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The aim of this book is to bring students of economics and finance who have only an
introductory background in mathematics up to a quite advanced level in the subject, thus
preparing them for the core mathematical demands of econometrics, economic theory, quan-
titative finance and mathematical economics, which they are likely to encounter in their
final-year courses and beyond. The level of the book will also be useful for those embarking
on the first year of their graduate studies in Business, Economics or Finance.

The book also serves as an introduction to quantitative economics and finance for math-
ematics students at undergraduate level and above. In recent years, mathematics graduates
have been increasingly expected to have skills in practical subjects such as economics and
finance, just as economics graduates have been expected to have an increasingly strong
grounding in mathematics.

The authors avoid the pitfalls of many texts that become too theoretical. The use of math-
ematical methods in the real world is never lost sight of and quantitative analysis is brought
to bear on a variety of topics including foreign exchange rates and other macro level issues.
This makes for a comprehensive volume which should be particularly useful for advanced
undergraduates, for postgraduates interested in quantitative economics and finance, and for
practitioners in these fields.
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Foreword

This book has two parts, the first labelled MATHEMATICS, the second APPLICATIONS.
Specifically, the applications are to economics and finance. In their Preface, the authors,
Michael Harrison and Patrick Waldron, advise that the book is written for “advanced under-
graduates of either mathematics or economics”. However, the advanced undergraduate in
economics who does not have a substantial exposure to mathematics will find Part I of this
book challenging. The advanced undergraduate in mathematics, on the other hand, should
find this book quite suitable for: reviewing branches of mathematics used in theoretical eco-
nomics and finance; learning some aspects of these branches of mathematics, perhaps not
covered in their mathematics courses, but useful in economic and financial applications; and
then being presented with a comprehensive survey of economic and financial theory that
draws upon this mathematics.

The advanced undergraduate in economics can use Part I as a checklist as to what mathe-
matical background is expected in the applications in Part II. If the student has enough
background to work through the presentation of the subject, then Part I is sufficient in that
area. But as the authors note, their “development is often rather rapid”. If the student finds
the material too compact in an area, he or she can seek a suitable alternative text, which
explains the subject less rapidly, then return to the Harrison and Waldron presentation.

In general, then, the two parts of this volume represent, first, an orderly and comprehensive
assemblage of the mathematics needed for a great deal of important economic and financial
theory; and, second, a presentation of the theory itself. The diligent student who makes his
or her way through this volume will have gained a great deal of mathematical power, and
knowledge of much economic and financial theory.

Any volume must have its inclusions and exclusions. One topic that has quite limited space
in this volume is optimization subject to inequality constraints, such as the problem of trac-
ing out mean–variance efficient sets subject to any system of linear equality, and/or (weak)
inequality constraints in which some or all variables may be required to be non-negative.
Markowitz and Todd (2000) is devoted to this topic. If the reader decides to read the latter
after reading the present book, he or she will find that the present book’s extensive cover-
age of vectors and matrices will be a big help. More generally, the mathematics background
presented here will allow the student to move comfortably in the area of “computational
finance” as well as financial theory.

Harry M. Markowitz
San Diego, California

October 2010
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Preface

This book provides a course in intermediate mathematics for students of economics and
finance. It originates from a series of lectures given to third-year undergraduates in the
Faculty of Business, Economic and Social Studies and the School of Mathematics at
the University of Dublin, Trinity College. The prime aim is to prepare students for some of
the mathematical demands of courses in econometrics, economic theory, quantitative finance
and mathematical economics, which they may encounter in their final-year programmes. The
presentation may also be useful to those embarking on the first year of their postgraduate
studies. In addition, it serves as an introduction to economics and finance for mathematics
students.

In recent decades, mathematics graduates have been increasingly expected to have skills
in practical subjects such as economics and finance, while economics graduates have been
expected to have an increasingly strong grounding in mathematics. The growing need for
those working in economics and finance to have a strong foundation in mathematics has been
highlighted by such layman’s texts as Ridley (1993), Kelly (1994), Davidson (1996), Bass
(1999), Poundstone (2005) and Bernstein (2007). The present book is, in part, a response
to these trends, offering advanced undergraduates of either mathematics or economics the
opportunity to branch into the other subject.

There are many good texts on mathematics for economists at the introductory and
advanced levels. However, there appears to be a lack of material at what we call the inter-
mediate level, a level that takes much for granted and is concerned with proofs as well as
rigorous applications, but that does not seek the abstraction and rigour of the sort of treat-
ments that may be found in pure mathematics textbooks. Indeed, we have been unable to
find a single book that covers the material herein at the level and in the way that our teaching
required. Hence the present volume.

The book does not aim to be comprehensive. Rather, it contains material that we feel is
particularly important to have covered before final-year work begins, and that can be covered
comfortably in a standard academic year of three terms or two semesters. Other more special-
ized topics can be covered later, perhaps as part of a student’s final year, as is possible in our
programme. Thus we focus in Part I on the mathematics of linear algebra, difference equa-
tions, vector calculus and optimization. The mathematical treatment of these topics is quite
detailed, but numerous worked examples are also provided. Part II of the book is devoted
to a selection of applications from economics and finance. These include deterministic and
stochastic dynamic macroeconomic models, input–output analysis, some probability, statis-
tics, quadratic programming and econometric methodology, single- and multi-period choice
under certainty, including general equilibrium and the term structure of interest rates, choice
under uncertainty, and topics from portfolio theory, such as the capital asset pricing model.
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xvi Preface

It is assumed that most readers will have already completed good introductory courses
in mathematics, economics and/or finance. The section on notation and preliminaries
(pp. xix–xxiii) lists many of the basic ideas from these areas with which it is assumed that
most readers will have some familiarity.

These are not rigid prerequisites, as the material presented is reasonably self-contained.
However, the development is often rather rapid and the discussion fairly advanced at times.
Therefore, most students, we feel, will find the book quite challenging but, we hope, cor-
respondingly rewarding as the contents are mastered. Those who have solid preparations in
mathematics, economics and finance should not be lulled into a false sense of security by
the familiarity of the early material in some of the chapters; and those who have not taken
such preliminary courses should be prepared for an amount of additional background reading
from time to time. The exercises at the end of each chapter provide additional insight into
some of the proofs, and practice in the application of the mathematical methods discussed.
A solution manual will be available.

Economics may be defined as the scientific study of optimal decision-making under
resource constraints and uncertainty. It is less about forecasting – however much that may
be the popular perception – than it is about reacting optimally to the best available fore-
casts. Macroeconomics is concerned with the study of the economy as a whole. It seeks to
explain such things as the determinants of the level of aggregate output (national income),
the rate of growth of aggregate output, the general level of prices, and inflation, i.e. the
rate of growth of prices. Microeconomics is fundamentally about the allocation of wealth
or expenditure among different goods or services, which via the interaction of consumers
and producers determines relative prices. Basic finance, or financial economics, is about the
allocation of expenditure across two or more time periods, which gives the term structure of
interest rates. A further problem in finance is the allocation of expenditure across (a finite
number or a continuum of) states of nature, which yields random variables called rates of
return on risky assets. Clearly, we might try to combine the concerns of microeconomics and
finance to produce a rather complex problem, the solution of which points up the crucial role
of mathematics.

It is probably fair to say that economics, particularly financial economics, has in recent
years become as important an application of mathematics as theoretical physics. Some
would say it is just another branch of applied mathematics. In mathematics departments that
have traditionally taught linear algebra courses with illustrations from physics but have also
followed the modern trend of offering joint programmes with economics or finance depart-
ments, the present work could be used as the basis for a general course in linear algebra for
all students. The successful application of techniques from both mathematics and physics
to the study of economics and finance has been outlined in the popular literature by authors
such as those listed at the start of this preface. It is hoped that this book goes some way to
providing students with the wherewithal to do successful mathematical work in economics
and finance.

Michael Harrison and Patrick Waldron
School of Economics, University College Dublin

Dublin 4, Ireland
and

Department of Economics, Trinity College Dublin
Dublin 2, Ireland

November 2010
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Notation and preliminaries

We assume familiarity with basic mathematics from Pythagoras of Samos (c.569–c.475BC)
and his famous theorem onwards. Basic knowledge of probability and statistics, as well
as micro- and macroeconomics and especially financial economics, would also be advan-
tageous. The material on probability and statistics in Chapter 13 aims to be completely
self-contained, but will represent quite a steep learning curve for readers who do not have
some preliminary training in these areas. Similarly, some prior exposure to economics
and finance will enable readers to proceed more rapidly through the other applications
chapters.

For the sake of clarity, we gather together in these preliminary pages some of the more
important mathematical and statistical concepts with which we assume prior familiarity, con-
centrating especially on those for which notational conventions unfortunately vary from one
textbook to another.

Mathematical and technical terms appear in boldface where they are first introduced or
defined; the corresponding page number in the index is also in boldface.

Economics students who are new to formal mathematics should be aware of common pit-
falls of flawed logic, in particular with the importance of presenting the parts of a definition
in the correct order and with the process of proving a theorem by arguing from the assump-
tions to the conclusions. Familiarity with various approaches to proofs is assumed, though
the principles of proof by contradiction, proof by contrapositive and proof by induction are
described when these methods are first used.1 Similarly, mathematics students, who may
be familiar with many of the mathematics topics covered, should think about the nature,
subject matter and scientific methodology of economics before starting to work through the
book.

Readers should be familiar with the expressions “such that” and “subject to” (both often
abbreviated “s.t.”) and “if and only if” (abbreviated as “iff”), and also with their meanings
and use. The symbol ∀ is mathematical shorthand for “for all” and ∃ is mathematical short-
hand for “there exists”. The expression iff signifies a necessary and sufficient condition, or
equivalence. Briefly, Q is necessary for P if P implies Q; and similarly P is sufficient for
Q if P implies Q. Furthermore, P implies Q if and only if the contrapositive, “not Q”
implies “not P”, is true. We shall sometimes use an alternative symbol for a necessary and
sufficient condition, namely ⇔, which signifies that the truth of the left-hand side implies
the truth of the right-hand side and vice versa, and also that the falsity of the left-hand side
implies the falsity of the right-hand side and vice versa. Other logical symbols used are ⇒,
which means “implies”, and ⇐, which means “is implied by” or “follows from”.
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xx Notation and preliminaries

We will make frequent use of the identity symbol, ≡, particularly in definitions; of ≈,
which denotes “approximately equal”; and of

∑n
i=1 xi and

∏n
j=1 x j to denote the sum of,

and the product of, n numbers x1, x2, . . . , xn , respectively; i.e.

n∑
i=1

xi = x1 + x2 + · · ·+ xn

and

n∏
j=1

x j = x1 × x2 × · · ·× xn

When the upper and lower limits are clear from the context, we occasionally just write∑
i or

∏
j .

The sum of the first n terms of a geometric series or geometric progression with first
term a and common ratio φ is

n∑
i=1

aφi−1 = a+ aφ+ aφ2 + · · ·+ aφn−1 =
⎧⎨⎩

a(1−φn)

1−φ = a(φn − 1)

φ− 1
if φ = 1

n× a if φ= 1

If −1< φ < 1, then the sum to infinity of the series is a/(1− φ). If φ ≤−1 (and a = 0),
then the sum oscillates without converging as n→∞. If φ≥ 1, then the sum goes to ±∞ as
n→∞, depending on the sign of a.

The expression n!, referred to as n factorial, denotes the product of the integers from 1
to n, inclusive, and 0! is defined to be unity; i.e. n!≡∏n

i=1 i = 1× 2× · · · × n and 0!≡ 1.
Readers are assumed to be familiar with basic set notation and Venn diagrams.2 If X is the

universal set and B ⊆ X , i.e. B is a subset of X , then X \ B denotes the complement of B
or X \ B ≡ {x ∈ X : x /∈ B}. We say that sets B and C are disjoint if B ∩C = { }, i.e. if the
intersection of B and C is the null set or empty set. The Cartesian product of the n sets
X1, X2, . . . , Xn is the set of ordered n-tuples, (x1, x2, . . . , xn), where the i th component, xi ,
of each n-tuple is an element of the i th set, Xi .

We assume knowledge of the sets and use of natural numbers, N, integers, Z, and real and
complex numbers, R and C. Throughout the book, italic letters such as x denote specific
numbers in R. The Cartesian product R×R× · · · ×R, denoted by R

n = {(x1, x2, . . . , xn) |
x1, x2, . . . , xn ∈R}, is called (Euclidean) n-space. Points in R

n (and sometimes in an arbi-
trary vector or metric space X ) are denoted by lower-case boldface letters, such as x, while an
upper-case boldface letter, such as X, will generally denote a matrix. Any x∈Rn can also be
written as the n-tuple (x1, x2, . . . , xn), where x1, x2, . . . , xn are referred to as the (Cartesian)
coordinates3 of x. A tilde over a symbol will be used to denote a random variable (e.g. x̃)
or a random vector (e.g. x̃). The notation R

n+ ≡ {x∈R
n : xi ≥ 0, i = 1,2, . . . ,n} denotes the

non-negative orthant of Rn , and R
n++ ≡ {x∈R

n : xi > 0, i = 1, . . . ,n} denotes the positive
orthant.

The interval [a,b]≡{x ∈R: a≤ x ≤b} is called a closed interval and (a,b)≡{x ∈R: a<
x < b} is called an open interval. The context will generally allow readers to distinguish
between the 2-tuple (a,b)∈R

2 and the open interval (a,b)⊂R.
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Notation and preliminaries xxi

The most important result on complex numbers relied on is de Moivre’s theorem,4

which allows us to write (cos θ + i sin θ)t as cos tθ + i sin tθ and (cos θ − i sin θ)t as
cos tθ − i sin tθ , where i ≡√−1.

Recall also that the conjugate of the complex number z=a+ ib is z̄=a− ib, and that the
conjugate of a sum is the sum of the conjugates and the conjugate of a product is the product
of the conjugates. Also, the modulus of z is the positive square root |z| =√a2 + b2 =√zz̄.

The fundamental theorem of algebra states that a polynomial of degree n with real (or
complex) coefficients has exactly n, possibly complex, roots, with the complex roots coming
in conjugate pairs and allowing for the possibility of several roots having the same value.

The following definitions relating to functions and relations are important.

DEFINITION 0.0.1 A function (or map or mapping) f : X →Y : x �→ f (x) from a domain
X to a co-domain Y is a rule that assigns to each element of the set X a unique element f (x)
of the set Y called the image of x .

DEFINITION 0.0.2 If f : X → Y and g: Y → Z , then the composition of functions or
composite function or function of a function g ◦ f : X → Z is defined by g ◦ f (x) =
g( f (x)).

DEFINITION 0.0.3 A correspondence f : X → Y from a domain X to a co-domain Y is a
rule that assigns to each element of X a non-empty subset of Y .

DEFINITION 0.0.4 The range of the function f : X→Y is the set f (X)={ f (x)∈Y : x ∈ X}.

DEFINITION 0.0.5 The function f : X → Y is injective (one-to-one) if and only if f (x)=
f (x ′) ⇒ x = x ′.

DEFINITION 0.0.6 The function f : X → Y is surjective (onto) if and only if f (X)=Y.

DEFINITION 0.0.7 The function f : X → Y is bijective (or invertible) if and only if it is
both injective and surjective.

An invertible function f : X → Y has a well-defined inverse function f −1: Y → X with
f ( f −1(y))= y for all y ∈ Y and f −1( f (x))= x for all x ∈ X.

For any function f : X → Y , if A⊆ X , then

f (A)≡{ f (x): x ∈ A}⊆Y

and if B⊆Y , the notation f −1 is also used to denote

f −1(B)≡{x ∈ X : f (x)∈ B}⊆ X

If f is invertible and y ∈ Y , then f −1({y}) = { f −1(y)}. If f is not invertible, then
f −1({y}) can be empty or have more than one element, but f −1: f (X)→ X still defines
a correspondence.

DEFINITION 0.0.8 If f : X → Y is a differentiable function (X,Y ⊆ R), then f ′: X → R

denotes the derivative of f , i.e. f ′(x) is the derivative of f at x , also occasionally denoted
d f
dx (x) or dy/dx if it is known that y= f (x).
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DEFINITION 0.0.9 The function f : X →Y is homogeneous of degree k (k ∈R) if and only
if f (θx)= θ k f (x) for all θ ∈R.

When k = 1 and f is homogeneous of degree one, the function is sometimes called
linearly homogeneous.

DEFINITION 0.0.10 A binary relation R on the set X is a subset R of X × X or a collection
of pairs (x, y) where x ∈ X and y ∈ X .

If (x, y)∈ R, we usually write x Ry.5

DEFINITION 0.0.11 The following properties of a binary relation R on a set X are often of
interest:

(a) A relation R is reflexive if and only if x Rx for all x ∈ X.
(b) A relation R is symmetric if and only if x Ry⇒ y Rx .
(c) A relation R is transitive if and only if x Ry and y Rz⇒ x Rz.
(d) A relation R is complete if and only if, for all x, y ∈ X , either x Ry or y Rx (or both); in

other words, a complete relation orders the whole set.
(e) An equivalence relation is a relation that is reflexive, symmetric and transitive. An

equivalence relation partitions X in a natural way into disjoint equivalence classes.

In consumer theory, we will consider the weak preference relation �, where x� y means
that either the consumption bundle x is preferred to y or the consumer is indifferent between
the two, i.e. that x is at least as good as y.

We expect readers to have a sound knowledge of basic calculus, including the taking
of limits and single-variable differentiation and integration. We assume familiarity with the
definition of a derivative in terms of a limit, and with the single-variable versions of the chain
rule and the product rule. We also assume knowledge of l’Hôpital’s rule,6 which states that,
if the limits of the numerator and denominator in a fraction are both zero or both infinite, then
the limit of the original ratio equals the limit of the ratio of the derivative of the numerator
to the derivative of the denominator.

Familiarity with integration by substitution and integration by parts and with the standard
rules for differentiation and integration of scalar-valued functions, in particular polynomial
and trigonometric functions, is assumed.7

Among the trigonometric identities used later are

• the cosine rule

a2 = b2 + c2 − 2bc cos A

• the double-angle formula

cos 2A= 2 cos2 A− 1

• the fundamental identity

cos2 A+ sin2 A= 1
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An ordered arrangement of r objects from a set of n objects is called a permutation, and
the number of different permutations of r objects that can be chosen from a set of n objects,
denoted n Pr , is given by

n Pr = n!

(n− r)!

A selection of r objects from a set of n objects without regard for their order is called a
combination, and the number of different combinations of r objects that can be chosen from
a set of n objects, denoted nCr , is given by

nCr =
n Pr

r !
= n!

(n− r)! r !

We expect students to be comfortable with the properties of the exponential function
e:R→R++: x �→ ex , where e≈ 2.7182 . . .; and with its inverse, the natural logarithm func-
tion ln:R++→R: x �→ ln x ; and also with the use of logarithms to any base. In particular,
we rely on the fact that

lim
n→∞

(
1+ r

n

)n = er

This is sometimes used as the definition of e, but others8 prefer to start with

er ≡ 1+ r + r2

2!
+ r3

3!
+ · · ·=

∞∑
j=0

r j

j!

The notation |X | denotes the number of elements in the set X , or the cardinality of X ,
while |z| denotes the modulus of the (complex) number z and |X| denotes the determinant
of the matrix X, more often denoted det(X). The modulus is just the absolute value when
z is real rather than complex. There is obviously some potential for confusion from use of
the same symbol for three different concepts, but the context and notation within the symbol
will almost always make the distinctions clear.

The collection of all possible subsets of the set X , or the power set of X , is denoted by 2X .
Note that |2X | = 2|X |.

The least upper bound or supremum of a set, X , of real numbers, denoted sup(X), is the
smallest real number that is greater than or equal to every number in the set. For example,
sup{1,2,3,4} = 4 and sup{x ∈R

n : 0< x < 1} = 1. The second of these examples indicates
that the supremum is not necessarily the maximum real number in the set.

The greatest lower bound or infimum of a set, X , of real numbers, denoted inf(X), is
the largest real number that is less than or equal to every number in the set. For example,
inf{1,2,3,4} = 1, inf{x ∈R

n : 0≤ x ≤ 1}= 0 and inf{x ∈R
n : x3> 2}= 21/3. The infimum is

not necessarily the minimum real number in a set.
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Introduction

Part I of the book is devoted to mathematics. It begins with a quite extensive treatment
of linear algebra, dealing in Chapters 1 to 4 with matrices, determinants, eigenvalues and
eigenvectors, and quadratic forms and definiteness, before going on to the somewhat more
theoretical topics of vector spaces and linear transformations in Chapters 5 and 6. Chapter 7
provides the foundations for vector calculus, including such things as affine and convex com-
binations, sets and functions, basic topology, and limits and continuity. Some of this material
(on limits) is referred to in the following quite lengthy Chapter 8 on dynamic modelling
using difference equations, but most is intended as preparation for Chapter 9, which covers
important subjects in vector differentiation and multiple integration. Finally, Chapter 10 dis-
cusses the topics of convexity and concavity, unconstrained and constrained optimization,
and duality.

As mentioned in the Preface, the discussion of topics is reasonably self-contained but it
progresses quite rapidly and is rather advanced at times. Moreover, the order in which chap-
ters are read is important, as much of the material in earlier chapters is essential for a proper
understanding of the mathematics covered in the later chapters. Proofs are given for the vast
majority of the theorems introduced. In the few cases in which no proof is provided, a suit-
able reference to a proof is given. There are many worked numerical examples to help with
the understanding of concepts, methods and results, as well as a few economic examples and
illustrations intended, primarily, to motivate the mathematics covered, but also to introduce
issues for generalization and further study in Part II.
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1 Systems of linear equations and
matrices

1.1 Introduction
This chapter focuses on matrices. It begins by discussing linear relationships and systems of
linear equations, and then introduces the matrix concept as a tool for helping to handle and
analyse such systems. Several examples of how matrices might arise in specific economic
applications are given to motivate the mathematical detail that follows. These examples will
be used again and further developed later in the book. The mathematical material that follows
the examples comprises discussions of matrix operations, the rules of matrix algebra, and a
taxonomy of special types of matrix encountered in economic and financial applications.

1.2 Linear equations and examples
Linear algebra is a body of mathematics that helps us to handle, analyse and solve systems
of linear relationships. A great deal of economics and finance makes use of such linear
relationships. A linear relationship may be represented by an equation of the form

z=αx +βy (1.1)

where x, y and z are variables and α and β are constants. Such relationships have several
nice properties. One is that they are homogeneous of degree one, or linearly homogeneous,
i.e. if all variables on the right-hand side are scaled (multiplied) by a constant, θ , then the
left-hand side is scaled in the same way. Specifically, using (1.1), we have

z∗ =α(θx)+β(θy)= θ(αx +βy)= θ z (1.2)

Another property of linear relationships is that, for different sets of values for their
variables, they are additive and their sum is also linear. Suppose we have the two equations
z1 =αx1 +βy1 and z2 =αx2 +βy2, then

z1 + z2 =α(x1 + x2)+β(y1 + y2) (1.3)

after slight rearrangement, which may be written as

Z =αX +βY (1.4)

where X = x1 + x2, Y = y1 + y2 and Z = z1 + z2. The result, equation (1.4), is a linear
equation in the sums of the respective variables. The generalization to the case of n equations
is straightforward and has X =∑n

i=1 xi , Y =∑n
i=1 yi and Z =∑n

i=1 zi .
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These simple properties constitute one reason why linear relationships are so widely used
in economics and finance, and particularly when relationships, such as demand and supply
curves, are first introduced to students.1 Other reasons are that linear equations are easy to
represent graphically, at least when they involve two and three variables. With two variables,
they can be depicted as straight lines in two-dimensional diagrams; and with three variables,
they can be represented as planes in three dimensions. With more than three variables, such
as in much of our analysis below, we use the concept of a hyperplane; see Section 7.4.1.
Further, linear equations are very adaptable.

We may note three types of adaptability. First, linear equations may be used to deal with
certain nonlinear relationships by appropriate redefinition of variables. For example, the non-
linear equation z = αx + βy2 may be written as z = αx + βw, where w = y2. Second,
by some transformation and redefinition of variables, other nonlinear equations may be
expressed as linear equations. For example, taking the logarithms of both sides of the equa-
tion z = xα yβ yields log z = α log x + β log y, which may be written as z∗ = αx∗ + βy∗,
where x∗ = log x, y∗ = log y and z∗ = log z. Third, linear equations may be used as approxi-
mations to more complex nonlinear relationships that do not linearize by either of the above
methods. Such approximations are likely to be useful only locally rather than globally. Thus
some nonlinear equations can be handled as if they were simpler linear equations.

Finally, linear equation systems, unlike systems of nonlinear equations, are usually easy
to solve. The solution and general manipulation of systems of linear equations is facilitated
by the use of matrices, and matrix algebra is an important part of linear algebra. A basic
definition, therefore, is that of a matrix.

DEFINITION 1.2.1 A matrix is a rectangular array of scalars called elements (or entries).
In this book, scalars will generally be real numbers.

Such an array is exemplified in the following general notation for a matrix.

NOTATION 1.2.1 A general matrix A can be written as

A=

⎡⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

⎤⎥⎥⎥⎦= [aij]

Notice the use of a bold upper-case Roman letter for the matrix and the corresponding
lower-case letter for its scalar elements. This will be our usual convention when referring
to matrices and scalars. Note also the use of subscripts denoting the row and the column to
which each element belongs. The number of rows and the number of columns determine the
order or dimension of the matrix; here the order is m× n, signifying m rows and n columns
and hence mn elements in all. Sometimes it may be useful to make the order explicit by
means of a subscript: Am×n . Note further that it is often very useful to denote a matrix by
means of its typical element, [aij]. Thus an efficient way of representing a matrix is to write
[aij]m×n . When m = n, and the number of rows and columns is the same, we say that the
matrix is a square matrix.

A matrix for which m= 1 is a single row of n elements; this is often called a row vector.
Similarly, an m × 1 matrix may be called a column vector. We shall also sometimes refer
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to m× 1 column vectors as m-vectors, especially from Chapter 5 onwards. Our notation for
row and column vectors, respectively, is as follows.

NOTATION 1.2.2 A general row vector r can be written as

r= [
r1 r2 . . . rn

]
NOTATION 1.2.3 A general column vector c can be written as

c=

⎡⎢⎢⎢⎣
c1

c2
...

cm

⎤⎥⎥⎥⎦
or (c1, c2, . . . , cm) to economize on space.

A further row notation for a column vector will be introduced later, when the concept of
the transpose of a matrix has been defined. When it is clear from the context whether we are
dealing with row vectors or column vectors, we will use the term vector on its own. The use
of bold lower-case Roman letters, as here, is a common means of denoting vectors.

One of our first tasks will be to define the operations that can be performed with matrices
and to investigate the rules that govern their algebraic manipulation. However, before we
turn to these matters, we shall first consider some examples that illustrate how matrices arise
in economics. Later on, when we have developed a sufficient body of mathematics, we shall
return to generalizations of these examples to analyse them more carefully.

1.2.1 Single-equation econometric model

Consider the problem of estimating the demand function for a product. Economic theory
suggests that a demand relationship may be of the form Q = f (P,Y ), where Q is quantity
demanded per period, P is the price of the product and Y is income. If it is assumed that the
demand function is linear, then we have the theoretical model

Q= f (P,Y )=α+βP + γY (1.5)

where the Greek letters are (constant) parameters. Of course, estimation of this demand
function, which means estimation of the unknown parameters, requires data. If we have
T time-series observations on each of the variables Q, P and Y , then we may write

Q̃t =α+βPt + γYt + ũt , t = 1,2, . . . ,T (1.6)

where t denotes time and ũt is included as a random disturbance because the data do not
conform to the theoretical linear relationship exactly, possibly because Q can be measured
only with error or because Q is influenced in a lesser way by variables not included on the
right-hand side of (1.5). In practice, the linear relationship (1.5) is only an approximation to
the stochastic relationship (1.6). We will return to these topics in Chapter 13 and again in
Section 14.2.
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Equation (1.6) actually represents a system of T equations, one for each time period:

Q̃1 =α+βP1 + γY1 + ũ1

Q̃2 =α+βP2 + γY2 + ũ2

...

Q̃T =α+βPT + γYT + ũT (1.7)

It is convenient to define matrices

ỹ=

⎡⎢⎢⎢⎣
Q̃1

Q̃2
...

Q̃T

⎤⎥⎥⎥⎦
T×1

and X=

⎡⎢⎢⎢⎣
1 P1 Y1

1 P2 Y2
...

...
...

1 PT YT

⎤⎥⎥⎥⎦
T×3

(1.8)

and matrices of parameters and random disturbances

β =
⎡⎣αβ
γ

⎤⎦
3×1

and ũ=

⎡⎢⎢⎢⎣
ũ1

ũ2
...

ũT

⎤⎥⎥⎥⎦
T×1

(1.9)

for then the entire system of equations (1.7) may be written simply as

ỹ=Xβ + ũ (1.10)

In this equation we have followed standard practice by using bold lower-case Roman letters
for the matrices consisting of a single column of the T values of the dependent variable,
Q̃t , and of the T unobservable random disturbances, ũt , while a bold lower-case Greek
letter is used for the column of three unknown parameters. The first column of X, consisting
entirely of ones, is associated with the intercept α that appears in the specification of the
demand equation. Of course, the interpretation and manipulation of matrix equation (1.10)
presupposes an understanding of matrix equality, matrix addition and matrix multiplication,
as well as the rules of matrix arithmetic. We shall turn to these matters shortly. The statistical
aspects of estimation of parameters will be discussed briefly in Chapter 13 and referred to
again in Chapter 14.

1.2.2 Static macroeconomic model of a closed economy

Consider now a simple linear (Keynesian) macroeconomic model of a closed economy that
includes aggregate consumption and investment functions and a national income accounting
identity:2

C = f (Y )=α1 +α2Y (1.11)

I = g(Y, R)=β1 +β2Y +β3 R (1.12)

Y =C + I +G (1.13)
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where C, I and Y are the endogenous variables, consumption, investment and national
income, respectively, whose values are determined by the operation of the system, and R
and G are the exogenous variables, rate of interest and government expenditure, respectively,
determined outside the system, say, by the government. The coefficients in this system have
interpretations that will be familiar to economics students. For example, α2 = dC/dY is the
rate of change of consumption with respect to national income and is known as the marginal
propensity to consume (1− α2 is the marginal propensity to save); and similarly for β2

and β3. These equations may be rearranged and written as

C + 0−α2Y =α1 + 0+ 0 (1.14)

0+ I −β2Y =β1 +β3 R+ 0 (1.15)

−C − I +Y = 0+ 0+G (1.16)

suggesting the parameter matrices

A=
⎡⎣ 1 0 −α2

0 1 −β2

−1 −1 1

⎤⎦ and B=
⎡⎣α1 0 0
β1 β3 0
0 0 1

⎤⎦ (1.17)

and the matrices of variables

x=
⎡⎣C

I
Y

⎤⎦ and z=
⎡⎣ 1

R
G

⎤⎦ (1.18)

The first element of z, the number one, is not a variable at all, of course, but it is useful
to include this along with the exogenous variables proper whenever an intercept appears in
an equation, as is the case in the consumption and investment relationships. Thus we might
present the model much more compactly in matrix notation as

Ax=Bz (1.19)

One may be interested in estimating the parameters of a system such as (1.19), which is
another econometric exercise and would require further stochastic specification and data on
the endogenous and exogenous variables.3 Such data could be accommodated in two 3× n
matrices, assuming n observations were available on all of the variables.

Another concern is the solution of the system for the endogenous variables in terms of the
exogenous variables; or, more generally, the solution for x in the system Ax=b, where

A=

⎡⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

⎤⎥⎥⎥⎦= [aij]m×n

x=

⎡⎢⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎥⎦= [x j ]n×1 and b=

⎡⎢⎢⎢⎣
b1

b2
...

bm

⎤⎥⎥⎥⎦= [bi ]m×1 (1.20)
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i.e. a general linear simultaneous equation system. Note that, when bi = 0 for all i , we
describe such a system as homogeneous; otherwise it is non-homogeneous. Also note
that, if a solution or solutions exist(s) for a homogeneous or non-homogeneous system of
linear equations, we say the system is consistent; otherwise it is inconsistent. We return to
the practical question of how a solution may be obtained for a certain kind of linear equa-
tion system in Chapter 2, while a more general result on the solution of homogeneous linear
systems is provided in Chapter 6.

1.2.3 Static input–output model

A simple alternative way of describing and analysing an economy to that provided by the
Keynesian macroeconomic model of the previous example is by means of the Leontief static
input–output model.4 This assumes that in the economy there are n industries, each produc-
ing one particular commodity, and that net outputs of these goods are required for use by
consumers. We may denote these final demands as f1, f2, . . . , fn , where fi ≥ 0 for all i .
However, there are other demands for the goods, because, to produce any given good, other
goods are required as factors of production, i.e. as industrial inputs, in fixed proportions
in the process of production of the good in question. The neoclassical theory of production
deals with a more flexible class of production functions, which allow continuous substitution
among inputs to the production process. In the two-input case, such production functions can
be represented by isoquant maps, an isoquant being a level set of production possibilities
showing all combinations of the inputs that yield the same quantity of output; in the special
case of the Leontief production function, the isoquants are L-shaped, as will be mentioned
again in Section 11.3.

Letting the fixed number of units of input i required to produce one unit of good j be
aij (≥ 0), the total amount of good i required in production is then

ai1x1 + ai2x2 + · · ·+ ain xn, i = 1,2, . . . ,n (1.21)

where the aij are technological coefficients called input–output coefficients, and the x j

( j = 1,2, . . . ,n) are the total outputs required of the n goods. The amounts aijx j (i, j =
1,2, . . . ,n) are the intermediate demands for commodity i by industry j . If we add the
final consumer demand for good i ( fi ) to all intermediate industrial demands for good i ,
then we may write the total amount demanded (and produced) of good i as

fi + ai1x1 + ai2x2 + · · ·+ ain xn = xi , i = 1,2, . . . ,n (1.22)

For all goods simultaneously, we may make use of matrices and write

f+Ax= x (1.23)

where

f= [ fi ]n×1, A= [aij]n×n and x= [xi ]n×1 (1.24)

using our more economical notation for a matrix. As with the previous examples of matrix
expressions, before we can properly interpret this equation and proceed to its analysis and
solution, we require a knowledge of the matrix operations used and of the rules of matrix
algebra.
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1.3 Matrix operations
In describing matrix operations, we simply state the basic definitions, making use of the
typical term.

1.3.1 Matrix equality

DEFINITION 1.3.1 We have A=B if and only if A and B are of the same order and
aij = bij for all i, j.

The meaning of “if and only if” (often written in shorthand form as “iff”) in this definition
is explained in the preliminary section on notation. We refer to the requirement that the
matrices be of the same order as conformability in equality. The reader should have no
difficulty in writing down two matrices to illustrate this straightforward concept.

1.3.2 Matrix addition

DEFINITION 1.3.2 We have A+B=C if and only if A,B and C are of the same order and
cij = aij + bij for all i, j .

Note that the order requirement for conformability in addition is the same as that for
conformability in equality.

EXAMPLE 1.3.1 If

A=
[

1 2
3 4

]
and B=

[
2 −2

−4 4

]
(1.25)

then

C=A+B=
[

3 0
−1 8

]
(1.26)

This example makes clear that each element in C is just the sum of the corresponding ele-
ments in A and B. Thus c11= a11+ b11= 1+ 2= 3, c12= a12+ b12= 2+ (−2)= 2− 2= 0,
and similarly for the other two elements of C. ♦

1.3.3 Multiplication of a matrix by a scalar

DEFINITION 1.3.3 We have μA= [μaij]= [aijμ]=Aμ.

The concise matrix notation here indicates that multiplication of a matrix by a scalar, μ,
involves multiplying every element of the matrix by that scalar. Note the use of the law of
commutativity of multiplication of scalars in moving from the second to the third term in
this definition.

When the scalar μ is of the form 1/k, we occasionally employ the notation

A/k≡ A
k
≡ 1

k
A (1.27)
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EXAMPLE 1.3.2 Using the matrix A defined in Example 1.3.2, and setting μ= 5,

μA= 5

[
1 2
3 4

]
=
[

5× 1 5× 2
5× 3 5× 4

]
=
[

5 10
15 20

]
(1.28)

and

Aμ=
[

1 2
3 4

]
5=

[
1× 5 2× 5
3× 5 4× 5

]
=
[

5 10
15 20

]
(1.29)

♦
1.3.4 Matrix subtraction

DEFINITION 1.3.4 We have A−B=D if and only if A, B and D are conformable and
dij = aij − bij for all i, j .

This definition follows from the preceding definitions, using μ=−1 in the expression
A+μB. The conformability requirement is, again, that the matrices are of the same order.

EXAMPLE 1.3.3 Using matrices A and B from Example 1.3.2,

D=A−B=
[−1 4

7 0

]
(1.30)

while

D∗ =B−A=
[

1 −4
−7 0

]
(1.31)

In this example, each element of D is just the difference between corresponding elements in
A and B. Thus d11=a11−b11=1−2=−1, and d12=a12−b12=2− (−2)=2+2=4, etc.,
and similarly for the elements of D∗. Note, too, that D∗ = (−1)D or A−B= (−1)(B−A).♦

1.3.5 Matrix multiplication

DEFINITION 1.3.5 We have AB=E if and only if A has the same number of columns as B
has rows (say, A is of order m× r and B is of order r × n) and eij =∑r

k=1 aikbkj for all i, j .

The equation in this definition simply says that the element in a given row and column
of the matrix product, E, is determined as the sum of the products of successive elements
in the corresponding row of the first matrix, A, and the corresponding column of the second
matrix, B. It also implies that the order of the product is m× n.

EXAMPLE 1.3.4 If

A=
[

2 1 0
1 3 1

]
and B=

⎡⎣2
3
4

⎤⎦ (1.32)

then

AB=E=
[

7
15

]
(1.33)
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where the calculations are, for the element in the first row and first column of AB=E,

e11 =
3∑

k=1

a1kbk1 = a11b11 + a12b21 + a13b31 = (2× 2)+ (1× 3)+ (0× 4)= 7 (1.34)

and for the element in the second row and first column of the product,

e21 =
3∑

k=1

a2kbk1 = a21b11 + a22b21 + a23b31 = (1× 2)+ (3× 3)+ (1× 4)= 15 (1.35)

♦

Note carefully the need for conformability in multiplication in the sense that the number
of columns in A and the number of rows in B must be the same for the matrix product to be
defined. It follows that, in general, AB =BA. Indeed, the product BA may not be defined,
even if AB is, as in the case of the simple matrices in Example 1.3.5. It is therefore useful to
distinguish between pre- and post-multiplication of one matrix by another when referring
to the formation of matrix products. In the numerical example, B is pre-multiplied by A (or,
equivalently, A is post-multiplied by B) to form the product E.

Finally, it may be noted that now we have clear definitions of these basic matrix operations,
it becomes easy to see how the matrix sums, products and equalities that appear in our three
examples in Sections 1.2.1, 1.2.2 and 1.2.3 reproduce the original scalar versions of the
equations in the systems considered. For instance, substituting for A, x and b from (1.20)
into Ax=b, and using matrix multiplication and matrix equality, will generate the full set
of equations in a general linear simultaneous equation system. The following example uses
a three-equation system as an illustration.

EXAMPLE 1.3.5 Let

A=
⎡⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎦ , x=
⎡⎣x1

x2

x3

⎤⎦ and b=
⎡⎣b1

b2

b3

⎤⎦ (1.36)

Then, substituting in

Ax=b (1.37)

we have⎡⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎦⎡⎣x1

x2

x3

⎤⎦=
⎡⎣b1

b2

b3

⎤⎦ (1.38)

We may refer to this form of the system as being in matrix notation, from which, using the
operation of matrix multiplication, we get the vector notation⎡⎣a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3

⎤⎦=
⎡⎣b1

b2

b3

⎤⎦ (1.39)
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and thence the scalar representation of the linear system of equations

a11x1 + a12x2 + a13x3 = b1 (1.40)

a21x1 + a22x2 + a23x3 = b2 (1.41)

a31x1 + a32x2 + a33x3 = b3 (1.42)

♦

We thus motivate the initial need for matrix algebra as a shorthand for writing systems
of linear equations, such as those considered above; see also Chiang and Wainwright (2005,
Section 4.2). The matter of the solution of such systems is deferred until Chapter 2, following
discussion of the rules of matrix algebra, some special types of matrix and the concept of
determinant.

1.4 Rules of matrix algebra
There are only a few rules for the algebraic manipulation of matrices using the operations
just defined. Some of these are similar to the familiar rules of scalar algebra but some are
different. It is important to note that, unlike the matrix operations, which are simply defi-
nitions, these various rules are theorems, i.e. they are results that follow logically from the
previous definitions and the rules of scalar algebra, which we take for granted. Therefore, all
of the rules to be stated may be proved. It is not intended to prove them all here, but one or
two proofs will be instructive as they illustrate how some matrix theorems may be proved
simply by reference to appropriate typical terms and appeal to the relevant definitions.

1.4.1 Rules of matrix addition

Matrix addition is both commutative and associative, i.e.

A+B=B+A (1.43)

and

(A+B)+C=A+ (B+C) (1.44)

assuming that the matrices are conformable in addition. The commutativity rule, for
example, may be stated and proved formally as follows.

THEOREM 1.4.1 Let A and B be matrices of order m× n, then A+B=B+A.

Proof: A+B= [aij]+ [bij]= [aij + bij], by definition.
Now [aij + bij]= [bij + aij], using the commutative rule of scalar algebra.
Therefore A+B= [bij + aij]= [bij]+ [aij]=B+A, again by appeal to the definition of

matrix addition. �

Proof of the associativity rule of matrix addition is left as an exercise; see Exercise 1.11.
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1.4.2 Rule of matrix multiplication

Matrix multiplication is associative, i.e. (AB)C=A(BC). However, matrix multiplication is
not, in general, commutative; recall Definition 1.3.5, Example 1.3.5 and the subsequent com-
ments on matrix multiplication. The proof of the associativity rule of matrix multiplication
uses a typical term involving double summation; see Exercise 1.11 again.

We note, though it is fairly trivial, that μ(θA)= (μθ)A = θ(μA), where μ and θ are
scalars, because scalars are commutative in multiplication.

1.4.3 Distributive law of matrix multiplication over matrix addition

Matrix multiplication is distributive over matrix addition, i.e. A(B±C)=AB±AC and
(A±B)D=AD±BD, provided that the matrices involved are appropriately conformable.
It is left as an exercise to determine the dimensions of the matrices in these two equations;
recall the definitions of the relevant matrix operations, and see Exercise 1.12.

We note that μ(B±C)=μB±μC and (μ± θ)A=μA± θA=A(μ± θ). An instance of
this last rule may be formalized as follows.

THEOREM 1.4.2 Let A be a matrix of order m×n, andμ and θ be scalars, then (μ− θ)A=
μA− θA.

Proof: (μ− θ)A= [(μ− θ)aij], by definition.
Now [(μ− θ)aij]= [μaij − θaij], using the distributive rule of scalar algebra, and then

[μaij− θaij]= [μaij+ (−θ)aij]= [μaij]+ [(−θ)aij]=μA+ (−θ)A=μA− θA, using scalar
algebra and appropriate matrix definitions. �

All the rules that have been stated may be proved in similar fashion to those that have been
presented, and the proofs are left as exercises.

1.5 Some special types of matrix and associated rules
In our work with matrices, and in particular in our various economic and financial applica-
tions later, we shall encounter a number of special kinds of matrix. The following subsections
contain definitions for the main special matrices that we will use, and state a number of prop-
erties (theorems) associated with them. Again, most proofs will be left as exercises, but a few
proofs will be provided where they give additional insight into the methods of deriving useful
matrix results.

1.5.1 Zero matrix

NOTATION 1.5.1 The zero matrix is 0= [aij], where aij = 0 for all i, j .

All of the elements of a zero matrix are scalar zeros; it is unnecessary to write out such
a matrix in full. Note that the order of a zero matrix is arbitrary and will depend on the
precise context. In cases of ambiguity, it is desirable to indicate the order of a zero matrix
by a subscript, such as 0m×n , 01×n or 0m×1. Where the matrices are row and column vectors
of zeros, a single subscript may be used, as long as there is no possibility of confusion. The
zero matrix is sometimes referred to as the additive identity matrix, for the reason stated in
the first of the following properties.

PROPERTY 1 We have A± 0=A, where 0 and A are conformable in addition.
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PROPERTY 2 We have 0A=0 for all A, where the zero on the left-hand side is a scalar and
the zero matrix on the right-hand side is the same dimension as A.

PROPERTY 3 We have A−A= 0, where 0 is of the same dimension as A.

PROPERTY 4 If A is m× n, then 0p×mA= 0p×n and A0n×r = 0m×r .

It should be noted that the equation AB= 0 does not necessarily imply that either A or B
is a zero matrix, as a similar expression in scalar algebra would suggest.

EXAMPLE 1.5.1 Let

A= [
1 1

]
and B=

[
1 −1

−1 1

]
(1.45)

Then

AB= [
1 1

][ 1 −1
−1 1

]
= [

0 0
]= 01×2 (1.46)

The product BA is undefined, as the two matrices are not conformable in multiplication in
this order. ♦

This example illustrates the danger of transferring results from scalar algebra to matrix
algebra.

The proofs of these few properties of the zero matrix follow simply from the definitions
and basic matrix operations, and are left as exercises; see Exercise 1.13.

1.5.2 Identity matrix

The identity matrix of dimension n is the n× n square matrix that contains scalar ones on
the diagonal from top left to bottom right and zeros elsewhere, and is denoted In = [δij]n×n ,
where δij = 1 for i = j and δij = 0 for i = j .

The Kronecker delta5 is the name given to δij as used in the notation for the identity
matrix. This symbol will be used from time to time below.

PROPERTY 1 We have AIn = ImA=A, where A is any m× n matrix.

Thus the identity matrix serves in matrix algebra much as unity does in scalar algebra, and
is also referred to as the multiplicative identity, but note carefully the need for conformability
in multiplication when the identity matrix is used.

A simple appeal to the definitions of the identity matrix and matrix multiplication will
allow the reader to establish the above property.

1.5.3 Trace of a matrix

The diagonal on which the ones lie in the identity matrix, and the corresponding diagonal
in any square matrix, is known as the principal diagonal or main diagonal or leading
diagonal or primary diagonal.
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The sum of the elements on the principal diagonal is called the trace of the matrix and
denoted tr(·). The trace of the identity matrix of order n is tr(In)=∑n

i=1 1= n.

PROPERTY 1 We have tr(AB)= tr(BA), where A is an m × n matrix and B is an n ×m
matrix.

The proof of this result constitutes a useful exercise in the manipulation of typical terms,
but note that it will involve the use of double summation and hence may be a little tricky;
see Exercise 1.14.

1.5.4 Inverse matrix

If A, B and C are square matrices of the same order, say, n× n, and AC= I=BA, then C is
called a right inverse of A and B is called a left inverse of A.

In fact, B = BI = B(AC) = (BA)C = IC = C, so the right inverse must equal the left
inverse, and they can be called simply the inverse of A (and, vice versa, A is called the
inverse of B). Matrices A and B are said to be invertible.

EXAMPLE 1.5.2 Let

A=
[

1 2
2 3

]
and B=

[−3 2
2 −1

]
(1.47)

Using the operation of matrix multiplication, we have that

AB=
[

1 2
2 3

][−3 2
2 −1

]
=
[

1 0
0 1

]
= I2 (1.48)

and

BA=
[−3 2

2 −1

][
1 2
2 3

]
=
[

1 0
0 1

]
= I2 (1.49)

By definition, then, A and B are both invertible: A is the inverse of B, and B is the inverse
of A. ♦

Not all square matrices will have inverses associated with them, but we will leave the
question of what property of any particular square matrix guarantees the existence of an
inverse until Chapter 2.

The concept of the inverse of a matrix, which, when it exists, serves in matrix algebra
much like the reciprocal of a number does in scalar algebra, is very important, and there are
several useful properties relating to it. We will state the main properties of matrix inverses
rather formally as theorems and consider their proofs; it is instructive to do so and provides
useful illustrations of matrix manipulation using the matrix operations, the rules of matrix
algebra and the identity matrix and its property presented above.

The first property is established using a proof by contradiction. This form of proof estab-
lishes the truth of a proposition by showing that the falsity of the proposition implies a
contradiction. Since a proposition must be either true or false, and its falsity is shown to be
impossible by dint of the contradiction, it follows that the proposition must be true. In other
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words, to prove by contradiction that P , it is shown that “not P” implies Q and “not Q”.
Then, since “not P” implies a contradiction, conclude P . This method of proof will be used
in other contexts later.

PROPERTY 1 Let A be a square invertible matrix; then the inverse of A is unique.

Proof: Let B be the inverse of A, and suppose that another inverse, B∗ =B, exists.
Then AB∗ = I, and BAB∗ =BI=B, pre-multiplying by the inverse B.
But BA= I, since B is the inverse of A, so BAB∗ = IB∗ =B∗.
Therefore B∗ =B, which is a contradiction. �

Because of this uniqueness result, a special symbol, involving superscript −1, has been
adopted to signify a matrix inverse. Thus we write A−1 to denote the unique inverse of
the invertible matrix A. The approach of assuming non-uniqueness to actually establish
uniqueness is common and will be used again later.

PROPERTY 2 Let A be a square invertible matrix; then (A−1)−1 =A.

Proof: If A is invertible, hence AA−1 = I, then A = (A−1)−1 by direct appeal to our
definition of a matrix inverse. However, consider the following alternative.

We have (A−1)−1A−1 = I, by definition.
Therefore (A−1)−1A−1A= IA, post-multiplying by A.
Therefore (A−1)−1I= IA and so (A−1)−1 =A. �

PROPERTY 3 Let A and B be invertible matrices of the same order; then (AB)−1 =
B−1A−1.

Proof: We have AB(AB)−1 = I, by definition.
Therefore A−1AB(AB)−1 =A−1I, pre-multiplying by A−1, and so B(AB)−1 =A−1.
Therefore B−1B(AB)−1 = B−1A−1, pre-multiplying by B−1, and I(AB)−1 = B−1A−1,

which gives the result: (AB)−1 =B−1A−1. �

This last theorem on the inverse of a matrix product is an important result that we shall
make a good deal of use of later. It is also used in the proof of the following theorem, which
is left as an exercise; see Exercise 1.16.

PROPERTY 4 Let A be a square invertible matrix, and define

Ar =AA . . .A︸ ︷︷ ︸
r times

, A0 = I, ApAq =Ap+q and A−r = (A−1)r =A−1A−1 . . .A−1︸ ︷︷ ︸
r times

Then Ar is invertible and (Ar )−1 = (A−1)r =A−r .

Finally, again without proof, which involves a straightforward appeal to the original
definition of a matrix inverse (see Exercise 1.17), we get the following property.

PROPERTY 5 Let A be a square invertible matrix and μ be a scalar; then μA is invertible
and

(μA)−1 = 1

μ
A−1 = A−1

μ
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1.5.5 Scalar matrix

The paradoxical sounding term, scalar matrix, denotes a square matrix of the form
S=μIn = [μδij], i.e. a matrix whose principal diagonal elements are the non-zero number μ
and whose remaining elements are all zero. This is sometimes denoted diag[μ] (provided
that the dimension is clear from the context). The identity matrix is the scalar matrix that
results when μ= 1. Illustration of this concept is very easy and is left to the reader.

PROPERTY 1 We have tr(S)= nμ.

PROPERTY 2 We have

S−1 = 1

μ
In =

[
1

μ
δij

]

It is easy to establish these properties, so, again, the proofs are left as exercises. Property 2
for scalar matrices, which may be obtained by direct consideration of the product S−1S, is a
special case of Property 5 for matrix inverses; see Exercise 1.17.

1.5.6 Diagonal matrix

Just as the scalar matrix may be viewed as a simple generalization of the identity matrix,
so the diagonal matrix may be viewed as a further generalization of the scalar matrix.
A diagonal matrix is a square matrix of the form D= [diδij]n×n , which is sometimes also
written as diag[di ], where the subscript i now indicates that the diagonal elements are not
necessarily all equal. Thus all of the elements of a diagonal matrix are zero except those on
the principal diagonal, which are arbitrary scalars. Once again, such a matrix is simple to
visualize.

PROPERTY 1 We have tr(D)=∑n
i=1 di .

PROPERTY 2 We have

D−1 =
[

1

di
δij

]
= diag

[
1

di

]

provided that di = 0 for all i .

The proofs of these properties are easy. For the latter one, it will suffice to note that the
operation of matrix multiplication gives that

DD−1 = [diδij]

[
1

di
δij

]
= [δij]n×n = In (1.50)

Therefore, by the definition of an inverse and its uniqueness, the result is established.



February 12, 2011 11:1 Pinched Crown A Page-20 HarrWald

20 Systems of linear equations and matrices

1.5.7 Transpose of a matrix

If A is a matrix of order m × n, then the transpose of A, denoted A�, is the n × m
matrix formed by interchanging the rows and columns of A. We may write this definition
symbolically as

A� = [a�ij ]n×m = [aji]n×m (1.51)

where a�ij is the typical element of the transpose. The transpose of a matrix is a much-used
concept and we note five useful properties. Three of these will be proved; the others are left
as exercises.

PROPERTY 1 We have (A�)� = A, which follows simply from the definition of
transposition.

PROPERTY 2 Let A and B be m×n matrices; then (A±B)�=A�±B�, i.e. the transpose
of a matrix sum or difference is the sum or difference of the individual matrix transposes.

Proof: We have (A±B)� = [aij ± bij]� = [cij]�, say.
Now [cij]� = [c�ij ] = [cji] by the definition of a transpose, and [cji] = [aji ± bji] =

[aji]± [bji]= [a�ij ]± [b�ij ]=A� ±B� by definition of matrix addition and subtraction. �

PROPERTY 3 Let A be an m × n matrix and B be an n×m matrix; then (AB)� =B�A�,
i.e. the transpose of a matrix product is the product of the individual matrix transposes, but
in reverse order. Note that the orders of A and B ensure conformability in the case of both
of the products.

Proof:

(AB)� =
[

n∑
k=1

aikbk j

]�
, using the typical term of the product

=
[

n∑
k=1

a jkbki

]
, by definition of transposition

=
[

n∑
k=1

bki ajk

]
, by the commutative law of multiplication of scalars

=
[

n∑
k=1

b�ik a�kj

]
, by definition of transposition

=B�A�, by the definition of matrix multiplication (1.52)
�

PROPERTY 4 We have tr(A�)= tr(A), where A is a square matrix.

PROPERTY 5 If A is a square invertible matrix; then (A�)−1 = (A−1)�.
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Proof: We have AA−1 = I by definition.
Therefore (A−1)�A�=I�=I, transposing both sides and using the result on the transpose

of a product.
Therefore (A−1)�A�(A�)−1 = I(A�)−1, post-multiplying by (A�)−1.
Therefore (A−1)�I= (A�)−1.
Therefore (A−1)� = (A�)−1. �

1.5.8 Symmetric matrix

A square matrix, A, is symmetric if and only if A�=A, so that aij=aji for all i, j. Symmet-
ric matrices will feature importantly in later sections; they are easy to identify and exemplify.
There are several useful properties associated with symmetric matrices, but we shall develop
these later when more material has been covered. A useful result on an invertible symmetric
matrix is given in the following lemma.

LEMMA 1.5.1 Let A be symmetric and invertible; then (A−1)� =A−1.

Proof: We have AA−1 = I by definition.
Therefore (AA−1)� = I� = I, and (AA−1)� = (A−1)�A� = (A−1)�A, using the rule for

transposition of matrix products and the fact that A is symmetric. Multiplying on the right
by A−1 yields
(A−1)�AA−1 = IA−1.
Hence, (A−1)� =A−1 and the inverse of a symmetric matrix is also symmetric. �

So, if a matrix is symmetric and invertible, its inverse is also a symmetric matrix; see again
Example 1.5.4, which concerns such a matrix.

1.5.9 Orthogonal matrix

A square matrix, A, is orthogonal if and only if A�=A−1. We shall meet orthogonal matri-
ces in Chapters 3 and 6. They play an important role in certain theoretical results and in some
applications, as we shall see later.

EXAMPLE 1.5.3 The (symmetric) matrix

A=
[ 2√

5
1√
5

1√
5

−2√
5

]
(1.53)

is orthogonal, since

AA� =A�A=
[ 2√

5
1√
5

1√
5

−2√
5

][ 2√
5

1√
5

1√
5

−2√
5

]
=
[

1 0
0 1

]
= I2 (1.54)

implying that A� =A−1. ♦

The fact that A is symmetric in this example means that A2 = I; hence, the matrix is its
own inverse.
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1.5.10 Idempotent matrix

A square matrix, A, is idempotent if and only if A2 = A. This implies that Ar = A,
where r is any positive integer. It may be noted that the identity matrix is idempotent. Like
symmetric matrices, idempotent matrices are important in certain applications and they have
some important properties. Indeed, we shall encounter matrices that are both symmetric and
idempotent. However, as with the symmetric matrix, we defer consideration of the properties
of idempotent matrices until later.

EXAMPLE 1.5.4 It is easily verified that the following 2× 2 matrices are all idempotent:[
1 0
0 0

]
,

[
1 1
0 0

]
and

[
1 0
1 0

]
(1.55)

♦
1.5.11 Triangular matrix

Triangular matrices are square matrices whose elements on one side of the principal diag-
onal are all zero, and whose remaining elements are arbitrary. In the case of all elements
above the principal diagonal being zero, we have a lower triangular matrix. In the case of
all elements below the principal diagonal being zero, we have an upper triangular matrix.
As will be seen in Corollary 4.4.17, certain square matrices, A, can be factorized or decom-
posed as the product of a lower and an upper triangular matrix, L and U, respectively, i.e. we
may write A=LU. This decomposition facilitates the solution of certain types of systems of
equations.

1.5.12 Band matrix

A band matrix is a square matrix that contains a given non-zero scalar value in every
position on the principal diagonal and another (possibly different) non-zero scalar in every
position on the immediate off-diagonals above and below the principal diagonal, and so on.
These bands may or may not extend across the entire matrix. Where they do not, zeros appear
in all remaining cells of the matrix. Thus, for example,

B=

⎡⎢⎢⎢⎢⎣
b0 b1 0 0 0
b1 b0 b1 0 0
0 b1 b0 b1 0
0 0 b1 b0 b1

0 0 0 b1 b0

⎤⎥⎥⎥⎥⎦ and G=

⎡⎢⎢⎢⎢⎣
γ0 γ1 γ2 γ3 γ4

γ1 γ0 γ1 γ2 γ3

γ2 γ1 γ0 γ1 γ2

γ3 γ2 γ1 γ0 γ1

γ4 γ3 γ2 γ1 γ0

⎤⎥⎥⎥⎥⎦ (1.56)

are two 5× 5 band matrices, but a scalar matrix is not a band matrix. The first is also called
a tri-diagonal matrix, for obvious reasons. Band matrices arise in Section 14.4.1.

Most of the above special types of matrix are square. The exceptions are some zero matri-
ces and some of the matrices whose transposes have been examined. The remaining types
are not (necessarily) square.

1.5.13 Vector of ones

NOTATION 1.5.2 The vector of ones is

1n =

⎡⎢⎢⎣
1
1
...

1

⎤⎥⎥⎦
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This vector is often useful in representing summation operations in matrix notation; see
Exercise 1.20. Note also that 1n1�m is an n×m matrix all of whose elements are unity.

1.5.14 Partitioned matrix

A partitioned matrix is a matrix whose rows and/or columns have been delineated so as to
form several submatrices. For instance, given the m × n matrix A, the first p rows may be
distinguished from the remaining m − p rows, and the first q columns from the remaining
n− q columns. Thus the matrix may be written as

A=
[

A11 A12

A21 A22

]
(1.57)

where A11 is of order p× q, A12 is p× (n− q), A21 is (m − p)× q and A22 is (m − p)×
(n− q).

As long as the partitioning is such that the submatrices are appropriately conformable, the
operations of equality, addition, subtraction and multiplication of partitioned matrices are
precisely as defined previously, treating the submatrices as if they were individual elements.
Hence, given matrix A in (1.57) and conformable

B=
[

B11 B12

B21 B22

]
(1.58)

we have that

A+B=
[

A11 +B11 A12 +B12

A21 +B21 A22 +B22

]
(1.59)

as long as B is partitioned in the same way as A.
Now, consider the product of partitioned matrix A, from (1.57), and

C=
[

C11 C12 C13

C21 C22 C23

]
(1.60)

Recalling the definition of matrix multiplication, the product may be written as

AC=
[

A11C11 +A12C21 A11C12 +A12C22 A11C13 +A12C23

A21C11 +A22C21 A21C12 +A22C22 A21C13 +A22C23

]
(1.61)

as long as C is conformably partitioned. As an exercise, examine what the dimensions of the
individual submatrices of C must be for this product to be well defined; see Exercise 1.22.

The inverse of a partitioned square matrix is of interest, assuming that it exists. In prin-
ciple, it is possible to deduce the form of the partitioned inverse using only basic matrix
operations and a condition on the submatrices A11 and A22. Let A be as defined in (1.57) but
with m = n and p= q, let A11 and A22 be square invertible matrices of dimensions p× p
and (n− p)× (n− p), respectively, and let[

A11 A12

A21 A22

]−1

=
[

B C
D E

]
(1.62)
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The dimensions of A12 and A21, as well as of all the partitions on the right-hand side
of (1.62), are implied by the dimensions of A11 and A22. It follows that[

A11 A12

A21 A22

][
B C
D E

]
=
[

Ip 0p×(n−p)

0(n−p)×p In−p

]
(1.63)

Multiplying out the left-hand side of (1.63) and equating corresponding partitions will gen-
erate four matrix equations, the solution of which will yield the values of B,C,D and E in
terms of the submatrices Aij, i, j = 1,2. The details of this derivation are left as an exercise
(see Exercise 1.23) but the result is as follows:6[

A11 A12

A21 A22

]−1

=
[

B C
D E

]
=
[

F −FA12A−1
22

−A−1
22 A21F A−1

22 +A−1
22 A21FA12A−1

22

]
(1.64)

where F= (A11 −A12A−1
22 A21)

−1.
A special case of this result, and the alternative result referred to in note 6, arises when A is

block symmetric, in the sense that A21 =A�
12. This special case will be used in Chapter 14,

and the derivation of its details is left as an exercise in that chapter; see Exercise 14.10.
Another special case of (1.64) is for the so-called block diagonal matrix, which arises

when A12=0p×(n−p) and A21=0(n−p)×p. Note that, unless p=n/2, these two zero matrices
are not equal. The partitioned inverse in this case is[

A11 0
0 A22

]−1

=
[

A−1
11 0
0 A−1

22

]
(1.65)

still assuming that A11 and A22 are invertible. This useful result is easy to verify by mul-
tiplication of the partitioned inverse on the right-hand side of (1.65) by the original block
diagonal matrix to produce the (partitioned) identity matrix[

A−1
11 0
0 A−1

22

][
A11 0

0 A22

]
=
[

A−1
11 A11 + 00 A−1

11 0+ 0A22

0A11 +A−1
22 0 00+A−1

22 A22

]
=
[

I+ 0 0+ 0
0+ 0 0+ I

]
=
[

I 0
0 I

]
= I (1.66)

where we have omitted the cumbersome dimension subscripts on the various zero and iden-
tity matrices. The result is also an obvious generalization of the inverse of a diagonal matrix
that we encountered in Section 1.5.6.

1.5.15 Kronecker product of matrices

DEFINITION 1.5.1 The Kronecker product or direct product of two matrices A and B,
where A is of order m×n and B is of order p×q, is the partitioned matrix of order mp×nq
given by

A⊗B≡ [aijB]=

⎡⎢⎢⎢⎣
a11B a12B . . . a1nB
a21B a22B . . . a2nB
...

...
...

am1B am2B . . . amnB

⎤⎥⎥⎥⎦
mp×nq

(1.67)
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In other words, the Kronecker product of two matrices is formed by multiplying the second
matrix by each (scalar) element of the first matrix in turn and then arranging the matrices so
formed in a partitioned matrix, as shown in (1.67). For conciseness, the middle expression
in (1.67) extends the idea of the typical term to the typical submatrix of the partitioned
matrix. It is possible to represent a great deal of information as a Kronecker product; note its
dimensions.

EXAMPLE 1.5.5 Using the matrices A and B defined in Example 1.3.2, we have the
Kronecker product

A⊗B=
[

1 2
3 4

]
⊗
[

2 −2
−4 4

]

=

⎡⎢⎢⎢⎢⎣
1

[
2 −2

−4 4

]
2

[
2 −2

−4 4

]
3

[
2 −2

−4 4

]
4

[
2 −2

−4 4

]
⎤⎥⎥⎥⎥⎦ (1.68)

or, writing the product in its most detailed form,

A⊗B=

⎡⎢⎢⎣
2 −2 4 −4

−4 4 −8 8
6 −6 8 −8

−12 12 −16 16

⎤⎥⎥⎦ (1.69)

♦

The manipulation of Kronecker products is facilitated by a number of theorems. The
following results are particularly useful.

PROPERTY 1 Let A, B, C and D be matrices of orders m × n, p × q, n × r and q × s,
respectively; then (A⊗B)(C⊗D)=AC⊗BD.

Proof: We have A⊗B= [aijB] and C⊗D= [cijD] by definition of Kronecker product.
By the definition of (partitioned) matrix multiplication,

(A⊗B)(C⊗D)=
[

n∑
k=1

aikBckjD

]
(1.70)

Using the properties of multiplication of matrices by scalars, it can be seen that the typical
(ijth, (p× s)-dimensional) partition of this matrix is just

(∑n
k=1 aikckj

)
BD. By the definitions

of matrix multiplication and Kronecker product, this is just the typical term of

(A⊗B)(C⊗D)=AC⊗BD (1.71)
�

As an exercise, you might determine the order of (A⊗B)(C⊗D); see Exercise 1.24.
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PROPERTY 2 Let A and B be square invertible matrices of dimensions m ×m and n × n,
respectively; then (A⊗B)−1 =A−1 ⊗B−1.

Proof: It follows immediately from Property 1 that

(A⊗B)(A−1 ⊗B−1)=AA−1 ⊗BB−1 = Im ⊗ In = Imn (1.72)

which establishes this useful result. �

As will become clear later, neither B nor A⊗B in Example 1.5.15 is invertible.

PROPERTY 3 Let A and B be square matrices. Then tr(A⊗B)= tr(A)tr(B).

Proof: The proof of this final result on Kronecker products is left as an exercise; see
Exercise 1.26. �

EXERCISES

1.1 If A=
[

2 4
−1 6

]
and B=

[
0 1
2 2

]
, show that AB =BA.

1.2 Given A=
[

1 0 3
2 −1 1

]
, B=

⎡⎣3 4 1
0 −1 5
1 2 −2

⎤⎦ and C=
⎡⎣ 2
−1

4

⎤⎦, calculate (AB)�, B�A�,

(AC)� and C�A�, and comment on your results.

1.3 Find all matrices B obeying the equation

[
0 1
0 2

]
B=

[
0 0 1
0 0 2

]
.

1.4 Find all matrices B that commute with A=
[

0 1
0 2

]
to give AB=BA.

1.5 Let A=

⎡⎢⎢⎣
0 −3 6 −10
3 0 9 1

2−6 −9 0 1
10 − 1

2 −1 0

⎤⎥⎥⎦ . Calculate A−A� and comment on the result.

1.6 Let A=
⎡⎣ 1 1 1

2 −1 2
−1 −1 0

⎤⎦ and B=
⎡⎢⎣−

2
3

1
3 −1

2
3 − 1

3 0
1 0 1

⎤⎥⎦ . Find the products AB and BA.

Show that the pre-multiplication of any three-element column vector, y, by the product BA
leaves the vector y unchanged; i.e. show that BAy= y. Hence solve the system of equations

x1 + x2 + x3 = 6

2x1 − x2 + 2x3 = 6

−x1 − x2 =−5
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(Hint: recall the identity matrix and the inverse of a matrix from Section 1.5.2 and
Section 1.5.4, respectively.)

1.7 Let A=
[

1 2
2 4

]
. Find a matrix B = 0 such that AB=

[
0 0
0 0

]
, verifying that AB= 0

does not, in general, imply that either A= 0 or B= 0.

1.8 Given the matrix A=
[

2 1
5 3

]
, find the matrix B such that AB=

[
1 0
0 1

]
, using only the

matrix operations of equality and multiplication.

1.9 If x is a column vector with n elements, and y is a column vector with m elements, what
is the product xy�, which is called an outer product? Compare x�y for the case m= n; this
is an example of an inner product or scalar product; see Definition 5.4.12.

When x is fixed, the expression x�y is called a linear form in y. In Definition 4.3.1, we
will also encounter quadratic forms. In Chapter 14, both linear forms and quadratic forms
appear in our more detailed treatment of the single-equation econometric model.

1.10 A large firm controls five factories. The input and output levels of each factory are given
by numbers in one column of the table

Factory a b c d e

Good 1 1 −2 0 1 1
Good 2 0 3 − 1

2 1 −2
Good 3 − 1

2 1 2 −2 −1

where inputs are negative and outputs are positive. If the prices of the three goods are given
by the respective elements of [3 4 6]�, find the total profit of the firm. Write down the
matrix formula that would effect this calculation.

1.11 Specifying the general dimensions of the matrices involved:

(a) prove that (A+B)+C=A+ (B+C), the associative rule of matrix addition; and
(b) prove that (AB)C=A(BC), the associative rule of matrix multiplication.

(Hint: as the proof of the second part of this question uses a typical term involving double
summation, take care with the subscripts and ranges of summation.)

1.12 Expand (A+B)(A−B) and (A−B)(A+B), where A and B are suitably conformable
matrices.

(a) What are the dimensions of the two matrices, in general?
(b) What theorem of matrix algebra did you use to expand the expressions? Prove this

theorem using an argument based on the use of typical terms.
(c) Are the two expansions the same? If not, why not? How many terms are there in each

expansion?
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1.13 Let A be an m× n matrix (m = n).

(a) Prove that 0A= 0 (note that the first zero is scalar and that the second is a matrix).
(b) Prove that A+ 0=A. What is the dimension of the zero in this equation?
(c) Explain why, in general, 0A =A0, where each 0 is a suitably conformable zero matrix.

Under what circumstances is 0A=A0?

1.14 Define the trace, tr(A), of a square matrix, A. Prove that, if A and B are such that
both AB and BA exist, then tr(AB)= tr(BA). (Hint: as in Exercise 1.11, take care with the
subscripts and ranges of summation.)

1.15 Prove that diagonal matrices of the same order are commutative in multiplication with
each other.

1.16 Let A be a square invertible matrix, and define

Ar =AA . . .A︸ ︷︷ ︸
r times

, A0 = I, ApAq =Ap+q and A−r = (A−1)r =A−1A−1 . . .A−1︸ ︷︷ ︸
r times

Prove that Ar is invertible and (Ar )−1 = (A−1)r =A−r .

1.17 Let A be a square invertible matrix.

(a) Show that A2 =AA is invertible, with (A2)−1 =A−1A−1 = (A−1)2.

(b) Prove that
( 1

4 A
)−1 = 4A−1.

(c) Suppose that A= 0.5I15. Find A−1 and tr(A).

1.18 Prove that tr(A)= tr(A�) for any square matrix A.

1.19 Find an orthogonal matrix other than the identity matrix that is symmetric.

1.20 If 1� = [1 1 1] and A is a 3× 3 matrix, what is the relationship between:

(a) the rows of A and the column vector A1; and
(b) the columns of A and the row vector 1�A?

Comment on the interpretation of 1
3 A1 and 1

3 1�A; and also on the nature of 11�A, A11�
and 1�1A.

1.21 Let x= [xi ] be an n-vector. Recalling Exercise 1.20, find a square matrix A, which,
when pre-multiplying x, will yield the n-vector [xi − x̄], where x̄ = (1/n)

∑n
i=1 xi is the

arithmetic mean of the elements of x.

1.22 Consider the matrix A in equation (1.57) and matrix C in equation (1.60). What are the
restrictions on the dimensions of the individual submatrices, Cij, i = 1,2, j = 1,2,3, for the
product AC in equation (1.61) to be well defined?
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1.23 For the partitioned matrix in equation (1.57), derive the partitioned inverse in
equation (1.64) assuming that m = n and that A11 and A22 are invertible. Show that an
alternative form of the partitioned inverse is[

A11 A12

A21 A22

]−1

=
[

A−1
11 +A−1

11 A12GA21A−1
11 −A−1

11 A12G
−GA21A−1

11 G

]

where G= (A22 −A21A−1
11 A12)

−1.

1.24 What is the order of (A⊗B)(C⊗D) in Property 1 of Kronecker products?

1.25 Prove that (A⊗B)−1=A−1⊗B−1 without appeal to Property 1 of Kronecker products.

1.26 Provide a proof of Property 3 of Kronecker products, i.e. that tr(A⊗B)= tr(A) tr(B),
where A and B are arbitrary square matrices.
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2 Determinants

2.1 Introduction
In Chapter 1 we defined a matrix, saw a few examples of how systems of linear equations and
matrices arise in economic and financial applications, and presented the basic operations and
rules of matrix algebra, paying attention to the proofs of many of the matrix properties that
were stated. We also catalogued a number of special types of matrix that we will encounter
later. In this chapter, we introduce the concept of a determinant, which is important in the
theory and solution of systems of linear equations. The determinant also provides us with a
means of obtaining an explicit formula for evaluating the inverse of a matrix.

At a basic level, we can describe a determinant as a real-valued function of a square matrix
variable, i.e. a function that associates a real number f (A) with a square matrix A. Formally,
we may write f : M → R, where M is the set of square matrices and R is the set of real
numbers. However, we require a more precise definition that will also allow us to calculate
the numerical value of f (A). Before we give this, we need to be clear on a few preliminary
ideas.

2.2 Preliminaries

2.2.1 Permutation

The idea of a permutation of some number, r , of integers from the set of integers
{1,2, . . . ,n} is fundamental. As discussed on p. xxiii, a permutation is an ordered arrange-
ment of r of the first n integers. The number of such different permutations, n Pr , is given by
the general result

n Pr = n!

(n− r)!
(2.1)

defined on p. xxiii, from which it follows that n Pn , the number of ordered arrangements of all
n integers, is n!, since (n− n)!= 0!≡ 1. Of these n! permutations, the typical permutation,
i.e. the j th, may be denoted by j1 j2 . . . jn .

2.2.2 Inversion

An inversion in a permutation of n integers occurs whenever a larger integer precedes a
smaller one in the permutation. For example, if j1 > j2, we have one inversion; if j1 > j3
also, we have another inversion; and so on.
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Table 2.1 Classification of permutations of the first three
integers

Permutation Number of inversions Classification

123 0 Even
132 1 Odd
...

...
...

312 2 Even
321 3 Odd

2.2.3 Odd and even permutations

A permutation is odd if it contains an odd number of inversions; and a permutation is even
if it contains an even number of inversions.

To make these first three ideas concrete, consider the set {1,2,3}. In this case, n = 3
and n Pn = 3!= 6. The individual permutations, together with the number of inversions they
contain and their classification as odd or even, are given in Table 2.1, except for two permu-
tations, which have been omitted so that the reader can fill in the missing information as an
exercise; see Exercise 2.1.

2.2.4 Elementary product

An elementary product, formed from an n × n matrix A, is any product of n elements
from A, no two elements of which come from the same row or same column. The number of
elementary products is n!. For example, if

A=
[

a11 a12

a21 a22

]
(2.2)

then the 2!= 2 elementary products are a11a22 and a12a21. Products such as a11a12 and
a21a22 are not elementary products because in each of these cases both elements in the
product are from the same row. Similarly, the products a11a21 and a12a22 are not ele-
mentary products. (Why?) If A = [aij]n×n , then the elementary products are, typically,
a1 j1a2 j2 . . .anjn , where j1 j2 . . . jn , relating to the columns from which elements come, is
the typical permutation of the integers in the set {1,2, . . . ,n}.

2.2.5 Signing convention

By convention, we sign elementary products as positive if the j1 j2 . . . jn is an even
permutation and negative if the j1 j2 . . . jn is an odd permutation. Thus, for example,
in the 2 × 2 case, we have +a11a22 and −a12a21; and in the 3 × 3 case, we have
+a11a22a33,−a11a23a32,−a12a21a33; and so on. The determination of the remaining three
elementary products from A= [aij]3×3 is left as an exercise; see Exercise 2.1.

2.3 Definition and properties
Making use of the preliminary ideas from the previous section, we can now formally state
the definition of the determinant function and proceed to consider its properties.
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2.3.1 Definition

DEFINITION 2.3.1 The determinant, det(A) or |A|, of the n × n matrix, A, is the sum of
all signed elementary products of A: det(A)=∑±a1 j1a2 j2 . . .anjn , where

∑
indicates that

the terms are to be summed over all n! permutations ( j1 j2 . . . jn).

The det(·) notation is generally used for an abstract matrix, e.g. det(A) or det(B); the | · |
notation is generally used – in place of the square brackets – when the matrix is written out
in full, e.g.∣∣∣∣∣∣

1 0 2
2 1 0
2 3 1

∣∣∣∣∣∣ (2.3)

Thus, for the case of n= 2, det(A)= a11a22 − a12a21. For the case of n= 3,

det(A)=a11a22a33−a11a23a32−a12a21a33+a12a23a31+a13a21a32−a13a22a31 (2.4)

When n is small, as in these two cases, and the numerical values of the aij are known, det(A)
is easy to evaluate using this definitional formula.

EXAMPLE 2.3.1 Consider the 3× 3 matrix

A=
⎡⎣1 0 2

2 1 0
2 3 1

⎤⎦ (2.5)

Then

det(A)= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31

= (1× 1× 1)− (1× 0× 3)− (0× 2× 1)+ (0× 0× 2)

+ (2× 2× 3)− (2× 1× 2)

= 1− 0− 0+ 0+ 12− 4= 9 (2.6)
♦

When n is large, however, the definitional formula proves cumbersome and we use a more
efficient computational approach, developed in Section 2.4. In the meantime, we consider
the properties of the determinant concept.

2.3.2 Properties

The statement of all of the following properties assumes that A is an n× n matrix.

PROPERTY 1 If A contains a row of zeros or a column of zeros, then det(A)= 0.

PROPERTY 2 If A is diagonal, then det(A)= a11a22 . . .ann =∏n
i=1 aii.

PROPERTY 3 If A is triangular, then det(A)=∏n
i=1 aii.
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PROPERTY 4 If every element in a single row of A is multiplied by a constant, k, to form B,
say, then det(B)= k det(A).

PROPERTY 5 We have det(kA)= kn det(A).

PROPERTY 6 If any two rows of A are interchanged to form B, say, then det(B) =
−det(A).

PROPERTY 7 If A has two identical rows, then det(A)= 0.

PROPERTY 8 If a multiple of one row of A is added to another row to form B, say, then
det(B)= det(A).

PROPERTY 9 If A has two rows that are proportional, then det(A)= 0.

PROPERTY 10 We have det(A�)= det(A).

PROPERTY 11 We have det(AB)= det(A)det (B).

The reader should consider the proofs of at least the first ten of these properties of determi-
nants and attempt them as exercises. The proofs of the first five properties are straightforward
and involve direct appeal to the definition of a determinant. To take the case of Property 5,
for example, we prove it in the following theorem.

THEOREM 2.3.1 Let A be an n× n matrix and let k ∈R; then det(kA)= kn det(A).

Proof: We have kA= [kaij] by definition. Therefore, also by definition,

det(kA)=
∑

ka1 j1ka2 j2 . . . kanjn

= kn
∑

a1 j1a j2 . . . anjn

= kn det(A) (2.7)
�

The proof of Property 6 is likely to pose more difficulty; it hinges on the fact that the
row interchange changes the sign of all permutations of the column subscripts, hence the
sign of all of the elementary products of A. The proof of Property 7 follows simply from
Property 6. The proof of Property 8 is also rather tricky but may be obtained by computing
the determinants involved and then verifying the equality. Properties 1 and 8 are sufficient
to establish Property 9, while Property 10 is straightforward to establish. The tenth result is
important in that it facilitates showing that almost every theorem on determinants that refers
to rows is also true when re-cast to refer to columns. For example, consider the column
version of Property 6, proved in the following theorem.

THEOREM 2.3.2 Let A be an n× n matrix and B∗ be the matrix formed by the interchange
of any two columns of A; then det(B∗)=−det(A).
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Proof: From Property 10, we have

det(B∗)= det (B∗�)
=−det(A�) (2.8)

by Property 6, since B∗� is just A� with two rows interchanged; therefore

det(B∗)=−det(A) (2.9)

by Property 10. �

Property 3 will be proved later; see Theorem 2.4.2. The proof of Property 11 is longer and
requires concepts that have not yet been introduced, so it is not given; for a proof see Anton
and Rorres (2011, p. 108).

2.3.3 Singularity and non-singularity

DEFINITION 2.3.2 Square matrices that have zero determinants are said to be singular; and
those with non-zero determinants are said to be non-singular.

Examples of singular matrices include those referred to in the first, seventh and ninth
properties listed in Section 2.3.2. The following theorem establishes the importance of non-
singularity.

THEOREM 2.3.3 If a square matrix, A, is invertible, then det(A) =0, i.e. A is non-singular.

Proof: If A is invertible, then AA−1 = I, by definition,
Therefore det(AA−1)= det (I)= 1, using Property 2.
Therefore det(A)det(A−1)= 1, using Property 11.
Therefore det(A) = 0, hence A is non-singular by definition. �

The following is a useful corollary of this proof.

COROLLARY 2.3.4 We have

det(A−1)= [det(A)]−1 = 1

det(A)
(2.10)

The theorem can be strengthened to yield a necessary and sufficient condition stating that A
is invertible if and only if det(A) =0, i.e. if and only if A is non-singular. The first part of this
modified theorem (⇒) is identical to the weaker theorem. However, the proof of the second
part of the modified theorem (⇐) requires concepts that have not yet been introduced, so is
not given here; for a proof see Anton and Rorres (2010, p. 109).

2.4 Co-factor expansions of determinants
The definition of a determinant given in the previous section is not computationally efficient.
A more efficient and more usual method of calculation makes use of the idea of a co-factor
expansion of a determinant. Such expansions are explained in this section. These expansions
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also provide means of deriving an explicit formula for the calculation of matrix inverses.
Before we see these important results, however, we need to introduce two basic concepts.

DEFINITION 2.4.1 The minor of matrix element aij, denoted Mij, is the determinant of the
submatrix that remains when the i th row and j th column are deleted from a square matrix A.

There are n2 minors defined for an n × n matrix, one corresponding to every element or
every pairing of row and column; hence, the use of the ij subscripts and the association of
Mij with the typical element aij.

DEFINITION 2.4.2 The co-factor of matrix element aij is Cij ≡ (−1)i+ j Mij.

A co-factor, like a minor, is associated with a particular row and column and, therefore,
with a particular element, aij, of a matrix; and it differs from a minor only in its sign, i.e.
Cij =±Mij, depending on the row and column numbers. If i + j is an even number, the
sign of the ijth co-factor is the same as that of the corresponding minor; if i + j is odd, the
co-factor and minor are of opposite sign.

Now, for the 3× 3 case,

A=
⎡⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎦ (2.11)

and, as in (2.4), the determinant is

det(A)= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31

+ a13a21a32 − a13a22a31 (2.12)

Identifying certain common factors in these six terms, this can be written as

det(A)= a11(a22a33 − a23a32)− a12(a21a33 − a23a31)+ a13(a21a32 − a22a31)

= a11 M11 − a12 M12 + a13 M13

= a11C11 + a12C12 + a13C13 (2.13)

This is referred to as the co-factor expansion of det(A) along the first row, because the
elements in the first row have been removed from pairs of the six terms as common factors,
leaving the corresponding co-factors multiplying them. We could have removed elements
from any row, or indeed any column, to obtain different co-factor expansions. There are
2n co-factor expansions in all. Thus, for an n × n matrix A, det(A) may be computed by
expansion using the elements of any row and their associated co-factors, i.e.

det(A)= ai1Ci1 + ai2Ci2 + · · ·+ ainCin, i = 1,2, . . . ,n (2.14)

or expansion using the elements of any column and their associated co-factors, i.e.

det(A)= a1 j C1 j + a2 j C2 j + · · ·+ anj Cnj , j = 1,2, . . . ,n (2.15)
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THEOREM 2.4.1 Expansions using the elements of one row (or column) and co-factors from
a different row (or column) always sum to zero, i.e.

ai1C j1 + ai2C j2 + · · ·+ ainC jn = 0, i, j (i = j)= 1,2, . . . ,n (2.16)

and

a1i C1 j + a2i C2 j + · · ·+ ani Cnj = 0, i, j (i = j)= 1,2, . . . ,n (2.17)

Proof: See Anton and Rorres (2011, p. 110). �

Expansions such as those in (2.16) and (2.17) are called expansions involving alien
co-factors.

An important matrix in the formula for an inverse is the following one.

DEFINITION 2.4.3 The adjoint or adjugate of a square matrix A, denoted adj(A), is the
transpose of the matrix formed by replacing the elements of A by their co-factors, i.e.
adj(A)= [Cij]�.

Note that the adjoint of a 2× 2 matrix can be found by swapping the principal diagonal
elements and reversing the sign of the off-diagonal elements. For the 3×3 case, consider the
following example.

EXAMPLE 2.4.1 Recall the matrix given in (2.5):

A=
⎡⎣1 0 2

2 1 0
2 3 1

⎤⎦ (2.18)

The minors and co-factors associated with the elements of A are easily determined. For
instance, the co-factors corresponding to a11 and a12 are obtained as

C11 = (−1)1+1 M11 =
∣∣∣∣1 0
3 1

∣∣∣∣= 1 (2.19)

and

C12 = (−1)1+2 M12 =−
∣∣∣∣2 0
2 1

∣∣∣∣=−2 (2.20)

Completion of these co-factor calculations yields the matrix of co-factors⎡⎣C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤⎦=
⎡⎣ 1 −2 4

6 −3 −3
−2 4 1

⎤⎦ (2.21)

and the adjoint of A follows simply as the transpose of (2.21), namely

adj(A)=
⎡⎣ 1 6 −2
−2 −3 4

4 −3 1

⎤⎦ (2.22)
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Notice that the elements in, for example, the first column of adj(A) are the co-factors in
the first row of the co-factor matrix associated with the elements in the first row of A.
It is therefore easy to find the determinant of A using the co-factor expansion along the
first row of A. This is obtained by multiplying the elements in the first row of A either by
their associated co-factors in the first row of the co-factor matrix or, alternatively, by the
corresponding elements in the first column of adj(A):

det(A)= a11C11 + a12C12 + a13C13 = (1× 1)+ (0×−2)+ (2× 4)= 9 (2.23)

in agreement with the original calculation of this determinant in Example 2.3.1. ♦
It would be a useful exercise to repeat the calculation of the determinant of the matrix

in Example 2.4 using, say, the co-factor expansion along the third row and the co-factor
expansion down the second column of A, selecting the appropriate co-factors in each
case from the elements of the co-factor matrix in (2.21) or from adj(A) in (2.22); see
Exercise 2.2. In practice, computational efficiency is gained by choosing the co-factor
expansion corresponding to the row (or column) of a matrix in which the most zeros
appear.

An extreme example of the efficiency gains associated with choosing the most appropriate
co-factor expansion is provided by the calculation of the determinant of a triangular matrix.
Consider the case of a 3× 3 upper triangular matrix

U=
⎡⎣a11 a12 a13

0 a22 a23

0 0 a33

⎤⎦ (2.24)

Then, as in (2.23), det(U) may be calculated using a co-factor expansion along the
first row:

det(U)= a11C11 + a12C12 + a13C13

= a11

∣∣∣∣a22 a23

0 a33

∣∣∣∣− a12

∣∣∣∣0 a23

0 a33

∣∣∣∣+ a13

∣∣∣∣0 a22

0 0

∣∣∣∣
= a11(a22a33 − 0)− a12(0− 0)+ a13(0− 0)

= a11a22a33 (2.25)

A better approach, however, is to use a co-factor expansion down the first column, which
contains two zeros, taking the co-factors from the first column of the co-factor matrix or first
row of adj(U). This yields the alternative calculation

det(U)= a11C11 + a21C21 + a31C31

= a11

∣∣∣∣a22 a23

0 a33

∣∣∣∣+ 0C21 + 0C31

= a11(a22a33 − 0)+ 0+ 0

= a11a22a33 (2.26)

The difference in the amount of computation involved in the two approaches is not great
in this 3 × 3 example, but it would be considerable if the dimension of U were higher.



February 12, 2011 11:1 Pinched Crown A Page-38 HarrWald

38 Determinants

For then, n co-factors would need to be evaluated in the first approach, whereas only one
would still be required in the second approach.

Consideration of the calculation of the determinant of a triangular matrix leads to the
following theorem.

THEOREM 2.4.2 Let A be an n× n triangular matrix; then

det(A)=
n∏

i=1

aii = a11a22 . . .ann (2.27)

the product of the elements on the principal diagonal of A.

The proof of this theorem may be obtained by consideration of the definition of a deter-
minant and use of the fact that all elementary products except a11a22 . . .ann will contain at
least one zero element and so be zero themselves. Hence, det(A)=∑±a1 j1a2 j2 . . .anjn =
a11a22 . . .ann .

An alternative proof by induction is given here, however, as this method of proof will be
used again later. The principle of proof by induction is simply that, if the truth of a statement
for the positive integer n implies that the statement is true for n+ 1, and if the statement is
also true for n= 1, then the statement is true for all positive integers.1

Proof: Let P(n) be the proposition that an n× n upper triangular matrix satisfies (2.27).
First, we check the truth of P(1).
P(1) is just the trivial statement that the determinant of the 1× 1 matrix [a11] is the

number a11, which is clearly true.
Now, we assume the truth of P(n) and endeavour to derive the truth of P(n+ 1).
Partition the (n+ 1)× (n+ 1) upper triangular matrix as

A≡
[

A11 a
0 a(n+1)(n+1)

]
(2.28)

where A11 is n× n, 0 is 1× n, a is n× 1 and a(n+1)(n+1) is a scalar.
Using a co-factor expansion across the last row, the determinant of A is

det(A)= a(n+1)1C(n+1)1 + a(n+1)2C(n+1)2 + · · ·+ a(n+1)(n+1)C(n+1)(n+1)

= a(n+1)(n+1)C(n+1)(n+1) (2.29)

since a(n+1)i = 0, i = 1,2, . . . ,n. Now C(n+1)(n+1) is the determinant of the n × n upper
triangular matrix A11, so by P(n) we have that C(n+1)(n+1)= a11a22 . . .ann . It then follows
from (2.29) that

det(A)= a(n+1)(n+1)C(n+1)(n+1)=C(n+1)(n+1)a(n+1)(n+1)

= a11a22 . . .anna(n+1)(n+1) (2.30)

which is P(n+ 1).
As we have shown that the truth of P(n) implies the truth of P(n + 1), our proof by

induction is complete. �
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The case of n= 2 provides a very simple illustration. Given

A=
[

a11 a12

0 a22

]
(2.31)

we have from the sum of the signed elementary products that det(A)= a11a22 − 0= a11a22,
the product of the two diagonal elements, in accordance with Theorem 2.4.2.

A similar proof, based on co-factor expansions of determinants along their first row,
applies in the case of lower triangular matrices; see Exercise 2.5.

Returning to the adjoint matrix, the essential role of the adjoint in the computation of
matrix inverses is made clear in the following theorem.

THEOREM 2.4.3 If an n× n matrix, A, is invertible, then A−1 = adj(A)/det(A).

Proof: Consider the product A adj(A), whose typical element is

n∑
k=1

aikC jk = ai1C j1 + ai2C j2 + · · ·+ ainC jn (2.32)

When i = j , this is the co-factor expansion of det(A) along the i th row; when i = j , the
expansion is zero because it involves alien co-factors.

Therefore A adj(A)= diag[det(A)]= det(A)I.
Since det(A) = 0 by Theorem 2.3.3, then

A adj(A)
det(A)

=A
adj(A)
det(A)

= I (2.33)

Therefore adj(A)/det(A) is the inverse of A by definition and uniqueness of a matrix
inverse. �

2.5 Solution of systems of equations

2.5.1 Cramer’s rule

Cramer’s theorem and the rule to which it gives rise provide a well-known application of
determinants to the solution of certain square systems of equations, i.e. systems contain-
ing n equations in n unknowns. The theorem may be formally stated as follows, using the
alternative notation for a determinant.2

THEOREM 2.5.1 (CRAMER’S THEOREM). If Ax = b is a square system of equations
in which the matrix A is n × n and non-singular, and x (the vector of unknowns) and
b are n-vectors, then the system has a unique solution given by x= (1/|A|)[|A j |], where
A j ( j = 1,2, . . . ,n) is the matrix obtained by replacing the j th column of A by b.

Thus the solution for the individual elements of x is

x1 = |A1|
|A| , x2 = |A2|

|A| , . . . , xn = |An|
|A| (2.34)
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Proof:

(a) Uniqueness. Since A is non-singular, its inverse, A−1, exists and is unique by Property 1
on p. 18. Pre-multiplication of both sides of Ax=b by A−1 yields a solution x=A−1b.
Let s also be a solution of the system so that As= b. It follows, by pre-multiplying both
sides by A−1, that A−1As=A−1b. Therefore, s=A−1b= x and the solution is unique.

(b) The solution may be written as x=A−1b= (1/|A|) adj(A)b, substituting for A−1. Thus

x=
[

1

|A| (b1C1 j + b2C2 j + · · ·+ bnCnj )

]
(2.35)

using the typical ( j th) element of the vector on the right-hand side of the equation. The
expression in round brackets is recognizable as a co-factor expansion down the j th col-
umn of an n × n matrix, where that j th column contains the elements of b and every
other element of the matrix is identical to the corresponding element in A. It is expedient
to manufacture such a matrix, A j , and therefore be able to write x j = |A j |/|A|. �

EXAMPLE 2.5.1 Recall the example in Section 1.2.2 and consider the simplified macro-
economic model

C =α1 +α2Y (2.36)

Y =C + Z (2.37)

where it is required to solve for C (consumption) and Y (national income) in terms of
Z (autonomous expenditure, comprising investment, I , and government expenditure, G),
α1 and α2. We may write this simple square system in the form Ax=b, where

A=
[

1 −α2

−1 1

]
, x=

[
C
Y

]
and b=

[
α1

Z

]
(2.38)

The determinant of A is a11a22 − a12a21 = 1 − α2; hence, A is non-singular if α2 = 1.
Economic theory suggests that the marginal propensity to consume is greater than zero and
less than unity, so 0< α2 < 1; we may therefore suppose that |A| = 0 and conclude that
Cramer’s theorem applies. It follows that

|A1| =
∣∣∣∣α1 −α2

Z 1

∣∣∣∣ and |A2| =
∣∣∣∣ 1 α1

−1 Z

∣∣∣∣ (2.39)

x1 =C = |A1|
|A| =

α1 +α2 Z

1−α2
= α1

1−α2
+ α2

1−α2
Z (2.40)

x2 = Y = |A2|
|A| =

α1 + Z

1−α2
= α1

1−α2
+ 1

1−α2
Z (2.41)

♦

This solution, though very simple, is not without interest. In particular, the coefficients
of Z in the two equations are the so-called multipliers that measure the overall impact of a
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change in Z on C and Y , respectively. The second of these, 1/(1−α2), or the reciprocal of
the marginal propensity to save, is the elementary Keynesian multiplier from introductory
macroeconomics.

EXAMPLE 2.5.2 As a second example, let us use Cramer’s rule to solve the following
system of equations for xi , i = 1,2,3:

2x1 + 2x3 = 1 (2.42)

x1 − 2x2 + x3 = 2 (2.43)

3x1 + x2 = 3 (2.44)

This system is square, with three equations and three unknowns. Writing it in the form
Ax=b, we have⎡⎣2 0 2

1 −2 1
3 1 0

⎤⎦⎡⎣x1

x2

x3

⎤⎦=
⎡⎣1

2
3

⎤⎦ (2.45)

Using the co-factor expansion along the first row to exploit the zero value of a12, we have

|A| = a11C11 + a12C12 + a13C13 = 2

∣∣∣∣−2 1
1 0

∣∣∣∣+ 0+ 2

∣∣∣∣1 −2
3 1

∣∣∣∣= 12 (2.46)

so A is non-singular. Proceeding with Cramer’s rule, using appropriate co-factor expansions,
we have

|A1| =
∣∣∣∣∣∣
1 0 2
2 −2 1
3 1 0

∣∣∣∣∣∣= 15, |A2| =
∣∣∣∣∣∣
2 1 2
1 2 1
3 3 0

∣∣∣∣∣∣=−9 (2.47)

and

|A3| =
∣∣∣∣∣∣
2 0 1
1 −2 2
3 1 3

∣∣∣∣∣∣=−9 (2.48)

Therefore,

x1 = |A1|
|A| =

15

12
= 5

4
(2.49)

x2 = |A2|
|A| =

−9

12
=−3

4
(2.50)

and, since |A3| = |A2|,

x3 = x2 =−3

4
(2.51)

♦

The solution obtained in Example 2.5.1 may be verified as correct by substituting the
numerical values of the xi into the original equations.
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2.5.2 Scalar methods

Cramer’s theorem makes it clear that having the same number of equations as unknowns
is not a sufficient condition for the existence of a unique solution for a system of linear
equations. In fact, this counting rule of thumb is neither necessary nor sufficient for the
existence of a unique solution, as the following cases indicate.

1. The same number of equations and unknowns, but no unique solution:

x + y= 1 (2.52)

2x + 2y= 2 (2.53)

This is a case in which the equations are in fact coincident and the matrix of coefficients
is singular. There are infinitely many solutions of the form y= 1− x , where x can be any
real number.

2. The same number of equations and unknowns, but no solution:

x + y= 1 (2.54)

x + y= 2 (2.55)

This is a case in which the equations do not coincide but the matrix of coefficients is still
singular. This system is actually inconsistent in the sense described in Chapter 1. We will
have more to say about consistency and inconsistency of systems of linear equations in
Chapter 5; see, especially, Theorem 5.4.9.

3. More equations than unknowns, but a unique solution:

x = y (2.56)

x + y= 2 (2.57)

x − 2y+ 1= 0 (2.58)

The solution in this case is x =1, y=1 and comes about due to one of the three equations
being redundant. The properties of the matrix of coefficients in cases like this will be
discussed further in Chapters 3 and 5.

4. In systems of nonlinear equations, it is possible to have fewer equations than unknowns,
but a unique solution; e.g. x2 + y2 = 0, the solution for which is x = 0, y= 0.

In terms of the geometric representation of the simultaneous equation problem, in both
the generic and linear cases, two curves in the coordinate plane can intersect in zero, one
or more points; two surfaces in three-dimensional coordinate space typically intersect in a
curve; and three surfaces in three-dimensional coordinate space can intersect in zero, one or
more points. The need for a more precise solution theory and methodology is clear.

An approach to solving simultaneous equations that can be applied to both linear and
nonlinear problems involves the following procedure.

1. Solution of one equation (say, the first) for a given variable in terms of the other variables.
2. Elimination of the given variable in all other equations by substitution using the solution

from the previous step.
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3. Repetition of step 1 to obtain a solution for one equation of the reduced system from
step 2 for a given variable in terms of the other variables.

4. Repetition of step 2 for all remaining equations by appropriate substitution.
5. And so on, until only one equation and one variable remain.
6. Back-substitution to find numerical values for each variable.
7. Checking of the solution by substitution in the original system, which is a strongly

recommended practice for any method of solving simultaneous equations.

This method will often help in finding the solution of systems of simultaneous nonlinear
equations that arise as the first-order conditions in optimization problems; see Chapter 10.

EXAMPLE 2.5.3 Solve the equations

x + y= 2 (2.59)

2y− x = 7 (2.60)

for x and y.
Using the above approach, and solving the first equation for x in terms of y, we have

x = 2− y (2.61)

Elimination of x from the remaining equation gives

2y− (2− y)= 7 (2.62)

from which we have 3y = 9 and therefore y = 3. Substitution in (2.61) may be used to
determine x :

x = 2− y= 2− 3=−1 (2.63)

♦

It is a useful exercise to draw a diagram showing the two equations in this example and the
solutions corresponding to their point of intersection; see Exercise 2.8.

EXAMPLE 2.5.4 Solve the equations

x + 2y+ 3z= 6 (2.64)

4x + 5y+ 6z= 15 (2.65)

7x + 8y+ 10z= 25 (2.66)

for x , y and z.
Here, we first solve one equation, equation (2.64), for x in terms of y and z:

x = 6− 2y− 3z (2.67)
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Then we use this to eliminate x from the other two equations, to give

4(6− 2y− 3z)+ 5y+ 6z= 15 (2.68)

7(6− 2y− 3z)+ 8y+ 10z= 25 (2.69)

What remains is a 2× 2 system:

−3y− 6z=−9 (2.70)

−6y− 11z=−17 (2.71)

Solving the first equation for y, we have

y= 3− 2z (2.72)

which allows us to eliminate y from the last equation, setting

−6(3− 2z)− 11z=−17 (2.73)

The solution for z is easily found from this, namely,

z= 1 (2.74)

and substituting back appropriately gives y= 1 and x = 1. ♦

2.5.3 Elementary row operations

Another alternative approach to that provided by Cramer’s theorem involves elementary
row operations, which can be performed on a system of simultaneous equations without
changing the solution(s). There are three types of elementary row operation:

1. addition or subtraction of a multiple of one equation to or from another equation;
2. multiplication of a particular equation by a non-zero constant; and
3. interchange of two equations.

Note that each of these operations is reversible (invertible).
One algorithm for solving simultaneous equation systems using elementary row opera-

tions involves the following steps:

1. (a) Elimination of the first variable from all except the first equation.
(b) Elimination of the second variable from all except the first two equations.
(c) Elimination of the third variable from all except the first three equations.
(d) And so on.

2. (a) Dividing the first equation by the coefficient of the first variable.
(b) Dividing the second equation by the coefficient of the second variable.
(c) Dividing the third equation by the coefficient of the third variable.
(d) And so on.

3. Solution of the last equation, which is easy as it now includes only one variable.
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4. Substitution of this solution in the second last equation to solve for the second last
variable.

5. And so on, recursively.

Instead of finding the solution by recursive substitution, we could use further elementary
row operations to remove the last variable from all the equations except the last, to remove
the second last variable from all the equations except the second last, and so on, producing
a system with only one variable remaining in each equation. The second type of elementary
row operation could then be used on each equation in turn to find the final solution.

EXAMPLE 2.5.5 Let us repeat Example 2.5.2 using elementary row operations.
Adding the first equation to the second gives

x + y= 2 (2.75)

3y= 9 (2.76)

Thus, from the second equation we have y= 3. Substitution of this value into the first equa-
tion then yields x =−1. ♦

EXAMPLE 2.5.6 Let us repeat Example 2.5.2 using elementary row operations.

x + 2y+ 3z= 6 (2.77)

4x + 5y+ 6z= 15 (2.78)

7x + 8y+ 10z= 25 (2.79)

We can add −4 times (2.77) to (2.78) and −7 times (2.77) to (2.79) to obtain

x + 2y+ 3z= 6 (2.80)

−3y− 6z=−9 (2.81)

−6y− 11z=−17 (2.82)

Now we can add −2 times (2.81) to (2.82) to obtain

x + 2y+ 3z= 6 (2.83)

−3y− 6z=−9 (2.84)

z= 1 (2.85)

This gives us the solution for z, and back-substitution or further elementary row operations
will give the solutions for x and y. ♦

2.5.4 Matrix representation of elementary row operations

The elementary row operations performed in the previous section are effectively operations
on the matrix of coefficients in the system of simultaneous linear equations. If we write the
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numbers that appear in the 3× 3 system in Example 2.5.2 as a 3× 4 matrix,

⎡⎣1 2 3 6
4 5 6 15
7 8 10 25

⎤⎦ (2.86)

we can perform exactly the same elementary row operations on this augmented matrix,
with no need to write out “x”, “y”, “z”, “±” and “=” repeatedly at each stage.

EXAMPLE 2.5.7 The augmented matrices corresponding to the two steps in Example 2.5.3
are ⎡⎣1 2 3 6

0 −3 −6 −9
0 −6 −11 −17

⎤⎦ and

⎡⎣1 2 3 6
0 −3 −6 −9
0 0 1 1

⎤⎦ (2.87)

♦

We can use the augmented matrix method to solve several systems of equations with the
same matrix on the left-hand side all at once. The matrix equations Ax= b1, Ax= b2 and
Ax=b3 can be combined into the single augmented matrix [A b1 b2 b3]. This is equivalent
to solving the matrix equation AX= B, where b1, b2 and b3 are the three columns of the
matrix B.

A particular example of this type of matrix equation has X=A−1 and B= I, i.e. AA−1= I.
So another method of finding the inverse of an n × n matrix A is to apply elementary row
operations to the n× 2n augmented matrix [A I].

EXAMPLE 2.5.8 Using the coefficient matrix from Example 2.5.2 again, we can start with
the augmented matrix

⎡⎣1 2 3 1 0 0
4 5 6 0 1 0
7 8 10 0 0 1

⎤⎦ (2.88)

Repeating the elementary row operations carried out in Examples 2.5.3 and 2.5.4 turns this
into ⎡⎣1 2 3 1 0 0

0 −3 −6 −4 1 0
0 −6 −11 −7 0 1

⎤⎦ (2.89)

and then⎡⎣1 2 3 1 0 0
0 −3 −6 −4 1 0
0 0 1 1 −2 1

⎤⎦ (2.90)
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A few more operations are required to turn the left-hand partition of the augmented matrix
into the 3× 3 identity matrix. Multiplying the second row by −1/3 produces

⎡⎣1 2 3 1 0 0
0 1 2 4

3 − 1
3 0

0 0 1 1 −2 1

⎤⎦ (2.91)

Subtracting twice row 3 from row 2 and three times row 3 from row 1 produces

⎡⎣1 2 0 −2 6 −3
0 1 0 − 2

3
11
3 −2

0 0 1 1 −2 1

⎤⎦ (2.92)

Finally, subtracting twice row 2 from row 1 produces⎡⎢⎣1 0 0 − 2
3 − 4

3 1

0 1 0 − 2
3

11
3 −2

0 0 1 1 −2 1

⎤⎥⎦ (2.93)

This tells us that⎡⎣1 2 3
4 5 6
7 8 10

⎤⎦−1

=
⎡⎢⎣−

2
3 − 4

3 1

− 2
3

11
3 −2

1 −2 1

⎤⎥⎦ (2.94)

which is easily verified by multiplying the two matrices. ♦

2.5.5 Elementary matrices

So far, we have seen that elementary row operations may be applied to scalar equations or
to the rows of an augmented matrix to obtain a solution for a set of linear simultaneous
equations or the inverse of a matrix. The concept of an elementary matrix may be used to
summarize these operations.

An elementary matrix is a square matrix derived from an identity matrix by performing
a single elementary row operation. For example, consider the following two matrices:

E=
⎡⎣0 1 0

1 0 0
0 0 1

⎤⎦ and E∗ =
⎡⎣0 0 1

0 1 0
1 0 0

⎤⎦ (2.95)

The matrix E is the elementary matrix formed by interchanging the first and the second rows
(or columns) of I3, while E∗ is the elementary matrix formed by interchanging the first and
the third rows (or columns) of I3.

It is easily seen that pre-multiplying any matrix A by a conformable elementary matrix E
has the same effect on A as the elementary row operation that was performed on the identity
matrix to form E.
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To confirm this, the reader might investigate the nature of the products AE, EA, AE∗ and
E∗A, using matrix multiplication and a 3×3 matrix, A, of his or her choice; see Exercise 2.9.

Similarly, the 3× 3 matrix that corresponds to the elementary row operation of adding
twice row 2 to row 1 and the 4× 4 matrix that corresponds to the elementary row operation
of multiplying row 4 by −3 are respectively

⎡⎣1 2 0
0 1 0
0 0 1

⎤⎦ and

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎤⎥⎥⎦ (2.96)

In the examples above, we have sometimes performed two elementary row operations in
a single step. For example, going from (2.91) to (2.92), we implicitly pre-multiplied the
augmented matrix by two elementary matrices

E1 ≡
⎡⎣1 0 0

0 1 −2
0 0 1

⎤⎦ and E2 ≡
⎡⎣1 0 −3

0 1 0
0 0 1

⎤⎦ (2.97)

Note that these elementary matrices commute, so that

E1E2 =E2E1 =
⎡⎣1 0 −3

0 1 −2
0 0 1

⎤⎦ (2.98)

2.5.6 Row-echelon forms

Applying elementary row operations to the augmented matrix formed from an invertible
matrix and the identity matrix or pre-multiplying the augmented matrix by the correspond-
ing elementary matrices will produce the inverse of the original matrix. Applying the same
techniques to a matrix that is not invertible (and not necessarily square) can reduce it to either
of two forms, which resemble the identity matrix, and which we now define.

DEFINITION 2.5.1

(a) A matrix is in row-echelon form if:

(i) every row either consists entirely of zeros or else has non-zero entries that begin with
a leading 1;

(ii) any rows consisting entirely of zeros are grouped together at the bottom of the matrix;
and

(iii) the leading 1 in any non-zero row is to the right of any leading 1 in a row nearer the
top of the matrix.

(b) A matrix is in reduced row-echelon form if it is in row-echelon form and each of its
columns that contains a leading 1 has zeros on every other row.

An obvious example of a matrix in row-echelon form is an upper triangular matrix with
ones on the leading diagonal. An obvious example of a matrix in reduced row-echelon form
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is an identity matrix. A partitioned matrix with an identity matrix in the top left corner,
anything in the top right corner, and zeros in the bottom left and bottom right corners is also
in reduced row-echelon form.

Elementary row operations can be used to reduce any matrix (typically an augmented
matrix) to row-echelon form. This procedure is known as Gaussian elimination. Further
elementary row operations can then be used to reduce this row-echelon form to reduced
row-echelon form. This procedure is known as Gauss–Jordan elimination.3

The difference between the Gaussian method and the Gauss–Jordan method when applied
to solving simultaneous linear equations is that the former reduces a non-singular system
to a form where the last variable is determined and the other variables can be found by
back-substitution, while the latter reduces a non-singular system to a form where the entire
solution can be seen immediately.

The two solution methods described in Section 2.5.3 are effectively Gaussian elimination
and Gauss–Jordan elimination.

If the matrix A is not invertible (including the case where A is not square), then it will be
found that Gaussian elimination reduces it to a form in which the last row(s) or last column(s)
consist entirely of zeros.

Exercise 2.11 asks the reader to solve a system of simultaneous linear equations by
Gaussian elimination.

Each step in Gauss–Jordan elimination amounts to pre-multiplying the augmented matrix
by an elementary matrix, say six of them,

E6E5E4E3E2E1[A b]= [I x] (2.99)

It follows that

E6E5E4E3E2E1A= I (2.100)

and

E6E5E4E3E2E1b= x (2.101)

Equation (2.100) implies that

A−1 =E6E5E4E3E2E1 (2.102)

This confirms that Gauss–Jordan elimination may be used to solve for each of the columns
of the inverse, or to solve for the whole thing at once, and that the solution may be written as

x=E6E5E4E3E2E1b=A−1b (2.103)

We will use products of elementary matrices again in the proof of Theorem 4.4.16. This
approach can be extended to provide a proof that the determinant of a product is the product
of the determinants, and a proof that invertibility (existence of A−1) is a necessary as well
as a sufficient condition for non-singularity (det(A) = 0); this is the approach used in the
previously cited proofs by Anton and Rorres (2010, pp. 108–9).
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EXERCISES
2.1 Complete the contents of Table 2.1, and hence determine all of the signed elementary
products that may be formed from the matrix A= [aij]3×3.

2.2 Given the matrix in (2.18), calculate det(A) using the co-factor expansions along each
row and each column, and confirm that your six answers are identical.

2.3 Write down a matrix of order 3× 3 with numerical elements. Find first its square and
then its cube, checking the latter by using the two processes A(A2) and (A2)A. Compute
|A| , ∣∣A2

∣∣ and
∣∣A3

∣∣, and comment on your findings.

2.4 Given A =
⎡⎣1 3 2

2 6 9
7 6 1

⎤⎦ and E =
⎡⎣0 1 0

1 0 0
0 0 1

⎤⎦, calculate det(A), det(E) and det(B),

where B= EA. Use a co-factor expansion down the third column for at least one of your
calculations, and a direct method using the elementary products of one of the 3× 3 matrices
for another. Verify that det(B)= det(E) det(A).

2.5 Let L be an n× n lower triangular matrix. Prove that det(L)= l11l22 . . . lnn, where lii is
the typical element on the principal diagonal of L.

2.6 Use Cramer’s rule to solve the system of equations

x1 + x2 + x3 = 6

2x1 − x2 + 2x3 = 6

−x1 − x2 =−5

2.7 Use Cramer’s rule to solve the macroeconomic model

C = f (Y,Y[−])=α1 +α2Y +α3Y[−]

I = g(Y, R)=β1 +β2Y +β3 R

Y =C + I +G

for the endogenous variables C, I and Y in terms of the predetermined variables R, G and
Y[−], where Y[−] denotes a lagged value of Y, and the parameters αi and βi (i = 1,2,3).
Comment on the economic interpretation of your results, given 0< α2 < 1, 0< α3 < α2,

0<β2< 1 and β3< 0.

2.8 Solve the following equation system using an approach other than Cramer’s rule, and
illustrate your solution graphically:

x + y= 2

2y− x = 7
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2.9 Let A=
⎡⎣1 2 3

4 5 6
7 8 9

⎤⎦ and define the matrices

E1 =
⎡⎣1 0 0

0 0 1
0 1 0

⎤⎦ , E2 =
⎡⎣0 0 1

0 1 0
1 0 0

⎤⎦ and E3 =
⎡⎣0 0 1

0 0 0
1 0 0

⎤⎦
Examine the matrix products AEi ,AE�i ,Ei A and E�i A for i =1,2,3, and comment on your
findings.

2.10 Let V=
⎡⎣0 1 0

0 0 1
0 0 0

⎤⎦ . Find V2 and V3; and examine the products VA, V2A and V�A,

where A is a square matrix of your choice and � denotes matrix transposition. Examine |V|,
|V2|, |V3|, |VA|, |V2A| and |V3A|, and comment on your findings.

2.11 Use Gaussian elimination to solve the following system of equations for x , y and z:

x + 2y+ 3z= 6

4x + 5y+ 6z= 15

7x + 8y+ 10z= 25

2.12 Prove that the determinant of an orthogonal matrix has the value +1 or −1.

2.13 A square matrix, A, is said to be skew-symmetric iff A� =−A.

(a) Prove that the elements on the principal diagonal of a skew-symmetric matrix are all zero.
(b) What is the trace of a skew-symmetric matrix?
(c) Prove that the determinant of a skew-symmetric matrix of odd order is zero.
(d) Investigate whether the 3× 3 matrix

A=
⎡⎣ 0 1 2
−1 0 −3
−2 3 0

⎤⎦
is skew-symmetric, and compute its determinant.

2.14 Construct elementary matrices that by pre-multiplying the matrix

A=
⎡⎣1 2 3

4 5 6
7 8 9

⎤⎦
effect the following row operations:

(a) The addition of twice row 1 to row 2. Let the elementary matrix in this case be E1.
(b) The multiplication of row 3 by 0.5. Let the elementary matrix in this case be E2.



February 12, 2011 11:1 Pinched Crown A Page-52 HarrWald

52 Determinants

(c) The interchange of rows 2 and 3. Let the elementary matrix in this case be E3.

Compare the results of E3E2E1A, E1E2E3A and AE3E2E1.

2.15 Let A= diag[ai ]n×n and B= diag[bi ]n×n . Prove that det(AB)=∏n
i=1 ai bi .

2.16 Compute the inverses of the matrices

A=
[

2 −4
7 −5

]
, B=

⎡⎣ 2 0 6
−1 −2 0

5 3 1

⎤⎦
using:

(a) the inverse formula given in Theorem 2.4.3; and
(b) only elementary row operations.

2.17 State and prove Cramer’s theorem. Try to find an alternative proof to the one presented
above for Theorem 2.5.1.
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3.1 Introduction
Some of the basic ideas and issues encountered in the previous chapters are often covered
in an introductory course in mathematics for economics and finance. The fundamental ideas
of eigenvalues and eigenvectors and the associated theorems introduced in this chapter are
probably not. Many readers are therefore likely to be encountering these concepts for the
first time. Hence this chapter begins by providing definitions and illustrations of eigenvalues
and eigenvectors, and explaining how they can be calculated. It goes on to examine some of
the uses of these concepts and to establish a number of theorems relating to them that will
be useful when we return to the detailed analysis of our various applications.

3.2 Definitions and illustration
Eigenvalues and eigenvectors arise in determining solutions to equations of the form

Ax= λx (3.1)

where A is an n× n matrix, x is a non-zero n-vector and λ is a scalar, and where the solution
is for λ and x, given A. We shall call equations like (3.1) eigenequations. The scalar λ
is called an eigenvalue of A, while x is known as an eigenvector of A associated with λ.
Sometimes the value, λ, and the vector, x, are called the proper, characteristic or latent
value and vector.

Consider the matrix A=
[

2 0
8 −2

]
and the vector x=

[
1
2

]
. Since

Ax=
[

2 0
8 −2

][
1
2

]
=
[

2
4

]
= 2x (3.2)

λ= 2 is an eigenvalue of A and x is an associated eigenvector.
It is easy to check, by substituting into the eigenequation (3.1), that another eigenvector of

A associated with λ= 2 is [−1 − 2]�. Likewise, another eigenvalue of A is −2, which has
associated with it eigenvectors such as [0 1]� and [0 − 1]�. Thus, for a given λ, we note
that there are multiple associated eigenvectors.

For given λ and x, A may be viewed as the matrix that, by pre-multiplication, changes
all of the elements of x by the same proportion, λ. When λ > 1, as in the case of the first
eigenvalue in our illustration, the elements of x are increased in absolute value; when λ< 0,
as in the case of the second eigenvalue, the elements change in sign. If 0< |λ|< 1, then
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the elements of x would be made smaller in absolute value; they would also change sign, if
λ was negative.

In this illustration, the numerical eigenvalues and eigenvectors were simply stated. An
important question is, if a matrix A is given, how can its eigenvalues and eigenvectors be
determined? We now develop an answer to this question.

3.3 Computation

3.3.1 Eigenvalues

Consider the eigenequation Ax=λx for the n×n matrix A.We may rewrite this as Ax=λIx
or (A− λI)x= 0 or Bx= 0; in other words, as a square homogeneous system of equations.
If B=A− λI is non-singular, hence invertible, the solution for x is x=B−10= 0, but this
trivial result is ruled out by the requirement that an eigenvector is non-zero. For there to be
a non-trivial, i.e. non-zero, solution to this system, it must be that |B| = |A− λI| = 0. This
determinantal equation is known as the characteristic equation of the matrix A. Note that
B is formed by subtracting λ from each of the principal diagonal elements of A. Each term
in the expansion of |B| will contain between 0 and n diagonal elements, so each will yield a
polynomial in λ of degree ≤ n, with one term producing a polynomial of exactly degree n,
namely the term

∏n
i=1(aii−λ). Thus, collecting the various powers of λ together, evaluation

of the left-hand side of the characteristic equation yields the characteristic polynomial in λ:

|A− λI| = k0λ
n + k1λ

n−1 + k2λ
n−2 + · · ·+ kn (3.3)

where k0= (−1)n . In principle, on equating to zero, the characteristic equation may be solved
for λ, though solution for large n may be problematical.

Note that, when λ= 0, equation (3.3) becomes kn =|A|; also note that the values of λ that
satisfy the characteristic polynomial are referred to as its roots; and that, by the fundamental
theorem!of algebra, allowing for the possibility of pairs of conjugate complex roots and
several roots having the same value, the characteristic polynomial has exactly n roots.

We will encounter later conditions that guarantee that the eigenvalues of a matrix are real
numbers.

EXAMPLE 3.3.1 To take an example with small n, consider the matrix A from the
illustration in Section 3.2. In this case,

|A− λI| =
∣∣∣∣2− λ 0

8 −2− λ
∣∣∣∣= (2− λ)(−2− λ)− 0× 8= λ2 − 4 (3.4)

Equating this characteristic polynomial of degree two to zero gives

λ2 − 4= 0 (3.5)

(λ+ 2)(λ− 2)= 0 (3.6)

and therefore λ= 2 or λ=−2, as stated in the illustration. ♦
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EXAMPLE 3.3.2 Taking another 2× 2 example, let

A=
[

3 2
−1 0

]
(3.7)

so that

|A− λI| =
∣∣∣∣3− λ 2
−1 −λ

∣∣∣∣= (3− λ)(−λ)− 2× (−1)= λ2 − 3λ+ 2 (3.8)

Equating to zero yields

λ2 − 3λ+ 2= 0 (3.9)

(λ− 2)(λ− 1)= 0 (3.10)

and λ= 1 or λ= 2. ♦

EXAMPLE 3.3.3 To indicate how the complexity of the solution increases with n, consider
as a third example the case of the 3× 3 matrix

A=
⎡⎣0 1 0

0 0 1
4 −17 8

⎤⎦ (3.11)

So

|A− λI| =
∣∣∣∣∣∣
−λ 1 0

0 −λ 1
4 −17 8− λ

∣∣∣∣∣∣ (3.12)

In this case, using a co-factor expansion along the first row in order to take advantage of the
zero a13 element in |A− λI|, we have

|A− λI| =−λ
∣∣∣∣ −λ 1
−17 8− λ

∣∣∣∣− ∣∣∣∣0 1
4 8− λ

∣∣∣∣
=−λ[−λ(8− λ)+ 17]− (−4)

=−λ3 + 8λ2 − 17λ+ 4 (3.13)

Therefore, the characteristic equation is the cubic equation in λ:

|A− λI| =−λ3 + 8λ2 − 17λ+ 4= 0 (3.14)

Solution of this equation is not trivial. However, using the standard result that any integer
solution of such a polynomial must be a divisor of the constant term, i.e. ±1, ±2 or ±4 in
this case, one of the roots, namely λ=4, may be found by trial and error. It follows that λ−4
must be a factor and, hence, using polynomial long division, that the characteristic equation
may be written as

(λ− 4)(−λ2 + 4λ− 1)= 0 (3.15)
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Therefore, solution of the quadratic

−λ2 + 4λ− 1= 0 (3.16)

will give the remaining two eigenvalues. Using the standard formula for the roots of a
quadratic gives

λ= −4±√16− 4

−2
(3.17)

λ= 2+√3 and λ= 2−√3 (3.18)
♦

Only very minor changes in the elements of the 3×3 matrix in Example 3.3.1, e.g. replac-
ing a32 =−17 by a32 = 1, would lead to very much greater computational complexity, and
elements of eigenvectors, as well as eigenvalues, that are complex numbers. To see, more
simply, how complex eigenvalues might arise, consider

A=
[

0 1
−1 0

]
(3.19)

The characteristic equation in this case is

|A− λI| =
∣∣∣∣−λ 1
−1 −λ

∣∣∣∣= λ2 + 1= 0 (3.20)

the solutions for which are easily found to be λ=±√−1. More generally, complex roots
take the form a ± bi , where a and b are real numbers and i denotes the imaginary number√−1, as in the next example.1 The example shows that matrices do not have to be large or
have numerically complicated elements to have complex eigenvalues.

EXAMPLE 3.3.4 Let

A=
[

1 −2
3 −2

]
(3.21)

Then

|A− λI| =
∣∣∣∣1− λ −2

3 −2− λ
∣∣∣∣= (1− λ)(−2− λ)+ 6= λ2 + λ+ 4= 0 (3.22)

is the characteristic equation, and the solutions for this are

λ= −1±√1− 16

2
= −1±√−15

2
(3.23)

λ=−1

2
+
√

15

2
i and λ=−1

2
−
√

15

2
i (3.24)

The calculation of the eigenvectors is left as an exercise; see Exercise 3.1. ♦
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3.3.2 Eigenvectors

Given an eigenvalue of some n×n matrix, A, the corresponding eigenvectors are those n×1
matrices, x = 0, satisfying Ax= λx or (A− λI)x= 0. Consider the solution of this equation

for the second of our previous examples, Example 3.3.1, in which A=
[

3 2
−1 0

]
and λ1= 1

and λ2 = 2, where we now use subscripts to distinguish the different eigenvalues. We have,
for λ1, using an obvious subscript notation for the individual elements of the corresponding
eigenvector, x1,

(A− λ1I)x1 =
[

2 2
−1 −1

][
x11

x21

]
=
[

0
0

]
(3.25)

i.e. using the operation of matrix multiplication,

2x11 + 2x21 = 0 (3.26)

−x11 − x21 = 0 (3.27)

Note that the second equation is simply a scalar multiple
(− 1

2

)
of the first.2 Hence either

equation yields x11 =−x21 or

x1 =
[−x21

x21

]
= s

[−1
1

]
(3.28)

where s is an arbitrary non-zero scalar. There are therefore infinitely many eigenvectors
corresponding to the eigenvalue λ1.

Similarly, for λ2, we have

(A− λ2I)x2 =
[

1 2
−1 −2

][
x12

x22

]
=
[

0
0

]
(3.29)

or the equations

x12 + 2x22 = 0 (3.30)

−x12 − 2x22 = 0 (3.31)

Thus the (infinitely many) eigenvectors corresponding to λ2 are

x2 =
[−2x22

x22

]
= t

[−2
1

]
(3.32)

where t is an arbitrary non-zero scalar.
The calculation of the eigenvectors corresponding to the eigenvalues λ1= 2 and λ2=−2,

which are given in our illustration in Section 3.2, would be a useful exercise; see Exercise 3.2.
Such calculations for the 2× 2 case pose no difficulty but, as n increases, things are not so
simple, and there arises a need for a more general method of solving systems of homoge-
neous equations than Cramer’s rule, which was introduced and used in Chapter 2. Cramer’s
rule is not applicable to the calculation of eigenvectors because of the non-singularity of
A− λI.
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3.3.3 Normalization

The infinity of eigenvectors corresponding to any one eigenvalue may be something of an
inconvenience. To avoid the arbitrariness in the choice of eigenvectors, a unique x may be
chosen according to some normalization rule. The most common form of normalization is
to make x that eigenvector, the squares of whose elements sum to unity. This rule is not as
strange as it may first appear because, as will be seen later, it corresponds to the idea of an
eigenvector with unit length when the eigenvector is given a geometric interpretation. Thus,
a vector with this property is sometimes called a unit vector (see Definition 5.2.12); but for
the present we shall concentrate on the algebra of normalization.

To illustrate using a concrete example, let us take the case of the eigenvector x1= [−s s]�
derived in the previous subsection. We want to choose s such that

x�1 x1 = (−s)2 + s2 = 1 (3.33)

or 2(s)2=1, hence s=± 1√
2
. Thus, taking the positive square root for s, a normalized eigen-

vector corresponding to λ1=1 is x1=
[−1√

2
1√
2

]�
. Note, however, that−x1=

[
1√
2

−1√
2

]�
is also a normalized eigenvector corresponding to λ1=1. Similarly, though the details of the
calculations are left as an exercise, we find that normalized eigenvectors corresponding to

λ2 = 2 are x2 =
[−2√

5
1√
5

]�
and −x2 =

[
2√
5

−1√
5

]�
, i.e. in (3.32) we choose t = 1√

5
and

t = −1√
5

for x2 and −x2, respectively. When there is a repeated eigenvalue, there can be an
infinity of associated normalized eigenvectors; for an example of this, see Exercise 3.6.

3.4 Unit eigenvalues
An important situation is that in which one or more eigenvalues take on the values ±1.
For instance, such unit eigenvalues or unit roots delineate cases of stability and instability
of systems of difference equations, as will be discussed in Section 8.5. In that section, we
show that certain eigenvalues must be less than unity in absolute value (or have modulus
strictly less than one if they are complex eigenvalues) for such systems to be stable; otherwise
the system will be unstable and lack the property of convergence towards a steady state or
equilibrium over time.

Unit eigenvalues are also relevant in determining whether certain stochastic processes,
such as autoregressive and vector autoregressive processes, as will be discussed in
Section 14.4, satisfy conditions for statistical stationarity. The concept of stationarity will
be explained in Section 14.4, together with the requirement for eigenvalues with modu-
lus strictly less than one in order to guarantee that stationarity holds. It is an interesting
fact, however, that many variables in economics and finance appear to be generated by non-
stationary rather than stationary processes, and that these non-stationary processes are often
characterized by positive unit roots. Indeed, certain theories, such as the “efficient markets
hypothesis”, may imply the existence of unit roots; see Section 16.6.

The presence of one or more unit roots in the processes that generate the data used in
empirical analyses may pose serious difficulties, but not always. As will be mentioned in
Chapter 8, unit roots may allow models to be modified to refer to first- or higher-order dif-
ferences of variables rather than the raw levels of the variables; and in causal econometric
models, they give rise to the possibility of co-integration, a concept of considerable impor-
tance. Though not pursued in this book, unit root and co-integration econometrics makes a
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great deal of use of the material in this chapter and, in the case of co-integrated systems of
equations, of the generalization of the eigenvalue problem presented in Section 4.4.3.

3.5 Similar matrices
DEFINITION 3.5.1 The matrices P−1AP and A are said to be similar matrices, where A is
square and P is a conformable non-singular matrix.

Similarity is an equivalence relation; see Exercise 3.9. Matrices in the same equivalence
class share lots of properties: determinants, traces, characteristic polynomials and eigen-
values, in particular. It is relatively easy to show this, as will be seen in some of the
results to follow in this chapter. Note, however, that the eigenvectors of similar matrices
are generally different. Specifically, if x is an eigenvector of A corresponding to the eigen-
value λ, then P−1x is an eigenvector of P−1AP corresponding to the same eigenvalue, since
(P−1AP)P−1x=P−1Ax=P−1λx= λP−1x.

We shall encounter similar matrices again in Section 6.5.

3.6 Diagonalization
Eigenvalues and eigenvectors relate to the useful concept of diagonalization of a matrix.
The precise meaning of this concept is contained in the following definition, while the result
that immediately follows the definition is basic to a study of the issue.

DEFINITION 3.6.1 A square matrix, A, is diagonalizable if there is an invertible (i.e. non-
singular) matrix, P, such that P−1AP is diagonal; and P is said to diagonalize A.

But when, precisely, does there exist a matrix, P, such that A is diagonalizable? The
answer to this question is given in the following theorem.

THEOREM 3.6.1 If A is n × n, then A is diagonalizable if and only if A has n linearly
independent eigenvectors.

The idea of linear dependence and linear independence was alluded to in Section 3.3.2.
Before we prove the theorem, we must now make this idea more rigorous.

DEFINITION 3.6.2 If S={x1,x2, . . . ,xr } is a set of r n-vectors, and if the equation

k1x1 + k2x2 + · · ·+ kr xr = 0n×1 (3.34)

has only the solution k1 = 0, k2 = 0, . . . , kr = 0, then S is called a linearly independent
set of vectors. If there are other solutions in which some ki = 0, then S is called a linearly
dependent set of vectors.

Writing (3.34) as Xk= 0, where X= [x1 x2 . . . xr ] and k= [k1 k2 . . . kr ]�, we
may note the following theorem for the case when r = n.

THEOREM 3.6.2 If Xk= 0, where X = [x1 x2 . . . xn], k = [k1 k2 . . . kn]� and
0 is the n × 1 zero vector, then the linear independence of the columns of X or of the set
S={x1,x2, . . . ,xn} implies that X is non-singular and vice versa.
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The proof of Theorem 3.6.2 is left as Exercise 3.13. The proof of one part of Theorem 3.6.1
now follows.

Proof: (⇒) Let A be n× n and diagonalizable. Then there exists a non-singular matrix, P,
such that

P−1AP=D= diag[di ] (3.35)

Therefore, pre-multiplying by P,

AP=PD (3.36)

and rewriting the matrix products as partitioned matrices,

[Ap1 Ap2 . . . Apn]= [d1p1 d2p2 . . . dnpn] (3.37)

where pi , i = 1,2, . . . ,n, denotes the i th column of P. Thus Api = di pi for all i , which is
an eigenequation from which we recognize the di as eigenvalues of A and the pi as the
corresponding eigenvectors of A. Finally, since P is non-singular, pi = 0 for all i , and the set
of pi is a linearly independent set by Theorem 3.6.2. �

The second part of the proof (⇐) is left as an exercise (see Exercise 3.14); there is enough
in what has been proved already to provide the essential material.

3.6.1 Diagonalization procedure

The result on diagonalization that has just been stated and proved provides us with a pro-
cedure for diagonalizing a matrix. First we find n linearly independent eigenvectors of the
matrix, A. Next we form the matrix P, having the eigenvectors from the first step as its
columns. Finally, we compute P−1AP, which will be diagonal with diagonal elements equal
to the eigenvalues of A. Note, though, that P is not unique, since any of its columns can be
multiplied by a non-zero scalar without affecting the diagonalization property. Similarly, any
two columns of P can be interchanged without affecting the diagonalization property.

For example, using the matrix A=
[

3 2
−1 0

]
from Section 3.3.1, which has eigenvalues

λ1 = 1 and λ2= 2 with associated eigenvectors x1=
[−1

1

]
and x2=

[−2
1

]
, respectively, it is

straightforward to verify that x1 and x2 are linearly independent. Consider the equation

k1x1 + k2x2 = [x1 x2]

[
k1

k2

]
=
[−1 −2

1 1

][
k1

k2

]
=Pk= 0 (3.38)

Since det(P) = 1, P is non-singular and P−1 exists. Therefore, the solution of (3.38) is
k=P−10= 0 and, by Theorem 3.6.2, the eigenvectors x1 and x2, the columns of P, are
linearly independent.

Now

P−1 =
[

1 2
−1 −1

]
(3.39)
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and

P−1AP=
[

1 2
−1 −1

][
3 2

−1 0

][−1 −2
1 1

]
=
[

1 2
−2 −2

][−1 −2
1 1

]
=
[

1 0
0 2

]
=
[
λ1 0
0 λ2

]
= diag[λi ] (3.40)

An important question is when is a given matrix diagonalizable, i.e. when does it have n lin-
early independent eigenvectors, as in the case of matrix A in this illustration? There are
several useful results on this.

THEOREM 3.6.3 If x1,x2, . . . ,xk are eigenvectors of A corresponding to distinct eigen-
values λ1, λ2, . . . , λk, then {x1,x2, . . . ,xk} is a linearly independent set.

Proof: The proof is by contradiction. Let A have k distinct eigenvalues and x1,x2, . . . ,xr
(r < k) be the largest set of linearly independent eigenvectors. Then

c1x1 + c2x2 + · · ·+cr+1xr+1 = 0, not all ci = 0 (3.41)

Pre-multiplying (3.41) by A, we have

c1Ax1 + c2Ax2 + · · ·+cr+1Axr+1 = 0 (3.42)

Therefore,

c1λ1x1 + c2λ2x2 + · · ·+cr+1λr+1xr+1 = 0 (3.43)

Multiplying (3.41) by λr+1 gives

c1λr+1x1 + c2λr+1x2 + · · ·+cr+1λr+1xr+1 = 0 (3.44)

and subtracting (3.44) from (3.43) gives

c1(λ1 − λr+1)x1 + c2(λ2 − λr+1)x2 + · · ·+cr (λr − λr+1)xr = 0 (3.45)

Since x1,x2, . . . ,xr are linearly independent, all of the coefficients in (3.45) are zero, and,
since the λi are distinct, ci = 0, i = 1,2, . . . , r . Substitution of these zero values in (3.41)
implies that cr+1 = 0 also, contradicting the assumption that not all ci = 0. �

The following theorem also follows from Theorem 3.6.3.

THEOREM 3.6.4 If an n× n matrix A has n distinct eigenvalues, then A is diagonalizable.

Proof: If A has eigenvectors x1,x2, . . . ,xn corresponding to distinct eigenvalues
λ1, λ2, . . . , λn, then, by Theorem 3.6.3, {x1,x2, . . . ,xn} is linearly independent, and, by
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Theorem 3.6.1, A is diagonalizable, i.e. P−1AP = diag[λi ], where P is a matrix whose
columns are eigenvectors of A. �

DEFINITION 3.6.3 If A is diagonalizable, then we may define a square root of the
matrix A as

A
1−
2 =PD

1−
2 P−1 (3.46)

where D
1−
2 = diag[

√
λi ].

Whatever combination of positive or negative values of
√
λi is used for the non-zero

eigenvalues, we see that

A
1−
2 A

1−
2 =PD

1−
2 P−1PD

1−
2 P−1 =PDP−1 =A (3.47)

Clearly, therefore, a matrix square root is not unique. As in the case of scalars,−A
1−
2 is also a

square root, though there are further possibilities, and these are pursued in Exercise 3.11. In

general, A
1−
2 is possibly complex, and possibly neither symmetric nor invertible. To be invert-

ible, it is necessary and sufficient that D
1−
2 is invertible and, thus, that none of the eigenvalues

is zero.

3.6.2 Orthogonal diagonalization

Consider the following example, which involves finding the eigenvalues and eigenvectors of
a symmetric matrix. If

A=
[

4 2
2 1

]
(3.48)

then

|A− λI| =
∣∣∣∣4− λ 2

2 1− λ
∣∣∣∣

= (4− λ)(1− λ)− 4= 0 (3.49)

is the characteristic equation. Simplifying gives

λ2 − 5λ= λ(λ− 5)= 0 (3.50)

Therefore, λ1 = 5 and λ2 = 0. Notice that these eigenvalues are distinct real numbers.
Substituting back, we have, for λ1 = 5,

(A− λ1I)x1 =
[−1 2

2 −4

][
x11

x21

]
=
[

0
0

]
(3.51)
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from which we derive that x11 = 2x21. Therefore, x1 = [2x21 x21]� or in normalized form[
2√
5

1√
5

]�
.

For λ2 = 0,

(A− λ2I)x2 =
[

4 2
2 1

][
x12

x22

]
=
[

0
0

]
(3.52)

from which we have that x22=−2x12. Therefore, x2= [x12 −2x12]� or in normalized form[
1√
5

−2√
5

]�
.

Now, notice that x�1 x2 = 0. We call vectors for which this product is zero orthogonal
vectors.3 Also notice that, for the normalized eigenvectors, we have x�1 x2= 0 and x�i xi = 1,
i =1,2. We call such vectors orthonormal vectors. It follows that, when these eigenvectors
are used as columns to form the matrix P= [x1 x2], then P�P= I2, i.e. P� =P−1 and P is
the form of matrix that we defined as orthogonal in Section 1.5.9.4

DEFINITION 3.6.4 A is orthogonally diagonalizable if and only if there exists an ortho-
gonal P such that P−1AP=P�AP is diagonal.

Symmetric matrices with real elements are important in economic and econometric appli-
cations, and the next theorems show that the special features that hold for the 2×2 symmetric
matrix in our example also hold in the general case as well, namely:

• eigenvalues are real; and
• eigenvectors are orthogonal.

The next three theorems provide formal statements and proofs of these general results.

THEOREM 3.6.5 The eigenvalues of a real symmetric matrix are real.

Proof: This proof relies on some of the basic properties of complex numbers; see p. xxi.
Note that the conjugate of a vector or matrix with complex elements is just the vector
whose elements are the conjugates of the original elements.

Let A be an n × n real symmetric matrix and let λ be an eigenvalue of A with
corresponding eigenvector x.

We will denote the conjugates of A, λ and x by Ā, λ̄ and x̄, respectively. We have assumed
that A is real or Ā=A and we want to show that λ is real or λ̄= λ.

Now consider the transpose of the conjugate of the product

x̄�Ax= x̄�λx (3.53)

Taking the left-hand side of (3.53) first, we have

(x̄�Ax)
� = (x�Āx̄)� = x̄�Ā

�
x= x̄�Ax= λx̄�x (3.54)

where the penultimate step relies on the fact that A is real and symmetric, and the final step
on the fact that x is an eigenvector of A.
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Now taking the right-hand side of (3.53), we have

(x̄�λx)
� = (x�λ̄x̄)� = λ̄x̄�x (3.55)

So we have

λx̄�x= λ̄x̄�x (3.56)

Since

x̄�x=
n∑

i=1

x̄i xi =
n∑

i=1

|xi |2 (3.57)

which is positive since an eigenvector is non-zero, we can cancel it from both sides to obtain
λ= λ̄, which just says that λ is real, as required. �

THEOREM 3.6.6 If A is n× n, then the following are equivalent:5

(a) A is orthogonally diagonalizable;
(b) A has an orthonormal set of eigenvectors; and
(c) A is symmetric.

Proof:

(a)⇒(b): Let A be orthogonally diagonalizable. Then there exists P such that P−1AP =
P�AP= diag[λ j ]. But

P�AP= [x�i Ax j ]= [x�i λ j x j ]= [λ j x�i x j ] (3.58)

where xi denotes the i th column of P. Therefore,

[λ j x�i x j ]= diag[λ j ] (3.59)

Hence

x�i x j =
{

0, i = j
1, i = j

(3.60)

(a)⇒(c): Let A be orthogonally diagonalizable. Then

P−1AP=P�AP=D= diag[λ j ] (3.61)

It follows that

A=PDP−1 =PDP� (3.62)

Now, using the properties of transposes,

A� = (PDP�)� = (P�)�D�P� =PDP� =A (3.63)
�
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The proofs of the remaining equivalences, namely, (b)⇒(a), (b)⇒(c), (c)⇒(a) and
(c)⇒(b), are left as exercises; see Exercise 3.15. There is sufficient material in the proofs
just provided to aid in these exercises.

THEOREM 3.6.7 If A is a real symmetric matrix, then eigenvectors of A corresponding to
distinct eigenvalues are orthogonal.

Proof: Let x1 and x2 be eigenvectors of A, and let λ1 and λ2 be their corresponding
eigenvalues. It follows that

λ1x�1 x2 = (λ1x1)
�x2 = (Ax1)

�x2 = x�1 A�x2 = x�1 Ax2 = x�1 (λ2x2)= λ2x�1 x2 (3.64)

From (3.64) we have

(λ2 − λ1)x�1 x2 = 0 (3.65)

Therefore, if λ2 = λ1, then x�1 x2 = 0, so x1 and x2 are orthogonal. �

Another general feature that is not apparent from the earlier example is that, if an eigen-
value is repeated, i.e. has multiplicity k, say, there will be k orthogonal eigenvectors
corresponding to that eigenvalue.

From Theorem 3.6.6, there follows a procedure for orthogonally diagonalizing a sym-
metric matrix, A:

1. Find the eigenvalues of the symmetric matrix, A.
2. Derive an orthonormal set of eigenvectors.6

3. Form the matrix P with columns equal to the vectors from the previous step.
4. Then P orthogonally diagonalizes A, i.e. P�AP= diag[λi ], and P�P= I.

The working of this orthogonal diagonalization procedure should be apparent from
the partial proof already given for Theorem 3.6.6 and will be further elucidated in
Exercise 3.15.

When a matrix, A, is orthogonally diagonalizable, the matrix square root introduced in
Section 3.6.1 becomes

A
1−
2 =PD

1−
2 P−1 =PD

1−
2 P� (3.66)

where D
1−
2 = diag[

√
λi ]. Therefore, A

1−
2 is symmetric in this case, though, depending on the

values of the eigenvalues, it still may not be invertible.

3.6.3 Some further results

It is instructive to begin this concluding section by considering a 2 × 2 matrix A =[
a11 a12

a21 a22

]
. We know from Section 3.3.1 that the eigenvalues of A are found from the



February 12, 2011 11:1 Pinched Crown A Page-66 HarrWald

66 Eigenvalues and eigenvectors

characteristic equation det(A− λI)= 0, which in this case is∣∣∣∣a11 − λ a12

a21 a22 − λ
∣∣∣∣= (a11 − λ)(a22 − λ)− a12a21

= λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0 (3.67)

Now, according to Viète’s formulas7 on the solution of quadratic equations, the two roots
of (3.67), λ1 and λ2, satisfy the equations λ1 + λ2 = a11 + a22 and λ1λ2 = a11a22 − a12a21,
i.e. the sum of the roots equals the coefficient of the linear term in the quadratic, and the
product of the roots equals the constant in the quadratic. But a11a22 − a12a21 = det(A) and
a11 + a22 = tr(A), from which we have that λ1λ2 = det(A) and λ1 + λ2 = tr(A). Therefore,
the product of the eigenvalues of A is equal to the determinant of A, and the sum of the
eigenvalues of A is equal to the trace of A. These findings are not peculiar to the case of a
2× 2 matrix, as we will now show.

Reverting to the more general case, if A is diagonalizable, then P−1AP= diag[λi ]=D,
say. Therefore, taking determinants, we have

|P−1AP| = |D| (3.68)

Using Property 11 of determinants from Section 2.3.2 gives

|P−1||A||P| = |D| (3.69)

and

|A| = |D| =
n∏

i=1

λi (3.70)

since |P−1|=1/|P| by Corollary 2.3.4 and the determinant of a diagonal matrix is the product
of the principal diagonal elements. Thus, we have established the following useful additional
theorem.

THEOREM 3.6.8 The determinant of a matrix, An×n, is equal to the product of the
eigenvalues of the matrix: det(A)=∏n

i=1 λi .

This theorem subsumes the case of a symmetric matrix that is orthogonally diagonalizable.
The direct proof for a symmetric matrix, A, is easily obtained by adapting the previous proof
and replacing |P−1| by |P�|, noting that |P�|= |P|, and invoking the following lemma.

LEMMA 3.6.9 If P is an orthogonal matrix, then |P| =±1.

Proof: Given that P is orthogonal, P−1 =P� and, hence, P�P= I.
Taking the determinant of both sides of this last equation, we have |P�P| = |P�||P| =

|P|2 = |I| = 1.
Therefore, |P| =±1. Recall Exercise 2.12 �

Theorem 3.6.8 also gives rise to the following corollary, whose simple proof is left as
Exercise 3.16.
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COROLLARY 3.6.10 A matrix is singular if and only if at least one of its eigenvalues is
zero.

It may be that a square matrix is non-singular, in which case there are no zero eigen-
values, but at least one of the eigenvalues is close to zero. Such a situation is important, as
it may signal “near-singularity” and have adverse consequences for the computation of the
inverse that are not apparent from the value of the determinant. By some measure, we come
very close to being able to write one column of the matrix in terms of the other columns.
A useful measure of this closeness is provided by the so-called condition number, c, of the
matrix, which is the positive square root of the ratio of the maximum eigenvalue, λmax, to the
minimum eigenvalue, λmin, i.e. c=√λmax/λmin. For a singular matrix, c is indeterminately
large. In practice, values of c greater than 20 are considered to be large and, therefore, to
imply near-singularity.

The generalization of the result relating to the sum of the eigenvalues and the trace of
a diagonalizable matrix, An×n , is that tr(A) =∑n

i=1 λi . It is left as an exercise to show
that, given P−1AP= diag[λi ], this result follows by taking the trace of both sides of this
diagonalization equation and using the rule for the traces of matrix products featured in
Exercise 1.14; see Exercise 3.18.

Let us explore these further results via a final worked example.

EXAMPLE 3.6.1 Evaluate the eigenvalues and eigenvectors of the matrix

A=
[

1 2
0 3

]
(3.71)

Hence verify that |A|=∏2
i=1 λi , and find the condition number of A and a square root of A.

Evaluation of the determinant in the characteristic equation

|A− λI| =
∣∣∣∣1− λ 2

0 3− λ
∣∣∣∣= 0 (3.72)

gives the immediate factorization (1− λ)(3− λ)= 0 and so λ1 = 1 and λ2 = 3.
Using a method from Chapter 2, |A|=3. We note that λ1λ2=1×3=3 also, in accordance

with the equality |A| =∏2
i=1 λi .

The condition number of A is

c=
√
λmax

λmin
=
√

3

1
=√3 (3.73)

Normalization of the solutions of the 2× 2 systems

(A− λ1I)x1 =
[

0 2
0 2

][
x11

x21

]
=
[

0
0

]
(3.74)

and

(A− λ2I)x2 =
[−2 2

0 0

][
x21

x22

]
=
[

0
0

]
(3.75)
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yields the normalized eigenvectors

x1 =
[

1
0

]
and x2 =

⎡⎣ 1√
2

1√
2

⎤⎦ (3.76)

Defining

D
1−
2 = diag[1,

√
3]=

[
1 0
0

√
3

]
(3.77)

and

P=
⎡⎣1 1√

2

0 1√
2

⎤⎦ (3.78)

we have that

P−1 =
[

1 −1
0

√
2

]
(3.79)

and that a square root of A is

A
1−
2 =PD

1−
2 P−1

=
⎡⎣1 1√

2

0 1√
2

⎤⎦[1 0
0

√
3

][
1 −1
0

√
2

]

=
[

1
√

3− 1
0

√
3

]
(3.80)

It is a straightforward matter to check that

A
1−
2 A

1−
2 =

[
1

√
3− 1

0
√

3

][
1

√
3− 1

0
√

3

]
=
[

1 2
0 3

]
=A (3.81)

♦

EXERCISES
3.1 Find the eigenvectors of the matrix

A=
[

1 −2
3 −2

]
whose (complex) eigenvalues were calculated in Example 3.3.1.

3.2 Calculate the eigenvectors of the matrix[
2 0
8 −2

]
which was used in the illustration in Section 3.2.
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3.3 Find the eigenvalues and all normalized eigenvectors of the following matrices:

(a) A=
[

3 0
0 −2

]
(b) B=

[
1 2
0 1

]

3.4 Show that Q =

⎡⎢⎢⎣
1√
6

2√
5

1√
30

−2√
6

1√
5

−2√
30

1√
6

0 −5√
30

⎤⎥⎥⎦ is orthogonal, i.e. that Q� = Q−1, and find its

eigenvalues.

3.5 Evaluate the eigenvalues and eigenvectors of the following matrices:

(a) A=
⎡⎣3 1 1

0 −2 1
0 0 2

⎤⎦
(b) B=

⎡⎣ 5 −6 −6
−1 4 2

3 −6 −4

⎤⎦
Normalize the eigenvectors in case (b).

3.6 Given X=
[

1 1 1
1 2 1

]�
, compute A= I3 −X(X�X)−1X�. Show that A is idempotent

and determine how many of its columns are linearly independent. Find the eigenvalues and
associated eigenvectors of A; normalize the eigenvectors and, hence, obtain the orthogonal
matrix that diagonalizes A.

3.7 Consider the matrix A=
[

3 2
−1 0

]
that was used in Section 3.6.1. Obtain alternative

eigenvectors to those given in Section 3.6.1 and use them to diagonalize A. Compare your
result to that given in Section 3.6.1.

3.8 Show that any 3× 3 matrix whose elements on each row are consecutive integers has an
eigenvalue equal to zero and a corresponding eigenvector [1 −2 1]�.

3.9 Show that similarity of matrices is an equivalence relation.
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3.10 Find a square root for each of the following matrices:

(a)

[
3 2

−1 0

]
, which was used in Section 3.6.1; and

(b)

[
4 2
2 1

]
, which was used in Section 3.6.2.

3.11 Determine all of the square roots of the matrix A=
[

5 4
4 5

]
, using Definition 3.6.3.

How many square roots of this type are there for an n × n symmetric matrix with distinct
real non-zero eigenvalues?

3.12 If x is an eigenvector of the non-singular matrix A, prove that it is also an eigenvector
of A2 and of A−1. Establish a relationship between the eigenvalues of A and those of A−1

and A2.

3.13 Prove that, if Xk= 0, where X = [x1 x2 . . . xn], the xi (i = 1,2, . . . ,n) are
n-vectors, k= [k1 k2 . . . kn]� and 0 is the n × 1 zero vector, then the linear indepen-
dence of the columns of X or of S={x1,x2, . . . ,xn} implies that X is non-singular and vice
versa. Recall Theorem 3.6.2.

3.14 Prove that an n × n matrix with n linearly independent eigenvectors is diagonalizable
(i.e. the second part of Theorem 3.6.1).

3.15 Prove the remaining parts of Theorem 3.6.6, i.e. that (b)⇒(a), (b)⇒(c), (c)⇒(a) and
(c)⇒(b).

3.16 Using only the eigenequation, show that a square matrix is singular iff at least one of
its eigenvalues is zero.

3.17 Extend the result of Exercise 1.14 to show that

tr (ABC)= tr (BCA)= tr (CAB)

where tr(·) denotes trace, assuming that the matrices are conformable for multiplication.
Hence show that the traces of two similar matrices are equal.

3.18 Prove that the trace of a diagonalizable matrix is equal to the sum of the eigenvalues of
the matrix.

3.19 Prove that the eigenvalues of a triangular matrix are equal to the elements on the
principal diagonal of the matrix; recall Exercise 2.5.

3.20 Prove that the eigenvalues of an idempotent matrix are equal to 0 or 1.
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4 Conic sections, quadratic forms
and definite matrices

4.1 Introduction
So far, we have concentrated on linear equations, which represent lines in the plane, planes
in three-dimensional space or, as will be seen in Section 7.4.1, hyperplanes in higher dimen-
sions. In this chapter, we consider equations that also include second-order or squared terms,
and that represent the simplest types of nonlinear curves and surfaces.

The concepts of matrix quadratic form and definite matrix are of considerable impor-
tance in economics and finance, as will be seen in the detailed study of our several applied
examples later. Quadratic forms relate importantly to the algebraic representation of conic
sections. Also, in Theorem 10.2.5, it will be seen that the definiteness of a matrix is an
essential idea in the theory of convex functions. This chapter gives definitions and simple
illustrations of the concepts of quadratic form and definiteness before going on to establish a
number of theorems relating to them. We will return to quadratic forms in Chapter 14, where
the important general problem of maximization or minimization of a quadratic form subject
to linear inequality constraints is studied.

4.2 Conic sections
In this section, we consider equations representing conic sections in two dimensions. There
are a number of equivalent ways of describing and classifying conic sections. We begin with
a geometric approach.1

Consider the curve traced out in the coordinate plane R
2 by a point P = (x, y), which

moves so that its distance from a fixed point (the focus S) is always in a constant ratio (the
eccentricity ε ≥ 0) to its perpendicular distance from a fixed straight line (the directrix L).
This curve is called:

• an ellipse when 0<ε < 1;
• a parabola when ε= 1;
• a hyperbola when ε > 1; and
• a circle as ε→ 0, as we shall see later.

4.2.1 Parabola

Consider first the case of ε = 1, i.e. the parabola. The equation of the parabola takes its
simplest form when the focus S is a point on the positive x axis, say (a,0), where a> 0, and
the directrix is the vertical line with equation x =−a. An example of a parabola is shown in
Figure 4.1.



February 12, 2011 11:1 Pinched Crown A Page-72 HarrWald

72 Conic sections, quadratic forms and definite matrices

y

x
0

x =−a

L

a−a
S •

P
•(x, y)

Figure 4.1 Parabola with focus (a,0) and directrix x =−a

By Pythagoras’s theorem, the square of the distance of P from the focus S is (x−a)2+ y2

and the square of the distance of P from the directrix L is (x +a)2. Thus the equation of this
parabola is

(x − a)2 + y2 = (x + a)2 (4.1)

which simplifies to

y2 = 4ax (4.2)

Note that, when x is negative, y is imaginary, so the graph of the parabola must lie entirely
to the right of the y axis. When x = 0, then y = 0, so the graph just touches the y axis at
the origin (0,0), which is called the vertex of the parabola. Finally, for each value of x > 0,
there are two possible values of y, namely ±2

√
ax . Thus the parabola is symmetric about

the x axis, which is also called the axis of the parabola.
Similarly, a< 0 yields a parabola tangential to but entirely to the left of the y axis.
Note that, for any value of the real parameter t , the point (at2,2at) lies on the parabola.

Expressing the typical point on the parabola in this form often simplifies the solution of
related problems.

By a simple change of coordinates, it can be seen that the equation of a parabola with
vertex at (α,β), focus at (α+ a, β) and directrix x =α− a is

(y−β)2 = 4a(x −α) (4.3)

or

x =α+ 1

4a
(y−β)2 (4.4)
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4.2.2 Ellipse

Consider now the case of 0< ε < 1, i.e. the ellipse. The equation of the ellipse takes its
simplest form when the focus S is a point on the negative x axis, say (−aε,0), where a> 0,
and the directrix is the vertical line with equation x =−a/ε. Such an ellipse is depicted in
Figure 4.2.

The square of the distance of P from the focus S is (x + aε)2 + y2 and the square of the
distance of P from the directrix L is (x + a/ε)2. Thus the equation of this ellipse is

(x + aε)2 + y2 = ε2
(

x + a

ε

)2
(4.5)

Gathering up terms in x2 and terms in y2 and noting that identical terms in x on each side
cancel, this simplifies to

x2(1− ε2)+ y2 = a2(1− ε2) (4.6)

or

x2

a2
+ y2

a2(1− ε2)
= 1 (4.7)

If we define b by b2 = a2(1− ε2) (which we can do because we have assumed that ε < 1,
which guarantees that b is not imaginary), then the equation of the ellipse becomes

x2

a2
+ y2

b2
= 1 (4.8)

Note that by construction b< a.
Note also that this equation contains only even powers of both x and y, so that the ellipse

must be symmetric about both coordinate axes. From this symmetry, we can deduce the
existence of a second focus S′ at (aε,0) and a second directrix, the line L ′ with equation
x = a/ε. When x = 0, y =±b, and when y = 0, x =±a, so the ellipse cuts the coordinate
axes in the points (a,0), (0,b), (−a,0) and (0,−b), as indicated. The longer (horizontal)

y

x
0

x =−a/ε

L

x = a/ε

L ′

aε−aε
S• S′•

P

(x, y)•

a−a

−b

b

Figure 4.2 Ellipse with foci (±aε,0) and directrices x =±a/ε
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axis of the ellipse, which is of length 2a, is called the major axis; the shorter (vertical)
axis, which is of length 2b, is called the minor axis. As the eccentricity approaches unity,
b approaches zero, so the ellipse collapses onto the x axis.

Finally, note that, for any value of the angle φ, the point (a cosφ,b sinφ) lies on the
parabola, since sin2 φ + cos2 φ = 1. Expressing the typical point on the ellipse in this form
often simplifies the solution of related problems.

4.2.3 Hyperbola

The equation of the hyperbola can be derived in exactly the same way as that of the
ellipse (4.7), and we obtain

x2

a2
+ y2

a2(1− ε2)
= 1 (4.9)

In this case, however, ε > 1 and 1− ε2 < 0, so to guarantee that b is real we must define it
now by

b2 =−a2(1− ε2) (4.10)

so that the equation of the hyperbola is

x2

a2
− y2

b2
= 1 (4.11)

or

y2

b2
= x2

a2
− 1 (4.12)

This equation still contains only even powers of both x and y, so that the hyperbola must
be symmetric about both coordinate axes. Like the ellipse, the hyperbola also has a second
focus and a second directrix. The hyperbola cuts the x axis at vertices x=±a. When x2<a2,
(4.12) has no real solutions for y, so no part of the hyperbola can lie between the vertices
x =±a. Figure 4.3 shows the general shape of a hyperbola.

Just like the ellipse, as the eccentricity approaches unity, b approaches zero, so the
hyperbola collapses onto the x axis.

Now let us consider where the straight line with equation y = mx + c intersects the
hyperbola with equation x2/a2 − y2/b2 = 1. Substituting for y yields

x2

a2
− (mx + c)2

b2
= 1 (4.13)

Arranging this as a quadratic in x yields

(
1

a2
− m2

b2

)
x2 − 2mc

b2
x − c2

b2
− 1= 0 (4.14)
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y

x

L ′L

x = a/εx =−a/ε

• •• •

•

0 a−a
S′
aε

S
−aε

P

(x, y)

Figure 4.3 Hyperbola with foci (±aε,0) and directrices x =±a/ε

Multiplying across by a2b2/x2 produces

(b2 − a2m2)− 2mca2 1

x
− a2(b2 + c2)

1

x2
= 0 (4.15)

If the constant and linear terms in this equation vanish, then its only solution will be at
1/x = 0, or as x approaches infinity; in other words, the line will be asymptotic to the
hyperbola. This will happen when c = 0 and m =±b/a. In other words, the pair of lines
passing through the origin with equations y=±(b/a)x are the asymptotes of the hyperbola.

In the special case where a= b, the asymptotes are perpendicular and make angles of 45◦
with the coordinate axes. Thus, the hyperbola in this case is called a rectangular hyperbola.
The rectangular hyperbola is more commonly encountered when it is rotated so that the
asymptotes are the coordinate axes. This case will be considered again in Section 5.4.8.

By a similar change of coordinates to that employed above for the parabola in (4.4), it can
be seen that the equation of a hyperbola with centre at (α,β), vertices at (α± a, β), foci at
(α± aε,β) and directrices x =α± a/ε is

(y−β)2
b2

= (x −α)2
a2

− 1 (4.16)
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4.2.4 Limiting behaviour

As the eccentricity of an ellipse tends to zero, the geometric interpretation founders: the foci
converge and meet at the origin, but the directrices diverge to infinity. However, a and b also
come together, so that the equation of the ellipse converges to

x2 + y2 = a2 (4.17)

which is the familiar equation of a circle of radius a centred at the origin. Thus the circle can
be viewed as the conic section with eccentricity zero.

We have seen that both hyperbola and ellipse collapse onto the horizontal axis as ε
approaches unity; the parabola, which arises when ε = 1, is a singularity or discontinuity
in this process.

At the other extreme, as the eccentricity of a hyperbola tends to infinity, b also approaches
infinity, and the term in y vanishes from the equation, leaving the pair of parallel vertical
lines with equation x2 = a2 or x =±a.

The shape of a conic section also changes qualitatively as the focus parameter a
approaches zero. The parabola collapses onto the positive x axis and the ellipse collapses
onto the origin. The hyperbola, however, converges to the pair of lines that are its asymptotes.
The details are left as Exercises 4.1 and 4.2.

4.2.5 General quadratic equation in two variables

In the coordinate plane, the graph of a quadratic equation in two variables x and y is always
a conic section, and all conic sections arise in this way. The equation will be of the form

Ax2 + Bxy+Cy2 + Dx + Ey+ F = 0 (4.18)

with A, B and C not all zero. The equation also relates to the concept of matrix quadratic
form, introduced in the following section.

4.3 Quadratic forms
DEFINITION 4.3.1 A quadratic form in xn×1 is a matrix product of the form x�Ax, where
x = 0.

Clearly A is of order n× n. Some texts require that A be symmetric, but this is not essen-
tial and sometimes using non-symmetric matrices is relevant. For present purposes, we also
assume that A is a real symmetric matrix. It should also be noted that x�Ax is a scalar.

EXAMPLE 4.3.1 Suppose x=
[

x1

x2

]
, A=

[
a11 a12

a21 a22

]
and a12 = a21 by symmetry. Then

x�Ax= [x1 x2]

[
a11 a12

a21 a22

][
x1

x2

]
= a11x2

1 + a12x1x2 + a21x1x2 + a22x2
2

= a11x2
1 + a22x2

2 + 2a12x1x2 (4.19)
♦
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The final version of the 2× 2 quadratic form in this example may be recognized as a special
case of the left-hand side of (4.18) and, hence, as an expression that appears in the equations
of certain conic sections: parabolas, ellipses and hyperbolas, including as a special case the
circle.

More generally, for xn×1 and An×n , we may write

x�Ax=
n∑

i=1

aiix
2
i + 2

n−1∑
i=1

n∑
j=i+1

aijxi x j (4.20)

from which follow two special cases. When A is diagonal, we have

x�Ax=
n∑

i=1

aiix
2
i (4.21)

a weighted sum of squares of the elements of x; and when A= I, we have

x�Ax=
n∑

i=1

x2
i (4.22)

the simple (unweighted) sum of squares of the elements of x.

EXAMPLE 4.3.2 Consider

6x2
1 + 49x2

2 + 51x2
3 − 82x2x3 + 20x1x3 − 4x1x2 (4.23)

and write it in the form x�Ax. This amounts to finding A.
By inspection, and referring to Example 4.3 and its generalization, we may determine

A=
⎡⎣ 6 −2 10
−2 49 −41
10 −41 51

⎤⎦ (4.24)

♦

Exercise 4.3 asks the reader to replicate this exercise using a selection of other quadratic
forms.

4.4 Definite matrices
DEFINITION 4.4.1 A square matrix A, and the associated quadratic form x�Ax, are said
to be

positive definite if and only if x�Ax> 0 for all x = 0;
positive semi-definite if and only if x�Ax≥ 0 for all x;

negative definite if and only if x�Ax< 0 for all x = 0; and
negative semi-definite if and only if x�Ax≤ 0 for all x.

The cases of semi-definiteness are rather trivial when x= 0 and interest may focus more on
the situation in which the condition is satisfied for x =0. When x�A x may take both positive
and negative values, A and x�Ax are said to be indefinite.
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The following theorem is a useful result, which is easily verified from the above definitions
and, hence, whose proof is left as an exercise; see Exercise 4.9.

THEOREM 4.4.1 A square matrix A is negative definite if and only if−A is positive definite.

There are some further useful theorems concerning definite matrices. We state the first of
these for positive definite matrices. The proof of the theorem is the first instance in this book
of a proof by contrapositive. This method exploits the logical equivalence of “P implies Q”
and “not Q implies not P”, sometimes referred to as the universal law of sufficiency. It
establishes that “if P , then Q” by showing that “if not Q, then not P”.

THEOREM 4.4.2 If A is positive definite, then A is non-singular.

Proof: Suppose A is singular or det(A)= 0. Then Ax= 0 has non-trivial solutions and so
x�Ax= 0 for some x = 0, and therefore A is not positive definite.

Since a singular matrix is not positive definite, the contrapositive is also true.
A positive definite matrix must be non-singular. �

In the remaining proofs, we let A be a symmetric positive definite matrix, the most impor-
tant case when we return to applications later. However, certain of the theorems may be
readily adapted using the result given in Theorem 4.4.1. Several of the theorems listed refer
to the rank of a matrix, so we first define this concept, using two approaches.2 Recall the
definition of linear independence (Definition 3.6.2).

DEFINITION 4.4.2

(a) The column rank of a matrix, denoted ρc(A), is the maximum number of linearly
independent columns.

(b) The row rank of a matrix, denoted ρr(A), is the maximum number of linearly
independent rows.

(c) A matrix has full row (column) rank if all of its rows (columns) are linearly
independent.

THEOREM 4.4.3 A square matrix is non-singular if and only if it has full column rank if
and only if it has full row rank.

Proof: This proof is left as an exercise; see Exercise 4.10. �

As symmetric matrices have the same rows and columns, the number of linearly indepen-
dent rows or columns is the same and this number will be denoted by ρ(A). Theorem 5.4.8
will show that, in fact, column rank equals row rank even when A is not symmetric and,
indeed, not square.

THEOREM 4.4.4 Given a symmetric positive definite matrix A of order n×n, let B be n× s
(s ≤ n) with column rank ρc(B)= s. Then B�AB is symmetric positive definite.

Proof:

(a) (B�AB)� = B�A(B�)� by the rule for transposition of a matrix product; and
B�A(B�)� =B�AB, since (B�)� =B.
Therefore B�AB is symmetric.
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(b) Consider any s×1 matrix y = 0, and put x=By. Thus x is a weighted sum of the columns
of B. It follows from the fact that B has full column rank that x = 0.
Therefore y�(B�AB)y= (By)�A(By)= x�Ax> 0, since A is positive definite.
Therefore B�AB is positive definite. �

The following corollary is a special case of Theorem 4.4.4 when s = n and ρ(B)= n, i.e.
when B is non-singular.

COROLLARY 4.4.5 We have that B�AB is positive definite for symmetric positive definite A
and non-singular B.

If B=A−1, in which case B�AB= (A−1)�AA−1 = (A−1)� =A−1, since the inverse of
a symmetric matrix is also symmetric by Lemma 1.5.1, we also have the following result.

COROLLARY 4.4.6 The inverse of a symmetric positive definite matrix is positive definite.

THEOREM 4.4.7 The identity matrix, In, is positive definite.

Proof: We have x�Ix= x�x=∑n
i=1 x2

i > 0 for x = 0.
Therefore I is positive definite by definition. �

THEOREM 4.4.8 Let B be n × s (s ≤ n) with full column rank ρc(B) = s. Then B�B is
symmetric positive definite.

Proof: B�B=B�IB, and from Theorem 4.4.7 I is positive definite.
Also, from Theorem 4.4.4, B�IB is symmetric positive definite.
Therefore B�B is symmetric positive definite. �

The next result follows from Theorem 4.4.2.

COROLLARY 4.4.9 If B has full column rank, then B�B is non-singular, i.e. det(B�B) =0,
and, hence, (B�B)−1 exists.

We note, however, that, unless s= n, the product BB� is not invertible. The case of s< n
is the subject of the following theorem, while the case of s=n is the subject of Exercise 4.13.

THEOREM 4.4.10 Let B be an n× s matrix with row rank ρr(B)< n. Then the n× n matrix
BB� is symmetric positive semi-definite, but not positive definite and not invertible.

Proof:

(a) (BB�)� = (B�)�B� by the rule for transposition of a matrix product; and (B�)�B� =
BB�, since (B�)� =B.
Therefore BB� is symmetric.

(b) Consider any n× 1 matrix y = 0, and put x=B�y.
Therefore y�(BB�)y= (B�y)�(B�y)= x�x=∑s

i=1 x2
i ≥ 0.

Therefore BB� is positive semi-definite.
However, x is a weighted sum of the n rows of B. It follows from the fact that ρr(B)< n
that there exists some y∗ = 0 for which x= 0.
But then y∗�(BB�)y∗=0�0=0, so BB� is not positive definite. �
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An important property of positive definite matrices is the subject of the following
theorem.

THEOREM 4.4.11 A symmetric matrix, An×n, is positive definite if and only if all the
eigenvalues of A are positive.

Proof: Preliminaries. By Theorem 3.6.6, there exists an orthogonal matrix P that
diagonalizes A, i.e. P�AP=D= diag[λi ], where the λi are the eigenvalues of A.

Let xn×1 = 0 and define y=P�x = 0. Then x=Py, since P is orthogonal.
Thus x�Ax= (Py)�APy= y�P�APy= y�Dy=∑n

i=1 λi y2
i .

To prove necessity (⇐). Let all λi > 0.
Then x�Ax=∑n

i=1 λi y2
i > 0, and A is positive definite.

To prove sufficiency (⇒). Let A be positive definite so that x�Ax=∑n
i=1 λi y2

i > 0. The
proof is by contradiction.

Now suppose λ1, say, is not positive; and choose x to be a corresponding eigenvector. It
follows that x�Ax= λ1x�x= λ1

∑n
i=1 x2

i ≤ 0, which contradicts the assumption that A is
positive definite, i.e. not all λi positive implies that A is not positive definite, which com-
pletes the proof. �

COROLLARY 4.4.12 The matrix A is positive semi-definite if and only if all the eigenvalues
of A are non-negative.

Given that det(A)=∏n
i=1 λi (see Theorem 3.6.8), another useful corollary follows from

Theorem 4.4.11.

COROLLARY 4.4.13 We have det(A)> 0 for positive definite A.

A similar result to that given in Corollary 4.4.13 relates to the following concept.

DEFINITION 4.4.3 A principal minor is a determinant of a submatrix formed by deleting
corresponding rows and columns from a square matrix. The order of the principal minor is
the number of rows (or columns) of the submatrix in question.

Thus, for an n × n matrix, A, the principal minors of order 1 are aii (i = 1,2, . . . ,n),
obtained by deleting all rows and columns except the i th. The principal minors of order 2

are

∣∣∣∣aii aij

aji ajj

∣∣∣∣, obtained by deleting all rows and columns except the i th and j th, and so

on. It is left as an exercise to determine how many principal minors there are in total; see
Exercise 4.14.

THEOREM 4.4.14 All the principal minors of a symmetric positive definite matrix (in
particular, all the entries on the principal diagonal) are positive.

Proof: The result on positive principal minors follows from Theorem 4.4.4 by using an
n × n identity matrix with columns deleted corresponding to those deleted from A, and
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putting the result equal to B. For example,

B=

⎡⎢⎢⎢⎢⎣
1 0
0 1
0 0
...

...

0 0

⎤⎥⎥⎥⎥⎦
n×1

when all but the first and second columns of A and In are to be deleted.

Then B�AB=
[

a11 a12

a21 a22

]
; and B�AB is positive definite by Theorem 4.4.4. So from

Corollary 4.4.13 we have that

∣∣∣∣a11 a12

a21 a22

∣∣∣∣> 0. Similarly for all the other principal minors. �

Thus we have the important results that symmetric positive definite matrices are non-
singular, have positive eigenvalues, have positive determinants and positive principal minors
of all orders. Similar results apply in the case of symmetric negative definite matrices, which
are also non-singular but have negative eigenvalues, though in this case the signs of the
determinant and the principal minors depend on the orders of the matrix and submatrices
involved. The definiteness of a symmetric matrix can therefore be determined by checking
the signs of its eigenvalues or its principal minors. Semi-definite matrices that are not definite
have at least one zero eigenvalue and therefore are singular. Matrices that have eigenvalues
with different signs are indefinite.

We have also shown that the inverse of a positive (negative) definite matrix is positive
(negative) definite. This fact will be used in connection with a positive definite matrix called
a variance–covariance matrix to be introduced in Section 13.6.1. We also note that, if
P is an invertible n × n matrix and A is any n × n matrix, then A is positive or negative
(semi-)definite if and only if P−1AP is positive or negative (semi-)definite, respectively;
recall the discussion of similar matrices in Section 3.5.

4.4.1 Decomposition of matrices

This section establishes some useful decompositions of symmetric positive definite matrices.

THEOREM 4.4.15 If An×n is symmetric positive definite, there exists a non-singular matrix,
R, such that A is decomposable as A=RR�.

Proof: Recalling that A is orthogonally diagonalizable, we may write P�AP = D =
diag[λi ], where P is the orthogonal matrix that diagonalizes A and λi , i = 1,2, . . . ,n, are

the eigenvalues of A. Since all λi are positive, define the diagonal matrix D
1−
2 ≡ diag

[√
λi
]

and let R≡PD
1−
2 . Then

RR� =PD
1−
2 (PD

1−
2 )� =PDP� =P(P�AP)P� = (PP�)A(PP�)= IAI=A (4.25)

(since P is orthogonal). �

Like the square root defined earlier, R is not unique: −R has the same property. The
columns of R are orthonormal eigenvectors of A multiplied by the square roots of the
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corresponding eigenvalues. Re-ordering these columns preserves the property that A=RR�.
More generally, A=RF(RF)�, where F is any conformable orthogonal matrix.

The square root defined in Section 3.6.1 can be written A
1−
2 =RP� = PD

1−
2 P�, or A

1−
2 =

PR� =PD
1−
2 P�; see Exercise 4.17. Since the eigenvalues are all positive and, hence, D and

D
1−
2 are invertible, and the eigenvectors are orthogonal, the square root A

1−
2 =PD

1−
2 P� is both

symmetric and invertible when A is symmetric positive definite. If the elements on the diag-

onal of D
1−
2 are the positive square roots of the eigenvalues, then (by Corollary 4.4.5) A

1−
2 is

also positive definite.
The non-uniqueness of the decomposition in Theorem 4.4.15 is remedied by the so-called

triangular factorization or triangular decomposition, which is the subject of the next
theorem.

THEOREM 4.4.16 Let An×n be a symmetric positive definite matrix; then there exists a
unique decomposition of A as A = LDL�, where L is a lower triangular matrix whose
diagonal elements are all unity, and D is a diagonal matrix whose diagonal elements are all
positive.

Proof: We know from Section 2.5.5 that elementary row and column operations may be
performed on A by means of pre- and post-multiplication by suitably defined elementary
matrices. Details of the form of the elementary and other matrices referred to in this outline
proof are to be found in Hamilton (1994, Section 4.4). Let E1 be the product of elementary
matrices that by means of the multiplication

E1AE�1 =B (4.26)

makes b11 non-zero but makes all other entries in the first row and first column of B zero.
Similarly, let E2 be the product of elementary matrices that by the multiplication

E2BE�2 =C (4.27)

retains the first row and first column of B but makes c22 non-zero and all other entries in the
second row and second column of C zero. Continuing in this manner, we establish that, for
symmetric positive definite A, there exist products of elementary matrices E1,E2, . . . ,En−1

such that

En−1 · · ·E2E1AE�1 E�2 · · ·E�n−1 =D (4.28)

where D= diag[di ] and di > 0 for all i . The required Ei matrices are guaranteed to exist
by the positive definiteness of A and the positive definiteness of B, C, etc., which follows
from Theorem 4.4.4 and the fact that the Ei are non-singular. Moreover, the Ei are all lower
triangular, with non-zero elements below the principal diagonal, ones along the principal
diagonal and zeros above the principal diagonal. Thus, by Property 3 of determinants in
Section 2.3.2, det(Ei )= 1 for all i and, hence, E−1

i exists for all i . We can therefore define
the matrix

L= (En−1 · · ·E2E1)
−1 =E−1

1 E−1
2 · · ·E−1

n−1 (4.29)
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which, because of the lower triangularity of the Ei and, therefore, the lower triangularity
of the E−1

i , is a lower triangular matrix itself. Pre-multiplication of (4.28) by L and post-
multiplication by L� then gives the triangular factorization result that

A=LDL� (4.30)

Compared with its detailed derivation, the uniqueness of this factorization is easy to estab-
lish, using a proof by contradiction; see Exercise 4.18. �

COROLLARY 4.4.17 A symmetric positive definite matrix A may be decomposed as
A=L∗L∗�, where L∗ is a lower triangular matrix.

Proof: If A is a symmetric positive definite matrix, then the triangular factorization gives
A=LDL�, where L is a lower triangular matrix whose diagonal elements are all unity, and

D= diag [di ] with di > 0 for all i. Define D
1−
2 = diag

[√
di
]
, such that D

1−
2 D

1−
2 =D. Then

A=LDL� =LD
1−
2 D

1
2 L� =LD

1−
2 (LD

1−
2 )� (4.31)

or A=L∗L∗�, where L∗ =LD
1−
2 . �

The form of the triangular factorization in this corollary is known as the Cholesky
decomposition or Cholesky factorization of A.3 Like the matrix L in Theorem 4.4.16,
the matrix L∗ is lower triangular, though L∗ has the

√
di along its principal diagonal rather

than ones. In fact, L∗ is the matrix that results by multiplying each of the columns of L by
its corresponding value of

√
di , i.e.

L∗ = [√
d1l1

√
d2l2 . . .

√
dn ln

]
(4.32)

where li denotes the i th column of L. As the matrix L∗� is upper triangular, the Cholesky
decomposition is seen to be a particular case of the LU-decomposition or LU-factorization,
which, as its name implies, is a type of decomposition that allows certain matrices to be
written as the product of a lower triangular matrix and an upper triangular matrix, though the
upper triangular matrix is not generally the transpose of the lower triangular matrix.4

4.4.2 Comparing matrices

In Definition 1.3.1, we defined the concept of matrix equality, but we have said nothing so
far about matrix inequalities. The concept of definiteness provides a means of comparing
certain matrices that are not equal and thereby filling this gap.

Assuming that two matrices, A and B, are symmetric and of the same dimension, a
comparison between them may be based on

d ≡ x�Ax− x�Bx= x�(A−B)x (4.33)

Specifically, if d > 0 for all x = 0, then A−B is positive definite by Definition 4.4.1. In this
sense, we write A>B and say that A is “larger” than B. Similarly, we may write A≥B if
d≥0 for all x =0; A<B if d<0 for all x =0; and A≤B if d≤0 for all x =0; i.e. A is “not
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less than”, “less than” and “not greater than” B, if A−B is positive semi-definite, negative
definite and negative semi-definite, respectively. Note, however, that this categorization is
not complete: A−B could be indefinite. In this situation, no simple comparison of the two
matrices is possible.

It follows from the first of the comparative criteria that, if A is positive definite and B is
positive semi-definite, then A+B≥A. Another intuitive result is that, if A and B are both
positive definite and A>B, then B−1>A−1. The proof of this, which is left as an exercise,
follows from Theorem 4.4.11 and the relationship between the eigenvalues of a matrix and
those of its inverse; see Exercise 4.19 and recall Exercise 3.12.

4.4.3 Generalized eigenvalues and eigenvectors

Knowledge of definite matrices and matrix square roots allows us to introduce a gener-
alization of the eigenvalue problem discussed in Chapter 3. This problem, which arises,
for example, in co-integration analysis in time-series econometrics, is concerned with the
solution of the generalized eigenequation

Ax= λBx (4.34)

for the scalar λ and the n-vector x =0, where A and B are given n×n matrices. The standard
eigenvalue problem arises when B= In . In the more general context, we refer to λ as a
generalized eigenvalue and to x as a generalized eigenvector of A, relative to B. Values
of λ may, in principle, be obtained from solution of the determinantal equation

|A− λB| = 0 (4.35)

as in the standard case; and for a given λ, the associated vector x follows from solution of
the homogeneous system of linear equations

(A− λB)x= 0 (4.36)

Unfortunately, though the solution procedure seems essentially the same as for the standard
case discussed in detail earlier, there are complications. For instance, if B is singular, there
may not be n eigenvalues; indeed, there may be no solutions for λ at all.

EXAMPLE 4.4.1 Consider the matrices

A=
[−1 0

0 1

]
and B=

[
2 2
2 2

]
(4.37)

Then

|A− λB| =
∣∣∣∣−1− 2λ −2λ
−2λ 1− 2λ

∣∣∣∣
=−(1+ 2λ)(1− 2λ)− 4λ2

=−1 (4.38)

and so (4.35) and the generalized eigenvalue problem have no solution. ♦
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We can see what is going on in the example a little more generally by using the 2× 2
matrices A= [aij] and B= [bij], for which we have that

|A− λB| =
∣∣∣∣a11 − λb11 a12 − λb12

a21 − λb21 a22 − λb22

∣∣∣∣
= (a11 − λb11)(a22 − λb22)− (a12 − λb12)(a21 − λb21)

= a11a22 − a12a21 + (a21b12 − a22b11 − a11b22 + a12b21)λ

+ (b11b22 − b12b21)λ
2 (4.39)

If B is singular, then b11b22 − b12b21 = |B| = 0 and the term in λ2 vanishes. In this case,
if a21b12 − a22b11 − a11b22 + a12b21 = 0, there will be one generalized eigenvalue, but if
a21b12 − a22b11 − a11b22 + a12b21 = 0 and det(A)= a11a22 − a12a21 = 0, then generalized
eigenvalues do not exist.

Imposing a non-singularity condition on B will eliminate the difficulty illustrated in
Example 4.4.3. It will also permit solution for the generalized eigenvalues using the stan-
dard procedure on |B−1A−λI|=0, which follows from pre-multiplication of (4.34) by B−1.
Equivalently, the solution may also be obtained from |AB−1 − λI| = 0; see Exercise 4.20.

If B is symmetric positive definite, then the inverse of a square root of B may be used so
that the solution for λ may be obtained from the standard problem

|B−
1−
2 AB

−1−
2 − λI| = 0 (4.40)

If x is an eigenvector of B
−1−

2 AB
−1−

2 corresponding to a solution, λ, of (4.40), then

B
−1−

2 AB
−1−

2 x= λx= λB
1−
2 B

−1−
2 x (4.41)

which implies that

A(B
−1−

2 x)= λB(B−
1
2 x) (4.42)

Hence y = B
−1−

2 x is the generalized eigenvector of A relative to B corresponding to the
generalized eigenvalue λ.

Generalized eigenvectors are not, in general, orthogonal, even if both A and B are sym-
metric. However, for pairs of generalized eigenvectors, yi and y j , say, it is the case that, if
A and B are symmetric and B is positive definite, then y�i By j = 0, which follows simply

from the definitions yi =B
−1−

2 xi and y j =B
−1−

2 x j and the results on the eigenvectors in the
standard problem.

EXERCISES
4.1 Using equations (4.1) and (4.5), respectively, show that, as the focus parameter a
approaches zero, then:

(a) the parabola collapses onto the positive x axis; and
(b) the ellipse collapses onto the origin.
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4.2 Using equation (4.9), show that as the focus parameter a tends to zero, a hyperbola
converges to the pair of lines y=±(b/a)x , which otherwise are its asymptotes.

4.3 Write the following quadratic forms in the matrix notation x�Ax:

4x2
1 + 9x2

2 + 2x2
3 − 8x2x3 + 6x3x1 − 6x1x2

x2
1 + 16x2

2 + 12x2
3 + x2

4

x2
1 + x2

2 + x2
3 + x2

4 + x2
5

4.4 Examine the following quadratic forms for positive definiteness:

6x2
1 + 49x2

2 + 51x2
3 − 82x2x3 + 20x1x3 − 4x1x2

4x2
1 + 9x2

2 + 2x2
3 + 6x1x2 + 6x1x3 + 8x2x3

4.5 Let A=
⎡⎣1 0 0

0 2 0
0 0 3

⎤⎦ and B=
⎡⎣1 2

0 1
2 0

⎤⎦ . Find the values of all the principal minors of A

and, hence, demonstrate that A is positive definite. Determine the row rank and the column
rank of B. Form the product B�AB and show that it is positive definite also.

4.6 Examine the definiteness of the matrix A =
[

0 1
−1 0

]
. Relate your finding to the

eigenvalues of the matrix, which were derived in Section 3.3.1.

4.7 Using a decomposition of the type defined in Theorem 4.4.15, find a non-singular matrix,

R, such that the matrix A=
[

4 2
2 2

]
may be written as A=RR�. Compare your result with

the Cholesky decomposition A=L∗L∗�, where L∗ is a lower triangular matrix.

4.8 Find the generalized eigenvalues, and an associated pair of generalized eigenvectors, of

A relative to B, where A=
[

1 0
0 −1

]
and:

(a) B=
[

2 1
2 3

]
; and

(b) B=
[

2 1
1 2

]
.

4.9 Prove that a square matrix A is negative definite if and only if −A is positive definite.

4.10 Prove Theorem 4.4.3.

4.11 Let A be a symmetric negative definite matrix of order n× n and let B be n× s (s≤ n)
with rank ρ(B)= s. Prove that B�AB is symmetric negative definite. Recall the proof of
Theorem 4.4.4.
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4.12 Prove that, if A is negative definite, then A is non-singular and A−1 is also negative
definite.

4.13 Let B be n× s with s ≤ n and row rank ρr (B)= r ≤ s. Prove the following:

(a) BB� is positive semi-definite if r < s ≤ n; and
(b) BB� is positive definite if r = s= n.

4.14 Let A be an n× n matrix. Excluding det(A), how many principal minors in total does
A have?

4.15 Let B be a matrix of order n × n with column rank ρc(B) = s (s ≤ n). Show that
ρc(B�B)= s. Show also that ρc(BB�)= s.

4.16 Consider an idempotent matrix M. Show that ρc(M)= tr(M), i.e. that the rank of M
equals the trace of M.

4.17 Let A be a symmetric positive definite matrix. Using the definition of R given in

Theorem 4.4.15 and the definition of A
1−
2 given in Definition 3.6.3, show that RR� =A

1−
2 A

1−
2 .

4.18 Let A be a symmetric positive definite matrix. Prove that the triangular factorization
A= LDL�, where L is a lower triangular matrix and D is a diagonal matrix with positive
diagonal elements, is unique, using the method of proof by contradiction (i.e. starting with
the assumption of non-uniqueness: A=L1D1L�1 and A=L2D2L�2 , say).

4.19 Let A and B be symmetric positive definite matrices of the same order.

(a) Show that, if every eigenvalue of A is larger than the corresponding eigenvalue of B
when both sets of eigenvalues are ordered from smallest to largest, then A−B is positive
definite.

(b) Hence show that B−1 −A−1 is positive definite.

4.20 Let B be a non-singular matrix. Prove that, if A−λB is singular, then so are B−1A−λI
and AB−1 − λI. Hence show that |B−1A− λI| = 0 and |AB−1 − λI| = 0 yield the same
solutions for λ.
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5.1 Introduction
It is customary to think of vectors as entities with magnitudes and directions, and spaces as
like the two-dimensional space we write in and the three-dimensional space we live in and
move around in. Vectors are therefore distinct from scalars, which have magnitudes only. Our
aim in this chapter is to develop a collection of results that apply to such vector entities in real
n-dimensional space, or simply n-space. Our approach will be both geometric and analytic.
The vector geometry will provide fresh insights into what we have already encountered in
our algebraic study of n × 1 and 1× n matrices, while the analysis will echo the matrix
algebra itself. However, as we are familiar with one, two and three spatial dimensions, and
can visualize more easily in these cases, we begin with vectors in 2-space (R2) and 3-space
(R3) in order to fix the main ideas intuitively. It will quickly be seen that the vectors in
these cases may readily be associated with 2× 1 and 3× 1 matrices, respectively. However,
later generalization is intended not only to take us from 2- and 3-space to n-space and n× 1
matrices, but also to abstract the main properties of vectors in n-space so that they apply as
well to kinds of objects other than real row or column matrices.

5.2 Vectors in 2-space and 3-space

5.2.1 Vector geometry

In 2-space, also known as the plane or Euclidean plane or Cartesian plane, a simple geo-
metric approach is to represent vectors by arrows, where the length of the arrow represents
the magnitude of the vector and the direction of the arrow, relative to some arbitrary datum
in the plane, represents the direction of the vector. To draw a vector in the plane, we must
know not only its magnitude and direction, but also its location. Thus three vectors, v, w
and z, may be depicted as in Figure 5.1. As with matrices earlier, bold font will be used for
vectors to distinguish them from scalars.

The vector v starts at initial point A and ends at terminal point B whereas vector w runs
from initial point C to terminal point D and z from E to F . Where the initial and terminal

points are to be made explicit, we may write v=−→AB, w=−→CD and z=−→EF, which denote that
v is the vector joining initial point A and terminal point B, and similarly for w and z. With
this geometric representation in mind, we may state the following definitions.

DEFINITION 5.2.1 Vectors are called equivalent if they have the same magnitude and
direction, even if they have different locations.
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DEFINITION 5.2.2 Equivalent vectors are said to be equal vectors.

Equivalent vectors are regarded as equal because we are only concerned with magnitude
and direction. For example, v and w in Figure 5.1 are equivalent vectors as they have the
same magnitude (length) and the same direction. Hence we can write v=w. By contrast,
v = z; z has neither the same magnitude nor the same direction as v.

DEFINITION 5.2.3 (ADDITION OF VECTORS). Locating the initial point of one vector at
the terminal point of the other, the sum of the two vectors is the vector that joins the initial
point of the first to the terminal point of the second.

For example, taking vectors v=−→AB and z=−→E F and locating the initial point of z at B,

v+ z=−→AB+−−→BC∗ =−−→AC∗. The operation is illustrated in Figure 5.2, which also shows that,
by a similar geometric construction, locating the initial point of z at A and the initial point

of v at the terminal point of z, z+ v=−−→AB∗ +−−−→B∗C∗ =−−→AC∗ = v+ z; the addition of vectors
is commutative. Locating the two separate summations at the same initial point and forming
a parallelogram of vectors is a neat way of illustrating commutativity.

DEFINITION 5.2.4 The zero vector is the vector of zero magnitude (length).

Denoting the zero vector by 0, it follows from the definition of vector addition that 0+v=
v+ 0= v for any vector v. The zero vector has no obvious direction.

DEFINITION 5.2.5 The vector having the same magnitude as, but opposite direction to, the
specified vector, v, is the negative of the vector and is denoted by −v; see Figure 5.3.

We define −0≡ 0.

v

A

B

w

C

D

z

E

F

Figure 5.1 Vectors in 2-space

v+zv

A

B z
C∗

B∗
z

v

Figure 5.2 Addition of vectors
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v

2v

−1.5v
−z

z

0.5z

−z

v−z

Figure 5.3 Multiplication of vectors by a constant and subtraction of vectors

DEFINITION 5.2.6 (SUBTRACTION OF VECTORS). Given two vectors, z and v, and using
the definitions for the sum and the negative of vectors, we see that v− z≡ v+ (−z); see
Figure 5.3.

It follows that v− v= v+ (−v)= 0.

DEFINITION 5.2.7 (MULTIPLICATION OF A VECTOR BY A SCALAR). Let v be a vector
and k be a scalar. Then kv is the vector whose length is |k| times that of v, and whose
direction is the same as that of v if k> 0 and opposite to that of v if k< 0. We define kv≡ 0
if k= 0 or v= 0.

The negative of v is the special case where k=−1. Figure 5.3 illustrates a few other cases.

5.2.2 Analytical geometry

Problems involving vectors and vector geometry can often be simplified by the use of some
coordinate system. Using a rectangular coordinate system in the plane, and locating the
initial point of a vector, v, at the origin of the coordinate system, the terminal point of the
vector may be represented by two coordinates, v1 and v2. Figure 5.4 illustrates this. Indeed,
we may write v= (v1, v2), and call the coordinates v1 and v2 the components or elements
of v.1 The magnitude of v, which we are representing by the length of the vector, is given by

Pythagoras’s theorem as
√
v2

1 + v2
2, where the positive square root is taken. The direction of

v may be described by the angle it makes with either the horizontal axis or the vertical axis.
The axes may also be used to define positive and negative directions. We will have more to
say about coordinate systems per se later.

If equivalent vectors are located with their initial points at the same origin, then they
coincide and have the same elements. Therefore, we say that two vectors v= (v1, v2) and
w= (w1,w2) are equal if and only if v1=w1 and v2=w2. Other operations corresponding to
those defined geometrically above are defined using coordinate elements as follows, where
we let v= (v1, v2) and z= (z1, z2), and k is a scalar.

DEFINITION 5.2.8 Addition: v+ z= (v1 + z1, v2 + z2).

DEFINITION 5.2.9 Multiplication by a scalar: kv= (kv1, kv2).
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(v1, v2)

v1

v2

0

v

Figure 5.4 Vector coordinates

DEFINITION 5.2.10 Subtraction: v− z= (v1 − z1, v2 − z2).

The proofs of these statements are not provided but each statement may be easily veri-
fied by appeal to a coordinate diagram such as Figure 5.5 and simple geometric arguments.
Figure 5.5 depicts the cases of vector addition (v+ z) and the multiplication of a vector by a
scalar (kz, where k= 2.5).

Translations

If a vector’s initial point is not at the origin, its components may be obtained by subtracting
the coordinates of its initial point from those of its terminal point. Thus, for the vector v
depicted in Figure 5.6, for example, we have

v=−−→P1 P2 =−→0P2 −−→0P1

= (x2, y2)− (x1, y1)= (x2 − x1, y2 − y1) (5.1)

This operation is called a translation.
Alternatively, we may wish to translate the axes of a coordinate system so that the origin

coincides with the initial point (x1, y1) of an arbitrary vector. The coordinates of (x2, y2) in

v1

v2

z1

z2

0 v1 + z1

v2 + z2

v

z

2.5zv+
z

Figure 5.5 Vector addition with coordinates
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P1

P2

v

v
0 x1 x2

y2

y1

y2 − y1

x2 − x1

Figure 5.6 A translation

the new system, x ′ and y′, are obtained by means of translation equations

x ′ = x2 − x1 and y′ = y2 − y1 (5.2)

This translation, which effects a parallel shift in each of the axes, is illustrated in Figure 5.7.

3-space

Just as pairs of real numbers may be used to represent vectors in 2-space analytically, so
vectors in 3-space, and operations on them, may be represented by triples of real numbers,
(x, y, z). Let these numbers denote the coordinates within a three-dimensional rectangular
coordinate system, and let the axes of this system define positive and negative directions.
We now have that each pair of axes determines a coordinate plane. It is conventional to view
the first two coordinates as giving the location of a vector in a horizontal plane and the third
coordinate as giving the vertical distance of the terminal point of the vector (x, y, z) above
(if positive) or below (if negative) that plane. An example of a vector in such a coordinate
system is depicted in Figure 5.8.

Writing vectors in 3-space as v= (v1, v2, v3) and w= (w1,w2,w3), equality, addition,
multiplication by a scalar, and subtraction are defined analogously to the same operations
in 2-space. However, graphical illustration of the operations is more tricky for 3-space than

v

0

0∗

x1 x2

y2

y1
x ′

y′

Figure 5.7 Another translation
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v

0

v3

v1
v2

Figure 5.8 A 3-vector

for 2-space. The definitional and graphical details of these operations for 3-space are left as
an exercise; see Exercise 5.3.

If a vector is considered to be a one-dimensional matrix, i.e. a single column or a single
row of elements, the matrix Definitions 1.3.2, 1.3.3 and 1.3.4 apply. For the time being, we
shall adopt this view. Doing this has the further advantage that, except for the distributive
rule, the rules of vector algebra for 2- and 3-space correspond to the rules of matrix algebra
developed earlier. The distributive rule for matrices involves matrix multiplication. We have
not considered the multiplication of vectors in 2- and 3-space; therefore, no meaning yet
attaches to it. However, we shall shortly encounter a concept called the “dot product” of
vectors, and this will be seen to have an association with matrix multiplication. There are
several other new concepts that are useful, and the next section introduces these and their
use in the analytical treatment of vectors.

5.2.3 Further concepts and vector algebra

There are five concepts presented in this subsection. Associated with some of them are some
simple theorems, which will be stated and proved.

DEFINITION 5.2.11 The norm (or Euclidean norm) of a vector, v, is another name for the
magnitude or length of v and is denoted by ‖v‖.

DEFINITION 5.2.12 A unit vector is a vector whose norm is unity.

We have already used the unit vector concept when finding normalized eigenvectors in
Section 3.3.3, and an expression for the length of a vector in 2-space was given above. This
easily generalizes to the case of 3-space as

‖v‖=
√
v2

1 + v2
2 + v2

3 =
√√√√ 3∑

i=1

v2
i (5.3)

where the positive square root is used. This computation may be justified graphically by
careful use of Figure 5.8.
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DEFINITION 5.2.13 The distance between two vectors v=−→
0P1 and w=−→

0P2, which we
denote as d(v,w), is defined, for the case of 3-space, as

d(v,w)=
∥∥∥−−→P1 P2

∥∥∥=‖(w1 − v1,w2 − v2,w3 − v3)‖
=
√
(w1 − v1)2 + (w2 − v2)2 + (w3 − v3)2

=
√√√√ 3∑

i=1

(wi − vi )2 =‖v−w‖=‖w− v‖ (5.4)

Similarly for the distance between two vectors in 2-space, where the required simplification
is obvious.

Figure 5.9 illustrates the distance concept in 2-space.

DEFINITION 5.2.14 The angle between two vectors, v and w, is the angle, θ , such that
0≤ θ ≤π , where the angle is measured in radians.

Three such angles are illustrated in Figure 5.10.

DEFINITION 5.2.15 The dot product of two vectors, v and w, denoted by v ·w, is defined as

v ·w=‖v‖‖w‖ cos θ (5.5)

Note that v ·w= 0 if v= 0 or w= 0 or if θ =π/2.

v

w

P1

d(v,w)

P2

0 v1 w1

v2

w2

Figure 5.9 Distance between vectors

θ1

θ2

θ3

Figure 5.10 Angles between vectors
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The definitional formula for a dot product simplifies to yield a more convenient computa-
tional formula. The simplification, for 3-space, is given in the following theorem.

THEOREM 5.2.1 Let v and w be vectors in 3-space. Then the dot product may be written as

v · w=
3∑

i=1

viwi (5.6)

Proof: Using the cosine rule, we have that

(
−−→
P1 P2)

2 =‖v−w‖2 =‖v‖2 +‖w‖2 − 2‖v‖‖w‖ cos θ (5.7)

Therefore,

v ·w=‖v‖‖w‖ cos θ = 1

2
(‖v‖2 +‖w‖2 −‖v−w‖2)

= 1

2

( 3∑
i=1

v2
i +

3∑
i=1

w2
i −

3∑
i=1

(vi −wi )
2
)

(5.8)

Expanding the final term in the large brackets and simplifying yields the required result. �

If v and w are treated as 3× 1 matrices, the similarity of v ·w and v�w is clear.
Exploiting the definition of the dot product of two non-zero vectors, we obtain a useful

means of obtaining information on the angle between the two vectors, namely

cos θ = v ·w
‖v‖‖w‖ (5.9)

EXAMPLE 5.2.1 Let v= (2,1) and w= (1,2) be vectors in 2-space. Let us find the distance
between these vectors and the angle between them.

First, d(v,w)=‖v−w‖=
√∑2

i=1(vi −wi )2 =
√

2.
To find the angle between the vectors we require

v ·w=
2∑

i=1

viwi = 4, ‖v‖=
√√√√ 2∑

i=1

v2
i =

√
5 and ‖w‖=

√√√√ 2∑
i=1

w2
i =

√
5 (5.10)

Therefore, second, we have from (5.9) that cos θ = 4
5 and, hence, θ = cos−1

( 4
5

) ≈ 0.643
radians or 36 degrees and 52 minutes. ♦

It is a straightforward matter to verify the findings in Example 5.2.3 geometrically by
means of a carefully drawn graph. It would be more difficult to do such geometry if the
vectors were vectors in 3-space. Yet the analytical approach remains simple, as the following
example demonstrates.
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EXAMPLE 5.2.2 Let v= (2,−1,1) and w= (1,1,2) be vectors in 3-space. Again, let us
find the distance between them and the angle between them. The calculations are as follows:

d(v,w)=‖v−w‖=
√√√√ 3∑

i=1

(vi −wi )2 =
√

6 (5.11)

v ·w=
3∑

i=1

viwi = 3 (5.12)

‖v‖=
√√√√ 3∑

i=1

v2
i =

√
6 and ‖w‖=

√√√√ 3∑
i=1

w2
i =

√
6 (5.13)

Therefore, using (5.9) again, we have that cos θ = 3
6 = 1

2 and, hence, θ = cos−1
( 1

2

)= π/3
radians or 60 degrees. ♦

We may now state the first of the theorems associated with these further concepts.
Specifically, the following theorems relate to the dot product, the norm and the angle.

THEOREM 5.2.2 Let v and w be vectors in 2- or 3-space. Then

v · v=‖v‖2 (5.14)

and

‖v‖= (v · v)
1−
2 =√v · v (5.15)

Also, for v and w non-zero,

θ is acute if and only if v ·w> 0 (5.16)

θ is obtuse if and only if v ·w< 0 (5.17)

θ is a right angle if and only if v ·w= 0 (5.18)

Proof:

(a) From the definition of dot product we have directly that

v · v=‖v‖‖v‖ cos(0)=‖v‖2 (5.19)

(b) From (5.9) we have that cos θ > 0 if and only if v ·w> 0, since ‖v‖ and ‖w‖ are positive
by definition. Similarly for the remainder of the second part of the theorem. �

In the case of v ·w=0, i.e. θ =π/2 radians or 90 degrees, the vectors v and w are perpen-
dicular. We say that perpendicular vectors are orthogonal. For example, it is easy to show
that, for the vectors v= (0,2) and w= (6,0) in 2-space, v ·w= 0. Therefore, these vectors
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are orthogonal. Their perpendicularity may be seen with the aid of a graph, which would
show the vectors lying along the axes of the rectangular coordinate system. Similarly for the
vectors v= (2,2) and w= (4,−4) in 2-space, v ·w= 0, and again these vectors are orthogo-
nal, although in this case the vectors do not coincide with the axes of the graph. The details
of the graphs in both cases are left as an exercise; see Exercise 5.1.

THEOREM 5.2.3 Let u,v and w be vectors in 2- or 3-space. Then

u · v= v ·u (5.20)

u · (v+w)=u · v+u ·w (5.21)

k(u · v)= (ku) · v=u · (kv) (5.22)

and

v · v
{
> 0 if v = 0

= 0 if v= 0
(5.23)

where k is any scalar.

The first two of these results state that the dot product operation is commutative and dis-
tributive over vector addition; the third and fourth also have simple interpretations but no
special terms to describe them. All four are easy to prove by direct appeal to the definition
of dot product or, in the case of the distributive property, to (5.6). The proof of the theorem
is therefore left as an exercise; see Exercise 5.12. Note that, if u, v and w are treated as n× 1
non-zero matrices, the first of these results echoes u�v= v�u, while the remainder echo,
in a similar way, other of the results on the multiplication operation for matrices given in
Chapter 1.

5.2.4 Projections

A vector u may be decomposed into a sum of two vector terms, one parallel to a specified
non-zero vector v, the other perpendicular to v. By way of illustration, in Figure 5.11 the
terminal point of u is projected perpendicularly onto v to give the first of these terms, w1,
and the second term is formed as the difference w2 =u−w1.

Thus w1 is parallel to v, w2 is perpendicular (orthogonal) to it and also, by construction,
w1 +w2 =w1 + u−w1 = u. The vector w1 is called the orthogonal projection of u on v.

v

u

w1

w2

Figure 5.11 Orthogonal projection
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It is denoted as w1 = projvu. The vector w2 is the vector component of u orthogonal to v.
Since w2 = u−w1, we have that w2 = u− projvu. A convenient method of computing the
two elements in this decomposition is provided by the following theorem.

THEOREM 5.2.4 If u and v are vectors in 2- or 3-space and v = 0, then

w1 = projvu= u · v
‖v‖2

v and w2 =u− projvu=u− u · v
‖v‖2

v (5.24)

Proof: Since w1 is parallel to v, w1 = kv, where k is a scalar to be computed. Therefore
u=w1 +w2 = kv+w2.

Now consider the dot product u · v. Using (5.21) and (5.22), we have

u · v= kv · v+w2 · v= k‖v‖2 (5.25)

since v · v=‖v‖2 and w2·v= 0. So k= (u · v)/‖v‖2 and, since projvu=w1 = kv,

projvu= u · v
‖v‖2

v (5.26)

�

We may note that the length of the orthogonal projection of u on v is

‖projvu‖=
∥∥∥∥ u · v
‖v‖2

v

∥∥∥∥= ∣∣∣∣ u · v
‖v‖2

∣∣∣∣‖v‖, since
u · v
‖v‖2

is a scalar

= |u · v|
‖v‖2

‖v‖= |u · v|
‖v‖ (5.27)

Also, since u · v=‖u‖‖v‖ cos θ , (|u · v|)/‖v‖=‖u‖ |cos θ |. Therefore, we have

‖projvu‖= |u · v|
‖v‖ =‖u‖ |cos θ | (5.28)

It is left as an exercise to derive an expression for the length of the vector component
orthogonal to v; see Exercise 5.13. Two numerical examples follow.

EXAMPLE 5.2.3 Let u = (1,2) and v = (1,−1). Let us find u · v, ‖u‖, ‖v‖2, projvu,
‖projvu‖, θ (the angle between u and v), and d(u,v), and confirm that w2 = u− projvu
is orthogonal to v.

Using the appropriate definitions and equations above, we have that u · v=∑2
i=1 uivi =

1 + (−2) = −1, and ‖u‖ =
√∑2

i=1 u2
i =

√
12 + 22 = √

5. Similarly, ‖v‖ =
√∑2

i=1 v
2
i =√

12 + (−1)2 =√2 and ‖v‖2 = 2. Then we find that

projvu= u · v
‖v‖2

v= −1

2
(1,−1)=

(−1

2
,

1

2

)
=w1 (5.29)
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But

‖projvu‖=
√√√√ 2∑

i=1

w2
1i =

√(−1

2

)2

+
(

1

2

)2

= 1√
2

(5.30)

calculating the norm directly, and

‖projvu‖= |u · v|
‖v‖ = |− 1|√

2
= 1√

2
(5.31)

using (5.28). So the angle is

θ = cos−1
(

u · v
‖u‖‖v‖

)
where

u · v
‖u‖‖v‖ =

−1√
5
√

2
= −1√

10
(5.32)

By Theorem 5.2.2, we know that θ >π/2, i.e. θ is obtuse. We find that θ = cos−1
(
−1√

10

)
≈

108◦26′6′′, to the nearest second of arc. Finally d(u,v)= ‖u− v‖ =
√∑2

i=1(ui − vi )2 =√
(1− 1)2 + (2− (−1))2 =√0+ 9=√9= 3.
Now, w2=u−projvu= (1,2)− (− 1

2 ,
1
2

)=( 3
2 ,

3
2

)
. Checking reveals that w2 ·v=0. There-

fore, w2⊥v is confirmed, where the symbol⊥ signifies that w2 is orthogonal or perpendicular
to v. Similarly, it may be checked that w1⊥w2. ♦

As the vectors in Example 5.2.4 are in 2-space, it is easy to draw a scale diagram and
verify most of the numerical results geometrically. The exception is the result on θ : it is
unlikely that this angle can be checked by a protractor, no matter how carefully the scale
diagram is drawn. The next example uses vectors from 3-space. It is therefore much less easy
to confirm results graphically. However, the arithmetic required by the analytic approach
remains straightforward.

EXAMPLE 5.2.4 Let u= (2,1,1) and v= (1,−1,1). Again let us find u · v, ‖u‖, ‖v‖2,
projvu, ‖projvu‖, θ and d(u,v), and confirm that w2 =u− projvu is orthogonal to v.

Using the same methods as in the previous example, we have u · v=∑3
i=1 uivi = 2− 1+

1=2, ‖u‖=
√∑3

i=1 u2
i =

√
22 + 12 + 12=√6, ‖v‖=

√∑3
i=1 v

2
i =

√
12 + (−1)2 + 12=√3

and ‖v‖2 = 3. Therefore,

projvu= u · v
‖v‖2

v= 2

3
(1,−1,1)=

(
2

3
,
−2

3
,

2

3

)
=w1 (5.33)

and

‖projvu‖=
√√√√ 3∑

i=1

w2
1i =

√
4

9
+ 4

9
+ 4

9
= 2√

3
or ‖projvu‖= |u · v|

‖v‖ = 2√
3

(5.34)

using the more computationally efficient (5.28).



February 12, 2011 11:1 Pinched Crown A Page-100 HarrWald

100 Vectors and vector spaces

The angle is

θ = cos−1
(

u · v
‖u‖‖v‖

)
, where

u · v
‖u‖‖v‖ =

2√
6
√

3
= 2√

18
= 2

3
√

2
=
√

2

3
(5.35)

This time we see by Theorem 5.2.2 that θ < π/2, i.e. θ is acute. More precisely,

θ = cos−1
(√

2
3

)
≈ 61◦52′28′′, to the nearest second of arc. Then d(u,v) = ‖u− v‖ =√∑3

i=1(ui − vi )2 =
√
(2− 1)2 + (1− (−1))2 + (1− 1)2 =√1+ 4+ 0=√5.

Finally, w2 =u− projvu= (2,1,1)− ( 2
3 ,− 2

3 ,
2
3

)= ( 4
3 ,

5
3 ,

1
3

)
.

Checking confirms that w2 · v=w1 ·w2 = 0. Therefore, w2⊥v and w1⊥w2. ♦

5.3 n-Dimensional Euclidean vector spaces
The previous basic ideas, rooted in the geometry of 2- and 3-space, may be easily generalized
to n-dimensional spaces and even to infinite-dimensional spaces.2

To begin our generalization, recall the definition of an ordered n-tuple as a sequence of
real numbers, (a1,a2, . . . ,an), say, and the definition of n-space as the set of all ordered
n-tuples, denoted R

n ; see p. xx. Therefore, R1=R is the set of all real numbers; R2 is the set
of all ordered pairs of real numbers, which up to this point we have referred to as 2-space;
and R

3 is the set of all ordered triples of real numbers, or 3-space.
By analogy with ordered pairs in 2-space (R2) and ordered triples in 3-space (R3), an

ordered n-tuple can be regarded as the generalization of a “point” or of a “vector”. Hence
(6,2,1,3,4,5), an ordered six-tuple, may be described as a point or vector in R

6 or 6-space.
It is not possible to draw diagrams of vectors in R

n for n> 3, of course, but all of the basic
definitions given in the previous section carry over to them.

In particular, for vectors u and v in R
n , the standard notions of equality (u= v), addition

(u+ v) and multiplication by a scalar (kv) apply. We also define analogously the zero vector
(0n), the vector negative (−v) and the vector difference (u− v). Moreover, all of the rules
of vector algebra that we have encountered above apply to vectors in R

n . These are stated
formally in the following theorem.

THEOREM 5.3.1 Let u, v, w and 0∈R
n and k and l ∈R, then

u+ v= v+u (5.36)

(u+ v)+w=u+ (v+w) (5.37)

u+ 0= 0+u=u (5.38)

u+ (−u)= 0 (5.39)

k(lu)= (kl)u (5.40)

k(u+ v)= ku+ kv (5.41)

(k+ l)u= ku+ lu (5.42)

and

1u=u (5.43)
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A proof of this theorem is easy to do for 2- or 3-space, using an analytical or geometric
approach. Alternatively, as mentioned in Section 5.2.2, treating vectors as n × 1 matrices
allows the proofs of the analogous rules in Chapter 1 to be used.

We also retain the same basic definitions for vector norms (lengths), distances between
vectors and dot products of vectors in R

n . Specifically, for u and v∈R
n , the norm of u, the

distance between u and v, and the dot product of u and v are, respectively,

‖u‖≡
√√√√ n∑

i=1

u2
i (5.44)

d(u,v)≡‖u− v‖=
√√√√ n∑

i=1

(ui − vi )2 (5.45)

u · v≡‖u‖‖v‖ cos θ =
n∑

i=1

uivi (5.46)

where, as before, θ denotes the angle between u and v and (5.46) follows from a slight
modification of the proof of Theorem 5.2.1. It is more difficult to visualize the angle between
two vectors once the dimension of a space exceeds three, but we will see in Section 5.4.3
that the cosine rule, and hence the proof of Theorem 5.2.1, are still valid in n dimensions.

It is because so many of the familiar ideas from 2- and 3-space carry over to it that Rn

is frequently referred to as “Euclidean” n-space, and norms, distances and dot products of
vectors in R

n as “Euclidean norms”, “Euclidean distances” and “Euclidean dot products”.
Also, because of the similarity of the vector operations and rules we have encountered in
this chapter and those we encountered earlier for matrices, it is not surprising that matrices
of appropriate order may be used to denote vectors. Thus for vectors in R

n , n × 1 or 1× n
matrices may be used. In the remainder of this book we will adopt the convention that points
in R

n are represented by n× 1 matrices or n-vectors. With this vertical notation, we have, in
particular,

u · v=
n∑

i=1

uivi =u�v (5.47)

5.4 General vector spaces
Further generalization of our ideas on vectors and vector spaces is possible by using axioms
that abstract the main properties of vectors in R

n , but that apply to other objects as well.
Thus what we now speak of as “vectors” will include our original concept of a vector as an
ordered n-tuple of real numbers, but many new kinds of vectors. However, our main concern
will remain with our original notion of vectors. To effect this further generalization, we state
the following definitions.

DEFINITION 5.4.1 A field is a set of elements that is closed under two binary operations,
which we may call addition and multiplication, and where addition and multiplication are
both commutative and associative and both have well-defined identities and inverses, and
multiplication is distributive over addition.
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There are several examples of fields, but the most obvious ones are the set of rational
numbers, the set of real numbers and the set of complex numbers.

DEFINITION 5.4.2 Let F be a field and let V be an arbitrary set of objects (which we will
call vectors) on which the two operations of addition and multiplication by a scalar are
defined, i.e. we have some rule defining u+ v and some rule defining ku, where u,v∈V and
k ∈ F. Then V is called a vector space if, for all u,v and w∈ V , and all scalars k and l ∈ F ,
the following axioms are satisfied:

1. u+ v∈ V ;
2. u+ v= v+u;
3. (u+ v)+w=u+ (v+w);
4. there exists an object 0∈ V , called the zero vector, such that u+ 0= 0+u=u;
5. there exists an object −u∈ V , called the negative of u, such that u+ (−u)= 0;
6. ku∈ V ;
7. k(lu)= (kl)u;
8. k(u+ v)= ku+ kv;
9. (k+ l)u= ku+ lu;

10. 1u=u.

If F is the set of real numbers R, then we call V a real or Euclidean vector space. The
examples in this book will be confined to real vector spaces, but the theory of vector spaces
developed here applies equally to vector spaces over other fields.

Most of the axioms in Definition 5.4.2 echo the rules stated in Theorem 5.3.1 and the
corresponding rules of matrices from Chapter 1, including the commutative, associative and
distributive rules. Two axioms that are not familiar from earlier material are Axioms 1 and 6.
These define the concepts of closure under addition and closure under scalar multipli-
cation, respectively, and they will be important for us when we meet the idea of a subspace
presently. Note that neither the objects (vectors) nor the operations on them are defined. The
axioms therefore define a diversity of possible spaces. For example, all of the following,
which are not exhaustive, constitute vector spaces:

• The set {0}. This is the simplest example, for which both vector addition and scalar
multiplication are trivial.

• The field F itself is another simple example, for which vector addition is just field addition
and scalar multiplication is just field multiplication.

• The set of all points in R
n . As already mentioned, this is the most important vector

space for our purposes, with addition and scalar multiplication defined as for n-vectors in
Chapter 1.

• The set of all of the points in a straight line (or plane) through the origin, with vector
addition and scalar multiplication defined in an obvious way. This case will be the subject
of Section 5.4.1.

• The set of all m × n real matrices, often denoted R
m×n , with vector addition and scalar

multiplication defined as for matrices in Chapter 1.
• The set of all polynomials of degree less than or equal to n and with coefficients in F ,

with vector addition and scalar multiplication defined in an obvious way.
• The set of all random variables on a given sample space; see Section 13.4.
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Various results follow from the axioms of Definition 5.4.2 and four of them are contained
in the next theorem.

THEOREM 5.4.1 Let V be a vector space, u be a vector in V and k be a scalar. Then

0u= 0 (5.48)

k0= 0 (5.49)

(−1)u=−u (5.50)

if ku= 0, then k= 0 or u= 0 (5.51)

The proofs of the results in this theorem are not difficult to establish. By way of example,
let us prove the third one, leaving the remaining proofs as exercises; see Exercise 5.14.

Proof: From Axiom 5, we must show that u+ (−1)u= 0.
We have, using Axiom 10, that

u+ (−1)u= 1u+ (−1)u (5.52)

Then, using Axiom 9,

1u+ (−1)u= (1− 1)u= 0u (5.53)

Finally, using (5.48) of the theorem,

0u= 0 (5.54)

�

5.4.1 Subspaces

Certain subsets of a vector space V are themselves vector spaces under the vector addition
and scalar multiplication defined on V . Such a subset, W say, is called a subspace of V . For
example, any straight line through the origin of the plane, such as the line in Figure 5.12, is
a subspace of R2.

In general, the ten axioms of Definition 5.4.2 must be verified for W to show that it is
a subspace of V . However, if V is known to be a vector space, certain axioms need not be
checked as they are “inherited” from V , namely, Axioms 2, 3, 7, 8, 9 and 10. Thus Axioms 1,

W

v1

v2

2

1

Figure 5.12 Subspace of R2
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4, 5 and 6 only need be checked. Fortunately, the following theorem reduces the list further
to Axioms 1 and 6 only.

THEOREM 5.4.2 Let W be a non-empty subset of a vector space V . Then W is a subspace
of V if and only if the following hold:

(a) if u,v∈W , then u+ v∈W ; and
(b) if k is a scalar and u∈W, then ku∈W .

In other words, W is a subspace if and only if it is closed under addition and closed under
scalar multiplication.

Proof:

⇒ If W is a subspace of V , all vector space axioms are satisfied; in particular, Axioms 1
and 6, but these are just (a) and (b) of the theorem.

⇐ Conversely, assume that (a) and (b) hold. Axioms 2, 3, 7, 8, 9 and 10 hold for W since
they are satisfied for all vectors in V . With regard to Axioms 4 and 5, we have from (b)
that, if u∈W, then ku∈W . Let k= 0; it follows that 0u= 0∈W , which is Axiom 4. Let
k=−1; it follows that (−1)u=−u∈W , which is Axiom 5. �

5.4.2 Solution of equation systems

Consider the system of m linear equations in n unknowns:

a11x1 + a12x2 + · · ·+ a1n xn = b1

a21x1 + a22x2 + · · ·+ a2n xn = b2

...

am1x1 + am2x2 + · · ·+ amn xn = bm (5.55)

or in concise matrix notation Ax= b, where the dimensions of the matrices are obvious.
A vector s ∈R

n is a solution!vector if xi = si , i = 1,2, . . . ,n, is a solution of the system.
Suppose the system is homogeneous, i.e. b= 0. Then it can be shown that the set of solution
vectors is a subspace of Rn , as follows.

Given Ax=0, let W be the set of solution vectors, and let s1∈W and s2∈W . Thus As1=0
and As2 = 0. Therefore, A(s1 + s2)=As1 +As2 = 0+ 0= 0 and A(ks1)= kAs1 = k0= 0.
Hence s1 + s2 and ks1 are also solution vectors. As W is closed under addition and scalar
multiplication, it is a subspace of Rn by Theorem 5.4.2. We call this W the solution space
of the system Ax= 0, or the null space or kernel of the matrix A. These concepts will be
defined and explained further in Section 6.3.1.

The non-homogeneous equation Ax= b may or may not have solutions. The system is
consistent if and only if the right-hand side is in the so-called column space of A and there
is a solution. Such a solution is called a particular solution. A general solution is obtained
by adding to some particular solution a generic element of the solution space of the homo-
geneous system Ax= 0. In Chapter 2, the solution of a non-singular square system of linear
equations was studied. Now, we can solve any system by describing the solution space. The
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concept of the column space of a matrix and related ideas are explained in Section 5.4.6,
while the issue of the solution of non-square systems and singular square systems of linear
equations is dealt with further in Section 6.3.2.

5.4.3 Linear combinations and spanning

In the interest of finding the “smallest” subspace of a vector space, V , that contains a
specified set of vectors such as {v1,v2, . . . ,vr }, we state the following definition.

DEFINITION 5.4.3 A linear combination of the vectors v1,v2, . . . ,vr is defined as

k1v1 + k2v2 + · · ·+ kr vr =
r∑

i=1

ki vi (5.56)

where r is any positive integer and k1, k2, . . . , kr are scalars.

EXAMPLE 5.4.1 The vector w= (2,3,4) in R
3 is a linear combination of v1= (5,6,8) and

v2 = (3,3,4). It is easy to show that w= k1v1 + k2v2, where k1 = 1 and k2 =−1:

1(5,6,8)+ (−1)(3,3,4)= (5,6,8)+ (−3,−3,−4)

= (5− 3,6− 3,8− 4)

= (2,3,4)=w (5.57)
♦

On the other hand, w from Example 5.4.3 is not a linear combination of v1 = (5,6,8) and
v3= (−3,3,−4). It is left as an exercise to verify this and to find a vector w∗ that is a linear
combination of v1 and v3; see Exercise 5.3.

The expression in Definition 5.4.3 should be familiar from the definitions of linear
independence and linear dependence given in Definition 3.6.2.

An implication of Theorem 5.4.2 is that a subspace is closed under arbitrary linear com-
binations of vectors contained within it. The following theorem, whose proof follows by
induction from Theorem 5.4.2 and is the subject of Exercise 5.15, formalizes this.

THEOREM 5.4.3 Let W be a subset of a real vector space V . Then W is a vector subspace
of V if and only if

∑r
i=1 ki vi ∈W where r is any positive integer, k1, k2, . . . , kr are scalars

and the vectors v1,v2, . . . ,vr ∈W .

DEFINITION 5.4.4 If S is a set of vectors in V and if every vector in V can be expressed as
a linear combination of vectors in S, then we say that S spans or generates V .

When S is finite, say S = {v1,v2, . . . ,vr }, then we often just say that the vectors v1,
v2, . . . ,vr span or generate V .

EXAMPLE 5.4.2 The vectors i= (1,0,0), j= (0,1,0) and k= (0,0,1) span R
3 since every

vector (a,b, c) in R
3 can be written as ai+ bj+ ck, a linear combination of i, j and k:

ai+ bj+ ck= a(1,0,0)+ b(0,1,0)+ c(0,0,1)

= (a,0,0)+ (0,b,0)+ (0,0, c)
= (a,b, c) (5.58)

♦
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The vectors (2,0,0), (0,−5,0) and (0,0,3) also span R
3; so do i, j, k and l= (2,3,−4).

Verification of these last two statements is left as an exercise; see Exercise 5.4.
A given (finite or infinite) set of vectors may or may not span a vector space V . However,

if we group together all vectors that are expressible as linear combinations of the vectors
in S, then we obtain a subspace of V, called the (linear) space spanned by S and denoted
lin S. The following definition formalizes this idea.

DEFINITION 5.4.5 Let S be a set of vectors in the vector space V . Then the linear space
spanned or generated by the spanning set or generating set S is

lin S=
{ r∑

i=1

ki vi : vi ∈ S, ki ∈R, i = 1,2, . . . , r; r = 1,2, . . .

}
(5.59)

This is the subject of the following theorem.

THEOREM 5.4.4 If S is a set of vectors in the vector space V and W ≡ lin S, then

(a) W is a subspace of V ; and
(b) W is the smallest subspace of V that contains S, in the sense that every other subspace

that contains S must contain W .

The proof of the first part of this theorem follows from Theorem 5.4.2 by showing that W
is closed under addition and scalar multiplication; the proof of the second part is even more
straightforward. The details are left as an exercise; see Exercise 5.16.

For example, if v1 ∈R
2 (or R3), then lin{v1} is the set of all scalar multiples of v1, i.e. a

straight line through the origin. More specifically, if v1 = (0,1), then lin{v1} is one of the
axes. If v2 = (2,1), then lin{v2} is the line shown in Figure 5.12, while lin{v1,v2}=R

2.
Similarly, taking the case of R3, if v1 = (1,0,0) and v2 = (0,1,0), then lin{v1,v2} is the

entire horizontal plane in R
3. For arbitrary vectors v3 = (a3,b3, c3) and v4 = (a4,b4, c4),

lin{v3,v4} is a plane through the origin, assuming v3 and v4 are linearly independent.
We are now in a position, as noted in Section 5.3, to provide an interpretation of the angle

between any two vectors in n-space, say, u and v. W ≡ lin{u,v} is a (two-dimensional) plane
through the origin in n-space, as long as u and v are linearly independent. The angle between
u and v can be easily measured in this plane. If u and v are linearly dependent, then the angle
between them is 0, if they are in the same direction, or π , if they are in opposite directions.

5.4.4 Linear independence

The idea of linear independence, introduced in Definition 3.6.2, is of importance in finding
spanning sets of vectors with the smallest number of vectors. Recall that the set of vectors
S = {v1,v2, . . . ,vr } is said to be linearly independent if and only if k1v1 + k2v2 + · · · +
kr vr = 0 holds only for ki = 0, for all i = 1,2, . . . , r . Otherwise, S is a linearly dependent
set.

For example, for v1,v2 ∈R
3, where v1 = (2,3,4) and v2 = (5,6,8), k1v1 + k2v2 = 0 only

if k1= k2=0; therefore S={v1,v2} is a linearly independent set of vectors in R
3. Similarly,

it can be shown that if ei = (0,0, . . . ,0,1,0, . . . ,0)∈R
n are vectors all of whose elements

are zero except for the element in the i th position, which is unity, S = {e1, e2, . . . , en} is
a linearly independent set of vectors in R

n . By contrast, v1 = (2,3,4), v2 = (5,6,8) and
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v3 = (4,6,8) constitute a linearly dependent set of vectors in R
3 since, as is easily verified,

k1v1 + k2v2 + k3v3 = 0 with k1 = 1, k2 = 0 and k3 =−1/2.
The following is a useful theorem on the linear dependence of vectors.

THEOREM 5.4.5 A (finite) set with two or more vectors is linearly dependent if and only if
at least one vector is a linear combination of the others.

Proof:

⇐ Let S = {v1,v2, . . . ,vr } and suppose that v1 is a linear combination of the others, i.e.
v1 = k2v2 + · · ·+ kr vr , where not all ki = 0. Then v1 − k2v2 − · · ·− kr vr = 0, where not
all ki = 0, which implies linear dependence, by definition.

⇒ Now suppose k1v1 + k2v2 + · · · + kr vr = 0 and, say, k1 = 0, i.e. assume that the vectors
are linearly dependent. Then it follows that

v1 =−k2

k1
v2 − k3

k1
v3 − · · ·− kr

k1
vr (5.60)

�

The geometry of linearly dependent and linearly independent vectors is worthy of note.
Take the case of two vectors v1,v2 ∈R2 and suppose, first, that v1 and v2 are linearly depen-
dent, say v1 − 1

2 v2 = 0 (k1 = 1, k2 =−1/2). From this equation, and in accordance with
Theorem 5.4.5, we have that v1 = 1

2 v2 and v2 = 2v1. Each vector is a scalar multiple of the
other and lies in the same line (subspace) through the origin, such that the length of v1 is half
that of v2 and the length of v2 is twice that of v1. Now suppose that v1 and v2 are linearly
independent, hence k1v1 + k2v2 = 0 only for k1 = k2 = 0. It is now not possible to write one
of the vectors as a scalar multiple of the other and so, geometrically, the two vectors cannot
lie in the same line through the origin; the angle between them, θ , is such that 0< θ < π .
These two situations for two vectors in R

2 are depicted in Figure 5.13.
The case of two vectors in R

3 is similar. If two vectors are linearly dependent, they lie
in the same line through the origin; if they are linearly independent, there is a non-zero
angle between them and they point in different directions. The algebraic and diagrammatic
details for this case are left as an exercise; see Exercise 5.6. The situation is somewhat more
complicated for three linearly dependent vectors in R

3. In this case, the vectors could all

v1

v2

v1

v2

(a) (b)

Figure 5.13 Linearly dependent and linearly independent vectors
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lie in the same line through the origin but, more generally, they would lie in the same plane
through the origin. Three linearly independent vectors in R

3 are not so constrained. However,
four or more vectors in R

3, or three or more vectors in R
2, must be linearly dependent. This

fact is generalized and stated formally in the next theorem.

THEOREM 5.4.6 Let S={v1,v2, . . . ,vr } be a set of vectors in R
n. If r>n, then S is linearly

dependent.

Proof: Let vi = (vi1, vi2, . . . , vin), i = 1,2, . . . , r , and consider the equation

k1v1 + k2v2 + · · ·+ kr vr = 0 (5.61)

which is a homogeneous system of n linear equations in the r unknowns k1, k2, . . . , kr . Such
a system has non-trivial solutions, as will be proved in Theorem 6.3.5 and its corollary.
Therefore, S={v1,v2, . . . ,vr } is a linearly dependent set by Definition 3.6.2. �

5.4.5 Basis and dimension

The following definitions arise from the ideas just discussed and will in their turn be used in
the following sections.

DEFINITION 5.4.6 If V is a vector space and S = {v1,v2, . . . ,vr } is a finite set of vectors
in V, then S is called a basis for V if:

(a) S is linearly independent; and
(b) S spans V .

Put another way, S is said to be a basis for V if all v ∈ V can be expressed as linear
combinations of the r linearly independent vectors v1,v2, . . . ,vr .

By way of illustration, recall the linearly independent vectors e1, e2, . . . , en ∈R
n defined

in the previous section, i.e. e1 = (1,0, . . . ,0), e2 = (0,1,0, . . . ,0), . . . , en = (0, . . . ,0,1),
which form a linearly independent set, S, in R

n . Since this S also spans Rn , i.e. any vector
v= (v1, v2, . . . , vn) can be written as v= v1e1 + v2e2 + · · · + vnen , then S is a basis for Rn .
In fact, this basis is called the standard basis for Rn . Thus, for instance, S={e1, e2}, where
e1 = (1,0) and e2 = (0,1) is the standard basis for R2.

Note that vector spaces do not have a unique basis: any set of vectors in the space
constitutes a basis for the space, as long as it is a linearly independent and spanning set.

EXAMPLE 5.4.3 Defining v1 = (1,2) and v2 = (2,9), the set S= {v1,v2} is a basis for R2,
though not the standard basis. This is because, first, v1 and v2 are linearly independent, since

k1v1 + k2v2 = 0 (5.62)

or

Ak≡
[

1 2
2 9

][
k1

k2

]
=
[

k1 + 2k2

2k1 + 9k2

]
=
[

0
0

]
= 0 (5.63)
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has only the trivial solution k1 = k2 = 0, which follows from the fact that the matrix A=[
1 2
2 9

]
is non-singular and, hence, invertible, implying that k=A−10= 0.

Second, an arbitrary vector, say, b= (b1,b2), can be expressed as b= k1v1+ k2v2, a linear
combination of the vectors in S. To see this, set

(b1,b2)= k1(1,2)+ k2(2,9)

= (k1 + 2k2,2k1 + 9k2) (5.64)

or

b=
[

b1

b2

]
=
[

k1 + 2k2

2k1 + 9k2

]
=
[

1 2
2 9

][
k1

k2

]
=Ak (5.65)

For any choice of b = 0, this equation has a non-trivial solution for k= [ki ]2×1, namely
k=A−1b, again since A is non-singular and, hence, invertible. The ki can, of course, be
obtained by Cramer’s rule in this case.

Suppose b= (10,−10). Then

k=A−1b=
[

1 2
2 9

]−1 [ 10
−10

]

=
[

9
5 − 2

5

− 2
5

1
5

][
10

−10

]

=
[

22
−6

]
(5.66)

by direct matrix calculations using the inverse of A. Alternatively, using Cramer’s rule,

k1 = |A1|
|A| =

110

5
= 22 (5.67)

and

k2 = |A2|
|A| =

−30

5
=−6 (5.68)

where

A1 =
[

10 2
−10 9

]
and A2

[
1 10
2 −10

]
(5.69)

♦

Another way of stating the fact illustrated in Example 5.4.5 is that any two non-collinear
vectors in R

2 form a basis. We may also note the following points.

• If S= {v1,v2, . . . ,vr } is a linearly independent set in a vector space V , then S is a basis
for the subspace lin{v1,v2, . . . ,vr }, since it is linearly independent and, by definition of
lin{v1,v2, . . . ,vr }, S spans lin{v1,v2, . . . ,vr }.
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• If S={v1,v2, . . . ,vn} is a basis for V , then every subset of V with more than n vectors is
linearly dependent. The proof of this proposition is not difficult and is left as an exercise;
see Exercise 5.17.

• Any two, or more, bases for a (finite) vector space V have the same number of vectors.
The proof of this follows from the previous assertion.

The next definition relates to the number of vectors in a basis.

DEFINITION 5.4.7 The dimension of a (finite) vector space V , denoted dim(V ), is the
unique number of vectors in a basis for V . By convention we also define the dimension of
the set containing just the zero vector to be zero.

Thus dim(Rn)= n, and dim({0})= 0.
When we know that a vector space, V , has dimension n, then to determine whether S =

{v1,v2, . . . ,vn} is a basis for V , we only have to check whether S is a linearly independent
set or whether S spans V . The remaining condition will hold automatically. We formalize
this fact in the following theorem, whose proof is left as an exercise; see Exercise 5.18.

THEOREM 5.4.7 Let V be an n-dimensional vector space.

(a) If S = {v1,v2, . . . ,vn} is a set of n linearly independent vectors in V , then S is a basis
for V .

(b) If S={v1,v2, . . . ,vn} is a set of n vectors that spans V , then S is a basis for V .

5.4.6 Row and column space of a matrix, and rank

Consider the m × n matrix A =
⎡⎢⎣a11 . . . a1n
...

...

am1 . . . amn

⎤⎥⎦. This matrix may be written as

A =

⎡⎢⎢⎢⎣
r1

r2
...

rm

⎤⎥⎥⎥⎦, where ri denotes the 1 × n matrix that is the i th row of A; or as A =

[c1 c2 . . . cn], where c j is the m× 1 matrix that is the j th column of A. In other words,
A may be partitioned according to its rows or its columns. Further, each row may be thought
of as a vector in R

n and each column as a vector in R
m .

DEFINITION 5.4.8

(a) The row space of an m×n matrix A is the vector subspace of Rn spanned by the m rows
of A.

(b) The column space of an m × n matrix A is the vector subspace of Rm spanned by the
n columns of A.

DEFINITION 5.4.9

(a) The row rank of a matrix is the dimension of its row space.
(b) The column rank of a matrix is the dimension of its column space.3
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THEOREM 5.4.8 The row space and the column space of any matrix have the same
dimension.

Proof: The idea of the proof is that performing elementary row operations on a matrix
does not change either the row rank or the column rank of the matrix.

By inspection, it is clear that the row rank and the column rank of a matrix in reduced
row-echelon form are equal to each other and to the dimension of the identity matrix in the
top left corner. In fact, elementary row operations do not change the row space of the matrix.
They do change the column space of a matrix, but not the column rank, as we shall now see.

If A and B are row-equivalent matrices, i.e. if they can be formed from each other by
elementary row operations, then the equations Ax= 0 and Bx= 0 have the same solution
space.

If a subset of columns of A is a linearly dependent set, then the solution space contains a
vector in which the corresponding entries are non-zero and all other entries are zero.

Similarly, if a subset of columns of A is a linearly independent set, then the solution space
does not contain a vector in which the corresponding entries are non-zero and all other entries
are zero.

The first result implies that the corresponding columns of B are also linearly dependent.
The second result implies that the corresponding columns of B are also linearly

independent.
It follows that the dimension of the column space is the same for both matrices. �

It is for this reason that the dimension of the row and column spaces of A is called, simply,
the rank of A, denoted by ρ(A). It follows that ρ(A)≤min{m,n}.

EXAMPLE 5.4.4 Let A =
[

3 2 1
4 −2 0

]
. Here, the rows r1 and r2 constitute a set,

Sr ={r1, r2}, of two vectors in R
3, and since k1r1 + k2r2 = 0 has only the solution k1 =

k2 = 0, Sr is a linearly independent set and ρ(A) = 2. The columns of A form a set,
Sc = {c1, c2, c3}, of three vectors in R

2 so, by Theorem 5.4.6, they must be linearly depen-
dent. Having established that ρ(A)=2, we have that any two of the three columns are linearly
independent. ♦

In cases such as that illustrated in Example 5.4.6, where the rank of a matrix A equals
the number of rows in the matrix, we say that A has full row rank. It is noteworthy that the
determinant of at least one of the 2× 2 submatrices that may be formed by pairs of columns
of A is non-zero; in fact, in the case in question, all three such submatrices have non-zero
determinants and, hence, are non-singular.

EXAMPLE 5.4.5 Let A=
[

1 −2
2 −4

]
. Here, Sr = {r1, r2} and Sc = {c1, c2} are sets of two

vectors in R
2. It is easily verified that k1r1+ k2r2=0 has non-trivial solutions for k1 and k2,

and k∗1c1 + k∗2c2 = 0 has a non-trivial solution for k∗1 and k∗2 , hence ρ(A)< 2. ♦

In the case in Example 5.4.6, A does not have full row, or full column, rank. It is left as
an exercise to confirm that, in fact, ρ(A)= 1 in this case. It may also be noted that |A| = 0,
signifying that A is singular.
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EXAMPLE 5.4.6 Let A =
[

2 1
−1 0

]
. By similar reasoning to that used in the previous

examples, it is easily shown that in this case ρ(A)= 2; and we note that as |A| = 0, A is
non-singular. ♦

More generally, and combining results from this and previous chapters, if A is n× n, then
ρ(A)= n implies, among other things, that:

• row vectors of A, ri , are linearly independent;
• column vectors of A, c j , are linearly independent;
• Sr ={r1, r2, . . . , rn} is a basis for lin Sr =R

n ;
• Sc ={c1, c2, . . . , cn} is a basis for lin Sc =R

n ;
• det(A) = 0;
• A is invertible;
• Ax= 0 has only the trivial solution, x=A−10= 0; and
• Ax=b is consistent, i.e. has a unique solution for every n×1 matrix b, namely x=A−1b.

The following theorem concerns consistency for more general systems of equations than
that in the immediately preceding point.

THEOREM 5.4.9 An m× n system of linear equations Ax= b is consistent if and only if b
is in the column space of A.

Proof: Let k be a solution of Ax=b. We may therefore write

Ak=
⎡⎢⎣a11 . . . a1n
...

...

am1 . . . amn

⎤⎥⎦
⎡⎢⎣k1
...

kn

⎤⎥⎦=
⎡⎢⎣b1
...

bm

⎤⎥⎦=b (5.70)

as

k1c1 + k2c2 + · · ·+ kncn =b (5.71)

where c1, c2, . . . , cn are the columns of A. Since the left-hand side of (5.71) is a linear com-
bination of the column vectors, ci , i = 1,2, . . . ,n, b is a linear combination of the ci , hence
b lies in lin{c1, c2, . . . , cn}, the column space of A.

The remainder of this proof is straightforward and is left as an exercise; see Exercise 5.19.
�

5.4.7 Orthonormal bases

Usually, it is possible to choose a basis for a vector space entirely at one’s discretion. How-
ever, some kinds of basis are more convenient to work with than others. One such is an
orthogonal basis; another, which is a special case of an orthogonal basis, is an orthonor-
mal basis. As defined above, a pair of vectors is said to be orthogonal if and only if its dot
product u · v= 0 or, alternatively, the angle between the vectors, θ = 90◦. A set of vectors is
orthogonal if all pairs of vectors in the set are orthogonal or, in other words, the vectors are
mutually orthogonal.

DEFINITION 5.4.10 A set of vectors is orthonormal if it is orthogonal and each vector has
norm (length) unity.
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EXAMPLE 5.4.7 Let v1 = (0,1,0), v2 =
(

1√
2
,0, 1√

2

)
, v3 =

(
1√
2
,0, −1√

2

)
. The set S =

{v1,v2,v3} is orthonormal since

v1 · v2 = v1 · v3 = v2 · v3 = 0 (5.72)

and

‖vi‖= 1 ∀ i (5.73)
♦

Normalization

Using ‖kv‖= |k|‖v‖, the vector w= (1/‖v‖)v has norm 1, since

‖w‖=
∥∥∥∥ 1

‖v‖v

∥∥∥∥= ∣∣∣∣ 1

‖v‖
∣∣∣∣‖v‖= 1

‖v‖‖v‖= 1 (5.74)

One of the merits of an orthonormal basis is that it is very easy to express a vector in terms
of it, as indicated in the following theorem.

THEOREM 5.4.10 If S = {v1,v2, . . . ,vn} is an orthonormal basis for the vector space V ,
and u is any vector in V, then u= (u · v1)v1 + (u · v2)v2 + · · ·+ (u · vn)vn.

Proof: Since S is a basis for V , u= k1v1 + k2v2 + · · ·+ knvn .
Consider the dot product u · vi = (k1v1 + k2v2 + · · ·+ knvn) · vi .
Since S is orthonormal, ki vi · vi = ki 1 and k j v j · vi = 0, i = j .
Therefore, u · vi = ki . �

The usefulness of this result becomes apparent when a vector is expressed in terms of a
non-orthonormal basis, because in this case it is usually necessary to solve a system of equa-
tions to obtain the ki . That orthogonality, hence orthonormality, implies linear independence
is confirmed in the next theorem.

THEOREM 5.4.11 If S = {v1,v2, . . . ,vn} is an orthogonal set of non-zero vectors in the
vector space V , then S is linearly independent.

Proof: Consider the equation k1v1 + k2v2 + · · ·+ knvn = 0.
For each vi in S it follows that (k1v1 + k2v2 + · · · + knvn) · vi = 0 · vi = 0 or ki vi · vi = 0,

since k j v j · vi = 0 by orthogonality for i = j .
Now vi · vi =‖vi‖2> 0; therefore ki = 0.
This argument applies for all i , therefore S is linearly independent. �

Recalling the vectors v1 = (0,1,0), v2 =
(

1√
2
,0, 1√

2

)
, and v3 =

(
1√
2
,0, −1√

2

)
from

Example 5.4.7, in which it was shown that S = {v1,v2,v3} is an orthonormal set, then
by Theorem 5.4.11 this S is linearly independent. Because R

3 is of dimension three, it
follows that S = {v1,v2,v3} is an orthonormal basis for R

3. The standard basis for R
3,

S={e1, e2, e3}, where e1 = (1,0,0), e2 = (0,1,0) and e3 = (0,0,1), is also an orthonormal
basis, as may be easily verified; see Exercise 5.21.

By convention, the standard basis is implicitly assumed when referring to vectors.
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EXAMPLE 5.4.8 The vector u= (1,2,3), written explicitly in terms of the standard basis, is
u= k1e1+ k2e2+ k3e3, where ki =u · ei = i, i = 1,2,3. The elements of u are just the scale
factors, or coordinates, associated with the corresponding standard basis vectors. In terms of
the basis S={v1,v2,v3} from Example 5.4.7, u= k1v1+ k2v2+ k3v3, where the coordinates
are k1 =u · v1 = 2, k2 =u · v2 = 2

√
2 and k3 =u · v3 =−

√
2, by Theorem 5.4.10. ♦

Example 5.4.7 shows why the standard basis is generally preferred.

Construction of orthonormal bases: the Gram–Schmidt process

It is often useful to be able to construct orthonormal bases for vector spaces. One well-known
method of doing this is the Gram–Schmidt process.4 This process was referred to in note 6
of Chapter 3 in the context of a procedure for orthogonal diagonalization of a symmetric
matrix. The details of the process are described in this section, but we begin with a further
theorem that is required. The role of the previous two theorems will be clear. It might also be
noted that the result involves a generalization of the idea of the projection of one vector, u,
onto another, v, defined earlier, i.e.

projvu= u · v
‖v‖2

v (5.75)

although in what follows ‖v‖2 = 1 because of orthonormality. The proof of the following
theorem is not given, as it may be obtained as an exercise by adapting the proof of the
simpler Theorem 5.2.4; see Exercise 5.22.

THEOREM 5.4.12 Let V be a vector space and let S = {v1,v2, . . . ,vr } be an orthonormal
set of vectors in V . If W denotes the subspace spanned by v1,v2, . . . ,vr , i.e. W = lin S, then
every vector u in V can be expressed in the form u=w1 +w2, where w1 ∈ W and w2 is
orthogonal to W by putting

w1 = (u · v1)v1 + (u · v2)v2 + · · ·+ (u · vr )vr (5.76)

and

w2 =u−w1 (5.77)

In keeping with the terminology used for the earlier material on projections onto sin-
gle vectors, the vector w1 is called the orthogonal projection of u onto the subspace W ,
denoted projW u, and w2 = u− projW u is called the component of u orthogonal to W . The
idea is illustrated in Figure 5.14 for a vector u ∈ R

3 and a two-dimensional subspace W ,
spanned by vectors v1 and v2.

The idea of orthogonal projection onto a subspace is further illustrated in the following
example, which uses the same three vectors in R

3 as were used in the previous example.

EXAMPLE 5.4.9 It has already been shown in the Example 5.4.7 that the vectors v1 =
(0,1,0), v2 =

(
1√
2
,0, 1√

2

)
and v3 =

(
1√
2
,0, −1√

2

)
are orthonormal. By Theorem 5.4.11, we

also know that they are linearly independent. Now consider the subset S={v2,v3}, the linear
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u

w2

W

w1

v1

v2

Figure 5.14 Orthogonal projection in R
3

space spanned by S, W = lin S, and the additional vector u= (1,1,1) in R
3; and let us find

w1 and w2. First, the orthogonal projection of u on W is

w1 = projW u= (u · v2)v2 + (u · v3)v3

=
( 3∑

i=1

uiv2i

)(
1√
2
,0,

1√
2

)
+
( 3∑

i=1

uiv3i

)(
1√
2
,0,

−1√
2

)

=√2

(
1√
2
,0,

1√
2

)
+ 0

(
1√
2
,0,

−1√
2

)
= (1,0,1) (5.78)

The component of u orthogonal to W is then

w2 =u−w1 = (1,1,1)− (1,0,1)= (0,1,0) (5.79)
♦

A useful further exercise, which is left to the reader, is to obtain the result in (5.78)
using matrix notation and methods; see Exercise 5.8. This matrix approach will be used
in Section 14.2.

The way is now prepared for the main result on the construction of orthonormal bases,
which is given in the form of a theorem and proof.

THEOREM 5.4.13 Every non-zero, finite-dimensional vector space has an orthonormal
basis.

Proof: The proof of this theorem yields the Gram–Schmidt process for constructing
orthonormal bases from arbitrary given bases.
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Let V be an n-dimensional vector space and let S = {u1,u2, . . . ,un} be any basis for V .
An orthonormal basis for V may be obtained as follows:

(a) Put v1 =u1/‖u1‖. Thus ‖v1‖= 1 by the familiar process of normalization.
(b) The vector v2 is chosen to be the normalized component of u2 orthogonal to projW1

u2,

where W1 is the subspace spanned by v1, i.e. W1 = lin{v1}. Therefore,

v2 =
u2 − projW1

u2

‖u2 − projW1
u2‖ =

u2 − (u2 · v1)v1

‖u2 − (u2 · v1)v1‖ (5.80)

The denominator in (5.80) cannot be zero, since this would imply that

u2 = projW1
u2 = (u2 · v1)v1 = (u2 · v1)

‖u1‖ u1 = ku1 (5.81)

i.e. that u2 is a multiple of u1, contradicting the linear independence of the basis S.
The construction of v1 and v2 from u1 and u2 is illustrated in Figure 5.15.

(c) The vector v3 is chosen to be the normalized component of u3 orthogonal to projW2
u3,

where W2 is the subspace spanned by v1 and v2, i.e. W2 = lin{v1,v2}. Therefore,

v3 =
u3 − projW2

u3

‖u3 − projW2
u3‖ =

u3 − (u3 · v1)v1 − (u3 · v2)v2

‖u3 − (u3 · v1)v1 − (u3 · v2)v2‖ (5.82)

Again, the linear independence of S ensures that the denominator in (5.82) is non-zero
but the details are left as an exercise. The construction of v3 from v1, v2 and u3 is
illustrated in Figure 5.16.

The process continues like this, with the typical orthonormal basis vector, vi , being
obtained as

vi =
ui − projWi−1

ui

‖ui − projWi−1
ui‖ =

ui − (ui · v1)v1 − · · ·− (ui · vi−1)vi−1

‖ui − (ui · v1)v1 − · · ·− (ui · vi−1)vi−1‖ (5.83)

though it is not possible to illustrate geometrically the case for i > 3. The process terminates
when vn , and thus the orthonormal basis for V has been obtained. �

projW1
u2

u1

u2 − projW1
u2

v1

v2

0

u2

Figure 5.15 Gram–Schmidt process in R
2
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u3

u3 − projW1
u3

v1

v2

v3

W2

Figure 5.16 Gram–Schmidt process in R
3

EXAMPLE 5.4.10 Consider the basis S={u1,u2} for R2, where u1= (1,2) and u2= (0,2).
It is easy to verify that u1 ·u2 =0 and ‖ui‖ =1, i=1,2, and, hence, that S is not an orthonor-
mal basis. Let us use the Gram–Schmidt procedure to construct an orthonormal basis for R2

based on S.
First, set v1 =u1/‖u1‖= 1√

5
(1,2)=

(
1√
5
, 2√

5

)
. Next, define

v2 =
u2 − projW1

u2

‖u2 − projW1
u2‖ =

u2 − (u2 · v1)v1

‖u2 − (u2 · v1)v1‖

=
(0,2)− 4√

5

(
1√
5
, 2√

5

)
∥∥∥(0,2)− 4√

5

(
1√
5
, 2√

5

)∥∥∥ =
(− 4

5 ,
2
5

)∥∥(− 4
5 ,

2
5

)∥∥
=
√

5

2

(
−4

5
,

2

5

)
=
(−2√

5
,

1√
5

)
(5.84)

It is straightforward to verify that ‖vi‖ = 1, i = 1,2, and v1 · v2 = 0. Thus we have that
S={v1,v2} is an orthonormal basis for R2. ♦

Example 5.4.7 is very simple. For a somewhat more challenging example, see
Exercise 5.9.

5.4.8 Coordinates and change of basis

As may now be apparent, there is a close relationship between the idea of a basis and the
familiar idea of a coordinate system, based on rectangular or Cartesian coordinates. In such
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u

e1

e2

u1e1

u2e2

v1

v2

av1

bv2

Figure 5.17 Change of basis using rectangular coordinates

a coordinate system, a vector, u, is associated with the numbers (coordinates) obtained by
projecting the terminal point of the vector parallel to the direction of each of the axes, as
in Figure 5.17. This corresponds to using the standard basis vectors e1 and e2, introduced
earlier, such that u= u1e1 + u2e2, where u1 and u2 are the coordinates. However, we could
associate the same vector u with some other pair of vectors, say, the orthonormal vectors v1

and v2, such that u= av1 + bv2, as also shown in Figure 5.17. In this case, the numbers a
and b are the coordinates relative to the alternative pair of vectors. As any vector in R

2 may
be expressed in terms of v1 and v2, the set S={v1,v2} is a basis for R2.

For the purposes of associating numbers, i.e. coordinates, with points in R
2, given basis

vectors v1 and v2, it is not essential that the basis be orthonormal. Any basis for R2 will
suffice, as shown in Figure 5.18, where v1 and v2 are not orthonormal nor even orthogonal.
Nevertheless, we can regard the numbers c and d as legitimate coordinates of the vector u,
since u= cv1 + dv2.

This generalized notion of coordinates is useful and extends to higher-dimensional
Euclidean space (and more general vector spaces). Before we examine this, however, we
require some preliminary results.

Preliminaries

THEOREM 5.4.14 If S= {v1,v2, . . . ,vn} is a basis for a vector space V, then every vector
u ∈ V can be expressed uniquely as a linear combination of the vi , i = 1,2, . . . ,n, i.e. u=
c1v1 + c2v2 + · · ·+ cnvn in exactly one way.

Proof: Suppose u=c1v1+c2v2+· · ·+cnvn and u=k1v1+k2v2+· · ·+knvn . Subtracting
these two equations we have 0= (c1 − k1)v1 + (c2 − k2)v2 + · · ·+ (cn − kn)vn .

Since v1,v2, . . . ,vn are basis vectors, they are linearly independent and (ci − ki ) = 0
for all i . Therefore ci = ki for all i . �
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u

v1

v2
cv1

dv2

Figure 5.18 Change of basis using non-rectangular coordinates

DEFINITION 5.4.11

(a) If S = {v1,v2, . . . ,vn} is a basis for V and u= c1v1 + c2v2 + · · · + cnvn ∈ V , then the
scalars c1, c2, . . . , cn are called the coordinates of u relative to, or with respect to, the
basis S.

(b) The coordinate vector of u with respect to S is the vector (u)S = (c1, c2, . . . , cn)∈R
n .

(c) The coordinate matrix of u with respect to S is the n × 1 matrix [u]S =
[c1 c2 . . . cn]�.

EXAMPLE 5.4.11 Let v1= (3,1) and v2= (−1,2). Find the coordinate matrix of u= (5,10)
relative to S={v1,v2}, which is a basis for R2.

We have u= c1v1 + c2v2 = c1(3,1)+ c2(−1,2)= (5,10). Rewriting this equation, we
have the simple system

3c1 − c2 = 5 (5.85)

c1 + 2c2 = 10 (5.86)

the solution of which yields c1 = 20
7 and c2 = 25

7 . Therefore, [u]S = 1
7 [20 25]�. Derivation

of the solution, which is left as an exercise, is easy by direct manipulation of the two equa-
tions or by Cramer’s rule or a matrix method. ♦

As a further exercise, the reader might illustrate the solution in Example 5.4.8 graphically;
see Exercise 5.10.

Change of basis

THEOREM 5.4.15 When changing the basis for a vector space, say from S={v1,v2, . . . ,vn}
to S∗ = {v∗1,v∗2, . . . ,v∗n}, the coordinate matrix [u]S of some vector u is related to the new
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coordinate matrix [u]S∗ by the following equation:

[u]S =P[u]S∗ , where P= [
[v∗1]S [v∗2]S . . . [v∗n]S

]
(5.87)

i.e. the columns of P are the coordinate matrices of the new basis vectors relative to the old
basis. The matrix P is called the transition matrix from S∗ to S.

Proof: Let [u]S∗ =
[
k1 k2 . . . kn

]�
so that

u= k1v∗1 + k2v∗2 + · · ·+ knv∗n (5.88)

Now let [v∗i ]S = [ci1 ci2 . . . cin]�, i = 1,2, . . . ,n, i.e.

v∗i = ci1v1 + ci2v2 + · · ·+ cinvn (5.89)

Substituting (5.89) in (5.88) we have

u=
n∑

i=1

ki (ci1v1 + ci2v2 + · · ·+ cinvn) (5.90)

Hence

[u]S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
i

ki ci1∑
i

ki ci2

...∑
i

ki cin

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
c11 c21 . . . cn1

c12 c22 . . . cn2
...

...
...

c1n c2n . . . cnn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

k1

k2
...

kn

⎤⎥⎥⎥⎦=P[u]S∗ (5.91)

�

If this derivation seems involved, a useful exercise would be to do the corresponding
derivation for two-dimensional space.

EXAMPLE 5.4.12 For S={v1,v2}, v1= (1,0) and v2= (0,1), i.e. the standard basis for R2,
and S∗ = {v∗1,v∗2}, v∗1= (1,1) and v∗2= (2,1), a non-standard basis for R2, find the transition
matrix P from S∗ to S, find [u]S if [u]S∗ = [−3 5]�, and write u in terms of each of the
bases.

We have by inspection that v∗1 = v1 + v2 and [v∗1]S = [1 1]�. Similarly, v∗2 = 2v1 + v2

and [v∗2]S = [2 1]�. Therefore, P=
[

1 2
1 1

]
and [u]S =P[u]S∗ =

[
1 2
1 1

][−3
5

]
=
[

7
2

]
.

In terms of S, u= 7v1 + 2v2 = (7,2). In terms of S∗, u=−3v∗1 + 5v∗2 = (7,2). ♦

The derivation of the transition matrix from S to S∗ in Example 5.4.8 is left as an exercise;
see Exercise 5.11. The result illustrates the following theorem.
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THEOREM 5.4.16 If P is the transition matrix from a basis S∗ to a basis S for a finite-
dimensional vector space V , then:

(a) P is invertible; and
(b) P−1 is the transition matrix from S to S∗.

Proof: We establish the result by showing that PQ= I, where Q is the transition matrix
from S to S∗.

Let PQ= [aij]n×n , where n is the dimension of V . From Theorem 5.4.15, we have that

[u]S =P[u]S∗ and [u]S∗ =Q[u]S (5.92)

for all u ∈ V . Substituting for [u]S∗ in the first equation, using the right-hand side of the
second, gives

[u]S =PQ[u]S (5.93)

for all u∈ V . Putting u= e1 in (5.93) gives⎡⎢⎢⎢⎣
1
0
...

0

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
0
...

0

⎤⎥⎥⎥⎦ (5.94)

or ⎡⎢⎢⎢⎣
1
0
...

0

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎣

a11

a21
...

an1

⎤⎥⎥⎥⎦ (5.95)

Similarly, successive substitutions of u= e2, u= e3, . . . ,u= en in (5.93) yield⎡⎢⎢⎢⎢⎢⎣
0
1
0
...

0

⎤⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎣

a12

a22

a32
...

an2

⎤⎥⎥⎥⎥⎥⎦ , . . . ,

⎡⎢⎢⎢⎢⎢⎣
0
0
...

0
1

⎤⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎣

a1n

a2n
...

a(n−1)n

ann

⎤⎥⎥⎥⎥⎥⎦ (5.96)

Therefore, PQ= I; hence, Q=P−1. �

Continuing the previous example to further illustrate Theorem 5.4.16, we have P=
[

1 2
1 1

]
and [u]S = [7 2]�. Inverting P we get P−1 =

[−1 2
1 −1

]
, which is precisely the matrix
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that results for that part of the example left as an exercise. Now [u]S∗ = P−1[u]S =[−1 2
1 −1

][
7
2

]
=
[−3

5

]
, as given in the example.

There follows another interesting theorem on transition matrices.

THEOREM 5.4.17 If P is the transition matrix from one orthonormal basis to another
orthonormal basis for a finite-dimensional vector space V , then P−1 = P�, i.e. P is
orthogonal.5

We leave the proof of this theorem as an exercise (see Exercise 5.24) but illustrate it in the
next example.

EXAMPLE 5.4.13 Let S = {v1,v2} be the standard orthonormal basis for R
2, as speci-

fied fully in the previous example, and let S∗ = {v∗1,v∗2}, where v∗1 =
(
−1√

2
, −1√

2

)
and

v∗2 =
(

1√
2
, −1√

2

)
, be another orthonormal basis. Derive the transition matrix from each basis

to the other and compare the two.
By inspection we have v∗1 =− 1√

2
v1 − 1√

2
v2 and v∗2 = 1√

2
v1 − 1√

2
v2.

Therefore, P= 1√
2

[−1 1
−1 −1

]
.

Similarly, by inspection, v1 =− 1√
2
v∗1 + 1√

2
v∗2 and v2 =− 1√

2
v∗1 − 1√

2
v∗2.

Therefore, P−1 = 1√
2

[−1 −1
1 −1

]
and it is immediately clear that P−1 =P�. ♦

When a transition matrix is orthogonal, as in Example 5.4.8, we call the change in coor-
dinates an orthogonal coordinate transformation in R

n . As n = 2 in this example, the
orthogonal coordinate transformation is in the plane and it is easy to illustrate this; see
Figure 5.19. The illustration includes the vector u for which [u]S = [1 1]�. It follows that

[u]S∗ =P−1[u]S = 1√
2

[−1 −1
1 −1

][
1
1

]
=
[−√2

0

]
(5.97)

i.e. u=−√2v∗1 + 0v∗2 =−
√

2
(
−1√

2
, −1√

2

)
= (1,1).

EXAMPLE 5.4.14 The vector that has coordinates (x, y) with respect to the standard basis
for R2 has coordinates (x ′, y′)= ( 1

2 (x + y), 1
2 (x − y)

)
with respect to the new basis com-

prising the vectors (1,1) and (1,−1), since by Theorem 5.4.15 the transition matrix from
the standard basis to the new basis is[

1 1
1 −1

]−1

= 1

2

[
1 1
1 −1

]
(5.98)

Thus, recalling the material on conic sections from Section 4.2, the rectangular hyperbola
that has equation x ′2 − y′2 = a2 with respect to the new basis has equation(

x + y

2

)2

−
(

x − y

2

)2

= a2 (5.99)
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with respect to the standard basis, in which the coordinate axes are the asymptotes to the
hyperbola. Expanding the squares reduces (5.99) to

xy= a2 (5.100)
♦

The rectangular hyperbola asymptotic to the coordinate axes, which features in this last
example, is encountered occasionally in economics; see, for example, Exercise 9.17 and
the discussion of total revenue in Section 9.4.

5.4.9 Scalar products

The concept of scalar product will be used later in the book. In this section, we define the
term and give a few examples.

DEFINITION 5.4.12 Given a real vector space V , a scalar product or inner product is a
bi-linear function: V × V →R: (x,y) �→ (x | y) such that the following properties hold.

(a) Symmetry: (x | y)= (y | x) for all x,y∈ V .
(b) Linearity: (ax | y)= a(x | y) for all x,y∈ V and for all a ∈R; also (x+ y | z)= (x | z)+

(y | z) for all x,y, z∈ V .
(c) Non-negativity:6 (x | x)≥ 0 for all x∈ V .

A vector space with the additional structure of a scalar product is called a scalar product
space. Examples of this type of space include the set of real numbers with the standard
multiplication as the scalar product and, more generally, any Euclidean space, Rn , with the
dot product (see Definition 5.2.15) as the scalar product. Given a positive semi-definite n×n
matrix A, (x,y) �→ x�Ay defines a scalar product. If A = I, we just get the dot product.

u (1,1)

v1

(1,0)

v2(0,1)

v∗2 (1/
√

2,−1/
√

2)v∗1(−1/
√

2,−1/
√

2)

Figure 5.19 Orthogonal transformation
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Conversely, any scalar product has a matrix with respect to a given basis {u1,u2, . . . ,un},
defined by ai j = (ui | u j ). By the non-negativity condition in the definition, A is positive
semi-definite. If A is positive definite, then the scalar product itself is said to be positive
definite.

A positive definite symmetric scalar product shares all the familiar properties of the dot
product. In particular, two vectors x and y are said to be orthogonal with respect to a scalar
product if (x | y)= 0, and a set of vectors {x1,x2, . . . ,xk} is said to be orthonormal with
respect to a scalar product if (xi | x j )= δij for all i, j , where δij is the Kronecker delta
introduced in Section 1.5.2. Similarly, the idea of orthogonal projection can be extended to
any scalar product space and the notation x⊥ y can be generalized to denote (x | y)= 0.

Further similarities between a general positive definite symmetric scalar product and the
dot product may be seen using a change of basis. We know that for symmetric positive
definite A there exists a non-singular R such that A=RR�; and we have seen two different
methods of constructing such an R in Section 4.4.1. If we change basis using (R−1)� as
transition matrix, then the scalar product of vectors having coordinates x and y with respect
to the new basis, or (R−1)�x and (R−1)�y with respect to the old basis, is

((R−1)�x)�A(R−1)�y= x�R−1RR�(R−1)�y= x�y (5.101)

Thus the scalar product is just the dot product for the new coordinate system; therefore the
dot product shares all the properties of the scalar product, including symmetry, linearity and
non-negativity as defined above. The new basis vectors are orthogonal with respect to the
scalar product defined by A.

The following theorem, motivated by the discussion of the construction of orthonormal
bases above, makes use of the scalar product concept and introduces the idea of the orthogo-
nal complement of a vector subspace, which will be referred to in the applications discussed
in Sections 14.2.2 and 17.4.1.

THEOREM 5.4.18 If S is a subspace of a real vector space V and (· | ·) is a scalar product
on V , then S⊥ ≡ {y∈ V : y⊥x for all x∈ S} is a vector subspace of V , called the orthogonal
complement of S.

Proof:

(a) (y | x)= 0 for all x∈ S⇒ (ky | x)= k(y | x)= k0= 0 for all k ∈R.
Therefore S⊥ is closed under scalar multiplication.

(b) (y | x)= (z | x)= 0 for all x∈ S⇒ (y+ z | x)= (y | x)+ (z | x)= 0+ 0= 0.
Therefore S⊥ is closed under vector addition. �

A somewhat more general, though similar, idea to the orthogonal complement of a vector
subspace is that of the direct sum of vector subspaces. We end this chapter with a definition
of this concept, which will be referred to in Sections 7.4.1 and 17.4.1.

DEFINITION 5.4.13 Let Wi , i = 1,2, . . . ,n, be subspaces of a finite vector space, V , such
that no Wi contains a non-zero vector belonging to any of the remaining n − 1 subspaces,
i.e. the intersection W1 ∩W2 ∩ · · · ∩Wn = {0} and Wi − {0} are all disjoint. Then the direct
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sum of the Wi is

W1 ⊕W2 ⊕ · · ·⊕Wn ≡
{ n∑

i=1

wi : wi ∈Wi , i = 1,2, . . . ,n

}
(5.102)

Thus each vector in the direct sum W1 ⊕ W2 ⊕ · · · ⊕ Wn is representable uniquely as
w=w1 +w2 + · · ·+wn , where wi ∈Wi .

For example, any two non-collinear lines that pass through the origin of the Euclidean
plane are subspaces of R

2. Designating these two subspaces, each of dimension one, by
W1 and W2, then W1 ⊕W2 =R

2. If this plane is thought of as passing through the origin
of a three-dimensional Cartesian coordinate system and is designated as subspace V of R3,
then W1⊕W2=V . Similarly, if W1, W2 and W3 are the subspaces associated with any three
linearly independent vectors in R

3, then the direct sum W1 ⊕W2 ⊕W3 is the entire three-
dimensional space, and any vector, w∈R

3, can be represented as w=w1 +w2 +w3, where
wi ∈Wi , i = 1,2,3.

We note, without proofs, the following results on direct sums. Though each result is stated
for two subspaces, its generalization is straightforward, using proof by induction.

• The direct sum W1 ⊕W2 of the subspaces W1 and W2 of the finite vector space V is also
a subspace of V .

• The dimension of the direct sum of vector subspaces is the sum of the dimensions of the
constituent subspaces. Hence, if V =W1 ⊕W2, then dim(V )= dim(W1)+ dim(W2).

• If a finite vector space V is the direct sum of its subspaces W1 and W2, then the union of
any basis for W1 with any basis for W2 is a basis for V .

Finally, when V is the direct sum of its subspaces W1 and W2, we refer to W1 and W2 as
complementary subspaces of V . Orthogonal complementarity arises as a special case of the
direct sum when W2 =W⊥

1 , and vice versa; recall Theorem 5.4.18.

EXERCISES
5.1 Illustrate on a graph the vectors (0,2), (6,0), (2,2) and (4,−4) and investigate for each
of the six pairs of vectors drawn whether or not they are orthogonal.

5.2 For vectors in 3-space, write out formal definitions of equality, addition, multiplication
by a scalar and subtraction and illustrate these definitions graphically.

5.3 Let w= (2,3,4), v1 = (5,6,8), v2 = (3,3,4) and v3 = (−3,3,−4).

(a) Find k1 and k2 such that w= k1v1 + k2v2.
(b) Show that w is not a linear combination of v1 and v3.
(c) Find a vector w∗ that is a linear combination of v1 and v3, and illustrate the construction

graphically.

5.4 Verify that each of the following sets of vectors spans R3:

(a) S1 ={(2,0,0), (0,−5,0), (0,0,3)};
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(b) S2 ={(2,3,−4), (2,0,0), (0,−5,0), (0,0,3)};
(c) S3 =

{
(1,0,0),

(
0, 1

3 ,0
)
, (0,0,2),

( 1
3 ,0,

2
3

)}
; and

(d) S4 ={(0,1,0), (2,3,−4), (1,0,0), (0,0,1)}.

5.5 Show that each of the following sets of vectors does not span R
3:

(a) S4 ={(1,2,3), (3,2,1)}; and
(b) S5 ={(1,2,3), (3,−2,−1), (−1,6,7)}.

5.6 Show that two linearly dependent vectors in Euclidean 3-space lie in the same line
through the origin. Also show that, if two vectors in Euclidean 3-space are linearly inde-
pendent, then they have different directions and a non-zero angle between them. Supplement
your demonstration by appropriate diagrams and numerical examples.

5.7 Let A=
[

1 −2
2 −4

]
and B=

[
2 1

−1 0

]
. Verify that ρ(A)= 1 and ρ(B)= 2.

5.8 Derive the result in equation (5.78) using matrix notation and methods.

5.9 Consider R
3. Use the Gram–Schmidt process to transform the basis vectors u1 =

(1,1,1), u2 = (1,2,0) and u3 = (2,0,0) into an orthonormal basis {v1,v2,v3}.

5.10 Illustrate the solution of equations (5.85) and (5.86) graphically.

5.11 Find the transition matrix from S={(1,0), (0,1)} to S∗ = {(1,1), (2,1)}.

5.12 Let u,v and w be vectors in 2- or 3-space, and k be a scalar. Prove the following:

(a) u · v= v ·u;
(b) u · (v+w)=u · v+u ·w;
(c) k(u · v)= (ku) · v=u · (kv); and
(d) v · v> 0 if v = 0 and v · v= 0 if v= 0.

5.13 Define the vector component of u orthogonal to v, and derive an expression for its
length.

5.14 Prove (5.48), (5.49) and (5.51).

5.15 Let W be a subset of a vector space V , and suppose ui ∈W , and ki ∈R, i = 1,2, . . . ,n.
Prove that

∑n
i=1 ki ui ∈W ⇔W is a subspace of V . (Hint: use proof by induction, introduced

in Section 2.4.)

5.16 Let V be a vector space and v1,v2, . . . ,vr ∈ V . Prove Theorem 5.4.4 that:

(a) the set W of all linear combinations of v1,v2, . . . ,vr , i.e. W = lin{v1,v2, . . . ,vr }, is a
subspace of V ; and

(b) W is the smallest subspace of V that contains v1,v2, . . . ,vr , in the sense that every other
subspace that contains v1,v2, . . . ,vr must contain W .
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Does your proof work if you start with infinitely many vectors?

5.17 Prove that, if S = {v1,v2, . . . ,vn} is a basis for a vector space V , then every subset of
V with more than n vectors is linearly dependent.

5.18 Let V be an n-dimensional vector space. Prove the following (Theorem 5.4.7).

(a) If S = {v1,v2, . . . ,vn} is a set of n linearly independent vectors in V , then S is a basis
for V .

(b) If S={v1,v2, . . . ,vn} is a set of n vectors that spans V , then S is a basis for V .

5.19 Complete the proof of Theorem 5.4.9, which states that an m × n system of linear
equations Ax=b is consistent if and only if b is in the column space of A.

5.20 Let Q be an m × n matrix. Prove that QQ� = Im implies that m � n and Q�Q= In
implies n �m. See note 4 of Chapter 3.

5.21 Verify that the standard basis for R3, S={e1, e2, e3}, where e1= (1,0,0), e2= (0,1,0)
and e3 = (0,0,1), is an orthonormal basis. Recall Theorem 5.4.11.

5.22 Prove Theorem 5.4.12.

5.23 Replicate the proof of Theorem 5.4.15 for two-dimensional space and illustrate
graphically.

5.24 Prove that, if P is the transition matrix from one orthonormal basis to another
orthonormal basis, then P−1 =P�, i.e. P is orthogonal. Recall Theorem 5.4.17.

5.25 Show that the set comprising the zero vector and all the eigenvectors of an n×n matrix
A corresponding to a given (possibly repeated) eigenvalue λ is a vector subspace of Rn .

This subspace is often called the eigenspace of A corresponding to the given λ.

5.26

(a) Is the intersection of two vector subspaces a vector subspace?
(b) Is the union of two vector subspaces a vector subspace?

5.27 Consider the x and y axes in R
3, S1 ≡R×{0}× {0} and S2 ≡{0}×R×{0}.

(a) Which of the following is a vector subspace of R3: S1, S2, S1 ∩ S2, S1 ∪ S2?
(b) What are the dimensions of those which are vector subspaces?
(c) What are the dimensions of the vector subspaces lin S1, lin S2, lin(S1 ∩ S2) and

lin(S1 ∪ S2)?
(d) Is S1 ⊕ S2 well defined? If so, what is its dimension?



February 12, 2011 11:1 Pinched Crown A Page-128 HarrWald

6 Linear transformations

6.1 Introduction
In this chapter, we define and develop the idea of linear transformations, and relate the
concept to aspects of the material covered in the previous chapters. Linear transformations
constitute a special class of vector-valued functions of a vector variable and are of partic-
ular interest for economics and finance. The chapter begins with a definition and several
illustrations to make the fundamental idea clear. It then goes on to explain a number of
related concepts, to address issues concerned with the solution of more general systems of
linear equations than the ones we have considered so far (i.e. the square equation systems we
encountered in Chapters 1, 2 and 3), to discuss transformations from R

n to R
m , and finally

to consider the topics of matrices of transformations and similarity.

6.2 Definitions and illustrations

6.2.1 Definitions

Readers are assumed to be familiar with the idea of a real-valued function of a single variable,
e.g. g:R→R; see Definition 0.0.1. We now extend this idea to functions between vector
spaces and define some associated notation and terminology.

DEFINITION 6.2.1 A vector-valued function is a function whose co-domain is a subset of
a Euclidean vector space, say f : X → Y , where Y ⊆R

n . Such a function has n real-valued
component functions, usually denoted (using superscripts) f 1, f 2, . . . , f n : X →R.

DEFINITION 6.2.2 A function of several variables is a function whose domain is a subset
of a (finite-dimensional) vector space. The components of the vector x are sometimes called
the arguments of f (x).

DEFINITION 6.2.3 Let T :U → V be a mapping from the vector space U into the vector
space V . Then T is a linear transformation if and only if:

(a) T (u1 +u2)= T (u1)+ T (u2) for all u1,u2 ∈U ; and
(b) T (ku)= kT (u) for all u∈U and for all scalars k (i.e. T is homogeneous of degree one;

see Definition 0.0.9).

Definition 6.2.3 implies, by an inductive argument similar to that used in Exercise 5.15
to prove Theorem 5.4.3, that a vector-valued function of several variables is a linear
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transformation if and only if it preserves arbitrary linear combinations. The generalization is
stated in the following theorem.

THEOREM 6.2.1 Let T :U → V be a mapping from the vector space U into the vector
space V . Then T is a linear transformation if and only if

T

( n∑
i=1

ki ui

)
= ki

n∑
i=1

T (ui ) (6.1)

for all ui ∈U and for all scalars ki and for all positive integers n

DEFINITION 6.2.4 The mapping T :U →V such that T (u)=0 for every u∈U is called the
zero transformation.

The zero transformation is a linear transformation. To see this, note that, given
T (u1 +u2)= 0, T (u1)= 0, T (u2)= 0 and T (ku1)= 0, it follows easily that T (u1 + u2)=
T (u1)+ T (u2) and T (ku1)= kT (u1). The dimension of the image T (u)= 0 in this case is
equal to the dimension of V , which may be different from the dimension of U .

DEFINITION 6.2.5 The mapping T :U →U such that T (u)=u for every u∈U is called the
identity transformation.

The verification that the identity transformation is a linear transformation is left as an
exercise; see Exercise 6.6.

DEFINITION 6.2.6 Linear transformations that map a vector space U into itself are referred
to as linear operators.

The identity transformation is an example of a linear operator.

6.2.2 Illustrations

Mapping from R
2 to R

3

Let T :R2→R
3, where T (x, y)= (x, y, x+ y)∈R3 for (x, y)∈R2. This function associates,

with any given pair of real numbers, a triple of real numbers, where the first number in the
triple equals the first number in the original pair, the second number in the triple equals the
second number in the original pair, and the third number in the triple is the sum of the two
numbers in the original pair. If u1 = (x1, y1) and u2 = (x2, y2), then by definition of vector
addition u1+u2= (x1+ x2, y1+ y2). So T (u1+u2)= (x1+ x2, y1+ y2, x1+ x2+ y1+ y2)

by definition of T (u). It is then easy to show, using the property of commutativity of scalar
addition and the definition of vector addition, that

T (u1 +u2)= (x1 + x2, y1 + y2, x1 + x2 + y1 + y2)

= (x1 + x2, y1 + y2, x1 + y1 + x2 + y2)

= (x1, y1, x1 + y1)+ (x2, y2, x2 + y2)

= T (u1)+ T (u2) (6.2)
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Also, ku1 = (kx1, ky1) so, using the definition of multiplication of a vector by a scalar,

T (ku1)= (kx1, ky1, kx1 + ky1)

= k(x1, y1, x1 + y1)

= kT (u1) (6.3)

Therefore, T is a linear transformation.
The next illustration relates to the notion of matrix multiplication used extensively in

earlier chapters.

Matrix multiplication

Let A be a fixed m × n matrix. Using matrix notation for vectors in R
m and R

n , define
the function T :Rn →R

m by T (x)=Ax, where x ∈R
n and T (x) ∈R

m . Now, using matrix
operations, we have that

T (x1 + x2)=A(x1 + x2)=Ax1 +Ax2 = T (x1)+ T (x2) (6.4)

and

T (kx1)=A(kx1)= k(Ax1)= kT (x1) (6.5)

Therefore, T is a linear transformation.
For obvious reasons, we call such a linear transformation, which involves multiplication

by a matrix, a matrix transformation.

Linear operator

If U is a vector space, k is any scalar and T :U →U is defined by T (u)= ku, T is a linear
operator. It is a straightforward exercise to demonstrate this; see Exercise 6.7. Note, too, what
T does to u for different values of k, such as k < 1, k > 1 and k < 0; recall the geometric
interpretation of Definition 5.2.7, and note the similarity of ku to the right-hand side of the
eigenequation (3.1).

Orthogonal projection

Let U be a vector space, V be a subspace of U having an orthonormal basis
S={v1,v2, . . . ,vr }, and T :U → V be the function that maps every vector u ∈U into its
orthogonal projection on V , i.e.

T (u)≡ projV u= (u · v1)v1 + (u · v2)v2 + · · ·+ (u · vr )vr (6.6)

The linearity of the mapping T follows from the properties of the dot product:

T (u1 +u2)

= ((u1 +u2) · v1)v1 + ((u1 +u2) · v2)v2 + · · ·+ ((u1 +u2) · vr )vr

= (u1 · v1 +u2 · v1)v1 + (u1 · v2 +u2 · v2)v2 + · · ·+ (u1 · vr +u2 · vr )vr
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= (u1 · v1)v1 + (u2 · v1)v1 + (u1 · v2)v2 + (u2 · v2)v2 + · · ·+ (u2 · vr )vr

= (u1 · v1)v1 + (u1 · v2)v2 + · · ·+ (u1 · vr )vr + (u2 · v1)v1 + · · ·+ (u2 · vr )vr

= T (u1)+ T (u2) (6.7)

Similarly for T (ku1)= kT (u1), which may be easily shown as an exercise; see Exercise 6.8.
The illustration and exercise may be taken further by examining a specific example; see
Exercise 6.1. The results of these two exercises will verify, and illustrate diagrammatically,
the general statements just made.

Other linear transformations

From courses in single-variable or univariate calculus, readers will be familiar with the basic
properties of derivatives and integrals, such as the following:

• the derivative of a sum is the sum of the derivatives,

( f + g)′(x)= f ′(x)+ g′(x) (6.8)

• the derivative of a scalar multiple of a function is the same scalar multiple of the derivative

(k f )′(x)= k( f ′(x)) (6.9)

• the integral of a sum is the sum of the integrals∫
( f (x)+ g(x))dx =

∫
f (x)dx +

∫
g(x)dx (6.10)

• the integral of a scalar multiple of a function is the same scalar multiple of the integral∫
k f (x)dx = k

∫
f (x)dx (6.11)

If we view the space of all differentiable functions as an infinite-dimensional vector
space, then the first two properties merely say that the differentiation operator is a linear
transformation on this space. Similarly, if we view the space of all integrable functions
as an infinite-dimensional vector space, then the last two properties say that the integra-
tion operator is a linear transformation on this space.1 In Chapter 9, these concepts will be
extended from real-valued functions of a single variable to functions of several variables.
In Section 13.6, we will encounter another linear transformation on an infinite-dimensional
vector space, namely the expectation operator on a space of random variables.

6.3 Properties of linear transformations
In this section, we establish a number of properties of linear transformations and define and
illustrate the concepts of the kernel and range of a linear transformation.

THEOREM 6.3.1 If T :U → V is a linear transformation, then

(a) T (0)= 0, where the two zero vectors are of the relevant dimensions;
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(b) T (−u)=−T (u) for all u∈U; and
(c) T (u1 −u2)= T (u1)− T (u2) for all u1,u2 ∈U.

Proof: For any u∈U , we have:

(a) since 0u= 0,

T (0)= T (0u)= 0T (u)= 0 (6.12)

(b) since −u= (−1)u,

T (−u)= T ((−1)u)= (−1)T (u)=−T (u) (6.13)

and for any u1 and u2 ∈U
(c) since u1 −u2 =u1 + (−1)u2,

T (u1 −u2)= T (u1 + (−1)u2)= T (u1)+ T ((−1)u2)

= T (u1)+ (−1)T (u2)= T (u1)− T (u2) (6.14)

using the previous part. �

THEOREM 6.3.2 A linear transformation T :U → V is completely determined by its values
(images) at a basis.

Proof: Let {u1,u2, . . . ,un} be a basis for the vector space U , let T :U → V be a linear
transformation, and suppose that the images of the basis vectors, vi = T (ui ), i = 1,2, . . . ,n,
are known. Since any u∈U can be written as

u= k1u1 + k2u2 + · · ·+ knun (6.15)

we then have that

T (u)= T (k1u1 + k2u2 + · · ·+ knun)

= T (k1u1)+ T (k2u2)+ · · ·+ T (knun)

= k1T (u1)+ k2T (u2)+ · · ·+ knT (un)

= k1v1 + k2v2 + · · ·+ knvn (6.16)
�

6.3.1 Kernel and range

We begin with formal definitions, notation and a theorem for the concepts of kernel and
range. These are followed by two examples, then the statement of two additional theorems,
the second of which has great practical value.

Let T :U → V be a linear transformation. Then we have the following definition.

DEFINITION 6.3.1 The set of vectors in U that T maps into 0 is called the kernel (or null
space) of T , and is denoted ker(T ).
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This definition is analogous to the definition of solution space for matrix equations given
in Section 5.4.2.

We note that ker(T )={u∈U : T (u)= 0}⊆U , i.e. the kernel of T is a subset of the domain.

DEFINITION 6.3.2 The set of all vectors in V that are images under T of at least one vector
in U is called the range of T , and is denoted R(T ) (or, in the notation used for the range of
any function, T (U )).

This definition is just Definition 0.0.4 restated in terms of a linear transformation.
We also note that R(T )= {v∈ V : v= T (u) for some u∈U } ⊆ V , i.e. the range of T is a

subset of the co-domain. The range is not necessarily the same as the co-domain, as we will
see shortly in an example.

We can make somewhat stronger statements than that the kernel and range are subsets of
the domain and co-domain, respectively, by dint of the following theorem.

THEOREM 6.3.3 If T :U → V is a linear transformation, then:

(a) ker(T ) is a subspace of U; and
(b) R(T ) is a subspace of V .

Proof:

(a) We have to show that ker(T ) is closed under addition and scalar multiplication (recall
Theorem 5.4.2). So let u1,u2 ∈ ker(T ) and k be a scalar. Then T (u1 + u2)= T (u1)+
T (u2)= 0+ 0= 0. Therefore u1 +u2 ∈ ker(T ). Also T (ku1)= kT (u1)= k0= 0.
Therefore ku1 ∈ ker(T ) and ker(T ) is a subspace of U .

(b) Let v1,v2 ∈ R(T ). We need to show that v1 + v2 and kv1 also belong to R(T ), i.e. we
must find vectors u and u∗ in U such that T (u)= v1+v2 and T (u∗)=kv1. Since v1,v2∈
R(T ), there are vectors u1 and u2 ∈U such that T (u1)= v1 and T (u2)= v2. So, let
u=u1 +u2 and u∗ = ku1.
Then T (u) = T (u1 + u2) = T (u1) + T (u2) = v1 + v2 and T (u∗) = T (ku1) =
kT (u1)= kv1. �

DEFINITION 6.3.3

(a) The dimension of ker(T ) is called the nullity of T .
(b) The dimension of R(T ) is called the rank of T .

EXAMPLE 6.3.1 Let T :U → V be the zero transformation defined earlier. Since T maps
every vector in U to 0, ker(T )=U . Since 0 is the only possible image under T in this case,
R(T )= {0}. We see from this example that the range is not necessarily the same as the co-
domain, i.e. that not all linear transformations are surjective. We note also that in this case
the nullity of T is the same as the dimension of the space U, and that the rank of T is zero.♦

EXAMPLE 6.3.2 Let T :Rn → R
m be the matrix transformation defined by T (x)=Ax,

where A is m × n and x ∈R
n . Then ker(T ) comprises all x= [x1 x2 . . . xn]� that are

solution vectors of the homogeneous system of equations Ax= 0, i.e. ker(T ) is the solution
space of Ax= 0, while R(T ) comprises all vectors b= [b1 b2 . . . bn]� such that the
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system Ax=b is consistent and therefore has at least one solution. Since, by Theorem 5.4.9,
b must be in the column space of A for Ax=b to be consistent, we have that R(T ) is the
column space of the matrix A. In this example, therefore, we have that the nullity of T is
equal to the dimension of the solution space of Ax= 0 and the rank of T is the dimension of
the column space of A, which is the rank of A, ρ(A). ♦

Example 6.3.1 is important for some of the material in the next subsection, as well as for
what immediately follows, namely an interesting theorem concerning nullity and rank.

THEOREM 6.3.4 If T :U → V is a linear transformation from an n-dimensional vector
space U to a vector space V, then

nullity of T + rank of T = n (6.17)

Proof: The proof of this theorem is beyond the scope of this book, but can be found in, for
example, Anton and Rorres (2011, p. 239). �

We are mainly interested in this theorem for the case in which U = R
n , V = R

m and
T :U → V : x �→Ax. For this case, the

nullity of T = n− rank of T (6.18)

or, in view of what was established in Example 6.3.1,

nullity of T = n− rank of A (6.19)

6.3.2 Solution of general linear equation systems

We state the preceding result more formally in the next theorem, and the result is proved
for this special case using matrix results from earlier chapters. Importantly, the proof also
provides a method of solution for more general homogeneous systems of linear equations
than just the square systems that meet the conditions of Cramer’s theorem encountered in
Chapter 2.

THEOREM 6.3.5 If A is m × n, then the dimension of the solution space of the system of
equations Ax= 0 is n− ρ(A).

Proof: Let A be an m× n matrix with rank ρ(A)= r , let x≡ (x1, x2, . . . , xr , xr+1, . . . , xn)

be an n× 1 vector, and partition Ax= 0 as[
A11 A12

A21 A22

][
x1

x2

]
=
[

0r

0n−r

]
(6.20)

relabelling variables or equations if necessary, so that A11 is square r × r and non-singular,
A12 is r × (n− r), A21 is (m− r)× r , A22 is (m− r)× (n− r), and x1, x2, 0r and 0n−r are
conformable partitions of x and 0.
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Since the last m − r rows are linearly dependent on the first r rows, and therefore
redundant, we consider

A11x1 +A12x2 = 0r (6.21)

The non-singularity of A11 implies that

x1 =−A−1
11 A12x2 (6.22)

where x2 is an arbitrary (n− r)-element vector. This in turn means that all solutions of (6.20)
may be written as

x=
[

x1

x2

]
=
[−A−1

11 A12x2

x2

]
=
[−A−1

11 A12

In−r

]
x2 (6.23)

Defining

Bn×(n−r)≡
[−A−1

11 A12

In−r

]
(6.24)

we may write the solution (6.23) as

x=Bx2 = xr+1b1 + xr+2b2 + · · ·+ xnbn−r (6.25)

where the bi are the columns of B, i = 1,2, . . . , (n − r). Thus b1,b2, . . . ,bn−r span the
solution space. Given the In−r -component partition of B, it is immediately clear that
ρ(B)= n − r and that the bi are linearly independent; B has full column rank. Therefore,
b1,b2, . . . ,bn−r form a basis for the solution space and the dimension of the solution space
is n− r = n− ρ(A). �

An immediate consequence of this theorem, which was referred to in the proof of
Theorem 5.4.6, is stated in the following corollary.

COROLLARY 6.3.6 A homogeneous system of linear equations with more unknowns than
equations has infinitely many solutions.

EXAMPLE 6.3.3 Find a numerical solution for the xi , i = 1,2,3, in the following system
of equations:

5x1 − 3x3 = 0 (6.26)

x1 − 4x2 − 6x3 = 0 (6.27)

In matrix notation, these two equations may be written as

Ax=
[

5 0 −3
1 −4 −6

]⎡⎣x1

x2

x3

⎤⎦= [
0
0

]
(6.28)
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The rank of A is easily determined as ρ(A)= r = 2 so, by Theorem 6.3.5, the dimension
of the solution space is n − ρ(A)= 3− 2= 1. In light of this, we can write the required
partitioned form (6.21) as

A11x1 +A12x2 =
[

5 0
1 −4

][
x1

x2

]
+
[−3
−6

]
x3 =

[
0
0

]
(6.29)

from which we get the solution

x1 =−A−1
11 A12x2 =−

[
5 0
1 −4

]−1 [−3
−6

]
x3

=−
[

1
5 0
1
20 − 1

4

][−3
−6

]
x3

=
[

3
5

− 27
20

]
x3 (6.30)

A choice of any value of x3 ∈R will yield a particular numerical solution, which – recalling
(6.25) – will be a scalar multiple, of

b1 =
⎡⎢⎣

3
5

− 27
20

1

⎤⎥⎦ (6.31)

For example, putting x3 = 1 gives

x=
[

x1

x2

]
=
⎡⎢⎣

3
5

− 27
20

1

⎤⎥⎦ (6.32)

while x3 = 5
3 gives

x=
[

x1

x2

]
=
⎡⎢⎣ 1

− 9
4
5
3

⎤⎥⎦ (6.33)

It is easy to confirm a particular numerical solution by substitution into the original equations
of the system. ♦

Another, slightly more complicated, numerical application of the solution method in
Theorem 6.3.5 is the subject of Exercise 6.3.
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6.4 Linear transformations from R
n to R

m

In this section, we will show that every linear transformation from R
n to R

m is a matrix
transformation. That is, if T :Rn → R

m is any linear transformation, then there exists an
m× n matrix A such that T is multiplication by A.

Let e1, e2, . . . , en be the standard basis for Rn , and let A be the m×n matrix with columns
T (e1),T (e2), . . . ,T (en). For instance, if T :R2 →R

2 is given by

T (x)= T

([
x1

x2

])
=
[

x1 + 2x2

x1 − x2

]
(6.34)

then

T (e1)= T

([
1
0

])
=
[

1
1

]
(6.35)

and

T (e2)= T

([
0
1

])
=
[

2
−1

]
(6.36)

and we have that

A=
[

1 2
1 −1

]
(6.37)

It is easy to verify for this simple case that

T (x)= T

([
x1

x2

])
=
[

1 2
1 −1

][
x1

x2

]
=Ax (6.38)

More generally, we define

A= [a1 a2 . . . an]= [T (e1) T (e2) . . . T (en)] (6.39)

where the ai ≡ T (ei ) denote the columns of A
Now any x∈R

n, say x= [x1 x2 . . . xn]�, can be written as

x= x1e1 + x2e2 + · · ·+ xnen (6.40)

Therefore, by the linearity of T , we have

T (x)= x1T (e1)+ x2T (e2)+ · · ·+ xnT (en) (6.41)

But we also have

Ax= x1a1 + x2a2 + · · ·+ xnan

= x1T (e1)+ x2T (e2)+ · · ·+ xnT (en) (6.42)

Comparing (6.41) and (6.42) gives T (x)=Ax, i.e. T is multiplication by A.
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DEFINITION 6.4.1 The matrix A is called the standard matrix for T .

The following example illustrates the standard matrix for a linear transformation involving
the elements of a 3-vector.

EXAMPLE 6.4.1 Let T :R3 →R
4 and define T as

T

⎛⎝⎡⎣x1

x2

x3

⎤⎦⎞⎠=
⎡⎢⎢⎣

x1 + x2

x1 − x2

x3

x1

⎤⎥⎥⎦ (6.43)

The standard matrix for T in this case is

A= [
T (e1) T (e2) T (e3)

]=
⎡⎢⎢⎣

1 1 0
1 −1 0
0 0 1
1 0 0

⎤⎥⎥⎦ (6.44)

since

T (e1)= T

⎛⎝⎡⎣1
0
0

⎤⎦⎞⎠=
⎡⎢⎢⎣

1+ 0
1− 0

0
1

⎤⎥⎥⎦=
⎡⎢⎢⎣

1
1
0
1

⎤⎥⎥⎦ (6.45)

and similarly for T (e2) and T (e3). ♦

In the case of a matrix transformation, the linear transformation T defined as T (x)=Ax,
the standard matrix for T is simply A. This suggests an interesting way of thinking about
matrices, i.e. an arbitrary m× n matrix, A, may be viewed as the standard matrix for a linear
transformation that maps the standard basis for Rn into the column vectors of A.

6.5 Matrices of linear transformations
With a little ingenuity and care, any linear transformation T :U → V between finite-
dimensional vector spaces can also be regarded as a matrix transformation. The idea is to
choose bases for U and V and to work with the coordinate matrices relative to these bases,
rather than with the vectors themselves.

Suppose U is n-dimensional and V is m-dimensional. If we choose bases B and B∗ for U
and V , then each u∈U will have a coordinate matrix [u]B ∈R

n , and the coordinate matrix
[T (u)]B∗ will be some vector in R

m . Thus in mapping u into T (u), the linear transformation
T generates a mapping from R

n to R
m . It can be shown that this generated mapping is always

a linear transformation. Therefore, it can be carried out using a standard matrix, A, for this
transformation, i.e.

A[u]B = [T (u)]B∗ (6.46)

If A can be found, T (u) can be obtained indirectly.
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To solve the problem of finding A to satisfy (6.46), suppose B={u1,u2, . . . ,un} and B∗ =
{v1,v2, . . . ,vm}. Therefore, we want A[u1]B = [T (u1)]B∗ . But [u1]B = [1 0 . . . 0]�,
so that A[u1]B = a1, which implies that [T (u1)]B∗ = a1, i.e. the first column of A is the
coordinate matrix for the vector T (u1) with respect to the basis B∗; and similarly for all
other columns of A. So A is the matrix whose j th column is the coordinate matrix for the
vector T (u j ) with respect to the basis B∗. This unique A is called the matrix of T with
respect to the bases B and B∗. Symbolically,

A= [[T (u1)]B∗ [T (u2)]B∗ . . . [T (un)]B∗] (6.47)

The following two points are noteworthy:

1. If T :Rn →R
m is a linear transformation and if B and B∗ are the standard bases for Rn

and R
m , respectively, then the matrix for T with respect to B and B∗ is just the standard

matrix for T , as previously defined.
2. In the special case where V =U (so that T :U → V is a linear operator), it is usual to

put B = B∗ when constructing the matrix of T . In this case we speak of the matrix of T
with respect to B.

EXAMPLE 6.5.1 Let T :R2 →R
2 be the linear operator defined by

T

([
x1

x2

])
=
[

x1 + x2

−2x1 + 4x2

]
(6.48)

and let us find the matrix of T with respect to the basis B = {u1,u2}, where u1 = [1 1]�
and u2 = [1 2]�.

From the definition of T , we have

T (u1)=
[

2
2

]
= 2u1 and T (u2)=

[
3
6

]
= 3u2 (6.49)

Therefore,

T (u1)= 2u1 + 0u2 and T (u2)= 0u1 + 3u2 (6.50)

Hence

[T (u1)]B =
[

2
0

]
and [T (u2)]B =

[
0
3

]
(6.51)

and the matrix of T with respect to B is

A=
[

2 0
0 3

]
(6.52)

This simple diagonal form may be compared with the standard matrix of T , which is[
1 1

−2 4

]
(6.53)

♦
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The matrix of a linear operator T :U →U depends on the basis chosen for U . Unfortunately,
a simple basis, such as the standard basis, does not usually yield the simplest matrix for T .
So consideration is given to changing the basis in order to simplify the matrix for T . In
connection with this problem we make use of the following result.

THEOREM 6.5.1 Let T :U → U be a linear operator on a finite-dimensional vector
space U. If A is the matrix of T with respect to a basis B, and A∗ is the matrix of T with
respect to a basis B∗, then A∗ =P−1AP, where P is the transition matrix from B∗ to B.

Proof: It follows from the conditions of the theorem and the definitions of matrices of T
that

A[u]B = [T (u)]B and A∗[u]B∗ = [T (u)]B∗ (6.54)

Also, from what we know of the transition matrix (see Theorem 5.4.15),

[u]B =P[u]B∗ and [T (u)]B∗ =P−1[T (u)]B (6.55)

Therefore,

A[u]B =AP[u]B∗ = [T (u)]B (6.56)

and

P−1[T (u)]B =P−1AP[u]B∗ = [T (u)]B∗ (6.57)

from which it is clear that A∗ =P−1AP. �

Note that, if A and A∗ are the matrices of a linear transformation with respect to different
bases, then they are similar matrices; see Section 3.5.

EXAMPLE 6.5.2 Recall the linear operator used in the previous example, T :R2 → R
2,

where

T

([
x1

x2

])
=
[

x1 + x2

−2x1 + 4x2

]
(6.58)

Given B={e1, e2}, where e1= [1 0]� and e2= [0 1]�, the matrix of T with respect to B,
i.e. the standard basis, is[

1 1
−2 4

]
(6.59)

Using Theorem 6.5.1, let us find the matrix of T with respect to B∗ = {u1,u2}, where
u1 = [1 1]� and u2 = [1 2]�.

First, we obtain the transition matrix P from B∗ to B. To do this we need the coordinate
matrices for the B∗ basis vectors relative to the basis B. Now,

u1 = e1 + e2 (6.60)

u2 = e1 + 2e2 (6.61)
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Therefore,

[u1]B =
[

1
1

]
and [u2]B =

[
1
2

]
(6.62)

hence

P=
[

1 1
1 2

]
and P−1 =

[
2 −1

−1 1

]
(6.63)

Thus by Theorem 6.5.1,

A∗ =P−1AP

=
[

2 −1
−1 1

][
1 1

−2 4

][
1 1
1 2

]
=
[

2 0
0 3

]
(6.64)

which confirms the result from the direct method used in Example 6.5. ♦

We see in this last example that the standard basis does not produce the simplest matrix
of T . Diagonal matrices are particularly simple and have several desirable properties, as will
be recalled from Chapter 1. For instance, the inverse of a diagonal matrix, D = [diδij] =
diag[di ], is also diagonal: D−1 = [(1/di )δij]= diag[1/di ], provided that all the di are non-
zero. Also, any power of D is diagonal: Dk = [diδij]k = [dk

i δij]= diag[dk
i ].

EXERCISES
6.1 Let U =R

3 and let V be the horizontal (i.e. the xy) plane with basis vectors v1= (1,0,0)
and v2 = (0,1,0); and define any two vectors u1 = (x1, y1, z1) and u2 = (x2, y2, z2). Find
T (u1), T (u2),T (u1+u2) and T (ku1), using the definition of T in equation (6.6), and draw
a sketch to illustrate your results.

6.2 Let T :R5 →R
3 be the multiplication of a 5-vector by

A=
⎡⎣−2 3 0 −3 4

5 −8 −3 2 −13
1 −2 3 −4 5

⎤⎦
Determine the rank and the nullity of T .

6.3 Recall Theorem 6.3.5 and use equation (6.23) to obtain a numerical solution for the xi ,
i = 1,2,3,4, in the following system of equations:

x1 − x2 − 3x3 − 5x4 = 0

2x1 − 2x2 − 3x3 + 4x4 = 0
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6.4 Let T :R2 →R
3 be the linear transformation defined by

T

([
x1

x2

])
=
⎡⎣ x1 + x2

x1 − x2

3x1 + 2x2

⎤⎦
(a) Find the standard matrix of T .
(b) Find the matrix of T with respect to the basis B∗={u1,u2} for R2, where u1= [−1 1]�

and u2 = [1 −2]�, and the standard basis for R3.

6.5 Prove Theorem 6.2.1.

6.6 Verify that the identity transformation T :U →U such that T (u)=u for every u∈U is
a linear transformation.

6.7 Let U be a vector space, k be any scalar and T :U → U be defined by T (u) = ku.
Demonstrate that T is a linear operator.

6.8 Let U be a vector space, V be a subspace of U having an orthonormal basis
S={v1,v2, . . . ,vr }, and T :U →V be a function that maps a vector u∈U into its orthogonal
projection on V, i.e.

T (u)= (u · v1)v1 + (u · v2)v2 + · · ·+ (u · vr )vr

Show that T (ku1) = kT (u1), to complete the orthogonal projection illustration in
Section 6.2.2.
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7.1 Introduction
This chapter covers selected topics relating to subsets of vector spaces and to functions more
general than linear transformations defined on and between vector spaces. It has two simul-
taneous objectives, namely, to reinforce the reader’s grasp of linear algebra and to prepare
for its application to multivariate calculus in Chapter 9.

The knowledge of linear algebra acquired in the preceding chapters can now be rein-
forced by using it first (in this chapter) to generalize further familiar concepts from two- and
three-dimensional geometry and later (in Chapter 9) from elementary univariate calculus to
a multivariate or vector-based context.

Sections 7.2 and 7.3 introduce the concepts of affine combinations, affine sets, affine hulls
and affine functions and their convex equivalents, all of which are natural extensions of
similar concepts introduced in the earlier chapters on linear algebra.

Section 7.4 discusses further subsets of n-dimensional spaces, introducing the reader to
the properties of various subsets, including multidimensional analogues of familiar objects
like circles, spheres, squares and rectangles. Some of these sets will be encountered again
later in this chapter, and others in the chapters on economic and financial applications that
follow.

Section 7.5 is an elementary introduction to topology, topological spaces and metric
spaces. The separating hyperplane theorem is introduced in Section 7.6. Sections 7.7 and 7.8
review some basic material on functions, limits and continuity. Finally, Section 7.9 reviews
the univariate fundamental theorem of calculus.

7.2 Affine combinations, sets, hulls and functions
Definition 5.4.3 introduced the reader to the concept of a linear combination

∑r
i=1 ki vi of

the vectors v1,v2, . . . ,vr , where k1, k2, . . . , kr are any scalars. We now define a special type
of linear combination.

DEFINITION 7.2.1 An affine combination of the vectors v1,v2, . . . ,vr is defined as

k1v1 + k2v2 + · · ·+ kr vr =
r∑

i=1

ki vi (7.1)

where r is any positive integer, k1, k2, . . . , kr are scalars and
∑r

i=1 ki = 1.
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Note that there is no restriction on the signs of the scalars ki , provided that they sum to
unity. So, for example, all four of u, v, 2u− v and (u+ v)/2 are affine combinations of
the vectors u and v. Every affine combination is a linear combination, but not every linear
combination is an affine combination.

In Theorem 5.4.3, it was shown that a subset of a vector space is a subspace if and only if
it is closed under the taking of linear combinations. We now define a more general class of
subsets of vector spaces.

DEFINITION 7.2.2 A subset A of a vector space is an affine set if and only if A is closed
under the taking of affine combinations; that is, if whenever k1, k2, . . . , kr are scalars with∑r

i=1 ki = 1 and v1,v2, . . . ,vr ∈ A, then
∑r

i=1 ki vi ∈ A; or, equivalently, if whenever λ is a
scalar and x and x′ are vectors in A, then λx+ (1− λ)x′ ∈ A.

The equivalence between the two characterizations of closure given in the definition
follows from the same logic as Theorem 5.4.3. The details are left as an exercise; see
Exercise 7.1.

For example, a set containing a single vector is an affine set. The next smallest affine set
is a straight line. In fact, in any vector space, the affine set L = {λx+ (1− λ)x′:λ ∈R} is
the line from x′, where λ= 0, to x, where λ= 1. We say that the parameter λ parametrizes
the line L . Any affine set containing two distinct points must also contain the entire line
connecting those two points.

All subspaces of a vector space are affine sets, but the converse does not hold. For example,
one-dimensional subspaces are lines through the origin or zero vector. On the other hand,
lines that do not pass through the origin are affine sets, but they are not subspaces.

Just as affine combinations of a set of two points generate a straight line, so affine com-
binations of a set of three non-collinear points generate a plane, and similarly for higher
dimensions.

In fact, if A is an affine set in the vector space V and a is any vector in A, then the set

A−{a}≡ {x− a: x∈ A} (7.2)

is a vector subspace of V ; see Exercise 7.2. We can think of the dimension of the affine
set as the dimension of this vector subspace. In effect, every affine set is a vector subspace
translated away from the origin.

Recall that in Section 5.4.2 it was shown that the solution space of a homogeneous system
of m linear equations in n unknowns Ax= 0 is a vector subspace of Rn , the null space or
kernel of A. The solution set for the corresponding non-homogeneous system Ax=b is like-
wise an affine set. If the vector subspace W ⊆R

n is the solution space of the homogeneous
system and x∗ is a particular solution of the non-homogeneous system, then the affine set

W +{x∗}≡ {x+ x∗: x∈W } (7.3)

is the solution set of the non-homogeneous system.
Definition 5.4.5 introduced the concept of a vector space spanned or generated by a (typ-

ically finite) set of vectors, which is just the set of all possible linear combinations of the
spanning vectors. We now define a similar concept based on affine combinations.



February 12, 2011 11:1 Pinched Crown A Page-145 HarrWald

Foundations for vector calculus 145

DEFINITION 7.2.3 The affine hull of the subset S of a vector space, denoted aff(S), is

{ r∑
i=1

ki xi : xi ∈ S, ki ∈R, i = 1,2, . . . , r;
r∑

i=1

ki = 1; r = 1,2, . . .

}
(7.4)

in other words the set of all affine combinations of vectors in S.

For example, the affine hull of a set of collinear points is the entire line along which they
lie. The affine hull of a set of coplanar points is the entire plane on which they lie.

Definition 6.2.3 introduced the concept of a linear transformation, and Theorem 6.2.1
showed that it is a function that preserves linear combinations, and which therefore is homo-
geneous of degree one. Once again, we can now define a similar concept based on affine
combinations.

DEFINITION 7.2.4 A vector-valued function of several variables, f :U →V is said to be an
affine function if it preserves affine combinations; that is, if

f

( r∑
i=1

ki vi

)
=

r∑
i=1

ki f (vi ) (7.5)

whenever k1, k2, . . . , kr are scalars with
∑r

i=1 ki = 1 and v1,v2, . . . ,vr are vectors in U ; or,
equivalently, if

f (λx+ (1− λ)x′)= λ f (x)+ (1− λ) f (x′) (7.6)

whenever λ is a scalar and x and x′ are vectors in U .

The inductive logic used to establish the equivalence between (7.5) and (7.6) should by
now be familiar.

THEOREM 7.2.1 If f :Rn → R
m is an affine function, then there exists a unique m × n

matrix A and a unique m-dimensional vector b such that

f (x)=Ax+b, ∀ x∈R
n (7.7)

Proof: We claim that the function g:Rn→R
m : x �→ f (x)− f (0) is a linear transformation.

To prove this claim, let k1, k2, . . . , kr be any scalars and let v1,v2, . . . ,vr be any vectors
in R

n . Then

g

( r∑
i=1

ki vi

)
= f

( r∑
i=1

ki vi

)
− f (0)

= f

( r∑
i=1

ki vi +
(

1−
r∑

i=1

ki

)
0
)
− f (0) (7.8)
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since the additional term inserted in the first argument of f does not change the value of
the argument. Since

∑r
i=1 ki +

(
1−∑r

i=1 ki
)= 1, the first argument of f above is an affine

combination of elements of Rn , and since f is an affine function (7.8) becomes

f

( r∑
i=1

ki vi +
(

1−
r∑

i=1

ki

)
0
)
− f (0)=

r∑
i=1

ki f (vi )+
(

1−
r∑

i=1

ki

)
f (0)− f (0)

=
r∑

i=1

ki ( f (vi )− f (0))

=
r∑

i=1

ki g(vi ) (7.9)

This proves our claim.
We know from Section 6.4 that every linear transformation is a matrix transformation,

so that there exists a unique m × n matrix A such that g(x)=Ax, for all x ∈R
n . If we let

f (0)≡b, we have

f (x)= g(x)+ f (0)=Ax+b, ∀ x∈R
n (7.10)

as required. �

Thus every affine function is a combination of a linear transformation, represented by the
matrix A, and a translation, represented by the vector b. A linear transformation is a special
case of an affine function in which there is no translation, or the translation vector b is the
zero vector.

The term “linear function” has historically been used loosely to refer both individually
and collectively to linear transformations and affine functions. To avoid confusion, we stick
to the term “linear transformation” when referring strictly only to the concept defined in
Definition 6.2.3. Indeed, the term “linear function” was used loosely as early as the first
chapter of this book.

In the language introduced in Section 1.2.2, if f (x)=Ax−b, then the system of equations
f (x)= 0 is homogeneous if and only if b= 0 if and only if f is a linear function if and
only if the function f is homogeneous of degree one. It is non-homogeneous if and only if
b = 0, in which case f is an affine function. In other words, the distinction between linear
homogeneous systems of equations and linear non-homogeneous systems of equations is
analogous to the difference between linear transformations and affine functions. The term
“linear equation” is used loosely to refer collectively to homogeneous and non-homogeneous
systems, for example in the classification of difference equations in Section 8.2.4; the term
“affine equation” is rarely if ever seen.

Finally, note that, while a linear transformation is homogeneous of degree one, an affine
transformation in general is not homogeneous.

7.3 Convex combinations, sets, hulls and functions
Definitions 5.4.3 and 7.2.1 respectively have introduced the general concept of a linear com-
bination and the special case of an affine combination. We now further introduce a special
type of affine combination.
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DEFINITION 7.3.1 For vectors x and x′ and for λ∈ [0,1], λx+ (1−λ)x′ is called a convex
combination of x and x′.

More generally, a convex combination of the vectors v1,v2, . . . ,vr is defined as

k1v1 + k2v2 + · · ·+ kr vr =
r∑

i=1

ki vi (7.11)

where r is any positive integer, k1, k2, . . . , kr are non-negative scalars and
∑r

i=1 ki = 1.

Repeating the example of the previous section, x, y and (x+y)/2 are convex combinations
of the vectors x and y, but 2x− y is not, because the coefficient of y is negative. Every
convex combination is an affine combination, but not every affine combination is a convex
combination.

We will find that taking affine or convex combinations of two equations or inequalities is
often a useful device in proving results; see, for example, the proof of Theorem 10.2.4.

We know that a subspace is a set closed under the taking of linear combinations and an
affine set is a set closed under the taking of affine combinations. The next definition is a
natural extension of this concept.

DEFINITION 7.3.2 A subset X of a vector space is a convex set if and only if every convex
combination of elements in X is also in X ; that is, if for all x,x′ ∈ X and for all λ ∈ [0,1],
λx+ (1−λ)x′ ∈ X ; or, equivalently, if whenever k1, k2, . . . , kr are non-negative scalars with∑r

i=1 ki = 1 and v1,v2, . . . ,vr ∈ X , then
∑r

i=1 ki vi ∈ X .

Once again, the equivalence between the two characterizations of closure given in the
definition can be proved using the argument used in the proof of Theorem 5.4.3. The details
are left as an exercise; see Exercise 7.3.

For example, a set containing a single vector is a convex set. The next smallest convex
set is a line segment. In fact, in any vector space, L = {λx+ (1− λ)x′:λ∈ [0,1]} is the line
segment from x′, where λ= 0, to x, where λ= 1, in X .

Note that every affine set is a convex set, but that the converse is not true. For example, a
line segment is a convex set but is not an affine set.

THEOREM 7.3.1 A sum of convex sets, such as

X +Y ≡{x+ y: x∈ X,y∈ Y } (7.12)

is also a convex set.

Proof: The proof of this result is left as an exercise; see Exercise 7.4. �

Just as we defined the subspace generated by a set of vectors X to be the set of all linear
combinations of vectors in X and the affine hull of X to be the set of all affine combinations
of vectors in X , so we can now define the convex hull of X to be the set of all convex
combinations of vectors in X .

DEFINITION 7.3.3 If X is a subset of a real vector space, then the convex hull of X is

{λx+ (1− λ)x′:λ∈ [0,1], x,x′ ∈ X} (7.13)
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The next definition is not completely analogous to those that have gone before, for it contains
an inequality where the reader might have expected to see an equality.

DEFINITION 7.3.4 Let f : X → Y , where X is a convex subset of a real vector space and
Y ⊆R. Then f is a convex function if and only if, for all x = x′ ∈ X and for all λ∈ (0,1),

f (λx+ (1− λ)x′)≤ λ f (x)+ (1− λ) f (x′) (7.14)

Note that the definitions of linear transformations and affine functions imply that the
domains of such functions must be an entire vector space, but that a convex function
need be defined only on a convex subset of a vector space. For example, many commonly
encountered convex functions are defined only on the positive orthant of Euclidean space,
R

n++. Note also that, while linear transformations and affine functions can be vector-valued
functions, convex functions are always real-valued functions.

We will postpone the characterization and properties of convex functions until
Section 10.2.1, where they will be treated in much greater depth. First, however, we will
present a collection of examples of subsets of n-dimensional spaces, considering in each
case whether they are affine sets or convex sets.

7.4 Subsets of n-dimensional spaces

7.4.1 Hyperplanes

Readers will already be familiar with the idea of a vector subspace from Section 5.4.1. A one-
dimensional subspace of an n-dimensional vector space is just a line passing through the
origin or zero vector, 0n ; a two-dimensional subspace is a plane through the origin; more gen-
erally, an (n− 1)-dimensional subspace of Rn is a special case of what we call a hyperplane,
again passing through the origin. We will now define hyperplanes more formally.

DEFINITION 7.4.1

(a) An (affine) hyperplane in R
n is any set of the form {x ∈ R

n : p�x= c}, where p is a
vector in R

n and c is a scalar.
(b) For any two vectors x∗ and p = 0 in R

n , the set {x ∈ R
n : p�x = p�x∗} is the affine

hyperplane through x∗ with normal p.

EXAMPLE 7.4.1 The line (or one-dimensional hyperplane) in R
2 with equation x1+ x2= 1

cuts the coordinate axes at a 45◦ angle, passing through both of the standard unit basis
vectors, (1,0) and (0,1). Any vector of the form λ12 = (λ,λ) (λ = 0) is normal to this
hyperplane.

This line can be described, for example, as the hyperplane through (1,0) with nor-
mal (1,1); or as the hyperplane through (0,1) with normal (2,2); or as the hyperplane
through (0,1) with normal (−1,−1). It is left as an exercise for the reader to confirm that
making the appropriate substitutions in each case for p and x∗ in the second part of Defini-
tion 7.4.1 results in the same equation x1 + x2 = 1; see Exercise 7.8. ♦

As the terminology suggests, an affine hyperplane is an affine set; see Exercise 7.9.
The first part of Definition 7.4.1 is merely an extension of a familiar idea from low dimen-

sions. In two dimensions, an affine hyperplane is just a line with equation like p1x1 +
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p2x2 = c; in three dimensions, it is just a plane with equation like p1x1 + p2x2 + p3x3 = c.
In n dimensions, it is an (n − 1)-dimensional subspace if it contains the zero vector;
otherwise, it is essentially an (n− 1)-dimensional subspace translated away from the origin.

The second part of Definition 7.4.1 is illustrated in Figure 7.1. The vector p is normal to
the hyperplane in the sense that, for any two points x and x∗ in the hyperplane, the vector
x− x∗ is perpendicular or orthogonal to the vector p, since by definition their dot product
p�(x− x∗) is zero. Any point in the hyperplane can play the role of x∗.

A line is not an affine hyperplane in R
3 but is an affine hyperplane in R

2. An affine hyper-
plane is defined by a single equation. In R

2, a line is defined by a single (scalar) equation.
In R

3, a line is defined by two equations, each specifying a plane, the line being the inter-
section of the two planes. Similarly, a single plane in R

3 is defined by a single equation and
is an affine hyperplane in R

3.
If an affine hyperplane in R

n passes through the origin (making it an (n− 1)-dimensional
vector subspace), then it is called a linear hyperplane. For a linear hyperplane, we must
have, in the context of Definition 7.4.1, in the first case, c = 0 and, in the second case,
p�x∗ = 0.

The normal vector p is unique up to a scalar multiple; in other words, if p is normal to a
given affine hyperplane, then λp is also normal to that hyperplane for any λ∈R (except, of
course, for λ= 0).

Euclidean space R
n is the direct sum of any linear hyperplane and the one-dimensional

subspace generated by its normal vector. Thus, a linear hyperplane is often described as
being of codimension one.

In the remainder of this book, we will refer to affine hyperplanes simply as hyperplanes.
The conventional terminology here is somewhat unfortunate. The term hyperplane on its own
is sometimes used to refer to a k-dimensional affine subset of an n-dimensional space, even
when k < n− 1. The term affine!hyperplane is always confined to sets of codimension one,
but the lower-dimensional variants are affine sets in the formal sense (and thus also convex
sets) and hyperplanes in the informal sense. The (n − 1)-dimensional affine hyperplane is
different from its lower-dimensional analogues in that it is impossible to travel around it

•

•p

x− x∗

x∗

x

Figure 7.1 The hyperplane through x∗ with normal p
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without passing through it. For example, in R
3, it is possible to travel around a line but one

can only get to the other side of a plane by travelling through it. This is the fundamental
logic behind the separating hyperplane theorem (Theorem 7.6.1).

7.4.2 Simplexes and hyperparallelepipeds

DEFINITION 7.4.2 The unit simplex in R
n , also called the standard simplex in R

n , is
the intersection of the non-negative orthant Rn+ and the hyperplane through (1/n)1n with
normal 1n , i.e. the set

Sn−1 ≡
{

p∈R
n+: p�1n =

n∑
i=1

pi = 1

}
(7.15)

Figures 7.2 and 7.3 show the unit simplexes in R
2 and R

3, respectively. The former is just
the intersection of the hyperplane considered in Example 7.4.1 above with the non-negative
quadrant.

DEFINITION 7.4.3 More generally, a simplex is the convex hull of a finite set of points,
which are called the vertices of the simplex.

x

y

0

1

1

x
1 +

x
2 =

1

(1/2,1/2)

Figure 7.2 Unit or standard simplex in R
2
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0 y

z

x

1

1

1

(1/3,1/3,1/3)

Figure 7.3 Unit or standard simplex in R
3

The n vertices of the unit simplex in R
n are just the standard basic vectors, e1, e2, . . . , en .

A simplex with two vertices is just the line segment joining the two points. A simplex with
three vertices is a triangle, and so on.

DEFINITION 7.4.4 The m-dimensional hyperparallelepiped in R
n whose edges are the

vectors x1,x2, . . . ,xm is the set{ m∑
i=1

ki xi : ki ∈ [0,1], i = 1,2, . . . ,m

}
(7.16)

In fact, a hyperparallelepiped is just a special type of simplex; see Exercise 7.10. A hyper-
parallelepiped is also a convex set; see Exercise 7.11.

When m = 3, a hyperparallelepiped is simply called a parallelepiped. When m = 2, a
hyperparallelepiped is just a parallelogram. When m = 1, it is just a single vector or a line
segment.

7.4.3 Hyperspheres

Just as the hyperplane is the higher-dimensional analogue of the line in two dimensions or
the plane in three dimensions, so the idea of a circle in two dimensions or of a ball or sphere
in three dimensions can be extended to n dimensions. Where ambiguity might arise, we will
describe the surface in three dimensions as a sphere and the solid volume that it encloses as
a ball.

DEFINITION 7.4.5

(a) A hypersphere of radius r (≥0) in R
n centred at a is a set of the form

{x∈R
n : (x− a)�(x− a)= r2} (7.17)
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(b) An open ball of radius r (≥0) in R
n centred at a is a set of the form

{x∈R
n : (x− a)�(x− a)< r2} (7.18)

(c) A closed ball of radius r (≥0) in R
n centred at a is a set of the form

{x∈R
n : (x− a)�(x− a)≤ r2} (7.19)

In other words, an open ball is the set contained (strictly) inside a hypersphere, while a closed
ball comprises both the corresponding hypersphere and the set inside it.

Recall that (x− a)�(x− a)= (d(x,a))2 =‖x− a‖2.

The hypersphere in two dimensions is just the circle with equation (x1 − a1)
2 +

(x2 − a2)
2 = r2 and similarly the hypersphere in three dimensions is just a normal sphere.

Like a hyperplane, a hypersphere is essentially a set of one dimension less than the space
inside which it sits. Unlike a hyperplane, a hypersphere cannot be a vector subspace or an
affine set. Open balls and closed balls are, however, convex sets.

7.4.4 Hypercubes and hyperrectangles

The closed rectangle in the plane with sides parallel to the coordinate axes and with corners
(a1,a2), (a1,b2), (b1,a2) and (b1,b2) is just the Cartesian product [a1,b1]× [a2,b2]. (It is
also a simplex whose four vertices are the corners of the rectangle.) The corresponding open
rectangle is just the Cartesian product1 (a1,b1)× (a2,b2).

A closed hyperrectangle in R
n is just the natural higher-dimensional analogue of a closed

rectangle, namely the Cartesian product of n closed intervals,
∏n

i=1[ai ,bi ]. If the side lengths
bi −ai are all equal, then we have a hypercube. A closed hypercube or closed hyperrectangle
is a simplex with 2n vertices.2

Similarly, an open hyperrectangle in R
n is just the Cartesian product of n open intervals,∏n

i=1(ai ,bi ). The volume of the hyperrectangle, whether open or closed, is
∏n

i=1(bi − ai ).
Hypercubes and hyperrectangles are convex sets, whether they are open or closed.

The notion of an open hypercube or hyperrectangle is sometimes just as useful as that of an
open ball; see Exercise 7.15 for the connections between the two. The proof of Theorem 7.8.1
below will involve fitting hyperrectangles inside open balls.

A hyperrectangle with a vertex at the origin is just a special case of a hyperparal-
lelepiped with orthogonal edges. The next theorem shows that calculating the volume of a
hyperparallelepiped is slightly more difficult than calculating the volume of a hyperrectangle.

THEOREM 7.4.1 The volume of the m-dimensional hyperparallelepiped P in R
n with

edges x1,x2, . . . ,xm is
√

det(X�X), where X is the n × m matrix whose columns are
x1,x2, . . . ,xm.

Proof: The proof is by induction on m.
When m = 1, the hyperparallelepiped has just a single edge x1 ∈ R

n and the volume is

just the length of this edge, ‖x1‖=
√

x�1 x1 =
√

det(x�1 x1), since x�1 x1 is just a non-negative
scalar.

When m > 1, we can think of the volume of the hyperparallelepiped as being the volume
of its base times its height. For example, for m = 2, the area of the hyperparallelepiped (in
this case, a parallelogram) is the length of one edge times the perpendicular distance to the
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opposite edge. When m = 3, the volume of the parallelepiped is the area of one face times
the perpendicular distance to the opposite face, and so on for higher dimensions.

In general, if S ≡ lin{x1,x2, . . . ,xm−1}, then the volume of the m-dimensional hyper-
parallelepiped P is the volume of the (m − 1)-dimensional hyperparallelepiped with edges
x1,x2, . . . ,xm−1 multiplied by the length of the component of xm orthogonal to S, and this
length equals ‖xm − projSxm‖.

Now suppose our hypothesis is true for dimensions up to m−1 and let X∗ denote the n×m
matrix obtained by replacing the last column of X (which is xm) by x∗m ≡ xm − projSxm .

If projSxm =∑m−1
i=1 λi xi , then X∗ =XE, where

E≡

⎡⎢⎢⎢⎢⎣
1 0 · · · 0 −λ1

0 1 · · · 0 −λ2
...

...
...

...

0 0 · · · 1 −λm−1

0 0 · · · 0 1

⎤⎥⎥⎥⎥⎦ (7.20)

Since E is upper triangular with ones on the principal diagonal, det(E)= det(E�)= 1,

det((X∗)�X∗)= det((XE)�XE)

= det(E�X�XE)

= det(E�)det(X�X)det(E)

= det(X�X) (7.21)

If we partition X∗ as [X− x∗m], then

(X∗)�X∗ =
[

X�−X− X�−x∗m
(x∗m)�X− (x∗m)�x∗m

]
=
[

X�−X− 0m−1

0�m−1 ‖x∗m‖2

]
(7.22)

Hence, using a co-factor expansion along the last row (or last column),

det(X�X)= det((X∗)�X∗)= det(X�−X−)×‖x∗m‖2 (7.23)

which is just the square of the product of the volume of the base of the hyperparallelepiped
(by the inductive hypothesis) times its height, as required. �

The proofs of the following corollaries are left as exercises; see Exercise 7.13.

COROLLARY 7.4.2 The volume of a hyperparallelepiped whose edges are linearly depen-
dent is zero.

COROLLARY 7.4.3 The volume of an n-dimensional hyperparallelepiped in R
n whose n

edges are the columns of the matrix X is |det(X)|.
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COROLLARY 7.4.4 If m> n, then the volume of an m-dimensional hyperparallelepiped in
R

n is zero.

COROLLARY 7.4.5 If P is a hyperparallelepiped in R
n with volume

√
det(X�X) and

T :Rn → R
p is a linear transformation with p × n matrix A, then T (P) is a hyperparal-

lelepiped in R
p with volume

√
det((AX)�AX).

In particular, if n = m = p, then, since A and X are square matrices, the linear
transformation T multiplies the volume of the hyperparallelepiped P by |det(A)|.

7.4.5 Curves and hypersurfaces

We are already familiar with the idea that a line in R
2 and a plane in R

3 are each defined by
a single linear equation, while in R

3, a line is defined by two independent linear equations,
each specifying a plane, the line being the intersection of the two (non-parallel) planes.

More generally, a curve in R
2 is defined by a single equation, usually nonlinear. (Recall,

for example, the various conic sections discussed in Section 4.2.) Similarly, a surface in R
3

is defined by a single equation, again usually nonlinear. A curve in R
3, however, is generally

defined by two independent (and usually nonlinear) equations, each specifying a surface,
and the curve being the intersection of the two surfaces. The concept of linear independence,
however, does not extend in any natural way to nonlinear equations.

Just as one linear equation in n variables defines an affine hyperplane, so one (nonlinear)
equation in n variables defines a hypersurface.

More generally, k (independent) equations in n variables define a solution set, which
could be loosely described as of dimension n − k. If the equations are linear (and thus
linearly independent), then, as noted on p. 144 above, the solution set is an affine set of
dimension n− k.

7.5 Basic topology
Just as linear algebra is the study of vector spaces, so topology is the study of topological
spaces; see Definition 7.5.4 below. This section begins with a brief review of metric spaces,
which are a special type of topological space with additional structure; see Definition 7.5.1
below. We will see that every scalar product space is also a metric space. Not all metric
spaces are scalar product spaces and not all topological spaces are vector spaces. All of the
topological spaces that will be discussed in detail in this book are metric spaces, and, in
fact, real vector spaces. The general definition of a topological space is included only for
completeness.

Many of the results from topology needed in this book can be, and will be, proved
using familiar properties of the real numbers, especially standard epsilon–delta arguments.
A thorough knowledge of topology, however, can provide access to simpler, more elegant
and more general versions of some of these proofs. Some theorems of critical importance in
mathematical economics, in particular the general versions of Brouwer’s fixed-point theo-
rem (Theorem 12.5.5) and Kakutani’s fixed-point theorem (Theorem 12.5.6), can be proved
only using topological concepts. For all these reasons, those intending to study mathematical
economics to a level higher than that to which the subject is taken in this book would be well
advised to familiarize themselves with one of the standard textbooks on topology, such as
Simmons (1963) or Mendelson (1975). Chiang and Wainwright (2005, pp. 64–5) cover the
relevant topics in topology from an economic perspective.
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The aim of this section is to provide sufficient introduction to topology to motivate the sup-
porting and separating hyperplane theorems in Section 7.6 and the definitions of continuity
of functions and correspondences in Section 7.8, but no more.

The first definition generalizes the notion of distance introduced in Definition 5.2.13.

DEFINITION 7.5.1 A metric space is a non-empty set X equipped with a metric, i.e. a
distance function d: X × X →R+ such that:

(a) d(x,y)= 0 ⇒ x= y;
(b) d(x,y)= d(y,x) for all x,y∈ X ; and
(c) the triangular inequality holds, namely,

d(x, z)+ d(z,y)≥ d(x,y) ∀ x,y, z∈ X (7.24)

As noted in Section 5.4.9, any finite-dimensional vector space, say R
n , can be turned into

a scalar product space, given a positive definite n × n matrix, say A, by defining a scalar
product

(x | y)≡ x�Ay (7.25)

Such a scalar product space can in turn be made into a metric space by letting

d(x,y)≡‖x− y‖≡√
(x− y | x− y) (7.26)

The proof that this d has all the properties of a metric, apart from an outline of the proof that
it satisfies the triangular inequality, is left as an exercise; see Exercise 7.16. To show that the
triangular inequality is satisfied, note that

‖tx+ y‖2 = (tx+ y | tx+ y)

= t2(x | x)+ 2t (x | y)+ (y | y)
≥ 0 ∀ t (7.27)

by positive definiteness of A.
Thus the quadratic expression in t on the right-hand side of (7.27) has no real roots (except

possibly a repeated root). Using the standard quadratic equation formula for these roots
yields

t = −2(x | y)±√
4(x | y)2 − 4(x | x)(y | y)

2(x | x) (7.28)

Since there cannot be two distinct real roots, the expression under the square root sign
must be non-positive, which (after taking square roots) leads to the Cauchy–Schwarz
inequality,3

|(x | y)| ≤ ‖x‖×‖y‖ (7.29)

In the case of the dot product, since |cos θ | ≤ 1 for all θ , the Cauchy–Schwarz inequality
actually follows immediately from Definition 5.2.15.
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Hence,

d(x,y)2 = (x− y | x− y)

= (x− z+ z− y | x− z+ z− y)

=‖x− z‖2 +‖z− y‖2 + 2(x− z | z− y)

≤‖x− z‖2 +‖z− y‖2 + 2‖x− z‖×‖z− y‖
= (‖x− z‖+‖z− y‖)2
= (d(x, z)+ d(z,y))2 (7.30)

where the inequality in (7.30) follows from the Cauchy–Schwarz inequality. Taking square
roots in (7.30) yields the triangular inequality as required.

It will be seen in Section 13.6.3 that a variance–covariance matrix is an example of a pos-
itive definite matrix often used to define a scalar product (covariance) and a metric (standard
deviation), and that the cosine of the angle between two vectors is equivalent to a measure
of correlation.

The next set of definitions describes subsets of metric spaces that have special properties.

DEFINITION 7.5.2 Let A be a subset of the metric space X .

(a) An open ball is a subset of X of the form

Bε(x)={y∈ X : d(y,x)< ε} (7.31)

in other words, the set of all points in the metric space less than the distance ε away from
the centre, x, of the open ball.

(b) A is open if and only if, for all x∈ A, there exists ε > 0 such that Bε(x)⊆ A.
(c) The interior of A, denoted int A, is defined by

x∈ int A ⇔ Bε(x)⊆ A for some ε > 0 (7.32)

(d) x is a boundary point of A if, for every ε > 0, Bε(x) contains points both of A and of
its complement X \ A.

The first part of Definition 7.5.2 merely generalizes the relevant part of Definition 7.4.5
from Euclidean space R

n to an arbitrary metric space. Every point in an open set is in the
interior of the set, or an open set does not contain any of its boundary points.

Confining attention to open sets means that we will not have to be concerned with what
happens at boundary points when dealing with limits and continuity; on the other hand,
confining attention to open sets when using calculus to search for maxima and minima means
that we will have to use other techniques to check for boundary solutions to optimization
problems.

DEFINITION 7.5.3 A is bounded if and only if there exist x, K > 0 such that A⊆ BK (x).

Note that K generally denotes a large number, whereas ε generally denotes a small number.
Metric spaces are special cases of the more general concept of a topological space.
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DEFINITION 7.5.4 A topological space is a set X together with τ , a collection of subsets
of X , satisfying the following axioms:

(a) The empty set and X are in τ .
(b) The union of any collection of sets in τ is also in τ .
(c) The intersection of any finite collection of sets in τ is also in τ .

The collection τ is called a topology on X . The elements of X are usually called points,
though they can be any mathematical objects (including vectors).

It is left as an exercise to confirm that, if X is a metric space and τ is the collection of all
open sets in X , then τ is a topology on X ; see Exercise 7.17. For this reason, the elements of
the collection τ are called the open sets of the topology, whether or not X is a metric space.

DEFINITION 7.5.5 Let X be a topological space and A⊆ X . Then A is closed if and only if
its complement X \ A is open.

Note that many subsets of metric spaces, and of topological spaces more generally, are
neither open nor closed.

For completeness, we include these last two definitions.

DEFINITION 7.5.6 A neighbourhood of the point x in the topological space X is an open
set containing x.

DEFINITION 7.5.7 Let X be a metric space. Then A⊆ X is compact if and only if A is both
closed and bounded.

7.6 Supporting and separating hyperplane theorems
These theorems will be required for the proof of the second welfare theorem
(Theorem 12.6.2). They can also be used to provide an alternative proof of Jensen’s inequal-
ity (Theorem 13.10.1). We introduced the concept of a hyperplane in Section 7.4. In this
section, we look at it in more detail. Berger (1993, Section 5.2.5) and Rockafellar (1970,
Section 11) provide a thorough development of these theorems.

Note that any hyperplane divides Rn into two closed half-spaces,

{x∈R
n : p�x≤p�x∗} (7.33)

and

{x∈R
n : p�x≥p�x∗} (7.34)

The intersection of these two closed half-spaces is the hyperplane itself.

DEFINITION 7.6.1 Let X and Y be subsets of Rn and let z∗ ∈Rn . Then the affine hyperplane
through z∗ with normal p is:

(a) a supporting hyperplane to X if z∗ is a boundary point of X and p�x≥ p�z∗ for all
x∈ X ; and
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(b) a separating hyperplane for X and Y if p�x≥ p�z∗ for all x∈ X and p�y≤ p�z∗ for
all y∈ Y .

In other words, a set lies entirely in one of the closed half-spaces associated with its
supporting hyperplane, while two sets each lie entirely in the respective closed half-spaces
associated with their separating hyperplane.

The idea behind the supporting hyperplane theorem is quite intuitive: if we take any
boundary point of a convex set, then we can find a supporting hyperplane through that point.
The supporting hyperplane can be thought of as being tangent to the set that it supports.

THEOREM 7.6.1 (SUPPORTING HYPERPLANE THEOREM). If Z is a convex subset of R
n

and z∗ ∈ Z, z∗ ∈ int Z, then there exists p∗ = 0 in R
n such that p∗�z∗ ≤ p∗�z for all z∈ Z,

or Z is contained in one of the closed half-spaces associated with the hyperplane through z∗
with normal p∗.

Proof: The proof of this theorem is beyond the scope of this book, but can be found in
Berger (1993, p. 341). �

THEOREM 7.6.2 (SEPARATING HYPERPLANE THEOREM). If X and Y are disjoint convex
subsets of Rn, then there exists a vector p∈R

n such that

p�x≥p�y ∀ x∈ X, y∈ Y (7.35)

If we define c≡ sup{p�y: y∈ Y }, then the hyperplane {x∈R
n : p�x= c} separates X and Y .

Proof: The proof of this theorem is beyond the scope of this book, but can be found in
Berger (1993, p. 342). �

Some writers call the penultimate theorem (Theorem 7.6.1) the separating hyperplane
theorem.

7.7 Visualizing functions of several variables
In Section 6.2, we introduced terminology which can be used to describe real-valued func-
tions, and also correspondences, of n variables. There are at least three very useful ways of
visualizing such functions and correspondences, namely:

1. as a graph, which is an n-dimensional surface in R
n+1 (see Definition 7.7.1);

2. as a collection of indifference curves, to use economic parlance (see Definition 7.7.2); and
3. as a collection of restrictions to lines in R

n (see Section 9.5).

DEFINITION 7.7.1 Every function or correspondence f : X → Y , X ⊆ R
n , Y ⊆ R, has a

graph, defined as

G f ={(x, y)∈ X × Y : y= f (x)} (7.36)

in the case of a function; and as

G f ={(x, y)∈ X × Y : y ∈ f (x)} (7.37)

in the case of a correspondence.
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Most readers will probably be familiar with the concept of a graph of a single-valued
function of one or two variables, something easily illustrated on a two-dimensional page.
Definition 7.7.1 merely extends this idea to n dimensions. The very difficulty of visualizing
such graphs in n dimensions suggests the alternative approaches listed above.

The concept of the graph of a correspondence will be important not only in relation to the
continuity of correspondences, but also when we deal with fixed points of correspondences
in Section 12.5.4.

DEFINITION 7.7.2 Consider the real-valued function f : X →R.

(a) The upper contour sets of f are the sets {x∈ X : f (x)≥α} (α ∈R).
(b) The level sets or indifference curves of f are the sets {x∈ X : f (x)=α} (α ∈R).
(c) The lower contour sets of f are the sets {x∈ X : f (x)≤α} (α ∈R).

In Definition 7.7.2, X does not have to be a vector space. If X =R
2, however, a selection

of indifference curves can be plotted on a diagram usually called an indifference map. One
example is the isoquant map encountered in Section 1.2.3. Another example familiar from
everyday life is the isobar map seen in many weather forecasts. Numerous further examples
will be encountered in later chapters, for example, Figures 9.2, 12.2 and 12.4.

The function f : X →R defines an equivalence relation on X by xRy ⇔ f (x)= f (y).
The level sets of f are the equivalence classes for this relation.

Furthermore, the level sets of f are invariant under increasing transformations of f , or
changes of scale, even nonlinear transformations. In other words, if g:R→R is a strictly
(monotonically) increasing function, then f and g ◦ f have the same level sets.

These concepts will be of central importance when we deal with utility functions from
Section 12.2 onwards and with expected-utility functions from Section 16.4 onwards.

7.8 Limits and continuity
DEFINITION 7.8.1 The real-valued function f : X → Y (X ⊆ R

n,Y ⊆ R) approaches the
limit y∗ as x→ x∗ if and only if, for all ε > 0, there exists δ > 0 such that ‖x− x∗‖<δ ⇒
| f (x)− y∗|<ε.

In other words, the values of the function at vectors in the domain close to x∗ come
arbitrarily close to the number y∗.

This is usually denoted as

lim
x→x∗

f (x)= y∗ (7.38)

DEFINITION 7.8.2 The function f : X → Y (X ⊆ R
n,Y ⊆ R) is continuous at x∗ if and

only if, for all ε > 0, there exists δ > 0 such that ‖x− x∗‖<δ ⇒ | f (x)− f (x∗)|<ε.

This definition just says that f is continuous at x∗ provided that

lim
x→x∗

f (x)= f (x∗) (7.39)

DEFINITION 7.8.3 The real-valued function f : X → Y (X ⊆R
n,Y ⊆R) is continuous if

and only if it is continuous at every point of its domain.
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We will say that a vector-valued or matrix-valued function is continuous if and only if
each of its real-valued component functions is continuous.

Most commonly encountered functions are continuous. An example of a function that is
not continuous (or is discontinuous) at a single point is

f :R→R: x �→
{

1/x if x = 0

0 if x = 0
(7.40)

Since 1/0 is not defined (in fact, it is infinite), f (0) must be defined in some other arbi-
trary way. Since limx→0 f (x) does not exist, no such arbitrary definition can make f into a
continuous function.

An example of a function with a natural singularity that can be made continuous is

g:R→R: x �→
⎧⎨⎩

sin x

x
if x = 0

1 if x = 0
(7.41)

As x → 0, sin x/x → 0/0, so we need to define g(0) in some other way. In fact, l’Hôpital’s
rule tells us that

lim
x→0

g(x)= lim
x→0

cos x

1
= 1 (7.42)

Making the value of g explicitly equal to 1 at the singularity makes the function continuous.
A more practical example of a discontinuous function is the function relating the size

of university grants to parental income in certain jurisdictions. Sometimes, a full grant is
payable if parental income falls at or below a threshold level and nothing is payable if
parental income exceeds the threshold level. Thus the function is discontinuous at the thresh-
old level of income. Governments are slowly becoming aware of the inequity of such rules
and gradually eliminating them.

We note, without proof, that pointwise sums, differences, products and inverses of con-
tinuous functions are also continuous. Similarly, the pointwise reciprocal of a continuous
function is continuous provided that the function nowhere takes the value zero; in the latter
case, the reciprocal is ill defined.

If, given a continuous function f defined on a vector space and a scalar λ, we define the
function λ f by (λ f )(x)≡ λ( f (x)), then λ f will be a continuous function. Since the sum of
two (or more) continuous functions is continuous and the product in this sense of a scalar
and a continuous function is continuous, it follows that the set of all continuous functions
on a given domain is a vector space, often called a function space. This vector space will
typically not be of finite dimension.

Note that a quadratic form is continuous. Thus, if a quadratic form is positive at some
vector x, then it is positive within some neighbourhood of x. Similarly, if a matrix-valued
function has a positive definite value at x, then it has positive definite values within some
neighbourhood of x.

DEFINITION 7.8.4 The real-valued function f : X →Y (X ⊆R
n,Y ⊆R) is uniformly con-

tinuous if and only if, for all ε > 0, there exists δ > 0 such that, for all x,x′ ∈ X, ‖x− x′‖<
δ ⇒ | f (x)− f (x′)|<ε.
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Continuity itself is a local (or, more precisely, pointwise) property of a function, i.e. a
function f is continuous, or not, at a particular point. When we speak of a function being
continuous on a subset of its domain, we mean only that it is continuous at each point of that
subset. The δ in the definition of continuity at x∗ (Definition 7.8.2) will generally depend
both on the ε chosen and also on the point x∗.

In contrast, uniform continuity is a global property of f , in the sense that Definition 7.8.4
refers to pairs of points, whereas Definition 7.8.2 refers to individual points. In the definition
of uniform continuity, a single value of δ must work for all values of x and x′.

Many familiar functions defined on R or R++ are continuous but not uniformly continu-
ous; for example, on R++, x �→ 1/x ; and, on R, x �→ ex and x �→ x2.

The trigonometric tangent function, which is undefined at (1+ 2n)π/2 for all integers n,
is continuous but not uniformly continuous on the open interval (−π/2,π/2), throughout
which it is well defined.

The confirmation of all of these statements is left as an exercise; see Exercise 7.20.

THEOREM 7.8.1 (HEINE–CANTOR THEOREM). If the function f is continuous on the
closed hyperrectangle X =∏n

i=1[ai ,bi ]⊂R
n, then it is uniformly continuous on X.4

Proof: Choose ε > 0.
We claim that X can be divided into sub-hyperrectangles such that, for x and x′ in the same

sub-hyperrectangle, | f (x)− f (x′)|<ε. This claim can be proved by contradiction. Suppose
not.

Halve each of the intervals [ai ,bi ], so dividing X into 2n sub-hyperrectangles. By our
hypothesis, we can pick a sub-hyperrectangle in which there exist x and x′ such that | f (x)−
f (x′)| ≥ ε. Repeat the halving procedure for this sub-hyperrectangle.

As this process continues, the vertices of this sequence of sub-hyperrectangles converge
to a common limit, say the vector x∗ ∈Rn . Since f is continuous on X , it is continuous at x∗,
and thus there exists δ > 0 such that ‖x− x∗‖< δ ⇒ | f (x)− f (x∗)|<ε/2. Hence, by the
triangular inequality, for x,x′ ∈ Bδ(x∗), | f (x)− f (x′)|<ε.

The repeated halving procedure will eventually reach a stage at which the sub-
hyperrectangle lies entirely within Bδ(x∗). This will certainly happen after k halvings if
k is large enough that the length of the diagonal of the sub-hyperrectangle is less than δ or√√√√ n∑

i=1

(
bi − ai

2k

)2

<δ (7.43)

This inequality can be solved for the equivalent condition on k, which is

k>
ln
√∑n

i=1(bi − ai )2 − ln δ

ln 2
(7.44)

We have now established the required contradiction since, by our hypothesis, there exist x
and x′ in this kth sub-hyperrectangle such that | f (x)− f (x′)| ≥ ε but, by definition of δ, for
all x,x′ in the kth sub-hyperrectangle, | f (x)− f (x′)|<ε.

A similar argument can now be used to prove uniform continuity.
Choose ε > 0 once again.
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Divide X into sub-hyperrectangles such that, for x and x′ in the same sub-hyperrectangle,
| f (x) − f (x′)| < ε/2 and let δ be the length of the longest edge of any of these sub-
hyperrectangles.

Any vectors x and x′ within distance δ of each other must then lie either in the same sub-
hyperrectangle or in two sub-hyperrectangles with a common vertex, say x∗. In the former
case, we have | f (x)− f (x′)|<ε/2 and thus | f (x)− f (x′)|<ε. In the latter case, we have
| f (x)− f (x∗)|<ε/2 and | f (x′)− f (x∗)|<ε/2 and thus by the triangular inequality | f (x)−
f (x′)|<ε.

This completes the proof. �

Assuming uniform continuity will enable us to prove Leibniz’s integral rule
(Theorem 9.7.4) without calling on Fubini’s theorem (Theorem 9.7.1), the proof of which
is beyond the scope of this book.

The notion of continuity of a function described above is probably familiar to most readers
from earlier courses. Its extension to the notion of continuity of a correspondence, however,
while fundamental to consumer theory, general equilibrium theory and much of micro-
economics, is probably not. Recall that, especially in economics, the term correspondence is
used in preference to the oxymoron multivalued function; see Definition 0.0.3.

DEFINITION 7.8.5

(a) The correspondence f : X → Y (X ⊆R
n,Y ⊆R) is upper hemi-continuous5 (u.h.c.) at

x∗ if and only if, for every open set N containing the set f (x∗), there exists δ > 0 such
that ‖x− x∗‖<δ ⇒ f (x)⊆ N .

(b) The correspondence f : X →Y (X ⊆R
n,Y ⊆R) is lower hemi-continuous (l.h.c.) at x∗

if and only if, for every open set N intersecting the set f (x∗), there exists δ >0 such that
‖x− x∗‖<δ ⇒ f (x) intersects N .

(c) The correspondence f : X →Y (X ⊆R
n,Y ⊆R) is continuous (at x∗) if and only if it is

both upper hemi-continuous and lower hemi-continuous (at x∗).

Upper hemi-continuity basically means that the graph of the correspondence is a closed
and connected set, or that the set f (x) does not suddenly become much larger (explode)
when there is a small change in x. Similarly, lower hemi-continuity means that the graph
does not suddenly implode.

These concepts are illustrated in Figure 7.4, which shows the graph of a correspondence
f : X → Y . At x1, x3 and x5, f is both upper and lower hemi-continuous. At x2, f is upper
hemi-continuous but not lower hemi-continuous. At x4, f is lower hemi-continuous but not
upper hemi-continuous.

For single-valued correspondences (i.e. functions), lower hemi-continuity, upper hemi-
continuity and continuity are equivalent.

We will encounter the continuity of correspondences again in Theorems 10.5.4
and 12.5.6.6

7.9 Fundamental theorem of calculus
We conclude this chapter with an important result from univariate calculus that will be used
frequently in what follows, but which does not have a direct multivariate analogue. This
theorem sets out the precise rules for cancelling integration and differentiation operations.
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X

Y

x1
•

x2
•

x3
•

x4
•

x5
•

f (x4)

Figure 7.4 Upper and lower hemi-continuity of correspondences

Note that the differentiation in the first part of this theorem is with respect to the upper limit
of integration.

THEOREM 7.9.1 (FUNDAMENTAL THEOREM OF CALCULUS). The differentiation and
integration operators are inverse operators in the following senses:

(a)

d

db

∫ b

a
f (x)dx = f (b) (7.45)

(b) ∫ b

a
g′(x)dx = g(b)− g(a) (7.46)

Proof: The proofs of the two parts of this theorem are illustrated graphically in Figures 7.5
and 7.6 respectively.

(a) The shaded area A in Figure 7.5, which shows the graph of the function f , represents
the integral in (7.45), since integration can be used to compute the area under a curve. The
more lightly shaded area A≈ f (b)×b represents the increase in this area when the
upper limit of integration goes from b to b+b. The derivative in (7.45) is

lim
b→0

A

b
= lim
b→0

f (b)b

b
= f (b) (7.47)

(b) Similarly, the shaded area in Figure 7.6, which shows the graph of the derivative g′,
represents the integral in (7.46).

For a full proof of both parts of this theorem, see Binmore (1982, pp. 126–8). �
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x

y

0 a
•

b
•

b+b
•

A A≈ f (b)×b

y= f (x)

Figure 7.5 Motivation for the fundamental theorem of calculus, part (a)

x

y

0 a
•

b
•

y= g′(x)

g(b)− g(a)

Figure 7.6 Motivation for the fundamental theorem of calculus, part (b)
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EXERCISES
7.1 Show that the following statements are equivalent:

(a) if k1, k2, . . . , kr are scalars with
∑r

i=1 ki = 1 and v1,v2, . . . ,vr ∈ X , then
∑r

i=1 ki vi ∈ X ;
and

(b) if λ is a scalar and x and x′ are vectors in X , then λx+ (1− λ)x′ ∈ X .

7.2 Let A be an affine set in the vector space X and let a be any vector in A. Prove that
the set

A−{a}≡ {x− a: x∈ A}

is a vector subspace of X .

7.3 Show that the following statements are equivalent:

(a) if k1, k2, . . . , kr are non-negative scalars with
∑r

i=1 ki = 1 and v1,v2, . . . ,vr ∈ X , then∑r
i=1 ki vi ∈ X ; and

(b) if λ∈ [0,1] and x and x′ are vectors in X , then λx+ (1− λ)x′ ∈ X .

7.4 Prove Theorem 7.3.1.

7.5 Let X1, X2, . . . , Xk be convex subsets of Rn . Prove that the intersection of these k sets,
X1 ∩ X2 ∩ · · · ∩ Xk , is also a convex set.

7.6 Show that the convex hull of any set is itself a convex set.

7.7 Show that the convex hull of the set X is the smallest convex set containing X .

7.8 Sketch and find the equations of each of the following three hyperplanes in R
2:

(a) the hyperplane through (1,0) with normal (1,1);
(b) the hyperplane through (0,1) with normal (2,2); and
(c) the hyperplane through (0,1) with normal (−1,−1).

7.9 Show that a hyperplane, as defined in Definition 7.4.1, is both an affine set and a
convex set.

7.10 Show that the following are the same:

(a) the hyperparallelepiped with m edges x1,x2, . . . ,xm ; and
(b) the simplex with 2m vertices of the form

∑
i∈I xi where I is any subset of {1,2, . . . ,m}

and a sum of vectors over the empty set is defined to be the zero vector.

7.11 Show that a hyperparallelepiped is a convex set.

7.12 Show that the image of a hyperparallelepiped under a linear transformation is also a
hyperparallelepiped.

7.13 Prove Corollaries 7.4.2–7.4.5.
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7.14 Give an example of a subset of R that is neither open nor closed.

7.15 What is the largest open hypercube that can be completely enclosed in the open ball of
radius ε centred at the origin in R

n? What are the coordinates of its vertices? What are the
lengths of its edges? What is its volume?

7.16 Prove that the d defined in (7.26) has all the properties of a metric as set out in
Definition 7.5.1.

7.17 Let X be a metric space and let τ be the collection of all open sets in X . Show that τ is
a topology on X .

7.18 Let f : X → Y (X ⊆R
n,Y ⊆R) and let x∗ ∈ X . Show that the following definitions of

continuity of f at x∗ are equivalent:

(a) for all ε > 0,∃ δ > 0 s.t. ‖x− x∗‖<δ ⇒ | f (x)− f (x∗)|<ε;
(b) for each open sphere Bε( f (x∗)) centred on f (x∗) there exists an open sphere Bδ(x∗)

centred on x∗ such that f (Bδ(x∗))⊆ Bε( f (x∗)); and
(c) f −1(B) is open (in X ) whenever B is open (in Y ).

(Hint: see p. xxi for the relevant definitions.)

7.19 Let f : X →R and g: X →R be continuous functions and let λ∈R.
Define h: X →R by h(x)= f (x)+ g(x) for all x ∈ X and k: X →R by k(x)= λ f (x) for

all x ∈ X .
Show that h and k are continuous functions and, hence, that the set of all continuous

functions defined on X is a real vector space.

7.20 Prove that the following functions are not uniformly continuous:

(a) f :R→R: x �→ ex ;
(b) g:R++→R++: x �→ 1/x ;
(c) h:R→R: x �→ x2; and
(d) k: (−π/2,π/2)→R: x �→ tan x .

7.21 Consider the set C of all complex numbers.

(a) Show that C becomes a real vector space if the operations of addition of complex num-
bers and multiplication of a complex number by a real number are defined in the natural
way.

(b) What is the dimension of this real vector space?
(c) Give two examples of bases for C.
(d) Is multiplication of complex numbers a scalar product on this real vector space?
(e) Is C a metric space if the distance between two complex numbers is defined to be the

modulus of their difference, i.e. d(y, z)≡ |y− z|?
(f) Show that the conjugate operator on C is a linear operator.
(g) Find the matrix of the conjugate operator with respect to each of the bases that you gave

in your answer to part (c) of this exercise.
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8.1 Introduction
The behaviour of economic and financial variables and systems over time, and in particular
how they respond to policy changes or other national or international shocks, is a matter
of major concern. Consideration of the evolution of individual variables, such as exchange
rates, interest rates, unemployment, national income and other macroeconomic magnitudes,
and of the processes of adjustment of systems, such as markets or entire economies, leads us
to the subject of dynamics, in which time is made explicit.

The mathematical treatment of dynamics is based principally on the use of difference
equations or differential equations – as well as many of the mathematical tools already pre-
sented – depending on whether time is modelled as being discrete or continuous. Empirical
analysis is limited to a finite number of observations, and thus to discrete time. Theoreti-
cal analysis can – and, at an advanced level, does – deal with continuous time. Economic
variables are measured and reported only for discrete intervals: for example, monthly (like
the Consumer Price Index) or quarterly (like some unemployment and trade series) or annu-
ally (like the major macroeconomic variables in the national accounts of many economies).
In finance, data are often available (almost) continuously, yet they are still frequently pre-
sented for short intervals of time such as tick-by-tick or daily periods. Thus discrete-time
models, and hence difference equations, are of more relevance to empirical data analysis,
while continuous-time models and differential equations lend themselves more to theoretical
analysis.

This chapter provides a grounding in the mathematics of difference equations. Section 8.2
confines itself to definitions, classifications and examples. The next two sections discuss
linear difference equations in some detail, Section 8.3 focusing on the first-order case and
Section 8.4 on higher orders, but especially the linear, autonomous, second-order difference
equation. Section 8.5 examines systems of linear difference equations, starting with gen-
eral linear systems and then concentrating on the linear, autonomous, first-order system.
A few illustrative examples are provided as the material is developed, but the main detailed
application is left until Chapter 14.

8.2 Definitions and classifications
The idea of a time series was first mentioned in the econometric example in Section 1.2.1.
There, the series in question were stochastic. In this chapter, we consider only non-stochastic
time series, leaving stochastic time-series issues aside until Section 14.4. The present section
begins with a more formal definition of a (non-stochastic) time series. It then gives definitions
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of some useful related operators, before explaining the classification of difference equations
and their solutions.

8.2.1 Non-stochastic time series

DEFINITION 8.2.1 A non-stochastic time series is a collection of values of a variable
indexed by the time periods with which each value is associated, and denoted {yt }.

The set of all time series of the form {yt : t ∈ T } is a vector space. The index set, T , is
typically the set of natural numbers, N, or the set of integers, Z. Unless stated otherwise, we
assume t = 1,2, . . . .

The use of this subscript notation to denote the time dependence of the values of certain
variables will be recalled from Section 1.2.1, and particularly from (1.6) and (1.7).

8.2.2 Lag and difference operators

Let yt be the value of some variable of interest in time period t . Then prior, or lagged, values
of yt can be handled conveniently by means of the following lag operator.

DEFINITION 8.2.2 The lag operator, L , is a linear operator on the vector space of discrete
time series defined by

Lyt ≡ yt−1 (8.1)

To see that L is a linear operator, note that L(xt + yt )= Lxt + Lyt and L(cyt )= cLyt , where
c is a scalar.

The lag operator satisfies the following further properties:

1. L0 yt = yt for all t or L0 is the identity operator, which – for reasons that will become
apparent in Section 8.4.1 – will be denoted 1.

2. If yt = y∗ for all t , i.e. {yt } is a constant series, then Lyt = Ly∗ = 1y∗ = y∗ = yt for all t .
3. Li yt ≡ yt−i .

4. (Li + L j )yt = Li yt + L j yt = yt−i + yt− j .
5. (Li L j )yt = Li (L j yt )= Li yt− j = yt−i− j = Li+ j yt .
6. L−i yt = yt+i .
7. If C(x)= c0 + c1x + c2x2 + · · · + cpx p is a polynomial of degree p in x , then we may

need to refer to the corresponding linear operator C(L)=∑p
i=0 ci Li , a polynomial in

the lag operator or lag polynomial.1 For the constant series {yt } with yt = y∗ for all t ,
C(L)yt = c0 yt + c1 yt−1+ c2 yt−2+· · ·+ cp yt−p = (c0+ c1+ c2+· · ·+ cp)y∗ =C(1)y∗.

8. (1+ cL + c2 L2 + c3L3 + · · · )yt = (1− cL)−1 yt , also denoted yt/(1− cL), for |c|< 1.
9. (1+ (cL)−1+ (c2L2)−1+ (c3L3)−1+· · · )yt =−cLyt/(1− cL)=−cyt−1/(1− cL), for
|c|> 1.

Given the lag operator, the change or difference in the value of yt between adjacent time
periods t − 1 and t may be represented by a simple, related operator called the difference
operator.

DEFINITION 8.2.3 The first-difference operator, denoted by , is defined by

yt ≡ (1− L)yt = yt − Lyt = yt − yt−1 (8.2)
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We can generalize the first-difference operator to the p-period difference operator p ≡
1− L p , where p is an integer greater than one, with

p yt = (1− L p)yt = yt − L p yt = yt − yt−p (8.3)

which is the change in the variable over p periods. Hence,  generates one-period
differences (the subscript p= 1 being implicit), while 2 yields two-period differences:

2 yt = (1− L2)yt = yt − L2 yt = yt − yt−2 (8.4)

and so on for higher values of p. For example, the annual inflation rate published in some
countries is based on the 12-period (12-month) difference of the monthly Consumer Price
Index.

It is important to distinguish between the very different entities p and p. For example,
compare

2 yt =yt = (1− L)(1− L)yt = (1− 2L + L2)yt

= yt − 2Lyt + L2 yt = yt − 2yt−1 + yt−2 (8.5)

with (8.4).

8.2.3 Difference equations

A difference equation is any equation that involves terms of the form p yt = yt − yt−p,
although these p-period changes do not have to appear explicitly. For example, suppose that
yt denotes the money supply for time period t , and the monetary authority has a policy of
increasing this each period by a fixed proportion, θ . Then the change in the money supply
from one period to the next is given by the simple difference equation

yt = yt − yt−1 = θyt−1, t = 2,3, . . . , θ > 0 (8.6)

Adding yt−1 to both sides of (8.6) gives

yt = (θ + 1)yt−1 ≡φyt−1, t = 2,3, . . . , φ≡ θ + 1> 1 (8.7)

Equations (8.6) and (8.7) are alternative ways of writing this particular difference equation,
the first containing yt explicitly and the second containing the first difference implicitly.

As a second illustration, consider from microeconomics a simplified form of the well-
known cobweb model of a competitive market:

demand: Qt =α+βPt (8.8)

supply: Qt = γ + δPt−1 (8.9)

where Qt and Pt are endogenous quantity and price variables for time period t , and α, β, γ
and δ are parameters of the demand and supply functions. If demand equals supply, we may
equate the right-hand sides of (8.8) and (8.9) to give

α+βPt = γ + δPt−1 (8.10)
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A little rearrangement then gives

Pt =μ+φPt−1 (8.11)

where μ= (γ − α)/β and φ = δ/β. This is a difference equation involving price, with the
price change being implicit. To make the price change or first difference explicit, we simply
subtract Pt−1 from both sides of (8.11). Thus

Pt − Pt−1 =μ+ (φ− 1)Pt−1 (8.12)

or

Pt =μ+ θ Pt−1 (8.13)

where θ ≡φ− 1.

8.2.4 Classifications and solutions

Difference equations are conventionally classified according to their functional form,
whether or not they depend on time explicitly and, recalling that they are equations contain-
ing p yt = yt − yt−p, the highest value of p they involve. A further important distinction
concerns whether or not they contain a non-zero constant or intercept term.

A difference equation is said to be linear if it is linear in yt−i , i = 0, 1, . . . , p (p ≥ 1);
otherwise it is nonlinear. If a difference equation does not contain time, t , explicitly as
a variable (as distinct from a subscript), then it is described as autonomous; otherwise it
is said to be non-autonomous. The highest value of p that a difference equation involves
defines its order. Finally, if a difference equation does not contain a constant term (i.e. a term
independent of t), it is called homogeneous; otherwise, when there is a non-zero constant in
the equation, it is said to be non-homogeneous.

For example, both (8.7) and (8.11) are linear, autonomous difference equations of order
one. However, (8.7) is homogeneous, whereas (8.11) in non-homogeneous by dint of the
presence of the constant μ, assuming μ = 0, of course. Similarly,

yt = 0.5yt−2 (8.14)

and

yt =φ0 +φ1 yt−1 +φ2 yt−2 (8.15)

are both linear, autonomous, second-order difference equations, but (8.14) is homogeneous
and (8.15) is non-homogeneous, if φ0 = 0. The equation

yt = 1

t
+ et yt−1 (8.16)

is a linear, non-autonomous, first-order, homogeneous difference equation, and the equations

yt = 2 log yt−1 + t (8.17)

and

yt =φyt−1 yt−2 (8.18)
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are examples of nonlinear, homogeneous difference equations, though (8.17) is non-
autonomous of order one, while (8.18) is autonomous of order two.

The ideas on classification of difference equations are simple; nonetheless, a few further
examples appear in the exercises; see Exercise 8.1. By contrast, the solution of difference
equations is not usually a straightforward matter, with nonlinear difference equations being
in general insoluble analytically. Linear difference equations of arbitrary order are soluble.
However, their solutions are not unique, unless information is available on certain initial
values, in particular the initial value, y1, in the case of a first-order difference equation.

By way of illustration, consider (8.7), which describes a money supply adjustment process
as a linear, autonomous, first-order, homogeneous difference equation. Substituting for yt−1,
we have that

yt =φyt−1 =φφyt−2 =φ2 yt−2 (8.19)

Substituting similarly for yt−2 gives

yt =φ2 yt−2 =φ2φyt−3 =φ3 yt−3 (8.20)

Continuing this process of substitution for the lagged value on the right-hand side eventually
produces

yt =φt−1 y1, t = 1,2, . . . (8.21)

which shows that the solution for yt depends on the growth factor, φ, and the initial value of
the money supply, y1, chosen by the monetary authority. For a given value of φ, the infinity
of solution possibilities is clear and depends on the initial value, y1.

We refer to the solution (8.21) as the general solution for (8.7), and to y1 as the initial
condition of the difference equation. If y1 is known, then a particular solution for the
equation arises. Since θ >0 in (8.6), and therefore φ≡ θ +1>1, the money supply increases
period by period without bound in this illustration, for any positive value of y1. If y1 = 0,
however, then yt = 0 for all t . This zero value is therefore known as the steady-state value
or steady-state solution for yt .

Although these various solution concepts have been introduced using a linear,
autonomous, homogeneous difference equation of order one, none of them is specific to a
particular class of difference equation; they all apply generally. The distinction between the
particular solution, expressed in terms of a known initial condition, and the general solution,
in which y1 is free to take on any value, is analogous to the distinction we made for non-
homogeneous systems of m linear equations in n unknowns in Section 5.4.2. The steady-state
solution, if it exists, is not necessarily zero or equal to y1; it may be any constant value, y∗,
say, as we shall see in the next section.

In this book, we focus on linear difference equations only, as these are the most widely
used difference equations in economics and finance. In the sections that follow, we shall
discuss the general solution for linear, autonomous, first-order, non-homogeneous difference
equations, as well as solutions for linear, non-autonomous, first-order difference equations,
and for linear, autonomous, second-order difference equations and systems of linear dif-
ference equations. As mentioned earlier, an important application is presented later, in
Section 14.4.
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8.3 Linear, first-order difference equations
In this section, we consider both linear, autonomous and linear, non-autonomous, first-order
difference equations, focusing mainly on their solution and dynamic properties.

8.3.1 Autonomous case

Examples of linear, autonomous, first-order difference equations appeared as (8.7) and (8.11)
in Section 8.2.3. In a more general notation, such equations may be written as

yt =φ0 +φ1 yt−1, t = 2,3, . . . (8.22)

If φ0=0, we have the homogeneous case, and if φ0 =0, we have the non-homogeneous case.
Let us, first, consider the solution of this difference equation.

Solutions

In the manner illustrated in the previous section, continuous substitution for the lagged value
on the right-hand side of (8.22) gives

yt =φ0 +φ0φ1 +φ0φ
2
1 + · · ·+φ0φ

t−2
1 +φt−1

1 y1

=φ0

t−2∑
i=0

φi
1 +φt−1

1 y1 (8.23)

This result emerges after t − 2 substitutions, for any t ≥ 2. The last term in (8.23) is the
same as the solution for our earlier illustration, (8.21); the other term arises from the non-
homogeneity in the present case. That (8.23) is a solution for yt may be checked by noting
that, if we use it to substitute for yt and yt−1 in (8.22), the difference equation is satisfied.
Equivalently, as (8.23) holds for all values of t , we have

yt−1 =φ0

t−3∑
i=0

φi
1 +φt−2

1 y1 (8.24)

and so

φ0 +φ1 yt−1 =φ0 +φ1

(
φ0

t−3∑
i=0

φi
1 +φt−2

1 y1

)

=φ0 +φ0

t−2∑
i=1

φi
1 +φt−1

1 y1

=φ0

t−2∑
i=0

φi
1 +φt−1

1 y1

= yt (8.25)

which confirms (8.22).
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Another way of writing the general solution for yt results from simplification of the sum
in the intercept term in (8.23). Using the formula for the sum of a geometric series on p. xx,
for φ1 = 1, we may rewrite (8.23) as

yt =φ0(t − 1)+ y1 (8.26)

and for φ1 = 1, we may rewrite (8.23) as

yt =φ0
1−φt−1

1

1−φ1
+φt−1

1 y1 (8.27)

The solution (8.26) is interesting in that it shows that, when φ1 = 1, the values of yt when
plotted against t lie along a straight line, whose intercept is y1 − φ0 and whose slope is φ0.
Such a line is called a linear time trend.

The following example makes use of (8.23) and (8.27) to obtain a particular solution when
the initial condition y1 is known.

EXAMPLE 8.3.1 If a saver puts e500 into an account regularly at the beginning of each
year and earns interest of 5% per annum, what is the value of the investment after five years,
i.e. at the beginning of year six?

This problem can be formulated in terms of the difference equation

yt =φ0 +φ1 yt−1

= 500+ 1.05yt−1 (8.28)

where yt denotes the value of the investment immediately after the annual deposit at the
beginning of year t . The first deposit is made at the start of the first year, say, t = 1, and
maturity is at the start of the sixth year, t = 6. At the start of the second year, the individual
has 1.05×e500 = e525 from the initial investment and adds another e500 to this, and
so on. Using (8.23), we have

y6 =φ0

6−2∑
i=0

φi
1 +φ6−1

1 y1

= 500
4∑

i=0

1.05i + 1.055 × 500

= 500(1+ 1.05+ 1.052 + 1.053 + 1.054)+ 1.055 × 500 (8.29)

The required arithmetic in (8.29) gives y6 ≈ e3400.89 to two places of decimals or the
nearest cent. Using the alternative (8.27), we have

y6 =φ0
1−φ6−1

1

1−φ1
+φ6−1

1 y1

= 500× 1− 1.055

1− 1.05
+ 1.055 × 500 (8.30)
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which gives the same numerical result, y6 ≈e3400.89. Note that this solution includes the
new deposit just made at the start of year six. ♦

We see from Example 8.3.1 that (8.27) may be preferred to (8.23) in practice as it is
computationally more efficient, especially if t is large. We also note that, as in the case of the
money supply illustration in the previous section, the value of yt (savings) would increase
continuously, if the time horizon were to be increased beyond five years. This brings us to the
matter of the dynamic behaviour of a variable, yt , that is implicit in any particular difference
equation.

Dynamic behaviour

If the process governing the behaviour of a variable, yt , may be described by a linear,
autonomous, first-order difference equation, then it is relatively straightforward to answer
questions about the dynamic behaviour of that variable. In general, the value of the variable
will change over time but it may be important to know more about the nature of this change.
Does the value of the variable increase monotonically over time (yt > yt−1 for all t) – as in
the earlier money supply illustration and in Example 8.3.1 about the level of savings in a
certain investment plan – or does it decrease monotonically over time (yt < yt−1 for all t)?
Or is the time path of the variable oscillatory in nature, and, if so, does it have a tendency
to converge to a particular value or to diverge as time passes? All of these questions can be
answered by reference to the general solution just presented, using, as appropriate, the ideas
on limits referred to in Section 7.8.

The key is the value of the parameter φ1. First, it is clear from (8.27) that, if φ1 = 0, then,
trivially, yt = φ0 for all t ; yt stays at the constant value φ0 over time. If φ1 = 1, yt increases
monotonically (linearly) or decreases monotonically (linearly), depending on whether φ0

is positive or negative, respectively. In fact, as noted above, the dynamic behaviour of yt

in this case is described by a deterministic linear time trend and therefore the variable has
no tendency to approach any particular value. Rather, the time path of yt is divergent, and
the divergence is at a constant rate, φ0. The case in which φ1 = 1 is important for cer-
tain economic and financial theories,2 and for econometric work involving unit roots and
co-integration.3 If φ1 =−1, the time path of yt is characterized by continually oscillating
behaviour between two values, since

yt =
{
φ0 − y1 if t is even

y1 if t is odd
(8.31)

The exception is if y1 =φ0/2, in which case yt =φ0/2 for all t .
Second, when φ1 = 1, rearrangement of (8.27) as

yt = φ0

1−φ1
+φt−1

1

(
y1 − φ0

1−φ1

)
(8.32)

indicates that divergent behaviour also arises when |φ1|>1, assuming that y1 =φ0/(1−φ1).
In this case, however, the divergence is not linear, since φt−1

1 increases geometrically in
absolute terms as t →∞. Moreover, the nature of the divergence is fundamentally different
depending on the signs of (y1 −φ0/(1−φ1)) and φ1. For example, if (y1 −φ0/(1−φ1))>0
and φ1 > 1, the value of yt increases monotonically from its initial value, whereas if
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(y1 −φ0/(1−φ1)) > 0 and φ1 < −1, the divergence in the value of yt is oscillatory, i.e.
the value changes in a series of alternate upward and downward steps of increasing mag-
nitude. Determination of the other possibilities, when (y1 −φ0/(1−φ1)) is negative, is left
as an exercise; see Exercise 8.4. The various dynamic possibilities will also be illustrated
presently, in Example 8.3.1.

Third, and by contrast with the previous two cases, we conclude from (8.32) that, when
|φ1|< 1 and y1 = φ0/(1− φ1), yt is subject to convergent behaviour, evolving over time
towards a fixed value. This convergence may be such that the value of yt increases monoton-
ically towards a constant, decreases monotonically towards a constant or approaches a fixed
value in an oscillatory fashion. Once again, the precise mode of convergence depends on the
sign of φ1. If, for example, (y1 −φ0/(1−φ1))>0 and 0<φ1<1, then φt−1

1 remains positive
for all finite values of t but tends to zero as t→∞, and so yt declines monotonically towards
the value φ0/(1−φ1). If (y1 −φ0/(1−φ1))> 0 and −1<φ1< 0, then φt−1

1 again becomes
smaller in magnitude as t gets bigger but it alternates in sign. Thus the convergence in this
case is oscillatory, with successive values of yt being below and then above φ0/(1−φ1).
In the limit, as t →∞, we again have that yt → φ0/(1 − φ1). If y1 = φ0/(1 − φ1) and
φ1 =1, then yt =φ0/(1−φ1) for all t , so φ0/(1−φ1) is the steady-state value or steady-state
solution for yt introduced in the previous section.

In economic and financial theory, the steady-state concept coincides with the idea of an
equilibrium; and when |φ1| < 1, we have the important case of convergence towards an
equilibrium. The concept of equilibrium in a dynamic model connotes a situation that, once
achieved, will be maintained. It therefore suggests an alternative way of determining the
steady-state value of a variable when |φ1| = 1. Let y∗ denote this steady-state value of yt .
Then in the steady state, yt = yt−1 = y∗ for all t by definition, so that

y∗ =φ0 +φ1 y∗ (8.33)

and therefore

y∗ = φ0

1−φ1
(8.34)

in agreement with what was inferred from (8.32).
Another approach to establishing the steady-state solution makes use of the lag operator.

Thus

yt =φ0 +φ1 yt−1 =φ0 +φ1Lyt (8.35)

and so we may write

φ(L)yt = (1−φ1L)yt =φ0 (8.36)

where φ(L)≡ 1− φ1L is a polynomial in the lag operator of degree one. It is conventional
to denote the inverse of this polynomial as φ−1(L)≡ 1/(1− φ1L), so that φ(L)φ−1(L) is
the identity transformation, although the inverse could be written as (φ(L))−1. If the inverse
exists, then

yt =φ−1(L)φ0 = φ0

1−φ1
, ∀ t (8.37)

as in (8.34).
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The existence of φ−1(L) is guaranteed if |φ1|< 1, and it takes the form of an infinite
polynomial in the lag operator similar to that in Property 8 of the lag operator listed in
Section 8.2.2, namely

φ−1(L)= 1

1−φ1L
=

∞∑
i=0

φi
1Li (8.38)

This result is easily verified by showing that (see Exercise 8.5)

(1−φ1L)(1+φ1L +φ2
1 L2 +φ3

1 L3 + · · · )= 1 (8.39)

Therefore, assuming |φ1|< 1, substitution for φ−1(L) in (8.37) gives

yt = (1+φ1L +φ2
1 L2 +φ3

1 L3 + · · · )φ0

= (1+φ1 +φ2
1 +φ3

1 + · · · )φ0

= φ0

1−φ1
= y∗ (8.40)

since Liφ0=φ0 for all i , given that φ0 is a constant. In this approach, the notion of t tending
to infinity from some initial value, y1, is replaced by that of the process generating yt having
started in the infinite past (t→−∞), which is implicit in the infinite lag polynomial involved
in φ−1(L).

The lag polynomial, φ(L), also provides another way of stating the convergence condition,
which is that the root of φ(z)= 1− φ1z= 0 must be greater than 1 in absolute value. Since
the solution of φ(z)= 0 is z = 1/φ1, the requirement that |φ1|< 1 implies that |z|> 1, and
the equivalence is established.

We may summarize the points made about the dynamics of a variable whose behaviour is
governed by a linear, autonomous, first-order difference equation in the following theorem.

THEOREM 8.3.1 Let yt =φ0 +φ1 yt−1. Then

(a) there exists a steady-state solution y∗ =φ0/(1−φ1) if and only if φ1 = 1;
(b) yt converges to the steady-state solution y∗ for all y1 if and only if |φ1|< 1, the con-

vergence being monotonic if and only if 0 < φ1 < 1 and oscillatory if and only if
−1<φ1< 0;

(c) yt diverges monotonically from its initial value, y1, if and only if φ1 ≥ 1, and diverges
from its initial value in a series of increasing oscillations if and only if φ1<−1;

(d) yt neither converges to, nor diverges from, its initial value if and only if φ1=−1; rather,
it alternates in value between y1 and φ0 − y1 (provided y1 =φ0/2); and

(e) yt is constant for all t if φ1 = 0 or if y1 =φ0/2 and φ1 =−1.

The next example illustrates some of the dynamic possibilities numerically and graphi-
cally, while other possibilities are the subject of Exercise 8.6.

EXAMPLE 8.3.2 Given the difference equation

yt = 1+φ1 yt−1 (8.41)
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let us determine the steady-state and the dynamic behaviour of yt for the alternative values
φ1 = 2, −2, 1/2 and −1/2, and initial value y1 = 1.

First, for φ1 = 2, we have

y∗ = φ0

1−φ1
= 1

1− 2
=−1 (8.42)

and because φ1 = 2> 1, we anticipate monotonically increasing values of yt as t increases.
Specifically, we have

y2 = 1+φ1 y1 = 1+ 2× 1= 3 (8.43)

y3 = 1+φ1 y2 = 1+ 2× 3= 7 (8.44)

y4 = 1+φ1 y3 = 1+ 2× 7= 15 (8.45)

and so on for values of t>4. Figure 8.1 shows the divergent (monotonically increasing) time
path of yt for t = 1 to t = 8, inclusive.

Second, for φ1 =−2, we have

y∗ = φ0

1−φ1
= 1

1− (−2)
= 1

3
(8.46)

and because φ1 =−2<−1, we anticipate oscillatory increasing absolute values of yt as t
increases. Specifically, we have

y2 = 1+φ1 y1 = 1+ (−2)× 1=−1 (8.47)

y3 = 1+φ1 y2 = 1+ (−2)× (−1)= 3 (8.48)

y4 = 1+φ1 y3 = 1+ (−2)× 3=−5 (8.49)

y5 = 1+φ1 y4 = 1+ (−2)× (−5)= 11 (8.50)

and so on for values of t > 5. Figure 8.2 shows the oscillatory dynamics of yt for t = 1 to
t = 8, inclusive, for this case.

t

yt

1 2 3 4 5 6 7 8
0

50

100

150

200

250

Figure 8.1 Divergent time path of yt = 1+ 2yt−1 from y1 = 1
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t

yt

1 2 3 4 5 6 7 8

45

30

15

0

−15

−30

−45

−60

−75

Figure 8.2 Divergent time path of yt = 1− 2yt−1 from y1 = 1

Third, for φ1 = 1
2 , we have

y∗ = φ0

1−φ1
= 1

1− 1
2

= 2 (8.51)

and because 0 < φ1 < 1, we anticipate convergence of yt towards this value of y∗ as
t increases. Specifically,

y2 = 1+φ1 y1 = 1+ 1
2 × 1= 3

2 (8.52)

y3 = 1+φ1 y2 = 1+ 1
2 × 3

2 = 7
4 (8.53)

y4 = 1+φ1 y3 = 1+ 1
2 × 7

4 = 15
8 (8.54)

and so on for values of t > 4. The tendency for yt to converge to y∗ = 2 monotonically is
apparent in the numbers calculated, but Figure 8.3 plots the path of yt from its initial value
towards its steady-state value for t = 1 to t = 8, inclusive.

t

yt

1 2 3 4 5 6 7 8

2.0

1.5

1.0

0.5

0.0

y1

y∗

Figure 8.3 Convergent time path of yt = 1+ 1
2

yt−1 from y1 = 1 to y∗ = 2



February 12, 2011 11:1 Pinched Crown A Page-179 HarrWald

Difference equations 179

t

yt

1 2 3 4 5 6 7 8

1.00

0.75

0.50

0.25

0

y1

y∗

Figure 8.4 Convergent time path of yt = 1− 1
2

yt−1 from y1 = 1 to y∗ = 2
3

Finally, for φ1 =− 1
2 , we have

y∗ = φ0

1−φ1
= 1

1− (− 1
2 )
= 2

3
(8.55)

and similar calculations to those carried out for the previous cases lead to y2 = 1
2 , y3 = 3

4 ,
y4 = 5

8 , y5 = 11
16 , etc. The anticipated oscillatory convergence of yt towards y∗ = 2

3 is shown
for t = 1 to 8, inclusive, in Figure 8.4. ♦

8.3.2 Non-autonomous case

The linear, non-autonomous, first-order difference equation may be represented by a gener-
alization of (8.22) in which the intercept and slope, as well as the variable in question, are
dependent on time. Using the usual subscript to denote this time dependence, we have

yt =φ0(t−1)+φ1(t−1)yt−1, t = 2,3, . . . (8.56)

A specific example of this general equation was given in (8.16). It is clear that (8.56) sub-
sumes a number of special cases. First, the case when φ0(t−1), but not φ1(t−1), is constant
for all t ; second, the case when φ1(t−1), but not φ0(t−1), is constant for all t ; and third, the
autonomous case, in which φ0(t−1) and φ1(t−1) are both constant for all t . For the moment,
we consider the most general variant.

As in the autonomous case, the general solution for (8.56) may be obtained by a process
of continuous substitution for the lagged value of the variable on the right-hand side; and if
the initial value, y1, is known, then a particular solution may be written down. The first few
substitutions pose little difficulty:

y2 =φ01 +φ11 y1 (8.57)

y3 =φ02 +φ12 y2 =φ02 +φ12(φ01 +φ11 y1)

=φ02 +φ12φ01 +φ12φ11 y1 (8.58)

y4 =φ03 +φ13 y3 =φ03 +φ13(φ02 +φ12φ01 +φ12φ11 y1)

=φ03 +φ13φ02 +φ13φ12φ01 +φ13φ12φ11 y1 (8.59)
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and so on, but the algebra becomes tedious as t gets bigger. The result for yt when t is large
can be written as

yt =φ0(t−1)+φ0(t−2)φ1(t−1)+φ0(t−3)

t−1∏
i=t−2

φ1i + · · ·+φ01

t−1∏
i=2

φ1i + y1

t−1∏
i=1

φ1i (8.60)

or

yt =φ0(t−1)+
t−2∑
j=1

φ0 j

t−1∏
i= j+1

φ1i + y1

t−1∏
i=1

φ1i (8.61)

The proof that (8.61) is a solution for yt in the non-autonomous case may be established in
similar fashion to what was done earlier for solution (8.23) in the autonomous case. We may
either use (8.61) to substitute for yt and yt−1 in (8.56) and show that the difference equation
is satisfied, or use (8.61) to rewrite φ1(t−1)yt−1 and add φ0(t−1) to confirm that yt results; see
Exercise 8.7.

Solutions for the three special cases are easily established using (8.61). In particu-
lar, if φ0(t−1) and φ1(t−1) are both constant for all t , say, φ0(t−1) = φ0 for all t and
φ1(t−1)=φ1 for all t , then we have

yt =φ0 +
t−2∑
j=1

φ0 j

t−1∏
i= j+1

φ1i + y1

t−1∏
i=1

φ1i

=φ0 +φ0φ
t−2
1 +φ0φ

t−3
1 + · · ·+φ0φ1 + y1φ

t−1
1

=φ0

t−2∑
i=0

φi
1 +φt−1

1 y1 (8.62)

which is solution (8.23) from the autonomous case. The form that (8.61) takes in the other
two special cases is considered in Exercise 8.8.

EXAMPLE 8.3.3 Calculate y5, given that

yt = t − 1

10
+
(

1

2

)t−1

yt−1 and y1 = 16 (8.63)

and establish the limiting behaviour of yt as t →∞.
In this example, yt is generated by a linear, non-autonomous, first-order difference equa-

tion with φ0(t−1) = (t − 1)/10 and φ1(t−1) =
( 1

2

)t−1
; therefore (8.61) gives us directly

that

y5 =φ04 +
5−2∑
j=1

φ0 j

5−1∏
i= j+1

φ1i + y1

5−1∏
i=1

φ1i

= 4

10
+ 3

10

(
1

2

)4

+ 2

10

(
1

2

)3(1

2

)4

+ 1

10

(
1

2

)2(1

2

)3(1

2

)4
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+ 16

(
1

2

)(
1

2

)2(1

2

)3(1

2

)4

= 4

10
+ 3

10

1

24
+ 2

10

1

27
+ 1

10

1

29
+ 16

1

210
(8.64)

Simple arithmetic then yields the result y5 = 2233
5120 ≈ 0.4361 to four places of decimals. We

note that this value is much lower than the initial value y1 = 16. The intermediate values
y2, y3 and y4 would be easy to find, either by direct calculations similar to those in (8.64)
or by successive substitution in the original difference equation. However, the issue now is
the limiting behaviour of yt , i.e. its tendency as t →∞. Clearly, φ0(t−1)= (t − 1)/10→∞
as t →∞, while φ1(t−1) =

( 1
2

)t−1 → 0 as t →∞. We conclude that yt increases without
bound as t gets large: it becomes indeterminately large in the limit. We note, however, that
this increase is not monotonic from the initial value. Further examination of the precise form
of the time path of yt is left to the reader; see Exercise 8.9. ♦

This example illustrates how consideration of the behaviour of the coefficients φ0(t−1)

and φ1(t−1) as time passes, in conjunction with the solution (8.61), in general, may provide
insight into the dynamic behaviour of the variable yt .

8.4 Linear, autonomous, higher-order difference equations

8.4.1 Linear, autonomous, pth-order difference equations

The linear, first-order difference equation easily generalizes, though the problem of solution
becomes more complicated. Concentrating on the autonomous case, we may write the linear
difference equation of order p as

yt =φ0 +φ1 yt−1 +φ2 yt−2 + · · ·+φp yt−p (8.65)

or, using a polynomial in the lag operator,

φ(L)yt =φ0 (8.66)

where

φ(L)= 1−φ1L −φ2L2 − · · ·−φp L p (8.67)

is called the lag polynomial of (8.65).
As a prelude to our consideration of how (8.65) is solved for yt , we note two impor-

tant points that arise from the previous section. First, as is evident from (8.32), the general
solution for the linear, autonomous, first-order difference equation may be thought of as
comprising two components. One is a particular solution, namely the steady-state solu-
tion y∗ =φ0/(1−φ1), and the other is a component of the form Aφt−1

1 , where A =
y1 − φ0/(1−φ1) depends on the initial value y1. Second, the component Aφt−1

1 is pre-
cisely the form of solution given in (8.21) for an equation – equation (8.7), which describes a
money supply adjustment process – in which φ0=0, i.e. a homogeneous difference equation.
Thus we may describe the earlier general solution (8.32) as being made up of a particular



February 12, 2011 11:1 Pinched Crown A Page-182 HarrWald

182 Difference equations

solution for the linear, autonomous, first-order difference equation and the solution for the
homogeneous equation associated with it.

There are few straightforward methods for solving higher-order difference (or differential)
equations. Often the simplest method is trial and error. Based on experience with similar and
simpler equations, we conjecture a solution containing several arbitrary parameters. Then we
substitute the conjectured solution into the original equation and derive any implied restric-
tions on these arbitrary parameters. In light of this, let us conjecture that the general solution
for (8.65) may be written like the first-order case in terms of a particular solution and the
general solution of the associated homogeneous equation.

It is straightforward to obtain the particular, steady-state solution. Applying the procedure
used previously, but making use of the lag polynomial, we have

φ(L)y∗ =φ(1)y∗ =φ0 (8.68)

and so

y∗ = φ0

φ(1)
= φ0

1−φ1 −φ2 − · · ·−φp
(8.69)

assuming, of course, that
∑p

i=1 φi = 1.
We see now why it is conventional to denote the identity operator on the vector space of

time series by 1 rather than by I . In (8.68), φ(L) is clearly a linear operator, but the φ(1)
that replaces it can be seen either as a linear operator applied to the constant time series
{y∗} or as a scalar multiplying the constant value of that time series, y∗ ∈R. Only the latter
interpretation allows us to make the division and substitution in (8.69).

The next step is more tricky. The homogeneous equation associated with (8.65) is
φ(L)yt = 0 or

yt −φ1 yt−1 −φ2 yt−2 − · · ·−φp yt−p = 0 (8.70)

Suppose a general solution for this takes the form yh
t = Ast−1, as for the first-order homo-

geneous case, where the superscript “h” signifies that the solution is for the associated
homogeneous equation, A is an arbitrary, non-zero constant and s is as yet unknown. Then

Ast−1 −φ1 Ast−2 −φ2 Ast−3 − · · ·−φp Ast−p−1 = 0 (8.71)

and, removing the common factor Ast−p−1,

Ast−p−1(s p −φ1s p−1 −φ2s p−2 − · · ·−φp)= 0 (8.72)

Eliminating trivial solutions, i.e. s= 0 and A= 0, we may find non-trivial solutions by solv-
ing the so-called characteristic equation of the linear, autonomous, pth-order difference
equation,

s p −φ1s p−1 −φ2s p−2 − · · ·−φp = 0 (8.73)

Note the similarities and differences between the lag polynomial (8.67) and the characteristic
equation (8.73). In particular, s = s∗ ( = 0) is a solution of the characteristic equation if and
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only if L = 1/s∗ is a root of the lag polynomial; see Exercise 8.10. The close similarity
between (8.73) and the characteristic polynomial encountered when the solution of the
eigenvalue problem was discussed in Section 3.3.1 should be apparent. Similar remarks to
those made in Section 3.3.1 concerning the number and type of roots of the characteristic
polynomial therefore also apply to (8.73).

Let us denote the p roots of (8.73), which include the possibility of complex values and
values that occur with multiplicity greater than one, by s j , j=1,2, . . . , p. Then yt = A j s

t−1
j

satisfies (8.70) for each j = 1,2, . . . , p, as does

yh
t =

p∑
j=1

A j s
t−1
j (8.74)

where A1, A2, . . . , Ap are arbitrary constants. Moreover, as certain subsets of these functions
of time may be linearly dependent, more general solutions for (8.70) are possible. The most
straightforward case is when all of the s j are different real roots. The other cases, which
require obvious modifications of (8.74), are as follows.

1. If a real root s j has multiplicity k > 1, then st−1
j , (t − 1)st−1

j , . . . , (t − 1)k−1st−1
j are

the linearly independent solutions that enter the linear combination that gives the general
solution.

2. If there is a pair of complex roots s j = a ± bi , and each root has multiplicity one, then
r t−1 cos(t − 1)θ and r t−1 sin(t − 1)θ are the individual solutions that enter the general
solution, where r =√a2 + b2 and the angle θ = tan−1(b/a).

3. If a pair of complex roots s j = a ± bi has multiplicity m > 1, then r t−1 cos(t − 1)θ ,
r t−1 sin(t − 1)θ , (t − 1)r t−1 cos(t − 1)θ , (t − 1)r t−1 sin(t − 1)θ, . . . , (t − 1)m−1r t−1

cos(t − 1)θ and (t − 1)m−1r t−1 sin(t − 1)θ are the individual solutions that enter the
general solution, where r and θ are as defined in point 2.

Just as (7.3) shows that solution spaces of matching homogeneous and non-homogeneous
systems of linear equations are respectively vector subspaces and affine subsets of Rn , it can
be seen that the solution space of a linear, homogeneous, autonomous, pth-order difference
equation such as (8.70) is typically a p-dimensional subspace of the vector space of all
relevant time series. For example, if the characteristic equation has p distinct real roots,
s1, s2, . . . , sp ∈ R and {yt } is to be defined for t ∈ Z, then the solution space specified by
(8.74) is

V ≡ lin{{st
1: t ∈Z}, {st

2: t ∈Z}, . . . , {st
p: t ∈Z}} (8.75)

If y∗ is the steady-state solution of the associated non-homogeneous equation (8.65), as given
by (8.69), then the set

V +{y∗}≡ {{yh
t + y∗: t ∈Z}: {yh

t : t ∈Z} ∈ V } (8.76)

is the solution set of the non-homogeneous equation and is effectively an affine subset of the
vector space of all time series indexed by Z.

In principle, the general solution of the homogeneous equation can be added to the steady-
state solution to yield the overall general solution: yt = y∗ + yh

t . However, the additional
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complexity in dealing with higher-order difference equations is becoming clear. Therefore,
rather than validating the above results using (8.70), let us examine in detail the particular
case of p= 2.

8.4.2 Linear, autonomous, second-order difference equations

The linear, autonomous, second-order difference equation

yt =φ0 +φ1 yt−1 +φ2 yt−2 (8.77)

has the steady-state solution

y∗ = φ0

1−φ1 −φ2
(8.78)

assuming φ1 +φ2 = 1, and the associated homogeneous equation

yt −φ1 yt−1 −φ2 yt−2 = 0 (8.79)

The characteristic equation corresponding to (8.79) is the quadratic equation

s2 −φ1s−φ2 = 0 (8.80)

and this is easily solved to give

s1 = φ1

2
+ 1

2

√
φ2

1 + 4φ2 and s2 = φ1

2
− 1

2

√
φ2

1 + 4φ2 (8.81)

We immediately see three possibilities, depending on the value of φ2
1 + 4φ2.

1. When φ2
1 + 4φ2 > 0, (8.80) has the two different real roots s1 and s2 given in (8.81), and

the general solution for (8.79) is

yh
t = A1st−1

1 + A2st−1
2 (8.82)

2. When φ2
1 + 4φ2= 0, (8.80) has one real root, s1=φ1/2, with multiplicity two, so that the

general solution for (8.79) is

yh
t = [A1 + A2(t − 1)]st−1

1 (8.83)

3. When φ2
1 + 4φ2< 0, (8.80) has the pair of conjugate complex roots

s1 = φ1

2
+ i

2

√
−(φ2

1 + 4φ2)≡ a+ bi ≡ r(cos θ + i sin θ) (8.84)

s2 = φ1

2
− i

2

√
−(φ2

1 + 4φ2)≡ a− bi ≡ r(cos θ − i sin θ) (8.85)

where r ≡ √
a2 + b2 ≡

√
1
4φ

2
1 − 1

4 (φ
2
1 + 4φ2) = √−φ2, and θ ≡ tan−1(b/a) =

tan−1
[√−(φ2

1 + 4φ2)
/
φ1
]
. In this case, making use of de Moivre’s theorem (see p. xx),
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the general solution for (8.79) is

yh
t = r t−1[A1 cos(t − 1)θ + A2 sin(t − 1)θ ]

= Art−1 cos[(t − 1)θ +ω] (8.86)

where A and ω are arbitrary constants. The derivation of the second equality in (8.86) is
the subject of Exercise 8.11.

The case of φ1+φ2=1 is not without interest, for although no steady-state solution exists,
it implies that the characteristic equation (8.80) has a unit root. It is easily verified that, with
φ1 = 1−φ2, the left-hand side of s2 −φ1s−φ2 = 0 factorizes to give

(s+φ2)(s− 1)= 0 (8.87)

which manifests the unit root directly. Similarly, one of the roots of the lag polynomial
equation φ(z)= 0 is unity. The factorization in this case is

(1+φ2z)(1− z)= 0 (8.88)

which allows (8.77) to be rewritten as

(1+φ2L)(1− L)yt =φ0 (8.89)

or

(1+φ2L)yt =φ0 (8.90)

so that the change in yt is described by the first-order difference equation

yt =φ0 −φ2yt−1 (8.91)

Linear independence and validity of solutions

The linear independence of the individual solutions in each of the above three cases is easy
to verify. It is sufficient to treat the solution values for t=1 and t=2 as the elements of a pair
of 2-vectors and show that these vectors are linearly independent. Recalling Theorem 3.6.2,
this boils down to showing that the determinant of a 2× 2 matrix is non-zero.

Consider the first possibility, in which s1 and s2 are two distinct real roots. Then, noting
that st−1

1 = s0
1 = 1 when t = 1, and st−1

1 = s1
1 = s1 when t = 2, and similarly for st−1

2 , we
examine the determinant∣∣∣∣ 1 1

s1 s2

∣∣∣∣= s2 − s1 (8.92)

This is non-zero, since s1 and s2 are different real numbers in this first case.
The same approach to the second possibility, where there is a real root s1 = φ1/2 with

multiplicity two, and corresponding solutions st−1
1 and (t−1)st−1

1 , produces the determinant∣∣∣∣ 1 0
s1 s1

∣∣∣∣= s1 (8.93)
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which is immediately seen to be non-zero, unless φ1 = 0 (which would imply φ2 = 0 also,
since in this case φ2

1 + 4φ2 = 0).
The third possibility gives rise to the determinant

∣∣∣∣ 1 0
r cos θ r sin θ

∣∣∣∣= r sin θ =
√
−1

4
(φ2

1 + 4φ2) (8.94)

by (8.84). Given that φ2
1 + 4φ2< 0, once again a non-zero value for the relevant determinant

emerges, establishing the linear independence of the individual solutions.
Likewise, it is quite straightforward to establish the validity of the three possible general

solutions for the homogeneous equation. In each case, use of the solution to substitute for yt ,
yt−1 and yt−2 on the left-hand side of (8.79) will produce the required value of zero. We
illustrate this for the second possibility only, leaving as exercises the first and third cases;
see Exercise 8.12.

The second possibility is that there is one real root with multiplicity two, for which the
suggested general solution of (8.79) is given in (8.83) as yh

t = [A1 + A2(t − 1)]st−1
1 , where

s1 =φ1/2. Thus we have that the left-hand side of (8.79) is

yt −φ1 yt−1 −φ2 yt−2

= [A1 + A2(t − 1)]st−1
1 −φ1[A1 + A2(t − 2)]st−2

1 −φ2[A1 + A2(t − 3)]st−3
1

= A1[st−1
1 −φ1st−2

1 −φ2st−3
1 ]

+ A2[(t − 1)st−1
1 −φ1(t − 2)st−2

1 −φ2(t − 3)st−3
1 ] (8.95)

The two square-bracketed components on the last line of (8.95) are treated similarly, so here
we consider just the second, slightly more complicated, component. Removing the common
factor st−3

1 from the second square-bracketed expression, then substituting for s1 gives

A2st−3
1 [(t − 1)s2

1 −φ1(t − 2)s1 − (t − 3)φ2]

= A2st−3
1

[
(t − 1)

φ2
1

4
−φ1(t − 2)

φ1

2
− (t − 3)φ2

]

= A2st−3
1

[
(t − 1)

φ2
1

4
− 2(t − 2)

φ2
1

4
− (t − 3)φ2

]
(8.96)

Now, since φ2
1 + 4φ2 = 0 in this case, we have φ2 = −φ2

1/4. Therefore, the expression
in (8.96) can be written as

A2st−3
1

[
(t − 1)

φ2
1

4
− 2(t − 2)

φ2
1

4
+ (t − 3)

φ2
1

4

]

= A2st−3
1

φ2
1

4
[t − 1− 2t + 4+ t − 3]

= 0 (8.97)
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Similar algebra establishes that the contents of the first square brackets in (8.95) also sum to
zero. Thus we show that A2(t − 1)st−1

1 and A1st−1
1 are solutions for (8.79) and, hence, so is

yh
t = [A1 + A2(t − 1)]st−1

1 .
The constants Ai , i =1,2, in each of the three cases may be uniquely determined to give a

particular solution for (8.79), if y1 and y2 are known. These two given numbers constitute the
initial conditions for the linear, autonomous, second-order difference equation. Consider, for
instance, the first possibility, where the general solution for (8.79) is yh

t = A1st−1
1 + A2st−1

2 .
It follows that

y1 = A1 + A2 and y2 = A1s1 + A2s2 (8.98)

where s1 and s2 are the two real roots given in (8.81). These two simultaneous equations are
readily solved for A1 and A2, using one of the methods from Chapter 2, such as Cramer’s
rule described in Section 2.5.1. The procedure for determining A1 and A2 is the same in the
other two cases, though the forms of the solutions are different.

Dynamic behaviour

The dynamic behaviour of any variable, yt , which evolves according to some linear,
autonomous, second-order difference equation, may be deduced from the three solution pos-
sibilities listed above. In particular, interest often focuses on the possibility of stability, in
the sense that the general solution of the associated homogeneous difference equation, yh

t ,
converges to the steady-state solution zero as t →∞ and, hence, the effect of the initial con-
ditions dies out over time. This concept of stability is referred to as asymptotic stability and
requires, for example, in the first case, where the characteristic equation has two different
real roots, s1 and s2, that both A1st−1

1 → 0 and A2st−1
2 → 0 as t →∞. If this applies, then

assuming that a steady-state solution exists, yt will converge over time to its steady-state
value, y∗, for all values of A1 and A2.

In the first case, it is clear from (8.82) that yh
t → 0 if and only if |s1|< 1 and |s2|< 1.

Second, when the characteristic equation has a single real root, s1, with multiplicity two,
(8.83) indicates that yh

t → 0 if and only if |s1|< 1. Third, when the characteristic equation
has two complex roots, s1 = r (cos θ + i sin θ) and s2 = r(cos θ − i sin θ), the solution (8.86)
implies that yh

t →0 if and only if r <1, where r is the common modulus of the two complex
roots. We also note that complex roots imply that the values of yt oscillate over time; and
that when r < 1, these oscillations are damped.

Since the modulus of a real number is just the absolute value of that number, we may
summarize these convergence conditions in the following theorem.

THEOREM 8.4.1 The linear, autonomous, second-order difference equation yt = φ0 +
φ1 yt−1+φ2 yt−2 is asymptotically stable if and only if the roots of the characteristic equation
s2 −φ1s−φ2 = 0 have modulus strictly less than unity.

An alternative to the phrase “have modulus strictly less that unity” in Theorem 8.4.1 is
“must lie inside the unit circle”. This alternative phrase is often encountered in discussions
and applications of difference equations. Two conditions equivalent to the condition stated
in the theorem are the subject of Exercise 8.14. They are that:

1. |φ1|< 1−φ2 and −φ2< 1; and
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2. the roots of the lag polynomial associated with the difference equation, i.e. the roots of
φ(z)= 1−φ1z−φ2z2= 0, have modulus strictly greater than unity or lie outside the unit
circle.

When a root of the characteristic equation is greater than or equal to unity, i.e. it lies on
or outside the unit circle – or, equivalently, a root of the lag polynomial φ(L) lies on or
inside the unit circle – the variable yt is not asymptotically stable, but is subject to divergent
or, at least, non-convergent behaviour over time. The case of unit roots, i.e. roots having
modulus equal to one and, therefore, lying on the unit circle, is rather special, as mentioned
in Section 3.4 and, later, in Section 14.4.1. We simply note here that, if one of the two roots
of the characteristic equation for a linear, autonomous, second-order difference equation
for yt lies on the unit circle, while the other lies within the unit circle, and therefore yt is
unstable, then the first difference yt behaves according to an asymptotically stable linear,
autonomous, first-order difference equation; see Exercise 8.15.

The following example illustrates numerically some of the theoretical results just
discussed.

EXAMPLE 8.4.1 Find the general solutions for the linear, autonomous, second-order dif-
ference equation yt − 2.5yt−1 + yt−2 = 0 and comment on the dynamic behaviour of the
variable.

This is a difference equation in homogeneous form. The corresponding characteristic
equation is

s2 − 2.5s+ 1= 0 (8.99)

The solutions for this may be obtained using (8.81), but in fact the right-hand side of (8.99)
factorizes to give

(s− 2)(s− 1
2 )= 0 (8.100)

and, hence, s1 = 2 and s2 = 1
2 more directly. Recalling (8.82), and substituting these two

different real solutions, the required general solution is

yh
t = A1st−1

1 + A2st−1
2 = A12t−1 + A2

(
1

2

)t−1

(8.101)

Given that the root s1 = 2> 1, the condition for convergence is not satisfied and we may
assert that yh

t diverges over time. This is also apparent from the fact that A12t−1 →∞ as

t →∞, though A2
( 1

2

)t−1 → 0 as t →∞. The roots of the relevant polynomial in the lag
operator, φ(L)= 1− 2.5L + L2, yield the same conclusion concerning instability. ♦

8.4.3 Generalizations

The principles concerning solution and dynamic behaviour established in our discussion of
linear, autonomous, second-order difference equations generalize straightforwardly to linear,
autonomous, pth-order difference equations. Thus, in addition to the general form of solu-
tion (8.74), and its various modifications presented above, we may note, first, that the linear
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independence of the individual solutions of the corresponding pth-order characteristic equa-
tion (8.73) requires that a p× p matrix have a non-zero determinant. For example, when the
characteristic equation has p different real roots, s j , j = 1,2, . . . , p, it is required that∣∣∣∣∣∣∣∣∣

1 1 . . . 1
s1 s2 . . . sp
...

...
...

s p−1
1 s p−1

2 . . . s p−1
p

∣∣∣∣∣∣∣∣∣ = 0 (8.102)

Second, asymptotic stability, or convergent dynamic behaviour, requires that all p roots of
the characteristic equation lie inside the unit circle, each with modulus strictly less than
unity. As with p= 2 (see Theorem 8.4.1), it is possible to cast this condition in terms of the
coefficients of the characteristic equation. The relevant result is known as Schur’s theorem4

and the interested reader is referred to Sydsæter et al. (2008, Section 11.5) for a little more
detail on this. Also as before, the stability condition may be expressed in terms of the roots
of the lag polynomial. Thus all of the solutions of φ(z)= 1−φ1z− · · · −φpz p = 0 must lie
outside the unit circle. A necessary requirement for this is that

∑p
i=1 φi <1, while a sufficient

condition is
∑p

i=1 |φi |< 1. If
∑p

i=1 φi = 1, then at least one root of the lag polynomial is
unity. If the characteristic equation (or lag polynomial) has one unit root, it is possible to
model the change yt as a linear difference equation of order p − 1. More generally, if
the characteristic equation (or lag polynomial) has k (k = 1,2, . . . , p) unit roots, then k yt

may be modelled as a linear difference equation of order p − k. For further details on the
pth-order difference equation, see Hamilton (1994, Section 1.2 and Appendix 1.A).

8.5 Systems of linear difference equations
As was apparent in the two motivational examples in Sections 1.2.2 and 1.2.3, which dealt
with a simple Keynesian macroeconomic model and a Leontief input–output model of an
economy, respectively, it is often important to take account of the fact that certain vari-
ables may be jointly dependent and therefore determined simultaneously. If the relationships
among such variables are dynamic, then systems of difference equations may naturally
arise. In Part II, two applications involving such systems will be discussed. One concerns
a structural dynamic macroeconomic model; the other concerns the vector autoregressive
model used widely in econometrics. In this section, we sketch out some of the mathematical
background, concentrating on the first-order case and leaving certain details until our later
discussion of the applications.

8.5.1 General systems of linear, autonomous difference equations

Suppose that concern focuses on m variables. So far, we have dealt with scalar time
series {yt }, where yt ∈R for all t . Now we are dealing with vector time series, {yt }, where
yt ∈R

m for all t . The lag operator can be likewise extended naturally to operate on vector
time series with Lyt ≡ yt−1 and similarly for the difference operator. Then the general sys-
tem of linear, autonomous, pth-order difference equations can be represented conveniently
using matrix notation as

yt =�0 +�1yt−1 +�2yt−2 + · · ·+�pyt−p (8.103)
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or

�(L)yt =�0 (8.104)

where yt = [yit ] is an m-vector of values for the m different variables in time period t ,
�0 = [φ0i ] is an m-vector of constants, the �i , i = 1,2, . . . , p, are m × m matrices of
parameters,

�(L)= Im −�1L −�2L2 − · · ·−�p L p (8.105)

is a matrix polynomial in the lag operator and

�i Li = [φijk ]Li = [φijk Li ]m×m (8.106)

We note the typical (jkth) term, φijk , of the matrix �i , and that post-multiplication of �i by
the lag operator is treated like multiplication of the matrix by a scalar.

In (8.103), there is an equation for each of the m variables and, in general, the first p lags
of all variables appear in all of these equations. To illustrate, suppose m= p= 2. Then

yt =
[

y1t

y2t

]
, �0 =

[
φ01
φ02

]
, �1 =

[
φ111 φ112
φ121 φ122

]
and �2 =

[
φ211 φ212
φ221 φ222

]
(8.107)

Substituting these matrices into (8.103), and employing the operations of matrix addition
and multiplication, yields the following scalar form of the system:

y1t =φ01 +φ111 y1(t−1)+φ112 y2(t−1)+φ211 y1(t−2)+φ212 y2(t−2)

y2t =φ02 +φ121 y1(t−1)+φ122 y2(t−1)+φ221 y1(t−2)+φ222 y2(t−2) (8.108)

In practical applications, some of the φijk coefficients may be zero, so that not all lags of all
variables appear in all equations.

8.5.2 Systems of linear, autonomous, first-order difference equations

The m-variable, first-order version of (8.104) is

�(L)yt = (Im −�1L)yt =�0 (8.109)

or, using (8.103),

yt =�0 +�1yt−1 (8.110)

or, in full scalar form,

y1t =φ01 +φ111 y1(t−1)+φ112 y2(t−1)+ · · ·+φ1m ym(t−1)

y2t =φ02 +φ121 y1(t−1)+φ122 y2(t−1)+ · · ·+φ12m ym(t−1)

...

ymt =φ0m +φ1m1 y1(t−1)+φ1m2 y2(t−1)+ · · ·+φ1mm ym(t−1) (8.111)
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As in the case of single linear, autonomous difference equations, the complete general solu-
tion in this case comprises the general solution of the homogeneous form of the system and
the system’s steady-state solution, i.e. yt = yh

t + y∗. Also as before, it is easier to derive the
steady-state solution, y∗, assuming it exists, than it is to obtain the general homogeneous
solution, yh

t .
If there is a steady-state solution, y∗, then from (8.109), we have that

�(L)y∗ = (I−�1L)y∗ =�0 (8.112)

and so

y∗ =�−1(L)�0 =�−1(1)�0 = (I−�1)
−1�0 (8.113)

where �−1(L) denotes the matrix inverse [�(L)]−1= (I−�1)
−1, and assuming, of course,

that the m ×m matrix I−�1 is non-singular and therefore has an inverse. We will return
to the related matters of the existence of a steady-state solution and of the inverse of I−�1

a little later, when we consider the asymptotic stability of the system. For the moment, we
consider the solution of the homogeneous form of the system, in which �0 = 0m×1.

By analogy with the single-equation case, in which a solution for the homogeneous
equation has the form Ast−1, let us postulate that a solution for the homogeneous system
yt =�1yt−1 is of the form ast−1, where a denotes an m-vector of constants and s is a scalar.
Then, substituting into the homogeneous system of equations, we have that

ast−1 =�1ast−2 (8.114)

Dividing both sides of (8.114) by st−2 gives as=�1a, and therefore

�1a− as= (�1 − sI)a= 0 (8.115)

Recalling the discussion in Chapter 3, (8.115) is recognizable as an eigenequation, in which
s is an eigenvalue and a is an associated eigenvector of the matrix �1. Application of the
methods for the computation of eigenvalues and eigenvectors explained in Sections 3.3.1
and 3.3.2 will, therefore, provide the required solutions. An important component in these
calculations is the characteristic equation

|�1 − sI| = 0 (8.116)

which, in the present context, yields m values for s (s1, s2, . . . , sm , say). Substitution of
each of these eigenvalues in turn into (8.115) then allows (8.115) to be solved for the asso-
ciated eigenvectors (a1, a2, . . . , am , say). It is easy to confirm that A1a1, A2a2, . . . , Amam ,
where Ai , i = 1,2, . . . ,m, are arbitrary non-zero constants, are also eigenvectors of �1:
when each Ai ai is used with its corresponding eigenvalue, si , it also satisfies (8.115). Thus
the general solution for the homogeneous system is suggested as

yh
t =

m∑
i=1

Ai ai s
t−1
i (8.117)
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and the complete general solution as

yt = y∗ + yh
t = (I−�1)

−1�0 +
m∑

i=1

Ai ai s
t−1
i (8.118)

Equation (8.117) is of precisely the same form as (8.74). The modifications that are neces-
sary if there are roots with multiplicity greater than one, or pairs of complex roots, or pairs
of complex roots with multiplicity greater than one, are therefore the same as those listed
immediately following (8.74).

It is evident from (8.118) that, when all of the si have modulus strictly less than unity,
then yh

t → 0 and yt → y∗ = (I−�1)
−1�0 as t →∞. This condition on the eigenvalues is

important in guaranteeing convergence of the system of difference equations to its steady
state and, as previously, is referred to as the condition for asymptotic stability.

Another approach to establishing the complete general solution, which will allow us to
investigate the convergence properties of the system in a different, though equivalent, way,
is to employ repeated substitution on the right-hand side of (8.110), in the same way as was
done in Section 8.3.1 to obtain (8.23). In the present case, we derive

yt =�0 +�1�0 +�2
1�0 + · · ·+�t−2

1 �0 +�t−1
1 y1

= (I+�1 +�2
1 + · · ·+�t−2

1 )�0 +�t−1
1 y1 (8.119)

Given the initial conditions, i.e. the value of the vector y1, if �t−1
1 → 0 as t →∞, then

�t−1
1 y1 → 0 as t →∞ also. The following theorem establishes that, subject to certain con-

ditions on �1, this happens if and only if all of the eigenvalues of �1 have modulus strictly
less than unity, i.e. if and only if the condition for asymptotic stability just noted is satisfied.
The proof of the theorem makes use of material on the diagonalization of a matrix covered
in Chapter 3.

THEOREM 8.5.1 Let A be an n × n square, diagonalizable matrix (i.e. assume that A has
n linearly independent eigenvectors); then A j → 0 as j →∞ if and only if |λi |< 1 for all i,
where λi denotes the i th eigenvalue of A.

Proof: Let P be the n× n matrix whose columns are the eigenvectors of A. We know by
Theorem 3.6.1 that P exists and is invertible. Then

P−1AP=�= diag[λi ] (8.120)

and

(P−1AP)(P−1AP)=P−1A2P=�2 (8.121)

Similarly, for all j ,

P−1A j P=� j = diag[λ j
i ] (8.122)

and, hence,

A j =P� j P−1 (8.123)
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Since the result that the limit of a product equals the product of the limits holds for matrices
as well as for scalars, lim j→∞ A j =P lim j→∞� j P−1 and lim j→∞� j =P−1 lim j→∞ A j P.

Thus � j tends to 0 as j →∞ if and only if A j → 0. But � j → 0 if and only if λ j
i → 0 for

all i . This will be the case if and only if |λi |< 1 for all i . �

To see what happens to the other term on the right-hand side of (8.119) when t →∞
and this necessary and sufficient condition for asymptotic stability is satisfied, note, first, the
matrix form of the formula on p. xx for the sum of the first t − 1 terms of a geometric series:

(I+�1 +�2
1 + · · ·+�t−2

1 )(I−�1)= I−�t−1
1 (8.124)

Multiplying out the left-hand side of (8.124) establishes this result. Second, note that as
all the eigenvalues of �1 have modulus less than one by assumption, then unity is not an
eigenvalue of �1. It follows that det(I−�1) = 0 and I−�1 is non-singular and, therefore,
has an inverse. Post-multiplication of both sides of (8.124) by the inverse of I−�1 then
yields

(I+�1 +�2
1 + · · ·+�t−2

1 )= (I−�t−1
1 )(I−�1)

−1 (8.125)

From (8.125), we see that when all eigenvalues of �1 have modulus less than unity, and
therefore, by Theorem 8.5.1, �t−1

1 tends to zero as t →∞, the matrix series expansion
I+�1 +�2

1 + · · · +�t−2
1 → (I−�1)

−1 as t →∞ and so the first term on the right-hand
side of (8.119) tends to the steady-state value y∗ = (I−�1)

−1�0. We conclude that for
the existence of (I−�1)

−1 – as well as for asymptotic stability and convergence to the
steady-state solution – all of the eigenvalues of �1 must have modulus strictly less than one.

The following theorem is useful in confirming that all of the eigenvalues of certain
matrices have modulus less than one.

THEOREM 8.5.2 Let A= [aij]m×m and suppose that all the row sums of the absolute values
of the elements in A are less than unity, i.e.

∑m
j=1 |aij|< 1 for all i = 1,2, . . . ,m.

Then all of the eigenvalues of A have modulus strictly less than unity.

Proof: Let |λ| be the maximum absolute eigenvalue of A and let |xi | be the maximum
absolute value of the elements in an eigenvector, x, associated with λ. Then, from the i th
component of the eigenequation Ax= λx, we have that

|λxi | = |λ||xi | = |a�i x| (8.126)

where a�i is the i th row of A. Letting |ai | and |x| denote the vectors whose elements are
the absolute values of the corresponding elements of ai and of x, respectively, and dividing
across by |xi |,

|λ| =
∣∣∣∣a�i ( 1

|xi |x
)∣∣∣∣≤ |ai |�

(
1

|xi | |x|
)

(8.127)

where the inequality is a generalization of the triangular inequality.



February 12, 2011 11:1 Pinched Crown A Page-194 HarrWald

194 Difference equations

Replacing each component of |x|/|xi | by unity (which is at least as large), we obtain

|ai |�
(

1

|xi | |x|
)
≤ |ai |�1=

m∑
j=1

|aij| (8.128)

It follows that

|λ| ≤
m∑

j=1

|aij| (8.129)

Hence, if
∑m

j=1 |aij|< 1 for all i , the result is established.
In fact, we have established the more general result that the maximum absolute eigenvalue

of any square matrix A is less than or equal to the maximum row sum of the absolute values
of the elements in A.5 �

Since A and A� have the same eigenvalues, Theorem 8.5.2 could also be written in terms
of the column sums of A, which are the row sums of A�.

When �0 is set to 0, (8.119) yields a solution for the homogeneous equation, namely

yh
t =�t−1

1 y1 (8.130)

This is entirely consistent with the form of the solution given in (8.118). From (8.117), we
have that y1 =

∑m
i=1 Ai ai s0

i =
∑m

i=1 Ai ai . Substituting this into (8.130) gives

yh
t =�t−1

1

m∑
i=1

Ai ai =�t−2
1

m∑
i=1

�1 Ai ai =�t−2
1

m∑
i=1

Ai ai si (8.131)

since Ai ai is an eigenvector of �1 with eigenvalue si . Repeating this procedure yields

yh
t =�t−2

1

m∑
i=1

Ai ai si =�t−3
1

m∑
i=1

�1 Ai ai si =�t−3
1

m∑
i=1

Ai ai s
2
i (8.132)

and, ultimately,

yh
t =

m∑
i=1

�1 Ai ai s
t−2
i =

m∑
i=1

Ai ai s
t−1
i (8.133)

Hence
∑m

i=1 Ai ai s
t−1
i =�t−1

1 y1 = yh
t .

8.5.3 Scalar approach

Finally, we note that, when the number of equations in the system, m, is small, the homo-
geneous solution and the steady-state solution may be obtained using only scalar algebra.
The main idea is that, with appropriate substitution, the homogeneous system may be
reduced to a single linear, autonomous difference equation of order m, which may be solved
using the method described in Section 8.4.2.
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Suppose, for instance, that m= 2, so that the system may be written as

y1t = δ1 +φ111 y1(t−1)+φ112 y2(t−1) (8.134)

y2t = δ2 +φ121 y1(t−1)+φ122 y2(t−1) (8.135)

If a steady-state solution exists then we have

y∗1 = δ1 +φ111 y∗1 +φ112 y∗2 (8.136)

y∗2 = δ2 +φ121 y∗1 +φ122 y∗2 (8.137)

or

(1−φ111)y
∗
1 = δ1 +φ112 y∗2 (8.138)

(1−φ122)y
∗
2 = δ2 +φ121 y∗1 (8.139)

These two simultaneous equations are easily solved to give

y∗1 =
(1−φ122)δ1 +φ112δ2

(1−φ111)(1−φ122)−φ112φ121

(8.140)

y∗2 =
φ121δ1 + (1−φ111)δ2

(1−φ111)(1−φ122)−φ112φ121

(8.141)

The existence of y∗1 and y∗2 depends on the denominator in (8.140) and (8.141) being non-
zero. This denominator is just the determinant of the matrix I−�1 in the two-variable case,
which we already know from the earlier general analysis must be non-zero for there to be a
steady-state solution. The reader should confirm that the solution is identical to that which
emerges from use of the general formula (8.113) when m= 2.

To solve the homogeneous form of the system, namely

y1t =φ111 y1(t−1)+φ112 y2(t−1) (8.142)

y2t =φ121 y1(t−1)+φ122 y2(t−1) (8.143)

we proceed as follows. First, using (8.143), substitute for y2(t−1) in (8.142) to obtain

y1t =φ111 y1(t−1)+φ112(φ121 y1(t−2)+φ122 y2(t−2)) (8.144)

Second, substitute for y2(t−2) in (8.144), using the fact that, from (8.142),

y2(t−2)=
y1(t−1)−φ111 y1(t−2)

φ112

(8.145)

assuming φ112 = 0. We then have

y1t =φ111 y1(t−1)+φ122 y1(t−1)+φ112φ121 y1(t−2)−φ111φ122 y1(t−2)

= (φ111 +φ122)y1(t−1)+ (φ112φ121 −φ111φ122)y1(t−2) (8.146)
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which is a linear, autonomous, second-order, homogeneous difference equation in one
variable that can be solved using the results from Section 8.4.2.

We note, in particular, the characteristic equation associated with (8.146), which, recalling
(8.80), is

s2 − (φ111 +φ122)s− (φ112φ121 −φ111φ122)= 0 (8.147)

The three possibilities for the two solutions of this type of equation are given in (8.82), (8.83)
and (8.86). Taking the first case of two different real roots by way of illustration, the general
homogeneous solution for y1t is

yh
1t = A1st−1

1 + A2st−1
2 (8.148)

Making use of (8.145), we may substitute this result to find the general homogeneous
solution for y2t , which is

yh
2t =

A1st
1 + A2st

2 −φ111(A1st−1
1 + A2st−1

2 )

φ112

(8.149)

or, after slight rearrangement,

yh
2t =

(s1 −φ111)A1st−1
1 + (s2 −φ111)A2st−1

2

φ112

(8.150)

The full details of the general homogeneous solutions in the other two possible cases, i.e.
when there is a real root with multiplicity two, and when there is a pair of conjugate complex
roots, are the subject of Exercise 8.16.

The complete general solutions then follow simply as y1t = y∗1 + yh
1t , using (8.140) and

(8.148) to substitute for the components on the right-hand side, and y2t = y∗2 + yh
2t , using

(8.141) and (8.150) for the right-hand side substitutions. If the initial values y11 and y21 are
given, then unique numerical values for the constants A1 and A2 may be found by a similar
method to that described earlier.

EXAMPLE 8.5.1 Using the direct matrix method and the method of substitution, solve the
system of difference equations

y1t = 1+ y1(t−1)+ 1
2 y2(t−1) (8.151)

y2t = 2+ 4y1(t−1)+ 3y2(t−1) (8.152)

Find the complete particular solution when y11=2 and y21=1, and comment on the dynamic
behaviour of the system over time.

In matrix notation this system can be written as yt =�0 +�1yt−1, where the parameter
matrices are

�0 =
[

1
2

]
and �1 =

[
1 1

2

4 3

]
(8.153)
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Using the direct method, the steady-state solution, which exists because det(I−�1)=−2
and I−�1 is non-singular, is

y∗ = (I−�1)
−1�0 =

[
0 − 1

2

−4 −2

]−1 [
1
2

]

=−1

2

[
−2 1

2

4 0

][
1
2

]
=
[

1
2

−2

]
=
[

y∗1
y∗2

]
(8.154)

The general solution of the homogeneous form of the system requires the eigenvalues and
eigenvectors of �1. The eigenvalues are given by the solution of the characteristic equation
det(�1 − sI)= 0 or

(1− s)(3− s)− 2= s2 − 4s+ 1= 0 (8.155)

Using the usual method of solution of a quadratic equation, they are found to be

s1 = 2+√3 and s2 = 2−√3 (8.156)

Substitution of these two different real roots, in turn, into the equation (�1 − sI)a= 0, and
solution of this equation for a, yields the corresponding eigenvectors

a1 =
[

1
2+ 2

√
3

]
and a2 =

[
1

2− 2
√

3

]
(8.157)

Hence, from (8.117), we have the general homogeneous solution

yh
t =

2∑
i=1

Ai ai s
t−1
i = A1

[
1

2+ 2
√

3

]
(2+√3)t−1 + A2

[
1

2− 2
√

3

]
(2−√3)t−1

=
[

A1(2+
√

3)t−1

A1(2+ 2
√

3)(2+√3)t−1

]
+
[

A2(2−
√

3)t−1

A2(2− 2
√

3)(2−√3)t−1

]
=
[

yh
1t

yh
2t

]
(8.158)

and then, from (8.118), the complete general solution is

yt = y∗ + yh
t =

[
1
2

−2

]
+
[

A1(2+
√

3)t−1

A1(2+ 2
√

3)(2+√3)t−1

]
+
[

A2(2−
√

3)t−1

A2(2− 2
√

3)(2−√3)t−1

]
(8.159)

Turning to the method of substitution, (8.140) and (8.141) produce the particular solutions

y∗1 =
(1−φ122)δ1 +φ112δ2

(1−φ111)(1−φ122)−φ112φ121

= (1− 3)+ ( 1
2 × 2

)
(1− 1)(1− 3)− ( 1

2 × 4
) = −1

−2
= 1

2
(8.160)
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and

y∗2 =
φ121δ1 + (1−φ111)δ2

(1−φ111)(1−φ122)−φ112φ121

= 4+ [(1− 1)× 2]

(1− 1)(1− 3)− ( 1
2 × 4

) = 4

−2
=−2

(8.161)

in agreement with (8.154), while (8.147) gives the characteristic equation associated with
the homogeneous form

s2 − (φ111 +φ122)s− (φ112φ121 −φ111φ122)

= s2 − (1+ 3)s − ( 1
2 × 4− 1× 3)

= s2 − 4s+ 1= 0 (8.162)

which we note is identical to the characteristic equation (8.155) used in the earlier eigen-
value calculations. Thus the required roots are as already given in (8.156), and the individual
general homogeneous solutions follow by substitution into (8.148) and (8.150) as

yh
1t = A1st−1

1 + A2st−1
2 = A1

(
2+√3

)t−1 + A2
(
2−√3

)t−1
(8.163)

and

yh
2t =

(s1 −φ111)A1st−1
1 + (s2 −φ111)A2st−1

2

φ112

= (2+√3− 1)A1(2+
√

3)t−1 + (2−√3− 1)A2(2−
√

3)t−1

1/2

= A1(2+ 2
√

3)(2+√3)t−1 + A2(2− 2
√

3)(2−√3)t−1 (8.164)

These results are identical to those contained in (8.158).
With

√
3 evaluated to five places of decimals, the complete general solution becomes

y1t = y∗1 + yh
1t ≈ 0.5+ A1(3.73205)t−1 + A2(0.26795)t−1 (8.165)

y2t = y∗2 + yh
2t ≈−2+ 5.46410A1(3.73205)t−1 − 1.46410A2(0.26795)t−1 (8.166)

Given the initial conditions y11 = 2 and y21 = 1, we have, using (8.158), or (8.163) and
(8.164), that

y11 = A1 + A2 = 2 (8.167)

y21 = (2+ 2
√

3)A1 + (2− 2
√

3)A2 = 1 (8.168)

Solution of these two simultaneous equations yields A1 = 1 −
√

3
4 ≈ 0.56699 and A2 =

1+
√

3
4 ≈ 1.43301. Substitution of these values into (8.165) and (8.166) gives the unique,

complete particular solution for the system.
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As one of the two eigenvalues of �1 is greater than one in absolute value, namely
s1 = 2+√3≈ 3.73205, this system is not asymptotically stable and will not, therefore, con-
verge towards its steady state from the initial state in which y11 = 2 and y21 = 1. Rather, y1t

and y2t will both diverge and become ever larger as t →∞. A plot of the time path of the
two variables for the first few time periods is left as an exercise; see Exercise 8.17. ♦

EXERCISES
8.1 Classify the following difference equations:

(a) yt = 2yt−1 + 3√t
(b) yt = 1/yt−1 + 2yt−3

(c) yt =φ0 +φ1 yt−1 +φ2 y2
t−2

(d) yt =φ0 +φ1 yt−1 + · · ·+φp yt−p

(e) k yt = 5yt−k+1 + t

8.2 Consider the following first-order difference equations:

(a) yt = 2yt−1

(b) yt = 1+ yt−1

(c) yt = 0.1− 0.5yt−1

(d) yt = 3yt−1 − 1

In each case, (i) write the equation explicitly in terms of the change yt , (ii) derive the
general solution for the equation, (iii) find the particular solution when the initial condition
is y1 = 5, and (iv) evaluate the particular solution for t = 10.

8.3 Suppose you put e500 on deposit at a monthly interest rate of 0.25%. What will be the
value of your investment after (a) two years, (b) five years, and (c) ten years? How many
months will it take for your investment to exceed e1000 in value?

8.4 Using equation (8.32), determine and illustrate with a sketch the dynamic behaviour of
yt when (y1 −φ0/(1−φ1)) is negative and (a) φ1> 1 and (b) φ1<−1.

8.5 Let C(L)= 1− φ1L and D(L)= 1+ φ2L , where L is the lag operator and |φi |< 1,
i = 1,2.

(a) Verify that C−1(L)= (1+φ1L +φ2
1 L2 +φ3

1 L3 + · · · ).
(b) Find the inverse lag polynomial D−1(L).

8.6 Consider the difference equation yt =φ0+φ1 yt−1. Assuming φ0=2, examine and draw
a sketch of the dynamic behaviour of yt for (a) φ1=−1, (b) φ1=− 1

4 , (c) φ1= 0, (d) φ1= 1
4

and (e) φ1=1. In each case, find the steady-state value of yt , if a steady-state solution exists.
Repeat the exercise assuming φ0 =−2.

8.7 For the linear, non-autonomous, first-order difference equation yt = φ0(t−1) +
φ1(t−1)yt−1, with initial value y1, show that the solution for yt (t = 2,3, . . .) is

yt =φ0(t−1)+
t−2∑
j=1

φ0 j

t−1∏
i= j+1

φ1i + y1

t−1∏
i=1

φ1i
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Now, suppose that φ0(t−1)=1/(t −1), φ1(t−1)=2/(t −1) and y1=1. Calculate the values of
y2 to y7, inclusive, plot these values against time, and comment on the steady-state solution,
if one exists.

8.8 Using equation (8.61), reproduced in Exercise 8.7, find the solution for yt (t = 2,3, . . .)
when (a) φ0(t−1), but not φ1(t−1), is constant for all t , and (b) φ1(t−1), but not φ0(t−1), is
constant for all t . Now suppose that φ0(t−1) = 2 for all t and φ1(t−1) = t − 1. Examine the
time path of yt for t = 2 to t = 5, inclusive.

8.9 Consider the linear, non-autonomous, first-order difference equation used in
Example 8.3.2, namely

yt = t − 1

10
+
(

1

2

)t−1

yt−1

with initial condition y1 = 16.

(a) Find the values for y2, y3, y4, and y6, y7 and y8 (recall that y5 is calculated in
Example 8.3.2).

(b) How many time periods must elapse before yt reaches its minimum value?
(c) How many time periods must elapse before yt exceeds its initial value?
(d) Indicate your answers to parts (b) and (c) on a sketch of the time path of yt .

8.10 Working to four places of decimals, find the roots of the lag polynomial and the roots of
the characteristic equation associated with the difference equation yt = 0.5yt−1 + 0.25yt−2.
Comment on the relationship between the two pairs of roots.

8.11 Show that the solution for the homogeneous form of the linear, autonomous, second-
order difference equation, given in the first line of equation (8.86) as

yh
t = r t−1[A1 cos(t − 1)θ + A2 sin(t − 1)θ ]

may also be written as

yh
t = Art−1 cos[(t − 1)θ +ω]

where A and ω are arbitrary constants.

8.12 Verify that yh
t = A1st−1

1 + A2st−1
2 , where s1 and s2 are as defined in equation (8.81),

is a solution for the homogeneous equation yt − φ1 yt−1 − φ2 yt−2 = 0 when φ2
1 + 4φ2 > 0;

and that yh
t = r t−1[A1 cos(t − 1)θ + A2 sin(t − 1)θ ] is a solution to the same homogeneous

equation when φ2
1 + 4φ2< 0.

8.13 Find the general solution for each of the following difference equations:

(a) yt = 0.8yt−1 + 0.2yt−2; and
(b) yt = 1+ yt−1 − 0.25yt−2.

Also find the particular solution in each case, given initial conditions y1 = 0.5 and y2 = 1,
and compare the dynamic behaviour of yt in the two situations.
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8.14 The stability condition for the linear, autonomous, second-order difference equation is
that the roots of the characteristic equation s2 − φ1s − φ2 = 0 lie inside the unit circle, i.e.
have modulus strictly less than unity; recall Theorem 8.4.1. Show that each of the following
is equivalent to this condition.

(a) |φ1|< 1−φ2 and −φ2< 1.
(b) The roots of the lag polynomial associated with the difference equation, i.e. the solutions

of φ(z)=1−φ1z−φ2z2=0, lie outside the unit circle, i.e. have modulus strictly greater
than unity.

8.15 Show that the lag polynomial associated with the difference equation yt = 0.75yt−1 +
0.25yt−2 has one unit root and one root with modulus greater than unity. Compare the roots
of the characteristic equation of the difference equation with the roots of its lag polynomial,
and comment. Making use of the factors of the lag polynomial, derive an asymptotically
stable difference equation for yt .

8.16 For the two-variable system of first-order difference equations given in equations (8.134)
and (8.135), derive the general homogeneous solutions in the cases when the associated
characteristic equation has (a) a real root with multiplicity two, and (b) a pair of conjugate
complex roots.

8.17 Plot the time paths of y1t and y2t , given the system and particular complete solution in
Example 8.5.3.

8.18 Solve the following systems of difference equations, and comment on their dynamic
behaviour.

(a) y1t = 0.5y2(t−1)

y2t = y1(t−1)

(b) y1t = 1+ 0.5y1(t−1)− 0.5y2(t−1)

y2t = 2+ 0.5y1(t−1)+ y2(t−1)

with initial conditions y11 = y21 = 1
(c) y1t = 1+ 0.5y1(t−1)− 0.5y2(t−1)+ 0.2y3(t−1)

y2t = 0.5+ 0.6y2(t−1)− 0.4y3(t−1)

y3t = 1.25+ 0.75y3(t−1)

with initial conditions y11 = 2, y21 = 2.5, y31 = 3
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9 Vector calculus

9.1 Introduction
This chapter covers selected topics from multivariate or vector calculus. It has two simulta-
neous objectives, namely, to reinforce the reader’s grasp of topics from earlier chapters, once
again including linear algebra, and to prepare for their application to economic and financial
problems.

As noted on p. xxii, the reader is assumed to be familiar with both the theory and practice
of single-variable differential and integral calculus.

From an economic perspective, we are now in a position to introduce new concepts and
techniques that will be essential tools in the later chapters dealing with economic and finan-
cial applications. The notion of differentiation is extended in Section 9.2 from a univariate
context to a multivariate context. Some examples of differentiation in matrix notation fol-
low. We go on in Section 9.3 to provide matrix generalizations of the chain rule and the
product rule. The concept of elasticity, which may be familiar to some readers from intro-
ductory economics courses, is introduced in Section 9.4, as is that of a directional derivative
in Section 9.5. This allows us to introduce a matrix generalization of Taylor’s theorem
in Section 9.6.

The chapter continues with an introduction to the use of multiple integrals in
Section 9.7, incorporating several standard but important results on changing the order
of differentiation and integration. The final section deals with the implicit function
theorem.

The results developed in this chapter will be applied to economics and finance throughout
the remainder of this book.

9.2 Partial and total derivatives
It is often required to differentiate functions of several variables, vector-valued functions
or functions defined by matrix expressions more generally. This section extends familiar
concepts from univariate calculus to a multivariate context.

We begin by giving the definition of a partial derivative, which is the rate of change of
a function of several variables with respect to one of those variables, holding all the other
variables constant. We then introduce the Jacobian matrix, the gradient vector and the Hes-
sian matrix. Gradient vectors and Hessian matrices are used in the theory of optimization
in connection with the determination of the maxima and minima of real-valued functions of
several variables. They will be encountered again in the next chapter. The section concludes
with some examples.
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Readers should be aware of subtle differences in notation between the univariate case
(n = 1) and the multivariate case (n > 1). Statements and shorthands that make sense in
univariate calculus must generally be modified for multivariate calculus.

9.2.1 Definitions

DEFINITION 9.2.1 The j th first-order partial derivative of a real-valued function of
n variables, say f :Rn →R, at a vector x in its domain is its derivative at that point with
respect to the j th variable, treating the other n− 1 variables as constants, and is denoted

∂ f

∂x j
(x) (9.1)

DEFINITION 9.2.2 The jkth second-order partial derivative of a real-valued function of
n variables, say f :Rn →R, at a vector x in its domain is the derivative at that point with
respect to the j th variable of its kth first-order partial derivative, treating all variables except
the j th as constants, and is denoted

∂2 f

∂x j∂xk
(x) (9.2)

The partial derivatives of a vector-valued function are the partial derivatives of its real-valued
component functions.

DEFINITION 9.2.3 The (total) derivative of a real-valued function of n variables, say
f : Rn → R, at a vector x in its domain is the n-dimensional row vector of its first-order
partial derivatives at x, denoted

f ′(x)≡
[
∂ f

∂x j
(x)

]
1×n

(9.3)

The (total) derivative of a vector-valued function with values in R
m is the m × n matrix

of partial derivatives whose i th row is the total derivative of the i th component function,
likewise denoted

f ′(x)≡
[
∂ f i

∂x j
(x)

]
m×n

(9.4)

The total derivative is often referred to also as the Jacobian or Jacobian matrix of the
function.1

The total derivative can also be defined using a limiting argument similar to that used to
define the derivative of a function of a single variable. The interested reader is referred to
Binmore (1982, pp. 203–6) for further details of that alternative approach.

Jacobian matrices are of fundamental importance in most of the results from vector
calculus presented later in the book.
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DEFINITION 9.2.4 The gradient or gradient vector of a real-valued function of n vari-
ables, say f :Rn →R, at a vector x in its domain is the column vector formed by transposing
its total derivative or Jacobian, variously denoted

∇ f (x)≡ grad f (x)≡ f ′(x)� ≡ ∂ f

∂x
(x)≡

[
∂ f

∂xi
(x)

]
n×1

(9.5)

Note that f ′(x)�≡ [ f ′(x)]�, i.e. the transpose symbol applies to the vector of partial deriva-
tives, and not to the vector x at which the partial derivatives are evaluated. For a real-valued
function (n= 1),

f ′(x)= d f

dx
(x)= ∂ f

∂x
(x)=∇ f (x)= grad f (x)= f ′(x)�

since all of these quantities are scalars (1× 1 vectors).

DEFINITION 9.2.5 A real-valued or vector-valued function of several variables f : X → Y
(X ⊆R

n,Y ⊆R
m) is said to be differentiable at x if all its (first-order) partial derivatives

exist at x.

DEFINITION 9.2.6 The function f : X → Y (X ⊆R
n,Y ⊆R

m) is said to be:

(a) differentiable if and only if it is differentiable at every point of its domain X ;
(b) continuously differentiable (C1) if and only if it is differentiable at every point of its

domain X and its derivative is a continuous function; and
(c) twice continuously differentiable (C2) if and only if f ′ exists and is C1.

DEFINITION 9.2.7 The Hessian matrix2 or simply the Hessian of a real-valued function
of n variables is the square matrix of its second-order partial derivatives, denoted

f ′′(x)≡ ∂2 f

∂x∂x�
(x)≡

[
∂2 f

∂x j∂xk
(x)

]
n×n

(9.6)

We will see later (Theorem 9.7.2) that, provided that certain quite general conditions are
satisfied, the Hessian matrix is a symmetric matrix.

Note that ∂ f /∂x j and ∂2 f /∂x j∂xk are real-valued functions defined on the same domain
as f , j, k= 1,2, . . . ,n; and f ′ and f ′′ are matrix-valued functions also defined on the same
domain as f .

Note that, if f :Rn →R, then, strictly speaking, the second derivative (Hessian) of f is
the derivative of the vector-valued function

( f ′)�:Rn →R
n : x �→ f ′(x)� =∇ f (x)= grad f (x) (9.7)

We will see in the next chapter that the positive or negative definiteness or semi-definiteness
of the Hessian matrix is of major significance in the theory of optimization.

We conclude this collection of definitions with some notation for maximization and min-
imization. We will use maxx∈X f (x) to denote the maximum value that f can take on the
set X , and minx∈X f (x) to denote the minimum value that f can take on the set X .
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We also need a notation for the value(s) of x at which this maximum or minimum is
attained. These will be denoted, respectively, by argmaxx∈X f (x) and argminx∈X f (x). Thus

max
x∈X

f (x)= f

(
argmax

x∈X
f (x)

)
(9.8)

and

min
x∈X

f (x)= f

(
argmin

x∈X
f (x)

)
(9.9)

9.2.2 Examples

In this section we develop a number of useful results that allow us to handle differentiation
using matrix notation. We begin with the differentiation of matrix linear forms and then go
on to the differentiation of quadratic forms.

Linear forms

Let a and x be n× 1 matrices, and consider

a�x= a1x1 + a2x2 + · · ·+ an xn (9.10)

The expression in (9.10) can be viewed either as a function of x with a treated as a constant
vector, say f (x), or as a function of a with x treated as a constant vector, say g(a). Using the
former interpretation,

∂(a�x)
∂x1

= a1,
∂(a�x)
∂x2

= a2, . . . , for all x (9.11)

Thus the typical first-order partial derivative is ∂(a�x)/∂xi = ai , and arranging all n partial
derivatives as elements in an n× 1 matrix, we have

f ′(x)� = ∂(a�x)
∂x

=
[
∂(a�x)
∂x j

]
= a (9.12)

All second-order partial derivatives are zero and may be associated with the elements of a
zero matrix. Thus we may write the Hessian matrix as

f ′′(x)= ∂2(a�x)
∂x∂x�

=
[
∂2(a�x)
∂x j∂xk

]
= 0n×n (9.13)

Using the alternative interpretation in which a is variable and x fixed, we have by similar
reasoning:

g′(a)� = ∂(a�x)
∂a

=
[
∂(a�x)
∂a j

]
= x (9.14)

g′′(a)= ∂2(a�x)
∂a∂a�

=
[
∂(a�x)
∂a j∂ak

]
= 0n×n (9.15)
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The fact that the second-order derivatives of a linear form vanish indicates that such a
function has zero curvature. The sign and magnitude of the second-order derivatives of
a nonlinear function provide information about the nature and magnitude of the curvature
of that function. We will return to this interpretation when discussing Taylor’s theorem in
Section 9.6 and when discussing convex and concave functions in Section 10.2.

Quadratic forms

First, however, we consider the derivatives and curvature of the simplest type of nonlinear
function, a quadratic form

x�Ax= a11x2
1 + a22x2

2 + · · ·+ ann x2
n + 2a12x1x2

+ · · ·+ 2a1n x1xn + · · ·+ 2a(n−1)n xn−1xn (9.16)

where A is taken to be symmetric of order n× n, so that we can use the fact that a12 = a21

and so on in the expansion.
Once again, the expression in (9.16) can be viewed either as a function of x with A treated

as a constant matrix, or as a function of A with x treated as a constant vector. Using the
former interpretation,

∂(x�Ax)
∂x1

= 2(a11x1 + a12x2 + · · ·+ a1n xn) (9.17)

∂(x�Ax)
∂x2

= 2(a21x1 + a22x2 + · · ·+ a2n xn) (9.18)

and so on. The typical first-order partial derivative in this case is

∂(x�Ax)
∂x j

= 2
n∑

k=1

ajkxk (9.19)

Stacking all of the first-order partial derivatives in an n× 1 matrix, we have

∂(x�Ax)
∂x

=
[
∂(x�Ax)
∂x j

]
= 2Ax (9.20)

Differentiating each of the n derivatives in ∂(x�Ax)/∂x in turn by each of the elements xk

produces n2 second-order partial derivatives. The details of the differentiation are left as an
exercise for the reader; see Exercise 9.3. Putting the resulting second-order derivatives as the
elements of an n× n matrix, we have

∂2(x�Ax)
∂x∂x�

=
[
∂2(x�Ax)
∂x j∂xk

]
= 2A (9.21)

In the case of non-symmetric A, then

∂(x�Ax)
∂x

= (A+A�)x and
∂2(x�Ax)
∂x∂x�

= (A+A�) (9.22)
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Just as we can differentiate a function of a vector variable with respect to that vector
variable, so we can differentiate a function of a matrix variable with respect to that matrix
variable, although the notation can quickly become cumbersome.

This reasoning leads to the result that

∂(x�Ax)
∂A

=
[
∂(x�Ax)
∂aij

]
= [xi x j ]n×n = xx� (9.23)

In this case, as we are differentiating with respect to aij while holding the other matrix entries,
in particular aji, constant, the matrix A is not constrained to be symmetric. Note that the
derivative in (9.23) is just the outer product discussed in Exercise 1.9.

9.3 Chain rule and product rule

9.3.1 Univariate chain rule

It will be recalled from scalar calculus that, if z = f (y) and y = g(x) are scalars and thus
z= f (g(x))= f ◦ g(x), then

dz

dx
= dz

dy

dy

dx
(9.24)

This is called the chain rule of differential calculus. For a proof, see Binmore (1982, p. 99).

EXAMPLE 9.3.1 Let z= 2y and y= x3. Then dz/dy= 2 and dy/dx = 3x2, hence

dz

dx
= dz

dy

dy

dx
= 2(3x2)= 6x2 (9.25)

It is easy to check the validity of the chain rule in this simple illustration directly, by
substituting in z for y and differentiating z with respect to x :

dz

dx
= d(2x3)

dx
= 6x2 (9.26)

♦

9.3.2 Chain rule for partial derivatives

Now, if z= f (y) and y= g(x) are vectors and thus z≡ h(x)= f (g(x))= f ◦ g(x), then the
chain rule generalizes. Specifically, if z is p× 1, y is m × 1 and x is n × 1, then the chain
rule for partial derivatives states that, for i = 1,2, . . . , p and j = 1,2, . . . ,n,

∂hi

∂x j
(x)=

m∑
k=1

∂ f i

∂yk
(y)
∂gk

∂x j
(x)

= ∂ f i

∂y1
(y)
∂g1

∂x j
(x)+ ∂ f i

∂y2
(y)
∂g2

∂x j
(x)+ · · ·+ ∂ f i

∂ym
(y)
∂gm

∂x j
(x) (9.27)
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The proof of this result is beyond the scope of this book; for details, the interested reader is
referred to Binmore (1982, pp. 213–14).

EXAMPLE 9.3.2 Let f :R2 →R
2 and g:R→R

2 be defined by

z=
[

z1

z2

]
=
[

y1 + y2

y1 y2

]
= f (y) and y=

[
y1

y2

]
=
[

x
x2

]
= g(x) (9.28)

with h≡ f ◦ g. Then

∂h1

∂x
(x)= ∂ f 1

∂y1
(y)
∂g1

∂x
(x)+ ∂ f 1

∂y2
(y)
∂g2

∂x
(x)= 1× 1+ 1× 2x = 1+ 2x (9.29)

∂h2

∂x
(x)= ∂ f 2

∂y1
(y)
∂g1

∂x
(x)+ ∂ f 2

∂y2
(y)
∂g2

∂x
(x)= y2 × 1+ y1 × 2x = x2 + 2x2 = 3x2

(9.30)

The solution is easy to check directly:

z1 = y1 + y2 = x + x2 ∴ dz1

dx
= 1+ 2x (9.31)

z2 = y1 y2 = x(x2)= x3 ∴ dz2

dx
= 3x2 (9.32)

♦

9.3.3 Chain rule for total derivatives

Stacking the results for partial derivatives (9.27) in matrix form, we have the following
theorem.

THEOREM 9.3.1 (CHAIN RULE). Let f :Rm → R
p and g:Rn → R

m be continuously
differentiable functions and let h:Rn →R

p be defined by

h(x)≡ f (g(x)) (9.33)

Then

h′(x)︸︷︷︸
p×n

= f ′(g(x))︸ ︷︷ ︸
p×m

g′(x)︸︷︷︸
m×n

(9.34)

Proof: This is easily shown using the chain rule for partial derivatives; see
Exercise 9.9. �

EXAMPLE 9.3.3 Returning to Example 9.3.2,

f ′(y)=
[

1 1
y2 y1

]
and g′(x)=

[
1

2x

]
(9.35)
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Therefore, by the chain rule for total derivatives,

h′(x)= f ′ (y) g′(x)=
[

1 1
y2 y1

][
1

2x

]
=
[

1+ 2x
y2 + 2xy1

]
=
[

1+ 2x
x2 + 2xx

]
=
[

1+ 2x
3x2

]
(9.36)

coinciding with the partial derivatives obtained by scalar calculations. ♦

One of the most common applications of the chain rule is the following corollary.

COROLLARY 9.3.2 Let f :Rm+n → R
p and g:Rn → R

m be continuously differentiable
functions, let x∈R

n, and define h:Rn →R
p by

h(x)≡ f (g(x),x) (9.37)

Partition the total derivative of f into two submatrices comprising its first m columns and
its last n columns and denoted

f ′(·)︸︷︷︸
p×(m+n)

=
[

Dg f (·)︸ ︷︷ ︸
p×m

Dx f (·)︸ ︷︷ ︸
p×n

]
(9.38)

Then the following holds:

h′(x)= Dg f (g(x),x)g′(x)+ Dx f (g(x),x) (9.39)

Proof: The chain rule for partial derivatives can be used to calculate ∂hi (x)/∂x j in terms
of partial derivatives of f and g for i = 1,2, . . . , p and j = 1,2, . . . ,n:

∂hi

∂x j
(x)=

m∑
k=1

∂ f i

∂xk
(g(x),x)

∂gk

∂x j
(x)+

m+n∑
k=m+1

∂ f i

∂xk
(g(x),x)

∂xk−m

∂x j
(x) (9.40)

Note that

∂xl

∂x j
(x)= δl j ≡

{
1 if l = j
0 otherwise

(9.41)

which is just the Kronecker delta, defined in Section 1.5.2. Thus all but one of the terms in
the second summation in (9.40) vanish, giving

∂hi

∂x j
(x)=

m∑
k=1

∂ f i

∂xk
(g(x),x)

∂gk

∂x j
(x)+ ∂ f i

∂xm+ j
(g(x),x) (9.42)
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Stacking these scalar equations in matrix form and factoring yields:⎡⎢⎢⎢⎢⎢⎣
∂h1

∂x1
(x) . . .

∂h1

∂xn
(x)

...
. . .

...

∂h p

∂x1
(x) . . .

∂h p

∂xn
(x)

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
∂ f 1

∂x1
(g(x),x) . . .

∂ f 1

∂xm
(g(x),x)

...
. . .

...

∂ f p

∂x1
(g(x),x) . . .

∂ f p

∂xm
(g(x),x)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
∂g1

∂x1
(x) . . .

∂g1

∂xn
(x)

...
. . .

...

∂gm

∂x1
(x) . . .

∂gm

∂xn
(x)

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎣
∂ f 1

∂xm+1
(g(x),x) . . .

∂ f 1

∂xm+n
(g(x),x)

...
. . .

...

∂ f p

∂xm+1
(g(x),x) . . .

∂ f p

∂xm+n
(g(x),x)

⎤⎥⎥⎥⎥⎥⎦ (9.43)

Now, we can use (9.43) to write out the total derivative h′(x) as a product of partitioned
matrices:

h′(x)= Dg f (g(x),x)g′(x)+ Dx f (g(x),x) (9.44)

as required. �

EXAMPLE 9.3.4 We consider a simple example in which m = n = p. Let f (x,y)= x− y
and g(x)=Gx, where G is an n× n matrix. Then

h(x)≡ f (g(x),x)=Gx− x (9.45)

We have f ′(x,y) = [I − I], Dg f = I and Dx f = −I for all x,y, where all the identity
matrices are of dimension n.

Thus

h′(x)= Dg f g′(x)+ Dx f = IG− I=G− I (9.46)

Of course, this result could have been computed directly by differentiating in (9.45). ♦

9.3.4 Product rule

The multivariate equivalent of the product rule or Leibniz’s law comes in two versions.3

THEOREM 9.3.3 (PRODUCT RULE FOR VECTOR CALCULUS). The following two versions
hold.
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(a) Let f, g:Rm →R
n, and define h:Rm →R by

h(x)︸︷︷︸
1×1

≡ f (x)�︸ ︷︷ ︸
1×n

g(x)︸︷︷︸
n×1

(9.47)

Then

h′(x)︸︷︷︸
1×m

= g(x)�︸ ︷︷ ︸
1×n

f ′(x)︸ ︷︷ ︸
n×m

+ f (x)�︸ ︷︷ ︸
1×n

g′(x)︸︷︷︸
n×m

(9.48)

(b) Let f :Rm →R and g:Rm →R
n and define h:Rm →R

n by

h(x)︸︷︷︸
n×1

≡ f (x)︸︷︷︸
1×1

g(x)︸︷︷︸
n×1

(9.49)

Then

h′(x)︸︷︷︸
n×m

= g(x)︸︷︷︸
n×1

f ′(x)︸ ︷︷ ︸
1×m

+ f (x)︸︷︷︸
1×1

g′(x)︸︷︷︸
n×m

(9.50)

Proof: This is easily shown using the product rule from univariate calculus to calculate
the relevant partial derivatives and then stacking the results in matrix form. The details are
left as exercises; see Exercises 9.10 and 9.11. �

EXAMPLE 9.3.5 Let f (x)= (x · x)−
1−
2 = 1/‖x‖, g(x)= x and h(x)= x/‖x‖= f (x)g(x). In

other words, let h(x) be the unit vector in the direction of x.
Then, using the chain rule,

∂ f

∂xi
(x)=−1

2

2xi

(
√

x · x)3 (9.51)

and

f ′(x)=− 1

‖x‖3
x� (9.52)

Also g′(x)= I for all x. So, by the product rule,

h′(x)=− 1

‖x‖3
xx� + 1

‖x‖ I (9.53)

♦

9.4 Elasticities
DEFINITION 9.4.1 Let f : X → R++ be a positive-valued function defined on X ⊆ R

k++.
Then for i = 1,2, . . . , k and x∗ ∈ X the elasticity of f with respect to xi at x∗ is

x∗i
f (x∗)

∂ f

∂xi
(x∗) (9.54)
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Roughly speaking, as can be shown by application of the chain rule (see Exercise 9.12), the
elasticity is just ∂ ln f/∂ ln xi , or the slope of the graph of the function on log–log graph
paper. Since only positive numbers have real logarithms, the restriction to positive-valued
functions of positive-valued variables in the definition is required.

DEFINITION 9.4.2 A function (of a single variable) is said to be inelastic when the absolute
value of the elasticity is less than unity; and elastic when the absolute value of the elasticity
is greater than unity. The borderline case is called a function of unit elasticity.

Note that a function can be elastic in some parts of its domain and inelastic in other parts
of its domain.

EXAMPLE 9.4.1 One useful application of elasticity, which will be familiar to economics
students, is in analysing the behaviour of the total revenue function associated with a particu-
lar inverse demand function, P(Q), which gives the maximum price P at which the quantity
Q of some commodity could be sold. Using the product rule of scalar differential calcu-
lus, we find that the derivative of total revenue P × Q with respect to the quantity sold, or
marginal revenue, is

dP(Q)Q

dQ
= Q

dP

dQ
+ P (9.55)

= P

(
1+ 1

η

)
(9.56)

where

η≡ P

Q

dQ

dP
(9.57)

denotes the elasticity of quantity demanded with respect to price.
From univariate calculus, we know that total revenue is increasing in quantity when this

derivative is positive, decreasing when it is negative, and constant, or at a maximum or
minimum, when it is zero.

Hence, total revenue is constant or maximized or minimized where the elasticity
equals −1; increasing in quantity when elasticity is less than −1 (i.e. demand is elastic);
and decreasing in quantity when the elasticity is between 0 and−1 (i.e. demand is inelastic).

Note that the indifference curves of the total revenue function in price–quantity space are
the rectangular hyperbolas PQ= k for all k> 0. ♦

EXAMPLE 9.4.2 A function of n variables frequently used in economic modelling is the
Cobb–Douglas function,4 which takes the general form

f (x)=
n∏

i=1

x
αi
i (9.58)

In most applications, the components xi and the parameters αi are all assumed to be positive.
Note that f is homogeneous of degree

∑n
i=1 αi .
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Assuming that the xi are all positive, taking natural logarithms on both sides of (9.58)
yields

ln f (x)=
n∑

i=1

αi ln xi (9.59)

Thus

∂ ln f

∂ ln xi
=αi ∀ i = 1,2, . . . ,n (9.60)

In other words, each αi is the elasticity of the Cobb–Douglas function with respect to the
corresponding variable xi . ♦

9.5 Directional derivatives and tangent hyperplanes
We now come to the third way of visualizing functions of n variables that was referred to in
Section 7.7. This involves visualizing the two-dimensional cross-section, along an arbitrary
line in the domain of the function, of the (n+ 1)-dimensional graph of the function.

DEFINITION 9.5.1 Let X be a real vector space, let x = x′ ∈ X and let L be the line
containing x and x′.

(a) The restriction of the function f : X →R to the line L is the function

f |L :R→R:λ �→ f (λx+ (1− λ)x′) (9.61)

(b) If f is a differentiable function, then the directional derivative of f at x′ in the direction
from x′ to x is f |′L(0).

Note that, by the chain rule,

f |′L(λ)= f ′(λx+ (1− λ)x′)(x− x′) (9.62)

and, hence, the directional derivative reduces to5

f |′L(0)= f ′(x′)(x− x′) (9.63)

Note also that, returning to first principles,

f |′L(0)= lim
λ→0

f (x′ + λ(x− x′))− f (x′)
λ

(9.64)

Sometimes it is neater to write x − x′ ≡ h. Using the chain rule, it can be shown (see
Exercise 9.15) that the second derivative of f |L is

f |′′L(λ)=h� f ′′(x′ + λh)h (9.65)
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and

f |′′L(0)=h� f ′′(x′)h (9.66)

We endeavour, wherever possible, to stick to the convention that x′ denotes the point at
which the derivative is to be evaluated and x denotes the point in the direction of which it is
measured.

We have already implicitly met the concept of restriction to a line in Definition 7.3.4, since
(7.14) effectively just says that a function of several variables is convex if its restriction to
every line segment in its domain is a convex function of one variable, in a sense that can be
illustrated in a two-dimensional diagram.

The i th partial derivative of f at x is the directional derivative of f at x in the direction
from x to x+ ei , where ei is the i th standard basis vector. In other words, partial derivatives
are a special case of directional derivatives or directional derivatives are a generalization of
partial derivatives.

EXAMPLE 9.5.1 Consider the restriction to a line of the function

f :R2 →R: (x, y) �→ x2 + y2 (9.67)

The restriction of this function to a line in the xy plane is a parabola. Cross-sections parallel
to the xy plane are circles. ♦

DEFINITION 9.5.2 The tangent hyperplane at x′ to the graph in R
n+1 of a function

f :Rn →R is the hyperplane in R
n+1 through (x′, f (x′)) with normal ( f ′(x′),−1).

The equation of a tangent hyperplane is given by the orthogonality condition satisfied by
the typical point (x, y) on the hyperplane, which is

( f ′(x′),−1)�((x, y)− (x′, f (x′)))= 0 (9.68)

which simplifies to

y= f (x′)+ f ′(x′)(x− x′) (9.69)

Figure 9.1 shows the tangent hyperplane to the graph of a function of one variable, which
is just the line tangent to the graph at the point labelled P . Using the coordinates marked on
the diagram, the slope of the tangent line can be seen to be

tan θ = f ′(x ′)(x − x ′)
x − x ′

(9.70)

which of course simplifies in this one-variable case to f ′(x ′).
Figure 9.1 can be re-interpreted as a cross-section of the graph of a function of n variables

and its tangent hyperplane by changing every scalar x to vector x and likewise for x ′ and x′.
The horizontal axis is labelled L to indicate that it is just an arbitrary line in the domain of
the function, parametrized by λ, which equals 0 at x′ and 1 at x. The height of the thick line
is f ′(x′)(x− x′), which by (9.61) is just the directional derivative of f at x′ in the direction
of x.
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L

y

θ
P •

x ′ x

(λ= 0) (λ= 1)

f (x ′)

f (x)

f (x ′)+ f ′(x ′)(x − x ′)

directional
derivative

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Figure 9.1 Tangent hyperplane to the graph of a function of one variable

The slope of the cross-section of the tangent hyperplane is now (in vector notation)

f ′(x′)(x− x′)
‖x− x′‖ (9.71)

The vector terms in the numerator and denominator of (9.71) do not cancel, unlike the
similar (but quite different) scalar terms in the numerator and denominator of (9.70).
Expression (9.71) is the directional derivative of f at x′ in the direction of the unit vec-
tor (x− x′)/‖x− x′‖. It can be interpreted as the dot product of a column vector of partial
derivatives and this unit vector. From Definition 5.2.15, this is ‖ f ′(x′)�‖ multiplied by the
cosine of the angle between the two vectors. Thus the slope of the cross-section is zero when
the total derivative (transposed) and the unit vector are perpendicular and the slope is at its
maximum when they are collinear.

EXAMPLE 9.5.2 Returning to Example 9.5, where f ′(x, y)= [2x 2y], we illustrate these
points in Figure 9.2. We can conclude that the cross-section along the line indicated M
through the origin and (x, y) gives the steepest tangent of any cross-section through (x, y),
but the cross-section along the line L through (x, y) perpendicular to this has a horizontal
tangent. In the indifference map, L is tangent to an indifference curve of f at (x, y) and
the value of f on that indifference curve is the minimum value that f takes anywhere along
the line L . The family of lines parallel to L are the contour lines of the tangent hyperplane
to the graph of f at (x, y). ♦
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x

y

0

M

L

(x, y)
•

f ′(x, y)

L•

•

(x, y)

f (x, y)

M•
(0,0)

•
(x, y)

•

f (x, y)

Figure 9.2 Indifference map and two cross-sections of the graph of the function f : R2 →
R: (x, y) �→ x2 + y2
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9.6 Taylor’s theorem: deterministic version
Taylor’s theorem and its many variants have numerous practical and theoretical uses. These
theorems essentially show that most functions can be closely approximated, if not by lin-
ear functions, then by low-order polynomial functions. This result alone is the justification
behind much of econometrics and other forms of empirical data analysis. In linear algebra
terms, the theorem just says that the finite-dimensional subspace of low-order polynomials
is in a certain sense representative of an infinite-dimensional function space. Readers may be
familiar with the practice of using linear functions to approximate more general functions;
Taylor’s theorem says that, in cases where a linear approximation is a poor fit, a polynomial
of slightly higher order will often give a good fit.6

At a more theoretical level, Taylor’s theorem will prove useful in proving some results on
optimization in the next chapter. More precisely, we will see that Taylor’s expansion provides
a means of approximating the value of a continuous, differentiable function at some point,
using a polynomial expression in which the coefficients involve the value of the function at
some other point, together with the values of its low-order derivatives at that other point. The
uses of such approximations might not be immediately obvious, but the preceding comments
should put them in context.

We will return to Taylor’s theorem in Section 13.9, and later practical applications will
include the analysis of risk preferences in the theory of choice under uncertainty.

9.6.1 Univariate Taylor’s theorem

We begin with the simplest forms of Taylor’s theorem, namely, the intermediate value the-
orem, which is the zeroth-order version (i.e. not involving any derivative), and the mean
value theorem, which is the first-order version (i.e. involving only the first derivative). These
theorems are illustrated in Figure 9.3.

THEOREM 9.6.1 (INTERMEDIATE VALUE THEOREM). If f :R→R is continuous on [a,b],
and λ lies between f (a) and f (b), then there exists x∗ ∈ [a,b] such that f (x∗)= λ.

Proof: This proof is based on Goursat (1959, pp. 144–5).
Let φ(x)≡ f (x)− λ. Since f is continuous, φ is also continuous. We must show that

there exists x∗ ∈ [a,b] such that φ(x∗)= 0.
If f (b)= λ or f (a)= λ, then there is nothing to prove. So, without loss of generality,

suppose that f (b)>λ> f (a) and thus that φ(b)> 0>φ(a).
Let A={y ∈ [a,b]:φ(y)> 0}. Then A is non-empty, because it contains b. We claim that

x∗ ≡ inf A is the required point.
Note that, by definition of A and x∗, for h> 0, φ(x∗ − h)≤ 0. Hence, by continuity of φ,

φ(x∗)≤ 0.
Now suppose that φ(x∗)< 0, say φ(x∗)=−ε. We will derive a contradiction.
Again by continuity of φ, there exists δ > 0 such that

|z− x∗|<δ ⇒ |φ(z)−φ(x∗)|<ε ⇒ φ(z)< 0 ⇒ z /∈ A (9.72)

The fact that this range of values, including x∗ and values on both sides of x∗, are not in A
contradicts the fact that x∗ = inf A.

So we must have φ(x∗)= 0, as required. �
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(a)

x

f (x)

0 a bx∗

f (a)

f (b)

λ= f (x∗)

(b)

x

f (x)

0 a bx∗
• •

•

(c)

x

f (x)

0 a bx∗

•
f (a)

f (b)

Figure 9.3 (a) Intermediate value theorem, (b) Rolle’s theorem and (c) mean value theorem

Before proceeding to the mean value theorem, which is the first-order version of Taylor’s
theorem, we need one more result, namely Rolle’s theorem.7

THEOREM 9.6.2 (ROLLE’S THEOREM). If f :R→R is continuous on [a,b] and differen-
tiable on (a,b) with f (a)= f (b)= 0, then there exists x∗ ∈ (a,b) such that f ′(x∗)= 0.

Proof: This proof is based on Goursat (1959, pp. 7–8).
Note that Rolle’s theorem is trivially true if f is uniformly equal to 0. So we can assume,

without loss of generality, that f takes on strictly positive values somewhere on (a,b).
Let x∗ ≡ argmax(a,b) f (x). Then

f (x∗ + h)− f (x∗)
h

≤ 0 for h> 0 (9.73)

and

f (x∗ + h)− f (x∗)
h

≥ 0 for h< 0 (9.74)

Letting h → 0, the former inequality becomes f ′(x∗)≤ 0 and the latter inequality becomes
f ′(x∗)≥ 0. Thus it must be the case that f ′(x∗)= 0, as required. �
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THEOREM 9.6.3 (MEAN VALUE THEOREM). If f :R→R is continuous on [a,b] and dif-
ferentiable on (a,b), then there exists x∗ ∈ (a,b) such that f ′(x∗)= ( f (b)− f (a))/(b− a).

Proof: This proof is based on Goursat (1959, p. 8). We will derive a more general result,
of which the mean value theorem is a special case.

Let φ be any other function sharing the properties assumed for f .
Define a third function ψ by

ψ(y)≡ A f (y)+ Bφ(y)+C (9.75)

where A, B and C are any real numbers. The function ψ is also continuous on [a,b] and
differentiable on (a,b).

We want to apply Rolle’s theorem to ψ , so we chose A, B and C to guarantee that ψ(a)=
ψ(b)= 0. This gives us the following system of two linear equations in three unknowns:

A f (a)+ Bφ(a)+C = 0 (9.76)

A f (b)+ Bφ(b)+C = 0 (9.77)

or, in matrix form,[
f (a) φ(a)
f (b) φ(b)

][
A
B

]
=−

[
C
C

]
(9.78)

If we let C equal the determinant of the 2× 2 matrix on the left-hand side, we get the neat
solution[

A
B

]
=−

[
φ(b) −φ(a)
− f (b) f (a)

][
1
1

]
(9.79)

or

A=φ(a)−φ(b) (9.80)

B = f (b)− f (a) (9.81)

C = f (a)φ(b)− f (b)φ(a) (9.82)

Note that (9.80)–(9.82) solve (9.76) and (9.77) even when C = 0.
Now, by Rolle’s theorem, there exists x∗ ∈ (a,b) such that ψ ′(x∗)= 0 or

(φ(a)−φ(b)) f ′(x∗)+ ( f (b)− f (a))φ′(x∗)= 0 (9.83)

Equation (9.83) is often called the generalized law of the mean. If we set φ (y)≡ y and
rearrange, we obtain

f ′(x∗)= f (b)− f (a)

b− a
(9.84)

as required. �
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The mean value theorem can be rearranged to give

f (b)= f (a)+ (b− a) f ′(x∗) (9.85)

which looks more like the first-order version of Taylor’s theorem itself; see below.
Before we give the general statement of the nth-order version of Taylor’s theorem, we con-

sider a simple case of a function of a single variable to provide motivation for the theorem,
and then an example.

Suppose that f (x0) and d f (x0)/dx are known and we wish to approximate f (x), where
x is close to x0. Inspired by the mean value theorem, we can see that a rough approximation
to f (x) is

A= f (x0)+ d f

dx
(x0)(x − x0) (9.86)

as shown in Figure 9.4.

x

f (x)

0

slope
d f

dx
(x0)

approximation error

x0 x

A= f (x0)+ d f

dx
(x0)(x − x0) •

f (x) •

f (x0) • •

Figure 9.4 Taylor approximation
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The value A is an overestimate of f (x) in the case illustrated in the sketch, as it ignores
the curvature of the function. Taylor’s theorem says that a better approximation is

A∗ = A+ 1

2!

d2 f

dx2
(x0)(x − x0)

2

= f (x0)+ d f

dx
(x0)(x − x0)+ 1

2!

d2 f

dx2
(x0)(x − x0)

2 (9.87)

In this illustration, d2 f (x0)/dx2 is negative, since d f /dx is decreasing, and (x − x0)
2 is

positive, so A∗< A. The 1
2! term gives a smaller weight to the additional second-order term

than is given to the original first-order term. A still better approximation would be one with
further terms in 1

3! [d3 f (x0)/dx3](x − x0)
3, etc. As an exercise, the reader should show that,

for a quadratic function f (x)= ax2 + bx + c, A∗ exactly equals f (x); see Exercise 9.21.
The theorem is as follows.

THEOREM 9.6.4 (UNIVARIATE TAYLOR’S THEOREM). If f (x) is a function with contin-
uous derivatives up to order n on the closed interval [x0, x], then there exists x∗ ∈ (x0, x)
such that

f (x)= f (x0)+ d f

dx
(x0)(x − x0)+ 1

2!

d2 f

dx2
(x0)(x − x0)

2

+ · · ·+ 1

(n− 1)!

dn−1 f

dxn−1
(x0)(x − x0)

n−1 + 1

n!

dn f

dxn
(x∗)(x − x0)

n (9.88)

Proof: The proof of this theorem can be found, for example, in Binmore (1982, pp. 106–7).
�

Note that the first n−1 derivatives at x0 of the polynomial on the right-hand side of (9.88)
are the same as those of f ; see Exercise 9.22.

Equation (9.88) is known as Taylor’s expansion. Note that the first-order term in the
expansion is just the directional derivative of f at x0 in the direction of x .

Taylor’s expansion (or more correctly its first few terms) is typically used as an approx-
imation to the value of the underlying function. In this context, the distinction between the
derivatives at x0 in the general terms and the derivative at x∗ in the final or remainder
term is immaterial. Similarly, the distinction between the finite version of Taylor’s expansion
in (9.88) and the infinite version

f (x)= f (x0)+
∞∑

k=1

1

k!

dk f

dxk
(x0)(x − x0)

k (9.89)

is immaterial in most practical applications.
A special case of Taylor’s expansion is when x0 = 0. This produces a form known as

Maclaurin’s series:8

f (x)= f (0)+ d f

dx
(0)x + 1

2!

d2 f

dx2
(0)x2 + · · ·+ 1

k!

dk f

dxk
(0)xk + · · · (9.90)
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Maclaurin’s series allows us to approximate any function of x using a straightforward
polynomial in x , at least for x near zero.

The detailed study of the speed of convergence of Taylor’s expansion or Maclaurin’s series
to the underlying function is beyond the scope of this book. We note, however, that the
infinite version of Taylor’s expansion in (9.89) does not necessarily converge at all, or to
f (x). Functions for which it does are called analytic. Binmore (1982, Exercise 15.6(6))
gives an example of a function that is not analytic.

In practice, a Taylor approximation or Maclaurin approximation usually involves the
evaluation of only the first three terms or so of whichever form of the expansion we work
with.

EXAMPLE 9.6.1 Consider the simple function f (x) = (2 + x)2. We have, using the
Maclaurin form of Taylor’s expansion,

f (x)= (2+ x)2 ∴ f (0)= 4 (9.91)

d f

dx
(x)= 2(2+ x) ∴ d f

dx
(0)= 4 (9.92)

d2 f

dx2
(x)= 2(2+ x)0 = 2 ∀ x (9.93)

d3 f

dx3
(x)= 0 ∀ x (9.94)

Thus we can write

f (x)= f (0)+ d f

dx
(0)x + 1

2!

d2 f

dx2
(0)x2 + 1

3!

d3 f

dx3
(0)x3 + · · ·

= 4+ 4x + 1

2
2x2 + 1

6
0x3 + · · · (9.95)

i.e. (2+ x)2 = 4+ 4x + x2 + 0+ · · · (9.96)

In this simple case, we see that the fourth term and all higher-order terms are zero but that
the first three terms of Maclaurin’s series actually produce the exact result: (2+ x)2 = 4+
4x + x2. ♦

For another interesting practical application of the Maclaurin approximation, see
Exercise 15.6.

9.6.2 Multivariate Taylor’s theorem

Taylor’s theorem is easily generalized to functions of several variables. The multivariate ver-
sion of Taylor’s theorem can be obtained by applying the univariate versions to the restriction
to a line of a function of n variables.

THEOREM 9.6.5 (MULTIVARIATE TAYLOR’S THEOREM). Let f : X → R be twice dif-
ferentiable, where X ⊆ R

n is open. Then for any x,x′ ∈ X, there exists λ ∈ (0,1) such
that

f (x)= f (x′)+ f ′(x′)(x− x′)+ 1
2 (x− x′)� f ′′(x′ + λ(x− x′))(x− x′) (9.97)
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Note that the second term on the right-hand side of (9.97) is a linear form in x− x′ (more
precisely, a directional derivative) and that the third term is a quadratic form in x− x′.

Proof: Let L be the line from x′ to x.
Then the univariate version tells us that there exists λ∈ (0,1) such that

f |L(1)= f |L(0)+ f |′L(0)+ 1
2 f |′′L(λ) (9.98)

Since f |L(1) = f (x), f |L(0) = f (x′), f |′L(0) = f ′(x′)(x − x′) and f |′′L(λ) =
(x− x′)� f ′′(x′ + λ(x− x′))(x− x′), making the appropriate substitutions gives the multi-
variate version in the theorem. �

In principle, the multivariate Taylor’s theorem can be extended to any order, but the
matrix notation becomes cumbersome. In scalar notation, the typical (kth) term of Taylor’s
expansion of a function of n variables is

1

k!

n∑
i1=1

n∑
i2=1

. . .

n∑
ik=1

∂k f

∂xi1∂xi2 . . . ∂xik

(x′)
k∏

j=1

(
xi j − x ′i j

)
(9.99)

We will appeal to higher-order versions of the univariate Taylor expansion in the nth
derivative test for optima of functions of a single variable in the proof of Theorem 10.3.4.

EXAMPLE 9.6.2 Suppose that y= f (x)= x3
1 +2x1x2

2 . Let us write down Taylor’s expansion
of y around the point x′ = (1,0). Straightforward differentiation yields

f ′(x1, x2)= [3x2
1 + 2x2

2 4x1x2] and f ′′(x1, x2)=
[

6x1 4x2

4x2 4x1

]
(9.100)

(Note again that f ′′(x1, x2) is a symmetric matrix.) Hence,

f ′(1,0)= [3 0] and f ′′(1,0)=
[

6 0
0 4

]
(9.101)

while

f (1,0)= 1 and x− x′ =
[

x1 − 1
x2

]
(9.102)

Substituting in (9.97) with λ= 0 gives the following approximation:

f (x)≈ 1+ [3 0]

[
(x1 − 1)

x2

]
+ 1

2!
[(x1 − 1) x2]

[
6 0
0 4

][
x1 − 1

x2

]
= 1+ 3x1 − 3+ 1

2 (6x2
1 − 12x1 + 6+ 4x2

2 )

= 3x2
1 + 2x2

2 − 3x1 + 1 (9.103)

Thus we approximate a function that is quadratic in x2 but cubic in x1 by a function that is
quadratic in both variables. Experimentation with values of x “close to” x′ = (1,0) will give
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an idea of the accuracy of the approximation. For example, for x′ itself, the approximation
gives the exact result, f (x)= 1. In fact, for x1 = 1, the approximation will always give the
exact result, 1+ 2x2

2 , since both the original function and the approximation are the same
quadratic in x2.

However, for x = (1.1,0.1), the approximation produces 1.35 while the exact value is
f (x)= 1.353, an approximation error of −0.003.

For x “further away from” x′ the results are less accurate: for x= (0.8,0.2), for instance,
the approximation error is 0.024 and for x= (0,0), the approximation error is 1.000. ♦

Applications of Taylor’s theorem later in this book include:

• quantifying the size of Jensen’s inequality (see (13.86));
• deriving linear and quadratic approximations to the relationship between bond prices and

discount rates (see Section 15.4.5); and
• motivating the use of a mean–variance utility function to approximately represent

preferences with the expected-utility property (see Section 16.8).

9.7 Multiple integration

9.7.1 Definitions and notation

Just as we defined the partial derivative of a function of several variables to be the derivative
with respect to one variable, treating the others as constants, so we define the multiple inte-
gral of a function of several variables (the integrand) to be the integral of one variable at a
time, treating the other variables as constants at each stage.

Just as not all functions of a single variable are integrable, so too not all functions of
several variables are integrable.

The simplest form of double integral, where the limits of integration are constants for
both integrals, represents integration over a rectangle. We will now consider the simplest
such integral.

EXAMPLE 9.7.1 Multiple integrals are evaluated, by convention, from the inside out.∫ b

a

∫ d

c
dy dx ≡

∫ b

a

(∫ d

c
dy

)
dx

=
∫ b

a
(d − c)dx

= (d − c)
∫ b

a
dx

= (d − c)(b− a) (9.104)
♦

Example 9.7.1 illustrates several important aspects of multiple integration:

• Constants can be taken outside multiple integrals in the same way as with single integrals,
for example, as we have done with the factor d − c in the third line of (9.104).
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• Readers will be familiar with the interpretation of a single integral as the area under a
curve. Similarly, a double integral gives the volume under a surface and other multiple
integrals give higher-dimensional analogues.

• In particular, Example 9.7.1 represents the computation of the volume of a solid block of
unit height sitting on the rectangle [a,b]× [c,d], which of course also equals the area of
the rectangle. More generally, if we wish to compute the volume V (A) of any set A⊆R

n

and if f : A→R: x �→ 1 is the constant function taking the value 1 everywhere on A, then
we may be able to find the volume using the fact that

V (A)=
∫∫

. . .

∫
A

f (x)dx1 dx2 . . . dxn (9.105)

• The preceding point presumes that the notation
∫∫
. . .

∫
A can be defined unambiguously;

this follows from Fubini’s theorem, which we consider in the next section.
• A double integral can also represent the volume under a surface over any (non-

rectangular) region of the xy plane, for example a circle, as in the concluding example of
this section.

EXAMPLE 9.7.2 Consider the function defined by f (x, y)=√
1− x2 − y2. This function

takes on real values only within the unit circle in the xy plane defined as

C ≡
{
(x, y)∈R

2:−1≤ x ≤ 1, −
√

1− x2 ≤ y≤
√

1− x2
}

(9.106)

Outside the unit circle, the function f takes on imaginary values. The hemisphere of unit
radius centred at the origin has equation z= f (x, y)=√

1− x2 − y2. The volume enclosed
by the hemisphere and the xy plane is given by the double integral

V ≡
∫ 1

−1

∫ √1−x2

−
√

1−x2
f (x, y)dy dx

=
∫ 1

−1

∫ √1−x2

−
√

1−x2

√
1− x2 − y2 dy dx (9.107)

To evaluate this integral, we will make some substitutions using the trigonometric identities
mentioned on p. xxii. We begin by evaluating the inner integral

A≡
∫ √1−x2

−
√

1−x2

√
1− x2 − y2 dy (9.108)

holding x fixed. The single integral A is just the area of the cross-section through the
hemisphere at x parallel to the yz plane, which is a semi-circle of radius

√
1− x2.

To simplify the notation, we will denote this radius r ≡ √
1− x2 and make the sub-

stitution y = r sin θ . Then, since we are holding x , and hence r , constant, dy =
r cos θ dθ . Using the fundamental trigonometric identity from p. xxii, the integrand becomes√

1− x2 − y2 =√
r2 − y2 = r cos θ . When y= r , sin θ = 1 and θ =π/2, and similarly when
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y=−r , θ =−π/2. Hence,

A=
∫ r

−r

√
r2 − y2 dy

=
∫ π/2

−π/2
r cos θ r cos θ dθ

= r2
∫ π/2

−π/2
cos2 θ dθ (9.109)

Using the double-angle formula, this becomes

A= r2
∫ π/2

−π/2
1

2
(cos 2θ + 1)dθ

= r2

2

[
1

2
sin 2θ + θ

]π/2
−π/2

= r2

2

[
1

2
× 0+ π

2
−
(

1

2
× 0+

(
−π

2

))]
= πr2

2
(9.110)

This reassuringly coincides with the well-known formula for the area of a semi-circle of
radius r =√1− x2.

Substituting this result in (9.107) yields

V = π

2

∫ 1

−1
(1− x2)dx

= π

2

[
x − x3

3

]1

−1

= π

2

[
1− 1

3
−
(
−1− (−1)3

3

)]
= π

2

[
1− 1

3
+ 1− 1

3

]
= 2π

3
(9.111)

If the volume bounded by a hemisphere of radius 1 is 2π/3, it follows that the volume of a
ball of radius 1 is 4π/3. ♦

9.7.2 Fubini’s theorem

In defining partial derivatives and multiple integrals, we have been careful to state the order
in which differentiation and integration with respect to different variables is to be carried
out, although we have hinted that the order in both cases is often immaterial. We will now
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present a number of theorems that give conditions under which the order of differentiation
or integration does not matter (Theorems 9.7.1, 9.7.2 and 9.7.4). We begin with Fubini’s
theorem, which concerns the order of integration in a multiple integral.9

THEOREM 9.7.1 (FUBINI’S THEOREM). If the integrand is a continuous and bounded
function and its absolute value is integrable, then the value of a multiple integral is
independent of the order of integration, for example,∫ b

a

∫ d

c
f (x, y)dy dx =

∫ d

c

∫ b

a
f (x, y)dx dy (9.112)

Proof: The full proof of this theorem is beyond the scope of this book. It can be found in
Spivak (1965, pp. 58–9). �

Fubini’s theorem will be used in this section to prove Young’s theorem and Leibniz’s
integral rule. In fact, all three theorems are effectively equivalent. Fubini’s theorem will also
be used later to prove Stein’s lemma (Theorem 13.7.1).

We can appeal to Fubini’s theorem to allow us to denote the double integral of the
function f over the rectangle R≡ [a,b]× [c,d], or over any specified set, simply as∫∫

R
f (x, y)dy dx (9.113)

For example, the integral in (9.107) defining the volume of a hemisphere could have been
written∫∫

C

√
1− x2 − y2 dy dx (9.114)

Provided that the volume of the set A⊆R
n is finite, the expression for the volume of A given

in (9.105) is now seen, using Fubini’s theorem, to be unambiguous.

EXAMPLE 9.7.3 By Theorem 7.4.1, if P is the hyperparallelepiped in R
n whose edges are

the columns of the matrix X, then∫∫
. . .

∫
P

1 dx1 dx2 . . . dxn =
√

det(X�X) (9.115)

♦

We conclude this section with a counter-example to demonstrate what can happen if the
assumptions of Fubini’s theorem do not hold.

EXAMPLE 9.7.4 Consider the double integral∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dy dx (9.116)

Fubini’s theorem tells us that if the integral of the absolute value of the integrand is finite,
then the order of integration does not matter; if we integrate first with respect to x and then
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with respect to y, we get the same result as if we integrate first with respect to y and then
with respect to x .

Note in this example, however, that reversing the order of integration has the effect of
multiplying the value of the integral by −1 because of the antisymmetry of the function
being integrated – unless the value of the integral is zero. We will show that the value of the
integral in (9.116) is non-zero and then confirm the implication of Fubini’s theorem – that
the integral of the absolute value of the integrand is infinite.

First, we consider the indefinite form of the inside integral:∫
x2 − y2

(x2 + y2)2
dy=

∫
x2 + y2 − 2y2

(x2 + y2)2
dy

=
∫

1

x2 + y2
dy+

∫ −2y2

(x2 + y2)2
dy

=
∫

1

x2 + y2
dy+

∫
y

(
d

dy

1

x2 + y2

)
dy

=
∫

1

x2 + y2
dy+

(
y

x2 + y2
−
∫

1

x2 + y2
dy

)
(by parts)

= y

x2 + y2
+C (9.117)

where C is the arbitrary constant of integration. Thus∫ 1

0

x2 − y2

(x2 + y2)2
dy=

[
y

x2 + y2

]1

y=0
= 1

1+ x2
(9.118)

This takes care of the inside integral with respect to y; now we do the outside integral with
respect to x .∫ 1

0

1

1+ x2
dx = [tan−1(x)]1

x=0

= tan−1(1)− tan−1(0)= π

4
(9.119)

Thus we have∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dy dx = π

4
(9.120)

and, by antisymmetry,∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dx dy=−π

4
(9.121)

The prediction of Fubini’s theorem does not hold in this case, so the assumption underlying
Fubini’s theorem must also fail to hold. So let us check whether the integral of the absolute
value of the integrand is finite. Note that the integrand is zero when x = y, positive when
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x > y and negative when x < y. So we can divide up the region of integration into two
triangular subregions and, using (9.117) again, write

∫ 1

0

∫ 1

0

∣∣∣∣ x2 − y2

(x2 + y2)2

∣∣∣∣dy dx =
∫ 1

0

[∫ x

0

x2 − y2

(x2 + y2)2
dy+

∫ 1

x

y2 − x2

(x2 + y2)2
dy

]
dx

=
∫ 1

0

([
y

x2 + y2

]x

y=0
+
[

y

x2 + y2

]x

y=1

)
dx

=
∫ 1

0

(
1

2x
− 0+ 1

2x
− 1

1+ x2

)
dx

=
∫ 1

0

(
1

x
− 1

1+ x2

)
dx

= [ln x]1
x=0 − [tan−1(x)]1

x=0

= 0− (−∞)− (π
4
− 0)

=∞ (9.122)

This confirms our inference from Fubini’s theorem that, since the two iterated integrals differ,
the integral of the absolute value must be ∞. ♦

9.7.3 Young’s theorem

Fubini’s theorem (Theorem 9.7.1) gave sufficient conditions under which the order of inte-
gration in a multiple integral is immaterial. The question naturally arises as to whether we
can say the same thing about the order of differentiation in a higher-order mixed partial
derivative. Multiple integration of partial derivatives allows us to show, under certain condi-
tions, using Fubini’s theorem, that the order of differentiation too is immaterial. This result,
variously known as Clairaut’s theorem, Schwarz’s theorem or Young’s theorem, gives con-
ditions under which the symmetry of second derivatives (also called the equality of mixed
partials) obtains.10 We will refer to it by the last-mentioned name, Young’s theorem. The
reader has probably already noticed that this symmetry has obtained in most of the examples
and exercises encountered so far.

THEOREM 9.7.2 (YOUNG’S THEOREM). If the ijth and jith second-order partial deriva-
tives of a real-valued function of n variables both exist and are continuous at x, then they
are equal at x.

If these conditions are satisfied for all i, j = 1,2, . . . ,n, then the Hessian matrix of the
function is symmetric at x.

Without loss of generality, we will confine attention to the case of n = 2. The proof of
Young’s theorem, following Spivak (1965, Problem 3-28), is based on the following lemma.
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LEMMA 9.7.3 Let f be a function whose second-order partial derivatives are continuous
on the rectangle [a,b]× [c,d]. Then

∫ d

c

∫ b

a

∂2 f

∂x1∂x2
(x1, x2)dx1 dx2 = f (b,d)− f (a,d)− f (b, c)+ f (a, c)

=
∫ b

a

∫ d

c

∂2 f

∂x2∂x1
(x1, x2)dx2 dx1 (9.123)

This lemma bears a close resemblance to Fubini’s theorem but is a completely different
proposition, as we do not know (yet) whether the integrands on both sides of (9.123) are
equal.

Proof of lemma: The proof will be given for ∂2 f/∂x1∂x2. The proof for ∂2 f/∂x2∂x1 is
left as an exercise; see Exercise 9.25.

Using the fundamental theorem of calculus to evaluate the inner integral yields

∫ d

c

∫ b

a

∂2 f

∂x1∂x2
(x1, x2)dx1 dx2 =

∫ d

c

(
∂ f

∂x2
(b, x2)− ∂ f

∂x2
(a, x2)

)
dx2 (9.124)

Using the fundamental theorem of calculus once again to evaluate the outer integral,

∫ d

c

(
∂ f

∂x2
(b, x2)− ∂ f

∂x2
(a, x2)

)
dx2 = ( f (b,d)− f (a,d))− ( f (b, c)− f (a, c))

(9.125)

Removing the brackets from the right-hand side of (9.125) completes the proof of the
lemma. �

Note that the expression f (b,d)− f (a,d)− f (b, c)+ f (a, c) is the difference between
the increase in the value of the function f along the top of the rectangle (from (a,d) to
(b,d)) and the increase along the bottom of the rectangle (from (a, c) to (b, c)). By swapping
the two middle terms, the same expression can be seen to equal the difference between the
increase in the value of the function f along the right side of the rectangle and the increase
along the left side of the rectangle. This simple geometric observation is the basic principle
underlying Young’s theorem.

The above lemma and proof extend to functions of any number of variables. For n vari-
ables, however, the number of terms on the right-hand side of (9.125) increases to 2n , the
number of vertices of a hyperrectangle in n dimensions; see Exercise 9.26.

Proof of Young’s theorem: The proof is by contradiction. We begin by assuming that there
is some point, (z, t), say, at which the second-order partials differ, so that

∂2 f

∂x1∂x2
(z, t)− ∂2 f

∂x2∂x1
(z, t)= h (9.126)

for some h = 0. We can relabel the variables if necessary to ensure that h> 0.
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By continuity of the second-order partials, there is some neighbourhood of (z, t) through-
out which

∂2 f

∂x1∂x2
(x1, x2)− ∂2 f

∂x2∂x1
(x1, x2)≥ h

2
(9.127)

We can now pick a rectangle [a,b]× [c,d] within this neighbourhood.
The inequality is preserved when we integrate both sides of inequality (9.127) over this

rectangle:

∫ d

c

∫ b

a

(
∂2 f

∂x1∂x2
(x1, x2)− ∂2 f

∂x2∂x1
(x1, x2)

)
dx1 dx2 ≥

∫ d

c

∫ b

a

h

2
dx1 dx2 (9.128)

By Fubini’s theorem and Lemma 9.7.3, the integral on the left-hand side vanishes. The inte-
grand on the right-hand side of the inequality is constant, so the integral is merely the volume
h× (b− a)× (d − c)/2, which is positive. Thus we have the required contradiction. �

Just as Lemma 9.7.3 extends straightforwardly to higher dimensions, so too does this
proof of Young’s theorem. Hence, the order of differentiation is also immaterial in higher-
order partial derivatives, again assuming that the relevant partial derivatives exist and are
continuous.

9.7.4 Differentiation under the integral sign

In later applications, we will frequently have to differentiate integrals in various ways, and
not just with respect to the upper limit of integration, as was the case in the fundamental
theorem of calculus (Theorem 7.9.1). We will need more general results. Techniques such as
reversing the limits of integration (when we wish to differentiate with respect to the lower
limit of integration) and the chain rule (when the limit of integration is a function of the
relevant variable) are sometimes sufficient.

More generally, just as we need Fubini’s theorem to tell us whether we can shuffle or
permute the order of integration and Young’s theorem to tell us whether we can permute
the order of differentiation, we need to know under what circumstances the order of integra-
tion and differentiation can be reversed when both operations occur in the same expression.
Before presenting a theorem giving conditions under which reversing the order is legit-
imate, we begin with a counter-example to show that we cannot perform this procedure
indiscriminately and to suggest why the various conditions of the theorem will be required.

EXAMPLE 9.7.5 Let

F(α)=
∫ ∞

0

sinαx

x
dx withα > 0 (9.129)

We are interested in evaluating F ′(α), i.e. in differentiating this integral with respect to a
variable that appears as a constant under the integral sign. Differentiating with respect to α
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under the integral sign would yield

F ′(α)=
∫ ∞

0

cosαx

x
x dx

=
∫ ∞

0
cosαx dx

=
[

sinαx

α

]∞
x=0

(9.130)

The expression inside the square brackets does not converge as x →∞ for fixed α; rather, it
oscillates between −1/α and +1/α.

Now consider an alternative approach to evaluating and then differentiating the integral in
(9.129). Let us make the substitution y=αx , so that dy=α dx . Then we obtain, for all α,

F(α)=
∫ ∞

0

sin y

y
dy (9.131)

In other words, the value of the function F is independent of α and, as with any constant
function, F ′(α)= 0 for all α. In fact, F is related to the sine integral function, defined by11

Si(z)=
∫ z

0

sin y

y
dy (9.132)

It can be shown that the constant value of F(α) is π/2 for all α; see Exercise 9.27. ♦

This example is a warning that, when differentiating under the integral sign, we must be
sure that both the integral of the original function and the integral of its derivative exist over
the relevant range of integration. In the example, the former exists but the latter does not.

9.7.5 Leibniz’s integral rule

A full course on integration would present several different theorems concerning differen-
tiation under the integral sign. Here we present only two versions of Leibniz’s integral rule
for functions of two variables. We provide two alternative proofs in each case, one based
on Fubini’s theorem (which we have not proved) and a more complete proof assuming
uniformly continuous partial derivatives.

THEOREM 9.7.4 (LEIBNIZ’S INTEGRAL RULE WITH FIXED LIMITS OF INTEGRATION).
Suppose that the function f : [x0, x1] × [y0, y1] → R has a continuous partial derivative
∂ f/∂x and define F : [x0, x1]→R by

F(x)=
∫ y1

y0

f (x, y)dy (9.133)

Then, for x ∈ (x0, x1), F is differentiable at x and

F ′(x)=
∫ y1

y0

∂ f

∂x
(x, y)dy (9.134)
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provided that either

(a) ∂ f /∂x is bounded and∫ x∗

x0

∫ y1

y0

∣∣∣∣∂ f

∂x
(x, y)

∣∣∣∣ dy dx

exists for all x∗ ∈ (x0, x1) or
(b) ∂ f /∂x is uniformly continuous on [x0, x1].

Proof:

(a) The first set of assumptions will allow us to apply Fubini’s theorem.
For x∗ ∈ (x0, x1), let

I (x∗)≡
∫ x∗

x0

∫ y1

y0

∂ f

∂x
(x, y)dy dx (9.135)

Note that by the first part of the fundamental theorem of calculus

I ′(x∗)=
∫ y1

y0

∂ f

∂x
(x∗, y)dy (9.136)

By Fubini’s theorem, given our assumptions, we can interchange the order of integration
in (9.135) to obtain

I (x∗)=
∫ y1

y0

∫ x∗

x0

∂ f

∂x
(x, y)dx dy (9.137)

Using the second part of the fundamental theorem of calculus to evaluate the inner
integral,

I (x∗)=
∫ y1

y0

( f (x∗, y)− f (x0, y))dy

=
∫ y1

y0

f (x∗, y)dy−
∫ y1

y0

f (x0, y)dy

= F(x∗)− F(x0) (9.138)

The choice x∗ was arbitrary, so by differentiating (9.138) with respect to x∗ we have

I ′(x∗)= F ′(x∗) ∀ x∗ ∈ (x0, x1) (9.139)

Hence, by (9.136),

F ′(x)=
∫ y1

y0

∂ f

∂x
(x, y)dy ∀ x ∈ (x0, x1) (9.140)

Thus the rule is proved.
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Note also that, while the theorem is expressed in terms of finite limits of integration
with respect to y, the proof would still hold if either or both of these limits was infinite.

(b) If ∂ f/∂x is uniformly continuous on [x0, x1], then we can prove the result without calling
on Fubini’s theorem.

By definition, returning to first principles,

F ′(x)= lim
h→0

F(x + h)− F(x)

h
(9.141)

Substituting the definition of F from (9.133) into (9.141) and using the linearity of the
integration operator yields

F ′(x)= lim
h→0

∫ y1
y0

f (x + h, y)dy− ∫ y1
y0

f (x, y)dy

h

= lim
h→0

∫ y1
y0
( f (x + h, y)− f (x, y))dy

h

= lim
h→0

∫ y1

y0

f (x + h, y)− f (x, y)

h
dy (9.142)

We now claim that

lim
h→0

∫ y1

y0

(
f (x + h, y)− f (x, y)

h
− ∂ f

∂x
(x, y)

)
dy= 0 (9.143)

The mean value theorem (Theorem 9.6.3) tells us that, for each x and h, there exists a
number θ(x,h)∈ [0,1] such that

f (x + h, y)− f (x, y)

h
= ∂ f

∂x
(x + θ(x,h)h, y) (9.144)

So we need to confirm that

lim
h→0

∫ y1

y0

(
∂ f

∂x
(x + θ(x,h)h, y)− ∂ f

∂x
(x, y)

)
dy= 0 (9.145)

Now choose ε >0. By uniform continuity of the partial derivative, there exists δ>0 such
that, whenever |h|<δ,∣∣∣∣∂ f

∂x
(x + h, y)− ∂ f

∂x
(x, y)

∣∣∣∣< ε

y1 − y0
(9.146)

and, in particular,∣∣∣∣∂ f

∂x
(x + θ(x,h)h, y)− ∂ f

∂x
(x, y)

∣∣∣∣< ε

y1 − y0
(9.147)
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Since the absolute value of the integrand in (9.145) is less than ε/(y1 − y0), the value of
the integral is less than

(y1 − y0)× ε

y1 − y0
= ε (9.148)

This proves the claim.
Leibniz’s integral rule follows by combining (9.142) and (9.143) and again using the

linearity of the integration operator.
Like the previous one, this proof would still hold if either or both of the limits of

integration with respect to y was infinite.
Note that, when x0, x1, y0 and y1 are finite, the Heine–Cantor theorem allows us to

relax the assumption that ∂ f /∂x is uniformly continuous, since in that case continuity of
∂ f /∂x implies uniform continuity. �

The first part of the fundamental theorem of calculus and the preceding version of
Leibniz’s integral rule can be combined into a more general result.

THEOREM 9.7.5 (LEIBNIZ’S INTEGRAL RULE WITH VARIABLE LIMITS OF INTEGRA-
TION). Suppose that the function f : [x0, x1] × [y0, y1] → R has a uniformly continuous
partial derivative ∂ f/∂x and define

F(x)=
∫ b(x)

a(x)
f (x, y)dy (9.149)

where a and b are continuously differentiable functions defined on (x0, x1). Then, for x ∈
(x0, x1), we have

F ′(x)= b′(x) f (x,b(x))− a′(x) f (x,a(x))+
∫ b(x)

a(x)

∂ f

∂x
(x, y)dy (9.150)

Proof: The proof of this result, which also requires the chain rule, is left as an exercise;
see Exercise 9.28. �

9.7.6 Change of variables

In Examples 9.7.1 and 9.7.4 above, we used the familiar change-of-variable technique to sim-
plify single integrals. We now present, without proof, the corresponding result for multiple
integrals.

THEOREM 9.7.6 Let A, B⊆R
n, let f : B→R be a real-valued function, which it is desired

to integrate over B, and let g: A → B be an invertible vector-valued function of several
variables. Then

∫∫
. . .

∫
B

f (y)dy1 dy2 . . . dyn =
∫∫

. . .

∫
A

f (g(x))|det(g′(x))|dx1 dx2 . . . dxn

(9.151)
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Proof: The full proof of this theorem is beyond the scope of this book. It can be found in
Spivak (1965, pp. 67–72). �

We conclude this section by revisiting two familiar examples in the notation of
Theorem 9.7.6.

EXAMPLE 9.7.6 Suppose A= B=R+. Let f (y)≡ (sinαy)/y and g(x)≡ x/α where α>0.
Then |det(g′(x))| = g′(x)= 1/α and (9.151) becomes∫ ∞

0

sinαy

y
dy=

∫ ∞

0

sin x

x/α

1

α
dx =

∫ ∞

0

sin x

x
dx (9.152)

This is just the substitution carried out in Example 9.7.4, but presented in slightly different
notation. ♦

EXAMPLE 9.7.7 Suppose A is the unit cube [0,1]n in R
n . Let g be the linear transforma-

tion with matrix T so that B ≡ g(A) is the hyperparallelepiped in R
n whose edges are the

columns of the matrix T. Let f (y)≡ 1 for all y∈ B. Since g(x)=Tx, g′(x)=T for all x∈ A
and (9.151) becomes

V (B)=
∫∫

. . .

∫
B

1 dy1 dy2 . . . dyn

=
∫∫

. . .

∫
A
|det(T)|dx1 dx2 . . . dxn

= |det(T)|
∫∫

. . .

∫
A

dx1 dx2 . . . dxn

= |det(T)|
n∏

i=1

∫ 1

0
dxi

= |det(T)| (9.153)

since each integral in the product in the penultimate line evaluates to unity. This is the famil-
iar result from Theorem 7.4.1 and Example 9.7.2 for the case in which T is square. ♦

We will meet multiple integrals again in Section 13.6 and throughout much of the
remainder of this book.

9.8 Implicit function theorem
The implicit function theorem states conditions under which it is possible to solve a system
of m equations in n unknowns, where n >m, in a continuously differentiable way, which
will allow the first m unknowns to be written as functions of the last n −m. The theorem
merely tells us that a solution exists and how to compute its derivative: it does not tell us how
to compute the closed-form solution itself. For a more detailed introduction, the interested
reader is referred to Chiang and Wainwright (2005, Section 8.5).

THEOREM 9.8.1 (IMPLICIT FUNCTION THEOREM). Let g: X → R
m, where X ⊆ R

n and
m< n. Consider the system of m scalar equations in n variables, g (x∗)= 0m.
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Partition the n-dimensional vector x as (y, z) where y= (x1, x2, . . . , xm) is m-dimensional
and z= (xm+1, xm+2, . . . , xn) is (n−m)-dimensional. Similarly, partition the total derivative
of g at x∗ as

g′(x∗)︸ ︷︷ ︸
(m×n)

= [
Dyg︸︷︷︸
(m×m)

Dzg︸︷︷︸
(m×(n−m))

]
(9.154)

[We aim to solve these equations for the first m variables, y, which will then be written as
functions, h(z), of the last n−m variables, z.]

Suppose g is continuously differentiable in a neighbourhood of x∗, and that the m ×m
matrix

Dyg≡

⎡⎢⎢⎢⎢⎢⎣
∂g1

∂x1
(x∗) . . .

∂g1

∂xm
(x∗)

...
. . .

...

∂gm

∂x1
(x∗) . . .

∂gm

∂xm
(x∗)

⎤⎥⎥⎥⎥⎥⎦ (9.155)

formed by the first m columns of the total derivative of g at x∗ is non-singular.
Then there exist neighbourhoods Y of y∗ and Z of z∗ such that Y × Z ⊆ X, and a

continuously differentiable function h: Z → Y such that

(a) y∗ = h(z∗),
(b) g(h(z), z)= 0 for all z∈ Z, and
(c) h′(z∗)=−(Dyg)−1 Dzg.

Proof: The full proof of this theorem is beyond the scope of this book, but can be found
in Spivak (1965, pp. 40–3). However, part (c) of the theorem follows easily from material in
Section 9.3. The aim is to derive an expression for the total derivative h′(z∗) in terms of the
partial derivatives of g, using the chain rule.

We know from part (b) that

f (z)≡ g(h(z), z)= 0m ∀ z∈ Z (9.156)

Thus

f ′(z)≡ 0m×(n−m) ∀ z∈ Z (9.157)

in particular at z∗. But we know from Corollary 9.3.2 that

f ′(z)= Dygh′(z)+ Dzg (9.158)

Hence,

Dygh′(z)+ Dzg= 0m×(n−m) (9.159)
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and, since the statement of the theorem requires that Dyg is invertible, we have

h′(z∗)=−(Dyg)−1 Dzg (9.160)

as required. �

EXAMPLE 9.8.1 Consider the equation g(x, y)≡ x2 + y2 − 1= 0.
Here we have m= 1 and n= 2. Note that g′(x, y)= [2x 2y].
We have h(y)=√

1− y2 or h(y)=−√1− y2, each of which describes a single-valued,
differentiable function on (−1,1). At (x, y)= (0,1), ∂g/∂x = 0 and h(y) is undefined (for
y> 1) or multivalued (for y< 1) in any neighbourhood of y= 1. ♦

EXAMPLE 9.8.2 Now consider the system of m linear equations in n variables,
g(x)≡Bx= 0, where B is an m× n matrix.

We have g′(x)= B for all x, so the implicit function theorem applies, provided that the
equations are linearly independent or, equivalently, that the matrix B is of full rank m
(m< n).

If we partition x as (y, z) and partition B conformably as [C D], then we can solve for the
first m variables y in terms of the last n−m variables z:

y=−C−1Dz (9.161)

provided that the first m columns of C are linearly independent.
This is consistent with the results set out in Section 5.4.6. ♦

The next theorem can be derived as a special case of the implicit function theorem.

THEOREM 9.8.2 (INVERSE FUNCTION THEOREM). Let f : X → R
m, where X ⊆ R

m.
Consider the system of m scalar equations in 2m variables, g(y, z)≡ f (y)− z= 0m.

The total derivative of g can be partitioned as

g′(y, z)︸ ︷︷ ︸
(m×2m)

= [
f ′(y)︸ ︷︷ ︸
(m×m)

−Im︸︷︷︸
(m×m)

]
(9.162)

[We aim to solve these equations for the first m variables, y, which will then be written as
functions, h(z), of the last m variables, z. In this case, we will have h= f −1.]

Suppose f is continuously differentiable in a neighbourhood of y∗, and that the m ×m
matrix f ′(y∗) is non-singular.

Then there exist neighbourhoods Y of y∗ and Z of z∗ such that Y ⊆ X, and a continuously
differentiable function h: Z → Y such that

(a) y∗ = h(z∗),
(b) f (h(z))= z for all z∈ Z, and
(c) h′(z∗)= ( f ′(y∗))−1.

Proof: The proof is left as an exercise; see Exercise 9.29. �
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The inverse function theorem says that, if the Jacobian matrix f ′(y∗) is non-singular, then
f is locally invertible around y∗. The converse is not true.

To see this, just consider the function of one variable defined by f (x) = x3, which is
invertible everywhere, with f −1(y)= 3√y. However, f ′(0)=0 and f has an inflexion point
or point of inflexion at x = 0. So invertible functions can have singular Jacobians.

EXERCISES
9.1 Write down the total derivative and the Hessian matrix associated with the function
f :R3++→R: (x1, x2, x3) �→ x3

1 + x2
1 ln x2− 3x3. Is f ′′(x1, x2, x3) semi-definite? If so, why?

If not, why not?

9.2 Consider the quadratic form defined by the function

f :R2 →R: (x1, x2) �→ ax2
1 + 2bx1x2 + cx2

2

where a, b and c are real numbers.

(a) Write f (x1, x2) in terms of the vector x=
[

x1

x2

]
and a 2× 2 real symmetric matrix.

(b) Using scalar methods only, calculate the total derivative f ′(x1, x2) and the Hessian
f ′′(x1, x2) of f at the point (x1, x2).

9.3 Show, using scalar differentiation, that

∂2(x�Ax)
∂x∂x�

= 2A

where x is n× 1, and A is symmetric n× n.

9.4 Differentiate the following matrix expressions with respect to x, where λ is a scalar, 1 is
an n× 1 matrix all of whose elements are unity, a and x are both n× 1, and A is n× n.

(a) 1�x
(b) λa�x
(c) x�x
(d) x�Ax
(e) 2Ax
(f) 2λ+ 3x�Ax

9.5 If f (x)= 10+ 20a�x+ 30x�Ax, where a and x are n× 1 matrices, and A is an n× n
matrix, what are the total derivative f ′(x) and the Hessian matrix f ′′(x)?

9.6 (This exercise presumes a basic knowledge of some material covered in more detail
later in the book; some readers may like to come back to it after studying Chapter 13 and
Section 15.2.) An investor divides her wealth in the proportions a= (a1,a2, . . . ,aN ) among
a portfolio of N possible investments. The payoffs per unit invested (gross rates of return or
simply gross returns) on each asset are given by the (random) vector r̃= (r̃1, r̃2, . . . , r̃N ).
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(a) Write down (in matrix notation) an expression for the overall gross return on the
investor’s portfolio.

(b) Assuming that r̃ has mean e and variance–covariance matrix V, calculate the mean and
variance of this overall gross return.

(c) Calculate the Jacobian and Hessian of the variance of the portfolio gross return (viewed
as a function of the portfolio proportions a).

(d) What can you say about the definiteness or semi-definiteness of the Hessian matrix?

9.7 Calculate the first- and second-order partial derivatives of the function

f :R2 →R: (x, y) �→
⎧⎨⎩

xy(x2 − y2)

x2 + y2
for (x, y) = (0,0)

0 for (x, y)= (0,0)

Do the second-order mixed partial derivatives exist at (0,0)? Are they continuous? Are they
equal?

9.8 A tax is said to be progressive if it accounts for an increasing proportion of income as
income rises and regressive if it accounts for a decreasing proportion of income as income
rises.

Let the tax due on an income of Y be denoted by t= f (Y ). Show that this tax is progressive
wherever f is elastic and regressive wherever f is inelastic.

9.9 Prove Theorem 9.3.1.

9.10 Let f, g:Rm →R
n and define h:Rm →R by

h(x)︸︷︷︸
1×1

≡ ( f (x))�︸ ︷︷ ︸
1×n

g(x)︸︷︷︸
n×1

Show that

h′(x)︸︷︷︸
1×m

= (g(x))�︸ ︷︷ ︸
1×n

f ′(x)︸ ︷︷ ︸
n×m

+ ( f (x))�︸ ︷︷ ︸
1×n

g′(x)︸︷︷︸
n×m

(This is the first version of the product rule for vector calculus, Theorem 9.3.3.)

9.11 Let f :Rm →R and g:Rm →R
n and define h:Rm →R

n by

h(x)︸︷︷︸
n×1

≡ f (x)︸︷︷︸
1×1

g(x)︸︷︷︸
n×1

Show that

h′(x)︸︷︷︸
n×m

= g(x)︸︷︷︸
n×1

f ′(x)︸ ︷︷ ︸
1×m

+ f (x)︸︷︷︸
1×1

g′(x)︸︷︷︸
n×m

(This is the second version of the product rule for vector calculus, Theorem 9.3.3.)
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9.12 Show, using the chain rule, that

x∗i
f (x∗)

∂ f

∂xi
(x∗)= ∂ ln f

∂ ln xi
(x∗)

Show further that

x∗i
f (x∗)

∂ f

∂xi
(x∗)= ∂ log f

∂ log xi
(x∗)

where the logarithms are taken to any base.

9.13 Let f :Rl →R
m and g:Rm →R

n be continuously differentiable functions. Write down
in matrix form the chain rule relating the derivatives of the functions f , g and h≡ (g ◦ f ).

9.14 Let f :R3 →R
2 and g:R2 →R

3 be defined by

f (y)≡
[

y1 + y2 + y3

y1 − y2 y3

]
and

g(x)≡
⎡⎣x1 + x2

x1x2

x1 − x2
2

⎤⎦
Find the Jacobian matrices f ′(y) and g′(x), and, hence, use the chain rule to find ( f ◦ g)′(x).
Write down the gradient vector and the Hessian matrix associated with the real-valued
component function f 2.

9.15 Let L be the line from x′ to x in R
n and let f :Rn →R. Recall the definition of the

restriction of f to L , f |L :R→R; see Definition 9.5.1.
Use the chain rule to calculate the second derivative of f |L at a generic λ and, hence, at

λ= 0.

9.16 Calculate the directional derivative of the Cobb–Douglas function (of two variables)
given by

f :R2 →R: (x, y) �→ xα y1−α

at the vector (x, y) in the direction of the vector (μx,μy) (i.e. when the relevant line L
passes through the origin).

9.17 Show that, when α= 0.5, the indifference curves of the Cobb–Douglas function in the
previous exercise are a family of rectangular hyperbolas.

9.18 Calculate the general form of the restriction to a line of a quadratic form (in n variables).
What is the general form of the directional derivative of such a function?
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9.19 What is the relationship between the directional derivatives of a function f at x in the
direction of x′ and in the direction of (x+x′)/2? What is it in the direction of λx+ (1−λ)x′?
Illustrate your answers graphically and explain them verbally.

9.20 Show how to interpret the directional derivative at a point in terms of the rescaling of
the parametrization of the relevant line L .

9.21 Show that, for a quadratic function f (x)= ax2 + bx + c, the approximation A∗ given
in equation (9.87) exactly equals f (x).

9.22 Show that the first n − 1 derivatives at x0 of the polynomial on the right-hand side
of (9.88) are the same as those of f .

9.23 Write down the general form of Taylor’s expansion for functions of several variables
using notation of your choice.

Using the first three terms of Taylor’s expansion, approximate the function

x1x2
2 + x2

2 ln x2
3

around

x= (x1, x2, x3)= (1,1,1)

9.24 Differentiate the following integrals with respect to x .

(a)
∫ y

x
f (t)dt

(b)
∫ x2

0
sin t dt

(c)
∫ ∞

−∞
(x2 y+ xy2)dy

(d)
∫ ∞

−∞
u(wr + x(s− r))dr

(e)
∫ b

a
(c+ dt + f t2)dt

(f)
∫ x

−∞
et dt

9.25 Prove that∫ b

a

∫ d

c

∂2 f

∂x2∂x1
(x1, x2)dx2 dx1 = f (b,d)− f (a,d)− f (b, c)+ f (a, c)

(i.e. the second part of Lemma 9.7.3).

9.26 State and prove the equivalent of Lemma 9.7.3 for functions of three variables.
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9.27 Show that∫ ∞

0

sin y

y
dy= π

2

9.28 Prove Theorem 9.7.5.

9.29 Derive the inverse function theorem as a special case of the implicit function theorem.
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10.1 Introduction
Much of economics and decision theory reduces to making optimal choices. This requires
specifying the decision-maker’s objective as a mathematical function, depending on one
or more choice variables. The mathematical theory of optimization tells us whether the
decision-maker’s problem will have a solution or solutions, and how to find a solution if
one exists. The objective of this chapter is to provide the reader with all the tools necessary
to solve any optimization problem that may be encountered in economics or finance.

The chapter begins with an extended discussion of convexity and concavity, concepts
that are important in determining whether a solution to an optimization problem exists or
is unique. The next three sections discuss the solution of optimization problems, first when
all choice variables are free to vary independently, then when the choice variables are sub-
ject to equality constraints, and finally when there are inequality constraints. The chapter
concludes with a section on the duality between the maximization of an objective function
subject to a constraint and the minimization of the constraint function subject to the objective
function taking on a particular value.

Chiang and Wainwright (2005, Chapters 11–13) cover some of the material in this chapter
at a more elementary level. More advanced treatments can be found in de la Fuente (2000,
Chapter 6) and Takayama (1994).

10.2 Convexity and concavity

10.2.1 Convex and concave functions

We have already encountered the concept of a convex function in Definition 7.3.4. Roughly
speaking, a function of n variables is convex if the set above its graph is a convex subset
of Rn+1 and concave if the set below its graph is a convex subset of Rn+1. From this rough
description, it should already be clear that the concepts of concave and convex functions are
broadly analogous. It is important to bear in mind, however, that there is no such thing as a
concave set. For this reason, this branch of mathematics is usually described as convexity
and never as concavity. Thus only the word “convexity” appears in the titles of this chapter
and of various sections below.

We can approach the characterization of convex and concave functions of several vari-
ables from three perspectives. The formal definitions are in terms of the restrictions of the
function in question to line segments in its domain. The other characterizations apply only to
those convex and concave functions that are appropriately differentiable. The second char-
acterization is based on properties of the first derivative of the function (see Theorem 10.2.4)
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and the third characterization is based on properties of the second derivative or Hessian (see
Theorem 10.2.5).

DEFINITION 10.2.1 Let f : X → Y , where X is a convex subset of a real vector space and
Y ⊆R. Then f is a concave function if and only if, for all x = x′ ∈ X and λ∈ (0,1),

f (λx+ (1− λ)x′)≥ λ f (x)+ (1− λ) f (x′) (10.1)

The reader should note a number of important points concerning Definitions 7.3.4 and 10.2.1.

• The function f is convex if and only if − f is concave. Since every convex function is the
mirror image of a concave function, and vice versa, every result derived for one has an
obvious corollary for the other. In general, we will consider only concave functions in the
text, and leave the derivation of the corollaries for convex functions as exercises.

• A function defined on an n-dimensional vector space, V , is convex if and only if the
restriction of the function to the line L is convex for every line L in V , and similarly for
concave functions (and for strictly convex and strictly concave functions, which will be
defined shortly; see Definition 10.2.2).

• Conditions (7.14) and (10.1) could also have been required to hold, equivalently, for all
x,x′ ∈ X and λ∈ [0,1], since they are satisfied as equalities for all f when x= x′, when
λ= 0 and when λ= 1.

• Conditions (7.14) and (10.1) are presented, like the equivalent condition in the definition
of a linear transformation (Definition 6.2.3), in terms of pairs of vectors. Using familiar
logic, we note that these conditions can equivalently be presented in terms of k vectors, as

f

( r∑
i=1

ki vi

)
≤

r∑
i=1

ki f (vi ) (10.2)

and

f

( r∑
i=1

ki vi

)
≥

r∑
i=1

ki f (vi ) (10.3)

respectively, where in each case v1,v2, . . . ,vr ∈ X and k1, k2, . . . , kr are non-negative
scalars with

∑r
i=1 ki = 1.

THEOREM 10.2.1 Let f : A → Y , where A is an affine subset of a real vector space and
Y ⊆R. Then f is an affine function if and only if f is both a convex function and a concave
function.

Proof: Inequalities (7.14) and (10.1) can hold simultaneously if and only if

f (λx+ (1− λ)x′)= λ f (x)+ (1− λ) f (x′) (10.4)

If f is an affine function, then the equality, and thus both inequalities, hold for all λ∈R and
specifically for λ∈ [0,1] as required.
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If f is a function that is both convex and concave, then both inequalities, and thus the
equality also, hold for λ ∈ [0,1]. All that must be shown is that it holds also for λ< 0 and
for λ> 1.

Consider the case of λ< 0.
We know that the inequalities (and thus the equality) hold for the vectors x and x′′ ≡

λx+ (1− λ)x′ ∈ A and the scalar μ∈ [0,1], or that

f (μx+ (1−μ)x′′)=μ f (x)+ (1−μ) f (x′′) (10.5)

But for λ< 0, λ/(λ− 1)∈ [0,1], so setting μ= λ/(λ− 1) in (10.5) gives us

f

(
λ

λ− 1
x+

(
1− λ

λ− 1

)
x′′
)
= λ

λ− 1
f (x)+

(
1− λ

λ− 1

)
f (x′′) (10.6)

and substituting for x′′ yields

f

(
λ

λ− 1
x+

(
1− λ

λ− 1

)
(λx+ (1− λ)x′)

)
= λ

λ− 1
f (x)+

(
1− λ

λ− 1

)
f (λx+ (1− λ)x′) (10.7)

Multiplying across by λ− 1 and collecting terms yields

(λ− 1) f (x′)= λ f (x)− f (λx+ (1− λ)x′) (10.8)

or

f (λx+ (1− λ)x′)= λ f (x)+ (1− λ) f (x′) (10.9)

as required.
The proof for λ> 1 is left as an exercise; see Exercise 10.1(e). �

The next theorem addresses the characterization of convexity and concavity in terms of
upper and lower contour sets; see Definition 7.7.2.

THEOREM 10.2.2 The upper contour sets {x ∈ X : f (x) ≥ α} of a concave function are
convex.

Proof: The proof of this theorem is left as an exercise; see Exercise 10.2. �

This result will be encountered later in the context of consumer theory; see
Theorem 12.3.5. Readers who are familiar with the two-good consumer problem from inter-
mediate economics will recognize the implications of Theorem 10.2.2 for the shape of the
indifference curves corresponding to a concave utility function.

Note also that concavity of a function is a sufficient but not a necessary condition for
convexity of its upper contour sets. For example, any increasing function f :R→ R has
convex upper contour sets.
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THEOREM 10.2.3 Let f : X →R and g: X →R be concave functions. The following hold:

(a) if a,b> 0, then a f + bg is concave;
(b) if a< 0, then a f is convex; and
(c) min{ f, g} is concave.

Proof: The proofs of the above properties and their obvious corollaries are left as exercises;
see Exercise 10.2 again. �

DEFINITION 10.2.2 Again let f : X → Y where X is a convex subset of a real vector space
and Y ⊆R. Then we have the following:

(a) f is a strictly convex function if and only if, for all x = x′ ∈ X and λ∈ (0,1),

f (λx+ (1− λ)x′)<λ f (x)+ (1− λ) f (x′) (10.10)

(b) f is a strictly concave function if and only if, for all x = x′ ∈ X and λ∈ (0,1),

f (λx+ (1− λ)x′)>λ f (x)+ (1− λ) f (x′) (10.11)

Note that there is no longer any flexibility as regards allowing x= x′ or λ= 0 or λ= 1 in
these definitions.

Much of what has already been said about the relationship between convex functions and
concave functions applies equally well to the relationship between strictly convex functions
and strictly concave functions.

10.2.2 Convexity and differentiability

In this section, we show that, for differentiable functions, the definitions of convex
and concave functions above are equivalent to statements about the first derivative or
Jacobian (Theorem 10.2.4) and about the second derivative or Hessian of the function
(Theorem 10.2.5). As noted above, we could, equivalently, present the discussion in terms
of convex functions.

Since the limit of the first difference of a function at x, say, makes no sense if the function
and the first difference are not defined in some open neighbourhood of x (some Bε(x)), we
must assume in this section that the domains of functions are not only convex but also open.

THEOREM 10.2.4 (CONCAVITY CRITERION FOR DIFFERENTIABLE FUNCTIONS). Let
f : X→R be differentiable, where X⊆R

n is an open, convex set. Then f is (strictly) concave
if and only if, for all x = x′ ∈ X,

f (x) (<)≤ f (x′)+ f ′(x′)(x− x′) (10.12)

Theorem 10.2.4 says that a function is concave if and only if the tangent hyperplane at
any point lies completely above the graph of the function, or the tangent hyperplane is a
supporting hyperplane for the set lying below the graph in R

n+1.
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Another interpretation of Theorem 10.2.4 is that a function is concave if and only if, for
any two distinct points in the domain, the directional derivative at one point in the direc-
tion of the other exceeds the jump in the value of the function between the two points; see
Section 9.5 for the definition of a directional derivative.

Proof:

⇒ We first prove that the weak version of inequality (10.12) is necessary for concavity, and
then that the strict version is necessary for strict concavity.

Choose x,x′ ∈ X .

(a) Suppose that f is concave.
Then, for λ∈ (0,1), and using (10.1),

f (x′ + λ(x− x′))≥ f (x′)+ λ( f (x)− f (x′)) (10.13)

Subtract f (x′) from both sides and divide by λ:

f (x′ + λ(x− x′))− f (x′)
λ

≥ f (x)− f (x′) (10.14)

Now consider the limits of both sides of this inequality as λ→ 0. The left-hand side
tends to f ′(x′)(x− x′) by definition of a directional derivative; see (9.63) and (9.64).
The right-hand side is independent of λ and does not change. The result now follows
easily for concave functions.

This proof is illustrated in Figure 10.1. The diagram shows a cross-section of Rn+1

along the line L from x′ (where λ = 0) to x (where λ = 1). The curve represents
a cross-section of the graph of f and the straight line represents a cross-section of
the tangent hyperplane at x′, which touches the graph at P . The theorem says that
f is concave if and only if the point A lies above the point B on every such graph.
Equivalently it says that the directional derivative at x′ in the direction of x (the height
of AC) exceeds the change in the value of the function between x′ and x (the height
of BC). The definition of concavity says that the point D lies above the point E .
Condition (10.14) says that the slope of PB is less than or equal to the slope of PD
for any D along the arc PB. The idea of the first part of the proof is that, as λ→ 0,
the slope of PD approaches the slope of PA.

However, (10.14) remains a weak inequality even if f is a strictly concave
function.

(b) Now suppose that f is strictly concave and x = x′.
Since f is also concave, we can apply the result that we have just proved to x′ and

x′′ ≡ 1
2 (x+ x′) to show that

f ′(x′)(x′′ − x′)≥ f (x′′)− f (x′) (10.15)

Using the definition of strict concavity, or the strict version of inequality (10.13) with
λ= 1/2, gives

f (x′′)− f (x′)> 1
2 ( f (x)− f (x′)) (10.16)
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L

y

0

x′ λx+ (1− λ)x′ x

(λ= 0) (λ) (λ= 1)

f (x′)+ f ′(x′)(x− x′) A •

f (x) B •

f (x′) P • C •

f (x′ + λ(x− x′)) D•
λ f (x)+ (1− λ) f (x′) E

•

Figure 10.1 Illustration of the proof that (10.12) is a necessary condition for concavity

Combining these two inequalities, multiplying across by 2 and rearranging gives the
desired result.

⇐ Conversely, suppose that the derivative satisfies inequality (10.12). We will deal with
concavity. To prove the theorem for strict concavity, just replace all the weak inequalities
(≥) with strict inequalities (>).

Set x′′ =λx+ (1−λ)x′. Then, applying the hypothesis of the proof in turn to x and x′′
and to x′ and x′′ yields

f (x)≤ f (x′′)+ f ′(x′′)(x− x′′) (10.17)

and

f (x′)≤ f (x′′)+ f ′(x′′)(x′ − x′′) (10.18)



February 12, 2011 11:1 Pinched Crown A Page-250 HarrWald

250 Convexity and optimization

Just as we have been taking convex combinations of vectors, we can take a convex
combination of inequalities (10.17) and (10.18), which gives

λ f (x)+ (1− λ) f (x′)
≤ f (x′′)+ f ′(x′′)(λ(x− x′′)+ (1− λ)(x′ − x′′))
= f (x′′) (10.19)

since

λ(x− x′′)+ (1− λ)(x′ − x′′)= λx+ (1− λ)x′ − x′′ = 0n (10.20)

Inequality (10.19) is just the definition of concavity as required.
This proof is illustrated in Figure 10.2. Condition (10.17) says that the height of RS

is less than or equal to the height of RT. Condition (10.18) says that the height of MN
is less than or equal to the height of MQ. The convex combination (10.19) says that the
height of UV is less than or equal to the height of UW, which is just the definition of
concavity.1 �

L

y

0

x′ x′′ x

(λ= 0) (λ) (λ= 1)

M • R •

f (x′′)+ f ′(x′′)(x− x′′) T •

f (x)
S •

f (x′′)

f (x′)
N

•
f (x′′)+ f ′(x′′)(x′ − x′′)

Q •

U •

V •

W •

Figure 10.2 Illustration of the proof that (10.12) is a sufficient condition for concavity
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THEOREM 10.2.5 (CONCAVITY CRITERION FOR TWICE DIFFERENTIABLE FUNCTIONS).
Let f : X →R be twice continuously differentiable (C2), where X ⊆R

n is open and convex.
Then:

(a) f is concave if and only if, for all x ∈ X, the Hessian matrix f ′′(x) is negative semi-
definite; and

(b) If f ′′(x) is negative definite for all x∈ X, then f is strictly concave.

The fact that the condition in the second part of this theorem is sufficient but not necessary
for concavity inspires the search for a counter-example; in other words, for a function that
is strictly concave but has a second derivative that is negative semi-definite but not negative
definite. The standard counter-example is given by f (x)=−x2n at x = 0 for any integer
n> 1.

Proof: We first use Taylor’s theorem (Theorem 9.6.5) to prove the sufficiency of the
condition on the Hessian matrices. Then we use the fundamental theorem of calculus (The-
orem 7.9.1) and a proof by contrapositive to prove the necessity of this condition in the
concave case for n= 1. Then we use this result and the chain rule to demonstrate necessity
for n>1. Finally, we show how these arguments can be modified to give an alternative proof
of sufficiency for functions of one variable.

(a) Suppose first that f ′′(x) is negative semi-definite for all x∈ X . Recall Taylor’s theorem. It
follows that f (x)≤ f (x′)+ f ′(x′)(x−x′). Theorem 10.2.4 shows that f is then concave.

A similar proof will work for a negative definite Hessian and a strictly concave
function.

(b) To demonstrate necessity, we must consider first functions of a single variable and then
functions of several variables.

(i) First consider a function of a single variable. Instead of trying to show that concavity
of f implies a negative semi-definite (i.e. non-positive) second derivative for all
x ∈ X , we will prove the contrapositive. In other words, we will show that, if there
is any point x∗ ∈ X where the second derivative is positive, then f is locally strictly
convex around x∗ and so cannot be concave.

So suppose f ′′(x∗) > 0. Then, since f is twice continuously differentiable,
f ′′(x) > 0 for all x in some neighbourhood of x∗, say (a,b). Then f ′ is an
increasing function on (a,b). Consider two points in (a,b), x < x ′ and let
x ′′ = λx + (1− λ)x ′ ∈ X , where λ ∈ (0,1). Using the fundamental theorem of
calculus,

f (x ′′)− f (x)=
∫ x ′′

x
f ′(t)dt < f ′(x ′′)(x ′′ − x) (10.21)

and

f (x ′)− f (x ′′)=
∫ x ′

x ′′
f ′(t)dt > f ′(x ′′)(x ′ − x ′′) (10.22)
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Rearranging each inequality gives

f (x)> f (x ′′)+ f ′(x ′′)(x − x ′′) (10.23)

and

f (x ′)> f (x ′′)+ f ′(x ′′)(x ′ − x ′′) (10.24)

which are just the single-variable versions of (10.17) and (10.18). As in the proof of
Theorem 10.2.4, a convex combination of these inequalities reduces to

f (x ′′)<λ f (x)+ (1− λ) f (x ′) (10.25)

and, hence, f is locally strictly convex on (a,b).
(ii) Now consider a function of several variables. Suppose that f is concave and fix x∈ X

and h∈R
n . (We use an x, x+ h argument instead of an x, x′ argument to tie in with

the definition of a negative definite matrix.) Then, at least for sufficiently small λ,
f |L(λ)≡ f (x+ λh) also defines a concave function (of one variable), namely, the
restriction of f to the line segment from x in the direction from x to x+ h. Thus,
using the result we have just proved for functions of one variable, f |L has non-
positive second derivative. But we know from (9.66) that f |′′L(0)= h� f ′′(x)h, so
f ′′(x) is negative semi-definite.

(c) For functions of one variable, the above arguments can give an alternative proof of suf-
ficiency that does not require Taylor’s theorem. The details are left as an exercise; see
Exercise 10.5.

In fact, we have the following:

f ′′(x)< 0 on (a,b) ⇒ f locally strictly concave on (a,b)
f ′′(x)≤ 0 on (a,b) ⇒ f locally concave on (a,b)
f ′′(x)> 0 on (a,b) ⇒ f locally strictly convex on (a,b)
f ′′(x)≥ 0 on (a,b) ⇒ f locally convex on (a,b)

The same results that we have demonstrated for the interval (a,b) also hold for the entire
domain X (which is also just an open interval, as it is an open convex subset of R). �

Note the implied hierarchy among different classes of functions set out in Table 10.1
(considered again in Exercise 10.7).

We would like to know the extent to which any or all of these properties are qualitative
rather than quantitative; in other words, the extent to which they are invariant under changes
of scale, or under different types of strictly increasing transformations. In economics, this

Table 10.1 Hierarchy of concave and related functions

negative
definite
Hessian

⊂ strictly
concave

⊂ concave =
negative

semi-definite
Hessian

⊂

⎧⎪⎪⎨⎪⎪⎩
convex upper contour sets

and
consistent directional
derivatives
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is particularly important, since, when measuring utility or happiness or satisfaction, we will
find that ranking alternatives is relatively straightforward, but the choice of a scale on which
to measure that ranking is always arbitrary. The following theorem is about as far down this
road as we can go for the moment.

THEOREM 10.2.6 A non-decreasing twice differentiable concave transformation of a twice
differentiable concave function (of several variables) is also concave.

Proof: The details are left as an exercise; see Exercise 10.8. �

Theorem 10.2.6 says that concavity is invariant under non-decreasing concave transforma-
tions and, hence, under increasing concave transformations. It was noted in the discussion of
Definition 7.7.2 that the level sets of a function are invariant under all increasing transforma-
tions. In the next subsection, another property of real-valued functions, which is closely
related to concavity, but which is invariant under all increasing transformations, will be
introduced.

The second-order condition above is reminiscent of that for optimization and suggests
that concave or convex functions will prove useful in developing theories of optimizing
behaviour. In fact, there is a wider class of useful functions, leading us now to introduce
further definitions.

10.2.3 Quasi-convex and quasi-concave functions

Let X ⊆R
n be a convex set and f : X →R a real-valued function defined on X .

In order to maintain consistency with earlier notation, for reasons that will become clear
in due course, we adopt the convention when labelling vectors x and x′ that f (x′)≤ f (x).

DEFINITION 10.2.3 Let C(α)= {x∈ X : f (x)≥ α} be an upper contour set of the function
f : X →R. Then f is quasi-concave if and only if C(α) is a convex set for all α ∈R.

Recall that quasi-concavity, as defined here, was a necessary, but not sufficient, condition
for f to be a concave function.

Examples of quasi-concave functions include f :R++ → R: x �→ ln x and f :R →
R++: x �→ ex .

As the first of these examples is concave, it is not surprising to find that it is quasi-concave;
the second of these examples, however, is both convex and quasi-concave.

THEOREM 10.2.7 The following statements are equivalent to the definition of quasi-
concavity:

(a) for all x,x′ ∈ X, and for all λ∈ (0,1), f (λx+ (1− λ)x′)≥min{ f (x), f (x′)};
(b) for all x,x′ ∈ X such that f (x′)≤ f (x) and for all λ∈ (0,1), f (λx+ (1−λ)x′)≥ f (x′);

and
(c) for all x,x′ ∈ X such that f (x)− f (x′)≥ 0, f ′(x′)(x− x′)≥ 0 (provided that X is open

and f is differentiable).

Proof:

(a) We begin by showing the equivalence between the definition and the first condition.
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(i) First suppose that the upper contour sets are convex. Let x,x′ ∈ X and let α =
min{ f (x), f (x′)}. Then x and x′ are in C(α). By the hypothesis of convexity, for
any λ∈ (0,1), λx+ (1− λ)x′ ∈C(α). The desired result now follows.

(ii) Now suppose that condition (a) holds. To show that C(α) is a convex set, we just take
x,x′ ∈C(α) and investigate whether λx+ (1− λ)x′ ∈C(α). But, by condition (a),

f (λx+ (1− λ)x′)≥min{ f (x), f (x′)}≥α (10.26)

where the final inequality holds because x and x′ are in C(α).

(b) It is straightforward to show the equivalence of conditions (b) and (a).

(i) First suppose that condition (a) holds. In the case where f (x) ≥ f (x′) or f (x′)=
min{ f (x), f (x′)}, there is nothing to prove. Otherwise, we can just reverse the labels
x and x′. The statement in condition (b) is true for x= x′ or λ= 0 or λ= 1 even if f
is not quasi-concave.

(ii) The proof of the converse is even more straightforward and is left as an exercise; see
Exercise 10.9.

(c) Proving that condition (c) is equivalent to quasi-concavity for a differentiable function
(by proving that it is equivalent to conditions (b) and (a)) is much the trickiest part of the
proof.

(i) Begin by supposing that f satisfies conditions (b) and (a). Proving that condition (c)
is necessary for quasi-concavity is the easier part of the proof. Without loss of
generality, pick x,x′ ∈ X such that f (x′)≤ f (x). By quasi-concavity,

f (λx+ (1− λ)x′)≥ f (x′) ∀ λ∈ (0,1) (10.27)

Consider the function defined by

f |L(λ)= f (λx+ (1− λ)x′)= f (x′ + λ(x− x′)) (10.28)

We want to show that the directional derivative satisfies

f |′L(0)= f ′(x′)(x− x′)≥ 0 (10.29)

But

f |′L(0)= lim
λ→0

f (x′ + λ(x− x′))− f (x′)
λ

(10.30)

Since both the numerator and denominator of the right-hand side are non-negative for
small positive values of λ (indeed for any λ<1), the derivative must be non-negative
as required.

(ii) Now the difficult part – to prove (by contradiction) that condition (c) is a sufficient
condition for quasi-concavity.

Suppose that condition (c) is satisfied, but that f is not quasi-concave and there-
fore does not satisfy condition (a). In other words, there exists x,x′ ∈ X and λ∗ ∈
(0,1) such that, letting x∗ ≡ λ∗x+ (1− λ∗)x′,

f (x∗)<min{ f (x), f (x′)} (10.31)
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where, without loss of generality, f (x′)≤ f (x). Condition (c) applied first to x and
x∗ and then to x′ and x∗ tells us that

f ′(x∗)(x− (λ∗x+ (1− λ∗)x′))≥ 0 (10.32)

f ′(x∗)(x′ − (λ∗x+ (1− λ∗)x′))≥ 0 (10.33)

or

(1− λ∗) f ′(x∗)(x− x′)≥ 0 (10.34)

−λ∗ f ′(x∗)(x− x′)≥ 0 (10.35)

Dividing (10.34) by (1− λ∗) and (10.35) by λ∗ yields a pair of inequalities that can
be satisfied simultaneously only if

f ′(x∗)(x− x′)= 0 (10.36)

In other words, f |′L(λ∗)= 0; we already know that

f |L(λ∗)< f |L(0)≤ f |L(1) (10.37)

Since f is differentiable, it and f |L are also continuous, and so there exists some
interval around λ∗, say (λ∗ − ε,λ∗ + ε), on which f |L(λ) <min{ f |L(0), f |L(1)}.
By the above argument, f |′L(λ)=0 throughout this interval, and thus f |L is constant
on the interval.

Let A= {λ∈ (0,1): f |L(λ)= f |L(λ∗)}. Since λ∗ ∈ A, A is non-empty, and, since
f |L is continuous, A is closed. Let λ∗∗ = sup A. By (10.37) and continuity of f |L ,
we obtain λ∗∗< 1.

By applying to λ∗∗ the argument previously applied to λ∗, we get an ε′ > 0 such
that λ∗∗ + ε′ ∈ A and thus λ∗ = sup A, which gives us the required contradiction. �

In words, condition (c) of Theorem 10.2.7 says that, whenever a differentiable quasi-
concave function has a higher value at x than at x′, or the same value at both points, then the
directional derivative of f at x′ in the direction of x is non-negative. It might help to think
about this by considering n= 1 and separating out the cases x > x ′ and x < x ′.

THEOREM 10.2.8 Let f : X →R be quasi-concave and g:R→R be increasing. Then g ◦ f
is a quasi-concave function.

Proof: This follows easily from the definition. The details are left as an exercise; see
Exercise 10.16. �

We will return to the implications of Theorem 10.2.8 for utility theory in Theorem 12.3.4.
It will be seen then that, if preferences can be represented by a quasi-concave utility function,
then they can be represented by quasi-concave utility functions only.
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10.2.4 Other variations on the convexity theme

Let X ⊆R
n again be a convex set.

DEFINITION 10.2.4 The function f : X →R is strictly quasi-concave if and only if, for all
x = x′ ∈ X such that f (x)≥ f (x′) and for all λ∈ (0,1), f (λx+ (1− λ)x′)> f (x′).

DEFINITION 10.2.5 The function f : X → R is (strictly) quasi-convex if and only if the
function − f is (strictly) quasi-concave.

DEFINITION 10.2.6 The function f : X → R is pseudo-concave if and only if f is
differentiable and quasi-concave and

f (x)− f (x′)> 0 ⇒ f ′(x′)(x− x′)> 0 (10.38)

As usual, the function f is pseudo-convex if and only if the function− f is pseudo-concave.

Note that the last definition modifies slightly condition (c) in Theorem 10.2.7, which is
equivalent to quasi-concavity for a differentiable function.

Pseudo-concavity will crop up in the second-order conditions for equality-constrained
optimization.

EXAMPLE 10.2.1 Consider the interesting case of the affine function

f :Rn →R: x �→ M −p�x (10.39)

where M ∈ R and p ∈ R
n . This function is both concave and convex, but neither strictly

concave nor strictly convex. Furthermore,

f (λx+ (1− λ)x′)= λ f (x)+ (1− λ) f (x′)
≥min{ f (x), f (x′)} (10.40)

and

(− f )(λx+ (1− λ)x′)= λ(− f )(x)+ (1− λ)(− f )(x′)
≥min{(− f )(x), (− f )(x′)} (10.41)

so f is both quasi-concave and quasi-convex, but not strictly so in either case. The function
f is, however, pseudo-concave (and pseudo-convex) since

f (x)> f (x′) ⇔ p�x<p�x′

⇔ p�(x− x′)< 0

⇔ − f ′(x′)(x− x′)< 0

⇔ f ′(x′)(x− x′)> 0 (10.42)
♦
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10.3 Unconstrained optimization
The background material on convexity in the previous section allows us to proceed to the
analysis of the simplest type of optimization problem, in which all the choice variables are
free to vary independently, with no constraints.

DEFINITION 10.3.1 Let X ⊆R
n , f : X →R. Then we say that:

(a) f has a (strict) global (or absolute) maximum at x∗ if and only if, for all x ∈ X such
that x = x∗, f (x) (<)≤ f (x∗);

(b) f has a (strict) local (or relative) maximum at x∗ if and only if there exists ε > 0
such that, for all x ∈ Bε(x∗) (as introduced in Definition 7.5.2) such that x = x∗,
f (x) (<)≤ f (x∗);

(c) f has a (strict) global (or absolute) minimum at x∗ if and only if, for all x ∈ X such
that x = x∗, f (x) (>)≥ f (x∗); and

(d) f has a (strict) local (or relative) minimum at x∗ if and only if there exists ε > 0 such
that, for all x∈ Bε(x∗) such that x = x∗, f (x) (>)≥ f (x∗).

THEOREM 10.3.1 A continuous real-valued function on a compact subset of R
n attains a

global maximum and a global minimum.

Proof: Intuitively, this theorem just says that a function that cannot drift off towards infin-
ity must have finite bounds. The conditions of the theorem prevent this drift to infinity, since
the value of the function must remain finite and well defined on the boundary of its domain.
Continuity prevents the function from tending to infinity in the interior of its domain. See
Mendelson (1975, p. 161) for a full proof. �

While this is a neat result for functions on compact domains, results in calculus are
generally for functions on open domains.

The remainder of this section and the next two sections are each centred around three
related theorems:

1. a theorem giving necessary or first-order conditions that must be satisfied by the solution
to an optimization problem (Theorems 10.3.2, 10.4.1 and 10.5.1);

2. a theorem giving sufficient or second-order conditions under which a solution to the
first-order conditions satisfies the original optimization problem (Theorems 10.3.3, 10.4.2
and 10.5.2); and

3. a theorem giving conditions under which a known solution to an optimization problem is
the unique solution (Theorems 10.3.5, 10.4.3 and 10.5.3).

The results are generally presented for maximization problems. However, any minimiza-
tion problem is easily turned into a maximization problem by reversing the sign of the
function to be minimized and maximizing the function thus obtained.

Throughout the present section, we deal with the unconstrained optimization problem

max
x∈X

f (x) (10.43)
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where X⊆R
n and f : X→R is a real-valued function of several variables, i.e. the problem of

locating the values of the variables x at which the function f , called the objective function
of problem (10.43), takes on its largest value.

EXAMPLE 10.3.1 Before proceeding to the formal theorems, let us consider a simple case
of problem (10.43) where n=1 and f (x)=−x2. By graphing this function, it should quickly
become apparent that it takes on its maximum value of 0 when x = 0. For values of x < 0,
the function is increasing and its first derivative f ′(x) = −2x > 0. For values of x > 0,
the function is decreasing and its first derivative f ′(x) < 0. At the optimum, x = 0, the first
derivative f ′(x) vanishes. We will see that the same principle holds for the partial derivatives
of functions of several variables.

In this example, the second derivative f ′′(x)=−2 and so is negative for all values of x ,
in particular for x = 0. This is because the first derivative f ′(x)=−2x is decreasing in x .
Another way of expressing the same result is to say that the 1× 1 Hessian matrix f ′′(x)
is negative definite. We will see that a similar principle holds for the Hessian matrix of
functions of several variables.

Finally, note that the objective function in this example is strictly quasi-concave and has a
unique global maximum. ♦

THEOREM 10.3.2 (NECESSARY (FIRST-ORDER) CONDITION FOR UNCONSTRAINED

MAXIMA AND MINIMA). Let X ⊆ R
n be open and let f : X → R be differentiable with a

local maximum or minimum at x∗ ∈ X. Then f ′(x∗)= 0�, or f has a stationary point at x∗.

Proof: Without loss of generality, assume that the function has a local maximum at x∗.
Then there exists ε > 0 such that, whenever ‖h‖<ε,

f (x∗ +h)− f (x∗)≤ 0 (10.44)

It follows that, for 0< h<ε,

f (x∗ + hei )− f (x∗)
h

≤ 0 (10.45)

(where ei denotes the i th standard basis vector) and, hence, that

∂ f

∂xi
(x∗)= lim

h→0

f (x∗ + hei )− f (x∗)
h

≤ 0 (10.46)

Similarly, for 0> h>−ε,

f (x∗ + hei )− f (x∗)
h

≥ 0 (10.47)

and, hence,

∂ f

∂xi
(x∗)= lim

h→0

f (x∗ + hei )− f (x∗)
h

≥ 0 (10.48)

Combining (10.46) and (10.48) yields the desired result. �
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The first-order conditions are useful for identifying local optima only in the interior of the
domain of the objective function: Theorem 10.3.2 applies only to functions whose domain
X is open. It is important to check also for the possible existence of corner solutions or
boundary solutions to optimization problems where the objective function is defined on a
domain that is not open.

THEOREM 10.3.3 (SUFFICIENT (SECOND-ORDER) CONDITION FOR UNCONSTRAINED

MAXIMA AND MINIMA). Let X ⊆R
n be open and let f : X →R be a twice continuously

differentiable function with f ′(x∗) = 0 and f ′′(x∗) negative definite. Then f has a strict
local maximum at x∗.

Similarly for positive definite Hessians and local minima.

Proof: Consider the second-order Taylor expansion (9.97), which we now present in
slightly different notation. For any x∈ X , there exists s ∈ (0,1) such that

f (x)= f (x∗)+ f ′(x∗)(x− x∗)+ 1
2 (x− x∗)� f ′′(x∗ + s(x− x∗))(x− x∗) (10.49)

or, since the first derivative of f vanishes at x∗,

f (x)= f (x∗)+ 1
2 (x− x∗)� f ′′(x∗ + s(x− x∗))(x− x∗) (10.50)

Since f ′′ is continuous, f ′′(x∗ + s(x− x∗)) will also be negative definite for x in some open
neighbourhood of x∗. Hence, for x in this neighbourhood, f (x) < f (x∗) and f has a strict
local maximum at x∗. �

The weak form of this result does not hold. In other words, semi-definiteness of the Hes-
sian matrix at x∗ is not sufficient to guarantee that f has any sort of maximum at x∗. For
example, if f (x)= x3, then the Hessian is negative semi-definite at x = 0 but the function
does not have a local maximum there; rather, it has an inflexion point.

What about f (x)=−x4? At x = 0, the second-order condition is not satisfied, but f has
a strict local maximum.

For functions of a single variable, this inspires a more general theorem.

THEOREM 10.3.4 (nTH DERIVATIVE TEST FOR LOCAL MAXIMA AND MINIMA OF A

FUNCTION OF A SINGLE VARIABLE). Let X ⊆ R be open and let f : X → R be a differ-
entiable function with f ′(x∗)= 0. If in evaluating consecutively the derivatives of f at x∗
the first non-zero value encountered is f (n)(x∗) and the nth derivative is continuous, then f
has:

(a) a local maximum at x∗ if n is even and f (n)(x∗)< 0;
(b) a local minimum at x∗ if n is even and f (n)(x∗)> 0; and
(c) an inflexion point at x∗ if n is odd.

Proof: The nth-order Taylor expansion of f around x∗ reduces to

f (x)= f (x∗)+ 1

n!
f (n)(x∗∗)(x − x∗)n (10.51)

for some x∗∗ between x and x∗, since all the intervening terms are zero.
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If n is even, then the last factor takes the sign of the nth derivative at x∗∗, which by
continuity is the same as its sign at x∗. The first two results follow easily.

If n is odd, then f (x) is greater than f (x∗) for x on one side of x∗ but less for x on the
other side, so there is neither a maximum nor a minimum at x∗. In other words, x∗ is an
inflexion point. �

For a function f of more than one variable, as we have already seen:

• a stationary point where the Hessian matrix is positive or negative definite is a minimum
or maximum respectively; and

• a stationary point where the Hessian matrix is semi-definite may be an inflexion point;
but

• a stationary point x∗ where the Hessian matrix A≡ f ′′(x∗) is indefinite is known as a
saddle point; in this case, there exist vectors h and k such that h�Ah< 0 and k�Ak> 0.

We know from Section 9.5 that the first and second derivatives of the restriction of f to
the line from x∗ to x∗ +h equal f ′(x∗)h and h�Ah, respectively. Thus the first derivative of
this restriction is zero and the second derivative is negative at x∗. Similarly, the directional
derivative at x∗ in the direction of x∗ + k is also zero, but the second derivative is positive
in this case. Thus, the function appears to achieve a local maximum looking in the direction
of h and a local minimum looking in the direction of k. Hence the surface looks locally like
a horse saddle or a mountain pass at x∗, whence the phrase “saddle point”.

EXAMPLE 10.3.2 The simplest function with a saddle point is the quadratic form f :R2→
R: x �→ x�Ax, where

A≡
[

0 1
2

1
2 0

]
(10.52)

In this case f (x)= x1x2, f ′(x)= [x2 x1] and f ′′(x)= 2A. There is one stationary point, at
the origin. The Hessian matrix is not semi-definite since h�Ah= h1h2 is positive when h1

and h2 have the same sign and negative when they have opposite signs.
The contour map for this function is symmetric about the origin and about both coordinate

axes, consisting of four sets of rectangular hyperbolas, asymptotic in all cases to the coordi-
nate axes. ♦

For another example of a function with a saddle point, see Exercise 10.18.

THEOREM 10.3.5 (UNIQUENESS CONDITIONS FOR UNCONSTRAINED MAXIMIZATION).
If

(a) x∗ solves problem (10.43) and
(b) f is strictly quasi-concave (presupposing that X is a convex set),

then x∗ is the unique (global) maximum.

Proof: The proof is by contradiction. Suppose x∗ is not unique; in other words, assume
that there exists x = x∗ such that f (x)= f (x∗).
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Then, for any α ∈ (0,1), by strict quasi-concavity,

f (αx+ (1−α)x∗)>min{ f (x), f (x∗)}= f (x∗) (10.53)

so f does not have a maximum at either x or x∗.
This is a contradiction, so the maximum must be unique. �

The following are tempting, but not quite true, corollaries of Theorem 10.3.3:

• Every stationary point of a twice continuously differentiable strictly concave function is
a strict global maximum.

• Every stationary point of a twice continuously differentiable strictly convex function is a
strict global minimum.

• So there can be at most one stationary point of any such function.

These conclusions are valid for functions whose Hessian matrices are, respectively, negative
definite everywhere or positive definite everywhere. We know from Theorem 10.2.5 that all
such functions are, respectively, strictly concave or strictly convex, but that the converse is
not true.

For a function whose Hessian matrix is positive definite everywhere or negative definite
everywhere, the argument in the proof of Theorem 10.3.3 can be applied for x∈ X and not
just for x∈ Bε(x∗). If there are points at which the Hessian is merely semi-definite, then the
proof breaks down.

Note that some strictly concave or strictly convex functions will have no stationary points,
for example,

f :R→R: x �→ ex (10.54)

10.4 Equality-constrained optimization

10.4.1 Lagrange multiplier theorems

In economics, optimization problems are usually subject to resource constraints. For exam-
ple, an individual deciding on a basket of goods to consume is invariably subject to a budget
constraint involving the quantities to be consumed, as well as the prices of each good and
the amount available to spend. The choice variables are no longer free to vary independently.
Roughly speaking, the solution is to reduce the number of choice variables by the number of
constraints, find the optimal values for this reduced set of choice variables, and then use the
constraints to calculate the optimal values for the remaining choice variables.

Throughout this section, we deal with the equality-constrained optimization problem

max
x∈X

f (x) s.t. g(x)= 0m (10.55)

where X⊆R
n , f : X→R is a real-valued function of several variables, which is the objective

function of problem (10.55), and g: X →R
m is a vector-valued function of several variables,

called the constraint function of problem (10.55); or, equivalently, g j : X → R are real-
valued functions for j = 1,2, . . . ,m. In other words, there are m scalar constraint equations,
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or, simply, constraints, represented by a single vector constraint equation:⎡⎢⎢⎢⎣
g1(x)
g2(x)
...

gm(x)

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎣

0
0
...

0

⎤⎥⎥⎥⎦ (10.56)

The set of vectors in X satisfying all m constraints

{x∈ X : g(x)= 0m} (10.57)

is called the feasible set or constraint set for problem (10.55).
We will introduce and motivate the Lagrange multiplier method,2 which applies to such

constrained optimization problems with equality constraints. We will assume, where appro-
priate, that the objective function f and the m constraint functions g1, g2, . . . , gm are all
once or twice continuously differentiable.

The entire discussion here is again presented in terms of maximization, but can equally be
presented in terms of minimization by reversing the sign of the objective function. Similarly,
note that the signs of the constraint function(s) can be reversed without altering the under-
lying problem. We will see, however, that this also reverses the signs of the corresponding
Lagrange multipliers. The significance of this effect will be seen from the formal results,
which are presented here in terms of the usual three theorems, for necessity, sufficiency and
uniqueness.

THEOREM 10.4.1 (FIRST-ORDER (NECESSARY) CONDITIONS FOR OPTIMIZATION WITH

EQUALITY CONSTRAINTS). Consider problem (10.55) or the corresponding minimization
problem. If

(a) x∗ solves this problem (which implies that g(x∗)= 0);
(b) f and g are continuously differentiable; and
(c) the m× n matrix

g′(x∗)=

⎡⎢⎢⎢⎢⎢⎣
∂g1

∂x1
(x∗) . . .

∂g1

∂xn
(x∗)

...
. . .

...

∂gm

∂x1
(x∗) . . .

∂gm

∂xn
(x∗)

⎤⎥⎥⎥⎥⎥⎦ (10.58)

is of full rank m (i.e. there are no redundant constraints, both in the sense that there are
fewer constraints than variables and in the sense that the constraints that are present are
“independent”),3

then there exists a vector of Lagrange multipliers λ∗ ∈ R
m such that f ′(x∗) +

λ∗�g′(x∗)= 0� (i.e. in R
n, f ′(x∗) is in the m-dimensional subspace generated by the m

vectors g1′(x∗), g2′(x∗), . . . , gm ′(x∗)).

It is conventional to use the letter λ both to parametrize convex combinations and as a
Lagrange multiplier. To avoid confusion, in this section we switch to the letter α for the
former usage.
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Proof: The idea is to solve g(x∗)= 0 for m variables as a function of the other n −m
variables and to substitute the solution into the objective function to give an unconstrained
problem with n−m variables.

For this proof, we need the implicit function theorem (Theorem 9.8.1). Using this theorem,
we must find the m weights λ1, λ2, . . . , λm to prove that f ′(x∗) is a linear combination of
g1′(x∗), g2′(x∗), . . . , gm ′(x∗).

Without loss of generality, we assume that the first m columns of g′(x∗) are linearly
independent (if not, then we merely relabel the variables accordingly).

Now we can partition the vector x∗ as (y∗, z∗), where y∗ ∈R
m and z∗ ∈R

n−m , and, using
the notation of the implicit function theorem, find a neighbourhood Z of z∗ and a function h
defined on Z such that

g(h(z), z)= 0 ∀ z∈ Z (10.59)

and also

h′(z∗)=−(Dyg)−1 Dzg (10.60)

Now define a new objective function F : Z →R by

F(z)≡ f (h(z), z) (10.61)

Since x∗ solves the constrained problem maxx∈X f (x) subject to g(x)= 0, it follows (see
Exercise 10.19) that z∗ solves the unconstrained problem maxz∈Z F(z).

Hence, z∗ satisfies the first-order conditions for unconstrained maximization of F , namely,

F ′(z∗)= 0� (10.62)

Applying Corollary 9.3.2 yields an equation that can be written in shorthand as

F ′(z∗)= Dy f h′(z∗)+ Dz f = 0� (10.63)

where f ′(x∗)≡ [Dy f Dz f ]. Substituting for h′(z∗) gives

Dy f (Dyg)−1 Dzg= Dz f (10.64)

We can also partition f ′(x∗) by inserting an identity matrix in the form (Dyg)−1 Dyg as

[Dy f (Dyg)−1 Dyg Dz f ] (10.65)

Substituting for the second submatrix yields

f ′(x∗)= [Dy f (Dyg)−1 Dyg Dy f (Dyg)−1 Dzg]

= Dy f (Dyg)−1[Dyg Dzg]

=−λ�g′(x∗) (10.66)
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where we define

λ≡−Dy f (Dyg)−1 (10.67)
�

THEOREM 10.4.2 (SECOND-ORDER (SUFFICIENT OR CONCAVITY) CONDITIONS FOR

MAXIMIZATION WITH EQUALITY CONSTRAINTS). If

(a) f and g are differentiable;
(b) f ′(x∗)+λ∗�g′(x∗)= 0� (i.e. the first-order conditions are satisfied at x∗);
(c) λ∗j ≥ 0 for j = 1,2, . . . ,m;
(d) f is pseudo-concave; and
(e) g j is quasi-concave for j = 1,2, . . . ,m,

then x∗ solves the constrained maximization problem.

Note that non-positive Lagrange multipliers and quasi-convex constraint functions can
take the place of non-negative Lagrange multipliers and quasi-concave constraint functions
to give an alternative set of second-order conditions for optimization problems with equality
constraints.

Proof: Suppose that the second-order conditions are satisfied, but that x∗ is not a
constrained maximum. We will derive a contradiction.

Since x∗ is not a maximum, there exists x = x∗ such that g(x)= 0 but f (x)> f (x∗).
By pseudo-concavity, f (x)− f (x∗)> 0 implies that f ′(x∗)(x− x∗)> 0.
Since the constraints are satisfied at both x and x∗, we have g(x∗)= g(x)= 0.
By quasi-concavity of the constraint functions (see the last part of Theorem 10.2.7),

g j (x)− g j (x∗)= 0 implies that g j ′(x∗)(x− x∗)≥ 0.
By assumption, all the Lagrange multipliers are non-negative, so

f ′(x∗)(x− x∗)+λ∗�g′(x∗)(x− x∗)> 0 (10.68)

Rearranging yields

( f ′(x∗)+λ∗�g′(x∗))(x− x∗)> 0 (10.69)

But the first-order condition guarantees that the left-hand side of this inequality is zero (not
positive), which is the required contradiction. �

Various slightly different second-order conditions could be proposed – for example, if
f was quasi-concave, g j pseudo-concave and at least one λ∗j strictly positive, then (10.69)
would again provide a contradiction.

THEOREM 10.4.3 (UNIQUENESS CONDITION FOR EQUALITY-CONSTRAINED MAXI-
MIZATION). If

(a) x∗ is a solution;
(b) f is strictly quasi-concave; and
(c) g j is an affine function for j = 1,2, . . . ,m,

then x∗ is the unique (global) maximum.
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Proof: The uniqueness result is also proved by contradiction. Note that it does not require
any differentiability assumption.

(a) We first show that the feasible set is an affine set (and, hence, a convex set).
Suppose that x = x′ are two distinct vectors satisfying the constraints and α ∈R. Con-

sider the affine combination of these two vectors, xα ≡ αx+ (1− α)x′. Since each g j is
affine and g j (x′)= g j (x)= 0, we have

g j (xα)=αg j (x)+ (1−α)g j (x′)= 0 (10.70)

In other words, xα also satisfies the constraints, as required.
(b) To complete the proof, we find the required contradiction.

Now suppose that x =x′ are two distinct vectors solving the optimization problem and
α ∈ (0,1). Consider the convex combination of these two vectors, xα ≡ αx+ (1− α)x′.
Since f is strictly quasi-concave and f (x′)= f (x), it must be the case that f (xα)> f (x)
and f (xα)> f (x′).

But, by the first part of the proof, xα satisfies the constraints, so neither x nor x′ is a
solution, and there can be only one solution, as required. �

The construction of the obvious corollaries for minimization problems is left as an
exercise; see Exercise 10.20.

10.4.2 Solution methodology

The first n first-order or Lagrangian conditions say that the total derivative (or gradient) of
f at x is a linear combination of the total derivatives (or gradients) of the constraint functions
at x.

Consider a picture with n = 2 and m = 1 as shown in Figure 10.3. Since the directional
derivative along a tangent to a level set or indifference curve is zero at the point of tangency,
x (the function is at a maximum or minimum along the tangent), or f ′(x)(x′ − x)= 0, the
gradient vector, f ′(x)�, must be perpendicular to the direction of the tangent, x′ − x.

f (x1, x2)= c

g(x1, x2)= k

x

x′
•

f ′(x)

g′(x)

•

Figure 10.3 Constrained optimization with two variables and one constraint
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At the optimum, the level sets of f and g have a common tangent, so f ′(x) and g′(x) are
collinear, or f ′(x)=−λg′(x). It can also be seen with a little thought that, for the solution
to be a local constrained maximum, λ must be positive if g is quasi-concave or negative if g
is quasi-convex (in either case, the constraint curve is the boundary of a convex set).

If x∗ is a solution to problem (10.55), then there exist Lagrange multipliers,4 λ ≡
(λ1, λ2, . . . , λm), such that

f ′(x∗)+λ�g′(x∗)= 0�n (10.71)

Thus, to find the constrained optimum, we proceed as if optimizing the Lagrangian:

L(x,λ)≡ f (x)+λ�g(x) (10.72)

Note that:

• L= f whenever g= 0; and
• g= 0 where L is optimized with respect to λ.

Roughly speaking, this is why the constrained optimum of f corresponds to the optimum
of L.

The Lagrange multiplier method involves the following steps:

1. Introduce the m Lagrange multipliers, λ≡ (λ1, λ2, . . . , λm).
2. Define the Lagrangian L: X ×R

m →R, where

X ×R
m ≡{(x,λ): x∈ X,λ∈R

m} (10.73)

by

L(x,λ)≡ f (x)+λ�g(x) (10.74)

3. Find the stationary points of the Lagrangian, i.e. set L′(x,λ)= 0�. Since the Lagrangian
is a function of n+m variables, this gives n+m first-order conditions. The first n are

f ′(x)+λ�g′(x)= 0� (10.75)

or

∂ f

∂xi
(x)+

m∑
j=1

λ j
∂g j

∂xi
(x)= 0, i = 1,2, . . . ,n (10.76)

The last m are just the original constraints,

g(x)= 0 (10.77)

or

g j (x)= 0, j = 1,2, . . . ,m (10.78)



February 12, 2011 11:1 Pinched Crown A Page-267 HarrWald

Convexity and optimization 267

4. Now we need to solve the first-order conditions, which are usually a highly nonlinear
system of simultaneous equations. A method that often works is to:

(a) solve the first n first-order conditions to obtain an initial solution for x in terms of λ;
then

(b) substitute this solution into the constraint equations to obtain a system of m equations
in the m Lagrange multipliers only; then

(c) solve for λ; and
(d) substitute for λ in the initial solution to obtain a closed-form solution for x.

5. Finally, the second-order and uniqueness conditions must be checked.

EXAMPLE 10.4.1 One of the most commonly encountered examples of an equality-
constrained optimization problem is the maximization of a Cobb–Douglas utility func-
tion subject to a budget constraint. Suppose that a consumer wishes to maximize the
Cobb–Douglas utility function given by

u(x, y)= x0.5 y0.5 (10.79)

where x and y are the quantities of each of two goods consumed.
We will assume that the consumer always spends all his money income, M per period,

on the two goods, which he can buy at prices px and py , respectively (both constant for the
consumer).

The consumer must then

max
x,y

x0.5 y0.5 (10.80)

subject to the equality budget constraint px x + py y= M . The Lagrangian is

L(x, y, λ)≡ x0.5 y0.5 + λ(M − px x − py y) (10.81)

The first-order conditions are

∂L
∂x
(x, y, λ)= 0.5x0.5−1 y0.5 − λpx = 0 (10.82)

∂L
∂y
(x, y, λ)= 0.5x0.5 y0.5−1 − λpy = 0 (10.83)

and the budget constraint. Adding x times (10.82) to y times (10.83) yields

(0.5+ 0.5)x0.5 y0.5 − λ(px x + py y)= 0 (10.84)

So

λ= x0.5 y0.5

px x + py y
= x0.5 y0.5

M
(10.85)
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Substituting this in the first-order conditions gives, after rearrangement,

x∗(px , py,M)= 0.5
M

px
(10.86)

y∗(px , py,M)= 0.5
M

py
(10.87)

Confirmation that the second-order conditions are satisfied and further variations on this
problem are considered in Exercises 10.21 and 10.22. ♦

Another commonly encountered example of an equality-constrained optimization problem
is the maximization of a quadratic form x�Ax subject to linear constraints g(x)=Gx= α.
This problem will be solved in full in Section 14.3.

10.4.3 Envelope theorems

We conclude this section with an investigation of how the optimal value of the objective
function depends on any exogenous variables that may appear in the objective function, a
topic often described as comparative statics.

THEOREM 10.4.4 (ENVELOPE THEOREM FOR MAXIMIZATION). Consider the modified
constrained maximization problem

max
x

f (x,α) subject to g(x,α)= 0 (10.88)

where x ∈R
n, α ∈R

q , f :Rn+q →R and g:Rn+q →R
m (i.e. as usual f is the real-valued

objective function and g is a vector of m real-valued constraint functions, but either or both
can depend on exogenous or control variables α as well as on the endogenous or choice
variables x).

Suppose that the standard conditions for application of the Lagrange multiplier theorems
(Theorems 10.4.1, 10.4.2 and 10.4.3) are satisfied.

Let x∗(α) denote the optimal choice of x for given α (x∗:Rq →R
n is called the optimal

response function) and let M(α) denote the maximum value attainable by f for given α

(M :Rq →R is called the envelope function).5

Then the partial derivative of M with respect to αi is just the partial derivative of the
relevant Lagrangian, f + λ�g, with respect to αi , evaluated at the optimal value of x. The
dependence of the vector of Lagrange multipliers, λ, on the vector α should be ignored in
calculating the last-mentioned partial derivative.

Proof: The envelope theorem can be proved in the following steps.

(a) Write down the identity relating the functions M , f and x∗:

M(α)≡ f (x∗(α),α) (10.89)

(b) Use Corollary 9.3.2 to derive an expression for the partial derivatives ∂M/∂αi of M in
terms of the partial derivatives of f and x∗:

M ′(α)= Dx f (x∗(α),α)x∗′(α)+ Dα f (x∗(α),α) (10.90)
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(c) The first-order (necessary) conditions for constrained optimization say that

Dx f (x∗(α),α)=−λ(α)�Dxg(x∗(α),α) (10.91)

and allow us to eliminate the ∂ f/∂xi terms from (10.90).
(d) Apply Corollary 9.3.2 again to the identity g(x∗,α)= 0m to obtain

Dxg(x∗(α),α)x∗′(α)+ Dαg(x∗(α),α)= 0m×q (10.92)

Finally, use this result to eliminate the ∂g/∂xi terms from (10.91).

Combining all these results gives

M ′(α)= Dα f (x∗(α),α)+λ(α)�Dαg(x∗(α),α) (10.93)

which is the required result. �

Inspection of the Lagrangian (10.81) for the utility-maximization problem above shows
that the Lagrange multiplier itself in that problem equals the rate of change of optimal utility
with respect to income, M . This result holds whatever the functional form of the utility
function.

THEOREM 10.4.5 (ENVELOPE THEOREM FOR MINIMIZATION). Consider the modified
constrained minimization problem

min
x

f (x,α) subject to g(x,α)= 0 (10.94)

where x∈R
n, α ∈R

q , f :Rn+q →R and g:Rn+q →R
m.

Suppose that the standard conditions for application of the Lagrange multiplier theorems
(Theorems 10.4.1, 10.4.2 and 10.4.3) are satisfied.

Let x∗(α) denote the optimal choice of x for given α and let m(α) denote the minimum
value attainable by f for given α (m:Rq →R is again called the envelope function).

Then the partial derivative of m with respect to αi is just the partial derivative of the
relevant Lagrangian, f − λ�g, with respect to αi , evaluated at the optimal value of x. The
dependence of the vector of Lagrange multipliers, λ, on the vector α should be ignored in
calculating the last-mentioned partial derivative.

Proof: Let us view the problem as one of maximizing − f rather than minimizing f . The
envelope functions of the two problems are related by m =−M . The first version of the
envelope theorem tells us that

∂M

∂αi
= ∂(− f )

∂αi
+

m∑
j=i

λ j
∂g j

∂αi
(10.95)

Multiplying across by −1 gives

∂m

∂αi
= ∂ f

∂αi
−

m∑
j=i

λ j
∂g j

∂αi
(10.96)

�
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We will encounter envelope functions again throughout the remainder of this chap-
ter. They will also appear later in the book as, for example, indirect utility functions
(Section 12.4.4), expenditure functions (Section 12.4.5), representative agents’ utility func-
tions (Section 12.6.6) and portfolio frontiers (Section 17.4).

In applications in economics, the most frequently encountered applications of equality-
constrained optimization will make sufficient assumptions to guarantee that:

1. x∗ satisfies the first-order conditions with each λi ≥ 0,
2. the Hessian f ′′(x∗) is a negative definite matrix, and
3. g is an affine function,

so that x∗ is the unique optimal solution to the equality-constrained optimization problem.

10.5 Inequality-constrained optimization

10.5.1 Kuhn–Tucker theorems

In the preceding sections, it was assumed that the various constraints on the choice vari-
ables were required to hold simultaneously and exactly. In practice, many constraints take
an inequality form. For example, the amount spent can be less than the amount earned, but
must not be more. On occasions there will be a number of inequality constraints, some of
which will prove binding (or active) and some non-binding (or inactive) at the optimum.
In this section, we extend the preceding analysis to cover these situations.

Throughout the section, we deal with the inequality-constrained optimization problem

max
x∈X

f (x) s.t. gi (x)≥ 0, i = 1,2, . . . ,m (10.97)

where once again X ⊆ R
n , f : X → R is a real-valued function of several variables (the

objective function of problem (10.97)) and g: X →R
m is a vector-valued function of several

variables (the constraint function of problem (10.97)). Before presenting general results for
problem (10.97), we will look at two special cases.

The first special case is that of m=n=1 and g(x)= x , i.e. the maximization of a function
of one variable subject to a non-negativity constraint:

max
x

f (x) s.t. x ≥ 0 (10.98)

The first-order conditions in this case can be expressed as

f ′(x∗)≤ 0 (10.99)

f ′(x∗)= 0 if x∗> 0 (10.100)

The second special case is that in which the constraint functions are given by

g(x,α)=α− h(x) (10.101)

assuming f to be quasi-concave as usual and hi quasi-convex or (equivalently) gi quasi-
concave. We continue to denote the envelope function by M(α) for such inequality-
constrained problems.
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Figure 10.4 illustrates the solution to this problem for various values of α in the case
where n = 2 and m = 1. This figure provides some graphical motivation concerning the
interpretation of Lagrange multipliers. In fact, we will soon begin to refer to the analogue
of the Lagrange multipliers in the inequality-constrained problem as the Kuhn–Tucker
multipliers.6

The Lagrangian for the equality-constrained version of the problem is

L(x,λ)= f (x)+λ�(α− h(x)) (10.102)

Thus, using the envelope theorem (Theorem 10.4.4), it is easily seen that the rate of change
of the envelope function for the equality-constrained problem, M(α), with respect to the
“level” of the i th underlying constraint function hi , is

∂M

∂αi
= ∂L
∂αi

= λi (10.103)

In the upper part of Figure 10.4, the circles represent indifference curves of the objec-
tive function f and the straight lines represent indifference curves of the constraint
function h. The ordinary lines represent binding constraints (where the Lagrange or Kuhn–
Tucker multiplier λ is positive); the thick line represents the just-binding constraint (where
λ = 0); and the dotted lines represent non-binding constraints (where λ < 0). Tangency
points such as that marked x∗(α1) represent solutions to both the equality-constrained and
inequality-constrained optimization problems

For α > α5, the inequality constraint in Figure 10.4 is non-binding; at α = α5, it is
just binding. In other words, x∗(α5) solves the inequality-constrained problem (10.97) for
any α≥α5.

The lower part of Figure 10.4 shows the values of α and of the envelope functions corre-
sponding to the five binding constraint lines in the upper picture. For α >α5, the constraint
is non-binding, so the envelope functions for the equality-constrained and inequality-
constrained problems differ. For the equality-constrained problem, the envelope function
reaches the unconstrained maximum value f (x∗(α5)) at α5, but then turns downwards, as
represented by the dotted curve. For the inequality-constrained problem, the envelope func-
tion equals the unconstrained maximum value f (x∗(α5)) whenever α ≥ α5, as represented
by the horizontal line. At any point, the slope of the envelope function for the inequality-
constrained problem equals the Kuhn–Tucker multiplier for the corresponding value of α;
and similarly the slope of the envelope function for the equality-constrained problem equals
the corresponding Lagrange multiplier.

We can now summarize how the nature of the inequality constraint

hi (x)≤αi (10.104)

(or gi (x,α)≥0) changes as αi increases (as illustrated in Figure 10.4, so that the relationship
between αi and λi is negative).

• For values of αi such that the Lagrange multiplier λi = 0, this constraint is just binding.
• For values of αi such that the Lagrange multiplier λi >0, this constraint is strictly binding.
• For values of αi such that the Lagrange multiplier λi < 0, this constraint is non-binding.
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λ

α

f (x)= c1

f (x)= c2

f (x)= c3

f (x)= c4

• x∗(α1)

•

•

•
x∗(α5)

•
λ= 0

λ< 0 (non-binding constraints)

λ> 0 (binding constraints)

h(x)=α5

h(x)=α4

h(x)=α3

h(x)=α2

h(x)=α1

α

M(α)≡ f (x∗(α)

•

•

•

• •

α1 α2 α3 α4 α5

λ= 0λ> 0 (λ< 0)

c1

c2

c3

c4

f (x∗ (α5))

Figure 10.4 Interpretation of Lagrange and Kuhn–Tucker multipliers
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Thus, more generally, we can say the following:

1. Wherever the Lagrange multiplier λi = 0, the envelope function for the equality-
constrained problem is at its maximum, i.e. the objective function is at its unconstrained
maximum, and the i th inequality constraint is just binding.

2. Wherever the Lagrange or Kuhn–Tucker multiplier λi > 0, the envelope function for the
equality-constrained problem is increasing and the i th inequality constraint is strictly
binding.

3. Wherever the Lagrange multiplier λi < 0, the envelope function for the equality-
constrained problem is decreasing, but the corresponding Kuhn–Tucker multiplier is zero,
the envelope function for the inequality-constrained problem is constant at its maximum
value and the i th inequality constraint is non-binding.

Thus we will find that one of the necessary conditions below is that the Kuhn–Tucker
multipliers be non-negative. (For equality-constrained optimization, the signs were important
only when dealing with second-order conditions.)

Note that in situations such as Figure 10.4

∂2 M

∂α2
i

= ∂λi

∂αi
< 0 (10.105)

so that the envelope function for the equality-constrained problem is strictly concave in each
parameter. The envelope function for the inequality-constrained problem is strictly concave
in each parameter over the range of values for which the constraint is strictly binding, but
constant over the range of values that allow the unconstrained optimum to be achieved.

The various sign conditions that we have looked at are summarized in Table 10.2.
We are now in a position to sum up the above discussion formally in a theorem.

THEOREM 10.5.1 (NECESSARY (FIRST-ORDER) CONDITIONS FOR OPTIMIZATION WITH

INEQUALITY CONSTRAINTS). If

(a) x∗ solves problem (10.97), with

gi (x∗)= 0, i = 1,2, . . . ,b (10.106)

and

gi (x∗)> 0, i = b+ 1,b+ 2, . . . ,m (10.107)

Table 10.2 Sign conditions for inequality-constrained optimization

Type of constraint Derivative of Constraint Kuhn–Tucker Lagrange
objective function function multiplier multiplier
in (10.98) in (10.97) in (10.97)

Binding/active f ′(x∗)≤ 0 g(x∗)= 0 λ≥ 0 λ≥ 0
Just binding f ′(x∗)= 0 g(x∗)= 0 λ= 0 λ= 0
Non-binding/inactive f ′(x∗)= 0 g(x∗)> 0 λ= 0 λ< 0
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(in other words, the first b constraints are binding at x∗ and the last m − b are non-
binding at x∗, renumbering the constraints if necessary to achieve this);

(b) f and g are continuously differentiable; and
(c) the b× n submatrix of g′(x∗),⎡⎢⎢⎢⎢⎢⎣

∂g1

∂x1
(x∗) . . .

∂g1

∂xn
(x∗)

...
. . .

...

∂gb

∂x1
(x∗) . . .

∂gb

∂xn
(x∗)

⎤⎥⎥⎥⎥⎥⎦ (10.108)

is of full rank b (i.e. there are no redundant binding constraints, both in the sense that
there are fewer binding constraints than variables and in the sense that the constraints
that are binding are “independent”),

then there exist Kuhn–Tucker multipliers λ∈Rm such that f ′(x∗)+λ�g′(x∗)=0, with λi ≥0
for i = 1,2, . . . ,m and gi (x∗)= 0 if λi > 0.

Proof: The proof is similar to that of Theorem 10.4.1 for the equality-constrained case. It
can be broken into seven steps.

(a) Suppose x∗ solves problem (10.97).
We begin by restricting attention to a neighbourhood Bε(x∗)within which the constraints
that are non-binding at x∗ remain non-binding, i.e.

gi (x)> 0 ∀ x∈ Bε(x∗), i = b+ 1,b+ 2, . . . ,m (10.109)

Such a neighbourhood exists, since the constraint functions are continuous. Since x∗
solves problem (10.97) by assumption, it also solves the following problem:

max
x∈Bε(x∗)

f (x) s.t. gi (x)≥ 0, i = 1,2, . . . ,b (10.110)

In other words, since the constraints that are non-binding at x∗ remain non-binding for all
x∈ Bε(x∗) by construction, we can ignore them if we confine our search for a maximum
to this neighbourhood. We will return to the non-binding constraints in the very last step
of this proof, but until then g will be taken to refer to the vector of b binding constraint
functions only and λ to the vector of b Kuhn–Tucker multipliers corresponding to these
binding constraints.

(b) We now introduce slack variables s≡ (s1, s2, . . . , sb), one corresponding to each binding
constraint, and consider the following equality-constrained maximization problem:

max
x∈Bε(x∗), s∈Rb+

f (x) s.t. G(x, s)= 0b (10.111)

where G: X × R
b → R

b is defined by Gi (x, s) ≡ gi (x)− si , i = 1,2, . . . ,b. Since x∗
solves problem (10.110) and all b constraints in that problem are binding at x∗, it can
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be seen that (x∗,0b) solves this new problem. For consistency of notation, we define
s∗ ≡ 0b.

(c) We proceed with problem (10.111) as in the Lagrange case. In other words, we use the
implicit function theorem to solve the system of b equations in n+ b unknowns,

G(x, s)= 0b (10.112)

restricted to Bε(x∗)×R
b, for the first b variables in terms of the last n. To do this, we

partition the vector of choice and slack variables in three ways:

(x, s)≡ (y, z, s) (10.113)

where y∈Rb and z∈Rn−b, and correspondingly partition the matrix of partial derivatives
evaluated at the optimum:

G ′(y∗, z∗, s∗)=G ′(x∗, s∗)
= [DyG Dz,sG]

= [DyG DzG DsG]

= [Dyg Dzg −Ib] (10.114)

The rank condition allows us to apply the implicit function theorem and to find neigh-
bourhoods Z ⊆ R

n and Y ⊆ R
b of (z∗, s∗) and y∗, respectively, such that Y × Z ⊆

Bε(x∗)×R
b, and a function h: Z →Y such that y= h(z, s) is a solution to G(y, z, s)= 0

with

h′(z∗, s∗)=−(Dyg)−1 Dz,sG (10.115)

Equation (10.115) can in turn be partitioned to yield

Dzh=−(Dyg)−1 DzG =−(Dyg)−1 Dzg (10.116)

and

Dsh=−(Dyg)−1 DsG = (Dyg)−1Ib = (Dyg)−1 (10.117)

(d) This solution can be substituted into the original objective function f to create a new
objective function F defined by

F(z, s)≡ f (h(z, s), z) (10.118)

and another new maximization problem, where there are only (implicit) non-negativity
constraints:

max
z∈Bε (z∗), s∈Rb+

F(z, s) (10.119)

It should be clear that z∗,0b solves problem (10.119). The first-order conditions for prob-
lem (10.119) are just that the partial derivatives of F with respect to the remaining n− b
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choice variables equal zero (according to the first-order conditions for unconstrained
optimization), while the partial derivatives of F with respect to the b slack variables
must be less than or equal to zero.

(e) The Kuhn–Tucker multipliers can now be found exactly as in the Lagrange case. We
know that

Dz F = Dy f Dzh+ Dz f In−b = 0�n−b (10.120)

Substituting for Dzh from (10.116) gives

Dy f (Dyg)−1 Dzg= Dz f (10.121)

We can also partition f ′(x∗) as

[Dy f (Dyg)−1 Dyg Dz f ] (10.122)

Substituting for the second submatrix yields

f ′(x∗)= [Dy f (Dyg)−1 Dyg Dy f (Dyg)−1 Dzg]

= Dy f (Dyg)−1[Dyg Dzg]

≡−λ�g′(x∗) (10.123)

where we define the Kuhn–Tucker multipliers corresponding to the binding con-
straints, λ, by

λ ≡−Dy f (Dyg)−1 (10.124)

(f) Next, we calculate the partial derivatives of F with respect to the slack variables and
show that they can be less than or equal to zero if and only if the Kuhn–Tucker multipliers
corresponding to the binding constraints are greater than or equal to zero. This can be
seen by differentiating both sides of (10.118) with respect to s to obtain

Ds F = Dy f Dsh+ Dz f 0(n−b)×b

= Dy f (Dyg)−1

=−λ (10.125)

where we have used (10.117) and (10.124).
(g) Finally just set the Kuhn–Tucker multipliers corresponding to the non-binding con-

straints equal to zero. �

THEOREM 10.5.2 (SECOND-ORDER (SUFFICIENT OR CONCAVITY) CONDITIONS FOR

OPTIMIZATION WITH INEQUALITY CONSTRAINTS). If

(a) f and g are differentiable;
(b) there exists λ∈R

m such that f ′(x∗)+ λ�g′(x∗)= 0, with λi ≥ 0 for i = 1,2, . . . ,m and
gi (x∗)= 0 if λi > 0 (i.e. the first-order conditions are satisfied at x∗);
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(c) f is pseudo-concave; and
(d) gi (x∗)= 0 for i = 1,2, . . . ,b, gi (x∗) > 0 for i = b+ 1,b+ 2, . . . ,m and g j is quasi-

concave for j = 1,2, . . . ,b (i.e. the binding constraint functions are quasi-concave),

then x∗ solves the constrained maximization problem.

Proof: The proof just requires the first-order conditions to be reduced to

f ′(x∗)+
b∑

i=1

λi g
i ′(x∗)= 0 (10.126)

from where it is virtually identical to that for the Lagrange case, and so it is left as an exercise;
see Exercise 10.23. �

THEOREM 10.5.3 (UNIQUENESS CONDITION FOR INEQUALITY-CONSTRAINED OPTI-
MIZATION). If

(a) x∗ is a solution;
(b) f is strictly quasi-concave; and
(c) g j is a quasi-concave function for j = 1,2, . . . ,m,

then x∗ is the unique (global) optimal solution.

Proof: The proof is again similar to that for the Lagrange case and is left as an exer-
cise; see Exercise 10.23. The point to note this time is that the feasible set with equality
constraints is convex if the constraint functions are affine, whereas the feasible set with
inequality constraints is convex in the more general situation in which the constraint func-
tions are quasi-concave. This is because the feasible set (where all the inequality constraints
are satisfied simultaneously) is the intersection of m upper contour sets of quasi-concave
functions, or the intersection of m convex sets. �

10.5.2 Theorem of the maximum

The last important result on optimization, the theorem of the maximum, is closely related
to the envelope theorem. This theorem gives sufficient conditions for the optimal response
x∗(α) to change continuously with the parameters α, something that greatly facilitates fur-
ther analysis of economic behaviour in particular. Before proceeding to the statement of the
theorem, the reader may want to review Definition 7.8.5.

THEOREM 10.5.4 (THEOREM OF THE MAXIMUM). Consider the modified inequality-
constrained optimization problem:

max
x

f (x,α) subject to gi (x,α)≥ 0, i = 1,2, . . . ,m (10.127)

where x∈R
n, α ∈R

q , f :Rn+q →R and g:Rn+q →R
m.

Let x∗(α) denote the optimal choice of x for given α (x∗:Rq →R
n) and let M(α) denote

the maximum value attainable by f for given α (M :Rq →R).
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If

(a) f is continuous; and
(b) the constraint set (feasible set)

G(α)≡{x∈R
n : gi (x,α)≥ 0, i = 1,2, . . . ,m} (10.128)

is a non-empty, compact-valued,7 continuous correspondence of α,

then

(a) M is a continuous (single-valued) function; and
(b) x∗ is a non-empty, compact-valued, upper hemi-continuous correspondence, and, hence,

is continuous if it is a (single-valued) function (e.g. if the uniqueness conditions of
Theorem 10.5.3 are satisfied).

Proof: The proof of this theorem is beyond the scope of this book, but can be found in
de la Fuente (2000, pp. 301–3). The original version of the theorem of the maximum is
credited to Berge (1959), whose original proof is available in an English translation in Berge
(1997, Chapter VI, Section 3). Note, however, that the existence of the envelope function M
is guaranteed by Theorem 10.3.1.8 �

Theorem 10.5.4 will be used in consumer theory to prove such critical results as
the continuity of demand functions derived from the maximization of continuous utility
functions.

10.5.3 Examples

The following are two frequently encountered examples illustrating the use of the Kuhn–
Tucker theorems in economics. (The calculations are left as exercises; see Exercises 10.21
and 10.25.)

1. Maximizing a Cobb–Douglas utility function subject to a budget constraint and non-
negativity constraints. The applications of this problem in later chapters will include
choice under certainty, choice under uncertainty with logarithmic utility where the param-
eters are re-interpreted as probabilities, the extension to Stone–Geary preferences (see
Exercise 12.3), and inter-temporal choice with logarithmic utility, where the parameters
are re-interpreted as time discount factors.

2. The canonical quadratic programming problem, which merits a separate treatment in
Section 14.3, as it has so many applications throughout economics, econometrics and
finance.

Further exercises consider the duals of each of the afore-mentioned problems, and it is to the
question of duality that we now turn.

10.6 Duality
Let X ⊆ R

n be a convex set and let f, g: X → R be, respectively, pseudo-concave and
pseudo-convex functions. Consider the envelope functions defined by the dual families of
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inequality-constrained problems:

M(α)≡max
x∈X

f (x) s.t. g(x)≤α (10.129)

and

N (β)≡min
x∈X

g(x) s.t. f (x)≥β (10.130)

Suppose that each of these problems has a unique solution, say x∗(α) and x†(β), respectively,
and that the constraints bind at these points. Let the corresponding Kuhn–Tucker multipliers
be denoted λ(α) and μ(β), respectively.

The first-order conditions for the two families of problems are, respectively,

f ′(x)− λ(α)g′(x)= 0� (10.131)

and

−g′(x)+μ(β) f ′(x)= 0� (10.132)

Thus if x∗ and λ∗ = 0 solve (10.131), then x∗ and μ∗ ≡ 1/λ∗ solve (10.132).
Furthermore, for the x∗ that solves the original problem, problem (10.129), to also solve

problem (10.130), it must also satisfy the constraint, or f (x∗)= β. We know, however, that
f (x∗)= M(α). This allows us to conclude that M(α)=β. Similarly, N (β)=α.

Combining these equations leads to the conclusion that

α= N (M(α)) (10.133)

and

β = M(N (β)) (10.134)

We also have

x∗(α)= x†(M(α)) (10.135)

and

x†(β)= x∗(N (β)) (10.136)

In other words, the envelope functions for the two dual problems are inverse functions (over
any range where the Kuhn–Tucker multipliers are non-zero, i.e. where the constraints are
binding). Thus, either α or β, or indeed λ or μ, can be used to parametrize either family of
problems.

We will see many examples of these principles in the applications in the next part of the
book. In particular, duality will be covered in more detail in the context of its applications to
consumer theory in Section 12.4.8.
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EXERCISES
10.1 Suppose A is an affine set and

f (λx+ (1− λ)x′)= λ f (x)+ (1− λ) f (x′)

for all λ∈ [0,1] and for all x∈ A. Prove that this equality also holds for λ< 0 and for λ> 1.

10.2 Let X be a convex set and let f 1: X → R, f 2: X → R, . . . , f m : X → R be concave
functions. Prove that:

(a) if a,b> 0, then a f 1 + b f 2 is concave;
(b) if k1> 0, k2> 0, . . . , km > 0, then

∑m
i=1 ki f i is concave;

(c) if a< 0, then a f 1 is convex;
(d) min{ f 1, f 2, . . . , f m} is concave; and
(e) the set {x∈ X : f 1(x)≥α} is convex (i.e. Theorem 10.2.2).

10.3 Write down the properties corresponding to those in Exercise 10.2 that would hold if
f 1: X →R, f 2: X →R, . . . , f m : X →R were convex functions.

10.4 Let X,Y ⊆R be convex sets. Show that:

(a) the inverse of a strictly increasing concave function f : X → Y is convex; and
(b) the inverse of a strictly decreasing concave function g: X → Y is concave.

Deduce the corresponding properties of strictly increasing and strictly decreasing convex
functions and give an example for each of the four categories.

10.5 Prove, without using Taylor’s theorem, that if f :R→R with f ′′(x)≤ 0 for all x ∈R,
then f is a concave function.

10.6 Sketch the graph of a differentiable function f :R→ R in each of the following
categories:

(a) concave, but not strictly quasi-concave;
(b) strictly concave;
(c) concave and strictly quasi-concave, but not strictly concave;
(d) pseudo-concave and strictly quasi-concave, but not concave;
(e) strictly quasi-concave, but not pseudo-concave;
(f) quasi-concave, but neither pseudo-concave nor strictly quasi-concave; and
(g) pseudo-concave, but neither concave nor strictly quasi-concave.

Write out a definition of each function in the form

x �→

⎧⎪⎨⎪⎩
f1(x) if . . .

f2(x) if . . .

. . . if . . .

(Hint: use functions that are piecewise linear/affine and/or piecewise quadratic.)
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10.7 Draw a Venn diagram to illustrate the hierarchy among different classes of functions
set out in Table 10.2.2, and add to it the other classes of functions introduced later in the
chapter.

10.8 Prove that a twice differentiable non-decreasing concave transformation of a twice
differentiable concave function (of several variables) is concave (Theorem 10.2.6).

10.9 Suppose that, for all x,x′ ∈ X such that f (x′)≤ f (x) and for all λ∈ (0,1),

f (λx+ (1− λ)x′)≥ f (x′)

Prove that, for all x,x′ ∈ X, and for all λ∈ (0,1),

f (λx+ (1− λ)x′)≥min{ f (x), f (x′)}

10.10 Show that f :R→R: x �→−x2n defines a strictly concave function (even though the
second-order sufficient condition for concavity is not satisfied at x = 0).

10.11 Consider the quadratic form defined by the function

f :R2 →R: (x1, x2) �→ x2
1 + 2bx1x2 + cx2

2

where b and c are real numbers (i.e. the special case of Exercise 9.2 in which a= 1). Let

A≡
[

1 b
b c

]
(a) For what values of b and c (if any) is the matrix A:

(i) positive definite;
(ii) positive semi-definite;

(iii) negative definite; or
(iv) negative semi-definite?

Graph the relevant values in the bc plane in each case.
(b) For what values of b and c (if any) is the function f :

(i) concave; or
(ii) convex?

(c) Find the equations of two lines in the x1x2 plane along which the value of f is zero when
b= 3 and c= 5, and graph these lines.

(d) Show that there exists a line in the x1x2 plane such that the restriction of f to that line is
a concave function when b= 3 and c= 5.

10.12 Consider the general quadratic form:

f :Rn →R: x �→ x�Ax

where A is any n× n real symmetric matrix.
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(a) Calculate the total derivative f ′(x) and the Hessian matrix f ′′(x) of f at the point x.
(b) Give sufficient conditions on A for f to be: (i) a concave function; (ii) a strictly concave

function; (iii) a convex function; and (iv) a strictly convex function. In each case, state
whether your conditions are also necessary.

10.13 Consider the Cobb–Douglas function:

f :R2++→R++: (x, y) �→ xα y1−α

where R++ ≡ (0,∞).

(a) Calculate the total derivative f ′(x0, y0) and the Hessian matrix f ′′(x0, y0) of f at the
point (x0, y0).

(b) Calculate the determinant, eigenvalues and eigenvectors of the matrix f ′′(x0, y0).
(c) For what values of α is f :

(i) a concave function; or
(ii) a strictly concave function?

10.14 Using the previous exercise, or otherwise, show that

h:R2++→R++: (x, y) �→α ln x + (1−α) ln y

is a concave function for 0<α< 1. Is this function strictly concave?

10.15 Find the values of a for which the functions f :R → R: x �→ eax and
g:R→R: x �→−eax are

(a) concave;
(b) convex;
(c) quasi-concave; and
(e) quasi-convex.

10.16 Let f : X → R be quasi-concave and g:R→ R be increasing. Prove that g ◦ f is a
quasi-concave function (Theorem 10.2.8).

10.17 Consider the constant elasticity of substitution (CES) function:

f :R2++→R++: (x, y) �→ (αxρ +βyρ)1/ρ

What are the most general sufficient conditions that you can find on the values of the
parameters α, β and ρ for which this function is increasing in both variables and concave?

For what additional values of the parameters is the function quasi-concave?
Be careful to consider the limiting behaviour of the function as ρ→ 0, 1, +∞ and −∞.

(The origin of the name of this function will be familiar to readers who have done courses in
production theory; see Varian (1992, pp. 19–21) for more details.)
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10.18 Find the stationary points of the function defined by

f :R2 →R: (x, y) �→ x3 − 3x2 − 4y2

and determine for each one whether it is a maximum, a minimum, an inflexion point or a
saddle point.

Hence, sketch the indifference map of this function.

10.19 Suppose x∗ solves problem (10.55). Partition the vector x∗ as (y∗, z∗), where y∗ ∈Rm

and z∗ ∈R
n−m . Define a new objective function F : Z →R by

F(z)≡ f (h(z), z)

where h is a function (the existence of which is guaranteed by the implicit function theorem)
such that

g(h(z), z)= 0 ∀ z∈ Z

Show, using a proof by contradiction argument, that z∗ solves the unconstrained problem
maxz∈Z F(z).

10.20 State and prove the equivalents of Theorems 10.4.1, 10.4.2 and 10.4.3 for minimiza-
tion subject to equality constraints.

10.21 Consider the Cobb–Douglas function:

f :R2++→R++: (x, y) �→ xα y1−α

where R++ ≡ (0,∞). Find the maximum value that f can take subject to the following
constraints:

(a) px + qy= M
(b) px + qy≤ M

where p, q and M are constants.

10.22 A consumer’s utility function is given by

u(x, y)= xα yβ

where x and y are the quantities of each of two goods consumed.

(a) Assuming that the consumer always spends all his money income, M per period, derive
his utility-maximizing consumption of the two goods as functions of their prices px and
py (both constant for the consumer) and his income.

(b) Confirm that the second-order conditions for equality-constrained maximization are
satisfied.
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(c) Solve for the value of the Lagrange multiplier in the previous part, in terms of px , py

and M , and show that it equals the value of ∂u∗/∂M , where u∗ is the optimal utility,
expressed as a function of px , py and M .

(d) What would the consumer’s utility-maximizing demands be if his utility function was
given by the following?

v(x, y)=α ln x +β ln y

10.23 Prove Theorems 10.5.2 and 10.5.3.

10.24 Let the objective function F :Rp+q →R and the constraint function G:Rp+q →R
r

satisfy the assumptions of the Lagrange multiplier theorems, and define

M :Rq →R

: a �→ max
{x∈Rp : Gi (x,a)=0, i=1,2,...,r}

F(x,a)

State and prove in full the relation between the partial derivative ∂M/∂a j , the partial
derivatives of F and G, and the Lagrange multipliers, λ1, λ2, . . . , λr (i.e. the envelope
theorem).

10.25 Consider the following canonical quadratic programming problem.
Find the vector x ∈R

n that maximizes the value of the quadratic form x�Ax subject to
the m linear inequality constraints gi�x≥ αi , where A is an n× n negative definite matrix,
m< n and gi ∈R

n for i = 1,2, . . . ,m.
Show that the objective function can always be rewritten as a quadratic form in a

symmetric (negative definite) matrix and, hence, solve the problem.
(This problem will be considered in greater detail in Chapter 14.)

10.26 Derive and graph the envelope functions for the following pairs of dual inequality-
constrained optimization problems:

(a) (i) minx x�Ax subject to e�x≥μ and
(ii) maxx e�x subject to x�Ax≤ σ 2,
where e,x∈R

n , e = 0, A∈R
n×n is positive definite and μ,σ ∈R;

(b) (i) maxx1,x2,...,xn
∑n

i=1 αi ln xi subject to
∑n

i=1 pi xi ≤ M and
(ii) minx1,x2,...,xn

∑n
i=1 pi xi subject to

∑n
i=1 αi ln xi ≥ u,

where αi , xi ∈R++ for i = 1,2, . . . ,n, M ∈R++ and u ∈R.

How would your solutions change, respectively, if:

(a) A was not positive definite; or
(b) αi ≤ 0 for some i?
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Introduction

The first part of this book has presented a large (though by no means exhaustive) body of
mathematics that is of relevance for both theoretical and empirical work in economics and
finance. A number of examples, particularly those in Chapter 1 and Chapter 10, were used
to illustrate the ways in which mathematics is useful. The examples showed that there are
benefits from adopting certain mathematical notation; they indicated how various problems
may be formulated mathematically; and they motivated the need for methods for the solution
of these problems and, hence, for a thorough understanding of certain aspects of mathemat-
ics. In Part II of the book, armed with this body of mathematical knowledge, we return to the
matter of applications and investigate – with considerable mathematical rigour – a selection
of issues from macroeconomics, microeconomics, econometrics and finance.

In Chapter 11, which draws mainly on matrix algebra, dynamic linear macroeconomic
models and input–output models of an economy are discussed. These models constitute gen-
eralizations of two of the simple models introduced in Chapter 1; their analysis involves the
application of several matrix theorems and leads to results that have important economic
interpretations.

The focus switches to microeconomics in Chapter 12, where consumer theory, general
equilibrium theory and welfare economics are examined. The main mathematical tools used
are those from vector calculus, convexity and optimization, though these in turn draw on a
good deal of linear algebra. Among the topics covered are utility, demand and expenditure
functions and their properties; fixed-point theorems and the existence of equilibrium; and
welfare theorems, complete markets and the representative agent approach.

Chapter 13 introduces some basic probability and statistical theory, mainly for later use in
dealing with applications in finance and econometrics, but it also features certain immediate
applications to such matters as lotteries, options, spread betting, pari-mutuel and exchange
betting. Important results for later use include, in particular, a discussion of vector spaces of
random variables, the stochastic version of Taylor’s theorem, and Jensen’s inequality. The
econometric applications are presented in Chapter 14. Drawing on some statistics – and
material on matrices, vector geometry and difference equations – this chapter deals with the
generic quadratic programming problem, the algebra and geometry of ordinary least squares,
restricted least squares, and univariate and multivariate autoregressive processes.

Decision-making over time, but under the assumption of certainty, is the subject of
Chapter 15. This chapter builds on the material on single-period choice under certainty in
Chapter 12. It extends the idea of equilibrium to multi-period general equilibrium and, using
a largely arithmetic approach, examines the measurement of rates of return, theories of the
term structure of interest rates, and the duration, volatility and convexity of bonds.
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Further substantive discussions of financial applications are contained in Chapters 16
and 17. Chapter 16 deals with topics involving single-period choice under uncertainty, such
as pricing state-contingent claims, complete markets, expected utility, risk aversion, arbi-
trage, risk neutrality and the mean–variance paradigm. The discussion makes considerable
use of the mathematics of vector spaces, and convexity and concavity, as well as of some sta-
tistical methods and results. Finally, Chapter 17 gives a detailed account of important topics
in portfolio theory, including the derivation of the mean–variance portfolio frontier, market
equilibrium and the capital asset pricing model. The treatment again makes use of vector
space ideas and statistics, and the technique of quadratic programming is also employed.
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11 Macroeconomic applications

11.1 Introduction
The macroeconomic applications considered in this chapter have already been introduced in
Chapter 1. Section 1.2.2 presented a simple macroeconomic model of a closed economy

C = f (Y )=α1 +α2Y (11.1)

I = g(Y, R)=β1 +β2Y +β3 R (11.2)

Y =C + I +G (11.3)

where C, I and Y are the endogenous variables, consumption, investment and national
income, respectively, and R and G are the exogenous variables, rate of interest and gov-
ernment expenditure, respectively. The problem in this case was to solve this model for the
endogenous variables in terms of the exogenous variables. Thus we motivated our study of
the solution of systems of linear equations.

Section 1.2.3 introduced the Leontief input–output system and posed another kind of
solution problem, namely, that of solving the system

fi + ai1x1 + ai2x2 + · · ·+ ain xn = xi , i = 1,2, . . . ,n (11.4)

for the total industrial outputs, xi , where the fi denote the final consumer demands for the
outputs, and the aijx j denote the intermediate demands by industries. The aij are the tech-
nological input–output coefficients, which indicate the demand for input i per unit of output
produced by industry j.

In this chapter, we consider these applications in more detail. Moreover, in the case of
the first, we shall also generalize the example in certain ways, drawing on the material on
difference equations in Chapter 8. Both of the problems posed will be addressed in general
terms, their solutions will be obtained and a variety of associated mathematical facts and
economic interpretations established.

11.2 Dynamic linear macroeconomic models
This section develops the example in Section 1.2.2 by considering, more generally, aspects
of the analysis of macroeconomic models. Macroeconomic modelling has been of impor-
tance for many years, not only for purposes of testing economic theory but also for policy
simulation and, especially, forecasting. The use of macroeconomic models dates from the
early work of Tinbergen (1937, 1939) and has become widespread. Applications include
the simple Klein and Goldberger (1955) model, the very large Brookings model of the US
economy, the Treasury model and the London Business School model in the UK, and the
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Central Bank, the Department of Finance and the Economic and Social Research Institute
models in Ireland.

Most macroeconomic models have been basically Keynesian, with representations of the
goods, labour and money markets of an economy. The goods market typically comprises
consumption, investment, export (X) and import (M) functions, as well as a national income
identity (Y =C + I +G+ X −M). The labour market might include a production function,
labour supply function and a marginal productivity condition, while the money market is
based essentially on an IS function (arising from an investment and saving equilibrium),
an LM function (arising from a liquidity preference and money supply equilibrium) and an
equilibrium condition. Like these, and the model in Section 1.2.2, the type of model we are
about to consider may be thought of as Keynesian in nature.

The earlier example led us to define a static macroeconomic model as

Ax=Bz (11.5)

where A is a square (say, m × m) matrix of structural parameters associated with m
endogenous variables, and B is an m × n matrix of structural parameters associated with n
exogenous variables in the system. Equation (11.5) is called the structural form of the sys-
tem. The fact that A is square means that there are as many equations in (11.5) as there are
endogenous variables. Such a system is said to be complete. As mentioned previously, our
concern is with the solubility of systems like these, where the solution is for the endogenous
variables, x, in terms of the exogenous variables, z. From our discussion in Chapter 2, we
know that a solution will exist if A is non-singular.

However, we wish to generalize somewhat by considering a complete dynamic, rather
than just a static, system. To illustrate simply, suppose we formulate the following model of
a closed economy:

Ct = f (Yt )=α1 +α2Yt (11.6)

It = g(Yt−1, Rt )=β1 +β2Yt−1 +β3 Rt (11.7)

Yt =Ct + It +Gt (11.8)

where the variables are as defined previously, with subscripts added to indicate time. Thus
Yt−1 denotes a one-period lagged value of national income, whereas all other variables take
their current value. Although otherwise very similar to the previous model, this difference is
a most important one. The use of a lagged value of an endogenous variable as an explanatory
variable in an equation introduces a dynamic component into the model, which has sig-
nificant behavioural consequences, as well as consequences for the solution of the system.
In what follows we distinguish between lagged values of endogenous variables and exoge-
nous variables, even though the lagged values are given for the current period, having been
determined by the operation of the system in the past. The term predetermined variables
subsumes both lagged endogenous and exogenous variables.

It is easy to see that we may rewrite equations (11.6) to (11.8) as⎡⎣ 1 0 −α2

0 1 0
−1 −1 1

⎤⎦⎡⎣Ct

It

Yt

⎤⎦+
⎡⎣0 0 0

0 0 −β2

0 0 0

⎤⎦⎡⎣Ct−1

It−1

Yt−1

⎤⎦
=
⎡⎣α1 0 0
β1 β3 0
0 0 1

⎤⎦⎡⎣ 1
Rt

Gt

⎤⎦ (11.9)
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or, more compactly, as

A0xt +A1xt−1 =Bzt (11.10)

Hence, if A0 is non-singular, we have for our solution that

xt =−A−1
0 A1xt−1 +A−1

0 Bzt

≡�1xt−1 +�0zt (11.11)

This is the reduced form of the dynamic system and the matrices �0 and �1 contain the
reduced-form parameters as functions of the structural parameters.

The matrix �0 contains the coefficients that measure the immediate change in endogenous
variables in response to a change in an exogenous variable. For example, π033 (the third
element in the third row of �0) is ∂Y/∂G and π012 is ∂C/∂R. Such coefficients are called
impact multipliers, and �0 is, therefore, called the impact multiplier matrix.

If a change in an exogenous variable occurs at time t and is maintained, we can trace out
the effects on endogenous variables in subsequent periods, making time explicit, as follows.
For period t ,

xt =�1xt−1 +�0zt (11.12)

where the immediate effect is given via the impact multipliers in �0. Equation (11.12) is
a non-homogeneous system of linear autonomous first-order difference equations in xt . For
period t + 1:

xt+1 =�1xt +�0zt+1

=�1(�1xt−1 +�0zt )+�0zt+1

=�2
1xt−1 +�1�0zt +�0zt+1 (11.13)

So the effect after one period is given via

�1�0 +�0 = (�1 + I)�0 (11.14)

For period t + 2,

xt+2 =�1xt+1 +�0zt+2

=�1(�
2
1xt−1 +�1�0zt +�0zt+1)+�0zt+2

=�3
1xt−1 +�2

1�0zt +�1�0zt+1 +�0zt+2 (11.15)

The effect after two periods is given via

�2
1�0 +�1�0 +�0 = (�2

1 +�1 + I)�0 (11.16)

and so on, such that the effect on the endogenous variables after j periods is determined via

(�
j
1 + · · ·+�2

1 +�1 + I)�0 =
( j∑

i=0

�i
1

)
�0 ≡D j (11.17)



February 12, 2011 11:1 Pinched Crown A Page-292 HarrWald

292 Macroeconomic applications

These various effects for different j > 0 are known as dynamic multipliers. We may call
the D j the dynamic multiplier matrix of order j ; its elements measure the changes in
endogenous variables in response to a maintained change in an exogenous variable over j
periods. For example, d j33 is ∂Yt+ j/∂Gt .

If the matrix �1 is such that �
j
1 → 0 as j →∞, then equilibrium will be approached, the

total long-run effects on the endogenous variables being given by the elements of( ∞∑
i=0

�i
1

)
�0 = (I−�1)

−1�0 ≡E (11.18)

the matrix of equilibrium multipliers. The matrix E is the limit of D j as j →∞. One of its
components is seen to be the matrix generalization of the result on the sum of a geometric
progression

∞∑
i=0

�i
1 = (I−�1)

−1 (11.19)

The convergence condition required for this inverse to exist was stated and proved in
Section 8.5.2 on systems of difference equations and their dynamic properties. For the
moment, if we suppose the condition is satisfied, we may derive the result in the following
alternative way.

If the system settles down to a steady-state equilibrium with xt = x∗ and zt = z∗ for all t ,
then

x∗ =�1x∗ +�0z∗ (11.20)

It follows immediately that

x∗ −�1x∗ =�0z∗ (11.21)

(I−�1)x∗ =�0z∗ (11.22)

x∗ = (I−�1)
−1�0z∗ (11.23)

assuming (I−�1) is non-singular. We see the long-run or equilibrium multiplier effect
immediately as ∂x∗/∂z∗ = (I−�1)

−1�0 ≡ E. Each element of E indicates the change in
the equilibrium level of an endogenous variable in response to a maintained change in an
exogenous variable.

Recalling Theorem 8.5.1, the condition on �1 for �
j
1 → 0 as j →∞ is that all the eigen-

values of �1 are less than unity in absolute value (or have modulus less than unity for
complex eigenvalues). Moreover, the sign and size of these eigenvalues determine the speed
of the approach to equilibrium, and whether the approach is monotonic or oscillatory.

If this convergence condition holds, another form of the macroeconomic model called the
final form may be derived. By repeated substitution for the lagged endogenous variable on
the right-hand side of (11.11), as was done in (8.119), the model may be written as

xt =�0zt +�1�0zt−1 +�2
1�0zt−2 + · · ·=

∞∑
j=0

�
j
1�0zt− j (11.24)
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Thus the final form gives the current value of each endogenous variable as a function of
the current and past values of the exogenous variables only, in contrast to the reduced form,
which has lagged endogenous and exogenous variables on the right-hand side. The elements
of the matrices �

j
1�0 ( j ≥ 1) associated with the individual variables in the final form

give the effect on the current value of endogenous variables of an unsustained change in an
exogenous variable j periods in the past. The �

j
1�0 are referred to as interim multiplier

matrices. From (11.17), it can be seen that the dynamic multiplier D j is the sum of the
impact multiplier �0 and the interim multipliers �i

1�0, i = 1,2, . . . , j.

EXAMPLE 11.2.1 Recall the simple macroeconomic model of a closed economy defined by
(11.6), (11.7) and (11.8). Suppose the parameters of this system are known, as follows:

Ct = 5+ 0.6Yt (11.25)

It = 3+ 0.4Yt−1 − 0.2Rt (11.26)

Yt =Ct + It +Gt (11.27)

Then for the structural form A0xt +A1xt−1 =Bzt in (11.10), we have⎡⎣ 1 0 −0.6
0 1 0

−1 −1 1

⎤⎦⎡⎣Ct

It

Yt

⎤⎦+
⎡⎣0 0 0

0 0 −0.4
0 0 0

⎤⎦⎡⎣Ct−1

It−1

Yt−1

⎤⎦=
⎡⎣5 0 0

3 −0.2 0
0 0 1

⎤⎦⎡⎣ 1
Rt

Gt

⎤⎦
Since

A−1
0 = 1

0.4

⎡⎣1 0.6 0.6
0 0.4 0
1 1 1

⎤⎦ (11.28)

solving for the reduced form xt =�1xt−1+�0zt in (11.11), we obtain the matrix of impact
multipliers

�0 =A−1
0 B=

⎡⎣17 −0.3 1.5
3 −0.2 0

20 −0.5 2.5

⎤⎦ (11.29)

and the matrix

�1 =−A−1
0 A1=

⎡⎣0 0 0.6
0 0 0.4
0 0 1

⎤⎦ (11.30)

from which the interim and dynamic multipliers may be computed for different values of j.
For example, from (11.29), we have that

π033 =
∂Y

∂G
= 2.5 (11.31)
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which gives the overall impact, allowing for all interactions in the current period, of a
change in government expenditure on national income. Similarly, if we denote the interim
multipliers �

j
1�0 by N j , j = 1,2, . . . , we have

n133 = 2.5 (11.32)

n133 +π033 = d133 = 5 (11.33)

where (11.32) gives the one-period interim multiplier for government expenditure on
national income, and (11.33) gives the one-period dynamic multiplier for government expen-
diture on national income. It is left as an exercise to compute interim and dynamic multipliers
for longer periods; see Exercise 11.2.

However, in this illustration, the equilibrium multipliers do not exist. Insight into this fact
is provided by the results that I−�1 is singular and �2

1=�1, both of which may be checked
as a final exercise with this application; see Exercise 11.3. Thus the matrix �1 is idempotent
and does not converge to 03×3 as it is raised to higher powers, j →∞. As �1 is an upper
triangular matrix, its eigenvalues are its diagonal elements, λ1= 0, λ2= 0 and λ3= 1, which
is a familiar property of idempotent matrices; recall Exercise 3.20. ♦

11.3 Input–output analysis
As mentioned in Chapter 1, input–output analysis provides an alternative way of describing
and analysing an economy to that provided by Keynesian macroeconomic models such as
the one examined in the previous section. The background to the input–output approach and
the definition of our notation have been given in Chapter 1, while the problem posed by the
approach has been restated via (11.4) in the introduction to the present chapter. In matrix
form, (11.4) is

f+Ax= x (11.34)

where

f= [ fi ]n×1, A= [aij]n×n and x= [xi ]n×1 (11.35)

We require the solution for x, the n-vector of total industry outputs, in terms of f, the n-vector
of final consumer demands, and A, the matrix of input–output coefficients.

We have noted previously that fi ≥ 0 for all i and aij ≥ 0 for all i, j. It is sensible to add
that xi ≥ 0 for all i. Moreover, to ensure a non-negative net output from all industries – net,
that is, of industries’ demands for their own outputs – we require that

xi − aiixi ≥ 0 ∀ i (11.36)

Therefore

(1− aii)xi ≥ 0 and (1− aii)≥ 0 (11.37)

which implies that 0≤ aii ≤ 1 for all i .
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The input–output coefficients in any column of A, say the j th, indicate the amount of
every input per unit of output of the corresponding industry, j. They therefore describe the
linear production process for industry j .

In approaching the solution of the input–output system, we may, first, use basic matrix
operations to rewrite (11.34) as

f= x−Ax= Ix−Ax= (I−A)x (11.38)

The typical term of the vector (I−A)x in (11.38), namely,

xi − aiixi − ai1x1 − · · ·− ai(i−1)xi−1 − ai(i+1)xi+1 − · · ·− ain xn (11.39)

is of interest. It denotes the amount of good i left over for consumption by final consumers
after all industries, including the i th itself, have taken their quantities of the good for pro-
duction purposes. Thus for fi > 0, so that some of good i is available to final consumers, the
expression in (11.39) must be positive.

The solution we seek is straightforward. If I−A is non-singular, then

x= (I−A)−1f

≡Bf≡ f1b1 + f2b2 + · · ·+ fnbn (11.40)

where the bi are the columns of (I−A)−1. We observe that the solution vector is in the
column space of (I−A)−1, i.e. x∈ lin{b1,b2, . . . ,bn}=R

n .We may also note that columns
of (I−A)−1 have a useful interpretation as vectors of ‘multipliers’ with respect to the final
demands. For instance,

b j = ∂x
∂ f j

=
[
∂xi

∂ f j

]
n×1

(11.41)

which contains the overall effects on the total output from each industry of a unit change in
the final consumer demand for good j, allowing for all inter-industry intermediate demands.
However, we must look at this solution more carefully and, in particular, examine what is
required for the non-singularity of I−A.

The solution (11.40) may be written in another useful form. By recursively substituting
for x in (11.34), we obtain

f+Ax= f+A(f+Ax)= f+Af+A2x

= f+Af+A2(f+Ax)= f+Af+A2f+A3x (11.42)

Repeating this substitution operation n times, we get

x= f+Af+A2f+A3f+ · · ·+Anf+An+1x

= (I+A+A2+A3 + · · ·+An)f+An+1x (11.43)

Thus if An+1 → 0 as n→∞, we have that

x= (I+A+A2+A3 + · · · )f (11.44)
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Comparing this solution with the original result in (11.40), we conclude that

x= (I−A)−1f= (I+A+A2+A3 + · · · )f (11.45)

and, hence, that

(I−A)−1 = (I+A+A2+A3 + · · · )=
∞∑

i=0

Ai (11.46)

This is just the matrix series expansion of the inverse (I−A)−1 that we first encountered in
Section 8.5.2. The crucial requirement for this to exist is that Ai → 0 as i →∞. But this
is essentially the same condition we encountered in the previous application involving the
dynamic linear model and the matrix �1; see (11.19) and Theorem 8.5.1. It is therefore left
as an exercise to verify that a necessary and sufficient condition for the non-singularity of
I−A, and, hence, for the input–output problem to have a meaningful solution, is that the
eigenvalues of A all have modulus less than one; see Exercise 11.4.1

EXAMPLE 11.3.1 Consider the following two-industry case, where the matrix of input–
output coefficients is

A=
[

0.2 0.3
0.4 0.1

]
(11.47)

Here, for example, industry 1 uses 0.2 of a unit of its own output in producing one unit of
its own output; and it uses 0.4 of a unit of industry 2’s output to produce one unit of its own
output. Note the linear nature of the production process, production function and isoquant
map implied by these two numbers. A similar interpretation applies to the numbers in the
second column of A.

It follows that

I−A=
[

0.8 −0.3
−0.4 0.9

]
(11.48)

from which, using (11.39) and assuming, for example, that each industry is producing the
same number of units of output, we conclude that 0.5 of a unit of industry 1’s output is
available for final consumers for every unit of output 1 produced, allowing for industrial
demands for industry 1’s output. The corresponding figure for industry 2’s output is also 0.5.

Further, we have that det(I−A)=0.6,

adj(I−A)=
[

0.9 0.3
0.4 0.8

]
(11.49)

and

(I−A)−1 =
[

3
2

1
2

2
3

4
3

]
(11.50)
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This matrix gives the output multipliers. Thus, for example, if final consumer demand for
good 1 were to increase by one unit, then total output from industry 1 would need to
increase by ∂x1/∂ f1=1 1

2 units to meet that demand and all associated intermediate industrial
demands. Similarly, we have that

∂x1

∂ f2
= 1

2
,

∂x2

∂ f1
= 2

3
,

∂x2

∂ f2
= 4

3
(11.51)

The matrix in (11.50) also allows us to obtain the solution vector, x, for any given final
demands. For example, suppose it is required to provide f1=10 and f2=20 units of the two
goods for consumers, then the two industries would need to produce the amounts given by
the elements in

x= (I−A)−1f=
[

3
2

1
2

2
3

4
3

][
10
20

]
=
[

25
100
3

]
(11.52)

Of the 25 units of output produced by industry 1, a11x1=0.2×25=5 would be consumed by
industry 1 and a12x2 = 0.3× 100

3 = 10 by industry 2, making a total intermediate industrial
demand of 15 and the balance of 10 units of output for final consumers, as required. The
corresponding decomposition for the 100

3 units of output produced by industry 2 is obtained
in similar fashion.

Having demonstrated the non-singularity of I−A and the existence of a solution in this
case, it follows that the eigenvalue condition on A must be satisfied. However, as an exercise,
it might be checked that the characteristic equation

|A− λI| = 0 (11.53)

yields the quadratic equation

λ2 − 0.3λ− 0.1= 0 (11.54)

from which the eigenvalues are determined as

λ1 =−0.2 and λ2 = 0.5 (11.55)

both of which are less than unity in absolute value; see Exercise 11.5.
Finally, the convergence implied by these eigenvalues and the non-singularity of I−A

could be explored directly by computing powers of A. For instance,

A2 =
[

0.16 0.09
0.12 0.13

]
(11.56)

and

A3 =
[

0.068 0.057
0.076 0.049

]
(11.57)

The rate of convergence of the terms of the matrix series expansion of (I−A)−1 to the zero
matrix quickly becomes apparent. ♦
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EXERCISES
11.1 Distinguish between the structural form, the reduced form and the final form of a
dynamic linear system of equations. Derive the final form of the system from the specific
reduced form given in equation (11.11).

11.2 Consider the system given by equations (11.6), (11.7) and (11.8).

(a) Derive the two-period and the three-period dynamic multipliers for national income, Y ,
with respect to government expenditure, G.

(b) Derive the one-period and the two-period dynamic multipliers for consumption, C , with
respect to the rate of interest, R.

(c) Find a condition on the structural parameters such that equilibrium multipliers for this
system exist.

11.3 Show that equilibrium multipliers do not exist for the macroeconomic model specified
in Example 11.2.

11.4 Let A be a matrix of input–output coefficients. Verify theoretically that, for the non-
singularity of I−A, and hence for the solubility of the input–output problem, the eigenvalues
of A must all be less than one in absolute value, assuming real eigenvalues.

11.5 Consider the input–output matrix given in equation (11.47),

A=
[

0.2 0.3
0.4 0.1

]
(a) Sketch the isoquants implied by the input–output matrix for both industry 1 and indus-

try 2, i.e. the indifference maps of the functions gi , where gi (x1, x2) is the maximum
amount of good i that can be produced from x1 units of good 1 and x2 units of good 2,
i = 1,2.

(b) Find the amounts of good 2 used by industry 1 and industry 2, when the final consumer
demands for the goods are f1 = 15 and f2 = 30, respectively.

(c) Determine by how much each industry output would need to change if:

(i) f1 were to increase from 15 to 20; and
(ii) f2 were to decrease from 30 to 25.

(d) Calculate the eigenvalues of the matrix A.
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12 Single-period choice under
certainty

12.1 Introduction
Economic decisions can always be reduced to optimization problems. The economic reality
is that these decisions are invariably subject to resource constraints. This chapter will con-
sider in detail the most basic example, the expenditure decision of an individual consumer,
assuming a single time horizon and no risk or uncertainty. Later chapters will relax these
assumptions by allowing for multi-period decision-making and decision-making in the face
of uncertainty. Decision-making of those kinds is in the realm of finance or financial eco-
nomics, a particular subfield of microeconomics. The objective function in the consumer’s
problem will be called a utility function and will often be quasi-concave or concave. We
begin by discussing the properties of the utility function using an axiomatic approach to
consumer choice.

12.2 Definitions

12.2.1 Economies

There are two possible types of economy that we could analyse:

• a pure exchange economy, in which households are endowed directly with goods, but
there are no firms, there is no production, and economic activity consists solely of pure
exchanges of an initial aggregate endowment; and

• a production economy, in which households are further indirectly endowed with, and
can trade, shares in the profit or loss of firms, which can use part of the initial aggregate
endowment (including an endowment of labour) as inputs to production processes whose
outputs are also available for trade and consumption.

Economies of these types comprise:

• H households or agents or consumers or (later) investors or, merely, individuals,
indexed by the subscript h;

• N goods or commodities, indexed by the superscript n; and
• (in the case of a production economy only) F firms, indexed by f .

This chapter concentrates on the theory of optimal consumer choice and of equilibrium in
a pure exchange economy. The theory of optimal production decisions and of equilibrium
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in an economy with production is mathematically similar; see Varian (1992) or Takayama
(1994) for a good mathematical treatment.

Goods can be distinguished from each other (and consequently can differ in value and in
cost of production) in many ways:

1. obviously, by intrinsic physical characteristics, e.g. apples or oranges;
2. by the time at which they are consumed, e.g. Christmas decorations or gifts delivered

before Christmas day or the same decorations or gifts delivered after Christmas day; an
Easter egg delivered before Easter Sunday or an Easter egg delivered after Easter Sunday;1

and
3. by the state of the world in which they are consumed, e.g. the service provided by an

umbrella on a wet day or the service that it provides on a dry day.

This chapter concentrates on the first distinction; the other two are addressed in later
chapters.

12.2.2 Prices

In order to exchange goods, consumers must agree on a price, and on the units in which
that price is to be expressed. In a pure exchange or barter system, relative prices will be
expressed in units of one good per unit of another, e.g. 2.5 apples per orange. In an economy
with money or currency, the absolute prices can be expressed in terms of units of currency
per unit, e.g. e2.40 per pineapple.

In order to reduce the problem from one of finding absolute prices to one of finding rel-
ative prices in a pure exchange economy, we merely choose one commodity or bundle of
commodities to be a numeraire and express all prices in terms of the price of the numeraire.

There is no money, as such, in the pure exchange economy. In terms of the standard
definition of money as something that is both a medium of exchange and a unit of account:

• the pure exchange economy has no specialized medium of exchange, but
• the numeraire commodity serves as a unit of account.

12.2.3 Consumers and utility functions

The important characteristics of consumer h are that (s)he is faced with the choice of a
consumption vector or consumption plan or consumption bundle, xh = (x1

h , x2
h , . . . , x N

h ),
from a (closed, convex) consumption set, Xh . Typically, Xh = R

N+ . More generally, con-
sumer h’s consumption set might require a certain subsistence consumption of some
commodities, such as water, and rule out points of RN+ not meeting this requirement. The
consumer’s endowments are denoted eh ∈Xh and can be traded. Labour is a good with which
most consumers are endowed.

In a production economy, the shareholdings of consumers in firms are denoted ch ∈R
F :

negative shareholdings (short-selling; see Definition 13.3.1) may be allowed.
A consumer’s net demand or excess demand or vector of desired trades is denoted by

zh ≡ xh − eh ∈R
N .

Each consumer is assumed to have a (weak) preference relation or preference ordering,
which is a binary relation on the consumption set Xh ; see Definitions 0.0.10 and 0.0.11 for
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general information on binary relations and Varian (1992, Chapter 7) for their application in
consumer theory.

Since each consumer will have different preferences, we should really denote con-
sumer h’s preference relation by �h , but the subscript will be omitted for the time being
while we consider a single consumer. Similarly, we will assume for the time being that each
consumer chooses from the same consumption set, X , although this is not essential.

An indifference relation, ∼, and a strict preference relation, #, can be derived from
every preference relation:

1. x # y means x � y but not y� x , while
2. x ∼ y means x � y and y� x .

The utility function u:X →R represents the preference relation � if

u(x)≥ u(y) ⇔ x� y (12.1)

If f :R→R is a monotonically increasing function and u represents the preference relation
�, then f ◦ u also represents �, since

f (u(x))≥ f (u(y)) ⇔ u(x)≥ u(y) ⇔ x� y (12.2)

Furthermore, u and f ◦ u have the same level sets or, as they are always called in consumer
theory, indifference curves; see Definition 7.7.2.

If X is a countable set, then there exists a utility function representing any preference
relation on X . To prove this, just write out the consumption plans in X in order of preference,
and assign numbers to them, assigning the same number to any two or more consumption
plans between which the consumer is indifferent.

If X is an uncountable set, then there may not exist a utility function representing every
preference relation on X .

Sections 12.3 and 12.4 analyse the optimal behaviour of an individual consumer under
conditions of certainty or perfect foresight. Sections 12.5 and 12.6 look at interactions among
consumers.

12.3 Axioms
We now consider six axioms that are frequently assumed to be satisfied by preference rela-
tions when considering consumer choice under certainty. Section 16.4.3 will consider
further axioms that are often added to simplify the analysis of consumer choice under
uncertainty. After the definition of each axiom, we will give a brief rationale for its use.

AXIOM 1 (COMPLETENESS). A (weak) preference relation is complete.

Completeness means that the consumer is never agnostic.

AXIOM 2 (REFLEXIVITY). A (weak) preference relation is reflexive.

Reflexivity means that each bundle is at least as good as itself.

AXIOM 3 (TRANSITIVITY). A (weak) preference relation is transitive.

Transitivity means that preferences are rational and consistent.
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y

•

x2

x1
0

By ≡{x∈X : x� y}

Wy ≡{x∈X : y� x}

Figure 12.1 Continuous preferences when N = 2

These first three axioms are three of the four properties of binary relations that were intro-
duced in Definition 0.0.11. Note that the remaining property, namely, symmetry, would not
be a very sensible axiom for a preference relation, since it would imply indifference between
all possible consumption bundles on the part of the consumer.

AXIOM 4 (CONTINUITY). The preference relation � is continuous, i.e. for all consump-
tion vectors y ∈ X , the sets By ≡ {x ∈ X : x � y} and Wy = {x ∈ X : y � x} (containing,
respectively, the consumption vectors as good as or better than y and those as good as
or worse than y) are closed sets.

Figure 12.1 shows an indifferences curve of a continuous preference relation for N = 2.
The sets Wy and By both contain the indifference curve, which forms their shared boundary;
Wy also contains the coordinate axes. We will see shortly that By and Wy are just the upper
contour sets and lower contour sets, respectively, of utility functions, if such exist.

Figure 12.2 illustrates lexicographic preferences, which violate the continuity axiom.
A consumer with such preference prefers more of commodity 1 regardless of the quantities
of other commodities, more of commodity 2 if faced with a choice between two consumption
vectors having the same amount of commodity 1, and so on.

In Figure 12.2, the consumption vector y is the only consumption vector that is in both the
lower contour set Wy and the upper contour set By. However, Bε(y), the open ball of radius
ε around y, never lies completely in Wy for any ε. Thus, lower contour sets are not open, and
hence upper contour sets are not closed.

Theorems on the existence of continuous utility functions have been proved by Debreu
(1959, pp. 55–9) using Axioms 1–4 only (see also Debreu (1964)) and also by Varian (1992,
p. 97), whose proof is simpler by virtue of adding an additional axiom.
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By ≡{x∈X : x� y}

Wy ≡{x∈X : y� x}

Figure 12.2 Lexicographic preferences when N = 2

THEOREM 12.3.1 (DEBREU: EXISTENCE OF UTILITY FUNCTIONS). If

(a) the consumption set X is a closed and convex set, and
(b) � is a complete, reflexive, transitive and continuous preference relation on X ,

then there exists a continuous utility function u:X →R representing �.

Proof: For the proof of this theorem, see Debreu (1959, pp. 56–9). �

AXIOM 5 (GREED). Greed is incorporated into consumer behaviour by assuming either:

(a) strong monotonicity – if X =R
N+ , then � is said to be strongly monotonic if and only if,

whenever xn ≥ yn for all n but x = y, x# y (where x= (x1, x2, . . . , x N ), etc.);

or the weaker, more general:

(b) local non-satiation – for all x∈X and ε > 0, there exists x′ ∈ Bε(x) such that x′ # x.

THEOREM 12.3.2 If preferences are strongly monotonic, then they exhibit local non-
satiation.

Proof: This should be obvious from the definitions above. �

The strong monotonicity axiom is a much stronger restriction on preferences than local
non-satiation; however, it greatly simplifies the proof of existence of utility functions.
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Note that both versions of the greed axiom rule out the existence of bliss points,
i.e. consumption vectors where a utility function (assuming that it exists) attains a local
maximum.

We will prove the existence, but not the continuity, part of the following weaker theorem.

THEOREM 12.3.3 (VARIAN: EXISTENCE OF UTILITY FUNCTIONS). If

(a) X =R
N+ , and

(b) � is a complete, reflexive, transitive, continuous and strongly monotonic preference
relation on X ,

then there exists a continuous utility function u:X →R representing �.

Proof: We will prove existence only (Varian 1992, p. 97); the continuity proof is beyond
the scope of this book.

Pick a benchmark consumption vector, e.g. 1≡ (1,1, . . . ,1).
The idea is that the utility of x is the multiple of the benchmark consumption vector to

which x is equally preferred.
By strong monotonicity, the sets {t ∈R+: t1� x} and {t ∈R+: x� t1} are both non-empty.
By continuity of preferences, both are closed (each is the intersection of a ray through the

origin and a closed set); and by completeness, they cover R+.
By connectedness of R, they intersect in at least one point, u(x), say, and x∼ u(x)1.
Now

x� y ⇔ u(x)1� u(y)1

⇔ u(x)≥ u(y) (12.3)

where the first equivalence follows from transitivity of preferences and the second from
strong monotonicity.

The assumption that preferences are reflexive is not used in establishing the existence of
the utility function, so it can be inferred that it is required to establish continuity. �

Some commonly encountered examples of preference relations are those which can be
represented by the following utility functions, details of which can be found in the various
exercises referred to. In each case, x= (x1, x2, . . . , x N ) denotes the consumption vector.

• Two-good linear–quadratic preferences (see Exercise 12.2):

u(x1, x2)≡ x2 +αx1 +β(x1)2 (β > 0) (12.4)

• Cobb–Douglas preferences (see equation (9.58)):

u(x)≡
N∏

n=1

(xn)β
n

(0<βn, n= 1,2, . . . , N ) (12.5)

This is really only well defined on R
N++.
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• Stone–Geary2 preferences (see Exercise 12.3):

u(x)=
N∑

n=1

βn ln(xn −αn) (12.6)

where the αn and βn are positive constants with
∑N

n=1 β
n =1. Cobb–Douglas preferences

are a special case of Stone–Geary preferences with α= 0N .
• Constant elasticity of substitution (CES) preferences (see Exercise 10.17):

u(x)=
( N∑

n=1

αn(xn)ρ
)1/ρ

(12.7)

• Leontief preferences (see Exercise 12.4):

u(x)= N
min
n=1

{βn xn} (12.8)

(Note the similarity to the Leontief production function mentioned in Section 1.2.3.)

We have already considered lexicographic preferences, and shown that they cannot be
represented by a real-valued utility function.

Where preferences can be represented by a utility function, the words “preference” and
“utility” become interchangeable, so that, for example, we can refer to an individual either
as having “linear–quadratic preferences” or as having “linear–quadratic utility”.

The rule that the consumer will follow is to choose the most preferred bundle from the
set of affordable alternatives (the budget set), in other words the bundle at which the utility
function is maximized subject to the budget constraint, if one exists. We know that an
optimal choice will exist if the utility function is continuous and the budget set is closed and
bounded.

If the utility function is differentiable, we can go further and use calculus to find the
maximum. So we usually assume differentiability.

If u is a concave utility function and f is an increasing function, then f ◦ u, which also
represents the same preferences, is not necessarily a concave function (unless f itself is a
convex function). In other words, concavity of a utility function is a property of the particular
representation and not of the underlying preferences. Notwithstanding this, convexity of
preferences is important, as indicated by the use of one or other of the following axioms,
each of which relates to the preference relation itself and not to the particular utility function
chosen to represent it.

AXIOM 6 (CONVEXITY). There are two versions of this axiom, which guarantees the
existence of optimal consumer strategies:

(a) convexity – the preference relation � is convex if and only if

x� y ⇒ λx+ (1− λ)y� y ∀ λ∈ (0,1) (12.9)
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(b) strict convexity – the preference relation � is strictly convex if and only if

x� y ⇒ λx+ (1− λ)y# y ∀ λ∈ (0,1) (12.10)

Note that a preference relation that is strictly convex is also convex. The difference between
the two versions of the convexity axiom basically amounts to ruling out linear segments in
indifference curves in the strict case.

With strictly convex preferences, it will be seen that the consumer’s problem generally
has a unique solution, allowing (single-valued) demand functions to be derived. With convex
preferences, there may be multiple solutions to the consumer’s problem, and we may have
to deal with (multivalued) demand correspondences.

THEOREM 12.3.4 The preference relation � is (strictly) convex if and only if every utility
function representing � is a (strictly) quasi-concave function.

Proof: In either case, both statements are equivalent to saying that

u(x)≥ u(y) ⇒ u(λx+ (1− λ)y)≥(>) u(y) ∀ λ∈ (0,1) (12.11)
�

THEOREM 12.3.5 All upper contour sets of a utility function representing convex prefer-
ences are convex sets (and thus indifference curves are convex to the origin for strongly
monotonic, convex preferences).

Proof: This result follows immediately from Theorem 10.2.2. �

It can be seen that convexity of preferences is a generalization of the two-good assumption
of a diminishing marginal rate of substitution, which will be familiar to some readers from
intermediate economics courses.

Even the above axioms are not sufficient to guarantee tractability of the consumer’s prob-
lem. There are two further desirable properties of utility functions that must sometimes be
assumed and that are difficult to state in terms of the underlying preference relation.

1. The first of these properties comprises a pair of conditions known as the Inada
conditions.3 They are

lim
xi→0

∂u

∂xi
=∞ (12.12)

and

lim
xi→∞

∂u

∂xi
= 0 (12.13)

The Inada conditions will be required to rule out corner solutions in the consumer’s prob-
lem. Intuitively, they just say that indifference curves may be asymptotic to the axes but
never reach them.

2. Pseudo-concavity of utility functions is also desirable as it permits the use of Kuhn–
Tucker second-order conditions and the development of the duality properties of the
consumer’s problem.
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Note that pseudo-concavity is not invariant under increasing transformations.
(Consider, for example, the pseudo-concave function x and the non-pseudo-concave
function x3 each defined on R.)

12.4 The consumer’s problem and its dual

12.4.1 Perfect competition and the Walrasian auctioneer

Assume for the time being that trade takes place in a perfectly competitive environment.
This means that all consumers face the same prices for all units of a particular good. Neither
nonlinear pricing (for example, in the form of discounts on purchases of large quantities)
nor price discrimination is allowed. As a practical justification, it is often proposed that
there are large numbers of buyers and sellers, making collusion and price-setting difficult
and making it easy for any consumer to switch from one counter-party to another offering a
more favourable price.

It is sometimes proposed that a (mythical, Walrasian4) auctioneer calls out prices and asks
consumers how much of each good they wish to purchase at those prices until a full demand
function or schedule is revealed. In the search for equilibrium, it can be assumed that this
process continues until such time as all N markets clear simultaneously.

12.4.2 Solution

A consumer with consumption set Xh , endowment vector eh ∈Xh , shareholdings in firms
ch ∈ R

F and preference ordering �h represented by continuous utility function uh , who
desires to trade his endowment at prices p∈RN+ , faces an inequality-constrained optimization
problem:

max
x∈Xh

uh(x) s.t. p�x≤p�eh + c�h �(p)≡ Mh (12.14)

where �(p) is the vector of the F firms’ maximized profits when prices are p.
Constraining x to lie in the consumption set normally just means imposing non-negativity

constraints on the problem. These constraints are rarely binding in the examples we will
consider, since the Inada conditions usually hold.

Constraining x to satisfy the inequality

p�x≤p�eh + c�h �(p) (12.15)

known as the budget constraint, is more important. The budget constraint will almost invari-
ably be binding. The set of consumption vectors satisfying the budget constraint is sometimes
called the budget set. It is the intersection of Xh with the half-space bounded by the
hyperplane (sometimes called the budget hyperplane) with equation

p�x=p�eh + c�h �(p) (12.16)

From a mathematical point of view, the source of the household’s income is irrelevant, and
in particular the distinction between pure exchange and production economy is irrelevant.
Thus, income can be represented by Mh in either case, as it is independent of the choice of
variables x.
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We have the following theorems concerning the consumer’s problem.

THEOREM 12.4.1 (EXISTENCE OF SOLUTION). If the consumption set is R
N+ , then the

consumer’s problem has at least one solution for all price vectors p ∈ R
N++ and income

levels Mh ∈R+, and, hence, there exists a well-defined demand correspondence

x∗h :RN++ ×R++→R
N+ : (p,Mh) �→ x∗h(p,Mh) (12.17)

Proof: These are the circumstances in which the budget set is closed and bounded. Since
the utility function is continuous, we know by Theorem 10.3.1 that it attains a maximum on
the budget set. The maximum may not be unique, so we can say only that there is a demand
correspondence; further conditions would be required to guarantee the existence of a single-
valued demand function. �

In the case of demand, we will generally omit the ∗ denoting the optimal response function
and simply write xh(p,Mh).

Having established the existence of solutions to the consumer’s problem, we can now
proceed to analyse the corresponding optimal response correspondences – or functions, if
we can show that they are single-valued.

THEOREM 12.4.2 (SINGLE-VALUEDNESS OF DEMAND FUNCTIONS).

(a) If the underlying preference relation is strictly convex and can be represented by the
utility function uh, then the consumer’s problem, problem (12.14), has a unique solu-
tion. The corresponding optimal response function, usually denoted just xh, is called a
Marshallian demand function.5

(b) If the underlying preference relation is convex and can be represented by the utility func-
tion uh, then problem (12.14) can have multiple solutions. The corresponding optimal
response correspondence is called a Marshallian demand correspondence.

The truth of these theorems should become clear from the following discussion. We will
consider in turn second-order conditions, first-order conditions and uniqueness conditions
for the consumer’s problem.

1. Since the constraint functions are linear in the choice variables x, the Kuhn–Tucker theo-
rem on second-order conditions (Theorem 10.5.2) can be applied, provided that the utility
function uh is pseudo-concave.

2. In this case, the first-order conditions identify a maximum. The Lagrangian, using
multipliers λ for the budget constraint and μ∈R

N for the non-negativity constraints, is

uh(x)+ λ(Mh −p�x)+μ�x (12.18)

The first-order conditions are given by the (N -dimensional) vector equation

u′h(x)+ λ(−p�)+μ� = 0�N (12.19)

and the sign condition λ≥ 0, with λ> 0 if the budget constraint is binding. We also have
μ= 0N unless one of the non-negativity constraints is binding. The Inada conditions (see
p. 306) would rule out this possibility.

Now for each p ∈R
N++ (ruling out bads, i.e. goods with negative prices,6 and even –

see below – free goods), eh ∈Xh and ch ∈R
F , or, for each p and Mh combination, there
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is a corresponding solution to the consumer’s utility-maximization problem, denoted
xh(p, eh, ch) or xh(p,Mh). The latter function (correspondence) xh is the Marshallian
demand function (correspondence).

3. If the utility function uh is also strictly quasi-concave (i.e. preferences are strictly convex),
then the conditions of the Kuhn–Tucker theorem on uniqueness (Theorem 10.5.3) are
satisfied. In this case, the consumer’s problem has a unique solution for given prices and
income, so that the optimal response correspondence is a single-valued demand function.
On the other hand, the weak form of the convexity axiom would permit a multivalued
demand correspondence.

12.4.3 Properties of Marshallian demand

Noteworthy properties of Marshallian demand are listed below. The first three hold regard-
less of the greed axioms, but the remaining propositions are a consequence of greed.

1. If preferences are strictly convex, then Marshallian demand is a single-valued function.
2. The demand xh(p,Mh) is independent of the representation uh of the underlying

preference relation �h that is used in the statement of the consumer’s problem.
3. The demand function xh is homogeneous of degree zero in p and Mh . In other words, if

all prices and income are multiplied by α > 0, then demand does not change:

xh(αp, αMh)= xh(p,Mh) (12.20)

4. Marshallian demand functions are continuous. This follows from the theorem of the max-
imum (Theorem 10.5.4) and the discussion at the end of Section 10.5.2. It follows that
small changes in prices or income will lead to small changes in quantities demanded.

5. If preferences exhibit local non-satiation, then the budget constraint is binding. This is
because no consumption vector in the interior of the budget set can maximize utility, as
some nearby consumption vector will always be both preferred and affordable. At the
optimum, on the budget hyperplane, the nearby consumption vector that is preferred will
not be affordable. This allows the duality analysis which follows in Section 12.4.5.

6. In the case of strongly monotonic preferences, if p includes a zero price (pn = 0 for
some n), then xh(p,Mh) may not be well defined. This is because the consumer will seek
to acquire and consume an infinite amount of the free good, thereby increasing utility
without bound. For this reason, it is neater to define Marshallian demand only on the
open positive orthant in R

N , namely, RN++.
7. The components of xh(p,Mh) may either increase or decrease in income Mh . Goods

are said to be normal goods over the range of income where Marshallian demand is
increasing in income and inferior goods over the range of income where Marshallian
demand is decreasing in income; see Section 17.3.2 for a discussion of normal and inferior
goods in financial markets.

12.4.4 Properties of indirect utility

The envelope function corresponding to the consumer’s problem is called the indirect utility
function and is denoted by:

vh(p,M)≡ uh(xh(p,M)) (12.21)
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The following are interesting properties of the indirect utility function:

1. By the theorem of the maximum (Theorem 10.5.4), the indirect utility function is
continuous for positive prices and income.

2. The indirect utility function is non-increasing in p and non-decreasing in M .
3. The indirect utility function is quasi-convex in prices. To see this, let B(p) denote the

budget set when prices are p and let pλ≡ λp+ (1− λ)p′.
CLAIM. We claim that B(pλ)⊆ (B(p)∪ B(p′)).

Proof: Suppose this was not the case, i.e. for some x, p�λ x ≤ M but p�x > M and
p′�x>M . Then taking a convex combination of the last two inequalities yields

λp�x+ (1− λ)p′�x>M (12.22)

which contradicts the first inequality.
It follows that the maximum value of uh(x) on the subset B(pλ) is less than or equal to

its maximum value on the superset B(p)∪ B(p′).
In terms of the indirect utility function, this says that

vh(pλ,M)≤max{vh(p,M), vh(p′,M)} (12.23)

or that vh is quasi-convex. �

4. The indirect utility function vh(p,M) is homogeneous of degree zero in p and M , or

vh(λp, λM)= vh(p,M) (12.24)

12.4.5 The dual problem

Consider also the (dual) expenditure-minimization problem:

min
x

p�x s.t. uh(x)≥ ū (12.25)

where ū is some desired level of utility. In other words, what happens if expenditure is
minimized subject to a certain level of utility, ū, being attained?

The solution (optimal response function) is called the Hicksian7 or compensated
demand function (or correspondence) and is usually denoted hh(p, ū).

If the local non-satiation axiom holds, then the constraints are binding in both the utility-
maximization and expenditure-minimization problems, and we have a number of duality
relations. In particular, there will be a one-to-one correspondence between income M and
utility ū for a given price vector p.

The envelope function corresponding to the dual problem is called the expenditure
function:

eh(p, ū)≡p�hh(p, ū) (12.26)

The expenditure function and the indirect utility function will then act as a pair of inverse
envelope functions mapping utility levels to income levels and vice versa, respectively.
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The following duality relations (or fundamental identities, as Varian (1992, p. 106) calls
them) will prove extremely useful later on:

e(p, v(p,M))= M (12.27)

v(p, e(p, ū))= ū (12.28)

x(p,M)=h(p, v(p,M)) (12.29)

h(p, ū)= x(p, e(p, ū)) (12.30)

These are just (10.133)–(10.136) adapted to the notation of the consumer’s problem.
The consumer’s problem, its dual problem and the associated optimal response functions

and envelope functions are summarized in Table 12.1.

12.4.6 Properties of Hicksian demands

The following are interesting properties of the Hicksian demand function:

1. The Hicksian demand is specific to a particular representation of the underlying
preferences.

2. Hicksian demands are homogeneous of degree zero in prices:

hh(αp, ū)=hh(p, ū) (12.31)

3. As in the Marshallian approach, if preferences are strictly convex, then any solution to the
expenditure-minimization problem is unique and the Hicksian demands are well-defined
single-valued functions.

It is worth going back to the uniqueness proof on p. 309 with this added interpretation.
If two different consumption vectors minimize expenditure, then they both cost the same
amount, and any convex combination of the two also costs the same amount. But by
strict convexity, a convex combination yields higher utility, and nearby there must, by
continuity, be a cheaper consumption vector still yielding utility ū.

If preferences are not strictly convex, then Hicksian demands may be correspondences
rather than functions.

4. By the theorem of the maximum (Theorem 10.5.4), Hicksian demands are continuous.

Table 12.1 The consumer’s problem and its dual

Problem Utility maximization Expenditure minimization

Objective function uh(x) p�x

Constraint p�x≤p�eh + c�h �(p)≡ Mh uh(x)≥ ū

Optimal response Marshallian demand: Hicksian demand:
function xh(p,M) hh(p, ū)

Envelope Indirect utility: Expenditure:
function vh(p,M)≡ uh(xh(p,M)) eh(p, ū)≡p�hh(p, ū)
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12.4.7 Properties of the expenditure function

The following are interesting properties of the expenditure function:

1. By the theorem of the maximum (Theorem 10.5.4), the expenditure function is con-
tinuous.

2. The expenditure function itself is non-decreasing in prices, since raising the price of one
good while holding the prices of all other goods constant cannot reduce the minimum cost
of attaining a fixed utility level.

Raising the price of a good that is not demanded might leave expenditure unchanged,
so we cannot say that the expenditure function is strictly increasing in prices in all cases.
A counter-example is provided by the linear–quadratic utility function, or any utility
function for which demand hits zero at high levels of own price.

3. The expenditure function is concave in prices. To see this, we just fix two price vectors
p and p′ and consider the value of the expenditure function at the convex combination
pλ≡ λp+ (1− λ)p′:

e(pλ, ū)= (pλ)�h(pλ, ū)

= λp�h(pλ, ū)+ (1− λ)(p′)�h(pλ, ū)

≥ λp�h(p, ū)+ (1− λ)(p′)�h(p′, ū)
= λe(p, ū)+ (1− λ)e(p′, ū) (12.32)

where the inequality follows because the cost of a sub-optimal bundle for the given prices
must be no less than the cost of the optimal (expenditure-minimizing) consumption vector
for those prices.

4. The expenditure function is homogeneous of degree one in prices:

eh(αp, ū)=αeh(p, ū) (12.33)

Sometimes we meet two other related functions:

• The money metric utility function

mh(p,x)≡ eh(p,uh(x)) (12.34)

is the (least) cost at prices p of being as well off as with the consumption vector x.
• The money metric indirect utility function

μh(p;q,M)≡ eh(p, vh(q,M)) (12.35)

is the (least) cost at prices p of being as well off as if prices were q and income was M .

12.4.8 Further results in consumer theory

In this section, we present four important theorems on demand functions and the corre-
sponding envelope functions. Shephard’s lemma will allow us to recover Hicksian demands
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from the expenditure function.8 Similarly, Roy’s identity will allow us to recover Marshal-
lian demands from the indirect utility function.9 The Slutsky symmetry condition and the
Slutsky equation provide further insights into the properties of consumer demand.10

THEOREM 12.4.3 (SHEPHARD’S LEMMA). The partial derivatives of the expenditure
function with respect to prices are the corresponding Hicksian demand functions, i.e.

∂eh

∂pn
(p, ū)= hn

h(p, ū) (12.36)

Proof: By differentiating the expenditure function with respect to the price of good n and
applying the envelope theorem (Theorem 10.4.4), we obtain

∂eh

∂pn
(p, ū)= ∂

∂pn
(p�x+ λ(uh(x)− ū)) (12.37)

= xn (12.38)

which, when evaluated at the optimum, is just hn
h(p, ū), as required.

(To apply the envelope theorem, we should be dealing with an equality-constrained opti-
mization problem; however, if we assume local non-satiation, we know that the budget
constraint or utility constraint will always be binding, and so the inequality-constrained
expenditure-minimization problem is essentially an equality-constrained problem.) �

THEOREM 12.4.4 (ROY’S IDENTITY). Marshallian demands may be recovered from the
indirect utility function using

xn(p,M)=−∂v(p,M)/∂pn

∂v(p,M)/∂M
(12.39)

Proof: For a proof of Roy’s identity, see Varian (1992, pp. 106–7).
It is obtained by differentiating the duality relation (12.28)

v(p, e(p, ū))= ū (12.40)

with respect to pn , using the chain rule, which implies that

∂v

∂pn
(p, e(p, ū))+ ∂v

∂M
(p, e(p, ū))

∂e

∂pn
(p, ū)= 0 (12.41)

and using Shephard’s lemma gives

∂v

∂pn
(p, e(p, ū))+ ∂v

∂M
(p, e(p, ū))hn(p, ū)= 0 (12.42)

Hence,

hn(p, ū)=−∂v(p, e(p, ū))/∂pn

∂v(p, e(p, ū))/∂M
(12.43)
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and expressing this last equation in terms of the relevant level of income M rather than the
corresponding value of utility ū:

xn(p,M)=−∂v(p,M)/∂pn

∂v(p,M)/∂M
(12.44)

�

THEOREM 12.4.5 (SLUTSKY SYMMETRY CONDITION). All cross-price substitution
effects are symmetric:

∂hn
h

∂pm
= ∂hm

h

∂pn
(12.45)

Proof: From Shephard’s lemma, we can easily derive these conditions, assuming that the
expenditure function is twice continuously differentiable. Under this assumption, by Young’s
theorem (Theorem 9.7.2) we have that

∂2eh

∂pm∂pn
= ∂2eh

∂pn∂pm
(12.46)

Since hm
h = ∂eh/∂pm and hn

h = ∂eh/∂pn , the result follows. �

Unlike the other theorems in this section, the next result has no special name.

THEOREM 12.4.6 Since the expenditure function is concave in prices (see p. 312), the cor-
responding Hessian matrix is negative semi-definite (by Theorem 10.2.5). In particular, its
diagonal entries are non-positive, or

∂2eh

∂(pn)2
≤ 0, n= 1,2, . . . , N (12.47)

Using Shephard’s lemma, it follows that

∂hn
h

∂pn
≤ 0, n= 1,2, . . . , N (12.48)

In other words, Hicksian demand functions, unlike Marshallian demand functions, are uni-
formly decreasing in own price. Another way of saying this is that own-price substitution
effects are always negative.

THEOREM 12.4.7 (SLUTSKY EQUATION). The total effect ∂xm(p,M)/∂pn of a price
change on (Marshallian) demand can be decomposed as follows into a substitution effect
∂hm(p, ū)/∂pn and an income effect −[∂xm(p,M)/∂M] hn(p, ū):

∂xm

∂pn
(p,M)= ∂hm

∂pn
(p, ū)− ∂xm

∂M
(p,M)hn(p, ū) (12.49)

where ū≡ v(p,M).
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Before proving this, let us consider the signs of the various terms in the Slutsky equation
and look at what it means in a two-good example, as illustrated in Figure 12.3. Figure 12.3
shows one indifference curve of the utility function, uh(x1, x2)= ū, say, and three budget
lines in x1x2 space. A reduction in the price of the first good from p1 to p1′, keeping income
fixed at M , say, causes the budget line to swing outwards from L1 to L2. The dotted budget
line L3 represents the expenditure required to maintain the original utility level ū at the new
relative prices.

Point A represents the optimal solution to the utility-maximization problem at the original
prices. Point B represents the optimal solution to the expenditure-minimization problem at
the new prices with the original utility level. The optimal solution to the utility-maximization
problem at the new prices could lie anywhere along the line segment CF. Three possible
cases can be distinguished. By Theorem 12.4.6, we know that own-price substitution effects,
corresponding to the move along the indifference curve from A to B, are non-positive in all
three cases. The total effect of the price change is to move the solution from A to the optimal
point along CF and the income effect of the price change is to move the solution from B to
the optimal point along CF.

1. If the optimal point lies along the line segment CD, then the income effect more than
offsets the substitution effect, and the total effect of a reduction in the price of good 1 is
to reduce demand for good 1. Thus, this graphical interpretation of the Slutsky equa-
tion suggests the possible existence of Giffen goods, i.e. goods whose Marshallian
demand functions are locally increasing in own price.11 However, none of the standard

0

uh(x1, x2)= ū

M/p1 M/p1′

M/p2

L1 L2L3

• A

• B

•C

• D

• E

• F

good 1 Giffen
good 1 inferior

good 1 normal

good 1
(
x1
)

go
od

2
( x2

)

Figure 12.3 Signs in the Slutsky equation
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microeconomics textbooks gives an example of a well-behaved utility function that can
result in Giffen goods.

2. If the optimal point lies along the line segment DE, then the income effect partially offsets
the substitution effect, but the total effect of a reduction in the price of good 1 is to increase
demand for good 1. As noted above, goods (including Giffen goods) with this property
are said to be inferior goods.

3. Finally, if the optimal point lies along the line segment EF, then the income effect
reinforces the substitution effect, and good 1 is locally a normal good.

Note that goods that are locally normal, inferior or Giffen at one price vector may have
different properties at another price vector.

We now return to the algebraic proof of the Slutsky equation for the N -good case.

Proof of Slutsky equation: Differentiating the right-hand sides of the mth component of
the fundamental identity (12.30)

h(p, ū)= x(p, e(p, ū)) (12.50)

with respect to pn , using the chain rule, yields

∂hm

∂pn
(p, ū)= ∂xm

∂pn
(p, e(p, ū))+ ∂xm

∂M
(p, e(p, ū))

∂e

∂pn
(p, ū) (12.51)

or

∂xm

∂pn
(p, e(p, ū))= ∂hm

∂pn
(p, ū)− ∂xm

∂M
(p, e(p, ū))

∂e

∂pn
(p, ū) (12.52)

To complete the proof, substitute from Shephard’s lemma and use the fact that M ≡ e(p, ū)
(since ū≡v(p,M)) to obtain (12.49) as required. �

12.5 General equilibrium theory

12.5.1 Definitions

Our analysis of general equilibrium will be confined for the time being to a pure exchange
economy.

DEFINITION 12.5.1 An allocation is a collection of consumption vectors for each individ-
ual in an economy,

X≡ [x1 x2 · · · xh · · · xH ] (12.53)

Since we have specified that there are N commodities, X is an N × H matrix.

DEFINITION 12.5.2 An allocation is feasible, given endowments e1, e2, . . . , eH , provided
that

H∑
h=1

xn
h ≤

H∑
h=1

en
h ∀ n (12.54)
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In other words, a feasible allocation does not require the availability of more than the aggre-
gate endowment of the nth good, or an allocation is feasible, given an aggregate endowment,
if it can be achieved by redistributing that aggregate endowment.

DEFINITION 12.5.3 An allocation is market-clearing, given endowments e1, e2, . . . , eH ,
provided that

H∑
h=1

xn
h =

H∑
h=1

en
h ∀ n (12.55)

DEFINITION 12.5.4 A competitive equilibrium (often called a Walrasian equilibrium or
just an equilibrium) is a price–allocation pair (p,X) with the following properties, given
endowments e1, e2, . . . , eH :

(a) pn ≥ 0 for all n = 1,2, . . . , N with pn > 0 for some n (in other words, all prices are
non-negative but not all goods are free);

(b) for all h = 1,2, . . . ,H , the hth column of X, xh , maximizes individual h’s utility given
the prices p; and

(c) X is a feasible allocation.

Note that we do not require markets to clear exactly in equilibrium, but allow for the
possibility that one or more goods may be in excess supply. Equilibrium is the situation in
which no good is in excess demand.

Note also that, if (p,X) is a competitive equilibrium, then (λp,X) is also a competitive
equilibrium for any positive scalar λ. Thus, without loss of generality, we can confine our
search for equilibrium prices to the unit simplex, SN−1; see Definition 7.4.2.

If q is any equilibrium price vector, then the price vector

p≡ 1

q�1
q (12.56)

will also be an equilibrium price vector (with the same equilibrium allocation X). Since by
definition not all goods are free and thus q�1> 0, there is no danger of division by zero.

As should be clear from the preceding discussion of the consumer’s problem, absolute
equilibrium prices will certainly not be uniquely determined. Even relative equilibrium
prices may not be uniquely determined, as will be seen below.

While it might be intuitively more appealing to pick a particular good (e.g. gold) as the
numeraire, it is mathematically more convenient to use the consumption vector comprising
one unit of every commodity, or 1. This is effectively what is achieved by restricting the
search for equilibrium prices to the unit simplex.

To simplify the notation, given endowments in this pure exchange economy, we will
denote individual h’s demand at prices p by xh(p) rather than xh(p,p�eh). Then we
can define aggregate demand as x(p) ≡∑H

h=1 xh(p). Likewise, the aggregate endow-
ment vector can be defined as e≡∑H

h=1 eh and the aggregate excess demand vector as
z(p)≡∑H

h=1 zh(p).
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12.5.2 Walras’s law

THEOREM 12.5.1 (WALRAS’S LAW). The value of aggregate excess demand is non-
positive for all price vectors, i.e.

p�z(p)≤ 0 ∀ p∈ SN−1 (12.57)

Proof: Walras’s law is essentially an aggregate budget constraint.
Individual h’s budget constraint guarantees that

p�xh(p)≤p�eh ∀ h,p (12.58)

Summing these budget constraints over all individuals yields

H∑
h=1

p�xh(p)≤
H∑

h=1

p�eh ∀ p (12.59)

or

p�x(p)≤p�e ∀ p (12.60)

or, in terms of excess demand,

p�z(p)≤ 0 ∀ p (12.61)
�

There are several useful corollaries to Walras’s law, the first of which should be obvious.

COROLLARY 12.5.2 If individual preferences exhibit local non-satiation, then individual
budget constraints and, hence, Walras’s law hold as equalities, or

p�z(p)= 0 ∀ p (12.62)

COROLLARY 12.5.3 If individual preferences exhibit local non-satiation and N − 1
markets clear at prices p, then either the Nth market also clears or the Nth good is free.

Proof: It is assumed that

xn(p)= en, n= 1,2, . . . , N − 1 (12.63)

Multiplying each of these equations by pn and summing yields

N−1∑
n=1

pn xn(p)=
N−1∑
n=1

pnen (12.64)

Rearranging Walras’s law (12.62) yields

p�x(p)=p�e (12.65)
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Finally, subtracting (12.64) from (12.65) yields

pN x N (p)= pN eN (12.66)

from which it follows that either x N (p)= eN (the N th market clears) or pN = 0 (the N th
good is free). �

COROLLARY 12.5.4 If individual preferences exhibit local non-satiation and p is an
equilibrium price vector, then

(a) where prices are positive the corresponding markets clear (i.e. pn>0⇒ zn(p)=0); and
(b) goods in excess supply are free (i.e. zn(p)< 0⇒ pn = 0).

Proof: By definition of equilibrium prices, pn ≥ 0 for all n and, since the equilibrium
allocation must be feasible, zn(p)≤ 0 for all n. Hence, the product pnzn(p)≤ 0 for all n. By
local non-satiation, we have the equality version of Walras’s law:

N∑
n=1

pnzn(p)= 0 (12.67)

The only way that such a sum of non-positive terms can equal zero is if each individual term
is equal to zero, or

pnzn(p)= 0 ∀ n (12.68)

For any good for which pn > 0, it must be the case that zn(p)= 0; in other words, markets
clear exactly for goods whose prices are positive. Similarly, for any good for which zn(p)<0,
it must be the case that pn = 0; in other words, goods in excess supply must be free. �

Nowhere in this section have we assumed that individual or aggregate demand is single-
valued.

In summary, the two versions of Walras’s law state the following:

• Aggregate excess demand always satisfies

p�z(p)≤ 0 (12.69)

• If all individual preferences satisfy the local non-satiation axiom, then aggregate excess
demand satisfies

p�z(p)= 0 (12.70)

12.5.3 Equation counting

For systems of linear equations, the technique of equation counting (proving that the number
of independent equations equals the number of unknowns to be solved for) is often sufficient
to prove the existence of a unique solution. In the search for a competitive equilibrium,
however, the equations are generally nonlinear, and having the same number of equations
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and unknowns alone is neither a necessary nor a sufficient condition for the existence of a
solution. Given this caveat, it is still reassuring to note that we have:

(a) N × H + N − 1 unknowns, comprising

(i) N × H allocations xn
h , and

(ii) N −1 relative prices (assuming the existence of a numeraire with a price of unity); and

(b) N × H + N − 1 equations, comprising

(i) N × H utility-maximization first-order conditions, and
(ii) N − 1 independent market-clearing equations (the N th being redundant by

Corollary 12.5.3 above).

12.5.4 Fixed-point theorems

If single-valued demand functions exist, then Brouwer’s fixed-point theorem can be used to
demonstrate the existence of equilibrium.12 In the case of multivalued demand correspon-
dences, Kakutani’s fixed-point theorem can be used.13

THEOREM 12.5.5 (BROUWER’S FIXED-POINT THEOREM). If X is a non-empty, closed,
bounded, convex subset of Rn and f : X → X is a continuous function mapping X into itself,
then f has a fixed point, i.e. there exists x∗ ∈ X such that f (x∗)= x∗.

Proof: The full proof of this theorem is beyond the scope of this book. In fact, it is
generally proved as a corollary to Kakutani’s fixed-point theorem (Theorem 12.5.6).

When X = S1, the unit simplex in R
2, the proof is a straightforward consequence of

the intermediate value theorem (Theorem 9.6.1). The unit simplex S1 is just a closed line
segment and can be identified with the closed unit interval [0,1].

Define a new continuous function g: [0,1]→ [−1,1]: x �→ f (x)− x . Then

g(0)= f (0)− 0≥ 0 (12.71)

and

g(1)= f (1)− 1≤ 0 (12.72)

Applying the intermediate value theorem with λ=0, and noting that λ then lies between g(0)
and g(1), tells us that there exists x∗ ∈ [0,1] such that g(x∗)=0 or, equivalently, f (x∗)= x∗
as required. �

To see that X must be closed, consider the continuous function f : (0,1)→ (0,1): x �→ x2.
Since x > x2 for all x ∈ (0,1), this function has no fixed point. Extending the domain to the
closed interval [0,1], however, gives a function with two fixed points, at 0 and 1.

To see that X must be bounded, consider the continuous function f :R→R: x �→ x + 1,
which has no fixed point.

To see that X must be convex, consider the continuous function f :
[
0, 1

3

] ∪ [ 2
3 ,1

]→[
0, 1

3

] ∪ [ 2
3 ,1

]
: x �→ 1− x . This function has no fixed point. Extending the domain to the

convex interval [0,1], however, gives a function with a fixed point, at 1
2 .
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To see that X must be continuous, consider the function

f : [0,1]→ [0,1]: x �→
{

2
3 if x < 1

2
1
3 if x ≥ 1

2

(12.73)

This function has no fixed point.
The reader is advised to graph each of these functions as an exercise; see Exercise 12.5.

THEOREM 12.5.6 (KAKUTANI’S FIXED-POINT THEOREM). If X is a non-empty, closed,
bounded, convex subset of R

n and f : X → X is a convex-valued correspondence mapping
X into itself that has a closed graph, then f has a fixed point, i.e. there exists x∗ ∈ X such
that x∗ ∈ f (x∗).

Proof: Once again, the full proof of this theorem is beyond the scope of this book; see
Hildenbrand and Kirman (1988, p. 277) for more detail and Berge (1997, pp. 174–6) for a
full proof. �

12.5.5 Existence of equilibrium

THEOREM 12.5.7 (EXISTENCE OF EQUILIBRIUM IN A PURE EXCHANGE ECONOMY). If

(a) the aggregate excess demand function z is a continuous (single-valued) function (for
which a sufficient condition is strict convexity of preferences), and

(b) Walras’s law holds as an equality or p�z(p)=0 for all p (for which a sufficient condition
is that preferences exhibit local non-satiation),

then there exists p∗ ∈ SN−1 such that zn(p∗)≤ 0 for all n = 1,2, . . . , N, i.e. there exists an
equilibrium price vector.

Proof: This proof is based on Varian (1992, pp. 321–2).
Define a vector-valued function f: SN−1 → SN−1 by

p �→ 1

1�N (p+max{0N , z(p)})
(p+max{0N , z(p)}) (12.74)

where max{x,y} denotes the component-by-component maximum of two vectors.
It should be clear from this definition that 1�N f(p) = 1 and that f n(p)≥ 0 for all

n= 1,2, . . . , N so that f(p)∈ SN−1 as stated.
Furthermore, f is a continuous function since by assumption z is a continuous function, and

sums, ratios and maxima of continuous functions are continuous – unless the denominator
vanishes, which cannot happen in this case as it is positive on SN−1 by construction.

Thus all the conditions of Brouwer’s fixed-point theorem are satisfied and f has a fixed
point, say, p∗, with

p∗ = 1

1�N (p∗ +max{0N , z(p∗)})
(p∗ +max{0N , z(p∗)}) (12.75)
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Cross-multiplying and using the fact that 1�N p∗ = 1 (since p∗ ∈ SN−1) yields

(1+ 1�N max{0N , z(p∗)})p∗ =p∗ +max{0N , z(p∗)} (12.76)

Cancelling a p∗ from each side of the equation gives

(1�N max{0N , z(p∗)})p∗ =max{0N , z(p∗)} (12.77)

Taking the dot product of each side with z(p∗) gives

(1�N max{0N , z(p∗)})p∗�z(p∗)=max{0N , z(p∗)}�z(p∗) (12.78)

By assumption, Walras’s law holds in its equality form, so the left-hand side of this equation
is zero. The right-hand side is a sum of N terms. The nth term in this sum is zero if zn(p∗)≤0
and strictly positive otherwise. But a sum of such non-negative terms can equal zero only if
every single term is zero, or zn(p∗)≤ 0 for all n = 1,2, . . . , N . In other words, all markets
clear at prices p∗, and so p∗ is an equilibrium price vector as required. �

The preceding proof carries over unaltered to a production economy, where z denotes the
excess demand function for such an economy.

12.5.6 No-arbitrage principle

DEFINITION 12.5.5 An arbitrage opportunity means the opportunity to acquire a con-
sumption vector or its constituents, directly or indirectly, at one price, and to sell the same
consumption vector or its constituents, directly or indirectly, at a higher price.

THEOREM 12.5.8 (NO-ARBITRAGE PRINCIPLE). Arbitrage opportunities do not exist in
equilibrium in an economy in which at least one agent has preferences that exhibit local
non-satiation.14

Proof: If an arbitrage opportunity exists, then any individual whose preferences exhibit
local non-satiation will seek to exploit it on an infinite scale, thereby increasing wealth
without bound and removing the budget constraint. Since local non-satiation rules out bliss
points, the individual’s utility too can be increased without bound. Thus that individual’s
Marshallian demand for the components of the arbitrage opportunity is not well defined, i.e.
not finite.

If even one individual in an economy has preferences that exhibit local non-satiation, it
follows that prices that permit arbitrage opportunities will not allow markets to clear.

Conversely, if such an economy is in equilibrium, then markets must clear, demand for
all goods must be finite, and either there are no arbitrage opportunities or all individuals
have attained bliss points, which would be impossible if even one individual’s preferences
exhibited local non-satiation. �

The most useful applications of the no-arbitrage principle are probably those in the finan-
cial markets. We will come across several such applications later in this book. Many of these
applications occur in a multi-period context, for example, in defining the term structure of
interest rates; see Section 15.4. The most powerful application of the no-arbitrage principle
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in finance is in the derivation of option-pricing formulas, since options can be shown to be
identical to various combinations of the underlying security and the risk-free security; see
Exercise 16.2. Indeed, it is the no-arbitrage principle itself that allows us to refer to “the risk-
free security”, since it rules out the possibility of several different risk-free securities existing
with different risk-free rates of return in a particular currency.

The simple rule for working out how to exploit arbitrage opportunities is “buy low,
sell high”. With interest rates and currencies, for example, this may be a non-trivial
calculation.

EXAMPLE 12.5.1 A common application of the no-arbitrage principle is the theory of
covered interest rate parity.15

Suppose that an individual has access to one-period risk-free investments in both EUR and
GBP at interest rates, respectively, of iEUR and iGBP. Let St denote the current spot GBP/EUR
exchange rate and let Ft denote the current one-period forward GBP/EUR exchange rate.

A risk-free payoff in euro can be engineered in either of two ways:

(a) invest the principal, say 1 EUR, in the risk-free euro investment, for a return of 1+ iEUR;
or

(b) convert the principal to St GBP, invest the proceeds in the risk-free sterling investment
for a GBP return of St (1+ iGBP) and sell this GBP return forward for a EUR return of
(St/Ft )(1+ iGBP).

An arbitrage opportunity would exist if these payoffs were different. Thus, in equilibrium,
the forward rate must be given by

Ft = St
1+ iGBP

1+ iEUR
(12.79)

An identical result can be obtained by starting with a principal of 1 GBP.
In other words, apparent gains in the money market when interest rates differ across cur-

rencies will be eroded by losses in the foreign exchange market, or, in other words, a currency
with a higher interest rate will depreciate against one with a lower interest rate, at least inso-
far as the comparison between the current forward and spot rates is concerned. ♦

Covered interest rate parity, however, says nothing about the relationship between the
current one-period forward exchange rate Ft and the unknown future spot exchange rate
S̃t+1; the latter relationship will be discussed later, in particular in Sections 13.10.2 and 16.7.

It will be seen in Section 16.6 that there are strong parallels between

• the no-arbitrage principle,
• the risk-neutral world and
• the efficient markets hypothesis.

12.6 Welfare theorems

12.6.1 Edgeworth box

Let us consider now the simplest possible pure exchange economy, with N = H =2, i.e. two
goods and two consumers. Market-clearing allocations in this economy can be represented
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by points in Figure 12.4, a rectangular diagram with dimensions (e1
1 + e1

2)× (e2
1 + e2

2). The
coordinates of each point with respect to the lower left corner (or origin) of the so-called
Edgeworth box (sometimes also referred to as the Edgeworth–Bowley box)16 represent the
consumption vector of consumer 1, and the coordinates with respect to the upper right corner
(origin) represent the consumption vector of consumer 2. The (convex) indifference curves
of each consumer are also shown; see Exercise 12.9 for details of the calculations involved.
At a typical point in the Edgeworth box, such as A, there is a lens-shaped region (shaded)
throughout which both consumers would attain higher utility than at A. At A itself, a range
of trades are available to the consumers that would leave both strictly better off. At a point
such as B, however, the indifference curve of consumer 1 is tangential to the indifference
curve of consumer 2; any movement away from this point will leave at least one consumer
strictly worse off.

It is easily shown that an equilibrium allocation can only occur at a tangency point such
as B, with the ratio of the equilibrium prices equal to the absolute value of the common slope
of the two indifference curves. The set of all such points is known as the contract curve. The
existence proof above shows that, for any initial allocation in the Edgeworth box, there exists
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at least one budget line through that point that is somewhere perpendicular to the contract
curve (i.e. tangential to the two indifference curves that meet at that point).

The set of allocations along the contract curve has special properties, which we will now
consider in the general case of N goods and H households.

12.6.2 Pareto optimality

We have already alluded to the fact that, at points on the contract curve, and only at such
points, it is not possible to make one consumer better off, in terms of utility, without making
the other worse off. This is the motivation behind the following more general definition.

DEFINITION 12.6.1 A feasible allocation X= [x1 x2 · · · xH ] is Pareto17 optimal, given
initial endowments e1, e2, . . . , eH , if there does not exist any feasible way of re-allocating the
same initial aggregate endowment,

∑H
h=1 eh , which makes one individual better off without

making any other worse off.

DEFINITION 12.6.2 The allocation X= [x1 x2 · · · xH ] is Pareto dominated by the alloca-
tion X′ = [x′1 x′2 · · · x′H ] if

∑H
h=1 xh =∑H

h=1 x′h , with x′h �h xh for all h and x′h #h xh for at
least one h.

For example, in Figure 12.4, the point A is Pareto dominated by any point in the interior
of the shaded region. A move from A to any such point would be Pareto efficient or alloca-
tively efficient. A move to such a point that is also on the contract curve would be Pareto
optimal.

The reader should take care to distinguish between various notions of efficiency discussed
in this book, including computational efficiency (e.g. Section 2.4), statistical efficiency
(Section 14.3), informational efficiency (e.g. Section 13.10.2), mean–variance efficiency
(Sections 17.4 and 17.5) and Pareto or allocative efficiency. The notions of allocative effi-
ciency and informational efficiency are both of fundamental importance in economics and
finance.

12.6.3 First welfare theorem

THEOREM 12.6.1 (FIRST WELFARE THEOREM). If the pair (p,X) is an equilibrium
(for given preferences, �h, which exhibit local non-satiation, and given endowments, eh,
h= 1,2, . . . ,H), then X is a Pareto optimal allocation.

Proof: The proof, based on Varian (1992, Section 17.6), is by contradiction. Suppose that
X is an equilibrium allocation that is Pareto dominated by a feasible allocation X′. Then each
individual h either is strictly better off under X′ or is indifferent between X and X′.

(a) If individual h is strictly better off under X′, or x′h #h xh , then it follows that individual
h cannot afford x′h at the equilibrium prices p or

p�x′h >p�xh =p�eh (12.80)

The latter equality is just the budget constraint, which is binding since we have assumed
local non-satiation.
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(b) Similarly, if individual h is indifferent between X and X′, or x′h ∼h xh , then it follows
that

p�x′h ≥p�xh =p�eh (12.81)

since, if x′h was to cost strictly less than xh , then, by local non-satiation, some nearby con-
sumption vector (near enough to x′h to also cost less than xh) would be strictly preferred
to xh . Thus xh would not maximize utility given the budget constraint.

Summing (12.80) and (12.81) over all households (at least one of which must fall in the
former category) yields

p�
H∑

h=1

x′h >p�
H∑

h=1

xh =p�
H∑

h=1

eh (12.82)

where the equality is essentially Walras’s law.
But since X′ is feasible we must have, for each good n,

H∑
h=1

x ′nh ≤
H∑

h=1

en
h (12.83)

and, hence, multiplying by prices (which are non-negative) and summing over all goods,

p�
H∑

h=1

x′h ≤p�
H∑

h=1

eh (12.84)

But the weak inequality in (12.84) contradicts the strict inequality in (12.82), so no such
Pareto dominant allocation X′

h can exist. �

12.6.4 Second welfare theorem

The first welfare theorem showed that every competitive equilibrium allocation is Pareto
optimal. In this section, we introduce the second welfare theorem, which shows that every
Pareto optimal allocation is, in a sense to be made clear, a competitive equilibrium allocation.
We make slightly stronger assumptions than are essential for the proof of this theorem. This
allows us to give an easier proof.

THEOREM 12.6.2 (SECOND WELFARE THEOREM). If all individuals have preferences that
are convex, continuous and strongly monotonic, and if X∗ is a Pareto optimal allocation
such that all households are allocated positive amounts of all goods (x∗n

h > 0 for all n =
1,2, . . . , N , h = 1,2, . . . ,H), then a re-allocation of the initial aggregate endowment can
yield an equilibrium where the allocation is X∗.

Proof: There are four main steps in the proof, which is based on Varian (1992,
Section 17.7):
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(a) First we construct a set of utility-enhancing endowment perturbations, so that we can
use the supporting hyperplane theorem (Theorem 7.6.1) to find prices at which no such
endowment perturbation is affordable.

The supporting hyperplane theorem will essentially be applied to the upper contour
sets of quasi-concave utility functions, which are convex sets. We will interpret the sup-
porting hyperplane as a budget hyperplane, and the normal vector as a price vector, so
that at those prices nothing giving higher utility than that given by the relevant boundary
point is affordable.

We need to use the fact that a sum of convex sets, such as

X +Y ≡{x+ y: x∈ X, y∈ Y } (12.85)

is also a convex set; see Theorem 7.3.1.
Given the implicit aggregate initial endowment x∗ =∑H

h=1 x∗h , we interpret any vector
of the form z=∑H

h=1 xh − x∗ as an endowment perturbation. Now consider the set of all
ways of changing the aggregate endowment without making anyone worse off:

Z ≡
{

z∈R
N :∃ xn

h ≥ 0 ∀ n,h s.t. uh(xh)≥ uh(x∗h) and z=
H∑

h=1

xh − x∗
}

(12.86)

The set Z is a sum of convex sets

Z =
H∑

h=1

Xh −{x∗} (12.87)

where

Xh ≡{xh : uh(xh)≥ uh(x∗h)}, h= 1,2, . . . ,H (12.88)

which are convex since uh is a quasi-concave utility function representing convex
preferences.

(b) Next, we need to show that the zero vector is in the set Z , but not in the interior of Z .
To show that 0∈ Z , we just set xh = x∗h and observe that 0=∑H

h=1 x∗h − x∗.
The zero vector is not, however, in the interior of Z , since then Z would contain

some vector, say z∗, in which all components were strictly negative. In other words, we
could take away some of the aggregate endowment of every good without making anyone
worse off than under the allocation X∗. But by then giving −z∗ back to one individual,
he or she could be made better off without making anyone else worse off, contradicting
Pareto optimality, using the assumption that preferences are strongly monotonic.

So, applying the supporting hyperplane theorem with z∗ =0, we have a price vector p∗
such that 0= p∗�0≤ p∗�z for all z ∈ Z . Since preferences are strongly monotonic, the
set Z must contain all the standard unit basis vectors ((1,0,0, . . . ,0), (0,1,0, . . . ,0),
etc.). This fact can be used to show that all components of p∗ are non-negative, which is
essential if it is to be interpreted as an equilibrium price vector.

(c) Next, we specify one way of redistributing the initial endowment in order that the desired
prices and allocation emerge as a competitive equilibrium. All we need to do is to value
endowments at the equilibrium prices, and to redistribute the aggregate endowment of
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each good to consumers in proportion to their share in aggregate wealth computed in this
way.

(d) Finally, we confirm that utility is maximized by the given Pareto optimal allocation, X∗,
at these prices. As usual, the proof is by contradiction: the details are left as an exercise;
see Exercise 12.10. �

12.6.5 Complete and perfectly competitive markets

The first welfare theorem tells us that competitive equilibrium allocations are Pareto optimal
if markets are complete, i.e. if there exists a market corresponding to every good appearing
as a variable in the utility function. If there are missing markets, i.e. markets are incomplete,
then competitive trading may not lead to a Pareto optimal allocation.

We can use the Edgeworth box diagram (Figure 12.4) to illustrate the simplest possible
version of this principle: a two-good world requires only one market, in which the first good
can be exchanged for the second. Exchange allows the two households to move from an
initial endowment point somewhere off the contract curve to a competitive equilibrium on the
contract curve. However, if exchange is not possible, then the two households must remain
at the initial endowment point, which in general will not be Pareto efficient. (It is possible,
though unlikely, that the initial endowment point may by pure coincidence fall on the contract
curve.)

If we think of goods as being distinguished by physical characteristics only, then the
implicit assumption of complete markets is quite plausible. When we move on in later chap-
ters to consider choice under uncertainty, in which goods can also be distinguished by the
state of the world in which they are consumed, completeness of markets may be the exception
rather than the rule.

Like the assumption of complete markets, the assumption of perfect competition is implic-
itly built into everything that we have done so far. Much of modern microeconomics and
industrial economics deals with situations where competition is imperfect and where one or
more households or firms enjoy market power. Such situations will not be considered in this
book, but we will return later to the discussion of complete and incomplete markets.

12.6.6 The representative agent approach

Consider a pure exchange economy with an aggregate endowment of N goods represented
by the vector e∈R

N+ and with H agents with strictly convex preferences represented by the
utility functions uh , h=1,2, . . . ,H , which are assumed to exhibit local non-satiation. Recall
that strictly convex preferences guarantee that the consumer’s problem has a unique solution
and that local non-satiation guarantees that the budget constraint is strictly binding at the
unique solution.

Within this framework, we can define a representative agent as follows

DEFINITION 12.6.3 The utility derived by representative agent θ from an aggregate
endowment of e is defined to be M(θ, e), where M is the envelope function for the problem

max
{xn

h :h=1,2,...,H ; n=1,2,...,N }

H∑
h=1

θhuh(xh) s.t.
H∑

h=1

xh = e (12.89)

for some parameter vector of positive weightings18 θ ∈R
H++.

Each value of θ gives us a different representative agent.
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We will use the standard notation for the corresponding optimal response function, namely
X∗(θ, e). Representative agents differ in the weightings θh assigned to the different individu-
als’ utility functions in problem (12.89). Note that the envelope function M is homogeneous
of degree one and the optimal response function homogeneous of degree zero in the posi-
tive weightings θ . Thus, without loss of generality, we need consider only weights such that∑H

h=1 θh = 1.
Note that X∗(θ , e) will always be a Pareto optimal allocation, since otherwise it would be

possible to increase the value of the objective function in problem (12.89) by redistributing
the initial endowment e in such a way as to increase the value of some uh(xh) without
reducing the value of any other uh(xh) or of the weighted sum

∑H
h=1 θhuh(xh). We will now

analyse in more detail the correspondence between the set of Pareto optimal allocations and
the set of solutions to problem (12.89).

The first-order conditions for problem (12.89) with respect to the xn
h , obtained by

differentiating the Lagrangian with respect to xn
h , are

θh
∂uh

∂xn
h
(xh)−φn = 0, h= 1,2, . . . ,H ; n= 1,2, . . . , N (12.90)

where φ1, φ2, . . . , φN denote non-negative Kuhn–Tucker multipliers. Our aim now is to
show that these N × H equations can be solved for the N × H variables xn

h (in terms of
the multipliers φ1, φ2, . . . , φN ).

Let us consider at this stage the utility-maximization problem faced by individual h,
which is

max
{xn

h :n=1,2,...,N }
uh(xh) s.t.

N∑
n=1

pn xn
h ≤

N∑
n=1

pnen
h (12.91)

As already noted, problem (12.91) will have a unique solution for each agent, with the further
property that, by Theorem 12.5.7, there exist equilibrium prices p∗ ∈R

N+ for which markets
clear.

The first-order conditions for problem (12.91) with respect to the xn
h , obtained by

differentiating individual h’s Lagrangian with respect to xn
h , are

∂uh

∂xn
h
(xh)− λh pn = 0, h= 1,2, . . . ,H ; n= 1,2, . . . , N (12.92)

where λh is the non-negative Kuhn–Tucker multiplier for individual h’s utility-maximization
problem.

As we have assumed local non-satiation, the constraints will be binding in both prob-
lem (12.89) and problem (12.91). Hence, by the arguments in Section 10.5.1, the λh will
be strictly positive, so we can divide each individual’s set of first-order conditions by the
corresponding multiplier to obtain

1

λh

∂uh

∂xn
h
(xh)− pn = 0, h= 1,2, . . . ,H ; n= 1,2, . . . , N (12.93)
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Note now the equivalence or duality between the systems of equations (12.90) and (12.93).
If we choose the weightings in the representative agent’s utility function to equal the recip-
rocals of the corresponding equilibrium Kuhn–Tucker multipliers (θh =1/λh), then X∗(θ , e)
will equal the corresponding equilibrium allocation and furthermore the Kuhn–Tucker multi-
pliers for the representative agent’s problem will equal the corresponding equilibrium prices
(φn = pn∗).

Conversely, if we set prices equal to the Kuhn–Tucker multipliers from the representa-
tive agent’s problem and redistribute the initial endowments appropriately, then markets
will clear, and the Kuhn–Tucker multipliers from the individuals’ problems will equal the
reciprocals of their weightings in the representative agent’s utility function.

In other words, given the aggregate endowment e, there is a direct correspondence between
vectors of weightings θ and equilibrium distributions X∗ of the initial allocation.

Given an equilibrium allocation, X∗, we can find the corresponding market-clearing
prices, p∗, and compute the corresponding individual Kuhn–Tucker multipliers, λh . If we
then assign the weightings in the representative agent’s utility function in inverse proportion
to the Kuhn–Tucker multipliers, the allocation given by the representative agent’s optimal
response function will equal the equilibrium allocation.

Conversely, given a vector of weightings θ , we can use the optimal response function
to find an allocation X∗(θ , e). If we redistribute the initial endowment accordingly and
set prices equal to the Kuhn–Tucker multipliers from the representative agent’s problem
(pn =φn), then individuals will not wish to trade and the market will be in equilibrium,
with individual Kuhn–Tucker multipliers equal to the reciprocals of the corresponding
weightings.

12.6.7 Summary of characterizations of Pareto optimal allocations

We have now seen that there are four alternative equivalent characterizations of Pareto
optimal allocations, which are summarized in the following theorem.

THEOREM 12.6.3 Each of the following is an equivalent description of the set of allocations
that are Pareto optimal for given fixed initial aggregate endowments

∑H
h=1 eh:

(a) by definition, feasible allocations such that no other feasible allocation strictly increases
at least one individual’s utility without decreasing the utility of any other individual;

(b) by the welfare theorems, equilibrium allocations for all possible distributions of the fixed
initial aggregate endowment;

(c) in two dimensions, allocations lying on the contract curve in the Edgeworth box; and
(d) allocations given by the optimal response function for problem (12.89), as faced by

representative agents, for all possible weighting vectors θ ∈ SH−1.

Note that corresponding to each Pareto optimal and equilibrium allocation there is at least:

1. one equilibrium price vector, which is also the vector of Kuhn–Tucker multipliers for
problem (12.89); and

2. one vector of positive weights defining the relevant representative agent, which is also the
vector of the reciprocals of the equilibrium Kuhn–Tucker multipliers for the individual
utility-maximization problems.
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The weight θh assigned to individual h roughly speaking determines the individual’s share
of the aggregate endowment in the associated equilibrium.

EXERCISES
12.1 Consider an individual who consumes two goods. Let x represent the quantity of
the first good consumed and y the quantity of the second good consumed. Suppose that
the individual’s preferences over all possible combinations (x, y) can be represented by the
Cobb–Douglas utility function

U (x, y)= xα y1−α

where 0<α < 1. Let M denote the individual’s wealth, and p and q the prices of the two
goods.

(a) Write down the equality-constrained optimization problem that the utility-maximizing
individual must solve.

(b) Solve the problem formulated in (a).
(c) Sketch a selection of the individual’s indifference curves and his budget constraint and

indicate your solution on the diagram.
(d) What happens if the utility function is

(i) V (x, y)= xy
(ii) W (x, y)= ln x + ln y

(iii) Z(x, y)= xβ + yγ where β and γ are positive real numbers?

12.2 In introductory economics, it is often suggested that the demand function for a typical
good is linear in its own price (given income and the prices of other goods). In other words,
for the two-good case, it is suggested that the demand function for good 1, say, is given by

x1(p1, p2,M)= a(p2,M)+ b(p2,M)p1

By working backwards from the first-order conditions for the consumer’s problem, find a
two-good utility function that will give such a demand function for good 1, and find the
corresponding demand function for good 2.

Which of the standard axioms are satisfied by the preference relation underlying your
utility function?

12.3 A consumer has a Stone–Geary utility function defined by

u(x)=
n∑

j=1

β j ln(x j −α j )

where x= (x1, x2, . . . , xn) is her consumption vector and the α j and β j are positive constants
with

∑n
j=1 β j = 1.
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Prove that maximization of utility subject to the budget constraint yields the demand
functions

xi (p,M)=αi + βi

pi

(
M −

n∑
j=1

α j p j

)

for i = 1,2, . . . ,n, where p= (p1, p2, . . . , pn) is the price vector and M is income.
These demand functions describe what is known as the linear expenditure system.

Explain the rationale behind this name.

12.4 For the case of N = 2, sketch the indifference curves corresponding to the Leontief
preferences given by equation (12.8).

Compare your answer to the isoquant map corresponding to the Leontief production
function sketched for Exercise 11.5.

12.5 Draw graphs of all the functions cited on p. 320 in Section 12.5.4 as counter-examples
to Brouwer’s fixed-point theorem.

12.6 Consider a pure exchange economy in which there are three consumers, endowed with
quantities of three goods given by the 3× 3 matrix E, where ei

j , the element in row i and
column j of E, denotes consumer j’s endowment of good i . Each consumer has Cobb–
Douglas preferences, and consumer j’s preferences ( j=1,2,3) are represented by the utility
function

u j :R
3++→R: (x1, x2, x3) �→ a1

j ln x1 + a2
j ln x2 + a3

j ln x3

where (for notational simplicity) a1
j + a2

j + a3
j = 1.

(a) What proportion of the value of consumer j’s initial endowment is accounted for by the
value of his consumption of good i?

(b) Write down the individual demand functions, the aggregate demand function, the
aggregate excess demand function and the market-clearing equations for this economy.

(c) Calculate the rank of the system of market-clearing equations. (Hint: use Walras’s law.)
(d) Calculate the equilibrium prices (using good 1 as numeraire), incomes and allocations

when initial endowments are given by

E=
⎡⎣3 0 0

0 3 0
0 0 3

⎤⎦
and the parameters of the utility functions are given by

A≡
⎡⎢⎣a1

1 a1
2 a1

3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3

⎤⎥⎦= 1

4

⎡⎣1 1 2
1 2 1
2 1 1

⎤⎦
(where each column of the matrix again represents a consumer and each row represents
a good).
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(e) Repeat the previous part of this question for initial endowments given by

E=
⎡⎣1 1 2

1 2 3
4 0 0

⎤⎦
and utility functions parametrized by

A≡
⎡⎢⎣a1

1 a1
2 a1

3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3

⎤⎥⎦= 1

3

⎡⎣1 1 1
1 1 1
1 1 1

⎤⎦
12.7 Under what circumstances are the equilibrium allocations in perfectly competitive mar-
kets Pareto optimal? Using a diagram, show how your answer applies in the context of a
two-good, two-consumer economy.

12.8 Sketch the Edgeworth box and contract curve for an economy with two goods and two
consumers whose preferences are identical. (Hint: use a symmetry argument.)

12.9 Consider a two-good (1, 2), two-consumer (A, B) world in which both consumers have
Cobb–Douglas preferences.

(a) Using appropriate notation, write out the individual demand functions, aggregate demand
function and aggregate excess demand function for this economy.

(b) Explain why there is only one (independent) market-clearing equation, derive it and solve
it for the equilibrium price ratio p1/p2 in terms of the exogenous preference parameters
and the individual endowments.

(c) Find the condition(s) under which no trade will take place in equilibrium.
(d) Hence, or otherwise, write down the equation of the contract curve in this economy.
(e) Show that the contract curve is a (segment of a) rectangular hyperbola passing through

both origins in the Edgeworth box. (Hint: this will be easier to see if you choose your
units of measurement so that the aggregate endowment of each good is 1 unit.)

12.10 Confirm that the Pareto efficient allocation X∗ in the statement of the second wel-
fare theorem (Theorem 12.6.2) simultaneously maximizes each individual’s utility, given the
price vector p∗ and the initial endowments found in the proof, even in the case in which one
component of p∗ is zero.

12.11 Find the first-order conditions for the problem of redistributing a given initial endow-
ment to maximize one individual’s utility (say, that of the first individual) subject to the
constraint that all other individuals’ utilities are unchanged:

max
{xh :h=1,2,...,H}

u1(x1) s.t. uh(xh)≥ uh(x∗h), h= 2,3, . . . ,H

and the feasibility constraint∑
h

xn
h ≤

∑
h

x∗n
h ∀ n
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13.1 Introduction
Like Chapter 9 on vector calculus, this chapter aims both to reinforce the reader’s under-
standing of linear algebra, by applying it in this case to probability theory, and to prepare for
the financial applications in the final part of the book. While many readers will be familiar
with the basic concepts, such as descriptive statistics, probability, random variables, proba-
bility distributions and single-variable regression analysis, the presentation here is somewhat
more formal than that generally used in elementary courses. At the same time, it is suffi-
ciently self-contained that even a reader with a limited prior knowledge of probability will
be able to pick up the concepts that will be essential for the later applications.

Section 13.2 introduces formal definitions in a purely scalar or univariate context.
To emphasize that most of financial theory and practice can be applied to trading in any quan-
tity of which the final value is uncertain, we then present a number of simple applications
within this formal framework in Section 13.2.2.

The next two sections show different ways in which sets of random variables can be given
a vector space structure.

A discussion of expectations and moments follows in Section 13.6. Section 13.7 presents
important properties of the multivariate normal distribution. Then we consider the twin prob-
lems of estimation and forecasting in Section 13.8. The chapter continues with a random or
stochastic version of Taylor’s theorem in Section 13.9.

Section 13.10 discusses Jensen’s inequality, a simple and purely mathematical result that
follows easily from the material on convex and concave functions in Section 10.2 and the
material on expectations and moments in Section 13.6. While readers may find some of the
consequences of Jensen’s inequality counter-intuitive, the result has profound implications
in several areas of financial economics, some of which are set out after the statement and
proof of the theorem. These implications are frequently poorly understood by practitioners
with limited mathematical training.

For a more thorough treatment of probability theory, the reader is referred to the classic
textbook treatments, such as those of Mood, Graybill and Boes (1974) or Hogg and Craig
(1978).

13.2 Sample spaces and random variables

13.2.1 Definitions

When we consider a consumer’s choice under conditions of uncertainty, the objective will be
to calculate the consumer’s optimal consumption plan, by specifying optimal consumption
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for each possible state of nature or state of the world that might materialize. The optimal
consumption plan is then a random or stochastic variable with values in the relevant
consumption set or budget set.

We will now review more formally the associated concepts from basic probability theory,
namely, probability spaces and random variables.

Let� denote the set of all possible states of the world, called the sample space. For exam-
ple, � has two elements, heads and tails, if the states of the world are outcomes associated
with tossing a coin, and six elements if the states of the world are outcomes of throwing
a die.

A collection of states of the world or subset of the sample space, A ⊆ �, is called an
event. For example, an event might correspond to getting heads up when a coin is tossed or
to throwing an odd number on a die. In simple cases such as these, the coin and the die would
be said to be fair if all states of the world are equally likely. In such cases, the “classical”
probability of an event is the number of states of the world in the event divided by the total
number of states of the world in the sample space. Thus the probability of getting heads up
when a fair coin is tossed is 1

2 = 0.5; and the probability of throwing an odd number when a
fair die is rolled is 3

6 = 0.5.
Let A be a collection of events in, or subsets of, �. The function P:A→ [0,1] is a

probability function if

1. (a) �∈A,
(b) A∈A ⇒ � \ A∈A and
(c) Ai ∈A for i = 1,2, . . . ⇒ ⋃∞

i=1 Ai ∈A
(i.e. A is a sigma-algebra of events),
and

2. (a) P(�)= 1,
(b) P(� \ A)= 1− P(A) for all A∈A and
(c) P

(⋃∞
i=1 Ai

)=∑∞
i=1 P(Ai ), when A1, A2, . . . are pairwise disjoint events in A.

The triple (�,A, P) is then called a probability space.
It can be shown that the second condition on the function P is technically redundant, as it

can be derived from the first and third conditions; see Exercise 13.2.
While the properties in the definition of a sigma-algebra may not be completely intuitive,

comparison with the more intuitive properties of a probability function will make it clear
why they are required.

Probabilities are often expressed as percentages rather than fractions or decimals
between 0 and 1. For example, probabilities of 1/5, 0.2 and 20% all mean the same thing.

Note that the theory of choice under certainty (considered in Chapters 12 and 15) is just
the special case of choice under uncertainty (considered in Chapter 16) in which the set �
has only one element.

Suppose we are given a probability space (�,A, P). The real-valued function x̃ :�→R

is called a random variable (sometimes abbreviated as “rv”) if, for all x ∈R, {ω∈�: x̃(ω)≤
x} ∈A, i.e. a function is a random variable if we know the probability that the value of the
function is less than or equal to any given real number. Another way of expressing this is to
say that the function x̃ is measurable.

We generally use the notation Pr[x̃ ≤ x] as a shorthand means of denoting the probability
P({ω ∈ �: x̃(ω) ≤ x}). The Pr[·] notation will also be used occasionally in other similar
contexts.
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The convention of using a tilde over a letter to denote a random variable is common in
financial economics; in other fields, capital letters may be reserved for random variables.
In either case, small letters usually denote particular real numbers, i.e. particular values or
realizations of the random variable.

The function Fx̃ :R→ [0,1]: x �→ Pr[x̃ ≤ x] is known as the cumulative distribution
function (abbreviated as “cdf”) of the random variable x̃ . Every random variable has a cdf
and by definition the cdf is non-decreasing. The cdf completely describes the distribution
or probability distribution of the random variable. Other functions introduced below to
describe certain types of random variables or their distributions may not exist for other types
of random variables.

A stochastic process is a sequence or collection of random variables indexed by time (or,
in other contexts, such as geography, by space), e.g. {x̃t : t ∈ T } or just {x̃t } if the times are
clear from the context. The realization of a stochastic process indexed by time is therefore a
time series; see Definition 8.2.1.

13.2.2 Some common probability distributions

Random variables can be discrete, continuous or mixed. For example, any random variable
defined on a finite sample space is discrete, taking on each of its possible values with a
discrete probability between 0 and 1 (inclusive).

A discrete random variable on a finite sample space containing, say, N states of nature,
denoted x̃ , say, can also be represented as an N × 1 vector, say x= (x1, x2, . . . , xN ), where
xi denotes the realization of the random variable x̃ in state of nature i .

The probability function of a discrete random variable x̃ is the mapping fx̃ :R→ [0,1]
that associates with each number x the probability that the random variable x̃ takes the value
x . The mapping fx̃ will be zero except at, at most, a countably infinite number of points in
R. For example, if x̃ is the number of successes in n independent Bernoulli trials,1 where
the probability of success for an individual trial is q, then

fx̃ (x)= nCx qx (1− q)n−x (13.1)

In this case, x̃ is said to have a binomial distribution with parameters n and q, denoted
x̃ ∼ B(n,q). For example, x̃ might be the number of sixes obtained in three throws of an
unbiased die. In that case, x̃ ∼ B

(
3, 1

6

)
. For a biased die, x̃ would still have a binomial

distribution, but the second parameter might differ from 1
6 .

Another important discrete probability distribution is the Poisson distribution,2 for which

fx̃ (x)= e−λλx

x!
, x = 0,1,2, . . . (13.2)

where λ is a parameter of the distribution. When the number of trials n is large and the
probability of success is relatively small (say, nq≤7), the binomial probabilities are close to
the Poisson probabilities with λ= nq.

Another simple example of a discrete random variable is the trivial random variable that
takes on a single value with probability one. We will often assume in applications that ran-
dom variables are non-trivial, in other words that not all the probability mass is concentrated
at a single point. However, if the sample space is, say, the interval [0,1], then a random
variable that is, say, uniformly distributed, i.e. equally likely to take on any value in the
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interval, is continuous. The probability that such a random variable takes on a value in the
sub-interval (a,b] is clearly b − a. However, the probability that it takes on the value b
exactly is undefined, i.e. unquantifiable or infinitesimally small but not equal to zero.

A practical example of a mixed random variable is the liability of an insurer on a particular
policy or group of policies. With large positive probability, there will be no claim against the
insurer and the liability will be zero. However, if there is a claim, then the insurer’s liability
could be any positive amount up to the maximum stated in the policy. If we restrict liabilities
to whole numbers of euros and cents, for example, the random variable becomes discrete
again.

Readers who have taken courses in probability and statistics will be familiar with many
other forms of probability distribution, both discrete and continuous. Distribution theory,
however, is beyond the scope of the present work.

The probability density function (abbreviated “pdf”) of a random variable with differ-
entiable cdf is the derivative of the cdf, also denoted fx̃ :R→R+ and defined by

fx̃ (x)≡ d Fx̃

dx
(x) (13.3)

Since the cdf is non-decreasing, the pdf is non-negative. Also∫ ∞

−∞
fx̃ (x)dx = lim

x→∞ Fx̃ (x)=Pr[x̃ ≤∞]= 1 (13.4)

Conversely, by the fundamental theorem of calculus (Theorem 7.9.1), the cdf is the integral
of the pdf:

Fx̃ (x
∗)=

∫ x∗

−∞
fx̃ (x)dx (13.5)

Any non-negative function f such that
∫∞
−∞ f (x)dx = 1 is a pdf.

Indeed, in some cases, there is no closed-form solution for the cdf and it can be written in
the form (13.5) only. One such example is the normal or Gaussian distribution, which has
pdf given by

fx̃ (x)= 1√
2πσ

e
−1−

2 [(x−μ)/σ ]2

(13.6)

where μ∈R and σ ∈R++ are parameters of the distribution. This is denoted x̃ ∼ N (μ,σ 2).

The pdf of the standard normal distribution, i.e. the special case of μ= 0 and σ = 1, is
usually written

φ(x)= 1√
2π

e
−1−

2 x2

(13.7)

If ln x̃ has a normal distribution (i.e. is normally distributed), then x̃ is said to have a
lognormal distribution or to be lognormally distributed.

Just as the (probability) distribution of a random variable is completely specified by its
cdf, so it is also completely specified by its pdf, if it exists, since the cdf can be recovered
from the pdf by integration.
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Two different random variables can have the same distribution. For example, if x̃ is the
number showing on the top face of an unbiased die and ỹ≡7− x̃ , then x̃ and ỹ both take the
values 1, 2, 3, 4, 5 and 6, with probability one-sixth each. From a mathematical point of view,
two random variables are equivalent if they have the same distribution. All of the concepts
and properties introduced in the remainder of this chapter are properties of the distribution,
rather than being specific to the underlying random variable.

Students taking more advanced courses in probability theory will encounter several other
functions that, like the cdf or pdf, can be used to completely specify a probability distribution.

13.3 Applications
The sections that follow introduce a selection of financial instruments, variously (and inter-
changeably) called assets, securities, contracts or investments, which provide payoffs at
one or more future dates. The final values of these payoffs are typically uncertain at the time
when the securities are bought and sold, so the underlying instruments are described as risky
and the payoffs can be represented by random variables.

This chapter considers briefly the probability distributions of these security payoffs.
Chapters 16 and 17 will consider in more detail the economic valuation of such risky
securities.

Just as a scalar is a special or trivial case of a random variable that takes on a single value
with probability 1, we will also encounter securities, generally called bonds or risk-free
securities, whose future payoffs are known with certainty in advance; see Definition 15.4.1.

DEFINITION 13.3.1 Short-selling a security means owning a negative quantity of it.

For example, borrowing is equivalent to short-selling a risk-free security.
In practice short-selling means promising (credibly) to pay someone the same cash flows

as would be paid by a security that one does not own, always being prepared, if required, to
pay the current market price of the security to end the arrangement.

13.3.1 Lotteries

DEFINITION 13.3.2 A lottery ticket is an investment whose payoff is a discrete ran-
dom variable, with possible values or realizations x1, x2, x3, . . . occurring with respective
probabilities π1,π2,π3, . . . , say.

We will use the notation

π1x1 ⊕π2x2 ⊕π3x3 ⊕ · · · (13.8)

for such a lottery.

Similar notation will be used for compound lotteries (or mixtures of random variables),
where the payoffs themselves are further lotteries. For example,

pex̃ ⊕ q e ỹ (13.9)

is shorthand for a lottery that pays ex̃ with probability p and e ỹ with probability q ≡ 1− p,
where the realizations of the random variable x̃ or ỹ, as appropriate, may be determined
simultaneously with, or at a later time than, the choice between x̃ and ỹ.
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Table 13.1 Probability of winning (π ) and size of jackpot (J )
for a Lotto-style draw with n balls

n π J (e)

6 1 0.50
7 1/7 3.50
8 1/28 14.00
12 1/924 462.00
36 1/1947792 973 896.00
39 1/3262623 1 631 311.50
42 1/5245786 2 622 893.00

As with ordinary multiplication, the × symbol will be used in numerical examples. For
example,

0.25×e100 ⊕ 0.75×e0 (13.10)

denotes a lottery giving a one-in-four chance of receiving e100 and a 75% chance of
receiving nothing.

A familiar type of lottery is based on predicting the numbers on six numbered balls drawn
from a drum containing n numbered balls. We will consider an example that is similar to the
Lotto game run by national or state lottery organizations in many jurisdictions, but with a
single jackpot prize only. The structure of the lottery is as follows:

• There are

nC6 = n!

6! (n− 6)!
(13.11)

equally likely outcomes, each occurring with probability π ≡ 1/nC6.
• The lottery player chooses a ticket specifying exactly one of these outcomes.
• With probability 1−π the lottery player gets nothing.
• With probability π (s)he gets a jackpot prize of, say, eJ =e nC6/2.

Table 13.1 shows the probability of winning and the value of the jackpot for different
numbers of balls.

The reader is encouraged to consider how much (s)he would be willing to pay for a ticket
in each lottery in Table 13.1 and to keep a record of these amounts until we return to this
topic in Section 16.2. The Lotto game is considered further in Exercise 13.4.

13.3.2 Spread betting

Spread betting or index betting on random variables (for example, on the number of goals
scored in a soccer match or on the number of horses that finish the Grand National horse
race) means buying or selling a security whose value is deemed to equal the value realized
by the random variable.

For example, suppose that one buys the number of goals scored in a soccer match between
Arsenal and Chelsea at a price of 2.3 (goals) for e10 per goal. If the final score is Arsenal 3,
Chelsea 1, then the total number of goals scored is 4.0 and the spread bet bought for e23 has
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a final value of e40, leaving the buyer with a profit of e17, and the seller with a matching
loss of e17.

Similarly, suppose that one sells the number of finishers in the Grand National at a price
of 15.5 (finishers) for e20 per horse and that 18 horses complete the course. The spread bet
sold for e310 (=15.5× 20) must be settled for e360 (=18× 20), resulting in a loss of e50
for the seller.

The term spread betting arises from the fact that organizations offering spread betting to
the public typically offer an ask price at which the public can buy and a (lower) bid price
at which the public can sell; the difference between the ask price and the bid prices is called
the bid–ask spread or just the spread. This terminology was borrowed from markets for
commodities and financial securities.

The term index betting arises from the fact that the random variable traded is often an
index, which takes the value, say, 50 if the chosen contestant wins the contest, with values
of, say, 30 for second place, 20 for third place and 10 for fourth place. Most of the firms
offering this type of betting have names containing either the word “spread” or the word
“index”.

Futures and forward trading are more traditional forms of spread betting; indeed, they
were the original inspiration for spread betting on sporting events. The underlying random
variable in these cases is usually the value on a future settlement date or maturity date of
something like a commodity price or interest rate or exchange rate. The difference between
futures and forward trading relates essentially to differences in trading conventions. Futures
contracts are actively traded on an exchange right up to maturity and usually have a settle-
ment date at the end of a month or quarter. Forward contracts are usually one-off deals, with
a maturity date maybe 30 or 90 days after the date of execution.

13.3.3 Options

Like spread bets, options can also be traded on any random variable.

DEFINITION 13.3.3 The following types of option are defined:

(a) A European call option with exercise price K on a random variable x̃ is an option to
buy the random variable for K on a fixed expiry date in the future.

(b) An American call option on a stochastic process is an option to buy on or before the
expiry date.

(c) A put option is an option to sell.

The profit earned by exercising a European call option is x̃−K . The option will obviously
be exercised only if this profit is positive. Thus the final value of the option at expiry is
max{0, x̃ − K }.

In practice, options are most often traded on the future price of a stock market index, an
individual stock, or some other financial security.

13.3.4 State-contingent claims

DEFINITION 13.3.4 A state-contingent claim or Arrow–Debreu security is a random
variable that takes the value 1 in one particular state of nature and the value 0 in all other
states. The price of a state-contingent claim is often simply called a state price.
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The concept that is now called an Arrow–Debreu security was introduced separately by
Arrow (1953) and Debreu (1959, Section 7.3).3

When the sample space is finite, the Arrow–Debreu security that takes the value 1 in
state i , say ẽi , can, equivalently, be represented by the vector of its possible payoffs or
realizations, which is just the i th standard basis vector, ei = (0, . . . ,0,1,0, . . . ,0).

DEFINITION 13.3.5 A complex security is a random variable or lottery that can take on
arbitrary values, in other words a portfolio of state-contingent claims. A typical complex
security in a world with M states of nature can be represented either by a random variable, ỹ,
say, or by the corresponding column vector of its possible payoffs or realizations, y ∈R

M ,
say, where yi is the payoff of the complex security in state i .

The set of all possible complex securities on a given finite sample space containing M
states of nature is an M-dimensional vector space, and the M possible Arrow–Debreu secu-
rities constitute the standard basis for this vector space. We will return to this point in
Section 13.4.

Section 16.3 will consider in depth the pricing of state-contingent claims.

13.3.5 Odds and betting

The odds against the occurrence of an outcome whose probability of occurring is p are
conventionally expressed as the ratio 1−p

p , often called the odds ratio, and also sometimes
denoted (1− p): p or (1− p)/p. For example, if the probability of throwing a six on a die
is one-sixth, the corresponding fractional odds against this outcome are 5/1= 5/6

1/6 . A suc-
cessful e100 bet on throwing a six at the fair odds of 5/1 produces a profit of e500 for the
backer, yielding a total payout of e600 including the original e100 stake. An unsuccess-
ful bet produces a profit of e100 for the layer. The distinction between backer and layer is
usually clear when there are many possible outcomes or winners, but becomes blurred when
there are only two outcomes, e.g. in a sport such as baseball or tennis where all matches are
played to a conclusion.

Conventionally, where betting is legal, the layers and stakeholders are bookmakers, who
are strictly licensed and regulated, while any (adult) member of the general public can be
a customer or backer or punter. Betting takes place around the world on a wide variety
of sporting contests as well as on political elections and on random experiments such as
throwing a die or a Lotto draw. We will avoid the temptation to make ambiguous use of the
collective word “event”, which has already been given a rigorous mathematical meaning, and
will instead use the term contest to include any subject on which bookmakers make a book.

In certain jurisdictions, particularly in continental Europe, the convention in betting mar-
kets is to use decimal odds, 1

p , written in decimal rather than fractional notation. In this
notation, the odds against drawing an ace or a picture card from a standard deck of 52 cards
are 3.25= 52

16 .
Having a bet against a particular event occurring at decimal odds of x is mathemati-

cally equivalent to purchasing the corresponding state-contingent claim for a price of 1/x .
Whether or not these two transactions are legally equivalent in all jurisdictions is less certain.
The odds ratio is often described by practitioners as the “price” at which the bet is struck;
others may view the implied probability as the price. These two “prices” are reciprocals.
Each is the relative price of one item in terms of another. The difference is equivalent to the
difference between expressing the price of oranges in a barter economy as 2.5 apples per
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orange or as 0.4 oranges per apple. In odds-based markets, the rule for exploiting arbitrage
opportunities is reversed: “back high, lay low”.

In practice, the fair odds against (or, equivalently, the true probability of) an outcome are
not always as easily computed as in the case of tossing a die. For example, there is no obvious
probability model to describe the possible outcomes of a horse race or soccer match. Even
when the fair odds are easily computed, such as in a casino, bets may be placed at odds that
are more than fair or favourable to one party and less than fair or unfavourable to the other.

In real-world betting markets, the probabilities implicit in the odds against all possible
outcomes do not always sum to unity. In theory, adding up the probabilities for all the pos-
sible outcomes of a contest should give a total probability of 1.0 or, equivalently, a total
percentage of 100%. If the sum of probabilities is less than one, then backing each con-
testant in proportion to its quoted probability will lead to a certain, riskless profit, or an
arbitrage opportunity. In practice, the sum of the quoted or market probabilities is usually
(much) greater than 1.0, and the excess over 1.0 (the over-round) represents the gross profit
of the bookmaker and arises from the regulatory asymmetry between backer and layer.

Fixed-odds betting as defined here is common in many jurisdictions. Under this system,
the odds are agreed or fixed between the parties and the potential payout is known at the time
at which the bet is struck, and the only uncertainty concerns the binary outcome of the bet.

13.3.6 Pari-mutuel betting

Another common betting system is pari-mutuel or pool or tote betting. Under this system,
the odds at which a bet is settled are determined when betting ends, which is normally the
time at which the relevant contest starts. All money bet into a pari-mutuel pool (less a fixed
percentage deduction for taxes and expenses) is shared pro rata among those who place
successful bets. The potential payout on a pari-mutuel bet thus depends on everyone else’s
bets and is not known with certainty until betting has ceased.

The pool operator generally quotes prices as dividends per unit invested. While the
dividend is actually just the decimal odds at which the bet will be settled, it is usually pre-
fixed with the relevant (but redundant) currency symbol. Improvements in communications
technology have in recent times allowed pari-mutuel pools to be operated across multiple
currency areas, rendering the currency symbol even more irrelevant.

In North America, the convention is to express pari-mutuel dividends in dollars as twice
the implicit decimal odds: e.g. a dividend of $3.60 represents decimal odds of 1.8 or
fractional odds of 4/5. This anomaly arose because the minimum stake accepted is $2. A div-
idend of 1.8 also tells us that roughly five-ninths of the net pool (after deductions) was bet
on the winning outcome (slightly more or less depending on whether the declared dividend
has been rounded up or down to the nearest 10 cents according to the relevant local rounding
convention).

The commonest and most popular form of pool betting worldwide is probably the Lotto
game mentioned above. However, Lotto operators generally use a slightly different version
of the pari-mutuel system, reserving smaller fractions of the pool for consolation prizes for
those who miss the jackpot by one or two numbers, etc. (usually called Match 5 and Match 4
prizes in a six-number Lotto).

In many jurisdictions, pari-mutuel betting is the only legal form of betting on horse racing.
Pari-mutuel pools are usually run not just for straight win betting, but for exotic bets, such
as the exacta (name the first two finishers in the correct order) or the trifecta (name the first
three finishers in the correct order). Thus we will usually refer to the subjects of pari-mutuel
bets as “outcomes” rather than “contestants”.
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Pari-mutuel betting evolved in the early twentieth century as it allowed the stakeholder –
often a government-owned monopoly – to avoid bearing any risk. Under the pari-mutuel
system, the stakeholder remains the layer, while members of the general public are backers.

It will sometimes be the case, particularly when there are large numbers of potential out-
comes, as in Lotto and exotic horse race bets, that there is no bet in the pool on the winning
outcome. The convention in such cases is normally to roll over the money in the pool to the
next similar contest.

13.3.7 Exchange betting

With the advent of the Internet, another type of betting in which the stakeholder bears no
risk has evolved. This is exchange betting, which allows members of the public to make
offers, either to back or to lay any outcome, at odds of their choice. Offers arriving on the
exchange via the Internet and other channels are queued and the offer at the front of the
queue is matched when an equal and opposite offer arrives. For example, one person’s offer
to back Brazil for e100 at decimal odds of 1.9 to win the World Cup Final might be matched
with two separate offers to lay Brazil at 1.9 for e60 and e40. However, an offer to back
Brazil at 2.4 or an offer to lay Brazil at 1.6 might expire unmatched at the start of play.
Thus, while the customer no longer faces the dividend uncertainty of pari-mutuel betting,
he faces some matching uncertainty.

The betting exchange operation is funded by a commission deducted from customers’
winnings. This new paradigm has removed the asymmetry between backers and layers that
is inherent in both the fixed-odds and pari-mutuel paradigms. Some sporting bodies have
expressed concern that allowing ordinary, unlicensed market participants to be layers has
increased opportunities to profit from corruption in sport. Exchange operators have put
forward the counter-argument that the transparency of the exchange model makes it eas-
ier to identify, trace and police possible corruption, and thus acts as a disincentive to such
corruption.

Most betting exchanges operate in an odds framework, but there are some that operate
in the equivalent state-contingent claims framework. The latter are not very different from
stock exchanges and similar conventional financial exchanges.

Exchange betting is not suited to markets with large numbers of potential outcomes, as
transactions on individual unlikely outcomes would be few and far between. The pari-mutuel
system remains the obvious one for exotic betting, where the normal transaction involves a
combination bet on a number of individually unlikely outcomes, e.g. a combination trifecta
on five horses comprising equal bets on 5× 4× 3= 60 possible outcomes.

On events of any significance, offers to back and offers to lay just one tick apart can
be observed simultaneously on betting exchanges. In other words, the bid–ask spread is
minimal: backers face a total percentage just above 100% and layers face a total percentage
just below 100%. The mid-market odds generally provide a very good “estimate” of the true
odds against any outcome.

13.4 Vector spaces of random variables
We will now show that any finite set of random variables defined on a given sample space,�,
say, spans a finite-dimensional real vector space. We begin with the set of random variables
{x̃1, x̃2, . . . , x̃n}, say, where x̃i :�→R, i =1,2, . . . ,n. To define a real vector space in accor-
dance with Definition 5.4.2, we must specify the two operations of addition of random
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variables and multiplication of a random variable by a scalar. This can be done in the
following rather obvious way:

(x̃ + ỹ) :�→R :ω �→ x̃(ω)+ ỹ(ω)

λx̃ :�→R :ω �→ λ× (x̃(ω)) (13.12)

This yields a vector space, which we will denote X . The zero vector in this vector space
is the random variable that equals the scalar zero with probability 1. Any set of n random
variables on � generates such a vector space; it will be of dimension n provided that the
spanning vectors are linearly independent; in other words, provided that there is no linear
combination of the spanning random variables that equals zero with probability 1. We will
assume for the purposes of the remainder of this section that the spanning vectors are indeed
linearly independent.

In terms of the spanning set of random variables, the typical vector in X can be written in
the form a1 x̃1 + a2 x̃2 + · · ·+ an x̃n ≡ a�x̃, where x̃≡ (x̃1, x̃2, . . . , x̃n).

In terms of vectors, as with any vector space, the typical element of this space can be
represented by the n-tuple of its coordinates with respect to the chosen basis (in this case,
since we have assumed linear independence, the generating set), i.e. as a= (a1,a2, . . . ,an).

It is easy to go from the coordinate vector a∈R
n to the random variable a�x̃, but not so

easy to find the coordinates of the typical random variable ỹ ∈ X with respect to the basis
of spanning random variables. Given our assumption that the spanning vectors are linearly
independent, the method that follows can be used.4

Pick n points from the sample space �, say ω1,ω2, . . . ,ωn . Define an n × n transition
matrix P by

pji ≡ x̃i (ω j ), i, j = 1,2, . . . ,n (13.13)

and define the vector y∈R
n by

y j ≡ ỹ(ω j ), j = 1,2, . . . ,n (13.14)

Since we have assumed that ỹ ∈ X , we know that there exists a∈R
n such that

n∑
i=1

ai x̃i (ω)= ỹ(ω) ∀ ω∈� (13.15)

In particular, a must satisfy

n∑
i=1

ai x̃i (ω j )= ỹ(ω j ), j = 1,2, . . . ,n (13.16)

or

n∑
i=1

ai pji = y j , j = 1,2, . . . ,n (13.17)
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or, in matrix notation,

Pa= y (13.18)

If P was singular, then there would exist a∗ ∈R
n such that

Pa∗ = 0 (13.19)

or

n∑
i=1

pjia
∗
i =

n∑
i=1

x̃i (ω j )a
∗
i = 0, j = 1,2, . . . ,n (13.20)

If (13.20) held for all ω∈� and not just for the n sample points chosen, then our assumption
that the spanning random variables are linearly independent would be violated. So, if (13.20)
holds for the n sample points originally chosen, we can find a different set of n sample
points for which the transition matrix P defined by (13.13) will be invertible, and so the
coefficients of ỹ are given by a=P−1y (where the vector y is also redefined in terms of the
new ω1,ω2, . . . ,ωn).

Note that the elements of X here are both vectors (since they belong to an n-dimensional
real vector space) and random variables (since they are measurable functions defined on the
sample space �).5 An example of such a vector space is the portfolio space, which will be
introduced in Section 17.2. The set of all random variables on a given sample space likewise
constitutes a vector space, but one that will generally be infinite-dimensional.6 When the
underlying sample space is finite, it is finite-dimensional: for example, if the sample space
consists of the six possible orientations of a die, then the set of random variables defined on
the sample space is a six-dimensional vector space. We have already encountered one such
vector space in Section 13.3.4 – the set of all possible Arrow–Debreu securities.

13.5 Random vectors
A random vector is a vector of random variables. The convenient abbreviation rv is some-
times used to denote a random vector; this will be particularly helpful when stating results
that apply to both random variables and random vectors.

An n-dimensional random vector can also be thought of as a measurable, vector-valued
function on the sample space �, i.e. a function x̃:�→ R

n , each of whose component
functions x̃1:�→ R, x̃2:�→ R, . . . , x̃n :�→ R is measurable. The realizations of an
n-dimensional random vector lie in the n-dimensional Euclidean vector space R

n . Note the
convention of using a combination of a tilde and a boldface letter to denote a quantity that is
both random and a vector.

A stochastic process indexed by a time subscript running from 1 to T and whose elements
are n-dimensional random vectors is equivalent to an nT -dimensional random vector.

Note that the elements of the vector space X introduced in Section 13.4 are random vectors
only in the sense that every scalar is a one-dimensional vector, i.e. the realizations of the
elements of X lie not in R

n but in R.
The (joint) distribution and (joint) cumulative distribution function of a random vector

or stochastic process are the natural extensions of the one-dimensional concept. In other
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words, the distribution of an n-dimensional random vector x̃ can be specified by the cdf:

Fx̃(x)≡Pr[x̃1 ≤ x1, x̃2 ≤ x2, . . . , x̃n ≤ xn] (13.21)

Two random variables x̃ and ỹ are said to be (statistically) independent if their joint cdf
equals the product of their marginal cdfs, i.e. if

Fx̃,ỹ(x, y)= Fx̃ (x)Fỹ(y) ∀ x, y ∈R (13.22)

We say that the distribution of the n-dimensional random vector x̃ is continuous if there
exists a non-negative function fx̃:Rn →R+, called its probability density function, such that

Fx̃(x
∗)=

∫ x∗1
−∞

∫ x∗2
−∞

. . .

∫ x∗n

−∞
fx̃(x1, x2, . . . , xn)dx1 dx2 . . . dxn (13.23)

Note that, as Fx̃(x∗)≤ 1 for all x∗ and fx̃(x)≥ 0 for all x, the conditions of Fubini’s theorem
are automatically satisfied by the multiple integral in (13.23).

Similarly to (13.3), the pdf of a random vector can be calculated from its cdf by repeated
application of the fundamental theorem of calculus:

∂n Fx̃(x)
∂x1∂x2 . . . ∂xn

= fx̃(x) (13.24)

The conditional distribution of one or more components of a random vector, given particu-
lar realizations of its other components, is defined in the natural way. In the case of discrete
random variables, x̃1 and x̃2, the probability that x̃1 takes the value x1 given that x̃2 = x2 is

Pr[x̃1 = x1 | x̃2 = x2]= Pr[x̃1 = x1 and x̃2 = x2]

Pr[x̃2 = x2]
(13.25)

This defines the conditional distribution of x̃1 given x2.
Similarly, in the case of continuous random variables, the conditional pdf of the random

variable x̃1 given that x̃2 = x2 is defined by

fx̃1|x̃2=x2(x1)=
f(x̃1,x̃2)(x1, x2)

fx̃2(x2)
(13.26)

In both cases, it must be assumed that x̃2 takes the value x2 with non-zero probability, or that
Pr[x̃2 = x2] = 0 and fx̃2(x2) = 0, respectively.

As with sets of random variables, any finite set of m random vectors in R
n defined on

a given sample space spans a vector space of up to m dimensions, depending on the linear
independence or otherwise of the spanning set. Note that in this case m can be greater than n,
i.e. the dimension of the vector space of random vectors can be greater than the dimension
of the Euclidean space in which realizations of the random vectors lie.
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13.6 Expectations and moments

13.6.1 Definitions

The expectation, also known as the mean or average, of a discrete random variable, x̃ , with
possible values x1, x2, x3, . . . , is given by

E[x̃]≡
∞∑

i=1

xi Pr[x̃ = xi ] (13.27)

For a continuous random variable, the summation is replaced by an integral:

E[x̃]≡
∫ ∞

−∞
x d Fx̃ (x)=

∫ ∞

−∞
x fx̃ (x)dx (13.28)

For a random vector, or a function of a random vector, the single integral in (13.28) is
replaced by a multiple integral.

Many random variables do not have finite expectations; see, for example, Exercise 16.11.
For the most part, however, we will deal in this book only with expectations that are finite.

In economics and finance, this objective notion of expectation is sometimes referred to as
mathematical expectation or, less frequently, as statistical expectation, in order to distin-
guish it from the more subjective, but related, notions of expectation that play an important
role in economic behaviour. The latter type of expectation will be discussed, for example,
in connection with the pure expectations hypothesis introduced on p. 364. There is also an
extensive literature in economics on the theory of rational expectations, which is essentially
the proposition that subjective expectations equal mathematical expectations.

Recall that it was mentioned in Section 6.2.2 that expectation is a linear operator on
the set of random variables defined on a given sample space. This is because for scalars
k1, k2, . . . , kr and random variables x̃1, x̃2, . . . , x̃r it can be shown that E

[∑r
i=1 ki x̃i

] =∑r
i=1 ki E[x̃i ]; see Exercise 13.5.
When dealing with stochastic processes, the expectation operator is often written with a

time subscript, e.g. Et [x̃t+s] denotes the expectation of the value of the process s periods in
the future given the information available now, at period t .

The kth moment about the mean or kth central moment of the random variable x̃ is

mk(x̃)≡ E[(x̃ − E[x̃])k] (13.29)

In particular, the first moment about the mean is always zero and the second, third and fourth
moments about the mean are called, respectively, the variance, skewness and kurtosis of
the random variable, denoted as follows:

m1[x̃]= E[(x̃ − E[x̃])1]≡ 0 (13.30)

m2[x̃]= E[(x̃ − E[x̃])2]≡Var[x̃] (13.31)

m3[x̃]= E[(x̃ − E[x̃])3]≡Skew[x̃] (13.32)

m4[x̃]= E[(x̃ − E[x̃])4]≡Kurt[x̃] (13.33)

Note that even-numbered moments about the mean must be non-negative, as they are based
on even powers of the deviation of the random variable from its mean. An even-numbered
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moment can be zero only if the underlying random variable has a trivial distribution. In fact,
any even-numbered moment is zero if and only if all even-numbered moments are zero if
and only if the distribution is trivial. In particular, Var[x̃]> 0 if and only if x̃ is non-trivial;
see Example 13.10.1.

Note also that odd-numbered moments about the mean will be zero if the distribution is
symmetric around the mean.

As for expectations, it is sometimes the case that higher-order moments do not exist
(i.e. are not finite).

The standard deviation of a random variable is the square root of its variance.
The skewness coefficient of a random variable is the third moment about the mean divided

by the standard deviation cubed. The kurtosis coefficient of a random variable is the fourth
moment about the mean divided by the variance squared. Both of these are dimensionless
quantities, i.e. they are invariant under changes of the units of measurement of the underlying
variable.

The covariance between two random variables x̃ and ỹ is given by

Cov[x̃, ỹ]≡ E[(x̃ − E[x̃])(ỹ− E[ỹ])]= E[x̃(ỹ− E[ỹ])]

= E[(x̃ − E[x̃])ỹ]= E[x̃ ỹ]− E[x̃]E[ỹ] (13.34)

Proving the equivalence between all these expressions is left as an exercise; see
Exercise 13.6. We also have that Cov[x̃, ỹ]=Cov[ỹ, x̃] and the covariance between a random
variable and itself is just its variance,

The correlation between two non-trivial random variables x̃ and ỹ is given by

Corr[x̃, ỹ]≡ Cov[x̃, ỹ]√
Var[x̃] Var[ỹ]

=Corr[ỹ, x̃] (13.35)

The correlation between a random variable and itself is always unity.
Two random variables are said to be uncorrelated if their correlation (or, equivalently,

their covariance) is zero.7

It can easily be shown that two random variables are uncorrelated if and only if the
expectation of their product equals the product of their expectations; see Exercise 13.8.

The expectation of a random vector is just the vector of the expectations of the component
random variables.

The conditional expectation of one or more components of a random vector, given
particular realizations of its other components, is just the expectation calculated from the
conditional distribution. For example, for continuous random variables x̃1 and x̃2,

E[x̃1 | x̃2 = x2]=
∫ ∞

−∞
x1 fx̃1|x̃2=x2(x1)dx1 (13.36)

Conditional expectations are also of interest when dealing with stochastic processes.
The expectation Et [x̃t+s] could also be expressed, at least in a univariate context, as
E[x̃t+s | x̃t = xt ].

The variance of an n-dimensional random vector, x̃, say, is the n × n square matrix
of the covariances between the component random variables (provided that they exist),
usually called the variance–covariance matrix, and denoted Var[x̃]. If it exists, a variance–
covariance matrix is real, symmetric and positive semi-definite; see Exercise 13.9.
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The correlation matrix of a random vector is, similarly, defined to be the square matrix
of the correlations between the component random variables. It too is always real, symmetric
and positive semi-definite. Furthermore, the entries on the leading diagonal of a correlation
matrix are all unity.

Note that the variance–covariance matrix is the expectation of the outer product of the
deviation of the random vector from its mean with itself, i.e.

E[(x̃− E[x̃])(x̃− E[x̃])�] (13.37)

see Exercise 1.9.
Similarly, the covariance between the n-dimensional random vector x̃ and the

p-dimensional random vector ỹ is the n× p matrix

Cov[x̃, ỹ]= E[(x̃− E[x̃])(ỹ− E[ỹ])�] (13.38)

The covariance operator Cov[·, ·] and the correlation operator Corr[·, ·] are bi-linear
functions. They are symmetric if the two arguments are of the same dimension; see
Section 13.6.3. If the arguments are of different dimensions, reversing the arguments
transposes the matrix of covariances or correlations.

Note also that, for an n-dimensional random vector x̃, using the results of Exercise 13.7:

Var

[
n∑

i=1

x̃i

]
=Var[1�x̃]=Cov[1�x̃,1�x̃]= 1�Var[x̃]1

=
n∑

i=1

Var[x̃i ]+ 2
n−1∑
i=1

n∑
j=i+1

Cov[x̃i , x̃ j ] (13.39)

Given any two random variables x̃ and ỹ, we can define a third random variable ε̃ by

ε̃≡ ỹ−α−β x̃ (13.40)

To specify the disturbance term ε̃ completely, we can either specify the scalar constants α
and β explicitly or fix them implicitly by imposing (two) conditions on ε̃. We do the latter
by insisting that

• ε̃ and x̃ are uncorrelated and
• E[ε̃]= 0.

It follows after a little calculation that

β = Cov[x̃, ỹ]

Var[x̃]
(13.41)

and

α= E[ỹ]−βE[x̃] (13.42)

Similar results can be derived for random vectors x̃ and ỹ; see Exercise 13.11.
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Note that the conditional expectation, E[ỹ | x̃ = x] is not equal to α+ βx , as one might
expect, unless E[ε̃ | x̃ = x] = 0 for all x . This would require the stronger assumption of
statistical independence rather than the mere lack of correlation assumed here in order to
calculate the expression in (13.41) for β.8 The implications of this stronger assumption will
be considered further when we deal with regression in Section 14.2.

The notion of the beta of ỹ with respect to x̃ as given in (13.41) will recur frequently.

13.6.2 Differentiation and expectation

We will frequently want to find the derivative of an expectation with respect to some param-
eter that appears within the expectation, for example when maximizing expected utility in
Chapter 16. For discrete random variables, the expectation operator is just a summation oper-
ator. As it is well known that the derivative of a sum is the sum of the derivatives, there is no
problem about passing the differentiation operator through the expectation operator.

For continuously distributed random variables, the expectation operator is really an inte-
gration operator, so the rules for differentiation of integrals in Section 9.7 apply, in particular
Leibniz’s integral rule. Provided that the appropriate regularity conditions are satisfied, the
differentiation operator can again be passed through the expectation operator.

EXAMPLE 13.6.1 Suppose we wish to find the vector a that minimizes the variance of the
random variable a�r̃. The variance is a�Va, where V≡Var[r̃] is the positive semi-definite
variance–covariance matrix of r̃. It is clear that the variance is minimized by setting a= 0,
but it is worthwhile deriving this result from first principles.

The objective function is

E[a�(r̃− E[r̃])(r̃− E[r̃])�a] (13.43)

Differentiating through the expectation operator, the first-order condition is

E[2a�(r̃− E[r̃])(r̃− E[r̃])�]= 0� (13.44)

This simplifies to a�V= 0� – the same first-order condition that would have resulted if the
objective function had been simplified to a�Va.

Thus the variance is zero for any vector a in the null space of the symmetric matrix V. If V
is invertible (positive definite), then there is a unique solution a=0. If V is singular (positive
semi-definite but not positive definite), then any linear combination of the components of r̃
with coefficient vector in the null space of V has zero variance. ♦

This example could easily have been solved without explicitly passing the differentiation
operator through the expectation; for an application where there is no such workaround, see
Section 17.3.1.

13.6.3 Covariance as a scalar product

Consider again the n-dimensional vector space X of random variables introduced in
Section 13.4, which was generated by the random variables x̃1, x̃2, . . . , x̃n . We will again
let the vector a= (a1,a2, . . . ,an) denote the random variable a1 x̃1 + a2 x̃2 + · · ·+ an x̃n .

Let x̃= (x̃1, x̃2, . . . , x̃n) be the random vector whose components are the spanning ran-
dom variables and assume that the variance–covariance matrix of this random vector, to be
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denoted V, exists. (Note that the random vector x̃ is not itself an element of the vector space
of random variables X .)

Recall that V, like any variance–covariance matrix, is positive semi-definite (see
Exercise 13.9) and that the covariance between the random variables represented by the
vectors a1 and a2 is a�1 Va2 (see Exercise 13.10).

As mentioned in Section 7.5, the variance–covariance matrix V of any random vector
x̃ can therefore be used to define a (symmetric, positive semi-definite) scalar product (i.e.
covariance) and a metric (i.e. standard deviation) on the vector space of random variables
generated by the components of x̃.

It follows from Section 5.4.9 that any finite-dimensional vector space generated by a set
of non-trivial random variables has an orthonormal basis, i.e. a basis of uncorrelated random
variables, each with unit variance; see Exercise 13.13.

13.7 Multivariate normal distribution
A distribution that is commonly encountered is the multivariate normal (MVN). The
n-dimensional random vector x̃ is said to have a multivariate normal distribution with
parameters μ∈R

n and 	 ∈R
n×n if its pdf is

fx̃(x)= 1√
(2π)n det	

e
−1−

2 (x−μ)�	−1(x−μ)
(13.45)

where 	 is assumed to be symmetric positive definite. This is often written x̃∼MVN(μ,	).
The one-dimensional multivariate normal distribution is just the familiar normal distribution.
The two-dimensional multivariate normal distribution is usually referred to as the bivariate
normal distribution. Exercises 13.15 and 13.16 give some useful properties of the multi-
variate normal distribution. We will prove here some less well-known and slightly less
straightforward properties of the normal and bivariate normal distributions, which have come
to share the name Stein’s lemma.9 Assuming that asset returns are multivariate normal allows
some elegant results to be derived from Stein’s lemma; see Section 17.5.5.

THEOREM 13.7.1 (STEIN’S LEMMA). Let g:R→R be differentiable.

(a) If x̃ ∼ N (0,1) and E[|g′(x̃)|]<∞, then

E[g′(x̃)]= E[g(x̃)x̃] (13.46)

(b) If x̃ ∼ N (μ,σ 2) and E[|g′(x̃)|]<∞, then

E[g′(x̃)]= E

[
g(x̃)

x̃ −μ
σ 2

]
(13.47)

(c) If x̃ and ỹ are bivariate normally distributed and E[|g′(x̃)|]<∞, then

Cov[g(x̃), ỹ]=Cov[x̃, ỹ]E[g′(x̃)] (13.48)

Proof:

(a) The proof of this original version of Stein’s lemma appears in Stein (1981, p. 1136).
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Recall from (13.7) that the standard normal pdf is

φ(x)= 1√
2π

e
−1−

2 x2
(13.49)

Note that, as x →±∞, φ(x)→ 0. Hence, using the fundamental theorem of calculus,
we can write

φ(x)=
∫ x

−∞
φ′(z)dz=−

∫ ∞

x
φ′(z)dz (13.50)

Differentiating (13.49) using the chain rule yields

φ′(x)=−xφ(x) (13.51)

so that (13.50) becomes

φ(x)=−
∫ x

−∞
zφ(z)dz=

∫ ∞

x
zφ(z)dz (13.52)

Hence, we can write

E[g′(x̃)]=
∫ ∞

0
g′(x)φ(x)dx +

∫ 0

−∞
g′(x)φ(x)dx

=
∫ ∞

0
g′(x)

(∫ ∞

x
zφ(z)dz

)
dx −

∫ 0

−∞
g′(x)

(∫ x

−∞
zφ(z)dz

)
dx

=
∫ ∞

0

∫ z

0
g′(x)zφ(z)dx dz−

∫ 0

−∞

∫ 0

z
g′(x)zφ(z)dx dz (13.53)

where we have used Fubini’s theorem (since we are assuming that E[|g′(x̃)|]<∞) to
reverse the order of integration in the two integrals in the last step, which are respectively
over the octants in the xz plane

{(x, z)∈R
2: x ≥ 0, z≥ x}= {(x, z)∈R

2: z≥ 0, 0≤ x ≤ z} (13.54)

and

{(x, z)∈R
2: x ≤ 0, z≤ x}= {(x, z)∈R

2: z≤ 0, 0≥ x ≥ z} (13.55)

Using the fundamental theorem of calculus to evaluate the inner integrals with respect
to x , (13.53) becomes

E[g′(x̃)]=
∫ ∞

0
(g(z)− g(0))zφ(z)dz−

∫ 0

−∞
(g(0)− g(z))zφ(z)dz

=
∫ ∞

−∞
(g(z)− g(0))zφ(z)dz

= E[g(x̃)x̃]− g(0)E[x̃]

= E[g(x̃)x̃] (13.56)

as required.
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(b) For a general normal random variable, x̃ ∼ N (μ,σ 2), we can apply the previous result
to z̃≡ (x̃ −μ)/σ and h(z̃)≡ g(μ+ σ z̃)= g(x̃) to obtain

E[h′(z̃)]= E[h(z̃)z̃] (13.57)

But

h′(z)= σg′(μ+ σ z) (13.58)

or

h′(z̃)= σg′(x̃) (13.59)

Making the appropriate substitutions in (13.57),

σ E[g′(x̃)]= E

[
g(x̃)

x̃ −μ
σ

]
(13.60)

or

E[g′(x̃)]= E

[
g(x̃)

x̃ −μ
σ 2

]
(13.61)

as required.
(c) The marginal distribution of x̃ is univariate normal; see Exercise 13.16.

(i) First assume that x̃ ∼ N (0,1).
As in (13.40), we write

ỹ≡α+β x̃ + ε̃ (13.62)

and fix α and β so that ε̃ has mean zero and is uncorrelated with x̃ . As we have
assumed that Var[x̃]= 1, we have β =Cov[x̃, ỹ]. It follows that

Cov[g(x̃), ỹ]=Cov[g(x̃), α+β x̃ + ε̃]

=βCov[g(x̃), x̃] (13.63)

because ε̃ is independent of x̃ (since uncorrelated bivariate normal random variables
are independent; see Exercise 13.16) and, hence, also independent of g(x̃). Using
(13.34) and the univariate version of Stein’s lemma, this becomes

Cov[g(x̃), ỹ]=βE[g(x̃)x̃]

=Cov[x̃, ỹ]E[g′(x̃)] (13.64)

as required.
(ii) For a general normal random variable, x̃∼N (μ,σ 2), we can again apply the previous

result to z̃≡ (x̃ −μ)/σ and h(z̃)≡ g(μ+ σ z̃)= g(x̃) to obtain

Cov[h(z̃), ỹ]=Cov[z̃, ỹ]E[h′(z̃)] (13.65)
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Making the appropriate substitutions and again using (13.59) yields

Cov[g(x̃), ỹ]=Cov

[
x̃ −μ
σ

, ỹ

]
E[σg′(x̃)] (13.66)

The two σ s cancel and the μ in the covariance vanishes, so that (13.66) reduces to
(13.48) as in the standard normal case. �

13.8 Estimation and forecasting
In simple examples, such as throwing an unbiased die, the values of the parameters of a prob-
ability distribution are intuitively obvious. In most practical applications, however, especially
in economic and financial applications, the parameters of the distribution are unobservable
and must be estimated. We have already considered estimation of a single-equation econo-
metric model in Section 1.2.1. We also noted in Section 13.3.7 that good estimates of odds
can be made by observing highly liquid betting exchange markets.

The most straightforward estimation problems are based on samples of many inde-
pendent and identically distributed (iid) observations on a random variable, or random
samples. For example, we might wish to model the distribution of the number of strokes
taken by a golfer to play an 18-hole round of golf, say x̃ . In particular, suppose that we
wish to estimate the mean or expected number of shots per round, say μ≡ E[x̃]. If we have
observed the values of the golfer’s scores for n past rounds, x̃1 = x1, x̃2 = x2, . . . , x̃n = xn ,
then an obvious estimator of the population mean μ is the sample mean, denoted

$X ≡ 1

n

n∑
i=1

x̃i (13.67)

The observed value of the sample mean, denoted

x̄ ≡ 1

n

n∑
i=1

xi (13.68)

is then called an estimate. Similarly, the sample equivalent is an obvious estimator of the
population variance, covariance, or other moment.

In theory, any random variable can be used as an estimator of any parameter. To be useful,
however, an estimator of a parameter should be unbiased in the sense that the expectation
of the estimator equals the parameter being estimated. In our example, it was assumed that
the sample observations were independent and identically distributed, so that by linearity of
the expectation operator

E[$X ]= 1

n

n∑
i=1

E[x̃i ]= 1

n

n∑
i=1

μ= 1

n
nμ=μ (13.69)

Thus the sample mean is an unbiased estimator of the population mean.
It is conventional to denote an estimator of a parameter of a probability distribution by

placing a ˆ over the symbol denoting the parameter. For example, one might use μ̂ instead of
$X to denote the estimator of the population mean above.
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Forecasting is similar to estimation, except that the quantity to be predicted is not an
unobservable population parameter but a future observable value of a random variable or
stochastic process, for example, the value of the main European Central Bank interest rate
12 months hence. Many economics graduates will learn that the public perception of their
discipline is not so much as being the analysis of rational economic decision-making, but as
forecasting of future values of economic variables such as interest rates or asset prices.

The forecasting problem is one to which both statistics and economics can make valuable
contributions. For example, prices from futures or forward markets can be used to forecast
future prices in spot markets. Alternatively, a time-series model of spot prices can be used to
produce forecasts.

Just as any random variable can be proposed as an estimator of a particular parameter, so,
in forecasting, any random variable can be proposed as a predictor of a value to be observed
in the future. The observed value of the predictor is then called a forecast. As before, to be
useful, a predictor of a random variable should be unbiased in the sense that the expectation
of the predictor equals the expectation of the random variable being forecasted.

The distinction between estimation and forecasting can become blurred in areas such as
sports betting. From a purely statistical point of view, the probabilities that each contestant
will win a contest are unobservable parameters to be estimated. From a trading point of view,
however, the market odds (or, equivalently, the market probabilities) at the start of the event
are observable random variables to be forecasted.

13.9 Taylor’s theorem: stochastic version
We will frequently apply the univariate Taylor expansion to a function of a random variable
expanded about the mean of the random variable. We will illustrate this procedure using the
infinite version of Taylor’s expansion (9.87)

f (x̃)= f (E[x̃])+
∞∑

n=1

1

n!
f (n)(E[x̃])(x̃ − E[x̃])n (13.70)

Taking expectations on both sides of (13.70) yields

E[ f (x̃)]= f (E[x̃])+
∞∑

n=2

1

n!
f (n)(E[x̃])mn(x̃) (13.71)

The fact that

m1(x̃)= E[(x̃ − E[x̃])1]≡ 0 (13.72)

allows us to start the summation in (13.71) at n= 2 rather than n= 1. Indeed, we can rewrite
(13.71) as

E[ f (x̃)]= f (E[x̃])+ 1

2
f ′′(E[x̃])Var[x̃]+ 1

6
f ′′′(E[x̃])Skew[x̃]

+ 1

24
f ′′′′(E[x̃])Kurt[x̃]+

∞∑
n=5

1

n!
f (n)(E[x̃])mn(x̃) (13.73)
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A similar procedure can be used to obtain a finite-order version of this result. For exam-
ple, taking the expectation of the second-order Taylor expansion of f around E[x̃] yields,
roughly speaking,

E[ f (x̃)]= f (E[x̃])+ 1
2 f ′′(x∗)Var[x̃] (13.74)

for “some” x∗. However, this supposes that x∗ is fixed, whereas in fact it varies with the
value taken on by x̃ , and is itself a random variable, correlated with x̃ . In other words, an
extra degree of approximation is involved in this stochastic version of Taylor’s theorem,
compared to the deterministic version.

These results are valid also for random vectors, although the notation becomes cumber-
some beyond the variance term. The second-order Taylor approximation of f (x̃) about E[x̃]
yields

E[ f (x̃)]= f (E[x̃])+ 1
2 E

[
(x̃− E[x̃])� f ′′(E[x̃])(x̃− E[x̃])

]+ · · · (13.75)

Since matrix multiplication is not commutative, the second-order term no longer reduces to
a multiple of the variance, as it did in the one-dimensional case. However, if concavity or
convexity of f allows us to determine that the Hessian matrix f ′′ is definite or semi-definite,
then we will also be able to sign the second-order term in the Taylor approximation.

Most of the applications of Taylor’s theorem listed at the end of Section 9.6 use this version
of the theorem.

13.10 Jensen’s inequality
This section introduces Jensen’s inequality.10 This result combines the theory of convex-
ity and concavity in Section 10.2 with the ideas of random variables and vectors and their
expectations from the earlier sections of the present chapter.

The first subsection gives the formal statement of the theorem and provides a rigorous
proof for continuously differentiable functions alongside some more intuitive motivation
and examples. The second subsection presents a selection of more practical applications
from financial economics.

Jensen’s inequality will be encountered again in a more theoretical context when we study
risk aversion in Section 16.5.

13.10.1 Statement and proof

THEOREM 13.10.1 (JENSEN’S INEQUALITY). Let x̃ be a non-trivial random vector with
finite expectation taking on values in some convex set X ⊆R

n.

(a) The expected value of a (strictly) concave function of the random vector x̃ is (strictly)
less than the same function of the expected value of the random vector, or

E[u(x̃)] (<)≤ u(E[x̃]) when u: X →R is (strictly) concave and E[u(x̃)] exists

(13.76)

(b) Similarly, the expected value of a (strictly) convex function of the random vector x̃ is
(strictly) greater than the same function of the expected value of the random variable, or

E[v(x̃)] (>)≥ v(E[x̃]) when v: X →R is (strictly) convex and E[v(x̃)] exists

(13.77)



February 12, 2011 11:1 Pinched Crown A Page-357 HarrWald

Probability theory 357

Proof: Without loss of generality, consider the concave case. We will supply two proofs,
the first assuming that x̃ has a discrete distribution with a finite number of possible values,
and the second assuming that u is continuously differentiable. For a fully general proof
(based on the separating and supporting hyperplane theorems) that makes no assumptions
about either the distribution of x̃ or the continuity or differentiability of the function u, see
Berger (1993, pp. 343–4).

We will consider three ways of motivating this result, starting, respectively, from the defi-
nition of a concave function, from the first-order condition for identifying concave functions
and from the second-order condition for identifying concave functions.

(a) One can re-interpret the inequality defining a concave function,

u(λx+ (1− λ)x′)≥ λu(x)+ (1− λ)u(x′) (13.78)

in terms of a discrete random vector x̃∈ X taking on the vector value x∈ X with proba-
bility π and the vector value x′ ∈ X with probability 1−π , π ∈ (0,1). Inequality (13.78)
then becomes

u(πx+ (1−π)x′)≥πu(x)+ (1−π)u(x′) (13.79)

which just says that

u(E[x̃])≥ E[u(x̃)] (13.80)

Figure 13.1 illustrates this argument for one-dimensional x̃ .
An inductive argument can be used to extend the result to all discrete random variables

with a finite number of possible values; in fact, all this amounts to is re-interpreting the
scalars ki in the defining inequality (10.3) as probabilities πi .

This inductive argument runs into problems if the number of possible values is either
countably or uncountably infinite.

(b) A rigorous proof of Jensen’s inequality for continuously differentiable functions starts
from the first-order condition for concavity

u(x)≤ u(x′)+ u′(x′)(x− x′) (13.81)

Replace x′ with the expected value of the random vector E[x̃] and x with x̃, a generic
value of the random vector different from its expected value, to obtain

u(x̃)≤ u(E[x̃])+ u′(E[x̃])(x̃− E[x̃]) (13.82)

Using a similar approach to that used with Taylor’s expansion in (13.71), take expecta-
tions on both sides of this inequality. The first term on the right-hand side is non-random
and the second term again vanishes, yielding

E[u(x̃)]≤ u(E[x̃]) (13.83)

This completes the proof.
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x

u(x)

0

x ′ πx + (1−π)x ′ x

u(x) B •

u(x ′) A •

u(E[x̃])= u(πx + (1−π)x ′) D•
E[u(x̃)]=πu(x)+ (1−π)u(x ′)

C
•

Figure 13.1 Motivation for Jensen’s inequality

(c) One can also appeal to the second-order condition for concavity and the second-order
Taylor approximation based on (13.75)

E[u(x̃)]≈ u(E[x̃])+ 1
2 E

[
(x̃− E[x̃])�u′′(E[x̃])(x̃− E[x̃])

]
(13.84)

If u is concave, then the Hessian matrix u′′(E[x̃]) will be negative semi-definite and
the quadratic form in the second term on the right-hand side will be non-positive for all
values of x̃, so that the expectation will also be non-positive. Thus,

E[u(x̃)]≤ u(E[x̃]) (13.85)

approximately.
This argument, however, cannot be used to prove the strict version of Jensen’s

inequality for strictly concave and strictly convex functions.

The arguments for convex functions, and in the first two cases for strictly concave
functions and strictly convex functions, are almost identical and are left as exercises; see
Exercise 13.27. �

Note that, when x̃ has a trivial distribution, x̃ = E[x̃] with probability 1 and f (x̃) =
f (E[x̃]) = E[ f (x̃)], whether f is convex or concave or neither. This result for trivial
distributions is sometimes referred to as Jensen’s equality.
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To get a feel for the extent to which E[u(x̃)] differs from u(E[x̃]) in the scalar case, we
can again use the following second-order Taylor approximation based on (13.73):

E[u(x̃)]≈ u(E[x̃])+ 1
2 u′′(E[x̃])Var[x̃] (13.86)

This shows that the magnitude of the difference is larger the larger is the curvature of u (as
measured by the second derivative at the mean of x̃) and the larger is the variance of x̃ .

EXAMPLE 13.10.1 Since x �→ 1/x defines a strictly convex function on R++, for any
non-trivial positive random variable x̃ ,

E

[
1

x̃

]
>

1

E[x̃]
(13.87)

♦

EXAMPLE 13.10.2 Since x �→ ln x defines a strictly concave function on R++, for any
non-trivial positive random variable x̃ ,

E[ln x̃]< ln E[x̃] (13.88)

From this it follows by taking the exponential of each side that

E[x̃]> eE[ln x̃] (13.89)

Taking reciprocals of both sides gives

1

E[x̃]
< e−E[ln x̃] (13.90)

or, putting ỹ= 1/x̃ ,

1

E[1/ỹ]
< eE[ln ỹ] (13.91)

Finally, combining (13.89) and (13.91) yields

1

E[1/ỹ]
< eE[ln ỹ]< E[ỹ] (13.92)

♦

EXAMPLE 13.10.3 Since x �→ x2 defines a strictly convex function on R, for any non-trivial
positive random variable x̃ ,

E[x̃2]>(E[x̃])2 (13.93)

Recall from Exercise 13.21 that Var[x̃]= E[x̃2]− (E[x̃])2.
Combining these two results, it can be seen that Jensen’s inequality implies that Var[x̃]

is positive for non-trivial x̃ . This result can also be derived directly from the definition of
variance in (13.31). ♦
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We have presented Jensen’s inequality in terms of random variables and their expectations.
It applies equally to random samples and the corresponding sample means. As random sam-
ples are naturally finite, this is merely another re-interpretation of the defining inequalities
(10.2) and (10.3), in the former case as

f (x̄)= f

( n∑
i=1

1

n
xi

)
≤

n∑
i=1

1

n
f (xi ) (13.94)

where f is convex and n denotes the sample size.
Jensen’s inequality has a whole host of classical inequalities as special cases. The first

example, which Jensen cites in his original paper, is that the geometric mean of a set of
non-negative numbers is less than their arithmetic mean, a result that he credits to Cauchy;
see Exercise 13.28. Another special case considered by Jensen (1906, p. 181) is the familiar
Cauchy–Schwarz inequality (7.29). The next example is based on Jensen’s derivation of that
inequality.

EXAMPLE 13.10.4 Just as we wrote a version of Jensen’s inequality for an equally
weighted sample mean in (13.94), so we can write an equivalent version for any weighted
average. For any positive real numbers (weights) a1,a2, . . . ,an , real numbers b1,b2, . . . ,bn

and convex function v, Jensen’s inequality, interpreted in terms of the weighted average of
the bi with weights ai , implies that

v

(∑n
i=1 ai bi∑n

i=1 ai

)
≤
∑n

i=1 aiv(bi )∑n
i=1 ai

(13.95)

If x1, x2, . . . , xn are any real numbers and y1, y2, . . . , yn are any non-zero real numbers,11

then we can set v(x)≡ x2, ai = y2
i and bi = xi/yi (i = 1,2, . . . ,n) in (13.95) to obtain

(∑n
i=1 y2

i (xi/yi )∑n
i=1 y2

i

)2

≤
∑n

i=1 y2
i (xi/yi )

2∑n
i=1 y2

i

(13.96)

Multiplying across by
(∑n

i=1 y2
i

)2
and cancelling terms, this reduces to

( n∑
i=1

xi yi

)2

≤
n∑

i=1

x2
i

n∑
i=1

y2
i (13.97)

which (after taking square roots) becomes the Cauchy–Schwarz inequality (7.29), written in
scalar rather than the original vector notation. ♦

13.10.2 Applications in financial economics

Pari-mutuel betting

Intuition about the operation of markets often suggests hypotheses such as the following:

• The proportions bet on the outcomes in a pari-mutuel pool are unbiased estimators of the
respective unobservable true probabilities of the outcomes occurring.
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• The pari-mutuel odds, adjusted for deductions, against each of a set of outcomes are
unbiased estimators of the respective unobservable true odds against each.

Such hypotheses are often presented as part of an argument asserting the informational
efficiency of markets.

We will now show, using Jensen’s inequality, that these two hypotheses cannot be true
simultaneously.

If p̃i is the proportion of the pool bet on the i th contestant, πi denotes the true probability
that the i th contestant wins and τ is the proportion of the pool retained by the operator for
expenses and taxes, then Õi ≡ (1− τ)/ p̃i will be the pari-mutuel decimal odds and 1/πi the
true decimal odds against contestant i . The proportion p̃i is a random variable that cannot be
observed by investors until the close of betting.

The first hypothesis above is that E[ p̃i ]=πi , while the second is that E[Õi ]= (1− τ)/πi .
Substitution of one hypothesis into the other yields

E[Õi ]= (1− τ)
πi

= (1− τ)
E[ p̃i ]

(13.98)

and taking expectations in the definition of Õi yields

E[Õi ]= (1− τ)E
[

1

p̃i

]
(13.99)

This would imply that

1

E[ p̃i ]
= E

[
1

p̃i

]
(13.100)

which is a direct contradiction of Jensen’s inequality (unless p̃i is known with certainty).
Thus at least one, if not both, of the above hypotheses must be rejected. This is not all bad

news, however, for we can deduce a principle that might lead to more profitable pari-mutuel
betting. If the proportions bet accurately reflect the true probabilities, i.e. E[ p̃i ]= πi , then
Jensen’s inequality implies that the expected pari-mutuel odds, adjusted for deductions, on
average exceed the true odds, i.e.

E[Õi ]= (1− τ)E
[

1

p̃i

]
>(1− τ) 1

E[ p̃i ]

= (1− τ)
πi

(13.101)

Thus, the expected return on a 1 unit bet, πi E[Õi ], will be greater than (1− τ). Profitable
betting, however, requires

πi E[Õi ]> 1 (13.102)
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In practice, however, the deductions will generally be far larger than the Jensen effect, so
that

(1− τ)<πi E[Õi ]< 1 (13.103)

In fact, it is easily shown that the expected pari-mutuel odds, again adjusted for deduc-
tions, cannot equal the true odds for all outcomes, i.e. that the second hypothesis above is
untenable.

Again working with decimal odds, suppose that

E[Õi ]= (1− τ)
πi

(13.104)

i.e.

E

[
(1− τ)

p̃i

]
= (1− τ)

πi
(13.105)

or

E

[
1

p̃i

]
= 1

πi
(13.106)

By Jensen’s inequality, it follows that

1

E[ p̃i ]
<

1

πi
(13.107)

Inverting both sides gives

E[ p̃i ]>πi (13.108)

Summing over outcomes gives

E

[∑
i

p̃i

]
>
∑

i

πi (13.109)

which reduces to 1>1 since both the proportions in the pool and the true probabilities of the
outcomes must by definition sum to unity. Hence, we have proved by contradiction that the
initial hypothesis is false.

Siegel’s paradox

Another nice, but more perplexing, application of Jensen’s inequality in finance is Siegel’s
paradox.12 Before presenting a formal statement and discussion of this paradox, let us
consider an example illustrating the relationship between spot rates and forward rates, in
particular currency exchange rates.

EXAMPLE 13.10.5 Suppose that it is believed that 30 days hence £1 will be worth either
e1.25 or e1.60 with equal probability of one-half, i.e. that the EUR/GBP spot exchange
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rate will be either 1.25 or 1.60. Then the expected value of the future EUR/GBP spot rate is
1.425. Suppose this is the same as today’s EUR/GBP 30-day forward rate.

What is today’s GBP/EUR 30-day forward rate? An arbitrage opportunity would exist if
it differed from the reciprocal of the EUR/GBP rate, i.e. 1/1.425≈ 0.701 754 386.

What is the expected value of the GBP/EUR spot exchange rate 30 days hence? Similarly,
an arbitrage opportunity would exist in either or both states of the world unless the rate
was equal to the reciprocal of the relevant EUR/GBP rate in each state, i.e. unless it was
1/1.25= 0.8 with probability one-half and 1/1.60= 0.625 with probability one-half. Thus
its expected value is 0.7125, over a penny greater than the corresponding forward rate. ♦

This example shows that the apparently reasonable hypothesis that the expected values of
all unknown future spot rates equal the corresponding known forward rates is mathematically
impossible.

THEOREM 13.10.2 (SIEGEL’S PARADOX). Current forward prices cannot all equal
expected future spot prices without perfect foresight.

Proof: Siegel’s paradox was originally stated in terms of currency exchange rates and
is most easily understood if expressed in those terms. Let Ft be the current one-period-
ahead forward exchange rate for, say, GBP/EUR, as in Example 13.10.5, and let S̃t+1 be
the corresponding unknown future spot GBP/EUR exchange rate. If the forward rate is an
unbiased forecast of the future spot rate or

Et [S̃t+1]= Ft (13.110)

then Jensen’s inequality tells us that

1

Ft
= 1

Et [S̃t+1]
< Et

[
1

S̃t+1

]
(13.111)

except in the degenerate case where S̃t+1 is known with certainty at time t (perfect foresight
or Jensen’s equality).

For simplicity, we have assumed here that interest rates are zero in both currencies. A full
analysis would account for interest earned in both currencies between t and t + 1, but the
ultimate result would be unchanged.

The reciprocal 1/S̃t+1 is the future EUR/GBP spot exchange rate unless there is to be
an arbitrage opportunity at time t + 1. Likewise, the reciprocal 1/Ft is the current forward
EUR/GBP exchange rate unless there is an arbitrage opportunity at time t .

Thus our initial hypothesis (expressed in terms of GBP/EUR rates) is untenable when
rewritten in terms of EUR/GBP rates. �

Like the previous pari-mutuel example, Siegel’s paradox is a warning that all intuitively
appealing hypotheses about expectations should be treated with caution.

Siegel’s paradox has remained unresolved for over three decades. Chu (2005) provides
a summary of the related literature and a proposed resolution. The above discussion of
the applications of Jensen’s inequality has used the unconditional expectation operator
E[·] without any discussion of the information available at the time that expectations are
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formed. Chu (2005) points out that the discussion should be based around the joint distribu-
tion of the unknown future spot exchange rates, say S̃t+1 (GBP/EUR) and S̃∗t+1 (EUR/GBP).

The no-arbitrage principle requires that the identity S̃t+1 S̃∗t+1 = 1 holds with probability 1.

In other words, all the probability mass of the joint probability distribution of (S̃t+1, S̃∗t+1) is
concentrated along the rectangular hyperbola with equation SS∗ = 1 in the SS∗ plane.

It follows that the distribution of S̃t+1 conditional on S̃∗t+1 is trivial and that Jensen’s
inequality becomes Jensen’s equality for this conditional distribution. Chu (2005) argues
that this observation resolves the paradox; an alternative resolution will be presented in
Section 16.7 below.

Pure expectations hypothesis

Another similar hypothesis is the pure expectations hypothesis relating to the term struc-
ture of interest rates, which states that forward simple interest rates are unbiased forecasts
of future spot simple interest rates. If ft denotes the current one-period forward simple
interest rate and ı̃t+1 is the corresponding unknown future spot interest rate, then the pure
expectations hypothesis is that

Et [ı̃t+1]= ft (13.112)

See Section 15.4.4 for a more detailed discussion. In this case, the corollary refuted by
Siegel’s paradox concerns the relationship between spot and forward pure discount bond
prices. In the absence of arbitrage opportunities, a one-period pure discount bond must trade
at 1/(1+ ft ) in the forward market and at 1/(1+ ı̃t+1) in the future spot market. Deriving
the combined implications of Jensen’s inequality and the pure expectations hypothesis for
the relationship between these bond prices is left as an exercise; see Exercise 15.14.

While it would be completely irrational to argue that a hypothesis that cannot hold for the
euro might hold for the pound or the dollar, bond prices and interest rates are sufficiently dif-
ferent that the pure expectations hypothesis cannot be condemned out of hand solely because
of Siegel’s paradox.

A more plausible and internally consistent alternative to the simple expectations hypoth-
esis is the logarithmic expectations hypothesis, which can be written as follows for the
currency exchange rate example above:

Et [ln S̃t+1]= ln Ft (13.113)

Multiplying both sides of this equation by −1 gives

Et [−ln S̃t+1]=−ln Ft (13.114)

or

Et

[
ln

1

S̃t+1

]
= ln

1

Ft
(13.115)

which is exactly the same hypothesis expressed in terms of the reciprocal exchange rate.
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Using (13.92), it follows that this hypothesis gives forward rates lying between the two
values implied by the original versions of the simple expectations hypothesis:

Et [S̃t+1]> eEt [ln S̃t+1]>
1

Et [1/S̃t+1]
(13.116)

The logarithmic expectations hypothesis also suggests an alternative to the pure expectations
hypothesis for interest rates, using continuously compounded rates of return. The details are
again left as an exercise; see Exercise 15.15.

Efficient markets hypothesis

Both Siegel’s paradox and the proposed solution apply equally well to any theory that uses
current prices as a predictor of future values. Another such theory that is enormously pop-
ular is the efficient markets hypothesis (EMH) of Fama (1970). In its general form, this
hypothesis argues that current prices fully reflect all available information about (expected)
future values, or that markets are informationally efficient. Attempts to make the words
fully reflect in any way mathematically rigorous quickly run into problems. Indeed, all three
applications above can be looked on as simple examples of the efficient markets hypothesis.
The EMH will be considered in more detail in Section 16.6.

EXERCISES
13.1 Let A be a sigma-algebra of subsets of the sample space �.

(a) Suppose A1, A2 ∈A. Show that A1 ∩ A2 ∈A.
(b) Show that

{ω∈�: x̃1(ω)≤ x1, x̃2(ω)≤ x2, . . . , x̃n(ω)≤ xn} ∈A ∀ (x1, x2, . . . , xn)∈R
n

if and only if

{ω∈�: x̃i (ω)≤ x} ∈A ∀ x ∈R, i = 1,2, . . . ,n

(This shows that the two natural definitions of a random vector are equivalent.)

13.2 Let A be a sigma-algebra of events in � and P:A→ [0,1]. Suppose that

(a) P(�)= 1 and
(b) P

(⋃∞
i=1 Ai

)=∑∞
i=1 P(Ai ) when A1, A2, . . . are pairwise disjoint events in A.

Show that P(� \ A)= 1− P(A) for all A∈A.

13.3 A bookmaker wishes to find the odds (or, equivalently, the probabilities) that he should
quote for a contest with n candidates in order to maximize his expected profit, given the
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following beliefs:

(a) The probability that the i th candidate will win is pi .
(b) The fraction z of all bets will be placed (on the winner) by “insider traders”, i.e. bettors

who already know the result (e.g. the Booker Prize winner, an Oscar winner or any
contest where the winner is determined in private before it is announced publicly).

(c) The fraction pi (1− z) of all bets will be placed on the i th candidate by bettors who do
not know the result.

The bookmaker’s licence to bet is contingent on the sum of the probabilities implicit in the
odds that he quotes being less than β, and the odds for all candidates must, of course, be
positive.

By formulating his problem as a Kuhn–Tucker inequality-constrained optimization prob-
lem, find the bookmaker’s optimal strategy (i.e. his optimal probability quotes), the resulting
expected profit, and the value of β (for the given z and p= (p1, p2, . . . , pn)) at which it
would no longer be worth his while to make a book.

13.4 Section 13.3.1 considered a fixed-odds version of the “6-from-n” Lotto game. Now
consider the pari-mutuel version. Suppose that N people buy Lotto tickets at a price of e1
each and that all those who pick the correct numbers share a prize fund of eN/2.

(a) Is the expected value of a ticket still 50 cent? Explain.
(b) Should a value-seeking Lotto player bet when there is a rollover? Explain.

13.5 Show that, for scalars k1, k2, . . . , kr and random variables x̃1, x̃2, . . . , x̃r ,

E

[ r∑
i=1

ki x̃i

]
=

r∑
i=1

ki E[x̃i ]

13.6 Prove the equivalence of all the expressions in equation (13.34).

13.7 Let x̃ be a random vector with mean μ and variance–covariance matrix 	; and let A
and b be a conformable fixed matrix and vector, respectively. Find expressions for the mean
and the variance–covariance matrix of ỹ≡Ax̃ +b.

13.8 Show that two random variables are uncorrelated if and only if the expectation of their
product equals the product of their expectations, assuming that all expectations exist.

13.9 Prove that all variance–covariance matrices of non-trivial random vectors are real,
symmetric and positive semi-definite.

13.10 Show that the covariance between the random variables a�1 r̃ and a�2 r̃ is a�1 Var[r̃]a2.

13.11 Find matrix expressions equivalent to equations (13.41) and (13.42) for α ∈R
m and

B∈R
m×n satisfying

ε̃≡ ỹ−α−Bx̃

where x̃ is an n-dimensional random vector and ỹ is an m-dimensional random vector.
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13.12 Suppose x̃ is a random variable; let f :Rn →R
m be differentiable and let ỹ= f (x̃).

Using Theorem 9.7.6, explain the relationships between (a) fx̃ and fỹ and (b) E[x̃]
and E[ỹ].

13.13 Suppose Var[x̃] = 	 is positive definite and let 	
1−
2 be a symmetric positive defi-

nite square root of 	 (which we know exists from Section 4.4.1). Define a new random
vector ỹ by

ỹ≡ (	
1−
2 )−1x̃

(a) Show that Var[ỹ]= I, i.e. that the components of ỹ are uncorrelated random variables
with unit variance.

(b) Find an expression for the pdf fỹ in terms of fx̃. (Hint: see Section 9.7.6.)

13.14 Let x̃ ∼ N (μ,σ 2). Recall the normal pdf fx̃ given by equation (13.6).

(a) Evaluate the integral
∫∞
−∞ fx̃ (x)dx .

Does your answer depend on the value of the parameter μ?
(b) Use Leibniz’s integral rule and the chain rule to differentiate

∫∞
−∞ fx̃ (x)dx with respect

to μ.
(c) Hence show that E[x̃ −μ]= 0.
(d) Calculate E[ex̃ ].

13.15 Suppose x̃∼MVN(μ,	).

(a) Using the properties of the univariate normal distribution, calculate the mean vector and
variance–covariance matrix of x̃ for the case where 	= I.

(b) Hence, calculate the mean vector and variance–covariance matrix of x̃ for any symmetric
positive definite 	. (Hint: use your answers to Exercise 13.7 and use a positive definite
symmetric square root of the matrix 	 to simplify the multiple integrals involved; see
Section 4.4.1.)

13.16 Suppose that the n-dimensional random vector x̃ has a multivariate normal distribution
with mean μ and variance–covariance matrix 	.

(a) If A and b are a conformable fixed matrix and vector, respectively, show that ỹ≡Ax̃ +b
also has a multivariate normal distribution.

(b) Prove that x̃1, x̃2, . . . , x̃n are mutually independent if and only if Cov[x̃i , x̃ j ] = 0
for all i = j .

Now partition x̃ as (x̃1, x̃2), where x̃1 is a k-dimensional subvector of x̃ and x̃2 denotes the
complementary (n− k)-dimensional subvector.

(c) Show that x̃1 also has a multivariate normal distribution. (This result is particularly
important for the case of k= 1.)

(d) Show that the conditional distribution of x̃2 given x̃1 is multivariate normal.
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13.17 Suppose that a pari-mutuel betting operator retains the fraction τ of the gross pool to
cover taxes and expenses. Calculate the total percentage implicit in the resulting pari-mutuel
odds.

13.18 Recall that the trifecta bet requires the first three finishers in a race to be nominated
in the correct order. A popular method of betting into a trifecta pool is to pick one or more
bankers and combine them with a (usually larger) number of other horses. Suppose you
want to bet on all permutations including one horse from group A (containing a horses) and
two horses from group B (containing b horses).

If group A is smaller than group B, this is considered a banker trifecta; if group B is
smaller than group A, it is considered a double-banker trifecta.

Suppose first that groups A and B have no horse in common.

(a) How many (unordered) combinations does your portfolio of bets comprise?
(b) How many (ordered) permutations does your portfolio of bets comprise?
(c) In how many of these bets does the horse nominated to win come from group A?

Now suppose that there is an overlap of c horses between group A and group B and that you
want each different permutation included only once in your portfolio.

(d) How many different (unordered) combinations does your portfolio of bets now comprise?
(e) How many (ordered) permutations does your portfolio of bets comprise?

13.19 A pari-mutuel operator offers a “Pick 4” pool, where punters are required to nominate
the winners of four consecutive races. The operator retains 25% of the stakes and pays out
the remainder pro rata to punters who correctly select all four winners. If no punter selects
all four winners, the operator retains all stakes and adds them as a rollover to a Pick 4 pool
on a future date.

Suppose that each race is a handicap with ten runners. In a handicap, the weights car-
ried by each horse are adjusted, by placing a lead-cloth under the saddle, to equalize all
horses’ chances of winning. Like economics, handicapping is an inexact science, but you
may assume for the purposes of this question that the handicapper has achieved his objective.

(a) How many different possible outcomes are available for the Pick 4 punter to select from?
(You may ignore the possibility that a race may end in a dead-heat.)

(b) What is the probability of each of these outcomes?
(c) Can you determine the expected value of a e1 Pick 4 ticket at the time that the bet is

placed?
(d) Suppose that the operator has solde20 000 worth of tickets covering 5000 of the possible

outcomes.

(i) What will be the operator’s total payout at the end of the day if one of these 5000
outcomes occurs?

(ii) What is the operator’s expected total payout to punters at the end of the day?
(iii) What is the operator’s expected liability to today’s punters per e1 ticket sold?

(e) Can you now determine the expected value of a e1 Pick 4 ticket at the time that the bet
is placed?



February 12, 2011 11:1 Pinched Crown A Page-369 HarrWald

Probability theory 369

(f) If you hold a e1 Pick 4 ticket and one extra e1 ticket is sold on a combination that has
already been covered, will the expected value of your ticket rise, fall or stay the same?

(g) If you hold a e1 Pick 4 ticket and one extra e1 ticket is sold on a combination that has
not previously been covered, will the expected value of your ticket rise, fall or stay the
same?

(h) Suppose the operator had guaranteed to pay out at least e25 000 if one or more winning
tickets had been sold. How would this change your answers to the preceding parts?

13.20 Suppose that you have the opportunity to bet into a pari-mutuel pool into which there
is a rollover of R and from which the proportion τ will be deducted to cover taxes, expenses,
etc.

(a) If the total pool (rollover plus bets by others) is P and you believe that the probability that
the pool will be won is π , how much should you bet in order to maximize your expected
profit? You may assume that your bet will not affect the probability that the pool will be
won. You may also assume that the expected return on all bets is the same, i.e. that neither
you nor the other participants has any advantage or extra skill in picking outcomes with
higher expected returns.

(b) How would your answer change if you were eligible for a rebate or commission of the
proportion c of the amount bet?

(c) How much would you bet if the rollover was e1 000 000, another e1 500 000 had been
bet into the pool, the takeout rate was 29%, you were eligible for a 5% rebate on your bet,
and you believed there would certainly be at least one winning bet?

(d) Find the relationship between the amount bet P and the probability of a winning bet π
that would just dissuade you from betting.

13.21 Show that, for any random variable x̃ , Var[x̃]= E[x̃2]− (E[x̃])2 (provided that all
these quantities exist).

13.22 If ũi , i = 1,2, . . . ,n, are random variables with E[ũi ]= 0 for all i , E[ũ2
i ]= σ 2 for

all i , and E[ũi ũ j ]= 0 for all i, j (i = j), show that E[ũ�Aũ]= σ 2 tr(A), where ũ= [ũi ] is
n× 1 and A is a conformable square matrix.

13.23 Prove that, if two random variables are statistically independent, then:

(a) they are uncorrelated; and
(b) all conditional expectations equal marginal expectations.

13.24 Prove that∫ ∞

−∞
E[x̃1 | x̃2 = x2] fx̃2(x2)dx2 = E[x̃1]

for continuous random variables x̃1 and x̃2.

13.25 Calculate the mean and variance of the Poisson distribution; recall equation (13.2).

13.26 Show that a sum of random variables each having a Poisson distribution also has a
Poisson distribution.
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13.27 Prove Jensen’s inequality for continuously differentiable convex functions and for
continuously differentiable strictly convex functions.

13.28 Recall that the geometric mean of the numbers x1, x2, . . . , xn is the nth root of their

product n
√∏n

i=1 xi .
Show that the geometric mean of a set of non-equal non-negative numbers is less than

their arithmetic mean.

13.29 Consider a pari-mutuel pool operated on a contest with N possible outcomes. Suppose
that the probability of outcome i is pi and that you have just bet 1 unit on this outcome. Sup-
pose also that the total stakes bet by other participants on each outcome i are unobservable,
but are drawn from independent Poisson distributions with parameters λpi .

(a) Calculate the expected total amount bet on outcome i .
(b) Calculate the expected dividend on outcome i , conditional on a known value X for the

gross pool.
(c) Explain why the product of your two answers is different from the (expected) net pool.

13.30 Consider a 6-from-42 Lotto game with 42C6 = 5 245 786 possible outcomes and a
known jackpot pool of J , including a rollover of R.

(a) Calculate the expected number of jackpot-winning tickets if N + 1 tickets have been
sold.

(b) Calculate the expected payout to a player who has bought one ticket and whose numbers
have just been drawn (i.e. the expected value of the ticket before the National Lottery
computer has indicated whether or not there are other winning tickets among the other
N tickets sold).

You may assume that players select numbers at random and uniformly (uniform selection).
You may also assume that 17.5 cent is added to the jackpot pool for each ticket sold (i.e.
that J does not include any subsidy from a reserve fund to bring the jackpot pool up to a
guaranteed minimum value). Finally, note that each ticket played can win only one prize in
any one draw and that the highest prize will be paid in each case.

13.31 A spread betting firm trades on the product of the winning distances in eight races run
at the Breeders’ Cup. It offers to sell the product for a8. Calculate the expected percentage
return to a buyer who believes that the winning distances are iid random variables a + ε̃i ,
i =1,2, . . . ,8, where the mean of ε̃i is unknown. Noting that the winning distance cannot be
negative, show that buying the product is a good bet even when the seller’s price is unbiased,
in the sense that the mean of E[ε̃i ] is drawn from a distribution which itself has mean 0.

13.32 Suppose x̃ and ỹ are independent random variables with finite variances. Show that

Var[x̃ ỹ]=Var[x̃]Var[ỹ]+ E[x̃]2Var[ỹ]+ E[ỹ]2Var[x̃]
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14 Quadratic programming and
econometric applications

14.1 Introduction
At the start of Chapter 1 we considered three examples to illustrate the role of matrices and
linear algebra in economics, and to provide the motivation for the mathematical material
in the chapters that followed in Part I. The first of these topics involved a single-equation
demand relationship

Q̃t =α+βPt + γYt + ũt (14.1)

where Q̃t (quantity demanded), Pt (price) and Yt (income) are observable for time periods
t = 1,2, . . . ,T , and ũt is an unobservable random disturbance. A typical econometric
problem was posed, namely, the estimation of the structural parameters of this population
regression equation, α, β and γ , using a sample of time-series data.

In this chapter, we begin by returning to a more general form of this problem that involves
estimation of not three unknown parameters, but an arbitrary number, k, of them. There are
several approaches to estimation in econometrics: the methods of moments, least squares
and maximum likelihood. In Section 14.2, we adopt the method of ordinary least squares,
using some of the mathematics relating to matrices and optimization developed earlier to
explore the algebra and geometry associated with this approach. We adopt a slightly different
approach and notation here compared with Section 13.2 in order to emphasize the fact that
we are dealing mainly with data, i.e. realizations of random variables, rather than the random
variables themselves.

In Section 14.3, the theory of optimization is applied to maximization or minimization of
a quadratic form subject to linear inequality constraints. This is an important subject as all
constrained optimization is locally like maximizing a quadratic form with linear constraints,
as will be discussed in Section 14.3. That section also contains a number of applications of
this more general problem, which include an important statistical result associated with least
squares regression: the Gauss–Markov theorem. Finally, in Section 14.4, some of the mate-
rial on difference equations from Chapter 8 is extended to stochastic difference equations
and a discussion of vector autoregressive models, which are widely used in empirical work
in macroeconomics.

14.2 Algebra and geometry of ordinary least squares
Let the general single-equation economic relationship be denoted by the population
regression equation

Ỹt =β1 +β2 Xt2 +β3 Xt3 + · · ·+βk Xtk + ũt (14.2)
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where Ỹt is the value of the dependent variable, Xt j , j = 1,2, . . . , k, is the j th explana-
tory variable, and ũt is an unknown and unobservable random disturbance in time period
t = 1,2, . . . ,T . The β j , j=1,2, . . . , k, are the unknown and unobservable parameters of the
relationship, for which numerical estimates are required. The random variable ũt accounts
for factors ranging from errors in the measurement of Ỹt to the influences of variables miss-
ing from the model specification. This model, known as the linear regression model, is the
basis of classical econometrics. It may be written compactly in a standard matrix notation as

ỹ=Xβ + ũ (14.3)

where

ỹ=

⎡⎢⎢⎢⎣
Ỹ1

Ỹ2
...

ỸT

⎤⎥⎥⎥⎦
T×1

, X=

⎡⎢⎢⎢⎣
1 X12 . . . X1k

1 X22 . . . X2k
...

...
...

1 XT 2 . . . XT k

⎤⎥⎥⎥⎦
T×k

, ũ=

⎡⎢⎢⎢⎣
ũ1

ũ2
...

ũT

⎤⎥⎥⎥⎦
T×1

(14.4)

and β = [
β1 β2 . . . βk

]�
.

Note the orders of the matrices and the conformability of the matrices for the matrix
multiplication, addition and equality operations. We will make an assumption about the rank
of X, for reasons that will become clear later, namely, that ρ(X)= k< T .

14.2.1 Algebra of ordinary least squares

Use of the ordinary least squares (OLS) technique is a standard approach to the problem
of estimation of β, which chooses an estimate, β̂, so as to obtain the best-fitting line or
plane (or hyperplane in more than three dimensions) in the sense of minimizing the sum
of the squared deviations (or residuals) around the line or plane. The two-dimensional or
bivariate situation is familiar from introductory econometrics. For a population regression
function Ỹt =β1+β2 Xt + ũt , and an observed random sample of realizations of Ỹt , denoted
Y1,Y2, . . . ,YT , and corresponding values X1, X2, . . . , XT of the explanatory variable, scat-
ter plots with the sample conditional expectation function Ŷt = β̂1 + β̂2 Xt superimposed
are frequently used. In this case, the empirical counterparts of the unobservable random
disturbances are the residuals et = Yt − Ŷt = Yt − β̂1 − β̂2 Xt , and OLS finds the vector

β̂
∗ = [

β̂∗1 β̂∗2
]�

such that
∑T

t=1 e2
t is minimized.

Similarly, our general problem is to choose β̂
∗

to minimize

T∑
t=1

e2
t =

T∑
t=1

(Yt − β̂1 − β̂2 Xt2 − β̂3 Xt3 − · · ·− β̂k Xtk)
2 (14.5)

or in matrix notation

e�e= (y− ŷ)�(y− ŷ)= (y−Xβ̂)�(y−Xβ̂) (14.6)

with respect to choice of β̂.
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It is noteworthy that e�e= e�Ie is a quadratic form in e, which is positive definite since
the identity matrix, I, is positive definite, i.e. e�e> 0 for all e = 0. It may also be noted that
e�e=‖e‖2, e∈RT , so our problem may also be thought of as finding β̂ such that the length
of the vector of residuals, e, is minimized in Euclidean T -space. To begin, we concentrate
on the algebra of the OLS solution.

From (14.6), and using the rules of matrix transposition and the distributive law, we have
that

e�e= (
y� − β̂

�
X�)(y−Xβ̂

)
= y�y− β̂

�
X�y− y�Xβ̂ + β̂

�
X�Xβ̂

= y�y− 2β̂
�

X�y+ β̂
�

X�Xβ̂ (14.7)

Note that, like e�e, all terms on the right-hand side of (14.7) are scalars. The middle two
terms in the middle expression are equal since one is the transpose of the other. Note, too,
that, expressed as a function of β̂, e�e includes a linear form in β̂ and a quadratic form in β̂.
We can therefore differentiate with respect to β̂ using the results from Chapter 9. We get

∂e�e

∂β̂
=−2X�y+ 2X�Xβ̂ (14.8)

For a maximum or minimum, ∂e�e/∂β̂ = 0. Therefore, our first-order condition is

−2X�y+ 2X�Xβ̂
∗ = 0 (14.9)

which, dividing by 2 and rearranging, gives

X�Xβ̂
∗ =X�y (14.10)

The asterisk is used here to denote the value of β̂ that satisfies the first-order condition, i.e.
the optimal OLS solution.1

The equations in (14.10) are called the OLS normal equations. They constitute a
square system of linear simultaneous equations in the k unknown elements of β̂

∗
. Recall-

ing Cramer’s theorem (Theorem 2.5.1), these equations are uniquely soluble for β̂
∗

if the
k × k matrix X�X is invertible. We now see the reason for the earlier assumption that
ρ(X)= k< T . For, with X of full rank, Theorem 4.4.8 applies to X�X. Hence we can assert
that X�X is positive definite and therefore non-singular; the inverse of X�X exists.

The unique solutions for the individual elements of β̂
∗

could be obtained via Cramer’s
rule as

β̂∗i =
|(X�X)i |
|X�X| , i = 1,2, . . . , k (14.11)

where, following the convention used in Section 2.5.1, (X�X)i denotes the matrix formed by
replacing the i th column of X�X by the k× 1 vector X�y. However, we are more interested
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in using the general solution

β̂
∗ = (X�X)−1X�y (14.12)

which follows by pre-multiplying both sides of (14.10) by (X�X)−1. If ρ(X) < k so that
X�X is not positive definite, then X�X would be singular, (X�X)−1 would not exist and
therefore β̂

∗
could not be computed. This is the situation known in econometrics as perfect

multicollinearity, i.e. linear dependence of the columns of X.
Before the implications of our main result (14.12) are explored, let us examine the second-

order condition for this problem. Differentiating (14.8) with respect to β̂ yields the k × k
Hessian matrix of second-order partial derivatives

∂2e�e

∂β̂∂β̂
� = 2X�X (14.13)

Given the positive definiteness of X�X that follows from our full rank assumption for X, this
Hessian is positive definite and the second-order condition for a minimum is satisfied. The
solution for β̂

∗
given in (14.12) does indeed minimize e�e=∑T

t=1 e2
t .

It is of interest to use the general result in the context of the two-variable regression model
Ỹt =β1 +β2 Xt + ũt . It is easy to show that in this case we have

β̂
∗ = (X�X)−1X�y=

⎡⎢⎢⎢⎢⎢⎣
T

T∑
t=1

Xt

T∑
t=1

Xt

T∑
t=1

X2
t

⎤⎥⎥⎥⎥⎥⎦
−1⎡⎢⎢⎢⎢⎢⎣

T∑
t=1

Yt

T∑
t=1

Xt Yt

⎤⎥⎥⎥⎥⎥⎦ (14.14)

It is left as an exercise to show that evaluation of the right-hand side of this equation gener-
ates the well-known scalar expressions for the OLS estimates β̂∗1 and β̂∗2 ; see, for example,
Gujarati (2003, Chapter 3) and Exercise 14.1. It is also of interest for us to explore the algebra
of the general OLS solution a little further.

Using the OLS solution (14.12) we may write

e= y− ŷ= y−Xβ̂
∗ = y−X(X�X)−1X�y (14.15)

or, more compactly,

e=My (14.16)

where M= I−X(X�X)−1X�. Substituting y=Xβ + ũ in this equation yields

e=Mũ (14.17)

since MX= 0. Therefore, the OLS vector of residuals is both a linear function of y and the
same linear function of the unknown vector ũ.
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Applying the theorems for transposes from Section 1.5.7, it is easy to demonstrate that
M� =M. By direct multiplication, it is also straightforward to show that M2 =M. Thus M
is symmetric and idempotent.

We have some similar results for the ŷ vector, namely,

ŷ= y− e= y−My= (I−M)y=Ny (14.18)

another linear function of y, where N=X(X�X)−1X� = I−M is symmetric idempotent.
However, in this case NX=X and ŷ is not the same linear function of ũ; rather, on
substitution for y, using (14.3), we get

ŷ=Xβ +Nũ (14.19)

Using the fact that MX= 0, we observe that

MN= 0 and X�e= 0 (14.20)

The first of these properties means that M and N are “orthogonal” to each other; the second
implies that

X�y=X�ŷ (14.21)

ŷ�e= β̂
∗�

X�e= 0 (14.22)

so that ŷ and e are orthogonal, and if there is an intercept in the regression equation, so that
the first row of X� consists entirely of ones, then

1�y=
T∑

t=1

Yt =
T∑

t=1

Ŷt = 1�ŷ (14.23)

and

1�e=
T∑

t=1

et = 0 (14.24)

so that the mean of the Yt values and the mean of the Ŷt values are the same, and the mean of
the et values is zero. All of these results, which have important roles in econometrics, follow
mathematically from the OLS methodology.

14.2.2 Geometry of ordinary least squares

We have already noted that OLS may be thought of as minimizing the length of the vector e
in R

n . In this section, we elaborate on this fact and provide some further geometric insight
into the OLS technique.

First note that, if we partition X by its columns, xi , i = 1,2, . . . , k, and partition β̂
∗

conformably by its individual elements, we may write

ŷ=Xβ̂
∗ = β̂∗1 x1 + β̂∗2 x2 + · · ·+ β̂∗k xk (14.25)
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and note that ŷ∈ lin{x1,x2, . . . ,xk}, i.e. ŷ belongs to the linear space spanned by the columns
of X, and thus by (14.20) e belongs to its orthogonal complement. Moreover, ŷ will be shown
to be the orthogonal projection of y onto this column space. To see this most easily, let us
consider the simplest possible regression

Ỹt =βXt + ũt , t = 1,2, . . . ,T (14.26)

For this case, we have

β̂∗ = (X�X)−1X�y

= 1

x�1 x1
x�1 y (14.27)

since X comprises just a single column of observations x1. Therefore,

ŷ= β̂∗x1 = x�1 y

x�1 x1
x1

= x�1 y

‖x1‖2
x1 = projx1

y (14.28)

using Theorem 5.2.4; i.e. ŷ is the orthogonal projection of y on x1. It follows that e= y− ŷ
is the component of y orthogonal to x1.

The result that

ŷ=Xβ̂
∗ =Ny (14.29)

is the generalization of (14.28), and N is known as the OLS projection matrix. The matrix N
projects y orthogonally onto the column space of X. Thus e=My= (I−N)y is orthogonal

to ŷ by construction and the length of e is minimized. Any other choice of coordinates, ˆ̂β,
say, resulting in the linear combination ˆ̂y would lead to a residual vector y− ˆ̂y with greater
length than e. The situation is depicted in Figure 14.1 for the simple regression (14.26) and
T = 3. In Figure 14.1, the optimal value of β̂

∗
is one-half, which has the shortest residual

vector associated with it.
To ensure understanding of these geometric ideas, a useful exercise for the reader would

be to produce a corresponding diagram to Figure 14.1 for the regression equation

Ỹt =β1 Xt1 +β2 Xt2 + ũt (14.30)

and T = 3 observations on Ỹt , Xt1 and Xt2; see Exercise 14.3.
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Figure 14.1 Geometry of ordinary least squares regression in R
3

Finally, consider the angle, θ, between y and ŷ. From the definition of the dot product, we
have that

cos θ = y · ŷ
‖y‖‖ŷ‖ =

(ŷ+ e) · ŷ
‖y‖‖ŷ‖

= (ŷ+ e)�ŷ

(y�y)
1−
2 (ŷ�ŷ)

1−
2

= ŷ�ŷ

(y�y)
1−
2 (ŷ�ŷ)

1−
2

= (ŷ�ŷ)
1−
2

(y�y)
1−
2

(14.31)

The square of this ratio is similar to the ratio of the so-called explained sum of squares to
the total sum of squares known in regression analysis as the coefficient of determination,
and denoted as R2. Similarly, therefore, cos2 θ may be interpreted as a measure of goodness
of fit of the estimated regression to the data. Given that 0≤ cos2 θ ≤ 1, we have improving
fit as cos2 θ→1. Geometrically, as may be seen from Figure 14.1, this corresponds to θ→0
and thus ŷ→ y and, hence, ‖e‖→ 0.

The following section considers a more general optimization problem, of which OLS
regression is a special case.

14.3 Canonical quadratic programming problem

14.3.1 Canonical solution

A problem that arises frequently in economics, econometrics and finance is to find the vec-
tor x ∈ R

n that maximizes the value of the quadratic form x�Ax subject to the m linear
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inequality constraints gi�x ≥ αi , where A ∈ R
n×n is negative definite and gi ∈ R

n for
i = 1,2, . . . ,m (m≤ n), or the equivalent problem with equality constraints.

The objective function can always be rewritten as a quadratic form in a symmetric
(negative definite) matrix, since as x�Ax is a scalar,

x�Ax= (x�Ax)�

= x�A�x

= 1
2 (x

�Ax+ x�A�x)

= x�
( 1

2 (A+A�)
)
x (14.32)

and, as is easily demonstrated, 1
2 (A+A�) is always symmetric; see Exercise 14.6. In what

follows, we will assume that A itself is symmetric.
Let G be the m × n matrix whose i th row is gi , and let α= [αi ]m×1. The matrix G must

have full rank if we are to apply the Kuhn–Tucker conditions.
The Lagrangian is

x�Ax+λ�(Gx−α) (14.33)

The first-order condition is

2x∗�A+λ�G= 01×n (14.34)

or, transposing and pre-multiplying across by 1
2 A−1,

x∗ =− 1
2 A−1G�λ (14.35)

where the asterisk denotes the optimal solution. Assuming for the time being that the
constraints are binding, we have that

Gx∗ =α=− 1
2 GA−1G�λ (14.36)

We need to be able to invert GA−1G� in order to solve for the Lagrange multipliers λ. Since
G itself has full rank and A and thus A−1 are negative definite, it follows by Theorem 4.4.4
that GA−1G� is also negative definite, and thus invertible, so we have that

λ=−2(GA−1G�)−1α (14.37)

The sign conditions tell us that every component of λ must be non-negative. If they are not,
then we must examine the problem carefully to see which subset of the constraints is binding
and start again using only this subset of constraints.2

We can now find the optimal x by substituting for λ in (14.35) from (14.37). Provided that
all the constraints are binding, the solution is

x∗ =A−1G�(GA−1G�)−1α (14.38)
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and the envelope function is given by

x∗�Ax∗ =α�(GA−1G�)−1GA−1AA−1G�(GA−1G�)−1α

=α�(GA−1G�)−1α

=− 1
2α�λ (14.39)

The applications of this problem include ordinary least squares, generalized least squares and
restricted least squares regression, the mean–variance portfolio choice problem in finance,
principal components and factor analysis. By way of illustration, there follows a discussion
of the application to an important statistical result associated with ordinary least squares,
namely, the Gauss–Markov theorem, and to restricted least squares regression. The mean–
variance portfolio choice problem in finance is deferred to Section 17.4.

14.3.2 Gauss–Markov theorem

Consider again the regression equation

ỹ= x�β + ε̃ (14.40)

Here, ỹ and ε̃ are random variables, ε̃ being a zero-mean disturbance term, and x is a fixed
k-vector. Given an unobserved random sample of T values for ỹ, ỹ≡ (ỹ1, ỹ2, . . . , ỹT ), corre-
sponding to values x1,x2, . . . ,xT , respectively, of x, the vector of disturbance terms, ε̃, with
variance–covariance matrix V, say, may be written as ε̃ = ỹ−Xβ, where X is the matrix
with rows x�1 ,x�2 , . . . ,x�T .

Any expression of the form
∑T

t=1 αt ỹt , where α1, α2, . . . , αT are non-random scalars, is
said to be a linear estimator. Recall from Section 13.8 the meaning of the term “unbiased
estimator”. We also require the statistical notion of the best estimator, meaning the esti-
mator with minimum variance in a given class of estimators. This idea relates to statistical
efficiency, and the best estimator is the statistically most efficient in a given class. Using
these concepts, we can now state the theorem of interest.3

THEOREM 14.3.1 (GAUSS–MARKOV THEOREM). Assume that k < T and that the T × k
matrix X with rows x�1 ,x�2 , . . . ,x�T is of full rank. Then the best linear unbiased estimators
(BLUE) of the parameters βi , i = 1,2, . . . , k, are given by

β̂GLS ≡ (X�V−1X)−1X�V−1ỹ (14.41)

Proof: Rather than proving the precise result directly, it is convenient and easier to con-
sider the more general problem of finding the BLUE of μ≡ c�β where c ∈R

k . Setting c
equal to the appropriate standard unit basis vector solves the problem posed.

Stack the values, as in (14.3), in the form

ỹ=Xβ + ε̃ (14.42)

A linear estimator of μ will be of the form a�ỹ, where a∈R
T . Its expected value is

E[a�ỹ]= a�Xβ (14.43)
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so our estimator is unbiased (for all values of the true parameter vector β) if and only if

a�X= c� (14.44)

The variance of a�ỹ is a�Va, which must now be minimized subject to the linear constraint
(14.44).

This is the canonical problem above with T and k replacing the dimensions n and m,
respectively, and −V,a,X� and c taking the places of A, x, G and α, respectively. So the
solution is

a∗ =V−1X(X�V−1X)−1c (14.45)

Thus the BLUE of μ is

a∗�ỹ= ỹ�a∗ = ỹ�V−1X(X�V−1X)−1c (14.46)

and by successive substitution for c using the standard basis vectors, and stacking results in
a column vector, the BLUE of β is

(X�V−1X)−1X�V−1ỹ (14.47)
�

The result in (14.41) is known as the generalized least squares (GLS) estimator; hence
the subscript. If the disturbance terms are iid, then V= σ 2IT for some σ and the model is
just the ordinary least squares regression model, and (14.41) reduces to the OLS estimator
(14.12). If V is diagonal but the ỹi values are heteroskedastic, i.e. have different variances,
then the estimator is the weighted least squares (WLS) estimator. For more general V, we
are dealing with the full GLS regression model.

An alternative approach to the derivation of the GLS estimator is to formulate the
Lagrangian and solve the first-order conditions for the appropriate constrained optimization
problem from first principles; see Exercise 14.8.

The particular estimators for the βi , the variance of the minimum-variance estimator, etc.
are easily derived; see Johnston and DiNardo (1997, pp. 89–90) and Exercise 14.9.

14.3.3 Restricted least squares estimation

Occasionally, theory may suggest linear restrictions on the parameters of regression models.
Suppose, for example, that it suggests that β1+β3= 1 in a model with k parameters. Such a
restriction can be represented by matrices as

Rβ = r or Rβ − r= 0 (14.48)

where R= [1 0 1 0 . . . 0]1×k , r= [1]1×1, 0= [0]1×1 and β is the k-vector of param-
eters defined in Section 14.2. If theory also suggests that β2 = β4, then the two restrictions
may be represented by (14.48), where now

R=
[

1 0 1 0 0 . . . 0
0 1 0 −1 0 . . . 0

]
2×k

, r=
[

1
0

]
2×1

(14.49)

and 0 is a 2× 1 zero matrix.



February 12, 2011 11:1 Pinched Crown A Page-381 HarrWald

Quadratic programming and econometric applications 381

More generally, g linear restrictions on the k parameters may be written as (14.48), where
R is g× k and r and 0 are g× 1. We assume that g< k and that the g restrictions are linearly
independent so that ρ(R)= g. If such restrictions constitute valid additional information,
then in the interest of statistical efficiency they should be used in the estimation of β. Given
a sample of data, as in Section 14.2, the estimation problem then becomes that of minimizing
the sum of squared residuals e�e, subject to the constraint Rβ̂− r= 0. Thus we have another
form of the quadratic programming problem, but with both linear and quadratic terms in the
objective function, for which the Lagrangian is

L(β̂,λ)= e�e+λ�(Rβ̂ − r) (14.50)

where λ is a g× 1 matrix of Lagrange multipliers, each element of which is associated with
one of the g restrictions.

Substituting for e�e using (14.6), then differentiating with respect to β̂ and λ and putting
the results equal to zero, we have the first-order conditions for a constrained optimum

∂L
∂β̂

=−2X�y+ 2X�Xβ̂
∗
R +R�λ̂= 0 (14.51)

∂L
∂λ

=Rβ̂
∗
R − r= 0 (14.52)

where the subscript “R” is used to distinguish the restricted least squares (RLS) estimator
from the OLS estimator, β̂

∗
. The first two terms in the middle expression for ∂L/∂β̂ are

precisely those derived in (14.8). Solution of the first-order equations (14.51) and (14.52) is
rather more difficult than for the normal equations (14.10) encountered in the unconstrained
OLS problem, however. We consider two approaches to this solution. The first is a two-
step procedure, which finds the solution for λ̂, then uses this to obtain the solution for β̂

∗
R.

The second solves for β̂
∗
R and λ̂ simultaneously and makes use of the partitioned inverse

introduced in Section 1.5.14.

Solution: approach 1

Pre-multiplying (14.51) by 1
2 R(X�X)−1, assuming (X�X)−1 exists, as in Section 14.2, we

obtain

−R(X�X)−1X�y+Rβ̂
∗
R + 1

2 R(X�X)−1R�λ̂= 0 (14.53)

Since (X�X)−1X�y is the OLS estimator, β̂
∗
, and Rβ̂

∗
R= r, because the RLS estimator, β̂

∗
R,

satisfies the restrictions (see (14.52)), we may rewrite (14.53) as

R(X�X)−1R�λ̂= 2(Rβ̂
∗ − r) (14.54)

from which it follows, since R is of full rank and Theorem 4.4.4 again applies, that

λ̂= 2[R(X�X)−1R�]−1(Rβ̂
∗ − r) (14.55)
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Now, using (14.55) to substitute for λ̂ in (14.51), we have

−2X�y+ 2X�Xβ̂
∗
R + 2R�[R(X�X)−1R�]−1(Rβ̂

∗ − r)= 0 (14.56)

and finally, after pre-multiplying this equation by 1
2 (X

�X)−1, we can write the solution

for β̂
∗
R as

β̂
∗
R = β̂

∗ − (X�X)−1R�[R(X�X)−1R�]−1(Rβ̂
∗ − r) (14.57)

Solution: approach 2

For the alternative approach, let us minimize 1
2 e�e to simplify the calculations. The first-

order conditions become (14.51) and (14.52) without the 2s and can be written as a system
of equations in the form[

X�X R�

R 0

][
β̂
∗
R

λ̂

]
=
[

X�y
r

]
(14.58)

using partitioned matrices. The assumptions we have made about X and R ensure that the
square matrix in (14.58) is invertible (see Exercise 14.10), hence[

β̂
∗
R

λ̂

]
=
[

X�X R�
R 0

]−1 [X�y
r

]
(14.59)

As indicated in Section 1.5.14, there are several forms for the partitioned inverse. The appro-
priate form in this instance is the one given in Exercise 1.23, which the reader is asked to
derive in Exercise 14.10. This allows us to write[

β̂
∗
R

λ̂

]
=
[
(X�X)−1 − (X�X)−1R�AR(X�X)−1 (X�X)−1R�A

AR(X�X)−1 −A

][
X�y

r

]
(14.60)

where A= [R(X�X)−1R�]−1. It follows from this that

β̂
∗
R = (X�X)−1X�y− (X�X)−1R�AR(X�X)−1X�y+ (X�X)−1R�Ar

= β̂
∗ − (X�X)−1R�A(Rβ̂

∗ − r) (14.61)

which is identical to (14.57) when substitution for A is undertaken.
It is easy to see from (14.57) or (14.61) that, if the ordinary least squares estimates happen

to satisfy the theoretical restrictions, so that Rβ̂
∗ − r= 0, then β̂

∗
R = β̂

∗
.

14.4 Stochastic difference equations
In this section, we introduce an extension of the linear, autonomous difference equation that
is widely used in statistical time-series analysis and econometrics. The extension simply
involves adding a random variable on the right-hand side of the equation, so that the process
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generating a variable is no longer deterministic, but rather is stochastic. We might think of
the deterministic component of the modified difference equation as describing the average
behaviour of a variable over time, and the random component as accounting for other non-
systematic factors that influence the precise value of the variable in a given time period.

We begin by establishing some basic facts about a class of single stochastic difference
equations, then move on to consider aspects of a type of system of stochastic difference
equations that has been widely used in empirical macroeconomics, namely, the vector
autoregressive model.4

14.4.1 Single-equation autoregressive processes

The concept of a stochastic process was defined in Section 13.2.1 as a sequence of random
variables indexed by time. Before we introduce our first specific type of stochastic pro-
cess in this section, we define three variants of an important general property of stochastic
processes – namely, the property of stationarity – and some related concepts.

DEFINITION 14.4.1 A stochastic process, {x̃t }, is said to be strictly stationary if the joint
probability distributions (or densities) of x̃1, x̃2, . . . , x̃T and x̃1+k, x̃2+k, . . . , x̃T+k are the
same for k=±1,±2, . . . .

DEFINITION 14.4.2 A stochastic process, {z̃t }, is said to be weakly (or covariance)
stationary if the first and second moments of z̃t exist and

E[z̃t ]=μ ∀ t (14.62)

Var[z̃t ]= σ 2 ∀ t (14.63)

Cov[z̃t , z̃t− j ]=Cov[z̃t+k, z̃t+k− j ]= γ j ∀ t, k, j (14.64)

where the Cov[z̃t , z̃t− j ] are the autocovariances for all t, j , with γ0 = σ 2 ≥ 0.

Thus, if a stochastic process {z̃t } is weakly stationary, the means, variances and auto-
covariances are time invariant, and the autocovariances depend only on the lag length j . It
follows that the autocorrelations, defined as

Corr[z̃t , z̃t− j ]≡ Cov[z̃t , z̃t− j ]√
Var[z̃t ]Var[z̃t− j ]

= γ j

σ 2
= γ j

γ0
≡ ρ j (14.65)

also depend only on j . Since γ j =Cov[z̃t , z̃t− j ]=Cov[z̃t− j , z̃t ] and, by weak stationarity,
Cov[z̃t− j , z̃t ]=Cov[z̃t− j+ j , z̃t+ j ]=Cov[z̃t , z̃t−(− j)]= γ− j , it also follows that ρ j = ρ− j .

DEFINITION 14.4.3 A stochastic process, {w̃t }, is said to be asymptotically stationary or
integrated to order zero, denoted w̃t ∼ I (0), if, as t →∞, E[w̃t ]→μ, Var[w̃t ]→ σ 2,
Cov[w̃t , w̃t− j ] → γ j , which depends only on | j |, and Corr[w̃t , w̃t− j ] → ρ j , which also
depends only on | j |, where μ, σ 2, γ j and ρ j for all j are constants.

Asymptotic stationarity is a weaker concept than both strict and weak stationarity: sta-
tionary processes are I (0) but I (0) processes are not necessarily stationary. In this section,
only the concepts of weak stationarity and asymptotic stationarity are used. As the difference
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will usually be clear from the context, the adjectives “weak” and “asymptotic” will often be
omitted.

We are now ready to define a stochastic linear, autonomous, difference equation of order
one called the first-order autoregressive process, and to examine some of its properties; brief
generalization will follow.

DEFINITION 14.4.4 The stochastic process {ỹt } is said to be a first-order autoregressive
process, denoted AR(1), if

ỹt =φ0 +φ1 ỹt−1 + ε̃t ∀ t (14.66)

where φ0 and φ1 are constants, and ε̃t is a random variable assumed to be independently and
identically distributed with mean E[ε̃t ]= 0 and constant variance Var[ε̃t ]= σ 2 for all t .5

If φ1 is such that−1<φ1<1, then the AR(1) process is weakly stationary. This condition
on φ1 in (14.66) will be recognized as the same as that required to guarantee the asymptotic
stability of the linear, autonomous, first-order difference equation discussed in Section 8.3.
However, as ỹt is a random variable (as indicated by the tilde), because it is a function of the
random variable ε̃t , the statistical concepts of weak stationarity or asymptotic stationarity
usually replace stability as a prime concern in the study of stochastic difference equations,
though the three concepts are closely related.

Despite the shift in focus, the asymptotic stability conditions from Section 8.3 underpin the
conditions for weak stationarity and asymptotic stationarity. To see this, consider the AR(1)
process as having started in time period 1. Employing the technique of repeated substitution
for the right-hand side of (14.66), we obtain

ỹt =φ0(1+φ1 + · · ·+φt−2
1 )+φt−1

1 y1 + ε̃t +φ1ε̃t−1 + · · ·+φt−2
1 ε̃2

=φ0

t−2∑
i=0

φi
1 +φt−1

1 y1 +
t−2∑
i=0

φi
1ε̃t−i (14.67)

where y1 is a fixed starting value (initial condition) for the process. This is a modified form
of (8.23), in which a weighted sum of random variables (the ε̃t−i ) also appears. Applying
the properties of expectations, variances and covariances given in Section 13.6.1 to (14.67),
it is easy to verify that, conditional on ỹ1 = y1,

E[ỹt ]=φ0(1+φ1 + · · ·+φt−2
1 )+φt−1

1 y1, t ≥ 2 (14.68)

Var[ỹt ]= σ 2(1+φ2
1 + · · ·+φ2(t−2)

1 ), t ≥ 2 (14.69)

Cov[ỹt , ỹt− j ]=φ j
1 Var[ỹt− j ], 2≤ j ≤ t − 1 (14.70)

Since all of these moments depend on time, the AR(1) process is non-stationary; but since
|φ1|< 1 by assumption, as t →∞ we have that

E[ỹt ]→ φ0

1−φ1
(14.71)
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Var[ỹt ]→ σ 2

1−φ2
1

(14.72)

Cov[ỹt , ỹt− j ]→ φ
j
1σ

2

1−φ2
1

(14.73)

In other words, all of the moments in (14.68), (14.69) and (14.70) become time invari-
ant, and independent of the starting value y1, as t →∞, making it clear why |φ1| < 1
is a sufficient condition for asymptotic stationarity in the AR(1) case. Using (14.70), the
autocorrelations are

Corr[ỹt , ỹt− j ]= Cov[ỹt , ỹt− j ]√
Var[ỹt ]Var[ỹt− j ]

=φ j
1

√
Var[ỹt− j ]

Var[ỹt ]
(14.74)

which also depend on time; but as t →∞ we see that, for given j,Corr[ỹt , ỹt− j ]→φ
j
1 =ρ j ,

which is time invariant.6 Thus, in (14.67), ỹt ∼ I (0) when |φ1|< 1: the AR(1) process is
asymptotically stationary.

If |φ1| ≥ 1, (14.68), (14.69) and (14.70) indicate that the moments of the AR(1) process
diverge with t and, therefore, that the process is non-stationary. The case of |φ1| > 1 is
not considered to be of much interest in economics and finance, but that of |φ1| = 1, and
particularly φ1=1, is of great importance, as mentioned in Section 3.4. Such a value implies
a unit root in the lag polynomial associated with the process. Moreover, a positive unit
root also implies that ỹt = (1− L)ỹt ∼ I (0) so that first-differencing induces asymptotic
stationarity. The case of a negative unit root is considered in Exercise 14.13.

A particular case of a unit root process that has been used to model variables (such as for-
eign exchange rates and stock prices) that are thought to be determined by efficient markets7

is the so-called random walk. This is simply an AR(1) process in which φ0= 0 and φ1= 1:

ỹt = ỹt−1 + ε̃t (14.75)

The lag polynomial associated with this process is φ(L)= 1− L; the unit root – and, hence,
the non-stationarity of the random walk – is obvious. It follows that ỹt = ε̃t , and so ỹt is
iid and so is stationary in all three senses. The practical implication is that if (14.75) is an
adequate description of how a particular variable behaves, then the change in that variable
is impossible to forecast: the optimal predictor of ỹt , given information available at time
t − 1, is the conditional expectation E[ỹt |�t−1]= ỹt−1, where �t−1 denotes the available
information at t − 1.

The existence of unit roots does not mean that all forecasting exercises are as limited as in
the case of the random walk model. Suppose, for example, that a variable is generated as

ỹt =φ0 + 0.75ỹt−1 + 0.25ỹt−2 + ε̃t (14.76)

This is an example of an AR(2) process, in which a two-period lag of the variable of interest
appears in the equation. The lag polynomial associated with (14.76) is

φ(L)= 1− 0.75L − 0.25L2 (14.77)
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This polynomial factorizes as (1+ 0.25L)(1− L) and so, recalling (8.91), the generating
process can be rewritten as

ỹt =φ0 − 0.25ỹt−1 + ε̃t (14.78)

In this case, therefore, knowledge of the lagged change yt−1 is relevant to forecasting, the
optimal predictor of ỹt being E[ỹt |�t−1]= φ0 − 0.25ỹt−1, from which a forecast of
ỹt can be obtained, namely φ0− 0.25yt−1, whereyt−1 would be known. In practice, of
course, an estimate of φ0 would also be required. A forecast of ỹt follows simply by adding
the forecast change to the known value yt−1.

The AR(1) process generalizes further to the AR(p) process

ỹt =φ0 +φ1 ỹt−1 +φ2 ỹt−2 + · · ·+φp ỹt−p + ε̃t (14.79)

or, using the lag operator,

φ(L)ỹt =φ0 + ε̃t (14.80)

where φ(L) is the polynomial defined in (8.67). In the immediately preceding illustration in
(14.76), the value of p is 2.

In the AR(1) case, the stationarity condition is |φ1|< 1. Another way of stating this is
that the root of φ(z)= 1− φ1z = 0 must be greater than 1, since the solution of φ(z)= 0
is z = 1/φ1 and the requirement that |φ1|< 1 implies that |z|> 1. This is precisely the idea
first introduced in Section 8.3.1. The idea also applies in the AR(p) case, for which (using
the phraseology that allows for the possibility of complex solutions), to ensure stationarity,
the roots of the lag polynomial equation φ(z)= 1− φ1z − · · · − φpz p = 0 must all lie out-
side the unit circle. This is the general stationarity condition for autoregressive processes.
A necessary condition for the roots of the lag polynomial to lie outside the unit circle is that∑p

i=1 φi < 1; a sufficient condition is that
∑p

i=1 |φi |< 1; see Section 8.4.3.

14.4.2 Vector autoregressive processes

The vector autoregressive process (VAR process), introduced by Sims (1980), is particu-
larly popular in macroeconomics, where it is used for testing for causality, the analysis of
economic shocks, forecasting and forecast error variance decomposition. In this section, fol-
lowing a brief description of the VAR process and some of its properties, we shall illustrate
just one of these applications: the analysis of shocks.

The VAR(p) process is a straightforward generalization of the univariate AR(p) process
to a vector variable ỹt :

ỹt =�0 +�1ỹt−1 +�2ỹt−2 + · · ·+�pỹt−p + ε̃t (14.81)

where ỹt , �0 and the �i and their dimensions are all as defined in Section 8.5.1, and ε̃t is
an m-vector of independently and identically distributed stochastic disturbances with mean
vector E[ε̃t ]=0 and variance–covariance matrix Var[ε̃t ]=	m×m . This is a system in which
all lags of all variables appear in all equations.

More compactly, we may represent the VAR(p) process as

�(L)ỹt =�0 + ε̃t (14.82)

where �(L) is as defined in (8.105).
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If 	 and all of the �i are diagonal matrices, then the model reduces to a set of m univariate
AR(p) processes. If 	 is not diagonal, but all of the �i are diagonal, then the model may be
interpreted as a version of the seemingly unrelated regression model used in econometrics.
For example, suppose m=2 and p=1; then the unrestricted VAR(1) model may be written as

ỹt =�0 +�1L ỹt + ε̃t (14.83)

or [
ỹ1t

ỹ2t

]
=
[
φ01
φ02

]
+
[
φ111 L φ112 L
φ121 L φ122 L

][
ỹ1t

ỹ2t

]
+
[
ε̃1t

ε̃2t

]
(14.84)

or

ỹ1t =φ01 +φ111 L ỹ1t +φ112 L ỹ2t + ε̃1t

=φ01 +φ111 ỹ1(t−1)+φ112 ỹ2(t−1)+ ε̃1t (14.85)

ỹ2t =φ02 +φ121 L ỹ1t +φ122 L ỹ2t + ε̃2t

=φ02 +φ121 ỹ1(t−1)+φ122 ỹ2(t−1)+ ε̃2t (14.86)

for all t , where

ε̃t =
[
ε̃1t

ε̃2t

]
∼ iid

([
0
0

]
,

[
σ11 σ12

σ21 σ22

])
= iid(0,	) ∀ t (14.87)

using the statistical shorthand iid(0,	) for the vector of independently and identically dis-
tributed random variables with the given mean and variance–covariance matrix. The σij,
i=1,2, j=1,2, denote variances when i= j and contemporaneous covariances when i = j ,
with σ12 = σ21, of course.

The more restricted form is[
ỹ1t

ỹ2t

]
=
[
φ01
φ02

]
+
[
φ111 L 0

0 φ122 L

][
ỹ1t

ỹ2t

]
+
[
ε̃1t

ε̃2t

]
(14.88)

or

ỹ1t =φ01 +φ111 ỹ1(t−1)+ ε̃1t (14.89)

ỹ2t =φ02 +φ122 ỹ2(t−1)+ ε̃2t (14.90)

where[
ε̃1t

ε̃2t

]
∼ iid

([
0
0

]
,

[
σ11 0
0 σ22

])
(14.91)

The difference is clear: in the case of each variable in the more general two-variable VAR(1)
process, not only the lag of that variable but also the lag of the other variable has a
determining role. This is a key characteristic of a VAR process.
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Stationarity of VAR processes

To explore the conditions under which a VAR process is stationary, we begin by considering
the restricted VAR(1) process specified in (14.88), where m = 2. In this case, the matrix
polynomial �(L)= I2 −�1L is diagonal and the determinant

det(�(L))= det(I2 −�1L)= (1−φ111 L)(1−φ122 L) (14.92)

is the product of the lag polynomials for the individual elements of ỹt , ỹ1t and ỹ2t . From
Section 14.4.1, we know that the roots of these polynomials determine the stationarity or
otherwise of the individual AR(1) processes, and that for stationarity the roots have to lie
outside the unit circle. We note that the solutions of the determinantal equation

det(I2 −�1L)= 0 (14.93)

provide the information we require: roots greater than unity in absolute value imply
|φ111 |< 1 and |φ122 |< 1.8

The same principle applies in the more general case when φ112 = 0 or φ121 = 0. Indeed,
it applies also in the completely general case. Thus for stationarity of a VAR(p) process, we
require that the equation

det(�(L))= det(Im −�1L − · · ·−�p L p)= 0 (14.94)

yields roots all of which are outside the unit circle. It is important to note that, in the general
case, the highest power of L in det(�(L)) is mp and all mp roots must satisfy the condition.
The determinantal equation for a bivariate VAR(2) process, i.e. for m = 2 and p= 2, is the
subject of Exercise 14.14(b).

Assuming stationarity, it is easy to derive the mean of the VAR(p) process but rather more
difficult to find the variance–covariance matrix and the autocovariance matrices. Let us look
briefly at the mean vector and variance–covariance matrix.

Mean of a stationary VAR process

We may take the expectation of both sides of (14.82) and use the fact that E[ỹt ] is constant
for stationary ỹt , and the properties of the lag operator from Section 8.2.2, to obtain

�(L)E[ỹt ]=�(1)E[ỹt ]=�0 + E[ε̃t ] (14.95)

Since E[ε̃t ]= 0, we have that

E[ỹt ]=�−1(1)�0 =μ (14.96)

the existence of the matrix inverse �−1(1) being guaranteed by stationarity. To see this,
consider the VAR(1) case, in which �(1)= Im −�1, which is singular if and only if unity is
an eigenvalue of �1. This cannot be the case if the VAR(1) process is stationary, so �(1) is
invertible for stationary VAR(1) processes. A similar argument applies in the VAR(p) case.
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Variance of a stationary VAR process

Given the additional complexity involved in the general case, let us examine the variance of
a stationary VAR(1) process. As ε̃t is iid, it is independent of ỹt−1 and so (see Exercise 13.7)

Var[ỹt ]=Var[�1ỹt−1]+Var[ε̃t ]

=�1Var[ỹt−1]��
1 +Var[ε̃t ] (14.97)

As Var[ỹt ]=Var[ỹt−1]=V, say, under stationarity we have that

V=�1V��
1 +	 (14.98)

and V follows as the solution of this equation. We note that the diagonal elements of V are
the variances of the individual elements of ỹt , and that the off-diagonal elements of V are
their contemporaneous covariances.

The non-contemporaneous covariances and autocovariances for a VAR(1) process are
derived in a similar way.9

Impulse response analysis

Any stationary VAR(p) process, �(L)ỹt =�0 + ε̃t , can be solved for ỹt to yield

ỹt =�−1(L)�0 +�−1(L)ε̃t

=�−1(1)�0 +
∞∑

i=0

π i ε̃t−i (14.99)

where the π i are m ×m coefficient matrices, π0 = Im and �−1(L)= π(L)=∑∞
i=0 π i Li ,

which exists when the VAR(p) process satisfies the stationarity condition. The interpretation
of π i as the multiplier matrix

∂ ỹt

∂ ε̃t−i
= ∂ ỹt+i

∂ ε̃t
=π i , i = 0,1,2, . . . (14.100)

is noteworthy because it allows identification of the consequences of a unit change in a given
variable’s disturbance at time t for the value of that, or another, variable at time t + i . For
instance, the jkth element of π i measures the effect on variable j at time t + i of a unit
change in the kth variable’s disturbance at time t , holding all other disturbances at all dates
constant. A plot of the jkth element of π i , ∂ ỹ jt+i /∂ε̃kt , as a function of the lag i is known as
an impulse response function, and this is useful for analysing the dynamic effects of shocks
within a VAR system. The matrix π0 contains the impact multipliers. The dynamic multi-
plier matrices, which give the accumulated responses to a shock over s periods, are

∑s
i=0 π i ,

s= 1,2, . . .. The long-run or equilibrium multiplier matrix, which gives the total accumu-
lated effects for all future time periods, is

∑∞
i=0 π i . This is exactly the same terminology that

we used when dealing with the equivalent non-stochastic dynamic linear macroeconomic
model in Section 11.2

The assumption that other disturbances remain constant in the face of a change in one
particular disturbance is problematical, since 	=E[ε̃t ε̃

�
t ] is not generally a diagonal matrix.
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The structure of 	 implies that a shock in one disturbance is likely to be accompanied by
changes in other disturbances in the same period. A way round this problem arises from
the fact that, because 	 is symmetric positive definite and therefore diagonalizable, it can be

expressed as 	=	
1−
2 	

1−
2 , where 	

1−
2 is a square root of 	 constructed in the manner described

in Section 3.6.1.

Specifically, let ũt = 	
−1−

2 ε̃t , where 	
−1−

2 is the inverse of 	
1−
2 , which exists since 	 is

symmetric positive definite (see Section 4.4.1); then the second term on the right-hand side
of (14.99) may be written as

∞∑
i=0

π i ε̃t−i =
∞∑

i=0

π i	
1−
2 	

−1−
2 ε̃t−i =

∞∑
i=0

π∗i ũt−i (14.101)

where π∗i = π i	
1−
2 and Var[ũt ] = E[ũt ũ�t ] = I. This last fact is easily established and is

left as an exercise; see Exercise 14.15. So the ũ j t are uncorrelated and have unit variances.
A similar orthogonalization procedure is employed later, in Section 17.4.1, and is the subject
of Exercise 17.11, while use of the alternative decomposition given in Theorem 4.4.15 is
covered in Exercise 14.15.

However, a more usual method of constructing orthogonal (i.e. uncorrelated) disturbances
in econometrics exploits the triangular factorization presented in Theorem 4.4.16. As 	 is
symmetric positive definite, we may write 	=LDL�, where L is a lower triangular matrix
and D is a diagonal matrix whose diagonal elements are all positive. Now let ũ∗t =L−1ε̃t ;
then the second term on the right-hand side of (14.99) may be written as

∞∑
i=0

π i ε̃t−i =
∞∑

i=0

π i LL−1ε̃t−i =
∞∑

i=0

π∗∗i ũ∗t−i (14.102)

where π∗∗i =π i L and Var[ũ∗t ]= E[ũ∗t ũ∗�t ]=D (again, this variance result is easy to establish
and is left as part of Exercise 14.15). So, like the previous ũ j t , the ũ∗j t are uncorrelated, but,
unlike the ũ j t , the variances of the ũ∗j t , given by the diagonal elements of D, are not unity,
in general.

A plot of the jkth element of π∗∗i , ∂ ỹ jt+i /∂ ũ∗kt
, as a function of i is called an ortho-

gonalized impulse response function (as would be a plot of the jkth element of π∗i ) and
this avoids the objection levelled at the original impulse response function. Notice, however,
that π∗∗0 = π0L= IL is lower triangular, which implies that the ordering of variables in ỹt

in a recursive fashion is important. A change in ũ∗k has an impact on ỹ j via the jkth element
of π∗∗0 only if j ≥ k. Thus ỹ1t is affected only by ũ∗1t ; ỹ2t is affected by ũ∗1t and ũ∗2t ; ỹ3t

is affected by ũ∗1t , ũ∗2t and ũ∗3t ; and so on. It is difficult to be sure about this recursivity in
practice.

EXERCISES
14.1 Derive and evaluate the right-hand side of equation (14.14) to obtain individual scalar
expressions for the ordinary least squares estimators β̂∗1 and β̂∗2 in the simple linear regression
model Ỹt =β1 +β2 X + ũt .
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14.2 Estimate the parameters in each of the linear regression models Ỹt = β0t + ũt and
Ỹt = β1 + β2t + ũt , using the ordinary least squares (OLS) estimator (14.12) and the data
in the following table. Confirm your estimates using Cramer’s rule. In each case, also obtain
the quantities

∑10
t=1 et ,

∑10
t=1 e2

t ,
∑10

t=1 Ŷt ,
∑10

t=1 tet and
∑10

t=1 Ŷt et , where Ŷt and et denote
the fitted value of Yt and the corresponding OLS residual, respectively; and comment on
your comparative findings. Finally, obtain a measure of the goodness of fit to the data for
each of the OLS lines, using the appropriate cosine formula.

Table 14.1 Sample data for regressions

t 1 2 3 4 5 6 7 8 9 10

Yt 8 9 8 11 10 12 9 10 13 14

14.3 Suppose that you have just three observations on each of the variables in the linear
regression Ỹt =β1 Xt1 +β2 Xt2 + ũt , i.e. t = 1,2,3.

(a) Recalling that such an equation may be expressed in matrix notation as ỹ = Xβ + ũ,
define the matrices ỹ, X, β and ũ.

(b) Draw diagrams to illustrate the fact that ordinary least squares estimation of β1 and
β2 is equivalent to projecting the vector y= (Y1,Y2,Y3) ∈R

3 into the two-dimensional
subspace spanned by x1 = (X11, X21, X31) and x2 = (X12, X22, X32), and that the angle
between y and its OLS fitted value ỹ constitutes a measure of goodness of fit.

(c) Deduce approximate values for β̂1 and β̂2, and for the goodness-of-fit measure cos2 θ,

from your diagram.

14.4 Consider again the regression model Ỹt = β1 Xt1 + β2 Xt2 + ũt , and the following data
matrices:

y=

⎡⎢⎢⎢⎢⎣
2
1
3
4
3

⎤⎥⎥⎥⎥⎦ , X=

⎡⎢⎢⎢⎢⎣
1 3
1 1
1 2
1 4
1 5

⎤⎥⎥⎥⎥⎦
(a) Evaluate the OLS estimates β̂∗1 and β̂∗2 using Cramer’s rule. Recall equation (14.11).

(b) Confirm the previous results by evaluating β̂
∗ = (X�X)−1X�y using matrix methods.

(c) Evaluate the projection matrix N = X(X�X)−1X�; hence, obtain the vector of fitted
values ŷ and the vector of OLS residuals e.

(d) Confirm numerically that MX= (I−N)X= 0; that e⊥ŷ and e is orthogonal to each of
the columns of X; and that the arithmetic mean of the residuals, 1

5

∑5
t=1 et , is zero.

14.5 Consider the general linear regression model

ỹ=Xβ + ũ
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as defined in Section 14.2, and define y= ŷ+ e and ŷ=Xβ̂
∗
, where β̂

∗ = (X�X)−1X�y is
an ordinary least squares estimate of β. Show that X�e= 0, X�y=X�ŷ and ŷ�e= 0.

14.6 Let A be a square matrix. Prove that A+A� is symmetric.

14.7 Given T points in a (k + 1)-dimensional space, (x1, y1), (x2, y2), . . . , (xT , yT ), it is
desired to find the hyperplane of best fit, i.e. to find β ≡ (β1, β2, . . . , βk) such that the
sum of the squared vertical distances (i.e. the distances parallel to the y axis) between the
given points and the hyperplane with equation y = x�β is as small as possible. By writing
the objective function as a quadratic form, formulate this as an unconstrained optimization
problem and find the solution using matrix methods.

14.8 Prove the Gauss–Markov theorem from first principles by formulating the Lagrangian
and solving the first-order conditions for the appropriate constrained optimization problem.

14.9 Derive the variance–covariance matrix of the generalized least squares estimator given
in equation (14.41). Hence, write down the variance–covariance matrix of the ordinary least
squares estimator.

14.10 Prove that the square matrix in equation (14.58) is invertible, and derive its par-
titioned inverse used in equation (14.60); recall the results on partitioned inverses from
Section 1.5.14.

14.11 Examine the nature of the restricted least squares estimator, equation (14.57), when
the number of linearly independent restrictions, g, is equal to the number of parameters to
be estimated, k.

14.12 Derive the variance–autocovariance matrix and, hence, the autocorrelation matrix of
the weakly stationary AR(1) process ỹt = φ0 + φ1 ỹt−1 + ε̃t (−1<φ1 < 1), given T consec-
utive values of ỹt . Comment on the form of the two matrices and establish some of their
properties.

14.13 Show that the autoregressive process

ỹt = 0.5− 0.5ỹt−1 + 0.5ỹt−2 + ε̃t

has a negative unit root. Find a transformation of yt that is integrated to order zero, and
establish the nature of the process that determines the behaviour of the transformed variable.

14.14 Formulate and solve the following determinantal equations and, hence, derive sta-
tionarity conditions on the individual parameters of the bivariate VAR process in each
case.

(a) det[�(L)]= det[I2 −�1L]= 0, where

�1 =
[
φ111 φ112
φ121 φ122

]
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(b) det[�(L)]= det[I2 −�1L −�2L2]= 0, where

�1 =
[
φ111 φ112
φ121 φ122

]
and �2 =

[
φ211 0

0 φ222

]
14.15 Let 	 be an m×m symmetric positive definite matrix and ε̃t ∼ iid(0,	).

(a) Using a square root of 	, 	
1−
2 , say, define ũt =	

−1−
2 ε̃t and prove that Var[ũt ]= Im .

(b) Using the triangular factorization 	 = LDL� from Theorem 4.4.16, where L is a
lower triangular matrix and D is a diagonal matrix, define ũ∗t = L−1ε̃t and prove that
Var[ũ∗t ]=D.

(c) Using the decomposition 	 = RR� from Theorem 4.4.15, find a third orthogonalized
disturbance, ũ∗∗t , and derive its mean, E[ũ∗∗t ], and its variance, V [ũ∗∗t ].
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15 Multi-period choice under
certainty

15.1 Introduction
In Section 12.2, it was pointed out that the objects of choice can be differentiated not only
by their physical characteristics, but also both by the time at which they are consumed and
by the state of nature in which they are consumed. These distinctions were suppressed in the
intervening sections but are considered again in this chapter and in Chapter 16, respectively.

Discrete-time multi-period investment problems, such as are considered in this chapter,
serve as a stepping stone from the single-period case in Chapter 12 to the continuous-time
case, which the reader will encounter in more advanced texts. This chapter will assume that
there is only one physical good, but that it can be traded and consumed at many different
points in time.

The chapter begins with a survey of various concepts connected with the measurement
of rates of return, such as interest rates and growth rates. Section 15.3 discusses the utility-
maximization problem in this context. The main point to be taken from this section is that
equilibrium interest rates (both spot rates and forward rates) can be derived in a straightfor-
ward manner from equilibrium prices. Section 15.4 then discusses various common interest
rate concepts and the relationships between them under the general heading of the “Term
structure of interest rates”. The no-arbitrage principle of Section 12.5.6 is central to this
analysis.

15.2 Measuring rates of return
Rates of return, or, equivalently, rates of growth, can be calculated for any quantity that
varies over time, whether a stock or a flow.1 A flow is any quantity whose dimension is
measured in units per time period, e.g. euro per month; a stock is any quantity measured in
units without a time dimension. Note that dimension in this context has a different meaning
from that encountered in previous chapters.

A typical quantity whose rate of growth is of general interest is the value of an investment
(a stock, possibly in both senses of that word), but other quantities whose growth rates con-
cern economists include the Consumer Price Index (also a stock) and the level of national
income, as measured, for example, by Gross National Product (a flow).

Note that national income is a flow, the level and growth rate of which are relatively
easily defined, valued and measured; consequently, national income is relatively easy to
tax. National wealth, on the other hand, is a stock, the level and growth rate of which are
relatively difficult to define, value or measure; consequently, national wealth is relatively
difficult to tax. Even finance ministers have been known to confuse these two very different
concepts.
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Similar comments apply to the distinction between individual wealth and individual
income. We have not stressed this distinction up to now, since in a single-period world
there is little difference between income and wealth. The distinction is more important in
multi-period modelling.

In a single-period context, the net rate of return on an investment or principal of W0,
which yields a payoff of W1, is the ratio of the profit earned, W1 − W0, to the amount
invested, usually expressed as a percentage

100×
(

W1

W0
− 1

)
% (15.1)

Note that W1 and W0 are measured in units of currency (e.g. euro) but that the ratio is dimen-
sionless. The net rate of return is equivalent to the simple interest earned on the investment.
The gross rate of return is the ratio of the total payoff to the amount invested, i.e. the payoff
per unit invested

W1

W0
(15.2)

Again, there is a choice of scale on which to measure gross rates of return: as a percentage of
the initial investment or as a simple ratio. Gross returns, like net returns, are dimensionless.

The word return on its own is sometimes loosely used interchangeably for the payoff,
for the profit and for the rate of return. We will use it only for the last of these, also using
gross return as a shorthand for gross rate of return and net return as a shorthand for net
rate of return.

In a multi-period context, the rate of return must have a time dimension. This is equivalent
to working with compound interest. For example, 2% per annum is very different from 2%
per month. Furthermore, the method or frequency of compounding must be specified in
order to avoid ambiguity. The only exception to this is when the growth rate is zero; growth
of 0% per month compounded weekly has exactly the same effect as growth of 0% per year
compounded daily. In other words, rates of interest, growth, inflation, etc., are not properly
defined unless we state the time interval to which they apply and the method of compounding
to be used.

We have already seen how compound interest works in Example 8.3.1 and Exercise 8.3.
Table 15.1 illustrates what happens to e100 invested at 10% per annum as we change the
frequency of compounding. The final calculation in the table uses the fact (see p. xxiii) that

lim
n→∞

(
1+ r

n

)n = er (15.3)

There are five related calculations which readers should be familiar with and which will be
considered in the subsections that follow.

15.2.1 Discrete compounding

If a quantity with initial value P0 grows for t periods at a (net) rate of r per period,
compounded n times per period, to reach a final value of Pt , then

Pt =
(

1+ r

n

)nt
P0 (15.4)
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Table 15.1 The effect of an interest rate of 10% per annum at different frequencies of
compounding

Compounded Principal (e) Payoff (e)

Annually 100 → 110= 110.00
Semi-annually 100 → 100× (1.05)2 = 110.25
Quarterly 100 → 100× (1.025)4 = 110.381. . .

Monthly 100 → 100×
(

1+ 0.10

12

)12

= 110.471. . .

Weekly 100 → 100×
(

1+ 0.10

52

)52

= 110.506. . .

Daily 100 → 100×
(

1+ 0.10

365

)365

= 110.515. . .

Continuously 100 → 100× e0.10 = 110.517. . .

This equation can be solved for any of five quantities, given the other four:

• present value, P0;
• final value, Pt ;
• implicit rate of return, r ;
• time, t ; or
• frequency of compounding n.

15.2.2 Continuous compounding

Similarly, if a quantity with initial value P0 grows for t periods at a (net) rate of r per period,
compounded continuously, to reach a final value of Pt , then

Pt = ert P0 (15.5)

This equation can be solved for any of the four quantities P0, Pt , r or t , given the other three.
Note also that the exponential function is convex and is its own derivative; that y= 1+ r

is the tangent to y= er at r =0, y=1 and, hence, that er >1+ r for all r =0. In other words,
given an initial value, continuous compounding yields a higher terminal value than discrete
compounding for all interest rates, positive and negative, with equality for a zero interest rate
only. Similarly, given a final value, continuous discounting yields a strictly lower present
value than does discrete discounting, again with the exception of equality for a zero rate of
growth.

Finally, note that, if rd is the discretely compounded rate of return and rc the continuously
compounded rate of return per period on an investment, then, combining (15.4) – with n=1 –
and (15.5),

1+ rd = erc (15.6)

15.2.3 Aggregating and averaging returns

It will now be demonstrated that discretely compounded rates aggregate neatly across
portfolios, while continuously compounded rates aggregate neatly across time.
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Aggregating and averaging across portfolios

Simple rates of return are additive across portfolios, so we use them in one-period cross-
sectional studies, in particular in portfolio theory in Chapter 17.

Consider a portfolio of N risky single-period investments comprising the euro amount bi

invested in the i th asset, which has a random gross rate of return over the single period of r̃i ,
i = 1,2, . . . , N .

The total payoff on the portfolio is r̃b≡∑N
i=1 bi r̃i =b�r̃, where b≡ (b1,b2, . . . ,bN ) and

r̃≡ (r̃1, r̃2, . . . , r̃N ); recall Exercise 9.6.
If ρ̃i denotes the continuously compounded net measure of the same underlying rate of

return on asset i , then the portfolio payoff can be expressed as
∑N

i=1 eρ̃i bi . There is no
obvious simple way of manipulating this expression in matrix notation, as there was for the
discretely compounded version.

Aggregating and averaging across time

Continuously compounded rates of return, on the other hand, are additive across time, so
we use them in multi-period single-variable studies, in particular when considering the term
structure of interest rates in Section 15.4.

Consider a single asset whose value is changing at a time-varying rate over time. In a
discrete-time framework, we can write

Pt+1 = ert Pt (15.7)

where rt represents the continuously compounded rate of return earned in the single period
between time t and time t + 1. Hence, the final value of the asset at time T is

PT =
T∏

t=1

ert−1 P0 (15.8)

Taking logarithms yields

ln PT =
T∑

t=1

rt−1 + ln P0 (15.9)

This allows us to compute the average continuously compounded rate of return per period
over the T periods

r̄ ≡
∑T

t=1 rt−1

T
= ln PT − ln P0

T
(15.10)

Note that the average of the single-period growth rates can be computed from just two
observations, the initial value P0 and the final value PT .

In a continuous-time framework, we can write

Pt = ert P0 (15.11)

Pt+t = ert Pt (15.12)
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Taking logarithms and rearranging gives

r = ln Pt+t − ln Pt

t
(15.13)

Taking limits as t → 0, the instantaneous growth rate can be written as

r(s)= d ln Ps

ds
(15.14)

Integrating yields∫ t

0
r(s)ds=

∫ t

0
d ln Ps = ln Pt − ln P0 (15.15)

Taking the exponential of each side and rearranging gives

Pt = P0 e
∫ t
0 r(s)ds (15.16)

Thus the average rate of return over t periods of a quantity that grows at the instantaneous
time-varying rate r(s) at time s is

1

t

∫ t

0
r(s)ds (15.17)

It is left as an exercise for the reader to explore the relative intractability of time-varying
discrete rates of return; see Exercise 15.3.

Discrete rates of return are bounded below by−100%; continuously compounded rates of
return are unbounded. The former therefore cannot be exactly normally distributed; the latter
can. If continuously compounded rates of return are normally distributed, then it can be seen
from (15.6) that the corresponding gross discrete rates of return are lognormally distributed.

15.2.4 Net present value

Net present value (NPV) is widely used to value streams of certain or uncertain future cash
flows given various assumptions about rates of return. We consider three cases.

1. The (net) present value at time 0 of a known stream of cash flows,

P0, P1, . . . , PT (15.18)

given a constant interest rate or discount rate r , is

NPV(r)≡ P0

(1+ r)0
+ P1

(1+ r)1
+ P2

(1+ r)2
+ · · ·+ PT

(1+ r)T

= P0 + P1

(1+ r)1
+ P2

(1+ r)2
+ · · ·+ PT

(1+ r)T
(15.19)

The coefficients 1/(1+ r)t , t = 1,2, . . . ,T , are known as discount factors.
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2. If there is a sequence of known time-varying (really maturity-varying) discount rates,
{rt }Tt=1, then

NPVr ≡ P0 + P1

(1+ r1)1
+ P2

(1+ r2)2
+ · · ·+ PT

(1+ rT )T
(15.20)

3. If the relevant future payoffs and/or discount rates are not known with certainty at time 0,
then they can be represented by random variables, resulting in an NPV that is also a
random variable:

ÑPV≡ P0 + P̃1

(1+ r̃1)1
+ P̃2

(1+ r̃2)2
+ · · ·+ P̃T

(1+ r̃T )T
(15.21)

Equation (15.21) lies behind the commonly used discounted cash flow (DCF) approach
to the valuation of projects, companies and financial assets. Note the implications of
Jensen’s inequality for (15.21). The computation of present values based on replacing
the uncertain future discount factors in this formula with point estimates derived from
expected future interest rates is commonplace, but the bias that this introduces is poorly
understood. Even if cash flows and discount rates are independent, this underestimates
present values. In the more likely scenario that cash flows and discount rates are inter-
dependent, we cannot unambiguously sign the bias introduced, but it is unlikely that it
vanishes.

15.2.5 Internal rate of return

The internal rate of return (IRR) of the stream of cash flows,

P0, P1, . . . , PT (15.22)

is the solution of the polynomial equation of degree T obtained by setting the NPV, based
on a constant discount rate of r , equal to zero:

P0 + P1

(1+ r)1
+ P2

(1+ r)2
+ · · ·+ PT

(1+ r)T
= 0 (15.23)

In general, the polynomial defining the IRR has T (complex) roots. Conditions have been
derived under which there is only one meaningful real root of this polynomial equation, in
other words only one root corresponding to a positive IRR.2

If a financial institution issues a loan, e.g. a mortgage, at a fixed interest rate, to be repaid
in a fixed number of equal instalments, the problem of calculating the size of the repayments
can be viewed as either an NPV calculation or an IRR calculation. The repayment is set
to equate the NPV of the repayments at the relevant interest rate to the amount borrowed.
Equivalently, the repayment is set so that the IRR on the stream of cash flows comprising the
sum borrowed (negative, from the perspective of the financial institution) and the sequence of
repayments (positive) equals the interest rate associated with the loan. The precise details of
the calculation depend on the method of compounding specified (e.g. continuous or discrete);
see Exercise 15.5.

We will meet the concept of IRR again in Definition 15.4.5.
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15.3 Multi-period general equilibrium
Consider a world in which there is only one physical good. (It may help to think of the good
as “money”.) Suppose that an individual in this world knows with certainty that he will live
for a further T periods. (A world with uncertainty will be considered in later chapters). The
individual’s endowment comprises an “income” in each period of mt units of the single good
(t = 0,1, . . . ,T ). While there are T + 1 consumption periods, there is just a single trading
period, at t = 0.

For simplicity, assume first that the individual can borrow and lend at a simple interest
rate of i per period.

As before, the standard axioms allow the individual’s consumption problem to be reduced
to the maximization of an inter-temporal utility function, say,

U (c0, c1, . . . , cT )=
T∑

t=0

β t ln ct (15.24)

where ct is his consumption (of the single available good) in period t .
To simplify the statement of the budget constraint, define M to be the present value of

the individual’s income stream. As seen in Section 15.2.4, the present value of mt payable t
periods from now when the interest rate is i per period is mt/(1+ i)t .

Thus the budget constraint is

T∑
t=0

ct

(1+ i)t
=

T∑
t=0

mt

(1+ i)t
= M (15.25)

The solution of this problem is left as an exercise; see Exercises 15.10 and 15.11.3

The parameter β in the utility function is effectively the personal discount factor of the
consumer, while the market discount factor is 1/(1+ i).

The assumption that there is a single constant interest rate for all transactions over T peri-
ods undoubtedly simplifies the notation and is intuitively appealing. However, we have seen
in Section 12.6.5 that, in a world in which there are T + 1 variables in utility functions, T
independent markets determining T relative prices are required to guarantee that equilibrium
is Pareto optimal. Fixing the interest rate leaves only one independent price, so that markets
are incomplete and the outcome is not necessarily Pareto optimal.

When markets are complete, there will be T independent discount factors, say,
p1, p2, . . . , pT , where pt denotes the price of date-t consumption in units of the numeraire,
date-0 consumption (p0 = 1). The full budget constraint is

T∑
t=0

ct pt =
T∑

t=0

mt pt = M (15.26)

From equilibrium discount factors, it is easy to find corresponding maturity-dependent
discount rates i0, i1, . . . , iT , using

pt = 1

1+ it
(15.27)

it = 1

pt
− 1 (15.28)
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where it represents the interest rate per period for a loan or investment beginning at date 0
and ending at date t .

The assumption of perfect competition ensures that the interest rate is the same for
borrowers and investors; a more realistic model would relax this assumption.

15.4 Term structure of interest rates

15.4.1 Interest rate concepts

DEFINITION 15.4.1 A bond is a security that provides a regular (in practice, usually annual
or semi-annual) stream of equal coupon (or dividend) payments and a principal repayment
(the par value or redemption value) at the date of the last coupon (known as the maturity
date).

DEFINITION 15.4.2 A pure discount or zero-coupon bond is a bond with no coupon
payments.

The goods in the inter-temporal consumption problem of the previous section are
effectively pure discount bonds of different maturities (t = 1,2, . . . ,T ).

DEFINITION 15.4.3 A console is a bond with maturity at infinity (no principal repayment).

DEFINITION 15.4.4 The notation t1 it2t3 denotes the annualized interest rate for a risk-free
transaction for which

• t1 is the commitment date (often dropped when it is clear from the context),
• t2 is the lending date and
• t3 is the repayment date.

DEFINITION 15.4.5 The gross redemption yield of a bond trading at a given price is the
internal rate of return earned by buying the bond at that price and holding it to redemption.

There are five related interest rate concepts that are frequently encountered in the analy-
sis of bonds. We will consider them in the case of discrete time, measuring time in years,
say. Defining the corresponding concepts for continuously compounded rates is left as an
exercise; see Exercise 15.13. These concepts are as follows:

1. the spot rate, which can be inferred from the price of a zero-coupon bond by making the
appropriate substitutions in the standard equation (15.4)

i0t =
(

1

P0t

)1/t

− 1 (×100%) (15.29)

per annum, compounded annually, where P0t is the price at time 0 of a zero-coupon bond
maturing at time t with par value 1;

2. the forward rate for a loan taken out at time t1 and repaid at time t2, which can be inferred
from the two spot rates i0t1 and i0t2 using the equation

it1t2 = t2−t1

√
(1+ i0t2)

t2

(1+ i0t1)
t1
− 1 (15.30)
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3. the current yield of a bond, which is simply the annual coupon divided by the current
market price, but which is of little significance from an economic point of view;

4. the yield to maturity of a bond, which – assuming six-monthly coupons – is found at
a coupon payment date by solving (using (15.23)) for the internal rate of return per six
months and doubling the result (or by similar equally arbitrary techniques); and

5. the effective annual yield on a bond, which is the true internal rate of return.

For pure discount bonds, the implicit spot rate and the effective annual yield are the same.

15.4.2 Describing the term structure

Term structure theory deals with the differences in the effective annual yields on pure
discount bonds of different maturities (i.e. the differences in the relevant implicit spot rates),
the constraints on such differences and the reasons behind them.

As well as varying with maturity at a fixed point in calendar time, spot rates can, of
course, vary over calendar time. In practice, the term structure of interest rates for different
currencies at a single point in time can differ substantially.

Coupon-bearing bonds of different maturities will always have different yields to
maturity; term structure theory is not needed to explain this.

The term structure is usually presented as the yield curve, which is the graph of the spot
rate i0t against time t . If the vertical axis in a yield curve diagram is labelled “yield to
maturity”, it is implicitly assumed that the variable on this axis is the properly computed
yield to maturity of a pure discount bond.

There are many other sequences of numbers, in addition to

i01, i02, i03, . . . (15.31)

which can be used to describe the term structure (in discrete time) equally well, provided
that the no-arbitrage principle holds. Most useful in practice are the discount factors,

1

1+ i01
,

(
1

1+ i02

)2

,

(
1

1+ i03

)3

, . . . (15.32)

as will be seen later. One year forward rates can also be used:

0i01, 0i12, 0i23, 0i34, . . . (15.33)

15.4.3 Estimating the term structure

The term structure for a particular currency at a particular instant in calendar time is usually
estimated using data on government bonds denominated in that currency but with different
maturity dates and different coupon rates.

The value of a bond with redemption value 1, semi-annual coupon c j and Tj/2 years to
maturity is (measuring time in six-month units)

Pj = c j

(1+ i01)
+ c j

(1+ i02)2
+ · · ·+ 1+ c j

(1+ i0Tj )
Tj

(15.34)
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Everything in this equation is known except for the discount factors dt ≡ 1/(1+ i0t )
t

(t = 1,2, . . . ,Tj ) and the equation is linear in the discount factors. Given a sample of
n= T ≡maxn

j=1 Tj independent bonds, it is possible to solve exactly for the T correspond-
ing discount factors. To value another bond, one need only substitute the estimated discount
factors into (15.34). Given n> T bonds (n observations), we can incorporate an error term
and use multiple regression to estimate the discount factors statistically.

If the no-arbitrage principle holds, if all bonds are genuinely risk-free (e.g. issued by rep-
utable, solvent, sovereign governments) and if all bond prices are observed simultaneously
and without error, the vector of OLS residuals from this estimation procedure will be 0n . In
practice, however, there are many empirical complications, ambiguities and approximations
involved in estimating the term structure or yield curve. During the international financial
crisis that began in 2008, differences in the yields on bonds issued by sovereign govern-
ments within the Euro Zone (e.g. Germany and Greece) made it clearer than ever that not all
government debt is completely risk-free. Possibly the biggest source of ambiguity is in the
treatment of accrued interest.

The coupon or dividend on a bond is paid to whomsoever was the registered owner of
the bond on a nominated date, usually several weeks before the dividend payment date,
known as the ex-dividend date. In the following definition, we distinguish between two
concepts.

DEFINITION 15.4.6

(a) The clean price or dealing price of a bond, denoted Pd, is the benchmark price, which
will only change if the yield curve moves.

(b) The dirty price, denoted P , is the price actually paid by the buyer to the seller in a
bond transaction, and is adjusted for accrued interest. The dirty price will drift upwards
linearly between ex-dividend dates and will drop sharply on the ex-dividend date.

The relationship between the clean and dirty prices is given by

P = Pd + τ

365
c (15.35)

or

P = Pd + τ

360
c (15.36)

depending on whether the relevant market uses a 360-day or 365-day convention, where c is
the annual coupon and τ is the number of days to the relevant ex-dividend date. The number
τ will be zero on the dividend payment date; negative after the ex-dividend date and before
the dividend payment date; and positive after the dividend payment date and before the next
ex-dividend date. Calculating the clean price is effectively extrapolating from current market
conditions to find what the bond price would be in similar market conditions on the next (or
the previous) ex-dividend date.

Figure 15.1 shows a graph of clean (flat) and dirty (sawtooth or zigzag) prices against
calendar time, assuming a flat and stable yield curve.

When estimating the yield curve, the dirty price should be used.
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Pd (dealing price)

P (dirty price)

0
time

bond prices

ex-dividend date

dividend payment date

Figure 15.1 The relationship between clean and dirty bond prices and calendar time, assuming a
flat and stable yield curve

Other difficulties that will be encountered in empirical estimation of the yield curve
include the following:

• Quotes for different bonds are asynchronous, and there are usually only a handful of
benchmark bonds in each currency that are very actively traded. Usually, there are
not nearly enough reliable (active market) data available to make reliable estimation of
discount factors feasible.

• It is difficult to distinguish between bid prices, ask prices and negotiated transactions
prices within the bid–ask spread.

• Prices are usually discrete, with different tick sizes in different jurisdictions (US mar-
kets have worked with sixteenths and thirty-seconds; other jurisdictions might use
two-thousandths or ten-thousandths of par value).

• Coupons are paid at different dates during the year.
• Some practitioners like to assume a 360-day year but others a 365-day year.

Estimates of the term structure (yield curve) are usually extremely sensitive to small vari-
ations in the way all the above problems are treated, but estimation is still a valuable and
widely practised exercise.

If you believe your term-structure estimates, then you should buy any bonds that you
consider under-valued and short-sell any that you consider over-valued. Alternatively, if you
believe in the no-arbitrage principle but find that some bonds appear over-valued and others
under-valued, then you might choose to disbelieve your estimates.

Alternative approaches involve assuming some general functional form for the yield curve,
such as a cubic or exponential spline4 or any similar function with just a few parameters to
be estimated, and using the limited data available to estimate the parameters of this function.

The term structure and its movements over time can look very interesting in times and
places where inflation is rampant and/or currencies are unstable, like the EU in the early
1990s, Russia in the mid-1990s and Brazil in 1999. Kahn (1990) discusses estimation of the
term structure in the more stable environment of the US dollar.

Bond traders will also want to predict how bond prices are changing over time, which
requires them first to predict how the term structure is changing over time. The next section
considers various popular theories purporting to explain this.
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15.4.4 Theories of the term structure

The pure expectations hypothesis, outlined in Section 13.10.2, is just one of a number of
popular theories of the term structure. These are all unsatisfactory, if not just plain wrong.5

Pure expectations hypothesis

What is a good predictor of the future yield curve? One might argue, as the pure expectations
hypothesis does, that the current set of forward rates would be

Et0[t1 it1t2]= t0 it1t2 (15.37)

But one could equally well argue that current forward prices for bonds should be a good
predictor of future spot prices of bonds.

As seen in Section 13.10.2, Siegel’s paradox tells us that we cannot simultaneously have
both (and suggests that we probably have something in between, with the two versions of
the pure expectations hypothesis providing upper and lower bounds).

In particular

Et0[t1 it1t2]= t0 it1t2 (15.38)

is incompatible with

Et0

[(
1

1+ t1 it1t2

)t2−t1
]
=
(

1

1+ t0 it1t2

)t2−t1
(15.39)

if there is any uncertainty at t0 about the term structure that will prevail at t1.
As noted in Section 13.10.2, the logarithmic expectations hypothesis is a more plausible

and internally consistent alternative.

Segmented market hypothesis and preferred habitat hypothesis

These two hypotheses are essentially the same, although the latter is slightly more
sophisticated.

Financial institutions have assets that will deliver payoffs at various times in the future
and liabilities that will fall due at various times in the future. They like to reduce risk
by matching the dates of payoffs as nearly as possible to the dates of liabilities. Thus,
short-horizon rates are set by interactions between commercial banks managing chequing
accounts, which generally involve short-horizon liabilities. Long-horizon rates are set by
interactions between pension funds, insurance companies, large manufacturing companies
building new plants, etc., which generally involve long-horizon liabilities. Risk aversion
means that those with short-term liabilities tend to make short-term investments and vice
versa in order to reduce the variance of cash flows in the distant future. Thus there is little
interaction between long-term and short-term markets.

Liquidity premium hypothesis

This hypothesis just says that longer bonds should have higher returns to compensate for
illiquidity, which arises because there are fewer investors and fewer opportunities for re-
financing at the long end of the market.

As an upward sloping yield curve is more common,6 this makes sense.
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15.4.5 Duration, volatility and convexity of bonds

Related questions that are of interest to traders and investors in bond markets are:

1. What is the best bond portfolio to hold in order to meet a sequence of known future
liabilities?

2. How will the price of a given bond react to a shift in the yield curve?
3. What effect will a shift in the yield curve have on the relative values of a sequence of

liabilities and a portfolio of bonds held to meet those liabilities?

The answers to all of these questions are, perhaps surprisingly, closely related. If it is
planned to sell bonds at market prices to meet known future liabilities, then a sudden fall
in the value of the bonds will cause a cash-flow crisis. Duration matching is the art of
balancing the cash flows arising from asset holdings with the cash flows due on liabilities.

Duration, volatility and convexity are measures that will be defined shortly and which
have emerged to help answer the above questions. In order to address these questions, we
will assume that there is a flat yield curve, or that there exists a discount rate i such that

i0t = i ∀ t (15.40)

This assumption has been relaxed in the general term structure literature, but will be
maintained for the purposes of this book.

Under the assumption of a flat yield curve, the value of a bond with a periodic coupon of
c and T periods to maturity is

P(1+ i, c,T )= c

(1+ i)
+ c

(1+ i)2
+ · · ·+ 1+ c

(1+ i)T
(15.41)

Using the formula on p. xx, the present values of the various coupons in (15.41) may be
summed, as they are the first T terms of a geometric progression with common ratio r=1+ i
and initial (rightmost!) term a= c/(1+ i)T , to yield

P(1+ i, c,T )= c

(1+ i)T
(1+ i)T − 1

i
+ 1

(1+ i)T

= c

i

(
1− 1

(1+ i)T

)
+ 1

(1+ i)T

= c

i
+
(

1− c

i

) 1

(1+ i)T
(15.42)

A “period” will generally be a year or a half-year.
Expression (15.42) shows that, for positive i , the bond price will be equal to the redemp-

tion value of unity when c = i . The bond price will be greater than the redemption value
when c> i and less than the redemption value when c< i . (To see this, note that the second
line of (15.42) expresses the bond price as a convex combination of 1 and c/ i .)

DEFINITION 15.4.7 The interest rate elasticity of the bond whose value P is given by
(15.41) is

1+ i

P(1+ i, c,T )

∂P

∂(1+ i)
(15.43)
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i.e. the elasticity of P with respect to 1+ i .

DEFINITION 15.4.8 The duration, D(1+ i, c,T ), of a bond is the weighted average time
to receipt of cash flows, where the weight associated with each time is the contribution of
the corresponding cash flow to P(1+ i, c,T ):

D(1+ i, c,T )≡ �+ T/(1+ i)T

P(1+ i, c,T )
(15.44)

where

�≡ c

(1+ i)
+ 2c

(1+ i)2
+ 3c

(1+ i)3
+ · · ·+ T c

(1+ i)T
(15.45)

By evaluating the derivative in (15.43) and comparing the result with (15.44), it can be
seen that (for any i) the duration of a bond is just the negative of its interest rate elastic-
ity. Thus the duration of any coupon-bearing bond is the lifetime of a zero-coupon bond
with the same interest rate elasticity. The duration of a zero-coupon bond is just its time to
maturity.7

To calculate the numerical value of duration for a coupon-bearing bond, it is necessary to
evaluate � numerically. There are two ways of deriving an expression for this sum. First, we
can expand it as follows:

� = c

(1+ i)
+ c

(1+ i)2
+ c

(1+ i)3
+ · · · + c

(1+ i)T

+ c

(1+ i)2
+ c

(1+ i)3
+ · · · + c

(1+ i)T

+ c

(1+ i)3
+ · · · + c

(1+ i)T
. . .

...

+ c

(1+ i)T

(15.46)

Since each of the T rows above (read from right to left) is just a geometric progression with
common ratio r = 1+ i and initial term a = c/(1+ i)T , we have (again from the fact that
a+ ar + ar2 + ar3 + · · ·+ arn−1 = a(rn − 1)/(r − 1)) that

�= c

(1+ i)T
1

i

T∑
t=1

((1+ i)t − 1)

= c

(1+ i)T
1

i

(
(1+ i)

((1+ i)T − 1)

i
− T

)
= c(1+ i)

i2
− c

(1+ i)T−1

1

i2
− c

(1+ i)T
1

i
T (15.47)
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An alternative way to calculate � is to use the fact that

�− 1

1+ i
�= c

(1+ i)
+ 2c

(1+ i)2
+ 3c

(1+ i)3
+ · · ·+ T c

(1+ i)T

−
(

c

(1+ i)2
+ 2c

(1+ i)3
+ 3c

(1+ i)4
+ · · ·+ T c

(1+ i)T+1

)
= c

(1+ i)
+ c

(1+ i)2
+ c

(1+ i)3
+ · · ·+ c

(1+ i)T
− T c

(1+ i)T+1
(15.48)

which implies that

i

1+ i
�= c

(1+ i)T
((1+ i)T − 1)

i
− T c

(1+ i)T+1
(15.49)

Multiplying both sides by (1+ i)/ i then yields

�= c(1+ i)

i2
− c

(1+ i)T−1

1

i2
− c

(1+ i)T
1

i
T (15.50)

as before. This simplifies to

�= c(1+ i)

i2
− c

(1+ i)T
1

i2
(1+ i(T + 1)) (15.51)

The numerator in the duration formula is obtained by adding the term corresponding to the
redemption payment to �:

�+ T

(1+ i)T
= c(1+ i)

i2
− c(1+ i(T + 1))− i2T

i2(1+ i)T
(15.52)

This formula can be used to construct a spreadsheet showing how duration depends on the
relevant parameters c, i and T .

The interest rate elasticity of a bond measures the responsiveness of the price of a par-
ticular bond to changes in general market conditions (parallel shifts in the yield curve). In
this respect, it is analogous to the β of an equity, which will be considered in Chapter 17.
Financial institutions can reduce their exposure to shifts in the yield curve by attempting to
keep the net duration of their assets and liabilities combined close to zero.

Duration depends on the yield i , yet to be of practical use it must be evaluated numerically
at a particular value of i . One common convention is to use the semi-annual gross redemption
yield of the bond in question, i.e. the i that solves

Pd =
∑

t

c/2

(1+ i/2)t
+ 1

(1+ i/2)T
(15.53)

where Pd is the dealing price of the bond and the sum is over the times to all outstanding
coupon payments.
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DEFINITION 15.4.9 The volatility of a bond is

D(1+ i, c,T )

(1+ i/2)
(15.54)

Volatility is the preferred measure in the UK; duration is the preferred measure in the USA.
Elton et al. (2010, p. 561) note that there are at least a dozen different measures of duration.

The simplest, illustrated above, is based on an assumption that the yield curve is flat. Dif-
ferent assumptions about the yield curve lead to different duration functions. The interested
reader is referred to the discussion of these in Elton et al. (2010).

Note that the duration of a portfolio of bonds is the weighted average of the durations
of the components. The weights, however, are the shares of the different components in the
present value of the portfolio, where cash flows are valued at the appropriate discount rate.
This is not in general the same as weighting by the cost of the different investments.

As with any elasticity, duration can be used to obtain a first-order approximation to the
change in a bond price brought about by a shift in the (flat) term structure:

%P ≈ D(1+ i, c,T )×%(1+ i) (15.55)

This linear approximation will work well for small changes in interest rates, but not for larger
changes.

A second-order Taylor expansion can be used to obtain a quadratic approximation to
%P:

P(1+ i +i, c,T )

≈ P(1+ i, c,T )+i
∂P

∂(1+ i)
(1+ i, c,T )+ (i)2

2

∂2 P

∂(1+ i)2
(1+ i, c,T ) (15.56)

Rearranging yields

P(1+ i +i, c,T )− P(1+ i, c,T )

P(1+ i, c,T )

≈i
∂P(1+ i, c,T )/∂(1+ i)

P(1+ i, c,T )
+ (i)2

2

∂2 P(1+ i, c,T )/∂(1+ i)2

P(1+ i, c,T )

=%(1+ i)D(1+ i, c,T )+ (%(1+ i))2
(1+ i)2

2

∂2 P(1+ i, c,T )/∂(1+ i)2

P(1+ i, c,T )

(15.57)

The coefficient of the quadratic term

C(1+ i, c,T )≡ (1+ i)2

2

∂2 P(1+ i, c,T )/∂(1+ i)2

P(1+ i, c,T )
(15.58)

is called the convexity of the bond at i .



February 12, 2011 11:1 Pinched Crown A Page-410 HarrWald

410 Multi-period choice under certainty

It is easily shown that

C(1+ i, c,T )= 1

2P(1+ i, c,T )

( T∑
t=1

t (t + 1)c

(1+ i)t
+ T (T + 1)

(1+ i)T

)
(15.59)

The details are left as an exercise; see Exercise 15.16.

EXERCISES
15.1 Calculate the present value at an interest rate of 5% per annum, compounded annually,
of e1000 payable three years from now.

15.2 Calculate the continuously compounded annualized rate of return during 2010 and
2011 on a share whose closing price was 72 cent on 31 December 2009 and 108 cent on
31 December 2011.

15.3 Suppose an investment earns interest at time t at the variable simple interest rate r(t)
so that Pt+t = (1+ r(t)t)Pt . Explore the average return on this investment from 0 to T .

15.4 If the interest rate for one-year deposits or loans is r1 per annum compounded annually,
the interest rate for two-year deposits or loans is r2 per annum compounded annually and the
forward interest rate for one-year deposits or loans beginning in one year’s time is f12 per
annum compounded annually, calculate the relationship that must hold between these three
rates if there are to be no arbitrage opportunities.

15.5 Two university students meet in a local bank branch on 1 October.

(a) The first student has just returned from a summer working abroad and has managed
to save e2000. She intends to live off her savings for the next academic year, with-
drawing nine equal cash amounts at monthly intervals from 1 November until 1 July,
when she intends to travel abroad again leaving a zero balance in her bank account. The
bank manager offers her an interest rate of 1% per month, compounded monthly, on her
e2000.

(i) What is the present value on 1 October of the nine cash withdrawals, computed using
this rate of interest? (Hint: recall the formula for the sum of a geometric series given
on p. xx.)

(ii) How much will she receive each month?

(b) The second student has just passed supplemental exams, for which he has been studying
all summer, and needs to borrowe2000 to pay his fees and a deposit on a flat. He intends,
despite the potential adverse effect on his academic progress, to work part-time during
the year and pay off his loan in nine equal monthly instalments, from 1 November until
1 July, and to begin the following summer with no remaining debt. The bank manager
demands an interest rate of 2% per month, compounded monthly.

(i) What is the present value on 1 October of the nine repayments that he will make,
computed using this borrowing rate?

(ii) How much will he repay each month?
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(c) Now suppose that the two students realize that they can bypass the banking system, and
the first student offers to lend her savings to the second at an interest rate of 1.5% per
month, compounded monthly. By how much, per month, will each student benefit if they
agree to this arrangement, rather than using the bank as an intermediary?

15.6 Show, using a MacLaurin approximation, that the discount factor can be approximated
using powers of the interest rate as follows:

1

1+ i
= 1− i + i2 − i3 + i4 − · · ·

Use this result to calculate first-order approximations to the present value ofe10 000 payable
in one year’s time when the interest rate is (a) 1%, (b) 2%, (c) 10% and (d) 20% per annum,
compounded annually in each case.

Now calculate the exact present value in each case, and compare your answers with the
approximations previously obtained.

In what circumstances does the approximation 1− i provide a useful substitute for the true
discount factor 1/(1+ i)?

15.7 Suppose that in a rugby international between France and New Zealand the following
are the best odds available:

Result Fractional odds

France 5/4
New Zealand 2/1
draw 8/1

Show that an arbitrage opportunity exists and calculate the bets necessary to guarantee a
profit of e10 000 irrespective of the outcome of the match.

15.8 Assuming a discount rate of r > 0 (per annum, compounded annually), find a general
expression for today’s (net present) value of a bond that promises to pay an annual coupon
of eC on today’s date in each of the next T years and an additional sum of e100 on today’s
date in the T th year.

Show that the value of the bond exceeds e100 if and only if

r <
C

100

Calculate the elasticity of the bond value with respect to r and show that it can be interpreted
as a weighted average of the coupon payment dates, where each date is weighted by the share
of the total present value of the bond that will be realized on that date.

15.9 Explore and comment on the additivity over time of a discrete rate of return that changes
at the end of each compounding period from r1 to r2 to r3 and so on.



February 12, 2011 11:1 Pinched Crown A Page-412 HarrWald

412 Multi-period choice under certainty

15.10 Suppose that an individual lives for T periods, has income in each period of mt

(t = 1,2, . . . ,T ), and can borrow and lend at a simple interest rate of i per period.
If the individual’s preferences are represented by the inter-temporal utility function

U (c1, c2, . . . , cT )=
T∑

t=1

ln ct

where ct is his consumption (of the single available good) in period t , what is his maximiza-
tion problem? Draw an analogy with the single-period Cobb–Douglas case and, using this
analogy, solve for optimal consumption. (Hint: this will be easier if you define M to be the
present value of the individual’s income and work with that.)

15.11 As in the previous exercise, suppose that an individual lives for T periods, has income
in each period of mt (t = 1,2, . . . ,T ), and can borrow and lend at a simple interest rate of i
per period.

Now consider the more general situation in which preferences are represented by the inter-
temporal utility function

U (c1, c2, . . . , cT )=
T∑

t=1

β t ln ct

The previous exercise considered the special case of β=1.How does the solution change for
β = 1? For what value of β will consumption be equal in each period? For what value of β
will the same amount be set aside today to provide for consumption in each future period?

15.12 State and solve the inter-temporal utility-maximization problem for a consumer whose
utility function is again given by U (c1, c2, . . . , cT )=∑T

t=1 β
t ln ct , but who faces a price

of pt units of period-0 consumption for each unit of period-t consumption bought or sold
(t = 1,2, . . . ,T ).

What is the relationship between the price pt and the interest rate it applicable to a loan
running from date 0 to date t?

15.13 Write out expressions for spot rate, forward rate, yield to maturity and effective annual
yield in terms of continuously compounded interest rates.

15.14 Derive the combined implications of Jensen’s inequality and the pure expectations
hypothesis for the relationship between the forward prices and future spot prices of pure
discount bonds.

15.15 Suppose that forward continuously compounded interest rates are unbiased predictors
of future spot continuously compounded interest rates. What are the implications of this
hypothesis for the prices of pure discount bonds?

15.16 Assuming a flat yield curve with discount rate i , prove that the convexity of a bond
with coupon c and T periods to maturity is given by

C(1+ i, c,T )= 1

2P(1+ i, c,T )

( T∑
t=1

t (t + 1)c

(1+ i)t
+ T (T + 1)

(1+ i)T

)
(15.60)

where P(1+ i, c,T ) denotes the implicit value of the bond.
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15.17 The following table gives the prices quoted on 1 February 2009 for zero-coupon bonds
with various maturity dates and par value of e1000:

Maturity date Price (e)

1 February 2009 1000
1 February 2010 820
1 February 2011 725
1 February 2012 675
1 February 2013 600

(a) Calculate:

(i) the annualized spot rates of interest for one-year, two-year, three-year and four-year
loans taken out on 1 February 2009;

(ii) the forward rates of interest for one-year loans to be taken out on 1 February 2010
and 1 February 2011; and

(iii) the ex-dividend price on 1 February 2009 of a coupon-bearing bond with an annual
dividend of e10 payable on 1 February each year, a par value of e100, and a
maturity date of 1 February 2013.

(b) Plot the yield curve implied by the bond prices given in the table.

15.18 Four pure discount bonds, each with par value of e100, but maturing one year, two
years, three years and four years from now, are trading at e88 8

9 , e80, e72 8
11 and e66 2

3 ,
respectively.

(a) Calculate the implied annualized spot rates of interest for investments lasting one year,
two years, three years and four years from today (to two decimal places) and plot the
yield curve.

(b) Calculate the implied forward rates of interest for one-year investments starting in one
year, in two years, and in three years from now.

(c) Given the information in this question, what would you pay for a four-year bond with
annual coupons of e9.90 and a par value of e100?

15.19 It is often suggested that the expected value of the exchange rate between the euro
and the US dollar in 30 days time should equal the corresponding 30-day forward exchange
rate currently prevailing. Explain why this hypothesis is paradoxical if extended to all cur-
rency pairs. Suggest an alternative hypothesis that is based on the same intuition but is
internally consistent. What are the implications of these observations for the theory of the
term structure of interest rates?

15.20 Write out an expression for the value P of a bond with an annual coupon of c, T years
to maturity and a par value of e1 when there is a flat yield curve corresponding to a discount
rate of i per year compounded annually. Calculate the elasticity of the bond price P with
respect to 1+ i . Calculate the weighted average time to receipt of cash flows, where each
time is weighted by the share of the present value of the corresponding cash flow in the total
value of the bond. Show that the two expressions are equal.

15.21 Explain what is meant by the duration and the convexity of a stream of cash flows.
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15.22 Calculate (as a function of the interest rate i) the duration of the following bonds:

(a) a five-year zero-coupon bond;
(b) a three-year bond with a 20% annual coupon; and
(c) a twenty-year bond with a 5% annual coupon.

15.23 Calculate the duration and convexity of a bond with an annual coupon of e10, par
value of e100 and three years to maturity, using a discount rate of 10%. Assume that the
bond has just gone ex-dividend.

15.24 Calculate the duration of a portfolio of e4000 divided equally between the four bonds
in Exercise 15.18, first as a function of the discount rate i and second assuming a discount
rate of 10%.

15.25 Suppose that you face liabilities of e2500 in one year’s time, e5000 in two years’
time and e5500 in three years’ time. Assume a flat term structure with a discount rate of 5%
per annum (compounded annually).

(a) Calculate the duration of your liabilities.

Suppose further that you can invest in a zero-coupon bond maturing in one year and/or in a
bond with a 5% annual coupon and three years to maturity, and that the latter bond has just
gone ex-dividend.

(b) Find a portfolio of these bonds with the same duration as your liabilities.
(c) Suppose that you can also invest in an ex-dividend bond with two years to maturity and

a 10% annual coupon. Find (in terms of par value) a portfolio of the three bonds that
exactly matches your liabilities. Give two other examples of portfolios of the three bonds
with the same duration as your liabilities.

(d) Find (to the nearest cent) the market price of each bond, assuming a par value of e100.

15.26 Discuss briefly the factors that might influence the choice of duration of assets held
by an investor (in particular an institutional investor) facing given future liabilities.

15.27 Calculate the gross redemption yield on a bond with two years to maturity, par value
of e1000 and an annual coupon of 10%, which is selling for e800.
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16 Single-period choice under
uncertainty

16.1 Introduction
Section 13.3 introduced a selection of real-world situations in which consumers (or investors,
as they might now be called) face uncertainty about the outcomes of their decisions, i.e.
about the final values of their investments. Section 12.2.1 pointed out that the “goods”
considered in the intervening material might be distinguished not by their intrinsic phys-
ical characteristics but by the state of nature in which they are consumed. This chapter
brings these two concepts together to analyse in more detail the consumer’s choice under
uncertainty.

This chapter deals with choice under uncertainty exclusively in a single-period context.
Trade takes place at the beginning of the period and uncertainty is resolved at the end of
the period. Consumption can take place either at the end of the period only or both at the
beginning of the period and at the end of the period. This framework is sufficient to illustrate
the similarities and differences between the most popular approaches to analysing choice
under uncertainty. For simplicity, we will assume throughout these final two chapters that
there is just one single physical consumption good.

The chapter begins with a brief section providing initial motivation for what follows.
The analysis of choice under uncertainty begins in Section 16.3 with the re-interpretation
of the general equilibrium model in terms of the state-contingent claims introduced in
Section 13.3.4. Economic theory has, over the years, used many different, sometimes
overlapping, sometimes mutually exclusive, approaches to the analysis of choice under
uncertainty. Among the approaches considered in this chapter are state-dependent and state-
independent utility (Section 16.3), expected utility (Section 16.4), mean–variance utility
(Section 16.8) and other non-expected-utility approaches (Section 16.9). The expected-
utility approach leads on to analysis of risk aversion (Section 16.5) and risk neutrality
(Section 16.6). That analysis in turn allows us to revisit and, in a sense, resolve Siegel’s para-
dox (Section 16.7). The single-period portfolio choice problem, which could also be brought
under the heading of “single-period choice under uncertainty”, is of sufficient practical and
mathematical importance that we will deal with it in a separate chapter (Chapter 17).

It will become clear in what follows that the theoretical lines of demarcation between con-
sumers, investors and gamblers are much fuzzier than is usually acknowledged in everyday
conversation.

16.2 Motivation
Table 13.1 presented a simple example of a choice under uncertainty, as well as raising the
question of the economic valuation of a simple type of risky asset. Now consider another
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similar example, namely, a range of seven lotteries based on the toss of a fair coin. In these
seven lotteries:

(a) with 50% probability you get nothing;
(b) with 50% probability you get, respectively,

(i) e1,
(ii) e10,

(iii) e100,
(iv) e1000,
(v) e10 000,

(vi) e100 000 or
(vii) e1 000 000.

As in the example in Table 13.1, the reader is encouraged to consider how much (s)he
would be willing to pay for a ticket in each of the seven lotteries described above and to keep
a record of these amounts.

The nature of the uncertainty facing the consumer is different in different applications. In
this case, there are just two equally likely states of nature, heads and tails. In the examples in
Table 13.1, there are nC6 equally likely states of nature. In most real-world situations, there
are infinitely many states of nature, usually a continuum of states, of which some are more
likely than others.

Different approaches to the economic analysis of choice under uncertainty are better suited
to different situations. The first approach considered here assumes that the underlying sample
space comprises a finite number (S) of states of nature with different probabilities. A more
thorough analysis of choice under uncertainty, allowing for infinite and continuous sample
spaces and based on additional axioms of choice, follows later.

16.3 Pricing state-contingent claims

16.3.1 Model structure

Recall the definitions of state-contingent claims or Arrow–Debreu securities and of com-
plex securitiescomplex security introduced in Section 13.3.4. Consider a world with a single
physical consumption good, a sample space � containing S possible states of nature (distin-
guished by a first subscript, usually i), markets for N complex securities (distinguished by a
second subscript, usually j) and H consumers (distinguished by a superscript, usually h).

We will let Y denote the S× N matrix whose j th column contains the payoffs of the j th
complex security in each of the S states of nature, i.e.

Y≡ [y1 y2 . . . yN ] (16.1)

where y j = (y1 j , y2 j , . . . , ySj ) is the associated S× 1 payoff vector for security j .
We can assume either that individual endowments take the form of portfolios of the ele-

mentary state-contingent claims or that they take the form of portfolios of the traded complex
securities for which markets exist; the significance of these alternative assumptions will
become clear below.1
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16.3.2 Types of utility function

In principle, each individual consumer’s utility could be a completely arbitrary function of
S variables, x1, x2, . . . , xS , representing the quantities of the single physical consumption
good to be consumed in each of the S states of nature. The analysis becomes easier the more
structure is imposed on individual preferences. For example, utility could be assumed to
be additive across states and, within this context, utility might be state-dependent or state-
independent.

Possible functional forms of individual h’s utility function, for the case where all
consumption takes place at the end of the period, include the following:

• arbitrary function

uh(x1, x2, . . . , xS) (16.2)

• additive across states

S∑
i=1

uh
i (xi ) (16.3)

• state-independent, with subjective weights ph
i , different for each individual consumer

S∑
i=1

ph
i v

h(xi ) (16.4)

• state-independent, with weights given by objective probabilities πi

S∑
i=1

πiv
h(xi ) (16.5)

The function vh :R→R can be thought of as h’s utility function on sure things. We will
return to this concept in Section 16.4.2. It will be assumed that vh is strictly increasing,
strictly concave and differentiable, so that standard results from optimization theory can be
applied.

For simplicity of exposition, we will continue to assume for the time being that consump-
tion decisions are made at date 0, before uncertainty is resolved, and that all consumption
takes place at date 1, after uncertainty has been resolved. The model can be extended to allow
for consumption to take place at both date 0 and date 1, just as the inter-temporal model of
the previous chapter could include or exclude consumption at date 0.

16.3.3 Model equilibrium

If markets exist for all S elementary state-contingent claims, then prices are determined by
the S market-clearing equations in a general equilibrium model, which can be reduced to

aggregate consumption in state i = aggregate endowment in state i (i = 1,2, . . . , S)

(16.6)
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We have seen in Section 12.5.5 that equilibrium exists in such a model, and in Section 12.6.3
that this equilibrium is Pareto optimal. Each individual will have an optimal consumption
choice depending on endowments and preferences and conditional on the state of the world.
We have three ways of viewing this optimal choice:

1. The optimal future consumption in the S possible states of the world for a particular
investor can be viewed as an S-dimensional vector, denoted

x∗h =

⎡⎢⎢⎢⎣
x∗h

1
x∗h

2
...

x∗h
S

⎤⎥⎥⎥⎦ (16.7)

2. Equivalently, optimal future consumption can be viewed as a random variable x̃∗h taking
on the value x∗h

i in state i .
3. Finally, optimal future consumption can also be viewed as a portfolio of elementary state-

contingent claims, comprising x∗h
1 units of the state-1-contingent claim, x∗h

2 units of the
state-2-contingent claim, and so on.

If markets exist for N complex securities, then the investor will optimally hold a portfolio
w∗h = (

w∗h
1 ,w

∗h
2 , . . . ,w

∗h
N

)
of these complex securities, such that

x∗h
i =

N∑
j=1

yi jw
∗h
j , i = 1,2, . . . , S (16.8)

or

x∗h =Yw∗h (16.9)

If the individual’s initial endowment is a portfolio of elementary state-contingent claims
eh = (eh

1 , e
h
2 , . . . , e

h
S), then (s)he must purchase a vector of complex securities given by

th = (th
1 , t

h
2 , . . . , t

h
N ), where

x∗h − eh =Yth (16.10)

Here th may have negative components representing sales of complex securities.
If the individual’s initial endowment is a portfolio of traded complex securities wh =

(wh
1 ,w

h
2 , . . . ,w

h
N ), then the optimal vector of net purchases is given by

th =w∗h −wh (16.11)

THEOREM 16.3.1

(a) If there are S complex securities (S = N ) and the associated square payoff matrix Y is
non-singular, then, for any initial endowment and any individual preferences, markets
are complete and the equilibrium allocation is Pareto optimal.
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(b) More generally, if each individual’s vector of desired trades x∗h − eh is in the column
space of the payoff matrix Y, then, for this particular combination of endowment and
preferences, the equilibrium allocation will be Pareto optimal.

Proof:

(a) The matrix Y can be inverted to solve (16.10) for optimal trades in terms of complex
securities:

th =Y−1(x∗h − eh) (16.12)

(b) Even though Y may not be invertible, (16.10) can still be solved for th for certain com-
binations of preferences and endowments. When Y is singular, either the solution for th

will not be unique or no solution for th will exist. �

An (N + 1)th security would be redundant, while either a singular square matrix or less
than N complex securities would result in incomplete markets, making the Pareto optimal
allocation unattainable for some combinations of preferences and endowments.

If Y is invertible, it is also easy to work back from the (equilibrium) prices of com-
plex securities, say p = (p1, p2, . . . , pN ), to the individual (equilibrium) state prices, say
φ= (φ1, φ2, . . . , φS), since the no-arbitrage principle tells us that we must have

p=Y�φ (16.13)

or

φ� =p�Y−1 (16.14)

If individual endowments are portfolios of the N traded complex securities, then it can be
seen from (16.9) that equilibrium allocations are Pareto optimal if and only if the Pareto
optimal allocations are also portfolios of the N traded complex securities, i.e. if x∗h lies in
the column space of Y.

16.3.4 Completion of markets using options

In real-world markets, the relatively small number of linearly independent traded securi-
ties, N , is generally less than the very large number of states of nature, S. However, we will
now show that options on existing securities may be sufficient to form complete markets,
and thereby ensure Pareto optimality for arbitrary preferences.

To illustrate this, let us assume that there exists a state index portfolio yielding different
non-zero payoffs in each state of nature (possibly one mimicking aggregate consumption;
see Section 16.3.5). As usual, the payoffs of the state index portfolio can be viewed either as
a random variable ỹ or as a vector of payoffs y= (y1, y2, . . . , yS). Without loss of generality,
we can rank the states so that yi < y j if i < j .

We now present some results, following Huang and Litzenberger (1988, Chapter 5), show-
ing conditions under which trading in such a state index portfolio and in options on the state
index portfolio can lead to the Pareto optimal complete markets equilibrium allocation. We
will show that it is possible to achieve completion of markets using options on the state index
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portfolio by assuming that there exist S− 1 European call options on ỹ with exercise prices
y1, y2, . . . , yS−1.

Here, the original state index portfolio and the S−1 European call options yield the payoff
matrix⎡⎢⎢⎢⎢⎣

y1 y2 y3 . . . yS

0 y2 − y1 y3 − y1 . . . yS − y1

0 0 y3 − y2 . . . yS − y2
...

...
...

...

0 0 0 . . . yS − yS−1

⎤⎥⎥⎥⎥⎦
�

=

⎡⎢⎢⎢⎢⎢⎣
state index portfolio

call option 1
call option 2

...

call option S− 1

⎤⎥⎥⎥⎥⎥⎦
�

(16.15)

and as this triangular matrix is non-singular (since we have assumed different payoffs in
each state in order to guarantee that the diagonal entries of the matrix are non-zero), we have
constructed a complete market.

16.3.5 Security values and aggregate consumption

Instead of assuming, as in the previous section, that a state index portfolio exists, we can
complete markets in a similar manner by assuming identical probability beliefs and a time-
additive, state-independent utility function

vh
0 (x0)+

∑
ω∈�

π(ω)vh
1 (x1(ω)) (16.16)

where x0 denotes consumption at date 0, x1(ω) denotes consumption at date 1 if state ω
materializes and π(ω) denotes the agreed probability that the state of the world is ω
(effectively modifying (16.5) to allow for date-0 consumption).

The assumptions of identical probability beliefs and state-independent utility guarantee
that equilibrium consumption decisions will be the same in any two states in which the
aggregate consumption or endowment is the same, so we can let f h(k) denote individual
h’s equilibrium consumption in those states where aggregate consumption equals k. It is left
as an exercise for the reader to prove this from the first-order conditions of the individual
utility-maximization problems; see Exercise 16.4.

We will first consider the relationship between security values and aggregate consumption,
which will be denoted C̃ .

Let C(ω)≡ aggregate consumption in state ω, and let �k ≡{ω ∈�: C(ω)= k}. Let φk be
the market price of the security with payoffs

yk(ω)=
{

1 if C(ω)= k

0 otherwise
(16.17)

This security is just a portfolio of the elementary state-contingent claims associated with all
the states in which aggregate consumption takes the value k.

Let the agreed probability of the event �k (i.e. the probability of aggregate consumption
taking the value k) be

πk =
∑
ω∈�k

π(ω) (16.18)
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Individual h’s utility-maximization problem is

max
x0,{x1(ω):ω∈�}

vh
0 (x0)+

∑
ω∈�

π(ω)vh
1 (x1(ω)) (16.19)

subject to the budget constraint

x0 +
∑
ω∈�

φ(ω)x1(ω)= M (16.20)

where date-0 consumption is treated as the numeraire, M denotes wealth and φ(ω) is the
price (in units of date-0 consumption) of the state-contingent claim paying off in state ω.

A risk-free security, paying off one unit of date-1 consumption in all states of the world, is
just a portfolio of one of each state-contingent claim, so must, by the no-arbitrage principle,
trade at a price of

∑
ω∈� φ(ω) or, equivalently,

∑
k φk . The risk-free rate of return can thus

be easily derived from the state prices.
Eliminating the Lagrange multiplier, the first-order conditions for problem (16.19)

simplify to

φ(ω)= π(ω)vh
1
′(x(ω))

vh
0
′(x0)

∀ ω∈� (16.21)

The no-arbitrage principle implies that

φk =
∑
ω∈�k

φ(ω)

=
∑
ω∈�k

vh
1
′(x(ω))
vh

0
′(x0)

π(ω)

= vh
1
′( f h(k))

vh
0
′(x0)

∑
ω∈�k

π(ω)

= vh
1
′( f h(k))

vh
0
′(x0)

πk (16.22)

since individual consumption is the same for all states in �k .
Therefore, an arbitrary security with payoff x̃ taking the value x(ω) in state ω has value

φx̃ =
∑
ω∈�

φ(ω)x(ω)

=
∑

k

∑
ω∈�k

φ(ω)x(ω)
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=
∑

k

vh
1
′( f h(k))

vh
0
′(x0)

∑
ω∈�k

π(ω)x(ω)

=
∑

k

φk

∑
ω∈�k

π(ω)

πk
x(ω)

=
∑

k

φk E[x̃ | C̃ = k] (16.23)

In other words, the value of an arbitrary security is given by a formula reminiscent of a
familiar result from probability theory, but with state prices playing the role of probabilities.
It is seen frequently in asset pricing models that the value of an asset is given, as it is here,
by a formula similar to that for the statistical expectation of its payoff, but with probabilities
(πk in this case) replaced by an alternative measure derived from individual preferences
(φk in this case).

Note also that a security whose payoff is independent of the value of aggregate consump-
tion (E[x̃ | C̃ = k] = E[x̃] for all k) will trade at E[x̃]

∑
k φk , i.e. at the same price as a

risk-free security paying off E[x̃] with probability 1. Under the assumptions of this model,
securities can trade at prices different from their discounted expected value only if their pay-
offs are dependent on aggregate consumption. The nature of that dependence will determine
whether a security trades at a premium over or at a discount from that discounted expected
value.

Thus this simple model provides one possible answer to a fundamental question common
to most asset-pricing models, namely, “Why do risky securities sometimes trade at prices
different from their simple discounted expected value?”

16.3.6 Replicating elementary claims with a butterfly spread

Let xk be the vector of payoffs in the various possible states on a European call option on
aggregate consumption with one period to maturity and exercise price k. For simplicity, let
us assume first that the possible values of aggregate consumption C(ω) are just the integers
1,2, . . . , S. Then payoffs are as given in Table 16.1.

Table 16.1 Payoffs for call options on aggregate
consumption

C̃ x0 x1 x2 · · · xS−1

1 1 0 0 · · · 0
2 2 1 0 · · · 0
3 3 2 1 · · · 0
...

...
...

...
...

...
S S S− 1 S− 2 · · · 1

Elementary claims against aggregate consumption can be constructed as follows, using a
butterfly spread: for example, for state 1,

(x0 − x1)− (x1 − x2) (16.24)
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yields the payoff

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

1
2
3
...

S

⎤⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎣

0
1
2
...

S− 1

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠−

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

0
1
2
...

S− 1

⎤⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎣

0
0
1
...

S− 2

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠=

⎡⎢⎢⎢⎢⎣
1
1
1
...

1

⎤⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎣

0
1
1
...

1

⎤⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎣

1
0
0
...

0

⎤⎥⎥⎥⎥⎦ (16.25)

i.e. this replicating portfolio pays 1 if aggregate consumption is 1, and 0 otherwise. The
prices of this, and the other elementary claims, must, by the no-arbitrage principle, equal the
prices of the corresponding replicating portfolios.

This gets more complicated when the values that aggregate consumption can take on,
y1, y2, . . . , yS , say, are not just a sequence of consecutive integers. We must work from the
payoff matrix

Y=

⎡⎢⎢⎢⎢⎣
y1 0 0 . . . 0
y2 y2 − y1 0 . . . 0
y3 y3 − y1 y3 − y2 . . . 0
...

...
...

. . .
...

yS yS − y1 yS − y2 . . . yS − yS−1

⎤⎥⎥⎥⎥⎦ (16.26)

to find a portfolio wk = (w1k,w2k, . . . ,wSk) of options whose payoffs satisfy

Ywk = ek (16.27)

or, with δ jk denoting the Kronecker delta,

S∑
j=1

yi jw jk = δik (16.28)

or, letting W denote the matrix we are looking for, YW= I or just W=Y−1.

16.4 The expected-utility paradigm

16.4.1 Background

In the previous section, certain functional forms were proposed for utility functions in a
world of uncertainty, and it was seen that assuming additional structure on the utility function
allowed more powerful conclusions to be drawn. In this section, we investigate whether there
might be some axiomatic grounding behind the assumption of such functional forms.

Consider a general lottery x̃ with n different possible payoffs x1, x2, . . . , xn and associated
probabilities p1, p2, . . . , pn .

Specifically, we would like to know whether we can represent the utility that someone
derives from this lottery by an expected-utility function:

u(x̃)= p1v(x1)+ p2v(x2)+ · · ·+ pnv(xn)= E[v(x̃)] (16.29)



February 12, 2011 11:1 Pinched Crown A Page-424 HarrWald

424 Single-period choice under uncertainty

where v again represents a utility function on sure things. We will show that, under certain
axioms about individual preferences, we can do so.

Related questions concern the individual response to an actuarially fair gamble, i.e. to a
choice between

• a certain wealth, W , and
• a lottery, x̃ , with expected value

W = p1x1 + p2x2 + · · ·+ pn xn = E[x̃] (16.30)

An individual who prefers the lottery to the certain amount is said to accept the actuarially
fair gamble.

Under what assumptions do individuals rank risky investment opportunities by expected
value? How are risky investment opportunities ranked, if not by expected value? The sections
that follow will consider these questions.

16.4.2 Definition of expected utility

The objects of choice with which we are concerned in a world with uncertainty could still
be called consumption plans, as in Section 12.2.3, but we will acknowledge the additional
structure now described by referring to them instead as lotteries, as in Section 13.3.1.

If there are k physical commodities, a consumption plan must specify a k-dimensional
vector, x ∈R

k , for each time and state of the world. We assume a finite number of times,
t = 0,1,2, . . . ,T , say. The possible states of the world are denoted by the set �. So a con-
sumption plan or lottery is just a collection of k-dimensional random vectors (T +1 of them),
i.e. a vector stochastic process. For simplicity, we will assume from now on that k = 1, and
that there are at most two time periods, t = 0 and t = 1.

Again, to distinguish the certainty and uncertainty cases, we let L denote the collection
of lotteries under consideration; X will now denote the set of possible values of the lotteries
in L. Preferences are now described by a relation on L. We will continue to assume that
preference relations are complete, reflexive, transitive and continuous.

Although we have moved from a finite-dimensional to an infinite-dimensional problem by
explicitly allowing a continuum of states of nature, it can be shown that the earlier theory of
choice under certainty carries through to choice under uncertainty; in particular, a preference
relation can always be represented by a continuous utility function on L; see Theorem 16.4.1.

However, we would like utility functions to have a stronger property than continuity,
namely, the expected-utility property.

DEFINITION 16.4.1 Let L denote the set of all random variables (or lotteries) with values in
the (one-dimensional) consumption set X and let u:L→R be a utility function representing
the preference relation �.

Then � is said to have an expected-utility representation if there exists a utility function
on sure things, v:X →R, such that

u(x̃)= E[v(x̃)]

=
∫
v(x)d Fx̃ (x) (16.31)
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Such a representation will often be called a von Neumann–Morgenstern (or VNM) utility
function, after its originators,2 or just an expected-utility function.

Preferences with such a representation will be called expected-utility preferences.

The set X can be identified with a subset of L, in that each sure thing in X can be identified
with the trivial lottery that pays off that sure thing with probability 1. Similarly, the utility
function on sure things v, with domain X , can be identified with the utility function on
lotteries u, with domain L, since they have identical values on X , where both are defined.
In other words, v is just the restriction u|X . Henceforth, we will use a single letter to denote
both functions.

Any strictly increasing transformation of a VNM utility function represents the same pref-
erences. However, only strictly increasing affine transformations, i.e. transformations of the
form

f (x)= a+ bx (b> 0) (16.32)

retain the expected-utility property. Proof of this is left as an exercise; see Exercise 16.5.

16.4.3 Further axioms

In this section, we add three further axioms to the six listed in Section 12.3. The first of these
axioms is motivated by the following thought experiment:

• Suppose you think a Lotto ticket is just worth e1.
• Which do you prefer:

−tossing a fair e1 coin with the e1 coin as a prize if you call the outcome correctly, or
−tossing a fair e1 coin with this Lotto ticket as a prize if you call the outcome correctly?

• Substitute your own value for the Lotto ticket and ask yourself the same question.

The substitution axiom (below) implies that you will be indifferent; see Exercise 16.6.

AXIOM 7 (SUBSTITUTION OR INDEPENDENCE AXIOM). If a ∈ (0,1] and p̃# q̃ , then

a p̃⊕ (1− a)r̃ # aq̃ ⊕ (1− a)r̃ ∀ r̃ ∈L (16.33)

The next axiom is just a generalization of the continuity axiom.3

AXIOM 8 (ARCHIMEDEAN AXIOM). If p̃# q̃ # r̃ then

∃ a,b∈ (0,1) s.t. a p̃⊕ (1− a)r̃ # q̃ # b p̃⊕ (1− b)r̃ (16.34)

The last axiom is a further generalization of the substitution axiom.

AXIOM 9 (SURE-THING PRINCIPLE). If probability is concentrated on a set of sure things
that are preferred to q̃, then the associated consumption plan is also preferred to q̃. In other
words, if y� q̃ for all y ∈Y and p̃ ∈Y with probability 1, then p̃� q̃ .
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16.4.4 The Allais paradox

Now let us consider the Allais paradox,4 which shows that the above axioms (in particular,
the substitution axiom) applied to particular (compound) lotteries do not always give the
results suggested by intuition.

Before reading on, consider carefully which you would prefer from each of the following
three pairs of lotteries, and make a note of your choices:

1×e1m or 0.1×e5m ⊕ 0.89×e1m ⊕ 0.01×e0? (16.35)

1×e1m or 10
11 ×e5m ⊕ 1

11 ×e0? (16.36)

0.11×e1m ⊕ 0.89×e0 or 0.1×e5m ⊕ 0.9×e0? (16.37)

The reader, having first noted his or her instinctive preferences, is encouraged then to inves-
tigate the mean, variance, skewness and kurtosis of the payoffs for each of the five lotteries
in the Allais paradox; see Exercise 16.7. Experiments based on these and similar choices
generally find that the preferences of a significant proportion of the population violate the
substitution axiom.

We will now show that the substitution axiom (assuming that it holds) and the answer to
the previous question are sufficient in each case above to determine the answer to the next
question. Suppose that, in the case of (16.35), an individual prefers the lottery with the higher
expected payoff:

0.1×e5m ⊕ 0.89×e1m ⊕ 0.01×e0# 1×e1m (16.38)

Note that

0.11×
(

10

11
×e5m ⊕ 1

11
×e0

)
⊕ 0.89×e1m

= 0.1×e5m ⊕ 0.89×e1m ⊕ 0.01×e0 (16.39)

and

0.11× (1×e1m) ⊕ 0.89×e1m= 1×e1m (16.40)

Thus the substitution axiom implies that an individual prefers the uncertain payoff in the
case of (16.35) if and only if (s)he also prefers the uncertain payoff in the case of (16.36);
see Exercise 16.8.

Finally, note that each lottery in (16.37) represents an 11% chance of the corresponding
lottery in (16.36) and an 89% chance of nothing. Thus, by the substitution axiom again, for
the individual who prefers the uncertain payoffs in the first two situations,

0.1×e5m ⊕ 0.9×e0 # 0.11×e1m ⊕ 0.89×e0 (16.41)

While the substitution axiom ensures that an individual who prefers the higher expected
payoff in any one of these situations also does so in the other two situations, empirical trials
have generally found that many individuals prefer the higher expected payoff in one or two
cases, but not in all three.
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If the restrictions implied by the substitution axiom appear counter-intuitive, then the
entire theory of expected utility based on it should be treated with caution. However, it is
still a useful starting point and a basis for comparative analysis of competing theories.5

16.4.5 Existence of expected-utility functions

We will now consider necessary and sufficient conditions on preference relations for an
expected-utility representation, as described in Definition 16.4.1, to exist.

THEOREM 16.4.1 If X contains only a finite number of possible values, then the substitu-
tion and Archimedean axioms are necessary and sufficient for a preference relation to have
an expected-utility representation.

Proof: We will just sketch the proof that the axioms imply the existence of an expected-
utility representation. The proof of the converse is left as an exercise; see Exercise 16.9.
For full details, see Huang and Litzenberger (1988, Sections 1.9 and 1.10 and Exercises 1.3
and 1.4).

Since X is finite, and unless the consumer is indifferent among all possible choices, there
must exist maximal and minimal sure things, say, p+ and p−, respectively. By the substitu-
tion axiom, and a simple inductive argument, these are maximal and minimal in L as well as
in X . (If X is not finite, then an inductive argument can no longer be used and the sure-thing
principle is required.)

From the Archimedean axiom, it can be deduced that, for every other lottery, p̃, there
exists a unique V ( p̃) such that

p̃∼ V ( p̃)p+ ⊕ (1− V ( p̃))p− (16.42)

It is easily seen that V then represents � in the sense defined by (12.1).
We leave it as an exercise to deduce from the axioms that, if x̃ ∼ ỹ and z̃∼ t̃ , then, for all

π ∈ [0,1],

π x̃ ⊕ (1−π)z̃∼π ỹ⊕ (1−π)t̃ (16.43)

see Exercise 16.10. It remains to show that V is linear in probabilities.
Define z̃≡π x̃ ⊕ (1−π)ỹ. Then, using the definitions of V (x̃) and V (ỹ) and (16.43),

z̃∼π x̃ ⊕ (1−π)ỹ
∼π(V (x̃)p+ ⊕ (1− V (x̃))p−)⊕ (1−π)(V (ỹ)p+ ⊕ (1− V (ỹ))p−)
= (πV (x̃)+ (1−π)V (ỹ))p+ ⊕ (π(1− V (x̃))+ (1−π)(1− V (ỹ)))p− (16.44)

Also

z̃∼ V (z̃)p+ ⊕ (1− V (z̃))p− (16.45)

It follows by uniqueness of V (z̃) that

V (z̃)= V (π x̃ ⊕ (1−π)ỹ)=πV (x̃)+ (1−π)V (ỹ) (16.46)
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This shows linearity for compound lotteries with only two possible outcomes: by an induc-
tive argument, every lottery can be reduced recursively to a two-outcome lottery when there
is only a finite number of possible outcomes altogether. �

THEOREM 16.4.2 For more general L, to these conditions must be added some technical
conditions and the sure-thing principle.

Proof: A proof of this more general theorem can be found in Fishburn (1970). �

Note that expected utility depends only on the distribution function of the consumption
plan. Two consumption plans having very different consumption patterns across states of
nature but the same probability distribution give the same utility, e.g. if wet days and dry days
are equally likely, then an expected-utility maximizer is indifferent between any consumption
plan and the plan formed by switching consumption between wet and dry days.

The basic objects of choice under expected utility are not consumption plans themselves
but classes of consumption plans with the same cumulative distribution function.

16.4.6 Common expected-utility functions

Some commonly used functional forms for the expected utility derived from a wealth of w
include the following:

• affine utility

u(w)= a+ bw, b> 0 (16.47)

• quadratic utility

u(w)=w− b

2
w2, b> 0 (16.48)

• logarithmic utility

u(w)= ln(awb)= ln a+ b lnw, b> 0 (16.49)

• negative-exponential utility

u(w)=−e−cw, c> 0 (16.50)

• narrow-power utility

u(w)= B

B − 1
w1−1/B, w> 0, B> 0, B = 1 (16.51)

• extended-power utility

u(w)= 1

B − 1
(A+ Bw)1−1/B, B> 0, A = 0, w >max

{
− A

B
,0

}
(16.52)
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Note that increasing affine transformations can be applied to any of these functions to obtain
alternative representations of the same underlying preferences, while retaining the expected-
utility property. In particular, in different circumstances, the extended-power utility function
may be more conveniently represented by [1/(C + 1)B](A+ Bw)C+1; see Exercise 16.18
and Theorem 17.3.2.

EXAMPLE 16.4.1 Let us consider the problem faced by an investor with the negative-
exponential expected-utility function (16.50) who can divide his initial wealth W0 between a
risk-free asset with return rf and a risky asset with normally distributed return r̃ ∼ N (μ,σ 2).
If he invests b (euro) in the risky asset, then his final wealth will be W0rf + b(r̃ − rf). So he
will choose b to maximize

E[−exp(−c(W0rf + b(r̃ − rf)))]

=− 1√
2πσ

∫ ∞

−∞
exp(−c(W0rf + b(r − rf))) exp

((
−1

2

)(
r −μ
σ

)2)
dr (16.53)

using the normal pdf given in (13.6). We will not re-evaluate this integral, since we know
that for any normally distributed random variable, x̃ ,

E[ex̃ ]= eE[x̃]+0.5Var[x̃] (16.54)

see Exercise 13.14. Thus the expression to be maximized in this case is

− exp(−c(W0rf + b(μ− rf))+ 0.5c2b2σ 2) (16.55)

This is a decreasing transformation of a quadratic function of b, so has its maximum at the
turning point of the quadratic, which is

b= c(μ− rf)

c2σ 2
= μ− rf

cσ 2
(16.56)

Note that the optimal investment in the risky asset is independent of initial wealth W0. ♦

For another example of the maximization of expected utility, see Exercise 16.14.

16.5 Risk aversion
We have already looked at several examples of individual choice between two investment
strategies with uncertain outcomes, and of choice between a strategy with a certain outcome
and one with an uncertain outcome. In this section, we introduce a formal classification of
the possible responses to such choices.

DEFINITION 16.5.1

(a) An individual is risk-averse if he or she is unwilling to accept, or indifferent to, any
actuarially fair gamble.

(b) An individual is strictly risk-averse if he or she is unwilling to accept any actuarially
fair gamble.
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(c) An individual is risk-neutral if he or she is indifferent to any actuarially fair gamble.
(d) An individual is risk-loving if he or she is willing to accept, or indifferent to, any

actuarially fair gamble.
(e) An individual is strictly risk-loving if he or she is willing to accept any actuarially fair

gamble.

We will also use the terms risk aversion and risk neutrality to describe the corresponding
preferences and the resulting behaviour.

These definitions apply independently of the expected-utility axioms, but the remainder
of the analysis here will assume these axioms. Let us consider an actuarially fair gamble
involving a lottery with two possible outcomes

px1 ⊕ (1− p)x2 (16.57)

1. For a risk-averse individual with expected-utility function v,

v(px1 + (1− p)x2)≥ pv(x1)+ (1− p)v(x2) ∀ x1, x2 ∈R, p ∈ (0,1) (16.58)

i.e. the expected-utility function of a risk-averse individual is a concave function; see
Figure 16.1.

2. For a risk-loving individual with expected-utility function u,

u(px1 + (1− p)x2)≤ pu(x1)+ (1− p)u(x2) ∀ x1, x2 ∈R, p ∈ (0,1) (16.59)

i.e. the expected-utility function of a risk-loving individual is a convex function.

x

v(x)

0

x2 px1 + (1− p)x2 x1

v(x1) B •

v(x2)
A •

v(E[x̃])= v(px1 + (1− p)x2)
D•

E[v(x̃)]= pv(x1)+ (1− p)v(x2) C
•

Figure 16.1 Concave expected utility function of a risk-averse individual
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3. For a risk-neutral individual with expected-utility function f ,

f (px1 + (1− p)x2)= p f (x1)+ (1− p) f (x2) ∀ x1, x2 ∈R, p ∈ (0,1) (16.60)

i.e. the expected-utility function of a risk-neutral individual is an affine function.
4. A risk-neutral investor will pay exactly the expected value for any gamble; assuming that

utility is increasing in wealth, a risk-averse investor will pay less; a risk-loving investor
will pay more.

By appealing to Jensen’s inequality (see Section 13.10), we can assert the converse of
each of the above statements. For example, an individual with a concave expected-utility
function will always exhibit risk-averse behaviour, and so on. Similarly, an individual with
expected-utility preferences exhibits strictly risk-averse behaviour if and only if his VNM
utility function is strictly concave, and so on. Note that increasing affine transformations
of expected-utility functions preserve not only the expected-utility property of the original
function but also its convexity or concavity.

Risk-neutral preferences can be represented by any expected-utility function of the form
f (w̃) = E[a + bw̃]. The same preferences can be represented by any increasing affine
transformation of this function, in particular by g=−(a/b)+ (1/b) f or by

g(w̃)=−a

b
+ 1

b
f (w̃)

=−a

b
+ 1

b
E[a+ bw̃]

= E[w̃] (16.61)

In other words, an individual has risk-neutral preferences if and only if his or her preferences
rank all available options by expected value.

On the other hand, the utility functions representing different types of risk-averse (risk-
loving) preferences can take any of the countless functional forms that are concave (convex)
but are not increasing affine transformations of each other.

Thus, the term risk-neutral immediately specifies the functional form of the underlying
expected-utility function; but the terms risk-averse and risk-loving each allow for many
inherently different underlying preferences and expected-utility functions.

Our knowledge of the properties of concave and convex functions allows us to deter-
mine attitudes to risk by considering the second derivative of the underlying expected-utility
function.

Most functions do not fall into any of these categories, and represent behaviour that is
locally risk-averse at some wealth levels and locally risk-loving at other wealth levels.

To see this, just consider the obvious examples in everyday life of individuals who simulta-
neously gamble and buy insurance. Gambling in general involves the consumer in accepting
an actuarially fair (or, more often, unfavourable) gamble, which is risk-loving behaviour;
insurance involves the insurance company accepting a gamble that is actuarially favourable
to it and thus involves the consumer in declining a gamble that is actuarially fair (or, more
often, favourable) to him, which is risk-averse behaviour.

However, in most of what follows we will find it convenient to assume that individuals
are globally risk-averse. Individuals who are globally risk-averse will never gamble, in the
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sense that they will never have a bet unless they believe that the expected return on the
bet is positive. Thus assuming global risk aversion (and rational expectations) rules out the
existence of national and state lotteries (except with large rollovers) and most other forms of
betting and gaming.

We can distinguish more formally between local and global risk aversion.

DEFINITION 16.5.2 An individual with VNM utility function u is locally risk-averse at w
if u′′(w)< 0 and globally risk-averse if u′′(w)< 0 for all w.

Individuals who gamble are not globally risk-averse but may still be locally risk-averse
around their current wealth level. We will return to these concepts in Section 17.3.2. Some
people (i.e. some preference relations) are more risk-averse than others; some functions
are more concave than others. We will now introduce one method of measuring these
differences; see Varian (1992, Sections 11.5–11.7) for more details.

The importance and usefulness of the Arrow–Pratt measures of risk aversion that we now
define will become clearer as we proceed, in particular from the analysis of the portfolio
choice problem.6

DEFINITION 16.5.3 The Arrow–Pratt coefficient of absolute risk aversion associated
with expected-utility preferences represented by the expected-utility function u is

RA(w)=−u′′(w)/u′(w) (16.62)

which is the same for u and au+ b, i.e. which is invariant under any affine transformation of
u (increasing or decreasing).

Note that absolute risk aversion varies with the level of wealth. The second derivative,
u′′(w), alone is meaningless as a measure of risk aversion, since it is not invariant under
increasing affine transformations of u: u (and, hence, u′ and u′′) can be multiplied by
any positive constant and still represent the same preferences. However, the above ratio is
independent of the expected-utility function chosen to represent the underlying preferences.

DEFINITION 16.5.4 The Arrow–Pratt coefficient of relative risk aversion is

RR(w)=wRA(w) (16.63)

DEFINITION 16.5.5 The utility function u exhibits increasing (constant, decreasing)
absolute risk aversion (IARA, CARA, DARA) if and only if

R′A(w)>(=,<) 0 ∀ w (16.64)

DEFINITION 16.5.6 The utility function u exhibits increasing (constant, decreasing)
relative risk aversion (IRRA, CRRA, DRRA) if and only if

R′R(w)>(=,<) 0 ∀ w (16.65)

Note that:

• CARA or IARA ⇒ IRRA;
• CRRA or DRRA ⇒ DARA.
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Note again that many expected-utility functions will not belong to any of these six
categories, although all the examples that we have considered so far do.

Some examples of utility functions and their risk measures follow; see Exercise 16.18 for
others.

EXAMPLE 16.5.1 For the negative-exponential expected-utility function, we have the
following:

u(w)=−e−bw, b> 0 (16.66)

u′(w)= be−bw > 0 (16.67)

u′′(w)=−b2e−bw < 0 (16.68)

RA(w)= b (16.69)

RR(w)= bw (16.70)

R′A(w)= 0 (16.71)

R′R(w)= b (16.72)

In other words, these preferences exhibit CARA and IRRA. Because it exhibits constant
absolute risk aversion and also because the corresponding utility-maximization problem
is easily solved when wealth is normally distributed (see Example 16.4.6), the negative-
exponential expected-utility function has been used as the basis of various empirical studies
of risk aversion. It was also used by Grossman and Stiglitz (1989) in demonstrating the
impossibility of informationally efficient markets. ♦

EXAMPLE 16.5.2 For the narrow-power expected-utility function, we have the following:7

u(w)= B

B − 1
w1−1/B, w> 0, B> 0, B = 1 (16.73)

u′(w)=w−1/B (16.74)

u′′(w)=− 1

B
w−1/B−1 (16.75)

RA(w)= 1

B
w−1 (16.76)

RR(w)= 1

B
(16.77)

R′A(w)=−
1

B
w−2< 0 (16.78)

R′R(w)= 0 (16.79)

In other words, these preferences exhibit CRRA and DARA. ♦

By integrating back from the defining equations

u′′(w)=−cu′(w) (16.80)
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and

wv′′(w)=−kv′(w) (16.81)

respectively, it is possible to specify all the VNM utility functions exhibiting CARA and all
those exhibiting CRRA; see Exercise 16.23.

16.6 Arbitrage, risk neutrality and the efficient markets
hypothesis
In Section 12.5.6, we referred to the strong parallels between the no-arbitrage principle, the
risk-neutral world and the efficient markets hypothesis. We are now in a position to define
precisely the second of these concepts and, as promised in Section 13.10, to attempt to make
the concept of the EMH more rigorous, so enabling us to spell out more clearly the parallels
between the three concepts.

In a simple world of certainty, the no-arbitrage principle is a very useful tool for making
predictions about the relationships between different rates of return. More generally, the no-
arbitrage principle says that if even one market participant has preferences exhibiting local
non-satiation, then securities with equal payoffs at all times and in all states of nature will
have the same price.

If P̃i t denotes the value of security i at time t (omitting the tilde if the value is known with
certainty, for example, at t = 0), then the no-arbitrage principle says that

P̃it = P̃jt with probability 1 ∀ t > 0 ⇒ Pi0 = Pj0 (16.82)

In an equally simple world of uncertainty in which unlimited short-selling is possible, it is
easy to derive a similar result, namely, that if even one market participant is risk-neutral,
then all securities will have equal expected returns, or, in terms of security prices,

E[P̃it]= E[P̃jt] ∀ t > 0 ⇒ Pi0 = Pj0 (16.83)

To see this, note that if two securities have different expected returns, then any risk-neutral
individual will seek to exploit the discrepancy in expected returns on an infinite scale, by
short-selling the asset with the lower expected return and investing the proceeds in the asset
with the higher expected return, thereby increasing his or her expected future wealth, and
thus his or her utility, without bound.

As in the case of an arbitrage opportunity, the risk-neutral individual’s demand for the
securities with different expected returns is not well-defined, i.e. not finite. If even one indi-
vidual in such an economy has risk-neutral preferences, it follows that prices that permit
differences in expected returns will not allow markets to clear. Conversely, if such an econ-
omy is in equilibrium, then markets must clear, demand for all securities must be finite and
prices will adjust in equilibrium so that all securities have equal expected returns.

In summary, then, in equilibrium we must have at least one of the following:

• no risk-neutral individual; or
• restrictions on short-selling; or
• all expected returns equal.
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We will refer to the hypothetical economy satisfying only the last of these conditions as the
risk-neutral world. In equilibrium in such a world, the risk-neutral investor will be indiffer-
ent between all possible investment positions. One possible equilibrium allocation would be
to share whatever was not demanded by non-risk-neutral investors on a pro rata basis among
the risk-neutral investors according to the equilibrium values of their endowments.

While the risk-neutral world clearly does not correspond to the real world of apparently
widely varying expected returns that we see around us, it (like other hypothetical but unre-
alistic concepts such as perfect competition) remains a very useful pedagogic benchmark
against which to compare other economic models.

While the risk-neutral world does not in any way represent the behaviour of real-world
long-horizon markets, it more closely represents what happens in short-horizon markets,
such as betting markets, where security prices must converge quickly to their fundamental,
predetermined maturity values.

In the more complicated world in which we live, the efficient markets hypothesis plays
a role somewhat akin to those of the no-arbitrage principle and the risk-neutral world. The
EMH can be looked at from either a comparative static or a dynamic perspective. We will
begin with the former. One interpretation of the EMH from this perspective is that all secu-
rities will have the same expected returns after adjustment for risk. In other words, there
may exist a risk-neutral measure with expectation operator E∗ such that, in terms of security
prices,

E∗[P̃i t ]= E∗[P̃j t ] ∀ t > 0 ⇒ Pi0 = Pj0 (16.84)

The adjustment for risk depends on assumptions made about investor preferences and
about the investment opportunity set, so it is impossible to test the EMH independently
of the model of equilibrium underlying the risk-neutral measure; see Campbell et al. (1997,
Section 1.5).

One such model of equilibrium is the capital asset pricing model (CAPM), which will be
introduced in Section 17.5. If the assumptions of this model held, then, as we will see, the
risk-neutral measure would be defined by

E∗[P̃it]= E[P̃it]

1+ rf +βim E[r̃m − rf]
(16.85)

see Exercise 17.5.
The EMH, as viewed from a dynamic perspective, has also been interpreted in a multitude

of different ways, all of which say something about the predictability of asset returns. For a
full discussion, see Campbell et al. (1997, Chapter 2). If asset prices at time t fully reflect
all available information, as proposed by the EMH, then future values of the stochastic pro-
cess {P̃t }, say, followed by an asset price should not be predictable on the basis of its own
past values. As mentioned in Sections 3.4, 8.3 and 14.4.1, this hypothesis has been made
more precise by arguing that, and testing whether, the price process follows a random walk
with iid increments, or some other process with a unit root. (Recall that P̃t follows a random
walk if

P̃t = P̃t−1 + ε̃t (16.86)

where ε̃t ∼ iid(0, σ 2).)
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16.7 Uncovered interest rate parity: Siegel’s paradox revisited
Just as the no-arbitrage principle leads to the widely accepted principle of covered inter-
est rate parity (Example 12.5.6), so we will now demonstrate that in the risk-neutral world
(whatever about the real world) the more debatable principle of uncovered interest rate
parity holds.

Hitherto, there has been no ambiguity as to the meaning of risk neutrality, as we have
assumed the existence of a common unit of account that can be used as a numeraire in which
to measure the initial prices and final values of all assets. We have not made it explicit so
far that the idea of the risk-neutral world is based on the assumption that an individual is
risk-neutral in a specific currency or, more generally, with respect to a specific numeraire.
We will now show the relevance of the numeraire currency in this situation. An investor
is risk-neutral with respect to a given numeraire currency if his objective is to maximize the
expected value of his final wealth measured in terms of that numeraire. We referred to the
numeraire initially as the “euro”, implying that we were dealing with an unambiguous single-
currency world. Now let us consider instead a sterling-denominated risk-neutral world, in
which future exchange rates are uncertain, so that the euro is a risky asset.

Suppose, as in the case of covered interest rate parity, that an individual has access to one-
period risk-free investments in both EUR and GBP at interest rates, respectively, of iEUR and
iGBP. Let St denote the current spot GBP/EUR exchange rate and S̃t+1 the unknown spot
GBP/EUR exchange rate next period.

A sterling payoff next period can be engineered from a sterling investment – of, say, one
pound – in this period in either of two ways:

1. invest the principal in the risk-free sterling investment, for a return of 1+ iGBP; or
2. convert the principal to EUR 1/St , invest the proceeds in the risk-free euro investment for

a euro return of (1+ iEUR)/St and convert this euro return back to sterling for a sterling
return of (1+ iEUR)S̃t+1/St .

In a risk-neutral world (where at least one individual has risk-neutral preferences for sterling
payoffs), these two strategies must have the same expected payoff, so that

E[S̃t+1]= 1+ iGBP

1+ iEUR
St (16.87)

Like the theory of covered interest rate parity, the theory of uncovered interest rate parity
says that apparent gains in the money market when interest rates differ across currencies will
be eroded by losses in the foreign exchange market, or, in other words, a currency with a
higher interest rate will depreciate against one with a lower interest rate, at least insofar as
expected changes in spot rates are concerned.

Combining the theories of covered and uncovered interest rate parity, it follows that when
both hold

E[S̃t+1]= Ft = 1+ iGBP

1+ iEUR
St (16.88)

where Ft again denotes the one-period forward GBP/EUR exchange rate.
Note that we could have based the preceding example on any two currencies. The critical

assumption was that at least one investor had risk-neutral preferences when payoffs were
expressed in sterling.
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The counter-hypothesis that the forward EUR/GBP exchange rate equals the expected
future spot EUR/GBP exchange rate holds in a euro-denominated risk-neutral world (in
which sterling is a risky asset). Siegel’s paradox (Theorem 13.10.2) is then seen to be no
more than the statements that

• the world cannot simultaneously be risk-neutral from the perspective of both euro and
sterling investors; or

• uncovered interest rate parity cannot hold in both currencies simultaneously.

Another way of saying this is that no equilibrium exists in a world with unlimited borrowing
and short-selling and risk-neutral investors in more than one currency. Since risk-neutral
preferences are not strictly convex, such a world does not satisfy the assumptions underlying
Theorem 12.5.7, so Siegel’s paradox is not such a puzzle as it seemed after all.

We conclude this section with an example to illustrate how the theory of uncovered interest
rate parity unravels in a simple two-investor, two-asset, two-currency world in which there
is no borrowing or short-selling.

EXAMPLE 16.7.1 Suppose that there are two investors living in two different currency zones
with both currencies available for investment to both investors. They live in a single-period
world where they can trade their endowments at t=0 and consume their final wealth at t=1.
The payoffs at t = 1 on the two investments in their own respective currencies are known at
t = 0 to be r1 and r2 but the exchange rate at t = 1 is unknown and will be determined
exogenously. Thus each investor faces a choice between one asset that is risk-free in his own
currency and one asset that is risky in his own currency.

We will assume that 1 unit of currency 1 can be exchanged for s units of currency 2
at t = 0.

To preserve symmetry in this new two-currency world, we will drop the assumption that
a common numeraire currency exists, and will assume instead that each investor uses a dif-
ferent numeraire, namely one unit of his own currency. Furthermore, we will assume that
each investor is risk-neutral with respect to his final wealth measured in terms of the relevant
numeraire.

We assume first for complete generality that the two investors have their own beliefs con-
cerning the exchange rate at t = 1, with s̃2 denoting the final value of 1 unit of currency 2
from investor 1’s perspective and vice versa for s̃1.

Our objective now, following our approach in Section 12.6.1, is to construct an Edgeworth
box, shown in Figure 16.2, to illustrate the nature of equilibrium in this world.

If individual 1 has endowments of e1
1 and e2

1, respectively, of the two assets and decides
to hold a portfolio comprising x1

1 and x2
1 , respectively, of the two assets, then the latter

quantities will be chosen to maximize

E[x1
1r1 + x2

1r2s̃2] (16.89)

subject to non-negativity constraints and the budget constraint

sx1
1 + x2

1 = se1
1 + e2

1 (16.90)
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Figure 16.2 Edgeworth box diagram for Example 16.7

His indifference curves in the Edgeworth box are parallel lines of the form

x1
1r1 + x2

1r2 E[s̃2]= k (16.91)

with common slope −r1/(r2 E[s̃2]).
Similarly, individual 2’s indifference curves in the Edgeworth box will be parallel lines of

the form

x1
2r1 E[s̃1]+ x2

2r2 = k (16.92)

with common slope−(r1 E[s̃1])/r2. (The slope will be the same whether calculated from the
perspective of individual 1’s origin or from the perspective of individual 2’s origin.)

The budget lines for both individuals have slope −s.
The two individuals will have the same set of indifference curves if and only if

− r1

r2 E[s̃2]
=−r1 E[s̃1]

r2
(16.93)

or

E[s̃1]E[s̃2]= 1 (16.94)

Figure 16.2 is drawn on the assumption that

E[s̃1]E[s̃2]> 1 (16.95)

Suppose E in Figure 16.2 represents the endowment point, the dotted parallel lines represent
individual 1’s indifference curves, the normal parallel lines represent individual 2’s indiffer-
ence curves and the single thick line represents a common budget constraint. Then any point
in the interior of the shaded region BCDE Pareto dominates E . But all points in the interior
of BCDE are in turn Pareto dominated by some point on the boundary BCD.
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It can be seen from Figure 16.2 that either there will be a corner equilibrium of one of four
types or multiple interior equilibria. If (16.95) holds, as shown, then either:

(a) individual 1 will hold the whole aggregate endowment of asset 2 (solution on the top of
the Edgeworth box); or

(b) individual 1 will hold none of asset 1 (solution on the left-hand side of the Edgeworth
box).

If the opposite strict inequality to (16.95) holds, then either:

(c) individual 1 will hold none of asset 2 (solution along the bottom of the Edgeworth box);
or

(d) individual 1 will hold the whole aggregate endowment of asset 1 (solution on the right-
hand side of the Edgeworth box).

If (16.94) holds, then:

(e) the budget line and both individuals’ indifference curves will have the same slope so that
any point on the budget line maximizes both individuals’ utility simultaneously.

If the two individuals have common beliefs, then we have s̃1 = 1/s̃2 and by Jensen’s
inequality

E[s̃1]= E[
1

s̃2
]>

1

E[s̃2]
(16.96)

Thus individual 2’s indifference curves have the steeper slopes, as illustrated.8

In fact, the contract curve for the case illustrated comprises the left and top edges of the
Edgeworth box. Given the endowment point E , there are multiple equilibria, any point on
BCD being attainable given the appropriate budget line. Any budget line with slope steeper
than individual 1’s indifference curves and less steep than individual 2’s indifference curves
will yield an equilibrium somewhere on BCD. Thus the equilibrium exchange rate must
satisfy

r1

r2 E[s̃2]
≤ s≤ r1 E[s̃1]

r2
(16.97)

These limiting exchange rates are precisely those implied by uncovered interest rate parity
for each individual, as given (in different notation) in (16.87). By (16.96), the upper and
lower bounds for the equilibrium exchange rate in (16.97) are different.

Note also that individual 1, being risk-neutral in currency 1, will prefer currency 2 (his
risky asset) to currency 1 (his risk-free asset) if and only if the former has the higher expected
return, or

r2s E[s̃2]≥ r1 (16.98)

Similarly, individual 2, being risk-neutral in currency 2, will prefer currency 1 (his risky
asset) to currency 2 (his risk-free asset) if and only if

r1 E[s̃1]

s
≥ r2 (16.99)
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Inequalities (16.98) and (16.99), after rearrangement, are precisely the inequalities in the
equilibrium condition (16.97), thus the exchange rate s supports an equilibrium if and only
if it causes both investors simultaneously to view the foreign currency as having the same
or higher expected return. Consequently, in equilibrium, each risk-neutral investor will seek
to hold his entire wealth in foreign currency (subject to feasibility constraints). Thus the
individual whose wealth is greater than the aggregate endowment of the foreign currency
will hold the surplus in his own currency. The top-left corner of the Edgeworth box, where
neither individual holds his own currency, represents the cross-over between these two types
of equilibria.

We now have another interpretation of Siegel’s paradox. If uncovered interest rate parity
held simultaneously in both currencies, then the budget line would have to be simultaneously
parallel to both BE and DE, which is impossible unless (16.94) holds. But (16.96) shows
that this is inconsistent with rational expectations. What we have shown here is that the
equilibrium exchange rate must lie between the two extremes given by uncovered interest
rate parity in the two currencies.

The fact that the equilibrium in this example is always a corner solution coincides with
the conclusion above that there is no equilibrium in a similar world with unlimited borrow-
ing and short-selling. Allowing limited borrowing and short-selling would just increase the
dimensions of the Edgeworth box in Figure 16.2. Allowing unlimited borrowing and short-
selling corresponds to allowing the boundary of the Edgeworth box, and thus demands, to
extend to infinity. ♦

16.8 Mean–variance paradigm
In the preceding sections, we analysed in some detail the behaviour of individuals who care
only about the expected value of final wealth and the implications for equilibrium of that
behaviour. The conclusion was that such behaviour does not very closely approximate to the
real world.

A more plausible hypothesis is that an individual may care about both the expected value
and the variance of his final wealth. This hypothesis is one possible way of reducing the
problem of choice under uncertainty from a large dimension, namely, the number of risky
assets N , to a small dimension, in this case two. Such parsimonious theories are more prac-
tical than general utility-maximization approaches. We will say that such an individual has
mean–variance preferences.

Three more detailed arguments are commonly used to motivate the mean–variance frame-
work for analysis of choice under uncertainty, in particular, for analysis of the portfolio
choice problem to be considered in Chapter 17. These are as follows:

• quadratic expected utility

E[u(W̃ )]= E[W̃ ]− b

2
E[W̃ 2]

= E[W̃ ]− b

2
((E[W̃ ])2 +Var[W̃ ])

= u(E[W̃ ])− b

2
Var[W̃ ] (16.100)
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• normally distributed wealth (or multivariate normally distributed asset returns)9

E[u(W̃ )]= 1√
2πVar[W̃ ]

∫ ∞

−∞
u(w) e−0.5(w−E[W̃ ])2/Var[W̃ ] dw (16.101)

• Taylor-approximated expected-utility functions (see Sections 9.6 and 13.9)

u(W̃ )= u(E[W̃ ])+ u′(E[W̃ ])(W̃ − E[W̃ ])

+ 1

2
u′′(E[W̃ ])(W̃ − E[W̃ ])2 + R̃3 (16.102)

R̃3 =
∞∑

n=3

1

n!
u(n)(E[W̃ ])(W̃ − E[W̃ ])n (16.103)

which implies

E[u(W̃ )]= u(E[W̃ ])+ 1

2
u′′(E[W̃ ])Var(W̃ )+ E[R̃3] (16.104)

where

E[R̃3]=
∞∑

n=3

1

n!
u(n)(E[W̃ ])mn[W̃ ] (16.105)

This expansion (which assumes that utility functions are continuously differentiable) yields
further insights into the properties of utility functions in general and polynomial utility func-
tions in particular. Dropping the remainder term in (16.104) gives a Taylor approximation
for expected utility involving only the mean and variance of final wealth.

More generally, it follows that the sign of the nth derivative of the utility function at
expected wealth determines the direction of preference for the nth central moment of the
probability distribution of terminal wealth, ceteris paribus.10 In fact, expected utility is
monotone (or constant) in all central moments, ceteris paribus. This is true since it fol-
lows from Taylor’s expansion that, for n > 1, expected utility is an increasing (decreasing,
constant) function of the nth central moment of terminal wealth, ceteris paribus, whenever
the nth derivative of the utility function at expected wealth is positive (negative, zero). In
particular, risk aversion implies concave utility, which implies a negative second derivative,
which implies variance aversion, and vice versa.

Similarly, a positive third derivative implies a preference for greater skewness. It can be
shown fairly easily that an increasing utility function that exhibits non-increasing absolute
risk aversion has a non-negative third derivative; see Exercise 16.20.

Note that the expected-utility axioms are neither necessary nor sufficient to guarantee that
the Taylor approximation to the first few moments is an exact representation of the utility
function.

Mean–variance preferences can be represented by indifference maps in mean–variance or
mean–standard deviation space, just as preferences in a two-good economy are represented
by similar indifference maps in commodity space. The mean is normally shown on the ver-
tical axis and the variance (or standard deviation) on the horizontal axis; see Sections 17.4.2
and 17.4.4.
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Risk-neutral preferences can also be represented by an indifference map in mean–variance
space. Since the risk-neutral individual ranks all options by expected value or mean, his
indifference curves will be a set of parallel horizontal lines in mean–variance (or mean–
standard deviation) space.11

16.9 Other non-expected-utility approaches
Justifying the use of mean–variance preferences by assuming either quadratic utility or nor-
mally distributed wealth is not very satisfactory. Quadratic utility implies the existence of
a bliss point and exhibits increasing absolute risk aversion (see Exercise 16.18), which, as
we shall see in Section 17.3.2, also has unrealistic implications. Multivariate normally dis-
tributed asset returns are not possible since real-world asset returns are bounded below by
zero, but the normal distribution is unbounded. (However, the theoretical device of allowing
unlimited short sales somewhat deflates this argument.) Another argument against the normal
distribution is that empirical research has shown that the skewness of returns is non-zero,12

although zero skewness is an implication of normality, or of any symmetric distribution of
returns. Thus, intuition and empirical evidence both suggest that higher moments than mean
and variance are relevant.13

Those not happy with the explanations of choice under uncertainty provided within
the expected-utility paradigm have proposed various other alternatives in recent years. As
well as the extremely rigorous work of Machina (1982) cited in note 5 of this chapter,
these include both qualitative approaches talking about fun and addiction and more formal
approaches looking at other factors such as maximum or minimum possible payoffs and irra-
tional expectations. They also include concepts such as state-dependent utility, discussed in
Section 16.3.2. However, they are beyond the scope of this book.

To conclude this chapter, we remind readers to consider again their personal valuations of
the various lotteries discussed in Sections 13.3.1 and 16.2 in the light of the various theories
of choice under uncertainty subsequently discussed.

EXERCISES
16.1 Consider a two-period world in which three states of nature, with probabilities π1=0.2,
π2 = 0.3 and π3 = 0.5, respectively, might arise at date 1. Call the unit of consumption in
this world a euro and suppose that the corresponding equilibrium state-contingent claim
prices are, respectively, φ1 = 0.1, φ2 = 0.3 and φ3 = 0.6 (using date-0 consumption as the
numeraire).

(a) What would be the equilibrium price of a risk-free asset if it were also traded?
(b) Consider an individual whose utility from consuming x0 at date 0 and the prospect of

consuming x1 at date 1 if state 1 materializes, x2 if state 2 materializes and x3 if state 3
materializes is

u(x0, x1, x2, x3)= 1.1 ln x0 +π1 ln x1 +π2 ln x2 +π3 ln x3

This individual now has e100 and will receive a further income of e1000 at date 1, but
only if state 2 occurs. Find his optimal consumption pattern and the trades that he would
have to make to achieve this optimum.
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(c) How would this optimal consumption pattern change if there were no market for the
state-contingent claim paying off in state 2, but the other state-contingent claim prices
were the same?

(d) Now suppose that there are no state-contingent claims markets, but that call options can
be bought and written on a state index portfolio that pays off e10 in state 1, e5 in state 2
and e20 in state 3. Find the option portfolio that is equivalent to the endowment in (b)
and the option trades that would give the same optimal allocation across states as you
calculated in (b).

16.2 Consider a two-period world in which two states of nature might arise at date 1, the
“up” state, which has probability p= 0.4, or the “down” state. Two complex securities are
traded in this world:

• a risk-free security with a payoff of 1+ r in both future states; and
• a risky security with a payoff of uS in the “up” state and a payoff of d S in the “down”

state.

Suppose that the risk-free security has an equilibrium price of 1 and the risky security an
equilibrium price of S.

(a) Use the no-arbitrage principle to deduce the equilibrium state prices.
(b) Calculate the payoffs in each state at date 1 on an option to buy the risky security at that

date for a price of K . (Hint: consider separately the cases of K ≤ d S, d S≤ K ≤ uS and
uS≤ K .)

(c) Calculate the value at date 0 of such an option.
(d) How would the value of the option change if p changed to 0.7?
(e) What happens if p= 1?

16.3 Consider a world with n states of nature described by the sample space � =
{ω1,ω2, . . . ,ωn}. Suppose that the only securities traded are a state index portfolio with
payoff yi in state ωi , i = 1,2, . . . ,n, y1 < y2 < · · · < yn , and options on that state index
portfolio with strike prices y1, y2, . . . , yn−1.

Find a portfolio of these traded securities that has the same payoffs as the state i state-
contingent claim.

16.4 Show that, in the context of Section 16.3.5, equilibrium consumption decisions will be
the same in any two states in which the aggregate consumption or endowment is the same.

16.5 In general, a strictly increasing transformation of a utility function represents the same
underlying preferences.

(a) Show that a strictly increasing affine transformation of a von Neumann–Morgenstern
utility function also has an expected-utility representation.

(b) Show that any other strictly increasing transformation of a VNM utility function loses
the expected-utility representation.

(c) Show that a strictly increasing affine transformation of the underlying utility function
for sure things gives another VNM utility function representing the same underlying
preferences.
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(d) Show that any other strictly increasing transformation of the underlying utility func-
tion for sure things gives a VNM utility function that represents different underlying
preferences.

16.6 Deduce the following from the substitution axiom and the Archimedean axiom:

(a) p̃# q̃ and 0≤ a< b≤ 1 imply that b p̃⊕ (1− b)q̃ # a p̃⊕ (1− a)q̃ .
(b) p̃ � q̃ � r̃ and p̃ # r̃ imply that there exists a unique a∗ ∈ [0,1] such that q̃ ∼ a∗ p̃ ⊕

(1− a∗)r̃ .
(c) p̃# q̃ and r̃ # s̃ and a ∈ [0,1] imply that a p̃⊕ (1− a)r̃ # aq̃ ⊕ (1− a)s̃.
(d) p̃∼ q̃ and a ∈ [0,1] imply that p̃∼ a p̃⊕ (1− a)q̃ .
(e) p̃∼ q̃ and a ∈ [0,1] imply that a p̃⊕ (1− a)r̃ ∼ aq̃ ⊕ (1− a)r̃ , for all r̃ ∈L.

16.7 Calculate the means, variances, standard deviations, skewness coefficients and kurtosis
coefficients (as defined in Section 13.6) of the various lotteries involved in the Allais paradox,
set out in Section 16.4.4.

Did you originally rank the lotteries by expected value?
If not, did you prefer the lottery with lower variance?

16.8 Assuming that the substitution axiom holds, show that

0.1×e5m ⊕ 0.89×e1m ⊕ 0.01×e0# 1×e1m

if and only if

10

11
×e5m ⊕ 1

11
×e0# 1×e1m

16.9 Show that, if the preference relation denoted by � has an expected-utility representa-
tion, then it must satisfy the substitution axiom and the Archimedean axiom.

16.10 Deduce from the Archimedean and substitution axioms that, if x̃ ∼ ỹ and z̃∼ t̃ , then,
for all π ∈ [0,1],

π x̃ ⊕ (1−π)z̃∼π ỹ⊕ (1−π)t̃
16.11 A coin, which has probability p of landing heads up, is tossed repeatedly. You are
offered a lottery ticket that will pay you e2 j if the first head occurs at the j th flip.

(a) What is the maximum amount of money that you personally would be willing to pay for
this lottery ticket when p= 1/2?

(b) What is the expected value of this lottery ticket when p= 1/2?
(c) Consider an individual whose expected-utility function is u(x)= ln x . Express the utility

of this game to her as a sum.
(d) Evaluate the sum in part (c).
(e) What is the maximum amount of money that the individual with logarithmic utility would

be willing to pay to participate in this game?

(This exercise describes the so-called St Petersburg paradox.)
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16.12 Consider the following four lotteries:

L1: e50 with 60% probability
L2: e100 with 50% probability
L3: e50 with 40% probability
L4: e100 with 30% probability

Suppose an investor prefers L1 to L2 and L4 to L3. Are his preferences consistent with the
axioms of expected utility? If so, why? If not, why not?

16.13 A person has an expected-utility function of the form u(x)=√x . She initially has
wealth of e4. She has a lottery ticket that will be worth e12 with probability 1/2 and will
be worth nothing with probability 1/2. What is her expected utility? What is the lowest price
at which she would part with the ticket?

16.14 A consumer has a VNM expected-utility function given by

u(w)= lnw

He is offered the opportunity to bet on the toss of a coin that has a probability π of coming
up heads. If he bets ex , he will have e(w+ x) if a head comes up and e(w− x) if tails
comes up.

Solve for his optimal choice of x as a function of π and w.
What is the optimal choice of x when the coin is fair (π = 0.5)?

16.15 Assume that your preferences have an expected-utility representation, based on the
utility function for sure things u(w)= lnw, and that your current level of wealth is e5000.

(a) Suppose that you are exposed to a situation that results in a 50/50 chance of winning or
losing e1000. If you can buy insurance that completely removes the risk for a premium
of e125, will you buy it or take the gamble? Explain your answer.

(b) Suppose that you accept the gamble outlined in (a) and lose, so that your wealth is
reduced to e4000. If you are faced with the same gamble again in the next period and
have the same offer of insurance as before, will you buy the insurance the second time
around? Explain your answer.

16.16 A consumer has an expected-utility function of the form

u(w)=− 1

w

He is offered a gamble that gives him wealth ofw1 with probability p andw2 with probability
1− p. What wealth would he need now to be just indifferent between keeping his current
wealth or accepting this gamble?

16.17 Explain the implications of Jensen’s inequality for the relationship between the risk
aversion (or otherwise) of an investor and the concavity (or otherwise) of an expected-utility
function representing her preferences.
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16.18 Calculate the coefficients of absolute and relative risk aversion for each of the
following utility functions:

(a) the quadratic utility function given by

u(w)=w− B

2
w2

(b) the extended power utility function given by

u(w)= 1

(C + 1)B
(A+ Bw)C+1

(c) the logarithmic utility function given by

u(w)= lnw

Determine for each utility function the restrictions on the parameters A and/or B and/or C
and on the possible values of wealthw that are necessary to guarantee that it is a well-defined,
strictly increasing, strictly concave, single-valued, real-valued function.

Finally, determine whether absolute and relative risk aversion are increasing, decreasing
or constant for these functions.

16.19 Investigate carefully the limiting behaviour of the utility function in Exercise 16.18(b)
and of the associated risk aversion measures at the “singularities” B = 0 and C =−1.

16.20 Show that a utility function that is increasing and exhibits non-increasing absolute risk
aversion must have a non-negative third derivative.

Hence, show that an investor with such a utility function prefers the distribution of wealth
to have higher skewness, ceteris paribus.

16.21 Consider two risky assets with gross returns represented by the random variables r̃1

and r̃2 ≡ ar̃1 + b, where a and b are scalars with a> 0 and a = 1.

(a) Show that the returns on these assets are perfectly correlated.
(b) Show that the variances of the returns on the two assets are different.
(c) Find the weights with which these assets would have to be combined in a portfolio to

attain a riskless return.
(d) Suppose investors are not allowed to short-sell any asset for more than the fraction γ

of their initial wealth. Find the relation between a and γ that must be satisfied for the
riskless portfolio above to be available.

(e) What is the equilibrium (arbitrage-free) rate of return on a riskless asset in this economy
if there are no restrictions on short-selling?

16.22 Suppose that you are offered the chance to participate in a game where you can bet
repeatedly on the toss of a fair coin and can stop at any time you want.



February 12, 2011 11:1 Pinched Crown A Page-447 HarrWald

Single-period choice under uncertainty 447

(a) What is the expected profit from the strategy of betting e2 j−1 on heads on the j th toss,
stopping after the first win?

(b) What is the variance of this profit?
(c) What is the expected number of tosses before you stop?
(d) Why would you or would you not use this strategy in practice?

16.23 Find all utility functions exhibiting constant absolute risk aversion and all those
exhibiting constant relative risk aversion.
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17.1 Introduction
Portfolio theory is an important topic in the theory of choice under uncertainty. It deals with
the portfolio choice problem facing an investor who must decide how to distribute an initial
wealth of, say, W0 among a number of single-period investments. The choice of portfolio
will depend on both the investor’s preferences and his beliefs about the uncertain payoffs of
the various securities.

The chapter begins by considering some issues of definition and measurement.
Section 17.3 then looks at the portfolio choice problem in a general expected-utility con-
text. Section 17.4 considers the same problem from a mean–variance perspective. This leads
on to a discussion of the properties of equilibrium security returns in Section 17.5.

17.2 Preliminaries
The investment opportunity set for the portfolio choice problem will generally consist of N
risky assets. From time to time, we will add an (N + 1)th, risk-free asset. The notation used
throughout this chapter is set out in Table 17.1. In Section 17.5, we will occasionally have to
add a subscript i to identify the investments of the typical or i th investor.

The investor’s date-0 investments are:

• b j (euro) in the j th risky asset, j = 1,2, . . . , N ; and
• (W0 −∑

j b j ) in the risk-free asset, if it exists.

The investor’s date-1 payoffs are:

• b j r̃ j from the j th risky asset; and
• (

W0 −∑
j b j

)
rf from the risk-free asset.

While we have suggested for clarity that returns are calculated from the euro values
of assets, the theory applies equally well to any currency that we might choose to use as
numeraire. The euro itself is not considered as an asset within this model. When we assume
the existence of a risk-free asset, a euro investment in the risk-free asset earns a risk-free
return. When we assume that all assets are risky, the euro is purely a unit of account and all
wealth must be held in the form of risky assets.

Note that we have not proved that, in the presence of randomly varying exchange rates,
a preference relation that has the expected-utility property with respect to values in euro
retains that property with respect to values in other currencies. Likewise, an individual whose
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Table 17.1 Notation for the portfolio choice problem

Symbol Interpretation

W0 investor’s initial wealth
μW0 investor’s (desired) expected final wealth
N number of risky assets
I number of investors
rf gross return on the risk-free asset
r̃ j ∈R gross return on j th risky asset
r̃∈R

N (r̃1, r̃2, . . . , r̃N )
e≡ (e1, e2, . . . , en)≡ E[r̃]∈R

N vector of expected returns
V≡Var[r̃]∈R

N×N variance–covariance matrix of returns
1 (1,1, . . . ,1), the N -dimensional vector of 1s
a j ∈R proportion of wealth invested in j th risky asset

(weight of the j th asset in the portfolio)
a= (a1,a2, . . . ,an)∈R

N portfolio weight vector
bj ≡ a j W0 ∈R (euro) amount invested in j th risky asset
b= (b1,b2, . . . ,bn)∈R

N portfolio vector
r̃a = a�r̃ gross return on the portfolio a
W̃1 = r̃aW0 investor’s actual final wealth
μ≡ E[r̃a]≡ E[W̃1/W0] investor’s (desired) expected gross return

preferences have the mean–variance property with respect to values in euro may not retain
that property with respect to values in other currencies. We will return to these questions in
Section 17.6.

The presentation here is in terms of a single-period problem, and the unconditional distri-
bution of returns. The analysis of the multi-period, infinite-horizon, discrete-time problem,
concentrating on the conditional distribution of the next period’s returns given this period’s,
is quite similar, but is beyond the scope of this book.

DEFINITION 17.2.1 The portfolio vector b is said to be a unit-cost or normal portfolio if
its components sum to unity (b�1= 1).

The portfolio held by an investor with initial wealth W0 can be thought of either as a portfolio
vector b with b�1=W0 or as the corresponding normal portfolio or portfolio weight vector,
a= (1/W0)b. It should be clear from the context which meaning of ‘portfolio’ is intended.

DEFINITION 17.2.2 The portfolio vector b is said to be a zero-cost or hedge portfolio if
its components sum to zero (b�1= 0).

The vector of net trades carried out by an investor moving from the portfolio b0 to the
portfolio b1 can be thought of as the hedge portfolio b1 −b0.

The set of all possible portfolio vectors will be called the portfolio space. It is an
N -dimensional real vector space, i.e. it is just Euclidean space, RN . In the presence of a risk-
free asset, the investor can borrow or invest risklessly in order to hold any risky asset portfolio
in R

N . In the absence of a risk-free asset, only portfolios on the hyperplane b�1=W0 are
attainable.

The mapping b �→ b�r̃ associates a random variable, namely, the payoff of the portfolio,
with each vector in the portfolio space. In this sense, the portfolio space is equivalent to the
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vector space of random variables considered in Section 13.4. In this chapter, however, we
will view portfolios primarily as Euclidean vectors rather than as random variables.

In the Euclidean interpretation, the set of unit-cost portfolios and the set of zero-cost
portfolios are parallel hyperplanes in the portfolio space, both normal to the vector 1. We
will call the set of unit-cost portfolios the portfolio weight hyperplane.

When short-selling is allowed, b can have negative components; if short-selling is not
allowed, then the portfolio choice problem will have non-negativity constraints, b j ≥ 0 for
j = 1,2, . . . , N . In the latter case, without a risk-free asset, the set of portfolios available to
the investor with initial wealth W0 is the simplex

{b∈R
N : b�1=W0; b j ≥ 0, j = 1,2, . . . , N } (17.1)

DEFINITION 17.2.3 The excess return on the j th risky asset (or on a portfolio) is its return
in excess of the risk-free rate, r̃ j − rf.

DEFINITION 17.2.4 The risk premium on an asset or portfolio is its expected excess return.

A number of further comments are in order at this stage.

1. The derivation of the mean–variance frontier is generally presented in the literature (e.g.
Huang and Litzenberger (1988, Chapter 3)) in terms of unit-cost portfolios or portfolio
weight vectors or, equivalently, with initial wealth normalized to unity (W0 = 1). This
assumption is not essential and will be avoided here, as the development of the theory is
more elegant if presented in terms of arbitrary W0.

2. Since we will be dealing on occasion with hedge portfolios, we will in future avoid the
concepts of rate of return and net return, which are usually thought of as the ratio of profit
to initial investment. These terms are meaningless for a hedge portfolio as the denomi-
nator is zero. Instead, we will speak of the gross return on a portfolio or the portfolio
payoff; see also Section 15.2. This can be defined unambiguously as follows. There is
no ambiguity about the payoff on one of the original securities, which is just the gross
return per euro invested. The payoff on a unit-cost or normal portfolio b is equivalent to
the gross return. It is just b�r̃. The payoff on a zero-cost portfolio, b, can also be defined
as b�r̃.

3. The excess return and risk premium will be the same whether they are calculated on a
gross return basis or on a net return basis.

4. If individual asset returns are multivariate normally distributed, r̃∼MVN(·, ·), then all
portfolio returns are normally distributed; see Exercise 13.16.

17.3 Single-period portfolio choice problem

17.3.1 Canonical portfolio choice problem

We will solve the portfolio choice problem first in a general expected-utility context. Unless
otherwise stated, we assume throughout this section that individuals:

1. have von Neumann–Morgenstern (VNM) utilities, i.e. preferences have the expected-
utility representation

v(W̃ )= E[u(W̃ )]=
∫

u(W )d FW̃ (W ) (17.2)
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where v is the utility function for random variables (gambles, lotteries) and u is the utility
function for sure things;

2. prefer more to less (or are greedy), i.e. u is increasing or

u′(W )> 0 ∀ W (17.3)

and
3. are (strictly) risk-averse, i.e. u is strictly concave or

u′′(W )< 0 ∀ W (17.4)

It is assumed here that there are no constraints on short-selling or on borrowing (which is the
same as short-selling the risk-free security).

This canonical portfolio choice problem is solved by finding the values of b j which
maximize the expected utility of date-1 wealth,

W̃ =
(

W0 −
∑

j

b j

)
rf +

∑
j

b j r̃ j

=W0rf +
∑

j

b j (r̃ j − rf) (17.5)

i.e. by solving the unconstrained maximization problem

max{b j }
f (b1,b2, . . . ,bN )≡ E

[
u

(
W0rf +

∑
j

b j (r̃ j − rf)

)]
(17.6)

The first-order conditions are

E[u′(W̃ )(r̃ j − rf)]= 0 ∀ j (17.7)

since we can pass the differentiation operator through the expectation operator and use the
chain rule; see Section 13.6.2.

The Hessian matrix of the objective function is

A≡ E[u′′(W̃ )(r̃− rf1)(r̃− rf1)�] (17.8)

Since we have assumed that investor behaviour is strictly risk-averse, u′′(W̃ ) < 0 and
thus, provided that the variance–covariance matrix, V, is positive-definite, h�Ah < 0
for all h = 0N . Hence, A is a negative definite matrix and, by Theorem 10.2.5, the objective
function f is a strictly concave (and, hence, strictly quasi-concave) function. Thus, under
the present assumptions, Theorems 10.3.3 and 10.3.5 guarantee that the first-order condi-
tions have a unique solution. The trivial case, in which the random returns are not really
random at all, can be ignored.

Note that there is no guarantee that the portfolio choice problem has any finite or unique
solution if the expected-utility function is not concave.
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Other ways of writing (17.7) are

E[u′(W̃ )r̃ j ]= E[u′(W̃ )]rf ∀ j (17.9)

or

Cov[u′(W̃ ), r̃ j ]+ E[u′(W̃ )]E[r̃ j ]= E[u′(W̃ )]rf ∀ j (17.10)

or

E[r̃ j − rf]=−Cov[u′(W̃ ), r̃ j ]

E[u′(W̃ )]
∀ j (17.11)

In other words, the risk premiums on the risky assets are (negatively) proportional to the
covariance of their returns with optimal marginal utility. (Since terminal wealth is random, so
too at the time of decision-making is marginal utility evaluated at optimal terminal wealth.)

There is one final way of writing (17.7), which leads to another useful interpretation of
the first-order conditions. Suppose p j is the price of the random payoff x̃ j . Then r̃ j = x̃ j/p j

and

p j = E

[
u′(W̃ )

E[u′(W̃ )]rf
x̃ j

]
∀ j (17.12)

In other words, securities are valued by taking the expected present values of their payoffs,
using the stochastic discount factor u′(W̃ )/(E[u′(W̃ )]rf). This valuation method, at the
optimum, gives the same security values for all investors, although they may have different
underlying utility functions. Practical corporate finance and theoretical asset pricing models
to a large extent are (or should be) concerned with analysing this discount factor.

Exercise 17.2 asks the reader to analyse the portfolio choice problem for the special case
of quadratic expected utility and N = 2.

17.3.2 Risk aversion and portfolio composition

Before proceeding, the reader might now like to review the material in Section 16.5.
For the moment, assume only one risky asset (N =1). In this case, the subscript identifying

the asset number can be dropped. In other words, we now deal with the basic analysis of the
choice between one risk-free and one risky asset, following Huang and Litzenberger (1988,
Chapter 1).

Such an example is sufficient to illustrate several useful principles, including the
following:

1. The investment decision depends on the investor’s degree of risk aversion.
2. Even risk-averse investors are locally risk-neutral at the margin.

We first consider the concept of local risk neutrality.
The optimal investment in the risky asset is positive if and only if the objective function is

increasing at b= 0 if and only if

f ′(0)> 0 (17.13)
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if and only if

E[u′(W0rf)(r̃ − rf)]> 0 (17.14)

if and only if

u′(W0rf)E[r̃ − rf]> 0 (17.15)

if and only if

E[r̃ ]> E[rf]= rf (17.16)

(since we continue to assume that utility functions are strictly increasing).
This is the property of local risk neutrality – a greedy, risk-averse investor will always

prefer a little of a risky asset paying an expected return higher than rf to none of the risky
asset.

We denote the wealth elasticity of demand for the risky asset by1

η≡ W0

b

db

dW0
(17.17)

Then we have

da

dW0
= d(b/W0)

dW0
= W0(db/dW0)− b

W 2
0

= b

W 2
0

(η− 1) (17.18)

Note that, when there is a positive risk premium on the risky asset, b is positive (by local risk
neutrality) and thus

sign

(
da

dW0

)
= sign(η− 1) (17.19)

Knowledge of the risk-aversion properties of utility functions set out in Definitions 16.5.5
and 16.5.6 allows us to sign the relationship between the optimal risky asset investment and
initial wealth, as follows.

THEOREM 17.3.1 Again assuming a positive risk premium on the risky asset:

• DARA ⇒ the risky asset is a normal good at all wealth levels (db/dW0> 0);
• CARA ⇒ db/dW0 = 0;
• IARA ⇒ the risky asset is an inferior good at all wealth levels (db/dW0< 0);
• DRRA ⇒ an increasing proportion of wealth is invested in the risky asset (da/dW0 > 0

or η> 1);
• CRRA ⇒ a constant proportion of wealth is invested in the risky asset (da/dW0 = 0 or
η= 1);

• IRRA ⇒ a decreasing proportion of wealth is invested in the risky asset (da/dW0 < 0 or
η< 1).
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Proof: We will prove the first of these properties only. The second follows directly from
Example 16.4.6 and Exercise 16.23. The other results are proved similarly; see Exercise 17.3.

Writing the first-order condition (17.7) as

E[u′(W0rf + b(r̃ − rf))(r̃ − rf)]= 0 (17.20)

then differentiating with respect to W0 to obtain

E

[
u′′(W̃ )(r̃ − rf)

(
rf + db

dW0
(r̃ − rf)

)]
= 0 (17.21)

and rearranging, we have

db

dW0
= E[u′′(W̃ )(r̃ − rf)]rf

−E[u′′(W̃ )(r̃ − rf)2]
(17.22)

By concavity, the denominator is positive and rf> 0. Therefore

sign(db/dW0)= sign(E[u′′(W̃ )(r̃ − rf)]) (17.23)

We will show that both are positive.
For decreasing absolute risk aversion,

r̃ > rf ⇒ RA(W̃ )< RA(W0rf) (17.24)

and

r̃ ≤ rf ⇒ RA(W̃ )≥ RA(W0rf) (17.25)

Recalling the definition of absolute risk aversion, Definition 16.5.3, and multiplying both
sides of each inequality by −u′(W̃ )(r̃ − rf) gives, respectively,

u′′(W̃ )(r̃ − rf)>−RA(W0rf)u
′(W̃ )(r̃ − rf) (17.26)

in the event that r̃ > rf, and

u′′(W̃ )(r̃ − rf)≥−RA(W0rf)u
′(W̃ )(r̃ − rf) (17.27)

(effectively the same result) in the event that r̃ ≤ rf.
Integrating over the events r̃ > rf and r̃ ≤ rf implies that

E[u′′(W̃ )(r̃ − rf)]>−RA(W0rf)E[u′(W̃ )(r̃ − rf)] (17.28)

provided that r̃ > rf with positive probability.
The right-hand side of inequality (17.28) is 0 at the optimum, by the first-order condition,

hence the left-hand side is positive as claimed. �
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17.3.3 Mutual fund separation

A mutual fund is a special type of (managed) portfolio.
Commonly, investors delegate portfolio choice to mutual fund operators or managers. We

are interested in conditions under which large groups of investors will agree on portfolio
composition. For example, all investors with similar utility functions might choose the same
portfolio, or all investors with similar probability beliefs might choose the same portfolio.
More realistically, we may be able to define a group of investors whose portfolio choices all
lie in a subspace of small dimension (say, two) of the N -dimensional portfolio space. The
first such result, Theorem 17.3.2, is due to Cass and Stiglitz (1970).

We begin with a formal definition.

DEFINITION 17.3.1 Two-fund monetary separation is said to exist when a group of
agents with different wealths (but the same increasing, strictly concave, VNM utility) all
hold the same risky unit-cost portfolio, a∗, say. The mix of the risk-free asset and this risky
portfolio may differ between investors.

Formally, two-fund monetary separation exists when there is a portfolio a∗ such that, for
all other portfolios b and wealths W0, there exists λ such that

E[u(W0rf + λa∗�(r̃− rf1))]≥ E[u(W0rf +b�(r̃− rf1))] (17.29)

THEOREM 17.3.2 Two-fund monetary separation exists if and only if

• risk tolerance (1/RA(W )) is linear in wealth (including constant),
• i.e. there exists hyperbolic absolute risk aversion (HARA, including CARA),
• i.e. the utility function is of one of these types (see Exercise 17.4):

– extended power

u(W )= 1

(C + 1)B
(A+ BW )C+1 (17.30)

– logarithmic

u(W )= 1

B
ln(A+ BW ) (17.31)

– negative exponential

u(W )= A

B
exp(BW ) (17.32)

where A, B and C are chosen to guarantee that u′> 0 and u′′< 0,
• i.e. marginal utility satisfies

u′(W )= (A+ BW )C or u′(W )= A exp(BW ) (17.33)

where A, B and C are again chosen to guarantee that u′> 0 and u′′< 0.

Proof: The proof that these conditions are necessary for two-fund separation is difficult
and tedious. The interested reader is referred to Cass and Stiglitz (1970).
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We will show that u′(W )= (A+ BW )C is sufficient for two-fund separation.
The optimal euro investments bi constitute the unique solution to the first-order

conditions

0= E

[
u′(W̃ )

∂W̃

∂bi

]
= E[(A+ BW̃ )C (r̃i − rf)]

= E

[(
A+ BW0rf +

N∑
j=1

Bb j (r̃ j − rf)

)C

(r̃i − rf)

]
(17.34)

i = 1,2, . . . , N , or, equivalently, dividing across by A+ BW0rf, to the system of equations

E

[(
1+

N∑
j=1

Bb j

A+ BW0rf
(r̃ j − rf)

)C

(r̃i − rf)

]
= 0 (17.35)

or

E

[(
1+

N∑
j=1

x j (r̃ j − rf)

)C

(r̃i − rf)

]
= 0 (17.36)

where xi ≡ Bbi/(A+ BW0rf), for i = 1,2, . . . , N .
The unique solutions for xi are independent of W0, which does not appear in (17.36).

Since A and B do not appear either, the unique solutions for xi are also independent of those
parameters. However, they do depend on C . But the risky portfolio weights are

ai = bi∑N
j=1 b j

= Bbi/(A+ BW0rf)∑N
j=1 Bb j/(A+ BW0rf)

= xi∑N
j=1 x j

(17.37)

and so are also independent of initial wealth and of A and B.
Since the euro investment in the i th risky asset satisfies

bi = xi

(
A

B
+W0rf

)
(17.38)

we also have in this case that the euro investment in the common risky portfolio is a linear
function of the initial wealth. The other sufficiency proofs are similar and are left as exer-
cises; see Exercise 17.6. �

A portfolio separation result like this allows us to assert that the equilibrium outcome
is Pareto efficient even in an incomplete market in which the only two markets are for a
risk-free asset and for the relevant portfolio of risky assets.
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17.4 Mathematics of the portfolio frontier

17.4.1 Portfolio frontier in R
N : risky assets only

The portfolio frontier

DEFINITION 17.4.1 The (mean–variance) portfolio frontier is the set of solutions to the
mean–variance portfolio choice problem that is faced by an investor with an initial wealth
of W0 who desires an expected final wealth of W1 ≡μW0 (or, equivalently, an expected rate
of return of μ), but with the smallest possible variance of final wealth. There is a solution for
each (W0,μ) or, equivalently, each (W0,W1) pair.

Not all individuals with mean–variance preferences will necessarily choose a portfolio on
the mean–variance portfolio frontier. It will become clear later that an individual with mean–
variance preferences represented by indifference curves that are convex and upward-sloping
in variance–mean space will generally do so.

The mean–variance frontier can also be called the two-moment portfolio frontier, in
recognition of the fact that the same approach can be extended (with difficulty) to higher
moments.2

The mean–variance portfolio frontier is a subset of the portfolio space: we will show later
that it is in fact a vector subspace of the portfolio space. However, introductory treatments
generally present it (without proof) as the envelope function, in mean–variance space or
mean–standard deviation space (R+ ×R), of the variance-minimization problem. We will
come to this representation in Section 17.4.2.

DEFINITION 17.4.2 The portfolio vector b is called a frontier portfolio if its return has the
minimum variance among all portfolios that have the same cost, b�1, and the same expected
payoff, b� e.

We will begin by supposing that all assets are risky. Formally, the frontier portfolio corre-
sponding to initial wealth W0 and expected return μ (expected terminal wealth μW0) is the
solution to the quadratic programming problem

min
b

b�Vb (17.39)

subject to the linear constraints

b�1=W0 (17.40)

and

b� e=W1 =μW0 (17.41)

The first constraint is just the budget constraint, while the second constraint states that the
expected rate of return on the portfolio is the desired mean return μ.

The frontier in the risky-assets-only case is the set of solutions for all values of W0 and W1

(or μ) to this variance-minimization problem, or to the equivalent maximization problem:

max
b
−b�Vb (17.42)

subject to the same linear constraints (17.40) and (17.41).
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• •

•

•

(W0,0,0) (0,W0,0)

(0,0,W0)

W0MVP

μ= c
b�Vb= k

portfolio
frontier

Figure 17.1 Portfolio frontier in R
3

The variance minimization problem, like any constrained optimization problem, has a
dual problem, in this case an expected value maximization problem, subject to a variance
constraint. Indeed, the latter is the problem of practical interest, but the former approach
provides more useful insights at this stage.

Figure 17.1 illustrates the construction of the portfolio frontier for N = 3 in the simple
case where all assets share a common variance and common pairwise covariances. The set
of portfolios costing W0 is a simplex if there is no short-selling, but is the entire affine hyper-
plane containing the simplex if short-selling is allowed. Figure 17.1 shows the level sets of
the expected return and variance functions in this affine hyperplane. The iso-variance curves
(with equations of the form b�Vb= k) are concentric circles (or ellipses for a more general
variance–covariance matrix). The iso-mean curves (with equations of the form μ=b�e= c)
are parallel lines, and the solutions to the variance-minimization problem for different μ
(or W1) values are the tangency points between these ellipses and lines.3 The centre of the
concentric ellipses is at the global minimum-variance portfolio corresponding to W0, marked
W0MVP. In the simple case illustrated in Figure 17.1, variance is minimized at the centroid of
the relevant simplex. A similar geometric interpretation can be applied in higher dimensions.

The properties of this two-moment frontier are well known, and can be found, for example,
in Merton (1972) or Roll (1977). The basic notation here follows Huang and Litzenberger
(1988, Chapter 3).
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The solution

Problem (17.42) is a variant of the canonical quadratic programming problem dealt with in
Section 14.3, except that it has equality constraints.

To avoid degeneracies, we require that:

1. not every portfolio has the same expected return, i.e.

e = E[r̃1]1 (17.43)

and in particular that N > 1; and
2. the variance–covariance matrix, V, is positive definite. We already know that any

variance–covariance matrix must be positive semi-definite, but we require this slightly
stronger condition as we also did to guarantee that the matrix A in (17.8) was negative
definite. To see why, suppose

∃ b = 0N s.t. b�Vb= 0 (17.44)

Then there exists a portfolio whose return b�r̃= r̃b has zero variance. This implies that
r̃b = r0, say, with probability 1 or, essentially, that this portfolio is risk-free. Arbitrage
will force the returns on all risk-free assets to be equal in equilibrium, so this situation is
equivalent economically to the introduction of a risk-free asset, which we will come to in
Section 17.4.3.

In the present problem, the place of the matrix A in the canonical quadratic programming
problem of Section 14.3 is taken by the (symmetric) negative definite matrix, −V, which is
just the negative of the variance–covariance matrix of asset returns; g1 = 1� and α1 =W0;
and g2 = e� and α2 =W1. Assumption (17.43) guarantees that the 2× N matrix

G=
[

1�
e�
]

(17.45)

is of full rank 2.
Making the appropriate substitutions in the generic solution (14.38) yields

b=V−1G�(GV−1G�)−1
[

W0

W1

]
(17.46)

This says that the optimal b is a linear combination of the two columns of the N × 2 matrix
V−1G�(GV−1G�)−1. In this linear combination, the first and second columns of the matrix
are weighted by initial wealth, W0, and expected final wealth, W1, respectively.

Let us define:

A≡ 1�V−1e= e�V−11 (17.47)

B≡ e�V−1e> 0 (17.48)

C ≡ 1�V−11> 0 (17.49)

D≡ BC − A2 (17.50)



February 12, 2011 11:1 Pinched Crown A Page-460 HarrWald

460 Portfolio theory

The inequalities in (17.48) and (17.49) follow from the fact that V−1 (like V) is positive
definite.

Then we can write

V−1G�(GV−1G�)−1 =V−1G�
[

C A
A B

]−1

= 1

D
V−1G�

[
B −A

−A C

]
= 1

D
V−1[1 e]

[
B −A

−A C

]
= 1

D
V−1[B1− Ae Ce− A1] (17.51)

If we define

g≡ 1

D
V−1(B1− Ae) (17.52)

and

h≡ 1

D
V−1(Ce− A1) (17.53)

respectively, then we can write the solution (17.46) as

b=W0g+W1h=W0(g+μh) (17.54)

Thus the set of solutions to this quadratic programming problem for all possible (W0,W1)

combinations (including negative W0) is the two-dimensional vector subspace of the port-
folio space that is generated by the vectors g and h, which constitute a basis for the
frontier.

The components of g and h are functions solely of the means, variances and covariances of
security returns, given by the vector e and the matrix V. Thus the vector of optimal portfolio
proportions,

a= 1

W0
b= g+μh (17.55)

is independent of the initial wealth W0. This is another version of the mutual fund separation
result: all investors choosing frontier portfolios, regardless of their initial wealth, will choose
(linear) combinations of the two mutual funds g and h.

Like any two-dimensional vector space, the portfolio frontier has many alternative bases;
indeed, any pair of linearly independent frontier portfolios constitutes a basis, or a pair of
mutual funds with respect to which the separation result can be restated. We will now list
and discuss the properties of four commonly used bases for the frontier. The relevant basis
vectors can also be described as basis portfolios.
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Basis 1: The vectors g and h.
It is easy to see the economic interpretation of g and h:

• Vector g is the frontier portfolio corresponding to W0=1 and W1=0. In other words, it
is the normal portfolio that would be held by an investor whose objective was to (just)
go bankrupt with minimum variance.

• Similarly, vector h is the frontier portfolio corresponding to W0 = 0 and W1 = 1. In
other words, it is the hedge portfolio that would be purchased by a variance-minimizing
investor in order to increase his expected final wealth by one unit.

Basis 2: The vectors V−11 and V−1 e.
Equation (14.35) implies that the optimal b is a linear combination of the two columns of
the N × 2 matrix

1
2 V−1G� = [

1
2 V−11 1

2 V−1 e
]

(17.56)

with columns weighted by the Lagrange multipliers corresponding to the two constraints.
For convenience, we will denote the Lagrange multipliers 2γ /C and 2λ/A, respectively.
This allows the solution to be written as

b= γ

C
V−11+ λ

A
V−1 e (17.57)

It is easily shown that (1/C)V−11 and (1/A)V−1 e are both unit portfolios, so the total
cost of b is γ + λ=W0.

Basis 3: The vectors MVP and h, where MVP denotes the global minimum-variance unit-
cost portfolio, i.e. the unit-cost portfolio that minimizes the variance of the payoff,
regardless of expected final wealth.
We know that the expected final wealth constraint is non-binding if and only if the corre-
sponding Lagrange multiplier λ=0. Thus we can see from (17.57) that (γ /C)V−11 is the
global minimum-variance portfolio with cost W0 (which, in fact, equals γ in this case).
Setting W0 = γ = 1 shows that, in terms of Basis 2,

MVP= 1

C
V−11 (17.58)

We can also find the MVP in terms of Basis 1, as follows. Recalling that Var[r̃b]= b�Vb
and substituting g+μh for b, the variance of the generic frontier portfolio with expected
return μ is given by the quadratic expression

Var[r̃g+μh]= g�Vg+ 2μ(g�Vh)+μ2(h�Vh) (17.59)

which has its minimum at

μ=−g�Vh

h�Vh
(17.60)
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It can be shown that the latter expression reduces to A/C and that the minimum value of
the variance is 1/C ; see Exercise 17.12. Thus the MVP is the unit-cost frontier portfolio
with expected return A/C and, in terms of Basis 1,

MVP= g+ A

C
h (17.61)

Now we can combine (17.54) and (17.61) and write the generic frontier portfolio in terms
of Basis 3 as

b=W0

(
MVP+

(
μ− A

C

)
h
)

(17.62)

see Exercise 17.12 again. Furthermore,

Cov[r̃h, r̃MVP]=h�V
(

g− g�Vh

h�Vh
h
)

=h�Vg− g�Vh×h�Vh

h�Vh
= 0 (17.63)

i.e. the returns on the portfolio with weights h and on the minimum-variance portfolio are
uncorrelated. The basis portfolios MVP and h are in this sense orthogonal.

The global MVP has another interesting property. If a is any unit-cost portfolio, frontier
or not, then the MVP must by definition be the minimum-variance affine combination of
itself and a, i.e. β = 0 solves

min
β

1
2 Var[r̃βa+(1−β)MVP] (17.64)

which has necessary and sufficient first-order condition

βVar[r̃a]+ (1− 2β)Cov[r̃a, r̃MVP]− (1−β)Var[r̃MVP]= 0 (17.65)

Hence, setting β = 0,

Cov[r̃a, r̃MVP]−Var[r̃MVP]= 0 (17.66)

and the covariance of any unit-cost portfolio with the MVP is 1/C .

Basis 4: Any two frontier portfolios with uncorrelated returns.
We will return to this idea shortly.

As shown in Figure 17.2, the set of unit-cost frontier portfolios in R
N is the line L passing

through g, parallel to h. Some writers consider this set to be the portfolio frontier. It follows
immediately that the set of unit-cost frontier portfolios (like any straight line in R

N ) is an
affine set, and can be generated by affine combinations of any pair of frontier portfolios
with weights of the form β and (1− β). This is just another way of restating the two-fund
separation result, this time in terms of two unit-cost portfolios.
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Before proceeding further, the reader is advised to review the material on scalar product
spaces in Section 5.4.9 and on metric spaces in Section 7.5.

Orthogonal decomposition of portfolios

We have already pointed out that the MVP and h are portfolios with uncorrelated returns, and
have called them orthogonal. We now make this idea more precise by introducing a scalar
product on the portfolio space, namely, that based on the variance–covariance matrix V.
Since V is a positive definite matrix, and therefore non-singular, it defines a well-behaved
scalar product and all the standard results on orthogonal projection, etc., from linear algebra
are valid, as discussed in Section 13.6.3.

Two portfolios b1 and b2 are orthogonal with respect to this scalar product if and only if

b�1 Vb2 = 0 (17.67)

if and only if

Cov[b�1 r̃,b�2 r̃]= 0 (17.68)

if and only if the random variables representing the returns on the portfolios are uncorrelated.
Thus, the terms “orthogonal” and “uncorrelated” may legitimately, and shall, be applied

interchangeably to pairs of portfolios. Furthermore, the squared length of a portfolio vector
corresponds to the variance of its payoff.

Indeed, as for any scalar product space, there exists a basis for the full N -dimensional
portfolio space consisting of N portfolios whose returns are uncorrelated, with each having
unit variance, i.e. an orthonormal basis. The mathematics of the portfolio frontier could be
developed in terms of the unit-cost versions of these uncorrelated portfolios. The details are
left as an exercise; see Exercise 17.11.

This scalar product structure allows the equations of the portfolio frontier in mean–
variance and mean–standard deviation space to be derived heuristically using the stylized
diagram illustrating the portfolio decomposition in Figure 17.2, which we will now explain.

The line L ′ in this figure denotes the set of all zero-cost frontier portfolios, while the line
L denotes the set of all unit-cost frontier portfolios. Two zero-cost frontier portfolios are
marked on L ′, namely the zero portfolio, 0, and the portfolio h, which would be purchased
by a variance-minimizing investor in order to increase his expected final wealth by one unit.
Five unit-cost frontier portfolios are marked on L . These include the special portfolios g and
MVP, which have already been discussed.

Figure 17.2 also shows that, for any frontier portfolio such as p (apart from MVP), there is
a unique unit-cost frontier portfolio, zp, which is orthogonal to p, called the zero-covariance
frontier portfolio of p. The relationship between μ≡ E[r̃p] and μz≡ E[r̃zp] can be worked
out by solving

Cov[r̃g+μh, r̃g+μzh]= 0 (17.69)

or, equivalently, since r̃h and r̃MVP are uncorrelated, as shown in (17.63), by solving

Var[r̃MVP]+ (μ− E[r̃MVP])(μz − E[r̃MVP])Var[r̃h]= 0 (17.70)
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L ′ L

0

h

MVP= g+ A

C
h

f = βfpp+ (
1−βfp

)
zp

= MVP+ (μf − A/C)h
= g+μfh

p= g+μh

zp = g+μzh

= g+ μA− B

μC − A
h

g

Figure 17.2 The portfolio decomposition

To make this true, we must have

(μ− E[r̃MVP])(μz − E[r̃MVP])< 0 (17.71)

or μ and μz on opposite sides of E[r̃MVP], or equivalently p and zp on opposite sides of the
MVP as shown in Figure 17.2.

Some simple manipulations will reveal that

μz = μA− B

μC − A
(17.72)

where A, B and C are as defined in (17.47)–(17.49); see Exercise 17.12. Note that the
denominator is zero when μ= A/C , i.e. when p= MVP. However, we have already seen
that the MVP and h are orthogonal frontier portfolios; the difference is that in this case h is a
zero-cost portfolio, but in all other cases zp is a unit-cost portfolio.
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Finally, Figure 17.2 shows that, given a fixed unit-cost frontier portfolio p (other than
the MVP), any other unit-cost frontier portfolio, such as f, can be decomposed in the form

f=βfpp+ (1−βfp)zp (17.73)

i.e. written as an affine combination of p and zp.
We now turn our attention to the decomposition of non-frontier portfolios. We have the

following theorem.

THEOREM 17.4.1 Let u be any portfolio. Then u is uncorrelated with all frontier portfolios
if and only if u is a zero-mean hedge portfolio.

Proof: We know from (17.57) that we can write any frontier portfolio as

b= γ

C
V−11+ λ

A
V−1 e (17.74)

Portfolios b and u are uncorrelated if and only if

u�Vb= 0 (17.75)

if and only if

γ

C
u�1+ λ

A
u� e= 0 (17.76)

But (17.76) holds for all γ,λ (i.e. for all frontier portfolios) if and only if

u�1=u� e= 0 (17.77)

if and only if u is a zero-mean hedge portfolio. �

Similarly, since the MVP is collinear with V−11, it is orthogonal to all portfolios w for
which w�VV−11= 0, or in other words to all portfolios for which w�1= 0. But these are
precisely all hedge portfolios.

Similarly again, any portfolio collinear with V−1 e is orthogonal to all portfolios with zero
expected return, since for any such portfolio, w�VV−1 e= w� e= 0; in particular, g and
V−1e are orthogonal, so that zg = (1/A)V−1e.

In fact, what Theorem 17.4.1 shows is that the portfolio space can be decomposed into
the two-dimensional portfolio frontier and its (N − 2)-dimensional orthogonal complement,
the set of zero-mean, zero-cost portfolios. Equivalently, the portfolio space is the direct
sum of the portfolio frontier and the set of zero-mean, zero-cost portfolios. Any (frontier
or non-frontier) portfolio q with non-zero cost W0 can be written in the form fq+uq, where

fq ≡W0(g+ E[r̃q]h)

=W0(βqpp+ (1−βqp)zp) (say) (17.78)

is the frontier portfolio costing W0 with expected return E[r̃q] and

uq ≡q− fq (17.79)
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is a hedge portfolio with zero expected return. Theorem 17.4.1 shows that any portfolio
sharing these properties of uq is uncorrelated with all frontier portfolios.

Geometrically, this decomposition is equivalent to the orthogonal projection of q onto the
frontier. In fact, the three components in the decomposition of q (i.e. the vectors p, zp and uq)
are mutually orthogonal.

The portfolio frontier is a (two-dimensional) plane in R
N ; it is not an affine hyperplane

for N > 3. Thus, in the context of the discussion in Section 7.4.1, it should be noted that (for
N >3) it is possible to travel around the frontier without passing through it. In fact, the space
surrounding the frontier is filled with non-frontier portfolios, in the same way as a point in
the plane or a line in 3-space is surrounded by a higher number of dimensions.

Furthermore, it should now be evident that not only is zfq the unique unit-cost frontier
portfolio that is orthogonal to fq, but it is also the unique unit-cost frontier portfolio that
is orthogonal to q itself, and so we can extend the notion of zero-covariance frontier port-
folios, originally defined for frontier portfolios only, to any portfolio. In fact, all portfolios
with expected return μ are orthogonal to the same unique unit-cost frontier portfolio (with
expected return μz), which we will henceforth denote zμ rather than zp where appropriate.

Astute readers will have realized that the choice of the symbol β (rather than the normal λ)
to describe affine combinations of the unit-cost frontier portfolios p and zp is deliberate (and
not just a means of avoiding confusion with the Lagrange multiplier λ). We will now indicate
the reasons for this choice of notation.

If q is any unit-cost portfolio, we can rewrite the decomposition as

q= fq +uq =βqpp+ (1−βqp)zp +uq (17.80)

Since Cov[r̃uq , r̃p]=Cov[r̃zp , r̃p]= 0, taking covariances of returns with r̃p in (17.80) gives

Cov[r̃q, r̃p]=Cov[r̃fq , r̃p]=βqpVar[r̃p] (17.81)

or

βqp = Cov[r̃q, r̃p]

Var[r̃p]
(17.82)

Thus β in (17.78) has its usual definition from probability theory, given by (13.41), which
stated that the β of the random variable ỹ with respect to the random variable x̃ is

β = Cov[x̃, ỹ]

Var[x̃]
(17.83)

We will sometimes refer to zp, which we have heretofore called the zero-covariance frontier
portfolio of p, as the zero-beta frontier portfolio of p.

Reversing the roles of p and zp, it can be seen that

βqzp = 1−βqp (17.84)

We can extend the orthogonal portfolio decomposition (17.80) to cover not only

• the original portfolio proportions (viewed as mutually orthogonal vectors);
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but also

• portfolio proportions (viewed as scalars or components)

qi =βqp pi + (1−βqp)zi + ui (q) (17.85)

where qi , pi , zi and ui (q) denote, respectively, the i th components of q, p, zp and uq;
• returns (mutually uncorrelated random variables)

r̃q =βqpr̃p + (1−βqp)r̃zp + r̃uq (17.86)

and
• expected returns (numbers)

E[r̃q]=βqp E[r̃p]+ (1−βqp)E[r̃zp] (17.87)

since the expected value of the disturbance term E[r̃uq ] is zero.

We could even write down a similar decomposition of the variance of portfolio returns;
however, we will derive a more useful variance decomposition in (17.103).

Equation (17.87), or the equivalent

E[r̃q]− E[r̃zp]=βqp(E[r̃p]− E[r̃zp ]) (17.88)

may be familiar to some readers from earlier courses in financial economics. It is important
to note that these equations are quite general and require neither asset returns to be normally
distributed nor any assumptions about preferences.

The next theorem states conditions on distributions and preferences, which together ensure
that investors hold frontier portfolios.

THEOREM 17.4.2 All risk-averse investors with expected-utility preferences prefer the fron-
tier component of the portfolio q (i.e. fq) to q itself, for all portfolios q, if and only
if

E[r̃uq | r̃fq]= 0 ∀ q (17.89)

Note the subtle distinction between uncorrelated returns (in the definition of the decomposi-
tion) and independent returns (in this theorem). It is a mathematical fact that Corr[r̃uq , r̃fq]=
0 for all q, whatever the probability distribution of asset returns. Equation (17.89), on the
other hand, is true only when asset returns are normally distributed or follow a related
distribution.

Proof:

(a) First suppose that all risk-averse investors with expected-utility preferences prefer fq
to q, for all portfolios q.
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Then for any frontier portfolio p and any zero-cost zero-mean portfolio u, such
investors prefer p to p+ ku for k = 0. Thus, for any initial wealth W0 and any concave
utility function v, k= 0 must solve the utility-maximization problem

max
k∈R

E[v(W0(r̃p + kr̃u))] (17.90)

which has first-order condition

E[v′(W0(r̃p + kr̃u))r̃u]= 0 (17.91)

or, setting k= 0,

E[v′(W0r̃p)r̃u]= 0 (17.92)

We will now prove (17.89) by contradiction.
Suppose (17.89) does not hold, i.e.

m(r)≡ E[r̃u | r̃p = r ] = 0 (17.93)

for some value of r , for some p and u. (Since p and u are arbitrary, p+ u could be any
portfolio.)

Since u is a zero-mean portfolio,

E[r̃u]= E[E[r̃u | r̃p]]

= E[m(r̃p)]

=
∫ ∞

−∞
m(r)d Fr̃p(r)

= 0 (17.94)

But, by our hypothesis (17.93), for some r∗,

c≡
∫ r∗

−∞
m(r)d Fr̃p(r)=−

∫ ∞

r∗
m(r)d Fr̃p(r) = 0 (17.95)

see Exercise 17.17.
The first-order condition (17.92) holds for any concave function v and any initial

wealth W0, in particular for the piecewise linear utility function defined by

v(W )=
{

k1W if W ≤W0r∗

k1W0r∗ + k2(W −W0r∗) if W ≥W0r∗
(17.96)

where k2< k1. For this utility function,

v′(W )=
{

k1 if W ≤W0r∗

k2 if W ≥W0r∗
(17.97)
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Thus

0= E[v′(W0r̃p)r̃u]

= E[E[v′(W0r̃p)r̃u | r̃p]]

= E[v′(W0r̃p)E[r̃u | r̃p]]

= E[v′(W0r̃p)m(r̃p)]

=
∫ r∗

−∞
k1m(r)d Fr̃p(r)+

∫ ∞

r∗
k2m(r)d Fr̃p(r)

= k1c− k2c

= 0 (17.98)

which is a contradiction, and hence

m(r)≡ E[r̃u | r̃p = r ]= 0 ∀ r,p,u (17.99)

(b) Now suppose that (17.89) holds.
Then for any concave function v and any initial wealth W0,

E[v(W0r̃q)]= E[v(W0(r̃fq + r̃uq))]

= E[E[v(W0(r̃fq + r̃uq)) | r̃fq]]

≤ E[v(E[W0(r̃fq + r̃uq) | r̃fq])]

= E[v(W0r̃fq)] (17.100)

where the inequality follows from Jensen’s inequality and the final step from (17.89).
But this is precisely what we set out to prove.

The above proof is based on Huang and Litzenberger (1988, pp. 85–8). �

COROLLARY 17.4.3 If condition (17.89) holds, then all risk-averse investors with expected-
utility preferences choose frontier portfolios.

Proof: By the previous theorem, no such investor will choose a non-frontier portfolio q
over its frontier component fq. �

17.4.2 Portfolio frontier in mean–variance space: risky assets only

We now move on to consider the mean–variance and (equivalent) mean–standard devia-
tion relationships along the line in R

N containing the unit-cost frontier portfolios. In other
words, we wish to graph the envelope function for the portfolio variance minimization
problem (17.39). In general, the envelope function gives the minimum variance achievable as
a function of all the exogenous parameters of the problem, σ 2(μ,W0, e,V). In this section,
we are mainly interested in the relationship between the minimum variance achievable and a
single exogenous parameter, the desired expected rate of return, μ. In what follows, we will
ignore the relationship between σ 2 and the other exogenous parameters, W0, e and V.
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As mentioned in Section 16.8, it is conventional to plot the mean return on the vertical
axis and the variance or standard deviation of returns on the horizontal axis, although both
the conventional presentation of the envelope theorem and the conventional interpretation of
“mean–variance space” or “xy space” would suggest otherwise.

Using (17.62), we can write the typical unit-cost frontier portfolio p as

p=MVP+
(
μ− A

C

)
h (17.101)

or, in notation that perhaps better reflects the inherent structure of the frontier,

p=MVP+ (μ− E[r̃MVP])h (17.102)

since E[r̃MVP]= A/C .
Taking variances on both sides of the orthogonal decomposition in (17.102), which is

effectively applying Pythagoras’s theorem to the right-angled triangle in Figure 17.2 with
vertices at 0, p and MVP, yields

σ 2 ≡Var[r̃p]=Var[r̃MVP]+ (μ− E[r̃MVP])2Var[r̃h] (17.103)

Recall from the coordinate geometry of conic sections (Section 4.2, in particular (4.4))
that (17.103) or the equivalent

V (μ)= 1

C
+ C

D

(
μ− A

C

)2

(17.104)

which is a quadratic equation in μ, is the equation of the parabola in mean–variance space
with vertex at

V (μ)=Var[r̃MVP]= 1

C
(17.105)

μ= E[r̃MVP]= A

C
(17.106)

Thus in mean–variance space, the frontier is a parabola; see Figure 17.3.
Similarly, in mean–standard deviation space, the frontier is a hyperbola, or at least the part

of a hyperbola lying in the half-plane where σ ≥ 0. To see this, recall by comparison with
(4.16) that (17.103) is the equation of the hyperbola with vertex at

σ =
√

Var[r̃MVP]=
√

1

C
(17.107)

μ= E[r̃MVP]= A

C
(17.108)

centre at σ = 0, μ= A/C and asymptotes as indicated in Figure 17.4. The other half of the
hyperbola (σ < 0) has no economic meaning.

Recall that (17.103) could also represent two other types of conic sections. In the case of
Var[r̃h]< 0 (which, of course, is impossible) it represents an ellipse with centre (0, A/C).
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Figure 17.3 Portfolio frontier in mean–variance space: risky assets only

In the more practical case of Var[r̃MVP]= 0, which essentially represents the presence of a
risk-free asset, the square root can be taken on both sides:

σ =±(μ− E[r̃MVP])
√

Var[r̃h] (17.109)

In other words, the hyperbola then becomes the pair of lines that are its asymptotes otherwise.
Note that, when N > 3, there is a unique unit-cost portfolio in portfolio space corre-

sponding to each point on the mean–variance or mean–standard deviation frontier, but that
there are infinitely many points in portfolio space corresponding to each point inside the
mean–variance or mean–standard deviation frontier.

When N = 2, all portfolios are frontier portfolios and there are no portfolios at all
corresponding to points inside the mean–variance or mean–standard deviation frontiers.

When N = 3, the orthogonal complement of the portfolio frontier is a one-dimensional
subspace of the portfolio space, spanned by any zero-cost, zero-mean portfolio, say, the unit-
variance portfolio u. Thus, there are exactly two points in portfolio space corresponding to
each (σ 2,μ) or (σ,μ) point inside the mean–variance or mean–standard deviation frontier,
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Figure 17.4 Portfolio frontier in mean–standard deviation space: risky assets only

respectively. They are

MVP+ (μ− E[r̃MVP])h±
√
σ 2 −Var[r̃MVP]− (μ− E[r̃MVP])2Var[r̃h]u (17.110)

Frontier portfolios on which the expected return, μ, exceeds E[r̃MVP] are termed efficient,
since they maximize expected return given variance; other frontier portfolios minimize
expected return given variance and are termed inefficient.

In other words, a frontier portfolio is an efficient portfolio if and only if its expected return
exceeds the minimum-variance expected return A/C = E[r̃MVP].

The set of efficient unit-cost portfolios in R
N , known as the efficient frontier or some-

times as the Markowitz frontier,4 is the half-line emanating from the MVP in the direction
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of h, and, hence, like the set of all unit-cost frontier portfolios, is also a convex set (but not
an affine set). While all affine combinations of frontier portfolios are frontier portfolios, only
convex combinations of efficient portfolios are guaranteed to be efficient.

Along the efficient frontier, the dual problem to the variance minimization problem is that
of expected return maximization; along the inefficient part of the frontier, the dual problem
is that of expected return minimization.

We now consider zero-covariance (zero-beta) portfolios. There are two neat tricks that
allow zero-covariance portfolios to be plotted in mean–standard deviation and mean–
variance space, respectively. We begin with mean–standard deviation space.

Implicit differentiation with respect to σ of the μ–σ relationship along the fron-
tier (17.103) reveals that the frontier in mean–standard deviation space has slope

dμ

dσ
= σ

(μ− E[r̃MVP])Var[r̃h]
(17.111)

The tangent to this frontier at (σ,μ) intercepts the μ axis at

μ− σ dμ

dσ
=μ− σ 2

(μ− E[r̃MVP])Var[r̃h]

=μ− Var[r̃MVP]

(μ− E[r̃MVP])Var[r̃h]
− (μ− E[r̃MVP])

= E[r̃MVP]− Var[r̃MVP]

(μ− E[r̃MVP])Var[r̃h]
(17.112)

where we have substituted for σ 2 from the equation of the frontier (17.103).
A little rearrangement of (17.70) shows that the expression on the right-hand side of

(17.112) is just the expected return on the zero-covariance frontier portfolio of any portfolio
with expected return μ. This geometric construction is illustrated in Figure 17.4.

To find zμ in mean–variance space, note that the line joining (σ 2,μ) to the MVP intercepts
the μ axis at

μ− σ 2 μ− E[r̃MVP]

σ 2 −Var[r̃MVP]
=μ− σ 2 μ− E[r̃MVP]

(μ− E[r̃MVP])2Var[r̃h]
(17.113)

After cancellation, this is exactly the expression for the zero-covariance return that we had
in the first line of (17.112). This geometric construction is illustrated in Figure 17.3.

17.4.3 Portfolio frontier in R
N : risk-free and risky assets

We now consider the mathematics of the portfolio frontier when there is a risk-free asset.
The investor now wishes to choose the portfolio b to minimize the variance of date-1
wealth, W̃1 = b�r̃ + (W0 − b�1)rf, subject to attaining an expected date-1 wealth of at
least μW0.

The risk-free rate is unique by the no-arbitrage principle, since otherwise a greedy investor
would borrow an infinite amount at the lower rate and invest it at the higher rate, which
is impossible in equilibrium. Similarly, as already mentioned on p. 459, the no-arbitrage
principle allows us to rule out variance–covariance matrices for risky assets that permit the
construction of portfolios with zero return variance, i.e. synthetic risk-free assets.
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In the presence of a risk-free asset, the frontier portfolio solves another instance of the
canonical quadratic programming problem of Section 14.3, namely,

min
b

b�Vb

s.t. b�e+ (W0 −b�1)rf ≥μW0
(17.114)

There is no longer a restriction on portfolio weights, and whatever is not invested in the N
risky assets is assumed to be invested in the risk-free asset.

The solution (see Exercise 17.18) is obtained by a method similar to the case where all
assets were risky and is

b∗ = W0(μ− rf)

H
V−1(e− rf1) (17.115)

where

H = (e− rf1)�V−1(e− rf1)= B − 2Arf +Cr2
f (17.116)

It can be shown that H > 0 for all rf; see Exercise 17.19.
The unit-cost portfolio corresponding to this optimal solution will be denoted

t≡ 1

A− rfC
V−1(e− rf1) (17.117)

so that

b∗ = W0(μ− rf)(A− rfC)

H
t (17.118)

The exception to this is when rf= A/C , in which case the optimal solution is to invest all of
initial wealth in the risk-free security, and b∗, still defined by (17.115), is a zero-cost, hedge
portfolio of risky assets, held in order to increase (or, potentially, reduce) expected return.

Assuming that rf = A/C and pre-multiplying (17.117) by e� gives

E[r̃t]= B − rf A

A− rfC
(17.119)

The vector t must lie on the frontier of risky assets, as it is a linear combination of V−11 and
V−1 e, which constitute a basis for that frontier. Comparing (17.119) with (17.72) reveals
that t is nothing other than the zero-beta portfolio of any risky-asset portfolio with expected
return equal to the risk-free rate rf.

Note from (17.118) that the sign of the optimal holding of the portfolio t depends on the
signs of μ− rf and A− rfC , i.e. on where the risk-free rate lies in relation to (a) the desired
expected return, μ, and (b) the expected return on the MVP of risky assets only, A/C . These
relationships will become clearer in the next section.

In the N -dimensional portfolio space, the portfolio frontier is now the one-dimensional
vector subspace generated by the portfolio t. In the absence of the risk-free asset, the optimal
investment strategy could have been described as dividing wealth between the orthogonal
portfolios t (with expected return (B− rf A)/(A− rfC)) and zt (with expected return rf). In
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the presence of the risk-free asset, the optimal investment strategy is now to divide wealth
between the portfolio t and the risk-free asset (with fixed return rf).

Finally, it can be shown that

Var[r̃t]= H

(A− rfC)2
(17.120)

and

Var[r̃b∗]= W 2
0 (μ− rf)

2

H
(17.121)

see Exercise 17.20.

17.4.4 Portfolio frontier in mean–variance space: risk-free and risky assets

We can now establish the shape of the frontiers in mean–standard deviation and mean–
variance space in the presence of a risk-free asset. We begin with the former. Three
alternative derivations follow.

1. The first derivation begins by setting W0 = 1 in (17.121), which implies that the rela-
tionship between desired expected return μ and minimum attainable standard deviation σ
along the frontier in this case is

σ = |μ− rf|√
H

(17.122)

Thus, in mean–standard deviation space, the frontier is a pair of straight lines crossing the
vertical (mean) axis at μ= rf and with slopes ±√H ; see Figure 17.5.

2. The second derivation reaches the same conclusion graphically by inspection of
Figure 17.4. Three separate cases need to be considered.

(a) rf< E[r̃MVP]. It follows that

E[r̃t]> E[r̃MVP]> E[r̃zt]= rf (17.123)

Recalling the geometrical technique above for determining the locations of pairs of
zero-beta portfolios, it can be seen that the tangent from (0, r f) to the efficient mean–
standard deviation frontier of risky assets touches that frontier at t, and thus we call t
the tangency portfolio.

(b) rf> E[r̃MVP]. The inequalities are now reversed:

E[r̃t]< E[r̃MVP]< E[r̃zt]= rf (17.124)

The tangency portfolio t in this case lies on the lower, inefficient, part of the mean–
standard deviation frontier of risky assets.

(c) rf = E[r̃MVP]. As rf approaches E[r̃MVP] from either direction, the mean and variance
of the tangency portfolio tend to infinity but the net investment in this portfolio tends to
zero. We have already seen that in the limiting case the optimal holding of risky assets
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Figure 17.5 Portfolio frontier in mean–standard deviation space: risk-free and risky assets

is a zero-cost portfolio, which therefore cannot be represented on the mean–standard
deviation diagram, as this diagram shows only unit-cost portfolios.

3. The third derivation considers what happens when we combine any portfolio p with the
risk-free asset in proportions a and (1 − a), respectively. This gives a portfolio with
expected return

aE[r̃p]+ (1− a)rf = rf + a(E[r̃p]− rf) (17.125)

and standard deviation of returns

a
√

Var[r̃p] (17.126)
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Graphically, as we will see later in Figure 17.7, in mean–standard deviation space
(σμ space), these portfolios trace out the ray emanating from (0, rf), where a = 0, and
passing through p, where a= 1. For each σ the highest return attainable is along the ray
from rf that is tangent to the frontier generated by the risky assets. On this ray, the risk-
free asset is held in combination with the tangency portfolio t. Again, this only makes
sense for rf< A/C = E[r̃MVP].

Note that, in order to obtain an expected return above that on t, the investor must place a
negative weight on the risk-free asset, i.e. borrow funds at the risk-free rate for investment,
along with his initial wealth, in the tangency portfolio t.

Finally, we consider the shape of the frontier in mean–variance space in the presence of
a risk-free asset. Equation (17.121) implies that the relationship between desired expected
return μ and minimum attainable variance σ 2 along the frontier in this case is

σ 2 = (μ− rf)
2

H
(17.127)

Thus, in mean–variance space, as it was with risky assets only, the frontier is a parabola, in
this case with vertex at (0, rf).

The tangency portfolio, t, is once again the only point that lies on both the frontier of
all assets and the frontier of risky assets only. Thus, in mean–variance space, the tangency
portfolio is the point of tangency between the former (outer) parabola and the latter (inner)
parabola; see Figure 17.6.

Limited borrowing

Unlimited borrowing and lending at a single risk-free interest rate, as allowed in the pre-
ceding analysis, is unrealistic. Figures 17.7 and 17.8 show what happens, respectively,
with

1. margin constraints on borrowing, and
2. a different borrowing rate (rb) and lending rate (rl ).

In the former case, the proportion, β, of initial wealth invested in risky assets may be
restricted to no more than, say, 1.25 or 1.5; the latter case is illustrated in Figure 17.7. The
frontier is then the envelope of all the finite rays from the risk-free asset through risky port-
folios, such as p in Figure 17.7, extending as far as the borrowing constraint allows. As
Figure 17.7 illustrates, margin constraints on borrowing have less impact on the minimum
attainable variance than on the portfolio composition used to attain the minimum variance,
say when the desired expected return is rf + 1.5(E[r̃p]− rf) as illustrated.

In the latter case, there are two tangency portfolios, tb and tl , say, with E[r̃ztb
]= rb and

E[r̃ztl
]= rl .

• There is a range of expected returns from E[r̃tl ] up to E[r̃tb ] over which a pure risky
strategy provides minimum variance.

• Lower expected returns are achieved by a combination of risk-free lending at rl and an
investment in the risky asset portfolio tl .

• Higher expected returns are achieved by risk-free borrowing at rb to fund an investment
of more than the initial wealth in the risky asset portfolio tb.
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Figure 17.6 Portfolio frontier in mean–variance space: risk-free and risky assets

17.5 Market equilibrium and the capital asset pricing model

17.5.1 Pricing assets and predicting security returns

Up to this point, this chapter has dealt solely with the search for optimal investment strate-
gies, which is itself a very important but relatively straightforward aspect of financial
economics. The portfolio theory that we have learned so far will be of great assistance in
addressing two other aspects of financial economics, which are perhaps of greater popular
interest, namely:

• explaining the relationship between contemporaneous equilibrium returns on different
assets, asset classes and financial markets; and

• predicting future asset returns.
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Figure 17.7 Mean–standard deviation frontier with margin constraints on borrowing

In general, addressing either of the latter problems requires realistic assumptions concerning
investor preferences and the probability distributions of future asset values, which in turn
lead to useful and parsimonious asset pricing models, with empirically testable predictions.

The best-known such assumptions are those of the capital asset pricing model (CAPM).
At a very basic level, the CAPM is based on the assumption that each investor holds a
mean–variance frontier portfolio. It has been known since early in the development of port-
folio theory that this assumption is valid if, for example, preferences are quadratic or the
probability distribution of asset returns is normal.5

17.5.2 Properties of the market portfolio

By the market portfolio we mean the aggregate of the portfolios held by all I individuals at
a given point in time.

Given security prices, let m j be the weight of security j in the market portfolio m,
W0i (> 0) be individual i’s initial wealth, and aji be the proportion of individual i’s wealth
invested in security j . Then total initial wealth is defined by

W0m ≡
I∑

i=1

W0i (17.128)
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Figure 17.8 Mean–standard deviation frontier with different borrowing and lending rates

and in equilibrium the relation

I∑
i=1

ajiW0i =m j W0m (17.129)

must hold for all assets j . Dividing by W0m yields

I∑
i=1

aji
W0i

W0m
=m j ∀ j (17.130)

and thus in equilibrium the market portfolio m is a convex combination of the individual
portfolios a1,a2, . . . ,aI , with weights W01/W0m,W02/W0m, . . . ,W0I /W0m , respectively,
which, by definition, are positive and sum to unity. This simple observation leads to
Theorem 17.5.1, the Black (1972) zero-beta version of the CAPM.
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17.5.3 Zero-beta capital asset pricing model

THEOREM 17.5.1 (ZERO-BETA CAPITAL ASSET PRICING MODEL). If each investor holds
a mean–variance frontier portfolio (for example, if (17.89) holds and all investors are
risk-averse expected-utility maximizers), then the market portfolio, m, is a mean–variance
frontier portfolio, and, hence, by (17.87), for all portfolios q, the CAPM equation

E[r̃q]= (1−βqm)E[r̃zm]+βqm E[r̃m] (17.131)

holds, where

r̃m =
N∑

j=1

m j r̃ j (17.132)

and

βqm = Cov[r̃q, r̃m]

Var[r̃m]
(17.133)

While we already know that it is possible to compute the β of any random variable with
respect to any other random variable (see (13.41)), or of any portfolio with respect to any
frontier portfolio (see (17.73)), the term beta or, more properly, market beta is commonly
used to refer to the β of an asset or portfolio with respect to the market portfolio. Note that
the market beta of the market portfolio itself is, by definition, equal to 1.

As a corollary to Theorem 17.5.1, we have another two-fund separation result: under the
assumptions of the zero-beta CAPM theorem, every investor effectively holds a combination
of the market portfolio, m, and its zero-beta frontier portfolio, zm. Equivalently, we could
say that every investor holds a combination of two arbitrarily fixed frontier portfolios.

The zero-beta CAPM implies, for any particular individual security, say, the j th, that

E[r̃ j ]= (1−β jm)E[r̃zm]+β jm E[r̃m] (17.134)

since an individual security is just a portfolio with a weight of 1 on one asset and weights
of 0 on all other assets.

Equation (17.134) says that, when CAPM holds, the only parameters of the potentially
complex multivariate probability distribution of future asset values that influence expected
returns are the N market betas of the individual assets and the expected returns on the market
portfolio and its zero-beta portfolio.

17.5.4 Traditional capital asset pricing model

Now we can derive the traditional CAPM by adding the risk-free asset, which in turn
determines the tangency portfolio, t. Note that, by construction,

rf = E[r̃zt] (17.135)

Normally in equilibrium there is zero aggregate supply of the risk-free asset, but the
traditional CAPM holds regardless of whether or not this is the case.

The two theorems that follow should be self-evident from what has gone before.
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THEOREM 17.5.2 (SEPARATION THEOREM). In the presence of a risk-free asset, the
risky asset holdings of all investors who hold mean–variance frontier portfolios are in the
proportions given by the tangency portfolio, t.

THEOREM 17.5.3 (TRADITIONAL CAPITAL ASSET PRICING MODEL). If each investor
holds a mean–variance frontier portfolio, then the market portfolio of risky assets, m, is the
tangency portfolio, t, and, hence, for all portfolios q, the traditional CAPM equation

E[r̃q]= (1−βqm)rf +βqm E[r̃m] (17.136)

holds.

Theorem 17.5.3 is sometimes known as the Sharpe–Lintner theorem.6

As with the zero-beta CAPM equation, the traditional CAPM equation applies to
portfolios consisting of a single asset, so can also be written

E[r̃ j ]= (1−β jm)rf +β jm E[r̃m] (17.137)

It can also be written in terms of risk premiums as

E[r̃ j − rf]=β jm E[r̃m − rf] (17.138)

There are many important implications of this equation. Provided that the market portfolio is
on the efficient part of the mean–variance frontier, it implies that assets with higher market
betas have higher risk premiums. Similarly, an asset with a market beta of zero returns only
the risk-free rate. Finally, an asset with a negative market beta returns less than the risk-free
rate.

Recall at this point the discussion on p. 408. Like the duration of a bond, the beta of a
risky asset measures the responsiveness of the price of the asset to changes in general market
conditions.

There are two commonly encountered graphical representations of the traditional CAPM
equation (17.136).

1. The capital market line is the line in mean–standard deviation space connecting the
risk-free asset to the market portfolio, illustrating the expected return–standard devia-
tion relationship on frontier portfolios when the CAPM holds; see Figure 17.9. It is just
the mean–standard deviation portfolio frontier, with the additional insight that it passes
through the market portfolio under the CAPM assumptions.

2. The security market line is the line in market beta-expected return space connecting the
risk-free asset at (0, rf) (or zm if there is no risk-free asset) to the market portfolio at
(1, E[r̃m]), and thus having equation

μ= rf + (E[r̃m]− rf)β (17.139)

As in mean–standard deviation and mean–variance analysis, it is conventional to
plot expected return on the vertical axis when drawing the security market line; see
Figure 17.10. If the traditional CAPM holds, then, by (17.136), the population means
and betas for all portfolios and individual securities (such as the illustrated security i)
must lie on the security market line.
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Figure 17.10 Security market line

One basic graphical empirical test of the CAPM is to plot sample mean returns against
sample market betas and see whether the resulting scatterplot is close to being a straight
line.
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More rigorously, one could run a cross-sectional linear regression of sample mean returns
against sample market betas and test the hypotheses that the intercept equals the risk-free rate
and that the slope equals the risk premium on the market portfolio, as in (17.139). A whole
branch of econometric analysis has grown up around the empirical testing of the CAPM, but
it is outside the scope of this book; the interested reader is referred to Huang and Litzenberger
(1988, Chapter 10) and Campbell et al. (1997, Chapter 5).

We can also think about what happens to the CAPM if there are different risk-free bor-
rowing and lending rates as considered in Figure 17.8; see Elton et al. (2010, p. 88). If all
individuals face this situation in equilibrium, realism demands that both risk-free assets are
in zero aggregate supply and, hence, that all investors hold risky assets only.

17.5.5 Risk premium of the market portfolio

When a risk-free asset exists, we know that by construction it must lie on the opposite side
of the MVP from the tangency portfolio, which under the CAPM assumptions must be the
market portfolio of risky assets. Nothing so far has indicated whether or not the equilibrium
expected return on the market portfolio of risky assets will exceed the risk-free rate of return.
The next theorem gives sufficient conditions for the mean–variance efficiency of the market
portfolio.

THEOREM 17.5.4 If

(a) the CAPM assumptions are satisfied,
(b) risky assets are in strictly positive supply, and
(c) investors have strictly increasing and concave utility functions,

then the market (i.e. tangency) portfolio is efficient, with

rf< E[r̃MVP]< E[r̃m] (17.140)

Proof: The risk-free asset dominates any portfolio whose return r̃ satisfies

E[r̃ ]< rf (17.141)

since, by Jensen’s inequality and concavity and monotonicity of the utility function,
respectively,

E[u(W0r̃)]≤ u(E[W0r̃ ])

< u(W0rf) (17.142)

Hence, the expected returns on all individuals’ optimal equilibrium portfolios exceed rf.
It follows by a convexity argument that the expected return on the market portfolio must
exceed rf, provided that risky assets are in strictly positive supply. �

This result says that the risk premium of the market portfolio is positive; we can go much
further than this. The CAPM gives a relation between the risk premiums on individual assets
and the risk premium on the market portfolio. The risk premium on the market portfolio must
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in turn adjust in equilibrium to give market-clearing. In some situations, the risk premium
on the market portfolio can be written in terms of investors’ utility functions.

For example, assume that there is a risk-free asset and that returns are multivariate nor-
mal. Recall the first-order condition (17.7) for the canonical portfolio choice problem for
investor i and asset j :

0= E[u′i (W̃1i )(r̃ j − rf)]

= E[u′i (W̃1i )]E[r̃ j − rf]+Cov[u′i (W̃1i ), r̃ j ]

= E[u′i (W̃1i )]E[r̃ j − rf]+ E[u′′1i (W̃1i )]Cov[W̃1i , r̃ j ] (17.143)

using the definition of covariance and Stein’s lemma (Theorem 13.7.1) for MVN distribu-
tions. Rearranging gives

E[r̃ j − rf]

θi
=Cov[W̃1i , r̃ j ] (17.144)

where

θi ≡ −E[u′′i (W̃1i )]

E[u′i (W̃1i )]
(17.145)

is the i th investor’s global absolute risk aversion. Since

W̃1i =W0i

(
rf +

N∑
k=1

aki (r̃k − rf)

)
(17.146)

we have, by taking the covariance of each side with r̃ j and dropping non-stochastic terms,

Cov[W̃1i , r̃ j ]=Cov

[
W0i

N∑
k=1

aki r̃k, r̃ j

]
(17.147)

Hence,

E[r̃ j − rf]

θi
=Cov

[
W0i

N∑
k=1

aki r̃k, r̃ j

]
(17.148)

Summing over investors, this gives (since we have
∑

i W0i aki =W0mmk by market-clearing
and

∑
k mkr̃k = r̃m by definition)

E[r̃ j − rf]

( I∑
i=1

θ−1
i

)
=W0m Cov[r̃m, r̃ j ] (17.149)

or

E[r̃ j − rf]=
( I∑

i=1

θ−1
i

)−1

W0m Cov[r̃m, r̃ j ] (17.150)
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i.e. in equilibrium, the risk premium on the j th asset is the product of the aggregate relative
risk aversion of the economy and the covariance between the return on the j th asset and the
return on the market.

Now take the average over j weighted by market portfolio weights:

E[r̃m − rf]=
( I∑

i=1

θ−1
i

)−1

W0m Var[r̃m] (17.151)

i.e. in equilibrium, the risk premium on the market is the product of the aggregate relative
risk aversion of the economy and the variance of the return on the market. Equivalently, the
return to variability of the market equals the aggregate relative risk aversion.

We conclude with some examples.

EXAMPLE 17.5.1 Negative-exponential utility:

ui (W )=−e−αi W , αi > 0 (17.152)

implies (see Example 16.5)

( I∑
i=1

θ−1
i

)−1

=
( I∑

i=1

α−1
i

)−1

> 0 (17.153)

and, hence, the market portfolio is efficient. ♦

EXAMPLE 17.5.2 Quadratic utility:

ui (W )=W − αi

2
W 2, αi > 0 (17.154)

implies (see Exercise 16.18(a))

( I∑
i=1

θ−1
i

)−1

=
( I∑

i=1

(
1

αi
− E[W̃i ]

))−1

(17.155)

Recall that the quadratic utility function has a bliss point at W = 1/αi . Thus, aggregate
relative risk aversion is positive, and the market portfolio efficient, provided that the average
investor’s expected wealth is below his bliss point. Of course, the whole derivation is based
on the assumption of increasing utility and could break down if it were possible for investors
to attain bliss points. ♦

17.5.6 Capital asset pricing model and asset valuation

Suppose, as in (17.12), that p j is the price of the random payoff x̃ j , but now suppose also
that the traditional CAPM holds and the covariance of the payoff x̃ j with the return r̃m on
the market portfolio is known.
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Then r̃ j = x̃ j/p j and CAPM states that

E[r̃ j ]= rf +β jm E[r̃m − rf]

= rf + Cov[x̃ j , r̃m]

p j Var[r̃m]
E[r̃m − rf] (17.156)

Multiplying across by p j yields

E[x̃ j ]= rf p j + Cov[x̃ j , r̃m]

Var[r̃m]
E[r̃m − rf] (17.157)

Solving for p j yields

p j = 1

rf

(
E[x̃ j ]− Cov[x̃ j , r̃m]

Var[r̃m]
E[r̃m − rf]

)
(17.158)

Thus:

• regardless of the efficiency of the market portfolio, a payoff that is uncorrelated with the
return on the market portfolio will trade at its discounted expected value (discounted at
the risk-free rate); and

• provided that the market portfolio is mean–variance efficient,

− a payoff that is negatively correlated with the market return will trade at a price higher
than its discounted expected value (i.e. will attract a return lower than the risk-free
rate); and

− a payoff that is positively correlated with the market return will trade at a price lower
than its discounted expected value (i.e. will attract a return higher than the risk-free
rate).

17.6 Multi-currency considerations
The theory of choice under uncertainty is generally presented without reference to the impor-
tance of the choice of numeraire currency. We have already begun to see the significance
of this choice in the discussion of Siegel’s paradox and uncovered interest rate parity in
Sections 13.10.2 and 16.7. The portfolio theory literature generally refers to the currency as
the “dollar”, for no better reason than that most of it has been written in the USA. We have
taken a deliberate decision to refer to the unit of currency in this book as the “euro” for a
number of reasons, and not solely because the book was written within the Euro Zone. More
importantly, in this concluding section we wish to highlight again the place in the theory of
equilibrium presented here of various implicit assumptions.

In the literature generally, propositions are made such as:

• the world is risk-neutral with respect to the numeraire currency; or
• preferences have the expected-utility property with respect to the numeraire currency;

or
• individuals choose portfolios that are on the mean–variance frontier with respect to the

numeraire currency.
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Usually, however, the phrase in italics is omitted. The question arises as to the condi-
tions under which such propositions are, or are not, invariant under changes of numeraire
currency.

Under a fixed exchange rate regime, the choice of numeraire currency would make no
difference to any result. However, several decades after the collapse in 1971 of the Bretton
Woods system of fixed exchange rates and in the present era of increasing globalization,
the assumption of a fixed exchange rate regime is no longer of any practical use. Even
under the almost equally unrealistic assumption that exchange rates are statistically inde-
pendent of the returns on the assets available for investment, it is difficult to derive any
useful invariance results.

We have already seen in Section 16.7 that the properties of the risk-neutral world are not
invariant under a change of numeraire currency, or more precisely if different individuals are
risk-neutral with respect to different currencies. As we saw in that case, models of financial
market equilibrium can be sensitive to the currency with respect to which they are described.
A world that is risk-neutral from the perspective of the euro cannot also be risk-neutral
from the perspective of sterling, or of any other currency. A similar caveat applies to the
mean–variance world behind the CAPM, which has been described in this chapter.

If the portfolios chosen by all investors are mean–variance efficient frontier portfolios with
respect to one currency, it does not follow automatically that they are also mean–variance
efficient frontier portfolios with respect to a different currency. We have shown that, in a
world of uncertain exchange rates, investors with mean–variance preferences with respect to
their own currency will hold a combination of the asset that is risk-free in their own currency
and the corresponding tangency portfolio of risky assets (which might include assets whose
payoff in some other currency is risk-free, but which are rendered risky by exchange rate
uncertainty).

Just as the risk-neutral equilibrium unravels if there are investors with risk-neutral pref-
erences in two or more different currencies, so the two-fund-separation equilibrium could
unravel if there are investors with mean–variance preferences in two or more different
currencies; see Exercise 17.22.

EXERCISES
17.1 Show that the constrained maximization problem

max{a0,a1,...,aN }
E

[
u

(
a0rf +

N∑
i=1

ai r̃i

)]

subject to

N∑
i=0

ai =W0

has the same solutions for a1,a2, . . . ,aN as the unconstrained maximization problem

max{a1,a2,...,aN }
E

[
u

(
W0rf +

N∑
i=1

ai (r̃i − rf)

)]
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17.2 Calculate the optimal portfolio holdings for an individual with initial wealth W0 = 1
and VNM expected-utility function u(w)=w− (b/2)w2 when b= 0.001, faced with a risk-
free interest rate of 8% and two risky investment opportunities with expected returns given
by the vector

e=
[

0.12
0.15

]
and variances and covariances given by the matrix

V=
[

0.02 −0.01
−0.01 0.04

]
17.3 Consider the problem of allocating initial wealth between a risk-free asset and a single
risky asset in such a way as to maximize expected utility. Recall that decreasing absolute risk
aversion (DARA) implies that the risky asset is a normal good if its expected return exceeds
the risk-free rate.

Prove the analogous results for CARA, IARA, DRRA, CRRA and IRRA.

17.4 Find all utility functions exhibiting hyperbolic absolute risk aversion (HARA).

17.5 Derive equation (16.85).

17.6 Show that u′(w)= AeBw is a sufficient condition for two-fund monetary separation.

17.7 An investor with an initial wealth of W0 can divide that wealth among N assets with
uncertain (gross) rates of return, given by the random vector r̃≡ (r̃1, r̃2, . . . , r̃N ).

The vector (or portfolio) W0b≡ (b1W0,b2W0, . . . ,bN W0) of investments is chosen such
that its overall rate of return has minimum variance, subject to the condition that the expected
(gross) rate of return on the portfolio is at least μ. Assume that negative holdings of assets
(short-selling, or bi < 0) are allowed.

Let e be the N × 1 vector whose i th component is E[r̃i ] and let V be the N × N matrix
whose ijth element is Cov[r̃i , r̃ j ], assuming that all these expectations and covariances
are finite.

(a) Using the basic properties of expectations, variances and covariances, show that the
expectation of the (gross) rate of return on the portfolio W0b can be written in matrix
notation as b�e and its variance as b�Vb.

(b) Show further that V is a symmetric positive semi-definite matrix.
(c) Formulate the investor’s problem as a Kuhn–Tucker optimization problem.
(d) Write down the first-order conditions for the optimization problem, and investigate

whether the standard second-order conditions are satisfied.
(e) Assuming that V is an invertible matrix and that the constraints are binding at the

optimum, solve for the vector of optimal investments in terms of μ, e, V and the
Kuhn–Tucker multipliers.

(f) Substitute this expression for the vector of optimal investments in each of the constraint
equations in turn in order to derive two simultaneous linear equations in the Kuhn–Tucker
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multipliers and, hence, find an expression for the optimal b involving only the exogenous
parameters and not the Kuhn–Tucker multipliers.

17.8 What form does the portfolio frontier take when the N risky assets available to investors
are mutually uncorrelated?

17.9 Now consider Exercise 17.7 again, but assuming that there are only three assets, that
initial wealth is e1m, but that short-selling is not allowed.

(a) Show that the investor’s problem can be formulated as a Kuhn–Tucker maximization
problem with inequality constraints, involving either

(i) three choice variables and six inequality constraints, or
(ii) two choice variables and four inequality constraints.

(b) Now consider the specific example in which the expectation of the (net) return vector is
(0.04,0.08,0.12) and its variance–covariance matrix is

⎡⎣ 0.03 −0.01 −0.01
−0.01 0.03 −0.01
−0.01 −0.01 0.03

⎤⎦
Calculate the optimal investment proportions for desired expected returns of 4%, 5.5%,
6%, 8%, 10%, 11.5% and 12%. What are the signs of the Kuhn–Tucker multipliers in
each case (strictly positive, zero, or strictly negative)?

(c) Using the envelope theorem, calculate the rate of change of the minimized variance with
respect to the desired expected return in the situation where only the expected return
constraint and the budget constraint are binding.

(d) Sketch rough graphs of the feasible set both in the b1b2 plane (i.e. using the two-variable,
four-constraint approach) and in the plane b1+ b2+ b3= 1 (i.e. using the three-variable,
six-constraint approach) for two possible values of μ, indicating on each graph the
indifference curves of the objective function.

(e) Over what range of desired expected returns is each short-selling constraint binding?
Using this information, plot the envelope function for this problem.

(f) How would your answers in part (b) above change if all the covariances were 0.01 instead
of −0.01? Explain.

17.10 Suppose there are two stocks available to investors with equilibrium expected returns
of 14% and 8% and standard deviations of returns of 6 and 3 percentage points, respectively.
Suppose further that the correlation between the returns on the two stocks is 1.

(a) Write down the correlation matrix for these two stocks.
(b) Find a riskless portfolio of the two stocks.
(c) Plot the portfolio frontier. (Note that the usual method does not work because of the

existence of a riskless portfolio of the two stocks.)
(d) If there exists a risk-free security in equilibrium, what rate of return will it offer?
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17.11 Show that there exists a basis for the portfolio space consisting of N portfolios whose
returns are uncorrelated and each has unit variance. Develop the mathematics of the portfolio
frontier in terms of the unit-cost versions of these uncorrelated portfolios.

17.12 The notation in this question is as defined in the text.

(a) For the returns on the hedge portfolio h and on the unit portfolios g, (1/C)V−11 and
(1/A)V−1e, calculate means, variances and all pairwise covariances.

(b) Show that D≡ BC − A2 is positive.
(c) Show that, for all unit portfolios p,

Cov[r̃MVP, r̃p]= 1

C

(d) Derive equation (17.62), i.e. show that any frontier portfolio can be written in the form

b=W0

(
MVP+

(
μ− A

C

)
h
)

(e) Show that the decomposition of portfolio weight vectors

a≡MVP+
(

E[r̃a]− A

C

)
h+u

extends naturally to a decomposition of the random variables representing portfolio
returns.

(f) Work out the relationship between E[r̃p] and E[r̃zp] by solving (17.69).

17.13 Compute and graph the portfolio frontier (in both portfolio space and mean–variance
space) when

e=
[

1.03
1.08

]
and V=

[
0.02 −0.01
−0.01 0.05

]
17.14 What form does the portfolio frontier take when all assets have the same expected
return? Find the proportions of the minimum-variance portfolio of two assets with the same
expected return and variance–covariance matrix

V≡
[
σ 2

1 σ12

σ12 σ 2
2

]
17.15 Find from first principles the weights of, expected return on, and variance of the return
on the global minimum-variance portfolio.

17.16 Suppose that there are three risky assets available for investment, whose returns have
equal variances and whose expected returns are 1%, 2% and 3%, respectively.

Assume that the first and third assets are uncorrelated mean–variance frontier portfolios.

(a) Derive the full 3× 3 correlation matrix of the asset returns.
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(b) Hence, or otherwise, calculate the proportions of, and the expected return on, the global
minimum-variance portfolio, and its beta with respect to each of the three underlying
assets.

(c) How much of the second asset will be held by an investor seeking a mean–variance
efficient portfolio?

(d) Finally, what proportions are held in each asset in the frontier portfolios that have betas
of 0.25 and 0.75 with respect to asset 3?

17.17 Suppose E[x̃]= 0 but m(y)= E[x̃ | ỹ= y] = 0 for some y.
Show that there exists y∗ such that

c≡
∫ y∗

−∞
m(y)d Fỹ(y)=−

∫ ∞

y∗
m(y)d Fỹ(y) = 0

17.18 Solve problem (17.114), namely,

min
b

b�Vb

s.t. b�e+ (W0 −b�1)rf ≥μW0

17.19 Show that H , as defined in equation (17.116), is positive for all values of rf.

17.20 Derive the expressions for Var[r̃t] and Var[r̃b∗] given in equations (17.120)
and (17.121), respectively.

17.21 Consider the limiting behaviour of the variance of the return on an equally weighted
portfolio as the number of securities included goes to infinity. Show that, if securities are
added in such a way that the average of the variance terms and the average of the covari-
ance terms are stable, then the portfolio variance approaches the average covariance as a
lower bound.

17.22 Consider a world with N countries where the only traded securities are N risk-free
assets, one denominated in each currency. Suppose that exchange rates in this world are
uncertain and exogenously determined. Suppose that investors in each country choose port-
folios of these N assets that are mean–variance efficient from the perspective of their home
currency.

Explore the properties of the optimal portfolio choice and of market equilibrium in this
world.
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Notation and preliminaries

1 Solow (2009) is a good introduction to the important concepts related to formal proofs.
2 Venn diagrams, showing sets and their intersections and unions, were conceived around 1880 by the

English logician and philosopher John Venn (1834–1923).
3 The Cartesian product and Cartesian coordinates are both named after the French mathematician

René Descartes (1596–1650), who was the first to use coordinates in this way. The modern con-
vention – which we follow from Section 5.3 onwards – of referring to R

n as Euclidean (n-)space,
in honour of the ancient mathematician Euclid of Alexandria (c.325–c.265BC), is actually ques-
tionable, and it would be equally justifiable to refer to it as Cartesian space. The Euclidean norm
(Definition 5.2.11) is also named after Euclid.

4 De Moivre’s theorem is named after the French Huguenot mathematician Abraham de Moivre
(1667–1754), who first published it in 1722; for further details, see, for example, Sydsæter et al.
(2008, Appendix B.3).

5 See Simmons (1963, Sections 1.5 and 1.8) for more details on binary relations.
6 L’Hôpital’s rule was first published in a 1696 book by the French mathematician Guillaume François

Antoine, Marquis de l’Hôpital (1661–1704).
7 Binmore (1982, Chapters 7–16) is one of many texts that cover univariate calculus well, with the

added advantage that the author is a leading economist. Good alternatives include Simon and Blume
(1994, Chapters 2–4) or Stewart (2008, Chapters 1–8).

8 See, for example, Chiang and Wainwright (2005, Section 10.2).

1 Systems of linear equations and matrices

1 However, see Exercise 12.2 for an illustration of the peculiarities of linear demand functions.
2 Keynesian models are named after the English economist John Maynard Keynes (1883–1946),

whose macroeconomic theories continue to be the subject of debate and dispute to the present day.
3 Chapter 14 discusses in more detail the use of random disturbance terms in linear economic models.
4 The German-born economist Wassily Wassilyovich Leontief (1905–1999), who grew up in Rus-

sia and later settled in America, was awarded the Nobel Memorial Prize in Economic Sciences in
1973 for the development of the input–output method and for its application to important economic
problems.

5 The Kronecker delta, and also the Kronecker product introduced in Section 1.5.15, are called after
the Prussian-born mathematician Leopold Kronecker (1823–1891).

6 An alternative form of this result exists but its derivation is left as part of Exercise 1.23.

2 Determinants

1 A result proved by induction is true for all finite positive integers, but may not be true at infinity. For
example, a result proved by induction on the dimension of finite-dimensional vector spaces may not
hold in infinite-dimensional spaces; see Chapter 5. Similarly, a result proved for discrete random
variables by induction on the number of states of nature in the underlying sample space may not
hold for continuous random variables; see Chapter 13.
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2 These results are named after the Swiss mathematician Gabriel Cramer (1704–1752). Cramer (1750)
presented the result that now bears his name as a method for solving five linear equations in five
unknowns.

3 Gaussian elimination, Gauss–Jordan elimination, the Gaussian distribution (p. 337) and the Gauss–
Markov theorem (Theorem 14.3.1) are all named after the German mathematician Johann Carl
Friedrich Gauss (1777–1855). Gaussian elimination was, however, known to the ancient Chinese,
as fangcheng, at least 1500 years before Gauss; see, for example, Hart (2010). Gauss–Jordan
elimination is named after Gauss and the German geodesist Wilhelm Jordan (1842–1899).

3 Eigenvalues and eigenvectors

1 In Section 8.4.2, an alternative form for complex numbers, using polar coordinates, is also
employed. Readers requiring some revision of the subject of complex numbers are referred to Simon
and Blume (1994, Appendix A3.1) or Sydsæter et al. (2008, Appendix B.3).

2 We will shortly give a formal definition of this kind of relationship between the equations, which is
known as linear dependence; see Definition 3.6.2.

3 We shall consider the geometry of orthogonal vectors, and vectors generally, in Chapter 5.
4 An m× n matrix Q with the property that QQ� = Im or Q�Q= In is sometimes called an orthonor-

mal matrix. These properties can hold only if m≤n or m≥n, respectively. Thus both properties can
hold simultaneously only when Q is square; see Exercise 5.20.

5 Here “equivalence” means that any one statement implies the others.
6 This step can be undertaken using a procedure called the Gram–Schmidt process, which is explained

in Section 5.4.7.
7 These formulas were first discovered by the French Huguenot mathematician François Viète or

Franciscus Vieta (1540–1603), known as the father of algebra.

4 Conic sections, quadratic forms and definite matrices

1 This section draws heavily on Tranter (1953, Chapter 17).
2 The concept of matrix rank will be examined in more detail in Section 5.4.6.
3 The Cholesky decomposition or factorization is named after the French military officer and

mathematician Major André-Louis Cholesky (1875–1918). Cholesky’s method was published
posthumously in 1924 by one of his fellow officers, Cholesky himself having been killed in World
War I.

4 For further details of the LU-decomposition see, for example, Anton and Rorres (2011, p. 480).

5 Vectors and vector spaces

1 The similarity to a 1× 2 or 2× 1 matrix is obvious.
2 Infinite-dimensional vector spaces will be mentioned again in, for example, Sections 6.2, 9.6 and

13.4.
3 Recall the earlier definitions of row rank and column rank in Definition 4.4.2.
4 The Gram–Schmidt process is named after the Danish mathematician Jorgen Pedersen Gram (1850–

1916) and the Estonian-born mathematician Erhard Schmidt (1876–1959), although, as in many
such cases, others had used the process before them.

5 An orthogonal matrix was defined in Chapter 1 and first used in Chapter 3 in our treatment of
eigenvalues, eigenvectors and diagonalization.

6 The specification of a scalar product in Definition 5.4.12 has been generalized by relaxing the sym-
metry and/or non-negativity conditions. For example, the Minkowski inner product introduced by
the Lithuanian-born mathematician Hermann Minkowski (1864–1909) and used in relativity does
not satisfy the non-negativity condition. All scalar products considered in this book will, however,
be both symmetric and non-negative.

6 Linear transformations

1 It should be noted, however, that the vector space of differentiable functions is different from the
vector space of integrable functions: not all differentiable functions are integrable, and not all inte-
grable functions are differentiable. The vector space of functions that are both differentiable and
integrable is another, distinct vector space.
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7 Foundations for vector calculus

1 Note that the context makes it clear that (a1,a2) denotes a 2-vector but that (a1,b1) denotes an open
interval in the real line, and so on.

2 Some writers, e.g. Simmons (1963) and Spivak (1965), simply use the words “cube” and “rectangle”
in higher dimensions where we use “hypercube” and “hyperrectangle”.

3 The Cauchy–Schwarz inequality is named after the French mathematician Augustin Louis Cauchy
(1789–1857) and the German mathematician Karl Hermann Amandus Schwarz (1843–1921), who
rediscovered it. The theorem to which we refer as Young’s theorem (Theorem 9.7.2) is also
sometimes known as Schwarz’s theorem; see note 10 of Chapter 9.

4 This theorem is named after the German mathematician Heinrich Eduard Heine (1821–1881) and
the Russian-born mathematician Georg Ferdinand Ludwig Phillip Cantor (1845–1918).

5 Some writers (e.g. Berge (1997)) use the term semi-continuous correspondence rather than the
term hemi-continuous correspondence; Hildenbrand and Kirman (1988, pp. 260–1) argue in favour
of the latter term.

6 For the purposes of this book, we are interested in the continuity properties of functions between
real vector spaces only. These properties all generalize elegantly to general metric and topological
spaces, which are the most natural and general setting for continuity. For further reading on various
alternative but equivalent definitions of continuity, see Simmons (1963, p. 76). For further reading
on continuity of correspondences, the interested reader is referred to de la Fuente (2000, Chapter 2)
or Hildenbrand and Kirman (1988, Mathematical Appendix III). Hildenbrand (1974) gives a more
complete treatment of the subject.

8 Difference equations

1 The polynomials in the lag operator that appear in properties 7, 8 and 9 are important in certain
applications, as we shall see later. The sums of the infinite series that appear in properties 8 and 9
should be familiar results; but see equation (8.39) and Exercise 8.5.

2 See, for example, the discussion of the efficient markets hypothesis and the random walk in
Section 16.6.

3 The idea of a unit eigenvalue or unit root of the characteristic polynomial associated with a given
square matrix was referred to in Section 3.4. Unit roots may also arise from solution of a related
characteristic equation associated with a form of higher-order difference equation, which will be
introduced in Section 8.4. Unit roots, and the concept of co-integration, will be referred to again in
Section 14.4.1.

4 Schur’s theorem is named after the Russian-born mathematician Issai Schur (1875–1941).
5 This proof is based on a proof by Barankin (1945). For an alternative proof, see Woods (1978,

Theorem 67).

9 Vector calculus

1 The Jacobian matrix is named after the Prussian-born mathematician Carl Gustav Jacob Jacobi
(1804–1851), who wrote a long memoir devoted to the subject in 1841.

2 The Hessian matrix is named after the Prussian-born mathematician Ludwig Otto Hesse (1811–
1874), a student of Jacobi.

3 Leibniz’s law and Leibniz’s integral rule (Theorems 9.7.4 and 9.7.5) take their names from the
German-born mathematician Gottfried Wilhelm Leibniz (1646–1716).

4 According to Neary (1997, p. 102), the Cobb–Douglas function was first developed by the Swedish
mathematician and economist Johan Gustaf Knut Wicksell (1851–1926), but it takes its name from
the American economists Charles Wiggans Cobb (1875–1949) and Senator Paul Howard Douglas
(1892–1976), who first tested it against statistical evidence.

5 Some writers define the directional derivative of f at x′ only in the direction of a unit vector, for
example, u≡ (x− x′)/‖x− x′‖, as f ′(x′)u. Definition 9.5.1 extends this definition to cover any u,
even if ‖u‖ = 1.

6 Taylor’s theorem and Taylor’s expansion take their names from the English mathematician Brook
Taylor (1685–1731), who first mentioned the result now named after him in a letter written in 1712.

7 This theorem is named after the French mathematician Michel Rolle (1652–1719), who published
it in 1691.
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8 Maclaurin’s series and the associated approximation are named after the Scottish mathematician
Colin Maclaurin (1698–1746), who used it in Maclaurin (1742).

9 The standard reference for this theorem, credited to the Italian mathematician Guido Fubini (1879–
1943), is to Fubini’s posthumously published selected works, where the result appears in Italian
under the title “Sugli integrali multipli” (Fubini, 1958, pp. 243–9).

10 For the history of this theorem, see Higgins (1940). The French mathematician Alexis Claude
Clairaut (1713–1765) appears to have been the first person to attempt to establish equality of mixed
partials; the German mathematician Karl Hermann Amandus Schwarz (1843–1921), who was also
jointly responsible – see note 3 of Chapter 7 – for the Cauchy–Schwarz inequality (7.29), pro-
duced the first acceptable proof; and the English mathematician William Henry Young (1863–1942)
provided a weaker set of sufficient conditions.

11 The integrand is undefined at y = 0; it is assumed to take the value 1, which is its limit as y → 0
(see p. 160).

10 Convexity and optimization

1 This proof is based on Roberts and Varberg (1973, p. 98).
2 Lagrange multipliers and the Lagrangian are named after the Italian-born mathematician Joseph-

Louis Lagrange (1736–1813).
3 More precisely, the constraints in the Lagrange multiplier conditions could be described as locally

linearly independent.
4 As defined in Notation 1.2.3, a round-bracketed row of numbers separated by commas is used to

denote a column vector.
5 Some writers, e.g. de la Fuente (2000, Chapter 7), call the envelope function the value function, a

term usually reserved for the equivalent in dynamic optimization, which we do not consider in this
book. Note also that, while we generally denote functions, including vector-valued functions, by
italic letters, f , g, etc., we will generally denote the optimal response function by the same boldface
letter (x) used to denote the vector of choice variables. In the applications, we will also sometimes
use a boldface letter to denote a function defined in terms of an optimal response function, for
example an excess demand function.

6 Kuhn–Tucker multipliers are named after the Canadian mathematician Albert William Tucker
(1905–1995) and his American graduate student Harold William Kuhn (b. 1925). Kjeldsen (2000)
and others argue, however, that credit for the result should go to Karush (1939), whose work
pre-dated that of Kuhn and Tucker (1950).

7 By calling G a non-empty, compact-valued correspondence, we mean that the set G(α) is a non-
empty and compact set for all α ∈R

q .
8 The version of the theorem of the maximum given (without proof) by Varian (1992, p. 506) assumes

that the objective function has “a compact range”. This restriction is impracticable for the principal
applications in economics, which are to the unbounded utility functions of consumers with strongly
monotonic preferences; see Section 12.3.

11 Macroeconomic applications

1 Woods (1978) analyses the properties of such matrices in considerable detail.

12 Single-period choice under certainty

1 While all trading takes place simultaneously in the model, consumption can be spread over many
periods.

2 This function takes its name from the English economist and Nobel Laureate Sir John Richard
Nicholas Stone (1913–1991) and the Irish statistician Robert Charles (Roy) Geary (1896–1983). For
a full history of how this utility function came to be labelled “Stone–Geary”, see Neary (1997). The
function was indeed mentioned by Geary (1950) and Stone (1954), but both Geary and Samuelson
(1947) mentioned it only in comments on an earlier publication by Klein and Rubin (1947), who
perhaps deserve some of the credit.

3 The Japanese economist Ken-Ichi Inada (1925–2002) set out similar conditions in a different
context, for a production function (Inada, 1963).
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4 The Walrasian auctioneer, Walrasian equilibrium and Walras’s law, all introduced in this chapter,
are named after the French mathematical economist Marie-Esprit-Léon Walras (1834–1910).

5 The Marshallian demand function takes its name from the English economist Alfred Marshall
(1842–1924) who popularized its use.

6 A real-world example of a good with a negative price is an elderly motor vehicle for which the cost
of environmentally acceptable scrappage may become so large as to render the market value of the
vehicle negative.

7 Hicksian demand functions are named after the English economist Sir John Richard Hicks (1904–
1989).

8 This version of Shephard’s lemma and an equivalent result in production theory are named after
the American mathematician, economist and engineer Ronald William Shephard (1912–1982). The
result in production theory appeared in Shephard (1953). Takayama (1994, p. 135) suggests that
Theorem 12.4.3 should be known as the Shephard–McKenzie lemma, as the equivalent result in
consumer theory first appeared in McKenzie (1957, p. 188). Similar results were known before
1953, and Shephard’s real contribution was to show that they could be derived without reference to
the underlying utility function or production function. Subsequently, the simpler proof used here,
based on the envelope theorem, has become the more popular approach to Shephard’s lemma.

9 Roy’s identity is named after the French economist René François Joseph Roy (1894–1977) (Roy,
1947).

10 These results were first published, in Italian (Slutsky, 1915), by the Russian mathematical statisti-
cian and economist Evgenii Evgen’evich Slutsky (or Slutskii) (1880–1948). According to Barnett
(2004, p. 6), Slutsky’s work on consumer behaviour was first brought to the attention of English-
speaking economists by Allen (1936), who had independently developed some of the same ideas,
many years after Slutsky, but before discovering the latter’s work.

11 Giffen goods are named after the Scottish statistician and economist Sir Robert Giffen (1837–1910).
As noted by Mason (1989), Alfred Marshall, writing in 1895, attributed the possibility of such goods
to Giffen, but exhaustive subsequent research has failed to identify any passage in Giffen’s writings
where he pointed this out.

12 Brouwer’s fixed-point theorem takes its name from the Dutch mathematician Luitzen Egbertus Jan
Brouwer (1881–1966).

13 Kakutani’s fixed-point theorem is named after the Japanese mathematician Shizuo Kakutani (1911–
2004).

14 The no-arbitrage principle is also known as the no-free-lunch principle or the law of one price.
15 For this and similar examples, the three-letter alphabetic codes for currencies set out in the

relevant international standard (ISO 4217:2008) published by the International Organization for
Standardization (ISO) will be used. EUR denotes the euro and GBP the pound sterling.

16 The concept of the Edgeworth box was introduced (Edgeworth, 1881) by the Irish economist and
statistician Francis Ysidro Edgeworth (1845–1926). It was later popularized (Bowley, 1924) by the
English economist and statistician Sir Arthur Lyon Bowley (1869–1957), whose name is sometimes
appended to the concept.

17 Pareto optimality, Pareto dominance and Pareto efficiency are all called after the French-born Italian
engineer, sociologist, economist, and philosopher, Vilfredo Federico Damaso Pareto (1848–1923).

18 For an equivalent discussion in the context of two-period choice under uncertainty, see Huang and
Litzenberger (1988, Chapter 5).

13 Probability theory

1 Bernoulli trials are named after Jacob Bernoulli (1654–1705), the eldest of a dynasty of Swiss
mathematicians.

2 This distribution was introduced by and named after the French mathematician, geometer and
physicist Siméon-Denis Poisson (1781–1840).

3 The American Kenneth Joseph Arrow (b. 1921) and the French-born Gerard Debreu (1921–2004)
were separately awarded the Nobel Memorial Prize in Economic Sciences in 1972 and 1983,
respectively, for their work in general equilibrium theory. Debreu’s contributions have already been
cited in Chapter 12. Another of Arrow’s contributions to the economics of uncertainty, which are
summarized by Greenberg and Lowrie (2010), will be mentioned in Section 16.5.
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4 Note the similarity to the arguments about linear independence of solutions to difference equations
in Section 8.4.2.

5 It might be argued that, rather than denoting the typical element merely by a, we should denote it
by ã, since it is a random variable, or by ã, since its realizations are real numbers, not vectors.

6 For more on infinite-dimensional vector spaces of random variables, the interested reader is referred
to Billingsley (1995, Section 18).

7 This is not the same as assuming statistical independence, except in special cases, such as bivariate
normality; see Section 13.7.

8 In the special case in which x̃ and ỹ are bivariate normally distributed, the conditional mean of the
disturbance term is zero; see Section 13.7.

9 These results can be traced to the work of Charles M. Stein (b. 1920), in particular Stein (1973) and
Stein (1981). The lemma was first used and proved indirectly in the finance literature by Rubinstein
(1973), whose work was contemporaneous with but independent of Stein’s. Ingersoll (1987, pp. 13–
14) also proves the result without naming it Stein’s lemma. The lemma is also used by Huang and
Litzenberger (1988, p. 101 and p. 116) and by Cochrane (2005, p. 163). A multivariate extension of
Stein’s lemma appears in Balvers and Huang (2009, Appendix B), where it is called Stein’s extended
lemma.

10 This result was first proved (Jensen, 1906) by the Danish mathematician Johan Ludwig William
Valdemar Jensen (1859–1925).

11 Jensen’s original paper does not appear to acknowledge that his proof works only for non-zero yi .
12 Siegel’s paradox takes its name from the American financial economist Jeremy J. Siegel (b. 1945),

who drew attention to the phenomenon during a period of intense research into the determination
of exchange rates in the aftermath of the collapse in 1971 of the Bretton Woods system of fixed
exchange rates (Siegel, 1972).

14 Quadratic programming and econometric applications

1 It should be noted that, in econometrics texts, the problem is often formulated using different
notation and β̂ is used to denote the OLS solution.

2 A possible fix is to let the Kuhn–Tucker multipliers be defined by λ∗ ≡max{0m,−2(GA−1G�)−1α},
where the max operator denotes component-by-component maximization. The effect of this is to
knock out the non-binding constraints (those with negative Lagrange multipliers) from the original
problem and the subsequent analysis.

3 The Gauss–Markov theorem is named after the German mathematician Johann Carl Friedrich Gauss
(1777–1855), already mentioned in note 3 of Chapter 2, and the later Russian mathematician Andrei
Andreyevich Markov (1856–1922). Gauss published the result in the 1820s and Markov almost a
century later. Each name was associated separately with the theorem until the 1950s, since when the
joint attribution has become standard.

4 The adaptation of difference equations to time-series econometric models is dealt with well by
Enders (2010, Chapter 1).

5 With φ0=0, such a process is often used to model autocorrelation in the stochastic disturbance term
in single-equation econometric (regression) models.

6 Given T consecutive values of a random variable, ỹt , generated by a weakly stationary AR(1) pro-
cess, it is relatively easy to show that the variance–autocovariance matrix E[(ỹ− E[ỹ])(ỹ− E[ỹ])�],
where ỹ= (ỹ1, ỹ2, . . . , ỹT ), is a band matrix. It follows that the autocorrelation matrix is also a band
matrix; see Exercise 14.12.

7 See Section 16.6.
8 Equation (14.93) is essentially the characteristic equation used in the solution of the eigenvalue

problem in Chapter 3. Indeed, as the roots of �1(L) are the reciprocals of the eigenvalues of the
matrix �1, an equivalent condition for stationarity is that the eigenvalues of �1 must lie inside the
unit circle. For the restricted VAR process currently under consideration, the eigenvalues are φ111

and φ122 .
9 Details of the solution of (14.98) for the general VAR(p) process may be found in Hamilton (1994,

pp. 264–6).
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15 Multi-period choice under certainty

1 Good background reading for this section is Jacques (2009, Chapter 3) or Hirshleifer (1970, pp. 41–
4).

2 These conditions are discussed in Hirshleifer (1970, pp. 51–6).
3 Note that the analysis is essentially the same whether t starts at 0 or at 1.
4 A spline is a special function defined piecewise by polynomials and widely used in numerical

analysis.
5 Good background reading for this section is Elton et al. (2010, pp. 514–23).
6 One notable exception was in the run-up to European Monetary Union, as the interest rates for the

various participating currencies converged.
7 Hull (2009, Sections 4.5–4.7) and Elton et al. (2010, Chapter 22) both cover duration.

16 Single-period choice under uncertainty

1 The remainder of Section 16.3 draws on Hirshleifer (1970, Chapter 8, Section C), Fama and Miller
(1972, Chapter 4, Section III.C) and Huang and Litzenberger (1988, Chapter 5).

2 The VNM utility function was just one of countless contributions to the advancement of knowledge
in fields ranging from statistics to computer science by the Hungarian polymath John von Neumann
(1903–1957), working on this occasion (von Neumann and Morgenstern, 1944) with a German-
born co-author, Oskar Morgenstern (1902–1977). For background information, see Leonard (1995,
2010). For von Neumann’s other contributions, see Heims (1980).

3 von Neumann and Morgenstern (1944) appear to have named this axiom after a similar axiom in
pure mathematics, which in turn is named after the ancient mathematician Archimedes of Syra-
cuse (287–212BC). They say the axiom expresses what is known in geometrical axiomatics as the
Archimedean property.

4 The French economist and Nobel Laureate Maurice Félix Charles Allais (1911–2010) was the first
to propose this paradox (Allais, 1953, p. 527).

5 Machina (1982) has developed a theory of choice under uncertainty without the substitution axiom.
He shows that, while preferences no longer have an expected-utility representation, his alternative
theory can explain the Allais paradox and similar phenomena, as well as generating results similar to
many of those derived in the remainder of this book. One advantage of the expected-utility approach
is that the mathematics involved is much simpler than that required for Machina’s approach.

6 The Arrow–Pratt coefficients are named after the American economist Kenneth Joseph Arrow
(b. 1921), already mentioned in note 3 of Chapter 13, and the American mathematician and
statistician John Winsor Pratt (b. 1931). They developed their ideas independently but almost
contemporaneously (Arrow, 1965; Pratt, 1964).

7 Note that, in the case of narrow-power utility, u ′(w)→ 1/w as B → 1, so that u(w)→ lnw. In
other words, the logarithmic utility function, and its risk aversion measures, are the limiting case of
narrow-power utility as B → 1.

8 This result does not conflict with the obvious symmetry of the model, for if we relabelled the cur-
rencies, or equivalently rotated the Edgeworth box through 90◦ and then took a mirror image, then
individual 1’s indifference curves would have the steeper slopes.

9 Chamberlain (1983) has determined more precisely the set of probability distributions of asset
returns yielding mean–variance utility, of which multivariate normality is a special case.

10 The Latin phrase ceteris paribus is frequently used by economists as a shorthand for the assumption
that all other variables are assumed to be held constant – in this case, that all the central moments
apart from the nth are held constant.

11 Traditionally, mean–variance indifference curves in μσ 2 space are depicted as if the mean is an
increasing and convex function of the variance (or, equivalently, as if the variance is an increasing
and concave function of the mean). However, while Feldstein (1969) showed that, when utility is
logarithmic and wealth is lognormally distributed, then the investor has mean–variance preferences
and indifference curves are upward sloping, he also showed that the indifference curves change
from convex to concave when they cross the line μ=√2σ . Thus, without restricting the probability
distribution of wealth, the common trend of drawing such indifference curves as convex everywhere
is fallacious.

12 See, for example, Campbell and Hentschel (1992).
13 See Waldron (1991).
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17 Portfolio theory

1 As b depends on other parameters of the problem besides W0, the elasticity could also have been
written as (W0/b)∂b/∂W0.

2 See Waldron (1991).
3 We will prove later that these tangency points themselves lie on a line that is itself orthogonal (in a

sense to be defined) to the iso-mean lines.
4 The mathematics of the portfolio frontier was initially developed (without the use of matrix nota-

tion!) by the American economist Harry Max Markowitz (b. 1927) (Markowitz, 1952). Markowitz
shared the 1990 Nobel Memorial Prize in Economic Sciences for his pioneering work in the theory
of financial economics.

5 Chamberlain (1983) and Huang and Litzenberger (1988) have fully generalized these distributional
conditions, but their results are beyond the scope of this book. Other recommended background
reading for this section is Merton (1972), Roll (1977), Markowitz (1991) and Markowitz and Todd
(2000).

6 The American economist William Forsyth Sharpe (b. 1934) shared the 1990 Nobel Memorial
Prize in Economic Sciences for his pioneering work in the theory of financial economics. Sharpe
(1964) developed the CAPM more or less independently from, but contemporaneously with, another
American economist, John Virgil Lintner, Jr. (1916–1983) (Lintner, 1965).
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�, see multiplication operator
�, see summation operator
β, see beta
2-space, 88
3-space, 88

absolute price, 300
absolute risk aversion

Arrow–Pratt coefficient, 432
constant, 432, 453
decreasing, 432, 453
global, 485
hyperbolic, 455
increasing, 432, 453

active constraint, 270, see also binding constraint
actuarially fair gamble, 424, 429, 431
addition

in field, 101
in vector space, 102
of matrices, see matrix, addition
of vectors, see vector, addition

adjoint, 36
adjugate, 36
affine

combination, 143, 144–147, 265, 462, 465,
466, 473

function, see function, affine
hull, 145, 147
hyperplane, 148, 157
set, 144, 149, 183, 245
transformation, 425, 429, 431, 432
utility, 428

agent, 299
aggregate consumption, 420
Allais paradox, 426
Allais, Maurice Félix Charles (1911–2010), 499

allocation, 316
feasible, 316
market-clearing, 317

analytical geometry, 90
angle between vectors, 94
arbitrage opportunity, 322, 342, 363, 410, 434
Archimedean axiom, 425, 427
Archimedes of Syracuse (287–212BC), 499
argmax, 205
argmin, 205
argument of function, 128
Arrow, Kenneth Joseph (b. 1921), 497, 499
Arrow–Debreu security, 340, 345, 416
Arrow–Pratt coefficient

of absolute risk aversion, 432
of relative risk aversion, 432

ask price, 340
asset, 338

risk-free, 338, 448, 473
risky, 338, 415, 448

asymptotes
of hyperbola, 75

asymptotic stability, 187, 192
augmented matrix, 46
autocorrelation, 383, 385, 498
autocovariance, 383
autoregressive process, 58

first-order, 384
pth-order, 386
second-order, 385
vector, 386

impulse response analysis, 389
mean, 388
stationary, 388
variance, 389

average, 347
axioms

Archimedean, 425, 427



February 12, 2011 11:1 Pinched Crown A Page-506 HarrWald

506 Index

convexity, 305, 309
expected-utility, 425
field, 101
greed, 303
independence, 425
local non-satiation, 303, see also local

non-satiation
metric space, 155
preference relations

under certainty, 301–307
under uncertainty, 425

probability space, 335
strict convexity, 306, 321
strong monotonicity, 303
substitution, 425–427
sure-thing principle, 425
topological space, 157
vector space, 102

axis
of ellipse

major, 74
minor, 74

of parabola, 72

backer, 341, 343
bads, 308
ball, 151

closed, 152
open, 152, 302

in R
n , 152

in metric space, 156
barter, 300, 341
basis, 108

orthogonal, 112
orthonormal, 112, 115
standard, 108, 139

Bernoulli trial, 336
Bernoulli, Jacob (1654–1705), 497
bet, 341
beta, 349, 350, 408

market, 481
betting, 341–343, 432, 435

exchange, 343
exotic, 342, 343
fixed-odds, 341, 342
index, 339
pari-mutuel, 342, 360, 361
pool, 342
sports, 355
spread, 339
tote, 342

bi-linear function, 123
biased die, 336
bid price, 340
bid–ask spread, 340, 343, 404
bijective function, xxi
binary relation, xxii, 300, 302

binding constraint, 270, 274
binomial distribution, 336
bliss point, 304, 322, 442, 486
bond, 338, 401

benchmark, 404
console, 401
convexity, 409
coupon-bearing, 402
ex-dividend date, 403
maturity date, 401
par value, 401
price

clean, 403
dealing, 403, 408
dirty, 403

pure discount, 401, 402
redemption value, 401
volatility, 409
zero-coupon, 401

duration, 407
bookmaker, 341
boundary point, 156
bounded set, 156
Bowley, Arthur Lyon (1869–1957), 497
Bretton Woods, 488
Brouwer’s fixed-point theorem, 320, 321
Brouwer, Luitzen Egbertus Jan (1881–1966), 497
budget constraint, 305, 307
budget hyperplane, 307
budget set, 305, 307, see also consumption set

calculus
univariate, 131
vector, 202

Cantor, Georg (1845–1918), 495
capital asset pricing model (CAPM), 435, 479,

481–486
equation, 481
traditional, 482
zero-beta, 481

capital market line, 482
cardinality, xxiii
Cartesian coordinates, xx
Cartesian plane, 88
Cartesian product, xx, 152
Cauchy, Augustin Louis (1789–1857), 360, 495
Cauchy–Schwarz inequality, 155, 156, 360, 495,

496
chain rule, 207, 208, 212, 231, 235, 352, 451
characteristic equation, 54, 188, 196

of difference equation, 182
characteristic polynomial, 54, 59, 183
characteristic value, 53
characteristic vector, 53
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choice
under certainty

multi-period, 394–410
single-period, 299–331

under uncertainty
single-period, 415–442

choice variable, 268
Cholesky decomposition, 83
Cholesky factorization, 83
Cholesky, André-Louis (1875–1918), 494
circle, 71, 152, 214, 458
Clairaut’s theorem, 229
Clairaut, Alexis Claude (1713–1765), 496
classical probability, 335
closed set, 157
closure, 102
co-domain, xxi, 128, 133
co-factor, 35

alien, 36
co-factor expansion, 34, 35, 153
co-integration, 58
Cobb, Charles Wiggans (1875–1949), 495
Cobb–Douglas function, 212
cobweb model, 169
codimension, 149
coefficient of determination, 377
coin

fair, 335, 416
heads, 335
tails, 335
toss, 335, 416

collinearity, 109
column rank, 78, 110
column space, 110, 134
column vector, 6, 15, 112, 138, 204, 215, 341,

380
combination, xxiii

affine, see affine combination
convex, see convex combination
linear, see linear combination

commitment date, 401
commodity, 299
common ratio, xx
compact set, 157, 496
comparative statics, 268
compensated demand function, 310

properties, 311
competitive equilibrium, 317, 319, 326–328, 330
complement, xx, 156, 157
complete markets, 328
completeness

of binary relation, xxii
of preference relation, 301

complex security, 341, 416
composition of functions, xxi

compounding
continuous, 396
discrete, 395

concave function, 244, 245, 247, 430
condition number, 67
conic section, 71, 154
conjugate, xxi, 54

of a matrix, 63
of a vector, 63

console, 401
constant elasticity of substitution (CES), 282,

305
constraint, 262

binding, 274, 276
just binding, 271
non-binding, 271, 276
strictly binding, 271

constraint function, 261, 270
constraint set, 262, 278
consumer, 299
Consumer Price Index, 169, 394
consumer theory, xxii, 162, 246, 278, 279, 301,

497
consumer’s problem, 307–309

dual problem, 310
consumption

bundle, 300, 302
function, 8, 290
plan, 300
set, 300, 303, 307, 335
vector, 300, 302, 304, 309, 311, 312, 317, 324

contest, 341
continuity

of correspondence, 159, 162
of function, 159
of preference relation, 302
uniform, 160

continuous correspondence, 162
continuous function, 159
continuous time, 167
contract, 338
contract curve, 324, 330, 439
control variable, 268
convex

combination, 147, 250, 262, 265, 310, 311
function, 148, 214, 244, 247, 430
hull, 147, 150
set, 147, 148, 158

convexity
of bond, 409
of function, 244
of preferences, 305

coordinate
matrix, 119
system, 90, 117
transformation, 120
vector, 119
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coordinates
Cartesian, xx
of vector, 119

correlation, 156, 348
correlation matrix, 349
correspondence, 162, 496

continuous, 162
demand, 306
graph, 158

cosine, 156
coupon, 401
covariance, 348

as scalar product, 350
population, 354
sample, 354

covered interest rate parity, 436
Cramer’s rule, 39
Cramer’s theorem, 39
Cramer, Gabriel (1704–1752), 494
cube, 495
cumulative distribution function (cdf), 336

joint, 345
marginal, 346

currency, 300, see also numeraire currency
curvature, 206
curve, 154

area under, 225

damped oscillations, 187
de Moivre’s theorem, xxi, 184, 493
de Moivre, Abraham (1667–1754), 493
Debreu, Gerard (1921–2004), 497
definite matrix, see negative definite matrix or

positive definite matrix
demand

aggregate, 317
aggregate excess, 317, 321
excess, 300
net, 300

demand correspondence, 306
Marshallian, 308, 309

demand function, 306
compensated, 310

properties, 311
estimation, 7
Hicksian, 310

properties, 311
Marshallian, 308, 315

properties, 309
derivative

directional, 213, 252
partial, 203, 229
total, 203

Descartes, René (1596–1650), 493

determinant, xxiii, 32, 33, 35, 39, 59, 66, 80,
189, 388

of a product, 49
of definite matrix, 81
of diagonal matrix, 66
of triangular matrix, 37

determinantal equation, 54
diagonal matrix, 19, 66, 81, 82, 141, 389, 390
diagonalizable matrix, 59
diagonalization, 59, 60

orthogonal, 62
die

fair, 335
throw, 335

difference equation, 167, 169
asymptotic stability, 187
autonomous, 170, 172, 181, 184
characteristic equation, 182
classification, 170
dynamic behaviour, 174, 187
first-order, 172
general solution, 171
generalizations, 188
higher-order, 181
homogeneous, 170, 181, 187, 191
initial condition, 171
initial value, 181
linear, 170, 172, 181, 184
non-autonomous, 170, 179
non-homogeneous, 170

associated homogeneous equation, 182
nonlinear, 170
order, 170
particular solution, 171, 181
second-order, 184
solution

linear independence, 185
steady-state, 171, 175, 181
validity, 185

stochastic, 382–390
systems, 189

first-order, 190
homogeneous, 191
scalar approach, 194

difference operator, 168, 189
first, 168
p-period, 169

differentiability, 204
differentiation

and expectation, 350
implicit, 473
matrix notation, 205
operator, 131
order, 229
single-variable, xxii
under integral sign, 231, 232
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dimension
of affine set, 144
of matrix, 6
of vector space, 110, 344

dimensionless quantity, 348, 395
direct product, 24
direct sum, 124, 149, 465
directional derivative, 213
directrix, 71
discontinuity, 160
discontinuous function, 160
discount factor, 278, 398, 399, 402, 403

equilibrium, 400
estimation, 404
personal, 400
stochastic, 452

discount rate, 398
maturity-varying, 398
time-varying, 398

discounted cash flow valuation, 399
discrete time, 167
disjoint sets, xx
distance

between complex numbers, 166
between vectors, 94, 101
in metric space, 155

distributive law, 15, 97, 101, 102
disturbance term, 349
dividend

on bond, 401, 403
pari-mutuel, 342

dividend uncertainty, 343
domain, xxi, 128, 133, 159–161, 204, 212–214,

244, 247, 248, 252, 257, 259, 320, 425
dot product, 94, 123, 155
Douglas, Paul Howard (1892–1976), 495
duality, 278
duality relations, 311
duration, 407, 406–410

matching, 406
dynamic multiplier, 292, 293, 389

eccentricity, 71
economy, 299

production, 299, 300
pure exchange, 299, 300, 321

Edgeworth box, 324, 330, 437–440
Edgeworth, Francis Ysidro (1845–1926), 497
Edgeworth-Bowley box, see Edgeworth box
efficiency

allocative, 325
computational, 32, 34, 37, 99, 174, 325
informational, 325, 361, 365, 433
mean–variance, 325, 472, 473, 475, 482, 484,

486–488
Pareto, 325, 330, 456, 497
statistical, 325, 379

efficient markets hypothesis (EMH), 58, 323,
365, 385, 434, 435, 495

eigenequation, 53, 191
generalized, 84

eigenspace, 127
eigenvalue, 53, 59, 191

generalized, 84
multiplicity, 65

eigenvector, 53, 59, 191
generalized, 84

elastic function, 212
elasticity, 211

interest rate, 406, 407, 408
of demand, 453
wealth, 453

elementary matrix, 47
elementary product, 32
elementary row operation, 44
elementary state-contingent claim, 416
ellipse, 71, 73, 458, 470

focus, 73
empty set, xx, 157
endogenous variable, 9, 268, 290–293
endowment, 299

aggregate, 317
perturbation, 327

envelope function, 268, 269–271, 277, 310, 328,
379, 457, 469

envelope theorem, 268, 269, 271
epsilon–delta argument, 154
equilibrium, 175, 307, 330, 417

competitive, 317, 319, 326–328
existence, 321
multi-currency, 437
multiplier, 292, 389
prices, 321
Walrasian, 317

equity, 408
equivalence class, 159
equivalence relation, xxii, 159
estimate, 354
estimation, 354

least squares, 371
maximum likelihood, 371
method of moments, 371

estimator, 354
best, 379
best linear unbiased (BLUE), 379
linear, 379
unbiased, 354

Euclid of Alexandria (c.325–c.265BC), 493
Euclidean distance, 101
Euclidean dot product, 101
Euclidean norm, 93, 101, 493
Euclidean plane, 88, 125
Euclidean space, xx, 101, 118, 123, 148, 149,

156, 346, 373, 449
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Euclidean vector space, 102, 128, 345
event, 335, 341
ex-dividend date, 403
exacta, 342
excess demand, 300
excess return, 450
exogenous variable, 9, 268, 293
expectation, 347

conditional, 348
mathematical, 347
rational, 347
statistical, 347

expectation operator, 131, 347, 350, 451
linearity, 354
risk-neutral, 435
unconditional, 363

expected utility, 159
expected-utility function, 423, 425

affine, 428, 431
concave, 430
convex, 430
existence, 427, 428
extended-power, 428, 455
functional forms, 428
logarithmic, 428, 455
narrow-power, 428, 433
negative-exponential, 428, 433, 455
quadratic, 428, 440, 442

expected-utility preferences, 425
expected-utility property, 424
expected-utility representation, 424
expenditure function, 270, 310

properties, 312
expiry date, 340
explanatory variable, 372
exports, 290
extended-power utility, 428, 455

factor analysis, 379
factorial, xx
feasible set, 262, 278
field, 101
final form, 292
financial instrument, 338
firm, 299
fixed point

of correspondence, 321
of function, 320

fixed-point theorems, 154, 320–321
Brouwer’s, 320
Kakutani’s, 321

flow, 394
focus, 71
forecast, 355
forecasting, 354
forward rate, 401
forward trading, 340

frontier portfolio, 457
Fubini’s theorem, 162, 225–234, 352
Fubini, Guido (1879–1943), 496
function, xxi

affine, 145, 146, 148, 245, 256, 270, 431
analytic, 222
argument, 128
bi-linear, 123, 349
component, 128
concave, 244, 245, 252, 430
constraint, 261, 270
continuous, 159
continuously differentiable (C1), 204
convex, 148, 214, 244, 253
demand, 306
differentiable, 204
discontinuous, 160
elastic, 212
envelope, 268, 269–271, 277, 328, 379, 457,

469
expected-utility, 423, 425
expenditure, 270, 310

properties, 312
graph, 158
indirect utility, 270, 309
inelastic, 212
measurable, 335, 345
multivalued, 162
objective, 258, 261, 263, 268, 270
of several variables, 128
optimal response, 268
probability, 335, 336
probability density, 337
pseudo-concave, 256, 264
pseudo-convex, 256, 278
quasi-concave, 253, 264
quasi-convex, 256
restriction, 213
space, see space, function
strictly concave, 247, 252
strictly convex, 247
strictly quasi-concave, 256
strictly quasi-convex, 256
uniformly continuous, 160, 161
utility, 159, 301

existence, 302–304
value, 496
vector-valued, 128

function of a function, xxi
function space, 160
fundamental identities, 311
fundamental theorem of algebra, xxi, 54
fundamental theorem of calculus, 163, 230, 231,

233, 235, 251, 337, 346, 352
futures trading, 340
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Gauss, Johann Carl Friedrich (1777–1855), 494,
498

Gauss–Jordan elimination, 49
Gauss–Markov theorem, 379
Gaussian elimination, 49
Geary, Robert Charles (1896–1983), 496
general equilibrium theory, 316–323

multi-period, 400–401
generalized law of the mean, 219
generalized least squares (GLS), 379, 380
generating set, 106
geometric mean, 360, 370
geometric progression, see geometric series
geometric series, xx

sum, xx
matrix form, 193

geometry
analytical, 90
vector, 88

Giffen good, 315
Giffen, Robert (1837–1910), 497
goods, 299

Giffen, 315
inferior, 309, 316
normal, 309, 316

gradient vector, 204
Gram, Jorgen Pedersen (1850–1916), 494
Gram–Schmidt process, 114, 115
graph, 158
greatest lower bound, see infimum
greed, 303
Gross National Product, 394
gross return, 450

half-space, 157, 158, 307
handicap, 368
hedge portfolio, see zero-cost portfolio
Heine, Eduard (1821–1881), 495
Heine–Cantor theorem, 161, 235
hemi-continuity, 278

lower, 162
upper, 162

Hesse, Ludwig Otto (1811–1874), 495
Hessian matrix, 204, 205, 229, 247, 252,

259–261, 270, 314, 356, 358, 451
Hicks, John Richard (1904–1989), 497
Hicksian demand function, 310

properties, 311
homogeneity

of degree one, see linearly homogeneous
function

of degree zero, 309, 311, 329
homogeneous function, xxii
homogeneous system of equations, 10
horse racing, 339, 342, 343
household, 299
hyperbola, 71, 74

hypercube, 152
hyperparallelepiped, 151, 152
hyperplane, 6

budget, 307
linear, 149
portfolio weight, 450
separating, 158
supporting, 157
tangent, 214

hyperrectangle, 152, 161
hypersphere, 151
hypersurface, 154

identity
in field, 101
in vector space, 102
matrix

additive, 15
multiplicative, 16

symbol (≡), xx
transformation, 129

impact multiplier, 291, 293, 389
implicit function theorem, 236, 263, 275
imports, 290
impulse response function, 389

orthogonalized, 390
inactive constraint, 270, see also non-binding

constraint
Inada conditions, 306, 307, 308
Inada, Ken-Ichi (1925–2002), 496
incomplete market, 328, 456
indefinite matrix, 77, 260
independence

linear, see linear independence
statistical, 346

independence axiom, 425
independent and identically distributed (iid), 354
index betting, 339
indifference curve, 158, 159, 212, 271, 301, 302,

306, 315, 324, 438
indifference map, 159
indifference relation, 301
indirect utility function, 270, 309

money metric, 312
individual, 299
inelastic function, 212
infimum, xxiii
inflexion point, 239, 259, 260
injective function, xxi
inner product, see also dot product and scalar,

product
input–output analysis, 294
input–output coefficients, 10, 294–296
input–output model, 10, 189
integral

double, 224, 225, 227
multiple, 224
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integrand, 224
integrated to order zero (I (0)), 383
integration

change of variables, 235
limits, 224
multiple, 224, 229

interest
accrued, 403
compound, 395
simple, 395

interest rate parity
covered, 323, see also covered interest rate

parity
uncovered, 436, see also uncovered interest

rate parity
interim multiplier, 293
interior, 156
intermediate value theorem, 217, 320
internal rate of return (IRR), 399
invariance, 159, 252, 253, 307, 348, 383, 432,

488
inverse

in field, 101
in vector space, 102
left, 17
matrix, 17
right, 17

inverse function theorem, 238
invertible function, xxi
invertible matrix, 17
investment, 338

function, 8, 290
opportunity, 424, 435

set, 448
investor, 299
isobar map, 159
isoquant map, 159

Jacobi, Carl Gustav Jacob (1804–1851), 495
Jacobian matrix, 203, 247
Jensen’s equality, 358, 363
Jensen’s inequality, 157, 356, 360, 431

applications, 360–365
Jensen, Johan Ludwig William Valdemar

(1859–1925), 498
Jordan, Wilhelm (1842–1899), 494

Kakutani’s fixed-point theorem, 321
Kakutani, Shizuo (1911–2004), 497
kernel

of linear transformation, 131, 132
of matrix, 104, 144

Keynes, John Maynard (1883–1946), 493
Keynesian model, 8
Keynesian multiplier, 41
Kronecker delta, 16, 124, 209, 423
Kronecker product, 24

Kronecker, Leopold (1823–1891), 493
Kuhn, Harold William (b. 1925), 496
Kuhn–Tucker conditions, 306, 308, 378
Kuhn–Tucker multiplier, 271, 271, 273, 274,

276, 279, 330
Kuhn-Tucker theorems, 270
kurtosis, 347

coefficient, 348

l’Hôpital’s rule, 160
l’Hôpital, Guillaume François Antoine,

Marquis de (1661–1704), 493
labour, 299, 300
lag operator, 168, 175, 189
lag polynomial, 168, 176, 181, 182, 188, 189
Lagrange multiplier, 262, 264, 266–269, 271,

421
method, 262

Lagrange, Joseph-Louis (1736–1813), 496
Lagrangian, 266, 267–269, 271, 308, 329, 378,

380, 381
Lagrangian conditions, 265
latent value, 53
latent vector, 53
law of one price, 497
layer, 341, 343
leading diagonal, 16
least squares

estimation, 371
generalized, see generalized least squares

(GLS)
ordinary, see ordinary least squares (OLS)
restricted, see restricted least squares (RLS)
weighted, see weighted least squares (WLS)

least upper bound, see supremum
left inverse, 17
Leibniz’s integral rule, 162, 232, 235
Leibniz’s law, 210
Leibniz, Gottfried Wilhelm (1646–1716), 495
lending date, 401
length of vector, 58
Leontief preferences, 305
Leontief production function, 10, 305
Leontief, Wassily Wassilyovich (1905–1999),

189, 493
level set, 10, 159, 253, 265, 301, 458
lexicographic preferences, 302
limit, 159
line, 144
line segment, 147, 151, 214, 244
linear algebra, 5, 6, 154, 217, 463
linear combination, 105, 107, 108, 112, 118, 143,

146, 147, 183, 263, 265, 344, 350, 459
linear dependence, 59, 494
linear equation, 146, 154
linear expenditure system, 332
linear form, 27, 205, 206, 223, 373
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linear function, 146, 217, 374, 375, 456
adaptability, 6

linear independence, 59, 78, 105, 106, 108, 154,
344

local, 496
linear operator, 129
linear relationship, 5
linear time trend, 173
linear transformation, 128, 146, 148

from R
n to R

m, 137
kernel, 131, 132
matrix, 138
nullity, 133, 134
properties, 131
range, 131, 133
rank, 133, 134
standard matrix, 138, 139

linearly homogeneous function, xxii, 5, 128, 145,
146, 312, 329

properties, 5, 6
Lintner, John Virgil (1916–1983), 500
liquidity premium hypothesis, 405
local non-satiation, 303, 310, 319, 321
logarithmic expectations hypothesis, 364
logarithmic utility, 278, 428, 455, 499
lognormal distribution, 337, 398

of wealth, 499
lottery, 338, 416

compound, 338, 426
national, 339, 432
state, 339, 432
ticket, 338

Lotto, 339, 341–343, 425
lower contour set, 159, 302
lower triangular matrix, 22
LU-decomposition, 83, 494
LU-factorization, 83, 494

m-vector, 7
Maclaurin approximation, 222
Maclaurin’s series, 221
Maclaurin, Colin (1698–1746), 496
macroeconomic model, 8, 40, 189, 289, 290, 292

complete, 290
final form, 292
reduced form, 291, 293
structural form, 290

main diagonal, 16
map, xxi
mapping, xxi
marginal propensity to consume, 9, 40
marginal propensity to save, 9, 41
marginal rate of substitution, 306
marginal revenue, 212
market beta, 481
market portfolio, 479
market-clearing, 307, 317–320, 322

markets
betting, 341, 354, 355, 435
bond, 402–404, 406
capital, 482
complete, 328, 400, 418–420
financial, 322, 478, 488
foreign exchange, 323, 436
forward, 355, 364
futures, 355
incomplete, 328, 400, 419
money, 436
option, 340
perfectly competitive, 328
security, 482
spot, 355, 364
state-contingent claims, 416

Markov, Andrei Andreyevich (1856–1922), 498
Markowitz frontier, 472
Markowitz, Harry Max (b. 1927), 500
Marshall, Alfred (1842–1924), 497
Marshallian demand correspondence, 308, 309
Marshallian demand function, 308, 315

properties, 309
matching uncertainty, 343
matrix, 6

addition, 11, 14, 15, 190
algebra, 6, 10, 14, 16, 17, 93
column rank, 110
column sum, 194
computation of inverse, 39
correlation, 349
decompositions, 22, 81–83, 390
diagonalizable, 59
diagonalization, 59
dimension, 6
dynamic multiplier, 292, 389
equality, 11
equilibrium multiplier, 292, 389
Hessian, 204, 247, 252, 270
impact multiplier, 291, 389
indefinite, 77, 84
inequalities, 83
interim multiplier, 293
inverse, 17
invertible, see invertible matrix
Jacobian, 247
multiplication, 12, 13, 15
negative definite, 77
negative semi-definite, 77
non-singular, see non-singular matrix
operations, 11
order, 6
orthogonally diagonalizable, 63, 64
positive definite, 77
positive semi-definite, 77
rank, 78, 111
row rank, 110
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row sum, 193
series expansion, 193, 296, 297
similar, 59, 140
square root, 62
subtraction, 12
trace, 17
transformation, 130, 133, 137, 138
transition, 120, 140
variance–autocovariance, 498
variance–covariance, 81, 156, 348, 350, 379,

386, 459, 463
zero, 15

maturity date, 340
maximum, 204, 212, 257, 259, 260

absolute, 257
global, 257
local, 257
relative, 257
strict, 257

mean, 347
arithmetic, 28, 347, 360
geometric, 360, 370
population, 354
sample, 354

mean value theorem, 219
mean–variance

efficiency, 325, 482, 484, 486, 487
frontier, 450, 457, 487
frontier portfolio, 479, 481, 482
paradigm, 440
portfolio choice problem, 379, 457
portfolio frontier, 457
preferences, 440, 449

multi-currency considerations, 487
space, 441
utility, 499
utility function, 224

medium of exchange, 300
metric, 155
metric space, 154, 155, 156, 157
minimum, 204, 212, 257, 259, 260

absolute, 257
global, 257
local, 257
relative, 257
strict, 257

minimum-variance portfolio, 458, 461, 462–465,
470, 472, 473, 484

Minkowski inner product, 494
Minkowski, Hermann (1864–1909), 494
minor, 35

principal, 80
modulus, xxi, xxiii, 58, 187–189, 192, 193, 292
moment, 347

about the mean, 347
central, 347

money, 300, 400

money metric indirect utility function, 312
money metric utility function, 312
monotonicity, 303
Morgenstern, Oskar (1902–1977), 499
multicollinearity, 374
multiple integral, 224
multiplication

in field, 101
of matrix by scalar, 11, 25
of vector by scalar, 102
operator, xx

multiplicity
of eigenvalues, 65

multivalued function, 162
mutual fund, 455

separation, 455

n-space, xx, 100
n-tuple, 100
narrow-power utility, 428
national income, 394
near-singularity, 67
necessary and sufficient condition, xix, 296, 427
negative definite matrix, 77
negative semi-definite matrix, 77
negative-exponential utility, 428, 455
neighbourhood, 157, 247
net demand, 300
net present value (NPV), 398
net return, 450
no-arbitrage principle, 322, 323, 403, 404, 419,

421, 434
no-free-lunch principle, 497
non-binding constraint, 270, 274
non-collinearity, 109, 144
non-negative orthant, xx, 150, 309
non-singular matrix, 34
non-singularity, see matrix, non-singular
norm, 93
normal (to hyperplane), 148
normal portfolio, 449, see also unit-cost portfolio
normalization, 58
null set, xx
null space, 104, 144
nullity, 133
numeraire, 300, 421
numeraire currency, 436, 437, 487, 488

objective function, 258, 261, 263, 268, 270
odds, 341

decimal, 341
exchange, 343
fair, 341
favourable, 342
fixed, 342
fractional, 341, 342
mid-market, 343
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pari-mutuel, 342, 361
ratio, 341
tote, 342
true, 361
unfavourable, 342

one-to-one function, xxi
onto function, xxi
open set, 156, 157
operator

difference, see difference operator
differentiation, see differentiation, operator
expectation, see expectation operator
lag, see lag operator
linear, see linear operator
multiplication, see multiplication, operator
summation, see summation operator

optimal response function, 268, 277
optimization

equality-constrained, 261
first-order conditions, 262
second-order conditions, 264
uniqueness conditions, 264

inequality-constrained, 270
first-order conditions, 273
second-order conditions, 276
uniqueness conditions, 277

unconstrained, 257
first-order conditions, 258
second-order conditions, 259
uniqueness conditions, 260

option, 340
American, 340
call, 340
European, 340
put, 340

order
of matrix, 6
of principal minor, 80

ordered n-tuple, xx
ordinary least squares (OLS), 372, 379, 380, 382

algebra, 372
geometry, 375
normal equations, 373
projection matrix, 376

orthogonal
basis, 112
complement, 124, 125, 376, 465, 471
coordinate transformation, 122
diagonalization, 62
projection (proj), 97, 98, 114, 115, 124, 130,

153, 376, 463, 466
onto subspace, 114

vectors, 63, 96, 124
orthogonally diagonalizable matrix, 63, 64
orthonormal

basis, 112, 115
vectors, 63, 124

oscillations
damped, 187

outer product, 207
over-round, 342

parabola, 71, 214, 477
paradoxes

Allais, 426
Siegel’s, see Siegel’s paradox
St Petersburg, 444

parallelepiped, 151
parallelogram, 151
parametrization, 144
Pareto dominance, 325, 497
Pareto efficiency, see efficiency, Pareto
Pareto optimality, 325, 418, 419, 497
Pareto, Vilfredo Federico Damaso (1848–1923),

497
pari-mutuel, 342
partial derivative

first-order, 203
second-order, 203

payoff, 395
portfolio, 450

perfect competition, 307, 328
perfect multicollinearity, 374
permutation, xxiii, 30–32

even, 31
inversion in, 30
odd, 31

plane, 88
point, 157

boundary, 156
Poisson distribution, 336
Poisson, Siméon-Denis (1781–1840), 497
population beta, 482
population mean, 482
portfolio, 341

basis, 460
choice problem, 379, 448, 450

mean-variance, 457
efficient, 472
efficient frontier, 472
frontier, 270, 457

in R
N , 457, 473

in mean–variance space, 463, 469, 475
mean–standard deviation, 463, 469–471,

473, 475–477, 482
hedge, 449
inefficient frontier, 472
k-moment frontier, 457
market, 479
Markowitz frontier, 472
mean-variance frontier, 457
minimum-variance, 458, 461, 462–465, 470,

472, 473, 484
normal, 449
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orthogonal decomposition, 463–467
payoff, 450
space, 345, 449
tangency, 475
theory, 448
two-moment frontier, 457
unit-cost, 449
weight, 449
weight hyperplane, 450
weight vector, 449, 450
zero-beta, 466, 473–475, 481
zero-cost, 449
zero-covariance, 463, 466, 473

portfolio
state index, 419

positive definite matrix, 77
positive orthant, xx, 148
positive semi-definite matrix, 77
Pratt, John Winsor (b. 1931), 499
predetermined variable, 290
predictor, 355

unbiased, 355
preference ordering, 300
preference relation, 300, 301

Cobb-Douglas, 304
completeness, 301
constant elasticity of substitution, 305
continuity, 302
Leontief, 305
lexicographic, 302
linear-quadratic, 304
reflexivity, 301
representation, 304
Stone–Geary, 305
transitivity, 301

preferences
expected-utility, 425
mean–variance, 440, 449

multi-currency considerations, 487
risk-neutral, 431, 441

preferred habitat hypothesis, 405
present value, 398
price, 300, 341

absolute, 300
ask, 340
bid, 340
clean, 403
dealing, 403
dirty, 403
relative, 300

primary diagonal, 16
principal, 395
principal components, 379
principal diagonal, 16, 153
principal minor, 80
probability density function (pdf), 337

conditional, 346

probability distribution, 336, 336–338
binomial, 336
bivariate normal, 351
conditional, 346, 364
continuous, 337, 346
Gaussian, 337, 494
joint, 345, 364
lognormal, 337, 398, 499
mixed, 337
moments

preferences for, 441
multivariate, 481
multivariate normal, 351–354, 485
non-trivial, 348, 356
normal, 337, 351, 442
of consumption, 428
of risky asset returns, 338, 449, 467, 479, 499
of stochastic process, 383
of wealth, 446
parameter estimation, 354
Poisson, 336
properties, 338
standard normal, 337
symmetric, 348, 442
trivial, 348, 358
uniform, 336

probability function, 335
of discrete random variable, 336

probability space, 335
product rule, 210
production, 299
production economy, 299, 300, 322
profit, 395
projection, 97
proof

by contradiction, xix, 17
by contrapositive, xix, 78, 251
by induction, xix, 38, 105, 125, 128, 145, 152,

153, 357, 427, 428, 493
proper value, 53
proper vector, 53
punter, 341
pure exchange economy, 299, 300, 321
pure expectations hypothesis, 347, 364, 405
Pythagoras of Samos (c.569–c.475BC), xix
Pythagoras’s theorem, xix

quadratic equation, 155
quadratic form, 76, 206
quadratic programming, 278, 377–382, 459
quadratic utility, 428
quasi-concavity, 253
quasi-convexity, 256

random disturbance, 7, 8, 372
random sample, 354, 360
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random variable, 335, 343, see also probability
distribution

continuous, 337
discrete, 336, 337, 338, 493

conditional distribution, 346
expectation, 347

mixed, 337
mixture, 338
non-trivial, 351

random vector, 345
random walk, 385, 435, 495
range, xxi, 133

of integration, 232
of linear transformation, 131, 133

rank
of linear transformation, 133
of matrix, 78, 111

rate of growth, 394
rate of return, 450

aggregating, 396–398
averaging, 396–398
excess, 450
frequency of compounding, 395
gross, 395, 450
internal, 399
measuring, 394–399
net, 395, 450
time dimension, 395

realization
of Arrow–Debreu security, 341
of lottery, 338
of random variable, 336, 371, 372, 498
of random vector, 345, 346
of stochastic process, 336

rectangle, 495
rectangular hyperbola, 75, 122, 212, 241, 260,

333
reduced form, 291, 293
reduced row-echelon form, 48
reflexivity

of binary relation, xxii
of preference relation, 301

regression equation
population, 371

relation
indifference, 301
preference, 300, 301

strict, 301
weak, 300

relative price, 300
relative risk aversion

aggregate, 486
Arrow–Pratt coefficient, 432
constant, 432, 453
decreasing, 432, 453
increasing, 432, 453

remainder term, 221

repayment date, 401
representative agent, 270, 328, 329, 330
restricted least squares (RLS), 379–381
return, see rate of return
right inverse, 17
risk aversion, 429, 452

Arrow–Pratt coefficients, 432
local, 431, 432
strict, 429

risk loving, 430
local, 431, 432
strict, 430

risk neutrality, 430
local, 452

risk premium, 450
of market portfolio, 484

risk tolerance, 455
risk-free security, see security, risk-free
risk-neutral world, 323, 434, 435, 436, 437, 488
Rolle’s theorem, 218, 219
Rolle, Michel (1652–1719), 495
rollover, 343, 366, 432
roots, 54
row rank, 78, 110
row space, 110
row vector, 6, 15, 112, 203
row-echelon form, 48, 111, see also reduced

row-echelon form
row-equivalent matrices, 111
Roy’s identity, 313
Roy, René François Joseph (1894–1977), 497

saddle point, 260
sample, 354
sample beta, 483
sample mean, 360, 483
sample space, 335, 336, 343, 416
scalar

algebra, 194
matrix, 19
product, 123

positive definite, 124
space, 123, 154, 155

Schmidt, Erhard (1876–1959), 494
Schur’s theorem, 189
Schur, Issai (1875–1941), 495
Schwarz’s theorem, 229, 495
Schwarz, Karl Hermann Amandus (1843–1921),

495, 496
security, 338

complex, 341, 416
risk-free, 323, 338, 403
risky, 338

security market line, 482
seemingly unrelated regression, 387
segmented market hypothesis, 405
semi-continuity, 495
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semi-definite matrix, see negative semi-definite
matrix or positive semi-definite matrix

separating hyperplane theorem, 150, 158
separation

and CAPM, 482
mutual fund, 455
two-fund monetary, 455

set
bounded, 156
closed, 157
compact, 157
constraint, 262, 278
consumption, 300
convex, 158
feasible, 262, 278
interior, 156
level, 10, 159, 253, 265, 301, 458
lower contour, 159
open, 156, 157
upper contour, 159, 246, 252

settlement date, 340
Sharpe, William Forsyth (b. 1934), 500
Sharpe–Lintner theorem, 482
Shephard’s lemma, 312, 314, 316, 497
Shephard, Ronald William (1912–1982), 497
short-selling, 300, 338
Siegel’s paradox, 362, 405, 437, 440, 487
Siegel, Jeremy J. (b. 1945), 498
sigma-algebra, 335
similar matrices, 59, 140
simplex, 150, 450

standard, 150
unit, 150

sine integral function, 232
singular matrix, 34
skew-symmetric matrix, 51
skewness, 347

coefficient, 348
Slutsky equation, 313, 314–316
Slutsky symmetry condition, 313, 314
Slutsky, Evgenii Evgen’evich (1880–1948), 497
solution

general, 104
particular, 104
space, 104, 133
vector, 104

space
eigenspace, 127
Euclidean, see Euclidean space
function, 160
half-, see half-space
mean–standard deviation, 441, 457, 463
mean–variance, 441, 457
metric, see metric space
portfolio, 345, 449
sample, 335, 336, 343, 416
scalar product, see scalar, product, space

solution, see solution, space
topological, see topological space
vector, see vector space

spanning set, 106
sphere, 151, 152
spline, 404, 499
spot rate, 401
spread, 343, 404

betting, 339
bid–ask, 340
butterfly, 422

St Petersburg paradox, 444
stake, 341
stakeholder, 341
standard basis, 108, 139
standard deviation, 348
standard matrix, 138, 139
state of nature, 335
state of the world, 328, 335
state-contingent claim, 340, 416, 421
stationarity, 58, 383

asymptotic, 383
covariance, 383
strict, 383
weak, 383

stationary point, 258, 260, 261
Stein’s lemma, 351
Stein, Charles M. (b. 1920), 498
stochastic discount factor, 452
stochastic process, 58, 336, 340, 345, 355, 383,

435
asymptotically stationary, 383
conditional expectation, 348
covariance stationary, 383
expectation, 347
first-order autoregressive, 384
integrated to order zero (I (0)), 383
pth-order autoregressive, 386
second-order autoregressive, 385
strictly stationary, 383
vector, 424
weakly stationary, 383

stochastic relationship, 7
stock, 394
Stone, John Richard Nicholas (1913–1991), 496
Stone-Geary preferences, 278, 305, 331, 496
strong monotonicity, 303, 306
structural form, 290
subset, xx
subspace, 103
substitution axiom, 425–427
sum of squares

explained, 377
total, 377

summation operator, xx, 350
superset, 310
supporting hyperplane theorem, 158, 327
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supremum, xxiii
sure thing, 417, 424, 425, 427
sure-thing principle, 425, 428
surface, 154

volume under, 225
surjective function, xxi
symmetry

of binary relation, xxii
of matrix, 21
of scalar product, 123
of second-order partial derivatives, 229

systems of equations
consistent, 10, 104, 134
difference equations, 189
homogeneous, 10, 54, 146
inconsistent, 10, 42
linear, 6, 10, 13
matrix representation, 13, 14
non-homogeneous, 10, 104, 146
non-linear, 6, 42
solution, 22, 134
solution by Cramer’s rule, 39
solution by elementary row operations, 44, 45
solution by Gauss–Jordan elimination, 49
solution by Gaussian elimination, 49
solution by scalar methods, 42
solution space, 104

tangency portfolio, 475
tangent hyperplane, 214
Taylor approximation, 222, 356, 441
Taylor’s expansion, 221, 259, 355–357, 409, 441
Taylor’s theorem, 251

multivariate, 222
stochastic version, 355
univariate, 217, 221

Taylor, Brook (1685–1731), 495
term structure, 364, 394, 402, 401–410

description, 402
estimation, 402
theory, 402

theorem of the maximum, 277, 310–312
time series, 7, 84, 168, 182, 183, 336

analysis, 382
data, 371
model, 355
scalar, 189
vector, 189

topological space, 154, 157
topology

(branch of mathematics), 154
(on a set), 157

total derivative, 203, 209
total percentage, 342
total revenue, 212
trace, 17, 59
transition matrix, 120, 140

transitivity
of binary relation, xxii
of preference relation, 301

translation, 91
translation equations, 92
transpose of a matrix, 20
triangle, 151
triangular decomposition, 82
triangular factorization, 82, 390
triangular inequality, 155, 156
triangular matrix, 22, 153

determinant, 37
trifecta, 342

banker, 368
double-banker, 368

Tucker, Albert William (1905–1995), 496

unbiased die, 336, 338, 354
unbiased estimator, 354, 360, 379, 380

best linear (BLUE), 379
unbiased forecast, 363, 364
unbiased predictor, 355
uncovered interest rate parity, 436, 437, 439,

440, 487
uniform continuity, 160, 161
uniformly continuous function, 160, 161
unit circle, 187, 386
unit elasticity, 212
unit of account, 300
unit root, 58, 385
unit vector, 58, 93, 211
unit-cost portfolio, 449, 450
universal law of sufficiency, 78
universal set, xx
upper contour set, 159, 246, 302, 306, 327
upper triangular matrix, 22
utility

affine, 428
expected, see expected utility

utility function, 159, 301
existence, 302–304
for sure things, 451
functional form, 423, see also preference

relation
indirect, 270, 309

money metric, 312
inter-temporal, 400
mean–variance, 224
money metric, 312
non-expected, 442
on sure things, 417, 424
quasi-concave, 327
state-dependent, 417
state-independent, 417
von Neumann–Morgenstern, 425, 450

value function, 496
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variance, 347
population, 354
sample, 354

variance–autocovariance matrix, 498
variance–covariance matrix, 81, 156, 348, 350,

379, 386, 459, 463
vector, 7, 102

addition, 89
algebra, 93
angle between, 94
calculus, 202
consumption, 300
distance between, 94
dot product, 94
equality, 88
equivalence, 88
geometry, 88
initial point, 88
length, 58
negative, 89
orthogonal, 63, 96, 124
orthonormal, 63, 124
payoff, 416
random, 345
subspace, 103, 147, 183
subtraction, 90
terminal point, 88
zero, 89

vector autoregressive process, 58, 386
impulse response analysis, 389
mean, 388
stationary, 388
variance, 389

vector space, 102, 148, 154
axioms, 102
dimension, 110
finite-dimensional, 343, 493
infinite-dimensional, 100, 131, 160, 345, 493

Venn diagram, xx, 281
Venn, John (1834–1923), 493
vertex

of hyperbola, 74
of hyperrectangle, 152, 230

of parabola, 72
of simplex, 150

Viète’s formulas, 66, 494
Viète, François (1540–1603), 494
Vieta, Franciscus, see Viète, François
volatility, 409
volume, 151–154, 225, 227
von Neumann-Morgenstern utility function, see

utility function, von Neumann-Morgenstern
von Neumann, John (1903–1957), 499

Walras’s law, 318, 319, 321, 326
Walras, Marie-Esprit-Léon (1834–1910), 497
Walrasian auctioneer, 307
Walrasian equilibrium, 317
wealth elasticity, 453
weighted least squares (WLS), 380
welfare theorems, 330

first, 325, 328
second, 157, 326

Wicksell, Johan Gustaf Knut (1851–1926), 495

yield
current, 402
effective annual, 402
gross redemption, 401
to maturity, 402

yield curve, 402, 403, 405, 406
estimation, 403
flat, 406, 409
parallel shift, 408
upward sloping, 405

Young’s theorem, 204, 227, 229–231, 314, 495,
496

Young, William Henry (1863–1942), 229, 496

zero matrix, 15
zero transformation, 129
zero vector, 89
zero-cost portfolio, 449
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