an elasticity of unity).

• β2 < 0: a decrease in price leads to an increase in sales

revenue (demand is price-elastic).

The fast food industry is very competitive with many substi-

tutes for Andy’s burgers. We anticipate elastic demand and
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put this conjecture as the alternative hypothesis. Following

our standard testing format, we first state the null and alter-

native hypotheses:

1. H0∶β2 ≥ 0 (demand is unit-elastic or inelastic)

H1∶β2 < 0 (demand is elastic)

2. To create a test statistic, we act as if the null hypothe-

sis is the equality β2 = 0. Doing so is valid because if

we reject H0 for β2 = 0, we also reject it for any β2 > 0.

Then, assuming that H0∶β2 = 0 is true, from (5.15) the

test statistic is t = b2

/
se
(
b2

)
∼ t(N − K).

3. The rejection region consists of values from the

t-distribution that are unlikely to occur if the null

hypothesis is true. If we define “unlikely” in terms of a

5% significance level, then unlikely values of t are those

less than the critical value t(0.05, 72) = −1.666. Thus, we

reject H0 if t ≤ −1.666 or if the p-value ≤ 0.05.

4. The value of the test statistic is

t =
b2

se
(
b2

) = −7.908

1.096
= −7.215

The corresponding p-value is P
(
t(72) < −7.215

)
= 0.000.

5. Since −7.215 < −1.666, we reject H0∶β2 ≥ 0 and

conclude that H1∶β2 < 0 (demand is elastic) is more

compatible with the data. The sample evidence

supports the proposition that a reduction in price

will bring about an increase in sales revenue. Since

0.000 < 0.05, the same conclusion is reached using the

p-value.

Note the similarities and differences between this test and the two-tail test of significance per-

formed in Section 5.5.1. The calculated t-values are the same, but the critical t-values are different.

Not only are the values themselves different, but with a two-tail test there are also two critical val-

ues, one from each side of the distribution. With a one-tail test there is only one critical value,

from one side of the distribution. Also, the p-value from the one-tail test is usually, but not always,

half that of the two-tail test, although this fact is hard to appreciate from this example because

both p-values are essentially zero.

E X A M P L E 5.11 Testing Advertising Effectiveness

The other hypothesis of interest is whether an increase in

advertising expenditure will bring an increase in sales rev-

enue that is sufficient to cover the increased cost of advertis-

ing. We want proof that our advertising is profitable. If not,

we may change advertising firms. Since advertising will be

profitable if β3 > 1, we set up the hypotheses:

1. H0∶β3 ≤ 1 and H1∶β3 > 1.

2. Treating the null hypothesis as the equality H0∶β3 = 1,

the test statistic that has the t-distribution when H0 is true

is, from (5.15),

t =
b3 − 1

se
(
b3

) ∼ t(N−K)

3. Choosing α = 0.05 as our level of significance, the rel-

evant critical value is t(0.95, 72) = 1.666. We reject H0 if

t ≥ 1.666 or if the p-value ≤ 0.05.

4. The value of the test statistic is

t =
b3 − β3

se
(
b3

) = 1.8626 − 1

0.6832
= 1.263

The p-value of the test is P
(
t(72) > 1.263

)
= 0.105.

5. Since 1.263 < 1.666, we do not reject H0. There is

insufficient evidence in our sample to conclude that

advertising will be cost-effective. Using the p-value to

perform the test, we again conclude that H0 cannot be

rejected, because 0.105 > 0.05. Another way of thinking

about the test outcome is as follows: Because the estimate

b3 = 1.8626 is greater than one, this estimate by itself

suggests that advertising will be effective. However,

when we take into account the precision of estimation,

measured by the standard error, we find that b3 = 1.8626

is not significantly greater than one. In the context of our

hypothesis-testing framework, we cannot conclude with

a sufficient degree of certainty that β3 > 1.

5.5.3 Hypothesis Testing for a Linear Combination
of Coefficients

We are often interested in testing hypotheses about linear combinations of coefficients. Will par-

ticular settings of the explanatory variables lead to a mean value of the dependent variable above
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a certain threshold? Will changes in the values of two or more explanatory variables lead to a

mean dependent variable change that exceeds a predefined goal? The t-statistic in (5.16) can be

used to answer these questions.

E X A M P L E 5.12 Testing the Effect of Changes in Price and Advertising

Big Andy’s marketing adviser claims that dropping the price

by 20 cents will be more effective for increasing sales revenue

than increasing advertising expenditure by $500. In other

words, she claims that −0.2β2 > 0.5β3. Andy does not wish

to accept this proposition unless it can be verified by past

data. He knows that the estimated change in expected sales

from the price fall is −0.2b2 = −0.2 × (−7.9079) = 1.5816,

and that the estimated change in expected sales from the

extra advertising is 0.5b3 = 0.5 × 1.8626 = 0.9319, so the

marketer’s claim appears to be correct. However, he wants

to establish whether the difference 1.5816 − 0.9319 could

be attributable to sampling error, or whether it constitutes

proof, at a 5% significance level, that −0.2β2 > 0.5β3. This

constitutes a test about a linear combination of coefficients.

Since −0.2β2 > 0.5β3 can be written as −0.2β2 − 0.5β3 > 0,

we are testing a hypothesis about the linear combination

−0.2β2 − 0.5β3.

Following our hypothesis testing steps, we have

1. H0∶ − 0.2β2 − 0.5β3 ≤ 0 (the marketer’s claim is not

correct)

H1∶ − 0.2β2 − 0.5β3 > 0 (the marketer’s claim is correct)

2. Using (5.16) with c2 = −0.2, c3 = −0.5 and all other ck’s

equal to zero, and assuming that the equality in H0 holds(
−0.2β2 − 0.5β3 = 0

)
, the test statistic and its distribu-

tion when H0 is true are

t =
−0.2b2 − 0.5b3

se
(
−0.2b2 − 0.5b3

) ∼ t(72)

3. For a one-tail test and a 5% significance level, the critical

value is t(0.95, 72) = 1.666. We reject H0 if t ≥ 1.666 or if

the p-value ≤ 0.05.

4. To find the value of the test statistic, we first compute

se
(
−0.2b2 − 0.5b3

)

=
√

var
⋀(

−0.2b2 − 0.5b3|X
)

=
[

(−0.2)2var
⋀(

b2|X
)
+ (−0.5)2var

⋀(
b3|X

)

+2 × (−0.2) × (−0.5) × cov
⋀(

b2, b3|X
)]1∕2

=
[
0.04 × 1.2012 + 0.25 × 0.4668 + 0.2 × (−0.0197)

]1∕2

= 0.4010

Then, the value of the test statistic is

t =
−0.2b2 − 0.5b3

se
(
−0.2b2 − 0.5b3

) = 1.58158 − 0.9319

0.4010
= 1.622

The corresponding p-value is P
(
t(72) > 1.622

)
= 0.055.

5. Since 1.622 < 1.666, we do not reject H0. At a 5% signif-

icance level, there is not enough evidence to support the

marketer’s claim. Alternatively, we reach the same con-

clusion using the p-value, because 0.055 > 0.05.

5.6 Nonlinear Relationships
The multiple regression model that we have studied so far has the form

y = β1 + β2x2 + · · · + βKxK + e (5.19)

It is a linear function of variables (the x’s) and of the coefficients (the β’s) and e. However,

(5.19) is much more flexible than it at first appears. Although the assumptions of the multiple

regression model require us to retain the property of linearity in the β’s, many different nonlinear

functions of variables can be specified by defining the x’s and/or y as transformations of original

variables. Several examples of such transformations have already been encountered for the simple

regression model. In Chapter 2, the quadratic model y = α1 + α2x2+ e and the log-linear model

ln(y) = γ1 + γ2x + e were estimated. A detailed analysis of these and other nonlinear simple

regression models—a linear-log model, a log-log model, and a cubic model—was given in

Chapter 4. The same kind of variable transformations and interpretations of their coefficients

carry over to multiple regression models. One class of models is that of polynomial equations
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such as the quadratic y = β1 + β2x + β3x2 + e or the cubic y = α1 + α2x + α3x2 + α4x3 + e. When

we studied these models as examples of the simple regression model, we were constrained by the

need to have only one right-hand-side variable, such as y = β1 + β3x2 + e or y = α1 + α4x3 + e.

Now that we are working within the framework of the multiple regression model, we

can consider unconstrained polynomials with all their terms included. Another general-

ization is to include “cross-product” or “interaction” terms leading to a model such as

y = γ1 + γ2x2 + γ3x3 + γ4x2x3 + e. In this section, we explore a few of the many options that are

available for modeling nonlinear relationships. We begin with some examples of polynomial

functions from economics. Polynomials are a rich class of functions that can parsimoniously

describe relationships that are curved, with one or more peaks and valleys.

E X A M P L E 5.13 Cost and Product Curves

In microeconomics, you studied “cost” curves and “product”

curves that describe a firm. Total cost and total product

curves are mirror images of each other, taking the standard

“cubic” shapes shown in Figure 5.2. Average and margi-

nal cost curves, and their mirror images, average and marginal

product curves, take quadratic shapes, usually represented as

shown in Figure 5.3.

The slopes of these relationships are not constant and

cannot be represented by regression models that are “linear in

the variables.” However, these shapes are easily represented

by polynomials. For example, if we consider the average

Cost Product

Q Input

TP

TC

(a) (b)

FIGURE 5.2 (a) Total cost curve and (b) total product curve.

Cost Product

Q Input

AP

MP

MC

AC

(a) (b)

FIGURE 5.3 Average and marginal (a) cost curves and (b) product curves.

cost relationship in Figure 5.3(a), a suitable regression

model is

AC = β1 + β2Q + β3Q2 + e (5.20)

This quadratic function can take the “U” shape we associate

with average cost functions. For the total cost curve in

Figure 5.2(a), a cubic polynomial is in order,

TC = α1 + α2Q + α3Q2 + α4Q3 + e (5.21)

These functional forms, which represent nonlinear shapes,

can still be estimated using the least squares methods we have
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studied. The variables Q2 and Q3 are explanatory variables

that are treated no differently from any others.

A difference in models of nonlinear relationships is in

the interpretation of the parameters, which are not themselves

slopes. To investigate the slopes, and to interpret the param-

eters, we need a little calculus. For the general polynomial

function,

y = a0 + a1x + a2x2 + a3x3 + · · · + apx p

the slope or derivative of the curve is

dy
dx
= a1 + 2a2x + 3a3x2 + · · · + papx p−1 (5.22)

This slope changes depending on the value of x. Evaluated at

a particular value, x = x0, the slope is

dy
dx
|
|
|
|x=x0

= a1 + 2a2x0 + 3a3x2
0
+ · · · + papx p−1

0

For more on rules of derivatives, see Appendix A.3.1.

Using the general rule in (5.22), the slope of the average

cost curve (5.20) is

dE(AC)
dQ

= β2 + 2β3Q

The slope of the average cost curve changes for every value of

Q and depends on the parameters β2 and β3. For this U-shaped

curve, we expect β2 < 0 and β3 > 0. The slope of the total cost

curve (5.21), which is the marginal cost, is

dE(TC)
dQ

= α2 + 2α3Q + 3α4Q2

The slope is a quadratic function of Q, involving the

parameters α2, α3, and α4. For a U-shaped marginal cost

curve, we expect the parameter signs to be α2 > 0, α3 < 0,

and α4 > 0.

Using polynomial terms is an easy and flexible way to capture nonlinear relationships

between variables. As we have shown, care must be taken when interpreting the parameters

of models that contain polynomial terms. Their inclusion does not complicate least squares
estimation—with one exception. It is sometimes true that having a variable and its square or

cube in the same model causes collinearity problems. (See Section 6.4.)

E X A M P L E 5.14 Extending the Model for Burger Barn Sales

In the Burger Barn model SALES = β1 + β2PRICE +
β3ADVERT + e, it is worth questioning whether the linear
relationship between sales revenue, price, and advertising

expenditure is a good approximation of reality. Having a

linear model implies that increasing advertising expenditure

will continue to increase sales revenue at the same rate

irrespective of the existing levels of sales revenue and adver-

tising expenditure—that is, that the coefficient β3, which

measures the response of E(SALES|PRICE,ADVERT ) to

a change in ADVERT, is constant; it does not depend on

the level of ADVERT. In reality, as the level of advertising

expenditure increases, we would expect diminishing returns

to set in. To illustrate what is meant by diminishing returns,

consider the relationship between sales and advertising

(assuming a fixed price) graphed in Figure 5.4. The figure

shows the effect on sales of an increase of $200 in advertising

expenditure when the original level of advertising is (a) $600

and (b) $1,600. Note that the units in the graph are thousands
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71
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FIGURE 5.4 A model where sales exhibits diminishing
returns to advertising expenditure.
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of dollars, so these points appear as 0.6 and 1.6. At the

smaller level of advertising, sales increase from $72,400

to $74,000, whereas at the higher level of advertising, the

increase is a much smaller one, from $78,500 to $79,000.

The linear model with the constant slope β3 does not capture

the diminishing returns.

What is required is a model where the slope changes as

the level of ADVERT increases. One such model having this

characteristic is obtained by including the squared value of

advertising as another explanatory variable, making the new

model

SALES = β1 + β2PRICE + β3ADVERT + β4ADVERT2 + e
(5.23)

Adding the term β4ADVERT2 to our original specification

yields a model in which the response of expected revenue to

a change in advertising expenditure depends on the level of

advertising. Specifically, by applying the polynomial deriva-

tive rule in (5.22), and holding PRICE constant, the response

of E(SALES|PRICE,ADVERT ) to a change in ADVERT is

ΔE(SALES|PRICE,ADVERT )
ΔADVERT

|
|
|
|(PRICE held constant)

= ∂E(SALES|PRICE,ADVERT )
∂ADVERT

= β3 + 2β4ADVERT
(5.24)

The partial derivative sign “∂” is used in place of the deriva-

tive sign “d” that we used in (5.22) because SALES depends

on two variables, PRICE and ADVERT, and we are holding

PRICE constant. See Appendix A.3.5 for further details about

partial derivatives.

We refer to ∂E(SALES|PRICE,ADVERT )∕∂ADVERT in

(5.24) as the marginal effect of advertising on sales. In linear

functions, the slope or marginal effect is constant. In non-

linear functions, it varies with one or more of the variables.

To find the expected signs for β3 and β4, note that we expect

the response of sales revenue to a change in advertising to be

positive when ADVERT = 0. That is, we expect β3 > 0. Also,

to achieve diminishing returns, the response must decline as

ADVERT increases. That is, we expect β4 < 0.

Using least squares to estimate (5.23) yields

SALES
⋀

(se)
= 109.72

(6.80)
− 7.640PRICE
(1.046)

+ 12.151ADVERT
(3.556)

− 2.768ADVERT2

(0.941)
(5.25)

What can we say about the addition of ADVERT2 to the

equation? Its coefficient has the expected negative sign

and is significantly different from zero at a 5% significance

level. Moreover, the coefficient of ADVERT has retained its

positive sign and continues to be significant. The estimated

response of sales to advertising is

∂SALES
⋀

∂ADVERT
= 12.151 − 5.536ADVERT

Substituting into this expression we find that when

advertising is at its minimum value in the sample of

$500 (ADVERT = 0.5), the marginal effect of advertis-

ing on sales is 9.383. When advertising is at a level of

$2000 (ADVERT = 2), the marginal effect is 1.079. Thus,

allowing for diminishing returns to advertising expenditure

has improved our model both statistically and in terms of

meeting our expectations about how sales will respond to

changes in advertising.

E X A M P L E 5.15 An Interaction Variable in a Wage Equation

In the last example, we saw how the inclusion of ADVERT2 in

the regression model for SALES has the effect of making the

marginal effect of ADVERT on SALES depend on the level of

ADVERT . What if the marginal effect of one variable depends

on the level of another variable? How do we model it? To

illustrate, consider a wage equation relating WAGE ($ earn-

ings per hour) to years of education (EDUC) and years of

experience (EXPER) in the following way:

WAGE = β1 + β2EDUC + β3EXPER
+ β4(EDUC × EXPER) + e

(5.26)

Here we are suggesting that the effect of another year’s

experience on wage may depend on a worker’s level of

education, and, similarly, the effect of another year of

education may depend on the number of years of experience.

Specifically,

∂E(WAGE|EDUC,EXPER)
∂EXPER

= β3 + β4EDUC

∂E(WAGE|EDUC,EXPER)
∂EDUC

= β2 + β4EXPER

Using the Current Population Survey data (cps5_small) to

estimate (5.26), we obtain

WAGE
⋀

= −18.759 + 2.6557EDUC + 0.2384EXPER
(se) (4.162) (0.2833) (0.1335)

− 0.002747(EDUC × EXPER)
(0.009400)
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The negative estimate b4 = −0.002747 suggests that the

greater the number of years of education, the less valuable is

an extra year of experience. Similarly, the greater the number

of years of experience, the less valuable is an extra year of

education. For a person with eight years of education, we

estimate that an additional year of experience leads to an

increase in average wages of 0.2384 – 0.002747 × 8 = $0.22,

whereas for a person with 16 years of education, the approx-

imate increase in wages from an extra year of experience

is 0.2384 – 0.002747 × 16 = $0.19. For someone with

no experience, the extra average wage from an extra

year of education is $2.66. The value of an extra year of

education falls to 2.6557 – 0.002747 × 20 = $2.60 for

someone with 20 years of experience. These differences

are not large. Perhaps there is no interaction effect—its

estimated coefficient is not significantly different from

zero—or perhaps we could improve the specification of the

model.

E X A M P L E 5.16 A Log-Quadratic Wage Equation

In equation (5.26), we used WAGE as the dependent variable

whereas, when we previously studied a wage equation in

Example 4.10, ln(WAGE) was chosen as the dependent vari-

able. Labor economists tend to prefer ln(WAGE), believing

that a change in years of education or experience is more

likely to lead to a constant percentage change in WAGE than

a constant absolute change. Also, a wage distribution will

typically be heavily skewed to the right. Taking logarithms

yields a distribution, which is shaped more like a normal

distribution.

In the following example, we make two changes to the

model in (5.26). We replace WAGE with ln(WAGE), and we

add the variable EXPER2. Adding EXPER2 is designed to

capture diminishing returns to extra years of experience. An

extra year of experience for an old hand with many years

of experience is likely to be less valuable than it would be

for a rookie with limited or no experience. Thus, we specify

the model

ln(WAGE) = β1 + β2EDUC + β3EXPER

+ β4(EDUC × EXPER) + β5EXPER2 + e
(5.27)

Here the two marginal effects which, when multiplied by 100

give the approximate percentage changes in wages from extra

years of experience and education, respectively, are

∂E[ln(WAGE) |EDUC,EXPER]
∂EXPER

= β3 + β4EDUC + 2β5EXPER
(5.28)

T A B L E 5.4 Percentage Changes in Wage

% 𝚫WAGE/𝚫EXPER %𝚫WAGE/𝚫EDUC
Years of education

8 16

Years of experience 0 3.88 2.86 13.59

20 1.98 0.96 11.06

∂E[ln(WAGE) |EDUC,EXPER]
∂EDUC

= β2 + β4EXPER (5.29)

Having both the interaction term and the square of EXPER
in the equation means that the marginal effect for experience

will depend on both the level of education and the number

of years of experience. Estimating (5.27) using the data in

cps5_small yields

ln(WAGE)
⋀

(se)
= 0.6792

(0.1561)
+ 0.1359EDUC
(0.0101)

+ 0.04890EXPER
(0.00684)

− 0.001268(EDUC × EXPER)
(
0.000342

)

− 0.0004741EXPER2

(0.0000760)

In this case, all estimates are significantly different from

zero. Estimates of the percentage changes in wages from

extra years of experience and extra years of education,

computed using (5.28) and (5.29) for EDUC = 8 and 16

and EXPER = 0 and 20, are presented in Table 5.4. As

expected, the value of an extra year of experience is greatest

for someone with 8 years of education and no experience

and smallest for someone with 16 years of education and

20 years of experience. We estimate that the value of an

extra year of education is 13.59 – 11.06 = 2.53 percentage

points less for someone with 20 years of experience relative

to someone with no experience.
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5.7 Large Sample Properties of the Least

Squares Estimator
It is nice to be able to use the finite sample properties of the OLS estimator or, indeed, any other

estimator, to make inferences about population parameters10. Provided our assumptions are cor-

rect, we can be confident that we are basing our conclusions on procedures that are exact, whatever

the sample size. However, the assumptions we have considered so far are likely to be too restrictive

for many data sets. To accommodate less restrictive assumptions, as well as carry out inference

for general functions of parameters, we need to examine the properties of estimators as sample

size approaches infinity. Properties as sample size approaches infinity provide a good guide to

properties in large samples. They will always be an approximation, but it is an approximation that

improves as sample size increases. Large sample approximate properties are known as asymptotic
properties. A question students always ask and instructors always evade is “how large does the

sample have to be?” Instructors are evasive because the answer depends on the model, the estima-

tor, and the function of parameters that is of interest. Sometimes N = 30 is adequate; sometimes

N = 1000 or larger could be necessary. Some illustrations are given in the Monte Carlo exper-

iments in Appendix 5C. In Appendix 5D, we explain how bootstrapping can be used to check

whether a sample size is large enough for asymptotic properties to hold.

In this section, we introduce some large sample (asymptotic) properties and then discuss

some of the circumstances where they are necessary.

5.7.1 Consistency
When choosing econometric estimators, we do so with the objective in mind of obtaining an esti-

mate that is close to the true but unknown parameter with high probability. Consider the simple

linear regression model yi = β1 + β2xi + ei, i = 1,… ,N. Suppose that for decision-making pur-

poses we consider that obtaining an estimate of β2 within “epsilon” of the true value is satisfactory.

The probability of obtaining an estimate “close” to β2 is

P
(
β2 − ε ≤ b2 ≤ β2 + ε

)
(5.30)

An estimator is said to be consistent if this probability converges to 1 as the sample size N →∞.

Or, using the concept of a limit, the estimator b2 is consistent if

lim
N→∞

P
(
β2 − ε ≤ b2 ≤ β2 + ε

)
= 1 (5.31)

What does this mean? In Figure 5.5, we depict the probability density functions 𝑓
(
bNi

)
for the least

squares estimator b2 based on samples sizes N4 > N3 > N2 > N1. As the sample size increases

the probability density function ( pdf ) becomes narrower. Why is that so? First of all, the least

squares estimator is unbiased if MR1–MR5 hold, so that E
(
b2

)
= β2. This property is true in

samples of all sizes. As the sample size changes, the center of the pdf s remains at β2. However,

as the sample size N gets larger, the variance of the estimator b2 becomes smaller. The center of

the pdf remains fixed at E
(
b2

)
= β2, and the variance decreases, resulting in probability density

functions like 𝑓

(
bNi

)
. The probability that b2 falls in the interval β2 – ε ≤ b2 ≤ β2 + ε is the area

under the pdf between these limits. As the sample size increases, the probability of b2 falling

within the limits increases toward 1. In large samples, we can say that the least squares estimator

will provide an estimate close to the true parameter with high probability.

............................................................................................................................................

10This section contains advanced materials.
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β2β2 – ε β2 + ε

f(bN2
)

f(bN3
)

f(bN4
) N4 > N3 > N2 > N1

f(bN1
)

FIGURE 5.5 An illustration of consistency.

To appreciate why the variance decreases as N increases, consider the variance of the OLS esti-

mator that we rewrite as follows:

var
(
b2

)
= σ2E

(

1
∑N

i=1

(
xi − x

)2

)

= σ2

N
E

(

1
∑N

i=1

(
xi − x

)2/N

)

= σ2

N
E
[(

s2
x
)−1

]

= σ2

N
Cx (5.32)

Notice that the N’s that we have introduced cancel out. This trick is used so that we can write

the variance for b2 in terms of the sample variance of x, s2
x =

∑N
i=1

(
xi − x

)2/N.11 Then, because

E
[(

s2
x
)−1

]

is cumbersome, and a little intimidating, in the last equality we define the constant Cx

as the expectation of the inverse of the sample variance. That is, Cx = E
[(

s2
x
)−1

]

. The last result

in (5.32) implies var
(
b2

)
→ 0 as N → ∞.

The property of consistency applies to many estimators, even ones that are biased in finite

samples. For example, the estimator β̂2 = b2 + 1∕N is a biased estimator. The amount of the

bias is

bias
(

β̂2

)

= E
(

β̂2

)

− β2 =
1

N

For the estimator β̂2 the bias converges to zero as N → ∞. That is,

lim
N→∞

bias
(

β̂2

)

= lim
N→∞

[

E
(

β̂2

)

− β2

]

= 0 (5.33)

In this case, the estimator is said to be asymptotically unbiased. Consistency for an estimator

can be established by showing that the estimator is either unbiased or asymptotically unbiased,

and that its variance converges to zero as N → ∞,

lim
N→∞

var
(

β̂2

)

= 0 (5.34)

Conditions (5.33) and (5.34) are intuitive, and sufficient to establish an estimator to be consistent.

Because the probability density function of a consistent estimator collapses around the

true parameter, and the probability that an estimator b2 will be close to the true parameter β2

approaches 1, the estimator b2 is said to “converge in probability” to β2, with the “in probability”

part reminding us that it is the probability of being “close” in (5.31) that is the key factor. Several

notations are used for this type of convergence. One is b2

p
−−→ β2, with the p over the arrow

............................................................................................................................................

11We have used N rather than N − 1 as the divisor for the sample variance. When dealing with properties as N →∞, it

makes no difference which is used.
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indicating “probability.” A second is plim
N→∞

(
b2

)
= β2, with “plim” being short for “probability

limit.” Consistency is not just a large-sample alternative to unbiasedness; it is an important

property in its own right. It is possible to find estimators that are unbiased but not consistent.

The lack of consistency is considered undesirable even if an estimator is unbiased.

5.7.2 Asymptotic Normality

We mentioned earlier that the normal distribution assumption MR6:
(
ei|𝐗

)
∼ N

(
0, σ2

)
is

essential for the finite sample distribution of
(
bk|𝐗

)
to be normal and for t-statistics such as

t =
(
bk − βk

)/
se
(
bk
)

to have an exact t-distribution for use in interval estimation and hypothesis

testing. However, we then went on to say that all is not lost if the normality assumption does not

hold because, from a central limit theorem, the distribution of bk will be approximately normal

and interval estimates and t-tests will be approximately valid in large samples. Large sample

approximate distributions are called asymptotic distributions. The need to use asymptotic

distributions will become more urgent as we examine more complex models and estimators.

To appreciate how asymptotic distributions work and to introduce some notation, consider

the OLS estimator b2 in the simple regression model yi = β1 + β2xi + ei, i = 1,… ,N. We argued

that the consistency of b2 implies that the pdf for b2 collapses to the point β2 as N → ∞. How

can we get an approximate large sample distribution for b2 if its pdf collapses to a single point?

We consider instead the distribution of
√

Nb2. Note that E
(
b2

)
= β2 and that, from (5.32),

var
(
b2

)
= σ2Cx∕N. It follows that E

(√
Nb2

)

=
√

Nβ2 and

var
(√

Nb2

)

=
(√

N
)2

var
(
b2

)
= Nσ2Cx∕N = σ2Cx

That is, √
Nb2 ∼

(√
Nβ2, σ2Cx

)

(5.35)

Central limit theorems are concerned with the distribution of sums (or averages) of

random variables as N → ∞.12 In Chapter 2—see equation (2.12)—we showed that

b2 = β2 +
[∑N

i=1

(
xi − x

)2
]−1∑N

i=1

(
xi − x

)
ei from which we can write

√
Nb2 =

√
Nβ2 +

[
s2

x
]−1 1

√
N

∑N
i=1

(
xi − x

)
ei

Applying a central limit theorem to the sum
∑N

i=1

(
xi − x

)
ei
/√

N, and using
[
s2

x
]−1 p

−−→ Cx, it can

be shown that the statistic obtained by normalizing (5.35) so that it has mean zero and variance

one, will be approximately normally distributed. Specifically,
√

N
(
b2 − β2

)

√

σ2Cx

a∼ N(0, 1)

The notation
a∼ is used to denote the asymptotic or approximate distribution. Recognizing that

var
(
b2

)
= σ2Cx∕N, we can rewrite the above result as

(
b2 − β2

)

√

var
(
b2

)

a∼ N(0, 1)

............................................................................................................................................

12There are several central limit theorems designed to accommodate sums of random variables with different properties.

Their treatment is relatively advanced. See, for example, William Greene, Econometric Analysis 8e, Pearson

Prentice-Hall, 2018, online Appendix D.2.6, available at pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm.

pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm
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Going one step further, there is an important theorem that says replacing unknown quantities with

consistent estimators does not change the asymptotic distribution of a statistic.13 In this case, σ̂2

is a consistent estimator for σ2 and
(
s2

x
)−1

is a consistent estimator for Cx. Thus, we can write

t =

√
N
(
b2 − β2

)

√

σ̂2
/

s2
x

=
(
b2 − β2

)

√

var
⋀(

b2

)
=
(
b2 − β2

)

se
(
b2

)
a∼ N(0, 1) (5.36)

This is precisely the t-statistic that we use for interval estimation and hypothesis testing. The result

in (5.36) means that using it in large samples is justified when assumption MR6 is not satisfied.

One difference is that we are now saying that the distribution of the statistic “t” is approximately

“normal,” not “t.” However, the t-distribution approaches the normal as N → ∞, and it is custom-

ary to use either the t or the normal distribution as the large sample approximation. Because use

of (5.36) for interval estimation or hypothesis testing implies we are behaving as if b2 is normally

distributed with mean β2 and variance var
⋀(

b2

)
, this result is often written as

b2

a∼ N
(

β2, var
⋀(

b2

))

(5.37)

Finally, our exposition has been in terms of the distribution of b2 in the simple regression model,

but the result also holds for estimators of the coefficients in the multiple regression model. In

Appendix 5C, we use Monte Carlo experiments to illustrate how the central limit theorem works

and give examples of how large N needs to be for the normal approximation to be satisfactory.

5.7.3 Relaxing Assumptions
In the previous two sections we explained that, when assumptions MR1–MR5 hold, and MR6 is

relaxed, the least squares estimator is consistent and asymptotically normal. In this section, we

investigate what we can say about the properties of the least squares estimator when we modify

the strict exogeneity assumption MR2: E
(
ei|𝐗

)
= 0 to make it less restrictive.

Weakening Strict Exogeneity: Cross-Sectional Data It is convenient to con-

sider modifications of E
(
ei|𝐗

)
= 0 first for cross-sectional data and then for time-series data.

For cross-sectional data, we return to the random sampling assumptions, explained in Section

2.2, and written more formally in Section 2.10. Generalizing these assumptions to the multiple

regression model, random sampling implies the joint observations
(
yi, 𝐱i

)
=
(
yi, xi1, xi2,… , xiK

)

are independent, and that the strict exogeneity assumption E
(
ei|𝐗

)
= 0 reduces to E

(
ei|xi

)
= 0.

Under this and the remaining assumptions of the model under random sampling, the least squares

estimator is best linear unbiased. We now examine the implications of replacing E
(
ei|xi

)
= 0 with

the weaker assumption

E
(
ei
)
= 0 and cov

(
ei, xik

)
= 0 for i = 1, 2,… , N; k = 1, 2,… ,K (5.38)

Why is (5.38) a weaker assumption? In Section 2.10, in the context of the simple regression

model, we explained how E
(
ei|xi

)
= 0 implies (5.38).14 However, we cannot go back the other

way. While E
(
ei|xi

)
= 0 implies (5.38), (5.38) does not necessarily imply E

(
ei|xi

)
= 0. Making

the assumption E
(
ei|xi

)
= 0 means that the best predictor for ei is zero; there is no information

in xi that will help predict ei. On the other hand, assuming cov
(
ei, xik

)
= 0 only implies there is

no linear predictor for ei that is better than zero. It does not rule out nonlinear functions of xi that

may help predict ei.

Why is it useful to consider the weaker assumption in (5.38)? First, the weaker are the

assumptions under which an estimator has desirable properties, the wider the applicability of

............................................................................................................................................

13For more precise details, see William Greene, Econometric Analysis 8e, Pearson Prentice-Hall, 2018, Theorem D.16,

in online Appendix available at pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm.

14A proof is given in Appendix 2G.

pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm
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the estimator. Second, as we discover in Chapter 10, violation of the assumption cov
(
ei, xik

)
= 0

provides a good framework for considering the problem of endogenous regressors.

The seemingly innocuous weaker assumption in (5.38) means we can no longer show that

the least squares estimator is unbiased. Consider the least squares estimator for β2 in the simple

regression model yi = β1 + β2xi + ei. From (2.11) and (2.12),

b2 = β2 +
∑N

i=1

(
xi − x

)
ei

∑N
i=1

(
xi − x

)2
(5.39)

and

E
(
b2

)
= β2 + E

(∑N
i=1

(
xi − x

)
ei

∑N
i=1

(
xi − x

)2

)

(5.40)

Now, E
(
ei
)
= 0 and cov

(
ei, xik

)
= 0 imply E

(
xiei

)
= 0, but the last term in (5.39) is more com-

plicated than that; it involves the covariance between ei and a function of xi. This covariance will

not necessarily be zero, implying E
(
b2

)
≠ β2. We can show that b2 is consistent, however. We

can rewrite (5.39) as

b2 = β2 +

1

N
∑N

i=1

(
xi − x

)
ei

1

N
∑N

i=1

(
xi − x

)2
= β2 +

cov
⋀(

ei, xi
)

var
⋀(

xi
) (5.41)

Because sample means, variances, and covariances computed from random samples are consistent

estimators of their population counterparts,15 we can say

cov
⋀(

ei, xi
) p
−−→ cov

(
ei, xi

)
= 0 (5.42a)

var
⋀(

xi
) p
−−→ σ2

x (5.42b)

Thus, the second term in (5.41) converges in probability to zero, and b2

p
−−→ β2. It is also true that

the asymptotic distribution of b2 will be normal, as described in (5.36) and (5.37).

Weakening Strict Exogeneity: Time-Series Data When we turn to time-series

data, the observations
(
yt, 𝐱t

)
, t = 1, 2, …, T are not collected via random sampling and so it

is no longer reasonable to assume they are independent. The explanatory variables will almost

certainly be correlated over time, and the likelihood of the assumption E(et|X) = 0 being violated

is very strong indeed. To see why, note that E
(
et|𝐗

)
= 0 implies

E
(
et
)
= 0 and cov

(
et, xsk

)
= 0 for t, s = 1, 2,… ,T; k = 1, 2,… ,K (5.43)

This result says that the errors in every time period are uncorrelated with all the explanatory

variables in every time period. In Section 2.10.2, three examples of how this assumption might

be violated were described. Now would be a good time to check out those examples. To reinforce

them, consider the simple regression model yt = β1 + β2xt + et, which is being estimated with

time-series observations in periods t = 1, 2,… ,T. If xt is a policy variable whose settings depend

on past outcomes yt−1, yt−2,… , then xt will be correlated with previous errors et−1, et−2,….

This is evident from the equation for the previous period observation yt−1 = β1 + β2xt−1 + et−1.

If xt is correlated with yt−1, then it will also be correlated with et−1 since yt−1 depends directly

on et−1. Such a correlation is particularly evident if xt is a lagged value of yt. That is, yt = β1 +
β2yt−1 + et. Models of this type are called autoregressive models; they are considered in Chapter 9.

The likely violation of cov
(
et, xsk

)
= 0 for s ≠ t implies E

(
et|X

)
= 0 will be violated, which

in turn implies we cannot show that the least squares estimator is unbiased. It is possible to show

............................................................................................................................................

15This result follows from a law of large numbers. See Theorem D.4 and its corollary in the online Appendix to William

Greene, Econometric Analysis 8e, Pearson Prentice-Hall, online at pages.stern.nyu.edu/~wgreene/Text/

econometricanalysis.htm

pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm
pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm
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it is consistent, however. To show consistency, we first assume that the errors and the explanatory

variables in the same time period are uncorrelated. That is, we modify (5.43) to the less restrictive

and more realistic assumption

E
(
et
)
= 0 and cov

(
et, xtk

)
= 0 for t = 1, 2,… ,T; k = 1, 2,… ,K (5.44)

Errors and the explanatory variables that satisfy (5.44) are said to be contemporaneously uncor-
related. We do not insist that cov

(
et, xsk

)
= 0 for t ≠ s. Now reconsider (5.41) written in terms of

time-series observations

b2 = β2 +

1

T
∑T

t=1

(
xt − x

)
et

1

T
∑T

t=1

(
xt − x

)2
= β2 +

cov
⋀(

et, xt
)

var
⋀(

xt
) (5.45)

Equation (5.45) is still valid, just as it was for cross-sectional observations. The question we need

to ask to ensure consistency of b2 is when the explanatory variables are not independent will it

still be true that

cov
⋀(

et, xt
) p
−−→ cov

(
et, xt

)
= 0 (5.46a)

var
⋀(

xt
) p
−−→ σ2

x (5.46b)

with σ2
x finite? The answer is “yes” as long as x is not “too dependent.” If the correlation between

the xt’s declines as they become further apart in time, then the results in (5.46) will hold. We

reserve further discussion of the implications of the behavior of the explanatory variables in

time-series regressions for Chapters 9 and 12. For the moment, we assume that their behavior

is sufficiently cooperative for (5.46) to hold, so that the least squares estimator is consistent. At

the same time, we recognize that, with time-series data, the least squares estimator is unlikely to

be unbiased. Asymptotic normality can be shown by a central limit theorem, implying we can

use (5.36) and (5.37) for interval estimation and hypothesis testing.

5.7.4 Inference for a Nonlinear Function of Coefficients
The need for large sample or asymptotic distributions is not confined to situations where assump-

tions MR1–MR6 are relaxed. Even if these assumptions hold, we still need to use large sample

theory if a quantity of interest involves a nonlinear function of coefficients. To introduce this

problem, we return to Big Andy’s Burger Barn and examine the optimal level of advertising.

E X A M P L E 5.17 The Optimal Level of Advertising

Economic theory tells us to undertake all those actions for

which the marginal benefit is greater than the marginal cost.

This optimizing principle applies to Big Andy’s Burger

Barn as it attempts to choose the optimal level of advertising

expenditure. Recalling that SALES denotes sales revenue

or total revenue, the marginal benefit in this case is the

marginal revenue from more advertising. From (5.24), the

required marginal revenue is given by the marginal effect

of more advertising β3 + 2β4ADVERT. The marginal cost

of $1 of advertising is $1 plus the cost of preparing the

additional products sold due to effective advertising. If we

ignore the latter costs, the marginal cost of $1 of advertising

expenditure is $1. Thus, advertising should be increased to

the point where

β3 + 2β4ADVERT0 = 1

with ADVERT0 denoting the optimal level of advertising.

Using the least squares estimates for β3 and β4 in (5.25), a

point estimate for ADVERT0 is

ADVERT0

⋀

=
1 − b3

2b4

= 1 − 12.1512

2 × (−2.76796)
= 2.014
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implying that the optimal monthly advertising expenditure

is $2014.

To assess the reliability of this estimate, we need a stan-

dard error and an interval estimate for
(
1 − b3

)
∕2b4. This is

a tricky problem, and one that requires the use of calculus to

solve. What makes it more difficult than what we have done

so far is the fact that it involves a nonlinear function of b3

and b4. Variances of nonlinear functions are hard to derive.

Recall that the variance of a linear function, say, c3b3 + c4b4,

is given by

var
(
c3b3 + c4b4

)
= c2

3
var

(
b3

)
+ c2

4
var

(
b4

)
+ 2c3c4cov

(
b3, b4

)

(5.47)

Finding the variance of
(
1 − b3

)
∕2b4 is less straightforward.

The best we can do is find an approximate expression that

is valid in large samples. Suppose λ =
(
1 – β3

)
∕2β4 and

λ̂ =
(
1 − b3

)
∕2b4; then, the approximate variance expres-

sion is

var
(

λ̂
)

=
(
∂λ
∂β3

)2

var
(
b3

)
+
(
∂λ
∂β4

)2

var
(
b4

)

+ 2

(
∂λ
∂β3

)(
∂λ
∂β4

)

cov
(
b3, b4

)
(5.48)

This expression holds for all nonlinear functions of two esti-

mators, not just λ̂ =
(
1 − b3

)
∕2b4. Also, note that for the lin-

ear case, where λ = c3β3 + c4β4 and λ̂ = c3b3 + c4b4, (5.48)

reduces to (5.47). Using (5.48) to find an approximate expres-

sion for a variance is called the delta method. For further

details, consult Appendix 5B.

We will use (5.48) to estimate the variance of λ̂ =
ADVERT0

⋀

=
(
1 − b3

)
∕2b4, get its standard error, and use that

to get an interval estimate for λ = ADVERT0 =
(
1 − β3

)
∕2β4.

If the use of calculus in (5.48) frightens you, take comfort in

the fact that most software will automatically compute the

standard error for you.

The required derivatives are

∂λ
∂β3

= − 1

2β4

,
∂λ
∂β4

= −
1 − β3

2β2
4

To estimate var
(

λ̂
)

, we evaluate these derivatives at the least

squares estimates b3 and b4.

Thus, for the estimated variance of the optimal level of

advertising, we have

var
⋀

(

λ̂
)

=
(

− 1

2b4

)2

var
⋀(

b3

)
+

(

−
1 − b3

2b2
4

)2

var
⋀(

b4

)

+ 2

(

− 1

2b4

)(

−
1 − b3

2b2
4

)

cov
⋀(

b3, b4

)

=
(

1

2 × 2.768

)2

× 12.646

+
(

1 − 12.151

2 × 2.7682

)2

× 0.88477

+ 2
(

1

2 × 2.768

)(
1 − 12.151

2 × 2.7682

)

× 3.2887

= 0.016567

and

se
(

λ̂
)

=
√

0.016567 = 0.1287

We are now in a position to get a 95% interval estimate for

λ = ADVERT0. When dealing with a linear combination of

coefficients in (5.16), and Section 5.4.2, we used the result(

λ̂ − λ
)/

se
(

λ̂
)

∼ t(N−K). In line with Section 5.7.2, this

result can be used in exactly the same way for nonlinear

functions, but a difference is that the result is only an

approximate one for large samples, even when the errors

are normally distributed. Thus, an approximate 95% interval

estimate for ADVERT0 is

[

λ̂ − t(0.975,71)se
(

λ̂
)

, λ̂ + t(0.975,71)se
(

λ̂
)]

=[2.014 − 1.994 × 0.1287, 2.014 + 1.994 × 0.1287]
=[1.757, 2.271]

We estimate with 95% confidence that the optimal level of

advertising lies between $1757 and $2271.

E X A M P L E 5.18 How Much Experience Maximizes Wages?

In Example 5.16, we estimated the wage equation

ln(WAGE) = β1 + β2EDUC + β3EXPER
+ β4(EDUC × EXPER) + β5EXPER2 + e

One of the implications of the quadratic function of experi-

ence is that, as a number of years of experience increases,

wages will increase up to a point and then decline. Suppose

we are interested in the number of years of experience, which

maximizes WAGE. We can get this quantity by differentiat-

ing the wage equation with respect to EXPER, setting the first

derivative equal to zero and solving for EXPER. It does not

matter that the dependent variable is ln(WAGE) not WAGE;

the value of EXPER that maximizes ln(WAGE) will also max-

imize WAGE. Setting the first derivative in (5.28) equal to

zero and solving for EXPER yields

EXPER0 =
−β3 − β4EDUC

2β5
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The maximizing value depends on the number of years of

education. For someone with 16 years of education, it is

EXPER0 =
−β3 − 16β4

2β5

Finding the standard error for an estimate of this function

is tedious. It involves differentiating with respect to β3, β4,

and β5 and evaluating a variance expression involving three

variances and three covariances—an extension of (5.48) to

three coefficients. This is a problem better handled by your

favorite econometric software. Taking this advice, we find

EXPER0

⋀

= 30.17 and se
(

EXPER0

⋀)

= 1.7896. Then, a 95%

interval estimate of the number of years of experience that

maximizes WAGE is
[

EXPER0

⋀

− t(0.975,1195)se
(

EXPER0

⋀)

,

EXPER0

⋀

+ t(0.975,1195)se
(

EXPER0

⋀)]

Inserting the relevant values yields

(30.17 − 1.962 × 1.7896, 30.17 + 1.962 × 1.7896)
=(26.7, 33.7)

We estimate that the number of years of experience that

maximizes wages lies between 26.7 and 33.7 years.

5.8 Exercises

5.8.1 Problems

5.1 Consider the multiple regression model

yi = xi1β1 + xi2β2 + xi3β3 + ei

with the seven observations on yi, xi1, xi2, and xi3 given in Table 5.5.

T A B L E 5.5 Data for Exercise 5.1

yi xi1 xi2 xi3

1 1 0 1

1 1 1 −2

4 1 2 2

0 1 −2 1

1 1 1 −2

−2 1 −2 −1

2 1 0 1

Use a hand calculator or spreadsheet to answer the following questions:

a. Calculate the observations in terms of deviations from their means. That is, find x∗i2 = xi2 − x2,

x∗i3 = xi3 − x3, and y∗i = yi − y.

b. Calculate
∑

y∗i x∗i2,
∑

x∗2
i2 ,

∑
y∗i x∗i3,

∑
x∗i2x∗i3, and

∑
x∗2

i3 .

c. Use the expressions in Appendix 5A to find least squares estimates b1, b2, and b3.

d. Find the least squares residuals ê1, ê2, …, ê7.

e. Find the variance estimate σ̂2
.

f. Find the sample correlation between x2 and x3.

g. Find the standard error for b2.

h. Find SSE, SST, SSR, and R2.

5.2 Use your answers to Exercise 5.1 to

a. Compute a 95% interval estimate for β2.

b. Test the hypothesis H0∶β2 = 1.25 against the alternative that H1∶β2 ≠ 1.25.
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5.3 Consider the following model that relates the percentage of a household’s budget spent on alcohol

WALC to total expenditure TOTEXP, age of the household head AGE, and the number of children in

the household NK.

WALC = β1 + β2 ln(TOTEXP) + β3NK + β4AGE + e

This model was estimated using 1200 observations from London. An incomplete version of this output

is provided in Table 5.6.

T A B L E 5.6 Output for Exercise 5.3

Dependent Variable: WALC
Included observations: 1200
Variable Coefficient Std. Error t-Statistic Prob.
C 1.4515 2.2019 0.5099

ln(TOTEXP) 2.7648 5.7103 0.0000

NK 0.3695 −3.9376 0.0001

AGE −0.1503 0.0235 −6.4019 0.0000

R-squared Mean dependent var 6.19434

S.E. of regression S.D. dependent var 6.39547

Sum squared resid 46221.62

a. Fill in the following blank spaces that appear in this table.

i. The t-statistic for b1.

ii. The standard error for b2.

iii. The estimate b3.

iv. R2.

v. σ̂.

b. Interpret each of the estimates b2, b3, and b4.

c. Compute a 95% interval estimate for β4.What does this interval tell you?

d. Are each of the coefficient estimates significant at a 5% level? Why?

e. Test the hypothesis that the addition of an extra child decreases the mean budget share of alcohol

by 2 percentage points against the alternative that the decrease is not equal to 2 percentage points.

Use a 5% significance level.

5.4 Consider the following model that relates the percentage of a household’s budget spent on alcohol,

WALC, to total expenditure TOTEXP, age of the household head AGE, and the number of children in

the household NK.

WALC = β1 + β2 ln(TOTEXP) + β3NK + β4AGE + β5AGE2 + e

Some output from estimating this model using 1200 observations from London is provided in Table 5.7.

The covariance matrix relates to the coefficients b3, b4, and b5.

a. Find a point estimate and a 95% interval estimate for the change in the mean budget percentage

share for alcohol when a household has an extra child.

b. Find a point estimate and a 95% interval estimate for the marginal effect of AGE on the mean budget

percentage share for alcohol when (i) AGE = 25, (ii) AGE = 50, and (iii) AGE = 75.

c. Find a point estimate and a 95% interval estimate for the age at which the mean budget percentage

share for alcohol is at a minimum.

d. Summarize what you have discovered from the point and interval estimates in (a), (b), and (c).

e. Let X represent all the observations on all the explanatory variables. If (e|𝐗) is normally distributed,

which of the above interval estimates are valid in finite samples? Which ones rely on a large sample

approximation?

f. If (e|𝐗) is not normally distributed, which of the above interval estimates are valid in finite samples?

Which ones rely on a large sample approximation?
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T A B L E 5.7 Output for Exercise 5.4

Variable Coefficient
C 8.149

ln(TOTEXP) 2.884

NK −1.217

AGE −0.5699

AGE2 0.005515

Covariance matrix
NK AGE AGE2

NK 0.1462 −0.01774 0.0002347

AGE −0.01774 0.03204 −0.0004138

AGE2 0.0002347 −0.0004138 0.000005438

5.5 For each of the following two time-series regression models, and assuming MR1–MR6 hold,

find var
(
b2|𝐱

)
and examine whether the least squares estimator is consistent by checking whether

limT→∞var
(
b2|𝐱

)
= 0.

a. yt = β1 + β2t + et, t = 1, 2,… , T. Note that 𝐱 = (1, 2,… , T ),
∑T

t=1

(
t − t

)2 =
∑T

t=1
t2 −

(∑T
t=1

t
)2/

T ,
∑T

t=1
t = T (T + 1)∕2 and

∑T
t=1

t2 = T (T + 1)(2T + 1)∕6.

b. yt = β1 + β2(0.5)t + et, t = 1, 2,… , T. Here, 𝐱 =
(
0.5, 0.52

,… , 0.5T
)
. Note that the sum of a geo-

metric progression with first term r and common ratio r is

S = r + r2 + r3 + · · · + rn = r (1 − rn)
1 − r

c. Provide an intuitive explanation for these results.

5.6 Suppose that, from a sample of 63 observations, the least squares estimates and the corresponding

estimated covariance matrix are given by

⎡
⎢
⎢
⎣

b1

b2

b3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

2

3

−1

⎤
⎥
⎥
⎦

cov
⋀(

b1, b2, b3

)
=
⎡
⎢
⎢
⎣

3 −2 1

−2 4 0

1 0 3

⎤
⎥
⎥
⎦

Using a 5% significance level, and an alternative hypothesis that the equality does not hold, test each

of the following null hypotheses:

a. β2 = 0

b. β1 + 2β2 = 5

c. β1 − β2 + β3 = 4

5.7 After estimating the model y = β1 + β2x2 + β3x3 + e with N = 203 observations, we obtain the fol-

lowing information:
∑N

i=1

(
xi2 − x2

)2
= 1780.7,

∑N
i=1

(
xi3 − x3

)2
= 3453.3, b2 = 0.7176, b3 = 1.0516,

SSE = 6800.0, and r23 = 0.7087.

a. What are the standard errors of the least squares estimates b2 and b3?

b. Using a 5% significance level, test the hypothesis H0∶β2 = 0 against the alternative H1∶β2 ≠ 0.

c. Using a 10% significance level, test the hypothesis H0∶β3 ≤ 0.9 against the alternative

H1∶β3 > 0.9.

d. Given that cov
⋀(

b2, b3

)
= −0.019521, use a 1% significance level to test the hypothesis H0∶β2 = β3

against the alternative H1∶β2 ≠ β3.

5.8 There were 79 countries who competed in the 1996 Olympics and won at least one medal. For each

of these countries, let MEDALS be the total number of medals won, POPM be population in millions,
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and GDPB be GDP in billions of 1995 dollars. Using these data we estimate the regression model

MEDALS = β1 + β2POPM + β3GDPB + e to obtain

MEDALS
⋀

= 5.917 + 0.01813POPM + 0.01026GDPB R2 = 0.4879

(se) (1.510) (0.00819) (0.00136)

a. Given assumptions MR1–MR6 hold, interpret the coefficient estimates for β2 and β3.

b. Interpret R2.

c. Using a 1% significance level, test the hypothesis that there is no relationship between the number

of medals won and GDP against the alternative that there is a positive relationship. What happens

if you change the significance level to 5%?

d. Using a 1% significance level, test the hypothesis that there is no relationship between the number

of medals won and population against the alternative that there is a positive relationship. What

happens if you change the significance level to 5%?

e. Test the following hypotheses using a 5% significance level:

i. H0∶β2 = 0.01 against the alternative H1∶β2 ≠ 0.01

ii. H0∶β2 = 0.02 against the alternative H1∶β2 ≠ 0.02

iii. H0∶β2 = 0.03 against the alternative H1∶β2 ≠ 0.03

iv. H0∶β2 = 0.04 against the alternative H1∶β2 ≠ 0.04

Are these test results contradictory? Why or why not?

f. Find a 95% interval estimate for β2 and comment on it.

5.9 There were 64 countries who competed in the 1992 Olympics and won at least one medal. For each

of these countries, let MEDALS be the total number of medals won, POPM be population in millions,

and GDPB be GDP in billions of 1995 dollars. Excluding the United Kingdom, and using N = 63

observations, the model MEDALS = β1 + β2 ln(POPM) + β3 ln(GDPB) + e was estimated as

MEDALS
⋀

= −13.153 + 2.764 ln(POPM) + 4.270ln(GDPB) R2 = 0.275

(se) (5.974) (2.070) (1.718)

a. Given assumptions MR1–MR6 hold, interpret the coefficient estimates for β2 and β3.

b. Interpret R2.

c. Using a 10% significance level, test the hypothesis that there is no relationship between the number

of medals won and GDP against the alternative that there is a positive relationship. What happens

if you change the significance level to 5%?

d. Using a 10% significance level, test the hypothesis that there is no relationship between the number

of medals won and population against the alternative that there is a positive relationship. What

happens if you change the significance level to 5%?

e. Use the model to find point and 95% interval estimates for the expected number of medals won

by the United Kingdom whose population and GDP in 1992 were 58 million and $1010 billion,

respectively. [The standard error for b1 + ln(58) × b2 + ln(1010) × b3 is 4.22196.]

f. The United Kingdom won 20 medals in 1992. Is the model a good one for predicting the

mean number of medals for the United Kingdom? What is an approximate p-value for a test of

H0∶β1 + ln(58) × β2 + ln(1010) × β3 = 20 versus H1∶β1 + ln(58) × β2 + ln(1010) × β3 ≠ 20?

g. Without doing any of the calculations, write down the expression that is used to compute the stan-

dard error given in part (e).

5.10 Using data from 1950 to 1996 (T = 47 observations), the following equation for explaining wheat yield

in the Mullewa Shire of Western Australia was estimated as

YIELDt

⋀

= 0.1717 + 0.01117t + 0.05238RAINt

(se) (0.1537) (0.00262) (0.01367)

where YIELDt = wheat yield in tonnes per hectare in year t;
TRENDt is a trend variable designed to capture technological change, with observations

t = 1, 2, …, 47;

RAINt is total rainfall in inches from May to October (the growing season) in year t. The sample

mean and standard deviation for RAIN are xRAIN = 10.059 and sRAIN = 2.624.
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a. Given assumptions MR1–MR5 hold, interpret the estimates for the coefficients of t and RAIN.

b. Using a 5% significance level, test the null hypothesis that technological change increases mean

yield by no more than 0.01 tonnes per hectare per year against the alternative that the mean yield

increase is greater than 0.01.

c. Using a 5% significance level, test the null hypothesis that an extra inch of rainfall increases mean

yield by 0.03 tonnes per hectare against the alternative that the increase is not equal to 0.03.

d. Adding RAIN2 to the equation and reestimating yields

YIELD
⋀

t = −0.6759 + 0.011671t + 0.2229RAINt − 0.008155RAIN2
t

(se) (0.3875) (0.00250) (0.0734) (0.003453)

What is the rationale for including RAIN2? Does it have the expected sign?

e. Repeat part (b) using the model estimated in (d).

f. Repeat part (c) using the model estimated in (d), testing the hypothesis at the mean value of

rainfall. (The estimated covariance between b3 and b4 (the coefficients of RAIN and RAIN2) is

cov
⋀(

b3, b4

)
= −0.0002493.)

g. Use the model in (d) to forecast yield in 1997, when the rainfall was 9.48 inches.

h. Suppose that you wanted to forecast 1997 yield before the rainfall was observed. What would be

your forecast from the model in (a)? What would it be from the model in (d)?

5.11 When estimating wage equations, we expect that young, inexperienced workers will have relatively

low wages; with additional experience their wages will rise, but then begin to decline after middle

age, as the worker nears retirement. This life-cycle pattern of wages can be captured by introducing

experience and experience squared to explain the level of wages. If we also include years of education,

we have the equation

WAGE = β1 + β2EDUC + β3EXPER+ β4EXPER2 + e

a. What is the marginal effect of experience on the mean wage?

b. What signs do you expect for each of the coefficients β2, β3, and β4? Why?

c. After how many years of experience does the mean wage start to decline? (Express your answer in

terms of β’s.)

d. Estimating this equation using 600 observations yields

WAGE
⋀

= −16.308 + 2.329EDUC + 0.5240EXPER − 0.007582EXPER2

(se) (2.745) (0.163) (0.1263) (0.002532)

The estimated covariance between b3 and b4 is cov
⋀(

b3, b4

)
= −0.00030526. Find 95% interval

estimates for the following:

i. The marginal effect of education on mean wage

ii. The marginal effect of experience on mean wage when EXPER = 4

iii. The marginal effect of experience on mean wage when EXPER = 25

iv. The number of years of experience after which the mean wage declines

5.12 This exercise uses data on 850 houses sold in Baton Rouge, Louisiana during mid-2005. We will be

concerned with the selling price in thousands of dollars (PRICE), the size of the house in hundreds

of square feet (SQFT), and the age of the house in years (AGE). The following two regression models

were estimated:

PRICE = α1 + α2AGE + v and SQFT = δ1 + δ2AGE + u

The sums of squares and sums of cross products of the residuals from estimating these two equations

are
∑850

i=1
v̂2

i = 10377817,
∑850

i=1
û2

i = 75773.4,
∑850

i=1
ûiv̂i = 688318.

a. Find the least-squares estimate of β2 in the model PRICE = β1 + β2SQFT + β3AGE + e.

b. Let êi = v̂i − b2ûi. Show that
∑850

i=1
ê2

i =
∑850

i=1
v̂2

i − b2

∑850

i=1
v̂iûi where b2 is the least-squares estimate

for β2.

c. Find an estimate of σ2 = var
(
ei
)
.

d. Find the standard error for b2.

e. What is an approximate p-value for testing H0∶β2 ≥ 9.5 against the alternative H1∶β2 < 9.5? What

do you conclude from this p-value?
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5.13 A concept used in macroeconomics is Okun’s Law, which states that the change in unemployment from

one period to the next depends on the rate of growth of the economy relative to a “normal” growth

rate:
Ut − Ut−1 = −γ

(
Gt − GN

)

where Ut is the unemployment rate in period t, Gt is the growth rate in period t, the “normal” growth

rate GN is that which is required to maintain a constant rate of unemployment, and 0 < γ < 1 is an

adjustment coefficient.

a. Show that the model can be written as DUt = β1 + β2Gt, where DUt = Ut − Ut−1 is the change in

the unemployment rate, β1 = γGN, and β2 = −γ.
b. Estimating this model with quarterly seasonally adjusted U.S. data from 1970 Q1 to 2014 Q4 yields

DU
⋀

t = 0.1989 − 0.2713Gt σ̂ = 0.2749

cov
(
b1, b2

)
=
(

0.0007212 −0.0004277

−0.0004277 0.0006113

)

Use the estimates b1 and b2 to find estimates γ̂ and ĜN .

c. Find standard errors for b1, b2, γ̂, and ĜN . Are all these estimates significantly different from zero

at a 5% level?

d. Using a 5% significance level test the null hypothesis that the natural growth rate is 0.8% per quarter

against the alternative it is not equal to 0.8%.

e. Find a 95% interval estimate for the adjustment coefficient.

f. Find a 95% interval estimate for E
(
U2015Q1|U2014Q4 = 5.7991, G2015Q1 = 0.062

)
.

g. Find a 95% prediction interval for U2015Q1 given U2014Q4 = 5.7991 and G2015Q1 = 0.062. Explain

the difference between this interval and that in (f).

5.14 Consider the regression model yi = β1 + β2xi + ei where the pairs
(
yi, xi

)
, i = 1, 2,… ,N, are random

independent draws from a population.

a. Suppose the marginal distribution of xi is log-normal. To appreciate the nature of the log-normal

distribution, consider a normal random variable W ∼ N
(
μW , σ2

W

)
. Then, X = eW has a log-normal

distribution with mean μX = exp
(
μW + σ2

W∕2
)

and variance σ2
X =

(
exp

(
σ2

W

)
− 1

)
μ2

X . Assume that
(
ei|xi

)
∼ N

(
0, σ2

e

)
.

i. Will the least squares estimator
(
b1, b2

)
for the parameters

(
β1, β2

)
be unbiased?

ii. Will it be consistent?

iii. Will it be normally distributed conditional on 𝐱 =
(
x1, x2,… , xN

)
?

iv. Will the marginal distribution of
(
b1, b2

)
(not conditional on x) be normally distributed?

v. Will t-tests for β1 and β2 be justified in finite samples or are they only large sample approxima-

tions?

vi. Suppose μw = 0, σ2
w = 1, and xi = exp

(
wi
)
. What is the asymptotic variance of the least squares

estimator for β2? (Express in terms of σ2
e and N.)

b. Suppose now that xi ∼ N(0, 1) and that
(
ei|xi

)
has a log-normal distribution with mean and variance

μe = exp
(
μv + σ2

v∕2
)

and σ2
e =

(
exp

(
σ2

v

)
− 1

)
μ2

e , where v = ln(e) ∼ N
(
μv, σ2

v

)
.

i. Show that we can rewrite the model as yi = β∗1 + β2xi + e∗i where

β∗
1
= β1 + exp

(
μv + σ2

v∕2
)

and e∗i = ei − exp
(
μv + σ2

v∕2
)

ii. Show that E
(
e∗i |xi

)
= 0 and var

(
e∗i |xi

)
= σ2

e .

iii. Will the least squares estimator b2 for the parameter β2 be unbiased?

iv. Will it be consistent?

v. Will it be normally distributed conditional on 𝐱 =
(
x1, x2,… , xN

)
?

vi. Will the marginal distribution of b2 (not conditional on x) be normally distributed?

vii. Will t-tests for β2 be justified in finite samples or are they only large sample approximations?

viii. What is the asymptotic variance of the least squares estimator for β2? (Express in terms of σ2
e

and N.)

5.15 Consider the regression model yi = β1 + β2xi + ei where the pairs
(
yi, xi

)
, i = 1, 2,… ,N, are random

independent draws from a population, xi ∼ N(0, 1), and E
(
ei|xi

)
= c

(
x2

i − 1
)

where c is a constant.

a. Show that E
(
ei
)
= 0.

b. Using the result cov
(
ei, xi

)
= Ex

[(
xi − μx

)
E
(
ei|xi

)]
, show that cov

(
ei, xi

)
= 0.

c. Will the least squares estimator for β2 be (i) unbiased? (ii) consistent?
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5.16 Consider a log-linear regression for the weekly sales of a national brand of canned tuna (brand A),

expressed as thousands of cans, CANS, as a function of the prices of two competing brands (brands B
and C), expressed as percentages of the price of brand A. That is,

ln(CANS) = β1 + β2RPRCE_B + β3RPRCE_C + e

where RPRCE_B =
(
PRICEB∕PRICEA

)
× 100 and RPRCE_C =

(
PRICEC∕PRICEA

)
× 100.

a. Given assumptions MR1–MR5 hold, how do you interpret β2 and β3? What signs do you expect

for these coefficients? Why?

Using N = 52 weekly observations, the least squares estimated equation is

ln(CANS)
⋀

= −2.724 + 0.0146RPRCE_B + 0.02649RPRCE_C σ̂ = 0.5663

(se) (0.582) (0.00548) (0.00544) cov
⋀(

b2, b3

)
= −0.0000143

b. Using a 10% significance level, test the null hypothesis that an increase in RPRCE_B of one per-

centage point leads to a 2.5% increase in the mean number of cans sold against the alternative that

the increase is not 2.5%.

c. Using a 10% significance level, test the null hypothesis that an increase in RPRCE_C of one per-

centage point leads to a 2.5% increase in the mean number of cans sold against the alternative that

the increase is not 2.5%.

d. Using a 10% significance level, test H0∶β2 = β3 against the alternative H1∶β2 ≠ β3. Does the out-

come of this test contradict your findings from parts (b) and (c)?

e. Which brand do you think is the closer substitute for brand A, brand B, or brand C? Why?

f. Use the corrected predictor introduced in Section 4.5.3 to estimate the expected number of brand A
cans sold under the following scenarios:

i. RPRCE_B = 125, RPRCE_C = 100

ii. RPRCE_B = 111.11, RPRCE_C = 88.89

iii. RPRCE_B = 100, RPRCE_C = 80

g. The producers of brands B and C have set the prices of their cans of tuna to be $1 and 80 cents,

respectively. The producer of brand A is considering three possible prices for her cans: 80 cents,

90 cents, or $1. Use the results from part (f) to find which of these three price settings will maximize

revenue from sales.

5.8.2 Computer Exercises

5.17 Use econometric software to verify your answers to Exercise 5.1, parts (c), (e), (f), (g), and (h).

5.18 Consider the following two expenditure share equations where the budget share for food WFOOD, and

the budget share for clothing WCLOTH, are expressed as functions of total expenditure TOTEXP.

WFOOD = β1 + β2 ln(TOTEXP) + eF (XR5.18.1)

WCLOTH = α1 + α2 ln(TOTEXP) + eC (XR5.18.2)

a. A commodity is regarded as a luxury if the coefficient of ln(TOTEXP) is positive and a necessity

if it is negative. What signs would you expect for β2 and α2?

b. Using the data in the file london5, estimate the above equations using observations on households

with one child. Comment on the estimates and their significance. Can you explain any possibly

counterintuitive outcomes?

c. Using a 1% significance level, test H0∶β2 ≥ 0 against the alternative H1∶β2 < 0. Why might you

set up the hypotheses in this way?

d. Using a 1% significance level, test H0∶α2 ≥ 0 against the alternative H1∶α2 < 0. Why might you

set up the hypotheses in this way?

e. Estimate the two equations using observations on households with two children. Construct 95%

interval estimates for β2 and α2 for both one- and two-child households. Based on these interval

estimates, would you conjecture that the coefficients of ln(TOTEXP) are the same or different for

one- and two-child households.
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f. Use all observations to estimate the following two equations and test, at a 95% significance level,

whether your conjectures in part (e) are correct. (NK = number of children in the household.)

WFOOD = γ1 + γ2ln(TOTEXP) + γ3NK + γ4NK × ln(TOTEXP) + eF (XR5.18.3)

WCLOTH = δ1 + δ2ln(TOTEXP) + δ3NK + δ4NK × ln(TOTEXP) + eC (XR5.18.4)

g. Compare the estimates for ∂E(WFOOD|X)/∂ln(TOTEXP) from (XR5.18.1) for NK = 1, 2 with

those from (XR5.18.3) for NK = 1, 2.

5.19 Consider the following expenditure share equation where the budget share for food WFOOD is

expressed as a function of total expenditure TOTEXP.

WFOOD = β1 + β2ln(TOTEXP) + eF (XR5.19.1)

In Exercise 4.12, it was noted that the elasticity of expenditure on food with respect to total expenditure

is given by

ε = 1 +
β2

β1 + β2ln(TOTEXP)

Also, in Exercise 5.18 it was indicated that a good is a necessity if β2 < 0.

a. Show that β2 < 0 if and only if ε < 1. That is, a good is a necessity if its expenditure elasticity is

less than one (inelastic).

b. Use observations in the data file london5 to estimate (XR5.19.1) and comment on the results.

c. Find point estimates and 95% interval estimates for the mean budget share for food, for total expen-

diture values (i) TOTEXP = 50 (the fifth percentile of TOTEXP), (ii) TOTEXP = 90 (the median),

and (iii) TOTEXP = 170 (the 95th percentile).

d. Find point estimates and 95% interval estimates for the elasticity ε, for total expenditure values

(i) TOTEXP = 50 (the fifth percentile), (ii) TOTEXP = 90 (the median), and (iii) TOTEXP = 170

(the 95th percentile).

e. Comment on how the mean budget share and the expenditure elasticity for food change as total

expenditure changes. How does the reliability of estimation change as total expenditure changes?

5.20 A generalized version of the estimator for β2 proposed in Exercise 2.9 by Professor I.M. Mean for the

regression model yi = β1 + β2xi + ei, i = 1, 2,… ,N is

β̂2,mean =
y2 − y1

x2 − x1

where
(
y1, x1

)
and

(
y2, x2

)
are the sample means for the first and second halves of the sample obser-

vations, respectively, after ordering the observations according to increasing values of x. Given that

assumptions MR1–MR6 hold:

a. Show that β̂2,mean is unbiased.

b. Derive an expression for var
(

β̂2,mean|x
)

.

c. Write down an expression for var
(

β̂2,mean

)

.

d. Under what conditions will β̂2,mean be a consistent estimator for β2?

e. Randomly generate observations on x from a uniform distribution on the interval (0,10) for sample

sizes N = 100, 500, 1000, and, if your software permits, N = 5000. Assuming σ2 = 1000, for each

sample size, compute:

i. var
(
b2|x

)
and var

(

β̂2,mean|x
)

where b2 is the OLS estimator.

ii. Estimates for E
[(

s2
x

)−1
]

and E
[

4
/(

x2 − x1

)2
]

where s2
x is the sample standard deviation

for x using N as a divisor.

f. Comment on the relative magnitudes of your answers in part (e), (i) and (ii) and how they change

as sample size increases. Does it appear that β̂2,mean is consistent?

g. Show that E
[(

s2
x

)−1
] p
−−→ 0.12 and E

[

4
/(

x2 − x1

)2
] p
−−→ 0.16. [Hint: The variance of a uniform

random variable defined on the interval (a, b) is (b − a)2∕12.]

h. Suppose that the observations on x were not ordered according to increasing magnitude but were

randomly assigned to any position. Would the estimator β̂2,mean be consistent? Why or why not?
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5.21 Using the data in the file toody5, estimate the model

Yt = β1 + β2TRENDt + β3RAINt + β4RAIN2
t + β5

(
RAINt × TRENDt

)
+ et

where Yt = wheat yield in tons per hectare in the Toodyay Shire of Western Australia in year t;
TRENDt is a trend variable designed to capture technological change, with observations 0, 0.1,

0.2, …, 4.7; 0 is for the year 1950, 0.1 is for the year 1951, and so on up to 4.7 for the year

1997; RAINt is total rainfall in decimeters (dm) from May to October (the growing season) in year

t (1 decimeter = 4 inches).
a. Report your estimates, standard errors, t-values, and p-values in a table.

b. Are each of your estimates significantly different from zero at a (i) 5% level, (ii) 10% level?

c. Do the coefficients have the expected signs? Why? (One of the objectives of technological improve-

ments is the development of drought-resistant varieties of wheat.)

d. Find point and 95% interval estimates of the marginal effect of extra rainfall in (i) 1959 when the

rainfall was 2.98 dm and (ii) 1995 when the rainfall was 4.797 dm. Discuss the results.

e. Find point and 95% interval estimates for the amount of rainfall that would maximize expected

yield in (i) 1959 and (ii) 1995. Discuss the results.

5.22 Using the data in the file toody5, estimate the model

Yt = β1 + β2TRENDt + β3RAINt + β4RAIN2
t + β5

(
RAINt × TRENDt

)
+ et

where Yt = wheat yield in tons per hectare in the Toodyay Shire of Western Australia in year t;
TRENDt is a trend variable designed to capture technological change, with observations 0, 0.1,

0.2, …, 4.7; 0 is for the year 1950, 0.1 is for the year 1951, and so on up to 4.7 for the year

1997; RAINt is total rainfall in decimeters (dm) from May to October (the growing season) in

year t (1 decimeter = 4 inches).
a. Report your estimates, standard errors, t-values, and p-values in a table.

b. For 1974, when TREND = 2.4 and RAIN = 4.576, use a 5% significance level to test the null

hypothesis that extra rainfall will not increase expected yield against the alternative that it will

increase expected yield.

c. Assuming rainfall is equal to its median value of 3.8355 dm, find point and 95% interval estimates

of the expected improvement in wheat yield from technological change over the period 1960–1995.

d. There is concern that climate change is leading to a decline in rainfall over time. To test this hypoth-

esis, estimate the equation RAIN = α1 + α2TREND + e. Test, at a 5% significance level, the null

hypothesis that mean rainfall is not declining over time against the alternative hypothesis that it is

declining.

e. Using the estimated equation from part (d), estimate mean rainfall in 1960 and in 1995.

f. Suppose that TREND1995 = TREND1960, implying there had been no technological change

from 1960 to 1995. Use the estimates from part (e) to find an estimate of the decline in mean

yield from 1960 to 1995 attributable to climate change.

g. Suppose that E
(
RAIN1995

)
= E

(
RAIN1960

)
, implying there had been no rainfall change from 1960 to

1995. Find an estimate of the increase in mean yield from 1960 to 1995 attributable to technological

change.

h. Compare the estimates you obtained in parts (c), (f), and (g).

5.23 The file cocaine contains 56 observations on variables related to sales of cocaine powder in northeast-

ern California over the period 1984–1991. The data are a subset of those used in the study Caulkins,

J. P. and R. Padman (1993), “Quantity Discounts and Quality Premia for Illicit Drugs,” Journal of the
American Statistical Association, 88, 748–757. The variables are

PRICE = price per gram in dollars for a cocaine sale

QUANT = number of grams of cocaine in a given sale

QUAL = quality of the cocaine expressed as percentage purity

TREND = a time variable with 1984 = 1 up to 1991 = 8

Consider the regression model

PRICE = β1 + β2QUANT + β3QUAL + β4TREND + e

a. What signs would you expect on the coefficients β2, β3, and β4?



�

� �

�

5.8 Exercises 243

b. Use your computer software to estimate the equation. Report the results and interpret the coefficient

estimates. Have the signs turned out as you expected?

c. What proportion of variation in cocaine price is explained jointly by variation in quantity, quality,

and time?

d. It is claimed that the greater the number of sales, the higher the risk of getting caught. Thus, sellers

are willing to accept a lower price if they can make sales in larger quantities. Set up H0 and H1 that

would be appropriate to test this hypothesis. Carry out the hypothesis test.

e. Test the hypothesis that the quality of cocaine has no influence on expected price against the alter-

native that a premium is paid for better-quality cocaine.

f. What is the average annual change in the cocaine price? Can you suggest why price might be

changing in this direction?

5.24 The file collegetown contains data on 500 single-family houses sold in Baton Rouge, Louisiana during

2009–2013. We will be concerned with the selling price in thousands of dollars (PRICE), the size

of the house in hundreds of square feet (SQFT), and the age of the house measured as a categorical

variable (AGE), with 1 representing the newest and 11 the oldest. Let X denote all observations on

SQFT and AGE. Use all observations to estimate the following regression model:

PRICE = β1 + β2SQFT + β3(SQFT × AGE) + e

a. Report the results. Are the estimated coefficients significantly different from zero?

b. Write down expressions for the marginal effects ∂E(PRICE|X)∕∂SQFT and ∂E(PRICE|X)∕∂AGE.

Interpret each of the coefficients. Given the categorical nature of the variable AGE, what assump-

tions are being made?

c. Find point and 95% interval estimates for the marginal effect ∂E(PRICE|X)∕∂SQFT for houses that

are (i) 5 years old, (ii) 20 years old, and (iii) 40 years old. How do these estimates change as AGE
increases? (Refer to the file collegetown.def for the definition of AGE.)

d. As a house gets older and moves from one age category to the next, the expected price declines

by $6000. Set up this statement as a null hypothesis for houses with (i) 1500 square feet, (ii) 3000

square feet, and (iii) 4500 square feet. Using a 5% significance level, test each of the null hypotheses

against an alternative that the price decline is not $6000. Discuss the outcomes.

e. Find a 95% prediction interval for the price of a 60-year old house with 2500 square feet. In the data

set there are four 60-year old houses with floor space between 2450 and 2550 square feet. What

prices did they sell for? How many of these prices fall within your prediction interval? Is the model

a good one for forecasting price?

5.25 The file collegetown contains data on 500 single-family houses sold in Baton Rouge, Louisiana during

2009–2013. We will be concerned with the selling price in thousands of dollars (PRICE), and the

size of the house in hundreds of square feet (SQFT). Use all observations to estimate the following

regression model:

ln(PRICE) = β1 + β2SQFT + β3SQFT1∕2 + e

Suppose that assumptions MR1–MR6 all hold. In particular, (e|SQFT ) ∼ N
(
0, σ2

)
.

a. Report the results. Are the estimated coefficients significantly different from zero?

b. Write down an expression for the marginal effect ∂E
[
ln(PRICE|SQFT)

]/
∂SQFT . Discuss the

nature of this marginal effect and the expected signs for β2 and β3.

c. Find and interpret point and 95% interval estimates for ∂E
[
ln(PRICE|SQFT)

]/
∂SQFT for houses

with (i) 1500 square feet, (ii) 3000 square feet, and (iii) 4500 square feet.

d. Show that

∂E[PRICE|SQFT ]
∂SQFT

=
(

β2 +
β3

2SQFT1/2

)

× exp
{
β1 + β2SQFT + β3SQFT1/2 + σ2∕2

}

For future reference, we write this expression as ∂E(PRICE|SQFT )∕∂SQFT = S × C where

S =
(

β2 +
β3

2SQFT1/2

)

× exp
{
β1 + β2SQFT + β3SQFT1/2

}
and C = exp

{
σ2∕2

}

Correspondingly, we let Ŝ and Ĉ denote estimates for S and C obtained by replacing unknown

parameters by their estimates.
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e. Estimate ∂E(PRICE|SQFT )∕∂SQFT = S × C for houses with (i) 1500 square feet, (ii) 3000 square

feet, and (iii) 4500 square feet.

f. Finding the asymptotic standard errors for the estimates in (e) is tricky because of the product

Ŝ × Ĉ. To avoid such trickiness, find the standard errors for Ŝ for each type of house in (e).

g. For each type of house, and a 5% significance level, use the estimates from (e) and the standard

errors from (f ) to test the hypotheses

H0∶
∂E(PRICE|SQFT )

∂SQFT
= 9 H1∶

∂E(PRICE|SQFT )
∂SQFT

≠ 9

What do you conclude?

h. (optional) To get the “correct” standard errors for Ŝ × Ĉ, we proceed as follows. First, given

var
(

σ̂2
)

= 2σ4∕(N − K), find an estimate for var
(
Ĉ
)
. It can be shown that Ŝ and Ĉ are independent.

Using results on the product of independent random variables, an estimator for the variance of

Ŝ × Ĉ is

var
⋀(

Ŝ × Ĉ
)
= var
⋀

⎛
⎜
⎜
⎝

∂E(PRICE|SQFT )
∂SQFT

⋀⋀

⎞
⎟
⎟
⎠

= Ŝ2
var
⋀(

Ĉ
)
+ Ĉ2

var
⋀(

Ŝ
)
+ var
⋀(

Ĉ
)

var
⋀(

Ŝ
)

Use this result to find standard errors for Ŝ × Ĉ. How do they compare with the standard errors

obtained in (f )? Are they likely to change the outcomes of the hypothesis tests in (g)?

5.26 Consider the presidential voting data (data file fair5) introduced in Exercise 2.23. Details of the vari-

ables can be found in that exercise.

a. Using all observations, estimate the regression model

VOTE = β1 + β2GROWTH + β3INFLAT + e

Report the results. Are the estimates for β2 and β3 significantly different from zero at a 10% signif-

icance level? Did you use one- or two-tail tests? Why?

b. Assume the inflation rate is 3% and the Democrats are the incumbent party. Predict the percentage

vote for both parties when the growth rate is (i) −2%, (ii) 0%, and (iii) 3%.

c. Assume the inflation rate is 3% and the Republicans are the incumbent party. Predict the percentage

vote for both parties when the growth rate is (i) −2%, (ii) 0%, and (iii) 3%.

d. Based on your answers to parts (b) and (c), do you think the popular vote tends to be more biased

toward the Democrats or the Republicans?

e. Consider the following two scenarios:

1. The Democrats are the incumbent party, the growth rate is 2% and the inflation rate is 2%.

2. The Republicans are the incumbent party, the growth rate is 2% and the inflation rate is 2%.

Using a 5% significance level, test the null hypothesis that the expected share of the Democratic

vote under scenario 1 is equal to the expected share of the Republican vote under scenario 2.

5.27 In this exercise, we consider the auction market for art first introduced in Exercise 2.24. The variables

in the data file ashcan_small that we will be concerned with are as follows:

RHAMMER = the price at which a painting sold in thousands of dollars

YEARS_OLD = the time between completion of the painting and when it was sold

INCHSQ = the size of the painting in square inches

Create a new variable INCHSQ10 = INCHSQ∕10 to express size in terms of tens of square inches.

Only consider observations where the art was sold (SOLD = 1).
a. Estimate the following equation and report the results:

RHAMMER = β1 + β2YEARS_OLD + β3INCHSQ10 + e

b. How much do paintings appreciate on a yearly basis? Find a 95% interval estimate for the expected

yearly price increase.

c. How much more valuable are large paintings? Find a 95% interval estimate for the expected extra

value from an extra 10 square inches.

d. Add the variable INCHSQ102 to the model and re-estimate. Report the results. Why would you

consider adding this variable?

e. Does adding this variable have much impact on the interval estimate in part (b)?
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f. Find 95% interval estimates for the expected extra value from an extra 10 square inches for art of

the following sizes: (i) 50 square inches (sixth percentile), (ii) 250 square inches (approximately

the median), and (iii) 900 square inches (97th percentile). Comment on how the value of an extra

10 square inches changes as the painting becomes larger.

g. Find a 95% interval estimate for the painting size that maximizes price.

h. Find a 95% interval estimate for the expected price of a 75-year-old, 100-square-inch painting.

i. How long would you have to keep a 100-square-inch painting for the expected price to become

positive?

5.28 In this exercise, we consider the auction market for art first introduced in Exercise 2.24. The variables

in the data file ashcan_small that we will be concerned with are as follows:

RHAMMER = the price at which a painting sold in thousands of dollars

YEARS_OLD = the time between completion of the painting and when it was sold

INCHSQ = the size of the painting in square inches

Create a new variable INCHSQ10= INCHSQ/10 to express size in terms of tens of square inches. Only

consider observations where the art was sold (SOLD = 1).
a. Estimate the following log-linear equation and report the results:

ln(RHAMMER) = β1 + β2YEARS_OLD + β3INCHSQ10 + e

b. How much do paintings appreciate on a yearly basis? Find a 95% interval estimate for the expected

percentage price increase per year.

c. How much more valuable are large paintings? Using a 5% significance level, test the null hypothesis

that painting an extra 10 square inches increases the value by 2% or less against the alternative that

it increases the value by more than 2%.

d. Add the variable INCHSQ102 to the model and re-estimate. Report the results. Why would you

consider adding this variable?

e. Does adding this variable have much impact on the interval estimate in part (b)?

f. Redo the hypothesis test in part (c) for art of the following sizes: (i) 50 square inches (sixth

percentile), (ii) 250 square inches (approximately the median), and (iii) 900 square inches (97th

percentile). What do you observe?

g. Find a 95% interval estimate for the painting size that maximizes price.

h. Find a 95% interval estimate for the expected price of a 75-year-old, 100-square-inch painting.

(Use the estimator exp
{

E
[
ln(RHAMMER|YEARS_OLD = 75, INCHSQ10 = 10)

]}

and its stan-

dard error.)

5.29 What is the relationship between crime and punishment? This important question has been examined by

Cornwell and Trumbull16 using a panel of data from North Carolina. The cross sections are 90 counties,

and the data are annual for the years 1981–1987. The data are in the file crime.

Using the data from 1986, estimate a regression relating the log of the crime rate LCRMRTE to

the probability of an arrest PRBARR (the ratio of arrests to offenses), the probability of conviction

PRBCONV (the ratio of convictions to arrests), the probability of a prison sentence PRBPRIS (the

ratio of prison sentences to convictions), the number of police per capita POLPC, and the weekly

wage in construction WCON. Write a report of your findings. In your report, explain what effect you

would expect each of the variables to have on the crime rate and note whether the estimated coefficients

have the expected signs and are significantly different from zero. What variables appear to be the most

important for crime deterrence? Can you explain the sign for the coefficient of POLPC?

5.30 In Section 5.7.4, we discovered that the optimal level of advertising for Big Andy’s Burger Barn,

ADVERT0, satisfies the equation β3 + 2β4ADVERT0 = 1. Using a 5% significance level, test whether

each of the following levels of advertising could be optimal: (a) ADVERT0 = 1.75, (b) ADVERT0 = 1.9,

and (c) ADVERT0 = 2.3. What are the p-values for each of the tests?

5.31 Each morning between 6:30 AM and 8:00 AM Bill leaves the Melbourne suburb of Carnegie to drive

to work at the University of Melbourne. The time it takes Bill to drive to work (TIME), depends on

the departure time (DEPART), the number of red lights that he encounters (REDS), and the number

of trains that he has to wait for at the Murrumbeena level crossing (TRAINS). Observations on these

............................................................................................................................................................

16“Estimating the Economic Model of Crime with Panel Data,” Review of Economics and Statistics, 76, 1994,

360−366. The data were kindly provided by the authors.
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variables for the 249 working days in 2015 appear in the file commute5. TIME is measured in minutes.

DEPART is the number of minutes after 6:30 AM that Bill departs.

a. Estimate the equation

TIME = β1 + β2DEPART + β3REDS + β4TRAINS + e

Report the results and interpret each of the coefficient estimates, including the intercept β1.

b. Find 95% interval estimates for each of the coefficients. Have you obtained precise estimates of

each of the coefficients?

c. Using a 5% significance level, test the null hypothesis that Bill’s expected delay from each red light

is 2 minutes or more against the alternative that it is less than 2 minutes.

d. Using a 10% significance level, test the null hypothesis that the expected delay from each train is

3 minutes against the alternative that it is not 3 minutes.

e. Using a 5% significance level, test the null hypothesis that Bill can expect a trip to be at least

10 minutes longer if he leaves at 7:30 AM instead of 7:00 AM, against the alternative that it will not

be 10 minutes longer. (Assume other things are equal.)

f. Using a 5% significance level, test the null hypothesis that the expected delay from a train is at least

three times greater than the expected delay from a red light against the alternative that it is less than

three times greater.

g. Suppose that Bill encounters six red lights and one train. Using a 5% significance level, test the

null hypothesis that leaving Carnegie at 7:00 AM is early enough to get him to the university on or

before 7:45 AM against the alternative that it is not. [Carry out the test in terms of the expected time

E(TIME|X) where X represents the observations on all explanatory variables.]

h. Suppose that, in part (g), it is imperative that Bill is not late for his 7:45 AM meeting. Have the null

and alternative hypotheses been set up correctly? What happens if these hypotheses are reversed?

5.32 Reconsider the variables and model from Exercise 5.31

TIME = β1 + β2DEPART + β3REDS + β4TRAINS + e

Suppose that Bill is mainly interested in the magnitude of the coefficient β2. He has control over his

departure time, but no control over the red lights or the trains.

a. Regress DEPART on the variables REDS and TRAINS and save the residuals. Which coefficient

estimates are significantly different from zero at a 5% level? For the significant coefficient(s), do

you think the relationship is causal?

b. Regress TIME on the variables REDS and TRAINS and save the residuals. Are the estimates for

the coefficients of REDS and TRAINS very different from the estimates for β3 and β4 obtained by

estimating the complete model with DEPART included?

c. Use the residuals from parts (a) and (b) to estimate the coefficient β2 and adjust the output to obtain

its correct standard error.

5.33 Use the observations in the data file cps5_small to estimate the following model:

ln(WAGE ) = β1 + β2EDUC + β3EDUC2 + β4EXPER + β5EXPER2 + β6(EDUC × EXPER) + e

a. At what levels of significance are each of the coefficient estimates “significantly different from

zero”?

b. Obtain an expression for the marginal effect ∂E
[
ln(WAGE)|EDUC, EXPER

]/
∂EDUC. Comment

on how the estimate of this marginal effect changes as EDUC and EXPER increase.

c. Evaluate the marginal effect in part (b) for all observations in the sample and construct a histogram

of these effects. What have you discovered? Find the median, 5th percentile, and 95th percentile of

the marginal effects.

d. Obtain an expression for the marginal effect ∂E
[
ln(WAGE)|EDUC, EXPER

]/
∂EXPER. Comment

on how the estimate of this marginal effect changes as EDUC and EXPER increase.

e. Evaluate the marginal effect in part (d) for all observations in the sample and construct a histogram

of these effects. What have you discovered? Find the median, 5th percentile, and 95th percentile of

the marginal effects.

f. David has 17 years of education and 8 years of experience, while Svetlana has 16 years of education

and 18 years of experience. Using a 5% significance level, test the null hypothesis that Svetlana’s

expected log-wage is equal to or greater than David’s expected log-wage, against the alternative

that David’s expected log-wage is greater. State the null and alternative hypotheses in terms of the

model parameters.
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g. After eight years have passed, when David and Svetlana have had eight more years of experience,

but no more education, will the test result in (f ) be the same? Explain this outcome?

h. Wendy has 12 years of education and 17 years of experience, while Jill has 16 years of education and

11 years of experience. Using a 5% significance level, test the null hypothesis that their marginal

effects of extra experience are equal against the alternative that they are not. State the null and

alternative hypotheses in terms of the model parameters.

i. How much longer will it be before the marginal effect of experience for Jill becomes negative? Find

a 95% interval estimate for this quantity.

Appendix 5A Derivation of Least Squares Estimators
In Appendix 2A, we derived expressions for the least squares estimators b1 and b2 in the simple

regression model. In this appendix, we proceed with a similar exercise for the multiple regression

model; we describe how to obtain expressions for b1, b2, and b3 in a model with two explanatory

variables. Given sample observations on y, x2, and x3, the problem is to find values for β1, β2, and

β3 that minimize

S
(
β1, β2, β3

)
=

N∑

i=1

(
yi − β1 − β2xi2 − β3xi3

)2

The first step is to partially differentiate S with respect to β1, β2, and β3 and to set the first-order

partial derivatives to zero. This yields

∂S
∂β1

= 2Nβ1 + 2β2

∑
xi2 + 2β3

∑
xi3 − 2

∑
yi

∂S
∂β2

= 2β1

∑
xi2 + 2β2

∑
x2

i2 + 2β3

∑
xi2xi3 − 2

∑
xi2yi

∂S
∂β3

= 2β1

∑
xi3 + 2β2

∑
xi2xi3 + 2β3

∑
x2

i3 − 2
∑

xi3yi

Setting these partial derivatives equal to zero, dividing by 2, and rearranging yields

Nb1 +
∑

xi2b2 +
∑

xi3b3 =
∑

yi
∑

xi2b1 +
∑

x2
i2b2 +

∑
xi2xi3b3 =

∑
xi2yi

∑
xi3b1 +

∑
xi2xi3b2 +

∑
x2

i3b3 =
∑

xi3yi

(5A.1)

The least squares estimators for b1, b2, and b3 are given by the solution of this set of three simul-
taneous equations, known as the normal equations. To write expressions for this solution, it is

convenient to express the variables as deviations from their means. That is, let

y∗i = yi − y, x∗i2 = xi2 − x2, x∗i3 = xi3 − x3

Then the least squares estimates b1, b2, and b3 are

b1 = y − b2x2 − b3x3

b2 =
(∑

y∗i x∗i2
)(∑

x∗2
i3

)
−
(∑

y∗i x∗i3
)(∑

x∗i2x∗i3
)

(∑
x∗2

i2

)(∑
x∗2

i3

)
−
(∑

x∗i2x∗i3
)2

b3 =
(∑

y∗i x∗i3
)(∑

x∗2
i2

)
−
(∑

y∗i x∗i2
)(∑

x∗i3x∗i2
)

(∑
x∗2

i2

)(∑
x∗2

i3

)
−
(∑

x∗i2x∗i3
)2

For models with more than three parameters, the solutions become quite messy without using

matrix algebra; we will not show them. Computer software used for multiple regression compu-

tations solves normal equations such as those in (5A.1) to obtain the least squares estimates.
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Appendix 5B The Delta Method
In Sections 3.6, 5.3, 5.4, and 5.5, we discussed estimating and testing linear combinations of

parameters. If the regression errors are normal, the results discussed there hold in finite samples.

If the regression errors are not normal, then those results hold in large samples, as discussed

in Section 5.7. We now turn to nonlinear functions of regression parameters that were con-

sidered in Section 5.7.4 and provide some background for the results given there. You will be

surprised in the subsequent chapters how many times we become interested in nonlinear func-
tions of regression parameters. For example, we may find ourselves interested in functions such as

g1

(
β2

)
= exp

(
β2∕10

)
or g2

(
β1, β2

)
= β1∕β2. The first function g1

(
β2

)
is a function of the single

parameter β2. Intuitively, we would estimate this function of β2 using g1

(
b2

)
. The second func-

tion g2

(
β1, β2

)
is a function of two parameters and similarly g2

(
b1, b2

)
seems like a reasonable

estimator. Working with nonlinear functions of the estimated parameters requires additional tools

because, even if the regression errors are normal, nonlinear functions of them are not normally

distributed in finite samples, and usual variance formulas do not apply.

5B.1 Nonlinear Function of a Single Parameter
The key to working with nonlinear functions of a single parameter is the Taylor series approxi-

mation discussed in Appendix A, Derivative Rule 9. It is stated there as

𝑓 (x) ≅ 𝑓 (a) +
d𝑓 (x)

dx
|
|
|
|x=a

(x − a) = 𝑓 (a) + 𝑓
′(a)(x − a)

The value of a function at x is approximately equal to the value of the function at x = a, plus

the derivative of the function evaluated at x = a, times the difference x − a. This approximation

works well when the function is smooth and the difference x − a is not too large. We will apply

this rule to g1

(
b2

)
replacing x with b2 and a with β2

g1

(
b2

)
≅ g1

(
β2

)
+ g′

1

(
β2

)(
b2 − β2

)
(5B.1)

This Taylor series expansion of g1

(
b2

)
shows the following:

1. If E
(
b2

)
= β2, then E

[
g1

(
b2

)]
≅ g1

(
β2

)
.

2. If b2 is a biased but consistent estimator, so that b2

p
−−→ β2, then g1

(
b2

) p
−−→ g1

(
β2

)
.

3. The variance of g1

(
b2

)
is given by var

[
g1

(
b2

)]
≅
[
g′

1

(
β2

)]2
var

(
b2

)
, which is known as the

delta method. The delta method follows from working with the Taylor series approximation

var
[
g1

(
b2

)]
= var

[
g1

(
β2

)
+ g′

1

(
β2

)(
b2 − β2

)]

= var
[
g′

1

(
β2

)(
b2 − β2

)]
because g1

(
β2

)
is not random

=
[
g′

1

(
β2

)]2
var

(
b2 − β2

)
because g′

1

(
β2

)
is not random

=
[
g′

1

(
β2

)]2
var

(
b2

)
because β2 is not random

4. The estimator g1

(
b2

)
has an approximate normal distribution in large samples,

g1

(
b2

) a∼ N
[

g1

(
β2

)
,

[
g′

1

(
β2

)]2
var

(
b2

)]

(5B.2)

The asymptotic normality of g1

(
b2

)
means that we can test nonlinear hypotheses about β2, such as

H0∶g1

(
β2

)
= c, and we can construct interval estimates of g1

(
β2

)
in the usual way. To implement

the delta method, we replace β2 by its estimate b2 and the true variance var
(
b2

)
by its estimate

var
⋀(

b2

)
which, for the simple regression model, is given in equation (2.21).
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E X A M P L E 5.19 An Interval Estimate for exp
(
β2∕10

)

To illustrate the delta method calculations, we use one sample

from the N = 20 simulation considered in Appendix 5C; it is

stored as mc20. For these data values, the fitted regression is

ŷ = 87.44311 + 10.68456x
(se) (33.8764) (2.1425 )

The nonlinear function we consider is g1

(
β2

)
= exp

(
β2∕10

)
.

In the simulation we know the value β2 = 10 and therefore

the value of the function is g1

(
β2

)
= exp

(
β2∕10

)
= e1 =

2.71828. To apply the delta method, we need the derivative

g′
1

(
β2

)
= exp

(
β2∕10

)
× (1∕10) (see Appendix A, Derivative

Rule 7), and the estimated covariance matrix in Table 5B.1.

The estimated value of the nonlinear function is

g1

(
b2

)
= exp

(
b2∕10

)
= exp(10.68456∕10) = 2.91088

The estimated variance is

var
⋀[

g1

(
b2

)]
=
[
g′

1

(
b2

)]2
var
⋀(

b2

)
=
[
exp

(
b2∕10

)
×(1∕10)

]2
var
⋀(

b2

)

=
[
exp(10.68456∕10) ×(1∕10)

]2
4.59045 = 0.38896

T A B L E 5B.1 Estimated Covariance Matrix

b1 b2

b1 1147.61330 −68.85680

b2 −68.85680 4.59045

and

se
[
g1

(
b2

)]
= 0.62367.

The 95% interval estimate is

g1

(
b2

)
± t(0.975,20−2)se

[
g1

(
b2

)]
= 2.91088 ± 2.10092 × 0.62367

=(1.60061, 4.22116)

5B.2 Nonlinear Function of Two Parameters17

When working with functions of two (or more) parameters the approach is much the same, but the

Taylor series approximation changes to a more general form. For a function of two parameters,

the Taylor series approximation is

g2

(
b1, b2

)
≅ g2

(
β1, β2

)
+
∂g2

(
β1, β2

)

∂β1

(
b1 − β1

)
+
∂g2

(
β1, β2

)

∂β2

(
b2 − β2

)
(5B.3)

1. If E
(
b1

)
= β1 and E

(
b2

)
= β2, then E

[
g2

(
b1, b2

)]
≅ g2

(
β1, β2

)
.

2. If b1 and b2 are consistent estimators, so that b1

p
−−→ β1 and b2

p
−−→ β2, then

g2

(
b1, b2

) p
−−→ g2

(
β1, β2

)
.

3. The variance of g2

(
b1, b2

)
is given by the delta method as

var
[
g2

(
b1, b2

)]
≅

[
∂g2

(
β1, β2

)

∂β1

]2

var
(
b1

)
+

[
∂g2

(
β1, β2

)

∂β2

]2

var
(
b2

)

+ 2

[
∂g2

(
β1, β2

)

∂β1

][
∂g2

(
β1, β2

)

∂β2

]

cov
(
b1, b2

)
(5B.4)

4. The estimator g2

(
b1, b2

)
has an approximate normal distribution in large samples,

g2

(
b1, b2

) a∼ N
(
g2

(
β1, β2

)
, var

[
g2

(
b1, b2

)] )
(5B.5)

The asymptotic normality of g2

(
b1, b2

)
means that we can test nonlinear hypotheses such as

H0∶g2

(
β1, β2

)
= c, and we can construct interval estimates of g2

(
β1, β2

)
in the usual way.

............................................................................................................................................

17This section contains advanced material. The general case involving a function of more than two parameters requires

matrix algebra. See William Greene, Econometric Analysis 8e, Pearson Prentice-Hall, 2018, Theorems D.21A and D.22

in online Appendix available at pages.stern.nyu.edu/~wgreene/text/econometricanalysis.htm.
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In practice we evaluate the derivatives at the estimates b1 and b2, and the variances and

covariances by their usual estimates from equations such as those for the simple regression

model in (2.20)–(2.22).

E X A M P L E 5.20 An Interval Estimate for β1/β2

The nonlinear function of two parameters that we consider is

g2

(
β1, β2

)
= β1∕β2. To employ the delta method, we require

the derivatives (see Appendix A, Derivative Rules 3 and 6)

∂g2

(
β1, β2

)

∂β1

= 1

β2

and
∂g2

(
β1, β2

)

∂β2

= −
β1

β2
2

The estimate g2

(
b1, b2

)
= b1∕b2 = 87.44311∕10.68456 =

8.18406 and its estimated variance is

var
⋀[

g2

(
b1, b2

)]
=
[

1

b2

]2

var
⋀(

b1

)
+

[

−
b1

b2
2

]2

var
⋀(

b2

)

+ 2

[
1

b2

][

−
b1

b2
2

]

cov
⋀(

b1, b2

)

= 22.61857

The delta method standard error is se
(
b1∕b2

)
= 4.75590.

The resulting 95% interval estimate for β1∕β2 is

(–1.807712, 18.17583). While all this seems incredibly

complicated, most software packages will compute at least

the estimates and standard errors automatically. And now

that you understand the calculations, you can be confident

when you use the “canned” routines.

Appendix 5C Monte Carlo Simulation
In Appendices 2H and 3C, we introduced a Monte Carlo simulation to illustrate the repeated

sampling properties of the least squares estimators. In this appendix, we use the same framework

to illustrate the repeated sampling performances of interval estimators and hypothesis tests when

the errors are not normally distributed.

Recall that the data generation process for the simple linear regression model is given by

yi = E
(
yi|xi

)
+ ei = β1 + β2xi + ei, i = 1,… ,N

The Monte Carlo parameter values are β1 = 100 and β2 = 10. The value of xi is 10 for the first

N∕2 observations and 20 for the remaining N∕2 observations, so that the regression functions are

E
(
yi|xi = 10

)
= 100 + 10xi = 100 + 10 × 10 = 200, i = 1,… ,N∕2

E
(
yi|xi = 20

)
= 100 + 10xi = 100 + 10 × 20 = 300, i =(N∕2) + 1,… ,N

5C.1 Least Squares Estimation with Chi-Square Errors
In this appendix, we modify the simulation in an important way. The random errors are indepen-

dently distributed but with normalized chi-square distributions. In Figure B.7, the pdf s of several

chi-square distributions are shown. We will use the χ2
(4) in this simulation, which is skewed with

a long tail to the right. Let vi ∼ χ2
(4). The expected value and variance of this random variable

are E
(
vi
)
= 4 and var

(
vi
)
= 8, respectively, so that zi =

(
vi − 4

)
∕
√

8 has mean zero and variance

one. The random errors we employ are ei = 50zi so that var
(
ei|xi

)
= σ2 = 2500, as in earlier

appendices.

As before, we use M = 10,000 Monte Carlo simulations, using the sample sizes N = 20,

40 (as before), 100, 200, 500, and 1000. Our objectives are to illustrate that the least squares
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estimators of β1, β2, and the estimator σ̂2
are unbiased, and to investigate whether hypothesis tests

and interval estimates perform as they should, even though the errors are not normally distributed.

As in Appendix 3C, we

• Test the null hypothesis H0∶β2 = 10 using the one-tail alternative H0∶β2 > 10. The critical

value for the test is the 95th percentile of the t-distribution with N − 2 degrees of freedom,

t(0.95, N–2). We report the percentage of rejections from this test (REJECT).

• Contruct a 95% interval estimate for β2 and report the percentage of the estimates (COVER)

that contain the true parameter, β2 = 10.

• Compute the percentage of the time (CLOSE) that the estimates b2 are in the interval β2 ± 1,

or between 9 and 11. Based on our theory, this percentage should increase toward 1 as N
increases.

The Monte Carlo simulation results are summarized in Table 5C.1.

The unbiasedness of the least squares estimators is verified by the average values of the

estimates being very close to the true parameter values for all sample sizes. The percentage of esti-

mates that are “close” to the true parameter value rises as the sample size N increases, verifying

the consistency of the estimator. Because the rejection rates from the t-test are close to 0.05 and the

coverage of the interval estimates is close to 95%, the approximate normality of the estimators is

very good. To illustrate, in Figure 5C.1 we present the histogram of the estimates b2 for N = 40.

T A B L E 5C.1 The Least Squares Estimators, Tests, and Interval Estimators

N b1 b2 �̂�2 REJECT COVER CLOSE

20 99.4368 10.03317 2496.942 0.0512 0.9538 0.3505

40 100.0529 9.99295 2498.030 0.0524 0.9494 0.4824

100 99.7237 10.01928 2500.563 0.0518 0.9507 0.6890

200 99.8427 10.00905 2497.473 0.0521 0.9496 0.8442

500 100.0445 9.99649 2499.559 0.0464 0.9484 0.9746

1000 100.0237 9.99730 2498.028 0.0517 0.9465 0.9980
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FIGURE 5C.1 Histogram of the estimates b2 for N = 40.
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It is very bell shaped, with the superimposed normal density function fitting it very well.

The nonnormality of the errors does not invalidate inferences in this model, even with only

N = 40 sample observations.

5C.2 Monte Carlo Simulation of the Delta Method
In this Monte Carlo simulation, again using 10,000 samples, we compute the value of the nonlin-

ear function estimator g1

(
b2

)
= exp

(
b2∕10

)
for each sample, and we test the true null hypothesis

H0∶g1

(
β2

)
= exp

(
β2∕10

)
= e1 = 2.71828 using a two-tail test at the 5% level of significance.

We are interested in how well the estimator does in finite samples (recall that the random errors

are not normally distributed and that the function is nonlinear), and how well the test performs.

In Table 5C.2, we report the average of the parameter estimates for each sample size. Note that

the mean estimate converges toward the true value as N becomes larger. The test at the 5% level

of significance rejects the true null hypothesis about 5% of the time. The test statistic is

t =
g1

(
b2

)
− 2.71828

se
[
g1

(
b2

)] ∼ t(N−2)

The fact that the t-test rejects the correct percentage of the time implies not only that the esti-

mates are well behaved but also that the standard error in the denominator is correct, and that the

distribution of the statistic is “close” to its limiting standard normal distribution. In Table 5C.2,

se
[
exp

(
b2∕10

)]
is the average of the nominal standard errors calculated using the delta method,

and std. dev.
[
exp

(
b2∕10

)]
is the standard deviation of the estimates that measures the actual,

true variation in the Monte Carlo estimates. We see that for sample sizes N = 20 and N = 40, the

average of the standard errors calculated using the delta method is smaller than the true standard

deviation, meaning that on average, in this illustration, the delta method overstates the precision of

the estimates exp
(
b2∕10

)
. The average standard error calculated using the delta method is close

to the true standard deviation for larger sample sizes. We are reminded that the delta method

standard errors are valid in large samples, and in this illustration the sample size N = 100 seems

adequate for the asymptotic result to hold. The histogram of the estimates for sample size N = 40

in Figure 5C.2 shows only the very slightest deviation from normality, which is why the t-test

performs so well.

We now examine how well the delta method works at different sample sizes for estimating

the function g2

(
β1∕β2

)
and approximating its variance and asymptotic distribution. The mean

estimates in Table 5C.3 show that there is some bias in the estimates for small samples sizes.

However, the bias diminishes as the sample size increases and is close to the true value, 10, when

N = 100. The average of the delta method standard errors, se
(
b1∕b2

)
, is smaller than the actual,

Monte Carlo, standard deviation of the estimates b1∕b2 for sample sizes N = 20, 40, and 100.

This illustrates the lesson that the more complicated the nonlinear function, or model, the larger

the sample size that is required for asymptotic results to hold.

T A B L E 5C.2 Simulation Results for g1
(
𝛃2
)
= exp

(
𝛃2∕10

)

N exp
(
b2∕10

)
se
[
exp

(
b2∕10

)] Std. dev.
[
exp

(
b2∕10

)]
REJECT

20 2.79647 0.60738 0.63273 0.0556

40 2.75107 0.42828 0.44085 0.0541

100 2.73708 0.27208 0.27318 0.0485

200 2.72753 0.19219 0.19288 0.0503

500 2.72001 0.12148 0.12091 0.0522

1000 2.71894 0.08589 0.08712 0.0555



�

� �

�

Appendix 5C Monte Carlo Simulation 253

0

2

4

6

8

10

1 2 3 4

Pe
rc

en
t

5

FIGURE 5C.2 Histogram of g1
(
b2
)
= exp

(
b2∕10

)
.

T A B L E 5C.3 Simulation Results for g2
(
b1, b2

)
= b1∕b2

N b1∕b2 se
(
b1∕b2

) Std. dev.
(
b1∕b2

)

20 11.50533 7.18223 9.19427

40 10.71856 4.36064 4.71281

100 10.20997 2.60753 2.66815

200 10.10097 1.82085 1.82909

500 10.05755 1.14635 1.14123

1000 10.03070 0.80829 0.81664

The Monte Carlo simulated values of g2

(
b1, b2

)
= b1∕b2 are shown in Figures 5C.3(a) and (b)

from the experiments with N = 40 and N = 200. With sample size N = 40, there is pronounced

skewness. With N = 200, the distribution of the estimates is much more symmetric and

bell shaped.
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FIGURE 5C.3a Histogram of g2
(
b1, b2

)
= b1∕b2, N = 40.
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FIGURE 5C.3b Histogram of g2
(
b1, b2

)
= b1∕b2, N = 200.

Appendix 5D Bootstrapping
In Section 2.7.3, we discuss the interpretation of standard errors of estimators. Least squares

estimates vary from sample to sample simply because the composition of the sample changes. This

is called sampling variability. For the least squares estimators we have derived formulas for the

variance of the least squares estimators. For example, in the simple regression model yi = β1 +
β2xi + ei, the variance of the least squares estimator of the slope is var

(
b2|x

)
= σ2

/∑(
xi − x

)2

and the standard error is se
(
b2

)
=
[

σ̂2
/∑(

xi − x
)2
]1∕2

. We were able to derive this formula using

the model assumptions and linear form of the least squares estimator.

However, there are estimators for whom no easy standard errors can be computed. The esti-

mators may be based on complex multistep procedures, or they may be nonlinear functions.

In many cases, we can show that the estimators are consistent and asymptotically normal.
We discussed these properties in Section 5.7. For an estimator β̂, these properties mean that

β̂ a∼ N
[

β, var
(

β̂
)]

. In this expression, var
(

β̂
)

is an asymptotic variance that is appropriate in

large samples. If the asymptotic variance is known, then the nominal standard error, that is

valid in large samples, is se
(

β̂
)

=
[

var
⋀

(

β̂
)]1∕2

. Asymptotic variance formulas can be difficult

to derive. We illustrated the delta method, in Appendices 5B and 5C.2, for finding asymptotic

variances of nonlinear functions of the least squares estimators. Even in those simple cases, there

are derivatives and tedious algebra.

The bootstrap procedure is an alternative and/or complement to the analytic derivation of

asymptotic variances. Bootstrapping can be used to compute standard errors for complicated and

nonlinear estimators. It uses the speed of modern computing and a technique called resampling.

In this section, we explain the bootstrapping technique and several ways that it can be used. In

particular, we can use bootstrapping to

1. Estimate the bias of the estimator β̂.

2. Obtain a standard error se
(

β̂
)

that is valid in large samples.

3. Construct confidence intervals for β.

4. Find critical values for test statistics.
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5D.1 Resampling
To illustrate resampling suppose we have N independent and identically distributed data pairs(
yi, xi

)
. This is the case if we collect random samples from a specific population.18 To keep mat-

ters simple let N = 5. This is for illustration only. A hypothetical sample is given in Table 5D.1.

Resampling means randomly select N = 5 rows with replacement to form a new sample. The

phrase with replacement means that after randomly selecting one row, and adding it to a new

data set, we return the selected row to the original data where it might be randomly selected again,

or not.

Perhaps seeing an algorithm for doing this will help. It begins with the concept of a uniform
random number on the zero to one interval, u ∼ uniform(0,1). Uniform random numbers are a

core part of numerical methods for simulations. We discuss them in Appendix B.4.1. Roughly

speaking, the uniformly distributed random value u is equally likely to take any value in the inter-

val (0,1). Computer scientists have designed algorithms so that repeated draws using a uniform
random number generator are independent of one another. These are built into every econo-

metric software package, although the algorithms used may vary slightly from one to the next.

To randomly pick a row of data,

1. Let u* = (5 × u) + 1. This value is greater than 1 but less than 6.

2. Drop the decimal portion to obtain a random integer b that is 1, 2, 3, 4, or 5.

Table 5D.2 illustrates the process for N = 5. These steps are automated by many software pack-

ages, so you will not have to do the programming yourself, but it is a good idea to know what is

happening. The values j in Table 5D.2 are the rows from the original data set that will constitute

the first bootstrap sample. The first bootstrap sample will contain observations 5, 1, 2, and the

third observation twice, as shown in Table 5D.3.19 This is perfectly OK. Resampling means that

T A B L E 5D.1 The Sample

Observation y x

1 y1 = 6 x1 = 0

2 y2 = 2 x2 = 1

3 y3 = 3 x3 = 2

4 y4 = 1 x4 = 3

5 y5 = 0 x5 = 4

T A B L E 5D.2 Random Integers

u u* j

0.9120440 5.56022 5

0.0075452 1.037726 1

0.2808588 2.404294 2

0.4602787 3.301394 3

0.5601059 3.800529 3

............................................................................................................................................

18Bootstrap techniques for time-series data are much different, and we will not discuss them here.

19Random number generators use a “starting value,” called a seed. By choosing a seed the same sequence of random

numbers can be obtained in subsequent runs. See Appendix B.4.1 for a discussion of how one class of random number

generators work.



�

� �

�

256 CHAPTER 5 The Multiple Regression Model

T A B L E 5D.3 One Bootstrap Sample

Observation y x

5 y5 = 0 x5 = 4

1 y1 = 6 x1 = 0

2 y2 = 2 x2 = 1

3 y3 = 3 x3 = 2

3 y3 = 3 x3 = 2

some observations will be chosen multiple times, and others (such as observation 4 in this case)

will not appear at all.

5D.2 Bootstrap Bias Estimate

The estimator β̂may be a biased estimator. Estimator bias is the difference between the estimator’s

expected value and the true parameter, or

bias
(

β̂
)

= E
(

β̂
)

− β

For a consistent estimator the bias disappears as N →∞, but we can estimate the bias given a

sample of size N. Using the process described in the previous section, obtain bootstrap samples

b = 1, 2,… ,B, each of size N. Using each bootstrap sample obtain an estimate β̂b. If B = 200,

then we have 200 bootstrap sample estimates β̂1, β̂2,… , β̂200. The average, or sample mean, of the

B bootstrap sample estimates is

β̂ = 1

B

B∑

b=1

β̂b

The bootstrap estimate of the bias is

bootstrap bias
⋀(

β̂
)

= β̂ − β̂O

where β̂O is the estimate obtained using the original sample [the subscript is “oh” and not zero].

In this calculation, β̂ plays the role of E
(

β̂
)

and β̂O, the estimate from the original sample, plays

the role of the true parameter β. A descriptive saying about bootstrapping is that that “β̂O is true

in the sample,” emphasizing the role played by the original sample estimate, β̂O.

5D.3 Bootstrap Standard Error
Bootstrap standard error calculation requires B bootstrap samples of size N. For the purpose of

computing standard errors, the number of bootstrap samples should be at least 50, and perhaps 200

or 400, depending on the complexity of your estimation problem.20 The bootstrap standard error

is the sample standard deviation of the B bootstrap estimates. The sample standard deviation is

the square root of the sample variance. The bootstrap estimate of var
(

β̂
)

is the sample variance

of the bootstrap estimates β̂1, β̂2,… , β̂B,

bootstrap var
(

β̂
)

=
∑B

b=1

(

β̂b − β̂
)2/
(B − 1)

............................................................................................................................................

20Try a number of bootstraps B. For standard errors B = 200 is a good starting value. Compute the bootstrap standard

error. Change the random number seed a few times. If the bootstrap standard error changes little, then B is large enough.

If there are substantial changes, increase B.
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The bootstrap standard error is

bootstrap se
(

β̂
)

=
√

bootstrap var
(

β̂
)

=

√
∑B

b=1

(

β̂b − β̂
)2/
(B − 1)

In large samples, the bootstrap standard error is no better, or worse, than the theoretically derived

standard error. The advantage of the bootstrap standard error is that we need not derive the theo-

retical standard error, which can sometimes be very difficult. Even if the theoretical standard error

can be obtained, the bootstrap standard error can be used as a check of the estimate based on a

theoretical formula. If the bootstrap standard error is considerably different from the theory-based

standard error, then either (i) the sample size N is not large enough to justify asymptotic theory,

or (ii) the theoretical formula has an error. The theoretical standard error could be wrong if one of

the model assumptions does not hold, or there is a math error, or there is an error in the software

calculating the estimate based on the theoretical standard error (yes, that sometimes happens).

We can use the bootstrap standard error the same way as the usual standard error. An asymp-

totically justified 100(1 − α)% interval estimator of β is

β̂ ± tc
[

bootstrap se
(

β̂
)]

where tc is the 1 – α∕2 percentile of the t-distribution. In large samples, using tc = 1.96 leads

to a 95% interval estimate. This is sometimes called the normal-based bootstrap confidence
interval.

For testing the null hypothesis H0∶β = c against H1∶β ≠ c, a valid test statistic is

t =
β̂ − c

bootstrap se
(

β̂
)

If the null hypothesis is true, the test statistic has a standard normal distribution21 in large samples.

At the 5% level, we reject the null hypothesis if t ≥ 1.96 or t ≤ −1.96.

5D.4 Bootstrap Percentile Interval Estimate
A percentile interval estimate, or percentile confidence interval, does not use the approximate

large sample normality of an estimator. Recall that in the simple regression model a 95% interval

estimator is obtained from equation (3.5), which is

P
[
bk − tcse

(
bk
)
≤ βk ≤ bk + tcse

(
bk
)]
= 1 − α

where tc = t(0.975, N−K). The interval estimator
[
bk − tcse

(
bk
)
, bk + tcse

(
bk
)]

will contain the true

parameter βk in 95% of repeated samples from the same population. Another descriptive phrase

used when discussing bootstrapping is that we “treat the sample as the population.” This makes

the point that by using bootstrapping, we are trying to learn about an estimator’s sampling prop-
erties; or how the estimator performs in repeated samples. Bootstrapping treats each bootstrap

sample as a “repeated sample.” Using this logic, if we obtain many bootstrap samples, and many

estimates (sorting the B bootstrap estimates from smallest to largest) a 95% percentile interval

estimate is
[

β̂
∗
(0.025), β̂

∗
(0.975)

]

where β̂
∗
(0.025) is the 2.5%-percentile of the B bootstrap estimates,

and β̂
∗
(0.975) is the 97.5%-percentile of the B bootstrap estimates. Because of the way software

programmers find percentiles, it is useful to choose B such that α(B + 1) is a convenient integer.

If B = 999, then the 2.5%-percentile is the 25th value and the 97.5%-percentile is the 975th value.

If B = 1999, then the 2.5%-percentile is the 50th value and the 97.5%-percentile is the 1950th

value. Calculating percentile interval estimates requires a larger number of bootstrap samples

than calculating a standard error. Intervals calculated this way are not necessarily symmetrical.

............................................................................................................................................

21Because of its large sample justification, some software packages will call this statistic “z.”
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5D.5 Asymptotic Refinement
If it is possible to derive a theoretical expression for the variance of an estimator that is valid in

large samples, then we can combine it with bootstrapping to improve upon standard asymptotic

theory. Asymptotic refinement produces a test statistic critical value that leads to more accurate

tests. What do we mean by that? A test of H0∶β = c against H1∶β ≠ c uses an asymptotically

valid nominal standard error and the t-statistic t =
(

β̂ − c
)/

se
(

β̂
)

. If α = 0.05, we reject the null

hypothesis if t ≥ 1.96 or t ≤ −1.96. This test is called a symmetrical two-tail test. In finite (small)

samples, the actual rejection probability is not α = 0.05 but P(reject H0|H0 is true) = α + error.

The error goes to zero as the sample size N approaches infinity. More precisely, N × error ≤ N*

where N* is some upper bound. In order for this to be true, as N →∞ the error must approach zero,

error → 0. Not only must error → 0, but also it must approach zero at the same rate as N →∞,

so that the two effects are offsetting, with product N × error staying a finite number. This is called

convergence to zero at rate “N.” Using a bootstrap critical value, t∗c , instead of 1.96 it can be

shown that N2 × error ≤N*, so that the test size error converges to zero at rate N2. We have a more

accurate test because the error in the test size goes to zero faster using the bootstrap critical value.

The gain in accuracy is “easy” to obtain. Resample the data B times. In each bootstrap sample,

compute

tb =
β̂b − β̂O

se
(

β̂b

)

In this expression, β̂b is the estimate in the bth bootstrap sample, β̂O is the estimate based on the

original sample, and se
(

β̂b

)

is the nominal standard error, the usual theory-based standard error,

calculated using the bth bootstrap sample. This is the bootstrap equivalent of equation (3.3). To

find the bootstrap critical value t∗c (i) compute |tb|, (ii) sort them in ascending magnitude, then

(iii) t∗c is the 100(1 − α)-percentile of |tb|. To test H0∶β = c against H1∶β ≠ c use the t-statistic

t =
(

β̂ − c
)/

se
(

β̂
)

computed with the original sample, and reject the null hypothesis if t ≥ t∗c
or t ≤ −t∗c . The 100(1 − α)% interval estimate β̂ ± t∗c se

(

β̂
)

is sometimes called a percentile-t
interval estimate.

For a right-tail test, H0∶β ≤ c against H1∶β > c, t∗c is the 100(1 − α)-percentile of tb,

dropping the absolute value operation. Reject the null hypothesis if t ≥ t∗c . For a left-tail test,

H0∶β ≥ c against H1∶β < c, t∗c is the 100α-percentile of tb. Reject the null hypothesis if t ≤ t∗c .

E X A M P L E 5.21 Bootstrapping for Nonlinear Functions g1

(
β2

)
= exp

(
β2∕10

)

and g2

(
β1, β2

)
= β1/β2.

Clearly it is time for an example! Using the same Monte Carlo

design as in Appendix 5C, we create one sample for N = 20,

40, 100, 200, 500, and 1000. They are in the data files mc20,

mc40, mc100, mc200, mc500, and mc1000.

First we explore bootstrapping g1

(
β2

)
= exp

(
β2∕10

)
.

Table 5D.4a contains the estimates, delta method standard

error, and an asymptotically justified 95% interval estimate

exp
(
b2∕10

)
±
{

1.96 × se
[
exp

(
b2∕10

)]}

Compare these to Table 5C.2 containing the Monte Carlo

averages of the estimates, the nominal (delta method) stan-

dard errors, and the standard deviation of the estimates.

Because we will calculate percentile interval estimates

and a bootstrap critical value, we use B = 1999 bootstrap

samples as the basis for the estimates in Table 5D.4b. The

bootstrap estimates of the bias diminish as the sample size

increases, reflecting the consistency of the estimator. The

bootstrap standard errors for N = 20, 40, and 100 are quite

similar to the delta method standard errors for these sample

sizes shown in Table 5D.4a. They are not as similar to the

Monte Carlo average nominal standard error and standard

deviation in Table 5C.2. However, once the sample size is

N = 200 or more, the bootstrap standard errors are much

closer to the results in Table 5C.2. In Table 5D.4b, we also
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T A B L E 5D.4a Delta Method g1
(
𝛃2
)
= exp

(
𝛃2∕10

)
= 2.71828

N g1
(
b2
)
= exp

(
b2∕10

)
se
[
exp

(
b2∕10

)]
95% Interval

20 2.91088 0.62367 [1.6885, 4.1332]

40 2.34835 0.37781 [1.6079, 3.0888]

100 2.98826 0.30302 [2.3945, 3.5822]

200 2.86925 0.20542 [2.4666, 3.2719]

500 2.63223 0.11241 [2.4119, 2.8526]

1000 2.78455 0.08422 [2.6195, 2.9496]

T A B L E 5D.4b Bootstrapping g1
(
𝛃2
)
= exp

(
𝛃2∕10

)

N Bootstrap Bias Bootstrap se PI t∗c
20 0.0683 0.6516 [2.0098, 4.5042] 3.0063

40 0.0271 0.3796 [1.7346, 3.2173] 2.2236

100 0.0091 0.3050 [2.4092, 3.6212] 2.0522

200 0.0120 0.2039 [2.4972, 3.3073] 1.9316

500 −0.0001 0.1130 [2.4080, 2.8567] 2.0161

1000 0.0025 0.0844 [2.6233, 2.9593] 1.9577

report the 95% percentile interval (PI) estimate for each

sample size. Finally, we report the asymptotically refined crit-

ical value that would be used for a symmetrical two-tail test

at the 5% level of significance, or when constructing a confi-

dence interval. Based on these values, we judge that sample

sizes N = 20 and 40 are not really sufficiently large to support

asymptotic inferences in our specific samples, but if we do

proceed, then the usual critical value 1.96 should not be used

for t-tests or interval estimates. For sample sizes N = 100

or more, it appears that usual asymptotic procedures can be

justified.

T A B L E 5D.5 Bootstrapping g2
(
𝛃1,𝛃2

)
= 𝛃1∕𝛃2

N g2
(
b1, b2

)
= b1∕b2 Bootstrap Bias se

(
b1∕b2

)
Bootstrap se

20 8.18406 0.7932 4.75590 4.4423

40 13.15905 1.0588 5.38959 6.0370

100 7.59037 0.2652 2.14324 2.3664

200 8.71779 0.0714 1.64641 1.6624

500 10.74195 0.0825 1.15712 1.2180

1000 9.44545 0.0120 0.73691 0.7412

Table 5D.5 contains similar results for the function

g2

(
β1, β2

)
= β1∕β2. The estimates, bootstrap bias, delta

method standard error, and bootstrap standard error tell a

similar story. For this nonlinear function, a ratio of two

parameters, N = 200 or more would make us feel better about

asymptotic inference. It is reassuring when the bootstrap

and delta method standard errors are similar, although these

are somewhat smaller than the average nominal standard

error and standard deviations in Table 5C.3. Expressions

containing ratios of parameters in one form or another often

require larger samples for asymptotic inference to hold.
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CHAPTER 6

Further Inference
in the Multiple
Regression Model

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain the concepts of restricted and

unrestricted sums of squared errors and how

they are used to test hypotheses.

2. Use the F-test to test single null hypotheses or

joint null hypotheses.

3. Use your computer software to perform an

F-test.

4. Test the overall significance of a regression

model and identify the components of this test

from your computer output.

5. From output of your computer software, locate

(a) the sum of squared errors, (b) the F-value for

the overall significance of a regression model,

(c) the estimated covariance matrix for the least

squares estimates, and (d) the correlation matrix

for the explanatory variables.

6. Explain the relationship between the finite

sample F-test and the large sample χ2-test,

and the assumptions under which each is

suitable.

7. Obtain restricted least squares estimates that

include nonsample information in the

estimation procedure.

8. Explain the properties of the restricted least

squares estimator. In particular, how do its bias

and variance compare with those of the

unrestricted, ordinary, least squares estimator?

9. Explain the differences between models

designed for prediction and models designed to

estimate a causal effect.

10. Explain what is meant by (a) an omitted variable

and (b) an irrelevant variable. Explain the con-

sequences of omitted and irrelevant variables

for the properties of the least squares estimator.

11. Explain the concept of a control variable and the

assumption necessary for a control variable to

be effective.

12. Explain the issues that need to be considered

when choosing a regression model.

13. Test for misspecification using RESET.

14. Compute forecasts, standard errors of forecast

errors, and interval forecasts from a multiple

regression model.

15. Use the Akaike information or Schwartz criteria

to select variables for a predictive model.
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16. Identify collinearity and explain its

consequences for least squares estimation.

17. Identify influential observations in a multiple

regression model.

18. Compute parameter estimates for a regression

model that is nonlinear in the parameters and

explain how nonlinear least squares differs from

linear least squares.

K E Y W O R D S

χ2-test

AIC

auxiliary regressions

BIC

causal model

collinearity

control variables

F-test

influential observations

irrelevant variables

nonlinear least squares

nonsample information

omitted variable bias

overall significance

prediction

predictive model

RESET

restricted least squares

restricted model

restricted SSE
SC

single and joint null hypotheses

unrestricted model

unrestricted SSE

Economists develop and evaluate theories about economic behavior. Hypothesis testing

procedures are used to test these theories. In Chapter 5, we developed t-tests for null hypotheses

consisting of a single restriction on one parameter βk from the multiple regression model, and

null hypotheses consisting of a single restriction that involves more than one parameter. In this

chapter we extend our earlier analysis to testing a null hypothesis with two or more restrictions

on two or more parameters. An important new development for such tests is the F-test. A large

sample alternative that can be used under weaker assumptions is the χ2-test.

The theories that economists develop sometimes provide nonsample information that can

be used along with the information in a sample of data to estimate the parameters of a regres-

sion model. A procedure that combines these two types of information is called restricted least

squares. It can be a useful technique when the data are not information-rich—a condition called

collinearity—and the theoretical information is good. The restricted least squares procedure also

plays a useful practical role when testing hypotheses. In addition to these topics, we discuss

model specification for the multiple regression model, prediction, and the construction of pre-

diction intervals. Model specification involves choosing a functional form and choosing a set of

explanatory variables.

Critical to the choice of a set of explanatory variables is whether a model is to be used for

prediction or causal analysis. For causal analysis, omitted variable bias and selection of control

variables is important. For prediction, selection of variables that are highly correlated with the

dependent variable is more relevant. We also discuss the problems that arise if our data are not

sufficiently rich because the variables are collinear or lack adequate variation, and summarize

concepts for detecting influential observations. The use of nonlinear least squares is introduced

for models that are nonlinear in the parameters.

6.1 Testing Joint Hypotheses: The F-test
In Chapter 5 we showed how to use one- and two-tail t-tests to test hypotheses involving

1. A single coefficient

2. A linear combination of coefficients

3. A nonlinear combination of coefficients.
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The test for a single coefficient was the most straightforward, requiring only the estimate of the

coefficient and its standard error. For testing a linear combination of coefficients, computing the

standard error of the estimated linear combination brought added complexity. It uses the vari-

ances and covariances of all estimates in the linear combination and can be computationally

demanding if done on a hand calculator, especially if there are three or more coefficients in the

linear combination. Software will perform the test automatically, however, yielding the standard

error, the value of the t-statistic, and the p-value of the test. If assumptions MR1–MR6 hold

then t-statistics have exact distributions, making the tests valid for small samples. If MR6 is

violated, implying
(
ei|X

)
is no longer normally distributed, or if MR2: E

(
ei|X

)
= 0 is weak-

ened to the conditions E
(
ei
)
= 0 and cov

(
ei, xjk

)
= 0, then we need to rely on large sample

results that make the tests approximately valid, with the approximation improving as sample size

increases.

For testing non-linear combinations of coefficients, one must rely on large sample approx-

imations even if assumptions MR1–MR6 hold, and the delta method must be used to compute

standard errors. Derivatives of the nonlinear function and the covariance matrix of the coeffi-

cients are required, but as with a linear combination, software will perform the test automatically,

computing the standard error for you, as well as the value of the t-statistic and its p-value. In

Chapter 5 we gave an example of an interval estimate rather than a hypothesis test for a nonlinear

combination, but that example—the optimal level of advertising—showed how to obtain all the

ingredients needed for a test. For both hypothesis testing and interval estimation of a nonlinear

combination, it is the standard error that requires more effort.

A characteristic of all the t tests in Chapter 5 is that they involve a single conjecture about

one or more of the parameters—or, put another way, there is only one “equal sign” in the null

hypothesis. In this chapter, we are interested in extending hypothesis testing to null hypotheses

that involve multiple conjectures about the parameters. A null hypothesis with multiple conjec-

tures, expressed with more than one equal sign, is called a joint hypothesis. An example of a joint

hypothesis is testing whether a group of explanatory variables should be included in a particular

model. Should variables on socioeconomic background, along with variables describing educa-

tion and experience, be used to explain a person’s wage? Does the quantity demanded of a product

depend on the prices of substitute goods, or only on its own price? Economic hypotheses such as

these must be formulated into statements about model parameters. To answer the first of the two

questions, we set up a null hypothesis where the coefficients of all the socioeconomic variables

are equal to zero. For the second question, the null hypothesis would equate the coefficients of

prices of all substitute goods to zero. Both are of the form

H0∶β4 = 0, β5 = 0, β6 = 0 (6.1)

where β4, β5, and β6 are the coefficients of the socioeconomic variables, or the coefficients of the

prices of substitute goods. The joint null hypothesis in (6.1) contains three conjectures (three equal

signs): β4 = 0, β5 = 0, and β6 = 0. A test of H0 is a joint test for whether all three conjectures

hold simultaneously.

It is convenient to develop the test statistic for testing hypotheses such as (6.1) within the

context of an example. We return to Big Andy’s Burger Barn.

E X A M P L E 6.1 Testing the Effect of Advertising

The test used for testing a joint null hypothesis is the F-test.
To introduce this test and concepts related to it, consider the

Burger Barn sales model given in (5.23):

SALES = β1 + β2PRICE + β3ADVERT + β4ADVERT2 + e
(6.2)

Suppose now we wish to test whether SALES is influenced by

advertising. Since advertising appears in (6.2) as both a linear

term ADVERT and as a quadratic term ADVERT2, advertis-

ing will have no effect on sales if β3 = 0 and β4 = 0; adver-

tising will have an effect if β3 ≠ 0 or β4 ≠ 0 or if both β3
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and β4 are nonzero. Thus, for this test our null and alternative

hypotheses are

H0∶β3 = 0, β4 = 0

H1∶β3 ≠ 0 or β4 ≠ 0 or both are nonzero

Relative to the null hypothesis H0∶β3 = 0, β4 = 0, the model

in (6.2) is called the unrestricted model; the restrictions in

the null hypothesis have not been imposed on the model. It

contrasts with the restricted model, which is obtained by

assuming the parameter restrictions in H0 are true. When H0

is true, β3 = 0 and β4 = 0, and ADVERT and ADVERT2 drop

out of the model. It becomes

SALES = β1 + β2PRICE + e (6.3)

The F-test for the hypothesis H0∶β3 = 0, β4 = 0 is based on

a comparison of the sums of squared errors (sums of squared

OLS residuals) from the unrestricted model in (6.2) and the

restricted model in (6.3). Our shorthand notation for these

two quantities is SSEU and SSER, respectively.

Adding variables to a regression reduces the sum of

squared errors—more of the variation in the dependent vari-

able becomes attributable to the variables in the regression

and less of its variation becomes attributable to the error.

In terms of our notation, SSER – SSEU ≥ 0. Using the data

in the file andy to estimate (6.2) and (6.3), we find that

SSEU = 1532.084 and SSER = 1896.391. Adding ADVERT
and ADVERT2 to the equation reduces the sum of squared

errors from 1896.391 to 1532.084.

What the F-test does is to assess whether the reduction in the sum of squared errors is sufficiently

large to be significant. If adding the extra variables has little effect on the sum of squared errors,

then those variables contribute little to explaining variation in the dependent variable, and there

is support for a null hypothesis that drops them. On the other hand, if adding the variables leads to

a big reduction in the sum of squared errors, those variables contribute significantly to explaining

the variation in the dependent variable, and we have evidence against the null hypothesis. The

F-statistic determines what constitutes a large reduction or a small reduction in the sum of squared

errors. It is given by

F =
(
SSER − SSEU

)
∕J

SSEU∕(N − K)
(6.4)

where J is the number of restrictions or number of hypotheses in H0, N is the number of obser-

vations, and K is the number of coefficients in the unrestricted model.

To use the F-statistic to assess whether a reduction in the sum of squared errors is sufficient

to reject the null hypothesis, we need to know its probability distribution when the null hypothesis

is true. If assumptions MR1–MR6 hold, then, when the null hypothesis is true, the statistic F has

what is called an F-distribution with J numerator degrees of freedom and (N − K ) denominator

degrees of freedom. Some details about this distribution are given in Appendix B.3.8, with its

typical shape illustrated in Figure B.9(a). If the null hypothesis is not true, then the difference

between SSER and SSEU becomes large, implying that the restrictions placed on the model by

the null hypothesis significantly reduce the ability of the model to fit the data. A large value for

SSER − SSEU means that the value of F tends to be large, so that we reject the null hypothesis

if the value of the F-test statistic becomes too large. What is too large is decided by compar-

ing the value of F to a critical value Fc, which leaves a probability α in the upper tail of the

F-distribution with J and N − K degrees of freedom. Tables of critical values for α = 0.01 and

α = 0.05 are provided in Statistical Tables 4 and 5. The rejection region F ≥ Fc is illustrated in

Figure B.9(a).

E X A M P L E 6.2 The F-Test Procedure

Using the hypothesis testing steps introduced in Chapter 3,

the F-test procedure for testing whether ADVERT and

ADVERT2 should be excluded from the sales equation is as

follows:

1. Specify the null and alternative hypotheses: The joint

null hypothesis is H0∶β3 = 0, β4 = 0. The alternative

hypothesis is H1∶β3 ≠ 0 or β4 ≠ 0 or both are nonzero.
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2. Specify the test statistic and its distribution if the null
hypothesis is true: Having two restrictions in H0 means

J = 2. Also, recall that N = 75, so the distribution of the

F-test statistic when H0 is true is

F =
(
SSER − SSEU

)
∕2

SSEU∕(75 − 4)
∼ F(2,71)

3. Set the significance level and determine the rejection
region: Using α = 0.05, the critical value from the

F(2, 71)-distribution is Fc = F(0.95, 2, 71), giving a rejection

region of F ≥ 3.126. Alternatively, H0 is rejected if

p-value ≤ 0.05.

4. Calculate the sample value of the test statistic and, if
desired, the p-value: The value of the F-test statistic is

F =
(
SSER − SSEU

)
∕J

SSEU∕(N − K)
=
(1896.391 − 1532.084)∕2

1532.084∕(75 − 4)
= 8.44

The corresponding p-value is p = P
(
F(2, 71) > 8.44

)
=

0.0005.

5. State your conclusion: Since F = 8.44 > Fc = 3.126, we

reject the null hypothesis that both β3 = 0 and β4 = 0,

and conclude that at least one of them is not zero.

Advertising does have a significant effect upon sales

revenue. The same conclusion is reached by noting that

p-value = 0.0005 < 0.05.

You might ask where the value Fc = F(0.95, 2, 71) = 3.126 came

from. The F critical values in Statistical Tables 4 and 5 are

reported for only a limited number of degrees of freedom.

However, exact critical values such as the one for this problem

can be obtained for any number of degrees of freedom using

your econometric software.

6.1.1 Testing the Significance of the Model
An important application of the F-test is for what is called testing the overall significance of

a model. In Section 5.5.1, we tested whether the dependent variable y is related to a particular

explanatory variable xk using a t-test. In this section, we extend this idea to a joint test of the

relevance of all the included explanatory variables. Consider again the general multiple regression

model with (K − 1) explanatory variables and K unknown coefficients

y = β1 + x2β2 + x3β3 + · · · + xKβK + e (6.5)

To examine whether we have a viable explanatory model, we set up the following null and alter-

native hypotheses:

H0∶β2 = 0, β3 = 0,… , βK = 0

H1∶At least one of the βk is nonzero fork = 2, 3,… ,K (6.6)

The null hypothesis is a joint one because it has K − 1 components. It conjectures that each and

every one of the parameters βk, other than the intercept parameter β1, are simultaneously zero. If

this null hypothesis is true, none of the explanatory variables influence y, and thus our model is

of little or no value. If the alternative hypothesis H1 is true, then at least one of the parameters is

not zero, and thus one or more of the explanatory variables should be included in the model. The

alternative hypothesis does not indicate, however, which variables those might be. Since we are

testing whether or not we have a viable explanatory model, the test for (6.6) is sometimes referred

to as a test of the overall significance of the regression model. Given that the t-distribution can

only be used to test a single null hypothesis, we use the F-test for testing the joint null hypothesis

in (6.6). The unrestricted model is that given in (6.5). The restricted model, assuming the null

hypothesis is true, becomes

yi = β1 + ei (6.7)

The least squares estimator of β1 in this restricted model is b∗
1
=
∑N

i=1
yi∕N = y, which is the

sample mean of the observations on the dependent variable. The restricted sum of squared errors
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from the hypothesis (6.6) is

SSER =
N∑

i=1

(
yi − b∗

1

)2 =
N∑

i=1

(
yi − y

)2 = SST

In this one case, in which we are testing the null hypothesis that all the model parameters are zero

except the intercept, the restricted sum of squared errors is the total sum of squares (SST) from

the full unconstrained model. The unrestricted sum of squared errors is the sum of squared errors

from the unconstrained model—that is, SSEU = SSE. The number of restrictions is J = K − 1.

Thus, to test the overall significance of a model, but not in general, the F-test statistic can be

modified and written as

F =
(SST − SSE)∕(K − 1)

SSE∕(N − K)
(6.8)

The calculated value of this test statistic is compared to a critical value from the F(K − 1, N − K)

distribution. It is used to test the overall significance of a regression model. The outcome of

the test is of fundamental importance when carrying out a regression analysis, and it is usually

automatically reported by computer software as the F-value.

E X A M P L E 6.3 Overall Significance of Burger Barns Equation

To illustrate, we test the overall significance of the regression,

(6.2), used to explain Big Andy’s sales revenue. We want

to test whether the coefficients of PRICE, ADVERT , and

ADVERT2 are all zero, against the alternative that at least one

of these coefficients is not zero. Recalling that the model is

SALES = β1 + β2PRICE + β3ADVERT + β4ADVERT2 + e,

the hypothesis testing steps are as follows:

1. We are testing

H0∶β2 = 0, β3 = 0, β4 = 0

against the alternative

H1∶At least one of β2 or β3 or β4 is nonzero

2. If H0 is true, F =
(SST − SSE)∕(4 − 1)

SSE∕(75 − 4)
∼ F(3,71).

3. Using a 5% significance level, we find the critical value

for the F-statistic with (3,71) degrees of freedom is

Fc = 2.734. Thus, we reject H0 if F ≥ 2.734.

4. The required sums of squares are SST = 3115.482 and

SSE = 1532.084 which give an F-value of

F =
(SST − SSE)∕(K − 1)

SSE∕(N − K)

=
(3115.482 − 1532.084) ∕3

1532.084∕(75 − 4)
= 24.459

Also, p-value = P(F ≥ 24.459) = 0.0000, correct to four

decimal places.

5. Since 24.459 > 2.734, we reject H0 and conclude that the

estimated relationship is a significant one. A similar con-

clusion is reached using the p-value. We conclude that

at least one of PRICE, ADVERT , or ADVERT2 have an

influence on sales. Note that this conclusion is consis-

tent with conclusions that would be reached using sepa-

rate t-tests for the significance of each of the coefficients

in (5.25).

Go back and check the output from your computer software.

Can you find the F-value 24.459 and the corresponding

p-value of 0.0000 that form part of the routine output?

6.1.2 The Relationship Between t- and F-Tests
A question that may have occurred to you is what happens if we have a null hypothesis which

is not a joint hypothesis; it only has one equality in H0? Can we use an F-test for this case, or

do we go back and use a t-test? The answer is when testing a single “equality” null hypothesis

(a single restriction) against a “not equal to” alternative hypothesis, either a t-test or an F-test can

be used; the test outcomes will be identical. Two-tail t-tests are equivalent to F-tests when there is
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a single hypothesis in H0. An F-test cannot be used as an alternative to a one-tail t-test, however.

To explore these notions we return to the Big Andy example.

E X A M P L E 6.4 When are t- and F-tests equivalent?

In Examples 6.1 and 6.2, we tested whether advertising

affects sales by using an F-test to test whether β3 = 0 and

β4 = 0 in the model

SALES = β1 + β2PRICE + β3ADVERT + β4ADVERT2 + e
(6.9)

Suppose now we want to test whether PRICE affects SALES.

Following the same F-testing procedure, we have H0∶β2 = 0,

H1∶β2 ≠ 0, and the restricted model

SALES = β1 + β3ADVERT + β4ADVERT2 + e (6.10)

Estimating (6.9) and (6.10) gives SSEU = 1532.084 and

SSER = 2683.411, respectively. The required F-value is

F =
(
SSER − SSEU

)
∕J

SSEU∕(N − K)

=
(2683.411 − 1532.084)∕1

1532.084∕(75 − 4)
= 53.355

The 5% critical vale is Fc = F(0.95, 1, 71) = 3.976. Thus, we

reject H0∶β2 = 0.

Now let us see what happens if we use a t-test for the

same problem: H0∶β2 = 0 and H1∶β2 ≠ 0. The results from

estimating (6.9) were

SALES
(se)

⋀

= 109.72

(6.80)
− 7.640PRICE
(1.046)

+ 12.151ADVERT
(3.556)

−2.768ADVERT2

(0.941)

The t-value for testing H0∶β2 = 0 against H1∶β2 ≠ 0 is

t = 7.640∕1.045939 = 7.30444. The 5% critical value for

the t-test is tc = t(0.975, 71) = 1.9939. We reject H0∶β2 = 0

because 7.30444 > 1.9939. The reason for using so many

decimals here will soon become clear. We wish to reduce

rounding error to ensure the relationship between the t- and

F-tests is correctly revealed.

Notice that the squares of the calculated and

critical t-values are identical to the corresponding

F-values. That is, t2 = (7.30444)2 = 53.355 = F and

t2
c =(1.9939)2 = 3.976 = Fc. The reason for this corre-

spondence is an exact relationship between the t- and

F-distributions. The square of a t random variable with df
degrees of freedom is an F random variable with 1 degree

of freedom in the numerator and df degrees of freedom in

the denominator: t2
(d𝑓 ) = F(1,d𝑓 ). Because of this exact rela-

tionship, the p-values for the two tests are identical, meaning

that we will always reach the same conclusion whichever

approach we take. However, there is no equivalence when

using a one-tail t-test when the alternative is an inequality

such as > or <. Because F = t2, the F-test cannot distinguish

between the left and right tails as is needed for a one-tail

test. Also, the equivalence between t-tests and F-tests does

not carry over when a null hypothesis consists of more than

a single restriction. Under these circumstances (J ≥ 2), an

F-test needs to be used.

Summarizing the F-Test Procedure

1. The null hypothesis H0 consists of one or more linear equality restrictions on the model

parameters βk. The number of restrictions is denoted by J. When J = 1, the null hypothe-

sis is called a single null hypothesis. When J ≥ 2, it is called a joint null hypothesis. The

null hypothesis may not include any “greater than or equal to” or “less than or equal to”

hypotheses.

2. The alternative hypothesis states that one or more of the equalities in the null hypothesis

is not true. The alternative hypothesis may not include any “greater than” or “less than”

options.

3. The test statistic is the F-statistic in equation (6.24).

4. If assumptions MR1–MR6 hold, and if the null hypothesis is true, F has the F-distribution

with J numerator degrees of freedom and N – K denominator degrees of freedom. The null

hypothesis is rejected if F ≥ Fc, where Fc = F(1–α, J, N−K) is the critical value that leaves α
percent of the probability in the upper tail of the F-distribution.

5. When testing a single equality null hypothesis, it is perfectly correct to use either the t- or

F-test procedure: they are equivalent. In practice, it is customary to test single restrictions

using a t-test. The F-test is usually reserved for joint hypotheses.
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6.1.3 More General F-Tests
So far we have discussed the F-test in the context of whether a variable or a group of variables

could be excluded from the model. The conjectures made in the null hypothesis were that partic-

ular coefficients are equal to zero. The F-test can also be used for much more general hypotheses.

Any number of conjectures (J ≤ K) involving linear hypotheses with equal signs can be tested.

Deriving the restricted model implied by H0 can be trickier, but the same general principles hold.

The restricted sum of squared errors is still greater than the unrestricted sum of squared errors.

In the restricted model, least squares estimates are obtained by minimizing the sum of squared

errors subject to the restrictions on the parameters being true, and the unconstrained minimum

(SSEU) is always less than the constrained minimum (SSER). If SSEU and SSER are substantially

different, assuming that the null hypothesis is true significantly reduces the ability of the model

to fit the data; in other words, the data do not support the null hypothesis, and it is rejected by the

F-test. On the other hand, if the null hypothesis is true, we expect the data to be compatible with

the conditions placed on the parameters. We expect little change in the sum of squared errors, in

which case the null hypothesis will not be rejected by the F-test.

E X A M P L E 6.5 Testing Optimal Advertising

To illustrate how to obtain a restricted model for a null

hypothesis that is more complex than assigning zero to a

number of coefficients, we return to Example 5.17 where

we found that the optimal amount for Andy to spend on

advertising ADVERT0 is such that

β3 + 2β4ADVERT0 = 1 (6.11)

Now suppose that Big Andy has been spending $1900 per

month on advertising and he wants to know whether this

amount could be optimal. Does the information from the

estimated equation provide sufficient evidence to reject a

hypothesis that $1900 per month is optimal? The null and

alternative hypotheses for this test are

H0∶β3 + 2 × β4 × 1.9 = 1 H1∶β3 + 2 × β4 × 1.9 ≠ 1

After carrying out the multiplication, these hypotheses can

be written as

H0∶β3 + 3.8β4 = 1 H1∶β3 + 3.8β4 ≠ 1

How do we obtain the restricted model implied by the null

hypothesis? Note that when H0 is true, β3 = 1 – 3.8β4. Sub-

stituting this restriction into the unrestricted model in (6.9)

gives

SALES = β1 + β2PRICE +
(
1 − 3.8β4

)
ADVERT

+ β4ADVERT2 + e

Collecting terms and rearranging this equation to put it in a

form convenient for estimation yields

(SALES − ADVERT ) = β1 + β2PRICE + β4

(
ADVERT2

− 3.8ADVERT ) + e (6.12)

Estimating this model by least squares with dependent

variable y = (SALES − ADVERT ) and explanatory variables

x2 = PRICE and x3 = (ADVERT 2 – 3.8ADVERT ) yields

the restricted sum of squared errors SSER = 1552.286. The

unrestricted sum of squared errors is the same as before,

SSEU = 1532.084. We also have one restriction (J = 1) and

N – K = 71 degrees of freedom. Thus, the calculated value

of the F-statistic is

F =
(1552.286 − 1532.084)∕1

1532.084∕71
= 0.9362

For α = 0.05, the critical value is Fc = 3.976. Since

F = 0.9362 < Fc = 3.976, we do not reject H0. We conclude

that Andy’s conjecture, that an advertising expenditure of

$1900 per month is optimal is compatible with the data.

Because there is only one conjecture in H0, you can

also carry out this test using the t-distribution. Check it

out. For the t-value, you should find t = 0.9676. The value

F = 0.9362 is equal to t2 = (0.9676)2, obeying the relation-

ship between t- and F-random variables that we mentioned

previously. You will also find that the p-values are identical.

Specifically,

p-value = P
(
F(1, 71) > 0.9362

)

= P
(
t(71) > 0.9676

)
+ P

(
t(71) < −0.9676

)
= 0.3365

The result 0.3365 > 0.05 leads us to conclude that

ADVERT0 = 1.9 is compatible with the data.

You may have noticed that our description of this test has deviated slightly from the

step-by-step hypothesis testing format introduced in Chapter 3 and used so far in the book.
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The same ingredients were there, but the arrangement of them varied. From now on, we will

be less formal about following these steps. By being less formal, we can expose you to the

type of discussion you will find in research reports, but please remember that the steps were

introduced for a purpose: to teach you good habits. Following the steps ensures that you include

a description of all the relevant components of the test and that you think about the steps in the

correct order. It is not correct, for example, to decide on the hypotheses or the rejection region

after you observe the value of the statistic.

E X A M P L E 6.6 A One-Tail Test

Suppose that, instead of wanting to test whether the data

supports the conjecture “ADVERT = 1.9 is optimal,” Big

Andy wants to test whether the optimal value of ADVERT is

greater than 1.9. If he has been spending $1900 per month

on advertising, and he does not want to increase this amount

unless there is convincing evidence that the optimal amount

is greater than $1900, he will set up the hypotheses

H0∶β3 + 3.8β4 ≤ 1 H1∶β3 + 3.8β4 > 1 (6.13)

In this case, we can no longer use the F-test. Using a t-test

instead, your calculations will reveal t = 0.9676. The rejec-

tion region for a 5% significane level is reject H0 if t ≥ 1.667.

Because 0.9676 < 1.667, we do not reject H0. There is not

enough evidence in the data to suggest the optimal level of

advertising expenditure is greater than $1900.

6.1.4 Using Computer Software
Though it is possible and instructive to compute an F-value by using the restricted and unrestricted

sums of squares, it is often more convenient to use the power of econometric software. Most

software packages have commands that will automatically compute t- and F-values and their

corresponding p-values when provided with a null hypothesis. You should check your software.

Can you work out how to get it to test null hypotheses similar to those we constructed? These

tests belong to a class of tests called Wald tests; your software might refer to them in this way.

Can you reproduce the answers we got for all the tests in Chapters 5 and 6?

E X A M P L E 6.7 Two (J = 2) Complex Hypotheses

In this example, we consider a joint test of two of Big Andy’s

conjectures. In addition to proposing that the optimal level of

monthly advertising expenditure is $1900, Big Andy is plan-

ning staffing and purchasing of inputs on the assumption that

when PRICE = $6 and ADVERT = 1.9, sales revenue will be

$80,000 on average. In the context of our model, and in terms

of the regression coefficients βk, the conjecture is

E(SALES|PRICE = 6,ADVERT = 1.9)
= β1 + β2PRICE + β3ADVERT + β4ADVERT2

= β1 + 6β2 + 1.9β3 + 1.92β4

= 80

Are the conjectures about sales and optimal advertising

compatible with the evidence contained in the sample of

data? We formulate the joint null hypothesis

H0∶β3 + 3.8β4 = 1, β1 + 6β2 + 1.9β3 + 3.61β4 = 80

The alternative is that at least one of these restrictions is not

true. Because there are J = 2 restrictions to test jointly, we

use an F-test. A t-test is not suitable. Note also that this is an

example of a test with two restrictions that are more general

than simply omitting variables. Constructing the restricted

model requires substituting both of these restrictions into our

extended model, which is left as an exercise. Using instead

computer output obtained by supplying the two hypotheses

directly to the software, we obtain a computed value for the

F-statistic of 5.74 and a corresponding p-value of 0.0049.

At a 5% significance level, the joint null hypothesis is

rejected. As another exercise, use the least squares estimates

to predict sales revenue for PRICE = 6 and ADVERT = 1.9.

Has Andy been too optimistic about the level of sales, or

too pessimistic?
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6.1.5 Large Sample Tests
There are two key requirements for the F-statistic to have the F-distribution in samples of all sizes:

(1) assumptions MR1–MR6 must hold and (2) the restrictions in H0 must be linear functions of

the parameters β1, β2, …, βK. In this section, we are concerned with what test statistics are valid

in large samples when the errors are no longer normally distributed or when the strict exogeneity

assumption is weakend to E
(
ei
)
= 0 and cov

(
ei, xjk

)
= 0 (i ≠ j). We will also make a few remarks

about testing nonlinear hypotheses.

To appreciate the testing alternatives, details about how the F-statistic in (6.4) is constructed

are in order. An F random variable is defined as the ratio of two independent chi-square
(
χ2
)

random variables, each divided by their degrees of freedom.1 That is, if V1 ∼ χ2

(m1)
and V2 ∼ χ2

(m2)
,

and V1 and V2 are independent, then

F =
V1∕m1

V2∕m2

∼ F(m1,m2)

In our case, the two independent χ2 random variables are

V1 =
(
SSER − SSEU

)

σ2
∼ χ2

(J) and V2 =
(N − K)σ̂2

σ2
∼ χ2

(N−K)

If σ2 were known, V1 would be a natural candidate for testing whether the difference between

SSER and SSEU is sufficiently large to reject a null hypothesis. Because σ2 is unknown, we use

V2 to eliminate it. Specifically,

F =
V1∕J

V2∕(N − K)
=

(
SSER − SSEU

)

σ2

/

J

(N − K)σ̂2

σ2

/

(N − K)
=
(
SSER − SSEU

)
∕J

σ̂2
∼ F(J,N−K) (6.13)

Note that σ̂2 = SSEU∕(N − K), and so the result in (6.13) is identical to the F-statistic first intro-

duced in (6.4).

When we drop the normality assumption or weaken the strict exogeneity assumption, the

argument becomes slightly different. In this case, V1 no longer has an exact χ2-distribution, but

we can nevertheless rely on asymptotic theory to say that

V1 =
(
SSER − SSEU

)

σ2

a∼χ2
(J)

Then, we can go one step further and say that replacing σ2 by its consistent estimator σ̂2
does not

change the asymptotic distribution of V1.2 That is,

V̂1 =
(
SSER − SSEU

)

σ̂2

a∼χ2
(J) (6.14)

This statistic is a valid alternative for testing joint linear hypotheses in large samples under less

restrictive assumptions, with the approximation improving as sample size increases. At a 5%

significance level, we reject H0 if V̂1 is greater than or equal to the critical value χ2
(0.95,J), or if

the p-value P
(

χ2
(J) > V̂1

)

is less than 0.05. In response to an automatic test command, most

software will give you values for both F and V̂1. The value for V̂1 will probably be referred to as

“chi-square.”

Although it is clear that F = V̂1∕J, the two test alternatives will not necessarily lead to

the same outcome; their p-values will be different. Both are used in practice, and it is possible
............................................................................................................................................

1See Appendices B.3.6 and B.3.8.

2See William Greene, Econometric Analysis 8e, Pearson Prentice-Hall, 2018, Theorem D.16, page 1168 of online

Appendix.
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that the F-test will provide a better small-sample approximation than V̂1 even under the less

restrictive assumptions. As the sample size grows (the degrees of freedom for the denominator

of the F-statistic increase), the two tests become identical—their p-values become the same, and

their critical values beome equivalent in the sense that limN→∞F(1−α, J,N−K) = χ2
(1−α,J)∕J. Check

it out yourself. Suppose J = 4 and α = 0.05, then from Statistical Table 3, χ2
(0.95,4)∕4 = 9.488∕4

= 2.372. The F-values are in Statistical Table 4, but it is instructive to use software to provide a

few extra values. Doing so, we find F(0.95, 4, 60) = 2.525, F(0.95, 4, 120) = 2.447, F(0.95, 4, 500) = 2.390,

F(0.95, 4, 1000) = 2.381, and F(0.95, 4, 10000) = 2.373. As N − K increases, the 95th percentile of the

F-distribution approaches 2.372.

E X A M P L E S 6.2 and 6.5 Revisited

When testing H0∶β3 = β4 = 0 in the equation

SALES = β1 + β2PRICE + β3ADVERT + β4ADVERT2 + e
(6.15)

we obtain F = 8.44 with corresponding p-value = 0.0005,

and χ2 = 16.88 with corresponding p-value = 0.0002.

Because there are two restrictions (J = 2), the F-value is half

the χ2-value. The p-values are different because the tests are

different.

For testing H0∶β3 + 3.8β4 = 1, we obtain F = 0.936

with corresponding p-value = 0.3365 and χ2 = 0.936 with

corresponding p-value = 0.3333. The F- and χ2-values are

equal because J = 1, but again the p-values are slightly

different.

Testing Nonlinear Hypotheses Test statistics for joint hypotheses which are nonlinear

functions of the parameters are more challenging theoretically,3 but nevertheless can typically be

carried out by your software with relative ease. Only asymptotic results are available, and the

relevant test statistic is the chi-square, although you may find that some software also gives an

F-value. Another thing to be on lookout for is whether a nonlinear hypothesis can be re-framed

as a linear hypothesis to avoid one aspect of the approximation.

E X A M P L E 6.8 A Nonlinear Hypothesis

In Section 5.7.4, we found that, in terms of the parameters of

equation (6.2), the optimal level of advertising is given by

ADVERT0 =
1 − β3

2β4

To test the hypothesis that the optimal level is $1,900 against

the alternative that it is not $1,900, we can set up the follow-

ing hypotheses which are nonlinear in the parameters

H0∶
1 − β3

2β4

= 1.9 H1∶
1 − β3

2β4

≠ 1.9 (6.16)

There are three ways we can approach this problem. The

first way is to convert the hypotheses so that they are

linear in the parameters. That is, H0∶β3 + 3.8β4 = 1 versus

H1∶β3 + 3.8β4 ≠ 1. These are the hypotheses that we tested

in Example 6.5. The p-value for the F-test was 0.337.

The second way is to test (6.16) using the t-test value

t =
g
(
b3, b4

)
− 1.9

se
[

g
(
b3, b4

)]

=
(
1 − b3

)
∕2b4 − 1.9

se
((

1 − b3

)
∕2b4

) = 2.0143 − 1.9

0.1287
= 0.888

The values g
(
b3, b4

)
=
(
1 − b3

)
∕2b4 = 2.0143 and

se
[

g
(
b3, b4

)]

= se
((

1 –b3

)
∕2b4

)

= 0.1287, were found

in Example 5.17 for computing an interval estimate

for ADVERT0. The third way is to use the χ2-test for

testing (6.16). When we have only a single hypothesis,

χ2 = F = t2 = (0.888)2 = 0.789. The F and t2 critical values

correspond, yielding a p-value of 0.377. The χ2-test is a

different test, however. It yields a p-value of 0.374.

............................................................................................................................................

3See William Greene, Econometric Analysis 8e, Pearson Prentice-Hall, 2018, pp. 211–212.
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Having so many options will undoubtedly leave you wondering what to do. In general, the best

strategy is to convert the hypotheses into ones that are linear if that is possible. Otherwise, the

t- or χ2-tests can be used, but the t-test option is not available if J ≥ 2. The important thing to

take away from this section is an appreciation of the different test statistics that appear on your

software output—what they mean, where they come from, and the circumstances under which

they are exact finite sample tests or asymptotic approximations.

6.2 The Use of Nonsample Information
In many estimation problems we have information over and above the information contained

in the sample observations. This nonsample information may come from many places, such as

economic principles or experience. When it is available, it seems intuitive that we should find

a way to use it. If the nonsample information is correct, and if we combine it with the sample

information, the precision with which we can estimate the parameters is improved.

To illustrate how we might go about combining sample and nonsample information, con-

sider a model designed to explain the demand for beer. From the theory of consumer choice in

microeconomics, we know that the demand for a good will depend on the price of that good,

on the prices of other goods—particularly substitutes and complements—and on income. In the

case of beer, it is reasonable to relate the quantity demanded (Q) to the price of beer (PB), the

price of liquor (PL), the price of all other remaining goods and services (PR), and income (I).

To estimate this demand relationship, we need a further assumption about the functional form.

Using “ln” to denote the natural logarithm, we assume, for this case, that the log-log functional

form is appropriate:

ln(Q) = β1 + β2ln(PB) + β3ln(PL) + β4ln(PR) + β5ln(I) + e (6.17)

This model is a convenient one because it precludes infeasible negative prices, quantities, and

income, and because the coefficients β2, β3, β4, and β5 are elasticities. See Section 4.6.

A relevant piece of nonsample information can be derived by noting that if all prices and

income go up by the same proportion, we would expect there to be no change in quantity

demanded. For example, a doubling of all prices and income should not change the quantity of

beer consumed. This assumption is that economic agents do not suffer from “money illusion.”

Let us impose this assumption on our demand model and see what happens. Having all prices

and income change by the same proportion is equivalent to multiplying each price and income

by a constant. Denoting this constant by λ and multiplying each of the variables in (6.17) by

λ yields

ln(Q) = β1 + β2ln(λPB) + β3ln(λPL) + β4ln(λPR) + β5ln(λI)
= β1 + β2ln(PB) + β3ln(PL) + β4ln(PR) + β5ln(I)
+
(
β2 + β3 + β4 + β5

)
ln(λ) + e (6.18)

Comparing (6.17) with (6.18) shows that multiplying each price and income by λ will give a

change in ln(Q) equal to
(
β2 + β3 + β4 + β5

)
ln(λ). Thus, for there to be no change in ln(Q) when

all prices and income go up by the same proportion, it must be true that

β2 + β3 + β4 + β5 = 0 (6.19)

Thus, we can say something about how quantity demanded should not change when prices and

income change by the same proportion, and this information can be written in terms of a specific

restriction on the parameters of the demand model. We call such a restriction nonsample infor-
mation. If we believe that this nonsample information makes sense, and hence that the parameter

restriction in (6.19) holds, then it seems desirable to be able to obtain estimates that obey this

restriction.
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To introduce the nonsample information, we solve the parameter restriction β2 + β3 + β4 +
β5 = 0 for one of the βk’s. Which one is not important mathematically, but for reasons that will

become apparent, we solve for β4:

β4 = −β2 − β3 − β5

Substituting this expression into the original model in (6.17) gives

ln(Q) = β1 + β2ln(PB) + β3ln(PL) +
(
−β2 − β3 − β5

)
ln(PR) + β5ln(I) + e

= β1 + β2

[
ln(PB) − ln(PR)

]
+ β3

[
ln(PL) − ln(PR)

]
+ β5

[
ln(I) − ln(PR)

]
+ e

= β1 + β2ln
(PB

PR

)

+ β3ln
(PL

PR

)

+ β5ln
( I

PR

)

+ e (6.20)

By using the restriction to replace β4, and using the properties of logarithms, we have constructed

the new variables ln(PB/PR), ln(PL/PR), and ln(I/PR). These variables have an appealing inter-

pretation. Because PR represents the price of all other goods and services, (PB/PR) and (PL/PR)

can be viewed as the real price of beer and the real price of liquor, respectively, and (I/PR) can

be viewed as real income. By applying least squares to the restricted equation (6.20), we obtain

the restricted least squares estimates
(
b∗

1
, b∗

2
, b∗

3
, b∗

5

)
. The restricted least squares estimate for

β4 is given by b∗
4
= −b∗

2
− b∗

3
− b∗

5
.

E X A M P L E 6.9 Restricted Least Squares

Observations on Q, PB, PL, PR, and I, taken from a cross

section of 30 households are stored in the file beer. Using

these observations to estimate (6.20), we obtain

ln(Q)
(se)

⋀

= −4.798 − 1.2994

(0.166)
ln
(PB

PR

)

+ 0.1868

(0.284)
ln
(PL

PR

)

+ 0.9458

(0.427)
ln
( I

PR

)

and b∗
4
= −(−1.2994) − 0.1868 − 0.9458 = 0.1668. We esti-

mate the price elasticity of demand for beer as −1.30, the

cross-price elasticity of demand for beer with respect to liquor

as 0.19, the cross-price elasticity of demand for beer with

respect to other goods and services as 0.17, and the income

elasticity of demand for beer as 0.95.

Substituting the restriction into the original equation and rearranging it like we did to get (6.20)

will always work, but it may not be necessary. Different software has different options for obtain-

ing restricted least squares estimates. Please check what is available in the software of your choice.

What are the properties of the restricted least squares estimation procedure? If assumptions

MR1–MR5 hold for the unrestricted model, then the restricted least squares estimator is biased,

E
(
b∗k
)
≠ βk, unless the constraints we impose are exactly true. This result makes an important

point about econometrics. A good economist will obtain more reliable parameter estimates than

a poor one because a good economist will introduce better nonsample information. This is true at

the time of model specification as well as later, when constraints might be applied to the model.

Nonsample information is not restricted to constraints on the parameters; it is also used for model

specification. Good economic theory is a very important ingredient in empirical research.

The second property of the restricted least squares estimator is that its variance is smaller

than the variance of the least squares estimator, whether the constraints imposed are true or
not. By combining nonsample information with the sample information, we reduce the varia-

tion in the estimation procedure caused by random sampling. This reduction in variance obtained

by imposing restrictions on the parameters is not at odds with the Gauss–Markov theorem. The

Gauss–Markov result that the least squares estimator is the best linear unbiased estimator applies
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to linear and unbiased estimators that use data alone, and no constraints on the parameters. Includ-

ing additional information with the data gives the added reward of a reduced variance. If the

additional nonsample information is correct, we are unambiguously better off; the restricted least

squares estimator is unbiased and has lower variance. If the additional nonsample information is

incorrect, the reduced variance comes at the cost of bias. This bias can be a big price to pay if

it leads to estimates substantially different from their corresponding true parameter values. Evi-

dence on whether or not a restriction is true can be obtained by testing the restriction along the

lines of the previous section. In the case of this particular demand example, the test is left as an

exercise.

6.3 Model Specification
In what has been covered so far, we have generally taken the role of the model as given. Questions

have been of the following type: Given a particular regression model, what is the best way to

estimate its parameters? Given a particular model, how do we test hypotheses about the parameters

of that model? How do we construct interval estimates for the parameters of a model? What are

the properties of estimators in a given model? Given that all these questions require knowledge

of the model, it is natural to ask where the model comes from. In any econometric investigation,

choice of the model is one of the first steps. In this section, we focus on the following questions:

What are the important considerations when choosing a model? What are the consequences of

choosing the wrong model? Are there ways of assessing whether a model is adequate?

Three essential features of model choice are (1) choice of functional form, (2) choice of

explanatory variables (regressors) to be included in the model, and (3) whether the multiple

regression assumptions MR1–MR6, listed in Chapter 5, hold. The implications of some viola-

tions of these assumptions have already been discussed. In particular, we have seen how it is

necessary to rely on large sample results for inference if the errors are no longer normally dis-

tributed (MR6 is violated), or if assumption MR2: E
(
ei|X

)
= 0 is weakened to the alternative

assumption that E
(
ei
)
= 0 and cov

(
ei, xjk

)
= 0 for i ≠ j. Later chapters on heteroskedasticity,

regression with time-series data, and endogenous regressors deal with violations of MR3, MR4

and cov
(
ei, xjk

)
= 0. In this section, we focus mainly on issues dealing with choice of regressors

and also give some consideration to choice of functional form. The properties of alternative func-

tional forms were considered in Sections 2.8, 4.3–4.6, and 5.6. When making a functional-form

choice, we need to ask questions such as: How is the dependent variable y likely to respond when

the regressors change? At a constant rate? At a decreasing rate? Is it reasonable to assume constant

elasticities over the whole range of the data? Are there any patterns in the least squares residuals

that suggest an alternative functional form? The use of least squares residuals for assessing the

adequacy of a functional form was considered in Section 4.3.4.

For choice of regressors, a fundamental consideration is the purpose of the model—whether

it is intended for prediction or for causal analysis. We turn now to that question.

6.3.1 Causality versus Prediction
With causal inference we are primarily interested in the effect of a change in a regressor on the

conditional mean of the dependent variable. Is there an effect and, if so, what is its magnitude?

We wish to be able to say that a one-unit change in an explanatory variable will cause a particular

change in the mean of the dependent variable, other factors held constant. This type of analysis

is important for policy work. For example, suppose a government is concerned about educational

performance in schools and believes that large class sizes may be the cause of poor performance.

Before it spends large sums of money increasing the number of teachers, and building more class-

rooms, it would want convincing evidence that class size does have an impact on performance.

We would need to be able to separate the effect of class size from the effect of other variables
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such as socioeconomic background. It may be that large classes tend to be in areas of poor socio-

economic background. Under these circumstances it is important to include all relevant variables

so that we can be sure “other factors are held constant” when we measure the effect of class size.

On the other hand, if the purpose of a model is to predict the value of a dependent variable,

then, for regressor choice, it is important to choose variables that are highly correlated with the

dependent variable and that lead to a high R2. Whether or not these variables have a direct effect

on the dependent variable, and the possible omission of some relevant variables, are less impor-

tant. Predictive analysis using variables from the increasingly popular field of “big data” is an

example of where variables are chosen for their predictive ability rather than to examine causal

relationships.

To appreciate the difference in emphasis, and when it matters, suppose the variables(
yi, xi, zi

)
, i = 1, 2,… ,N are randomly selected from a population satisfying

yi = β1 + β2xi + β3zi + ei (6.21)

We have chosen the notation x for one of the explanatory variables and z for the other explanatory

variable to distinguish between what will be an included variable x and an omitted variable z.

We assume E
(
ei|xi, zi

)
= 0 and hence E

(
yi|xi, zi

)
= β1 + β2xi + β3zi. Under these assumptions,

β2 and β3 have the causal interpretations

β2 =
∂E
(
yi|xi, zi

)

∂xi
β3 =

∂E
(
yi|xi, zi

)

∂zi

That is, β2 represents the change in the mean of y from a change in x, other factors held constant,

and β3 represents the change in the mean of y from a change in z, other factors held constant

The assumption E
(
ei|xi, zi

)
= 0 is important for these interpretations. It means that changes in

xi or zi have no impact on the error term. Now suppose that xi and zi are correlated, a common

occurrence among explanatory variables. Because they are correlated, E
(
zi|xi

)
will depend on xi.

Let us assume that this dependence can be represented by the linear function

E
(
zi|xi

)
= γ1 + γ2xi (6.22)

Then, using (6.21) and (6.22), we have

E
(
yi|xi

)
= β1 + β2xi + β3E

(
zi|xi

)
+ E

(
ei|xi

)

= β1 + β2xi + β3

(
γ1 + γ2xi

)

=
(
β1 + β3γ1

)
+
(
β2 + β3γ2

)
xi

where E
(
ei|xi

)
= Ez

[
E
(
ei|xi, zi

)]
= 0 by the law of iterated expectations. If knowing xi or zi

does not help to predict ei, then knowing xi does not help to predict ei either.

Now, we can define ui = yi − E
(
yi|xi

)
, α1 = β1 + β3γ1, and α2 = β2 + β3γ2, and write

yi =
(
β1 + β3γ1

)
+
(
β2 + β3γ2

)
xi + ui

= α1 + α2xi + ui (6.23)

where E
(
ui|xi

)
= 0 by definition. Application of least squares to (6.23) will yield best linear

unbiased estimates of α1 and α2. If the objective is to use xi to predict yi, we can proceed with this

equation without worrying about the omission of zi. However, because zi is not held constant, α2

does not measure the causal effect of xi on yi, which is given by β2. The coefficient α2 includes

the indirect effect of xi on zi through γ2 (which may or may not be causal), followed by the effect

of that change in zi on yi, through β3. Note that if β3 = 0 (zi does not effect yi) or γ2 = 0 (zi and xi
are uncorrelated), then α2 = β2 and estimation of α2 gives the required causal effect.

Thus, to estimate a causal effect of a variable x using least squares, we need to start with a

model where all variables that are correlated with x and impact on y are included. An alternative,

valuable when data on all such variables are not available, is to use control variables. We discuss

their use in Section 6.3.4.
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6.3.2 Omitted Variables
As explained in the previous section, if our objective is to estimate a causal relationship, then

the possible omission of relevant variables is a concern. In this section, we explore further the

impact of omitting important variables. Such omissions are always a possibility. Our economic

principles may have overlooked a variable, or lack of data may lead us to drop a variable even

when it is prescribed by economic theory.

E X A M P L E 6.10 Family Income Equation

To introduce the omitted variable problem, we consider a

sample of married couples where both husbands and wives

work. This sample was used by labor economist Tom Mroz

in a classic paper on female labor force participation. The

variables from this sample that we use in our illustration

are stored in the file edu_inc. The dependent variable is the

logarithm of annual family income FAMINC defined as the

combined income of husband and wife. We are interested

in the impact of level of education, both the husband’s

T A B L E 6.1 Estimated Equations for Family Income

ln(FAMINC)
(1) (2) (3) (4) (5)

C 10.264 10.539 10.238 10.239 10.310

HEDU 0.0439 0.0613 0.0448 0.0460 0.0517

(se) (0.0087) (0.0071) (0.0086) (0.0136) (0.0133)

[p-value] [0.0000] [0.0000] [0.0000] [0.0007] [0.0001]

WEDU 0.0390 0.0421 0.0492

(se) (0.0116) (0.0115) (0.0247)

[p-value] [0.0003] [0.0003] [0.0469]

KL6 –0.1733 –0.1724 –0.1690

(se) (0.0542) (0.0547) (0.0548)

[p-value] [0.0015] [0.0017] [0.0022]

XTRA_X5 0.0054 –0.0321

(se) (0.0243) (0.0154)

[p-value] [0.8247] [0.0379]

XTRA_X6 –0.0069 0.0309

(se) (0.0215) (0.0101)

[p-value] [0.7469] [0.0023]

SSE 82.2648 84.4623 80.3297 80.3062 81.0622

RESET p-values

1 term
(
ŷ2
)

0.3374 0.1017 0.1881 0.1871 0.1391

2 terms
(
ŷ2
, ŷ3

)
0.1491 0.0431 0.2796 0.2711 0.2715

education (HEDU) and the wife’s education (WEDU), on

family income. The first equation to be estimated is

ln(FAMINC) = β1 + β2HEDU + β3WEDU + e (6.24)

Coefficient estimates from this equation, their standard

errors, and their p-values for testing whether they are

significantly different from zero, are given in column (1) of

Table 6.1. We estimate that an additional year of education
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for the husband will increase annual income by 4.4%, and an

additional year of education for the wife will increase income

by 3.9%. Both estimates are significantly different from zero

at a 1% level of significance.4

What happens if we now incorrectly omit wife’s educa-

tion from the equation? The resulting estimates are given in

column (2) of Table 6.1. Omitting WEDU leads to an esti-

mate that suggests the effect of an extra year of education for

the husband is 6.1%. The effect of the wife’s education has

been incorrectly attributed to the husband’s education leading

to an overstatement of the latter’s importance. This change

in the magnitude of a coefficient is typical of the effect of

incorrectly omitting a relevant variable. Omission of a rele-

vant variable (defined as one whose coefficient is nonzero)

leads to an estimator that is biased. Naturally enough, this

bias is known as omitted variable bias.

Omitted Variable Bias: A Proof To give a general expression for the bias for the

case where one explanatory variable is omitted from a model with two explanatory variables,

consider the model yi = β1 + β2xi + β3zi + ei. Suppose that we incorrectly omit zi from the model

and estimate instead yi = β1 + β2xi + vi where vi = β3zi + ei. Then, the estimator used for β2 is

b∗
2
=
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2
= β2 +

∑
wivi

where wi =
(
xi − x

)/∑(
xi − x

)2
. The second equality in this equation follows from Appendix

2D. Substituting for vi yields

b∗
2
= β2 + β3

∑
wizi +

∑
wiei

Assuming that E
(
ei|𝐱, 𝐳

)
= 0, or alternatively, that

(
yi, xi, zi

)
is a random sample and

E
(
ei|xi, zi

)
= 0, the conditional mean of b∗

2
is

E
(
b∗

2
|x, z

)
= β2 + β3

∑
wizi = β2 + β3

cov
⋀

(x, z)
var
⋀

(x)
(6.25)

You are asked to prove this result in Exercise 6.3. Unconditionally, we have

E
(
b∗

2

)
= β2 + β3E

[
cov
⋀

(x, z)
var
⋀

(x)

]

(6.26)

and in large samples, under less restrictive conditions,

b∗
2

p
→ β2 + β3

cov(x, z)
var(x)

(6.27)

Thus, E
(
b∗

2

)
≠ β2 and b∗

2
is not a consistent estimator for β2. It is biased in small and large sam-

ples if cov(x, z) ≠ 0. In terms of (6.25)—the result is similar for (6.26) and (6.27)—the bias is

given by

bias
(
b∗

2
|x, z

)
= E

(
b∗

2
|x, z

)
− β2 = β3

cov
⋀

(x, z)
var
⋀

(x)
(6.28)

We can make four more interesting observations from the results in (6.25)–(6.28).

1. Omitting a relevant variable is a special case of using a restricted least squares estimator

where the restriction β3 = 0 is not true. It leads to a biased estimator for β2 but one with a

lower variance. In columns (1) and (2) of Table 6.1 the reduction in the standard error for

the coefficient of HEDU from 0.0087 to 0.0071 is consistent with the lower-variance result.

2. Knowing the sign of β3 and the sign of the covariance between x and z tells us the direction

of the bias. In Example 6.9 we expect a wife’s level of education to have a positive effect

on family income
(
β3 > 0

)
, and we expect husband’s and wife’s levels of education to be

............................................................................................................................................

4There are a number of other entries in Table 6.1 that we discuss in due course: estimates from other equations and

RESET values.
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T A B L E 6.2 Correlation Matrix for Variables Used in Family Income Example

ln(FAMINC) HEDU WEDU KL6 XTRA_X5 XTRA_X6

ln(FAMINC) 1.000

HEDU 0.386 1.000

WEDU 0.349 0.594 1.000

KL6 –0.085 0.105 0.129 1.000

XTRA_X5 0.315 0.836 0.518 0.149 1.000

XTRA_X6 0.364 0.821 0.799 0.160 0.900 1.000

positively correlated (cov(x, z) > 0). Thus, we expect an upward bias for the coefficient esti-

mate in (2), as indeed has occurred. The positive correlation between HEDU and WEDU
can be confirmed from the correlation matrix in Table 6.2.

3. The bias in (6.28) can also be written as β3γ̂2 where γ̂2 is the least squares estimate of γ2

from the regression equation E(z|x) = γ1 + γ2x. This result is consistent with equation (6.23)

where we explained how omitting a relevant variable can lead to an incorrect estimate of a

causal effect.

4. The importance of the assumption E
(
ei|x, z

)
= 0 becomes clear. In the equation yi = β1 +

β2xi + vi, we have E
(
vi|xi

)
= β3E

(
zi|xi

)
. It is the nonzero value for E

(
zi|xi

)
that leads to the

biased estimator for β2.

E X A M P L E 6.11 Adding Children Aged Less Than 6 Years

There are, of course, other variables that could be included

as explanators of family income. In column (3) of Table 6.1

we include KL6, the number of children less than 6 years old.

The larger the number of young children, the fewer the num-

ber of hours likely to be worked and hence a lower family

income would be expected. The estimated coefficient on KL6
is negative, confirming this expectation. Also, despite the fact

that KL6 is not highly correlated with HEDU and WEDU,

the coefficient estimates for these variables have increased

slightly, indicating that once we hold the number of young

children constant, the returns to education for both the wife

and the husband are greater, with the greater increase going

to the wife whose working hours would be the more likely to

be affected by the presence of young children.

6.3.3 Irrelevant Variables
The consequences of omitting relevant variables may lead you to think that a good strategy is to

include as many variables as possible in your model. However, doing so will not only complicate

your model unnecessarily, it may inflate the variances of your estimates because of the presence

of irrelevant variables—those whose coefficients are zero because they have no direct effect on

the dependent variable.

E X A M P L E 6.12 Adding Irrelevant Variables

To see the effect of irrelevant variables, we add two artifi-

cially generated variables XTRA_X5 and XTRA_X6 to the

family income equation. These variables were constructed

so that they are correlated with HEDU and WEDU but

have no influence on family income. The results from

including these two variables are given in column (4) of

Table 6.1. What can we observe from these estimates? First,

as expected, the coefficients of XTRA_X5 and XTRA_X6
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have p-values greater than 0.05. They do indeed appear

to be irrelevant variables. Also, the standard errors of the

coefficients estimated for all other variables have increased,

with p-values increasing correspondingly. The inclusion

of irrelevant variables that are correlated with the other

variables in the equation has reduced the precision of the

estimated coefficients of the other variables. This result

follows because, by the Gauss–Markov theorem, the least

squares estimator of the correct model is the minimum

variance linear unbiased estimator.

Finally, let us check what happens if we retain XTRA_X5
and XTRA_X6, but omit WEDU, leading to the results in col-

umn (5). The coefficients for XTRA_X5 and XTRA_X6 have

become significantly different from zero at a 5% level of sig-

nificance. The irrelevant variables have picked up the effect

of the relevant omitted variable. While this may not matter

if prediction is the main objective of the exercise, it can lead

to very erroneous conclusions if we are trying to identify the

causal effects of the included variables.

6.3.4 Control Variables
In the discussion so far, we have not explicitly distinguished between variables whose causal effect

is of particular interest and other variables that may simply be in the equation to avoid omitted

variable bias in the estimate of the causal coefficient. Variables included in the equation to avoid

omitted variable bias in the coefficient of interest are called control variables. Control variables

may be included in the equation because they have a direct effect on the dependent variable in

their own right or because they can act as proxy variables for relevant omitted variables that are

difficult to observe. For a control variable to serve its purpose and act as a proxy for an omitted

variable, it needs to satisfy a conditional mean independence assumption. To introduce this

assumption, we return to the equation

yi = β1 + β2xi + β3zi + ei (6.29)

where the observation
(
yi, xi, zi

)
is obtained by random sampling and where E

(
ei|xi, zi

)
= 0. Sup-

pose we are interested in β2, the causal effect of xi on yi, and, although β3 provides the causal

effect of zi on yi, we are not concerned about estimating it. Also suppose that zi is omitted from

the equation because it is unobservable or because data on it are too difficult to obtain, leaving

the equation

yi = β1 + β2xi + vi

where vi = β3zi + ei. If zi and xi are uncorrelated, there are no problems. Application of least

squares to yi = β1 + β2xi + vi will yield a consistent estimate for β2. However, as indicated in

(6.28), correlation between zi and xi leads to a bias in the least squares estimator for β2 equal to

β3cov(x, z)∕var(x).
Now consider another variable q that has the property

E
(
zi|xi, qi

)
= E

(
zi|qi

)
(6.30)

This property says that once we know q, knowing x does not provide any more information

about z. It means that x and z will no longer be correlated once q has been partialled out. We say

that zi and xi are conditionally mean independent. An example will help cement this concept.

When labor economists estimate wage equations they are particularly interested in the returns

to education. In particular, what is the causal relationship between more education and higher

wages? Other variables such as experience are typically added to the equation, but they are usually

not the main focus. One variable that is clearly relevant, but difficult to include because it cannot

be observed, is ability. Also, more able people are likely to have more education, and so ability and

education will be correlated. Excluding the variable “ability” will bias the estimate of the causal

effect of education on wages. Suppose, however, that we have observations on IQ. IQ will clearly

be correlated with both education and ability. Will it satisfy the conditional mean independence

assumption? We need to be able to write

E(ABILITY|EDUCATION, IQ) = E(ABILITY|IQ)
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That is, once we know somebody’s IQ, knowing their level of education does not add any extra

information about their ability. Another way to think about it is that education is “as if” it was

randomly assigned, once we have taken IQ into account. One could argue whether this is a rea-

sonable assumption, but, if it is reasonable, then we can proceed to use IQ as a control variable

or a proxy variable to replace ABILITY .

How a Control Variable Works Returning to equation (6.29), namely, yi = β1 + β2xi +
β3zi + ei, we can write

E
(
yi|xi, qi

)
= β1 + β2xi + β3E

(
zi|xi, qi

)
+ E

(
ei|xi, qi

)
(6.31)

If the conditional mean independence assumption in (6.30) holds, then E
(
zi|xi, qi

)
= E

(
zi|qi

)
.

For illustrative purposes, we assume E
(
zi|qi

)
is a linear function of qi, say E

(
zi|qi

)
= δ1 + δ2qi.

We also need to assume that qi has no direct effect on yi, so that E
(
ei|xi, qi

)
= 0.5 Inserting these

results into (6.31), we have

E
(
yi|xi, qi

)
= β1 + β2xi + β3

(
δ1 + δ2qi

)

= β1 + β3δ1 + β2xi + β3δ2qi

= α1 + β2xi + α2qi

where α1 = β1 + β3δ1 and α2 = β3δ2. Defining ui = yi − E
(
yi|xi, qi

)
, we have the equation

yi = α1 + β2xi + α2qi + ui

Since E
(
ui|xi, qi

)
= 0 by definition, least squares estimates of α1, β2, and α2 will be consistent.

Notice that we have been able to estimate β2, the causal effect of x on y, but we have not been able

to consistently estimate β3, the causal effect of z on y.

This result holds if q is a perfect proxy for z. We may want to ask what happens if the condi-

tional mean independence assumption does not hold, making q an imperfect proxy for z. Suppose

E
(
zi|xi, qi

)
= δ1 + δ2qi + δ3xi

In this case q is not a perfect proxy because, after controlling for it, E
(
zi|xi, qi

)
still depends on x.

Using similar algebra, we obtain

E
(
yi|xi, qi

)
=
(
β1 + β3δ1

)
+
(
β2 + β3δ3

)
xi + β3δ2qi

The bias from using this equation to estimate β2 is β3δ3. The bias from omitting z instead of using

the control variable is β3cov(x, z)∕var(x). Thus, for the control variable to be an improvement over

omission of z, we require δ3 < cov(x, z)∕var(x). Now, cov(x, z)∕var(x) is equal to the coefficient

of x in a regression of z on x. Thus, the condition δ3 < cov(x, z)∕var(x) is equivalent to saying that

the coefficient of x in a regression of z on x is lower after the inclusion of q. Put another way, after

partialling out q, the correlation between x and z is reduced but not eliminated.

E X A M P L E 6.13 A Control Variable for Ability

To illustrate the use of a control variable, we consider the

model

ln(WAGE) = β1 + β2EDUC + β3EXPER
+ β4EXPER2 + β5ABILITY + e

and use data stored in the data file koop_tobias_87, a subset

of data used by Koop and Tobias.6 The sample is restricted

to white males who are at least 16 years of age and who

worked at least 30 weeks and 800 hours during the year.

The Koop–Tobias data extend from 1979 to 1993. We use

............................................................................................................................................

5In Exercise 6.4 you are invited to investigate how this assumption can be relaxed.

6G. Koop and J.L. Tobias (2004), “Learning about Heterogeneity in Returns to Schooling”, Journal of Applied
Econometrics, 19, 827–849.
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observations from 1987, a total of N = 1057. The variables

EDUC and EXPER are numbers of years of education

and experience, respectively. The variable ABILITY is

unobserved, but we have instead the proxy variable SCORE,

which is constructed from the 10 component tests of the

Armed Services Vocational Aptitude Battery, administered

in 1980, and standardized for age. Omitting ABILITY , the

least squares estimated equation is

ln(WAGE)
(se)

⋀

= 0.887

(0.293)
+ 0.0728EDUC
(0.0091)

+ 0.01268EXPER
(0.0403)

− 0.00571EXPER
(0.00165)

2

Including the proxy variable SCORE, we obtain

ln(WAGE)
(se)

⋀

= 1.055

(0.297)
+ 0.0592EDUC
(0.0101)

+ 0.1231EXPER
(0.0401)

− 0.00538EXPER
(0.00165)

2 + 0.0604SCORE
(0.0195)

The return to an extra year of education drops from 7.3% to

5.9% after including the variable SCORE, suggesting that

omitting the variable ABILITY has incorrectly attributed

some of its effect to the level of education. There has been

little effect on the coefficients of EXPER and EXPER2.

The conditional mean independence assumption that has to

hold to conclude that extra EDUC causes a 5.9% increase

in WAGE is E(ABILITY|EDUC, EXPER, SCORE) =
E(ABILITY|EXPER, SCORE). After allowing for EXPER
and SCORE, knowing EDUC does not provide any more

information about ABILITY . This assumption is required for

both the education and experience coefficients to be given

a causal interpretation. Finally, we note that the coefficient

of the proxy variable SCORE cannot be given a causal

interpretation.

6.3.5 Choosing a Model
Although choosing a model is fundamental, it is often not an easy task. There is no one set of

mechanical rules that can be applied to come up with the best model. The choice will depend on

the purpose of the model and how the data were collected, and requires an intelligent application of

both theoretical knowledge and the outcomes of various statistical tests. Better choices come with

experience. What is important is to recognize ways of assessing whether a model is reasonable

or not. The following points are helpful for such an assessment.

1. Is the purpose of the model to identify one or more causal effects or is it prediction? Where

causality is the focus, omitted variable bias can invalidate conclusions. Careful selection

of control variables, whether they be variables in their own right or proxy variables, is

necessary. On the other hand, if prediction is the objective, then the major concern is using

variables that have high predictive power because of their correlation with the dependent

variable. Omitted variables bias is not a major concern.

2. Theoretical knowledge, expert assessment of likely behavior, and general understanding

of the nature of the relationship are important considerations for choosing variables and

functional form.

3. If an estimated equation has coefficients with unexpected signs, or unrealistic magnitudes,

they could be caused by a misspecification such as the omission of an important variable.

4. Patterns in least squares residuals can be helpful for uncovering problems caused by an

incorrect functional form. Some illustrations are given in Section 4.3.4.

5. One method for assessing whether a variable or a group of variables should be included

in an equation is to perform significance tests. That is, t-tests for hypotheses such as

H0∶β3 = 0 or F-tests for hypotheses such as H0∶β3 = β4 = 0. Such tests can include coef-

ficients of squares and products of variables as tests for a suitable functional form. Failure

to reject a null hypotheses that one or more coefficients are zero can be an indication that

the variable(s) are irrelevant. However, it is important to remember that failure to reject a

null hypothesis can also occur if the data are not sufficiently rich to disprove the hypothesis.

More will be said about poor data in Section 6.5. For the moment we note that, when



�

� �

�

6.3 Model Specification 281

a variable has an insignificant coefficient, it can either be (a) discarded as an irrelevant

variable, or (b) retained because the theoretical reason for its inclusion is a strong one.

6. Have the leverage, studentized residuals, DFBETAS, and DFFITS measures identified any

influential observations?7 If an unusual observation is not a data error, then understanding

why it occurred may provide useful information for setting up the model.

7. Are the estimated coefficients robust with respect to alternative specifications? If the model

is designed to be a causal one, and estimates of the causal coefficient change dramatically

when different specifications of the model are estimated, or different sets of control vari-

ables are included, then there is cause for concern.

8. A test known as RESET (Regression Specification Error Test) can be useful for detect-

ing omitted variables or an incorrect functional form. Details of this test are provided in

Section 6.3.6.

9. Various model selection criteria, based on maximizing R2, or minimizing the sum of

squared errors (SSE), subject to a penalty for too many variables, have been suggested.

These criteria are more valuable when a model is designed for prediction rather than

causal analysis. For reliable prediction a sum of squared errors that is small relative to

the explanatory power of the model is essential. We describe three of these criteria in

Section 6.4.1: an adjusted R2, the Akaike information criterion (AIC), and the Schwarz

criterion (SC), also known as the Bayesian information criterion (BIC).

10. A more stringent assessment of a model’s predictive ability is to use a “hold-out” sample.

A least squares estimated equation is designed to minimize the within-sample sum of

squared errors. To check out a model’s ability to predict outside the sample, some obser-

vations can be withheld from estimation and the model can be assessed on its ability to

predict the withheld observations. More details are provided in Section 6.4.1.

11. Following the guidelines in the previous 10 points can almost inevitably lead to revisions

of originally proposed models, or to more general experimentation with alternative models.

Searching for a model with “significant” estimates and the selective reporting of a finally

chosen “significant” model is a questionable practice. Not knowing the search process that

led to the selected results makes valid interpretation of the results difficult. Proper reporting

of results should include disclosure of all estimated models and the criteria used for model

selection.

6.3.6 RESET
Testing for model misspecification is a way of asking whether our model is adequate, or whether

we can improve on it. It could be misspecified if we have omitted important variables, included

irrelevant ones, chosen a wrong functional form, or have a model that violates the assumptions

of the multiple regression model. RESET (REgression Specification Error Test) is designed to

detect omitted variables and incorrect functional form. It proceeds as follows.

Suppose that we have specified and estimated the regression model

y = β1 + β2x2 + β3x3 + e

Let (b1, b2, b3) be the least squares estimates, and let

ŷ = b1 + b2x2 + b3x3 (6.32)

be the fitted values of y. Consider the following two artificial models:

y = β1 + β2x2 + β3x3 + γ1ŷ2 + e (6.33)

y = β1 + β2x2 + β3x3 + γ1ŷ2 + γ2ŷ3 + e (6.34)

............................................................................................................................................

7These measures for detecting influential observations are discussed in Sections 4.3.6 and 6.5.3.
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In (6.33), a test for misspecification is a test of H0∶γ1 = 0 against the alternative H1∶γ1 ≠ 0. In

(6.34), testing H0∶γ1 = γ2 = 0 against H1∶γ1 ≠ 0 and/or γ2 ≠ 0 is a test for misspecification.

In the first case, a t- or an F-test can be used. An F-test is required for the second equation.

Rejection of H0 implies that the original model is inadequate and can be improved. A failure to

reject H0 says that the test has not been able to detect any misspecification.

To understand the idea behind the test, note that ŷ2
and ŷ3

will be polynomial functions of x2

and x3. If you square and cube both sides of (6.32), you will get terms such as x2
2
, x3

3
, x2x3, x2x2

3
,

and so on. Since polynomials can approximate many different kinds of functional forms, if the

original functional form is not correct, the polynomial approximation that includes ŷ2
and ŷ3

may

significantly improve the fit of the model. If it does, this fact will be detected through nonzero

values of γ1 and γ2. Furthermore, if we have omitted variables and these variables are correlated

with x2 and x3, then they are also likely to be correlated with terms such as x2
2

and x2
3
, so some of

their effect may be picked up by including the terms ŷ2
and/or ŷ3

. Overall, the general philosophy

of the test is if we can significantly improve the model by artificially including powers of the

predictions of the model, then the original model must have been inadequate.

E X A M P L E 6.14 Applying RESET to Family Income Equation

To illustrate RESET we return to the family income equation

considered in Examples 6.10–6.12. In those examples spec-

ifications with different variables included were estimated,

and the results presented in Table 6.1. The full model, with-

out the irrelevant variables, was

ln(FAMINC) = β1 + β2 HEDU + β3 WEDU + β4KL6 + e

Please go back and check Table 6.1, where RESET p-values

for both H0∶γ1 = 0 and H0∶γ1 = γ2 = 0 are presented in

the last two rows of the table. The only instance where

RESET rejects a model at a 5% significance level is where

wife’s education has been excluded and the null hypothesis

is H0∶γ1 = γ2 = 0. Exclusion of KL6 is not picked up by

RESET, most likely because it is not highly correlated with

HEDU and WEDU. Also, when the irrelevant variables

XTRA_X5 and XTRA_X6 are included, and WEDU is

excluded, RESET does not pick up the misspecification. The

likely cause of this failure is the high correlations between

WEDU and the two irrelevant variables.

There are two important lessons from this example.

First, if RESET does not reject a model, that model is not

necessarily a good one. Second, RESET will not always

discriminate between alternative models. Rejection of the

null hypothesis is indicative of a misspecification, but failure

to reject the null hypothesis tells us very little.

6.4 Prediction
The prediction or forecasting problem for a regression model with one explanatory variable was

introduced in Section 4.1. That material extends naturally to the more general model that has

more than one explanatory variable. In this section, we describe that extension, reinforce earlier

material, and provide some more general background.

Suppose we have values on K−1 explanatory variables represented by

𝐱0 =
(
1, x02, x03,… , x0K

)
, and that we wish to use this information to predict or forecast a

corresponding dependent variable value y0. In Appendix 4D we learned that the minimum

mean square error predictor for y0 is the conditional expectation E
(
y0|x0

)
. To make this result

operational, we need to make an assumption about the functional form for E
(
y0|x0

)
, and estimate

the parameters on which it depends. In line with the multiple regression model, we assume that

the conditional expectation is the linear-in-the-parameters function

E
(
y0|x0

)
= β1 + β2x02 + β3x03 + · · · + βKx0K (6.35)

Defining e0 = y0 − E
(
y0|x0

)
, we can write

y0 = β1 + β2x02 + β3x03 + · · · + βKx0K + e0 (6.36)
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To estimate the parameters
(
β1, β2,… , βK

)
in (6.35), we assume we have i = 1, 2,… ,N observa-

tions yi and 𝐱i = (1, xi2, xi3,… , xiK) such that

E
(
yi|xi

)
= β1 + β2xi2 + β3xi3 + · · · + βKxiK (6.37)

Define ei = yi − E
(
yi|xi

)
so that the model used to estimate

(
β1, β2,… , βK

)
can be written as

yi = β1 + β2xi2 + β3xi3 + · · · + βKxiK + ei (6.38)

Equations (6.35)–(6.38) make up the predictive model. Equations (6.37) and (6.38) refer to the

sample observations used to estimate the parameters. Equation (6.35) is the predictor that would

be used if the parameters
(
β1, β2,…βK

)
were known. Equation (6.36) incorporates the realized

value y0 and the error e0. When we think of prediction or forecasting—we use the two terms

interchangeably—we naturally think of forecasting outside the sample observations. Under these

circumstances y0 will be unobserved at the time the forecast is made. With time-series data, x0 will

be future values of the explanatory variables for which a forecast is required; for cross-section data

it will be values for an individual or some other economic unit that was not sampled. There are,

however, instances where we make within-sample predictions or forecasts despite the fact that we

have observed realized values for y for those observations. One example is their use in RESET

where the regression equation was augmented with the squares and cubes of the within-sample

predictions. When we are considering within-sample predictions, x0 will be identical to one of

the xi, or it can be viewed as generic notation to represent all xi.

Note that (6.36) and (6.38) do not have to be causal models. To have a good predictive model,

(yi, y0) needs to be highly correlated with the variables in (xi, x0), but there is no requirement that

(yi, y0) be caused by (xi, x0). There is no requirement that all variables that affect y have to be

included and there is no such thing as omitted variable bias. In (6.38), we are simply estimating

the conditional expectation of the variables that are included. Under these circumstances, the

interpretation of (ei, e0) is different from its interpretation in a causal model. In a causal model

e represents the effect of variables omitted from the model; it is important that these effects are

isolated from those in the model through the exogeneity assumption. We think of e as part of the

data generating process. In a predictive model the coefficients in the conditional expectation can

represent the direct effect of included variables and the indirect effect of excluded variables. The

error term e is simply the difference between the realized value y and its conditional expectation;

it is the forecasting error that would occur if
(
β1, β2,… , βK

)
were known and did not have to be

estimated. It does not take on an “all-other-variables” interpretation.

Application of least squares to (6.35) will yield unbiased estimates of
(
β1, β2,… , βK

)
con-

ditional on 𝐗 =
(
𝐱1, 𝐱2,… , 𝐱N

)
. If we assume further that var

(
ei|X

)
= σ2 and E

(
eiej|X

)
= 0 for

i ≠ j, then the least squares estimator is best linear unbiased conditional on X. Unconditionally, it

will be a consistent estimator providing assumptions about the limiting behavior of the explana-

tory variables hold.8 Having obtained the least squares estimates (b1, b2, …, bK), we can define

an operational predictor for y0 as (6.35) with the unknown βk replaced by their estimators. That is,

ŷ0 = b1 + b2x02 + b3x03 + · · · + bKx0K (6.39)

An extra assumption that we need is that
(
e0|x0

)
is uncorrelated with

(
ei|X

)
for i = 1, 2,… ,N

and i ≠ 0. We also assume var
(
e0|x0

)
= var

(
ei|X

)
= σ2, an assumption used when deriving the

variance of the forecast error.

After replacing the βk with bk, the forecast error is given by

𝑓 = y0 − ŷ0

=
(
β1 − b1

)
+
(
β2 − b2

)
x02 +

(
β3 − b3

)
x03 + · · · +

(
βK − bK

)
x0K + e0 (6.40)

There are two components in this forecast error: the errors
(
βk − bk

)
from estimating the unknown

parameters, and an error e0 which is the deviation of the realized y0 from its conditional mean.

The predictor ŷ0 is unbiased in the sense that E
(
𝑓 |x0,X

)
= 0 and it is a best linear unbiased

............................................................................................................................................

8See Section 5.7.1 for an illustration in the case of simple regression.
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predictor in the sense that the conditional variance var
(
𝑓 |x0,X

)
is no greater than that of any

other linear unbiased predictor. The conditional variance of the prediction error is

var
(
𝑓 |x0,X

)
= var

[(
K∑

k=1

(
βk − bk

)
x0k

)
|
|
|
|
|

x0,X

]

+ var
(
e0|x0,X

)

= var

[(
K∑

k=1

bkx0k

)
|
|
|
|
|

x0,X

]

+ σ2

=
K∑

k=1

x2
0kvar

(
bk|x0,X

)
+ 2

K∑

k=1

K∑

j=k+1

x0kx0jcov
(
bk, bj|x0,X

)
+ σ2 (6.41)

In the first line of this equation we have assumed that the covariance between
(
βk − bk

)
and e0 is

zero. This assumption will indeed be true for out-of-sample prediction and where e0 is uncorre-

lated with the sample data used to estimate the βk. For within-sample prediction the situation is

more complicated. Strictly speaking, if e0 is equal to one of the ei in the sample, then
(
βk − bk

)

and e0 will be correlated. This correlation will not be large relative to the overall variance of f ,

however, and tends to get ignored in software calculations. In the second line of (6.41) βkx0k can be

treated as a constant and so var
((
βk − bk

)
x0k|x0,X

)

= var
(
bkx0k|x0,X

)
. The third line follows

from the rule for calculating the variance of a weighted sum in (P.20) of the Probability Primer.

Each of the terms in the expression for var
(
𝑓 |x0,X

)
involves σ2. To obtain the estimated

variance of the forecast error var
⋀(

𝑓 |x0,X
)
, we replace σ2 with its estimator σ̂2

. The standard error

of the forecast is given by se(𝑓 ) =
√

var
⋀(

𝑓 |x0,X
)
. If the random errors ei and e0 are normally

distributed, or if the sample is large, then

𝑓

se(𝑓 )
=

y0 − ŷ0
√

var
⋀(

y0 − ŷ0|x0,X
)
∼ t(N−K) (6.42)

Following the steps we have used many times, a 100(1 − α)% interval predictor for y0 is

ŷ0 ± tcse(𝑓 ), where tc is a critical value from the t(N−K)-distribution.

Before providing an example there are two practical considerations worth mentioning.

First, in (6.41), the error variance σ2 is typically much larger than the variance of the other

component—that part of the forecast error attributable to estimation of the βk. Consequently,

this latter component is sometimes ignored and se(𝑓 ) = σ̂ is used. Second, the framework

presented so far does not capture many of the typical characteristics of time-series forecasting.

With time-series forecasting, some of the explanatory variables will usually be lagged values of

the dependent variable. This means that the conditional expectation of a y0 will depend on past

values of itself. The sample information contributes to the conditional expectation of y0. In the

above exposition we have treated x0 as future values of the explanatory variables. The sample

information has only contributed to the predictor through the estimation of the unknown βk.

In other words, E
(
y0|x0

)
= E

(
y0|x0,X, y

)
, where y is used to denote all observations on the

dependent variable. A more general scenario for time-series forecasting where this assumption

is relaxed is considered in Chapter 9.

E X A M P L E 6.15 Forecasting SALES for the Burger Barn

We are concerned with finding a 95% prediction interval

for SALES at Big Andy’s Burger Barn when PRICE0 = 6,

ADVERT0 = 1.9 and ADVERT2
0
= 3.61. These are the

values considered by Big Andy in Example 6.6. In terms

of the general notation x0 = (1, 6, 1.9, 3.61). The point

prediction is

SALES
⋀

0 = 109.719 − 7.640PRICE0 + 12.1512ADVERT0

− 2.768ADVERT2
0

= 109.719 − 7.640 × 6 + 12.1512 × 1.9 − 2.768

× 3.61

= 76.974
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With the settings proposed by Big Andy, we forecast that

sales will be $76,974.

To obtain a prediction interval, we first need to

compute the estimated variance of the forecast error.

Using equation (6.41) and the covariance matrix values in

Table 6.3, we have

var
⋀(

𝑓 |x0,X
)
= σ̂2 + var

⋀(
b1|x0,X

)
+ x2

02
var
⋀(

b2|x0,X
)

+ x2
03

var
⋀(

b3|x0,X
)
+ x2

04
var
⋀(

b4|x0,X
)

+ 2x02cov
⋀(

b1, b2|x0,X
)

+ 2x03cov
⋀(

b1, b3|x0,X
)

+ 2x04cov
⋀(

b1, b4|x0,X
)

+ 2x02x03cov
⋀(

b2, b3|x0,X
)

+ 2x02x04cov
⋀(

b2, b4|x0,X
)

+ 2x03x04cov
⋀(

b3, b4|x0,X
)

= 21.57865 + 46.22702 + 62 × 1.093988

+ 1.92 × 12.6463 + 3.612 × 0.884774

+ 2 × 6 × (−6.426113)

+ 2 × 1.9 × (−11.60096)

+ 2 × 3.61 × 2.939026

+ 2 × 6 × 1.9 × 0.300406

+ 2 × 6 × 3.61 × (−0.085619)

+ 2 × 1.9 × 3.61 × (−3.288746)

= 22.4208

T A B L E 6.3
Covariance Matrix for Andy’s
Burger Barn Model

b1 b2 b3 b4

b1 46.227019 −6.426113 −11.600960 2.939026

b2 −6.426113 1.093988 0.300406 −0.085619

b3 −11.600960 0.300406 12.646302 −3.288746

b4 2.939026 −0.085619 −3.288746 0.884774

The standard error of the forecast error is se(𝑓 ) =√
22.4208 = 4.7351, and the relevant t-value is t(0.975, 71) =

1.9939, giving a 95% prediction interval of

(76.974 − 1.9939 × 4.7351, 76.974 + 1.9939 × 4.7351)
= (67.533, 86.415)

We predict, with 95% confidence, that Big Andy’s settings for

price and advertising expenditure will yield SALES between

$67,533 and $86,415.

6.4.1 Predictive Model Selection Criteria

In this section we consider three model selection criteria: (i) R2 and R
2
, (ii) AIC, and (iii) SC

(BIC), and describe how a hold-out sample can be used to evaluate a model’s predictive or forecast

ability. Throughout the section you should keep in mind that we are not recommending blind

application of any of these criteria. They should be treated as devices that provide additional

information about the relative merits of alternative models, and they should be used in conjunction

with the other considerations listed in Section 6.3.5 and in the introduction to Section 6.3.

Choice of a model based exclusively on R
2
, AIC, or SC involves choosing a model that min-

imizes the sum of squared errors with a penalty for adding extra variables. While these criteria

can be used for both predictive and causal models, their goal of minimizing a function of the sum

of squared errors rather than focusing on the coefficient, make them more suitable for predictive

model selection. Another common feature of the criteria is that they are suitable only for compar-

ing models with the same dependent variable, not for models with different dependent variables

such as y and ln(y). More general versions of the AIC and SC, based on likelihood functions9,

............................................................................................................................................

9An introduction to maximum likelihood estimation can be found in Appendix C.8.
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are available for models with transformations of the dependent variable, but we do not consider

them here.

R2 and R
2

In Chapters 4 and 5, we introduced the coefficient of determination

R2 = 1 – SSE∕SST as a measure of goodness of fit. It shows the proportion of variation in

a dependent variable explained by variation in the explanatory variables. Since it is desirable

to have a model that fits the data well, there can be a tendency to think that the best model is

the one with the highest R2. There are at least two problems with this line of thinking. First, if

cross-sectional data are being used to estimate a causal effect, then low R2’s are typical and not

necessarily a concern. What is more important is to avoid omitted variable bias and to have a

sample size sufficiently large to get a reliable estimate of the coefficient of interest.

The second problem is one related to predictive models, namely, that comparing models on

the basis of R2 is only legitimate if the models have the same number of explanatory variables.

Adding more variables always increases R2 even if the variables added have no justification. As

variables are added the sum of squared errors SSE goes down and thus R2 goes up. If the model

contains N − 1 variables, then R2 = 1.

An alternative measure of goodness of fit called the adjusted-R2, denoted as R
2
, has been

suggested to overcome this problem. It is computed as

R
2
= 1 −

SSE∕(N − K)
SST∕(N − 1)

This measure does not always go up when a variable is added because of the degrees of freedom

term N − K in the numerator. As the number of variables K increases, SSE goes down, but so does

N − K. The effect on R
2

depends on the amount by which SSE falls. While solving one problem,

this corrected measure of goodness of fit unfortunately introduces other problems. It loses its

interpretation; R
2

is no longer the proportion of explained variation. Also, it can be shown that

if a variable is added to an equation, say with coefficient βK, then R
2

will increase if the t-value

for testing the hypothesis H0∶βK = 0 is greater than one. Thus, using R
2

as a device for selecting

the appropriate set of explanatory variables is like using a hypothesis test for significance of a

coefficient with a critical value of 1, a value much less than that typically used with 5% and 10%

levels of significance. Because of these complications, we prefer to report the unadjusted R2 as a

goodness-of-fit measure, and caution is required if R
2

is used for model selection. Nevertheless,

you should be familiar with R
2
. You will see it in research reports and on the output of software

packages.

Information Criteria Selecting variables to maximize R
2

can be viewed as selecting vari-

ables to minimize SSE, subject to a penalty for introducing too many variables. Both the AIC and

the SC work in a similar way but with different penalties for introducing too many variables. The

Akaike information criterion (AIC) is given by

AIC = ln
(SSE

N

)

+ 2K
N

(6.43)

and the Schwarz criterion (SC), also known as the Bayesian information criterion (BIC), is

given by

SC = ln
(SSE

N

)

+ K ln(N)
N

(6.44)

In each case the first term becomes smaller as extra variables are added, reflecting the decline in

the SSE, but the second term becomes larger because K increases. Because Kln(N)∕N > 2K∕N
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for N ≥ 8, in reasonable sample sizes the SC penalizes extra variables more heavily than does the

AIC. Using these criteria, the model with the smallest AIC, or the smallest SC, is preferred.

To get values of the more general versions of these criteria based on maximized values of

the likelihood function you need to add [1 + ln(2π)] to (6.43) and (6.44). It is good to be aware

of this fact in case your computer software reports the more general versions. However, although

it obviously changes the AIC and SC values, adding a constant does not change the choice of

variables that minimize the criteria.

Using a Hold-Out Sample When a model is designed for prediction or forecasting, we

are naturally interested in its ability to forecast dependent variable values that have not yet been

observed. To assess a model on this basis, we could make some forecasts and then compare these

forecasts with the corresponding realizations after they occur. However, if we are in the model

construction phase of an investigation, it is unlikely we would want to wait for extra observations.

A way out of this dilemma is to hold back some of the observations from estimation and then eval-

uate the model on the basis of how well it can predict the omitted observations. Suppose we have

a total of N observations of which N1 are used for estimation and N2 = N − N1 are held back to

evaluate a model’s forecasting ability. Thus, we have estimates
(
b1, b2,… , bK

)
from observations

(
yi, 𝐱i

)
, i = 1, 2,… ,N1 and we calculate the predictions

ŷi = b1 + b2xi2 + · · · + bKxiK i = N1 + 1,N2 + 2,… ,N

A measure of the model’s out-of-sample forecasting ability is the root mean squared error
(RMSE)

RMSE =

√

1

N2

N∑

i=N1+1

(
yi − ŷi

)2

We expect this quantity to be larger than its within-sample counterpart σ̂ =√
∑N1

i=1

(
yi − ŷi

)2/(N1 − K
)

because the least squares estimation procedure is such that
∑N1

i=1

(
yi − ŷi

)2
is minimized. Models can be compared on the basis of their hold-out RMSEs.

E X A M P L E 6.16 Predicting House Prices

Real estate agents and potential homebuyers are interested in

valuing houses or predicting the price of a house with particu-

lar characteristics. There are many factors that have a bearing

on the price of a house, but for our predictive model we will

consider just two, the age of the house in years (AGE), and

its size in hundreds of square feet (SQFT). The most general

model we consider is

ln(PRICE) = β1 + β2AGE + β3SQFT + β4AGE2 + β5SQFT2

+ β6AGE × SQFT + e

where PRICE is the house price in thousands of dollars. Of

interest is whether some or all of the quadratic terms AGE2,

SQFT2, and AGE × SQFT improve the predictive ability of

the model. For convenience, we evaluate predictive ability in

terms of ln(PRICE) not PRICE. We use data on 900 houses

sold in Baton Rouge, Louisiana in 2005, stored in the data file

br5. For a comparison based on the RMSE of predictions (but

not the other criteria) we randomly chose 800 observations

for estimation and 100 observations for the hold-out sample.

After this random selection, the observations were ordered so

that the first 800 were used for estimation and the last 100 for

predictive assessment.

Values of the criteria for the various models appear

in Table 6.4. Looking for the model with the highest R
2
,

and the models with the smallest values (or largest negative

numbers) for the AIC and SC, we find that all three criteria

prefer model 2 where AGE2 is included, but SQFT2 and

AGE × SQFT are excluded. Using the out-of-sample RMSE

criterion, model 6, with AGE × SQFT included in addition

to AGE2, is slightly favored over model 2.
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T A B L E 6.4 Model Selection Criteria for House Price Example

Model

Variables included
in addition to
(SQFT, AGE) R2 R

2
AIC SC RMSE

1 None 0.6985 0.6978 –2.534 –2.518 0.2791

2 AGE2 0.7207 0.7198∗ –2.609∗ –2.587∗ 0.2714

3 SQFT2 0.6992 0.6982 –2.535 –2.513 0.2841

4 AGE × SQFT 0.6996 0.6986 –2.536 –2.515 0.2790

5 AGE2, SQFT2 0.7208 0.7196 –2.607 –2.580 0.2754

6 AGE2, AGE × SQFT 0.7210 0.7197 –2.608 –2.581 0.2712*

7 SQFT2, AGE × SQFT 0.7006 0.6993 –2.537 –2.510 0.2840

8 SQFT2, AGE2, AGE × SQFT 0.7212∗ 0.7197 –2.606 –2.574 0.2754

∗Best model according to each of the criteria.

6.5 Poor Data, Collinearity, and Insignificance
Most economic data that are used for estimating economic relationships are nonexperimental.

Indeed, in most cases they are simply “collected” for administrative or other purposes. They

are not the result of a planned experiment in which an experimental design is specified for the

explanatory variables. In controlled experiments the right-hand-side variables in the model can

be assigned values in such a way that their individual effects can be identified and estimated

with precision. When data are the result of an uncontrolled experiment, many of the economic

variables may move together in systematic ways. Such variables are said to be collinear, and the

problem is labeled collinearity. In this case there is neither a guarantee that the data will be “rich

in information” nor that it will be possible to isolate the economic relationship or parameters of

interest.

As an example, consider the problem faced by the marketing executives at Big Andy’s Burger

Barn when they try to estimate the increase in sales revenue attributable to advertising that appears

in newspapers and the increase in sales revenue attributable to coupon advertising. Suppose that

it has been common practice to coordinate these two advertising devices, so that at the same

time that advertising appears in the newspapers there are flyers distributed containing coupons

for price reductions on hamburgers. If variables measuring the expenditures on these two forms

of advertising appear on the right-hand side of a sales revenue equation such as (5.2), then the

data on these variables will show a systematic, positive relationship; intuitively, it will be difficult

for such data to reveal the separate effects of the two types of ads. Although it is clear that total

advertising expenditure increases sales revenue, because the two types of advertising expenditure

move together, it may be difficult to sort out their separate effects on sales revenue.

As a second example, consider a production relationship explaining output over time as

a function of the amounts of various quantities of inputs employed. There are certain factors

of production (inputs), such as labor and capital, that are used in relatively fixed proportions.

As production increases, the changing amounts of two or more such inputs reflect equipropor-

tionate increases. Proportional relationships between variables are the very sort of systematic

relationships that epitomize “collinearity.” Any effort to measure the individual or separate effects

(marginal products) of various mixes of inputs from such data will be difficult.

It is not just relationships between variables in a sample of data that make it difficult to isolate

the separate effects of individual explanatory variables. If the values of an explanatory variable



�

� �

�

6.5 Poor Data, Collinearity, and Insignificance 289

do not vary or change much within a sample of data, then it is clearly difficult to use that data to

estimate a coefficient that describes the effect of change in that variable. It is hard to estimate the

effect of change if there has been no change.

6.5.1 The Consequences of Collinearity
The consequences of collinearity and/or lack of variation depend on whether we are examining an

extreme case in which estimation breaks down or a bad, but not extreme, case in which estimation

can still proceed but our estimates lack precision. In Section 5.3.1, we considered the model

yi = β1 + β2xi2 + β3xi3 + ei

and wrote the variance of the least squares estimator for β2 as

var
(
b2|X

)
= σ2

(
1 − r2

23

)∑N
i=1

(
xi2 − x2

)2
(6.45)

where r23 is the correlation between x2 and x3. Exact or extreme collinearity exists when x2 and

x3 are perfectly correlated, in which case r23 = 1 and var
(
b2|X

)
goes to infinity. Similarly, if x2

exhibits no variation
∑(

xi2 − x2

)2
equals zero and var

(
b2|X

)
again goes to infinity. In this case,

x2 is collinear with the constant term. In general, whenever there are one or more exact linear
relationships among the explanatory variables, then the condition of exact collinearity exists. In
this case, the least squares estimator is not defined. We cannot obtain estimates of βk’s using the

least squares principle. One of our least squares assumptions MR5, which says that the values of

xik are not exact linear functions of the other explanatory variables, is violated.

The more usual case is one in which correlations between explanatory variables might be

high, but not exactly one; variation in explanatory variables may be low but not zero; or linear

dependencies between more than two explanatory variables could be high but not exact. These

circumstances do not constitute a violation of least squares assumptions. By the Gauss–Markov

theorem, the least squares estimator is still the best linear unbiased estimator. We might still be

unhappy, however, if the best we can do is constrained by the poor characteristics of our data.

From (6.45), we can see that when r23 is close to one or
∑(

xi − x2

)2
is close to zero, the variance

of b2 will be large. A large variance means a large standard error, which means the estimate may

not be significantly different from zero and an interval estimate will be wide. The sample data

have provided relatively imprecise information about the unknown parameters.

Although (6.45) is only valid for a regression model with two explanatory variables, with a

few simple changes we can generalize this equation to gain insights into collinearity in the more

general multiple regression model with K − 1 explanatory variables. First, recall from Section

4.2.2 that a simple correlation between two variables is the same as the R2 from the regression

of one variable on another, so that r2
23
= R2

2•, where R2
2• is the R2 from the so-called auxiliary

regression xi2 = α2 + α3xi3 + vi. Then, another way to write (6.45) is

var
(
b2|X

)
= σ2

∑(
xi2 − x2

)2 (
1 − R2

2•

) (6.46)

The beauty of this equation is that it holds for the general model yi = β1 + β2xi2 + β3xi3 + · · · +
βKxiK + ei, where R2

2• is the R2 from the auxiliary regression xi2 = α2 + α3xi3 + · · · + αKxiK + vi.

The ratio

VIF = 1∕
(
1 − R2

2•

)

is called the variance inflation factor. If R2
2• = 0, indicating no collinearity—no vari-

ation in x2 can be explained by the other explanatory variables—then VIF = 1 and

var
(
b2|X

)
= σ2

/∑(
xi2 − x2

)2
. On the other hand, if R2

2• = 0.90, indicating that 90% of the vari-

ation in x2 can be explained by the other regressors, then VIF = 10 and var
(
b2|𝐗

)
is ten times
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larger than the than it would be if there was no collinearity present. VIF is sometimes used

to describe the severity of collinearity in a regression. Auxiliary regression R2
k•’s and variance

inflation factors can be found for every explanatory variable in a regression; equations analogous

to (6.46) hold for each of the coefficient estimates.

By examining R2
2•, we can obtain a very informative third representation. The R2 from the

regression xi2 = α2 + α3xi3 + · · · + αKxiK + vi is the portion of the total variation in x2 about its

mean,
∑(

xi2 − x2

)2
, explained by the model. Let the fitted values from the auxiliary regres-

sion be x̂i2 = a2 + a3xi3 + · · · + aKxiK , where
(
a2, a3,… , aK

)
are the least squares estimates of

(
α2, α3,… , αK

)
. A residual from the auxiliary regression is xi2 − x̂i2 and its R2 can be written as

R2
2• = 1 −

∑(
xi2 − x̂i2

)2

∑(
xi2 − x2

)2

Substituting this into (6.46), we have

var
(
b2|X

)
= σ2

∑(
xi2 − x̂i2

)2
(6.47)

The term
∑(

xi2 − x̂i2
)2

is the sum of squared least squares residuals from the auxiliary regres-

sion. When collinearity is stronger, with a larger amount of variation in x2 explained by the other

regressors, the smaller
∑(

xi2 − x̂i2
)2

becomes and the larger var
(
b2|𝐗

)
becomes. It is the varia-

tion in x2 that is not explained by the other regressors that increases the precision of least squares

estimation.

The effects of imprecise estimation resulting from collinearity can be summarized as

follows:

1. When estimator standard errors are large, it is likely that the usual t-tests will lead to the

conclusion that parameter estimates are not significantly different from zero. This outcome

occurs despite possibly high R2- or F-values indicating significant explanatory power of the

model as a whole. The problem is that collinear variables do not provide enough information

to estimate their separate effects, even though theory may indicate their importance in the

relationship.

2. Estimators may be very sensitive to the addition or deletion of a few observations, or to the

deletion of an apparently insignificant variable.

3. Despite the difficulties in isolating the effects of individual variables from such a sample,

accurate forecasts may still be possible if the nature of the collinear relationship remains

the same within the out-of-sample observations. For example, in an aggregate production

function where the inputs labor and capital are nearly collinear, accurate forecasts of output

may be possible for a particular ratio of inputs but not for various mixes of inputs.

6.5.2 Identifying and Mitigating Collinearity
Because nonexact collinearity is not a violation of least squares assumptions, it does not make

sense to go looking for a problem if there is no evidence that one exists. If you have estimated

an equation where the coefficients are precisely estimated and significant, they have the expected

signs and magnitudes, and they are not sensitive to adding or deleting a few observations, or an

insignificant variable, then there is no reason to try and identify or mitigate collinearity. If there

are highly correlated variables, they are not causing you a problem. However, if you have a poorly

estimated equation that does not live up to expectations, it is useful to establish why the estimates

are poor.

One simple way to detect collinear relationships is to use sample correlation coefficients

between pairs of explanatory variables. These sample correlations are descriptive measures

of linear association. However, collinear relationships that involve more than two explanatory
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variables are better detected using auxiliary regressions. If an R2
k• is high, say greater than 0.8,

then a large portion of the variation in xk is explained by the other regressors, and that may have

a detrimental effect on the precision of estimation of βk. If an auxiliary regression R2
k• is not high,

then the precision of an estimator bk is not unduly affected by collinearity, although it may still

suffer if the variation in xk is inadequate.

The collinearity problem is that the data do not contain enough “information” about the indi-

vidual effects of explanatory variables to permit us to estimate all the parameters of the statistical

model precisely. Consequently, one solution is to obtain more information and include it in the

analysis. One form the new information can take is more, and better, sample data. Unfortunately,

in economics, this is not always possible. Cross-sectional data are expensive to obtain, and, with

time-series data, one must wait for the data to appear. Alternatively, if new data are obtained via

the same nonexperimental process as the original sample of data, then the new observations may

suffer the same collinear relationships and provide little in the way of new, independent informa-

tion. Under these circumstances the new data will help little to improve the precision of the least

squares estimates.

A second way of adding new information is to introduce, as we did in Section 6.2, nonsample
information in the form of restrictions on the parameters. This nonsample information may then

be combined with the sample information to provide restricted least squares estimates. The good

news is that using nonsample information in the form of linear constraints on the parameter values

reduces estimator sampling variability. The bad news is that the resulting restricted estimator is

biased unless the restrictions are exactly true. Thus it is important to use good nonsample infor-

mation, so that the reduced sampling variability is not bought at a price of large estimator biases.

E X A M P L E 6.17 Collinearity in a Rice Production Function

To illustrate collinearity we use data on rice production from

a cross section of Philippine rice farmers to estimate the pro-

duction function

ln(PROD) = β1 + β2ln(AREA) + β3ln(LABOR)
+ β4ln(FERT) + e (6.48)

where PROD denotes tonnes of freshly threshed rice, AREA
denotes hectares planted, LABOR denotes person-days of

hired and family labor and FERT denotes kilograms of

fertilizer. Data for the years 1993 and 1994 can be found in

the file rice5. One would expect collinearity may be an issue.

Larger farms with more area are likely to use more labor

T A B L E 6.5 Rice Production Function Results from 1994 Data

Variable
Coefficient

bk se(bk)

95%
Interval
Estimate p-Value∗

Auxiliary
Regression

R2 VIF
C −1.9473 0.7385 0.0119

ln(AREA) 0.2106 0.1821 [−0.1573, 0.5786] 0.2543 0.891 9.2

ln(LABOR) 0.3776 0.2551 [−0.1379, 0.8931] 0.1466 0.944 17.9

ln(FERT) 0.3433 0.1280 [0.0846, 0.6020] 0.0106 0.870 7.7

∗p-value for H0∶βk = 0 versus H1∶βk ≠ 0

and more fertilizer than smaller farms. The likelihood

of a collinearity problem is confirmed by examining the

results in Table 6.5, where we have estimated the function

using data from 1994 only. These results convey very little

information. The 95% interval estimates are very wide,

and, because the coefficients of ln(AREA) and ln(LABOR)

are not significantly different from zero, their interval

estimates include a negative range. The high auxiliary R2’s

and correspondingly high variance inflation factors point to

collinearity as the culprit for the imprecise results. Further

evidence is a relatively high R2 = 0.875 from estimating

(6.48), and a p-value of 0.0021 for the joint test of the two

insignificant coefficients, H0∶β2 = β3 = 0.
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We consider two ways of improving the precision of

our estimates: (1) including non-sample information, and

(2) using more observations. For non-sample information,

suppose that we are willing to accept the notion of constant

returns to scale. That is, increasing all inputs by the same

proportion will lead to an increase in production of the same

proportion. If this constraint holds, then β2 + β3 + β4 = 1.

Testing this constraint as a null hypothesis yields a p-value

of 0.313; so it is not a constraint that is incompatible with

the 1994 data. Substituting β2 + β3 + β4 = 1 into (6.48) and

rearranging the equation gives

ln
(PROD

AREA

)

= β1 + β3ln
(LABOR

AREA

)

+ β4ln
(FERT

AREA

)

+ e
(6.49)

This equation can be viewed as a “yield” equation. Rice yield

per hectare is a function of labor per hectare and fertilizer

per hectare. Results from estimating it appear in Table 6.6.

Has there been any improvement? The answer is not much!

The estimate for β3 is no longer “insignificant,” but that

is more attributable to an increase in the magnitude of b3

T A B L E 6.6 Rice Production Function Results from 1994 Data with Constant Returns to Scale

Variable
Coefficient

bk se
(
bk
)

95%
Interval
Estimate p-Value∗

C −2.1683 0.7065 0.0038

ln(AREA) 0.2262 0.1815 [−0.1474, 0.5928] 0.2197

ln(LABOR) 0.4834 0.2332 [0.0125, 0.9544] 0.0445

ln(FERT) 0.2904 0.1171 [0.0539, 0.5268] 0.0173

∗p-value for H0∶βk = 0 versus H1∶βk ≠ 0

T A B L E 6.7 Rice Production Function Results from Data for 1993 and 1994

Variable Coefficient se
(
bk
) 95% Interval

Estimate p-Value∗

Auxiliary
Regression

R2 VIF
C −1.8694 0.4565 0.0001

ln(AREA) 0.2108 0.1083 [−0.0045, 0.4261] 0.0549 0.870 7.7

ln(LABOR) 0.3997 0.1307 [0.1399, 0.6595] 0.0030 0.901 10.1

ln(FERT) 0.3195 0.0635 [0.1932, 0.4457] 0.0000 0.776 4.5

∗p-value for H0∶βk = 0 versus H1∶βk ≠ 0

than to a reduction in its standard error. The reduction in

standard errors is only marginal, and the interval estimates

are still wide, conveying little information. The squared cor-

relation between ln
(
LABOR

/
AREA

)
and ln

(
FERT

/
AREA

)

is 0.414 which is much less than the earlier auxiliary

R2’s, but, nevertheless, the new estimates are relatively

imprecise.

As an alternative to injecting non-sample information

into the estimation procedure, we examine the effect of

including more observations by combining the 1994 data

with observations from 1993. The results are given in

Table 6.7. Here there has been a substantial reduction in

the standard errors, with considerable improvement in the

precision of the estimates, despite the fact that the variance

inflation factors still remain relatively large. The greatest

improvement has been for the coefficient of ln(FERT),

which has the lowest variance inflation factor. The interval

estimates for the other two coefficients are still likely to be

wider than a researcher would desire, but at least there has

been some improvement.
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T A B L E 6.8 Statistics for Identifying Influential Observations

Influence Statistic Formula Investigative Threshold

Leverage hi =
var
⋀(

êi
)
− σ̂2

σ̂2
hi >

2K
N

or
3K
N

Studentized residual êstu
i =

êi

σ̂(i)
(
1 − hi

)1/2

|
|
|
êstu

i
|
|
|
> 2

DFBETAS DFBETASki =
bk − bk(i)

(
σ̂(i) ∕σ̂

)
× se

(
bk
) |

|DFBETASki
|
| >

2
√

N

DFFITS DFFITSi =
(

hi

1 − hi

)1/2

êstu
i

|
|DFFITSi

|
| > 2

(K
N

)1/2

6.5.3 Investigating Influential Observations
In Section 4.3.6, we introduced a number of measures for detecting influential observations. The

purpose of having such measures is first to detect whether there may have been a data error, and

second, if the accuracy of the data is confirmed, to identify unusual observations that may be wor-

thy of further investigation. Are there observations that can be explained within the context of the

proposed model? Are there other factors at work that could have led to the unusual observations?

In Section 4.3.6, the measures were introduced within the context of the simple regression

model with one explanatory variable. The same measures are relevant for the multiple regression

model, but some of the formulas change slightly to accommodate the extra regressors. Now would

be a good time to go back and reread Section 4.3.6. Are you back? Now that you understand the

concepts, we can proceed. The important concepts introduced in that section were the leverage

of the ith observation, hi, the studentized residual, êstu
i , the sensitivity of a coefficient estimate to

omission of the ith observation, DFBETASki, and the sensitivity of a prediction to omission of

the ith observation DFFITSi. Multiple regression versions of these measures are summarized in

Table 6.8 along with conventional thresholds above which further scrutiny of an observation may

be warranted. Remember, the purpose is not to throw out unusual observations but to learn from

them. They may reveal some important characteristics of the data.

E X A M P L E 6.18 Influential Observations in the House Price Equation

To illustrate the identification of potentially influential obser-

vations, we return to Example 6.16 where, using predictive

model selection criteria, the preferred equation for predicting

house prices was

ln(PRICE) = β1 + β2SQFT + β3AGE + β4AGE2 + e

In a sample of 900 observations it is not surprising to find

a relatively large number of data points where the various

influence measures exceed the recommended thresholds. As

examples, in Table 6.9 we report the values of the measures

for those observations with the three largest DFFITS. It

turns out that the other influence measures for these three

observations also have large values. In parentheses next to

each of the values is the rank of its absolute value. When we

check the characteristics of the three unusual observations,

we find observation 540 is the newest house in the sample

and observation 150 is the oldest house. Observation 411

is both old and large; it is the 10th largest (99th percentile)

and the sixth oldest (percentile 99.4) house in the sample. In

Exercise 6.20, you are invited to explore further the effect of

these observations.
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T A B L E 6.9 Influence Measures for House Price Equation

Observation hi (rank) êstu
i (rank) DFFITSi (rank) DFBETASki (rank)

Threshold 2.5K
N

= 0.011 2 2
(K

N

)1∕2
= 0.133

2
√

N
= 0.067

SQFT AGE AGE2

411 0.0319 (10) −4.98 (1) 0.904 (1) −0.658 (1) 0.106 (17) −0.327 (3)

524 0.0166 (22) −4.31 (3) 0.560 (2) 0.174 (9) 0.230 (2) −0.381 (2)

150 0.0637 (2) 1.96 (48) −0.511 (3) −0.085 (29) −0.332 (1) 0.448 (1)

6.6 Nonlinear Least Squares
We have discovered how the least squares estimation technique can be used to estimate a variety of

nonlinear functions. They include log-log models, log-linear models, and models with quadratic

and interaction terms. However, the models we have encountered so far have all been linear in

the parameters β1, β2,… , βK.10 In this section we discuss estimation of models that are nonlinear

in the parameters. To give an appreciation of what is meant by such a model, it is convenient to

begin with the following simple artificial example,

yi = βxi1 + β2xi2 + ei (6.50)

where yi is a dependent variable, xi1 and xi2 are explanatory variables, β is an unknown parame-

ter that we wish to estimate, and the ei satisfy the multiple regression assumptions MR1–MR5.

This example differs from the conventional linear model because the coefficient of xi2 is equal to

the square of the coefficient of xi1, and the number of parameters is not equal to the number of

variables.

How can β be estimated? Think back to Chapter 2. What did we do when we had a simple

linear regression equation with two unknown parameters β1 and β2? We set up a sum of squared

errors function that, in the context of (6.50), is

S(β) =
N∑

i=1

(
yi − βxi1 − β2xi2

)2
(6.51)

Then we asked what values of the unknown parameters make S(β) a minimum. We searched for

the bottom of the bowl in Figure 2A.1. We found that we could derive formulas for the minimizing

values b1 and b2. We called these formulas the least squares estimators.

When we have models that are nonlinear in the parameters, we cannot in general derive

formulas for the parameter values that minimize the sum of squared errors function. However,

for a given set of data, we can ask the computer to search for the parameter values that take

us to the bottom of the bowl. There are many numerical software algorithms that can be used

to find minimizing values for functions such as S(β). Those minimizing values are known as

the nonlinear least squares estimates. It is also possible to obtain numerical standard errors

that assess the reliability of the nonlinear least squares estimates. Finite sample properties

............................................................................................................................................

10There have been a few exceptions where we have used notation other than β1, β2, … , βK to denote the parameters.
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and distributions of nonlinear least squares estimators are not available, but their large sample

asymptotic properties are well established.11

E X A M P L E 6.19 Nonlinear Least Squares Estimates for Simple Model

To illustrate estimation of (6.50), we use data stored in the

file nlls. The sum of squared error function is graphed in

Figure 6.1. Because we only have one parameter, we have

a two-dimensional curve, not a “bowl.” It is clear from the

curve that the minimizing value for β lies between 1.0 and

1.5. From your favorite software, the nonlinear least squares

estimate turns out to be b = 1.1612. The standard error

depends on the degree of curvature of the sum of squares

function at its minimum. A sharp minimum with a high

degree of curvature leads to a relatively small standard error,

while a flat minimum with a low degree of curvature leads

to a relatively high standard error. There are different ways

of measuring the curvature that can lead to different standard

errors. In this example, the “outer-product of gradient”

method yields a standard error of se(b) = 0.1307, while

the standard error from the “observed-Hessian” method is

se(b) = 0.1324.12 Differences such as this one disappear as

the sample size gets larger.

Two words of warning must be considered when

estimating a nonlinear-in-the-parameters model. The first

is to check that the estimation process has converged to a

global minimum. The estimation process is an iterative one

where a series of different parameter values are checked until

the process converges at the minimum. If your software tells

0
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–3 –2 –1 0 1 2

S(β)

β

FIGURE 6.1 Sum of squared errors function for single-parameter
example.

you the process has failed to converge, the output provided, if

any, does not provide the nonlinear least squares estimates.

This might happen if a maximum number of iterations has

been reached or there has been a numerical problem that

has caused the iterations to stop. A second problem that

can occur is that the iterative process may stop at a “local”

minimum rather than the “global” minimum. In the example

in Figure 6.1, there is a local minimum at β = −2.0295.

Your software will have an option of giving starting values
to the iterative process. If you give it a starting value of

−2, it is highly likely you will end up with the estimate

b = −2.0295. This value is not the nonlinear least squares

estimate, however. The nonlinear least squares estimate is at

the global minimum which is the smallest of the minima if

more than one exists. How do you guard against ending up

at a local minimum? It is wise to try different starting values

to ensure you end up at the same place each time. Notice that

the curvature at the local minimum in Figure 6.1 is much less

than at the global minimum. This should be reflected in a

larger “standard error” at the local minimum. Such is indeed

the case. We find the outer-product-gradient method yields

se(b) = 0.3024, and from the observed-Hessian method we

obtain se(b) = 0.3577.

............................................................................................................................................

11Details of how the numerical algorithms work, how standard errors are obtained, the asymptotic properties of the

estimators, and the assumptions necessary for the asymptotic properties to hold, can be found in William Greene,

Econometric Analysis 8e, Pearson Prentice-Hall, 2018, Chapter 7.

12These methods require advanced material. See William Greene, Econometric Analysis 8e, Pearson Prentice-Hall,

2018, Section 14.4.6.
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E X A M P L E 6.20 A Logistic Growth Curve

A model that is popular for modeling the diffusion of techno-

logical change is the logistic growth curve13

yt =
α

1 + exp(−β − δt)
+ et (6.52)

where yt is the adoption proportion of a new technology. For

example, yt might be the proportion of households who own a

computer, or the proportion of computer-owning households

who have the latest computer, or the proportion of musical

recordings sold as compact disks. In the example that fol-

lows, yt is the share of total U.S. crude steel production that

is produced by electric arc furnace technology.

Before considering this example, we note some details

about the relationship in equation (6.52). There is only one

explanatory variable on the right hand side, namely, time,

t = 1, 2,… , T. Thus, the logistic growth model is designed

to capture the rate of adoption of technological change, or,

in some examples, the rate of growth of market share. An

example of a logistic curve is depicted in Figure 6.2. In

this example, the rate of growth increases at first, to a point

of inflection that occurs at t = −β∕δ = 20. Then the rate

of growth declines, leveling off to a saturation proportion

given by α = 0.8. Since y0 = α∕(1 + exp(−β)), the parameter

β determines how far the share is below saturation level at

time zero. The parameter δ controls the speed at which the
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FIGURE 6.2 A Logistic Growth Curve.

point of inflection, and the saturation level, are reached.

The curve is such that the share at the point of inflection is

α∕2 = 0.4, half the saturation level.

Traditional technology for steel making, involving blast

and oxygen furnaces and the use of iron ore, is being dis-

placed by newer electric arc furnace technology that utilizes

scrap steel. This displacement has implications for the sup-

pliers of raw materials such as iron ore. Thus, prediction of

the future electric arc furnace share of steel production is of

vital importance to mining companies. The file steel contains

annual data on the electric arc furnace share of U.S. steel pro-

duction from 1970 to 2015. Using this data to find nonlinear

least squares estimates of a logistic growth curve yields the

following estimates (standard errors):

α̂ = 0.8144 (0.0511) β̂ = −1.3777 (0.0564)

δ̂ = 0.0572 (0.0043)

Quantities of interest are the inflection point at which the rate

of growth of the share starts to decline, −β∕δ; the saturation

proportion α; the share at time zero, y0 = α∕(1 + exp(−β));
and prediction of the share for various years in the future. In

Exercise 6.21, you are invited to find interval estimates for

these quantities.

............................................................................................................................................

13For other possible models, see Exercises 4.15 and 4.17.
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6.7 Exercises

6.7.1 Problems

6.1 When using N = 50 observations to estimate the model yi = β1 + β2xi + β3zi + ei, you obtain

SSE = 2132.65 and sy = 9.8355.

a. Find R2.

b. Find the value of the F-statistic for testing H0∶β2 = 0, β3 = 0. Do you reject or fail to reject H0

at a 1% level of significance?

c. After augmenting this model with the squares and cubes of predictions ŷ2

i and ŷ3

i , you obtain

SSE = 1072.88. Use RESET to test for misspecification at a 1% level of significance.

d. After estimating the model yi = β1 + β2xi + β3zi + β4z2
i + ei, you obtain SSE = 401.179. What is

the R2 from estimating this model?

e. After augmenting the model in (d) with the squares and cubes of predictions ŷ2

i and ŷ3

i , you obtain

SSE = 388.684. Use RESET to test for misspecification at a 5% level of significance.

6.2 Consider the following model that relates the percentage of a household’s budget spent on alcohol

WALC to total expenditure TOTEXP, age of the household head AGE, and the number of children in

the household NK.

WALC = β1 + β2ln(TOTEXP) + β3NK + β4AGE + β5AGE2 + e

Using 1200 observations from a London survey, this equation was estimated with and without the AGE
variables included, giving the following results:

WALC
⋀

= 8.149 + 2.884ln(TOTEXP) − 1.217NK − 0.5699AGE + 0.005515AGE2

(se) (0.486) (0.382) (0.1790) (0.002332)
σ̂ = 6.2048

WALC
⋀

= −1.206 + 2.152ln(TOTEXP) − 1.421NK
(se) (0.482) (0.376)

σ̂ = 6.3196

a. Use an F-test and a 5% significance level to test whether AGE and AGE2 should be included in the

equation.

b. Use an F-test and a 5% significance level to test whether NK should be included in the first equation.

[Hint: F = t2]

c. Use an F-test, a 5% significance level and the first equation to test H0∶β2 = 3.5 against the alter-

native H1∶β2 ≠ 3.5.

d. After estimating the following equation, we find SSE = 46086.

WALC − 3.5ln(TOTEXP) + NK = β1 −
(
2β5 × 50

)
AGE + β5AGE2 + e

Relative to the original equation with all variables included, for what null hypothesis is this equation

the restricted model? Test this null hypothesis at a 5% significance level.

e. What is the χ2-value for the test in part (d)? In this case, is there a reason why a χ2-test might be

preferred to an F-test?

6.3 Consider the regression model yi = β1 + β2xi + β3zi + ei, where E
(
ei|𝐗

)
= 0, var

(
ei|𝐗

)
= σ2, and

E
(
eiej|𝐗

)
= 0 for i ≠ j, with X representing all observations on x and z. Suppose zi is omitted from

the equation, so that we have the least squares estimator for β2 as

b∗
2
=
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2
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Prove that

a. b∗
2
= β2 + β3

∑
wizi +

∑
wiei, where wi =

(
xi − x

)/∑(
xi − x

)2
.

b. E
(
b∗

2
|X
)
= β2 + β3cov

⋀

(x, z)
/

var
⋀

(x)

c. var
(
b∗

2
|X
)
= σ2

/(
Nvar
⋀

(x)
)

d. var
(
b∗

2
|X
)
≤ var

(
b2|X

)
, where b2 is the least squares estimator with both x and z included. [Hint:

check out equation (5.13).]

6.4 Consider the regression model yi = β1 + β2xi + β3zi + β4qi + ei, where E
(
ei|X

)
= 0, with X represent-

ing all observations on x, z, and q. Suppose zi is unobservable and omitted from the equation, but

conditional mean independence E
(
zi|xi, qi

)
= E

(
zi|qi

)
holds, with E

(
zi|qi

)
= δ1 + δ2qi.

a. Show that E
(
yi|xi, qi

)
=
(
β1 + β3δ1

)
+ β2xi +

(
β3δ2 + β4

)
qi.

b. i. Is it possible to get a consistent estimate of the causal effect of xi on yi?

ii. Is it possible to get a consistent estimate of the causal effect of zi on yi?

iii. Is it possible to get a consistent estimate of the causal effect of qi on yi?

6.5 Consider the following wage equation where EDUC = years of education and EXPER = years of

experience:

ln(WAGE) = β1 + β2EDUC + β3EXPER + β4EXPER2 + e

Suppose that observations on EXPER are not available, and so you decide to use the variables AGE
and AGE2 instead. What assumptions are sufficient for the least squares estimate for β2 to be given a

causal interpretation?

6.6 Use an F-test to jointly test the relevance of the two variables XTRA_X5 and XTRA_X6 for the family

income equation in Example 6.12 and Table 6.1.

6.7 In Example 6.15 a prediction interval for SALES from Big Andy’s Burger Barn was computed for the

settings PRICE0 = 6, ADVERT0 = 1.9. Find point and 95% interval estimates for

E(SALES|PRICE = 6,ADVERT = 1.9)

Contrast your answers with the point and interval predictions that were obtained in Example 6.15.

[Hint: The easiest way to calculate the standard error for your point estimate is to utilize some of the

calculations given in Example 6.15.]

6.8 Consider the wage equation

ln(WAGE) = β1 + β2EDUC + β3EDUC2 + β4EXPER + β5EXPER2 + β6(EDUC × EXPER) + e

where the explanatory variables are years of education (EDUC) and years of experience (EXPER).

Estimation results for this equation, and for modified versions of it obtained by dropping some

of the variables, are displayed in Table 6.10. These results are from 200 observations in the file

cps5_small.
a. What restriction on the coefficients of Eqn (A) gives Eqn (B)? Use an F-test to test this restriction.

Show how the same result can be obtained using a t-test.

b. What restrictions on the coefficients of Eqn (A) give Eqn (C)? Use an F-test to test these restrictions.

What question would you be trying to answer by performing this test?

c. What restrictions on the coefficients of Eqn (B) give Eqn (D)? Use an F-test to test these restrictions.

What question would you be trying to answer by performing this test?

d. What restrictions on the coefficients of Eqn (A) give Eqn (E)? Use an F-test to test these restrictions.

What question would you be trying to answer by performing this test?

e. Based on your answers to parts (a)–(d), which model would you prefer? Why?

f. Compute the missing AIC value for Eqn (D) and the missing SC value for Eqn (A). Which model

is favored by the AIC? Which model is favored by the SC?
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T A B L E 6.10 Wage Equation Estimates for Exercise 6.8

Coefficient Estimates and (Standard Errors)
Variable Eqn (A) Eqn (B) Eqn (C) Eqn (D) Eqn (E)

C 0.403 1.483 1.812 2.674 1.256

(0.771) (0.495) (0.494) (0.109) (0.191)

EDUC 0.175 0.0657 0.0669 0.0997

(0.091) (0.0692) (0.0696) (0.0117)

EDUC2 −0.0012 0.0012 0.0010

(0.0027) (0.0024) (0.0024)

EXPER 0.0496 0.0228 0.0314 0.0222

(0.0172) (0.0091) (0.0104) (0.0090)

EXPER2 −0.00038 −0.00032 −0.00060 −0.00031

(0.00019) (0.00019) (0.00022) (0.00019)

EXPER × EDUC −0.001703

(0.000935)

SSE 37.326 37.964 40.700 52.171 38.012

AIC −1.619 −1.612 −1.562 −1.620

SC −1.529 −1.513 −1.264 −1.554

6.9 RESET suggests augmenting an existing model with the squares or the squares and higher powers of

the predictions ŷi. For example,
(

ŷ2

i

)

or
(

ŷ2

i , ŷ
3

i

)

or
(

ŷ2

i , ŷ
3

i , ŷ
4

i

)

. What would happen if you augmented

the model with the predictions ŷi?

6.10 Reconsider Example 6.19 where we used nonlinear least squares to estimate the model yi = βxi1 +
β2xi2 + ei by minimizing the sum of squares function S(β) =

∑N
i=1

(
yi − βxi1 − β2xi2

)2
.

a. Show that
dS
dβ

= −2
N∑

i=1

xi1yi + 2β
( N∑

i=1

x2
i1 − 2

N∑

i=1

xi2yi

)

+ 6β2
N∑

i=1

xi1xi2 + 4β3
N∑

i=1

x2
i2

b. Show that
d2S
dβ2

= 2

( N∑

i=1

x2
i1 − 2

N∑

i=1

xi2yi

)

+ 12β
N∑

i=1

xi1xi2 + 12β2
N∑

i=1

x2
i2

c. Given that
∑N

i=1
x2

i1 = 10.422155,
∑N

i=1
x2

i2 = 3.586929,
∑N

i=1
xi1xi2 = 4.414097,

∑N
i=1

xi1yi =

16.528022, and
∑N

i=1
xi2yi = 10.619469, evaluate dS∕dβ at both the global minimum β = 1.161207

and at the local minimum β = −2.029494. What have you discovered?

d. Evaluate d2S∕dβ2 at both β = 1.161207 and β = −2.029494.

e. At the global minimum, we find σ̂G = 0.926452 whereas, if we incorrectly use the local minimum,

we find σ̂L = 1.755044. Evaluate

q = σ̂
√

2

d2S∕dβ2

at both the global and local minimizing values for β and σ̂. What is the relevance of these values

of q? Go back and check Example 6.19 to see what you have discovered.

6.11 In Example 6.7 we tested the joint null hypothesis

H0∶β3 + 3.8β4 = 1, β1 + 6β2 + 1.9β3 + 3.61β4 = 80

in the model

SALES = β1 + β2PRICE + β3ADVERT + β4ADVERT2 + ei

By substituting the restrictions into the model and rearranging variables, show how the model can be

written in a form where least squares estimation will yield restricted least squares estimates.
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6.12 This exercise uses data on 850 houses sold in Baton Rouge, Louisiana during mid-2005. We will be

concerned with the selling price in thousands of dollars (PRICE), the size of the house in hundreds

of square feet (SQFT), the number of bathrooms (BATHS), and the number of bedrooms (BEDS).

Consider the following conditional expectations

E(PRICE|BEDS) = α1 + α2BEDS (XR6.12.1)

E(PRICE|BEDS, SQFT ) = β1 + β2BEDS + β3SQFT (XR6.12.2)

E(SQFT|BEDS) = γ1 + γ2BEDS (XR6.12.3)

E(PRICE|BEDS, SQFT,BATHS) = δ1 + δ2BEDS + δ3SQFT + δ4BATHS (XR6.12.4)

E(BATHS|BEDS, SQFT ) = θ1 + θ2BEDS + θ3SQFT (XR6.12.5)

a. Express α1 and α2 in terms of the parameters
(
β1, β2, β3, γ1, γ2

)
.

b. Express β1, β2, and β3 in terms of the parameters
(
δ1, δ2, δ3, δ4, θ1, θ2, θ3

)
.

c. Use the information in Table 6.11 and a 1% significance level to test whether

E(PRICE|BEDS, SQFT,BATHS) = E(PRICE|BEDS)

d. Show that the estimates in Table 6.11 satisfy the expressions you derived in parts (a) and (b).

e. Can you explain why the coefficient of BEDS changed sign when SQFT was added to

equation (XR6.12.1).

f. Suppose that E(BATHS|BEDS) = λ1 + λ2BEDS. Use the results in Table 6.11 to find estimates for

λ1 and λ2.

g. Use the estimates from part (f) and the estimates for equations (XR6.12.3) and (XR6.12.4) to find

estimates of α1 and α2. Do they agree with the estimates in Table 6.11?

h. Would you view any of the parameter estimates as causal?

T A B L E 6.11 Estimates for House Price Equations for Exercise 6.12

Coefficient Estimates and (Standard Errors)
(XR6.12.1) (XR6.12.2) (XR6.12.3) (XR6.12.4) (XR6.12.5)

PRICE PRICE SQFT PRICE BATHS

C −71.873 −0.1137 −6.7000 −24.0509 0.67186

(16.502) (11.4275) (1.1323) (11.7975) (0.06812)

BEDS 70.788 −28.5655 9.2764 −32.649 0.1146

(5.041) (4.6504) (0.3458) (4.593) (0.0277)

SQFT 10.7104 9.2648 0.04057

(0.3396) (0.4032) (0.00202)

BATHS 35.628

(5.636)

SSE 8906627 4096699 41930.6 3911896 145.588

6.13 Do gun buybacks save lives? Following the “Port Arthur massacre” in 1996, the Australian government

introduced a gun buyback scheme in 1997. The success of that scheme has been investigated by Leigh

and Neill.14 Using a subset of their data on the eight Australian states and territories for the years

............................................................................................................................................................

14Leigh, A. and C. Neill (2010), “Do Gun Buybacks Save Lives? Evidence from Panel Data?”, American Law and
Economics Review, 12(2), p. 509–557.
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1980–2006, with 1996 and 1997 omitted, making a total of N = 200 observations, we estimate the

following model

SUIC_RATE = β1 + β2GUNRATE + β3URATE + β4CITY + β5YEAR + e

Three equations are considered, one where SUIC_RATE denotes the firearm suicide rate, one where

it represents the non-firearm suicide rate and one for the overall suicide rate, all measured in terms of

deaths per million population. For the years after 1997, the variable GUNRATE is equal to the number

of guns bought back during 1997, per thousand population; it is zero for the earlier years; URATE is

the unemployment rate, CITY is the proportion of the population living in an urban area and YEAR is

included to capture a possible trend. The estimated equations are given in Table 6.12.

T A B L E 6.12 Estimates for Gun Buyback Equations for Exercise 6.13

Coefficient Estimates and (Standard Errors)
Firearm Suicide Rate Non-firearm Suicide Rate Overall Suicide Rate

C 1909 –1871 38.37

(345) (719) (779.76)

GUNRATE –0.223 0.553 0.330

(0.069) (0.144) (0.156)

URATE –0.485 1.902 1.147

(0.534) (1.112) (1.206)

CITY –0.628 0.053 –0.576

(0.057) (0.118) (0.128)

YEAR –0.920 0.976 0.056

(0.174) (0.362) (0.393)

SSE 29745 129122 151890

SSER 50641 131097 175562

a. Is there evidence that the gun buyback has reduced firearm suicides? Has there been substitution

away from firearms to other means of suicide? Is there a trend in the suicide rate?

b. Is there evidence that greater unemployment increases the suicide rate?

c. Test jointly whether URATE and CITY contribute to the each of the equations. The sums of squared

errors for the equations without these variables are given in the row SSER.

6.14 Do gun buybacks save lives? Following the “Port Arthur massacre” in 1996, the Australian govern-

ment introduced a gun buyback scheme in 1997. As mentioned in Exercise 6.13, the success of that

scheme has been investigated by Leigh and Neill. Using a subset of their data on the eight Australian

states and territories for the years 1980–2006, with 1996 and 1997 omitted, making a total of N = 200

observations, we estimate the following model

HOM_RATE = β1 + β2GUNRATE + β3YEAR + e

Three equations are considered, one where HOM_RATE is the homicide rate from firearms, one where

it represent the non-firearm homicide rate and one for the overall homicide rate, all measured in terms of

deaths per million population. For the years after 1997, the variable GUNRATE is equal to the number

of guns bought back during 1997, per thousand population; it is zero for the earlier years; YEAR is

included to capture a possible trend. The estimated equations are given in Table 6.13.

a. Is there evidence that the gun buyback has reduced firearm homicides? Has there been an increase

or a decrease in the homicide rate?

b. Using a joint test on the coefficients of GUNRATE and YEAR, test whether each of the homicide

rates has remained constant over the sample period.
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T A B L E 6.13 Estimates for Gun Buyback Equations for Exercise 6.14

Coefficient Estimates and (Standard Errors)
Firearm Homicide Rate Non-firearm Homicide Rate Overall Homicide Rate

C 694 1097 1791

(182) (816) (907)

GUNRATE 0.0181 0.0787 0.0968

(0.0352) (0.1578) (0.1754)

YEAR –0.346 –0.540 –0.886

(0.092) (0.410) (0.456)

SSE 9017 181087 223842

sy 7.1832 30.3436 34.0273

6.15 The following equation estimates the dependence of CANS (the weekly number of cans of brand A tuna

sold in thousands) on the price of brand A in dollars (PRA) and the prices of two competing brands B

and C (PRB and PRC). The equation was estimated using 52 weekly observations.

E
⋀

(CANS|PRA,PRB,PRC) = 22.96 − 47.08PRA + 9.30PRB + 16.51PRC SSE = 1358.7

a. When PRB and PRC are omitted from the equation, the sum of squared errors increases to 1513.6.

Using a 10% significance level, test whether the prices of the competing brands should be included

in the equation.
(
F(0.9, 2,48) = 2.417

)

b. Consider the following two estimated equations: E
⋀

(PRB|PRA) = 0.5403 + 0.3395PRA and

E
⋀

(PRC|PRA) = 0.7708 + 0.0292PRA. If PRB and PRC are omitted from the original equation for

CANS, by how much will the coefficient estimate for PRA change? By how much will the intercept

estimate change?

c. Find point and 95% interval estimates of E(CANS|PRA = 0.91, PRB = 0.91, PRC = 0.90) using

the original equation. The required standard error is 1.58.

d. Find a point estimate for E(CANS|PRA = 0.91) using the equation you constructed in part (b). Can

you suggest why the point estimates in (c) and (d) are different? Are there values for PRB and PRC
for which they would be identical?

e. Find a 95% prediction interval for CANS when PRA = 0.91, PRB = 0.91 and PRC = 0.90. If you

were a statistical consultant to the supermarket selling the tuna, how would you report this interval?

f. When CANS
⋀

2
is added to the original equation as a regressor the sum of squared errors decreases

to 1198.9. Is there any evidence that the equation is misspecified?

6.16 Using 28 annual observations on output (Y), capital (K), labor (L) and intermediate materials (M) for

the U.S manufacturing sector, to estimate the Cobb–Douglas production function

ln(Y) = β1 + β2 ln(K) + β3 ln(L) + β4 ln(M) + e

gave the following results

b2 = 0.1856 b3 = 0.3990 b4 = 0.4157 SSE = 0.05699 sln(Y) = 0.23752

The standard deviations of the explanatory variables are sln(K) = 0.28108, sln(L) = 0.17203, and

sln(M) = 0.27505. The sums of squared errors from running auxiliary regressions on the explanatory

variables are (the subscript refers to the dependent variable in the auxiliary regression)

SSEln(K) = 0.14216 SSEln(L) = 0.02340 SSEln(M) = 0.04199

a. Find (i) the standard errors for b2, b3, and b4, (ii) the R2’s for each of the auxiliary regressions, and

(iii) the variance inflation factors for b2, b3, and b4.

b. Test the significance of b2, b3, and b4 using a 5% level of significance.
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c. Use a 5% level of significance to test the following hypotheses: (i) H0∶β2 = 0, β3 = 0,

(ii) H0∶β2 = 0, β4 = 0, (iii) H0∶β3 = 0, β4 = 0, and (iv) H0∶β2 = 0, β3 = 0, β4 = 0. The restricted

sums of squared errors for the first three hypotheses are (i) SSER = 0.0551, (ii) SSER = 0.08357

and (iii) SSER = 0.12064.

d. Comment on the presence and impact of collinearity.

6.7.2 Computer Exercises

6.17 Reconsider Example 6.16 in the text. In that example a number of models were assessed on their

within-sample and out-of-sample predictive ability using data in the file br5. Of the models considered,

the one with the best within-sample performance, as judged by the R
2
, AIC and SC criteria was

ln(PRICE) = β1 + β2AGE + β3SQFT + β4AGE2 + e (XR6.17)

In this exercise we investigate whether we can improve on this function by adding the number of

bathrooms (BATHS) and the number of bedrooms (BEDROOMS). Estimate the equations required to

fill in the following table. The models have been numbered from 9 to 12 as extensions of those in

Table 6.3. Model 2 is the same as equation (XR6.17). For the subsequent models extra variables are

added, with model 12 being the last one considered. For the RMSE values, use the last 100 observations

as the hold-out sample. Discuss the results. Include in your discussion a comparison with the results

in Table 6.3.

Model Variables included in addition to those in (XR6.17) R
2 AIC SC RMSE

2 None

9 BATHS
10 BATHS, BEDROOMS
11 BATHS, BEDROOMS × SQFT
12 BATHS, BEDROOMS × SQFT, BATHS × SQFT

6.18 Consider Example 6.17 where the rice production function

ln(PROD) = β1 + β2ln(AREA) + β3ln(LABOR) + β4ln(FERT) + e

was estimated using data from the file rice5.

a. Using data from 1994 only, contrast the outcomes of the following hypothesis tests.

i. H0∶β2 = 0 versus H1∶β2 ≠ 0,

ii. H0∶β3 = 0 versus H1∶β3 ≠ 0,

iii. H0∶β2 = β3 = 0 versus H1∶β2 ≠ 0 or β3 ≠ 0 or both β2 and β3 are nonzero.

b. Show that the restricted model corresponding to the restriction β2 + β3 + β4 = 1 is given by

ln
(PROD

AREA

)

= β1 + β3ln
(LABOR

AREA

)

+ β4ln
(FERT

AREA

)

+ e

c. Some output from estimating the equation in part (b) using 1994 data is given in Table 6.6. It

includes point and interval estimates for β2, se(b2), and a p-value for testing H0∶β2 = 0 against

H1∶β2 ≠ 0. Describe how these results can be obtained and verify that they are correct.

d. Estimate a constant-returns-to-scale production function using data from both 1993 and 1994.

Compare the standard errors and 95% interval estimates with those in Table 6.7 where both years

of data were used, but constant returns to scale was not imposed. Include all coefficients in your

comparison. What are the auxiliary R2’s for the two variables in the restricted model?

6.19 Consider the following expenditure share equation where WFOOD is the proportion of household total

expenditure allocated to food, TOTEXP is total weekly household expenditure in British pounds (£),

and NK is the number of children in the household. Conditions MR1–MR5 are assumed to hold. We

will be using data from the file london5.

WFOOD = β1 + β2ln(TOTEXP) + β3NK + β4

[
NK × ln(TOTEXP)

]
+ e



�

� �

�

304 CHAPTER 6 Further Inference in the Multiple Regression Model

a. For a household with the median total expenditure of £90, show that the change in

E(WFOOD|TOTEXP, NK) from adding an extra child is β3 + β4ln(90).

b. For a household with two children, show that the change in E(WFOOD|TOTEXP, NK) from an

increase in total expenditure from £80/week to £120/week is β2ln(1.5) + 2β4ln(1.5).
c. For a household with two children and total expenditure of £90/week, show that

E(WFOOD|TOTEXP,NK) = β1 + β2ln(90) + 2β3 + 2β4ln(90)

d. Consider the following three statements:

A. β3 + β4ln(90) = 0.025

B. β2ln(1.5) + 2β4ln(1.5) = −0.04

C. β1 + β2ln(90) + 2β3 + 2β4ln(90) = 0.37

We will be concerned with using F and χ2 tests to test the following three null hypotheses:

H(1)
0

: A is true; H(2)
0

: A and B are true; H(3)
0

: A and B and C are true. The alternative hypothesis in

each case is that H(i)
0

is not true.

What are the relationships between the F and χ2 tests for each of the three hypotheses? For H(1)
0

,

what is the relationship between the t and F tests?

e. Find the p-values for the F and χ2 tests for H(1)
0

, H(2)
0

, and H(3)
0

, first using the first 100 observations

in london5, then using the first 400 observations, and then using all 850 observations.

f. Comment on how changing the sample size, and adding more hypotheses, affects the results of the

tests. Are there any dramatic differences between the F-test outcomes and the χ2-test outcomes?

6.20 In Example 6.18, using 900 observations from the data file br5, we identified three potentially influ-

ential observations in the estimation of the model

ln(PRICE) = β1 + β2SQFT + β3AGE + β4AGE2 + e

Those observations were numbers 150, 411 and 540.

a. Estimate the model with (i) all observations, (ii) observation 150 excluded, (iii) observation 411

excluded, (iv) observation 540 excluded, and (v) observations 150, 411, and 540 excluded. Report

the results and comment on their sensitivity to the omission of the observations.

b. Using the estimates from all observations, find the forecast errors corresponding to the within

sample predictions at observations 150, 411, and 540.

c. Using the estimates obtained when observation 150 is excluded, find the out-of-sample forecast

error for observation 150.

d. Using the estimates obtained when observation 411 is excluded, find the out-of-sample forecast

error for observation 411.

e. Using the estimates obtained when observation 540 is excluded, find the out-of-sample forecast

error for observation 540.

f. Using the estimates obtained when observations 150, 411, and 540 are excluded, find the

out-of-sample forecast errors for observations 150, 411, and 540.

g. Compare the forecast errors obtained in parts (b)–(f) and comment on their sensitivity to the omis-

sion of the observations.

6.21 Reconsider Example 6.20 where a logistic growth curve for the share of U.S. steel produced by electric

arc furnace (EAF) technology was estimated. The curve is given by the equation

yt =
α

1 + exp(−β − δt)
+ et

a. Find 95% interval estimates for the following:

i. The saturation level α.

ii. The inflection point tI = −β∕δ at which the rate of growth starts to decline. What years does

the interval correspond to?

iii. The EAF share in 1969.

iv. The predicted EAF shares from 2016 to 2050. Plot the predictions and their 95% bounds. Com-

ment on how far the predictions are from the saturation level and on the behavior of the 95%

bounds.

b. Use a 5% significance level to test the joint null hypothesis that the saturation level is 0.85 and the

point of inflection is at tI = 25. Set up the null hypothesis for the point of inflection so that it is

linear in the parameters β and δ. Given the interval estimates you found in (a)(i) and (a)(ii), does
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the result surprise you? What extra information does the test use that was not used in (a)(i) and

(a)(ii)?

c. Estimate the model with the restrictions implied by the null hypothesis in (b) imposed. Find the sum

of squared errors and test the null hypothesis with an F-test that uses the restricted and unrestricted

sums of squared errors. How does this result compare with that from the automatic test command

that you used for part (b)?

6.22 To examine the quantity theory of money, Brumm15 specifies the equation

INFLAT = β1 + β2MONEY + β3OUTPUT + e

where INFLAT is the growth rate of the general price level, MONEY is the growth rate of the money

supply, and OUTPUT is the growth rate of national output. According to theory we should observe

that β1 = 0, β2 = 1, and β3 = −1. The data in the data file brumm are on 76 countries for the year 1995.

a. Using a 5% significance level, test

i. the strong joint hypothesis that β1 = 0, β2 = 1, and β3 = −1.

ii. the weak joint hypothesis β2 = 1 and β3 = −1.

b. Using the DFFITS criterion, find the four most influential observations.

c. Repeat the two tests with the four most influential observations omitted. Does omission of these

four observations change the test outcome?

d. Moroney16 has argued that β2 is likely to be different for different countries. Suppose that

β2 = α1 + α2MONEY + α3OUTPUT. Substitute this equation into the original model and, omitting

the same four influential observations, estimate the new model.

e. Repeat the two tests for the model estimated in (d) for a hypothetical country with the sample

median values MONEY = 16.35 and OUTPUT = 2.7.

6.23 For two inputs X1 and X2 and output Y , a constant elasticity of substitution (CES) production function

is given by

Y = α
[
δX−ρ

1
+ (1 − δ)X−ρ

2

]−η∕ρ

where α > 0 is an efficiency parameter, η > 0 is a returns to scale parameter, ρ > −1 is a substitution

parameter, and 0 < δ < 1 is a distribution parameter that relates the share of output to each of the two

inputs. The elasticity of substitution between the two inputs is given by ε = 1∕(1 + ρ). If η = 1 and

ρ = 0 (ε = 1), then the CES production function simplifies to the constant-returns-to-scale Cobb–

Douglas production function Y = αXδ
1
X1−δ

2
.17 Using the data in the file rice5, define Y = PROD∕AREA,

X1 = LABOR∕AREA and X2 = FERT∕AREA.

a. Using nonlinear least squares, estimate the following log form of the CES function

ln(Y) = β −
η
ρ

ln
[
δX−ρ

1
+(1 − δ)X−ρ

2

]
+ e

where β = ln(α). Report your results and standard errors. [Hint: If you run into difficulties, try using

0.5 as the starting value for all of your parameters.]

b. Find 95% interval estimates for α, η, ε, and δ.

c. Using a 5% significance level, test the null hypothesis H0∶η = 1, ρ = 0 against the alternative

H1∶η ≠ 1 or ρ ≠ 0. Does a constant-returns-to-scale Cobb–Douglas function appear to be

adequate?

6.24 Using the data in the file br5, find least squares estimates of the following house-price relationships

for houses sold in Baton Rouge during 2005.

ln(PRICE) = α1 + α2BEDROOMS + e1

ln(PRICE) = β1 + β2BEDROOMS + β3SQFT + e2

SQFT = γ1 + γ2BEDROOMS + u1

............................................................................................................................................................

15Brumm, H.J. (2005) “Money Growth, Output Growth, and Inflation: A Reexamination of the Modern Quantity

Theory’s Linchpin Prediction,” Southern Economic Journal, 71(3), 661–667.

16Moroney, J.R. (2002), “Money Growth, Output Growth and Inflation: Estimation of a Modern Quantity Theory,”

Southern Economic Journal, 69(2), 398–413.

17Proving this result requires some advanced calculus. You need to take natural logarithms of both sides, set η = 1 and

use l’Hôpital’s rule to take limits as ρ→ 0.
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a. Report the coefficient estimates and their standard errors.

b. Show how the estimates
(
α̂1, α̂2

)
can be found from the parameter estimates in the other two

equations. How does the interpretation of β̂2 differ from the interpretation of α̂2? What would you

characterize as the omitted variable bias when estimating α2? Is there evidence that BEDROOMS
has a direct effect on ln(PRICE)?

c. Estimate the equation ln(PRICE) = θ1 + θ2SQFT + e3. Compare the estimates θ̂2 and β̂3. What was

the effect of omitting BEDROOMS on the estimated coefficient for SQFT? What assumption about

e3 is necessary for θ2 to be given the causal interpretation: an increase in house size of 100 square

feet leads to a θ2 increase in ln(PRICE), when all other variables are held constant?

d. We will investigate whether this assumption might be violated. Estimate the following equation

and report the results

ln(PRICE) = δ1 + δ2SQFT + δ3AGE + δ4AGE2 + e4

e. A comparison of this equation with that in part (c) suggests e3 = δ3AGE + δ4AGE2 + e4.

Assume E
(
e4|SQFT, AGE

)
= 0. We wish to investigate whether E

(
e3|SQFT

)
= 0. Show that

E
(
e3|SQFT

)
= 0 if δ3 = δ4 = 0 or if E(AGE|SQFT) = 0 and E

(
AGE2|SQFT

)
= 0.

f. Test the hypothesis H0∶δ3 = δ4 = 0 at a 5% significance level.

g. Estimate the equations AGE = λ1 + λ2SQFT + u2 and AGE2 = ϕ1 + ϕ2SQFT + u3. Use a 5% sig-

nificance level to test the hypotheses H0∶λ2 = 0 and H0∶ϕ2 = 0.

h. What do you conclude about the assumption E
(
e3|SQFT

)
= 0?

6.25 Using the data in the file br5, estimate the equation

ln(PRICE) = β1 + β2SQFT + β3AGE + β4AGE2 + e

where PRICE is the selling price in thousands of dollars for houses sold in Baton Rouge, Louisiana,

in 2005, SQFT is the size of each house in hundreds of square feet and AGE is the age of each house

in years.

a. Report the coefficient estimates and their standard errors.

b. Graph the estimate of E[ln(PRICE)|SQFT = 22,AGE] against AGE. (In the sample the median

and average values for SQFT are 21.645 and 22.737, respectively.)

c. In part (b), you will have noticed that the higher-priced houses are the very new ones and the

very old ones. Using a 5% significance level test the joint null hypothesis that (i) two houses of

the same size, a 5-year old house and an 80-year old house, have the same expected log-price, and
(ii) a 5-year old house with 2000 square feet has the same expected log-price as a 30-year old house

with 2800 square feet.

d. Using a 5% significance level, test the joint null hypothesis that (i) houses start becoming more

expensive with age when they are 50 years old, and (ii) a 2200 square feet house that is 50 years

old has an expected log-price that corresponds to $100,000.

e. Add the variables BATHS and SQFT × BEDROOMS to the model with coefficients β5 and β6,

respectively. Estimate this model and report the results.

f. Using a 5% significance level, test whether adding these two variables has improved the predictive

ability of the model.

g. You are building a new 2300 square-feet house (AGE = 0) with three bedrooms and two bathrooms.

Adding one extra bedroom and bathroom will increase its size by 260 square feet. Estimate the

increase in value of the house from the extra bedroom and bathroom. (Use the natural predictor.)

h. What do you estimate will be the extra value of the house in 20 years’ time?

6.26 Each morning between 6:30AM and 8:00AM Bill leaves the Melbourne suburb of Carnegie to drive

to work at the University of Melbourne. The time it takes Bill to drive to work (TIME), depends on

the departure time (DEPART), the number of red lights that he encounters (REDS), and the number

of trains that he has to wait for at the Murrumbeena level crossing (TRAINS). Observations on these

variables for the 249 working days in 2015 appear in the data file commute5. TIME is measured in

minutes. DEPART is the number of minutes after 6:30AM that Bill departs. Consider the equation

TIME = β1 + β2DEPART + β3REDS + β4TRAINS + e

and suppose assumptions MR1–MR5 hold.



�

� �

�

6.7 Exercises 307

a. Test the following joint hypotheses using a 5% significance level:

i. The expected delay from a red light is 1.8 minutes and the expected delay from a train is

3.2 minutes.

ii. The expected delay from a red light is 2 minutes and the expected delay from a train is

3 minutes.

iii. The expected delay from a train is 3.5 minutes and the delay from a train is double that from a

red light.

iv. The expected delay from a train is 3.5 minutes and the delay from a train is double that from a

red light and leaving at 7:30AM instead of 7:00AM makes the trip 10 minutes longer.

b. Bill suspects that the later he leaves, the more likely he is to encounter a train. Test this hypothesis

at a 5% significance level using estimates from the model

E(TRAINS|DEPART,REDS) = α1 + α2DEPART + α3REDS

Is there any evidence of a relationship between the number of trains and the number of red lights?

c. Show that

E(TIME|DEPART,REDS) =
(
β1 + β4α1

)
+
(
β2 + β4α2

)
DEPART +

(
β3 + β4α3

)
REDS

d. Regress TIME on DEPART and REDS to get estimates for δ1 = β1 + β4α1, δ2 = β2 + β4α2, and

δ3 = β3 + β4α3. Using these estimates and those from (a) and (c), show that δ̂1 = b1 + b4α̂1,

δ̂2 =
(
b2 + b4α̂2

)
, and δ̂3 = b3 + b4α̂3, where bk denotes an OLS estimate from the original

equation.

e. Interpret b2 and δ̂2. Why are they different? How would you characterize any omitted variable bias?

6.27 It has been claimed that an extra year of experience increases wage by 0.8% and that an extra year

of education is worth 14 extra years of experience. Doing the calculation, this would mean an extra

year of education increases wage by 11.2%. We will investigate this hypothesis using data in the file

cps5_small. Only those observations for which years of education exceeds 7 will be used. Perform all

tests at a 5% level of significance.

a. Estimate the model ln(WAGE) = β1 + β2EDUC + β3EXPER + e and jointly test the claims about

the marginal effects of EDUC and EXPER.

b. Use RESET to test the adequacy of the model; perform the test with the squares of the predictions

and the squares and cubes of the predictions.

c. After estimating the model

ln(WAGE) = β1 + β2EDUC + β3EXPER + β4EDUC2 + β5EXPER2 + β6(EDUC × EXPER) + e

jointly test the claims about the marginal effects of EDUC and EXPER at the following levels of

EDUC and EXPER:

i. EDUC = 10, EXPER = 5

ii. EDUC = 14, EXPER = 24

iii. EDUC = 18, EXPER = 40

d. Use RESET to test the adequacy of the model; perform the test with the squares of the predictions

and the squares and cubes of the predictions.

e. How would you respond to the claim about the marginal effects of EDUC and EXPER?

6.28 Using time-series data on five different countries, Atkinson and Leigh18 investigate the impact of the

marginal tax rate paid by high-income earners on the level of inequality. A subset of their data can be

found in the file inequality.

a. Using data on Australia, estimate the equation SHARE = β1 + β2TAX + e where SHARE is the

percentage income share of the top 1% of incomes, and TAX is the median marginal tax rate (as a

percentage) paid on wages by the top 1% of income earners. Interpret your estimate for β2. Would

you interpret this as a causal relationship?

............................................................................................................................................................

18Atkinson, A.B. and A. Leigh (2013), “The Distribution of Top Incomes in Five Anglo-Saxon Countries over the Long

Run,” Economic Record, 89, 1–17.
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b. It is generally recognized that inequality was high prior to the great depression, then declined during

the depression and World War II, increasing again toward the end of the sample period. To capture

this effect, estimate the following model with a quadratic trend

SHARE = α1 + α2TAX + α3YEAR + α4YEAR2 + e

where YEAR is defined as 1 = 1921, 2 = 1922,… , 80 = 2000. Interpret the estimate for α2. Has

adding the trend changed the effect of the marginal tax rate? Can the change in this estimate, or

lack of it, be explained by the correlations between TAX and YEAR and TAX and YEAR2?

c. In what year do you estimate that expected SHARE will be smallest? Find a 95% interval estimate

for this year. Does the actual year with the smallest value for SHARE fall within the interval?

d. The top marginal tax rate in 1974 was 64%. Test the hypothesis that, in the year 2000, the

expected income share of the top 1% would have been 6% if the marginal tax rate had been 64%

at that time.

e. Test jointly the hypothesis in (d) and that a marginal tax rate of 64% in 1925 would have led to an

expected income share of 6% for the top 1% of income earners.

f. Add the growth rate (GWTH) to the equation in part (b) and reestimate. Interpret the estimated

coefficient for TAX.

g. Using the equation estimated in part (f), estimate the year when SHARE will be smallest? Find a

95% interval estimate for this year. Does the actual year with the smallest value for SHARE fall

within the interval?

h. Using the equation estimated in part (f), test the hypothesis that, in the year 2000, the expected

income share of the top 1% would have been 6% if the marginal tax rate had been 64%

at that time.

i. Using the equation estimated in part (f), test jointly the hypothesis in (h) and that a marginal tax

rate of 64% in 1925 would have led to an expected income share of 6% for the top 1% of income

earners.

j. Has adding the variable GWTH led to substantial changes to your estimates and test results? Can the

changes, or lack of them, be explained by the correlations between GWTH and the other variables

in the equation?

6.29 Using time-series data on five different countries, Atkinson and Leigh investigate the impact of the

marginal tax rate paid by high-income earners on the level of inequality. A subset of their data can be

found in the file inequality.

a. Using data on the United States, estimate the equation ln(SHARE) = β1 + β2TAX + e where SHARE
is the percentage income share of the top 1% of incomes, and TAX is the median marginal tax rate

(as a percentage) paid on wages by the top 1% of income earners. Interpret your estimate for β2.

Would you interpret this as a causal relationship?

b. It is generally recognized that inequality was high prior to the great depression, then declined during

the depression and World War II, increasing again toward the end of the sample period. To capture

this effect, estimate the following model with a quadratic trend

ln(SHARE) = α1 + α2TAX + α3YEAR + α4YEAR2 + e

where YEAR is defined as 1 = 1921, 2 = 1922,… , 80 = 2000. Interpret the estimate for α2. Has

adding the trend changed the effect of the marginal tax rate? Can the change in this estimate, or

lack of it, be explained by the correlations between TAX and YEAR and TAX and YEAR2?

c. In what year do you estimate that SHARE will be smallest? Find a 95% interval estimate for this

year. Does the actual year with the smallest value for SHARE fall within the interval?

d. The top marginal tax rate in 1974 was 50%. Test the hypothesis that, in the year 2000, the expected

log income share of the top 1% would have been ln(12) if the marginal tax rate had been 50% at

that time.

e. Test jointly the hypothesis in (d) and that a marginal tax rate of 50% in 1925 would have led to an

expected log income share of log(12) for the top 1% of income earners.

f. Add the growth rate (GWTH) to the equation in part (b) and re-estimate. Has adding this

variable GWTH led to substantial changes to your estimates and test results? Can the changes,

or lack of them, be explained by the correlations between GWTH and the other variables in

the equation?
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g. Using the results from part (f ), find point and 95% interval estimates for the marginal tax rate

that would be required to reduce the income share of the top 1% to 12% in 2001, assuming

GWTH2001 = 3.

6.30 Consider a translog production function where output is measured as firm sales and there are three

inputs: capital, labor, and materials. This function can be written as

LSALES = βC + βKK + βLL + βMM + βKKK2 + βLLL2 + βMMM2

+ βKL(K × L) + βKM(K ×M) + βLM(L ×M) + e

where LSALES is the log of sales, and K, L, and M are the logs of capital, labor and materials, respec-

tively. The translog function is often known as a flexible functional form, intended to approximate a

variety of possible functional forms. There are two hypotheses that are likely to be of interest:

H(1)
0
∶βKK = 0, βLL = 0, βMM = 0, βKL = 0, βKM = 0, βLM = 0

(A Cobb–Douglas function is adequate)

H(2)
0
∶

⎧
⎪
⎪
⎨
⎪
⎪
⎩

βK + βL + βM = 1

2βKK + βKL + βKM = 0

βKL + 2βLL + βLM = 0

βKM + βLM + 2βMM = 0

(constant returns to scale)

The data file chemical_small contains observations on 1200 firms in China’s chemical industry, taken

in the year 2006. It is a subset of the data used by Baltagi, Egger, and Kesina19.

a. Use these data to estimate the translog production function. Are all the coefficient estimates sig-

nificant at a 5% level of significance?

b. Test H(1)
0

at a 5% level of significance.

c. Test H(2)
0

at a 5% level of significance. What would be the test outcome if you used a 1% level of

significance?

d. Does RESET suggest the translog function is adequate?

e. Estimate the model with the restrictions implied by constant returns to scale
(

H(2)
0

)

imposed.

Obtain estimates and standard errors for all 10 coefficients.

f. Compare the estimates and standard errors from parts (a) and (e).

g. Does RESET suggest the restricted model is adequate?

6.31 Everaert and Pozzi20 develop a model to examine the predictability of consumption growth in 15 OECD

countries. Their data is stored in the file oecd. The variables used are growth in real per capita private

consumption (CSUMPTN), growth in real per capita government consumption (GOV), growth in per

capita hours worked (HOURS), growth in per capita real disposable labor income (INC), and the real

interest rate (R). Using only the data for Japan, answer the following questions:

a. Estimate the following model and report the results

CSUMPTN = β1 + β2HOURS + β3GOV + β4R + β5INC + e

Are there any coefficient estimates that are not significantly different from zero at a 5% level?

b. The coefficient β2 could be positive or negative depending on whether hours worked and private

consumption are complements or substitutes. Similarly, β3 could be positive or negative depending

on whether government consumption and private consumption are complements or substitutes.

What have you discovered? What does a test of the hypothesis H0∶β2 = 0, β3 = 0 reveal?

c. Re-estimate the equation with GOV omitted and, for the coefficients of the remaining variables,

comment on any changes in the estimates and their significance.

d. Estimate the equation

GOV = α1 + α2HOURS + α3R + α4INC + v

and use these estimates to reconcile the estimates in part (a) with those in part (c).

............................................................................................................................................................

19Baltagi, B.H., P. H. Egger and M. Kesina (2016), “Firm-level Productivity Spillovers in China’s Chemical Industry:

A Spatial Hausman-Taylor Approach,” Journal of Applied Econometrics, 31(1), 214–248.

20Everaert, G. and L. Ponzi (2014), “The Predictability of Aggregate Consumption Growth in OECD Countries:

A Panel Data Analysis,” Journal of Applied Econometrics, 29(3), 431–453.
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e. Re-estimate the models in parts (a) and (c) with the year 2007 omitted and use each of the estimated

models to find point and 95% interval forecasts for consumption growth in 2007.

f. Which of the two models, (a) or (c), produced the more accurate forecast for 2007?

6.32 In their study of the prices of Californian and Washington red wines, Costanigro, Mittelhammer and

McCluskey21 categorize the wines into commercial, semipremium, premium, and ultrapremium. Their

data for premium wines are stored in the file wine1; those for ultrapremium wines are in the file wine2.

We will be concerned with the variables PRICE (bottle price, CPI adjusted), SCORE (score out of 100

given by the Wine Spectator Magazine), AGE (years of aging), and CASES (number of cases produced

in thousands).

a. What signs would you expect on the coefficients
(
β2, β3, β4

)
in the following model? Why?

ln(PRICE) = β1 + β2SCORE + β3AGE + β4CASES + e

b. Estimate separate equations for premium and ultrapremium wine, and discuss the results. Do the

coefficients have the expected signs? If not is there an alternative explanation? Is SCORE more

important for premium wines or ultrapremium wines? Is AGE more important for premium wines

or ultrapremium wines?

c. Find point and 95% interval estimates for

i. E[ln(PRICE)|SCORE = 90, AGE = 2, CASES = 2] for premium wines, and

ii. E[ln(PRICE)|SCORE = 93, AGE = 3, CASES = 1] for ultrapremium wines.

Do the intervals overlap, or is there a clear price distinction between the two classes?

d. Using the “corrected predictor”—see Section 4.5.3—predict the prices for premium and ultra-

premium wines for the settings in parts c(i) and c(ii), respectively.

e. Suppose that you are a wine producer choosing between producing 1000 cases of ultrapremium

wine that has to be aged three years and is likely to get a score of 93, and 2000 cases of pre-

mium wine that is aged two years and is likely to get a score of 90. Which choice gives the higher

expected bottle price? Which choice gives the higher expected revenue? (There are 12 bottles in a

case of wine.)

6.33 In this exercise we reconsider the premium wine data in the file wine1. Please see Exercise 6.32 and

wine1.def for details.

a. Estimate the following equation using (i) only cabernet wines, (ii) only pinot wines, and (iii) all

other varieties:

ln(PRICE) = β1 + β2SCORE + β3AGE + β4CASES + e

Using casual inspection, do you think separate equations are needed for the different varieties?

b. We can develop an F-test to test whether there is statistical evidence to suggest the coefficients in

the three equations are different. The unrestricted sum of squared errors for such a test is

SSEU = SSECABERNET + SSEPINOT + SSEOTHER

Compute SSEU.

c. What is the total number of parameters from the three equations? How many parameters are there

when we estimate one equation for all varieties? How many parameter restrictions are there if we

restrict corresponding coefficients for all varieties to be equal?

d. Estimate one equation for all varieties. This is the restricted model where corresponding coefficients

for the different varieties are assumed to be equal.

e. Using a 5% significance level, test whether there is evidence to suggest there should be different

equations for different varieties. What is the null hypothesis for this test? Develop some notation

that enables you to state the null hypothesis clearly and precisely.

............................................................................................................................................

21Costanigro, M., R.C. Mittelhammer and J.J.McCluskey (2009), “Estimating Class Specific Parametric Models Under

Class Uncertainty: Local Polynomial Regression Clustering in an Hedonic Analysis Of Wine Markets” Journal of
Applied Econometrics, 24(7), 1117–1135.
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Appendix 6A The Statistical Power of F-Tests
In Appendix 3B, we explored the factors that lead us to reject a null hypothesis about the slope

parameter in a simple regression using a t-test. The probability of rejecting a false null hypoth-

esis is positively related to the magnitude of the hypothesis error, and the total variation in the

explanatory variable, and inversely related to the size of σ2, the error variance. These are compo-

nents of the noncentrality parameter, (3B.2), for the t-statistic, (3B.1), when the null hypothesis

is false.

Here we show that the factors that lead us to reject a false joint null hypothesis are much the

same. Consider the simple regression model yi = β1 + β2xi + ei under assumptions SR1–SR6.

We will test the joint null hypothesis H0∶β1 = c1, β2 = c2 using an F-test. In practice the test is

carried out using (6.4) in the usual way. To study the power of the F-test we will test an equivalent

joint null hypothesis H0∶β1 + β2x = c1 + c2x, β2 = c2. If the first pair of hypotheses is true

then the second pair of hypotheses is true and vice versa. They are completely equivalent. This

is not what you would do in practice but this approach will lead us to a form of the F-test that

is theoretically useful. In the following steps, we will derive the F-statistic by combining test

statistics for the separate hypotheses H1
0
∶β1 + β2x = c1 + c2x and H2

0
∶β2 = c2. There are quite a

few steps, but do not get discouraged. Each step is small and the reward at the end is substantial.

Now is a good time to review Appendix 3B on t-tests when the null hypothesis is false, Appendix

B.3.6, on the chi-square distribution, Appendix B.3.7, on the t-distribution, and Appendix B.3.8,

on the F-distribution.

If we were going to test the first hypothesis, H1
0
∶β1 + β2x = c1 + c2x, what test statistic would

we use? Most commonly we use a t-test for a single hypothesis. For the present, however, assume

that we know the error variance σ2 so that we also know the true variances and covariance of the

least squares estimators that are given in equations (2.14)–(2.16). The test statistic is

Z1
0
=

b1 + b2x −
(
c1 + c2x

)

√

var
(
b1 + b2x

)
=

y −
(
c1 + c2x

)

√

σ2
/

N
(6A.1)

with Z1
0

denoting the statistic for the null hypothesis H1
0
. We obtained the second equality by

taking advantage of the properties of the least squares estimators, recognizing that b1 + b2x = y,

and var
(
y
)
= σ2∕N, as shown in Appendix C, equation (C.6). If the null hypothesis is true, Z1

0
has

a standard normal distribution, N(0,1). Our objective is to study testing H1
0
∶β1 + β2x = c1 + c2x

when it is not true. To accomplish this rewrite Z1
0

by adding and subtracting
(
β1 + β2x

)
to the

numerator in (6A.1) yielding

Z1
0
=

b1 + b2x −
(
β1 + β2x

)
+
(
β1 + β2x

)
−
(
c1 + c2x

)

√

σ2
/

N

=
(
b1 − β1

)
+
(
b2 − β2

)
x

√

σ2
/

N
+
(
β1 − c1

)
+
(
β2 − c2

)
x

√

σ2
/

N
(6A.2)

= Z1 + δ1

The first term, Z1, has a standard normal distribution; it is the test statistic calculated using the

true parameter values,

Z1 =
(
b1 − β1

)
+
(
b2 − β2

)
x

√

σ2
/

N
∼ N(0, 1) (6A.3)

The second term

δ1 =
(
β1 − c1

)
+
(
β2 − c2

)
x

√

σ2
/

N
(6A.4)
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is the specification error in the hypothesis H1
0
∶β1 + β2x = c1 + c2x. If the null hypothesis is true

then δ1 = 0. If the null hypothesis H1
0

is not true, then δ1 ≠ 0, and we must account for the fact that

δ1 depends on the sample values, x. In Appendix B.3.6 we define noncentral chi-square random

variables. The random variable Z1
0
|x = Z1 + δ1 ∼ N

(
δ1, 1

)
and V1

0
|x =

(
Z1

0
|x
)2 =

(
Z1 + δ1

)2 ∼
χ2

(1, δ2
1)

has a noncentral chi-square distribution with one degree of freedom, and noncentrality

parameter δ = δ2
1
. If the null hypothesis is true then δ1 = 0 and V1

0
has the chi-square distribution,

V1
0
∼ χ2

(1, δ2
1
=0) = χ

2
(1).

The second piece of the puzzle is similar to the first and follows the steps in Appendix 3B.

To test H2
0
∶β2 = c2, assuming σ2 is known, use the test statistic

Z2
0
=

b2 − c2
√

var
(
b2

)
=

b2 − c2
√

σ2
/∑(

xi − x
)2

(6A.5)

If the null hypothesis is true, Z2
0

has a standard normal distribution, N(0,1). Our objective is

to study testing H2
0
∶β2 = c2 when it is not true. To accomplish this rewrite Z2

0
by adding and

subtracting β2 to the numerator, obtaining

Z2
0
=

b2 − β2 + β2 − c2
√

σ2
/∑(

xi − x
)2

=
b2 − β2

√

σ2
/∑(

xi − x
)2

+
β2 − c2

√

σ2
/∑(

xi − x
)2

= Z2 + δ2 (6A.6)

The first term, Z2, has a standard normal distribution; it is the test statistic calculated using the

true parameter value

Z2 =
b2 − β2

√

σ2
/∑(

xi − x
)2

∼ N(0, 1) (6A.7)

The second term

δ2 =
β2 − c2

√

σ2
/∑(

xi − x
)2

(6A.8)

is the specification error in the hypothesis H2
0
∶β2 = c2. If the null hypothesis is true then δ2 = 0;

if the null hypothesis H2
0

is not true, then δ2 ≠ 0. The random variable Z2
0
|x = Z2 + δ2 ∼ N

(
δ2, 1

)

and V2
0
|x =

(
Z2

0
|x
)2 =

(
Z2 + δ2

)2 ∼ χ2

(1, δ2
2)

has a noncentral chi-square distribution with one

degree of freedom, and noncentrality parameter δ = δ2
2
. If the null hypothesis is true, then δ2 = 0

and V2
0

has the chi-square distribution, V2
0
∼ χ2

(1, δ2
2
=0) = χ

2
(1).

What is the distribution of V1 = V1
0
+ V2

0
=
(
Z1 + δ1

)2 +
(
Z2 + δ2

)2
? If Z1 and Z2 are statis-

tically independent then V1|x ∼ χ2
(2, δ) with noncentrality parameter δ = δ2

1
+ δ2

2
. Because Z1 and

Z2 are normally distributed random variables, we can prove they are independent by showing that

their correlation, or covariance, is zero. Their covariance is

cov
(
Z1, Z2

)
= E

{[

Z1 − E
(
Z1

)][

Z2 − E
(
Z2

)]
}

= E
(
Z1Z2

)
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because Z1 and Z2 have zero mean, E
(
Z1

)
= E

(
Z2

)
= 0. We will show that E

(
Z1Z2|𝐱

)
= 0 from

which it follows that E
(
Z1Z2

)
= 0.

E
(
Z1Z2|x

)
= E

⎧
⎪
⎨
⎪
⎩

⎡
⎢
⎢
⎢
⎣

(
b1 − β1

)
+
(
b2 − β2

)
x

√

σ2
/

N

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

b2 − β2
√

σ2
/∑(

xi − x
)2

⎤
⎥
⎥
⎥
⎦

|
|
|
|
|
|
|
|

x
⎫
⎪
⎬
⎪
⎭

= E

⎧
⎪
⎨
⎪
⎩

√
N
σ

[(
b1 − β1

)
+
(
b2 − β2

)
x
]

√
∑(

xi − x
)2

σ
(
b2 − β2

)

|
|
|
|
|
|
|
|

x
⎫
⎪
⎬
⎪
⎭

(6A.9)

=

√
N
√
∑(

xi − x
)2

σ2
E
{[(

b1 − β1

)
+
(
b2 − β2

)
x
](

b2 − β2

)
|
|x
}

The key component in the last equality is, using (2.15) and (2.16),

E
[(

b1 − β1

)(
b2 − β2

)
+
(
b2 − β2

)2x||
|
x
]

=
[

cov
(
b1, b2|x

)
+ xvar

(
b2|x

)]

= −xσ2

∑(
xi − x

)2
+ xσ2

∑(
xi − x

)2
= 0

Since the covariance between Z1 and Z2 is zero, they are statistically independent. Thus,

V1|x ∼ χ2
(2, δ) where δ = δ2

1
+ δ2

2
and

δ = δ2
1
+ δ2

2
=
⎡
⎢
⎢
⎢
⎣

(
β1 − c1

)
+
(
β2 − c2

)
x

√

σ2
/

N

⎤
⎥
⎥
⎥
⎦

2

+
⎡
⎢
⎢
⎢
⎣

β2 − c2
√

σ2
/∑(

xi − x
)2

⎤
⎥
⎥
⎥
⎦

2

= N

⎧
⎪
⎨
⎪
⎩

[(
β1 − c1

)
+
(
β2 − c2

)
x
]2

σ2

⎫
⎪
⎬
⎪
⎭

+
(
β2 − c2

)2∑N
i=1

(
xi − x

)2

σ2
(6A.10)

The final step is to use V2 from Section 6.1.5, and that V1 and V2 are statistically independent.

Following a similar procedure to that in (6.13), we form the F-ratio

F|x =
V1∕2

V2∕(N − 2)
∼ F(2,N−2,δ)

In Figure B.9b we show that increases in the noncentrality parameter δ shifts the F-density to the

right, increasing the probability that it exceeds the appropriate critical value Fc, and increasing

the probability of rejecting a false null hypothesis.

Examining the noncentrality parameter δ in (6A.10) we first note that δ ≥ 0, and δ = 0 only

if the joint null hypothesis H0∶β1 + β2x = c1 + c2x, β2 = c2, or H0∶β1 = c1, β2 = c2, is true. The

factors that cause δ to increase are as follows:

1. The magnitude of the hypothesis error. In this example the hypothesis error includes two

components,
[(
β1 − c1

)
+
(
β2 − c2

)
x
]2

and
(
β2 – c2

)2
. The larger these specification errors

the higher the probability that the null hypothesis will be rejected. The first term is related

to the intercept parameter where the errors in hypotheses about both β1 and β2 are contrib-

utors, as well as the sample mean, x. If the sample mean x = 0, then only the magnitude of
(
β1 – c1

)2
matters.
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2. The sample size, N. As the sample size N increases the value of δ increases not only because

it multiplies the first component of δ but also because the data variation
∑N

i=1

(
xi − x

)2

increases, or at worst stays the same, as N increases. This is very reassuring and a rea-

son to prefer larger samples to smaller ones. The probability of rejecting a false hypothesis

approaches one as N → ∞.

3. The variation in the explanatory variable. In the simple regression model the data variation
∑N

i=1

(
xi − x

)2
is directly related to the probability of rejecting the joint null hypothesis. The

larger the data variation, the smaller the variance of b2, and the more likely we are to detect

the discrepancy between β2 and the hypothesized value c2.

4. The error variance σ2. The smaller the error variance, the smaller the uncertainty in the

model, and the larger δ becomes, and the higher the probability of rejecting a false joint

hypothesis.

For a numerical example we use values arising from the simulation experiment used in

Appendix 2H and Appendix 3B. In the first Monte Carlo sample, data file mc1_ fixed_x, the

x-values consist of xi = 10, i = 1,… , 20 and xi = 20, i = 21,… , 40. The sample mean is x = 15

so that
∑(

xi − x
)2 = 40 × 52 = 1000. Also, σ2 = 2500. The true parameter values in the simula-

tion experiment are β1 = 100 and β2 = 10. We now test the joint hypothesis H0∶β1 = 100, β2 = 9

against the alternative H1∶β1 ≠ 100 and/or β2 ≠ 9. At the 5% level of significance we reject the

joint null hypothesis if the F-test statistic is greater than the critical value F(0.95, 2, 38) = 3.24482.

You can confirm that the calculated value of the F-statistic is 4.96, so that, at the 5% level of

significance, we correctly reject H0∶β1 = 100, β2 = 9.

The noncentrality parameter is

δ = N

⎧
⎪
⎨
⎪
⎩

[(
β1 − c1

)
+
(
β2 − c2

)
x
]2

σ2

⎫
⎪
⎬
⎪
⎭

+
(
β2 − c2

)2∑N
i=1

(
xi − x

)2

σ2

= 40

{[
(100 − 100) +(10 − 9) 15

]2

2500

}

+ (10 − 9)21000

2500
=
(
40 × 152

)
+ 1000

2500

= 4

The probability of rejecting the joint null hypothesis is the probability that a value from a non-

central F-distribution with noncentrality parameter δ = 4 will exceed F(0.95, 2, 38) = 3.24482. The

test power is P
[

F(m1=2, m2=38, δ=4) > 3.24482
]

= 0.38738.

As another illustration let us test the null hypothesis H0∶β2 = 9 against H1∶β2 ≠ 9 using an

F-test. The test critical value is the 95th percentile of the F-distribution, F(0.95, 1, 38) = 4.09817.

The calculated F-test value is 4.91 which exceeds the 5% critical value, so once again we cor-

rectly reject the null hypothesis. The noncentrality parameter of the F-distribution for this single

hypothesis is the square of δ2 in (6A.8),

δ = δ2
2
=

(
β2 − c2

)2

σ2
/∑(

xi − x
)2
= 1

2500∕1000
= 0.4

Thus the probability of rejecting the null hypothesis H0∶β2 = 9 versus H1∶β2 ≠ 9 when the true

value of β2 = 10 is P
[

F(m1=1, m2=38, δ=0.4) > 4.09817
]

= 0.09457.

We note three lessons from this exercise. First, using an F-test, the probability of rejecting

the joint hypothesis H0∶β1 = 100, β2 = 9 is greater than the probability of rejecting the sin-

gle hypothesis H0∶β2 = 9. Second, in Appendix 3B we found that the probability of rejecting
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H0∶β2 = 9 versus H1∶β2 > 9 using a one-tail t-test was 0.15301, with noncentrality parameter

0.63246. The power of a one-tail test, when it can be appropriately used, is greater than the power

of a two-tail test. Third, when using a two-tail t-test the rejection probability must be computed

with care because the noncentral t-distribution is not symmetric about zero. The probability of

rejecting the hypothesis is

P
(
t(38, 0.63246) ≤ −1.686

)
+
[

1 − P
(
t(38, 0.63246) ≥ 1.686

)]

= 0.0049866 + 0.0895807 = 0.09457

Appendix 6B Further Results from the FWL Theorem
In Section 5.2.4, we saw that, from the FWL theorem, the least squares estimate of a coefficient

of a particular explanatory variable, say x2, can be obtained by “partialing out” the effects of the

other variables on x2 and on y, and running a regression with the partialed-out versions of y and x2.

We now consider some further results from the FWL theorem. In particular, we show how the

variance of the least squares estimator can be written in terms of a simple expression that depends

on x2 and the partialed-out version of x2.

Consider the multiple regression model with two explanatory variables, yi = β1 + β2xi2 +
β3xi3 + ei. Partial-out x3 using the Frisch–Waugh–Lovell (FWL) approach. First, the auxiliary

regression of y on x3 is yi = a1 + a3xi3 + ri and the least squares residual is ÿi = yi − ã1 − ã3xi3 =
yi − ỹi, where ỹi = ã1 + ã3xi3 is the fitted value from the auxiliary regression. The auxiliary regres-

sion of x2 on x3 is xi2 = c1 + c3xi3 + ri2 and the least squares residual is ẍi2 = xi2 − c̃1 − c̃3xi3 =
xi2 − x̃i2, where x̃i2 = c̃1 + c̃3xi3 is the fitted value from the auxiliary regression for x2. The FWL

theorem says that by estimating the model ÿi = β2ẍ i2 + ëi, we can obtain the same least squares

estimator as from the full model. Because the partialed-out model has no explicit intercept, the

least squares estimator is

b2 =
∑

ẍi2ÿi∕
∑

ẍ2
i2 =

∑(
xi2 − x̃i2

)(
yi − ỹi

)/∑(
xi2 − x̃i2

)2

Note that

• x̃i2 is an estimate of E
(
x2|x3

)
and ỹi is an estimate of E

(
y|x3

)
. Thus, when x3 has been par-

tialed out, we use the conditional means in b2 =
∑(

xi2 − x̃i2
)(

yi − ỹi
)/∑(

xi2 − x̃i2
)2

. When

x3 has not been partialed out we use the unconditional means. A similar statement holds for

the variance.

• If we replace ỹi by yi and replace xi2 − x̃i2 by xi − xi, we have the usual expression for the

least squares estimator in the simple regression model.

• Further note that the OLS estimator b2 in the multiple regression model depends on x2 and

y after removing the linear influence of x3. In addition, the formula above is valid when the

multiple regression model contains any number of variables, with the understanding that

ỹi and x̃i2 are fitted values from auxiliary regressions containing all explanatory variables

except x2. Very neat!

Let us take the numerator
∑(

xi2 − x̃i2
)(

yi − ỹi
)

and work with it.

∑(
xi2 − x̃i2

)(
yi − ỹi

)
=
∑(

xi2 − x̃i2
)(

yi − ã1 − ã3xi3
)

=
∑(

xi2 − x̃i2
)
yi − ã1

∑(
xi2 − x̃i2

)
− ã3

∑(
xi2 − x̃i2

)
xi3

The term
∑(

xi2 − x̃i2
)
= 0 because it is the sum of least squares residuals from the auxiliary

regression that includes an intercept. Also
∑(

xi2 − x̃i2
)
xi3 = 0 because least squares residuals

are uncorrelated with model explanatory variables. See Exercises 2.1 and 2.3. Thus
∑(

xi2 − x̃i2
)(

yi − ỹi
)
=
∑(

xi2 − x̃i2
)
yi
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The resulting simplified estimator b2 is

b2 =
∑

ẍi2ÿi
/∑

ẍ2
i2 =

∑(
xi2 − x̃i2

)
yi
/∑(

xi2 − x̃i2
)2

Computationally this is very nice because it is the estimated least squares coefficient from the

model yi = β2ẍi2 + ëi, where ẍi2 = xi2 − x̃i2 is a least squares residual.

Now, as in Chapter 2, we can make theoretical progress by further work on the computational

form of the least squares estimator. Substitute yi = β1 + β2xi2 + β3xi3 + ei into the computational

form and simplify.

b2 =
∑(

xi2 − x̃i2
)
yi

∑(
xi2 − x̃i2

)2
=
∑(

xi2 − x̃i2
)(
β1 + β2xi2 + β3xi3 + ei

)

∑(
xi2 − x̃i2

)2

= 1
∑(

xi2 − x̃i2
)2

[∑(
xi2 − x̃i2

)(
β1 + β2xi2 + β3xi3 + ei

)]

= 1
∑(

xi2 − x̃i2
)2

[

β1

∑(
xi2 − x̃i2

)
+ β2

∑(
xi2 − x̃i2

)
xi2 + β3

∑(
xi2 − x̃i2

)
xi3 +

∑(
xi2 − x̃i2

)
ei

]

Again
∑(

xi2 − x̃i2
)
= 0 and

∑(
xi2 − x̃i2

)
xi3 = 0. Now, being clever and using

∑(
xi2 − x̃i2

)
= 0,

we can say

∑(
xi2 − x̃i2

)
xi2 =

∑(
xi2 − x̃i2

)
xi2 − x̃i2

∑(
xi2 − x̃i2

)
=
∑(

xi2 − x̃i2
)2

Plugging all this in, we have

b2 = β2 +
∑(

xi2 − x̃i2
)
ei

∑(
xi2 − x̃i2

)2

Then, if errors are homoskedastic and serially uncorrelated

var
(
b2|X

)
= var

[∑(
xi2 − x̃i2

)
ei

∑(
xi2 − x̃i2

)2

|
|
|
|
X

]

=
∑(

xi2 − x̃i2
)2

var
(
ei|X

)

[∑(
xi2 − x̃i2

)2
]2

=
∑(

xi2 − x̃i2
)2σ2

[∑(
xi2 − x̃i2

)2
]2

= σ2

∑(
xi2 − x̃i2

)2
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CHAPTER 7

Using Indicator Variables

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to explain

1. The difference between qualitative and

quantitative economic variables.

2. How to include a 0–1 indicator variable on

the right-hand side of a regression, how this

affects model interpretation, and give an

example.

3. How to interpret the coefficient on an indicator

variable in a log-linear equation.

4. How to include a slope-indicator variable in a

regression, how this affects model

interpretation, and give an example.

5. How to include a product of two indicator

variables in a regression, and how this affects

model interpretation, giving an example.

6. How to model qualitative factors with more than

two categories (similar to region of the country),

and how to interpret the resulting model, giving

an example.

7. The consequences of ignoring a structural

change in parameters during part of the sample.

8. How to test the equivalence of two regression

equations using indicator variables.

9. How to estimate and interpret a regression with

an indicator dependent variable.

10. The difference between a randomized controlled

experiment and a natural experiment.

11. The difference between the average treatment

effect (ATE) and the average treatment effect on

the treated (ATT).

12. How to use a regression discontinuity design

(RDD), and explain when it is useful.

K E Y W O R D S

annual indicator variables

average treatment effect

Chow test

dichotomous variables

difference estimator

differences-in-differences estimator

dummy variables

dummy variable trap

exact collinearity

hedonic model

indicator variable

interaction variable

intercept indicator variable

linear probability model

log-linear model

natural experiment

quasi-experiments

reference group

regional indicator variables

regression discontinuity design

seasonal indicator variables

slope-indicator variable

treatment effect

317
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7.1 Indicator Variables
Indicator variables, which were first introduced in Section 2.9, allow us to construct models

in which some or all regression model parameters, including the intercept, change for some

observations in the sample. To make matters specific, let us consider an example from real estate

economics. Buyers and sellers of homes, tax assessors, real estate appraisers, and mortgage

bankers are interested in predicting the current market value of a house. A common way to

predict the value of a house is to use a hedonic model, in which the price of the house is

explained as a function of its characteristics, such as its size, location, number of bedrooms, and

age. The idea is to break down a good into its component pieces, and then estimate the value of

each characteristic.1

For the present, let us assume that the size of the house, measured in square feet, SQFT , is

the only relevant variable in determining house price, PRICE. Specify the regression model as

PRICE = β1 + β2SQFT + e (7.1)

In this model, β2 is the value of an additional square foot of living area and β1 is the value of the

land alone.

In real estate, the three most important words are “location, location, and location.” How can

we take into account the effect of a property’s being in a desirable neighborhood, such as one near

a university, or near a golf course? Thought of this way, location is a “qualitative” characteristic

of a house.

Indicator variables are used to account for qualitative factors in econometric models. They

are often called dummy, binary, or dichotomous variables because they take just two values,

usually one or zero, to indicate the presence or absence of a characteristic or to indicate whether a

condition is true or false. They are also called dummy variables, to indicate that we are creating a

numeric variable for a qualitative, nonnumeric characteristic. We use the terms indicator variable
and dummy variable interchangeably. Using zero and one for the values of these variables is

arbitrary, but very convenient, as we will see. Generally, we define an indicator variable D as

D =

{
1 if characteristic is present

0 if characteristic is not present
(7.2)

Thus, for the house price model, we can define an indicator variable, to account for a desirable

neighborhood, as

D =

{
1 if property is in the desirable neighborhood

0 if property is not in the desirable neighborhood

Indicator variables can be used to capture changes in the model intercept, or slopes, or both. We

consider these possibilities in turn.

7.1.1 Intercept Indicator Variables
The most common use of indicator variables is to modify the regression model intercept param-

eter. Adding the indicator variable D to the regression model, along with a new parameter δ, we

obtain

PRICE = β1 + δD + β2SQFT + e (7.3)

............................................................................................................................................

1Such models have been used for many types of goods, including personal computers, automobiles and wine. This

famous idea was introduced by Sherwin Rosen (1978) “Hedonic Prices and Implicit Markets,” Journal of Political
Economy, 82, 357–369. The ideas are summarized and applied to asparagus and personal computers in Ernst Berndt

(1991) The Practice of Econometrics: Classic and Contemporary, Reading, MA: Addison-Wesley, Chapter 4.
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SQFT

PRICE

β1 + δ

β1

δ

E(PRICE|SQFT ) = (β1 + δ) + β2SQFT

E(PRICE|SQFT ) = β1 + β2SQFT

FIGURE 7.1 An intercept indicator variable.

The effect of the inclusion of an indicator variable D into the regression model is best seen by

examining the regression function, E(PRICE|SQFT ), in the two locations. If the model in (7.3)

is correctly specified, then E(e|SQFT,D) = 0 and

E(PRICE|SQFT ) =

{(
β1 + δ

)
+ β2SQFT when D = 1

β1 + β2SQFT when D = 0
(7.4)

In the desirable neighborhood D = 1, and the intercept of the regression function is
(
β1 + δ

)
. In

other areas, the regression function intercept is simply β1. This difference is depicted in Figure 7.1,

assuming that δ > 0.

Adding the indicator variable D to the regression model causes a parallel shift in the relation-

ship by the amount δ. In the context of the house price model the interpretation of the parameter

δ is that it is a location premium, the difference in house price due to houses being located in

the desirable neighborhood. An indicator variable that is incorporated into a regression model

to capture a shift in the intercept as the result of some qualitative factor is called an intercept
indicator variable, or an intercept dummy variable. In the house price example, we expect the

price to be higher in a desirable location, and thus we anticipate that δ will be positive.

The least squares estimator’s properties are not affected by the fact that one of the explanatory

variables consists only of zeros and ones—D is treated as any other explanatory variable. We can

construct an interval estimate for δ, or we can test the significance of its least squares estimate.

Such a test is a statistical test of whether the neighborhood effect on house price is “statistically

significant.” If δ = 0, then there is no location premium for the neighborhood in question.

Choosing the Reference Group The convenience of the values D = 0 and D = 1 is

seen in (7.4). The value D = 0 defines the reference group, or base group, of houses that are not

in the desirable neighborhood. The expected price of these houses is simply E(PRICE|SQFT ) =
β1 + β2SQFT. Using (7.3), we are comparing the house prices in the desirable neighborhood to

those in the base group.

A researcher can choose whichever neighborhood is most convenient, for expository pur-

poses, to be the reference group. For example, we can define the indicator variable LD to denote

the less desirable neighborhood:

LD =

{
1 if property is not in the desirable neighborhood

0 if property is in the desirable neighborhood
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This indicator variable is defined just the opposite from D, and LD = 1 − D. If we include LD in

the model specification

PRICE = β1 + λLD + β2SQFT + e

then we make the reference group, LD = 0, the houses in the desirable neighborhood.

You may be tempted to include both D and LD in the regression model to capture the effect

of each neighborhood on house prices. That is, you might consider the model

PRICE = β1 + δD + λLD + β2SQFT + e

In this model, the variables D and LD are such that D + LD = 1. Since the intercept variable

x1 = 1, we have created a model with exact collinearity, and as explained in Section 6.4, the

least squares estimator is not defined in such cases. This error is sometimes described as falling

into the dummy variable trap. By including only one of the indicator variables, either D or LD,

the omitted variable defines the reference group, and we avoid the problem.2

7.1.2 Slope-Indicator Variables
Instead of assuming that the effect of location on house price causes a change in the intercept of

the hedonic regression (7.1), let us assume that the change is in the slope of the relationship. We

can allow for a change in a slope by including in the model an additional explanatory variable

that is equal to the product of an indicator variable and a continuous variable. In our model, the

slope of the relationship is the value of an additional square foot of living area. If we assume that

this is one value for homes in the desirable neighborhood, and another value for homes in other

neighborhoods, we can specify

PRICE = β1 + β2SQFT + γ(SQFT × D) + e (7.5)

The new variable (SQFT × D) is the product of house size and the indicator variable, and is called

an interaction variable, as it captures the interaction effect of location and size on house price.

Alternatively, it is called a slope-indicator variable or a slope dummy variable because it allows

for a change in the slope of the relationship. The slope-indicator variable takes a value equal to

SQFT for houses in the desirable neighborhood, when D = 1, and it is zero for homes in other

neighborhoods. Despite its unusual nature, a slope-indicator variable is treated just like any other

explanatory variable in a regression model. Examining the regression function for the two dif-

ferent locations best illustrates the effect of the inclusion of the slope-indicator variable into the

economic model,

E(PRICE|SQFT, D) = β1 + β2SQFT + γ(SQFT × D) =

{
β1 +

(
β2 + γ

)
SQFT when D = 1

β1 + β2SQFT when D = 0

In the desirable neighborhood, the price per additional square foot of a home is
(
β2 + γ

)
; it is β2

in other locations. We would anticipate γ > 0 if price per additional square foot is higher in the

more desirable neighborhood. This situation is depicted in Figure 7.2a.

Another way to see the effect of including a slope-indicator variable is to use calculus. The

partial derivative of expected house price with respect to size (measured in square feet), which

gives the slope of the relation, is

∂E(PRICE|SQFT, D)
∂SQFT

=

{
β2 + γ when D = 1

β2 when D = 0

If the assumptions of the regression model hold for (7.5), then the least squares estimators have

their usual good properties, as discussed in Section 5.3. A test of the hypothesis that the value of

an additional square foot of living area is the same in the two locations is carried out by testing the

............................................................................................................................................

2Another way to avoid the dummy variable trap is to omit the intercept from the model.
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SQFT

PRICE

β1

γ

Slope = β2 

Slope = β2 + γ

(a)

E (PRICE|SQFT ) = β1 + (β2 + γ)SQFT

E (PRICE|SQFT ) = β1 + β2SQFT

E (PRICE|SQFT ) = (β1 + δ) + (β2 + γ)SQFT

E (PRICE|SQFT ) = (β1 + δ) + β2SQFT

E (PRICE|SQFT ) = β1 + β2SQFT

SQFT

PRICE

β1 + δ

β1

γ

δ

(b)

FIGURE 7.2 (a) A slope-indicator variable. (b) Slope- and intercept-indicator
variables.

null hypothesis H0∶γ = 0 against the alternative H1∶γ ≠ 0. In this case, we might test H0∶γ = 0

against H1∶γ > 0, since we expect the effect to be positive.

If we assume that house location affects both the intercept and the slope, then both effects

can be incorporated into a single model. The resulting regression model is

PRICE = β1 + δD + β2SQFT + γ(SQFT × D) + e (7.6)

In this case, the regression functions for the house prices in the two locations are

E(PRICE|SQFT ) =

{(
β1 + δ

)
+
(
β2 + γ

)
SQFT when D = 1

β1 + β2SQFT when D = 0

In Figure 7.2b, we depict the house price relations assuming that δ > 0 and γ > 0.

E X A M P L E 7.1 The University Effect on House Prices

A real estate economist collects information on 1000 house

price sales from two similar neighborhoods, one called “Uni-

versity Town” bordering a large state university, and another

a neighborhood about three miles from the university. A few

of the observations are shown in Table 7.1. The complete data

file is utown.

House prices are given in $1000; size (SQFT ) is

the number of hundreds of square feet of living area. For

example, the first house sold for $205,452 and has 2346

square feet of living area. Also recorded are the house

AGE (in years), location (UTOWN = 1 for homes near the

university, 0 otherwise), whether the house has a pool

(POOL = 1 if a pool is present, 0 otherwise) and whether

the house has a fireplace (FPLACE = 1 if a fireplace is

present, 0 otherwise).
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T A B L E 7.1 Representative Real Estate Data Values

PRICE SQFT AGE UTOWN POOL FPLACE
205.452 23.46 6 0 0 1

185.328 20.03 5 0 0 1

248.422 27.77 6 0 0 0

287.339 23.67 28 1 1 0

255.325 21.30 0 1 1 1

301.037 29.87 6 1 0 1

T A B L E 7.2 House Price Equation Estimates

Variable Coefficient Std. Error t-Statistic Prob.
C 24.5000 6.1917 3.9569 0.0001

UTOWN 27.4530 8.4226 3.2594 0.0012

SQFT 7.6122 0.2452 31.0478 0.0000

SQFT × UTOWN 1.2994 0.3320 3.9133 0.0001

AGE −0.1901 0.0512 −3.7123 0.0002

POOL 4.3772 1.1967 3.6577 0.0003

FPLACE 1.6492 0.9720 1.6968 0.0901

R2 = 0.8706 SSE = 230184.4

The economist specifies the regression equation as

PRICE = β1 + δ1UTOWN + β2SQFT + γ(SQFT × UTOWN)
+ β3AGE + δ2POOL + δ3FPLACE + e (7.7)

We anticipate that all the coefficients in this model will

be positive except β3, which is an estimate of the effect

of age, or depreciation, on house price. Note that POOL
and FPLACE are intercept dummy variables. By intro-

ducing these variables we are asking whether, and by how

much, these features change house price. Because these

variables stand alone, and are not interacted with SQFT
or AGE, we are assuming that they affect the regression

intercept, but not the slope. The estimated regression results

are shown in Table 7.2. The goodness-of-fit statistic is

R2 = 0.8706, indicating that the model fits the data well.

The slope-indicator variable is SQFT × UTOWN. Based

on one-tail t-tests of significance,3 at the α = 0.05 level

we reject zero null hypotheses for each of the parameters

and accept the alternatives that they are positive, except for

the coefficient on AGE, which we accept to be negative.

In particular, based on these t-tests, we conclude that houses

near the university have a significantly higher base price,

and that their price per additional square foot is significantly

higher than in the comparison neighborhood.

The estimated regression function for the houses near

the university is

PRICE
⋀

= (24.5 + 27.453) + (7.6122 + 1.2994)SQFT
− 0.1901AGE + 4.3772POOL + 1.6492FPLACE

= 51.953 + 8.9116SQFT − 0.1901AGE
+ 4.3772POOL + 1.6492FPLACE

For houses in other areas, the estimated regression function is

PRICE
⋀

= 24.5 + 7.6122SQFT − 0.1901AGE
+ 4.3772POOL + 1.6492FPLACE

Based on the regression results in Table 7.2, we estimate that

• The location premium for lots near the university is

$27,453.

• The change in expected price per additional square foot

is $89.12 for houses near the university and $76.12 for

houses in other areas.

• Houses depreciate $190.10 per year.

• A pool increases the value of a home by $4,377.20.

• A fireplace increases the value of a home by $1,649.20.

............................................................................................................................................

3Recall that the p-value for a one-tail test is half of the reported two-tail p-value, providing that the coefficient estimate

has the “correct” sign.
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7.2 Applying Indicator Variables
Indicator variables can be used to ask and answer a rich variety of questions. In this section, we

consider some common applications.

7.2.1 Interactions Between Qualitative Factors
We have seen how indicator variables can be used to represent qualitative factors in a regression

model. Intercept indicator variables for qualitative factors are additive. That is, the effect of each

qualitative factor is added to the regression intercept, and the effect of any indicator variable is

independent of any other qualitative factor. Sometimes, however, we might question whether the

effects of qualitative factors are independent.

For example, suppose we are estimating a wage equation, in which an individual’s wages are

explained as a function of their experience, skill, and other factors related to productivity. It is

customary to include indicator variables for race and sex in such equations. If we have modeled

productivity attributes well, and if wage determination is not discriminatory, then the coefficients

of the race and sex indicator variables should not be significant. Including just race and sex

indicator variables, however, will not capture interactions between these qualitative factors. Is

there a differential in wages for black women? Separate indicator variables for being “black” and

“female” will not capture this extra interaction effect. To allow for such a possibility, consider the

following specification, in which for simplicity we use only education (EDUC) as a productivity

measure:

WAGE = β1 + β2EDUC + δ1BLACK + δ2FEMALE
+ γ(BLACK × FEMALE) + e (7.8)

where BLACK and FEMALE are indicator variables, and thus so is their interaction. These are

intercept dummy variables because they are not interacted with any continuous explanatory vari-

able. They have the effect of causing a parallel shift in the regression, as in Figure 7.1. When

multiple dummy variables are present, and especially when there are interactions between indi-

cator variables, it is important for proper interpretation to write out the regression function,

E(WAGE|EDUC), for each indicator variable combination:

E(WAGE|EDUC) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

β1 + β2EDUC WHITE −MALE
(
β1 + δ1

)
+ β2EDUC BLACK −MALE

(
β1 + δ2

)
+ β2EDUC WHITE − FEMALE

(
β1 + δ1 + δ2 + γ

)
+ β2EDUC BLACK − FEMALE

In this specification, white males are the reference group because this is the group defined when all

indicator variables take the value zero, in this case BLACK = 0 and FEMALE = 0. The parameter

δ1 measures the effect of being black, relative to the reference group; the parameter δ2 measures

the effect of being female, and the parameter γ measures the effect of being black and female.

E X A M P L E 7.2 The Effects of Race and Sex on Wage

Using CPS data (data file cps5_small) from 2013, we obtain

the results in Table 7.3. Holding the effect of education

constant, we estimate that on average black males earn $2.07

per hour less than white males, white females earn $4.22

less than white males, and black females earn $5.76 less

than white males. The coefficients of EDUC and FEMALE
are significantly different from zero using individual t-tests.

The coefficient of BLACK and the interaction effect between
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BLACK and FEMALE are not estimated very precisely using

this sample of 1200 observations, and are not statistically

significant.4

Suppose we are asked to test the joint significance of

all the qualitative factors. How do we test the hypothesis that

neither a person’s race nor sex affects wages? We do it by test-

ing the joint null hypothesis H0∶δ1 = 0, δ2 = 0, γ = 0 against

the alternative that at least one of the tested parameters is not

zero. If the null hypothesis is true, race and sex fall out of the

regression, and thus have no effect on wages.

To test this hypothesis, we use the F-test procedure that

is described in Section 6.1. The test statistic for a joint hypoth-

esis is

F =
(
SSER − SSEU

)
∕J

SSEU∕(N − K)

where SSER is the sum of squared least squares residuals

from the “restricted” model in which the null hypothesis is

assumed to be true, SSEU is the sum of squared residuals

from the original, “unrestricted,” model, J is the number

of joint hypotheses, and N − K is the number of degrees of

freedom in the unrestricted model. If the null hypothesis

is true, then the test statistic F has an F-distribution with

J numerator degrees of freedom and N − K denominator

T A B L E 7.3 Wage Equation with Race and Sex

Variable Coefficient Std. Error t-Statistic Prob.

C −9.4821 1.9580 −4.8428 0.0000

EDUC 2.4737 0.1351 18.3096 0.0000

BLACK −2.0653 2.1616 −0.9554 0.3396

FEMALE −4.2235 0.8249 −5.1198 0.0000

BLACK × FEMALE 0.5329 2.8020 0.1902 0.8492

R2 = 0.2277 SSE = 214400.9

degrees of freedom, F(J, N − K). We reject the null hypothesis

if F ≥ Fc, where Fc is the critical value, illustrated in Figure

B.9, for the level of significance α. To test the J = 3 joint

null hypotheses H0∶δ1 = 0, δ2 = 0, γ = 0, we obtain the

unrestricted sum of squared errors SSEU = 214400.9 from

the model reported in Table 7.3. The restricted sum of

squares is obtained by estimating the model that assumes the

null hypothesis is true, leading to the fitted model

WAGE
⋀

= −10.4000 + 2.3968EDUC
(se) (1.9624) (0.1354)

which has SSER = 220062.3. The degrees of freedom

(N − K) = (1200 − 5) = 1195 come from the unrestricted

model. The value of the F-statistic is

F =
(
SSER − SSEU

)
∕J

SSEU∕(N − K)
=
(220062.3 − 214400.9)∕3

214400.9∕1195

= 10.52

The 1% critical value [i.e., the 99th percentile value] is

F(0.99, 3, 1195) = 3.798. Thus, we conclude that a worker’s race

and/or sex affect the wage equation.

7.2.2 Qualitative Factors with Several Categories
Many qualitative factors have more than two categories. An example is the variable region of

the country in our wage equation. The CPS data record worker residence within one of the four

regions: northeast, midwest, south, and west. Again, using just the simple wage specification for

illustration, we can incorporate indicator variables into the wage equation as

WAGE = β1 + β2EDUC + δ1SOUTH + δ2MIDWEST + δ3WEST + e (7.9)

............................................................................................................................................

4Estimating this model using the larger data set cps5, which contains 9799 observations, yields a coefficient estimate for

BLACK of −4.3488 with a t-value of −5.81. Similarly, the coefficient of the interaction variable is 3.0873 with a

t = 3.01. Both of these are statistically significant. Recall from Sections 2.4 and 5.3 that larger sample sizes lead to

smaller standard errors and thus more precise estimation. Labor economists tend to use large data sets so that complex

effects and interactions can be estimated precisely. We use the smaller data set as a text example so that results can be

replicated with student versions of software.
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Notice that we have not included the indicator variables for all regions. Doing so would have

created a model in which exact collinearity exists. Since the regional categories are exhaustive, the

sum of the regional indicator variables is NORTHEAST + SOUTH +MIDWEST +WEST = 1.

Thus, the “intercept variable” x1 = 1 is an exact linear combination of the region indicators.

Recall, from Section 6.4, that the least squares estimator is not defined in such cases. Failure

to omit one indicator variable will lead to your computer software returning a message saying

that least squares estimation fails. This error is the dummy variable trap that we mentioned in

Section 7.1.1.

The usual solution to this problem is to omit one indicator variable, which defines a reference
group, as we shall see by examining the regression function,

E(WAGE|EDUC) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
β1 + δ3

)
+ β2EDUC WEST

(
β1 + δ2

)
+ β2EDUC MIDWEST

(
β1 + δ1

)
+ β2EDUC SOUTH

β1 + β2EDUC NORTHEAST

The omitted indicator variable, NORTHEAST , identifies the reference group for the equation,

to which workers in other regions are compared. It is the group that remains when the regional

indicator variables WEST , MIDWEST , and SOUTH are set to zero. Mathematically, it does not

matter which indicator variable is omitted; the choice can be made that is most convenient for

interpretation. The intercept parameter β1 represents the base wage for a worker with no education

who lives in the northeast. The parameter δ1 measures the expected wage differential between

southern workers relative to those in the northeast; δ2 measures the expected wage differential

between midwestern workers and those in the northeast.

E X A M P L E 7.3 A Wage Equation with Regional Indicators

Using CPS data in data file cps5_small, let us take the speci-

fication in Table 7.3 and add the regional indicators SOUTH,

MIDWEST , and WEST . The results are in Table 7.4. We

estimate that workers in the South earn $1.65 less per hour

T A B L E 7.4 Wage Equation with Regional Indicator Variables

Variable Coefficient Std. Error t-Statistic Prob.

C −8.3708 2.1540 −3.8862 0.0001

EDUC 2.4670 0.1351 18.2603 0.0000

BLACK −1.8777 2.1799 −0.8614 0.3892

FEMALE −4.1861 0.8246 −5.0768 0.0000

BLACK × FEMALE 0.6190 2.8008 0.2210 0.8251

SOUTH −1.6523 1.1557 −1.4297 0.1531

MIDWEST −1.9392 1.2083 −1.6049 0.1088

WEST −0.1452 1.2027 −0.1207 0.9039

R2= 0.2308 SSE = 213552.1

than workers in the Northeast, and workers in the Midwest

earn $1.94 less than workers in the Northeast, holding other

factors constant. These estimates are not significantly differ-

ent from zero at the 10% level.5

............................................................................................................................................

5Using the larger CPS data file, cps5, the estimated regional coefficients are (t-values in parentheses): SOUTH −0.9405

(−2.24), MIDWEST −2.4299 (−5.58), and WEST 0.0088 (0.02).



�

� �

�

326 CHAPTER 7 Using Indicator Variables

How would we test the hypothesis that there are no

regional differences? This would be a joint test of the null

hypothesis that the coefficients of the regional dummies are

all zero. In the context of the CPS data, SSEU = 213552.1 for

the wage equation in Table 7.4. Under the null hypothesis,

the model in Table 7.4 reduces to that in Table 7.3 where

SSER = 214400.9. This yields an F-statistic value of 1.579.

The p-value for this test is 0.1926, so we fail to reject the

null hypothesis that there are no regional differences in the

wage equation intercept, holding other factors constant.6

7.2.3 Testing the Equivalence of Two Regressions
In Section 7.1.2, we introduced both intercept and slope-indicator variables into the hedonic

equation for house price. The result was given in (7.6)

PRICE = β1 + δD + β2SQFT + γ(SQFT × D) + e

The regression functions for the house prices in the two locations are

E(PRICE|SQFT ) =

{
α1 + α2SQFT D = 1

β1 + β2SQFT D = 0

where α1 = β1 + δ and α2 = β2 + γ. Figure 7.2b shows that by introducing both intercept and

slope-indicator variables, we have essentially assumed that the regressions in the two neighbor-

hoods are completely different. We could obtain the estimates for (7.6) by estimating separate

regressions for each of the neighborhoods. In this section, we generalize this idea, which leads

to the Chow test, named after econometrician Gregory Chow. The Chow test is an F-test for the

equivalence of two regressions.

By including an intercept indicator variable and an interaction variable for each additional

variable in an equation, we allow all coefficients to differ based on a qualitative factor. Consider

again the wage equation in (7.8)

WAGE = β1 + β2EDUC + δ1BLACK + δ2FEMALE + γ(BLACK × FEMALE) + e

We might ask “Are there differences between the wage regressions for the south and for the rest

of the country?” If there are no differences, then the data from the south and other regions can

be pooled into one sample, with no allowance made for differing slope or intercept. How can we

test this? We can carry out the test by creating intercept and slope-indicator variables for every
variable in the model, and then jointly testing the significance of the indicator variable coefficients

using an F-test. That is, we specify the model

WAGE = β1 + β2EDUC + δ1BLACK + δ2FEMALE + γ(BLACK × FEMALE)
+ θ1SOUTH + θ2(EDUC × SOUTH) + θ3(BLACK × SOUTH)
+ θ4(FEMALE × SOUTH) + θ5(BLACK × FEMALE × SOUTH) + e (7.10)

In (7.10) we have twice the number of parameters and variables than in (7.8). We have added five

new variables, the SOUTH intercept indicator variable and interactions between SOUTH and the

other four variables, and corresponding parameters. Estimating (7.10) is equivalent to estimating

(7.8) twice—once for the southern workers and again for workers in the rest of the country.

............................................................................................................................................

6Using the larger CPS data file, cps5, the F = 14.7594 which is significant at the 1% level.
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To see this, examine the regression functions. Let X represent (EDUC, BLACK, FEMALE,

SOUTH). Then

E(WAGE|X) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

β1 + β2EDUC + δ1BLACK + δ2FEMALE SOUTH = 0

+ γ(BLACK × FEMALE)
(
β1 + θ1

)
+
(
β2 + θ2

)
EDUC +

(
δ1 + θ3

)
BLACK

+
(
δ2 + θ4

)
FEMALE +

(
γ + θ5

)
(BLACK × FEMALE) SOUTH = 1

Note that each variable has a separate coefficient for southern and nonsouthern workers.

E X A M P L E 7.4 Testing the Equivalence of Two Regressions: The Chow Test

In column (1) of Table 7.5, we report the estimates and stan-

dard errors for the fully interacted model (7.10), using the full

sample. The base model (7.8) is estimated once for workers

outside the south [column (2)] and again for southern work-

ers [column (3)]. Note that the coefficient estimates on the

nonsouth data in (2) are identical to those using the full sam-

ple in (1). The standard errors differ because the estimates of

the error variance, σ2, differ. The coefficient estimates using

only southern workers are obtained from the full model by

adding the indicator variable interaction coefficients θi to

the corresponding nonsouth coefficients. For example, the

coefficient estimate for BLACK in column (3) is obtained

as
(

δ̂1 + θ̂3

)

= 1.1276 − 4.6204 = −3.4928. Similarly, the

coefficient on FEMALE in column (3) is
(

δ̂2 + θ̂4

)

=
–4.1520 − 0.1886 = −4.3406.

T A B L E 7.5 Comparison of Fully Interacted to Separate Models

(1) (2) (3)
Full sample Nonsouth South

Variable Coefficient
Std.

Error Coefficient
Std.

Error Coefficient
Std.

Error

C −9.9991 2.3872 −9.9991 2.2273 −8.4162 3.8709

EDUC 2.5271 0.1642 2.5271 0.1532 2.3557 0.2692

BLACK 1.1276 3.5247 1.1276 3.2885 −3.4928 3.1667

FEMALE −4.1520 0.9842 −4.1520 0.9182 −4.3406 1.7097

BLACK × FEMALE −4.4540 4.4858 −4.4540 4.1852 3.6655 4.1832

SOUTH 1.5829 4.1821

EDUC × SOUTH −0.1714 0.2898

BLACK × SOUTH −4.6204 4.5071

FEMALE × SOUTH −0.1886 1.8080

BLACK × FEMALE × SOUTH 8.1195 5.8217

SSE 213774.0 125880.0 87893.9

N 1200 810 390

Furthermore, note that the sum of squared residuals for the

full model in column (1), but for a small rounding error, is

the sum of the SSE from the two separate regressions

SSEfull = SSEnonsouth + SSEsouth

= 125880.0 + 87893.9 = 213773.9

Using this indicator variable approach, we can test for a

southern regional difference. We estimate (7.10) and test the

joint null hypothesis

H0∶θ1 = θ2 = θ3 = θ4 = θ5 = 0

against the alternative that at least one θi ≠ 0. This is the

Chow test. If we reject this null hypothesis, we conclude that

there is some difference in the wage equation in the southern
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region relative to the rest of the country. The test can also be

thought of as comparing the estimates in the nonsouth and

south in columns (2) and (3) in Table 7.5.

The test ingredients are the unrestricted SSEU =
213774.0 from the full model in Table 7.5 [or the sum of

the SSE’s from the two separate regressions], the restricted

SSER = 214400.9 comes from Table 7.3. The test statistic

for the J = 5 hypotheses is

F =
(
SSER − SSEU

)
∕J

SSEU∕(N − K)

=
(214400.9 − 213774.0)∕5

213774.0∕1190
= 0.6980

The denominator degrees of freedom come from the unre-

stricted model, N − K = 1200 − 10. The p-value of this test

is p = 0.6250, and thus we fail to reject the null hypothesis

that the wage regression in the South is no different from that

in the rest of the country.7

Remark
The usual F-test of a joint hypothesis relies on the assumptions MR1–MR6 of the linear

regression model. Of particular relevance for testing the equivalence of two regressions is

assumption MR3, that the variance of the error term, var
(
ei|𝐗

)
= σ2, is the same for all

observations. If we are considering possibly different slopes and intercepts for parts of the

data, it might also be true that the error variances are different in the two parts of the data.

In such a case, the usual F-test is not valid. Testing for equal variances is covered in Section

8.2, and the question of pooling in this case is covered in Section 8.4. For now, be aware

that we are assuming constant error variances in the calculations above.

7.2.4 Controlling for Time
The earlier examples we have given apply indicator variables to cross-sectional data. Indicator

variables are also used in regressions using time-series data, as the following examples illustrate.

Seasonal Indicators Summer means outdoor cooking on barbeque grills. What effect

might this have on the sales of charcoal briquettes, a popular fuel for grilling? To investigate,

let us define a model with dependent variable yt = the number of 20-pound bags of Royal Oak

charcoal sold in week t at a supermarket. Explanatory variables would include the price of Royal

Oak, the price of competitive brands (Kingsford and the store brand), the prices of complemen-

tary goods (charcoal lighter fluid, pork ribs, and sausages), and advertising (newspaper ads and

coupons). While these standard demand factors are all relevant, we may also find strong seasonal

effects. All other things being equal, more charcoal is sold in the warm summer months than in

other seasons. Thus, we may want to include either monthly indicator variables (e.g., AUG = 1

if month is August, AUG = 0 otherwise) or seasonal indicator variables (in North America,

SUMMER = 1 if month = June, July, or August; SUMMER = 0 otherwise) into the regression.

In addition to these seasonal effects, holidays are special occasions for cookouts. In the United

States, these are Memorial Day (last Monday in May), Independence Day (July 4), and Labor Day

(first Monday in September). Additional sales can be expected in the week before these holidays,

meaning that indicator variables for each should be included into the regression.

............................................................................................................................................

7The p-value of this test using the larger CPS data set, cps5, is 0.7753, so that we again fail to reject the null hypothesis.
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Year Indicators In the same spirit as seasonal indicator variables, annual indicator vari-
ables are used to capture year effects not otherwise measured in a model. The real estate model

discussed earlier in this chapter provides an example. Real estate data are available continuously,

every month, every year. Suppose we have data on house prices for a certain community covering

a 10-year period. In addition to house characteristics, such as those employed in (7.7), the overall

price level is affected by demand factors in the local economy, such as population change, inter-

est rates, unemployment rate, and income growth. Economists creating “cost-of-living” or “house

price” indexes for cities must include a component for housing that takes the pure price effect into

account. Understanding the price index is important for tax assessors, who must reassess the mar-

ket value of homes in order to compute the annual property tax. It is also important to mortgage

bankers and other home lenders, who must reevaluate the value of their portfolio of loans with

changing local conditions, as well as to homeowners trying to sell their houses, and to potential

buyers as they attempt to agree upon a selling price.

The simplest method for capturing these price effects is to include annual indicator vari-

ables (e.g., D99 = 1 if year = 1999; D99 = 0 otherwise) into the hedonic regression model.

An example can be found in Exercise 7.3.

Regime Effects An economic regime is a set of structural economic conditions that exist

for a certain period. The idea is that economic relations may behave one way during one regime,

but may behave differently during another. Economic regimes may be associated with political

regimes (conservatives in power, liberals in power), unusual economic conditions (oil embargo,

recession, hyperinflation), or changes in the legal environment (tax law changes). An investment

tax credit8 was enacted in 1962 in an effort to stimulate additional investment. The law was sus-

pended in 1966, reinstated in 1970, and eliminated in the Tax Reform Act of 1986. Thus, we

might create an indicator variable

ITCt =

{
1 if t = 1962 − 1965, 1970 − 1986

0 otherwise

A macroeconomic investment equation might be

INVt = β1 + δITCt + β2GNPt + β3GNPt−1 + et

If the tax credit was successful, then δ > 0.

7.3 Log-Linear Models
In Section 4.5, we examined the log-linear model in some detail. In this section, we explore the

interpretation of indicator variables in log-linear models. Some additional detail is provided in

Appendix 7A. Let us consider the log-linear model in (7.11). We do not introduce an error term,

and we take EDUC and FEMALE to be given, in order to simplify the exposition.

ln(WAGE) = β1 + β2EDUC + δFEMALE (7.11)

What is the interpretation of the parameter δ? FEMALE is an intercept dummy variable, creating

a parallel shift of the log-linear relationship when FEMALE = 1. That is,

ln(WAGE) =

{
β1 + β2EDUC MALES (FEMALE = 0)
(
β1 + δ

)
+ β2EDUC FEMALES (FEMALE = 1)

............................................................................................................................................

8Intriligator, Bodkin and Hsiao, Econometric Models, Techniques and Applications, 2nd edition, Upper Saddle River,

NJ: Prentice-Hall, 1996, p. 53.
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But what about the fact that the dependent variable is ln(WAGE)? Does that have an effect?

The answer is yes—and there are two solutions.

7.3.1 A Rough Calculation
First, take the difference between ln(WAGE) of females and males:

ln(WAGE)FEMALES − ln(WAGE)MALES = δ

Recall from Appendix A.1.6 and equation (A.3) that 100 times the log-difference, 100δ, is approx-

imately the percentage difference.

E X A M P L E 7.5 Indicator Variables in a Log-Linear Model:
The Rough Approximation

Using the data file cps5_small, the estimated log-linear model

(7.11) is

ln(WAGE)
⋀

= 1.6229 + 0.1024EDUC − 0.1778FEMALE
(se) (0.0692) (0.0048) (0.0279)

Thus, we would estimate that there is a 17.78% differential

between male and female wages. This is quick and simple, but

there is an approximation error with a difference this large.

7.3.2 An Exact Calculation
We can overcome the approximation error by doing a little algebra. The wage difference is

ln(WAGE)FEMALES − ln(WAGE)MALES = ln

(
WAGEFEMALES

WAGEMALES

)

= δ

using the property of logarithms that ln(x) − ln(y) = ln(x∕y). These are natural logarithms, and

the antilog is the exponential function,

WAGEFEMALES

WAGEMALES
= eδ

Subtract 1 from each side (in a tricky way) to obtain

WAGEFEMALES

WAGEMALES
−

WAGEMALES

WAGEMALES
=

WAGEFEMALES −WAGEMALES

WAGEMALES
= eδ − 1

The percentage difference between wages of females and males is 100
(
eδ – 1

)
%. See Appendix 7A

for a more detailed approach.

E X A M P L E 7.6 Indicator Variables in a Log-Linear Model: An Exact Calculation

Using the data cps5_small, we estimate the wage differential

between males and females to be

100
(

e ̂δ − 1
)

% = 100
(
e−0.1778 − 1

)
% = −16.29%

The approximate standard error for this estimate is 2.34%,

which is a calculation that may be provided by your software.
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7.4 The Linear Probability Model
Economics is sometimes described as the “theory of choice.” Many of the choices we make in

life are “either—or” in nature. A few examples include the following:

• A consumer who must choose between Coke and Pepsi

• A married woman who must decide whether to enter the labor market or not

• A bank official must choose to accept a loan application or not

• A high school graduate must decide whether to attend college or not

• A member of Parliament, a Senator, or a Representative must vote for or against a piece of

legislation.

To analyze and predict such outcomes using an econometric model, we represent the choice using

an indicator variable, the value one if one alternative is chosen and the value zero if the other

alternative is chosen. Because we are attempting to explain choice between two alternatives, the

indicator variable will be the dependent variable rather than an independent variable in a regres-

sion model.

To begin, let us represent the variable indicating a choice as

y =

{
1 if first alternative is chosen

0 if second alternative is chosen

If we observe the choices that a random sample of individuals makes, then y is a random variable.

If p is the probability that the first alternative is chosen, then P[y = 1] = p. The probability that the

second alternative is chosen is P[y = 0] = 1 − p. The probability function for the binary indicator

variable y is

𝑓 (y) = py(1 − p)1−y
, y = 0, 1

The indicator variable y is said to follow a Bernoulli distribution. The expected value of y is

E(y) = p, and its variance is var(y) = p(1 − p).
We are interested in identifying factors that might affect the probability p using a linear

regression function, or, in this context, a linear probability model,

E(y|X) = p = β1 + β2x2 + · · · + βKxK

Proceeding as usual, we break the observed outcome y into a systematic portion, E(y|𝐗), and an

unpredictable random error, e, so that the econometric model is

y = E(y|X) + e = β1 + β2x2 + · · · + βKxK + e

One difficulty with using this model for choice behavior is that the usual error term assumptions

cannot hold. The outcome y only takes two values, implying that the error term e also takes only

two values, so that the usual “bell-shaped” curve describing the distribution of errors does not

hold. The probability functions for y and e are

y value e value Probability
1 1 −

(
β1 + β2x2 + · · · + βKxK

)
p

0 −
(
β1 + β2x2 + · · · + βKxK

)
1 − p

The variance of the error term e is

var(e|X) = p(1 − p) =
(
β1 + β2x2 + · · · + βKxK

)(
1 − β1 − β2x2 − · · · − βKxK

)
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This error is not homoskedastic, so the usual formula for the variance of the least squares estimator

is incorrect. A second problem associated with the linear probability model is that predicted

values, E(y)
⋀

= p̂, can fall outside the (0, 1) interval, meaning that their interpretation as prob-

abilities does not make sense. Despite these weaknesses, the linear probability model has the

advantage of simplicity, and it has been found to provide good estimates of the marginal effects

of changes in explanatory variables xk on the choice probability p, as long as p is not too close to

zero or one.9

E X A M P L E 7.7 The Linear Probability Model: An Example from Marketing

A shopper is deciding between Coke and Pepsi. Define the

variable COKE:

COKE =

{
1 if Coke is chosen

0 if Pepsi is chosen

The expected value of this variable is E(COKE|𝐗) =
pCOKE = probability that Coke is chosen given some

conditioning factors. What factors might enter the choice

decision? The relative price of Coke to Pepsi (PRATIO) is

a potential factor. As the relative price of Coke rises, we

should observe a reduced probability of its choice. Other

factors influencing the consumer might be the presence

of store displays for these products. Let DISP_COKE and

DISP_PEPSI be indicator variables taking the value one if

the respective store display is present and zero if it is not.

We expect that the presence of a Coke display will increase

the probability of a Coke purchase, and the presence of

a Pepsi display will decrease the probability of a Coke

purchase.

The data file coke10 contains “scanner” data on 1140

individuals who purchased Coke or Pepsi. In this sample,

44.7% of the customers chose Coke. The estimated linear

probability model is

p̂COKE = 0.8902 − 0.4009PRATIO + 0.0772DISP_COKE
(se) (0.0655) (0.0613) (0.0344)

−0.1657DISP_PEPSI
(0.0356)

Assuming for the moment that the standard errors are

reliable,11 all the coefficients are significantly different from

zero at the α = 0.05 level. Recall that PRATIO = 1 if the

prices of Coke and Pepsi are equal, and that PRATIO = 1.10

would represent a case in which Coke was 10% more

expensive than Pepsi. Such an increase is estimated to reduce

the probability of purchasing Coke by 0.04. A store display

for Coke is estimated to increase the probability of a Coke

purchase by 0.077, and a Pepsi display is estimated to reduce

the probability of a Coke purchase by 0.166. The concerns

about predicted probabilities falling outside (0,1) are well

founded in general, but in this example only 16 of the 1140

sample observations resulted in predicted probabilities less

than zero, and there were no predicted probabilities greater

than one.

7.5 Treatment Effects
Consider the question “Do hospitals make people healthier?” Angrist and Pischke12 report

the results of a National Health Interview Survey that included the question “During the past

12 months, was the respondent a patient in a hospital overnight?” Also asked was “Would you

say your health in general is excellent, very good, good, fair or poor?” Using the number 1 for

poor health and 5 for excellent health, those who had not gone to the hospital had an average

health score of 3.93, and those who had been to the hospital had an average score of 3.21. That

is, individuals who had been to the hospital had poorer health than those who had not.

............................................................................................................................................

9See Chapter 16 for nonlinear models of choice, called probit and logit, which ensure that predicted probabilities fall

between zero and one. These models require the use of more complex estimators and methods of inference.

10Obtained from the ERIM public data base, James M. Kilts Center, University of Chicago Booth School of Business.

Scanner data is information recorded at the point of purchase by an electronic device reading a barcode.

11The estimates and standard errors are not terribly dissimilar from those obtained using more advanced options

discussed in Chapters 8 and 16.

12Mostly Harmless Econometrics: An Empiricist’s Guide, Princeton, 2009, pp. 12–13.
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Books on principles of economics warn in the first chapter13 about the faulty line of reasoning

known as post hoc, ergo propter hoc, which means that one event preceding another does not

necessarily make the first the cause of the second. Going to the hospital does not cause the poorer

health status. Those who were less healthy chose to go to the hospital because of an illness or

injury, and at the time of the survey were still less healthy than those who had not gone to the

hospital. Another way to say this is embodied in the warning that “correlation is not the same as

causation.” We observe that those who had been in a hospital are less healthy, but observing this

association does not imply that going to the hospital causes a person to be less healthy. Still another

way to describe the problem we face in this example is to say that data exhibit a selection bias
because some people chose (or self-selected) to go to the hospital and the others did not. When

membership in the treated group is in part determined by choice, then the sample is not a random

sample. There are systematic factors, in this case health status, contributing to the composition

of the sample.

A second example of selection bias may bring the concept closer to home. Are you reading

this great book because you are enrolled in an econometrics class? Is the course required, or not? If

your class is an “elective,” then you and your classmates are not a random sample from the broader

student population. It is our experience that students taking econometrics as an elective have an

ability level and quantitative preparation that is higher, on average, than a random sample from

the university population. We also observe that a higher proportion of undergraduate students

who take econometrics enroll in graduate programs in economics or related disciplines. Is this

a causal relationship? In part, it certainly is, but also your abilities and future plans for graduate

training may have drawn you to econometrics, so that the high success rate of our students is in

part attributed to selection bias.

Selection bias is also an issue when asking

• “How much does an additional year of education increase the wages of married women?”

The difficulty is that we are able to observe a woman’s wages only if she chooses to join the

labor force, and thus the observed data is not a random sample.

• “How much does participation in a job-training program increase wages?” If participation is

voluntary, then we may see a greater proportion of less skilled workers taking advantage of

such a program.

• “How much does a dietary supplement contribute to weight loss?” If those taking the supple-

ment are among the severely overweight, then the results we observe may not be “typical.”

In each of these cases, selection bias interferes with a straightforward examination of the data,

and makes more difficult our efforts to measure a causal effect, or treatment effect.
In some situations, usually those involving the physical or medical sciences, it is clearer how

we might study causal effects. For example, if we wish to measure the effect of a new type of

fertilizer on rice production, we can randomly assign identical rice fields to be treated with a

new fertilizer (the treatment group), with the others being treated with an existing product (the

control group). At the end of the growing period, we compare the production on the two types

of fields. The key here is that we perform a randomized controlled experiment. By randomly

assigning subjects to treatment and control groups, we ensure that the differences we observe

will result from the treatment. In medical research, the effectiveness of a new drug is measured

by such experiments. Test subjects are randomly assigned to the control group, who receive a

placebo drug, and the treatment group, who receive the drug being tested. By random assignment

of treatment and control groups, we prevent any selection bias from occurring.

As economists, we would like to have the type of information that arises from randomized

controlled experiments to study the consequences of social policy changes, such as changes in

............................................................................................................................................

13See, for example, Campbell R. McConnell and Stanley L. Brue, Economics, Twelfth Edition, McGraw-Hill, 1993,

pp. 8–9.



�

� �

�

334 CHAPTER 7 Using Indicator Variables

laws, or changes in types and amounts of aid and training we provide the poor. The ability to

perform randomized controlled experiments is limited because the subjects are people, and their

economic well-being is at stake. However, there are some examples. Before we proceed, we will

examine the statistical consequences of selection bias for the measurement of treatment effects.

7.5.1 The Difference Estimator
In order to understand the measurement of treatment effects, consider a simple regression model

in which the explanatory variable is a dummy variable, indicating whether a particular individual

is in the treatment or control group. Let y be the outcome variable, the measured characteristic

the treatment is designed to effect. In the rice production example, y would be the output of rice

on a particular rice field. Define the indicator variable d as

di =

{
1 individual in treatment group

0 individual in control group
(7.12)

The effect of the treatment on the outcome can be modeled as

yi = β1 + β2di + ei, i = 1,… ,N (7.13)

where ei represents the collection of other factors affecting the outcome. The regression functions

for the treatment and control groups are

E
(
yi
)
=

{
β1 + β2 if in treatment group, di = 1

β1 if in control group, di = 0

This is the same model we used in Section 2.9 to study the effect of location on house prices.

The treatment effect that we wish to measure is β2. The least squares estimator of β2 is

b2 =

N∑

i=1

(

di − d
)(

yi − y
)

N∑

i=1

(

di − d
)2

= y1 − y0 (7.14)

where y1 =
∑NI

i=1
yi∕N1 is the sample mean of the N1 observations on y for the treatment group

(d = 1) and y0 =
∑N0

i=1
yi∕N0 is the sample mean of the N0 observations on y for the control group

(d = 0). In this treatment/control framework, the estimator b2 is called the difference estimator
because it is the difference between the sample means of the treatment and control groups.14

7.5.2 Analysis of the Difference Estimator
The statistical properties of the difference estimator can be examined using the same strategy

employed in Section 2.4.2. We can rewrite the difference estimator as

b2 = β2 +

∑N
i=1

(

di − d
)(

ei − e
)

∑N
i=1

(

di − d
)2

= β2 +
(
e1 − e0

)

............................................................................................................................................

14See Appendix 7B for an algebraic derivation.



�

� �

�

7.5 Treatment Effects 335

In the middle equality, the factor added to β2 has the same form as the difference estimator in

(7.14), with ei replacing yi—hence the final equality. The difference estimator b2 equals the true

treatment effect β2 plus the difference between the averages of the unobserved factors affect-

ing the outcomes y for the treatment group
(
e1

)
and for the control group

(
e0

)
. In order for the

difference estimator to be unbiased, E
(
b2

)
= β2, it must be true that

E
(
e1 − e0

)
= E

(
e1

)
− E

(
e0

)
= 0

In words, the expected value of all the factors affecting the outcome, other than the treatment,

must be equal for the treatment and control groups.

If we allow individuals to “self-select” into treatment and control groups, then E
(
e1

)
− E

(
e0

)

is the selection bias in the estimation of the treatment effect. For example, we observed that those

who had not gone to the hospital (control group) had an average health score of 3.93, and those

who had been to the hospital (treatment group) had an average health score of 3.21. The estimated

effect of the treatment is (y1 − y0) = 3.21 − 3.93 = −0.72. The estimator bias in this case arises

because the preexisting health conditions for the treated group, captured by E
(
e1

)
, are poorer than

the pre-existing health of the control group, captured by E
(
e0

)
, so that in this example there is a

negative bias in the difference estimator.

We can anticipate that anytime some individuals select treatment there will be factors lead-

ing to this choice that are systematically different from those leading individuals in the control

group to not select treatment, resulting in a selection bias in the difference estimator. How can

we eliminate the self-selection bias? The solution is to randomly assign individuals to treatment

and control groups, so that there are no systematic differences between the groups, except for the

treatment itself. With random assignment, and the use of a large number of experiment subjects,

we can be sure that E
(
e1

)
= E

(
e0

)
and E

(
b2

)
= β2.

E X A M P L E 7.8 An Application of Difference Estimation: Project STAR

Medical researchers use white mice to test new drugs

because these mice, surprisingly, are genetically similar to

humans. Mice that are bred to be identical are randomly

assigned to treatment and control groups, making estimation

of the treatment effect of a new drug on the mice a relatively

straightforward and reproducible process. Medical research

on humans is strictly regulated, and volunteers are given

incentives to participate, then randomly assigned to treatment

and control groups. Randomized controlled experiments in

the social sciences are equally attractive from a statistician’s

point of view but are rare because of the difficulties in

organizing and funding them. A notable example of a

randomized experiment is Tennessee’s Project STAR.15

A longitudinal experiment was conducted in Tennessee

beginning in 1985 and ending in 1989. A single cohort

of students was followed from kindergarten through third

grade. In the experiment, children were randomly assigned

within schools into three types of classes: small classes with

13–17 students, regular-sized classes with 22–25 students,

and regular-sized classes with a full-time teacher aide to

assist the teacher. Student scores on achievement tests were

recorded, as was some information about the students,

teachers, and schools. Data for the kindergarten classes is

contained in the data file star.

Let us first compare the performance of students in small

classes versus regular classes.16

The variable TOTALSCORE is the combined reading

and math achievement scores and SMALL = 1 if the student

was assigned to a small class, and zero if the student is in

a regular class. In Table 7.6a and b are summary statistics

for the two types of classes. First, note that on all measures

except TOTALSCORE the variable means reported are very

............................................................................................................................................

15See https://dataverse.harvard.eduldataset.xhtml?persistentld=hdl: 1902.1/10766 for program description, public use

data and extensive literature.

16Interestingly there is no significant difference in outcomes comparing a regular class to a regular class with an aide.

For this example all observations for students in the third treatment group are dropped.
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similar. This is because students and teachers were randomly

assigned to the classes, so that there should be no patterns

evident. The average value of TOTALSCORE in the regular

classes is 918.0429 and in small classes it is 931.9419, a

difference of 13.899 points. The test scores are higher in the

smaller classes. The difference estimator obtain using regres-

sion will yield the same estimate, along with significance

levels.

T A B L E 7.6a
Summary Statistics for Regular-
Sized Classes

Variable Mean Std. Dev. Min Max

TOTALSCORE 918.0429 73.1380 635 1229

SMALL 0.0000 0.0000 0 0

TCHEXPER 9.0683 5.7244 0 24

BOY 0.5132 0.4999 0 1

FREELUNCH 0.4738 0.4994 0 1

WHITE_ASIAN 0.6813 0.4661 0 1

TCHWHITE 0.7980 0.4016 0 1

TCHMASTERS 0.3651 0.4816 0 1

SCHURBAN 0.3012 0.4589 0 1

SCHRURAL 0.4998 0.5001 0 1

N = 2005

T A B L E 7.6b
Summary Statistics for Small
Classes

Variable Mean Std. Dev. Min Max

TOTALSCORE 931.9419 76.3586 747 1253

SMALL 1.0000 0.0000 1 1

TCHEXPER 8.9954 5.7316 0 27

BOY 0.5150 0.4999 0 1

FREELUNCH 0.4718 0.4993 0 1

WHITE_ASIAN 0.6847 0.4648 0 1

TCHWHITE 0.8625 0.3445 0 1

TCHMASTERS 0.3176 0.4657 0 1

SCHURBAN 0.3061 0.4610 0 1

SCHRURAL 0.4626 0.4987 0 1

N = 1738

The model of interest is

TOTALSCORE = β1 + β2SMALL + e (7.15)

The regression results are in column (1) of Table 7.7. The

estimated “treatment effect” of putting kindergarten children

into small classes is 13.899 points, the same as the difference

in sample means computed above, on their achievement score

total; the difference is statistically significant at the 0.01 level.

E X A M P L E 7.9 The Difference Estimator with Additional Controls

Because of the random assignment of the students to

treatment and control groups, there is no selection bias in

the estimate of the treatment effect. However, if additional

factors might affect the outcome variable, they can be

included in the regression specification. For example, it is

possible that a teacher’s experience leads to greater learning

and higher achievement test scores. Adding TCHEXPER to

the base model, we obtain

TOTALSCORE = β1 + β2SMALL + β3TCHEXPER + e
(7.16)

The least squares estimates of (7.16) are in column (2) of

Table 7.7. We estimate that each additional year of teaching

experience increases the test score performance by 1.156

points, which is statistically significant at the 0.01 level.

This increases our understanding of the effect of small

classes. The results show that the effect of small classes is

the same as the effect of approximately 12 years of teaching

experience.

Note that adding TCHEXPER to the regression changed

the estimate of the effect of SMALL classes very little.

This is exactly what we would expect if TCHEXPER is

uncorrelated with SMALL. The simple correlation between

SMALL and TCHEXPER is only −0.0064. Recall that

omitting a variable that is uncorrelated with an included

variable does not change the estimated coefficient of the

included variable. Comparing the models in columns (1) and

(2) of Table 7.7, the model in (1) omits the significant

variable TCHEXPER, but there is little change in the

estimate of β2 introduced by omitting this nearly uncor-

related variable. Furthermore, we can expect, in general,

to obtain an estimator with smaller standard errors if we

are able to include additional controls. In (7.15), any and

all factors other than small class size are included in the

error term. By taking some of those factors out of the error

term and including them in the regression, the variance

of the error term σ2 is reduced, which reduces estimator

variance.
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T A B L E 7.7 Project STAR: Kindergarten

(1) (2) (3) (4)
C 918.0429*** 907.5643*** 917.0684*** 908.7865***

(1.6672) (2.5424) (1.4948) (2.5323)

SMALL 13.8990*** 13.9833*** 15.9978*** 16.0656***

(2.4466) (2.4373) (2.2228) (2.2183)

TCHEXPER 1.1555*** 0.9132***

(0.2123) (0.2256)

SCHOOL EFFECTS No No Yes Yes

N 3743 3743 3743 3743

adj. R2 0.008 0.016 0.221 0.225

SSE 20847551 20683680 16028908 15957534

Standard errors in parentheses

Two-tail p-values: *p < 0.10, **p < 0.05, ***p < 0.01

E X A M P L E 7.10 The Difference Estimator with Fixed Effects

It may be that assignment to treatment groups is related to

one or more observable characteristics. That is, treatments are

randomly assigned given an external factor. Prior to a medi-

cal experiment concerning weight loss, participants may fall

into the “overweight” category and the “obese” category. Of

those in the overweight group 30% are randomly assigned for

treatment, and of the obese group 50% are randomly assigned

for treatment. Given pretreatment status, the treatment is ran-

domly assigned. If such conditioning factors are omitted and

put into the error term in (7.15) or (7.16), then these fac-

tors are correlated with the treatment variable and the least

squares estimator of the treatment effect is biased and incon-

sistent. The way to adjust to “conditional” randomization is

to include the conditioning factors into the regression.

In the STAR data, another factor that we might consider

affecting the outcome is the school itself. The students were

randomized within schools (conditional randomization), but

not across schools. Some schools may be located in wealthier

school districts that can pay higher salaries, thus attracting

better teachers. The students in our sample are enrolled in 79

different schools. One way to account for school effects is to

include an indicator variable for each school. That is, we can

introduce 78 new indicators:

SCHOOL_ j =

{
1 if student is in school j
0 otherwise

This is an “intercept” indicator variable, allowing the

expected total score to differ for each school. The model

including these indicator variables is

TOTALSCOREi = β1 + β2SMALLi + β3TCHEXPERi

+
∑79

j=2
δjSCHOOL_ ji + ei (7.17)

The regression function for a student in school j is

E
(
TOTALSCOREi|X

)
=

{(
β1 + δj

)
+ β3TCHEXPERi student in regular class

(
β1 + δj + β2

)
+ β3TCHEXPERi student in small class

Here X represents the variables SMALL, TCHEXPER, and all

the indicator variables SCHOOL_ j. The expected score for a

student in a regular class for a teacher with no experience is

adjusted by the fixed amount δj. This fixed effect controls for

some differences in the schools that are not accounted for by

the regression model.

Columns (3) and (4) in Table 7.7 contain the estimated

coefficients of interest but not the 78 indicator variable

coefficients. The joint F-test of the hypothesis that all δj = 0

consists of J = 78 hypotheses with N – K = 3662 degrees

of freedom. The F-value = 14.118 is significant at the 0.001

level. We conclude that there are statistically significant

individual differences among schools. The important

coefficients on SMALL and TCHEXPER change a little. The

estimated effect of being in a small class increases to 16.0656



�

� �

�

338 CHAPTER 7 Using Indicator Variables

achievement test points in model (4), as compared to 13.9833

points in the corresponding model (2). It appears that some

effect of small classes was masked by unincorporated

individual school differences. This effect is small, however,

as the 95% interval estimate for the coefficient of SMALL
[11.7165, 20.4148] in model (4) includes 13.9833. Similarly,

the estimated effect of teacher experience is slightly different

in the models with and without the school fixed effects.

E X A M P L E 7.11 Linear Probability Model Check of Random Assignment

In Table 7.6a and b, we examined the summary statistics for

the data sorted by whether pupils were in a regular class or a

small class. Except for TOTALSCORE, we did not find much

difference in the sample means of the variables examined.

Another way to check for random assignment is to regress

SMALL on these characteristics and check for any significant

coefficients, or an overall significant relationship. If there

is random assignment, we should not find any significant

relationships. Because SMALL is an indicator variable, we

use the linear probability model discussed in Section 7.4.

The estimated linear probability model is

SMALL
⋀

= 0.4665 + 0.0014BOY + 0.0044WHITE_ASIAN
(t) (0.09) (0.22)

− 0.0006TCHEXPER − 0.0009FREELUNCH
(−0.42) (−0.05)

First, note that none of the right-hand-side variables are

statistically significant. Second, the overall F-statistic for

this linear probability model is 0.06 with a p = 0.99. There

is no evidence that students were assigned to small classes

based on any of these criteria. Also, recall that the linear

probability model is so named because E(SMALL|𝐗) is

the probability of observing SMALL = 1 in a random draw

from the population. If the coefficients of all the potential

explanatory factors are zero, the estimated intercept gives

the estimated probability of observing a child in a small class

to be 0.4665, with 95% interval estimate [0.4171, 0.5158].

We cannot reject the null hypothesis that the intercept equals

0.5, which is what it should be if students are allocated by

a “flip” of a coin. The importance of this, again, is that by
randomly assigning students to small classes we can estimate
the “treatment” effect using the simple difference estimator
in (7.15). The ability to isolate the important class size effect

is a powerful argument in favor of randomized controlled

experiments.

7.5.3 The Differences-in-Differences Estimator
Randomized controlled experiments are somewhat rare in economics because they are expen-

sive and involve human subjects. Natural experiments, also called quasi-experiments, rely on

observing real-world conditions that approximate what would happen in a randomized controlled

experiment. Treatment appears as if it were randomly assigned. In this section, we consider esti-

mating treatment effects using “before and after” data.

Suppose that we observe two groups before and after a policy change, with the treatment
group being affected by the policy, and the control group being unaffected by the policy. Using

such data, we will examine any change that occurs to the control group and compare it to the

change in the treatment group.

The analysis is explained by Figure 7.3. The outcome variable y might be an employment

rate, a wage rate, a price, or so on. Before the policy change we observe the treatment group

value y = B, and after the policy is implemented the treatment group value is y = C. Using only

the data on the treatment group we cannot separate out the portion of the change from y = B
to y = C that is due to the policy from the portion that is due to other factors that may affect the

outcome. We say that the treatment effect is not “identified.”

We can isolate the effect of the treatment by using a control group that is not affected by

the policy change. Before the policy change, we observe the control group value y = A, and

after the policy change, the control group value is y = E. In order to estimate the treatment

effect using the four pieces of information contained in the points A, B, C, and E, we make the
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strong assumption that the two groups experience a common trend. In Figure 7.3, the dashed

line BD represents what we imagine the treatment group growth would have been (the term

counterfactual from psychology is sometimes used to describe this imagined outcome) in the

absence of the policy change. The growth described by the dashed line BD is unobservable, and

is obtained by assuming that the growth in the treatment group that is unrelated to the policy

change is the same as the growth in the control group.

The treatment effect δ = CD is the difference between the treatment and control values of y
in the “after” period, after subtracting DE, which is what the difference between the two groups

would have been in the absence of the policy. Using the common growth assumption, the differ-

ence DE equals the initial difference AB. Using the four observable points A, B, C, and E depicted

in Figure 7.3, estimation of the treatment effect is based on data averages for the two groups in

the two periods,

δ̂ =
(
Ĉ − Ê

)
−
(
B̂ − Â

)

=
(
yTreatment, After − yControl, After

)
−
(
yTreatment, Before − yControl, Before

)
(7.18)

In (7.18), the sample means are

yControl, Before = Â = sample mean of y for control group before policy implementation

yTreatment, Before = B̂ = sample mean of y for treatment group before policy implementation

yControl, After = Ê = sample mean of y for control group after policy implementation

yTreatment, After = Ĉ = sample mean of y for treatment group after policy implementation

The estimator δ̂ is called a differences-in-differences (abbreviated as D-in-D, DD, or DID)

estimator of the treatment effect.

The estimator δ̂ can be conveniently calculated using a simple regression. Define yit to be the

observed outcome for individual i in period t. Let AFTERt be an indicator variable that equals

one in the period after the policy change (t = 2) and zero in the period before the policy change

(t = 1). Let TREATi be a dummy variable that equals one if individual i is in the treatment group

and zero if the individual is in the control group. Consider the regression model

yit = β1 + β2TREATi + β3AFTERt + δ
(
TREATi × AFTERt

)
+ eit (7.19)

y

Treatment

B

A Control

Before After

Treatment group with
unobserved trend

Treatment effect = δ

C

D

E

FIGURE 7.3 Difference-in-Differences Estimation.
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The regression function is

E
(
yit|X

)
=
⎧
⎪
⎨
⎪
⎩

β1 TREAT = 0, AFTER = 0 [Control before = A]
β1 + β2 TREAT = 1, AFTER = 0 [Treatment before = B]
β1 + β3 TREAT = 0, AFTER = 1 [Control after = E]
β1 + β2 + β3 + δ TREAT = 1, AFTER = 1 [Treatment after = C]

Here X contains the variables on the right-hand side of equation (7.19). In Figure 7.3, points

A = β1,B = β1 + β2, E = β1 + β3 and C = β1 + β2 + β3 + δ. Then

δ = (C − E) − (B − A)
=
[(
β1 + β2 + β3 + δ

)
−
(
β1 + β3

)]
−
[(
β1 + β2

)
− β1

]

Using this the least squares estimates b1, b2, b3 and δ̂ from (7.19), we have

δ̂ =
[(

b1 + b2 + b3 + δ̂
)

−
(
b1 + b3

)]

−
[(

b1 + b2

)
− b1

]

=
(
yTreatment, After − yControl, After

)
−
(
yTreatment,Before − yControl,Before

)

E X A M P L E 7.12 Estimating the Effect of a Minimum Wage Change:
The DID Estimator

Card and Krueger (1994)17 provide an example of a natural

experiment and the differences-in-differences estimator.

On April 1, 1992, New Jersey’s minimum wage was

increased from $4.25 to $5.05 per hour, while the minimum

wage in Pennsylvania stayed at $4.25 per hour. Card and

Krueger collected data on 410 fast-food restaurants in New

Jersey (the treatment group) and eastern Pennsylvania (the

control group). These two groups are similar economically

and close geographically, separated by only a river with

multiple bridges. The “before” period is February 1992, and

the “after” period is November 1992. Using these data, they

estimate the effect of the “treatment,” raising the New Jersey

minimum wage on employment at fast-food restaurants

in New Jersey. Their interesting finding, that there was

no significant reduction18 in employment, sparked a great

debate and much further research.19 In model (7.19), we will

test the null and alternative hypotheses

H0∶δ ≥ 0 versus H1∶δ < 0 (7.20)

The relevant Card and Krueger data is in the data file njmin3.

We use the sample means of FTE, the number of full-time

equivalent20 employees, given in Table 7.8, to estimate

the treatment effect δ using the differences-in-differences

estimator.

T A B L E 7.8
Full-time Equivalent Employees by
State and Period

Variable N Mean se

Pennsylvania (PA)
Before 77 23.3312 1.3511

After 77 21.1656 0.9432

New Jersey (NJ)
Before 321 20.4394 0.5083

After 319 21.0274 0.5203

In Pennsylvania, the control group, employment fell

during the period February to November. Recall that the

............................................................................................................................................

17David Card and Alan Krueger (1994) “Minimum Wages and Employment: A Case Study of the Fast Food Industry in

New Jersey and Pennsylvania,” The American Economic Review, 84, 316–361. We thank David Card for letting us use

the data.

18Remember that failure to reject a null hypothesis does not make it true!

19The issue is hotly contested and the literature extensive. See, for example, http://en.wikipedia.org/wiki/Minimum_

wage, and the references listed, as a starting point.

20Card and Krueger calculate FTE = 0.5 × number of part time workers + number of full time workers + number of

managers.
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minimum wage level was changed in New Jersey, but not

in Pennsylvania, so that employment levels in Pennsylvania

were not affected. In New Jersey we see an increase in FTE
in the same period. The differences-in-differences estimate

of the change in employment due to the change in the

minimum wage is

δ̂ =
(

FTENJ,After− FTEPA,After

)

−
(

FTENJ,Before− FTEPA,Before

)

=(21.0274 − 21.1656) −(20.4394 − 23.3312)
= 2.7536 (7.21)

We estimate that FTE employment increased by 2.75

employees during the period in which the New Jersey min-

imum wage was increased. This positive effect is contrary to

what is predicted by economic theory.

Rather than compute the differences-in-differences

estimate using sample means, it is easier and more gen-

eral to use the regression format. In (7.19) let y = FTE
employment, the treatment variable is the indicator variable

NJ = 1 if observation is from New Jersey, and zero if from

Pennsylvania. The time indicator is D = 1 if the obser-

vation is from November and zero if it is from February.

The differences-in-differences regression is then

FTEit = β1 + β2NJi + β3Dt + δ
(
NJi × Dt

)
+ eit (7.22)

Using the 794 complete observations in the file njmin3,

the least squares estimates are reported in column (1) of

Table 7.9. At the α = 0.05 level of significance the rejection

region for the left-tail test in (7.20) is t ≤ −1.645, so we

fail to reject the null hypothesis. We cannot conclude that

the increase in the minimum wage in New Jersey reduced

employment at New Jersey fast-food restaurants.

As with randomized control experiments, it is inter-

esting to see the robustness of these results. In Table 7.9

column (2), we add indicator variables for fast-food chain

and whether the restaurant was company-owned rather than

franchise-owned. In column (3) we add indicator variables

for geographical regions within the survey area. None of

these changes alter the differences-in-differences estimate,

and none lead to rejection of the null hypothesis in (7.20).

T A B L E 7.9
Difference-in-Differences
Regressions

(1) (2) (3)
C 23.3312*** 25.9512*** 25.3205***

(1.072) (1.038) (1.211)

NJ −2.8918* −2.3766* −0.9080

(1.194) (1.079) (1.272)

D −2.1656 −2.2236 −2.2119

(1.516) (1.368) (1.349)

D_NJ 2.7536 2.8451 2.8149

(1.688) (1.523) (1.502)

KFC −10.4534*** −10.0580***

(0.849) (0.845)

ROYS −1.6250 −1.6934*

(0.860) (0.859)

WENDYS −1.0637 −1.0650

(0.929) (0.921)

CO_OWNED −1.1685 −0.7163

(0.716) (0.719)

SOUTHJ −3.7018***

(0.780)

CENTRALJ 0.0079

(0.897)

PA1 0.9239

(1.385)

N 794 794 794

R2 0.007 0.196 0.221

adj. R2 0.004 0.189 0.211

Standard errors in parentheses

Two-tail p-values: *p < 0.05, **p < 0.01, ***p < 0.001

E X A M P L E 7.13 Estimating the Effect of a Minimum Wage Change:
Using Panel Data

In the previous section’s differences-in-differences analysis,

we did not exploit one very important feature of Card and

Krueger’s data—namely, that the same fast-food restaurants

were observed on two occasions. We have “before” and

“after” data on 384 of the 410 restaurants. These are called

paired data observations, or repeat data observations,

or panel data observations. In Chapter 1 we introduced

the notion of a panel of data—we observe the same

individual-level units over several periods. The Card and

Krueger data includes T = 2 observations on N = 384

individual restaurants among the 410 restaurants surveyed.

The remaining 26 restaurants had missing data on FTE



�

� �

�

342 CHAPTER 7 Using Indicator Variables

either in the “before” or “after” period. There are powerful

advantages to using panel data, some of which we will

describe here. See Chapter 15 for a much more extensive

discussion.

Using panel data, we can control for unobserved
individual-specific characteristics. There are charac-

teristics of the restaurants that we do not observe. Some

restaurants will have preferred locations, some may have

superior managers, and so on. These unobserved individual

specific characteristics are included in the error term of the

regression (7.22). Let ci denote any unobserved characteris-

tics of individual restaurant i that do not change over time.

Adding ci to (7.22), we have

FTEit = β1 + β2NJi + β3Dt + δ
(
NJi × Dt

)
+ ci + eit (7.23)

Whatever ci might be, it contaminates this regression model.

A solution is at hand if we have a panel of data. If we have

T = 2 repeat observations, we can eliminate ci by analyzing

the changes in FTE from period one to period two. Recall that

Dt = 0 in period one, so D1 = 0; and Dt = 1 in period two, so

D2 = 1. Subtract the observation for t = 1 from that for t = 2

FTEi2 = β1 + β2NJi + β31 + δ
(
NJi × 1

)
+ ci + ei2

−
(
FTEi1 = β1 + β2NJi + β30 + δ

(
NJi × 0

)
+ ci + ei1

)

ΔFTEi = β3 + δNJi + Δei

where ΔFTEi = FTEi2 – FTEi1 and Δei = ei2 – ei1. Using the

differenced data, the regression model of interest becomes

ΔFTEi = β3 + δNJi + Δei (7.24)

Observe that the contaminating factor ci has dropped out!

Whatever those unobservable features might have been, they

are now gone. The intercept β1 and the coefficient β2 have

also dropped out, with the parameter β3 becoming the new

intercept. The most important parameter, δ, measuring the

treatment effect is the coefficient of the indicator variable NJi,

which identifies the treatment (New Jersey) and control group

(Pennsylvania) observations.

The estimated model (7.24) is

ΔFTE
⋀

= −2.2833 + 2.7500NJ R2 = 0.0146

(se) (1.036) (1.154)

The estimate of the treatment effect δ̂ = 2.75 using the dif-

ferenced data, which accounts for any unobserved individual

differences, is very close to the differences-in-differences

estimate. Once again we fail to conclude that the minimum

wage increase has reduced employment in these New Jersey

fast-food restaurants.

7.6 Treatment Effects and Causal Modeling
In Section 7.5, we provided the basics of treatment effect models. In this section, we present exten-

sions and enhancements using the framework of potential outcomes, sometimes called the Rubin
Causal Model (RCM), in recognition of Donald B. Rubin who formulated this approach.21

7.6.1 The Nature of Causal Effects
Economists are interested in causal relationships between variables. Causality, or causation,

means that a change in one variable is the direct consequence of a change in another variable.

For example, if you receive an hourly wage rate, then increasing your work hours (the cause) will

lead to an increase in your income (the effect). Another example is from the standard supply and

demand model for a normal good. If consumer incomes rise (the cause), demand increases, and

there is a subsequent increase in the market price and quantities bought and sold (the effect).

A cause must precede, or be contemporaneous with, the effect. The confusion between cor-

relation and causation is widespread, and correlation does not imply causation. We observe many

associations between variables that are not causal. The correlation between the divorce rate in

............................................................................................................................................

21The literature in this area has grown dramatically in recent years, and continues to grow. In this section we draw

heavily on a survey by Guido W. Imbens and Jeffrey M. Wooldridge (2009) “Recent Developments in the Econometrics

of Program Evaluation,” Journal of Economic Literature, 47(1), 5–86, Jeffrey M. Wooldridge (2010) Econometric
Analysis of Cross Section and Panel Data, Second Edition, MIT Press, Chapter 21; and Joshua D. Angrist and

Jörn-Steffen Pischke (2009) Mostly Harmless Econometrics: An Empiricist’s Companion, Princeton University Press.

These references are advanced. See also Joshua D. Angrist and Jörn-Steffen Pischke (2015) Mastering Metrics: The
Path from Cause to Effect, Princeton University Press.
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the state of Maine and the U.S. per capita consumption of margarine is 0.992622 over the period

2000–2009. We doubt that this high correlation is a causal relationship. Not all confusions, or

spurious correlations, are amusing and harmless. There is a concern among some parents about

the relationship between childhood vaccinations and subsequent negative health outcomes, such

as autism. Despite intense study by the U.S. Centers for Disease Control and Prevention (CDC),

finding no causal relationship, there has been a movement among parents to not have some vac-

cinations for their children, resulting in concern by health officials that some childhood diseases

will make a widespread comeback.

7.6.2 Treatment Effect Models
Treatment effect models seek to estimate a causal effect. Let the treatment, which might be an

individual receiving a new drug, or some additional job training, be denoted as di = 1, whereas

not receiving the treatment is di = 0. The outcome of interest might be a cholesterol level if the

treatment is a new drug. If the treatment is job training, the outcome might be a worker’s perfor-

mance on completing a particular task. For each individual there are two possible, or potential,

outcomes, y1i if an individual receives treatment
(
di = 1

)
, and y0i if the individual does not receive

treatment
(
di = 0

)
. We would like to know the causal effect y1i – y0i, the difference in the out-

come for individual i if they receive the treatment versus if they do not. An advantage of the

potential outcomes framework is that it forces us to recognize that the treatment effect varies

across individuals—it is individual specific. The difficulty is that we never observe both y1i and

y0i. We only observe one or the other. The outcome we observe is

yi =

{
y1i if di = 1

y0i if di = 0
(7.25)

Written another way, what we observe is

yi = y1idi + y0i
(
1 − di

)
= y0i +

(
y1i − y0i

)
di (7.26)

Instead of being able to estimate y1i – y0i for each individual, what we are able to estimate is

the population average treatment effect (ATE), τATE = E
(
y1i – y0i

)
. To see this, express the

difference between the conditional expectation of yi, the outcome we actually observe, for those

who receive treatment,
(
di = 1

)
, and those who do not,

(
di = 0

)
;

E
(
yi|di = 1

)
− E

(
yi|di = 0

)
= E

(
y1i|di = 1

)
− E

(
y0i|di = 0

)
(7.27)

In a randomized, controlled experiment, individuals are randomly selected from the population

and then randomly assigned to a group receiving the treatment (the treatment group), for whom(
di = 1

)
, or to a group not receiving the treatment (the control group), for whom (di = 0). In this

way the treatment, di, is statistically independent of the potential outcomes y1i and y0i so that

E
(
yi|di = 1

)
− E

(
yi|di = 0

)
= E

(
y1i|di = 1

)
− E

(
y0i|di = 0

)

= E
(
y1i

)
− E

(
y0i

)
= E

(
y1i − y0i

)

= τATE (7.28)

From the first line to the second we use the fact that if two random variables, say X and Y , are

statistically independent,23 then E(Y|X = x) = E(Y). To see that this is true, suppose X and Y are

discrete random variables. Then

E(Y) =
∑

yP(Y = y) and E(Y|X = x) =
∑

yP(Y = y|X = x)

............................................................................................................................................

22http://www.tylervigen.com/

23We revert to the notation from the probability primer here, with upper case Y and X being random variables and lower

case y and x being values of the random variables.
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If X and Y are statistically independent, then

P(Y = y|X = x) = P(Y = y)

so that

E(Y|X = x) =
∑

yP(Y = y|X = x) =
∑

yP(Y = y) = E(Y)

If we randomly choose population members and randomly assign them to the treatment and

control groups, then treatment, di, is statistically independent of the potential outcomes of the

experiment. An unbiased estimator of E
(
yi|di = 1

)
is the sample mean of the N1 outcomes for

the treatment group, y1 =
∑N1

i=1
y1i∕N1. An unbiased estimator of E

(
yi|di = 0

)
is the sample mean

of the N0 outcomes for the control group, y0 =
∑N0

i=1
y0i∕N0. An unbiased estimator of the popula-

tion average treatment effect is τ̂ATE = y1 − y0. This is the difference estimator in equation (7.14).

That is, we can obtain the estimator of the average treatment effect from the simple regression

yi = α + τATEdi + ei using all N = N0 + N1 observations.

7.6.3 Decomposing the Treatment Effect

Using equation (7.27)
[
E
(
yi|di = 1

)
− E

(
yi|di = 0

)
= E

(
y1i|di = 1

)
− E

(
y0i|di = 0

)]
, we can

gain additional insight into the simple regression yi = α + τATEdi + ei. Add and subtract

E
(
y0i|di = 1

)
to the right-hand side, and rearrange to obtain

E
(
yi|di = 1

)
− E

(
yi|di = 0

)
=
[
E
(
y1i|di = 1

)
− E

(
y0i|di = 1

)]

+
[
E
(
y0i|di = 1

)
− E

(
y0i|di = 0

)]
(7.29)

The left-hand side is the difference in average outcomes for the treatment group
(
di = 1

)

and the control group
(
di = 0

)
. The difference

[
E(y1i|di = 1) − E(y0i|di = 1)

]
is average

difference in potential outcomes for those who received the treatment, or as called in this

literature, the average treatment effect on the treated (ATT), which we denote by τATT.

The second term E
(
y0i|di = 1

)
− E

(
y0i|di = 0

)
is the average potential outcome for those in

the treatment group should they not receive treatment minus the average outcome for those

in the control group. If individuals are truly randomly assigned to treatment and control

groups E
(
y0i|di = 1

)
− E

(
y0i|di = 0

)
will be zero, meaning that there are no differences

between the expected potential outcomes for the treatment and control groups if they had

remained untreated. In this case, the treatment effect τATE = E
(
yi|di = 1

)
− E

(
yi|di = 0

)
equals

τATT = E
(
y1i|di = 1

)
− E

(
y0i|di = 1

)
, the average treatment effect on the treated.

In equation (7.29), if the second term in brackets is not zero, or E
(
y0i|di = 1

)
−

E
(
y0i|di = 0

)
≠ 0, then there is selection bias. It means that individuals are not randomly

assigned to the treatment and control groups because the average of the potential outcomes if

untreated, y0i, in the treatment and control groups are different. If the treatment is receiving a new

drug, there is selection bias if (i) a screener looks at a randomly chosen person and thinks “This

person looks sickly and could use this drug, so I’ll assign him to the treatment group;” or (ii) a

person thinks the treatment might be good for him, and manages to be added to the treatment

group. Either way, there is a difference in the average untreated health y0i of the treatment and

control groups. The term E
(
y0i|di = 1

)
− E

(
y0i|di = 0

)
is called selection bias for this reason.

Random assignment of individuals to treatment and control groups eliminates selection bias.

If there is selection bias, then the difference estimator τ̂ATE = y1 − y0 is not an unbiased estimator

of the average treatment effect, and the average treatment effect is not the average treatment

effect on the treated.

To summarize, in a randomized experiment the treatment indicator di is statistically indepen-

dent of the potential outcomes y0i and y1i. We do not observe both potential outcomes but rather

yi = y0i +
(
y1i − y0i

)
di. If treatment di is statistically independent of the potential outcomes, then

τATE = τATT = E
(
yi|di = 1

)
− E

(
yi|di = 0

)
(7.30)
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and an unbiased estimator is

τ̂ATE = τ̂ATT = y1 − y0 (7.31)

The equality τATE = τATT actually holds under a weaker assumption than statistical independence.

From (7.29)

τATE = τATT + E
(
y0i|di = 1

)
− E

(
y0i|di = 0

)
(7.32)

The selection bias term E
(
y0i|di = 1

)
− E

(
y0i|di = 0

)
= 0 if E

(
y0i|di = 1

)
= E

(
yi0

)
and

E
(
y0i|di = 0

)
= E

(
yi0

)
. This is called the conditional independence assumption (CIA),

or conditional mean independence. While this is a less stringent condition than statistical

independence between the treatment and the potential outcomes, it is still strong. It suggests that

being in the treatment or control group is unrelated to the average outcome for the untreated.

7.6.4 Introducing Control Variables
A control variable, xi, is not the object of interest in a study. It is included in the model to hold

constant factors that, if neglected, would lead to selection bias. See Section 6.3.4. In treatment

effect models, control variables are introduced in order to allow unbiased estimation of the

treatment effect when the potential outcomes, y0i and y1i, might be correlated with the treatment

variable, di. Ideally, by conditioning on a control variable xi the treatment becomes “as good

as” randomized, allowing us to estimate the average causal or treatment effect. We consider

only a single control variable to simplify our presentation. The methods discussed as follows

carry over to the case with multiple control variables. The key is an extension of the conditional
independence assumption,24

E
(
y0i|di, xi

)
= E

(
y0i|xi

)
and E

(
y1i|di, xi

)
= E

(
y1i|xi

)
(7.33)

Once we condition on the control variables, then the expected potential outcomes do not depend

the treatment. In a sense, having good control variables is as good as having a randomized

controlled experiment. Good control variables have the feature of being “predetermined” in

the sense that they are fixed, and given, at the time the treatment is assigned. Enough control

variables should be added so that the conditional independence assumption holds. Avoid “bad

control” variables that might be outcomes of the treatment.

When potential outcomes depend on xi, then the average treatment effect depends on xi,

and is

τATE
(
xi
)
= E

(
y1i|di, xi

)
− E

(
y0i|di, xi

)
= E

(
y1i|xi

)
− E

(
y0i|xi

)

Assuming a linear regression structure for the expectations, and recalling that the observed out-

come is yi = y0i +
(
y1i − y0i

)
di, let

E
(
yi|xi, di = 0

)
= E

(
yi0|xi, di = 0

)
= E

(
yi0|xi

)
= α0 + β0xi (7.34a)

E
(
yi|xi, di = 1

)
= E

(
yi1|xi, di = 1

)
= E

(
yi1|xi

)
= α1 + β1xi (7.34b)

The treatment effect is the difference between equations (7.34b) and (7.34a), or

τATE
(
xi
)
=
(
α1 + β1xi

)
−
(
α0 + β0xi

)
=
(
α1 − α0

)
−
(
β1 − β0

)
xi (7.35)

Because τATE
(
xi
)

depends on xi, the average treatment effect will be obtained by “averaging” over

the population distribution of xi. Recall from the probability primer that a “population average”

............................................................................................................................................

24This assumption has been called unconfoundedness and also ignorability. The literature on causal modeling spans

several disciplines, and the terminology can be quite different in each. The following development follows Woodridge

(2010, 919–920).
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is an expected value. So we define the average treatment effect as τATE = Ex
[
τATE

(
xi
)]

where the

subscript x on the expectation operator means that we are treating x as random.

In practice, we can estimate the regression functions separately on the treatment and control

groups:

1. Obtain α̂0 + β̂0xi from a regression of yi on xi for the control group,
(
di = 0

)

2. Obtain α̂1 + β̂1xi from a regression of yi on xi for the treatment group,
(
di = 1

)

Then

τ̂ATE
(
xi
)
= α̂1 + β̂1xi −

(

α̂0 + β̂0xi

)

=
(
α̂1 − α̂0

)
+
(

β̂1 − β̂0

)

xi (7.36)

Averaging the estimated value across the sample values gives

τ̂ATE = N−1
N∑

i=1

τ̂ATE
(
xi
)
= N−1

N∑

i=1

[(
α̂1 − α̂0

)
+
(

β̂1 − β̂0

)

xi

]

=
(
α̂1 − α̂0

)
+
(

β̂1 − β̂0

)
(

N−1
N∑

i=1

xi

)

=
(
α̂1 − α̂0

)
+
(

β̂1 − β̂0

)

x (7.37)

Using slope and intercept indicator variables, we can estimate the average treatment effect in a

pooled regression, and calculate a standard error for the estimate τ̂ATE. The pooled regression is

yi = α + θdi + βxi + γ
(
dixi

)
+ ei (7.38)

The regression functions for the treatment and control groups are

E
(
yi|di, xi

)
=

{
α + βxi if di = 0

(α + θ) + (β + γ)xi if di = 1
(7.39)

In terms of the separate regression coefficients

α = α0, β = β0, α + θ = α1, and β + γ = β1 (7.40)

It follows that from the pooled regression (7.38) the estimates θ̂ = α̂1 − α̂0 and γ̂ = β̂1 − β̂0. The

relation of these estimates to τ̂ATE is

θ̂ = τ̂ATE − x
(

β̂1 − β̂0

)

= τ̂ATE − xγ̂

or

τ̂ATE = θ̂ + xγ̂

We can modify the pooled regression so that τATE appears in the pooled regression. In the pooled

regression (7.38) add and subtract the term γ
(
dix

)

yi = α + θdi + βxi + γ
(
dixi

)
+
[
γdix − γdix

]
+ ei

= α +
(
θ + γx

)
di + βxi + γ

[
di
(
xi − x

)]
+ ei

= α + τATEdi + βxi + γ
(
dix̃i

)
+ ei (7.41)

Now the population average treatment effect τATE is a parameter in the pooled regression. The

term x̃i =
(
xi − x

)
is notation for deviations about the mean. By using least squares regression,

we obtain τ̂ATE. Your software will also report a standard error se
(
τ̂ATE

)
.25

The average treatment effect in the population, τATE = E
(
y1i − y0i

)
, may not be the parameter

of interest in some applications. By slightly modifying the pooled regression, we can obtain the

............................................................................................................................................

25Wooldridge (2010, p. 919) notes that the usual estimator of the standard error is not quite valid in this case because it

ignores the additional variability added by including the sample mean in x̃i =
(
xi − x

)
. One alternative to the usual

standard error is to use the bootstrap standard error, discussed in Appendix 5B.5.
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average treatment effect of a subpopulation. For example, how large is the average treatment effect

on those who actually received treatment? The average treatment effect on the treated, τATT,

where the subscript ATT denotes the target group, is obtained by estimating the pooled regression

yi = α + τATTdi + βxi + γ
(
dix̃i1

)
+ ei (7.42)

where x̃i1 =
(
xi − x1

)
and x1 = N−1

1

∑N1

i=1
xi for the treatment group, where di = 1.

Similarly, we can restrict measurement of the treatment effect to other subpopulations of

interest. For example, if we are considering the effects of a job training program, we may not

want to include the extremely wealthy. We could specify the population of interest to be those

with incomes in the lowest 25% of society. Denote this restricted group of interest by R and let

τATE, R be the average treatment effect on this group. Let x̃iR =
(
xi − xR

)
, where xR = N−1

R
∑

i∈Rxi,

with i ∈ R indicating that we are restricting the sum to those individuals i falling in the target

group, R, and NR is the number of individuals in the sample satisfying the condition. Then we

can estimate τATE,R from the pooled regression

yi = α + τATE,Rdi + βxi + γ
(
dix̃iR

)
+ ei (7.43)

7.6.5 The Overlap Assumption
The so-called overlap assumption must hold, in addition to the conditional independence

assumption in equation (7.33). The overlap assumption says that for each value of xi it must

be possible to see an individual in the treatment and control groups, or 0 < P
(
di = 1|xi

)
< 1

and 0 < P
(
di = 0|xi

)
= 1 − P

(
di = 1|xi

)
< 1. A rule of thumb is to compute the normalized

difference
x1 − x0

(
s2

1
+ s2

0

)1∕2
(7.44)

where s2
1

and s2
0

are the sample variances of the explanatory variable x for the treatment and control

groups. If the normalized difference is greater in absolute value than 0.25,26 then there is cause

for concern. If the overlap assumption fails, then redefining the population of interest may be

required. To see the impact of the difference of means, x1 − x0, on the average treatment effect,

let f0 = N0∕N and f1 = N1∕N be the fractions of observations in the control and treatment groups,

respectively. In Appendix 7C, we show that

τ̂ATE =
(
y1 − y0

)
−
(

𝑓0β̂1 + 𝑓1β̂0

)(
x1 − x0

)

If the difference in the sample means of the treatment and control groups is large, the estimated

slopes from the regressions in (7.34), β̂1 and β̂0, have a larger influence in the estimate τ̂ATE of

the average treatment effect.

7.6.6 Regression Discontinuity Designs

Regression discontinuity (RD) designs27 arise when the separation into treatment and control

groups follows a deterministic rule, such as “Students receiving 75% or higher on the midterm

exam will receive an award.” How the award affects future academic outcomes might be the

question of interest. The key insight about the RD designs is that that students receiving “close to

............................................................................................................................................

26Wooldridge (2010, p. 917)

27In this section we draw heavily on a survey by David S. Lee and Thomas Lemieux (2010) “Regression Discontinuity

Designs in Economics,” Journal of Economic Literature, 48(1), 5-86, Jeffrey M. Wooldridge (2010) Econometric
Analysis of Cross Section and Panel Data, Second Edition, MIT Press, Chapter 21 and Joshua D. Angrist and

Jörn-Steffen Pischke (2009) Mostly Harmless Econometrics: An Empiricist’s Companion, Princeton University Press,

Chapter 6. These references are advanced. See also Joshua D. Angrist and Jörn-Steffen Pischke (2015) Mastering
Metrics: The Path from Cause to Effect, Princeton University Press, Chapter 4.
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75%” are likely very similar in most regards (a condition that can be checked) so that those just

below the cutoff point are a good comparison group for those just above the cutoff. Using indi-

viduals close to the cutoff is “just as good as” a random assignment, for the purpose of estimating

a treatment effect.

Suppose that xi is the single variable determining whether an individual is assigned to the

treatment group or control group. In this literature, xi is called the forcing variable. The treatment

indicator variable di = 1 if xi ≥ c, where c is a preassigned cutoff value and di = 0 if xi < c. This

is said to be a sharp regression discontinuity design because the treatment is definitely given if

the forcing variable crosses the threshold. The observed outcome is yi =
(
1 − di

)
y0i + diy1i, where

y0i is the potential outcome for individual i when not receiving treatment and y1i is the potential

outcome for individual i when receiving the treatment. For the sharp RD design, the conditional

independence assumption in equation (7.33)

E
(
y0i|di, xi

)
= E

(
y0i|xi

)
and E

(
y1i|di, xi

)
= E

(
y1i|xi

)

is automatically satisfied because the treatment is completely determined by the forcing variable,

xi. Interestingly, the overlap assumption fails completely. For a given value of xi, we cannot hope

to observe individuals in both treatment and control groups. Rather than trying to estimate a

population average treatment effect, in the RD design we estimate the treatment effect “at the

cutoff,”

τc = E
(
y1i − y0i|xi = c

)
= E

(
y1i|xi = c

)
− E

(
y0i|xi = c

)
(7.45)

One required assumption is “continuity.” That is, E
(
y1i|xi

)
and E

(
y0i|xi

)
must meet smoothly at

xi = c except for a “jump.” The jump is the treatment effect at the cutoff, τc.

A picture is worth a thousand words, especially with RD designs, so let us look at a graph.

Suppose we give a 100 point midterm exam (the forcing variable x) and award a new laptop

computer to students receiving a score of 75 (the cutoff value c) or over. The outcome we measure

is student performance, y, on a 400 point final exam.

In Figure 7.4, based on simulated data, we see that at midterm score 75 there is a jump in the

final exam score. That jump is what we seek to measure. The RDD idea is that students receiving

just under and just over 75 are basically very similar, so that if we compare them it is just as good

as randomly assigning treatment. Another way to picture the outcomes is to divide the forcing
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FIGURE 7.4 Regression Discontinuity Design.
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FIGURE 7.5 Conditional Means Graph.

variable (x) into intervals, or bins, and calculate and plot the mean, or median, of the outcome

variable (y). Figure 7.5 is based on five point bins.

The difference between the mean scores of the two groups (A and B) just to either side of

the cutoff is an estimate of the treatment effect at the cutoff, in this case τ̂c = B − A = 326.7 −
243.6 = 83.1. We estimate that for students near the cutoff, getting a 75 or higher on the midterm,

and thus receiving a new computer, had scores on the final exam that were 83.1 points higher

than those who were also near the cutoff, but not receiving the prize, all other things being equal.

This estimator is reasonable and intuitive. The difficulty is that students in the 70–75 range of

test scores may not be as similar as we would like to students with test scores 75–80. If we make

the bin widths smaller and smaller, then the groups to either side of the cutoff become more and

more similar, but the number of observations in each bin gets smaller and smaller, reducing the

reliability of this estimator of the treatment effect.28

Instead, let us use all the observations and use regression analysis to estimate the treatment

effect at the cutoff, τc. Estimate the regression functions separately on the two groups, using as

explanatory variable xi − c:

1. Obtain α̂0 + β̂0

(
xi − c

)
from a regression of yi on xi − c for individuals below the cutoff,

(
xi < c

)
.

2. Obtain α̂1 + β̂1

(
xi − c

)
from a regression of yi on xi − c for individuals above the cutoff,

(
xi ≥ c

)
.

The estimate of τc is τ̂c = α̂1 − α̂0. Equivalently, we can use a pooled regression with an indicator

variable. Define di = 1 if xi ≥ c, and di = 0 if xi < c. Then the equivalent pooled regression is

yi = α + τcdi + β
(
xi − c

)
+ γ

[
di
(
xi − c

)]
+ ei (7.46)

There are some additional considerations when using RD designs. First, using the full range of

the data may not be a good idea. The goal is to estimate the regression “jump” at the cutoff value

............................................................................................................................................

28Selecting bin width is an important issue in RDD analysis. See Lee and Lemieux (2010, pp. 307–314).
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xi = c. With sufficient observations, we can make the estimate “local” by only using data within a

certain distance h of the cutoff. That is, use observations for which c − h ≤ xi ≤ c + h. Checking

the robustness of findings to various choices of h is a good idea.

Second, it is important to build into the regression sufficient flexibility to capture a nonlinear

relationship. For example, if the true relationship between the outcome y and the test score x is

nonlinear, then using linear relationships in the RDD can give a biased estimator of the treatment

effect. In Figure 7.6, we illustrate a situation when there is no “jump” in the underlying relation-

ship but using RDD with an assumed linear fit makes there appear be a positive treatment effect

at xi = c.

For this reason, researchers often use additional powers of
(
xi − c

)
in the regression relation,

such as
(
xi − c

)2
,
(
xi − c

)3
, and

(
xi − c

)4
. If we use up to the third power, the pooled regression

becomes

yi = α + τcdi +
3∑

q=1

βq
(
xi − c

)q +
3∑

p=1

γp
[
di
(
xi − c

)p] + ei (7.47)

For the data in Figure 7.6, the estimated treatment effect from (7.47), τ̂c, is not statistically

different from zero, with a t = 1.11 and a p-value of 0.268. Alternatively, the recognition of a

“nonjump” could be detected by using local observations for which c − h ≤ xi ≤ c + h.

Third, it is possible that variables other than the forcing variable, say zi, may influence the

outcome. These can be added to the RDD model in equation (7.47).

Fourth, the illustration we have provided assumes that those with test scores at 75 or above

are given a new computer whether they want one or not. We could instead offer those with test

scores 75 and above a heavily discounted price on a new computer before the final exam. Some

will elect to purchase the new machine using the discount and others will not. Some with test

scores below 75 could, of course, also buy new computers. These issues lead to what is known

as a fuzzy regression discontinuity design. The key in this case is that there is a “jump” in the

probability of treatment (receiving a new computer before the final exam) at xi = c. In this case,

we must use an estimation alternative to least squares called instrumental variables estimation.

This topic is considered in Chapter 10.
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FIGURE 7.6 RDD bias.
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7.7 Exercises

7.7.1 Problems

7.1 Suppose we are able to collect a random sample of data on economics majors at a large univer-

sity. Further suppose that, for those entering the workforce, we observe their employment status and

salary 5 years after graduation. Let SAL = $ salary for those employed, GPA = grade point average

on a 4.0 scale during their undergraduate program, with METRICS = 1 if student took econometrics,

METRICS = 0 otherwise.

a. Consider the regression model SAL = β1 + β2GPA + β3METRICS + e. Should we consider this a

causal model, or a predictive model? Explain your reasoning.

b. Assuming β2 and β3 are positive, draw a sketch of E(SAL|GPA,METRICS) = β1 + β2GPA +
β3METRICS.

c. Define a dummy variable FEMALE = 1, if the student is female; 0 otherwise. Modify the regression

model to be SAL = β1 + β2GPA + β3METRICS + δ1FEMALE + e. What is the expected salary of

a male who has not taken econometrics? What is the expected salary of a female who has taken

econometrics?

d. Consider the regression model

SAL = β1 + β2GPA + β3METRICS + δ1FEMALE
+ δ2(FEMALE ×METRICS) + e (XR7.1.1)

What is the expected salary of a male who has not taken econometrics? What is the expected salary

of a female who has taken econometrics?

e. In the equation (XR7.1.1), assume that δ1 < 0 and δ2 < 0. Sketch E(SAL|GPA,METRICS,
FEMALE) versus GPA for (i) males not taking econometrics, (ii) males taking econometrics,

(iii) females not taking econometrics, and (iv) females taking econometrics.

f. In equation (XR7.1.1), what are the null and alternative hypotheses, in terms of model parameters,

for testing that econometrics training does not affect the average salary of economics majors? In

order to use the test statistic in equation (6.4), what regression must you estimate in addition to

(XR7.1.1)? What is the distribution of the test statistic if the null hypothesis is true assuming

N = 300? What is the rejection region for a 5% test?

7.2 In September of 1998, a local TV station contacted an econometrician to analyze some data for

them. They were going to do a Halloween story on the legend of full moons affecting behavior

in strange ways. They collected data from a local hospital on emergency room cases for the

period from January 1, 1998 until mid-August. There were 229 observations. During this time,

there were eight full moons and seven new moons (a related myth concerns new moons) and

three holidays (New Year’s day, Memorial Day, and Easter). If there is a full-moon effect, then

hospital administrators will adjust numbers of emergency room doctors and nurses, and local

police may change the number of officers on duty. Let T be a time trend (T = 1, 2, 3,… , 229).
Let the indicator variables HOLIDAY = 1 if the day is a holiday, = 0 otherwise; FRIDAY = 1

if the day is a Friday, = 0 otherwise; SATURDAY = 1 if the day is a Saturday, = 0 otherwise;

FULLMOON = 1 if there is a full moon, = 0 otherwise; NEWMOON = 1 if there is a new moon, = 0

otherwise. Consider the model

CASES = β1 + β2T + δ1HOLIDAY + δ2FRIDAY + δ3SATURDAY
+ θ1FULLMOON + θ2NEWMOON + e (XR7.2.1)

a. What is the expected number of emergency room cases for day T = 100, which was a Friday with

neither a full or new moon?

b. What is the expected number of emergency room cases for day T = 185, which was a holiday

Saturday?

c. In terms of the model parameters, what are the null and alternative hypotheses for testing that

neither a full moon nor a new moon have any effect on the number of emergency room cases?

What is the test statistic? What is the distribution of the test statistic if the null hypothesis is true?

What is the rejection region for a 5% test?
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d. The sum of squared residuals from the regression in (XR7.2.1) is 27109. If full moon and new

moon are omitted from the model the sum of squared residuals is 27424. Carry out the test in (c).

What is your conclusion?

e. Using the model in equation (XR7.2.1), the estimated coefficient of SATURDAY is 10.59 with

standard error 2.12, and the estimated coefficient for FRIDAY is 6.91, with standard error 2.11.

The estimated covariance between the coefficient estimators is 0.75. Should the hospitals prepare

for significantly more emergency room patients on Saturday than Friday? State the relevant null

and alternative hypotheses in terms of the model parameters. What is the test statistic? What is the

distribution of the test statistic if the null hypothesis is true? What is the rejection region for a test

at the 10% level? Carry out the test and state your conclusion?

7.3 One of the key problems regarding housing prices in a region concerns construction of “price indexes.”

That is, holding other factors constant, have prices increased, decreased or stayed relatively constant in

a particular area? As an illustration, consider a regression model for house prices (in $1000s) on home

sales from 1991 to 1996 in Stockton, CA, including as explanatory variables the size of the house

(SQFT , in 100s of square feet), the age of the house (AGE) and annual indicator variables, such as

D92 = 1 if the year is 1992 and 0 otherwise.

PRICE = β1 + β2SQFT + β3AGE + δ1D92 + δ2D93 + δ3D94 + δ4D95
+ δ5D96 + e (XR7.3.1)

An alternative model employs a “trend” variable YEAR = 0, 1,… , 5 for the years 1991–1996.

PRICE = β1 + β2SQFT + β3AGE + τYEAR + e (XR7.3.2)

a. What is the expected selling price of a 10-year-old house with 2000 square feet of living space in

each of the years 1991–1996 using equation (XR7.3.1)?

b. What is the expected selling price of a 10-year-old house with 2000 square feet of living space in

each of the years 1991–1996 using equation (XR7.3.2)?

c. In order to choose between the models in (XR7.3.1) and (XR7.3.2), we propose a hypothesis

test. What set of parameter constraints, or restrictions, would result in equation (XR7.3.1) equal-

ing (XR7.3.2)? The sum of squared residuals from (XR7.3.1) is 2385745 and from (XR7.3.2) is

2387476. What is the test statistic for testing the restrictions that would make the two models

equivalent? What is the distribution of the test statistic if the null hypotheses are true? What is the

rejection region for a test at the 5% level? If the sample size is N = 4682, what do you conclude?

d. Using the model in (XR7.3.1) the estimated coefficients of the indicator variables for 1992 and

1994, and their standard errors, are −4.393 (1.271) and −13.174 (1.211), respectively. The esti-

mated covariance between these two coefficient estimators is 0.87825. Test the null hypothesis that

δ3 = 3δ1 against the alternative that δ3 ≠ 3δ1 if N = 4682, at the 5% level.

e. The estimated value of τ in equation (XR7.3.2) is –4.12. What is the estimated difference in the

expected house price for a 10-year-old house with 2000 square feet of living space in 1992 and

1994. Using information in (d), how does this compare to the result using (XR7.3.1)?

7.4 Angrist and Pischke29 report estimation results of log-earnings equations using a large sample

of college graduates. The predictors of interest (there are others included in their model) are

the indicator variable PRIVATE (=1 if the individual attended a private college or university, = 0

if the individual attended a public college or university) and SAT/100, the individual’s SAT score

divided by 100. In the estimated regression equations, the dependent variable is ln(EARNINGS)

and they include an intercept. The coefficient estimates, with standard errors in brackets, for two

regressions that they estimate, are as follows.

0.212[0.060]PRIVATE (XR7.4.1)

0.152 [0.057]PRIVATE + 0.051[0.008](SAT∕100) (XR7.4.2)

a. In each model, what is the approximate effect on earnings of attending a private university rather

than a public university?

............................................................................................................................................................

29Joshua D. Angrist and Jörn-Steffen Pischke (2015) Mastering Metrics: The Path from Cause to Effect, Princeton

University Press, p. 66.
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b. In the second model, what is the predicted effect on earnings of a 100-point increase in SAT

score?

c. The estimated coefficient of PRIVATE is smaller in the second model than in the first model. Use

the concept of “omitted variables bias” to explain this result.

d. What should happen to the estimated coefficients in equation (XR7.4.2) if parental income is

included as an explanatory variable? Explain.

7.5 In 1985, the state of Tennessee carried out a statewide experiment with primary school students. Teach-

ers and students were randomly assigned to be in a regular-sized class or a small class. The outcome of

interest is a student’s score on a math achievement test (MATHSCORE). Let SMALL = 1 if the student

is in a small class and SMALL = 0 otherwise. The other variable of interest is the number of years of

teacher experience, TCHEXPER.

a. Write down the econometric specification of the linear regression model explaining MATHSCORE
as a function of SMALL and TCHEXPER. Use β1, β2, and β3 as the model parameters. In this model,

what is the expected math score for a child in a regular-sized class with a teacher having 10 years

of experience? What is the expected math score for a child in a small class with a teacher having

10 years of experience?

b. Let BOY = 1 if the child is male and BOY = 0 if the child is female. Modify the model in part (a)

to include the variables BOY and BOY × SMALL, with parameters θ1 and θ2. Using this model

i. What is the expected math score for a boy in a small class with a teacher having 10 years of

experience?

ii. What is the expected math score for a girl in a regular-sized class with a teacher having

10 years of experience?

iii. What is the null hypothesis, written in terms of the model parameters, that the sex of the child

has no effect on expected math score? What is the alternative hypothesis? What is the test

statistic for the null hypothesis and what is its distribution if the null hypothesis is true? What

is the test rejection region for a 5% test when N = 1200?

iv. It is conjectured that boys may benefit from small classes more than girls. What null and alter-

native hypothesis would you test to examine this conjecture? [Hint: Let the conjecture be the

alternative hypothesis.]

7.6 In 1985, the state of Tennessee carried out a statewide experiment with primary school students. Teach-

ers and students were randomly assigned to be in a regular-sized class or a small class. The outcome

of interest is a student’s score on a math achievement test (MATHSCORE). Let SMALL = 1 if the

student is in a small class and SMALL = 0 otherwise. The other variable of interest is the number of

years of teacher experience, TCHEXPER. Let BOY = 1 if the child is male and BOY = 0 if the child

is female.

a. Write down the econometric specification of the linear regression model explaining MATHSCORE
as a function of SMALL, TCHEXPER, BOY and BOY × TCHEXPER, with parameters β1, β2, . . . .

i. What is the expected math score for a boy in a small class with a teacher having 10 years of

experience?

ii. What is the expected math score for a girl in a regular-sized class with a teacher having

10 years of experience?

iii. What is the change in the expected math score for a boy in a small class with a teacher having

11 years of experience rather than 10?

iv. What is the change in the expected math score for a boy in a small class with a teacher having

13 years of experience rather than 12?

v. State, in terms of the model parameters, the null hypothesis that the marginal effect of teacher

experience on expected math score does not differ between boys and girls, against the alterna-

tive that boys benefit more from additional teacher experience. What test statistic would you use

to carry out this test? What is the distribution of the test statistic assuming then null hypothesis

is true, if N = 1200? What is the rejection region for a 5% test?

b. Modify the model in part (a) to include SMALL × BOY .

i. What is the expected math score for a boy in a small class with a teacher having 10 years of

experience?

ii. What is the expected math score for a girl in a regular-sized class with a teacher having

10 years of experience?

iii. What is the expected math score for a boy? What is it for a girl?
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iv. State, in terms of the part (b) model parameters, the null hypothesis that the expected math

score does not differ between boys and girls, against the alternative that there is a difference in

expected math score for boys and girls. What test statistic would you use to carry out this test?

What is the distribution of the test statistic assuming the null hypothesis is true, if N = 1200?

What is the rejection region for a 5% test?

7.7 Can monetary policy reduce the impact of a severe recession? A natural experiment is provided by

the State of Mississippi. In December of 1930, there were a series of bank failures in the southern

United States. The central portion of Mississippi falls into two Federal Reserve Districts: the sixth

(Atlanta Fed) and the eighth (St. Louis Fed). The Atlanta Fed offered “easy money” to banks while

the St. Louis Fed did not. On July 1, 1930 (just before the crisis), there were 105 State Charter banks

in Mississippi in the sixth district and 154 banks in the eighth district. On July 1, 1931 (just after

the crisis), there were 96 banks remaining in the sixth district and 126 in the eighth district. These

data values are from Table 1, Gary Richardson and William Troost (2009) “Monetary Intervention

Mitigated Banking Panics during the Great Depression: Quasi-Experimental Evidence from a Federal

Reserve District Border, 1929–1933,” Journal of Political Economy, 117(6), 1031–1073.

a. Let the eighth district be the control group and the sixth district be the treatment group. Construct

a figure similar to Figure 7.3 using the four observations rather than sample means. Identify the

treatment effect on the figure.

b. How many banks did each district lose during the crisis? Calculate the magnitude of the treatment

effect using (7.18) with these four observations, rather than sample means.

c. Suppose we have data on these two districts for 1929–1934, so N = 12. Let AFTERt = 1 for years

after 1930, and let AFTERt = 0 for years 1929 and 1930. Let TREATi = 1 for the sixth district and

let TREATi = 0 for banks in the eighth district. Let BANKSit be the number of banks in each district

in each year. Angrist and Pischke (2015, p. 188) report the estimated equation

BANKSit

⋀

= 167 − 2.9TREATi − 49AFTERt + 20.5
(
TREATi × AFTERt

)

(se) (8.8) (7.6) (10.7)

Compare the estimated treatment effect from this equation to the calculation in (b). Is the estimated

treatment effect significant, at the 5% level?

7.8 Using N = 2005 observations, we examine the relationship between food expenditures away from home

per person in the past month as a function of household monthly income, the highest level of education

of a household member, and region of the country. The full equation of interest is

ln(FOODAWAY) = β1 + β2ln(INCOME) + δ1COLLEGE + δ2ADVANCED
+ θ1MIDWEST + θ2SOUTH + θ3WEST + e

where COLLEGE = 1 if the highest education of a household member is a college degree,

ADVANCED = 1 if the highest education of a household member is an advanced degree (such as a

Master’s or Ph.D.). The regional indicators equal one if the household lives in that region and are zero

otherwise.

a. The estimated value of β2 is 0.427 with a standard error of 0.035. Construct and interpret a 95%

interval estimate.

b. The estimated value of δ2 is 0.270 with a standard error of 0.0544. Construct and interpret a 95%

interval estimate using the rough calculation in Section 7.3.1.

c. Use the exact calculation discussed in Section 7.3.1 to estimate the predicted effect on food expen-

diture per person away from home for a household having a member with an advanced degree.

d. What is the null hypothesis, in terms of the model parameters, that the highest level of education

achieved by a household member does not matter? What is the test statistic for this hypothesis?

What is the 5% rejection region? The sum of squared residuals from the full model is 1586 and

SSE from the model omitting the education variables is 1609. Can we conclude that the education

variables are important predictors of food expenditures away from home?

e. In the full model, the reported t-value for COLLEGE is 0.34. What can we conclude from that?

[Hint: What is the reference group?]
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f. The estimated value of θ2 is 0.088. What is the estimated expected value of ln(FOODAWAY) for

a household with $10,000 per month income, with a member with an advanced degree, and who

live in the south? Calculate the natural and corrected predictors of expenditure on food away from

home per member for this household. [Hint: A relevant piece of information is in part (b).]

7.9 Suppose we wish to estimate a model of household expenditures on alcohol (ALC, in dollars per

month) as a function of household income (INCOME, $100’s per month), and some other demographic

variables.

a. Let KIDS = 0, 1, 2,… be the number children in the household. Is KIDS a qualitative or quantitative

variable? Interpret the coefficient of KIDS in the model

ALC = β1 + β2INCOME + δKIDS + e (XR7.9.1)

What is the marginal impact of the second child? What is the marginal impact of the fourth child?

b. Let ONEKID = 1 if there is one child, and zero otherwise. Let TWOKIDS = 1 if there are two

children, and zero otherwise. Let MANY = 1 if there are three or more children, and zero otherwise.

Consider the model

ALC = β1 + β2INCOME + δ1ONEKID + δ2TWOKIDS + δ3MANY + e (XR7.9.2)

Compare the interpretation of this model to that in part (a). Is the impact of an additional child the

same as in the model in (a)? What is the impact of the first child on expected household expenditure

on alcohol? What is the impact of having a fourth child on the expected household expenditure on

alcohol?

c. Is there a set of parameter restrictions, or constraints, that we can impose on equation (XR7.9.2) to

make it equivalent to equation (XR7.9.1)?

7.10 Suppose we wish to estimate a model of household expenditures on alcohol (ALC, in dollars per

month) as a function of household income (INCOME, $100’s per month), and some other demographic

variables.

a. Let RELIGIOUS = 0, 1, 2, 3, or 4 if the household considers itself not religious, a little religious,

moderately religious, very religious, or extremely religious, respectively. Is RELIGIOUS a quanti-

tative or qualitative variable? Explain your choice.

b. Consider the model

ALC = β1 + β2INCOME + β3RELIGIOUS + e

What is the expected household expenditure on alcohol for a household that considers itself not

religious? What is the expected household expenditure for a household that considers itself a lit-

tle religious? What is the expected household expenditure for a household that considers itself

moderately religious?

c. If we test the hypothesis β3 = 0 in model (b), what behavioral assumption are we testing? What is

the expected household expenditure on alcohol if the hypothesis is true?

d. Let LITTLE = 1 if the household considers itself a little religious, and zero otherwise. Similarly

define the indicator variables MODERATELY , VERY , and EXTREMELY . Consider the model

ALC = γ0 + γ1INCOME + γ2LITTLE + γ3MODERATELY + γ4VERY + γ5EXTREMELY + e

What is the expected household expenditure for a household that considers itself not reli-

gious? What is the expected household expenditure for a household that considers itself a little

religious? What is the expected household expenditure for a household that considers itself

moderately religious? Very religious? Extremely religious?

e. If we impose the restrictions γ3 = 2γ2, γ4 = 3γ2, γ5 = 4γ2 on the model in part (d), how does the

restricted model compare to the model in (b)?

7.11 Consider the log-linear regression model ln(y) = β1 + β2x + δ1D + δ2(x × D) + e. If the regression

errors are normally distributed N
(
0, σ2

)
, then

E(y|x,D) = exp
(
β1 + β2x + δ1D + δ2(x × D)

)
exp

(
σ2∕2

)
(XR7.11.1)
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a. Use Derivative Rule 7 to show that

∂E(y|x,D)
∂x

= exp
(
β1 + β2x + δ1D + δ2(x × D)

)
exp

(
σ2∕2

)(
β2 + δ2D

)
(XR7.11.2)

b. Divide both sides of the result in (a) by E(y|x,D) to show that

∂E(y|x,D)
∂x

1

E(y|x,D)
=
∂E(y|x,D)∕E(y|x,D)

∂x
=
(
β2 + δ2D

)
(XR7.11.3)

c. Multiply both sides of the equation in (b) by 100 to obtain

100
∂E(y|x,D)∕E(y|x,D)

∂x
= %ΔE(y|x,D) = 100

(
β2 + δ2D

)
(XR7.11.4)

This is the marginal effect, the percentage change, in E(y|x,D) given a unit change in x in the

log-linear model.

d. A fitted log-linear model for house price, where SQFT(x) is the house’s living area (100s of square

feet) and UTOWN(D) is an indicator variable with UTOWN = 1 for houses near a university, and

zero otherwise, is

ln(PRICE)
⋀

= 4.456 + 0.362SQFT + 0.336UTOWN − 0.00349(SQFT × UTOWN)

Use equation (XR7.11.4) to calculate the marginal effect of SQFT on house price, for a house with

UTOWN = 1 and for a house with UTOWN = 0.

e. Let b2 and d2 be the least squares estimators of β2 and δ2 in equation (XR7.11.4). Write down the

formula for the standard error of the estimated value 100
(
b2 + d2D

)
, for a given D.

f. Multiply both sides in (XR7.11.3) by x, and by 100/100, and rearrange to obtain

∂E(y|x,D)∕E(y|x,D)
∂x

x =
100∂E(y|x,D)∕E(y|x,D)

100∂x∕x
=
(
β2 + δ2D

)
x (XR7.11.5)

Interpreting 100∂x∕x as the percentage change in x, we find that the elasticity of expected price

with respect to a percentage change in x is
(
β2 + δ2D

)
x.

g. Apply the result in equation (XR7.11.5) to calculate the elasticities of expected house price

with respect to a change in price for a house of 2500 square feet, when UTOWN = 1 and when

UTOWN = 0.

h. Let b2 and d2 be the least squares estimators of β2 and δ2 in equation (XR7.11.5). Write down the

formula for the standard error of the estimated value
(
b2 + d2D

)
x, given D and x.

7.12 Consider the log-linear regression model ln(y) = β1 + β2x + δ1D + δ2(x × D) + e. If the regression

errors are normally distributed N
(
0, σ2

)
, then E(y|x,D) is given in equation (XR7.11.1).

a. Find E(y|x,D = 1) and E(y|x,D = 0).
b. Show that

100
[
E(y|x,D = 1) − E(y|x,D = 0)

]

E(y|x,D = 0)
= 100

[
exp

(
δ1 + δ2x

)
− 1

]
(XR7.12.1)

This is the percentage change in the expected value of y, given x, when the indicator variable

changes from D = 0 to D = 1.

c. Given the log-linear model, the value of ln(y) when D = 0 is ln(y|D = 0, x) = β1 + β2x + e, and

when D = 1 we have ln(y|D = 1, x) =
(
β1 + δ1

)
+
(
β2 + δ2

)
x + e. Subtract ln(y|D = 0, x) from

ln(y|D = 1, x), and multiply by 100, to obtain

100
[
ln(y|D = 1, x) − ln(y|D = 0, x)

]
≃ %Δ(y|x) = 100

(
δ1 + δ2x

)
(XR7.12.2)

d. A fitted log-linear model for house price, where SQFT(x) is the house’s living area (100s of square

feet) and UTOWN(D) is an indicator variable with UTOWN = 1 for houses near a university, and

zero otherwise, is

ln(PRICE)
⋀

= 4.456 + 0.362SQFT + 0.336UTOWN − 0.00349(SQFT × UTOWN)

Calculate the percentage change in the expected value of PRICE for a house of 2500 square feet

using (XR7.12.1). Also calculate the approximate value in (XR7.12.2).
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e. If d1 and d2 are the least squares estimators of δ1 and δ2 in equation (XR7.12.2), write down the

formula for the standard error of 100(d1 + d2x), given x.

f. Let λ = 100
[
exp(δ1 + δ2x) − 1

]
and λ̂ = 100

[
exp

(
d1 + d2x

)
− 1

]
. Use Derivative Rule 7, in

Appendix A.3.1, to show that ∂λ∕∂δ1 = 100 exp
(
δ1 + δ2x

)
and ∂λ∕∂δ2 = 100 exp(δ1 + δ2x)x.

The “delta method” for finding the variance of a nonlinear function, such as λ̂, is discussed in

Section 5.7.4 and also Appendix 5B.5. Using the delta method, write out the expression for

standard error of λ̂.

7.13 Many cities in California have passed Inclusionary Zoning policies (also known as below-market hous-

ing mandates) as an attempt to make housing more affordable. These policies require developers to sell

some units below the market price on a percentage of the new homes built. For example, in a develop-

ment of 10 new homes each with market value $850,000, the developer may have to sell 5 of the units

at $180,000. Means and Stringham (2012)30 examine the effects of such policies on house prices and

number of housing units available using 1990 and 2000 census data on 311 California cities.

a. Let LNPRICE be the log of average home price, and let LNUNITS be the log of the number of hous-

ing units. Using only the data for 2000, we compare the sample means of LNPRICE and LNUNITS
for cities with an Inclusionary Zoning policy, IZLAW = 1, to those without the policy, IZLAW = 0.

The following table displays the sample means of LNPRICE and LNUNITS.

2000 IZLAW = 1 IZLAW = 0
LNPRICE 12.8914 12.2851

LNUNITS 9.9950 9.5449

Based on these estimates, what is the percentage difference in prices and number of units for cities

with and without the law? Use the approximation 100
[
ln(y1) – ln

(
y0

)]
for the percentage difference

between y0 and y1. Does the law appear to achieve its purpose?

b. Using the data for 1990, we compare the sample means of LNPRICE and LNUNITS for cities with

an Inclusionary Zoning policy, IZLAW = 1, to those without the policy, IZLAW = 0. The following

table displays the sample means of LNPRICE and LNUNITS.

1990 IZLAW = 1 IZLAW = 0
LNPRICE 12.3383 12.0646

LNUNITS 9.8992 9.4176

Use the existence of an Inclusionary Zoning policy as a “treatment.” Consider those cities that did

not pass such a law, IZLAW = 0, the “control” group. Draw a figure similar to Figure 7.3 com-

paring treatment and control groups for LNPRICE, and determine the “treatment effect.” Are your

conclusions about the effect of the policy the same as in (a)?

c. Draw a figure similar to Figure 7.3 comparing treatment and control groups for LNUNITS, and

determine the “treatment effect.” Are your conclusions about the effect of the policy the same as

in (a)?

7.14 Consider a model explaining the weekly sales (SALES = 100’s cans sold) of a popular brand (the “tar-

get” brand) of canned tuna as a function of its price (PRICE = average price in cents), the average

prices of two competitors (PRICE2, PRICE3, also in cents). Also included is an indicator variable

DISP = 1 if there is a store display but no newspaper ad during the week for the target brand, and 0

otherwise. The indicator variable DISPAD = 1 if there is a store display during the week for the target

............................................................................................................................................................

30Tom Means and Edward P. Stringham (2012) “Unintended or Intended consequences? The effect of below-market

housing mandates on housing markets in California,” Journal of Public Finance and Public Choice, p. 39–64. The

authors wish to thank Tom Means for providing the data and insights into this exercise.
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brand and newspaper ads, 0 otherwise. The estimated log-linear model is

ln(SALES)
⋀

= 2.077 − 0.0375PRICE + 0.0115PRICE2 + 0.0129PRICE3 + 0.424DISP
(se) (0.646) (0.00577) (0.00449) (0.00605) (0.105)

+ 1.431DISPAD R2 = 0.84 N = 52

(0.156)

a. Discuss and interpret the coefficients of the price variables.

b. Are the signs and relative magnitudes of the advertising variables consistent with economic logic?

Provide both the “rough” and “exact” calculations for the effects of DISP and DISPAD from

Sections 7.3.1 and 7.3.2.

c. Test the significance of the advertising variables using a two-tail test, at the 1% level of significance.

What do you conclude?

d. The F-test statistic value for the joint significance of the two advertising variables is 42.0. What

can we conclude about the significance of advertising? If you were going to use the form of the

F-statistic in equation (6.4), what additional regression would you need to run?

e. Label the parameters in the equation β1, β2,… If the null hypothesis is H0∶β6 ≤ β5, state the alter-

native hypothesis. Why is the test of this null hypothesis and alternative hypothesis interesting?

Carry out the test at the 1% level of significance, given that the calculated t-value is 6.86. What do

you conclude?

7.15 Mortgage lenders are interested in determining borrower and loan characteristics that may lead

to delinquency or foreclosure. We estimate a regression model using 1000 observations and

the following variables. The dependent variable of interest is MISSED, an indicator variable = 1 if

the borrower missed at least three payments (90+ days late), but 0 otherwise. Explanatory variables are

RATE = initial interest rate of the mortgage; AMOUNT = dollar value of mortgage (in $100, 000);
and ARM = 1 if mortgage has an adjustable rate, and = 0 if mortgage has a fixed rate. The estimated

equation is

MISSED
⋀

= −0.348 + 0.0452RATE + 0.0732AMOUNT + 0.0834ARM
(se) (0.00841) (0.0144) (0.0326)

a. Interpret the signs and significance of each of the coefficients.

b. Two borrowers who did not miss a payment had loans with the following characteristics:

(RATE = 8.2, AMOUNT = 1.912, ARM = 1) and (RATE = 9.1, AMOUNT = 8.6665, ARM = 1).

For each of these borrowers, predict the probability that they will miss a payment.

c. Two borrowers who did miss a payment had loans with the following characteristics:

(RATE = 12.0, AMOUNT = 0.71, ARM = 0) and (RATE = 6.45, AMOUNT = 8.5, ARM = 1). For

each of these borrowers, predict the probability that they will miss a payment.

d. For a borrower seeking an adjustable rate mortgage, with an initial interest rate of 6.0, above what

loan amount would you predict a missed payment with probability 0.51?

7.7.2 Computer Exercises

7.16 In this exercise, we examine the hours of market work by married women as a function of their edu-

cation and number of children. Use data file cps5mw_small for this exercise. The data file cps5mw
contains more observations.

a. Estimate the linear regression model

HRSWORK = β1 + β2WAGE + β3EDUC + β4NCHILD + e (XR7.16.1)

Interpret the coefficient of NCHILD. Estimate the expected hours worked by a married woman

whose wage is $20 per hour, who has 16 years of education, and who has no children. Do the

same calculation for a woman with one child, two children, and three children. How much does the

expected number of hours change with each additional child?

b. Define the indicator variables POSTGRAD = 1 if EDUC > 16, 0 otherwise; COLLEGE = 1 if

EDUC = 16, 0 otherwise; and SOMECOLLEGE if 12 < EDUC < 16. Estimate the HRSWORK
equation (XR7.16.1) replacing EDUC by these three indicator variables. Interpret the coefficients

of the education indicator variables. Estimate the expected hours worked by a married woman
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whose wage is $20 per hour, who has 12 years of education, and who has no children. Do the same

calculation for a woman with EDUC = 13, 14, 15, 16, and 17. Is the marginal effect of education

constant?

c. Define indicator variables ONEKID = 1 if NCHILD = 1, 0 otherwise; TWOKIDS = 1 if

NCHILD = 2, 0 otherwise; and MOREKIDS = 1 if NCHILD > 2, 0 otherwise. Estimate the

HRSWORK equation (XR7.16.1) but replace NCHILD by these three indicator variables. Interpret

the estimated coefficients of the three indicator variables. Estimate the expected hours worked by a

married woman with 16 years of education, whose wage is $20 per hour with no children, one child,

two children, and more than two children. Compare and contrast these estimates to those in (a).

d. Estimate the model (XR7.16.1) replacing EDUC with the three indicator variables in (b) and replac-

ing NCHILD with the three indicator variables in (c). Compare and contrast this model to the

models in (a)–(c).

e. Define the indicator variable EDUC12 = 1 if EDUC = 12, 0 otherwise. Define indicator vari-

ables EDUC12, EDUC13, EDUC14, EDUC16 similarly. In this sample, there are no women with

15 years of education. Define EDUC18 = 1 if EDUC > 16, 0 otherwise. Estimate the HRSWORK
equation (XR7.16.1) replacing NCHILD by the three indicator variables and EDUC by the five new

indicator variables. Have any essential conclusions changed by using this specification?

f. Which of the specifications in (a)–(e) has the highest R2? The highest adjusted-R2, the smallest

SCHWARZ criterion (SC or BIC) value? Which model do you prefer taking into account economic,

econometric, and fit aspects?

7.17 Does a mother’s smoking affect the birthweight of her child? Using data in the file bweight_small taken

from Cattaneo (2010),31 we explore this question. The file bweight contains more observations.

a. Calculate the sample means of BWEIGHT for mothers who smoke (MBSMOKE = 1) and those

who do not smoke (MBSMOKE = 0). Use the t-test of the equality of population means given

in Appendix C.7.2, Case 1, to test whether the mean birthweight for smoking and nonsmoking

mothers is the same. Use the 5% level of significance.

b. Estimate the regression BWEIGHT = β1 + β2MBSMOKE + e. Interpret the coefficient of

MBSMOKE. Can we interpret the coefficient as the “average treatment effect” of smoking? Test

the null hypothesis that β2 ≥ 0 against β2 < 0 at the 5% level of significance.

c. Add to the model in (b) control variables MMARRIED, MAGE, PRENATAL1, and FBABY . Are

any of these variables significant predictors of an infant’s birthweight? Which signs of the sig-

nificant coefficients are consistent with your expectations? Does the estimate of the coefficient of

MBSMOKE change much?

d. Estimate the regression of BWEIGHT on MMARRIED, MAGE, PRENATAL1, and FBABY for

mothers who smoke (MBSMOKE = 1) and those who do not smoke (MBSMOKE = 0). Carry out

a Chow test of the equivalence of these two regressions at the 5% level.

e. Use equation (7.37) to obtain the estimate of the average treatment effect using the results from (d).

Compare this estimate of the average treatment effect to the estimates in (b) and (c).

7.18 Does a mother’s smoking affect the birthweight of her child? Using the data file bweight_small, we

explore this question. The file bweight contains more observations.

a. Estimate the regression model represented by equation (7.38) for BWEIGHT . Include as explana-

tory variables MMARRIED, MAGE, PRENATAL1, and FBABY , along with MBSMOKE and inter-

actions between MBSMOKE and the other variables. Use equation (7.40), and the discussion below

equation (7.40), to estimate the average treatment effect.

b. Use equation (7.41) to estimate the average treatment effect of mother smoking on infant birth-

weight, and construct a 95% interval estimate for τATE.

c. Calculate the normalized difference equation (7.44) for each of the variables MMARRIED, MAGE,

PRENATAL1, and FBABY . Are any of the normalized differences bigger than the rule of thumb

threshold of 0.25?

d. Use equation (7.42) to estimate the average treatment effect on the treated, τATT. How much does

it differ from your estimate of the population average treatment effect?

............................................................................................................................................................

31Efficient semiparametric estimation of multi-valued treatment effects under ignorability, Journal of Econometrics,

155, 138–154. The authors would like to thank Matias Cattaneo for providing the data. The dataset is used in Stata
Treatment-Effects Reference Manual, Release 14 for examples as well.
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e. Use equation (7.43) to estimate the average treatment effect on the population of mothers who are

Hispanic (MHISP = 1). How does it compare to the estimated population average treatment effect?

f. Use equation (7.43) to estimate the average treatment effect on the population of mothers who are

white (MWHITE = 1). How does this compare to the population average treatment effect estimate?

7.19 Does a mother’s smoking affect the birthweight of her child? Using the data file bweight_small we

explore this question. The file bweight contains more observations. The variable MSMOKE is the

number of cigarettes smoked daily during pregnancy. Nonsmokers (MBSMOKE = 0) smoke zero daily.

Among smokers (MBSMOKE = 1), the variable MSMOKE = 1 if 1–5 cigarettes are smoked daily;

MSMOKE = 2 if 6–10 cigarettes are smoked daily; and MSMOKE = 3 if 11 or more cigarettes are

smoked daily.

a. Estimate a regression model for BWEIGHT . Include as explanatory variables MMARRIED, MAGE,

PRENATAL1, and FBABY , along with MSMOKE. Interpret the estimated coefficient of MSMOKE.

b. From MSMOKE create three indicator variables, SMOKE2 = 1 if a mother smokes 1–5 cigarettes

per day, 0 otherwise; SMOKE3 = 1 if a mother smokes 6–10 cigarettes per day, 0 otherwise;

SMOKE4 = 1 if a mother smokes 11 or more cigarettes per day, 0 otherwise. Estimate a regres-

sion model for BWEIGHT . Include as explanatory variables MMARRIED, MAGE, PRENATAL1,

and FBABY , along with SMOKE2, SMOKE3, and SMOKE4. Interpret the estimated coefficients

of SMOKE2, SMOKE3, and SMOKE4. Does smoking 1–5 cigarettes per day have a statistically

significant negative effect on infant birthweight?

c. Using the results in (b), test the null hypothesis that smoking 11 or more cigarettes per day reduces

birthweight by no more than smoking 6–10 cigarettes per day, against the alternative that smok-

ing 11 or more cigarettes per day reduces birthweight by more than smoking 6–10 cigarettes

per day.

d. Using the results in (b), test the null hypothesis that smoking 11 or more cigarettes per day reduces

birthweight by no more than smoking 1–5 cigarettes per day, against the alternative that smoking

11 or more cigarettes per day reduces birthweight by more than smoking 1–5 cigarettes per day.

e. Estimate a regression model for BWEIGHT . Include as explanatory variables MMARRIED,

MAGE, PRENATAL1, and FBABY . Estimate the model separately for MSMOKE = 0, 1, 2, and

3. Using each model, estimate the expected birthweight of a child of a married woman who is

25 years old whose first prenatal visit was in the first trimester and who had already given birth to

at least one child. What do you observe?

f. Estimate the linear probability model with dependent variable LBWEIGHT as a function of

explanatory variables MMARRIED, MAGE, PRENATAL1, and FBABY , along with MSMOKE.

Predict the probability of a low-birthweight infant for MSMOKE = 0, 1, 2, and 3 of a married

woman who is 25 years old whose first prenatal visit was in the first trimester and who had already

given birth to at least one child. What do you observe?

7.20 In this exercise, we will explore some of the factors predicting costs at American universi-

ties using the data file poolcoll2 and observations outside the great recession. Let TC = the

real ($2008) total cost per student, FTUG = number of full-time undergraduate students, FTGRAD =
number of full-time graduate students, FTEF = full-time faculty per 100 students, CF = number of

contract faculty per 100 students, FTENAP = full-time nonacademic professionals per 100 students.

a. Estimate the regression of ln(TC) on the remaining variables. What are the predicted effects of

additional undergraduate students and graduate students on total cost per student?

b. What are the predicted effects of additional full-time faculty, contract faculty, and nonacademic

professionals on total cost per student?

c. Add the indicator variable PRIVATE to the model. Do you predict higher or lower total cost per

student at private universities? Is this a statistically significant factor in predicting total cost per

student?

d. Add to the model not only PRIVATE but also PRIVATE × FTEF. Are these variables individually

and jointly significant at the 5% level?

e. Add to the model not only PRIVATE but also PRIVATE times all the other variables. Test the

joint significance of PRIVATE and PRIVATE times all the other variables using an F-test. What

do you conclude about the model in (a) that does not distinguish between private and public

universities?

f. Estimate the model in (a) twice, once for private universities and once for public universities. Call

the sum of squared residuals for the private universities SSE1, and the sum of squared residuals for

the public universities SSE0. Compare SSE1 + SSE0 to the sum of squared residuals in part (e).
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7.21 In this exercise, we explore some of the factors predicting costs at American public universities

using the data file pubcoll. Let TC = the real ($2008) total cost per student, FTUG = number of

full-time undergraduate students, FTGRAD = number of full-time graduate students, FTEF = full-

time faculty per 100 students, CF = number of contract faculty per 100 students, and FTENAP =
full-time nonacademic professionals per 100 students.

a. Estimate the regression of ln(TC) on the remaining variables. What are the predicted effects of

additional undergraduate students and graduate students on total cost per student?

b. What are the predicted effects of additional full-time faculty, contract faculty, and nonacademic

professionals on total cost per student?

c. Add indicator variables for the years 1989, 1991, 1999, 2005, 2008, 2010, and 2011. Are these

variables jointly and individually significant? Using your favorite site for macroeconomic data,

plot the quarterly percentage change in the real U.S. GDP from January 1987 to January 1993.

Does this help explain the signs and significance of any of the indicator variable coefficients?

d. The variable CRASH = 1 during 2008, 2010, and 2011. Add to the model in (c) interactions

between CRASH and each of the variables FTEF, CF, and FTENAP. Are these variables

individually significant at the 5% level? Are they jointly significant?

e. Add to the model in (d) interactions between CRASH and each of the variables FTUG and

FTGRAD. Considering all the interaction variables, which are significant at the 5% level? Test the

joint significance of all the interaction variables at the 5% level.

7.22 In this exercise, we explore some of the factors predicting costs at American public universities using

the data file pubcoll. Let TC = the real ($2008) total cost per student, FTUG = number of full-time

undergraduate students, FTGRAD = number of full-time graduate students, FTEF = full-time faculty

per 100 students, CF = number of contract faculty per 100 students, and FTENAP = full-time nonaca-

demic professionals per 100 students. Use only the data for years prior to 2008. Include in the model

year indicator variables D1989, D1991, D1999, and D2005.

a. Estimate the regression of ln(TC) on the remaining variables. What are the predicted effects of

additional undergraduate students and graduate students on total cost per student?

b. What are the predicted effects of additional full-time faculty, contract faculty, and nonacademic

professionals on total cost per student?

c. Using the estimates from part (a), compute the normal and corrected predictors of total cost using

2005 data for University of Arizona (unitid = 104179), Indiana University-Bloomington (unitid

151351), and The University of Texas at Austin (unitid = 228778). Compare the predicted values

to the reported TC for 2005. Which schools had actual total cost TC higher than predicted?

d. Add an indicator variable for each different university except the first, which is the reference group.

Test the joint significance of these indicator variables at the 5% level of significance using the F-test

given in equation (6.4). Are there individual differences among the universities?

e. Using the estimates from part (d), compute the normal and corrected predictors of total cost using

2005 data for University of Arizona (unitid = 104179), Indiana University-Bloomington (unitid

151351), and The University of Texas at Austin (unitid = 228778). Compare the predicted values

to the reported TC for 2005. Which schools had actual total cost TC higher than predicted?

7.23 In the STAR experiment (Section 7.5.3), children were randomly assigned within schools into three

types of classes: small classes with 13–17 students, regular-sized classes with 22–25 students, and

regular-sized classes with a full-time teacher aide to assist the teacher. Student scores on achievement

tests were recorded as well as some information about the students, teachers, and schools. Data for the

kindergarten classes is contained in the data file star5_small2.

a. Calculate the average of MATHSCORE for (i) students in regular-sized classrooms with full-time

teachers but no aide; (ii) students in regular-sized classrooms with full-time teachers and an aide;

and (iii) students in small classrooms. What do you observe about test scores in these three types

of learning environments?

b. Estimate the regression model MATHSCOREi = β1 + β2SMALLi + β3AIDEi + ei, where AIDE is

an indicator variable equaling 1 for classes taught by a teacher and an aide, and 0 otherwise. What

is the relation of the estimated coefficients from this regression to the sample means in part (a)?

Test the statistical significance of β3 at the 5% level.

c. To the regression in (b) add the additional explanatory variable TCHEXPER. Is this variable

statistically significant? Does its addition to the model affect the estimates of β2 and β3? Construct

a 95% interval estimate of expected math score for a student in a small class with a teacher having
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10 years of experience. Construct a 95% interval estimate of expected math score for a student in

a class with an aide and having a teacher with 10 years of experience. Calculate the least squares

residuals from this model, calling them EHAT . This variable will be used in the next part.

d. To the regression in (c), add the additional indicator variable FREELUNCH. Students from lower

income households receive a free lunch at school. Is this variable statistically significant? Does its

addition to the model affect the estimates of β2 and β3? What explains the sign of FREELUNCH?

Calculate the sample average of EHAT , from part (c), for students receiving a free lunch, and for

students who do not receive a free lunch. Are the residual averages consistent with the regression

that includes FREELUNCH?

e. To the model in (d), add interaction variables between FREELUNCH and SMALL, AIDE and

TCHEXPER. Are any of these individually significant? Test the joint significance of these three

interaction variables at the 5% level. What do you conclude?

f. Carry out a Chow test for the equivalence of the regression MATHSCOREi = β1 + β2SMALLi +
β3AIDEi + β4TCHEXPER + ei for students who receive a free lunch and those who do not receive

a free lunch. How does this test result compare to the test result in part (e)?

7.24 Many cities in California have passed Inclusionary Zoning policies (also known as below-market hous-

ing mandates) as an attempt to make housing more affordable. These policies require developers to sell

some units below the market price on a percentage of the new homes built. For example, in a develop-

ment of 10 new homes each with market value $850,000, the developer may have to sell 5 of the units

at $180,000. Means and Stringham (2012), and exercise 7.13, examine the effects of such policies on

house prices and number of housing units available using 1990 and 2000 census data on California

cities. Use the data file means for the following exercises.

a. Use LNPRICE and LNUNITS as dependent variables in difference-in-difference regressions, with

explanatory variables D, the indicator variable for year 2000; IZLAW, and the interaction of D and

IZLAW. Is the estimate of the treatment effect statistically significant, and of the anticipated sign?

b. To the regressions in (a) add the control variable LMEDHHINC. Interpret the estimate of the new

variable, including its sign and significance. How does this addition affect the estimates of the

treatment effect?

c. To the regressions in (b) add the variables 100(EDUCATTAIN), 100(PROPPOVERTY), and LPOP.

Interpret the estimates of these new variables, including their signs and significance. How do these

additions affect the estimates of the treatment effect?

d. Consider the differences-in-differences regression for LNPRICE

ln
(
PRICEit

)
= β1 + β2IZLAWi + β3Dt + δ

(
IZLAWi × Dt

)
+ θCITYi + eit

In this model, CITYi represents some unobservable characteristic of each city that stays constant

over time. Write this model for the year 2000
(
Dt = 1

)
. Write this model for the year 1990

(
Dt = 0

)
.

Subtract the expression for 1990 from the expression for 2000. The dependent variable is

DLNPRICEi =
[
ln
(
PRICEi,2000

)
− ln

(
PRICEi,2000

)]
≃ %ΔPRICEi∕100

which is the decimal equivalent of the percentage change in price for city i. What parameters and

variables remain on the right-hand side after the subtraction?

e. Regress DLNPRICEi against IZLAWi and compare the result to the LNPRICE regression in part (a).

7.25 Professor Ray C. Fair’s voting model was introduced in Exercise 2.23. He builds models that explain

and predict the U.S. presidential elections. See his website at http://fairmodel.econ.yale.edu/vote2016/

index2.htm and see in particular his paper entitled “Presidential and Congressional Vote-Share

Equations: November 2014 Update.” The basic premise of the model is that the Democratic

party’s share of the two-party [Democratic and Republican] popular vote is affected by a number

of factors relating to the economy, and variables relating to the politics, such as how long the

incumbent party has been in power, and whether the President is running for reelection. Data

for 1916–2016 are in the data file fair5. The dependent variable is VOTE = percentage share of

the popular vote won by the Democratic party. In addition to GROWTH and INFLAT , the explanatory

variables include the following:

INCUMB = 1 if there is a Democratic incumbent at the time of the election and −1 if there is a

Republican incumbent.

GOODNEWS = (number of quarters in the first 15 quarters of the administration in which the

growth rate of real per capita GDP is greater than 3.2% at an annual rate except for 1920,

1944, and 1948, where the values are zero) × INCUMB.
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DPER = 1 if the incumbent is running for election and 0 otherwise.

DUR = 0 if the Democratic party has been in power for one term, 1[−1] if the Democratic

[Republican] party has been in power for two consecutive terms, 1.25[−1.25] if the

Democratic [Republican] party has been in power for three consecutive terms, 1.50 for four

consecutive terms, and so on.

WAR = 1 for the elections of 1920, 1944, and 1948 and 0 otherwise.

a. Consider the regression model

VOTE = β1 + β2GROWTH + β3INFLAT + β4GOODNEWS + β5DPER
+ β6DUR + β7INCUMB + β8WAR + e

Discuss the anticipated effects of the dummy variable DPER.

b. The variable INCUMB is somewhat different than dummy variables we have considered. Write out

the regression function E(VOTE) when there is a Democratic incumbent. Write out the regression

function E(VOTE) when there is a Republican incumbent. Recall that the signs of GOODNEWS,

GROWTH, and INFLAT depend on INCUMB. Discuss the effects of this specification.

c. Use the data for the period 1916–2012 to estimate the proposed model. Discuss the estimation

results. Are the signs as expected? Are the estimates statistically significant? How well does the

model fit the data?

d. Use the regression result from part (c) to predict the value of VOTE for the 2016 election using the

actual values of the explanatory variables.

e. Use the regression result from part (c) to construct a 95% prediction interval for the value of VOTE
for the 2016 election using the actual values of the explanatory variables.

f. Use the data for the period 1916–2012 to estimate the proposed model. In election year 2016,

INCUMB = 1, DPER = 0, DUR = 1, and WAR = 0. Using GROWTH = 2.16, INFLAT = 1.37,

and GOODNEWS = 3, predict the vote in favor of the Democratic party candidate in 2016.

g. Using the results in (f ), predict the vote in favor of the Democratic party in 2016 if GOODNEWS
= 3, GROWTH = 2.16, and INFLAT = 0.

h. Using the results in (f ), predict the vote in favor of the Democratic party in 2016 if GOODNEWS
= 3, GROWTH = 4.0, and INFLAT = 0.

7.26 The data file br2 contains data on 1080 house sales in Baton Rouge, Louisiana, during July and

August 2005. The variables are: PRICE ($), SQFT (total square feet), BEDROOMS (number),

BATHS (number), AGE (years), OWNER (= 1 if occupied by owner; 0 if vacant or rented), TRADI-
TIONAL (= 1 if traditional style; 0 if other style), FIREPLACE (= 1 if present),WATERFRONT (= 1

if on waterfront).
a. Compute the data summary statistics and comment. In particular, construct a histogram of PRICE.

What do you observe?

b. Estimate a regression model explaining ln(PRICE/1000) as a function of the remaining variables.

Divide the variable SQFT by 100 prior to estimation. Comment on how well the model fits the

data. Discuss the signs and statistical significance of the estimated coefficients. Are the signs what

you expect? Give an exact interpretation of the coefficient of WATERFRONT.

c. Create a variable that is the product of WATERFRONT and TRADITIONAL. Add this variable to

the model and reestimate. What is the effect of adding this variable? Interpret the coefficient of this

interaction variable and discuss its sign and statistical significance.

d. It is arguable that the traditional style homes may have a different regression function from the

diverse set of nontraditional styles. Carry out a Chow test of the equivalence of the regression

models for traditional versus nontraditional styles. What do you conclude?

e. Predict the value of a traditional style house with 2500 square feet of area, that is 20 years old, which

is owner occupied at the time of sale, with a fireplace, but no pool, and not on the waterfront.

7.27 The three most important words in real estate are “location, location, location!” We explore this ques-

tion using 500, single-family home sales in Baton Rouge, LA from 2009 to 2013 in the data file

collegetown. See collegetown.def for variable definitions.

a. Estimate the log-log model ln(PRICE ) = β1 + β2ln(SQFT ) + δ1CLOSE + e. Interpret the

estimated coefficients of ln(SQFT) and CLOSE. Is the location variable CLOSE statistically

significant at the 5% level?

b. Estimate the log-log model ln(PRICE ) = β1 + β2ln(SQFT ) + δ2[CLOSE × ln(SQFT )] + e. Inter-

pret the estimated coefficients of ln(SQFT) and [CLOSE × ln(SQFT )]. Is the location variable

[CLOSE × ln(SQFT )] statistically significant at the 5% level?
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c. Estimate the log-log model

ln(PRICE ) = β1 + β2 ln(SQFT ) + δ1CLOSE + δ2[CLOSE × ln(SQFT )] + e

Are the location variables CLOSE and [CLOSE × ln(SQFT )] individually and jointly statistically

significant at the 5% level?

d. Using the model in (c), predict the prices of two houses with 2500 square feet, one close to the

university and another that is not close. Use the corrected predictor.

e. Add FIREPLACE, TWOSTORY , and OCCUPIED to the model in (c). How do these features affect

the price of a house?

f. Carry out a Chow test for the log-log model, comparing houses that are close to the university

to those that are not close, using explanatory variables ln(SQFT), FIREPLACE, TWOSTORY, and

OCCUPIED. What is the p-value of the test?

7.28 How much of an incumbency advantage do winners in U.S. House elections enjoy? This is the topic of

a paper by David S. Lee (2008) “Randomized experiments from nonrandom selection in U.S. House

elections,” Journal of Econometrics, 142(2), 675–697. Lee uses a regression discontinuity approach

to estimate the effect. There are 435 Congressional districts in the United States and elections are held

every 2 years. Representatives serve a term of 2 years. We employ a subset of Lee’s data. The data

file rddhouse_small has 1200 observations. See the rddhouse_small.def for data details. The data file

rddhouse is larger. The forcing variable is SHARE, which is the Democratic share of the votes in a

election in year t minus 0.50, so that SHARE is the Democratic margin of victory. The outcome of

interest is the Democratic share of the vote in the next election, SHARENEXT .

a. Create a scatter plot with SHARE on the horizontal axis and SHARENEXT on the vertical axis.

Does there appear to be positive relationship, an inverse relationship, or no relationship?

b. The dummy variable D = 1 if SHARE > 0 and D = 0 if SHARE < 0. Estimate the regression model

with SHARENEXT as dependent variable, and SHARE, D, and SHARE × D as explanatory vari-

ables. Interpret the magnitudes, signs, and significance of the coefficients of D and SHARE × D.

Graph the fitted value from this regression against SHARE.

c. The variable BIN is the center of an interval of width 0.005, starting at −0.25. There are 100 bins

between −0.25 and 0.25. Define a “narrow” win or loss as being an election where the margin of

victory, or loss, is within the interval−0.005 to 0.005. Calculate the sample means of SHARENEXT
when BIN = −0.0025 and when BIN = 0.0025. Is the difference in means an estimate of the value

of incumbency? Explain how.

d. Treat the two groups created in (c) as two populations. Carry out a test of the difference between

the two population means using the test in Appendix C.7.2, Case 1. Using a two-tail test and the

5% level of significance, do we reject the equality of the two population means, or not?

e. The variables SHARE2, SHARE3, and SHARE4 are SHARE raised to the second, third, and fourth

power, respectively. Estimate the regression model with SHARENEXT as dependent variable, with

explanatory variables SHARE and its powers, D and D times SHARE and its powers. Interpret the

magnitudes, signs, and significance of the coefficients of D, and D times SHARE.

f. Graph the fitted value from the regression in (e) against SHARE. Is the fitted line similar to the one

in (b)?

g. Estimate the regression with SHARENEXT as dependent variable with explanatory variables

SHARE and its powers, for the observations when D = 0. Reestimate the regression for the

observations when D = 1. Compare these results to those in (e).

h. The variable BIN in part (c) was created using the equation BIN = SHARE −mod(SHARE, 0.005) +
0.0025, where “mod” is the “modulus operator,” a common software function. In particular,

mod(x, y) = x − y × floor(x∕y) where the operator “floor” rounds the argument down to the next

integer. Explain how this operator works in this application to create “bins” of width 0.005.

7.29 How much of an incumbency advantage do winners in U.S. Senate elections enjoy? This issue is

examined by Matias D. Cattaneo, Brigham R. Frandsen and Rocío Titiunik (2015) “Randomization

Inference in the Regression Discontinuity Design: An Application to Party Advantages in the U.S.

Senate, Journal of Causal Inference, 3(1): 1–24.32 As they describe (p. 11): “Term length in the

U.S. Senate is 6 years and there are 100 seats. These Senate seats are divided into three classes of

............................................................................................................................................................

32Also in “Robust Data-Driven Inference in the Regression-Discontinuity Design,” by Sebastian Calonico, Matias D.

Cattaneo and Rocio Titiunik, Stata Journal 14(4): 909–946, 4th Quarter 2014.
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roughly equal size (Class I, Class II, and Class III), and every 2 years only the seats in one class are

up for election. As a result, the terms are staggered: In every general election, which occurs every

2 years, only one-third of Senate seats are up for election. Each state elects two senators in different

classes to serve a 6-year term in popular statewide elections. Since its two senators belong to different

classes, each state has Senate elections separated by alternating 2-year and 4-year intervals.” We

employ a subset of their data, contained in the file rddsenate. See rddsenate.def for data details. The

forcing variable is MARGIN, which is the Democratic share of the votes in an election in year t minus

50: it is the Democratic margin of victory. The outcome of interest is the Democratic share of the vote

in the next election for that Senate seat, VOTE.

a. Create a scatter plot with MARGIN on the horizontal axis and VOTE on the vertical axis. Does

there appear to be a positive relationship, an inverse relationship, or no relationship?

b. The dummy variable D = 1 if MARGIN > 0 and D = 0 if MARGIN < 0. Estimate the regression

model with VOTE as dependent variable, and MARGIN, D, and MARGIN × D as explanatory vari-

ables. Interpret the magnitudes, signs, and significance of the coefficients of D and MARGIN × D.

Graph the fitted value from this regression against MARGIN.

c. The variable BIN is the center of an interval of width 5, starting at −97.5 and ending at 102.5.

Define a “narrow” win or loss as being an election where the margin of victory, or loss, is within the

interval −2.5 to 2.5. Calculate the sample means of VOTE when BIN = −2.5 and when BIN = 2.5.

Is the difference in means an estimate of the value of incumbency? Explain how.

d. Treat the two groups created in (c) as two populations. Carry out a test of the difference between

the two population means using the test in Appendix C.7.2, Case 1: Using a two-tail test and the

5% level of significance, do we reject the equality of the two population means, or not?

e. The variables MARGIN2, MARGIN3, and MARGIN4 are MARGIN raised to the second, third, and

fourth powers, respectively. Estimate the regression model with VOTE as dependent variable, with

explanatory variables MARGIN and its powers, D and D times MARGIN and its powers. Interpret

the magnitudes, signs, and significance of the coefficients of D and D times MARGIN.

f. Graph the fitted value from the regression in (e) against MARGIN. Is the fitted line similar to the

one in (b)?

g. How would the results of (e) compare to the regression with VOTE as dependent variable with

explanatory variables MARGIN and its powers, for the observations when D = 0. What if the

regression was estimated for the observations when D = 1?

7.30 What effect does having public health insurance have on the number of doctor visits a person has

during a year? Using 1988 data, rwm88_small, from Germany we will explore this question. The data

file rwm88 contains more observations. The data were used by Regina T. Riphahn, Achim Wambach,

and Andreas Million, “Incentive Effects in the Demand for Health Care: A Bivariate Panel Count Data

Estimation,” Journal of Applied Econometrics, Vol. 18, No. 4, 2003, pp. 387–405.

a. Construct a histogram of DOCVIS. How many doctor visits do most patients in the survey have dur-

ing the year? What are the mean and median number of doctor visits? What is the 90th percentile?

b. Test the null hypothesis that the population mean number of doctor visits for those with public

insurance is the same as those who do not have public insurance. Use the 5% level of significance

and a one-tail test.

c. Estimate the regression model with dependent variable DOCVIS and explanatory variables

FEMALE, HHKIDS, MARRIED, SELF, EDUC2, HHNINC2. Comment on the signs and

significance of these predictor variables.

d. Estimate the regression model with dependent variable DOCVIS and explanatory variables

FEMALE, HHKIDS, MARRIED, SELF, EDUC2, HHNINC2 separately for those with public

insurance and those who do not have public insurance. Use equation (7.37) to obtain the estimate

of the average treatment effect of public insurance.

e. Estimate the regression model with dependent variable DOCVIS and the explanatory variables

FEMALE, HHKIDS, MARRIED, SELF, EDUC2, HHNINC2 in “deviation from the mean” form.

That is, for each variable x create the variable x̃ = x − x, where x is the sample mean. Compare

these results to those in (c).

f. Estimate the regression model with dependent variable DOCVIS and the explanatory variables

FEMALE, HHKIDS, MARRIED, SELF, EDUC2, HHNINC2, along with PUBLIC and PUBLIC
times each of the variables in deviation about the mean form. What is the estimated average treat-

ment effect? Is it statistically significant at the 5% level?



�

� �

�

366 CHAPTER 7 Using Indicator Variables

Appendix 7A Details of Log-Linear Model

Interpretation
You may have noticed that in Section 7.3, while discussing the interpretation of the log-linear

model, we omitted the error term, and we did not discuss the regression function E(WAGE|𝐱).
To do so, we make use of the properties of the log-normal distribution in Appendix B.3.9 and

discussed in Problem 7.11. There we noted that for the log-linear model ln(y) = β1 + β2x + e, if

the error term e ∼ N
(
0, σ2

)
, then the expected value of y is

E(y|x) = exp
(
β1 + β2x + σ2∕2

)
= exp

(
β1 + β2x

)
× exp

(
σ2∕2

)

Starting from this equation, we can explore the interpretation of dummy variables and interaction

terms.

Let D be a dummy variable. Adding this to our log-linear model, we have ln(y) = β1 + β2x +
δD + e and

E(y|x) = exp
(
β1 + β2x + δD

)
× exp

(
σ2∕2

)

If we let E
(
y1|𝐱

)
and E

(
y0|𝐱

)
denote the cases when D = 1 and D = 0, respectively, then we can

compute their percentage difference as

%ΔE(y|x) = 100

[
E
(
y1|x

)
− E

(
y0|x

)

E
(
y0|x

)

]

%,

= 100

[
exp

(
β1 + β2x + δ

)
× exp

(
σ2∕2

)
− exp

(
β1 + β2x

)
× exp

(
σ2∕2

)

exp
(
β1 + β2x

)
× exp

(
σ2∕2

)

]

%

= 100

[
exp

(
β1 + β2x

)
exp(δ) − exp

(
β1 + β2x

)

exp
(
β1 + β2x

)

]

% = 100
[
exp(δ) − 1

]
%

The interpretation of dummy variables in log-linear models carries over to the regression function.

The percentage difference in the expected value of y is 100[exp(δ) − 1]%.

Appendix 7B Derivation of the Differences-in-

Differences Estimator
To verify the expression for the differences-in-differences estimator in (7.14), note that the numer-

ator can be expressed as

N∑

i=1

(

di − d
)(

yi − y
)
=

N∑

i=1

di
(
yi − y

)
− d

N∑

i=1

(
yi − y

)

=
N∑

i=1

di
(
yi − y

)
[

using
N∑

i=1

(
yi − y

)
= 0

]

=
N∑

i=1

diyi − y
N∑

i=1

di

= N1y1 − N1y
= N1y1 − N1

(
N1y1 + N0y0

)
∕N

= N0N1

N
(
y1 − y0

) [
using N = N1 + N0

]
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The denominator of b2 is

N∑

i=1

(

di − d
)2

=
N∑

i=1

d2
i − 2d

N∑

i=1

di +
N∑

i=1

d
2

=
N∑

i=1

di − 2dN1 + Nd
2

[

using d2
i = di and

N∑

i=1

di = N1

]

= N1 − 2
N1

N
N1 + N

(
N1

N

)2

= N0N1

N
[
using N = N0 + N1

]

Combining the expressions for numerator and denominator, we obtain the result for the difference

estimator in (7.14).

Appendix 7C The Overlap Assumption: Details
To see the impact of the difference of means, x1 − x0, on the average treatment effect we begin

with the separate regressions on the control and treatment groups used to compute the average

treatment effect in Section 7.6.4, α̂0 + β̂0xi and α̂1 + β̂1xi. Using the property of least squares fitted

lines, the estimated intercepts are

α̂0 = y0 − β̂0x0 and α̂1 = y1 − β̂0x1

We can express the sample mean of the control variable as

x = N−1
N∑

i=1

xi = N−1

[
N0∑

i=1

xi +
N∑

i=N0+1

xi

]

= N−1
[
N0x0 + N1x1

]

=
N0x0

N
+

N1x1

N
= 𝑓0x0 + 𝑓1x1

The control variable sample mean x is a weighted average of x0 and x1, where the weight f 0 is

the fraction of the observations in the control group and f 1 is the fraction of observations in the

treatment group. Then

τ̂ATE =
(
α̂1 − α̂0

)
+
(

β̂1 − β̂0

)

x

=
[(

y1 − β̂1x1

)

−
(

y0 − β̂0x0

)]

+
(

β̂1 − β̂0

)(
𝑓0x0 + 𝑓1x1

)

=
(
y1 − y0

)
− β̂1x1 + β̂0x0 + 𝑓0β̂1x0 + 𝑓1β̂1x1 − 𝑓0β̂0x0 − 𝑓1β̂0x1

=
(
y1 − y0

)
+
(

𝑓1β̂1x1 − β̂1x1

)

−
(

𝑓0β̂0x0 − β̂0x0

)

+ 𝑓0β̂1x0 − 𝑓1β̂0x1

=
(
y1 − y0

)
+
(
𝑓1 − 1

)
β̂1x1 −

(
𝑓0 − 1

)
β̂0x0 + 𝑓0β̂1x0 − 𝑓1β̂0x1

But

𝑓1 − 1 =
N1 −

(
N0 + N1

)

N0 + N1

= −
N0

N0 + N1

= −𝑓0

and

𝑓0 − 1 =
N0 −

(
N0 + N1

)

N0 + N1

= −
N1

N0 + N1

= −𝑓1

Therefore,

τ̂ATE =
(
y1 − y0

)
− 𝑓0β̂1x1 + 𝑓1β̂0x0 + 𝑓0β̂1x0 − 𝑓1β̂0x1

=
(
y1 − y0

)
+
(

𝑓0β̂1 + 𝑓1β̂0

)

x0 −
(

𝑓0β̂1 + 𝑓1β̂0

)

x1

=
(
y1 − y0

)
−
(

𝑓0β̂1 + 𝑓1β̂0

)(
x1 − x0

)
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CHAPTER 8

Heteroskedasticity

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain the meaning of heteroskedasticity and

give examples of data sets likely to exhibit

heteroskedasticity.

2. Explain how and why plots of least squares

residuals can reveal heteroskedasticity.

3. Specify a variance function and use it to test for

heteroskedasticity with (a) a Breusch–Pagan test

and (b) a White test.

4. Test for heteroskedasticity using a

Goldfeld–Quandt test applied to (a) two

subsamples with potentially different variances

and (b) a model where the variance is

hypothesized to depend on an explanatory

variable.

5. Describe and compare the properties of the least

squares and generalized least squares

estimators when heteroskedasticity exists.

6. Compute heteroskedasticity-consistent

standard errors for least squares.

7. Describe how to transform a model to eliminate

heteroskedasticity.

8. Compute generalized least squares estimates for

heteroskedastic models where (a) the variance is

known except for the proportionality constant

σ2, (b) the variance is a function of explanatory

variables and unknown parameters, and (c) the

sample is partitioned into two groups with

different variances.

9. Explain why the linear probability model

exhibits heteroskedasticity.

10. Compute generalized least squares estimates of

the linear probability model.

K E Y W O R D S

Breusch–Pagan test

generalized least squares

Goldfeld–Quandt test

grouped heteroskadasticity

heteroskedasticity

heteroskedasticity-consistent

standard errors

homoskedasticity

Lagrange multiplier test

linear probability model

regression function

residual plot

robust standard errors

skedastic function

transformed model

variance function

weighted least squares

White test

368
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8.1 The Nature of Heteroskedasticity
In Chapter 2, we discussed the relationship between household food expenditure and household

income. We proposed the simple population regression model

FOOD_EXPi = β1 + β2INCOMEi + ei (8.1)

Given the parameter values, β1 and β2, we can predict food expenditures for households with any

income. Income is an important factor in households’ decisions about weekly food expenditure,

but there are many other factors entering a particular household’s decisions. The random error

ei represents the collection of all the factors other than income that affect household expenditure

on food.

The assumption of strict exogeneity says that when using information on household income

our best prediction of the random error is zero. If sample values are randomly selected, then the

technical expression for this assumption is that given income the conditional expected value of

the random error ei is zero, E
(
ei|INCOMEi

)
= 0. If the assumption of strict exogeneity holds then

the regression function is

E
(
FOOD_EXPi|INCOMEi

)
= β1 + β2INCOMEi

The slope parameter β2 describes how expected (population mean, or average) household food

expenditure changes when household income increases by $100, holding all else constant.

The intercept parameter β1 measures average expenditure on food for a household with no

income in a week.

The discussion above focuses on the level, or amount, of food expenditure. We now ask,

“How much variation in household food expenditure is there at different levels of income?”

The U.S. median household income is about $1000 a week. For such a household, the expected

weekly food expenditure is E
(
FOOD_EXPi|INCOME = 10

)
= β1 + β2(10). If we observe many

households with the median income, we would observe a wide range of actual weekly food expen-

ditures. The variation arises because different households have differing tastes and preferences,

and they have differing demographic characteristics, and life circumstances. Readers who are stu-

dents, and living on typical student incomes, how much variation is there in your food expenditure

from week to week? We suspect that regardless of your tastes and preferences you have calcu-

lated very carefully how much you can afford and stick closely to a spending plan each week. In

general, households with low incomes have little scope for wide variations in food expenditures

from week to week because of their income constraint. On the other hand, households with a large

weekly income have more food choices. Some high-income households may choose champagne,

caviar, and steaks, but others may choose beer, rice, pasta, and beans. We can expect to observe

larger variations in weekly food expenditures by households with large incomes.

Holding income constant, and given our model, what is the source of the variation in house-

hold food expenditures? It must be from the random error, the collection of factors, other than

income, that influence food expenditure. As we observe different households at a given level of

income, there are variations in food expenditures because randomly sampled households have

different tastes and preferences and differ in many other ways as well. Recall that the random

error in the regression is the difference between any observation on the outcome variable and its

conditional expectation, that is

ei = FOOD_EXPi − E
(
FOOD_EXPi|INCOMEi

)
(8.2)

If the assumption of strict exogeneity holds, then the population average value of the random

errors is E
(
ei|INCOMEi

)
= E
(
ei
)
= 0. A positive random error corresponds to an observation in

which food expenditure is greater than expected, while a negative random error corresponds to

an observation in which food expenditure is less than expected.

Another way of describing the greater variation in food expenditures for high-income house-

holds is to say the probability of observing large positive or negative random errors is higher
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x1

x2

x

y

E(y|x) = β1 + β2 x

Probability
density
function

f(y|x)

f(y1|x1)

f(y2|x2)

FIGURE 8.1 Heteroskedastic errors.

for high incomes than it is for low incomes. To illustrate this idea, examine Figure P.5 in the

Probability Primer. First, suppose the probability distribution of the random errors is N(0,1), the

solid curve. What is the probability of observing a random value of ei greater than two? Using

Statistical Table 1, P
(
ei > 2

)
= P(Z > 2) = 0.0228. Now, suppose the probability distribution of

the random errors is N(0, 4), the dot-dash curve. What is the probability of observing a random

value of ei greater than 2? Using Statistical Table 1, P
(
ei > 2

)
= P(Z > 1) = 0.1587. The random

error ei has a higher probability of taking on a large value if its variance is large. In the context

of the food expenditure example, we can capture the effect we are describing by assuming that

var
(
ei|INCOMEi

)
increases as income increases. Food expenditure can deviate further from its

mean, or expected value, when income is large.

In such a case, when the error variances for all observations are not the same, we say

that heteroskedasticity exists. Alternatively, we say the random error ei is heteroskedastic.

Conversely, if all observations come from probability density functions with the same variance,

we say that homoskedasticity exists, and ei is homoskedastic. Heteroscedastic, homoscedastic,

and heteroscedasticity are commonly used alternative spellings.

Figure 8.1 illustrates the heteroskedastic assumption. Let yi = FOOD_EXPi and

xi = INCOMEi. At x1, the food expenditure probability density function f
(
y1|x1

)
is such that y1

will be close to E
(
y1|x1

)
with high probability. When we move to the larger value x2, the proba-

bility density function f
(
y2|x2

)
is more spread out; we are less certain about where y2 might fall,

and much larger or smaller values than the average E
(
y2|x2

)
are possible. When homoskedasticity

exists, the probability density function for the errors does not change as x changes, as we illustrated

in Figure 2.3.

8.2 Heteroskedasticity in the Multiple

Regression Model
The existence of heteroskedasticity is a violation of one of our least squares assumptions listed

in Section 5.1. For the multiple regression model yi = β1 + β2xi2 + · · · + βKxiK + ei, i = 1,… ,N,

assumption MR3 is

var
(
ei|X
)
= var

(
yi|X
)
= σ2

the conditional variance of the random error, and the dependent variable, is σ2, a constant.

Assumption MR3 is that the random error term is conditionally homoskedastic. The simplest
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statement of the conditional heteroskedasticity assumption is

var
(
ei|X
)
= var

(
yi|X
)
= σ2

i (8.3)

The change is very subtle, the error variance σ2
i now has a subscript, i, indicating that it is not

always the same constant and may change from observation to observation, i = 1,… ,N. At the

extreme, the error is heteroskedastic even if only one random error has a variance different than

the other N − 1 random errors. Generally, however, we think of the problem as being more per-

vasive when it is present.

Assumptions MR1–MR5 apply to any type of regression, using time-series or cross-sectional

data. Our notation X represents all N observations on K − 1 explanatory variables plus a constant

term. Heteroskedasticity often arises when using cross-sectional data. The term cross-sectional

data refers to having data on a number of economic units such as firms or households, at a given
point in time. The household data on income and food expenditure fall into this category. Other

possible examples include data on costs, outputs, and inputs for a number of firms, and data on

quantities purchased and prices for some commodity, or commodities, in a number of retail estab-

lishments. Cross-sectional data usually involve observations on economic units of varying sizes.

For example, data on households will involve households with varying numbers of household

members and different levels of household income. With data on a number of firms, we might

measure the size of the firm by the quantity of output it produces. Frequently, the larger the firm,

or the larger the household, the more difficult it is to explain the variation in some outcome vari-

able yi by the variation in a set of explanatory variables. Larger firms and households are likely to

be more diverse and flexible with respect to the way in which values for yi are determined. What

this means for the linear regression model is that, as the size of the economic unit becomes larger,

there is more uncertainty associated with the outcomes yi. We model this greater uncertainty by

specifying a conditional error variance that is larger, the larger the size of the economic unit.

Heteroskedasticity is not a property that is necessarily restricted to cross-sectional data. With

time-series data, where we have data over time on an economic unit, such as a firm, a household,

or even a whole economy, it is possible that the conditional error variance will change. This

would be true if there was an external shock or change in circumstances that created more or less

uncertainty about y.

For simplification, in the remainder of this chapter, we assume that the errors are uncorrelated

and that heteroskedasticity is an observation-by-observation problem and that the conditional

variance of the ith observation’s random error ei is unrelated to the jth observation. In the con-

text of the cross-sectional data food expenditure example, we are ruling out the case in which the

variability in the random error component for the ith household is connected to or explained by

the characteristics of the jth household. In a time-series regression context, we are ruling out the

case when the error variation at time t is related to conditions in the past, at time t − s. Can we

always rule out these exceptions? No, we cannot. In the cross-sectional data context, we may find

that households drawn from some geographical regions, or neighborhoods, are similar, so that

the error variation for neighboring households might be similar, or connected. In the time-series

context, we most certainly cannot rule out continuous periods of stability, perhaps many weeks at

a time, and periods of instability that can similarly last many weeks or months, meaning that

the error variation at time t is related to the error variation at times t − 1, t − 2, and so on.

For now, however, we will rule out these interesting cases.

8.2.1 The Heteroskedastic Regression Model
The multiple regression model is yi = β1+ β2xi2 + · · · + βKxiK + ei. We assume we have a ran-

dom sample so that the ith observation is statistically independent of the jth observation. Let

xi =
(
1, xi2,… , xiK

)
denote the values of the K explanatory variables for the ith observation.

The heteroskedasticity assumption in (8.3) becomes

var
(
yi|xi
)
= var

(
ei|xi
)
= σ2h

(
xi
)
= σ2

i (8.4)
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where h
(
xi
)
> 0 is a function of xi that is sometimes called the skedastic function,1 and σ2

> 0 is

a constant. If h
(
xi
)
= 1, then the conditional variance is homoskedastic. If h

(
𝐱i
)

is not constant,

then the conditional variance is heteroskedastic. For example, when h
(
xi
)
= xik the conditional

variance becomes var
(
ei|xi
)
= σ2xik, the error variance is proportional to the kth explanatory

variable xik. Because variances must be positive, for the proportional heteroskedasticity model to

work h
(
xi
)
= xik > 0. In (8.4) we assume the conditional variance depends on the values of some

or all of the explanatory variables in the regression equation.

This chapter is concerned with the consequences of a variance assumption like (8.4). What

are the consequences for the properties of least squares estimator? Is there a better estimation

technique? How do we detect the existence of heteroskedasticity?

E X A M P L E 8.1 Heteroskedasticity in the Food Expenditure Model

We can further illustrate the nature of heteroskedasticity and

at the same time demonstrate an informal way of detecting

heteroskedasticity using the food expenditure data. Using the

N = 40 observations in the data file food, the OLS estimates

are

FOOD_EXPi

⋀

= 83.42 + 10.21 INCOMEi

A graph of this fitted line, along with all the observed

expenditure–income points, appears in Chapter 2, Figure 2.8.

Notice that, as income grows, the prevalence of data points

that deviate further from the estimated mean function

increases. There are more points scattered further away from

the line as income gets larger. Another way of describing this

feature is to say that there is a tendency for the least squares

residuals, defined by

êi = FOOD_EXPi − 83.42 − 10.21INCOMEi

to increase in absolute value as income grows. The plot of

the absolute value of the residuals, ||êi
|
|, versus income in

Figure 8.2 shows this quite clearly. The plot of the calculated

residuals, êi, versus income in Figure 8.3 shows the charac-

teristic “spray” pattern shown in Chapter 4, Figure 4.7(b).

Figure 4.7(a) shows the random scatter we anticipate if the

errors are conditionally homoskedastic. Figures 4.7(b)–(d),

spray, funnel, and bowtie, are patterns we might observe

when the errors are conditionally heteroskedastic.

Since the observable least squares residuals
(
êi
)

are

the analogues of the unobservable errors
(
ei
)
, Figures 8.2

and 8.3 also suggest that the unobservable errors tend to

increase in absolute value as income increases. That is,

the variation of food expenditure around the conditional

mean food expenditure E
(
FOOD_EXPi|INCOMEi

)
=

β1 + β2INCOMEi, and variation in the random error term,

increase as income increases. The conditional variance

var
(
ei|INCOMEi

)
= σ2h

(
INCOMEi

)
, where h

(
INCOMEi

)

is an increasing function of income. Possible variance

functions include

var
(
ei|INCOMEi

)
= σ2INCOMEi

0

0

5 10

100

200

15 20 25 30 35 40

Weekly household income

|ei|

FIGURE 8.2 Absolute value of food expenditure residuals
vs. income.

............................................................................................................................................

1See A. Colin Cameron and Pravin K. Trivedi (2010) Microeconometrics Using Stata, Revised Edition, Stata Press,

p. 153.
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FIGURE 8.3 Least squares food expenditure residuals
plotted against income.

or

var
(
ei|INCOMEi

)
= σ2INCOME2

i

These are consistent with the hypothesis that we posed earlier,

namely, that the mean food expenditure function is better at

explaining food expenditure for low-income households than

it is for high-income households.

Plotting of least squares residuals is an informal way

of detecting heteroskedasticity. Later in the chapter, in

Section 8.6, we consider formal test procedures. First,

however, we examine the consequences of heteroskedasticity

for least squares estimation.

8.2.2 Heteroskedasticity Consequences for the OLS
Estimator

Since the existence of heteroskedasticity violates the usual least squares assumption

var
(
ei|xi
)
= σ2, we need to ask what consequences this violation has for our least squares

estimator, and what we can do about it. There are two implications:

1. The least squares estimator is still a linear and unbiased estimator, but it is no longer best.

There is another estimator with a smaller variance.

2. The standard errors usually computed for the least squares estimator are incorrect. Confi-

dence intervals and hypothesis tests that use these standard errors may be misleading.

Let’s first consider the simple linear regression model with homoskedasticity

yi = β1 + β2xi + ei, with var
(
ei|x
)
= σ2 (8.5)

We showed in Chapter 2 that the conditional variance of the least squares estimator for b2 is

var
(
b2|x
)
= σ2
/ N∑

i=1

(
xi − x

)2
(8.6)

Now suppose the error variances for each observation are different and that we recognize this

difference by putting a subscript i on σ2, so that we have

yi = β1 + β2xi + ei, with var
(
ei|x
)
= σ2

i (8.7)
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In Appendix 8A, we show that under the heteroskedastic specification in (8.7) the least squares

estimator is unbiased with conditional variance

var
(
b2|x
)
=

[
N∑

i=1

(
xi − x

)2

]−1 [ N∑

i=1

(
xi − x

)2σ2
i

][
N∑

i=1

(
xi − x

)2

]−1

(8.8)

If the errors are homoskedastic, then equation (8.8) reduces to the usual OLS estimator variance

in equation (8.6). If the errors are heteroskedastic then (8.8) is correct and (8.6) is not. This is

a practical problem because your computer software has programmed into it the estimated vari-

ances and covariance of the least squares estimator under homoskedasticity, given in Chapter 2,

equations (2.20)–(2.22). This in turn means that if the errors are heteroskedastic, the usual stan-

dard errors in equations (2.23)–(2.24) are incorrect. Using incorrect standard errors in t-tests and

confidence intervals may lead us to faulty conclusions. If we proceed to use the least squares esti-

mator and its usual standard errors when var
(
ei
)
= σ2

i , we will be using an estimate of (8.6) to

compute the standard error of b2 when we should be using an estimate of (8.8).

8.3 Heteroskedasticity Robust Variance

Estimator
Calculation of a correct estimate for the OLS variance (8.8) is astonishingly simple, although

the theory leading to it is not. Simply replace σ2
i by
[
N∕(N − 2)

]
ê2

i , the squared OLS residuals

multiplied by an inflation factor.2 The White heteroskedasticity-consistent estimator (HCE)
that is valid in large samples for the simple regression model is

var
⋀(

b2

)
=
[
∑(

xi − x
)2
]−1{

∑
[
(
xi − x

)2
( N

N − 2

)

ê2

i

]}[
∑(

xi − x
)2
]−1

(8.9)

where êi is the least squares residual from the regression model, yi = β1 + β2xi + ei. The estimator

is named after econometrician Halbert White who developed the idea. This variance estimator

is robust because it is valid whether heteroskedasticity is present or not. Thus, if we are not

sure whether the random errors are heteroskedastic or homoskedastic, then we can use a robust

variance estimator and be confident that our standard errors, t-tests, and interval estimates are

valid in large samples.

The formula in equation (8.9) has a lovely symmetry and is one illustration of

a variance sandwich. Let C =
[∑(

xi − x
)2
]−1

be the “outside Crust” and let A =
{∑[(

xi − x
)2
( N

N − 2

)

ê2

i

]}

be “Any filling.” Then our variance sandwich is any filling
between two crusts, or var

⋀(
b2

)
= CAC. Modern Econometrics offers many such sandwiches.

Equations (8.8) and (8.9) can be simplified, but we prefer to leave them as is to emphasize the

“sandwich” form. Also the matrix approaches to multiple regression in your future econometrics

courses will use the sandwich form.

E X A M P L E 8.2 Robust Standard Errors in the Food Expenditure Model

Most regression packages include an option for calculating

standard errors using White’s estimator. If we do so for the

food expenditure example, we obtain

FOOD_EXP
⋀

= 83.42 + 10.21INCOME
(27.46) (1.81) (White robust se)
(43.41) (2.09) (incorrect OLS se)

In this case, ignoring heteroskedasticity and using incorrect

standard errors, based on the usual formula in (8.6), tends to

understate the precision of estimation; we tend to get

confidence intervals that are wider than they should be.

Specifically, following the result in (3.6) in Chapter 3, we

can construct corresponding 95% confidence intervals for β2.

............................................................................................................................................

2See Appendix 8C for the logic of this inflation, and development of other versions of the robust variance.
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White Robust se:

b2 ± tcse
(
b2

)
= 10.21 ± 2.024 × 1.81 =[6.55, 13.87]

Incorrect OLS se:

b2 ± tcse
(
b2

)
= 10.21 ± 2.024 × 2.09 =[5.97, 14.45]

If we ignore heteroskedasticity, we estimate that β2 lies

between 5.97 and 14.45. When we recognize the existence of

heteroskedasticity, our information is judged more precise,

and using the robust standard error we estimate that β2

lies between 6.55 and 13.87. A caveat here is that the sample

is small, which does mean that the robust standard error

formula we have provided may not be as accurate as if the

sample were large.

White’s estimator for the standard errors helps us avoid computing incorrect interval estimates

or incorrect values for test statistics in the presence of heteroskedasticity. However, it does not

address the first implication of heteroskedasticity that we mentioned at the beginning of this

section, that the least squares estimator is no longer best. However, failing to use the “best” esti-

mator may not be too grave a sin if estimates are sufficiently precise for useful economic analysis.

Many cross-sectional data sets have thousands of observations, resulting in robust standard errors

that are small, making interval estimates narrow and t-tests powerful. Nothing further is required

in these cases. If, however, your estimates are not sufficiently precise for economic analysis, then a

better, more efficient, estimator is called for. In order to use such an estimator we must specify the

skedastic function h
(
xi
)
> 0, a function of xi and also perhaps other variables, that describes the

pattern of conditional heteroskedasticity. In the next section, we describe an alternative estimator

that has a smaller variance than the least squares estimator.

8.4 Generalized Least Squares: Known Form

of Variance
To begin, consider the simple regression model yi = β1 + β2xi + ei. Let’s assume the data are

obtained by random sampling, so that the observations are statistically independent of one another,

that E
(
ei|xi
)
= 0, and that the heteroskedasticity assumption is

var
(
ei|xi
)
= σ2h

(
xi
)
= σ2

i (8.10)

Although it is possible to obtain the White heteroskedasticity-consistent variance estimates by

simply assuming the error variances σ2
i can be different for each observation, to develop an esti-

mator that is better than the least squares estimator, we need to make a further assumption about

how the variances σ2
i change with each observation. This means making an assumption about

the skedastic function h
(
xi
)
. The further assumption is necessary because the best linear unbi-

ased estimator in the presence of heteroskedasticity, an estimator known as the generalized least
squares (GLS) estimator, depends on the unknown σ2

i . It is not practical to estimate N unknown

variances σ2
1
, σ2

2
,… , σ2

N with only N observations without making a restrictive assumption about

how the σ2
i change. Thus, to make the GLS estimator operational some structure is imposed on

σ2
i . Alternative structures are considered in this and the following section. Details of the GLS

estimator and the issues involved will become clear as we work our way through these sections.

8.4.1 Transforming the Model: Proportional
Heteroskedasticity

Recall our earlier inspection of the least squares residuals for the food expenditure example.

The variation in the OLS residuals increases as income increases, which suggests that the error
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variance increases as income increases. One possible assumption for the variance σ2
i that has this

characteristic is

var
(
ei|xi
)
= σ2

i = σ
2h
(
xi
)
= σ2xi, xi > 0 (8.11)

That is, we assume that the variance of the ith error term σ2
i is given by a positive unknown

constant parameter σ2 multiplied by the positive income variable xi, so that var
(
ei|xi
)

is propor-
tional to income. We are assuming the skedastic function is h

(
xi
)
= xi. As explained earlier, in

economic terms this assumption implies that, for low levels of income
(
xi
)
, food expenditure

(
yi
)

will be clustered closer to the regression function E
(
yi|xi
)
= β1 + β2xi. Expenditure on food for

low-income households will be largely explained by the level of income. At high levels of income,

food expenditures can deviate more from the regression function. This means that there are likely

to be many other factors, such as specific tastes and preferences, that reside in the error term, and

that lead to a greater variation in food expenditure for high-income households.

The least squares estimator is not the best linear unbiased estimator when the errors are

heteroskedastic. Is there a best linear unbiased estimator under these circumstances? Yes there is!

The approach is to transform the model into one with homoskedastic errors. Leaving the basic

structure of the model intact, we turn the heteroskedastic error model into a homoskedastic error

model. After the transformation, applying OLS to the transformed model gives a best linear

unbiased estimator. These steps define the new GLS estimator.

Given the model of proportional heteroskedasticity in equation (8.11), begin by dividing both

sides of the original model in (8.7) by
√

xi

yi
√

xi
= β1

(

1
√

xi

)

+ β2

(
xi
√

xi

)

+
ei
√

xi
(8.12)

Define the transformed variables and transformed error as

y∗i =
yi
√

xi
, x∗i1 =

1
√

xi
, x∗i2 =

xi
√

xi
=
√

xi, e∗i =
ei
√

xi
(8.13)

so that (8.12) can be rewritten as

y∗i = β1x∗i1 + β2x∗i2 + e∗i (8.14)

The beauty of this transformed model is that the new transformed error term e∗i is homoskedastic.

To see this, recall equation (P.14) from the Probability Primer: If X is a random variable and a is

a constant, then var(aX) = a2var(X). Applying that rule here we have

var
(
e∗i |xi
)
= var

(
ei
√

xi

|
|
|
|
|
|

xi

)

= 1

xi
var
(
ei|xi
)
= 1

xi
σ2xi = σ2 (8.15)

Using the rules of expected values, the transformed error term will retain a zero conditional mean

E
(
e∗i |xi
)
= 0. As a consequence, we can apply OLS to the transformed variables, y∗i , x∗i1, and x∗i2

to obtain the best linear unbiased estimator for β1 and β2. Note that the transformed variables

y∗i , x∗i1, and x∗i2 are easy to create. An important difference between the original and transformed

models is that the transformed model no longer contains a constant term. In the original model,

xi1 = 1. In the transformed model, the variable x∗i1 = 1
/√

xi is no longer constant. You will have

to be careful to exclude the constant if your software automatically inserts one, but you can still

proceed. The transformed model is linear in the unknown parameters β1 and β2. These are the

original parameters that we are interested in estimating. They are unaffected by the transformation.

In short, the transformed model is a linear model to which we can apply OLS estimation. The

transformed model satisfies the conditions of the Gauss–Markov theorem, and the OLS estimators

defined in terms of the transformed variables are BLUE.
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To summarize, to obtain the best linear unbiased estimator for a model with heteroskedastic-

ity of the type specified in equation (8.11), var
(
ei|xi
)
= σ2

i = σ
2h
(
xi
)
= σ2xi:

1. Calculate the transformed variables given in (8.13).

2. Use OLS to estimate the transformed model given in (8.14), yielding estimates β̂1 and β̂2.

The estimates obtained in this way are the GLS estimates.

The GLS estimator is BLUE if the model assumption of proportional heteroskedasticity is

correct. Of course, we never know if our assumed skedastic function is correct or not. It is likely

that a thoughtfully chosen transformation will reduce the model heteroskedasticity. If, however,

the chosen transformation does not completely eliminate the heteroskedasticity, the GLS estimator

is linear and unbiased but not best, and the standard errors from the transformed model estimation

are incorrect. What then? Easy. Use White robust standard errors with the transformed data model

to obtain valid (in large samples) standard errors. Doing so we will have striven for a more effi-

cient estimator, but been cautious to present valid standard errors, t-stats, and interval estimates.

We illustrate this strategy in Example 8.3.

8.4.2 Weighted Least Squares: Proportional
Heteroskedasticity

One way of viewing the GLS estimator is as a weighted least squares (WLS) estimator. Recall

that the OLS estimates are those values of β1 and β2 that minimize the sum of squared errors

S
(
β1, β2|yi, xi

)
=

N∑

i=1

(
yi − β1 − β2xi

)2

The sum of squares function using the transformed data model (8.14) is

S
(
β1, β2|yi, xi

)
=

N∑

i=1

(
y∗i − β1x∗i1 − β2x∗i2

)2 =
N∑

i=1

(
yi
√

xi
− β1

1
√

xi
− β2

xi2
√

xi

)2

=
N∑

i=1

[

1
√

xi

(
yi − β1 − β2xi2

)
]2

(8.16)

=
N∑

i=1

(
yi − β1 − β2xi2

)2

xi

The squared errors are weighted by 1
/

xi. Recall that our variance assumption is var
(
ei|xi
)
= σ2xi.

When xi is smaller we are assuming the variance of the error is smaller and the data fall

closer to the regression function. These data are more informative about the location of

E
(
yi|xi
)
= β1 + β2xi. When xi is larger we are assuming the variance of the error is larger, and

the data may fall farther from the regression function. These data are less informative about the

location of E
(
yi|xi
)
= β1 + β2xi. Intuitively, it makes sense to “down weight” observations with

less information and weigh more heavily observations with more information. That is exactly

what the weighted sum of squares function (8.16) achieves. When xi is small, the data contain

more information about the regression function and the observations are weighted heavily. When

xi is large, the data contain less information and the observations are weighted lightly. In this

way, we take advantage of the heteroskedasticity to improve parameter estimation. On the other

hand, OLS estimation treats all observations as equally informative and equally important, as it

should under homoskedasticity.

Most software have a WLS or GLS option. If your software falls into this category, you do

not have to transform the variables before estimation, nor do you have to worry about omitting

the constant. The computer will do both the transforming and the estimating once you decipher

the software command. If you do the transforming yourself, that is, you create y∗i , x∗i1, and x∗i2,
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and apply OLS, be careful not to include a constant in the regression. As noted before, there is no

constant because x∗i1 ≠ 1.

E X A M P L E 8.3 Applying GLS/WLS to the Food Expenditure Data

In the food expenditure example, we assume var
(
ei|INCOMEi

)

= σ2
i = σ

2INCOMEi. Applying the generalized (weighted)

least squares procedure to our household expenditure data

yields the following GLS estimates:

FOOD_EXP
⋀

i = 78.68 + 10.45INCOMEi
(se) (23.79) (1.39)

(8.17)

That is, we estimate the intercept term as β̂1 = 78.68

and the slope coefficient that shows the response of food

expenditure to a change in income as β̂2 = 10.45. These

estimates are somewhat different from the least squares

estimates b1 = 83.42 and b2 = 10.21 that did not allow

for the existence of heteroskedasticity. It is important to

recognize that the interpretations for β1 and β2 are the

same in the transformed model in (8.14) as they are in

the untransformed model in (8.7). Transformation of the

variables is a technique for converting a heteroskedastic error

model into a homoskedastic error model, not as something

that changes the meaning of the coefficients.

The standard errors in (8.17), se
(

β̂1

)

= 23.79

and se
(

β̂2

)

= 1.39, are both lower than their least

squares counterparts that were calculated from White’s

robust standard errors, namely, se
(
b1

)
= 27.46 and

se
(
b2

)
= 1.81. Since GLS is a better estimation procedure

than least squares, we expect the GLS standard errors to

be lower. This statement needs to be qualified in two ways.

First, remember that standard errors are square roots of

–
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FIGURE 8.4 OLS- and GLS-transformed residuals.

estimated variances; in a single sample, the relative magni-

tudes of true variances may not always be reflected by their

corresponding variance estimates. Second, the reduction

in variance has come at the cost of making an additional

assumption, namely, that the error variances have the

structure given in (8.11).

The smaller standard errors have the advantage of pro-

ducing narrower, more informative confidence intervals. For

example, using the GLS results, a 95% confidence interval for

β2 is given by

β̂2 ± tcse
(

β̂2

)

= 10.451 ± 2.024 ×1.386 = [7.65, 13.26]

The least squares confidence interval computed using

White’s standard errors was [6.55, 13.87].

In order to obtain the GLS estimates, we assumed the

specific pattern of heteroskedasticity, namely var
(
ei|xi
)
=

σ2
i = σ

2h
(
xi
)
= σ2xi. We must ask ourselves whether

this assumption adequately represents the pattern of het-

eroskedasticity in the data. If so, then the transformed model

(8.14) should have homoskedastic errors. An informal check

is to compute the residuals from the transformed model and

plot them. That is, let ê∗i = y∗i − β̂1x∗i1 − β̂2x∗i2. If you have used

a WLS/GLS software, then the residuals it saves are, most

likely, the GLS residuals êi,WLS = yi − β̂1 − β̂2xi2. In this case,

ê∗i = êi,WLS

/√
xi. In Figure 8.4 we plot the residuals from the

transformed model and the OLS residuals against household

income.
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It is evident that our transformation has substantially

reduced the “spray” pattern indicating heteroskedasticity. If

the transformation is a total success plotting the transformed

residuals against any variable should reveal no pattern. If

patterns remain, then you may try another skedastic func-

tion. Or, because it is visually clear that the transformation

eliminated most, if not all, the heteroskedasticity, we can

use a White heteroskedasticity robust standard error with the

transformed model. In this way, we will have attempted to

gain a more efficient estimator, but then protected ourselves

against incorrect standard errors from any remaining

heteroskedasticity. The GLS/WLS estimated model with

robust standard errors is

FOOD_EXPi

⋀

= 78.68 + 10.45INCOMEi
(robse) (12.04) (1.17)

The 95% interval estimate of the slope is [8.07, 12.83].

8.5 Generalized Least Squares: Unknown

Form of Variance
In the previous section, we assumed that heteroskedasticity could be described by the vari-
ance function var

(
ei|xi
)
= σ2xi. This is convenient and simple in the food expenditure example

because xi = INCOMEi > 0 and intuitively reasonable. However, this is one possible choice of a

skedasticity function h
(
xi
)
. There are other alternatives such as var

(
ei|xi
)
= σ2h

(
xi
)
= σ2x2

i and

var
(
ei|xi > 0

)
= σ2h

(
xi
)
= σ2x1∕2

i . Both have the property that the error variance increases as

xi increases. Why not choose one of these functions?

In a multiple regression yi = β1 + β2xi2 + · · · + βKxiK + ei a heteroskedasticity pattern might

be related to more than one of the explanatory variables, so that we might consider a skedastic

function h
(
xi2,… , xiK

)
= h
(
xi
)
. In fact, the heteroskedasticity pattern might be related to vari-

ables not even in the model! In order to deal with the more general specification that includes

all these possibilities we need a model that is flexible, parsimonious, and for which σ2
i > 0.

One specification that works well is

σ2
i = exp

(
α1 + α2zi2 + · · · + αSziS

)

= exp
(
α1

)
exp
(
α2zi2 + · · · + αSziS

)
(8.18)

= σ2h
(
zi2,… , ziS

)

The candidate variables zi2, … , ziS that are possibly associated with the heteroskedasticity may

or may not be in xi. The exponential function is convenient because it ensures we will get positive

values for the variances σ2
i for all possible values of the parameters α1, α2, … , αS. Equation

(8.18) is called the model of multiplicative heteroskedasticity. It includes homoskedasticity as

a special case; when α2 = · · · = αS = 0 the error variance is σ2
i = exp

(
α1

)
= σ2. It is called a

multiplicative model because

exp
(
α1

)
exp
(
α2zi2 + · · · + αSziS

)
= exp

(
α1

)
exp
(
α2zi2
)
· · · exp

(
αSziS
)

Each candidate variable has a separate multiplicative effect. This model does introduce some

new parameters, but as you have seen many times now, when there is an unknown parameter an

econometrician will figure out how to estimate it. That is what we do.

This model is attractive because of the features mentioned above, it is flexible, parsimonious,

and σ2
i > 0, and also because it has several special cases that are very useful.
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Multiplicative Heteroskedasticity, Special Case 1: var
(

ei|xi
)
= 𝛔2

i
= 𝛔2x𝛂2

i
As noted in the food expenditure example, three plausible variance functions are var

(
ei|xi
)
= σ2xi,

var
(
ei|xi
)
= σ2h

(
xi
)
= σ2x2

i , and var
(
ei|xi > 0

)
= σ2h

(
xi
)
= σ2x1∕2

i . These are special cases of

var
(
ei|xi
)
= σ2

i = σ
2xα2

i

where α2 is an unknown parameter. In the multiplicative model, let S = 2, zi2 = ln
(
xi
)

and

h
(
zi2
)
= exp

[
α2ln
(
xi
)]

. Using the properties of logarithms and exponentials, we have

σ2
i = exp

(
α1 + α2zi2

)

= exp
(
α1

)
exp
[

α2 ln
(
xi
)]

= exp
(
α1

)
exp
[

ln
(
xi
α2

)]

= σ2xα2

i

Multiplicative Heteroskedasticity, Special Case 2: Grouped Hetero-
skedasticity Data partitions arise naturally in many economic examples. We might be

estimating a wage equation with data on individuals from both urban and rural areas. It is likely

that the labor market in the urban area is more diverse, leading to wage variations from one

person to another that is greater than in a rural area. Or perhaps we are considering wages for

individuals with different education levels, such as those with only primary school education,

those with a high school education, and those with some postsecondary education. Or individuals

in different industries, or countries, etc. It is possible that the same basic structure holds for each

group, with perhaps intercept dummy variables, and an error variance that is different for one

group versus another.

Suppose we are considering just two groups. Create an indicator variable Di = 1 if an

observation is in one group and Di = 0 for observations in the other group. Then the variance

function is

var
(
ei|xi
)
= exp

(
α1 + α2Di

)
=

{
exp
(
α1

)
= σ2 Di = 0

exp
(
α1 + α2

)
= σ2 exp

(
α2

)
Di = 1

Using the multiplicative form σ2
i = exp

(
α1 + α2Di

)
= exp

(
α1

)
exp
(
α2Di
)
= σ2h

(
Di
)
, the

skedastic function is h
(
Di
)
= exp

(
α2Di
)
. Note that if α2 = 0 the error variance is the same for

the two groups, meaning that the assumption of homoskedasticity holds.

The same strategy works if there are more than two groups. Suppose there are g = 1, 2,… ,G
groups or data partitions. Create indicator variables for each group. Let Dig = 1 if an observation

is from group g, and otherwise Dig = 0. If eig is the random error for the ith observation in group g,

then a useful variance function is

var
(
eig|xig

)
= exp

(
α1 + α2Di2 + · · · + αGDiG

)
=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

exp
(
α1

)
= σ2 = σ2

1
g = 1; only Di1 = 1

exp
(
α1 + α2

)
= σ2

2
g = 2; only Di2 = 1

⋮
exp
(
α1 + αG

)
= σ2

G g = G; only DiG = 1

In this specification, we have chosen group 1 as the reference group and its indicator variable

is omitted. This is similar to the indicator variable approach in Chapter 7. The variance of the

reference group error can be denoted σ2 or σ2
1
, to indicate that it is for group 1. For groups 2,

… , G the skedastic function is h
(
Dg
)
= exp

(
αgDg
)
. Alternatively, let the variance function be

var
(
eig|xig

)
= exp

(
α1Di1 + α2Di2 + · · · + αGDiG

)
. Work out the variance for each group with this

alteration. The end results using these two specifications are identical.
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8.5.1 Estimating the Multiplicative Model
How do we proceed with estimation with an assumption like (8.18)? Our ultimate objective is to

estimate the regression parameters β1, β2,… , βK . With the model of multiplicative heteroskedas-

ticity, we use several estimation steps.

FEASIBLE GLS PROCEDURE

1. Estimate the original model yi = β1 + β2xi2 + · · · + βKxiK + ei by OLS, saving the OLS

residuals êi.

2. Use the least squares residuals and the variables zi2, … , ziS to estimate α1,α2, … , αS.

3. Calculate the estimated skedastic function ĥ
(
zi2,… , ziS

)
.

4. Divide each observation by

√

ĥ
(
zi2,… , ziS

)
and apply OLS to the transformed data, or use

WLS regression with weighting factor 1
/

ĥ
(
zi2,… , ziS

)
.

The resulting estimates,
̂̂β1,

̂̂β2,… ,
̂̂βK, are called feasible generalized least squares (FGLS) esti-

mates or estimated generalized least squares (EGLS) estimates. If heteroskedasticity is present,

the FGLS estimator is consistent and more efficient than OLS in large samples. We have placed

a second “hat” on these estimates to differentiate them from the earlier GLS estimates and to

remind us that these estimates depend on a first-stage estimation.

Step 2 in the procedure is accomplished through a very clever manipulation of the model of

multiplicative heteroskedasticity. Taking logarithms of both sides of (8.18), we obtain

ln
(
σ2

i
)
= α1 + α2zi2 + · · · + αSziS

This looks like a regression model except for the fact that the left-hand side is unknown. Add the

log of the squared least squares residuals to each side:

ln
(
σ2

i
)
+ ln
(

ê2

i

)

= α1 + α2zi2 + · · · + αSziS + ln
(

ê2

i

)

(8.19)

Rearrange and simplify equation (8.19):

ln
(

ê2

i

)

= α1 + α2zi2 + · · · + αSziS + ln
(

ê2

i

)

− ln
(
σ2

i
)

= α1 + α2zi2 + · · · + αSziS + ln
(

ê2

i ∕σ
2
i

)

= α1 + α2zi2 + · · · + αSziS + ln
[(

êi∕σi
)2
]

= α1 + α2zi2 + · · · + αSziS + vi

We have taken the model of multiplicative heteroskedasticity and through some simple manipu-

lations arrived to

ln
(

ê2

i

)

= α1 + α2zi2 + · · · + αSziS + vi (8.20)

Using this model we can estimate α1, α2,… , αS in (8.19) using OLS and continue with the steps

of the procedure. Whether or not this procedure is a legitimate one depends on the properties of

the new error term vi that we introduced in (8.20). Does it have a zero mean? Is it homoskedastic?

In small samples the answer to these questions is no. However, in large samples the answer is hap-

pier. It can be shown (see Appendix 8C.1) that E
(
vi|zi
)
≅ −1.2704 and var

(
vi|zi
)
≅ 4.9348, where

zi =
(
1, zi2,… , ziS

)
, and if ei ∼ N

(
0, σ2

i
)
. Because the regression error does not have conditional
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mean zero, the estimated value of α1 will be off by −1.2704. But α̂2,… , α̂S are consistent estima-

tors, which for estimating the skedastic function ĥ
(
zi2,… , ziS

)
is all that matters.

E X A M P L E 8.4 Multiplicative Heteroskedasticity in the Food Expenditure
Model

In the food expenditure example, with zi2 defined as

zi2 = ln
(
INCOMEi

)
, the least squares estimate of (8.19) is

ln
(
e2

i

)
⋀

= 0.9378 + 2.329 ln
(
INCOMEi

)

Notice that the estimate α̂2 = 2.329 is more than twice the

value of α2 = 1, which was an implicit assumption of the vari-

ance specification used in Example 8.3. This suggests the

earlier transformation was not sufficiently aggressive. Fol-

lowing the steps to obtain FGLS estimates we transform the

model by dividing both sides by

√

ĥ
(
zi2
)
, where ĥ

(
zi2
)
=

exp
[
α̂2 ln
(
INCOMEi

)]
, then apply OLS to the transformed

data, or use WLS with weight 1
/
ĥ
(
zi2
)
. The resulting FGLS

estimates for the food expenditure example are

FOOD_EXPi

⋀

= 76.05 + 10.63INCOMEI
(se) (9.71) (0.97)

(8.21)

Compared to the GLS results for the variance specification

σ2
i = σ

2INCOMEi, the estimates for β1 and β2 have not

changed a great deal, but there has been a considerable drop

in the standard errors that, under the previous specification,

were se
(

β̂1

)

= 23.79 and se
(

β̂2

)

= 1.39.

–
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FIGURE 8.5 GLS- and FGLS-transformed residuals.

We must ask ourselves whether our FGLS transfor-

mation has been adequate; does the transformed model

satisfy the homoskedasticity assumption? In Example 8.3,

we computed the residuals from the transformed model ê∗i =
y∗i − β̂1x∗i1 − β̂2x∗i2. Similarly, let ̂̂e

∗

i = y∗∗i − ̂̂β1x∗∗i1 −
̂̂β2x∗∗i2 ,

where y∗∗i = yi

/√

ĥ
(
zi2
)
, x∗∗i1 = 1

/√

ĥ
(
zi2
)
, and x∗∗i2 =

xi2

/√

ĥ
(
zi2
)
. In Figure 8.5, we plot ê∗i (empty circles) from

the GLS-transformed model, and ̂̂e
∗

i (solid dots), from the

FGLS-transformed model, versus income. Note that the

vertical axis scales in Figures 8.4 and 8.5 are different; so

take that into account when comparing them. By “zooming

in” on ê∗i (empty circles) from the GLS-transformed model,

we see a fan-shaped pattern persisting, meaning that the GLS

transformation did not completely eliminate heteroskedas-

ticity. In Figure 8.4, we saw a great reduction in the “spray”

pattern and in Figure 8.5 the FGLS-transformed model has

yet smaller residuals and shows a further reduction in the

“spray” pattern. Based on visual evidence, the FGLS model

has done a better job at eliminating heteroskedasticity than

the GLS model.
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E X A M P L E 8.5 A Heteroskedastic Partition

To illustrate the idea of a heteroskedastic partition we con-

sider a simple wage equation in which a person’s wage rate

(WAGE) depends on their education (EDUC) and experience

(EXPER). We also include an indicator variable for whether

they live in a metropolitan, more urbanized, area or not. For

convenience, think of the nonmetropolitan areas as “rural.”

That is

METRO =

{
1 if person lives in a metropolitan area

0 if person lives in a rural area

The wage equation is

WAGEi = β1 + β2EDUCi + β3EXPERi + β4METROi + ei

The issue we address here is the possibility that the variance

of the error term is different in metropolitan areas than in rural

areas. That is, we suspect that

var
(
ei|xi
)
=

{
σ2

M if METRO = 1

σ2
R if METRO = 0

For illustration, we use the data file cps5_small and

restrict ourselves to observations from the Midwest region,

MIDWEST = 1. First consider the summary statistics in

Table 8.1 for metropolitan workers, METRO = 1, and rural

workers, METRO = 0.

Observe that the average wage and the standard devia-

tion of wage are higher in metropolitan areas than in rural

areas. This is suggestive but not proof of heteroskedasticity.

The standard deviation is an “unconditional” measure that

does not depend on the regression model. Heteroskedastic-

ity is a concern about the variation in the regression random

errors holding other factors constant, in this case education

and experience.

The OLS estimates with heteroskedasticity robust stan-

dard errors are

WAGEi
(robse)

⋀

= −18.450
(4.023)

+ 2.339EDUCi
(0.261)

+ 0.189EXPERi
(0.0478)

+ 4.991METROi
(1.159)

We save the OLS residuals, êi, and estimate equation

(8.20) using zi2 = METROi, ln
(

ê2

i

)

= α1 + α2METRO + vi,

obtaining

ln
(

ê2

i

)
⋀

= 2.895 + 0.700METRO

The estimated skedastic function is

ĥ
(
zi2
)
= exp

(
α̂2METROi

)

= exp(0.700METRO) =

{
2.0147 METRO = 1

1 METRO = 0

We estimate the conditional variance of the random error to

be about twice as large for the metropolitan area as in the

rural area. In the WLS regression, the observations in the

metropolitan area will receive half the weight of the obser-

vations in the rural area. The feasible GLS estimates are

WAGEi
(se)

⋀

⋀

= −16.968
(3.788)

+ 2.258EDUCi
(0.239)

+ 0.175EXPERi
(0.0447)

+ 4.995METROi
(1.214)

The FGLS coefficient estimates and standard errors for

EDUC and EXPER are slightly smaller than in the OLS

estimation.

T A B L E 8.1 Summary Statistics, by METRO

Variable Obs Mean Std. Dev.

METRO = 1 WAGE 213 24.25 14.00

EDUC 213 14.25 2.77

EXPER 213 23.15 13.17

METRO = 0 WAGE 84 18.86 8.52

EDUC 84 13.99 2.26

EXPER 84 24.30 14.32

8.6 Detecting Heteroskedasticity
In our discussion of the food expenditure equation, we used the nature of the economic problem

and data to argue why heteroskedasticity of a particular form might be present. However, in many

applications, there is uncertainty about the presence, or absence, of heteroskedasticity. It is natural

to ask: How do I know if heteroskedasticity is likely to be a problem for my model and my set of

data? Is there a way of detecting heteroskedasticity so that I know whether to use GLS techniques?

We consider three ways of investigating these questions. The first is the informal use of residual
plots. The other two are more formal classes of statistical tests.
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8.6.1 Residual Plots
One way of investigating the existence of heteroskedasticity is to estimate your model using least

squares and to plot the least squares residuals. If the errors are homoskedastic, there should be no

patterns of any sort in the residuals, as shown in Figure 4.7(a). If the errors are heteroskedastic,

they may tend to exhibit greater, or less, variation in some systematic way, as in Figures 4.7(b)–(d).

For example, for the household food expenditure data, we suspect that the variance increases

as incomes increases. We illustrated the use of diagnostic residual plots in Examples 8.1–8.3.

We discovered that the absolute values of the residuals do indeed tend to increase as income

increases. This method of investigating heteroskedasticity can be followed for any simple

regression.

When we have more than one explanatory variable, the estimated least squares function is

not so easily depicted on a diagram. However, what we can do is plot the least squares residuals

against each explanatory variable, or against the fitted values ŷi, to see if those residuals vary in

a systematic way relative to the specified variable.

8.6.2 The Goldfeld–Quandt Test
The second test for heteroskedasticity that we consider is designed for the case where we have

two subsamples with possibly different variances. The sub-samples might be based on an indica-

tor variable. In Example 8.5, we considered metropolitan and rural sub-samples for estimating a

wage equation. Alternatively, we might sort the data according to the magnitude of one continuous

variable and then divide the data into subsamples, omitting a few central observations to create

separation if possible. In either case, the Goldfeld–Quandt test uses the estimated error variances

from separate sub-sample regressions as a basis for the test. The background for this test appears

in Appendix C.7.3. The only difference is in the degrees of freedom. Let the first sub-sample con-

tain N1 observations and let the regression model in this partition have K1 parameters, including

the intercept. Let the true variance of the error in this sample be σ2
1

with estimator σ̂2

1
= SSE1∕(

N1 − K1

)
. Let the second sub-sample contain N2 observations and let the regression model in

this partition have K2 parameters, including the intercept. Let the true variance of the error in this

sample be σ2
2

with estimator σ̂2

2
= SSE2∕

(
N2 − K2

)
. The test statistic is

GQ =
σ̂2

1

σ̂2

2

∼ F(N1−K1, N2−K2) (8.22)

If the null hypothesis H0∶σ2
1
∕σ2

2
= 1 is true, then the test statistic GQ = σ̂2

1
∕σ̂2

2
has an

F-distribution with
(
N1 − K1

)
numerator and

(
N2 − K2

)
denominator degrees of freedom. If

the alternative hypothesis is H1∶σ2
1
∕σ2

2
≠ 1, then we carry out a two-tail test. If we choose

level of significance α = 0.05, then we reject the null hypothesis if GQ ≥ F(0.975, N1−K1, N2−K2)
or if GQ ≤ F(0.025, N1−K1, N2−K2), where F(α, N1−K1, N2−K2) denotes the 100α-percentile of

the F-distribution with the specified degrees of freedom. If the alternative is one-sided,

H1∶σ2
1
∕σ2

2
> 1, then we reject the null hypothesis if GQ ≥ F(0.95, N1−K1, N2−K2).

E X A M P L E 8.6 The Goldfeld–Quandt Test with Partitioned Data

We illustrate the Goldfeld–Quandt test by continuing

Example 8.5. The data partitions are based on the indicator

variable

METRO =

{
1 if person lives in a metropolitan area

0 if person lives in a rural area

The issue we address here is the possibility that the variance

of the error term is different in metropolitan areas than in rural

areas. To test the homoskedasticity assumption, estimate the

wage equation in each data partition:

WAGEMi = βM1 + βM2EDUCMi + βM3EXPERMi + eMi

WAGERi = βR1 + βR2EDUCRi + βR3EXPERRi + eRi

Let var
(
eMi|xMi

)
= σ2

M and var
(
eRi|xRi

)
= σ2

R. Our null

hypothesis is H0∶σ2
M∕σ

2
R = 1. Let the alternative hypothesis
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be H1∶σ2
M∕σ

2
R ≠ 1, so that we use a two-tail test. The

metropolitan subsample has 213 observations and the rural

subsample has 84. In this case, as in most, the number

of parameters in each data-partition regression is the

same, K = K1 = K2 = 3. The test critical values are

F(0.975, 210, 81) = 1.4615 and F(0.025, 210, 81) = 0.7049. Using

var
⋀(

eMi|xMi
)
= σ̂2

M = 147.62 and var
⋀(

eRi|xRi
)
= σ̂2

R = 56.71,

the calculated value of the Goldfeld–Quandt test statistic is

GQ = 2.6033 > F(0.975, 210, 81) = 1.4615, so we reject the null

hypothesis that the error variances in the two subsamples

are equal.

E X A M P L E 8.7 The Goldfeld–Quandt Test in the Food Expenditure Model

Although the Goldfeld–Quandt test is very convenient

for instances where the sample divides naturally into two

subsamples, it can also be used where, under H1, the

variance is a function of a single explanatory variable.

In the food expenditure model, we suspect that the error

variance increases as income increases. We order the

observations according to the magnitude of income so that,

if heteroskedasticity exists, the first half of the sample will

correspond to observations with lower variances and the

last half of the sample will correspond to observations

with higher variances. Then, we split the sample into

two approximately equal halves, carry out two separate

least squares regressions that yield variance estimates,

say σ̂2

1
and σ̂2

2
, and proceed with the test as described

previously.

Following these steps for the food expenditure example,

with the observations ordered according to income, we split

the sample into two equal subsamples of 20 observations

each. Because the sample is small, we do not omit any

middle observations. Estimating the model on each subsam-

ple yields σ̂2

1
= 3574.8 and σ̂2

2
= 12, 921.9, from which we

obtain

F =
σ̂2

2

σ̂2

1

= 12, 921.9

3574.8
= 3.61

Believing that the variances could increase, but not decrease

with income, we use a one-tailed test with 5% level of signif-

icance critical value F(0.95, 18, 18) = 2.22. Since 3.61 > 2.22, a

null hypothesis of homoskedasticity is rejected in favor of the

alternative that the variance increases with income.

8.6.3 A General Test for Conditional Heteroskedasticity
In this section we consider a test for conditional heteroskedasticity that is related to some

“explanatory” variables. Our equation of interest is the regression model

yi = β1 + β2xi2 + · · · + βKxiK + ei (8.23)

Under assumptions MR1–MR5 the OLS estimator is the best linear unbiased estimator of the

parameters β1, β2, … , βK . When conditional heteroskedasticity is a possibility, we hypothesize

that the variance of the random error, ei, depends on a set of explanatory variables zi2, zi3,… , ziS
that may include some or all of the explanatory variables xi2, … , xiK . That is, assume a general

expression for the conditional variance

var
(
ei|zi
)
= σ2

i = E
(
e2

i |zi
)
= h
(
α1 + α2zi2 + · · · + αSziS

)
(8.24)

where h( • ) is some smooth function and α2, α3, … , αS are nuisance parameters, meaning that

we are not really interested in their values but must recognize that they are there. The beauty of

the test we are about to present is that we do not have to actually know, or even guess, the function

h( • ). We will test for any relationship between the variance of the error term and any function of

the selected variables. The function h( • ) is similar to the skedastic function in equation (8.4), but

here we have not factored out a constant σ2, and unlike the feasible GLS estimation we do not

have to choose an exponential form for h( • ).

Notice what happens to the function h( • ) when α2 = α3 = · · · = αS = 0. It collapses to

h
(
α1 + α2zi2 + · · · + αSziS

)
= h
(
α1

)
(8.25)
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The term h
(
α1

)
, which we can define to be σ2, is a constant, and var

(
ei|zi
)
= h
(
α1

)
= σ2. In other

words, when α2 = α3 = · · · = αS = 0 the random errors are homoskedastic. On the other hand,

if any of the parameters α2, α3, … , αS are not zero, then heteroskedasticity is present. Conse-

quently, the null and alternative hypotheses for a test for heteroskedasticity based on the variance

function are

homoskedasticity ↔ H0∶α2 = α3 = · · · = αS = 0

heteroskedasticity ↔ H1∶ not all the αs in H0 are zero
(8.26)

The null and alternative hypotheses are the first components of a test. The next component is a

test statistic. To obtain a test statistic, consider a linear conditional variance function

σ2
i = E

(
e2

i |zi
)
= α1 + α2zi2 + · · · + αSziS (8.27)

Despite using a linear conditional variance function the test is for the general heteroskedastic-

ity pattern in (8.24). Let vi = e2
i − E
(
e2

i |zi
)

be the difference between a squared error and its

conditional mean. Then, from (8.27), we can write

e2
i = E

(
e2

i |zi
)
+ vi = α1 + α2zi2 + · · · + αSziS + vi (8.28)

This looks very much like a linear regression model. The one problem is that the “dependent

variable” e2
i is not observable. We overcome this problem by replacing e2

i with the squared OLS

residuals ê2

i . In large samples, this is valid because, as we show in Appendix 8B, the difference

ei − êi goes to zero as N →∞. An operational version of (8.28) is

ê2

i = α1 + α2zi2 + · · · + αSziS + vi (8.29)

Strictly speaking, replacing e2
i by ê2

i also changes the definition of vi, but we will retain the same

notation to avoid unnecessary complication.

The test for heteroskedasticity is based on OLS estimation of (8.29). The question we ask is,

do the variables zi2, zi3,… , ziS help explain ê2

i ? Under homoskedasticity the variables zi2, zi3,… ,

ziS should have no relation to ê2

i . One alternative is to use an F-test for the null hypothesis. An

asymptotically equivalent and convenient test is based on the R2, goodness-of-fit statistic, from

(8.29). If the null hypothesis is true, α2 = α3 = · · · = αS = 0, then the R2 should be small and

close to zero. If R2 is large, it is evidence against the assumption of homoskedasticity. How large

does R2 have to be for us to reject homoskedasticity? An answer requires a test statistic and a

rejection region. It can be shown that if the random errors are homoskedastic, then the sample

size multiplied by R2, N × R2 or simply NR2, has a chi-square
(
χ2
)

distribution with S − 1 degrees

of freedom in large samples. That is,

NR2 a∼χ2
(S−1) if the null hypothesis of homoskedasticity is true (8.30)

Your exposure to the χ2 distribution has been relatively limited. It is discussed in Appendix

B.5.2. It was used for testing for normality in Section 4.3.4, and its relationship with the F-test

was explored in Section 6.1.5. It is a distribution that is used for testing many different kinds of

hypotheses. Like an F random variable, a χ2 random variable only takes positive values. Critical

values of the distribution appear in Statistical Table 3. Locate the test degrees of freedom in the

left-hand column, and find the critical value from the columns, each of which corresponds to a

percentile of the distribution. Because a large R2 value is evidence against the null hypothesis of

homoskedasticity (it suggests the z variables explain some changes in the variance), the rejection

region for the statistic in (8.30) is in the right tail of the distribution. For an α-significance

level test, we reject H0 and conclude that heteroskedasticity exists when NR2 ≥ χ2
(1−α, S−1).
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For example, if α = 0.01 and S = 2, reject the hypothesis of homoskedasticity if

NR2 ≥ χ2
(0.99,1) = 6.635. Your econometric software will have functions to calculate critical

values, and p-values, for χ2-tests.

There are several important features of this test:

1. It is a large sample test. The result in (8.30) holds approximately in large samples.

2. You will often see the test referred to as a Lagrange multiplier test (LM test) or a

Breusch–Pagan test for heteroskedasticity. Breusch and Pagan used the LM principle

(see Appendix C.8.4) to derive an earlier version of the test, which was later modified by

other researchers to the form in (8.30). The test values for these and other slightly different

versions of the test, one of which is the F-test, are automatically calculated by a number of

software packages. The one provided by your software may or may not be exactly the same

as the NR2 version in (8.30). The relationships between the different versions of the test are

described in Appendix 8B. As you proceed through the book and study more econometrics,

you will find that many LM tests can be written in the form NR2, where the R2 comes from

a convenient auxiliary regression related to the hypothesis being tested.

3. We motivated the test in terms of an alternative hypothesis with the very general conditional

variance function σ2
i = h

(
α1 + α2zi2 + · · · + αSziS

)
, yet we proceeded to carry out the test

using the linear function ê2

i = α1 + α2zi2 + · · · + αSziS + vi. One of the amazing features of

the Breusch–Pagan/LM test is that the value of the statistic computed from the linear function

is valid for testing an alternative hypothesis of heteroskedasticity where the variance function

can be of any form given by (8.24).

4. The Breusch–Pagan test is for conditional heteroskedasticity. Unconditional heteroskedas-
ticity exists when the error term variance is completely random, changing from observa-

tion to observation but unrelated to any particular variable. The least squares estimator

properties are unaffected by unconditional heteroskedasticity. We illustrate this point in

Appendix 8D.

8.6.4 The White Test
One problem with the variance function test described so far is that it presupposes that we have

knowledge of what variables will appear in the variance function if the alternative hypothesis of

heteroskedasticity is true. In other words, it assumes we are able to specify z2, z3,… , zS. In reality,

we may wish to test for heteroskedasticity without precise knowledge of the relevant variables.

With this point in mind, White suggested defining the z’s as equal to the x’s, the squares of the x’s,

and their cross-products. Frequently, the variables that affect the variance are the same as those

in the mean function. Also, by using a quadratic function we can approximate a number of other

possible conditional variance functions. Suppose the regression model is

yi = β1 + β2xi2 + β3xi3 + ei

The White test uses

z2 = x2 z3 = x3 z4 = x2
2

z5 = x2
3

and z6 = x2x3

If the regression model contains quadratic terms
(
x3 = x2

2
for example

)
, then some of the z’s are

redundant and are deleted. Also if x3 is an indicator variable, taking the values 0 and 1, then

x2
3
= x3 which is also redundant.

The White test is performed using the NR2 test defined in (8.29), or an F-test (see Appendix

8B for details). One difficulty with the White test is that it can detect problems other than het-

eroskedasticity. Thus, while it is a useful diagnostic, be careful about interpreting the result of a

significant White test. It may be that you have an incorrect functional form, or an omitted variable.

In this sense, it is something like RESET, a specification error test discussed in Chapter 6.
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8.6.5 Model Specification and Heteroskedasticity
As hinted at the end of the previous section, heteroskedasticity can be present because of a model

specification error. If data partitions are not recognized, or important variables omitted, or an

incorrect functional form selected, then heteroskedasticity can appear to be present. Hence, one

piece of advice is to “Trust no one.” Don’t necessarily believe that a significant heteroskedasticity

test means that heteroskedasticity is the problem and that using robust standard errors will be an

adequate fix. Critically examine the model from the point of view of economic reasoning and

look for any specification problems.

One very common specification issue with economic data is the choice of functional form.

In Section 4.3.2, we discussed a variety of model specifications that are useful when considering

nonlinear, or curvilinear, relationships (see Figure 4.5). Many economic applications use

“log-log” or “log-linear” models. Using a logarithmic transformation of the dependent variable

has another feature, variance stabilization, that is useful in the context of heteroskedastic data.3

Economic variables like wages, incomes, house prices, and expenditures are right-skewed,

with a long tail to the right. The log-normal probability distribution is useful when modeling

such variables. This idea was introduced first in the Probability Primer in Figure P.2, and we

discuss the log-normal distribution in Appendix B.3.9. If the random variable y has a log-normal

probability density function, then ln(y) has a normal distribution, which is symmetrical and

bell-shaped, and not skewed. That is, ln(y) ∼ N
(
μ, σ2
)
. The feature of the log-normal random

variable that we are now interested in is that its variance increases when its mean and median

increase. This is illustrated in Appendix B.3.9, Figure B.10, and the surrounding discussion.

In Figure 8.6 we modify Figure 4.5(e) for the log-linear model to show E(y|x), the solid

line, and include E(y|x) ± 2
√

var(y|x), the dashed lines. By choosing a log-linear or log-log

model we are implicitly assuming a curvilinear and heteroskedastic relationship between

the variables y and x. However, there is a linear and homoskedastic relation between ln(y)

and x.

Let’s look at an example.

y

x

FIGURE 8.6 A log-linear relationship.

............................................................................................................................................

3The “Box-Cox Model” nests the linear and log-linear models in a more general nonlinear regression framework. See

William Greene (2018) Econometric Analysis, Eighth Edition, 214–216.
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E X A M P L E 8.8 Variance Stabilizing Log-transformation

Consider the data file cex5_small. Figure 8.7(a) shows a

histogram of household expenditures on entertainment

per person, ENTERT , for those households who have

positive spending, and Figure 8.7(b) is the histogram for

ln(ENTERT).

Note the extremely skewed distribution of entertainment

expenditures in Figure 8.7(a). Figure 8.7(b) shows the effect

of the log-transformation. The distribution of ln(ENTERT)

exhibits little skewness. Figure 8.8(a) shows the entertain-

ment expenses plotted versus income and the least squares

fitted line.

The variation in ENTERT about the fitted line increases

as INCOME increases. Estimating the model ENTERT =
β1 + β2INCOME + β3COLLEGE + β4ADVANCED + e, we

obtain the least squares residuals and then estimate by

OLS the model ê2

i = α1 + α2INCOMEi + vi. From this

(a) (b)

0
10

20
30

40
50

Pe
rc

en
t

0 200 400 600 800

ENTERT

0
2

4
6

8
10

Pe
rc

en
t

0 2 4 6 8

ln(ENTERT)

FIGURE 8.7 Histograms of entertainment expenditures.
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FIGURE 8.8 Linear and log-linear models for entertainment expenditures.

regression, NR2 = 31.34. The critical value for a 1% level

of significance, heteroskedasticity test is 6.635, thus we

conclude that heteroskedasticity is present. Figure 8.8(b)

shows the log of entertainment expenses, ln(ENTERT),

plotted versus income and the least squares fitted line. There

is little if any visual evidence of heteroskedasticity and the

value of the heteroskedasticity test statistic is NR2 = 0.36,

so we do not reject the null hypothesis of homoskedasticity.

The log-transformation has “cured” the heteroskedasticity

problem.

Among the 1200 households in the sample, 100

did not report any spending on entertainment. The log-

transformation can only be used for positive values. We

dropped the 100 with no spending, but that is not necessarily

the best approach. In Section 16.7 we will discuss this type

of data, which is called a censored sample.
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8.7 Heteroskedasticity in the Linear

Probability Model
In Section 7.4 we introduced the linear probability model for explaining choice between two

alternatives. We can represent this choice by an indicator variable y that takes the value one

with probability p if the first alternative is chosen, and the value zero with probability 1 − p if

the second alternative is chosen. An indicator variable with these properties is a Bernoulli ran-

dom variable with mean E(y) = p and variance var(y) = p(1 − p). Interest centers on measuring

the effect of explanatory variables x2, x3, … , xk on the probability p. In the linear probabil-

ity model the relationship between p and the explanatory variables is specified as the linear

function

E
(
yi|xi
)
= p = β1 + β2xi2 + · · · + βKxiK

Defining the error ei as the difference yi − E
(
yi|xi
)

for the ith observation, we have the

model

yi = E
(
yi|xi
)
+ ei = β1 + β2xi2 + · · · + βKxiK + ei (8.31)

This model can be estimated with least squares—an example was given in Section 7.4—but it

suffers from heteroskedasticity because

var
(
yi|xi
)
= var

(
ei|xi
)
= pi
(
1 − pi

)

=
(
β1 + β2xi2 + · · · + βKxiK

)(
1 − β1 − β2xi2 − · · · − βKxiK

)
(8.32)

The error variance depends on the values of the explanatory variables. We can rectify this problem

by applying the techniques described earlier in this chapter. Instead of using least squares standard

errors, we can use heteroskedasticity-robust standard errors. Or, alternatively, we can apply a GLS

procedure.

The first step toward obtaining GLS estimates is to estimate the variance in (8.32). An esti-

mate of pi can be obtained from the least squares predictions

p̂i = b1 + b2xi2 + · · · + bKxiK (8.33)

giving an estimated variance of

var
⋀(

ei|x
)
= p̂i
(
1 − p̂i

)
(8.34)

A word of caution is required at this point. It is possible that some of the p̂i obtained from (8.33)

will not lie within the interval 0 < p̂i < 1. If that happens, the corresponding variance estimate in

(8.34) will be negative or zero, a nonsensical outcome. Thus, before proceeding to calculate the

estimated variances from (8.34), it is necessary to check the estimated probabilities from (8.33)

to ensure that they lie between zero and one. For those observations that violate this requirement,

one possible solution is to set p̂i’s greater than 0.99 equal to 0.99, and p̂i’s less than 0.01 equal to

0.01. Another possible solution is to omit the offending observations. Neither of these solutions

is totally satisfactory. Truncating at 0.99 or 0.01 is arbitrary, and the results could be sensitive

to the truncation point. Omitting observations means that we are throwing away information. It

might be preferable to use least squares with robust standard errors—that should, at least, be one

of the options that is tried.



�

� �

�

8.8 Exercises 391

Once positive variance estimates have been obtained using (8.34), with adjustments where

necessary, GLS estimates can be obtained by applying least squares to the transformed equation

yi
√

p̂i
(
1 − p̂i

)
= β1

1
√

p̂i
(
1 − p̂i

)
+ β2

xi2
√

p̂i
(
1 − p̂i

)
+ · · · + βK

xiK
√

p̂i
(
1 − p̂i

)
+

ei
√

p̂i
(
1 − p̂i

)

E X A M P L E 8.9 The Marketing Example Revisited

In Example 7.7 the choice of purchasing either Coke

(COKE = 1) or Pepsi (COKE = 0) was modeled as depend-

ing on the relative price of Coke to Pepsi (PRATIO), and

whether store displays for Coke and Pepsi were present

(DISP_COKE = 1 if a Coke display was present, otherwise

0; DISP_PEPSI = 1 if a Pepsi display was present, oth-

erwise 0). The data file coke contains 1140 observations

on these variables. Table 8.2 contains the results for (1)

least squares, (2) least squares with robust standard errors,

(3) GLS with variances below 0.01 truncated to 0.01, and

(4) GLS with observations not satisfying 0 < p̂i < 1 omitted.

For the GLS estimates there were no observations for which

p̂i > 0.99 and there were 16 observations where p̂i < 0.01;

for these latter cases it was also true that p̂i < 0.

Since the variance function in (8.32) contains the x’s,

their squares, and their cross products, a suitable test for het-

eroskedasticity is the White test described in Section 8.6.4.

Applying this test to the residuals from the least squares esti-

mated equation yields

χ2 = N × R2 = 25.817 p-value = 0.0005

leading us to reject a null hypothesis of homoskedasticity

at a 1% level of significance. Note that, when carrying out

this test, your software will omit the squares of DISP_COKE
and DISP_PEPSI. Because these variables are indicator vari-

ables, DISP_COKE2 = DISP_COKE and DISP_PEPSI2 =
DISP_PEPSI, leaving a χ2-test with 7 degrees of freedom.

Examining the estimates in Table 8.2, we see there is

little difference in the four sets of standard errors. In this

particular case the use of least squares standard errors does

not seem to matter. The four sets of coefficient estimates are

also similar with the exception of those from GLS where the

negative p̂’s were truncated to 0.01. The weight on obser-

vations with variance var
(
ei
)
= 0.01(1 − 0.01) = 0.0099 is a

relatively large one. It appears that the large weights placed

on those 16 observations are having a noticeable impact on

the estimates. The signs are all as expected. Making Coke

more expensive leads more people to purchase Pepsi. A Coke

display encourages purchase of Coke, and a Pepsi display

encourages purchase of Pepsi.

In Chapter 16 we study models which are specifically

designed for modeling choice between two or more alterna-

tives, and which do not suffer from the problems of the linear

probability model.

T A B L E 8.2 Linear Probability Model Estimates

LS- GLS- GLS-
LS robust trunc omit

C 0.8902 0.8902 0.6505 0.8795

(0.0655) (0.0652) (0.0568) (0.0594)

PRATIO −0.4009 −0.4009 −0.1652 −0.3859

(0.0613) (0.0603) (0.0444) (0.0527)

DISP
_COKE

0.0772 0.0772 0.0940 0.0760

(0.0344) (0.0339) (0.0399) (0.0353)

DISP
_PEPSI

−0.1657 −0.1657 −0.1314 −0.1587

(0.0356) (0.0343) (0.0354) (0.0360)

8.8 Exercises

8.8.1 Problems

8.1 For the simple regression model with heteroskedasticity, yi = β1 + β2xi + ei and var
(
ei|xi
)
= σ2

i show

that the variance var
(
b2|xi
)
=
[∑N

i=1

(
xi − x

)2
]−1 [∑N

i=1

(
xi − x

)2σ2
i

] [∑N
i=1

(
xi − x

)2
]−1

reduces to

var
(
b2|x
)
= σ2
/∑N

i=1

(
xi − x

)2
under homoskedasticity.
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8.2 Consider the regression model yi = β1xi1 + β2xi2 + ei with two explanatory variables, xi1 and xi2, but

no constant term.

a. The sum of squares function is S
(
β1, β2|x1, x2

)
=
∑N

i=1

(
yi − β1xi1 − β2xi2

)2
. Find the partial deriva-

tives with respect to the parameters β1 and β2. Setting these derivatives to zero and solving, as in

Appendix 2A, show that the least squares estimator of β2 is

b2 =
(∑

x2
i1

) (∑
xi2yi
)
−
(∑

xi1xi2
) (∑

xi1yi
)

(∑
x2

i1

) (∑
x2

i2

)
−
(∑

xi1xi2
)2

b. Let xi1 = 1 and show that the estimator in (a) reduces to

b2 =

∑
xi2yi

N
−
∑

xi2

N

∑
yi

N
∑

x2
i2

N
−
(∑

xi2

N

)2

Compare this equation to equation (2A.5) and show that they are equivalent.

c. In the estimator in part (a), replace yi, xi1 and xi2 by y∗i = yi
/√

hi, x∗i1 = xi1
/√

hi and x∗i2 = xi2
/√

hi.

These are transformed variables for the heteroskedastic model σ2
i = σ

2h
(
zi
)
= σ2hi. Show that the

resulting GLS estimator can be written as

β̂2 =
∑

aixi2yi −
∑

aixi2
∑

aiyi
∑

aix2
i2 −
(∑

aixi2
)2

where ai = 1∕
(
chi
)

and c =
∑(

1∕hi
)
. Find

∑N
i=1

ai.

d. Show that under homoskedasticity β̂2 = b2.

e. Explain how β̂2 can be said to be constructed from “weighted data averages” while the usual least

squares estimator b2 is constructed from “arithmetic data averages.” Relate your discussion to the

difference between WLS and ordinary least squares.

8.3 Suppose that an outcome variable yij = β1 + β2xij + eij, i = 1,… ,N; j = 1,… ,Ni. Assume

E
(
eij|X
)
= 0 and var

(
eij|X
)
= σ2. One illustration is yij = the ith farm’s production on the jth acre

of land, with each farm consisting of Ni acres. The variable xij is the amount of an input, labor or

fertilizer, used by the ith farm on the jth acre.

a. Suppose that we do not have data on each individual acre, but only aggregate, farm-level data,
∑Ni

j=1
yij = yAi,

∑Ni
j=1

xij = xAi. If we specify the linear model yAi = β1 + β2xAi + eAi, i = 1,… ,N,

what is the conditional variance of the random error?

b. Suppose that we do not have data on each individual acre, but only average data for each farm,
∑Ni

j=1
yij∕Ni = yi,

∑Ni
j=1

xij∕Ni = xi. If we specify the linear model yi = β1 + β2xi + ei, i = 1,… ,N,

what is the conditional variance of the random error?

c. Suppose the outcome variable is binary. For example, suppose yij = 1 if a crop shows evidence

of blight on the jth acre of the ith farm, and yij = 0 otherwise. In this case
∑Ni

j=1
yij∕Ni = pi,

where pi is the sample proportion of acres that show the blight on the ith farm. Suppose

the probability of the ith farm showing blight on a particular acre is Pi. If we specify the

linear model yi = β1 + β2xi + ei, i = 1,… ,N, what is the conditional variance of the random

error?

8.4 Consider the simple regression model yi = β1 + β2xi + ei where we hypothesize heteroskedasticity of

the form σ2
i = σ

2x2
i . We have N = 4 observations, with x =

(
1 2 3 4

)
and y =

(
3 4 3 5

)
.

a. Use the formula for the least squares estimator in Exercise 8.2(b) to compute the OLS estimate of

β2. In this case
∑

xi2yi∕N = 10,
∑

x2
i2∕N = 7.

b. Referring to Exercise 8.2(c), what is the value c =
∑(

1∕hi
)
?

c. Referring to Exercise 8.2(c), what are the values ai = 1∕
(
chi
)
, i = 1,… , 4? What is

∑4

i=1
ai?

d. Use the formula for the generalized least squares estimator in Exercise 8.2(c) to compute the GLS

estimate of β2.
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e. Suppose that we know that σ2 = 0.2. Calculate the true OLS variance given in equation (8.8). The

values of
(
xi − x

)2
are
(
2.25, 0.25, 0.25, 2.25

)
. What is the value of the incorrect variance in

equation (8.6)?

8.5 Consider the simple regression model yi = β1 + β2xi2 + ei. Suppose N = 5 and the values of xi2 are

(1, 2, 3, 4, 5). Let the true values of the parameters be β1 = 1, β2 = 1. Let the true random error values,

which are never known in reality, be ei = (1, −1, 0, 6, −6).
a. Calculate the values of yi.

b. The OLS estimates of the parameters are b1 = 3.1 and b2 = 0.3. Compute the least squares residual,

ê1, for the first observation, and ê4, for the fourth observation. What is the sum of all the least squares

residuals? In this example, what is the sum of the true random errors? Is the sum of the residuals

always equal to the sum of the random errors? Explain.

c. It is hypothesized that the data are heteroskedastic with the variance of the first three random errors

being σ2
1
, and the variance of the last two random errors being σ2

2
. We regress the squared residuals

ê2

i on the indicator variable zi, where zi = 0, i = 1, 2, 3 and zi = 1, i = 4, 5. The overall model

F-statistic value is 12.86. Does this value provide evidence of heteroskedasticity at the 5% level of

significance? What is the p-value for this F-value (requires computer)?

d. R2 = 0.8108 from the regression in (c). Use this value to carry out the LM (Breusch–Pagan)

test for heteroskedasticity at the 5% level of significance. What is the p-value for this test

(requires computer)?

e. We now regress ln
(

ê2

i

)

on zi. The estimated coefficient of zi is 3.81. We discover that the software

reports using only N = 4 observations in this calculation. Why?

f. In order to carry out feasible generalized least squares using information from the regression in

part (e), we first create the transformed variables
(
y∗i , x∗i1, x∗i2

)
. List the values of the transformed

observations for i = 1 and i = 4.

8.6 Consider the wage equation

WAGEi = β1 + β2EDUCi + β3EXPERi + β4METROi + ei (XR8.6a)

where wage is measured in dollars per hour, education and experience are in years, and METRO = 1

if the person lives in a metropolitan area. We have N = 1000 observations from 2013.

a. We are curious whether holding education, experience, and METRO constant, there is the same

amount of random variation in wages for males and females. Suppose var
(
ei|xi,FEMALE = 0

)
=

σ2
M and var

(
ei|xi,FEMALE = 1

)
= σ2

F. We specifically wish to test the null hypothesis σ2
M = σ2

F
against σ2

M ≠ σ2
F. Using 577 observations on males, we obtain the sum of squared OLS residu-

als, SSEM = 97161.9174. The regression using data on females yields σ̂F = 12.024. Test the null

hypothesis at the 5% level of significance. Clearly state the value of the test statistic and the rejection

region, along with your conclusion.

b. We hypothesize that married individuals, relying on spousal support, can seek wider employ-

ment types and hence holding all else equal should have more variable wages. Suppose

var
(
ei|xi,MARRIED = 0

)
= σ2

SINGLE and var
(
ei|xi,MARRIED = 1

)
= σ2

MARRIED. Specify the null

hypothesis σ2
SINGLE = σ

2
MARRIED versus the alternative hypothesis σ2

MARRIED > σ2
SINGLE. We add

FEMALE to the wage equation as an explanatory variable, so that

WAGEi = β1 + β2EDUCi + β3EXPERi + β4METROi + β5FEMALE + ei (XR8.6b)

Using N = 400 observations on single individuals, OLS estimation of (XR8.6b) yields a sum of

squared residuals is 56231.0382. For the 600 married individuals, the sum of squared errors is

100,703.0471. Test the null hypothesis at the 5% level of significance. Clearly state the value of the

test statistic and the rejection region, along with your conclusion.

c. Following the regression in part (b), we carry out the NR2 test using the right-hand-side variables

in (XR8.6b) as candidates related to the heteroskedasticity. The value of this statistic is 59.03.

What do we conclude about heteroskedasticity, at the 5% level? Does this provide evidence about

the issue discussed in part (b), whether the error variation is different for married and unmarried

individuals? Explain.

d. Following the regression in part (b) we carry out the White test for heteroskedasticity. The value

of the test statistic is 78.82. What are the degrees of freedom of the test statistic? What is the 5%

critical value for the test? What do you conclude?
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e. The OLS fitted model from part (b), with usual and robust standard errors, is

WAGE

⋀

= −17.77 + 2.50EDUC + 0.23EXPER + 3.23METRO − 4.20FEMALE
(se) (2.36) (0.14) (0.031) (1.05) (0.81)
(robse) (2.50) (0.16) (0.029) (0.84) (0.80)

For which coefficients have interval estimates gotten narrower? For which coefficients have interval

estimates gotten wider? Is there an inconsistency in the results?

f. If we add MARRIED to the model in part (b), we find that its t-value using a White heteroskedas-

ticity robust standard error is about 1.0. Does this conflict with, or is it compatible with, the result

in (b) concerning heteroskedasticity? Explain.

8.7 Consider the simple treatment effect model yi = β1 + β2di + ei. Suppose that di = 1 or di = 0 indicating

that a treatment is given to randomly selected individuals or not. The dependent variable yi is the

outcome variable. See the discussion of the difference estimator in Section 7.5.1. Suppose that N1

individuals are given the treatment and N0 individual are in the control group, who are not given the

treatment. Let N = N0 + N1 be the total number of observations.

a. Show that if var
(
ei|d
)
= σ2 then the variance of the OLS estimator b2 of β2 is

var
(
b2|d
)
= Nσ2∕

(
N0N1

)
. [Hint: See Appendix 7B.]

b. Let y0 =
∑N0

i=1
yi∕N0 be the sample mean of the outcomes for the N0 observations on

the control group. Let SST0 =
∑N0

i=1

(
yi − y0

)2
be the sum of squares about the sample

mean of the control group, where di = 0. Similarly, let y1 =
∑N1

i=1
yi∕N1 be the sample

mean of the outcomes for the N1 observations on the treated group, where di = 1. Let

SST1 =
∑N1

i=1

(
yi − y1

)2
be the sum of squares about the sample mean of the treatment group. Show

that σ̂2 =
∑N

i=1
ê2

i

/
(N − 2) =

(
SST0 + SST1

)
∕(N − 2) and therefore that

var
⋀(

b2|d
)
= Nσ̂2/(N0N1

)
=
( N

N − 2

)(SST0 + SST1

N0N1

)

c. Using equation (2.14) find var
(
b1|d
)
, where b1 is the OLS estimator of the intercept parameter β1.

What is var
⋀(

b1|d
)
?

d. Suppose that the treatment and control groups have not only potentially different means but poten-

tially different variances, so that var
(
ei|di = 1

)
= σ2

1
and var

(
ei|di = 0

)
= σ2

0
. Find var

(
b2|d
)
.

What is the unbiased estimator for var
(
b2|d
)
? [Hint: See Appendix C.4.1.]

e. Show that the White heteroskedasticity robust estimator in equation (8.9) reduces in this case to

var
⋀(

b2|d
)
= N

N−2

(
SST0

N2
0

+ SST1

N2
1

)

. Compare this estimator to the unbiased estimator in part (d).

f. What does the robust estimator become if we drop the degrees of freedom correction N∕(N − 2) in

the estimator proposed in part (e)? Compare this estimator to the unbiased estimator in part (d).

8.8 It can be shown that the theoretically useful form of the OLS estimator of β1 in the simple

linear regression model yi = β1 + β2xi2 + ei is b1 = β1 +
∑(
−xwi + N−1

)
ei =
∑

viei, where

vi =
(
−xwi + N−1

)
and wi =

(
xi − x

)
∕
∑(

xi − x
)2

. Using this formula consider the simple treatment

effect model yi = β1 + β2di + ei. Suppose that di = 1 or di = 0 indicating that a treatment is given

to a randomly selected individual or not. The dependent variable yi is the outcome variable. See the

discussion of the difference estimator in Section 7.5.1. Suppose that N1 individuals are given

the treatment and N0 individuals in the control group are not given the treatment. Let N = N0 + N1 be

the total number of observations.

a. Show that when di = 0, vi = 1∕N and that when di = 1, vi = 0.

b. Derive var
(
b1|d
)

under the assumption of homoskedastic errors, var
(
ei|d
)
= σ2. What is an unbi-

ased estimator of var
(
b1|d
)

in this case?

c. Derive var
(
b1|d
)

under the assumption of heteroskedastic errors, var
(
ei|di = 1

)
= σ2

1
and

var
(
ei|di = 0

)
= σ2

0
. What is an unbiased estimator of var

(
b1|d
)

in this case?

8.9 We wish to estimate the hedonic regression model

PRICEi = β1 + β2SQFTi + β3CLOSEi + β4AGEi + β5FIREPLACEi + β6POOLi

+ β7TWOSTORYi + ei



�

� �

�

8.8 Exercises 395

The variables are PRICE ($1000), SQFT (100s), CLOSE = 1 if located near a major university,

0 otherwise, AGE (years), FIREPLACE, POOL, TWOSTORY = 1 if present, 0 otherwise.

a. Using Table 8.3, comment on the sign, significance, and interpretation of the OLS coefficient esti-

mate for the variable CLOSE.

b. Answer each of the following True or False. In a regression model with heteroskedasticity, (i) the

OLS estimator is biased; (ii) the OLS estimator is inconsistent; (iii) the OLS estimator does not

have an approximate normal distribution in large samples; (iv) the usual OLS standard error is

too small; (v) the usual OLS estimator standard error is incorrect; (vi) the usual R2 is no longer

meaningful; (vii) the usual overall F-test is reliable in large samples.

c. Following the OLS regression, the residuals are saved as EHAT . In the regression labeled AUX in

Table 8.3, the dependent variable is EHAT2. Test for the presence of heteroskedasticity, using the

5% level of significance. State the test statistic, the test critical value, and your conclusion.

d. The model is reestimated by OLS using White heteroskedasticity-consistent standard errors. In

what way are these standard errors robust? Are they valid when there is homoskedasticity, het-

eroskedasticity, in small samples and large? Which of the statistically significant coefficients has

wider confidence intervals using the robust standard errors? Do any coefficients switch from being

significant at 5% to not significant at 5%, or vice versa?

e. Our researcher estimates the equation after dividing each variable, and the constant term, by SQFT
to obtain the GLS estimates. What assumption has been made about the form of heteroskedasticity

in this estimation? Are the GLS estimates, shown in Table 8.3, noticeably different from the OLS

estimates? Do any coefficients switch from being significant at 5% to not significant at 5%, or vice

versa?

f. The residuals from the transformed regression in part (e) are called ESTAR. The researcher

regresses ESTAR2 on all the transformed variables and includes an intercept. The R2 = 0.0237.

Has the researcher eliminated heteroskedasticity?

g. The researcher estimates the model in (e) again but uses robust standard errors. These are

reported in Table 8.3 as “Robust GLS.” Do you consider this a prudent thing to do? Explain your

reasoning.

T A B L E 8.3 Estimates for Exercise 8.9

OLS AUX Robust OLS GLS Robust GLS

C −101.072∗∗∗ −25561.243∗∗∗ −101.072∗∗∗ −4.764 −4.764

(27.9055) (5419.9443) (34.9048) (21.1357) (35.8375)

SQFT 13.3417∗∗∗ 1366.8074∗∗∗ 13.3417∗∗∗ 7.5803∗∗∗ 7.5803∗∗∗

(0.5371) (104.3092) (1.1212) (0.5201) (0.9799)

CLOSE 26.6657∗∗∗ 1097.8933 26.6657∗∗∗ 39.1988∗∗∗ 39.1988∗∗∗

(9.8602) (1915.0902) (9.6876) (7.0438) (7.2205)

AGE −2.7305 52.4499 −2.7305 1.4887 1.4887

(2.7197) (528.2353) (3.2713) (2.1034) (2.5138)

FIREPLACE −2.2585 −3005.1375 −2.2585 17.3827∗∗ 17.3827∗

(10.5672) (2052.4109) (10.6369) (7.9023) (9.3531)

POOL 0.3601 6878.0158∗ 0.3601 8.0265 8.0265

(19.1855) (3726.2941) (27.2499) (17.3198) (15.6418)

TWOSTORY 5.8833 −7394.3869∗∗ 5.8833 26.7224∗ 26.7224∗

(14.8348) (2881.2790) (20.8733) (13.7616) (16.0651)

R2 0.6472 0.3028 0.6472 0.4427 0.4427

Standard errors in parentheses
∗p < 0.10
∗∗p < 0.05
∗∗∗p < 0.01
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8.10 Does having more children drive parents to drink more alcohol? We have data on the following

variables: WALC = budget share (percent of income spent) for alcohol expenditure; INCOME =
total net household income (10,000 UK pounds); AGE = age of household head

/
10; NK = number of

children (1 or 2). We are interested in the equation

ln(WALC) = β1 + β2INCOME + β3AGE + β4NK + e

a. The data we have is based on a survey. If we hope to establish a causal relationship between NK and

the budget share spent on alcohol, what assumptions are sufficient to prove that the least squares

estimator is BLUE?

b. Using 1278 observations on households with a positive budget share for alcohol, the OLS estimated

equation, with conventional standard errors, is

ln(WALC)
⋀

= −1.956 + 0.837INCOME − 0.228AGE − 0.251NK
(se) (0.166) (0.516) (0.039) (0.058)

Test the null hypothesis that an increase in the number of children from one to two has no effect

on the budget share of alcohol versus the alternative that an increase in the number of children

increases the budget share of alcohol. Use the 5% level of significance.

c. We suspect that the regression error variance might be larger for households with two children

rather than one. We estimate the budget share equation by least squares separately for households

with one and two children. For the 489 households with one child, the sum of squared residuals

is 465.83. For the 789 households with two children, the sum of squared residuals is 832.77. Test

the null hypothesis that there is no difference between the regression error variances for these two

groups, against the alternative that there is a difference. Use the Goldfeld–Quandt test at the 5%

level of significance. Repeat the test using the alternative that the regression error variance for the

subsample of households with two children is greater than the regression error variance for the

subsample of households with one child. What do you conclude?

d. We save the least squares residuals from the estimation in part (b), calling them EHAT . We

then obtain the second-stage regression results EHAT2 = 0.012 + 0.279AGE + 0.025NK with an

R2 = 0.0208. Is there evidence of heteroskedasticity? Set up the appropriate hypothesis and carry

out the test at the 1% level of significance. What do you conclude?

e. We then carry out the regression ln
(
EHAT2

)
⋀

= −2.088 + 0.291AGE − 0.048NK. Holding

NK constant, calculate the estimated variance ratio var
⋀(

ei|AGE = 40
)/

var
⋀(

ei|AGE = 30
)
.

[Hint: Recall that AGE is measured in units of 10 years.] What is the estimated ratio

var
⋀(

ei|AGE = 60
)/

var
⋀(

ei|AGE = 30
)
? Holding AGE constant, calculate the estimated variance

ratio var
⋀(

ei|NK = 2
)/

var
⋀(

ei|NK = 1
)
.

f. Based on the results we have obtained so far, can we claim that the least squares estimator used in

(b) is BLUE?

g. What model would we estimate by OLS to implement feasible generalized least squares estimation?

8.11 We are interested in the relationship between rice production, inputs of labor and fertilizer, and the

area planted using data on N = 44 farms.

RICEi = β1 + β2LABORi + β3FERTi + β4ACRESi + ei

a. We observe the least squares residuals, êi, increase in magnitude when plotted against ACRES.

We regress ê2

i on ACRES and obtain a regression with R2 = 0.2068. The estimated coefficient of

ACRES is 2.024 with the standard error of 0.612. What can we conclude about heteroskedasticity

based on these results? Explain your reasoning.

b. We instead estimate the model

RICEi∕ACRESi = α + β1

(
1∕ACRESi

)
+ β2LABORi∕ACRESi + β3FERTi∕ACRESi + ei

What is the implicit assumption about the heteroskedasticity pattern?

c. Many economists would omit
(
1∕ACRESi

)
from the equation. What argument can you propose

that would make this defensible?

d. Following the estimation of the model in (b) or (c), the squared residuals, ẽ2
i , are regressed on

ACRES. The estimated coefficient is negative and significant at the 10% level. The regression
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R2 = 0.0767. What might you conclude about the models in (b) or (c)? That is, what could have

led to such results?

e. In a further step, we estimate ln
(

ê2

i

)

= −1.30 + 1.11 ln(ACRES) and ln
(
ẽ2

i

)
= −1.20 −

1.21 ln(ACRES). What evidence does this provide about the question in part (d)?

f. If we estimate the model in (c), omitting
(
1∕ACRESi

)
, would you advise using White heteroskedas-

ticity robust standard errors? Explain why or why not.

8.12 An econometrician wishes to study the properties of an estimator using simulated data. Suppose the

sample size N is set to be 100. The intercept and slope parameters are 100, and 10, respectively.

The one explanatory variable, x, has a normal distribution with mean 10 and standard deviation 10.

A standard normal random variable, z, independent of x, is created. The data generating process is

yi = β1 + β2xi + ei, where

ei =

{
zi if i is an odd number

2zi if i is an even number

a. The OLS estimator is not the best linear unbiased estimator using the 100 data pairs
(
yi, xi
)
. True

or false? Explain.

b. If we divide y and x for the even number observations by
√

2, leaving the odd number observations

alone, and then run a least squares regression, the resulting estimator is BLUE. True or false?

Explain.

c. Suppose you were assigned the task of showing that the heteroskedasticity in the data was “statis-

tically significant.” Using the 100 data pairs
(
yi, xi
)
, how exactly would you do it?

8.13 A researcher has 1100 observations on household expenditures on entertainment (per person in the

previous quarter, $) ENTERT . The researcher wants to explain these expenditures as a function of

INCOME (monthly income during past year, $100 units), whether the household lives in an URBAN
area, and whether someone in the household has a COLLEGE degree (Bachelor’s) or an ADVANCED
degree (Master’s or Ph.D.). COLLEGE and ADVANCED are indicator variables.

a. The OLS estimates and t-values are given in Table 8.4, on the next page. Taking the residuals

from this regression, and regressing their squared values on all explanatory variables yields an

R2 = 0.0344. Such a small value implies there is no heteroskedasticity, correct? If that statement

is not correct, then carry out the proper test. What do you conclude about the presence of

heteroskedasticity?

b. To be safe the researcher uses White heteroskedasticity robust standard errors, given in Table 8.4.

The researcher’s paper has to do with the effect on entertainment expenditures of having someone

with an advanced degree in the household. Compare the significance of ADVANCED in the two

OLS regressions. What do you find? It is generally true that robust standard errors are larger than

ones that are not robust. Is that true or false in this case?

c. Because of the importance of the variable ADVANCED in the model, the researcher takes some

additional effort. Using the OLS residuals êi, the researcher obtains

ln
(

ê2

i

)

= 4.9904 + 0.0177INCOMEi + 0.2902ADVANCEDi

(t) (10.92) (1.80)
What evidence about heteroskedasticity is present in these results?

d. The researcher takes the results in (c) and then calculates

hi = exp
(
0.0177INCOMEi + 0.2902ADVANCEDi

)

Each variable, including the intercept, is divided by
√

hi and the model reestimated to obtain the

FGLS results in Table 8.4. Based on these results, how much of an effect on entertainment expen-

ditures is there for households including someone with an advanced degree? Is this statistically

significant? To which set of OLS results, can we make a valid comparison with the FGLS esti-

mates? Have we improved the estimation of the effect of ADVANCED on entertainment by taking

the steps in (c) and (d)? Provide a very careful answer to this question.

e. Looking for an easier way the researcher estimates a log-linear model shown in Table 8.4. Following

this estimation, regressing the squared residuals on the explanatory variables, we find NR2 = 2.46.

Using White’s test, including all the squares and cross-products of the explanatory variables, we

obtain NR2 = 6.63. What are the critical values for each of these test statistics? Using a test at the

5% level, do we reject homoskedasticity in the log-linear model or not?
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f. Interpret the regression results in (e) from the point of view of the researcher interested in the effect

of ADVANCED on entertainment expenditures. What exactly has happened by using the log-linear

model? Provide an intuitive explanation. As a hint, Figure 8.9 shows entertainment expenditures

for one range of income, between $7000/mo and $8000/mo.

T A B L E 8.4 Estimates for Exercise 8.13

OLS Robust OLS FGLS Log-linear

C 20.5502 20.5502 18.5710 2.7600

(3.19) (3.30) (4.16) (25.79)

INCOME 0.5032 0.5032 0.4447 0.0080

(10.17) (6.45) (8.75) (9.77)

URBAN −6.4629 −6.4629) −0.8420 0.0145

(−1.06) (−0.81) (−0.20) (0.14)

COLLEGE −0.7155 −0.7155 1.7388 0.0576

(−0.16) (−0.15) (0.52) (0.77)

ADVANCED 9.8173 9.8173 9.0123 0.2315

(1.87) (1.58) (1.92) (2.65)

t-values in parentheses
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Entertainment expenditure per month per person past quarter, $

FIGURE 8.9 Histogram for entertainment expenditure.

8.14 Using data on 1000 home loan borrowers, we estimate the linear probability model

DEFAULT = β1 + β2LTV + β3RATE + β4AMOUNT + β5FICO + e

where DEFAULT = 1 if the borrower has made a mortgage payment more than 90 days late,

LTV = 100(loan amount/property value), RATE is the interest rate, AMOUNT ($10,000 units) of the

loan, and FICO is the borrower’s credit score.

a. Figure 8.10(a) is the histogram of the least squares residuals, ê. Explain the bimodal shape.
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b. Figure 8.10(b) is the histogram of the least squares fitted values,

DEFAULT
⋀

= 0.6887 + 0.0055LTV + 0.0482RATE − 0.0012AMOUNT − 0.0014FICO

Explain the interpretation of the fitted values. Do you find any unusual fitted values in the figure?

c. Let Y be a Bernoulli random variable, taking the values 1 and 0 with probabilities P and 1 – P.

Show that var(Y) = P(1 − P).
d. Regressing ê2

i on the explanatory variables, we obtain R2 = 0.0206 and the model F-statistic is

5.22. What does each of these values tell us about the null hypothesis of homoskedasticity in this

model? Provide any relevant test statistics, and their 5% level of significance critical values. In light

of part (c), are the results surprising?

e. Consider two hypothetical borrowers:

Borrower 1: LTV = 85, RATE = 11, AMOUNT = 400, FICO = 500

Borrower 2: LTV = 50, RATE = 5, AMOUNT = 100, FICO = 700

The 95% interval estimates, for the expected probability of default for the hypothetical borrowers

using OLS, OLS with heteroskedasticity robust standard errors, and FGLS are given in Table 8.5.

Discuss these interval estimates. If two such borrowers came for a loan, to whom would you

offer one?

f. To obtain the FGLS estimates in (e), negative predicted values in nine observations are turned to

positives by taking their absolute value. Why did we do that? What other alternatives did we have?

T A B L E 8.5 Interval Estimates for Exercise 8.14(e)

Borrower Method Lower Bound DEFAULT
⋀

Upper Bound Std. Err.

1 OLS −0.202 0.527 1.257 0.372

1 OLS (robust) −0.132 0.527 1.187 0.337

1 FGLS −0.195 0.375 0.946 0.291

2 OLS −0.043 0.116 0.275 0.082

2 OLS (robust) −0.025 0.116 0.257 0.072

2 FGLS −0.019 0.098 0.215 0.060

(a)

(b)
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FIGURE 8.10 Histograms for residuals and fitted values for Exercise 8.14.
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8.15 We have N = 396 observations on employment at fast-food restaurants in two neighboring states, New

Jersey and Pennsylvania. In Pennsylvania, the control group di = 0, there is no minimum wage law. In

New Jersey, the treatment group di = 1, there is a minimum wage law. Let the observed outcome vari-

able be full-time employment FTEi at comparable fast-food restaurants. Some sample summary statis-

tics for FTEi in the two states are in Table 8.6. For Pennsylvania, the sample size is N0 = 77, the sample

mean is FTE0 =
∑N0

i=1,di=0
FTEi∕N0, the sample variance is s2

0
=
∑N0

i=1,di=0

(

FTEi − FTE0

)2/(
N0 − 1

)
=

SST0∕
(
N0 − 1

)
, the sample standard deviation is s0 =

√

s2
0
, and the standard error of mean is

se0 =
√

s2
0

/
N0 = s0

/√
N0. For New Jersey, the definitions are comparable with subscripts “1”.

T A B L E 8.6 Summary Statistics for Exercise 8.15

Sample Standard
Sample Sample Standard Error of

State d N Mean Variance Deviation the Mean

Pennsylvania (control) 0 77 21.16558 68.50429 8.276732 0.9432212

New Jersey (treatment) 1 319 21.02743 86.36029 9.293024 0.5203094

a. Consider the regression model FTEi = β1 + β2di + ei. The OLS estimates are given below, along

with the usual standard errors (se), the White heteroskedasticity robust standard errors (robse), and

an alternative robust standard error (rob2).

FTEi

⋀

= 21.16558 − 0.1381549di

(se) (1.037705) (1.156182)
(robse) (0.9394517) (1.074157)
(rob2) (0.9432212) (1.077213)

Show the relationship between the least squares estimates of the coefficients, the estimated slope

and intercept, and the summary statistics in Table 8.6.

b. Calculate var
⋀(

b2|d
)
= Nσ̂2/(N0N1

)
=
(

N
N − 2

)(
SST0 + SST1

N0N1

)

, derived in Exercise 8.7(b). Compare

the standard error of the slope using this expression to the regression output in part (a).

c. Suppose that the treatment and control groups have not only potentially different means but

potentially different variances, so that var
(
ei|di = 1

)
= σ2

1
and var

(
ei|di = 0

)
= σ2

0
. Carry out the

Goldfeld–Quandt test of the null hypothesis σ2
0
= σ2

1
at the 1% level of significance. [Hint: See

Appendix C.7.3.]

d. In Exercise 8.7(e), we showed that the heteroskedasticity robust variance for the slope estima-

tor is var
⋀(

b2|d
)
= N

N − 2

(
SST0

N2
0

+ SST1

N2
1

)

. Use the summary statistic data to calculate this quantity.

Compare the heteroskedasticity robust standard error of the slope using this expression to those

from the regression output. In Appendix 8D, we discuss several heteroskedasticity robust variance

estimators. This one is most common and usually referred to as “HCE1,” where HCE stands for

“heteroskedasticity consistent estimator.”

e. Show that the alternative robust standard error, rob2, can be computed from var
⋀(

b2|d
)
=

SST0

N0(N0 − 1) +
SST1

N1(N1 − 1) . In Appendix 8D, this estimator is called “HCE2.” Note that it can be

written var
⋀(

b2|d
)
=
(

σ̂2

0
∕N0

)

+
(

σ̂2

1
∕N1

)

, where σ̂2

0
= SST0∕

(
N0 − 1

)
and σ̂2

1
= SST1∕

(
N1 − 1

)
.

These estimators are unbiased and are discussed in Appendix C.4.1. Is the variance estimator

unbiased if σ2
0
= σ2

1
?

f. The estimator HCE1 is var
⋀(

b2|d
)
= N

N − 2

(
SST0

N2
0

+ SST1

N2
1

)

. Show that dropping the degrees

of freedom correction N∕(N − 2) it becomes HCE0, var
⋀(

b2|d
)
=
(
σ̃2

0
∕N0

)
+
(
σ̃2

1
∕N1

)
, where

σ̃2
0
= SST0∕N0 and σ̃2

1
= SST1∕N1 are biased but consistent estimators of the variances. See

Appendix C.4.2. Calculate the standard error for b2 using this alternative.
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g. A third variant of a robust variance estimator, HCE3, is var
⋀(

b2|d
)
=
(

σ̂2
0

N0 − 1

)

+
(

σ̂2
1

N1 − 1

)

, where

σ̂2

0
= SST0∕

(
N0 − 1

)
and σ̂2

1
= SST1∕

(
N1 − 1

)
. Calculate the robust standard error using HCE3 for

this example. In this application, comparing HCE0 to HCE2 to HCE3, which is largest? Which is

smallest?

8.8.2 Computer Exercises

8.16 A sample of 200 Chicago households was taken to investigate how far American households tend to

travel when they take a vacation. Consider the model

MILES = β1 + β2INCOME + β3AGE + β4KIDS + e

MILES is miles driven per year, INCOME is measured in $1000 units, AGE is the average age of the

adult members of the household, and KIDS is the number of children.

a. Use the data file vacation to estimate the model by OLS. Construct a 95% interval estimate for the

effect of one more child on miles traveled, holding the two other variables constant.

b. Plot the OLS residuals versus INCOME and AGE. Do you observe any patterns suggesting that

heteroskedasticity is present?

c. Sort the data according to increasing magnitude of income. Estimate the model using the first

90 observations and again using the last 90 observations. Carry out the Goldfeld–Quandt test for

heteroskedastic errors at the 5% level. State the null and alternative hypotheses.

d. Estimate the model by OLS using heteroskedasticity robust standard errors. Construct a 95% inter-

val estimate for the effect of one more child on miles traveled, holding the two other variables

constant. How does this interval estimate compare to the one in (a)?

e. Obtain GLS estimates assuming σ2
i = σ

2INCOME2
i . Using both conventional GLS and robust GLS

standard errors, construct a 95% interval estimate for the effect of one more child on miles traveled,

holding the two other variables constant. How do these interval estimates compare to the ones in

(a) and (d)?

8.17 In this exercise, we explore the relationship between total household expenditures and expenditures on

clothing. Use the data file malawi_small (malawi has more observations) and observations for which

PCLOTHES is positive. We consider three models:

PCLOTHES = β1 + β2 ln(TOTEXP) + e (XR8.17a)

ln(CLOTHES) = α1 + α2 ln(TOTEXP) + v (XR8.17b)

CLOTHES = γ1 + γ2TOTEXP + u (XR8.17c)

a. Plot PCLOTHES versus ln(TOTEXP) and include the least squares fitted line. Calculate the point

elasticity of clothing expenditures with respect to total expenditures at the means. See Exercise

4.12 for the elasticity in this model.

b. Calculate CLOTHES = PCLOTHES × TOTEXP. Then plot ln(CLOTHES) versus ln(TOTEXP)

and include the least squares fitted line. Calculate a 95% interval estimate of the elasticity of

clothing expenditures with respect to total expenditures. Is the elasticity computed in part (a)

within this interval?

c. Plot CLOTHES versus TOTEXP and include the least squares fitted line. Calculate a 95% interval

estimate of the elasticity of clothing expenditures with respect to total expenditures at the means.

Is the elasticity computed in part (a) within this interval?

d. Test for the presence of heteroskedasticity in each model in parts (a)–(c). Use the 1% level of

significance. What are your conclusions? For which specification does heteroskedasticity seem

less of an issue?

e. For the models in which heteroskedasticity was significant at the 1% level, use OLS with robust

standard errors. Calculate a 95% interval estimate for the elasticity of clothing expenditures with

respect to total expenditures at the means. How do the intervals compare to the ones based on

conventional standard errors?
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8.18 Consider the wage equation,

ln
(
WAGEi

)
= β1 + β2EDUCi + β3EXPERi + β4EXPER2

i + β5FEMALEi + β6BLACK
+ β7METROi + β8SOUTHi + β9MIDWESTi + β10WEST + ei

where WAGE is measured in dollars per hour, education and experience are in years, and METRO = 1

if the person lives in a metropolitan area. Use the data file cps5 for the exercise.

a. We are curious whether holding education, experience, and METRO equal, there is the same amount

of random variation in wages for males and females. Suppose var
(
ei|xi,FEMALE = 0

)
= σ2

M and

var
(
ei|xi,FEMALE = 1

)
= σ2

F. We specifically wish to test the null hypothesis σ2
M = σ2

F against

σ2
M ≠ σ2

F. Carry out a Goldfeld–Quandt test of the null hypothesis at the 5% level of significance.

Clearly state the value of the test statistic and the rejection region, along with your conclusion.

b. Estimate the model by OLS. Carry out the NR2 test using the right-hand-side variables METRO,

FEMALE, BLACK as candidates related to the heteroskedasticity. What do we conclude about

heteroskedasticity, at the 1% level? Do these results support your conclusions in (a)? Repeat the

test using all model explanatory variables as candidates related to the heteroskedasticity.

c. Carry out the White test for heteroskedasticity. What is the 5% critical value for the test? What do

you conclude?

d. Estimate the model by OLS with White heteroskedasticity robust standard errors. Compared to OLS

with conventional standard errors, for which coefficients have interval estimates gotten narrower?

For which coefficients have interval estimates gotten wider? Is there an inconsistency in the results?

e. Obtain FGLS estimates using candidate variables METRO and EXPER. How do the interval esti-

mates compare to OLS with robust standard errors, from part (d)?

f. Obtain FGLS estimates with robust standard errors using candidate variables METRO and EXPER.

How do the interval estimates compare to those in part (e) and OLS with robust standard errors,

from part (d)?

g. If reporting the results of this model in a research paper which one set of estimates would you

present? Explain your choice.

8.19 In this exercise we explore the relationship between total household expenditures and expenditures on

telephone services. Use the data file malawi_small (malawi has more observations).

a. Using observations for which PTELEPHONE > 0, create the variable ln(TELEPHONE) =
ln(PTELEPHONE × TOTEXP). Plot ln(TELEPHONE) versus ln(TOTEXP) and include the least

squares fitted line.

b. Based on the OLS regression of ln(TELEPHONE) on ln(TOTEXP) what is the estimated elasticity

of telephone expenditures with respect to total expenditure. Compute a 95% interval estimate for

the elasticity. Based on the estimates, would you classify telephone services as a necessity or a

luxury?

c. Test for the presence of heteroskedasticity in the regression in part (b). What do you conclude?

d. Estimate the model PTELEPHONEi = β1 + β2 ln
(
TOTEXPi

)
+ ei by OLS. Test the null hypothesis

that β2 ≤ 0 against β2 > 0 using the 5% level of significance.

e. Calculate the elasticity of telephone expenditures with respect to total expenditure at the sam-

ple median of total expenditures. The expression for an elasticity in such a model was derived in

Exercise 4.12. Use your software to compute a 95% interval estimate for the elasticity. Compare

the estimated elasticity to that in (b).

f. Test for the presence of heteroskedasticity in the regression in part (d). What do you conclude?

g. Estimate the model in (d) using FGLS with ln
(
TOTEXPi

)
being the variable that may be associated

with the heteroskedasticity. Using the conventional FGLS standard errors, test the null hypothesis

that β2 ≤ 0 against β2 > 0 using the 5% level of significance.

h. Repeat part (g) but using FGLS with robust standard errors.

i. Summarize your findings about the elasticity of telephone services expenditure with respect to total

expenditure.

8.20 The data file br2 contains data on 1080 houses sold in Baton Rouge, Louisiana, during mid-2005. We

will be concerned with the selling price (PRICE), the size of the house in square feet (SQFT), the age

of the house in years (AGE), whether the house is on a waterfront (WATERFRONT = 1, 0), and if it is

of a traditional style (TRADITIONAL = 1, 0).
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a. Find OLS estimates of the following equation and save the residuals.

ln(PRICE) = β1 + β2 ln(SQFT) + β3AGE + β4AGE2

+ β5WATERFRONT + β6TRADITIONAL + e

At some point, is it possible that an old house will become “historic” with age increasing its value?

Construct a 95% interval estimate for the age at which age begins to have a positive effect on price.

b. Use the NR2 test for heteroskedasticity with the candidate variables AGE, AGE2, WATERFRONT ,

and TRADITIONAL. Repeat the test dropping AGE, but keeping AGE2. Plot the least residuals

against AGE. Is there any visual evidence of heteroskedasticity?

c. Estimate the model in (a) by OLS with White heteroskedasticity robust standard errors. Construct

a 95% interval estimate for the age at which age begins to have a positive effect on price. How does

the interval compare to the one in (a)?

d. Assume σ2
i = σ

2 exp
(
α2AGE2

i + α3WATERFRONTi + α4TRADITIONAL
)
. Obtain FGLS estimates

of the model in (a) and compare the results to those in (c). Construct a 95% interval estimate for

the age at which age begins to have a positive effect on price. How does the interval compare to

the one in (c)?

e. Obtain the residuals from the transformed model based on the skedastic function in (d). Regress the

squares of these residuals on AGE2, WATERFRONT , TRADITIONAL, and a constant term. Using

the NR2, is there any evidence of remaining heteroskedasticity in the transformed model? Repeat

the test using the transformed model version of the variables and a constant term. How do the

results compare?

f. Modify the estimation in (d) to use FGLS with heteroskedasticity robust standard errors. Construct

a 95% interval estimate for the age at which age begins to have a positive effect on price. How does

the interval compare to the ones in (c) and (d)?

g. What do you conclude about the age at which historical value increases a house price?

8.21 In Example 8.9 we estimated the linear probability model

COKE = β1 + β2PRATIO + β3DISP_COKE + β4DISP_PEPSI + e

where COKE = 1 if a shopper purchased Coke and COKE = 0 if a shopper purchased Pepsi. The

variable PRATIO was the relative price ratio of Coke to Pepsi and DISP_COKE and DISP_PEPSI
were indicator variables equal to one if the relevant display was present. Suppose now that we have

1140 observations on randomly selected shoppers from 50 different grocery stores. Each grocery store

has its own settings for PRATIO, DISP_COKE and DISP_PEPSI. Let an (i, j) subscript denote the jth
shopper at the ith store, so that we can write the model as

COKEij = β1 + β2PRATIOi + β3DISP_COKEi + β4DISP_PEPSIi + eij

Average this equation over all shoppers in the ith store so that we have

COKEi • = β1 + β2PRATIOi + β3DISP_COKEi + β4DISP_PEPSIi + ei • (XR8.21)

where

ei • =
1

Ni

Ni∑

j=1

eij and COKEi • =
1

Ni

Ni∑

j=1

COKEij

and Ni is the number of sampled shoppers in the ith store.

a. What is the interpretation of COKEi • for the ith store?

b. Assume that E
(
COKEij|xij

)
= Pi and var

(
COKEij|xij

)
= Pi
(
1 − Pi

)
, show that E

(

COKEi • |X
)

=

Pi and var
(

COKEi • |X
)

= Pi
(
1 − Pi

)
∕Ni.

c. Interpret Pi and express it in terms of PRATIOi, DISP_COKEi, and DISP_PEPSIi.

d. Observations on the variables COKEi • , PRATIOi, DISP_COKEi, DISP_PEPSIi, and Ni appear in

the data file coke_grouped. Obtain summary statistics for the data. Calculate the sample coefficient

of variation, CV = 100sx
/

x, for COKEi • and PRATIOi. How much variation is there in these vari-

ables relative to their mean? Would we prefer larger or smaller coefficients of variation in these

variables? Why? Construct histograms for COKEi • and PRATIOi. What do you observe?
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e. Find least squares estimates of equation (XR8.21) and use robust standard errors. Summarize the

results. Test the null hypothesis β3 = −β4. Choose an appropriate alternative hypothesis and use

the 5% level of significance. If the null hypothesis is true, what does it imply about the effect of

store displays for COKE and PEPSI?

f. Create the variable DISP = DISP_COKE − DISP_PEPSI. Estimate the model COKEi • = β1 +
β2PRATIOi + β3DISPi + ei • by OLS. Test for heteroskedasticity by applying the White test. Also

carry out the NR2 test for heteroskedasticity using the candidate variable Ni. What are your con-

clusions, at the 5% level?

g. Obtain the fitted values from (e), pi, and estimate var
(

COKEi •

)

for each of the stores. Report the

mean, standard deviation, maximum and minimum values of the pi.

h. Find generalized least squares estimates of the model in part (f). Comment on the results and com-

pare them with those obtained in part (f). How might the results of part (d) help you?

8.22 Use data file cps5 for this exercise.

a. Estimate the following wage equation by OLS and use heteroskedasticity robust standard errors:

ln(WAGE) = β1 + β2EDUC + β3EXPER + β4EXPER2 + β5(EXPER × EDUC)
+ β6FEMALE + β7BLACK + δ1SOUTH + δ2MIDWEST + δ3WEST + e

(XR8.22)

Discuss the results.

b. Add MARRIED to the equation and reestimate. Holding education and experience constant, do

white male married workers in the northeast get higher wages? Using a 5% significance level, test

a null hypothesis that wages of married workers are less than or equal to those of unmarried workers

against the alternative that wages of married workers are higher.

c. Examine the residuals from part (a) for the two values of MARRIED. Is there evidence of het-

eroskedasticity?

d. Estimate the model in part (a) twice—once using observations on only married workers and once

using observations on only unmarried workers. Use the Goldfeld–Quandt test and a 5% significance

level to test whether the error variances for married and unmarried workers are different.

e. Hypothesize that σ2
i = σ

2 exp
(
α2MARRIED

)
. Find generalized least squares of the model in part

(a). Compare the estimates and standard errors with those obtained in part (a).

f. Find two 95% interval estimates for the marginal effect ∂E
(
ln(WAGE )

)
∕∂EDUC for a white male

worker living in the northeast with 16 years of education and 10 years of experience. Use the results

from part (a) for one interval and the results from part (e) for the other interval. Comment on any

differences.

8.23 Using the data in cps5 obtain OLS estimates of the wage equation

ln(WAGE) = β1 + β2EDUC + β3EXPER + β4EXPER2 + β5(EXPER × EDUC)
+ β6FEMALE + β7BLACK + β8UNION + β9METRO (XR8.23)

+ δ1SOUTH + δ2MIDWEST + δ3WEST + e

a. Interpret the coefficient of UNION. Test the null hypothesis that the coefficient of UNION is less

than or equal to zero, against the alternative that is positive. What do you conclude?

b. Test for the presence of heteroskedasticity related to the variables UNION and METRO using the

NR2 test. What do you conclude at the 1% level of significance?

c. Regress the squared least squares residuals, ê2

i , from (a) on EDUC, UNION, and METRO. Also

regress ln
(

ê2

i

)

on EDUC, UNION, and METRO. What do these results suggest about the effect of

UNION membership on the variation in the random error? What do these results suggest about the

effect of METRO on the variation in the random error?

d. Hypothesize that σ2
i = σ

2 exp
(
α2EDUC + α3UNION + α4METRO

)
. Find generalized least squares

estimates of the wage equation. For the coefficient of UNION, compare the estimates and stan-

dard errors with those obtained from OLS estimation of (XR8.23) with heteroskedasticity robust

standard errors.

8.24 In this exercise, we will explore some of the factors predicting costs at American universities

using the data file poolcoll2. Let TC = the real (2008 dollars) total cost per student, FTUG = number

of full-time undergraduate students, FTGRAD = number of full-time graduate students, FTEF =
full-time faculty per 100 students, CF = number of contract faculty per 100 students, FTENAP = full
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time nonacademic professionals per 100 students, PRIVATE = 1 if the school is private, and 0 if it is

public.

a. Estimate the regression of ln(TC) on the remaining variables. What are the predicted effects of

additional graduate students on total cost per student? What are the predicted effects of additional

full-time faculty?

b. Include in the model not only PRIVATE but also PRIVATE × FTEF. Are these variables individu-

ally and jointly significant at the 5% level?

c. Use the NR2 test for heteroskedasticity that is possibly related to PRIVATE. What do you conclude

at the 1% level of significance?

d. Test the hypothesis in (b) using OLS estimates with robust standard errors.

e. Include in the model not only PRIVATE but also PRIVATE times all the other variables. Test

the joint significance of PRIVATE and PRIVATE times all the other variables using an F-test.

Use robust standard errors and carry out a robust F-test. Can we say “We reject the hypothesis

that the models determining total cost per student are the same for public and private universities?”

f. Hypothesize σ2
i = exp

(
α1 + α2PRIVATE

)
. Obtain FGLS estimates of the model in (e) and carry

out the F-test on PRIVATE and PRIVATE times all the other variables. What is the value of the

F-test statistic? What is the 1% critical value?

8.25 What effect does having public health insurance have on the number of doctor visits a person has during

a year? Using 1988 data, in the data file rwm88_small, from Germany, we will explore this question.

The data file rwm88 contains more observations.

a. Estimate the regression model with the dependent variable DOCVIS and the explanatory variables

PUBLIC, FEMALE, HHKIDS, MARRIED, SELF, EDUC2, HHNINC2. Test the null hypothesis

that the coefficient on PUBLIC is less than or equal to zero, versus the alternative that it is greater

than zero at the 1% level of significance.

b. Test for the presence of heteroskedasticity. Obtain the squared least squares residuals from the

regression in (a), regress them on all the explanatory variables, and carry out an F-test of their

joint significance. What do we conclude about the presence of heteroskedasticity at the 1% level of

significance?

c. Estimate the regression model with the dependent variable DOCVIS and the explanatory variables

FEMALE, HHKIDS, MARRIED, SELF, EDUC2, HHNINC2 separately for those with public insur-

ance and those who do not have public insurance. Use equation (7.37) to obtain the estimate of the

average treatment effect of public insurance.

d. Estimate the regression model with the dependent variable DOCVIS and the explanatory vari-

ables PUBLIC, FEMALE, HHKIDS, MARRIED, SELF, EDUC2, HHNINC2 in “deviation from

the mean” form. That is, for each variable x, create the variable x̃ = x − x, where x is the sample

mean. Using robust standard errors, test the significance of the coefficient on PUBLIC.

e. Estimate the regression model with the dependent variable DOCVIS and the explanatory vari-

ables FEMALE, HHKIDS, MARRIED, SELF, EDUC2, HHNINC2, along with PUBLIC and PUB-
LIC times each of the variables in deviation about the mean form. What is the estimated aver-

age treatment effect? Using a robust standard error, is it statistically significant at the 5% level?

[Hint: See equation (7.41) and the surrounding discussion.]

8.26 In the STAR experiment, Example 7.8, children were randomly assigned within schools into three

types of classes: small classes with 13–17 students, regular-sized classes with 22–25 students, and

regular–sized classes with a full-time teacher aide to assist the teacher. Student scores on achievement

tests were recorded as well as some information about the students, teachers, and schools. Data for the

kindergarten classes is contained in the data file star5_small2.

a. Regress MATHSCORE on SMALL, AIDE, TCHEXPER, SCHRURAL, FREELUNCH, and BOY .

Test for heteroskedasticity related to SMALL and AIDE using the NR2 test. What do you conclude

at the 5% level?

b. Estimate the regression model in (a) by OLS including interactions between FREELUNCH and the

other variables. Test for heteroskedasticity related to SMALL and AIDE using the NR2 test. What

do you conclude at the 5% level?

c. Using the model in (b), and both conventional and robust standard errors, test the joint significance

of the interactions between FREELUNCH and SMALL, AIDE, and TCHEXPER at the 10% level

in each regression. What do you conclude?
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d. Estimate the model in (b) and include indicator variables for each school (SCHOOLID). Test for

heteroskedasticity related to SMALL and AIDE using the NR2 test. What do you conclude at the

5% level?

e. Using the model in (d), and both conventional and robust standard errors, test the joint significance

of the interactions between FREELUNCH and SMALL, AIDE, and TCHEXPER at the 10% level

in each regression. What do you conclude?

8.27 There were 64 countries who competed in the 1992 Olympics and won at least one medal. For each of

these countries, let MEDALTOT be the total number of medals won, POP be population in millions,

and GDP be GDP in billions of 1995 dollars.

a. Use the data file olympics5, excluding the United Kingdom, and use the N = 63 remaining obser-

vations. Estimate the model MEDALTOT = β1 + β2 ln(POP) + β3 ln(GDP) + e by OLS.

b. Calculate the squared least squares residuals ê2

i from the regression in (a). Regress ê2

i on ln(POP)

and ln(GDP). Use the F-test from this regression to test for heteroskedasticity at the 5% level of

significance. Use the R2 from this regression to test for heteroskedasticity. What are the p-values

of the two tests?

c. Reestimate the model in (a) but using heteroskedasticity robust standard errors. Using a 10% sig-

nificance level, test the hypothesis that there is no relationship between the number of medals won

and GDP against the alternative that there is a positive relationship. What happens if you change

the significance level to 5%?

d. Using a 10% significance level, test the hypothesis that there is no relationship between the number

of medals won and population against the alternative that there is a positive relationship. What

happens if you change the significance level to 5%?

e. Use the model in (c) to find point and 95% interval estimates for the expected number of medals

won by the United Kingdom whose population and GDP in 1992 were 58 million and $1010 billion,

respectively.

f. The United Kingdom won 20 medals in 1992. Was the model successful in predicting the mean

number of medals for the United Kingdom? Using the estimation in (c), with robust standard errors,

what is the p-value for a test of H0∶β1 + ln(58) × β2 + ln(1010) × β3 = 20 versus H1∶β1 + ln(58) ×
β2 + ln(1010) × β3 ≠ 20?

8.28 In this exercise you will create some simulated data and try out estimation and testing methods. Use

your software to create a new data set, or “workfile,” with N = 100 observations. All modern soft-

ware has functions, called random number generators, to create uniformly distributed and normally

distributed random values. Follow these steps.

1. Create X2 = 1 + 5 × U1, where U1 is a random number between zero and one.

2. Create X3 = 1 + 5 × U2, where U2 is another random number between zero and one.

3. Create E =
√

exp(2 + 0.6X2) × Z, where Z ∼ N(0, 1).
4. Create Y = 5 + 4X2 + E

You should now have 100 values for Y , X2, and X3. Note: Your results should be different from your

classmates, and your results might change from one experiment to the next. To prevent this from hap-

pening, you can set the random number’s “seed.” See your software documentation for instructions.

a. Regress Y on X2 and X3 and obtain conventional OLS standard errors. Compare the estimated coef-

ficients to the true values of the regression parameters, β1 = 5, β2 = 4, β3 = 0. Do the t-values

suggest that the coefficients are significantly different from 0 at the 5% level?

b. Calculate the least squares residuals ê from the OLS estimation in (a) and regress ê2
on X2 and X3.

What evidence, if any, do you find for the presence of heteroskedasticity?

c. Regress Y on X2 and X3 and obtain robust standard errors. Compare these to the conventional

standard errors in (a).

d. Assume the heteroskedasticity pattern is σ2X22. Obtain GLS estimates with conventional and

robust standard errors. Are the GLS parameter estimates closer to the true parameter values or

not? Which set of standard errors should be used?

e. Assume the multiplicative heteroskedasticity model exp
(
α1 + α2X2 + α3X3

)
. Obtain FGLS

estimates with conventional and robust standard errors. Are the FGLS estimates closer to the

true parameter values than the GLS or OLS estimates? Which set of standard errors should

be used?
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8.29 The data file mexican contains data collected in 2001 from the transactions of 754 Mexican sex

workers.

a. Using OLS, estimate the hedonic log-linear model with LNPRICE as the dependent variable and

independent variables BAR, STREET , SCHOOL, AGE, RICH, ALCOHOL, ATTRACTIVE. Interpret

the estimated coefficients.

b. Test for heteroskedasticity related to ATTRACTIVE using the NR2 test at the 1% level of signifi-

cance.

c. Estimate the model separately by OLS for observations with ATTRACTIVE = 1 and ATTRACTIVE
= 0. Using the results, carry out the Goldfeld–Quandt test for heteroskedasticity across the two

regressions. Use a two-tailed test at the 5% level. Which regression has a larger estimated error

variance?

d. Compare the estimates from the two estimations in (c). Do they appear similar or dissimilar? Which

coefficients are noticeably different? Use OLS to estimate the model that includes the original

variables and interactions between ATTRACTIVE and the other explanatory variables. Test the

joint significance of ATTRACTIVE and the interaction variables at the 1% level of significance. Is

this a “valid” Chow test? Is homoskedasticity a necessary condition for this test? Recall that the

test is described in Section 7.2.3.

e. Using the estimation results in (d), test for heteroskedasticity related to ATTRACTIVE using the

NR2 test at the 1% level of significance.

f. Use OLS with heteroskedasticity robust standard errors to estimate the model that includes the

original variables and interactions between ATTRACTIVE and the other explanatory variables. Test

the joint significance of ATTRACTIVE and the interaction variables at the 1% level of significance.

Is this a “valid” Chow test?

8.30 The data file grunfeld2 contains annual data on the gross investment, capital stock, and the value of the

firm, measured by the value of common and preferred stock for General Electric and Westinghouse,

during the period 1935–1954. These data have been used to train econometricians for almost 60 years,

and still provide valuable lessons.

a. Create an indicator variable GE = 1 for General Electric and GE = 0 for Westinghouse. Using the

combined data on both firms, use OLS to estimate the model of investment, INV , as a function of

the value of the firms, V , and capital stock, K, also the indicator variable GE and the interactions

of GE with V and K. That is INV = 𝑓 (const,V,K,GE,GE × V,GE × K). Test the joint significance

of the variables GE,GE × V,GE × K at the 5% level. What does this test reveal about the two firms’

investment characteristics?

b. Obtain the OLS residuals from (a) and regress their squares on the indicator variable GE. Use the

result of this regression to test for heteroskedasticity across the firms at the 1% level.

c. Reestimate the model in (a) using OLS with heteroskedasticity robust standard errors. Test the joint

significance of the variables GE,GE × V,GE × K at the 5% level. Does your conclusion change?

d. Estimate the investment model separately for General Electric and Westinghouse. Let the estimated

error variances be σ̂2

GE and σ̂2

WE. For which firm is the estimated error variance smaller?

e. Create a variable W that takes the value σ̂2

GE when GE = 1 and takes the value σ̂2

WE when GE = 0.

Estimate the model in (a) by FGLS with weighting variable W. Test the joint significance of the

variables GE,GE × V,GE × K at the 5% level. Does your conclusion change?

Appendix 8A Properties of the Least Squares

Estimator
In Appendix 2D, we wrote the least squares estimator for β2 in the simple regression model as

b2 = β2 +
∑

wiei, where

wi =
xi − x

∑(
xi − x

)2

This expression is a useful one for exploring the properties of the least squares estimator under

heteroskedasticity. The first property that we establish is that of unbiasedness. This property was
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derived under homoskedasticity in equation (2.13) of Chapter 2. The same proof holds under

heteroskedasticity because the only error term assumption that was used is E
(
ei|x
)
= 0.

E
(
b2|x
)
= E
(
β2 +
∑

wiei|x
)
= E
(
β2 + w1e1 + w2e2 + · · · + wNeN|x

)

= E
(
β2

)
+ E
(
w1e1|x

)
+ E
(
w2e2|x

)
+ · · · + E

(
wNeN|x

)

= β2 +
∑

E
(
wiei|x

)
= β2 +

∑
wiE
(
ei|x
)
= β2

The least squares estimators are unbiased as long as E
(
ei|x
)
= 0, even if the errors are het-

eroskedastic. This is true in both the simple and multiple regression models.

The variance of the least squares estimator is

var
(
b2|x
)
= var

(∑
wiei|x

)

=
∑

w2
i var
(
ei|x
)
+
∑

i≠j

∑
wiwjcov

(
ei, ej|x

)

=
∑

w2
i σ

2
i (8A.1)

=
∑
{ (

xi − x
)

∑(
xi − x

)2

}2

σ2
i =
∑
⎧
⎪
⎨
⎪
⎩

(
xi − x

)2

[∑(
xi − x

)2
]2
σ2

i

⎫
⎪
⎬
⎪
⎭

=
[∑(

xi − x
)2
]−1∑[(

xi − x
)2σ2

i

][∑(
xi − x

)2
]−1

Going from the second line to the third we used assumption MR4, conditionally uncorrelated

errors, cov
(
ei, ej|x

)
= 0. If the variances are all the same

(
σ2

i = σ
2
)
, then the third line becomes

σ2∑w2
i = var

(
b2|x
)
= σ2
/∑(

xi − x
)2

, which is the usual OLS variance expression. This simpli-

fication is not possible under heteroskedasticity. The fourth and fifth lines are equivalent ways of

writing the variance of the least squares estimator, equation (8.8), when the random errors are

heteroskedastic.

Appendix 8B Lagrange Multiplier Tests for

Heteroskedasticity
More insights into LM and other variance function tests can be developed by relating them to the

F-test introduced in (6.8) for testing the significance of a mean function. To put that test in the

context of a variance function, consider (8.15)

ê2

i = α1 + α2zi2 + · · · + αSziS + vi (8B.1)

and assume that our objective is to test H0∶α2 = α3 = · · · = αS = 0 against the alternative that at

least one αs, for s = 2,… , S, is nonzero. In Section 8.2.2 we considered a more general variance

function than that in (8B.1), but we also pointed out that using the linear function in (8B.1) is

valid for testing more general alternative hypotheses.

Adapting the F-value reported in (6.8) to test the overall significance of (8B.1), we have

F =
(SST − SSE)∕(S − 1)

SSE∕(N − S)
(8B.2)

where

SST =
N∑

i=1

[

ê2

i − ê2

]2

and SSE =
N∑

i=1

v̂2

i
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are the total sum of squares and sum of squared errors from estimating (8B.1). Note that ê2
is the

mean of the dependent variable in (8B.1), or, equivalently, the average of the squares of the least

squares residuals from the regression function. At a 5% significance level, a valid test is to reject

H0 if the F-value is greater than a critical value given by F(0.95, S−1, N−S).

Two further tests, the original Breusch–Pagan test and its N × R2 version, can be obtained

by modifying (8B.2). Please be patient as we work through these modifications. We begin by

rewriting (8B.2) as

χ2 = (S − 1) × F = SST − SSE
SSE∕(N − S)

∼ χ2
(S−1) (8B.3)

The chi-square statistic χ2 = (S − 1) × F has an approximate χ2
(S−1) -distribution in large samples.

That is, multiplying an F-statistic by its numerator degrees of freedom gives another statistic that

follows a chi-square distribution. The degrees of freedom of the chi-square distribution are S − 1,

the same as that for the numerator of the F-distribution. The background for this result is given

in Appendix 6A.

Next, note that

var
⋀(

e2
i
)
= var
⋀(

vi
)
= SSE

N − S
(8B.4)

That is, the variance of the dependent variable is the same as the variance of the error, which can

be estimated from the sum of squared errors in (8B.1). Substituting (8B.4) into (8B.3) yields

χ2 = SST − SSE
var
⋀(

e2
i

) (8B.5)

This test statistic represents the basic form of the Breusch–Pagan statistic. Its two different ver-

sions occur because of the alternative estimators used to replace var
⋀(

e2
i

)
.

If it is assumed that ei is normally distributed, it can be shown that var
(
e2

i

)
= 2σ4

e , and the

statistic for the first version of the Breusch–Pagan test is

χ2 = SST − SSE
2σ̂4

e

(8B.6)

Note that σ4
e =
(
σ2

e
)2

is the square of the error variance from the mean function; unlike

SST and SSE, its estimate comes from estimating (8.16). The result var
(
e2

i

)
= 2σ4

e might be

unexpected—here is a little proof so that you know where it comes from. When ei ∼ N
(
0, σ2

e
)
,

then
(
ei∕σe

)
∼ N(0, 1), and

(
e2

i ∕σ
2
e
)
∼ χ2

(1). The variance of a χ2
(1) random variable is 2. Thus,

var

(
e2

i

σ2
e

)

= 2 ⇒
1

σ4
e

var
(
e2

i
)
= 2 ⇒ var

(
e2

i
)
= 2σ4

e

Using (8B.6), we reject a null hypothesis of homoskedasticity when the χ2-value is greater than

a critical value from the χ2
(S−1) distribution.

For the second version of (8B.5) the assumption of normally distributed errors is not

necessary. Because this assumption is not used, it is often called the robust version of the

Breusch–Pagan test. The sample variance of the squared least squares residuals, the ê2

i , is used

as an estimator for var
(
e2

i

)
. Specifically, we set

var
⋀(

e2
i
)
= 1

N

N∑

i=1

[

ê2

i − ê2

]2

= SST
N

(8B.7)

This quantity is an estimator for var
(
e2

i

)
under the assumption that H0 is true. It can also be written

as the total sum of squares from estimating the variance function divided by the sample size.
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Substituting (8B.7) into (8B.5) yields

χ2 = SST − SSE
SST∕N

= N ×
(

1 − SSE
SST

)

(8B.8)

= N × R2

where R2 is the R2 goodness-of-fit statistic from estimating the variance function. At a 5% sig-

nificance level, a null hypothesis of homoskedasticity is rejected when χ2 = N × R2 exceeds the

critical value χ2
(0.95,S−1).

Software often reports the outcome of the White test described in Section 8.6.4 a as an

F-value or a χ2-value. The F-value is from the statistic in (8B.4), with the z’s chosen as the x’s

and their squares and possibly cross-products. The χ2-value is from the statistic in (8B.8), with

the z’s chosen as the x’s and their squares and possibly cross-products.

Appendix 8C Properties of the Least Squares

Residuals
The least squares residuals are êi = yi − ŷi. Substituting in the fitted value ŷi = b1 + b2xi we obtain

for the simple regression model

êi = yi − ŷi = β1 + β2xi + ei −
(
b1 + b2xi

)

=
(
β1 − b1

)
+
(
β2 − b2

)
xi + ei

= ei −
(
b1 − β1

)
−
(
b2 − β2

)
xi

Using the last line we find

E
(
êi|x
)
= E
(
ei|x
)
− E
(
b1 − β1|x

)
− E
(
b2 − β2|x

)
xi = 0

The expected value of the least squares residual is zero under assumptions SR1–SR5. Also, note

what happens if we consider large samples, with N → ∞. The least squares estimators b1 and b2

are unbiased, and recall from Section 2.4.4 that their variances get smaller and smaller as N gets

larger. This means that in large samples
(
b1 − β1

)
and
(
b2 − β2

)
are close to zero, so that in large

samples the difference êi − ei is close to zero. In econometric terms, the probability limit of êi − ei
is zero, that is, plim

(
êi − ei

)
= 0. The two random variables become essentially the same and

thus have the same probability distribution. This means, that in large samples, if ei ∼ N
(
0, σ2
)

then êi
a∼N
(
0, σ2
)
, where “

a∼” means approximately distributed, or asymptotically (in large

samples) distributed. Learning asymptotic analysis is an important feature of econometrics. See

Section 5.7 for further discussion.

It can be shown that the conditional variance of the least squares residual is

var
(
êi|x
)
= E
(

ê2

i |x
)

= σ2

{

1 − 1

N
−
(
xi − x

)2

∑(
xi − x

)2

}

= σ2
(
1 − hi

)
(8C.1)

where hi is the leverage of the ith observation, a term we introduced in Section 4.3.6. Note that:

i. The conditional variance of the least squares residual is not constant even if the random

error is homoskedastic.

ii. Because 0 ≤ hi ≤ 1 and 0 ≤
(
1 − hi

)
≤ 1, var

(
êi|x
)
< var

(
ei|x
)
= σ2. The variation in the

least squares residual is less than the variance of the true random error.

iii. The variance of the least squares residual is closest to var
(
ei|x
)
= σ2 when xi = x, reflecting

the fact that the fitted value ŷi has the least prediction error at that point.

iv. The expression (8C.1) is valid in both simple and multiple regression, with hi redefined in

multiple regression.
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v. The sum of the leverage values is K,
∑

hi = K. As a check, verify that for the simple regres-

sion model
∑

hi = 2.

vi.
∑N

i=1
var
(
êi|x
)
=
∑N

i=1
E
(

ê2

i |x
)

= σ2(N − K) while
∑N

i=1
var
(
ei|x
)
=
∑N

i=1
E
(
e2

i |x
)
= Nσ2

8C.1 Details of Multiplicative Heteroskedasticity Model
We showed that the least squares residuals and the true random error have the same probability

distribution in large samples. If ei ∼ N
(
0, σ2

i
)

then in large samples the least squares residual

êi
a∼N
(
0, σ2

i
)
. In large samples, then

(
êi∕σi
) a∼N(0, 1) and

(
êi∕σi
)2 a∼[N(0, 1)]2 ∼ χ2

(1). Thus,

ln
[(

êi∕σi
)2
]

= vi
a∼ ln
[

χ2
(1)

]

Statisticians have studied this random variable and found that E
{

ln
[

χ2
(1)

]}

= −1.2704 and

var
{

ln
[

χ2
(1)

]}

= 4.9348.

Appendix 8D Alternative Robust Sandwich

Estimators
The robust variance estimators carry over to the multiple regression model yi = β1 + β2xi2 + · · · +
βKxiK + ei quite easily. Recall from Appendix 6B that we can express the least squares estimator

b2 as

b2 =
∑(

xi2 − x̃i2
)

yi
∑(

xi2 − x̃i2
)2

where x̃i2 is the fitted value from the auxiliary regression of x2 on all the other explanatory vari-

ables, xi2 = c1 + c3xi3 + · · · + cKxiK + ri2. Substituting for yi and simplifying leads us to

b2 = β2 +
∑(

xi2 − x̃i2
)

ei
∑(

xi2 − x̃i2
)2

If the errors are heteroskedastic and serially uncorrelated, then the conditional variance of b2 is

var
(
b2|X
)
= var

[ ∑(
xi2 − x̃i2

)
ei

∑(
xi2 − x̃i2

)2

|
|
|
|
|
|

X

]

=
∑(

xi2 − x̃i2
)2

var
(
ei|X
)

[∑(
xi2 − x̃i2

)2
]2

=
∑(

xi2 − x̃i2
)2σ2

i
[∑(

xi2 − x̃i2
)2
]2

(8D.1)

=
[∑(

xi2 − x̃i2
)2
]−1 {∑(

xi2 − x̃i2
)2σ2

i

}[∑(
xi2 − x̃i2

)2
]−1

The original White heteroskedasticity corrected variance estimator replaces σ2
i by the squared

OLS residuals

var
⋀(

b2

)
=
[∑(

xi2 − x̃i2
)2
]−1 {∑(

xi2 − x̃i2
)2ê2

i

}[∑(
xi2 − x̃i2

)2
]−1

= HCE0 (8D.2)

The version in equation (8D.2) is valid in large samples. In practice, some alternatives are used

that are designed to work better in smaller samples. These alternatives account for the fact that

the least squares residuals are on average a little smaller than the true random errors. As noted in
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Appendix 8C, in the simple regression model, with assumptions SR1–SR5 holding, the variance

of the least squares residual is

var
(
êi|X
)
= E
(

ê2

i
|
|X
)

= σ2

{

1 − 1

N
−
(
xi − x

)2

∑(
xi − x

)2

}

= σ2
(
1 − hi

)
(8D.3)

where hi is the leverage of the ith observation, a term we introduced in Section 4.3.6. In the simple

regression model

hi =
1

N
+
(
xi − x

)2

∑(
xi − x

)2

The expression

var
(
êi|X
)
= σ2
(
1 − hi

)
(8D.4)

is valid in both simple and multiple regression, with hi redefined when K > 2. For both simple

and multiple regression, 0 ≤ hi ≤ 1 and 0 ≤
(
1 − hi

)
≤ 1.

The first modification of HCE0 is based on the observation that the expected value of the

squared least squares residual is smaller than the expected value of the squared random errors.

var
(
êi|X
)
= E
(

ê2

i |X
)

= σ2
(
1 − hi

)
< var

(
ei|X
)
= E
(
e2

i |X
)
= σ2

The average value of E
(

ê2

i |X
)

is
[
(N − K)∕N

]
σ2 while the average value of E

(
e2

i |X
)
= σ2. To

adjust for the size difference of the least squares residuals, multiply ê2

i in HCE0 by N∕(N − K).
That is,

var
⋀(

b2

)
=
[∑(

xi2 − x̃i2
)2
]−1
{
∑[(

xi2 − x̃i2
)2
( N

N − K

)

ê2

i

]}[∑(
xi2 − x̃i2

)2
]−1

= HCE1 (8D.5)

This correction will have little effect if the sample is large, but it may have an effect when the

number of explanatory variables in the model, K − 1, is large.

A second modification adjusts the squared least squares residual to have the same conditional

expectation as the random error. That is,

E

(
ê2

i

1 − hi

|
|
|
|
|
|

X

)

= σ2 = E
(
e2

i |X
)

Then, HCE2 is

var
⋀(

b2

)
=
[∑(

xi2 − x̃i2
)2
]−1

{
∑
[
(
xi2 − x̃i2

)2 ê2

i
(
1 − hi

)

]}
[∑(

xi2 − x̃i2
)2
]−1

= HCE2 (8D.6)

In large samples HCE0, HCE1, and HCE2 are equivalent, but in samples that are not very

large, the adjustments make useful differences. In econometric software, the “default” robust

variance estimator is HCE0 or HCE1. If the random errors are actually homoskedastic, using

HCE2 seems appropriate. Recall that part of the genius of the White heteroskedasticity robust

variance estimators is that in large samples they can be applied whether the random errors are

heteroskedastic or not. The modification introduced in HCE2 “tweaks” the robust estimator in

such a way that it works when the errors are heteroskedastic and a little better than HCE0 and

HCE1 when errors are homoskedastic.

Recall that 0 ≤
(
1 − hi

)
≤ 1 so HCE2 inflates the least squares residuals and the larger the

leverage, hi, the larger the adjustment becomes. Observations with high leverage, ones that have



�

� �

�

Appendix 8D Alternative Robust Sandwich Estimators 413

a larger impact on regression estimates and predictions, are also the observations for which the

least squares residual is much too small, thus the third modification inflates the residual again,

using

ê2

i
/(

1 − hi
)

(
1 − hi

) =
ê2

i
(
1 − hi

)2

Then

var
⋀(

b2

)
=
[∑(

xi2 − x̃i2
)2
]−1

{
∑
[
(
xi2 − x̃i2

)2 ê2

i
(
1 − hi

)2

]}
[∑(

xi2 − x̃i2
)2
]−1

= HCE3 (8D.7)

Some research shows that if heteroskedasticity is present in the data, then HCE3 is a good

choice.

To summarize, replacing σ2
i in (8D.1) by ê2

i ,
[
N∕(N − K)

]
ê2

i , ê2

i ∕
(
1 − hi

)
, or ê2

i ∕
(
1 − hi

)2

leads to the robust sandwich variance estimators HCE0, HCE1, HCE2, or HCE3. These robust

sandwich variance estimators are equivalent in large samples but may yield different results in

small samples. “Robust” means that the variance estimates, and standard errors, are valid whether

heteroskedasticity is present or not. When a priori reasoning does not lead you to suspect het-

eroskedasticity, but you are suspicious and/or risk averse, and if your sample is not small, then

using the robust sandwich variance estimator HCE2 may be the best choice. When a priori rea-

soning does lead you to suspect heteroskedasticity, and if your sample is not small, then using the

robust sandwich variance estimator HCE3 may be the better choice. Because the calculations are

complex, it is best to use proper econometric software for robust variances.

E X A M P L E 8.10 Alternative Robust Standard Errors in the Food
Expenditure Model

Most regression packages include an option for calculating

standard errors using White’s estimator. If we do so for the

food expenditure example, we obtain

FOOD_EXP
⋀

= 83.42 + 10.21INCOME
(27.46) (1.81) (White robust se-HCE1 )
(27.69) (1.82) (White robust se-HCE2 )
(28.65) (1.89) (White robust se-HCE3 )
(43.41) (2.09) (incorrect OLS se)

In this case, ignoring heteroskedasticity and using incorrect

standard errors, based on the usual formula in (8.6), tends

to understate the precision of estimation; we tend to get

confidence intervals that are wider than they should be.

Specifically, following the result in (3.6) in Chapter 3, we

can construct four corresponding 95% confidence intervals

for β2.

White HCE1∶ b2 ± tcse
(
b2

)

= 10.21 ± 2.024 × 1.81 = [6.55, 13.87]

White HCE2∶ b2 ± tcse
(
b2

)

= 10.21 ± 2.024 × 1.82 = [6.52, 13.90]
White HCE3∶ b2 ± tcse

(
b2

)

= 10.21 ± 2.024 × 1.89 = [6.39, 14.03]
Incorrect∶ b2 ± tcse

(
b2

)

= 10.21 ± 2.024 × 2.09 = [5.97, 14.45]

If we ignore heteroskedasticity, we estimate that β2 lies

between 5.97 and 14.45. When we recognize the existence

of heteroskedasticity, our information is more precise, and

using HCE3 we estimate that β2 lies between 6.39 and

14.03. Why HCE3? Because a priori we could reason that

heteroskedasticity should be present. A caveat here is that the

sample is small, which does mean that the robust standard

error formulas we have provided may not be as accurate as if

the sample were large.
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Appendix 8E Monte Carlo Evidence: OLS, GLS,

and FGLS
White’s estimator for the standard errors helps us avoid computing incorrect interval estimates or

incorrect values for test statistics in the presence of heteroskedasticity. The least squares estimator

is no longer best, but failing to use the “best” estimator may not be too grave a sin if estimates are

sufficiently precise for useful economic analysis. Many cross-sectional data sets have thousands of

observations, resulting in robust standard errors that are small, making interval estimates narrow

and t-tests powerful. Nothing further is required in these cases. If, however, your estimates are

not sufficiently precise for economic analysis, then a better, more efficient estimator is called for.

In order to use such an estimator, we must specify the skedastic function h
(
xi
)
> 0, a function

of xi and also perhaps other variables, that describe the pattern of conditional heteroskedastic-

ity. In this appendix, we use a Monte Carlo study to illustrate an alternative estimator, feasible

generalized least squares, that has a smaller variance than the least squares estimator in large

samples.

Using Monte Carlo experiments, we illustrate the properties of the OLS estimator, the correct

FGLS estimator and an incorrect GLS estimator. The data generating process4 is based on the

population model

yi = β1 + β2xi2 + β3xi3 + ei = 5 + xi2 + 0xi3 + ei

The variables x2 and x3 are statistically independent uniform (Appendix B.3.4) random variables

over the interval (1, 5). They vary randomly with all values being equally likely in the interval.

The random error is ei = h
(
xi
)
zi, where zi ∼ N(0, 1). The skedasticity function h

(
𝐱i
)

is

h
(
xi
)
= 3 exp

(
1 + α2xi2 + 0xi3

)/
h

The value of α2 changes from α2 = 0, homoskedasticity, to α2 = 0.3, strong heteroskedasticity,

to α2 = 0.5, very strong heteroskedasticity. The scalar h is a constant such that
∑N

i=1
h
(
xi
)
∕N ≅ 3

so that
∑N

i=1
var
(
ei|xi
)
∕N ≅ 9. We use two sample sizes, N = 100, a moderate sample size, and

N = 5000, a large sample. We use M = 1000 Monte Carlo replications and do not hold x2 and x3

constant across these experiments.

In Table 8E.1 we report the results of the experiments. The FGLS procedure follows the

description in Section 8.5.1, with equation (8.20) being ln
(

ê2

i

)

= α1 + α2xi2 + α3xi3 + vi. The

GLS estimation incorrectly assumes var
(
ei|xi
)
= σ2xi2. This is the proportional heteroskedasticity

assumption illustrated in Section 8.4.1. In the first row of Table 8E.1 is the sample size, N, and

in the second row is the value of α2. First, the results of experiments (1)–(4):

1. Let the OLS estimator of β2 be b2. The OLS estimator is unbiased in the presence of het-

eroskedasticity, which is revealed by the Monte Carlo average across 1000 samples b2 in

row (3) that is close to the true value β2 = 1. The averages of the (correct) FGLS estimates,

̂̂β2, in row (8) and the (incorrect) GLS estimates, β̂2, in row (13) are also close to the true

parameter value.

2. The sample standard deviation of the 1000 Monte Carlo OLS estimates is sd
(
b2

)
in row (4).

It measures the actual amount of sampling variation of the OLS estimator—how much it

varies from sample to sample due solely to randomness inherent in sampling from a popu-

lation. Compare to it the sample average of the 1000 Monte Carlo calculated values of the

............................................................................................................................................

4This design is adapted from James G. MacKinnon (2013) “Thirty Years of Heteroskedasticity-Robust Inference,” in

Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis: Essays in Honor of
Halbert L. White Jr, editors Xiaohong Chen and R. Norman Swanson, New York: Springer, 437–461.
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usual, or nominal, OLS standard error of the estimator b2, se
(
b2

)
in row (5). Note that when

N = 100 and α2 ≠ 0 the average standard error is less than the standard deviation, meaning

that the OLS standard error is too small on average. When N = 5000 both of these values

are dramatically reduced, but the OLS standard error is still on average too small. Now com-

pare the average of the White robust standard errors HCE1 with the simple inflation factor

N∕(N − 3) as described in Appendix 8C, robse
(
b2

)
in row (6). The average of these standard

errors is very close to the actual variation measured by sd
(
b2

)
. That means that the robust

standard error correction for the OLS estimator is doing its job, on average, in measuring

actual sampling variation.

3. When heteroskedasticity is present, the actual variation in the FGLS estimates, sd
(
̂̂β2

)

in row (9) is less than the actual variation in the OLS estimates, sd
(
b2

)
. The ratio

sd
(
̂̂β2

)/
sd
(
b2

)
in row (10) shows the improvement obtained by using FGLS. By using

FGLS, we have obtained estimates that are more precise than the OLS estimates, as we

should have. The sample average of the standard error estimates se
(
̂̂β2

)

, row (11), is

slightly smaller than sd
(
̂̂β2

)

when N = 100. In this sample size, the FGLS standard errors

are a little too small. When N = 5000 this is no longer the case. We are reminded that the

properties of the FGLS estimator are valid in large samples. We used the correct model for

the heteroskedasticity in the FGLS calculations; hence, there is no need to compute FGLS

T A B L E 8E.1 Monte Carlo Simulation Results

Experiment
Result Item (1) (2) (3) (4) (5)

1 N 100 100 100 5000 5000

2 α2 0 0.3 0.5 0.5 NA

3 b2 1.0058 1.0044 1.0033 0.9996 1.0007

4 sd
(
b2

)
0.2657 0.3032 0.3574 0.0496 0.0414

5 se
(
b2

)
0.2626 0.2831 0.3081 0.0423 0.0406

6 robse
(
b2

)
0.2614 0.3035 0.3586 0.0498 0.0406

7 rej
(
NR2
)

0.0570 0.9620 1.0000 1.0000 0.0420

8
̂̂β2 1.0070 1.0114 1.0116 1.0000 1.0013

9 sd
(
̂̂β2

)

0.2746 0.2731 0.2522 0.0312 0.0452

10 sd
(
̂̂β2

)/
sd
(
b2

)
1.0338 0.9007 0.7058 0.6299 1.0920

11 se
(
̂̂β2

)

0.2608 0.2555 0.2351 0.0323 0.0415

12 robse
(
̂̂β2

)

0.2610 0.2565 0.2371 0.0323 0.0442

13 β̂2 1.0124 1.0092 1.0073 0.9996 1.0007

14 sd
(

β̂2

)

0.2924 0.2680 0.2894 0.0392 0.0414

15 sd
(

β̂2

)/
sd
(
b2

)
1.1009 0.8839 0.8099 0.7900 0.0406

16 se
(

β̂2

)

0.2677 0.2512 0.2561 0.0349 0.0406

17 robse
(

β̂2

)

0.2794 0.2645 0.2888 0.0395 0.0420
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with robust standard errors, but we report these values for reference in row (12), robse
(
̂̂β2

)

.

The averages are not much different from se
(
̂̂β2

)

, as we would have guessed.

4. The sampling variation of the GLS estimator, sd
(

β̂2

)

, is in row (14). The average of the

usual, or nominal, GLS standard errors, se
(

β̂2

)

, in row (16) is a bit too small. On average

the usual GLS standard error understates the true sampling variation of the GLS estimator.

However, using the heteroskedasticity robust standard error, HCE1, in row (17), on average

closely measures the actual variation sd
(

β̂2

)

.

5. How well does the incorrect GLS estimator do relative to OLS and the correct FGLS estima-

tor? When the random errors are homoskedastic, α2 = 0, the standard deviation of the GLS

estimator is larger than that of the OLS estimator. Using GLS when OLS is appropriate is not

a good idea. Note that FGLS does almost as well as OLS in this case, so there is not as much

of a penalty when the pattern of heteroskedasticity is estimated. When heteroskedasticity

is present the incorrect, but reasonable, GLS transformation yields estimates that are more

precise than the OLS estimates. In row (15) we see that the ratio sd
(

β̂2

)

∕sd
(
b2

)
< 1 when

α2 ≠ 0. Partially curing the heteroskedasticity has produced an improvement. However, the

GLS estimator improvement is not as great as for the FGLS estimator when heteroskedas-

ticity is severe, α2 = 0.5.

6. How well does the NR2 test do in detecting heteroskedasticity? Using the OLS residuals, the

rejection rates of the test are rej
(
NR2
)

in row (7). When errors are homoskedastic, α2 = 0,

the test rejects about 5% of the time as desired. When heteroskedasticity is present the test

rejects homoskedasticity a very large percentage of the time, which is also desirable.

7. Finally, compare experiment (4) to experiment (3). These experiments have the same data

generating process, except in experiment (3) we have 100 observations in a sample and in

experiment (4) we have 5000 observations per sample. With 100 observations the standard

deviation of the OLS estimates, which is the true sampling variation, is about 0.36. Using a

two standard deviation rule, would being within ±0.72 of the true parameter value β2 = 1.0

be adequately informative for your work? If not, then the sampling variation can be reduced

using FGLS, in this case so that the margin of error is ±0.50. If that is not adequate you

will need to build a better model or obtain more sample data. With 5000 observations the

two standard deviation margin of error of the OLS estimates is about ±0.10. Would that

be adequate for your work? If so then nothing beyond OLS estimation with robust standard

errors is needed. If not, then pursuing FGLS can reduce the margin of error to about ±0.06.

Having more good data facilitates statistical inference.

Experiment (5) is based on a different skedasticity function, h
(
xi
)
= 3ui

/
h, where ui ∼

uniform(1, 11) is a uniform random variable, varying over the range (1,11). In this case var
(
ei
)
=

h
(
xi
)

zi = σ2
i is different for each observation, heteroskedasticity is present, but the variance

changes randomly from one observation to the next with no pattern and no relationship to the

model explanatory variables or any other variables. This is unconditional heteroskedasticity
and it has no effect on the properties of the OLS estimator and OLS is the best linear unbiased

estimator. The NR2 test has no ability to detect this type of heteroskedasticity.
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CHAPTER 9

Regression with
Time-Series Data:
Stationary Variables

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain why lags are important in models that

use time-series data, and the ways in which lags

can be included in dynamic econometric models.

2. Explain what is meant by a serially correlated

time series and how we measure serial

correlation.

3. Compute the autocorrelations for a time series,

graph the corresponding correlogram, and use it

to test for serial correlation.

4. Explain the nature of regressions that involve

lagged variables and the number of

observations that are available.

5. Use autoregressive (AR) and autoregressive

distributed lag (ARDL) models to compute

forecasts, standard errors of forecasts, and

forecast intervals.

6. Explain the assumptions required for AR and

ARDL forecasting.

7. Specify and estimate ARDL models. Use serial

correlation checks, significance of coefficients,

and model selection criteria to choose lag

lengths.

8. Test for Granger causality.

9. Use a correlogram of residuals to test for serially

correlated errors.

10. Use a Lagrange multiplier test for serially

correlated errors.

11. Explain the differences between time-series

models for forecasting and time-series models

for policy analysis.

12. Estimate and interpret the estimates from finite

and infinite distributed lag models.

13. Compute HAC standard errors for least squares

estimates. Explain why they are used.

14. Compute nonlinear least squares and

generalized least squares estimates for a model

with an AR(1) error.

15. Contrast the exogeneity assumption required

for HAC standard errors with that required

for estimating an AR(1) error model.

16. Compute delay, interim, and total

multipliers for finite and infinite distributed

lag models.
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17. Test for consistency of least squares in the ARDL

representation of an infinite distributed lag

model.

18. Contrast the assumptions for a finite distributed

lag model with those for an infinite distributed

lag model.

K E Y W O R D S

AR(1) error

ARDL(p, q) model

autocorrelation

autoregressive distributed lags

autoregressive error

autoregressive model

correlogram

delay multiplier

distributed lag weight

dynamic models

exogeneity

finite distributed lag

forecast error

forecast intervals

forecasting

generalized least squares

geometrically declining lag

Granger causality

HAC standard errors

impact multiplier

infinite distributed lag

interim multiplier

lag length

lag operator

lagged dependent variable

LM test

moving average

multiplier analysis

nonlinear least squares

sample autocorrelations

serial correlation

standard error of forecast error

stationarity

total multiplier

T × R2 form of LM test

weak dependence

9.1 Introduction
When modeling relationships between variables, the nature of the data that have been collected

has an important bearing on the appropriate choice of an econometric model. In particular, it

is important to distinguish between cross-sectional data (data on a number of economic units at

a particular point in time) and time-series data (data collected over time on one particular eco-

nomic unit). Examples of both types of data were given in Section 1.5. When we say “economic

units,” we could be referring to individuals, households, firms, geographical regions, countries,

or some other entity on which data is collected. Because cross-sectional observations on a num-

ber of economic units at a given time are often generated by way of a random sample, they are

typically uncorrelated. The level of income observed in the Smiths’ household, for example, does

not affect, nor is it affected by, the level of income in the Jones’s household. On the other hand,

time-series observations on a given economic unit, observed over a number of time periods, are

likely to be correlated. The level of income observed in the Smiths’ household in one year is

likely to be related to the level of income in the Smiths’ household in the year before. Thus,

one feature that distinguishes time-series data from cross-sectional data is the likely correlation

between different observations. Our challenges for this chapter include testing for and modeling

such correlation.

A second distinguishing feature of time-series data is its natural ordering according to time.

With cross-sectional data, there is no particular ordering of the observations that is better or more

natural than another. One could shuffle the observations and then proceed with estimation without

losing any information. If one shuffles time-series observations, there is a danger of confounding

what is their most important distinguishing feature: the possible existence of dynamic–evolving

relationships between variables. A dynamic relationship is one in which the change in a variable

now has an impact on that same variable, or other variables, in one or more future time periods.

For example, it is common for a change in the level of an explanatory variable to have behavioral

implications for other variables beyond the time period in which it occurred. The consequences

of economic decisions that result in changes in economic variables can last a long time. When the

income tax rate is increased, consumers have less disposable income, reducing their expenditures
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Economic action
at time t

Effect at time t Effect at time t + 1 Effect at time t + 2

FIGURE 9.1 The distributed lag effect.

on goods and services, which reduces profits of suppliers, which reduces the demand for pro-

ductive inputs, which reduces the profits of the input suppliers, and so on. The effect of the tax

increase ripples through the economy. These effects do not occur instantaneously but are spread,

or distributed, over future time periods. As shown in Figure 9.1, economic actions or decisions

taken at one point in time, t, have effects on the economy at time t and also at times t + 1, t + 2,

and so on.

E X A M P L E 9.1 Plotting the Unemployment Rate and the GDP
Growth Rate for the United States

In Figure 9.2(a) and (b), the U.S. quarterly unemployment

rate, and the U.S. quarterly growth rate for gross domestic

product, from 1948 quarter 1 (1948Q1) to 2016 quarter 1

(2016Q1) are graphed against time. These data can be found

in the data file usmacro. We wish to understand how series

such as these evolve over time, how current values of each

data series are correlated with their past values, and how one

series might be related to current and past values of another.
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FIGURE 9.2a U.S. Quarterly unemployment rate 1948Q1 to 2016Q1.

There are several types of models that can be used to cap-

ture the time paths of variables, their correlation structures,

and their relationships with the time paths of other variables.

Once a model has been selected and estimated, it may be

used for forecasting future values or for policy analysis. We

begin this chapter by describing some of the many possible

time-series models and the nature of correlations between

current and past values of a data series.
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FIGURE 9.2b U.S. GDP growth rate, 1948Q1 to 2016Q1.

9.1.1 Modeling Dynamic Relationships
Given that time-series variables are dynamic, in the sense that their current values will be cor-

related with their past values, and they are related to current and past values of other variables,

we need to ask how to model the dynamic nature of relationships. We can do so by introducing

lagged variables into the model. These lags can take the form of lagged values of an explana-

tory variable
(
xt−1, xt−2,… , xt−q

)
, lagged values of a dependent variable

(
yt−1, yt−2,… , yt−p

)
, or

lagged values of an error term
(
et−1, et−2,… , et−s

)
. In this section, we describe a number of the

time-series models that arise from introducing lags of these kinds and explore the relationships

between them.

Finite Distributed Lags Suppose that the value of a variable y depends on current and

past values of another variable x, up to q periods into the past. We can write this model as

yt = α + β0xt + β1xt−1 + β2xt−2 + · · · + βqxt−q + et (9.1)

We can think of
(
yt, xt

)
as denoting the values for y and x in the current period; xt−1 means the

value of x in the previous period; xt−2 is the value of x two periods ago, and so on. Equations like

(9.1) might say, for example, that inflation yt depends not just on the current interest rate xt but also

on the rates in the previous q time periods xt−1, xt−2,… , xt−q. Turning this interpretation around as

in Figure 9.1, it means that a change in the interest rate now will have an impact on inflation now

and in the next q future periods; it takes time for the effect of an interest rate change to fully work

its way through the economy. Because of the existence of these lagged effects, equation (9.1) is

called a distributed lag model. The coefficients βk are sometimes known as the lag weights, and

their sequence β0, β1, β2, · · · is called a lag pattern. The model is called a finite distributed lag
model because the effect of x on y cuts off after a finite number of periods q. Models of this kind

can be used for forecasting or policy analysis. In terms of forecasting, we might be interested in

using information on past interest rates to forecast future inflation. For policy analysis, a central

bank might be interested in how inflation will react now and in the future to a change in the current

interest rate.
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9.1 Introduction 421

The notation in (9.1) differs from what we have typically used so far. It is convenient to

change the subscript notation on the coefficients: βs is used to denote the coefficient of xt−s and

α is introduced to denote the intercept. Other explanatory variables can be added if relevant, in

which case other symbols are needed to denote their coefficients.

Remark
We use many different Greek symbols for regression parameters in this Chapter. Sometimes,

it may not seem so, but our goal is clarity.

An Autoregressive Model An autoregressive model, or an autoregressive process, is

one where a variable y depends on past values of itself. The general representation with p lagged

values
(
yt−1, yt−2,… , yt−p

)
is called an autoregressive model (process) of order p, abbreviated as

AR(p), and is given by

yt = δ + θ1yt−1 + θ2yt−2 + · · · + θpyt−p + et (9.2)

For example, an AR(2) model for the unemployment rate series U in Figure 9.2(a) would be

Ut = δ + θ1Ut−1 + θ2Ut−2 + et. AR models can be used to describe the time paths of variables and

capture their correlations between current and past values; they are generally used for forecasting.

Past values are used to forecast future values.

Autoregressive Distributed Lag Models A more general model that includes both

finite distributed lag models and autoregressive models as special cases is the autoregressive
distributed lag model

yt = δ + θ1yt−1 + · · · + θpyt−p + δ0xt + δ1xt−1 + · · · + δqxt−q + et (9.3)

This model, with p lags of y, the current value x, and q lags of x, is abbreviated as an ARDL( p, q)
model. The AR component of the name ARDL comes from the regression of y on lagged values

of itself; the DL component comes from the distributed lag effect of the lagged x’s. For example,

an ARDL(2, 1) model relating the unemployment rate U to the growth rate in the economy G
would be given by Ut = δ + θ1Ut−1 + θ2Ut−2 + δ0Gt + δ1Gt−1 + et. ARDL models can be used

for both forecasting and policy analysis. Notice that we have used “δ” with no subscript for the

intercept and “δs” (δ with a subscript) for the coefficient of xt−s. This notation is a little strange,

but it avoids introducing another Greek letter for ARDL models.

Infinite Distributed Lag Models If we take equation (9.1) and assume that the impact

of past, lagged x’s does not cut off after q periods but goes back into the infinite past, then we

have the infinite distributed lag (IDL) model

yt = α + β0xt + β1xt−1 + β2xt−2 + β3xt−3 + · · · + et (9.4)

You might question whether values of x from a long, long time ago would still have an effect

on y. You might also wonder how to decide on the cut-off point q for a finite distributed lag. One

way out of this dilemma is to assume that the coefficients βs eventually decline in magnitude with

their effect becoming negligible at long lags. There are many possible lag pattern assumptions

that could be made to achieve this outcome. To illustrate, consider the geometrically declining
lag pattern

βs = λsβ0, 0 < λ < 1, s = 0, 1, 2,… (9.5)

azato
Underline

azato
Underline



�

� �

�

422 CHAPTER 9 Regression with Time-Series Data: Stationary Variables

0.0

0.4

0.2

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16

βs

s

FIGURE 9.3 Geometrically declining lag pattern.

A graph of this lag pattern for β0 = 1 and λ = 0.8 is displayed in Figure 9.3. Notice that, as we

go back in time (s increases), βs becomes a smaller and smaller multiple of β0.

With the assumption in (9.5), we can write

yt = α + β0xt + λβ0xt−1 + λ2β0xt−2 + λ3β0xt−3 + · · · + et (9.6)

Lagging this equation by one period gives the equation for yt−1 as

yt−1 = α + β0xt−1 + λβ0xt−2 + λ2β0xt−3 + λ3β0xt−4 + · · · + et−1

Multiply both sides of this equation by λ to get

λyt−1 = αλ + λβ0xt−1 + λ2β0xt−2 + λ3β0xt−3 + λ4β0xt−4 + · · · + λet−1 (9.7)

Subtracting (9.7) from (9.6) gives

yt − λyt−1 = α(1 − λ) + β0xt + et − λet−1 (9.8)

or

yt = δ + θyt−1 + β0xt + vt (9.9)

We have made the substitutions δ = α(1 − λ), θ = λ, and vt = et – λet−1 so that (9.9) can be rec-

ognized as an ARDL model. By making the assumption βs = λsβ0, we have been able to turn the

IDL model into an ARDL(1, 0) model. On the right-hand side of (9.9), there is one lag of y and

the current value of x. We will see later that we can also go in the other direction. More general,

ARDL(p, q) models can be turned into more flexible IDL models, providing the lagged coeffi-

cients of the IDL eventually decline and become negligible. The ARDL formulation is useful for

forecasting; the IDL provides useful information for policy analysis.

An Autoregressive Error Model Another way in which lags can enter a model is

through the error term. For example, if the error et satisfies the assumptions of an AR(1) model,

it can be written as

et = ρet−1 + vt (9.10)

with the vt being uncorrelated. This model means that the random error at time t is related to

the random error in the previous time period plus a random component. In contrast to the AR

model in (9.2), there is no intercept parameter in (9.10); it is omitted because et has a zero mean.
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The AR(1) error model could be added to any of the models considered so far. To explore one

of its implications, suppose that et = ρet−1 + vt is the error term in the model

yt = α + β0xt + et (9.11)

Substituting et = ρet−1 + vt into yt = α + β0xt + et yields

yt = α + β0xt + ρet−1 + vt (9.12)

From the regression equation (9.11), the error in the previous period, time t − 1, can be

written as

et−1 = yt−1 − α − β0xt−1 (9.13)

Multiplying (9.13) by ρ yields

ρet−1 = ρyt−1 − ρα − ρβ0xt−1 (9.14)

Substituting (9.14) into (9.12) and rearranging yields

yt = α(1 − ρ) + ρyt−1 + β0xt − ρβ0xt−1 + vt

= δ + θyt−1 + β0xt + β1xt−1 + vt
(9.15)

In the second line of (9.15), we have made the substitutions δ = α(1 − ρ), θ = ρ and β1 = −ρβ0

to show that it is possible to rewrite the AR(1) error model in (9.10) and (9.11) as an ARDL(1, 1)

model. Equation (9.15) contains y lagged once, a current value for x, and x lagged once. How-

ever, it is a special type of ARDL model because one of its coefficients is equal to the negative

product of two of the other coefficients. That is, we have the constraint, or condition, β1 = −θβ0.

Autoregressive error models with more lags than one can also be transformed to special cases

of ARDL models.

Summary and Looking Ahead We have seen how dynamic relationships between vari-

ables can be modeled by including lags in a variety of ways. The various models are summarized

in Table 9.1. There is a sense in which most of the models can be viewed as ARDL models or

T A B L E 9.1 Summary of Dynamic Models for Stationary Time Series Data

Autoregressive distributed lag model, ARDL(p, q)

yt = δ + θ1yt−1 + · · · + θpyt−p + δ0xt + δ1xt−1 + · · · + δqxt−q + et (M1)

Finite distributed lag (FDL) model

yt = α + β0xt + β1xt−1 + β2xt−2 + · · · + βqxt−q + et (M2)

Infinite distributed lag (IDL) model

yt = α + β0xt + β1xt−1 + β2xt−2 + β3xt−3 + · · · + et (M3)

Autoregressive model, AR(p)

yt = δ + θ1yt−1 + θ2yt−2 + · · · + θpyt−p + et (M4)

Infinite distributed lag model with geometrically declining lag weights

βs = λsβ0, 0 < λ < 1, yt = α(1 − λ) + λyt−1 + β0xt + et − λet−1 (M5)

Simple regression with AR(1) error

yt = α + β0xt + et, et = ρet−1 + vt, yt = α(1 − ρ) + ρyt−1 + β0xt − ρβ0xt−1 + vt (M6)
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special cases of ARDL models. However, how we interpret and proceed with each model depends

on whether the model is to be used for forecasting or policy analysis and on what assumptions

are made about the error term in each model. We will examine the various scenarios as we move

through the chapter. One pair of assumptions that we make throughout the chapter for all models

is that the variables in the models are stationary and weakly dependent. Prior to discussing these

two requirements, it is useful to introduce the concept of autocorrelation – also known as serial
correlation.

9.1.2 Autocorrelations
Recall that the concepts of covariance and correlation refer to the degree of linear association

between two random variables. If there is no linear association between the variables, then both

the covariance and the correlation are zero. When there is some degree of linear association, cor-

relation is the preferred measure because it is unit free and lies within the interval [−1, 1], whereas

the magnitude of a covariance will depend on the units of measurement of the two variables. For

two random variables, say u and v, their correlation is defined as

ρuv =
cov(u, v)

√
var(u) var(v)

(9.16)

If u and v are perfectly correlated, then there exist constants c and d ≠ 0 such that u = c + dv,

with ρuv = 1 when d > 0 and ρuv = −1 when d < 0. There is an exact linear relationship. When

u and v are uncorrelated, ρuv = cov(u, v) = 0. Intermediate values of ρuv measure the degree of

linear association.

When dealing with cross-sectional data, it is frequently reasonable to assume that each pair of

observations
(
yi, xi

)
will be uncorrelated with other observations, a characteristic guaranteed by

random sampling. In other words, cov
(
yi, yj

)
= 0 and cov

(
xi, xj

)
= 0 for i ≠ j. With time-series

data, it is unlikely that these covariances will be zero. If s is close to t, it will almost certainly be

the case that cov
(
yt, ys

)
≠ 0 and cov

(
xt, xs

)
≠ 0 for t ≠ s. Glance back at Figure 9.2(a) and (b).

If unemployment is higher than average in one quarter, then, in the next quarter, it is more likely

to be higher than average again, rather than lower than average. A similar statement can be made

for the GDP growth rate. Changes in variables such as unemployment, output growth, inflation,

and interest rates are more gradual than abrupt; their values in one period will depend on what

happened in the previous period.1 This dependence means that GDP growth now, for example,

will be correlated with GDP growth in the previous period. Successive observations are likely

to be correlated. Indeed, in any ARDL model where there is a linear relationship between yt and

its lags, yt must be correlated with lagged values of itself. Correlations of this kind are called

autocorrelations. When a variable exhibits correlation over time, we say it is autocorrelated or

serially correlated. We will use these two terms interchangeably.

Let’s be more precise about the definition of an autocorrelation. Consider a time series of

observations on any variable, x1, x2,… , xT, with mean E
(
xt
)
= μX and variance var

(
xt
)
= σ2

X .

We assume that μX and σ2
X do not change over time. The correlation structure between x’s that are

observed in different time periods is described by the correlation between observations that are

one period apart, the correlation between observations that are two periods apart, and so on. If

we turn the formula in (9.16) into one that measures the correlation between xt and xt−1, we have

ρ1 =
cov

(
xt, xt−1

)

√

var
(
xt
)

var
(
xt−1

)
=

cov
(
xt, xt−1

)

var
(
xt
) (9.17)

............................................................................................................................................

1Abrupt changes can occur, particularly with financial data. Models considered in Chapter 14 can accommodate abrupt

changes.
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The notation ρ1 is used to denote the population correlation between observations that are

one period apart in time, known also as the population autocorrelation of order 1. The

second equality in (9.17) holds because var
(
xt
)
= var

(
xt−1

)
= σ2

X; we assumed that the variance

does not change over time. The population autocorrelation for observations that are s periods

apart is

ρs =
cov

(
xt, xt−s

)

var
(
xt
) s = 1, 2,… (9.18)

Sample Autocorrelations Population autocorrelations specified in (9.17) and (9.18)

refer to a conceptual time series of observations that goes on forever, starting in the infinite past

and continuing into the infinite future, · · · , x−2, x−1, x0, x1, x2, · · ·. Sample autocorrelations are

obtained using a sample of observations for a finite time period, x1, x2,… , xT, to estimate the

population autocorrelations. To estimate ρ1 we use

cov
⋀(

xt, xt−1

)
= 1

T − 1

T∑

t=2

(
xt − x

)(
xt−1 − x

)
and var

⋀(
xt
) 1

T − 1

T∑

t=1

(
xt − x

)2

where x is the sample mean x = T−1
∑T

t=1
xt. The index of summation in the formula for

cov
⋀(

xt, xt−1

)
starts at t = 2 because we do not observe x0. Making the substitutions, and using r1

to denote the sample autocorrelation at lag 1, we have

r1 =

T∑

t=2

(
xt − x

)(
xt−1 − x

)

T∑

t=1

(
xt − x

)2

(9.19)

More generally, the s-order sample autocorrelation for a series x, which gives the correlation

between observations that are s periods apart
(
the correlation between xt and xt−s

)
, is given by

rs =

T∑

t=s+1

(
xt − x

)(
xt−s − x

)

T∑

t=1

(
xt − x

)2

(9.20)

This formula is commonly used in the literature and in software and is the one we use to compute

autocorrelations in this text, but it is worth mentioning variations of it that are sometimes used.

Because (T − s) observations are used to compute the numerator and T observations are used to

compute the denominator, an alternative that leads to larger estimates in finite samples is

r′s =

1

T − s

T∑

t=s+1

(
xt − x

)(
xt−s − x

)

1

T

T∑

t=1

(
xt − x

)2

Another modification of (9.20) that has a similar effect is to use only (T − s) observations in the

denominator, so that it becomes
∑T

t=s+1

(
xt − x

)2
. Check the computing manuals that go with this

book to see which one your software uses.

Testing the Significance of an Autocorrelation It is often useful to test whether a

sample autocorrelation is significantly different from zero. That is, a test of H0∶ρs = 0 against the

alternative H1∶ρs ≠ 0. Tests of this nature are useful for constructing models and for checking

whether the errors in an equation might be serially correlated. The test statistic for this test is
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relatively simple. When the null hypothesis H0∶ρs = 0 is true, rs has an approximate normal

distribution with mean zero and variance 1∕T. Thus, a suitable test statistic is

Z =
rs − 0
√

1∕T
=

√
Trs

a∼ N(0, 1) (9.21)

The product of the square root of the sample size and the sample autocorrelation rs has an

approximate standard normal distribution. At a 5% significance level, we reject H0∶ρs = 0 when
√

Trs ≥ 1.96 or
√

Trs ≤ −1.96.

Correlogram A useful device for assessing the significance of autocorrelations is a dia-

grammatic representation called the correlogram. The correlogram, also called the sample auto-
correlation function, is the sequence of autocorrelations r1, r2, r3, . . . . It shows the correlation

between observations that are one period apart, two periods apart, three periods apart, and so on.

We indicated that an autocorrelation rs will be significantly different from zero at a 5% significance

level if
√

Trs ≥ 1.96 or if
√

Trs ≤ −1.96. Alternatively, we can say that rs will be significantly

different from zero if rs ≥ 1.96
/√

T or rs ≤ −1.96
/√

T . A typical diagram for a correlogram will

have bars or spikes to represent the magnitudes of the autocorrelations and approximate signifi-

cant bounds drawn at ±2
/√

T , enabling the econometrician to see at a glance which correlations

are significant.

E X A M P L E 9.2 Sample Autocorrelations for Unemployment

Consider the quarterly series for the U.S. unemployment

rate found in the data file usmacro. It runs from 1948Q1 to

2016Q1, a total of 273 observations. The first four sample

autocorrelations for this series, computed from (9.20),

are r1 = 0.967, r2 = 0.898, r3 = 0.811, and r4 = 0.721.

The value r1 = 0.967 tells us that successive values of

unemployment are very highly correlated. With r4 = 0.721,

even observations that are four quarters apart are highly
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FIGURE 9.4 Correlogram for U.S. quarterly unemployment rate.

correlated. The correlogram for the unemployment rate for

the first 24 lags is graphed in Figure 9.4. The heights of the

bars represent the correlations. The horizontal line drawn

at 2
/√

173 = 0.121 is the significance bound for positive

autocorrelations. Because all the autocorrelations are

positive, the negative bound of −0.121 was not included on

the graph. The autocorrelations show a gradually declining

pattern but remain significantly different from zero until
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lag 19, beyond which they are not statistically significant.

As the chapter evolves, we will discover that estimates of

autocorrelations are important for model construction and

checking whether one of our assumptions is violated.

Your software might not produce a correlogram that is

exactly the same as Figure 9.4. It might have the correlations

on the x-axis and the lags on the y-axis. It could use spikes

instead of bars to denote the correlations, it might provide

a host of additional information, and its significance bounds

might be slightly different than ours. Be prepared! Learn to

isolate and focus on the information corresponding to that in

Figure 9.4 and do not be disturbed if the output is slightly

but not substantially different. If the significance bounds are

slightly different, it is because they use a different refinement

of the large sample approximation
√

Trs
a∼ N(0, 1).

E X A M P L E 9.3 Sample Autocorrelations for GDP Growth Rate

As a second example of sample autocorrelations and the

associated correlogram, we consider quarterly data for the

U.S. GDP growth rate that can also be found in the data

file usmacro. In this case, the first four sample auto-

correlations are r1 = 0.507, r2 = 0.369, r3 = 0.149, and

r4 = 0.085; the correlogram for up to 48 lags is presented in
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FIGURE 9.5 Correlogram for growth rate in U.S. GDP.

Figure 9.5. These correlations are much smaller than those

for the unemployment series, but there is a seemingly

strange pattern where the correlations, although not large,

oscillate between significance and insignificance at longer

lags. This is a complex structure, perhaps attributable to the

business cycle.

9.2 Stationarity and Weak Dependence
A critical assumption that is maintained throughout this chapter is that the variables in our

equations are stationary. Stationary variables have means and variances that do not change over

time and autocorrelations that depend only on how far apart the observations are in time, not on

a particular point in time. Specifically, the autocorrelations in (9.18) depend on the time between

the periods s, but not the actual point in time t. Implicit in the discussion in Section 9.1.2 was

that xt is stationary. Its mean μX, variance σ2
X , and autocorrelations ρs were assumed not to be

different for different t. In Examples 9.2 and 9.3, autocorrelations for the unemployment and
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growth rates were calculated under the assumption that both are stationary. Saying that a series

is stationary implies that, if we took different subsets of observations corresponding to different

windows of time, and used them for estimation, we would be estimating the same population

quantities, the same mean μ, the same variance σ2, and the same autocorrelations ρ1, ρ2, ρ3, · · ·.
The first task when estimating a relationship with time-series data is to plot the observations

on the variables, as we did in Figure 9.2(a) and (b), to gain an appreciation of the nature of your

data and to see if there is evidence of nonstationarity. In addition, formal tests known as unit
root tests can be used to detect nonstationarity. These tests and strategies for estimation with

nonstationary variables are considered in Chapter 12. Because checking for nonstationarity is an

essential first step, some readers may wish to temporarily jump forward to unit root testing in

Chapter 12 before returning to our coverage of estimation and forecasting with stationary vari-

ables. For the moment, we note that a stationary variable is one that is not explosive, nor is it

trending, and nor does it wander aimlessly without returning to its mean. These features can be

illustrated with some graphs. Figure 9.6(a–c) contains graphs of simulated observations on three

different variables, plotted against time. Plots of this kind are routinely considered when exam-

ining time series variables. The variable y that appears in Figure 9.6(a) is considered stationary

because it tends to fluctuate around a constant mean without wandering or trending. On the other

hand, x and z that appear in Figure 9.6(b) and (c) possess characteristics of nonstationary vari-

ables. In Figure 9.6(b), x tends to wander or is “slow turning,” while z in Figure 9.4(c) is trending.

These concepts will be defined more precisely in Chapter 12. At the present time, the important

thing to remember is that this chapter is concerned with modeling and estimating dynamic rela-

tionships between stationary variables whose time series have similar characteristics to those of y.

That is, they neither “wander,” nor “trend.”

In addition to assuming that the variables are stationary, in this chapter we also assume they

are weakly dependent. Weak dependence implies that, as s →∞ (observations get further and

further apart in time), they become almost independent. For s large enough, the autocorrelations

ρs become negligible. When using correlated time-series variables, weak dependence is needed

for the least squares estimator to have desirable large sample properties. Typically, stationary

variables have weak dependence. However, there are rare exceptions.

E X A M P L E 9.4 Are the Unemployment and Growth Rate Series Stationary
and Weakly Dependent?

A formal checking of the unemployment and growth rate

series for stationarity is deferred until unit root tests are

introduced in Chapter 12. It is useful, however, to see what

tentative conclusions might be drawn from the plots and

correlograms of the two series. An examination of the

plot for unemployment in Figure 9.2(a) suggests that it has

characteristics that make it more similar to Figure 9.6(b)

than to Figure 9.6(a). Thus, on the basis of the plot alone,

one might be inclined to conclude the unemployment

rate is nonstationary. It turns out that a unit root test

rejects a null hypothesis of nonstationarity, suggesting that

the series can be treated as stationary, but its very high

autocorrelations have led to the wandering characteristics

exhibited in Figure 9.2(a). Do we have evidence to suggest

that the series is weakly dependent? The answer is yes.

The autocorrelations in the correlogram in Figure 9.4 are

becoming smaller and smaller at longer lags and eventually

die out to r24 = 0.035. Had we considered lags beyond 24,

we would find r36 = 0.008.

Turning to the GDP growth series, we note that its

plot in Figure 9.2b has characteristics similar to those of

Figure 9.6(a), enabling us to tentatively conclude that it is

stationary. GDP growth has ups and downs from one quarter

to the next, but it does not keep going up or down for long

periods; it returns to the middle, or mean, after a short

time. Its correlogram in Figure 9.5 has some significant

correlations at long lags, but they are not large and, when

autocorrelations beyond those displayed in Figure 9.5 are

examined, they die out very quickly, leading us to conclude

the series is weakly dependent.

Knowing the unemployment and growth rates are

stationary and weakly dependent means that we can

proceed to use them for the examples in this chapter

devoted to time-series regression models with stationary

variables. With the exception of a special case known

as cointegration—considered in Chapter 12—variables

in time-series regressions must be stationary and weakly

dependent for the least squares estimator to be consistent.
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FIGURE 9.6 (a) Time series of a stationary variable; (b) time
series of a nonstationary variable that is
“slow-turning” or “wandering”; (c) time series
of a nonstationary variable that “trends.”
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9.3 Forecasting
The forecasting of values of economic variables is a major activity for many institutions includ-

ing firms, banks, governments, and individuals. Accurate forecasts are important for decision

making on government economic policy, investment strategies, the supply of goods to retail-

ers, and a multitude of other things that affect our everyday lives. Because of its importance,

you will find that there are whole books and courses that are devoted to the various aspects of

forecasting—methods and models for forecasting, ways of evaluating forecasts and their reliabil-

ity, and practical examples.2 In this section, we consider forecasting using two different models,

an AR model, and an ARDL model. Our focus is on short-term forecasting, typically up to three

periods into the future.

To introduce the forecasting problem within the context of an ARDL model, suppose that we

are given the following ARDL(2,2) model

yt = δ + θ1yt−1 + θ2yt−2 + δ1xt−1 + δ2xt−2 + et (9.22)

Criteria for choosing the numbers of lags for y and x will be discussed in Sections 9.3.3 and

9.4. For the moment, we use two lags of each to describe the essential features of the forecast-

ing problem. A quick comparison of (9.22) with (9.3) reveals a slight difference: the term δ0xt
has been omitted from (9.22). To appreciate why, suppose that we have the sample observations{(

yt, xt
)
, t = 1, 2,… ,T

}
and that we wish to forecast yT+1 which, from (9.22), is given by

yT+1 = δ + θ1yT + θ2yT−1 + δ1xT + δ2xT−1 + eT+1 (9.23)

Including δ0xt in (9.22) would mean including δ0xT+1 in (9.23). If the future value xT+1 were

known, then its inclusion is desirable, but the more likely situation is that both yT+1 and xT+1

will not be observed at time T when the forecast is made. Thus, dropping xt in (9.22) is a more

practical choice.

Define the information set of all current and past observations on y and x at time t as

It =
{

yt, yt−1,… , xt, xt−1,…
}

(9.24)

Assuming that we are standing at the end of the sample period, having observed yT and xT, the

one-period ahead forecasting problem is to find a forecast ŷT+1 conditional on, or given, the

information at time T , IT =
{

yT , yT−1,… , xT , xT−1,…
}

. If the parameters
(
δ, θ1, θ2, δ1, δ2

)
are

known, the best forecast in the sense that it minimizes conditional mean-squared forecast error
E
[(

ŷT+1 − yT+1

)2|
|
|
IT

]

is the conditional expectation ŷT+1 = E
(
yT+1|IT

)
. We investigate what this

implies for the ARDL(2, 2) model in (9.23) and later discuss estimation of the parameters. If we

believe that only two lags of y and two lags of x are relevant—they provide the best forecast—we

are assuming that

E
(
yT+1|IT

)
= E

(
yT+1|yT , yT−1, xT , xT−1

)

= δ + θ1yT + θ2yT−1 + δ1xT + δ2xT−1 (9.25)

Notice the difference between the two conditional expectations: E
(
yT+1|IT

)
conditions on all past

observations; E
(
yT+1|yT , yT−1, xT, xT−1

)
conditions on only the two most recent observations. By

employing an ARDL(2, 2) model, we are assuming that, for forecasting yT+1, observations from

more than two periods in the past do not convey any extra information relative to that contained

in the most recent two observations. In addition, for the result in (9.25) to hold, we require

E
(
eT+1|IT

)
= 0 (9.26)

............................................................................................................................................

2A comprehensive but relatively advanced treatment is Graham Elliott and Allan Timmermann, Economic Forecasting,

2016, Princeton University Press.
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For two-period ahead and three-period ahead forecasts, the best forecasts are given respec-

tively by

ŷT+2 = E
(
yT+2|IT

)
= δ + θ1E

(
yT+1|IT

)
+ θ2yT + δ1E

(
xT+1|IT

)
+ δ2xT

ŷT+3 = E
(
yT+3|IT

)
= δ + θ1E

(
yT+2|IT

)
+ θ2E

(
yT+1|IT

)
+ δ1E

(
xT+2|IT

)
+ δ2E

(
xT+1|IT

)

Notice the extra requirements for these two forecasts. We need to know E
(
yT+2|IT

)
, E

(
yT+1|IT

)
,

E
(
xT+2|IT

)
and E

(
xT+1|IT

)
. We have estimates of E

(
yT+2|IT

)
and E

(
yT+1|IT

)
readily available

from previous periods’ forecasts, but E
(
xT+2|IT

)
and E

(
xT+1|IT

)
require extra informa-

tion. This information can come from independent forecasts or we might be interested in

what-if type questions such as if the next two future values of x are x̂T+1 and x̂T+2, what

will be the point and interval forecasts for yT+2 and yT+3? If the model is a pure autore-

gressive one without an x-component, this issue does not arise. In what follows we first

consider an example using a pure AR model, and then one with one lagged x. These are

both special cases of (9.22). We defer discussion of (9.26) and other assumptions until after

the examples.

E X A M P L E 9.5 Forecasting Unemployment with an AR(2) Model

To demonstrate how to use an AR model for forecasting, we

consider the following AR(2) model for forecasting the U.S.

unemployment rate U

Ut = δ + θ1Ut−1 + θ2Ut−2 + et (9.27)

The aim is to use observations up to and including 2016Q1 to

forecast unemployment in the next three quarters: 2016Q2,

2016Q3, and 2016Q4. The information set at time t is

It =
{

Ut,Ut−1,…
}

. At the time we have observed 2016Q1,

it is I2016Q1 =
{

U2016Q1,U2015Q4,…
}

. We assume that (9.26)

holds which, in general terms for any time period, can be

written as E
(
et|It−1

)
= 0. Past values of unemployment

cannot be used to forecast the error in the current period.

With this set up, we can write expressions for forecasts for

the remainder of 2016 as

Û2016Q2 = E
(
U2016Q2|I2016Q1

)
= δ + θ1U2016Q1 + θ2U2015Q4

(9.28)

Û2016Q3 = E
(
U2016Q3|I2016Q1

)

= δ + θ1E
(
U2016Q2|I2016Q1

)
+ θ2U2016Q1

(9.29)

Û2016Q4 = E
(
U2016Q4|I2016Q1

)

= δ + θ1E
(
U2016Q3|I2016Q1

)
+ θ2E

(
U2016Q2|I2016Q1

)

(9.30)

Because these expressions all depend on the unknown param-

eters (δ, θ1, θ2), before we can proceed we need to estimate

them. We digress for a moment to consider estimation of the

AR(2) model.

OLS Estimation of the AR(2) Model for Unemployment The assumption

E
(
et|It−1

)
= 0 is sufficient for the OLS estimator for

(
δ, θ1, θ2

)
to be consistent. The OLS esti-

mator will not be unbiased, but consistency gives it a large-sample justification. Assuming that

E
(
et|It−1

)
= 0 is weaker than the strict exogeneity assumption. In the general ARDL model, it

implies cov
(
et, yt−s

)
= 0 and cov

(
et, xt−s

)
= 0 for all s > 0 but it does not preclude future values

yt+s and xt+s, s > 0, from being correlated with et. The model in (9.27) can be treated in the same

way as the multiple regression model in Chapters 5 and 6, with Ut−1 = xt1 and Ut−2 = xt2. The two

lags of the “dependent variable” can be treated as two different explanatory variables. One differ-

ence is that the two lags cause us to lose two observations. Instead of having T = 273 observations

for estimation, only T – 2 = 271 are available. From a practical standpoint, this modification is not

a concern; the software that you are using will make the necessary adjustments. It is nevertheless

useful to fully appreciate how the lagged variables are defined and how their observations enter

the estimation procedure. Table 9.2 contains the observations as separate variables in the form

they would appear in a spreadsheet. Notice how the observations are lagged and how we lose one

observation when Ut−1 is formed, and two observations when Ut−2 is formed.
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T A B L E 9.2 Spreadsheet of Observations for AR(2) Model

t Quarter Ut Ut−1 Ut−2

1 1948Q1 3.7 • •
2 1948Q2 3.7 3.7 •
3 1948Q3 3.8 3.7 3.7

4 1948Q4 3.8 3.8 3.7

5 1949Q1 4.7 3.8 3.8

⋮ ⋮ ⋮ ⋮ ⋮

271 2015Q3 5.2 5.4 5.6

272 2015Q4 5.0 5.2 5.4

273 2016Q1 4.9 5.0 5.2

Using the observations in Table 9.2 to find OLS estimates of the model in equation (9.27) yields

Ût = 0.2885 + 1.6128Ut−1 − 0.6621Ut−2 σ̂ = 0.2947

(se) (0.0666) (0.0457) (0.0456) (9.31)

The standard errors in this equation are the conventional least squares standard errors introduced

in Chapters 2 and 5. These standard errors and the estimate σ̂ = 0.2947 will be valid with the

conditional homoskedasticity assumption var
(
et|Ut−1,Ut−2

)
= σ2. In addition, in large samples,

the usual t- and F-statistics are valid for testing hypotheses or constructing interval estimates for(
δ, θ1, θ2

)
. You might wonder whether we need an assumption corresponding to the one made in

Chapters 2 and 5, that the errors are serially uncorrelated. It can be shown that one of the assump-

tions that has already been made, E
(
Ut|It−1

)
= δ + θ1Ut−1 + θ2Ut−2, implies that the errors are

uncorrelated.3

Unemployment Forecasts Having estimated the AR(2) model, we are now in a position

to use it for forecasting. Recognizing that the unemployment rates for the two most recent quarters

are U2016Q1 = 4.9 and U2015Q4 = 5, the forecast for U2016Q2 obtained using (9.28) and the estimates

in (9.31) is4

Û2016Q2 = δ̂ + θ̂1U2016Q1 + θ̂2U2015Q4

= 0.28852 + 1.61282 × 4.9 − 0.66209 × 5

= 4.8809 (9.32)

Moving to the forecast for two quarters ahead, we have

Û2016Q3 = δ̂ + θ̂1Û2016Q2 + θ̂2U2016Q1

= 0.28852 + 1.61282 × 4.8809 − 0.66209 × 4.9

= 4.9163 (9.33)

There is an important difference in the way the forecasts Û2016Q2 and Û2016Q3 are obtained. It is

possible to calculate Û2016Q2 using only past observations on U. However, U2016Q3 depends on

U2016Q2, which is unobserved at time 2016Q1. To overcome this problem, we replace U2016Q2 by

............................................................................................................................................

3See Exercise 9.3 for an example where autocorrelated errors imply an extra lag of the dependent variable should be

included.

4We carry the coefficient estimates to five decimal places to reduce rounding error.
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its forecast Û2016Q2 on the right side of equation (9.33). For forecasting U2016Q4, forecasts for both

U2016Q3 and U2016Q2 are needed on the right side of the equation. Specifically,

Û2016Q4 = δ̂ + θ̂1Û2016Q3 + θ̂2Û2016Q2

= 0.28852 + 1.61282 × 4.9163 − 0.66209 × 4.8809

= 4.986 (9.34)

The forecast unemployment rates for 2016Q2, 2016Q3, and 2016Q4 are approximately 4.88%,

4.92%, and 4.99%, respectively. By the time this book is published, we will be able to compare

these forecasts with what actually happened!

9.3.1 Forecast Intervals and Standard Errors
We are typically interested in not just point forecasts but also interval forecasts that give a likely

range in which a future value could fall and indicate the reliability of a point forecast. To investi-

gate how to construct a forecast interval, we return to the more general ARDL(2, 2) model

yt = δ + θ1yt−1 + θ2yt−2 + δ1xt−1 + δ2xt−2 + et

and examine the forecast errors for one-period, two-period, and three-period ahead forecasts. The

one-period ahead forecast error f1 is given by

𝑓1 = yT+1− ŷT+1 =
(

δ − δ̂
)

+
(

θ1− θ̂1

)

yT +
(

θ2− θ̂2

)

yT−1 +
(

δ1 − δ̂1

)

xT−1

+
(

δ2 − δ̂2

)

xT−2 + eT+1 (9.35)

where
(

δ̂, θ̂1, θ̂2, δ̂1, δ̂2

)

are the least squares estimates. The difference between the forecast ŷT+1

and the corresponding realized value yT+1 depends on the differences between the actual coeffi-

cients and the estimated coefficients and on the value of the random error eT+1. A similar situation

arose in Chapters 4 and 6 when we were forecasting using the regression model. What we are

going to do differently now is to ignore the error from estimating the coefficients. It is common

to do so in time-series forecasting because the variance of the random error is typically large

relative to the variances of the estimated coefficients, and the resulting estimator for the forecast

error variance retains the property of consistency. This means that we can write the forecast error

for one quarter ahead as

𝑓1 = eT+1 (9.36)

For two periods ahead, the forecast error gets more complicated. In this case, ignoring sampling

error from estimating the coefficients, we will be using

ŷT+2 = δ + θ1ŷT+1 + θ2yT + δ1x̂T+1 + δ2xT (9.37)

to forecast

yT+2 = δ + θ1yT+1 + θ2yT + δ1xT+1 + δ2xT + eT+2 (9.38)

In (9.37), ŷT+1 comes from the one-period ahead forecast, but a value for x̂T+1 needs to be obtained

from elsewhere. To forecast two periods ahead, we will also need x̂T+2. These values may come

from their own forecasting model, or they might be set by the forecaster to answer what-if type

questions. We will assume that these values are given, x̂T+1 = xT+1 and x̂T+2 = xT+2, or, alterna-

tively, that we are asking what-if type questions so that we can assume that there is no error from

predicting future values of x. Given these assumptions, the two-period ahead forecast error is

𝑓2 = θ1

(
yT+1 − ŷT+1

)
+ eT+2 = θ1𝑓1 + eT+2 = θ1eT+1 + eT+2 (9.39)

For three periods ahead, the error can be shown to be

𝑓3 = θ1𝑓2 + θ2𝑓1 + eT+3 =
(
θ2

1
+ θ2

)
eT+1 + θ1eT+2 + eT+3 (9.40)
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Expressing the forecast errors in terms of the et’s is convenient for deriving expressions for the

forecast error variances. With the assumptions E
(
et|It−1

)
= 0 and var

(
et|yt−1, yt−2, xt−1, xt−2

)
= σ2,

equations (9.36), (9.39), and (9.40) can be used to show that

σ2
𝑓1
= var

(
𝑓1|IT

)
= σ2

σ2
𝑓2
= var

(
𝑓2|IT

)
= σ2

(
1 + θ2

1

)

σ2
𝑓3
= var

(
𝑓3|IT

)
= σ2

[(
θ2

1
+ θ2

)2 + θ2
1
+ 1

]

(9.41)

The standard errors of the forecast errors are obtained by replacing the unknown parameters

in (9.41) by their estimates and then taking the square root. Denoting these standard errors by

σ̂
𝑓1, σ̂𝑓2, and σ̂

𝑓3, 100(1 − α)% forecast intervals are given by ŷT+j ± t(1−α∕2, T−7)σ̂𝑓 j, j = 1, 2, 3.

The degrees of freedom for the t-distribution are (T – p – q − 1) − 2 = T − 7 because five coeffi-

cients have been estimated and the two lags have led to a loss of two observations.5

E X A M P L E 9.6 Forecast Intervals for Unemployment from the AR(2) Model

Using the forecast-error variances in (9.41), the estimates in

(9.31) and t(0.975, 268) = 1.9689, we can compute the forecast

standard errors and 95% forecast intervals presented in

Table 9.3. Notice how the forecast standard errors and the

T A B L E 9.3
Forecasts and Forecast Intervals for Unemployment from
AR(2) Model

Forecast Standard Error of Forecast Interval
Quarter ÛT+ j Forecast Error

(
�̂�𝒇 j

) (
ÛT+ j ± 1.9689 × �̂�

𝒇 j

)

2016Q2 ( j = 1) 4.881 0.2947 (4.301, 5.461)

2016Q3 ( j = 2) 4.916 0.5593 (3.815, 6.017)

2016Q4 ( j = 3) 4.986 0.7996 (3.412, 6.560)

widths of the intervals increase as we forecast further into

the future, reflecting the extra uncertainty from doing so. It is

much harder to be precise about forecasts further into the

future. This idea was introduced in Figure 4.2.

E X A M P L E 9.7 Forecasting Unemployment with an ARDL(2, 1) Model

In this example, we include a lagged value of the growth rate

of GDP (G) to see if its inclusion improves the precision of

our forecasts. We would expect a high growth rate to lead to

less unemployment and a slowdown in the economy to create

more unemployment. The least squares estimated model is

Ût = 0.3616 + 1.5331Ut−1 − 0.5818Ut−2 − 0.04824Gt−1

(se) (0.0723) (0.0556) (0.0556) (0.01949)
σ̂ = 0.2919 (9.42)

Apart from the need to supply future values of G necessary

for forecasting more than one quarter into the future, the

forecasting procedure for an ARDL model is essentially the

same as that for a pure AR model. Providing we are content

to construct forecast intervals that ignore any error in the

specification of future values of G, adding a distributed lag

component to the AR model does not require any special

treatment. Point and interval forecasts are obtained in

the same way. In Exercise 9.16, you are invited to verify

the values reported in Table 9.4. For the forecasts for

............................................................................................................................................

5The large sample distribution theory upon which this forecast interval is based uses a normal distribution rather than a

t-distribution. Thus, the interval ŷT+j ± z1−α∕2σ̂𝑓 j is also used. The t-distribution is frequently chosen in practice to be

more conservative.
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2016Q3 and 2016Q4, we assumed that G2016Q2 = 0.869

and G2016Q3 = 1.069. Comparing the forecasts in Tables 9.3

and 9.4, we find that including the lagged growth rate

has increased the point forecasts for unemployment and

reduced slightly the standard errors of the forecasts. The

main source of the larger point forecasts appears to be the

T A B L E 9.4
Forecasts and Forecast Intervals for Unemployment from
ARDL(2, 1) Model

Forecast Standard Error of Forecast Interval
Quarter ÛT+ j Forecast Error

(
�̂�𝒇 j

) (
ÛT+ j ± 1.9689 × �̂�𝒇 j

)

2016Q2 ( j = 1) 4.950 0.2919 (4.375, 5.525)

2016Q3 ( j = 2) 5.058 0.5343 (4.006, 6.110)

2016Q4 ( j = 3) 5.184 0.7430 (3.721, 6.647)

increase in the estimate of the intercept δ from 0.2885 to

0.3616. In addition, although the values G2016Q2 = 0.869 and

G2016Q3 = 1.069 assume an improved growth rate relative

to G2016Q1 = 0.310, they are still below the sample average

growth rate of G = 1.575.

We have considered forecasting with both AR and ARDL models. It remains to point out that

forecasting with a finite distributed lag model with no AR component can be carried out within

the same framework as forecasting in the linear regression model that we considered in Section

6.4. Instead of the right-hand-side variables being a number of different x’s, they comprise a

number of lags on the same x.

9.3.2 Assumptions for Forecasting
Throughout this section, we have alluded to the various assumptions that ensure an ARDL model

can be estimated consistently and used for forecasting. A summary of these assumptions and some

of their implications follows.

F1: The time series y and x are stationary and weakly dependent. How to test this assumption

and how to model time series that violate the assumption are considered in Chapter 12.

F2: The conditional expectation E
(
yt|It−1

)
is a linear function of a finite number of lags of

y and x. That is,

E
(
yt|It−1

)
= δ + θ1yt−1 + · · · + θpyt−p + δ1xt−1 + · · · + δqxt−q (9.43)

where It−1 =
{

yt−1, yt−2,… , xt−1, xt−2,…
}

is defined as the information set at time t − 1

and represents all past observations at time t. There are a number of things implied by this

assumption.

1. Lags of y beyond yt−p and lags of x beyond xt−q do not contribute to the conditional

expectation; they cannot improve the forecast of yt.

2. The error term et in the ARDL model

yt = δ + θ1yt−1 + · · · + θpyt−p + δ1xt−1 + · · · + δqxt−q + et

is such that E
(
et|It−1

)
= 0.

3. Let zt =
(
1, yt−1,… , yt−p, xt−1,… xt−q

)
denote all right-hand side variables in

the ARDL model at time t. The et are not serially correlated in the sense that

E
(
etes|𝐳t, 𝐳s

)
= 0 for t ≠ s. If the et were serially correlated, then at least one
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more lag of y should appear in E
(
yt|It−1

)
. To gain an intuitive appreciation of why

this is so, consider the AR(1) model yt = δ + θ1yt−1 + et. Correlation between et
and et−1 implies that we can write E

(
et|It−1

)
= ρet−1, from which we obtain

E
(
yt|It−1

)
= δ + θ1yt−1 + ρet−1. From the original model, et−1 = yt−1 − δ − θ1yt−2,

and so

E
(
yt|It−1

)
= δ + θ1yt−1 + ρ

(
yt−1 − δ − θ1yt−2

)

= δ(1 − ρ) +
(
θ1 + ρ

)
yt−1 − ρθ1yt−2

4. The assumption E
(
et|It−1

)
= 0 does not preclude feedback from a past error et−j

( j > 0) to current and future values of x. If x is a policy variable whose setting

reacts to past values of e and y, the least squares estimator is still consistent and

the conditional expectation remains the best forecast. Correlation between et and

past values of x is excluded, however. If et was correlated with xt−1 (say), then

E
(
et|It−1

)
≠ 0.

F3: The errors are conditionally homoskedastic, var
(
et|𝐳t

)
= σ2. This assumption is needed

for the traditional least squares standard errors to be valid and to compute the forecast

standard errors.

9.3.3 Selecting Lag Lengths
So far in our description of an ARDL model and how it can be used for forecasting, we have taken

the lag lengths p and q as given. A critical assumption to ensure that we had the best forecast in

a minimum mean-squared-error sense was that no lags beyond those included in the model con-

tained extra information that could improve the forecast. Technically, this assumption was equiva-

lent to E
(
et|It−1

)
= 0 where et is the equation error term, and It−1 =

{
yt−1, yt−2,… , xt−1, xt−2,…

}

is the set of information prior to period t. A natural question that now arises is: How many lags

of y and x should be included? Specifically, in terms of the ARDL(p, q) model

yt = δ + θ1yt−1 + · · · + θpyt−p + δ1xt−1 + · · · + δqxt−q + et

how do we decide on p and q? There are a number of different criteria that can be used. Because

they all do not necessarily lead to the same choice, there is a degree of subjective judgment that

must be exercised. It is an area in which econometrics is an art as well as a science.

We can explain three criteria relatively quickly. One is to extend the lag lengths for y and

x as long as their estimated coefficients are significantly different from zero. A second is to

choose p and q to minimize either the AIC or the SC variable selection criterion. And a third

is to evaluate the out-of-sample forecasting performance of each (p, q) combination using a

hold-out sample. Testing significance was introduced in Chapter 3 and has been used exten-

sively since. The second and third criteria were discussed in Section 6.4.1. In the remainder of

this section, we use the unemployment equation to illustrate how the SC can be used to choose

lag lengths.6 A fourth way of of deciding on p and q is to check for serial correlation in the

error term. Since E
(
et|It−1

)
= 0 implies that the lag lengths p and q are sufficient and the errors

are not serially correlated, the presence of serial correlation is an indication we have insuffi-

cient lags. Testing for serial correlation is an important topic in its own right, and so we devote

Section 9.4 to it.

............................................................................................................................................

6The SC penalizes additional lags more heavily than does the AIC and hence leads to a more parsimonious model. It is

generally preferred to the AIC that can select a model with too many lags even when the sample size is infinitely large.

For details, see Russell Davidson and James McKinnon (2004), Econometric Theory and Methods, Oxford University

Press, p.676–677.

azato
Underline
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E X A M P L E 9.8 Choosing Lag Lengths in an ARDL(p, q) Unemployment Equation

Our objective is to use the SC to select the number of lags for

U and the number of lags for G in the equation

Ut=δ + θ1Ut−1 + · · · + θpUt−p + δ1Gt−1 + · · · + δqGt−q + et

When computing the SC for a number of possible lag lengths,

it is important that the same number of observations is used

to estimate each model; otherwise, the sum-of-squared-errors

component in the SC will not be comparable across models.

Since lagging variables leads to a loss of observations, and

the number of observations lost depends on the lag length,

care must be exercised when selecting the period for estima-

tion. We consider a maximum of eight lags for both U and G
and, to ensure comparability, our estimation period is from

1950Q1 to 2016Q1 for all models. Up to eight observations

are used for the lags on the right-hand side of each equation,

and the first sample value for Ut is always 1950Q1, giving a

total of 265 observations. The SC values for p = 1, 2, 4, 6, 8

and q = 0, 1, 2,… , 8 are displayed in Table 9.5.7 There are

p lags of U and q lags of G. The SC values for p = 3, 5, 7 were

omitted because they were dominated by those for the other

values of p and did not convey any extra information. Because

the SC values are negative, the minimizing values for p and

q are those that lead to the “largest negative” entry, namely

p = 2 and q = 0, suggesting that the ARDL(2, 0) model

Ut = δ + θ1Ut−1 + θ2Ut−2 + et is suitable. Other things to

notice are that the relatively large increases in the SC if Ut−2

is dropped and that more than two lags of Ut are not favored

by the SC irrespective of the value of q.

Since we have also used an ARDL(2, 1) model with Gt−1

included, we ask whether there is any evidence to support

T A B L E 9.5
SC Values for ARDL(p, q)
Unemployment Equation

Lag SC

q/p 1 2 4 6 8

0 −1.880 −2.414 −2.391 −2.365 −2.331

1 −2.078 −2.408 −2.382 −2.357 −2.323

2 −2.063 −2.390 −2.361 −2.337 −2.302

3 −2.078 −2.407 −2.365 −2.340 −2.306

4 −2.104 −2.403 −2.362 −2.331 −2.297

5 −2.132 −2.392 −2.353 −2.346 −2.312

6 −2.111 −2.385 −2.346 −2.330 −2.292

7 −2.092 −2.364 −2.325 −2.309 −2.271

8 −2.109 −2.368 −2.327 −2.307 −2.269

its inclusion. It turns out that, if we go back and start the

sample from 1948Q3, dropping the first two observations to

accommodate two lags, the SC values for the ARDL(2, 0)

and ARDL(2, 1) models are −2.393 and −2.395, respec-

tively. In this case, there is a slight preference for including

Gt−1. Moreover, as we have seen from equation (9.42), the

coefficient of Gt−1 is significantly different from zero at a

5% significance level. Its p-value for a zero null hypothesis

is 0.014.

9.3.4 Testing for Granger Causality

Granger causality8 refers to the ability of lags of one variable to contribute to the forecast of

another variable. In the context of the ARDL model

yt = δ + θ1yt−1 + · · · + θpyt−p + δ1xt−1 + · · · + δqxt−q + et

we say that x does not “Granger cause” y if

E
(
yt|yt−1, yt−2,… , yt−p, xt−1, xt−2,… xt−q

)
= E

(
yt|yt−1, yt−2,… , yt−p

)

Thus, testing for Granger causality is equivalent to testing

H0∶δ1 = 0, δ2 = 0,… , δq = 0

H1∶at least one δi ≠ 0

............................................................................................................................................

7The AIC and SC values that are reported are computed using the formulas given in equations (6.43) and (6.44). Your

software may provide different values that are based on more general formulas that use a likelihood function. To get the

likelihood-based values, you need to add [1 + ln(2π)] ≅ 2.8379 to the entries in Table 9.4. Adding or subtracting a

constant does not change the lag length that minimizes AIC or SC.

8Granger, C.W.J. (1969), “Investigating causal relations by econometric models and cross-spectral methods,”

Econometrica 37, 424–38.
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It can be performed using the F-test introduced in Chapter 6 for testing joint linear hypotheses.

Rejection of H0 implies x Granger causes y. Note that if x Granger causes y, it does not necessarily

imply a direct causal relationship between x and y. It means that having information on past x
values will improve the forecast for y. Any causal effect can be an indirect one.

E X A M P L E 9.9 Does the Growth Rate Granger Cause Unemployment?

To answer this question, we first return to the ARDL(2, 1)

model whose estimates were given in equation (9.42). Specif-

ically,

Ût = 0.3616 + 1.5331Ut−1 − 0.5818Ut−2 − 0.04824Gt−1

(se) (0.0723) (0.0556) (0.0556) (0.01949)

In this model, testing whether G Granger causes U is equiva-

lent to testing the significance of the coefficient of Gt−1. It can

be carried out with a t- or an F-test. For example, the F-value

is

F = t2 = (0.04824∕0.01949)2 = 6.126

It exceeds the 5% critical value of F(0.95, 1, 267) = 3.877, lead-

ing us to conclude that G Granger causes U.

To illustrate how the test works when more than one lag

is being tested, consider the following model with four lags

of G

Ut = δ + θ1Ut−1 + θ2Ut−2 + δ1Gt−1 + δ2Gt−2

+ δ3Gt−3 + δ4Gt−4 + et

In this model, testing whether G Granger causes U is equiv-

alent to testing

H0∶δ1 = 0, δ2 = 0, δ3 = 0, δ4 = 0

H1∶at least one δi ≠ 0

The restricted model obtained by assuming that H0 is true

is Ut = δ + θ1Ut−1 + θ2Ut−2 + et. If we compute an F-value

using the restricted and unrestricted sums of squared errors, it

is important to make sure that both models use the same num-

ber of observations, in this case, 269, for the sample period

1949Q1 to 2016Q1. The F-value for the test is

F =
(
SSER − SSEU

)
∕J

SSEU∕(T − K)
=
(23.2471 − 21.3020)∕4

21.3020∕(269 − 7)
= 5.981

Because F = 5.981 is greater than the 5% critical value

F(0.95, 4, 262) = 2.406, we reject H0 and conclude that G does

Granger cause U.

9.4 Testing for Serially Correlated Errors
Consider again the ARDL(p, q) model

yt = δ + θ1yt−1 + · · · + θpyt−p + δ1xt−1 + · · · + δqxt−q + et

with It−1 =
{

yt−1, yt−2,… , xt−1, xt− 2,…
}

defined as the information set at time t − 1 and rep-

resenting all past observations at time t. To keep the notation and exposition relatively simple,

suppose p = q = 1. One implication of forecasting assumption F2, that all relevant lags have

been included in the conditional expectation E
(
yt|It−1

)
= δ + θ1yt−1 + δ1xt−1, is that the errors

et are serially uncorrelated. For the absence of serial correlation, we require the conditional

covariance between any two different errors to be zero. That is, E
(
etes|𝐳t, 𝐳s

)
= 0 for all t ≠ s

where 𝐳t =
(
1, yt−1, xt−1

)
denotes all right-hand-side variables in the ARDL model at time t.

If E
(
etes|𝐳t, 𝐳s

)
≠ 0, then E

(
et|It−1

)
≠ 0 that, in turn, implies E

(
yt|It−1

)
≠ δ + θ1yt−1 + δ1xt−1.

Thus, one way of assessing whether sufficient lags have been included to get the best forecast is

to test for serially correlated errors.

Not using the best model for forecasting is not the only implication of serially correlated

errors. If E
(
etes|𝐳t, 𝐳s

)
≠ 0 for t ≠ s, then the usual least squares standard errors are invalid. The

possibility of invalid standard errors is relevant not just for forecasting equations but also for

equations used for policy analysis to be discussed in Section 9.5. For these reasons, testing for

serially correlated errors is routine practice when estimating time series regressions. We discuss

three tests for this purpose – checking the correlogram of the least squares residuals, a Lagrange

multiplier test, and the Durbin–Watson test.
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9.4.1 Checking the Correlogram of the Least Squares
Residuals

In Section 9.1.2, we saw how the correlogram can be used to examine the nature of the auto-

correlations of a time series and to test whether these autocorrelations are significantly different

from zero. The autocorrelations for the unemployment and growth series were investigated in

Examples 9.2 and 9.3, respectively. In a similar way, we can use the correlogram of the least

squares residuals to check for serially correlated errors. Because the errors et are unobserved,

their correlogram cannot be checked directly. However, we can obtain the least squares residuals

êt = yt − δ̂ − θ̂1yt−1 − δ̂1xt−1 as estimates of the et and examine their autocorrelations. Noting that

the mean of the least squares residuals is zero and adapting equation (9.20), we can write the kth

order autocorrelation for the residuals as

rk =
∑T

t=k+1
êtêt−k

∑T
t=1

ê2

t

(9.45)

Ideally, for the correlogram to suggest no serial correlation, we like to have |rk| < 2
/√

T for

k = 1, 2,… , the 2 being used to approximate 1.96, the critical value for a 5% significance level.

However, occasional significant (but small) autocorrelations at long lags do not constitute strong

evidence of autocorrelation and are regarded as acceptable.

E X A M P L E 9.10 Checking the Residual Correlogram for the ARDL(2, 1)
Unemployment Equation

For a first example, we return to the ARDL(2,1) model in

(9.42), estimated with 271 observations:

Ût = 0.3616 + 1.5331Ut−1 − 0.5818Ut−2 − 0.04824Gt−1

(se) (0.0723) (0.0556) (0.0556) (0.01949)
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FIGURE 9.7 Correlogram for residuals from ARDL(2, 1) model.

The autocorrelations for its residuals given in the correl-

ogram in Figure 9.7 are generally small and insignificant.

There are exceptions at lags 7, 8, and 17, where the autocor-

relations exceed the significance bounds. These correlations

are at long lags, barely significant, and relatively small(
r7 = 0.146, r8 = −0.130, r17 = 0.133

)
. It is reasonable to

conclude that there is no strong evidence of serial correlation.
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E X A M P L E 9.11 Checking the Residual Correlogram for an ARDL(1, 1)
Unemployment Equation

To contrast the outcome in Example 9.10 with one where

serial correlation is clearly present, we reestimate the model

with Ut−2 omitted and using 272 observations. If Ut−2 is

an important contributor to the forecasting equation, its

omission is likely to lead to serial correlation in the errors.

The reestimated equation is

Ût = 0.4849 + 0.9628Ut−1 − 0.1672Gt−1

(se) (0.0842) (0.0128) (0.0187) (9.46)
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FIGURE 9.8 Correlogram for residuals from ARDL(1, 1) model.

and its correlogram is displayed in Figure 9.8. In this case, the

first three autocorrelations are significant, and the first two

are moderately large
(
r1 = 0.449, r2 = 0.313

)
. We conclude

that the errors are serially correlated. More lags are needed

to improve the forecasting specification, and the least squares

standard errors given in (9.46) are invalid.

9.4.2 Lagrange Multiplier Test
A second test that we consider for testing for serially correlated errors is derived from a gen-

eral set of hypothesis testing principles that produce Lagrange9 multiplier (LM) tests. In more

advanced courses, you will learn the origin of the term LM. Another example was given in

Chapter 8 for testing for heteroskedasticity. The general principle is described in Appendix C.8.4.

An advantage of this test is that it readily generalizes to a joint test of correlations at more than

one lag.

To introduce the test, consider the ARDL(1, 1) model yt = δ + θ1yt−1 + δ1xt−1 + et. The null

hypothesis for the test is that the errors et are uncorrelated. To express this null hypothesis in terms

of restrictions on one or more parameters, we can introduce a model for an alternative hypothesis,

with that model describing the possible nature of any autocorrelation. We will consider a number

of alternative models.

............................................................................................................................................

9Joseph–Louis Lagrange (1736–1813) was an Italian born mathematician. Statistical tests using the so-called “Lagrange

multiplier principle” were introduced into statistics by C.R. Rao in 1948.
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Testing for AR(1) Errors In the first instance, we consider an alternative hypothesis

that the errors are correlated through the AR(1) process et = ρet−1 + vt where the new errors vt sat-

isfy the uncorrelated assumption cov
(
vt, vs|𝐳t, 𝐳s

)
= 0 for t ≠ s. In the context of the ARDL(1, 1)

model, 𝐳t =
(
1, yt−1, xt−1

)
. Substituting for et in the original equation yields

yt = δ + θ1yt−1 + δ1xt−1 + ρet−1 + vt (9.47)

Now, if ρ = 0, then et = vt and since vt is not serially correlated, et will not be serially correlated.

Thus, a test for serial correlation can be set up in terms of the hypotheses H0∶ρ = 0 and H1∶ρ ≠ 0.

The obvious way to perform this test if et−1 was observable is to regress yt on yt−1, xt−1, and et−1

and to then use a t- or F-test to test the significance of the coefficient of et−1. However, because

et−1 is not observable, we replace it by the lagged least squares residuals êt−1 and then perform

the test in the usual way.

Proceeding in this way seems straightforward, but, to complicate matters, applied econo-

metricians have managed to do it in at least four different ways! One of the variations centers

around the treatment of the first observation. To appreciate the issue, suppose that we have 100

observations with which to estimate an ARDL(1, 1) model. Because y and x are both lagged

once, an effective sample of 99 observations will be used for estimation. There will be 99 resid-

uals êt. Replacing et−1 with êt−1 in (9.47) means that a further observation will be lost leaving

98 for the test equation. An alternative to losing this last observation is to set the initial value

of êt−1 equal to zero so that 99 observations are retained. Doing so is justified because, when H0

is true, E
(
et−1|𝐳t−1

)
= 0. This is the approach adopted in the automatic commands of the popular

software packages Stata and EViews.

The second variation requires a bit more work. As we discovered in Chapter 8, LM tests are

such that they can frequently be written as the simple expression T × R2 where T is the number

of sample observations and R2 is the goodness-of-fit statistic from an auxiliary regression.

To derive the relevant auxiliary regression for the autocorrelation LM test, we begin by writing

the test equation from (9.47) as

yt = δ + θ1yt−1 + δ1xt−1 + ρêt−1 + vt (9.48)

Noting that yt = ŷt + êt = δ̂ + θ̂1yt−1 + δ̂1xt−1 + êt, we can rewrite (9.48) as

δ̂ + θ̂1yt−1 + δ̂1xt−1 + êt = δ + θ1yt−1 + δ1xt−1 + ρêt−1 + vt

Rearranging this equation yields

êt =
(

δ − δ̂
)

+
(

θ1 − θ̂1

)

yt−1 +
(

δ1 − δ̂1

)

xt−1 + ρêt−1 + vt

= γ1 + γ2yt−1 + γ3xt−1 + ρêt−1 + vt (9.49)

where γ1 = δ − δ̂, γ2 = θ1 − θ̂1, and γ3 = δ1 − δ̂1. When testing for autocorrelation by testing

the significance of the coefficient of êt−1, one can estimate (9.48) or (9.49). Both yield the

same test result – the same coefficient estimate for êt−1 and the same t-value. The estimates for

the intercept and the coefficients of yt−1 and xt−1 will be different, however. In (9.49), we are

estimating
(

δ − δ̂
)

,
(

θ1 − θ̂1

)

, and
(

δ1 − δ̂1

)

, instead of δ, θ1, and δ1. The auxiliary regression

from which the T × R2 version of the LM test is obtained is (9.49). Because
(

δ − δ̂
)

,
(

θ1 − θ̂1

)

,

and
(

δ1 − δ̂1

)

are centered around zero, if (9.49) is a regression with significant explanatory

power, that power will come from êt−1.

If H0∶ρ = 0 is true, then LM = T × R2 has an approximate χ2
(1) distribution where T and R2

are the sample size and goodness-of-fit statistic, respectively, from least squares estimation of

(9.49). Once again, there are two alternatives depending on whether the first observation is dis-

carded, or ê0 is set equal to zero.
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Testing for MA(1) Errors There are several kinds of models that can be used to try to

capture the characteristics of observed sample autocorrelations. These models can be applied to

observed time series such as unemployment and the growth rate of GDP or to unobserved errors

in a time-series regression model. Up to now only autoregressive models have been discussed.

Another useful class of models is what is known as moving-average models. You will study these

and other models in more depth if you take a time-series course. In Exercise 9.5, you are asked to

compare the autocorrelations of an AR(1) model with those of a moving-average model of order

one, MA(1). Our task at the moment is to work out a test statistic when an alternative hypothesis

of autocorrelation is modeled using the MA(1) process

et = ϕvt−1 + vt (9.50)

The vt are assumed to be uncorrelated: cov
(
vt, vs|𝐳t, 𝐳s

)
= 0 for t ≠ s. Following the strategy we

adopted for the AR(1) error model, combining (9.50) with an ARDL(1,1) model yields

yt = δ + θ1yt−1 + δ1xt−1 + ϕvt−1 + vt (9.51)

Notice that ϕ = 0 implies et = vt, and so we can test for autocorrelation through the hypotheses

H0∶ϕ = 0 and H1∶ϕ ≠ 0. Comparing (9.51) with (9.47), we can see that the test for an MA(1)

alternative will be exactly the same as the test for an AR(1) alternative providing we can find an

estimate v̂t−1. Fortunately, we can use the least squares residual êt−1 to estimate vt−1, just as we

did before. That is, v̂t−1 = êt−1. The reason we can do this is that, when H0 is true, both errors

are the same: et = vt. Thus, the test for testing against the alternative of MA(1) errors is identical

to the test for an alternative of AR(1) errors. The downside of this result is that, when H0 is

rejected, the LM test does not identify which error model is more suitable.

Testing for Higher Order AR or MA Errors The LM test and its variations can be

readily extended to alternative hypotheses that are expressed in terms of higher order AR or MA

models. For example, suppose that the model for an alternative hypothesis is either an AR(4) or

an MA(4) process. Then

AR(4)∶ et = ψ1et−1 + ψ2et−2 + ψ3et−3 + ψ4et−4 + vt

MA(4)∶ et = ϕ1vt−1 + ϕ2vt−2 + ϕ3vt−3 + ϕ4vt−4 + vt

The corresponding null and alternative hypotheses for each case are

AR(4)

{
H0∶ψ1 = 0, ψ2 = 0, ψ3 = 0, ψ4 = 0

H1∶at least one ψi is nonzero

MA(4)

{
H0∶ϕ1 = 0, ϕ2 = 0, ϕ3 = 0, ϕ4 = 0

H1∶at least one ϕi is nonzero

The two alternative test equations corresponding to (9.48) and (9.49) are

yt = δ + θ1yt−1 + δ1xt−1 + ψ1êt−1 + ψ2êt−2 + ψ3êt−3 + ψ4êt−4 + vt (9.52)

êt = γ1 + γ2yt−1 + γ3xt−1 + ψ1êt−1 + ψ2êt−2 + ψ3êt−3 + ψ4êt−4 + vt (9.53)

We have used the coefficient notation ψi from the AR model, but since the test is the same for

both AR and MA alternatives, we could equally well have used ϕi from the MA model. One can

use an F-test to jointly test the significance of the ψi in (9.52) or (9.53), or, use the LM = T × R2

test computed from (9.53). When H0 is true, the latter has a χ2
(4)-distribution. Once again, the

initial observations can be dropped or set to zero; there will be a slight difference in results from

these two alternatives.



�

� �

�

9.5 Time-Series Regressions for Policy Analysis 443

E X A M P L E 9.12 LM Test for Serial Correlation in the ARDL Unemployment
Equation

To illustrate the LM test, we apply the χ2 = T × R2 version

of the test to the ARDL unemployment equation. Two

models are chosen: the ARDL(1, 1) model whose residual

correlogram strongly suggested the existence of serially

correlated errors and the ARDL(2, 1) model whose cor-

relogram revealed a few small significant correlations, but

otherwise was free from serial correlation. Initial values

for the êt lost from lagging were set to zero. Table 9.6

contains the test results for AR(k) or MA(k) alternatives for

k = 1, 2, 3, 4. There is strong evidence that the errors in the

ARDL(1, 1) model are serially correlated. With p-values

less than 0.0001, the test soundly rejects a null hypothesis

of no serial correlation at all four lags. With the ARDL(2,1)

model, the results are not so clear cut. At a 5% significance

level, a null hypothesis of no serial correlation is not rejected

for alternatives with one lag or four lags, but it is rejected

for alternatives with two or three lags. Adding a second

lag of Ut to the ARDL(1, 1) model has eliminated a large

degree of serial correlation in the errors, but some may

T A B L E 9.6

LM Test Results for Serial
Correlation in the Errors of the
Unemployment Equation

Values of k
for AR(k)
or MA(k)
Alternative

ARDL(1, 1) ARDL(2, 1)
Test value p-Value Test Value p-Value

1 66.90 0.0000 2.489 0.1146

2 73.38 0.0000 6.088 0.0476

3 73.38 0.0000 9.253 0.0261

4 73.55 0.0000 9.930 0.0521

still remain. In Exercise 9.19, you are invited to test for

serial correlation in the errors after adding more lags of Ut
and Gt.

9.4.3 Durbin–Watson Test
The sample correlogram and the Lagrange multiplier test are two large-sample tests for serially

correlated errors. Their test statistics have their specified distributions in large samples. An alter-

native test, one that is exact in the sense that its distribution does not rely on a large sample

approximation, is the Durbin–Watson test. It was developed in 1950 and, for a long time, was

the standard test for H0∶ρ = 0 in the AR(1) error model et = ρet−1 + vt. It is used less frequently

today because its critical values are not available in all software packages and one has to exam-

ine upper and lower critical bounds instead. In addition, unlike the LM and correlogram tests,

its distribution no longer holds when the equation contains a lagged dependent variable. A quick

rule of thumb, useful when checking your computer output, is that a Durbin–Watson statistic

value near 2.0 is compatible with the hypothesis of no serial correlation. Details are provided in

Appendix 9A.

9.5 Time-Series Regressions for Policy Analysis
In Section 9.3, we focused on specification, estimation, and use of time-series regressions for

forecasting. The main concern was how to use an estimate of an AR conditional expectation

E
(
yt|It−1

)
= δ + θ1yt−1 + · · · + θpyt−p

or an ARDL conditional expectation

E
(
yt|It−1

)
= δ + θ1yt−1 + · · · + θpyt−p + δ1xt−1 + · · · + δqxt−q

to forecast the future values yT+1, yT+2,… , given the information available at the end of the

sample period, IT. In the AR model, the information set was IT =
{

yT , yT−1, yT−2,…
}

; for

the ARDL model it was IT =
{

yT , xT , yT−1, xT−1, yT−2, xT−2,…
}

. We were not concerned with

the interpretation of individual coefficients, and, providing an adequate number of lags of y (or y
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and x) was included in the relevant conditional expectation, we were not concerned with omitted

variables. Valid forecasts could be obtained from either of the models or one that contains other

explanatory variables and their lags. Moreover, because we were using past data to forecast the

future, a current value of x was not included in the ARDL model.

Models for policy analysis differ in a number of ways. The individual coefficients are of

interest because they might have a causal interpretation, telling us how much the average outcome

of a dependent variable changes when an explanatory variable and its lags change. For example,

central banks who set interest rates are concerned with how a change in the interest rate will affect

inflation, unemployment, and GDP growth, now and in the future. Because we are interested in

the current effect of a change, as well as future effects, the current value of explanatory variables

can appear in distributed lag or ARDL models. In addition, omitted variables can be a problem

if they are correlated with the included variables because then the coefficients may not reflect

causal effects.

Interpreting a coefficient as the change in a dependent variable caused by a change in

an explanatory variable is in line with the emphasis in Chapters 2–8. With the exception of

Section 6.3.1, where we discussed the difference between predictive and causal models, and some

sections devoted to prediction, the focus in those chapters was on estimating βk = ∂E
(
yt|𝐱t

)
∕∂xtk

in the model

yt = β1 + β2xt2 + · · · + βKxtK + et

and on how the interpretation of the βk changes if one or more variables is expressed in terms of

logarithms or if there is some other nonlinear relationship between yt and xtk. Results from these

earlier chapters on the estimation of causal effects also hold for time series regressions providing

some critical assumptions hold. Under assumptions MR1–MR5 described in Chapter 5, least

squares estimates of the βk are best linear unbiased. However, there are two of these assumptions

that can be very restrictive when working within a time-series framework. Recalling that X is

used to denote all observations in all time periods for the right-hand-side variables, those two

assumptions are strict exogeneity, E
(
et|𝐗

)
= 0, and the absence of serial correlation in the errors,

cov
(
et, es|𝐗

)
= 0 for t ≠ s. Strict exogeneity implies that there are no lagged dependent variables

on the right-hand side, ruling out ARDL models. It also means that the errors are uncorrelated

with future x values, an assumption that would be violated if x was a policy variable, such as

the interest rate, whose setting was influenced by past values of y, such as the inflation rate.

The absence of serial correlation implies that variables omitted from the equation, and whose

effect is felt through the error term, must not be serially correlated. Given that time series variables

are typically autocorrelated, it is likely to be difficult to satisfy this assumption.

The strict exogeneity assumption can be relaxed if we are content to live with large sam-

ple properties. In Section 5.7.3, we noted that the assumptions E
(
et
)
= 0 and cov

(
et, xtk

)
= 0

for all t and k were sufficient for the least squares estimator to be consistent. Thus, we can still

proceed if the errors and right-hand-side variables are contemporaneously uncorrelated, an impli-

cation of the lesser assumption of contemporaneous exogeneity. In the general framework of an

ARDL model, the contemporaneous exogeneity assumption can be written as E
(
et|𝐳t

)
= 0 where

zt denotes all right-hand-side variables that could include both lagged x’s and lagged y’s. Feedback

from current and past y to future x is possible under this assumption, and lagged values of y can

be included on the right-hand side. However, as we will discover, for both proper interpretation

of coefficients and consistency of estimation, we have to be careful about including the correct

number of lags and about the context in which lagged values of y and x arise in the equation.

Stronger assumptions often have to be made. In Section 9.1.1, we noted that lagged values of

y can arise not just in ARDL models but also in transformations of other models: in a model

with an AR(1) error and in an IDL model. The special features of these models are considered

in Sections 9.5.3 and 9.5.4. For the OLS standard errors to be valid for large sample infer-

ence, the serially uncorrelated error assumption cov
(
et, es|𝐗

)
= 0 for t ≠ s can be weakened to

cov
(
et, es|𝐳t, 𝐳s

)
= 0 for t ≠ s, but we do still need to query whether this assumption is realistic in a

time-series setting.
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In the following four sections, we are concerned with three main issues that add to our

time-series regression results from earlier chapters.

1. Interpretation of coefficients of lagged variables in finite and infinite distributed lag models.

2. Estimation and inference for coefficients when the errors are autocorrelated.

3. The assumptions necessary for interpretation and estimation.

To simplify the discussion, we work with models with only one x and its lags, like those specified

at the beginning of this chapter in Table 9.1. Our results and conclusions carry over to models

with more than one x and their lags.

9.5.1 Finite Distributed Lags
The finite distributed lag model where we are interested in the impact of current and past values

of a variable x on current and future values of a variable y can be written as

yt = α + β0xt + β1xt−1 + β2xt−2 + · · · + βqxt−q + et (9.54)

It is called a finite distributed lag because the impact of x on y cuts off after q lags. It is called a

distributed lag because the impact of a change in x is distributed over future time periods. For the

coefficients βk to represent causal effects, the error term must not be correlated with any omitted

variables that are correlated with 𝐱t =
(
xt, xt−1,… , xt−q

)
. In particular, since xt is likely to be

autocorrelated, we require et not to be correlated with the current and all past values of x. This

requirement holds if

E
(
et|xt, xt−1,…

)
= 0 (9.54)

It then follows that

E
(
yt|xt, xt−1,…

)
= α + β0xt + β1xt−1 + β2xt−2 + · · · + βqxt−q

= E
(
yt|xt, xt−1,… , xt−q

)
= E

(
yt|xt

)
(9.55)

Once q lags of x have been included in the equation, further lags of x will not have an

impact on y.

Given this assumption, a lag-coefficient βs can be interpreted as the change in E
(
yt|𝐱t

)
when

xt−s changes by 1 unit, but x is held constant in other periods. Alternatively, if we look forward

instead of backward, βs gives the change in E
(
yt+s|𝐱t

)
when xt changes by 1 unit, but x is held

constant in other periods. In terms of derivatives

∂E
(
yt|xt

)

∂xt−s
=
∂E

(
yt+s|xt

)

∂xt
= βs (9.56)

To further appreciate this interpretation, suppose that x and y have been constant for at least the

last q periods and that xt is increased by 1 unit and then returned to its original level in the next and

subsequent periods. Then, using (9.54) but ignoring the error term, the immediate effect will be

an increase in yt by β0 units. One period later yt+1 will increase by β1 units, then yt+2 will increase

by β2 units and so on, up to period t + q when yt+q will increase by βq units. In period t + q + 1,

the value of y will return to its original level. The effect of a 1-unit change in xt is distributed over

the current and next q periods, from which we get the term distributed lag model. The coefficient

βs is called a distributed-lag weight or an s-period delay multiplier. The coefficient β0 (s = 0)
is called the impact multiplier.

It is also relevant to ask what happens if xt is increased by 1 unit and then maintained at its

new level in subsequent periods (t + 1), (t + 2), · · ·. In this case, the immediate impact will again

be β0; the total effect in period t + 1 will be β0 + β1; in period t + 2, it will be β0 + β1 + β2, and

so on. We add together the effects from the changes in all preceding periods. These quantities
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are called interim or cumulative multipliers. For example, the 2-period interim multiplier is(
β0 + β1 + β2

)
. The total multiplier is the final effect on y of the sustained increase after q or

more periods have elapsed; it is given by
∑q

s=0
βs.

E X A M P L E 9.13 Okun’s Law

To illustrate the various distributed lag concepts, we intro-

duce an economic model known as Okun’s Law.10 In this

model, we again consider a relationship between unemploy-

ment and growth of the economy, but we formulate the model

differently and use a different data set. Moreover, our purpose

is not to forecast unemployment but to investigate the lagged

responses of unemployment to growth in the economy. In the

basic model for Okun’s Law, the change in the unemployment

rate from one period to the next depends on the rate of growth

of output in the economy:

Ut − Ut−1 = −γ
(
Gt − GN

)
(9.57)

where Ut is the unemployment rate in period t, Gt is the

growth rate of output in period t, and GN is the “normal”

growth rate, which we assume is constant over time. The

parameter γ is positive, implying that when the growth of out-

put is above the normal rate, unemployment falls; a growth

rate below the normal rate leads to an increase in unemploy-

ment. The normal growth rate GN is the rate of output growth

needed to maintain a constant unemployment rate. It is equal

to the sum of labor force growth and labor productivity

growth. We expect 0 < γ < 1, reflecting that output growth

leads to less than one-to-one adjustments in unemployment.

To write (9.57) in the more familiar notation of

the multiple regression model, we denote the change in
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FIGURE 9.9a Time series for the change in the Australian unemployment rate:
1978Q2 to 2016Q2.

unemployment by DUt = ΔUt = Ut – Ut−1, we set β0 = −γ
and α = γGN, and include an error term

DUt = α + β0Gt + et (9.58)

Recognizing that changes in output are likely to have a

distributed-lag effect on unemployment–not all of the effect

will take place instantaneously–we expand (9.58) to include

lags of Gt

DUt = α + β0Gt + β1Gt−1 + β2Gt−2 + · · · + βqGt−q + et
(9.59)

To estimate this relationship, we use quarterly Australian

data on unemployment and the percentage change in gross

domestic product (GDP) from quarter 2, 1978 to quarter 2,

2016. These data are stored in the file okun5_aus. The time

series for DU and G are graphed in Figure 9.9(a) and (b).

There are noticeable jumps in the unemployment rate around

1983, 1992, and 2009; they correspond roughly to periods

when there was negative growth but with a lag. At this time,

we also note that the series appear to be stationary; tools for

more rigorous assessment of stationarity are deferred until

Chapter 12.

Least squares estimates of the coefficients and related

statistics for equation (9.59) are reported in Table 9.7 for lag

............................................................................................................................................

10See O. Blanchard (2009), Macroeconomics, 5th edition, Upper Saddle River, NJ, Pearson Prentice Hall, p. 184.
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FIGURE 9.9b Time series for Australian GDP growth: 1978Q2 to 2016Q2.

lengths q = 4 and q = 5. All coefficients of G and its lags have

the expected negative sign and are significantly different from

zero at a 5% significance level, with the exception of that for

Gt−5 when q = 5. Given the coefficient of this lag is positive

T A B L E 9.7
Estimates for Okun’s Law Finite
Distributed Lag Model

Lag Length q = 5

Variable Coefficient Standard
Error t-Value p-Value

C 0.3930 0.0449 8.746 0.0000

Gt −0.1287 0.0256 −5.037 0.0000

Gt−1 −0.1721 0.0249 −6.912 0.0000

Gt−2 −0.0932 0.0241 −3.865 0.0002

Gt−3 −0.0726 0.0241 −3.012 0.0031

Gt−4 −0.0636 0.0241 −2.644 0.0091

Gt−5 0.0232 0.0240 0.966 0.3355

Observations = 148 R2 = 0.503 σ̂ = 0.2258

Lag Length q = 4

Variable Coefficient
Standard

Error
t-Value p-Value

C 0.4100 0.0415 9.867 0.0000

Gt −0.1310 0.0244 −5.369 0.0000

Gt−1 −0.1715 0.0240 −7.161 0.0000

Gt−2 −0.0940 0.0240 −3.912 0.0001

Gt−3 −0.0700 0.0239 −2.929 0.0041

Gt−4 −0.0611 0.0238 −2.563 0.0114

Observations = 149 R2 = 0.499 σ̂ = 0.2251

and insignificant, we drop Gt−5 and settle on a model of order

q = 4 where all coefficients have the expected negative signs

and are significantly different from zero.

What do the estimates for lag length 4 tell us? A 1%

increase in the growth rate leads to a fall in the expected

unemployment rate of 0.13% in the current quarter, a fall

of 0.17% in the next quarter and falls of 0.09%, 0.07%, and

0.06% in two, three, and four quarters from now, respectively.

These changes represent the values of the impact multiplier

and the one- to four-quarter delay multipliers. The interim

multipliers, which give the effect of a sustained increase in

the growth rate of 1%, are −0.30 for 1 quarter, −0.40 for

2 quarters, −0.47 for 3 quarters, and −0.53 for 4 quarters.

Since we have a lag length of four, −0.53 is also the total

multiplier. A summary of these values is presented in

Table 9.8. Knowledge of them is important for a government

that wishes to keep unemployment below a certain level by

influencing the growth rate. If we view γ in equation (9.57) as

the total effect of a change in output growth, then its estimate

is γ̂ = −
∑4

s=0
bs = 0.5276. An estimate of the normal growth

rate that is needed to maintain a constant unemployment rate

is ĜN = α̂∕γ̂ = 0.4100∕0.5276 = 0.78% per quarter.

T A B L E 9.8 Multipliers for Okun’s Law

Delay Multipliers Interim Multipliers

b0 −0.1310

b1 −0.1715
∑1

s=0
bs −0.3025

b2 −0.0940
∑2

s=0
bs −0.3965

b3 −0.0700
∑3

s=0
bs −0.4665

b4 −0.0611
∑4

s=0
bs −0.5276

Total multiplier
∑4

s=0
bs = −0.5276
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Assumptions for Finite Distributed Lag Model Before examining some compli-

cations that frequently arise with the finite distributed lag model, it is useful to summarize the

assumptions that are necessary for OLS estimates to have desirable large sample properties, and

the implications of violations of these assumptions. We can also look ahead to what remedies are

available to overcome particular violations of assumptions, and their requirements.

FDL1: The time series y and x are stationary and weakly dependent.

FDL2: The finite distributed lag model describing how y responds to current and past values

of x can be written as

yt = α + β0xt + β1xt−1 + β2xt−2 + · · · + βqxt−q + et (9.60)

FDL3: The error term is exogenous with respect to the current and all past values of x

E
(
et|xt, xt−1, xt−2,…

)
= 0

This assumption ensures

E
(
yt|xt, xt−1, xt−2,…

)
= E

(
yt|xt

)

where 𝐱t =
(
xt, xt−1, xt−2,… , xt−q

)
. In other words, all relevant lags of x are included

in the model. It also implies that there are no omitted variables that are correlated

with xt and also impact on yt. This implication raises questions about the Okun’s Law

example. There are likely to be excluded macro variables that are correlated with GDP

growth and that may also impact on the unemployment rate: wage growth, inflation,

and interest rates are all possibilities. In the interest of maintaining a relatively simple

example, we abstract from these relationships.

FDL4: The error term is not autocorrelated, cov
(
et, es|𝐱t, 𝐱s

)
= E

(
etes|𝐱t, 𝐱s

)
= 0 for t ≠ s.

FDL5: The error term is homoskedastic, var
(
et|xt

)
= E

(
e2

t |xt
)
= σ2.

Assumptions FDL4 and FDL5 are needed for OLS standard errors, hypothesis tests, and interval

estimates to be valid. Since having autocorrelated errors is highly likely, and heteroskedastcity

is a possibility, we need to ask how we would proceed when FDL4 and FDL5 are violated. In

Chapter 8 when we were faced with the problem of heteroskedastic errors, we considered two

possible solutions: (1) using heteroskedasticity consistent robust standard errors for the OLS esti-

mator with no assumptions about the form of the heteroskedasticity being made or (2) making

an assumption about the skedastic function and employing a more efficient generalized least
squares estimator whose standard errors will be valid if the assumption is true. Comparable solu-

tions exist for time series data when FDL4 and FDL5 are violated. It is possible to use the OLS

estimator and standard errors known as HAC (heteroskedasticity and autocorrelation consis-
tent) standard errors, or Newey–West standard errors. Or, we can make some assumption

about the nature of the autocorrelation and employ a more efficient generalized squares estima-

tor. In what follows we consider both options. Although the generalized least squares estimator

is more efficient, it comes with a cost. In addition to having to make an assumption about the

form of the autocorrelation, an exogeneity assumption that is stricter than FDL3 must be made,

whereas for OLS with HAC standard errors, FDL3 is sufficient.

9.5.2 HAC Standard Errors
To explain the nature of heteroskedasticity and autocorrelation consistent standard errors within

a simplified framework, we drop the lagged x’s from (9.60), and consider the simple regression

model

yt = α + β0xt + et
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From Appendix 8A, the least squares estimator for β0 can be written as

b0 = β0 +
∑T

t=1
wtet = β0 +

1

T
∑T

t=1

(
xt − x

)
et

1

T
∑T

t=1

(
xt − x

)2
= β0 +

1

T
∑T

t=1

(
xt − x

)
et

s2
x

(9.61)

where s2
x is the sample variance for x, using T as the divisor. When et was homoskedastic and

uncorrelated, we used this result to show that the variance of b0, conditional on all observations

X, is given by (see equation (2.15))

var
(
b0|X

)
=

σ2
e

∑T
t=1

(
xt − x

)2
=
σ2

e

Ts2
x

For a result that was not conditional on X, we obtained the large sample approximate variance for

b0 from the variance of its asymptotic distribution. This variance is given by var
(
b0

)
= σ2

e∕Tσ2
x

and uses the fact that s2
x is a consistent estimator for σ2

x . Other terminology is that σ2
x is the proba-

bility limit of s2
x , s2

x
p
−−→ σ2

x (see Section 5.7, and in particular the discussions following equations

(5.34) and (5.35)).

We are now interested in the unconditional variance of b0 when et is both heteroskedastic

and autocorrelated. This is a much harder problem. Following similar steps to those sketched out

in Section 5.7, we can replace s2
x in (9.61) by its probability limit σ2

x , and x by its probability limit

μx, and then write the large sample variance of b0 as

var
(
b0

)
= var

⎛
⎜
⎜
⎜
⎝

1

T
∑T

t=1

(
xt − μx

)
et

σ2
x

⎞
⎟
⎟
⎟
⎠

= 1

T2
(
σ2

x
)2

var

(
T∑

t=1

qt

)

= 1

T2
(
σ2

x
)2

[
T∑

t=1

var
(
qt
)
+ 2

T−1∑

t=1

T−t∑

s=1

cov
(
qt, qt+s

)
]

=

T∑

t=1

var
(
qt
)

T2
(
σ2

x
)2

⎡
⎢
⎢
⎢
⎢
⎣

1 +
2

T−1∑

t=1

T−t∑

s=1

cov
(
qt, qt+s

)

T∑

t=1

var
(
qt
)

⎤
⎥
⎥
⎥
⎥
⎦

(9.62)

where qt =
(
xt − μx

)
et. HAC standard errors are obtained by considering estimators for the

quantity outside the big brackets and the quantity inside the big brackets. For the quantity

outside the brackets, first note that qt has a zero mean. Then, using (T − K)−1∑T
t=1

q̂2

t =
(T − K)−1∑T

t=1

(
xt − x

)2ê2

t as an estimator for var
(
qt
)
, where êt is a least squares residual,

K = 2 because it is a simple regression, and s2
x as an estimator for σ2

x , an estimator for
∑T

t=1
var

(
qt
)/

T2
(
σ2

x
)2

is given by (see Exercise 9.6)

var
⋀

HCE

(
b0

)
=

T
∑T

t=1

(
xt − x

)2ê2

t

(T − K)
(∑T

t=1

(
xt − x

)2
)2

Go back and compare this equation with equation (8.9) in Chapter 8. The notation is a little

different and the equations are arranged in different ways, but otherwise, they are identical. The

quantity outside the brackets in the last line of (9.62) is the large sample unconditional variance

of b0 when there is heteroskedasticity but no autocorrelation. The square root of its estimator

var
⋀

HCE

(
b0

)
is the heteroskedasticity consistent, robust standard error. To get a variance estimator

for least squares that is consistent in the presence of both heteroskedasticity and autocorrelation,

we need to multiply var
⋀

HCE

(
b0

)
by an estimator of the quantity in brackets in (9.62). We will

denote this quantity as g.
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Several estimators for g have been suggested. To discuss the framework in which they are

developed, we simplify g as follows (see Exercise 9.6):

g = 1 +
2

T−1∑

t=1

T−t∑

s=1

cov
(
qt, qt+s

)

T∑

t=1

var
(
qt
)

= 1 +
2

T−1∑

s=1

(T − s)cov
(
qt, qt+s

)

Tvar
(
qt
)

= 1 + 2
T−1∑

s=1

(T − s
T

)

τs (9.63)

where τs = corr
(
qt, qt+s

)
= cov

(
qt, qt+s

)
∕var

(
qt
)
. When there is no serial correlation in the errors,

the qt will also not be autocorrelated, τs = 0 for all s, and g = 1.To obtain a consistent estimator

for g in the presence of autocorrelated errors, the summation in (9.63) is truncated at a lag much

smaller than T , the autocorrelations τs up to the truncation point are estimated, and the autocorre-

lations for lags beyond the truncation point are taken as zero. For example, if five autocorrelations

are used, the corresponding estimator is

ĝ = 1 + 2
5∑

s=1

(
6 − s

6

)

τ̂s

Alternative estimators differ depending on the number of lags for which the τs are estimated

and on whether the weights placed on these correlations at each lag are equal to, for example,

(6 − s)∕6, or some other alternative. Because there are a large number of possibilities, you will

discover that different software packages may yield different HAC standard errors; moreover,

different options are possible within a given software package. The message is: Don’t be disturbed

if you see slightly different HAC standard errors computed for the same problem. Given a suitable

estimator ĝ, the large sample estimator for the variance of b0, allowing for both heteroscedasticity

and autocorrelation in the errors, is

var
⋀

HAC

(
b0

)
= var
⋀

HCE

(
b0

)
× ĝ

This analysis extends to the finite distributed lag model with q lags and indeed to any time series

regression involving stationary variables. The HAC standard errors are given by the square roots

of the estimated HAC variances. In Exercise 9.20, you are invited to check whether the errors

in the FDL model for Okun’s Law in Example 9.13 are autocorrelated and whether using HAC

standard errors has an impact on inferences about the multipliers. In Example 9.14 that follows we

investigate the impact of serial correlation on the coefficient standard errors for a Phillips curve.

E X A M P L E 9.14 A Phillips Curve

The Phillips curve has a long history in macroeconomics as

a tool for describing the relationship between inflation and

unemployment.11 Our starting point is the model

INFt = INFE
t − γ

(
Ut − Ut−1

)
(9.64)

where INFt is the inflation rate in period t, INFE
t denotes

inflationary expectations for period t, DUt = Ut – Ut−1

denotes the change in the unemployment rate from period

t − 1 to period t, and γ is an unknown positive parameter.

It is hypothesized that falling levels of unemployment(
Ut – Ut−1 < 0

)
reflect excess demand for labor that drives

up wages which in turn drives up prices. Conversely, rising

levels of unemployment
(
Ut – Ut−1 > 0

)
reflect an excess

supply of labor that moderates wage and price increases.

The expected inflation rate is included because workers

will negotiate wage increases to cover increasing costs

from expected inflation, and these wage increases will be

transmitted into actual inflation. We assume that inflationary

............................................................................................................................................

11For a historical review of the development of different versions, see Gordon, R.J. (2008), “The History of the Phillips

Curve: An American Perspective”, http://nzae.org.nz/wp-content/uploads/2011/08/nr1217302437.pdf, Keynote Address

at the Australasian Meetings of the Econometric Society.
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expectations are constant over time and set α = INFE
t .

In addition, we set β0 = −γ, and add an error term, in

which case the Phillips curve can be written as the simple

regression model

INFt = α + β0DUt + et (9.65)

The data used for estimating (9.65) are quarterly Australian

data from 1987, Quarter 1 to 2016, Quarter 1, a total of 117

observations, stored in the data file phillips5_aus. Inflation

is calculated as the percentage change in the Consumer

Price Index, with an adjustment in the third quarter of 2000

when Australia introduced a national sales tax. The adjusted
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FIGURE 9.10 Time series for the Australian inflation rate: 1987Q1 to 2016Q1.
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FIGURE 9.11 Correlogram for least squares residuals from Phillips curve.

time series is graphed in Figure 9.10; the time series for the

change in the unemployment rate was previously graphed in

Figure 9.9(a). Tests for assessing whether these series are sta-

tionary are set as exercises in Chapter 12.

The correlogram of the residuals from least squares

estimation of (9.65) is presented in Figure 9.11; approximate

5% significance bounds for the autocorrelations are plot-

ted at ±2∕
√

117 = ±0.185. There is evidence of moderate

correlations at lags 1–5, and smaller ones at lags 6 and 8.

To examine the impact of the autocorrelated errors, in

Table 9.9, we report the least squares estimates, and conven-

tional (OLS), HCE and HAC standard errors, t-values, and
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T A B L E 9.9 A Comparison of Conventional (OLS), HCE, and HAC Standard Errors

Variable OLS estimate Standard error t-value One-tail p-value
OLS HCE HAC OLS HCE HAC OLS HCE HAC

C 0.7317 0.0561 0.0569 0.0915 13.05 12.86 7.99 0.0000 0.0000 0.0000

DU −0.3987 0.2061 0.2632 0.2878 –1.93 –1.51 –1.39 0.0277 0.0663 0.0844

p-values.12 The HAC standard errors that allow for auto-

correlation and heteroskedasticity are larger than the HCE

standard errors that allow only for heteroskedacticity, and

the HCE standard errors are larger than the conventional

OLS ones that allow for neither heteroskedasticity nor

autocorrelation. Thus, ignoring the autocorrelation and

heteroskedasticity overstates the reliability of the least

squares estimates. Overstating their reliability means that

interval estimates will be narrower than they should be

and we are more likely to reject a true null hypotheses.

Using t(0.975, 115) = 1.981, 95% interval estimates for β0

are (−0.8070, 0.0096) with conventional standard errors

and (−0.9688, 0.1714) with HAC standard errors. With

conventional standard errors, a one-tail test and a 5%

significance level, we reject H0∶β2 = 0. With HCE or HAC

standard errors, we do not reject H0.

9.5.3 Estimation with AR(1) Errors
Using least squares with HAC standard errors overcomes the negative consequences that auto-

correlated errors have for least squares standard errors. However, it does not address the issue of

finding an estimator that is better in the sense that it has a lower variance. One way to proceed

is to make an assumption about the model that generates the autocorrelated errors and to derive

an estimator compatible with this assumption. In this section, we examine how to estimate the

parameters of the regression model when one such assumption is made, that of AR(1) errors. To

keep the exposition free from excessive algebra, we again consider the simple regression model

yt = α + β0xt + et (9.66)

This model can be extended to include extra lags from an FDL model and other variables. The

AR(1) error model is given by

et = ρet−1 + vt |ρ| < 1 (9.67)

with the vt assumed to be uncorrelated random errors with zero mean and constant variances.

That is,

E
(
vt|xt, xt−1,…

)
= 0 var

(
vt|xt

)
= σ2

v cov
(
vt, vs|xt, xs

)
= 0 for t ≠ s

The assumption |ρ| < 1 is required for et and yt to be stationary. From the assumptions about the

vt, we can derive the mean, variance, and autocorrelations for et. Conditional on all x’s (current,

past, and future), it can be shown that et has zero mean, constant variance σ2
e = σ

2
v∕

(
1 − ρ2

)
,

and autocorrelations ρk = ρk. Thus, the population correlogram that describes the special

autocorrelation structure implied by an AR(1) model is ρ, ρ2
, ρ3

, . . . . Because −1 < ρ < 1,

the AR(1) autocorrelations decline geometrically as the lag increases, eventually becoming

negligible. Since there is only one lag of e in the equation et = ρet−1 + vt, you might be surprised

to find that autocorrelations at lags greater than one, although declining, are still nonzero.

............................................................................................................................................

12The HAC standard errors were computed by EViews using a Bartlett kernel, a Newey–West fixed bandwidth of 5, and

a degrees of freedom adjustment.



�

� �

�

9.5 Time-Series Regressions for Policy Analysis 453

The correlation persists because each et depends on all past values of the errors vt through the

equation (see Appendix 9B).13

et = vt + ρvt−1 + ρ2vt−2 + ρ3vt−3 + · · ·

Nonlinear Least Squares Estimation To estimate the AR(1) model described by

(9.67) and (9.68), we note, from equation (9.15) in Section 9.1.1, that these equations can be

combined and rewritten in the form

yt = α(1 − ρ) + ρyt−1 + β0xt − ρβ0xt−1 + vt (9.68)

If you are wondering how we get this equation, go back and check out Section 9.1.1. Why is (9.68)

useful for estimation? We have transformed the original model in (9.66) with the autocorrelated

error term et into a new model given by (9.68) that has an error term vt that is uncorrelated over

time. The advantage of doing so is that we can now proceed to find estimates for
(
α, β0, ρ

)
that

minimize the sum of squares of uncorrelated errors Sv =
∑T

t=2
v2

t . The least squares estimator

that minimizes the sum of squares of the correlated errors Se =
∑T

t=1
e2

t is not minimum variance

and its standard errors are not correct. However, minimizing the sum of squares of uncorrelated

errors, Sv, yields an estimator that, in large samples, is best and whose standard errors are correct.

Note that this result is in line with earlier practice in the book. The least squares estimator used

in Chapters 2 through 7 minimizes a sum of squares of uncorrelated errors.

There is, however, an important distinctive feature about the transformed model in (9.68).

Note that the coefficient of xt−1 is equal to –ρβ0, which is the negative product of ρ (the coefficient

of yt−1) and β0 (the coefficient of xt). This fact means that, although (9.68) is a linear function of

the variables xt, yt−1 and xt−1, it is not a linear function of the parameters
(
α, β0, ρ

)
. The usual

linear least squares formulas cannot be obtained using calculus to find the values of
(
α, β0, ρ

)

that minimize Sv. Nevertheless, we can still proceed using nonlinear least squares to obtain

estimates. Nonlinear least squares was introduced in Chapter 6.6. Instead of using formulas to

calculate estimates, it uses a numerical procedure to find the estimates that minimize the least

squares function.

Generalized Least Squares Estimation To introduce an alternative estimator for

(α, β0, ρ) in the AR(1) error model, we rewrite (9.68) as

yt − ρyt−1 = α(1 − ρ) + β0

(
xt − ρxt−1

)
+ vt (9.69)

Defining y∗t = yt − ρyt−1, α∗ = α(1 − ρ) and x∗t = xt − ρxt−1, (9.69) becomes

y∗t = α
∗ + β0x∗t + vt t = 2, 3,… ,T (9.70)

If ρ was known, values for the transformed variables y∗t and x∗t could be calculated, and least

squares applied to (9.70) to find estimates α̂∗ and β̂0. An estimate for the original intercept is

α̂ = α̂∗∕(1 − ρ). This procedure is analogous to that introduced in Section 8.4 where a model

with heteroskedastic errors was transformed to one with homoskedastic errors. In that case, the

least squares estimator applied to transformed variables y∗ and x∗ was known as a generalized

least squares estimator. Here, we have transformed a model with autocorrelated errors into one

with uncorrelated errors. The transformed variables y∗t and x∗t are different from those in the

heteroscedasticity error case, but, once again, least squares applied to the transformed variables

is known as generalized least squares.

Of course, ρ is not known and must be estimated. When the transformed variables are com-

puted using an estimate of ρ, say ρ̂, and least squares is applied to these transformed variables,

the resulting estimator for α and β0 is known as a feasible generalized least squares estimator.

There are direct parallels with this estimator and the feasible generalized least squares estimator

............................................................................................................................................

13See Appendix 9B for the derivations.
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introduced in Section 8.5. In Section 8.5, parameters in the skedastic function had to be estimated

to transform the variables. Here, the parameter in the autocorrelated error model, ρ, needs to be

estimated in order to transform the variables.

There are a number of possible estimators for ρ. A simple one is to use r1 from the sample

correlogram. Another one is the least-squares estimate of ρ in a regression of the OLS residuals

on their lags. The steps for obtaining the feasible generalized least squares estimator for α and β0

using this estimator for ρ are as follows:

1. Find least-squares estimates a and b0 from the equation yt = α + β0xt + et.

2. Compute the least squares residuals êt = yt − a − b0xt.

3. Estimate ρ by applying least squares to the equation êt = ρêt−1 + v̂t. Call this estimate ρ̂.

4. Compute values of the transformed variables y∗t = yt − ρ̂yt−1 and x∗t = xt − ρ̂xt−1.

5. Apply least squares to the transformed equation y∗t = α
∗ + β0x∗t + vt.

These steps can also be implemented in an iterative manner. If α̂ and β̂0 are the estimates obtained

in step 5, new residuals can be obtained from êt = yt − α̂ − β̂0xt, steps 3–5 can be repeated using

results from these new residuals, and the process can be continued until the estimates converge.

The resulting estimator is often called the Cochrane–Orcutt estimator.14

Assumptions and Properties Let’s pause and take stock of where we are in Section 9.5.

In the finite distributed lag model under assumptions FDL1-FDL5, the least squares estimator is

consistent, it is minimum variance in large samples, and the usual OLS t-, F-, and χ2-tests are

valid in large samples. However, time-series data are such that assumptions FDL4 (the errors

are not autocorrelated) and FDL5 (homoskedasticity), particularly FDL4, might not hold. When

FDL4 and FDL5 are violated, the least squares estimator is still consistent, but its usual variance

and covariance estimates and standard errors are not correct, leading to invalid t-, F-, and χ2-tests.

One solution to this problem is to use the HAC estimator for variances and covariances and the

corresponding HAC standard errors. The least squares estimator is no longer minimum variance

when FDL4 and/or FDL5 do not hold, but using HAC variance and covariance estimates means

that t-, F-, and χ2-tests will be valid. Although we examined the use of HAC standard errors in

the context of a simple regression model with no lags, they are equally applicable for a finite

distributed lag model that includes lags.

A second solution to violation of FDL4 is to assume a specific model for the autocorrelated

errors and to use an estimator that is minimum variance for that model. We showed how the

parameters of a simple regression model with AR(1) errors can be estimated by (1) nonlinear

least squares or (2) feasible generalized least squares. Under two extra conditions, both of these

techniques yield a consistent estimator that is minimum variance in large samples, with valid

t-, F-, and χ2-tests. The first extra condition that is needed to achieve these properties is that the

AR(1) error model is suitable for modeling the autocorrelated error. We can, however, guard

against a failure of this condition using HAC standard errors following nonlinear least squares or

feasible generalized least squares estimation. Doing so will ensure t-, F-, and χ2-tests are valid

despite the wrong choice for an autocorrelated error model. The second extra condition is a

stronger exogeneity assumption than that in FDL3. To explore this second requirement, consider

estimation of α, β0, and ρ from the nonlinear least squares equation

yt = α(1 − ρ) + ρyt−1 + β0xt − ρβ0xt−1 + vt

The exogeneity assumption comparable to FDL3 is

E
(
vt|xt, xt−1, xt−2,…

)
= 0

............................................................................................................................................

14A modification of this process that includes a transformation of the first observation is called the Prais–Winsten

estimator. See Exercise 9.7 for details.
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Noting that vt = et – ρet−1, this condition becomes

E
(
et − ρet−1|xt, xt−1, xt−2,…

)
= E

(
et|xt, xt−1, xt−2,…

)
− ρE

(
et−1|xt, xt−1, xt−2,…

)
= 0

Advancing the subscripts in the second term by one period, we can rewrite this condition as

E
(
et|xt, xt−1, xt−2,…

)
− ρE

(
et|xt+1, xt, xt−1,…

)
= 0

For this equation to be true for all possible values of ρ, we require E
(
et|xt, xt−1, xt−2,…

)
= 0 and

E
(
et|xt+1, xt, xt−1, · · ·

)
= 0. Now, from the law of iterated expectations, E

(
et|xt+1, xt, xt−1, · · ·

)
= 0

implies E
(
et|xt, xt−1, xt−2,…

)
= 0. Thus, the exogeneity requirement necessary for nonlinear least

squares to be consistent, and it is the same for feasible generalized least squares, is

E
(
et|xt+1, xt, xt−1,…

)
= 0 (9.71)

This requirement implies that et and xt+1 cannot be correlated. It rules out instances where xt+1

is set by a policymaker (such as a central banker setting an interest rate) in response to an error

shock in the previous period. Thus, while modeling the autocorrelated error may appear to be

a good strategy in terms of improving the efficiency of estimation, it could be at the expense

of consistency if the stronger exogeneity assumption is not met. Using least squares with HAC

standard errors does not require this stronger assumption.

Modeling of more general forms of autocorrelated errors with more than one lag requires et
to be uncorrelated with x values further than one period into the future. A stronger exogeneity

assumption that accommodates these more general cases and implies (9.71) is the strict exogeneity

assumption E
(
et|𝐗

)
= 0, where X includes all current, past and future values of the explanatory

variables. For general modeling of autocorrelated errors, we replace FDL3 with this assumption.

E X A M P L E 9.15 The Phillips Curve with AR(1) Errors

In this example, we obtain estimates of the Phillips curve

introduced in Example 9.14 under the assumption that its

errors can be modeled with an AR(1) process. The data

file is phillips5_aus. We can, at the outset, conjecture that

an AR(1) model might be inadequate. Returning to the

correlogram of the least squares residuals in Figure 9.11,

the first four sample autocorrelations are r1 = 0.489,

r2 = 0.358, r3 = 0.422, and r4 = 0.428. They do not decline

exponentially, nor approximately so. Values that start from

r1 = 0.489 and decline in line with the properties of an AR(1)

model are r2 = 0.4892 = 0.239, r3 = 0.4893 = 0.117, and

r4 = 0.4894 = 0.057. Nevertheless, we illustrate the AR(1)

error model with this example and later, in Exercise 9.21,

T A B L E 9.10 Phillips Curve Estimates from AR(1) Error Model

Parameter OLS NLS FGLS

Estimate
HAC Standard

Error Estimate
Standard

Error Estimate
Standard

Error
α 0.7317 0.0915 0.7028 0.0963 0.7029 0.0956

β0 −0.3987 0.2878 −0.3830 0.2105 −0.3830 0.2087

ρ 0.5001 0.0809 0.4997 0.0799

explore how we might improve it. Both the nonlinear

least squares (NLS) and feasible generalized least squares

(FGLS) estimates are reported in Table 9.10, along with

the least squares (OLS) estimates and HAC standard errors

reproduced from Table 9.9. The NLS and FGLS estimates

and their standard errors are almost identical, and the

estimates are also similar to those from OLS. The NLS and

FGLS standard errors for estimates of β0 are smaller than the

corresponding OLS HAC standard error, perhaps represent-

ing an efficiency gain from modeling the autocorrelation.

However, one must be cautious with interpretations like this

because standard errors are estimates of standard deviations,

not the unknown standard deviations themselves.
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9.5.4 Infinite Distributed Lags
The finite distributed lag model introduced in Section 9.5.1 assumed that the effect of changes in

an explanatory variable x on a dependent variable y cuts off after a finite number of lags q. One

way of avoiding the need to specify a value for q is to consider an IDL model where y depends

on lags of x that go back into the indefinite past, namely,

yt = α + β0xt + β1xt−1 + β2xt−2 + β3xt−3 + · · · + et (9.72)

We introduced this model in Section 9.1.1. For it to be feasible, the βs coefficients must eventually

(but not necessarily immediately) decline in magnitude, becoming negligible at long lags. They

have the same multiplier interpretations as in the finite distributed lag case. Specifically,

βs =
∂E

(
yt|xt, xt−1,…

)

∂xt−s
= s period delay multiplier

s∑

j=0

βj = s period interim multiplier

∞∑

j=0

βj = total multiplier

For the total multiplier, we assume the infinite sum converges to a finite value.

Geometrically Declining Lags An obvious disadvantage of the IDL model is its infinite

number of parameters. To estimate the lag coefficients in (9.72) with a finite sample of data, some

kind of restrictions need to be placed on those coefficients. In Section 9.1.1, we showed that

insisting the coefficients decline geometrically through the restrictions βs = λsβ0, for 0 < λ < 1,

led to the ARDL(1, 0) equation

yt = δ + θyt−1 + β0xt + vt (9.73)

where δ = α(1 − λ), θ = λ, and vt = et – λet−1. Go back and reread Section 9.1.1 to see how (9.73)

was derived. By imposing the restrictions, we have been able to reduce the infinite number of

parameters to just three. The delay multipliers can be calculated from the restrictions βs = λsβ0.

Using results on the sum of a geometric progression, the interim multipliers are given by

s∑

j=0

βj = β0 + β0λ + β0λ2 + · · · + β0λs =
β0

(
1 − λs+1

)

1 − λ

and the total multiplier is given by

∞∑

j=0

βj = β0 + β0λ + β0λ2 + · · · =
β0

1 − λ

Estimating (9.73) poses some difficulties. If we assume that the original errors et are not autocor-

related, then vt = et – λet−1 will be correlated with yt−1, which means E
(
vt|yt−1, xt

)
≠ 0; the least

squares estimator will be inconsistent. To see that vt and yt−1 are correlated, note that they both

depend on et−1. It is clear that vt = et − λet−1 depends on et−1. To see that yt−1 also depends on

et−1, we lag (9.72) by one period,

yt−1 = α + β0xt−1 + β1xt−2 + β2xt−3 + β3xt−4 + · · · + et−1

Assuming, as we have done in the past, that E
(
et|xt, xt−1, xt−2,…

)
= 0, meaning we cannot predict

et given current and past values of x, we have

E
(
vtyt−1|xt−1, xt−2,…

)
= E

[(
et − λet−1

)(
α + β0xt−1 + β1xt−2 + · · · + et−1

)
|
|xt−1, xt−2,…

]

= E
[(

et − λet−1

)
et−1|xt−1, xt−2,…

]
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= E
(
etet−1|xt−1, xt−2,…

)
− λE

(
e2

t−1
|xt−1, xt−2,…

)

= −λvar
(
et−1|xt−1, xt−2,…

)

where we have used E
(
etet−1|xt−1, xt−2,…

)
= 0 from the assumption that et and et−1 are condi-

tionally uncorrelated.

One possible consistent estimator for (9.73) is the instrumental variable estimator to be dis-

cussed in Chapter 10. It turns out that xt−1 is a suitable instrument for yt−1. You are encouraged

to think of this as an example when you get to Chapter 10.

There is one special case where least squares applied to (9.73) is a consistent estimator.

The inconsistency problem arises because the vt follow the autocorrelated MA(1) process

vt = et – λet−1 and yt−1 appears on the right side of the equation. The vt are no longer autocorre-

lated if the et follow the AR(1) process et = λet−1 + ut, with the same parameter λ, and with the

ut being uncorrelated. In this case, we have

vt = et − λet−1 = λet−1 + ut − λet−1 = ut

Since ut is not autocorrelated, it will not be correlated with yt−1, and so correlation between yt−1

and the error is no longer a source of inconsistency for least squares estimation. Clearly, there is

a need to check whether et = λet−1 + ut is a reasonable assumption. A test for this purpose has

been proposed by McClain and Wooldridge.15 Details follow.

Testing for Consistency in the ARDL Representation of an IDL Model
The development of this test starts from the assumption that the errors et in the IDL model fol-

low an AR(1) process et = ρet−1 + ut with parameter ρ that can be different from λ and tests the

hypothesis H0∶ρ = λ. Under the assumption that ρ and λ are different

vt = et − λet−1 = ρet−1 + ut − λet−1 = (ρ − λ) et−1 + ut

Then, equation (9.73) becomes

yt = δ + λyt−1 + β0xt +(ρ − λ) et−1 + ut (9.74)

The test is based on whether or not an estimate of the error et−1 adds explanatory power to the

regression.

The steps are as follows:

1. Compute the least squares residuals from (9.74) under the assumption that H0 holds

ût = yt −
(

δ̂ + λ̂yt−1 + β̂0xt

)

, t = 2, 3,… ,T

2. Using the least squares estimate λ̂ from step 1, and starting with ê1 = 0, compute recursively

êt = λ̂êt−1 + ût, t = 2, 3,… ,T .

3. Find the R2 from a least squares regression of ût on yt−1, xt and êt−1.

4. When H0 is true, and assuming that ut is homoskedastic, (T − 1) × R2 has a χ2
(1) distribution

in large samples.

Note that ût can be viewed as equal to yt after yt−1 and xt have been partialled out. Thus, if the

regression in step 3 has significant explanatory power, it will come from êt−1.

We have described this test in the context of a model with geometrically declining lag weights

that leads to an ARDL(1, 0) model with only one lag of y. It can also be performed for ARDL(p, q)

............................................................................................................................................

15McClain, K.T. and J.M. Wooldridge (1995), “A simple test for the consistency of dynamic linear regression in rational

distributed lag models,” Economics Letters, 48, 235–240.
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models where p > 1. In such instances, the null hypothesis is that the coefficients in an AR(p) error

model for et are equal to the ARDL coefficients on the lagged y’s, extra lags are included in the

test procedure, and the chi-square statistic has p degrees of freedom; it is equal to the number of

observations used to estimate the test equation multiplied by that equation’s R2.

E X A M P L E 9.16 A Consumption Function

Suppose that consumption expenditure C is a linear function

of “permanent” income Y*

Ct = ω + βY∗t

Permanent income is unobserved. We will assume that it con-

sists of a trend term and a geometrically weighted average of

observed current and past incomes, Yt, Yt−1,…

Y∗t = γ0 + γ1t + γ2

(
Yt + λYt−1 + λ2Yt−2 + λ3Yt−3 + · · ·

)

where t = 0, 1, 2,… is the trend term. In this model,

consumers anticipate that their income will trend, pre-

sumably upwards, adjusted by a weighted average of their

past incomes. For reasons that will become apparent in

Chapter 12, it is convenient to consider a differenced

version of the model where we relate the change in con-

sumption DCt = Ct – Ct−1 to the change in actual income

DYt = Yt – Yt−1. This version of the model can be written as

DCt = Ct − Ct−1 =
(
ω + βY∗t

)
−

(
ω + βY∗t−1

)
= β

(
Y∗t − Y∗t−1

)

= β
{

γ0 + γ1t + γ2

(
Yt + λYt−1 + λ2Yt−2 + λ3Yt−3 + · · ·

)

−
[

γ0 + γ1(t − 1) + γ2

(
Yt−1 + λYt−2 + λ2Yt−3

+ λ3Yt−4 + · · ·
)]}

= βγ1 + βγ2

(
DYt + λDYt−1 + λ2DYt−2 + λ3DYt−3 + · · ·

)

Setting α = βγ1 and β0 = βγ2 and adding an error term, this

equation, in more familiar notation, becomes

DCt=α + β0

(
DYt + λDYt−1 + λ2DYt−2 + λ3DYt−3 +· · ·

)
+ et

(9.75)

Its ARDL(1, 0) representation is

DCt = δ + λDCt−1 + β0DYt + vt (9.76)

To estimate this model, we use quarterly data on Australian

consumption expenditure and national disposable income

from 1959Q3 to 2016Q3, stored in the data file cons_inc.

Estimating (9.76) yields

DC
⋀

t = 478.6 + 0.3369DCt−1 + 0.0991DYt

(se) (74.2) (0.0599) (0.0215)

The delay multipliers from this model are 0.0991, 0.0334,

0.0112, …. The total multiplier is 0.0991∕(1 − 0.3369) =
0.149. At first, these values may seem low for what could be

interpreted as a marginal propensity to consume. However,

because a trend term is included in the model, we are

measuring departures from that trend. The LM test for

serial correlation in the errors described in Section 9.4.2

was conducted for lags 1, 2, 3, and 4; in each case, a null

hypothesis of no serial correlation was not rejected at a 5%

significance level. To see if this lack of serial correlation

in the errors could be attributable to an AR(1) model with

parameter λ for the errors in (9.75), the steps for the test in the

previous subsection were followed, yielding a test value of

χ2 = (T − 1) × R2 = 227 × 0.00025 = 0.057. Given the 5%

significance level for a χ2
(1)-distribution is 3.84, we fail to

reject the null hypothesis that the errors in the IDL repre-

sentation can be described by the process et = λet−1 + vt.

Put another way, there is no evidence to suggest that the

existence of an MA(1) error of the form vt = et – λet – 1 is a

source of inconsistency in the estimation of (9.76).

Deriving Multipliers from an ARDL Representation The geometrically declining

lag model is a convenient one if we believe the lag weights do in fact satisfy, or approximately

satisfy, the restrictions βs = λsβ0. However, there are many other lag patterns that may be realistic.

The largest impact of a change in an explanatory variable may not be felt immediately; the lag

weights may increase at first and then decline. How do we decide what might be reasonable

restrictions to impose? Instead of beginning with the IDL representation and choosing restrictions

a priori, an alternative strategy is to begin with an ARDL representation whose lags have been

chosen using conventional model selection criteria and to derive the restrictions on the IDL model

implied by the chosen ARDL model. Specifically, we first estimate the finite number of θ’s and

δ’s from an ARDL model

yt = δ + θ1yt−1 + · · · + θpyt−p + δ0xt + δ1xt−1 + · · · + δqxt−q + vt (9.77)
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For these estimates to be compatible with the infinite number of β’s in the IDL model

yt = α + β0xt + β1xt−1 + β2xt−2 + β3xt−3 + · · · + et (9.78)

restrictions have to be placed on the β’s. The strategy is to find expressions for the β’s in terms

of the θ’s and δ’s such that equations (9.77) and (9.78) are equivalent. One way to do so is to use

recursive substitution, substituting out the lagged dependent variables on the right-hand side of

(9.77), and going back indefinitely. This process becomes messy very quickly, however, partic-

ularly when there are several lags. Our task for the general case is made much easier if we can

master some heavy machinery known as the lag operator.

The lag operator L has the effect of lagging a variable,

Lyt = yt−1

For lagging a variable twice, we have

L
(
Lyt

)
= Lyt−1 = yt−2

which we write as L2yt = yt−2. More generally, L raised to the power of s means lag a variable s
times

Lsyt = yt−s

Now we are in a position to write the ARDL model in terms of lag operator notation.

Equation (9.77) becomes

yt = δ + θ1Lyt + θ2L2yt + · · · + θpLpyt + δ0xt + δ1Lxt + δ2L2xt + · · · + δqLqxt + vt (9.79)

Bringing the terms that contain yt to the left side of the equation and factoring out yt and xt yields

(
1 − θ1L − θ2L2 − · · · − θpLp)yt = δ +

(
δ0 + δ1L + δ2L2 + · · · + δqLq)xt + vt (9.80)

This algebra is starting to get heavy. It will be easier if we continue in terms of a specific example.

E X A M P L E 9.17 Deriving Multipliers for an Infinite Lag Okun’s Law Model

In Example 9.13, using data from the file okun5_aus, we esti-

mated a finite distributed lag model for Okun’s Law, with the

change in unemployment DUt related to the current value

and four lags of GDP growth, Gt,Gt−1,… ,Gt−4. Suppose,

instead, that we wanted to entertain an IDL with values for G
going back into the indefinite past. The estimates in Table 9.7

suggest a geometrically declining lag would be inappropriate.

The estimated coefficient for Gt−1 is larger (in absolute value)

than that for Gt and then the coefficients decline. To decide

on what might be a suitable lag distribution, we begin by esti-

mating an ARDL model. After experimenting with different

values for p and q, taking into consideration significance of

the coefficient estimates and the possibility of serial correla-

tion in the errors, we settled on the ARDL(2, 1) model

DUt = δ + θ1DUt−1 + θ2DUt−2 + δ0Gt + δ1Gt−1 + vt
(9.81)

Using the lag operator notation in (9.80), this equation can be

written as

(
1 − θ1L − θ2L2

)
DUt = δ +

(
δ0 + δ1L

)
Gt + vt (9.82)

Now suppose that it is possible to define an inverse of
(
1 − θ1L − θ2L2

)
, that we write as

(
1 − θ1L − θ2L2

)−1
,

which is such that
(
1 − θ1L − θ2L2

)−1(
1 − θ1L − θ2L2

)
= 1

This concept is a bit abstract, but we do not have to figure

the inverse out. Using it will seem like magic the first time

that you encounter it. Stick with us. We have nearly reached

the essential result. Multiplying both sides of (9.82) by
(
1 − θ1L − θ2L2

)−1
yields

DUt =
(
1 − θ1L − θ2L2

)−1δ

+
(
1 − θ1L − θ2L2

)−1 ×
(
δ0 + δ1L

)
Gt

+
(
1 − θ1L − θ2L2

)−1vt (9.83)

This representation is useful because we can equate it with

the IDL representation

DUt = α + β0Gt + β1Gt−1 + β2Gt−2 + β3Gt−3 + · · · + et

= α +
(
β0 + β1L + β2L2 + β3L3 + · · ·

)
Gt + et (9.84)
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For (9.83) and (9.84) to be identical, it must be true that

α =
(
1 − θ1L − θ2L2

)−1δ (9.85)

β0 + β1L + β2L2 + β3L3 + · · ·

=
(
1 − θ1L − θ2L2

)−1(δ0+ δ1L
)

(9.86)

et =
(
1 − θ1L − θ2L2

)−1vt (9.87)

Equation (9.85) can be used to derive α in terms of θ1, θ2, and

δ, and equation (9.86) can be used to derive the β’s in terms of

the θ’s and δ’s. To see how, first multiply both sides of (9.85)

by
(
1 − θ1L − θ2L2

)
to obtain

(
1 − θ1L − θ2L2

)
α = δ. Then,

recognizing that the lag of a constant is the same constant

(Lα = α), we have

(
1 − θ1 − θ2

)
α = δ and α = δ

1 − θ1 − θ2

Turning now to the β’s, we multiply both sides of (9.86) by(
1 − θ1L − θ2L2

)
to obtain

δ0 + δ1L =
(
1 − θ1L − θ2L2

)(
β0 + β1L + β2L2 + β3L3 + · · ·

)

= β0 + β1L + β2L2 + β3L3 + · · ·

−θ1β0L − θ1β1L2 − θ1β2L3 − · · ·

− θ2β0L2 − θ2β1L3 − · · ·

= β0 +
(
β1 − θ1β0

)
L +

(
β2 − θ1β1 − θ2β0

)
L2

+
(
β3 − θ1β2 − θ2β1

)
L3 + · · · (9.88)

Notice how we can do algebra with the lag operator. We have

used the fact that LrLs = Lr+s.

Equation (9.88) holds the key to deriving the β’s in

terms of the θ’s and the δ’s. For both sides of this equation to

mean the same thing (to imply the same lags), coefficients of

like powers in the lag operator must be equal. To make what

follows more transparent, we rewrite (9.88) as

δ0 + δ1L + 0L2 + 0L3

= β0 +
(
β1 − θ1β0

)
L +

(
β2 − θ1β1 − θ2β0

)
L2

+
(
β3 − θ1β2 − θ2β1

)
L3 + · · · (9.89)

Equating coefficients of like powers in L yields

δ0 = β0

δ1 = β1 − θ1β0

0 = β2 − θ1β1 − θ2β0

0 = β3 − θ1β2 − θ2β1

and so on. Thus, the β’s can be found from the θ’s and the δ’s

using the recursive equations

β0 = δ0

β1 = δ1 + θ1β0

βj = θ1βj−1 + θ2βj−2 for j ≥ 2 (9.90)

You are probably asking: Do I have to go through all this each time I want to derive some multi-

pliers for an ARDL model? The answer is no. You can start from the equivalent of equation (9.88)

which, in its general form, is

δ0 + δ1L + δ2L2 + · · · + δqLq =
(
1 − θ1L − θ2L2 − · · · − θpLp)

×
(
β0 + β1L + β2L2 + β3L3 + · · ·

)
(9.91)

Given the values p and q for your ARDL model, you need to multiply out the above expression,

and then equate coefficients of like powers in the lag operator.

E X A M P L E 9.18 Computing the Multiplier Estimates for the Infinite Lag Okun’s
Law Model

Using the data file okun5_aus, the estimated ARDL(2,1)

model for Okun’s Law is

DUt

⋀

= 0.1708 + 0.2639DUt−1 + 0.2072DUt−2

(se) (0.0328) (0.0767) (0.0720)
− 0.0904Gt − 0.1296Gt−1

(0.0244) (0.0252) (9.92)

Using the relationships in (9.90), the impact multiplier and

the delay multipliers for the first 4 quarters are given by16

β̂0 = δ̂0 = −0.0904

β̂1 = δ̂1 + θ̂1β̂0 = −0.129647 − 0.263947 × 0.090400

= −0.1535

β̂2 = θ̂1β̂1 + θ̂2β̂0 = −0.263947 × 0.153508

− 0.207237 × 0.090400 = −0.0593

............................................................................................................................................

16In the calculations, we carry the values to six decimal places to minimize rounding error.
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β̂3 = θ̂1β̂2 + θ̂2β̂1 = −0.263947 × 0.059252

− 0.207237 × 0.153508 = −0.0475

β̂4 = θ̂1β̂3 + θ̂2β̂2 = −0.263947 × 0.047452

− 0.207237 × 0.059252 = −0.0248

An increase in GDP growth leads to a fall in unem-

ployment. The effect increases from the current quarter to

the next quarter, declines dramatically after that and then

gradually declines to zero. This property—that the weights

at long lags go to zero—is an essential one for the above

analysis to be valid. The weights are displayed in Figure 9.12

for lags up to 10 quarters.

To estimate the total multiplier that is given by
∑∞

j=0
βj,

we can sum the progressions implied by (9.90), but an eas-

ier way is to assume the process is in long-run equilibrium

with no changes in DU and G, and to examine the effect of

a change in G on the long-run equilibrium. Being in log-run
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FIGURE 9.12 Lag distribution from Okun’s Law ARDL(2, 1) model.

equilibrium means we can ignore the time subscript and the

error term in (9.92), giving

DU = 0.1708 + 0.2639DU + 0.2072DU − 0.0904G
− 0.1296G

or

DU = 0.1708 − (0.0904 + 0.1296)G
1 − 0.2639 − 0.2072

= 0.3229 − 0.4160G

The total multiplier is given by d(DU)∕dG = −0.416.

The sum of the lag coefficients in Figure 9.12 is
∑10

s=0
β̂s = −0.414; most of the impact of a change in G is felt

in the first 10 quarters. An estimate of the normal growth rate

that is needed to maintain a constant rate of unemployment

is ĜN = −α̂
/∑∞

j=0
β̂j = 0.3229∕0.416 = 0.78%. The total

multiplier estimate from the finite distributed lag model was

higher in absolute value at −0.528, but the estimate of the

normal growth rate was the same at 0.78%.

The Error Term In Example 9.18, we used least squares to estimate the ARDL model and

conveniently ignored the error term. The question we need to ask is whether the error term will

be such that the least squares estimator is consistent. In equation (8.47), we found that

et =
(
1 − θ1L − θ2L2

)−1vt

Multiplying both sides of this equation by
(
1 − θ1L − θ

2
L2

)
gives

(
1 − θ1L − θ2L2

)
et = vt

et − θ1et−1 − θ2et−2 = vt

et = θ1et−1 + θ2et−2 + vt
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In the general ARDL(p, q) model, this equation becomes

et = θ1et−1 + θ2et−2 + · · · + θpet−p + vt (9.93)

For vt to be uncorrelated, which is required for least squares estimation of the ARDL model to

be consistent, the errors et must satisfy (9.93). That is, they must follow an AR(p) process with

the same coefficients as in the AR component of the ARDL model. The test for consistency of

least squares described earlier in the context of the geometric lag model can be extended to the

general case.

E X A M P L E 9.19 Testing for Consistency of Least Squares Estimation
of Okun’s Law

The starting point for this test is the assumption that the errors

et in the IDL representation follow an AR(2) process

et = ψ1et−1 + ψ2et−2 + vt

with the vt being uncorrelated. Then, given the ARDL

representation

DUt = δ + θ1DUt−1 + θ2DUt−2 + δ0Gt + δ1Gt−1 + vt
(9.94)

the null hypothesis is H0∶ψ1 = θ1, ψ2 = θ2. To find the

test statistic, we compute êt = θ̂1êt−1 + θ̂2êt−2 + ût where

the ût are the residuals from the estimated equation in

(9.92). Then, regressing ût on a constant, DUt−1, DUt−2,

Gt, Gt−1, êt−1, and êt−2 yields R2 = 0.02089 and a test value

χ2 = (T – 3) × R2 = 150 × 0.02089 = 3.13. The 5% critical

value is χ2
(0.95, 2) = 5.99 implying we fail to reject H0 at

a 5% significance level. There is not sufficient evidence

to conclude that serially correlated errors are a source of

inconsistency in least squares estimation of (9.94).

Assumptions for the Infinite Distributed Lag Model Several assumptions

underlie least squares estimation of the consumption function and Okun’s Law examples. Here

we summarize those assumptions and discuss implications of variations of them.

IDL1: The time series y and x are stationary and weakly dependent.

IDL2: The infinite distributed lag model describing how y responds to current and past values

of x can be written as

yt = α + β0xt + β1xt−1 + β2xt−2 + · · · + et (9.95)

with βs → 0 as s →∞.

IDL3: Corresponding to (9.95) is an ARDL(p, q) model

yt = δ + θ1yt−1 + · · · + θpyt−p + δ0xt + δ1xt−1 + · · · + δqxt−q + vt (9.96)

where vt = et – θ1et−1 − θ2et−2 − · · · − θpet−p.

IDL4: The errors et are strictly exogenous,

E
(
et|X

)
= 0

where X includes all current, past, and future values of x.

IDL5: The errors et follow the AR(p) process

et = θ1et−1 + θ2et−2 + · · · + θpet−p + ut

where

i. ut is exogenous with respect to current and past values of x and past values of y,

E
(
ut|xt, xt−1, yt−1, xt−2, yt−2,…

)
= 0

ii. ut is homoskedastic, var
(
ut|xt

)
= σ2

u
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Under assumptions IDL2 and IDL3, expressions for the lag weights βs in terms of the parame-

ters θ’s and δ’s can be found by equating coefficients of like powers of the lag operator in the

product

δ0 + δ1L + δ2L2 + · · · + δqLq =
(
1 − θ1L − θ2L2 − · · · − θpLp)

×
(
β0 + β1L + β2L2 + β3L3 + · · ·

)
(9.97)

The assumption IDL5 is a very special case of an autocorrelated error model for (9.95) and for

that reason we described a test of its validity. It is required for least squares estimation of (9.96)

to be consistent. Because the exogeneity assumption IDL5(i) includes all past values of y, it is

sufficient to ensure vt will not be autocorrelated; IDL5(ii) is needed for OLS standard errors to

be valid. If IDL5 holds and least squares estimates of (9.96) are used to find estimates of the β’s

through equation (9.97), strict exogeneity for et (IDL4) is required for the β’s to have a causal

interpretation. This requirement is similar to that for nonlinear least squares and generalized least

squares estimation of the autocorrelated error model.

An alternative assumption to IDL5 is

IDL5*: The errors et are uncorrelated, cov
(
et, es|xt, xs

)
= 0 for t ≠ s and homoskedastic,

var
(
et|xt

)
= σ2

e .

In this case, the errors vt = et – θ1et−1 − θ2et−2 − · · · − θpet−p follow an MA(p) process, and

least squares estimation of (9.96) is inconsistent. The instrumental variables approach studied

in Chapter 10 can be used as an alternative.

Finally, we note that both an FDL model with autocorrelated errors and an IDL model can

be transformed to ARDL models. Thus, an issue that arises after estimating an ARDL model is

whether to interpret it as an FDL model with autocorrelated errors or an IDL model. An attractive

way out of this dilemma is to assume an FDL model and use HAC standard errors. In many cases,

an IDL model will be well approximated by an FDL, and using HAC standard errors avoids having

to make the restrictive strict exogeneity assumption.

9.6 Exercises

9.6.1 Problems

9.1 a. Show that the mean-squared forecast error E
[(

ŷT+1 − yT+1

)2|
|
|
IT

]

for a forecast ŷT+1, that depends

only on past information IT, can be written as

E
[(

ŷT+1 − yT+1

)2|
|
|
IT

]

= E
[{(

ŷT+1 − E
(
yT+1

|
|IT

))

−
(

yT+1 − E
(
yT+1

|
|IT

))}2|
|
|
|
IT

]

b. Show that E
[(

ŷT+1 − yT+1

)2|
|
|
IT

]

is minimized by choosing ŷT+1 = E
(
yT+1|IT

)
.

9.2 Consider the AR(1) model yt = δ + θyt−1 + et where |θ| < 1,E
(
et|It−1

)
= 0 and var

(
et|It−1

)
= σ2. Let

y−1 =
∑T

t=2
yt∕(T − 1) (the average of the observations on y with the first one missing) and y−T =∑T

t=2
yt−1∕(T − 1) (the average of the observations on y with the last one missing).

a. Show that the least squares estimator for θ can be written as

θ̂ = θ +
∑T

t=2
et
(
yt−1 − y−T

)

∑T
t=2

(
yt−1 − y−T

)2

b. Explain why θ̂ is a biased estimator for θ.

c. Explain why θ̂ is a consistent estimator for θ.
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9.3 Consider a stationary model that combines the AR(2) model yt = δ + θ1yt−1 + θ2yt−2 + et with an

AR(1) error model et = ρet−1 + vt where E
(
vt|It−1

)
= 0. Show that

E
(
yt|It−1

)
= δ(1 − ρ) +

(
θ1 + ρ

)
yt−1 +

(
θ2 − θ1ρ

)
yt−2 − θ2ρyt−3

Why will the assumption E
(
yt|It−1

)
= δ + θ1yt−1 + θ2yt−2 be violated if the errors are

autocorrelated?

9.4 Consider the ARDL(2, 1) model

yt = δ + θ1yt−1 + θ2yt−2 + δ1xt−1 + et

with auxiliary AR(1) model xt = α + ϕxt−1 + vt, where It =
{

yt, yt−1,… , xt, xt−1,…
}

, E
(
et|It−1

)
= 0,

E
(
vt|It−1

)
= 0, var

(
et|It−1

)
= σ2

e , var
(
vt|It−1

)
= σ2

v , and vt and et are independent. Assume that sample

observations are available for t = 1, 2,… , T.

a. Show that the best forecasts for periods T + 1, T + 2 and T + 3 are given by

ŷT+1 = δ + θ1yT + θ2yT−1 + δ1xT

ŷT+2 = δ + δ1α + θ1ŷT+1 + θ2yT + δ1ϕxT

ŷT+3 = δ + δ1α + δ1ϕα + θ1ŷT+2 + θ2ŷT+1 + δ1ϕ2xT

b. Show that the variances of the forecast errors are given by

σ2
𝑓1
= E

((
yT+1 − ŷT+1

)2|
|
|
IT

)

= σ2
e

σ2
𝑓2
= E

((
yT+2 − ŷT+2

)2|
|
|
IT

)

=
(
1 + θ2

1

)
σ2

e + δ
2
1
σ2

v

σ2
𝑓3
= E

((
yT+3 − ŷT+3

)2|
|
|
IT

)

=
((
θ2

1
+ θ2

)2 + θ2
1
+ 1

)

σ2
e + δ

2
1

((
θ1 + ϕ

)2 + 1
)

σ2
v

9.5 Let et denote the error term in a time series regression. We wish to compare the autocorrelations from

an AR(1) error model et = ρet−1 + vt with those from an MA(1) error model et = ϕvt−1 + vt. In both

cases, we assume that E
(
vtvt−s

)
= 0 for s ≠ 0 and E

(
v2

t

)
= σ2

v . Let ρs = E
(
etet−s

)
∕var

(
et
)

be the s-th

order autocorrelation for et. Show that,

a. for an AR(1) error model, ρ1 = ρ, ρ2 = ρ2
, ρ3 = ρ3

,…
b. for an MA(1) error model, ρ1 = ϕ∕

(
1 + ϕ2

)
, ρ2 = 0, ρ3 = 0,…

Describe in words the difference between the two autocorrelation structures.

9.6 This question is designed to clarify some of the results used to explain HAC standard errors.

a. Given that var
⋀(

q̂t
)
=(T − 2)−1∑T

t=1

(
xt − x

)2ê2

t and s2
x = T−1

∑T
t=1

(
xt − x

)2
, show that

T∑

t=1

var
⋀(

q̂t
)

T2
(
s2

x

)2
=

T
∑T

t=1

(
xt − x

)2ê2

t

(T − 2)
(∑T

t=1

(
xt − x

)2
)2

b. For T = 4, write out all the terms in the summations

(i)
T−1∑

t=1

T−t∑

s=1

cov
(
qt, qt+s

)
and (ii)

T−1∑

s=1

(T − s) cov
(
qt, qt+s

)

What assumption is necessary for these two summations to be equal?

c. For the simple regression model yt = α + β0xt + et with E
(
et|xt

)
= 0 show that

cov
(
et, es|xt, xs

)
= 0 for t ≠ s implies cov

(
qt, qs

)
= 0 where qt =

(
xt – μx

)
et.

9.7 In Section 9.5.3, we described how a generalized least squares (GLS) estimator for α and β0 in the

regression model yt = α + β0xt + et, with AR(1) errors et = ρet−1 + vt and known ρ, can be computed

by applying OLS to the transformed model y∗t = α
∗ + β0x∗t + vt where y∗t = yt − ρyt−1, α* = α(1 − ρ)

and x∗t = xt − ρxt−1. In large samples, the GLS estimator is minimum variance because the vt are

homoskedastic and not autocorrelated. However, x∗t and y∗t can only be found for t = 2, 3,… , T. One

observation is lost through the transformation. To ensure the GLS estimator is minimum variance in

small samples, a transformed observation for t = 1 has to be included. Let e∗
1
=

√
1 − ρ2e1.

a. Using results in Appendix 9B, show that var
(
e∗

1

)
= σ2

v and that e∗
1

is uncorrelated with vt,

t = 2, 3,… , T.
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b. Explain why the result in (a) implies OLS applied to the following transformed model will yield

a minimum variance estimator

y∗t = αjt + β0x∗t + e∗t

where y∗t = yt − ρyt−1, jt = 1 − ρ, x∗t = xt − ρxt−1, and e∗t = et − ρet−1 = vt for t = 2, 3,… , T, and,

for t = 1, y∗
1
=

√
1 − ρ2y1, j1 =

√
1 − ρ2, and x∗

1
=

√
1 − ρ2x1. This estimator, particularly when

it is used iteratively with an estimate of ρ, is often known as the Prais–Winsten estimator.

9.8 Consider the following distributed lag model relating the percentage growth in private investment

(INVGWTH) to the federal funds rate of interest (FFRATE).

INVGWTHt = 4 − 0.4FFRATEt − 0.6FFRATEt−1 − 0.3FFRATEt−2 − 0.2FFRATEt−3

a. Suppose FFRATE = 1% for t = 1, 2, 3, 4. Use the abovementioned equation to forecast INVGWTH
for t = 4.

b. Suppose that FFRATE is raised by one percentage point to 2% in period t = 5 and then returned

to its original level of 1% for t = 6, 7, 8, 9. Use the equation to forecast INVGWTH for periods

t = 5, 6, 7, 8, 9. Relate the changes in your forecasts to the values of the coefficients. What are the

delay multipliers?

c. Suppose that FFRATE is raised to 2% for periods t = 5, 6, 7, 8, 9. Use the equation to forecast

INVGWTH for periods t = 5, 6, 7, 8, 9. Relate the changes in your forecasts to the values of the

coefficients. What are the interim multipliers? What is the total multiplier?

9.9 Using 157 weekly observations on sales revenue (SALES) and advertising expenditure (ADV) in mil-

lions of dollars for a large department store, the following relationship was estimated

SALES
⋀

t = 18.74 + 1.006ADVt + 3.926ADVt−1 + 2.372ADVt−2

a. How many degrees of freedom are there for this estimated model? (Take into account the obser-

vations lost through lagged variables.)

b. Describe the relationship between sales and advertising expenditure. Include an explanation of the

lagged relationship. When does advertising have its greatest impact? What is the total effect of a

sustained $1 million increase in advertising expenditure?

c. The estimated covariance matrix of the coefficients is

C ADVt ADVt−1 ADVt−2

C 0.2927 −0.1545 −0.0511 −0.0999

ADVt −0.1545 0.4818 −0.3372 0.0201

ADVt−1 −0.0511 −0.3372 0.7176 −0.3269

ADVt−2 −0.0999 0.0201 −0.3269 0.4713

Using a two-tail test and a 5% significance level, which lag coefficients are significantly different

from zero? Do your conclusions change if you use a one-tail test? Do they change if you use a 10%

significance level?

d. Find 95% confidence intervals for the impact multiplier, the one-period interim multiplier, and the

total multiplier.

9.10 Consider the following time series sample of size T = 10 on a random variable yt whose sample mean

is y = 0.

t 1 2 3 4 5 6 7 8 9 10

yt 1 4 8 5 4 −3 0 −5 −9 −5

a. Use a hand calculator or spreadsheet to compute the sample autocorrelations

r1 =
∑T

t=2
ytyt−1

∑T
t=1

y2
t

r2 =
∑T

t=3
ytyt−2

∑T
t=1

y2
t

r3 =
∑T

t=4
ytyt−3

∑T
t=1

y2
t
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b. Using a 5% significance level, separately test whether r1, r2, and r3 are significantly different from

zero. Sketch the first three bars of the correlogram. Include the significance bounds.

9.11 Using 250 quarterly observations on U.S. GDP growth (G) from 1947Q2 to 2009Q3, we calculate the

following quantities.

250∑

t=1

(

Gt − G
)2

= 333.8558
250∑

t=2

(

Gt − G
)(

Gt−1 − G
)

= 162.9753

250∑

t=3

(

Gt − G
)(

Gt−2 − G
)

= 112.4882
250∑

t=4

(

Gt − G
)(

Gt−3 − G
)

= 30.5802

a. Compute the first three autocorrelations
(
r1 , r2, and r3

)
for G. Test whether each one is signifi-

cantly different from zero at a 5% significance level. Sketch the first three bars of the correlogram.

Include the significance bounds.

b. Given that
250∑

t=2

(

Gt−1 − G−1

)2

= 333.1119 and
250∑

t=2

(

Gt − G1

)(

Gt−1 − G−1

)

= 162.974, where G1 =
∑250

t=2
Gt∕249 = 1.662249 and G−1 =

∑250

t=2
Gt−1∕249 = 1.664257, find least squares estimates of δ

and θ1 in the AR(1) model Gt = δ + θ1Gt−1 + et. Explain the difference between the estimate θ̂1

and the estimate r1 obtained in part (a).

9.12 Increases in the mortgage interest rate increase the cost of owning a house and lower the demand

for houses. In this question, we use three equations to forecast the monthly change in the number

of new one-family houses sold in the United States. In the first equation (XR 9.12.1), the monthly

change in the number of houses DHOMES is regressed against two lags of the monthly change in

the 30-year conventional mortgage rate DIRATE. In the second equation (XR 9.12.2), DHOMES is

regressed against two lags of itself, and in the third equation (XR 9.12.3), two lags of both DHOMES
and DIRATE are included as regressors.

DHOMESt = δ + δ1DIRATEt−1 + δ2DIRATEt−2 + e1,t (XR 9.12.1)

DHOMESt = δ + θ1DHOMESt−1 + θ2DHOMESt−2 + e2,t (XR 9.12.2)

DHOMESt = δ + θ1DHOMESt−1 + θ2DHOMESt−2 + δ1DIRATEt−1 + δ2DIRATEt−2 + e3,t
(XR 9.12.3)

The data used are from January, 1992 (1992M1) to September, 2016 (2016M9). The units of measure-

ment are thousands of new houses for DHOMES and percentage points for DIRATE. After differencing

and allowing for two lags, three observations are lost, resulting in a total of 294 observations that were

used to produce the least squares estimates in Table 9.11.

T A B L E 9.11 Coefficient Estimates for Equations for Forecasting New Houses

XR 9.12.1 XR 9.12.2 XR 9.12.3

Dependent variable DHOMESt ê1, t DHOMESt ê2, t DHOMESt ê3, t

C −0.92 −0.03 0.05 0.05 –1.39 0.65

DHOMESt−1 −0.32 0.04 −0.37 0.53

DHOMESt−2 −0.10 0.16 −0.11 0.14

DIRATEt−1 −46.1 −0.31 −45.6 −0.003

DIRATEt−2 −13.2 −1.17 −35.3 30.8

ê1,t−1 −0.39 −0.05 −0.54

ê1,t−2 −0.14 −0.17 0.03

SSE 634312 550482 599720 597568 555967 550770

a. Given DHOMES2016M8 = −54, DHOMES2016M9 = 18, DIRATE2016M8 = 0.00, DIRATE2016M9 =
0.02, and DIRATE2016M10 = −0.01, use each of the three estimated equations to find 95% forecast

intervals for DHOMES2016M10 and DHOMES2016M11. Comment on the results.

b. Using a 5% significance level, test for autocorrelated errors in each of the equations.

c. Using a 5% significance level, test whether DIRATE Granger causes DHOMES.
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9.13 Consider the infinite lag representation yt = α +
∑∞

s=0
βsxt−s + et for the ARDL model

yt = δ + θ1yt−1 + θ3yt−3 + δ1xt−1 + vt

a. Show that α = δ∕
(
1 − θ1 − θ3

)
, β0 = 0, β1 = δ1, β2 = θ1β1, β3 = θ1β2, and βs = θ1βs−1 + θ3βs−3

for s ≥ 4.

b. Using quarterly data on U.S. inflation (INF), and the change in the unemployment rate (DU) from

1955Q2 to 2016Q1, we estimate the following version of a Phillips curve

INF
⋀

t = 0.094 + 0.564INFt−1 + 0.333INFt−3 − 0.300DUt−1

(se) (0.049) (0.051) (0.052) (0.084)
SSE = 48.857

c. Using the results in part (a), find estimates of the first 12 lag weights in the infinite lag repre-

sentation of the estimated Phillips curve in part (b). Graph those weights and comment on the

graph.

d. What rate of inflation is consistent with a constant unemployment rate (where DU = 0 in all time

periods)?

e. Let êt = 0.564êt−1 + 0.333êt−3 + ût where the ût are the residuals from the equation in part (b),

and the initial values ê1, ê2, and ê3 are set equal to zero. The SSE from regressing ût on a constant,

INFt−1, INFt−3DUt−1, êt−1, and êt−3 is 47.619. Using a 5% significance level, test the hypothesis that

the errors in the infinite lag representation follow the AR(3) process et = θ1et−1 + θ3et−3 + vt. The

number of observations used in this regression and that in part (b) is 241. What are the implications

of this test result?

9.14 Inflationary expectations play an important role in wage negotiations between employers and employ-

ees. In this exercise, we examine how inflationary expectations of Australian businesses, collected by

National Australia Bank surveys, depend on past inflation rates. The data are quarterly and run from

1989Q3 to 2016Q1. The basic model being estimated is

EXPNt = α + β1INFt−1 + et

where EXPNt is the expected percentage price increase for 3 months ahead and INFt−1 is the inflation

rate in the previous 3 months. The left-hand panel of estimates in Table 9.12 contains OLS estimates

of α and β1 with conventional and HAC standard errors. The right-hand panel contains nonlinear

least squares estimates and both sets of standard errors assuming the equation errors follow the AR(1)

process et = ρet−1 + vt. The first three sample autocorrelations of the residuals are also reported for

each of the estimations.

T A B L E 9.12 Estimates for Inflationary Expectations Model

OLS Estimates AR(1) Error Model

OLS HAC NLS HAC

Coefficients Standard Errors Standard Errors Coefficients Standard Errors Standard Errors

α 1.437 0.110 0.147 1.637 0.219 0.195

β1 0.629 0.120 0.188 0.208 0.074 0.086

ρ 0.771 0.063 0.076

r1 = 0.651 r1 = −0.132

r2 = 0.466 r2 = 0.099

r3 = 0.445 r3 = −0.136

Observations = 106 Observations = 105

a. What evidence is there of serial correlation in the errors et? What is the impact of any serial

correlation on interval estimation of β1?

b. Is there any evidence of remaining serial correlation in the errors vt after estimating the model

with an AR(1) error?

c. What is the impact of the AR(1) error assumption on the estimate for β1? Suggest a reason for the

large difference in magnitude.
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d. Show that the AR(1) error model can be written as

EXPNt = δ + θ1EXPNt−1 + δ1INFt−1 + δ2INFt−2 + vt

where δ = α(1 − ρ), θ1 = ρ, δ1 = β1 and δ2 = −ρβ1.

e. Estimating the unconstrained version of the model in part (d) via OLS yields

EXPN
⋀

t = 0.376 + 0.773EXPNt−1 + 0.206INFt−1 − 0.163INFt−2

(se) (0.121) (0.070) (0.091) (0.090)

Given that se
(

θ̂1δ̂1 + δ̂2

)

= 0.1045, test the hypothesis H0∶θ1δ1 = −δ2 using a 5% significance

level. What is the implication of this test result?

f. Find estimates for the first four lag coefficients of the infinite distributed lag representation of the

equation estimated in part (e).

9.15 a. Write the AR(1) error model et = ρet−1 + vt in lag operator notation.

b. Show that

(1 − ρL)−1 = 1 + ρL + ρ2L + ρ3L3 + · · ·

and hence that

et = vt + ρvt−1 + ρ2vt−2 + ρ3vt−3 + · · ·

9.6.2 Computer Exercises

9.16 Using tha data file usmacro, estimate the ARDL(2, 1) model

Ut = δ + θ1Ut−1 + θ2Ut−2 + δ1Gt−1 + et

Your estimates should agree with the results given in equation (9.42). Use these estimates to verify the

forecast results given in Table 9.4.

9.17 Using the data file usmacro, estimate the AR(1) model Gt = α + ϕGt−1 + vt. From these estimates

and those obtained in Exercise 9.16, use the results from Exercise 9.4 to find point and 95% interval

forecasts for U2016Q2,U2016Q3, and U2016Q4.

9.18 Consider the ARDL(p, q) equation

Ut = δ + θ1Ut−1 + · · · + θpUt−p + δ1Gt−1 + · · · + δqGt−q + et

and the data in the file usmacro. For p = 2 and q = 1, results from the LM test for serially cor-

related errors were reported in Table 9.6 for AR(k) or MA(k) alternatives with k = 1, 2, 3, 4. The

χ2 = T × R2 version of the test, with missing initial values for êt set to zero, was used to obtain those

results. Considering again the model with p = 2 and q = 1, compare the results in Table 9.6 with results

from the following alternative versions of the LM test.

1. The χ2 = T × R2 version of the test, with missing initial values for êt dropped.

2. The F-test for the joint significance of lags of êt, with missing initial values for êt dropped.

3. The F-test for the joint significance of lags of êt, with missing initial values for êt set to zero.

9.19 Consider the ARDL(p, q) equation

Ut = δ + θ1Ut−1 + · · · + θpUt−p + δ1Gt−1 + · · · + δqGt−q + et

and the data in the file usmacro. For p = 2 and q = 1, results from the LM test for serially correlated

errors were reported in Table 9.6 for AR(k) or MA(k) alternatives with k = 1, 2, 3, 4. The χ2 = T × R2

version of the test, with missing initial values for êt set to zero, was used to obtain those results.

a. Using the same test statistic and the same AR and MA alternatives, and a 5% significance level,

test for serially correlated errors in the two models, (p = 4, q = 3) and (p = 6, q = 5).
b. Examine the residual correlograms from the two models in part (a). What do they suggest?

9.20 In Example 9.13, the following finite distributed lag model was estimated for Okun’s Law using the

data file okun5_aus.

DUt = α + β0Gt + β1Gt−1 + β2Gt−2 + β3Gt−3 + β4Gt−4 + et
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a. Find the correlogram of the least squares residuals for this model. Is there any evidence of auto-

correlation?

b. Test for autocorrelation in the residuals using the χ2 = T × R2 version of the LM test, with missing

initial values for êt set to zero, and lags up to 4. Is there any evidence of autocorrelation?

c. Compare 95% interval estimates for the coefficients obtained using conventional OLS standard

errors with those obtained using HAC standard errors.

9.21 In Examples 9.14 and 9.15, we considered the Phillips curve

INFt = INFE
t − γ

(
Ut − Ut−1

)
+ et = α + β0DUt + et

where inflationary expectations are assumed to be constant, INFE
t = α, and β0 = −γ. In Example 9.15,

we used data in the file phillips5_aus to estimate this model assuming the errors follow an AR(1) model

et = ρet−1 + vt. Nonlinear least squares estimates of the model were α̂ = 0.7028, β̂0 = −0.3830, and

ρ̂ = 0.5001. The equation from these estimates can be written as the following ARDL representation

(see equation (9.68))

INF
⋀

t = α̂
(
1 − ρ̂

)
+ ρ̂INFt−1 + β̂0DUt − ρ̂β̂0DUt−1

= 0.7028 ×(1 − 0.5001) + 0.5001INFt−1 − 0.3830DUt +(0.5001 × 0.3830)DUt−1

= 0.3513 + 0.5001INFt−1 − 0.3830DUt + 0.1915DUt−1

(XR 9.21.1)

Instead of assuming that this ARDL(1, 1) model is a consequence of an AR(1) error, another possi-

ble interpretation is that inflationary expectations depend on actual inflation in the previous quarter,

INFE
t = δ + θ1INFt−1. If DUt−1 is retained because of a possible lagged effect, and we change notation

so that it is line with what we are using for a general ARDL model, we have the equation

INFt = δ + θ1INFt−1 + δ0DUt + δ1DUt−1 + et (XR 9.21.2)

a. Find least squares estimates of the coefficients in (XR 9.21.2) and compare these values with those

in (XR 9.21.1). Use HAC standard errors.

b. Reestimate (XR 9.21.2) after dropping DUt−1. Why is it reasonable to drop DUt−1?

c. Now, suppose that inflationary expectations depend on inflation in the previous quarter and inflation

in the same quarter last year, INFE
t = δ + θ1INFt−1 + θ4INFt−4. Estimate the model that corre-

sponds to this assumption.

d. Is there empirical evidence to support the model in part (c)? In your answer, consider (i) the residual

correlograms from the equations estimated in parts (b) and (c), and the significance of coefficients

in the complete ARDL(4, 0) model that includes INFt−2 and INFt−3.

9.22 Using the data file phillips5_aus, estimate the equation

INFt = δ + θ1INFt−1 + θ4INFt−4 + δ0DUt + et

Assuming that the unemployment rate in 2016Q2, 2016Q3 and 2016Q4 remains constant at 6%, use

the estimated equation to find 95% forecast intervals for the inflation rate in those quarters.

9.23 Using the data file phillips5_aus, estimate the equation

INFt = δ + θ1INFt−1 + θ4INFt−4 + δ0DUt + vt

a. Find the first eight lag weights (delay multipliers) of the infinite distributed lag representation that

corresponds to this model. What is the total multiplier?

b. Using a 5% significance level, test the hypothesis that the error term in the infinite distributed lag

representation follows the AR(4) process et = θ1et−1 + θ4et−4 + vt.

9.24 In Example 9.16, we considered a geometrically declining infinite distributed lag model to describe

the relationship between the change in consumption DCt = Ct – Ct−1 and the change in income

DYt = Yt – Yt−1. In this exercise, we consider instead a finite distributed lag model of the form

DCt = α +
q∑

s=0

βsDYt−s + et

a. Use the observations in the data file cons_inc to estimate this model assuming q = 4. Use HAC

standard errors. Comment on (i) the distribution of the lag weights and (ii) the significance of your

estimates at a 5% significance level.
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b. Reestimate the equation, dropping the lags whose coefficients were not significant in part (a). Use

HAC standard errors. Have there been any substantial changes in the estimates and standard errors

of the coefficients of the retained lags?

c. Using an LM test with two lags, test for autocorrelation in the errors of the equation estimated in

part (b). Is the use of HAC standard errors justified?

d. Assume that the errors follow the AR(1) process et = ρet−1 + vt with the usual assumptions on vt.

Transform the model estimated in part (b) into one that can be estimated using nonlinear least

squares.

e. Use nonlinear least squares to estimate the model derived in part (d). Use HAC standard errors.

Compare these estimates and their standard errors with those obtained in part (b).

f. Using the results from part (e), find an estimate for the total multiplier and its standard error. Com-

pare these values with those obtained for the model in Example 9.16. (You will need to estimate

the model in Example 9.16 to work out the standard error of its total multiplier.)

9.25 a. Using observations on the change in consumption DCt = Ct – Ct−1 and the change in income DYt =
Yt – Yt−1 from 1959Q3 to 2015Q4, obtained from the data file cons_inc, estimate the following two

models

DCt = δ + θ1DCt−1 + δ0DYt + e1t

DCt = α + β0DYt + β3DYt−3 + e2t

b. Use each model estimated in part (a) to forecast consumption C in 2016Q1, 2016Q2, and 2016Q3.

c. Use the mean-square criterion
∑2016Q3

t=2016Q1

(
Ĉt − Ct

)2
to compare the out-of-sample predictive ability

of the two models.

9.26 Using time series data on five different countries, Atkinson and Leigh17 examine changes in inequality

measured as the percentage income share (SHARE) held by those with the top 1% of incomes. A subset

of their annual data running from 1921 to 2000 can be found in the data file inequality.

a. It is generally recognized that inequality was high prior to the great depression, then declined during

the depression and World War II, increasing again toward the end of the sample period. To capture

this effect, use the observations on New Zealand to estimate the following model with a quadratic

trend

SHAREt = β1 + β2YEARt + β3YEAR2
t + et

where YEARt is defined as 1 = 1921, 2 = 1922,… , 80 = 2000. Plot the observations on SHARE
and the fitted quadratic trend. Does the trend capture the general direction of the changes in SHARE?

b. Find the correlogram of the least-squares residuals from the equation estimated in part (a). How

many of the autocorrelations (up to lag 15) are significantly different from zero at a 5% level of

significance?

c. Reestimate the equation in (a) using HAC standard errors. How do they compare with the con-

ventional standard errors? Using first the conventional coefficient covariance matrix, and then

the HAC covariance matrix, find 95% interval estimates for the expected share in 2001. That is,

E(SHARE|YEAR = 81) = β1 + 81β2 + 812β3. Compare the two intervals.

d. Assuming that the errors in (a) follow the AR(1) error process et = ρet−1 + vt, show that the model

can be rewritten as [Hint: YEARt−1 = YEARt − 1]

SHAREt = β1−ρ
(
β1−β2 + β3

)
+ ρSHAREt−1 +

[

β2−ρ
(
β2−2β3

)]

YEARt + β3(1 − ρ)YEAR2
t + vt

e. Estimate the equation in part (d) using nonlinear least squares. Plot the quadratic trend and compare

it with that obtained in part (a).

f. Estimate the following equation using OLS and use the estimates of δ1, δ2, δ3, and ρ to retrieve

estimates of β1, β2, and β3. How do they compare with the nonlinear least squares estimates obtained

in part (e)?

SHAREt = δ1 + ρSHAREt−1 + δ2YEARt + δ3YEAR2
t + vt

............................................................................................................................................................

17Atkinson, A.B. and A. Leigh (2013), “The Distribution of Top Incomes in Five Anglo-Saxon Countries over the Long

Run”, Economic Record, 89, 1–17.
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g. Find the correlogram of the least-squares residuals from the equation estimated in part (f). How

many of the autocorrelations (up to lag 15) are significantly different from zero at a 5% level of

significance?

h. Using the equation estimated in part (f), find a 95% interval estimate for the expected share in 2001.

That is, E
(
SHARE2001|YEAR = 81, SHARE2000 = 8.25

)
. Compare this interval with those obtained

in part (c).

9.27 Reconsider the data file inequality used in Exercise 9.26 and the model in part (a) of that exercise but

include the median marginal tax rate for the upper 1% of incomes (TAX). We are interested in whether

the marginal tax rate is a useful instrument for reducing inequality. The resulting model is

SHAREt = α1 + α2TAXt + α3YEARt + α4YEAR2
t + et

a. Estimate this equation using data for Canada. Obtain both conventional and HAC standard errors.

Compare the 95% interval estimates for α2 from each of the standard errors.

b. Use an LM test with a 5% significance level and three lagged residuals to test for autocorrelation

in the errors of the equation estimated in part (a). What do you conclude about the use of HAC

standard errors in part (a)?

c. Estimate a parameter ρ by applying OLS to the equation êt = ρêt−1 + v̂t where êt are the least

squares residuals from part (a). What assumption is being made when you estimate this equation?

d. Transform each of the variables in the original equation using a transformation of the form x∗t = xt −
ρ̂xt−1 and apply OLS to the transformed variables. Compute both conventional and HAC standard

errors. Find the resulting 95% interval estimates for α2. Compare them with each other and with

those found in part (a).

e. Use an LM test with a 5% significance level and three lagged residuals to test for autocorrelation

in the errors of the equation estimated in part (d). What do you conclude about the use of HAC

standard errors in part (d)?

f. For each of the equations estimated in parts (a) and (d), discuss whether the exogeneity assumption

required for consistent estimation of α2 is likely to be satisfied.

9.28 In this exercise, we use a subset of the data compiled by Everaert and Pozzi18 to forecast growth in

per capita private consumption (CONSN) and growth in per capita real disposable income (INC) in

France. Their data are annual from 1971 to 2007 and are stored in the data file france_ep.

a. To forecast consumption growth consider the autoregressive model

CONSNt = δ +
p∑

s=1

θsCONSNt−s + et

Estimate this model for p = 1, 2, 3, and 4. In each case, use 33 observations to ensure the same

number of observations for each value of p. Based on significance of coefficients, autocorrelation

in the residuals, and the Schwarz criterion, choose a suitable value for p.

b. For the choice of p in part (a), reestimate the model using all available observations and use it to

find 95% interval forecasts for CONSN2008, CONSN2009 and CONSN2010.

c. To forecast income growth, consider the ARDL model

INCt = δ +
p∑

s=1

θsINCt−s +
q∑

r=1

δrHOURSt−r + et

Estimate this model for p = 1, 2 and q = 1, 2. In each case, use 35 observations to ensure the same

number of observations for all values of p and q. Use the Schwarz criterion to choose between the

four models. In the model of your choice, are the coefficient estimates significantly different from

zero at a 5% level? At a 10% level? Does the correlogram of residuals suggest that there is any

serial correlation?

d. Use the model chosen in part (c) to find 95% interval forecasts for INC2008, INC2009, and INC2010,

given that HOURS2008 = HOURS2009 = −0.0066.

9.29 One way of modeling supply response for an agricultural crop is to specify a model in which area

planted AREA depends on expected price, PRICE∗. A log-log (constant elasticity) version of this

............................................................................................................................................................

18Everaert, G. and L. Ponzi (2014), “The Predictability of Aggregate Consumption Growth in OECD Countries: a Panel

Data Analysis,” Journal of Applied Econometrics, 29(3), 431–453.
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model is ln
(
AREAt

)
= α + γ ln

(
PRICE∗t+1

)
+ et where PRICE∗t+1

is expected price in the next period

when harvest takes place. When farmers expect price to be high, they plant more than when a low

price is expected. Since they do not know the price at harvest time, we assume that they base their

expectations on current and past prices, ln
(
PRICE∗t+1

)
=

∑q
s=0
γs ln

(
PRICEt−s

)
, with more recent

prices given a greater weight, γ0 > γ1 > · · · > γq. We use this model to explain the area of sugar

cane planted in a region of the Southeast Asian country of Bangladesh. Information on the delay and

interim elasticities is useful for government planning. It is important to know whether existing sugar

processing mills are likely to be able to handle predicted output, whether there is likely to be excess

milling capacity, and whether a pricing policy linking production, processing, and consumption

is desirable. Data comprising 73 annual observations on area and price are given in the data

file bangla5.

a. Let βs = γγs. Show that the model can be written as the finite distributed lag model

ln
(
AREAt

)
= α +

q∑

s=0

βsln
(
PRICEt−s

)
+ et

b. Estimate the model in part (a) assuming q = 3. Use HAC standard errors. What are the estimated

delay and interim elasticities? Comment on the results. What are the first four autocorrelations of

the residuals? Are they significantly different from zero at a 5% significance level?

c. You will have discovered that the lag weights obtained in part (a) do not satisfy a priori expectations.

One way to try and overcome this problem is to insist that the weights lie on a straight line

βs = α0 + α1s s = 0, 1, 2, 3

If α0 > 0 and α1 < 0, these weights will decline implying farmers place a larger weight on more

recent prices when forming their expectations. Substitute βs = α0 + α1s into the original equation

and hence show that this equation can be written as

ln
(
AREAt

)
= α + α0zt0 + α1zt1 + et

where zt0 =
∑3

s=0
ln
(
PRICEt−s

)
and zt1 =

∑3

s=1
s ln

(
PRICEt−s

)
.

d. Create variables zt0 and zt1 and find least squares estimates of α0 and α1. Use HAC standard errors.

e. Use the estimates for α0 and α1 to find estimates for βs = α0 + α1s and comment on them. Has the

original problem been cured? Do the weights now satisfy a priori expectations?

f. How do the delay and interim elasticities compare with those obtained earlier?

9.30 In this exercise, we consider a partial adjustment model as an alternative to the model used in Exercise

9.29 for modeling sugar cane area response in Bangladesh. The data are in the file bangla5. In the

partial adjustment model long-run desired area, AREA* is a function of price,

AREA∗t = α + β0PRICEt (XR 9.30.1)

In the short-run, fixed resource constraints prevent farmers from fully adjusting to the area desired at

the prevailing price. Specifically,

AREAt − AREAt−1 = γ
(
AREA∗t − AREAt−1

)
+ et (XR 9.30.2)

where AREAt – AREAt−1 is the actual adjustment from the previous year, AREA∗t − AREAt−1 is the

desired adjustment from the previous year, and 0 < γ < 1.

a. Combine (XR 9.30.1) and (XR 9.30.2) to show that an estimable form of the model can be written

as

AREAt = δ + θ1 AREAt−1 + δ0PRICEt + et

where δ = αγ, θ1 = 1 – γ, and δ0 = β0γ.
b. Find least squares estimates of δ, θ1, and δ0. Are they significantly different from zero at a 5%

significance level?

c. What are the first three autocorrelations of the residuals? Are they significantly different from zero

at a 5% significance level?

d. Find estimates and standard errors for α, β0, and γ. Are the estimates significantly different from

zero at a 5% significance level?

e. Find an estimate of AREA∗
73

and compare it with AREA73.
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f. Forecast AREA74, AREA75,… , AREA80 assuming that price in the next 7 years does not change from

the last sample value
(
PRICE74 = PRICE75 = · · · = PRICE80 = PRICE73

)
. Comment on these

forecasts and compare the forecast AREA
⋀

80 with AREA∗
80

estimated from (XR 9.30.1).

9.31 Using data on the Maltese economy, Apap and Gravino19 estimate a number of versions of Okun’s

Law. Their quarterly data run from 1999Q1 to 2012Q4 and can be found in the data file apap. The

variables used in this exercise are DUt = Ut − Ut−4 (the change in the unemployment rate relative to

the same quarter in the previous year) and Gt (real output growth in quarter t relative to quarter t − 4).

a. Estimate the Okun’s Law equation DUt = α + β0Gt + et. Find both conventional and HAC standard

errors and comment on the results.

b. Check the correlogram of the residuals êt from the equation estimated in part (a). Is there evidence

of autocorrelation?

c. Create the variable qt = Gt × êt, and examine its correlogram. Use this correlogram and

equation (9.63) to suggest a reason why the conventional and HAC standard errors for the estimate

of β0 are similar in magnitude.

d. Estimate the finite distributed lag model

DUt = α + β0Gt + β1Gt−1 + β2Gt−2 + et

Use HAC standard errors. Is there evidence of a lagged effect of growth on unemployment? Using

HAC standard errors in both cases, find a 95% interval estimate for the total multiplier and compare

it with a 95% interval for the total multiplier from the model in part (a).

e. Estimate ARDL models DUt = δ +
∑p

s=1
θsDUt−s +

∑q
r=0
δrGt−r + et for p = 1, 2, 3 and q = 0, 1, 2.

Use HAC standard errors. Select and report the model with the largest number of lags whose coef-

ficients are significantly different from zero at a 5% level.

f. For the model selected in part (e), find estimates for the total multiplier, the impact multiplier, and

the first three delay multipliers of the infinite distributed lag representation.

g. For the model selected in part (e), find 95% interval estimates for the total multiplier and the

two-period interim multiplier. How do they compare with the interval obtained in part (d)?

9.32 In their paper referred to in Exercise 9.31, Apap and Gravino examine the separate effects of output

growth in the manufacturing and services sectors on changes in the unemployment rate. Their quarterly

data run from 1999Q1 to 2012Q4 and can be found in the data file apap. The variables used in this

exercise are DUt = Ut – Ut−4 (the change in the unemployment rate relative to the same quarter in the

previous year), MANt (real output growth in the manufacturing sector in quarter t relative to quarter

t − 4), SERt (real output growth in the services sector in quarter t relative to quarter t − 4), MAN_WTt
(the proportion of real output attributable to the manufacturing sector in quarter t), and SER_WTt
(the proportion of real output attributable to the services sector in quarter t). The relative effects of

growth in each of the sectors on unemployment will depend not only on their growth rates but also on

the relative size of each sector in the economy. To recognize this fact, construct the weighted growth

variables MAN2t = MANt ×MAN_WTt and SER2t = SERt × SER_WTt.

a. Use OLS with HAC standard errors to estimate the model

DUt = α + γ0SER2t + γ1SER2t−1 + β0MAN2t + β1MAN2t−1 + vt

Comment on the relative importance of growth in each sector on changes in unemployment and on

whether there is a lag in the effect from each sector.

b. Use an LM test with two lags and a 5% significance level to test for autocorrelation in the errors

for the equation in part (a).

c. Assume that the errors in the equation in part (a) follow the AR(1) process et = ρet−1 + vt. Show

that, under this assumption, the model can be written as

DUt = α(1 − ρ) + ρDUt−1 + γ0SER2t +
(
γ1 − ργ0

)
SER2t−1 − ργ1SER2t−2

+ β0MAN2t +
(
β1 − ρβ0

)
MAN2t−1 − ρβ1MAN2t−2 + vt

d. Use nonlinear least squares with HAC standard errors to estimate the model in part (c). Have your

conclusions made in part (a) changed?

............................................................................................................................................................

19Apap, W. and D. Gravino (2017), “A Sectoral Approach to Okun’s Law”, Applied Economics Letters 25(5), 319–324.

The authors are grateful to Wayne Apap for providing the data.
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e. Use an LM test with two lags and a 5% significance level to test for autocorrelation in the errors for

the equation in part (d). Is the AR(1) process adequate to model the autocorrelation in the errors

of the original equation.

f. Suppose that, wanting to forecast DU2013Q1 using current and past information, you set up the model

DUt = δ + θ1DUt−1 + θ2DUt−2 + γ1SER2t−1 + γ2SER2t−2 + δ1MAN2t−1 + δ2MAN2t−2 + vt

i. Have a sufficient number of lags of DU been included?

ii. Using a 5% significance level, test whether SER2 Granger causes DU.

iii. Using a 5% significance level, test whether MAN2 Granger causes DU.

9.33 The data file xrate contains monthly observations from 1986M1 to 2008M12 on the following vari-

ables20:

NER = the nominal exchange rate for the Australian dollar in terms of U.S. cents.

INF_AUS = the Australian inflation rate.

INF_US = the U.S. inflation rate.

DI6_AUS = the percentage change in the interest rate on an Australian government debt instru-

ment of maturity 6 months.

DI6_US = the percentage change in the interest rate on a U.S. government debt instrument of

maturity 6 months.

a. Plot NER against time and examine its correlogram. Does the series wander like a nonstationary

series? Do the autocorrelations die out relatively quickly, suggesting a weakly dependent series?

b. Construct a variable which is the monthly change in the exchange rate, DNERt = NERt – NERt−1.

Plot DNER against time and examine its correlogram. Does the series wander like a nonstationary

series? Do the autocorrelations die out relatively quickly, suggesting a weakly dependent series?

c. Theory suggests that the exchange rate will be higher when Australian inflation is low relative to that

in the United States, and when the Australian interest rate is high relative to the U.S. interest rate.

Construct the two variables DINFt = INF_AUSt – INF_USt and DI6t = DI6_AUSt − DI6_USt, and

estimate the model (using HAC standard errors)

DNERt = α + β0DINFt + β1DINFt−1 + γ0DI6t + γ1DI6t−1 + et

Comment on the results. Do the coefficients have the expected signs? Are they significantly different

from zero using one-tail tests and a 5% significance level?

d. Reestimate the model in part (c), dropping variables whose coefficients had the wrong sign. Are the

coefficients in the reestimated model significantly different from zero using one-tail tests and a 5%

significance level? Check for serial correlation in the errors, using both the residual correlogram

and an LM test with one lagged residual.

e. Reestimate the model in part (d) using feasible generalized least squares and assuming AR(1)

errors. Estimate the model with both conventional and HAC standard errors. Are the coefficients

in the reestimated model significantly different from zero using one-tail tests and a 5% significance

level?

f. Suppose that the following model is proposed for 1-month ahead forecasting of the exchange rate

DNERt = δ + θ1DNERt−1 + δ1DINFt−1 + ϕ1DI6t−1 + et

Estimate this model using observations from 1986M1 to 2007M12. Does it appear to be a good

model for forecasting?

g. Use the model in part (f) to obtain 1-month ahead forecasts of NER for each of the months in

2008. (Use the actual values of DNERt−1 to obtain each forecast.) Comment on the accuracy of the

forecasts and compute the average absolute forecast error
∑2008M12

t=2008M1

|
|
|
NER
⋀

t − NERt
|
|
|

/

12.

9.34 In the new Keynesian Phillips curve (NKPC), inflation at time t
(
INFt

)
depends on inflationary expec-

tations formed at time t for time t + 1
(
INFEXt

)
, and the output gap, defined as output less potential

output. Expectations of higher inflation lead to greater inflation. The closer output is to potential

............................................................................................................................................................

20These data are constructed from the data archive for Berge, T. (2014), “Forecasting Disconnected Exchange Rates,”

Journal of Applied Econometrics 29(5), 713–735.
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output, the higher the inflation rate. Amberger et al.21 compare results from estimating NKPCs with

two output gaps, one that has been augmented with changes in financial variables
(
FNGAPt

)
, and one

that has not
(
GAPt

)
. Quarterly data for Italy for the period 1990Q1 to 2014Q4 can be found in the data

file italy.

a. Using OLS, estimate the two equations

INFt = αG + βGINFEXt + γGGAPt + eGt

INFt = αF + βFINFEXt + γFFNGAPt + eFt

Find 95% interval estimates for γG and γF using both conventional and HAC standard errors. Com-

ment on (i) the relative widths of the intervals with and without HAC standard errors and (ii)

whether one output gap measure is preferred over another in terms of its impact on inflation.

b. What are the values of the first four residual autocorrelations from each of the two regressions in

part (a)? Which ones are significantly different from zero at a 5% significance level?

c. Consider the generic equation yt = α + βxt + γzt + et with AR(2) errors et = ψ1et−1 + ψ2et−2 + vt
where the vt are not autocorrelated. Show that this model can be written as

y∗t = α
∗ + βx∗t + γz

∗
t + vt t = 3, 4,… , T

where y∗t = yt − ψ1yt−1 − ψ2yt−2, α* = α
(
1 – ψ1 – ψ2

)
, x∗t = xt − ψ1xt−1 − ψ2xt−2, and

z∗t = zt − ψ1zt−1 − ψ2zt−2.

d. Using the least squares residuals êGt from the first equation in part (a), estimate ψ1 and ψ2 from

the regression equation êGt = ψ1êG,t−1 + ψ2êG,t−2 + v̂t. Along the lines of the transformations

in part (c), use the estimates of ψ1 and ψ2 to find transformed variables INF∗
t , INFEX∗

t , and

GAP∗t and then estimate α∗G, βG, and γG from the transformed equation INF∗
t = α

∗
G + βGINFEX∗

t +
γGGAP∗t + vt. Estimate the equation with both conventional and HAC standard errors.

e. Using the results from part (d), find 95% interval estimates for γG using both conventional and HAC

standard errors. Comment on (i) the relative widths of the intervals with and without HAC standard

errors and (ii) how the estimates and intervals compare with the corresponding ones obtained in

part (a).

9.35 Do lags of the variables in the new Keynesian Phillips curve provide a good basis for forecasting

quarterly inflation? In this exercise, we investigate this question using the French data from Amberger

et al. See Exercise 9.34 for details. The data are stored in the data file france.

a. Consider ARDL models of the form

INFt = δ +
p∑

s=1

θsINFt−s +
q∑

r=1

δrINFEXt−r +
m∑

j=1

γjGAPt−j + et

Using observations from 1991Q1 to 2013Q4, estimate this equation for p = 2, q = 1, 2, 3, 4 and

m = 1, 2, 3, 4. From these 16 equations, select and report the one with the smallest value of the

Schwarz criterion. Note that 92 observations should be used to estimate each equation.

b. In the equation selected in part (a), are all the estimated coefficients significantly different from

zero at a 5% significance level? Does the correlogram suggest that there is no autocorrelation in

the errors?

c. Use the selected model from part (a) to find 95% forecast intervals for inflation in 2014Q1, 2014Q2,

2014Q3, and 2014Q4. When computing the forecasts, use actual values of INFEX and GAP where

needed but assume that the actual values of INF in the four forecast quarters are unknown. After

you have found the forecast intervals, check whether the actual values lie within those intervals.

[Hint: If your software does not compute standard errors of forecast errors, equation (9.41) can be

used to find them for the first three quarters. For the fourth quarter, the variance of the forecast

error is given by

σ2
𝑓4
=

[(
θ3

1
+ 2θ1θ2

)2 +
(
θ2

1
+ θ2

)2 + θ2
1
+ 1

]

σ2

You might like to prove this result.]

d. What assumptions are necessary for the standard errors of the forecast errors to be valid?

............................................................................................................................................................

21Amberger, J., R Fendel and H. Stremmel (2017), “Improved output gaps with financial cycle information? An

application to G7 countries’ new Keynesian Phillips curves,” Applied Economics Letters, 24(4), 219–228. Many thanks

to Johanna Amberger for supplying the data used in this study.
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9.36 Consider the following model where a dependent variable y depends on infinite distributed lags of the

two variables x and z.

yt = α +
∞∑

s=0

βsxt−s +
∞∑

r=0

γrzt−r + et

Suppose that both sets of lag weights decline geometrically, but with different parameters λ1 and λ2.

That is, βs = λs
1
β0 and γr = λr

2
γ0.

a. Show that the model can be written as

yt = α + β0

∞∑

s=0

λs
1
Lsxt + γ0

∞∑

r=0

λr
2
Lrzt + et

b. Use the result in Exercise 9.15 to show that the equation in (a) can be written as

yt = α + β0

(
1 − λ1L

)−1xt + γ0

(
1 − λ2L

)−1zt + et

= α∗ +
(
λ1 + λ2

)
yt−1 − λ1λ2yt−2 + β0xt − β0λ2xt−1 + γ0zt − γ0λ1zt−1 + vt

where α* =
(
1 − λ1

)(
1 − λ2

)
α and vt = et –

(
λ1 + λ2

)
et−1 + λ1λ2et−2.

c. Using data in the file canada5, with yt = INFt, xt = INFEXt, and zt = GAPt, estimate the last

equation in part (b) using nonlinear least squares. Report the estimates, their standard errors, and

one-tail p-values for a zero null hypothesis on each parameter (except the constant). Are the esti-

mates significantly different from zero at a 5% level?

d. Find estimates of the first three lag weights for both INFEX and GAP.

e. Find estimates of the total multipliers for both INFEX and GAP.

f. Using a 5% significance level, test H0∶λ1 = λ2 versus H1∶λ1 ≠ λ2. What are the implications for

the model if H0 is true?

g. The equation estimated in part (c) can be viewed as a restricted version of the more general

ARDL(2, 1, 1) model

yt = α∗ + θ1yt−1 + θ2yt−2 + δ0xt + δ1xt−1 + ϕ0zt + ϕ1zt−1 + vt

where
δ1

δ0

×
ϕ1

ϕ0

= −θ2 and
δ1

δ0

+
ϕ1

ϕ0

= −θ1. Estimate this unrestricted model and jointly test the

validity of the restrictions at a 5% level. What are the implications for the infinite distributed lags

if the restrictions are not true?

h. Test the hypothesis that et follows an AR(2) process et =
(
λ1 + λ2

)
et−1 − λ1λ2et−2 + ut. What are

the implications of rejecting this hypothesis?

Appendix 9A The Durbin–Watson Test
In Section 9.4, two testing procedures for testing for autocorrelated errors, the sample correlo-

gram and a Lagrange multiplier test, were considered. These are two large sample tests; their test

statistics have their specified distributions in large samples. An alternative test, one that is exact in

the sense that its distribution does not rely on a large sample approximation, is the Durbin–Watson

test. It was developed in 1950 and for a long time was the standard test for H0∶ρ = 0 in the AR(1)

error model et = ρet−1 + vt. It is used less frequently today because of the need to examine upper

and lower bounds, as we describe below, and because its distribution no longer holds when the

equation contains a lagged dependent variable. In addition, the test is derived conditional on X;

it treats the explanatory variables as nonrandom.

It is assumed that the vt are independent random errors with distribution N
(
0, σ2

v
)

and that

the alternative hypothesis is one of positive autocorrelation. That is,

H0∶ρ = 0 H1∶ρ > 0
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The statistic used to test H0 against H1 is

d =

T∑

t=2

(
êt − êt−1

)2

T∑

t=1

ê2

t

(9A.1)

where the êt are the least squares residuals êt = yt − b1 − b2xt. To see why d is a reasonable

statistic for testing for autocorrelation, we expand (9A.1) as

d =

T∑

t=2

ê2

t +
T∑

t=2

ê2

t−1
− 2

T∑

t=2

êtêt−1

T∑

t=1

ê2

t

=

T∑

t=2

ê2

t

T∑

t=1

ê2

t

+

T∑

t=2

ê2

t−1

T∑

t=1

ê2

t

− 2

T∑

t=2

êtêt−1

T∑

t=1

ê2

t

(9A.2)

≈ 1 + 1 − 2r

The last line in (9A.2) holds only approximately. The first two terms differ from 1 through the

exclusion of ê2

1
and ê2

T from the first and second numerator summations, respectively. Thus,

we have

d ≈ 2
(
1 − r1

)
(9A.3)

If the estimated value of ρ is r1 = 0, then the Durbin–Watson statistic d ≈ 2, which is taken as an

indication that the model errors are not autocorrelated. If the estimate of ρ happened to be r1 = 1

then d ≈ 0, and thus a low value for the Durbin–Watson statistic implies that the model errors are

correlated, and ρ > 0.

The question we need to answer is: How close to zero does the value of the test statistic

have to be before we conclude that the errors are correlated? In other words, what is a critical

value dc such that we reject H0 when d ≤ dc? Determination of a critical value and a rejection

region for the test requires knowledge of the probability distribution of the test statistic under the

assumption that the null hypothesis, H0∶ρ = 0, is true. For a 5% significance level, knowledge of

the probability distribution f (d) under H0 allows us to find dc such that P
(
d ≤ dc

)
= 0.05. Then,

as illustrated in Figure 9.A1, we reject H0 if d ≤ dc and fail to reject H0 if d > dc. Alternatively,

we can state the test procedure in terms of the p-value of the test. For this one-tail test, the p-value

is given by the area under f (d) to the left of the calculated value of d. Thus, if the p-value is less

than or equal to 0.05, it follows that d ≤ dc, and H0 is rejected. If the p-value is greater than 0.05,

then d > dc, and H0 is not rejected.

In any event, whether the test result is found by comparing d with dc or by computing the

p-value, the probability distribution f (d) is required. A difficulty associated with f (d), and one

that we have not previously encountered when using other test statistics, is that this probabil-

ity distribution depends on the values of the explanatory variables. Different sets of explanatory

variables lead to different distributions for d. Because f (d) depends on the values of the explana-

tory variables, the critical value dc for any given problem will also depend on the values of the

explanatory variables. This property means that it is impossible to tabulate critical values that can

be used for every possible problem. With other test statistics, such as t, F, and χ2, the tabulated

critical values are relevant for all models.

There are two ways to overcome this problem. The first way is to use software that computes

the p-value for the explanatory variables in the model under consideration. Instead of comparing
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f(d)

Reject H0

0 4 ddc

Do not reject  H0

FIGURE 9.A1 Testing for positive autocorrelation.

the calculated d value with some tabulated values of dc, we get our computer to calculate the

p-value of the test. If this p-value is less than the specified significance level, H0∶ρ = 0 is rejected,

and we conclude that the errors are correlated.1

9A.1 The Durbin–Watson Bounds Test
In the absence of software that computes a p-value, a test known as the bounds test can be

used to partially overcome the problem of not having general critical values. Durbin and Wat-

son considered two other statistics dL and dU whose probability distributions do not depend on

the explanatory variables and which have the property that

dL < d < dU

That is, irrespective of the explanatory variables in the model under consideration, d will be

bounded by an upper bound dU and a lower bound dL. The relationship between the probability

distributions f
(
dL

)
, f (d), and f

(
dU

)
is depicted in Figure 9.A2. Let dLc be the 5% critical value

from the probability distribution for dL. That is, dLc is such that P
(
dL ≤ dLc

)
= 0.05. Similarly, let

dUc be such that P
(
dU ≤ dUc

)
= 0.05. Since the probability distributions f

(
dL

)
and f

(
dU

)
do not

depend on the explanatory variables, it is possible to tabulate the critical values dLc and dUc. These

values do depend on T and K, but it is possible to tabulate the alternative values for different T
and K.

Thus, in Figure 9.A2, we have three critical values. The values dLc and dUc can be readily

tabulated. The value dc, the one in which we are really interested for testing purposes, cannot

be found without a specialized computer program. However, it is clear from the figure that if

the calculated value d is such that d ≤ dLc, then it must follow that d ≤ dc, and H0 is rejected.

In addition, if d > dUc, then it follows that d > dc, and H0 is not rejected. If it turns out that

dLc < d < dUc, then, because we do not know the location of dc, we cannot be sure whether to

accept or reject. These considerations led Durbin and Watson to suggest the following decision

rules, known collectively as the Durbin–Watson bounds test:

Ifd ≤ dLc, rejectH0∶ρ = 0 and acceptH1∶ρ > 0;
ifd > dUc, do not rejectH0∶ρ = 0;
ifdLc < d < dUc, the test is inconclusive.

The presence of a range of values where no conclusion can be reached is an obvious disadvantage

of the test. For this reason, it is preferable to have software which can calculate the required

p-value if such software is available.

............................................................................................................................................

1The software packages SHAZAM and SAS, for example, will compute the exact Durbin–Watson p-value.
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f (d)

f (dL)

dLc dc dUc

d
4

f (d) f (dU)

FIGURE 9.A2 Upper and lower critical value bounds
for the Durbin–Watson test.

E X A M P L E 9.20 Durbin–Watson Bounds Test for Phillips Curve

The 5% critical bounds for the Phillips curve in Examples

9.14 and 9.15, for T = 117 and K = 2 are2

dLc = 1.681 dUc = 1.716

The Durbin–Watson test value is 0.965. Since 0.965 <

dLc = 1.681, we conclude that d < dc, and hence we reject

H0∶ρ = 0; there is evidence to suggest that the errors are

positively serially correlated.

Appendix 9B Properties of an AR(1) Error
We are interested in the mean, variance, and autocorrelations for et where et = ρet−1 + vt and the vt
are uncorrelated random errors with mean zero and variance σ2

v .3 To derive the desired properties,

we begin by lagging the equation et = ρet−1 + vt by one period, to obtain et−1 = ρet−2 + vt−1.

Then, substituting et−1 into the first equation yields

et = ρet−1 + vt

= ρ
(
ρet−2 + vt−1

)
+ vt (9B.1)

= ρ2et−2 + ρvt−1 + vt

Lagging et = ρet−1 + vt by two periods gives et−2 = ρet−3 + vt−2. Substituting this expression for

et−2 into (9B.1) yields

et = ρ2
(
ρet−3 + vt−2

)
+ ρvt−1 + vt

= ρ3et−3 + ρ2vt−2 + ρvt−1 + vt
(9B.2)

Repeating this process k times and rearranging the order of the lagged v’s yields

et = ρket−k + vt + ρvt−1 + ρ2vt−2 + · · · + ρk−1vt−k+1 (9B.3)

If we view the process as operating for a long time into the past, then we can let k → ∞. This

makes the first and last terms, ρket−k and ρk−1vt−k+1, go to zero because −1 < ρ < 1. The result is

et = vt + ρvt−1 + ρ2vt−2 + ρ3vt−3 + · · · (9B.4)

............................................................................................................................................

2These values can be found from the Durbin Watson tables on the web site principlesofeconometrics.com/poe5/

poe5.htm.

3To simplify the exposition, we derive these properties in terms of the marginal distributions of et and vt. When

estimating the AR(1) error model in the body of the chapter, we make the stronger assumptions E
(
vt|𝐗

)
= 0 and

var
(
vt|X

)
= σ2

v .
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The regression error et can be written as a weighted sum of the current and past values of the

uncorrelated error vt. This is an important result. It means that all past values of the v’s have an

impact on the current error et and that this impact feeds through into yt through the regression

equation. Notice, however, that the impact of the past v’s declines the further we go into the

past. The weights that are attached to the lagged v’s are ρ, ρ2, ρ3, . . . . Because −1 < ρ < 1, these

weights decline geometrically as we consider past v’s that are more distant from the current period.

Eventually, they become negligible.

Equation (9B.4) can be used to find the properties of the et. Its mean is zero, because

E
(
et
)
= E

(
vt
)
+ ρE

(
vt−1

)
+ ρ2E

(
vt−2

)
+ ρ3E

(
vt−3

)
+ · · ·

= 0 + ρ × 0 + ρ2 × 0 + ρ3 × 0 + · · ·
= 0

To find the variance, we write

var
(
et
)
= var

(
vt
)
+ ρ2var

(
vt−1

)
+ ρ4var

(
vt−2

)
+ ρ6var

(
vt−3

)
+ · · ·

= σ2
v + ρ

2σ2
v + ρ

4σ2
v + ρ

6σ2
v + · · ·

= σ2
v
(
1 + ρ2 + ρ4 + ρ6 + · · ·

)

=
σ2

v

1 − ρ2

(9B.5)

In the abovementioned derivation, zero covariance terms are ignored because the v’s are uncorre-

lated. The result in the last line follows from rules for the sum of a geometric progression. Using

shorthand notation, we have σ2
e = σ

2
v
/(

1 − ρ2
)
; the variance of e depends on that for v and the

value for ρ.

To find the covariance between two e’s that are one period apart, we use (9B.4) and its lag

to write

cov
(
et, et−1

)
= E

(
etet−1

)

= E
[(

vt + ρvt−1 + ρ2vt−2 + ρ3vt−3 + · · ·
)

(
vt−1 + ρvt−2 + ρ2vt−3 + ρ3vt−4 · · ·

) ]

= ρE
(
v2

t−1

)
+ ρ3E

(
v2

t−2

)
+ ρ5E

(
v2

t−3

)
+ · · ·

= ρσ2
v
(
1 + ρ2 + ρ4 + · · ·

)

=
ρσ2

v

1 − ρ2

When the second line in the abovementioned derivation is expanded, only squared terms with

the same subscript are retained. Because the v’s are uncorrelated, the cross-product terms with

different time subscripts will have zero expectation and are dropped from the third line. To obtain

the fourth line from the third line, we have used E
(
v2

t−k

)
= var

(
vt−k

)
= σ2

v for all lags k. In a similar

way, we can show that the covariance between errors that are k periods apart is

cov
(
et, et−k

)
=

ρkσ2
v

1 − ρ2
k > 0 (9B.6)

From (9B.5) and (9B.6), the autocorrelations for errors that are k periods apart are given by

ρk = corr
(
et, et−k

)
=

cov
(
et, et−k

)

var
(
et
) =

ρkσ2
v
/(

1 − ρ2
)

σ2
v
/(

1 − ρ2
) = ρk
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CHAPTER 10

Endogenous Regressors
and Moment-Based
Estimation

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Give an intuitive explanation of why correlation

between a random x and the error term causes

the least squares estimator to be inconsistent.

2. Describe the ‘‘errors-in-variables’’ problem in

econometrics and its consequences for the least

squares estimator.

3. Describe the properties of a good instrumental

variable.

4. Discuss how the method of moments can be used

to derive the least squares and instrumental

variables estimators, paying particular attention

to the assumptions upon which the derivations

are based.

5. Explain why it is important for an instru-

mental variable to be highly correlated with

the random explanatory variable for which it

is an instrument.

6. Describe how instrumental variables estimation is

carried out in the case of surplus instruments.

7. State the approximate large-sample distribution

of the instrumental variables estimator for the

simple linear regression model, and how it can be

used for the construction of interval estimates

and hypothesis tests.

8. Describe a test for the existence of contempo-

raneous correlation between the error term and

the contemporaneous explanatory variables in a

model, explaining the null and alternative

hypotheses, and the consequences of rejecting

the null hypothesis.

K E Y W O R D S

asymptotic properties

conditional expectation

endogenous variables

errors-in-variables

exogenous variables

first-stage regression

Hausman test

instrumental variable

instrumental variable estimator

just-identified

large sample properties

overidentified

population moments

random sampling

reduced-form

sample moments

sampling properties

simultaneous equations bias

surplus moment conditions

two-stage least squares estimation

weak instruments
481
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In this chapter we reconsider the linear regression model. We will initially discuss the simple lin-

ear regression model, but our comments apply to the general model as well. The usual assumptions

are SR1–SR6, given in Section 2.2.2. In Chapter 8, we relaxed the assumption var
(
ei|𝐗

)
= σ2 that

the error variance is the same for all observations. In Chapter 9 we considered regressions with

time-series data in which the assumption of serially uncorrelated errors, cov
(
ei, ej|𝐗

)
= 0, for

i ≠ j, cannot be maintained.

In this chapter, we relax the exogeneity assumption. When an explanatory variable is random,

the properties of the least squares estimator depend on the characteristics of the independent vari-

able x. The assumption of strict exogeneity is SR2 in the simple regression model, E
(
ei|x

)
= 0,

and it is MR2 in the multiple regression model, E
(
ei|X

)
= 0. The mathematical form of this

assumption is simple but the full meaning is complex. In Section 2.10.2, we gave common simple

regression model examples when this assumption might fail. In these cases, with an explanatory

variable that is endogenous, the usual least squares estimator does not have its desirable proper-

ties; it is not an unbiased estimator of the population parameters β1, β2, …; it is not a consistent

estimator of β1, β2, …; tests and interval estimators do not have the anticipated properties, and

even having large data samples will not cure the problems.

We review and discuss the properties of the least squares estimator with an endogenous

explanatory variable in this chapter, and we suggest a new estimator, the instrumental vari-
ables estimator, that does have some desirable properties in large samples. The instrumental

variables estimator is also called a method of moments estimator, and also the two-stage least
squares estimator. We offer fair warning, however, that this area of econometrics is filled with

practical and theoretical difficulties. Our search turns from finding an estimator that is “best” to

one that is “adequate,” and unfortunately producing convincing research applications requires

knowledge, skill, and patience. In order for you to begin properly you should reread (right now!)

Section 2.10 on the exogeneity concept and Section 5.7 on the large sample, or asymptotic, prop-

erties of the least squares estimator.

10.1 Least Squares Estimation

with Endogenous Regressors
As our starting point, let us assume we are working with microeconomic, cross-sectional data

obtained by random sampling. The standard assumptions for the simple regression model are

RS1–RS6, which we repeat here for your convenience.

The Simple Linear Regression Model Under Random Sampling

RS1: The observable variables y and x are related by yi = β1+ β2xi + ei, i = 1,… ,N, where

β1 and β2 are unknown population parameters and ei is a random error term.

RS2: The data pairs
(
yi, xi

)
are statistically independent of all other data pairs and have the

same joint distribution f
(
yi, xi

)
. They are independent and identically distributed (iid).

RS3: E
(
ei|xi

)
= 0 for i = 1,… ,N; x is contemporaneously, and strictly, exogenous.

RS4: The random error has constant conditional variance, var
(
ei|xi

)
= σ2.

RS5: xi takes at least two different values.

RS6: ei ∼ N
(
0, σ2

)

With random sampling, the ith and jth observations are statistically independent, so that the ith
error ei is statistically independent from the jth value of the explanatory variable, xj. Thus, the
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strict exogeneity assumption E
(
ei|x1,… , xN

)
= E

(
ei|x

)
= 0 reduces to the simpler contempora-

neous exogeneity assumption E
(
ei|xi

)
= 0.

Recall from Chapter 2 that the “gold standard” in research is a randomized controlled exper-

iment. In an ideal (research) world, we would randomly assign x values (the treatment) and

examine changes in outcomes y (the effect). If there is a systematic relationship between changes

in x and changes in the outcome y, we can claim that changes in x cause changes in the outcome y.

Any other random factors, “everything else” = e, that might affect the outcome are statistically

independent of x. We can isolate, or identify, the effects of changes in x alone, and using regression

analysis, we can estimate the causal effect ΔE
(
yi|xi

)
∕Δxi = β2.

The importance of the strict exogeneity assumption E
(
ei|xi

)
= 0 is that if it is true then “x

is as good as randomly assigned.” If E
(
ei|xi

)
= 0, then the best prediction of the random error ei

is simply zero. [See Appendix 4C for the details behind this statement.] There is no information

contained in the values of x that helps us predict the random error. We can infer a causal relation-

ship between yi and xi when there is covariation between them because variations in the random

error ei are uncorrelated with the variations in the explanatory variable xi. It is just “as if” we had

randomly assigned the treatments, xi, to experimental subjects. Furthermore under RS1–RS6, the

least squares estimators of β1 and β2 are the best linear unbiased estimators and the usual interval

estimators and hypothesis tests work as they are expected to in samples of all sizes.

10.1.1 Large Sample Properties of the OLS Estimator
In Section 5.7, we introduced “large sample” or “asymptotic” analysis. With large samples of

data, strict exogeneity is not required to identify and estimate a causal effect. All that we require

is the simpler condition that the x values are uncorrelated with the random errors, e, and that the

average of the random errors is zero. Econometricians, statisticians, and mathematicians aim to

develop methods that work with as few strong assumptions as possible. We adopt that attitude

and replace RS3, strict exogeneity, with

RS3∗∶ E
(
ei
)
= 0 and cov

(
xi, ei

)
= 0

Instead of contemporaneous exogeneity, we simply assume that the random error ei and the

explanatory variable value xi are contemporaneously uncorrelated, which is a weaker condition

than E
(
ei|xi

)
= 0. The term contemporaneous means “occurring at the same point in time” or, as

in this case, occurring for the same cross-sectional observation subscript i. Explanatory variables

like this, that are contemporaneously uncorrelated with the regression error, are simply said to be

exogenous.

If we have obtained a random sample, then the selection of any person is statistically inde-

pendent of the selection of any other person. Any randomly selected person’s characteristics,

such as education, income, ability, and race, are statistically independent of the characteristics

of any other person selected. Because random sampling automatically implies zero correlation

between the ith and jth observations, we only require that the ith value xi be uncorrelated with ei.

The correlation between the ith error ei and the jth value of the explanatory variable, xj, is zero

automatically because of random sampling.

Regression assumption RS3* says two things. First, in a regression model yi = β1+ β2xi + ei,

the population average of all unobservable characteristics, or variables omitted from the regres-

sion model, is zero, E
(
ei
)
= 0. Second, in the population the correlation between the explanatory

variable xi and all the factors combined into the random error ei is zero, or cov
(
xi, ei

)
= 0.

We can replace RS3 by RS3* because, if assumption RS3 is true, it follows that RS3* is

true, that is, E
(
ei |xi

)
= 0 ⇒ cov

(
xi, ei

)
= 0 and E

(
ei |xi

)
= 0 ⇒ E

(
ei
)
= 0. These relations are

proven in Appendix 2G.1. Introducing assumption RS3* is convenient because it is a simpler

notion of exogeneity, which is good. However, assumption RS3* is weaker than RS3 and

under it we cannot show that the least squares estimator is unbiased, or that any of the other

properties hold in small samples. What we can show is that the least squares estimators have
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desirable large sample properties. Under assumptions RS1, RS2, RS3*, RS4, and RS5 the least

squares estimators:

1. are consistent; that is, they converge in probability to the true parameter values as N → ∞;

2. have approximate normal distributions in large samples, whether the random errors are nor-

mally distributed or not; and

3. provide interval estimators and test statistics that are valid if the sample is large.

In practice, this means that all the usual interpretations, intervals estimates, hypothesis tests, pre-

dictions, and prediction intervals are fine as long as our sample is large and RS1, RS2, RS3*,

RS4, and RS5 hold. If samples are large, and if cov
(
xi, ei

)
= 0 and E

(
ei
)
= 0, then it is “almost as

good as” randomly assigning treatment values to xi. We can estimate the population parameters

β1, β2,… using the least squares estimator. If there is serial correlation or heteroskedasticity, then

the robust standard error methods from Chapters 8 and 9 are fine as long as RS3* holds.

Remark
Do not fall into the trap of thinking “I’ll just assume this, or that, if I want this or that

result.” It is true that access to large samples of data means not having to worry about the

complexities of strict exogeneity. But what if you do not have access to large samples?

Then statistical inference (estimation, hypothesis testing, and prediction) in small, or finite,

samples is important. When the sample size N is not large, the asymptotic properties of

estimators may be very misleading. Estimators that may be fine in large samples may suffer

large biases in small samples. Estimates may appear statistically significant when they are

not, and confidence intervals may be too narrow or too wide. If governments, or businesses,

make decisions based on faulty inferences then we may suffer large economic or personal

losses as a result. It is not just a game.

If assumption RS3* is not true, and in particular if cov
(
xi, ei

)
≠ 0 so that xi and ei are contempo-

raneously correlated, then the least squares estimators are inconsistent. They do not converge to

the true parameter values even in very large samples. Furthermore, our usual hypothesis testing

or interval estimation procedures are not valid. This means that estimating causal relationships

using the least squares estimator when cov
(
xi, ei

)
≠ 0 may lead to incorrect inferences. When

xi is random, the relationship between xi and ei is a crucial factor when deciding whether least

squares estimation, either OLS or GLS, is appropriate or not. If the error term ei is correlated

with xi (or any xik in the multiple regression model) then the least squares estimator fails. In

the next section we explain why correlation between xi and ei leads to the failure of the least

squares estimator.

10.1.2 Why Least Squares Estimation Fails
In this section, we provide an intuitive explanation why the least squares estimator fails when

cov
(
xi , ei

)
≠ 0. An algebraic proof is in the next section. The regression model data generation

process adds a random error ei to the systematic regression function E
(
yi|xi

)
= β1+ β2xi to obtain

the observed outcome yi. In Figure 10.1(a), xi and ei values are positively correlated, violating

the strict exogeneity assumption. In Figure 10.1(b), the positively sloped regression func-

tion E
(
yi|xi

)
= β1+ β2xi, which is the object of our analysis, is the solid line. For each value of xi,

the yi data values, yi = β1+ β2xi + ei, are the sum of the systematic portion E
(
yi|xi

)
= β1+ β2xi

and a random error ei. The data pairs
(
yi, xi

)
are the dots in Figure 10.1(b). As you see, the true

regression function does not pass through the middle of the data in this case and that is because

of the correlation between xi and ei. The yi values for larger xi values tend to have positive errors,

ei > 0. The yi values for smaller xi values have negative errors, ei < 0. In this case, we can use



�

� �

�

10.1 Least Squares Estimation with Endogenous Regressors 485

2

1

0e

x
0

(a)

2 4

–1

–2

–3

–4 –2

3

4

2

0

–2

–4

–4 –2 0

(b)

x
2 4

y = b1 + b2x

Fitted least squares line

True regression function

E(y|x) = β1 + β2x

FIGURE 10.1 (a) Correlated x and e. (b) Plot of data, true and
fitted regression functions.

information provided by the xi values to provide a better prediction of the random error ei than

simply zero.

Least squares estimation leads to a fitted line passing through the middle of the data, shown

as a dashed line in Figure 10.1(b). The slope of the fitted line
(
the estimate b2

)
overestimates the

true slope of the regression function, β2 > 0. The least squares estimator attributes all variation

in yi to variation in xi. When xi and ei are correlated, the variation in yi comes from two sources:

changes in xi and changes in ei, and in our example these changes have a positive correlation.

If we think about the effect of changes in xi and ei on yi we have

Δyi = β2Δxi + Δei
(+) (+) (+)

If xi and ei are positively correlated and β2 > 0, increases in xi and ei combine to increase yi. In

the least squares estimation process, all the change (increase) in yi is attributed to the effect of the

change (increase) in xi, and thus the least squares estimator will overestimate β2.

Throughout this Chapter, we use the relation between wages and years of education as an

example. In this case, the omitted variable “intelligence,” or ability, is in the regression error,

and it is likely to be positively correlated with the years of education a person receives, with more
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intelligent individuals usually choosing to obtain more years of education. When regressing wage

on years of education, the least squares estimator attributes increases in wages to increases in

education. The effect of education is overstated because some of the increase in wages is also due

to higher intelligence.

The statistical consequence of a contemporaneous correlation between xi and ei is that the

least squares estimator is biased, and this bias will not disappear no matter how large the sam-

ple is. Consequently, the least squares estimator is inconsistent when there is contemporaneous

correlation between xi and ei.

Remark
If xi is endogenous the least squares estimator still is a useful predictive tool. In

Figure 10.1(b) the least squares fitted line fits the data well. Given a value x0 we can predict

y0 using the fitted line. What we cannot do is interpret the slope of the line as a causal effect.

10.1.3 Proving the Inconsistency of OLS

Let us prove that the least squares estimator is not consistent when cov
(
xi, ei

)
≠ 0. Our regres-

sion model is yi = β1+ β2xi + ei. Continue to assume that E
(
ei
)
= 0, so that E

(
yi
)
= β1+ β2E

(
xi
)
.

Then,

• Subtract this expectation from the original equation,

yi − E
(
yi
)
= β2

[

xi − E
(
xi
)]

+ ei

• Multiply both sides by xi − E
(
xi
)

[

xi − E
(
xi
)][

yi − E
(
yi
)]

= β2

[

xi − E
(
xi
)]2

+
[

xi − E
(
xi
)]

ei

• Take expected values of both sides

E
[

xi − E
(
xi
)][

yi − E
(
yi
)]

= β2E
[

xi − E
(
xi
)]2

+ E
{[

xi − E
(
xi
)]

ei

}

,

or

cov
(
xi, yi

)
= β2var

(
xi
)
+ cov

(
xi, ei

)

• Solve for β2

β2 =
cov

(
xi, yi

)

var
(
xi
) −

cov
(
xi, ei

)

var
(
xi
)

This equation is the basis for showing when the least squares estimator is consistent, and when it

is not.

If we can assume that cov
(
xi, ei

)
= 0, then

β2 =
cov(x, y)
var(x)

We drop the “i” subscript because we are randomly sampling from a population, and the data

pairs are not only independently distributed but identically distributed, with the same joint pdf
f
(
xi, yi

)
, and thus cov

(
xi, yi

)
= cov(x, y) and var

(
xi
)
= var(x). The least squares estimator is

b2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2
=

∑(
xi − x

)(
yi − y

)
∕(N − 1)

∑(
xi − x

)2/(N − 1)
=

cov
⋀

(x, y)
var
⋀

(x)
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This shows that the least squares estimator b2 is the sample analog of the population relation-

ship, β2 = cov(x, y)∕var(x). The sample variance and covariance converge to the true variance

and covariance as the sample size N increases, using the Law of Large Numbers introduced in

Section 10.3.1, so that the least squares estimator converges to β2. That is, if cov
(
xi, ei

)
= 0, then

b2 =
cov
⋀

(x, y)
var
⋀

(x)
→

cov(x, y)
var(x)

= β2

showing that the least squares estimator is consistent.

On the other hand, if xi and ei are correlated, then

β2 =
cov(x, y)

var(x)
− cov(x, e)

var(x)

The least squares estimator now converges to

b2 →
cov(x, y)

var(x)
= β2 +

cov(x, e)
var(x)

≠ β2

In this case, b2 is an inconsistent estimator of β2 and the amount of bias that exists even asymp-

totically, when samples can be assumed to be large, is cov(x, e)∕var(x). The direction of the bias

depends on the sign of the covariance between xi and ei. If factors in the error are positively cor-

related with the explanatory variable x, then the least squares estimator will overestimate the true

parameter. If factors in the error are negatively correlated with the explanatory variable x, then

the least squares estimator will underestimate the true parameter.

In the following section, we describe some common situations in which there is correlation

between xi and ei causing the least squares estimator to fail.

10.2 Cases in Which x and e are

Contemporaneously Correlated
There are several common situations in which the least squares estimator fails due to the presence

of a contemporaneous correlation between an explanatory variable and the error term. When an

explanatory variable and an error term are contemporaneously correlated, the explanatory vari-

able is said to be endogenous. This term comes from simultaneous equations models, which

we will consider in Chapter 11, and means “determined within the system.” When an explana-

tory variable is contemporaneously correlated with the regression error one is said to have an

“endogeneity problem.”

10.2.1 Measurement Error
The errors-in-variables problem occurs when an explanatory variable is measured with error.

If we measure an explanatory variable with error, then it is correlated with the error term, and

the least squares estimator is inconsistent. As an illustration, consider the following important

example. Let us assume that an individual’s personal saving is based on their “permanent” or

long-run income. Let yi = annual savings of the ith person and let x∗i = the permanent annual

income of the ith person. A simple regression model representing this relationship is

yi = β1+ β2x∗i + vi (10.1)

We have asterisked (*) the permanent income variable because it is difficult, if not impossible, to

observe. For the purposes of a regression, suppose that we attempt to measure permanent income
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using xi = current income. Current income is a measure of permanent income, but it does not

measure permanent income exactly. To capture this measurement error specify that

xi = x∗i + ui (10.2)

where ui is a random disturbance, with mean 0 and variance σ2
u. With this statement, we are

admitting that observed current income only approximates permanent income, and consequently

that we have measured permanent income with error. Furthermore, assume that the measurement

error ui is independent of the regression error vi. When we use xi in the regression in place of x∗i ,

we do so by replacement, that is, substitute x∗i = xi − ui into (10.1) to obtain

yi = β1+ β2x∗i + vi = β1+ β2

(
xi − ui

)
+ vi = β1+ β2xi +

(
vi − β2ui

)

= β1+ β2xi + ei

(10.3)

In order to estimate (10.3) by OLS, we must determine whether or not xi is contemporaneously

uncorrelated with the random error ei. The covariance between these two random variables, using

the fact that E
(
ei
)
= 0 and assuming that x∗i is exogenous in (10.1), so that E

(
x∗i vi

)
= 0, is

cov
(
xi, ei

)
= E

(
xiei

)
= E

[(
x∗i + ui

)(
vi − β2ui

)]

= E
(
−β2u2

i
)
= −β2σ2

u ≠ 0

(10.4)

The least squares estimator b2 is an inconsistent estimator of β2 in (10.3) because of the cor-

relation between the explanatory variable xi and the error term ei. Consequently, b2 does not

converge to β2 in large samples. Furthermore, in large or small samples, b2 is not approximately

normal with mean β2 and variance var
(
b2

)
= σ2

/∑(
xi − x

)2
. When ordinary least squares fails

in this way, is there another estimation approach that works? The answer is yes, as we will see in

Section 10.3.

Note that in equation (10.4), if β2 > 0, there is a negative correlation between xi and the

random error ei. The least squares estimator will underestimate β2 and in the literature devoted to

measurement error this is called attenuation bias. This is a logical result of using xi = x∗i + ui.

Imagine that the measurement error ui is very large relative to x∗i . Then xi becomes more like a

completely random number and there will be little association between yi and xi in the data, so

that b2 will be near zero.

10.2.2 Simultaneous Equations Bias
Another situation in which an explanatory variable is correlated with the regression error term

arises in simultaneous equations models. While this terminology may not sound familiar, students

of economics deal with such models from their earliest introduction to supply and demand. Recall

that in a competitive market the prices and quantities of goods are determined jointly by the forces

of supply and demand. Thus, if Pi = equilibrium price and Qi = equilibrium quantity, we can say

that Pi and Qi are endogenous, because they are jointly determined within a simultaneous system

of two equations, one equation for the supply curve and one equation for the demand curve.

Suppose that we write down the relation

Qi = β1+ β2Pi + ei (10.5)

We know that changes in price affect the quantities supplied and demanded. But it is also true

that changes in quantities supplied and demanded lead to changes in prices. There is a feedback

relationship between Pi and Qi. Because of this feedback, which results because price and

quantity are jointly, or simultaneously, determined, we can show that cov
(
Pi, ei

)
≠ 0. The least

squares estimation procedure will fail if applied to (10.5) because of the endogeneity problem,

and the resulting bias (and inconsistency) is called simultaneous equations bias. Supply and

demand models permeate economic analysis, and we will treat simultaneous equations models

fully in Chapter 11.
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10.2.3 Lagged-Dependent Variable Models
with Serial Correlation

In Chapter 9, we introduced dynamic models with stationary variables. One way to make models

dynamic is to introduce a lagged dependent variable into the right-hand side of an equation, That

is, yt = β1+ β2yt−1 + β3xt + et. The lagged variable yt−1 is a random regressor, but as long as it

is uncorrelated with the error term et then the least squares estimator is consistent. However,

it is possible when specifying a dynamic model that the errors will be serially correlated. If the

errors et follow the AR(1) process et = ρet−1 + vt, then we can see that the lagged dependent

variable yt−1 must be correlated with the error term et, because yt−1 depends directly on et−1,

and et−1 directly affects the value of et. If ρ ≠ 0, there will be a correlation between yt−1 and et.

In this case, the OLS estimator applied to the lagged dependent variable model will be biased and

inconsistent. Thus, it is very important to test for the presence of serial correlation in models with

lagged dependent variables on the right-hand side (see Sections 9.4 and 9.5).

10.2.4 Omitted Variables
When an omitted variable is correlated with an included explanatory variable, then the regression

error will be correlated with the explanatory variable. We introduced this idea in Section 6.3.1.

A classic example is from labor economics. A person’s wage is determined in part by their level

of education. Let us specify a log-linear regression model explaining observed hourly wage as

ln
(
WAGEi

)
= β1+ β2EDUCi + β3EXPERi + β4EXPER2

i + ei (10.6)

with EDUCi = years of education and EXPERi = years of work experience. What else affects

wages? What is omitted from the model? This thought experiment should be carried out each

time a regression model is formulated. There are several factors we might think of, such as labor

market conditions, region of the country, and union membership. However, labor economists are

most concerned about the omission of a variable measuring ability. It is logical that a person’s

ability, intelligence and industriousness may affect the quality of their work and their wage. These

variables are components of the random error ei, since we usually have no measure for them. The

problem is not only that ability might affect wages but more able individuals may also spend

more years in school, causing a positive correlation between the error terms ei and EDUCi, so

that cov
(
EDUCi, ei

)
> 0. If this is true, then we can expect that the least squares estimator of

the returns to another year of education will be positively biased, E
(
b2

)
> β2, and inconsistent,

meaning that the bias will not disappear even in very large samples.

E X A M P L E 10.1 Least Squares Estimation of a Wage Equation

We will use the data on married women in the data file mroz to

estimate the wage model in (10.6). Using the N = 428 women

in the sample who are in the labor force, the least squares

estimates and their standard errors are

ln(WAGE) = −0.5220 + 0.1075 × EDUC
(se) (0.1986) (0.0141)

+ 0.0416 × EXPER − 0.0008 × EXPER2

(0.0132) (0.0004)

We estimate that an additional year of education increases

wages by approximately 10.75%, holding everything else

constant. If ability has a positive effect on wages, then

this estimate is overstated, as the contribution of ability is

attributed to the education variable.

The social and policy importance of the estimate 0.1075

can hardly be exaggerated. Countries invest a large portion

of tax revenue to improve education. Why? Spending on

education is an investment, and like any other investment

investors (taxpaying citizens) expect a rate of return that is

competitive with rates of returns for alternative projects.

Based on the estimated equation above, additional years

of schooling are estimated to increase wages by 10.75%,

holding other factors fixed, meaning that individuals are
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more likely to be self-sufficient, enjoy a good quality of life,

not requiring welfare or public health assistance, and less

likely to engage in crime. Suppose, however, that 10.75%

overestimates the returns to education for wage income. We

might re-evaluate the investment in education and perhaps

decide to spend tax dollars on bridges or parks instead of

schools. Evaluating the social rate of return to education

is a social policy problem. Regression estimates such as

those above play heavily into the calculation. Consequently

we must do all that we can, as econometricians, to obtain

estimates using the best methods. In the next section we

begin our examination of alternative estimation methods

for models in which regression errors are correlated with

regression variables.

10.3 Estimators Based on the Method

of Moments
In the simple linear regression model yi = β1+ β2xi + ei, when xi is random and cov

(
xi, ei

)
≠ 0,

the least squares estimators are biased and inconsistent, with none of their usual nice properties

holding. When faced with such a situation we must consider alternative estimation procedures.

In this section we discuss the “method of moments” principle of estimation, which is an alternative

to the least squares estimation principle. When all the usual assumptions of the linear model hold,

the method of moments leads us to the least squares estimator. If xi is random and correlated with

the error term, the method of moments leads us to an alternative, called instrumental variables

estimation or two-stage least squares estimation, that will work in large samples.

10.3.1 Method of Moments Estimation of a Population
Mean and Variance

Let us begin with a simple case. The kth moment of a random variable Y is the expected value of

the random variable raised to the kth power. That is,

E
(
Yk)= μk = kth moment of Y (10.7)

The Law of Large Numbers (LLN) is a famous theorem. One version says: if X1, X2, … , XN
is a random sample from a population, and if E

(
Xi
)
= μ <∞ and var

(
Xi
)
= σ2

<∞, then the

sample mean X =
∑

Xi∕N converges (in probability) to the expected value (population mean) μ
as the sample size N increases. In this case, X is said to be a consistent estimator of μ. It is useful

to remember that in most situations sample moments are consistent estimators of population
moments.

We can apply the law of large numbers to obtain a consistent estimator of E
(
Yk)= μk by let-

ting Xi = Yk
i and E

(
Xi
)
= μ = E

(
Yk

i

)
= μk. Then, assuming that var

(
Yk

i

)
= σ2

k < ∞, a consistent

estimator of the population moment E
(
Yk)= μk is the corresponding sample moment

E
(
Yk)
⋀

= μ̂k = kth sample moment of Y =
∑

Yk
i

/
N (10.8)

The method of moments estimation procedure equates m population moments to m sample

moments to estimate m unknown parameters. As an example, let Y be a random variable with

mean E(Y)= μ and variance, given in the Probability Primer, equation (P.13):

var(Y) = σ2 = E(Y − μ)2 = E
(
Y2

)
− μ2 (10.9)

In order to estimate the two population parameters μ and σ2, we must equate two population

moments to two sample moments. Let Y1, Y2, …, YN be a random sample from the population.
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The first two population and sample moments of Y are

Population moments sample moments

E(Y) = μ1 = μ μ̂ =
∑

Yi
/

N

E
(
Y2

)
= μ2 μ̂2 =

∑
Y2

i

/
N

(10.10)

Note that for the first population moment μ1, it is customary to drop the subscript and use μ to

denote the population mean of Y . With these two moments, we can solve for the unknown mean

and variance parameters. Equate the first sample moment in (10.10) to the first population moment

to obtain an estimate of the population mean,

μ̂ =
∑

Yi
/

N = Y (10.11)

Then use (10.9), replacing the second population moment in (10.10) by its sample value and

replacing first moment μ by (10.11)

σ̃2 = μ̂2 − μ̂
2 =

∑
Y2

i

N
− Y

2
=

∑
Y2

i − NY
2

N
=

∑(

Yi − Y
)2

N
(10.12)

The method of moments leads us to the sample mean as an estimator of the population mean. The

method of moments estimator of the variance has N in its denominator, rather than the usual

N − 1, so it is not exactly the sample variance we are used to. But in large samples this will not

make much difference. In general, method of moments estimators are consistent, and converge

to the true parameter values in large samples, but there is no guarantee that they are “best” in

any sense.

10.3.2 Method of Moments Estimation in the Simple
Regression Model

The definition of a “moment” can be extended to more general situations. Assumption RS3*

states that E
(
ei
)
= 0 and cov

(
xi, ei

)
= E

(
xiei

)
= 0. Using these two equations, we can derive

the OLS estimator by using the method of moments approach. In the linear regression model

yi = β1+ β2xi + ei, the two moment conditions E
(
ei
)
= 0 and E

(
xiei

)
= 0 imply

E
(
ei
)
= 0 ⇒ E

(
yi − β1− β2xi

)
= 0 (10.13)

and

E
(
xiei

)
= 0 ⇒ E

[

xi
(
yi − β1− β2xi

)]

= 0 (10.14)

Equations (10.13) and (10.14) are population moment conditions. The Law of Large Numbers

says that under random sampling, sample moments converge to population moments, so

1

N
∑(

yi − β1− β2xi
) p
→E

(
yi − β1− β2xi

)
= 0

1

N
∑[

xi
(
yi − β1− β2xi

)] p
→E

[

xi
(
yi − β1− β2xi

)]

= 0

Setting the two sample moment conditions to zero and replacing the unknown parameters β1 and

β2 by their estimators b1 and b2, we have two equations and two unknowns

1

N
∑(

yi − b1 − b2xi
)
= 0

1

N
∑[

xi
(
yi − b1 − b2xi

)]

= 0
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Multiplying these two equations by N we have the two normal equations (2A.3) and (2A.4) given

in Appendix 2A, and solving them yields the least squares estimators,

b2 =
∑(

xi − x
)(

yi − y
)

∑(
xi − x

)2

b1 = y − b2x

What we have shown is that under the weaker assumptions, E
(
ei
)
= 0 and zero contemporaneous

covariance between xi and ei, cov
(
xi, ei

)
= E

(
xiei

)
= 0, we can derive the OLS estimators for

the simple linear regression model using the method of moments approach. Further, as we have

discussed in Section 5.7, the OLS estimators are consistent estimators in this case, and have

their usual properties in large samples.

10.3.3 Instrumental Variables Estimation in the Simple
Regression Model

Problems for least squares estimation arise when xi is random and contemporaneously correlated

with the random error ei, so that cov
(
xi, ei

)
= E

(
xiei

)
≠ 0. In this case xi is endogenous. As we

have discussed in Sections 5.7 and 6.3, and Appendix 6B, the OLS estimator is biased and incon-
sistent when an explanatory variable is endogenous. Also, in the method of moments context,

endogeneity makes the moment condition in equation (10.14) invalid.

What are we to do? The method of moments approach gives us an insight into an alternative.

Suppose that there is another variable, zi, with the following properties:

Characteristics of a Good Instrumental Variable
IV1: zi does not have a direct effect on yi, and thus it does not belong on the right-hand side

of the model yi = β1+ β2xi + ei as an explanatory variable.

IV2: zi is not contemporaneously correlated with the regression error term ei, so that

cov
(
zi, ei

)
= E

(
ziei

)
= 0. Variables with the property cov

(
zi, ei

)
= E

(
ziei

)
= 0 are said to be

exogenous.

IV3: zi is strongly (or at least not weakly) correlated with xi, the endogenous explanatory

variable.

A variable zi with these properties is called an instrumental variable. This terminology arises

because while z does not have a direct effect on y, having it will allow us to estimate the relation-

ship between x and y. It is a tool, or instrument, that we are using to achieve our objective.

If such a variable z exists, then we can use it to form a moment condition to replace (10.14),

that is,

E
(
ziei

)
= 0 ⇒ E

[

zi
(
yi − β1− β2xi

)]

= 0 (10.15)

Then we can use the two moment equations (10.13) and (10.15) to obtain estimates of β1 and β2.

Again appealing to the Law of Large numbers, we can assert that sample moments converge to

population moments. Therefore,

1

N
∑(

yi − β1− β2xi
) p
→E

(
yi − β1− β2xi

)
= 0

1

N
∑[

zi
(
yi − β1− β2xi

)] p
→E

[

zi
(
yi − β1− β2xi

)]

= 0
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Assuming we have a sufficiently large sample, we set the sample moments to zero, yielding the

two sample moment conditions

1

N
∑(

yi − β̂1 − β̂2xi

)

= 0

1

N
∑

zi

(

yi − β̂1 − β̂2xi

)

= 0

(10.16)

Solving these equations leads us to method of moments estimators, which in economics are usu-

ally called the instrumental variable (IV) estimators,

β̂2 =
N
∑

ziyi −
∑

zi
∑

yi

N
∑

zixi −
∑

zi
∑

xi
=

∑(
zi − z

)(
yi − y

)

∑(
zi − z

)(
xi − x

)

β̂1 = y − β̂2x

(10.17)

We introduce the notation β̂1 and β̂2 for the instrumental variables estimators to differentiate

them from the OLS estimators b1 and b2. If properties IV1, IV2, and IV3 hold, then these new

estimators are consistent, they converge to the true parameter values as the sample size N →∞.

Also, they have approximate normal distributions in large samples, which we denote by “
a∼”. For

the simple regression model

β̂2

a∼N
[

β2, var
⋀

(

β̂2

)]

where the estimated variance is

var
⋀

(

β̂2

)

=
σ̂2

IV
∑(

zi − z
)2

[∑(
zi − z

)(
xi − x

)]2
(10.18a)

The IV estimator of the error variance σ2 is

σ̂2

IV =

∑(

yi − β̂1 − β̂2xi

)2

N − 2
(10.18b)

10.3.4 The Importance of Using Strong Instruments
When working with instrumental variables, a constantly repeated question is “How strong are

the instruments?” What is a strong instrument? We will develop a full answer to that question in

this chapter, but initially, we define a strong instrument z as one that is highly correlated with the

endogenous variable x. To show why this definition is useful, apply a bit of algebra to the expres-

sion for the variance var
(

β̂2

)

in equation (10.18a) to obtain an informative equivalent expression.

var
⋀

(

β̂2

)

=
σ̂2

IV
∑(

zi − z
)2

[∑(
zi − z

)(
xi − x

)]2

=
σ̂2

IV

⎧
⎪
⎨
⎪
⎩

[∑(
zi − z

)(
xi − x

)]2/

(N − 1)
∑(

zi − z
)2∑(

xi − x
)2
/

(N − 1)

⎫
⎪
⎬
⎪
⎭

∑(
xi − x

)2

=
σ̂2

IV

r2
zx
∑(

xi − x
)2
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We simply multiplied and divided by
∑(

xi − x
)2

and by (N − 1) in the middle equation and did

some rearranging. The final expression tells us about the precision of estimation of the coeffi-

cient of the endogenous variable. As was the case with the OLS estimator, the variance of β̂2

depends on the variation in the explanatory variable about its mean,
∑(

xi − x
)2

, and the esti-

mated variance of the error term σ̂2

IV . Those components are familiar to you. What is new is that

the denominator also includes the squared sample correlation rzx between the instrumental vari-

able z and the endogenous variable x. The larger the magnitude of the sample correlation |
|rzx

|
|

the smaller the estimated variance of the IV estimator, and vice versa. When |
|rzx

|
| is large, the

instrumental variable is strong. Stronger instrumental variables lead to smaller estimated vari-

ances, smaller standard errors, narrower interval estimates, and generally more precise statistical

inference. It is important to choose strong instrumental variables.

To illustrate and make the point about instrument strength dramatic, suppose cov
(
xi, ei

)
= 0,

so that both the OLS and IV estimators are consistent. Comparing the estimated variance of

the two estimators, the ratio of the estimated variance of the IV estimator to that of the OLS

estimator is

var
⋀

(

β̂2

)

var
⋀(

b2

) =

σ̂2
IV

r2
zx
∑(

xi − x
)2

σ̂2

∑(
xi − x

)2

=
σ̂2

IV
/
σ̂2

r2
zx

≃ 1

r2
zx

The final approximation uses the fact that if cov
(
xi, ei

)
= 0, then in large samples the two estima-

tors of σ2 will converge to the same value so that σ̂2

IV
/
σ̂2 ≃ 1. The squared correlation r2

zx < 1 and

thus we anticipate that the variance estimate for the IV estimator will be larger than the variance

estimate for the OLS estimator. The IV estimator is less efficient than the OLS estimator, meaning

that it makes less efficient use of sample data to estimate the unknown parameters.

We prefer the more efficient consistent estimator because it has a smaller standard error,

leading to narrower interval estimates, making statistical inferences more precise. The ratio of

standard errors is se
(

β̂2

)/

se
(
b2

)
≃ 1∕||rzx

|
|. If the correlation rzx = 0.5, then se

(

β̂2

)/

se
(
b2

)
≃ 2,

the estimated standard error of the IV estimator is two times as large as the standard error of the

OLS estimator. If rzx = 0.1, then se
(

β̂2

)/

se
(
b2

)
≃ 10, the estimated standard error of the IV

estimator is 10 times as large as the standard error of the OLS estimator.

To put some meat on these bones, recall that in large samples a 95% interval estimate is

approximately “estimate ± 2(standard error).” For the sake of illustration, suppose b2 ≃ β̂2 = 5

and se
(
b2

)
= 1, then the 95% interval estimate using the OLS estimator is 5 ± 2(1) or

[
3, 7

]
.

If rzx = 0.5, then the interval estimate based on the IV estimator is 5 ± 2(2) or
[
1, 9

]
. If rzx = 0.1,

then the interval estimate based on the IV estimator is 5 ± 2(10) or
[
−15, 25

]
. This shocking

difference will remind you not to use the IV estimator unless you have to. If you do have to use IV

estimation, then you must search for a strong instrumental variable, one that is highly correlated

with the endogenous x.

10.3.5 Proving the Consistency of the IV Estimator
The demonstration that the instrumental variables estimator is consistent follows the logic used

in Section 10.1.3. The IV estimator of β2 in (10.17) is

β̂2 =
∑(

zi − z
)(

yi − y
)
∕(N − 1)

∑(
zi − z

)(
xi − x

)
∕(N − 1)

=
cov
⋀

(z, y)
cov
⋀

(z, x)
The sample covariance converges to the true covariance in large samples, so we can say

β̂2 →
cov(z, y)
cov(z, x)
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If the instrumental variable z is not correlated with x in either the sample data or in the population,

then the instrumental variable estimator fails. Having z and x uncorrelated in the sample data

would mean a zero in the denominator of β̂2. Having z and x uncorrelated in the population means

β̂2 would not converge in large samples. Thus for an instrumental variable to be valid, it must be

uncorrelated with the error term e but correlated with the explanatory variable x.

Now, following the same steps as in Section 10.1.3, we obtain

β2 =
cov(z, y)
cov(z, x)

− cov(z, e)
cov(z, x)

If we can assume that that cov
(
zi, ei

)
= 0, a condition we imposed on the choice of the instrumen-

tal variable zi, then the instrumental variables estimator β̂2 converges in large samples to β2,

β̂2 →
cov(z, y)
cov(z, x)

= β2

Thus, if cov
(
zi, ei

)
= 0 and cov

(
zi, xi

)
≠ 0, then the instrumental variable estimator of β2 is con-

sistent, in a situation in which the OLS estimator is not consistent due to correlation between xi
and ei.

E X A M P L E 10.2 IV Estimation of a Simple Wage Equation

To illustrate the instrumental variables estimation method in

a simple regression consider a simplified version of the

model used in Example 10.1, ln(WAGE) = β1+ β2EDUC + e.

Using the data file mroz on N = 428 married women, the

OLS estimates are

ln(WAGE)
⋀

= −0.1852 + 0.1086EDUC
(se) (0.1852) (0.0144)

The estimated rate of return to education is approximately

10.86%, and t = 7.55 indicates that the estimated coefficient

is significantly different from zero at even the 1% level of

significance. If EDUC is endogenous, and correlated with the

random error e, then OLS estimation may lead to incorrect

inferences. We anticipate that EDUC is positively correlated

with the omitted variable “ability,” meaning that the esti-

mated rate of return 10.86% may overstate the true value.

What might we use as an instrumental variable?

One proposal is to use mother’s years of education,

MOTHEREDUC, as an instrument. Does this qualify? In

Section 10.3.3, we listed three criteria for an instrumental

variable. First, does this variable have a direct effect on the

dependent variable? Does it belong in the equation? Mother’s

education should not play any direct role in the determina-

tion of a daughter’s wage, so this seems fine. Second, the

instrument should not be contemporaneously correlated with

the random error, e. Is a mother’s education correlated

with the omitted variable, her daughter’s ability? This is

more difficult. Ability includes many attributes, including

intelligence, creativity, perseverance, and industriousness to

name a few. Some portion of these character traits may be

passed into our genetic makeup from our parents. We dodge

the scientific debate on this issue and assume that a mother’s

years of education are uncorrelated with her daughter’s

ability. Third, the instrument should be highly correlated

with the endogenous variable. This we can check! For the

428 women in the sample the correlation between mother’s

education and daughter’s education is 0.3870. This is not

very large, but it is not very small either.

The instrumental variables estimates are

ln(WAGE)
⋀

= 0.7022 + 0.0385EDUC
(se) (0.4851) (0.0382)

The IV estimate of the rate of return to education is 3.85%,

one-third of the OLS estimate. The standard error is about

2.65 times larger than the OLS standard error, which is very

close to what we reasoned that the ratio might be when both

estimators are consistent,

se
(

β̂2

)/

se
(
b2

)
= 0.0382∕0.0144 = 2.65 ≃ 1∕rzx

= 1∕0.3807 = 2.58

10.3.6 IV Estimation Using Two-Stage Least Squares (2SLS)
We can obtain the instrumental variables estimates by another type of calculation, one that will

help us extend the IV estimation idea to more general situations. The method called two-stage
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least squares uses two least squares regressions to calculate the IV estimates. The first-stage
equation has a dependent variable that is the endogenous regressor x, and the independent vari-

able z, the instrumental variable. That is, the first-stage equation is

x = γ1 + θ1z + v

where γ1 is an intercept parameter, θ1 is a slope parameter, and v is an error term. The steps in

2SLS are as follows:

1. Estimate the first-stage equation by OLS and obtain the fitted value, x̂ = γ̂1 + θ̂1z.

2. In the second stage, replace the endogenous variable x in the simple regression

y = β1+ β2x + e with x̂ = γ̂1 + θ̂1z and then apply OLS estimation to y = β1+ β2x̂ + e∗.

The OLS estimates of β1 and β2 from the second-stage regression are identically equal to the

IV estimates β̂1 and β̂2. Furthermore, the estimated variances and covariances of β̂1 and β̂2 are

the OLS formulas with σ̂2

IV =
∑(

yi − β̂1 − β̂2xi

)2/

(N − 2) replacing the usual estimate of σ2 and

using the fact that x̂ = x,

var
⋀

(

β̂2

)

=
σ̂2

IV
∑(

x̂i − x
)2

(10.19)

This variance estimate is numerically identical to the previous expression in equation (10.18a).

If (10.19) is not used, the second-stage OLS regression computes the variance incorrectly,

because OLS software will use

σ̂2

WRONG =
∑(

yi − β̂1 − β̂2x̂i

)2/

(N − 2)

putting x̂i in place of xi. Always use software designed for IV/2SLS as it will carry out the cor-

rect calculation.

E X A M P L E 10.3 2SLS Estimation of a Simple Wage Equation

To illustrate the two-stage least squares equivalent of

instrumental variables estimation, we estimate the first-stage

equation, a regression of the endogenous variable EDUC on

the instrumental variable MOTHEREDUC

EDUC
⋀

= 10.1145 + 0.2674MOTHEREDUC
(se) (0.3109) (0.0309)

In order for MOTHEREDUC to be a strong instrumental vari-

able it must be strongly correlated with EDUC. Another way

to say this is that MOTHEREDUC should be strongly sig-

nificant in this first-stage equation, and it is. The t-value is

8.66, so the coefficient is significantly different from zero at

the 1% level. We will say much more about this approach in

Section 10.3.9.

In the second-stage equation, we regress ln(WAGE) on

the fitted value from the first-stage equation,

ln(WAGE)
⋀

= 0.7021 + 0.0385EDUC
⋀

(incorrect se) (0.5021) (0.0396)

The coefficient estimates are the same as in Example 10.2, but

note that the standard errors produced by this second OLS

estimation are not the same as in Example 10.2. They are

incorrect because they use σ̂2

WRONG.

10.3.7 Using Surplus Moment Conditions
The reason for introducing two-stage least squares is that it is an easy way to use extra, additional,

instrumental variables. In a simple regression, we need only one instrumental variable, yielding

two moment conditions like (10.16), which we solve for the two unknown model parameters.
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Sometimes, however, we have more instrumental variables than are necessary. Suppose we have

two good instruments, z1 and z2 that satisfy conditions IV1–IV3. Compared to (10.16) we have the

additional moment condition

E
(
z2e

)
= E

[

z2

(
y − β1− β2x

)]

= 0

There are now three sample moment conditions:

1

N
∑(

yi − β̂1 − β̂2xi

)

= 0

1

N
∑

zi1

(

yi − β̂1 − β̂2xi

)

= 0

1

N
∑

zi2

(

yi − β̂1 − β̂2xi

)

= 0

We have three equations with only two unknowns. There are no solutions satisfying all three

equations. We could simply throw away one of the conditions (instruments) and use the remaining

two to solve for the unknowns. A better solution is to use all the available instruments by com-

bining them. It can be proved that the best way of combining instruments is using the two-stage

least squares idea. In the simple regression y = β1+ β2x + e, if x is endogenous, and we have two

instruments, z1 and z2, the first-stage equation becomes

x = γ1 + θ1z1 + θ2z2 + v

Estimate the first-stage equation by OLS and obtain the fitted value

x̂ = γ̂1 + θ̂1z1 + θ̂2z2

We have combined the two instruments z1 and z2 into the single instrument x̂. Using x̂ as an

instrument for x leads to two sample-moment conditions,

1

N
∑(

yi − β̂1 − β̂2xi

)

= 0

1

N
∑

x̂i

(

yi − β̂1 − β̂2xi

)

= 0

Solving these conditions, and using x̂ = x, we have

β̂2 =

∑(

x̂i − x̂
)(

yi − y
)

∑(

x̂i − x̂
)(

xi − x
) =

∑(
x̂i − x

)(
yi − y

)

∑(
x̂i − x

)(
xi − x

)

β̂1 = y − β̂2x

The estimates obtained using these formulas are identical to the IV/2SLS estimates obtained by

applying least squares to y = β1+ β2x̂ + e∗. If we have more than two instrumental variables we

apply the same strategy of combining several instruments into one.

E X A M P L E 10.4 Using Surplus Instruments in the Simple Wage Equation

Father’s education is also a potential instrument for daugh-

ter’s education. Using the 428 observations in the data file

mroz, the correlation between FATHEREDUC and EDUC

is 0.4154. The first-stage equation is

EDUC = γ1 + θ1MOTHEREDUC + θ2FATHEREDUC + v
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The OLS estimated first-stage equation is

EDUC
⋀

= 9.4801 + 0.1564MOTHEREDUC
(se) (0.3211) (0.0358)

+ 0.1881FATHEREDUC
(0.0336)

The t-statistics for the coefficients of MOTHEREDUC and

FATHEREDUC are 4.37 and 5.59, respectively, and are

significant at the 1% level. The test of the joint significance

of the two IV is even more important than their individ-

ual significance. The F-statistic for the null hypothesis

H0∶θ1 = 0, θ2 = 0 is 55.83, which is very significant, and

we can conclude that at least one of the two IV coefficients

is not zero based on this joint test. The importance of the

F-test is discussed in Section 10.3.9.

In the second-stage equation, we replace EDUC by

EDUC
⋀

and apply least squares to obtain the IV/2SLS

estimates

ln(WAGE)
⋀

= 0.5510 + 0.0505EDUC
⋀

(incorrect se) (0.4257) (0.0335)

The coefficient estimates are the correct IV estimates, but the

standard errors reported are incorrect. Using proper IV soft-

ware yields

ln(WAGE)
⋀

= 0.5510 + 0.0505EDUC
⋀

(se) (0.4086) (0.0322)

10.3.8 Instrumental Variables Estimation in the Multiple
Regression Model

To implement instrumental variables estimation in a multiple regression equation, we need esti-

mation formulas that are more general than equation (10.17). To extend our analysis to a more

general setting, consider the multiple regression model y = β1+ β2x2 + · · · + βKxK + e. Suppose

that among the explanatory variables we know, or suspect, that xK is an endogenous variable

correlated with the error term. The first K − 1 variables
(
x1 = 1, x2,… , xK−1

)
are exogenous

variables that are uncorrelated with the error term e—they are “included” instruments. Instru-

mental variables estimation can be carried out using a two-step process, with an OLS regression

in each step.

The first-stage regression has the endogenous variable xK on the left-hand side, and all
exogenous and instrumental variables on the right-hand side. If we have L “external” instru-

mental variables (we are Lucky to have them) that are from outside the model z1, z2, …, zL, then

the first-stage regression is

xK = γ1 + γ2x2 + · · · + γK−1xK−1 + θ1z1 + · · · + θLzL + vK (10.20)

where vK is a random error term that is uncorrelated with all the right-hand side variables.

Estimate the first-stage regression (10.20) by OLS and obtain the fitted value

x̂K = γ̂1 + γ̂2x2 + · · · + γ̂K−1xK−1 + θ̂1z1 + · · · + θ̂LzL (10.21)

The fitted value x̂K is the optimal combination of all the exogenous and instrumental variables.

The second-stage regression is based on the original specification with x̂K replacing xK ,

y = β1+ β2x2 + · · · + βKx̂K + e∗ (10.22)

where e∗ is an error term. OLS estimation of (10.22) is justified because in large samples e∗ is

uncorrelated with the explanatory variables, including x̂K . The OLS estimators from this equation,

β̂1,… , β̂K , are the instrumental variables (IV) estimators, and, because they can be obtained

by two least squares regressions, they are also popularly known as the two-stage least squares
(2SLS) estimators. We will refer to them as IV or 2SLS or IV/2SLS estimators. In the general

case with more than one endogenous variable on the right-hand side the steps are similar and are

discussed in Section 10.3.10.
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We can use the standard formulas for estimator variances and covariances for the least squares

estimator of (10.22), which we described in Section 5.3.1, with one modification. While we can

use two least squares estimations to obtain proper estimates, least squares software does not

produce correct standard errors and t-values. The IV/2SLS estimator of the error variance is

based on the residuals from the original model, y = β1+ β2x2 + · · · + βKxK + e, so that the proper

estimator of the error variance σ2 is the general version of equation (10.18b)

σ̂2

IV =

∑(

yi − β̂1 − β̂2xi2 − · · · − β̂KxiK

)2

N − K
Econometric software will automatically use the proper variance estimator if a two-stage least

squares or instrumental variables estimation option is chosen. Using the IV/2SLS estimated stan-

dard errors from (10.22), we can carry out t-tests and construct interval estimates of parameters

that are valid in large samples. Furthermore, the usual tests of joint hypotheses are valid in large

samples if the instrumental variables are not weak.

It is informative to recall the discussion in Section 6.4.1. Usually the coefficient of the endoge-

nous variable is most interesting. Thinking about our wage equation example, the coefficient of

EDUC, years of education, is of critical importance. Let SSEx̂K
be the sum of squared residuals

from the regression of x̂K on xexog =
(
x1 = 1, x2, x3,… , xK−1

)
, then, in large samples,

β̂K
a∼N

[

βK , var
(

β̂K

)]

and the variance estimate is

var
⋀

(

β̂K

)

=
σ̂2

IV

SSEx̂K

(10.23)

Equation (10.23) shows that the variance of β̂K , the instrumental variables estimator of βK ,

depends on, SSEx̂K
, the variation in x̂K that is not explained by xexog =

(
x1 = 1, x2, x3,… , xK−1

)
.

See equation (6.33) and the surrounding discussion. Because this is such an important concept

we return to it in Section 10.3.9 when analyzing “weak” instrumental variables.

E X A M P L E 10.5 IV/2SLS Estimation in the Wage Equation

In addition to education a worker’s experience is also impor-

tant in determining their wage. Because additional years of

experience have a declining marginal effect on wage use the

quadratic model

ln(WAGE) = β1+ β2EXPER + β3EXPER2 + β4EDUC + e

where EXPER is years of experience. This is the same

specification as in Example 10.1. We assume that EXPER is

an exogenous variable that is uncorrelated with the worker’s

ability and therefore uncorrelated with the random error e.

Two instrumental variables for years of education, EDUC,

are mother’s and father’s years of education, MOTHER-
EDUC and FATHEREDUC, introduced in the previous

examples. The first-stage equation is

EDUC = γ1 + γ2EXPER + γ3EXPER2 + θ1MOTHEREDUC
+ θ2FATHEREDUC + v

Using the 428 observations in the data file mroz the estimated

first-stage equation is reported in Table 10.1. The IV/2SLS

estimates, with correctly computed standard errors, are

ln(WAGE)
⋀

= 0.0481 + 0.0442EXPER
(se) (0.4003) (0.0134)

− 0.0009EXPER2 + 0.0614EDUC
(0.0004) (0.0314)

The estimated return to education is approximately 6.1%,

and the estimated coefficient is statistically significant with a

t = 1.96.
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T A B L E 10.1 First-Stage Equation

Variable Coefficient Std. Error t-Statistic Prob.

C 9.1026 0.4266 21.3396 0.0000

EXPER 0.0452 0.0403 1.1236 0.2618

EXPER2 −0.0010 0.0012 −0.8386 0.4022

MOTHEREDUC 0.1576 0.0359 4.3906 0.0000

FATHEREDUC 0.1895 0.0338 5.6152 0.0000

10.3.9 Assessing Instrument Strength Using
the First-Stage Model

In Section 10.3.4, we emphasized the importance of a strong instrument when estimating a

simple regression model with an endogenous explanatory variable. There the assessment of the

instrument’s strength was based on the correlation between the endogenous variable x and

the instrument z. In a multiple regression measuring instrument strength is more complicated.

The first-stage regression is a key tool in assessing whether an instrument is “strong” or “weak”

in the multiple regression setting.

Case 1: Assessing the Strength of One Instrumental Variable Suppose that

xK is endogenous and we have available one external instrumental variable z1. In terms of the

notation above L = 1. The first-stage regression equation is

xK = γ1 + γ2x2 + · · · + γK−1xK−1 + θ1z1 + vK (10.24)

In a simple regression model, we can look for instrument strength in the correlation between the

endogenous variable and the instrument. In the multiple regression model, we must deal with the

other exogenous variables
(
x2,… , xK−1

)
. The key to assessing the strength of the instrumental

variable z1 is the strength of its relationship to xK after controlling for the effects of all the other

exogenous variables. This, however, is exactly the purpose of multiple regression analysis. The

coefficient θ1 in the first-stage regression (10.24) measures the effect of z1 on xK after accounting

for the effects of the other variables.

Not only must there be an effect of z1 on xK but also it must be a statistically significant
effect. How significant? Very significant. To reject the hypothesis that the instrument z1 is weak,

a rule of thumb is that the F-test statistic for the null hypothesis H0∶θ1 = 0 in equation (10.24)

should be greater than 10. Using the relationship between the t- and F-tests, t2 = F described in

Section 6.1.3, this translates into the absolute t-statistic for significance being greater than 3.16,

which is larger than the usual 5% critical values±1.96 or the 1% critical values±2.58. The F > 10

rule has been refined by econometric researchers Stock and Yogo, and we discuss their analysis

in Appendix 10A. Estimates and tests based on an IV estimator are unreliable when instruments

are weak.

Further Analysis of Weak Instruments1 Another way to illustrate this point is the

following. The logic may seem a bit cumbersome, but the final result will be intuitively pleasing.

............................................................................................................................................

1This section is more advanced.
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In Section 10.3.8, we argued that the approximate large sample variance of the IV estimator

of βK is

var
⋀

(

β̂K

)

=
σ̂2

IV

SSEx̂K

where SSEx̂K
is the sum of squared residuals from the regression of x̂K on

(
x2, x3,… , xK−1

)
, where

x̂K is the fitted value from the first-stage regression (10.24),

x̂K = γ̂1 + γ̂2x2 + · · · + γ̂K−1xK−1 + θ̂1z1

By taking one more step, we can obtain an insight into how important the first-stage regression

results can be. Let us consider a regression of x̂K on xexog =
(
x1 = 1, x2, x3,… , xK−1

)
and z1.

We do not need to do this in practice; we know it will result in a perfect fit, with an R2 = 1.

Nevertheless, let us follow the Frisch–Waugh–Lovell approach described in Section 5.2.4.

• First, partial out xexog from x̂K and obtain the residuals ̃̂xK .

• Second, partial out xexog from the instrument z1 and obtain the residuals z̃1. The sum of

squared residuals is
∑

z̃2
i1.

• Regress ̃̂xK on z̃1, with no constant. The estimated coefficient is θ̂1, R2 = 1, and the fitted

value θ̂1z̃1 exactly equals ̃̂xK!

• Because ̃̂xK = θ̂1z̃1, we can write SSEx̂K
=
∑

̃̂x2

iK =
∑(

θ̂1z̃i1

)2

= θ̂
2

1

∑
z̃2

i1.

The result is an alternative expression for the large sample variance of the IV estimator of βK
given in (10.23),

var
(

β̂K

)

=
σ̂2

IV

SSEx̂K

=
σ̂2

IV

θ̂
2

1

∑
z̃2

i1

(10.25)

What factors contribute to the precision of the IV estimator of βK? The first important factor is the

magnitude of the estimate θ̂1 from the first-stage regression. It is important that this coefficient is

large! Second, how much variation is there in the external instrument z1 after removing the linear

effects of the included exogenous variables, xexog? What is important is the amount of variation

in z1 not explained by the included exogenous variables xexog. Ideally z1 would be uncorrelated

with xexog and exhibit large variation. If θ̂1 is numerically small, or if z1 is highly correlated with

xexog, or exhibits little variation, then the precision of the IV estimator β̂K will be worse.

Case 2: Assessing the Strength of More Than One Instrumental Variable
Suppose that xK is endogenous and we have available L external instrumental variables, z1,

z2, …, zL. For a single endogenous variable, we need only a single instrument. Sometimes more

instruments are available, and having more strong instruments may improve the instrumental

variables estimator. The first-stage regression equation is now

xK = γ1 + γ2x2 + · · · + γK−1xK−1 +

external IV
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

θ1z1 + · · · + θLzL + vK (10.26)

What we require is that at least one of the instruments be strong. Given the nature of the

requirement, a joint F-test of the null hypothesis H0∶θ1 = 0, θ2 = 0,… , θL = 0 in (10.26) is

relevant, because the alternative is that at least one of the θi coefficients is nonzero. If the F-test

statistic value is sufficiently large, roughly F > 10, we reject the hypothesis that the instruments

are “weak” and can proceed with instrumental variables estimation. If the F-value is not

sufficiently large, then instrumental variables and two-stage least squares estimation is quite

possibly worse than “ordinary” least squares.
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The fitted value from the first-stage regression (10.26) is

x̂K = γ̂1 + γ̂2x2 + · · · + γ̂K−1xK−1 + θ̂1z1 + · · · + θ̂LzL

Applying the Frisch–Waugh–Lovell Theorem, as in the previous section, we find that

var
⋀

(

β̂K

)

=
σ̂2

IV

∑(

θ̂1z̃i1 + θ̂2z̃i2 + · · · + θ̂Lz̃iL

)2
(10.27)

where z̃il is the ith residual from a regression of zl on xexog =
(
x1 = 1, x2, x3,… , xK−1

)
.

The precision of the IV estimator of βK depends on the magnitudes of the first-stage coefficients

and the unexplained components of the external instrumental variables.

E X A M P L E 10.6 Checking Instrument Strength in the Wage Equation

In Example 10.5, there is only one potentially endogenous

variable in the wage equation, EDUC. The minimum number

of instrumental variables is one. Given two instruments,

we require that at least one of them be significant in the

first-stage equation. The F-test null hypothesis is that both

coefficients, θ1 and θ2, are zero, and if we reject this null

hypothesis we conclude that at least one of them is nonzero.

In the first-stage regression in Table 10.1, the estimated

coefficient of MOTHEREDUC is 0.1576 with a t-value

of 4.39, and the estimated coefficient of FATHEREDUC
is 0.1895 with a t-value of 5.62. The F-statistic value for

the null hypothesis that both these coefficients are zero

is 55.40, which is significant at the 1% level, but more

importantly it is larger than the rule-of-thumb threshold,

F > 10. In addition to the vitally important F-statistic, the

goodness-of-fit measures R2 and R
2

are sometimes reported.

For the first-stage equation in Table 10.1, these values are

R2 = 0.1527 and R
2
= 0.1467.

Partial Correlation and Partial R2

In addition to the first-stage F-statistic, R2 and adjusted-R2,

a partial correlation or partial-R2 are informative. Applying

the partialling-out strategy of the Frisch–Waugh–Lovell

Theorem is another way to examine instrument strength.

The included exogenous variables in the wage equation are

xexog =
(
x1 = 1, EXPER, EXPER2

)
. Regress EDUC on xexog

and obtain the residuals, REDUC.

Suppose that we are using the single instrument

MOTHEREDUC. Regress MOTHEREDUC on xexog and

obtain the residuals, RMOM. These residual variables have

the included exogenous variables partialled-out. That is,

we have removed the linear influences of the included

exogenous variables from the endogenous variable EDUC
and the external IV, MOTHEREDUC. The correlation

between REDUC and RMOM is called a partial correlation,

and in this case it is 0.3854. The R2 from a regression of

REDUC on RMOM is called the partial-R2, and in this case

it is 0.1485. Because we have one endogenous variable and

one external IV, the partial-R2 = 0.1485 is the square of the

partial correlation, 0.38542 = 0.1485.

If there are more external instruments, the partial-R2

is the R2 of the partialled-out endogenous variable on all

the partialled-out external IV. Add FATHEREDUC as an

IV, regress it on xexog and obtain the residuals, RDAD. The

partial-R2 is then the R2 from the regression of REDUC on

RMOM and RDAD. In this case, partial-R2 = 0.2076 and the

adjusted partial-R2 = 0.2038.

10.3.10 Instrumental Variables Estimation
in a General Model

To extend our analysis to a more general setting, consider the multiple regression model

y = β1+ β2x2 + · · · + βKxK + e. Suppose that among the explanatory variables
(
x1 = 1, x2,… , xK

)

we know, or suspect, that several may be correlated with the error term e. Divide the variables

into two groups, with the first G variables
(
x1 = 1, x2,… , xG

)
being exogenous variables that are

uncorrelated with the error term e. The second group of B = K − G variables
(
xG+1, xG+2,… , xK

)
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is correlated with the regression error, and thus they are endogenous. The multiple regression

model, including all K variables, is then

y =

G exogenous variables
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

β1+ β2x2 + · · · + βGxG +

B endogenous variables
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

βG+1xG+1 + · · · + βKxK + e (10.28)

In order to carry out IV estimation we must have at least as many instrumental variables as we

have endogenous variables. Suppose we have L external instrumental variables, from outside the

model, z1, z2, …, zL. Such notation is invariably confusing and cumbersome. It may help to keep

things straight to think of G = Good explanatory variables and B = Bad explanatory variables

and L = Lucky instrumental variables, since we are lucky to have them. Then we have The Good,
the Bad, and the Lucky.

It is a necessary condition for IV estimation that L ≥ B. If L = B then there are just

enough instrumental variables to carry out IV estimation. The model parameters are said to be

just-identified or exactly identified in this case. The term identified is used to indicate that the

model parameters can be consistently estimated. If L > B then we have more instruments than

are necessary for IV estimation, and the model is said to be overidentified.

To implement IV/2SLS, estimate B first-stage equations, one for each explanatory variable

that is endogenous. On the left-hand side of the first-stage equations, we have an endogenous

variable. On the right-hand side, we have all the exogenous variables, including the G explanatory

variables that are exogenous, and the L instrumental variables, which also must be exogenous.

The B first-stage equations are

xG+j = γ1j + γ2jx2 + · · · + γGjxG + θ1jz1 + · · · + θLjzL + vj, j = 1,… ,B (10.29)

The first-stage parameters (γ’s and θ’s) take different values in each equation, which is why they

have a “j” subscript. We have omitted the observation subscript for simplicity. Since the right-hand

side variables are all exogenous, we can estimate (10.29) by OLS. Then obtain the fitted values

x̂G+j = γ̂1j + γ̂2jx2 + · · · + γ̂GjxG + θ̂1jz1 + · · · + θ̂LjzL, j = 1,… ,B

This comprises the first stage of two-stage OLS estimation.

In the second stage of estimation we apply least squares to

y = β1+ β2x2 + · · · βGxG + βG+1x̂G+1 + · · · + βKx̂K + e∗ (10.30)

This two-stage estimation process leads to proper instrumental variables estimates, but it should

not be done this way in applied work. Use econometric software designed for two-stage least

squares or instrumental variables estimation so that standard errors, t-statistics, and other test

statistics will be computed properly.

Assessing Instrument Strength in a General Model The F-test for weak
instruments discussed in Section 10.3.9 is not valid for models having more than one endogenous

variable on the right side of the equation. Consider the model in (10.28) with B = 2,

y = β1+ β2x2 + · · · + βGxG + βG+1xG+1 + βG+2xG+2 + e (10.31)

where x2, …, xG are exogenous and uncorrelated with the error term e, while xG+1 and xG+2

are endogenous. Suppose that we have two external instrumental variables z1 and z2, with z1

being a good instrument for both xG+1 and xG+2. The weak instrument F-test may be signifi-

cant in each first-stage equation even if z2 is an irrelevant instrument and not at all related to

xG+1 or xG+2. In such a case, we might conclude that we have two valid instruments when we

have only one.
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The first-stage equations in this case are

xG+1 = γ11 + γ21x2 + · · · + γG1xG + θ11z1 + θ21z2 + v1

xG+2 = γ12 + γ22x2 + · · · + γG2xG + θ12z1 + θ22z2 + v2

The weak instrument F-test in the first equation is for the joint significance of θ11 and θ21,

H0∶θ11 = 0, θ21 = 0, with the alternative hypothesis that at least one of these coefficients is

not zero. If θ11 is statistically significant, then the joint null hypothesis may be rejected even

if θ21 = 0. Similarly in the second equation we can obtain a significant F-test outcome even if z2

is irrelevant as an instrument for xG+1 as long as z1 is statistically significant. In this case we have

two individually significant F-tests despite the fact that only one valid instrument z1 is available,

and thus the model in (10.31) is not identified. The more general test required for this case, which

builds on the concept of “partial correlation” is discussed in Appendix 10A.

10.3.11 Additional Issues When Using IV Estimation
In this section, we discuss some issues related to IV estimation.

Hypothesis Testing with Instrumental Variables Estimates We may be

interested in testing hypotheses about the regression parameters based on the two-stage least

squares/instrumental variables estimates. When testing the null hypothesis H0∶βk = c, use of

the test statistic t =
(

β̂k − c
)/

se
(

β̂k

)

is valid in large samples. We know that as N →∞, the

t(N−K) distribution converges to the standard normal distribution N(0, 1). If the degrees of freedom

N − K are large, then critical values from the two distributions will be very close. It is common,

but not universal, practice to use critical values, and p-values, based on the t(N−K) distribution

rather than the more strictly appropriate N(0, 1) distribution. The reason is that tests based on the

t-distribution tend to work better in samples of data that are not large.

Another issue is whether to use standard errors that are “robust” to the presence of het-

eroskedasticity (in cross-section data) or autocorrelation and heteroskedasticity (in time-series

data). These options were described in Chapters 8 and 9 for the linear regression model, and they

are also available in most software packages for IV estimation. Such corrections to standard errors

require large samples in order to work properly.

When using software to test a joint hypothesis, such as H0∶β2 = c2, β3 = c3, the test may be

based on the chi-square distribution with the number of degrees of freedom equal to the num-

ber of hypotheses (J) being tested. The test itself may be called a Wald test, or a likelihood

ratio (LR) test, or a Lagrange multiplier (LM) test. These testing procedures are all asymp-

totically equivalent and are discussed in Appendix C.8.4. However, the test statistic reported

may also be called an F-statistic with J numerator degrees of freedom and N − K denomina-

tor degrees of freedom. This F-value is often calculated by dividing one of the chi-square tests

statistics, such as the Wald statistic, by J. The motivation for using the F-test is to achieve bet-

ter performance in small samples. Asymptotically, the tests will all lead to the same conclusion.

See Chapter 6, Appendix 6A, for some related discussion. Once again, joint tests can be made

“robust” to potential heteroskedasticity or autocorrelation problems, and this is an option with

many software packages.

Generalized Method-of-Moments Estimation If heteroskedasticity or serial cor-

relation is present in a model with one or more endogenous variables, then using instrumental

variables estimation with a “robust” covariance matrix ensures that interval estimators, hypoth-

esis tests and prediction intervals use a valid standard error. However, using an instrumental
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variables estimator with a robust covariance matrix estimator does not improve the efficiency

of the estimator, just like using the OLS estimator with a robust covariance matrix estimator

does not improve its efficiency. In Chapters 8 and 9 we introduced a generalized least squares
estimator for linear regression models with error terms that are heteroskedastic and/or serially

correlated. In the same way, there is a generalized method-of-moments (GMM) estimator that

is “asymptotically” more efficient than the instrumental variables estimator. Being “asymptoti-

cally more efficient” means that the GMM estimator has smaller variances than the IV estimator

in large samples. In order to obtain the gain, we must have at least one surplus instrument. The

gain in efficiency is obtained by building into the estimator a heteroskedasticity and/or serial cor-

relation correction. Despite the fact that the GMM estimator improves the large sample precision

of estimation its actual performance in samples that are not large might not be good. And like the

IV estimator, good instruments are required. Theoretically, the GMM estimator is very attractive

because it is a general estimation approach that includes the OLS estimator, the GLS estimator

and IV/2SLS as special cases.

The GMM estimation procedure is built into econometric software packages but their

proper usage requires an in-depth study of the methodology, which is beyond the scope of this

book. It is one of the few topics that is difficult to explain without the tools of matrix algebra.

Advanced readers can consult William Greene (2018) Econometric Analysis, Eighth Edition,

Pearson Prentice-Hall, Chapter 13.

Goodness-of-Fit with Instrumental Variables Estimates We discourage the

use of measures like R2 outside the context of OLS estimation. When there are endogenous

variables on the right-hand side of a regression equation, the concept of measuring how well the

variation in y is explained by the x variables breaks down, because as we discussed in Section 10.2,

these models exhibit feedback. This logical problem is paired with a numerical one. If our model is

y = β1+ β2x + e, then the IV residuals are ê = y − β̂1 − β̂2x. Many software packages will report

the goodness-of-fit measure R2 = 1 −
∑

ê2

i
/∑(

yi − y
)2

. Unfortunately, this quantity can be

negative when based on IV estimates.

10.4 Specification Tests
We have shown that if an explanatory variable is correlated with the regression error term, the

OLS estimator fails. If a strong instrumental variable is available, the IV estimator is consistent

and approximately normally distributed in large samples. But if we use a weak instrument, or

an instrument that is invalid in the sense that it is not uncorrelated with the regression error,

then IV estimation can be as bad as, or worse than, using the OLS estimator. We addressed how

to detect weak instruments in Section 10.3.9, and go into much greater detail on this problem in

Appendix 10A. In this section we ask two other important questions that must be answered in each

situation in which instrumental variables estimation is considered:

1. Can we test for whether x is correlated with the error term? This might give us a guide for

when to use least squares and when to use IV estimators.

2. Can we test if our instrument is valid, and uncorrelated with the regression error, as required?

10.4.1 The Hausman Test for Endogeneity
In the previous sections, we discussed the fact that the least squares estimator fails if there is

correlation between an explanatory variable and the error term. We also provided an estimator,

the instrumental variables estimator, that can be used when the least squares estimator fails.
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The question we address in this section is how to test for the presence of a correlation between

an explanatory variable and the error term, so that we can use the appropriate estimation

procedure.

The null hypothesis is H0∶cov
(
xi, ei

)
= 0 against the alternative that H1∶cov

(
xi, ei

)
≠ 0.

The idea of the test is to compare the performance of the OLS estimator to an instrumental

variables estimator. Under the null and alternative hypotheses, we know the following:

• If the null hypothesis is true, both the OLS estimator b and the instrumental variables esti-

mator β̂ are consistent. Thus, in large samples the difference between them converges to

zero. That is, q =
(
b − β̂

)
→ 0. Naturally, if the null hypothesis is true, use the more efficient

estimator, which is the least squares estimator.

• If the null hypothesis is false, the OLS estimator is not consistent, and the instrumental vari-

ables estimator is consistent. Consequently, the difference between them does not converge

to zero in large samples. That is, q =
(
b − β̂

)
→ c ≠ 0. If the null hypothesis is not true, use

the instrumental variables estimator, which is consistent.

There are several forms of the test, usually called the Hausman test in recognition of econometri-

cian Jerry Hausman’s pioneering work on this problem, for these null and alternative hypotheses.

One form of the test directly examines the differences between the least squares and instrumental

variables estimates, as we have described above. Some computer software programs implement

this test for the user, which can be computationally difficult to carry out.2

An alternative form of the test is very easy to implement, and is the one we recommend.

See Section 10.4.2 for an explanation of the test’s logic. In the regression yi = β1+ β2xi + ei,

we wish to know whether xi is correlated with ei. Let z1 and z2 be instrumental variables for x.

At minimum, one instrument is required for each variable that might be correlated with the error

term. Then carry out the following steps:

1. Estimate the first-stage model x = γ1+ θ1z1 + θ2z2 + v by OLS, including on the right-hand

side all instrumental variables and all exogenous variables not suspected to be endogenous,

and obtain the residuals

v̂ = x − γ̂1 − θ̂1z1 − θ̂2z2

If more than one explanatory variable is being tested for endogeneity, repeat this estimation

for each one.

2. Include the residuals computed in step 1 as an explanatory variable in the original regression,

y = β1+ β2x + δv̂ + e. Estimate this “artificial regression” by OLS, and employ the usual

t-test for the hypothesis of significance:

H0∶δ = 0
(
no correlation between xi and ei

)

H1∶δ ≠ 0
(
correlation between xi and ei

)

3. If more than one variable is being tested for endogeneity, the test will be an F-test of joint

significance of the coefficients on the included residuals.

The t- and F-tests in steps two and three can be made robust if heteroskedasticity and/or autocor-

relation are potential problems.

............................................................................................................................................

2Some software packages compute Hausman tests with K, or K − 1, degrees of freedom, where K is the total number of

regression parameters. This is incorrect. Use the correct degrees of freedom B, equal to the number of potentially

endogenous right-hand-side variables (see 10.28).
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10.4.2 The Logic of the Hausman Test3

In Section 10.4.1, we presented the Hausman test for whether or not an explanatory variable is

endogenous using an artificial regression. Let us explore how this test works. The simple regres-

sion model is

y = β1+ β2x + e (10.32)

If x is correlated with the error term e, then x is endogenous and the OLS estimator is biased and

inconsistent.

An instrumental variable z must be correlated with x but uncorrelated with e in order to be

valid. A correlation between z and x implies that there is a linear association between them. This

means that we can describe their relationship as a regression

x = γ1 + θ1z + v (10.33)

This is the first-stage equation introduced in Section 10.3.6. It is a predictive model with the

base assumption E(x|z) = γ1+ θ1z. The conditional mean of the endogenous variable x is linearly

related to the instrumental variable z. The error term v is simply v = x – (γ1+ θ1z) so that the two

sides of (10.33) are equal. There is a correlation between x and z if, and only if, θ1 ≠ 0. We can

divide x into two parts, a systematic part and a random part, as

x = E(x|z) + v (10.34)

where E(x|z) = γ1+ θ1z. If we knew γ1 and θ1, we could substitute (10.34) into the simple regres-

sion model (10.32) to obtain

y = β1+ β2x + e = β1+ β2

[
E(x|z) + v

]
+ e

= β1+ β2E(x|z) + β2v + e (10.35)

Now, suppose for a moment that E(x|z) and v can be observed and are viewed as explanatory

variables in the regression y = β1+ β2E(x|z) + β2v + e. Will least squares work when applied to

this equation? The explanatory variable E(x|z) depends only on z and it is not correlated with the

error term e if z is a valid instrument. The endogeneity problem, if there is one, comes from a

correlation between v (the random part of x) and e. In fact, in the regression (10.32) any correlation

between x and e implies correlation between v and e because v = x − E(x|z).
We cannot exactly create the partition in (10.34) because we do not know γ1 and θ1. However,

we can consistently estimate the first-stage equation (10.33) by OLS. Doing so, we obtain the fitted

first-stage equation x̂ = E(x|z)
⋀

= γ̂1 + θ̂1z and the residuals v̂ = x − x̂. Rearrange these to obtain

an estimated analog of (10.34),

x = E(x|z) + v̂ = x̂ + v̂ (10.36)

Substitute (10.36) into the original equation (10.32) to obtain

y = β1+ β2x + e = β1+ β2

[
x̂ + v̂

]
+ e

= β1+ β2x̂ + β2v̂ + e (10.37)

To reduce confusion, and avoid β2 appearing twice in same equation, let the coefficient of v̂ be

denoted as γ, so that (10.37) becomes

y = β1+ β2x̂ + γv̂ + e (10.38)

............................................................................................................................................

3Contains advanced material.
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If we omit v̂ from (10.38) the regression becomes

y = β1+ β2x̂ + e (10.39)

The least squares estimates of β1 and β2 in (10.39) are the IV/2SLS estimates discussed in Section

10.3.6. Then, recall from Section 6.6.1, equation (6.23), that if we omit a variable from a regres-

sion that is uncorrelated with the included variable(s) there is no omitted variables bias, and

in fact the least squares estimates are unchanged! This holds true in (10.39) because the least

squares residuals v̂ are uncorrelated with x̂ and the intercept variable. Thus, the least squares esti-

mates of β1 and β2 in (10.38) and (10.39) are identical and are equal to the IV/2SLS estimates.

Consequently, the least squares estimators of β1 and β2 in (10.38) are consistent whether or not x
is exogenous, because they are the IV estimators.

What about γ? If x is exogenous, and hence v and e are uncorrelated, then the least squares

estimator of γ in (10.38) will also converge in large samples to β2. However, if x is endogenous

then the least squares estimator of γ in (10.38) will not converge to β2 in large samples because v̂,

like v, is correlated with the error term e. This observation makes it possible to test for whether

x is exogenous by testing the equality of the estimates of β2 and γ in (10.38). If we reject the null

hypothesis H0∶β2 = γ then we reject the exogeneity of x, and conclude that it is endogenous.

Carrying out the test is made simpler by playing a trick on (10.38). Add and subtract β2v̂
to the right-hand side to obtain

y = β1+ β2x̂ + γv̂ + e + β2v̂ − β2v̂

= β1+ β2

(
x̂ + v̂

)
+
(
γ − β2

)
v̂ + e

= β1+ β2x + δv̂ + e (10.40)

Thus, instead of testing H0∶β2 = γ we can simply use an ordinary t-test of the null hypothesis

H0∶δ = 0 in (10.40), which is exactly the test we described in Section 10.4.1. This is much nicer

because software automatically prints out the t-statistic for this hypothesis test. This test can be

made robust to heteroskedasticity and/or autocorrelation if desired.

10.4.3 Testing Instrument Validity
A valid instrument z must be contemporaneously uncorrelated with the regression error term, so

that cov
(
zi, ei

)
= 0. If this condition fails then the resulting moment condition, like (10.16), is

invalid and the IV estimator will not be consistent. Unfortunately, not every instrument can be

tested for validity. In order to compute the IV estimator for an equation with B possibly endoge-

nous variables, we must have at least B instruments. The validity of this minimum number of

required instruments cannot be tested. In the case in which we have L > B instruments available,

we can test the validity of the L − B extra, or surplus, moment conditions.4

An intuitive approach is the following. From the set of L instruments, form groups of B
instruments and compute the IV estimates using each different group. If all the instruments are

valid, then we would expect all the IV estimates to be similar. Rather than do this, there is a test

of the validity of the surplus moment conditions that is easier to compute. The steps are

1. Compute the IV estimates β̂k using all available instruments, including the G variables

x1 = 1, x2, …, xG that are presumed to be exogenous, and the L instruments z1, …, zL.

2. Obtain the residuals êIV = y − β̂1− β̂2x2 − · · · − β̂KxK .

............................................................................................................................................

4Econometric jargon for surplus moment conditions is “overidentifying restrictions.” A surplus of moment conditions

means we have more than enough for identification, hence “overidentifying.” Moment conditions like (10.16) can be

thought of as restrictions on parameters.
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3. Regress êIV on all the available instruments described in step one.

4. Compute NR2 from this regression, where N is the sample size and R2 is the usual goodness-

of-fit measure.

5. If all of the surplus moment conditions are valid, then NR2 ∼ χ2
(L−B).

5 If the value of the test

statistic exceeds the 100(1 − α)th percentile (i.e., the critical value) from the χ2
(L−B) distribu-

tion, then we conclude that at least one of the surplus moment conditions is not valid.

If we reject the null hypothesis that all the surplus moment conditions are valid, then we are

faced with trying to determine which instrument(s) are invalid, and how to weed them out.

E X A M P L E 10.7 Specification Tests for the Wage Equation

In Section 10.3.6, we examined a ln(WAGE) equation

for married women, using the two instruments “mother’s

education” and “father’s education” for the potentially

endogenous explanatory variable education (EDUC).

To implement the Hausman test we first obtain

the first-stage regression estimates, which are shown in

Table 10.1. Using these estimates we calculate the least

squares residuals v̂ = EDUC − EDUC
⋀

. Insert the residuals

in the ln(WAGE) equation as an extra variable, and estimate

the resulting augmented regression using OLS. The resulting

estimates are shown in Table 10.2.

The Hausman test of the endogeneity is based on the

t-test of significance of the first-stage regression residuals, v̂.

If we reject the null hypothesis that the coefficient is zero,

we conclude that education is endogenous. Note that the

coefficient of the first-stage regression residuals (VHAT) is

significant at the 10% level of significance using a two-tail

test. While this is not strong evidence of the endogeneity of

education, it is sufficient cause for concern to consider using

instrumental variables estimation. Second, note that the

coefficient estimates of the remaining variables, but not their

standard errors, are identical to their instrumental variables

estimates. This feature of the regression-based Hausman test

is explained in Section 10.4.2.

T A B L E 10.2 Hausman Test Auxiliary Regression

Variable Coefficient Std. Error t-Statistic Prob.

C 0.0481 0.3946 0.1219 0.9030

EDUC 0.0614 0.0310 1.9815 0.0482

EXPER 0.0442 0.0132 3.3363 0.0009

EXPER2 −0.0009 0.0004 −2.2706 0.0237

VHAT 0.0582 0.0348 1.6711 0.0954

In order to be valid, the instruments MOTHEREDUC
and FATHEREDUC should be uncorrelated with the

regression error term. As discussed in Section 10.4.3,

we cannot test the validity of both instruments, only the

“overidentifying” or surplus instrument. Since we have two

instruments and only one potentially endogenous variable,

we have L − B = 1 extra instrument. The test is carried out

by regressing the residuals from the ln(WAGE) equation,

calculated using the instrumental variables estimates, on

all available exogenous and instrumental variables. The test

statistic is NR2 from this artificial regression, and R2 is the

usual goodness-of-fit measure. If the surplus instruments

are valid, then the test statistic has an asymptotic χ2
(1)

distribution, where the degrees of freedom are the number

of surplus instruments. If the test statistic value is greater

than the critical value from this distribution, then we reject

the null hypothesis that the surplus instrument is valid.

For the artificial regression R2 = 0.000883, and the test

statistic value is NR2 = 428 × 0.000883 = 0.3779. The

0.05 critical value for the chi-square distribution with one

degree of freedom is 3.84, so we fail to reject the surplus

instrument as valid. With this result we are reassured that

our instrumental variables estimator for the wage equation is

consistent.

............................................................................................................................................

5This test is valid if errors are homoskedastic and is sometimes called the Sargan test. If the errors are heteroskedastic,

there is a more general test called Hansen’s J-test that is provided by some software. A very advanced reference is

Hayashi, Econometrics, Princeton, 2000, pp. 227–228.
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10.5 Exercises

10.5.1 Problems

10.1 Using state level data, a researcher wishes to examine the relationship between the median rent paid

(RENT) as a function of median house values (MDHOUSE in $1000). The percentage of the state

population living in an urban area (PCTURBAN) is used as an additional control. Use the results in

Table 10.3 to answer the following questions.

T A B L E 10.3 Estimates for Exercise 10.1

(1) (2) (3) (4) (5) (6)
RENT MDHOUSE MDHOUSE RENT RENT EHAT

C 125.9 −19.78 7.225 121.1 121.1 −53.50

(14.19) (10.23) (8.936) (12.87) (15.51) (22.66)

PCTURBAN 0.525 0.205 0.616 0.116 0.116 −0.257

(0.249) (0.113) (0.131) (0.254) (0.306) (0.251)

MDHOUSE 1.521 2.184 2.184

(0.228) (0.282) (0.340)

FAMINC 2.584 3.851

(0.628) (1.393)

REG4 15.89 −16.87

(3.157) (6.998)

VHAT −1.414

(0.411)

N 50 50 50 50 50 50

R2 0.669 0.679 0.317 0.737 0.609 0.198

SSE 20259.6 3907.4 8322.2 16117.6 23925.6 19195.8

Standard errors in parentheses.

a. The OLS estimates of the model are in column (1). Why might we be concerned that

MDHOUSE, the median price of houses, is endogenous in this regression?

b. Two instruments are considered: median family income (FAMINC in $1000) and a regional

dummy variable REG4. Using the models in columns (2) and (3), test if the instruments

are weak.

c. In column (4), the least squares residuals (VHAT) from the regression in column (2) are added as

a regressor to the basic regression. The estimates are obtained using OLS. What is the usefulness

of this regression? What does it indicate about the results in (1)?

d. In column (5) are IV/2SLS estimates using the instruments listed in part (b). What differences

do you observe between these results and the OLS results in column (1)? Note that the estimates

(though not the standard errors) are the same in columns (4) and (5). Is this a mistake? Explain.

e. In column (6) the residuals from the estimation in column (5) are regressed upon the variables

shown. What information is contained in these results?

10.2 The labor supply of married women has been a subject of a great deal of economic research. Consider

the following supply equation specification

HOURS = β1+ β2WAGE + β3EDUC + β4AGE + β5KIDSL6 + β6NWIFEINC + e

where HOURS is the supply of labor, WAGE is hourly wage, EDUC is years of education, KIDSL6 is

the number of children in the household who are less than 6 years old, and NWIFEINC is household

income from sources other than the wife’s employment.
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a. Discuss the signs you expect for each of the coefficients.

b. Explain why this supply equation cannot be consistently estimated by OLS regression.

c. Suppose we consider the woman’s labor market experience EXPER and its square, EXPER2, to be

instruments for WAGE. Explain how these variables satisfy the logic of instrumental variables.

d. Is the supply equation identified? Explain.

e. Describe the steps [not a computer command] you would take to obtain IV/2SLS estimates.

10.3 In the regression model y = β1+ β2x + e, assume x is endogenous and that z is a valid instrument.

In Section 10.3.5, we saw that β2 = cov(z, y)∕cov(z, x).
a. Divide the denominator of β2 = cov(z, y)∕cov(z, x) by var(z). Show that cov(z, x)/var(z) is

the coefficient of the simple regression with dependent variable x and explanatory variable z,
x = γ1 + θ1z + v. [Hint: See Section 10.2.1.] Note that this is the first-stage equation in two-stage

least squares.

b. Divide the numerator of β2 = cov( z, y)∕cov(z, x) by var(z). Show that cov(z, y)/var(z) is the

coefficient of a simple regression with dependent variable y and explanatory variable z,

y = π0 + π1z + u. [Hint: See Section 10.2.1.]

c. In the model y = β1+ β2x + e, substitute for x using x = γ1 + θ1z + v and simplify to obtain

y = π0 + π1z + u. What are π0, π1, and u in terms of the regression model parameters and error

and the first-stage parameters and error? The regression you have obtained is a reduced-form
equation.

d. Show that β2 = π1∕θ1.

e. If π̂1 and θ̂1 are the OLS estimators of π1 and θ1, show that β̂2 = π̂1∕θ̂1 is a consistent estimator

of β2 = π1∕θ1. The estimator β̂2 = π̂1∕θ̂1 is an indirect least squares estimator.

10.4 Suppose that x is endogenous in the regression yi = β1+ β2xi + ei. Suppose that zi is an instrumen-

tal variable that takes two values, one and zero; it is an indicator variable. Make the assumption

E
(
ei|zi

)
= 0.

a. Show that E
(
yi|zi

)
= β1+ β2E

(
xi|zi

)
.

b. Assume E
(
xi|zi

)
≠ 0. Does zi satisfy conditions IV1–IV3? Explain.

c. Write out the conditional expectation in (a) for the two cases with zi = 1 and zi = 0. Solve the

two resulting equations for β2.

d. Suppose we have a random sample
(
yi, xi, zi

)
, i = 1,… ,N. Give an intuitive argument that a con-

sistent estimator of E
(
yi|zi = 1

)
is the sample average of the yi values for the subset of observations

for which zi = 1, which we might call y1.

e. Following the strategy in part (d) form y1, y0, x1, and x0. Show that the empirical implementation

of the expression in (c) is β̂WALD =
(
y1 − y0

)/(
x1 − x0

)
, which is the Wald Estimator, in honor

of Abraham Wald.

f. Explain how E
(
xi|zi = 1

)
− E

(
xi|zi = 0

)
might be viewed as a measure of the strength of the

instrumental variable zi.

10.5 Suppose that xi is endogenous in the regression yi = β1+ β2xi + ei. Suppose that zi is an instrumen-

tal variable that takes two values, one and zero with probabilities p and 1 − p, respectively, that is,

Pr
(
zi = 1

)
= p and Pr

(
zi = 0

)
= 1 − p.

a. Show that E
(
zi
)
= p.

b. Show that E
(
yizi

)
= pE

(
yi|zi = 1

)
.

c. Use the law of iterated expectations to show that E
(
yi
)
= pE

(
yi|zi = 1

)
+(1 − p) E

(
yi|zi = 0

)
.

d. Substitute (a), (b), and (c) results into E
(
yizi

)
− E

(
yi
)
E
(
zi
)

to show that

cov
(
yi, zi

)
= p(1 − p)E

(
yi|zi = 1

)
− p(1 − p)E

(
yi|zi = 0

)
.

e. Use the arguments in (a)–(d) to show that cov
(
xi, zi

)
= p(1 − p)

[
E
(
xi|zi = 1

)
− E

(
xi|zi = 0

)]
.

f. Assuming E
(
ei
)
= 0 show

[
yi − E

(
yi
)]
= β2

[
xi − E

(
xi
)]
+ ei.

g. Multiply both sides of the expression in (f ) by zi − E
(
zi
)

and take expectations to show

cov
(
yi, zi

)
= β2cov

(
xi, zi

)
if cov

(
ei, zi

)
= 0.

h. Using (d), (f ), and (g) show that β2 =
E
(
yi|zi = 1

)
− E

(
yi|zi = 0

)

E
(
xi|zi = 1

)
− E

(
xi|zi = 0

)

i. Show that the empirical implementation of (h) leads to β̂WALD =
(
y1 − y0

)/(
x1 − x0

)
.

10.6 Suppose that xi is endogenous in the regression yi = β1+ β2xi + ei. Suppose that zi is an instrumental

variable that takes two values, one and zero.
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a. Let N1 =
∑

zi be the number of zi values such that zi = 1. Show that
∑

zixi = N1x1 where x1 is the

sample average of the xi values corresponding to zi = 1.

b. Let N0 = N −
∑

zi = N − N1 be the number of zi values such that zi = 0. Show that
∑

xi = N1x1 +
N0x0 where x0 is the sample average of the xi values corresponding to zi = 0.

c. Show that N
∑

xizi −
∑

zi
∑

xi = N1N0

(
x1 − x0

)

d. Show that N
∑

yizi −
∑

zi
∑

yi = N1N0

(
y1 − y0

)

e. Use the results in (c) and (d) to show that the IV estimator of β2 in (10.17) reduces to

β̂2 =
(
y1 − y0

)
∕
(
x1 − x0

)
.

f. The estimated variance of the IV estimator is given in (10.18a). Show that
∑(

zi − z
)(

xi − x
)
=

∑
zixi − N zx = N1N0

(
x1 − x0

)
.

g. Using the result in part (f ), suppose
(
x1 − x0

)
≃ 0. How does this indicate that the IV zi is weak?

h.
∑(

zi − z
)(

xi − x
)/∑(

zi − z
)2

is the OLS estimate of the slope coefficient from a regression of xi
on zi. True or False? How does this value relate to the weak instrument discussion in part (g)?

If this coefficient is small, with a low t-value, does it imply that zi is a weak IV? Explain.

10.7 Angrist and Krueger (1991) use quarter of birth as an instrumental variable to estimate the returns

to schooling, using a sample of 327,509 from the 1980 census. The model of interest is ln(WAGE) =
β1+ β2EDUC + e.

a. Let ln(WAGE) denote the average of the natural log of weekly wage. For men born in the first

quarter of the year the average is 5.8916, and for men born in the fourth quarter of the year the

average is 5.9027. What is the approximate percentage difference in wages for the two groups of

men?

b. The standard error of the difference in means from part (a) is 0.00274. Is the difference in

ln(WAGE) statistically significant? What is the two-tail p-value?

c. Let EDUC denote the average years of schooling. For men born in the first quarter of the year

the average is 12.6881, and for men born in the fourth quarter of the year the average is 12.7969.

What is the approximate percentage difference in years of schooling for the two groups of men?

Is there a reason why men born in the fourth quarter have higher average schooling than men born

in the first quarter?

d. The standard error of the difference in means from part (c) is 0.0132. Is the difference in EDUC
statistically significant? What is the two-tail p-value.

e. Compute the Wald estimate of the return to schooling, β̂2,WALD using the results above. What is the

instrumental variable z being used in this case? The Wald estimator is introduced in Exercise 10.4.

f. Explain why the result in (d) is important to the success of the Wald estimator.

10.8 Knowledge is Power Program (KIPP) Schools are charter schools with largely minority students.

These schools differ in a number of ways from public schools, but emphasize longer days and more

time spent in school. The question is: “How much benefit is there to attending a KIPP school?”6

a. Let yi = MATHi be the outcome of a math achievement test. This outcome is standardized by

subtracting the average and dividing by the standard deviation, so that y = 0 is the average score,

and y = 1 is a score that is one standard deviation above average, and so on. Let xi = ATTENDEDi
be an indicator variable with the value one if a student attended a KIPP school and zero otherwise.

In the regression yi = β1+ β2xi + ei, suppose that the OLS estimate of β2 is b2 = 0.467, with a

standard error of 0.103. Based on this regression result, does attending a KIPP school seem to

improve math test score? Is the estimate of the amount of improvement a meaningful amount?

If the average math score of those attending the KIPP school is 0.095, what is the average score

of those who do not attend the KIPP school?

b. Explain why we might worry that ATTENDED is an endogenous variable.

c. Offers of admission are randomly assigned to the pool of KIPP applicants. Some of those

offered admission wind up attending and some do not. Let WINNER be an indicator variable

taking the value one if a student receives an offer to attend, and zero otherwise. Suppose that

78.7% of offers to attend are accepted. Does WINNER satisfy the conditions for an instrumental

variable?

............................................................................................................................................................

6This exercise is adapted from Angrist and Pischke (2015) Mastering Metrics: The Path from Cause to Effect,
Princeton University Press.
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d. Suppose that zi = WINNERi. In the terms of this example, explain the components of

β2 =
E
(
yi|zi = 1

)
− E

(
yi|zi = 0

)

E
(
xi|zi = 1

)
− E

(
xi|zi = 0

)

See Exercises 10.4 and 10.5 for background discussion of the expression.

e. The average math score of those receiving an offer to attend the KIPP school was −0.003, which

is very close to average. The average score of those not offered a seat was −0.358, which is about

one-third of a standard deviation below average. Interestingly, some students wind up attending

the KIPP school despite not being randomly selected from the applicants. Assume that the pro-

portion of students attending the KIPP school who were not “winners” be 4.6%. Obtain the Wald

estimator of β2 by replacing the population averages in part (d) with sample averages. How does

this estimate compare to the OLS estimate in part (a)? Does attending a KIPP school appear to

have a meaningful positive effect on scores of those attending?

10.9 Consider the wage equation used in Example 10.5. Suppose we have a variable designed to measure

ABILITY . This variable is an index created using 10 different tests of cognitive ability. Using data on

2,178 white males in 1980, the ability variable has a sample mean of 0.04 and a standard deviation

of 0.96.

a. The estimated relationship between years of education and the ability measure is EDUC
⋀

=
12.30 + 0.977ABILITY with a t-value of 25.81. Is this result consistent with the usual “omitted

variables bias” explanation of the endogeneity of education? Explain.

b. Using these data and the model in Example 10.5, the estimated coefficient on EDUC is 0.0609

with standard error 0.005. Adding ABILITY to the equation reduces the estimated coefficient on

EDUC to 0.054 with standard error 0.006. Is this the effect that you anticipate? Explain.

c. Assuming that ABILITY and EXPER are exogenous, along with instrumental variables MOTH-
EREDUC and FATHEREDUC, what is the specification of the first-stage equation? That is, what

variables are on the right-hand side?

d. Estimating the first-stage equation in (c), we find that the t-values on MOTHEREDUC and

FATHEREDUC are 2.55 and 4.72, respectively. The F-test of their joint significance is 33.82.

Are these instruments adequately strong for their use in IV/2SLS? Explain.

e. Let v̂ denote the OLS residuals from part (d). If we estimate the model in Example 10.5, and

include the variables ABILITY and v̂, the t-statistic for v̂ is −0.94. What does this result tell us

about the endogeneity of EDUC after controlling for ability?

10.10 Consider the model in Example 10.5. Suppose we have the idea that the effect of education may

differ for individuals who have siblings. Suppose SIBS = number of siblings, which we assume is

exogenous. We add to the model the variable EDUC × SIBS.

a. Assuming we treat EDUC as endogenous, what type of variable is EDUC × SIBS? Is it exogenous

or endogenous? Explain your reasoning.

b. In addition to MOTHEREDUC and FATHEREDUC, are MOTHEREDUC × SIBS and

FATHEREDUC × SIBS potentially useful IV? Explain how they satisfy, or might satisfy, the

three conditions IV1–IV3.

c. Using OLS with a large sample of individuals, we find the estimated coefficient of EDUC to be

0.0903 (t = 46.74) and the estimated coefficient of EDUC × SIBS to be −0.0001265 (t = −0.91).
Explain why we should not simply omit the variable EDUC × SIBS in the wage equation based

on this result.

d. The first-stage equations for EDUC and EDUC × SIBS include EXPER, EXPER2, and the four

variables listed in (b). The F-tests for the joint significance of the IV have p-values of 0.0000.

Can we safely conclude that our IV are strong for both EDUC and EDUC × SIBS?

e. We calculate the residuals from the two first-stage equations. Let the residuals from the EDUC
equation be v̂1 and the residuals from the EDUC × SIBS equation be v̂2. We estimate the structural

model by OLS including both v̂1 and v̂2 as explanatory variables. Their t-values are −10.29 and

−1.63, respectively, and the joint F-test of their significance is 55.87. Can we safely conclude that

both EDUC and EDUC × SIBS are endogenous?

f. Using IV/2SLS, we find that the estimated coefficient of EDUC is 0.1462 with a t-value of 25.25,

and the estimated coefficient of EDUC × SIBS is 0.0007942 with a t-value of 4.53. The estimated

covariance between these two coefficients is 4.83 × 10−7. Estimate the marginal effect of another
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year of education on wages for a person with no siblings. What is the estimated marginal effect

of education if a person has five siblings?

10.11 Consider the wage equation in Example 10.5.

a. Two possible instruments for EDUC are NEARC4 and NEARC2, where these are dummy vari-

ables indicating whether the individual lived near a 4-year college or a 2-year college at age 10.

Speculate as to why these might be potentially valid IV.

b. Explain the steps (not the computer command) required to carry out the regression-based

Hausman test, assuming we use both IV.

c. Using a large data set, the p-value for the regression-based Hausman test for the model in Example

10.5, using only NEARC4 as an IV is 0.28; using only NEARC2 the p-value is 0.0736, and using

both IV the p-value is 0.0873 [with robust standard errors it is 0.0854]. What should we conclude

about the endogeneity of EDUC in this model?

d. We compute the IV/2SLS residuals, using both NEARC4 and NEARC2 as IV. In the regression

of these 2SLS residuals on all exogenous variables and the IV, with N = 3010 observations, all

regression p-values are greater than 0.30 and the R2 = 0.000415. What can you conclude based

on these results?

e. The main reason we seldom use OLS to estimate the coefficients of equations with endogenous

variables is that other estimation methods are available that yield better fitting equations. Is this

statement true or false, or are you uncertain? Explain the reasoning of your answer.

f. The F-test of the joint significance of NEARC4 and NEARC2 in the first-stage regression is 7.89.

The 95% interval estimates for the coefficient of education using OLS is 0.0678 to 0.082, and

using 2SLS it is 0.054 to 0.260. Explain why the width of the interval estimates is so different.

10.12 Estimating cost and production functions for industrial plants is important. Decisions are based on

estimated average and marginal cost, and average and marginal products. Suppose a manufactur-

ing plant for a particular firm has output modeled as Q = β1+ β2MGT_EFF + β3CAP + β4LAB + e,

where Q is the output in a particular manufacturing plant, MGT_EFF is a managerial efficiency index,

CAP is capital stock input index and LAB is labor input index.

a. What is the interpretation of β2? What sign should it have?

b. Measuring MGT_EFF is difficult. Suppose we propose to estimate the model

Q = β1+ β2XPER + β3CAP + β4LAB + e

where XPER is the plant manager’s experience, measured in years. What should the sign of β2 be

now? Why might we worry that XPER is endogenous? [Hint: Think carefully about this one.]

c. We use data from 75 plants to estimate the model in (b). The least squares estimates are

Q̂ = 1.7623 + 0.1468XPER + 0.4380CAP + 0.2392LAB
(se) (1.0550) (0.0634) (0.1176) (0.0998)

Are the signs of the coefficients and their significance consistent with your expectations? Explain.

d. If XPER is endogenous, what is the direction of the bias of the OLS estimator? Explain. [Hint:
Remember your answer to part (b).]

e. Suppose we consider AGE, the age of the plant manager, as an instrument. Does it satisfy the

criteria for an IV based on your economic reasoning? Why or why not?

f. In the OLS regression of XPER on CAP, LAB, and AGE, the t-value for the coefficient of AGE is

3.13. What information does this provide us about the feasibility of carrying out IV/2SLS?

g. We add the residuals from part (f ) to the model in (b) to obtain

Q = β1+ β2XPER + β3CAP + β4LAB + β5RESID + e

The t-statistic for the null hypothesis H0∶β5 = 0 from this regression is −2.2. What should we

infer from it?

h. The two-stage least squares estimates are

Q̂ = −2.4867 + 0.5121XPER + 0.3321CAP + 0.2400LAB
(se) (2.7230) (0.2205) (0.1545) (0.1209)
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What are the differences in these estimates versus the OLS estimates? Are the differences consis-

tent with your expectations, relative to the OLS estimates? Explain.

i. Reasoning that AGE is an adequate IV, a staff economist decides to add AGE × LAB and AGE ×
CAP as IV also. Are these likely to be valid IV and uncorrelated with the regression error term?

To test this, the two-stage least squares residuals are regressed on CAP, LAB, AGE, AGE × LAB,

and AGE × CAP. The resulting R2 is 0.0045. What do you think about the validity of the IV now?

j. The economist regresses XPER on CAP, LAB, AGE, AGE × LAB, and AGE × CAP. The F-test of

the joint significance of AGE, AGE × LAB, and AGE × CAP is 3.3. Do you think it is advisable

to use the interaction variables as IV in the estimation? Justify your answer.

10.13 Households plan consumption expenditures and saving with consideration of their long-run income.

We wish to estimate SAVING = β1+ β2LRINCOME + e, where LRINCOME is long-run income.

a. Long-run income is difficult to define and measure. Using data on 50 households’ annual sav-

ings (SAVINGS, $1000 units) and annual income (INCOME, $1000 units), we estimate a savings

equation by OLS to obtain

SAVINGS
⋀

= 4.3428 − 0.0052INCOME
(se) (0.8561) (0.0112)

Why might we expect the OLS estimator of the marginal propensity to save to be biased and

inconsistent? What is the likely direction of the bias?

b. Suppose that in addition to current income we know average household income over the past

10 years (AVGINC, $1000 units). Why might this be a suitable instrumental variable?

c. The estimated first-stage regression is

INCOME
⋀

= −35.0220 + 1.6417AVGINC
(t) (−1.83) (5.80)

Does AVGINC qualify as a strong instrument? Explain.

d. Let the residuals from part (c) be v̂. Adding this variable to the savings equation and estimating

the result by OLS gives

SAVINGS
⋀

= 0.9883 + 0.0392INCOME − 0.0755v̂
(se) (1.1720) (0.0154) (0.0201)

Based on this result should we rely on the OLS estimates of the savings equation?

e. Using the fitted values from part (c) in place of INCOME and applying OLS, we obtain

SAVINGS
⋀

= 0.9883 + 0.0392INCOME
⋀

(se) (1.2530) (0.0165)

Compare these coefficient estimates to those in part (a). Are these estimates more in line with

your prior expectations than those in (a), or not?

f. Are the OLS standard errors in part (e) correct or not? Explain.

g. Using IV/2SLS software, with instrument AVGINC, we obtain the estimates

SAVINGS
⋀

= 0.9883 + 0.0392INCOME
(se) (1.5240) (0.0200)

Construct a 95% interval estimate of the effect of INCOME on SAVINGS. Compare and contrast

it to the 95% interval estimate based on the results in part (a).

h. In parts (d), (e), and (g), the estimated coefficient of INCOME is 0.0392. Is this an accident?

Explain.

i. Explain how to test whether AVGINC is a valid instrument, and uncorrelated with the regression

error.

10.14 The Capital Asset Pricing Model (CAPM) [see Exercise 2.16] says that the risk premium on security

j is related to the risk premium on the market portfolio, that is

rj − r
𝑓
= αj + βj

(
rm − r

𝑓

)



�

� �

�

516 CHAPTER 10 Endogenous Regressors and Moment-Based Estimation

where rj and rf are the returns to security j and the risk-free rate, respectively, rm is the return on the

market portfolio, and βj is the jth security’s “beta” value. A stock’s beta is important to investors since

it reveals the stock’s volatility. We measure the market portfolio using the Standard & Poors value

weighted index, and the risk-free rate by the 30-day LIBOR monthly rate of return.

a. Using 180 monthly observations from January 1988, the OLS estimate of IBM’s beta is 0.9769

with a standard error of 0.0978. If our constructed values of the market return and the risk-free

rate are measured with error is the OLS estimator unbiased and consistent? If it is biased, what is

the direction of the bias?

b. It has been suggested that it is possible to construct an IV by ranking the values of the explanatory

variable and using the rank as the IV. That is, we sort
(
rm − r

𝑓

)
from smallest to largest, and assign

the values RANK = 1, 2,… , 180. Does this variable potentially satisfy the conditions IV1–IV3?

c. The estimated first-stage regression of
(
rIBM − r

𝑓

)
on RANK yields an overall F-test of model

significance of 93.77. What can we conclude about the strength of the IV RANK?

d. If we compute the first-stage residuals and add them to the CAPM model, the resulting coefficient

has a t-value of 60.60. What does this result suggest to us about the OLS estimator in the CAPM

model?

e. Using RANK as an IV and estimating the CAPM model by IV/2SLS yield an estimate of IBM’s

beta of 1.0025 with a standard error of 0.1019. Compare this IV estimate to the OLS estimate in

part (a). Does the IV estimate agree with your expectations?

10.5.2 Computer Exercises

10.15 Consider the simple wage model in Example 10.2. Use the 428 observations on married women who

participate in the labor force.

a. Using the instrumental variables estimator in equation (10.17), divide the numerator and

denominator by (N − 1) and show that the IV estimator is the ratio of sample covariances,

β̂2 = cov
⋀(

zi, yi
)/

cov
⋀(

zi, xi
)
.

b. Using your computer software, calculate cov
⋀(

MOTHEREDUCi, ln
(
WAGEi

))
and

cov
⋀(

MOTHEREDUCi,EDUCi
)
. Compare their ratio to the IV estimate in Example 10.2.

c. In Example 10.5, we added experience and its square to the model specification. To implement the

ratio of covariances estimator in part (a), we first remove (partial-out) the influence of experience

and its square from MOTHEREDUC, EDUC, and ln(WAGE). Regress each of variables on EXPER
and EXPER2 and save the residuals, calling them RMOTHEREDUC, REDUC, and RLWAGE.

Calculate cov
⋀(

RMOTHEREDUCi,RLWAGEi
)

and cov
⋀(

RMOTHEREDUCi,REDUCi
)
. Compare

their ratio to the IV estimate in Example 10.5.

d. Using your IV/2SLS software, estimate the model RLWAGE = β2REDUC + error, omitting the

constant term, using RMOTHEREDUC as an instrumental variable. Compare the resulting esti-

mate to that in part (c).

10.16 Consider the wage model in Example 10.5 and the 428 observations on married women who partici-

pate in the labor force. Use only MOTHEREDUC as an instrument in this exercise.

a. Estimate the first-stage equation by OLS and obtain the fitted values

EDUC
⋀

= γ̂1 + γ̂2EXPER + γ̂3EXPER2 + θ̂1MOTHEREDUC

b. Use OLS to estimate the second-stage equation

ln(WAGE) = β1+ β2EXPER + β3EXPER2 + β4EDUC
⋀

+ error

c. Obtain the least squares residuals, ê, from the estimation in part (b). Calculate
∑

êi. Explain why

the value you obtain is theoretically correct.

d. Using the coefficient estimates from part (b), calculate the residuals

êIV = ln(WAGE) − β̂1 − β̂2EXPER − β̂3EXPER2 − β̂4EDUC

Calculate
∑

êIV . Explain why the value you obtain is theoretically correct.

e. Calculate
∑

ê2

i

/
(N − 4) and

∑
ê2

IV

/
(N − 4). Which of these is the correct estimator of the error

variance, σ2?
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f. Estimate the regression EDUC
⋀

= a1 + a2EXPER + a3EXPER2 + error and obtain the sum of

squared residuals. Use equation (10.25) and one of the values from part (e) to obtain var
⋀

(

β̂4

)

.

g. Using software for IV/2SLS estimate the wage model ln(WAGE) = β1+ β2EXPER + β3EXPER2 +
β4EDUC + e using the instrumental variable MOTHEREDUC. How do the estimates compare to

those in part (b)? Does the reported standard error se
(

β̂4

)

agree with the calculated variance in

part (f )?

10.17 Consider the wage model in Example 10.5 and the 428 observations on married women who partici-

pate in the labor force. Use only MOTHEREDUC as an instrument in this exercise.

a. Estimate the first-stage equation by OLS and obtain the fitted values

EDUC
⋀

= γ̂1 + γ̂2EXPER + γ̂3EXPER2 + θ̂1MOTHEREDUC

Save the least squares residuals. Call them REDUCHAT . Calculate the sum of squared residuals,
∑

REDUCHAT2
i .

b. Estimate the regression EDUC
⋀

= a1 + a2EXPER + a3EXPER2 + error and save the OLS residu-

als. Call them REDUC. Calculate the sum of squared residuals,
∑

REDUC2
i .

c. Estimate the regression MOTHEREDUC = c1 + c2EXPER + c3EXPER2 + error and save the

OLS residuals. Call them RMOM. Calculate the sum of squared residuals,
∑

RMOM2
i .

d. Estimate the regression REDUC = θ1RMOM + error. Compare the estimated value of θ1 from

this regression to the estimated θ1 from the first-stage equation. What R2 value did you obtain

from this regression? What is the sum of squared residuals?

e. Show that
∑

RMOM2
i = θ̂

2

1

∑
REDUC2

i .

f. Refer to equation (10.25) and discuss the importance of the quantities in (e) for the precision of

the IV/2SLS estimator.

10.18 Consider the data file mroz on working wives. Use the 428 observations on married women who

participate in the labor force. In this exercise, we examine the effectiveness of a parent’s college

education as an instrumental variable.

a. Create two new variables. MOTHERCOLL is a dummy variable equaling one if MOTHER-
EDUC >12, zero otherwise. Similarly, FATHERCOLL equals one if FATHEREDUC >12 and

zero otherwise. What percentage of parents have some college education in this sample?

b. Find the correlations between EDUC, MOTHERCOLL, and FATHERCOLL. Are the magnitudes

of these correlations important? Can you make a logical argument why MOTHERCOLL and

FATHERCOLL might be better instruments than MOTHEREDUC and FATHEREDUC?

c. Estimate the wage equation in Example 10.5 using MOTHERCOLL as the instrumental variable.

What is the 95% interval estimate for the coefficient of EDUC?

d. For the problem in part (c), estimate the first-stage equation. What is the value of the F-test statis-

tic for the hypothesis that MOTHERCOLL has no effect on EDUC? Is MOTHERCOLL a strong

instrument?

e. Estimate the wage equation in Example 10.5 using MOTHERCOLL and FATHERCOLL as the

instrumental variables. What is the 95% interval estimate for the coefficient of EDUC? Is it nar-

rower or wider than the one in part (c)?

f. For the problem in part (e), estimate the first-stage equation. Test the joint significance of

MOTHERCOLL and FATHERCOLL. Do these instruments seem adequately strong?

g. For the IV estimation in part (e), test the validity of the surplus instrument. What do you conclude?

10.19 Consider the data file mroz on working wives. Use the 428 observations on married women who

participate in the labor force. In this exercise, we examine the effectiveness of a parent’s college

education as an instrumental variable.

a. Create two new variables. MOTHERCOLL is a dummy variable equaling one if

MOTHEREDUC > 12, zero otherwise. Similarly FATHERCOLL equals one if FATHEREDUC >

12, and zero otherwise. Also, create COLLSUM = MOTHERCOLL + FATHERCOLL and

COLLBOTH = MOTHERCOLL × FATHERCOLL. What values do COLLSUM and COLLBOTH
take? What percentage of women in the sample have both a mother and a father with some

college education.

b. Find the correlations between EDUC, COLLSUM, and COLLBOTH. Are the magnitudes of these

correlations important? Can you make a logical argument why COLLSUM and COLLBOTH
might be better instruments than MOTHEREDUC and FATHEREDUC?
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c. Estimate the wage equation in Example 10.5 using 2SLS with COLLSUM as the instrumental

variable. What is the 95% interval estimate for the coefficient of EDUC?

d. For the problem in part (c), estimate the first-stage equation. What is the value of the F-test

statistic for the hypothesis that COLLSUM has no effect on EDUC? Is COLLSUM a strong

instrument?

e. Using OLS estimate the regression model with EDUC as dependent variable, and include as

explanatory variables experience, and its square, along with MOTHERCOLL and FATHERCOLL,

and a constant term. Test the null hypothesis that the coefficients of MOTHERCOLL and

FATHERCOLL are equal at the 5% level.

f. Based on the results in part (e ), are we justified in using COLLSUM = MOTHERCOLL +
FATHERCOLL as an IV? Are we better off using COLLSUM only or using MOTHERCOLL and

FATHERCOLL?

10.20 The CAPM [see Exercises 10.14 and 2.16] says that the risk premium on security j is related to the

risk premium on the market portfolio. That is

rj − r
𝑓
= αj + βj

(
rm − r

𝑓

)

where rj and rf are the returns to security j and the risk-free rate, respectively, rm is the return on the

market portfolio, and βj is the jth security’s “beta” value. We measure the market portfolio using the

Standard & Poor’s value weighted index, and the risk-free rate by the 30-day LIBOR monthly rate

of return. As noted in Exercise 10.14, if the market return is measured with error, then we face an

errors-in-variables, or measurement error, problem.

a. Use the observations on Microsoft in the data file capm5 to estimate the CAPM model using OLS.

How would you classify the Microsoft stock over this period? Risky or relatively safe, relative to

the market portfolio?

b. It has been suggested that it is possible to construct an IV by ranking the values of the explana-

tory variable and using the rank as the IV, that is, we sort
(
rm − r

𝑓

)
from smallest to largest,

and assign the values RANK = 1, 2, . . . . , 180. Does this variable potentially satisfy the condi-

tions IV1–IV3? Create RANK and obtain the first-stage regression results. Is the coefficient of

RANK very significant? What is the R2 of the first-stage regression? Can RANK be regarded as a

strong IV?

c. Compute the first-stage residuals, v̂, and add them to the CAPM model. Estimate the resulting

augmented equation by OLS and test the significance of v̂ at the 1% level of significance. Can we

conclude that the market return is exogenous?

d. Use RANK as an IV and estimate the CAPM model by IV/2SLS. Compare this IV estimate to the

OLS estimate in part (a). Does the IV estimate agree with your expectations?

e. Create a new variable POS = 1 if the market return
(
rm − r

𝑓

)
is positive, and zero otherwise.

Obtain the first-stage regression results using both RANK and POS as instrumental variables.

Test the joint significance of the IV. Can we conclude that we have adequately strong IV? What

is the R2 of the first-stage regression?

f. Carry out the Hausman test for endogeneity using the residuals from the first-stage equation

in (e). Can we conclude that the market return is exogenous at the 1% level of significance?

g. Obtain the IV/2SLS estimates of the CAPM model using RANK and POS as instrumental vari-

ables. Compare this IV estimate to the OLS estimate in part (a). Does the IV estimate agree with

your expectations?

h. Obtain the IV/2SLS residuals from part (g) and use them (not an automatic command) to carry

out a Sargan test for the validity of the surplus IV at the 5% level of significance.

10.21 Consider the data file mroz on working wives. Use the 428 observations on married women who

participate in the labor force. In this exercise, we examine the effectiveness of alternative constructed

instrumental variables. Estimate the model in Example 10.5 using IV/2SLS using both MOTHER-
EDUC and FATHEREDUC as IV. These will serve as our baseline results.

a. Write down the first-stage equation using econometric notation, as in equation (10.26), with

γ1, γ2, γ3 as the unknown coefficients of the intercept, EXPER and its square, and θ1, θ2 as the

coefficients of MOTHEREDUC and FATHEREDUC, respectively. Test the null hypothesis that

θ1 = θ2 at the 5% level. What do you conclude?

b. Assume that θ1 = θ2 = θ. Substitute into the first-stage equation to obtain a “restricted” model.

What variable involving MOTHEREDUC and FATHEREDUC now appears on the right-hand

side?
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c. Create a new variable PARENTSUM = MOTHEREDUC + FATHEREDUC. Obtain IV/2SLS

estimates using this as the IV. How do the estimates compare to the baseline results? Is this IV

strong?

d. Create two new variables MOMED2 = MOTHEREDUC2 and DADED2 = FATHEREDUC2.

Use these new variables and both MOTHEREDUC and FATHEREDUC as IV. Estimate the

first-stage equation using these four IV. Test their joint significance using an F-test. Are these

instruments adequately strong? Do any seem irrelevant based on t-tests of significance? Find

the simple correlations among the four IV. Are any large?

e. Obtain IV/2SLS estimates of the model in Example 10.5 using the four IV in part (d). How do

these estimates compare to the baseline results and to those in part (c)?

f. Based on the results in this question, which set of IV/2SLS estimates would you prefer to report?

The baseline estimates, the results in part (c), or the results in part (e). Explain your choice.

10.22 Consider the data file mroz on working wives and the model ln(WAGE) = β1+ β2EDUC +
β3EXPER + e. Use the 428 observations on married women who participate in the labor force.

a. Write down in algebraic form the three moment conditions, like (10.13) and (10.14), that would

lead to the OLS estimates of the model above.

b. Calculate the OLS estimates and residuals, êi. What is the sum of the least squares residuals? What

is the sum of squared least squares residuals? What is
∑

EDUCi × êi? What is
∑

EXPERi × êi?

Relate these results to the moment conditions in (a).

c. Calculate the fitted values ln(WAGE)
⋀

= b1 + b2EDUC + b3EXPER. What is the sample average

of the fitted values? What is the sample average of ln(WAGE), ln(WAGE)?
d. Find each of the following:

SST =
∑[

ln
(
WAGEi

)
− ln(WAGE)

]2

, SSE =
∑

ê2

i , SSR =
∑
[

ln
(
WAGEi

)
⋀

− ln(WAGE)
]2

Compute SSR + SSE, R2 = SSR∕SST and R2 = 1 − SSE∕SST . Explain what these calculations

show about measuring goodness-of-fit.

10.23 This question is an extension of Exercise 10.22. Consider the data file mroz on working wives and

the model ln(WAGE) = β1+ β2EDUC + β3EXPER + e. Use the 428 observations on married women

who participate in the labor force. Let the instrumental variable be MOTHEREDUC.

a. Write down in algebraic form the three moment conditions, like (10.16) , that would lead to the

IV/2SLS estimates of the model above.

b. Calculate the IV/2SLS estimates and residuals, êIV . What is the sum of the IV residuals? What is
∑

MOTHEREDUCi × êIV ,i? What is
∑

EXPERi × êIV ,i? Relate these results to the moment con-

ditions in (a).

c. What is
∑

EDUCi × êIV ,i? What is the sum of squared IV residuals? How do these two results

compare with the corresponding OLS results in Exercise 10.22(b)?

d. Calculate the IV/2SLS fitted values FLWAGE = β̂1 + β̂2EDUC + β̂3EXPER. What is the sample

average of the fitted values? What is the sample average of ln(WAGE), ln(WAGE)?
e. Find each of the following:

SST =
∑[

ln
(
WAGEi

)
− ln(WAGE)

]2

, SSE_IV =
∑

ê2

IV ,

SSR_IV =
∑[

FLWAGE − ln(WAGE)
]2

Compute SSR_IV + SSE_IV ,R2
IV ,1

= SSR_IV∕SST , and R2
IV ,2

= 1 − SSE_IV∕SST . How do these

values compare to those in Exercise 10.22(d)?

f. Does your IV/2SLS software report an R2 value. Is it either of the ones in (e)? Explain why the

usual concept of R2 fails to hold for IV/2SLS estimation.

10.24 Consider the data file mroz on working wives. Use the 428 observations on married women who par-

ticipate in the labor force. In this exercise, we examine the effectiveness of alternative standard errors

for the IV estimator. Estimate the model in Example 10.5 using IV/2SLS using both MOTHEREDUC
and FATHEREDUC as IV. These will serve as our baseline results.

a. Calculate the IV/2SLS residuals, êIV . Plot them versus EXPER. Do the residuals exhibit a pattern

consistent with homoskedasticity?
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b. Regress ê2

IV against a constant and EXPER. Apply the NR2 test from Chapter 8 to test for the

presence of heteroskedasticity.

c. Obtain the IV/2SLS estimates with the software option for Heteroskedasticity Robust Standard

Errors. Are the robust standard errors larger or smaller than those for the baseline model? Compute

the 95% interval estimate for the coefficient of EDUC using the robust standard error.

d. Obtain the IV/2SLS estimates with the software option for Bootstrap standard errors, using

B = 200 bootstrap replications. Are the bootstrap standard errors larger or smaller than those for

the baseline model? How do they compare to the heteroskedasticity robust standard errors in (c)?

Compute the 95% interval estimate for the coefficient of EDUC using the bootstrap standard

error.

10.25 To examine the quantity theory of money, Brumm (2005) [“Money Growth, Output Growth,

and Inflation: A Reexamination of the Modern Quantity Theory’s Linchpin Prediction,” Southern
Economic Journal, 71(3), 661–667] specifies the equation

INFLATION = β1+ β2MONEY GROWTH + β3OUTPUT GROWTH + e

where INFLATION is the growth rate of the general price level, MONEY GROWTH is the growth

rate of the money supply, and OUTPUT GROWTH is the growth rate of national output. According

to theory we should observe that β1 = 0, β2 = 1, and β3 = −1. Use the data file brumm. It consists of

1995 data on 76 countries. We wish to test

i. the strong joint hypothesis that β1 = 0, β2 = 1, and β3 = −1.

ii. the weak joint hypothesis β2 = 1 and β3 = −1

a. It is argued that OUTPUT GROWTH may be endogenous. Four instrumental variables are pro-

posed, INITIAL = initial level of real GDP, SCHOOL = a measure of the population’s educational

attainment, INV = average investment share of GDP, and POPRATE = average population growth

rate. Using these instruments, obtain instrumental variables (2SLS) estimates of the inflation

equation.

b. Test the strong and weak hypotheses using the IV estimates.

c. Compute the IV/2SLS residuals, êIV . Identify the observation with the largest absolute residual,

|êIV |. How does it compare to the next smallest residual?

d. Let us examine the effect of the observation with the largest residual. Drop the corresponding

observation from the data, reestimate the model using IV/2SLS, and carry out the tests of the

strong and weak hypotheses. How much do things change, if any?

e. Obtain the IV/2SLS residuals from part (d), ẽIV . Regress ẽ2
IV on MONEY . Calculate the het-

eroskedasticity test statistic NR2. Compare it to the 95th percentile of the χ2
(1) distribution. Is there

evidence of heteroskedasticity?

f. Using the 75 remaining observations from (d) obtain the IV/2SLS estimates with heteroskedas-

ticity robust standard errors. Carry out the tests of the strong and weak hypotheses. How to the

test results compare to those in (d)?

g. Using the remaining 75 observations from (d), estimate the first-stage equation and test the joint

significance of the IV. Repeat the tests robust to heteroskedasticity. Is there evidence that the

instruments are strong?

h. Regress ẽIV against the four IV and MONEY . Are any of the coefficients significant? If the IV are

valid, do we expect any significant coefficients in this regression? Explain.

Appendix 10A Testing for Weak Instruments
The F-test for weak instruments discussed in Section 10.3.9 is not valid for models with more than

one endogenous variable on the right side of the equation.7 Using canonical correlations there

is a solution to the problem of identifying weak instruments when an equation has more than

one endogenous variable. Canonical correlations are a generalization of the usual concept of

............................................................................................................................................

7The F > 10 rule of thumb comes from D. Staiger and J.H. Stock (1997) “Instrumental Variables with Weak

Instruments,” Econometrica 65, pp. 557−586.
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a correlation between two variables and attempt to describe the association between two sets
of variables. The association in which we are interested is the association between the pair of

endogenous variables
(
xG+1, xG+2

)
and the pair of additional, external, instrumental variables

(
z1, z2

)
after controlling for the effect of the other G exogenous variables x1 ≡

(
1, x2,… , xG

)
. The

effects of the G exogenous variables are “removed” by first regressing
(
xG+1, xG+2

)
and

(
z1, z2

)

on x1 and then computing the residuals
(
x̃G+1, x̃G+2

)
and

(
z̃1, z̃2

)
. This process is often called

partialing out the effect of x1.

Suppose that x∗
1
= h11x̃G+1 + h21x̃G+2 is a linear combination of the “partialed out” endoge-

nous variables
(
x̃G+1, x̃G+2

)
and z∗

1
= k11z̃1 + k21z̃2 is a linear combination of the “partialed out”

instrumental variables
(
z̃1, z̃2

)
. Using canonical correlation analysis, we can determine values

h11, h21, k11, and k21, resulting in the largest correlation between x∗
1

and z∗
1
.8 It is called the first

canonical correlation, r1. Similarly, we can determine values h12, h22, k12, and k22, resulting in

the second largest correlation between x∗
2
= h12x̃G+1 + h22x̃G+2 and z∗

2
= k12z̃1 + k22z̃2, which is

called the second canonical correlation, r2—and so on.

If we have two variables in the first set of variables and two variables in the second set,

then there are two canonical correlations, r1 and r2. If we have B variables in the first group (the

endogenous variables with the effects of x1 removed) and L ≥ B variables in the second group

(the group of instruments with the effects of x1 removed), then there are B possible canonical

correlations, r1 ≥ r2 ≥ · · · ≥ rB. If the smallest canonical correlation rB = 0, then we do not have

enough relationships between the instruments and the endogenous variables, and the equation
is not identified.

10A.1 A Test for Weak Identification
Using the smallest canonical correlation, we are able to test whether any relationship between

the instruments and the endogenous variables is sufficiently strong for reliable econometric infer-

ences.9 Let N denote the sample size, B the number of right-hand side endogenous variables, G the

number of exogenous variables included in the equation (including the intercept), L the number of

“external” instruments that are not included in the model, and rB the minimum canonical corre-

lation. A test for weak identification, the situation that arises when the instruments are correlated

with the endogenous regressors but only weakly, is based on the Cragg–Donald F-test statistic10

Cragg–Donald F =
[
(N − L)∕L

]
×
[

r2
B
/(

1 − r2
B
)]

(10A.1)

The Cragg–Donald statistic reduces to the usual weak instruments F-test when the number of

endogenous variables is B = 1. Critical values for this test statistic have been tabulated by James

Stock and Motohiro Yogo (2005),11 so that we can test the null hypothesis that the instruments

............................................................................................................................................

8Certain normalizations on h and k constants are necessary to make the solutions unique. The algebra and calculations

are beyond the scope of this book. An online search will reveal many sources but virtually all use matrix algebra and

multidimensional calculus. Harold Hotelling did research in mathematical statistics and economic theory and introduced

the concept of canonical correlation in a 1935 publication.“The most predictable criterion,” in the Journal of
Educational Psychology.

9The tests based on canonical correlations are neatly summarized in “Enhanced Routines for Instrumental Variables/

Generalized Method of Moments Estimation and Testing,” by Christopher F. Baum, Mark E. Schaffer, and Steven

Stillman, The Stata Journal (2007), 7, pp. 465–506. Further discussion is provided by Alastair R. Hall, Glenn D.

Rudebusch and David W. Wilcox (1996) “Judging Instrument Relevance in Instrumental Variables Estimation,”

International Economic Review, 37(2), pp. 283–298.

10Cragg, J. G. and S. G. Donald (1993) “Testing Identifiability and Specification in Instrumental Variable Models,”

Econometric Theory, 9, 222–240. D. Poskitt and C. Skeels (2009), “Assessing the Magnitude of the Concentration

Parameter in a Simultaneous Equations Model.” The Econometrics Journal, 12, pp. 26–44, showed that the

Cragg–Donald statistic could be conveniently written in terms of the smallest canonical correlation.

11“Testing for Weak Instruments in Linear IV Regression,” in Identification and Inference for Econometric Models:
Essays in Honor of Thomas Rothenberg, eds, Donald W. K. Andrews and James H. Stock. Cambridge University Press,

Chapter 5.
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are weak against the alternative that they are not, for two particular consequences of weak

instruments.

• Relative Bias: In the presence of weak instruments, the amount of bias in the IV estimator

can become large. Stock and Yogo consider the bias when estimating the coefficients of the

endogenous variables. They examine the maximum IV estimator bias relative to the bias of

the least squares estimator. Stock and Yogo give the illustration of estimating the return to

education. If a researcher believes that the least squares estimator suffers a maximum bias of

10%, and if the relative bias is 0.1, then the maximum bias of the IV estimator is 1%.

• Rejection Rate (Test Size): When estimating a model with endogenous regressors, testing

hypotheses about the coefficients of the endogenous variables is frequently of interest. If we

choose the α = 0.05 level of significance, we expect that a true null hypothesis is rejected

5% of the time in repeated samples. If instruments are weak, then the actual rejection

rate of the null hypothesis, also known as the test size, may be larger. Stock and Yogo’s

second criterion is the maximum rejection rate of a true null hypothesis if we choose

α = 0.05. For example, we may be willing to accept a maximum rejection rate of 10%

for a test at the 5% level, but we may not be willing to accept a rejection rate of 20% for

a 5% level test.

To test the null hypothesis that instruments are weak against the alternative that they are not,

we compare the Cragg–Donald F-test statistic to a critical value chosen from Table 10A.1 or

Table 10A.2.

T A B L E 10A.1
Critical Values for the Weak Instrument Test Based on IV Test Size
(5% level of significance)12

B = 1 Maximum Test Size B = 2 Maximum Test Size
L 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25

1 16.38 8.96 6.66 5.53

2 19.93 11.59 8.75 7.25 7.03 4.58 3.95 3.63

3 22.30 12.83 9.54 7.80 13.43 8.18 6.40 5.45

4 24.58 13.96 10.26 8.31 16.87 9.93 7.54 6.28

T A B L E 10A.2
Critical Values for the Weak Instrument Test Based on IV Relative Bias
(5% level of significance)13

B = 1 Maximum Relative Bias B = 2 Maximum Relative Bias
L 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30

3 13.91 9.08 6.46 5.39

4 16.85 10.27 6.71 5.34 11.04 7.56 5.57 4.73

............................................................................................................................................

12These values are from Table 5.2, page 101, in Stock and Yogo (2005), op cit. The authors thank James Stock

and Motohiro Yogo for permission to use these results. (Their tables are more extensive than the ones we provide.)

13These values are from Table 5.1, page 100, in James H. Stock and Motohiro Yogo (2005), op cit. In their paper Stock

and Yogo explain that the F > 10 rule introduced by Staiger and Stock (1997), op cit., is for B = 1 approximately the

critical value for a maximum relative bias of 0.10 for all values of L. Their critical values can be considered refinements

of the Staiger–Stock rule of thumb.
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1. First choose either the maximum relative bias or maximum test size criterion. You must

also choose the maximum relative bias or maximum test size you are willing to accept.

2a. If you choose the maximum test size criterion, select from Table 10A.1 the critical value

associated with a maximum test size of 0.10, 0.15, 0.20, or 0.25 for B = 1 or B = 2 endoge-

nous variables using L = 1 to L = 4 instrumental variables.

2b. If you choose the maximum relative bias criterion, select from Table 10A.2 the critical

value associated with a maximum relative bias of 0.05, 0.10, 0.20, or 0.30 for B = 1 or

B = 2 endogenous variables using L = 3 or L = 4 instrumental variables. There are no

critical values using this criterion if L < 3.

3. Reject the null hypothesis that the instruments are weak if the Cragg–Donald F-test statistic

is larger than the tabled critical value. If the F-test statistic is not larger than the critical

value, then do not reject the null hypothesis that the instruments are weak.

E X A M P L E 10.8 Testing for Weak Instruments

In Section 10.2.4 we introduced an example of a wage

equation for married working women using Thomas Mroz’s

data. Consider the following HOURS supply equation

specification:

HOURS = β1+ β2MTR + β3EDUC + β4KIDSL6
+ β5NWIFEINC + e (10A.4)

The variable NWIFEINC = (FAMINC −WAGE × HOURS)∕
1000 is household income attributable to sources other than

the wife’s income. The variable MTR is the marginal tax

rate facing the wife, including Social Security taxes. In

this equation we expect the signs of coefficients on MTR,

KIDSL6, and NWIFEINC to be negative, and the coefficient

on EDUC is of uncertain sign. In this example, we treat the

marginal tax rate as endogenous.14 Initially we treat EDUC
as exogenous and use the wife’s previous years of work

experience, EXPER, as an instrumental variable for MTR.

Weak IV Example 1: Endogenous: MTR;

Instrument: EXPER

Suppose that we choose the maximum test size criterion and

are willing to accept a maximum test size of 0.15 for a 5%

test. In Table 10A.1, we see that for B = 1 (one right-hand

side endogenous variable) and L = 1 (one instrument) that

the Stock-Yogo critical value is 8.96. The estimated first-stage

equation for MTR is Model (1) of Table 10A.3. The F-statistic

for the hypothesis that the coefficient of experience is zero

is 30.61. The Cragg–Donald F-statistic is also 30.61 in this

case. Since the Cragg–Donald F-test statistic is larger than

the Stock-Yogo critical value 8.96, we reject the null hypoth-

esis that the instruments are weak and accept the alterna-

tive that they are not weak. This conclusion is conditional

upon the test criterion we have chosen and the maximum size

selected. The relative bias criterion cannot be used in this case

because it requires at least three instruments. The estimated

coefficient of MTR in the estimated HOURS supply equation

in Model (1) of Table 10A.4 is negative and significant at the

5% level.

Weak IV Example 2: Endogenous: MTR;
Instruments: EXPER, EXPER2

, LARGECITY

For the sake of illustration, consider using the L = 3

instruments EXPER, EXPER2, and the indicator variable

LARGECITY , which = 1 if the city is large. Suppose

we choose the maximum relative bias criterion and are

willing to tolerate a maximum relative bias of 0.10. From

Table 10A.2 the Stock–Yogo critical value is 9.08. If the

Cragg–Donald F-test statistic is greater than this value, we

reject the null hypothesis that the instruments are weak. The

first-stage equation estimates are reported in Model (2) of

Table 10A.3. The Cragg–Donald F-statistic is 13.22. We

conclude that using this test the instruments are not weak.

If, however, we are only willing to accept a 0.05 relative

bias, then the Stock–Yogo critical value is 13.91. Since the

Cragg–Donald F-statistic is less than this value, we cannot

reject the null hypothesis that the instruments are weak.

The estimated coefficient of MTR in the estimated HOURS
supply equation in Model (2) of Table 10A.4 is negative

and significant at the 5% level, although the magnitudes

of all the coefficients are smaller in absolute value for this

estimation than for the model in Model (1). Qualitatively

the estimates of Model (1) and Model (2), using L = 1

instrument and L = 3 instruments are much the same, with

likely thanks to the strong instrument EXPER. This example

illustrates the point that having more instrumental variables

is not necessarily beneficial from the standpoint of weak

instrument diagnostics.

............................................................................................................................................

14This idea is explored by Mroz (1987, p. 786).
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T A B L E 10A.3 First-stage Equations

MODEL
Dependent/ (1) (2) (3) (4) (5) (6)
independent MTR MTR MTR EDUC MTR EDUC

C 0.87930 0.88470 0.79907 8.71459 0.82960 8.17622

(74.33) (71.93) (103.22) (25.83) (93.34) (20.34)

EXPER −0.00142 −0.00217 −0.00168 0.02957

(−5.53) (−2.65) (−6.23) (2.43)

EDUC −0.00718 −0.00689

(−7.76) (−7.45)

KIDSL6 0.02037 0.02039 0.02189 0.61812 0.01559 0.72921

(3.86) (3.89) (3.92) (2.54) (2.87) (2.96)

NWIFEINC −0.00551 −0.00539 −0.00565 0.04961 −0.00585 0.05304

(−27.40) (−26.35) (−27.15) (5.46) (−28.96) (5.81)

EXPER2 0.00002

(1.01)

LARGECITY −0.01163

(−2.70)

MOTHEREDUC −0.00111 0.15202 −0.00134 0.15601

(−1.40) (4.40) (−1.76) (4.54)

FATHEREDUC −0.00180 0.16371 −0.00202 0.16754

(−2.40) (5.01) (−2.81) (5.15)

N 428 428 428 428 428 428

Weak IV F 30.61 13.22 8.14 49.02 18.86 35.03

Number IV L 1 3 2 2 3 3

Number Endog B 1 1 2 2 2 2

t-statistics in parentheses.

T A B L E 10A.4 IV Estimation of Hours Equation

MODEL (1) (2) (3) (4)

C 17423.7211 14394.1144 −24491.5995 18067.8425

(5.56) (5.68) (−0.31) (5.11)

MTR −18456.5896 −14934.3696 29709.4677 −18633.9223

(−5.08) (−5.09) (0.33) (−4.85)

EDUC −145.2928 −118.8846 258.5590 −189.8611

(−4.40) (−4.28) (0.32) (−3.04)

KIDSL6 151.0229 58.7879 −1144.4779 190.2755

(1.07) (0.48) (−0.46) (1.20)

NWIFEINC −103.8983 −85.1934 149.2325 −102.1516

(−5.27) (−5.32) (0.31) (−5.11)

N 428 428 428 428

CRAGG–DONALD F 30.61 13.22 0.10 8.60

t-statistics in parentheses.
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Weak IV Example 3 Endogenous: MTR, EDUC;
Instruments: MOTHEREDUC, FATHEREDUC

Now treat both marginal tax rate MTR and education EDUC
as endogenous, so that B = 2. Following Section 10.3.6 we

use mother’s and father’s education, MOTHEREDUC and

FATHEREDUC, as instruments, so that L = 2. Suppose that

we are willing to accept a maximum test size of 15% for a

5% test. From Table 10A.1 the critical value for the weak

instrument test is 4.58. The first-stage equations for MTR
and EDUC are Model (3) and Model (4) of Table 10A.3.

These instruments are strong for EDUC as we have earlier

seen, with the first-stage weak instrument F-test statistic

49.02. For MTR [Model (3)] these two instruments are less

strong. FATHEREDUC is significant at the 5% level, and the

first-stage weak instrument F-test statistic is 8.14, which has

a p-value of 0.0003. While this does not satisfy the F ≥ 10

rule of thumb, it is “close,” and we may have concluded

that these two instruments were adequately strong. The

Cragg–Donald F-test statistic value is only 0.101, which

is far below the critical value 4.58 for 15% maximum test

size (for a 5% test on MTR and EDUC). We cannot reject

the null hypothesis that the instruments are weak, despite

the favorable first-stage F-test values. The estimates of the

HOURS supply equation, Model (3) of Table 10A.3, shows

parameter estimates that are wildly different from those

in Model (1) and Model (2), and the very small t-statistic

values imply very large standard errors, another consequence

of instrumental variables estimation in the presence of weak

instruments.

Weak IV Example 4 Endogenous: MTR, EDUC;
Instruments: MOTHEREDUC, FATHEREDUC, EXPER

If we include the additional instrument EXPER, so that

L = 3, we obtain the first-stage estimates in Model (5) and

Model (6) of Table 10A.3. Once again the first-stage weak

instrument F-test statistic values appear strong, with values

for MTR of 18.86 and for EDUC of 35.03. Using the F > 10

rule of thumb, we would be comfortable that our instruments

are strong. The Cragg–Donald F-test statistic value is 8.60,

which tells a slightly different story. Our instruments are

not quite as strong as the first-stage weak instrument F-test

statistics imply. If we choose a maximum test size of 0.15,

we can reject the null hypothesis of weak instruments. If,

however, we are prepared to accept only a maximum 10%

rejection rate for a 5% test, the critical value is 13.43, and

we do not reject the null hypothesis that the instruments are

weak. The instrumental variables estimates of the HOURS
supply equation are Model (4) of Table 10A.4 and we see

that they are more in line with Model (1) and Model (2) than

those in Model (3).

10A.2 Testing for Weak Identification: Conclusions
If instrumental variables are “weak,” then the instrumental variables, or two-stage least squares,

estimator is unreliable. When there is a single endogenous variable, the first-stage F-test of the

joint significance of the external instruments is an indicator of instrument strength. The F > 10

rule of thumb has been refined by Stock and Yogo, who provide tables of critical values for the

null hypothesis “the instruments are weak” using two criteria: the bias of the IV estimator relative

to the bias of the least squares estimator, and the maximum size of a 5% test of the coefficients

of the endogenous variables. If there is more than one endogenous variable on the right-hand

side of an equation, then the F-test statistics from the first-stage equations do not provide reliable

information about instrument strength. In this case the Cragg–Donald F-test statistic should be

used to test for weak instruments, along with the Stock-Yogo tables of critical values.

Econometric research continues for alternatives to the IV/2SLS estimator in the weak instru-

ment case. Some progress has been made; these results are summarized in Appendix 11B. The

discussion is deferred until the next chapter, as the advances have their genesis in discussions of

estimation of simultaneous equations models.

Appendix 10B Monte Carlo Simulation
In this appendix we do two sorts of simulations. First, we generate a sample of artificial data and

give numerical illustrations of the estimators and tests discussed in the chapter. In the chapter the

illustrations used real data. The advantage gained here is that we can see how the estimators and

tests perform using data we know comes from a particular data generation process. Secondly, we

carry out a Monte Carlo simulation to illustrate the repeated sampling properties of the least

squares and IV/2SLS estimators under various conditions.
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10B.1 Illustrations Using Simulated Data
In this section, we demonstrate, using a simulated sample of data, that the OLS estimator fails

when cov
(
xi, ei

)
≠ 0, and that instrumental variables estimators “work” when conditions listed

in Section 10.3.3 are satisfied. For the simulated data, we specify a simple regression model in

which the parameter values are β1 = 1 and β2 = 1. Thus, the systematic part of the regression

model is E(y|x) = β1+ β2x = 1 + 1 × x. By adding to E(y|x) an error term value, which will be a

random number we create, we can create a sample value of y.

We want to explore the properties of the OLS estimator when x and e are correlated. Using

random number generators, we create N = 100 pairs of x and e values, such that each has a normal

distribution with mean zero and variance one. The population correlation between the x and e
values is ρxe. We then create an artificial sample of y values by adding e to the systematic portion

of the regression,

y = E(y|x) + e = β1+ β2x + e = 1 + 1 × x + e

The data values are contained in the data file ch10. The OLS estimates are

ŷOLS = 0.9789 + 1.7034x
(se) (0.088) (0.090)

When x and e are positively correlated, the estimated slope tends to be too large—here,

b2 = 1.7034 compared to the true β2 = 1. Furthermore, the systematic overestimation of the

slope will not go away in larger samples, so the least squares estimators are not correct on average

even in large samples. The least squares estimators are inconsistent.

In the process of creating the artificial data (data file ch10) we also created two instrumental

variables, both uncorrelated with the error term. The correlation between the first instrument

z1 and x is ρxz1
= 0.5, and the correlation between the second instrument z2 and x is ρxz2

= 0.3.

The IV estimates using z1 are

ŷIV_z1
= 1.1011 + 1.1924x

(se) (0.109) (0.195)

and the IV estimates using z2 are

ŷIV_z2
= 1.3451 + 0.1724x

(se) (0.256) (0.797)

Using z1, the stronger instrument, yields an estimate of the slope of 1.1924 with a standard error

of 0.195, about twice the standard error of the OLS estimate. Using the weaker instrument z2

produces a slope estimate of 0.1724, which is far from the true value, and a standard error of

0.797, about eight times as large as the least squares standard error. The results with the weaker

instrument are far less satisfactory than the estimates based on the stronger instrument z1.

Another problem that an instrument can have is that it is not uncorrelated with the error

term as it is supposed to be. The variable z3 is correlated with x, with correlation ρxz3
= 0.5, but

it is correlated with the error term e, with correlation ρez3
= 0.3. Thus, z3 is not a valid instru-

ment. What happens if we use instrumental variables estimation with the invalid instrument?

The results are

ŷIV−z3
= 0.9640 + 1.7657x

(se) (0.095) (0.172)

As you can see, using the invalid instrument produces a slope estimate even further from the

true value than the least squares estimate. Using an invalid instrumental variable means that the

instrumental variables estimator will be inconsistent, just like the least squares estimator.
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What is the outcome of two-stage least squares estimation using the two instruments z1 and

z2? Obtain the first-stage regression of x on the two instruments z1 and z2,

x̂ = 0.1947 + 0.5700z1 + 0.2068z2

(se) (0.095) (0.089) (0.077) (10B.1)

Using the predicted value x̂ to replace x, then applying least squares to the modified equation, as

in (10.22), we obtain the instrumental variables estimates

ŷIV_z1,z2
= 1.1376 + 1.0399x

(se) (0.116) (0.194) (10B.2)

The standard errors are based on an estimated error variance as in (10.18b). Using the two valid

instruments yields an estimate of the slope of 1.0399, which, in this example, is close to the true

value of β2 = 1.

10B.1.1 The Hausman Test

To implement the Hausman test we estimate the first-stage equation, which is shown in (10A.1)

using the instruments z1 and z2. Compute the residuals

v̂ = x − x̂ = x − 0.1947 − 0.5700z1 − 0.2068z2

Include the residuals as an extra variable in the regression equation and apply least squares,

ŷ = 1.1376 + 1.0399x + 0.9957v̂
(se) (0.080) (0.133) (0.163)

The t-statistic for the null hypothesis that the coefficient of v̂ is zero is 6.11. The critical value

comes from the t-distribution with 97 degrees of freedom and is 1.985, so we reject the null

hypothesis that x is uncorrelated with the error term and correctly conclude that it is endogenous.

10B.1.2 Test for Weak Instruments

The test for weak instruments again begins with estimation of the first-stage regression. If we

consider using just z1 as an instrument, the estimated first-stage equation is

x̂ = 0.2196 + 0.5711z1

(t) (6.24)

The t-statistic 6.24 corresponds to an F-value of 38.92, which is well above the guideline value

of 10. If we use just z2 as an instrument, the estimated first-stage equation is

x̂ = 0.2140 + 0.2090z2

(t) (2.28)

While the t-statistic 2.28 indicates statistical significance at the 0.05 level, the corresponding

F-value is 5.21 < 10, indicating that z2 is a weak instrument. The first-stage equation using both

instruments is shown in (10B.1), and the F-test for their joint significance is 24.28, indicating that

we have at least one strong instrument.
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10B.1.3 Testing the Validity of Surplus Instruments

If we use z1 and z2 as instruments, there is one extra. The number of instruments is L = 2, and

the number of endogenous regressors is B = 1. The IV estimates are shown in (10B.2). Cal-

culate the residuals from this equation and then regress them on intercept, z1 and z2, to obtain

ê = 0.0189 + 0.0881z1 − 0.1818z2. The R2 from this regression is 0.03628, and NR2 = 3.628.

The 0.05 critical value for the chi-square distribution with one degree of freedom is 3.84, so we

fail to reject the validity of the surplus moment condition.

If we use z1, z2, and z3 as instruments, there are two surplus moment conditions. The IV

estimates using these three instruments are ŷIV_z1,z2,z3
= 1.0626 + 1.3535x. Obtaining the residuals

and regressing them on the instruments yields

ê = 0.0207 − 0.1033z1 − 0.2355z2 + 0.1798z3

The R2 from this regression is 0.1311, and NR2 = 13.11. The 0.05 critical value for the chi-square

distribution with two degrees of freedom is 5.99, so we reject the validity of the two surplus

moment conditions. This test does not identify the problem instrument, but since we first tested

the validity of z1 and z2 and failed to reject their validity, and then found that adding z3 led us to

reject the validity of the surplus moment conditions, the instrument z3 seems to be the culprit.

10B.2 The Sampling Properties of IV/2SLS
To illustrate the repeated sampling properties of the OLS and IV/2SLS estimators, we use an

experimental design based on the discussion in Section 10.4.2. In the simple regression model

yi = β1+ β2xi + ei, if xi is correlated with the error term ei then xi is endogenous, and the least

squares estimator is biased and inconsistent. An instrumental variable zi must be correlated with

xi but uncorrelated with ei in order to be valid. A correlation between zi and xi implies that there

is a linear association between them. This means that we can describe their relationship as a

regression xi = γ1 + θ1zi + vi. There is a correlation between xi and zi if, and only if, θ1 ≠ 0. If

we knew γ1 and θ1, we could substitute E
(
xi|zi

)
= γ1 + θ1zi into the simple regression model to

obtain yi = β1+ β2E
(
xi|zi

)
+ β2vi + ei. Suppose for a moment that E

(
xi|zi

)
and vi can be observed

and are viewed as explanatory variables in the regression yi = β1+ β2E
(
xi|zi

)
+ β2vi + ei. The

explanatory variable E
(
xi|zi

)
is not correlated with the error term ei because it depends only on zi.

Any correlation between xi and ei implies correlation between vi and ei because vi = xi − E
(
xi|zi

)
.

In the simulation,15 we use the data generation process yi = xi + ei, so that the intercept

parameter is 0 and the slope parameter is 1. The first-stage regression is xi = θzi1 + θzi2 + θzi3
+ vi. Note that we have L = 3 instruments, each of which has an independent standard normal

N(0,1) distribution. The parameter θ controls the instrument strength. If θ = 0, the instruments

are not correlated with xi and instrumental variables estimation will fail. The larger θ becomes the

stronger the instruments become. Finally, we create the random errors ei and vi to have standard

normal distributions with correlation ρ, which controls the endogeneity of x. If ρ = 0, then x is

not endogenous. The larger ρ becomes the stronger the endogeneity. We create 10,000 samples of

size N = 100 and then try out OLS and IV/2SLS under several scenarios. We let θ = 0.1 (weak

instruments) and θ = 0.5 (strong instruments). We let ρ = 0 (x exogenous) and ρ = 0.8 (x highly

endogenous).

In Table 10B.1, the reported values are

• F is the average first-stage F: compare these values to 10. Note that the average value of F is

about 2 when θ = 0.1 indicating weak instruments. The average value of F is about 21 when

θ = 0.5 indicating strong instruments.

............................................................................................................................................

15This design is similar to that used by Jinyong Hahn and Jerry Hausman (2003) “Weak Instruments: Diagnosis and

Cures in Empirical Economics,” American Economic Review, 93(2), pp. 118–125.
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T A B L E 10B.1 Monte Carlo Simulation Results

𝛒 𝛉 F b2 s.d.
(
b2
)

t
(
b2
)

t (H) �̂�2 s.d.
(
�̂�2

)
t
(
�̂�2

)

0.0 0.1 1.98 1.0000 0.1000 0.0499 0.0510 0.9941 0.6378 0.0049

0.0 0.5 21.17 0.9999 0.0765 0.0484 0.0518 0.9998 0.1184 0.0441

0.8 0.1 2.00 1.7762 0.0610 1.0000 0.3077 1.3311 0.9483 0.2886

0.8 0.5 21.18 1.4568 0.0610 1.0000 0.9989 1.0111 0.1174 0.0636

• b2 is the average of the OLS estimates of β2 = 1. The least squares estimator is unbiased

when ρ = 0, but when ρ = 0.8, the least squares estimator shows severe bias.

• s.d.(b2) is the sample standard deviation of the 10,000 Monte Carlo values of b2. It tells us

how much variation the OLS estimates exhibit in repeated sampling.

• t
(
b2

)
is the percentage of rejections of the true null hypothesis β2 = 1 using the 0.05 level

of significance t-test based on the OLS estimator. If there is no endogeneity, the percent

rejections is very close to the 0.05 value, but if there is strong endogeneity, the OLS estimator

rejects the true null hypothesis 100% of the time. That is not good.

• t(H) is the percentage rejections of the regression-based Hausman test for endogeneity using

the 0.05 level of significance. If there is no endogeneity, the test rejects 5% of the time,

which is what we expect. If there is strong endogeneity but weak instruments, θ = 0.1, the

test rejects only 31% of the time, failing to indicate the endogeneity problem. If instruments

are not strong, nothing is going to work well. If the instruments are strong, then the test for

endogeneity is very successful in detecting strong endogeneity.

• β̂2 is the average of the instrumental variables estimates of β2 = 1. The IV estimator is unbi-

ased when ρ = 0. When endogeneity is strong, with weak instruments the IV estimator has

a 33% bias, but when instruments are strong it has an average very close to the true value.

• s.d.
(

β̂2

)

is the sample standard deviation of the IV estimates in the 10,000 Monte Carlo

samples. If there is no endogeneity, note how large its standard deviation is relative to the

least squares estimator. With weak instruments its standard deviation is six times that of

the least squares estimator. Even with strong instruments, it is substantially larger. The IV

estimator is inefficient relative to the least squares estimator when endogeneity is absent.

When endogeneity is present, the effect of weak instruments shows up in the large standard

deviation of the estimates. When instruments are stronger, the standard deviation of the IV

estimates falls from 0.95 to 0.12, a substantial improvement.

• Finally, we see the rate of rejections of the true null hypothesis β2 = 1 under the scenarios.

When x is endogenous and the instruments are weak, the t-test rejects far too often, but it

is better than the t-test based on the least squares estimator. Otherwise, the rejection rate is

close to the 5% that we expect.

These results are based on a sample size of N = 100, which is neither large nor small. What results

do you anticipate with larger or smaller samples?

Advice about what to do when there is uncertainty as to whether a regressor is endogenous

or not is somewhat mixed. In Table 10.2, the Hausman test statistic p-value is 0.0954. The pre-

vailing attitude is probably summarized by Jeffrey Wooldridge,16 who says, “We find evidence

of endogeneity of EDUC at the 10% significance level against a two-sided alternative, and so

2SLS is probably a good idea (assuming that we trust the instruments.)” On the other hand, Patrik

............................................................................................................................................

16Econometric Analysis of Cross Section and Panel Data, 2nd Edition, The MIT Press, 2010, p. 132.
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Guggenberger17 advises, that if testing the coefficient of the endogenous regressor is the objective,

then we should avoid considering the Hausman test result and use 2SLS. On the other hand, if

we consider how close the estimates are to the true value on average, the “mean square error,”

Chmelarova and Hill18 advise that perhaps IV/2SLS should be used only if a Hausman pretest

has a much smaller p-value. This result is revealed somewhat in the Monte Carlo simulation.

In the case in which ρ = 0.8 and θ = 0.1, the mean square error for the least squares estimator is

∑10000

m=1

(
b2m − β2

)2/
10000 = 0.6062

while for the IV estimator it is

∑1000

m=1

(

β̂2m − β2

)2/

10000 = 1.0088

In other words, in this experimental setting with strong endogeneity and weak instruments, the

least squares estimator is, on average, closer to the true parameter value than the IV estimator.

............................................................................................................................................

17“The Impact of a Hausman Pretest on the Asymptotic Size of a Hypothesis Test,” Econometric Theory, 2010, 26(2),

pp. 369–382.

18“The Hausman Pretest Estimator,” Economics Letters, 2010, 108, 96−99.
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CHAPTER 11

Simultaneous Equations
Models

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain why estimation of a supply and demand

model requires an alternative to ordinary least

squares (OLS).

2. Explain the difference between exogenous and

endogenous variables.

3. Define the ‘‘identification’’ problem in

simultaneous equations models.

4. Define the reduced form of a simultaneous

equations model and explain its usefulness.

5. Explain why it is acceptable to estimate

reduced-form equations by least squares.

6. Describe the two-stage least squares estimation

procedure for estimating an equation in a

simultaneous equations model, and explain how

it resolves the estimation problem for least

squares.

K E Y W O R D S

contemporaneous correlation

endogenous variables

exogenous variables

first-stage equation

identification

instrumental variables (IV) estimator

instruments

predetermined variables

reduced-form equation

reduced-form errors

reduced-form parameters

simultaneous equations

structural parameters

two-stage least squares

For most of us, our first encounter with economic models comes through studying supply and

demand models, in which the market price and quantity of goods sold are jointly determined by

the equilibrium of supply and demand. In this chapter, we consider econometric models for data

that are jointly determined by two or more economic relations. These simultaneous equations
models differ from those we have considered in previous chapters because in each model there

are two or more dependent variables rather than just one.

Simultaneous equations models also differ from most of the econometric models we have

considered so far, because they consist of a set of equations. For example, price and quantity

are determined by the interaction of two equations, one for supply and the other for demand.

Simultaneous equations models, which contain more than one dependent variable and more than
531



�

� �

�

532 CHAPTER 11 Simultaneous Equations Models

one equation, require special statistical treatment. The least squares estimation procedure is not
appropriate in these models, and we must develop new ways to obtain reliable estimates of eco-

nomic parameters.

Some of the concepts in this chapter were introduced in Chapter 10. However, reading

Chapter 10 is not an absolute prerequisite for reading Chapter 11, which is largely self-contained.

If you have read Chapter 10, you will observe that much of what you learned there will carry

over to this chapter, including how simultaneous equations models fit into the big picture. If you

have not read Chapter 10, referring back to portions of it will provide a deeper understanding of

material presented in this chapter. This chapter on simultaneous equations is presented separately

because its treatment was the first major contribution of econometrics to the wider field of

statistics, and because of its importance in economic analysis.

11.1 A Supply and Demand Model
Supply and demand jointly determine the market price of a good and the quantity of it that is

sold. Graphically, you recall that market equilibrium occurs at the intersection of the supply and

demand curves, as shown in Figure 11.1. An econometric model that explains market price and

quantity should consist of two equations, one for supply and the other for demand. It will be a

simultaneous equations model, since both equations working together determine price and quan-

tity. A very simple model might look like the following:

Demand: Qi = α1Pi + α2Xi + edi (11.1)

Supply: Qi = β1Pi + esi (11.2)

Based on economic theory, we expect the supply curve to be positively sloped, β1 > 0, and

the demand curve to be negatively sloped, α1 < 0. In this model, we assume that the quantity

demanded (Q) is a function of price (P) and income (X). Quantity supplied is taken to be a func-

tion of only price. (We have omitted the intercepts to make the algebra easier. In practice, we

would include intercept terms in these models.) The observation index i = 1,…, N may represent

the market place at different points in time, or at different locations.

The point we wish to make very clear is that it takes two equations to describe the supply and

demand equilibrium. The two equilibrium values, for price and quantity, P* and Q*, respectively,

are determined at the same time. In this model, the variables P and Q are called endogenous
variables because their values are determined within the system we have created. The endogenous

variables P and Q are dependent variables and both are random variables. The income variable X
has a value that is determined outside this system. Such variables are said to be exogenous, and

these variables are treated like usual “x” explanatory variables.

Random errors are added to the supply and demand equations for the usual reasons.

Q

d

P

P*

Q*

s

FIGURE 11.1 Supply and demand equilibrium.
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X

ed

Qd

P

es

Qs

P

FIGURE 11.2 Influence diagrams for two
regression models.

We adopt assumption SR2 from Chapter 2 for both the demand and supply equations, given any

value of the exogenous variable Xi, i = 1,…, N. To simplify notation, we refer to all the values

of Xi as X, where X =
(
X1,X2 ,…, XN

)
. Then

E
(
edi|X

)
= 0, E

(
esi|X

)
= 0 (11.3)

In Section 2.10, we coined the term “strictly exogenous” for an exogenous variable like this.

It implies that E
(
edi

)
= E

(
esi
)
= 0; the unconditional expected value of each error equals zero.

It also implies that any value of the exogenous variable Xj is uncorrelated with the error terms

in the demand and supply equations, so cov
(
edi, Xj

)
= 0 and cov

(
esi, Xj

)
= 0. Further, the error

terms in the demand and supply equations are assumed to be homoskedastic, var
(
edi|X

)
= σ2

d,

and var
(
esi|X

)
= σ2

s . Finally, we also assume that there is no serial correlation and no correlation

between the error terms of the two equations.

Let us emphasize the difference between simultaneous equations models and regression mod-

els using influence diagrams. An “influence diagram” is a graphical representation of relationships

between model components. In the previous chapters, we would have modeled the supply and

demand relationships as separate regressions, implying the influence diagrams in Figure 11.2. In

this diagram the circles represent endogenous dependent variables and error terms. The squares

represent exogenous explanatory variables. In regression analysis, the direction of the influence is

one way: from the explanatory variable and the error term to the dependent variable. In this case

there is no equilibrating mechanism that will lead quantity demanded to equal quantity supplied

at a market-clearing price. For price to adjust to the market-clearing equilibrium, there must be

an influence running from P to Q and from Q to P.

Recognizing that price P and quantity Q are jointly determined, and that there is feedback

between them, suggests the influence diagram in Figure 11.3. In the simultaneous equations

model we see the two-way influence, or feedback, between P and Q because they are jointly

determined. The random error terms ed and es affect both P and Q, suggesting a correlation

between each of the endogenous variables and each of the random error terms. As we will see,

this leads to failure of the ordinary least squares (OLS) estimator in simultaneous equations

models. Income X is an exogenous variable that affects the endogenous variables, but there is no

feedback from P and Q to X.

The fact that P is an endogenous variable on the right-hand side of the supply and demand

equations means that we have an explanatory variable that is random. Not only is P random but it is

P

esed Q

X

FIGURE 11.3 Influence diagram for a simultaneous
equations model.
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also contemporaneously correlated with the random errors in the demand and supply equations,

that is, cov
(
Pi, edi

)
= E

(
Piedi

)
≠ 0 and cov

(
Pi, esi

)
= E

(
Piesi

)
≠ 0. When an explanatory variable

is contemporaneously correlated with the regression error term then the OLS estimator is biased

and inconsistent. We provide an intuitive argument for why this outcome is true in Section 11.3,

and we prove it in Section 11.3.1.

11.2 The Reduced-Form Equations
The two structural equations (11.1) and (11.2) can be solved to express the endogenous variables

P and Q as functions of the exogenous variable X. This reformulation of the model is called the

reduced form of the structural equation system. The reduced form is very important in its own

right, and also helps us understand the structural equation system. To find the reduced form, we

solve equations (11.1) and (11.2) simultaneously for P and Q.

To solve for P, set Q in the demand and supply equations to be equal,

β1Pi + esi = α1Pi + α2Xi + edi

Then solve for Pi,

Pi =
α2

(
β1 − α1

)Xi +
edi − esi
(
β1 − α1

) = π1Xi + v1i (11.4)

To solve for Qi, substitute the value of Pi in (11.4) into either the demand or supply equation.

The supply equation is simpler, so substitute Pi into (11.2) and simplify:

Qi = β1Pi + esi = β1

[
α2

(
β1 − α1

)Xi +
edi − esi
(
β1 − α1

)

]

+ esi

=
β1α2

(
β1 − α1

)Xi +
β1edi − α1esi
(
β1 − α1

) = π2Xi + v2i (11.5)

The parameters π1 and π2 in (11.4) and (11.5) are called reduced-form parameters. The errors

v1i and v2i are reduced-form errors. The reduced forms are predictive equations. We assume

that E
(
Pi|Xi

)
= π1Xi and E

(
Qi|Xi

)
= π2Xi. By definition E

(
v1i|Xi

)
= 0 and E

(
v2i|Xi

)
= 0, using

assumptions (11.3), and also they are homoskedastic and serially uncorrelated if the same holds

true for the structural equation errors edi and esi. Under these conditions, the ordinary least squares

(OLS) estimators of the reduced-form parameters π1 and π2 are consistent, and have approximate

normal distributions in large samples, whether the structural equation errors are normal or not.

The most important aspect of the OLS estimators for the reduced-form parameters is that they are

consistent estimators.

The reduced-form equations (11.4) and (11.5) have an endogenous variable on the left-hand

side and exogenous variables, and a random error term, on the right-hand side. These are

first-stage equations in the language of Chapter 10. We explain the term in Section 11.5 if

you have not read Chapter 10. The terms reduced-form equation and first-stage equation are

interchangeable.

The reduced-form equations are important for economic analysis. These equations relate the

equilibrium values of the endogenous variables to the exogenous variables. Thus, if there is an

increase in income X, π1 is the expected increase in price, after market adjustments lead to a new

equilibrium for P and Q. Similarly, π2 is the expected increase in the expected equilibrium value

of Q. (Question: how did we determine the directions of these changes?) Secondly, and using the

same logic, the estimated reduced-form equations can be used to predict values of equilibrium

price and quantity for different levels of income. Clearly CEOs and other market analysts are

interested in the ability to forecast both prices and quantities sold of their products. Estimating

the reduced-form equations makes such predictions possible.
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11.3 The Failure of Least Squares Estimation
In this section, we explain why the OLS estimator should not be used to estimate an equation in a

simultaneous equations model. For reasons that will become clear in the next section, we focus on

the supply equation. In the supply equation (11.2), the endogenous variable Pi on the right-hand

side of the equation is contemporaneously correlated with the error term esi. Suppose there is a

small change, or blip, in the error term esi, say Δesi. Trace the effect of this change through the

system. The blip Δesi in the error term of (11.2) is directly transmitted to the equilibrium value

of Pi. This follows from the reduced form (11.4) that has Pi on the left and esi on the right. Every

change in the supply equation error term, esi, has a direct effect on Pi. Because β1>0 and α1<0,

if Δesi > 0, then ΔPi < 0. Thus, every time there is a change in esi there is an associated change

in Pi in the opposite direction. Consequently, Pi and esi are negatively correlated.

The failure of OLS estimation for the supply equation can be explained as follows: OLS

estimation of the relation between Qi and Pi gives “credit” to price (Pi ) for the effect of changes

in the error term (esi). This occurs because we do not observe the change in the error term, but

only the change in Pi resulting from its correlation with the error esi. The OLS estimator of β1

will understate the true parameter value in this model because of the negative contemporaneous

correlation between the endogenous variable Pi and the error term esi. This occurs because we do

not observe the change in the error term, but only the change in Pi resulting from its correlation

with the error esi. The least squares estimator of β1 will understate the true parameter value in this

model because of the negative contemporaneous correlation between the endogenous variable

Pi and the error term esi. In large samples, the least squares estimator will tend to be negatively

biased in this model. This bias persists even if the sample size goes to infinity, and thus the least

squares estimator is inconsistent. This means that the probability distribution of the least squares

estimator will ultimately “collapse” about a point that is not the true parameter value as the sample

size N→∞. See Section 5.7 for a general discussion of “large sample” properties of estimators.

Here, we summarize by saying:

The least squares estimator of parameters in a structural simultaneous equation is biased and

inconsistent because of the contemporaneous correlation between the random error and the

endogenous variables on the right-hand side of the equation.

11.3.1 Proving the Failure of OLS
Consider the supply and demand model in (11.1) and (11.2). To explain the failure of the OLS

estimator of the supply equation, let us first obtain the conditional covariance between Pi and esi.

cov
(
Pi, esi|X

)
= E

{[
Pi − E

(
Pi|X

)][
esi − E

(
esi|X

)]|
|
|
X
}

= E
(
Piesi|X

) [
since E

(
esi|X

)
= 0

]

= E
[(
π1Xi + v1i

)
esi|X

] [
substitute for Pi

]

= E
[(

edi − esi

β1 − α1

)

esi
|
|
|
|
X
]

[
since π1Xi is fixed

]

=
−E

(
e2

si|X
)

β1 − α1

[
since ed, es assumed uncorrelated

]

=
−σ2

s

β1 − α1

< 0
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What impact does the negative contemporaneous covariance have on the least squares estimator?

The OLS estimator of the supply equation (11.2) (which does not have an intercept term) is

b1 =
∑

PiQi
∑

P2
i

Substitute for Q from the reduced-form equation (11.5) and simplify,

b1 =
∑

Pi
(
β1Pi + esi

)

∑
P2

i

= β1 +
∑
(

Pi∑
P2

i

)

esi

The expected value of the least squares estimator is

E
(
b1|X

)
= β1 + E

[
∑
(

Pi
∑

P2
i

)

esi
|
|
|
|
X

]

= β1 + E

[
∑
(

Piesi
∑

P2
i

)
|
|
|
|
X

]

[move error to numerator]

= β1 +
∑
[

E

(
Piesi
∑

P2
i

)
|
|
|
|
X

]

[expected value of the sum is sum of expected values]

≠ β1 [expected value terms in the sum are not zero]

In the final step, we have E
[(

Piesi
/∑

P2
i

)
|
|X

]
= E

[
g
(
Pi
)
esi
|
|X

]
≠ 0, where g

(
Pi
)
= Pi

/∑
P2

i .

When finding the covariance between Pi and the random error esi, we showed that

E
(
Piesi|X

)
= E

(
Piesi

)
= −σ2

s
/(
β1 − α1

)
< 0 and thus we suspect that E

[(
Piesi

/∑
P2

i

)
|
|X

]
< 0,

because
∑

P2
i > 0, so that we suspect the least squares estimator exhibits a negative bias.

However, the expected value of the ratio is not the ratio of expected values, so all we can really

conclude is that the least squares estimator is biased, because esi and Pi are contemporaneously

correlated.

This bias does not disappear in larger samples, so the OLS estimator of the supply equation

is inconsistent as well. The OLS estimator converges to a value less than β1 and this is easier to

show using asymptotic analysis similar to that in Chapter 5, equation (5.41). Rewrite the OLS

estimators

b1 = β1 +
∑
(

Pi∑
P2

i

)

esi = β1 +
∑

Piesi
∑

P2
i

= β1 +
∑

Piesi∕N
∑

P2
i

/
N

= β1 +
E
(
Piesi

)
⋀

E
(
P2

i

)
⋀

Using the Law of Large Numbers, sample moments (averages) converge to population moments

(expected values), so that

E
(
Piesi

)
⋀

p
−−→E

(
Piesi

)
= −σ2

s
/(
β1 − α1

)
< 0

and

E
(
P2

i

)
⋀

p
−−→E

(
P2

i
)
> 0

Therefore

b1

p
−−→ β1 −

σ2
s
/(
β1 − α1

)

E
(
P2

i

) < β1

11.4 The Identification Problem
In the supply and demand model given by (11.1) and (11.2),

• The parameters of the demand equation, α1 and α2, cannot be consistently estimated by any
estimation method.

• The slope of the supply equation, β1, can be consistently estimated.
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Q

a

b
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s
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d1

P

FIGURE 11.4 The effect of changing income.

How are we able to make such statements? The answer is quite intuitive, and it can be illustrated

graphically. What happens when income X changes? The demand curve shifts and a new

equilibrium price and quantity are created. In Figure 11.4 we show the demand curves d1, d2,

and d3 and equilibria, at points a, b, and c, for three levels of income. As income changes,

data on price and quantity will be observed around the intersections of supply and demand.

The random errors ed and es cause small shifts in the supply and demand curves, creating

equilibrium observations on price and quantity that are scattered about the intersections at points

a, b, and c.

The data values will trace out the supply curve, suggesting that we can fit a line through them

to estimate the slope β1. The data values fall along the supply curve because income is present
in the demand curve and absent from the supply curve. As income changes, the demand curve

shifts but the supply curve remains fixed, resulting in observations along the supply curve.

There are no data values falling along any of the demand curves, and there is no way to

estimate their slope. Any one of the infinite number of demand curves passing through the

equilibrium points could be correct. Given the data, there is no way to distinguish the true

demand curve from all the rest. Through the equilibrium point a we have drawn a few demand

curves, each of which could have generated the data we observe.

The problem lies with the model that we are using. There is no variable in the supply equation

that will shift it relative to the demand curve. If we were to add a variable to the supply curve, say

W, then each time W is changed, the supply curve would shift, and the demand curve would stay

fixed. The shifting of supply relative to a fixed demand curve (since W is absent from the demand

equation) would create equilibrium observations along the demand curve, making it possible to

estimate the slope of the demand curve and the effect of income on demand.

It is the absence of variables in one equation that are present in another equation that

makes parameter estimation possible. A general rule, which is called a necessary condition for

identification of an equation, is this:

A Necessary Condition for Identification
In a system of M simultaneous equations, which jointly determine the values of M endoge-

nous variables, at least M − 1 variables must be absent from an equation for estimation of its

parameters to be possible. When estimation of an equation’s parameters is possible, then the

equation is said to be identified, and its parameters can be estimated consistently. If fewer

than M − 1 variables are omitted from an equation, then it is said to be unidentified, and its

parameters cannot be consistently estimated.
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In our supply and demand model there are M = 2 equations, so we require at least M − 1 = 1

variable to be omitted from an equation to identify it. There are a total of three variables: P, Q,

and X. In the demand equation none of the variables are omitted; thus it is unidentified and its

parameters cannot be estimated consistently. In the supply equation, one variable, income (X), is

omitted; the supply curve is identified, and its parameter can be estimated.

The identification condition must be checked before trying to estimate an equation. If an

equation is not identified, then changing the model must be considered before it is estimated.

However, changing the model should not be done in a haphazard way; no important variable

should be omitted from an equation just to identify it. The structure of a simultaneous equations

model should reflect your understanding of how equilibrium is achieved and should be consistent

with economic theory. Creating a false model is not a good solution to the identification problem.

This paragraph is for those who have read Chapter 10. The necessary condition for identi-

fication can be expressed in an alternative but equivalent fashion. The two-stage least squares

estimation procedure was developed in Chapter 10 and shown to be an instrumental variables
estimator. This procedure is developed further in the next section. The number of instrumen-

tal variables (IVs) required for estimation of an equation within a simultaneous equations model

is equal to the number of right-hand side endogenous variables. In a typical equation within a

simultaneous equations model, several exogenous variables appear on the right-hand side. Thus

instruments must come from those exogenous variables omitted from the equation in ques-

tion. Consequently, identification requires that the number of excluded exogenous variables in

an equation be at least as large as the number of included right-hand side endogenous variables.

This ensures an adequate number of IVs.

11.5 Two-Stage Least Squares Estimation
The most widely used method for estimating the parameters of an identified structural equation

is called two-stage least squares, which is often abbreviated as 2SLS or TSLS. The name comes

from the fact that it can be calculated using two OLS regressions. We will explain how it works

by considering the supply equation in (11.2). Recall that we should not apply the usual OLS

procedure to estimate β1 in this equation because the endogenous variable Pi on the right-hand

side of the equation is contemporaneously correlated with the error term esi, causing the OLS

estimator to be biased and inconsistent.

The variable Pi is composed of a systematic part, which is its expected value E
(
Pi|Xi

)
, and a

random part, which is the reduced-form random error v1i, that is,

Pi = E
(
Pi|Xi

)
+ v1i (11.6)

In the supply equation (11.2), the portion of Pi that causes problems for the OLS estimator is v1i,

the random part. It is v1i that causes Pi to be correlated with the error term esi. If we knew E
(
Pi|Xi

)
,

then we could replace Pi in (11.2) by (11.6) to obtain

Qi = β1

[
E
(
Pi|Xi

)
+ v1i

]
+ esi = β1E

(
Pi|Xi

)
+
(
β1v1i + esi

)
(11.7)

In (11.7) the explanatory variable on the right-hand side is E
(
Pi|Xi

)
. It depends only on the exoge-

nous variable, and it is not correlated with the error term. We could apply OLS to (11.7) to

consistently estimate β1.

Of course, we cannot use the variable E
(
Pi|Xi

)
in place of Pi since we do not know it. How-

ever, we can consistently estimate E
(
Pi|Xi

)
. Let π̂1 come from the fitted OLS estimation of the

reduced-form equation for Pi. A consistent estimator for E
(
Pi|Xi

)
is

P̂i = π̂1Xi

Using P̂i as a replacement for E
(
Pi|Xi

)
in (11.7), we obtain

Qi = β1P̂i + ê∗i (11.8)
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In large samples, P̂i and the random error ê∗i are uncorrelated, and consequently the parameter β1

can be consistently estimated by applying OLS to (11.8).

The OLS estimator of (11.8) is the two-stage least squares estimator of β1, which is con-

sistent and asymptotically normal. Because the two-stage least squares estimator is consistent it

converges to the true value in large samples. That the estimator is asymptotically normal means

that if we have a large sample, the usual tests and confidence interval estimators can be used.

To summarize, the two stages of the estimation procedure are:

1. OLS estimation of the reduced-form equation for Pi and the calculation of its predicted

value, P̂i

2. OLS estimation of the structural equation in which the right-hand side endogenous variable

Pi is replaced by its predicted value P̂i
1

In practice always use software that is designed for 2SLS, so that standard errors and t-values will

be calculated correctly.

11.5.1 The General Two-Stage Least Squares Estimation
Procedure

The two-stage least squares estimation procedure can be used to estimate the parameters of

any identified equation within a simultaneous equations system. In a system of M simultaneous

equations, let the endogenous variables be yi1, yi2,…, yiM. There must always be as many

equations in a simultaneous system as there are endogenous variables. Let there be K exogenous

variables, xi1, xi2,…, xiK. To illustrate, suppose M = 3 and the first structural equation within this

system is

yi1 = α2yi2 + α3yi3 + β1xi1 + β2xi2 + ei1 (11.9)

If this equation is identified, then its parameters can be estimated in two steps:

1. Use OLS to estimate the parameters of the reduced-form equations

yi2 = π12xi1 + π22xi2 + · · · + πK2xiK + vi2

yi3 = π13xi1 + π23xi2 + · · · + πK3xiK + vi3

Obtain the predicted values

ŷi2 = π̂12xi1 + π̂22xi2 + · · · + π̂K2xiK

ŷi3 = π̂13xi1 + π̂23xi2 + · · · + π̂K3xiK (11.10)

2. Replace the endogenous variables, yi2 and yi3, on the right-hand side of the structural (11.9)

by their predicted values from (11.10)

yi1 = α2ŷi2 + α3ŷi3 + β1xi1 + β2xi2 + e∗i1
Estimate the parameters of this equation by OLS.

In practice, we should always use software designed for 2SLS or IV estimation. It will correctly

carry out the calculations of the 2SLS estimates and their standard errors.

Equation (11.9) has two right-hand side endogenous variables and two exogenous variables.

K is the total number of exogenous variables. How large must K be so that equation (11.9)

is identified? The identification “necessary” condition is that in a system of M equations at

............................................................................................................................................

1The discussion above is an intuitive explanation of the two-stage least squares estimator. For a general explanation

of this estimation method, see Section 10.3. There we derive the two-stage least squares estimator and discuss its

properties.
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least M − 1 variables that appear elsewhere in the system must be omitted from each equation.

There are M = 3 equations so M − 1 = 2 variables must be omitted from each equation. Let

K = K1 + K∗
1
, where K1 = 2 is the number of included exogenous variables in the first structural

equation, and K∗
1

is the number of exogenous variables excluded from the first structural equation.

Identification of the first equation requires K∗
1
≥ 2 and K ≥ 4. In Chapter 10’s terminology, K∗

1
is

the number of instrumental variables for the first equation.

The alternative description of the condition for identification is that the number of

omitted exogenous variables, K∗
1
, must be greater than, or equal to, the number of included,

right-hand side endogenous variables. Let M = 1 +M1 +M∗
1
, where M1 = 2 is the number of

included right-hand side endogenous variables, and M∗
1

is the number of endogenous variables

excluded from the first equation. In this example, M∗
1
= 0 because the first equation contains all

three endogenous variables, including the left-hand side variable y1. The identification rule is

that K∗
1
≥ M1. In Chapter 10’s language, there must be as many instrumental variables, K∗

1
, as

endogenous variables on the right-hand side of the equation, M1.

Remark
Simultaneous equations models were developed in the early 1940s and for many years

were the cornerstone of econometric analysis. The subject of Chapter 10 is regression

equations with endogenous variables, which can be thought of as one equation from a

system of equations. Because building and estimating complete systems are difficult, more

researchers in recent years have relied on estimating individual equations by 2SLS∕IV ,

which is why the content of Chapter 10 precedes this treatment of simultaneous equations.

However, the concepts and methods used in Chapters 10 and 11 are the same. Just keep in

mind that:

1. Two-stage least squares and instrumental variables estimation are identical.

2. IVs, or just instruments, are exogenous variables that do not appear in the equation.

Instruments are excluded exogenous variables.

3. The reduced-form equations in simultaneous equations modeling are the first-stage
equations in instrumental variables, two-stage least squares, estimation.

11.5.2 The Properties of the Two-Stage Least
Squares Estimator

We have described how to obtain estimates for structural equation parameters in identified

equations. The properties of the two-stage least squares estimator are as follows:

• The 2SLS estimator is a biased estimator, but it is consistent.

• In large samples the 2SLS estimator is approximately normally distributed.

• The variances and covariances of the 2SLS estimator are unknown in small samples, but for

large samples, we have expressions for them that we can use as approximations. These formu-

las are built into econometric software packages, which report standard errors and t-values,

just like an OLS regression program.

• If you obtain 2SLS estimates by applying two least squares regressions using OLS regression

software, the standard errors and t-values reported in the second regression are not correct for

the 2SLS estimator. Always use specialized 2SLS or IV software when obtaining estimates

of structural equations.
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E X A M P L E 11.1 Supply and Demand for Truffles

Truffles are a gourmet delight. They are edible fungi that

grow below the ground. In France they are often located by

collectors who use pigs to sniff out the truffles and “point”

to them. Actually the pigs dig frantically for the truffles

because pigs have an insatiable taste for them, as do the

French, and they must be restrained from “pigging out” on

them. Consider a supply and demand model for truffles:

Demand: Qi = α1 + α2Pi + α3PSi + α4DIi + edi (11.11)

Supply: Qi = β1 + β2Pi + β3PFi + esi (11.12)

In the demand equation Q is the quantity of truffles traded in

a particular French marketplace, indexed by i, P is the market

price of truffles, PS is the market price of a substitute for real

truffles (another fungus much less highly prized), and DI is

per capita monthly disposable income of local residents. The

supply equation contains the market price and quantity sup-

plied. Also it includes PF, the price of a factor of production,

which in this case is the hourly rental price of truffle-pigs used

in the search process. In this model, we assume that P and Q
are endogenous variables. The exogenous variables are PS,

DI, PF, and the intercept.

Identification

Before thinking about estimation, check the identification

of each equation. The rule for identifying an equation is that

in a system of M equations at least M − 1 variables must be

omitted from each equation in order for it to be identified.

In the demand equation the variable PF is not included; thus

the necessary M − 1 = 1 variable is omitted. In the supply

equation both PS and DI are absent; more than enough to sat-

isfy the identification condition. Note too that the variables

that are omitted are different for each equation, ensuring that

each contains at least one shift variable not present in the

other. We conclude that each equation in this system is iden-

tified and can thus be estimated by two-stage least squares.

Why are the variables omitted from their respective

equations? Because economic theory says that the price of

a factor of production should affect supply but not demand,

and that the price of substitute goods and income should

affect demand and not supply. The specifications we used are

based on the microeconomic theory of supply and demand.

The reduced-form equations

The reduced-form equations express each endogenous vari-

able, P and Q, in terms of the exogenous variables PS, DI,

PF, and the intercept, plus an error term. They are

Qi = π11 + π21PSi + π31DIi + π41PFi + vi1

Pi = π12 + π22PSi + π32DIi + π42PFi + vi2

We can estimate these equations by OLS since the right-hand

side variables are exogenous and contemporaneously

uncorrelated with the random errors vi1 and vi2. The data file

truffles contains 30 observations on each of the endogenous

and exogenous variables. The units of measurement are $

per ounce for price P, ounces for Q, $ per ounce for PS, and

thousands of dollars for DI; PF is the hourly rental rate ($)

for a truffle-finding pig. A few of the observations are shown

in Table 11.1. The results of the least squares estimations

of the reduced-form equations for Q and P are reported in

Tables 11.2a and 11.2b.

In Table 11.2a, we see that the estimated coefficients

are statistically significant, and thus we conclude that the

exogenous variables affect the quantity of truffles traded,

Q, in this reduced-form equation. The R2 = 0.697, and

the overall F-statistic is 19.973, which has a p-value of

less than 0.0001. In Table 11.2b the estimated coefficients

T A B L E 11.1 Representative Truffle Data

OBS P Q PS DI PF

1 29.64 19.89 19.97 2.103 10.52

2 40.23 13.04 18.04 2.043 19.67

3 34.71 19.61 22.36 1.870 13.74

4 41.43 17.13 20.87 1.525 17.95

5 53.37 22.55 19.79 2.709 13.71

Summary Statistics

Mean 62.72 18.46 22.02 3.53 22.75

Std. Dev. 18.72 4.61 4.08 1.04 5.33

T A B L E 11.2a
Reduced Form for Quantity of
Truffles (Q)

Variable Coefficient Std. Error t-Statistic Prob.

C 7.8951 3.2434 2.4342 0.0221

PS 0.6564 0.1425 4.6051 0.0001

DI 2.1672 0.7005 3.0938 0.0047

PF −0.5070 0.1213 −4.1809 0.0003

T A B L E 11.2b
Reduced Form for Price of
Truffles (P)

Variable Coefficient Std. Error t-Statistic Prob.

C −32.5124 7.9842 −4.0721 0.0004

PS 1.7081 0.3509 4.8682 0.0000

DI 7.6025 1.7243 4.4089 0.0002

PF 1.3539 0.2985 4.5356 0.0001
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are statistically significant, indicating that the exogenous

variables have an effect on market price P. The R2 = 0.889

implies a good fit of the reduced-form equation to the data.

The overall F-statistic value is 69.189 that has a p-value of

less than 0.0001, indicating that the model has statistically

significant explanatory power.

The structural equations

The reduced-form equations are used to obtain P̂ that will

be used in place of P on the right-hand side of the supply

and demand equations in the second stage of two-stage least

squares. From Table 11.2b, we have

P̂i = π̂12 + π̂22PSi + π̂32DIi + π̂42PFi

= −32.512 + 1.708PSi + 7.603DIi + 1.354PFi

The 2SLS results are given in Tables 11.3a and 11.3b. The

estimated demand curve results are in Table 11.3a. Note that

the coefficient of price is negative, indicating that as the mar-

ket price rises, the quantity demanded of truffles declines,

as predicted by the law of demand. The standard errors that

are reported are obtained from 2SLS software. They and the

t-values are valid in large samples. The p-value indicates that

the estimated slope of the demand curve is significantly dif-

ferent from zero. Increases in the price of the substitute for

truffles increase the demand for truffles, which is a charac-

teristic of substitute goods. Finally the effect of income is

positive, indicating that truffles are a normal good. All of

T A B L E 11.3a
2SLS Estimates for Truffle
Demand

Variable Coefficient Std. Error t-Statistic Prob.

C −4.2795 5.5439 −0.7719 0.4471

P −0.3745 0.1648 −2.2729 0.0315

PS 1.2960 0.3552 3.6488 0.0012

DI 5.0140 2.2836 2.1957 0.0372

T A B L E 11.3b 2SLS Estimates for Truffle Supply

Variable Coefficient Std. Error t-Statistic Prob.

C 20.0328 1.2231 16.3785 0.0000

P 0.3380 0.0249 13.5629 0.0000

PF −1.0009 0.0825 −12.1281 0.0000

these variables have statistically significant coefficients and

thus have an effect upon the quantity demanded.

The supply equation results appear in Table 11.3b.

As anticipated, increases in the price of truffles increase

the quantity supplied, and increases in the rental rate for

truffle-seeking pigs, which is an increase in the cost of a

factor of production, reduces supply. Both of these variables

have statistically significant coefficient estimates.

E X A M P L E 11.2 Supply and Demand at the Fulton Fish Market

The Fulton Fish Market has operated in New York City for

over 150 years. The prices for fish are determined daily by

the forces of supply and demand. Kathryn Graddy2 collected

daily data on the price of whiting (a common type of fish),

quantities sold, and weather conditions during the period

December 2, 1991, to May 8, 1992. These data are in the file

fultonfish. Fresh fish arrive at the market about midnight. The

wholesalers, or dealers, sell to buyers for retail shops and

restaurants. The first interesting feature of this example is to

consider whether prices and quantities are simultaneously
determined by supply and demand at all.3 We might consider

this a market with a fixed, perfectly inelastic supply. At the

start of the day, when the market is opened, the supply of

fish available for the day is fixed. If supply is fixed, with a

vertical supply curve, then price is demand-determined, with

higher demand leading to higher prices but no increase in the

quantity supplied. If this is true, then the feedback between

prices and quantities is eliminated. Such models are said

to be recursive and the demand equation can be estimated

by OLS rather than the more complicated two-stage least

squares procedure.

However whiting fish can be kept for several days before

going bad, and dealers can decide to sell less, and add to their

inventory, or buffer stock, if the price is judged too low, in

hope for better prices the next day. Or, if the price is unusually

high on a given day, then sellers can increase the day’s catch

with additional fish from their buffer stock. Thus despite the

perishable nature of the product, and the daily resupply of

fresh fish, daily price is simultaneously determined by supply

and demand forces. The key point here is that “simultaneity”

does not require that events occur at a simultaneous moment

in time.

............................................................................................................................................

2See Kathryn Graddy (2006), “The Fulton Fish Market,” Journal of Economic Perspectives, 20(2), 207–220.

3See Kathryn Graddy and Peter E. Kennedy (2010), “When Are Supply and Demand Determined Recursively Rather

than Simultaneously?,” Eastern Economic Journal, 36, 188–197.
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Let us specify the demand equation for this market as

ln
(
QUANt

)
= α1 + α2 ln

(
PRICEt

)
+ α3MONt + α4TUEt

+ α5WEDt + α6THUt + edt (11.13)

where QUANt is the quantity sold, in pounds, and PRICEt
is the average daily price per pound. Note that we are using

the subscript “t” to index observations for this relationship

because of the time series nature of the data. The remaining

variables are indicator variables for the days of the week, with

Friday being omitted. The coefficient α2 is the price elasticity

of demand, which we expect to be negative. The daily indica-

tor variables capture day-to-day shifts in demand. The supply

equation is

ln
(
QUANt

)
= β1 + β2 ln

(
PRICEt

)
+ β3STORMYt + est

(11.14)

The coefficient β2 is the price elasticity of supply. The

variable STORMY is an indicator variable indicating stormy

weather during the previous three days. This variable is

important in the supply equation because stormy weather

makes fishing more difficult, reducing the supply of fish

brought to market.

Identification

Prior to estimation, we must determine whether the supply

and demand equation parameters are identified. The nec-

essary condition for an equation to be identified is that in

this system of M = 2 equations, it must be true that at least

M – 1 = 1 variable must be omitted from each equation.

In the demand equation the weather variable STORMY is

omitted, and it does appear in the supply equation. In the

supply equation, the four daily indicator variables that are

included in the demand equation are omitted. Thus the

demand equation shifts daily, while the supply remains fixed

(since the supply equation does not contain the daily indi-

cator variables), thus tracing out the supply curve, making

it identified, as shown in Figure 11.4. Similarly, stormy

conditions shift the supply curve relative to a fixed demand,

tracing out the demand curve and making it identified.

The reduced-form equations

The reduced-form equations specify each endogenous vari-

able as a function of all exogenous variables

ln
(
QUANt

)
= π11 + π21MONt + π31TUEt + π41WEDt

+ π51THUt + π61STORMYt + vt1 (11.15)

ln
(
PRICEt

)
= π12 + π22MONt + π32TUEt + π42WEDt

+ π52THUt + π62STORMYt + vt2 (11.16)

These reduced-form equations can be estimated by OLS

because the right-hand side variables are all exogenous

and uncorrelated with the reduced-form errors vt1 and vt2.

Using the Graddys’ data ( fultonfish), we estimate these

reduced-form equations and report them in Tables 11.4a

and 11.4b. Estimation of the reduced-form equations is the

first step of two-stage least squares estimation of the supply

and demand equations. It is a requirement for successful

two-stage least squares estimation that the estimated coeffi-

cients in the reduced form for the right-hand side endogenous

variable be statistically significant. We have specified the

structural equations (11.13) and (11.14) with ln(QUANt) as

the left-hand side variable and ln(PRICEt) as the right-hand

side endogenous variable. Thus the key reduced-form

equation is (11.16) for ln(PRICEt). In this equation

• To identify the supply curve, the daily indicator variables

must be jointly significant. This implies that at least one

of their coefficients is statistically different from zero,

meaning that there is at least one significant shift vari-

able in the demand equation, which permits us to reliably

estimate the supply equation.

• To identify the demand curve, the variable STORMYt
must be statistically significant, meaning that supply

has a significant shift variable, so that we can reliably

estimate the demand equation.

Why is this so? The identification discussion in Section 11.4

requires only the presence of shift variables, not their signif-

icance. The answer comes from a great deal of econometric

research in the past decade, which shows that the two-stage

least squares estimator performs very poorly if the shift

variables are not strongly significant.4 Recall that to

implement two-stage least squares we take the predicted

value from the reduced-form regression and include it in

the structural equations in place of the right-hand side

endogenous variable, that is, we calculate

ln
(
PRICEt

)
⋀

= π̂12 + π̂22MONt + π̂32TUEt + π̂42WEDt

+ π̂52THUt + π̂62STORMYt

where π̂k2 are the least squares estimates of the reduced-form

coefficients, and then replace ln(PRICEt) with ln
(
PRICEt

)
⋀

.

To illustrate our point, let us focus on the problem of estimat-

ing the supply equation (11.14) and take the extreme case

that π̂22 = π̂32 = π̂42 = π̂52 = 0, meaning that the coefficients

on the daily indicator variables are all identically zero. Then

ln
(
PRICEt

)
⋀

= π̂12 + π̂62STORMYt

If we replace ln(PRICEt) in the supply equation (11.14)

with this predicted value, there will be exact collinearity

between ln
(
PRICEt

)
⋀

and the variable STORMYt, which is

already in the supply equation, and two-stage least squares

will fail. If the coefficient estimates on the daily indicator

............................................................................................................................................

4See Section 10.3.9 for further discussion of this point.
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variables are not exactly zero, but are jointly insignificant, it

means there will be severe collinearity in the second stage,

and although the two-stage least squares estimates of the

supply equation can be computed, they will be unreliable.

In Table 11.4b, showing the reduced-form estimates for

(11.16), none of the daily indicator variables are statistically

significant. Also, the joint F-test of significance of the daily

indicator variables has p-value 0.65, so that we cannot reject

the null hypothesis that all these coefficients are zero.5 In

this case the supply equation is not identified in practice, and

we will not report estimates for it.

T A B L E 11.4a
Reduced Form for ln(Quantity)
Fish

Variable Coefficient Std. Error t-Statistic Prob.

C 8.8101 0.1470 59.9225 0.0000

STORMY −0.3878 0.1437 −2.6979 0.0081

MON 0.1010 0.2065 0.4891 0.6258

TUE −0.4847 0.2011 −2.4097 0.0177

WED −0.5531 0.2058 −2.6876 0.0084

THU 0.0537 0.2010 0.2671 0.7899

T A B L E 11.4b Reduced Form for ln(Price) Fish

Variable Coefficient Std. Error t-Statistic Prob.

C −0.2717 0.0764 −3.5569 0.0006

STORMY 0.3464 0.0747 4.6387 0.0000

MON −0.1129 0.1073 −1.0525 0.2950

TUE −0.0411 0.1045 −0.3937 0.6946

WED −0.0118 0.1069 −0.1106 0.9122

THU 0.0496 0.1045 0.4753 0.6356

However, STORMYt is statistically significant in

Table 11.4b, meaning that the demand equation may be

reliably estimated by two-stage least squares. An advantage

of two-stage least squares estimation is that each equation

can be treated and estimated separately, so the fact that the

supply equation is not reliably estimable does not mean that

we cannot proceed with estimation of the demand equation.

The check of statistical significance of the sets of shift

variables for the structural equations should be carried out

each time a simultaneous equations model is formulated.

Two-stage least squares estimation of fish

demand

Applying two-stage least squares estimation to the demand

equation we obtain the results as given in Table 11.5.

The price elasticity of demand is estimated to be −1.12,

meaning that a 1% increase in fish price leads to about a

1.12% decrease in the quantity demanded; this estimate is

statistically significant at the 5% level. The indicator variable

coefficients are negative and statistically significant for

Tuesday and Wednesday, meaning that demand is lower on

these days relative to Friday.

T A B L E 11.5 2SLS Estimates for Fish Demand

Variable Coefficient Std. Error t-Statistic Prob.

C 8.5059 0.1662 51.1890 0.0000

ln(PRICE) −1.1194 0.4286 −2.6115 0.0103

MON −0.0254 0.2148 −0.1183 0.9061

TUE −0.5308 0.2080 −2.5518 0.0122

WED −0.5664 0.2128 −2.6620 0.0090

THU 0.1093 0.2088 0.5233 0.6018

E X A M P L E 11.3 Klein’s Model I

One of the most widely used econometric examples in the

past 50 years is the small, three equation, macroeconomic

model of the U.S. economy proposed by Lawrence Klein,

the 1980 Nobel Prize winner in Economics.6 The model has

three equations, which are estimated, and then a number of

macroeconomic identities, or definitions, to complete the

model. In all, there are eight endogenous variables and eight

exogenous variables.

............................................................................................................................................

5Even if the variables are jointly significant, there may be a problem. The significance must be “strong.” An

F-value <10 is cause for concern. This problem is the same as that of weak instruments in instrumental variables

estimation (see Section 10.3.9).

6Our presentation follows Ernst R. Berndt (1991), The Practice of Econometrics: Classic and Contemporary,

Addison-Wesley Publishing, Section 10.5.
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The first equation is a consumption function, in which

aggregate consumption in year t, CNt is related to total

wages earned by all workers, Wt. Total wages are divided

into wages of workers earned in the private sector, W1t, and

wages of workers earned in the public sector, W2t, so that

total wages Wt = W1t +W2t. Private sector wages W1t are

endogenous and determined within the structure of the

model, as we will see below. Public sector wages W2t
are exogenous. In addition, consumption expenditures are

related to nonwage income (profits) in the current year, Pt,

which are endogenous, and profits from the previous year,

Pt−1. Thus, the consumption function is

CNt = α1 + α2

(
W1t +W2t

)
+ α3Pt + α4Pt−1 + e1t (11.17)

Now refer back to equation (5.44) in Section 5.7.3. There

we introduced the term contemporaneously uncorrelated
to describe the situation in which an explanatory variable

observed at time t, xtk is uncorrelated with the random error

at time t, et. In the terminology of Chapter 10, the variable

xtk is exogenous if it is contemporaneously uncorrelated with

the random error et. And the variable xtk is endogenous if

it is contemporaneously correlated with the random error et.

In the consumption equation, W1t and Pt are endogenous and

contemporaneously correlated with the random error et. On

the other hand, wages in the public sector, W2t, are set by

public authority and are assumed exogenous and uncorrelated

with the current period random error e1t. What about profits

in the previous year, Pt−1? They are not correlated with the

random error occurring one year later. Lagged endogenous

variables are called predetermined variables and are treated

just like exogenous variables.

The second equation in the model is the investment

equation. Net investment, It, is specified to be a function of

current and lagged profits, Pt and Pt−1, as well as the capital

stock at the end of the previous year, Kt−1. This lagged

variable is predetermined and treated as exogenous. The

investment equation is

It = β1 + β2Pt + β3Pt−1 + β4Kt−1 + e2t (11.18)

Finally, there is an equation for wages in the private sector,

W1t. Let Et = CNt + It +
(
Gt – W2t

)
, where Gt is government

spending. Consumption and investment are endogenous

and government spending and public sector wages are

exogenous. The sum, Et, total national product minus public

sector wages, is endogenous. Wages are taken to be related

to Et and the predetermined variable Et−1, plus a time trend

variable, TIMEt = YEARt − 1931, which is exogenous. The

wage equation is

W1t = γ1 + γ2Et + γ3Et−1 + γ4TIMEt + e3t (11.19)

Because there are eight endogenous variables in the entire

system there must also be eight equations. Any system

of M endogenous variables must have M equations to be

complete. In addition to the three equations (11.17)–(11.19),

which contain five endogenous variables, there are five other

definitional equations to complete the system that introduce

three further endogenous variables. In total, there are eight

exogenous and predetermined variables, which can be used

as IVs. The exogenous variables are government spending,

Gt, public sector wages, W2t, taxes, TXt, and the time trend

variable, TIMEt. Another exogenous variable is the constant

term, the “intercept” variable in each equation, X1t ≡ 1. The

predetermined variables are lagged profits, Pt−1, the lagged

capital stock, Kt−1, and the lagged total national product

minus public sector wages, Et−1.

11.6 Exercises

11.6.1 Problems

11.1 Our aim is to estimate the parameters of the simultaneous equations model

y1 = α1y2 + e1

y2 = α2y1 + β1x1 + β2x2 + e2

We assume that x1 and x2 are exogenous and uncorrelated with the error terms e1 and e2.

a. Solve the two structural equations for the reduced-form equation for y2, that is,

y2 = π1x1 + π2x2 + v2. Express the reduced-form parameters in terms of the structural
parameters and the reduced-form error in terms of the structural parameters and e1 and e2. Show

that y2 is correlated with e1.

b. Which equation parameters are consistently estimated using OLS? Explain.

c. Which parameters are “identified,” in the simultaneous equations sense? Explain your reasoning.
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d. To estimate the parameters of the reduced-form equation for y2 using the method of moments

(MOM), which was introduced in Section 10.3, the two moment equations are

N−1∑ xi1
(
y2 − π1xi1 − π2xi2

)
= 0

N−1∑ xi2
(
y2 − π1xi1 − π2xi2

)
= 0

Explain why these two moment conditions are a valid basis for obtaining consistent estimators of

the reduced-form parameters.

e. Are the MOM estimators in part (d) the same as the OLS estimators? Form the sum of squared

errors function for y2 = π1x1 + π2x2 + v2 and find the first derivatives. Set these to zero and show

that they are equivalent to the two equations in part (d).

f. Using
∑

x2
i1 = 1,

∑
x2

i2 = 1,
∑

xi1xi2 = 0,
∑

xi1y1i = 2,
∑

xi1y2i = 3,
∑

xi2y1i = 3,
∑

xi2y2i = 4,

and the two moment conditions in part (d) show that the MOM/OLS estimates of π1 and π2 are

π̂1 = 3 and π̂2 = 4.

g. The fitted value ŷ2 = π̂1x1 + π̂2x2. Explain why we can use the moment condition
∑

ŷi2
(
yi1 − α1yi2

)
= 0 as a valid basis for consistently estimating α1. Obtain the IV estimate

of α1.

h. Find the 2SLS estimate of α1 by applying OLS to y1 = α1ŷ2 + e∗
1
. Compare your answer to that in

part (g).

11.2 Consider a supply and demand model written in its most general implicit form, using capital Greek

letters for the unknown parameters and Ei for the random errors,

Demand: Γ11q + Γ21p + B11 + B21x + E1 = 0

Supply: Γ12q + Γ22p + B12 + B22x + E2 = 0

a. Multiply each equation by 3. Do they remain true?

b. Multiply the demand equation by −1∕Γ11. Does it remain true?

c. Define α21 = −Γ21∕Γ11, β11 = −B11∕Γ11, β21 = −B21∕Γ11, e1 = −E1∕Γ11 and write the demand

equation with q on the left-hand side and the remaining terms on the right-hand side. By choosing

q to be on the left-hand side of the equation, we have chosen a normalization rule.

d. Repeat the process for the supply equation, beginning by multiplying through by −1∕Γ22, and

obtain the normalized supply curve with

α12 = −Γ12∕Γ22, β12 = −B12∕Γ22, β22 = −B22∕Γ22, and e2 = −E2∕Γ22

Write the normalized supply equation with p on the left-hand side and the remaining terms on the

right side.

e. Mathematically, in a system of jointly determined variables, it does not matter which variable

appears on the left side of each normalized equation. True or false?

11.3 Consider a supply and demand model written in its most general implicit form, using capital Greek

letters for the unknown parameters and Ei for the random errors:

Demand: Γ11q + Γ21p + B11 + B21x + E1 = 0

Supply: Γ12q + Γ22p + B12 + B22x + E2 = 0

a. Find the reduced-form equation for p, p = π1 + π2x + v. Express π1 and π2 in terms of parameters

Γij and Bij.

b. Suppose we replace the “true” demand equation with an equation that is a mixture of the demand

and supply equations, that is, multiply through the demand equation by 3 and the supply equation

by 2 and then add the two equations together to obtain

(
3Γ11 + 2Γ12

)
q +

(
3Γ21 + 2Γ22

)
p +

(
3B11 + 2B12

)
+
(
3B21 + 2B22

)
x +

(
3E1 + 2E2

)
= 0

or Γ′
11

q + Γ′
21

p + B′
11
+ B′

21
x + E′

1
= 0, with ′ denoting the new parameters. Using the new

demand equation, and the original supply equation, find the reduced-form equation for p,

p = π∗
1
+ π∗

2
x + v∗. Express π∗

1
and π∗

2
in terms of parameters Γij and Bij. Compare the solution to

that in (a).
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11.4 Consider the supply and demand model below:

Demand: q = −p + 3 + 2x + e1

Supply: p = q + 1 + x + e2

a. Find the reduced-form equations for p and q as a function of the exogenous variable x.

b. Now suppose that the demand equation is q = −5p + 11 + 8x + e∗
1
. Find the reduced-form

equations for p and q using this demand equation and the original supply equation.

c. Show that the new demand equation is a mixture of the original supply and demand equations.

Specifically, it is three times the original demand equation plus two times the supply equation.

[Hint: It is simpler to put the demand and supply equations into implicit form, with everything on

the left side and zero on the right side, before doing the multiplying and adding.]

d. If we have N observations on p, q, and x, can we consistently estimate the demand equation by

OLS? Why?

e. If we have N observations on p, q, and x, can we consistently estimate the reduced-form equations

by OLS? Why?

f. Given the true reduced-form equations, can we deduce whether q = −p + 3 + 2x + e1 or

q = −5p + 11 + 8x + e∗
1

is the true demand equation?

g. Is the demand equation “identified” using the necessary condition?

11.5 Consider the supply and demand model below:

Demand: q = −p + 3 + 2x + e1

Supply: p = q + 1 + e2

a. Find the reduced-form equations for p and q as a function of the exogenous variable x.

b. Now suppose that the demand equation is q = −5p + 11 + 6x + e∗
1
. Find the reduced-form

equations for p and q using this demand equation and the original supply equation.

c. Show that the new demand equation is a mixture of the original supply and demand equations.

Specifically, it is three times the original demand equation plus two times the supply equation.

[Hint: It is simpler to put the demand and supply equations into implicit form, with everything on

the left side and zero on the right side, before doing the multiplying and adding.]

d. If we have N observations on p, q, and x, can we consistently estimate the supply equation by

OLS? Why?

e. If we have N observations on p, q, and x, can we consistently estimate the reduced-form equations

by OLS? Why?

f. Given the economic supply and demand model proposed in the question, is it possible for the

mixture equation q = −5p + 11 + 6x + e∗
1

to be a supply curve? Explain.

g. Is the demand equation “identified” using the necessary condition? Is the supply equation “iden-

tified” using the necessary condition?

11.6 Consider the supply and demand model below, where x is exogenous.

Demand: q = α1p + α2 + α3x + e1

Supply: p = β1q + β2 + e2

a. Find the reduced-form equations for p and q, q = π11 + π21x + v1 and p = π12 + π22x + v2,

expressing the reduced-form parameters in terms of α’s and β’s.

b. Suppose π11 = 1∕5, π21 = 3∕5, π12 = 2∕5, and π22 = 6∕5. Solve for as many of the α’s and β’s as

you can.

11.7 Consider the supply and demand model below, where x and w are exogenous.

Demand: q = α1p + α1x + α2w + e1

Supply: p = β1q + e2

a. Find the reduced-form equations for p and q, q = π11x + π21w + v1 and p = π12x + π22w + v2,

expressing the reduced-form parameters in terms of α’s and β’s.

b. Suppose π11 = 1∕5, π21 = 1∕5, π12 = 2∕5, and π22 = 2∕5. Solve for as many of the α’s and β’s as

you can.
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11.8 In macroeconomics, the simple “consumption function” relates national expenditure on consumption

goods, CONSUMPt = aggregate consumption, in period t to national income, INCOMEt = GNPt.

Specify the consumption function CONSUMPt = β1 + β2INCOMEt + et. Suppose that INVt is aggre-

gate investment. In the simplest model, the income identity is INCOMEt = CONSUMPt + INVt.

a. Substitute the income identity into the consumption function and solve for consumption in terms

of investment.

b. Find the covariance between INCOMEt and the random error et.

c. Find the covariance between INVt and INCOMEt.

d. Suppose INVt is uncorrelated with the random error et. Does it satisfy the conditions for an IV?

11.9 Consider the simultaneous equations model, where x is exogenous.

yi1 = α1yi2 + α2xi1 + ei1

yi2 = α2yi1 + β1xi1 + ei2

Assume that E
(
ei1|x1

)
= E

(
ei2|x1

)
= 0, var

(
ei1|x1

)
= σ2

1
, var

(
ei2|x1

)
= σ2

2
, and cov

(
ei1, ei2|x1

)
= σ12.

a. Substitute the second equation into the first and find the reduced-form equation for yi1.

b. Multiply the reduced-form equation for yi1 from part (a) by ei2 and find cov
(
yi1, ei2|x1

)
=

E
(
yi1ei2|x1

)
.

c. Show that cov
(
yi1, ei2|x1

)
= 0 if α1 = 0 and σ12 = 0. Such a system is said to be recursive.

d. Is the OLS estimator of the first equation consistent under the conditions in (c)? Explain.

e. Is the OLS estimator of the second equation consistent under the conditions in (c)? Explain.

11.10 Reconsider the Truffle supply and demand model in Example 11.1. Modify the demand equation

as Qi = α1 + α2Pi + α3PSi + ed
i , keeping the supply equation unchanged. The estimates are given in

Table 11.6.

T A B L E 11.6 Estimates for Exercise 11.10

(1) (2) (3) (4)
C 5.6169

(3.6256)

−40.5043

(10.0873)

0.4460

(4.1596)

19.9625

(1.2371)

PF −0.2762

(0.1097)

2.1635

(0.3053)

−1.0425

(0.0907)

PS 0.8685

(0.1434)

2.4522

(0.3991)

1.1815

(0.2765)

P −0.1277

(0.0671)

0.3542

(0.0288)

Standard errors in parentheses.

a. Are the demand and supply equations identified using the necessary condition in Section 11.4?

Explain.

b. Column (1) contains the OLS estimates of the reduced-form equation for Q, and column (2) con-

tains the OLS estimates of the reduced-form equation for P. Compute the first-stage F-test used to

decide upon instrument strength for each equation. Is the F-value greater than the rule of thumb

threshold, F > 10? [Hint: Recall the relationship between t- and F-tests.]

c. Using the estimates accurately sketch the supply and demand equations, with Q on the vertical

axis and P on the horizontal axis. For these sketches set the values of the exogenous variables, PS
and PF, to be PF* = 23 and PS* = 22.

d. What are the equilibrium values of P and Q from (c)?

e. On the graph from part (c) show the consequences of increasing the price of the factor of pro-

duction (the truffle-seeking pig’s rental rate) from PF* = 23 to PF* = 30, holding the value of PS
constant.
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f. Calculate the change in equilibrium price P and quantity Q in (d). What is the percentage change

in equilibrium quantity divided by the percentage change in PF?

g. Calculate a 95% interval estimate for the elasticity of Q with respect to PF using the reduced-form

equation estimates, at PF* = 23 and PS* = 22. Is the elasticity in (f) within the 95% interval

estimate?

11.11 Reconsider the Truffle supply and demand model in Example 11.1. Suppose we modify the supply

equation to be Qi = β1 + β2Pi + es
i , keeping the demand equation unchanged.

a. Are the supply and demand equations identified using the necessary condition in Section 11.4?

Explain.

b. The estimated first-stage, reduced form, equation becomes

P̂i = −13.50 + 1.47PSi + 12.41DIi F = 54.21

(t) (3.23) (6.95)

Do you judge the omitted exogenous variables (instruments) strong enough to estimate the iden-

tified equation(s)? Explain.

c. The estimated supply equation using 2SLS is

Q̂i = 8.6455 + 0.1564Pi
(se) (2.89) (0.045)

Verify that the point of the means (see Table 11.1) falls on the estimated supply curve.

d. Calculate the price elasticity of supply at the means and compare it to the elasticity computed

from the 2SLS estimates in Table 11.3b.

e. Comparing the results in parts (b) and (c) to those in Example 11.1, do you think we should

include PF in the supply equation? Explain.

11.12 Suppose you want to estimate a wage equation for married women of the form

ln(WAGE) = β1 + β2HOURS + β3EDUC + β4EXPER + β5EXPER2 + e1

where WAGE is the hourly wage, HOURS is number of hours worked per week, EDUC is years of

education, and EXPER is years of experience. Your classmate observes that higher wages can bring

forth increased work effort, and that married women with small children may reduce their hours of

work to take care of them. It may also be true that a husband’s wage rate has an effect on a wife’s

hours of work supplied, so that there may be an auxiliary relationship such as

HOURS = α1 + α2 ln(WAGE) + α3KIDS + α4 ln(HWAGE) + e2

where KIDS is the number of children under the age of six in the woman’s household and HWAGE is

her husband’s wage rate.

a. Can the wage equation be estimated satisfactorily using the OLS estimator? If not, why not?

b. Is the wage equation “identified”? What does the term identification mean in this context?

c. If you seek an alternative to least squares estimation for the wage equation, suggest an estimation

procedure and how (step by step, and NOT a computer command) it is carried out.

d. Other than the identification condition in part (b), are there any other conditions that must be met

so that we can confidently use the estimation procedure in part (c)? What are those conditions?

11.13 In the post-World War II period, monetary policy effects and the supply and demand for money were

important topics. Consider the following model, where M is the money stock, R is short-term rate of

interest, GNP is national income, and Rd is Federal Reserve’s discount rate, which it charges commer-

cial banks. The endogenous variables are the money supply, M, and the short-term rate of interest, R.

The exogenous variables are GNP and the Federal Reserve’s discount rate, Rd. The lagged money

stock Mt−1 is a predetermined variable. It is treated as an exogenous variable and uncorrelated with

the current period error. Using quarterly data from the post-war period, the 2SLS estimated money

demand, omitting seasonal and other dummy variables, is

M̂t = 23.06 + 0.0618GNPt − 0.0025
(
R × GNPt

)
+ 0.686Mt−1 + · · ·

(se) (0.0126) (0.0007) (0.0728)

The supply equation is taken to be proportional to the difference between the short-term interest rate

R and the discount rate, Rd, with the factor of proportionality being the maximum potential money
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stock, M*, which is a known constant. The estimated supply equation, omitting seasonal and other

dummy variables, is

M̂t = 0.8522 + 0.0751
[
M∗

t

(
Rt − Rd,t

)]
+ · · ·

(se) (0.0159)

a. If the preceding period’s money supply increases by one unit, what happens to the money demand

function? In a graph like Figure 11.4, with M on the vertical axis and R on the horizontal axis,

does the money demand curve shift right or left or not at all? Does the money supply curve shift

if ΔMt− 1 > 0? If so, which direction?

b. If GNP increases by one unit, what happens to the money demand function? In a graph like

Figure 11.4, does the money demand curve shift right or left or not at all? Does the money supply

curve shift if ΔGNPt > 0? If so, which direction?

c. If the discount rate, Rd, is increased does the money demand curve shift right or left or not at all?

Does the money supply curve shift if ΔRd,t > 0? If so, which direction?

d. Explain how your answers to (a), (b), and (c) imply that both the supply and demand for money

functions are identified.

11.14 Australian wine is popular in Australia and worldwide. Using annual data on wine grape transactions

Q(10,000 tonne units) and price P($AU100 per tonne) of wine produced in warm inland Australia,

an estimated demand equation is

Q̂t = −0.278Pt + 2.884INCOMEt − 3.131XRATEt − 2.766STOCKSt−1 + · · ·
(t) (−2.85) (6.34) (−3.04) (−2.24)

INCOME (US$1,000,000) is weighted household consumption expenditure, XRATE is the exchange

rate per $AU, and STOCKS (1000 million litres) are from the previous year. An estimated supply

equation is

Q̂t = 0.824Pt + 0.682Qt−4 + 0.598TIMEt − 1.688TEMPt + 1.793NONt− 4 − 1.570PREMt− 4 + · · ·
(t) (4.82) (3.68) (5.87) (−1.19) (4.21) (−2.42)

TEMP is mean January temperature (mid-summer “Down Under”), NONt− 4 is the price of the

regional wine grape relative to other non-premium grapes, lagged four years, and PREMt− 4 is

the price of the regional wine grapes relative to other premium wine grapes, lagged four years.

Production at time t − 4 is on the right-hand side reflecting the four years required between planting

grape vines and producing wine. This is a partial adjustment model as discussed in Exercise 9.30.

In both equations, we have omitted the intercept and indicator variables for specific regions.

a. Which variables in the model cause the demand equation to shift relative to the supply equation?

b. Which variables in the model cause the supply equation to shift relative to the demand equation?

c. Discuss the signs of the estimated coefficients in the demand equation.

d. Sample means of Q, P, and INCOME are Q = 4.98, P = 6.06, and INCOME = 1.66. Calculate

the price and income elasticity of demand at the means.

e. Discuss the signs of the estimated coefficients in the supply equation.

f. Calculate the elasticity of equilibrium supply with respect to price at the means.

11.15 Consider the supply and demand for labor, and in particular that for married women. Wages and hours

worked are jointly determined by supply and demand. Let the supply equation be

HOURS = β1 + β2 ln(WAGE) + β3EDUC + β4AGE
+ β5KIDSL6 + β6KIDS618 + β7NWIFEINC + ee

KIDSL6 are the number of children less than 6 years old, KIDS618 are the number of children who

are 6 to 18 years old, NWIFEINC is household income other than the wife’s earnings. Let the demand

equation be

ln(WAGE) = α1 + α2HOURS + α3EDUC + α4EXPER + α5EXPER2 + ed

a. Imagine a supply and demand graph, like Figure 11.4, with HOURS on the vertical axis and

ln(WAGE) on the horizontal axis. Describe the anticipated effects on the graph of increases in

the number of small children on the woman’s supply and demand curves. What is the anticipated

effect on equilibrium wage and hours worked?
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b. Describe the anticipated effects on the graph of increases in experience on the woman’s supply

and demand curves. What is the anticipated effect on equilibrium wage and hours worked?

c. Does the necessary condition for identification appear to hold for the supply equation? What

are the IVs used in 2SLS? Write out the econometric form of the reduced-form equation for

ln(WAGE), letting the coefficients be denoted as π1, π2, etc. What hypotheses would you test to

evaluate the strength of IVs used in 2SLS estimation of the supply equation?

d. Does the necessary condition for identification appear to hold for the demand equation? What are

the IVs used in 2SLS? Write out the econometric form of the reduced-form equation for HOURS,

letting the coefficients be denoted as γ1, γ2, etc. What hypotheses would you test to evaluate the

strength of IVs used in 2SLS estimation of the demand equation?

11.16 Consider the following supply and demand model

Demand: Qi = α1 + α2Pi + edi, Supply: Qi = β1 + β2Pi + β3Wi + esi

where Q is the quantity, P is the price, and W is the wage rate, which is assumed exogenous. Data on

these variables are in Table 11.7.

T A B L E 11.7
Data for
Exercise 11.16

Q P W

4 2 2

6 4 3

9 3 1

3 5 1

8 8 3

a. Derive the algebraic form of the reduced-form equations, Q = θ1 + θ2W + v2 and

P = π1 + π2W + v1, expressing the reduced-form parameters in terms of the structural

parameters.

b. Which structural parameters can you solve for from the results in part (a)? Which equation is

“identified”?

c. The estimated reduced-form equations are Q̂ = 5 + 0.5W and P̂ = 2.4 + 1W. Solve for the iden-

tified structural parameters. This is the method of indirect least squares.

d. Obtain the fitted values from the reduced-form equation for P, and apply 2SLS to obtain estimates

of the demand equation.

11.17 Example 11.3 introduces Klein’s Model I.

a. Do we have an adequate number of IVs to estimate each equation? Check the necessary condition

for the identification of each equation. The necessary condition for identification is that in a system

of M equations at least M − 1 variables must be omitted from each equation.

b. An equivalent identification condition is that the number of excluded exogenous variables from the

equation must be at least as large as the number of included right-hand side endogenous variables.

Check that this condition is satisfied for each equation.

c. Write down in econometric notation the first-stage equation, the reduced form, for W1t, wages of

workers earned in the private sector. Call the parameters π1, π2,…
d. Describe the two regression steps of 2SLS estimation of the consumption function. This is not a

question about a computer software command.

e. Does following the steps in part (d) produce regression results that are identical to the 2SLS

estimates provided by software specifically designed for 2SLS estimation? In particular, will the

t-values be the same?

11.6.2 Computer Exercises

11.18 Example 11.3 introduces Klein’s Model I. Here we examine a simplified model that excludes the gov-

ernment sector and allows further practice with simultaneous equations models. Suppose the model is
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reduced to the following two equations, for two endogenous variables, consumption, CN, and invest-

ment, I. The two estimable equations are the consumption and investment functions:

CNt = α1 + α2It + α3TIMEt + e1t

It = β1 + β2CNt + β3Kt−1 + e2t

a. Check the identification of the consumption and investment functions.

b. Solve for the reduced-form equation for CN. Call the parameters π1, π2, π3 and express them in

terms of the structural parameters, similar to equations (11.4) and (11.5).

c. Using the data file klein, estimate each of the structural equations by OLS. Comment on the signs

and significance of the coefficients.

d. Estimate each of the structural equations by 2SLS. Comment on the signs and significance of the

coefficients.

e. Estimate the first-stage, reduced form, equation. In the reduced-form equation for consumption

is Kt−1 statistically significant? In the reduced-form equation for investment is TIMEt statistically

significant? Do these results help explain the differences in the OLS and 2SLS estimates?

11.19 The labor supply of married women has been a subject of a great deal of economic research. The data

file is mroz, and the variable definitions are in the file mroz.def . The data file contains information

on women who have worked in the previous year and those who have not. The variable indicating

whether a woman worked LFP, labor force participation, takes the value 1 if a woman worked and 0

if she did not.

a. Calculate the summary statistics for the variables: wife’s age, the number of less than 6-year-old

children, and the income from other sources than from the wife’s employment, NWIFEINC,

for the women who worked (LFP = 1) and those who did not (LFP = 0). Define NWIFEINC =
FAMINC – WAGE × HOURS. Comment on any differences you observe.

b. Consider the following supply equation specification:

HOURS = β1 + β2 ln(WAGE) + β3EDUC + β4AGE
+ β5KIDSL6 + β6KIDS618 + β7NWIFEINC + e

What signs do you expect each of the coefficients to have, and why? What does NWIFEINC
measure?

c. Estimate the supply equation in (b) using OLS regression on only the women who worked
(LFP = 1). Did things come out as expected? If not, why not?

d. Estimate the reduced-form equation by OLS for the women who worked, using work experience,

EXPER, as an additional exogenous variable.

ln(WAGE) = π1 + π2EDUC + π3AGE + π4KIDSL6 + π5KIDS618
+ π6NWIFEINC + π7EXPER + v

Based on the estimated reduced form, what is the effect upon wage of an additional year of

education?

e. Check the identification of the supply equation, considering the availability of instrument EXPER.

f. Estimate the supply equation by two-stage least squares, using software designed for this purpose.

Discuss the signs and significance of the estimated coefficients.

11.20 This exercise examines a supply and demand model for edible chicken, which the U.S. Department

of Agriculture calls “broilers.” The data for this exercise are in the file newbroiler, which is adapted

from the data provided by Epple and McCallum (2006). We consider the demand equation in this

exercise and the supply equation in Exercise 11.21.

a. Consider the demand equation:

ln
(
Qt
)
= α1 + α2ln

(
Pt
)
+ α3ln

(
Yt
)
+ α4ln

(
PBt

)
+ α5POPGROt + ed

t

where Q = per capita consumption of chicken, in pounds; Y = real per capita income; P = real

price of chicken; PB = real price of beef; and POPGRO = rate of population growth. What are

the endogenous variables? What are the exogenous variables?

b. Using data from 1960 to 1999, estimate the demand equation by OLS. Comment on the signs and

significance of the estimates.
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c. Test the OLS residuals from part (b) for serial correlation by constructing a correlogram and

carrying out the T × R2 test. What do you conclude about the presence of serial correlation?

d. Estimate the demand equation by 2SLS using as instruments ln(PFt), TIMEt = YEARt − 1949,

ln
(
QPRODt−1

)
, and ln

(
EXPTSt−1

)
. Compare and contrast these estimates to the OLS estimates

in part (a).

e. Estimate the reduced-form, first-stage, equation and test the joint significance of ln(PFt), TIMEt,

ln
(
QPRODt−1

)
, and ln

(
EXPTSt−1

)
. Can we conclude that at least one instrument is strong?

f. Test the reduced-form equation for serial correlation using the T × R2 test.

g. Estimate the reduced-form, first-stage, equation using HAC standard errors and test the joint sig-

nificance of ln(PFt), TIMEt, ln
(
QPRODt−1

)
, and ln

(
EXPTSt−1

)
.

h. Obtain the 2SLS residuals from part (d). Construct a correlogram. Is there evidence of serial

correlation? Obtain 2SLS estimates with HAC standard errors and compare the results to those

in (d).

i. Test the validity of the surplus instruments using the Sargan test, discussed in Section 10.4.3, and

the 2SLS estimates in part (d).

11.21 This exercise examines a supply and demand model for edible chicken, which the U.S. Department of

Agriculture calls “broilers.” The data for this exercise are in the file newbroiler, which is adapted

from the data provided by Epple and McCallum (2006). We considered the demand equation in

Exercise 11.20. The supply equation is

ln
(
QPRODt

)
= β1 + β2 ln

(
Pt
)
+ β3 ln

(
PFt

)
+ β4TIMEt + ln

(
QPRODt−1

)
+ es

t

where QPROD is the aggregate production of young chickens, PF is nominal price index of broiler

feed, and TIME = time index with 1950 = 1,… , 2001 = 52. This supply equation is dynamic, with

lagged production on the right-hand side. This predetermined variable is exogenous. TIME is included

to capture technical progress in production.

a. What are the endogenous variables? What are the exogenous variables? What is the interpretation

of the parameter β2? What signs do you expect for each of the parameters?

b. Using data from 1960 to 1999, estimate the supply equation by OLS. Comment on the signs and

significance of the estimates. Test the residuals for serial correlation. Is serial correlation present?

c. Estimate the reduced-form, first-stage, regression by OLS using the IVs ln(Yt), ln(PBt), POPGRO,

and ln
(
EXPTSt−1

)
. Test the joint significance of these variables. Can we conclude that we have at

least one strong instrument?

d. Estimate the supply equation by 2SLS using the instruments listed in part (c). Compare and

contrast these results to those in part (b).

e. Test the validity of the surplus instruments using the Sargan test, discussed in Section 10.4.3.

11.22 This exercise examines a supply and demand model for edible chicken, which the U.S. Department of

Agriculture calls “broilers.” The data for this exercise are in the file newbroiler, which is adapted

from the data provided by Epple and McCallum (2006). We considered the demand equation in

Exercise 11.20. It is

ln
(
Qt
)
= α1 + α2 ln

(
Pt
)
+ α3 ln

(
Yt
)
+ α4 ln

(
PBt

)
+ α5POPGROt + ed

t

where Q is the per capita consumption of chicken, in pounds; Y is real per capita income; P is real

price of chicken; PB is real price of beef, and POPGRO is rate of population growth. What are the

endogenous variables? What are the exogenous variables? The demand equation suffers from serial

correlation. In the AR(1) model ed
t = ρed

t−1
+ vd

t the value of ρ is large. Epple and McCallum estimate

the model in “first difference” form:

ln
(
Qt
)
= α1 + α2 ln

(
Yt
)
+ α3 ln

(
Pt
)
+ α4 ln

(
PBt

)
+ ed

t

−
[
ln
(
Qt
)
= α1 + α2 ln

(
Yt
)
+ α3 ln

(
Pt
)
+ α4 ln

(
PBt

)
+ ed

t

]

Δln
(
Qt
)
= α2Δln

(
Yt
)
+ α3Δln

(
Pt
)
+ α4Δln

(
PBt

)
+ vd

t

a. Regarding this specification (i) what changes do you notice after this transformation? (ii) Are

the parameters of interest affected? (iii) If ρ = 1, have we solved the serial correlation problem?

(iv) What is the interpretation of the “Δ” variables like Δln(Qt)? [Hint: See Appendix A.4.6.]

(v) What is the interpretation of the parameter α2? (vi) What signs do you expect for each of the

coefficients? Explain.
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b. Using data from 1960 to 1999, estimate the reduced-form, first-stage, equation for Δln
(
Pt
)

using

instruments ln
(
PFt

)
, TIMEt, ln

(
QPRODt−1

)
, and ln

(
EXPTSt−1

)
. Can we conclude that at least one

instrument is strong?

c. Estimate the first-stage equation for Δln
(
Pt
)

using instruments Δln
(
PFt

)
, Δln

(
QPRODt−1

)
, and

Δln
(
EXPTSt−1

)
. Can we conclude that at least one instrument is strong? On logical grounds, why

might we prefer these instruments to those in (b)?

d. Estimate the first-stage equation for Δln
(
Pt
)

using instrument Δln
(
PFt

)
. Can we conclude that

the one instrument is strong?

e. Obtain the 2SLS estimates of the first-differenced demand equation using Δln
(
PFt

)
as the instru-

ment. In this estimation omit the constant term.

f. Obtain the 2SLS estimates of the first-differenced demand equation using Δln
(
PFt

)
as the instru-

ment including a constant term.

g. Compare the estimates of the key demand parameters in parts (e) and (f ). Are the signs consistent

with expectations? What are the interpretations of the estimated coefficients? Should an intercept

be included in the differenced demand equation? Explain.

h. Construct a correlogram for the 2SLS residuals in part (e). Is there any evidence of serial

correlation?

11.23 Reconsider Example 11.2 on the supply and demand for fish at the Fulton Fish Market. The data are

in the file fultonfish.

a. Obtain OLS estimates of the supply equation. Comment on the coefficient signs and significance.

Do you anticipate the OLS estimator to have a positive bias or a negative bias or no bias? Explain.

b. It is possible that bad weather on shore reduces attendance at restaurants, which in turn may reduce

the demand for fish at the market. Add the variables RAINY and COLD to the demand equation

in (11.13). Derive the algebraic reduced form for ln(PRICE) for this new specification.

c. Estimate the reduced-form equation in part (b). Test the joint significance of RAINY and COLD.

Are these variables jointly significant at the 5% level?

d. Using the estimates from part (c), test the joint significance of MON, TUE, WED, THU, RAINY ,

and COLD. Are these variables jointly significant at the α = 0.05 level?

e. Estimate the supply equation by 2SLS using instruments MON, TUE, WED, THU, RAINY , and

COLD. Compare these estimates to the OLS estimates in part (a). Given the results in part (d),

can we conclude that the supply equation is identified?

11.24 Reconsider Example 11.2 on the supply and demand for fish at the Fulton Fish Market. The data are

in the file fultonfish.

a. Add the variable MIXED, which indicates poor but not STORMY weather conditions, to the supply

equation in equation (11.14). Estimate the new reduced-form equation for ln(PRICE), adding the

variable MIXED to equation (11.16). Is it statistically significant at the 5% level? Test the joint

significance of STORMY and MIXED. Is the resulting F-value greater than 10?

b. Estimate the demand equation using STORMY and MIXED as IVs. Compare the coefficient esti-

mates to those in Table 11.5.

c. Test the validity of the surplus instrument using the Sargan test, discussed in Section 10.3.4.

d. In the reduced-form equation in part (a), test the joint significance of the indicator variables MON,

TUE, WED, and THU at the 5% level. What do you conclude? Are we now able to estimate the

supply equation by 2SLS with confidence in our procedure?

11.25 Reconsider Example 11.2 on the supply and demand for fish at the Fulton Fish Market. The data are

in the file fultonfish. In this exercise, we explore the behavior of the market on days in which changes

in fish inventories are large relative to those days on which inventory changes are small. Graddy

and Kennedy (2006) anticipate that prices and quantities will demonstrate simultaneity on days with

large changes in inventories, as these are days when sellers are demonstrating their responsiveness to

prices. On days when inventory changes are small, the anticipation is that feedback between prices

and quantities is broken, and simultaneity is no longer an issue.

a. Use the subset of data for days in which inventory change is large, as indicated by the variable

CHANGE = 1. Estimate the reduced-form equation (11.16) and test the significance of STORMY .

Discuss the importance of this test for the purpose of estimating the demand equation by two-stage

least squares.

b. Obtain the OLS residuals v̂t2 from the reduced-form equation estimated in (a). Carry out a

Hausman test, as discussed in Section 10.4.1, for the endogeneity of ln(PRICE) by adding v̂t2
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as an extra variable to the demand equation in (11.13), estimating the resulting model by OLS,

and testing the significance of v̂t2 using a standard t-test. If v̂t2 is a significant variable in this

augmented regression then we may conclude that ln(PRICE) is endogenous. Based on this test,

what do you conclude?

c. Estimate the demand equation using two-stage least squares and OLS using the data when

CHANGE = 1, and discuss these estimates. Compare them to the estimates in Table 11.5.

d. Estimate the reduced-form equation (11.16) for the data when CHANGE = 0. Compare these

reduced-form estimates to those in (a) and those in Table 11.4b.

e. Obtain the OLS residuals v̂t2 from the reduced-form equation estimated in (d). Carry out a

Hausman test for the endogeneity of ln(PRICE), as described in part (b). Based on this test, what

do you conclude?

f. Obtain the two-stage least squares and the OLS estimates for the demand equation for the data

when CHANGE = 0. Compare these estimates to each other and to the estimates in (c). Discuss

the relationships between them.

11.26 Use your computer software for two-stage least squares or IVs estimation, and the 30 observations in

the data file truffles to obtain 2SLS estimates of the system in equations (11.4) and (11.5). Compare

your results to those in Tables 11.3a and 11.3b.

a. Using the 2SLS estimated equations, compute the price elasticity of supply and demand “at the

means.” Comment on the signs and magnitudes of these elasticities.

b. Using the 2SLS estimates for the demand equation, obtain the squared 2SLS residuals, ê2

d. Carry

out the Breusch–Pagan NR2 test for heteroskedasticity using just the exogenous variables in the

variance function. Is there any evidence of heteroskedasticity?

c. Using the 2SLS estimates for the supply equation, obtain the squared 2SLS residuals, ê2

s . Carry

out the Breusch–Pagan NR2 test for heteroskedasticity using just the exogenous variables in the

variance function. Is there any evidence of heteroskedasticity?

d. Plot the squared supply equation residuals ê2

s versus each of the three exogenous variables. Discuss

the visual evidence of heteroskedasticity.

e. Obtain 2SLS estimates of the supply equation using robust standard errors. How do the t-statistic

values compare to those in Table 11.3b? Do you think it is a good idea to use robust standard

errors for this equation? Explain.

11.27 Estimate equations (11.4) and (11.5) by OLS, ignoring the fact that they form a simultaneous system.

Use the data file truffles. Compare your results to those in Table 11.3. Do the signs of the least squares

estimates agree with economic reasoning?

11.28 Supply and demand curves as traditionally drawn in economics principles classes have price (P) on

the vertical axis and quantity (Q) on the horizontal axis.

a. Rewrite the truffle demand and supply equations in (11.11) and (11.12) with price P on the

left-hand side. What are the anticipated signs of the parameters in this rewritten system of

equations?

b. Using the data in the file truffles, estimate the supply and demand equations that you have for-

mulated in (a) using two-stage least squares. Are the signs correct? Are the estimated coefficients

significantly different from zero?

c. Estimate the price elasticity of demand “at the means” using the results from (b).

d. Accurately sketch the supply and demand equations, with P on the vertical axis and Q on the hor-

izontal axis, using the estimates from part (b). For these sketches set the values of the exogenous

variables DI, PS, and PF to be DI* = 3.5, PF* = 23, and PS* = 22.

e. What are the equilibrium values of P and Q obtained in part (d)? Calculate the predicted equilib-

rium values of P and Q using the estimated reduced-form equations from Table 11.2, using the

same values of the exogenous variables. How well do they agree?

f. Estimate the supply and demand equations that you have formulated in (a) using OLS. Are the

signs correct? Are the estimated coefficients significantly different from zero? Compare the results

to those in part (b).

11.29 Example 11.3 introduces Klein’s Model I. Use the data file klein to answer the following questions.

a. Estimate the consumption function in equation (11.17) by OLS. Comment on the signs and sig-

nificance of the coefficients.

b. Estimate the reduced-form equation for wages of workers in the private sector, W1t, using all eight

exogenous and predetermined variables as explanatory variables. Test the joint significance of all
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the variables except wages of workers in the public sector, W2t, and lagged profits, Pt−1. Save the

residuals, v̂1t.

c. Estimate the reduced-form equation for profits, Pt, using all eight exogenous and predetermined

variables as explanatory variables. Test the joint significance of all the variables except wages of

workers in the public sector, W2t, and lagged profits, Pt−1. Save the residuals, v̂2t.

d. The Hausman test for the presence of endogenous explanatory variables is discussed in

Section 10.4.1. It is implemented by adding the reduced-form residuals to the structural equation

and testing their significance, that is, using OLS, estimate the model

CNt = α1 + α2

(
W1t +W2t

)
+ α3Pt + α4Pt−1 + δ1v̂1t + δ2v̂2t + e1t

Use an F-test for the null hypothesis H0∶δ1 = 0, δ2 = 0 at the 5% level of significance. By rejecting

the null hypothesis, we conclude that either W1t or Pt is endogenous, or both are endogenous.

What do we conclude from the test? In the context of this simultaneous equations model what

result should we find?

e. Obtain the 2SLS estimates of the consumption equation using all eight exogenous and predeter-

mined variables as IVs. Compare the estimates to the OLS estimates in part (a). Do you find any

important differences?

f. Let the 2SLS residuals from part (e) be ê1t. Regress these residuals on all the exogenous and pre-

determined variables. If these instruments are valid, then the R2 from this regression should be

low, and none of the variables are statistically significant. The Sargan test for instrument validity

is discussed in Section 10.4.3. The test statistic TR2 has a chi-square distribution with degrees

of freedom equal to the number of “surplus” IVs if the surplus instruments are valid. The con-

sumption equation includes three exogenous and/or predetermined variables of the total of eight

possible. There are L = 5 external instruments and B = 2 right-hand side endogenous variables.

Compare the value of the test statistic to the 95th percentile value from the χ2
(3) distribution. What

do we conclude about the validity of the surplus instruments in this case?

11.30 Example 11.3 introduces Klein’s Model I. Use the data file klein to answer the following questions.

a. Estimate the investment function in equation (11.18) by OLS. Comment on the signs and signifi-

cance of the coefficients.

b. Estimate the reduced-form equation for profits, Pt, using all eight exogenous and predeter-

mined variables as explanatory variables. Test the joint significance of all the variables except

lagged profits, Pt−1, and lagged capital stock, Kt−1. Save the residuals, v̂t and compute the fitted

values, P̂t.

c. The Hausman test for the presence of endogenous explanatory variables is discussed in

Section 10.4.1. It is implemented by adding the reduced-form residuals to the structural equation

and testing their significance, that is, using OLS estimate the model

It = β1 + β2Pt + β3Pt−1 + β4Kt−1 + δv̂t + e2t

Use a t-test for the null hypothesis H0∶δ = 0 versus H1∶δ ≠ 0 at the 5% level of significance. By

rejecting the null hypothesis, we conclude that Pt is endogenous. What do we conclude from the

test? In the context of this simultaneous equations model what result should we find?

d. Obtain the 2SLS estimates of the investment equation using all eight exogenous and predetermined

variables as IVs and software designed for 2SLS. Compare the estimates to the OLS estimates in

part (a). Do you find any important differences?

e. Estimate the second-stage model It = β1 + β2P̂t + β3Pt−1 + β4Kt−1 + e2t by OLS. Compare the esti-

mates and standard errors from this estimation to those in part (d). What differences are there?

f. Let the 2SLS residuals from part (e) be ê2t. Regress these residuals on all the exogenous and pre-

determined variables. If these instruments are valid, then the R2 from this regression should be

low, and none of the variables are statistically significant. The Sargan test for instrument validity

is discussed in Section 10.4.3. The test statistic TR2 has a chi-square distribution with degrees of

freedom equal to the number of “surplus” IVs if the surplus instruments are valid. The invest-

ment equation includes three exogenous and/or predetermined variables out of the total of eight

possible. There are L = 5 external instruments and B = 1 right-hand side endogenous variables.

Compare the value of the test statistic to the 95th percentile value from the χ2
(4) distribution. What

do we conclude about the validity of the surplus instruments in this case?
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Appendix 11A 2SLS Alternatives
There has always been great interest in alternatives to the standard IV/2SLS estimator. The search

for better alternatives was energized by the discovery of the problems weak instruments pose for

the usual IV/2SLS estimator. In this appendix, we examine a few alternative estimators for a single

equation with endogenous regressors. The equation might be part of a simultaneous equations

system, or a standalone equation with an endogenous regressor, as we studied in Chapter 10.

The limited information maximum likelihood (LIML) estimator was first derived by Anderson

and Rubin in 1949.1 It has played a “back seat” role relative to 2SLS over the years, but this is

no longer true. There is renewed interest in LIML in the presence of weak instruments. Several

modifications of LIML have been suggested by Fuller (1977) and others. These estimators are

unified in a common framework, along with 2SLS, using the idea of a k-class of estimators.

Later in this appendix, we provide Stock–Yogo tables of critical values for weak instruments

that apply to the LIML estimator and Fuller modifications. What is illustrated by these tables

is that LIML suffers less from test size aberrations than the 2SLS estimator, and that the Fuller

modification suffers less from bias.

11A.1 The k-Class of Estimators
In a system of M simultaneous equations let the endogenous variables be y1, y2, …, yM. Let

there be K exogenous variables, x1, x2, …, xK. Suppose the first structural equation within this

system is

y1 = α2y2 + β1x1 + β2x2 + e1 (11A.1)

If this equation is identified, then its parameters can be estimated. The variable y2 is endogenous

because it is correlated with the regression error term e1. The endogenous variable y2 has reduced

form y2 = π12x1 + π22x
2
+ · · · + πK2xK + v2 = E

(
y2|X

)
+ v2. The source of the endogeneity of

y2 is not the systematic portion E(y2|𝐗), which is exogenous. The random component v2 is the

source of the endogeneity problem. One way to think about developing an IV for y2 is to remove,

or “purge,” v2 from it, that is, use the IV y2 – v2 = E(y2|𝐗). This instrument has the essential

properties of an instrument: It is correlated with the endogenous variable y2 and it is uncorrelated

with the structural equation error e1. The difficulty is that E(y2|𝐗) is unknown. However, the

parameters of the reduced-form equation are consistently estimated by OLS, so that

E
(
y2|X

)
⋀

= π̂12x1 + π̂22x2 + · · · + π̂K2xK (11A.2)

The reduced-form residuals are

v̂2 = y2 − E
(
y2|X

)
⋀

In large samples the reduced-form estimators π̂k2 converge in probability to their true values. This

means that in large samples we can substitute for E(y2|𝐗) its estimated value

E
(
y2|X

)
⋀

= y2 − v̂2 (11A.3)

The two-stage least squares estimator is an IV estimator using E
(
y2|X

)
⋀

as an instrument.

Equation (11A.3) shows that the instrument used in 2SLS can be thought of as the endogenous

variable y2 “purged” of the troublesome error term v2.

The k-class of estimators is a unifying framework. A k-class estimator is an IV estimator

using IV y2 − kv̂2. It is called a class of estimators because it represents the OLS estimator if

............................................................................................................................................

1Anderson, T.W. and Rubin, H. (1949), “Estimation of the Parameters of a Single Equation in a Complete System of

Stochastic Equations,” Annals of Mathematical Statistics, 21, 46–63.
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k = 0 and the 2SLS estimator if k = 1. Why would we be interested in using values of k other

than 1? Hopefully by adjusting this value we can improve upon the performance of the k-class

estimator relative to the 2SLS estimator.

11A.2 The LIML Estimator
As noted earlier, the LIML estimator is one of the oldest estimators for an equation within a sys-

tem of simultaneous equations, or any equation with an endogenous variable on the right-hand

side. Rather than obtaining the LIML estimates by maximizing a likelihood function (see

Appendix C.8 for an introduction to maximum likelihood estimation) we will exploit the fact

that the LIML estimator is a member of the k-class.

The equation y1 = α2y2 + β1x1 + β2x2 + e1 is in normalized form, meaning that we have

chosen one variable to appear as the dependent variable. In general the first equation can be

written in implicit form as α1y1 + α2y2 + β1x1 + β2x2 + e1 = 0. There is no rule that says y1 has

to be the dependent variable in the first equation. Normalization amounts to setting α1 or α2 to

the value −1. One parameter αi must be set to −1 so that we can identify the equation, but it does

not matter which one. Let y* = α1y1 + α2y2, then the unnormalized equation can be written as

y* + β1x1 + β2x2 + e1 = 0, or

y∗ = −β1x1 − β2x2 − e1 = θ1x1 + θ2x2 + η (11A.4)

In (11A.1) the exogenous variables x3, …, xK were omitted. If we had included them, (11A.4)

would be

y∗ = θ1x1 + · · · + θKxK + η (11A.5)

The least variance ratio estimator chooses α1 and α2 so that the ratio of the sum of squared resid-

uals from (11A.4) relative to the sum of squared residuals from (11A.5) is as small as possible.

Define the ratio of sum of squared residuals from the two models as

𝓁 =
SSE from regression of y∗ on x1, x2

SSE from regression of y∗ on x1,… , xK
≥ 1 (11A.6)

We assume that the variables x3,… , xK were omitted from (11A.1) for a reason based in

economic theory. The estimates of α1 and α2, one of which will be set to −1, should be chosen

so to make the reduced regression (11A.4) fit the data as well as possible while still imposing

the condition that x3,… , xK are omitted.

The algebra required for the solution is beyond the scope of this book.2 The interesting result

is that the minimum value of 𝓁 in (11A.6), call it �̂�, results in the LIML estimator when used as k
in the k-class estimator, that is, use k = �̂� when forming the instrument y2 − kv̂2, and the resulting

IV estimator is the LIML estimator.

11A.2.1 Fuller-Modified LIML

A modification suggested by Wayne Fuller (1977)3 uses the k-class value

k = �̂� − a
N − K

(11A.7)

where K is the total number of IVs (included and excluded exogenous variables) and N is the

sample size. The value of a is a constant. Fuller says (1977, p. 951), “If one desires estimates

that are nearly unbiased ‘a’ is set equal to 1. Presumably ‘a’ = 1 would be used when one is

interested in testing hypotheses or setting approximate confidence intervals for the parameters.”

Fuller also showed that the value a = 4 leads to an estimator that minimizes the “mean square

............................................................................................................................................

2Advanced students should consider reading Peter Schmidt’s Econometrics, 1976, Chapter 4, New York, NY: Marcel

Dekker. Inc.

3Wayne Fuller, “Some Properties of a Modification of the Limited Information Estimator,” Econometrica, 45, 939–953.
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error” of estimation. If we are estimating some parameter δ using an estimator δ̂, then the mean

square error of estimation is

MSE
(

δ̂
)

= E
(

δ̂ − δ
)2

= var
(

δ̂
)

+
[

E
(

δ̂
)

− δ
]2

= var
(

δ̂
)

+
[

bias
(

δ̂
)]2

Estimator MSE combines both variance and bias into a single measure.

11A.2.2 Advantages of LIML

A great deal of research has been devoted to the performance of the LIML estimator relative to the

2SLS estimator when instruments are weak and/or there are a large number of instruments. Stock

and Yogo (2005, p. 106) say, “Our findings support the view that LIML is far superior to (2)SLS
when the researcher has weak instruments…” when using interval estimates’ coverage rate as the

criterion. Also “… the Fuller-k estimator is more robust to weak instruments than (2)SLS when

viewed from the perspective of bias.” Some other findings are discussed by Mariano (2001)4:

• For the 2SLS estimator the amount of bias is an increasing function of the degree of over

identification. The distributions of the 2SLS and least squares estimators tend to become

similar when overidentification is large. LIML has the advantage over 2SLS when there are

a large number of instruments.

• The LIML estimator converges to normality faster than the 2SLS estimator and is generally

more symmetric.

11A.2.3 Stock–Yogo Weak IV Tests for LIML

Tables 11A.1 and 11A.2 contain Stock–Yogo critical values for testing weak instruments. These

tests are discussed in Chapter 10, Appendix A. Table 11A.1 contains the critical values using

the criterion of maximum LIML test size for a 5% test. Note that for L > 1, LIML critical values

are lower than the 2SLS critical values in Table 10A.1. This means that the Cragg–Donald F-test

statistic does not have to be as large for us to reject the null hypothesis that the instruments are

weak when using LIML instead of 2SLS. Table 11A.2 contains the critical values for the test

of weak instruments using the relative bias criterion for the Fuller modification of LIML, using

a = 1. There is no similar table for LIML, because the LIML estimator does not have a finite

expected value, and thus the concept of bias breaks down.

T A B L E 11A.1
Critical Values for the Weak Instrument Test Based on LIML Test Size
(5% Level of Significance)5

B = 1 B = 2
Maximum Test Size Maximum Test Size

L 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
1 16.38 8.96 6.66 5.53

2 8.68 5.33 4.42 3.92 7.03 4.58 3.95 3.63

3 6.46 4.36 3.69 3.32 5.44 3.81 3.32 3.09

4 5.44 3.87 3.30 2.98 4.72 3.39 2.99 2.79

............................................................................................................................................

4Mariano, R. S. (2001), “Simultaneous equation model estimators,” in The Companion to Theoretical Econometrics,

Badi Baltagi ed., Oxford: Blackwell Publishing, pp. 139−142.

5These values are from Table 5.4, page 103, in Stock and Yogo (2005), op. cit. The authors thank James Stock

and Motohiro Yogo for permission to use these results. Their tables are more extensive than the ones we provide.

The significance level of the test for weak instruments is 5%.
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T A B L E 11A.2
Critical Values for the Weak Instrument Test Based on Fuller-k Relative
Bias (5% Level of Significance)6

B = 1 B = 2
Maximum Relative Bias Maximum Relative Bias

L 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30
1 24.09 19.36 15.64 12.71

2 13.46 10.89 9.00 7.49 15.50 12.55 9.72 8.03

3 9.61 7.90 6.61 5.60 10.83 8.96 7.18 6.15

4 7.63 6.37 5.38 4.63 8.53 7.15 5.85 5.10

E X A M P L E 11.4 Testing for Weak Instruments Using LIML

This illustration was introduced in Example 10.8. With the

Mroz data we estimate the HOURS supply equation

HOURS = β1 + β2MTR + β3EDUC
+ β4KIDSL6 + β5NWIFEINC + e (11A.8)

The reduced-form estimates are in Table 10A.3. The LIML

estimates are given in Table 11A.3. The models we consider

are as follows:

T A B L E 11A.3 LIML Estimations

MODEL (1) (2) (3) (4)

C 17423.7211 16191.3338 −24491.5972 18587.9064

(5.56) (5.40) (−0.31) (5.05)

MTR −18456.5896 −17023.8164 29709.4652 −19196.5172

(−5.08) (−4.90) (0.33) (−4.79)

EDUC −145.2928 −134.5504 258.5590 −197.2591

(−4.40) (−4.26) (0.31) (−3.05)

KIDSL6 151.0229 113.5034 −1144.4778 207.5531

(1.07) (0.84) (−0.46) (1.27)

NWIFEINC −103.8983 −96.2895 149.2325 −104.9415

(−5.27) (−5.11) (0.32) (−5.07)

N 428 428 428 428

�̂� 1.0000 1.0195 1.0000 1.0029

CRAGG–DONALD F 30.61 13.22 0.10 8.60

NUMBER IV L 1 3 2 3

NUMBER ENDOG B 1 1 2 2

t-statistics in parentheses.

Model 1: endogenous: MTR; IV: EXPER
Model 2: endogenous: MTR; IV: EXPER, EXPER2,

LARGECITY
Model 3: endogenous: MTR, EDUC; IV: MOTHEREDUC,

FATHEREDUC
Model 4: endogenous: MTR, EDUC; IV: MOTHEREDUC,

FATHEREDUC, EXPER

............................................................................................................................................

6These values are from Table 5.3, page 102, in James H. Stock and Motohiro Yogo (2005), op. cit.
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First, for the just identified equations for which the number

of instruments equals the number of endogenous variables

in Models (1) and (3), the LIML estimates are identical

to the 2SLS estimators. This identity is always true for

just-identified equations. For the overidentified Models (2)

and (4), the estimated values �̂� are close to 1, so that the

estimates are not too far from the 2SLS estimates.

The estimates are not the important aspect of this illus-

tration. The Cragg–Donald F-test statistic is the same for all

the estimators. For convenience its values for each equation

are given at the bottom of Table 11A.3. In Model (2), we have

B = 1 endogenous variable and L = 3 instruments. Using the

LIML maximum size of 10% as our criterion, the Stock–Yogo

critical value is 6.46. The Cragg–Donald F-test statistic 13.22

exceeds this value, so we reject the null hypothesis that the

instruments are weak and conclude that they are not weak.

This is not the conclusion we would have drawn based on

IV/2SLS estimation. The critical value from Table 10A.1 is

22.30, and we would have not rejected the null hypothesis

that the instruments are weak.

In Model (4) there are B = 2 endogenous variables and

L = 3 instruments. Using the maximum size of 10% critical

value from Table 11A.1 of 5.44, we reject the null hypothesis

that the instruments are weak using the Cragg–Donald F-test

statistic of 8.60. If we were using the 2SLS/IV estimator,

we would have not rejected the hypothesis that the instru-

ments are weak because the critical value from Table 10A.1

is 13.43.

What is indicated by these examples is that the LIML estimator performs better, at least

potentially, in the face of weak instruments. We cannot prove anything based on one result from

one sample, which is why we present a Monte Carlo simulation experiment in Appendix 11A.3.

E X A M P L E 11.5 Testing for Weak Instruments with Fuller-Modified LIML

Using the Fuller modification of LIML, and setting the

constant a = 1, we obtain the estimates in Table 11A.4. All

the results are at least somewhat different from the 2SLS/IV

estimations, because even for just-identified equations, the

Fuller estimator is different from the 2SLS estimator. The

only extremely dramatic change now comes in Model (3),

T A B L E 11A.4 Fuller ( a = 1) Estimations

MODEL (1) (2) (3) (4)

C 17108.0110 15924.1895 2817.5400 18156.7850

(5.60) (5.44) (0.20) (5.10)

MTR −18089.5451 −16713.2345 −1304.8205 −18730.1617

(−5.11) (−4.93) (−0.08) (−4.84)

EDUC −142.5409 −132.2218 −29.6043 −191.1248

(−4.41) (−4.27) (−0.20) (−3.05)

KIDSL6 141.4113 105.3703 −287.7915 193.2295

(1.02) (0.79) (−0.65) (1.21)

NWIFEINC −101.9491 −94.6401 −12.0108 −102.6290

(−5.31) (−5.14) (−0.15) (−5.12)

N 428 428 428 428

k 0.9976 1.0172 0.9976 1.0005

FULLER a 1.0000 1.0000 1.0000 1.0000

NUMBER IV L 1 3 2 3

CRAGG–DONALD F 30.61 13.22 0.10 8.60

NUMBER ENDOG B 1 1 2 2

t-statistics in parentheses

where coefficient signs become more in line with the other

models, although still nothing is significant. In Model (4), if

we adopt the criterion of 10% maximum relative bias, then the

Stock–Yogo critical value is 8.96. The Cragg–Donald F-test

statistic is 8.6, so we fail to reject the null hypothesis that the

instruments are weak.
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11A.3 Monte Carlo Simulation Results
In Appendix 10B.2, we carried out a Monte Carlo simulation to explore the properties of the

IV/2SLS estimators. Here we employ the same experiment, adding aspects of the new estimators

we have introduced in this appendix.

First, examine the percentage rejections of the true null hypothesis β2 = 1 using a two-tail

test at the 5% level of significance. The Monte Carlo rejection rate for the IV/2SLS estimator is

in the column labeled t
(

β̂2

)

, and for the LIML estimator in the column t
(

β̂2,LIML

)

. The largest

difference is in the case of strong endogeneity with weak instruments, in which the test based

upon the two-stage least squares estimator rejects 28.86% of the time, while the test based on the

LIML estimator rejects 13.47% of the time. Recall that a two-tail test at the 5% level of signif-

icance corresponds to determining whether the 95% interval estimate contains the hypothesized

parameter value. In these Monte Carlo experiments, the 95% interval estimate based on the LIML

estimator contains the true parameter 86.53% of the time, whereas the 95% interval estimate

using IV/2SLS contains the true parameter only 71.14% of the time. This finding is consistent

with Stock and Yogo’s conclusion about coverage rates of the two interval estimation approaches.

In these experiments, there is little difference between the averages of the two-stage least

squares estimates, β̂2 and the Fuller modified (a = 1) LIML estimates β̂2, F. A greater contrast

shows up when comparing how close the estimates are to the true parameter value using the mean

square error criterion. In Table 11A.5, we report the empirical mean square error for the IV/2SLS

estimator, mse
(

β̂2

)

and that for the Fuller modification of LIML with a = 4, mse
(

β̂2,F

)

. Recall

that the mean square error measures how close the estimates are to the true parameter value. For

the IV/2SLS estimator, the empirical mean square error is

mse
(

β̂2

)

=
∑10000

m=1

(

β̂2m − β2

)2/

10,000

The Fuller-modified LIML has lower mean square error than the IV/2SLS estimator in each

experiment, and when the instruments are weak, the improvement is large.

T A B L E 11A.5 Monte Carlo Simulation Results

𝛒 𝛑 F �̂�2
t
(
�̂�2

)
t
(
�̂�2,LIML

)
�̂�2,F

mse
(
�̂�2

)
mse

(
�̂�2,F

)

0.0 0.1 1.98 0.9941 0.0049 0.0049 0.9941 0.4068 0.0748

0.0 0.5 21.17 0.9998 0.0441 0.0473 0.9997 0.0140 0.0132

0.8 0.1 2.00 1.3311 0.2886 0.1347 1.3375 1.0088 0.3289

0.8 0.5 21.18 1.0111 0.0636 0.0509 1.0000 0.0139 0.0127
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CHAPTER 12

Regression with
Time-Series Data:
Nonstationary Variables

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain the differences between stationary and

nonstationary time-series processes.

2. Describe the general behavior of an

autoregressive process and a random walk

process.

3. Explain why we need ‘‘unit root’’ tests, and state

implications of the null and alternative

hypotheses.

4. Explain what is meant by the statement that a

series is ‘‘integrated of order one’’ or I(1).

5. Perform Dickey–Fuller and augmented

Dickey–Fuller tests for stationarity.

6. Explain the meaning of a ‘‘spurious regression.’’

7. Explain the concept of cointegration and test

whether two series are cointegrated.

8. Explain how to choose an appropriate model for

regression analysis with time-series data.

K E Y W O R D S

autoregressive process

cointegration

Dickey–Fuller test

difference stationary

mean reversion

nonstationary

order of integration

random walks

random walk with drift

spurious regressions

stationary

stochastic process

stochastic trend

tau statistic

trend stationary

unit root tests

The analysis of time-series data is of vital interest to many groups, such as macroeconomists

studying the behavior of national and international economies, finance economists analyzing the

stock market, and agricultural economists predicting supplies and demands for agricultural prod-

ucts. For example, if we are interested in forecasting the growth of gross domestic product or
563
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inflation, we look at various indicators of economic performance and consider their behavior

over recent years. Alternatively, if we are interested in a particular business, we analyze the his-

tory of the industry in an attempt to predict potential sales. In each of these cases, we are analyzing

time-series data.

We worked with time-series data in Chapter 9 and discovered how regression models for

these data often have special characteristics designed to capture their dynamic nature. We saw

how including lagged values of the dependent variable or explanatory variables as regressors,

or considering lags in the errors, can be used to model dynamic relationships. We showed how

autoregressive distributed lag (ARDL) models can be used for forecasting and for computing

dynamic multpliers. An important assumption that was maintained throughout Chapter 9 was

that the variables are stationary and weakly dependent. They have means and variances that

do not change over time, and autocorrelations that depend on the time between observations, not

on the actual time of the observation. Also, their autocorrelations die out, eventually becoming

negligible, as the distance between observations increases. There are, however, many economic

time series that are not stationary—their means and/or variances change over time—and which

exhibit strong dependence—their autocorrelations do not die out or they decline very slowly. In

this chapter, we investigate the nature of nonstationary variables, examine the consequences

of using them in regression analysis, introduce tests for stationarity, and learn how to model

regression relationships that involve nonstationary variables. One important new concept that we

encounter and which has a bearing on our choice of a regression model is cointegration. The

widespread use of cointegration and its relevance for many economic time series led to a joint

award of the 2003 Nobel Prize in Economics to its developer Clive W.J. Granger.1

12.1 Stationary and Nonstationary Variables
To illustrate the characteristics of nonstationary variables and appreciate their widespread rele-

vance, we begin by examining some important economic variables for the U.S. economy.

E X A M P L E 12.1 Plots of Some U.S. Economic Time Series

On the left-hand side of Figure 12.1, we display plots of real

gross domestic product (a measure of aggregate economic

production), the annual inflation rate (INF) (a measure of

changes in the aggregate price level), the federal funds rate

(FFR) (the interest rate on overnight loans between banks),

and the three-year bond rate (BR) (interest rate on a financial

asset to be held for three years). The data on gross domestic

product (GDP) are quarterly from 1984Q1 to 2016Q4; they

can be found in the data file gdp5. The data on inflation and

the two interest rates are monthly from 1954M8 to 2016M12;

they are stored in the data file usdata5. FFR and BR are used

for several examples later in the Chapter. Observe how the

GDP variable displays upward trending behavior, while

the other series “wander up and down” with no discernable

pattern or trend.

The figures on the right-hand side of Figure 12.1 are

the changes of the corresponding variables on the left-hand

side. Recall that we used changes in variables for several of

our examples and exercises in Chapter 9. The change in a

variable is a particularly important concept used repeatedly

in this chapter; it is worth dwelling on its definition. The

change in a variable yt, also known as its first difference,

is given by Δyt = yt − yt−1. It is the change in the value of

the variable y from period t − 1 to period t. The time series

of the changes on the right-hand side of Figure 12.1 display

behavior that can be described as irregular ups and downs or

more like fluctuations. Changes in the inflation rate and the

two interest rates appear to fluctuate around a constant value,

approximately zero. Changes in the GDP variable appear to

fluctuate around a nonzero value, with a big dip at the time

of the global financial crisis. The first question we address

in this chapter is: Which data series represent stationary

variables and which are observations on nonstationary

variables?

............................................................................................................................................

1See https://www.britannica.com/biography/Clive-Granger. The corecipient of the 2003 Nobel Prize in Economics was

Robert F. Engle whose contribution we consider in Chapter 14.
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FIGURE 12.1 U.S. Economic Time Series.
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Recall that a stationary time series yt has mean and variance that are constant over time, and

that the covariance (and autocorrelations) between two values from the series depends only on

the length of time separating the two values, and not on the actual times at which the values are

observed, that is,

E
(
yt
)
= μ (constant mean) (12.1a)

var
(
yt
)
= σ2 (constant variance) (12.1b)

cov
(
yt, yt+s

)
= cov

(
yt, yt−s

)
= γs (covariance depends on s, not t) (12.1c)

Let us focus on the first condition, that of a constant mean. To investigate whether the means

of the series in Figure 12.1 change over time, we divide the observations into two approximately

equal subsamples, and compute the sample means for each of these subsamples. They are reported

in Table 12.1. Examining the entries in this Table, as well as the plots in Figure 12.1, it is clear

that the means of the variables expressed in terms of their original levels do change over time. In

Figure 12.1(a), GDP exhibits a clear trend upward leading to a larger mean in the second half of the

sample. The other three variables (Figures 12.1(c), (e), and (g)) wander up and then down, making

the sample means very sensitive to the period selected. When the sample is divided into two equal

parts, more large values appear in the first half of the sample, making the means in that half larger

than those in the second half. These characteristics are typical of nonstationary variables. On the

other hand, the first differences of the variables (their changes) in Figures 12.1(b), (d), (f ), and

(h) do not exhibit obvious trends. Their means for the two subsamples are similar in magnitude,

particularly when viewed relative to magnitude of their quarter-to-quarter fluctuations. Having a

constant mean and fluctuations in the series that tend to return to the mean are characteristics of

stationary variables. They have the property of mean reversion.

Another characteristic of nonstationary variables is that their sample autocorrelations remain

large at long lags. Stationary weakly dependent series have autocorrelations that cut off or tend to

decline geometrically, dying out at long lags. The sample autocorrelations of nonstationary series

exhibit strong dependence. They decline linearly rather than geometrically and are still signif-

icant at long lags. As an example, in Figure 12.2, the correlograms for GDP and its change are

displayed. The autocorrelations for GDP decline very slowly and continue to be significant, well

above the 5% significance bound of 0.17, even at lag 24, an indication that GDP is nonstationary.

On the other hand, for the change in GDP, only the first two autocorrelations are significant before

the remainder become negligible, suggesting that ΔGDP is stationary.

T A B L E 12.1 Sample Means of Time Series Shown in Figure 12.1

Sample Periods
GDP 1948Q2 to 2000Q3 2000Q4 to 2016Q4
INF, BR,

Variable FFR 1954M8 to 1985M10 1985M11 to 2016M12

Real GDP (a) 9.56 14.68

Inflation rate (c) 4.42 2.59

Federal funds rate (e) 6.20 3.65

Bond rate (g) 6.56 4.29

Change in GDP (b) 0.083 0.065

Change in the inflation rate (d) 0.01 −0.003

Change in the federal funds rate (f ) 0.02 −0.02

Change in the bond rate (h) 0.02 −0.02
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FIGURE 12.2 Correlograms for GDP and the change in GDP.

Plotting a series, examining whether its mean changes over time, and checking its sample autocor-

relations give some indication of whether a series is stationary or nonstationary, but these checks

are not conclusive, and they lack the rigor of a formal hypothesis test. Also, our discovery that

series with nonstationary characteristics have stationary characteristics after first differencing is

a common occurrence, but it is not universal and it needs verification. Formal testing for station-

arity is introduced in Section 12.3. Before then, we discuss modeling series with trends and the

consequences of nonstationarity for least-squares regressions.

12.1.1 Trend Stationary Variables
In Example 12.1, we saw how GDP has a definite trend, making it nonstationary, and that the

other variables—inflation and the two interest rates—tend to wander up and down, another char-

acteristic of nonstationary variables. Nonstationary variables that wander up and down, trend-

ing in one direction and then the other, are said to possess a stochastic trend. Definite trends,

upward or downward, can be attributable to a stochastic trend or a deterministic trend, and

sometimes both. Variables that are stationary after “subtracting out” a deterministic trend are

called trend stationary. In this Section, we consider the notion of a deterministic trend, how it

relates to the concept of trend stationarity, and the modeling of regression relationships involving

trend stationary variables. Stochastic trends are introduced in Section 12.1.3.

The simplest model for a deterministic trend for a variable y is the linear trend model

yt = c1 + c2 t + ut (12.2)

where t = 1, 2,… ,T . If we focus just on the trend and assume any change in the error is zero(
Δut = ut − ut−1 = 0

)
, then the coefficient c2 gives the change in y from a one period to the next

yt − yt−1 =
(
c1 + c2 t

)
−
[
c1 + c2 (t − 1)

]
+ Δut = c2

The “time variable” t does not necessarily have to start at “1” and increase in increments of “1”.

Redefining it using a linear transformation, say t∗ = a + bt, simply changes the values for c1 and

c2 and changes the interpretation of c2 if b ≠ 0. The trend c1 + c2 t is called a deterministic trend

because it does not contain a stochastic (random) component. The variable yt is trend stationary

if its fluctuations around this trend are stationary. Since these fluctuations are given by changes

in the error term

ut = yt −
(
c1 + c2 t

)
(12.3)

yt is trend stationary if ut is stationary.
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When yt is trend stationary, we can use least squares to find estimates ĉ1 and ĉ2 from

(12.2) and then convert the trend stationary variable yt to a stationary variable ût by removing

the trend:

ût = yt −
(
ĉ1 + ĉ2 t

)
(12.4)

If we are considering a regression or an ARDL model involving two trend stationary variables,

say yt and xt, then, after their trends have been removed, making them stationary, their relationship

can be estimated within the framework of Chapter 9.

To explore this notion further, suppose yt = c1 + c2 t + ut and xt = d1 + d2 t + vt are trend

stationary variables; both ut and vt are stationary. To estimate a relationship between yt and xt,

we first remove their trends: ỹt = yt −
(
ĉ1 + ĉ2 t

)
and x̃t = xt −

(
d̂1 + d̂2 t

)
where ĉ1, ĉ2, d̂1 and d̂2

are the least-squares estimates from the respective trends. We have used the notation ỹt and x̃t
instead of ût and v̂t in line with that used in the FWL theorem introduced in Section 5.2.4. If we

hypothesize that changes in y around its trend are related to changes in x around its trend, without

any lags, a suitable linear model is

ỹt = βx̃t + et (12.5)

An intercept can be omitted because ỹt and x̃t are OLS residuals with zero means. Now, we know

from the FWL theorem that the OLS estimate of β from (12.5) is identical to the OLS estimate

of β from the equation

yt = α1 + α2 t + βxt + et (12.6)

Thus, when y and x are trend stationary, we can estimate a relationship between them by first

removing the trends or by including a trend variable in the equation.

With trend stationary variables in more general ARDL models, we can proceed in a similar

way, estimating either

ỹt =
p∑

s=1

θsỹt−s +
q∑

r=0

δr x̃t−r + et (12.7)

or

yt = α1 + α2 t +
p∑

s=1

θsyt−s +
q∑

r=0

δr xt−r + et (12.8)

Assuming we create ỹt−s and x̃t−r by lagging ỹt and x̃t, not by separately detrending every lag of

y and x, there will be some slight differences in the estimates from (12.7) and (12.8).

Because trend stationary variables do not introduce any special problems providing a trend

is included or the variables are detrended, they are often simply referred to as “stationary,”

although, strictly speaking, they are not stationary because their means change over time. Also,

it is important not to ignore any trend. Estimating the model yt = α1 + βxt + et when both

yt and xt have deterministic trends can suggest a significant relationship between yt and xt even

when none exists.

It is useful to pause at this point to emphasize what we have established and what we have not

yet covered. We have discovered that regression relationships between trend stationary variables

can be modeled by removing the deterministic trend from the variables, making them stationary,

or by including the deterministic trend directly in the equation. What we have not yet covered is

how to distinguish between deterministic trends and stochastic trends and how to model regres-

sion relationships between nonstationary variables with stochastic trends. In Example 12.1, GDP

had an obvious trend. We do not yet know whether this trend is deterministic or stochastic, or how

it should be modeled within a regression framework. We address these questions in the upcom-

ing sections, but first it is useful to note that the linear trend in (12.2) is not the only possible

deterministic trend, and to give an example.
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Other Trends Another popular trend is one where, on average, a variable is growing at a

constant percentage rate. If we momentarily ignore the error term, then, for a proportional change

a2, we have yt = yt−1 + a2yt−1, or, in percentage terms,

100 ×
(

yt − yt−1

yt−1

)

= 100a2

Recognizing that
(
yt − yt−1

)
∕yt−1 can be approximated by Δln

(
yt
)
= ln

(
yt
)
− ln

(
yt−1

)
, we have

ln
(
yt
)
− ln

(
yt−1

)
≅ %Δyt = 100a2

A model with this property, with an error term included, is

ln
(
yt
)
= a1 + a2 t + ut (12.9)

In this case. the deterministic trend for yt is exp
(
a1 + a2 t

)
, and ln(yt) will be trend stationary if

ut is stationary. This model was introduced earlier in Section 4.5.1 in the context of modeling

increases in wheat yield that are attributable to technological change. It may pay to go back and

reread that Section now; it will give you more insights into the constant growth rate model.

The deterministic trend models in (12.2) and (12.9) are the most common, but others are

possible. In Section 4.4.2, the cubic trend yt = β1+ β2 t3 + et was used to model wheat yield. In

Exercises 5.21 and 5.22, the interaction variable TREND × RAIN was included. A quadratic trend

was used to model a decreasing and then increasing income share in Exercises 6.28 and 6.29.

However, most deterministic trends tend to be continuously increasing or decreasing in which

case quadratic or cubic trends that eventually turn up or down may not be well suited. A restricted

range of the curve may fit the data well for the sample period, but outside this range a quadratic

or cubic may be unrealistic. For this reason, the deterministic trends implied by (12.2) and (12.9)

are the most popular.

E X A M P L E 12.2 A Deterministic Trend for Wheat Yield

Scientists are continually working on ways to increase global

food production to keep pace with a growing world popu-

lation. One small contribution to this effort is the work of

agronomists who develop new varieties of wheat to increase

wheat yield. In the Toodyay Shire of Western Australia,

we expect wheat yield to be trending upward over time

reflecting the development of new varieties. However, wheat

growing in Western Australia is a risky business. Its success

depends heavily on rainfall, which is not always reliable.

(a)  ln(YIELD) (b)  RAIN
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FIGURE 12.3 Plots of time series for wheat yield example.

Thus, we expect yield to fluctuate around an increasing trend.

Data on annual wheat yield and rainfall during the growing

season for the Toodyay Shire, from 1950 to 1997, can be

found in the data file toody5. For wheat yield, we use the

constant growth rate trend ln
(
YIELDt

)
= a1 + a2 t + ut. The

observations for ln(YIELDt) are plotted in Figure 12.3(a),

along with the linear trend line. The observations fluctuate

around the increasing trend with a particularly bad year

in 1969. Examining the rainfall data in Figure 12.3(b), we
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discover there is a slight downward trend and very little

rainfall in 1969.

It turns out that there are decreasing returns to rainfall

and so we include RAIN2 as well as RAIN in the model, lead-

ing to the following estimated equation

ln
(
YIELDt

)
= −2.510 + 0.01971t + 1.149RAINt

(se) (0.00252) (0.290)
− 0.1344RAIN2

t + êt
(0.0346) (12.10)

The other alternative is to detrend ln(YIELD), RAIN, and

RAIN2 and to estimate the detrended model. First, estimating

the trends, we obtain

ln
(
YIELDt

)
⋀

= −0.1801 + 0.02044 t
(se) (0.00276)

RAIN
⋀

t = 4.408 − 0.01522 t
(se) (0.00891)

RAIN2

t

⋀

= 20.35 − 0.1356 t
(se) (0.0747)

The first two equations describe the trend lines in

Figure 12.3. After computing RRAINt = RAINt − RAIN
⋀

t,

RRAIN2t = RAIN2

t − RAIN2

t

⋀

, and RLYIELDt = ln
(
YIELDt

)
−

ln
(
YIELDt

)
⋀

, we obtain

RLYIELD
⋀

t = 1.149RRAINt − 0.1344RRAIN2t
(se) (0.284) (0.0339)

(12.11)

Notice the estimates in (12.10) and (12.11) are identical, but

the standard errors are not. The standard error discrepancy

arises from the different degrees of freedom used to estimate

the error variance. In (12.10), it is 48 − 4 = 44; in (12.11),

it is 48 − 2 = 46. We can correct the standard errors in

(12.11) by multiplying them by
√

46∕44 = 1.022. In large

samples, the difference will be negligible. The legitimacy

of the estimates in (12.10) and (12.11) depends on the

assumption that ln(YIELD), RAIN, and RAIN2 are trend

stationary. This assumption can be checked using the hypoth-

esis testing machinery that is developed in Section 12.3

(see Exercise 12.16).

12.1.2 The First-Order Autoregressive Model
To develop a framework for modeling nonstationary variables that possess a stochastic trend, we

begin by revising the first-order autoregressive AR(1) model that was introduced in Chapter 9.

The econometric model generating a time-series variable yt is called a stochastic or random
process. A sample of observed yt values is called a particular realization of the stochastic
process. It is one of many possible paths that the stochastic process could have taken. Univariate

time-series models are examples of stochastic processes where a single variable y is related

to past values of itself and current and past error terms. In contrast to regression modeling,

univariate time-series models do not contain any explanatory variables (no x’s).

The AR(1) model is a useful univariate time-series model for explaining the difference

between stationary and nonstationary series. We first consider an AR(1) model with a zero mean

given by

yt = ρyt−1 + vt, |ρ| < 1 (12.12)

where the errors vt are independent, with zero mean and constant variance σ2
v , and may be

normally distributed. In the context of time-series models, the errors are sometimes known as

“shocks” or “innovations.” As we will see, the assumption |ρ| < 1 implies that yt is stationary.

The AR(1) process shows that each realization of the random variable yt contains a proportion ρ
of last period’s value yt−1 plus an error vt drawn from a distribution with mean zero and variance

σ2
v . Since we are concerned with only one lag, the model is described as an autoregressive

model of order one. In general, an AR( p) model includes lags of the variable yt up to yt−p. An

example of an AR(1) time series with ρ = 0.7 and independent N(0, 1) random errors is shown

in Figure 12.4a. Note that the data have been artificially generated. Observe how the time series

fluctuates around zero and has no trend-like behavior, a characteristic of stationary series.



�

� �

�

12.1 Stationary and Nonstationary Variables 571

–6

–4

–2

0

2

4

6

50 100 150 200 250 300 350 400 450 500

(a) yt = 0.7yt–1 + vt

(e) yt = 0.1 + yt–1 + vt

(d) yt = yt–1 + vt

(b) yt = 1 +  0.7yt–1 + vt

–2

0

2

4

6

8

10

50 100 150 200 250 300 350 400 450 500

0

4

8

12

16

20

24

50 100 150 200 250 300 350 400 450 500

(c) yt = 1+ 0.01t + 0.7yt–1 + vt

( f ) yt = 0.1+ 0.01t + yt–1 + vt

–8

–4

0

4

8

12

16

50 100 150 200 250 300 350 400 450 500

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

50 100 150 200 250 300 350 400 450 500

FIGURE 12.4 Time-series models.

The value “zero” is the constant mean of the series, and it can be determined by doing some

algebra known as recursive substitution.2 Consider the value of y at time t = 1, then its value at

time t = 2, and so on. These values are

............................................................................................................................................

2An alternative to recursive substitution when the variable is stationary is to use the lag operator algebra discussed in

Section 9.5.4.
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y1 = ρy1 + v1

y2 = ρy1 + v2 = ρ
(
ρy0 + v1

)
+ v2 = ρ2y0 + ρv1 + v2

⋮

yt = vt + ρvt−1 + ρ2vt−2 + · · · + ρty0

The mean of yt is

E
(
yt
)
= E

(
vt + ρvt−1 + ρ2vt−2 + · · ·

)
= 0

since the error vt has zero mean, and the value of ρty0 is negligible for a large t. In Appendix 9B,

the variance was shown to be a constant σ2
v
/(

1 − ρ2
)
, while the covariance between two errors

s periods apart γs is σ2
vρ

s/(1 − ρ2
)
. Thus, the AR(1) model in (12.12) is a classic example of a

stationary process with a zero mean.

Real-world data rarely have a zero mean. We can introduce a nonzero mean μ by replacing

yt in (12.12) with
(
yt – μ

)
as follows:

(
yt − μ

)
= ρ

(
yt−1 − μ

)
+ vt

which can then be rearranged as

yt = α + ρyt−1 + vt, |ρ| < 1 (12.13)

where α = μ(1 – ρ), that is, we can accommodate a nonzero mean in yt by either working with

the “demeaned” variable
(
yt − μ

)
or introducing the intercept term α in the autoregressive pro-

cess of yt as in (12.13). Corresponding to these two ways, we describe the “de-meaned” variable(
yt – μ

)
as being stationary around zero, or the variable yt as stationary around its mean value

μ = α∕(1 – ρ).
An example of a time series that follows this model, with α = 1, ρ = 0.7 is shown in

Figure 12.4(b). We have used the same values of the error vt as in Figure 12.4(a), so the figure

shows the added influence of the constant term. Note that the series now fluctuates around a

nonzero value. This nonzero value is the constant mean of the series

E
(
yt
)
= μ = α∕(1 − ρ) = 1∕(1 − 0.7) = 3.33

Another extension to (12.12) is to consider an AR(1) model fluctuating around a linear trend

(μ + δt). In this case, we let the “detrended” series (yt – μ – δt) behave like an autoregressive

model
(
yt − μ − δt

)
= ρ

[
yt−1 − μ − δ(t − 1)

]
+ vt, |ρ| < 1

which can be rearranged as

yt = α + ρyt−1 + λt + vt (12.14)

where α =
[
μ(1 – ρ) + ρδ

]
and λ = δ(1 – ρ). For |ρ| < 1, equation (12.14) is an example of a

trend-stationary process. Figure 12.4(c) displays a plot of this process for parameters ρ = 0.7,

α = 1, and λ = 0.01. The detrended series
(
yt − μ − δt

)
has a constant variance, and covariances

that depend only on the time separating observations, not the time at which they are observed.

In other words, the detrended series is stationary; yt is stationary around the deterministic trend

line μ + δt.

12.1.3 Random Walk Models
Consider the special case of ρ = 1 in (12.12):

yt = yt−1 + vt (12.15)
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This model is known as the random walk model. Equation (12.15) shows that each realization

of the random variable yt contains last period’s value yt−1 plus an error vt. An example of a time

series that can be described by this model is shown in Figure 12.4(d). These time series are called

random walks because they appear to wander slowly upward or downward with no real pattern;

the values of sample means calculated from subsamples of observations will be dependent on the

sample period, a characteristic of nonstationary series.

We can understand the “wandering” behavior of random walk models by doing some recur-

sive substitution.

y1 = y0 + v1

y2 = y1 + v2 =
(
y0 + v1

)
+ v2 = y0 +

2∑

s=1

vs

⋮

yt = yt−1 + vt = y0 +
t∑

s=1

vs

The random walk model contains an initial value y0 (often set to zero because it is so far in the

past that its contribution to yt is negligible) plus a component that is the sum of the past stochastic

terms
∑t

s=1
vs. This latter component is called the stochastic trend. This term arises because a

stochastic component vt is added for each time t, and because it causes the time series to trend in

unpredictable directions. If the variable yt is subjected to a sequence of positive shocks, vt > 0,

followed by a sequence of negative shocks, vt < 0, it will have the appearance of wandering

upward, then downward.

We have used the fact that yt is a sum of errors to explain graphically the nonstationary nature

of the random walk. We can also use it to show algebraically that the conditions for stationarity

do not hold. Recognizing that the vt are independent with zero means and identical variances σ2
v ,

taking the expectation and the variance of yt yields, for a fixed initial value y0,

E
(
yt
)
= y0 + E

(
v1 + v2 + · · · + vt

)
= y0

var
(
yt
)
= var

(
v1 + v2 + · · · + vt

)
= tσ2

v

The random walk has a mean equal to its initial value and a variance that increases over time,

eventually becoming infinite. Although the mean is constant, the increasing variance implies that

the series may not return to its mean, and so sample means taken for different periods are not

the same.

Another nonstationary model is obtained by adding a constant term to (12.15):

yt = δ + yt−1 + vt (12.16)

This model is known as the random walk with drift. Equation (12.16) shows that each realization

of the random variable yt contains an intercept (the drift component δ) plus last period’s value yt−1

plus the error vt. An example of a time series that can be described by this model (with δ = 0.1)

is shown in Figure 12.4(e). Notice how the time-series data appear to be “wandering” as well as

“trending” upward. In general, random walk with drift models show definite trends either upward

(when the drift δ is positive) or downward (when the drift δ is negative).

Again, we can get a better understanding of this behavior by applying recursive substitution:

y1 = δ + y0 + v1

y2 = δ + y1 + v2 = δ +
(
δ + y0 + v1

)
+ v2 = 2δ + y0 +

2∑

s=1

vs

⋮

yt = δ + yt−1 + vt = tδ + y0 +
t∑

s=1

vs

The value of y at time t is made up of an initial value y0, the stochastic trend component
(∑t

s=1
vs
)
,

and now a deterministic trend component tδ. It is called a deterministic trend because a fixed value
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δ is added for each time t. The variable y wanders up and down as well as increases by a fixed

amount at each time t. The mean and variance of yt are

E
(
yt
)
= tδ + y0 + E

(
v1 + v2 + v3 + · · · + vt

)
= tδ + y0

var
(
yt
)
= var

(
v1 + v2 + v3 + · · · + vt

)
= tσ2

v

In this case, both the constant mean and constant variance conditions for stationarity are violated.

We can extend the random walk model even further by adding a time trend:

yt = α + δt + yt−1 + vt (12.17)

An example of a time series that can be described by this model (with α = 0.1; δ = 0.01) is shown

in Figure 12.4(f). Note how the addition of a time-trend variable t strengthens the trend behavior.

We can see the amplification using the same algebraic manipulation as before:

y1 = α + δ + y0 + v1

y2 = α + δ2 + y1 + v2 = α + 2δ +
(
α + δ + y0 + v1

)
+ v2 = 2α + 3δ + y0 +

2∑

s=1

vs

⋮

yt = α + δt + yt−1 + vt = tα +
(

t(t + 1)
2

)

δ + y0 +
t∑

s=1

vs

where we have used the formula for a sum of an arithmetic progression,

1 + 2 + 3 + · · · + t = t(t + 1)∕2

The additional term has the effect of strengthening the trend behavior.

To recap, we have considered the autoregressive class of models and have shown that they

display properties of stationarity when |ρ| < 1. We have also discussed the random walk class of

models when ρ = 1. We showed that random walk models display properties of nonstationarity.

Now, go back and compare the real-world data in Figure 12.1 with those in Figure 12.4. Ask

yourself what models might have generated the different data series in Figure 12.1. In the next

few sections we shall consider how to test which series in Figure 12.1 exhibit properties associated

with stationarity, as well as which series exhibit properties associated with nonstationarity.

12.2 Consequences of Stochastic Trends
In Section 12.1.2, we noted that regressions involving variables with a deterministic trend, and
no stochastic trend, did not present any difficulties providing the trend was included in the regres-

sion relationship, or the variables were detrended. Allowing for the trend was important because

excluding it could lead to omitted variable bias. Now we consider the implications of estimating

regressions involving variables with stochastic trends. In this context, because stochastic trends

are the most prevalent source of nonstationarity, and they introduce special problems, when we

refer to nonstationary variables, we will generally mean variables that are neither stationary nor

trend stationary.

A consequence of proceeding with the regression involving nonstationary variables with

stochastic trends is that OLS estimates no longer have approximate normal distributions in large

samples. That means interval estimates and hypothesis tests will no longer be valid. Precision of

estimation may not be what it seems to be and conclusions about relationships between variables

could be wrong. One particular hazard is that two totally independent random walks can appear

to have a strong linear relationship when none exists. Outcomes of this nature have been given

the name spurious regressions.
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E X A M P L E 12.3 A Regression with Two Random Walks

To illustrate the spurious regression problem, consider the

following two independent random walks:

rw1∶yt = yt−1 + v1t

rw2∶xt = xt−1 + v2t

where v1t and v2t are independent N(0, 1) random errors. Two

such series are shown in Figure 12.5(a)—the data are in the

data file spurious. These series were generated independently

and, in truth, have no relation to one another, yet when we plot

them, as we have done in Figure 12.5(b), we see a positive

relationship between them. If we estimate a simple regres-

sion of series one (rw1) on series two (rw2), we obtain the

following results:

rw1t = 17.818 + 0.842rw2t, R2 = 0.70

(t) (40.837)
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FIGURE 12.5 Time series and scatter plot of two random walk
variables.

This result suggests that the simple regression model fits

the data well (R2 = 0.70) and that the estimated slope is

significantly different from zero. In fact, the t-statistic is

huge! These results are, however, completely meaningless,

or spurious. The apparent significance of the relationship

is false. It results from the fact that we have related one

series with a stochastic trend to another series with another

stochastic trend. In fact, these series have nothing in

common, nor are they causally related in any way. Similar

and more dramatic results are obtained when random walk

with drift series are used in regressions. Typically the

residuals from such regressions will be highly correlated.

For this example, the LM test value to test for first-order

autocorrelation ( p-value in parenthesis) is 682.958 (0.000);

a sure sign that there is a problem with the regression.



�

� �

�

576 CHAPTER 12 Regression with Time-Series Data: Nonstationary Variables

To summarize, when nonstationary time series are used in a regression model, the results may

spuriously indicate a significant relationship when there is none. In these cases the least-squares

estimator and least-squares predictor do not have their usual properties, and t-statistics are not

reliable. Since many macroeconomic time series are nonstationary, it is particularly important to

take care when estimating regressions with macroeconomic variables.

There are also important policy considerations for distinguishing between stationary and non-

stationary variables. With nonstationary variables each error or shock vt has a lasting effect, and

these shocks accumulate. With stationary variables the effect of a shock eventually dies out and

the variable returns to its mean. Whether a change in a macroeconomic variable has a permanent

or transitory effect is essential information for policy makers.

How then can we test whether a series is stationary or nonstationary, and how do we conduct

regression analysis with nonstationary data? The former is discussed in Section 12.3, while the

latter is considered in Section 12.4.

12.3 Unit Root Tests for Stationarity
There are many tests for assessing whether a series is stationary or nonstationary. The most pop-

ular one, and the one that we discuss in detail, is the Dickey–Fuller test for a unit root. What do

we mean by a “unit root”? Because you will hear this term frequently when nonstationary time

series are being discussed, it is useful to digress for a moment to explain its origin.

12.3.1 Unit Roots
We have seen that in the AR(1) model yt = α + ρyt−1 + vt, yt is stationary if |ρ| < 1 and nonsta-

tionary if ρ = 1. We also say that yt has a unit root if ρ = 1, but to appreciate the origin of the term,

we need to consider the more general AR(p) model yt = α + θ1yt−1 + θ2yt−2 + · · · + θpyt−p + vt.

In this model, yt is stationary if the roots of the polynomial equation

φ(z) = 1 − θ1z − θ2z2 − · · · − θpzp (12.18)

are greater than one in absolute value. The roots are the values of z that satisfy the equation

φ(z) = 0. When p = 1 and yt = α + θ1yt−1 + vt, we have φ(z) = 1 − θ1z = 0, and z = 1∕θ1. The

condition for stationarity is |z| > 1, which is the same as ||θ1
|
| < 1. If, in (12.18), one of the roots

is equal to one, then yt is said to have a unit root. It has a stochastic trend and is nonstationary.

When p = 1 and φ(z) = 1 − θ1z = 0, then z = 1 implies θ1 = 1. Note that we have used θ1 and

ρ interchangeably for the AR(1) model. It is convenient to use θ1 when considering the AR(1)

process as a special case of an AR(p) process. Using ρ emphasizes that the coefficient of yt−1 in

an AR(1) process is the first-order autocorrelation.

To summarize, if yt has a unit root, it is nonstationary. For yt to be stationary, the roots

of (12.18) must be greater than one in absolute value. In the AR(1) model yt = α + ρyt−1 + vt,

these conditions translate into ρ = 1 for the unit root and |ρ| < 1 for stationarity. In higher-order

AR models, the conditions for a unit root and for stationarity, written in terms of the parame-

ters θ1, θ2, … , θp, are more complicated. We explore these conditions for the AR(2) model in

Exercise 12.1.

You might be wondering what happens if one of the roots of φ(z) is less than one in absolute

value. Or, in particular, what happens if ρ > 1 in the AR(1) process. In this case, yt is non-

stationary and explosive. Empirically, we do not observe time series that explode and so we

restrict ourselves to unit roots and roots that imply a stationary process. In the Dickey–Fuller

tests that follow the null hypothesis is that yt has a unit root and the alternative is that yt is

stationary.
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12.3.2 Dickey–Fuller Tests
There are three variations of the Dickey–Fuller test, each one designed for a different alternative

hypothesis.

1. The alternative hypothesis is that yt is stationary around a nonzero mean. An example of

such a series is that depicted in Figure 12.4(b). In this case, the test equation includes an

intercept but no trend term.

2. The alternative hypothesis is that yt is stationary around a linear deterministic trend, like that

depicted in Figure 12.4(d). Here, the test equation includes both intercept and trend terms.

3. The alternative hypothesis is that yt is stationary around a zero mean as illustrated in

Figure 12.4(a). Both intercept and trend are excluded from the test equation in this case.

The choice between these tests can be guided by the nature of the data, revealed by plotting the

series against time. If it is not obvious from a plot which test is the most relevant—and it will

not always be obvious—more than one test equation can be used to check the robustness of a test

conclusion.

12.3.3 Dickey–Fuller Test with Intercept and No Trend
Consider a time series yt that has no definite continuous trend upward or downward, and that is not

obviously centered around zero. Suppose we wish to test whether this series is better represented

by a stationary AR(1) process like that in Figure 12.4(b) or a nonstationary random walk like that

in Figure 12.4(d). The nonstationary random walk is set up as the null hypothesis

H0∶yt = yt−1 + vt (12.19)

and the stationary AR(1) process becomes the alternative hypothesis

H1∶yt = α + ρyt−1 + vt |ρ| < 1 (12.20)

Throughout, we assume the vt are independent random errors with mean zero and variance σ2
v ,

and that they are uncorrelated with the past values yt−1, yt−2,… . Under H1, the series fluctuates

around a constant mean. Under H0, it wanders upward and downward but does not exhibit a clear

trend in either direction and does not tend to return to a constant mean.

An obvious way to specify the null hypothesis in terms of the parameters in the unrestricted

alternative is H0∶α = 0, ρ = 1. A test for this purpose has been developed,3 but it has become

more common to simply specify the null as H0∶ρ = 1. One way to justify omission of α = 0 from

H0 is to recall that α = μ(1 − ρ). If ρ = 1, then α = 0, and so one can argue that testing H0∶ρ = 1

is sufficient. Thus, we test for nonstationary in the AR(1) model yt = α + ρyt−1 + vt, by testing

H0∶ρ = 1 against the alternative H1∶|ρ| < 1, or simply H1∶ρ < 1. This one-sided (left tail) test

is put into a more convenient form by subtracting yt−1 from both sides of (12.20) to obtain:

yt − yt−1 = α + ρyt−1 − yt−1 + vt

Δyt = α +(ρ − 1) yt−1 + vt

= α + γyt−1 + vt (12.21)

where γ = ρ − 1 and Δyt = yt − yt−1. Then, the hypotheses can be written either in terms of ρ or

in terms of γ:

H0∶ρ = 1 ⇐⇒ H0∶γ = 0

H1∶ρ < 1 ⇐⇒ H1∶γ < 0 (12.22)

............................................................................................................................................

3An advanced reference is Hamilton, J.D. (1994), Time Series Analysis, Princeton, p. 494.
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T A B L E 12.2 Critical Values for the Dickey–Fuller Test

Model 1% 5% 10%

Δyt = γyt−1 + vt −2.56 −1.94 −1.62

Δyt = α + γyt−1 + vt −3.43 −2.86 −2.57

Δyt = α + λt + γyt−1 + vt −3.96 −3.41 −3.13

Standard normal critical values −2.33 −1.65 −1.28

Note: These critical values are taken from R. Davidson and J. G. MacKinnon, Estimation and Inference in
Econometrics, New York: Oxford University Press, 1993, p. 708.

Rejection of the null hypothesis that γ = 0 implies the series is stationary. A failure to reject H0

suggests the series could be nonstationary, and we must be careful not to proceed to estimate a

spurious regression.

To test the hypothesis in (12.22), we estimate the test equation (12.21) by OLS and exam-

ine the t-statistic for the hypothesis that γ = 0. Unfortunately, this t-statistic no longer has the

t-distribution that we have used previously to test zero null hypotheses for regression coeffi-

cients. The problem arises because, when the null hypothesis is true, yt is nonstationary and has

a variance that increases as the sample size increases. This increasing variance alters the distri-

bution of the usual t-statistic when H0 is true. To recognize this fact, the statistic is often called a

𝛕 (tau) statistic, and its value must be compared to specially generated critical values. The criti-

cal values are different for each of the variations of the test described in Section 12.3.2. They are

tabulated in Table 12.2.4 Those for test equation (12.21) are given in the middle row. We reject

H0∶γ = 0 if τ ≤ τc, where τ = γ̂∕se
(
γ̂
)

is the OLS “t”-value for H0∶γ = 0, and τc is a critical

value from Table 12.2. In other words, we conclude yt is stationary if τ is a sufficiently large

negative number. Note that the Dickey–Fuller critical values are more negative than the standard

normal critical values (shown in the last row). Thus, the τ-statistic must take larger (negative)

values than usual for the null hypothesis of nonstationarity (γ = 0) to be rejected in favor of the

alternative of stationarity (γ < 0).
There are many stationary series that are not adequately modeled by an AR(1) process.

A natural question is how do we test for a unit root in a higher-order AR process. It can be shown5

that testing for a unit root in the AR(p) process

yt = α + θ1yt−1 + θ2yt−2 + · · · + θpyt−p + vt

against the alternative that yt is stationary, is equivalent to testing H0∶γ = 0 against the alternative

H1∶γ < 0 in the model

Δyt = α + γyt−1 +
p−1∑

s=1

asΔyt−s + vt (12.23)

The original test equation is augmented by the lagged first differences Δyt−1 =
(
yt−1 − yt−2

)
,

Δyt−2 =
(
yt−2 − yt−3

)
, … , Δyt−p+1 =

(
yt−p+1 − yt−p

)
. The test procedure for this case uses

(12.23) as the test equation but otherwise proceeds just as before, rejecting H0∶γ = 0 when

τ = γ̂∕se
(
γ̂
)
≤ τc. The critical values are the same as those in Table 12.2. The test is referred

to as the augmented Dickey–Fuller test. The choice for p can be based on similar criteria to

............................................................................................................................................

4Originally these critical values were tabulated by the statisticians David Dickey and Wayne Fuller. The values have

since been refined, but in deference to the seminal work, unit root tests using these critical values have become known

as Dickey–Fuller tests.

5See Exercise 12.1.
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those described in Chapter 9 for choosing the order of an AR process. Sufficient lags should be

included to eliminate autocorrelation in the errors. We can also use significance of the estimates

of the as, which have their usual large-sample normal distributions, and the AIC and SC variable

selection criteria. In practice, we always use the augmented Dickey–Fuller test (rather than the

nonaugmented version) to ensure the errors are uncorrelated.

E X A M P L E 12.4 Checking the Two Interest Rate Series for Stationarity

As an example, consider the two interest rate series—the

federal funds rate FFRt and the three-year bond rate

BRt—plotted in Figures 12.1(e) and (g), respectively. Both

series exhibit wandering behavior, wandering up and then

down with no discernible trend in either direction. We

therefore suspect that they may be nonstationary variables.

Using OLS to estimate the test equation (12.23) for each of

these variables yields

ΔFFRt

⋀

= 0.0580 − 0.0118FFRt−1 + 0.444ΔFFRt−1

(τ and t) (−2.47) (12.30)
−0.147ΔFFRt−2

(−4.05)

ΔBRt

⋀

= 0.0343 − 0.00635BRt−1 + 0.426ΔBRt−1

(τ and t) (−1.70) (11.95)
− 0.230ΔBRt−2

(−6.43)

Two augmentation terms have been included for both

variables. For FFR the number of augmentation terms that

minimized the SC was 13—a very large number. However,

checking the correlogram of the residuals, we find that

including two lags of ΔFFR was sufficient to eliminate any

major autocorrelation in the errors. For BR, two augmenta-

tion terms minimized the SC and were sufficient to eliminate

any substantial error autocorrelation. The usual t or normal

distributions can be used to assess the significance of the

coefficients of the augmentation terms. Their large t-values

confirm the decision to include two lags.

However, for checking stationarity, the usual t critical

values and p-values cannot be used. Instead, we compare the

two τ-values, τ = −2.47 and τ = −1.70 for the coefficients

of FFRt−1 and BRt−1, respectively, with a critical value from

Table 12.2. For a 5% significance level, the relevant critical

value is τ0.05 = −2.86. The test for stationarity is a one-tail

test with the null hypothesis of nonstationarity being rejected

if τ ≤ −2.86. Since −2.47 > −2.86 and –1.70 > −2.86, in

both cases, we fail to reject H0. There is insufficient evidence

to suggest that FFR and BR are stationary.

12.3.4 Dickey–Fuller Test with Intercept and Trend
In Sections 12.1.2 and 12.1.3, we introduced two models where a time series yt has a trend upward

or downward. In one, illustrated in Figure 12.4(c), yt was stationary around a linear trend and

described by the process

yt = α + ρyt−1 + λt + vt |ρ| < 1 (12.24)

A time series that can be described by (12.24) is called trend stationary. The other model was a

random walk with drift, illustrated in Figure 12.4(e):

yt = α + yt−1 + vt (12.25)

In this case yt is nonstationary. The Dickey–Fuller test with intercept and trend is designed to

discriminate between these two models. Equation (12.25) becomes the null hypothesis (H0), and

equation (12.24) is the alternative hypothesis (H1). If the null hypothesis is rejected, we conclude

yt is trend stationary. Failure to reject H0 suggests yt is nonstationary, or at least there is insufficient

evidence to prove otherwise.

Comparing (12.24) and (12.25) suggests a relevant null hypothesis is H0∶ρ = 1, λ = 0.

However, like in Section 12.3.3, it has become more common to simply test H0∶ρ = 1 against

the alternative H1∶ρ < 1. A rationale for doing so can be found by going back and checking

equation (12.14). There we noted an alternative way of writing (12.24) is
(
yt − μ − δt

)
= ρ

(
yt−1 − μ − δ(t − 1)

)
+ vt, |ρ| < 1



�

� �

�

580 CHAPTER 12 Regression with Time-Series Data: Nonstationary Variables

where μ + δt is the deterministic trend, α = μ(1 – ρ) + ρδ and λ = δ(1 – ρ). With these definitions

of α and λ, setting ρ = 1 implies α = δ and λ = 0, giving the random walk with drift in (12.25).

As before, the test equation is obtained by subtracting yt−1 from both sides of (12.24) and adding

augmentation terms to obtain

Δyt = α + γyt−1 + λt +
p−1∑

s=1

asΔyt−s + vt (12.26)

We use the left-tail test H0∶γ = 0 versus H1∶γ < 0, rejecting H0 when τ = γ̂∕se
(
γ̂
)

is less than

or equal to a critical value selected from the third row of Table 12.2.

E X A M P L E 12.5 Is GDP Trend Stationary?

From Figure 12.1(a), we noted that GDP shows a definite

upward trend. We now ask whether it can be modeled as

stationary around a linear deterministic trend, or whether it

contains a stochastic trend component. Using these data to

estimate (12.26) yields6

ΔGDPt

⋀

= 0.269 + 0.00249t − 0.0330GDPt−1

(τ and t) (−2.00)
+ 0.312ΔGDPt−1 + 0.202ΔGDPt−2

(3.58) (2.28)

Two augmentation terms minimized the SC, eliminated

major autocorrelation in the residuals, and had coefficient

estimates significant at a 5% level. For assessing stationarity,

we find τ = −2.00, which is greater than the 5% critical value

τ0.05 = −3.41. Thus, we cannot reject the null hypothesis

that GDP follows a nonstationary random walk with drift.

There is insufficient evidence to conclude that GDP is trend

stationary.

E X A M P L E 12.6 Is Wheat Yield Trend Stationary?

In Example 12.2, we model wheat yield in the Toodyay

Shire of Western Australia with a deterministic trend. To

see whether this choice was justified we estimate the test

equation

Δln
(
YIELDt

)
⋀

= −0.158 + 0.0167 t − 0.745ln
(
YIELDt−1

)

(τ) (−5.24)

In this case, no augmentation terms were necessary.

The value τ = −5.24 is less than the 5% critical value

τ0.05 = −3.41 and so, at this level of significance, we reject

a null hypothesis of nonstationarity and conclude that

ln(YIELD) is trend stationary.

12.3.5 Dickey–Fuller Test with No Intercept and No Trend
In its simplest form with no augmentation terms, this test is designed to test the null hypothesis

of a random walk H0∶yt = yt−1 + vt against the stationary AR(1) alternative H1∶yt = ρyt−1 + vt,
|
|ρ||< 1. Since yt has a zero mean when H1 is true, it is designed for series that are centered around

zero, like that in Figure 12.4(a). The test equation is

Δyt = γyt−1 +
p−1∑

s=1

asΔyt−s + vt (12.27)

............................................................................................................................................

6The trend term takes the values 0, 1, 2, …,132 with 1984Q1 = 0.
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T A B L E 12.3 AR Processes and the Dickey–Fuller Tests

AR Processes: |𝛒| < 1 Setting 𝛒 = 1 Dickey–Fuller Tests

yt = ρyt−1 + ut yt = yt−1 + ut Test with no constant and no trend

yt = α + ρyt−1 + vt yt = yt−1 + vt Test with constant and no trend

α = μ(1 – ρ) α = 0

yt = α + ρyt−1 + λt + vt yt = δ + yt−1 + vt Test with constant and trend

α = μ(1 – ρ) + ρδ α = δ
λ = δ(1 – ρ) λ = 0

We test H0∶γ = 0 against H1∶γ < 0 as described previously, and the critical values are given in

the first row of Table 12.2.

Most time series measured in terms of their original levels do not have a zero mean. However,

their first differences Δyt = yt – yt−1 may turn out to have a zero mean. For example, the first

difference of the random walk yt = yt−1 + vt is Δyt = vt which has a zero mean. Testing whether

first differences are stationary has relevance for finding the order of integration of a series which

we consider in Section 12.3.6.

In Table 12.3, we summarize the models under H0 and H1 for each of the three tests, omitting

the augmentation terms to avoid cluttering the table.

12.3.6 Order of Integration
Up to this stage, we have discussed only whether a series is stationary or nonstationary. We can

take the analysis another step forward and consider a concept called the “order of integration.”

Recall that if yt follows a random walk, then γ = 0 and the first difference of yt becomes

Δyt = yt − yt−1 = vt

An interesting feature of the series Δyt = yt – yt−1 is that it is stationary since vt, being an inde-

pendent
(
0, σ2

v
)

random variable, is stationary. Series like yt, which can be made stationary by

taking the first difference, are said to be integrated of order one, and denoted as I(1). Stationary

series are said to be integrated of order zero, I(0). In general, the order of integration of a series

is the minimum number of times it must be differenced to make it stationary.

E X A M P L E 12.7 The Order of Integration of the Two Interest Rate Series

In Example 12.4, we concluded that the two interest rate

series FFR and BR were nonstationary. To find their order

of integration, we ask the next question: are their first dif-

ferences, ΔFFRt = FFRt – FFRt−1 and ΔBRt = BRt – BRt−1

stationary? Their plots, in Figures 12.1(f) and (h), suggest

stationarity. Given these plots appear to fluctuate around

zero, we use the Dickey–Fuller test equation with no

intercept and no trend, to obtain the following results.

Δ
(
ΔFFRt

)
⋀

= −0.715ΔFFRt−1 + 0.157Δ
(
ΔFFRt−1

)

(τ and t) (−17.76) (4.33)

Δ
(
ΔBRt

)
⋀

= −0.811ΔBRt−1 + 0.235Δ
(
ΔBRt−1

)

(τ and t) (−19.84) (6.58)

where Δ
(
ΔFFRt

)
= ΔFFRt − ΔFFRt−1 and Δ

(
ΔBRt

)
=

ΔBRt – ΔBRt−1. In both cases, one augmentation term was

sufficient to eliminate serial correlation in the errors. Note

that the null hypotheses are that the variables ΔF and ΔB are

not stationary. The large negative values of the τ-statistic,

τ = −17.76 for ΔFFR and τ = −19.84 for ΔBR, are much
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less and the 5% critical value τ0.05 = −1.94. We therefore

reject null hypotheses that ΔFFR and ΔBR have unit roots

and conclude they are stationary.

These results imply that, while the levels of the two

interest rates are nonstationary, their first differences are

stationary. We say that the series FFRt and BRt are I(1)

because they had to be differenced once to make them

stationary
[
ΔFFRt and ΔBRt are I(0)

]
. In the Sections 12.4

and 12.5, we investigate the implications of these results for

regression modeling.

12.3.7 Other Unit Root Tests
While augmented Dickey–Fuller tests remain the most popular tests for unit roots, the power of the

tests is low in the sense that they often cannot distinguish between a highly persistent stationary

process (where ρ is very close but not equal to 1) and a nonstationary process (where ρ = 1).

The power of the test also diminishes as deterministic terms constant and trend are included in

the test equation. Here we briefly mention other tests that have been developed with a view to

improving the power of the test: the Elliot, Rothenberg, and Stock (ERS), Phillips and Perron

(PP), Kwiatkowski, Phillips, Schmidt, and Shin (KPSS), and Ng and Perron (NP) tests.7 Each

test carries an abbreviation from the names of its developers.

The ERS test proposes removing the constant/trend effects from the data and performing

the unit root test on the residuals. The distribution of the t-statistic is now devoid of deterministic

terms (i.e., the constant and/or trend). The PP test adopts a nonparametric approach that assumes a

general autoregressive moving-average structure and uses spectral methods to estimate the stan-

dard error of the test correlation. Instead of specifying a null hypothesis of nonstationary, the

KPSS test specifies a null hypothesis that the series is stationary or trend stationary. NP tests

suggest various modifications of the PP and ERS tests.

12.4 Cointegration
As a general rule, to avoid the problem of spurious regression, nonstationary time-series variables

should not be used in regression models. However, there is an exception to this rule. If yt and xt
are nonstationary I(1) variables, then we expect their difference, or any linear combination of

them, such as et = yt – β1 – β2xt,
8 to be I(1) as well. However, there is an important case when

et = yt – β1 – β2xt is a stationary I(0) process. In this case, yt and xt are said to be cointegrated.

Cointegration implies that yt and xt share similar stochastic trends, and, since the difference et is

stationary, they never diverge too far from each other.

A natural way to test whether yt and xt are cointegrated is to test whether the errors

et = yt – β1 – β2xt are stationary. Since we cannot observe et, we test the stationarity of the OLS

residuals, êt = yt − b1 − b2xt using a Dickey–Fuller test. The test for cointegration is effectively

a test of the stationarity of the residuals. If the residuals are stationary, then yt and xt are said to

be cointegrated; if the residuals are nonstationary, then yt and xt are not cointegrated, and any

apparent regression relationship between them is said to be spurious.

The test for stationarity of the residuals is based on the test equation

Δêt = γêt−1 + vt (12.28)

whereΔêt = êt − êt−1. As before, we examine the t (or tau) statistic for the estimated slope coeffi-

cient. Note that the regression has no constant term because the mean of the regression residuals

............................................................................................................................................

7More details can be found in William Greene, Econometric Analysis, 8th ed., Chapter 21, 2018, Pearson.

8A linear combination of x and y is a new variable z = a0 + a1x + a2y. Here we set the constants a0 = −β1, a1 = −β2,

and a2 = 1 and call z the series e.
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T A B L E 12.4 Critical Values for the Cointegration Test

Regression Model 1% 5% 10%

(1) yt = βxt + et −3.39 −2.76 −2.45

(2) yt = β1 + β2xt + et −3.96 −3.37 −3.07

(3) yt = β1 + δt + β2xt + et −3.98 −3.42 −3.13

Note: These critical values are taken from J. Hamilton, Time Series Analysis, Princeton University Press, 1994, p. 766.

is zero. Also, since we are basing this test upon estimated values of the residuals, the critical

values will be different from those in Table 12.2. The proper critical values for a test of cointegra-

tion are given in Table 12.4. The test equation can also include extra terms like Δêt−1,Δêt−2,…
on the right-hand side if they are needed to eliminate autocorrelation in vt.

There are three sets of critical values. Which set we use depends on whether the residuals

êt are derived from a regression equation without a constant term
[
like (12.29a)

]
or a regression

equation with a constant term [like (12.29b)], or a regression equation with a constant and a time

trend [like (12.29c)].

Equation 1∶ êt = yt − bxt (12.29a)

Equation 2∶ êt = yt − b2xt − b1 (12.29b)

Equation 3∶ êt = yt − b2xt − b1 − δ̂t (12.29c)

E X A M P L E 12.8 Are the Federal Funds Rate and Bond Rate Cointegrated?

To illustrate, let us test whether yt = BRt and xt = FFRt, as

plotted in Figures 12.1(e) and (g), are cointegrated. We have

already shown that both series are nonstationary. The esti-

mated least-squares regression between these variables is

BRt

⋀

= 1.328 + 0.832FFRt R2 = 0.908

(t) (85.72) (12.30)

The estimated test equation for stationarity in the OLS resid-

uals êt = BRt − 1.328 − 0.832 FFRt is

Δêt

⋀

= −0.0817 êt−1 + 0.223Δêt−1 − 0.177Δêt−2

(τ and t) (−5.53) (6.29) (−4.90)

Note that this is the augmented Dickey–Fuller version of the

test with two lagged termsΔet−1 andΔet−2 to correct for auto-

correlation. Since there is a constant term in (12.30), we use

the equation (2) critical values in Table 12.4.

The null and alternative hypotheses in the test for coin-

tegration are

H0∶ the series are not cointegrated

⇐⇒ residuals are nonstationary

H1∶ the series are cointegrated

⇐⇒ residuals are stationary

Similar to the one-tail unit root tests, we reject the null

hypothesis of no cointegration if τ ≤ τc, and we do not

reject the null hypothesis that the series are not cointegrated

if τ > τc. The tau statistic in this case is −5.53 which

is less than the critical value −3.37 at the 5% level of

significance. Thus, we reject the null hypothesis that the

least-squares residuals are nonstationary and conclude that

they are stationary. This implies that the bond rate and the

federal funds rate are cointegrated. In other words, there is

a fundamental relationship between these two variables (the

estimated regression relationship between them is valid and

not spurious) and the estimated values of the intercept and

slope are 1.328 and 0.832, respectively.

The result—that the federal funds and bond rates

are cointegrated—has major economic implications! It

means that when the Federal Reserve implements mone-

tary policy by changing the federal funds rate, the bond

rate will also change thereby ensuring that the effects of

monetary policy are transmitted to the rest of the economy.

In contrast, the effectiveness of monetary policy would be

severely hampered if the bond and federal funds rates were

spuriously related as this implies that their movements,

fundamentally, have little to do with each other.
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12.4.1 The Error Correction Model
In Section 12.4, we discussed the concept of cointegration as the relationship between I(1) vari-

ables such that the residuals are I(0). A relationship between I(1) variables is also often referred

to as a long-run relationship while a relationship between I(0) variables is often referred to as a

short-run relationship. In this section, we describe a dynamic relationship between I(0) variables,

which embeds a cointegrating relationship, known as the short-run error correction model.

As discussed in Chapter 9, when one is working with time-series data, it is quite common,

and in fact, quite important to allow for dynamic effects. To derive the error correction model

requires a bit of algebra, but we shall persevere as this model offers a coherent way to combine

the long- and short-run effects.

Let us start with a general model that contains lags of y and x, namely the ARDL model

introduced in Chapter 9, except that now the variables are nonstationary:

yt = δ + θ1yt−1 + δ0xt + δ1xt−1 + vt

For simplicity, we shall consider lags up to order one, but the following analysis holds for any

order of lags. Now recognize that if y and x are cointegrated, it means that there is a long-run

relationship between them. To derive this exact relationship, we set yt = yt−1 = y, xt = xt−1 = x
and vt = 0 and then, imposing this concept in the ARDL, we obtain

y
(
1 − θ1

)
= δ +

(
δ0 + δ1

)
x

This equation can be rewritten as y = β1+ β2x where β1 = δ
/(

1 – θ1

)
and β2 =

(
δ0 + δ1

)/(
1 – θ1

)
.

To repeat, we have now derived the implied cointegrating relationship between y and x; alterna-

tively, we have derived the long-run relationship that holds between the two I(1) variables.

We will now manipulate the ARDL to see how it embeds the cointegrating relation. First,

add the term −yt−1 to both sides of the equation:

yt − yt−1 = δ +
(
θ1 − 1

)
yt−1 + δ0xt + δ1xt−1 + vt

Second, add the term –δ0xt−1 + δ0xt−1 to the right-hand side to obtain

Δyt = δ +
(
θ1 − 1

)
yt−1 + δ0

(
xt − xt−1

)
+
(
δ0 + δ1

)
xt−1 + vt

where Δyt = yt – yt−1. If we then manipulate the equation to look like

Δyt =
(
θ1 − 1

)
(

δ
(
θ1 − 1

) + yt−1 +
(
δ0 + δ1

)

(
θ1 − 1

) xt−1

)

+ δ0Δxt + vt

where Δxt = xt – xt−1, and do a bit more tidying, using the definitions β1 and β2, we get

Δyt = −α
(
yt−1 − β1 − β2xt−1

)
+ δ0Δxt + vt (12.31)

where α =
(
1 – θ1

)
. As you can see, the expression in parenthesis is the cointegrating relation-

ship. In other words, we have embedded the cointegrating relationship between y and x in a general

ARDL framework.

Equation (12.31) is called an error correction equation because (a) the expression(
yt−1 – β1 – β2xt−1

)
shows the deviation of yt−1 from its long-run value, β1 + β2xt−1—in other

words, the “error” in the previous period—and (b) the term
(
θ1 − 1

)
shows the “correction”

of Δyt to the “error.” More specifically, if the error in the previous period is positive so that

yt−1 >

(
β1 + β2xt−1

)
, then yt should fall and Δyt should be negative; conversely, if the error

in the previous period is negative so that yt−1 <

(
β1 + β2xt−1

)
, then yt should rise and Δyt

should be positive. This means that if a cointegrating relationship between y and x exists, so

that adjustments always work to “error-correct,” then empirically we should also find that(
1 – θ1

)
> 0, which implies that θ1 < 1. If there is no evidence of cointegration between the

variables, then the estimate for θ1 would be insignificant.
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The error correction model is a very popular model because it allows for the existence of

an underlying or fundamental link between variables (the long-run relationship) as well as for

short-run adjustments (i.e., changes) between variables, including adjustments toward the coin-

tegrating relationship. It also shows that we can work with I(1) variables
(
yt−1, xt−1

)
and I(0)

variables
(
Δyt,Δxt

)
in the same equation provided that (y, x) are cointegrated, meaning that the

term
(
yt−1 – β0 – β1xt−1

)
contains stationary residuals. In fact, this formulation can also be used

to test for cointegration between y and x.

To estimate (12.31) we can proceed in one of two ways: we can estimate the equation with

yt−1 – β1 – β2xt−1 replaced by êt−1, or we can find new estimates of β1 and β2 at the same time as

we estimate α and δ0. For the latter approach, we can estimate the parameters directly by applying

nonlinear least squares to (12.31), or we can use OLS to estimate the equation

Δyt = β∗1 + α
∗yt−1 + β∗2xt−1 + δ0Δxt−1 + vt

and retrieve the parameters in equation (12.31) from α = −α∗, β1 = −β∗1
/
α∗ and β2 = −β∗2

/
α∗.

The nonlinear least squares and the retrieved OLS estimates will be identical. However, they will

differ slightly from the two-step estimates obtained by replacing yt−1 – β1 – β2xt−1 with êt−1.

E X A M P L E 12.9 An Error Correction Model for the Bond
and Federal Funds Rates

For an error correction model relating changes in the bond

rate to the lagged cointegrating relationship and changes in

the federal funds rate, it turns out that up to four lags ofΔFFRt
are relevant and two lags of ΔBRt are needed to eliminate

serial correlation in the error. The equation estimated directly

using nonlinear least squares is

ΔBRt

⋀

= −0.0464
(
BRt−1 − 1.323 − 0.833FFRt−1

)

(t) (3.90)
+ 0.272ΔBRt−1 − 0.242ΔBRt−2

(7.27) (−6.40)
+ 0.342ΔFFRt − 0.105ΔFFRt−1 + 0.099ΔFFRt−2

(14.22) (−3.83) (3.62)
− 0.066ΔFFRt−3 + 0.056ΔFFRt−4

(−2.69) (2.46) (12.32)

Notice that the estimates β̂1 = 1.323 and β̂2 = 0.833 are

very similar to those obtained from direct OLS estimation

of the cointegrating relationship in (12.30). The relationship

between all the coefficients in (12.32) and its corresponding

ARDL model are explored in Exercise 12.18.

If we use the residuals êt = BRt – 1.323 – 0.833FFRt,

obtained from the estimates in (12.32), to test for cointegra-

tion, we get a similar result to our earlier one

Δet

⋀

= −0.0819êt−1 + 0.224Δêt−1 − 0.177Δêt−2

(τ and t) (−5.53) (6.29) (−4.90)

As before, the null hypothesis is that (BR, FFR) are not

cointegrated (the residuals are nonstationary). Since the

cointegrating relationship includes a constant, the critical

value from Table 12.4 is −3.37. Comparing the actual

value τ = −5.53 with the critical value, we reject the null

hypothesis and conclude that (BR, FFR) are cointegrated.

12.5 Regression When There Is No Cointegration
Thus far, we have shown that regression with I(1) variables is acceptable providing those vari-

ables are cointegrated, allowing us to avoid the problem of spurious results. We also know that

regression with stationary I(0) variables, that we studied in Chapter 9, is acceptable. What hap-

pens when there is no cointegration between I(1) variables? In this case, the sensible thing to do

is to convert the nonstationary series to stationary series and to use the techniques discussed in

Chapter 9 to estimate dynamic relationships between the stationary variables. However, we stress

that this step should be taken only when we fail to find cointegration between the I(1) variables.
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Regression with cointegrated I(1) variables makes the least-squares estimator “super-consistent”9

and, moreover, it is economically useful to establish relationships between the levels of economic

variables.

How we convert nonstationary series to stationary series, and the kind of model we estimate,

depend on whether the variables are difference stationary or trend stationary. In the former

case, we convert the nonstationary series to its stationary counterpart by taking first differences.

We dealt with the latter case in Section 12.1.1 where we converted the nonstationary series to a

stationary series by detrending, or we included a trend term in the regression relationship. We now

consider how to estimate regression relationships with nonstationary variables that are neither

cointegrated nor trend stationary.

Recall that an I(1) variable is one that is stationary after differencing once. Another name for

variables with this characteristic is that they are first-difference stationary. Specifically, if yt is

nonstationary with a stochastic trend and its first difference Δyt = yt – yt−1 is stationary, then yt
is I(1) and first-difference stationary. If Dickey–Fuller tests reveal that two variables, y and x, that

you would like to relate in a regression, are first difference stationary and not cointegrated, then a

suitable regression involving only stationary variables is one that relates changes in y to changes

in x, with relevant lags included. If yt and xt behave like random walks with no obvious trend,

then an intercept can be omitted. For example, using one lagged Δyt and a current and lagged

Δxt, we have:

Δyt = θΔyt−1 + β0Δxt + β1Δxt−1 + et (12.33)

If yt and xt behave like random walks with drift, then it is appropriate to include an intercept, an

example of which is

Δyt = α + θΔyt−1 + β0Δxt + β1Δxt−1 + et (12.34)

Note that a random walk with drift is such that Δyt = α + vt, implying an intercept should be

included, whereas a random walk with no drift becomes Δyt = vt. In line with Chapter 9, the

models in (12.33) and (12.34) are ARDL models with first-differenced variables. In general, since

there is often doubt about the role of the constant term, the usual practice is to include an intercept

term in the regression.

E X A M P L E 12.10 A Consumption Function in First Differences

In Chapter 9, there were a number of examples and

exercises involving first differences of variables. When

studying that chapter, you may have wondered why we

did not use variables in their levels. The reason is now

clear. It was to ensure the variables were stationary. In the

following example of a consumption function, we return

to the data file cons_inc, containing quarterly data on

Australian consumption expenditure and national disposable

income, used earlier in Example 9.16. We will use data

from 1985Q1 to 2016Q3. Plots of the series appear in

Figure 12.6.

Since both consumption (C) and income (Y) are clearly

trending, we include a trend term in the Dickey–Fuller test

equations to see if they should be treated as trend stationary

or difference stationary. The results from the test equations

are

ΔCt

⋀

= 1989.7 + 29.43 t − 0.0193Ct−1 + 0.244ΔCt−1

(τ and t) (2.03) (−1.70) (2.82)

ΔYt

⋀

= 5044.6 + 80.04 t − 0.0409Yt−1 + 0.248ΔYt−1

(τ and t) (2.27) (−2.14) (2.89)

From Table 12.2, the 5% critical value for test equations that

include a trend is τ0.05 = −3.41. The τ values for consump-

tion (−1.70) and income (−2.14) are both greater than τ0.05.

Hence, we are unable to conclude that C and Y are trend sta-

tionary.

............................................................................................................................................

9Consistency means that as T → ∞ the least squares estimator converges to the true parameter value. See Section 5.7.

Super-consistency means that it converges to the true value at a faster rate.
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FIGURE 12.6 Australian consumption and disposable income.

The next step is to see if C and Y are cointegrated. Because

they are trending, we include a trend term, and estimate the

following equation, saving the residuals.

Ĉt = −18746 + 420.4 t + 0.468Yt

(t) (9.92) (20.49) (12.35)

If the residuals are stationary, we conclude C and Y are coin-

tegrated and (12.35) is a valid regression. If the residuals are

nonstationary, then (12.35) could be a spurious regression.

The test equation for assessing the stationarity of the residu-

als is

Δê
⋀

t = −0.121êt−1 + 0.263Δêt−1

(τ and t) (−2.93) (2.94)

Comparing τ = −2.93 with the critical value of τ0.05 = −3.42

in the third row of Table 12.4, we fail to reject a null hypoth-

esis that the residuals are nonstationary (C and Y are not

cointegrated).

Having established that C and Y are not trend stationary

and not cointegrated, or at least that there is insufficient evi-

dence to suggest otherwise, the natural regression to estimate

relating the two variables is one in first differences. First,

however, we need to confirm that they are first-difference

stationary (integrated of order one). The unit-root test

equations for this purpose are

Δ
(
ΔCt

)
⋀

= 844.0 − 0.689ΔCt−1

(τ) (−8.14)

Δ
(
ΔYt

)
⋀

= 1,228.7 − 0.751ΔYt−1

(τ) (−8.68)

We include a constant in these equations because the unit-

root test for the variables in their levels included a trend. The

test values τ = −8.14 and τ = −8.68 are less than 5% critical

value τ0.05 = −2.86 from Table 12.2. We therefore conclude

that ΔC and ΔY are stationary and hence that C and Y are

first-difference stationary. Proceeding to estimate an ARDL

model for C and Y in first differences, we obtain

ΔCt

⋀

= 785.8 + 0.0573ΔYt + 0.282ΔCt−1

(t) (2.07) (3.34)

12.6 Summary
• If variables are stationary, or I(1) and cointegrated, we can estimate a regression relationship

between the levels of those variables without fear of encountering a spurious regression.

In the latter case, we can do this by estimating a least-squares equation between the I(1)

variables or by estimating a nonlinear least-squares error correction model which embeds

the I(1) variables.

• If the variables are I(1) and not cointegrated, we need to estimate a relationship in first dif-

ferences, with or without the constant term.
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Regressions with nonstationary variables

Stochastic trendTrend stationary

Cointegrated Not cointegrated
Estimate an ARDL
model in levels with

a trend term
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Estimate long-run
equation with least

squares

Estimate short-run
error correction

model

Estimate ARDL
model in first
differences

FIGURE 12.7 Regression with time-series data: nonstationary variables.

• If they are trend stationary, we can either detrend the series first and then perform regres-

sion analysis with the stationary (detrended) variables or, alternatively, estimate a regression

relationship that includes a trend variable.

These options are shown in Figure 12.7.

12.7 Exercises

12.7.1 Problems

12.1 Consider the AR(2) model yt = δ + θ1yt−1 + θ2yt−2 + vt. Suppose that

1 − θ1z − θ2z2 =
(
1 − c1z

)(
1 − c2z

)

a. Show that c1 + c2 = θ1 and c1c2 = −θ2.

b. Prove that the AR(2) model has a unit root if and only if θ1 + θ2 − 1 = 0. [Hint: The roots of

1 − θ1z − θ2z2 = 0 are 1
/

c1 and 1
/

c2.]

c. Prove that θ1 + θ2 − 1 < 0 if the AR(2) process is stationary.

d. Prove that the AR(2) model yt = δ + θ1yt−1 + θ2yt−2 + vt can also be written as

Δyt = δ + γyt−1 + a1Δyt−1 + vt

where γ = θ1 + θ2 − 1 and a1 = −θ2. What are the implications of this result and the results in

parts (b) and (c) for unit root tests in an AR(2) model.

e. Show that an AR(p) model has a unit root if γ = θ1 + θ2 + · · · + θp − 1 = 0.

f. Show that setting γ = θ1 + θ2 + · · · + θp − 1 in equation (12.23) implies aj = −
∑p−1

r=j θr+1.

12.2 a. Consider the stationary AR(1) model yt = ρyt−1 + vt, |ρ| < 1. The vt are independent random

errors with mean zero and variance σ2
v . In Appendix 9B we showed that the autocorrelations for

this model are given by corr
(
yt, yt+s

)
= ρs. Given ρ = 0.9, find the autocorrelations for observa-

tions 1 period apart, 2 periods apart, etc., up to 10 periods apart.
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FIGURE 12.8 Time series for Exercise 12.3.

b. Consider the nonstationary random walk model yt = yt−1 + vt. Assuming a fixed y0 = 0, rewrite

yt as a function of all past errors vt−1, vt−2,…, v1.

c. Use the result in part (b) to find (i) the mean of yt, (ii) the variance of yt, and (iii) the covariance

between yt and yt+s.

d. Use the results from part (c) to show that corr
(
yt, yt+s

)
=
√

t∕(t + s).
e. Assume t = 100 (the random walk has been operating for 100 periods). Find the correlations

between y100 and y in each of the next 10 periods (up to y110). Compare these correlations with

those obtained in part (a).

f. Find corr(y100, y200) for each of the two models and comment on their magnitudes.

12.3 Figure 12.8 shows plots of four time series that are stored in the data file unit.
a. The results from Dickey–Fuller test equations for these four variables are given below. Explain

why these equations were chosen. No augmentation terms are included. What criteria would have

led to their omission?

ΔWt

⋀

= 0.778 − 0.0936Wt−1

(τ) (−3.23)

ΔYt

⋀

= 0.0304 − 0.0396Yt−1

(τ) (−1.98)

ΔXt

⋀

= 0.805 − 0.0939Xt−1 + 0.00928 t
(τ) (−3.13)

ΔZt

⋀

= 0.318 − 0.0355Zt−1 + 0.00306 t
(τ) (−1.87)
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b. Carry out Dickey–Fuller tests on each of the series. What do you conclude about their stationarity

properties?

c. The following estimated equation uses residuals êt from least-squares estimation of the model

Xt = β1 + δt + β2Zt + et. Can you conclude that Xt and Zt are cointegrated?

Δêt

⋀

= −0.0683êt−1

(τ) (−2.83)

d. Use the following equation and earlier results to assess the order of integration of Zt.

Δ
(
ΔZt

)
⋀

= 0.174 − 0.987ΔZt−1

(τ) (−13.76)

12.4 A time-series process of the form yt = α + yt−1 + vt, vt ∼ N(0, σ2) can be rearranged as yt – yt−1 =
Δyt = α + vt. This shows that yt is integrated of order one, since its first difference is stationary. Show

that a time series of the form yt = 2yt−1 – yt–2 + α + vt is integrated of order two.

12.5 In Chapter 9, we found that, given a time series of observations, IT =
{(

y1, x1

)
,

(
y2, x2

)
,…,

(
yT , xT

)}
,

the best one-period and two-period ahead forecasts for yT+1 and yT+2 were given by E
(
yT+1|IT

)
and

E
(
yT+2|IT

)
, respectively. Given that T = 29, yT = 10, yT−1 = 12, xT+2 = xT+1 = xT = 5, and xT−1 = 6,

find forecasts for yT+1 and yT+2 from each of the following models. In each case, assume that vt are

independent random errors distributed as N
(
0, σ2

v = 4
)
.

a. The random walk yt = yt−1 + vt.

b. The random walk with drift yt = 5 + yt−1 + vt.

c. The random walk ln
(
yt
)
= ln

(
yt−1

)
+ vt.

d. The deterministic trend model yt = 10 + 0.1 t + vt.

e. The ARDL model yt = 6 + 0.6yt−1 + 0.3xt + 0.1xt−1 + vt.

f. The error correction model Δyt = −0.4
(
yt−1 − 15 − xt−1

)
+ 0.3Δxt + vt. In addition, find the

long-run equilibrium value for y when x = 5.

g. The first difference model Δyt = 0.6Δyt−1 + 0.3Δxt + 0.1Δxt−1 + vt.

12.6 Increases in the mortgage interest rate increase the cost of owning a house and lower the demand for

houses. In this question we investigate the properties of two time series that could be used to model

this demand relationship: the number of new one-family houses sold in the U.S. (HOMES) and the

30-year conventional mortgage rate (IRATE). These series, along with their changes, DHOMES and

DIRATE, are plotted in Figure 12.9. The data are from January 1992 (1992M1) to September 2016

(2016M9). The units of measurement are thousands of new houses for HOMES and percentage points

for IRATE.

Use the following test equation results to test for unit roots. In each case give the null and alter-

native hypotheses, and draw a conclusion. In all cases use a 5% significance level. Based on the test

results, describe how you would set up a model for the demand relationship. (In each model, the OLS

standard errors do not reflect the true variance of the estimator γ̂ but, nevertheless, they can be used

to construct the τ-statistic.)

a. ΔHOMESt

⋀

= 7.051 − 0.0102HOMESt−1 − 0.280ΔHOMESt−1

(se) (0.0096) (0.056)

b. ΔHOMESt

⋀

= 16.36 − 0.0385 t − 0.0151HOMESt−1 − 0.279ΔHOMESt−1

(se) (0.0345) (0.0106) (0.056)

c. ΔIRATEt

⋀

= 0.0477 − 0.00985IRATEt−1 + 0.300ΔIRATEt−1

(se) (0.00679) (0.056)
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FIGURE 12.9 Time series for new houses and the mortgage rate and their changes.

d. ΔIRATEt

⋀

= 0.603 − 0.00120 t − 0.0710IRATEt−1 + 0.329ΔIRATEt−1

(se) (0.00033) (0.0181) (0.055)

e. ΔDHOMESt

⋀

= −0.254 − 1.285DHOMESt−1

(se) (0.056)

f. ΔDIRATEt

⋀

= −0.0151 − 0.816DIRATEt−1 + 0.151ΔDIRATEt−1

(se) (0.069) (0.058)

g. In the following test equation the êt are the residuals from estimating the equation HOMESt =
β1 + β2IRATEt + et.

Δêt

⋀

= −0.0191êt−1 − 0.181Δêt−1

(se) (0.0117) (0.057)

h. In the following test equation the ût are the residuals from estimating the equation HOMESt =
β1 + δt + β2IRATEt + ut.

Δût

⋀

= −0.0180ût−1 − 0.208Δût−1

(se) (0.0114) (0.057)
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12.7.2 Computer Exercises

12.7 The data file usmacro contains quarterly observations on the U.S. unemployment rate (U), the U.S.

GDP growth rate (G), and the U.S. inflation rate (INF) from 1948Q1 to 2016Q1. Plot these series and

perform unit root tests on them to assess whether or not they are stationary. In your answer, justify

your choice of a test equation, present the results from estimating that equation, state the null and

alternative hypotheses, and draw a conclusion. Use a 5% significance level. What are the orders of

integration of the three series?

12.8 The data file okun5_aus contains quarterly observations on the Australian unemployment rate (U),

and the Australian GDP growth rate (G) from 1978Q2 to 2016Q2. Plot these series and perform unit

root tests on them to assess whether or not they are stationary. In your answer, justify your choice

of a test equation, present the results from estimating that equation, state the null and alternative

hypotheses, and draw a conclusion. Use a 5% significance level. What are the orders of integration of

the two series?

12.9 The data file phillips5_aus contains quarterly observations on the Australian unemployment rate (U),

and the Australian inflation rate (INF) from 1987Q1 to 2016Q1. Plot these series and perform unit

root tests on them to assess whether or not they are stationary. In your answer, justify your choice

of a test equation, present the results from estimating that equation, state the null and alternative

hypotheses, and draw a conclusion. Use a 5% significance level. What are the orders of integration of

the two series?

12.10 The data file oil5 contains quarterly observations on the price of oil from 1980Q1 to 2016Q1.

a. Plot the observations.

b. Using data from 1980Q1 to 2015Q2, test whether the series is stationary or nonstationary. What

is its order of integration?

c. Using information from part (b), the sample period 1980Q1 to 2015Q2, and other relevant criteria,

specify and estimate an AR model for the price of oil.

d. Use the model estimated in part (c) to forecast the price of oil for 2015Q3, 2015Q4, and 2016Q1.

e. Find the percentage forecast errors for each of the forecasts made in part (d). Are your forecasts

accurate?

12.11 The data file freddie1 contains a monthly housing price index for the price of houses in Beckley, West

Virginia (BEKLY), and the monthly value of Australian exports to China (XCHINA), from 1988M1

to 2015M12.

a. Estimate the regression equation XCHINAt = β1 + β2 BEKLYt + et and comment on the results.

b. Plot the series BEKLY , XCHINA, and ln(XCHINA) and describe the graphs. Do they provide any

insights into the results from part (a)?

c. Estimate the equation ln(XCHINAt) = β1 + δt + β2 BEKLYt + et and comment on the results. Sug-

gest a reason why ln(XCHINA) rather than XCHINA was chosen as the left-hand-side variable.

d. Do unit root tests suggest ln(XCHINA) and BEKLY are stationary or trend stationary? Do the test

results provide any insights into the results in part (c)?

12.12 The data file freddie2 contains monthly housing price indices for the prices of houses in Champaign-

Urbana, Illinois (CHURB), and Charlottesville, Virginia (CHARV) from 1982M1 to 2015M12.

a. Plot the two series on the one graph and comment on the plots.

b. Using a 5% significance level, test each of the two series for unit roots and find the order of

integration of each series. Explain your choice of test equations. Are the series trend stationary?

Are the series first-difference stationary? Are the series second-difference stationary?

c. Using a 5% significance level, test whether CHURB and CHARV are cointegrated.

d. Plot the first differences of the two series on the one graph and comment on the plots.

e. Using a 5% significance level, test whether the first differences of CHURB and CHARV are

cointegrated.

12.13 The data file ozconfn contains quarterly data on Australian real consumption expenditure (CONS) and

real net national disposable income (INC) from 1975Q1 to 2010Q4.

a. Create the series LCONS = ln(CONS) and plot the series LCONS and INC. Comment on the

graphs.

b. Detrend each of the series by estimating the linear trends LCONSt = a1 + a2 t + u1t and

INCt = c1 + c2 t + u2t, and saving the residuals. Use values t = 0, 1,… , T − 1 for the trend term.
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c. Plot the detrended series and comment on the graphs.

d. From part (c), you will have noticed that there is a strong seasonal component in each series.

Econometricians have developed several methods for removing a seasonal component or “season-

ally adjusting” the data. One very simple method is to subtract out the effect of seasonal dummy

variables. To use this method, and remove the trend at the same time, we estimate the equation

yt = π0 t + π1D1t + π2D2t + π3D3t + π4D4t + ut (XR12.13)

where Djt = 1 when t is an observation in quarter j, and 0 otherwise. Estimate (XR12.13) for both

LCONS and INC and save the residuals; call them LCONS∗ and INC∗.

e. Plot LCONS∗ and INC∗ and compare these graphs with those obtained in part (c).

f. Using a 5% significance level and the critical values in the third row of Table 12.2, test whether

LCONS∗ and INC∗ are stationary or first-difference stationary. Explain your choice of test

equation, and comment on the suitability of the critical values.

g. Estimate the following two equations and compare the estimates

LCONSt = δ t + ϕ1D1t + ϕ2D2t + ϕ3D3t + ϕ4D4t + β INCt + et

LCONS∗t = β INC∗
t + et

h. Using a 5% significance level, test whether the equation in part (g)—either equation—is a coin-

tegrating relationship. What critical value did you use?

i. Estimate an error correction model relating ΔLCONSt to ΔINCt and, if relevant, the lagged coin-

tegrating residuals from part (g).

12.14 The data file gdp5 contains the data on GDP displayed in Figure 12.1.

a. Is GDP stationary or nonstationary? Explain your choice of test equation.

b. What is the order of integration of GDP?

c. Construct and estimate a suitable model for forecasting GDP in 2017Q1. What is your forecast?

12.15 The data file usdata5 contains the data on inflation displayed in Figure 12.1.

a. Is inflation stationary or nonstationary? Explain your choice of test equation.

b. What is the order of integration of inflation?

c. Construct and estimate a suitable model for forecasting inflation in 2017M1. What is your

forecast?

12.16 In Example 12.2, using data from the data file toody5, we estimated the model

ln
(
YIELDt

)
= α1 + α2 t + β1RAINt + β2RAIN2

t + et

An assumption underlying this example was that ln (YIELD), RAIN, and RAIN2 are all trend stationary.

Test this assumption using a 5% significance level.

12.17 a. Using data from the data file toody5, estimate the following model. Comment on the results.

YIELDt = α1 + α2 t + β1RAINt + β2RAIN2
t + et

b. Plot the residuals from the model estimated in part (a) and check the residual correlogram. What

do you observe?

c. Estimate the following model and comment on the results.

YIELDt = α1 + α2 t + α3 t2 + β1RAINt + β2RAIN2
t + et

d. Plot the residuals from the model estimated in part (c) and check the residual correlogram. How

do the properties of the residuals differ from those in part (b)?

e. Using a 5% significance level, test whether YIELD, RAIN, and RAIN2 are trend stationary after

subtracting out the quadratic trend.

12.18 Consider the ARDL model

yt = δ +
3∑

s=1

θsyt−s +
5∑

r=0

δrxt−r + vt (XR12.18)

Assume that yt and xt are I(1) and cointegrated. Let the cointegrating relationship be described by the

equation yt = β1 + β2xt + et.
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a. Show that β1 = δ
/(

1 − θ1 − θ2 − θ3

)
and β2 =

∑5

r=0
δr
/(

1 − θ1 − θ2 − θ3

)
.

b. Consider the corresponding error correction model

Δyt = −α
(
yt−1 − β1 − β2xt−1

)
+ ϕ1Δyt−1 + ϕ2Δyt−2 +

4∑

r=0

ηrΔxt−r + vt

Show that δ = αβ1, θ1 = 1− α + ϕ1, θ2 = ϕ2 − ϕ1, θ3 = −ϕ2, δ0 = η0, δ1 = αβ2 − η0 + η1,

δ2 = η2 − η1, δ3 = η3 − η2, δ4 = η4 − η3, and δ5 = −η4.

c. Using the data in usdata5, set yt = BRt and xt = FFRt and find least-squares estimates of the

parameters in equation (XR12.18).

d. Use nonlinear least squares to estimate equation (12.32) in Example 12.9.

e. Substitute the parameter estimates of equation (12.32) obtained in part (d) into the expressions

given in part (b) and compare the estimates you get with those obtained in part (c). What conclu-

sion can you draw from this comparison?

12.19 When we estimated an error correction model for the bond and federal funds rates in Example 12.9,

we estimated the coefficients of the cointegrating relationship BRt = β1 + β2FFRt + et at the

same time as we estimated the other coefficients. Return to that example and estimate the error

correction model with the cointegrating relationship replaced by the lagged residuals êt−1 = BRt−1 −
1.328 − 0.832FFRt−1. Compare your estimates with those obtained in Example 12.9, reported in

equation (12.32).

12.20 The data file canada6 contains monthly Canadian/U.S. exchange rates for the period 1971M1 to

2017M3. Split the observations into two sample periods—a 1971M1–1987M12 sample period and a

1988M1–2017M3 sample period.

a. Perform a unit root test on the data for each sample period. Which Dickey–Fuller tests did you

use?

b. Are the results for the two sample periods consistent?

c. Perform a unit root test for the full sample 1971M1–2017M3. What is the order of integration of

the data?

12.21 The data file csi contains the Consumer Sentiment Index (CSI) produced by the University of

Michigan for the sample period 1978M1–2006M12.

a. Perform all three Dickey–Fuller tests. Are the results consistent? If not, why not?

b. Based on a graphical inspection of the data, which test should you have used?

c. Does the CSI suggest that consumers “remember” and “retain” news information for a short time,

or for a long time?

12.22 The data file mexico contains real GDP for Mexico and the United States from the first quarter of

1980 to the third quarter of 2006. Both series have been standardized so that the average value in

2,000 is 100.

a. Perform the test for cointegration between Mexico and the Unites States using all three test

equations in (12.29). Are the results consistent?

b. The theory of convergence in economic growth suggests that the two GDPs should be propor-

tional and cointegrated. That is, there should be a cointegrating relationship that does not contain

an intercept or a trend. Do your results support this theory?

c. If the variables are not cointegrated, what should you do if you are interested in testing the rela-

tionship between Mexico and the United States?

12.23 The data file inter2 contains 300 observations of a generated I(2) process shown in Figure 12.10.

Show that the variable called inter2 is indeed an I(2) variable by conducting a number of unit

root tests—first on the level of the data, then on the first difference, and finally on the second

difference.

12.24 Prices around the world tend to move together. The data file ukpi contains information about the price

indices in the United Kingdom and in the Euro Area (the United Kingdom is a member of the European

Union, but not a member of the single European currency zone) for the period 1996M1–2009M12.

a. Plot the data. Are the series I(1) or I(0)?

b. Are prices in the UK and in the Euro Area cointegrated, or spuriously related? Use both the least

squares and the error correction method to test this proposition.
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FIGURE 12.10 A generated I(2) process.

12.25 The data file nasa contains annual data on sunspots and the rate of growth in real GDP in the U.S. for

the period 1950–2014. Jevons, a 19th century economist, suggested that there might be a relationship

between business cycles and sunspots because variations in sunspots indicate variations in weather

which in turn causes variation in agricultural output.

a. Plot each of the series. Do business cycles tend to follow sunspot activity?

b. Using a 5% significance level, test whether each series is stationary.

c. Set up an ARDL model to test the hypothesis that sunspots can be used to predict business cycles

in the U.S. Do your results support Jevons’ theory?

12.26 The data file shiller contains the stock market data in the book “Irrational Exuberance” by Robert

Shiller.10 They comprise the monthly price and dividends of the S&P Index (in logs) for the sample

period 1871M1–2015M9. Finance theory suggests a long-run relationship between dividends and the

stock price.

a. Plot each of the series. Do they appear to be moving together?

b. Carry out an empirical analysis to investigate whether there is evidence of a long-run relationship

between the two series. Use a 1% level of significance for all hypothesis tests.

12.27 How easy is it to forecast the Australian/U.S. dollar exchange rate? The data file iron contains monthly

data on the iron ore price and the exchange rate from 2010M1 to 2016M12. In the questions that

follow, use a 5% significance level for all hypothesis tests.

a. Plot the two series. Do they appear to move together?

b. Is the exchange rate stationary or nonstationary? What model best reflects the relationship between

current and past exchange rates?

c. Is the iron ore price stationary or nonstationary?

d. Financial commentators have suggested that, given Australia’s dependence on iron ore exports, its

exchange rate follows movements in the iron ore price. Is there evidence to suggest these financial

commentators are correct?

e. Can the iron ore price be used to help forecast the exchange rate?

12.28 The data file inflation contains quarterly observations on the inflation rates in Germany and France

from 1990Q1 to 2014Q4. For any hypothesis tests in the following questions, use a 5% significance

level.

a. Plot each of the series and comment on the plots.

b. Use unit root tests, checks for serial correlation in the errors and significance of coefficients to

specify and estimate an equation relating Germany’s current inflation rate to its past rates.

............................................................................................................................................................

10Robert Shiller, Irrational Exuberence, 3rd ed, 2016, Princeton University Press.
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c. Use unit root tests, checks for serial correlation in the errors and significance of coefficients to

specify and estimate an equation relating France’s current inflation rate to its past rates.

d. Are the inflation rates in France and Germany cointegrated?

e. Specify and estimate an equation relating Germany’s current exchange rate to past exchange rates

in France and Germany.

12.29 Reconsider Example 6.20 where a logistic growth curve for the share of U.S. steel produced by electric

arc furnace (EAF) technology was estimated. The data are stored in the data file steel. The curve is

given by the equation

yt =
α

1 + exp(−β − δ t)
+ et

a. Plot the series yt = EAFt. Does it give the appearance of being stationary or nonstationary?

Does the logistic growth curve appear to be a good model for modeling its trend?

b. Using a 5% significance level, test the series yt = EAFt for a unit root.

c. Estimate the equation by nonlinear least squares and plot the residuals. Do the residuals appear to

be stationary. Test the residuals for a unit root.

d. Using a 5% significance level, test the series Δyt = ΔEAFt for a unit root.

e. Estimate a first-differenced version of the model and plot the residuals. Do the residuals appear

to be stationary. Test the residuals for a unit root.

f. Based on your answers to the previous parts of this question, do you think yt = EAFt is trend

stationary? Compare the estimates from parts (c) and (e). Do you think the nonlinear least-squares

estimates in part (c) are reliable?
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CHAPTER 13

Vector Error
Correction and Vector
Autoregressive Models

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to do the following:

1. Explain why economic variables are dynamically

interdependent.

2. Explain the VEC model.

3. Explain the importance of error correction.

4. Explain the VAR model.

5. Explain the relationship between a VEC model

and a VAR model.

6. Explain how to estimate the VEC and VAR

models for the bivariate case.

7. Explain how to generate impulse response

functions and variance decompositions for the

simple case when the variables are not

contemporaneously interdependent and the

shocks are not correlated.

K E Y W O R D S

dynamic relationships

error correction

forecast error variance decomposition

identification problem

impulse response functions

VAR model

VEC model

In Chapter 12, we studied the time-series properties of data and cointegrating relationships

between pairs of nonstationary series. In those examples, we assumed that one of the variables

was the dependent variable
(
let us call it yt

)
and that the other was the independent variable

(
say xt

)
, and we treated the relationship between yt and xt like a regression model. However, a

priori, unless we have good reasons not to, we could just as easily have assumed that yt is the

independent variable and xt is the dependent variable. Put simply, we are working with two

variables
{

yt, xt
}

and the two possible regression models relating them are

yt = β10 + β11xt + ey
t , ey

t ∼ N
(

0, σ2
y

)

(13.1a)

xt = β20 + β21yt + ex
t , ex

t ∼ N
(

0, σ2
x

)

(13.1b)
597
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In this bivariate (two series) system, there can be only one unique relationship between xt and

yt, and so it must be the case that β21 = 1∕β11 and β20 = −β10∕β11. A bit of terminology: for

(13.1a), we say that we have normalized on y (meaning that the coefficient in front of y is set

to 1), whereas for (13.1b), we say that we have normalized on x (meaning that the coefficient in

front of x is set to 1).

Is it better to write the relationship as (13.1a) or (13.1b), or is it better to recognize that in

many relationships, variables like y and x are simultaneously determined? The aim of this chapter

is to explore the causal relationship between pairs of time-series variables. In doing so, we shall

be extending our study of time-series data to take account of their dynamic properties and interac-

tions. In particular, we will discuss the vector error correction (VEC) and vector autoregressive
(VAR) models. We will learn how to estimate a VEC model when there is cointegration between

I(1) variables, and how to estimate a VAR model when there is no cointegration. Note that this

is an extension of the single-equation models examined in Chapter 12.

Some important terminology emerges here. Univariate analysis examines a single data series.

Bivariate analysis examines a pair of series. The term vector indicates that we are considering a

number of series: two, three, or more. The term “vector” is a generalization of the univariate and

bivariate cases.

13.1 VEC and VAR Models
Let us begin with two time-series variables yt and xt and generalize the discussion about dynamic
relationships in Chapter 9 to yield a system of equations:

yt = β10 + β11yt−1 + β12xt−1 + vy
t

xt = β20 + β21yt−1 + β22xt−1 + vx
t (13.2)

The equation (13.2) describes a system in which each variable is a function of its own lag and the

lag of the other variable in the system. In this case, the system contains two variables y and x. In

the first equation yt is a function of its own lag yt−1 and the lag of the other variable in the system

xt−1. In the second equation xt is a function of its own lag xt−1 and the lag of the other variable

in the system yt−1. Together the equations constitute a system known as a VAR. In this example,

since the maximum lag is of order 1, we have a VAR(1).

If y and x are stationary I(0) variables, the above system can be estimated using least squares

applied to each equation. If, however, y and x are nonstationary I(1) and not cointegrated, then as

discussed in Chapter 12, we work with the first differences. In this case, the VAR model is

Δyt = β11Δyt−1 + β12Δxt−1 + vΔy
t

Δxt = β21Δyt−1 + β22Δxt−1 + vΔx
t (13.3)

All variables are now I(0), and the system can again be estimated by least squares. To recap, the

VAR model is a general framework to describe the dynamic interrelationship between stationary

variables. Thus, if y and x are stationary I(0) variables, the system in (13.2) is used. On the other

hand, if y and x are I(1) variables but are not cointegrated, we examine the interrelation between

them using a VAR framework in first differences (13.3).

If y and x are I(1) and cointegrated, then we need to modify the system of equations to allow

for the cointegrating relationship between the I(1) variables. We do this for two reasons. First, as

economists, we like to retain and use valuable information about the cointegrating relationship,

and second, as econometricians, we like to ensure that we use the best technique that takes into

account the properties of the time-series data. Recall the chapter on simultaneous equations—the

cointegrating equation is one way of introducing simultaneous interactions without requiring

the data to be stationary. Introducing the cointegrating relationship leads to a model known as

the VEC model. We turn now to this model.
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Consider two nonstationary variables yt and xt that are integrated of order 1: yt ∼ I(1) and

xt ∼ I(1) and which we have shown to be cointegrated, so that

yt = β0 + β1xt + et (13.4)

and êt ∼ I(0) where êt are the estimated residuals. Note that we could have chosen to normalize

on x. Whether we normalize on y or x is often determined from economic theory; the critical point

is that there can be at most one fundamental relationship between the two variables.

The VEC model is a special form of the VAR for I(1) variables that are cointegrated.

The VEC model is

Δyt = α10 + α11

(
yt−1 − β0 − β1xt−1

)
+ vy

t

Δxt = α20 + α21

(
yt−1 − β0 − β1xt−1

)
+ vx

t (13.5a)

which we can expand as

yt = α10 +
(
α11 + 1

)
yt−1 − α11β0 − α11β1xt−1 + vy

t

xt = α20 + α21yt−1 − α21β0 −
(
α21β1 − 1

)
xt−1 + vx

t (13.5b)

Comparing (13.5b) with (13.2) shows the VEC as a VAR where the I(1) variable yt is related to

other lagged variables
(
yt−1 and xt−1

)
and where the I(1) variable xt is also related to the other

lagged variables
(
yt−1 and xt−1

)
. Note, however, that the two equations contain the common

cointegrating relationship.

The coefficients α11, α21 are known as error correction coefficients, so named because they

show how much Δyt and Δxt respond to the cointegrating error yt−1 – β0 – β1xt−1 = et−1. The

idea that the error leads to a correction comes about because of the conditions put on α11, α21

to ensure stability, namely
(
−1 < α11 ≤ 0

)
and

(
0 ≤ α21 < 1

)
. To appreciate this idea, consider

a positive error et−1 > 0 that occurred because yt−1 >

(
β0 + β1xt−1

)
. A negative error correction

coefficient in the first equation
(
α11

)
ensures that Δy falls, while the positive error correction

coefficient in the second equation
(
α21

)
ensures that Δx rises, thereby correcting the error. Hav-

ing the error correction coefficients less than 1 in absolute value ensures that the system is not

explosive. Note that the VEC is a generalization of the error-correction (single-equation) model

discussed in Chapter 12. In the VEC (system) model, both yt and xt “error-correct.”

The error correction model has become an extremely popular model because its interpretation

is intuitively appealing. Think about two nonstationary variables, say consumption (let us call it yt)

and income (let us call it xt), that we expect to be related (cointegrated). Now think about a change

in your income Δxt, say a pay raise! Consumption will most likely increase, but it may take you

a while to change your consumption pattern in response to a change in your pay. The VEC model

allows us to examine how much consumption will change in response to a change in the explana-

tory variable
(
the cointegration part, yt = β0 + β1xt + et

)
, as well as the speed of the change

(the error correction part, Δyt = α10 + α11

(
et−1

)
+ vy

t where et−1 is the cointegrating error).

There is one final point to discuss—the role of the intercept terms. Thus far, we have intro-

duced an intercept term in the cointegrating equation (β0) as well as in the VEC
(
α10 and α20

)
.

However, doing so can create a problem. To see why, we collect all the intercept terms and rewrite

(13.5b) as

yt =
(
α10 − α11β0

)
+
(
α11 + 1

)
yt−1 − α11β1xt−1 + vy

t

xt =
(
α20 − α21β0

)
+ α21yt−1 −

(
α21β1 − 1

)
xt−1 + vx

t (13.5c)

If we estimate each equation by least squares, we obtain estimates of composite terms(
α10 − α11β0

)
and

(
α20 – α21β0

)
, and we are not able to disentangle the separate effects of β0, α10,

and α20. In the next section, we discuss a simple two-step least squares procedure that gets

around this problem. However, the lesson here is to check whether, and where, an intercept term

is needed.
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13.2 Estimating a Vector Error Correction Model
There are many econometric methods to estimate the error correction model. Nonlinear (sys-

tem) least squares is one method, but the most straightforward method is to use a two-step least

squares procedure. First, use OLS to estimate the cointegrating relationship yt = β0 + β1xt + et
and generate the lagged residuals êt−1 = yt−1 − b0 − b1xt−1.

Second, use OLS to estimate the equations:

Δyt = α10 + α11êt−1 + vy
t (13.6a)

Δxt = α20 + α21êt−1 + vx
t (13.6b)

Note that all the variables in (13.6) (Δy, Δx, and ê) are stationary (recall that for y and x to be

cointegrated, the residuals ê must be stationary). Hence, the standard regression analysis studied

in earlier chapters may be used to test the significance of the parameters. The usual residual

diagnostic tests may be applied.

We need to be careful here about how we combine stationary and nonstationary variables in a

regression model. Cointegration is about the relationship between I(1) variables. The cointegrat-

ing equation does not contain I(0) variables. The corresponding VEC model, however, relates the

change in an I(1) variable (the I(0) variables Δy and Δx) to other I(0) variables, namely, the coin-

tegration residuals êt−1; if required, other stationary variables may be added. In other words, we

should not mix stationary and nonstationary variables: an I(0) dependent variable on the left-hand

side of a regression equation should be “explained” by other I(0) variables on the right-hand side

and an I(1) dependent variable on the left-hand side of a regression equation should be explained

by other I(1) variables on the right-hand side.

E X A M P L E 13.1 VEC Model for GDP

In Figure 13.1 the quarterly real gross domestic product

(GDP) of a small economy (Australia) and a large economy

(United States) for the sample period 1970Q1 to 2000Q4

are displayed. Note that the series have been scaled so that
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FIGURE 13.1 Real gross domestic product (GDP = 100
in 2000).

both economies show a real GDP value of 100 in 2000. They

appear in the data file gdp. It appears from the figure that both

series are nonstationary and possibly cointegrated.

Formal unit root tests of the series confirm that they are

indeed nonstationary. To check for cointegration we obtain

the fitted equation in (13.7) (the intercept term is omitted

because it has no economic meaning):

Ât = 0.985Ut, (13.7)

where A denotes real GDP for Australia and U denotes real

GDP for the United States. Note that we have normalized on

A because it makes more sense to think of a small economy

responding to a large economy. The residuals derived from

the cointegrating relationship êt = At − 0.985Ut are shown in

Figure 13.2. Their first-order autocorrelation is 0.870, and a

visual inspection of the time series suggests that the residuals

may be stationary.

A formal unit root test is performed, and the estimated

unit root test equation is

Δet

⋀

= −0.128êt−1

(tau) (−2.889)
(13.8)
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Since the cointegrating relationship does not contain

an intercept term [see Chapter 12, (12.29a)], the 5% critical

value is −2.76. The unit root t-value of −2.889 is less

than −2.76. We reject the null of no cointegration and we

conclude that the two real GDP series are cointegrated. This

result implies that economic activity in the small economy

(Australia, At) is linked to economic activity in the large

economy (United States, Ut). If Ut were to increase by

one unit, At would increase by 0.985. But the Australian

economy may not respond fully by this amount within the

quarter. To ascertain how much it will respond within a

quarter, we estimate the error correction model by least

squares. The estimated VEC model for
{

At,Ut
}

is

ΔAt

⋀

= 0.492 − 0.099êt−1

(t) (−2.077)

ΔUt

⋀

= 0.510 + 0.030êt−1

(t) (0.789) (13.9)
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FIGURE 13.2 Residuals derived from the cointegrating relationship.

The results show that both error correction coefficients

are of the appropriate sign. The negative error correction

coefficient in the first equation (−0.099) indicates that ΔA
falls (i.e., At falls or ΔAt is negative), while the positive

error correction coefficient in the second equation (0.030)

indicates that ΔU rises (i.e., Ut rises or ΔUt is positive),

when there is a positive cointegrating error
(
êt−1 > 0 or

At−1 > 0.985Ut−1

)
. This behavior (negative change in A and

positive change in U) “corrects” the cointegrating error. The

error correction coefficient (−0.099) is significant at the 5%

level; it indicates that the quarterly adjustment of At will be

about 10% of the deviation of At−1 from its cointegrating

value 0.985Ut−1. This is a slow rate of adjustment. However,

the error correction coefficient in the second equation

(0.030) is insignificant; it suggests that ΔU does not react to

the cointegrating error. This outcome is consistent with the

view that the small economy is likely to react to economic

conditions in the large economy, but not vice versa.

13.3 Estimating a VAR Model
The VEC is a multivariate dynamic model that incorporates a cointegrating equation. It is

relevant when, for the bivariate case, we have two variables, say y and x, that are both I(1), but

are cointegrated. Now we ask: What should we do if we are interested in the interdependen-

cies between y and x, but they are not cointegrated? In this case, we estimate a VAR model

as shown in (13.3).
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E X A M P L E 13.2 VAR Model for Consumption and Income

Consider Figure 13.3 that shows the log of real personal dis-

posable income (RPDI) (denoted as Y) and the log of real

personal consumption expenditure (RPCE) (denoted as C) for

the U.S. economy over the period 1986Q1 to 2015Q2. Both

series appear to be nonstationary, but are they cointegrated?

The quarterly data are stored in the data file fred5.

The Dickey–Fuller test values for unit roots for C were

−0.88 when an intercept only was included and −1.63 when

both an intercept and trend term were included. In both cases,

there were three augmentation terms. The corresponding

values for Y were −1.65 and −0.43. In these cases, one

augmentation term was sufficient. The 10% critical values

from Table 12.2 are −2.57 without a trend and −3.13 with

a trend. Since the test values are greater than the critical

values, we cannot conclude that the series are stationary.

Using a 10% significance level, unit root tests on the first

differences of the series lead to a conclusion that the first

differences are stationary, and hence the series are I(1).

Testing for cointegration yields the following results:

êt = Ct + 0.543 − 1.049Yt

Δêt

⋀

= −0.203êt−1 − 0.290Δêt−1

(τ) (−3.046)
(13.10)

An intercept term has been included to capture the compo-

nent of (log) consumption that is independent of disposable

income. From Table 12.4, the 10% critical value of the test for

stationarity in the cointegrating residuals is −3.07. Since the

tau (unit root t-value) of−3.046 is greater than−3.07, it indi-

cates that the errors are not stationary and hence that the rela-

tionship between C (i.e., log(RPCE)) and Y (i.e., log(RPDI))

is spurious. That is, we have no cointegration. Thus, we would

not apply a VEC model to examine the dynamic relationship
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Y = ln(RPDI)
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FIGURE 13.3 The logarithms of real personal disposable income (RPDI)
and real personal consumption expenditure (RPCE).

between aggregate consumption C and income Y . Instead,

we would estimate a VAR model for the set of I(0) variables{
ΔCt,ΔYt

}
.

For illustrative purposes, the order of lag in this example

has been restricted to one. In general, one should use signif-

icance of the coefficient estimates and serial correlation in

the errors to choose a suitable number of lags which may be

greater than one. The results are

ΔCt

⋀

= 0.00367 + 0.348ΔCt−1 + 0.131ΔYt−1

(t) (4.87) (4.02) (2.52) (13.11a)

ΔYt

⋀

= 0.00438 + 0.590ΔCt−1 − 0.291ΔYt−1

(t) (3.38) (3.96) (−3.25) (13.11b)

The first equation (13.11a) shows that the quarterly

growth in consumption
(
ΔCt

)
is significantly related to its

own past value
(
ΔCt−1

)
and also significantly related to

the quarterly growth in last period’s income
(
ΔYt−1

)
. The

second equation (13.11b) shows that ΔYt is significantly

negatively related to its own past value but significantly

positively related to last period’s change in consumption.

The constant terms capture the fixed component in the

change in log consumption and the change in log income.

Having estimated these models, can we infer anything

else? If the system is subjected to an income shock, what is

the effect of the shock on the dynamic path of the quarterly

growth in consumption and income? Will they rise and by

how much? If the system is also subjected to a consumption

shock, what is the contribution of an income versus a con-

sumption shock on the variation of income? We turn now to

some analysis suited to addressing these questions.
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13.4 Impulse Responses and Variance

Decompositions
Impulse response functions and variance decompositions are techniques that are used by

macroeconometricians to analyze problems such as the effect of an oil price shock on inflation

and GDP growth, and the effect of a change in monetary policy on the economy.

13.4.1 Impulse Response Functions
Impulse response functions show the effects of shocks on the adjustment path of the variables.

To help us understand this, we shall first consider a univariate series.

The Univariate Case Consider a univariate series yt = ρyt−1 + vt and subject it to a shock

of size v in period one. Assume an arbitrary starting value of y at time zero: y0 = 0. (Since we

are interested in the dynamic path, the starting point is irrelevant.) At time t = 1, following the

shock, the value of y will be: y1 = ρy0 + v1 = v. Assume that there are no subsequent shocks in

later time periods
[
v2 = v3 = · · · = 0

]
, at time t = 2, y2 = ρy1 = ρv. At time t = 3, y3 = ρy2 =

ρ
(
ρy1

)
= ρ2v, and so on. Thus the time-path of y following the shock is

{
v, ρv, ρ2v,…

}
. The

values of the coefficients
{
1,ρ, ρ2

,…
}

are known as multipliers, and the time-path of y following

the shock is known as the impulse response function.

To illustrate, assume that ρ = 0.9 and let the shock be unity: v = 1. According to the analysis,

y will be {1, 0.9, 0.81,…}, approaching zero over time. This impulse response function is plotted

in Figure 13.4. It shows us what happens to y after a shock. In this case, y initially rises by the

full amount of the shock and then it gradually returns to the value before the shock.

The Bivariate Case Now, let us consider an impulse response function analysis with two

time series based on a bivariate VAR system of stationary variables:

yt = δ10 + δ11yt−1 + δ12xt−1 + vy
t

xt = δ20 + δ21yt−1 + δ22xt−1 + vx
t (13.12)
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FIGURE 13.4 Impulse responses for an AR(1) model
yt = 0.9 yt−1 + vt following a unit shock.
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In this case, there are two possible shocks to the system—one to y and the other to x. Thus we

are interested in four impulse response functions—the effect of a shock to y on the time-paths of

y and x and the effect of a shock to x on the time-paths of y and x.

The actual mechanics of generating impulse responses in a system is complicated by the facts

that (i) one has to allow for interdependent dynamics (the multivariate analog of generating the

multipliers) and (ii) one has to identify the correct shock from unobservable data. Taken together,

these two complications lead to what is known as the identification problem. In this chapter, we

consider a special case where there is no identification problem.1 This special case occurs when

the system that is described in (13.12) is a true representation of the dynamic system—namely,

y is related only to lags of y and x, and x is related only to lags of y and x. In other words, y and x
are related dynamically, but not contemporaneously. The current value xt does not appear in the

equation for yt and the current value yt does not appear in the equation for xt. Also, we need to

assume that the errors vx
t and vy

t are contemporaneously uncorrelated.

Consider the case when there is a one standard deviation shock (alternatively called an

innovation) to y so that at time t = 1, vy
1
= σy, and vy

t is zero thereafter. Assume vx
t = 0 for all t.

It is traditional to consider a standard deviation shock (innovation) rather than a unit shock to

eliminate units of measurement. Assume y0 = x0 = 0. Also, since we are focusing on how a

shock changes the paths of y and x, we can ignore the intercepts. Then

1. When t = 1, the effect of a shock of size σy on y is y1 = vy
1
= σy, and the effect on x is

x1 = vx
1
= 0.

2. When t = 2, the effect of the shock on y is

y2 = δ11y1 + δ12x1 = δ11σy + δ120 = δ11σy

and the effect on x is

x2 = δ21y1 + δ22x1 = δ21σy + δ220 = δ21σy

3. When t = 3, the effect of the shock on y is

y3 = δ11y2 + δ12x2 = δ11δ11σy + δ12δ21σy

and the effect on x is

x3 = δ21y2 + δ22x2 = δ21δ11σy + δ22δ21σy.

By repeating the substitutions for t = 4, 5,… , we obtain further expressions. The impulse

response of the shock (or innovation) to y on y is σy
[
1, δ11,

(
δ11δ11 + δ12δ21

)
,…

]
and the

impulse response of a shock to y on x is σy
[
0, δ21,

(
δ21δ11 + δ22δ21

)
,…

]
.

Now consider what happens when there is a one standard deviation shock to x so that at time

t = 1, vx
1
= σx, and vx

t is zero thereafter. Assume vy
t = 0 for all t. In the first period after the shock,

the effect of a shock of size σx on y is y1 = vy
1
= 0, and the effect of the shock on x is x1 = vx

1
= σx.

Two periods after the shock, when t = 2, the effect on y is

y2 = δ11y1 + δ12x1 = δ110 + δ12σx = δ12σx

and the effect on x is

x2 = δ21y1 + δ22x1 = δ210 + δ22σx = δ22σx

Again, by repeated substitutions, we obtain the impulse response of a shock to x on y
as σx

[
0, δ12,

(
δ11δ12 + δ12δ22

)
,…

]
, and the impulse response of a shock to x on x as

σx
[
1, δ22,

(
δ21δ12 + δ22δ22

)
,…

]
. Figure 13.5 shows the four impulse response functions for

numerical values: σy = 1, σx = 2, δ11 = 0.7, δ12 = 0.2, δ21 = 0.3 and δ22 = 0.6.

............................................................................................................................................

1Appendix 13A introduces the general problem.
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FIGURE 13.5 Impulse responses to standard deviation shock.

The advantage of examining impulse response functions (and not just VAR coefficients) is that

they show the size of the impact of the shock plus the rate at which the shock dissipates, allowing

for interdependencies.

13.4.2 Forecast Error Variance Decompositions
Another way to disentangle the effects of various shocks is to consider the contribution of each

type of shock to the forecast error variance.

Univariate Analysis Consider again the univariate series, yt = ρyt−1 + vt. The best

one-step-ahead forecast (alternatively the forecast one period ahead) is

yF
t+1
= Et

[
ρyt + vt+1

]

where Et is the expected value conditional on information at time t (i.e., we are interested in

the mean value of yt+1 using what is known at time t). At time t the conditional expectation

Et
[
ρyt

]
= ρyt is known, but the error vt+1 is unknown, and so its conditional expectation is zero.

Thus the best forecast of yt+1 is ρyt, and the forecast error is

yt+1 − Et
[
yt+1

]
= yt+1 − ρyt = vt+1

The variance of the one-step forecast error is var
(
vt+1

)
= σ2. Suppose we wish to forecast two

steps ahead; using the same logic, the two-step forecast becomes

yF
t+2
= Et

[
ρyt+1 + vt+2

]
= Et

[
ρ
(
ρyt + vt+1

)
+ vt+2

]
= ρ2yt

and the two-step forecast error becomes

yt+2 − Et
[
yt+2

]
= yt+2 − ρ2yt = ρvt+1 + vt+2
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In this case, the variance of the forecast error is var
(
ρvt+1 + vt+2

)
= σ2

(
ρ2 + 1

)
, showing that the

variance of forecast error increases as we increase the forecast horizon. There is only one shock

that leads to a forecast error. Hence the forecast error variance is 100% due to its own shock.

The exercise of attributing the source of the variation in the forecast error is known as variance

decomposition.

Bivariate Analysis We can perform a forecast error variance decomposition for our

special bivariate example where there is no identification problem. Ignoring the intercepts (since

they are constants), the one-step ahead forecasts are

yF
t+1
= Et

[

δ11yt + δ12xt + vy
t+1

]

= δ11yt + δ12xt

xF
t+1
= Et

[

δ21yt + δ22xt + vx
t+1

]

= δ21yt + δ22xt

The corresponding one-step-ahead forecast errors and variances are

FEy
1
= yt+1 − Et

[

yt+1

]

= vy
t+1

var
(

FEy
1

)

= σ2
y

FEx
1
= xt+1 − Et

[

xt+1

]

= vx
t+1

var
(

FEx
1

)

= σ2
x

Hence in the first period, all variation in the forecast error for y is due to its own shock. Likewise,

100% of the forecast error for x can be explained by its own shock. Using the same technique, the

two-step ahead forecast for y is

yF
t+2
= Et

[

δ11yt+1 + δ12xt+1 + vy
t+2

]

= Et

[

δ11

(
δ11yt + δ12xt + vy

t+1

)
+ δ12

(
δ21yt + δ22xt + vx

t+1

)
+ vy

t+2

]

= δ11

(
δ11yt + δ12xt

)
+ δ12

(
δ21yt + δ22xt

)

and that for x is

xF
t+2
= Et

[

δ21yt+1 + δ22xt+1 + vx
t+2

]

= Et

[

δ21

(
δ11yt + δ12xt + vy

t+1

)
+ δ22

(
δ21yt + δ22xt + vx

t+1

)
+ vx

t+2

]

= δ21

(
δ11yt + δ12xt

)
+ δ22

(
δ21yt + δ22xt

)

The corresponding two-step-ahead forecast errors and variances are (recall that we are working

with the special case of independent errors)

FEy
2
= yt+2 − Et

[

yt+2

]

=
[

δ11vy
t+1
+ δ12vx

t+1
+ vy

t+2

]

var
(

FEy
2

)

= δ2
11
σ2

y + δ
2
12
σ2

x + σ
2
y

FEx
2
= xt+2 − Et

[

xt+2

]

=
[

δ21vy
t+1
+ δ22vx

t+1
+ vx

t+2

]

var
(

FEx
2

)

= δ2
21
σ2

y + δ
2
22
σ2

x + σ
2
x

We can decompose the total variance of the forecast error for y,
(

δ2
11
σ2

y + δ
2
12
σ2

x + σ
2
y

)

, into that

due to shocks to y,
(

δ2
11
σ2

y + σ
2
y

)

, and that due to shocks to x,
(

δ2
12
σ2

x

)

. This decomposition is

often expressed in proportional terms. The proportion of the two-step forecast error variance of

y explained by its “own” shock is
(

δ2
11
σ2

y + σ
2
y

)/(

δ2
11
σ2

y + δ
2
12
σ2

x + σ
2
y

)
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and the proportion of the two-step forecast error variance of y explained by the “other” shock is
(

δ2
12
σ2

x

)/(

δ2
11
σ2

y + δ
2
12
σ2

x + σ
2
y

)

Similarly, the proportion of the two-step forecast error variance of x explained by its own

shock is (

δ2
22
σ2

x + σ
2
x

)/(

δ2
21
σ2

y + δ
2
22
σ2

x + σ
2
x

)

and the proportion of the forecast error of x explained by the other shock is
(

δ2
21
σ2

y

)/(

δ2
21
σ2

y + δ
2
22
σ2

x + σ
2
x

)

For our numerical example with σy = 1, σx = 2, δ11 = 0.7, δ12 = 0.2, δ21 = 0.3, and δ22 = 0.6,

we find that 90.303% of the two-step forecast error variance of y is due to y, and only 9.697% is

due to x.

To sum up, suppose you were interested in the relationship between economic growth and

inflation. A VAR model will tell you whether they are significantly related to each other; an

impulse response analysis will show how growth and inflation react dynamically to shocks, and

a variance decomposition analysis will be informative about the sources of volatility.

The General Case The example above assumes that x and y are not contemporaneously

related and that the shocks are uncorrelated. There is no identification problem, and the gen-

eration and interpretation of the impulse response functions and decomposition of the forecast

error variance are straightforward. In general, this is unlikely to be the case. Contemporaneous

interactions and correlated errors complicate the identification of the nature of shocks and

hence the interpretation of the impulses and decomposition of the causes of the forecast error

variance. This topic is discussed in greater detail in textbooks devoted to time-series analysis.2

A description of how the identification problem can arise is given in Appendix 13A.

13.5 Exercises

13.5.1 Problems

13.1 Consider the following first-order VAR model of stationary variables:

yt = δ11yt−1 + δ12xt−1 + vy
t

xt = δ21yt−1 + δ22xt−1 + vx
t

Under the assumption that there is no contemporaneous dependence, determine the impulse

responses, four periods after a standard deviation shock for

a. y following a shock to y
b. y following a shock to x
c. x following a shock to y
d. x following a shock to x

13.2 Consider the first-order VAR model in Exercise 13.1. Under the assumption that there is no contem-

poraneous dependence, determine

a. the contribution of a shock to y on the variance of the three-step ahead forecast error for y
b. the contribution of a shock to x on the variance of the three-step ahead forecast error for y
c. the contribution of a shock to y on the variance of the three-step ahead forecast error for x
d. the contribution of a shock to x on the variance of the three-step ahead forecast error for x

............................................................................................................................................................

2One reference you might consider is Lütkepohl, H. (2005) Introduction to Multiple Time Series Analysis, Springer,

New York, Chapter 9.
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13.3 The VEC model is a special form of the VAR for I(1) variables that are cointegrated. Consider the

following VEC model:

Δyt = α10 + α11

(
yt−1 − β0 − β1xt−1

)
+ vy

t

Δxt = α20 + α21

(
yt−1 − β0 − β1xt−1

)
+ vx

t

The VEC model may also be rewritten as a VAR, but the two equations will contain common

parameters:
yt = α10 +

(
α11 + 1

)
yt−1 − α11β0 − α11β1xt−1 + vy

t

xt = α20 + α21yt−1 − α21β0 −
(
α21β1 − 1

)
xt−1 + vx

t

a. Suppose you were given the following results from an estimated VEC model:

Δyt

⋀

= 2 − 0.5
(
yt−1 − 1 − 0.7xt−1

)

Δxt

⋀

= 3 + 0.3
(
yt−1 − 1 − 0.7xt−1

)

Rewrite the model in the VAR form.

b. Now suppose you were given the following results of an estimated VAR model, but you were also

told that y and x are cointegrated.

ŷt = 0.7yt−1 + 0.3 + 0.24xt−1

x̂t = 0.6yt−1 − 0.6 + 0.52xt−1

Rewrite the model in the VEC form.

13.4 VAR and VEC models are popular forecasting models because they rely on the past history of

observed outcomes to predict the expected future values.

a. Consider the following estimated VAR model:

yt = δ̂11yt−1 + δ̂12xt−1 + v̂1t

xt = δ̂21yt−1 + δ̂22xt−1 + v̂2t

What are the forecasts for yt+1 and xt+1?

What are the forecasts for yt+2 and xt+2?

b. Consider the following estimated VEC model:

Δyt = α̂11

(

yt−1 − β̂1xt−1

)

+ v̂1t

Δxt = α̂21

(

yt−1 − β̂1xt−1

)

+ v̂2t

What are the forecasts for yt+1 and xt+1?

What are the forecasts for yt+2 and xt+2?

13.5.2 Computer Exercises

13.5 The data file gdp contains quarterly data on the real GDP of Australia (AUS) and real GDP of the

United States (USA) for the sample period 1970Q1 to 2000Q4.

a. Are the series stationary or nonstationary?

b. Test for cointegration allowing for an intercept term. You will find that the intercept is negative.

Is this sensible? If not, repeat the test for cointegration excluding the constant term.

c. Save the cointegrating residuals and estimate the VEC model.

13.6 The data file fred5 contains the log of RPDI (Y) and the log of RPCE (C) for the U.S. economy over

the period 1986Q1 to 2015Q2.

a. Are the series stationary, or nonstationary? In particular, test whether the series are trend

stationary.

b. Test for cointegration allowing for an intercept term. Are the series cointegrated?

c. Estimate a VAR model for the set of I(0) variables
{
ΔCt,ΔYt

}
. Pay particular attention to the

order of lags.

13.7 Consider again the data file fred5 used in Example 13.2 and Exercise 13.6.

a. Estimate a VAR model for
{
ΔCt,ΔYt

}
with three lags of each variable included. Comment on

the results. Has serial correlation in the errors been eliminated?
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b. The concept of “Granger causality” was introduced in Section 9.3.4. In a VAR involving two

variables x and y, we can ask whether x Granger causes y, whether y Granger causes x, and whether

there is Granger causality in both directions. Using the model estimated in part (a), test whether

ΔY Granger causes ΔC and whether ΔC Granger causes ΔY .

13.8 The data file vec contains 100 observations on two generated series of data, x and y. The variables

are nonstationary and cointegrated without a constant term. Save the cointegrating residuals
(
ê
)

and

estimate the VEC model. As a check, the results for the case normalized on y are

Δyt

⋀

= −0.576
(
êt−1

)

(t) (−6.158)

Δxt

⋀

= 0.450
(
êt−1

)

(t) (4.448)

a. The residuals from the error correction model should not be autocorrelated. Are they?

b. Note that one of the error correction terms is negative and the other is positive. Explain why this

is necessary.

13.9 The data file var contains 100 observations on two generated series of data, w and z. The variables are

nonstationary but not cointegrated. Estimate a VAR model of changes in the variables. As a check,

the results are (the intercept terms were not significant):

Δwt

⋀

= 0.743Δwt−1 + 0.214Δzt−1

(t) (11.403) (2.893)

Δzt

⋀

= −0.155Δwt−1 + 0.641Δzt−1

(t) (−2.293) (8.338)

a. The residuals from the VAR model should not be autocorrelated. Is this the case?

b. Determine the impulse responses for the first two periods. (You may assume the special condition

that there is no contemporaneous dependence.)

c. Determine the variance decompositions for the first two periods.

13.10 The quantity theory of money says that there is a direct relationship between the quantity of money

in the economy and the aggregate price level. Put simply, if the quantity of money doubles, then the

price level should also double. Figure 13.6 shows the percentage change in a measure of the quantity

of money (M) and the percentage change in a measure of aggregate prices (P) for the United States

between 1961Q1 and 2005Q4 (data file qtm). A VEC model was estimated as follows:

ΔPt

⋀

= −0.016
(
Pt−1 − 1.004Mt−1 + 0.039

)
+ 0.514ΔPt−1 − 0.005ΔMt−1

(t) (−2.127) (−3.696) (1.714) (7.999) (−0.215)

ΔMt

⋀

= 0.067
(
Pt−1 − 1.004Mt−1 + 0.039

)
− 0.336ΔPt−1 − 0.340ΔMt−1

(t) (3.017) (−3.696) (1.714) (−1.796) (−4.802)
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FIGURE 13.6 Percentage changes in money and price.
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a. Identify the cointegrating relationship between P and M. Is the quantity theory of money

supported?

b. Identify the error-correction coefficients. Is the system stable?

c. The above results were estimated using a system approach. Compute the cointegrating residuals

and confirm that the series is indeed an I(0) variable.

d. Estimate a VEC model using the cointegrating residuals. (Your results should be the same as

above.)

13.11 Research into the Phillips curve is concerned with providing empirical evidence of a tradeoff between

inflation and unemployment. Can an economy experience lower unemployment if it is prepared to

accept higher inflation? Figure 13.7 plots the changes in a measure of the unemployment rate (DU)

and the changes in a measure of inflation (DP) for the United States for the sample period 1970M07

to 2009M06. A VAR model was estimated as follows:

DUt = 0.180DUt−1− 0.046DPt−1

(t) (3.905) (−0.909)

DPt = −0.098DUt−1 + 0.373DPt−1

(t) (−2.522) (8.711)
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FIGURE 13.7 Changes in the unemployment and inflation rates.

a. Is there evidence of an inverse relationship between the change in the unemployment rate (DU)

and the change in the inflation rate (DP)?

b. What is the response of DU at time t + 1 following a unit shock to DU at time t?
c. What is the response of DP at time t + 1 following a unit shock to DU at time t?
d. What is the response of DU at time t + 2?

e. What is the response of DP at time t + 2?

13.12 Figure 13.8 shows the time series for two exchange rates—the EURO per $US and the STERLING
per $US (data file sterling). Both the levels and the changes in the data are shown.

a. Which set of data would you consider using to estimate a VEC model, and which set to estimate

a VAR? Why?

b. Apply the two-step approach suggested in this chapter to estimate a VEC model.

c. Estimate a VAR model paying attention to the order of the lag.

13.13 Financial analysts often debate the role of dividends (DV) in the determination of share prices (SP).

Figure 13.9 shows plots of the rate of change in DV and SP computed as

DVt = 100ln
(
DNt∕DNt−1

)
, SPt = 100ln

(
PNt∕PNt−1

)

where PN is the Standard and Poor Composite Price Index; DN is the nominal dividend per share

(source: Prescott, E. C. and Mehra, R. “The Equity Premium: A Puzzle,” Journal of Monetary Eco-
nomics, 15 March, 1985, pp. 145–161). The data are annual observations over the period 1889–1979.
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FIGURE 13.8 Exchange rates.
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FIGURE 13.9 Change in dividends (DV) and share price (SP).

The data file is called equity. Estimate a first-order VAR for SP and DV by applying least squares to

each equation:

SPt = β10 + β11SPt−1 + β12DVt−1 + vs
t

DVt = β20 + β21SPt−1 + β22DVt−1 + vd
t

Estimate an ARDL for each equation:

SPt = α10 + α11SPt−1 + α12DVt−1 + α13DVt + es
t

DVt = α20 + α21SPt−1 + α22DVt−1 + α23SPt + ed
t
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Compare the two sets of results and note the importance of the contemporaneous endogenous variable

(SP, DV) in each equation.

a. Explain why least squares estimation of the VAR model with lagged variables on the right-hand

side yields consistent estimates.

b. Explain why least squares estimation of the model with lagged and contemporaneous variables

on the right-hand side yields inconsistent estimates. (You might like to refer to the material in

Chapter 11.)

c. What do you infer about the role of dividends in the determination of share prices?

13.14 The file gfc contains data about economic activity in two major economies: the United States and the

Euro Area (the group of countries in Europe where the Euro currency is the legal tender). Specifically,

the data are the logs of their GDP, standardized so that the value of GDP is equal to 100 in 2000. The

levels and the change in economic activity are shown in Figure 13.10(a) and (b). The sample period

is from 1995Q1 to 2009Q4 and includes the global financial crisis that began in September 2007.
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FIGURE 13.10 Logs of GDP (a) and change in logs of GDP (b).

a. Based on a visual inspection of the data, what would you infer about the interactions between the

GDPs in the two economies?

b. Do the economies have a long-run relationship? Specify the econometric model and estimate the

model. Plot the residuals and comment on their properties.

c. Do the economies have a short-run relationship? Specify the econometric model and estimate the

model. Plot the residuals and comment on their properties.

13.15 The file precious contains monthly data on the prices of gold and silver (in logs) for the period 1970M1

to 2014M2.

a. Plot the two series and comment on the graph. Do the two prices appear to be moving together?

b. Use a series of hypothesis tests to decide on predictive models for the price of silver and the price

of gold.

Appendix 13A The Identification Problem3

A bivariate dynamic system with contemporaneous interactions (also known as a structural

model) is written as

yt + β1xt = α1yt−1 + α2xt−1 + ey
t

xt + β2yt = α3yt−1 + α4xt−1 + ex
t

............................................................................................................................................

3This appendix requires a basic understanding of matrix notation.
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which can be more conveniently expressed in matrix form as

[
1 β1

β2 1

] [
yt
xt

]

=
[
α1 α2

α3 α4

] [
yt−1

xt−1

]

+
[

ey
t

ex
t

]

or rewritten in symbolic form as BYt = AYt−1 + Et, where

Yt =
[

yt
xt

]

B =
[

1 β1

β2 1

]

A =
[
α1 α2

α3 α4

]

Et =
[

ey
t

ex
t

]

A VAR representation (also known as reduced-form model) is written as

yt = δ1yt−1 + δ2xt−1 + vy
t

xt = δ3yt−1 + δ4xt−1 + vx
t

or in matrix form as: Yt = CYt−1 + Vt, where

C =
[
δ1 δ2

δ3 δ4

]

Vt =
[

vy
t

vx
t

]

Clearly, there is a relationship between (13.A.1) and (13.A.2): C = B−1A and Vt = B−1Et.

The special case considered in the chapter assumes that there are no contemporaneous inter-

actions
(
β1 = β2 = 0

)
, making B an identity matrix. There is no identification problem in this

case because the VAR residuals can be unambiguously “identified” as shocks to y or as shocks

to x: vy = ey, vx = ex. The generation and interpretation of the impulse responses and variance

decompositions are unambiguous.

In general, however, B is not an identity matrix, making vy and vx weighted averages of ey

and ex. In this general case, impulse responses and variance decompositions based on vy and vx are

not meaningful or useful because we cannot be certain about the source of the shocks. A number

of methods exist for “identifying” the structural model from its reduced form.
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CHAPTER 14

Time-Varying Volatility
and ARCH Models

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain the difference between a constant and a

time-varying variance of the error term.

2. Explain the term ‘‘conditionally normal.’’

3. Perform a test for ARCH effects.

4. Estimate an ARCH model.

5. Forecast volatility.

6. Explain the difference between ARCH and GARCH

specifications.

7. Explain the distinctive features of a T-GARCH

model and a GARCH-in-mean model.

K E Y W O R D S

ARCH

ARCH-in-mean

conditionally normal

GARCH

GARCH-in-mean

T-ARCH and T-GARCH

time-varying variance

In Chapter 12, our focus was on time-varying mean processes and macroeconomic time series.

We were concerned with stationary and nonstationary variables, and, in particular, macroe-

conomic variables like gross domestic product (GDP), inflation, and interest rates. The non-

stationary nature of the variables implied that they had means that change over time. In this

chapter, we are concerned with stationary series, but with conditional variances that change

over time. The model we focus on is called the autoregressive conditional heteroskedastic

(ARCH) model.

Nobel Prize winner Robert Engle’s original work on ARCH was concerned with the volatil-

ity of inflation. However, it was applications of the ARCH model to financial time series that

established and consolidated the significance of his contribution. For this reason, the examples

used in this chapter will be based on financial time series. As we will see, financial time series

have characteristics that are well represented by models with dynamic variances. The particular

aims of this chapter are to discuss the modeling of dynamic variances using the ARCH class of

models of volatility, the estimation of these models, and their use in forecasting.

614
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14.1 The ARCH Model
ARCH stands for autoregressive conditional heteroskedasticity. We have covered the concepts

of autoregressive and heteroskedastic errors in Chapters 9 and 8, respectively, so let us begin

with a discussion of the concepts of conditional and unconditional means and variances of the

error term.

Consider a model with an AR(1) error term

yt = ϕ + et (14.1a)

et = ρet−1 + vt, |ρ| < 1 (14.1b)

vt ∼ N
(
0, σ2

v
)

(14.1c)

For convenience of exposition, first perform some successive substitution to obtain et as the

sum of an infinite series of the error term vt. To do this, note that if et = ρet−1 + vt, then

et−1 = ρet−2 + vt−1 and et−2 = ρet−3 + vt−2, and so on. Hence et = vt + ρ2vt−2 + · · · + ρte0 where

the final term ρte0 is negligible.

The unconditional mean of the error is

E
[
et
]
= E

[
vt + ρvt−1 + ρ2vt−2 + · · ·

]
= 0

because E
[
vt−j

]
= 0 for all j, whereas the conditional mean for the error, conditional on infor-

mation prior to time t, is

E
[
et
|
|It−1

]
= E

[
ρet−1

|
|It−1

]
+ E

[
vt
]
= ρet−1

The information set at time t − 1, It−1, includes knowing ρet−1. Put simply, “unconditional”

describes the situation when you have no information, whereas conditional describes the situation

when you have information, up to a certain point in time.

The unconditional variance of the error is

E
[
et − 0

]2 = E
[
vt + ρvt−1 + ρ2vt−2 + · · ·

]2

= E
[
v2

t + ρ
2v2

t−1
+ ρ4v2

t−2
+ · · ·

]

= σv
2
[
1 + ρ2 + ρ4 + · · ·

]
=

σv
2

1 − ρ2

because E
[
vt−jvt−i

]
= σ2

v when i = j; E
[
vt−jvt−i

]
= 0 when i ≠ j and the sum of a geometric series

[
1 + ρ2 + ρ4 + · · ·

]
is 1∕

(
1 − ρ2

)
. The conditional variance for the error is

E
[(

et − ρet−1

)2|
|
|
It−1

]

= E
[
v2

t
|
|It−1

]
= σ2

v

Now notice, for this model, that the conditional mean of the error varies over time, while the

conditional variance does not. Suppose that instead of a conditional mean that changes over time,

we have a conditional variance that changes over time. To introduce this modification, consider

a variant of the above model

yt = β0 + et (14.2a)

et|It−1 ∼ N
(
0, ht

)
(14.2b)

ht = α0 + α1e2
t−1

, α0 > 0, 0 ≤ α1 < 1 (14.2c)

Equations (14.2b and 14.2c) describe the ARCH class of models. The second equation (14.2b)

says that the error term is conditionally normal et|It−1 ∼ N
(
0, ht

)
where It−1 represents the infor-

mation available at time t − 1 with mean 0 and time-varying variance, denoted as ht, following
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popular terminology. The third equation (14.2c) models ht as a function of a constant term and

the lagged error squared e2
t−1

.

The name ARCH conveys the fact that we are working with time-varying variances

(heteroskedasticity) that depend on (are conditional on) lagged effects (autocorrelation). This

particular example is an ARCH(1) model since the time-varying variance ht is a function of

a constant term
(
α0

)
plus a term lagged once, the square of the error in the previous period

(
α1e2

t−1

)
. The coefficients, α0 and α1, have to be positive to ensure a positive variance. The

coefficient α1 must be less than 1, or ht will continue to increase over time, eventually exploding.

Conditional normality means that the normal distribution is a function of known information

at time t − 1; i.e., when t = 2, e2|I1 ∼ N
(
0, α0 + α1e2

1

)
and when t = 3, e3|I2 ∼ N

(
0, α0 + α1e2

2

)
,

and so on. In this particular case, conditioning on It−1 is equivalent to conditioning on the square

of the error in the previous period e2
t−1

.

Note that while the conditional distribution of the error et is assumed to be normal, the uncon-

ditional distribution of the error et will not be normal. This is not an inconsequential consideration

given that a lot of real-world data appear to be drawn from non-normal distributions.

We have noted that, conditional on e2
t−1

, the mean and variance of the error term et are zero

and ht, respectively. To find the mean and variance of the unconditional distribution of et, we note

that, conditional on e2
t−1

, the standardized errors are standard normal, that is,

(
et
√

ht

|
|
|
|
|
|

It−1

)

= zt ∼ N(0, 1)

Because this distribution does not depend on e2
t−1

, it follows that the unconditional distribution of

zt =
(

et
/√

ht

)

is also N(0, 1), and that zt and e2
t−1

are independent. Thus, we can write

E
(
et
)
= E

(
zt
)
E
(√

α0 + α1e2
t−1

)

and

E
(
e2

t
)
= E

(
z2

t
)
E
(
α0 + α1e2

t−1

)
= α0 + α1E

(
e2

t−1

)

From the first of these equations, we get E
(
et
)
= 0 because E

(
zt
)
= 0. From the second of the

equations, we get var
(
e2

t
)
= E

(
e2

t
)
= α0

/(
1 − α1

)
because E

(
z2

t
)
= 1 and E

(
e2

t
)
= E

(
e2

t−1

)
.

The ARCH model has become a very important econometric model because it is able to

capture stylized features of real-world volatility. Furthermore, in the context of the ARCH(1)

model, knowing the squared error in the previous period e2
t−1

improves our knowledge about the

likely magnitude of the variance in period t. This is useful for situations when it is important to

understand risk, as measured by the volatility of the variable.

14.2 Time-Varying Volatility
The ARCH model has become a popular one because its variance specification can capture com-

monly observed features of the time series of financial variables; in particular, it is useful for

modeling volatility and especially changes in volatility over time. To appreciate what we mean

by volatility and time-varying volatility, and how it relates to the ARCH model, let us look at

some stylized facts about the behavior of financial variables—for example, the returns to stock

price indices (also known as share price indices).
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E X A M P L E 14.1 Characteristics of Financial Variables

Figure 14.1 shows the time series of the monthly returns to

a number of stock prices; namely, the U.S. Nasdaq, the Aus-

tralian All Ordinaries, the Japanese Nikkei, and the UK FTSE

over the period 1988M1 to 2015M12 (data file returns5). The

values of these series change rapidly from period to period

in an apparently unpredictable manner; we say the series are

volatile. Furthermore, there are periods when large changes

are followed by further large changes and periods when small

changes are followed by further small changes. In this case

the series are said to display time-varying volatility as well

as “clustering” of changes.

Figure 14.2 shows the histograms of the returns. All

returns display non-normal properties. We can see this more

clearly if we draw normal distributions (using the respective
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FIGURE 14.1 Time series of returns to stock indices.

sample means and sample variances) on top of these

histograms. Note that there are more observations around the

mean and in the tails. Distributions with these properties—

more peaked around the mean and relatively fat tails—are

said to be leptokurtic.

Note that the assumption that the conditional distribu-

tion for
(
yt|It−1

)
is normal, an assumption that we made in

(14.2b), does not necessarily imply that the unconditional

distribution for yt is normal. When we collect empirical

observations on yt into a histogram, we are constructing an

estimate of the unconditional distribution for yt. What we

have observed is that the unconditional distribution for yt is

leptokurtic.
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FIGURE 14.2 Histograms of returns to stock indices.

E X A M P L E 14.2 Simulating Time-Varying Volatility

To illustrate how the ARCH model can be used to capture

changing volatility and the leptokurtic nature of the distribu-

tion for yt, we generate some simulated data for two models.

In both cases we set β0 = 0 so that yt = et. The left panel in

Figure 14.3 illustrates the case when α0 = 1, α1 = 0. These

values imply var
(
yt|It−1

)
= ht = 1 . This variance is constant,

and not time varying, because α1 = 0. The right panel in

Figure 14.3 illustrates the case when α0 = 1, α1 = 0.8, the

case of a time-varying variance given by var
(
yt|It−1

)
= ht =

α0 + α1e2
t−1
= 1 + 0.8e2

t−1
. Note that relative to the series in

the left panel, volatility in the right panel is not constant;

rather, it changes over time and it clusters—there are periods

of small changes (e.g., around observation 100) and periods

of big changes (around observation 175).

In Figure 14.4, we present histograms of yt for the two

cases. The top panel is the histogram for the constant vari-

ance case where
(
yt|It−1

)
and yt have the same distribution,

namely the noise process yt ∼ N(0, 1) because ht = 1. The

bottom panel is the histogram for the time-varying variance

case. We know that the conditional distribution for
(
yt|It−1

)
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is N
(
0, ht

)
. But what about the unconditional distribution for

yt? Again, we can check for normality by superimposing a

normal distribution on top of the histogram. In this case, to

allow for a meaningful comparison with the histogram in the

top panel, we plot the standardized observations of yt. That

is, for each observation we subtract the sample mean and

divide by the sample standard deviation. This transforma-

tion ensures that the distribution will have a zero mean and
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FIGURE 14.3 Simulated examples of constant and time-varying variances.
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FIGURE 14.4 Frequency distributions of the simulated models.

variance one, but it preserves the shape of the distribution.

Comparing the two panels, we note that the second distri-

bution has higher frequencies around the mean (zero) and

higher frequencies in the tails (outside ± 3). This feature of

time series with ARCH errors—the unconditional distribu-

tion of yt is non-normal—is consistent with what we observed

in the stock return series.
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Thus, the ARCH model is intuitively appealing because it seems sensible to explain volatility as

a function of the errors et. These errors are often called “shocks” or “news” by financial analysts.

They represent the unexpected! According to the ARCH model, the larger the shock, the greater

the volatility in the series. In addition, this model captures volatility clustering, as big changes in

et are fed into further big changes in ht via the lagged effect et−1. The simulations show how well

the ARCH model mimics the behavior of financial time series shown in Figure 14.1, including

their non-normal distributions.

14.3 Testing, Estimating, and Forecasting
A Lagrange multiplier (LM) test is often used to test for the presence of ARCH effects. To

perform this test, first estimate the mean equation, which can be a regression of the variable

on a constant (like 14.1) or may include other variables. Then save the estimated residuals êt
and obtain their squares ê2

t . To test for first-order ARCH, regress ê2
t on the squared residuals

lagged ê2
t−1

,

ê2
t = γ0 + γ1ê2

t−1
+ vt (14.3)

where vt is a random term. The null and alternative hypotheses are

H0∶γ1 = 0 H1∶γ1 ≠ 0

If there are no ARCH effects, then γ1 = 0 and the fit of (14.3) will be poor, and the equation R2

will be low. If there are ARCH effects, we expect the magnitude of ê2
t to depend on its lagged

values, and the R2 will be relatively high. The LM test statistic is (T − q)R2 where T is the sample

size, q is the number of ê2
t−j terms on the right-hand side of (14.3), and R2 is the coefficient of

determination. If the null hypothesis is true, then the test statistic (T − q)R2 is distributed (in large

samples) as χ2
(q), where q is the order of lag, and T − q is the number of complete observations;

in this case, q = 1. If (T − q)R2 ≥ χ2
(1−α, q), then we reject the null hypothesis that γ1 = 0 and

conclude that ARCH effects are present.

E X A M P L E 14.3 Testing for ARCH in BrightenYourDay (BYD) Lighting

To illustrate the test, consider the returns from buying shares

in the hypothetical company BYD Lighting. The time series

and histogram of the returns are shown in Figure 14.5 (data

file byd). The time series shows evidence of time-varying

volatility and clustering, and the unconditional distribution

is non-normal.

To perform the test for ARCH effects, first estimate a

mean equation that in this example is rt = β0 + et, where rt
is the monthly return on shares of BYD. Second, retrieve the

estimated residuals. Third, estimate (14.3). The results for the

ARCH test are

ê2

t = 0.908 + 0.353ê2

t−1
R2 = 0.124

(t) (8.409)
The t-statistic suggests a significant first-order coeffi-

cient. The sample size is 500, giving an LM test value of

(T − q)R2 = 61.876. Comparing the computed test value to

the 5% critical value of a χ2
(1) distribution

(

χ2
(0.95,1) = 3.841

)

leads to the rejection of the null hypothesis. In other words,

the residuals show the presence of ARCH(1) effects.
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FIGURE 14.5 Time series and histogram of returns for BYD lighting.

E X A M P L E 14.4 ARCH Model Estimates for BrightenYourDay (BYD) Lighting

ARCH models are estimated by the maximum likelihood

method. Estimation details are beyond the scope of this book,

but the maximum likelihood method (see Appendix C.8) is

programmed in most econometric software.

Equation (14.4) shows the results from estimating an

ARCH(1) model applied to the monthly returns from buying

shares in BrightenYourDay Lighting. The estimated mean of

the series is described in (14.4a), while the estimated vari-

ance is given in (14.4b).

r̂t = β̂0 = 1.063 (14.4a)

ĥt = α̂0 + α̂1ê2

t−1
= 0.642 + 0.569ê2

t−1

(t) (5.536) (14.4b)

The t-statistic of the first-order coefficient (5.536) suggests

a significant ARCH(1) coefficient. Recall that one of the

requirements of the ARCH model is that α0 > 0 and α1 > 0,

so that the implied variances are positive. Note that the

estimated coefficients α̂0 and α̂1 satisfy this condition.

E X A M P L E 14.5 Forecasting BrightenYourDay (BYD) Volatility

Once we have estimated the model, we can use it to fore-

cast next period’s return rt+1 and the conditional volatility

ht+1. When one invests in shares (or stocks), it is important to

choose them not just on the basis of their mean returns, but

also on the basis of their risk. Volatility gives us a measure

of their risk.
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For our case study of investing in BYD Lighting, the

forecast return and volatility are

r̂t+1 = β̂0 = 1.063 (14.5a)

ĥt+1 = α̂0 + α̂1

(

rt − β̂0

)2

= 0.642 + 0.569
(
rt − 1.063

)2

(14.5b)

Equation (14.5a) gives the estimated return that—because

it does not change over time—is both the conditional and

unconditional mean return. The estimated error in period t,
given by êt = rt − r̂t, can then be used to obtain the esti-

mated conditional variance (14.5b). The time series of the

conditional variance does change over time and is shown

in Figure 14.6. Note how the conditional variance around

observation 370 coincides with the period of large changes

in returns as shown in Figure 14.5.
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FIGURE 14.6 Plot of conditional variance.

14.4 Extensions
The ARCH(1) model can be extended in a number of ways. One obvious extension is to allow

for more lags. In general, an ARCH(q) model that includes lags ê2
t−1

,… , ê2
t−q has a conditional

variance function that is given by

ht = α0 + α1e2
t−1
+ α2e2

t−2
· · · + αqe2

t−q (14.6)

In this case the variance or volatility in a given period depends on the magnitudes of the squared

errors in the past q periods. Testing, estimating, and forecasting, are natural extensions of the case

with one lag.

14.4.1 The GARCH Model—Generalized ARCH
One of the shortcomings of an ARCH(q) model is that there are q + 1 parameters to estimate.

If q is a large number, we may lose accuracy in the estimation. The generalized ARCH model, or

GARCH, is an alternative way to capture long lagged effects with fewer parameters. It is a special

generalization of the ARCH model and it can be derived as follows. First, consider (14.6) but write

it as

ht = α0 + α1e2
t−1
+ β1α1e2

t−2
+ β2

1
α1e2

t−3
+ · · ·

In other words, we have imposed a geometric lag structure on the lagged coefficients of the form

αs = α1βs−1
1

. Next, add and subtract β1α0 and rearrange terms as follows:

ht =
(
α0 − β1α0

)
+ α1e2

t−1
+ β1

(
α0 + α1e2

t−2
+ β1α1e2

t−3
+ · · ·

)

Then, since ht−1 = α0 + α1e2
t−2
+ β1α1e2

t−3
+ β2

1
α1e2

t−4
+ · · ·, we may simplify to

ht = δ + α1e2
t−1
+ β1ht−1 (14.7)

where δ =
(
α0 − β1α0

)
. This generalized ARCH model is denoted as GARCH(1, 1). It can be

viewed as a special case of the more general GARCH (p, q) model, where p is the number of

lagged h terms and q is the number of lagged e2 terms. We also note that we need α1 + β1 < 1 for

stationarity; if α1 + β1 ≥ 1 we have a so-called “integrated GARCH” process, or IGARCH.

The GARCH(1, 1) model is a very popular specification because it fits many data series well.

It tells us that the volatility changes with lagged shocks
(
e2

t−1

)
but there is also momentum in
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the system working via ht−1. One reason why this model is so popular is that it can capture

long lags in the shocks with only a few parameters. A GARCH(1, 1) model with three param-

eters
(
δ, α1, and β1

)
can capture similar effects to an ARCH(q) model requiring the estimation of

(q + 1) parameters, where q is large, say q ≥ 6.

E X A M P L E 14.6 A GARCH Model for BrightenYourDay

To illustrate the GARCH(1, 1) specification, consider again

the returns to our shares in BYD Lighting, which we

re-estimate (by maximum likelihood) under the new model.

The results are

r̂t = 1.049

ĥt = 0.401 + 0.492 ê2

t−1
+ 0.238 ĥt−1

(t) (4.834) (2.136)
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(a) GARCH(1, 1): E(rt) = 1.049 (b) GARCH(1, 1):
ht = 0.401 + 0.492e2

t–1 + 0.238ht–1

FIGURE 14.7 Estimated mean and variance of GARCH model.

The significance of the coefficient in front of ĥt−1 suggests

that the GARCH(1, 1) model is better than the ARCH(1)

results shown in (14.4). Plots of the mean equation and the

time-varying variance are shown in Figures 14.7(a) and (b),

respectively.

14.4.2 Allowing for an Asymmetric Effect

A standard ARCH model treats bad “news”
(
negative et−1 < 0

)
and good “news”

(
positive

et−1 > 0
)

symmetrically, that is, the effect on the volatility ht is the same
(
α1e2

t−1

)
. However, the

effects of good and bad news may have asymmetric effects on volatility. In general, when negative

news hits a financial market, asset prices tend to enter a turbulent phase and volatility increases,

but with positive news volatility tends to be small and the market enters a period of tranquility.

The threshold ARCH model, or T-ARCH, is one example where positive and negative news

are treated asymmetrically. In the T-GARCH version of the model, the specification of the con-

ditional variance is

ht = δ + α1e2
t−1
+ γdt−1e2

t−1
+ β1ht−1

dt =

{
1 et < 0 (bad news)

0 et ≥ 0 (good news)
(14.8)

where γ is known as the asymmetry or leverage term. When γ = 0, the model collapses to the

standard GARCH form. Otherwise, when the shock is positive (i.e., good news) the effect on

volatility is α1, but when the news is negative (i.e., bad news) the effect on volatility is α1 + γ.
Hence, if γ is significant and positive, negative shocks have a larger effect on ht than positive

shocks.
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E X A M P L E 14.7 A T-GARCH Model for BYD

The returns to our shares in BYD Lighting were re-estimated

with a T-GARCH(1,1) specification:

r̂t = 0.994

ĥt = 0.356 + 0.263ê2

t−1
+ 0.492dt−1ê2

t−1
+ 0.287ĥt−1

(t) (3.267) (2.405) (2.488)

These results show that when the market observes good news(
positive et

)
, the contribution of e2

t to volatility ht+1 is by
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(a) T-GARCH(1, 1): E(rt) = 0.994 (b) T-GARCH(1, 1):
 ht = 0.356 + (0.263 + 0.492d    )e2  + 0.287ht–1t–1 t–1

FIGURE 14.8 Estimated mean and variance of T-GARCH model.

a factor 0.263, whereas when the market observes bad news(
negative et

)
, the contribution of e2

t to volatility ht+1 is by

a factor (0.263 + 0.492). Overall, negative shocks create

greater volatility in financial markets. The mean and variance

are displayed in Figures 14.8(a) and (b). Note that, relative

to Figure 14.7(b), the T-GARCH model has highlighted

the period around observation 200 as another period of

turbulence.

14.4.3 GARCH-in-Mean and Time-Varying Risk Premium
Another popular extension of the GARCH model is the GARCH-in-mean model. The positive

relationship between risk (often measured by volatility) and return is one of the basic tenets of

financial economics. As risk increases, so does the mean return. Intuitively, the return to risky

assets tends to be higher than the return to safe assets (low variation in returns) to compen-

sate an investor for taking on the risk of buying the volatile share. However, while we have

estimated the mean equation to model returns, and have estimated a GARCH model to cap-

ture time-varying volatility, we have not used the risk to explain returns. This is the aim of the

GARCH-in-mean models.

The equations of a GARCH-in-mean model are shown below:

yt = β0 + θht + et (14.9a)

et|It−1 ∼ N
(
0, ht

)
(14.9b)

ht = δ + α1e2
t−1
+ β1ht−1, δ > 0, 0 ≤ α1 < 1, 0 ≤ β1 < 1 (14.9c)

The first equation is the mean equation; it now shows the effect of the conditional variance on the

dependent variable. In particular, note that the model postulates that the conditional variance ht
affects yt by a factor θ. The other two equations are as before.
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E X A M P L E 14.8 A GARCH-in-Mean Model for BYD

The returns to shares in BYD Lighting were reestimated as a

GARCH-in-mean model:

r̂t = 0.818 + 0.196ht

(t) (2.915)
ĥt = 0.370 + 0.295ê2

t−1
+ 0.321dt−1ê2

t−1
+ 0.278ĥt−1

(t) (3.426) (1.979) (2.678)
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(a) GARCH-in-mean: E(rt) = 0.818 + 0.196ht (b) GARCH-in-mean:
 ht = 0.370 + (0.295 + 0.321dt–1)e2   + 0.278ht–1 t–1

FIGURE 14.9 Estimated mean and variance of GARCH-in-mean model.

The results show that as volatility increases, the returns

correspondingly increase by a factor of 0.196. In other words,

this result supports the usual view in financial markets—high

risk, high return. The GARCH-in-mean model is shown in

Figures 14.9(a) and (b). Note that the expected mean return

is no longer a constant value, but rather has high values

(e.g., around observation 200) that coincide with higher

conditional variances.

One last point before we leave this section. The first equation of the GARCH-in-mean model

is sometimes written as a function of the time-varying standard deviation
√

ht, that is,

yt = β0 + θ
√

ht + et. This is because both measures—variance and standard deviation—are used

by financial analysts to measure risk. There are no hard-and-fast rules about which measure to

use. Exercise 14.8 illustrates the case when we use
√

ht. A standard t-test of significance is often

used to decide which is the more suitable measure.

14.4.4 Other Developments
The GARCH, T-GARCH, and GARCH-in-mean models are three important extensions of the

original ARCH concept developed by Engle in 1982. There have also been numerous other

variations, developed to handle complexities noted in the data, especially in high frequency

financial data. One variation, exponential GARCH (EGARCH), has stood the test of time.

This model is

ln
(
ht
)
= δ + β1 ln

(
ht−1

)
+ α

|
|
|
|
|
|

et−1
√

ht−1

|
|
|
|
|
|

+ γ

(
et−1
√

ht−1

)

where
(

et−1

/√
ht−1

)

are the standardized residuals. The model uses a log specification, which

ensures the estimated variance remains positive. It also includes two standardized residual terms,

with one of them in absolute form to facilitate the testing of the leverage effect. The leverage effect
refers to the generally observed negative correlation between an asset return and its volatility

changes. One potential explanation for this observation is that bad news has a bigger effect on
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variance than good news. If γ ≠ 0, the effects of good/bad news are asymmetric; if γ < 0, negative

shocks have larger effects.

Another significant development is to allow the conditional distribution of the error term to

be non-normal. Because empirical distributions of financial returns generally exhibit fat tails and

clustering around zero, the t-distribution has become a popular alternative to the assumption of

normality. Also, regressors have been introduced in the variance equation to allow volatility to

depend on exogenous or predetermined variables. Shift (dummy) variables are especially popular

and have been used to allow for changes in political regimes.

14.5 Exercises

14.5.1 Problems

14.1 The ARCH model is sometimes presented in the following multiplicative form:

yt = β0 + et

et = zt
√

ht, zt ∼ N(0, 1)

ht = α0 + α1e2
t−1

, α0 > 0, 0 ≤ α1 < 1

This form describes the distribution of the standardized residuals et
/√

ht as standard normal zt.

However, the properties of et are not altered.

a. Show that the conditional mean E
(
et|It−1

)
= 0.

b. Show that the conditional variance E
(
e2

t |It−1

)
= ht.

c. Show that et|It−1 ∼ N
(
0, ht

)
.

14.2 The equations of an ARCH-in-mean model are shown below:

yt = β0 + θht + et

et|It−1 ∼ N
(
0, ht

)

ht = δ + α1e2
t−1

, δ > 0, 0 ≤ α1 < 1

Let yt represent the return from a financial asset and let et represent “news” in the financial market.

Now use the third equation to substitute out ht in the first equation, to express the return as

yt = β0 + θ
(
δ + α1e2

t−1

)
+ et

a. If θ is zero, what is Et
(
yt+1

)
, the conditional mean of yt+1? In other words, what do you expect

next period’s return to be, given information today?

b. If θ is not zero, what is Et
(
yt+1

)
? What extra information have you used here to forecast the return?

14.3 Consider the following T-ARCH model:

ht = δ + α1e2
t−1
+ γdt−1e2

t−1

dt =
{

1 et < 0 (bad news)
0 et ≥ 0 (good news)

a. If γ is zero, what are the values of ht when et−1 = −1, when et−1 = 0, and when et−1 = 1?

b. If γ is not zero, what are the values of ht when et−1 = −1, when et−1 = 0, and when et−1 = 1? What

is the key difference between the case γ = 0 and γ ≠ 0?

14.4 The GARCH(1, 1) model shown below can also be reexpressed as an ARCH(q) model, where q is

a large number (in fact, infinity). Derive the ARCH form of a GARCH model using the method of

recursive substitution.

ht = δ + α1e2
t−1
+ β1ht−1
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14.5 a. Let It−1 =
{

et−1, et−2,…
}

. Use the law of iterated iterations to show that E
(
et|It−1

)
= 0 implies

E
(
et
)
= 0.

b. Consider the variance model ht = E
(
e2

t |It−1

)
= α0 + α1e2

t−1
. Use the law of iterated iterations to

show that, for 0 < α1 < 1, E
(
e2

t

)
= α0∕

(
1 − α1

)
.

c. Consider the variance model ht = E
(
e2

t |It−1

)
= δ + α1e2

t−1
+ β1ht−1. Use the law of iterated itera-

tions to show that for 0 < α1 + β1 < 1, E
(
e2

t

)
= δ∕

(
1 − α1− β1

)
.

14.6 The estimates for the five models in Table 14.1 were obtained using monthly observations on returns

to U.S. Nasdaq stock prices from 1985M1 to 2015M12. Use each of the models to estimate the mean

and variance of returns for 2016M1.

T A B L E 14.1 Estimates from ARCH Models for U.S. Nasdaq Returns

Mean function

Constant 1.4567 1.1789 1.098 1.078 0.931

ht 0.006

Variance function

Constant 23.35 19.35 2.076 2.351 2.172

e2
t−1

0.4694 0.3429 0.1329 0.124 0.136

e2
t−2

0.1973

ht−1 0.8147 0.8006 0.8089

dt−1e2
t−1

0.0293

End-of-sample estimates

ê2015M12 −3.4388 −3.1610 −3.0803 −3.0605 −3.0760

ê2015M11 −0.3700 −0.0922 −0.0115 0.0083 −0.0296

ĥ2015M12 23.42 32.64 27.10 27.39 27.27

14.5.2 Computer Exercises

14.7 The data file share contains time-series data on the Straits Times share price index of Singapore.

a. Compute the time series of returns using the formula rt = 100 ln(yt∕yt−1), where yt is the share

price index. Generate the correlogram of returns up to at least order 12, since the frequency of the

data is monthly. Is there evidence of autocorrelation? If so, it indicates the presence of significant

lagged mean effects.

b. Square the returns and generate the correlogram of squared returns. Is there evidence of significant

lagged effects? If so, it indicates the presence of significant lagged variance effects.

14.8 The data file euro contains 204 monthly observations on the returns to the Euro share price index for

the period 1988M1 to 2004M12. A plot of the returns data is shown in Figure 14.10(a), together with

its histogram in Figure 14.10(b).

a. What do you notice about the volatility of returns? Identify the periods of big changes and the

periods of small changes.

b. Is the distribution of returns normal? Is this the unconditional, or conditional, distribution?

c. Perform a LM test for the presence of first-order ARCH and check that you obtain the following

results:

ê2

t = 20.509 + 0.237ê2

t−1
(T − 1)R2 = 11.431

(t) (3.463)

Is there evidence of ARCH effects?
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d. Estimate an ARCH(1) model and check that you obtain the following results:

r̂t = 0.879 ĥt = 20.604 + 0.230ê2

t−1

(t) (2.383) (10.968) (2.198)

Interpret the results.

e. A plot of the conditional variance is shown in Figure 14.10(c). Do the periods of high and low

conditional variance coincide with the periods of big and small changes in returns?

(b) Histogram of returns
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FIGURE 14.10 Graphs for Exercise 14.8.
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14.9 Monthly changes in the $US/$AUS exchange rate St for the period 1985M7 to 2010M6 are stored in

the file exrate5.

a. Plot the time series of the changes and their histogram. Are there periods of high volatility and

periods of low volatility? Does the unconditional distribution of the changes appear to be normally

distributed?

b. Estimate the GARCH(1, 1) model St = β0 + et,
(
et|It−1

)
∼ N

(
0, ht

)
and ht = δ + α1e2

t−1
+ β1ht−1.

Comment on the results.

c. Estimate the conditional variance ht for each observation and create the series vt = êt

/√

ĥt where

êt are the residuals êt = St − β̂0. Create a histogram for the vt. Do they appear to be normally

distributed?

d. Forecast the conditional mean and variance for 2010M7 and 2010M8.

14.10 Figure 14.11 shows the weekly returns to the U.S. S&P 500 for the sample period January 1990 to

December 2004 (data file sp).
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FIGURE 14.11 Graphs for Exercise 14.10.

a. Estimate an ARCH(1) model and check that you obtain the following results:

r̂t = 0.197 ĥt = 3.442 + 0.253ê2

t−1

(t) (2.899) (22.436) (5.850)

What is the value of the conditional variance when the last period’s shock was positive,

et−1 = +1? What about when the last period’s shock was negative, et−1 = −1?
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b. Estimate a T-ARCH model and check that you obtain the following results:

r̂t = 0.147 ĥt = 3.437 +
(
0.123 + 0.268dt−1

)
ê2

t−1

(t) (2.049) (22.963) (2.330) (2.944)

c. What is the value of the conditional variance when the last period’s shock was positive,

et−1 = +1? When the last period’s shock was negative, et−1 = −1?

d. Is the asymmetric T-ARCH model better than the symmetric ARCH model in a financial econo-

metric sense? [Hint: Look at the statistical tests for significance.] Is the asymmetric T-ARCH

model better than the symmetric ARCH model in a financial economic sense? [Hint: Look at the

implications of the results.]

14.11 Figure 14.12 shows the daily term premiums between a 180-day bank bill rate and a 90-day bank rate

for the period July 1996 to December 1998 (data file term). Preliminary unit root tests confirm that

the series may be treated as a stationary series, although the value of ρ, the autocorrelation coefficient,

is quite high (about 0.9).

–16

–12

–8

–4

0

4

8

12

16

20

24

1997M01 1997M07 1998M01 1998M07

Observed
term premium

–3.2

–2.8

–2.4

–2.0

–1.6

–1.2

–0.8

–0.4

0.0

0.4

0.8

1997M01 1997M07 1998M01 1998M07

Estimated mean
of term premium

rt = –2.272ˆ

rt = –3.376 + 0.211  htˆ

FIGURE 14.12 Graphs for Exercise 14.11.
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a. Estimate a GARCH model and check that you obtain the following results:

r̂t = −2.272 ĥt = 1.729 + 0.719ê2

t−1
+ 0.224ĥt−1

(t) (6.271) (6.282) (3.993)

b. Estimate a GARCH-in-mean model and check that you obtain the following results:

r̂t = −3.376 + 0.211
√

ht ĥt = 1.631 + 0.730ê2

t−1
+ 0.231ĥt−1

(t) (2.807) (5.333) (6.327) (4.171)

What is the contribution of volatility to the term premium?

c. Is the GARCH-in-mean model better than the GARCH model in a financial econometric sense?

[Hint: Look at the statistical tests for significance.] Is the GARCH-in-mean model better than the

GARCH model in a financial economic sense? [Hint: Look at the implications of the results, in

particular the behavior of the term premium.] A plot of the expected term premium estimated for

parts (a) and (b) is shown in Figure 14.12.

14.12 The data file gold contains 200 daily observations on the returns to shares in a company specializing

in gold bullion for the period December 13, 2005, to September 19, 2006.

a. Plot the returns data. What do you notice about the volatility of returns? Identify the periods of

big changes and the periods of small changes.

b. Generate the histogram of returns. Is the distribution of returns normal? Is this the unconditional

or conditional distribution?

c. Perform a LM test for the presence of first-order ARCH.

d. Estimate a GARCH(1, 1) model. Are the coefficients of the correct sign and magnitude?

e. How would you use the estimated GARCH(1, 1) model to improve your forecasts of returns?

14.13 The seminal paper about ARCH by Robert Engle was concerned with the variance of UK inflation.

The data file uk contains seasonally adjusted data on the UK consumer price index (UKCPI) for the

sample period 1957M6 to 2006M6.

a. Compute the monthly rate of inflation (y) for the sample period 1957M7 to 2006M6 using the

formula

yt = 100

[
UKCPIt − UKCPIt−1

UKCPIt−1

]

b. Estimate a T-GARCH-in-mean model and check that you obtain the following results:

ŷt = −0.407 + 1.983
√

ht

(t) (−2.862) (5.243)
ĥt = 0.022 +

(
0.211 − 0.221dt−1

)
e2

t−1
+ 0.782ĥt−1

(t) (4.697) (8.952)(−8.728) (27.677)

c. The negative asymmetric effect (−0.221) suggests that negative shocks (such as falls in prices)

reduce volatility in inflation. Is this a sensible result for inflation?

d. What does the positive in-mean effect (1.983) tell you about inflation in the UK and volatility in

prices?

14.14 The data file warner contains daily returns to holding shares in Time Warner Inc. The sample period

is from January 3, 2008 to December 31, 2008 (260 observations), and a graph of the returns appears

in Figure 14.13.

a. Estimate a GARCH(1, 1) model and an ARCH(5) model. Which model would you prefer, and

why?

b. What is the expected return next period? The expected volatility next period?

c. Use your preferred model to forecast next period’s return and next period’s volatility.

d. Do good news and bad news have the same effect on return? On volatility?
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FIGURE 14.13 Returns to shares in Time Warner.

14.15 Consider the quarterly rates of growth contained in data file gfc used in Exercise 13.14. A researcher

in the Euro Area (this is the group of countries in Europe where the Euro currency is the legal tender)

is interested in testing the proposition that growth in the Euro region is affected by its own history,

growth in the United States, and shocks to economic activity.

a. Specify and estimate an econometric model for the Euro Area based only on its own history and

where the expected effect of shocks on the expected quarterly rate of growth is zero.

b. Specify and estimate an econometric model for the Euro Area based only on its own history and

where shocks may come from distributions with zero mean, but time-varying variances.

c. Specify and estimate an econometric model for the Euro Area based on its own history, the history

of growth in the United States, and where the expected effect of shocks on the expected quarterly

rate of growth is zero.

d. Specify and estimate an econometric model for the Euro Area based on its own history and allow

shocks in the Euro Area to have an effect of zero on the quarterly rate of growth.

e. Specify and estimate an econometric model for the Euro Area based on its own history, the history

of growth in the United States, and where shocks in the Euro Area and in the United States have

an effect on the expected quarterly rate of growth.

14.16 The data file shanghai contains data on the daily returns to the Shanghai Stock Exchange Composite

Index from July 7, 1995 to May 5, 2015.

a. Plot the time series of returns and their histogram. For what observations is volatility the great-

est? Describe the shape of the distribution of returns. Does the Jarque–Bera test reject the null

hypothesis that returns are normally distributed?

b. Estimate the GARCH model

yt = β0 + et
(
et|It−1

)
∼ N

(
0, ht

)
ht = δ + α1e2

t−1
+ β1ht−1

Comment on the results. Plot the within-sample variance estimate ĥt. Have the variance estimates

captured the periods of high volatility noted in part (a)?

c. For the model estimated in part (b), compute the series zt = êt

/√

ĥt. Does a histogram for the zt

suggest the assumption zt ∼ N(0, 1) is valid? Does the Jarque–Bera test support this assumption?

d. When the normality assumption is violated, the ordinary standard errors are not valid. How-

ever, valid robust standard errors can be used.1 Re-estimate the model in part (b) using the

Bollerslev–Wooldridge robust standard errors. Does using these standard errors change any

conclusions are about the precision of estimation?

............................................................................................................................................................

1See Bollerslev, T. and Wooldridge, J. (1992), “Quasi-Maximum Likelihood Estimation and Inference in Dynamic

Models with Time Varying Covariances,” Econometric Reviews, 11, 143–172.
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e. Estimate the EGARCH model

yt = β0 + et
(
et|It−1

)
∼ N

(
0, ht

)
ln
(
ht
)
= δ + β1ln

(
ht−1

)
+ α

|
|
|
|
|
|

et−1
√

ht−1

|
|
|
|
|
|

+ γ

(
et−1
√

ht−1

)

Comment on the results. Plot the within-sample variance estimate ĥt. Have the variance estimates

captured the periods of high volatility noted in part (a)?

f. For the model estimated in part (e), compute the series zt = êt

/√

ĥt. Does a histogram for the zt

suggest the assumption zt ∼ N(0, 1) is valid? Does the Jarque–Bera test support this assumption?

g. Reestimate the model in part (e) using the Bollerslev–Wooldridge standard errors. Does using

these standard errors change any conclusions about the precision of estimation?

h. Find and compare estimates of E
(
yT+1|IT

)
and var

(
yT+1|IT

)
from the models in parts (b) and (e).

i. Using the model from part (b), and Bollerslev–Wooldridge variance and covariance estimates,

find 95% interval estimates for E
(
yT+1|IT

)
and var

(
yT+1|IT

)
.
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CHAPTER 15

Panel Data Models

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Explain how a data panel differs from either a

cross section or a time series of data.

2. Explain the different ways in which individual

heterogeneity can be modeled using panel data,

and the assumptions underlying each approach.

3. Explain how the fixed effects model allows for

differences in the parameter values for each

individual cross section in a data panel.

4. Compare and contrast the least squares dummy

variable estimator and the fixed effects

estimator.

5. Compare and contrast the fixed effects model and

the random effects model. Explain what leads us

to consider individual differences to be random.

6. Explain the error assumptions in the random

effects model, and what characteristic leads us

to consider generalized least squares estimation.

7. Describe the steps required to obtain

generalized least squares estimates for the

random effects estimator.

8. Explain the meaning of cluster-robust standard

errors, and describe how they can be used with

pooled least squares, fixed effects, and random

effects estimators.

9. Explain why endogeneity is a potential problem

in random effects models, and how it affects our

choice of estimator.

10. Test for the existence of fixed and/or random

effects, and use the Hausman test to assess

whether the random effects estimator is

inconsistent.

11. Explain how the Hausman–Taylor estimator can

be used to obtain consistent estimates of

coefficients of time-invariant variables in a

random effects model.

12. Use your software to estimate fixed effects

models and random effects models for panel

data.

K E Y W O R D S

Balanced panel

Cluster-robust standard errors

Deviations about the individual mean

Difference estimator

Endogeneity

Error components model

Fixed effects estimator

Fixed effects model

Hausman test

Hausman–Taylor estimator

Heterogeneity

Instrumental variables

Least squares dummy variable model

LM test

Pooled least squares

Pooled model

Random effects estimator

Random effects model

Time-invariant variables

Time-varying variables

Unbalanced panel

Within estimator

634
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A panel of data consists of a group of cross-sectional units (people, households, firms, states,

and countries) who are observed over time. We will often refer to such units as individuals, with

the term “individual” being used generically, even when the unit of interest is not a person. Let

us denote the number of cross-sectional units (individuals) by N, and number of time periods

in which we observe them as T . Panel data come in several different “flavors,” each of which

introduces new challenges and opportunities. Peter Kennedy1 describes the different types of

panel data sets as

• “Long and narrow,” with “long” describing the time dimension and “narrow” implying a

relatively small number of cross-sectional units

• “Short and wide,” indicating that there are many individuals observed over a relatively short

period of time

• “Long and wide,” indicating that both N and T are relatively large

A “long and narrow” panel may consist of data on several firms over a period of time. A classic

example is a data set analyzed by Grunfeld and used subsequently by many authors.2 These data

track investment in plant and equipment by N = 11 large firms for T = 20 years. This panel is

narrow because it consists of only N = 11 firms. It is relatively “long” because T > N.

Many microeconomic analyses are performed on panel data sets with thousands of individ-

uals who are followed through time. For example, the Panel Study of Income Dynamics (PSID)

has followed approximately 8,000 families since 1968.3 The U.S. Department of Labor conducts

National Longitudinal Surveys (NLS) such as NLSY79, “a nationally representative sample

of 12,686 young men and women who were 14–22 years old when they were first surveyed in

1979.4 These individuals were interviewed annually through 1994 and are currently interviewed

on a biennial basis.” Such data sets are “wide” and “short,” because N is much, much larger

than T . Using panel data sets of this kind we can account for unobserved individual differences,

or heterogeneity. Furthermore, these data panels are becoming long enough so that dynamic

factors, such as spells of employment and unemployment, can be studied. These very large data

sets are rich in information, and require the use of considerable computing power.

Macroeconomists who study economic growth across nations employ data that is “long” and

“wide.” The Penn World Table5 provides purchasing power parity and national income accounts

converted to international prices for 182 countries for some or all of the years 1950–2014, which

we may roughly characterize as having both large N and large T .

Finally, it is possible to have data that combines cross-sectional and time-series data which

do not constitute a panel. We may collect a sample of data on individuals from a population at

several points in time, but the individuals are not the same in each time period. Such data can

be used to analyze a “natural experiment,” for example, when a law affecting some individuals

changes, such as a change in unemployment insurance in a particular state. Using data before

and after the policy change, and on groups of affected and unaffected people, the effects of the

policy change can be measured. Methods for estimating effects of this type were introduced in

Section 7.5.

Our interest in this chapter is how to use all available data to estimate econometric models

describing the behavior of the individual cross-sectional units over time. Such data allow us to

control for individual differences and study dynamic adjustment, and to measure the effects of

policy changes. For each type of data, we must take care not only with error assumptions, but also

............................................................................................................................................

1A Guide to Econometrics, 6th ed., Chapter 18, MIT Press, 2008.

2See Kleiber and Zeileis, “The Grunfeld Data at 50,” German Economic Review, 2010, 11(4), pp. 404–417 and

http://statmath.wu-wien.ac.at/∼zeileis/grunfeld/.

3See http://psidonline.isr.umich.edu/.

4See www.bls.gov/nls/.

5See http://cid.econ.ucdavis.edu/.
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with our assumptions about whether, how, and when parameters may change across individuals

and/or time.

E X A M P L E 15.1 A Microeconometric Panel

Our first example is of a data set that is short and wide.

It is typical of many microeconometric analyses that use

large data sets with many individuals, coming from the NLS

conducted by the U.S. Department of Labor, which has a

database on women who were between 14 and 24 in 1968.

To illustrate, we use a subsample of N = 716 women who

were interviewed in 1982, 1983, 1985, 1987, and 1988. The

sample consists of women who were employed, and whose

schooling was completed, when interviewed. The data file

is named nls_panel and contains 3,580 lines of data. Panel

data observations are usually stacked, with all the time-

series observations for one individual on top of the next.

The observations on a few variables for the first three women

in the NLS panel are shown in Table 15.1. The first column

ID identifies the individual and YEAR represents the year

T A B L E 15.1 Representative Observations from NLS Panel Data

ID YEAR LWAGE EDUC SOUTH BLACK UNION EXPER TENURE

1 82 1.8083 12 0 1 1 7.6667 7.6667

1 83 1.8634 12 0 1 1 8.5833 8.5833

1 85 1.7894 12 0 1 1 10.1795 1.8333

1 87 1.8465 12 0 1 1 12.1795 3.7500

1 88 1.8564 12 0 1 1 13.6218 5.2500

2 82 1.2809 17 0 0 0 7.5769 2.4167

2 83 1.5159 17 0 0 0 8.3846 3.4167

2 85 1.9302 17 0 0 0 10.3846 5.4167

2 87 1.9190 17 0 0 1 12.0385 0.3333

2 88 2.2010 17 0 0 1 13.2115 1.7500

3 82 1.8148 12 0 0 0 11.4167 11.4167

3 83 1.9199 12 0 0 1 12.4167 12.4167

3 85 1.9584 12 0 0 0 14.4167 14.4167

3 87 2.0071 12 0 0 0 16.4167 16.4167

3 88 2.0899 12 0 0 0 17.8205 17.7500

in which the information was collected. These identifying

variables must be present so that your software will properly

identify the cross-section and time-series units. Then there

are observations on each of the variables. In a typical

panel, there are some observations with missing values,

usually denoted as “ • ” or “NA.” We have removed all the

missing values in the data file nls_panel. In microeconomic

panels, the individuals are not always interviewed the same

number of times, leading to an unbalanced panel in which

the number of time-series observations is different across

individuals. The data file nls_panel is, however, a balanced
panel; for each individual, we observe five time-series

observations. A larger, unbalanced panel, is in the data

file nls. Most modern software packages can handle both

balanced and unbalanced panels.

15.1 The Panel Data Regression Function
A panel of data consists of a group of cross-sectional units (people, households, firms, states, or

countries) who are observed over time. The sampling process we imagine is that (i) i = 1,… ,N
individuals are randomly selected from the population and (ii) each individual is observed for

t = 1,… ,T time periods. In the sampling process, we collect values yit on an outcome, or

dependent, variable of interest. Other characteristics concerning the individual will be used as
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explanatory variables. Let x1it = 1 be the intercept variable with x2it, …, xKit being observations

on K − 1 factors that vary across individual and time. Let w1i, w2i, …, wMi be observed data on

M factors that do not change over time. Note that these variables do not have a time subscript

and are said to be time-invariant. We cannot stress enough how important it is when using panel

data to examine the subscripts closely, and recall that i is the indicator of the individual and t is

the indicator of time.

In addition to the observed variables, there will be unobserved, omitted factors in each

time period for each individual that will compose the regression’s random error term. In panel

data models, we can identify several types of unobserved effects. First, consider unobserved

and/or unmeasurable, time-invariant individual characteristics. Let us denote these as u1i,

u2i, …, uSi. Because we cannot observe them, we will simply refer to their combined effect as ui,

an unobserved, individual-specific random error component. Economists say that ui represents

unobserved heterogeneity, summarizing the unobserved factors leading to individual differ-

ences. Second, there are many, unobserved, and/or unmeasurable individual and time-varying

factors e1it, e2it,… constituting the usual type of random errors in regression, and we refer to their

combined effect as eit. Econometricians call the random error eit that varies across individual and

time, an idiosyncratic6 error. A third type of random error is time specific, an effect that varies

over time but not individual. These factors m1t, m2t … have combined effect mt and represent a

third error component.

E X A M P L E 15.1 Revisited

For example, in Table 15.1, the outcome variable of interest is

yit = LWAGEit = ln
(
WAGEit

)
. Explanatory variables include

x2it = EXPERit, x3it = TENUREit, x4it = SOUTHit, and

x5it = UNIONit. These explanatory variables vary across

both individual and time. For the indicator variables

SOUTH and UNION, it means that at least some indi-

viduals moved into or out of the SOUTH during the

1982–1988 period, and at least some workers joined or quit

a UNION over those years. The variables w1i = EDUCi

and w2i = BLACKi do not change for the 716 individuals

in our sample over the years 1982–1988. Two unob-

served time-invariant variables are u1i = ABILITYi
and u2i = PERSEVERANCEi. Unobserved time-specific

variables might be m1t = UNEMPLOYMENT RATEt or

m2t = INFLATION RATEt. Note that it is possible to have

observable variables that change over time but not across

individuals, like an indicator variable D82t = 1 if the year is

1982 and D82t = 0 otherwise.

A simple but representative panel data regression model is

yit = β1 + β2x2it + α1w1i +
(
ui + eit

)
= β1 + β2x2it + α1w1i + vit (15.1)

In (15.1), the observable outcome variable of interest is yit. On the right-hand side, we have a con-

stant term, x1it = 1. We include one observable variable, x2it, that has variation across individuals

and time. The variable w1i is time-invariant and varies only across individuals. The population

parameters β1, β2, and α1 have no subscripts and are fixed in all time periods for all individuals.

We have included only one x-variable and one w-variable to keep things simple, but there can

be more of each type. In parentheses, we have the two random error components, one associated

with the individual
(
ui
)

and one associated with the individual and time
(
eit
)
. For simplicity, we

are omitting the random time-specific error component. We define the combined error

vit = ui + eit (15.2)

Because the regression error in (15.2) has two components, one for the individual and one for the

regression, it is often called an error components model.

............................................................................................................................................

6Jeffrey M. Wooldridge, Econometric Analysis of Cross Section and Panel Data, 2nd ed., MIT Press, 2010, p. 285.
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The complicating factor in panel data modeling is that we observe each cross-sectional unit,

individual i, for more than one time-period, t. If individuals are randomly sampled, then obser-

vations on the ith individual are statistically independent of observations on the jth individual.

However, using panel data, we must consider dynamic, time-related effects, and model assump-

tions should take them into account, just as we did in Chapter 9. The regression function of interest

in a panel data model is

E

⎡
⎢
⎢
⎢
⎣

yit
|
|
|
|

T terms

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

x2i1, x2i2,… , x2iT,w1i, ui

⎤
⎥
⎥
⎥
⎦

= E
(
yit
|
| x2i,w1i, ui

)
= β1 + β2x2it + α1w1i + ui (15.3)

where x2i =
(
x2i1, x2i2,… , x2iT

)
represents the values x2it in all time periods. Equation (15.3) says

that the population average value of the outcome variable is β1 + β2x2it + α1w1i + ui, given (i) the

values of x2it in all time periods, past, present, and future; (ii) the observable individual-specific

variable w1i; and (iii) the unobservable individual heterogeneity term ui. Our econometric chal-

lenge is to find a consistent and, if possible, efficient estimator for the parameters β1, β2, and α1.

Equation (15.3) has several interesting features:

i. The model states that once we have controlled for x2it in all time periods, and the

individual-specific factors w1i and ui, only the current, contemporaneous value of x2it has an

effect on the expected outcome. The parameter β2 measures the partial, or causal, effect of

a change in x2it on E
(
yit|𝐱2i,w1i, ui

)
, holding all else constant. Similarly, the causal effect of

a change in w1i on E
(
yit|𝐱2i,w1i, ui

)
is α1.

ii. The model conditions on the unobservable time-invariant error ui. In Example 15.2, below,

we examine the sales of chemical firms in China over several years using panel data. The

observed explanatory variables include, for example, the amount of labor used by the firm in

each year. A time-invariant variable is their location. The unobserved heterogeneity ui might

represent the ability of firm managers. The expected firm sales depend quite naturally on the

unobserved managerial ability, as well as current production which depends on current labor

input. However, what we are imagining is that, given managerial ability, the labor inputs of

past years, or future years, have no impact on current sales.7

15.1.1 Further Discussion of Unobserved Heterogeneity
Every individual has unique characteristics. This is true for each of us as human beings and also for

individual firms, farms, and geographic regions such as states, shires, or nations. Some individual

characteristics can be observed and measured, such as an individual’s height and weight, or the

number of employees a firm has. Some characteristics of individuals are unmeasurable or unob-

servable, such as a person’s ability, beauty, or fortitude. The ability of a firm’s managers contributes

to their revenues and profits, but just like individual ability, managerial skill is difficult or impossi-

ble to measure. Thus in a regression using cross-sectional data, these unobservable characteristics

are by necessity excluded from the set of explanatory variables, and hence are included in the

random error term. These unobservable individual differences are called unobservable hetero-
geneity in the economics and econometrics literature. When using panel data, it is important to

separate out this component of the random error term from other components if we can argue that

the factors causing the individual differences are unchanging over time. Such an argument is more

feasible when the panel data set is wide and short, with large N and small T , as in many microe-

conomic panels. In a wage equation, for example, we would have to assume that unobservable

factors such as ability and perseverance are constant over the period of the sample. If the panel

............................................................................................................................................

7For more discussion on this assumption, see Wooldridge (2010), p. 288.



�

� �

�

15.1 The Panel Data Regression Function 639

data sample covers three or four years, we might be very comfortable with this assumption, but if

the sample period covers 25 years, then we may worry about the validity of such an assumption.

Our concern with unobserved heterogeneity is exactly the same as with omitted variables
discussed in Section 6.3.2. If omitted variables are correlated with any explanatory variables

in the regression model, then the ordinary least squares (OLS) estimator suffers from omitted
variables bias. And unfortunately, this bias does not disappear even in large samples so that

the OLS estimator is inconsistent. In Chapter 10, we addressed this problem by finding a new

estimator, the instrumental variables (IV), two-stage least squares (2SLS) estimator. As we

will see, the beauty of having panel data is that we can control for the omitted variables bias,

caused by time-invariant omitted variables, without having to find and use instrumental variables.

15.1.2 The Panel Data Regression Exogeneity Assumption

For the regression model (15.1), yit = β1 + β2x2it + α1w1i +
(
ui + eit

)
, to have the conditional

expectation in (15.3), what must be true about the random error? A new exogeneity assumption

takes into account the presence of the unobserved heterogeneity term. It is

E
(
eit|x2i,wi1, ui

)
= 0 (15.4)

The meaning of this strict exogeneity assumption is that given the values of the explanatory

variable x2it in all time periods, given wi1 and given the unobserved heterogeneity term ui, the

best prediction of the idiosyncratic errors is zero. Another way to say this is that there is no

information in these factors about the value of the idiosyncratic random error eit. One subtle but

extremely important point about assumption (15.4) is that it does not require that the unobservable

heterogeneity ui be uncorrelated with the values of the explanatory variables. We will have much

more discussion about this point as we go along. Two of the implications of assumption (15.4)

are that

cov
(
eit, x2is

)
= 0, and cov

(
eit,w1i

)
= 0 (15.5a)

The first part, cov
(
eit, x2is

)
= 0, is much stronger than the usual sort of exogeneity assumption. It

is stronger because it is more than just contemporaneous exogeneity cov
(
eit, x2it

)
= 0; it says eit

is uncorrelated with all the values x2i1, x2i2, …, x2iT . In thinking about whether (15.4) is valid in

a specific application, ask yourself whether (15.5a) holds. If (15.5a) is not true, and if eit is corre-

lated with any x2i1, x2i2, …, x2iT or w1i, then assumption (15.4) fails and the regression function

of interest (15.3) is not correct.

While we are being a bit lax about it, (15.4) should properly include the intercept variable

x1it = 1, so that really E
(
eit|x1i, x2i,w1i, ui

)
= 0. This is important because it means that (15.5a)

holds also for the intercept,

cov
(
eit, x1is = 1

)
= E
(
eitx1is

)
= E
(
eit
)
= 0 (15.5b)

Thus, the expected value of the idiosyncratic error is zero.

We are postponing new assumptions about error variances and covariances until Section 15.3.

15.1.3 Using OLS to Estimate the Panel Data Regression
Using our panel of data, can we consistently estimate the panel data regression function param-

eters in (15.3) using OLS? As we learned in Section 5.7.3 the answer is yes, if in (15.1) the

combined error vit is uncorrelated with the explanatory variable x2it and with w1i. That is, if

cov
(
x2it, vit

)
= E
(
x2itvit

)
= E
(
x2itui

)
+ E
(
x2iteit

)
= 0

and

cov
(
w1i, vit

)
= E
(
w1ivit

)
= E
(
w1iui

)
+ E
(
w1ieit

)
= 0
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These equations say that the two random error components must be contemporaneously uncor-

related with the time-varying explanatory variables, and uncorrelated with the time-invariant

explanatory variables. They in turn require

E
(
x2iteit

)
= 0, E

(
w1ieit

)
= 0 (15.6a)

E
(
x2itui

)
= 0, E

(
w1iui

)
= 0 (15.6b)

Equation (15.6a) says that the idiosyncratic error eit is uncorrelated with the explanatory variables

at time t. This is ensured by the key exogeneity assumption (15.4). On the other hand, (15.4) does

not imply that (15.6b) is true, which requires the unobserved heterogeneity to be uncorrelated with

the explanatory variables. The familiar example of ABILITY being absent from a wage equation is

one case where this assumption is violated, as ABILITY is correlated with years of education. We

should remember that if any explanatory variable is correlated with the random errors then the

estimators of all model parameters are inconsistent. In the next section, we will introduce panel

data estimation strategies that yield consistent estimators even when (15.6b) fails.

We note in passing that the model intercept variable x1it = 1, which is exogenous, satisfies

(15.6a) and (15.6b), implying that

E
(
eit
)
= E
(
ui
)
= E
(
vit
)
= 0 (15.6c)

Each of the random errors has mean zero. Finally, even if equations (15.6a) to (15.6c) hold,

using the OLS estimator will require using a type of robust standard error which we explore in

Section 15.3.

15.2 The Fixed Effects Estimator
In this section, we consider estimation procedures that employ a transformation to eliminate the

individual heterogeneity from the estimation equation and thus solve the common endogeneity
problem caused by correlation between unobservable individual characteristics and the explana-

tory variables. The methods achieve the same outcome using similar but different strategies. The

estimators we will consider are (i) the difference estimator, (ii) the within estimator, and (iii) the

fixed effects estimator. For each of the estimators to be consistent, the strict exogeneity assump-

tion (15.4) must hold, but we do not require the unobserved heterogeneity ui to be uncorrelated

with the explanatory variables, that is, equation (15.6b) does not need to hold. The estimators

successfully estimate parameters of variables that vary over time but they cannot estimate param-

eters of time-invariant variables. In equation (15.1), yit = β1 + β2x2it + α1w1i + vit, using these

methods, we can consistently estimate β2, but we cannot estimate β1 or α1.

15.2.1 The Difference Estimator: T = 2
It is easy to illustrate the power of having panel data with as few as T = 2 observations per indi-

vidual, that is, when we observe each individual in two different time periods, t = 1 and t = 2.

The two observations written out as in (15.1) are

yi1 = β1 + β2x2i1 + α1w1i + ui + ei1 (15.7a)

yi2 = β1 + β2x2i2 + α1w1i + ui + ei2 (15.7b)

Subtracting (15.7a) from (15.7b) creates a new equation
(
yi2 − yi1

)
= β2

(
x2i2 − x2i1

)
+
(
ei2 − ei1

)
(15.8)

Note that (15.8) has no intercept, β1, because it has been subtracted out. Also, α1w1i subtracts

out meaning that we cannot estimate the coefficient α1 using this approach. Importantly, the

unobservable individual differences ui have dropped out due to the subtraction. Why? Because

the terms β1, α1w1i, and ui are not different for time periods one and two; they are time-invariant

and the subtraction removes them. We discussed variables such as
(
yi2 − yi1

)
in Chapter 9. It is

the change in the outcome variable’s value for individual i from time period t = 1 to time period
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t = 2. In the notation of Chapter 9, let “Δ” stand for “the change in,” so that Δyi =
(
yi2 − yi1

)
.

Similarly, let Δxi2 =
(
x2i2 − x2i1

)
and Δei =

(
ei2 − ei1

)
. Then, equation (15.8) becomes

Δyi = β2Δxi2 + Δei (15.9)

Note that a parameter of interest, β2, is present in the transformed model (15.9). Do not

be concerned about complicated data manipulations as econometric software has automatic

commands to handle the differencing process.

The OLS estimator of β2 in (15.9) is called the first-difference estimator, or simply the

difference estimator. It is a consistent estimator if (i) Δei has zero mean and is uncorrelated

with Δxi2, and (ii) Δxi2 takes more than two values. The first condition holds if strict exogeneity,

equation (15.4), holds. Recall that (15.4) implies that equations (15.5a) and (15.5b) are true. Then,

Δei has zero mean using (15.5b). Also Δei is uncorrelated with Δxi2 because of (15.5a); the

idiosyncratic error eit is uncorrelated with x2is in all time periods. In equation (15.8), this means

that Δxi2 =
(
x2i2 − x2i1

)
will be uncorrelated with Δei =

(
ei2 − ei1

)
.

In basic panel data analysis, the difference estimator is usually not used. We introduce it to

illustrate that we can eliminate the unobserved heterogeneity through a transformation. In prac-

tice, we usually use the equivalent, but more flexible, fixed effects estimator, which we explain in

Section 15.2.2.

E X A M P L E 15.2 Using T = 2 Differenced Observations
for a Production Function

The data file chemical2 contains data on N = 200 chemical

firms’ sales in China for the years 2004–2006. We wish to

estimate the log-log model

ln
(
SALESit

)
= β1 + β2ln

(
CAPITALit

)

+ β3ln
(
LABORit

)
+ ui + eit

Using only data from 2005 and 2006, the OLS estimates with

conventional, nonrobust, standard errors are

ln
(
SALESit

)
⋀

= 5.8745 + 0.2536 ln
(
CAPITALit

)

(se) (0.2107) (0.0354)
+ 0.4264 ln

(
LABORit

)

(0.0577)

We may be concerned that there are unobserved individual

differences among the firms that are correlated with their

usage of capital and labor in the production and sales

process. The estimated first-difference model is

Δ ln
(
SALESit

)
⋀

= 0.0384Δln
(
CAPITALit

)

(se) (0.0507)
+ 0.3097Δln

(
LABORit

)

(0.0755)

There is a remarkable reduction in the estimated effect of the

capital stock, which is no longer statistically significant. The

estimated effect of labor is smaller but still significantly dif-

ferent from zero. The difference estimator is consistent when

unobserved heterogeneity is correlated with the explanatory

variables, but the OLS estimator is not. Given the substan-

tial difference in the estimates we might suspect that the OLS

estimates are unreliable.

E X A M P L E 15.3 Using T = 2 Differenced Observations for a Wage Equation

Table 15.1 illustrates a panel data set with 5 years of data

on 716 women. Consider only the final 2 years of data, 1987

and 1988, so that we have N × T = 716 × 2 = 1,432 obser-

vations. We wish to estimate

ln
(
WAGEit

)
= β1 + β2EDUCi + β3EXPERit + ui + eit

for i = 1,… ,N = 716. Note that EDUCi has no time sub-

script. In this sample, all the women had completed their edu-

cation by the time they were first interviewed, and therefore

EDUCi is time-invariant. As usual we are concerned about

omitted variable bias in this model because a person’s ability

is unobservable. In this panel, data model ability is captured

in the individual heterogeneity term ui. Subtracting the 1987

observation from the 1988 observation, we have

Δln
(
WAGEi

)
= β3ΔEXPERi + Δei

The variable EDUC falls out of the model because it does

not take at least two values. Using the first-difference
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estimator eliminates any time-invariant variables and the

intercept. The change in the log of wage is attributed to

the change in experience. There is no omitted variable bias

because the individual heterogeneity term, which includes

ability, has subtracted out. It does not matter that ability

might be correlated with years of education! Using data file

nls_panel2, the OLS estimated first difference model is

Δln
(
WAGEi

)
⋀

= 0.0218ΔEXPERi
(se) (0.007141)

15.2.2 The Within Estimator: T = 2
An alternative subtraction strategy is similar in spirit to that in equation (15.8). The advantage

of the within transformation is that it generalizes nicely to situations when we have more than

T = 2 time observations on each individual. We begin with the models for the two time periods

in (15.7a) and (15.7b), then we find the time-average of the equations, that is,

1

2

2∑

t=1

(
yit = β1 + β2x2it + α1w1i + ui + eit

)

On the left-hand side, we obtain yi • =
(
yi1 + yi2

)
∕2. The “ • ” is in the place of the second

subscript t to remind us that it is an average over the time dimension. On the right-hand side,

we obtain β1+ β2x2i • + α1w1i + ui + ei •, where the averaged variables are similarly defined:

x2i • =
(
x2i1+ x2i2

)
∕2 and ei • =

(
ei1+ ei2

)
∕2. Note that the averaging does not affect the model

parameters or the time-invariant terms β1, w1i, and ui. The time-averaged model for i = 1,… ,N is

yi • = β1 + β2x2i • + α1w1i + ui + ei • (15.10)

The within transformation subtracts (15.10) from the original observations to obtain

yit − yi • = β2

(
x2it − x2i •

)
+
(
eit − ei •

)
(15.11)

Instead of first-differenced variables, we have differences from the variable means. The

time-invariant terms subtract out, including the unobservable heterogeneity term. Again do not

be concerned about complicated data manipulations as econometric software has automatic

commands to handle the process.

Let the transformed variables be denoted ỹit = yit − yi •, x̃2it =
(
x2it − x2i •

)
, with transformed

error ẽit =
(
eit − ei •

)
. The within-transformed model is

ỹit = β2x̃2it + ẽit (15.12)

The OLS estimator of β2 using (15.12) is called the within estimator. It is a consistent estimator

if (i) ẽit has zero mean and is uncorrelated with x̃2it, and (ii) if x̃2it takes more than two values. The

first condition is satisfied if (15.4) holds. Note that the variable x̃2it =
(
x2it − x2i •

)
incorporates the

values of x2it in all time periods because of the average term. Similarly ẽit =
(
eit − ei •

)
depends

on the values of the idiosyncratic error in all time periods because of its average. Thus, strict

exogeneity, equation (15.4) is required for consistent estimation of (15.12) by OLS. Once again

there is no requirement that the unobserved heterogeneity ui be uncorrelated with the explanatory

variables.

E X A M P L E 15.4 Using the Within Transformation with T = 2 Observations for
a Production Function

Consider using the within transformation to the T = 2 sales

observations in Example 15.2, to estimate the effect of

changes in the capital stock and labor inputs on sales. To

understand the within transformation precisely, examine

the transformed data on SALES for the first two firms in

Table 15.2. For 2005 the first difference of ln(SALES)
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is missing, which is represented by a period, “ • ”. The

time-average of the 2 year ln(SALES) is ln
(
SALESit

)
, and

the within transformation is ln
(
SALESit

)∼
. The within

estimator uses only variation for each individual (within each

individual) about the individual mean in order to estimate

the parameters; it does not use variation across or between

individuals in the estimation process.

There is no omitted variable bias using the within-

transformed data because the time-invariant individual

heterogeneity term, which includes any unmeasured charac-

teristics of the firm, has subtracted out. Using the N × T =
200 × 2 = 400 observations the within estimates are

ln
(
SALESit

)∼
= 0.0384ln

(
CAPITALit

)∼

(se) (0.0358)
(se) (0.0507)

+ 0.3097ln
(
LABORit

)∼

(0.0532) (incorrect)
(0.0755) (correct)

T A B L E 15.2 Example 15.4: Transformed Sales Data

FIRM YEAR ln
(
SALESit

)
𝚫ln

(
SALESit

)
ln
(
SALESit

)
ln
(
SALESit

)∼

1 2005 10.87933 • 11.08103 −0.2017047

1 2006 11.28274 0.40341 11.08103 0.2017053

2 2005 9.313799 • 9.444391 −0.1305923

2 2006 9.574984 0.261185 9.444391 0.1305927

Notice that the within estimates are exactly the same as the

first-difference estimates in Example 15.1. When T = 2, they

will always be the same. Using OLS estimation software

yields incorrect standard errors for the within estimator.

The difference arises because the estimate of the error

variance used by the OLS software uses the degrees of

freedom NT − 2 = 400 − 2 = 398. The calculation ignores

the loss of N = 200 degrees of freedom that occurs when the

variables are corrected by their sample means. The correct

divisor is NT − N − 2 = 400 − 200 − 2 = 198. Multiply the

“incorrect” standard errors from the within estimates by the

correction factor

√
(NT − 2) ∕(NT − N − 2) =

√
398∕198 = 1.41778

The resulting “correct” standard errors are in fact identical

to the standard errors from the first-difference estimator

in Example 15.2. When using proper “within estimator”

software this correction will automatically be done. In

Section 15.2.4, we explain that most often software “within”

estimator commands are called fixed effects estimation. The

equality of the difference estimator and within estimator, and

the correct standard errors, holds when T = 2, but not when

T > 2.

Remark
In practice, there is no need to use the difference estimator, which was introduced as a ped-

agogical device to illustrate that it is possible to eliminate unobserved heterogeneity when

panel data are available. Use the software option for “fixed effects” estimation.

15.2.3 The Within Estimator: T > 2
The advantage of the within transformation and use of the within estimator is that they gen-

eralize nicely to situations when we have more than T = 2 time observations on each individual.

Suppose that we have T observations on each individual. So that

yit = β1 + β2x2it + α1w1i + ui + eit, i = 1,… ,N, t = 1,… ,T

Averaging over all time observations we have

1

T

T∑

t=1

(
yit = β1 + β2x2it + α1w1i + ui + eit

)
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On the left-hand side, we obtain yi •=
(
yi1 + yi2 + · · · + yiT

)
∕T . On the right-hand side, we

obtain β1+ β2x2i •+ α1w1i + ui + ei • , where the averaged variables are similarly defined:

x2i •=
(
x2i1+ · · · + x2iT

)
∕T and ei • =

(
ei1 + · · · + eiT

)
∕T . Note that averaging does not affect

the model parameters or the time-invariant terms w1i and ui. The time-averaged model, for

i = 1,… ,N, is

yi • = β1 + β2x2i •+ α1w1i + ui + ei • (15.13)

The within transformation subtracts (15.13) from the original observations to obtain

yit − yi • = β2

(
x2it − x2i •

)
+
(
eit − ei •

)
(15.14)

Instead of first-differenced variables, we have differences from the variable means. The

time-invariant variables subtract out, including the unobservable heterogeneity term.

Let the transformed variables be denoted ỹit = yit − yi • , x̃2it =
(
x2it − x2i •

)
, with transformed

error ẽit =
(
eit − ei •

)
. The within-transformed model is

ỹit = β2x̃2i + ẽit (15.15)

The OLS estimator of β2 in (15.15) is a consistent estimator if (i) ẽit has zero mean and is uncor-

related with x̃2it, and (ii) if x̃2it takes more than two values. These conditions hold if the strict

exogeneity assumption (15.4) holds. The usual OLS standard errors for (15.15) are not quite right

but are easily corrected, as we explained in Example 15.4.

E X A M P L E 15.5 Using the Within Transformation with T = 3 Observations for a
Production Function

Consider using the within transformation to the T = 3 sales

observations in the data file chemical2, from 2004 to 2006,

for the 200 firms in Example 15.2, to estimate the effect of

changes in the capital stock and labor inputs on sales. The

within estimates are

ln
(
SALESit

)∼
= 0.0889ln

(
CAPITALit

)∼

(se) (0.0271)
(se) (0.0332)

+ 0.3522ln
(
LABORit

)∼

(0.0413) (incorrect)
(0.0507) (correct)

The incorrect standard errors are produced by OLS software

using NT − 2 = 598 degrees of freedom when it should be

NT − N − 2 = 398. Multiplying the incorrect standard errors

by the correction factor

√
(NT − 2)∕(NT − N − 2) =

√
598∕398 = 1.22577

yields correct standard errors.

15.2.4 The Least Squares Dummy Variable Model
It turns out that the within estimator is numerically equivalent to another estimator that has long

been used in empirical work and that is logically appealing. To be as general as possible, we

expand our equation of interest to include more variables,

yit = β1 + β2x2it + · · · + βKxKit + α1w1i + · · · + αMwMi +
(
ui + eit

)
(15.16)

In this regression, there is a constant term, x1it = 1, and (K − 1) = KS variables that vary across

individuals and time, and also M variables that are time invariant. There is a new symbol, KS, that

can be thought of as the number of “slope” coefficients. This will be important below when we

carry out a test for the existence of individual differences.
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Unobserved heterogeneity is also controlled for by including in the panel data regression

(15.16) an individual-specific indicator variable for each individual. That is, let

D1i =

{
1 i = 1

0 otherwise
, D2i =

{
1 i = 2

0 otherwise
,…… , DNi =

{
1 i = N
0 otherwise

Include these N indicator variables in the regression equation (15.16) to obtain

yit = β11D1i + β12D2i + · · · + β1NDNi + β1 + β2x2it + · · · + βKxKit + α1w1i

+ · · · + αMwMi +
(
ui + eit

)

In this equation there is exact collinearity. The time-invariant indicator variables sum to one,

D1i + D2i + · · · + DNi = 1. Including the indicator variables requires us to drop the now redun-

dant constant term, x1it = 1, the time-invariant variables, w1i, w2i, …, wMi, and the unobserved

heterogeneity ui. Doing so we are left with

yit = β11D1i + β12D2i + · · · + β1NDNi + β2x2it + · · · + βKxKit + eit (15.17)

Equation (15.17) is called the fixed effects model, or sometimes the least squares dummy vari-
able model. The terminology fixed effects estimator, which is the most commonly used name in

empirical work, arises because it is as if we are treating individual differences u1, u2, …, uN , as

fixed parameters, β11, β12, …, β1N , that we can estimate. The fixed effects estimator is the OLS

estimator of (15.17) using all NT observations.

Equation (15.17) is not estimated in practice unless N is small. Using the Frisch–Waugh–

Lovell Theorem, Section 5.2.5 and Exercise 15.11, it can be shown that the OLS estimates of

β2, …, βK in (15.17), and the sum of squared residuals, are identical to the within estimates

of (15.16) and thus have the same consistency property under the same assumption (15.4). We

remind you again that assumption (15.4) does not require that the unobserved heterogeneity term

ui be uncorrelated with Xi or wi, where Xi denotes all observations on the time-varying variables

and wi the observations on the time-invariant observations.

Remark
To summarize, the within estimator, the fixed effects estimator and the least squares dummy

variable estimator are all names for the same estimators of β2,…, βK in (15.17). In practice,

no choice is required. Use the computer software option for “fixed effects” estimation.

Because the fixed effects estimator is simply an OLS estimator, it has the usual OLS estimator

variances and covariances. Including N indicator, dummy, variables means that the number of

parameters is N + KS, where KS =(K − 1) is the number of slope coefficients. The usual estimator

of σ2
e is

σ̂2
e =

N∑

i=1

T∑

t=1

ê2
it

NT − N − KS
(15.18)

Testing for Unobserved Heterogeneity Testing for individual differences in the

fixed effects model is a test of the joint hypothesis

H0∶β11 = β12, β12 = β13,… , β1,N−1 = β1N

H1∶ the β1i are not all equal (15.19)
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If the null hypothesis is true, then β11 = β12 = β13 = · · · = β1N = β1, where β1 denotes the com-

mon value, and there are no individual differences and no unobserved heterogeneity. The null

hypothesis is J = N − 1 separate equalities, β11 = β12, β12 = β13, and so on. If the null hypothesis

is true, then the “restricted model” is

yit = β1 + β2x2it + · · · + βKxKit + eit

Under the standard OLS assumptions, the F-test statistic is

F =
(
SSER − SSEU

)/
(N − 1)

SSEU∕
(
NT − N − KS

) (15.20)

where SSEU is the sum of squared residuals from the fixed effects model, and SSER is the sum of

squared errors from the OLS regression that pools all the data, yit = β1 + β2x2it + · · · + βKxKit +
eit. If the null hypothesis is true, the test statistic has the F-distribution with J = N − 1 numera-

tor degrees of freedom and NT − N − KS denominator degrees of freedom. Using the α level of

significance, we reject the null hypothesis if the test statistic value is greater than, or equal to, the

1 − α percentile of the F-distribution, F ≥ F(1−α, N−1, NT−N−KS). The test can be made “robust” to

heteroskedasticity and serial correlation, topics that we consider in Section 15.3.

E X A M P L E 15.6 Using the Fixed Effects Estimator with T = 3 Observations for
a Production Function

For the Chinese chemical firm data file chemical2, the indi-

cator variable model in (15.21) becomes

ln
(
SALESit

)
= β11D1i + · · · + β1,200D200,i + β2ln

(
CAPITALit

)

+ β3ln
(
LABORit

)
+ eit

The fixed effects estimates of β2 and β3 will be identical to the

within estimates in Example 15.4, and the standard errors will

be the correct ones because in this indicator variable model

the degrees of freedom are the correct NT − N − (K − 1) =
600 − 200 − 2 = 398.

The N = 200 estimated indicator variable coefficients,

b11, b12, …, b1N , may or may not be of specific interest. We

include the indicator variables primarily to control for unob-

served heterogeneity. If, however, we are interested in pre-

dicting the sales of a specific firm then the indicator variables

become crucial. Given the estimates of β2 and β3, b11, b12,…,

b1N can be recovered using the fact that the fitted regression

passes through the point of the means, just as it did in the

simple regression model, that is, yi• = b1i + b2x2i•+ b3x3i•,

i = 1,… ,N. Reporting the estimates and their standard

errors is inconvenient because N may be large. Software

companies cope with this in different ways. Two popular

econometric software programs, EViews and Stata, report

a constant term C that is the average of the estimated

coefficients on the cross-section indicator variables. For the

Chinese chemical firm data, C = N−1
∑N

i=1
b1i = 7.5782.

To test the null hypothesis H0∶β11 = β12, β12 = β13,… ,

β1,N−1 = β1N , we use the sum of squared residuals from the

fixed effects estimator, SSEU = 34.451469, and from the

pooled OLS regression

ln
(
SALESit

)
⋀

= 5.8797 + 0.2732 ln
(
CAPITALit

)

(se) (0.1711) (0.0291)
+ 0.3815ln

(
LABORit

)

(0.0467)

with SSER = 425.636557. The F-statistic value is

F =
(
SSER − SSEU

)
∕(N − 1)

SSEU∕(NT − N −(K − 1))

=
(425.636557 − 34.451469)∕199

34.451469∕(600 − 200 − 2)
= 22.71

Using the α = 0.01 level of significance, F(0.99, 199, 398) = 1.32.

We reject the null hypothesis and conclude that there are indi-

vidual differences in the fixed effects constant terms for these

N = 200 firms.

15.3 Panel Data Regression Error Assumptions
In Section 15.2, we considered estimation strategies that eliminate unobservable heterogeneity,

ui, so that when it is correlated with the explanatory variables we can still consistently estimate the

coefficients of variables, xkit, that vary across individuals and time. In this section and the next, we
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propose estimation methods for the cases in which unobservable heterogeneity, ui, is not corre-

lated with the explanatory variables, either the time-varying variables, xkit, or the time-invariant
variables, wmi, so that we can use OLS estimation, or a more efficient generalized least squares

estimator, GLS, called the random effects (RE) estimator. Because these estimators do not elimi-

nate unobservable heterogeneity, ui, from the estimation equation we must make a more complete

set of assumptions than we did in Section 15.2.

Panel data model estimation and inference for the model yit = β1 + β2x2it + α1w1i +
(
ui + eit

)

are complicated by the presence of two random errors. The first, ui, accounts for time invariant

unobserved heterogeneity across individuals. The second, eit, is the “usual” regression error that

varies across individuals and time. To be as general as possible, we return to equation (15.16),

which we repeat here for your convenience,

yit = β1 + β2x2it + · · · + βKxKit + α1w1i + · · · + αMwMi +
(
ui + eit

)
(15.16)

As we have done in earlier chapters, let xit =
(
1, x2it,… , xKit

)
represent the tth observation on all

time-varying variables, plus the intercept, for an individual, and let Xi represent all T observations

on these variables for the ith individual. Let wi =
(
w1i,… ,wMi

)
represent all the time-invariant

variables for the ith individual. We discussed the important exogeneity assumption (15.4) that

leads to the panel data regression function in (15.3). With the more complete model specification,

assumption (15.4) becomes

E
(
eit|Xi,wi, ui

)
= 0 (15.21)

Recall that the strict exogeneity assumption in (15.21) means that neither Xi, nor wi, nor ui contain

any information about the possible value of the idiosyncratic random error eit.

The idiosyncratic random errors eit and the unobservable heterogeneity random error ui cap-

ture quite different effects and it is plausible to treat them as statistically independent, so that

there is no correlation between them. In order for the OLS estimator of (15.16) to be unbiased a

strong assumption, similar to (15.21), must hold for the unobserved heterogeneity term, ui. If the

explanatory variables Xi and wi carry no information about random error component ui then its

best prediction is zero, meaning that

E
(
ui|Xi,wi

)
= 0 (15.22)

Using the law of iterated expectations, it follows that

E
(
ui
)
= 0, cov

(
ui, xkit

)
= E
(
uixkit

)
= 0, cov

(
ui,wmi

)
= E
(
uiwmi

)
= 0 (15.23)

The two assumptions (15.21) and (15.22) are sufficient to ensure that the OLS estimator is unbi-

ased and consistent.

Remark
The verb “pool” means to combine or merge things. Consequently, econometricians talk

about the combined data of all individuals in all time periods as a pooled sample. Then the

regression equation (15.16) is a pooled model and if we apply OLS to this pooled model it

is called pooled least squares, or pooled OLS. However, pooled OLS is nothing new; it is

simply the OLS estimator applied to the combined data.

Now we ask about other assumptions, namely the random error conditional variances and

covariances.

Conditional Homoskedasticity The usual homoskedasticity assumption for the

idiosyncratic error eit is that the conditional and unconditional variances are constant,

var
(
eit|Xi,wi, ui

)
= σ2

e (15.24a)
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Using the variance decomposition discussed in Appendix B.1.8, and the law of iterated expecta-

tions, it also follows that

var
(
eit
)
= E
(
e2

it
)
= σ2

e (15.24b)

Similarly, the unobserved heterogeneity random component ui is conditionally and uncondition-

ally homoskedastic,

var
(
ui
)
= E
(
u2

i
)
= σ2

u (15.25)

If all individuals are drawn from one population, then homoskedasticity of ui seems quite reason-

able. However, the homoskedasticity of eit is less likely to be true, for the usual reasons.

The variance of the combined error, vit = ui + eit, is then

var
(
vit|Xi,wi

)
= var

(
ui|Xi,wi

)
+ var

(
eit|Xi,wi

)
+ 2cov

(
ui, eit|Xi,wi

)

Combining the two homoskedasticity assumptions and the statistical independence of ui and eit,

we have

var
(
vit
)
= E
(
v2

it
)
= σ2

v = σ
2
u + σ

2
e (15.26)

Conditionally Correlated When unobservable heterogeneity is recognized, the usual

assumption that the errors are uncorrelated does not hold. To see this, find the covariance between

the combined random errors in any two time periods,

cov
(
vit, vis

)
= E
(
vitvis

)
= E
[(

ui + eit
)(

ui + eis
)]

= E
(
u2

i + uieit + uieis + eiteis
)

= E
(
u2

i
)
+ E
(
uieit

)
+ E
(
uieis

)
+ E
(
eiteis

)

= σ2
u (15.27)

There is a covariance between the random errors for the ith individual for observations in any two

different time periods. The correlation between the errors is

ρ = corr
(
vit, vis

)
=

σ2
u

σ2
u + σ

2
e

(15.28)

Interestingly, the covariance and correlation are constant and take the same value whether we are

considering errors one period apart, or two periods apart, or more. As long as we have a random

sample of individuals, we do not need to worry about any correlation between individuals, so that

vit, and vjs are uncorrelated for i ≠ j.
Because of the intra individual error correlation, caused by the unobservable heterogeneity,

the OLS estimator is not BLUE, and the usual standard errors are not correct. We will address

how “robust” standard errors are calculated in Section 15.3.1 and how to carry out GLS in

Section 15.4.

15.3.1 OLS Estimation with Cluster-Robust Standard Errors
In the panel data, multiple regression model (15.16), under the conventional homoskedasticity

and serial correlation assumptions, equations (15.24a), (15.24b), (15.25), and (15.26), we have

var
(
vit
)
= σ2

u + σ
2
e

and

cov
(
vit, vis

)
= σ2

u
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It is possible, however, that var
(
eit
)

changes from individual to individual and perhaps also across

time. In that case, var
(
eit
)
= σ2

it. We will introduce a new notation to handle this new possibility.

Let

var
(
vit
)
= σ2

u + σ
2
it = ψ

2
it (15.29)

The variance ψ2
it (ψ is the Greek letter “psi”) is potentially different for each individual in each

time period. This might be true even if there is no unobserved heterogeneity, σ2
u = 0, or if the unob-

served heterogeneity has a different variance for each individual. Assumption (15.29) is perfectly

general and fits all possibilities.

Next, what about possible correlations among the error terms? The covariance between the

random errors vit and vis is

cov
(
vit, vis

)
= E
(
vitvis

)
= E
[(

ui + eit
)(

ui + eis
)]

= E
(
u2

i
)
+ E
(
eiteis

)

= σ2
u + cov

(
eit, eis

)
(15.30)

where we have assumed ui and eit are statistically independent, or at least uncorrelated. The term

cov
(
eit, eis

)
is the covariance between the usual random error, the idiosyncratic part, for the ith

individual in time period t and time period s. If there is serial correlation, or autocorrelation, in

this component of error then cov
(
eit, eis

)
≠ 0. The serial correlation may be of the AR(1) form

we studied in Section 9.5.3, but it could be some other pattern as well. For now, we will make the

most general possible assumption, that it may differ across individuals, and may differ for each

pair of time periods as well, so that cov
(
eit, eis

)
= σits. Then (15.26) becomes

cov
(
vit, vis

)
= σ2

u + σits = ψits (15.31)

Note that (15.31) is still valid even if there is no unobserved heterogeneity, so that σ2
u = 0.

What are the consequences of using pooled least squares in the presence of the heteroskedas-

ticity and correlation described by (15.29) and (15.31)? The least squares estimator is still

consistent, but its standard errors are incorrect, implying hypothesis tests and interval estimates

based on these standard errors will be invalid. Typically, the standard errors will be too small,

overstating the reliability of the least squares estimator. Fortunately, there is a way of correcting

the standard errors. We had a similar situation in Chapters 8 and 9. In Chapter 8, we saw how

White’s heteroskedasticity-consistent standard errors could be used for assessing the reliability

of least squares estimates in a regression model with heteroskedasticity of unknown form. Least

squares is not efficient in these circumstances—the GLS estimator has lower variance—but using

least squares avoids the need to specify the nature of the heteroskedasticity, and if the sample is

large then using least squares with White standard errors provide a valid basis for interval esti-

mation and hypothesis testing. The Newey-West standard errors introduced in Chapter 9 served a

similar function in an autocorrelated-error model. They provide a valid basis for inference using

least squares estimates without the need to specify the nature of the autocorrelated-error process.

In a similar way, standard errors that are valid for the pooled least squares estimator under

the assumptions in (15.29) and (15.31) can be computed. These standard errors have various

names, being referred to as panel-robust standard errors or cluster-robust standard errors.

The T time-series observations on individuals form the clusters of data. Deriving cluster-robust

standard errors requires some difficult and tedious algebra, which we briefly describe in

Appendix 15A.

Two Important Notes Now for some good news and then some not so good news. First,

the good news is that cluster-robust standard errors can be used in many contexts other than with

panel data. Any data containing groups of observations can be treated as clusters if there are
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within-group correlations but no across-group correlations. If we have a large sample of firms,

then the firms within the same industry might define a cluster. If we have a survey of households,

we may treat geographical neighborhoods as clusters. Second, the not so good news, is that while

now easily obtained, using cluster-robust standard errors is not always appropriate. In order for

them to be reliable, the number of individuals N must be large relative to T , so that the panel is

“short and wide.” For example, if there are N = 1000 individuals (cross sections) and we observed

each for T = 3 time periods, then cluster-robust standard errors should work well. In situations

with few individuals (few clusters) using cluster-robust standard errors may lead to inaccurate

inferences. Naturally there is a great deal of discussion about what is meant by “few.” In the

U.S. there are N = 50 states. According to Cameron and Miller8 (page 341), “Current consensus

appears to be that … 50 is enough for state-year panel data.” However, when carrying out tests,

the number of clusters should be treated as the sample size.

E X A M P L E 15.7 Using Pooled OLS with Cluster-Robust Standard Errors
for a Production Function

In Example 15.6, we found that there is strong evidence

in favor of using the fixed effects estimator rather than the

pooled OLS estimator using the Chinese chemical firm data.

However, for the purpose of giving a numerical illustration

of pooled OLS with and without clustering, we examine the

baseline model in Example 15.2 using N = 1000 firms using

data file chemical3. Table 15.3 shows the OLS estimates

T A B L E 15.3 Example 15.7: OLS Estimates with Alternative Standard Errors

Conventional Heteroskedastic Cluster-Robust
Coefficient Std. Error t-Value Std. Error t-value Std. Error t-Value

C 5.5408 0.0828 66.94 0.0890 62.24 0.1424 38.90

ln(CAPITAL) 0.3202 0.0153 20.90 0.0179 17.87 0.0273 11.72

ln(LABOR) 0.3948 0.0225 17.56 0.0258 15.33 0.0390 10.12

with conventional, heteroskedasticity robust, and cluster-

robust standard errors, and t-statistic values.

Note that while the heteroskedasticity-corrected stan-

dard errors are larger than the conventional standard errors,

the cluster-corrected standard errors are larger yet. Of

course, the t-values become smaller with the increased stan-

dard errors.

15.3.2 Fixed Effects Estimation with Cluster-Robust
Standard Errors

Consider now the fixed effects estimation procedure that employs the “within” transformation

shown in (15.14). The within transformation removes the unobserved heterogeneity so that only

the idiosyncratic error eit remains. It is possible that within the cluster of observations defin-

ing each individual cross-sectional unit there remains serial correlation and/or heteroskedasticity.

Cluster-robust standard errors9 can be applied to the data in “deviation from the cluster-mean

form,” as in (15.14), or the least squares dummy variable model in (15.17).

............................................................................................................................................

8Cameron, A. C., and Miller, D. L., “A Practitioner’s Guide to Cluster-Robust Inference,” Journal of Human Resources,

2015, 50(2), 317–373.

9Interestingly, the usual White heteroskedasticity robust standard errors are not valid when T > 2 (Cameron and Miller,

2015, p. 352). Some panel data software will automatically use cluster-robust standard errors when any kind of robust

standard errors are requested.
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E X A M P L E 15.8 Using Fixed Effects and Cluster-Robust Standard Errors
for a Production Function

In Example 15.7, we estimated the production function

by OLS with alternative standard errors. Here using data

file chemical3, we obtain the fixed effects estimates using

N = 1000 firms with conventional standard errors and

cluster-robust standard errors. The cluster-robust standard

T A B L E 15.4 Example 15.8: Fixed Effects Estimates with Alternative Standard Errors

Conventional Cluster-Robust
Coefficient Std. Error t-Value Std. Error t-Value

C 7.9463 0.2143 37.07 0.3027 26.25

ln(CAPITAL) 0.1160 0.0195 5.94 0.0273 4.24

ln(LABOR) 0.2689 0.0307 8.77 0.0458 5.87

errors are substantially larger than the usual standard errors.

When this is the case, using the cluster-robust standard errors

is recommended if N is large and T is small, like they are in

this case (Table 15.4).

15.4 The Random Effects Estimator
Panel data applications fall into one of two types. The first type of application is when the unob-

served heterogeneity term ui is correlated with one or more of the explanatory variables. In this

case, we use the fixed effects (within) or difference estimators because these estimators are con-

sistent and converge in probability to the true population parameter values as the sample size

increases. These estimators deal with unobserved heterogeneity by eliminating it through a trans-

formation, eliminating the potential endogeneity problem arising from a correlation between the

unobserved heterogeneity and the explanatory variables.

The second type of application is when the unobserved heterogeneity term ui is not correlated

with any of the explanatory variables. In this case, we can simply use pooled OLS estimation, with

robust-cluster standard errors. If for our purposes the OLS estimator is sufficiently precise, then

we are done. Subsequent hypothesis tests and interval estimates are valid in large samples. If the

OLS estimator is not sufficiently precise, then, providing the other assumptions hold, we can use

an asymptotically more efficient feasible generalized least squares (FGLS) estimator.

The panel data regression model (15.1) with unobserved heterogeneity is sometimes called

the random effects model because individual differences are random from the point of view of the

researcher. The unobservable heterogeneity terms ui are the random effects. The FGLS estimator

is called the random effects estimator. It takes into account equation (15.27), the error covariance

within the observations for each individual that arises from the unobserved heterogeneity. The

use of this estimator also presumes the zero conditional mean assumptions, equations (15.4), and

homoskedasticity, equation (15.26).

The minimum variance, efficient, estimator for the model is a GLS estimator. As was the

case when we had heteroskedasticity or autocorrelation, we can obtain the GLS estimator in the

random effects model by applying OLS to a transformed model. The transformed model, using

K = 2 and M = 1 in (15.16), is

y∗it = β1x∗
1it + β2x∗

2it + α1w∗
1i + v∗it (15.32)

where the transformed variables are

y∗it = yit − αyi •, x∗
1it = 1 − α, x∗

2it = x2it − αx2i •, w∗
1i = w1i(1 − α) (15.33)
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The transformation parameter α is between zero and one, 0 < α < 1, and is given by

α = 1 −
σe

√

Tσ2
u + σ

2
e

(15.34)

The variables yi • and x2i • are the individual time-averaged means (15.13), and w∗
1i is a fraction of

w1i. A key feature of the random effects model is that time-invariant variables are not eliminated.

The transformed error term is v∗it = vit − αvi. It can be shown that the transformed error v∗it has

constant variance σ2
e and is serially uncorrelated. The proof is long and tedious, so we will not

inflict it on you.10 Because the transformation parameter α depends on the unknown variances σ2
e

and σ2
u, these variances need to be estimated before OLS can be applied to (15.32). Some details

of how the estimates σ̂2
e and σ̂2

u are obtained can be found in Appendix 15B. The random effects,

feasible GLS, estimates are obtained by applying least squares to (15.32) with σ2
e and σ2

u replaced

by σ̂2
e and σ̂2

u in (15.34). From (15.33) we can see that if α = 1 the random effects estimator is

identical to the fixed effects estimator and if α = 0 the random effects estimator is identical to the

OLS estimator. When 0 < α̂ < 1 the random effects estimates may be closer to the OLS estimates

or the fixed effects estimates depending on the magnitude of α̂.

E X A M P L E 15.9 Random Effects Estimation of a Production Function

To illustrate the random effects estimator, we use the data

file chemical3 from N = 1,000 Chinese chemical firms using

T = 3 time periods. The random effects estimates of the pro-

duction function are

ln
(
SALESit

)
⋀

= 6.1718 + 0.2393ln
(
CAPITALit

)

(se_fgls) (0.1142) (0.0147)
(se_clus) (0.1428) (0.0221)

+ 0.4140ln
(
LABORit

)

(0.0220)
(0.0327)

These random effects estimates are obtained using the esti-

mated “partial-demeaning coefficient”

α̂ = 1 −
σ̂e

√

Tσ̂2

u + σ̂
2

e

= 1 − 0.3722
√

3(0.6127) + 0.1385
= 0.7353

Because α̂ = 0.7353 is not close to zero or one, we see

that the random effects estimates are quite different from

the fixed effects estimates in Example 15.8 and also quite

different from the OLS estimates in Example 15.7. Note

that the cluster-robust standard errors for the random effects

estimates are slightly larger than the conventional FGLS stan-

dard errors, suggesting that there may be serial correlation

and/or heteroskedasticity in the overall error component eit.

E X A M P L E 15.10 Random Effects Estimation of a Wage Equation

In Table 15.1, we introduced panel data using observations

from a typical microeconomic data source, the National

Longitudinal Surveys (NLS). In Example 15.3, we intro-

duced a simple wage equation and noted that in the data

file nls_panel, all the women when first surveyed had

completed their education, so that the variable EDUC, years

of education, did not vary. This resulted in it dropping out

when we applied the difference estimator. All time-invariant

variables are eliminated when using the difference estimator

or the fixed effects estimator. In this example, we extend the

model used in Example 15.3.

Because the women in our microeconomic data panel

were randomly selected from a larger population, it seems

sensible to treat individual differences between the 716

............................................................................................................................................

10The details can be found in Wooldridge (2010), pp. 326–328.
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women as random effects. Let us specify the wage equation

to have dependent variable ln(WAGE) and explanatory

variables years of education (EDUC); total labor force

experience (EXPER) and its square; tenure in current job

(TENURE) and its square; and indicator variables BLACK,

SOUTH, and UNION.

The fixed and random effects estimates are given in

Table 15.5 along with conventional, nonrobust standard

errors and t-values. For the random effects estimates, we use

the estimated transformation parameter

α̂ = 1 −
σ̂e

√

Tσ̂2

u + σ̂
2

e

= 1 − 0.1951
√

5 × 0.1083 + 0.0381

= 0.7437

T A B L E 15.5 Example 15.10: Fixed and Random Effects Estimates of a Wage Equation

Fixed Effects Random Effects
Variable Coefficient Std. Error∗ t-Value Coefficient Std. Error∗ t-Value

C 1.4500 0.0401 36.12 0.5339 0.0799 6.68

EDUC 0.0733 0.0053 13.74

EXPER 0.0411 0.0066 6.21 0.0436 0.0064 6.86

EXPER2 −0.0004 0.0003 −1.50 −0.0006 0.0003 −2.14

TENURE 0.0139 0.0033 4.24 0.0142 0.0032 4.47

TENURE2 −0.0009 0.0002 −4.35 −0.0008 0.0002 −3.88

BLACK −0.1167 0.0302 −3.86

SOUTH −0.0163 0.0361 −0.45 −0.0818 0.0224 −3.65

UNION 0.0637 0.0143 4.47 0.0802 0.0132 6.07

∗Conventional standard errors.

Using this value to transform the data as in (15.33), then

applying least squares to the transformed regression model

in (15.32) yields the random effects estimates. Because the

random effects estimator only partially de-means the data

the time-invariant variables, EDUC and BLACK, are not

eliminated. We are able to estimate the effects of years of

education and race on ln(WAGE). We estimate that the return

to education is about 7.3%, and that blacks have wages about

12% lower than whites, everything else held constant. Living

in the South leads to wages about 8% lower, and union

membership leads to wages about 8% higher, everything else

held constant.

15.4.1 Testing for Random Effects
The magnitude of the correlation ρ in (15.28) is an important feature of the random effects model.

If ui = 0 for every individual, then there are no individual differences and no heterogeneity to

account for. In such a case, the pooled OLS linear regression model is appropriate, and there is

no need for either a fixed or a random effects model. We are assuming the error component ui
has expectation zero, E

(
ui|Xi,wi

)
= 0. If in addition ui has a conditional variance of zero, then it

is said to be a degenerate random variable; it is a constant with value equal to zero. In this case,

if σ2
u = 0, then the correlation ρ = 0 and there is no random individual heterogeneity present in

the data. We can test for the presence of heterogeneity by testing the null hypothesis H0∶σ2
u = 0

against the alternative hypothesis H1∶σ2
u > 0. If the null hypothesis is rejected, then we conclude

that there are random individual differences among sample members, and that the random effects

model might be appropriate. On the other hand, if we fail to reject the null hypothesis, then we

have no evidence to conclude that random effects are present.

The Lagrange multiplier (LM) principle for test construction is very convenient in this case,

because LM tests require estimation of only the restricted model that assumes that the null
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hypothesis is true. If the null hypothesis is true, then ui = 0 and the random effects model reduces

to the usual linear regression model

yit = β1 + β2x2it + α1w1i + eit

The test statistic is based on the OLS residuals

êit = yit − b1 − b2x2it − a1w1i

The test statistic for balanced panels is

LM =
√

NT
2(T − 1)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

N∑

i=1

(
T∑

t=1

êit

)2

N∑

i=1

T∑

t=1

ê2
it

− 1

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

(15.35)

The numerator of the first term in curly brackets differs from the denominator because it contains

terms like 2êi1êi2 + 2êi1êi3 + 2êi2êi3 + · · · whose sum will not be significantly different from zero

if there is no correlation over time for each individual and will reflect a positive correlation if there

is one. If the sum of the cross product terms is not significant, the first term in the curly brackets is

not significantly different from one, and the term in the curly brackets is not significantly different

from zero. If the sum of the cross product terms is significant, then the first term in the curly

brackets will be significantly greater than one and LM will be positive.

If the null hypothesis H0∶σ2
u = 0 is true, that is, there are no random effects, then LM ∼

N(0, 1) in large samples. Thus, we reject H0 at significance level α and accept the alternative

H1∶σ2
u > 0 if LM > z(1−α), where z(1−α) is the 100(1 − α) percentile of the standard normal N(0,

1) distribution.11 This critical value is 1.645 if α = 0.05 and 2.326 if α = 0.01. Rejecting the null

hypothesis leads us to conclude that random effects are present.

E X A M P L E 15.11 Testing for Random Effects in a Production Function

Using the N = 1000 Chinese chemical firms data from chemi-
cal3, the value of the test statistic in (15.35) is LM = 44.0637.

This is far greater than the α = 0.01 critical value 2.326, so

we reject the null hypothesis H0∶σ2
u = 0 and conclude that

σ2
u > 0; there is evidence of unobserved heterogeneity, or ran-

dom effects, in the data.

15.4.2 A Hausman Test for Endogeneity in the Random
Effects Model

The random effects model has one critical assumption that is often violated. If the random error

vit = ui + eit is correlated with any of the right-hand side explanatory variables in a random effects

model, then the least squares and GLS estimators of the parameters are biased and inconsistent.

............................................................................................................................................

11The original LM test due to Breusch and Pagan used LM2 with the distribution under H0 as χ2
(1). Subsequent authors

pointed out that the alternative hypothesis for using LM2 is H1∶σ2
u ≠ 0, and that we can do better by using LM as a

one-sided N(0, 1) test with alternative hypothesis H1∶σ2
u > 0. Some software, for example Stata, reports LM2. The

danger from using LM2 is that LM < 0 is possible and should not be taken as evidence that σ2
u > 0. The adjustment for a

chi-square test at significance α is to use the 100(1 − 2α) percentile of the χ2-distribution. This critical value for an

α = 0.05 test is 2.706 which is 1.6452. It should only be used for LM > 0.
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The problem of endogenous regressors was first considered in a general context in Chapter 10.

The problem is common in random effects models because the individual-specific error compo-

nent ui may well be correlated with some of the explanatory variables. Such a correlation will

cause the random effects estimator to be inconsistent. Recall that a wonderful feature of having

panel data is that we can consistently estimate the model parameters using fixed effects, within, or

difference estimators, without having to find instrumental variables as we did in Chapter 10. The

ability to test whether the random effect ui is correlated with some of the explanatory variables

is important.

To check for any correlation between the error component ui and the regressors in a random

effects model, we can use a Hausman test. While the basic concept underlying the test is the same,

the mechanics of this Hausman test are different from the Hausman test introduced in Chapter 10.

In this case, the test compares the coefficient estimates from the random effects model to those

from the fixed effects model. The idea underlying Hausman’s test is that both the random effects

and fixed effects estimators are consistent if there is no correlation between ui and the explanatory

variables xkit. If both estimators are consistent, then they should converge to the true parameter

values βk in large samples. That is, in large samples, the random effects and fixed effects estimates

should be similar. On the other hand, if ui is correlated with any of the explanatory variables, then

the random effects estimator is inconsistent for all the model coefficients, while the fixed effects

estimator remains consistent. Thus in large samples, the fixed effects estimator converges to the

true parameter values, but the random effects estimator converges to some other values that are

not the values of the true parameters. In this case, we expect to see differences between the fixed

and random effects estimates.

The test can be carried out coefficient by coefficient using a t-test, or jointly, using a

chi-square test. Let us consider the t-test first. Denote the fixed effects estimate of βk as bFE,k, and

let the random effects estimate be bRE,k. Then the t-statistic for testing that there is no difference

between the estimators, and thus that there is no correlation between ui and any of the explanatory

variables, is

t =
bFE,k − bRE,k

[

var
⋀(

bFE,k
)
− var
⋀(

bRE,k
)]1∕2

=
bFE,k − bRE,k

[

se
(
bFE,k

)2 − se
(
bRE,k

)2
]1∕2

(15.36)

The test can be carried out for each coefficient, and if any of the t-values are statistically different

from zero, then we conclude that one or more of the explanatory variables are correlated with

the unobserved heterogeneity term ui. In this t-statistic, it is important that the denominator

is the estimated variance of the fixed effects estimator minus the estimated variance of the

random effects estimator. The reason is that under the null hypothesis that ui is uncorrelated

with any of the explanatory variables, the random effects estimator will have a smaller variance

than the fixed effects estimator, at least in large samples. Consequently, we expect to find

var
⋀(

bFE,k
)
− var
⋀(

bRE,k
)
> 0, which is necessary for a valid test. A second interesting feature of

this test statistic is that

var
(
bFE,k − bRE,k

)
= var

(
bFE,k

)
+ var

(
bRE,k

)
− 2cov

(
bFE,k, bRE,k

)

= var
(
bFE,k

)
− var

(
bRE,k

)
(15.37)

The unexpected result in the last line occurs because Hausman proved that, in this particular

case, cov
(
bFE,k, bRE,k

)
= var

(
bRE,k

)
.

More commonly, the Hausman test is automated by software packages to contrast the

complete set of estimates. That is, we carry out a test of a joint hypothesis comparing all the

coefficients. The Hausman contrast12 test jointly checks how close the differences between

............................................................................................................................................

12Details of the joint test are beyond the scope of this book. A reference that contains a careful exposition of the t-test,

and the chi-square test, is Wooldridge (2010), pp. 328–334.
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the pairs of coefficients are to zero. When testing all the coefficients except the intercept the

resulting test statistic has the χ2

(KS)
-distribution, where KS is the number of coefficients of

variables that vary across time and individuals, if the null hypothesis of no endogeneity is true.

The form of the Hausman test in (15.36) and its χ2-distribution equivalent are not valid for

cluster-robust standard errors because under these more general assumptions it is no longer true

that var
(
bFE,k − bRE,k

)
= var

(
bFE,k

)
− var

(
bRE,k

)
.

E X A M P L E 15.12 Testing for Endogenous Random Effects
in a Production Function

Intuitively it would seem quite likely that there are unob-

served characteristics of the Chinese chemical firms that

might be correlated with the amount of labor and capital

they use to produce their products. Let us test the differences

in the coefficient β2 of ln(CAPITAL) using the fixed effects

estimates in Example 15.8 and the random effects estimates

in Example 15.9 with conventional, nonrobust standard

errors.

t =
bFE,2 − bRE,2

[

se
(
bFE,2

)2 − se
(
bRE,2

)2
]1∕2

= 0.1160 − 0.2393
[
(0.0195)2 − (0.0147)

]1∕2

= −0.1233

0.0129
= −9.55

We reject the null hypothesis that the difference in the

estimators is zero, and conclude that there is endogeneity in

the random effects model. Using the joint hypothesis test on

the KS = K − 1 = 2 coefficients yields a Hausman contrast

test statistic of 98.82, which is greater than χ2
(0.95,2) = 5.991,

leading us to conclude that there is correlation between the

unobserved heterogeneity term and some of the explanatory

variables. Both of these tests support the notion that in this

example the random effects estimator is inconsistent, so that

we should choose the fixed effects estimator for the empirical

analysis.

E X A M P L E 15.13 Testing for Endogenous Random Effects in a Wage Equation

Using the Hausman contrast test to compare the fixed

and random effects estimates of the wage equation in

Table 15.5 is limited to the six common coefficients. Using

the individual coefficient t-tests you will find significant

differences at the 5% level for the coefficients of TENURE2,

SOUTH, and UNION. The joint test for the equality of the

common coefficients yields a χ2-statistic value of 20.73 while

χ2
(0.95,6) = 12.592. Thus both approaches lead us to conclude

that there is correlation between the individual heterogeneity

term and one or more of the explanatory variables and

therefore the random effects estimator should not be used.

15.4.3 A Regression-Based Hausman Test
The Hausman test described in Section 15.4.2 is based on assumptions of homoskedasticity and

no serial correlation. In particular, it is not robust to heteroskedasticity and/or serial correlation.

A second annoying problem is that the calculated χ2-statistic can come out to be a negative number

in samples that are not large. Such a result makes no sense theoretically and is due to features of

a particular sample. These problems can be avoided by using a “regression-based” Hausman test.

The test is based on an idea by Yair Mundlak, so that it is sometimes called the Mundlak
approach. Mundlak’s notion was that if the unobservable heterogeneity is correlated with the

explanatory variables then perhaps the random effects are correlated with the time averages of

the explanatory variables. Consider the general model in (15.16) with K = 3 and M = 2,

yit = β1 + β2x2it + β3x3it + α1w1i + α2w2i + ui + eit
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Mundlak’s suggestion is that we consider

ui = γ1 + γ2x2i •+ γ3x3i •+ ci (15.38)

where E
(
ci|Xi

)
= 0. Just as in the omitted variables problem, the solution is to take the relation-

ship out of the error term and put it into the model, leaving the error with conditional expectation

zero, that is, specify the panel data model

yit = β1 + β2x2it + β3x3it + α1w1i + α2w2i + ui + eit

= β1 + β2x2it + β3x3it + α1w1i + α2w2i +
(
γ1 + γ2x2i •+ γ3x3i •+ ci

)
+ eit

=
(
β1 + γ1

)
+ β2x2it + β3x3it + α1w1i + α2w2i + γ2x2i •+ γ3x3i •+ ci + eit

= δ1 + β2x2it + β3x3it + α1w1i + α2w2i + γ2x2i •+ γ3x3i •+
(
ci + eit

)
(15.39)

Mundlak suggested testing H0∶γ2 = 0, γ3 = 0 against the alternative H1∶γ2 ≠ 0 or γ3 ≠ 0. The

null hypothesis is that there is no endogeneity arising from a correlation between the unobserved

heterogeneity and the explanatory variables. The asymptotically valid Wald test statistic has a

χ2
(2) distribution in this case. This test statistic will never be negative, and it can be made robust

to heteroskedasticity and/or serial correlation using cluster-robust standard errors.

Equation (15.39) can be estimated by OLS, with cluster-robust standard errors, or by random

effects, which should be more efficient. Interestingly, both OLS and random effects estimation of

(15.39) yield fixed effects estimates of β2 and β3. Furthermore OLS and random effects estimates

of γ2 and γ3 are identical. These outcomes are illustrated in the next two examples.

E X A M P L E 15.14 The Mundlak Approach for a Production Function

For the production function data file chemical3, with

N = 1000 firms, we create the time averages of ln(CAPITAL)

and ln(LABOR) denoting them by adding a “BAR” over the

name. The results are reported in Table 15.6. We give the

estimates and standard errors to many decimal places to make

the points in the previous paragraph. First, compare the OLS

coefficient estimates to the random effects (RE) estimates.

They are identical. Second, compare the coefficients of

ln(CAPITAL) and ln(LABOR) to the fixed effects estimates

T A B L E 15.6 Mundlak Regressions for a Production Function

OLS Cluster RE Conventional RE Cluster
Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

C 5.45532814 0.14841700 5.45532814 0.13713197 5.45532814 0.14841700

ln(CAPITAL) 0.11603986 0.02735145 0.11603988 0.01954950 0.11603988 0.02735146

ln(LABOR) 0.26888033 0.04582462 0.26888041 0.03067342 0.26888041 0.04582462

ln(CAPITAL) 0.22232028 0.04125492 0.22232026 0.03338482 0.22232026 0.04125492

ln(LABOR) 0.10949491 0.06220441 0.10949483 0.05009737 0.10949483 0.06220441

Mundlak test 56.59 97.00 56.59

in Example 15.8 and see that they are the same. Finally, note

that the cluster-robust standard errors for OLS are identical to

the random effects cluster-robust standard errors. The Wald

test statistic value for the null hypothesis H0∶γ2 = 0, γ3 = 0

is 56.59 using cluster-robust standard errors and is 97.0

using the conventional RE standard errors. The test critical

value is χ2
(0.99,2) = 9.210, thus using either test we reject

the null hypothesis and conclude that the unobserved firm

effects are correlated with the capital and/or labor inputs.
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E X A M P L E 15.15 The Mundlak Approach for a Wage Equation

For the wage equation add the time averages of EXPER and

its square, TENURE and its square, SOUTH and UNION.

Note that we cannot use time averages of EDUC and

BLACK because these variables do not change over time

and are already in the model. In Table 15.7, we report

the random effects estimates and both conventional and

cluster-robust standard errors. The Mundlak test statistic

of joint significance of the time average coefficients using

T A B L E 15.7 Mundlak Regressions for a Wage Equation

Random Effects Fixed Effects
Conventional Cluster Cluster

Coefficient Std. Error Std. Error Coefficient Std. Error

C 0.4167 0.1358 0.1101 1.4500 0.0550

EDUC 0.0708 0.0054 0.0056

EXPER 0.0411 0.0066 0.0082 0.0411 0.0082

EXPER2 −0.0004 0.0003 0.0003 −0.0004 0.0003

TENURE 0.0139 0.0033 0.0042 0.0139 0.0042

TENURE2 −0.0009 0.0002 0.0002 −0.0009 0.0002

BLACK −0.1216 0.0317 0.0284

SOUTH −0.0163 0.0361 0.0585 −0.0163 0.0585

UNION 0.0637 0.0143 0.0169 0.0637 0.0169

EXPER 0.0251 0.0244 0.0223

EXPER2 −0.0012 0.0010 0.0010

TENURE 0.0026 0.0126 0.0137

TENURE2 0.0004 0.0007 0.0008

SOUTH −0.0890 0.0464 0.0652

UNION 0.0920 0.0382 0.0415

Mundlak test 20.44 17.26

the former is 20.44 and for the latter is 17.26. There are

six coefficients being tested, and the test critical value is

χ2
(0.99,6) = 16.812. Thus, we reject the null hypothesis and

conclude that a woman’s unobserved characteristics are

correlated with some of the explanatory variables. We also

for convenience provide the fixed effects (FE) estimates with

cluster-robust standard errors. Note that for the time-varying

variables the RE and FE coefficients are identical.

15.4.4 The Hausman–Taylor Estimator
The outcome from our comparison of the fixed and random effects estimates of the wage equation

in Example 15.10 poses a dilemma. Correlation between the explanatory variables and the random

effects means the random effects estimator will be inconsistent. We can overcome the inconsis-

tency problem by using the fixed effects estimator, but doing so means we can no longer estimate

the effects of the time-invariant variables EDUC and BLACK. The wage return for an extra year

of education, and whether or not there is wage discrimination on the basis of race, might be two

important questions that we would like to answer.

To solve this dilemma, we ask: How did we cope with the endogeneity problem in

Chapter 10? We did so by using instrumental variable estimation. Variables known as instru-

ments that are correlated with the endogenous variables but uncorrelated with the equation error

were introduced, leading to an instrumental variables estimator which has the desirable property

of consistency. The Hausman–Taylor estimator is an instrumental variables estimator applied
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to the random effects model, to overcome the problem of inconsistency caused by correlation

between the random effects and some of the explanatory variables. To explain how it works

consider the regression model

yit = β1 + β2xit,exog + β3xit,endog + β3wi,exog + β4wi,endog + ui + eit (15.40)

We have divided the explanatory variables into four categories:

xit,exog: exogenous variables that vary over time and individuals

xit,endog: endogenous variables that vary over time and individuals

wi,exog: time-invariant exogenous variables

wi,endog: time-invariant endogenous variables

Equation (15.40) is written as if there is one variable of each type, but in practice, there could be

more than one. For the Hausman–Taylor estimator to work the number of exogenous time-varying

variables
(
xit,exog

)
must be at least as great as the number of endogenous time-invariant variables

(
wi,endog

)
. This is the necessary condition for there to be enough instrumental variables.

Following Chapter 10, we need instruments for xit,endog and wi,endog. Since the fixed effects

transformation x̃it,endog = xit,endog − xi,endog eliminates correlation with ui, we have x̃it,endog as a

suitable instrument for xit,endog. Also, the variables xi,exog are suitable instruments for wi,endog.

The exogenous variables in (15.40) can be viewed as instruments for themselves, making the

complete instrument set xit,exog, x̃it,endog, wi,exog, xi,exog. Hausman and Taylor modify this set

slightly using x̃it,exog, x̃it,endog, wi,exog, xi,exog, which can be shown to yield the same results. Their

estimator is applied to the transformed GLS model

y∗it = β1 + β2x∗it,exog + β3x∗it,endog + β3w∗i,exog + β4w∗i,endog + v∗it

where, for example, y∗it = yit − α̂yi, and α̂ = 1 − σ̂e

/√

Tσ̂2
u + σ̂

2
e . The estimate σ̂2

e is obtained from

fixed effects residuals; an auxiliary instrumental variables regression13 is needed to find σ̂2
u.

E X A M P L E 15.16 The Hausman–Taylor Estimator for a Wage Equation

For the wage equation used in Example 15.10, we will make

the following assumptions

xit,exog ={EXPER, EXPER2, TENURE, TENURE2, UNION}
xit,endog ={SOUTH}
wi,exog ={BLACK}

wi,endog ={EDUC}

The variable EDUC is chosen as an endogenous variable on

the grounds that it will be correlated with personal attributes

such as ability and perseverance. It is less clear why SOUTH
should be endogenous, but we include it as endogenous

because its fixed and random effects estimates were vastly

different. Perhaps those living in the South have special

attributes. The remaining variables, experience, tenure,

UNION, and BLACK, are assumed uncorrelated with the

random effects.

Estimates for the wage equation are presented in

Table 15.8. Compared to the random effects estimates, there

T A B L E 15.8
Hausman–Taylor Estimates of Wage
Equation

Variable Coefficient Std. Error t-Value p-Value

C −0.75077 0.58624 −1.28 0.200

EDUC 0.17051 0.04446 3.83 0.000

EXPER 0.03991 0.00647 6.16 0.000

EXPER2 −0.00039 0.00027 −1.46 0.144

TENURE 0.01433 0.00316 4.53 0.000

TENURE2 −0.00085 0.00020 −4.32 0.000

BLACK −0.03591 0.06007 −0.60 0.550

SOUTH −0.03171 0.03485 −0.91 0.363

UNION 0.07197 0.01345 5.35 0.000

............................................................................................................................................

13Details can be found in book, Jeffrey Wooldridge (2010), pp. 358–361.
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has been a dramatic increase in the estimated wage returns

to education from 7.3% to 17%. The estimated effects for

experience and tenure are similar. The wage reduction for

BLACK is estimated as 3.6% rather than 11.7%, and the

penalty for being in the SOUTH is also less, 3.1% instead of

8.2%. The instrumental-variable standard errors are mostly

larger, particularly for EDUC and BLACK where the biggest

changes in estimates have been observed. Which set of

estimates is better will depend on how successful we have

been at making the partition into exogenous and endogenous

variables in (15.40) and whether the gain from having

consistent estimates is sufficiently large to compensate

for the increased variance of the instrumental variables

estimators.

15.4.5 Summarizing Panel Data Assumptions
It will be convenient to have a summary of the assumptions under which the random effects and

the fixed effects estimators are appropriate.

Random Effects Estimation Assumptions

RE1. yit = β1 + β2x2it + · · · + βKxKit + α1w1i + · · · + αMwMi +
(
ui + eit

)
. This is the popu-

lation regression function. It may include (i) variables xkit that vary across both time and

individuals, (ii) time-invariant variables
(
wmi
)
, and (iii) variables that vary only across time,

such as zgt, although we have not included them explicitly. It includes unobserved idiosyn-

cratic random errors, eit, that vary across both time and individuals, and (ii) unobserved

individual heterogeneity, ui, that varies across individuals but not time.

RE2. (i) E
(
eit|Xi,wi, ui

)
= 0 and (ii) E

(
ui|Xi,wi

)
= E
(
ui
)
= 0. These are the exogeneity

assumptions. Condition (i) says there is no information in the values of the explanatory vari-

ables or the unobserved heterogeneity that can be used to predict the values of eit. Condition

(ii) says there is no information in the values of the explanatory variables that can be used

to predict ui.

RE3. (i) var
(
eit|Xi,wi, ui

)
= var

(
eit
)
= σ2

e and (ii) var
(
ui|Xi,wi

)
= var

(
ui
)
= σ2

u. These

are the homoskedasticity assumptions.

RE4. (i) Individuals are drawn randomly from the population, so that eit is statistically

independent of ejs; (ii) the random errors eit and ui are statistically independent; and

(iii) cov
(
eit, eis|Xi,wi, ui

)
= 0 if t ≠ s, the random errors eit are serially uncorrelated.

RE5. There is no exact collinearity and all observable variables exhibit some variation.

Random Effects Estimator Notes
1. Under the assumptions RE1–RE5 the random effects (GLS) estimator is BLUE, assuming

σ2
e and σ2

u are known.

2. Implementation of the random effects estimator requires the variance parameters to be esti-

mated. The FGLS estimator is not BLUE, but it is consistent and asymptotically normal as

N grows large if T is fixed, and it is asymptotically equivalent to the GLS estimator.

3. If the random errors are either heteroskedastic (RE3 fails) and/or serially correlated (RE4

(iii) fails), then the random effects estimator is consistent and asymptotically normal, but the

usual standard errors are incorrect. Using cluster-robust standard errors provides a basis for

valid asymptotic inference, including hypothesis tests and interval estimation.

4. Under RE1–RE5 the pooled OLS estimator is consistent and asymptotically normal.
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5. Under RE1–RE5 the random effects, FGLS, estimator is more efficient asymptotically than

the pooled OLS estimator with corrected cluster-robust standard errors.

6. The random effects estimator is more efficient in large samples than the fixed effects estima-

tor for the coefficients of the variables that vary across individuals and time, xkit.

7. The fixed effects estimator is, however, consistent for the coefficients of the variables that

vary across individuals and time, xkit, even if RE2 (ii) fails, and E
(
ui|Xi,wi

)
≠ 0.

Fixed Effects Estimation Assumptions

FE1. yit = β1 + β2x2it + · · · + βKxKit +
(
ui + eit

)
. This is the population regression function.

It may include (i) variables xkit that vary across both time and individuals and (ii) variables

that vary only across time, such as zgt, although we have not included them explicitly. It

includes unobserved idiosyncratic random errors eit that vary across both time and individ-

uals, (ii) unobserved individual heterogeneity ui that varies across individuals but not time.

Note that we cannot include time-invariant variables.

FE2. E
(
eit|Xi, ui

)
= 0. This is the (strict) exogeneity assumptions. There is no information

in the values of the explanatory variables or the unobserved heterogeneity that can be used

to predict the values of eit. Note that we do not have to make any assumption about the

relationship between the unobserved heterogeneity and the explanatory variables.

FE3. var
(
eit|Xi, ui

)
= var

(
eit
)
= σ2

e . The random errors eit are homoskedastic.

FE4. (i) Individuals are drawn randomly from the population, so that eit is statistically inde-

pendent of ejs, and (ii) cov
(
eit, eis|Xi, ui

)
= 0 if t ≠ s, the random errors eit are serially uncor-

related.

FE5. There is no exact collinearity and all observable variables exhibit some variation.

Fixed Effects Estimation Notes
1. Under FE1–FE5 the fixed effects estimator is BLUE.

2. The fixed effects estimator is consistent and asymptotically normal if N grows large and

T is fixed.

3. If the random errors are either heteroskedastic (FE3 fails) and/or serially correlated (FE4

(ii) fails), then the fixed effects estimator is consistent and asymptotically normal, but the

usual standard errors are incorrect. Using cluster-robust standard errors provides a basis for

valid asymptotic inference, including hypothesis tests and interval estimation.

15.4.6 Summarizing and Extending Panel Data
Model Estimation

The most common problem facing researchers using panel data is that unobservable characteris-

tics of the cross-sectional unit, the “individual,” are correlated with one or more of the explanatory

variables. In this case, one or more of the explanatory variables are endogenous, so that OLS

and the more efficient random effects estimator are inconsistent. Most of the time empirical

researchers will use the fixed effects estimator because it eliminates the time-invariant unob-

served heterogeneity term that causes the endogeneity problem. The fixed effects estimator is a

consistent, but inefficient, estimator. Because of the major differences in the estimators, in each

application using panel data, it is important to check for endogeneity using a Hausman or Mundlak

test. Similarly, it is important to test for the presence of individual differences across individuals

using the F-test with fixed effects estimation or the LM test for random effects.



�

� �

�

662 CHAPTER 15 Panel Data Models

Each of the estimators is subject to the usual problems of serial correlation and heteroskedas-

ticity, but these problems are easily accounted for by using cluster-robust standard errors if the

number of cross-sectional units N is much bigger than the time dimension T . A more perplexing

problem for users of the fixed effects estimator is that time-invariant variables are eliminated

from the model. In many applications, variables such as race and sex are vitally important. Using

the Hausman–Taylor estimator solves the endogeneity problem by using instrumental variables

estimation and does not eliminate the time-invariant variables. It can be a good choice if the

IV are strong, and if there are enough time-varying exogenous variables. Another option is to

use the Mundlak approach as a compromise, that is, assume that the unobserved heterogeneity

depends on the time-averages of the variables varying over individual and time, as in (15.38).

Once the time-averages are included in the model, if the remaining unobserved heterogeneity is

not correlated with the included variables, then estimate an augmented model, like (15.39) by

random effects.

Now, we briefly touch some other panel data issues.14

1. While we have not discussed it, panel data methods have been extended to unbalanced
panels. These are cases when the number of time-series observations Ti differs across indi-

viduals.

2. In addition to unobserved heterogeneity associated with individuals, there can also be

unobserved heterogeneity associated with time. Let mt be a random time-specific error

component. Note that the subscript is “t” only, so that it does not vary across individuals,

only time. The combined error term has three terms, vit = ui + mt + eit. It is possible to

carry out random effects estimation in this case with “two-way” error components models.

A more common approach is to include a time-indicator variable in any model with

relatively small T .

3. When T = 2, first-difference estimation is perfectly equivalent to fixed effects estimation.

When T > 2, the first-difference random errors Δvit = Δeit are serially correlated unless the

idiosyncratic random errors eit follow a random walk. This is diametrically opposite the

usual fixed effects assumption that the idiosyncratic errors are serially uncorrelated. Using

cluster-robust standard errors resolves the issue in both cases.

4. Dynamic panel data models that include a lagged dependent variable on the right-hand side

have an endogeneity problem. To see this, let

yit = β1 + β2x2it + β3yi,t−1 +
(
ui + eit

)

Note that yit depends directly on ui, and ui is present in every time period including time

t − 1. Therefore, yi,t−1 also depends directly on ui, causing a positive correlation, making

yi,t−1 endogenous. There is large literature on this difficult problem and many innovative IV

estimators have been suggested. When T is large the dynamic, time-series data characteris-

tics, must be taken into account. Using a difference estimator in this context is very common.

5. While we have focused on endogeneity resulting from the unobserved heterogeneity term,

there can be endogeneity caused by simultaneous equations, such as supply and demand

equations. There are IV/2SLS methods for estimating fixed effects, RE, and first-difference

models.

6. In this edition, we have chosen to omit the section on “sets of regression equations” and

“seemingly unrelated regressions.” These topics arise when T is large and N is small, so that

each cross-sectional unit, perhaps a firm, is modeled with its own equation.15

............................................................................................................................................

14You are encouraged to see Badi H. Baltagi (2013) Econometric Analysis of Panel Data, Fifth Edition, Wiley, along

with previously cited textbooks by Greene (2018) and Wooldridge (2010) for more on these topics.

15See Greene, pp. 328–339, or the previous edition of this book, Principles of Econometrics, 4th ed., 2012, Chapter 15.7.
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7. Unobserved heterogeneity can affect slope coefficients, that is, it is possible that each indi-

vidual’s response βki to a change in xk is different. Random coefficient models recognize

individual-specific slopes as a possibility.16

8. We have mentioned the linear probability model for situations in which individuals face

binary choices. The panel data methods we have discussed can be used with linear prob-

ability models with the usual caveats. Looking forward to Chapter 16, we introduce new

estimators, probit and logit, for handing binary outcome models. These too can be adapted

for panel data methods.

15.5 Exercises

15.5.1 Problems

15.1 Consider the model

yit = β1i + β2xit + eit

a. Show that the fixed effects estimator for β2 can be written as

β̂2,FE =

N∑

i=1

T∑

t=1

(
xit − xi

)(
yit − yi

)

N∑

i=1

T∑

t=1

(
xit − xi

)2

b. Show that the random effects estimator for β2 can be written as

β̂2,RE =

N∑

i=1

T∑

t=1

[

xit − α̂
(

xi − x
)

− x
][

yit − α̂
(

yi − y
)

− y
]

N∑

i=1

T∑

t=1

[

xit − α̂
(

xi − x
)

− x
]2

where y and x are the overall means.

c. Write down an expression for the pooled least squares estimator of β2. Discuss the differences

between the three estimators.

15.2 Consider the panel data regression model with unobserved heterogeneity, yit = β1 + β2xit + vit = β1 +
β2xit + ui + eit. Given that assumptions RE1–RE5 hold, answer each of the following questions.

a. For the purpose of estimating the regression parameters precisely by OLS, the variance of the

idiosyncratic error is more important than the variance of the unobserved heterogeneity error.

True or False? Explain your choice.

b. For the purpose of estimating the regression parameters precisely by GLS, the variance of the

idiosyncratic error is more important than the variance of the unobserved heterogeneity error.

True or False? Explain your choice.

c. For the purpose of estimating the regression parameters precisely by fixed effects, the variance of

the idiosyncratic error is more important than the variance of the unobserved heterogeneity error.

True or False? Explain your choice.

15.3 In the random effects model, under assumptions RE1–RE5, suppose that the variance of the idiosyn-

cratic error is σ2
e = var

(
eit
)
= 1.

a. If the variance of the individual heterogeneity is σ2
u = 1, what is the correlation ρ between

vit = ui + eit and vis = ui + eis?

b. If the variance of the individual heterogeneity is σ2
u = 1, what is the value of the GLS transforma-

tion parameter α if T = 2? What is the value of the GLS transformation parameter α if T = 5?

............................................................................................................................................................

16See, for example, Greene (2018), pp. 450–459, and Wooldridge (2010), pp. 374–387.
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c. In general, for any given values of σ2
u and σ2

e , as the time dimension T of the panel becomes larger,

the transformation parameter α becomes smaller. Is this true, false, or are you uncertain? If you

are uncertain, explain.

d. If T = 2 and σ2
e = var

(
eit
)
= 1, what value of σ2

u will give the GLS transformation parameter

α = 1∕4? What value of σ2
u will give the GLS transformation parameter α = 1∕2? What value of

σ2
u will give the GLS transformation parameter α = 9∕10?

e. If we think of the random errors ui and eit as noise in the regression relationship, summarize how

the relative variation of these noise components, the variances of error components, affects our

ability to estimate the regression parameters.

15.4 Consider the regression model yit = β1 + β2x2it + α1w1i + ui + eit, i = 1,… ,N, t = 1,… , T , where

x2it and w1i are explanatory variables. The time-averaged model is given in equation (15.13),

yi• = β1 + β2x2i•+ α1w1i + vi• where vi• = ui + ei• . The OLS estimator of the parameters in (15.13) is

called the between estimator, because it uses variation between, or among, individuals to estimate

the regression parameters.

a. Under assumptions RE1–RE5, derive the variance of the random error vi• = ui + ei• .

b. Under assumptions RE1–RE5, find the covariance between vi• and vj• , where i ≠ j.
c. Under assumptions RE1–RE5, the between estimator is unbiased. Is this true or false? Explain

the basis of your answer.

d. If assumptions RE1–RE5 hold except for RE2, part (ii), then the between estimator is biased and

inconsistent. Is this true or false? Explain the basis of your answer.

15.5 Table 15.9 contains some simulated panel data, where id is the individual cross-section identifier, t is

the time period, x is an explanatory variable, e is the idiosyncratic error, y is the outcome value. The

data generating process is yit = 10 + 5xit + ui + eit, i = 1, 2, 3, t = 1, 2. The OLS residuals are ê,

which we have rounded to two decimal places for convenience.

T A B L E 15.9 Simulated Data for Exercises 15.5 and 15.10

id t x e y ê

1 1 −0.51 −0.69 4.43 −3.21

1 2 −0.45 −1.70 1.70 −6.31

2 1 −2.44 −0.20 −2.29 2.20

2 2 −1.26 −0.41 2.98 0.06

3 1 −0.68 0.90 11.05 4.48

3 2 1.44 1.24 22.67 2.78

a. Using the true data generating process, calculate ui, i = 1, 2, 3.

b. Calculate the value of the LM statistic in equation (15.35) and carry out a test for the presence of

random effects at the 5% level of significance.

c. The fixed effects estimate of the coefficient of xit is bFE = 5.21 with standard error 0.94, while the

random effects estimate is bRE = 5.31 with standard error 0.81. Test for the presence of correlation

between the unobserved heterogeneity ui and the explanatory variable xit. (Note: The sample is

actually too small for this test to be valid.)

d. If estimates of the variance components are σ̂2

u = 34.84 and σ̂2

e = 2.59, calculate an estimated

value of the GLS transformation parameter α. Based on its magnitude, would you expect the

random effects estimates to be closer to the OLS estimates or the fixed effects estimates.

e. Using the estimates in (d), compute an estimate of the correlation between vi1 = ui + ei1 and

vi2 = ui + ei2. Is this correlation relatively high, or relatively low?

15.6 Using the NLS panel data on N = 716 young women, we consider only years 1987 and 1988. We are

interested in the relationship between ln(WAGE) and experience, its square, and indicator variables

for living in the south and union membership. Some estimation results are in Table 15.10.
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T A B L E 15.10 Estimation Results for Exercise 15.6

(1) (2) (3) (4) (5)
OLS 1987 OLS 1988 FE FE Robust RE

C 0.9348 0.8993 1.5468 1.5468 1.1497

(0.2010) (0.2407) (0.2522) (0.2688) (0.1597)

EXPER 0.1270 0.1265 0.0575 0.0575 0.0986

(0.0295) (0.0323) (0.0330) (0.0328) (0.0220)

EXPER2 −0.0033 −0.0031 −0.0012 −0.0012 −0.0023

(0.0011) (0.0011) (0.0011) (0.0011) (0.0007)

SOUTH −0.2128 −0.2384 −0.3261 −0.3261 −0.2326

(0.0338) (0.0344) (0.1258) (0.2495) (0.0317)

UNION 0.1445 0.1102 0.0822 0.0822 0.1027

(0.0382) (0.0387) (0.0312) (0.0367) (0.0245)

N 716 716 1432 1432 1432

(standard errors in parentheses)

a. The OLS estimates of the ln(WAGE) model for each of the years 1987 and 1988 are reported in

columns (1) and (2). How do the results compare? For these individual year estimations, what are

you assuming about the regression parameter values across individuals (heterogeneity)?

b. The ln(WAGE) equation specified as a panel data regression model is

ln
(
WAGEit

)
= β1 + β2EXPERit + β3EXPER2

it + β4SOUTHit

+ β5UNIONit +
(
ui + eit

)
(XR15.6)

Explain any differences in assumptions between this model and the models in part (a).

c. Column (3) contains the estimated fixed effects model specified in part (b). Compare these esti-

mates with the OLS estimates. Which coefficients, apart from the intercepts, show the most

difference?

d. The F-statistic for the null hypothesis that there are no individual differences, equation (15.20),

is 11.68. What are the degrees of freedom of the F-distribution if the null hypothesis (15.19) is

true? What is the 1% level of significance critical value for the test? What do you conclude about

the null hypothesis.

e. Column (4) contains the fixed effects estimates with cluster-robust standard errors. In the context

of this sample, explain the different assumptions you are making when you estimate with and

without cluster-robust standard errors. Compare the standard errors with those in column (3).

Which ones are substantially different? Are the robust ones larger or smaller?

f. Column (5) contains the random effects estimates. Which coefficients, apart from the intercepts,

show the most difference from the fixed effects estimates? Use the Hausman test statistic (15.36)

to test whether there are significant differences between the random effects estimates and the

fixed effects estimates in column (3) (Why that one?). Based on the test results, is random effects

estimation in this model appropriate?

15.7 Using the NLS panel data on N = 716 young women, we consider only years 1987 and 1988. We are

interested in the relationship between ln(WAGE) and experience, its square, and indicator variables

for living in the south and union membership. We form first differences of the variables, such as

Δln(WAGE) = ln
(
WAGEi,1988

)
– ln
(
WAGEi,1987

)
, and specify the regression

Δln(WAGE) = β2ΔEXPER + β3ΔEXPER2 + β4ΔSOUTH + β5ΔUNION + Δe (XR15.7)

Table 15.11 reports OLS estimates of equation (XR15.7) as Model (1), with conventional standard

errors in parentheses.
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T A B L E 15.11 Estimates for Exercise 15.7

Model C 𝚫EXPER 𝚫EXPER2 𝚫SOUTH 𝚫UNION SOUTHi,1988 UNIONi,1988

(1) 0.0575 −0.0012 −0.3261 0.0822

(0.0330) (0.0011) (0.1258) (0.0312)

(2) −0.0774 0.1187 −0.0014 −0.3453 0.0814

(0.0524) (0.0530) (0.0011) (0.1264) (0.0312)

(3) 0.0668 −0.0012 −0.3157 0.0887 −0.0220 −0.0131

(0.0338) (0.0011) (0.1261) (0.0333) (0.0185) (0.0231)

a. The ability of first differencing to eliminate unobservable time-invariant heterogeneity is illus-

trated in equation (15.8). Explain why the strict form of exogeneity, FE2, is required for the

difference estimator to be consistent. You may wish to reread the start of Section 15.1.2 to help

clarify the assumption.

b. Equation (XR15.6) is the panel data regression specification at the base of the difference model.

Suppose we define the indicator variable D88t = 1 if the year is 1988 and D88t = 0 otherwise,

and add it to the specification in equation (XR15.6). What would its coefficient measure?

c. Model (2) in Table 15.11 is the difference model including an intercept term. Algebraically show

that the constant term added to the difference model is the coefficient of the indicator variable

discussed in part (b). Is the estimated coefficient statistically significant at the 5% level? What

does this imply about the intercept parameter in equation (XR15.6) in 1987 versus 1988?

d. In the difference model, the assumption of strict exogeneity can be checked. Model (3) in

Table 15.11 adds the variables SOUTH and UNION for year 1988 to the difference equation.

As noted in equation (15.5a), the strict exogeneity assumption fails if the random error is

correlated with the explanatory variables in any time period. We can check for such a correlation

by including some, or all, of the explanatory variables for year t, or t − 1 into the difference

equation. If strict exogeneity holds these additional variables should not be significant. Based on

the Model (3) result is there any evidence that the strict exogeneity assumption does not hold?

e. The F-test value for the joint significance of SOUTH and UNION from part (d), in Model (3), is

0.81. Are the variables jointly significant? What are the test degrees of freedom? What is the 5%

critical value?

15.8 Using the NLS panel data on N = 716 young women, we are interested in the relationship between

ln(WAGE) and experience, its square, and indicator variables for living in the south and union

membership. The equation of interest is (XR15.6) in Exercise 15.6. Some estimation results are in

Table 15.12. The estimates are based on 2864 observations covering the years 1982, 1983, 1985, and

1987. Standard errors are in parentheses.

T A B L E 15.12 Estimates for Exercise 15.8

Model C EXPER EXPER2 SOUTH UNION SOUTH1988 UNION1988

(1) 1.3843 0.0565 −0.0011 0.0384 0.0459

(0.0487) (0.0076) (0.0003) (0.0422) (0.0160)

(2) 1.3791 0.0564 −0.0011 0.0389 0.0478 0.0021 0.0160

(0.0505) (0.0076) (0.0003) (0.0451) (0.0162) (0.0481) (0.0166)

robust (0.0611) (0.0084) (0.0003) (0.0636) (0.0169) (0.0581) (0.0143)

a. Explain why the strict form of exogeneity, FE2, is required for the fixed effects estimator to be

consistent. You may wish to reread the start of Section 15.1.2 to help clarify the assumption.

b. The fixed effects estimates of the regression coefficients and conventional standard errors are

reported as Model (1). Are the coefficients significantly different from zero at the 5% level? What

do the signs of the coefficients on experience and its square indicate about returns to experience?
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c. In the fixed effects model, the assumption of strict exogeneity can be checked. Model (2) in

Table 15.12 adds the variables SOUTH and UNION for year 1988 to the fixed effects equation and

we report conventional standard and cluster-robust standard errors. As noted in equation (15.5a),

the strict exogeneity assumption fails if the random error is correlated with the explanatory vari-

ables in any time period. We can check for such a correlation by including some, or all, of the

explanatory variables for year t + 1 into the fixed effects model equation. If strict exogeneity holds

these additional variables should not be significant. Based on the Model (2) result is there any

evidence that the strict exogeneity assumption does not hold?

d. The joint F-test of SOUTH1988 and UNION1988 with conventional standard errors is 0.47. What

are the degrees of freedom for the F-test? What is the 5% critical value? What do we conclude

about strict exogeneity based on the joint test?

e. The joint F-test of SOUTH1988 and UNION1988 with robust-cluster standard errors is 0.63.

When using a cluster-corrected covariance matrix the F-statistic used by some software has

M − 1 denominator degrees of freedom, where M is the number of clusters. In this case, what

is the 5% critical value? What do we conclude about strict exogeneity based on the robust

joint test?

15.9 Examples 15.7 and 15.8 estimate a production function by OLS and fixed effects, respectively, with

both conventional nonrobust standard errors and cluster-robust standard errors for N = 1000 Chinese

chemical firms for 2004–2006.

a. Review the examples. What is the percent difference between the cluster-robust standard errors

and the conventional standard errors?

b. Let v̂it denote the OLS residuals from Example 15.7 and let v̂i,t−1 be the lagged residuals. Con-

sider the regression v̂it = ρv̂i,t−1 + rit, where rit is an error term. Regressing the 2006 residuals on

the 2005 residuals, we obtain ρ̂ = 0.948 with conventional OLS standard error 0.017 and White

heteroskedasticity-consistent standard error 0.020. Do these results establish a time-series serial

correlation in the idiosyncratic error component eit? If not, what is the source of the strong cor-

relation between v̂it and v̂i,t−1?

c. Let ̂̃eit be the residuals from the within estimation, similar to Example 15.5, but using all

1000 firms. Let ̂̃ei,t−1 be the lagged residuals. As noted in Exercise 15.10, part (e), we

expect the errors in the “within” transformed model to be serially correlated with correlation

corr
(
ẽitẽis

)
= −1∕(T − 1) under FE1-FE5. Here T = 3, thus we should find corr

(
ẽitẽis

)
= −1∕2.

Consider the regression ̂̃eit = ρ ̂̃ei,t−1 + rit, where rit is an error term. Using the 2006 data and

N = 1000 observations, we estimate the value of ρ to be −0.233 with conventional standard

error 0.046, and White heteroskedasticity robust standard error of 0.089. Test the null hypothesis

ρ = −1∕2 against the alternative ρ ≠ −1∕2 using a t-test at the 5% level, first with the conven-

tional standard error and again with the heteroskedasticity robust standard error. Rejecting the

null hypothesis implies that FE4, part (ii), does not hold, and time-series serial correlation exists

in the idiosyncratic errors eit. Such a finding justifies the use of cluster-robust standard errors in

the fixed effects model regardless of any heteroskedasticity considerations.

d. Using the N = 2000 observations for 2005–2006, and the estimated regression ̂̃eit = ρ ̂̃ei,t−1 +
rit, we estimate the value of ρ to be −0.270 with cluster-robust standard error, suggested by

Wooldridge (2010, p. 311), of 0.017. Test the null hypothesis ρ = −1∕2 against the alternative

ρ ≠ −1∕2 using a t-test at the 5% level. Rejecting the null hypothesis implies that FE4, part (ii),

does not hold, and time-series serial correlation exists in the idiosyncratic errors eit.

15.10 This exercise uses the simulated data
(
yit, xit

)
in Table 15.9.

a. The fitted least squares dummy variable model, given in equation (15.17), is ŷit = 5.57D1i +
9.98D2i + 14.88D3i + 5.21xit. Compute the residuals from this estimated model for id = 1 and

id = 2. What pattern do you observe in these residuals?

b. The same residual pattern occurs for id = 3. What is the correlation between the residuals for time

periods t = 1 and t = 2?

c. The “within” model is given in equation (15.12). The transformed error is ẽit =
(
eit − ei•

)
. If the

assumptions FE1–FE5 hold, then var
(
ẽit
)
= E
[(

eit − ei•

)2
]

, where ei• =
(
ei1 + ei2

)
∕2 because

T = 2. Show that var
(
ẽit
)
= σ2

e∕2.

d. Using the same approach, as in part (c), show that cov
(
ẽi1, ẽi2

)
= E
[(

ei1 − ei•

)(
ei2 − ei•

)]
= −σ2

e∕2.
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e. Using the results in parts (c) and (d), it follows that corr
(
ẽi1, ẽi2

)
= −1. Relate this result to your

answer in (b). In fact for T > 1, and assuming FE1-FE5 hold, corr
(
ẽit, ẽis

)
= −1∕(T − 1) if t ≠ s.

We anticipate the within-transformed errors to be serially correlated.

15.11 Several software companies report fixed effects estimates with an estimated intercept. As explained

in Example 15.6, the value they report is the average of the coefficients of the indicator variables in

the least squares dummy variable model, given in equation (15.17). Using the data in Table 15.9, the

fitted dummy variable model is ŷit = 5.57D1i + 9.98D2i + 14.88D3i + 5.21xit.

a. Compute the average of the dummy variable coefficients, calling it C.

b. The fitted fixed effects model, using the device from part (a), is ŷit = C + 5.21xit. Calculate

yi•− b2x2i• for id = 1 and id = 2. For your convenience, to two decimals, y1• = 3.07, y2• = 0.34

and x1• = −0.48, x2• = −1.85. Round the calculated values to two decimals and compare them

to the dummy variable coefficients.

c. Given the fitted model ŷit = C + 5.21xit, compute the residuals for id = 1 and id = 2.

d. What is the fitted within-model equation (15.17)?

e. Calculate the within-model residuals for id = 1 and id = 2.

f. Explain the relationship between the within model residuals in part (e) and the residuals calculated

in part (c), apart from any error caused by the two decimal rounding.

15.12 Do larger universities have lower cost per student or a higher cost per student? A univer-

sity is many things and here we only focus on the effect of undergraduate full-time student

enrollment (FTESTU) on average total cost per student (ACA). Consider the regression model

ACAit = β1 + β2FTESTUit + eit where the subscripts i denote the university and t refers to the time

period, and eit is the usual random error term.

a. Using the 2010–2011 data on 141 public universities, we estimate the model above. The estimate

of β2 is b2 = 0.28. The 95% interval estimate is [0.169, 0.392]. What is the estimated effect of

increasing enrollment on average cost per student? Is there a statistically significant relationship?

b. There are many other factors affecting average cost per student besides enrollment. Some of them

can be characterized as the university “identity” or “image.” Let us denote these largely unob-

servable individual characteristics attributes as ui. If we add this feature to the model, it becomes

ACAit = β1 + β2FTESTUit + (ui + eit) = β1 + β2FTESTUit + vit. As long as vit is statistically inde-

pendent of full-time student enrollment, then the least squares estimator is BLUE. Is that true or

false? Explain your answer.

c. The combined error is vit = ui + eit. Let v̂it be the least squares residual from the regression in

(a). We then estimate a simple regression with dependent variable v̂i,2011 and explanatory variable

v̂i,2010. The estimated coefficient is 0.93 and very significant. Is this evidence in support of the

presence of unobservable individual attributes ui, or against them? Explain your logic.

d. With our 2 years of data, we can take “first differences” of the model in (b). Subtracting the model

in 2010 from the model in 2011, we have ΔACAi = β2ΔFTESTUi + Δvi, where

ΔACAi = ACAi,2011 − ACAi,2010,

ΔFTESTUi = FTESTUi,2011 − FTESTUi,2010

and Δvi = vi,2011 − vi,2010

Using the first-difference model, and given the results in (c), will there be serial correlation in the

error Δvi? Explain your reasoning.

e. Using OLS, we estimate the model in (d) and the resulting estimate of β2 is bFD = −0.574 with

standard error se(bFD) = 0.107. What now is the estimated effect of increasing enrollment on

average cost per student? Explain why the result of this regression is so different from the pooled

regression result in (a). Which set of estimates do you believe are more plausible? Why?

15.13 Consider the panel data regression in equation (15.1) for N cross-sectional units with T = 3

time-series observations. Assume that FE1–FE5 hold.

a. Apply the first-difference transformation to model (15.1). What is the resulting specification? Is

there unobserved heterogeneity in this model? Explain.

b. Let Δeit =
(
eit – ei,t−1

)
. Find the variance of Δeit for t = 2 and t = 3.
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c. Assuming that the idiosyncratic error eit is serially uncorrelated, show that the correlation between

Δei3 and Δei2 is −1/2.

d. What must the serial correlation for eit be in order for Δei3 and Δei2 to be uncorrelated?

15.14 Using the NLS panel data on N = 716 young women for years 1982, 1983, 1985, 1987, and 1988,

we are interested in the relationship between ln(WAGE) and education, experience, its square, usual

hours worked per week, and an indicator variable for black women. The equation is

ln
(
WAGEit

)
= β1 + β2EDUCi + β3EXPERit + β4EXPER2

it + β5HOURSit + β6BLACKi + ui + eit

Table 15.13 contains OLS, random effects, and Hausman–Taylor model estimates for this model and

includes conventional and cluster-robust standard errors for each. The Hausman–Taylor estimator

treats EDUC and HOURS as endogenous and correlated with the unobserved heterogeneity.

T A B L E 15.13 Estimates for Exercise 15.14

C EDUC EXPER EXPER2 HOURS BLACK

OLS 0.4509 0.0748 0.0631 −0.0012 −0.0008 −0.1347

(se) (0.0617) (0.0028) (0.0080) (0.0003) (0.0008) (0.0149)

(robust) (0.1030) (0.0055) (0.0100) (0.0004) (0.0019) (0.0290)

RE 0.6294 0.0769 0.0591 −0.0011 −0.0054 −0.1271

(se) (0.0833) (0.0055) (0.0056) (0.0002) (0.0007) (0.0298)

(robust) (0.0999) (0.0054) (0.0069) (0.0003) (0.0017) (0.0294)

HT 0.2153 0.1109 0.0583 −0.0011 −0.0063 −0.0910

(se) (0.5536) (0.0422) (0.0057) (0.0002) (0.0007) (0.0529)

(robust) (0.4897) (0.0381) (0.0075) (0.0003) (0.0018) (0.0494)

a. What is the interpretation of β2? How much difference is there among the OLS, random effects,

and Hausman–Taylor estimates of β2? Construct a 95% interval estimate for β2 using each esti-

mator and cluster-robust standard errors. What differences do you observe?

b. For the Hausman–Taylor estimator, how many instrumental variables are required? How many

instruments do we have? What are they?

c. For this model, why might we prefer the Hausman–Taylor estimator to the fixed effects estimator?

d. The fixed effects estimates of the coefficients of EXPER, EXPER2, and HOURS and their conven-

tional standard errors are 0.0584 (0.00574), −0.0011 (0.00023), and −0.0063 (0.00074), respec-

tively. Comparing these estimates to the random effects estimates, with conventional standard

errors, are we justified in worrying about endogeneity in this model?

e. By using cluster-robust standard errors for the random effects estimator, which of the assumptions

RE1–RE5 are we relaxing?

f. Using the Hausman–Taylor model, σ̂u = 0.35747 and σ̂e = 0.19384. Given these estimates, which

source of error variation is more important in this model? The variation in unobserved heterogene-

ity or the variation in the idiosyncratic error? What is the proportion of the combined variation

that is accounted for by the unobserved heterogeneity?

15.15 Using 352 observations on 44 rice farmers in the Tarlac region of the Phillipines for 8 years from 1990

to 1997, we estimated the relationship between tonnes of freshly threshed rice produced (PROD),

hectares planted (AREA), person-days of hired and family labor (LABOR), and kilograms of fertilizer

(FERT). The log–log specification of the model, including the unobserved heterogeneity term, is

ln
(
PRODit

)
= β1 + β2ln

(
AREAit

)
+ β3ln

(
LABORit

)
+ β4ln

(
FERTit

)
+ ui + eit

Table 15.14 contains various estimates of the model. Model (1) contains OLS estimates. Model (2)

contains OLS estimates of the model including year dummy variables, which are not shown, such
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as D91 = 1 for year 1991, D91 = 0 otherwise. Model (3) contains fixed effects estimates. Model (4)

contains fixed effects estimates of the model including year dummy variables. In each case, conven-

tional standard errors are reported, (se), and for Model (4), we also report cluster-robust standard

errors (robust). For each model, we report the sum of squared residuals and the number of model

parameters, apart from the intercept. The p-values are reported for the t-statistics computed using the

conventional standard errors.

T A B L E 15.14 Estimates for Exercise 15.15

Model C ln(AREA) ln(LABOR) ln(FERT) SSE K−1

(1) OLS −1.5468∗∗∗ 0.3617∗∗∗ 0.4328∗∗∗ 0.2095∗∗∗ 40.5654 3

(se) (0.2557) (0.0640) (0.0669) (0.0383)

(2) OLS −1.5549∗∗∗ 0.3759∗∗∗ 0.4221∗∗∗ 0.2075∗∗∗ 36.2031 10

(se) (0.2524) (0.0618) (0.0663) (0.0380)

(3) FE −0.3352 0.5841∗∗∗ 0.2586∗∗∗ 0.0952∗ 27.6623 46

(se) (0.3263) (0.0802) (0.0703) (0.0432)

(4) FE −0.3122 0.6243∗∗∗ 0.2412∗∗∗ 0.0890∗ 23.0824 53

(se) (0.3107) (0.0755) (0.0682) (0.0415)

(robust) (0.5748) (0.0971) (0.0968) (0.0881)

∗p < 0.05
∗∗p < 0.01
∗∗∗p < 0.001

a. Comment on the sensitivity of the estimates of the input elasticities to the various models.

b. Which of the estimated models do you prefer? Perform a series of hypothesis tests to help you

make your decision.

c. For Model (4), find 95% interval estimates for the input elasticities using (i) conventional standard

errors and (ii) cluster-robust standard errors. Comment on any differences.

d. Calculate the p-value for the coefficient of ln(FERT) using the robust standard error.

15.5.2 Computer Exercises

15.16 The data file liquor contains observations on annual expenditure on liquor (LIQUOR) and annual

income (INCOME), (both in thousands of dollars) for 40 randomly selected households for three

consecutive years.

a. Using the data on INCOME for the first household, calculate the time average, within and dif-

ferenced observations for INCOME. What is the sum of the within-transformed observations on

INCOME for the first household?

b. Consider the panel data regression model LIQUORit = β1 + β2INCOMEit + ui + eit where

i = 1, 2,… , 40 refers to household and t = 1, 2, 3 refers to year. Obtain the OLS estimates of this

model.

c. What are the fixed effects estimates of the parameters? What is the sum of squared residuals?

Using the sum of squared residuals from the fixed effects estimates and the OLS estimation in

(b), test for the presence of individual differences using an F-test. Show how the test statistic is

computed. Using the 5% level of significance, what do we conclude?

d. Using OLS, regress LIQUOR on a constant term and 39 individual-specific indicator variables.

Save the OLS residuals and call them LIQUORW. Regress INCOME on a constant term and 39

individual-specific indicator variables. Save the residuals and call them INCOMEW. Using OLS

regress LIQOURW on INCOMEW without a constant term. What is the estimated coefficient?

What is the sum of squared errors? How does this exercise illustrate the Frisch–Waugh–Lovell

theorem discussed in Section 5.2.5?

e. Following Example 15.5, show how to correct the standard errors from the regression of

LIQOURW on INCOMEW to make them match the fixed effects standard errors.
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15.17 The data file liquor contains observations on annual expenditure on liquor (LIQUOR) and annual

income (INCOME) (both in thousands of dollars) for 40 randomly selected households for three con-

secutive years.

a. Create the first-differenced observations on LIQUOR and INCOME. Call these new variables

LIQUORD and INCOMED. Using OLS regress LIQUORD on INCOMED without a constant

term. Construct a 95% interval estimate of the coefficient.

b. Estimate the model LIQUORit = β1 + β2INCOMEit + ui + eit using random effects. Construct a

95% interval estimate of the coefficient on INCOME. How does it compare to the interval in

part (a)?

c. Test for the presence of random effects using the LM statistic in equation (15.35). Use the 5%

level of significance.

d. For each individual, compute the time averages for the variable INCOME. Call this variable

INCOMEM. Estimate the model LIQUORit = β1 + β2INCOMEit + γINCOMEMi + ci + eit using

the random effects estimator. Test the significance of the coefficient γ at the 5% level. Based on

this test, what can we conclude about the correlation between the random effect ui and INCOME?

Is it OK to use the random effects estimator for the model in (b)?

15.18 The data file mexican contains data collected in 2001 from the transactions of 754 female Mexican sex

workers. There is information on four transactions per worker.17 The labels ID and TRANS are used

to describe a particular woman and a particular transaction. There are three categories of variables.

1. Sex worker characteristics: (i) AGE, (ii) an indicator variable ATTRACTIVE equal to 1 if the worker

is attractive, and (iii) an indicator variable SCHOOL if she has completed secondary school or

higher.

2. Client characteristics: (i) an indicator variable REGULAR equal to 1 if the client is a regular,

(ii) an indicator variable RICH equal to 1 if the client is rich, and (iii) an indicator variable ALCO-
HOL if the client has consumed alcohol before the transaction.

3. Transaction characteristics: (i) the log of the price of the transaction LNPRICE, (ii) an indicator

variable NOCONDOM equal to 1 if a condom was not used, and (iii) two indicator variables for

location, BAR equal to 1 if the transaction originated in bar and STREET equal to 1 if the transaction

originated in the street.

a. Using OLS, estimate a relationship with LNPRICE as the dependent variable, and as explana-

tory variables the sex worker characteristics, client characteristics, and transaction characteristics.

Discuss the signs and significance of the estimated coefficients.

b. Gertler, Shah, and Bertozzi argue that the coefficient of NOCONDOM is a risk premium. Some

sex workers are willing to take the risk of having unprotected sex because of the extra price some

clients are willing to pay to avoid using a condom. What is your 95% interval estimate of the risk

premium based on these OLS estimates?

c. What are some factors that might be included in an unobserved heterogeneity error component in

this model? A crucial assumption for the consistency of the OLS estimator is that the unobserved

heterogeneity term is uncorrelated with the explanatory variables. Without carrying out a formal

test, what are your thoughts about this exogeneity assumption for the model in (a)?

d. Estimate the model in part (a) using the fixed effects estimator, omitting sex worker characteris-

tics. (i) Why did we omit the sex worker characteristics? and (ii) Which coefficient estimates are

significantly different from zero at a 5% level of significance?

e. Using the fixed effects estimation in (d), carry out an F-test for the presence of individual sex

worker differences. Use the 1% level of significance.

f. Using the fixed effects estimates, how is the price affected when clients are rich, are regular, and

have consumed alcohol? How does the location of the transaction influence the price?

g. What is your 95% interval estimate of the risk premium based on these fixed effects estimates?

Compare this interval estimate to the one in part (b).

15.19 This exercise uses the data and model in Exercise 15.18.

a. Estimate the model assuming random effects and with the characteristics of the sex workers

included in the model. Carry out a test of the joint significance of the sex worker characteristics

at the 5% level. Are these coefficients jointly significant? Are they individually significant?

............................................................................................................................................................

17These data are a subset of those used by Paul Gertler, Manisha Shah and Stefano Bertozzi in their study “Risky

Business: The Market for Unprotected Sex”, Journal of Political Economy, 2005, 113, 518–550.
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b. What is your 95% interval estimate of the risk premium, the coefficient on NOCONDOM, based

on these random effects estimates?

c. Test for the presence of random effects using the LM statistic in equation (15.35). Use the 5%

level of significance.

d. Based on the random effects estimates, how much extra does a client have to pay to have unpro-

tected sex with an attractive secondary-educated sex worker?

e. Using the t-test statistic in equation (15.36) and a 5% significance level, test whether there are any

significant differences between the fixed effects and random effects estimates of the coefficients

on NOCONDOM, RICH, REGULAR, ALCOHOL, BAR, and STREET . If there are significant

differences between any of the coefficients, should we rely on the fixed effects estimates or the

random effects estimates? Explain your choice.

f. Reconsider the random effects model from part (a), but assume NOCONDOM is correlated with

the random effects. Reestimate the model using the Hausman–Taylor estimator with NOCON-
DOM treated as endogenous. Compare the results with those obtained in part (b). How much

extra does a client have to pay to have unprotected sex with an attractive secondary-educated sex

worker? What is your 95% interval estimate of the risk premium, the coefficient on NOCONDOM,

based on the Hausman–Taylor estimates?

15.20 This exercise uses data from the STAR experiment introduced to illustrate fixed and random effects

for grouped data. In the STAR experiment, children were randomly assigned within schools into three

types of classes: small classes with 13–17 students, regular-sized classes with 22–25 students, and

regular-sized classes with a full-time teacher aide to assist the teacher. Student scores on achievement

tests were recorded as well as some information about the students, teachers, and schools. Data for

the kindergarten classes are contained in the data file star.

a. Estimate a regression equation (with no fixed or random effects) where READSCORE is related to

SMALL, AIDE, TCHEXPER, BOY , WHITE_ASIAN, and FREELUNCH. Discuss the results. Do

students perform better in reading when they are in small classes? Does a teacher’s aide improve

scores? Do the students of more experienced teachers score higher on reading tests? Does the

student’s sex or race make a difference?

b. Reestimate the model in part (a) with school fixed effects. Compare the results with those in

part (a). Have any of your conclusions changed? [Hint: specify SCHID as the cross-section iden-

tifier and ID as the “time” identifier.]

c. Test for the significance of the school fixed effects. Under what conditions would we expect the

inclusion of significant fixed effects to have little influence on the coefficient estimates of the

remaining variables?

d. Reestimate the model in part (a) with school random effects. Compare the results with those from

parts (a) and (b). Are there any variables in the equation that might be correlated with the school

effects? Use the LM test for the presence of random effects.

e. Using the t-test statistic in equation (15.36) and a 5% significance level, test whether there are any

significant differences between the fixed effects and random effects estimates of the coefficients

on SMALL, AIDE, TCHEXPER, WHITE_ASIAN, and FREELUNCH. What are the implications

of the test outcomes? What happens if we apply the test to the fixed and random effects estimates of

the coefficient on BOY?

f. Create school-averages of the variables and carry out the Mundlak test for correlation between

them and the unobserved heterogeneity.

15.21 This exercise uses data from the STAR experiment introduced to illustrate fixed and random effects

for grouped data. It replicates Exercise 15.20 with teachers (TCHID) being chosen as the cross section

of interest. In the STAR experiment, children were randomly assigned within schools into three

types of classes: small classes with 13–17 students, regular-sized classes with 22–25 students, and

regular-sized classes with a full-time teacher aide to assist the teacher. Student scores on achievement

tests were recorded as well as some information about the students, teachers, and schools. Data for

the kindergarten classes are contained in the data file star.

a. Estimate a regression equation (with no fixed or random effects) where READSCORE is related to

SMALL, AIDE, TCHEXPER, TCHMASTERS, BOY , WHITE_ASIAN, and FREELUNCH. Discuss

the results. Do students perform better in reading when they are in small classes? Does a teacher’s

aide improve scores? Do the students of more experienced teachers score higher on reading tests?

Does gender or race make a difference?
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b. Repeat the estimation in (a) using cluster-robust standard errors, with the cluster defined by

individual teachers, TCHID. Are the robust standard errors larger or smaller. Compare the 95%

interval estimate for the coefficient of SMALL using conventional and robust standard errors.

c. Reestimate the model in part (a) with teacher random effects and using both conventional and

cluster-robust standard errors. Compare these results with those from parts (a) and (b).

d. Are there any variables in the equation that might be correlated with the teacher effects? Recall

that teachers were randomly assigned within schools, but not across schools. Create teacher-level

averages of the variables BOY , WHITE_ASIAN, and FREELUNCH and carry out the Mundlak

test for correlation between them and the unobserved heterogeneity.

e. Suppose that we treat FREELUNCH as endogenous. Use the Hausman–Taylor estimator for this

model. Compare the results to the OLS estimates in (a) and the random effects estimates in part (d).

Do you find any substantial differences?

15.22 What is the relationship between crime and punishment? This important question has been exam-

ined by Cornwell and Trumbull18 using a panel of data from North Carolina. The cross sections are

90 counties, and the data are annual for the years 1981–1987. The data are in the data file crime. In

these models, the crime rate is explained by variables describing the deterrence effect of the legal

system, wages in the private sector (which represents returns to legal activities), socioeconomic con-

ditions such as population density and the percentage of young males in the population, and annual

dummy variables to control for time effects. The authors argue that there may be heterogeneity across

counties (unobservable county-specific characteristics).

a. What do you expect will happen to the crime rate if (i) deterrence increases, (ii) wages in the

private sector increase, (iii) population density increases, and (iv) the percentage of young males

increases?

b. Consider a model in which the log of crime rate (LCRMRTE) is a function of the log of the

probability of arrest (LPRBARR), the log of probability of conviction (LPRBCONV), the log of

the probability of a prison sentence (LPRBPRIS), the log of average prison sentence (LAVGSEN),

and the log of average weekly wage in the manufacturing sector (LWMFG). Estimate this model

by OLS. (i) Discuss the signs of the estimated coefficients and their significance. Are they as you

expected? (ii) Interpret the coefficient on LPRBARR.

c. Estimate the model in (b) using a fixed effects estimator. (i) Discuss the signs of the estimated coef-

ficients and their significance. Are they as you expected? (ii) Interpret the coefficient on LPRBARR
and compare it to the estimate in (b). What do you conclude about the deterrent effect of the prob-

ability of arrest? (iii) Interpret the coefficient on LAVGSEN. What do you conclude about the

severity of punishment as a deterrent?

d. In the fixed effects estimation from part (c), test whether the county level effects are all equal.

e. Based on these results, what public policies would you advocate to deal with crime in the

community?

15.23 Macroeconomists are interested in factors that explain economic growth. An aggregate production

function specification was studied by Duffy and Papageorgiou.19 The data are in the data file ces.

They consist of cross-sectional data on 82 countries for 28 years, 1960–1987.

a. Estimate a Cobb–Douglas production function

LYit = β1 + β2LKit + β3LLit + eit

where LY is the log of GDP, LK is the log of capital, and LL is the log of labor. Interpret the

coefficients on LK and LL. Test the hypothesis that there are constant returns to scale, β2 + β3 = 1.

b. Add a time trend variable t = 1, 2,… , 28, to the specification in (a). Interpret the coefficient of this

variable. Test its significance at the 5% level. What effect does this addition have on the estimates

of β2 and β3?

c. Assume β2 + β3 = 1. Solve for β3 and substitute this expression into the model in (b). Show that

the resulting model is LYLit = β1 + β2LKLit + λt + eit where LYL is the log of the output–labor

ratio, and LKL is the log of the capital–labor ratio. Estimate this restricted, constant returns to

............................................................................................................................................................

18“Estimating the Economic Model of Crime with Panel Data,” Review of Economics and Statistics, 1994, 76, 360–366.

19“A Cross-Country Empirical Investigation of the Aggregate Production Function Specification,” Journal of Economic
Growth, 2000, 5, 83–116.
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scale, version of the Cobb–Douglas production function. Compare the estimate of β2 from this

specification to that in part (b).

d. Estimate the model in (b) using a fixed effects estimator. Test the hypothesis that there are no

cross-country differences. Compare the estimates to those in part (b).

e. Using the results in (d), test the hypothesis that β2 + β3 = 1. What do you conclude about constant

returns to scale?

f. Estimate the restricted version of the Cobb–Douglas model in (c) using the fixed effects estimator.

Compare the results to those in part (c). Which specification do you prefer? Explain your choice.

g. Using the specification in (b), replace the time trend variable t with dummy variables D2–D28.

What is the effect of using this dummy variable specification rather than the single time trend

variable?

15.24 This exercise illustrates the transformation that is necessary to produce GLS estimates for the random

effects model. It utilizes the data on investment (INV), value (V) and capital (K) in the data file

grunfeld11. The model is

INVit = β1 + β2Vit + β3Kit + ui + eit

We assume the random effects assumptions RE1–RE5 hold.

a. Find fixed effects estimates of β2 and β3. Check that the variance estimate that you obtain is

σ̂2

e = 2530.042.

b. Compute the sample means INVi, Vi, and Ki for each of the 11 firms. [Hint: one way to do this to

regress each of the variables (INV , then V , then K) on 11 indicator variables, 1 for each firm, and

in each case save the predictions.]

c. Estimate β1, β2, and β3 from the between regression

INVi = β1 + β2Vi + β3Ki + ui + ei •

Check that the variance estimate for σ2
∗ = var

(
ui + ei •

)
is σ̂2

∗ = 6328.554. [Hint: use the pre-

dictions obtained in (b) to run the regression. If you do so, you will be using each of the N
observations repeated T times. The coefficient estimates will be unaffected, but the sum of squared

errors will be T = 20 times bigger than it should be, and the divisor used to estimate the error

variance will be NT − K instead of N − K. You will need to make adjustments accordingly.]

d. Show that

α̂ = 1 −

√
√
√
√ σ̂2

e

Tσ̂2

∗

= 0.85862

e. Apply least squares to the regression model

INV∗
it = β1x∗

1
+ β2V∗

it + β3K∗
it + v∗it

where the transformed variables are given by INV∗
it = INVit − α̂ INVi, x∗

1
= 1 − α̂, V∗

it = Vit − α̂Vi,

and K∗
it = Kit − α̂Ki.

f. Use your software to obtain random effects estimates of the original equation. Compare those

estimates with those you obtained in part (e).

15.25 Consider the production relationship on Chinese firms used in several chapter examples. We now add

another input, MATERIALS. Use the data set from the data file chemical3 for this exercise. (The data

file chemical includes many more firms.)

ln
(
SALESit

)
= β1 + β2ln

(
CAPITALit

)
+ β3ln

(
LABORit

)
+ β4ln

(
MATERIALSit

)
+ ui + eit

a. Estimate this model using OLS. Compute conventional, heteroskedasticity robust, and

cluster-robust standard errors. Using each type of standard error construct a 95% interval

estimate for the elasticity of SALES with respect to MATERIALS. What do you observe about

these intervals?

b. Using each type of standard error in part (a), test at the 5% level the null hypothesis of con-

stant returns to scale, β2 + β3 + β4 = 1 versus the alternative β2 + β3 + β4 ≠ 1. Are the results

consistent?
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c. Use the OLS residuals from (a) and carry out the N × R2 test from Chapter 9 to test for AR(1)

serial correlation in the errors using the 2005 and 2006 data. Is there evidence of serial correlation?

What factors might be causing it?

d. Estimate the model using random effects. How do these estimates compare to the OLS estimates?

Test the null hypothesis β2 + β3 + β4 = 1 versus the alternative β2 + β3 + β4 ≠ 1. What do you

conclude. Is there evidence of unobserved heterogeneity? Carry out the LM test for the presence

of random effects at the 5% level of signficance.

e. Estimate the model using fixed effects. How do the estimates compare to those in (d)? Use the

Hausman test for the significance of the difference in the coefficients. Is there evidence that the

unobserved heterogeneity is correlated with one or more of the explanatory variables? Explain.

f. Obtain the fixed effects residuals, ẽit. Using OLS with cluster-robust standard errors estimate

the regression ẽit = ρẽi,t−1 + rit, where rit is a random error. As noted in Exercise 15.10, if the

idiosyncratic errors eit are uncorrelated we expect ρ = −1∕2. Rejecting this hypothesis implies

that idiosyncratic errors eit are serially correlated. Using the 5% level of significance, what do

you conclude?

g. Estimate the model by fixed effects using cluster-robust standard errors. How different are these

standard errors from the conventional ones in part (e)?

15.26 The data file collegecost contains data on cost per student and related factors at four-year colleges in

the U.S., covering the period 1987 to 2011. In this exercise, we explore a minimalist model predicting

cost per student. Specify the model to be

ln
(
TCit

)
= β1 + β2FTESTUit + β3FTGRADit + β4TTit + β5GAit + β6CFit +

8∑

t=2

δtDt + ui + eit

where TC is the total cost per student, FTESTU is number of full-time equivalent students, FTGRAD
is number of full-time graduate students, TT is number of tenure track faculty per 100 students,

GA is number of graduate assistants per 100 students, and CF is the number of contract faculty per

100 students, which are hired on a year to year basis. The Dt are indicator variables for the years 1989,

1991, 1999, 2005, 2008, 2010, and 2011. The base year is 1987. Only use data on public universities

in this exercise.

a. Calculate the summary statistics for the model variables for the years 1987 and 2011. What do

you observe about the sample averages of these variables?

b. Estimate the model by random effects. Discuss the signs and significance of the estimated coef-

ficients. What is the predicted percentage cost per student change if one additional tenure track

faculty is hired, per 100 students? What does the estimated value of δ8 suggest?

c. Using the random effects estimates, test the following hypotheses at the 5% level: (i)

H0∶β2 ≥ β3, H1∶β2 < β3; (ii) H0∶β4 ≤ β6, H1∶β4 > β6; and (iii) H0∶β5 ≥ β6, H1∶β5 < β6.

What do these tests imply about the relative costs of undergraduate students versus graduate

students, tenure track faculty relative to contract faculty, and contract faculty relative to graduate

assistants?

d. Calculate the time averages of the explanatory variables other than the indicator variables, for

example, FTESTUi•. Add these variables to the model and test their joint significance at the 1%

level. What does the test result tell us about using the random effects estimator in this case? Which

assumption is being tested?

e. Obtain the fixed effects estimates of the model. Discuss the signs and significance of the estimated

coefficients. What is the predicted percentage cost per student change if one additional tenure track

faculty is hired, per 100 students? What does the estimated value of δ8 suggest? How do these

estimates compare to the random effects estimates?

f. Using the fixed effects estimates, test the following hypotheses at the 5% level: (i) H0∶β2 ≥ β3,

H1∶β2 < β3; (ii) H0∶β4 ≤ β6, H1∶β4 > β6; and (iii) H0∶β5 ≥ β6, H1∶β5 < β6. What do these

tests imply about the relative costs of undergraduate students versus graduate students, tenure

track faculty relative to contract faculty, and contract faculty relative to graduate assistants?

15.27 The data file collegecost contains data on cost per student and related factors at four-year colleges

in the U.S., covering the period from 1987 to 2011. In this exercise, we explore a minimalist model

predicting cost per student. Specify the model to be

ln
(
TCit

)
= β1 + β2FTESTUit + β3FTGRADit + β4TTit + β5GAit + β6CFit +

8∑

t=2

δtDt + ui + eit
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where TC is the total cost per student, FTESTU is number of full-time equivalent students, FTGRAD
is number of full-time graduate students, TT is number of tenure track faculty per 100 students, GA
is number of graduate assistants per 100 students, and CF is the number of contract faculty per

100 students, which are hired on a year to year basis. The Dt are indicator variables for the years

1989, 1991, 1999, 2005, 2008, 2010, and 2011. The base year is 1987.

a. Calculate the summary statistics for the model variables for the years 1987 and 2011 separately for

public and private universities. What do you observe about the sample averages of these variables?

In particular, what is the increase in TC between 1987 and 2011 for each type of university. What

has happened to the number of tenure track faculty and the number of contract faculty?

b. Using OLS, estimate the model for public universities using conventional and cluster-robust stan-

dard errors. Are the standard errors noticeably different?

c. Using OLS, estimate the model for private universities using conventional and cluster-robust stan-

dard errors. Are the standard errors noticeably different? How do the coefficient estimates for the

private universities compare to those for the public universities?

d. Estimate the model using fixed effects with cluster-robust standard errors for the public univer-

sities. How do these estimates compare to the OLS estimates in (b)? What are the important

differences?

e. Estimate the model using fixed effects with cluster-robust standard errors for the private universi-

ties. How do these estimates compare to the estimates for the public universities in part (d)? What

are the important differences?

15.28 The data file collegecost contains data on cost per student and related factors at four-year colleges in

the U.S., covering the period 1987 to 2011. In this exercise, we explore a minimalist model predicting

cost per student. Specify the model to be

ln
(
TCit

)
= β1 + β2FTESTUit + β3FTGRADit + β4TTit + β5GAit + β6CFit +

8∑

t=2

δtDt + ui + eit

where TC is the total cost per student, FTESTU is number of full-time equivalent students, FTGRAD
is number of full-time graduate students, TT is number of tenure track faculty per 100 students, GA
is number of graduate assistants per 100 students, and CF is the number of contract faculty, which

are hired on a year to year basis. The Dt are indicator variables for the years 1989, 1991, 1999, 2005,

2008, 2010, and 2011. The base year is 1987. Use data only on public universities for this question.

a. Create first differences of the variables. Using the 2011 data, estimate by OLS the first-difference

model

Δln
(
TCit

)
= β2ΔFTESTUit + β3ΔFTGRADit + β4ΔTTit + β5ΔGAit + β6ΔCFit + Δeit

b. Repeat the estimation in (a) adding an intercept term. What is the interpretation of the constant?

c. Repeat the estimation in (a) adding an intercept plus the 2011 observations on the variables

FTESTU, FTGRAD, TT , GA, and CF. If the assumption of strict exogeneity holds none of the

coefficients on these variables should be significant, and they should be jointly insignificant as

well. What do you conclude? Why is this assumption important for the estimation of panel data

regression models?

d. Create the one period future, or forward, value for each variable, xt+1. That is, for example, in

year t create a new variable FTESTUi,t+1. Using data from 2008 and 2010, estimate the panel data

regression model by fixed effects, including the forward values of FTESTU, FTGRAD, TT , GA,

and CF. If the assumption of strict exogeneity holds none of the coefficients on these variables

should be significant, and they should be jointly insignificant as well. What do you conclude?

15.29 In this exercise, we re-examine the data in Exercise 15.22, a panel of data from North Carolina. Con-

sider a model in which the log of crime rate (LCRMRTE) is a function of the log of police per capita

(LPOLPC), the log of the probability of arrest (LPRBARR), the log of the probability of conviction

(LPRBCONV), the log of average prison sentence (LAVGSEN), and the log of average weekly wage

in the manufacturing sector (LWMFG) and indicator variables for the western region (WEST) and

urban counties (URBAN).

a. It is possible that the crime rate and police per capita are jointly determined and that LPOLPC
might be endogenous. Hence we consider estimating the model by 2SLS. As instruments we use

the log of tax revenue per capita (LTAXPC) and the log of the ratio of face-to-face crimes relative

to other types of crimes (LMIX). Estimate the first-stage regression of LPOLPC on the other
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variables, except LCRMRTE, and the two instruments. Test the joint significance of the IV. Can

we reject the null hypothesis that the IV are weak?

b. Using the instruments in (a), estimate the model by 2SLS. Are the deterrence variables significant?

c. Test for the endogeneity of LPOLPC and test the validity of the surplus instrument. What do you

conclude in each case?

d. The estimation in (b) ignores unobserved county heterogeneity. For each variable, except the

time-invariant variables WEST and URBAN, obtain the variables in the deviation about the county

mean form, that is, apply the within transformation to each variable. Estimate the first-stage model

with the variables in deviation from the mean form. Test the joint significance of the two trans-

formed instruments.

e. Using the transformed instruments and other variables, estimate the model by 2SLS. What differ-

ences do you observe between these estimates and those in part (b)? Recall that you must adjust the

standard errors for the correct degrees of freedom, as in Example 15.5. (Note: You may investigate

whether your software has an automatic command to do 2SLS with panel data as a check.)

f. Using the transformed instruments and other variables, test for the endogeneity of LPOLPC and

test the validity of the surplus instrument. What do you conclude in each case?

15.30 In this exercise, we extend Exercise 15.29 by also considering the possibility that the probability of

arrest is jointly determined with the crime rate and the number of police per capita. The idea is that

when the crime rate is high, the police may intensify their efforts to reduce crime by increasing the

arrest rate. Consider the same model as in Exercise 15.29.

a. It is possible that the crime rate and police per capita are jointly determined and that LPOLPC and

LPRBARR might be endogenous. Hence we consider estimating the model by 2SLS. As instru-

ments we use the log of tax revenue per capita (LTAXPC) and the log of the ratio of face-to-face

crimes relative to other types of crimes (LMIX). Estimate the first-stage regression of LPOLPC
on the other variables, except LCRMRTE, and the two instruments. Test the joint significance of

the IV. Can we reject the null hypothesis that the IV are weak? Estimate the first-stage regression

of LPRBARR on the other variables, except LCRMRTE, and the two instruments. Test the joint

significance of the IV. Can we reject the null hypothesis that the IV are weak?

b. Using the instruments in (a), estimate the model, treating both LPOLPC and LPRBARR as endoge-

nous, by 2SLS. Are the deterrence variables significant?

c. Test for the endogeneity of LPOLPC and LPRBARR using the regression-based Hausman test.

What do you conclude in each case?

d. The estimation in (b) ignores unobserved county heterogeneity. For each variable, except the

time-invariant variables WEST and URBAN, obtain the variables in the deviation about the county

mean form, that is, apply the within transformation to each variable. Estimate the first-stage model

for both LPOLPC and LPRBARR with the variables in deviation from the mean form. Test the

joint significance of the two transformed instruments.

e. Using the transformed instruments and other variables, estimate the model, treating both LPOLPC
and LPRBARR as endogenous, by 2SLS. What differences do you observe between these estimates

and those in part (b)? Recall that you must adjust the standard errors for the correct degrees of

freedom, as in Example 15.5. (Note: You may investigate whether your software has an automatic

command to do 2SLS with panel data as a check.)

f. Test for the endogeneity of LPOLPC and LPRBARR using the regression-based Hausman test.

What do you conclude in each case?

Appendix 15A Cluster-Robust Standard Errors:

Some Details
To appreciate the nature of cluster-robust standard errors, we return momentarily to a simple

regression model for cross-sectional data

yi = β1 + β2xi + ei
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Using the result b2 = β2 +
∑N

i=1
wiei, where wi =

(
xi − x

)/∑N
i=1

(
xi − x

)2
, in Appendix 8A, we

showed that the variance of the least squares estimator b2, in the presence of heteroskedasticity,

is given by

var
(
b2|x

)
= var

(
N∑

i=1

wiei
|
|x

)

=
N∑

i=1

w2
i var
(
ei|x
)
+

N∑

i=1

N∑

j=i+1

2wiwjcov
(
ei, ej|x

)

=
N∑

i=1

w2
i var
(
ei|x
)
=

N∑

i=1

w2
i σ

2
i

Because we are assuming a random sample of cross-sectional individuals, cov
(
ei, ej|𝐱

)
= 0 for

i ≠ j, leading to the simplification in the second line of the above equation.

Now suppose we have a panel simple regression model

yit = β1 + β2xit + eit (15A.1)

with the assumptions cov
(
eit, eis|𝐱

)
= ψits and cov

(
eit, ejs|𝐱

)
= 0 for i ≠ j. In equation (15.29) we

denoted var
(
vit
)
= σ2

u + σ
2
it = ψ

2
it. In this appendix we use an alternative notation, to simplify the

double summations. Let var
(
vit
)
= ψitt = cov

(
vit, vit

)
. The pooled least squares estimator for β2

is given by

b2 = β2 +
N∑

i=1

T∑

t=1

witeit (15A.2)

where

wit =
xit − x

N∑

i=1

T∑

t=1

(

xit − x
)2

with x =
∑N

i=1

∑T
t=1

xit
/

NT . The variance of the pooled least squares estimator b2 is given by

var
(
b2|x

)
= var

(
N∑

i=1

T∑

t=1

witeit
|
|x

)

= var

(
N∑

i=1

gi
|
|x

)

(15A.3)

where gi =
∑T

t=1
witeit is a weighted sum of the errors for individual i. Because we have a random

sample, the errors for different individuals are uncorrelated, implying that gi is uncorrelated with

gj for i ≠ j. Thus,

var
(
b2|x

)
= var

(
N∑

i=1

gi
|
|x

)

=
N∑

i=1

var
(
gi|x
)
+

N∑

i=1

N∑

j=i+1

2cov
(
gi, gj|x

)
=

N∑

i=1

var
(
gi|x
)

(15A.4)

To find var
(
gi|𝐱
)

suppose for the moment that T = 2, then

var
(
gi|x
)
= var

(
2∑

t=1

witeit
|
|x

)

= w2
i1var

(
ei1|x

)
+ w2

i2var
(
ei2|x

)
+ 2wi1wi2cov

(
ei1, ei2|x

)

= w2
i1ψi11 + w2

i2ψi22 + 2wi1wi2ψi12

=
2∑

t=1

2∑

s=1

witwisψits
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For T > 2, var
(
gi|x
)
=
∑T

t=1

∑T
s=1

witwisψits. Substituting this expression into (15A.4), we have

var
(
b2|x

)
=

N∑

i=1

T∑

t=1

T∑

s=1

witwisψits

=

N∑

i=1

T∑

t=1

T∑

s=1

(

xit − x
)(

xis − x
)

ψits

(
N∑

i=1

T∑

t=1

(

xit − x
)2

)2

(15A.5)

Recall that cov
(
eit, eis|𝐱

)
= E
(
eiteis|𝐱

)
= ψits. A cluster-robust variance estimate is obtained

from (15A.5) by replacing ψits with êitêis. Thus, a cluster-robust standard error for b2 is given by

the square root of

var
⋀(

b2|x
)
=

N∑

i=1

T∑

t=1

T∑

s=1

(

xit − x
)(

xis − x
)

êitêis

(
N∑

i=1

T∑

t=1

(

xit − x
)2

)2
(15A.6)

The above description of how cluster-robust standard errors are calculated and the logic behind

them was done in terms of a model with just one explanatory variable. To describe the robust

variance estimator for models with more than one explanatory variable, matrix algebra is required,

but the principle is the same.

Finally, you will find that the cluster-robust standard errors produced by most software pack-

ages apply a degrees of freedom correction to the expression in (15A.6). Unfortunately, they do

not all use the same correction factor. When using a cluster-robust standard error, the effective

number of observations is G, the number of clusters.20

Appendix 15B Estimation of Error Components
The RE model is

yit = β1 + β2x2it + α1w1i +
(
ui + eit

)
(15B.1)

where ui is the individual-specific error and eit is the usual regression error. We will discuss the

case for a balanced panel, with T time-series observations for each of N individuals. To implement

GLS estimation we need to consistently estimate σ2
u, the variance of the individual-specific error

component, and σ2
e , the variance of the regression error.

The regression error variance σ2
e comes from the fixed effects estimator. In (15.14), we trans-

form the panel data regression into “deviation about the individual mean” form

yit − yi = β2

(
x2it − x2i

)
+
(
eit − ei

)
(15B.2)

The least squares estimator of this equation yields the same estimates and sum of squared errors

(denoted here by SSEDV) as least squares applied to a model that includes a dummy variable for

each individual in the sample. A consistent estimator of σ2
e is obtained by dividing SSEDV by the

............................................................................................................................................

20See Carter, et al. “Asymptotic Behavior of a t-Test Robust to Cluster Heterogeneity,” The Review of Economics and
Statistics, 2017, 99(4), 698–709.



�

� �

�

680 CHAPTER 15 Panel Data Models

appropriate degrees of freedom, which is NT – N − KS, where KS is the number of parameters

that are present in the transformed model (15B.2)

σ̂2

e =
SSEDV

NT − N − KS
(15B.3)

The estimator of σ2
u requires a bit more work. We begin with the time-averaged observations

in (15.13)

yi = β1 + β2x2i + α1w1i + ui + ei, i = 1, 2,… ,N (15B.4)

The least squares estimator of (15B.4) is called the between estimator, as it uses variation

between individuals as a basis for estimating the regression parameters. This estimator is unbi-

ased and consistent, but not minimum variance under the error assumptions of the random effects

model. The error term in this model is ui + ei; it is uncorrelated across individuals, and has

homoskedastic variance

var
(
ui + ei

)
= var

(
ui
)
+ var

(
ei
)
= var

(
ui
)
+ var

(
T∑

t=1

eit∕T

)

= σ2
u +

1

T2
var

(
T∑

t=1

eit

)

= σ2
u +

Tσ2
e

T2

= σ2
u +

σ2
e

T
(15B.5)

We can estimate the variance in (15B.5) by estimating the between regression in (15B.4), and

dividing the sum of squared errors, SSEBE, by the degrees of freedom N − KBE, where KBE is the

total number of parameters in the between regression, including the intercept parameter. Then

σ2
u +

σ2
e

T

⋀

=
SSEBE

N − KBE
(15B.6)

With this estimate in hand, we can estimate σ2
u as

σ̂2

u = σ
2
u +

σ2
e

T

⋀

−
σ̂2

e

T
=

SSEBE

N − KBE
−

SSEDV

T
(
NT − N − KS

) (15B.7)

We have obtained the estimates of σ2
u and σ2

e using what is called the Swamy–Arora method. This

method is implemented in software packages and is well established. We note, however, that it is

possible in finite samples to obtain an estimate σ̂2

u in (15B.7) that is negative, which is obviously

infeasible. If this should happen, one option is simply to set σ̂2

u = 0, which implies that there are no

random effects. Alternatively, your software may offer other options for estimating the variance

components, which you might try.
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CHAPTER 16

Qualitative and Limited
Dependent Variable
Models

L E A R N I N G O B J E C T I V E S

Based on the material in this chapter, you should be able to

1. Give some examples of economic decisions in

which the observed outcome is a binary variable.

2. Explain why probit, or logit, is usually preferred to

least squares when estimating a model in which

the dependent variable is binary.

3. Give some examples of economic decisions

in which the observed outcome is a choice

among several alternatives, both ordered and

unordered.

4. Compare and contrast the multinomial logit

model to the conditional logit model.

5. Give some examples of models in which the

dependent variable is a count variable.

6. Discuss the implications of censored data for least

squares estimation.

7. Describe what is meant by the phrase ‘‘sample

selection.’’

K E Y W O R D S

alternative specific variables

binary choice models

censored data

conditional logit

count data models

feasible generalized least squares

Heckit

identification problem

independence of irrelevant

alternatives (IIA)

index models

individual specific variables

latent variables

likelihood function

likelihood ratio

limited dependent variables

linear probability model

logistic random variable

logit

log-likelihood function

marginal effect

maximum likelihood estimation

multinomial choice models

multinomial logit

ordered probit

ordinal variables

Poisson random variable

Poisson regression model

probability ratio

probit

selection bias

Tobit model

truncated regression

681
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In this book, we focus primarily on econometric models in which the dependent variable is

continuous and fully observable; quantities, prices, and outputs are examples of such variables.

However, microeconomics is a general theory of choice, and many of the choices that individuals

and firms make cannot be measured by a continuous outcome variable. In this chapter, we exam-

ine some fascinating models that are used to describe choice behavior, and which do not have the

usual continuous dependent variable. Our descriptions will be brief, since we will not go into all

the theory, but we will reveal to you a rich area of economic applications.

We also introduce a class of models with dependent variables that are limited. By that we

mean that they are continuous but that their range of values is constrained in some way, and their

values not completely observable. Alternatives to least squares estimation must be considered for

such cases, since the least squares estimator is both biased and inconsistent.

16.1 Introducing Models with Binary

Dependent Variables
Many of the choices that individuals and firms make are “either-or” in nature. For example, a

high-school graduate decides either to attend college or not. A worker decides either to drive

to work or to get there using a different means of transportation. A household decides either to

purchase a house or to rent. A firm decides either to advertise its product in a local newspaper

or it decides not to. As economists we are interested in explaining why particular choices are

made, and what factors enter into the decision process. We also want to know how much each

factor affects the outcome and how to predict outcomes. Such questions lead us to the problem

of constructing a statistical model of binary, either-or, choices. Such choices can be represented

by a binary (indicator) variable that takes the value 1 if one outcome is chosen and the value 0

otherwise. The binary variable describing a choice is the dependent variable rather than an inde-

pendent variable. This fact affects our choice of a statistical model.

The list of economic applications in which choice models may be useful is a long one. These

models are useful in any economic setting in which an agent must choose one of two alternatives.

Examples include the following:

• An economic model explaining why some individuals take a second or third job and engage

in “moonlighting.”

• An economic model of why some legislators in the U.S. House of Representatives vote for a

particular bill and others do not.

• An economic model explaining why some loan applications are accepted and others are not

at a large metropolitan bank.

• An economic model explaining why some individuals vote for increased spending in a school

board election and others vote against.

• An economic model explaining why some female college students decide to study engineer-

ing and others do not.

This list illustrates the great variety of circumstances in which a model of binary choice may

be used. In each case, an economic decision-maker chooses between two mutually exclusive

outcomes.

The key feature of binary choice models is the nature of the outcome variable. It is an indi-

cator variable representing the choice between two alternatives. We represent the ith individual’s

choice as

yi =

{
1 alternative one is chosen

0 alternative two is chosen
(16.1)

Individuals make choices to maximize their utility, or well-being, and we economists would like

to understand the process. What are the important factors leading to the choice and how much

weight is given to each? Can we predict what the choice will be? These questions lead us to
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consider how individuals make their decisions, how to build an econometric model of the choice

process, and how to model the probability of choosing one alternative or the other.

It’s always best to start at the beginning. Unlike the outcome of a game of chance, such as

flipping a coin and observing a head or a tail, the probability that alternative one will be chosen

varies from individual to individual, and the probability depends on many factors, describing the

individual and the characteristics of the alternatives. As in a regression model, let these factors

be denoted xi =
(
xi1 = 1, xi2,… , xiK

)
. Then the conditional probability that the ith individual

chooses alternative one is P
(
yi = 1|xi

)
= p

(
xi
)
, where p

(
𝐱i
)

is a function of the factors xi, and

because it is a probability, 0 ≤ p(𝐱i) ≤ 1. The conditional probability of choosing alternative two

is P
(
yi = 0|xi

)
= 1 − p

(
xi
)
. We can represent the conditional probability function for the random

variable yi in equation (16.1) as

𝑓

(
yi|xi

)
= p

(
xi
)yi
[

1 − p
(
xi
)]1−yi

yi = 0, 1 (16.2)

Then P
(
yi = 1|xi

)
= 𝑓

(
1|xi

)
= p

(
xi
)

and P
(
yi = 0|xi

)
= 𝑓

(
0|xi

)
= 1 − p

(
xi
)
. The standard

models of probabilistic choice are simply alternative ways of representing, or approximating,

P
(
yi = 1|xi

)
= p

(
xi
)
.

E X A M P L E 16.1 A Transportation Problem

An important problem in transportation economics is

explaining an individual’s choice between driving (private

transportation) and taking the bus (public transportation)

when commuting to work, assuming, for simplicity, that these

are the only two alternatives. We can imagine many factors

that affect the choice, including an individual’s characteris-

tics, such as age, income, and sex; the characteristics of their

automobile, such as its reliability, comfort, and fuel economy;

the characteristics of the public transportation, such as relia-

bility, cost, and safety. In our example, we will focus on a sin-

gle factor, commuting time. Define the explanatory variable

xi = (commuting time by bus

− commuting time by car, for the ith individual)

A priori we expect that as xi increases, and commuting

time by bus increases relative to commuting time by car,

and holding all else constant, an individual would be more

inclined to drive. Suppose that alternative one is driving to

work, yi = 1, and alternative two is taking public transporta-

tion, yi = 0. Then the probability that the ith individual drives

to work is P
(
yi = 1|xi

)
= p

(
xi
)
. Our reasoning suggests that

there is a positive relationship between the difference in

commuting time and the probability that an individual will

drive to work. Using data on individuals and their choices, we

will obtain estimates of how much increases in commuting

time by bus relative to driving will affect the probability that

an individual will drive. Using the estimates, we can predict

the choice of an individual when the commuting time by bus

is, for example, 20 minutes longer than the commuting time

by car. We will also develop methods for testing hypotheses

about the nature of the relationship, such as testing whether

the difference in commuting time is a statistically significant

factor in the decision.

16.1.1 The Linear Probability Model
We discussed the linear probability model in Sections 7.4 and 8.7. It is a regression model that

arises straightforwardly from the definition of expected value. Using the probability model in

(16.2),

E
(
yi|xi

)
=

1∑

yi=0

yi𝑓
(
yi|xi

)
= 0 × 𝑓

(
0|xi

)
+ 1 × 𝑓

(
1|xi

)
= p

(
xi
)

(16.3)

The population average outcome, the average choice, is the probability that the first alternative is

chosen. It is natural to specify a linear regression model for the probability

p
(
xi
)
= E

(
yi|xi

)
= β1 + β2xi2 + · · · + βKxiK (16.4)

Let the random error ei account for the difference between the observed outcome yi and the con-

ditional mean E
(
yi|xi

)
,

ei = yi − E
(
yi|xi

)
(16.5)
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Then

yi = E
(
yi|xi

)
+ ei = β1 + β2xi2 + · · · + βKxiK + ei (16.6)

If E
(
ei|xi

)
= 0, then the least squares estimator of the parameters is unbiased, or if random error

ei is uncorrelated with xi =
(
xi1 = 1, xi2,… , xiK

)
, then the least squares estimator is consistent.

These are the usual OLS properties.

For a continuous variable xik, the marginal effect is

∂E
(
yi|xi

)
∕∂xik = βk (16.7)

Here is where some difficulty enters. Suppose that βk > 0. Increasing xik by one unit increases

p(xi), the probability of alternative one being chosen, by a constant amount βk. This puts us into

the uncomfortable position of concluding that the probability can become one, or greater than

one, if xik becomes large enough. Similarly, if βk < 0 then the probability of alternative one being

chosen can become negative if xik becomes large enough. These are the logical inconsistencies

in the linear probability model. It is because of these difficulties that we develop alternatives to

the linear probability model in Section 16.2. Nevertheless, the regression model approach is very

familiar, and by now easy, and it is a useful approximation tool for the purpose of estimating

marginal effects in nonextreme cases.

Apart from the logical problem noted above, which is important, there are two other more

minor consequences of using the linear probability model. First, since yi takes only two values, one

and zero, it must be true that β1 + β2xi2 + · · · + βKxiK + ei takes the same two values. If yi = 1,

then it follows that β1 + β2xi2 + · · · + βKxiK + ei = 1, so that

ei = 1 −
(
β1 + β2xi2 + · · · + βKxiK

)

If yi = 0, then β1 + β2xi2 + · · · + βKxiK + ei = 0 so that

ei = −
(
β1 + β2xi2 + · · · + βKxiK

)

This seems very odd—the random error that accounts for all omitted factors and other specifica-

tion errors takes only two values. This is the result of imposing a linear regression structure on a

choice problem in which the outcome is binary, one or zero.

Secondly, the conditional variance in the random error is

var
(
ei|xi

)
= p

(
xi
)[

1 − p
(
xi
)]

= σ2
i (16.8)

and is necessarily heteroskedastic. When estimating the linear probability model, this feature

must be recognized. When using the OLS estimator, we must at least use heteroskedasticity

robust standard errors. Alternatively use the FGLS, feasible generalized least squares, estima-

tion methodology discussed in Section 8.6.

E X A M P L E 16.2 A Transportation Problem: The Linear Probability Model

Ben-Akiva and Lerman1 have sample data on automobile

and public transportation travel times and the alternative

chosen for N = 21 individuals in the data file transport.
The variable AUTO is an indicator variable taking the value

one if automobile transportation is chosen and is zero if

public transportation is chosen,

AUTO =

{
1 auto is chosen

0 public transportation (bus) is chosen

............................................................................................................................................

1(1985) Discrete Choice Analysis, MIT Press.
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The variables AUTOTIME and BUSTIME are minutes of

commuting time. The explanatory variable we consider is

DTIME = (BUSTIME – AUTOTIME) ÷ 10, which is the

commuting time differential in 10-minute increments. The

linear probability model is AUTOi = β1 + β2DTIMEi + ei.

The OLS fitted model, with heteroskedasticity robust

standard errors, is

AUTO
⋀

i = 0.4848 + 0.0703DTIMEi R2 = 0.61

(robse) (0.0712) (0.0085)

We estimate that if travel times by public transportation

and automobile are equal, so that DTIME = 0, then the

probability of a person choosing automobile travel is

0.4848, close to 50–50, with a 95% interval estimate of

[0.34, 0.63]. We estimate that, holding all else constant,

an increase of 10 minutes in the difference in travel time,

increasing public transportation travel time relative to

automobile travel time, increases the probability of choosing

automobile travel by 0.07, with a 95% interval estimate

of [0.0525, 0.0881], which seems relatively precise. In

truth, any judgment about precision depends on the use

to which the results will be put. The fitted model can be

used to estimate the probability of automobile travel for any

commuting time differential. For example, if DTIME = 1,

a 10-minute longer commute by public transportation,

we estimate the probability of automobile travel to be

AUTO
⋀

i = 0.4848 + 0.0703(1) = 0.5551.

How well does the model fit the data? The R2 = 0.61

suggests that 61% of the variation in the outcome variable

is explained by the model. With probability models, we can

examine how well the model predicts the outcomes. Let’s pre-

dict the choice using a probability threshold of 0.50. That is,

if AUTO
⋀

i ≥ 0.50 we predict that a person will drive to work,

and otherwise, we predict that a person will use public trans-

portation. In the sample of 21 individuals, 10 drove to work

and 11 used public transportation. Using the classification

rule, we successfully predict 9 of the 10 drivers, and 10 of

the 11 bus riders. That is 19 successful predictions out of

the 21 cases. Looking at individual estimated probabilities

of driving, we find three negative values. If the commute is

69 minutes or less by public transportation, then the estimated

probability of driving is zero or negative. If commuting time

is 73 minutes or more by public transportation, then the esti-

mated probability of driving is one or greater.

16.2 Modeling Binary Choices
It is the probability of choosing one alternative or the other that is the key concept when modeling

binary choice. Probabilities must be between zero and one, and the flaw in the linear probability

model in Section 16.1 is that it does not impose this constraint. We now turn to two nonlinear

models for binary choices, the probit model and the logit model, which ensure that choice prob-

abilities remain between zero and one. To keep the choice probability p(xi) within the interval

(0, 1), a nonlinear S-shaped “sigmoid” curve can be used. In Figure 16.1(a), one such curve is illus-

trated for the case of a single explanatory variable, x. If, for example, β2 > 0, then, as x increases,

and, β1 + β2x increases, the probability curve rises rapidly at first, and then begins to increase at

a decreasing rate, keeping the probability less than one no matter how large x becomes. In the

other direction, the probability approaches but never reaches zero. The slope of the probability

curve, dp(xi)∕dx, is the change in probability given a unit change in x. It is the marginal effect
and, unlike in the linear probability model, the slope is not constant.

The curve shown in Figure 16.1(a) is the cumulative distribution function (cdf ) of the

standard normal random variable. This choice of the S-curve leads to a model called probit.
Any cdf function for a continuous random variable will work, and many have been tried over the

years. These days the main competitor to the standard normal cdf is the cdf of a logistic random
variable, leading to a model called logit. In binary choice cases, probit and logit provide very

similar inferences. Economists tend to choose probit rather than logit in individual choice appli-

cations because it follows logically from utility maximizing behavior and random utility models

(RUMs) under the assumption that the unobserved components of utility for the two alternatives

are jointly normal. To obtain a logit model within this framework, the unobserved components of

utility for the two alternatives must be statistically independent and have an unusual probability

density function (pdf ).2 However, the logit model is widely used in many disciplines and leads

to very convenient generalizations. We will discuss both the probit and logit models.

............................................................................................................................................

2For more on RUM and choice models, see Appendix 16B. Also Kenneth Train (2009) Discrete Choice Methods with
Simulation, Second Edition, Cambridge University Press.
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FIGURE 16.1 (a) Standard normal cdf ; (b) standard normal pdf .

16.2.1 The Probit Model for Binary Choice
As noted above, the probit model is based on the standard normal cdf . If Z is a standard normal

random variable, then its pdf is

ϕ(z) = 1
√

2π
e−0.5z2 −∞ < z <∞ (16.9a)

The cdf of the standard normal distribution is

Φ(z) = P[Z ≤ z] =
∫

z

−∞

1
√

2π
e−0.5u2 du (16.9b)

This integral expression is the probability that a standard normal random variable falls to the left

of point z. In geometric terms, it is the area under the standard normal pdf to the left of z. The

function Φ(z) is the cdf that we have worked with to compute normal probabilities.
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The probit statistical model expresses the probability p(xi) that alternative one is chosen,

yi = 1, to be

P
(
yi = 1|xi

)
= p

(
xi
)
= P

[
Z ≤ β1 + β2xi2 + · · · + βKxiK

]
= Φ

(
β1 + β2xi2 + · · · + βKxiK

)
(16.10)

where Φ(z) is the standard normal cdf . The probit model is said to be nonlinear because (16.10)

is a nonlinear function of the parameters β1,… , βK. If the parameters β1,… , βK were known,

we could use (16.10) to find the probability that alternative one is chosen for any set of predictor

values xi =
(
xi1 = 1, xi2,… , xiK

)
. Because these parameters are not known we will estimate them.

16.2.2 Interpreting the Probit Model
Interpreting the probit model requires a bit of work. How we proceed to measure the impact of any

one variable xik depends on whether it is continuous or discrete, like an indicator variable. When

an explanatory variable is continuous, we can examine the marginal effect of a change in its value

on the probability p(xi). When the explanatory variable is an indicator variable, we can calculate

the difference in the probability p(xi) associated with xik = 0 and xik = 1. In both of these cases,

we must deal with the fact that the magnitudes of the effects depend not only on the parameter

values, β1,… , βK, but also on the values of the explanatory variables, 𝐱i =
(
xi1 = 1, xi2,… , xiK

)
.

We will examine these cases separately.

Marginal Effect of a Continuous Explanatory Variable If xk is a continuous

variable then we can calculate the marginal effect by finding the derivative of (16.10). The

marginal effect is

∂p
(
xi
)

∂xik
=
∂Φ
(
ti
)

∂ti
•
∂ti
∂xik

= ϕ
(
β1 + β2xi2 + · · · + βKxiK

)
βk (16.11)

where ti = β1 + β2xi2 + · · · + βKxiK and ϕ
(
β1 + β2xi2 + · · · + βKxiK

)
is the standard normal pdf

evaluated at β1 + β2xi2 + · · · + βKxiK. To obtain this result, we have used the chain rule of differ-

entiation (see Derivative Rule 9 in Appendix A.3.1). Note that the marginal effect includes the

pdf of the standard normal random variable, ϕ(•).

To simplify the algebra, suppose that there is a single continuous explanatory variable, x.

Then, the probit probability model is p
(
xi
)
= P

[
Z ≤ β1 + β2xi

]
= Φ

(
β1 + β2xi

)
. Assuming β2 > 0,

this is the equation of the sigmoid S-shaped curve in Figure 16.1(a). At point A in Figure 16.1(a),

where β1 + β2xi = a, the marginal effect of a change in x on the probability is the slope of the

tangent line. At point B in Figure 16.1(a), where β1 + β2xi = b and the probability Φ(b) is larger,

the marginal effect is smaller, which it must be to keep the probability function less than one as

x increases.

The equation of the marginal effect dp
(
xi
)
∕dxi = ϕ

(
β1 + β2xi

)
β2 is the slope of the probability

function at the point β1 + β2xi. The pdf ϕ
(
β1 + β2xi

)
, plotted in Figure 16.1(b), appears in the

marginal effect because of its relationship to the cumulative distribution function Φ
(
β1 + β2xi

)
.

As noted in (16.9), the cdf is the integral of the pdf , and it follows that the pdf is the derivative

of the cdf in (16.11). The marginal effect at point A is larger because ϕ(a) > ϕ(b). The marginal

effect equation, dp
(
xi
)
∕dxi = ϕ

(
β1 + β2xi

)
β2, has the following implications.

1. Sinceϕ
(
β1 + β2xi

)
is a pdf its value is always positive. Consequently, the sign of dp

(
xi
)
∕dxi is

determined by the sign of β2. If β2 > 0 then dp
(
xi
)
∕dxi > 0, and if β2 < 0 then dp

(
xi
)
∕dxi < 0.

2. As xi changes the value of the function ϕ
(
β1+ β2xi

)
changes. The standard normal pdf

reaches its maximum when β1+ β2xi = 0. In this case p
(
xi
)
= P[Z ≤ 0] = Φ(0) = 0.5;

the alternatives one and two are equally likely to be chosen. It makes sense that in this case

the effect of a change in xi has its greatest effect, the marginal effect is largest, because the

individual is “on the borderline.”
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3. On the other hand, if β1+ β2xi is large, say near 3, then the probability that the individual

chooses alternative one, p
(
xi
)
, is very large and close to 1. In this case, a change in xi will

have relatively little effect since ϕ
(
β1 + β2xi

)
is nearly 0. The same is true if β1 + β2xi is

a large negative value, say near −3. These results are consistent with the notion that if an

individual is “set” in their ways, with p
(
xi
)

near 0 or 1, the effect of a small change in xi will

be negligible.

Discrete Change Effect of an Indicator Explanatory Variable The marginal

effect in (16.11) is valid only if the explanatory variable xk is continuous. If xk is a discrete vari-

able, such as an indicator variable for an individual’s sex, then the derivative in (16.11) cannot

be used. Instead we can compute the discrete change in probability effect of xk changing from

zero to one,

Δp
(
xi
)
= p

(
xi|xki = 1

)
− p

(
xi|xki = 0

)
(16.12a)

To simplify the notation, suppose p
(
𝐱i
)
= Φ

(
β1 + β2xi2 + δDi

)
where Di is an indicator variable.

The difference in the probability of choosing alternative one given Di = 1 as compared to when

Di = 0 is

Δp
(
xi
)
= p

(
xi|Di = 1

)
− p

(
xi|Di = 0

)
= Φ

(
β1 + β2xi2 + δ

)
− Φ

(
β1 + β2xi2

)
(16.12b)

The change can be positive or negative, depending on the sign of the parameter δ. If δ > 0, then

there is an increase in the probability of choosing alternative one. If δ < 0, then the probability

of choosing alternative one decreases. Note that the magnitude of the effect depends on the sign

and magnitude of the parameter δ but also on the values of the other explanatory variables and

their parameters.

Discrete Change Effect of any Explanatory Variable The use of the discrete

change approach is not limited to indicator variables. It can also be used for an explanatory vari-

able that is a count, such as x3 = 0, 1, 2,… Suppose that yi is an individual’s health outcome,

such as whether their blood pressure reading is too high, or not, and x3 is the person’s number

of periods of exercise per week. We might be interested in the change in the probability of high

blood pressure of increasing from one workout per week to three workouts per week. The discrete

change approach can also be used for a continuous variable. Suppose that x3 is the number of min-

utes of exercise per week. We might be interested in the change in the probability of high blood

pressure of increasing the number of minutes of exercise from 90 to 120 per week. In general,

suppose that we are interested in the change xi3 = c to xi3 = c + δ. Then the discrete change in

probability is

Δp
(
xi
)
= p

(
xi|xi3 = c + δ

)
− p

(
xi|xi3 = c

)

= Φ
(
β1 + β2xi2 + β3c + β3δ

)
− Φ

(
β1 + β2xi2 + β3c

)
(16.12c)

Because the model is nonlinear, the values of c and δ will affect the change in probability.

Estimating Marginal and Discrete Change Effects In order to estimate the

marginal effect in (16.11) or the discrete change effect (16.12), we must have parameter esti-

mates, β̃1,… , β̃K . The estimates are obtained by maximum likelihood estimation, which we

will discuss in Section 16.2.3. For the moment, suppose that we have these estimates. In practice,

they are obtained just like OLS estimates, with a simple computer command. Focus now on the

possible values of the explanatory variables 𝐱i =
(
xi1 = 1, xi2,… , xiK

)
. There are several options

for reporting marginal effects:
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1. Marginal effect at means (MEM)3 One choice is x =
(
1, x2,… , xK

)
where xk is the sample

mean of the values for the kth explanatory variable. There are two points of interest here.

First, unlike the linear regression model, the fitted probit model does not pass through the

“point of the means,” so choosing the point x has no special significance. Second, for an

indicator variable, such as xik = 1 for females and xik = 0 for males, the average value xk
is the fraction of the sample that is female. Instead of a 1 or a 0, we might have xk = 0.53,

indicating that 53% of the sample is female.

2. Marginal effect at a representative value (MER) Another possibility is to choose the

values of xi =
(
xi1 = 1, xi2,… , xiK

)
to reflect a particular scenario, a set of values that

tell a “story” about the results. That is, suppose that xi2 is a person’s years of schooling,

xi3 is the person’s sex (1 = female), and xi4 is their income ($1000s). We might specify

𝐱i =
(
1, xi2 = 14, xi3 = 1, xi4 = 100

)
, representing a female with 14 years of schooling and

$100,000 income. This approach is more work because the representative values for the

variables should have some meaning within the context of the research problem, but in

some sense, it is also the most meaningful when describing the results. Of course, some of

the variables’ representative values might be variable means, medians, or quartiles.

3. Average marginal effect (AME) A third option is to calculate the sample average marginal

effect. For a continuous variable, the AME is the sample average of (16.11) evaluated at each

sample observation,

AME
(
xk
)
= N−1

N∑

i=1

∂p
(
xi
)
∕∂xik = βk

N∑

i=1

ϕ
(
β1 + β2xi2 + · · · + βKxiK

)
∕N (16.13a)

For a discrete variable, we average the differences in (16.12a). In the simple model

p
(
𝐱i
)
= Φ

(
β1 + β2xi2 + δDi

)
, this average is

AME(D) = N−1
N∑

i=1

Δp
(
xi
)

=
N∑

i=1

Φ
(
β1 + β2xi2 + δ

)
∕N −

N∑

i=1

Φ
(
β1 + β2xi2

)
∕N (16.13b)

If, for example, Di = 1 if a person is female, then the first term
∑N

i=1
Φ
(
β1 + β2xi2 + δ

)
∕N

assigns the female sex to everyone in the sample, and the second term
∑N

i=1
Φ
(
β1 + β2xi2

)
∕N

assigns the male sex to everyone in the sample. There are two advantages to computing the

AME. First, it relieves us of having to make a choice about what to do. Second, relying on

a “law of large numbers” argument, the sample average marginal, or discrete change, effect

can be thought of as estimating the population average response to a change in a variable.

4. A Histogram A fourth option is to examine a histogram of the marginal effects computed

for each xi in the sample.

Predicting Choice with a Probit Model Last but not least, we can use

the probit model to not only estimate the probability that an individual chooses one alter-

native or another but also predict the choice they will make. The probability model is

p
(
𝐱i
)
= Φ

(
β1 + β2xi2 + · · · + βKxiK

)
. Given values of the explanatory variables, and parameter

estimates, β̃1,… , β̃K , we can estimate the probability that an individual will choose alternative

one as p̃
(
xi
)
= Φ

(
β̃1 + β̃2xi2 + · · · + β̃KxiK

)
. By comparing the estimated probability to a suitable

threshold, τ, we can predict choice. The first threshold that comes to mind is 0.5. If we estimate

the probability to be greater than or equal to 0.5 we predict ỹi = 1, and if the estimated probability

is less than 0.5, then we predict ỹi = 0.

The threshold 0.5 is not necessarily the best threshold value to use. For example, suppose

that we are the loan officer at a lending institution and must decide whether to give a loan to an

............................................................................................................................................

3We use the abbreviations MEM, MER, and AME, following Cameron and Trivedi (2010) Microeconometrics Using
Stata, Second Edition, pp. 343–356.
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applicant. Using data on previous borrowers, we can estimate a probit model for whether a loan

was repaid on time, yi = 1, or not, yi = 0, as a function of borrower and loan characteristics. The

fact is that most borrowers do repay their loans. If 90% of borrowers pay their loan back and if our

applicant’s estimated probability of repayment is 0.60, then that is a weak endorsement for giving

a loan. For a lender, choosing the profit maximizing threshold τ* is not an easy task. The correct

decision is to give a loan to someone who will repay it and to not give a loan to someone who

won’t repay it. Lenders must weigh two types of incorrect decisions. If the lender gives a loan to

someone who does not repay it, then there are costs (losses) associated with collecting the loan;

further correspondence, legal action, and so on. If the lender does not give a loan to someone

who would repay, there are foregone profits, opportunity costs. Lenders must compare the costs

of these errors. If the threshold is raised, there are increased foregone profits; if the threshold is

lowered, there are more collection costs. There is no one universal threshold that is suitable for

every type of situation.

16.2.3 Maximum Likelihood Estimation of the Probit Model
The maximum likelihood estimation (MLE) methodology is discussed in Appendix C.8. Max-

imum likelihood estimation is based on a principle that is an alternative to the least squares

principle or to other principles such as generalized least squares, or the method of moments,

although it sometimes yields the same results. The MLE methodology is well suited to mod-

els we discuss in this chapter, including the probit binary choice model. Under some suitable

conditions, maximum likelihood estimators have properties that are valid in large samples. If

β̃k is the maximum likelihood estimator of the parameter βk, then it is a consistent estimator,

plim β̃k = βk, and it has an approximate normal distribution in large samples, β̃k
a∼N

[
βk, var

(
β̃k
)]

.

The estimator variance is known (though complicated algebraically) and can be consistently esti-

mated in several ways. If var
⋀(

β̃k
)

is a consistent estimator of var
(
β̃k
)
, then we can calculate a

standard error, se
(
β̃k
)
=
√

var
⋀(

β̃k
)
. Using the standard error, we can compute interval estimates,

β̃k ± z(1−α∕2)se
(
β̃k
)
, carry out “t-tests,” and so on in the usual way. All of these theoretical results

are illustrated in Appendix C.8. In Example 16.3, we present the essence of the maximum likeli-

hood estimation method.

E X A M P L E 16.3 Probit Maximum Likelihood: A Small Example

We first illustrate the idea of maximum likelihood estimation

in an abbreviated version of the transportation choice model

from Examples 16.1 and 16.2. Suppose that we randomly

select three individuals and observe that the first two drive

to work and the third takes the bus; y1 = 1, y2 = 1, y3 = 0.

Furthermore, suppose that the differences in commuting

times for these individuals, in 10-minute units, are x1 = 1.5,

x2 = 0.6, x3 = 0.7. What is the joint probability of observing

y1 = 1, y2 = 1, y3 = 0? The probability function for yi is

given by (16.2), which we now combine with the probit

model (16.10) to obtain

𝑓

(
yi|xi

)

=
[

Φ
(
β1 + β2xi

)]yi[

1 − Φ
(
β1 + β2xi

)]1−yi
, yi = 0, 1

If the three individuals are independently drawn, then the

joint pdf for y1, y2, and y3 is the product of the marginal

probability functions:

𝑓

(
y1, y2, y3|x1, x2, x3

)
= 𝑓

(
y1|x1

)
𝑓

(
y2|x2

)
𝑓

(
y3|x3

)

Consequently, the probability of observing y1 = 1, y2 = 1,

and y3 = 0 is

P
(
y1 = 1, y2 = 1, y3 = 0|x1, x2, x3

)

= 𝑓

(
1, 1, 0|x1, x2, x3

)
= 𝑓

(
1|x1

)
𝑓

(
1|x2

)
𝑓

(
0|x3

)

Substituting the y and x values, we have

P
(
y1 = 1, y2 = 1, y3 = 0|x1, x2, x3

)

= Φ
[
β1 + β2(1.5)

]
× Φ

[
β1 + β2(0.6)

]

×
{

1 − Φ
[
β1 + β2(0.7)

]}

= L
(
β1, β2|y, x

)
(16.14)

In statistics, the function (16.14), which gives us the proba-

bility of observing the sample data, is called the likelihood
function. The notation L

(
β1, β2|y, x

)
indicates that the like-

lihood function is a function of the unknown parameters once

we are given the data. It is intuitively reasonable to use as esti-

mates those values β̃1 and β̃2 that maximize the probability,
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or likelihood, of the observed outcome. Unfortunately, for

the probit model, there are no formulas that give us the

values for β̃1 and β̃2 as there are in least squares estimation of

the linear regression model. Consequently, we must use the

computer and techniques from numerical analysis to find the

values β̃1 and β̃2 that maximize L
(
β1, β2|y, x

)
. In practice,

instead of maximizing (16.14), we maximize the logarithm

of (16.14), which is called the log-likelihood function

lnL
(
β1, β2|y, x

)
= ln

{

Φ
[
β1 + β2(1.5)

]
× Φ

[
β1 + β2(0.6)

]

×
{

1 − Φ
[
β1 + β2(0.7)

]}
}

= lnΦ
[
β1 + β2(1.5)

]
+ lnΦ

[
β1 + β2(0.6)

]

+ ln
{

1 − Φ
[
β1 + β2(0.7)

]}

(16.15)

On the surface, this appears to be a difficult task, because

Φ(z) from (16.9) is such a complicated function. As it turns

out, however, using a computer to maximize (16.15) is a

relatively easy process.

The maximization of the log-likelihood function

lnL
(
β1, β2|y, x

)
is easier than the maximization of (16.14),

because it is a sum of terms and not a product of terms.

The logarithm is a nondecreasing, or monotonic, func-

tion so that the maximum values of the two functions

L
(
β1, β2

|
|y, x) and lnL(β1, β2

|
| y, x

)
occur at the same val-

ues of β1 and β2, namely, β̃1 and β̃2. The value of the

log-likelihood function (16.15) evaluated at the maximizing

values β̃1 and β̃2 is very useful for hypothesis testing, which is

discussed in Sections 16.2.4 and 16.2.5. Using econometric

software, we find that the parameter values that maximize

(16.15) are β̃1 = −1.1525 and β̃2 = 0.1892. These values

maximize the log-likelihood function, lnL
(
β1, β2|y, x

)
, and

also maximize the likelihood function L
(
β1, β2|y, x

)
. They

are the maximum likelihood estimates. Any other values of

the parameters that we might try will yield a lower value

of the log-likelihood function. Plugging these values into

(16.15), we obtain the value of the log-likelihood function

evaluated at the maximum likelihood estimates, which is

L
(
β̃1, β̃2 |y, x

)
= −1.5940.

An interesting feature of the maximum likelihood estimation procedure is that while its prop-

erties in small samples are not known, we can show that in large samples the maximum likelihood

estimator is normally distributed, consistent and best, in the sense that no competing estimator

has smaller variance. The properties of maximum likelihood estimators are fully discussed in

Appendix C.8.

We have used only three observations in the numerical illustration above for demonstration

purposes only. In practice, such maximum likelihood estimation procedures should only be used

when large samples are available. In the following section, we present another simple example

that will demonstrate more aspects of the probit choice model.

E X A M P L E 16.4 The Transportation Data: Probit

In Example 16.2, we estimated a linear probability model

using the transportation data, transport. In this example,

we carry out probit estimation. The probit model is

P(AUTO = 1) = Φ
(
β1 + β2DTIME

)
. The maximum likeli-

hood estimates of the parameters are

β̃1 + β̃2DTIME = −0.0644 + 0.3000DTIME
(se) (0.3992) (0.1029)

The values in parentheses below the parameter estimates

are estimated standard errors that are valid in large sam-

ples. These standard errors can be used to carry out

hypothesis tests and construct interval estimates in the

usual way, with the qualification that they are valid in

large samples. The negative sign of β̃1 implies that when

commuting times via bus and auto are equal so DTIME = 0,

individuals have a bias against driving to work, relative

to public transportation, The estimated probability of

a person choosing to drive to work when DTIME = 0

is P̂(AUTO = 1|DTIME = 0) = Φ(−0.0644) = 0.4743. The

positive sign of β̃2 indicates that an increase in public

transportation travel time, relative to auto travel time,

increases the probability that an individual will choose to

drive to work, and this coefficient is statistically significant.

Suppose that we wish to estimate the marginal effect

of increasing public transportation time, given that travel via

public transportation currently takes 20 minutes longer than

auto travel. Using (16.11),

dp
dDTIME

⋀

= ϕ
(
β̃1 + β̃2DTIME

)
β̃2

= ϕ(−0.0644 + 0.3000 × 2)(0.3000)
= ϕ(0.5355)(0.3000) = 0.3456 × 0.3000 = 0.1037

For the probit probability model, an incremental (10-minute)

increase in the travel time via public transportation increases

the probability of travel via auto by approximately 0.1037,

given that taking the bus already requires 20 minutes more

travel time than driving.
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The estimated parameters of the probit model can also

be used to “predict” the behavior of an individual who must

choose between auto and public transportation to travel to

work. If an individual is faced with the situation that it takes

30 minutes longer to take public transportation than to drive

to work, then the estimated probability that auto transporta-

tion will be selected is calculated using (16.12):

p̂ = Φ
(
β̃1 + β̃2DTIME

)
= Φ(−0.0644 + 0.3000 × 3)

= 0.7983

Since the estimated probability that the individual will choose

to drive to work is 0.7983, which is greater than 0.5, we “pre-

dict” that when public transportation takes 30 minutes longer

than driving to work, the individual will choose to drive.

E X A M P L E 16.5 The Transportation Data: More Postestimation Analysis

In Example 16.4, we estimated the probit model for

transportation choice and illustrated basic calculations.

In this example, we carry out further, more advanced,

postestimation analysis.

Marginal Effect at a Representative Value (MER)

The marginal effect of a change in the travel time differen-

tial is

dp
dDTIME

⋀

= ϕ
(
β̃1 + β̃2DTIME

)
β̃2 = g

(
β̃1, β̃2

)

The marginal effect is an estimator, since, given DTIME, it

is a function of the estimators β̃1 and β̃2. The discussions of

the “delta method” in Section 5.7.4 and Appendix 5B are

relevant because the marginal effect is a nonlinear function

of β̃1 and β̃2. The marginal effect estimator is consistent and

asymptotically normal with a variance given by equation

(5B.4). Using this result, we can test marginal effects or

compute interval estimates for them. For example, if the time

differential is currently 20 minutes, so that the representative

value is DTIME = 2, the estimated marginal effect (MER)

is 0.1037 and the estimated standard error of the marginal

effect is 0.0326 using the delta method. Therefore, a 95%

interval estimate of the marginal effect, using the t-critical

value t(0.975,19) = 2.093, is [0.0354, 0.1720]. This interval is

fairly wide. Recall, however, that the maximum likelihood

estimates are based on only 21 observations, which is a very

small sample. The details of the calculation of the standard

error are given in Appendix 16A.1.

Marginal Effect at the Mean (MEM)

If particular values of interest are difficult to identify, many

researchers evaluate the marginal effect “at the means,”

MEM. In these data, the average time travel differential is

DTIME = −0.1224 (1.2 minutes), and for this value, the

marginal effect of a 10-minute increase in the time travel

differential is 0.1191. The slightly larger effect, compared

to DTIME = 2, is consistent with the second point in the

Section 16.2.1 discussion. When the mean difference in

travel time is near zero, the effect of a change in travel time

difference is greater. We can compute a standard error for

this marginal effect just as we did for MER, if we treat

DTIME as given.

Average Marginal Effect (AME)

Rather than evaluate the marginal effect at a specific value, or

the mean value, we can compute the average of the marginal

effects evaluated at each sample data point. That is,

AME

⋀

= 1

N

N∑

i=1

ϕ
(
β̃1 + β̃2DTIMEi

)
β̃2

= 1

N
β̃2

N∑

i=1

ϕ
(
β̃1 + β̃2DTIMEi

)

The average marginal effect has become a popular alter-

native to computing the marginal effect at the mean as

it summarizes the response of individuals in the sample

to a change in the value of an explanatory variable. For

the current example, AME

⋀

= 0.0484, which is the sample

average estimated increase in probability given a 10-minute

increase in bus travel time relative to auto travel time.

Because the estimated marginal effect is different for each

individual in the sample, we are interested in not only its

average value but also its variation in the sample. The sample

standard deviation of ϕ
(
β̃1 + β̃2DTIMEi

)
β̃2 is 0.0365, and its

minimum and maximum values are 0.0025 and 0.1153.

We can evaluate the standard error of the aver-

age marginal effect using the delta method. Recall that

AME

⋀

= 0.0484. Its standard error estimated using the delta

method is 0.0034. Details of this calculation are given in

Appendix 16A.2. A 95% interval estimate of the population

average marginal effect, using the t-critical value, is [0.0413,

0.0556]. This is much narrower than the MER interval

estimate because we are estimating a different quantity,

namely AME = 1

N
β2

∑N
i=1
ϕ
(
β1 + β2DTIMEi

)
.
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Estimated Probability of Driving

The estimated probability that AUTO = 1 given that the

commuting time difference is 30 minute is calculated as p̂ =
Φ
(
β̃1 + β̃2DTIME

)
= Φ(−0.0644 + 0.3000 × 3) = 0.7983.

Note that the predicted probability is a nonlinear function

of the parameter estimates. Using the delta method, we can

compute a standard error for the prediction and thus an inter-

val estimate. The details of the calculation of the standard

error are given in Appendix 16A.3. The calculated standard

error is 0.1425, so that a 95% prediction interval, again using

the t-critical value t(0.975,19) = 2.093, is [0.5000, 1.0966].
Note that the upper endpoint of the interval is greater than 1,

which means that some of the values are infeasible.

This example has been used to illustrate in a simple problem how probit works. In reality, estimat-

ing complicated models like probit and logit with as few observations as we are using, N = 21, is

not a good idea. In fact, microeconometric models can have many more parameters and sometimes

are estimated using very large data sets.

16.2.4 The Logit Model for Binary Choices
A frequently used alternative to the probit model for binary choice situations is the logit model.

These models differ only in the particular S-shaped curve used to constrain probabilities to the

[0, 1] interval. If L is a logistic random variable, then its pdf is

λ(l) = e−l

(
1 + e−l

)2
, −∞ < l <∞ (16.16)

The corresponding cumulative distribution function, unlike the normal distribution, has a

closed-form expression, which makes analysis somewhat easier. The cumulative distribution

function for a logistic random variable is

Λ(l) = p[L ≤ l] = 1

1 + e−l (16.17)

In the logit model, if there is a single explanatory variable x, the probability p(x) that the observed

value y takes the value 1 is

p(x) = P
[
L ≤ γ1 + γ2x

]
= Λ

(
γ1 + γ2x

)
= 1

1 + e−(γ1+γ2x)
(16.18)

A more generally useful form of p(x) is

p(x) = 1

1 + e−(γ1+γ2x)
=

exp
(
γ1 + γ2x

)

1 + exp
(
γ1 + γ2x

)

Then the probability that y = 0 is

1 − p(x) = 1

1 + exp
(
γ1 + γ2x

)

Represented in this way, the logit model can be extended to cases in which the choice is between

more than two alternatives, as we will see in Section 16.3.

In maximum likelihood estimation of the logit model, the probability given in (16.18) is used

to form the likelihood function (16.14) by inserting “Λ” for “Φ.” To interpret the logit estimates,

the equations (16.11) and (16.12) are still valid, using (16.16) instead of the normal pdf .
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The shapes of the logistic and normal pdfs are somewhat different and maximum likelihood

estimates of β1 and β2 will differ from γ1 and γ2. Roughly4

γ̃Logit ≅ 4β̂LPM

β̃Probit ≅ 2.5β̂LPM

γ̃Logit ≅ 1.6β̃Probit

While the probit and logit parameter estimates differ, the marginal effects and predicted proba-

bilities differ very little in most cases. In these expressions LPM denotes the linear probability

model.

E X A M P L E 16.6 An Empirical Example from Marketing

In Section 7.4.1, we introduced the example of a linear proba-

bility model for the choice between Coke and Pepsi. Here, we

compare the linear probability model to the probit and logit

models for this binary choice. The outcome variable is COKE

COKE =

{
1 if Coke is chosen

0 if Pepsi is chosen

The expected value of this variable is E(COKE|x) = pCOKE =
probability that Coke is chosen. As explanatory variables, x,

we use the relative price of Coke to Pepsi (PRATIO), as

well as DISP_COKE and DISP_PEPSI, which are indicator

variables taking the value 1 if the respective store display

is present and 0 if it is not present. We anticipate that the

presence of a Coke display will increase the probability of

a Coke purchase, and the presence of a Pepsi display will

decrease the probability of a Coke purchase.

The data file coke contains “scanner” data on 1140 indi-

viduals who purchased Coke or Pepsi. The linear probability,

probit, and logit models for the choice are

pCOKE = E(COKE|x)
= α1 + α2PRATIO + α3DISP_COKE
+α4DISP_PEPSI

pCOKE = E(COKE|x)
= Φ

(
β1 + β2PRATIO + β3DISP_COKE

+β4DISP_PEPSI
)

pCOKE = E(COKE|x)
= Λ

(
γ1 + γ2PRATIO + γ3DISP_COKE

+γ4DISP_PEPSI
)

We have given the choice model parameters different symbols

to emphasize that the parameters have different meanings.

The estimates are given in Table 16.1.

The parameters and their estimates vary across the mod-

els and no direct comparison is very useful. More relevant,

T A B L E 16.1 Coke-Pepsi Choice Models

LPM Probit Logit

C 0.8902 1.1081 1.9230

(0.0653) (0.1900) (0.3258)

PRATIO −0.4009 −1.1460 −1.9957

(0.0604) (0.1809) (0.3146)

DISP_COKE 0.0772 0.2172 0.3516

(0.0339) (0.0966) (0.1585)

DISP_PEPSI −0.1657 −0.4473 −0.7310

(0.0344) (0.1014) (0.1678)

Standard errors in parentheses (White robust se for LPM)

however, is the comparison of the estimated probabilities and

marginal effects implied by the alternative models.

Estimated probabilities at representative values Suppose

that PRATIO = 1.1, indicating that the price of Coke is 10%

higher than the price of Pepsi, and no store displays are

present. Using the linear probability model, the estimated

probability of Coke choice is 0.4493 with standard error

0.0202. Using probit, the estimated probability is 0.4394

with standard error 0.0218, and for logit, the estimated

probability is 0.4323 with standard error 0.0224.

Average marginal effects (AME) In the linear probability

model, the estimated marginal effect of PRATIO is −0.4009.

This does not depend on the values of the variables. For

the probit model, the average marginal effect of PRATIO is

−0.4097 with standard error 0.0616, and for the logit model,

the average marginal effect of PRATIO is −0.4333 with

standard error 0.0639. In this example, the average marginal

effect from the probit model is not too different from that

implied by the linear probability model.

............................................................................................................................................

4T. Amemiya (1981) “Qualitative response models: A Survey,” Journal of Economic Literature, 19, pp. 1483–1536, or

A. Colin Cameron and Pravin K. Trivedi (2010) Microeconometrics Using Stata: Revised Edition, Stata Press, p. 465.
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Marginal effect at a representative value (MER) If we

examine specific scenarios then differences appear. For

example, suppose PRATIO = 1.1, indicating that the price

of Coke is 10% higher than the price of Pepsi, and no

store displays are present. The estimated marginal effect of

PRATIO from the probit model is −0.4519, with standard

error 0.0703. Using the logit estimates, the marginal effect is

−0.4898 with standard error 0.0753.

Prediction success Another basis for comparison is how well

the alternative models predict choice outcomes. For the linear

probability model, compute the predicted value COKE
⋀

,

then predict consumer choice by comparing this value to

0.5. If COKE
⋀

is greater than 0.5, we predict the consumer

will choose Coke. For the probit model, we estimate the

probability of choosing Coke using equation (16.10). Using

the 0.5 threshold, we find that of the 510 consumers who

chose COKE, 247 were correctly predicted. Of the 630

who chose PEPSI, 507 were correctly predicted. In this

example, the number of correct predictions is identical for

the linear probability model, probit and logit.

16.2.5 Wald Hypothesis Tests
Hypothesis tests concerning individual coefficients in probit and logit models are carried out in

the usual way based on an “asymptotic-t” test. If the null hypothesis is H0∶βk = c, then the test

statistic using the probit model is

t =
β̃k − c
se
(
β̃k
)

a∼N(0, 1)

where β̃k is the probit parameter estimator. The test is asymptotically justified and we should

use the test critical values from the standard normal distribution. For two-tail tests, these are the

familiar 1.645 for 10%, 1.96 for 5%, and 2.58 for 1%. However, it is not uncommon to take a

more conservative approach and, if the sample size is not very large, to use critical values from

the t(N−K) distribution, where K is the number of parameters estimated. Your software may report

“z” statistics instead of “t” and automatically compute p-values and calculate interval estimates

with critical numbers from the standard normal distribution, rather than the t-distribution.

The t-test is based on the Wald principle, which uses the model coefficient estimates, esti-

mated variances, covariances, and standard errors that are asymptotically valid. This testing prin-

ciple is discussed in Appendix C.8.4. It is common for software packages to have “built in” Wald

test statements (something like “TEST”) that are convenient to use after a model is estimated. For

linear hypotheses, such as H0∶c2β2 + c3β3 = c0, the test statistic is of the familiar form,

t =
(
c2β̃2 + c3β̃3

)
− c0

√

c2
2
var
⋀(

β̃2

)
+ c2

3
var
⋀(

β̃3

)
+ 2c2c3cov

⋀(
β̃2, β̃3

)

If the null hypothesis is true, then this statistic has an asymptotic N(0, 1) distribution but again

t(N−K) might be used if the sample is not truly large. For joint linear hypotheses, such as

H0∶c2β2 + c3β3 = c0, a4β4 + a5β5 = a0

a valid large sample Wald test is based on the chi-square distribution. If there are J joint hypothe-

ses, the Wald statistic has an asymptotic χ2
(J) distribution. The null hypothesis is rejected if the

Wald test statistic, W, is greater than or equal to the (1 − α) percentile of the χ2
(J) distribu-

tion, χ2
(1−α, J). In Section 6.1.5, we discuss large sample tests in the linear regression model. The

chi-square test was labeled V̂1 in equation (6.14), and it was calculated as the difference between

the sums of squared residuals from an unrestricted and a restricted model, divided by the esti-

mated error variance. That is not the way the statistic is calculated in nonlinear models such as

probit and logit, but the interpretation is the same. There is a “small-sample” conservative cor-

rection using the F-statistic, F = W∕J a∼F(J,N−K), which is similar to using t-critical values instead

of those from the N(0, 1) distribution. Do not be surprised if your software reports a chi-square

statistic instead of a t-statistic even when only one hypothesis is being tested.
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E X A M P L E 16.7 Coke Choice Model: Wald Hypothesis Tests

Here are some examples of various tests in the Coke choice

model.

Test of significance Using the estimates in Table 16.1, we

can test the significance of the coefficients in the usual way.

The probit model for COKE is

pCOKE = Φ
(
β1 + β2PRATIO + β3DISP_COKE

+ β4DISP_PEPSI
)

We might like to test the null hypothesis H0∶β3 ≤ 0 against

H1∶β3 > 0. The test statistic is t = β̃3∕se
(
β̃3

) a∼N(0, 1) if

the null hypothesis is true. Using a 5% one-tail test, the

critical value is z(0.95) = 1.645. The calculated value of the

test statistic is t = β̃3∕se
(
β̃3

)
= 2.2481, and thus, we reject

the null hypothesis at the 5% level and conclude that a

display for Coke has a positive effect on the probability that

a consumer will purchase Coke. Using a TEST statement

might also produce the Wald statistic W = 5.0540. For a

single hypothesis W = t2. The Wald test statistic is designed

for two-tail tests; in this case H0∶β3 = 0 versus H1∶β3 ≠ 0,

yields a two-tail p-value of p = 0.0246. If your software

reports a t-statistic or an F-statistic, the p-value will be

slightly larger, p = 0.0248. There is little difference here

because the sample is large with N = 1140 observations. The

Wald test critical value is χ2
(0.95,1) = 3.841 from Statistical

Table 3.

Testing an economic hypothesis Another hypothesis of

interest is H0∶β3 = −β4 versus H1∶β3 ≠ −β4. This hypothe-

sis is that the coefficients on the display variables are equal

in magnitude but opposite in sign or that the effects of the

Coke and Pepsi displays have an equal but opposite effect on

the probability of choosing Coke. The t-test statistic is

t =
β̃3 + β̃4

se
(
β̃3 + β̃4

)
a∼ N(0, 1)

Noting that it is a two-tail alternative hypothesis, we reject

the null hypothesis at the α = 0.05 level if t ≥ 1.96 or

t ≤ −1.96. The calculated t-value is t = −2.3247, so we

reject the null hypothesis and conclude that the effects of

the Coke and Pepsi displays are not of equal magnitude

with opposite sign. This test is asymptotically valid because

N − K = 1140 − 4 = 1136 is a large sample. Automatic

TEST statements usually generate the chi-square distribu-

tion version of the test, which in this case is the square

of the t-statistic, W = 5.4040. The 5% critical value is

χ2
(0.95,1) = 3.841 so we reject the null hypothesis. We reach

the same conclusion as using the t-test. The link between the

t- and chi-square test is fully explained in Appendix C.8.4.

Testing joint significance Another hypothesis of interest is

H0∶β3 = 0, β4 = 0 H1∶β3 ≠ 0 and∕or β4 ≠ 0

This joint null hypothesis is that neither the Coke nor Pepsi

display affects the probability of choosing Coke. Here we

are testing J = 2 hypotheses, so that the Wald statistic has

an asymptotic χ2
(2) distribution. Using Statistical Table 3, the

0.95 percentile value for this distribution is 5.991. In this

case, the value of the Wald statistic is W = 19.4594, and thus,

we reject the null hypothesis and conclude that the Coke or

Pepsi display has an effect on the probability of choosing

Coke. This test statistic value can be computed using the auto-

matic TEST statement in your software.

Testing the overall model significance As in the linear

regression model, we are interested in testing the overall sig-

nificance of the probit model. In the Coke choice example, the

null hypothesis for this test is H0∶β2 = 0, β3 = 0, β4 = 0.

The alternative hypothesis is that at least one of the param-

eters is not zero. The value of the Wald test statistic is

132.54. The test statistic has an asymptotic χ2
(3) distribution if

the null hypothesis is true. The 0.95 percentile value for this

distribution is 7.815, so we reject the null hypothesis that

none of the explanatory variables help explain the choice of

Coke versus Pepsi.

16.2.6 Likelihood Ratio Hypothesis Tests
When using maximum likelihood estimators, such as probit and logit, tests based on the likelihood
ratio principle are generally preferred. Appendix C.8.4 contains a discussion of this methodol-

ogy. The idea is much like the F-test in the linear regression model. One test component is the

log-likelihood function value in the unrestricted, full model (call it lnLU) evaluated at the maxi-

mum likelihood estimates. This calculation was illustrated in Example 16.3. Whenever a model

is estimated by maximum likelihood, the maximized value of the log-likelihood function is auto-

matically reported by econometric software. The second ingredient in a likelihood ratio test is

the log-likelihood function value from the model that is “restricted” by imposing the condition

that the null hypothesis is true (call it lnLR). Thus, the likelihood ratio test has the disadvantage

of requiring two estimations of the model; once for the original model and once for the model

that assumes the hypothesis is true. The likelihood ratio test statistic is LR = 2
(
ln LU − ln LR

)
.
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The idea is that if the null hypothesis is true, then there should be little difference between the

log-likelihood function with or without the hypothesis being assumed true. In that case, the LR
statistic will be small but always greater than zero. If the null hypothesis is not true, then when

we estimate the model assuming that it is true, the model should not fit as well, and the maximum

value of the restricted log-likelihood function will be lower, making LR larger. Large values of

the LR test statistic are evidence against the null hypothesis. If the null hypothesis is true, the

statistic has an asymptotic chi-square distribution with degrees of freedom equal to the number

of hypotheses, J, being tested. The null hypothesis is rejected if the value LR is larger than the

chi-square distribution critical value, χ2
(1−α, J).

E X A M P L E 16.8 Coke Choice Model: Likelihood Ratio Hypothesis Tests

We can use likelihood ratio tests for the same hypotheses con-

sidered in Example 16.7.

Test of significance The probit model for COKE is

pCOKE = Φ
(
β1 + β2PRATIO + β3DISP_COKE

+ β4DISP_PEPSI
)

To test the null hypothesis H0∶β3 = 0 against H1∶β3 ≠ 0

using the likelihood ratio principle, we first note that the

maximized value of the log-likelihood function is lnLU =
−710.9486. If the null hypothesis is true, then the restricted

model is pCOKE = Φ
(
β1 + β2PRATIO + β4DISP_PEPSI

)
.

Estimating this model by maximum likelihood, we find

lnLR = −713.4803, which is smaller than in the original

model, as it must be. Imposing constraints on a probit

model will reduce the maximized value of the log-likelihood

function. Then

LR = 2
(
lnLU − lnLR

)
= 2

[
−710.9486 − (−713.4803)

]

= 5.0634

The 5% critical value is χ2
(0.95,1) = 3.841. We reject the null

hypothesis that a display for Coke has no effect.

Test of an economic hypothesis To test H0∶β3 = −β4,

we first obtain the unrestricted probit model log-likelihood

value, lnLU = −710.9486. The restricted probit model is

obtained by imposing the condition β3 = −β4 on the model,

leading to

pCOKE = Φ
(
β1 + β2PRATIO + β3DISP_COKE

+ β4DISP_PEPSI
)

= Φ
(
β1 + β2PRATIO − β4DISP_COKE

+ β4DISP_PEPSI
)

= Φ
(
β1 + β2PRATIO

+ β4(DISP_PEPSI − DISP_COKE)
)

Estimating this model by maximum likelihood probit, we

obtain lnLR = −713.6595. The likelihood ratio test statistic

value is then

LR = 2
(
lnLU − lnLR

)
= 2

[
−710.9486 − (−713.6595)

]

= 5.4218

This value is larger than the 0.95 percentile from the χ2
(1) dis-

tribution, χ2
(0.95,1) = 3.841. Note that the values of the LR and

Wald statistics (from Example 16.7) are not the same but

are close in this case. The Wald test statistic value is easier

to compute, since it requires only the maximum likelihood

estimates for the original, unrestricted model. However, the

likelihood ratio test has been found to be more reliable in a

wide variety of more complex testing situations, and it is the

preferred test.5

Test of joint significance To test the joint null hypoth-

esis H0∶β3 = 0, β4 = 0, use the restricted model

E(COKE|x) = Φ
(
β1 + β2PRATIO

)
. The value of the

likelihood ratio test statistic is 19.55, which is larger than the

χ2
(2) 0.95 percentile value 5.991. We reject the null hypothesis

that neither the Coke nor Pepsi display has an effect on the

choice of Coke.

Testing the overall model significance As in the linear

regression model, we are interested in testing the overall sig-

nificance of the probit model. In the Coke choice example,

the null hypothesis for this test is H0∶β2 = 0, β3 = 0,

β4 = 0. The alternative hypothesis is that at least one of the

parameters is not zero. If the null hypothesis is true, the

restricted model is E(COKE) = Φ
(
β1

)
. The log-likelihood

value for this restricted model is lnLR = −783.8603 and the

value of the likelihood ratio test statistic is LR = 145.8234.

The test statistic has an asymptotic χ2
(3) distribution if the

null hypothesis is true. The 0.95 percentile value for this

distribution is 7.815, so we reject the null hypothesis that

none of the explanatory variables help explain the choice of

Coke versus Pepsi. In addition, like in the linear regression

model, this “overall” test is reported in standard probit

computer output.

............................................................................................................................................

5Griffiths, W. E., Hill, R. C., & Pope, P. (1987). Small Sample Properties of Probit Model Estimators. Journal of the
American Statistical Association, 82, 929–937.
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16.2.7 Robust Inference in Probit and Logit Models
You may be wondering if there are “robust” standard errors for use with probit and logit that

correct for heteroskedasticity and/or serial correlation. Unfortunately, the answer is no. As noted

in Chapter 8, equation (8.32), the 0-1 random variable yi has conditional variance var
(
yi|xi

)
=

p
(
xi
)[

1 − p
(
xi
)]

. In the probit model, for example, this means that

var
(
yi|xi

)
= Φ

(
β1 + β2xi2 + · · · + βKxiK

)[

1 − Φ
(
β1 + β2xi2 + · · · + βKxiK

)]

There is no other possible variance if the probit model is correct. Maximum likelihood estimation

of the probit model does not require any adjustment for this built in heteroskedasticity. Some

software packages do have probit with a robust option, but it does not provide the type of robust

results we have seen in Chapters 8 and 9. If you happen to use one of these options, and if the

“robust” standard errors are much different from the usual probit standard errors, then, if anything,

it is a symptom of some specification problem, such as incorrect functional form.

An exception is when there are data clusters. In Section 15.2.1, we introduced cluster-robust

standard errors. There we discussed clusters in the context of panel data. However, clusters of

observations, in which there are intracluster correlations, can occur in many contexts. We may

observe individuals within different villages, and there may be a common unobserved hetero-

geneity within villages representing a “village effect.” The unobserved heterogeneity causes a

correlation among individuals in the same village, while there is no correlation among individ-

uals across villages. In these situations, conventional standard errors may greatly overstate the

precision of estimation. Therefore, using cluster-robust standard errors with probit and logit is

recommended when the problem is suitable. In general, this means that there are many clusters

with not too many observations in each.6 Be careful when implementing cluster-robust standard

errors as the computer command may be quite different from the usual “robust” standard error

command.

16.2.8 Binary Choice Models with a Continuous
Endogenous Variable

There are several ways that probit concepts can be combined with endogenous variables. The

first is when the outcome variable is binary, as in the linear probability or probit models, and an

explanatory variable is endogenous. As in our discussions of instrumental variables and two-stage

least squares estimation in Chapters 10 and 11, the estimation methods here require instrumental

variables.

The first, and easiest, option is to estimate a linear probability model for the binary outcome

variable using IV/2SLS. To be specific, suppose that the equation of interest is

yi1 = α2yi2 + β1 + β2xi2 + ei

where yi1 = 1 or 0, yi2 is a continuous endogenous variable, and xi2 is an exogenous variable, that

is uncorrelated with the random error ei. Suppose that we have an instrumental variable zi so that

the first-stage equation, or reduced form, is

yi2 = π1 + π2xi2 + π3zi + vi

Using the IV/2SLS estimation approach, we first estimate this equation by OLS, obtain the fitted

values ŷi2 = π̂1 + π̂2xi2 + π̂3zi. Substituting these fitted values into the equation of interest we

have yi1 = α2ŷi2 + β1 + β2xi2 + e∗i . Estimating this model by OLS produces IV/2SLS estimates.

However, as always, to obtain correct standard errors use IV/2SLS software, and in this case use

heteroskedasticity robust standard errors.

............................................................................................................................................

6A complete but advanced resource is A. Colin Cameron and Douglas L. Miller (2015). A Practitioner’s Guide to

Cluster-Robust Inference, The Journal of Human Resources, 50(2), 317–372.
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This approach is familiar and easy to implement. As always we must be concerned about the

strength of the instrumental variable. The coefficient π3 must not be zero, and when the first-stage

model is estimated, it must be statistically very significant. As previously noted, using the lin-

ear probability model is not ideal when the outcome variable is binary. The procedure we have

outlined ignores the binary character of the outcome variable, but it may reasonably estimate

the population average marginal effect. There is another, more theoretically complicated, maxi-

mum likelihood estimator that is called instrumental variables probit, or simply IV probit.7 This

estimator is available in some software packages.

E X A M P L E 16.9 Estimating the Effect of Education
on Labor Force Participation

When studying the wages of married women, Examples

10.1–10.7 using data file mroz, we were very concerned with

the endogeneity of education. In those examples, we only

considered women who were in the labor force and had an

observable market wage. Now we ask about the effect of

education on the decision to join the labor force or not. Let

LFP =

{
1 in labor force

0 not in labor force

Consider the linear probability model

LFP = α1EDUC + β1 + β2EXPER + β3EXPER2

+ β4KIDSL6 + β5AGE + e

Suppose the instrumental variable for EDUC is MOTHERE-
DUC. The first-stage equation is

EDUC = π1 + π2EXPER + π3EXPER2 + π4KIDSL6
+ π5AGE + π6MOTHEREDUC + v

In the first-stage estimation, the t-value for the coefficient

of MOTHEREDUC is 12.85, which using conventional

standards indicates that this instrument is not weak.

The two-stage least squares estimates of the labor force

participation equation, with robust standard errors, are

LFP
⋀

= 0.0388EDUC + 0.5919 + 0.0394EXPER
(se) (0.0165) (0.2382) (0.0060)

− 0.0006EXPER2− 0.2712KIDSL6 − 0.0177AGE
(0.0002) (0.03212) (0.0023)

We estimate that each additional year of education increases

the probability of a married woman being in the labor force

by 0.0388, holding all else constant. The regression-based

Hausman test for the endogeneity of education, using robust

standard errors, has a p-value of 0.646. Thus, we cannot reject

the exogeneity of education in this model, using the instru-

ment MOTHEREDUC.

16.2.9 Binary Choice Models with a Binary Endogenous
Variable

Modify the model in Section 16.2.8 so that the endogenous variable yi2 is binary. The first, and

easiest, option is again to estimate a linear probability model for the binary outcome variable

using IV/2SLS. To be specific, suppose that the equation of interest is

yi1 = α2yi2 + β1 + β2xi2 + ei

where yi1 = 1 or 0, yi2 = 1 or 0, and xi2 is an exogenous variable, that is uncorrelated with the

random error ei. Suppose that we have an instrumental variable zi so that the first-stage equation,

or reduced form, is

yi2 = π1 + π2xi2 + π3zi + vi

Using the IV/2SLS estimation approach, we first estimate this equation by OLS, obtain the fitted

values ŷi2 = π̂1 + π̂2xi2 + π̂3zi. Substituting these fitted values into the equation of interest we

............................................................................................................................................

7See William Greene (2018) Econometric Analysis, Eighth Edition, Prentice-Hall, page 773, or Jeffery M. Wooldridge

(2010) Econometric Analysis of Cross Section and Panel Data, Second Edition, MIT Press, p. 585–594. These

references are very advanced.
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have yi1 = α2ŷi2 + β1 + β2xi2 + e∗i . Estimate this model by OLS to obtain IV/2SLS estimates. Of

course, as always, use proper IV/2SLS software and, because the dependent variable is binary,

use heteroskedasticity robust standard errors.

It is tempting but incorrect to think that the first-stage equation can be estimated by probit,

followed by substituting p̃i = P̃
(
yi2 = 1

)
= Φ

(
π̃1 + π̃2xi2 + π̃3zi

)
into the equation of interest, and

then applying either probit or the linear probability model. The second estimation is called a for-

bidden regression.8 Two-stage least squares works only when it consists of two OLS regressions,

substituting OLS fitted values from a first-stage regression in for the endogenous variable in the

first equation. 2SLS works because OLS has the property that the residuals are uncorrelated with

the explanatory variables.

Once again the linear probability model approach “works” but does not use the fact that

yi1 = 1 or 0 and yi2 = 1 or 0 are binary variables. A maximum likelihood estimation approach

called bivariate probit9 does take this into account.

E X A M P L E 16.10 Women’s Labor Force Participation and Having
More Than Two Children

The Angrist and Evans (1998)10 model of labor force

participation, LFP = 1 or 0, includes as an explanatory

variable the indicator variable MOREKIDS = 1 if the woman

has three or more children, and MOREKIDS = 0 otherwise.

Intuitively, we think having three or more children will

have a negative effect on the probability of labor force

participation. The very clever instrumental variable used

is the indicator variable where the value SAMESEX = 1

if the woman’s first two children are of the same sex, and

SAMESEX = 0 otherwise. The idea behind this instrumental

variable is that while it should have no direct effect on labor

force participation it is correlated with a woman having three

or more children. If a woman’s first two children are both

boys (girls), then she may be inclined to have another child

in the hope of getting a girl (boy).

16.2.10 Binary Endogenous Explanatory Variables
Modify the model in Section 16.2.9 so that the outcome variable yi1 is continuous and the endoge-

nous variable yi2 is binary. This model has long been studied and was first called a dummy
endogenous variable model by Nobel prize winner James Heckman. The first, and easiest, option

is to use IV/2SLS. To be specific, suppose that the equation of interest is

yi1 = α2yi2 + β1 + β2xi2 + ei

where yi1 is continuous, the endogenous variable yi2 = 1 or 0, and xi2 is an exogenous variable,

that is uncorrelated with the random error ei. Suppose that we have an instrumental variable zi so

that the first-stage equation, or reduced form, is

yi2 = π1 + π2xi2 + π3zi + vi

............................................................................................................................................

8Jeffery M. Wooldridge (2010) Econometric Analysis of Cross Section and Panel Data, Second Edition, MIT Press,

p. 267–268 and 596–597.

9See William Greene (2018) Econometric Analysis, Eighth Edition, Prentice-Hall, Chapter 17.9, or Jeffery M.

Wooldridge (2010) Econometric Analysis of Cross Section and Panel Data, Second Edition, MIT Press, pages.

594–599. These references are very advanced.

10Children and Their Parents’ Labor Supply: Evidence from Exogenous Variation in Family Size, The American
Economic Review, Vol. 88, No. 3 (Jun., 1998), pp. 450–477. See also Jeffery M. Wooldridge (2010) Econometric
Analysis of Cross Section and Panel Data, Second Edition, MIT Press, pp. 597–598.
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Using the IV/2SLS estimation approach, we first estimate this linear probability model by

OLS, obtain the fitted values ŷi2 = π̂1 + π̂2xi2 + π̂3zi. Substituting these fitted values into the

equation of interest we have yi1 = α2ŷi2 + β1 + β2xi2 + e∗i . Estimating this model by OLS yields

the 2SLS estimates. As always proper IV/2SLS software should be used.

The presence of an endogenous binary variable is an important feature in some treatment
effect models.11

E X A M P L E 16.11 Effect of War Veteran Status on Wages

A widely cited work by Joshua Angrist examines the effect of

serving in the Vietnam war on the wages of male American

workers. December 1, 1969, there was a lottery to determine

eligibility for being drafted into service. Imagine 366 slips

of paper each written with a birth date. The slips are placed

in a jar, mixed up, and a slip drawn. The first date drawn was

September 14. All men of eligible age with that birthday were

given draft lottery number 1. The second date drawn was

April 24 and was given lottery number 2, and so on. In the

first lottery, all those with lottery numbers 195 or less were

called to report for possible induction into the military. Some

of those chosen did not serve for medical or other reasons, and

some chose to volunteer. Thus, those who ultimately served,

and became war veterans, did not correspond exactly to those

with lottery numbers less than or equal to 195.

Consider a model of worker earnings, 10 years after the

draft. Let VETERAN = 1 if a person was a veteran and = 0

otherwise. Because some chose to volunteer, the binary vari-

able VETERAN is endogenous in the model

EARNINGS = α2VETERAN + β1

+ β2OTHER_FACTORS + ei

What is a possible instrument? A person’s lottery number

is correlated with veteran status. More specifically, let

LOTTERY = 1 if a person’s draft lottery number was 195

or less, and LOTTERY = 0 otherwise. We anticipate that

LOTTERY will be positively correlated with VETERAN and

is a potential instrument. This type of binary IV leads to the

Wald estimator, introduced in Exercises 10.5 and 10.6. The

results of the IV estimation show that serving in the military

has a negative and significant effect on wages.

16.2.11 Binary Choice Models and Panel Data
In Chapter 15, we used panel data to control for unobservable heterogeneity across individuals.

The fixed effects estimator includes an indicator, or dummy, variable for each individual. Equiva-

lently, the within estimator uses deviations about individual means to estimate coefficients of the

regression function. We use the fixed effects estimator when the unobservable heterogeneity is

correlated with the explanatory variables. The random effects estimator is a generalized least

squares estimator that accounts for intra-individual error correlations caused by unobserved het-

erogeneity. It is more efficient than the fixed effects estimator but is inconsistent if the unobserv-

able heterogeneity is correlated with any of the included explanatory variables.

If the outcome variable is binary, then using the panel data methods with the linear probability

model is exactly the same as with the linear regression model. If there is unobserved heterogeneity

that is correlated with one or more explanatory variables, then using the fixed effects estimator

or the first difference estimator is appropriate. If the unobserved heterogeneity is not correlated

with any explanatory variables, then using the random effects estimator is an option, as is the less

efficient but consistent OLS estimator with robust cluster-corrected standard errors.

Using probit or logit with panel data is a different story. The probit model is a nonlin-

ear model, that is, a nonlinear function of the parameters. If the unobserved heterogeneity is

............................................................................................................................................

11A discussion of the results and similar estimators can be found in Joshua D. Angrist and Jörn-Steffen Pischke (2009)

Mostly Harmless Econometrics: An Empiricist’s Guide, Princeton Press, pages 128–138. This reference is advanced.

Other examples and estimation approaches for treatment effects are in Jeffery M. Wooldridge (2010) Econometric
Analysis of Cross Section and Panel Data, Second Edition, MIT Press, Chapter 21. This reference is very advanced. For

an advanced and exhaustive survey see G. W. Imbens and J. M. Wooldridge (2009) “Recent Developments in the

Econometrics of Program Evaluation,” Journal of Economic Literature, 47(1), 5–86.
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correlated with the explanatory variables, we have a problem. The usual fixed effect approach

to dealing with individual heterogeneity fails. If there are N individuals and N → ∞ (gets large)

while T remains fixed, then adding an indicator variable for each individual leads to a model in

which the number of parameters we must estimate N + K also approaches ∞. The probit estima-

tor is no longer consistent because there are too many parameters. In statistics, this is called the

incidental parameters problem. In the linear regression model, we avoid this problem by using the

within-transformation, based on the Frisch–Waugh–Lovell theorem, so that we can estimate the

regression function parameters without having to estimate all the fixed effects coefficients. This

does not work in probit because of the nonlinear nature of the problem. In probit, we cannot apply

the Frisch–Waugh–Lovell theorem and simply using variables in deviations about the mean form

does not work. There is no fixed effects probit estimator, although researchers are considering

methods for reducing the bias of the estimator so that it might be used. On the other hand, there

is a type of panel logit fixed effects model called conditional logit, or sometimes Chamberlain’s
conditional logit,12 recognizing the innovative econometrician Gary Chamberlain. It is not the

same as introducing indicator variables for each individual into the logit model.

The probit model can however be combined with random effects to obtain a random effects
probit model. The actual method of maximizing the likelihood function requires some tricky

integrals, which can be solved using numerical approximations or simulations. As with the

linear regression model, the random effects estimator is inconsistent if the random effects

are correlated with the explanatory variables. It has been suggested that controls for time

invariant factors, such as the time averages of the independent variables, xi •, be introduced,

similar to the Mundlak method for carrying out the Hausman test discussed in Chapter 15. The

resulting model is called the Mundlak–Chamberlain-correlated random effects probit model.13

The added variables xi • act like control variables, possibly reducing the random effects probit

estimator bias.

A dynamic binary choice model, which includes the lagged value of the choice variable on

the right-hand side as an explanatory variable, is an obvious way to handle habit persistence.

Coke drinkers buying soda today are more likely to purchase Coke if they purchased Coke when

shopping on the previous occasion. However, in such models, the lagged endogenous variable will

be correlated with the random effect, as noted in Chapter 15. In this case, the previous estimators

are inconsistent and new methods14 must be considered.

16.3 Multinomial Logit
In probit and logit models, the decision-maker chooses between two alternatives. Clearly, we

are often faced with choices involving more than two alternatives. These are called multinomial
choice situations. Examples include the following:

• If you are shopping for a laundry detergent, which one do you choose? Tide, Cheer, Arm &

Hammer, Wisk, and so on. The consumer is faced with a wide array of alternatives. Mar-

keting researchers relate these choices to prices of the alternatives, advertising, and product

characteristics.

• If you enroll in the business school, will you major in economics, marketing, management,

finance, or accounting?

• If you are going to a mall on a shopping spree, which mall will you go to, and why?

• When you graduated from high school, you had to choose between not going to college and

going to a private 4-year college, a public 4-year college, or a 2-year college. What factors

led to your decision among these alternatives?

............................................................................................................................................

12See Wooldridge (2010, 620–622), Greene (2018, 787–789), or Baltagi (2013, 240–243). The material is advanced.

13See Greene (2018, 792–793) and Wooldridge (2010, 616–619).

14See Greene (2018, 794–796), Baltagi (2013, 248–253), and Wooldridge (2010, 625–630).
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It would not take you long to come up with other illustrations. In each of these cases, we wish

to relate the observed choice to a set of explanatory variables. More specifically, as in probit and

logit models, we wish to explain and estimate the probability that an individual with a certain set

of characteristics chooses one of the alternatives. The estimation and interpretation of such models

is, in principle, similar to that in logit and probit models. The models themselves go under the

names multinomial logit, conditional logit, and multinomial probit. We will discuss the most

commonly used logit models.

16.3.1 Multinomial Logit Choice Probabilities
Suppose that a decision-maker must choose between several distinct alternatives. Let us focus on

a problem with J = 3 alternatives. An example might be the choice facing a high-school graduate.

Shall I attend a 2-year college, a 4-year college, or not go to college? The factors affecting this

choice might include household income, the student’s high-school grades, family size, race, and

sex, and the parents’ education. As in the logit and probit models, we will try to explain the

probability that the ith person will choose alternative j,

pij = P
[
individual i chooses alternative j

]

In our example, there are J = 3 alternatives, denoted by j = 1, 2, or 3. These numerical values

have no meaning because the alternatives in general have no particular ordering and are assigned

arbitrarily. You can think of them as categories A, B, and C.

If we assume a single explanatory factor, xi, then, in the multinomial logit specification, the

probabilities of individual i choosing alternatives j = 1, 2, 3 are

pi1 =
1

1 + exp
(
β12 + β22xi

)
+ exp

(
β13 + β23xi

) , j = 1 (16.19a)

pi2 =
exp

(
β12 + β22xi

)

1 + exp
(
β12 + β22xi

)
+ exp

(
β13 + β23xi

) , j = 2 (16.19b)

pi3 =
exp

(
β13 + β23xi

)

1 + exp
(
β12 + β22xi

)
+ exp

(
β13 + β23xi

) , j = 3 (16.19c)

The parameters β12 and β22 are specific to the second alternative and β13 and β23 are specific to

the third alternative. The parameters specific to the first alternative are set to zero to solve an

identification problem and to make the probabilities sum to one.15 Setting β11 = β21 = 0 leads to

the 1 in the numerator of pi1 and the 1 in the denominator of each part of (16.19). Specifically,

the term that would be there is exp(β11 + β21xi) = exp(0 + 0xi) = 1.

A distinguishing feature of the multinomial logit model in (16.19) is that there is a single

explanatory variable that describes the individual, not the alternatives facing the individual. Such

variables are called individual specific. To distinguish the alternatives, we give them different

parameter values. This situation is common in the social sciences, where surveys record many

characteristics of the individuals, and choices they made.

16.3.2 Maximum Likelihood Estimation
Let yi1, yi2, and yi3 be indicator variables representing the choice made by individual i. If alter-

native 1 is selected, then yi1 = 1, yi2 = 0, and yi3 = 0. If alternative 2 is selected, then yi1 = 0,

yi2 = 1, and yi3 = 0. In this model, each individual must choose one, and only one, of the available

alternatives.

............................................................................................................................................

15Some software may choose the parameters of the last (Jth) alternative to set to zero, or perhaps the most frequently

chosen group. Check your software documentation.
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Estimation of this model is by maximum likelihood. Suppose that we observe three individu-

als, who choose alternatives 1, 2, and 3, respectively. Assuming that their choices are independent,

then the probability of observing this outcome is

P
(
y11 = 1, y22 = 1, y33 = 1|x1, x2, x3

)
= p11 × p22 × p33

= 1

1 + exp
(
β12 + β22x1

)
+ exp

(
β13 + β23x1

)

×
exp

(
β12 + β22x2

)

1 + exp
(
β12 + β22x2

)
+ exp

(
β13 + β23x2

)

×
exp

(
β13 + β23x3

)

1 + exp
(
β12 + β22x3

)
+ exp

(
β13 + β23x3

)

= L
(
β12, β22, β13, β23

)

In the last line, we recognize that this joint probability depends on the unknown parameters and is

in fact the likelihood function. Maximum likelihood estimation seeks those values of the param-

eters that maximize the likelihood or, more specifically, the log-likelihood function, which is

easier to work with mathematically. In a real application, the number of individuals will be greater

than three, and computer software will be used to maximize the log-likelihood function numeri-

cally. While the task might look daunting, finding the maximum likelihood estimates in this type

of model is fairly simple.

16.3.3 Multinomial Logit Postestimation Analysis
Given that we can obtain maximum likelihood estimates of the parameters, which we denote as

β̃12, β̃22, β̃13, and β̃23, what can we do then? The first thing we might do is estimate the probability

that an individual will choose alternative 1, 2, or 3. For the value of the explanatory variable x0,

we can calculate the predicted probabilities of each outcome being selected using (16.19). For

example, the probability that such an individual will choose alternative 1 is

p̃01 =
1

1 + exp
(
β̃12 + β̃22x0

)
+ exp

(
β̃13 + β̃23x0

)

The estimated probabilities for alternatives 2 and 3, p̃02 and p̃03, can similarly be obtained. If we

wanted to predict which alternative would be chosen, we might choose to predict that alternative

j will be chosen if p̃0j is the maximum of the estimated probabilities.

Because the model is such a complicated nonlinear function of the parameters, it will not

surprise you to learn that the βs are not “slopes.” In these models, the marginal effect is the

effect of a change in x, everything else held constant, on the probability that an individual chooses

alternative m = 1, 2, or 3. It can be shown16 that

Δpim

Δxi

|
|
|
|all else constant

=
∂pim

∂xi
= pim

[

β2m −
3∑

j=1

β2jpij

]

(16.20)

Recall that the model we are discussing has a single explanatory variable, xi, and that β21 = 0.

............................................................................................................................................

16One can quickly become overwhelmed by the mathematics when seeking references on this topic. Two relatively

friendly sources with good examples are Regression Models for Categorical and Limited Dependent Variables by

J. Scott Long (Thousand Oaks, CA: Sage Publications, 1997) [see Chapter 5] and Quantitative Models in Marketing
Research by Philip Hans Franses and Richard Paap (Cambridge University Press, 2001) [see Chapter 5]. At a much

more advanced level, see Econometric Analysis, Eighth edition by William Greene (Upper Saddle River, NJ: Pearson

Prentice Hall, 2018) [see Section 18.2.3].
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Alternatively, and somewhat more simply, the difference in probabilities can be calculated for

two specific values of xi. If xa and xb are two values of xi, then the estimated change in probability

of choosing alternative 1 [m = 1] when changing from xa to xb is

Δp
∼

1 = p̃b1 − p̃a1

= 1

1 + exp
(
β̃12 + β̃22xb

)
+ exp

(
β̃13 + β̃23xb

)

− 1

1 + exp
(
β̃12 + β̃22xa

)
+ exp

(
β̃13 + β̃23xa

)

This approach is good if there are certain scenarios that you as a researcher have in mind as typical

or important cases or if x is an indicator variable with only two values, xa = 0 and xb = 1.

Another useful interpretive device is the probability ratio. It shows how many times more

likely category j is to be chosen relative to the first category and is given by

P
(
yi = j

)

P
(
yi = 1

) =
pij

pi1
= exp

(
β1j + β2jxi

)
, j = 2, 3 (16.21)

The effect on the probability ratio of changing the value of xi is given by the derivative

∂
(
pij∕pi1

)

∂xi
= β2jexp

(
β1j + β2jxi

)
, j = 2, 3 (16.22)

The value of the exponential function exp
(
β1j + β2jxi

)
is always positive. Thus, the sign of β2j

tells us whether a change in xi will make the jth category more or less likely relative to the first

category.

An interesting feature of the probability ratio (16.21) is that it does not depend on how many

alternatives there are in total. There is the implicit assumption in logit models that the probability

ratio between any pair of alternatives is independent of irrelevant alternatives (IIA). This is a

strong assumption, and if it is violated, multinomial logit may not be a good modeling choice.

It is especially likely to fail if several alternatives are similar. Tests for the IIA assumption work

by dropping one or more of the available options from the choice set and then reestimating the

multinomial model. If the IIA assumption holds, then the estimates should not change very much.

A statistical comparison of the two sets of estimates, one set from the model with a full set of

alternatives, and the other from the model using a reduced set of alternatives, is carried out using

a Hausman contrast test proposed by Hausman and McFadden (1984).17

E X A M P L E 16.12 Postsecondary Education Multinomial Choice

The National Education Longitudinal Study of 1988

(NELS:88) was the first nationally representative longitu-

dinal study of eighth-grade students in public and private

schools in the United States. It was sponsored by the

National Center for Education Statistics. In 1988, some

25,000 eighth-graders and their parents, teachers, and

principals were surveyed. In 1990, these same students (who

were then mostly 10th graders, and some dropouts) and

their teachers and principals were surveyed again. In 1992,

the second follow-up survey was conducted of students,

mostly in the 12th grade, but dropouts, parents, teachers,

school administrators, and high school transcripts were

also surveyed. The third follow-up was in 1994, after most

students had graduated.18

............................................................................................................................................

17“Specification Tests for the Multinomial Logit Model,” Econometrica, 49, pp. 1219–1240. A brief explanation of the

test may be found in Greene (2018, Chapter 18.2.4), op. cit., p. 767.

18The study and data are summarized in National Education Longitudinal Study: 1988–1994, Descriptive Summary
Report with an Essay on Access and Choice in Post-Secondary Education, by Allen Sanderson, Bernard Dugoni,

Kenneth Rasinski, and John Taylor, C. Dennis Carroll project officer, NCES 96-175, National Center for Education

Statistics, March 1996.
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We have taken a subset of the total data, namely those

who stayed in the panel of data through the third follow-up.

On this group, we have complete data on the individuals

and their households, high-school grades, and test scores, as

well as their postsecondary education choices. In the data

file nels_small, we have 1000 observations on students who

chose, upon graduating from high school, either no college

(PSECHOICE = 1), a 2-year college (PSECHOICE = 2),
or a 4-year college (PSECHOICE = 3). For illustration

purposes, we focus on the explanatory variable GRADES,

which is an index ranging from 1.0 (highest level, A+ grade)

to 13.0 (lowest level, F grade) and represents combined

performance in English, maths, and social studies.

Of the 1000 students, 22.2% selected not to attend a

college upon graduation, 25.1% selected to attend a 2-year

college, and 52.7% attended a 4-year college. The average

value of GRADES is 6.53, with highest grade 1.74 and lowest

grade 12.33. The estimated values of the parameters and

their standard errors are given in Table 16.2. We selected the

group who did not attend a college to be our base group, so

that the parameters β11 = β21 = 0.

Based on these estimates, what can we say? Recall

that a larger numerical value of GRADES represents a

poorer academic performance. The parameter estimates for

T A B L E 16.2
Maximum Likelihood Estimates
of PSE Choice

Parameters Estimates
Standard
Errors t-Statistics

β12 2.5064 0.4183 5.99

β22 −0.3088 0.0523 −5.91

β13 5.7699 0.4043 14.27

β23 −0.7062 0.0529 −13.34

T A B L E 16.3 Effects of Grades on Probability of PSE Choice

PSE Choice GRADES p̂ se
(

p̂
)

Marginal Effect se(ME)

No college 6.64 0.1810 0.0149 0.0841 0.0063

2.635 0.0178 0.0047 0.0116 0.0022

Two-year college 6.64 0.2856 0.0161 0.0446 0.0076

2.635 0.0966 0.0160 0.0335 0.0024

Four-year college 6.64 0.5334 0.0182 −0.1287 0.0095

2.635 0.8857 0.0174 −0.0451 0.0030

the coefficients of GRADES are negative and statistically sig-

nificant. Using expression (16.22) on the effect of a change in

an explanatory variable on the probability ratio, this means

that if the value of GRADES increases, the probability that

high-school graduates will choose a 2-year or a 4-year college

goes down, relative to the probability of not attending college.

This is the anticipated effect, as we expect that a poorer aca-

demic performance will increase the odds of not attending

college.

We can also compute the estimated probability of each

type of college choice using (16.19) for given values of

GRADES. In our sample, the median value of GRADES is

6.64, and the top 5th percentile value is 2.635.19 What are

the choice probabilities of students with these grades? In

Table 16.3, we show that the probability of choosing no

college is 0.1810 for the student with median grades, but

this probability is reduced to 0.0178 for students with top

grades. Similarly, the probability of choosing a 2-year school

is 0.2856 for the average student but is 0.0966 for the better

student. Finally, the average student has a 0.5334 chance of

selecting a 4-year college, but the better student has a 0.8857

chance of selecting a 4-year college.

The marginal effect of a change in GRADES on the

choice probabilities can be calculated using (16.20). The

marginal effect again depends on particular values for

GRADES, and we report these in Table 16.3 for the median

and 5th percentile students. An increase in GRADES of one

point (worse performance) increases the probabilities of

choosing either no college or a 2-year college and reduces

the probability of attending a 4-year college. The probability

of attending a 4-year college declines more for the average

student than for the top student, given the one-point increase

in GRADES. Note that for each value of GRADES the sum

of the predicted probabilities is one, and the sum of the

marginal effects is zero, except for rounding error. This is a

feature of the multinomial logit specification.

............................................................................................................................................

19The 5th percentile value of GRADES is given as 2.635 which is halfway between observations 50 and 51 in this 1,000

observation data set. While this is a common way to calculate the 5th percentile, it is not the only way. Since

0.05 × 1000 = 50, some software will report the 50th value, after sorting according to increasing value, 2.63. Others

may take a weighted average of the 50th and 51st values, such as 0.95 × 2.63 + 0.05 × 2.64 = 2.6305. Thanks to Tom

Doan (Estima) for noting this. Standard errors in Table 16.3 are computed via “the delta method,” in a fashion similar to

that described in Appendix 16A.
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16.4 Conditional Logit
Suppose that a decision-maker must choose between several distinct alternatives, just as in the

multinomial logit model. In a marketing context, suppose that our decision is between three types

(J = 3) of soft drinks, say Pepsi, 7-Up, and Coke Classic, in 2-liter bottles. Shoppers will visit

their supermarkets and make a choice, based on prices of the products and other factors. With the

advent of supermarket scanners at checkout, data on purchases (what brand, how many units, and

the price paid) are recorded. Of course, we also know the prices of the products that the consumer

did not buy on a particular shopping occasion. The key point is that if we collect data on soda pur-

chases from a variety of supermarkets, over a period of time, we observe consumer choices from

the set of alternatives and we know the prices facing the shopper on each trip to the supermarket.

Let yi1, yi2, and yi3 be indicator variables that indicate the choice made by individual i. If

alternative one (Pepsi) is selected, then yi1 = 1, yi2 = 0, and yi3 = 0. If alternative two (7-Up)

is selected, then yi1 = 0, yi2 = 1, and yi3 = 0. If alternative 3 (Coke) is selected, then yi1 = 0,

yi2 = 0, and yi3 = 1. The price facing individual i for brand j is PRICEij. That is, the price of

Pepsi, 7-Up, and Coke is potentially different for each customer who purchases soda. Remember,

different customers can shop at different supermarkets and at different times. Variables like PRICE
are individual- and alternative-specific because they vary from individual to individual and are

different for each choice the consumer might make. This type of information is very different from

what we assumed was available in the multinomial logit model, where the explanatory variable

xi was individual-specific; it did not change across alternatives.

16.4.1 Conditional Logit Choice Probabilities
Our objective is to understand the factors that lead a consumer to choose one alternative over

another. We construct a model for the probability that individual i chooses alternative j

pij = P
[
individual ichooses alternative j

]

The conditional logit model specifies these probabilities as

pij =
exp

(
β1j + β2PRICEij

)

exp
(
β11 + β2PRICEi1

)
+ exp

(
β12 + β2PRICEi2

)
+ exp

(
β13 + β2PRICEi3

) (16.23)

Note that unlike the probabilities for the multinomial logit model in (16.19), there is only one

parameter β2 relating the effect of each price to the choice probability pij. We have also included

alternative specific constants (intercept terms). These cannot all be estimated, and one must be

set to zero. We will set β13 = 0.

Estimation of the unknown parameters is by maximum likelihood. Suppose that we observe

three individuals, who choose alternatives one, two, and three, respectively. Assuming that their

choices are independent, then the probability of observing this outcome is

P
(
y11= 1, y22= 1, y33 =1

)
= p11 × p22 × p33

=
exp

(
β11+ β2PRICE11

)

exp
(
β11+ β2PRICE11

)
+ exp

(
β12+ β2PRICE12

)
+ exp

(
β2PRICE13

)

×
exp

(
β12 + β2PRICE22

)

exp
(
β11+ β2PRICE21

)
+ exp

(
β12+ β2PRICE22

)
+ exp

(
β2PRICE23

)

×
exp

(
β2PRICE33

)

exp
(
β11+ β2PRICE31

)
+ exp

(
β12+ β2PRICE32

)
+ exp

(
β2PRICE33

)

= L
(
β11, β12, β2

)
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16.4.2 Conditional Logit Postestimation Analysis
How a change in price affects the choice probability is different for “own price” changes and

“cross-price” changes. Specifically, it can be shown that the own price effect is

∂pij

∂PRICEij
= pij

(
1 − pij

)
β2 (16.24)

The sign of β2 indicates the direction of the own price effect.

The change in probability of alternative j being selected if the price of alternative k changes

(k ≠ j) is
∂pij

∂PRICEik
= −pijpikβ2 (16.25)

The cross-price effect is in the opposite direction of the own price effect.

An important feature of the conditional logit model is that the probability ratio between alter-

natives j and k is

pij

pik
=

exp
(
β1j + β2PRICEij

)

exp
(
β1k + β2PRICEik

) = exp
[(
β1j − β1k

)
+ β2

(
PRICEij − PRICEik

)]

The probability ratio depends on the difference in prices but not on the prices themselves. As in

the multinomial logit model, this ratio does not depend on the total number of alternatives, and

there is the implicit assumption of the independence of irrelevant alternatives (IIA). See the

discussion at the end of Section 16.3.3. Models that do not require the IIA assumption have been

developed, but they are difficult. These include the multinomial probit model, which is based on

the normal distribution, and the nested logit and mixed logit models.20

E X A M P L E 16.13 Conditional Logit Soft Drink Choice

We observe 1822 purchases, covering 104 weeks and 5 stores,

in which a consumer purchased 2-liter bottles of either Pepsi

(34.6%), 7-Up (37.4%), or Coke Classic (28%). These data

are in the file cola. In the sample, the average price of Pepsi

was $1.23, 7-Up $1.12, and Coke $1.21. We estimate the con-

ditional logit model shown in (16.22), and the estimates are

shown in Table 16.4a.

T A B L E 16.4a
Conditional Logit Parameter
Estimates

Variable Estimate
Standard

Error t-Statistic p-Value
PRICE(β2) −2.2964 0.1377 −16.68 0.000

PEPSI(β11) 0.2832 0.0624 4.54 0.000

7-UP(β12) 0.1038 0.0625 1.66 0.096

We see that all the parameter estimates are significantly

different from zero at a 10% level of significance, and the sign

of the coefficient of PRICE is negative. This means that a

rise in the price of an individual brand will reduce the prob-

ability of its purchase, and the rise in the price of a com-

petitive brand will increase the probability of its purchase.

Table 16.4b contains the marginal effects of price changes

on the probability of choosing Pepsi. The marginal effects

are calculated using (16.24) and (16.25) with prices of Pepsi,

7-Up, and Coke set to $1.00, $1.25, and $1.10, respectively.

The standard errors are calculated using the delta method.

Note two things about these estimates. First, they have the

signs we anticipate. An increase in the price of Pepsi is esti-

mated to have a negative effect on the probability of Pepsi

purchase, while an increase in the price of either Coke or

7-Up increases the probability that Pepsi will be selected.

Second, these values are very large for changes in probabili-

ties because a “one-unit change” is $1, which then represents

almost a 100% change in price. For a 10-cent increase in

............................................................................................................................................

20For a brief description of these models at an advanced level, see William Greene, Econometric Analysis, Eighth

Edition by (Upper Saddle River, NJ: Pearson Prentice Hall, 2018), Chapter 18.2.5. Mixed and nested logit models are

important in applied research. David A. Hensher, John M. Rose, William H. Greene (2015) Applied Choice Analysis,
2nd Edition, Cambridge University Press, provide a comprehensive overview and integration of choice models, along

with software instructions using the NLOGIT software package. Survey methodology is also discussed.
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the prices the marginal effects, standard errors and interval

estimate bounds should be multiplied by 0.10.

T A B L E 16.4b
Marginal Effect of Price on
Probability of Pepsi Choice

PRICE
Marginal

Effect
Standard

Error
95% Interval

Estimate
COKE 0.3211 0.0254 [0.2712, 0.3709]

PEPSI −0.5734 0.0350 [−0.6421, −0.5048]

7-UP 0.2524 0.0142 [0.2246, 0.2802]

As an alternative to computing marginal effects, we can com-

pute specific probabilities at given values of the explanatory

variables. For example, at the prices used for Table 16.4b, the

estimated probability of selecting Pepsi is then

p̂i1 =
exp

(
β̃11 + β̃2 × 1.00

)

[

exp
(
β̃11 + β̃2 × 1.00

)
+ exp

(
β̃12 + β̃2 × 1.25

)

+exp
(
β̃2 × 1.10

) ]

= 0.4832

The standard error for this predicted probability is 0.0154,

which is computed via the delta method. If we raise the price

of Pepsi to $1.10, we estimate that the probability of its pur-

chase falls to 0.4263 (se = 0.0135). If the price of Pepsi stays

at $1.00 but we increase the price of Coke by 15 cents, then

we estimate that the probability of a consumer selecting Pepsi

rises by 0.0445 (se = 0.0033). These numbers indicate to us

the responsiveness of brand choice to changes in prices, much

like elasticities.

16.5 Ordered Choice Models
The choice options in multinomial and conditional logit models have no natural ordering or

arrangement. However, in some cases, choices are ordered in a specific way. Examples include

the following:

1. Results of opinion surveys in which responses can be strongly in disagreement, in disagree-

ment, neutral, in agreement, or strongly in agreement.

2. Assignment of grades or work performance ratings. Students receive grades A, B, C, D, and

F, which are ordered on the basis of a teacher’s evaluation of their performance. Employees

are often given evaluations on scales such as outstanding, very good, good, fair, and poor,

which are similar in spirit.

3. Standard and Poor’s rates bonds as AAA, AA, A, BBB, and so on, as a judgment about the

credit worthiness of the company or country issuing a bond, and how risky the investment

might be.

4. Levels of employment as unemployed, part time, or full time.

When modeling these types of outcomes, numerical values are assigned to the outcomes, but the

numerical values are ordinal and reflect only the ranking of the outcomes. In the first example,

we might assign a dependent variable y the values

y =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

1 strongly disagree

2 disagree

3 neutral

4 agree

5 strongly agree

In Section 16.3, we considered the problem of choosing what type of college to attend after

graduating from high school as an illustration of a choice among unordered alternatives.
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However, in this particular case, there may in fact be natural ordering. We might rank the

possibilities as

y =
⎧
⎪
⎨
⎪
⎩

3 four-year college (the full college experience)
2 two-year college (apartial college experience)
1 no college

(16.26)

The usual linear regression model is not appropriate for such data, because in regression we would

treat the y-values as having some numerical meaning when they do not. In the following section,

we discuss how probabilities of each choice might be modeled.

16.5.1 Ordinal Probit Choice Probabilities
When faced with a ranking problem, we develop a “sentiment” about how we feel concerning

the alternative choices, and the higher the sentiment, the more likely a higher ranked alternative

will be chosen. This sentiment is, of course, unobservable to the econometrician. Unobservable

variables that enter decisions are called latent variables, and we will denote our sentiment toward

the ranked alternatives by y∗i , with the “star” reminding us that this variable is unobserved. See

Appendix 16B for more on latent variables.

Microeconomics is well described as the “science of choice.” Economic theory will suggest

that certain factors (observable variables) may affect how we feel about the alternatives facing

us. As a concrete example, let us think about what factors might lead a high-school graduate to

choose among the alternatives “no college,” “2-year college,” and “4-year college” as described

by the ordered choices in (16.26). Some factors that affect this choice are household income, the

student’s high-school grades, how close a 2- or 4-year college is to the home, whether parents

had attended a 4-year college, and so on. For simplicity, let us focus on the single explanatory

variable GRADES. The model is then

y∗i = βGRADESi + ei

This model is not a regression model because the dependent variable is unobservable. Conse-

quently, it is sometimes called an index model. The error term is present for the usual reasons.

The choices we observe are based on a comparison of “sentiment” toward higher education y∗i
relative to certain thresholds, as shown in Figure 16.2.

Because there are M = 3 alternatives, there are M – 1 = 2 thresholds μ1 and μ2, with μ1 < μ2.

The index model does not contain an intercept because it would be exactly collinear with the

threshold variables. If sentiment toward higher education is in the lowest category, then y∗i ≤ μ1

and the alternative “no college” is chosen, if μ1 < y∗i ≤ μ2 then the alternative “2-year college”

μ1 μ2

–∞ +∞

*
iy

iy  = 1 (no college) yi = 2 (2-year college) yi = 3 (4-year college)

FIGURE 16.2 Ordinal choices relative to thresholds.
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is chosen, and if sentiment toward higher education is in the highest category, then y∗i > μ2 and

“4-year college” is chosen. That is,

yi =
⎧
⎪
⎨
⎪
⎩

3 (four-year college) if y∗i > μ2

2 (two-year college) if μ1 < y∗i ≤ μ2

1 (no college) if y∗i ≤ μ1

We are able to represent the probabilities of these outcomes if we assume a particular probability

distribution for y∗i , or equivalently for the random error ei. If we assume that the errors have the

standard normal distribution, N(0, 1), an assumption that defines the ordered probit model, then

we can calculate the following:

P
(
yi = 1

)
= P

(
y∗i ≤ μ1

)
= P

(
βGRADESi + ei ≤ μ1

)

= P
(
ei ≤ μ1 − βGRADESi

)

= Φ
(
μ1 − βGRADESi

)

P
(
yi = 2

)
= P

(
μ1 < y∗i ≤ μ2

)
= P

(
μ1 < βGRADESi + ei ≤ μ2

)

= P
(
μ1 − βGRADESi < ei ≤ μ2 − βGRADESi

)

= Φ
(
μ2 − βGRADESi

)
− Φ

(
μ1 − βGRADESi

)

and the probability that y = 3 is

P
(
yi = 3

)
= P

(
y∗i > μ2

)
= P

(
βGRADESi + ei > μ2

)

= P
(
ei > μ2 − βGRADESi

)

= 1 − Φ
(
μ2 − βGRADESi

)

16.5.2 Ordered Probit Estimation and Interpretation
Estimation, as with previous choice models, is by maximum likelihood. If we observe a random

sample of N = 3 individuals, with the first not going to college (y1 = 1), the second attending

a 2-year college (y2 = 2), and the third attending a 4-year college (y3 = 3), then the likelihood

function is

L
(
β, μ1, μ2

)
= P

(
y1 = 1

)
× P

(
y2 = 2

)
× P

(
y3 = 3

)

Note that the probabilities depend on the unknown parameters μ1 and μ2 as well as the index

function parameter β. These parameters are obtained by maximizing the log-likelihood function

using numerical methods. Econometric software includes options for both ordered probit, which

depends on the errors being standard normal, and ordered logit, which depends on the assumption

that the random errors follow a logistic distribution. Most economists will use the normality

assumption, but many other social scientists use the logistic. In the end, there is little difference

between the results.

The types of questions we can answer with this model are the following:

1. What is the probability that a high-school graduate with GRADES = 2.5 (on a 13-point scale,

with one being the highest) will attend a 2-year college? The answer is obtained by plug-

ging in the specific value of GRADES into the estimated probability using the maximum

likelihood estimates of the parameters,

P̂(y = 2|GRADES = 2.5) = Φ
(
μ̃2 − β̃ × 2.5

)
− Φ

(
μ̃1 − β̃ × 2.5

)
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2. What is the difference in probability of attending a 4-year college for two students, one

with GRADES = 2.5 and another with GRADES = 4.5? The difference in the probabilities

is calculated directly as

P̂(y = 3|GRADES = 4.5) − P̂(y = 3|GRADES = 2.5)

3. If we treat GRADES as a continuous variable, what is the marginal effect on the probability

of each outcome, given a one-unit change in GRADES? These derivatives are

∂P(y = 1)
∂GRADES

= −ϕ
(
μ1 − βGRADES

)
× β

∂P(y = 2)
∂GRADES

=
[

ϕ
(
μ1 − βGRADES

)
− ϕ

(
μ2 − βGRADES

)]

× β

∂P(y = 3)
∂GRADES

= ϕ
(
μ2 − βGRADES

)
× β

In these expressions, “ϕ( • )” denotes the pdf of a standard normal distribution, and its values are

always positive. Consequently, the sign of the parameter β is opposite the direction of the marginal

effect for the lowest category, but it indicates the direction of the marginal effect for the highest

category. The direction of the marginal effect for the middle category goes one way or the other,

depending on the sign of the difference in brackets.

There are a variety of other devices that can be used to analyze the outcomes, including some

useful graphics. For more on these, see (from a social science perspective) Regression Models
for Categorical and Limited Dependent Variables by J. Scott Long (Sage Publications, 1997,

Chapter 5) or (from a marketing perspective) Quantitative Models in Marketing Research by

Philip Hans Franses and Richard Paap (Cambridge University Press, 2001, Chapter 6). A com-

prehensive reference is by William H. Greene and David A. Hensher (2010) Modeling Ordered
Choices: A Primer, Cambridge University Press.

E X A M P L E 16.14 Postsecondary Education Ordered Choice Model

To illustrate, we use the college choice data introduced in

Section 16.3 and contained in the data file nels_small. We

treat PSECHOICE as an ordered variable with 1 represent-

ing the least favored alternative (no college) and 3 denoting

the most favored alternative (4-year college). The estimation

results are in Table 16.5.

T A B L E 16.5
Ordered Probit Parameter
Estimates for PSE Choice

Parameters Estimates Standard Errors

β −0.3066 0.0191

μ1 −2.9456 0.1468

μ2 −2.0900 0.1358

The estimated coefficient of GRADES is negative,

indicating that the probability of attending a 4-year college

goes down when GRADES increase (indicating a worse

performance), and the probability of the lowest ranked

choice, attending no college, increases. Let us examine the

marginal effects of an increase in GRADES on attending

a 4-year college. For a student with median grades (6.64),

the marginal effect is −0.1221, and for a student in the 5th

percentile (2.635), the marginal effect is −0.0538. These

are similar in magnitude to the marginal effects shown in

Table 16.3.
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16.6 Models for Count Data
When the dependent variable in a regression model is a count of the number of occurrences of an

event, the outcome variable is y = 0, 1, 2, 3,… These numbers are actual counts and thus different

from the ordinal numbers of the previous section. Examples include the following:

• The number of trips to a physician a person makes during a year.

• The number of fishing trips taken by a person during the previous year.

• The number of children in a household.

• The number of automobile accidents at a particular intersection during a month.

• The number of televisions in a household.

• The number of alcoholic drinks a college student takes in a week.

While we are again interested in explaining and estimating probabilities, such as the probability

that an individual will take two or more trips to the doctor during a year, the probability distribu-

tion we use as a foundation is the Poisson, not the normal or the logistic. If Y is a Poisson random
variable, then its probability function is

𝑓(y) = P(Y = y) = e−λλy

y!
, y = 0, 1, 2,… (16.27)

The factorial (!) term y! = y × (y − 1) × (y − 2) × · · · × 1. This probability function has one

parameter, λ, which is the mean (and variance) of Y . That is, E(Y) = var(Y) = λ. In a regression

model, we try to explain the behavior of E(Y) as a function of some explanatory variables. We do

the same here, keeping the value of E(Y) ≥ 0 by defining

E
(
Y|x

)
= λ = exp

(
β1+ β2x

)
(16.28)

This choice defines the Poisson regression model for count data.

16.6.1 Maximum Likelihood Estimation of the Poisson
Regression Model

The parameters β1 and β2 in (16.28) can be estimated by maximum likelihood. Suppose that we

randomly select N = 3 individuals from a population and observe that their counts are y1 = 0,

y2 = 2, and y3 = 2, indicating 0, 2, and 2 occurrences of the event for these three individuals.

Recall that the likelihood function is the joint probability function of the observed data, interpreted

as a function of the unknown parameters. That is,

L
(
β1, β2

)
= P(Y = 0) × P(Y = 2) × P(Y = 2)

This product of functions like (16.27) will be very complicated and difficult to maximize. How-

ever, in practice, maximum likelihood estimation is carried out by maximizing the logarithm of

the likelihood function, or

lnL
(
β1, β2

)
= lnP(Y = 0) + lnP(Y = 2) + lnP(Y = 2)

Using (16.28) for λ, the log of the probability function is

ln
[

P(Y = y|x)
]

= ln

[
e−λλy

y!

]

= −λ + yln(λ) − ln(y!)

= −exp
(
β1 + β2x

)
+
[

y ×
(
β1 + β2x

)]

− ln(y!)
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Then the log-likelihood function, given a sample of N observations, becomes

lnL
(
β1, β2

)
=

N∑

i=1

{

−exp
(
β1 + β2xi

)
+ yi ×

(
β1+ β2xi

)
− ln

(
yi!
)}

This log-likelihood function is a function of only β1 and β2 once we substitute in the data values

(yi, xi). The log-likelihood function itself is still a nonlinear function of the unknown parameters,

and the maximum likelihood estimates must be obtained by numerical methods. Econometric

software has options that allow for the maximum likelihood estimation of count models with the

click of a button.

16.6.2 Interpreting the Poisson Regression Model
As in other modeling situations, we would like to use the estimated model to predict outcomes,

determine the marginal effect of a change in an explanatory variable on the mean of the dependent

variable, and test the significance of coefficients.

Estimation of the conditional mean of y is straightforward. Given the maximum likelihood

estimates β̃1 and β̃2, and given a value of the explanatory variable x0,

E
(
y0

)
⋀

= λ̃0 = exp
(
β̃1+ β̃2x0

)

This value is an estimate of the expected number of occurrences observed if x takes the value x0.

The probability of a particular number of occurrences can be estimated by inserting the estimated

conditional mean into the probability function, as

P(Y = y)
⋀

=
exp

(
−λ̃0

)
λ̃y

0

y!
, y = 0, 1, 2,…

The marginal effect of a change in a continuous variable x in the Poisson regression model

is not simply given by the parameter because the conditional mean model is a nonlinear

function of the parameters. Using our specification that the conditional mean is given by

E
(
yi|xi

)
= λi = exp

(
β1 + β2xi

)
, and using rules for derivatives of exponential functions, we

obtain the marginal effect

∂E
(
yi|xi

)

∂xi
= λiβ2 (16.29)

To estimate this marginal effect, replace the parameters by their maximum likelihood estimates

and select a value for x. The marginal effect is different depending on the value of x chosen.

A useful fact about the Poisson model is that the conditional mean E
(
yi|xi

)
= λi = exp

(
β1 + β2xi

)

is always positive because the exponential function is always positive. Thus, the direction of the

marginal effect can be determined from the sign of the coefficient β2.

Equation (16.29) can be expressed as a percentage, which can be useful:

%ΔE
(
yi|x

)

Δxi
= 100

∂E
(
yi|x

)
∕E
(
yi|x

)

∂xi
= 100β2%

If x is not transformed, then a one-unit change in x leads to 100β2% change in the conditional mean.

Suppose that the conditional mean function contains a indicator variable, how do we calculate

its effect? If E
(
yi|x

)
= λi = exp

(
β1 + β2xi + δDi

)
, we can examine the conditional expectation

when D = 0 and when D = 1.

E
(
yi|xi,Di = 0

)
= exp

(
β1+ β2xi

)

E
(
yi|xi,Di = 1

)
= exp

(
β1+ β2xi + δ

)
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Then, the percentage change in the conditional mean is

100

[
exp

(
β1 + β2xi + δ

)
− exp

(
β1 + β2xi

)

exp
(
β1 + β2xi

)

]

% = 100
[
eδ − 1

]
%

This is identical to the expression we obtained for the effect of an indicator variable in a log-linear

model. See Section 7.3.

Finally, hypothesis testing can be carried out using standard methods. The maximum likeli-

hood estimators are asymptotically normal with a variance of a known form. The actual expression

for the variance is complicated and involves matrix expressions, so we will not report the formula

here.21 Econometric software has the variance expressions encoded, and along with parameter

estimates, it will provide standard errors, t-statistics, and p-values, which are used as always.

E X A M P L E 16.15 A Count Model for the Number of Doctor Visits

The economic analysis of the health care system is a vital area

of research and public interest. In this example, we consider

data used by Riphahn, Wambach, and Million (2003).22 The

data file rwm88_small contains data on 1,200 individuals’

number of doctor visits in the past three months (DOCVIS),

their age in years (AGE), their sex (FEMALE), and whether

or not they had public insurance (PUBLIC). The frequencies

of doctor visits are illustrated in Table 16.6, with 90.5% of

the sample having eight or fewer visits.

T A B L E 16.6
Number of Doctor Visits
(DOCVIS)

DOCVIS Number
0 443

1 200

2 163

3 111

4 51

5 49

6 37

7 7

8 25

These are numerical count data (number of times an event

occurs) so that the Poisson model is a feasible choice.

Applying maximum likelihood estimation, we obtain the

fitted model

E(DOCVIS)
⋀

= exp
(
− 0.0030 + 0.0116AGE

(se) (0.0918) (0.0015)

+ 0.1283FEMALE + 0.5726PUBLIC
)

(0.0335) (0.0680)

What can we say about these results? First, the coefficient

estimates are all positive, implying that older individu-

als, females and those with public health insurance will

have more doctor visits. Second, the coefficients of AGE,

FEMALE and PUBLIC are significantly different from zero,

with p-values less than 0.01. Using the fitted model, we can

estimate the expected number of doctor visits. For example,

the first person in the sample is a 29-year-old female who

has public insurance. Substituting these values we estimate

her expected number of doctor visits to be 2.816, or 3.0

rounded to the nearest integer. Her actual number of doctor

visits was zero.

Using the notion of generalized-R2, we can get a

notion of how well the model fits the data by computing

the squared correlation between DOCVIS and the pre-

dicted number of visits. If we use the rounded values, for

example, 3.0 instead of 3.33, the correlation is 0.1179 giving

R2
g = (0.1179)2 = 0.0139. The fit for this simple model is

not very good as we might well expect. This model does

not account for so many important factors, such as income,

general health status, and so on. Different software packages

report many different values, sometimes called pseudo-R2,

............................................................................................................................................

21See J. Scott Long, Regression Models for Categorical and Limited Dependent Variables (Thousand Oaks, CA: Sage

Publications, 1997), Chapter 8. A much more advanced and specialized reference is Regression Analysis of Count Data
Second Edition by A. Colin Cameron and Pravin K. Trivedi (Cambridge, UK: Cambridge University Press, 2013).

22Regina T. Riphahn, Achim Wambach, and Andreas Million, “Incentive Effects in the Demand for Health Care: A

Bivariate Panel Count Data Estimation”, Journal of Applied Econometrics, Vol. 18, No. 4, 2003, pp. 387–405.
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with different meanings as well. We urge you to ignore all

these values, including R2
g.

Instead of an R2-like number, it is a good idea to report

a test of overall model significance, analogous to the overall

F-test for the regression model. The null hypothesis is that

all the model coefficients, except the intercept, are equal

to zero. We recommend the likelihood ratio statistic. See

Section 16.2.7 for a discussion of this test in the context of

the probit model. The test statistic is LR = 2
(
lnLU − lnLR

)

where lnLU is the value of the log-likelihood function for

the full and unrestricted model and lnLR is the value of the

log-likelihood function for the restricted model that assumes

that the hypothesis is true. The restricted model in this case

is E(DOCVIS) = exp(γ1). If the null hypothesis is true, the

LR test statistic has a χ2
(3)-distribution in large samples. In

our example, LR = 174.93 and the 0.95 percentile of the

χ2
(3)-distribution is 7.815. We reject the null hypothesis at

the 5% level of significance, and we conclude that at least

one variable makes a significant impact on the number of

doctor visits.

What about the magnitudes of the effects of these

variables on the number of doctor visits? Treating AGE as

continuous we can use (16.29) to compute a marginal effect,

∂E(DOCVIS)
∂AGE

⋀

= exp
(
− 0.0030 + 0.0116AGE

+ 0.1283FEMALE + 0.5726PUBLIC
)

× 0.0116

To evaluate this effect, we must insert values for AGE,

FEMALE, and PUBLIC. Let FEMALE = 1 and PUBLIC = 1.

If AGE = 30, the estimate is 0.0332, with the 95% interval

estimate being [0.0261, 0.0402]. That is, we estimate for a

30-year-old female with public insurance an additional year

of age will increase her expected number of doctor visits in

a 3-month period by 0.0332. Because the marginal effect is a

nonlinear function of the estimated parameters, the interval

estimate uses a standard error calculated using the delta

method. For AGE = 70, it is 0.0528 [0.0355, 0.0702]. The

effect of another year of age is greater for older individuals,

as you would expect.

Both FEMALE and PUBLIC are indicator variables,

taking values zero and one. For these variables, we cannot

evaluate the “marginal effect” using a derivative. Instead,

we estimate the difference between the expected number of

doctor visits for the two cases. For example,

ΔE(DOCVIS) = E(DOCVIS|PUBLIC = 1)
− E(DOCVIS|PUBLIC = 0)

The calculated value of the difference is

ΔE(DOCVIS)
⋀

= exp
(
− 0.0030 + 0.0116AGE

+ 0.1283FEMALE + 0.5726
)

− exp
(
− 0.0030 + 0.0116AGE

+ 0.1283FEMALE
)

We estimate the difference for a 30-year-old female to be 1.24

[1.00, 1.48], and for a 70-year-old female, it is 1.98 [1.59,

2.36]. Women with public insurance visit the doctor signif-

icantly more than women of the same age who do not have

public insurance.

There are many generalizations of the Poisson model that are used in applied work. One

generalization is called the negative binomial model. It can be used when an assumption implicit

in the Poisson model is violated, namely that the variance of Poisson variable is equal to its

expected value, that is var(Y) = E(Y) for Poisson random variables. There are tests for whether

this assumption holds. These are sometimes called tests for overdispersion. A second type of

possible misspecification is illustrated by the following question: How many extramarital affairs

did you have in the last year?23 The first thing to note is that the question is relevant only

for married individuals. The possible answers are zero, one, two, three, etc. However, here a

“zero” might mean two different things. It might mean, “I would never cheat on my spouse!!”

or it might mean, “Well, I have cheated in the past, but not in the last year.” Statistically, in

this situation, there will be “too many zeros” for the standard Poisson distribution. As a result,

there are some zero-inflated versions of the Poisson model (ZIP) that may be a better choice.

These extensions of the Poisson model are quite fascinating and useful but beyond the scope

of this book.24

............................................................................................................................................

23Ray Fair (1978) “The Theory of Extramarital Affairs,” Journal of Political Economy, 86(1), 45–61.

24Two excellent but advanced references are: A. Colin Cameron and Pravin K. Trivedi (2013) Regression Analysis
of Count Data, Cambridge University Press; and Rainer Winkelman (2008) Econometric Analysis of Count Data,

Springer.
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16.7 Limited Dependent Variables
In the previous sections of this chapter, we reviewed choice behavior models that have dependent

variables that are discrete variables. When a model has a discrete dependent variable, the usual

regression methods we have studied must be modified. In this section, we present another case in

which standard least squares estimation of a regression model fails.

16.7.1 Maximum Likelihood Estimation of the Simple Linear
Regression Model

We have stressed the least squares and method of moments estimators when estimating the simple

linear regression model. Another option is maximum likelihood estimation (MLE). Our dis-

cussion of the method will be in the context of the simple linear model with one explanatory

variable, but the method extends to the case of multiple regression with more explanatory vari-

ables. We discuss this now because several strategies for estimating limited dependent vari-
able models are tied to MLE. In this case, we make assumptions SR1–SR6, which include the

assumption about the conditional normality of the random errors. When the assumption of condi-

tionally normal errors is made, we write ei|xi ∼ N
(
0, σ2

)
, and also then yi|xi ∼ N

(
β1 + β2xi, σ2

)
.

It is a very strong assumption when it is made, and it is not necessary for least squares estima-

tion, so we have called it an optional assumption. For maximum likelihood estimation, it is not
optional. It is necessary to assume a distribution for the data so that we can form the likelihood

function.

If the data
(
yi, xi

)
pairs are drawn independently, then the conditional joint pdf of the data is

𝑓

(
y1, y2,… , yN

|
|x, β1, β2, σ2

)
= 𝑓

(
y1
|
|x1, β1, β2, σ2

)
× · · · × 𝑓

(
yN
|
|xN , β1, β2, σ2

)
(16.30a)

where

𝑓

(
yi
|
|xi, β1, β2, σ2

)
= 1
√

2πσ2
exp

(

−1

2

(
yi − β1 − β2xi

)2

σ2

)

(16.30b)

Writing out the product we have

𝑓

(
y1,… , yN

|
|x, β1, β2, σ2

)
= (2π)−N∕2

(
σ2
)−N∕2

exp

[

− 1

2σ2

N∑

i=1

(
yi − β1 − β2xi

)2

]

= L
(
β1, β2, σ2|

|y, x
)

(16.30c)

The likelihood function L
(
β1, β2, σ2|

|y, x
)

is the joint pdf interpreted as function of the unknown

parameters, conditional on the data. In practice, we maximize the log-likelihood,

lnL
(
β1, β2, σ2|

|y, x
)
= −(N∕2)ln(2π) − (N∕2)ln

(
σ2
)

− 1

2σ2

N∑

i=1

(
yi − β1 − β2xi

)2
(16.30d)

This looks quite intimidating to maximize, but this is one of the times we can actually maximize

the log-likelihood using calculus. See Exercise 16.1 for hints. The maximum likelihood estimators

β̃1 and β̃2 are the OLS estimators, which have all their usual properties including a conditionally

normal distribution. The MLE of the error variance is σ̃2 =
∑

ê2

i
/

N, which is the sum of the

squared least squares residuals divided by the sample size, with no degrees of freedom correction.

This estimator is consistent but biased.
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16.7.2 Truncated Regression
The first limited dependent variable model we consider is truncated regression. In this model,

we only observe the data
(
yi, xi

)
when yi > 0. How can this happen? Imagine collecting survey

data by waiting at the checkout station in a supermarket. As customers exit you ask “How much

did you spend today?” The answer will be some positive number given that they have just paid

for their purchases. If the random error is conditionally normal, then the pdf of
(
yi|yi > 0, xi

)
is

truncated normal. The properties of the truncated normal distribution are discussed in Appendix

B.3.5. In this case, the truncated normal density function is

𝑓

(
yi
|
|yi > 0, xi, β1, β2, σ2

)
=

𝑓

(
yi
|
|xi, β1, β2, σ2

)

P
(
yi > 0||xi, β1, β2, σ2

)

=
𝑓

(
yi
|
|xi, β1, β2, σ2

)

Φ
(
β1 + β2xi

σ

) =
𝑓

(
yi
|
|xi, β1, β2, σ2

)

Φi
(16.31)

Here we use Φi = Φ
[(
β1 + β2xi

)
∕σ
]

as a simplifying notation. See Exercise 16.2 for hints on

obtaining (16.31). The log-likelihood function is

lnL
(
β1, β2, σ2|

|y, x
)
= −

N∑

i=1

lnΦi − (N∕2)ln(2π) − (N∕2)ln
(
σ2
)

− 1

2σ2

N∑

i=1

(
yi − β1 − β2xi

)2
(16.32)

Maximization of this log-likelihood has to be done using numerical methods, but economet-

ric software has simple commands to obtain the estimates of β1, β2, and σ2. The question then

becomes, what can we do with these estimates? The answer is, all the usual things. For the cal-

culation of marginal effects, use the conditional mean function

E
(
yi|yi > 0, xi

)
= β1+ β2xi + σ

ϕ
[(
β1 + β2xi

)
∕σ
]

Φ
[(
β1 + β2xi

)
∕σ
] = β1 + β2xi + σλ

(
αi
)

(16.33)

where λ
(
αi
)

is the inverse Mill’s ratio (IMR) mentioned in Appendix B.3.5 and

αi =
(
β1 + β2xi

)
∕σ. This is a bit of a mess isn’t it? If xi is continuous, the marginal effect is the

derivative of this expression, dE
(
yi|yi > 0, xi

)
∕dxi = β2

(
1 − δi

)
, where δi = λ

(
αi
)[
λ
(
αi
)
− αi

]
,

which is even more messy.25 Because 0 < δi < 1, the marginal effect is only a fraction of the

parameter value. Once again econometricians in conjunction with computer programmers have

made our lives much easier than would otherwise be true and these quantities can be calculated.

16.7.3 Censored Samples and Regression
Censored samples are similar to truncated samples but have more information. In a truncated
sample, we observe

(
yi, xi

)
when yi > 0. For censored samples, we observe xi for all individuals,

but the outcome values are of two different types. In a survey of households, suppose we ask

“How much did you spend on major appliances, such as refrigerators or washing machines, last

month?” For many households, the answer will be $0, as they made no such purchases in the

previous month. For others, the answer will be a positive value, if such a purchase was made.

This is the outcome variable, yi. On the other hand, the survey will include income and other

characteristics of the household, which are explanatory variables, xi. This is called a censored
sample, with a substantial fraction of the observations taking a limit value, in this case $0. We are

............................................................................................................................................

25See Greene (2018), page 932–933.
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interested in estimating the relationship between expenditures and an xi. What should we do?

There are a number of strategies. We will mention four, two that work and two that do not work.

Strategy 1 Delete the limit observations and apply OLS
A simple strategy is to drop from the sample the observations with yi = 0 and go ahead. This

strategy does not work. The usual OLS model, for yi > 0, is yi = β1 + β2xi + ui, where ui is

an error term. We usually think of this model as resulting from the sum of a systematic part,

the regression function, and a random error. That is, yi = E
(
yi|yi > 0, xi

)
+ ei. The conditional

mean function is given by (16.33), so that

yi = E
(
yi|yi > 0, xi

)
+ ei = β1 + β2xi + σ

ϕ
[(
β1 + β2xi

)
∕σ
]

Φ
[(
β1 + β2xi

)
∕σ
] + ei

= β1 + β2xi +
⎧
⎪
⎨
⎪
⎩

σ
ϕ
[(
β1 + β2xi

)
∕σ
]

Φ
[(
β1 + β2xi

)
∕σ
] + ei

⎫
⎪
⎬
⎪
⎭

= β1 + β2xi + ui (16.34)

The error term ui is not simple. It consists of the random component ei and a complicated func-

tion of xi. The error term ui will be correlated with xi, making OLS biased and inconsistent,

which is not the result we want.

Strategy 2 Retain all observations and apply OLS
This strategy does not work. Using the definition for conditional expectation,

E
(
yi|xi

)
= E

(
yi|yi > 0, xi

)
× P

(
yi > 0

)
+ E

(
yi|yi = 0, xi

)
× P

(
yi = 0

)

= E
(
yi|yi > 0, xi

)
×
{

1 − Φ
[

−
(
β1 + β2xi

)
∕σ
]}

= E
(
yi|yi > 0, xi

)
× Φ

[(
β1 + β2xi

)
∕σ
]

=Φ
[(
β1 + β2xi

)
∕σ
]

β1 + Φ
[(
β1 + β2xi

)
∕σ
]

β2xi + σϕ
[(
β1 + β2xi

)
∕σ
]

Simply estimating yi = β1 + β2xi + ui by OLS clearly is inappropriate.

Strategy 3 Heckman’s two-step estimator
The problem with Strategy 1 is that the error term ui includes two components and one of

them is correlated with the variable xi. This is analogous to an omitted variables problem,

the solution of which is to not omit the variable, but include it in the regression. That is, we

would like to estimate the model

yi = β1 + β2xi + σλi + ei
where

λi =
ϕ
[(
β1 + β2xi

)
∕σ
]

Φ
[(
β1 + β2xi

)
∕σ
] =

ϕ
(
β∗

1
+ β∗

2
xi
)

Φ
(
β∗

1
+ β∗

2
xi
)

where β∗
1
= β1∕σ and β∗

2
= β2∕σ. Nobel Prize winner James Heckman realized that while λi

is unknown it can be consistently estimated as λ̃i = ϕ
(
β̃∗

1
+ β̃∗

2
xi
)
∕Φ
(
β̃∗

1
+ β̃∗

2
xi
)

where β̃∗
1

and

β̃∗
2

come from a probit model with dependent variable di = 1 if yi > 0, and di = 0 if yi = 0,

and with explanatory variable xi. Then the model we estimate by OLS is

yi = β1 + β2xi + σλ̃i + e∗i
It is called a two-step estimator because we use estimates from a first step, probit, and then a

second step, OLS. The estimator is consistent and while correct standard errors are compli-

cated, they are known and can be obtained.
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Strategy 4 Maximum likelihood estimation: Tobit
Heckman’s two-step estimator is consistent but not efficient. There is a maximum likelihood

estimation procedure that is preferable. It is called Tobit in honor of James Tobin, winner of

the 1981 Nobel Prize in Economics, who first studied the model.

Tobit is a maximum likelihood procedure that recognizes that we have data of two sorts,

the limit observations (y = 0) and the nonlimit observations (y > 0). The two types of obser-

vations that we observe, the limit observations and those that are positive, are generated by

a latent variable y∗ crossing the zero threshold or not crossing that threshold. The (probit)
probability that y = 0 is

P(y = 0|x) = P
(
y∗≤ 0|x

)
= 1 − Φ

[(
β1 + β2x

)
∕σ
]

If we observe a positive value of yi, then the term that enters the likelihood function is the

normal pdf with mean β1 + β2xi and variance σ2. The full likelihood function is the product of

the probabilities that the limit observations occur times the pdfs for all the positive, nonlimit,

observations. Using “large pi” notation to denote multiplication, the likelihood function is

L
(
β1, β2, σ|x, y

)
=
∏

yi=0

{

1 − Φ
(
β1 + β2xi

σ

)}

×
∏

yi>0

{
(
2πσ2

)−0.5
exp

(

− 1

2σ2

(
yi − β1 − β2xi

)2
)}

This complicated-looking likelihood function is maximized numerically using econometric

software.26 The maximum likelihood estimator is consistent and asymptotically normal, with

a known covariance matrix.27

16.7.4 Tobit Model Interpretation
In the Tobit model, the parameters β1 and β2 are the intercept and slope of the latent variable

model (16.31). In practice, we are interested in the marginal effect of a change in x on either

the regression function of the observed data E(y|x) or the regression function conditional on

y > 0, E(y|x, y > 0). As we indicated earlier, these functions are not straight lines. Their graphs

are shown in Figure 16.3. The slope of each changes at each value of x. The slope of E(y|x) has

a relatively simple form, being a scale factor times the parameter value; it is

∂E(y|x)
∂x

= β2Φ
(
β1 + β2x

σ

)

(16.35)

where Φ is the cumulative distribution function (cdf ) of the standard normal random variable

that is evaluated at the estimates and a particular x-value. Because the cdf values are positive, the

sign of the coefficient tells the direction of the marginal effect, but the magnitude of the marginal

effect depends on both the coefficient and the cdf . If β2 > 0, as x increases, the cdf function

approaches one, and the slope of the regression function approaches that of the latent variable

............................................................................................................................................

26Tobit requires data on both the limit values of y = 0 and also the nonlimit values for which y > 0. Sometimes, it is

possible that we do not observe the limit values; in such a case, the sample is said to be truncated. In this case, Tobit

does not apply; however, there is a similar maximum likelihood procedure, called truncated regression, for such a case.

An advanced reference is William Greene (2018) Econometric Analysis, Eighth edition, Pearson Prentice Hall,

Section 19.2.3.

27The asymptotic covariance matrix can be found in Introduction to the Theory and Practice of Econometrics,
2nd edition, by George G. Judge, R. Carter Hill, William E. Griffiths, Helmut Lütkepohl, and Tsoung-Chao Lee

(John Wiley and Sons, 1988), Section 19.3.2.
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FIGURE 16.3 Three regression functions.

model, as is shown in Figure 16.3. The marginal effect can be decomposed into two factors called

the “McDonald–Moffitt” decomposition:

∂E(y|x)
∂x

= Prob(y > 0)
∂E(y|x, y > 0)

∂x
+ E(y|x, y > 0)

∂Prob(y > 0)
∂x

The first factor accounts for the marginal effect of a change in x for the portion of the population

whose y-data is observed already. The second factor accounts for changes in the proportion of

the population who switch from the y-unobserved category to the y-observed category when x
changes.28

E X A M P L E 16.16 Tobit Model of Hours Worked

An example that illustrates the situation is based on Thomas

Mroz’s (1987) study of married women’s labor force partic-

ipation and wages. The data are in the file mroz and consist

of 753 observations on married women. Of these, 325 did

not work outside the home and thus had no hours worked

and no reported wages. The histogram of hours worked is

shown in Figure 16.4. The histogram shows the large fraction

of women with zero hours of work.

If we wish to estimate a model explaining the market

hours worked by a married woman, what explanatory

variables would we include? Factors that would tend to

pull a woman into the labor force are her education and her

prior labor market experience. Factors that may reduce her

incentive to work are her age and the presence of young

children in the home.29

Thus, we might propose the regression model

HOURS = β1 + β2EDUC + β3EXPER + β4AGE
+ β4KIDSL6 + e (16.36)

............................................................................................................................................

28J. F. McDonald and R. A. Moffitt (1980) “The Uses of Tobit Analysis,” Review of Economics and Statistics, 62,

318–321. Jeffrey M. Wooldridge (2009) Introductory Econometrics: A Modern Approach, 5th edition, South-Western

Cengage Learning, Section 17.2 has a relatively friendly presentation.

29This equation does not include wages, which is jointly determined with hours. The model in (16.36) may be

considered a reduced-form equation. See Section 11.2.
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FIGURE 16.4 Wife’s hours of work in 1975.

where KIDSL6 is the number of children less than 6 years old

in the household. Using Mroz’s data, we obtain the estimates

shown in Table 16.7. As previously argued, the least squares

estimates are unreliable because the least squares estimator

is both biased and inconsistent. The Tobit estimates have

the anticipated signs and are all statistically significant at

the 0.01 level. To compute the scale factor required for

calculation of the marginal effects, we must choose values

of the explanatory variables. We choose the sample means

for EDUC (12.29), EXPER (10.63), and AGE (42.54) and

assume one small child at home (rather than the mean value

of 0.24). The calculated scale factor is Φ̃ = 0.3630. Thus,

the marginal effect on observed hours of work of another

year of education is

∂E(HOURS)
∂EDUC

= β̃2Φ̃ = 73.29 × 0.3630 = 26.61

That is, we estimate that another year of education will

increase a wife’s hours of work by about 27 hours, con-

ditional upon the assumed values of the explanatory

variables.

T A B L E 16.7
Estimates of Labor Supply
Function

Estimator Variable Estimate
Standard

Error
Least squares INTERCEPT 1335.31 235.65

EDUC 27.09 12.24

EXPER 48.04 3.64

AGE −31.31 3.96

KIDSL6 −447.85 58.41

Least squares INTERCEPT 1829.75 292.54

y > 0 EDUC −16.46 15.58

EXPER 33.94 5.01

AGE −17.11 5.46

KIDSL6 −305.31 96.45

Tobit INTERCEPT 1349.88 386.30

EDUC 73.29 20.47

EXPER 80.54 6.29

AGE −60.77 6.89

KIDSL6 −918.92 111.66

SIGMA 1133.70 42.06
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16.7.5 Sample Selection
If you consult an econometrician concerning an estimation problem, the first question you will

usually hear is, “How were the data obtained?” If the data are obtained by random sampling, then

classic regression methods, such as least squares, work well. However, if the data are obtained by

a sampling procedure that is not random, then standard procedures do not work well. Economists

regularly face such data problems. A famous illustration comes from labor economics. If we wish

to study the determinants of the wages of married women, we face a sample selection problem.

If we collect data on married women and ask them what wage rate they earn, many will respond

that the question is not relevant since they are homemakers. We only observe data on market

wages when the woman chooses to enter the workforce. One strategy is to ignore the women who

are not in the labor force, omit them from the sample, then use least squares to estimate a wage

equation for those who work. This strategy fails, the reason for the failure being that our sample

is not a random sample. The data we observe are “selected” by a systematic process for which we

do not account.

A solution to this problem is a technique called Heckit, named after its developer, Nobel

Prize winning econometrician James Heckman. This simple procedure uses two estimation steps.

In the context of the problem of estimating the wage equation for married women, a probit model

is first estimated explaining why a woman is in the labor force or not. In the second stage, a least

squares regression is estimated relating the wage of a working woman to education, experience,

and so on, and a variable called the “inverse Mills ratio,” or IMR. The IMR is created from the

first step probit estimation and accounts for the fact that the observed sample of working women

is not random.

The econometric model describing the situation is composed of two equations. The first is

the selection equation that determines whether the variable of interest is observed. The sample

consists of N observations; however, the variable of interest is observed only for n < N of these.

The selection equation is expressed in terms of a latent variable z∗i that depends on one or more

explanatory variables wi and is given by

z∗i = γ1 + γ2wi + ui, i = 1,… ,N (16.37)

For simplicity, we will include only one explanatory variable in the selection equation. The latent

variable is not observed, but we do observe the indicator variable

zi =

{
1 z∗i > 0

0 otherwise
(16.38)

The second equation is the linear model of interest. It is

yi = β1 + β2xi + ei, i = 1,… , n, N > n (16.39)

A selectivity problem arises when yi is observed only when zi = 1 and if the errors of the two

equations are correlated. In such a situation, the usual least squares estimators of β1 and β2 are

biased and inconsistent.

Consistent estimators are based on the conditional regression function30

E
(
yi|z∗i > 0

)
= β1 + β2xi + βλλi, i = 1,… , n (16.40)

where the additional variable λi is the inverse Mills ratio. It is equal to

λi =
ϕ
(
γ1 + γ2wi

)

Φ
(
γ1 + γ2wi

) (16.41)

............................................................................................................................................

30Our Appendix B.2.6 provides a brief introduction to this important concept. See William Greene (2018) Econometric
Analysis, Eighth edition, Pearson Prentice Hall, Chapter 19.2 for much more about the truncated normal.
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While the value of λi is not known, the parameters γ1 and γ2 can be estimated using a probit

model, based on the observed binary outcome zi in (16.38). Then the estimated IMR

λ̃i =
ϕ
(
γ̃1 + γ̃2wi

)

Φ
(
γ̃1 + γ̃2wi

)

is inserted into the regression equation as an extra explanatory variable, yielding the estimating

equation

yi = β1 + β2xi + βλλ̃i + vi, i = 1,… , n (16.42)

Least squares estimation of this equation yields consistent estimators of β1 and β2. A word of

caution, however, as the least squares estimator is inefficient relative to the maximum likelihood

estimator, and the usual standard errors and t-statistics produced after estimation of (16.42) are

incorrect. Proper estimation of standard errors requires the use of specialized software for the

“Heckit” model.

E X A M P L E 16.17 Heckit Model of Wages

As an example, we will reconsider the analysis of wages

earned by married women using the Mroz (1987) data in the

data file mroz. In the sample of 753 married women, 428

have market employment and nonzero earnings. First, let us

estimate a simple wage equation, explaining ln(WAGE) as

a function of the woman’s education, EDUC, and years of

market work experience (EXPER), using the 428 women

who have positive wages. The result is

ln(WAGE) = −0.4002 + 0.1095EDUC

(t) (−2.10) (7.73)
+ 0.0157EXPER R2 = 0.1484 (16.43)

(3.90)

The estimated return to education is about 11%, and the

estimated coefficients of both education and experience are

statistically significant.

The Heckit procedure starts by estimating a probit model

of labor force participation. As explanatory variables we use

the woman’s age, her years of education, an indicator vari-

able for whether she has children, and the marginal tax rate

that she would pay upon earnings if employed. The estimated

probit model is

P(LFP = 1)
⋀

= Φ
(
1.1923 − 0.0206AGE + 0.0838EDUC

(t) (−2.93) (3.61)
− 0.3139KIDS − 1.3939MTR

)

(−2.54) (−2.26)

As expected, the effects of age, the presence of children, and

the prospects of higher taxes significantly reduce the proba-

bility that a woman will join the labor force, while education

increases it. Using the estimated coefficients, we compute the

inverse Mills ratio for the 428 women with market wages

λ̃ = IMR =

ϕ
(
1.1923 − 0.0206AGE + 0.0838EDUC
− 0.3139KIDS − 1.3939MTR

)

Φ
(
1.1923 − 0.0206AGE + 0.0838EDUC
− 0.3139KIDS − 1.3939MTR

)

This is then included in the wage equation, and least squares

estimation applied to obtain

ln(WAGE) = 0.8105 + 0.0585EDUC + 0.0163EXPER
(t) (1.64) (2.45) (4.08)

(t − adj) (1.33) (1.97) (3.88)

− 0.8664IMR
(−2.65)
(−2.17) (16.44)

Two results are of note. First, the estimated coefficient of

the inverse Mills ratio is statistically significant, implying

that there is a selection bias present in the least squares

results (16.43). Second, the estimated return to education

has fallen from approximately 11% to approximately 6%.

The upper row of t-statistics is based on standard errors as

usually computed when using least squares regression. The

usual standard errors do not account for the fact that the

inverse Mills ratio is itself an estimated value. The correct

standard errors,31 which do account for the first stage probit

............................................................................................................................................

31The formulas are very complicated. See William Greene (2018) Econometric Analysis, Eighth edition, Pearson

Prentice Hall, p. 954. There are several software packages, such as Stata and LIMDEP, that report correct standard

errors.
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estimation, are used to construct the “adjusted t-statistics”

reported in (16.44). As you can see the adjusted t-statistics

are slightly smaller, indicating that the adjusted standard

errors are somewhat larger than the usual ones.

In most instances, it is preferable to estimate the full

model, both the selection equation and the equation of inter-

est, jointly by maximum likelihood. While the nature of this

procedure is beyond the scope of this book, it is available in

some software packages. The maximum likelihood estimated

wage equation is

ln(WAGE) = 0.6686 + 0.0658EDUC + 0.0118EXPER
(t) (2.84) (3.96) (2.87)

The standard errors based on the full information maximum

likelihood procedure are smaller than those yielded by the

two-step estimation method.

16.8 Exercises

16.8.1 Problems

16.1 In Examples 16.2 and 16.4, we presented the linear probability and probit model esti-

mates using an example of transportation choice. The logit model for the same example is

P(AUTO = 1) = Λ
(
γ1 + γ2DTIME

)
, where Λ(•) is the logistic cdf in equation (16.7). The logit

model parameter estimates and their standard errors are

γ̃1 + γ̃2DTIME = −0.2376 + 0.5311DTIME
(se) (0.7505) (0.2064)

a. Calculate the estimated probability that a person will choose automobile transportation given that

DTIME = 1.

b. Using the probit model results in Example 16.4, calculate the estimated probability that a person

will choose automobile transportation given that DTIME =1. How does this result compare to the

logit estimate? [Hint: Recall that Statistical Table 1 gives cumulative probabilities for the standard

normal distribution.]

c. Using the logit model results, compute the estimated marginal effect of an increase in travel time

of 10 minutes for an individual whose travel time is currently 30 minutes longer by bus (pub-

lic transportation). Using the linear probability model results, compute the same marginal effect

estimate. How do they compare?

d. Using the logit model results, compute the estimated marginal effect of a decrease in travel time

of 10 minutes for an individual whose travel time is currently 50 minutes longer by driving. Using

the probit results, compute the same marginal effect estimate. How do they compare?

16.2 In Appendix 16A.1, we illustrate the calculation of a standard error for the marginal effect in a probit

model of transportation, Example 16.4. In the appendix, the calculation is for the marginal effect

when it currently takes 20 minutes longer to commute by bus (DTIME = 2).
a. Repeat the calculation for the probit model when DTIME = 1. [Hint: The values of the standard

normal pdf are given in Statistical Table 6.]

b. Using the probit model, construct a 95% interval estimate for the marginal effect of a 10-minute

increase in travel time by bus when DTIME = 1.

c. The logit model estimates and standard errors are

γ̃1 + γ̃2DTIME
(se)

= −0.2376

(0.7505)
+ 0.5311DTIME
(0.2064)

The estimated coefficient covariance is cov
⋀(

γ̃1, γ̃2

)
= −0.025498. Calculate the standard error of

the marginal effect of a 10-minute increase in travel time when DTIME = 1. [Hint: Carry through

the steps in Appendix 16A.1 using equation (16.17) in place ofΦ( • ) and equation (16.16) in place

of ϕ( • ).]

d. Construct a 95% interval estimate for the marginal effect of a 10-minute increase in travel time by

bus, when DTIME = 1 for the logit model.
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16.3 In Example 16.3, we illustrate the calculation of the likelihood function for the probit model in a small

example.

a. Calculate the probability that y = 1 if x = 1.5, given the values of the maximum likelihood

estimates.

b. Using the threshold 0.5 and the result in part (a), predict the value of y if x = 1.5, the first obser-

vation, given the values of the maximum likelihood estimates. Does your prediction agree with

the actual outcome y = 1?

c. Calculate the value of the likelihood function, illustrated in equation (16.14), using the given

N = 3 data pairs, if the parameter values are β1 = −1 and β2 = 0.2. Compare this value to the

value of the likelihood function evaluated at the maximum likelihood estimates, given in Example

16.3. Which is larger?

d. For the probit model, the value of the likelihood function (16.14) will always be between zero and

one. True or false? Explain.

e. For the probit model, the value of the log-likelihood function (16.15) will always be negative.

True or false? Explain.

16.4 In Example 16.3, we illustrate the calculation of the likelihood function for the probit model in a small

example. In this exercise, we will repeat that example using logit instead of probit. The logit model

for the same example is P(y = 1) = Λ(γ1 + γ2x), where Λ(•) is the logistic cdf in equation (16.7).

The maximum likelihood estimates of the parameters are γ̃1 + γ̃2x = −1.836 + 3.021x. The maxi-

mized value of the log-likelihood function is −1.612.

a. Calculate the probability that y = 1 if x = 1.5, given the values of the maximum likelihood

estimates.

b. Using the threshold 0.5 and the result in part (a), predict the value of y if x = 1.5, the first obser-

vation, given the values of the maximum likelihood estimates. Compare your prediction to the

actual outcome y = 1 in the first observation.

c. Calculate the value of the likelihood function, illustrated in equation (16.14) but substituting

equation (16.17) in place of Φ(•) and using the given N = 3 data pairs, if the parameter val-

ues are γ1 = −1 and γ2 = 2. Compare this value to the value of the likelihood function evaluated

at the maximum likelihood estimates. Which is larger?

d. For the logit model, the value of the likelihood function (16.14), with Λ(•) in place of Φ(•), will

always be between zero and one. True or false? Explain.

e. For the logit model, the value of the log-likelihood function (16.15), with Λ(•) in place of Φ(•),

will always be negative. True or false? Explain.

16.5 We are given three observations on binary choice with y1 = 1, y2 = 1, y3 = 0. Consider a logit model

with only an intercept, P(y = 1) = Λ(γ1), where Λ(•) is the logistic cdf .

a. Show that the log-likelihood function is lnL(γ1) = 2lnΛ
(
γ1

)
+ ln

[
1 − Λ

(
γ1

)]
.

b. Show that dlnL
(
γ1

)/
dγ1 = 2λ

(
γ1

)/
Λ
(
γ1

)
− λ

(
γ1

)/[
1 − Λ

(
γ1

)]
, where λ( • ) is the logistic pdf in

(16.14). [Hint: Use Derivative Rules 8 and 9 from Appendix A.3.]

c. The value of γ1 such that dlnL
(
γ1

)/
dγ1 = 0 is the maximum likelihood estimator γ̃1. True, false,

or maybe?

d. It can be shown that for the logit model lnL(γ1) is strictly concave, meaning that the second deriva-

tive is negative for all values of γ1 or d2lnL
(
γ1

)/
dγ1

2
< 0. What is your answer to (c) now? [Hint:

See Appendix A.3.4.]

e. Setting the derivative in (c) to zero and solving, show that Λ
(
γ̃1

)
= 2∕3. [Note: This does not

require you to first solve for γ̃1.]

f. Now, solve the condition in (c) to show that γ̃1 = −ln(1∕2).
16.6 In this exercise, we generalize the results in Exercise 16.5. Consider a logit model with only an inter-

cept, P(y = 1) = Λ
(
γ1

)
, where Λ(•) is the logistic cdf . Suppose in a sample of N observations, there

are N1 values yi = 1 and N0 values yi = 0.

a. Show that the logit log-likelihood function is lnL
(
γ1

)
= N1lnΛ

(
γ1

)
+ N0ln

[
1 − Λ

(
γ1

)]
.

b. Show that dlnL
(
γ1

)/
dγ1 = N1λ

(
γ1

)/
Λ
(
γ1

)
− N0λ

(
γ1

)/[
1 − Λ

(
γ1

)]
, where λ( • ) is given in (16.6).

[Hint: Use Derivative Rules 8 and 9 from Appendix A.3.]

c. Setting the derivative in (b) to zero and solving, show that Λ
(
γ̃1

)
= N1∕N. What is the interpreta-

tion of N1

/
N? [Note: This does not require you to first solve for γ̃1, the MLE.]
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d. Using (c) show that lnL
(
γ̃1

)
= N1ln

(
N1∕N

)
+ N0ln

(
N0∕N

)
.

e. Show that a probit model, P(y = 1) = Φ(γ1), whereΦ(•) is the standard normal cdf , results in the

same value for the log-likelihood as in part (d).

16.7 Exercise 16.5 shows that given the three observations on binary choice with y1 = 1, y2 = 1, y3 = 0 the

maximum likelihood estimator of the logit model P(y = 1) = Λ
(
γ1

)
is γ̃1 = −ln(1∕2) = 0.6931472

and that Λ
(
γ̃1

)
= 2∕3.

a. Using these results show that lnL
(
γ̃1

)
= 2lnΛ

(
γ̃1

)
+ ln

[
1 − Λ

(
γ̃1

)]
= −1.9095425.

b. Using the data in Example 16.3, and the logit model P(y = 1|x) = Λ
(
γ1 + γ2x

)
, we find that the

maximum likelihood estimates of the parameters are γ̃1 + γ̃2x = −1.836 + 3.021x, and the maxi-

mized value of the log-likelihood function is −1.612. Using these results, and those in (a), carry

out the likelihood ratio test of H0: γ2 = 0 versus H1: γ2 ≠ 0 at the 5% level of significance.

c. Calculate the p-value for the test in (b).

16.8 Consider a probit model designed to explain the choice by homebuyers of fixed versus adjustable rate

mortgages. The explanatory variables, with sample means in parentheses, are FIXRATE (13.25) =
fixed interest rate; MARGIN (2.3) = the variable rate − the fixed rate; and NETWORTH (3.5) =
borrower’s net worth ($100,000 units). The dependent variable is ADJUST (0.41) = 1 if an

adjustable mortgage is chosen. The coefficient estimates, in Table 16.8, use 78 observations over the

period January, 1983 to February, 1984.

T A B L E 16.8 Estimates for Exercise 16.8

C FIXRATE MARGIN NETWORTH lnL(Model) lnL(C)

Model 1 −7.0166 0.5301 −0.2675 0.0864 −42.0625 −52.8022

(se) (3.3922) (0.2531) (0.1304) (0.0354)

Model 2 −9.8200 0.7535 −0.1945 −45.1370 −52.8022

(se) (3.1468) (0.2328) (0.1249)

a. What information is provided by the signs of the estimated coefficients of Model 1? Are the signs

consistent with economic reasoning? Which coefficients are significant at the 5% level?

b. Carry out a likelihood ratio test of the model significance at the 1% level for Model 1. In Table 16.8,

lnL(Model) is the log-likelihood of the full model and lnL(C) is the log-likelihood of the model

including only the constant term.

c. What is the estimated probability of a borrower choosing an adjustable rate mortgage if

FIXRATE = 12, MARGIN = 2, and NETWORTH = 3? What is the estimated probability

of a borrower choosing an adjustable rate mortgage if FIXRATE = 12, MARGIN = 2, and

NETWORTH = 10?

d. Carry out a likelihood ratio test of the hypothesis that NETWORTH has no effect on the choice of

mortgage type, against the alternative that it does, at the 1% level.

e. Using Model 2, what is the marginal effect of MARGIN on the probability of choosing an

adjustable rate mortgage if FIXRATE = 12 and MARGIN = 2?

f. Using Model 2, calculate the discrete change in the probability of choosing an adjustable rate

mortgage if MARGIN increases from 2% to 4%, while FIXRATE remains 12%? Is the value twice

the value found in part (e)?

16.9 Consider a probit model explaining the choice to attend college by high-school graduates. Define

COLLEGE = 1 if a high-school graduate chooses either a 2-year or 4-year college, and zero otherwise.

We use explanatory variables GRADES, 13 point scale with 1 indicating highest grade (A+) and 13

the lowest (F); FAMINC, gross family income in $1000 units; and BLACK = 1 if black. Using a

sample of N = 1000 graduates the estimated model is

P(COLLEGE = 1)
(se)

= Φ
(
2.5757 − 0.3068GRADES

(0.0265)
+ 0.0074FAMINC
(0.0017)

+ 0.6416BLACK
)

(0.2177)
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a. What information is provided by the signs of the estimated coefficients? Which coefficients are

statistically significant at the 5% level?

b. Estimate the probability of attending college for a white student with GRADES = 2 (A) and

FAMINC = 50 ($50,000). Repeat this probability calculation if GRADES = 5 (B).

c. Estimate the probability of attending college for a black student with GRADES = 5 (B) and

FAMINC = 50 ($50,000). Compare this probability to the comparable probability for a white

student calculated in part (b).

d. Calculate the marginal effect of an increase in family income of $1000 on the probability of

attending college for a white student with GRADES = 5 (B).

e. The log-likelihood for the model estimated above is −423.36. Omitting FAMINC and BLACK the

log-likelihood of the estimated probit model is −438.26. Test the joint significance of FAMINC
and BLACK at the 1% level of significance using a likelihood ratio test.

16.10 Consider a probit model explaining the choice to attend a 4-year college rather than a 2-year col-

lege by high-school graduates who chose to attend a postsecondary school. Define FOURYR = 1 if a

high-school graduate chooses 4-year college and FOURYR = 0 if the high school graduate chooses

a 2-year college. We use explanatory variables GRADES, 13 point scale with 1 indicating highest

grade (A+) and 13 the lowest (F); FAMINC, gross family income in $1000 units; and HSCATH = 1

if the student attended a Catholic high school and HSCATH = 0 otherwise. Table 16.9 contains some

probit model estimates.

T A B L E 16.9 Estimates for Exercise 16.10

Model (1) (2) (3) (4) (5)

HSCATH = 0 HSCATH = 1

C 1.6395 1.6299 1.6039 1.6039 2.3143

(23.8658) (23.6925) (22.5893) (22.5893) (8.0379)

GRADES −0.2350 −0.2357 −0.2344 −0.2344 −0.2603

(−25.1058) (−25.1437) (−24.2364) (−24.2364) (−6.7691)

FAMINC 0.0042 0.0040 0.0043 0.0043 0.0015

(8.2798) (7.6633) (7.7604) (7.7604) (1.0620)

HSCATH 0.3645 0.7104

(5.0842) (2.3954)

HSCATH × GRADES −0.0259

(−0.6528)

HSCATH × FAMINC −0.0028

(−1.9050)

N 5254 5254 5254 4784 470

lnL −2967.91 −2954.50 −2952.68 −2735.14 −217.54

t-statistics in parentheses.

a. Using Model (2), how large an effect on the probability of attending a 4-year college does attending

a catholic high school have for a student with GRADES = 5 (B) and family income of $100,000.
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b. Comparing Models (2) and (3), are the interaction variables HSCATH × GRADES and

HSCATH × FAMINC jointly significant at 5% using a likelihood ratio test?

c. Can we interpret the Model (3) results as saying an increase in family income reduces the prob-

ability of attending a 4-year college for someone graduating from a Catholic high school? What

is the marginal effect of an additional $1000 in family income for a Catholic high school student

with GRADES = 5 (B) and family income of $50,000?

d. Using Model (3), compute the probability of attending a 4-year college for someone graduating

from a Catholic high school with GRADES = 5 (B) and family income of $100,000. Compare this

probability to a student who did not attend a Catholic high school but has GRADES = 5 (B) and

family income of $100,000.

e. Using Models (1) and (3), test the null hypothesis that the probit model parameters are the same

for students who attend and do not attend a Catholic high school. Use a likelihood ratio test at the

5% level of significance.

f. Using Models (4) and (5), estimate the probit model separately for HSCATH = 0 and

HSCATH = 1. Compute the sum of the log-likelihood functions values. Compare the sum to the

log-likelihood for Model (3). Algebraically show that this is not an accident.

16.11 Using data on N = 4,642 infant births, we estimate a probit model with dependent variable

LBWEIGHT = 1 if it is a low birthweight baby and 0 otherwise, MAGE is the mother’s age,

PRENATAL1 = 1 if first prenatal visit is in 1 trimester and 0 otherwise, and MBSMOKE = 1 if the

mother smoked and 0 otherwise. The results are in Table 16.10.

T A B L E 16.10 Probit Estimates for Exercise 16.11

C MAGE PRENATAL1 MBSMOKE MAGE2

Model 1 −1.2581 −0.0103 −0.1568 0.3974

(se) (0.1436) (0.0054) (0.0710) (0.0670)

Model 2 −0.1209 −0.1012 −0.1387 0.4061 0.0017

(se) (0.4972) (0.0385) (0.0716) (0.0672) (0.0007)

a. In Model 1, comment on estimated signs and significance of the coefficients on PRENATAL1 and

MBSMOKE.

b. Using Model 1, calculate the marginal effect on the probability of a low birthweight baby given

an increase in the mother’s age by 1 year, for a woman who is 20 years old with PRENATAL1 = 0

and MBSMOKE = 0. Repeat this calculation for a woman who is 50 years old. Do the results

make sense?

c. Using Model 2, calculate the marginal effect on the probability of a low birthweight baby given

an increase in the mother’s age by 1 year, for a woman who is 20 years old with PRENATAL1 = 0

and MBSMOKE = 0. Repeat this calculation for a woman who is 50 years old. Compare these

results to those in part (b).

d. Using Model 2, calculate the impact of a prenatal visit in the first trimester on the probability of

having a low birthweight baby for a woman who is 30 years old and smokes.

e. Using Model 2, calculate the impact of a mother smoking on the probability having a low birth-

weight baby given that she is 30 years old and had a prenatal visit in the first trimester.

f. Using Model 2, calculate the age at which the probability of a low birthweight baby is a

minimum.

16.12 This exercise is an extension of Example 16.12 using the larger data set nels with 6,649 observa-

tions. Two estimated multinomial logit models are reported in Table 16.11. In addition to the variable

GRADES, we have FAMINC = family income ($1000 units) and indicator variables for sex and race.

The baseline group is students who chose not to attend college.
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T A B L E 16.11 Estimates for Exercise 16.12

Model 1 Model 2

PSECHOICE Coefficient t-value Coefficient t-value

2

C 1.7101 9.3293 1.9105 11.1727

GRADES −0.2711 −13.1969 −0.2780 −13.9955

FAMINC 0.0124 8.3072 0.0116 8.0085

FEMALE 0.2284 3.0387

BLACK 0.0554 0.4322

3

C 4.6008 25.7958 4.6111 27.8351

GRADES −0.6895 −32.2723 −0.6628 −32.3721

FAMINC 0.0200 13.5695 0.0183 12.9450

FEMALE 0.0422 0.5594

BLACK 0.9924 8.0766

ln(L) −5699.8023 −5751.5982

a. Which estimated coefficients are significant in Model 1? Based on the t-values, should we consider

dropping FEMALE and BLACK from the model?

b. Compare the results of Model 1 to Model 2 using a likelihood ratio test. Using the α = 0.01 level

of significance, can we reject the null hypothesis that the Model 1 coefficients of FEMALE and

BLACK are zero?

c. Compute the estimated probability that a white male student with GRADES = 5 (B) and FAMINC
of $100,000 will attend a 4-year college.

d. Compute the odds, or probability ratio, that a white male student with GRADES = 5 (B) and

FAMINC of $100,000 will attend a 4-year college rather than not attend any college.

e. Compute the change in probability of attending a 4-year college for a white male student with

median FAMINC =$100,000 whose GRADES change from 5 (B) to 2 (A).

16.13 This exercise is an extension of Example 16.13. It is a conditional logit model of choice among

3 brands of soda: Coke, Pepsi, and 7-Up. The data are in the data file cola. As in the example, we

choose Coke to be the base alternative, setting its alternative specific constant (intercept) to zero. We

add to the model indicator variables FEATURE, indicating whether the product was “featured” at the

time, and DISPLAY for whether there was a store display at the time of purchase. The model estimates

are in Table 16.12.

T A B L E 16.12 Estimates for Exercise 16.13

Model 1 Model 2

Coefficient t-Statistic Coefficient t-Statistic

PRICE −1.7445 −9.6951 −1.8492 −9.8017

FEATURE −0.0106 −0.1327 −0.0409 −0.4918

DISPLAY 0.4624 4.9700 0.4727 5.0530

PEPSI 0.2841 4.5411

7-UP 0.0907 1.4173

ln(L) −1822.2267 −1811.3543
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a. Using Model 1, calculate the probability ratio, or odds, of choosing Coke relative to Pepsi if Coke

costs $1.25, Pepsi costs $1.25, Coke has a display but Pepsi does not, and neither are featured.

Note that the model contains no alternative specific constants.

b. Using Model 1, calculate the probability ratio, or odds, of choosing Coke relative to Pepsi if Coke

costs $1.25, Pepsi costs $1.00, Coke has a display but Pepsi does not, and neither are featured.

c. Compute the change in the probability of purchase of each type of soda if the price of Coke

changes from $1.25 to $1.50, with the prices of Pepsi and 7-Up remaining at $1.25. Assume that

a display is present for Coke, but not for the others, and none of the items is featured.

d. In Model 2, we add the alternative specific “intercept” terms for Pepsi and 7-Up to the Model 1.

Calculate the probability ratio, or odds, of choosing Coke relative to Pepsi if Coke costs $1.25,

Pepsi costs $1.25, Coke has a display but Pepsi does not, and neither are featured.

e. Using Model 2, compute the change in the probability of purchase of each type of soda if the

price of Coke changes from $1.25 to $1.50, with the prices of Pepsi and 7-Up remaining at

$1.25. Assume that a display is present for Coke, but not for the others, and none of the items

is featured.

f. The value of the log-likelihood function for the model in Example 16.13 is −1824.5621. Test

the null hypothesis that the coefficients of the marketing variables, FEATURE and DISPLAY , are

zero, against the alternative that they are not, using a likelihood ratio test with α = 0.01.

16.14 In Example 16.14, we described an ordinal probit model for postsecondary education choice, and

estimated a simple model in which the choice depended simply on the student’s GRADES. Expand

the ordered probit model to include family income (FAMINC, in $1000), family size (FAMSIZ), the

dummy variables BLACK and PARCOLL = 1 if a parent has at least a college degree, and 0 otherwise.

The estimates of this model are Model 2 in Table 16.13.

T A B L E 16.13 Estimates for Exercise 16.14

Model 1 Model 2

PSECHOICE Coefficient Standard Error Coefficient Standard Error

GRADES −0.3066 0.0192 −0.2953 0.0202

FAMINC 0.0053 0.0013

FAMSIZ −0.0241 0.0302

BLACK 0.7131 0.1768

PARCOLL 0.4236 0.1016

μ̂1 −2.9456 0.1468 −2.5958 0.2046

μ̂2 −2.0900 0.1358 −1.6946 0.1971

lnL −875.8217 −839.8647

a. Using the estimates in Table 16.13, Model 1, calculate the probability that a student will choose

no college, a 2-year college, and a 4-year college if the student’s grades are GRADES = 7 (B−).
Recompute these probabilities assuming that GRADES = 3 (A−). Discuss the probability

changes. Are they what you anticipated? Explain.

b. Discuss the Model 2 estimates, their signs and significance. [Hint: recall that the sign indicates

the direction of the effect for the highest category but is opposite for the lowest category].

c. Test the joint significance of the variables added in (b) using a likelihood ratio test at the 1% level

of significance.

d. Compute the probability that a black student from a household of four members with $100,000

income, and with at least one parent having at least a college degree, so that PARCOLL = 1, will

attend a 4-year college if (i) GRADES = 7 and (ii) GRADES = 3.

e. Repeat (d) for a “nonblack” student and discuss the differences in your findings.

16.15 Consider a Poisson regression explaining the number of Olympic Games medals won

using data from 1988 (in Seoul, South Korea) and 1992 (in Barcelona, Spain) by various
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countries as a function of LPOP = ln(POP) = the logarithm of population in millions, and

LGDP = ln(GDP) = the logarithm of gross domestic product (in billions of 1995 dollars). That is,

E(MEDALTOT|X) = exp
[
β1+ β2ln(POP) + β3ln(GDP)

]
. The estimated coefficients, using 316

observations, are in Table 16.14, Model 1.

T A B L E 16.14 Estimates for Exercise 16.15

Model 1 Model 2

Coefficient Standard Error Coefficient Standard Error

C −1.4442 0.0826 −1.4664 0.0835

LPOP 0.2143 0.0217 0.2185 0.0219

LGDP 0.5556 0.0164 0.5536 0.0165

HOST 0.6620 0.1375

a. Using Model 1 results, what is the estimated impact on the number of medals won if GDP
increases by 1%? [Hint: It can be shown (can you?) that β3 is an elasticity.]

b. In 1996, Bulgaria had GDP = 11.8 billion and a population of 8.356 million. Estimate the

expected number of medals that Bulgaria would win in the Olympics, held in Atlanta, USA.

They did win 15 medals.

c. Calculate the probability that Bulgaria in 1996 would win one or fewer medals.

d. In 1996, Switzerland had GDP = 306 billion and a population of 6.875 million. Estimate the

expected number of medals that Switzerland would win. They did win 1 medal.

e. Calculate the probability that Switzerland in 1996 would win one or fewer medals.

f. HOST is an indicator variable = 1 for the country hosting the Olympics. This variable is added in

Model 2. Interpret its coefficient. [Hint: What is the estimated percentage change in the conditional

mean?] Is the estimated effect large or small? Is the coefficient statistically significant at the 1%

level?

g. In 1996, the Olympic games were held in the U.S. city of Atlanta, GA. In that year, the U.S. pop-

ulation was 265 million and its GDP was 7280 billion. Estimate the expected number of medals

the United States would win using Model 1 and again using Model 2. The United States won 101

medals that year. Which model’s estimated value was closer to the true outcome?

16.16 Consider a regression explaining the share of Olympic Games medals won by each country in 1988

(in Seoul, South Korea), 1992 (in Barcelona, Spain), and 1996 (in Atlanta, GA, USA) as a function of

LPOP = ln(POP) = the logarithm of population in millions, LGDP = ln(GDP) = the logarithm of

gross domestic product (in billions of 1995 dollars), and HOST , an indicator variable = 1 for the

country hosting the Olympics. The total number of medals awarded in 1988 was 738; in 1992, there

were 815 medals awarded, and in 1996, 842 medals were awarded. Using the total number of medals

awarded, we compute the percentage share of medals (SHARE) won by each country.

a. The least squares estimates of SHARE = β1 + β2ln(POP) + β3ln(GDP) + β4HOST + e are in

Table 16.15. Are the signs and significance of the coefficient estimates reasonable?

T A B L E 16.15 Estimates for Exercise 16.16

OLS Tobit

Coefficient Standard Error HCE Coefficient Standard Error

C −0.2929 0.1000 0.0789 −4.2547 0.3318

LPOP −0.0058 0.0496 0.0352 0.1707 0.1135

LGDP 0.3656 0.0454 0.0579 0.9605 0.0973

HOST 4.1723 0.9281 2.0770 3.2475 1.4611

σ̃ 2.4841 0.1273
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b. Using the OLS estimates, what is the predicted effect of GDP on the expected share of medals

won? That is, how much do we predict the share of medals won will change if GDP increases by

1%? Construct a 95% interval estimate of this effect.

c. For the model estimated by OLS, the robust Breusch-Pagan LM test statistic for heteroskedasticity

as a function of ln(GDP) is NR2 = 32.80. What can we conclude about the OLS estimator and the

usual standard errors based on this test?

d. We also report the OLS heteroskedasticity robust standard errors (HCE) in Table 16.15. Construct

a 95% interval estimate for the predicted effect of a 1% increase in GDP on the share of medals

won using the robust standard errors.

e. Among the 508 countries competing in these summer Olympics, almost 62% won no medals.

Does this cause any potential problems for the least squares estimator? By using robust standard

errors in part (c), we have solved any problems with the OLS estimator. True or false? Explain

your choice.

f. Compare the Tobit parameter estimates reported in Table 16.15 to the OLS estimates and standard

errors. What are the differences? Is Tobit a reasonable estimator for the share of medals won in

this example? Why?

g. Using the Tobit estimates, what is the estimated effect of GDP on the expected share of medals

won for a nonhost country with GDP = 150 billion and POP = 30 million? That is, how

much do we estimate the expected share of medals won will change if GDP increases by one

percent? [Hint: In equation (16.35), let y = SHARE and x = ln(GDP). Then

∂E(SHARE|X)∕∂ ln(GDP) = β3Φ
[
β1 + β2ln(POP) + β3ln(GDP) + β4HOST

σ

]

Also, ∂ln(GDP)∕∂GDP = 1∕GDP. Then refer to the analysis of the linear-log model in

Section 4.3.3.]

16.8.2 Computer Exercises

16.17 In Chapter 7, we examined the Tennessee’s Project STAR. In the experiment, children were ran-

domly assigned within schools into three types of classes: small classes with 13–17 students, regular

sized classes with 22–25 students, and regular sized classes with a full-time teacher aide to assist

the teacher. In Example 7.11, we checked for random assignment of children to the three types of

classes using a linear probability model, regressing the indicator SMALL (small class) on student

characteristics. Let us reconsider this regression using logit rather than the linear probability model.

If there is random assignment of children to types of classes, then we should not find any signif-

icant relationships. Use data file star5_small2 for this exercise. The data file star5 contains more

observations.

a. Estimate a logit model with outcome variable SMALL and explanatory variables BOY and BLACK.

Individually test the coefficients of these variables for significance. What do you find? Test the

coefficients jointly for significance using the likelihood ratio test. What do you find? Can we reject

the null hypothesis that assignment to small classes is done randomly?

b. Repeat the estimation and testing in part (a) using outcome variables AIDE and REGULAR. Do

you find any evidence that students were not randomly assigned?

c. Add the variable FREELUNCH to the models in (a) and (b) and reestimate them. Do you find any

evidence that there is a systematic pattern between class assignment and this variable?

d. Add the two variables TCHWHITE and TCHMASTERS to the models in (c) and reestimate them.

In each, carry out a likelihood ratio test for the joint significance of TCHWHITE and TCHMAS-
TERS. What do you conclude? In the experiment students were randomized within schools but

not across schools. Does this offer any explanation of your findings? If so, how?

16.18 Mortgage lenders are interested in determining borrower and loan characteristics that may lead to

delinquency or foreclosure. In the data file lasvegas are 1000 observations on mortgages for single

family homes in Las Vegas, Nevada during 2008. The variable of interest is DELINQUENT , an

indicator variable = 1 if the borrower missed at least three payments (90 + days late), but 0 other-

wise. Explanatory variables are LVR = the ratio of the loan amount to the value of the property;

REF = 1 if purpose of the loan was a “refinance” and = 0 if loan was for a purchase; INSUR = 1

if mortgage carries mortgage insurance, 0 otherwise; RATE = initial interest rate of the mortgage;
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AMOUNT = dollar value of mortgage (in $100,000); CREDIT = credit score, TERM = number of

years between disbursement of the loan and the date it is expected to be fully repaid, ARM = 1 if

mortgage has an adjustable rate, and = 0 if mortgage has a fixed rate.

a. Estimate the linear probability (regression) model explaining DELINQUENT as a function of the

remaining variables. Use White heteroskedasticity robust standard errors. Are the signs of the

estimated coefficients reasonable?

b. Use logit to estimate the model in (a). Are the signs and significance of the estimated coefficients

the same as for the linear probability model?

c. Compute the predicted value of DELINQENT for the 500th and 1000th observations using both

the linear probability model and the logit model. Interpret the values.

d. Construct a histogram of CREDIT . Using both linear probability and logit models, calculate

the probability of delinquency for CREDIT = 500, 600, and 700 for a loan of $250,000

(AMOUNT = 2.5). For the other variables, let the loan to value ratio (LVR) be 80%, the initial

interest rate is 8%, all indicator variables take the value 0, and TERM = 30. Discuss similarities

and differences among the predicted probabilities from the two models.

e. Using both linear probability and logit models, compute the marginal effect of CREDIT on the

probability of delinquency for CREDIT = 500, 600, and 700, given that the other explanatory

variables take the values in (d). Discuss the interpretation of the marginal effect.

f. Construct a histogram of LVR. Using both linear probability and logit models, calculate the prob-

ability of delinquency for LVR = 20 and LVR = 80, with CREDIT = 600 and other variables set

as they are in (d). Compare and contrast the results.

g. Compare the percentage of correct predictions from the linear probability model and the logit

model using a predicted probability of 0.5 as the threshold.

h. As a loan officer, you wish to provide loans to customers who repay on schedule and are not

delinquent. Suppose you have available to you the first 500 observations in the data on which

to base your loan decision on the second 500 applications (501–1,000). Is using the logit model

with a threshold of 0.5 for the predicted probability the best decision rule for deciding on loan

applications? If not, what is a better rule?

16.19 Mortgage lenders are interested in determining borrower and loan factors that may lead to delin-

quency or foreclosure. In the data file vegas5_small are 1000 observations on mortgages for single

family homes in Las Vegas, Nevada during 2010. (The data file vegas5 contains 10,000 observa-

tions.) The variable of interest is DEFAULT , an indicator variable = 1 if the borrower’s payment

was 90 + days late, but 0 otherwise. Explanatory variables are ARM = 1 if it’s an adjustable rate mort-

gage, 0 if fixed; REFINANCE = 1 if loan is for a refinance of any type, 0 if for purchase; LIEN2 = 1

if there is a second lien mortgage, 0 if it is the first lien; TERM30 = 1 if it is a 30-year mortgage,

0 if 15-year mortgage; UNDERWATER = 1 if borrower estimated to owe more than the property is

worth at time of origination, 0 otherwise; LTV = loan to value ratio of property at origination, per-

cent; RATE = current interest rate on loan, percent; AMOUNT = loan amount in $10,000 units; and

FICO = borrower’s credit score at origination.

a. Estimate the linear probability (regression) model explaining DEFAULT as a function of the

remaining variables. Use White robust standard errors. Are the signs of the estimated coefficients

reasonable?

b. Use probit to estimate the model in (a). Are the signs and significance of the estimated coefficients

the same as for the linear probability model?

c. Compute the predicted value of DEFAULT for the 500th and 1000th observations using both the

linear probability model and the probit model. Interpret the values.

d. Construct a histogram of FICO. Using both linear probability and probit models, calculate the

probability of default for FICO = 500, 600, and 700 for a loan of $250,000 (AMOUNT = 25).
For the other variables, the loan to value ratio (LTV) is 80%, initial interest rate is 8%, indicator

variables take the value 0 except for TERM30 = 1. Discuss similarities and differences among the

predicted probabilities from the two models.

e. Using both linear probability and probit models, compute the marginal effect of FICO on the prob-

ability of delinquency for FICO = 500, 600, and 700, given that the other explanatory variables

take the values in (d). Discuss the interpretation of the marginal effect.

f. Construct a histogram of LTV . Using both linear probability and probit models, calculate the

probability of delinquency for LVR = 20 and LVR = 80, with FICO = 600 and other variables set

as they are in (d). Compare and contrast the results.



�

� �

�

16.8 Exercises 735

g. Compare the percentage of correct predictions from the linear probability model and the probit

model using a predicted probability of 0.5 as the threshold.

h. As a loan officer, you wish to provide loans to customers who repay on schedule and are not

delinquent. Suppose you have available to you the first 500 observations in the data on which to

base your loan decision on the second 500 applications (501-1,000). Is using the probit model

with a threshold of 0.5 for the predicted probability the best decision rule for deciding on loan

applications? If not, what is a better rule? [Note: for vegas5 use the first 5000 observations for the

estimation sample and the second 5000 observations for prediction.]

16.20 This exercise deals with the loan data in the data file lasvegas described in Exercise 6.18. The

“Chow” test was introduced in Section 7.2.3 for testing the equality of coefficients in two regressions

on subsets of observations. Here we ask a similar question concerning the parameters of the logit

model for delinquency for the two subpopulations of borrowers who either have mortgage insurance

(INSUR = 1) or not (INSUR = 0).
a. Using all observations, estimate the logit model for DELINQUENT using all explanatory variables

except INSUR. Call the value of the log-likelihood function evaluated at the maximum likelihood

estimates lnLR.

b. Reestimate the model in (a) using the sample observations for which INSUR = 0. Call the value

of the log-likelihood function evaluated at the maximum likelihood estimates lnL0.

c. Reestimate the model in (b) using the sample observations for which INSUR = 1. Call the value

of the log-likelihood function evaluated at the maximum likelihood estimates lnL1.

d. Compare the estimates from the models in (a–c). What major differences in coefficient signs,

magnitudes, and significance do you observe?

e. Reestimate the model in (a) including each explanatory variable, as well as INSUR, and its inter-

actions with all the other variables. Compare the value of the log-likelihood function from the

fully interacted model, call it lnLU, to lnL0 + lnL1. If you have done things correctly, then lnLU
should equal lnL0 + lnL1. Can you explain why this must be so?

f. Carry out a likelihood ratio version of the Chow test by computing LR = 2(lnLU − lnLR). What

is the appropriate critical value for a test at the 5% level of significance? What conclusion do you

draw about the subgroups of individuals who do and do not have mortgage insurance? Do the two

groups behave in the same way?

16.21 Data on 1500 purchases of canned lite tuna are in the data file tunafish. There are four brands of

tuna (Starkist – water, Starkist – oil, Chicken of the Sea – water, Chicken of the Sea – oil). The A.C.

Nielsen data were made available through the University of Chicago’s Graduate School of Business.

The data file tunafish_small is a smaller dataset with 250 purchases. The data are in “stacked” for-

mat with four data lines per purchase, one for each tuna brand. The consumer choice is indicated

by the indicator variable CHOICE. Relevant variables are NETPRICE = price minus coupon value,

if used; DISPLAY = 1 if product is on display, FEATURE = 1 if item is featured, and INCOME =
household income.

a. What is the primary variable-type distinction between NETPRICE and INCOME?

b. What is the sample percentage of purchases for each brand? What do you observe about consumer

preferences for these product choices?

c. Using the conditional logit model, write the probability of choosing each brand using as explana-

tory variables NETPRICE, DISPLAY , and FEATURE, plus an alternative specific constant using

Starkist packed in water as the base category.

d. Estimate the model specified in part (c).

e. For the model in (d) find the marginal effect of NETPRICE on the probability of choice of each

brand, using for all brands DISPLAY = FEATURE = 1. Do these marginal effects have the signs

you anticipate? Are the marginal effects statistically significant?

f. Add the variable INCOME to the model specified in (c). Perform a likelihood ratio test of its

significance.

g. For the model in (f) find the marginal effect of NETPRICE on the probability of choice of each

brand, using for all brands DISPLAY = FEATURE = 1 and INCOME = 30.

16.22 How do age, education, and other personal characteristics predict our assessment of our health status?

Use the data file rwm88 to answer the following.

a. Tabulate the values of the variable HSAT3, which is a self-rating of health satisfaction, with 1 be-

ing the lowest and 3 being highest. What percentages fall into each of the health status categories?
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b. Estimate an ordered probit model predicting HSAT3 using AGE, AGE2, EDUC2 = years of

education, FEMALE = 1 if female, MARRIED = 1 if married, HHKIDS =1 if there are children

under age 16 in the household, and WORKING = 1 if employed, 0 otherwise. Which variables

have coefficients that are statistically significant at the 5% level?

c. Estimate the probability that an employed, unmarried male, age 40 with 16 years of education,

and no children, will have health satisfaction HSAT3 = 2.

d. Estimate the probability that an employed, unmarried male, age 50 with 16 years of education,

and no children, will have health satisfaction HSAT3 = 2.

e. Estimate the probability that an employed, unmarried male, age 40 with 16 years of education,

and no children, will have health satisfaction HSAT3 = 3.

f. Estimate the probability that an employed, unmarried male, age 50 with 16 years of education,

and no children, will have health satisfaction HSAT3 = 3.

g. Estimate the probability that an unemployed, unmarried male, age 50 with 16 years of education,

and no children, will have health satisfaction HSAT3 = 2. Compare this probability to the result

in part (d).

h. Estimate the probability that an unemployed, unmarried male, age 50 with 16 years of education,

and no children, will have health satisfaction HSAT3 = 3. Compare this probability to the result

in part (f).

16.23 How well do age, education, and other personal characteristics predict our assessment of our health

status? Use the data file rwm88 to answer the following.

a. Tabulate the variable HSAT3, which is a self-rating of health satisfaction, with 1 being the low-

est and 3 being highest. What percent of the sample assess their health status as HSAT3 = 1, 2,

or 3?

b. Estimate an ordered probit model predicting HSAT3 using AGE, AGE2, EDUC2 = years of

education, and WORKING = 1 if employed, 0 otherwise. Which variables have coefficients that

are statistically significant at the 5% level?

c. Estimate the marginal impact of age on the probabilities of health satisfactions HSAT3 = 1, 2,

or 3 for someone age 40, with 16 years of education, and who is working.

d. Estimate the marginal impact of age on the probabilities of health satisfactions HSAT3 = 1, 2,

or 3 for someone age 70, with 16 years of education, and who is working.

e. Estimate the marginal impact of WORKING on the probabilities of health satisfactions

HSAT3 = 1, 2, or 3 for someone age 40, with 16 years of education.

16.24 Consider household expenditures per person on apparel. Use the data file cex5 for this exercise.

a. What percentage of the households spent nothing on apparel in the previous quarter?

b. Estimate a linear regression with APPAR as dependent variable and use as explanatory vari-

ables INCOME, SMSA (Standard Metropolitan Statistical Area = 1 if household lives in an

urban area, and = 0 otherwise), ADVANCED, COLLEGE, and OLDER (= 1 if someone in the

household is 65 years of age or older). Discuss the signs and significance of the estimated

coefficients. Interpret the coefficient of INCOME. Interpret the coefficient of ADVANCED.

c. Repeat the estimation in (b) using only observations for which APPAR > 0. What are your answers

to the questions in (b) now?

d. Create the variable SHOP = 1 if APPAR > 0, and SHOP = 0 otherwise. Estimate a probit model

with dependent variable SHOP as a function of the variables in (b). What factors significantly

affect the decision to buy clothing?

e. Estimate a Tobit model with dependent variable APPAR. Compare the coefficient estimates signs

and significance to those in (b) and (c). Calculate the marginal effect of income on the expected

amount spent on APPAREL for a household living in an urban area, with income $65,000, con-

taining someone with an advanced degree and no one 65 or older in the household. Repeat the

calculation for a household with $125,000 income.

16.25 Consider using data file mroz to estimate a model explaining a married woman’s hours of work,

HOURS, as a function of her education, EDUC, her experience, EXPER, and her husband’s hours of

work, HHOURS.

a. Use all observations to estimate the regression model

HOURS = β1 + β2EDUC + β3EXPER + β4HHOURS + e

Is OLS a consistent estimator in this case?
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b. Use only the observations for which HOURS > 0 to estimate the regression model in (a). Is OLS

a consistent estimator in this case?

c. Estimate a probit model for the woman’s decision to be in the labor force, LFP = 1,

LFP = Φ
(
γ1 + γ2EXPER + γ3KIDSL6 + γ4KIDS618 + γ5MTR + γ6LARGECITY

)
. Which if any

of the variables help explain the woman’s labor force participation decision?

d. Using the estimates from the probit model, obtain

w̃ = γ̃1 + γ̃2EXPER + γ̃3KIDSL6 + γ̃4KIDS618 + γ̃5MTR + γ̃6LARGECITY

Create the inverse Mills ratio λ̃ = ϕ(w̃)∕Φ(w̃). What are the sample mean and variance of λ̃?

e. Estimate the model HOURS = β1 + β2EDUC + β3EXPER + β4HHOURS + βλλ̃ + e using the

observations for which HOURS > 0. Compare these estimates to those in parts (a) and (b). Are

the standard errors from this estimation correct?

f. Estimate the model in (e) using heteroskedasticity robust standard errors. Use the option HC3 if

it is available. These standard errors are not absolutely correct but an improvement over the ones

in (e).

g. Estimate the model in (e) using bootstrap standard errors, with B = 400 bootstrap replications.

Compare these standard errors to those in (e) and (f).

h. Estimate the model in (e) using proper econometric software for this Heckit model. Compare the

results to those in (e)–(g). Be sure to identify whether your software is using a two-step estimator,

like part (e), or full information maximum likelihood.

16.26 In Example 7.11, we used the linear probability model to check whether students were assigned ran-

domly to small classes in Project STAR. In this exercise, we use multinomial logit and the data file

star to explore the issue.

a. Create the variable CLASS = 1 for a regular sized class, CLASS = 2 for a small class, and

CLASS = 3 for a regular sized class with a teacher aide. What percentage of the students in the

sample were assigned to each type of class?

b. Estimate a multinomial logit model explaining CLASS with explanatory variables BOY ,

WHITE_ASIAN, BLACK, FREELUNCH, SCHURBAN, and SCHRURAL. Use CLASS = 1, the

regular class, as the base group. If students are assigned randomly what values should the model

coefficients take? Are any of the estimated coefficients significantly different from zero at the

5% level?

c. Find the ratio of the probability of being in a small class for a white boy who receives lunch if his

school is in a rural area, relative to the probability of him being in a regular sized class.

d. Find the ratio of the probability of being in a regular sized class with a teacher aide for a white

boy who receives lunch if his school is in a rural area, relative to the probability of him being in

a regular sized class.

e. Carry out a likelihood ratio test that the coefficients of BOY , WHITE_ASIAN, BLACK,

FREELUNCH, and SCHURBAN are zero, against the alternative that they are not, at the 5%

level. What is the 5% critical value for this test?

f. Carry out a likelihood ratio test that the coefficients of BOY , WHITE_ASIAN, BLACK,

FREELUNCH, SCHURBAN, and SCHRURAL are zero, against the alternative that they are not,

at the 5% level. What is the 5% critical value for this test?

g. Based on the outcomes of parts (a)–(f), what do you conclude about random assignment of stu-

dents in Project STAR?

16.27 In Example 16.15, we considered a count data model for the number of doctor visits by an individual

as a function of a few explanatory variables. In this exercise, we expand the analysis using a larger

data set in the data file, rwm88, and more explanatory variables. Adjust the data in the following ways:

(i) omit individuals for whom HHNINC2 = 0; (ii) create the variable LINC = ln(HHNINC2); (iii) cre-

ate AGE2 = AGE2; (iv) create the variable POST = 1 (a postsecondary degree indicator variable) if

FACHHS = 1 or if UNIV = 1, and POST = 0 otherwise.

a. Using the first 3000 observations estimate a Poisson model explaining DOCVIS as a function of

FEMALE, AGE, AGE2, SELF, LINC, POST , and PUBLIC. Discuss the signs and the significance

of the coefficients on FEMALE, SELF, POST , and PUBLIC. Calculate the percentage increase in

the expected number of doctor visits for each factor represented by these indicator variables.

b. Compute the estimated percentage change in the expected number of doctor visits associated with

another year of age for a person who is 30 years old; who is 50 years old; and who is 70 years old.
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c. Interpret the estimated coefficient of LINC.

d. Calculate the expected number of doctor visits for each person, EDOCVIS, and round this value

to the nearest integer to obtain NVISITS, the predicted number of visits for each person. Cre-

ate a variable that indicates a successful prediction. Let SUCCESS = 1 if NVISITS = DOCVIS
and SUCCESS = 0 otherwise. What is the percentage of successful predictions for observations

1–3000? What is the percentage of successful predictions for the remaining 979 observations?

e. Create SUCCESS1 which indicates a successful prediction of more than one doctor visit.

That is, create a variable DOCVIS1 = 1 if an individual has more than one doctor visit, and

PREDICT1 = 1 if the model has predicted more than one doctor visit. Let SUCCESS1 = 1 if

DOCVIS1 = PREDICT1 and SUCCESS1 = 0 otherwise. What is the percentage of successful

predictions of more than one doctor visit for observations 1–3000? What is the percentage of

successful predictions of more than one doctor visit for the remaining 979 observations?

16.28 We have used Ray Fair’s voting data, (data file fair5, throughout the book to predict presidential

election outcomes with the linear regression model. Here we apply probit to predict the outcome of the

2016 U.S. Presidential election. Create the variable DEMWIN = 1 if VOTE ≥ 50.0 and DEMWIN = 0

otherwise. As of October 28, 2016, the values for the key economic variables were GROWTH = 0.97,

INFLAT = 1.42, and GOODNEWS = 2.

a. Estimate a probit model for DEMWIN as a function of GROWTH, INFLAT , GOODNEWS
using data for years prior to 2016. Comment on the signs and significance of the estimated

coefficients.

b. Using the probit model in part (a), and the given values of GROWTH, INFLAT , and

GOODNEWS, predict the election outcome in 2016. What is the estimated probability that a

democrat will win?

c. Add DPER, DUR, WAR, and INCUMB to the model used in (a). Reestimate the probit model.

What happens to the signs and significance of the estimated coefficients?

d. Using the model in (c), obtain the estimated probability, PHAT , of a democrat winning for the

sample period 1916–2012. Are any of the predicted values very close to 1.0 or 0.0? For how many

observations is PHAT > 0.99999? For how many observations is PHAT < 0.00001?

e. Examine the values of DEMWIN when the following four-variable pattern exists in the data:

DPER = −1, DUR = 0, WAR = 0, INCUMB = −1. How many such observations are there?

[Note: Some software will indicate probit failure when the dependent variable does not vary for

a value of an independent variable, or in this case a particular combination of values. You may

think of this as something like “perfect collinearity.” When this happens maximum likelihood

estimation including the particular pattern of observations fails.]

16.29 In this exercise, we illustrate some features of instrumental variables estimation, and two-stage least

squares, when the potential endogenous variable is binary. Use the data file rwm88 for this problem,

and do not worry too much about the economic reasoning behind the model.

a. Estimate by OLS the regression of DOCVIS on AGE, FEMALE, WORKING, HHNINC2, and

ADDON. Use heteroskedasticity robust standard errors. Does it appear that having add-on insur-

ance is a significant factor affecting the number of doctor visits?

b. ADDON might be endogenous. Estimate a first stage equation using OLS with ADDON as depen-

dent variable and AGE, FEMALE, WORKING, HHNINC2, WHITEC, and SELF as explanatory

variables. Since the dependent variable is binary use heteroskedasticity robust standard errors.

Are WHITEC and SELF jointly significant? Why does this matter if our objective is two-stage

least squares estimation?

c. Obtain the fitted value from part (b), ADDON
⋀

, and reestimate the model in (a) using ADDON
⋀

in place of ADDON. Use heteroskedasticity robust standard errors. Does it appear that having

add-on insurance is a significant factor affecting the number of doctor visits?

d. Use your software command designed for two-stage least squares and estimate the model in (a)

using external instruments WHITEC and SELF. Use heteroskedasticity robust standard errors.

How do these estimates compare to those in part (c)? Has two-stage least squares performed as

expected?

e. Since ADDON is binary, estimate the first stage equation in (b) using probit. Compute the esti-

mated probability that ADDON = 1, PHAT . Reestimate the model in (a) using PHAT in place of

ADDON. Use heteroskedasticity robust standard errors. Are the results the same as in part (d)?

Why not?
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f. Use your software command designed for two-stage least squares and estimate the model in (a)

using external instrument PHAT . Use heteroskedasticity robust standard errors. How do these

estimates compare to those in part (e)? Has two-stage least squares performed as expected?

16.30 In this exercise, we use multinomial logit to describe factors leading an individual to fall into one of

three categories. Use data file rwm88 for this exercise.

a. Create a variable called INSURED = 1, if a person does not have public insurance or add-on insur-

ance (PUBLIC = 0 and ADDON = 0). Let INSURED = 2 if (PUBLIC = 1 and ADDON = 0).

Let INSURED = 3 if (PUBLIC = 1 and ADDON = 1). Tabulate the number of individuals falling

into each category. How many individuals are accounted for?

b. Estimate a multinomial logit model with outcome variable INSURED and explanatory variables

AGE, FEMALE, WORKING, and HHNINC2. Use INSURED = 1 as the base category. What infor-

mation is provided by the signs and significance of the estimated coefficients?

c. Obtain the predicted probabilities of falling into each category for each person in the sample,

calling them P1, P2, and P3. Find the sample averages of P1, P2, and P3 and compare these to

the percentages of the sample for whom INSURED = 1, 2, and 3, respectfully.

d. Obtain the predicted probabilities of falling into each category for a person who is 50 years old,

female, working and with a household income, HHNINC2 = 2400.

e. Repeat the calculations in (d) for HHNINC2 = 4200.

f. Calculate the 25th and 75th percentiles of HHNINC2. Comment on the changes in probabilities

computed in parts (d) and (e).

Appendix 16A Probit Marginal Effects: Details

16A.1 Standard Error of Marginal Effect at a Given Point

Consider the probit model p = Φ
(
β1 + β2x

)
. The marginal effect of a continuous x, evaluated at

a specific point x = x0, is

dp
dx
|
|
|
|x=x0

= ϕ
(
β1 + β2x0

)
β2 = g

(
β1, β2

)

The estimator of the marginal effect is g
(
β̃1, β̃2

)
, where β̃1 and β̃2 are the maximum likelihood

estimators of the unknown parameters. The variance of this estimator was developed in Appendix

5B.2, in (5B.4), and is given by

var
[

g
(
β̃1, β̃2

)]

≅

[
∂g
(
β1, β2

)

∂β1

]2

var
(
β̃1

)
+

[
∂g
(
β1, β2

)

∂β2

]2

var
(
β̃2

)

+ 2

[
∂g
(
β1, β2

)

∂β1

][
∂g
(
β1, β2

)

∂β2

]

cov
(
β̃1, β̃2

)
(16A.1)

The variances and covariances of the estimators come from maximum likelihood estimation. The

essence of these calculations is given in Appendix C.8.2. To implement the delta method, we

require the derivative

∂g
(
β1, β2

)

∂β1

=
∂
[

ϕ
(
β1 + β2x0

)
β2

]

∂β1

=

{
∂ϕ
(
β1 + β2x0

)

∂β1

× β2

}

+ ϕ
(
β1 + β2x0

)
×
∂β2

∂β1

= −ϕ
(
β1 + β2x0

)
×
(
β1 + β2x0

)
× β2
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The second line above uses the product rule, Derivative Rule 6. To obtain the final result, we used

∂β2∕∂β1 = 0 and

∂ϕ
(
β1 + β2x0

)

∂β1

= ∂
∂β1

[

1
√

2π
e−

1

2
(β1+β2x0)2

]

= 1
√

2π
e−

1

2
(β1+β2x0)2

(

2 × −1

2
×
(
β1 + β2x0

))

= −ϕ
(
β1 + β2x0

)
×
(
β1 + β2x0

)

The second step uses Derivative Rule 7 for exponential functions. Using similar steps, we obtain

the other key derivative,

∂g
(
β1, β2

)

∂β2

= ϕ
(
β1 + β2x0

)[

1 −
(
β1 + β2x0

)
× β2x0

]

From the maximum likelihood estimation results using the transportation data example, we obtain

the estimator variances and covariances32

⎡
⎢
⎢
⎣

var
⋀(

β̃1

)
cov
⋀(

β̃1, β̃2

)

cov
⋀(

β̃1, β̃2

)
var
⋀(

β̃2

)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0.1593956 0.0003261

0.0003261 0.0105817

⎤
⎥
⎥
⎦

The derivatives must be evaluated at the maximum likelihood estimates. For the transportation

data used in Examples 16.4 and 16.5 for DTIME = 2 (x0 = 2), the calculated values of the deriva-

tives are

∂g
(
β1, β2

)

∂β1

⋀

= −0.055531 and
∂g
(
β1, β2

)

∂β2

⋀

= 0.2345835

Using (16A.1), and carrying out the required multiplication, we obtain the estimated variance and

standard error of the marginal effect

var
⋀

[

g
(
β̃

1
, β̃2

)]

= 0.0010653 and se
[

g
(
β̃1, β̃2

)]

= 0.0326394

16A.2 Standard Error of Average Marginal Effect

Consider the probit model p = Φ
(
β1 + β2x

)
. For the transportation data example, the explanatory

variable x = DTIME. The average marginal effect of this continuous variable is

AME = 1

N

N∑

i=1

ϕ
(
β1 + β2DTIMEi

)
β2 = g2

(
β1, β2

)

The estimator of the average marginal effect is g2

(
β̃1, β̃2

)
. To apply the delta method to find

var
[
g2

(
β̃1, β̃2

)]
, we require the derivatives

∂g2

(
β1, β2

)

∂β1

= ∂
∂β1

[

1

N

N∑

i=1

ϕ
(
β1 + β2DTIMEi

)
β2

]

= 1

N

N∑

i=1

∂
∂β1

[

ϕ
(
β1 + β2DTIMEi

)
β2

]

= 1

N

N∑

i=1

∂g
(
β1, β2

)

∂β1

............................................................................................................................................

32Using minus the inverse matrix of second derivatives.
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The term
∂g
(
β1, β2

)

∂β1

we evaluated in the previous section. Similarly, the derivative

∂g2

(
β1, β2

)

∂β2

= ∂
∂β2

[

1

N

N∑

i=1

ϕ
(
β1 + β2DTIMEi

)
β2

]

= 1

N

N∑

i=1

∂
∂β2

[

ϕ
(
β1 + β2DTIMEi

)
β2

]

= 1

N

N∑

i=1

∂g
(
β1, β2

)

∂β2

For the transportation data, we compute

∂g2

(
β1, β2

)

∂β1

⋀

= −0.00185 and
∂g2

(
β1, β2

)

∂β2

⋀

= −0.032366

Using (16A.1) with g replaced by g2, and carrying out the required multiplication, we obtain the

estimated variance and standard error of the average marginal effect

var
⋀

[

g2

(
β̃1, β̃2

)]

= 0.0000117 and se
[

g2

(
β̃1, β̃2

)]

= 0.003416

Appendix 16B Random Utility Models
Economics is a general theory of choice behavior. Individuals make choices that maximize

their wellbeing, or welfare, or, as economists term it, “utility.” Observers cannot measure utility

directly, and we cannot compare the utility, or satisfaction, that Jane enjoys while eating ice

cream to Bill’s satisfaction. But when a person is confronted with two or more choices, we

assume that they make the choice that maximizes their welfare, however that might be defined.

If a person must choose between taking a bus to work or driving to work, then, after considering

the various costs and benefits, the person’s choice reveals their utility maximizing outcome.

We can imagine that the utility they receive depends on the attributes of the alternatives. As

modelers we can select some such attributes as explanatory variables, but we must recognize that

we will never truly understand choices completely; there is a random unexplained component, or

random error, in any model.

Choice models, both binary and multinomial, as well as other limited dependent variable

models, are often developed using a random utility model framework. Utility, or satisfaction, is

unobservable and consequently it is called a latent variable, one that must be present but which

is unseen. We will illustrate this approach to modeling by developing the probit model of binary

choice in the random utility framework.

16B.1 Binary Choice Model
Assume that an individual must choose between two alternatives. Let Ui1 be the utility derived

from alternative one and let Ui0 be the utility derived from alternative two. Let zi1 be the attributes

of alternative one as perceived by the ith individual, and let zi0 be the attributes of alternative two

as perceived by the ith individual. Let wi represent the attributes of the ith individual. There may

be several attributes of the alternatives that are relevant, and several individual characteristics that

matter as well, but for simplicity, we will assume that there is but one attribute of each alternative

and one individual characteristic. Then, a linear random utility model for each alternative is

Ui1 = α1 + zi1δ + wiγ1 + ei1

Ui0 = α0 + zi0δ + wiγ0 + ei0
(16B.1)
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In each model, there is a random error component, ei1 and ei0. Assuming strict exogeneity,

E
(
ei1|zi1, zi0,wi

)
= 0 and the same for ei0, we can write

Ui1 = E
(
Ui1| •

)
+ ei1 and Ui0 = E

(
Ui0| •

)
+ ei0

so that the utility from each part consists of a systematic part and a random part, as we are used

to. Each of the expected utility terms is conditional, but we suppress the notation for convenience.

Also, note that the individual characteristics wi have coefficients that are unique to each alternative

but that the attributes of alternatives, zi1 and zi0, have a common parameter, δ. The logic of this

specification will become clear soon.

As in equation (16.1), let the outcome variable be

yi =

{
1 if alternative one is chosen

0 if alternative two is chosen
(16B.2)

Based on our model of random utility, alternative one will be chosen, and yi = 1, if Ui1 ≥ Ui0, or

if Ui1 – Ui0 ≥ 0, where

Ui1 − Ui0 = E
(
Ui1| •

)
+ ei1 −

[

E
(
Ui0| •

)
+ ei0

]

=
(
α1 − α0

)
+
(
zi1 − zi0

)
δ + wi

(
γ1 − γ0

)
+
(
ei1 − ei0

)
(16B.3)

The left-hand side variable Ui1 – Ui0 is unobservable, but we know the difference in utilities

determines an individual’s choice. Let y∗i = Ui1 − Ui0 denote the latent variable which is the dif-

ference in utilities. Observe what would happen if the characteristics of the individual had the

same coefficient in the random utility models (16B.1). Then the individual characteristics would

fall out of (16B.3) and would have no effect on the choice. Equation (16B.3) becomes a regression

specification by writing it as

y∗i =
(
α1 − α0

)
+
(
zi1 − zi0

)
δ + wi

(
γ1 − γ0

)
+
(
ei1 − ei0

)

= β1 + β2

(
zi1 − zi0

)
+ β3wi + ei

= β1 + β2xi2 + β3xi3 + ei

(16B.4)

We observe yi = 1 if y∗i = Ui1 − Ui0 ≥ 0. The probability of an individual choosing alternative

one is

p
(
xi
)
= P

(
yi = 1| •

)
= P

(
y∗i ≥ 0| •

)
= P

[(
Ui1 ≥ Ui0

)
|
| •

]

= P
[

E
(
Ui1| •

)
+ ei1 ≥ E

(
Ui0| •

)
+ ei0

]

= P
[

ei0 − ei1 ≤ E
(
Ui1| •

)
− E

(
Ui0| •

)]

= P
[
ei0 − ei1 ≤ β1 + β2xi2 + β3xi3

]

= F
(
β1 + β2xi2 + β3xi3

)

(16B.5)

In the last line of (16B.5), F
(
β1 + β2xi2 + β3xi3

)
is the cumulative distribution function of the

random variable ei0 – ei1. In Section 16.2, we used the cdf as a convenient device for keeping

the probabilities between zero and one, but here it arises quite naturally from the random utility

framework.

16B.2 Probit or Logit?
In binary choice problems, economists tend to use probit over logit. The reason follows from

assumptions about the random utility models. Suppose that ei1 ∼ N
(
0, σ2

1

)
, ei0 ∼ N

(
0, σ2

0

)
, and

cov
(
ei1, ei0

)
= σ10. Then

(
ei0 − ei1

)
∼ N

(
0, σ2 = σ2

0
+ σ2

1
− 2σ10

)
. Then
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p
(
xi
)
= P

(
yi = 1| •

)

= P
[
ei0 − ei1 ≤ β1 + β2xi2 + β3xi3

]

= P
[

ei0 − ei1

σ
≤
β1

σ
+
β2

σ
xi2 +

β3

σ
xi3

]

= Φ
(
β∗

1
+ β∗

2
xi2 + β∗3xi3

)

The parameters in the probit model are actually β∗k = βk∕σ. The parameter scaling is usually

ignored in notation with the explanation that we choose σ = 1 as a normalization.33 Then the

probit model is p
(
𝐱i
)
= Φ

(
β1 + β2xi2 + β3xi3

)
.

On the other hand, to obtain a logit model, the random errors ei1 and ei0 must be statisti-

cally independent and identically distributed with an extreme value distribution.34 In this case,(
ei0 − ei1

)
= v1 has a logistic distribution. The details are a fun exercise (see Example B.7 for

part of it) and outlined in Dhrymes (1986, page 1574).35

The bottom line is that there is no reason to assume that the random utility errors are statisti-

cally independent, nor to have the asymmetrical extreme value distribution. It is a mathematically

convenient assumption because the end result, the logistic distribution, has a cdf of convenient

form. Assuming that the random utility errors are normally distributed, and correlated, is not at

all a stretch of the imagination.

Appendix 16C Using Latent Variables
Using latent variables, we can develop a variety of models that involve observed and partially

observed variables. We will illustrate a few using simple models. Others can be found in Amemiya

(1984, “Tobit Models: A Survey,” Journal of Econometrics, 24, pages 3–61).

16C.1 Tobit (Tobit Type I)
Amemiya called the standard Tobit model “Type I Tobit.” Let y∗i = β1 + β2xi + ei be a latent

variable with ei ∼ N
(
0, σ2

)
. The Tobit model then arises by specifying the observed outcome

value yi to be,

yi =

{
y∗i = β1 + β2xi + ei if y∗i > 0

0 if y∗i ≤ 0

Three possible regression functions are then

E
(
y∗i |xi

)
= β1 + β2xi

E
(
yi|xi, yi > 0

)
= β1 + β2xi +

ϕ
[(
β1 + β2xi

)
∕σ
]

Φ
[(
β1 + β2xi

)
∕σ
]

E
(
yi|xi

)
= Φ

[(
β1 + β2xi

)
∕σ
]

E
(
yi|xi, yi > 0

)

............................................................................................................................................

33The issue of this normalization comes into play in the discussion of Heckman’s two-step estimator, discussed in

Section 16.7.5.

34https://en.wikipedia.org/wiki/Gumbel_distribution

35http://www.sciencedirect.com/science/handbooks/15734412/3
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The marginal effects for a continuous variable xi are

∂E
(
y∗i |xi

)
∕∂xi = β2

∂E
(
yi|xi, yi > 0

)
∕∂xi =

{

1 − αiλ
(
αi
)
−
[
λ
(
αi
)]2
}

β2

∂E
(
yi|xi

)
∕∂xi = Φ

(
αi
)
β2

where αi =
(
β1 + β2xi

)
∕σ and λ

(
αi
)
= ϕ

(
αi
)
∕Φ
(
αi
)
.

16C.2 Heckit (Tobit Type II)
The famous model of self-selection (Tobit Type II) developed by James Heckman is called

“Heckit.” In this model, there are two equations. The selection equation, that describes a person’s

participation decision, and an intensity, or amount, equation, which is the equation of interest. In

the latent variable formulation, the equations are

z∗i = γ1 + γ2wi + ui selection equation

y∗i = β1 + β2xi + ei amount equation, the equation of interest

The equations are connected through their error terms. Let ui ∼ N
(
0, σ2

u
)

and ei ∼ N
(
0, σ2

e
)
, with

the covariance between these two random errors being σue. The latent variables z∗i and y∗i are not

observed. We do observe the binary variable

zi =

{
1 z∗i > 0

0 otherwise

and

yi =

{
y∗i = β1 + β2xi + ei if z∗i > 0 or zi = 1

0 if z∗i ≤ 0 or zi = 0

Using a theorem about bivariate normal random variables, similar to Appendix B.3.5, it can be

shown that

E
(
yi|xi,wi, yi > 0

)
= β1 + β2xi + σue

ϕ
[(
γ1 + γ2wi

)
∕σu

]

Φ
[(
γ1 + γ2wi

)
∕σu

] = β1 + β2xi + σue
ϕ
(
γ∗

1
+ γ∗

2
wi
)

Φ
(
γ∗

1
+ γ∗

2
wi
)

Heckman’s two-step estimator first estimates the selection model’s scaled parameters γ∗
1
= γ1∕σu

and γ∗
2
= γ2∕σu by probit using all observations. Then, using only positive observations, estimates

by OLS the equation of interest

yi = β1 + β2xi + σue
ϕ
(
γ̃∗

1
+ γ̃∗

2
wi
)

Φ
(
γ̃∗

1
+ γ̃∗

2
wi
) + vi

The two-step estimator is consistent and asymptotically normally distributed, but the usual OLS

standard errors are incorrect. The corrected ones are complicated but available in econometric

software. An alternative is to estimate by maximum likelihood the two equations jointly, which

is a more efficient estimation option. The MLE is often the default in econometric software, so

check your documentation.
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Appendix 16D A Tobit Monte Carlo Experiment
Let the latent variable be

y∗i = β1 + β2xi + ei = −9 + xi + ei (16D.1)

with the error term assumed to have a normal distribution, ei ∼ N
(
0, σ2 = 16

)
. The observable

outcome yi takes the value zero if y∗i ≤ 0, but yi = y∗i if y∗i > 0. In the simulation, we

• Create N = 200 random values of xi that are spread evenly (or uniformly) over the interval

[0, 20].

• Obtain N = 200 random values ei from a normal distribution with mean 0 and variance 16.

• Create N = 200 values of the latent variable y∗i = −9 + xi + ei.

• Obtain N = 200 values of the observed yi using

yi =

{
0 if y∗i ≤ 0

y∗i if y∗i > 0

The 200 observations obtained this way constitute a sample that is censored with a lower limit

of zero. The latent data are plotted in Figure 16D.1. In this figure, the line labeled E
(
y∗i |xi

)
has

intercept −9 and slope 1. The values of the latent variable y∗i (triangle and hollow circle, △ and

⚬) are scattered along this regression function; if we observed these data we could estimate the

parameters using the least squares principle, by fitting a line through the center of the data.

However, we do not observe all the latent data. When the values of y∗i are zero or less then

we observe yi = 0 (•). We observe the y∗i when they are positive. These observable data, along

with the fitted least squares regression, are shown in Figure 16D.2.

The least squares principle will fail to estimate β1 = −9 and β2 = 1 because the observed

data do not fall along the underlying regression function E
(
y∗|x

)
= β1 + β2x = −9 + x.

To illustrate, the results from the first Monte Carlo sample, data file tobit5, are contained in

Table 16D.1. In the first column
(
y∗
)

are the OLS estimates using the simulated latent data. In

the second column (y > 0) are the OLS estimates using only the 118 observations for which the

–20

–10

10

20

0y

0 5 10 15 20

x

y > 0 y* < 0
y = 0 E(y* x)

FIGURE 16D.1 Latent and censored data.
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–10

0

10

20

0 5 10 15 20

x

y

y > 0 y = 0
OLS fittedE(y* x)

FIGURE 16D.2 Observed data and OLS fitted line.

T A B L E 16D.1 Simulated Censored Data (tobit5)

y∗ y > 0 y Tobit

C −8.6611 −1.1891 −1.6515 −8.0007

(0.5842) (1.1777) (0.4290) (0.9802)

x 0.9690 0.5176 0.5075 0.9215

(0.0499) (0.0823) (0.0366) (0.0722)

σ̂ 4.1050 3.4340 3.0146 3.9884

(0.2670)

N 200 118 200 200

(Standard errors in parentheses)

observed value of y is positive; in the third column (y), are the OLS estimates on the 200 observed

values of y, and in the fourth column are the Tobit estimates. The Tobit estimates are relatively

close to the true value, while the estimates based only on the positive y values, or on all the y
values, are far from the mark. An added benefit of the ML method is that there is a standard error

for the estimated value of σ.

In the Monte Carlo simulation, we repeat this process of creating N = 200 observations,

and applying least squares estimation, many times. This is analogous to “repeated sampling” in

the context of experimental statistics. In this case, we repeat the process NSAM = 1000 times,

drawing new x-values and error values e, recording each time the values of the estimates we

obtain. At the end, we can compute the average values of the estimates which is the Monte Carlo

“expected value,”

EMC
(
bk
)
= 1

NSAM

NSAM∑

m=1

bk(m)

where bk(m) is the estimate of βk in the mth Monte Carlo sample. We also compute the Monte Carlo

average of the usual, or “nominal” standard error, and the standard deviation of the estimates. The

standard deviation measures the true sampling variability of the estimates. It is our hope that the

usual standard error captures the actual sampling variation so that the average nominal standard

error and the standard deviation of the estimates are close. The results are in Table 16D.2.
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T A B L E 16D.2 Monte Carlo Simulation Results

Intercept = −9 Slope = 1

Mean
Standard

Error
Standard
Deviation Mean

Standard
Error

Standard
Deviation

y∗ −9.0021 0.5759 0.5685 1.0000 0.0498 0.0492

y > 0 −2.1706 0.9518 1.1241 0.6087 0.0729 0.0779

y −2.2113 0.2928 0.4185 0.5632 0.0389 0.0362

Tobit −9.0571 1.0116 0.9994 1.0039 0.0740 0.0733

The results of applying OLS to the latent data
(
y∗
)

produce estimates that are on average very

close to the true values for both the intercept and the slope. The average of the nominal standard

error is close to the standard deviation of the estimates. If we discard the y = 0 observations

and apply least squares to just the positive y observations, y > 0, these averages are −2.1706

and 0.6087, respectively. If we apply the least squares estimation procedure to all the observed

censored data (y, including observations y = 0), the average value of the estimated intercept is

−2.2113, and the average value of the estimated slope is 0.5632. The least squares estimates are

biased by a substantial amount, compared to the true values β1 = −9 and β2 = 1. This bias will not

disappear no matter how large the sample size we consider because the least squares estimators

are inconsistent when data are censored or truncated. On the other hand, the Tobit estimates on

average are very close to the true values.

A word of caution is in order about commercial software packages. There are many algo-

rithms available for obtaining maximum likelihood estimates, and different packages use different

ones, which may lead to slight differences (in perhaps the 3rd or 4th decimal) in the parameter

estimates and their standard errors. When carrying out important research, it is a good tip to con-

firm empirical results with a second software package, just to be sure that they give essentially

the same numbers.
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Appendix A

Mathematical Tools

L E A R N I N G O B J E C T I V E S

Based on the material in this appendix, you should be able to

1. Explain the relationship between exponential

functions and natural logarithms.

2. Explain and apply scientific notation.

3. Define a linear relationship, as opposed to a

nonlinear relationship.

4. Compute the elasticity at a point on a function.

5. Explain the concept of a derivative and its

relationship to the slope of a function.

6. Compute the derivatives of simple functions and

provide their interpretations.

7. Describe the relationship between a derivative

and a partial derivative.

8. Explain the concept of an integral.

9. Maximize or minimize functions of one or two

variables.

10. Use integration to find the area under curves.

11. Explain and evaluate second derivatives.

K E Y W O R D S

absolute value

antilogarithm

derivatives

e
elasticity

exponential function

exponents

inequalities

integers

integral

intercept

irrational number

linear relationship

logarithm

marginal effect

maximizing a function

minimizing a function

natural logarithm

nonlinear relationship

partial derivative

percentage change

product rule

quadratic function

quotient rule

rational numbers

real numbers

relative change

scientific notation

second derivative

slope

Taylor series

We assume that you have studied basic math. Hopefully you understand the calculus concepts of

differentiation and integration, though these tools are not required prerequisites for success using

this book. In this appendix we review some essential concepts that you may wish to consult from

time to time.1

............................................................................................................................................

1Summation signs and operations are covered in the Probability Primer that precedes Chapter 2.
748
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A.1 Some Basics

A.1.1 Numbers
Integers are the whole numbers, 0, ±1, ±2, ±3, . . . . The positive integers are the counting

numbers. Rational numbers can be written as a/b, where a and b are integers and b ≠ 0. The

real numbers can be represented by points on a line. There are an uncountable number of real

numbers, and they are not all rational. Numbers such as π ≅ 3.1415927 and
√

2 are said to

be irrational since they cannot be expressed as ratios, and have only decimal representations.

Numbers like
√
−2 are not real numbers. The absolute value of a number is denoted by |a|. It is

the positive part of the number: |3| = 3 and |−3| = 3.

Inequalities among numbers obey certain rules. The notation a < b, a is less than b, means

that a is to the left of b on the number line, and that b – a > 0. If a is less than or equal to b, it is

written as a ≤ b. Three basic rules are

If a < b, then a + c < b + c

If a < b, then

{
ac < bc if c > 0

ac > bc if c < 0

If a < b and b < c, then a < c

A.1.2 Exponents
Exponents are defined as follows:

xn = xx · · · x (n terms) if n is a positive integer

x0 = 1 if x ≠ 0. 00 does not have meaning and is “undefined.”

Some common rules for working with exponents, assuming x and y are real, m and n are integers,

and a and b are rational, are as follows:

x−n = 1

xn if x ≠ 0. For example, x−1 = 1

x
x1∕n = n

√
x. For example, x1∕2 =

√
x and x−1∕2 = 1

√
x

xm∕n =
(
x1∕n)m

. For example, 84∕3 =
(
81∕3

)4 = 24 = 16

xaxb = xa+b
,

xa

xb = xa−b

(
x
y

)a

= xa

ya , (xy)a = xaya

A.1.3 Scientific Notation
Scientific notation is useful for very large or very small numbers. A number in scientific notation

is written as a number between 1 and 10 multiplied by a power of 10. So, for example: 5.1 × 105 =
510, 000, and 0.00000034 = 3.4 × 10−7. Scientific notation makes handling large numbers much

easier, because complex operations can be broken into simpler ones. For example,

510,000 × 0.00000034 =
(
5.1 × 105

)
×
(
3.4 × 10−7

)

= (5.1 × 3.4) ×
(
105 × 10−7

)

= 17.34 × 10−2

= 0.1734
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and
510,000

0.00000034
= 5.1 × 105

3.4 × 10−7
= 5.1

3.4
× 105

10−7
= 1.5 × 1012

Computer programs sometimes write 5.1 × 105 = 5.1E5 or 5.1D5 and 3.4 × 10−7 = 3.4E–7 or

3.4D–7.

A.1.4 Logarithms and the Number e
Logarithms are exponents. If x = 10b, then b is the logarithm of x using the base 10. The

irrational number e ≅ 2.718282 is used in mathematics and statistics as the base for logarithms.

If x = eb, then b is the logarithm of x using the base e. Logarithms using the number e as base are

called natural logarithms. All logarithms in this book are natural logarithms. We express the

natural logarithm of x as ln(x),

For any positive number, x > 0,

eln(x) = exp
[
ln(x)

]
= x

and

ln
(
ex) = x

Note that ln(1) = 0, using the laws of exponents. Table A.1 gives the logarithms of some powers

of 10. For example, e2.3025851 = 10 and e4.6051702 = 100.

Note that logarithms have a compressed scale compared to the original numbers. Since log-

arithms are exponents, they follow similar rules:

ln(xy) = ln(x) + ln(y)
ln(x∕y) = ln(x) − ln(y)
ln
(
xa) = aln(x)

For example, if x = 1000 and y = 10, 000, then

ln(1000 × 10,000) = ln(1000) + ln(10,000)
= 6.9077553 + 9.2103404

= 16.118096

What is the advantage of this? The value of xy is a multiplication problem, which by using loga-

rithms we can turn into an addition problem. We need a way to go backward, from the logarithm

of a number to the number itself. By definition,

x = eln(x) = exp
[
ln(x)

]

T A B L E A.1 Some Natural Logarithms

x ln(x)
1 0

10 2.3025851

100 4.6051702

1,000 6.9077553

10,000 9.2103404

100,000 11.512925

1,000,000 13.815511
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When there is an exponential function with a complicated exponent, the notation exp is often

used, so that e( • ) = exp( • ). The exponential function is the antilogarithm, because we can recover

the value of x using it. Then,

1000 × 10000 = exp(16.118096) = 10,000,000

You will not be doing many calculations like these, but the knowledge of logarithms and expo-

nents is quite critical in economics and econometrics.

A.1.5 Decimals and Percentages
Suppose the value of a variable y changes from the value y = y0 to y = y1. The difference between

these values is often denoted by Δy = y1 − y0, where the notation Δy is read “change in y,” or

“delta-y.” The relative change in y is defined to be

relative change in y =
y1 − y0

y0

=
Δy
y0

(A.1)

For example, if y0 = 3 and y1 = 3.02, then the relative change in y is

y1 − y0

y0

= 3.02 − 3

3
= 0.0067

Often the relative change in y is written as Δy∕y, omitting the subscript.

A relative change is a decimal. The corresponding percentage change in y is 100 times the

relative change.

percentage change in y = 100
y1 − y0

y0

= %Δy (A.2)

If y0 = 3 and y1 = 3.02, then the percentage change in y is

%Δy = 100
y1 − y0

y0

= 100
3.02 − 3

3
= 0.67%

A.1.6 Logarithms and Percentages
A feature of logarithms that helps greatly in their economic interpretation is that they can be

approximated very simply. Let y1 be a positive value of y, and let y0 be a value of y that is “close”

to y1. A useful approximation rule is

100
[

ln
(
y1

)
− ln

(
y0

)]

≅ %Δy = percentage change in y (A.3)

That is, 100 times the difference in the logarithms is the approximate percentage difference

between y0 and y1, if y0 and y1 are close.

Derivation of the Approximation The result in (A.3) follows from the mathematical

tool called a Taylor series approximation, which is developed in Example A.3 in Section A.3.1.

Using this approximation, the value of ln(y1) can be written as

ln
(
y1

)
≅ ln

(
y0

)
+ 1

y0

(
y1 − y0

)
(A.4)

For example, let y1 = 1 + x and let y0 = 1. Then, as long as x is small,

ln(1 + x) ≅ x
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Subtracting ln
(
y0

)
from both sides of (A.4), we obtain

ln
(
y1

)
− ln

(
y0

)
= Δln(y) ≅ 1

y0

(
y1 − y0

)
= relative change in y

The symbol Δln(y) represents the “difference” between two logarithms. Using (A.2),

100Δln(y) = 100
[

ln
(
y1

)
− ln

(
y0

)]

≅ 100 ×
(
y1 − y0

)

y0

= %Δy

= percentage change in y

A.2 Linear Relationships
In economics, and in econometrics, we study linear and nonlinear relationships between

variables. In this section, we review basic characteristics of linear relationships. Let y and x
be variables. The standard form for a linear relationship is

y = mx + b (A.5)

In Figure A.1, the slope is m and the y-intercept is b. The symbol Δ represents “a change in,” so

Δx is read as a “change in x.” The slope of the line is

m =
y2 − y1

x2 − x1

=
Δy
Δx

For the straight-line relationship in Figure A.1, the slope m is the ratio of the change in vertical

distance (rise) to the change in horizontal distance (run) as a point moves along the line in either

direction. The slope of a straight line is constant; the rate at which y changes as x changes is

constant over the length of the straight line.

The slope m is very meaningful to economists as it is the marginal effect of a change in x
on y. To see this, solve the slope definition m = Δy∕Δx for Δy, obtaining

Δy = mΔx (A.6)

If x changes by one unit, Δx = 1, then the corresponding change in y is Δy = m. The marginal

effect, m, is always the same for a linear relationship like (A.5), because the slope is constant.

The intercept parameter indicates where the linear relationship crosses the vertical

axis—that is, it is the value of y when x is zero,

y = mx + b = m × 0 + b = b

b = y-intercept
Slope = m = Δy/Δx

 Δy

y

x

Δx
(x2, y1)

(x2, y2)

y = mx + b

(x1, y1)

FIGURE A.1 A linear relationship.
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A.2.1 Slopes and Derivatives
Derivatives have an important role in econometrics. In a relationship between two variables,

y = f (x), the first derivative measures the slope. The slope of the line y = f (x) = mx + b
is denoted as dy∕dx. The notation dy∕dx is a “stylized” version of Δy∕Δx, and for the linear

relationship (A.5) the first derivative is

dy∕dx = m (A.7)

In general, the first derivative measures the change in the function value y given an infinitesimal

change in x. For the linear function the first derivative is the constant m = Δy∕Δx. The “infinites-

imal” does not matter in this case, because the rate of change of y with respect to changes in x is

a constant.

A.2.2 Elasticity
A favorite tool of the economist is elasticity. It is the percentage change in one variable associated

with a 1% change in another variable for movements along a specific curve. That is, if we move

from one point on a curve to another point on the curve, what are the relative percentage changes?

For example, in Figure A.1, what is the percentage change in y relative to the percentage change

in x as we move from the point
(
x1, y1

)
to

(
x2, y2

)
? For a linear relationship, the elasticity of y

with respect to a change in x is

εyx =
%Δy
%Δx

=
100(Δy∕y)
100(Δx∕x)

=
Δy∕y
Δx∕x

=
Δy
Δx

× x
y
= slope × x

y
(A.8)

The elasticity is the product of the slope of the relationship and the ratio of an x value to a y value.

In a linear relationship, such as Figure A.1, while the slope is constant, m = Δy∕Δx, the elasticity

changes at every (x, y) point on the line.

Consider, for example, the linear function y = 1x + 1. At the point x = 2 and y = 3, which is

on the line, the elasticity is εyx = m(x∕y) = 1 × (2∕3) = 0.67. That is, at the point (x = 2, y = 3)

a 1% change in x is associated with a 0.67% change in y. Specifically, at x = 2 a 1% (1% = 0.01 in

decimal form) change isΔx = 0.01 × 2 = 0.02. If x increases to x = 2.02, the value of y increases

to 3.02. The relative change in y isΔy∕y = 0.02∕3 = 0.0067. This, however, is not the percentage

change in y, but rather the decimal equivalent. To obtain the percentage change in y, which we

denote %Δy, we multiply the relative change Δy∕y by 100. The percentage change in y is

%Δy = 100 × (Δy∕y) = 100 × 0.02∕3 = 100 × 0.0067 = 0.67%

A.3 Nonlinear Relationships
While linear relationships are intuitive and easy to work with, many real-world economic rela-

tionships are nonlinear, as illustrated in Figure A.2.

The slope of this curve is not constant. The slope measures the marginal effect of x on y, and

for a nonlinear relationship like that in Figure A.2, the slope is different at every point on the

curve. The changing slope tells us that the relationship is not linear. Since the slope is different at

every point, we can only talk about the effect of small changes in x on y. In (A.6) we replace Δ,

the symbol for “a change in,” with d, which we will take to mean an “infinitesimal change in.” In

the linear case when we made this replacement, the slope was given by dy∕dx = m, where m was

a constant. See equation (A.7).

However, with nonlinear functions such as that in Figure A.2, the slope (derivative) is not

constant, but changes as x changes, and must be determined at each point. Strictly speaking, the

slope of a curve is the slope of the tangent to the curve at a specific point. To work out the slope

at different points on a nonlinear curve, we need some rules for obtaining the derivative dy∕dx.
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y 

x

y = f(x)

Slope of the curve at
point A is the slope of
the tangent line 

A

FIGURE A.2 A nonlinear relationship.

A.3.1 Rules for Derivatives
Some rules for finding derivatives are the following:

Derivative Rule 1. The derivative of a constant c is zero, that is, if y = f (x) = c, then

dy
dx
= 0

Derivative Rule 2. If y = xn, then
dy
dx
= nxn−1

Derivative Rule 3. If y = cu and u = f (x), then

dy
dx
= cdu

dx

Constants can be factored out of functions before taking the derivative.

Derivative Rule 4. If y = cxn, using Rules 2 and 3,

dy
dx
= cnxn−1

Derivative Rule 5. If y = u + v, where u = f (x) and v = g(x) are functions of x, then

dy
dx
= du

dx
+ dv

dx

The derivative of the sum (or difference) of two functions is the sum (or difference) of the deriva-

tives. This rule extends to more than two terms in a sum.

Derivative Rule 6. If y = uv, where u = f (x) and v = g(x) are functions of x, then

dy
dx
= du

dx
v + udv

dx

This is called the product rule. The quotient rule, for y = u∕v, is obtained by inserting v−1 for v
in the product rule.

Derivative Rule 7. If y = ex, then
dy
dx
= ex
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If y = exp(ax + b), then
dy
dx
= exp(ax + b) × a

In general, the derivative of the exponential function is the exponential function times the deriva-

tive of the exponent.

Derivative Rule 8. If y = ln(x), then

dy
dx
= 1

x
, x > 0

If y = ln(ax + b), then
dy
dx
= 1

ax + b
× a

Derivative Rule 9. (The Chain Rule of Differentiation). Let y = 𝑓[u(x)], so that y depends on

u which in turn depends on x. Then
dy
dx
=

dy
du
× du

dx
For example, in Derivative Rule 8, y = ln(ax + b), or y = ln[u(x)] where u = ax + b. Then

dy
dx
=

dy
du
× du

dx
= 1

u
× a = 1

ax + b
× a

E X A M P L E A.1 Slope of a Linear Function

The derivative of y = f (x) = 4x + 1 is

dy
dx
= d(4x)

dx
+ d(1)

dx
= 4

Because this function is the equation of a straight line,

y = mx + b, its slope is constant and given by the coefficient

of x, which in this case is 4.

E X A M P L E A.2 Slope of a Quadratic Function

Consider the function y = x2 – 8x + 16, shown in Figure A.3.

This quadratic function is a parabola. Using the rules of

derivatives, the slope of a line tangent to the curve is

dy
dx
=

d
(
x2 − 8x + 16

)

dx
=

d
(
x2
)

dx
− 8

d
(
x1
)

dx
+ d(16)

dx

= 2x1 − 8x0 + 0 = 2x − 8

This result means that the slope of the tangent line to this

curve is dy∕dx = 2x – 8. The derivative and function values

are shown for several values of x in Table A.2.

Note a few things. First, the slope is different at each

value of x. The slope is negative for values of x < 4, the

slope is zero when x = 4, and the slope is positive for values

of x > 4. To interpret these slopes, recall that the derivative

of a function at a point is the slope of the tangent at that

point. The slope of the tangent is the rate of change of the

function—how much y = f (x) is changing as x changes. At

x = 0, the derivative is −8, indicating that y is falling as x
increases, and that the rate of change is 8 units in y per unit

change in x. At x = 2, the rate of change of the function has

diminished, and at x = 4, the rate of change of the function

is dy∕dx = 0. That is, at x = 4, the slope of the tangent to the

curve is zero. For values of x > 4, the derivative is positive,

which indicates that the function y = f (x) is increasing as x
increases.

T A B L E A.2
The Function y = x2 − 8x + 16 and
Derivative Values

x y = f (x) dy∕dx

0 16 −8

2 4 −4

4 0 0

6 4 4

8 16 8
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2 4 6 8

y = f (x)

y = f (x)

dy/dx = 4

FIGURE A.3 The function y = x2 – 8x + 16.

E X A M P L E A.3 Taylor Series Approximation

The approximation of the logarithm in (A.4) uses a very

powerful tool called a Taylor series approximation. For the

function 𝑓(y) = ln(y) it is illustrated in Figure A.4. Assume

that we know the point A on the function: for y = y0, we

know the function value 𝑓

(
y0

)
= ln

(
y0

)
. The approximation

idea is to draw a line tangent to the curve 𝑓(y) = ln(y) at A,

then approximate the point on the curve 𝑓

(
y1

)
= ln

(
y1

)
by

the point B on the tangent line. For a smooth curve like

ln(y), this strategy works well, and the approximation error

Approximation error

B = linear approximation of ln(y1)

f(y0) = ln(y0)

Slope of tangent line
= dln(y)/dy = 1/y

A

y0 y1

C

f(y) = ln(y)

f(y1) = ln(y1)

FIGURE A.4 Taylor series approximation of ln(y).

will be small if y1 is close to y0. The slope of the tangent line at

point A,
(
y0, 𝑓

(
y0

)
= ln

(
y0

))
, is the derivative of the function

𝑓(y) = ln(y) evaluated at y0. Using Derivative Rule 8, we have

dln(y)
dy

|
|
|
|y=y0

= 1

y
|
|
|
|y=y0

= 1

y0

The value of the linear approximation at B is given by geom-

etry. Recall that the slope of the tangent (straight) line is “the
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rise over the run.” The “run” is A to C, or
(
y1 – y0

)
, and the

corresponding “rise” is C to B. Then

tangent slope =
dln(y)

dy
|
|
|
|y=y0

= 1

y0

= rise

run

= CB

AC
=

B − ln
(
y0

)

y1 − y0

Solving this equation for B = approximate value of f
(
y1

)
, we

obtain the expression in (A.4),

B = ln
(
y0

)
+

dln(y)
dy

|
|
|
|y=y0

(
y1 − y0

)
= ln

(
y0

)
+ 1

y0

(
y1 − y0

)

The Taylor series approximation is used in many contexts.

Derivative Rule 10. (Taylor series approximation). If f (x) is a smooth function, then

𝑓(x) ≅ 𝑓(a) +
d𝑓(x)

dx
|
|
|
|x=a

(x − a) = 𝑓(a) + 𝑓
′(a)(x − a)

where f ′(a) is a common notation for the first derivative of the function f (x) evaluated at x = a.

The approximation is good for x close to a. See Exercise A.16 for a second-order Taylor series
approximation.

A.3.2 Elasticity of a Nonlinear Relationship
Given the slope of a curve, the elasticity of y with respect to changes in x is given by a slightly

modified (A.8),

εyx =
dy∕y
dy∕x

=
dy
dx
× x

y
= slope × x

y

For example, the quadratic function y = ax2 + bx + c is a parabola. The slope (derivative) is

dy∕dy = 2ax + b. The elasticity is

εyx = slope × x
y
= (2ax + b) x

y

As a numerical example, consider the curve defined by y = 𝑓(x) = x2 − 8x + 16. The graph of

this quadratic function is shown in Figure A.3. The slope of the curve is dy∕dx = 2x – 8. When

x = 6, the slope of the tangent line is dy∕dx = 4. When x = 6, the corresponding value of y = 4.

So the elasticity at that point is

εxy = (dy∕dx) × (x∕y) = (2x − 8)(x∕y) = 4(6∕4) = 6

A 1% increase in x is associated with a 6% change in y.

A.3.3 Second Derivatives
Since the derivative dy∕dx of f (x) is a function of x itself, we can define the derivative of the first

derivative of f (x), or second derivative of f (x), as

d2y
dx2

=
d(dy∕dx)

dx
The second derivative of a function is interpreted as the rate of change of the first derivative and

indicates whether the function is increasing or decreasing at an increasing, constant or decreas-

ing rate.
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E X A M P L E A.4 Second Derivative of a Linear Function

Find the second derivative of y = 4x + 1. Using the rules of

differentiation
dy
dx
= d(4x + 1)

dx
= 4

and
d2y
dx2

=
d(dy∕dx)

dx
= d(4)

dx
= 0.

The function y = 𝑓(x) = 4x + 1 is a straight line and has a

constant first derivative, or slope, 4. The rate of change of the

first derivative is zero, and the function increases at a con-

stant rate.

E X A M P L E A.5 Second Derivative of a Quadratic Function

Find the second derivative of the function y = x2 − 8x + 16

shown in Figure A.3.

dy
dx
=

d
(
x2 − 8x + 16

)

dx
= 2x − 8

d2y
dx2

= d(2x − 8)
dx

= 2

The second derivative of y = 𝑓(x) is positive and the

constant 2, which indicates that the first derivative is increas-

ing for −∞ < x < ∞. For x < 4 the function is decreasing

at a decreasing rate since the negative slope becomes less

steep; for x > 4 the function increases at an increasing

rate. At x = 4 the function is at its minimum and the slope

is zero.

A.3.4 Maxima and Minima
Using first and second derivatives, we can define relative, or local, maxima and minima of func-

tions, as shown in Figure A.5.

The function y = 𝑓(x) has a relative or local maximum at x = a if f (a) is greater than any

other value of f (x) in an interval around x = a; the function y = 𝑓(x) has a relative or local

minimum at x = a if f (a) is less than any other value of f (x) in an interval around x = a. The

conditions for a local maximum or minimum of a function y = 𝑓(x) at x = a are as follows:

f(x)

f(x)

x

Local
minimum

Slope zero at local minimum
and increasing

Slope zero at local maximum
and decreasing

Local
maximum

FIGURE A.5 Local maxima and minima.
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y = f (x, z)

z

C

A

D

Δy

Δx

z0

x0
x

y

B

Slope of CD =
x = x0, z = z0

∂f (x, z)

∂x

FIGURE A.6 Three-dimensional diagram of a partial derivative.

If y = 𝑓(x) and dy∕dx are nice (continuous) functions at x = a, and if dy∕dx = 0 at x = a then

1. If d2y∕dx2
< 0 at x = a then f (a) is a local maximum.

2. If d2y∕dx2
> 0 at x = a then f (a) is a local minimum.

E X A M P L E A.6 Finding the Minimum of a Quadratic Function

In Examples A.3 and A.5, we considered the function

y = x2 − 8x + 16. To locate possible local minima or

maxima, obtain the first derivative, set it to zero, and

solve for values of x where dy∕dx = 0. For this function,

dy∕dx = 2x − 8 = 0 implies that at x = 4 we may have a

local maximum or a local minimum. Since d2y∕dx2 = 2 > 0,

the function is increasing at an increasing rate at x = 4 (and

everywhere else), and thus 𝑓(4) = 0 is a local minimum of

y = x2 − 8x + 16.

Two notes regarding Example A.6: first, y = 𝑓(x) achieves its global or absolute minimum at

x = 4 as well as its local minimum. Second, if dy∕dx = 0 at a point x = a where d2y∕dx2 = 0

then the “test” for a local maxima or minima using first and second derivatives does not apply.

A.3.5 Partial Derivatives
When a functional relationship includes several variables, such as y = 𝑓(x, z), the slope depends

on the values of x and z, and there are slopes in two directions rather than one. In Figure A.6, we

illustrate the partial derivative of the function with respect to x, holding z constant at the value

z = z0.

At the point
(
x0, z0

)
, the value of the function is y0 = 𝑓

(
x0, z0

)
. The slope of the tangent line

CD is the partial derivative.

Slope of CD = ∂𝑓(x, z)
∂x

|
|
|
|x=x0,z=z0

The vertical bar indicates that the partial derivative function is evaluated at the point
(
x0, z0

)
.

To find the partial derivative, we use the already established rules. Consider the function

y = 𝑓(x, z) = ax2 + bx + cz + d
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To find the partial derivative of y with respect to x, treat z as a constant. Then

∂y
∂x
=

d
(
ax2

)

dx
+ d(bx)

dx
+ d(cz)

dx
+ d(d)

dx
= 2ax + b

Using Derivative Rule 1, the third and fourth terms in the derivative are zero, because cz and d
are treated as constants.

A.3.6 Maxima and Minima of Bivariate Functions
Let y = 𝑓(x, z) be a continuous function of two variables, or a bivariate function, with continuous

first derivatives. In order for the point (x = a, z = b) to be a local maximum or minimum three

conditions must be met.

1. The two partial derivatives be zero when evaluated at that point:

∂y
∂x

|
|
|
|x=a, z=b

= 0,
∂y
∂z

|
|
|
|x=a, z=b

= 0

These slope conditions are depicted in Figure A.7.

2. For a local maximum, shown in Figure A.7(a), the second partial derivatives must both be

negative at the point (x = a, z = b)

∂2y
∂x2

|
|
|
|
|x=a, z=b

< 0,
∂2y
∂z2

|
|
|
|
|x=a, z=b

< 0

These two conditions ensure that the function is concave and moving downward in the direc-

tions of the x and z axes.

For a local minimum, shown in Figure A.7(b), the second partial derivatives must both

be positive at the point (x = a, z = b) so that the function is convex and the function is

moving upward in both the x and z directions

∂2y
∂x2

|
|
|
|
|x=a, z=b

> 0,
∂2y
∂z2

|
|
|
|
|x=a, z=b

> 0

3. For a local maximum or minimum, the product of the second-order direct partials evaluated

at (x = a, z = b) must be larger than the square of the second-order cross-partial derivative

at (x = a, z = b), that is,

(
∂2y
∂x2

|
|
|
|
|x=a, z=b

)(
∂2y
∂z2

|
|
|
|
|x=a, z=b

)

>

(
∂2y
∂x∂z

|
|
|
|
|x=a, z=b

)2

y

(a) (b)

z

dy/dz = 0

dy/dz = 0

dy/dx = 0

dy/dx = 0

(x = a, z = b)

(x = a, z = b)
x

y

zx

FIGURE A.7 (a) Local maximum and (b) local minimum.
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For a local maximum, this condition ensures that the function is moving downward in all

directions from (x = a, z = b), not just along the x and z axes. For a local minimum, this

condition ensures that the function is moving upward in all directions from (x = a, z = b),

not just along the x and z axes.

E X A M P L E A.7 Maximizing a Profit Function

A firm produces two goods, x and y. The firm’s profit func-

tion is π = 64x − 2x2 + 4xy − 4y2 + 32y − 14. Find the profit

maximizing level of output of x and y. The first partial deriva-

tives are

∂π∕∂x = 64 − 4x + 4y, ∂π∕∂y = 4x − 8y + 32

The first condition for a maximum or minimum is to set these

first derivatives to zero and solve for possible profit maximiz-

ing values (x∗, y∗)

64 − 4x + 4y = 0

4x − 8y + 32 = 0

}

⇒ x∗ = 40, y∗ = 24

These two values may maximize profit, minimize profit,

or neither. We must check the second and third conditions

above. The second direct and cross-partial derivatives are

∂2π
∂x2

=
∂(64 − 4x + 4y)

∂x
= −4

∂2π
∂y2

=
∂(4x − 8y + 32)

∂y
= −8

∂2π
∂x∂y

=
∂(64 − 4x + 4y)

∂y
= 4

Both of the second direct partial derivatives are negative, sat-

isfying the second condition for a local maximum. The third

condition is that
(
∂2π
∂x2

)(
∂2π
∂y2

)

>

(
∂2π
∂x∂y

)2

This condition is satisfied too, since (−4)(−8) = 32 > (4)2 =
16. Thus, profit is maximized at x∗ = 40, y∗ = 24, and the

maximum profit is π∗ = 1650.

E X A M P L E A.8 Minimizing a Sum of Squared Differences

The least squares problem is to find values α and β that min-

imize the objective function S(α, β) =
∑n

i=1

(
yi − α − βxi

)2

where
(
yi, xi

)
, i = 1,… , n are data values. Given three

pairs of data values
(
y1, x1

)
= (1, 1),

(
y2, x2

)
= (5, 2), and

(
y3, x3

)
= (2, 3), find the minimizing values of α and β.

To find the minimizing values we first expand

S(α, β) =
n∑

i=1

(
yi − α − βxi

)2

=
n∑

i=1

(
y2

i + α
2 + β2x2

i − 2αyi − 2βxiyi + 2αβxi
)

=
n∑

i=1

y2
i + nα2 + β2

n∑

i=1

x2
i − 2α

n∑

i=1

yi − 2β
n∑

i=1

xiyi

+2αβ
n∑

i=1

xi

For the n = 3 given data pairs

3∑

i=1

y2
i = 30,

3∑

i=1

x2
i = 14,

3∑

i=1

yi = 8,

3∑

i=1

xiyi = 17,
3∑

i=1

xi = 6

The objective function is then

S(α, β) = 30 + 3α2 + β2(14) − 2α(8) − 2β(17) + 2αβ(6)
= 30 + 3α2 + 14β2 − 16α − 34β + 12αβ

The first direct partial derivatives are

∂S(α, β)
∂α

= 6α − 16 + 12β,
∂S(α, β)
∂β

= 28β − 34 + 12α

Setting these two equations to zero and solving yields

α∗ = 5∕3 and β∗ = 1∕2. The second-order partial derivatives

are

∂2S(α, β)
∂α2

=
∂(6α − 16 + 12β)

∂α
= 6

∂2S(α, β)
∂β2

=
∂(28β − 34 + 12α)

∂β
= 28

∂2S(α, β)
∂α∂β

=
∂(6α − 16 + 12β)

∂β
= 12

Both second direct partial derivatives are positive, and the

third condition is satisfied because
(
∂2S(α, β)
∂α2

)(
∂2S(α, β)
∂β2

)

= 6(28)

= 168 >

(
∂2S(α, β)
∂α∂β

)2

= 144

Thus, the values α∗ = 5∕3, β∗ = 1∕2 minimize the least

squares objective function, which takes the value S
(
α∗, β∗

)
≅

8.167.
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A.4 Integrals
An integral is an “antiderivative.” If f (x) is a function, we can ask the question, “Of what function

F(x) is this the derivative?” The answer is given by the indefinite integral

∫
𝑓(x) dx = F(x) + C

The function f (x) + C, where C is a constant called the constant of integration, is an antideriva-

tive of f (x) because
d[F(x) + C]

dx
= d[F(x)]

dx
+ d[C]

dx
= 𝑓 (x)

Finding F(x) is an application of reversing the rules for derivatives. For example, using the rules

of derivatives,
d
(
xn + C

)

dx
= nxn−1

Thus, ∫nxn−1dx = xn + C = F(x) + C, so in this case F(x) = xn. Many indefinite integrals have

been worked out and are tabled in your favorite calculus book and at many websites.

Some handy facts about integrals are as follows:

Integral Rule 1.

∫

[
𝑓(x) + g(x)

]
dx =

∫
𝑓(x)dx +

∫
g(x)dx

An integral of a sum is the sum of the integrals.

Integral Rule 2.

∫
c𝑓(x)dx = c

∫
𝑓(x)dx

Constants can be factored out of integrals.

These rules can be combined so that

Integral Rule 3.

∫

[
c1𝑓(x) + c2g(x)

]
dx = c1∫

𝑓(x) dx + c2∫
g(x)dx

Integral Rule 4 (power rule).

∫
xndx = 1

n + 1
xn+1 + C, where n ≠ −1

Integral Rule 5 (power rule n = −1).

∫
x−1dx = ln(x) + C for x > 0

Integral Rule 6 (constant function).

∫
k dx = kx + C

Integral Rule 7 (exponential function).

∫
ekxdx = 1

k
ekx + C

A.4.1 Computing the Area Under a Curve
An important use of integrals in econometrics and statistics is to calculate areas under curves. For

example, in Figure A.8, what is the shaded area under the curve f (x)?
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a b
x

f (x)

f (x)

FIGURE A.8 Area under a curve.

The area between a curve f (x) and the x-axis, between the limits a and b, is given by the definite
integral

∫

b

a
𝑓(x)dx

The value of this integral is provided by the fundamental theorem of calculus, which says that

∫

b

a
𝑓(x)dx = F(b) − F(a)

E X A M P L E A.9 Area Under a Curve

Consider the function

𝑓(x) =
{

2x 0 ≤ x ≤ 1

0 otherwise
(A.12)

This is the equation of a straight line through the origin, as

shown in Figure A.9.

What is the shaded area in Figure A.9, the area under

the line between a and b? The answer can be found using

the geometry of triangles. The area of a triangle is half the

base times the height,
1

2
× base × height. Triangles can be

identified by their corners. Let Δ0bc represent the area of the

triangle formed by the points 0 (the origin), b, and c. Similarly

Δ0ad represents the area of the smaller triangle formed by

the points 0, a, and d. The shaded area that represents the area

under f (x) = 2x between a and b is the difference between the

areas of these two triangles.

Area = Δ0bc − Δ0ad

=
(

1

2
b
)

(2b) − 1

2
a(2a)

= b2 − a2 (A.13)

Equation (A.13) gives us an easy formula for calculating the

area under f (x) = 2x falling between a and b.

2

2b

2a

0 1a
x

b

c

d

f(x)

f(x) = 2x

FIGURE A.9 Area under the curve f (x) = 2x, 0 ≤ x ≤ 1.
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Using integration, the area under the curve f (x) = 2x and

above the x-axis between the limits x = a and x = b is

obtained by finding the definite integral of f (x) = 2x.

To use the fundamental theorem of calculus, we need the

indefinite integral. Using the power rule, Integral Rule 4,

we obtain

∫
2xdx = 2

∫
xdx = 2

[
1

2
x2 + C

]

= x2 + 2C

= x2 + C1 = F(x) + C1

where F(x) = x2 and the constant of integration is C1. The

area we seek is given by

∫

b

a
2xdx = F(b) − F(a) = b2 − a2 (A.14)

This is the same answer we obtained in (A.13) using

geometry.

Many times the algebra is abbreviated, because the con-

stant of integration does not affect the definite integral. You

will see for definite integrals

∫

b

a
2xdx = x2||

|

b

a
= b2 − a2

The vertical bar notation means: evaluate the expression first

at b and subtract from it the value of the expression at a.

A.5 Exercises

A.1 Each of the following formulas, (1), (2), and (3), represents a supply or demand relation.

(1) Q = −3 + 2P where P = 10

(2) Q = 100 – 20P where P = 4

(3) Q = 50P−2 where P = 2

a. Calculate the slope of each function at the given point.

b. Interpret the slope found in (a). Do the slopes change for different values of P and Q? Is it a supply

curve (positive relationship) or a demand curve (inverse relationship)?

c. Calculate the elasticity of each function at the given point.

d. Interpret the elasticity found in (c). Do the elasticities change for different values of P and Q?

A.2 The infant mortality rate (MORTALITY) for a country is related to the annual per capita

income (INCOME, U.S. $1000) in that country. Three relationships that may describe this

relationship are

(1) ln(MORTALITY) = 7.5 − 0.5ln(INCOME)

(2) MORTALITY = 1400 − 100INCOME + 1.67INCOME2

(3) MORTALITY = 1500 − 50INCOME
a. Sketch each of these relationships between MORTALITY and INCOME between INCOME = 0

and INCOME = 30.

b. For each of these relationships, calculate the elasticity of infant mortality with respect to income

if (i) INCOME = 1, (ii) INCOME = 3, and (iii) INCOME = 25.

A.3 Suppose the rate of inflation INF, the annual percentage increase in the general price level, is related

to the annual unemployment rate UNEMP by the equation INF = −3 + 7 × (1∕UNEMP).
a. Sketch the curve for values of UNEMP between 1 and 10.

b. Where is the impact of a change in the unemployment rate the largest?

c. If the unemployment rate is 5%, what is the marginal effect of an increase in the unemployment

rate on the inflation rate?

A.4 Simplify the following expressions:

a. x2/3x2/7

b. x2∕3 ÷ x2∕7

c.
(
x6y4

)−1∕2
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A.5 Below are the 2015 GDP ($US) figures provided by the World Bank for a few countries.

a. Express each in scientific notation.

i. Maldives GDP $3,142,812,004

ii. Nicaragua GDP $12,692,562,187

iii. Ecuador GDP $100,871,770,000

iv. New Zealand GDP $173,754,075,210

v. India GDP $2,073,542,978,208

vi. United States GDP $17,946,996,000,000

b. Using scientific notation divide the U.S. GDP by the GDP in (i) Maldives (ii) Ecuador.

c. The population of New Zealand in 2015 was 4.595 million. Use calculations with scientific nota-

tion to compute the per capita income in New Zealand. Express the result in scientific notation.

d. The 2015 population of St. Lucia was 184,999 and its GDP was $1,436,390,325. Use calcula-

tions with scientific notation to compute the per capita income in St. Lucia. Express the result in

scientific notation.

e. Using scientific notation, express the sum of the U.S. and New Zealand GDP values. [Hint: Write

each number as a10x where x is a convenient number for both and a is a numerical value, then

simplify.]

A.6 Technology affects agricultural production by increasing yield over time. Let WHEATt = average

wheat production (tonnes per hectare) for the period 1950–2000 (t = 1,…, 51) in Western Australia’s

Mullewa Shire.

a. Suppose production is defined by WHEATt = 0.58 + 0.14 ln(t). Plot this curve. Find the slope and

elasticity at the point t = 49 (1998).

b. Suppose production is defined by WHEATt = 0.78 + 0.0003 t2. Plot this curve. Find the slope and

elasticity at the point t = 49 (1998).

A.7 Consider the function WAGE = 𝑓(AGE) = 10 + 200AGE − 2AGE2.

a. Sketch the curve for values of AGE between AGE = 20 and AGE = 70.

b. Find the derivative dWAGE∕dAGE and evaluate it at AGE = 30, AGE = 50, and AGE = 60. On

the curve in part (a), sketch the tangent to the curve at AGE = 30.

c. Find the AGE at which WAGE is maximized.

d. Compute WAGE1 = 𝑓(29.99) and WAGE2 = 𝑓(30.01). Locate these values (approximately) on

your sketch from part (a).

e. Evaluate m =[𝑓(30.01) − 𝑓(29.99)]∕0.02. Compare this value to the value of the derivative com-

puted in (b). Explain, geometrically, why the values should be close. The value m is a “numerical

derivative,” which is useful for approximating derivatives.

A.8 Sketch each of the demand curves below. (i) Indicate the area under the curve between prices P = 1

and P = 2 on the sketch. (ii) Using integration, calculate the area under the curve between prices

P = 1 and P = 2.

a. Q = 15 − 5P
b. Q = 10P−1∕2

c. Q = 10∕P
A.9 Consider the function 𝑓(y) = 1∕100 over the interval 0 < y < 100 and 𝑓(y) = 0 otherwise.

a. Calculate the area under the curve f (y) for the interval 30 < y < 50 using a geometric argument.

b. Calculate the area under the curve f (y) for the interval 30 < y < 50 as an integral.

c. What is a general expression for the area under f (y) over the interval [a, b], where 0 < a < b < 100?

d. Calculate the integral from y = 0 to y = 100 of the function y𝑓(y) = y∕100.

A.10 Consider the function 𝑓(y) = 2e−2y for 0 < y < ∞.

a. Draw a sketch of the function.

b. Compute the integral of f(y) from y = 1 to y = 2 and illustrate the value on the part (a) sketch.

A.11 Let y0 = 1. For each of the values y1 = 1.01, 1.05, 1.10, 1.15, 1.20, and 1.25 compute

a. The actual percentage change in y using equation (A.2).

b. The approximate percentage change in y using equation (A.3).

c. Comment on how well the approximation in equation (A.3) works as the value of y1 increases.
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A.12 A firm uses labor (L) and capital (K) to produce output (Q). Suppose the production function is

Q = 6L1∕2K1∕3. The firm sells its product at price P = 4 and pays its labor a wage W = 12 with the

price of capital being R = 5.

a. Find the combination of labor and capital that maximizes profits π = P × Q − (W × L) − (R × K)
where Q is given by the production function. Check all conditions for a relative maximum.

b. Find the marginal product of labor, ∂Q∕∂L, and the marginal product of capital, ∂Q∕∂K, at the

profit maximizing amounts of labor and capital.

A.13 Use Derivative Rule 10 (Taylor Series approximation) to approximate each of the functions below at

x = 1.5 and x = 2. Let a = 1. Calculate the percentage approximation error in each case.

a. 𝑓(x) = 3x2 − 5x + 1

b. 𝑓(x) = ln(2x)
c. 𝑓(x) = e2x

A.14 Suppose that a person’s earnings (INCOME) are determined by their education (EDUC) and experi-

ence (EXPER) according to the relation

INCOME = −2EDUC2 + 78EDUC − 2EXPER2 + 66EXPER − 2EDUC × EXPER

Find the values of education and experience that maximize the person’s income.

A.15 A variable y changes value from y0 = 4 to y1 = 4.6.

a. Compute the relative change in y.

b. Compute the percentage change in y.

c. If the value of y is 4, what is the value of y if it increases by 18%?

A.16 Derivative Rule 10 is a “first-order” Taylor series approximation. A “second-order” Taylor series
approximation is

𝑓(x) ≅ 𝑓 (a) +
d𝑓(x)

dx
|
|
|
|x=a

(x − a) + 1

2

d2
𝑓(x)

dx2

|
|
|
|x=a
(x − a)2

= 𝑓(a) + 𝑓
′(a)(x − a) + 1

2
𝑓
′′(a)(x − a)2

where f ′′(a) represents the second derivative of the function evaluated at the point x = a.

a. Use both the first- and second-order Taylor series approximations to approximate the function

𝑓(x) = e2x at x = 1.5 and x = 2. Let a = 1. Calculate the percentage approximation error in

each case.

b. Draw a sketch of the function 𝑓(x) = e2x for 0 < x < 3. On the sketch show the tangent line to

the function at a = 1. On the same graph extrapolate the tangent line to show the location of the

first-order approximation when x = 2. Show the value of the second-order approximation when

x = 2.

c. Calculate the percentage approximation error for the first- and second-order Taylor series approx-

imations in part (b). Which is better in this case?

A.17 In 2015, the GDP (in nominal U.S. dollars) of Belarus was GDPB = $54, 608, 962, 634.99 and that of

Poland was GDPP = $474, 783, 393, 022.95.

a. Write GDPB in scientific notation.

b. Use scientific notation to divide GDPP by GDPB. Show your work.

c. Write the natural log of GDPP.

d. Find exp
[
ln
(
GDPA

)
− ln

(
GDPB

)]
. Write the solution in scientific notation. Show your work.

A.18 Carry out the following:

a. Suppose your wage rate increases from $17/hr to $18/hr. What is the percentage increase in your

wage?

b. Calculate 100[ln(18) – ln(17)].

c. Suppose your wage rate increases from $17/hr to $28/hr. What is the percentage increase in your

wage?

d. Calculate 100[ln(28) – ln(17)].

e. Calculate ln(1.02).

f. Calculate ln(1.57).
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A.19 Suppose your wage rate is determined by

WAGE = −19.68 + 2.52EDUC + 0.55EXPER − 0.007EXPER2

where EDUC is years of schooling and EXPER is years of work experience. Using calculus, what

value of EXPER maximizes WAGE for a person with 16 years of education? Show your work.

A.20 Suppose wages are determined by the following equation. EDUC = years of education, EXPER =
years of work experience, and FEMALE = 1 if person is female, 0 otherwise.

WAGE = −23.06 + 2.85EDUC + 0.80EXPER − 0.008EXPER2 − 9.21FEMALE
+ 0.34(FEMALE × EDUC) − 0.015(EDUC × EXPER)

Find ∂WAGE/∂EDUC for a female with 16 years of schooling and 10 years of experience. Show

your work.
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Appendix B

Probability Concepts

L E A R N I N G O B J E C T I V E S

Based on the material in this appendix, you should be able to

1. Explain the difference between a random

variable and its values, and give an

example.

2. Explain the difference between discrete and

continuous random variables, and give

examples of each.

3. State the characteristics of probability density

functions (pdf ) for discrete and continuous

random variables, and give examples illustrating

these characteristics.

4. Compute probabilities of events, given the

probability density function for a discrete or

continuous random variable.

5. Show, geometrically and algebraically, using

integration, how to compute probabilities given

a pdf for a continuous random variable.

6. Use the definitions of expected values for

discrete and continuous random variables to

compute expectations, given a pdf f(x) and a

function g(x).

7. Define the variance of a random variable, and

explain in what sense the values of a random

variable are more spread out if the variance is

larger.

8. Use a joint pdf for two continuous random

variables to compute probabilities of joint

events, and to find the (marginal) pdf of each

individual random variable.

9. Find the conditional pdf for one random variable

given the value of another and their joint pdf, and

use it to compute conditional probabilities, the

conditional mean, and the conditional variance.

10. Define the covariance and correlation between

two random variables, and compute these

values given a joint probability function.

11. Explain and apply the law of iterated

expectations. Explain the variance and

covariance decompositions.

12. Find the distribution of a random variable

Y = g(X), when g(X) is a strictly increasing or

decreasing function, given the probability

density function f(x) for the random variable X.

13. Obtain a random number from a probability

density function f(x) when its cumulative

distribution function F(x) is invertible.

14. Explain in what sense random numbers

generated by a computer are random, and

in what sense they are not.

K E Y W O R D S

binary variable

binomial random variable

cdf
change of variable technique

chi-square distribution

conditional pdf
conditional probability

continuous random variables

correlation

covariance

covariance decomposition

cumulative distribution function

degrees of freedom

discrete random variable

expected value

experiment

F-distribution

inversion method

iterated expectation

Jacobian

joint probability density function

marginal distributions

mean

median

768
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modulus

normal distribution

pdf
Poisson distribution

probability

probability density function

pseudo-random numbers

random number

random number seed

random variable

standard deviation

standard normal distribution

statistically independent

strictly monotonic

t-distribution

uniform distribution

variance

variance decomposition

We assume that you have had a basic probability and statistics course and that you have read the

Probability Primer that precedes Chapter 2. If you have not read the Probability Primer, then do

so now.

In this appendix we summarize rules of expected values and variances for discrete random
variables for easy reference. We then develop similar rules for continuous random variables that

will require the use of integral concepts introduced in Appendix A.4. We review the properties

of some important discrete and continuous random variables, including the t-, chi-square, and

F-distributions. Finally, we introduce concepts related to computer-generated random numbers.

B.1 Discrete Random Variables
In this section we provide a summary of operations with discrete random variables. See the Prob-

ability Primer for examples and general background discussion.

A random variable is a variable whose value is unknown until it is observed; in other words,

it is a variable that is not perfectly predictable. A discrete random variable can take only a

limited, or countable, number of values. An example of a discrete random variable is the number

of late credit card bill payments last year by a randomly selected individual. A special case occurs

when a random variable can only be one of two possible values. A payment is either late or it is

not. Outcomes like this can be characterized by a binary variable taking the value one for late

payments and zero for those that are on time. Such variables are also called indicator variables,

or dummy variables.

We summarize the probabilities of possible outcomes using a probability density function
( pdf ). The pdf for a discrete random variable indicates the probability of each possible value

occurring. For a discrete random variable X the value of the probability density function f (x) is

the probability that the random variable X takes the value x, f (x) = P(X = x). Because f (x) is a

probability, it must be true that 0 ≤ f (x) ≤ 1 and, if X takes n possible values x1, …, xn, then the

sum of their probabilities must be one

P
(
X = x1

)
+ P

(
X = x2

)
+ · · · + P

(
X = xn

)
= 𝑓

(
x1

)
+ 𝑓

(
x2

)
+ · · · + 𝑓

(
xn
)
= 1

The cumulative distribution function (cdf ) is an alternative way to represent probabilities. The

cdf of the random variable X, denoted by F(x), gives the probability that X is less than or equal

to a specific value x. That is,

F(x) = P(X ≤ x) (B.1)

Two key features of a probability distribution are its center (location) and width (dispersion).

A measure of the center is the mean, or expected value; measures of dispersion are variance,

and its square root—the standard deviation.

B.1.1 Expected Value of a Discrete Random Variable
The mean of a random variable is given by its mathematical expectation. If X is a discrete

random variable taking the values x1,…, xn then the mathematical expectation, or expected value,
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of X is

μX = E(X) = x1P
(
X = x1

)
+ x2P

(
X = x2

)
+ · · · + xnP

(
X = xn

)
(B.2a)

The expected value, or mean, of X is a weighted average of its values, the weights being the

probabilities that the values occur. The mean is often symbolized by μ or μX. It is the average value

of the random variable in all possible experimental outcomes from the underlying experiment.
Because the probability that the discrete random variable X takes the value x is given by its pdf
f (x), P(X = x) = f (x), the expected value in (B.2a) can be written equivalently as

μX = E(X) = x1𝑓

(
x1

)
+ x2𝑓

(
x2

)
+ · · · + xn𝑓

(
xn
)

=
n∑

i=1

xi𝑓
(
xi
)
=
∑

x
x𝑓(x) (B.2b)

Functions of random variables are also random. Expected values are obtained using calculations

similar to those in (B.2). If X is a discrete random variable and g(X) is a function of it, then

E
[
g(X)

]
=
∑

x
g(x)𝑓(x) (B.3)

Using (B.3) we can develop some frequently used rules. If a is a constant, then

E(aX) = aE(X) (B.4)

Similarly, if a and b are constants, then we can show that

E(aX + b) = aE(X) + b (B.5)

To see how this result is obtained, we apply the definition in (B.3) to the function g(X) = aX + b

E
[
g(X)

]
=
∑

g(x)𝑓(x) =
∑
(ax + b)𝑓(x) =

∑[
ax𝑓(x) + b𝑓(x)

]

=
∑[

ax𝑓(x)
]
+
∑[

b𝑓(x)
]
= a

∑
x𝑓(x) + b

∑
𝑓(x)

= aE(X) + b

In the final step we recognize E(X) from its definition in (B.2), and use the fact that
∑
𝑓(x) = 1.

If g1(X), g2(X), …, gM(X) are functions of X, then

E
[
g1(X) + g2(X) + · · · + gM(X)

]
= E

[
g1(X)

]
+ E

[
g2(X)

]
+ · · · + E

[
gM(X)

]
(B.6)

This rule extends to any number of functions. The expected value of a sum is always the sum
of the expected values.

A similar rule does not work, in general, for nonlinear functions. That is, E
[
g(X)

]
≠ g

[
E(X)

]
.

For example, E
(
X2
)
≠
[
E(X)

]2
.

B.1.2 Variance of a Discrete Random Variable
The variance of a discrete random variable X is the expected value of

g(X) =
[
X − E(X)

]2

The variance of a random variable is important in characterizing the scale of measurement and the

spread of the probability distribution. We give it the symbol σ2, which is read “sigma squared,”

or σ2
X . Algebraically, letting E(X) = μX,

var(X) = σ2
X = E

[(
X − μX

)2
]

= E
(
X2
)
− μ2

X (B.7)
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The variance of a random variable is the average squared difference between the random variable

X and its mean value μ. The larger the variance of a random variable, the more “spread out” its

values are. The square root of the variance is called the standard deviation; it is denoted by σ
or σX. It measures the spread or dispersion of a distribution and has the advantage of being in the

same units of measure as the random variable.

A useful property of variances is the following. Let a and b be constants; then

var(aX + b) = a2var(X) (B.8)

This result is proven in the Probability Primer, Section P.5.4.

Two other characteristics of a probability distribution are its skewness and kurtosis. These

are defined as

skewness =
E
[(

X − μX
)3
]

σ3
X

(B.9)

and

kurtosis =
E
[(

X − μX
)4
]

σ4
X

(B.10)

Skewness measures the lack of symmetry of a distribution. If the distribution is symmetric, then

its skewness = 0. Distributions with long tails to the left are negatively skewed, and skewness
< 0. Distributions with long tails to the right are positively skewed, and skewness > 0. Kurtosis

measures the “peakedness” of a distribution. A distribution with large kurtosis has more values

concentrated near the mean and a relatively high central peak. A distribution that is relatively flat

has a lower kurtosis. The benchmark value for kurtosis is 3, which is the kurtosis of the normal
distribution that we discuss later in this appendix (Section B.3.5).

B.1.3 Joint, Marginal, and Conditional Distributions
If X and Y are discrete random variables, then the joint probability that X = a and Y = b is given

by the joint pdf of X and Y , written as f (x, y), and P[X = a,Y = b] = f (a, b). The sum of the joint

probabilities is one,
∑

x
∑

y𝑓(x, y) = 1. Given a joint probability density function, we can obtain

the probability distributions of individual random variables, which are also known as marginal
distributions. If X and Y are two discrete random variables, then

𝑓X(x) =
∑

y
𝑓(x, y) for each value X can take (B.11)

For discrete random variables, the probability that the random variable Y takes the value y given
that X = x is written P(Y = y|X = x). This conditional probability is given by the conditional pdf
f (y|x):

𝑓(y|x) = P(Y = y|X = x) =
P(Y = y,X = x)

P(X = x)
=

𝑓(x, y)
𝑓X(x)

(B.12)

Two random variables are statistically independent if the conditional probability that Y = y given

that X = x, is the same as the unconditional probability that Y = y for all x and y values. In this

case, knowing the value of X does not alter the probability distribution of Y . If X and Y are

independent random variables, then

P(Y = y|X = x) = P(Y = y) (B.13)

Equivalently, if X and Y are independent, then the conditional pdf of Y given X = x is the same

as the unconditional, or marginal, pdf of Y alone,

𝑓(y|x) =
𝑓(x, y)
𝑓X(x)

= 𝑓Y(y) (B.14)
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The converse is also true, so that if (B.13) or (B.14) is true for every possible pair of x and y
values, then X and Y are statistically independent.

Solving (B.14) for the joint pdf, we can also say that X and Y are statistically independent if

their joint pdf factors into the product of their marginal pdf s

𝑓(x, y) = 𝑓X(x)𝑓Y(y) (B.15)

If (B.15) is true for each and every pair of x and y values, then X and Y are statistically inde-

pendent. This result extends to more than two random variables. If X, Y , and Z are statisti-

cally independent, then their joint probability density function can be factored and written as

f (x, y, z) = fX(x) • fY(y) • fZ(z).

B.1.4 Expectations Involving Several Random Variables
A rule similar to (B.3) exists for functions of several random variables. Let X and Y be discrete

random variables with joint pdf f (x, y). If g(X, Y) is a function of X and Y , then

E
[
g(X,Y )

]
=
∑

x

∑

y
g(x, y)𝑓(x, y) (B.16)

Using (B.16) we can show that

E(X + Y ) = E(X) + E(Y ) (B.17)

This follows by using the definition (B.16) and letting g(X, Y ) = X + Y . Then

E(X + Y) =
∑

x

∑

y
g(x, y)𝑓(x, y) [general definition]

=
∑

x

∑

y
(x + y)𝑓(x, y) [specific function]

=
∑

x

∑

y
x𝑓(x, y) +

∑

x

∑

y
y𝑓(x, y) [separate terms]

=
∑

x
x
∑

y
𝑓(x, y) +

∑

y
y
∑

x
𝑓(x, y) [factor constants from 2nd sum]

=
∑

x
x𝑓(x) +

∑

y
y𝑓(y) [recognize marginal pdf ]

= E(X) + E(Y) [recognize expected values]

To go from the fourth to the fifth line, we have used (B.11) to obtain the marginal distributions

of X and Y , and the fact that the order of summation does not matter. Using the same logic, we

can show that

E(aX + bY + c) = aE(X) + bE(Y ) + c (B.18)

In general, E[g(X,Y )] ≠ g[E(X ),E(Y )]. For example, in general, E(XY ) ≠ E(X )E(Y ). If, however,

X and Y are statistically independent, then using (B.16), we can also show that E(XY ) = E(X )E(Y ).
To see this, recall that if X and Y are independent, then their joint pdf factors into the product of

the marginal pdf s, f(x, y) = f(x) f(y). Letting g(X,Y ) = XY, we have

E(XY ) = E
[
g(X,Y )

]
=
∑

x

∑

y
xy𝑓(x, y) =

∑

x

∑

y
xy𝑓(x)𝑓(y)

=
∑

x
x𝑓(x)

∑

y
y𝑓(y) = E(X)E(Y )

This rule can be extended to more independent random variables.
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B.1.5 Covariance and Correlation
One particular application of (B.16) is the derivation of the covariance between X and Y . Define

a function that is the product of X minus its mean times Y minus its mean,

g(X,Y ) =
(
X − μX

)(
Y − μY

)
(B.19)

The covariance is the expected value of (B.19)

cov(X,Y ) = σXY = E
[(

X − μX
)(

Y − μY
)]

= E(XY ) − μXμY (B.20)

If the covariance σXY of the variables is positive, then when x values are greater than their mean,

the y values also tend to be greater than their mean, and when x values are below their mean,

then the y values also tend to be less than their mean. In this case the random variables X and Y
are said to be positively or directly associated. If σXY < 0, then the association is negative, or

inverse. If σXY = 0, then there is neither a positive nor a negative relationship.

Interpreting the actual value of σXY is difficult, because X and Y may have different units of

measurement. Scaling the covariance by the standard deviations of the variables eliminates the

units of measurement, and defines the correlation between X and Y:

ρ = cov(X,Y )
√

var(X)
√

var(Y )
=
σXY

σXσY
(B.21)

As with the covariance, the correlation ρ between two random variables measures the degree of

linear association between them. However, unlike the covariance, the correlation must lie between

–1 and 1. The correlation between X and Y is 1 if there is a perfect positive linear relationship

between X and Y and –1 if there is a perfect negative, or inverse, association between X and Y .

If there is no linear association between X and Y , then cov(X,Y ) = 0 and ρ = 0. For other val-

ues of correlation, the magnitude of the absolute value |ρ| indicates the “strength” of the linear

association between the values of the random variables.

If X and Y are independent random variables, then the covariance and correlation between

them are zero. The converse of this relationship is not true. Independent random variables X and Y
have zero covariance, indicating that there is no linear association between them. However, just

because the covariance or correlation between two random variables is zero does not mean that

they are necessarily independent. There may be more complicated nonlinear associations such as

X2 + Y 2 = 1.

In (B.17) we found the expected value of a sum of random variables. There are similar rules

for variances. If a and b are constants, then

var(aX + bY ) = a2var(X) + b2var(Y ) + 2ab cov(X,Y ) (B.22)

To see this, it is convenient to define a new discrete random variable Z = aX + bY . This random

variable has expected value

μZ = E(Z) = E(aX + bY) = aE(X) + bE(Y ) = aμX + bμY

The variance of Z is

var(Z) = E
[(

Z − μZ
)2
]

= E
{[

(aX + bY) −
(
aμX + bμY

)]2
}

[substitute Z]

= E
{[(

aX − aμX
)
+
(
bY − bμY

)]2
}

[combine like terms]
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= E
{[

a
(
X − μX

)
+ b

(
Y − μY

)]2
}

[factor]

= E
[

a2
(
X − μX

)2 + b2
(
Y − μY

)2 + 2ab
(
X − μX

)(
Y − μY

)]

[expand]

= E
[

a2
(
X − μX

)2
]

+ E
[

b2
(
Y − μY

)2
]

+ E
[

2ab
(
X − μX

)(
Y − μY

)]

[group terms]

= a2var(X) + b2var(Y) + 2abcov(X,Y) [factor and recognize]

These rules extend to more random variables. For example, if X, Y , and Z are random variables,

then

var(aX + bY + cZ ) = a2var(X ) + b2var(Y ) + c2var(Z ) + 2abcov(X,Y )

+ 2bccov(Y,Z ) + 2accov(X,Z ) (B.23)

B.1.6 Conditional Expectations
If X and Y are two random variables with joint probability distribution f (x, y), then the conditional

probability distribution of Y given X is f (y|x). We can use this conditional pdf to compute the

conditional mean of Y given a value of X. That is, we can obtain the expected value of Y given that

X = x. The conditional expectation E(Y|X = x) is the average (or mean) value of Y given that X
takes the value x. In the discrete case, it is defined to be

E(Y|X = x) =
∑

y
yP(Y = y|X = x) =

∑

y
y𝑓(y|x) (B.24)

Similarly, we can define the conditional variance of Y given X. This is the variance of the con-

ditional distribution of Y given X. In the discrete case, it is

var(Y|X = x) =
∑

y

[
y − E(Y|X = x)

]2
𝑓(y|x) (B.25)

B.1.7 Iterated Expectations
The law of iterated expectations says that the expected value of Y is equal to the expected value

of the conditional expectation of Y given X. That is,

E(Y ) = EX
[
E(Y|X )

]
(B.26)

In Probability Primer Section P.6.3, we provide a numerical example of the Law of Iterated Expec-

tations, and give the proof.

B.1.8 Variance Decomposition
Just as we can break up the expected value using the Law of Iterated Expectations, we can decom-

pose the variance of a random variable into two parts.

Variance Decomposition: var(Y ) = varX
[
E(Y|X )

]
+ EX

[
var(Y|X )

]
(B.27)

This result says that the variance of the random variable Y equals the sum of the variance of the

conditional mean of Y given X and the mean of the conditional variance of Y given X. We discuss

the variance decomposition for discrete random variables in Section P.6.4 of the Probability

Primer. Here we provide the proof and a numerical example.
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Proof of the Variance Decomposition We use the relationship between the marginal,

conditional, and joint pdf s to prove the variance decomposition for discrete random variables.

First, write out var(Y ) in an expanded form.

var(Y ) =
∑

y

(
y − μy

)2
𝑓(y)

=
∑

y

(
y − μy

)2

{
∑

x
𝑓(x, y)

}

[replace marginal density]

=
∑

y

(
y − μy

)2

{
∑

x
𝑓(y|x) 𝑓(x)

}

[replace joint density]

=
∑

x

∑

y

(
y − μy

)2
𝑓(y|x) 𝑓(x) [change order of summation]

=
∑

x

∑

y

(
y − E(Y|x) + E(Y|x) − μy

)2
𝑓(y|x)𝑓(x) [subtract and add conditional mean]

=
∑

x

∑

y

([
y−E(Y|x)

]
+
[
E(Y|x)−μy

])2

𝑓(y|x)𝑓(x) [group terms, then square and expand]

=
∑

x

∑

y

{(
y − E(Y|x)

)2 +
(
E(Y|x) − μy

)2 + 2
(
y − E(Y|x)

)(
E(Y|x) − μy

)}

𝑓(y|x)𝑓(x)

=
∑

x

∑

y

(
y − E(Y|x)

)2
𝑓(y|x)𝑓(x) [Term 1]

+
∑

x

∑

y

(
E(Y|x) − μy

)2
𝑓(y|x)𝑓(x) [Term 2]

+
∑

x

∑

y
2
(
y − E(Y|x)

)(
E(Y|x) − μy

)
𝑓(y|x)𝑓(x) [Term 3]

Examine the three terms separately.

Term 3:

Term 3 =
∑

x

∑

y
2
(
y − E(Y|x)

)(
E(Y|x) − μy

)
𝑓(y|x)𝑓(x)

= 2
∑

x

{
∑

y

(
y − E(Y|x)

)(
E(Y|x) − μy

)
𝑓(y|x)

}

𝑓(x) [group inner sum]

= 2
∑

x

{
(
E(Y|x) − μy

)
[
∑

y

(
y − E(Y|x)

)
𝑓(y|x)

]}

𝑓(x) [factor out constant]

= 2
∑

x

{(
E(Y|x) − μy

)
[0]
}

𝑓(x)

= 0

In the third line above we recognize that in the summation over the values of y the expression(
E(Y|x) − μy

)
does not vary, so that it can be factored out. The remaining term in the square

brackets is zero because

∑

y

(
y − E(Y|x)

)
𝑓(y|x)

=
∑

y
y𝑓(y|x) − E(Y|x)

∑

y
𝑓(y|x)

[
factor out the constant E(Y|X)

]

= E(Y|x) − E(Y|x) = 0

[

definition of conditional expectation &
∑

y
𝑓(y|x) = 1

]
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Term 2:

Term 2 =
∑

x

∑

y

(
E(Y|x) − μy

)2
𝑓(y|x)𝑓(x)

=
∑

x

{
∑

y

(
E(Y|x) − μy

)2
𝑓(y|x)

}

𝑓(x)

=
∑

x

{
(
E(Y|x) − μy

)2∑

y
𝑓(y|x)

}

𝑓(x)
[

factor out
(
E(Y|x) − μy

)2
]

=
∑

x

{(
E(Y|x) − μy

)2
}

𝑓(x)
[
∑

y
𝑓(y|x) =

∑

y
P
(
Y = y|X = x

)
= 1

]

=
∑

x

(
E(Y|x) − μy

)2
𝑓(x)

= varX
[
E(Y|X)

]

In the final step, we label Term 2 as varX[E(Y|X)] =
∑

x

(
E(Y|x) − μy

)2
𝑓(x). The intuition behind

the terminology is discussed in Section P.6.3. The key point is that E(Y|X) varies as the value of

X varies. One way to recognize this is to say E(Y|X) = g(X). Using first principles var
[
g(X)

]
=

E
{

g(X) − E
[
g(X)

]}2
. Also EX

[
g(X)

]
= EX[E(Y|X)] = E(Y ) = μy using the law of iterated expec-

tations. Then

varX
[
g(X)

]
= EX

{[
g(X) − μy

]2
}

= EX

{[
E(Y|X) − μy

]2
}

=
∑

x

[
E(Y|x) − μy

]2
𝑓(x)

Term 1:
Term 𝟏 =∑

x

∑

y

(
y − E(Y|x)

)2
𝑓(y|x)𝑓(x)

=
∑

x

{
∑

y

(
y − E(Y|x)

)2
𝑓(y|x)

}

𝑓(x)

=
∑

x
var(Y|x)𝑓(x)

= EX
[
var(Y|X)

]

Term 1 is the expectation of the conditional variance of Y given X. A key point here, as in Term 2,

is that the conditional variance of Y given X is a function of X.

E X A M P L E B.1 Variance Decomposition: Numerical Example

The calculations illustrating the variance decomposition are

somewhat involved. We have broken it up into parts to sim-

plify the logic.

Variance of Y

For the population in Table P.1, given in the Probabil-

ity Primer, the unconditional variance of Y is var(Y ) =
E
(
Y 2
)
− μ2

Y. We have shown that E(Y ) = μY = 2∕5. Also,

E
(
Y 2
)
=
∑

y
y2
𝑓Y(y) = 02 × (6∕10) + 12 × (4∕10) = 2∕5

Then var(Y ) = E
(
Y 2
)
− μ2

Y = 2∕5 −(2∕5)2 = 6∕25 = 0.24.

Variance of the Conditional Expectation

of Y Given X

The first component of the variance decomposition is

varX[E(Y|X)]. As we have noted earlier, E(Y|X) = g(X)
is a function of X. We computed these values to be

E(Y|X = 1) = 1, E(Y|X = 2) = 1∕2, E(Y|X = 3) = 1∕3, and

E(Y|X = 4) = 1∕4. What is the variance of these terms,

treating X as random? The variance of a function of X,

g(X), is

varX
[
g(X)

]
=
∑

x

{

g(x) − EX
[
g(x)

]}2

𝑓X(x)
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Using the law of iterated expectations

EX
[
g(x)

]
= EX[E(Y|X = x)] = E(Y) .

The calculation we need is

varX
[
E(Y|X)

]
=
∑

x

[
E(Y|X = x) − μY

]2
𝑓X(x)

=
[
∑

x
E(Y|X = x)2𝑓X(x)

]

− μ2
Y

Now

∑

x
E(Y|X = x)2𝑓X(x)

= E(Y|X = 1)2𝑓X(1) + E(Y|X = 2)2𝑓X(2)

+ E(Y|X = 3)2𝑓X(3) + E(Y|X = 4)2𝑓X(4)

= 12
(

1

10

)

+
(

1

2

)2 ( 2

10

)

+
(

1

3

)2 ( 3

10

)

+
(

1

4

)2 ( 4

10

)

= 5

24

Then,

varX
[
E(Y|X)

]
=
[
∑

x
E(Y|X = x)2𝑓X(x)

]

− μ2
Y =

5

24
−
(

2

5

)2

= 29

600
= 0.048333…

That is, E(Y|X) exhibits variation as X changes and has vari-

ance 0.0483.

Expectation of the Conditional Variance

of Y Given X

The second component of the variance decomposition is

EX[var(Y|X)]. The conditional variance var(Y|X = x) varies

randomly as X varies, if we treat X as random, so that

finding its expected value makes sense. For the population

in Table P.1, we have already computed the conditional

means E(Y|X = x) for each x. The conditional variances are

var(Y|X = x) = E
(
Y 2|X = x

)
− [E(Y|X = x)]2 so we need

the terms E
(
Y 2|X = x

)
for each value of X. These are

E
(
Y 2|X = 1

)
= 1, E

(
Y 2|X = 2

)
= 1∕2,

E
(
Y 2|X = 3

)
= 1∕3, E

(
Y 2|X = 4

)
= 1∕4

Then

var(Y|X = 1) = E
(
Y 2|X = 1

)
−
[
E(Y|X = 1)

]2

= 1 − 12 = 0

var(Y|X = 2) = E
(
Y 2|X = 2

)
−
[
E(Y|X = 2)

]2

= 1∕2 − (1∕2)2 = 1∕4

var(Y|X = 3) = E
(
Y 2|X = 3

)
−
[
E(Y|X = 3)

]2

= 1∕3 − (1∕3)2 = 2∕9

var(Y|X = 4) = E
(
Y 2|X = 4

)
−
[
E(Y|X = 4)

]2

= 1∕4 − (1∕4)2 = 3∕16

The expected value of the conditional variance is

EX
[
var(Y|X)

]
=
∑

x
var(Y|X = x)𝑓X(x)

= 0(1∕10) + (1∕4)(2∕10)
+ (2∕9)(3∕10) + (3∕16)(4∕10)

= 23∕120 = 0.191666…

The interpretation of this expectation is that if we repeatedly

drew a random member from the population in Table P.1,

and for each value computed the conditional variance

var(Y|X = x), the average of the conditional variance in

many trials would approach 0.19167.

Variance of Y Decomposed

We have shown that for the population in Table P.1

varX[E(Y|X)] = 29∕600 and EX[var(Y|X)] = 23∕120. The

variance decomposed is

var(Y ) = varX
[
E
(
Y|X

)]
+ EX

[
var(Y|X)

]

= 29

600
+ 23

120
= 144

600
= 6

25
= 0.24

This is the same value for var(Y ) that we derived in the first

step above.

B.1.9 Covariance Decomposition
Recall that the covariance between two random variables Y and X is cov(X,Y ) =
E
[(

X − μX
)(

Y − μY
)]

. For discrete random variables the expectation is

cov(X,Y ) =
∑

x

∑

y

(
x − μX

)(
y − μY

)
𝑓(x, y)

By using the relationships between marginal, conditional, and joint pdf s we can show

cov(X,Y ) =
∑

x

(
x − μX

)
E(Y|X = x)𝑓(x)
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Recall that E(Y|X) = g(X) is a function of X. The covariance between X and Y can be calculated

as the expected value of X, minus its mean, times a function of X,

cov(X,Y ) = EX

[(
X − μX

)
E(Y|X)

]

(B.28)

A numerical example of this covariance decomposition is given in the Probability Primer

Section P.6.5.

Proof of the Covariance Decomposition

cov(X,Y ) =
∑

x

∑

y

(
x − μX

)(
y − μY

)
𝑓(x, y)

=
∑

x

∑

y

(
x − μX

)
y𝑓(x, y) − μY

∑

x

∑

y

(
x − μX

)
𝑓(x, y)

In this expression, the second term is zero, because

∑

x

∑

y

(
x − μX

)
𝑓(x, y) =

∑

x

(
x − μX

)∑

y
𝑓(x, y)

[

factor out
(
x − μX

)]

=
∑

x

(
x − μX

)
𝑓(x)

[
∑

y
𝑓(x, y) = 𝑓(x)

]

=
∑

x
x𝑓(x) − μX

∑

x
𝑓(x)

= μX − μX = 0

[
∑

x
𝑓(x) = 1

]

Then

cov(X,Y ) =
∑

x

∑

y

(
x − μX

)(
y − μY

)
𝑓(x, y) =

∑

x

∑

y

(
x − μX

)
y𝑓(x, y)

=
∑

x

(
x − μX

)
{
∑

y
y𝑓(y|x)

}

𝑓(x)

=
∑

x

(
x − μX

)
E(Y|X = x)𝑓(x)

B.2 Working with Continuous Random Variables
Continuous random variables can take any value in at least one interval. In economics, variables

like income and market prices are treated as continuous random variables. In Figure P.2 of the

Probability Primer, we depict the probability density function for a continuous random variable

that ranges between zero and infinity, or x > 0. Because continuous random variables can take

uncountably many values, the probability that any single value occurs in a random experiment

is zero. For example, P(X = 100) = 0 or P(X = 200) = 0. Probability statements for continuous

random variables are meaningful when we ask about outcomes within intervals, or ranges. We

can ask, “What is the probability that X takes a value between 100 and 200?” These ideas were

introduced in Sections P.1 and P.2 of the Probability Primer. There we noted that probabilities

like these are areas under a curve that is the probability density function. It would be a good

time to review those sections now if the concepts are not fresh in your minds. What we did not

discuss in the Probability Primer was how exactly such probabilities are calculated. We delayed

that discussion until now, because tools from integral calculus are required.

In this section, we discuss how to work with continuous random variables. The interpreta-

tion of probabilities, expected values, and variances carries over from what you learned about

discrete random variables. What changes is the algebra—summation signs turn into integrals,
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and this takes a little getting used to. If you have not done so, review the discussion of integrals

in Appendix A.4.

B.2.1 Probability Calculations
If X is a continuous random variable with probability density function f (x), then f (x) must obey

certain properties:

𝑓(x) ≥ 0 (B.29)

∫

∞

−∞
𝑓(x)dx = 1 (B.30)

P(a ≤ X ≤ b) =
∫

b

a
𝑓(x)dx (B.31a)

Property (B.29) states that the pdf cannot take negative values. Property (B.30) states that the

total area under the pdf , which is the probability that X falls between −∞ and∞, is one. Property

(B.31a) states that the probability that X falls in the interval [a, b] is the area under the curve f (x)

between those values. Because a single point has probability zero, it is also true that

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b) =
∫

b

a
𝑓(x)dx (B.31b)

The cumulative distribution function, cdf , for a continuous random variable is F(x) = P(X ≤ x).
Using the cdf we can compute

P(X ≤ a) =
∫

a

−∞
𝑓(x)dx = F(a) (B.32a)

The cdf is obtained by integrating the pdf . The integral is an “antiderivative,” so that we can

obtain the pdf f (x) by differentiating the cdf F(x). That is,

𝑓(x) =
dF(x)

dx
= F ′(x) (B.32b)

The concept of a cdf is useful in many ways, including working with computer software, which

includes the cdf s of many random variables so that probabilities can be easily computed.

E X A M P L E B.2 Probability Calculation Using Geometry

Let X be a continuous random variable with pdf f(x) =
2(1 − x) for 0 ≤ x ≤ 1. This pdf is depicted in Figure B.1.

Property (B.29) holds for x in the interval [0, 1]. Fur-

thermore, property (B.30) holds because

∫

∞

−∞
𝑓(x)dx =

∫

1

0

2(1 − x)dx =
∫

1

0

2dx −
∫

1

0

2xdx

= 2x
|
|
|
|

1

0

− x2
|
|
|
|

1

0

= 2 − 1 = 1

Using Figure B.1, we can compute P
(

1

4
≤ X ≤

3

4

)

= 1

2

using geometry. Using integration, we come to the same

conclusion:

P
(

1

4
≤ X ≤

3

4

)

=
∫

3∕4

1∕4

𝑓(x)dx =
∫

3∕4

1∕4

2(1 − x)dx

=
∫

3∕4

1∕4

2dx −
∫

3∕4

1∕4

2xdx = 2x
|
|
|
|

3∕4

1∕4

− x2
|
|
|
|

3∕4

1∕4

= 1 −
(

9

6
− 1

16

)

= 1

2

The cumulative distribution function is F(x)= 2x – x2 for x in

the interval [0, 1], so the probability can also be computed as

P
(

1

4
≤ X ≤

3

4

)

= F
(

3

4

)

− F
(

1

4

)
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FIGURE B.1 Probability density function f (x) = 2(1−x).

E X A M P L E B.3 Probability Calculation Using Integration

Let X be a continuous random variable with pdf f(x) = 3x2

for x in the interval [0,1]. Properties (B.29) and (B.30) hold.

Because the pdf is a quadratic, we cannot use simple geom-

etry to compute P
(

1

4
≤ X ≤

3

4

)

. We must use integration,

obtaining

P
(

1

4
≤ X ≤

3

4

)

=
∫

3∕4

1∕4

𝑓(x) dx =
∫

3∕4

1∕4

3x2dx = x3
|
|
|
|

3∕4

1∕4

= 9

64
− 1

64
= 1

8

B.2.2 Properties of Continuous Random Variables
If X is a continuous random variable with probability density function f (x), then its expected

value is

μX = E(X) =
∫

∞

−∞
x𝑓(x)dx (B.33)

Compare this to the expected value of a discrete random variable in (B.2). An integral has replaced

the summation. The interpretation of E(X) is exactly the same as in the discrete case. It is the

average value of X that occurs in all possible samples from an underlying experiment.

E X A M P L E B.4 Expected Value of a Continuous Random Variable

The expected value of the random variable in Example B.2 is

∫

∞

−∞
x𝑓(x) dx =

∫

1

0

x • 2(1 − x) dx =
∫

1

0

(
2x − 2x2

)
dx = x2

|
|
|
|

1

0

− 2

3
x3
|
|
|
|

1

0

= 1 − 2

3
= 1

3

The variance of a random variable X is defined as σ2
X = E

[(
X − μX

)2
]

. This definition holds for

discrete and continuous random variables. In order to compute the variance we use the analog to

the rule in (B.3) for continuous random variables,

E
[
g(X)

]
=
∫

∞

−∞
g(x)𝑓(x)dx (B.34)
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Then, letting g(x) =
(
X − μX

)2
, we have

σ2
X = E

[(
X − μX

)2
]

=
∫

∞

−∞

(
x − μX

)2
𝑓(x) dx

=
∫

∞

−∞

(
x2 + μ2

X − 2xμX
)
𝑓(x) dx

=
∫

∞

−∞
x2
𝑓(x) dx + μ2

X∫

∞

−∞
𝑓(x) dx − 2μX∫

∞

−∞
x𝑓(x) dx

= E
(
X2
)
+ μ2

X − 2μ2
X

= E
(
X2
)
− μ2

X (B.35)

To go from the third line to the fourth line, we use property (B.30) and the definition of expected

value (B.33). The end result is that σ2
X = E

[(
X − μX

)2
]

= E
(
X2
)
− μ2

X as in the discrete case.

E X A M P L E B.5 Variance of a Continuous Random Variable

To obtain the variance of the random variable described in

Example B.2, we first find

E
(
X2
)
=
∫

∞

−∞
x2
𝑓(x)dx =

∫

1

0

x2•2(1 − x)dx =
∫

1

0

(
2x2 − 2x3

)
dx

= 2

3
x3
|
|
|
|

1

0

− 2

4
x4
|
|
|
|

1

0

= 2

3
− 1

2
= 1

6

Then,

var(X) = σ2
X = E

(
X2
)
− μ2

X =
1

6
−
(

1

3

)2

= 1

18

B.2.3 Joint, Marginal, and Conditional Probability
Distributions

To make simultaneous probability statements about more than one continuous random variable,

we need the joint probability density function of the random variables. For example, consider

the two continuous random variables U = unemployment and P = inflation rate. Suppose that

their joint pdf is as depicted in Figure B.2.

The joint pdf is a surface and probabilities are volumes under the surface. If the two random

variables are nonnegative, then we might ask, “What is the probability that inflation is less than

5% and at the same time unemployment is less than 6%?” That is, what is P(U ≤ 6, P ≤ 5)?
Geometrically the answer is that this is the volume under the surface above the rectangle (in

the base of the figure) defining the event. Just as an integral is used to obtain the area under a

curve, a double integral is used to obtain volumes like that shown in Figure B.2. Given the joint

pdf f (u, p) we can compute the probability as

P(U ≤ 6,P ≤ 5) =
∫

6

u=0 ∫

5

p=0

𝑓(u, p) dp du

If we know the joint pdf , can we obtain the marginal pdf of one of the random variables? If so, we

can answer questions like “What is the probability that unemployment will be between 2% and

5%?” Analogous to (B.11) for discrete random variables, we integrate out the unwanted random

variable. That is, the marginal probability density function for U is

𝑓(u) =
∫

∞

−∞
𝑓(u, p) dp (B.36)

Then, for example, P(2 ≤ U ≤ 5) =
∫

5

2

𝑓(u) du.
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FIGURE B.2 A joint probability density function.

We might ask “What is the probability that unemployment will be between 2% and 5% if
we can use monetary policy to keep the inflation rate at 2%?” This is a question about a

conditional probability. Given that P = 2, what is the probability that 2 ≤ U ≤ 5? Or in terms

of conditioning notation, what is P(2 ≤ U ≤ 5|P = 2)? To answer such questions for contin-

uous random variables, we need the conditional probability density function 𝑓(u|p), which

is given by

𝑓(u|p) =
𝑓(u, p)
𝑓(p)

(B.37)

Unlike the result (B.12) for discrete random variables, we do not obtain the probability from this

division, but rather a density function that can be used for probability calculations. Not only can

we obtain conditional probabilities using 𝑓(u|p), but we can also obtain the conditional expec-
tation, or conditional mean,

E(U|P = p) =
∫

∞

−∞
u𝑓(u|p) du (B.38)

Similarly, the conditional variance is

var(U|P = p) =
∫

∞

−∞

[
u − E(U|P = p)

]2
𝑓(u|p) du (B.39)

The importance of questions involving unemployment and inflation are of great social importance.

Economists and econometricians work on these problems, and you will glimpse the issues a few

times throughout this book. But it is difficult. So we illustrate the above concepts with a simpler

example.
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E X A M P L E B.6 Computing a Joint Probability

Let X and Y be continuous random variables with joint

pdf f(x, y) = x + y for x in [0, 1] and y in [0, 1]. You might

test your geometric skills by creating a three-dimensional

graph of this joint density function. Is it a valid density

function? It satisfies the more general version of property

(B.29), because f (x, y) ≥ 0 for all points x ∈ [0, 1] and

y ∈ [0, 1]. Also the total amount of probability, the volume

under the surface, is

∫

1

y=0
∫

1

x=0

𝑓 (x, y)dx dy =
∫

1

y=0
∫

1

x=0

(x + y)dx dy

=
∫

1

y=0
∫

1

x=0

xdx dy +
∫

1

y=0
∫

1

x=0

ydx dy

=
∫

1

y=0

[

∫

1

x=0

xdx
]

dy +
∫

1

x=0

[

∫

1

y=0

ydy
]

dx

=
∫

1

y=0

[
1

2
x2
|
|
|
|

1

0

]

dy +
∫

1

x=0

[

y2
|
|
|
|

1

0

]

dx

=
∫

1

y=0

1

2
dy +

∫

1

x=0

1

2
dx = 1

2
+ 1

2
= 1

In the third line, we have used a property of multiple

integrals. In the Probability Primer, Section P.4, the rule

“Sum 9” states that the order of multiple summations does

not matter. Similarly, as long as the limits of integration for

one variable do not depend on the value of the other, the

order of integration does not matter when we have multiple

integrals. However, we must keep the integral symbol with its

lower and upper limits paired with the variable of integration,

indicated by dx or dy. In the first term in the third line above,

we have isolated the integral involving x inside the integral

involving y. Multiple integrals are evaluated by working

from the “inside out.” Solve the inside integral with respect

to x, and then solve the outer integral with respect to y.

E X A M P L E B.7 Another Joint Probability Calculation

For further practice with double integrals find the probability

that X is between zero and 1∕2 while Y is between 1∕4 and 3∕4

for the joint pdf in Example B.6. This is a joint probability

and is computed as follows:

P
(

0 ≤ X ≤
1

2
,

1

4
≤ Y ≤

3

4

)

=
∫

3

4

y= 1

4
∫

1

2

x=0

𝑓(x, y)dx dy

=
∫

3

4

y= 1

4
∫

1

2

x=0

(x + y)dx dy

=
∫

3

4

y= 1

4

[

∫

1

2

x=0

xdx

]

dy +
∫

3

4

y= 1

4

y

[

∫

1

2

x=0

dx

]

dy

=
∫

3

4

y= 1

4

[
1

2
x2
|
|
|
|

1∕2

0

]

dy +
∫

3

4

y= 1

4

y
[

x
|
|
|
|

1∕2

0

]

dy

= 1

8∫

3

4

y= 1

4

dy + 1

2∫

3

4

y= 1

4

ydy

= 1

8

(

y
|
|
|
|

3∕4

1∕4

)

+ 1

2

(
1

2
y2
|
|
|
|

3∕4

1∕4

)

= 1

8
× 1

2
+ 1

2
× 1

4
= 3

16

In the third step of this example, we did not change the order

of integration in the second term. This illustrates another fea-

ture of working with multiple integrals. When carrying out

the “inside” integration with respect to x the value of y is

fixed, and because it is fixed it can be factored out, leaving

a simpler inside integral.
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E X A M P L E B.8 Finding and Using a Marginal pdf

The marginal pdf of X, for x ∈ [0, 1], is

𝑓(x) =
∫

1

y=0

𝑓(x, y) dy =
∫

1

y=0

(x + y) dy

=
∫

1

y=0

xdy +
∫

1

y=0

ydy = x•y
|
|
|
|

1

0

+ 1

2
y2
|
|
|
|

1

0

= x + 1

2

Technically we should also say that f(x) = 0 for x ∉ [0, 1], but

we will generally not explicitly include this extra information.

Using similar steps the marginal pdf of Y is 𝑓(y) = y + 1∕2

for values of y in the [0, 1] interval. The marginal pdf for X
can be used to compute probabilities that X falls in intervals

in the domain of X, x ∈ [0, 1]. For example,

P
(

1

2
< X <

3

4

)

=
∫

3∕4

1∕2

(

x + 1

2

)

dx =
∫

3∕4

1∕2

xdx + 1

2∫

3∕4

1∕2

dx

= 1

2
x2
|
|
|
|

3∕4

1∕2

+ 1

2
x
|
|
|
|

3∕4

1∕2

= 1

2

(
9

16
− 1

4

)

+ 1

2

(
3

4
− 1

2

)

= 1

2
× 5

16
+ 1

2
× 1

4
= 9

32

Using the marginal pdf of X, we can find its expected value.

μX = E(X) =
∫

∞

−∞
x𝑓(x)dx =

∫

1

0

x
(

x + 1

2

)

dx

=
∫

1

0

x2dx +
∫

1

0

1

2
xdx

= 1

3
x3
|
|
|
|

1

0

+ 1

4
x2
|
|
|
|

1

0

= 1

3
+ 1

4
= 7

12

The limits of integration in the first line change from (−∞,∞)

to [0, 1], because for x ∉ [0, 1], f(x) = 0 and the area (proba-

bility) under f(x) = 0 is zero.

To find the variance of X, we first find

E
(
X2
)
=
∫

1

0

x2
𝑓(x)dx =

∫

1

0

x2
(

x + 1

2

)

dx

=
∫

1

0

x3dx +
∫

1

0

1

2
x2dx

= 1

4
x4
|
|
|
|

1

0

+ 1

6
x3
|
|
|
|

1

0

= 1

4
+ 1

6
= 5

12

Then

σ2
X = var(X) = E

(
X2
)
−
[
E(X)

]2 = 5

12
−
(

7

12

)2

= 11

144

The conditional pdf of Y given that X = x is 𝑓(y|x) = 𝑓(x, y)∕𝑓(x).

E X A M P L E B.9 Finding and Using a Conditional pdf

In Example B.6 the conditional pdf is

𝑓(y|x) =
𝑓(x, y)
𝑓(x)

=
x + y
x + 1

2

for y ∈ [0, 1]

As a specific example,

𝑓

(

y||
|
X = 1

3

)

=
y + 1

3

1

3
+ 1

2

= 1

5
(6y + 2) for y ∈ [0, 1]

The conditional pdf can be used to compute probabilities

that Y falls in a given interval. Also, we can compute the

conditional mean of Y given that X = 1∕3

μY|X=1∕3 = E
(

Y||
|
X = 1

3

)

=
∫

1

y=0

y𝑓
(

y||
|
X = 1

3

)

dy

=
∫

1

y=0

y 1

5
(6y + 2)dy

=
∫

1

y=0

6

5
y2dy +

∫

1

y=0

2

5
ydy

= 6

5

(

1

3
y3
|
|
|
|

1

0

)

+ 2

5

(

1

2
y2
|
|
|
|

1

0

)

= 2

5
+ 1

5
= 3

5
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Note that the conditional expected value is not the same as the

unconditional expected value μY = E(Y ) = 7

12
. To calculate

the conditional variance, we first calculate

E
(

Y 2 |
|
|
X = 1

3

)

=
∫

1

y=0

y2
𝑓

(

y ||
|
X = 1

3

)

dy

=
∫

1

y=0

y2 1

5
(6y + 2)dy = 13

30

The conditional variance is then

var
(

Y||
|
X = 1

3

)

= E
(

Y 2 |
|
|
X = 1

3

)

−
[

E
(

Y ||
|
X = 1

3

)]2

= 11

150
= 0.07333

The unconditional variance is σ2
Y = var(Y ) = 11

144
=

0.07639.

The correlation between X and Y is

ρ = cov(X,Y )
σXσY

The covariance between X and Y can be calculated using cov(X, Y ) = E(XY) – μXμY.

E X A M P L E B.10 Computing a Correlation

To compute the expected value of XY for Example B.6, we

calculate the double integral

E(XY ) =
∫

1

y=0
∫

1

x=0

xy𝑓(x, y)dxdy

=
∫

1

y=0
∫

1

x=0

xy(x + y)dxdy

=
∫

1

y=0
∫

1

x=0

x2ydxdy +
∫

1

y=0
∫

1

x=0

xy2dxdy

=
∫

1

y=0

y
[

∫

1

x=0

x2dx
]

dy +
∫

1

y=0

y2

[

∫

1

x=0

xdx
]

dy

= 1

6
+ 1

6
= 1

3

Then

cov(X,Y ) = E(XY ) − μXμY =
1

3
−
(

7

12

)(
7

12

)

= −1

144

Finally, the correlation between X and Y is

ρ = cov(X,Y )
σXσY

=
−1∕144

√
11∕144

√
11∕144

= −1

11
= −0.09091

B.2.4 Using Iterated Expectations with Continuous
Random Variables

A useful result, proved in Section B.1.7 for the discrete case, is the law of iterated expectations.

If X and Y are continuous random variables with joint pdf f (x,y), then the expected value of Y can

be calculated as

E(Y ) = EX
[
E(Y|X)

]
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This is the same result as in (B.26) for the discrete case. The exact meaning of this expression is

best understood by first deriving it and then carrying through an illustration. To establish that this

result is true, we proceed as follows:

E(Y) =
∫

∞

y=−∞
y𝑓(y)dy

=
∫

∞

y=−∞
y
[

∫

∞

x=−∞
𝑓(x,y)dx

]

dy [replacing marginal pdf ]

=
∫y∫x

y𝑓(x,y)dx dy [simplifying integral]

=
∫y∫x

y
[
𝑓(y|x)𝑓(x)

]
dx dy [replace joint pdf ]

=
∫x

[

∫y
y𝑓(y|x)dy

]

𝑓(x)dx [reverse order of integration]

=
∫x

[
E(Y|X)

]
𝑓(x)dx [recognize E(Y|X)]

= EX
[
E(Y|X)

]
[recognize expectation wrt X]

In the last line of the expression, the notation EX[ • ] means that we take the expectation of the

term in brackets treating X as random. Note that we also replaced the (−∞,∞) integral form with

a simpler form in line three indicating “over all values” of the variable of integration.

E X A M P L E B.11 Using Iterated Expectation

To better understand the iterated expectation expression,

for Example B.6 find the conditional expectation of Y given

that X = x, where the value x is not specified:

E(Y|X = x) =
∫

1

y=0

y𝑓 (y|x) dy =
∫

1

y=0

y

[
x + y
x + 1

2

]

dy

= 2 + 3x
3(2x + 1)

Note that the integration over the values of Y , treating x as

given, leaves us with a function of x. If we now recognize

that x can take any value and is thus random, we can find the

expected value of the function

g(X) = 2 + 3X
3(2X + 1)

The law of iterated expectations says that if we take the expec-

tation of g(X), treating X as random, we should obtain E(Y ).

E
[
g(X)

]
=
∫

1

x=0

2 + 3x
3(2x + 1)

𝑓(x)dx

=
∫

1

x=0

2 + 3x
3(2x + 1)

(

x + 1

2

)

dx

=
∫

1

x=0

2 + 3x
3(2x + 1)

1

2
(2x + 1)dx =

∫

1

x=0

1

6
(2 + 3x)dx

=
∫

1

x=0

1

3
dx +

∫

1

x=0

1

2
xdx = 1

3
x
|
|
|
|

1

0

+ 1

4
x2
|
|
|
|

1

0

= 1

3
+ 1

4
= 7

12
= E(Y)

There are several important implications of the law of iterated expectations. First, based on

E(Y ) = EX
[
E(Y|X)

]
, we can see that if E(Y|X) = 0, then E(Y ) = EX [E(Y|X)] = EX(0) = 0. If the

conditional expectation of Y is zero, then the unconditional expectation of Y is also zero.
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Second, if E(Y|X) = E(Y ), then cov(X,Y ) = 0. To see this, first rewrite E(XY) as

E(XY ) =
∫x∫y

xy𝑓(x, y)dydx

=
∫x∫y

xy𝑓(y|x)𝑓(x)dydx

=
∫x

x
[

∫y
y𝑓 (y|x)dy

]

𝑓(x)dx

=
∫x

x
[
E(Y|X)

]
𝑓(x)dx (B.40)

If E(Y|X) = E(Y ), then the last line of (B.40) becomes

E(XY ) =
∫x

x
[
E(Y )

]
𝑓(x)dx = E(Y )

∫x
x𝑓(x)dx

= E(Y )E(X) = μYμX

The covariance between X and Y in this case is

cov(X,Y ) = E(XY ) − μXμY = μXμY − μYμX = 0

An extremely important special case of these two results concerns the consequences of

E(Y|X) = 0. We have already seen that E(Y|X) = 0 ⇒ E(Y ) = 0. Now we can also see that if

E(Y|X) = E(Y ) = 0, then cov(X,Y ) = 0.

B.2.5 Distributions of Functions of Random Variables
As we have noted several times, a function of a random variable is random itself. The question we

address in this section is, “What is the probability density function of the new random variable?”

For the case of a discrete random variable this problem is not too hard. For example, consider

the discrete random variable X that can take the values 1, 2, 3, or 4 with probabilities 0.1, 0.2,

0.3, and 0.4, respectively. Let Y = 2 + 3X = g(X). What is the pdf for Y? In this case it is clear.

The probability that Y = 5, 8, 11, or 14 corresponds exactly to the probability that X = 1, 2, 3, or 4,

respectively, as shown in Table B.1.

What makes this possible is that each value of y corresponds to a unique value of x, and each

value of x corresponds to a unique value of y. Another way to say this is that the transformation

from X to Y is “one-to-one.” This type of relationship is ensured to hold when the function g(X)

relating Y to X is either strictly increasing or strictly decreasing. Such functions are said to be

strictly monotonic. Our function Y = 2 + 3X = g(X) is strictly (monotonically) increasing. This

guarantees that if x2 > x1, then y2 = g
(
x2

)
> y1 = g

(
x1

)
. Note in particular that we are ruling out

the possibility that y1 = y2.

Determining the distribution of Y = g(X) in the continuous case is a bit more challenging.

In the following example, we present the change-of-variable technique that applies when the

function g(X) is strictly increasing or decreasing.

T A B L E B.1 Change of Variable: Discrete Case

x P(X = x) = P(Y = y) y

1 0.1 5

2 0.2 8

3 0.3 11

4 0.4 14
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E X A M P L E B.12 Change of Variable: Continuous Case

Let X be a continuous random variable with pdf f(x) = 2x for

0< x< 1. Let Y = g(X) = 2X be another random variable. We

want to compute probabilities that Y falls in certain intervals.

One solution is to compute probabilities for Y based on the

probability of the corresponding event for X. For example,

P(0 < Y < 1) = P
(

0 < X <
1

2

)

=
∫

1∕2

0

2xdx = x2
|
|
|
|

1∕2

0

= 1

4

Although this is reasonable and relatively simple in this case,

it will not always be so. It is preferable to determine the pdf
of Y , say h(y), and use it to compute probabilities for Y . Since

X = Y∕2, we might be tempted to substitute this into the pdf
f (x) to obtain h(y) = 2(y∕2) = y for 0 < y < 2. This substitu-

tion does not work, however, because

∫

∞

−∞
h(y)dy =

∫

2

0

ydy = 1

2
y2
|
|
|
|

2

0

= 2

This violates property (B.30) for a probability density func-

tion. Furthermore, using h(y) to compute the probability of Y
falling in the interval (0, 1) produces 0.5, which we know is

incorrect.

The problem is that we must adjust the height of h(y) to

account for the fact that Y can take values in the interval (0, 2)

whereas X can take values only in (0, 1). In fact, a change in Y
of one unit corresponds to a change in X of half a unit. If we

adjust h(y) by this factor, we have

h(y) = 2(y∕2)
(

1

2

)

= y∕2, 0 < y < 2

Using this corrected pdf , property (B.30) is satisfied:

∫

∞

−∞
h(y)dy =

∫

2

0

1

2
ydy = 1

4
y2
|
|
|
|

2

0

= 1

Also, we obtain the correct probability that Y falls in the inter-

val (0, 1):

P(0 < Y < 1) =
∫

1

0

1

2
ydy = 1

4
y2
|
|
|
|

1

0

= 1

4

Another perspective on the change-of-variable technique is

obtained by examining the integral representation for the

probability that Y falls in the interval (0, 1):

P(0 < Y < 1) =
∫

1

0

h(y)dy

The integral representation of the equivalent X event, show-

ing explicitly the lower and upper limits of the integral, is

P(0 < Y < 1) = P
(

0 < X <
1

2

)

=
∫

x=1∕2

x=0

𝑓(x)dx

=
∫

x=1∕2

x=0

2xdx

Thinking of dx as a small change in X, and noting that

x = y/2, then dx = dy/2. Substituting this into the integral

above, we have

P(0 < Y < 1) =
∫

y∕2=1∕2

y∕2=0

2
(

1

2
y
)(

1

2
dy
)

=
∫

y=1

y=0

1

2
ydy

The adjustment factor 1/2 that we obtained intuitively

appears here in the relation of dx to dy. The mathematical

name for this adjustment factor is the Jacobian of the

transformation (actually its absolute value, as we will soon

see). Its purpose is to make the integral expression in terms

of x equal to that in terms of y. Now we are ready to describe

the change-of-variable technique more precisely.

Let X be a continuous random variable with pdf f (x). Let Y = g(X) be a function that is strictly

increasing or strictly decreasing. This condition ensures that the function is one-to-one, so that

there is exactly one Y value for each X value and exactly one X value for each Y value. The

importance of this condition on g(X) is that we can solve Y = g(X) for X. That is, we can find an

inverse function X = w(Y ). Then the pdf for Y is given by

h(y) = 𝑓

[
w(y)

]
•
|
|
|
|

dw(y)
dy

|
|
|
|

(B.41)

where || denotes the absolute value.

Change of Variable Technique to Find the pdf of Y: Step by Step
1. Solve y = g(x) for x in terms of y;

2. Substitute this for x in f (x); and

3. Multiply by the absolute value of the derivative dw(y)∕dy, which is called the Jacobian of

the transformation.
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The scale factor |dw(y)∕dy| is the adjustment factor that makes the probabilities (i.e., the integrals)

come out right. In Example B.12 the inverse function is X = w(Y ) = Y∕2. The Jacobian term is

dw(y)∕dy = d(y∕2)∕dy = 1

2
, and

|
|
|
dw(y)∕dy||

|
= ||
|

1

2

|
|
|
= 1

2
.

E X A M P L E B.13 Change of Variable: Continuous Case

Let X be a continuous random variable with pdf f(x) = 2x for

0 < x < 1. Let Y = g(X) = 8X3 be the function of X in which

we are interested. The function Y = g(X) = 8X3 is strictly

increasing for the set of values that X can take, 0 < x < 1.

The corresponding set of values that Y can take is 0 < y < 8.

Because the function is strictly increasing, we can solve for

the inverse function

x = w(y) =
(

1

8
y
)1∕3

= 1

2
y1∕3

and
dw(y)

dy
= 1

6
y−2∕3

Applying the change-of-variable formula (B.41), we have

h(y) = 𝑓

[
w(y)

]
×
|
|
|
|

dw(y)
dy

|
|
|
|

= 2
(

1

2
y1∕3

)

×
|
|
|
|

1

6
y−2∕3

|
|
|
|

= 1

6
y−1∕3

, 0 < y < 8

The change-of-variable technique can be modified for the

case of several random variables, X1, X2 being transformed

into Y1, Y2. For a description of the method, which requires

matrix algebra, see William Greene (2018) Econometric
Analysis, 8th edition, Pearson Prentice Hall, pp. 1120–1121.

B.2.6 Truncated Random Variables
A truncated random variable is one whose probability density function is cutoff above or

below some specified point. That is suppose that X is a continuous random variable such that

−∞ < x < ∞ and its pdf is f (x). The pdf f (x) has the properties (i) 𝑓(x) ≥ 0 and

(ii)
∫

∞

−∞
𝑓(x) dx = 1. Now suppose that the underlying experiment is such that only x val-

ues greater than some value a are possible. What is the probability density function of this

random variable? It is not simply f (x) for x > c because the pdf would not satisfy condition (ii)

above, the area beneath it, which represents probability, would not total one. There is a simple

fix-up. The density of a truncated random variable, such that x > c, is

𝑓(x|x > c) =
𝑓(x)

P(X > c)

The adjustment makes the area equal to one.

Intuitively, what will happen to the expected value and variance of the truncated random

variable, relative to the untruncated one? Thinking about it for a moment you can see that

E(X|x > c) > E(X) and var(X|x > c) < var(X). Specific examples of truncated random variables

will appear in the case of Poisson random variables (Section B.3.3) and normally distributed

random variables (Section B.3.5).

B.3 Some Important Probability Distributions
In this section, we give brief descriptions and summarize the properties of the probability distri-

butions used in this book.
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B.3.1 The Bernoulli Distribution
Let the random variable X denote an experimental outcome with only two possible outcomes,

A or B. Let X = 1 if the outcome is A and let X = 0 if the outcome is B. Let the probabilities of the

outcomes be P(X = 1) = p and P(X = 0) = 1 − p where 0 ≤ p ≤ 1. X is said to have a Bernoulli
distribution. The pdf of this Bernoulli random variable is

𝑓(x|p) =

{
px(1 − p)1−x x = 0, 1

0 otherwise
(B.42)

The expected value of X is E(X) = p, and its variance is var(X) = p(1 − p). This random variable

arises in choice models, such as the linear probability model (Chapters 7, 8, and 16) and in binary

and multinomial choice models (Chapter 16).

B.3.2 The Binomial Distribution
If X1, X2, …, Xn are independent random variables, each having a Bernoulli distribution with

parameter p, then X = X1 + X2 + · · · + Xn is a discrete random variable that is the number of

successes (i.e., Bernoulli experiments with outcome Xi = 1) in n trials of the experiment. The

random variable X is said to have a binomial distribution. The pdf of this random variable is

P(X = x|n, p) = 𝑓(x|n, p) =
(

n
x

)

px(1 − p)n−x for x = 0, 1,… , n (B.43)

where (
n
x

)

= n!
x!(n − x)!

is the number of combinations of n things taken x at a time. This distribution has two parameters,

n and p, where n is a positive integer indicating the number of experimental trials and 0 ≤ p ≤ 1.

These probabilities are tedious to compute by hand, but econometric software has functions to

carry out the calculations. The discrete probabilities are illustrated in Figure B.3.

0

0.1

0.2

0.3

Pr
ob
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ty

0 1 2 3 4 5 6 7 8 9 10

Binomial distribution
n = 10 trials

p = 0.3 p = 0.5

FIGURE B.3 Binomial distributions for n = 10.
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The expected value and variance of X are

E(X) =
n∑

i=1

E
(
Xi
)
= np

var(X) =
n∑

i=1

var
(
Xi
)
= np(1 − p)

A related random variable is Y = X∕n, which is the proportion of successes in n trials of an exper-

iment. Its mean and variance are E(Y ) = p and var(Y ) = p(1 − p)∕n.

B.3.3 The Poisson Distribution
Whereas a binomial random variable is the number of event occurrences in a given number of

experimental trials, n, the Poisson random variable is the number of event occurrences in a given

interval of time or space. The probability density function for this discrete random variable X is

P(X = x|μ) = 𝑓(x|μ) =
e−μμx

x!
for x = 0, 1, 2, 3,… (B.44)

Probabilities depend on the parameter μ, and e ≅ 2.71828 is the base of natural logarithms. The

expected value and variance of X are E(X) = var(X) = μ. The Poisson distribution is used in

models involving count variables (Chapter 16), such as the number of visits a person makes to a

physician during a year. Probabilities for x = 0 to 10 for distributions with μ = 3 and μ = 4 are

shown in Figure B.4.

In applications of count data, we sometimes only observe positive outcomes. For example,

suppose we might survey individuals at a shopping mall and ask “How many times have you

visited the mall this year?” The answer must be one or more. Using the notion of a truncated

random variable introduced in Section B.2.6, the probability function in (B.44) becomes

𝑓(x|μ, x > 0) =
𝑓(x|μ)

P(X > 0)
In the case of the Poisson distribution P(X > 0) = 1 − P(X = 0) = 1 − e−μ. Then the truncated
Poisson distribution is

𝑓(x|μ, x > 0) =
𝑓(x|μ)

1 − P(X = 0)
=
(e−μμx)∕x!

1 − e−μ
for x = 1, 2, 3,…
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FIGURE B.4 Poisson distributions.
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B.3.4 The Uniform Distribution
A continuous distribution that is vastly important for theoretical purposes is the uniform dis-
tribution. The random variable X with values a ≤ x ≤ b has a uniform distribution if its pdf is

given by

𝑓(x|a, b) = 1

b − a
for a ≤ x ≤ b (B.45)

The plot of the density function is given in Figure B.5.

The area under f (x) between a and b is one, which is required of any probability density

function for a continuous random variable. The expected value of X is the midpoint of the interval

[a, b], E(X) = (a + b)/2. This can be deduced from the symmetry of the distribution. The variance

of X is var(X) = E
(
X2
)
− μ2 = (b − a)2∕12.

An interesting special case occurs when a = 0 and b = 1, so that f (x) = 1 for 0 ≤ x ≤ 1.

The distribution, shown in Figure B.6, describes one common meaning of “a random number

between zero and one.”

The uniform distribution has the property that any two intervals of equal width have the same

probability of occurring. That is,

P(0.1 ≤ X ≤ 0.6) = P(0.3 ≤ X ≤ 0.8) = P(0.21131 ≤ X ≤ 0.71131) = 0.5

a b
x

f (x)

1
b – a

FIGURE B.5 A uniform distribution.

x

f (x)

1

0 10.1 0.6

FIGURE B.6 A uniform distribution on
[0, 1] interval.
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Picking a number randomly between zero and one is conceptually complicated by the fact that

the interval has an uncountably infinite number of values, and the probability of any one of them

occurring is zero. What is more likely meant by such a statement is that each interval of equal

width has the same probability of occurring, no matter how narrow. This is exactly the nature of

the uniform distribution.

B.3.5 The Normal Distribution
The normal distribution was described in the Probability Primer, Section P.6. A point not

stressed at that time was why we must consult tables, like Statistical Table 1 to calculate normal

probabilities. For example, we now know that for the continuous and normally distributed

random variable X, with mean μ and variance σ2, the probability that X falls in the interval

[a, b] is

∫

b

a
𝑓(x)dx =

∫

b

a

1
√

2πσ2
exp

[

−(x − μ)2∕2σ2
]

dx

Unfortunately this integral does not have a closed-form algebraic solution. Consequently, we

wind up working with tabled values containing numerical approximations to areas under the

standard normal distribution, or we use computer software functions in a similar manner.

Moments of the Normal Distribution If X is a random variable, then E(Xr) is called

the rth moment of the random variable about the origin. Sometimes they are called raw moments.

If X ∼ N
(
μ,σ2

)
, then we have the following useful expressions for the first three moments about

the origin:

E(X) = μ

E
(
X2
)
= μ2 + σ2

E
(
X3
)
= 0

For any random variable X, E(X − μ)r is the rth moment of the random variable about its mean.

Sometimes, these are called central moments. For the normal random variable X ∼ N
(
μ,σ2

)
, these

are

E(X − μ) = 0

E
[
(X − μ)2

]
= σ2

E
[
(X − μ)3

]
= 0

E
[
(X − μ)4

]
= 3σ4

The second moment about the mean E
[
(X − μ)2

]
= σ2 is the variance of the random variable.

The third moment, E
[
(X − μ)3

]
= 0, is related to the skewness of the probability density function.

Because the normal distribution is symmetrical, it is not skewed, its skewness is zero. It is also

true that all odd central moments are zero, so that E
[
(X − μ)r

]
= 0 if r is an odd number. The

fourth moment about the mean, E
[
(X − μ)4

]
= 3σ4, is related to the kurtosis of the distribution,

which is a measure of the thickness of the tails of the distribution. For the normal distribution,

the standardized fourth moment E
[
(X − μ)4∕σ4

]
= 3 is a useful reference point for tail thickness.

For more about population moments see Appendix C.4.
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The Truncated Normal Distribution In Section B.2.6, we introduced the notion of

a truncated random variable. The truncated normal distribution has been studied quite intensely.

Suppose that X ∼ N
(
μ,σ2

)
but the distribution is truncated from below so that x > c. Then

𝑓(x|x > c) =
𝑓(x)

P(X > c)

For the normal distribution

P(X > c) = P
(

X − μ
σ

>

c − μ
σ

)

= 1 − Φ
(c − μ

σ

)

= 1 − Φ(α)

where Φ(α) is the cumulative distribution function of the standard normal random variable eval-

uated at α =(c − μ)∕σ. Then

𝑓(x|x > c) =
𝑓(x)

1 − Φ(α)

Following Greene (2018, p. 921), define the Inverse Mill’s Ratio as

λ(α) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

ϕ(α)
1 − Φ(α)

if truncation is from below, so that x > c

−ϕ(α)
Φ(α)

if truncation is from above, so that x < c

where ϕ(α) is the probability density function of the standard normal random variable evaluated

at α =(c − μ)∕σ. Then the expected value of the truncated normal random variable is

E(X|truncation) = μ + σλ(α)

Letting δ(α) = λ(α)[λ(α) − α], the variance of the truncated normal random variable is

var(X|truncation) = σ2
[
1 − δ(α)

]

This is consistent with the intuition about the variance of a truncated variable in Section B.2.6

because 0 < δ(α) < 1.

The normal distribution is related to the chi-square, t-, and F-distributions, which we now

discuss.

B.3.6 The Chi-Square Distribution
Chi-square random variables arise when standard normal random variables are squared. If Z1,

Z2, …, Zm denote m independent N(0,1) random variables, then

V = Z2
1
+ Z2

2
+…+ Z2

m ∼ χ
2
(m) (B.46)

The notation V ∼ χ2
(m) is read as: The random variable V has a chi-square distribution with m

degrees of freedom. The degrees of freedom parameter m indicates the number of independent
N(0,1) random variables that are squared and summed to form V . The value of m determines the

entire shape of the chi-square distribution, including its mean and variance as

E(V) = E
[

χ2
(m)

]

= m

var(V) = var
[

χ2
(m)

]

= 2m (B.47)
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FIGURE B.7(a) The chi-square distribution.

In Figure B.7(a) graphs of the chi-square distribution for various degrees of freedom are presented.

The values of V must be nonnegative, v ≥ 0, because V is formed by squaring and summing m
standardized normal, N(0,1), random variables. The distribution has a long tail, or is skewed,

to the right. As the degrees of freedom m gets larger, however, the distribution becomes more

symmetric and “bell-shaped.” In fact, as m gets larger, the chi-square distribution converges to,

and essentially becomes, a normal distribution.

The 90th, 95th, and 99th percentile values of the chi-square distribution for selected values

of the degrees of freedom are given in Statistical Table 3. These values are often of interest in

hypothesis testing.

In the definition (B.46) of the chi-square random variable the Zi, i = 1,… ,m are statistically

independent standard normal, N(0, 1), random variables. If, instead, V is equal to the sum of

squares of normal random variables
(
Zi + δi

)
that have a non-zero mean δi and variance 1, then

V has a non-central chi-square distribution with m degrees of freedom and non-centrality
parameter δ = δ2

1
+ δ2

2
+ · · · + δ2

m, which is denoted by χ2
(m,δ). If all δi = 0 then we have the usual

central chi-square distribution. That is,

V =
(
Z1 + δ1

)2 +
(
Z2 + δ2

)2 + · · · +
(
Zm + δm

)2 ∼ χ2
(m,δ)

In Figure B.7(b) we plot a few non-central chi-square distributions, all having m = 10 degrees of

freedom.

The effect of the non-centrality parameter is to shift the chi-square density function to

the right, increasing both the mean and the variance, which become E
[

χ2
(m,δ)

]

= m + δ and

var
[

χ2
(m,δ)

]

= 2(m + 2δ).
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FIGURE B.7(b) Non-central chi-square distributions, m = 10 degrees of
freedom and non-centrality 𝛅 = 0, 3, 6.

B.3.7 The t-Distribution
A t random variable (no upper case) is formed by dividing a standard normal random variable

Z ∼ N(0,1) by the square root of an independent chi-square random variable, V ∼ χ2
(m), that has

been divided by its degrees of freedom m. If Z ∼ N(0,1) and V ∼ χ2
(m), and if Z and V are inde-

pendent, then

t = Z
√

V∕m
∼ t(m) (B.48)

The t-distribution’s shape is completely determined by the degrees of freedom parameter, m, and

the distribution is symbolized by t(m).

Figure B.8(a) shows a graph of the t-distribution with m = 3 degrees of freedom relative to

the N(0,1). Note that the t-distribution is less “peaked,” and more spread out than the N(0,1).

The t-distribution is symmetric, with mean E
(
t(m)

)
= 0 and variance var

(
t(m)

)
= m∕(m − 2).

As the degrees of freedom parameter m →∞, the t(m) distribution approaches the standard

normal N(0,1).

Computer programs have functions for the cdf of t-random variables that can be used to

calculate probabilities. Since certain probabilities are widely used, Statistical Table 2 contains

frequently used percentiles of t-distributions, called critical values of the distribution. For

example, the 95th percentile of a t-distribution with 20 degrees of freedom is t(0.95,20) = 1.725.

The t-distribution is symmetric, so Statistical Table 2 shows only the right tail of the

distribution.

The statistic formed from a N(δ,1) random variable and an independent central chi-square

random variable with m degrees of freedom is called a non-central t-random variable,

t = Z + δ
√

V∕m
∼ t(m,δ)

This distribution has two parameters, the degrees of freedom, m, and the non-centrality parame-
ter δ. The usual t-random variable in (B.48) has non-centrality parameter δ = 0 and is sometimes

called the central t-distribution. The additive factor in the numerator causes the resulting dis-

tribution to be centered at a value other than zero if δ ≠ 0. In Figure B.8(b), we plot the t(3,δ)
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FIGURE B.8(a) The standard normal and t(3) probability density
functions.
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FIGURE B.8(b) Non-central t-distributions, m = 3 degrees of freedom and
non-centrality 𝛅 = 0, 1, 2.

density for values of δ = 0, 1, 2. The positive non-centrality parameter shifts the density function

rightward.

B.3.8 The F-Distribution
An F-random variable is formed by the ratio of two independent chi-square random variables that

have been divided by their degrees of freedom. If V1 ∼ χ2

(m1)
and V2 ∼ χ2

(m2)
, and if V1 and V2 are

independent, then

F =
V1∕m1

V2∕m2

∼ F(m1,m2) (B.49)
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FIGURE B.9(a) The 95th percentile of an F(8,20)-random variable.

The F-distribution is said to have m1 numerator degrees of freedom and m2 denominator degrees
of freedom. The values of m1 and m2 determine the shape of the distribution, which in general

looks like Figure B.9(a). The range of the random variable is (0,∞), and it has a long tail to the

right. For example, the 95th percentile value for an F-distribution with m1 = 8 numerator degrees

of freedom and m2 = 20 denominator degrees of freedom is F(0.95,8,20) = 2.447. Critical values

(two decimal places) for the F-distribution are given in Statistical Table 4 (the 95th percentile)

and Statistical Table 5 (the 99th percentile).

In the definition (B.49), the numerator chi-square random variable V1 has a central
chi-square distribution, with non-centrality parameter δ = 0. The central and non-central

chi-square distributions are discussed in Section B.3.6. If the numerator in (B.49) has a

non-central chi-square distribution, V1 ∼ χ2

(m1,δ)
with m1 degrees of freedom and non-centrality,

δ, then the F-random variable has a non-central F-distribution with numerator degrees of free-

dom m1, denominator degrees of freedom m2 and non-centrality parameter δ. This distribution

is denoted by F(m1,m2,δ). In Figure B.9(b), we show several density functions for comparison with
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FIGURE B.9(b) Non-central F(8, 20, 𝛅)-distributions with 𝛅 = 0, 3, 6.
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Figure B.9(a). These have degrees of freedom m1 = 8, m2 = 20, and non-centrality δ = 0, 3, 6.

As the non-centrality parameter increases, the F-density moves to the right, increasing both its

mean and variance.

B.3.9 The Log-Normal Distribution
A continuous random variable X is said to have a log-normal distribution if

ln(X) ∼ N
(
μ, σ2

)
, x > 0

The probability density function of X is

𝑓(x) = 1

xσ
√

2π
exp

{

−
[
ln(x) − μ

]2

2σ2

}

, x > 0

Probabilities are computed using the cdf of the standard normal random variable, Φ(z). That is

P(X ≤ c) = P
[
ln(X) ≤ ln(c)

]
= P

{[
(ln(X) − μ)∕σ

]
≤
[
(ln(c) − μ)∕σ

]}

= Φ
[
(ln(c) − μ)∕σ

]

The parameters μ and σ2 are the mean and variance of ln(X). The pdf of X is not symmetrical.

The median of X is m = exp(μ) and μ = ln(m).1 The expected value of X is

E(X) = m exp
(
σ2∕2

)
= exp(μ) exp

(
σ2∕2

)
= exp

(
μ + σ2∕2

)

Using ω = exp
(
σ2
)
, the variance of X is

var(X) = m2ω(ω − 1) = exp(2μ) exp
(
σ2
)[

exp
(
σ2
)
− 1

]
= exp

(
2μ + σ2

)[
exp

(
σ2
)
− 1

]

The mode of the density is m/ω so that E(X) = mean > median > mode. In Figure B.10, we plot

the log-normal density for several choices of σ with median m = 1.

0
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1

1.
5
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f(
x)
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x

σ = 1 σ = 0.5
σ = 0.25

FIGURE B.10 Log-normal densities. With median m = 1 and shape
𝛔 = 1, 0.5, 0.25.

............................................................................................................................................

1In the statistics literature σ is sometimes called the shape parameter and m the scale parameter.
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FIGURE B.11 Hypothetical probability density function for WAGE, log-normal
with m = 19.23 and 𝛔 = 0.7.

A common use of the log-normal distribution in Economics is for wages, incomes, and house

prices. These variables are positive, and the distributions are skewed with a long tail to

the right, indicating that a small portion of the population has large values. Using the data

file cps5, the median wage is $19.23, and the mean wage is $23.5. Using the expression for

the expected value of a log-normal distribution E(X) = m exp
(
σ2∕2

)
, we can calculate the

shape parameter σ =
√

2 ln(E(X)∕m), which is about 0.7 using the cps5 data values. Then the

implied distribution of WAGE is shown in Figure B.11. What is the probability that a randomly

chosen worker will have an hourly wage between $10 and $20? Graphically, it is the area under

the pdf between 10 and 20. The calculated probability, using our approximated log-normal

distribution is

P(10 < WAGE < 20) = Φ
[

ln(20) − ln(19.23)
0.7

]

− Φ
[

ln(10) − ln(19.23)
0.7

]

= Φ(0.05609) − Φ(−0.93412)

= 0.52236 − 0.17512 = 0.34724

In the cps5 data, 38.95% of the individuals have a wage between $10 and $20, so our rough

approximation using the log-normal distribution is not far off.

B.4 Random Numbers
In several chapters we carry out Monte Carlo simulations to illustrate the sampling properties of

estimators. See, for example, Chapters 3, 4, 5, 10, 11, and 16. To use Monte Carlo simulations

we rely upon the ability to create random numbers from specific probability distributions, such
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as the uniform and the normal. Using computer simulations is widespread in all sciences. In this

section we introduce to you this aspect of computing.2 You should first realize that the idea of

creating random numbers using a computer is paradoxical, because by definition random num-

bers that are “created” cannot be truly random. The random numbers generated by a computer

are pseudo-random numbers in that they “behave as if they were random.” We present one

method for generating pseudo-random numbers called the inverse transformation approach, or

the inversion method. This method assumes that we have the ability to generate pseudo-random

numbers from the uniform distribution (see Sections B.3.4 and B.4.1) on the (0, 1) interval.

The uniformly distributed random variables are then transformed into random variables with other

distributions.

E X A M P L E B.14 An Inverse Transformation

Let U be a random variable with a uniform distribution. It is a

continuous random variable with pdf h(u) = 1 for u ∈ (0, 1).

See Figure B.6 for an illustration. If Y = U1∕2, then 0 < y < 1.

Furthermore, the square root function is strictly increasing,

so that we can apply the change-of-variable technique to find

the pdf of Y . The inverse function is U = w(Y ) = Y 2, and the

Jacobian of the transformation is dw(y)∕dy = d
(
y2
)
∕dy = 2y.

The pdf of Y is then

𝑓(y) = h
[
w(y)

]
×

dw(y)
dy

= 1 × 2y = 2y, 0 < y < 1

(B.50)

This is a distribution that we have used in Examples B.12

and B.13. The importance of this example is that it shows

that we can obtain a random number from the distribution in

(B.50) by taking the square root of a random number from a

uniform distribution.

Example B.14 leads us toward a general technique, the inversion method, for drawing random

numbers from certain distributions. Suppose you wish to obtain a random number from a specific

probability distribution, with pdf f (y) and cdf F(y).

The Inversion Method: Step by Step

1. Obtain a uniform random number u1 in the (0, 1) interval.

2. Let u1 = F
(
y1

)
.

3. Solve the equation in step 2 for y1 = F−1
(
u1

)
.

4. The value y1 is a random number from the pdf f (y).

The inversion method can be used to draw random numbers from any distribution that permits you

to carry out step 3. The solution is often denoted y1 = F−1
(
u1

)
, where F−1 is called the inverse

cumulative distribution function. The cdf function F is said to be invertible.

............................................................................................................................................

2A well-written book on the subject is by James E. Gentle (2003) Random Number Generation and Monte Carlo
Methods, New York: Springer. Also, J. F. Kiviet (2011) Monte Carlo Simulation for Econometricians, Foundations
and Trends® in Econometrics, vol 5, nos 1–2.
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E X A M P L E B.15 The Inversion Method: An Example

Suppose the target distribution, from which we want a

random number, is f(y) = 2y, 0 < y < 1. The cdf of Y is

P(Y ≤ y) = F(y) = y2
, 0 < y < 1. The two distributions

are shown in Figure B.12. Set a uniform random number

u1 = F
(
y1

)
= y2

1
and solve to obtain y1 = F−1

(
u1

)
=
(
u1

)
1∕2.

The value y1 is a random value, or a random draw, from the

probability distribution f(y) = 2y, 0 < y < 1. This agrees per-

fectly with the result in Example B.6, where we showed that

the square root of a uniform random variable has this pdf .

In Figure B.12(a), suppose the uniform random number

value is u1 = 0.16. It falls between 0 and 1, along the vertical

axis of the cdf function F(y). The value u1 = 0.16 corresponds

1

0.8

0.6

(a)

(b)

0.4

0.2
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u1 = F(y1 = 0.4) = 0.16

y1 = F–1 (u1 = 0.16) = 0.4

F
(y

)

2

1.5

1

5

0

0 0.2 0.4 0.6 0.8 1

AREA = P(0 < Y < 0.4) 

= 0.16

y1 = F–1 (u1 = 0.16) = 0.4

F(y) = y2

f(y) = 2y

f(
y)

FIGURE B.12 (a) Cumulative distribution function and
(b) probability density function.

to the value y1 = 0.4 =
(
u1

)
1∕2 = (0.16)1∕2 on the horizon-

tal axis. In the lower panel we see the connection between

the pdf and the cdf . The area under the pdf to the left of

y1 = 0.4 is the probability P(0 < Y < 0.4) = 0.16. For every

randomly drawn uniform random number ui there is a unique

corresponding yi from the distribution f(y) = 2y, 0 < y < 1.

To illustrate, in the data file uniform1, we have 1,000

observations on two independent uniform random variables

U1 and U2.3 Figure B.13 shows the histogram of U1. There

are 10 intervals and approximately 10% of the values fall

into each, as we would expect for values from a uniform

distribution.

............................................................................................................................................

3The data file uniform2 contains 10,000 observations if you prefer a larger sample.
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FIGURE B.13 Histogram of 1,000 uniform random values.

Let Y1 be the square root of the U1 values. The his-

togram of these values is shown in Figure B.14. It looks like a

triangle, doesn’t it? Just like the density f(y) = 2y, 0 < y < 1.

As a second example, let us consider a slightly

more exotic distribution. The extreme value distribution
is the foundation of logit choice models that are dis-

cussed in Chapter 16. It has probability density function

𝑓(v) = exp(−v) exp(−exp(−v)), depicted in Figure B.15.
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FIGURE B.14 Histogram of 1,000 square roots of uniform random
values.

The extreme value cdf is F(v) = exp(−exp(−v)). Despite

its complicated-looking form, we can obtain values from

this distribution using v = F−1(u) = −ln(−ln(u)). Using

the 1,000 values U1 in data file uniform1, we obtain the

histogram of values from the extreme value distribution

shown in Figure B.16.4 The solid curve superimposed on

the histogram looks much like the extreme value density

function in Figure B.15.

............................................................................................................................................

4The solid curve is a kernel density fitted to the data using a Gaussian kernel. See Appendix C.10 for more on kernel

densities.
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FIGURE B.15 The extreme value distribution.
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FIGURE B.16 Histogram of simulated draws from the extreme value
distribution.

To summarize, the inversion method for generating random numbers from specific distributions

depends upon (1) the ability to obtain uniform random numbers and (2) the distribution having a

cdf that is invertible. The procedure does not work for joint distributions.

Knowing the inversion method, you can generate random variables from other distributions

given a uniform random number generator. Books on statistical distributions5 have instructions

on how to transform uniform random numbers into a wide variety of distributions. A particular

method for generating normal random numbers is illustrated in Exercise B.8.

............................................................................................................................................

5See, for example, Catherine Forbes, Merran Evans, Nicholas Hastings, Brian Peacock (2010) Statistical Distributions,

4th ed., John Wiley and Sons, Inc.
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B.4.1 Uniform Random Numbers
The inversion method depends upon the ability to obtain random numbers from a uniform

distribution. The generation of “random numbers” when used without modifiers usually means

uniform random numbers, which is a field of study in and of itself. As noted earlier, the notion of

computer-generated random numbers is illogical. Computers use algorithms to do their work; an

algorithm is a formula so that the product is not “random,” but randomlike. Computers generate

pseudo-random numbers. Enter that term into your favorite search engine and you will find

many, many links.

One bit of notation that appears in citations is for the mathematical modulus, denoted

“a mod b.” This is shorthand for the remainder resulting from dividing a by b. One method for

calculating the modulus is6

nmodm = n − m ceil(n∕m) + m (B.51)

where ceil is short for the ceiling function that rounds up7 to the next integer. To see how this

works:

7mod3 = 1 = 7 − 3ceil(7∕3) + 3 = 7 − 3ceil(2.3333) + 3 = 7 − 3 • 3 + 3 = 1

A standard method for creating a uniform random number is the linear congruential generator.8

Consider the recursive relationship

Xn =
(
aXn−1 + c

)
modm (B.52)

where a, c, and m are constants that we choose. It means that Xn takes the value equal to the

remainder obtained by dividing aXn−1 + c by m. It is a recursive relationship because the nth

value depends on the (n−1)th. That means we must choose a starting value X0, which is called

the random number seed. Everyone using the same seed, and values a, c, and m will generate

the same string of numbers. The value m is the divisor in (B.52), and it determines the maximum

period of the recursively generated values. The uniform random values falling in the interval

(0, 1) are obtained as Un = Xn∕m. The value of m is often chosen to be 232 when using computers

with 32-bit architecture. The values of a and c are critical to the success of the random number

generator. Bad choices result in sequences of numbers that are not random. For example, type

RANDU into your search engine. This was a popular random number generator in the 1960s

(I used it too!) that was later discovered to be very flawed, failing tests of randomness.9

E X A M P L E B.16 Linear Congruential Generator Example

To illustrate that the process defined in (B.52) can generate

apparently random numbers, we choose X0 = 1234567,

a = 1664525, b = 1013904223, and m = 232 and create

10,000 data values, labeled U1 in the data file uniform3.10

Using a histogram with 20 bins, we would expect 5% of the

values in each, and as Figure B.17 illustrates, that is about

what we get.

The 10,000 values for U1 have sample mean 0.4987197

and variance 0.0820758 compared to the true mean and

variance for a uniform distribution of 0.5 and 0.08333.

The minimum and maximum values are 0.0000327 and

0.9998433, respectively.

............................................................................................................................................

6www.functions.wolfram.com/IntegerFunctions/Mod/27/01/03/01/0001/.

7ceil(x) is the smallest integer not less than x.

8A description and link to sources is www.en.wikipedia.org/wiki/Linear_congruential_generator.

9George Marsaglia developed a series of tests for randomness that are widely used. They are available at

www.stat.fsu.edu/pub/diehard/.

10The variable U2 in this file uses seed 987654321.
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FIGURE B.17 Histogram of 10,000 generated uniform random values.

The lessons learned from these exercises are that random numbers are not random, and some

random number generators are better than others. Ones that are popularly cited are the Mersenne

twister and the KISS+Monster algorithm. New ones continue to be developed, and each software

provider uses different algorithms which are predominately kept secret, or difficult to discover at

any rate.

The third lesson is that you should probably not attempt to write your own random number

algorithms. Professor Ken Train, an econometrician who has studied computational methods a

great deal, says,11“From a practical perspective, my advice is the following: unless one is willing

to spend considerable time investigating and resolving (literally, re-solving)…” the issues related

to designing pseudo-random number routines “… it is probably better to use available routines

rather than write a new one.” Our advice is to use your software to generate random numbers, but

when documenting your work, cite the software used and the software version, as revisions can

change results from one version to another.

B.5 Exercises

B.1 Let X1, X2, …, Xn be independent random variables which all have the same probability distribution,

with mean μ and variance σ2. Let

X = 1

n

n∑

i=1

Xi

a. Use the properties of expected values to show that E
(

X
)

= μ.

b. Use the properties of variance to show that var
(

X
)

= σ2∕n. How have you used the assumption of

independence?

............................................................................................................................................................

11Discrete Choice Methods with Simulation, 2nd ed., 2009, Cambridge University Press, p. 206.
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B.2 Suppose that Y1, Y2, Y3 is a sample of observations from a N
(
μ, σ2

)
population but that Y1, Y2, and

Y3 are not independent. In fact, suppose that

cov
(
Y1, Y2

)
= cov

(
Y2, Y3

)
= cov

(
Y1, Y3

)
= σ2

2

Let Y =
(
Y1 + Y2 + Y3

)
∕3.

a. Find E
(

Y
)

.

b. Find var
(

Y
)

.

B.3 Let X be a continuous random variable with probability density function given by

𝑓(x) = −1

2
x + 1, 0 ≤ x ≤ 2

a. Graph the density function f (x).

b. Find the total area beneath f (x) for 0 ≤ x ≤ 2.

c. Find P (X ≥ 1) using both geometry and integration.

d. Find P
(

X ≤
1

2

)

.

e. Find P
(

X = 1
1

2

)

.

f. Find the expected value and variance of X.

g. Find the cumulative distribution function of X.

B.4 Let X be a uniform random variable on the interval (a, b).

a. Use integration techniques to find the mean and variance of X.

b. Find the cumulative distribution function of X.

B.5 Use the recursive relationship in (B.52) with X0 = 79, m = 100, a = 263, and c = 71 to generate 40 val-

ues X1, X2,…, X40. Do the resulting numbers appear random? Is this a good random number generator,

or not?

B.6 Let X have a normal distribution with mean μ and variance σ2. Use the change-of-variable technique

to find the probability density function of Y = aX + b.

B.7 Show that if E(Y|X) = E(Y ), then cov
[
Y, g(X)

]
= 0 for any function g(X).

B.8 Normal random numbers are useful for Monte Carlo simulations. One way to generate them is using

the Box–Muller transformation. The Box–Muller transformation creates two new random variables,

Z1 and Z2, that have independent N(0, 1) distributions, using

Z1 =
√
−2 ln(U1)cos(2πU2), Z2 =

√
−2 ln(U1) sin(2πU2)

a. Construct a histogram of Z1 and Z2 obtained by using the 1,000 uniform random values U1 and U2
in data file uniform1 (or the 10,000 values in the data file uniform2). Is the distribution of values

“bell shaped”?

b. Calculate the summary statistics for Z1 and Z2. Are the sample mean and variance close to zero

and one, respectively?

c. Construct a scatter diagram for Z1 and Z2. That is, plot Z1 (vertical axis) and Z2 (horizontal axis)

in the x–y plane. Is there any evidence of positive or negative correlation?

B.9 Let X be a continuous random variable with pdf f (x) = 3x2/8 for 0 < x < 2. Compute

a. P
(

0 < X <
1

2

)

b. P(1 < X < 2)
B.10 A continuous random variable X is said to have an exponential distribution if its pdf is f(x) = e−x,

x ≥ 0.

a. Plot this density function for 0 ≤ x ≤ 10.

b. The cumulative distribution function for X is F(x) = 1 – e−x. Plot this function over the interval

0 ≤ x ≤ 10. Is it strictly increasing or decreasing, or are you unsure?

c. Use the inverse transformation method to draw random values X1 from this distribution. Use the

1,000 values for U1 in data file uniform1 or the 10,000 values for U1 in data file uniform2. Construct

a histogram of the values you have created. Does it resemble the plot in (a)?
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d. The true mean and variance of X are μ = 1 and σ2 = 1. How close are the sample mean and the

sample variance to the true values?

B.11 Use the recursive relationship in (B.52) with X0 = 1234567, m = 232, a = 1103515245, and

c = 12345 to generate 1,000 random values called U1. Do the resulting numbers appear random? Is

this a good random number generator, or not? Choose another seed value and generate another 1,000

values called U2. Find the summary statistics and sample correlation for U1 and U2. Do the values

behave as you expect them to, or not?

B.12 Suppose that the joint pdf of the continuous random variables X and Y is f(x, y) = 6x2y for

0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

a. Does this function satisfy the conditions for a valid pdf ?

b. Find the marginal pdf of X, as well as its mean and variance.

c. Find the marginal pdf of Y .

d. Find the conditional pdf of X given Y = 1

2
.

e. Find the conditional mean and variance of X given Y = 1

2
.

f. Are X and Y independent? Explain.

B.13 Suppose that X and Y are continuous random variables with joint pdf 𝑓(x, y) = 1

2
for 0 ≤ x ≤ y ≤ 2

and f (x, y) = 0 otherwise. Note that the values of X are less than or equal to the values of Y .

a. Verify that the volume under the joint pdf is 1.

b. Find the marginal pdf s of X and Y .

c. Find P
(

X <
1

2

)

.

d. Find the cdf of Y .

e. Find the conditional probability P
(

X <
1

2

|
|
|
|
Y
.
= 1.5

)

. Are X and Y independent?

f. Find the expected value and variance of Y .

g. Use the law of iterated expectations to find E(X).

B.14 Let X and Y be two discrete random variables. X can take the values 1, 2, 3, or 4. Y can take the values

1, 2, 3. Their joint pdf is

X

1 2 3 4

Y
1 0.01 0.07 0.09 0.03

2 0.20 0 0.05 0.25

3 0.09 0.03 0.06 0.12

a. Find the marginal distributions, the pdf s of X and Y .

b. Are these two random variables statistically independent? If not, give an example that disproves

independence.

c. Find the conditional pdf of X given that Y = 2, 𝑓(x|Y = 2), for x = 1, 2, 3, and 4.

d. Find the expected value of X.

e. Find the expected value of X given that Y = 2.

B.15 This exercise uses the random variables X and Y , and their joint pdf , from Exercise B.14.

a. Find the variance of X.

b. Find the variance of X given that Y = 2, and the variance of X given that Y = 3. Are they equal?

c. Find the conditional expectations E(X|Y = 1), E(X|Y = 2), and E(X|Y = 3). Using these values

show that E(X) =
∑3

i=1
E(X|Y = i)P(Y = i).

d. Find E(XY).

e. Find cov(X,Y ) = E(XY) – E(X)E(Y ).
f. Find the correlation between X and Y .

B.16 Suppose that the two continuous random variables X and Y have joint pdf 𝑓(x, y) = 21

4
x2y,

if x2 ≤ y ≤ 1.

a. Show that the marginal pdf of X is 𝑓(x) =
∫

1

x2

21

4
x2ydy = 21

8
x2
(
1 − x4

)
if −1 ≤ x ≤ 1.
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b. Show that the conditional pdf of Y given that X = 1

2
is 𝑓(y|X = 1∕2) = 32

15
y for 0.25 ≤ y ≤ 1.

c. Show that the conditional pdf of Y given X = x is 𝑓(y|X = x) =
2y

1 − x4
if x2 ≤ y ≤ 1.

d. Using the result in part (c), show that E(Y|X = x) =
(

2

3

)(
1 − x6

1 − x4

)

.

e. It can be shown that the pdf of Y is 𝑓(y) = 7

2
y5∕2 if 0 ≤ y ≤ 1. (i) Verify that this is a legitimate

pdf and (ii) using this result show that E(Y ) = 7

9
.

f. Using the results in (d) and (a), use the law of iterated expectations to show that E(Y ) =
EX[E(Y|X = x)] = 7

9
.

B.17 Consider the random variable X which is the number of heads occurring in two flips of a fair coin.

a. What values can X take? What are the probabilities of each outcome? What is the probability that

X ≤ 1.5?

b. Write down the values of the cumulative distribution function of X. What is the probability that

X ≤ 1? What is the probability that X ≤ 1.5?

c. Suppose a wager is proposed in which you will receive winnings of W = 2X dollars. What is the

probability distribution of W?

d. What are your expected winnings? Show your work.

e. What is the conditional probability density function of X given that the first flip is a head?

f. What is the conditional expectation of W = 2X given that the first flip is a head?

B.18 Suppose X is a continuous random variable that can take any value between zero and three,

0 < x < 3. The pdf is 𝑓(x) = cx2.

a. Find the value of c that makes this a legitimate pdf .

b. Using the result in (a) find P(0 < X < 2). Show your work.

c. Find the mathematical equation for the cdf F(x). Draw a sketch of the cdf for −∞ < x <∞.

d. Use the cdf in (c) to compute P(0.5 < X < 1).
e. Find the probability P(0.5 < X < 1) given that X < 2.

B.19 The cdf of the continuous random variable X is F(x) = 1 − e−2x for x ≥ 0 and F(x) = 0 otherwise.

a. Draw a sketch of the cdf .

b. Use the cdf to find the probability P(1 < X < 2).
c. Find the pdf of X. Sketch the pdf .

d. Sketch on the pdf the area representing P(1 < X < 2).
B.20 Two discrete random variables X and Y have the joint pdf 𝑓(x, y) = c(2x + y). The random variable X

takes the values x = 0, 1, 2 and the random variable Y takes the values y = 0, 1, 2, 3.

a. Find the value c that makes the probabilities sum to 1.

b. Find P(X ≥ 1, Y ≤ 1).
c. Find the marginal pdf s of X and Y .

d. Find the probability P(X ≥ 1,Y ≤ 1) given that Y ≤ 2.

e. Find the expected value of X.

f. Find the expected value of X given that Y ≤ 2.

g. Are X and Y statistically independent? Explain.

B.21 This exercise uses the joint pdf in Exercise B.14.

a. Find the variance of Y .

b. Find E(Y|X = 1), E(Y|X = 2), E(Y|X = 3), and E(Y|X = 4).
c. Calculate

∑4

x=1
[E(Y|X = x) − E(Y )]2𝑓(x). Which term in equation (B.27) does this represent?

d. Find var(Y|X = 1), var(Y|X = 2), var(Y|X = 3), var(Y|X = 4).
e. Calculate

∑4

x=1
[var(Y|X = x)]𝑓(x). Which term in equation (B.27) does this represent?

f. Use the results in parts (c) and (e) to compute var(Y ).

B.22 An econometrics instructor randomly chooses n = 5 students and gives each a problem to solve. Let

the random variables Xi = 1 if the ith student answers correctly and Xi = 0 if the student does not

answer the question correctly. Suppose that the probability that each student answers correctly is 0.80.

Let X =
∑5

i=1
Xi be the number of students who answer correctly.

a. Use the binomial distribution (B.43) to compute P(X = 3|n = 5, p = 0.80).
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b. From the first group of five students selected, four answered correctly. From a second randomly

selected group of five students, two answered correctly. How does this illustrate the concept of

sampling variation?

c. The instructor repeats the experiment of randomly selecting five students many times, recording

the value X in each experiment. What will the average number of students answering correctly

converge toward, as the number of experiments becomes very large?

d. Draw a sketch of the pdf of this random variable, locating E(X) on the graph.

e. Find var(X). How does this value relate to the concept of sampling variation?

B.23 Suppose that for the population of married U.S. women, the average number of extramarital affairs,

X, is μ = 2.

a. Use the Poisson density function in (B.44) to find the probability that a randomly chosen married

women will have X = 2 affairs.

b. Find the probability that a randomly chosen married woman will have two or more extramarital

affairs. [Hint: First compute P(X = 0) and P(X = 1).]
c. Instead of sampling the entire population of married U.S. women, suppose that we sample the pop-

ulation of women who are known to have had at least one extramarital affair. Find the probability

that a randomly chosen married woman will have two or more extramarital affairs given that she

will have had at least one. That is, find P(X ≥ 2|X ≥ 1).
B.24 Chebyshev’s inequality is a remarkable statistical result. Suppose X is a discrete or continuous random

variable with mean μ and variance σ2. Let ε be any positive number, then P(|X − μ| ≥ ε) ≤ σ2∕ε2.

a. Let X be a normal random variable with mean μ = 1 and variance σ2 = 1. Draw a sketch of the pdf
of X.

b. Let ε = 1. On the sketch in (a) show P(|X − 1| ≥ 1).
c. Using the normal probabilities in Statistical Table 1, or your computer software, compute

P(|X − 1| ≥ 1). Does the calculated value agree with Chebyshev’s inequality?

B.25 Chebyshev’s inequality is given in Exercise B.24.

a. If we let ε = kσ what does the inequality become?

b. Let X be a normal random variable with mean μ = 1 and variance σ2 = 1. Find the exact probability

P(|X − 1| ≥ 2σ). Does the value you calculate agree with the version of Chebyshev’s inequality

derived in part (a)?

c. Let U be a uniform random variable, see Section B.3.4, on the interval [0, 1]. Find the exact proba-

bility P(|U − 0.5| > 2σ). Does this result agree with the revised version of Chebyshev’s inequality

derived in part (a)?

d. Let Y be a binomial random variable based on n = 10 trials each with probability p = 0.8. For

this binomial distribution, what are the mean μ and standard deviation σ? Using your computer

software, compute P(|Y − μ| > 2σ). Does your computed value agree with the revised version of

Chebyshev’s inequality derived in part (a)?

B.26 Suppose that X is a random variable, and g(X) is a convex function of X. Then Jensen’s inequality,

as used in probability theory, says g[E(X)] ≤ E
[
g(X)

]
. A convex function “curves up” without any

inflection points. If a function g(X) has second derivative that is positive over an interval, then it is

convex over the interval.

a. Consider the function g(X) = X2 over the interval X > 0. Find the second derivative of this func-

tion. Is g(X) convex for X > 0? Draw a simple sketch of the function.

b. Suppose X is a discrete random variable taking the values x = 1, 2, 3, 4 with probabilities 0.1,

0.2, 0.3, and 0.4, respectively. Find E(X) and E(X2). Is[E(X)]2 ≤ E
(
X2
)
?

c. The variance of the random variable X is E
{
[X − E(X)]2

}
= E

(
X2
)
− [E(X)]2. Using Jensen’s

inequality what can we say about the variance of a random variable?

B.27 Suppose that X is a random variable, and g(X) is a concave function of X. Then Jensen’s inequality, as

used in probability theory, says g[E(X)] ≥ E
[
g(X)

]
. A concave function has a continuously diminishing

slope. If a function g(X) has second derivative that is negative over an interval, then it is concave over

the interval.

a. Consider the function g(X) = ln(X) over the interval X > 0. Find the second derivative of this

function. Is g(X) concave for X > 0? Draw a simple sketch of the function.

b. Suppose X is a discrete random variable taking the values x = 1, 2, 3, 4 with probabilities 0.1,

0.2, 0.3, and 0.4, respectively. Find E(X) and E[ln(X)]. Is ln[E(X)] ≥ E[ln(X)]?
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c. Jensen’s inequality is also true for sample averages. Suppose x1, x2, …, xn are numbers and g(x)

is a concave function. Then g
(∑n

i=1
xi∕n

)
≥
∑n

i=1
g
(
xi
)
∕n. Suppose x1 = 1, x2 = 2, x3 = 3, and

x4 = 4. Show that ln
(∑4

i=1
xi∕4

)

≥
∑4

i=1
ln
(
xi
)
∕4.

B.28 Let X and Y be random variables. The Cauchy–Schwarz inequality, as used in probability theory, is

[E(XY )]2 ≤ E
(
X2
)

E
(
Y 2
)
.

a. Using the joint probabilities in Table P.3, in the Probability Primer, Section P.3.2, verify that

[E(XY )]2 ≤ E
(
X2
)

E
(
Y 2
)

holds.

b. Replace the random variables X and Y by X − E(X) = X − μX and Y − E(Y ) = Y − μY. Show that

the Cauchy–Schwarz inequality implies [cov(X,Y )]2 ≤ var(X) var(Y ).
c. Using the joint probabilities in Table P.3, in the Probability Primer, Section P.3.2, verify that

[cov(X, Y )]2 ≤ var(X) var(Y ).
d. Use the fact that [cov(X, Y )]2 ≤ var(X) var(Y ) to prove that the correlation ρXY must fall in the

interval [−1, 1].
e. Show that [cov(X, Y )]2 = var(X) var(Y ) if Y = a + bX, where a and b are constants.

B.29 Let X be a random variable and consider a function g(X) ≥ 0 for every value of X. Assume E[g(X)]

exists. Then Markov’s inequality is P
(
g(X) ≥ c

)
≤ c−1E[g(X)].

a. Suppose X is a discrete random variable taking the values x = 1, 2, 3, 4 with probabilities 0.1, 0.2,

0.3, and 0.4, respectively. Let g(X) = X2. Find P
[
X2 ≥ 5

]
. Find E(X2). Is P

[
X2 ≥ 5

]
≤ E

(
X2
)
∕5?

b. Let g(X) =
(
X − μX

)2
, where μX = E(X). Let c = k2σ2

X . Show that Markov’s inequality leads to

Chebyshev’s inequality. [Author’s note: Many mathematical inequalities are used in probability

and statistics. A good list is in Dale J. Poirier (1995) Intermediate Statistics and Econometrics:
A Comparative Approach, MIT Press, Chapter 2.8. There Poirier (page 76) also relates a conver-

sation between Nobel Prize winning economist Lawrence Klein and statistician Harold Freeman.

Lawrence Klein “If the Devil promised you a theorem in return for your immortal soul, would you

accept the bargain?” Harold Freeman “No. But I would for an inequality.”]

B.30 Suppose X is a uniformly distributed variable on the (0, 1) interval. That is, f (x) = 1 if 0 < x < 1

and f (x) = 0 otherwise. Further, suppose that the conditional pdf of Y given X = x is f (y|x) = 1∕x
for 0 < y < x and f (y|x) = 0 otherwise. [Adapted from Takeshi Amemiya (1994) Introduction to
Statistics and Econometrics, Harvard University Press.]

a. Use the law of iterated expectations to show that E(Y ) = EXE(Y|X) = 1∕4.

b. Show that 𝑓(x, y) = 1∕x for 0 < x < 1 and 0 < y < x, but 𝑓(x, y) = 0 otherwise. Then show 𝑓(y) =

ln(y) for 0 < y < 1. Then find E(Y ) =
∫

1

0

y𝑓(y) dy.

B.31 Suppose X is a uniformly distributed variable on the (0, 1) interval. That is, 𝑓(x) = 1 if 0 < x < 1

and 𝑓(x) = 0 otherwise. Suppose the random variable Y takes the values 1 and 0, and the condi-

tional probabilities of these values are P(Y = 1|X = x) = x and P(Y = 0|X = x) = 1 − x. [Adapted

from Takeshi Amemiya (1994) Introduction to Statistics and Econometrics, Harvard University Press.]

a. Use the law of iterated expectations to show E(Y ) = 1∕2.

b. Use the variance decomposition to show that var(Y ) = 1∕4.
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Appendix C

Review of Statistical Inference

L E A R N I N G O B J E C T I V E S

Based on the material in this appendix, you should be able to

1. Discuss the difference between a population and

a sample, and why we use samples of data as a

basis for inference about population parameters.

2. Connect the concepts of a population and a

random variable, indicating how the probability

density function of a random variable, and the

expected value and variance of the random

variable, inform us about the population.

3. Explain the difference between the population

mean and the sample mean.

4. Explain the difference between an estimate and

an estimator, and why the latter is a random

variable.

5. Explain the terms sampling variation and

sampling distribution.

6. Explain the concept of unbiasedness, and use

the rules of expected values to show that the

sample mean is unbiased.

7. Explain why we prefer unbiased estimators with

smaller variances to those with larger variances.

8. Describe the central limit theorem, and its

implications for statistical inference.

9. Explain the relation between the population

‘‘standard deviation’’ and the standard error of

the sample mean.

10. Explain the difference between point and

interval estimation, and construct and interpret

interval estimates of a population mean given a

sample of data.

11. Give, in simple terms, a clarification of what the

phrase ‘‘95% level of confidence’’ does and does

not mean in relation to interval estimation.

12. Explain the purpose of hypothesis testing, and

list the elements that must be present when

carrying out a test.

13. Discuss the implications of the possible

alternative hypotheses when testing the null

hypothesis H0∶μ = 7. Give an economic example

in which this hypothesis might be tested against

one of the alternatives.

14. Describe the level of significance of a test, and

explain the difference between the level of

significance and the p-value of a test.

15. Define Type I error and its relationship to the

level of significance of a test.

16. Explain the difference between one-tail tests

and two-tail tests, describing when one is

preferred to the other.

17. Explain the difference and implications between

the statements ‘‘I accept the null hypothesis’’

and ‘‘I do not reject the null hypothesis.’’

18. Give an intuitive explanation of maximum

likelihood estimation, and describe the

properties of the maximum likelihood estimator.

19. List the three types of tests associated with

maximum likelihood estimation and comment

on their similarities and differences.

20. Distinguish between parametric and

nonparametric estimation.

21. Understand how a kernel density estimator fits

an empirical distribution.

812
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K E Y W O R D S

alternative hypothesis

asymptotic distribution

BLUE

central limit theorem

central moments

estimate

estimator

experimental design

information measure

interval estimate

kernel density estimator

Lagrange multiplier test

law of large numbers

level of significance

likelihood function

likelihood ratio test

linear estimator

log-likelihood function

maximum likelihood estimation

nonparametric

null hypothesis

parametric

point estimate

population parameter

p-value

random sample

rejection region

sample mean

sample variance

sampling distribution

sampling variation

standard error

standard error of the estimate

standard error of the mean

statistical inference

test statistic

two-tail tests

Type I error

Type II error

unbiased estimators

Wald test

Economists are interested in relationships between economic variables. For example, how much

can we expect the sales of Frozen Delight ice cream to rise if we reduce the price by 5%?

How much will household food expenditure rise if household income rises by $100 per month?

Questions such as these are the main focus of this book.

However, sometimes questions of interest focus on a single economic variable. For example,

an airplane seat designer must consider the average hip size of passengers in order to allow ade-

quate room for each person, while still designing the plane to carry the profit-maximizing number

of passengers. What is the average hip size, or more precisely hip width, of U.S. flight passengers?

If a seat 18 inches wide is planned, what percent of customers will not be able to fit? Questions

like this must be faced by manufacturers of everything from golf carts to women’s jeans. How can

we answer these questions? We certainly cannot take the measurements of every man, woman,

and child in the U.S. population. This is a situation when statistical inference is used. Infer means

“to conclude by reasoning from something known or assumed.” Statistical inference means that

we will draw conclusions about a population based on a sample of data.

C.1 A Sample of Data
To carry out statistical inference, we need data. The data should be obtained from the population in

which we are interested. For the airplane seat designer this is essentially the entire U.S. population

above the age of two, since small children can fly “free” on the laps of their suffering parents.

A separate branch of statistics, called experimental design, is concerned with the question of

how to actually collect a representative sample. How would you proceed if you were asked to

obtain 50 measurements of hip size representative of the entire population? This is not such an

easy task. Ideally the 50 individuals will be randomly chosen from the population, in such a way

that there is no pattern of choices. Suppose we focus on only the population of adult flyers, since

usually there are few children on planes. Our experimental design specialist draws a sample that

is shown in Table C.1 and stored in the data file hip.
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T A B L E C.1 Sample Hip Size Data

14.96 14.76 15.97 15.71 17.77

17.34 17.89 17.19 13.53 17.81

16.40 18.36 16.87 17.89 16.90

19.33 17.59 15.26 17.31 19.26

17.69 16.64 13.90 13.71 16.03

17.50 20.23 16.40 17.92 15.86

15.84 16.98 20.40 14.91 16.56

18.69 16.23 15.94 20.00 16.71

18.63 14.21 19.08 19.22 20.23

18.55 20.33 19.40 16.48 15.54

E X A M P L E C.1 Histogram of Hip Width Data

A first step when analyzing a sample of data is to exam-

ine it visually. Figure C.1 is a histogram of the 50 data

points. Based on this figure, the “average” hip size in

this sample seems to be between 16 and 18 inches. For
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FIGURE C.1 Histogram of hip sizes.

our profit-maximizing designer this casual estimate is not

sufficiently precise. In the next section we set up an econo-

metric model that will be used as a basis for inference in this

problem.

C.2 An Econometric Model
The data in Table C.1 were obtained by sampling. Sampling from a population is an experiment.

The variable of interest in this experiment is an individual’s hip size. Before the experiment is per-

formed we do not know what the values will be, thus the hip size of a randomly chosen person is a

random variable. Let us denote this random variable as Y . We choose a sample of N = 50 individ-

uals, Y1, Y2,… , YN, where each Yi represents the hip size of a different person. The data values in
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Table C.1 are specific values of the variables, which we denote as y1, y2,… , yN. We assume that

the population has a center, which we describe by the expected value of the random variable Y ,

E(Y) = μ (C.1)

We use the Greek letter μ (“mu”) to denote the mean of the random variable Y , and also the mean

of the population we are studying. Thus if we knew μ we would have the answer to the question

“What is the average hip size of adults in the United States?” To indicate its importance to us in

describing the population we call μ a population parameter, or, more briefly, a parameter. Our

objective is to use the sample of data in Table C.1 to make inferences, or judgments, about the

unknown population parameter μ.

The other random variable characteristic of interest is its variability, which we measure by

its variance,

var(Y) = E
[
Y − E(Y)

]2 = E
[
Y − μ

]2 = σ2 (C.2)

The variance σ2 is also an unknown population parameter. As described in the Probability Primer,

the variance of a random variable measures the “spread” of a probability distribution about the

population mean, with a larger variance meaning a wider spread, as shown in Figure P.3. In the

context of the hip data, the variance tells us how much hip sizes can vary from one randomly

chosen person to the next. To economize on space, we will denote the mean and variance of a

random variable as Y ∼
(
μ, σ2

)
where∼means “is distributed as.” The first element in parentheses

is the population mean and the second is the population variance. So far we have not said what

kind of probability distribution we think Y has.

The econometric model is not complete. If our sample is drawn randomly, we can assume

that Y1, Y2,… , YN are statistically independent. The hip size of any one individual is independent

of the hip size of another randomly drawn individual. Furthermore, we assume that each of the

observations we collect is from the population of interest, so each random variable Yi, has the

same mean and variance, or Yi ∼
(
μ, σ2

)
. The Yi constitute a random sample, in the statistical

sense, because Y1, Y2,… , YN are statistically independent with identical probability distributions.

It is sometimes reasonable to assume that population values are normally distributed, which we

represent by Y ∼ N
(
μ, σ2

)
.

C.3 Estimating the Mean of a Population
How shall we estimate the population mean μ given our sample of data values in Table C.1?

The population mean is given by the expected value E(Y) = μ. The expected value of a random

variable is its average value in the population. It seems reasonable, by analogy, to use the average

value in the sample, or sample mean, to estimate the population mean. Denote by y1, y2,… , yN
the sample of N observations. Then the sample mean is

y =
∑

yi∕N (C.3)

The notation y (pronounced “y-bar”) is widely used for the sample mean, and you probably

encountered it in your statistics courses.

E X A M P L E C.2 Sample Mean of Hip Width Data

For the hip data in Table C.1 we obtain y = 17.1582, thus

we estimate that the average hip size in the population is

17.1582 inches.

Given the estimate y = 17.1582 we are inclined to ask,

“How good an estimate is 17.1582?” By that we mean how

close is 17.1582 to the true population mean, μ? Unfortu-

nately this is an ill-posed question in the sense that it can

never be answered. In order to answer it, we would have to

know μ, in which case we would not have tried to estimate it

in the first place!
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Instead of asking about the quality of the estimate we will ask about the quality of the estimation
procedure, or estimator. How good is the sample mean as an estimator of the mean of a popula-

tion? This is a question we can answer. To distinguish between the estimate and the estimator of

the population mean μ we will write the estimator as

Y =
N∑

i=1

Yi∕N (C.4)

In (C.4) we have used Yi instead of yi to indicate that this general formula is used whatever the

sample values turn out to be. In this context Yi are random variables, and thus the estimator Y
is random too. We do not know the value of the estimator Y until a data sample is obtained, and

different samples will lead to different values.

E X A M P L E C.3 Sampling Variation of Sample Means of Hip Width Data

To illustrate, we collect 10 more samples of size N = 50

and calculate the average hip size, as shown in Table C.2.

The estimates differ from sample to sample because Y
is a random variable. This variation, due to collection of

different random samples, is called sampling variation. It is

an inescapable fact of statistical analysis that the estimator

Y—indeed, all statistical estimation procedures—are subject

to sampling variability. Because of this terminology, an esti-

mator’s probability density function is called its sampling
distribution.

T A B L E C.2 Sample Means from 10 Samples

Sample y
1 17.3544

2 16.8220

3 17.4114

4 17.1654

5 16.9004

6 16.9956

7 16.8368

8 16.7534

9 17.0974

10 16.8770

We can determine how good the estimator Y is by examining its expected value, variance, and

sampling distribution.

C.3.1 The Expected Value of Y
Write out formula (C.4) fully as

Y =
N∑

i=1

1

N
Yi =

1

N
Y1 +

1

N
Y2 + · · · +

1

N
YN (C.5)

From (P.16) the expected value of this sum is the sum of expected values

E
(

Y
)

= E
(

1

N
Y1

)

+ E
(

1

N
Y2

)

+ · · · + E
(

1

N
YN

)

= 1

N
E
(
Y1

)
+ 1

N
E
(
Y2

)
+ · · · + 1

N
E
(
YN

)

= 1

N
μ + 1

N
μ + · · · + 1

N
μ

= μ



�

� �

�

C.3 Estimating the Mean of a Population 817

The expected value of the estimator Y is the population mean μ that we are trying to estimate.

What does this mean? The expectation of a random variable is its average value in all possible

random samples from the population. If we did obtain many samples of size N, and obtained

their average values, like those in Table C.2, then the average of all those values would equal

the true population mean μ. This property is a good one for estimators to have. Estimators with

this property are called unbiased estimators. The sample mean Y is an unbiased estimator of the

population mean μ.

Unfortunately, while unbiasedness is a good property for an estimator to have, it does not tell

us anything about whether our estimate y = 17.1582, based on a single sample of data, is close

to the true population mean value μ. To assess how far the estimate might be from μ, we will

determine the variance of the estimator.

C.3.2 The Variance of Y
The variance of Y is obtained using the procedure for finding the variance of a sum of uncorrelated

(zero covariance) random variables in (P.23). We can apply this rule if our data are obtained by

random sampling, because with random sampling the observations are statistically independent,

and thus are uncorrelated. Furthermore, we have assumed that var
(
Yi
)
= σ2 for all observations.

Carefully note how these assumptions are used in the derivation of the variance of Y , which we

write as var
(

Y
)

:

var
(

Y
)

= var
(

1

N
Y1 +

1

N
Y2 + · · · +

1

N
YN

)

= 1

N2
var

(
Y1

)
+ 1

N2
var

(
Y2

)
+ · · · + 1

N2
var

(
YN

)

= 1

N2
σ2 + 1

N2
σ2 + · · · + 1

N2
σ2

= σ2

N

(C.6)

This result tells us that (i) the variance of Y is smaller than the population variance, because the

sample size N ≥ 2, and (ii) the larger the sample size, the smaller the sampling variation of Y as

measured by its variance.

C.3.3 The Sampling Distribution of Y
If the population data are normally distributed, then we say that the random variable Yi follows a

normal distribution. In this case the estimator Y also follows a normal distribution. In (P.36) it is

noted that weighted averages of normal random variables are normal themselves. From (C.5) we

know that Y is a weighted average of Yi. If Yi ∼ N
(
μ, σ2

)
, then Y is also normally distributed, or

Y ∼ N
(
μ, σ2∕N

)
.

We can gain some intuition about the meaning and usefulness of the finding that

Y ∼ N
(
μ, σ2∕N

)
if we examine Figure C.2. Each of the normal distributions in this figure is a

sampling distribution of Y . The differences among them are the sample sizes used in estimation.

The sample size N3 > N2 > N1. Increasing the sample size decreases the variance of the estimator

Y , var
(

Y
)

= σ2∕N, and this increases the probability that the sample mean will be “close” to the

true population parameter μ. When examining Figure C.2, recall that an area under a probability

density function (pdf ) measures the probability of an event. If ε represents a positive number,

the probability that Y falls in the interval between μ − ε and μ + ε is greater for larger samples.
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pdf of Y

N1

N2

N3

μ + εμ – ε μ

FIGURE C.2 Increasing sample size and sampling distributions of Y.

The lesson here is that having more data is better than having less data, because having a larger

sample increases the probability of obtaining an estimate “close” or “within ε” of the true

population parameter μ.

E X A M P L E C.4 The Effect of Sample Size on Sample Mean Precision

In our numerical example, suppose we want our estimate

of μ to be within 1 inch of the true value. Let us compute

the probability of getting an estimate within ε = 1 inch of

μ—that is, within the interval [μ − 1, μ + 1]. For the purpose

of illustration assume that the population is normal, σ2 = 10

and N = 40. Then Y ∼ N
(
μ, σ2∕N = 10∕40 = 0.25

)
. We

can compute the probability that Y is within 1 inch of μ by

calculating P
[
μ − 1 ≤ Y ≤ μ + 1

]
. To do so we standardize Y

by subtracting its mean μ and dividing by its standard devi-

ation σ
/√

N, and then use the standard normal distribution

and Statistical Table 1:

P
[

μ − 1 ≤ Y ≤ μ + 1
]

= P

[

−1

σ∕
√

N
≤

Y − μ

σ∕
√

N
≤

1

σ∕
√

N

]

= P

[

−1
√

0.25
≤ Z ≤

1
√

0.25

]

= P[−2 ≤ Z ≤ 2] = 0.9544

Thus, if we draw a random sample of size N = 40 from a nor-

mal population with variance 10, using the sample mean as

an estimator will provide an estimate within 1 inch of the true

value about 95% of the time. If N = 80, the probability that

Y is within 1 inch of μ increases to 0.995.

C.3.4 The Central Limit Theorem
We were able to carry out the above analysis because we assumed that the population we are

considering, hip width of U.S. adults, has a normal distribution. This implies that Yi ∼ N
(
μ, σ2

)
,

and Y ∼ N
(
μ, σ2∕N

)
. A question we need to ask is “If the population is not normal, then what is

the sampling distribution of the sample mean?” The central limit theorem provides an answer

to this question.
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Central Limit Theorem:
If Y1,… ,YN are independent and identically distributed random variables with mean μ and

variance σ2, and Y =
∑

Yi∕N, then

ZN =
Y − μ

σ
/√

N

has a probability distribution that converges to the standard normal N(0, 1) as N → ∞.

This theorem says that the sample average of N independent random variables from any proba-

bility distribution will have an approximate standard normal distribution after standardizing (i.e.,

subtracting the mean and dividing by the standard deviation), if the sample is sufficiently large.

A shorthand notation is Y a∼N
(
μ, σ2∕N

)
, where the symbol

a∼ means asymptotically distributed.

The word asymptotic implies that the approximate normality of Y depends on having a large

sample. Thus even if the population is not normal, if we have a sufficiently large sample, we can

carry out calculations like those in the previous section. How large does the sample have to be? In

general, it depends on the complexity of the problem, but in the simple case of estimating a pop-

ulation mean, if N ≥ 30 then you can feel pretty comfortable in assuming that the sample mean is

approximately normally distributed, Y a∼N
(
μ, σ2∕N

)
, as indicated by the central limit theorem.

E X A M P L E C.5 Illustrating the Central Limit Theorem

To illustrate how well the central limit theorem actually

works, we carry out a simulation experiment. Let the

continuous random variable Y have a triangular distribution,
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FIGURE C.3 Central limit theorem.

with probability density function

𝑓 (y) =
{

2y 0 < y < 1

0 otherwise
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Draw a sketch of the triangular pdf to understand its name.

The expected value of Y is μ = E(Y) = 2∕3, and its variance

is σ2 = var(Y) = 1∕18. The central limit theorem says that

if Y1,… ,YN are independent and identically distributed with

density f (y) then

ZN =
Y − 2∕3
√

1∕18

N
has a probability distribution that approaches the standard

normal distribution as N approaches infinity.

We use a random number generator to create random

values from the triangular pdf . Plotting 10,000 values gives

the histogram in Figure C.3(a). We generate 10,000 samples

of sizes N = 3, 10, and 30, compute the sample means of

each sample, and create ZN. Their histograms are shown in

Figures C.3(b)–(d). You see the amazing convergence of the

standardized sample mean’s distribution to a distribution that

is bell shaped, centered at zero, symmetric, with almost all

values between −3 and 3, just like a standard normal distri-

bution, with a sample size as small as N = 10.

C.3.5 Best Linear Unbiased Estimation

Another powerful finding about the estimator Y of the population mean is that it is the best of all

possible estimators that are both linear and unbiased. A linear estimator is simply one that is a

weighted average of Yi’s, such as Y =
∑

aiYi, where ai are constants. The sample mean Y , given

in (C.4), is a linear estimator with ai = 1∕N. The fact that Y is the “best” linear unbiased estimator

(BLUE) accounts for its wide use. “Best” means that it is the linear unbiased estimator with the

smallest possible variance. In the previous section we demonstrated that it is better to have an

estimator with a smaller variance rather than a larger one—because it increases the chances of

getting an estimate close to the true population mean μ. This important result about the estimator

Y is true if the sample values Yi ∼
(
μ, σ2

)
are uncorrelated and identically distributed. It does not

depend on the population being normally distributed. A proof of this result is in Section C.9.2.

C.4 Estimating the Population Variance

and Other Moments
The sample mean Y is an estimate of the population mean μ. The population mean is often called

the “first moment” since it is the expected value of Y to the first power. Higher moments are

obtained by taking expected values of higher powers of the random variable, so the second

moment of Y is E
(
Y2

)
, the third moment is E

(
Y3

)
, and so on. When the random variable has

its population mean subtracted, it is said to be centered. Expected values of powers of centered

random variables are called central moments, and they are often denoted as μr, so that the rth

central moment of Y is

μr = E
[
(Y − μ)r

]

The value of the first central moment is zero since μ1 = E(Y − μ)1 = E(Y) – μ = 0. It is the higher

central moments of Y that are interesting:

μ2 = E
[
(Y − μ)2

]
= σ2

μ3 = E
[
(Y − μ)3

]

μ4 = E
[
(Y − μ)4

]

You recognize that the second central moment of Y is its variance, and the third and fourth

moments appear in the definitions of skewness and kurtosis introduced in Appendix B.1.2. The

question we address in this section is, now that we have an excellent estimator of the mean of a

population, how do we estimate these higher moments? We will first consider estimation of the

population variance, and then address the problem of estimating the third and fourth moments.
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C.4.1 Estimating the Population Variance

The population variance is var(Y) = σ2 = E[Y − μ]2. An expected value is an “average” of sorts,

so if we knew μ we could estimate the variance by using the sample analog σ̃2 =
∑(

Yi − μ
)2/N.

We do not know μ, so replace it by its estimator Y , giving

σ̃2 =

∑(

Yi − Y
)2

N
This estimator is not a bad one. It has a logical appeal, and it can be shown to converge to the

true value of σ2 as the sample size N → ∞, but it is biased. To make it unbiased, we divide by

N − 1 instead of N. This correction is needed since the population mean μ has to be estimated

before the variance can be estimated. This change does not matter much in samples of at least

30 observations, but it does make a difference in smaller samples. The unbiased estimator of the

population variance σ2 is

σ̂2 =

∑(

Yi − Y
)2

N − 1
(C.7)

You may remember this estimator from a prior statistics course as the “sample variance.” Using

the sample variance we can estimate the variance of the estimator Y as

var
⋀

(

Y
)

= σ̂2∕N (C.8)

In (C.8) note that we have put a “hat” (̂) over this variance to indicate that it is an estimated

variance. The square root of the estimated variance is called the standard error of Y and is also

known as the standard error of the mean and the standard error of the estimate,

se
(

Y
)

=
√

var
⋀

(

Y
)

= σ̂∕
√

N (C.9)

C.4.2 Estimating Higher Moments

Recall that central moments are expected values, μr = E
[
(Y − μ)r

]
, and thus are averages in the

population. In statistics the law of large numbers says that sample means converge to population

averages (expected values) as the sample size N → ∞. We can estimate the higher moments by

finding the sample analog and replacing the population mean μ by its estimate Y , so that

μ̃2 =
∑(

Yi − Y
)2/

N = σ̃2

μ̃3 =
∑(

Yi − Y
)3/

N

μ̃4 =
∑(

Yi − Y
)4/

N

Note that in these calculations we divide by N and not by N − 1, since we are using the law of large

numbers (i.e., large samples) as justification, and in large samples the correction has little effect.

Using these sample estimates of the central moments we can obtain estimates of the skewness

coefficient (S) and kurtosis coefficient (K) as

skewness
⋀

= S =
μ̃3

σ̃3

kurtosis
⋀

= K =
μ̃4

σ̃4
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E X A M P L E C.6 Sample Moments of the Hip Data

The sample variance for the hip data is

σ̂2 =
∑(

yi − y
)2

N − 1
=

∑(
yi − 17.1582

)2

49
= 159.9995

49

= 3.2653

This means that the estimated variance of the sample mean is

var
⋀

(

Y
)

= σ̂2

N
= 3.2653

50
= 0.0653

and the standard error of the mean is

se
(

Y
)

= σ̂
/√

N = 0.2556

The estimated skewness is S = −0.0138 and the estimated

kurtosis is K = 2.3315 using

σ̃ =
√

∑(

Yi − Y
)2/

N =
√

159.9995∕50 = 1.7889

μ̃3 =
∑(

Yi − Y
)3/

N = −0.0791

μ̃4 =
∑(

Yi − Y
)4/

N = 23.8748

Thus, the hip data is slightly negatively skewed and is slightly

less peaked than would be expected for a normal distribution.

Nevertheless, as we will see in Section C.7.4, we cannot con-

clude that the hip data follow a non-normal distribution.

E X A M P L E C.7 Using the Hip Data Estimates

How can we summarize what we have learned? Our estimates

suggest that the hip size of U.S. adults is normally distributed

with mean 17.158 inches and with a variance of 3.265;

Y ∼ N(17.158, 3.265). Based on this information, if an air-

plane seat is 18 inches wide, what percentage of customers

will not be able to fit? We can recast this question as asking

what the probability is that a randomly drawn person will

have hips larger than 18 inches,

P(Y > 18) = P
(

Y − μ
σ

>

18 − μ
σ

)

We can give an approximate answer to this question by

replacing the unknown parameters by their estimates,

P(Y > 18)
⋀

≅ P
(

Y − y
σ̂

>
18 − 17.158

1.8070

)

= P(Z > 0.4659)

= 0.3207

Based on our estimates, 32% of the population would not be

able to fit into a seat that is 18 inches wide.

How large would a seat have to be to fit 95% of the

population? If we let y∗ denote the required seat size,

then

P
(
Y ≤ y∗

)
⋀

≅ P
(

Y − y
σ̂

≤
y∗ − 17.1582

1.8070

)

= P
(

Z ≤
y∗ − 17.1582

1.8070

)

= 0.95

Using your computer software, or the table of normal

probabilities, the value of Z such that P
(
Z ≤ z*

)
= 0.95 is

z* = 1.645. Then

y∗ − 17.1582

1.8070
= 1.645 ⇒ y∗ = 20.1305

Thus, to accommodate 95% of U.S. adult passengers,

we estimate that the seats should be slightly greater than

20 inches wide.

C.5 Interval Estimation
In contrast to a point estimate of the population mean μ, like y= 17.158, a confidence interval, or

interval estimate, is a range of values that may contain the true population mean. A confidence

interval contains information not only about the location of the population mean, but also about

the precision with which we estimate it.

C.5.1 Interval Estimation: σ2 Known

Let Y be a normally distributed random variable, Y ∼ N
(
μ, σ2

)
. Assume that we have a random

sample of size N from this population, Y1, Y2,… , YN. The estimator of the population mean
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is Y =
∑N

i=1
Yi∕N. Because we have assumed that Y is normally distributed, it is also true that

Y ∼ N
(
μ, σ2∕N

)
.

For the present, let us assume that the population variance σ2 is known. This assumption is

not likely to be true, but making it allows us to introduce the notion of confidence intervals with

few complications. In the next section we introduce methods for the case when σ2 is unknown.

Create a standard normal random variable

Z =
Y − μ

√

σ2
/

N
=

Y − μ

σ
/√

N
∼ N(0, 1) (C.10)

Cumulative probabilities for the standard normal are given by its cumulative distribution function

(see the Probability Primer, Section P.7)

P(Z ≤ z) = Φ(z)

These values are given in Statistical Table 1. Let zc be a “critical value” for the standard nor-

mal distribution, such that α = 0.05 of the probability is in the tails of the distribution, with

α∕2 = 0.025 of the probability in the tail to the right of zc and α∕2 = 0.025 of the probabil-

ity in the tail to the left of −zc. The critical value is the 97.5 percentile of the standard normal

distribution, zc = 1.96, with Φ(1.96) = 0.975. It is shown in Figure C.4. Thus, P(Z ≥ 1.96) =
P(Z ≤ −1.96) = 0.025 and

P(−1.96 ≤ Z ≤ 1.96) = 1 − 0.05 = 0.95 (C.11)

Substitute (C.10) into (C.11) and rearrange to obtain

P
(

Y − 1.96σ
/√

N ≤ μ ≤ Y + 1.96σ
/√

N
)

= 0.95

In general,

P

(

Y − zc
σ

√
N

≤ μ ≤ Y + zc
σ

√
N

)

= 1 − α (C.12)

where zc is the appropriate critical value for a given value of tail probability α such that

Φ
(
zc
)
= 1 − α∕2. In (C.12) we have defined the interval estimator

Y ± zc
σ

√
N

(C.13)

Our choice of the phrase interval estimator is a careful one. Intervals constructed using (C.13), in

repeated sampling from the population, have a 100(1 − α)% chance of containing the population

mean μ.

= 0.025α

2

= 0.025

1 – α = 0.95

α

2

–4 –3 –2 –1 0

–zc = –1.96 zc = 1.96

1 2 3 4 

FIGURE C.4 𝛂 = 0.05 Critical values for the N(0, 1)
distribution.



�

� �

�

824 APPENDIX C Review of Statistical Inference

E X A M P L E C.8 Simulating the Hip Data: Interval Estimates

In order to use the interval estimator in (C.13) we must

have data from a normal population with a known variance.

To illustrate the computation, and the meaning of interval

estimation, we will create a sample of data using a computer

simulation. Statistical software programs contain random

number generators. These are routines that create values

from a given probability distribution. Table C.3 (data

file table_c3) contains 30 random values from a normal

population with mean μ = 10 and variance σ2 = 10.

T A B L E C.3 30 Values from N(10, 10)

11.939 11.407 13.809

10.706 12.157 7.443

6.644 10.829 8.855

13.187 12.368 9.461

8.433 10.052 2.439

9.210 5.036 5.527

7.961 14.799 9.921

14.921 10.478 11.814

6.223 13.859 13.403

10.123 12.355 10.819

The sample mean of these values is y = 10.206 and the cor-

responding interval estimate for μ, obtained by applying the

interval estimator in (C.13) with a 0.95 probability content,

is 10.206 ± 1.96 ×
√

10∕30 = [9.074, 11.338]. To appreciate

how the sampling variability of an interval estimator arises,

consider Table C.4, which contains the interval estimate for

the sample in Table C.3, as well as the sample means and

interval estimates from another 9 samples of size 30, like that

in Table C.3. The whole 10 samples are stored in the data file

table_c4.

T A B L E C.4
Confidence Interval Estimates from
10 Samples of Data

Sample y Lower Bound Upper Bound
1 10.206 9.074 11.338

2 9.828 8.696 10.959

3 11.194 10.063 12.326

4 8.822 7.690 9.953

5 10.434 9.303 11.566

6 8.855 7.723 9.986

7 10.511 9.380 11.643

8 9.212 8.080 10.343

9 10.464 9.333 11.596

10 10.142 9.010 11.273

Table C.4 illustrates the sampling variation of the estimator

Y . The sample mean varies from sample to sample. In this

simulation, or Monte Carlo experiment, we know that the

true population mean, μ = 10, and the estimates Y are cen-

tered at that value. The half-width of the interval estimates is

1.96σ
/√

N. Note that while the point estimates Y in Table C.4

fall near the true value μ = 10, not all of the interval estimates

contain the true value. Intervals from samples 3, 4, and 6 do

not contain the true value μ = 10. However, in 10,000 simu-

lated samples the average value of y = 10.004 and 94.86% of

intervals constructed using (C.13) contain the true parameter

value μ = 10.

These numbers in Example C.8 reveal what is, and what is not, true about interval estimates.

• Any one interval estimate may or may not contain the true population parameter value.

• If many samples of size N are obtained, and intervals are constructed using (C.13) with

(1 − α) = 0.95, then 95% of them will contain the true parameter value.

• A 95% level of “confidence” is the probability that the interval estimator will provide an

interval containing the true parameter value. Our confidence is in the procedure, not in any

one interval estimate.

Since 95% of intervals constructed using (C.13) will contain the true parameter μ = 10, we will be

surprised if an interval estimate based on one sample does not contain the true parameter. Indeed,

the fact that 3 of the 10 intervals in Table C.4 do not contain μ = 10 is surprising, since out of 10

we would assume that only one 95% interval estimate might not contain the true parameter. This

just goes to show that what happens in any one sample, or just a few samples, is not what sampling

properties tell us. Sampling properties tell us what happens in many repeated experimental trials,

or in all possible samples from a population.



�

� �

�

C.5 Interval Estimation 825

C.5.2 Interval Estimation: σ2 Unknown

The standardization in (C.10) assumes that the population variance σ2 is known. When σ2 is

unknown, it is natural to replace it with its estimator σ̂2 given in (C.7)

σ̂2 =

∑N
i=1

(

Yi − Y
)2

N − 1

When we do so, the resulting standardized random variable has a t-distribution (see Appendix

B.3.7) with (N − 1) degrees of freedom,

t =
Y − μ

σ̂
/√

N
∼ t(N−1) (C.14)

The notation t(N−1) denotes a t-distribution with N − 1 “degrees of freedom.” Let the critical

value tc be the 100(1 − α∕2) -percentile value t(1−α∕2,N−1). This critical value has the property that

P
[
t(N−1) ≤ t(1−α∕2,N−1)

]
= 1 − α∕2. Critical values for the t-distribution are contained in Statistical

Table 2. If tc is a critical value from the t-distribution, then

P

(

−tc ≤
Y − μ

σ̂
/√

N
≤ tc

)

= 1 − α

Rearranging, we obtain

P

(

Y − tc
σ̂

√
N

≤ μ ≤ Y + tc
σ̂

√
N

)

= 1 − α

The 100(1 − α)% interval estimator for μ is

Y ± tc
σ̂

√
N

or Y ± tcse
(

Y
)

(C.15)

Unlike the interval estimator for the known σ2 case in (C.13), the interval in (C.15) has center

and width that vary from sample to sample.

Remark
The confidence interval (C.15) is based upon the assumption that the population is normally

distributed, so that Y is normally distributed. If the population is not normal, then we invoke

the central limit theorem, and say that Y is approximately normal in “large” samples, which

from Figure C.3 you can see might be as few as 30 observations. In this case, we can use

(C.15), recognizing that there is an approximation error introduced in smaller samples.

E X A M P L E C.9 Simulating the Hip Data: Continued

Table C.5 contains estimated values of σ2 and interval

estimates using (C.15) for the same 10 samples used

for Table C.4. For the sample size N = 30 and the

95% confidence level, the t-distribution critical value

tc = t(0.975,29) = 2.045. The estimates Y are the same as

in Table C.4. The estimates σ̂2 vary about the true value

σ2 = 10. Of these 10 intervals, those for samples 4 and 6

do not contain the true parameter μ = 10. Nevertheless, in

10,000 simulated samples 94.82% of them contain the true

population mean μ = 10.
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T A B L E C.5 Interval Estimates Using (C.15) from 10 Samples

Sample y �̂�2 Lower Bound Upper Bound

1 10.206 9.199 9.073 11.338

2 9.828 6.876 8.849 10.807

3 11.194 10.330 9.994 12.394

4 8.822 9.867 7.649 9.995

5 10.434 7.985 9.379 11.489

6 8.855 6.230 7.923 9.787

7 10.511 7.333 9.500 11.523

8 9.212 14.687 7.781 10.643

9 10.464 10.414 9.259 11.669

10 10.142 17.689 8.571 11.712

E X A M P L E C.10 Interval Estimation Using the Hip Data

We have introduced the empirical problem faced by an

airplane seat design engineer. Given a random sample

of size N = 50 we estimated the mean U.S. hip width

to be y = 17.158 inches. Furthermore we estimated the

population variance to be σ̂2 = 3.265; thus the estimated

standard deviation is σ̂ = 1.807. The standard error of the

mean is σ̂
/√

N = 1.807
/√

50 = 0.2556. The critical value

for interval estimation comes from a t-distribution with

N − 1 = 49 degrees of freedom. While this value is not in

Statistical Table 2, the correct value using our software is

tc = t(0.975,49) = 2.0095752, which we round to tc = 2.01. To

construct a 95% interval estimate we use (C.15), replacing

estimates for the estimators, to give

y ± tc
σ̂

√
N
= 17.1582 ± 2.01

1.807
√

50

= [16.6447, 17.6717]

We estimate that the population mean hip size falls between

16.645 and 17.672 inches. Although we do not know if

this interval contains the true population mean hip size for

sure, we know that the procedure used to create the interval

“works” 95% of the time; thus we would be surprised if the

interval did not contain the true population value μ.

C.6 Hypothesis Tests About a Population Mean
Hypothesis testing procedures compare a conjecture, or a hypothesis, that we have about a popu-

lation to the information contained in a sample of data. The conjectures we test here concern the

mean of a normal population. In the context of the problem faced by the airplane seat designer,

suppose that airplanes since 1970 have been designed assuming that the mean population hip

width is 16.5 inches. Is that figure still valid today?

C.6.1 Components of Hypothesis Tests
Hypothesis tests use sample information about a parameter—namely, its point estimate and its

standard error—to draw a conclusion about the hypothesis. In every hypothesis test, five ingredi-

ents must be present:
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Components of Hypothesis Tests

A null hypothesis, H0

An alternative hypothesis, H1

A test statistic
A rejection region

A conclusion

The Null Hypothesis The “null” hypothesis, which is denoted by H0 (H-naught), specifies

a value c for a parameter. We write the null hypothesis as H0∶μ = c. A null hypothesis is the belief

we will maintain until we are convinced by the sample evidence that it is not true, in which case

we reject the null hypothesis.

The Alternative Hypothesis Paired with every null hypothesis is a logical alternative

hypothesis, H1, that we will accept if the null hypothesis is rejected. The alternative hypothesis
is flexible and depends to some extent on the problem at hand. For the null hypothesis H0∶μ = c
three possible alternative hypotheses are

• H1 :μ > c. If we reject the null hypothesis that μ = c, we accept the alternative that μ is

greater than c.

• H1 :μ < c. If we reject the null hypothesis that μ = c, we accept the alternative that μ is less

than c.

• H1 :μ ≠ c. If we reject the null hypothesis that μ = c, we accept the alternative that μ takes

a value other than (not equal to) c.

The Test Statistic The sample information about the null hypothesis is embodied in

the sample value of a test statistic. Based on the value of a test statistic, we decide either to

reject the null hypothesis or not to reject it. A test statistic has a very special characteristic: its

probability distribution is completely known when the null hypothesis is true, and it has some

other distribution if the null hypothesis is not true.

Consider the null hypothesis H0∶μ = c. If the sample data come from a normal population

with mean μ and variance σ2, then

t =
Y − μ

σ̂∕
√

N
∼ t(N−1)

If the null hypothesis H0∶μ = c is true, then

t = Y − c
σ̂∕
√

N
∼ t(N−1) (C.16)

If the null hypothesis is not true, then the t-statistic in (C.16) does not have the usual t-distribution.
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Remark
The test statistic distribution in (C.16) is based on an assumption that the population is nor-

mally distributed. If the population is not normal, then we invoke the central limit theorem,

and say that Y is approximately normal in “large” samples. We can use (C.16), recognizing

that there is an approximation error introduced if our sample is small.

The Rejection Region The rejection region depends on the form of the alternative. It is

the range of values of the test statistic that leads to rejection of the null hypothesis. They are values

that are unlikely and have low probability of occurring when the null hypothesis is true. The chain

of logic is “If a value of the test statistic is obtained that falls in a region of low probability, then

it is unlikely that the test statistic has the assumed distribution, and thus it is unlikely that the

null hypothesis is true.” If the alternative hypothesis is true, then values of the test statistic will

tend to be unusually large or unusually small. The terms “large” and “small” are determined by

choosing a probability α, called the level of significance of the test, which provides a meaning

for “an unlikely event.” The level of significance of the test α is usually chosen to be 0.01, 0.05,

or 0.10.

Conclusion When you have completed a hypothesis test, you should state your conclusion,

whether you reject the null hypothesis. However, we urge you to make it standard practice to say

what the conclusion means in the economic context of the problem you are working on—that is,

interpret the results in a meaningful way. This should be a point of emphasis in all statistical work

that you do.

We will now discuss the mechanics of carrying out alternative versions of hypothesis tests.

C.6.2 One-Tail Tests with Alternative ‘‘Greater Than’’ (>)
If the alternative hypothesis H1∶μ > c is true, then the value of the t-statistic (C.16) tends to

become larger than usual for the t-distribution. Let the critical value tc be the 100(1 − α)-percentile

t(1−α, N−1) from a t-distribution with N − 1 degrees of freedom. Then P
(
t ≤ tc

)
= 1 − α, where α

is the level of significance of the test. If the t-statistic is greater than or equal to tc, then we reject

H0∶μ = c and accept the alternative H1∶μ > c, as shown in Figure C.5.

If the null hypothesis H0∶μ = c is true, then the test statistic (C.16) has a t-distribution, and

its values would tend to fall in the center of the distribution, where most of the probability is

contained. If t < tc, then there is no evidence against the null hypothesis, and we do not reject it.

α

μ = c

μ = c

Reject H0:

Do not
reject H0:

tc = t(1–α, m)

t(m)

0

FIGURE C.5 The rejection region for the one-tail test
of H0∶𝛍 = c against H1∶𝛍 > c.
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C.6.3 One-Tail Tests with Alternative ‘‘Less Than’’ (<)
If the alternative hypothesis H1∶μ < c is true, then the value of the t-statistic (C.16) tends to

become smaller than usual for the t-distribution. The critical value −tc is the 100α-percentile

t(α, N−1) from a t-distribution with N − 1 degrees of freedom. Then P
(
t ≤ −tc

)
= α, where α is the

level of significance of the test as shown in Figure C.6. If t ≤ −tc, then we reject H0∶μ = c and

accept the alternative H1∶μ < c. If t > −tc, then we do not reject H0∶μ = c.

Memory Trick
The rejection region for a one-tail test is in the direction of the arrow in the alternative.

If alternative is “>”, then reject in right tail. If alternative is “<”, reject in left tail.

C.6.4 Two-Tail Tests with Alternative ‘‘Not Equal To’’ (≠)
If the alternative hypothesis H1∶μ ≠ c is true, then values of the test statistic may be unusually

“large” or unusually “small.” The rejection region consists of the two “tails” of the t-distribution,

and this is called a two-tail test. In Figure C.7, the critical values for testing H0∶μ = c against

H1∶μ ≠ c are depicted. The critical value is the 100(1 − α∕2)-percentile from a t-distribution with

N − 1 degrees of freedom, tc = t(1−α/2, N−1), so that P(t ≥ tc) = P
(
t ≤ −tc

)
= α∕2.

If the value of the test statistic t falls in the rejection region, either tail of the t(N−1) distribution,

then we reject the null hypothesis H0∶μ = c and accept the alternative H1∶μ ≠ c. If the value of

the test statistic t falls in the nonrejection region, between the critical values −tc and tc, then we

do not reject the null hypothesis H0∶μ = c.

t(m)

Do not
reject H0:

μ = c

Reject H0:
μ = c

–tc = t(α, m)

α

0

FIGURE C.6 Critical value for one-tail test H0∶𝛍 = c
versus H1∶𝛍 < c.

–tc = t(α/2, m) tc = t(1− α/2, m)

α/2
α/2

Reject H0: μ = c
Accept H1: μ ≠ cDo not reject

 H0: μ = c

Reject H0: μ = c
Accept H1: μ ≠ c

f(t)

t(m)

FIGURE C.7 Rejection region for a test of H0∶𝛍 = c against H1∶𝛍 ≠ c.
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E X A M P L E C.11 One-tail Test Using the Hip Data

Let us illustrate by testing the null hypothesis that the pop-

ulation hip size is 16.5 inches, against the alternative that it

is greater than 16.5 inches. The following five-step format is

recommended.

1. The null hypothesis is H0∶μ = 16.5. The alternative

hypothesis is H1∶μ > 16.5.

2. The test statistic t =
(

Y − 16.5
)/(

σ̂
/√

N
)

∼ t(N−1) if the
null hypothesis is true.

3. Let us select the level of significance α = 0.05. The crit-

ical value tc = t(0.95,49) = 1.6766 for a t-distribution with

N – 1 = 49 degrees of freedom. Thus we will reject the

null hypothesis in favor of the alternative if t ≥ 1.68.

4. Using the hip data, the estimate of μ is y = 17.1582, with

estimated variance σ̂2 = 3.2653, so σ̂ = 1.807. The value

of the test statistic is

t = 17.1582 − 16.5

1.807
/√

50
= 2.5756

5. Conclusion: Since t = 2.5756 > 1.68, we reject the null

hypothesis. The sample information we have is incom-
patible with the hypothesis that μ = 16.5. We accept the

alternative that the population mean hip size is greater

than 16.5 inches, at the α = 0.05 level of significance.

E X A M P L E C.12 Two-tail Test Using the Hip Data

Let us test the null hypothesis that the population hip size

is 17 inches, against the alternative that it is not equal to
17 inches. The steps of the test are

1. The null hypothesis is H0∶μ = 17. The alternative

hypothesis is H1∶μ ≠ 17.

2. The test statistic t =
(

Y − 17
)/(

σ̂
/√

N
)

∼ t(N−1) if the
null hypothesis is true.

3. Let us select the level of significance α = 0.05. In a

two-tail test α∕2 = 0.025 of probability is allocated to

each tail of the distribution. The critical value is the

97.5 percentile of the t-distribution, which leaves 2.5%

of the probability in the upper tail, tc = t(0.975,49) = 2.01

for a t-distribution with N – 1 = 49 degrees of freedom.

Thus, we will reject the null hypothesis in favor of the

alternative if t ≥ 2.01 or if t ≤ −2.01.

4. Using the hip data, the estimate of μ is y = 17.1582, with

estimated variance σ̂2 = 3.2653, so σ̂ = 1.807. The value

of the test statistic is

t =(17.1582 − 17)
/(

1.807
/√

50
)

= 0.6191.

5. Conclusion: Since −2.01 < t = 0.6191 < 2.01 we do not
reject the null hypothesis. The sample information we

have is compatible with the hypothesis that the popula-

tion mean hip size μ = 17.

Warning
Care must be taken when interpreting the outcome of a statistical test. One of the basic

precepts of hypothesis testing is that finding a sample value of the test statistic in the non-

rejection region does not make the null hypothesis true! Suppose another null hypothesis is

H0∶μ = c∗, where c* is “close” to c. If we fail to reject the hypothesis μ = c, then we will

likely fail to reject the hypothesis that μ = c∗. In the example above, at the α = 0.05 level,

we fail to reject the hypothesis that μ is 17, 16.8, 17.2, or 17.3. In fact, in any problem there

are many hypotheses that we would fail to reject, but that does not make any of them true.

The weaker statements “we do not reject the null hypothesis” or “we fail to reject the null

hypothesis” do not send a misleading message.
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C.6.5 The p-Value

When reporting the outcome of statistical hypothesis tests it has become common practice to

report the p-value of the test. If we have the p-value of a test, p, we can determine the outcome

of the test by comparing the p-value to the chosen level of significance, α, without looking up or

calculating the critical values ourselves. The rule is

p-Value Rule
Reject the null hypothesis when the p-value is less than, or equal to, the level of significance

α. That is, if p ≤ α then reject H0. If p > α, then do not reject H0.

If you have chosen the level of significance to be α = 0.01, 0.05, 0.10, or any other value, you

can compare it to the p-value of a test and then reject, or not reject, without checking the critical

value tc.

How the p-value is computed depends on the alternative. If t is the calculated value (not the

critical value tc) of the t-statistic with N − 1 degrees of freedom, then

• if H1∶μ > c, p = probability to the right of t
• if H1∶μ < c, p = probability to the left of t
• H1∶μ ≠ c, p = sum of probabilities to the right of |t| and to the left of −|t|

The direction of the alternative indicates the tail(s) of the distribution in which the p-value falls.

E X A M P L E C.13 One-tail Test p-value: The Hip Data

In Example C.11 we used the hip data to test H0∶μ = 16.5

against H1∶μ > 16.5. The calculated t-statistic value was

t = 2.5756. In this case, since the alternative is “greater

than” (>), the p-value of this test is the probability that

a t-random variable with N − 1 = 49 degrees of freedom

is greater than 2.5756. This probability value cannot be

found in the usual t-table of critical values, but it is easily

found using the computer. Statistical software packages,

and spreadsheets such as Excel, have simple commands to

evaluate the cumulative distribution function (cdf ) (see the

Probability Primer, Section P.2) for a variety of probability

distributions. If FX(x) is the cdf for a random variable X, then

for any value x = c, P[X ≤ c] = FX(c). Given such a function

for the t-distribution, we compute the desired p-value as

p = P
(
t(49) ≥ 2.576

)
= 1 − P

(
t(49) ≤ 2.576

)
= 0.0065

Given the p-value, we can immediately conclude that at

α = 0.01 or 0.05 we reject the null hypothesis in favor of

the alternative, but if α = 0.001 we would not reject the null

hypothesis.

The logic of the p-value rule is shown in Figure C.8.

If 0.0065 of the probability lies to the right of t = 2.5756,

then the critical value tc that leaves a probability of

α = 0.01
(
t(0.99,49)

)
or α = 0.05

(
t(0.95,49)

)
in the tail must be to

the left of 2.5756. In this case, when the p-value ≤ α, it must

be true that t ≥ tc, and we should reject the null hypothesis

for either of these levels of significance. On the other hand,

it must be true that the critical value for α = 0.001 must fall

to the right of 2.5756, meaning that we should not reject the

null hypothesis at this level of significance.

–4 –3 –2 –1 0
t

t(49)

p = 0.0065

1 2 3 4
2.5756

t(0.95, 49) t(0.99, 49)

FIGURE C.8 p-value for a right-tail test.
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E X A M P L E C.14 Two-Tail Test p-Value: The Hip Data

For a two-tail test, the rejection region is in the two tails of

the t-distribution, and the p-value must similarly be calcu-

lated in the two tails of the distribution. For the hip data,

we tested the null hypothesis H0∶μ = 17 against H1∶μ ≠ 17,

yielding the test statistic value t = 0.6191. The p-value is

p = P
[
t(49) ≥ 0.6191

]
+ P

[
t(49) ≤ −0.6191

]

= 2 × 0.2694 = 0.5387

Since the p-value = 0.5387 > α = 0.05, we do not reject

the null hypothesis H0∶μ = 17 at α = 0.05 or any other

common level of significance. The two-tail p-value is shown

in Figure C.9.

t = 0.6191
p = 0.5387

 = 0.2694
p
2

–0.6191 0.6191

–t(0.975, 49) t(0.975, 49)

t(49)

 = 0.2694
p
2

FIGURE C.9 The p-value for a two-tail test.

C.6.6 A Comment on Stating Null and Alternative
Hypotheses

A statistical test procedure cannot prove the truth of a null hypothesis. When we fail to reject

a null hypothesis, all the hypothesis test can establish is that the information in a sample of

data is compatible with the null hypothesis. On the other hand, a statistical test can lead us

to reject the null hypothesis, with only a small probability, α, of rejecting the null hypothesis

when it is actually true. Thus rejecting a null hypothesis is a stronger conclusion than failing

to reject it.

The null hypothesis is usually stated in such a way that if our theory is correct, then we will

reject the null hypothesis. For example, our airplane seat designer has been operating under the

assumption (the maintained or null hypothesis) that the population mean hip width is 16.5 inches.

Casual observation suggests that people are getting larger all the time. If we are larger, and if the

airline wants to continue to accommodate the same percentage of the population, then the seat

widths must be increased. This costly change should be undertaken only if there is statistical

evidence that the population hip size is indeed larger. When using a hypothesis test we would like

to find out whether there is statistical evidence against our current “theory,” or whether the data

are compatible with it. With this goal, we set up the null hypothesis that the population mean is

16.5 inches, H0∶μ = 16.5, against the alternative that it is greater than 16.5 inches, H1∶μ > 16.5.

In this case, if we reject the null hypothesis, we have shown that there has been a “statistically

significant” increase in hip width.

You may view the null hypothesis to be too limited in this case, since it is feasible that the

population mean hip width is now smaller than 16.5 inches. The hypothesis test of the null hypoth-

esis H0∶μ ≤ 16.5 against the alternative hypothesis H1∶μ > 16.5 is exactly the same as the test

for H0∶μ = 16.5 against the alternative hypothesis H1∶μ > 16.5. The test statistic and rejection

region are exactly the same. For a one-tail test you can form the null hypothesis in either of

these ways.

Finally, it is important to set up the null and alternative hypotheses before you analyze or

even collect the sample of data. Failing to do so can lead to errors in formulating the alternative

hypothesis. Suppose that we wish to test whether μ > 16.5 and the sample mean is y = 15.5.

Does that mean we should set up the alternative μ < 16.5, to be consistent with the estimate?

The answer is no. The alternative is formed to state the conjecture that we wish to establish,

μ > 16.5.
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C.6.7 Type I and Type II Errors
Whenever we reject—or do not reject—a null hypothesis, there is a chance that we may be making

a mistake. This is unavoidable. In any hypothesis testing situation, there are two ways that we can

make a correct decision and two ways that we can make an incorrect decision.

Correct Decisions

The null hypothesis is false and we decide to reject it.

The null hypothesis is true and we decide not to reject it.

Incorrect Decisions

The null hypothesis is true and we decide to reject it (a Type I error).

The null hypothesis is false and we decide not to reject it (a Type II error).

When we reject the null hypothesis we risk what is called a Type I error. The probability of a

Type I error is α, the level of significance of the test. When the null hypothesis is true, the t-statistic

falls in the rejection region with probability α. Thus hypothesis tests will reject a true hypothesis

100α% of the time. The good news here is that we can control the probability of a Type I error by

choosing the level of significance of the test, α.

We risk a Type II error when we do not reject the null hypothesis. Hypothesis tests will lead

us to fail to reject null hypotheses that are false with a certain probability. The magnitude of the

probability of a Type II error is not under our control and cannot be computed, because it depends

on the true value of μ, which is unknown. However, we do know that

• The probability of a Type II error varies inversely with the level of significance of the test,

α, which is the probability of a Type I error. If you choose to make α smaller, the probability

of a Type II error increases.

• If the null hypothesis is μ = c, and if the true (unknown) value of μ is close to c, then the

probability of a Type II error is high.

• The larger the sample size N, the lower the probability of a Type II error, given a level of

Type I error α.

An easy to remember example of the difference between Type I and Type II errors is from the

U.S. legal system. In a trial, a person is presumed innocent. This is the “null” hypothesis, the

alternative hypothesis being that the person is guilty. If we convict an innocent person, then we

have rejected a null hypothesis that is true, committing a Type I error. If we fail to convict a guilty

person, failing to reject the false null hypothesis, then we commit a Type II error. Which is the

more costly error in this context? Is it better to send an innocent person to jail, or to let a guilty

person go free? It is better in this case to make the probability of a Type I error very small.

C.6.8 A Relationship Between Hypothesis Testing
and Confidence Intervals

There is an algebraic relationship between two-tail hypothesis tests and confidence interval esti-

mates that is sometimes useful. Suppose that we are testing the null hypothesis H0∶μ = c against

the alternative H1∶μ ≠ c. If we fail to reject the null hypothesis at the α level of significance,
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then the value c will fall within a 100(1 − α)% confidence interval estimate of μ. Conversely, if

we reject the null hypothesis, then c will fall outside the 100(1 − α)% confidence interval esti-

mate of μ. This algebraic relationship is true because we fail to reject the null hypothesis when

–tc ≤ t ≤ tc, or when

−tc ≤
Y − c
σ̂
/√

N
≤ tc

which when rearranged becomes

Y − tc
σ̂

√
N

≤ c ≤ Y + tc
σ̂

√
N

The endpoints of this interval are the same as the endpoints of a 100(1 − α)% confidence interval

estimate of μ. Thus for any value of c within the confidence interval, we do not reject H0∶μ = c
against the alternative H1∶μ ≠ c. For any value of c outside the confidence interval, we reject

H0∶μ = c and accept the alternative H1∶μ ≠ c.

This relationship can be handy if you are given only a confidence interval and want to deter-

mine what the outcome of a two-tail test would be.

C.7 Some Other Useful Tests
In this section we very briefly summarize some additional tests. These tests are not only useful in

and of themselves, but also illustrate the use of test statistics with chi-square and F-distributions.

These distributions were introduced in Appendix B.3.

C.7.1 Testing the Population Variance

Let Y be a normally distributed random variable, Y ∼ N(μ, σ2). Assume that we have a random

sample of size N from this population, Y1, Y2,… , YN. The estimator of the population mean is

Y =
∑

Yi∕N, and the unbiased estimator of the population variance is σ̂2 =
∑(

Yi − Y
)2/
(N − 1).

To test the null hypothesis H0∶σ2 = σ2
0
, we use the test statistic

V = (N − 1) σ̂2

σ2
0

∼ χ2
(N−1)

If the null hypothesis is true, then the test statistic has the indicated chi-square distribution with

N − 1 degrees of freedom. If the alternative hypothesis is H1∶σ2
> σ2

0
, then we carry out a

one-tail test. If we choose the level of significance α = 0.05, then the null hypothesis is rejected if

V ≥ χ2
(0.95,N−1), where χ2

(0.95,N−1) is the 95th percentile of the chi-square distribution with N − 1

degrees of freedom. These values can be found in Statistical Table 3, or computed using statistical

software. If the alternative hypothesis is H1∶σ2 ≠ σ2
0
, then we carry out a two-tail test, and the

null hypothesis is rejected if V ≥ χ2
(0.975,N−1) or if V ≤ χ2

(0.025,N−1). The chi-square distribution

is skewed, with a long tail to the right, so we cannot use the properties of symmetry when

determining the left- and right-tail critical values.

C.7.2 Testing the Equality of Two Population Means

Let two normal populations be denoted by N
(
μ1, σ2

1

)
and N

(
μ2, σ2

2

)
. In order to estimate and test

the difference between means, μ1− μ2, we must have random samples of data from each of the

two populations. We draw a sample of size N1 from the first population, and a sample of size

N2 from the second population. Using the first sample we obtain the sample mean Y1 and sample
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variance σ̂2
1
; from the second sample we obtain Y2 and σ̂2

2
. How the null hypothesis H0∶μ1− μ2 = c

is tested depends on whether the two population variances are equal or not.

Case 1: Population variances are equal If the population variances are equal, so that

σ2
1
= σ2

2
= σ2

p, then we use information in both samples to estimate the common value

σ2
p. This “pooled variance estimator” is

σ̂2
p =

(
N1 − 1

)
σ̂2

1
+
(
N2 − 1

)
σ̂2

2

N1 + N2 − 2

If the null hypothesis H0∶μ1 − μ2 = c is true, then

t =

(

Y1 − Y2

)

− c
√

σ̂2
p

(
1

N1

+ 1

N2

)
∼ t(N1+N2−2)

As usual, we can construct a one-sided alternative, such as H1∶μ1
−μ2 > c, or the

two-sided alternative H1∶μ1
−μ2 ≠ c.

Case 2: Population variances are unequal If the population variances are not equal, then we

cannot use the pooled variance estimate. Instead, we use

t∗ =

(

Y1 − Y2

)

− c
√

σ̂2
1

N1

+
σ̂2

2

N2

The exact distribution of this test statistic is neither normal nor the usual t-distribution.

The distribution of t∗ can be approximated by a t-distribution with degrees of freedom

df =
(
σ̂2

1
∕N1 + σ̂

2
2
∕N2

)2

⎛
⎜
⎜
⎝

(
σ̂2

1
∕N1

)2

N1 − 1
+
(
σ̂2

2
∕N2

)2

N2 − 1

⎞
⎟
⎟
⎠

This is one of several approximations that appear in the statistics literature, and your

software may well use a different one.

C.7.3 Testing the Ratio of Two Population Variances

Given two normal populations, denoted by N
(
μ1, σ2

1

)
and N

(
μ2, σ2

2

)
, we can test the null hypoth-

esis H0∶σ2
1

/
σ2

2
= 1. If the null hypothesis is true, then the population variances are equal. The test

statistic is derived from the results that
(
N1 − 1

)
σ̂2

1

/
σ2

1
∼ χ2

(N1−1) and
(
N2 − 1

)
σ̂2

2

/
σ2

2
∼ χ2

(N2−1).
In Appendix B.3.8 we define an F-random variable, which is formed by taking the ratio of two

independent chi-square random variables that have been divided by their degrees of freedom. In

this case, the relevant ratio is

F =

(
N1 − 1

)
σ̂2

1
∕σ2

1
(
N1 − 1

)

(
N2 − 1

)
σ̂2

2
∕σ2

2
(
N2 − 1

)

=
σ̂2

1

/
σ2

1

σ̂2
2

/
σ2

2

∼ F(N1−1,N2−1)

If the null hypothesis H0∶σ2
1

/
σ2

2
= 1 is true then the test statistic is F = σ̂2

1

/
σ̂2

2
, which has

an F-distribution with N1 − 1 numerator and N2 – 1 denominator degrees of freedom. If the
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alternative hypothesis is H1∶σ2
1

/
σ2

2
≠ 1, then we carry out a two-tail test. If we choose level

of significance α = 0.05, then we reject the null hypothesis if F ≥ F(0.975,N1−1,N2−1) or if

F ≤ F(0.025,N1−1,N2−1), where F(α,N1−1,N2−1) denotes the 100α-percentile of the F-distribution with

the specified degrees of freedom. If the alternative is one sided, H1∶σ2
1

/
σ2

2
> 1, then we reject

the null hypothesis if F ≥ F(0.95,N1−1,N2−1).

C.7.4 Testing the Normality of a Population
The tests for means and variances we have developed began with the assumption that the popu-

lations were normally distributed. Two questions immediately arise. How well do the tests work

when the population is not normal? Can we test for the normality of a population? The answer to

the first question is that the tests work pretty well even if the population is not normal, so long as

samples are sufficiently large. How large must the samples be? There is no easy answer, since it

depends on how “nonnormal” the populations are. The answer to the second question is yes, we

can test for normality. Statisticians have been vitally interested in this question for a long time, and

a variety of tests have been developed, but the tests and underlying theory are very complicated

and far outside the scope of this book.

However, we can present a test that is slightly less ambitious. The normal distribution is

symmetric and has a bell shape with a peakedness and tail thickness leading to a kurtosis of

three. Thus we can test for departures from normality by checking the skewness and kurtosis

from a sample of data. If skewness is not close to zero, or if kurtosis is not close to three, then

we reject the normality of the population. In Section C.4.2 we developed sample measures of

skewness and kurtosis as

skewness
⋀

= S =
μ̃3

σ̃3

kurtosis
⋀

= K =
μ̃4

σ̃4

The Jarque–Bera test statistic allows a joint test of these two characteristics,

JB = N
6

(

S2 + (K − 3)2

4

)

If the true distribution is symmetric and has kurtosis three, which includes the normal distribution,

then the JB test statistic has a chi-square distribution with two degrees of freedom if the sample

size is sufficiently large. If α = 0.05, then the critical value of the χ2
(2) distribution is 5.99. We

reject the null hypothesis and conclude that the data are nonnormal if JB ≥ 5.99. If we reject the

null hypothesis, then we know that the data have nonnormal characteristics, but we do not know

what distribution the population might have.

E X A M P L E C.15 Testing the Normality of the Hip Data

For the hip data, skewness and kurtosis measures were esti-

mated in Example C.6. Plugging these values into the JB test

statistic formula we obtain

JB = N
6

(

S2 + (K − 3)2

4

)

= 50

6

(

(−0.0138)2 + (
2.3315 − 3)2

4

)

= 0.9325

Since JB = 0.9325 is less than the critical value 5.99, we con-

clude that we cannot reject the normality of the hip data. The

p-value for this test is the tail area of a χ2
(2) -distribution to the

right of 0.9325,

p = P
[

χ2

(2) ≥ 0.9325
]

= 0.6273
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C.8 Introduction to Maximum Likelihood

Estimation1

Maximum likelihood estimation is a powerful procedure that can be used when the population

distribution is known. In this section we introduce the concept with a very simple but revealing

example.

E X A M P L E C.16 The ‘‘Wheel of Fortune’’ Game: p= 1/4 or 3/4

Consider the following “Wheel of Fortune” game. You are

a contestant faced with two wheels, each of which is partly

shaded and partly nonshaded (see Figure C.10). Suppose that

after spinning a wheel, you win if a pointer is in the shaded

area, and you lose if the pointer is in the nonshaded area. On

wheel A 25% of the area is shaded so that the probability

(a)
Wheel A

p(WIN) = 0.25

p(WIN) = 0.75
p(LOSE) = 0.25

p(LOSE) = 0.75

(b)
Wheel B

FIGURE C.10 Wheel of fortune game.

of winning is 1/4. On wheel B 75% of the area is shaded

so that the probability of winning is 3/4. The game that you

must play is this. One of the wheels is chosen and spun three

times, with outcomes WIN, WIN, LOSS. You do not know

which wheel was chosen, and must pick which wheel was

spun. Which would you select?

............................................................................................................................................

1This section contains some advanced material.
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One intuitive approach is the following: let p denote the

probability of winning on one spin of a wheel. Choosing

between wheels A and B means choosing between p = 1∕4

and p = 3∕4. You are estimating p, but there are only

two possible estimates, and you must choose based on

the observed data. Let us compute the probability of each

sequence of outcomes for each of the wheels.

For wheel A, with p = 1/4, the probability of observing

WIN, WIN, LOSS is

1

4
× 1

4
× 3

4
= 3

64
= 0.0469

That is, the probability, or likelihood, of observing the

sequence WIN, WIN, LOSS when p = 1∕4 is 0.0469.

For wheel B, with p = 3∕4, the probability of observing

WIN, WIN, LOSS is

3

4
× 3

4
× 1

4
= 9

64
= 0.1406

The probability, or likelihood, of observing the sequence

WIN, WIN, LOSS when p = 3∕4 is 0.1406.

If we had to choose wheel A or B based on the available

data, we would choose wheel B because it has a higher prob-

ability of having produced the observed data. It is more likely
that wheel B was spun than wheel A, and p̂ = 3∕4 is called the

maximum likelihood estimate of p. The maximum likeli-
hood principle seeks the parameter values that maximize the

probability, or likelihood, of observing the outcomes actually

obtained.

E X A M P L E C.17 The ‘‘Wheel of Fortune’’ Game: 0 < p < 1

Now suppose p can be any probability between zero and one,

not just 1/4 or 3/4. We have one wheel with a proportion of

it shaded, which is the probability of WIN, but we do not

know the proportion. In three spins we observe WIN, WIN,

LOSS. What is the most likely value of p? The probability of

observing WIN, WIN, LOSS is the likelihood L and is

L(p) = p × p ×(1 − p) = p2 − p3 (C.17)

The likelihood L depends on the unknown probability p of a

WIN, which is why we have given it the notation L(p), indi-

cating a functional relationship. We would like to find the

value of p that maximizes the likelihood of observing the out-

comes actually obtained. The graph of the likelihood function

(C.17) and the choice of p that maximizes this function is

shown in Figure C.11. The maximizing value is denoted as p̂
and is called the maximum likelihood estimate of p. To find

this value of p we can use calculus. Differentiate L(p) with

respect to p,
dL(p)

dp
= 2p − 3p2

Set this derivative to zero:

2p − 3p2 = 0 ⇒ p(2 − 3p) = 0

L(p)

0.67 1.0 p0

FIGURE C.11 A likelihood function.

There are two solutions to this equation, p = 0 or p = 2∕3.

The value that maximizes L(p) is p̂ = 2∕3, which is the max-

imum likelihood estimate. That is, of all possible values of p,

between zero and one, the value that maximizes the proba-

bility of observing two wins and one loss (the order does not

matter) is p̂ = 2∕3.

Can we derive a more general formula that can be used for any observed data? In Appendix B.3.1

we introduced the Bernoulli distribution. Let us define the random variable X that takes the values

x = 1 (WIN) and x = 0 (LOSS) with probabilities p and 1 − p. The probability function for this

random variable can be written in mathematical form as

P(X = x) = 𝑓 (x|p) = px(1 − p)1−x
, x = 0, 1
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If we spin the “wheel” N times we observe N sample values x1, x2,… , xN. Assuming that the

spins are independent, we can form the joint probability function

𝑓

(
x1,… , xN|p

)
= 𝑓

(
x1|p

)
× · · · × 𝑓

(
xN|p

)

= pΣxi(1 − p)N−Σxi

= L
(
p|x1,… , xN

)
(C.18)

The joint probability function gives the probability of observing a specific set of outcomes, and it

is a generalization of (C.17). In the last line we have indicated that the joint probability function

is algebraically equivalent to the likelihood function L
(

p|x1, … , xN
)
. The notation emphasizes

that the likelihood function depends upon the unknown probability p given the sample outcomes,

which we observe. For notational simplicity we will continue to denote the likelihood function

as L(p).

E X A M P L E C.18 The ‘‘Wheel of Fortune’’ Game: Maximizing the Log-likelihood

In the “Wheel of Fortune” game, the maximum likelihood

estimate is that value of p that maximizes L(p). To find this

estimate using calculus we use a trick to simplify the alge-

bra. The value of p that maximizes L(p) = p2(1 − p) is the

same value of p that maximizes the log-likelihood function
lnL(p) = 2 ln(p) + ln(1 − p), where “ln” is the natural loga-

rithm. The plot of the log-likelihood function is shown in

Figure C.12. Compare Figures C.11 and C.12. The maximum

of the likelihood function is L(p̂) = 0.1481. The maximum

of the log-likelihood function is lnL(p̂) = −1.9095. Both of

these maximum values occur at p̂ = 2∕3 = 0.6667.

ln L(p)

0.67 p

FIGURE C.12 A log-likelihood function.

The trick in Example C.18 works for all likelihood and log-likelihood functions and their param-

eters, so when you see maximum likelihood estimation being discussed it will always be in

terms of maximizing the log-likelihood function. For the general problem we are considering,

the log-likelihood function is the logarithm of (C.18)

ln L(p) =
N∑

i=1

ln
[

𝑓

(
xi|p

)]

=

(
N∑

i=1

xi

)

ln(p) +

(

N −
N∑

i=1

xi

)

ln(1 − p) (C.19)

The first derivative is
d lnL(p)

dp
=

∑
xi

p
−

N −
∑

xi

1 − p

Setting this to zero and replacing p by p̂ to denote the value that maximizes lnL(p) yields
∑

xi

p̂
−

N −
∑

xi

1 − p̂
= 0

To solve this equation, multiply both sides by p̂(1 − p̂). This gives

(1 − p̂)
∑

xi − p̂
(
N −

∑
xi
)
= 0
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Finally, solving for p̂ yields

p̂ =
∑

xi

N
= x (C.20)

The estimator p̂ is the sample proportion;
∑

xi is the total number of 1s (wins) out of N spins.

As you can see, p̂ is also the sample mean of xi. This result is completely general. Any time we

have two outcomes that can occur with probabilities p and 1 − p, then the maximum likelihood

estimate based on a sample of N observations is the sample proportion (C.20).

E X A M P L E C.19 Estimating a Population Proportion

This estimation strategy can be used if you are a pollster

trying to estimate the proportion of the population intending

to vote for candidate A rather than candidate B, a medical

researcher who wishes to estimate the proportion of the

population having a particular defective gene, or a marketing

researcher trying to discover whether the population of

customers prefers a blue box or a green box for their morning

cereal. Suppose in this latter case that you select 200 cereal

consumers at random and ask whether they prefer blue

boxes or green. If 75 prefer a blue box, then we would

estimate that the population proportion preferring blue

is p̂ =
∑

xi∕N = 75∕200 = 0.375. Thus, we estimate that

37.5% of the population prefers a blue box.

C.8.1 Inference with Maximum Likelihood Estimators
If we use maximum likelihood estimation, how do we perform hypothesis tests and construct

confidence intervals? The answers to these questions are found in some remarkable properties of

estimators obtained using maximum likelihood methods. Let us consider a general problem. Let

X be a random variable (either discrete or continuous) with a probability density function 𝑓 (x|θ),
where θ is an unknown parameter. The log-likelihood function, based on a random sample x1,… ,

xN of size N, is

ln L(θ) =
N∑

i=1

ln
[

𝑓

(
xi|θ

)]

If the probability density function of the random variable involved is relatively smooth, and if

certain other technical conditions hold, then in large samples the maximum likelihood estimator

θ̂ of a parameter θ has a probability distribution that is approximately normal, with expected value

θ and a variance V = var
(

θ̂
)

that we will discuss in a moment. That is, we can say

θ̂ a∼ N(θ,V) (C.21)

where the symbol
a∼ denotes “asymptotically distributed.” The word “asymptotic” refers to esti-

mator properties when the sample size N becomes large, or as N →∞. To say that an estimator is

asymptotically normal means that its probability distribution, which may be unknown when sam-

ples are small, becomes approximately normal in large samples. This is analogous to the central

limit theorem we discussed in Section C.3.4.

Based on the normality result in (C.21) it will not surprise you that we can immediately

construct a t-statistic and obtain both a confidence interval and a test statistic from it. Specifically,

if we wish to test the null hypothesis H0∶θ = c against a one-tail or two-tail alternative hypothesis,

then we can use the test statistic

t = θ̂ − c

se
(

θ̂
)

a∼ t(N−1) (C.22)

If the null hypothesis is true, then this t-statistic has a distribution that can be approximated by a

t-distribution with N − 1 degrees of freedom in large samples. The mechanics of carrying out the

hypothesis test are exactly those in Section C.6.
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If tc denotes the 100(1 – α/2)-percentile t(1−α∕2,N−1), then a 100(1 − α)% confidence interval

for θ is

θ̂ ± tcse
(

θ̂
)

This confidence interval is interpreted just like those in Section C.5.

Remark
These asymptotic results in (C.21) and (C.22) hold only in large samples. We have indicated

that the distribution of the test statistic can be approximated by a t-distribution with N − 1

degrees of freedom. If N is truly large, then the t(N−1)-distribution converges to the standard

normal distribution N(0, 1) and the 100(1 − α∕2)-percentile value t(1−α∕2,N−1) converges to

the corresponding percentile from the standard normal distribution. Asymptotic results are

used, rightly or wrongly, when the sample size N may not be large. We prefer using the

t-distribution critical values, which are adjusted for small samples by the degrees of freedom

correction, when obtaining interval estimates and carrying out hypothesis tests.

C.8.2 The Variance of the Maximum Likelihood Estimator
A key ingredient in both the test statistic and confidence interval expressions is the standard error

se
(

θ̂
)

. Where does this come from? Standard errors are square roots of estimated variances. The

part we have delayed discussing until now is how we find the variance of the maximum likelihood

estimator, V = var
(

θ̂
)

. The variance V is given by the inverse of the negative expectation of the

second derivative of the log-likelihood function,

V = var
(

θ̂
)

=
[

−E
(

d2 lnL(θ)
dθ2

)]−1

(C.23)

This looks quite intimidating, and you can see why we put it off. What does this mean? First

of all, the second derivative measures the curvature of the log-likelihood function. A second

derivative is literally the derivative of the derivative see Appendix A.3.3. A single derivative, the

first, measures the slope of a function or the rate of change of the function. The second derivative

measures the rate of change of the slope. To obtain a maximum of the log-likelihood function, it

must be an “inverted bowl” shape, like those shown in Figure C.13.

At any point to the left of the maximum point, the slope of the log-likelihood function is

positive. At any point to the right of the maximum, the slope is negative. As we progress from

left to right the slope is decreasing (becoming less positive or more negative), so that the second

derivative must be negative. A larger absolute magnitude of the second derivative implies a

B
lnL (θ)

θ

θ

A

ˆ

FIGURE C.13 The log-likelihood functions.
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more rapidly changing slope, indicating a more sharply curved log-likelihood. This is important.

In Figure C.13 the two log-likelihood functions A and B have the same maximizing value θ̂.

Imagine yourself a climber who is trekking up one of these mountains. For which mountain is the

summit most clearly defined? For log-likelihood B, the summit is a sharp peak, and its maximum

is more easily located than that for log-likelihood A. The sharper peak has less “wiggle room”

at the summit. The smaller amount of wiggle room means that there is less uncertainty as

to the location of the maximizing value θ̂; in estimation terminology, less uncertainty means

greater precision, and a smaller variance. The more sharply curved log-likelihood function, the

one whose second derivative is larger in absolute magnitude, leads to more precise maximum

likelihood estimation, and to a maximum likelihood estimator with smaller variance. Thus the

variance V of the maximum likelihood estimator is inversely related to the (negative) second

derivative. The expected value “E” must be present because this quantity depends on the data

and is thus random, so we average over all possible data outcomes.

C.8.3 The Distribution of the Sample Proportion
It is time for an example. At the beginning of Section C.8 we introduced a random variable X
that takes the values x = 1 and x = 0 with probabilities p and 1 − p. It has log-likelihood given

in (C.19). In this problem the parameter θ that we are estimating is the population proportion p,

the proportion of x = 1 values in the population. We already know that the maximum likelihood

estimator of p is the sample proportion p̂ =
∑

xi∕N. The second derivative of the log-likelihood

function (C.19) is

d2 lnL(p)
dp2

= −
∑

xi

p2
−

N −
∑

xi

(1 − p)2
(C.24)

To calculate the variance of the maximum likelihood estimator we need the “expected value” of

expression (C.24). In the expectation we treat the xi values as random because these values vary

from sample to sample. The expected value of this discrete random variable is obtained using

(P.9) in the probability primer:

E
(
xi
)
= 1 × P

(
xi = 1

)
+ 0 × P

(
xi = 0

)
= 1 × p + 0 ×(1 − p) = p

Then, using a generalization of (P.16) (the expected value of a sum is the sum of the expected

values and constants can be factored out of expectations) we find the expected value of the second

derivative as

E
(

d2 ln L(p)
dp2

)

= −
∑

E
(
xi
)

p2
−

N −
∑

E
(
xi
)

(1 − p)2

= −
Np
p2
−

N − Np
(1 − p)2

= − N
p(1 − p)

The variance of the sample proportion, which is the maximum likelihood estimator of p, is then

V = var(p̂) =
[

−E
(

d2 ln L(p)
dp2

)]−1

=
p(1 − p)

N

The asymptotic distribution of the sample proportion, which is valid in large samples, is

p̂ a∼ N
(

p,
p(1 − p)

N

)
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To estimate the variance V we must replace the true population proportion by its estimate,

V̂ =
p̂(1 − p̂)

N
The standard error that we need for hypothesis testing and confidence interval estimation is the

square root of this estimated variance:

se(p̂) =
√

V̂ =
√

p̂(1 − p̂)
N

E X A M P L E C.20 Testing a Population Proportion

As a numerical example, suppose a cereal company

CEO conjectures that 40% of the population prefers a

blue box. To test this hypothesis, we construct the null

hypothesis H0∶p = 0.4 and use the two-tail alternative

H1∶p ≠ 0.4. If the null hypothesis is true, then the test

statistic t = (p̂ − 0.4)∕se(p̂) a∼ t(N−1). For a sample of

size N = 200 the critical value from the t-distribution is

tc = t(0.975,199) = 1.97. Therefore we reject the null hypothesis

if the calculated value of t ≥ 1.97 or t ≤ −1.97. If 75 of the

respondents prefer a blue box, then the sample proportion is

p̂ = 75∕200 = 0.375. The standard error of this estimate is

se(p̂) =
√

p̂(1 − p̂)
N

=
√

0.375 × 0.625

200
= 0.0342

The value of the test statistic is

t =
p̂ − 0.4

se(p̂)
= 0.375 − 0.4

0.0342
= −0.7303

This value is in the nonrejection region, −1.97 <

t = −0.7303 < 1.97, so we do not reject the null hypothesis

that p = 0.4. The sample data are compatible with the

conjecture that 40% of the population prefer a blue box.

The 95% interval estimate of the population proportion

p who prefer a blue box is

p̂ ± 1.97se(p̂) = 0.375 ± 1.97(0.0342) =[0.3075, 0.4424]

We estimate that between 30.8% and 44.3% of the population

prefer a blue box.

C.8.4 Asymptotic Test Procedures
When using maximum likelihood estimation, there are three test procedures that can be used, with

the choice depending on which one is most convenient in a given case. The tests are asymptotically
equivalent and will give the same result in large samples. Suppose that we are testing the null

hypothesis H0∶θ = c against the alternative hypothesis H1∶θ ≠ c. In (C.22) we have the t-statistic

for carrying out the test. How does this test really work? Basically it is measuring the distance

θ̂ − c between the estimate of θ and the hypothesized value c. This distance is normalized by the

standard error of θ̂ to adjust for how precisely we have estimated θ. If the distance between the

estimate θ̂ and the hypothesized value c is large, then that is taken as evidence against the null

hypothesis, and if the distance is large enough, we conclude that the null hypothesis is not true.

There are other ways to measure the distance between θ̂ and c that can be used to construct

test statistics. Each of the three testing principles takes a different approach to measuring the

distance between θ̂ and the hypothesized value.

The Likelihood Ratio (LR) Test Consider Figure C.14. A log-likelihood function is

shown, along with the maximum likelihood estimate θ̂ and the hypothesized value c. Note that

the distance between θ̂ and c is also reflected by the distance between the log-likelihood function

value evaluated at the maximum likelihood estimate lnL
(

θ̂
)

and the log-likelihood function value

evaluated at the hypothesized value lnL(c). We have labeled the difference between these two

log-likelihood values (1/2)LR for a reason that will become clear. If the estimate θ̂ is close to

c, then the difference between the log-likelihood values will be small. If θ̂ is far from c, then
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lnL(c)

lnL(θ)

lnL(θ)

θ

θ

1 LR2

c ˆ

ˆ

FIGURE C.14 The likelihood ratio test.

the difference between the log-likelihood values will be large. This observation leads us to the

likelihood ratio statistic, which is twice the difference between lnL
(

θ̂
)

and lnL(c),

LR = 2
[

lnL
(

θ̂
)

− lnL(c)
]

(C.25)

Based on some advanced statistical theory, it can be shown that if the null hypothesis is true,

then the LR test statistic has a chi-square distribution (see Appendix B.3.6) with J = 1 degree of

freedom. In more general contexts J is the number of hypotheses being tested and it can be greater

than 1. If the null hypothesis is not true, then the LR test statistic becomes large. We reject the null

hypothesis at the α level of significance if LR ≥ χ2
(1−α, J), where χ2

(1−α, J) is the 100(1 − α)-percentile

of a chi-square distribution with J degrees of freedom, as shown in Figure C.15. The 90th, 95th,

and 99th percentile values of the chi-square distribution for various degrees of freedom are given

in Statistical Table 3.

When estimating a population proportion p the log-likelihood function is given by (C.19).

The value of p that maximizes this function is p̂ =
∑

xi∕N. Thus, the maximum value of the

log-likelihood function is

lnL(p̂) =

(
N∑

i=1

xi

)

lnp̂ +

(

N −
N∑

i=1

xi

)

ln(1 − p̂)

= Np̂ ln p̂ + (N − Np̂) ln(1 − p̂)

= N
[
p̂ ln p̂ + (1 − p̂) ln(1 − p̂)

]

where we have used the fact that
∑

xi = Np̂.

pd
f o

f 
χ

2  

χ

2-value
χ

2

χ

2

α

(J)

(1–α, J)

FIGURE C.15 Critical value from a chi-square distribution.
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E X A M P L E C.21 Likelihood Ratio Test of the Population Proportion

For our cereal box problem, p̂ = 0.375 and N = 200, so we

have

ln L(p̂) = 200
[
0.375 × ln(0.375) + (1 − 0.375) ln(1 − 0.375)

]

= −132.3126

The value of the log-likelihood function assuming

H0∶p = 0.4 is true is

ln L(0.4) =
( N∑

i=1

xi

)

ln(0.4) +
(

N −
N∑

i=1

xi

)

ln(1 − 0.4)

= 75 × ln(0.4) + (200 − 75) × ln(0.6)

= −132.5750

The problem is to assess whether −132.3126 is significantly

different from −132.5750. The LR test statistic (C.25) is

LR = 2
[
lnL(p̂) − ln L(0.4)

]

= 2 × (−132.3126 − (−132.575)) = 0.5247

If the null hypothesis p = 0.4 is true, then the LR test statis-

tic has a χ2
(1)-distribution. If we choose α = 0.05, then the

test critical value is χ2
(0.95,1) = 3.84, the 95th percentile from

the χ2
(1)-distribution. Since 0.5247 < 3.84 we do not reject the

null hypothesis.

The Wald Test In Figure C.14 it is clear that the distance (1/2)LR will depend on the

curvature of the log-likelihood function. In Figure C.16 we show two log-likelihood functions

with the hypothesized value c and the distances (1/2)LR for each of the log-likelihoods. The

log-likelihoods have the same maximum value ln L
(

θ̂
)

, but the values of the log-likelihood eval-

uated at the hypothesized value c are different.

The distance θ̂ − c translates into a larger value of (1/2)LR for the more highly curved

log-likelihood, B, so it seems reasonable to construct a test measure by weighting the distance

θ̂ − c by the magnitude of the log-likelihood’s curvature, which we measure by the negative of

its second derivative. This is exactly what the Wald statistic does:

W =
(

θ̂ − c
)2

[

−d2 ln L(θ)
dθ2

]

(C.26)

The value of the Wald statistic is larger for log-likelihood function B (more curved) than

log-likelihood function A (less curved).

If the null hypothesis is true, then the Wald statistic (C.26) has a χ2
(1) -distribution, and we

reject the null hypothesis if W ≥ χ2
(1−α,1). In more general situations we may test J > 1 hypotheses

jointly, in which case we work with a chi-square distribution with J degrees of freedom, as shown

in Figure C.15.

c

lnLA(c)

lnL(θ)

lnLB(c)

lnL(θ)

θ

θ

B A

ˆ

ˆ

FIGURE C.16 The Wald statistic.
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There is a linkage between the curvature of the log-likelihood function and the precision

of maximum likelihood estimation. The greater the curvature of the log-likelihood function, the

smaller the variance V in (C.23) and the more precise maximum likelihood estimation becomes,

meaning that we have more information about the unknown parameter θ. Conversely, the more

information we have about θ, the smaller the variance of the maximum likelihood estimator. Using

this idea we define an information measure to be the reciprocal of the variance V ,

I(θ) = −E
[

d2 ln L(θ)
dθ2

]

= V−1 (C.27)

As the notation indicates the information measure I(θ) is a function of the parameter θ. Substitute

the information measure for the second derivative in the Wald statistic in (C.26) to obtain

W =
(

θ̂ − c
)2

I(θ) (C.28)

In large samples the two versions of the Wald statistic are the same. An interesting connection

here is obtained by rewriting (C.28) as

W =
(

θ̂ − c
)2

V−1 =
(

θ̂ − c
)2/

V (C.29)

To implement the Wald test, we use the estimated variance

V̂ =
[

I
(

θ̂
)]−1

(C.30)

Then, taking the square root, we obtain the t-statistic in (C.22),

√
W = θ̂ − c

√
V̂
= θ̂ − c

se
(

θ̂
) = t

That is, the t-test is also a Wald test.

E X A M P L E C.22 Wald Test of the Population Proportion

In our blue box–green box example, we know that the maxi-

mum likelihood estimate p̂ = 0.375. To implement the Wald

test we calculate

I(p̂) = V̂−1 = N
p̂(1 − p̂)

= 200

0.375(1 − 0.375)
= 853.3333

where V = p(1 − p)∕N and V̂ were obtained in Section C.7.3.

Then the calculated value of the Wald statistic is

W = (p̂ − c)2I(p̂) = (0.375 − 0.4)2 × 853.3333 = 0.5333

In this case the value of the Wald statistic is close in

magnitude to the LR statistic and the test conclusion is the

same. Also, when testing one hypothesis, the Wald statistic is

the square of the t-statistic, W = t2 = (−0.7303)2 = 0.5333.

The Lagrange Multiplier (LM) Test The third testing procedure that comes from

maximum likelihood theory is the Lagrange multiplier (LM) test. Figure C.17 illustrates another

way to measure the distance between θ̂ and c. The slope of the log-likelihood function, which is

sometimes called the score, is

s(θ) =
d lnL(θ)

dθ
(C.31)
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s(c)

c

ln L(c)

AB

θ̂B θ̂A

θ

FIGURE C.17 Motivating the Lagrange multiplier test.

The slope of the log-likelihood function depends on the value of θ, as our function notation s(θ)

indicates. The slope of the log-likelihood function at the maximizing value is zero, s
(

θ̂
)

= 0.

The LM test examines the slope of the log-likelihood function at the point c. The logic of the test

is that if θ̂ is close to c then the slope s(c) of the log-likelihood function evaluated at c should be

close to zero. In fact testing the null hypothesis θ = c is equivalent to testing s(c) = 0.

The difference between c and the maximum likelihood estimate θ̂B (maximizing ln LB) is

smaller than the difference between c and θ̂A. In contrast to the Wald test, more curvature in the

log-likelihood function implies a smaller difference between the maximum likelihood estimate

and c. If we use the information measure I(θ) as our measure of curvature (more curvature means

more information), the Lagrange multiplier test statistic can be written as

LM =
[
s(c)

]2

I(θ)
=
[
s(c)

]2[I(θ)
]−1

(C.32)

The LM statistic for log-likelihood function A (less curved) is greater than the LM statistic for

log-likelihood function B (more curved). If the null hypothesis is true, LM test statistic (C.32) has

a χ2
(1)-distribution, and the rejection region is the same as for the LR and Wald tests. The LM, LR,

and Wald tests are asymptotically equivalent and will lead to the same conclusion in sufficiently

large samples.

In order to implement the LM test we can evaluate the information measure at the point θ = c,

so that it becomes

LM =
[
s(c)

]2[I(c)
]−1

In cases in which the maximum likelihood estimate is difficult to obtain (which it can be in

more complex problems) the LM test has an advantage because θ̂ is not required. On the other

hand, the Wald test in (C.28) uses the information measure evaluated at the maximum likelihood

estimate θ̂,

W =
(

θ̂ − c
)2

I
(

θ̂
)

It is preferred when the maximum likelihood estimate and its variance are easily obtained. The

likelihood ratio test statistic (C.25) requires calculation of the log-likelihood function at both

the maximum likelihood estimate and the hypothesized value c. As noted, the three tests are

asymptotically equivalent, and the choice of which to use is often made on the basis of con-

venience. In complex situations, however, the rule of convenience may not be a good one. The

likelihood ratio test is relatively reliable in most circumstances, so if you are in doubt, it is a safe

one to use.
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E X A M P L E C.23 Lagrange Multiplier Test of the Population Proportion

In the blue box–green box example, the value of the score,

based on the first derivative shown just below (C.19), evalu-

ated at the hypothesized value c = 0.4 is

s(0.4) =
∑

xi

c
−

N −
∑

xi

1 − c
= 75

0.4
− 200 − 75

1 − 0.4
= −20.8333

The calculated information measure is

I(0.4) = N
c(1 − c)

= 200

0.4(1 − 0.4)
= 833.3333

The value of the LM test statistic is

LM =
[
s(0.4)

]2[I(0.4)
]−1 = [−20.8333]2 [833.3333]−1

= 0.5208

Thus, in our example, the values of the LR, Wald, and LM

test statistics are very similar and give the same conclusion.

This was to be expected, since the sample size N = 200 is

large, and the problem is a simple one.

C.9 Algebraic Supplements

C.9.1 Derivation of Least Squares Estimator
In this section we illustrate how to use the least squares principle to obtain the sample mean as

an estimator of the population mean. Represent a sample of data as y1, y2,… , yN. The population

mean is E(Y) = μ. The least squares principle says to find the value of μ that minimizes

S =
N∑

i=1

(
yi − μ

)2

where S is the sum of squared deviations of the data values from μ.

The motivation for this approach can be deduced from the following example. Suppose you

are going shopping at a number of shops along a certain street. Your plan is to shop at one store

and return to your car to deposit your purchases. Then you visit a second store and return again

to your car, and so on. After visiting each shop you return to your car. Where would you park

to minimize the total amount of walking between your car and the shops you visit? You want to

minimize the distance traveled. Think of the street along which you shop as a number line. The

Euclidean distance between a shop located at yi and your car at point μ is

di =
√
(
yi − μ

)2

The squared distance, which is mathematically more convenient to work with, is

d2
i =

(
yi − μ

)2

To minimize the total squared distance between your parking spot μ and all the shops located at

y1, y2,… , yN you would minimize

S(μ) =
N∑

i=1

d2
i =

N∑

i=1

(
yi − μ

)2

which is the sum of squares function. Thus the least squares principle is really the least squared
distance principle.

Since the values of yi are known given the sample, the sum of squares function S(μ) is a

function of the unknown parameter μ. Multiplying out the sum of squares, we have

S(μ) =
N∑

i=1

y2
i − 2μ

N∑

i=1

yi + Nμ2 = a0 − 2a1μ + a2μ2
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E X A M P L E C.24 Hip Data: Minimizing the Sum of Squares Function

For the data in Table C.1 we have

a0 =
∑

y2
i = 14880.1909, a1 =

∑
yi = 857.9100,

a2 = N = 50

The plot of the sum of squares parabola is shown in

Figure C.18. The minimizing value appears to be a bit larger

than 17 in the figure. Now we will determine the minimizing

value exactly.

The value of μ that minimizes S(μ) is the “least squares

estimate.” From calculus, we know that the minimum of the

function occurs where its slope is zero. See Appendix A.3.4.

The function’s derivative gives its slope, so by equating the

first derivative of S(μ) to zero and solving, we can obtain the

minimizing value exactly. The derivative of S(μ) is

dS(μ)
dμ

= −2a1 + 2a2μ

Setting the derivative to zero determines the least squares

estimate of μ, which we denote as μ̂. Setting the derivative

to zero,

−2a1 + 2a2μ̂ = 0

S(μ)
700

600

500

400

300

200

100
14 15 16 17 18 19 20

μ = 17.1582 μˆ

FIGURE C.18 The sum of squares parabola for the hip data.

Solving for μ̂ yields the formula for the least squares estimate,

μ̂ =
a1

a2

=

N∑

i=1

yi

N
= y

Thus, the least squares estimate of the population mean is the

sample mean, y. This formula can be used in general, for any

sample values that might be obtained, meaning that the least

squares estimator is

μ̂ =

N∑

i=1

Yi

N
= Y

For the hip data in Table C.1

μ̂ =

N∑

i=1

yi

N
= 857.9100

50
= 17.1582

Thus, we estimate that the average hip size in the population

is 17.1582 inches.

C.9.2 Best Linear Unbiased Estimation
One of the powerful findings about the sample mean (which is also the least squares estimator)

is that it is the best of all possible estimators that are both linear and unbiased. The fact that Y is

the best linear unbiased estimator (BLUE) accounts for its wide use. In this context we mean by

best that it is the estimator with the smallest variance of all linear and unbiased estimators. It is

better to have an estimator with a smaller variance than one with a larger variance; it increases the
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chances of getting an estimate close to the true population mean μ. This important result about the

least squares estimator is true if the sample values Yi ∼
(
μ, σ2

)
are uncorrelated and identically

distributed. It does not depend on the population being normally distributed. The fact that Y is

BLUE is so important that we will prove it.

The sample mean is a weighted average of the sample values,

Y =
N∑

i=1

Yi∕N = 1

N
Y1 +

1

N
Y2 + · · · +

1

N
YN

= a1Y1 + a2Y2 + · · · + aNYN

=
N∑

i=1

aiY

where the weights ai = 1∕N. Weighted averages are also called linear combinations, so we call

the sample mean a linear estimator. In fact, any estimator that can be written as
∑N

i=1
aiYi is a

linear estimator. For example, suppose the weights a∗i are constants different from ai = 1∕N. Then

we can define another linear estimator of μ as

Ỹ =
N∑

i=1

a∗i Yi

To ensure that Ỹ is different from Y , let us define

a∗i = ai + ci =
1

N
+ ci

where ci are constants that are not all zero. Thus,

Ỹ =
N∑

i=1

a∗i Yi =
N∑

i=1

(
1

N
+ ci

)

Yi

=
N∑

i=1

1

N
Yi +

N∑

i=1

ciY

= Y +
N∑

i=1

ciY

The expected value of the new estimator Ỹ is

E
[
Ỹ
]
= E

[

Y +
N∑

i=1

ciYi

]

= μ +
N∑

i=1

ciE
[
Yi
]

= μ + μ
N∑

i=1

ci

The estimator Ỹ is not unbiased unless
∑

ci = 0. We want to compare the sample mean to other

linear and unbiased estimators, so we will assume that
∑

ci = 0 holds. Now we find the variance

of Ỹ . The linear unbiased estimator with the smaller variance will be best.

var(Ỹ) = var

(
N∑

i=1

a∗i Yi

)

= var

(
N∑

i=1

(
1

N
+ ci

)

Yi

)

=
N∑

i=1

(
1

N
+ ci

)2

var(Yi)

= σ2
N∑

i=1

(
1

N
+ ci

)2

= σ2
N∑

i=1

(

1

N2
+ 2

N
ci + c2

i

)

= σ2

(

1

N
+ 2

N

N∑

i=1

ci +
N∑

i=1

c2
i

)

= σ2∕N + σ2
N∑

i=1

c2
i

(

since
N∑

i=1

ci = 0

)

= var(Y) + σ2
N∑

i=1

c2
i
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It follows that the variance of Ỹ must be greater than the variance of Y , unless all the ci values

are zero, in which case Ỹ = Y .

C.10 Kernel Density Estimator
As econometricians, we work with data that are drawings from unknown distributions. For

example, Figure C.19 shows the empirical distributions of two datasets, presented here as

histograms. The variables X and Y are in the data file kernel. The problem before us is to

estimate the density functions that yielded the observations. Knowledge about the distributions

is important for statistical inference.

There are two main ways to estimate the distribution. We can use a parametric density esti-

mator, or we can use a nonparametric kernel density estimator. In the parametric approach,

we rely on density functions with well-defined functional forms characterized by parameters. For

example, the normal probability density distribution f ( • ) has a specific functional form defined

by two parameters—the mean μ and the standard deviation σ:

𝑓 (x|μ, σ) = 1

σ
√

2π
exp

(

−1

2

(x − μ
σ

)2

)

Once we have estimates of the mean and the standard deviation, μ̂ and σ̂, we plug these into the

normal density function formula to obtain

𝑓 (x)
⋀

= 1

σ̂
√

2π
exp

(

−1

2

(
x − μ̂
σ̂

)2
)

Figure C.20 shows our application of this approach; the generated normal density functions are

superimposed onto the histograms of the data. We have applied this parametric approach in

the discussion about the Central Limit Theorem (C.3.4) and in discussion about ARCH models

(Chapter 14).

The histogram of the variable X, on the left in Figure C.20, is unimodal, and the normal

distribution appears to fit the shape of the data well. In contrast, the histogram of the variable

Y on the right in Figure C.20 is bimodal, and the normal distribution is a poor representation of

the underlying density function. We could try fitting the data with other parametric distributional

forms, but rather than do that, let us adopt a nonparametric kernel density estimator to capture

the shape of the data in a smooth continuous form.

Nonparametric methods do not require specific functional forms (e.g., the normal distribu-

tion formula) to generate the distribution. Instead, smoothing functions, called kernels, are used

to “fit” the shape of the distribution of the data.
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FIGURE C.19 Histograms of variables (a) unimodal variable X and (b) bimodal variable Y.
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FIGURE C.20 Parametric density estimator (a) unimodal variable X and (b) bimodal
variable Y.

The logic of the nonparametric approach can be grasped intuitively by thinking about how we set

up histograms. Figure C.21 shows two histograms for the dataset Y . The one on the left has nine

bins (i.e., the rectangles in the histogram) with bin width = 1 whereas the one on the right has

many bins each with bin width = 0.1. The histogram with less bins has the higher frequency per

bin as more observations fall into the larger bin width. More specifically, if xk is the midpoint of

the kth bin and h is the bin width, the range of values in the bin is xk ± h∕2, and the frequency count

nk is the number of observations which falls in that range. The sum of all frequencies equals the

sample size n, while the sum of the areas equals nh, since each area is nkh and
∑

knk = n. Note,

too, that the shapes of the histograms are similar, but that the one with the larger bin width is

“smoother” (fewer spikes and dips).

We can think of the histogram as a density function estimator 𝑓 (x)
⋀

, where x takes values over

the domain of x and

𝑓 (x)
⋀

= 1

nh

n∑

i=1

1
(
Ai
)

The expression 1(Ai) is an indicator function taking on the value of 1 if Ai is true; Ai is the

condition that xi is in the same bin as x. For example, suppose we wish to find 𝑓 (x)
⋀

for an x that

lies in the kth bin. Then, Ai is true for all xi such that xk – h/2 < xi < xk + h/2. Thus, in the kth

bin,
∑n

i=1
1
(
Ai
)
= nk, and the histogram density estimator for all x in the kth bin is 𝑓 (x)

⋀

= nk∕nh.

The divisor nh ensures that the bin areas sum to one.

Now consider another density estimator where, instead of having a number of predetermined

bins with midpoints xk, we consider a bin with midpoint x and count the number of observations

in the range x ± h∕2. If we repeat this process for all values of x, we can picture it as creating an

infinite number of overlapping bins along the domain of x. In this case the density estimator is

given by

𝑓 (x)
⋀

= 1

nh

n∑

i=1

1
(

x − h
2
< xi < x + h

2

)

= 1

nh

n∑

i=1

1
(

−1

2
<

xi − x
h

<
1

2

)
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FIGURE C.21 Histograms with different bin widths (a) width = 1 (b) width = 0.1.
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In practice, as you sum over the observations, the indicator function ensures that you only “count”

the relevant observations. However, this density function will not be smooth, because each obser-

vation is given a weight of either zero or one—that is, it is either in or out, according to the

condition specified in the indicator function.

Suppose we now replace this simple counting rule with a more sophisticated weighting func-

tion known as a kernel:

𝑓 (x)
⋀

= 1

nh

n∑

i=1

K
(xi − x

h

)

where K is a kernel, h is a smoothing parameter called the bandwidth, and x is any value over

the domain of possible values. There are many kernel functions; one of them is Gaussian and is

described as follows:

K
(xi − x

h

)

= 1
√

2π
exp

(

−1

2

(xi − x
h

)2
)

Figure C.22 shows the application of this kernel estimator to variable Y in data file kernel with four

different bandwidths. Note how the shape of the density function is controlled by the bandwidth.

The smaller the bandwidth, the better the fit, but there is a tradeoff between the number of “humps”

captured and the smoothness of the fit. Intuitively, decreasing the bandwidth is like decreasing

the bin width in the histogram, and the kernel is like a “counter”—but one which puts less weight

on observations that are further away from the point being evaluated. (Imagine moving from the

histogram on the right in Figure C.21 to the one on the left as you increase the bandwidth, and

then imagine the use of the kernel to smooth the bars.) The kernel (Gaussian) density function

with bandwidth equal to 0.4 appears to have captured the bimodality in the data.

There is a vast literature about the optimal choice of bandwidth as well as extensions of the

nonparametric methods to regression analysis. Useful references include Pagan, A. and Ullah, A.,

Nonparametric Econometrics, Cambridge University Press, 1999; and Li, Q. and Racine, J.S.

Nonparametric Econometrics: Theory and Practice, Princeton University Press, 2007.
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FIGURE C.22 Fitting with a nonparametric density estimator (a) bandwidth = 1.5,
(b) bandwidth = 1, (c) bandwidth = 0.4, and (d) bandwidth 0.1.
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C.11 Exercises

C.11.1 Problems

C.1 Suppose Y1, Y2,… , YN is a random sample from a population with mean μ and variance σ2. Rather

than using all N observations, consider an easy estimator of μ that uses only the first two observations

Y∗ =
Y1 + Y2

2

a. Show that Y* is a linear estimator.

b. Show that Y* is an unbiased estimator.

c. Find the variance of Y*.

d. Explain why the sample mean of all N observations is a better estimator than Y*.

C.2 Suppose that Y1, Y2, Y3 is a random sample from a N(μ, σ2) population. To estimate μ, consider the

weighted estimator

Ỹ = 1

2
Y1 +

1

3
Y2 +

1

6
Y3

a. Show that Ỹ is a linear estimator.

b. Show that Ỹ is an unbiased estimator.

c. Find the variance of Ỹ and compare it to the variance of the sample mean Y .

d. Is Ỹ as good an estimator as Y?

e. If σ2 = 9, calculate the probability that each estimator is within one unit on either side of μ.

C.3 The hourly sales of fried chicken at Louisiana Fried Chicken are normally distributed with mean

2,000 pieces and standard deviation 500 pieces. What is the probability that in a 9-hour day more

than 20,000 pieces will be sold?

C.4 Starting salaries for economics majors have a mean of $47,000 and a standard deviation of $8,000.

What is the probability that a random sample of 40 economics majors will have an average salary of

more than $50,000?

C.5 A store manager designs a new accounting system that will be cost-effective if the mean monthly charge

account balance is more than $170. A sample of 400 accounts is randomly selected. The sample mean

balance is $178 and the sample standard deviation is $65. Can the manager conclude that the new

system will be cost-effective?

a. Carry out a hypothesis test to answer this question. Use the α = 0.05 level of significance.

b. Compute the p-value of the test.

C.6 An econometric professor’s rule of thumb is that students should expect to spend 2 hours outside of

class on coursework for each hour in class. For a three-hour-per-week class, this means that students

are expected to do 6 hours of work outside class. The professor randomly selects eight students from

a class, and asks how many hours they studied econometrics during the past week. The sample values

are 1, 3, 4, 4, 6, 6, 8, 12.

a. Assuming that the population is normally distributed, can the professor conclude at the 0.05 level

of significance that the students are studying on average more than 6 hours per week?

b. Construct a 90% confidence interval for the population mean number of hours studied per week.

C.7 Modern labor practices attempt to keep labor costs low by hiring and laying off workers to meet

demand. Newly hired workers are not as productive as experienced ones. Assume that assembly line

workers with experience handle 500 pieces per day. A manager concludes that it is cost-effective to

maintain the current practice if new hires, with a week of training, can process more than 450 pieces

per day. A random sample of N = 50 trainees is observed. Let Yi denote the number of pieces each

handles on a randomly selected day. The sample mean is y = 460, and the estimated sample standard

deviation is σ̂ = 38.

a. Carry out a test of whether or not there is evidence to support the conjecture that current hiring

procedures are effective, at the 5% level of significance. Pay careful attention when formulating

the null and alternative hypotheses.
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b. What exactly would a Type I error be in this example? Would it be a costly one to make?

c. Compute the p-value for this test.

C.8 To evaluate alternative retirement benefit packages for its employees, a large corporation must deter-

mine the mean age of its workforce. Assume that the age of its employees is normally distributed. Since

the corporation has thousands of workers, a sample is to be taken. If the standard deviation of ages is

known to be σ = 21 years, how large should the sample be to ensure that a 95% interval estimate of

mean age is no more than four years wide?

C.9 Consider the discrete random variable Y that takes the values y = 1, 2, 3, and 4 with probabilities

0.1, 0.2, 0.3, and 0.4, respectively.

a. Sketch this pdf .

b. Find the expected value of Y .

c. Find the variance of Y .

d. If we take a random sample of size N = 3 from this distribution, what are the mean and variance

of the sample mean, Y =
(
y1 + y2 + y3

)/
3?

C.10 The sample proportion p̂ is an estimator of the population proportion p. The variance of the estimator

p̂ is var(p̂) = p(1 − p)∕N, where N is the sample size. Suppose we sample N = 100 voters. Of the

100 people sampled, 54 preferred candidate Hillary to candidate Donald.

a. Construct a 95% interval estimate of the population proportion using the approximately correct

critical value 1.96 and the estimated variance var
⋀

(p̂) = p̂(1 − p̂)∕N.

b. Calculate the alternative variance estimate, var
∼

(p̂) = 0.5(1 − 0.5)∕N. Is this variance estimate

larger or smaller than the one in part (a)? Will using the alternative variance make for a more

conservative, wider, interval estimate or a less conservative, narrower, one?

c. Repeat the calculation of the interval estimate using the alternative variance estimate from part (b)

and using the easier to work with critical value 2.0. Is it correct to say that this interval estimate

has “a margin of error approximately equal to plus or minus 10 percent?”

d. Define the rough and conservative “margin of error” for the sample proportion interval to be

2
[
0.5(1 − 0.5)∕N

]1∕2
. Calculate the sample size required so that the margin of error is 0.07. What

sample sizes are required for 0.05, 0.03, and 0.01 margins of error?

e. A February, 2017, Gallup poll on NAFTA (North American Free Trade Agreement) resulted in

48% saying it “has been a good thing.” The poll was based on telephone interviews conducted Feb.

1-5, 2017, with a random sample of 1,035 adults, aged 18 and older, living in all 50 U.S. states

and the District of Columbia. Construct a conservative interval estimate of the true proportion of

the 18 or older population thinking NAFTA has been a good thing. A news report based on the

poll said “U.S. voters are deeply divided” on NAFTA. Do you think that is a fair statement? [One

disheartening comment on the article by a reader said “I don’t trust Poles.”]

C.11 Let X denote the birthweight of a child, measured in hundreds of grams, whose mother did not

smoke. Using a sample of N = 968 newly born children, we find the sample mean birthweight to

be X = 34.2514 hundred grams. Also
∑N

i=1

(

Xi − X
)2

= 33296.003,
∑N

i=1

(

Xi − X
)3

= −137910.04,

∑N
i=1

(

Xi − X
)4

= 6392783.3

a. Use these values to compute the sample variance, as shown in (C.7) and the sample standard

deviation, as shown in (C.9).

b. Use these values to compute μ̃2, μ̃3, μ̃4, as shown in Section C.4.2.

c. Calculate the skewness (S) and kurtosis (K) coefficients given in Section C.4.2. Are the values

compatible with the normal distribution?

d. Test the normality of the data using the Jarque–Bera test in Section C.7.4.

C.12 Let Y denote the number of doctor visits in one month by a randomly chosen person. Assume that this

count variable has a Poisson distribution with E(Y) = var(Y) = λ.

a. Calculate the probabilities P(Y = 0), P(Y = 1), and P(Y = 2) assuming λ = 1.

b. We choose a random sample of N = 3 individuals and observe that the first and second

people had two doctor visits, and the third person had one. Calculate the joint probability

P
(
Y1 = 2,Y2 = 2, Y3 = 1

)
given that λ = 1.

c. Show that in general P
(

Y1 = 2,Y2 = 2, Y3 = 1||λ
)

= 0.25λ5e−3λ.
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d. The likelihood function is L
(
λ|Y1 = 2, Y2 = 2,Y3 = 1

)
= 0.25λ5e−3λ. Write down the algebraic

form of the log-likelihood, lnL
(
λ|Y1 = 2,Y2 = 2,Y3 = 1

)
.

e. Find the first derivative of the log-likelihood, set it to zero, and solve for the solution value λ̃.

f. Find the second derivative of the log-likelihood. Determine the sign of this derivative.

g. Can we claim that λ̃ is the maximum likelihood estimate of E(Y) = var(Y) = λ?

C.13 This exercise extends Exercise C.12 to the general case with a random sample of N observations,

Y1, … , YN from a population. Each outcome is assumed to have a Poisson distribution with

E(Y) = var(Y) = λ.

a. Show that the log-likelihood function is ln L
(
λ|y1, … , yN

)
= (ln λ)

∑N
i=1

yi − Nλ −
∑N

i=1
ln
(
yi!

)
.

b. Show that the maximum likelihood estimate is λ̃ =
∑N

i=1
yi∕N.

c. Show that the second derivative of the log-likelihood function is −
(∑N

i=1
yi

)/
λ2. What is the sign

of the second derivative?

d. The maximum likelihood estimator is λ̃ =
∑N

i=1
Yi∕N. Assuming we have a random sample from

a population with E(Y) = var(Y) = λ, find E
(
λ̃
)

and var
(
λ̃
)
.

e. The information measure I(λ) = −
{

E
[

d2 ln L(λ)
dλ2

]}

, where

[
d2 ln L(λ)

dλ2

]

= −
(∑N

i=1
Yi

)/
λ2.

Show that the information measure in this case is I(λ) = N∕λ.

C.14 Let X denote the birthweight of a child, measured in hundreds of grams. Consider children whose

mothers smoked (SMOKE = 1) and children whose mothers did not smoke (SMOKE = 0). Summary

statistics for the birthweights for these two groups are in Table C.6.

T A B L E C.6 Summary Statistics for Birthweights

SMOKE N Mean Variance Std. Dev. Skewness Kurtosis

0 968 34.25 34.43 5.87 −0.71 5.58

1 232 31.37 34.42 5.87 −1.26 7.66

a. Use the Jarque–Bera test to test the normality of each of these populations. Do we reject the null

hypothesis of normality or fail to reject normality?

b. Construct a 95% interval estimate for the population mean birthweight born to mothers who did not

smoke, μ0. Construct a 95% interval estimate for the population mean birthweight born to mothers

who did smoke, μ1. Select any value c in the 95% interval estimate for μ0. What is the outcome of

a two-tail test of the hypothesis μ1 = c using the 5% level of significance?

c. Test the null hypothesis that the population mean birthweight is the same for the two popu-

lations, H0∶μ0 = μ1 against the alternative H1∶μ0 ≠ μ1. Explain your choice to use a pooled

variance estimator or to assume that the pooled variance is inappropriate. Use the 5% level of

significance.

d. Repeat the test in part (c) for the null and alternative hypotheses H0∶μ0 ≤ μ1 and H1∶μ0 > μ1.

C.15 In this exercise we use the data from Exercise C.12 and the results in Exercise C.13 to carry out a

hypothesis test concerning the parameter λ in the Poisson distribution.

a. Using the maximum likelihood estimate from Exercise C.12, compute the information measure

I
(
λ̃
)
, given in Exercise C.13 (e).

b. Carry out a likelihood ratio test of the null hypothesis H0∶λ = 1, using the test statistic in

equation (C.25), versus the alternative H1∶λ ≠ 1 at the 5% level of significance.

c. Use the Wald statistic in equation (C.26) to carry out the test from part (b).

d. An alternative version of the Wald statistic replaces the second derivative term, −d2 ln L(λ)∕dλ2,

with I
(
λ̃
)
, as shown in equation (C.28). Carry out the test from part (b) using the modified

Wald test.

e. Evaluate the score function, shown in equation (C.31), assuming the null hypothesis is true.

f. Evaluate the information measure I(λ) assuming the null hypothesis is true.

g. Using the results in parts (e) and (f), carry out the LM test of the null hypothesis in part (b).
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C.16 Two independent food scientists are researching the shelf-life (Y) of “Bill’s Big Red” spaghetti sauce.

The first collects a random sample of 25 jars and finds their average shelf life to be Y = 48 months.

The second researcher collects a random sample of 100 jars and finds their average shelf life to be

Y2 = 40 months.

a. Find the ratio of the standard error of Y1 relative to the standard error of Y2.

b. A combined estimate can be obtained by finding the weighted average Ỹ = cY1 + (1 − c) Y2.

Is there any value of c that makes this estimator of μ unbiased?

c. What value of c yields the combined estimate with the smallest standard error? Explain the intuition

behind your solution, and why weighting the two means equally, with c = 0.5, is not the best choice.

C.17 Suppose school children are subjected to a standardized math test each spring. In the population of

comparable children, the test score Y is normally distributed with mean 500 and standard deviation

100, Y ∼ N
(
μ = 500, σ2 = 1002

)
. It is claimed that reducing class sample size will increase test scores.

a. How can we tell if reducing class size actually does increase test scores? Would you be convinced

if a sample of N = 25 students from the smaller classes had an average test score of 510? Calculate

the probability of obtaining a sample mean of Y = 510, or more, even if smaller classes actually

have no effect on test performance.

b. Show that a class average of 533 will be reached by chance only 5% of the time, if the smaller

class sizes have no effect. Is the following statement correct or incorrect? “We can conclude that

smaller classes raise average test scores if a class of 25 students has an average test score of 533

or better, with this result being due to sampling error with probability 5%.”

c. Suppose that smaller classes actually do improve the average mean population test score to 550.

What is the probability of observing a class of 25 with an average score of 533 or better? If our

objective is to determine whether smaller classes increase test scores, is it better for this number

to be larger or smaller?

d. If smaller classes increase average test score to 550, what is the probability of having a small class

average of less than or equal to 533?

e. Draw a figure showing two normal distributions, one with mean 500 and standard deviation 100,

and the other with mean 550 and standard deviation 100. On the figure locate the value 533. In

part (b) we showed that if the change in class size has no effect on test scores, we would still obtain

a class average of 533 or more by chance 5% of the time; we would incorrectly conclude that the

smaller classes helped test scores, which is a Type I error. In part (d) we derived the probability

that we would obtain a class average test score of less than 533, making us unable to conclude that

smaller classes help, even though smaller classes did help. This is a Type II error. If we push the

threshold to the right, say 540, what happens to Type I and Type II errors? If we push the threshold

to the left, say 530, what happens to the probability of Type I and Type II errors?

C.11.2 Computer Exercises

C.18 Does being in a small class help primary school students learning, and performance on achievement

tests? Use the sample data file star5_small to explore this question.

a. Consider students in regular-sized classes, with REGULAR = 1. Construct a histogram of MATH-
SCORE. Carry out the Jarque–Bera test for normality at the 5% level of significance. What do you

conclude about the normality of the data?

b. Calculate the sample mean, standard deviation and standard error of the mean for MATHSCORE
in regular-sized classes. Use the t-statistic in equation (C.16) to test the null hypothesis that the

population mean (the population of students who are enrolled in regular-sized classes) μR is 490

versus the alternative that it isn’t. Use the 5% level of significance. What is your conclusion?

c. Given the result of the normality test in (a), do you think the test in part (b) is justifiable? Explain

your reasoning.

d. Construct a 95% interval estimate for the mean μR.

e. Repeat the test in (b) for the population of students in small classes, SMALL = 1. Denote the

population mean for these students as μS. Use the 5% level of significance. What is your conclusion?

f. Let μR and μS denote the population mean test scores on the math achievement test, MATHSCORE.

Using the appropriate test, outlined in Section C.7.2, test the null hypothesis H0∶μS – μR ≤ 0 against

the alternative H1∶μS – μR > 0. Use the 1% level of significance. Does it appear that being in a small

class increases the expected math test score, or not?
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C.19 Does having a household member with an advanced degree increase household income relative to a

household that includes a member having only a college degree? Use the sample data file cex5_small
to explore this question.

a. Construct a histogram of incomes for households that include a member with an advanced degree.

Construct another histogram of incomes for households that include a member with a college

degree. What do you observe about the shape and location of these two histograms?

b. In the sample that includes a member with an advanced degree, what percentage of households

have household incomes greater than $10,000 per month? What is the percentage for households

that include a member having a college degree?

c. Test the null hypothesis that the population mean income for households including a member with

an advanced degree, μADV, is less than, or equal to, $9,000 per month against the alternative that it

is greater than $9,000 per month. Use the 5% level of significance.

d. Test the null hypothesis that the population mean income for households including a member with

a college degree, μCOLL, is less than, or equal to, $9,000 per month against the alternative that it is

greater than $9,000 per month. Use the 5% level of significance.

e. Construct 95% interval estimates for μADV and μCOLL.

f. Test the null hypothesis μADV ≤ μCOLL against the alternative μADV > μCOLL. Use the 5% level of

significance. What is your conclusion?

C.20 How much variation is there in household incomes in households including a member with an

advanced degree? Use the sample data file cex5_small to explore this question. Let σ2
ADV denote the

population variance.

a. Test the null hypothesis σ2
ADV = 2500 against the alternative σ2

ADV > 2500. Use the 5% level of

significance. Clearly state the test statistic and the rejection region. What is the p-value for this

test?

b. Test the null hypothesis σ2
ADV = 2500 against the alternative σ2

ADV < 2500. Use the 5% level of

significance. Clearly state the test statistic and the rejection region. What is the p-value for this

test?

c. Test the null hypothesis σ2
ADV = 2500 against the alternative σ2

ADV ≠ 2500. Use the 5% level of

significance. Clearly state the test statistic and the rejection region.

C.21 School officials consider performance on a standardized math test acceptable if 40% of the population

of students score at least 500 points. Use the sample data file star5_small to explore this topic.

a. Compute the sample proportion of students enrolled in regular-sized classes who score 500 points

or more. Calculate a 95% interval estimate of the population proportion. Based on this interval can

we reject the null hypothesis that the population proportion of students in regular-sized classes

who score 500 points or better is p = 0.4?

b. Test the null hypothesis that the population proportion p of students in a regular-sized class who

score 500 points or more is less than or equal to 0.4 against the alternative that the true proportion

is greater than 0.4. Use the 5% level of significance.

c. Test the null hypothesis that the population proportion p of students in a regular-sized class who

score 500 points or more is equal to 0.4 against the alternative that the true proportion is less than

0.4. Use the 5% level of significance.

d. Repeat parts (a)–(c) for students in small classes.

C.22 Consider two populations of Chinese chemical firms: those who export their products and those who

do not. Let us consider the sales revenue for these two types of firms. Use the data file chemical_small
for this exercise. It contains data on 1200 firms in 2006.

a. The variable LSALES is ln(SALES). Construct a histogram for this variable and test whether the

data are normally distributed using the Jarque–Bera test with 10% level of significance.

b. Create the variable SALES= exp(LSALES). Construct a histogram for this variable and test whether

the data are normally distributed using the Jarque–Bera test with 10% level of significance.

c. Consider two populations of firms: those who export (EXPORT = 1) and those who do not

(EXPORT = 0). Let μ1 be the population mean of LSALES for firms that export, and let μ0 be the

population mean of LSALES for firms that do not export. Estimate the difference in means μ1 − μ0

and interpret this value. [Hint: Use the properties of differences in log-variables.]

d. Test the hypothesis that the means of these two populations are equal. Use the test that assumes

the population variances are unequal. What do you conclude?
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C.23 Does additional education have as large a payoff for females as males? Use the data file cps5 to explore

this question. If your software does not permit using this larger sample use cps5_small.
a. Calculate the sample mean wage of females who have 12 years of education. Calculate the sample

mean wage of females with 16 years of education. What did you discover?

b. Calculate a 95% interval estimate for the population mean wage of females with 12 years of educa-

tion. Repeat the calculation for the wages of females with 16 years of education. Do the intervals

overlap?

c. Calculate the sample mean wage of males who have 12 years of education. Calculate the sample

mean wage of males with 16 years of education. What did you discover? How does the difference

in wages for males compare to the difference of wages for females in part (a)?

d. Calculate a 95% interval estimate for the population mean wage of males with 12 years of

education. Repeat the calculation for the wages of males with 16 years of education. Does the

interval for males with 12 years of education overlap with the comparable interval for females?

Does the interval for males with 16 years of education overlap with the comparable interval for

females?

e. Denote the population means of interest by μF16, μF12, μM16, μM12 where F and M denote

female and male, and 12 and 16 denote years of education. Estimate the parameter

θ =
(
μF16 – μF12

)
–
(
μM16 – μM12

)
by replacing population means by sample means.

f. Calculate a 95% interval estimate of θ. Based on the interval estimate, what can you say about the

benefits of the addition of four years of education for males versus females? Use the 97.5 percentile

from the standard normal, 1.96, when calculating the interval estimate.

C.24 How much does the variation in wages change when individuals receive more education? Is the vari-

ation different for males and females? Use the data file cps5 to explore this question. If your software

does not permit using this larger sample use cps5_small.
a. Calculate the sample variance of wages of females who have 12 years of education. Calculate the

sample variance of wages of females who have 18 years of education. What did you discover?

b. Carry out a two-tail test, using a 5% level of significance, of the hypothesis that the variance of

wage is the same for females with 12 years of education and females with 18 years of education.

c. Calculate the sample variance of wages of males who have 12 years of education. Calculate the

sample variance of wages of males who have 18 years of education. What did you discover?

d. Carry out a two-tail test, using a 5% level of significance, of the hypothesis that the variance of

wage is the same for males with 12 years of education and males with 18 years of education.

e. Carry out a two-tail test of the null hypothesis that the mean wage for males with 18 years of

education is the same as the mean wage of females with 18 years of education. Use the 1% level

of significance.

C.25 What happens to the household budget share of necessity items, like food, when total household expen-

ditures increase? Use data file malwai_small for this exercise.

a. Obtain the summary statistics, including the median and 90th percentile, of total household

expenditures.

b. Construct a 95% interval estimate for the proportion of income spent on food by households with

total expenditures less than or equal to the median.

c. Construct a 95% interval estimate for the proportion of income spent on food by households with

total expenditures more than or equal to the 90th percentile.

d. Summarize your findings from parts (b) and (c).

e. Test the null hypothesis that the population mean proportion of income spent on food by households

is 0.4. Use a two-tail test and the 5% level of significance. Carry out the test separately using the

complete sample, and using the samples of households with total expenditures less than or equal

to the median, and again for households whose total expenditures are in the top 10%.

C.26 At the famous Fulton Fish Market in New York City sales of Whiting (a type of fish) vary from day

to day. Over a period of several months, daily quantities sold (in pounds) were observed. These data

are in the data file fultonfish.

a. Using the data for Monday sales, test the null hypothesis that the mean quantity sold is greater than

or equal to 10,000 pounds a day, against the alternative that the mean quantity sold is less than

10,000 pounds. Use the α = 0.05 level of significance. Be sure to (i) state the null and alternative

hypotheses, (ii) give the test statistic and its distribution, (iii) indicate the rejection region, including
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a sketch, (iv) state your conclusion, and (v) calculate the p-value for the test. Include a sketch

showing the p-value.

b. Assume that daily sales on Tuesday (X2) and Wednesday (X3) are normally distributed with means

μ2 and μ3, and variances σ2
2

and σ2
3
, respectively. Assume that sales on Tuesday and Wednesday

are independent of each other. Test the hypothesis that the variances σ2
2

and σ2
3

are equal against

the alternative that the variance on Tuesday is larger. Use the α = 0.05 level of significance. Be

sure to (i) state the null and alternative hypotheses, (ii) give the test statistic and its distribution,

(iii) indicate the rejection region, including a sketch, (iv) state your conclusion, and (v) calculate

the p-value for the test. Include a sketch showing the p-value.

c. We wish to test the hypothesis that mean daily sales on Tuesday and Wednesday are equal against

the alternative that they are not equal. Using the result in part (b) as a guide to the appropriate

version of the test (Appendix C.7), carry out this hypothesis test using the 5% level of significance.

d. Let the daily sales for Monday, Tuesday, Wednesday, Thursday, and Friday be denoted as X1,

X2, X3, X4, and X5, respectively. Assume that Xi ∼ NID
(
μi, σ2

i

)
. Define total weekly sales as

W = X1 + X2 + X3 + X4 + X5. Derive the expected value and variance of W, using appropriate

theorems about normal distributions. Be sure to show your work and justify your answer.

e. Referring to part (d), let E(W) = μ. Assume that we estimate μ using

μ̂ = X1 + X2 + X3 + X4 + X5

where Xi is the sample mean for the ith day. Derive the probability distribution of μ̂ and construct

an approximate (valid in large samples) 95% interval estimate for μ. Justify the validity of your

interval estimator.

C.27 A credit score is a numerical expression based on a level analysis of a person’s credit files, to represent

the creditworthiness of the person. A credit score is primarily based on a credit report information

typically sourced from credit bureaus. Use the data file lasvegas for this exercise.

a. Construct a histogram for the variable CREDIT . Does the histogram look symmetrical and

“bell-shaped?” Test the normality of the variable CREDIT using the Jarque–Bera test and level of

significance 5%.

b. Let two populations of CREDIT be defined by those who were delinquent (DELINQUENT = 1)

and those who were not delinquent (DELINQUENT = 0). Using the test described in Section C.7.3,

carry out a test of the hypothesis that the variances in these two populations are equal against the

alternative that they are not equal. Use the 5% level of significance.

c. Use the appropriate one-tail test in Section C.7.2, based on your answer in part (b), to test the

equality of CREDIT means for the two populations.

d. Using the test in Section C.7.1, test the null hypothesis that the variance of the population who

was not delinquent is 3600 versus the alternative that it is not 3600.

C.28 Is it true that more capable individuals ultimately attain more years of schooling? Use the data file

koop_tobias_87 to study this question. The data file includes 1987 information on males who were

between 14 and 22 years of age in 1979.

a. In the data the variable SCORE is an index based on 10 aptitude/IQ tests given in 1980. We can

loosely use this variable as some measure of ability. Construct a histogram of SCORE. What are

the sample mean and the standard deviation?

b. The variable EDUC is the individual’s years of schooling completed by 1993. What percentage of

the men had completed at least 12 years of education by 1993?

c. Calculate the sample mean number of years of schooling completed by men with SCORE greater

than or equal to zero. Calculate the sample mean number of years of schooling completed by men

with SCORE less than zero. Test the null hypothesis that the population of men with SCORE ≥ 0

have mean years of education, μ1, that is greater than the mean number of years of education, μ0,

for those with lower scores. State the null and alternative hypotheses, give the test statistic, and

your conclusion using a 5% level of significance.

d. Some of the men came from broken homes, as indicated by the variable BROKEN. Test the null

hypothesis that the population of men from broken homes have mean years of education, μ1, that is

less than the mean number of years of education, μ0, for those who were not from broken homes.

State the null and alternative hypotheses, give the test statistic, and your conclusion using a 5%

level of significance.



�

� �

�

C.11 Exercises 861

C.29 Do more highly educated parents tend to have more educated children? Use the data file

koop_tobias_87 to study this question. The data file includes 1987 information on males who were

between 14 and 22 years of age in 1979.

a. The variable EDUC is the individual’s years of schooling completed by 1993. What percentage

of the men had completed at least 16 years of education by 1993? What percentage of the men’s

mothers had at least 16 years of education? What percentage of fathers had at least 16 years of

education?

b. Calculate the sample mean number of years of schooling completed by men with fathers who had

16 or more years of education. Calculate the sample mean number of years of schooling completed

by men with fathers who had less than 16 years of education. Test the null hypothesis that the

population of men with more educated fathers have mean years of education, μ1, that is greater

than the mean number of years of education, μ0, for those with less educated fathers. State the

null and alternative hypothesis, give the test statistic, and your conclusion using a 5% level of

significance.

c. Investigate the question of whether more highly educated men, those with more than 12 years of

schooling, tend to marry more highly educated women, those with more than 12 years of schooling.

State the null and alternative hypotheses, give the test statistic, and your conclusion using a 5%

level of significance.

C.30 Do households with more children tend to result in more broken homes? Use the data file

koop_tobias_87 to study this question. The data file includes 1987 information on males who were

between 14 and 22 years of age in 1979. It includes the number of siblings the man had as well as

whether he came from a broken home.

a. Create the variable KIDS = SIBS + 1. To simplify the following arithmetic, let KIDS = 3 if the

number of household children is equal to 3 or more. The variable KIDS takes the values 1, 2,

and 3. Calculate the number of men who came from families with KIDS = 1, and KIDS = 2, and

KIDS = 3.

b. Calculate the number of households that were broken having 1, 2, or 3 children. Calculate the

number of households that were not broken with KIDS = 1, KIDS = 2, and KIDS = 3.

c. The famous statistician Karl Pearson developed a test for the null hypothesis that two characteristics

are unrelated versus the alternative that they are related. If the number of children and broken

homes are unrelated, we should expect 176.167 of 1057 households with each of the six possible

outcomes. Pearson’s chi-square test is calculated as

PEARSON =
(
O1 − E1

)2

E1

+
(
O2 − E2

)2

E2

+ · · · +
(
O6 − E6

)2

E6

where Ei is the “expected” number of outcomes and Oi is the “observed” number of outcomes for

each of six outcomes. If there is no relation between the variables the test statistic has a χ2
(m) distri-

bution, with m =
(
c1 − 1

)
×
(
c2 − 1

)
degrees of freedom, where c1 is the number of categories for

variable 1 and c2 is the number of categories for variable 2. The null hypothesis that the variables

are unrelated is rejected if the value of PEARSON is greater than the 100(1−α)-percentile from

the chi-square distribution. Carry out Pearson’s test for the existence of a relationship between

BROKEN and KIDS at the 5% level.

d. Explore your software. Does it have a command to automatically create two-way tables of frequen-

cies? Does it have a command to calculate Pearson’s chi-square statistic? If so, carry out the test

in part (c) without modifying the variable KIDS to have only three outcomes. Report the two-way

table and the test result.
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Statistical Tables
Standard Normal Distribution

–4 –3 –2 –1 0
z

1 2 3 4

Example:
P(Z ≤ 1.73) = Φ(1.73) = 0.9582

T A B L E D.1 Cumulative Probabilities for the Standard Normal Distribution 𝚽(z) = P(Z ≤ z)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Source: This table was generated using the SAS® function PROBNORM.
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Example:

P
(

t
(30)

 ≤ 1.697
)

 = 0.95

P
(

t
(30)

 > 1.697
)

 = 0.05

–4 –3 –2 –1 0
t

1 2 3 4

T A B L E D.2 Percentiles of the t-distribution

df t(0.90, df) t(0.95, df) t(0.975, df) t(0.99, df) t(0.995, df)

1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

31 1.309 1.696 2.040 2.453 2.744

32 1.309 1.694 2.037 2.449 2.738

33 1.308 1.692 2.035 2.445 2.733

34 1.307 1.691 2.032 2.441 2.728

35 1.306 1.690 2.030 2.438 2.724

36 1.306 1.688 2.028 2.434 2.719

37 1.305 1.687 2.026 2.431 2.715

38 1.304 1.686 2.024 2.429 2.712

39 1.304 1.685 2.023 2.426 2.708

40 1.303 1.684 2.021 2.423 2.704

50 1.299 1.676 2.009 2.403 2.678

∞ 1.282 1.645 1.960 2.326 2.576

Source: This table was generated using the SAS® function TINV.
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Example:

P
(

χ

2   ≤ 9.488
)

 = 0.95

P
(

χ

2

  

 > 9.488
)

 = 0.05

0 10 20

(4)

(4)

2

T A B L E D.3 Percentiles of the Chi-square Distribution

df 𝛘2
(0.90, df) 𝛘2

(0.95, df) 𝛘2
(0.975, df) 𝛘2

(0.99,df) 𝛘2
(0.995, df)

1 2.706 3.841 5.024 6.635 7.879

2 4.605 5.991 7.378 9.210 10.597

3 6.251 7.815 9.348 11.345 12.838

4 7.779 9.488 11.143 13.277 14.860

5 9.236 11.070 12.833 15.086 16.750

6 10.645 12.592 14.449 16.812 18.548

7 12.017 14.067 16.013 18.475 20.278

8 13.362 15.507 17.535 20.090 21.955

9 14.684 16.919 19.023 21.666 23.589

10 15.987 18.307 20.483 23.209 25.188

11 17.275 19.675 21.920 24.725 26.757

12 18.549 21.026 23.337 26.217 28.300

13 19.812 22.362 24.736 27.688 29.819

14 21.064 23.685 26.119 29.141 31.319

15 22.307 24.996 27.488 30.578 32.801

16 23.542 26.296 28.845 32.000 34.267

17 24.769 27.587 30.191 33.409 35.718

18 25.989 28.869 31.526 34.805 37.156

19 27.204 30.144 32.852 36.191 38.582

20 28.412 31.410 34.170 37.566 39.997

21 29.615 32.671 35.479 38.932 41.401

22 30.813 33.924 36.781 40.289 42.796

23 32.007 35.172 38.076 41.638 44.181

24 33.196 36.415 39.364 42.980 45.559

25 34.382 37.652 40.646 44.314 46.928

26 35.563 38.885 41.923 45.642 48.290

27 36.741 40.113 43.195 46.963 49.645

28 37.916 41.337 44.461 48.278 50.993

29 39.087 42.557 45.722 49.588 52.336

30 40.256 43.773 46.979 50.892 53.672

35 46.059 49.802 53.203 57.342 60.275

40 51.805 55.758 59.342 63.691 66.766

50 63.167 67.505 71.420 76.154 79.490

60 74.397 79.082 83.298 88.379 91.952

70 85.527 90.531 95.023 100.425 104.215

80 96.578 101.879 106.629 112.329 116.321

90 107.565 113.145 118.136 124.116 128.299

100 118.498 124.342 129.561 135.807 140.169

110 129.385 135.480 140.917 147.414 151.948

120 140.233 146.567 152.211 158.950 163.648

Source: This table was generated using the SAS® function CINV.
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Example:

P
(

F
(4,30)

 ≤ 2.69
)

 = 0.95

P
(

F
(4,30)

 > 2.69
)

 = 0.05

0 1 2 3 4
F

65

T A B L E D.4 95th Percentile for the F-distribution

v2/v1 1 2 3 4 5 6 7 8 9 10 12 15 20 30 60 ∞
1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 243.91 245.95 248.01 250.10 252.20 254.31

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.46 19.48 19.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.62 8.57 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.75 5.69 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.50 4.43 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.81 3.74 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.38 3.30 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.08 3.01 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.86 2.79 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.70 2.62 2.54

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.25 2.16 2.07

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.04 1.95 1.84

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.92 1.82 1.71

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.84 1.74 1.62

35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11 2.04 1.96 1.88 1.79 1.68 1.56

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.74 1.64 1.51

45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05 1.97 1.89 1.81 1.71 1.60 1.47

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.95 1.87 1.78 1.69 1.58 1.44

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.65 1.53 1.39

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.55 1.43 1.25

∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.46 1.32 1.00

Source: This table was generated using the SAS® function FINV.
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Example:

P
(

F
(4,30)

 ≤ 4.02
)

 = 0.99

P
(

F
(4,30)

 > 4.02
)

 = 0.01

0 1 2 3 4
F

65

T A B L E D.5 99th Percentile for the F-distribution

v2/v1 1 2 3 4 5 6 7 8 9 10 12 15 20 30 60 ∞
1 4052.18 4999.50 5403.35 5624.58 5763.65 5858.99 5928.36 5981.07 6022.47 6055.85 6106.32 6157.28 6208.73 6260.65 6313.03 6365.87

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.47 99.48 99.50

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.50 26.32 26.13

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.84 13.65 13.46

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.38 9.20 9.02

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.23 7.06 6.88

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 5.99 5.82 5.65

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.20 5.03 4.86

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.65 4.48 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.25 4.08 3.91

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.21 3.05 2.87

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.78 2.61 2.42

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.54 2.36 2.17

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.39 2.21 2.01

35 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88 2.74 2.60 2.44 2.28 2.10 1.89

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.20 2.02 1.80

45 7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74 2.61 2.46 2.31 2.14 1.96 1.74

50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.56 2.42 2.27 2.10 1.91 1.68

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.03 1.84 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.86 1.66 1.38

∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.70 1.47 1.00

Source: This table was generated using the SAS® function FINV.
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z

ϕ(z)

–4

0
.1

.2
.3

.4

–3 –2 –1 0

Standard Normal Density

Example: ϕ(1.0) = 0.24197

1 2 3

0.24197

4

T A B L E D.6 Standard Normal pdf Values 𝛟(z)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.39894 0.39892 0.39886 0.39876 0.39862 0.39844 0.39822 0.39797 0.39767 0.39733

0.1 0.39695 0.39654 0.39608 0.39559 0.39505 0.39448 0.39387 0.39322 0.39253 0.39181

0.2 0.39104 0.39024 0.38940 0.38853 0.38762 0.38667 0.38568 0.38466 0.38361 0.38251

0.3 0.38139 0.38023 0.37903 0.37780 0.37654 0.37524 0.37391 0.37255 0.37115 0.36973

0.4 0.36827 0.36678 0.36526 0.36371 0.36213 0.36053 0.35889 0.35723 0.35553 0.35381

0.5 0.35207 0.35029 0.34849 0.34667 0.34482 0.34294 0.34105 0.33912 0.33718 0.33521

0.6 0.33322 0.33121 0.32918 0.32713 0.32506 0.32297 0.32086 0.31874 0.31659 0.31443

0.7 0.31225 0.31006 0.30785 0.30563 0.30339 0.30114 0.29887 0.29659 0.29431 0.29200

0.8 0.28969 0.28737 0.28504 0.28269 0.28034 0.27798 0.27562 0.27324 0.27086 0.26848

0.9 0.26609 0.26369 0.26129 0.25888 0.25647 0.25406 0.25164 0.24923 0.24681 0.24439

1.0 0.24197 0.23955 0.23713 0.23471 0.23230 0.22988 0.22747 0.22506 0.22265 0.22025

1.1 0.21785 0.21546 0.21307 0.21069 0.20831 0.20594 0.20357 0.20121 0.19886 0.19652

1.2 0.19419 0.19186 0.18954 0.18724 0.18494 0.18265 0.18037 0.17810 0.17585 0.17360

1.3 0.17137 0.16915 0.16694 0.16474 0.16256 0.16038 0.15822 0.15608 0.15395 0.15183

1.4 0.14973 0.14764 0.14556 0.14350 0.14146 0.13943 0.13742 0.13542 0.13344 0.13147

1.5 0.12952 0.12758 0.12566 0.12376 0.12188 0.12001 0.11816 0.11632 0.11450 0.11270

1.6 0.11092 0.10915 0.10741 0.10567 0.10396 0.10226 0.10059 0.09893 0.09728 0.09566

1.7 0.09405 0.09246 0.09089 0.08933 0.08780 0.08628 0.08478 0.08329 0.08183 0.08038

1.8 0.07895 0.07754 0.07614 0.07477 0.07341 0.07206 0.07074 0.06943 0.06814 0.06687

1.9 0.06562 0.06438 0.06316 0.06195 0.06077 0.05959 0.05844 0.05730 0.05618 0.05508

2.0 0.05399 0.05292 0.05186 0.05082 0.04980 0.04879 0.04780 0.04682 0.04586 0.04491

2.1 0.04398 0.04307 0.04217 0.04128 0.04041 0.03955 0.03871 0.03788 0.03706 0.03626

2.2 0.03547 0.03470 0.03394 0.03319 0.03246 0.03174 0.03103 0.03034 0.02965 0.02898

2.3 0.02833 0.02768 0.02705 0.02643 0.02582 0.02522 0.02463 0.02406 0.02349 0.02294

2.4 0.02239 0.02186 0.02134 0.02083 0.02033 0.01984 0.01936 0.01888 0.01842 0.01797

2.5 0.01753 0.01709 0.01667 0.01625 0.01585 0.01545 0.01506 0.01468 0.01431 0.01394

2.6 0.01358 0.01323 0.01289 0.01256 0.01223 0.01191 0.01160 0.01130 0.01100 0.01071

2.7 0.01042 0.01014 0.00987 0.00961 0.00935 0.00909 0.00885 0.00861 0.00837 0.00814

2.8 0.00792 0.00770 0.00748 0.00727 0.00707 0.00687 0.00668 0.00649 0.00631 0.00613

2.9 0.00595 0.00578 0.00562 0.00545 0.00530 0.00514 0.00499 0.00485 0.00470 0.00457

3.0 0.00443 0.00430 0.00417 0.00405 0.00393 0.00381 0.00370 0.00358 0.00348 0.00337

Source: This table was generated using the SAS® function PDF(“normal,” z).
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Index

A
Absolute value, 749
Adjusted-R2, 286
Akaike information criteria (AIC), 286
Alternative functional forms, 162
Alternative hypothesis, 118, 827

stating, 832
tests of, 119–122

Alternative robust sandwich
estimators, 411–413

Alternative-specific variables, 707
AME (average marginal effect), 692,

740–741
Annual indicator variables, 329
Antilogarithm, 751
ARCH See Autoregressive conditional

heteroskedastic (ARCH) model
ARCH-in-mean, 626
ARDL See Autoregressive distributed

lag (ARDL) models
ARDL(p, q) model, 421–423, 430,

433–443, 456–462
Area under a curve, 762–764
AR(1) errors, 422–423, 443, 444, 457,

458
assumptions for, 454–455
estimation with, 452–455
higher order, testing for, 442–443
Phillips curve with, 455
properties of, 454–455, 479–480
testing for, 441

AR(1) model, 570–572
AR(2) model, 431–432
Assumptions

fixed effects, 661
independence of irrelevant

alternatives, 705
panel data regression, 639
random effects model, 637, 660
simple linear regression models, 47,

50–58, 60, 67–70, 72–74, 76, 82,
84–88

Asymptotic, 73
Asymptotically unbiased, 228
Asymptotic distributions, 229, 410, 819
Asymptotic normality, 229–230
Asymptotic properties, 227

of estimators, 483
Asymptotic refinement, 258
Asymptotic test procedures, 843–848
Asymptotic variance, 254
ATE See Average treatment effect

(ATE)
ATT See Average treatment effect on

the treated (ATT)
Attenuation bias, 488
Augmented Dickey–Fuller test,

578–579

Autocorrelation, 57, 424–427 See also
Serially correlated errors, testing
for

correlogram, 426
HAC standard errors, 448–452
lagged-dependent variable, models

with, 488
population autocorrelation of order,

one, 425
sample, 425–427
significance testing, 425–426

Autoregressive conditional
heteroskedastic (ARCH) model,
615–616

asymmetric effect, 623
GARCH-in-mean and time-varying

risk premium, 624–625
GARCH model, 622–624

Autoregressive distributed lag (ARDL)
models, 421, 564, 568

ARDL(p, q) model, 421–423, 430,
433–443, 456–462

IDL model representation, 457–458
multipliers from ARDL

representation, deriving,
458–461

Autoregressive error See AR(1) errors
Autoregressive model, 421

AR(1) error, 422–423, 441, 443, 444,
452–455, 457, 458

Auxiliary regression, 289–291
Average marginal effect (AME), 689,

692, 740–741
Average treatment effect (ATE), 343
Average treatment effect on the treated

(ATT), 344, 347

B
Balanced panels, 9, 636
Bandwidth, 853
Base group See Reference group
Baton Rouge house data, 78–79, 82
Bayesian information criterion See

Schwarz criterion (SC)
Bernoulli distribution, 790
Best linear unbiased estimators

(BLUE), 72, 193, 212, 377, 820,
849–851

Best linear unbiased predictor (BLUP),
154

Between estimator, 680
Bias

attenuation, 488
relative, 522
selection, 723
simultaneous equations, 488

Biased estimator, 68, 74
Big data, 5

Binary choice models, 682–702
with binary endogenous variable,

699–700
with continuous endogenous variable,

699
dynamic, 702
linear probability, 683–685
logit, 693–695
and panel data, 701–702
probit, 686–693
random utility models, 741–743

Binary endogenous explanatory
variables, 700–701

Binary variables, 769 See also Indicator
variables

Binomial distribution, 149, 790–791
Binomial random variable, 791
Bivariate function maxima and

minima, 760–761
Bivariate normal distribution, 37–39
Bivariate probit, 700
BLS See Bureau of Labor Statistics

(BLS), United States
BLUE See Best linear unbiased

estimators (BLUE)
BLUP See Best linear unbiased

predictor (BLUP)
Bootstrapping, 254

asymptotic refinement, 258
bias estimate, 256
for nonlinear functions, 258–259
percentile interval estimate, 257
resampling, 255–256
standard error, 256–257

Bootstrap sample, 255
Breusch–Pagan test, 387, 409
Bureau of Labor Statistics (BLS),

United States, 88

C
Canonical correlations, 520

analysis, 521
first, 521
second, 521
smallest, 521

Cauchy–Schwarz inequality, 811
Causality, 342

vs. prediction, 273–274
Causal modeling and treatment effects

causal effects nature and, 342–343
control variables, 345–347
decomposing, 344–345
overlap assumption, 347
regression discontinuity designs,

347–350
treatment effect models, 343–344

Causal relationship, 50
cdf See Cumulative distribution

function (cdf )
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870 Index

Ceiling, 805
Censored data, 747
Censored sample, 389
Central chi-square distribution, 795,

798
Central limit theorem, 56, 73, 229,

818–820
Central moments, 820
Central t-distribution, 796
Chain rule of differentiation, 755
Change of variable technique, 787–789,

807
Chebyshev’s inequality, 810, 811
Chi-square distribution, 794–796

central, 795, 798
non-central, 795

Chi-square errors, 250–252
Chi-square test, 261, 270, 271, 409
Choice models, 790

binary, 682–702
multinomial, 702–709
ordered, 709–712

Chow test, 326–328
CIA See Conditional independence

assumption (CIA)
Cluster-robust standard errors,

648–651, 677–679
fixed effects estimation with, 650–651
OLS estimation with, 648–650

Cochrane–Orcutt estimator, 454
Coefficient of determination, 158
Coefficient of variation, 189
Cointegration, 564, 582–583

error correction model, 584–585
regression in absence of, 585–586
vector error correction model and,

600–601
Collinearity, 224, 288

consequences of, 289–290
identifying and mitigating, 290–292
influential observations, 293–294

Combined error, 637, 639
Compound interest, 174
Conditional expectation, 25, 30, 511,

774, 782, 786
Conditional heteroskedasticity, 203,

385–387, 647–648
Conditional independence assumption

(CIA), 345
Conditional logit model, 702, 707–709
Conditionally normal, 615
Conditional mean, 615
Conditional mean independence, 278
Conditional means graph, 349
Conditional probability, 21, 782
Conditional probability density

function, 771, 782, 784–785
Conditional variance, 31, 55, 100–101,

615, 774, 782
Confidence intervals, 113, 825,

833–834 See also Interval
estimate

Consistent estimators, 492, 493
Constant of integration, 762

Constant term, 202
Constant variance, 619
Consumption function, 545

in first differences, 586–587
Contemporaneous correlation, 534, 535
Contemporaneous exogeneity, 444
Contemporaneously uncorrelated, 483,

487–489, 545
lagged-dependent variable models

with serial correlation, 488
measurement error, 487–488
omitted variables, 488
simultaneous equations bias, 488

Continuous random variables, 17, 19,
26, 27, 32, 35, 37, 769, 778–789

distributions of functions of, 787–789
expected value, 24, 780–781
probability calculations, 779–780
properties of, 780–781
truncated, 789
variance of, 781

Control variables, 211, 278–280, 345
Correlation(s), 28, 773–774, 785 See

also Autocorrelation
analysis, 158
calculation of, 28
canonical, 520, 521
defined, 424
of error, 57
partial, 502
positive, 773
and R2, 158–160
serial (see Autocorrelation)

Correlograms, 426, 439–440
Count data models, 713–716
Covariance, 27–29, 773–774

decomposition, 34, 103, 777–778
of least squares estimators, 69–72,

74–75
zero, 52, 87, 103

Covariance matrix, 213
CPS See Current Population Survey

(CPS)
Cragg–Donald F-test statistic, 521,

522, 559, 561
Critical values, 115, 217, 796
Cross-sectional data, 8–9, 51, 57, 291

heteroskedasticity and, 371
weakening strict exogeneity,

230–231
Cumulative distribution function (cdf ),

18–19, 769
of continuous random variables, 779
inverse, 801

Cumulative multiplier, 446
Current Population Survey (CPS), 7
Curvilinear forms, 77

D
Data See also specific types of data

experimental, 6
generating process, 51, 58, 84, 85, 87,

106, 108, 109, 147, 250, 483

interpreting, 14
nonexperimental, 7
obtaining, 14
quasi-experimental, 6–7
sample creation of, 108–109
sampling, 813–814
types of, 7–9

DataFerrett, 14
Data generation process (DGP), 51, 58,

84, 85, 87, 106, 108, 109, 147,
250, 483

Decimals and percentages, 751
Decomposition

covariance, 34, 103, 777–778
sum of squares, 193
variance, 33–34, 774–777

Definite integral, 763, 764
Degrees of freedom, 75, 114, 215, 794

denominator, 798
numerator, 798

Delay multipliers, 445, 456
Delete-one strategy, 169
Delta method, 233, 248

nonlinear function of single
parameter, 248–249

Denominator degrees of freedom, 798
Dependent variable, 49
Derivatives, 753
Deterministic trend, 567, 569–570
Deviation(s)

about individual means, 679
from mean form, 67

DF See Degrees of freedom
DFBETAS measure, 170
DFFITS measure, 170
Dichotomous variables See Indicator

variables
Dickey–Fuller tests, 577

with intercept and no trend,
577–579

with intercept and trend, 579–580
with no intercept and no trend,

580–581
Differenced data, 342
Difference estimator, 334–335,

640–642
with additional controls, 336–337
application of, 335–336
with fixed effects, 337–338

Differences-in-differences estimator,
338–342, 366–367

Difference stationary, 586, 587
Discrete change effect, 688
Discrete random variables, 16–18, 21,

24–26, 30–32, 34, 769
expected value of, 769–770
variance of, 770–771

Distributed lag model, 419, 420
autoregressive (see Autoregressive

distributed lag (ARDL) models)
finite, 420, 445
infinite, 421–422, 456–463
Okun’s law, 446

Distributed lag weight, 445
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Index 871

Distribution(s)
of functions of random variables,

787–789
of sample proportion, 842–843
sampling, 816–818

Double summation, 23
Dummy variables, 769 See also

Indicator variables
intercept, 319
least squares, 644–646
slope, 320–321

Dummy variable trap, 320, 325
Durbin–Watson bounds test, 478–479
Durbin–Watson test, 443, 476–479
Dynamic binary choice model, 702
Dynamic relationships, 420–424, 598

autoregressive distributed lag
models, 421

autoregressive model, 421–423
finite distributed lags, 420–421
infinite distributed lag models,

421–422

E
Econometric(s), 1–4
Econometric model, 4–5

as basis for statistical inference,
814–815

causality and prediction, 5
data generation, 5–7, 51
data types for, 7–9
defined, 3
equations in, 723–724
multiple regression model, 198–201
random error and strict exogeneity,

52–53
random error variation, 54–56
regression function, 53–54
research process in, 9–10
simple linear regression, 49–59

Economic model
multiple regression model, 197–198
simple linear regression, 47–49,

65–66
EGARCH See Exponential GARCH

(EGARCH)
EGLS See Estimated generalized least

squares (EGLS)
Elasticity, 64–65

income elasticity, 64–65
linear relationship, 753
nonlinear relationship, 757
semi-elasticity, 79
unit elasticity, 178

Empirical analysis, 17
Endogeneity, 654–656
Endogenous regressors, 482–487, 655
Endogenous variables, 88, 482, 487,

492, 503, 532, 545
Error(s) See also Standard errors

AR(1), 422–423, 441, 443, 444,
452–455, 457, 458

contemporaneously uncorrelated,
487–488

forecast, 430
mean squared error, 193–195
normality, 56
random, 4, 52–56, 74, 107
specification, 59
term, IDL model, 461–462
Type I, 119–120, 833
Type II, 120, 833

Error components, estimation of,
679–680

Error correction, 599 See also Vector
error correction (VEC)

Error correlation, 648
Error normality, 204
Errors-in-variables, 487
Error variance estimation,

207–208
Error variance estimator, 212
Estimated generalized least squares

(EGLS), 380
Estimates

estimators vs. (see Simple linear
regression model)

interpreting, 63
least squares, 74–75, 98–99
maximum likelihood, 691
standard error of, 821

Estimating/estimation, 4, 583
of error components, 679–680
fixed effects with cluster-robust

standard errors, 650–651
nonlinear relationship, 77–82
nonparametric, 851
parametric, 851
population variance, 820–822
random effects model, 653–654
regression parameters, 59–66
variance of error term, 74–77

Estimator(s), 816
between, 680
within, 642–644
best linear unbiased, 72, 820,

849–851
biased, 68, 74, 194
difference, 640–642
estimates vs. (see Simple linear

regression model)
fixed effects, 640–646, 701
Hausman–Taylor, 658–660
kernel density, 851–853
least squares, 66–73
linear, 67, 72, 73, 100, 102, 103, 105,

820, 850
maximum likelihood, 841–842
random effects, 651–663, 701
unbiased, 68–70, 72, 74, 84–86, 88,

102, 104–106, 109, 111, 817
variance of, 841–842

Estimator bias, 194
Exact collinearity, 320
Exactly identified, 503
Exogeneity, 431, 444

assumptions, 56–57
strict, 482

Exogenous variables, 86, 483, 498, 499,
532, 545

Expectations See also Mean
conditional, 774, 782, 784, 786
iterated, 774
of several random variables, 772
unconditional, 784

Expected values, 23, 48, 769, 816–817
calculation of, 24
conditional, 25
of continuous random variables, 24
of discrete random variables,

769–770
of least squares estimators, 68–69
rules for, 25
of several random variables, 27

Experimental design, 813
Experiments, 17, 770
Explanatory variables, 204
Exponential function, 751
Exponential GARCH (EGARCH), 625
Exponents, 749
Extreme value distribution, 803

F
F-distribution, 797–799
Feasible generalized least squares

(FGLS), 380, 684
Federal Reserve Economic Data

(FRED), 14
FGLS See Feasible generalized least

squares (FGLS)
Financial variables, characteristics of,

617
Finite distributed lags, 420–421,

445–448
First canonical correlation, 521
First derivative, 753
First difference, 564, 586
First-order autoregressive model (AR(1)

model), 422–423, 441, 443, 444,
452–455, 457, 458, 570–572

First-stage equations, 496 See Reduced
form equations

First-stage regression, 498
instrument strength assessment

using, 500–502
Fixed effects, 643
Fixed effects estimator, 640–646
Fixed effects model, 645

with cluster-robust standard errors,
650–651

Forbidden regression, 700
Forcing variable, 348
Forecast error, 154, 192
Forecast error variance decompositions,

605–607
Forecasting, 419, 430–438

AR(2) model, OLS estimation of,
431–432

assumptions for, 435–436
error, 283, 430
Granger causality, testing for,

437–438
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Forecasting (contd.)
interval, 433–435
lag length selection, 436–437
short-term, 430
standard error, 433–435
unemployment, 432–433

FRED See Federal Reserve Economic
Data (FRED)

Frequency distribution, of simulated
models, 619

Frisch–Waugh–Lovell (FWL) theorem,
209–211, 315–316, 502, 568

F-test See Joint hypotheses testing
(F-test)

Fuller-modified LIML, 558–559
Functional form, 153
Fuzzy regression discontinuity design,

350
FWL See Frisch–Waugh–Lovell (FWL)

theorem

G
Gauss–Markov theorem, 72–73

multiple regression model, 211, 272,
278, 289

proof of, 102
Generalized (GARCH)-in-mean,

624–625
Generalized least squares (GLS), 375,

448, 453–454
known form of variance, 375–377
unknown form of variance, 377–383

Generalized least squares estimator,
505, 684

Generalized method-of-moments
(GMM) estimation, 504–505

Generalized (GARCH) model,
622–625

General linear hypothesis, 131
Geometrically declining lag, 421,

456–457
Geometry, probability calculation

using, 779–780
GLS See Generalized least squares

(GLS)
Goldfeld–Quandt test, 384–385
Goodness-of-fit measure (R2), 153,

156–158
correlation analysis, 158–160
with instrumental variables

estimates, 505
log-linear model, 176
multiple regression model, 208–209

Granger causality, testing for,
437–438

Grouped heteroskedasticity, 380
Growth model, 174

H
HAC (heteroskedasticity and

autocorrelation consistent)
standard errors, 448–452

Hausman–Taylor estimator, 658–660

Hausman test, 527, 654–656
for endogeneity, 505–506
logic of, 507–508

HCE See White
heteroskedasticity-consistent
estimator (HCE)

Heckit, 723–725, 744
Hedonic model, 318
Heterogeneity, 635, 638, 640
Heteroskedastic errors, 370
Heteroskedasticity, 165

conditional, 385–387
detecting, 383–388
in food expenditure model, 167
generalized least squares (GLS),

375–383
Lagrange multiplier tests for,

408–410
in linear probability model, 390–391
model specification, 388–389
in multiple regression model,

370–374
nature of, 369–370
robust variance estimator, 374–375
unconditional, 387, 416

Heteroskedastic partition, 383
Histogram, 689
Homoskedasticity, 55, 203, 370, 379
Hypothesis testing, 113, 118, 826–834

See also specific tests
alternative hypothesis, 118
binary logit model, 695–697
components of, 826–827
and confidence intervals, 833–834
examples of, 123–126
with instrumental variables

estimates, 504
left-tail test, 125
for linear combination of coefficients,

221–222
null hypothesis, 118
one-tail test, 120–122, 220–221
p-value, 126–129
rejection region, 119–122
right-tail test, 123–124
sampling properties of, 149
step-by-step procedure, 218
test of significance of single

coefficient, 219–220
test statistic, 119
two-tail test, 125–126, 218

I
Identification problem, 536–538, 604,

612–613
multinomial probit model, 703
simultaneous equations models,

536–538
supply and demand, 543
two-stage least squares estimation,

541
vector autoregressive model,

612–613

Identified parameters, 503
IIA (independence of irrelevant

alternatives), 705
Impact multiplier, 445
Implicit form of equations, 558
Impulse response functions, 603–605
IMR (inverse Mills ratio), 723, 724
Incidental parameters problem, 702
Income elasticity, 64–65
Inconsistency of OLS estimator,

486–487, 492
Indefinite integral, 762
Independence of irrelevant alternatives

(IIA), 705
Independent random-x linear

regression model, 85
Independent variable, 49, 84

random and independent x, 84–85
random and strictly exogenous x,

86–87
random sampling, 87–88

Index models, 710
Index of summation, 23
Indicator function, 852
Indicator variables, 16, 318, 769

causal modeling, 342–350
Chow test and, 326–328
controlling for time, 328–329
intercept, 318–320
linear probability model, 331–332
log-linear models, 329–330
qualitative factors and, 323–326
regression with, 82–83
slope-indicator variables, 320–322
treatment effects, 332–342

Indirect least squares, 551
Indirect least squares estimator, 511
Individual heterogeneity, 638, 640–643,

653
Individual-specific variables, 703, 707
Inequalities, 749
Inference, 113 See also Statistical

inference
Infinite distributed lag (IDL) models,

421–422, 456–463 See also
Autoregressive distributed lag
(ARDL) models

ARDL representation, consistency
testing for, 457–458

assumptions for, 462–463
error term, 461–462
geometrically declining lags, 456–457
multipliers from ARDL

representation, deriving,
458–461

Influence diagrams, for regression
models, 533

Information measure, 846, 847
Innovation, 604
Instrumental variables (IV), 482, 492,

498, 658–659
alternatives to, 557–562
estimators, 493, 495

consistency of, 494–495
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inefficiency of, 529
sampling properties of, 528–530

validity testing, 508–509
Instrumental variables (IV) estimation,

350, 538
generalized method-of-moments

estimation, 504–505
in general model, 502–504
good instrumental variable,

characteristics of, 492
goodness-of-fit with instrumental

variables estimates, 505
hypothesis testing with instrumental

variables estimates, 504
in multiple regression model,

498–500
in simple regression model,

492–493
using two-stage least squares,

495–496
Instrumental variables probit (IV

probit), 699
Instrument strength assessment

first-stage model, 500–502
more than one instrumental

variable, 501–502
one instrumental variable, 500
weak instruments, 500–501

in general model, 503–504
Integers, 749
Integrals, 762

area under curve computation,
762–764

definite, 763, 764
indefinite, 762

Integration, probability calculation
using, 780

Interaction variable, 320
Intercept, 545, 752
Intercept indicator variable, 319
Interim multiplier, 446
Interpretation, 778
Interval estimate, 154
Interval estimation, 131, 822–826

for linear combination of coefficients,
217–218

multiple regression model, 216–218,
249, 250

obtaining, 115–116
sampling context, 116–117
for single coefficient, 216–217
t-distribution, 113–115

Interval estimators, 115, 148
Inverse cumulative distribution

function, 801
Inverse function, 788
Inverse Mills ratio (IMR), 723,

724, 794
Inverse transformation, 801
Inversion method, 801–802, 804
Investment equation, 545
Irrational numbers, 749, 750
Irrelevant variables, 277–278

Iterated expectations, 32–33, 774,
785–787

IV See Instrumental variables (IV)

J
Jacobian of the transformation, 788
Jarque–Bera test, 168–169, 836
Jensen’s Inequality, 810
Joint hypotheses testing (F-test),

261–264, 328
computer software, 268
general tests, 267–268
large sample tests, 269–271
relationship with t-tests, 265–266
statistical power of, 311–315
testing significance of model, 264–265

Joint probability, 783
Joint probability density function, 20,

771, 781
Joint test of correlations, 440
Just-identified, 503

K
k-class of estimators, 557–558
Kernel density estimator, 851–853
Kernels, 851, 853
Klein’s model I, 544–545
Kurtosis, 168, 771

L
Lagged dependent variable, 443, 444,

459
with serial correlation, 488

Lag length selection, 436–437
Lag operator, 459
Lag pattern, 420
Lagrange multiplier (LM) test, 387,

440–443, 846–848
AR(1) errors, testing for, 441
for heteroskedasticity, 408–410
higher order AR or MA errors, testing

for, 442–443
MA(1) errors, testing for, 442
panel data models, 653–654
T × R2 form of, 442

Lag weights, 420
Large numbers, law of, 821
Large sample properties, of OLS

estimator, 483–484
Latent variables, 710, 741, 743–744
Latent variable models, 720
Law of iterated expectations, 774, 785
Law of large numbers (LLN), 487, 490,

492, 536, 821
Least squares

pooled, 647, 649
restricted, 261

Least squares dummy variable model,
644–646

Least squares estimation See also
Ordinary least squares (OLS)

with chi-square errors, 250–252
with endogenous regressors, 482–487

failure of, 484–486
OLS estimator, large sample

properties of, 483–484
OLS inconsistency, 486–487

generalized, 453–454
multiple regression model, 205–207,

247
nonlinear, 453

Least squares estimator, 205, 211–212
asymptotic normality, 229–230
consistency, 227–229
derivation of, 247, 848–849
distribution of, 214–216
dummy variable, 644–646
inference for nonlinear function of

coefficients, 232–234
properties of, 407–408
variances and covariances of,

212–213
weakening strict exogeneity, 230–232

Least squares predictor, 153–156
Least squares residuals

correlogram of, 438–440
properties of, 410–411

Least variance ratio, 558
Left-tail test

of economic hypothesis, 125
p-value for, 128

Leptokurtic distribution, 617
Level of significance, 119, 828
Leverage, 170, 410, 625
Likelihood, 838
Likelihood function, 690, 839
Likelihood ratio statistic, 844
Likelihood ratio (LR) tests, 696–697,

843–845
Limited dependent variable models,

717–725
binary choice, 682–702
censored samples and regression,

718–720
for count data, 713–716
multinomial choice, 702–709
ordered choice models, 709–712
Poisson regression, 713–716
sample selection, 723–724
simple linear regression model, 717
Tobit model, 720–722
truncated regression, 718

Limited information maximum
likelihood (LIML), 557, 558

advantages of, 559
Fuller-modified LIML, 558–559
Stock–Yogo weak IV tests, 559–561

LIML See Limited information
maximum likelihood (LIML)

Linear combination of coefficients
hypothesis testing for, 221–222
interval estimation for, 217–218

Linear combination of parameters,
129–131

hypothesis testing, 131–132
multiple regression model, 215–216,

248
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Linear congruential generator, 805–806
Linear estimators, 67, 72, 73, 100, 102,

103, 105, 820, 850
best linear unbiased estimators, 820,

849–851
Linear hypothesis, 132
Linear-log model, 163–165
Linear probability model, 331–332,

390–391, 683–685
Linear regression function, 38
Linear relationships, 162, 752

elasticity, 753
slopes and derivatives, 753

LM test See Lagrange multiplier (LM)
test

Logarithms and number e, 750–751
Logarithms and percentages, 751–752
Logistic growth curve, 296
Logistic random variables, 685
Logit, 685
Logit models

binary, 693–702
conditional, 707–709
mixed, 708
multinomial, 702–706
nested, 708
ordered, 711
robust inference in, 698

Log-likelihood function, 839
binary probit model, 691
multinomial probit model, 704
Poisson regression model, 714

Log-linear function, 79
Log-linear model, 80–81, 162, 163,

173–175, 329–330, 366
generalized R2 measure, 176
prediction intervals in, 175–177

Log-linear relationship, 388
Log-log model, 163, 177–179
Log-normal distribution, 173, 799–800
Log-reciprocal model, 184
Longitudinal data, 9
LR (likelihood ratio) tests, 696–697,

843–845

M
MA(1) errors, testing for, 442

higher order, 442–443
Marginal distributions, 20, 771
Marginal effect, 161, 752

average, 692
binary probit model, 687–688
multinomial probit model, 704
Poisson regression model, 714
probit model, 739–741

Marginal effect at means (MEM), 689,
692

Marginal effect at representative value
(MER), 689, 692

Marginal probability density function,
781, 784

Markov’s Inequality, 811
Mathematical expectation, 769 See also

Expected values

Maxima and minima, 758–759
bivariate function, 760–761

Maximum likelihood estimates, 691
Maximum likelihood estimation (MLE),

837–848
asymptotic test procedures, 843–848
censored data, 703–704
distribution of sample proportion,

842–843
inference with, 840–841
marginal and discrete change effects,

688–689
multinomial probit model, 704–705
Poisson regression model, 713–714
probit model, 690–693
simple linear regression model, 717
variance of estimator, 841–842

Maximum likelihood principle, 838
McDonald–Moffit decomposition, 721
Mean See Expected values

deviations about, 679
population, 490, 815–820, 834–835
sample, 815
standard error of, 821

Mean equation, 620
Mean reversion, 566
Mean squared error, 193–195
Median, 799
Mersenne Twister algorithm, 107
Method of moments estimation, 482

instrumental variables estimation, in
general model, 502–504

instrumental variables estimation, in
multiple regression model,
498–500

instrumental variables estimation, in
simple regression model,
492–493

instrument strength assessment
using first-stage model, 500–502

issues related to IV estimation,
504–505

IV estimation using two-stage least
squares, 495–496

IV estimator, consistency of, 494–495
of population mean and variance,

490–491
in simple regression model, 491–492
strong instruments, importance of

using, 493–494
using surplus moment conditions,

496–498
Microeconometric panel, 636
Mixed logit model, 708
Modeling

choice of functional form, 161–163
diagnostic residual plots, 165–167
influential observations identification

and, 169–171
linear-log food expenditure model,

163–165
log-linear models, 173–177
log-log models, 177–179
polynomial models, 171–173

regression errors and normal
distribution, 167–169

scaling of data, 160–161
Modulus, 805
Moments

method of (see Method of moments
estimation)

of normal distribution, 793
population, 490
sample, 490

Monotonic, strictly, 787
Monte Carlo experiment, 77, 106
Monte Carlo objectives, 109
Monte Carlo simulation (experiment),

106–111, 147–148, 525
data sample creation, 108–109
of delta method, 252–254
estimators, 823–825
heteroskedasticity, 414–416
hypothesis tests, sampling properties,

149
IV/2SLS, sampling properties of,

528–530
illustrations using simulated data,

526–528
interval estimators, sampling

properties, 148
least squares estimation with

chi-square errors, 250–252
Monte Carlo samples, choosing, 149
objectives, 109
random error, 107
random-x Monte Carlo results,

110–111, 150–151
regression function, 106–107
simultaneous equations models, 562
theoretically true values, 107–108

Moving average, 442
Multinomial choice models

conditional logit, 707–709
multinomial logit, 702–706

Multinomial logit model, 702–706
Multinomial probit model, 703, 708
Multiple regression model, 58, 196 See

also specific topics
assumptions of, 203–204
causality vs. prediction, 273–274
choice of model, 280–281
control variables, 278–280
defined, 197
delta method, 248–250
econometric model, 198–201
economic model, 197–198
error variance estimation, 207–208
Frisch–Waugh–Lovell (FWL)

theorem, 209–211
general model, 202
goodness-of-fit measurement,

208–209
heteroskedasticity in, 370–374
hypothesis testing, 218–222
instrumental variables estimation in,

498–500
interval estimation, 216–218, 249
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irrelevant variables, 277–278
joint hypotheses testing (F-test),

261–271
least squares estimation procedure,

205–207, 247
least squares estimator finite sample

properties, 211–216
least squares estimator large sample

properties, 227–234
Monte Carlo simulation, 250–254
nonlinear least squares, 294–296
nonlinear relationships, 222–226
nonsample information, 271–273
omitted variables, 275–277
parameter estimation, 205–211
poor data, collinearity, and

insignificance, 288–294
prediction, 282–288
RESET, 281–282

Multiple regression plane, 201
Multiplicative heteroskedasticity,

379–382, 411
Multiplier

analysis, 459–462
cumulative, 446
delay, 456
impact, 445
interim, 446
Lagrange, 440–443
s-period, 445
total, 446

Mundlak approach, 657–658

N
National Bureau of Economic Research

(NBER), 13–14
Natural experiments, 338, 340, 354
Natural logarithms, 750
NBER See National Bureau of

Economic Research (NBER)
Negative binomial model, 716
Nested logit model, 708
Newey–West standard errors See HAC

(heteroskedasticity and
autocorrelation consistent)
standard errors

Nominal standard error, 254
Non-central chi-square distribution,

795
Non-central F-distribution, 798
Non-centrality parameter, 795, 796
Non-central t-distribution, 797
Non-central-t-random variable, 146
Nonlinear function, 248

bootstrapping, 258–259
of coefficients, 232–234
of single parameter, 248–249
of two parameters, 249–250

Nonlinear hypotheses, F-test, 270–271
Nonlinear least squares estimation,

294–296, 453
Nonlinear relationships, 753

bivariate function maxima and
minima, 760–761

elasticity of, 757
maxima and minima, 758–759
multiple regression model, 222–226
partial derivatives, 759–760
rules for derivatives, 754–757
second derivatives, 757
simple linear regression model, 77–82

Nonparametric estimation, 851
Nonsample information, 271–273
Nonstationary time series data,

563–570
cointegration, 582–585
first-order autoregressive model,

570–572
random walk models, 572–574
regression when there is no

cointegration, 585–587
spurious regressions, 574–575
stochastic trends, consequences,

574–576
unit root tests for stationarity,

576–582
Normal-based bootstrap confidence

interval, 257
Normal distribution, 34–39, 771,

793–794
bivariate normal distribution, 37–39
moments of, 794
standard, 793
truncated, 794

Normal equations, 99, 247, 492
Normality of a population, 836
Normality testing, in food expenditure

model, 168–169
Normalization, 546, 558
Nuisance parameters, 385
Null hypothesis, 101, 103, 118, 827 See

also Hypothesis testing
F-statistic, 263
stating, 832
t-statistic when null hypothesis is not

true, 101
t-statistic when null hypothesis is

true, 103
Numerator degrees of freedom, 798

O
Odds ratio, 706
Okun’s Law, 446–447, 462
OLS See Ordinary least squares (OLS)
Omitted variables, 275–277, 488, 639
Omitted variables bias, 68, 639
One-tail tests, 120–122, 828–829

F-test, 268
for single coefficient, 220–221

Ordered choice models, 709–712
Ordered logit model, 711
Ordered probit model, 710–712
Ordinal values, 709
Ordinary least squares (OLS), 62–63,

639 See also Least squares
estimation

AR(2) model, 431–432

with cluster-robust standard errors,
648–650

difference estimator, 640–642
failure of, 535–536
heteroskedasticity, consequences for,

373–374
inconsistency of, 486–487, 492
large sample properties of, 483–484
multiple regression model, 205–207
panel data regression, 639–640

Overall significance, 264, 265
Overidentified, 503
Overlap assumption, 347, 367

P
Panel data See Longitudinal data
Panel data models, 634–663

cluster-robust standard errors,
648–651, 677–679

error assumptions, 646–651
estimation of error components,

679–680
fixed effects, 640–646
Hausman–Taylor estimator,

658–660
pooled, 647
random effects, 651–663

Panel data regression function,
636–640

Panel-robust standard errors, 649 See
also Cluster-robust standard
errors

Panel Study of Income Dynamics
(PSID), 9, 14

Parameters, 3, 4, 815
Parametric estimation, 851
Partial adjustment model, 550
Partial correlation, 502
Partial derivatives, 759–760
Partialing out, 521
pdf See Probability density function

(pdf )
Penn World Table, 9, 14
Percentage change, 751, 753
Percentiles, 36
Percentile interval estimate, 257–259
Phillips curve, 450–452

with AR(1) errors, 455
Pivotal statistics, 114, 215
Plagiarism, 12
Point estimates, 113, 822
Point prediction, 154–155
Poisson distribution, 791
Poisson random variables, 713
Poisson regression model, 713–716
Polynomial equations, 222–224
Polynomial models, 171–173
Pooled least squares, 647, 649
Pooled model, 647
Population, 17

moments, 490
normality of, 836

Population autocorrelations, 425
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Population means, 24
equality of, 834–835
estimating, 815–820

Population parameters, 24, 51, 815
Population regression function, 53–54
Population variances

estimating, 820–822
ratio of, 835–836
testing, 834

Positive correlation, 773
Predetermined variables, 545, 549
Predicting/prediction, 5, 153, 282–285

causality and, 273–274
least squares, 153–156
log-linear model, 175–176
predictive model selection criteria,

285–288
simple linear regression, 50

Prediction intervals, 153–155
defined, 153–155
development of, 192
log-linear model, 177

Predictive model, 283
Probability, 15–45, 769

conditional, 21
distributions, 23–29
joint probability density function, 20
marginal distributions, 20
random variables, 16, 17, 19, 26, 27,

32, 35, 37
summation notation, 22–23

Probability density function (pdf ), 18,
769

conditional, 76, 771, 782, 784–785
for continuous random variable, 19
joint, 771
marginal, 781, 784
normal, 34–39

Probability distributions, 17–19,
789–800

Bernoulli distribution, 790
binomial distribution, 790–791
chi-square distribution, 794–796
F-distribution, 797–799
of least square estimators, 73
log-normal distribution, 799–800
marginal, 20
normal distribution, 34–39, 793–794
Poisson distribution, 791
properties of, 23–29
t-distribution, 796–797
uniform distribution, 792–793, 801

Probability ratio, 705
Probability value (p-value), 126–127,

134, 830–832
for left-tail test, 128
for right-tail test, 127
for two-tail test, 129

Probit, 720
Probit maximum likelihood, 690–691
Probit models, 685–693

bivariate, 700
examples, 690–693
instrumental variables, 699

interpretation, 687–690
marginal effects, 739–741
maximum likelihood estimation,

690–691
multinomial, 703, 708
ordered, 709–712
robust inference in, 698

Product rule, 754
Profit function, maximizing, 761
Project STAR, 335–337
Proportional heteroskedasticity,

375–377
Pseudorandom numbers, 107, 801, 805
PSID See Panel Study of Income

Dynamics
p-value See Probability value
p-value rule, 831

Q
Quadratic and cubic equations,

171–173
Quadratic functions, 77, 162

finding minimum of, 759
second derivatives of, 758

Quadratic model, 77–78
Quasi-experiments, 338
Quotient rule, 754

R
Random and independent x, 84–85,

103–105
Random and strictly exogenous x,

86–87, 105
Random draw, 802
Random effects, 651, 653–654

estimation of, 653–654
Hausman test, 654–658
testing for random effects, 653–654
wage equation, 652–653, 656

Random error, 4, 52, 74, 107
and strict exogeneity, 52–53

Random error variation, 54–56
Random experiment, 17
Randomized controlled experiment,

333–334
Random numbers, 800–806

pseudo, 801, 805
seed, 805
uniform, 805–806

Random process See Stochastic process
Random samples, 198, 815
Random sampling, 87–88, 482
Random utility models, 741–743
Random variable, 16–19, 21, 24–27,

30–32, 34, 35, 37, 48, 51, 769
binomial, 791
continuous, 769, 778–789
discrete, 769–771
distributions of functions of, 787–789
logistic, 693
Poisson, 713
several, expectations of, 772
truncated, 789

Random walk models, 572–574
Random walk with drift model, 573, 579
Random-x Monte Carlo results,

110–111
Rational numbers, 749
RD See Regression discontinuity (RD)

designs
Real numbers, 749
Reciprocal model, 185
Recursive models, 542
Recursive substitution, 571
Reduced form, 511
Reduced-form equations, 534, 541–543
Reduced-form errors, 534
Reduced-form parameters, 534
Reference group, 319, 325
Regime effects, 329
Regional indicator variables, 325
Regression(s), 417–480
Regression discontinuity (RD) designs,

347–350
Regression errors and normal

distribution, 167–169
Regression function, 199

econometric model, 53–54
heteroskedasticity, 369, 376–377, 409
Monte Carlo simulation, 106–107

Regression parameters
estimating, 59–61
least squares principle, 61–65

Regression Specification Error Test
(RESET), 281

Rejection regions, 119–122, 828
Relative bias, 522
Relative change, 751, 753
Relative frequency, 18
Repeated experimental trials, 106
Repeated sampling, 76, 106, 257
Resampling, 254
Research papers, writing, 11–13
Research process

sources of economic data, 13–14
steps in, 10–11
writing a research paper, 11–13

Research proposals, 11
RESET See Regression Specification

Error Test (RESET)
Residual, 153
Residual plots, 383, 384
Resources for Economists (RFE), 13
Restricted least squares estimates, 272
Restricted model, 263, 264
RFE See Resources for Economists

(RFE)
Right-tail test

p-value for, 127
test of economic hypothesis, 124
test of significance, 123–124

Root mean squared error (RMSE), 287

S
Sample autocorrelations, 425–427
Sample mean, 815
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Sample moments, 490
Sample proportion, 840, 842–843
Samples

random, 815
for statistical inference, 813–814

Sample selection, 723–725
Sample standard deviation, 256
Sample variance, 821
Sampling distribution, 816–818
Sampling estimators, 66
Sampling properties, 525

bootstrapping, 257
hypothesis test, 149
interval estimators, 148
of OLS estimator, 211

Sampling variability, 76, 117, 254
Sampling variation, 66, 69, 816
Stationarity, 427–429
SC See Schwarz criterion (SC)
Scaling of data, 160–161
Scatter diagram, 60
Schwarz criterion (SC), 286
Scientific notation, 749–750
Seasonal indicator variables, 328
Second canonical correlation, 521
Second derivatives, 757

of linear function, 758
of quadratic function, 758

Second-order Taylor series
approximation, 757, 766

Second-stage equation, 496
Second-stage regression, 498
Selection bias, 333, 344, 723
Selection equation, 723
Selectivity problem, 723
Semi-elasticity, 79
Serial correlation See Autocorrelation
Serially correlated errors, testing for,

438–443 See also Autocorrelation
Durbin–Watson test, 443
Lagrange multiplier test, 440–443
least squares residuals, correlogram

of, 439–440
Short-term forecasting, 430
Significance

level of, 828
of a model, 264–265

Simple linear regression model, 46–111
See also specific topics

assessing least square estimators,
66–72

assumptions, 47, 50–58, 60, 67–70,
72–74, 76, 82, 84–88

b1 and b2 covariance, 69–72
b1 and b2 expected values, 68–69
b2 estimator, 67–68, 99–101
data generation process for, 147
derivation of least squares estimates,

98–99
econometric model, 49–59
economic model, 47–49
error term variance estimation,

74–77
Gauss–Markov theorem, 72–73, 102

independent variable, 84–88
least squares principle, 61–65
Monte Carlo simulation, 106–111
nonlinear relationships estimation,

77–82
probability distributions, 73
regression with indicator variables,

82–83
sampling variation, 69

Simple regression model
instrumental variables estimation in,

492–493
method of moments estimation in,

491–492
under random sampling, 482

Simultaneous equations bias, 488
Simultaneous equations models

identification problem, 536–538
least squares estimation failure and,

535–536
reduced form equations, 534,

541–543
supply and demand model, 532
two-stage least squares estimation,

538–545
Skedastic function, 372, 375, 414
Skewness, 168, 771
Slope, 752, 753

of linear function, 755
of quadratic function, 755–756
of tangent, 755

Slope dummy variable See Interaction
variable

Slope-indicator variables, 320–322
Smallest canonical correlation, 521
s-order sample autocorrelation, 425
Specification error, 59
Specification tests

Hausman test, 505–508
instrument validity, testing,

508–509
s-period delay multiplier, 445
Spurious regressions, 574–575
SSE See Sum of squared errors (SSE)
Standard deviation, 26, 769, 771
Standard errors, 254, 821

alternative robust, 413
of average marginal effect, 740–741
bootstrapping, 256–257
cluster-robust, 648–651,

677–679
of the estimate, 821
of forecast, 155, 433–435
interpreting, 76–77
of the mean, 821
nominal, 254
panel-robust, 649
robust, 374–375
variance and covariance and, 214

Standard normal distribution, 686, 793
Standard normal random variable, 35
Stationary variables, 564–567

trend stationary variables, 567–570,
579, 586

Statistical independence, 21–22, 51
Statistical inference, 4, 51, 113,

812–853
best linear unbiased estimation,

849–851
data samples for, 813–814
defined, 813
derivation of least squares estimator,

848–849
econometric model as basis for,

814–815
equality of population means,

834–835
estimating population mean,

815–820
estimating population variance,

820–822
hypothesis testing, 826–834
interval estimation, 822–826
kernel density estimator, 851–853
maximum likelihood estimation,

837–848
normality of a population, 836
population variance testing, 834
ratio of population variances,

835–836
Statistically independent, 771
Statistical significance, 126, 500
Stochastic process, 570
Stochastic trend, 567, 573

consequences of, 574–576
Stock–Yogo weak IV tests, 559–561
Strict exogeneity, 369, 482

implications of, 86–87, 103
multiple regression model, 199, 203
and random error, 52–53
weakening, 230–232

Strictly exogenous x, 52, 86–88, 103,
105

Strictly monotonic, 787
Strong dependence, 566
Strong instruments, importance of

using, 493–494
Structural equations, 542
Structural parameters, 545
Studentized residual, 169–170
Summation operation, 22
Sum of squared differences,

minimizing, 761
Sum of squared errors (SSE), 82, 281
Sum of squares decomposition, 193
Sum of squares due to regression, 208
Surplus instruments validity, testing,

528
Surplus moment conditions, 496–498,

508
Survey methodology, 88
Symmetrical two-tail test, 258

T
Tangent, 753
Taylor series approximation, 751,

756–757, 766



�

� �

�

878 Index

t-distribution, 796–797
central, 796
derivation of, 144–147
interval estimation, 113–115
non-central, 796

Testing, estimating, and forecasting,
620

Test of significance, 123, 126
Test size, 522
Test statistic (t−statistic), 827
Test/testing, 5
T-GARCH, 625
Threshold ARCH (T-ARCH) model, 623
Time-invariant variables, 637, 647,

652–653, 658
Time-series data, 7–8, 56, 87, 291 See

also Nonstationary time series
data

AR(1) error, 422–423, 441, 443, 444,
452–455, 457, 458

autocorrelations, 424–427
dynamic relationships, modeling,

420–424
forecasting, 419, 430–438
serially correlated errors, testing for,

438–443
stationarity and weak dependence,

427–429
weakening strict exogeneity, 231–232

Time-series regressions, for policy
analysis, 443–463

AR(1) errors, estimation of, 452–455
finite distributed lags, 445–448
HAC standard errors, 448–452
infinite distributed lags, 456–463

Time-varying variables, 647
Time-varying variance, 615, 616, 619
Time-varying volatility, 616–620 See

Autoregressive conditional
heteroskedastic (ARCH) model

Tobit model, 720–722
Tobit Monte Carlo experiment,

745–747
Total multiplier, 446
Transformed model, 376
Truncated normal distribution, 794
Truncated Poisson distribution, 791
Truncated random variables, 789
Truncated regression, 718
t-statistic

when null hypothesis is not true, 101
when null hypothesis is true, 103

Two-stage least squares (2SLS), 482,
498, 501, 538–539, 541–545

alternatives, 557–558
general procedure, 539–540

IV estimation using, 495–496
properties of, 540
sampling properties of, 528–530

Two-tail test, 122, 134, 218, 829, 830
of economic hypothesis, 125
p-value, 129
symmetrical, 258
test of significance, 126, 129

Type I error, 119–120, 833
Type II error, 120, 833

U
Unbalanced panels, 636
Unbiased estimators, 817 See also Best

linear unbiased estimators
(BLUE)

Unbiasedness, 68–70, 72, 74, 84–86,
88, 102, 104–106, 109, 111

Unbiased predictor, 154
Unconditional expectation, 30, 52
Unconditional heteroskedasticity, 387,

416
Unconditional mean, 615
Unconditional variance, 31, 615
Uncorrelated errors, conditional,

203–204
Unemployment forecasts, 432–433
Uniform distribution, 792–793, 801
Uniform random number, 255,

805–806
Unit elasticity, 178
Unit root, 428
Unit root tests, 582

Dickey–Fuller tests with intercept
and no trend, 577–579

Dickey–Fuller tests with intercept
and trend, 579–580

Dickey–Fuller tests with no intercept
and no trend, 580–581

order of integration, 581–582
Univariate time-series models, 570
Unobserved heterogeneity, 637–639,

645–646
Unrestricted model, 263

V
VAR See Vector autoregressive (VAR)

model
Variance, 490–491, 769, 817

calculation of, 26
conditional, 31, 100–101, 774, 782
of continuous random variable, 781
decomposition, 33–34, 774–777
of discrete random variable,

770–771
of error term, estimation of, 74–77

of estimator, 841–842
known form of, 375–377
of least squares estimators, 69–72
of maximum likelihood estimator,

841–842
population, 820–822, 834–836
of random variable, 26–27
sample, 821
unknown form of, 377–383

Variance–covariance matrix See
Covariance matrix

Variance function, 379
Variance inflation factor, 289
Variance stabilization, 388, 389
Variation, sampling, 816
VEC See Vector error correction (VEC)
Vector autoregressive (VAR) model,

598, 601–602
Vector error correction (VEC),

597–601

W
Wage equation, 175, 545

fixed effects estimators of, 641
goodness of fit measure, 176
Hausman–Taylor estimation,

659–660
instrument strength in, 502
interaction variable in, 225
IV estimation of, 495, 499–500
least squares estimators, 233–234
least squares estimation of,

489–490
log-linear model, 175, 176
log-quadratic, 226
Mundlak approach, 658
random effects model, 652–654
with regional indicators, 325–326
2SLS estimation of, 499–500
specification tests for, 509

Wald estimator, 511
Wald principle, 695
Wald tests, 268, 695–696, 845–846
Weak dependence, 427–429
Weak identification, testing for,

521–525
Weak instruments, 500–501, 503,

520–525, 527 See also
Instrument strength assessment

Weighted least squares (WLS),
377–379

White heteroskedasticity-consistent
estimator (HCE), 374

White test, 387
Within estimator, 642–644
WLS See Weighted least squares (WLS)
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