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Preface

This short introduction to macro-econometrics focuses on the concepts, tools

and techniques needed to model aggregate economic data, here unemployment,

wages, prices and money in the UK over a long historical period of approximately

150 years, usually 1860–2011, but somewhat shorter for a few of the time series.

The basic framework draws on Hendry and Nielsen (2007), Hendry and Nielsen

(2010), and emphasizes the need for general models to account for the complex-

ities of economies and the magnitudes of the many changes that have occurred.

That combination poses a major challenge for teaching elementary methods. For-

tunately, despite the di�culties inherent in the distributional issues of estimators

for non-stationary cointegrated time series with multiple location shifts and non-

linear relationships, many of the key concepts can be explained using simple exam-

ples, then automated computer software can conduct the more complicated em-

pirical modelling studies. The book is the outcome of a six-hour lecture course

on Quantitative Economics delivered to second-year Philosophy, Politics, and Eco-

nomics (PPE) undergraduates at Oxford University. A minimal background in

elementary statistics is assumed, but developed quite rapidly while trying to min-

imize mathematical derivations.

Chapters commence with some ‘Guide posts’ as to their aims, and conclude

with ‘Key points’ made during the discussion. Then there are four ‘How to do it’

Tasks at the end of every chapter, the more di�cult of which are marked by an

asterisk. The Tasks use OxMetrics (see Doornik, 2013b) and PcGive (Doornik and

Hendry, 2013) as that is the only software that implements all the tools and tech-

niques needed in the book. The more advanced simulations also require Ox (see

Doornik, 2013a). The relevant subset of the data is available as QEHistData.xls, on

the book’s website, and the complete historical data set is UKHist2013.xls. Chap-

ters also o�er a small selection of exercises for readers to undertake to check their

progress, or instructors to set, where answers are not usually provided.

The book is not about macroeconomics. As the assiduous reader will discover,

much of the huge variation over long time periods in many aggregate variables

does not fall under the purview of economic analysis, but is due to extraneous

forces such as wars, changes in legislation, shifts in social mores, and technolog-

ical, medical and �nancial innovations, which in turn are only partly a�ected by

economics. The current vogue for seeking micro-foundations for such variables in

terms of a ‘representative’ agent who is simultaneously, employed, unemployed,
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growing up and retired, rich and poor, etc. sits uneasily with the historical evi-

dence.

The backgound research was originally supported in part by grants from the

Economic and Social Research Council, and more recently by the Open Society

Foundations and the Oxford Martin School. I am grateful to them all for the es-

sential funding they provided, and to Jennifer L. Castle, Jurgen A. Doornik, Neil

R. Ericsson, Vivien L. Hendry, Oleg I. Kitov, Grayham E. Mizon, John N.J. Muell-

bauer, Bent Nielsen, Felix Pretis and Tim Willems for many helpful discussions

and suggestions, as well as to Charles Bean, Gavin Cameron, Christopher Gilbert,

Fatemeh Shadman-Metha and John Muellbauer for various data series described

in the Appendix.

The book was prepared inOxEdit and typeset in LAT
E
X usingMikTex. Graphical

illustrations, numerical computations and Monte Carlo experiments were done

using OxMetrics, PcGive and Ox. The present release is OxMetrics 7.00 (July 2013).
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Chapter 1
Macroeconomic data: evolution
with abrupt change

Chapter 1 guide posts

1. Macro-econometrics concerns the analysis of data on whole economies, such

as in�ation, unemployment and gross domestic product (GDP).

2. This chapter uses a substantial annual data base for the UK starting in 1860,

developed by economic historians: the role of graphs in describing such data

is an important feature.

3. The last 150 years have witnessed huge changes in almost all aspects of life,

especially living standards from technological, legal, medical and �nancial in-

novations, with consequential social and demographic shifts: Section 1.1.

4. The �rst focus is on wages and prices, which have risen roughly 700-fold and

100-fold respectively: Section 1.2.

5. A key feature of macroeconomic data is evolution interrupted by abrupt

changes: Sections 1.3 and 1.4.

6. Overall, the purchasing power of wages (called real wages) has increased about

7-fold, approximately the same as average productivity per worker: Section 1.5.

7. That �nding broadly matches a neo-classical model of �rms equating the

marginal revenue per worker with their marginal costs, but systematic depar-

tures between the data and the theory remain: Sections 1.6–1.9.

8. Trends and sudden shifts are common, so simple models of trends are devel-

oped in Sections 1.10 and 1.11: Chapter 2 will investigate shifts, many of which

coincide with the major historical events discussed in Section 1.4.

1.1 Introduction

Knowledge of the historical context is an essential background to understanding

macroeconomic evidence, and especially to undertaking any empirical investiga-

tions thereof. Many major changes have occurred historically, some because of
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2 Chapter 1

dramatic events like wars and major technological and �nancial innovations—

described in Section 1.4—othersmore gradually, but all a�ecting empiricalmodels.

Consequently, we �rst return to 1860 to trace what has happened since then.

So imagine you are living in London during 1860—just over 150 years ago.

Queen Victoria has been on the British Throne for 23 years, and has another 41

to go; Abraham Lincoln has just been elected the 16th President of the USA, with

Civil War looming; and Charles Darwin’s On the Origin of Species is newly pub-

lished. Infectious diseases are rife, and John Snow has only recently identi�ed

polluted water as the source of cholera. When employed, you would work up to

65 hours a week for less than 20% of modern (constant price, or real) incomes;

you would often be ill from diseases that were not understood and had no known

cures; living up to 10 to a room with little or no sanitation and no running water;

hungry much of the time, and when you were unemployed, you and your family

would starve; your children would be ill-clad and barefoot, mostly uneducated,

many dying at birth or infancy; and even having survived to adulthood, on aver-

age you would die in your mid-40s.

Worse still, that situation describes someone living in the richest city of one of

the richest countries in the world at the time. Although a small island nation, the

United Kingdom then produced about 20% of World output (now around 3.5%).

Almost everywhere else, living standards were lower (see Allen, 2011, for an ex-

cellent short economic history of the world), so it is little wonder Charles Dickens

(Great Expectations, 1860) and Emile Zola (Germinal, 1885) wrote the sort of novels

we know them for today. Bowley (1937) provides a more quantitative appraisal,

consistent with their views.

How did society get where it is today from there? What statistical tools are

needed to study evidence generated by a world that has changed so dramatically?

Wewill considermodels andmethods for investigatingmacroeconomic data, seek-

ing to explain the available empirical evidence on UK unemployment, wages and

prices. A brief description of the data series and their measurements is provided

in the appendix, Table 9: Hendry (2001) provides a more detailed explanation and

sources.

This Chapter concerns the basic properties of macroeconomic data, character-

ized by evolution with abrupt, often unanticipated, changes. Chapter 2 discusses

methods for ‘taming’ trends and breaks, to facilitate the development of sustain-

able empirical relationships. Then Chapter 3 considers how to characterize de-

pendence between variables, and over time. Chapter 4 turns to an analysis of the

two key ingredients of economics and statistics that make the backbone of macro-

econometrics, before Chapters 5–8 provide applied studies in modelling UK un-

employment, then wages, money demand, and prices respectively. Chapter 9 con-

cludes.

1.2 Some facts about UK wages and prices

To investigate the huge changes that occurred over 1860–2011 in the UK, we will

consider the time series of the relevant variables. First, some salient features:

• Nominal wages (denoted W) rose more than 680-fold, so an average wage of £1

per week in 1860 becomes £680 by 2011: that is a 68,000% increase in just over

150 years.
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Macroeconomic data: evolution with abrupt change 3

• Prices (denoted P) rose more than 98-fold, so £1 per item in 1860 cost £98 in

2011.

• Consequently real wages (as measured by the ratio W/P), or the purchasing

power of earnings, rose approximately 7-fold.

• Industrial composition, technology, transport, wealth and income distribu-

tions, laws, education, social security, pensions, demography, health care,

longevity, morbidity, sanitation, roles of women, social mores, and housing

tenure have all also changed vastly over that period.

Change is the norm, both evolution and sudden shifts—modelling change is cen-

tral to macroeconomic data analyses. A conventional way to present data evidence

in macroeconomics is by time-series graphs. These show time on the horizontal

axis, here from 1860 to 2011, with themagnitudes of the plotted variables recorded

at each point on the vertical axis. Both wages and prices are measured as indices,

with bases of unity in 1860, the former rising to 680 and the latter to around 98.

1860 1880 1900 1920 1940 1960 1980 2000

100

200

300

400

500

600

700

Wages →

Prices 
    ↓

Figure 1.1
Wages and prices over 1860–2011.

Figure 1.1 shows the time series of nominal wages and prices over 1860–2011

(drawing this graph is set as an exercise in Task 1 Section 1.16). The early period

looks relatively unchanging, but that is an artefact of later increases being somuch

larger because the graph shows absolute changes. Denoting a generic time-series

process by {Xt}, t �1, . . . , T where t is time for a period starting at 1 and ending

at T, then most of the large increases in {Wt} and {Pt} came post-1975. Rising

from 1 to 2 is 100% increase—but is dwarfed visually by a rise from 100 to 120,

although that is just a 20% increase. The solution is to exploit the fact that Wt , Pt
must both be positive, so one can use logarithms of wages (log(Wt) � wt) and

prices (log(Pt) � pt) to measure relative changes. Figure 1.2 shows these relative

changes by plotting in logs, where the distance between successive ‘tick’ marks on

the graph is a constant 20% change as shown (see Task 2 Section 1.17).
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1.2.1 Properties of logarithmic transformations
A basic result in calculus is that changes in logs are relative to their level:

∂ logX
∂X

�
1

X
(1.1)

If X � 1, one unit increase in X to 2 is 1/1, which is 100%. When X � 100, 1 unit

increase in X to 101 is 1/100, or 1%. For a 100% change, one needs to go from X �

100 to X � 200. However, equation (1.1) only holds for small changes: log 1 � 0 but

increasing to log 1.5 � 0.4055 is just over 40% not 50%. Shops record a change from,

say, £1 to £1.5 as a 50% increase, whereas going from £1.5 to £1 is a 33% reduction,

so such changes are not symmetric (this is why the RPI is being abandoned). Logs

show symmetric changes—going from log 1.5 to log 1 is a 40% fall. We will use

capitals like X for the variables in their original units, and lowercase letters like x
for their logs, as used above for wages and prices.

1860 1880 1900 1920 1940 1960 1980 2000 2020
0

1

2

3

4

5

6 log(wages) →

    ↑
log(prices) 

20% change

Figure 1.2
Log wages and log prices over 1860–2011.

1.3 Evidence from data graphs

The graph of the logs of the variables in Figure 1.2 now reveals that the early pe-

riod (before the First WorldWar) was in fact far from unchanging, with prices �rst

rising then falling throughout the remainder of the 19th Century. Moreover, wages

and prices were also very volatile between 1914 and 1945, initially both rising dra-

matically, followed by large falls then a gradual downwards drift in the interwar

period. Overall, wages have grown much faster than prices, but neither shows

constant growth over the 150 years.

To describe the average growth of wages and prices, we can �t a trend line as

shown in Figure 1.3 for wt . This line corresponds to a simple ‘model’ of the form:

xt � α + βt + et (1.2)
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1860 1880 1900 1920 1940 1960 1980 2000 2020

0

1

2

3

4

5
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regression line with projections→

Figure 1.3
Log wages and log prices with one trend line.

were α is the intercept (the average value of xt when t � 0), and β � ∂xt/∂t is an
assumed constant rate of growth. The unexplained component is denoted by et ,

but we will not ascribe any statistical properties to et yet. Fitting a simple trend

line as in (1.2) can be done by �nding the ‘best �t’, namely minimizing the sum of

squared values of et (i.e.,
∑T

t�1 e2t ). We �rst �t that trend line to wt usingOxMetrics,
showing the deviations êt � xt − α̂ − β̂t as projections from the line, where α̂, β̂
are the values that minimize

∑T
t�1 ê2t . The squares of the projections shown were

minimized in the sense that moving the �tted line up or down, or altering its slope

in either direction, will produce a larger sum of squared projections. It would be

hard to check that claim by hand, but trivial on a computer.

It is fairly obvious from Figure 1.3 that a single trend line does not describe

the evidence on wt at all well: there are large and systematic deviations from the

�tted trend, which indeed crosses the data line only three times in 150 years. A

similar result holds for a single trend �tted to pt . For better descriptions, we can

try dividing the overall sample into sub-periods, and �nd the �tted trends within

each. Here we will use six periods of about 25 years each, and �t separate trend

lines within each ‘epoch’. Doing so using OxMetrics delivers Figure 1.4.
Each sub-period �t is naturallymuch better, but overall reveals a di�erent prob-

lem: the trend lines do not all have the same slopes. Rather, growth rates of wages

and prices have changed substantially over the period.

Lines selected by ‘best �t’ can be applied to any data, so let me act like Picasso

and autograph my pretty picture, then �t a trend line to my signature as shown

in Figure 1.4 (see Task 2 Section 1.17). Carrying out the same operation of �tting

six trend lines to prices, yields similar, but not identical, patterns of slopes as also

shown in Figure 1.4. Changes in slopes are again apparent, and evenwith six sepa-

rate trend lines, several periods are notwell described (especially 1910–1934, where

at least two more slope changes are needed). Such �ndings raise four questions.

Why were there so many changes in the growth rates?

How could one know that 6 regressions, rather than 1, or 12, were required?



i
i

“UGQE2book15” — 2015/4/15 — 10:47 — page 6 — #18 i
i

i
i

i
i

6 Chapter 1

1860 1880 1900 1920 1940 1960 1980 2000
-1

0

1

2

3

4

5

6
log(wages) →

    ↑
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Figure 1.4
Log wages and log prices each with six trend lines.

How can such changes be modelled?

What else is needed to explain such changes?

Section 1.4 tries to answer the �rst by considering the manymajor historical events

that a�ected theUKover 1860–2011. However, answers to the other three questions

will take much of the rest of the book.

1.4 Major historical events a�ecting the UK over 1860–2011

We characterize these major historical events by �ve sub-groups:

[A] dramatic shifts;

[B] key �nancial innovations;

[C] important societal changes;

[D] technology advances; and

[E] policy regime shifts.

[A] Dramatic shifts that occurred over 1860–2011 include:

WorldWar I (WWI); the 1918–21 �u’ epidemic; the 1919–21 crash; the 1926 general

strike; the 1930’s Great Depression; WorldWar II (WWII); the 1970’s oil crises; and

of course, the 2008–2013 �nancial crisis and ‘Great Recession’. These major events

often altered previous relationships between variables, including between wages

and prices.

[B] Key �nancial innovations and changes in credit rationing took place:

personal cheques (introduced in the 1810s); telegraph (economizing on multiple

bank accounts during the 1850s, as discussed by Alfred Marshall, 1926); credit

cards (1950s) andATMs (1960s); aswell as deregulation of the banking sector (from

the 1980s). These a�ected the volumes of ‘money’ in circulation as well as greatly

widening access to �nance.
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[C] Many important societal changes occurred, some noted above, including:

demography, family size and structure; laws, social mores, roles of women; health

care and sanitation, resulting in greater longevity and lower morbidity; education,

social security, pensions, housing tenure; wealth and income distributions.

[D] Huge technology advances were implemented:

industrial composition was radically changed as the industrial revolution staples

of cotton cloth, coal mining, steel making, and shipbuilding almost all vanished in

the UK, to be replaced by electricity, gas and nuclear power; computers, mobiles,

GPS, internet and many forms of communications; major medical developments

like vaccination, antibiotics, biotechnology and DNA; new forms of transport with

both cars and planes, after the boom in, then demise of, canals and later railways.

[E] Many policy regime shifts took place:

from the gold standard till Bretton Woods (1945, with some short departures dur-

ing the Great Depression andWorldWars); then �oating exchange rates (till about

1973); followed by a succession of Keynesian, Monetarist, then in�ation-targeting

policies; the creation of the European Union, then the Euro; and on to Quantitative

Easing; to list a few of the most salient.

With such a catalogue of major events, it is not surprising that many economic

relationships shifted. Empirical modelling must address all these large intermit-

tent shifts, many of which may have been unanticipated by even the most sophis-

ticated economic actors of the time. To emphasize the pervasive and pernicious

occurrence of major shifts, Barro (2009) estimates very high costs from what he

denotes ‘consumption disasters’. He �nds 84 events over approximately the last

150 years with falls of more than 10% per capita, cumulating in a total duration of

almost 300 ‘bad’ years across his sample of 21 countries, mainly due to wars, with

a marked reduction in the frequency of ‘bad’ years after World War II.

1.5 Behaviour of real wages

We next examine what happened to real wages, which are essentially a synthetic

time series to represent wages measured at constant prices, calculated here as

log(Wt/Pt) � (wt − pt), and shown in Figure 1.5. By de�nition, wt − pt is the

vertical di�erence between the two series shown in Figure 1.2.

The graph shows that real wages have experienced substantial growth: a move

between each small tick mark is about 5%, cumulating to about a 7-fold increase

over the period. Such a graph shows that we are much better o� today than in

1860, though it does not explain why real wages have risen so much. Moreover,

many crucial aspects of modern life, including the huge improvements in sanita-

tion, medical care, reductions in the killer diseases and increased longevity, are

additional to improvements in real wages, an aspect correctly stressed by Crafts

(2002).

The large impacts of the two world wars are clearly visible in terms of a sharp

rise on commencement (1914, 1939) then a fall back on termination (1918, 1945).

The reductions in real wages due to the 1970’s Oil Crises and the ensuing high

in�ation and social unrest are also visible (a higher price for a key imported com-

modity acts like a tax). More generally, the growth rate is not constant, and in-

creased markedly after World War II. As �gure 1.6 shows, a single trend line does

not describe the history well: there are systematic deviations between the line and
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Figure 1.5
Log real wages, w − p, over 1860–2011.

(wt − pt). Indeed, such deviations only change sign twice in 150 years, so are very

far from random. As an aside, notice that the data lie above the trend line both

when growth is slow at the start and when it is fast at the end: so called ‘gaps’

between variables and trend lines are not interpretable when growth rates change.

1860 1880 1900 1920 1940 1960 1980 2000

0.00
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0.50

0.75

1.00

1.25

1.50

1.75 real wages →

Figure 1.6
Log real wages with one trend line.

There are four distinct sub-periods or ‘epochs’, each of roughly 40 years, cor-

responding to changes in the growth rate: moderate growth till about 1900, then

slow till the start ofWorldWar II, somewhat faster till the late 1960s in the post-war

reconstruction, then moderating again till the end of the sample. That suggests �t-

ting four separate trends: usingOxMetrics, the outcome is shown in Figure 1.7, and
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provides a far better description, although systematic departures remain as can be

seen.

Nevertheless, why have real wages grown at all, and why at di�erent rates in

di�erent time periods? To address these issues, we digress into some economic

theories of wage determination to guide which variables might contribute to such

an explanation.

1860 1880 1900 1920 1940 1960 1980 2000

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75 real wages →

Figure 1.7
Log real wages with 4 regressions.

1.6 Theories of wage determination

There are many theories of how wages are determined, from Malthusian subsis-

tence (any increase in realwages is o�set by an increased population drivingwages

back to subsistence); Walrasian labour-market clearing (wages are set at the level

where the demand for labour equals the supply); Keynesian nominal rigidities (so-

cial norms and worker pressure act against wage and price cuts as those increase

the real value of debts owed by the poor); micro-founded search and job matching

with important roles for imperfect information and adverse selection (employers

do not know the true characteristics of prospective workers, but workers know

themselves); to e�ciency wage theories (it is advantageous to pay above the mar-

ket clearing wage if that improves the health and hence the productivity of the

workers), among others.

All of these may well be part of the explanation in various times and places,

although not all are crystal clear about whether their relevance is to nominal or

real wages. However, taking them in turn for our period and country, the �rst

has so far failed to happen, partly from the historical ‘accidents’ of the Industrial

Revolution and ensuing technological progress greatly increasing the output per

person of physical goods, and partly the development of the ‘New World’ as a

‘bread basket’ (see Allen, 2009, for an explanation of the Industrial Revolution,

and Allen, 2011, for a global economic history). We consider the second theory at
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greater length below. The third is at best part of the story: the dramatic falls in

wages and prices evident in Figure 1.2 must have been known to John Maynard

Keynes at the time, and hence pre-date Keynes (1936). The last two are primarily

useful in explaining microeconomic phenomena.

By this process of elimination, we are left with the so-called ‘neo-classical’

theory of wage determination: pro�t-maximizing competitive �rms hire work-

ers till the real marginal cost of labour (each new employee’s additional total real

wage cost, MC) equilibrates to their real marginal revenue product (MR), so that

MC=MR. Let G denote aggregate real gross domestic product (GDP), and L denote

total employment, then WL is the nominal wage bill and PG is nominal GDP, so

the theory entails:

∂(WL/P)
∂L

�
∂(PG/P)
∂L

(1.3)

We will consider the determinants of MR then of MC in turn, commencing with

output determination in Section 1.7, costs in Section 1.8 then linking real wages

and productivity in Section 1.9.

1.7 Production relationships

Production relations linking outputs of goods and services to inputs of resources

are a primary determinant of the demand for labour, although so is aggregate de-

mand as there is no point in producing goods that cannot be sold. Economists

know remarkably little about the microeconomic detail of such relationships out-

side of agriculture. Indeed, with multi-product �rms and multi-tasking workers

it is far from obvious how to attribute either costs or value added to individual

outputs or inputs. However, at the aggregate level, constant returns to scale seem

likely (see e.g., Houthakker, 1956) so an x% increase in all aggregate inputs (if such

was feasible) would lead to an x% increase in all outputs. When constant returns

to scale and no technical progress both hold, marginal values are proportional to

averages, MR ∝ AR, but the absence of technical progress is implausible.

For simplicity, we assume the production function has the Cobb–Douglas form

shown in (1.4): see Cobb and Douglas (1928). Outputs, Gt , as measured by value

added are proportional to the product of the inputs of capital, denoted Kt , and

labour, Lt , so zero net output is produced unless both inputs are positive. The

amount produced increases over time by A(t) � exp(at), which is called ‘disem-

bodied’ technical progress, assumed to occur at the constant rate a per annum,

noting that most technical progress is actually embodied in capital and labour:

Gt � exp(at)Lλt K(1−λ)
t 0 < λ < 1 (1.4)

In (1.4), λ will turn out to be the share of labour in GDP, so 1 − λ is the share of

capital. Kt should be measured by the �ow of ‘quality adjusted’ capital inputs

taking account of scrapping and the di�ering e�ciencies of di�erent technology

vintages, but such data are not available. Equally, Lt should be measured by the

�ow of ‘human capital’ hours of input; but again unfortunately, we have very lim-

ited data on hours worked, although we do know they fell greatly over our period,

or paid holidays, which rose considerably, and even less on ‘human capital’ itself

(employment adjusted for embodied skills and knowledge), which rose consid-

erably with improved knowledge and increased education. Thus, Kt is measured
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here by the total capital stock in theUK (calculated by cumulating gross investment

and assuming a rate of scrapping and obsolescence), and Lt by total full-time em-

ployment. Thus, essentially all forms of technical progress, improved knowledge

and increased education must be ‘picked up’ by the catch-all A(t), so any inter-

pretation must be as ‘not-explained-elsewhere’ (i.e., representing our ignorance:

compare Solow, 1956).
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k−l→

g−l

g−l

Figure 1.8
‘Production function’ over 1860–2011.

Taking logs in (1.4):

1t � at + λlt + (1 − λ)kt (1.5)

and subtracting lt from both sides then rearranging:

(1 − l)t � at + (1 − λ)(k − l)t (1.6)

where (1− l)t approximates real average revenue product per worker (AR). Figure

1.8 records the resulting ‘production function’ linking (1 − l)t and (k − l)t repre-

sented by (1.6), with deviations of (1− l)t relative to the regression line shown (see

Task 3 Section 1.18). The outcome is quite close to linear apart from 1920–1940, and

consistent with constant returns to scale but slow disembodied technical progress.

Although �tting (1.6) requires the use of methods not introduced till Chapter 5.5

below, doing so delivers estimates of â ≈ 1%p.a., and λ̂ ≈ 0.23, so capital earns a

share of roughly a quarter of GDP.

Figure 1.9 shows the 3-dimensional relationship over time between (1− l)t and

(k − l)t , and reveals di�erent rates of technical progress pre-1918 and post-1945

(which can be estimated at roughly 1%p.a. before and 1.7%p.a. after), aswell as em-

phasizing the large distortions in the interwar period, but not showing any long-

run departure overall from constant returns to scale represented by the straight

line.

To conclude this section, assuming technical progress is not a�ected by changes

in employment, from (1.5) the marginal revenue on the right-hand side of the log
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Figure 1.9
3-dimensional ‘production function’ over 1860–2011.

version of (1.3), becomes:

∂1t

∂lt
� λ + (1 − λ)∂kt

∂lt
.

This implies a marginal revenue product of λ plus (1 − λ) times the change in

capital per worker, which is also the average revenue product, (1 − l)t when a � 0

and ∂kt/∂lt � (k− l)t . However, it is possible that changes in employment do a�ect

technical progress (e.g., labour saving inventions), and may also change λ, issues
to be addressed empirically.

1.8 Cost relationships

We now turn to the left-hand side of equation (1.3). It is often assumed that:

∂(WL/P)
∂L

� W/P (1.7)

but that derivation requires that changes in L do not a�ect W/P, so �rms are

‘price takers’ in the labour market. Such an assumption seems most unlikely in

the macroeconomy, and in a number of theories, some of which we address below,

unemployment a�ects W/P.
Direct average costs per worker, AC, comprise W , labour taxes τ and bene�ts b

(such as pensions), butwe have no time-series data on the last of those, and little on

τ till relatively recently. Figure 1.10 records the available data on some auxiliary

time series of potential relevance, comprising days lost through strikes (st), real

National Insurance Contributions (nict − pt), membership of Trades Unions (tut),

and unemployment bene�t payments as ‘replacement ratios’ relative to average

earnings (replt), all in logs, with their changes shown in the second row of graphs.

As a measure of employment taxes, nict −pt is now a substantial component of

τ. Unfortunately, many of these time series are only available over relatively short
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Figure 1.10
Log levels and changes in: days lost through strikes; National Insurance Contributions

(NICs); Trades Unions membership (TU); and replacement ratios.

historical time spans. In logs, allowing for taxes and bene�ts, the right-hand side

of (1.7) becomes wt − pt + τt + bt , so the long-run constant-price relationship for

AC � AR is:

wt − pt � 1t − lt − (τt + bt) (1.8)

Then, (wt − pt − 1t + lt) is the wage share, or real unit labour costs, which (1.8) sug-

gests should only change with (τt + bt). If so, Trades Unions’ membership, strikes,

and unemployment bene�ts as shown in Figure 1.10, as well as employment leg-

islation etc., must mainly impact on the unemployment rate, Ur,t , rather than on

(wt − pt)–which is a testable hypothesis.

1.9 The relationship of real wages to average productivity

In (1.8), (wt − pt) is the real product wage, measured relative to GDP prices rather

than (say) consumer prices. Figure 1.11 plots log realwages (w−p)t and log average

productivity (1 − l)t over time. Matching the analysis in sections 1.7 and 1.8, the

two variables show very similar long-run trends, and even match fairly well over

the four epochs identi�ed in section 1.5. Most of the rise in real wages has been

due to increased output per worker. Of course that pushes the explanation back

one step—we now need to explain increases in (1 − l)t , which seem to be due to

increases in (k− l)t , which cumulates past net investment.... Wewill not have space

to push back explanations to ‘fundamentals’ in this book, but needing to extend a

system being analyzed to explain ‘explanatory variables’ is a standard econometric

problem. Moreover, such extensions have to be consistent within the system as a

model of the macroeconomy.

Although the long-run relationship is close, there are persistent deviations be-

tween the lines as (w − p)t is below (1 − l)t over the entire period 1865–1920 and

again over 1925–1940, then remains above for 1940–1980, but ends by being close
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Figure 1.11
Log real wages and log average productivity over 1860–2011.

from then onwards. This is another standard econometric problem—needing an

extension to explain systematic mis-matches. We will return to that issue after

considering a third econometric problem—how to handle trends.

1.10 Deterministic trends

Most data graphs shown so far have revealed trends, so we need tools for handling

many types of trends, some of which are deterministic, and some stochastic as we

now explain: we will return below to the added problems that the ‘trend is your

friend till it doth bend’.

We begin with constant deterministic linear trends de�ned by:

xt � α + βt for t � 1, 2, 3, . . . , (1.9)

Then xt grows at the rate β, because deriving the outcome one period earlier:

xt � α + βt

�
�
α + β(t − 1)� + β

� xt−1 + β (1.10)

where xt−1 is the previous value, or lag, of xt . Subtracting xt−1 from both sides of

(1.10):

xt − xt−1 � ∆xt � β (1.11)

where∆xt is the change in xt . For a process like (1.9), the di�erence∆xt is constant

at β, and is trend free. When x is the log of a level, ∆xt is the growth rate.

As a possible example, Figure 1.12 plots the changes in average productivity.

However, these do not look very constant, consistent with (1.6), which entails:

∆(1 − l)t � a + (1 − λ)∆(k − l)t
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Figure 1.12
Changes in average productivity ∆(1 − l)t over 1860–2011.

so ∆(1 − l)t varies with ∆(k − l)t , which is net investment per employee, and is

bound to change with technology and over business cycles, as well as with special

events such as wars and major policy changes. Consequently, we now consider

what are called ‘stochastic trends’.

1.11 Stochastic trends

Returning to equation (1.10), re-write it with an added error, or ‘shock’, as:

xt � xt−1 + β + εt (1.12)

In (1.12), εt is the random shock, which we assume to be:

εt ∼ IN
�
0, σ2ε

�
(1.13)

denoting an Independently distributed Normal random variable with a popula-

tion mean, or expectation, of zero, so E[εt] � 0, and a variance of E[ε2t ] � σ2ε , as
illustrated in Figure 1.13.

From (1.12), ∆xt � β + εt , so the change ∆xt now varies randomly around

β. {xt} is called a random walk, with drift at the rate β: equity prices are often

treated as random walks with β � 0 because the change is then unpredictable,

precluding a free lunch. However, allowing for an error on the change has some

crucial implications, which we now explore.
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Figure 1.13
Normal distribution with mean E[εt] � 0 and variance E[ε2t ] � σ2ε � 1.

1.11.1 Properties of stochastic trends
At each point in time, xt has cumulated all the past εs because:

xt � xt−1 + β + εt [by de�nition]

�
�
xt−2 + β + εt−1

�
+ β + εt [one period earlier]

� xt−2 + 2β + εt + εt−1 [rearranging]

�
... [repeatedly lagging]

� x0 + tβ + εt + εt−1 + · · · + ε1 [at time zero]

� α + βt +
∑t

r�1εr [changing notation]

� α + βt + ut [looking like (1.9)] (1.14)

where α � x0 and ut �
∑t

r�1 εr . Then, (1.14) shows that xt cumulates all past errors,∑t
r�1 εr � ut , so will ‘wander widely’, as well as trending at the same rate β as (1.9).

The cumulative errors will play an important role in later chapters.

1.11.2 The concepts of stationary and non-stationary processes
A time series is stationary if the distribution from which the data are drawn re-

mains the same over time. In particular, the mean and variance of that distribu-

tion need to remain constant. If the distribution or any of its moments change over

time, then the process is non-stationary.

The graphs of time series seen so far are all distinctly non-stationary, in that

their means have not remained constant, but have usually trended over time. Fig-

ure 1.14 records the histograms and approximating densities (dashed and dotted
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Figure 1.14
Histograms and densities of wt , pt , 1t and lt , shaded pre-WWII.

lines) of four of the variables, wt , pt , 1t and lt , split before and after 1940.1 The for-

mer densities are shaded, the latter are not. There are large shifts in the distribu-

tions, with both themeans and the variances changing between the two periods, as

well as revealing apparent non-normality, where the closest normal distributions

are shown as solid lines (see Task 4 Section 1.19).
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Figure 1.15
Histograms and densities of ∆wt , ∆pt , ∆1t and ∆lt , shaded pre-WWII.

1 Histograms allocate observations to each interval, so depend on how those intervals are chosen:

the approximating densities smooth across the intervals using a weighted average where the weights

are largest for observations near the centre of the interval and converge on zero for observations in

distant intervals.
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Byway of contrast, Figure 1.15 records the histograms and approximating den-

sities (dashed and dotted lines) of the �rst di�erences of the 4 variables, ∆wt , ∆pt ,

∆1t and ∆lt , which still change between the two periods, but by much smaller

amounts and are also closer to normality within each period. Nevertheless, it can-

not be assumed that di�erences are necessarily stationary: trends can change, or

drifts can shift.

1.12 Some additional background

Although variables such as p and w have changed vastly over our sample, when

‘scaled’ by themagnitude of the economy of their time, other variables have �uctu-

ated considerably but still have magnitudes recognizable today. Four of these are

the amount of broadmoney in circulation, measured byM4 as in Ericsson, Hendry,

and Prestwich (1998) and shown relative to nominal GDP (denoted by m − 1 − p
in logs) which we will analyze in Chapter 7; the ratio of nominal national debt to

nominal GDP (denoted by N/(PG), not in logs); the long- and short-term interest

rates (RL and RS respectively); and the purchasing power of £ sterling against an

index of world currencies (weighted by UK export shares, and denoted ppp, in
logs). These are shown in Figure 1.16.
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Figure 1.16
Time series of (m − 1 − p)t , (N/(PG))t , RL,t and RS,t , and pppt .

As can be seen in panel a, the relative amount of money in circulation has

moved over a wide range, rising by 60% to a peak just after WWII, before more

than halving to a trough in 1980, then recovering to well above its previous peak.

Chapter 7 investigates the demand for money.

Panel b shows a longer time series for (N/(PG)) to emphasize the non-economic

aspects of its behaviour. Starting at a high level after the Napoleonic Wars, which

has a similar value to the ratio in 1918, it declined slowly till 1860, reaching a low

in 1913 before climbing back to a peak in 1946, declining to roughly the same level

as pre-WWI in 1990, then rising again after that downturn and the 2008 recession.
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Almost all the variation is due to wartime expenditures, peacetime reductions in-

duced by rising nominal GDP, and post-WWII �scal stabilizers. The present ratio is

well below the average of the last 200 years, when higher levels did not prevent the

UK from funding the Industrial Revolution and becoming a major world power.

Panel c reveals that RL is like an average of RS pre-WWI, diverges during the

interwar and immediate postwar years (possibly Keynes’s ‘liquidity trap’), before

both leap with the in�ations of the 1970s and 1980s, then gradually decline into

the 21st Century, again diverging with the ‘Great Recession’.

Finally, the purchasing power of £ sterling has seen highs and lows, but is not

far from its original value. Thus, three of the four variables have ended with sim-

ilar values to their initial magnitudes: the fourth (N/(PG)) would have done so if

the �rst date shown had been 1860. We will develop concepts to help explain such

‘relatively stable’ behaviour against the background of huge changes in the econ-

omy and society, where the levels of M and N have increased by almost 200,000%

and 170,000% respectively.

1.13 The way forward

This Chapter looked at the basic properties of macroeconomic data. We found

that variables like aggregate wages and prices are characterized by evolution with

sudden shifts. Many levels have increased dramatically over the last 150 years,

and their shifts often coincided with major historical events. Thus we need tools

for analyzing models of data that have changed so greatly. Chapter 2 will discuss

models of trends and breaks and methods for ‘taming’ them in order to facilitate

the development of sustainable empirical relationships. Then Chapter 3 will con-

sider how to characterize the high levels of dependence between macroeconomic

variables, and also over time. Chapter 4 will brie�y review the two key ingredi-

ents of economic theory and statistical analysis that form the backbone of macro-

econometrics. The heart of the book comprises the four empirical modelling stud-

ies for UK unemployment in Chapter 5, real wages in Chapter 6, money demand

in Chapter 7, and price in�ation in Chapter 8.

1.14 Chapter 1 key points

(A) There have been huge changes in nominal wages and prices over the last 150

years in the UK (and most other countries, though at di�erent times): approxi-

mately 700-fold and 98-fold respectively.

(B) Real wages have increased greatly (about 7-fold), and that rise has been close

to the rise in average productivity per worker.

(C) Such a �nding roughly matches the simplest neo-classical model of equating

marginal revenue per worker with marginal costs, subject to a number of assump-

tions such as constant returns to scale.

(D) Nevertheless implementing that theory leads to systematic departures from

the available data, which admittedly omit important changes in hours, holidays,

education, labour force composition and skills, as well as labour taxes and bene-

�ts.

(E)Many dramatic historical events, technological, legal and �nancial innovations,
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and social and demographic developments occurred over the period.

(F) The measured growth rates of many variables have changed on several occa-

sions, leading to shifts in their distributions.

(G) In general, macroeconomic data manifest both evolution and abrupt changes:

trends and sudden shifts are common, making most time series non-stationary.

(H) We formulated simple models of trends, both deterministic and stochastic.

(I) Other variables like broadmoney and the national debt have also increased dra-

matically, but have reverted to similar ratios to GDP.

The next chapter will describe ways of ‘taming’ such trends, then analyze and also

model sudden shifts—another manifest feature of Figure 1.16.

1.15 Introduction to the Tasks

The ‘How to do it’ Tasks are mainly based on OxMetrics (see Doornik, 2013b) and

PcGive (Doornik andHendry, 2013) as that is the only software that implements all

the tools and techniques needed in this book, but nevertheless provides an easy-

to-use menu-driven approach to plotting graphs, transforming data, conducting

regression calculations, and simulating statistical distributions.

These Tasks of replicating what the chapters discuss assume the use of a PC

with a mouse, and focus on accessing operations by clicking on the icons on the

third row from the top of the screen using a mouse, although access can usually

also be achieved by holding down the Alt key and pressing the relevant Letter
(e.g., Alt+G for the Graphics dialog), or by clicking on the relevant Menu button

on the second row from the top of the screen. Buttons, menu and dialog choices

are shown in Typewriter font. Throughout, ‘click’ denotes the left mouse button,

unless the right button is speci�cally requested to carry out that part of the task;

and on-screen selections are also denoted in typewriter font as shown for Menu just

above. Variables in the database are named as ‘W’, ‘Dwp’ and so on. Readers fa-

miliar with OxMetrics should be able to conduct the Tasks as they proceed. The

Tasks are placed after the ‘Key Points’ sections so they can be skipped if desired.

However, many Tasks lead to developments in applying the econometric tools rel-

evant to macroeconomic data, as well as explanations of tests and procedures that

would distract from the main text. Conversely, the Tasks deliberately increase in

di�culty as the book progresses, and the most di�cult are denoted by
∗
.

1.16 Task 1: Loading and graphing data

OnceOxMetrics is installed, click on its icon to start: its help system can be accessed

by clicking on the Help button on the second row from the top of its screen when

the program is in focus: we will call that row the ‘Command line’ henceforth.

The �rst task is to load the data set. Right click with the mouse on the folder

Data (under ‘Documents’ on the left-hand side of the screen), select Open Data,

and click on ‘UKHist2013.xls’ to load. This data set should now be listed just below

Data. Click on ‘UKHist2013.xls’ to bring it into focus.

The next task is to draw Figure 1.1 for nominal wages (W) and prices (P) over
1860–2011. Capitals (W) and lower-case (w) names are distinguished by OxMet-
rics. Click on the graphics icon (9th from the right on the third row from the top,
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henceforth called the ‘Icon line’), or use Alt+G, or click on the ‘Model’ button on

the ‘Command line’ and then on Graphics. The dialog has three columns, labelled

Selection on the left (presently empty as nothing is selected), double-direction ar-

rows (‘<<’ and ‘>>’) in the centre, and Database on the right, which lists all the

available time series. To �nd a variable, click inside the Database column, then

type the �rst letter of its name. Thus, type ‘W’ and itwill be highlighted (if you type

‘W’ again, ‘WPOP’ will be highlighted). To add ‘W’ to the selection for graphing,

either click on the centre column arrow ‘<<’, which should be highlighted as well,

or double click on the name highlighted. Now ‘W’ should appear in the Selection

column. Repeat for ‘P’ so both are selected and now click on Actual series but-

ton on the bottom left of the dialog to see the graph. As they are indexes, the units

of W and P are arbitrary, and have been set to unity in 1860.

To edit a graph, either double click on it, or click on the Edit button on the

‘Command line’ and then Edit Graph. That brings up the dialog where you can

change names of variables, line choices, font sizes, etc. For example, double click

on the blue line shown opposite Style for P and change it to a dashed or dotted

line. When editing is complete, either press the ‘Esc’ key on the keyboard, or click

on the red cross at the top right of the dialog to close that window. To type on

the graph, literally just do that when it is in focus, shown by a jagged line round

the �gure. So, type (e.g.) ‘Wages’: after the �rst letter, a Graphics Text box will

appear. Graphs in OxMetrics support the LAT
E
X typesetting language, so to add an

arrow pointing to the wages line, type ‘$\rightarrow$’ (which will show on the

graph as →) and then click on OK. Once text shows on a graph, you can move it

(click the text and hold the mouse button down, then shift that text to where you

want it), or edit it (double click on it, and you will see it listed under Text on the

Edit Graph dialog. Hopefully your graph looks like Figure 1.1. The Blue bent

arrow on the Icon line can undo any mistakes.

Save the �rst graph if youwant a permanent record, or rename it for temporary

storage: not doing so will add the new graphs to the current plot window. To save,

have the graph in focus, and click on the save button (fourth icon from the left on

the ‘Icon line’) which should be highlighted, or click on File on the ‘Command

line’ then on Save as. The default name o�ered will be ‘Data Plot’, and the de-

fault format will be .gwg (for GiveWin Graphics) a format from which OxMetrics
can recreate the graph later. To rename the graph, again click on File on the ‘Com-

mand line’ then on Rename and enter the desired name in the box o�ered. The next

task assumes you either saved or renamed the graph.

1.17 Task 2: Graphs with regressions

The second task will be to replicate Figure 1.2 and the following graphs of the logs

of wages and prices, ‘w’ and ‘p’, through to Figure 1.4. The �rst steps are just like

Section 1.16, but select w and p, then Actual series. Double click on the graph

to bring up the Edit Graph dialog. Seven lines down is the entry Regression,

Scale for w: click on that to reveal options for Scaling (which we will not need

here) and Regression, where opposite No of lines change the 0 to 1, and just

below that, Typewill be highlighted. To see the deviations between the regression

line and the data series, change Sequential to Seq. with projections. Click

Done and a version of Figure 1.3 should appear. To more closely match, you will
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need to extend the range of the y-axis: to do so, bring up Edit Graph, and at the

top, click on Area 1 layout to reveal three choices, of which you need to click on

World coordinates. Select Set Y, and reset Bottom from -0.2 to -1.0, then Done.

Next bring up Edit Graph again, and reset 1 regression for w to 6; and the same

for p (remember to set Seq. with projections). Now you are nearly at Figure

1.4: all you need to do is sign your picture. This time, right click with the mouse

to bring up a small dialog, of which one choice is Draw: move the mouse over

that entry to list all the drawing options, and left click on Draw a Freehand line.

When the mouse is over the graph, you will see it has transformed into a pen. This

pen can write whatever you wish when the leftmouse button is held down, like a

normal pen on paper, but with the caveat that you must not stop holding down the

left mouse button (i.e., don’t take the pen o� the paper), but write continuously–

which can take a little practice. Once you have written your signature, bring up

Edit Graph, and a third line called x has appeared: this is your writing. Select 1

regression and Seq. with projections to �t a regression to your signature.2

1.18 Task 3: Scatter plots

The procedures for replicating Figure 1.5–Figure 1.7 are similar, so we move to

replicating Figure 1.8. This is a new kind of graph called a scatter plot. Save, re-

name or delete your last plot to get a new graphics window, remove the current

selection of ‘w’ and ‘p’, and select ‘gl’� 1 − l and ‘kl’� k − l, but now click All

plot types (this graph could be done by Scatter plot (YX) but it will be use-

ful to learn the more general approach). The new dialog shows the wide range of

types of graphsOxMetrics o�ers, and the many forms for each type. Here, click on

Scatter plots, and in the right panel click on Regression, tick Regression line

and also With projections, then Plot and Cancel to exit and see your ‘produc-

tion function’. Other choices of �tted lines (not necessarily linear) could be used

by selecting Smoothing and some of the options that o�ers.

Return to the graphics icon and add year to the selection, All plot types,

3-D(XYZ) plots, scroll down in the left-hand panel to �nd 3D points, then Plot

and Cancel to see a version of Figure 1.9 (which had the variables in a di�erent

order, and also rotated the graph for convenience, which can be done using the

right mouse button, and selecting Rotate).3

The following few graphs should now be easy.

2 This is less magical than it looks. The ‘pen’ available for writing on graphs inOxMetrics records the
pixels where writing occurred, and the software knows the mapping between the units of the variables

in a graph and their pixels, so can translate the writing into ‘real world’ magnitudes—and hence can

�t a trend line to the writing, even including projections from that line. One can do lots of fun things

with modern econometrics software...

3 When a graph is moved, OxMetrics �xes its location. Such a move may be accidental, but then

leads to added graphs partially overlapping. To correct the problem, double click on the apparently

�xed graph, select Area layout, then Pixel coordinates, and untick the box opposite Set if it is

ticked: if that box is blank, then try another area.
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1.19 Task 4: Data density plots

The next new type of graph is to draw data densities, like those shown in Fig-

ure 1.14, although we will only explain the process for one of the sub periods.

Click the graphics icon, clear the entry, and select ‘w’, ‘p’, ‘g’, and ‘l’, All plot

types then Distribution. Tick Normal reference (options for Histogram and

Density should be ticked already), and click on Sample, set Sample start to 1860

and Sample end to 1940, OK, then Plot and Cancel. Using Edit Graph, for each

Area 1�4 in turn, select Histogram, Inside color, and select grey (line 15 in the

default settings).

Repeat for 1941 to 2011 (set the second date before the �rst to avoid zero ob-

servations). There should be 8 graphs, four shaded for the �rst sample and four

unshaded for the second. Now, yet another special feature of OxMetrics: click on

Area 5 (the second sample density for w) so the jagged line appears round it, copy

just that graph to the clipboard (or right click and select copy); click on Area 1

(the �rst sample density for w, so now has the jagged line), and click paste to see

the changes in the density between the periods. Repeat for each of the variables’

matching subsamples, then delete the bottom four graphs (click to see the jagged

line then right click selecting delete: hint–start with the last graph).

Hopefully graphing should now be straightforward, although there are a num-

ber of other types of graph used below, and often some additional ‘tidying up’may

be required to create presentational quality.

1.20 Chapter 1 exercises

1. Do a scatter plot of the data for the logarithm of wages, ‘w’, against the loga-

rithm of prices, ‘p’. Change the line Type from symbols to line and symbols

and brie�y discuss.

2. Fit a regression line with projections and brie�y discuss.

3. Change to four regression lines with projections and discuss your set of �nd-

ings.

4. Draw the data densities for ‘wp’, ‘Ur’, ‘gl’ and ‘kl’ in separate graph windows,

like Figure 1.15, and discuss your �ndings in relation to that Figure.

5. Repeat Task 4 for ‘wp’, ‘Ur’, ‘gl’ and ‘kl’ by plotting their densities separately

for 1860–1940 and then 1941–2011 and discuss the outcome in relation to Figure

1.15, explaining why some densities shifted considerably yet not all changed

greatly (see Figure 1.17).
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Figure 1.17
Histograms and densities of (w − p)t , Ur,t , (1 − l)t and (k − l)t , shaded post 1940.
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Taming trends and breaks

Chapter 2 guide posts

1. While the levels of wages and prices trended greatly over the last 150 years,

their rates of change did not trend: Section 2.1.

2. However, wage and price in�ation experienced many sudden large changes in

their average values at di�erent point in time, called location shifts: Section 2.2.

3. Although the growth of real wages did not trend, it doubled after the Second

World War, probably due to the growth of labour and capital: Section 2.3.

4. Most of the location shifts in wage and price in�ation match, so real wages

rarely jumped, called co-breaking, with the exception of a spike in 1940: Section

2.4.

5. Year-on-year changes in the log of wages divided by prices do not trend, so

‘tame’ the huge rises in the nominal levels of wages and prices.

6. Those huge rises are also tamed by scaling real wages by productivity per

worker as that cancels their trends (called cointegration): Sections 2.5–2.7.

7. Indicator variables, which are zero everywhere except for unity over a short

period to indicate its presence, are introduced to capture location shifts, and

lead to an understanding of co-breaking: Sections 2.8–2.10.

8. Rapid shifts could also be due to non-linear reactions, so those are considered

as well: Sections 2.11 and 2.12.

9. To summarize, as trends and breaks are ubiquitous in macroeconomics, we

discuss how to handle both in two ways, where the �rst ‘removes’ the prob-

lem whereas the second ‘models’ it, namely di�erencing and cointegration for

trends, and indicators and co-breaking for shifts.

2.1 Measuring wage and price in�ation

Let us return to Victorian London in 1860, and again imagine you are living there

on a worker’s wage. At that time, the UK operated under the ‘Gold Standard’,

which �xed the price of gold in terms of £. Gold had been discovered in California

in the mid 1840s and in Australia in the late 1850s, then in the Klondike in the late
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1890s, leading to general price rises for a time, but thesewere insu�cient to sustain

the rapid expansion of economies. When gold was scarce with no new discoveries

to match the increases in output of goods and services, the price level had to fall,

increasing the burden of debt on the poor: see Marshall (1926) in his evidence to

the Royal Commission on the Values of Gold and Silver, 1888.
If we zoom in to the behaviour of wages and prices 1860–1900 as in Figure

2.1, this pattern shows up. Nominal wages and prices rose till the early 1870s,

and then fell back till the late 1880s (panel a), a period when real wages lagged

productivity growth (c). Wage and price in�ation (b) �uctuated considerably, and

both were often negative, so real wage changes (d) also varied between ±3%pa.

Over your working life of 40 years, the purchasing power of your wage would

have risen less than 40%–it started at an inadequate level, and ended at one. Many

older individuals were forced into Workhouses, with much new construction in

the 1860s.
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Figure 2.1
(a) Annual wages and prices; (b) wage and price changes; (c) real wages and productivity;

(d) changes in real wages, all over 1860–1900.

Even by 1913, life was little better. In Round about a Pound a Week written by

MaudPember Pember Reeves (1913), she spells out the hardships of London life for

many livingwell above the lowest poverty rung. TheGreatDepression did not help

either, but during and after the SecondWorldWar, matters improved rapidly with

the abandonment of the Gold Standard in favour of the Bretton Woods currency

agreements. That collapsed in the 1970s, to be replaced by �oating exchange rates,

which necessitated some other mechanism to determine the price level.

Over the last decade or so, ‘in�ation targeting’ has become themain instrument

of economic policy in many countries, including the UK. The Bank of England ad-

justs interest rates to try and stabilize the rate of price in�ation at around 2.0% p.a.,

measured by the consumer price index (CPI). We are analyzing the gross domestic

product (GDP) de�ator, Pt , an implicit price index that converts nominal GDP to

real, but seeks to represent a general measure of prices entering GDP. Here, Pt is

annual, whereas CPI is measured monthly. Thus, ∆pt � pt − pt−1 is annual in�a-

tion, and when cpit � log(CPIt), so is cpit−cpit−12 � ∆12cpit . Price indices have
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arbitrary units determined by a ‘base year’ where they are set to unity, or some-

times 100. In logs, that a�ects the level, but not the changes.
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Figure 2.2
Annual wage and price in�ation over 1860–2011.

Annual wage and price in�ation, denoted ∆wt and ∆pt , are shown in Figure

2.2. The next section will analyze these transformations of the original time series.

2.2 Wage and price in�ation outcomes

Figure 2.2 reveals many new features of these changes, which we list as follows:

1. neither ∆wt nor ∆pt trends overall, but both wander widely, over approxi-

mately ±25% p.a., consistent with one implication of a model like (1.14) when

β � 0;

2. there are three episodes of very high in�ation (de�ned as above 20% p.a.):

a. for both ∆wt and ∆pt , duringWorldWar I, whenwage indexation had been

introduced, and lasting till about 1920;

b. at the start of World War II for wages; and

c. during the 1970s for both∆wt and∆pt , whichwas also a periodwith various

incomes and prices policies to try and control in�ation;

3. there are also periods of negative in�ation, corresponding to sharp falls in

wages and prices, especially over 1921–23, when both fell by up to 20%;

4. usually both variables move in similar ways, but;

5. generally, ∆wt ≥ ∆pt , especially after WWII;

6. both series are relatively erratic with many ‘jumps’.

Given this list, can you guess what the change in real wages, ∆(wt − pt), looks
like? Figure 2.3, which also plots the sub-samplemeans pre- and post- 1945, shows

there are some surprises.
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Figure 2.3
Real-wage growth over 1860–2011 with sub-sample means.

There is a huge spike in 1940, presumably to encourage a high participation in

the labour force at the start of WWII: otherwise the range is from about −3% to

about +5%, a much smaller range than the nominal variables. One can also see

that the 19th Century had many movements, on a similar scale to the later data,

despite the initial impression in Figure 1.1. The latter half of the 20th Century had

a higher mean, with more persistent increases in the last few decades. However, it

is hard to discern the small mean shift against the noisy �uctuations in ∆(w − p),
even though the growth rate doubled from 0.9% p.a. pre-1945 to 1.8% p.a. after.

Such an apparently small shift can have amajor e�ect on living standards. Real

incomes double in 36 years at 2% p.a., so would grow 8-fold in a little over a cen-

tury, and more than 16-fold over our period of 150 years. However, at 0.9% p.a.

they only double every 80 years, so would be just 4-fold higher in 160 years (based

on the so-called rule of 72). The growth rate of GDP per worker over 25-year inter-

vals is shown in Figure 2.4 and highlights that UK prosperity is remarkably recent.

Had the whole sample seen growth at 2% p.a. per person, real incomes would be

more than twice as high as present levels.

Given the concomitant advances in hygiene, medicine and longevity, it is clear

that we are verymuch better o� now than 1860 on all suchmeasures: but that does

not explain why real wages (or output per person) increased so greatly. To unravel

that, using the analysis in (1.6) that (1− l)t is mainly determined by (k− l)t , we turn

to examine the behaviour of the two key inputs to the production process, namely

labour and capital.

2.3 Growth of labour and capital

The very di�erent behaviour of ∆lt and ∆kt is shown in Figure 2.5, using the same

units for the two graphs.

Employment has grown on average by 0.6% p.a., whereas capital has grown at

2% p.a., about 3.5 times as quickly. As a consequence, there is now vastly more
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Figure 2.4
Real annual GDP growth per worker by 25-year intervals.
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Figure 2.5
Growth rates of employment and capital stock over 1860–2011.
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capital per worker, enabling workers to be much more productive. Moreover, each

unit of capital is itself much more productive as it embodies more advanced tech-

nology, and the workers using that capital have much more education and greater

skills, so higher human capital. Thus, although labour works much shorter hours

per week, andmany fewer hours per year with longer paid holidays, there has still

been a huge rise in output per person employed as Figure 1.11 revealed. Despite

growing more slowly than capital, employment has nevertheless been much more

volatile: unfortunately it is easier to sack workers than equipment or buildings.

2.4 Taming time series

Do you remember Figure 1.1 in the left panel? J-shaped over [1, 700], with most

early detail lost.

1860 1880 1900 1920 1940 1960 1980 2000

100
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Wages →

Prices 
    ↓

1860 1880 1900 1920 1940 1960 1980 2000

-0.025
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0.075

0.100

0.125

0.150

Figure 2.6
Taming trends in wages.

Figure 2.6 (right) shows considerablemovement, but the behaviour is relatively

similar over the 150 years, with ∆(wt − pt) ∈ [−0.03, 0.16] even when including

the WWII spike. By taking logs of wages and prices, then the di�erence between

those, and �nally calculating the changes in that series, we have tamed the original

dramatic trends. Nevertheless, the transformations allow us to recreate Wt given

Pt from ∆(wt − pt), using:
Wt � exp

�
pt + ∆(wt − pt) + wt−1 − pt−1

�

That is our �rst step in ‘modelling’ wages given prices.

2.5 Trend cancellation

There is another way to tame time-series trends, illustrated in Figure 2.7 which

records the (log) ‘wage share’, wt − pt − 1t + lt .
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Figure 2.7
‘Wage share’ (w − p − 1 + l)t over 1860–2011.

Both (w − p)t and (1 − l)t are cumulative processes with apparent stochastic

trends, as Figure 1.11 showed. The ‘wage share’, (w− p− 1+ l)t , is the gap between

these, yet does not trend, demonstrating that a combination of variables can also

cancel their trends.

As shown in section 1.11.1, time series with stochastic trends cumulate past

shocks:

xt � α + βt +
t∑

s�1

εs (2.1)

An integral used to be written by an elongated S mimicking a sum, so time series

like (2.1) are called integrated (here of �rst order), and denoted by I(1). Linear

combinations of I(1) processes usually also exhibit stochastic trends: for example,

1t and lt are I(1), and so is 1t − lt . However, the cumulated shocks may cancel

between time series, and cointegration is the name for such a property. Here, both

wt − pt and 1t − lt are I(1), but wt − pt − 1t + lt is not integrated, denoted by I(0).

2.6 Cointegration

Consider the two equations:

yt � µ0 + γxt + et
zt � µ1 + xt + νt

(2.2)

where γ , 0, et and νt are random errors, and xt is a stochastic trend:

xt � xt−1 + β + εt � x0 + βt +
t∑

s�1

εs (2.3)
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where εt ∼ IN
�
0, σ2ε

�
as in (1.13). Then yt and zt ‘inherit’ a common stochastic

trend from xt so are I(1), but:

yt − γzt � µ0 − γµ1 + et − γνt (2.4)

cancels the stochastic trend xt by the (unique) linear combination yt − γzt , which

only depends on I(0) errors. While (2.3)–(2.4) are a simple example, they illustrate

the general idea of cointegration.

2.6.1 ‘Natural’ cointegration
Alternatively, two variables can be directly linked by:

yt � β0 + β1zt + εt (2.5)

where εt is a random error, and zt is I(1), generated by:

zt � zt−1 + δ + νt (2.6)

where νt is a random error. Then we can show that yt is I(1) and cointegrated with

zt as follows.

Di�erence (2.5):

∆yt � β1∆zt + ∆εt (2.7)

then using (2.6) implies:

∆yt � β1δ + β1νt + ∆εt (2.8)

Consequently:

yt � yt−1 + θ + ut (2.9)

where θ � β1δ and ut � ∆εt + β1νt , so yt is I(1). As yt − β1zt � β0 + εt is I(0) from
(2.5), and zt is I(1), then yt is cointegrated with zt .

2.6.2 Multiple cointegration
Cointegration may require several variables, yt , zt , wt , say, such that a linear

combination yt + λ1zt + λ2wt cointegrates, where λ1 , 0, λ2 , 0, whereas no pair

does. Then that triple is a minimal cointegrating set. The triple combination can

be written as yt cointegrating with λ1zt + λ2wt or as zt cointegrating with yt , wt
etc., and the normalization of which variable has a unit coe�cient is often based

on theoretical reasoning about the links.

Another useful property of cointegration is thatwhen a group of variables coin-

tegrates, theywill still do so after adding a further variable, xt . However, theremay

be another cointegrating combination involving some of the yt , zt , wt and xt , say

wt and xt . In turn, that must imply that yt , zt , xt also cointegrate, and again

theory is needed to decide which set to choose.

Above, we saw that thewage share, wt−pt−1t+ lt , was not integrated although

the two pairs wt − pt and 1t − lt were integrated. Consequently, it must be the case

that any one of the four must cointegrate with a combination of the other three.

The most economically interesting is between pt and ct � wt + lt − 1t , where ct
denotes unit labour costs, a combination of importance in Section 6.4.
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2.7 Cointegrated time series

Many groups of economic time series seem to cointegrate. Figure 2.8 (left panel)

shows the £ sterling exchange rate index, denoted et in logs, the logs of the UK

price level, pt , and world prices, pw ,t (middle panel), and the resulting derived

real exchange rate, or purchasing power parity, pppt � et + pt − pw ,t (right panel).

Despite the opposite trends in the �rst two panels, pppt does not trend, and is little

changed over 150 years, albeit having wandered widely.
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Figure 2.8
Exchange rate, prices and purchasing power parity, pppt .

A cointegrated relation de�nes an ‘equilibrium trajectory’, where departures

induce an equilibrium correction that moves the economy back towards that path–

otherwise the economywould drift–but convergencemay be very slow. When pppt
has been well above or below the average shown, it has tended to move back to-

wards that average. 1965–1975 is an exception, where the £ fell sharply despite

being well below parity.

As another example, Figure 2.9 shows the UK’s long-term and short-term in-

terest rates, RL and RS, and their spread, RL − RS. The long rate acts like a long

moving average of past short rates, althoughmarked departures can occur, as from

1930–1955, and again after 2008. Overall, the spread is centered near zero, with a

range of about ±3%. Wewill return to cointegration analysis in Task 8 Section 2.17,

and the topic will also recur later.

2.8 Evidence about breaks in nominal and real wage growth

The next step is to investigate breaks in nominal and real wage in�ation over the

last 150 years. Table 2.1 records the values of their means and standard deviations

(SDs) over the whole period, and sub-samples pre- and post-WWII, all expressed

as percentages (SD is in the same units as the variables when logs are used).
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Figure 2.9
Interest rates and spread over 1860–2011.

The means of ∆wt and ∆(w − p)t are much higher post-1945, yet both those

variables must have been more stable as they have smaller SDs post WWII. Also,

SD[∆(w − p)] is always much smaller than SD[∆w]. Consequently, the whole-

period mean and SD are not a good representation of what happened, matching

the graphs of densities in Figure 1.15.

1945 was chosen as the split year because a number of major social structural

changes occurred during 1945–46 or shortly thereafter, including:

• nationalization of major basic industries like coal and steel;

• the introduction of the National Health Service (NHS);

• large changes to unemployment insurance and pensions;

• the Beveridge (1942), Beveridge (1945) reports gave a mandate for seeking low

national unemployment using Keynesian policies.

mean (SD) 1861–2005 pre-1945 post-1945

∆wt 4.3% (5.9%) 2.2% (6.2%) 7.1% (4.2%)
∆(w − p)t 1.3% (2.3%) 0.9% (2.6%) 1.8% (1.7%)

Table 2.1
Means and standard deviations of ∆wt and ∆(w − p)t overall and two sub-periods in % p.a.

However, there were a number of other potential split dates over the period,

corresponding to major institutional, political, or military changes, shown in Fig-

ure 2.10.

Matching these regime changes, the sub-sample mean values shown in Figure

2.11 suggests there were nine mean shifts in the level of nominal wage in�ation.

These nine distinct ‘epochs’ are marked as follows:

(1) a business-cycle era over 1865–1914, with 6 cycles of about 8 years each;
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Figure 2.10
Wage in�ation and institutional regimes.

(2) a huge rise in wage in�ation during WWI, then;

(3) a very large crash over 1921–1923;

(4) wage in�ation then remains near zero till the start of WWII;

(5) with a huge ‘spike’ in 1940 and a higher level during the war;

(6) then falls again at the end of the war, remaining low and steady till the mid-

1970s;

(7) followed by a sharp rise during the oil crises;

(8) falling back after theUK leaves the European ExchangeRateMechanism (ERM)

in late 1992;

(9) �nally low levels during the ‘Great Recession’ and quantitative easing.

The shifts in the means shown in Figure 2.11 are called location shifts. Table

2.2 records the numerical values of the sub-sample means. There are very large

changes in both∆wt and∆pt over time, and relative to the present Bank of England

price in�ation target of 2.0%; the shift in the mean growth of ∆(w − p)t pre- and

post-WWII is also clear; as is the ‘cancellation’ ofmost of the large nominal changes

in the real wage measure.

Large shifts in means (and variances) over time pose very di�erent problems

from deterministic and stochastic trends: such shifts are usually unanticipated,

so can lead to large forecast or expectations errors, well illustrated by the recent

�nancial crisis.

These sub-sample divisionswere chosen after the fact based on the institutional

regimes known historically, and from ocular inspection of the graphs of the time

series. More formally, we need general procedures for detecting and dealing with

shifts.
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Figure 2.11
UK wage in�ation location shifts over 1860–2011.

Epoch Sub-sample ∆wt ∆pt ∆(w − p)t

(1) 1861–1913 1.00 0.20 0.80
(2) 1914–1920 14.6 14.0 0.60
(3) 1921–1923 −12.2 −11.9 −0.30
(4) 1924–1938 0.50 −0.50 0.90
(5) 1939–1945 8.20 5.90 2.30
(6) 1946–1968 6.00 3.90 2.10
(7) 1969–1981 13.4 11.9 1.60
(8) 1982–2011 5.20 3.50 1.70

2005 − 2011 2.80 2.28 0.52

Table 2.2
Mean shifts over nine sub-periods in % p.a.

2.9 Representing a single location shift

Consider a single mean shift from µ0 to µ1 at time T1 < T represented mathemat-

ically by:

yt �

{
µ0 + εt t ≤ T1

µ1 + εt t > T1.
(2.10)

where εt is a random error with mean zero. The overall mean of yt is a weighted

average across the time spent in the two regimes:

E
�
yt

�
�

1

T
�
µ0 × T1 + µ1 × (T − T1)� � µ0 +

(T − T1)
T

�
µ1 − µ0

�
. (2.11)

To model such a shift, we use an indicator variable, denoted by 1{t>T1}, which is

zero till T1 then unity after:

1{t>T1} � 0 t ≤ T1

1{t>T1} � 1 t > T1



i
i

“UGQE2book15” — 2015/4/15 — 10:47 — page 37 — #49 i
i

i
i

i
i

Taming trends and breaks 37

so we can write:

yt � µ0(1 − 1{t>T1}) + µ11{t>T1} + εt
� µ0 +

�
µ1 − µ0

�
1{t>T1} + εt

(2.12)

Then (2.12) has an intercept of µ0, with a location shift of µ1 − µ0 a�ecting data

after time T1. Figure 2.12 illustrates.
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↓

Figure 2.12
Location shift at T

1
� 23 from µ0 � 15 to µ

1
� 20.

2.9.1 Location shift example
Figure 2.12 represents an arti�cial data series generated by (2.12) with an error

εt ∼ IN[0, 1] where the shift is µ1 − µ0 � 5 standard errors occurring at time T1 �

0.23T � 23 from µ0 � 15.

To represent such a shift here would need an indicator 1{t≥23} for the second

mean, µ1 � 20, as only later observations are a�ected. However, Figure 2.11 had

eight mean shifts, so we must be able to model multiple location shifts.

2.10 Multiple shifts

To model many shifts, we use multiple indicator variables, 1{1≤t<T0}, 1{T1≤t<T2},
1{T3≤t<T4} each of which is unity over the period shown, so:

yt � µ0 +

�
µ1 − µ0

�
1{T1≤t<T2} +

�
µ2 − µ0

�
1{T3≤t<T4} + · · · + εt (2.13)

Now (2.13) has an intercept of µ0, with a mean shifts of µ1 − µ0 at time T1, µ2 − µ0

at time T3, etc.

The eight mean shifts in Figure 2.11 are the di�erences between successive

mean values in Table 2.2, namely 13.6%, −13.2%, −0.5%, 7.2%, 5.0%, 12.4%, 4.9%
and 1.8% from an initial-sample mean of µ0 � 1.0%. These could be represented

by 9 indicators and no overall mean; or eight indicators and an overall mean; but

not 9 indicators and an overall mean (check you understand why). To ‘explain’

such shifts would require some other variable that rose and fell in precisely those
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patterns and magnitudes at the same times. When breaks occur in several series,

but a combination of them has fewer breaks, we call that co-breaking, as illustrated

in the next section.

2.10.1 Graphical evidence of co-breaking
The graphs of wage and price in�ation rates (Figure 2.13, left panel) show many

more shifts than real-wage changes (Figure 2.13, right panel). This matches the

phenomenon already noted in Table 2.2. Wewill now analyze co-breaking between

∆w and ∆p with many shifts, to produce ∆(w − p) with few.
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Figure 2.13
Evidence of real-wage co-breaking.

2.10.2 Location shifts and co-breaking

First, for a single break, consider the two equations:

yt � µ0 +

�
µ1 − µ0

�
1{t≥T1} + et

zt � µ0 +

�
µ1 − µ0

�
1{t≥T1} + νt

(2.14)

Then subtracting zt from yt :

yt − zt � et − νt (2.15)

so the shift has cancelled for that unique linear combination. While (2.14) is again

a simple example, it illustrates co-breaking. Extending that theoretical analysis

to multiple shifts as in (2.13) is straightforward, though having all shifts cancel is

demanding empirically.

2.11 Non-linear reactions

Instead of the linear relations of the form yt � β0+β1xt + εt so far assumed, yt may

be a non-linear function of xt denoted yt � f (xt) + εt . There is a vast number of
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possible non-linear functions, the simplest of which is a polynomial of the form:

yt � θ0 + θ1xt + θ2x2

t + θ3x3

t + vt (2.16)

where further powers of xt could be included. One advantage of the formulation

in (2.16) is that despite being non-linear in the variable xt , it remains linear in the

parameters θi so can be estimated by regression methods: to see that it is really

a linear model, rede�ne x i
t � zi ,t for i � 1, 2, 3. A second advantage is that (2.16)

can be used to test whether f (xt) is non-linear by testing the signi�cance of x2

t and

x3

t , an example of the test for non-linearity in Castle and Hendry (2010). Their ap-

proach was to compute orthogonal linear combinations, ui ,t , of the original vari-

ables (called principal components), and test the signi�cance of adding squares,

cubes and exponential functions of each individual component to a linear model.
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Figure 2.14
Non-linear transformations

For a single regressor, that idea simpli�es to using the powers of xt . However, a

disadvantage of (2.16) is that the form of f (xt) in the data generation process (DGP,

which is the ‘true’ process) is rarely known, so a polynomial is likely to be just an

approximation. A second disadvantage is that polynomial terms are potentially

unbounded, and cubics can become large. Using deviations from means (denoted

x) can help standardize values, as in (2.17), but doing so changes the interpreta-

tion of other coe�cients as (e.g.) (xt − x)2 � x2
− 2xxt + x2

t . To capture bounded

behaviour, we can also add the exponential term xt exp(− |xt |)which converges to

zero for both very large and very small values of xt , leading to:.

yt � φ0 + φ1xt + φ2(xt − x)2 + φ3(xt − x)3 + φ4(xt − x) exp(− |xt |) + vt , (2.17)

Figure 2.14 shows graphs of a quadratic (�rst column), cubic (second column) and

the exponential term (third column), so a formulation like (2.17) can represent a

variety of non-linear reactions.

A widely used non-linear model in macroeconomics is called a logistic smooth

transition (see Maddala, 1977, Granger and Teräsvirta, 1993, and Teräsvirta, 1994).
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The idea is to allow for more than one ‘regime’ betweenwhich the economymoves

more or less rapidly, where both the number of regimes and the speeds of adjust-

ment are determined from the data evidence. First, let st � (xt − c) /σx , which is

a scaled and recentered version of xt , so st is measured in units of the standard

deviation, σx , of xt , where c is a threshold. Next, consider the function exp(−γst)
where γ > 0: as st becomes large and positive, the function converges to zero,

whereas when st < 0, bigger negative values will lead the function to become un-

bounded. To ensure a bounded outcome, the transform 1/(1 + exp(−γst)) is used,
which becomes unity for large positive st and zero for large negative values of st
leading to the following formulation for a variable yt as a function of xt :

yt � µ + βxt + µ
∗

�
1 + exp

�
−γst

��−1
+ εt (2.18)

In (2.18), µ and β are the original mean and regression parameter, and µ + µ∗ is
the mean after the shift to the second ‘regime’ is completed. That shift depends on

how far xt is from the threshold c, in units of σx , and γ > 0 determines the rapid-

ity of the adjustment. Such a model is non-linear both in the variables (through

the exponential function) and in the parameters. The latter is most easily seen by

setting µ∗ � 0 so that γ disappears from the model, which raises what is called an

identi�cation problem as the value of γ is then indeterminate. That is in contrast

to say (2.14), where even if the two means are equal so µ1 disappears, that can be

ascertained from the zero coe�cient on the indicator 1{t≥T1}. Although there are

solutions to the identi�cation di�culty, it is very hard to select a model from data

when any parameters enter non-linearly.

The formulation in (2.16) can be seen as an approximation to (2.18) based on

approximating 1/(1 + exp

�
−γst

�) by the �rst term of its power series:

(1 + exp

�
−γst

�)−1 ≈ 1 − exp

�
−γst

�
(2.19)

then expanding the right-hand side exponential function as a polynomial:

exp (z) ≈ 1 + z +

1

2

z2 +
1

6

z3 (2.20)

Since −γst is just a scaled version of xt , (2.18) can be re-written as:

yt ≈ θ0 + θ1xt + θ2x2

t + θ3x3

t + vt , (2.21)

which becomes (2.17) on adding θ4xt exp(− |xt |).

2.12 Location shifts and non-linear reactions

Although many aggregate economic time series appear to exhibit location shifts,

sudden movements in levels could also be the outcome of a non-linear reaction.

For example, Figure 2.15 shows the change in the own-interest rate on chequing

accounts at UK Commercial Banks (RS, scaled by 10 for readability) following the

Finance Act of 1984, with both location shift and non-linear approximations. There

was a sharp rise in RS from zero to about 8.5%p.a., after which the rate levelled

o�. The location shift approximation captures the broad outlines of the move-

ments, and would certainly be an improvement over not allowing for the change

in RS. The non-linear approximation uses an exponential functionwhich is zero till
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Figure 2.15
Own-interest rate on chequing accounts.

1984(2) then (1− exp{−.18(t − 1984(2))}), which �ts better initially, but overshoots

later.

Unfortunately, the wrong choice between a location shift and a non-linear re-

action can have an adverse impact on forecasts by incorrectly extrapolating into a

future period a non-existent shift, or a spurious non-linearity. Fortunately, when

the DGP is in either the class of shifts or non-linearities, it seems that the model

selection methods described in Chapter 4.9 will usually choose a useful approxi-

mation. When the jumps are due to the same non-linear reaction at di�erent times,

that o�ers a more parsimonious representation than many separate indicators, so

is usually chosen; and when the shifts are not connected, indicators will usually

replace an incorrect non-linear function. We will return to non-linear models in

Chapter 6.3.1.

2.13 Chapter 2 key points

(A) Wage and price in�ation did not trend over the last 150 years.

(B) Both show many sudden large location shifts.

(C) Many of those location shifts match, so real wages rarely jump, with the excep-

tion of the huge spike in 1940.

(D) Real-wage growth is trend free, but doubled after WWII.

(E) The rate of productivity growth also changed: capital becamemore productive,

capital per worker grew, and workers were more educated and skilled.

(F) Real-wage growth (i.e., di�erencing the level of the log di�erential) ‘tames’ the

huge rises in nominal levels of wages and prices.

(G) We can also ‘tame’ those huge rises in nominal levels using cointegration to

cancel trends.

(H) Next, indicator variables were introduced to ‘remove’ breaks.

(I) That allowed the formulation of a model of co-breaking, cancelling breaks.
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(J) However, rapid shifts may be due to non-linear reactions, so we also considered

some non-linear representations.

Since trends and breaks are ubiquitous in macroeconomics, we have discussed

how to handle both in two ways:

a] trends: by (i) di�erencing and (ii) cointegration;

b] breaks: by (i) indicators for shifts and (ii) co-breaking.

The �rst ‘removes’ the problem whereas the second ‘models’ it.

Before implementing such ideas, we will consider dependence between vari-

ables, and over time.

2.14 Task 5: Calculator operations

This task introduces the Calculator and its operations in OxMetrics to replicate

Figure 2.4 reporting real annualGDPgrowth perworker by 25-year intervals. Click

on the calculator icon (8th from the right on the Icon line) or type Alt+C, to bring

up the Calculator. There is a window on the second row where operations will

appear, the left-hand side shows typical calculator buttons, the centre o�ers some

frequently used operators, and the right lists the Database variables. Youwill need

to implement the formula

�(1 − l)t − (1 − l)t−25
�
/25 � ∆25(1− l)/25. To do so, high-

light 1l, then click diff... to bring up the dialog for Lag lengthwhich shows 1,

but you want to enter 25, then click OK. The calculator window should now show

‘di�(gl, 25)’, so change that to ‘di�(gl, 25)/25’ and click the large ‘=’ button to im-

plement. A suggested Destination name of ‘D25gl’ will appear, but change that

to ‘D25gl25’ and click OK to accept and create. Exit the calculator.

OxMetrics uses a number of default naming conventions as follows. A leading

L, as inLEmpUK, denotes a log, although the database has renamedmany variables

to just the corresponding lowercase letter, so p rather than LP denotes logP. A

leadingD, as inDp, denotes a �rst di�erence, whereas D2p would be a two-period

di�erence (pt − pt−2) and DDp would be a second di�erence (∆pt − ∆pt−1 � ∆
2pt .

A lag in models is denoted G_1 for G lagged one period, and that is also the

Destination name o�ered if the calculator creates a lag. Names can include such

symbols or operators, so w − p is possible, but to distinguish such names from the

operation w − p, the former need to appear in double quote marks as “w − p”: sim-

ilarly for G_1, so it may be easier to use G1 where the last number denotes the lag

length.

2.15 Task 6: Algebra operations

This task extends Task 5 Section 2.14 to Algebra operations. Click on the Results

name under Text in the far left column of the OxMetrics window to see:

Algebra code for UKHist2013.xls:

D25gl25 = di�(gl, 25)/25;

Calculator operations are written to the Results �le, so can be collected and

saved in an Algebra �le (with extension .alg) as follows. Highlight the operation

‘D25gl25 = di�(gl, 25)/25;’ by dragging the mouse over it, click the copy button

and then click on the algebra icon Alg (also Alt+A) to bring up the Algebra dialog.

Right click with the mouse to enter the operation on line 1, then Save as (with
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the desired name). Note that algebra commands are always terminated by a ‘;’ to

denote where one command ends and the next starts.

The results �le is ‘live’ in the sense that highlighted operations can be executed.

If ‘D25gl25 = di�(gl, 25)/25;’ is highlighted, Ctrl+Awill implement that operation.

An important di�erence between the Calculator and Algebra is that the former

checks if you want to overwrite a variable with the same name as one already in

the database, but Algebra does not. Thus, good practice is never to save an altered

‘core’ database, but save all the required transformations in an Algebra �le and

run it at the start of a new session.

2.16 Task 7: Documenting and modifying graphs

Next, graph the variable ‘D25gl25’ (newly created variables are added at the end

of the database). To rename the legend, select Y label and type in:

$\Delta _{25}(g-l)/25$.
To draw the lines, right click the mouse and select Draw, Draw a straight line,

and use the pen to draw in the region of 0.007 from about 1880 to 1950, �nishing

by pressing the Ctrl key on the keyboard, which makes the line straight. Double

click on that line (under Lines and symbols), select Set world coordinates, and

set both Bottom and Top to 0.007, and if needed, Left to 1880 and Right to 1950.

Similarly for the other lines and also those in Figure 2.10.

A useful variation allows us to handle �gures with multiple graphs, like Fig-

ure 2.5. In the Graphics dialog, select ‘Dl’ and ‘Dk’, then on Actual series

(separately), which will produce two graphs stacked vertically. First, in Edit

Graph, select Graph layout, then Areas, changing 2x1 to 1x2, so the two graphs

will appear beside each other (click Apply to check). Now click on Area 1 in the

left column, and at the foot of the right column, click Copy properties to other

areas. To align the scales of the two growth rates, select World coordinates and

tick the ‘Y’ box, then Done. A similar procedure applies for (say) Figure 2.8.

2.17 Task 8: Deterministic versus stochastic trends

The�nal Task for this chapter is to use graphs to investigate deterministic as against

stochastic trends. First graph 1 (the log ofGDP), and select one regression linewith

projections to see panel a in Figure 2.16.

A single deterministic trend creates very substantial and systematic deviations

from the actual data. In comparison, �tting a single regression linewith projections

to ∆1 as shown in panel b still creates substantial deviations, but they are much

less systematic. One way of emphasizing the di�erence between deterministic and

stochastic trends is to �t 6 regression lines to each of 1 and ∆1, as shown in panel c
and d. There is a marked reduction in the magnitude and systematic nature of the

deviations for 1, but almost no change for ∆1.

To interpret these �ndings, reconsider the model in (1.12), expressed as in

(1.14):

xt � x0 + βt +
t∑

r�1

εr where εt ∼ IN
�
0, σ2ε

�
(2.22)
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Figure 2.16
Deterministic versus stochastic trends.

Even if the trend was at a constant rate, as (2.22) assumes, the deviation from a lin-

ear trend would evolve slowly, from

∑t−1
r�1 εr to

∑t
r�1 εr , so would look systematic.

Conversely, ∆xt would only depend on εt , so the deviations would seem unsys-

tematic. Neither model provides the complete story, as there appear to be changes

in the rate of growth, seen most clearly in panel c; and the deviations seen in both

b and d are not random.

2.18 Chapter 2 exercises

1. Do a scatter plot of nominal wage growth, ‘Dw’, against price in�ation ‘Dp’.

Change the line Type from symbols to line and symbols and discuss what

the time-linked lines show.

2. Fit a regression line with projections: does it change your interpretation in 1.?

3. Copy the graph in 1. and change to four regression lines with projections in

the copy: can you explain why there is so little di�erence from 2.? Are six

regression lines di�erent?

4. Calculate the mean values of the growth of real wages ∆(w − p) before

1945 and again from 1946–2011 using Descriptive Statistics using

PcGive in Model class (select ‘Dwp’, click OK, then choose Means, standard

deviations and correlations which is probably already marked, OK, and

set Estimation ends at 1945, then OK, repeating for the second sample).

5. Plot the time series for ‘Dwp’, as in Figure 2.13, right panel, and use the pen

to draw straight lines at the two sub-sample means on the graph (see Task 7,

Section 2.16). Had you noticed how di�erent these means were?
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Chapter 3 guide posts

1. Most macroeconomic variables are highly correlated, but their correlations are

not constant over time: Section 3.1.

2. The correlations between the current levels of many economic variables and

their previous values (called autocorrelations) are even higher, often being

close to unity 20 years apart: Sections 3.2 and 3.3.

3. Such �ndings are consistent with macroeconomic variables having stochastic

trends, but being perturbed by shifts: Section 3.4.

4. Matching that, autocorrelations between the di�erences of variables usually

‘die out’ rapidly as their distance apart increases: Section 3.5.

5. Correlations between di�erences of economic variables are often low, and in-

deed real-wage growth not only removes the stochastic trends of wages and

prices, andmost of their breaks, but also the autocorrelations of wage and price

in�ation: Section 3.6.

6. The relationship between unemployment and wage in�ation known as the

Phillips curve is shown to shift over time: Sections 3.7–3.9.

7. Non-constant relationships are common in empirical macroeconomics, sug-

gesting important determinants have been omitted: Section 3.10.

8. To understand the behaviour of macroeconomic variables requires models that

include all substantively relevant variables, their dynamic reactions, any non-

linearities, all breaks, and any trends.

3.1 Interdependence between variables

Aggregate economic variables are highly intercorrelated, as Table 3.1 illustrates for

the sample correlations between the �ve main time series graphed above, denoted
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corr(xt , yt) for any pair xt , yt and de�ned by:

corr
�
xt , yt

�
�

1

T−1
∑T

t�1 (xt − x) �
yt − y

�√
1

T−1
∑T

t�1 (xt − x)2 1

T−1
∑T

t�1
�
yt − y

�
2

(3.1)

where:

x �
1

T

T∑
t�1

xt and y �
1

T

T∑
t�1

yt

1860–2011 p w 1 l k
p 1.000 0.998 0.946 0.819 0.952
w – 1.000 0.964 0.848 0.967
1 – – 1.000 0.950 0.997
l – – – 1.000 0.939
k – – – – 1.000

Table 3.1
Sample correlations between macroeconomic time series.

All ten sample correlations are large and positive, and eight exceed 0.9, as shown

in bold. Figure 3.1 records their time series as a group (together with the UK pop-

ulation, denoted pop) matched bymeans and ranges to visually illustrate their high

correlations. Figure 3.2 shows a selection of scatter plots between these series.
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Figure 3.1
Many aggregate economic time series.

Six features of the interdependence shown by the scatter plots in Figure 3.2 are

common in macroeconomic time series.

(1) such high correlations are quite unlike most cross-section scatter plots;

(2) points are plotted—but the outcomes look like lines;

(3) all the plots share the feature of going from lower left to upper right;
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(4) however, most are far from straight lines, even in rows 1 and 2, where they are

organized to be closest to linear;

(5) some rise sharply early, then ‘�atten o�’ (row 3);

(6) others start ‘�at’, then suddenly rise (row 4).
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Figure 3.2
Scatter plots of economic variables.

Consequently, although the correlations are generally very high, they vary over

time, so linear relationships are not constant. Moreover, many variables ‘proxy’

each other, potentially inducing ‘spurious relations’. However, a third di�culty

lurks hidden behind these correlations between variables, namely there are high

correlations between successive values of each variable, violating independent

sampling within each series.

3.2 Time correlations over 1870–2011

We are now moving from investigating corr(xt , yt) to calculating correlations of

the form corr(xt , xt−1), called (sample) ‘autocorrelations’.

corr(xt , xt−s) xt−1 xt−2 xt−3 xt−4 xt−5

pt 0.999 0.998 0.996 0.993 0.991

wt 0.999 0.998 0.997 0.995 0.993

1t 0.999 0.996 0.996 0.994 0.993

lt 0.996 0.990 0.983 0.977 0.974

kt 0.9999 0.9997 0.9994 0.9989 0.9983

Table 3.2
Sample autocorrelations for macroeconomic time series.

Table 3.2 calculates such autocorrelations for s � 5 lags. All are large and posi-

tive, and even the smallest is as large as 0.974, consistent with strong trends of the
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form xt � xt−1+ β+ εt as in (1.12) when β > 0. Figure 3.3 records plots of xt against

xt−1 for pt , wt , 1t , lt , kt and (w − p)t .
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Figure 3.3
Plots of xt against its lagged value xt−1.

The graphs are almost perfect straight lines for all six variables plotted, despite

their rather di�erent time-series graphs seen above.

3.3 Correlograms

Once corr(xt , xt−1) is thought about, one realizes that the string corr(xt , xt−2),
corr(xt , xt−3), ...., corr(xt , xt−s) say for any s, can be studied. When there are many

lags, it is easiest to graph sample autocorrelations.

A plot of corr(xt , xt−s) against s is called a correlogram, and Figure 3.4 shows

some of these. The vertical axis plots corr(xt , xt−s) and the horizontal axis shows

the corresponding value of s � 1, . . . , 20.1 All the autocorrelations are close to

unity for the whole lag length of 20 years, revealing almost complete ‘persistence’:

corr(xt , xt−20) ' 1 for these six series. The dashed lines show approximate 95%

con�dence bands for the null hypothesis that each autocorrelation is zero: all the

autocorrelations lie far outside the null signi�cance band throughout, and none

‘die out’ to zero as the lag length s increases. Why does that happen?

3.4 Explaining autocorrelations of levels

The population variance of εt , denoted Var[εt] is de�ned for a stationary series by:

Var [εt] � E
[(εt − E [ε])2]

.

1 The graphs are for correlations correctly de�ned, not the formulae often quoted in textbooks that

rely on the time series being stationary–which these most de�nitely are not: see Hendry and Nielsen

(2007).
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Figure 3.4
Correlograms of levels of variables.

However, when xt � xt−1 + εt , setting β � 0, we saw above that:

xt � x0 +

t∑
s�1

εs (3.2)

so that xt depends on t epsilons and is not stationary. Nevertheless, as these {εt}
are all independent and identically distributed, the variance of the sum is the sum

of the variances, so that considering the ‘population’ here as s � 1, . . . , t:

Var[xt] � tVar[εt].
There is a trend in the variance, which is why we say that xt has a stochastic trend,

despite no drift when β � 0.

Next, we also have that:

xt−20 � x0 +

t−20∑
s�1

εs (3.3)

which has 20 epsilons fewer than (3.2), so that Var[xt−20] � (t − 20)Var[εt]. Conse-
quently, xt and xt−20 share their �rst (t − 20) epsilons. Given a second stationary

series ut , the covariance between εt and ut is:

Cov (εt , ut) � E [(εt − E [εt]) (ut − E [ut])] .
Applying this formula to the covariance between xt and xt−20:

Cov[xt , xt−20] � (t − 20)Var[εt].
Thus, all three components of the population correlation Corr[xt , xt−20] share

Var[εt], which cancels, so for the population (where sample averages are replaced

by expectations over s � 1, . . . , t):

Corr[xt , xt−20] � Cov[xt , xt−20]√
Var[xt]Var[xt−20]

�
(t − 20)√
t(t − 20) �

√
1 − 20/t (3.4)
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which is approximately unity when t is large. Consequently, stochastic trends can
generate very high autocorrelations when t is large.

3.5 Correlograms of changes in the variables

Equally, di�erencing should remove the common cumulative {εt} (and the trend

if β , 0) as:

∆xt � xt − xt−1 � εt (3.5)

so correlograms of changes, namely Corr(∆xt ,∆xt−s) should be small as there are

no common cumulated shocks.
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Figure 3.5
Correlograms of di�erences of variables.

Figure 3.5 shows the sample correlograms for the di�erences of the six main

time series. These are very di�erent from the autocorrelations of the levels, and

now also rather di�erent from each other. Wage and price in�ation autocorre-

lations start high, and are positive for about 10 years or more—so there is some

evidence of ‘persistence’—whereas those for ∆1t , ∆lt are both near zero after one

period. The correlogram for ∆kt (net investment) is more like that of an I(1) vari-
able. Here all the autocorrelations ‘die out’ somewhat as the lag length s increases.

There is considerable ‘cancellation’ of the autocorrelations for ∆(wt − pt) rela-
tive to ∆pt and ∆wt . In our more technical terminology, therefore, ∆(w − p)t has

removed the common stochastic trends of pt and wt , most of their breaks, and their

high autocorrelations.

3.6 Correlations between di�erenced variables

Correlations between variables are also greatly altered by di�erencing. Figure 3.6

records the scatter plots between (∆x j,t ,∆xk ,t), for j , k where we have added
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∆Ur,t , the change in the unemployment rate, which is the next variable we will

consider. These plots are also completely di�erent from the corresponding scatter

plots between the levels, and again somewhat di�erent from each other. The �rst

three, for∆wt &∆pt ,∆1t &∆lt , and∆(w−p)t &∆wt are quite highwith positive re-

gression lines. The next three, between ∆Ur,t & ∆lt , ∆1t & ∆Ur,t , and ∆wt & ∆Ur,t ,

are also quite similar but now are negatively correlated. The �nal three, between

∆(w − p)t & ∆Ur,t , ∆lt & ∆kt , and ∆kt & ∆Ur,t are all relatively uncorrelated.

∆p × ∆w 

-0.2 0.0 0.2

0.0

0.2
∆p × ∆w ∆g × ∆l 

-0.1 0.0

-0.1

0.0

0.1
∆g × ∆l ∆(w−p) × ∆w 

-0.2 0.0 0.2

0.0

0.1

∆(w−p) × ∆w 

∆Ur × ∆l 

-0.1 0.0

-0.05

0.00

0.05

0.10
∆Ur × ∆l ∆g × ∆Ur 

-0.05 0.00 0.05 0.10

-0.1

0.0

0.1
∆g × ∆Ur ∆w × ∆Ur 

-0.05 0.00 0.05 0.10
-0.2

0.0

0.2 ∆w × ∆Ur 

∆(w−p) × ∆Ur 

-0.05 0.00 0.05 0.10

0.0

0.1

∆(w−p) × ∆Ur ∆l × ∆k 

-0.1 0.0

0.02

0.04 ∆l × ∆k ∆k × ∆Ur 

-0.05 0.00 0.05 0.10

0.02

0.04 ∆k × ∆Ur 

Figure 3.6
Many correlations between di�erences.

We will now apply what we have learned about analyzing time series to an

initial appraisal of the time-series evidence on UK unemployment.

3.7 UK unemployment

Unemployment, Un ,t , is measured by the di�erence between the supply of labour

willing to work, denoted Ls
t , and the demand for that labour, Ld

t , so Un ,t � Ls
t − Ld

t .

The unemployment rate, Ur,t , is de�ned as Un ,t/Ls
t . Employment Lt is a derived

outcome from the demand to produce goods and services, so varies with the prof-

itability and volume of sales changes, as well as the technology embodied in the

available capital stock and the skills of the available labour supply. It is often as-

sumed that actual employment, Lt , equals Ld
t as �rms do not employ unnecessary

labour, but there is good evidence of cyclical ‘labour hoarding’.

Total labour supply depends on the population of ‘working age’—which has

changed greatly over the last 150 years, when young children were often made to

work in mines and factories—and on the ‘willingness to work’ at current wages.

Ls
t is often measured by surveys of ‘willingness to work’, but Un ,t is usually di-

rectly measured by registrations at unemployment o�ces (rather than indirectly

as Ls
t − Ld

t ), although earlier in our sample, unemployed numbers were based only
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on Trades Unions’ records. More recent calculations of 19th Century unemploy-

ment in Boyer andHatton (2002) show a very similar pattern with less volatility, as

would be expected when unemployment is measured more generally. All histori-

cal data are estimates, prone to revision, but as Figure 3.7 shows, unemployment

has changed so much over the long period we are analyzing that a fairly clear pic-

ture emerges.

1860 1880 1900 1920 1940 1960 1980 2000

0.025
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0.075

0.100

0.125

0.150

WWI  →

 ← WWII 

 ← Oil crisis ←Postwar
   crash 

 ←Mrs T

Boer war →

US crash →

 ←Post-war reconstruction

 ←Leave
     ERM

Units−rate

 ←Leave gold standard

Financial ↑
crisis

Figure 3.7
UK unemployment, 1860–2011, with major events a�ecting it.

As with earlier graphs, Figure 3.7 highlights a number of distinct regimes. The

�rst, pre-WWI, reveals business-cycle behaviour of �uctuating levels of unemploy-

ment around a relatively constant mean of about 4.5%, with a sharp fall during

WWI to near zero. Then there is a dramatic rise to more than 10% in the post-WWI

crash, followed by a further increase during the Great Depression to a high of 15%

in 1932. Unemployment thendeclined to high single digits after theUKabandoned

the Gold Standard. The Second World War led to another dramatic drop to near

zero, with unprecedently low levels persisting into the 1960s, accompanied by a

much smaller variance than previously, under ‘Keynesian policies’. The Oil Crises

and Mrs Thatcher’s economic policies combined to reproduce inter-war levels of

unemployment, only slowly reduced after the UK left the Exchange Rate Mech-

anism (ERM) in 1992, before rising again during the recession that followed the

2008 �nancial crisis.

The shifts between the various regimes are abrupt, and they then persist, of-

ten for decades, so are most unlikely to be due to changes in ‘willingness to work’.

Hours of work generally fell, and paid holidays and the working age rose, reduc-

ing labour supply, o�set by population growth and increasing female participation

with increases in education and skills raising ‘human capital’. Certainly, unem-

ployment bene�ts increased as Figure 1.10 showed, but the common feature of the

four main shifts are changes in demand for labour, driven by changes in the de-

mands for ‘goods and services’ (if bullets, bombs, shells and soldiers could be so

designated during wars).
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There are in fact two key issues: what determines unemployment; and what

does it determine? We will start with the second.

3.8 Macroeconomic consequences of unemployment

Themost famous theory is that unemployment determines in�ation, encapsulated

in the ‘Phillips’ curve �rst proposed by Bill Phillips (1958) and often written as:

∆wt � f (Ur,t) + et (3.6)

where f (·) represents a non-linear relationwith an ever increasing impact as unem-

ployment falls towards zero. Figure 3.8 illustrates the relationship between nomi-

nalwage changes andunemployment levels over Phillips’s sample 1860–1913, with

a curve that represents the general tendency.2
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∆w

Ur  → 

Figure 3.8
Replicating the original Phillips curve, 1860–1913.

The graph shows that lower unemployment, or higher demand for labour, leads

to higher wage in�ation. Phillips (1958) postulated a non-linear relation f (·) such
that very low levels of involuntary unemployment had a more than proportional

e�ect on nominal wage in�ation, whereas very high levels of involuntary unem-

ployment would have little impact on further reducing in�ation. This relation has

been seen as a ‘trade-o�’ between in�ation and unemployment: fewer unemployed

entail more in�ation. That hypothesis requires that the link is a causal one, and is

constant over time. Both aspects are doubtful, as we now investigate.

3.9 Shifts in the in�ation-unemployment relation

The Phillips curve seems �ne for describing the late 19th and early 20th century.

Before we consider the later evidence, remember that there were eight shifts in

∆wt but only four in Ur,t , so some shifts are not going to match very well, leading

to what is sometimes called a ‘breakdown’ in the Phillips curve.

2For the technically minded, this is a cubic spline, not too di�erent from the curve that Phillips

originally �tted by an altogether di�erent approach.
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Figure 3.9
Shifts in in�ation-unemployment ‘trade-o�’.

Figure 3.9 shows the curves for the four sub-periods of di�erent unemploy-

ment behaviour, with the points shown by their dates. Two of the curves reveal

an implausible ‘rising’ relation—more unemployment raises wage in�ation. This

could re�ect that other factors a�ect their link—or that there is no genuine link.

We also saw earlier that ∆(w − p) had only one major shift and a large spike, as

against eight regimes for ∆w, so price in�ation must have had a major in�uence

on nominal wage changes, a feature that is not included in the simple form in (3.6).
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Figure 3.10
Shifts in the real-wage change-unemployment relation.

The notion of a trade-o� between unemployment and real wages does not work

either. Figure 3.10 shows the curves linking unemployment and real-wage changes
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for the same four sub-periods. It is slightly unclear what is happening because of

the huge 1940 change, but there is little evidence of any relationship.

3.10 Other in�uences on the in�ation-unemployment ‘trade-o�’

The graphs in Figure 3.10 also ignore our earlier �nding that w − p moves closely

with 1 − l. Figure 3.11 records the link between ∆(w − p) and ∆(1 − l), which is

closer than that between real-wage changes and unemployment. Both regression

lines of ∆(w − p) on ∆(1 − l), and vice versa, are shown.
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Figure 3.11
Changes in real wages versus changes in productivity.

The curves in Figure 3.10 also ignore any dynamic links, namely the close re-

lations between any variable xt and its lagged value xt−1. Figure 3.12 joins each

point to the next by decades over 1860–1913 to reveal ‘Phillips loops’. The move-

ments between the points are systematic, following a ‘time line’ that is shown by

the dates, where each loops around its central curve.

The problem is that to understand how economics variables are really deter-

mined, an econometric relationship must allow for all the substantively relevant

in�uences, any breaks, the dynamics of all inter-connections, any non-linear reac-

tions, and any trends. The various simple descriptions above manifestly fail to do

so. The next chapter explores how that can be done using modern approaches and

software.

3.11 Chapter 3 key points

(A) There are high correlations betweenmanymacroeconomic variables, but these

are not constant over time.

(B) There are even higher correlations between the levels of many economic vari-

ables and their lags: corr(xt , xt−s) is often near unity despite s � 20 years.

(C) However, corr(∆xt ,∆xt−s) often ‘dies out’ rapidly as s increases.
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Figure 3.12
Dynamics of in�ation-unemployment ‘trade-o�s’.

(D) Both (B) and (C) are consistent with macroeconomic variables having stochas-

tic trends.

(E) Real-wage growth ‘tames’ the stochastic trends of w and p, most of their breaks,

and even the autocorrelations of wage and price in�ation.

(F) Conversely, both the correlations between, and autocorrelations of, di�erences

of economic variables are often low.

(G) The unemployment-wage in�ation relation known as the Phillips curve shifts

over time.

(H) To understand the determinants of variables in economics requires models

which include all substantively relevant variables, their dynamic reactions, all non-

linearities, breaks, and trends.

The next step, therefore, is to develop methods for handling these complica-

tions jointly, so in Chapter 4 we will consider the two main ingredients of macro-

econometrics, namely economic theory and statistical analysis.

3.12 Task 9: Calculating data correlations

First, wewill calculate the correlations in Table 3.1. Click on the Model icon, shown

as a building block, fourth from the right on the icon line (or Alt+Y), to bring

up the PcGive - Models for time-series data dialog (the default setting). All

available modules are shown in its window by their icons (PcGive should be high-

lighted and named in the Module line). The Category should show Models for

time-series data, and the Model class should be Single-equation Dynamic

Modelling using PcGive. We want a di�erent Category, called Other models,

then the Model class should be changed to Descriptive Statistics using

PcGive. Now select p, w, 1, l, and k, click OK, then select Means, standard

deviations and correlations (probably already marked), OK, and OK again to

choose the full sample.
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3.13 Task 10: Calculating sample correlograms

Next, we will replicate Figure 3.5 showing sample correlograms for the di�erences

of the main time series. Click Graphics, select ∆p, ∆w, ∆1, ∆l, ∆k, and ∆wp, All
plot types, Time-series properties, and tick Create separate plots, Plot

and Cancel. Double click on the top-left graph to bring up Edit Graph, then Copy

properties to other areas, select World coordinates and tick the ‘Y’ box, then

Done, so all the graphs are plotted over the range [−1, 1].

3.14 Task 11: Replicating the original Phillips curve

We have learnt enough to reproduce the original Phillips curve shown in Fig-

ure 3.8. Click Graphics, select Dw and Ur, All plot types, Scatter plots and

Sample, setting the dates to 1860–1913. Next, click Smoothing, and tick the Cubic

spline box, then Plot and Cancel. Reset the lines, symbols, text and legends as

desired.

To create Figure 3.9, �rst add year to the selection, All plot types, where

Scatter plots appears, but now select Two series by a third and plot in turn

for the four di�erent sample sub-periods shown (remember to change the later

date �rst), changing the graphics colours and line types in each so the lines can be

distinguished. This will deliver a block of four graphs, then paste each on the �rst

graph in turn (see Task 4 Section 1.19).3 To circle an extreme outlier, such as 1922,

right click for Draw, Draw an Ellipse, then start near to but below the date and

move the pen up towards and past it: a little practice helps but incorrect attempts

are easily deleted.

3.15 Task 12: Adding ‘Phillips loops’

The �nal graphics sophistication is to reproduce Figure 3.12. Repeat the �rst part

of Task 11 Section 3.14 for Dw and Ur over 1860–1913. Set the symbol size to 10, so

the points are essentially invisible. Now add year and start the second part of Task

11, setting the sample sub-periods to 1860–1870, 1871–1881, ... ending with 1904–

1913, so now you should have �ve graphs. For the four with dates, reset Symbols

to Line and symbols, choose di�erent colours for each, and set the symbol sizes

for the dates to about 200. All the dates will now be joined up in order, so copy and

paste each of the last four onto the �rst (Ctrl+C, Ctrl+Vwill speed the process). The

Blue bent arrow on the Icon line can undo any mistakes. The World coordinates

were enlarged in Figure 3.12 to clarify the loops.

3 Figure 3.9 uses splines rather than regression lines, but there is notmuch di�erence here. To exactly

replicate the �gure involves �rst plotting each by scatter plots with splines, setting the symbol size to

near zero so those points cannot be seen, then replotting each with dates, and pasting all onto the �rst

graph.
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3.16 Chapter 3 exercises

1. Do a scatter plot of nominal wage growth, ‘Dw’, against unemployment ‘Ur’.

Change the line Type from symbols to line and symbols and discuss what the

time-linked lines show.

2. Fit a regression line with projections: does it change your interpretation in 1.?

3. Copy the graph in 1. and change to six regression lines with projections in the

copy: can you explain why there is so little di�erence from 2.? Does it imply

that there is a constant relation between ∆wt and Ur,t?

4. Return to the graph icon, and select All plot types>. Next, click on

Smoothing, then tick Cubic spline, and OK. Is there much di�erence be-

tween the �rst linear regression in 2. and this graph?
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Two key ingredients: economic
theory and statistical analysis

Chapter 4 guide posts

1. Economic-theory models of the behaviour of economic agents o�er invaluable

insights, but provide incomplete explanations formacroeconomic data: Section

4.1.

2. Statistical models are also theories, but of the data-generation process (DGP):

Section 4.2.

3. Such models, like regressions equations, have unknown parameters that must

be estimated from the available data: Sections 4.3–4.5.

4. The ‘best’ methods for doing so, and the resulting distributions of such esti-

mators, are obtained assuming that the statistical model is the DGP: Section

4.6.

5. When the model does not represent the main features of the DGP, estimates

can be poor and inferences about the model will usually be invalid: Section 4.7.

6. To ensure that the statistical model is a good approximation to the DGP, all

substantively relevant variables, dynamics, breaks, non-linearities, and trends

must be included: Section 4.8.

7. Statistical properties of estimators and tests can be hard to derive analytically,

but are easily illustrated using simulation methods for computer-generated

data, both for well-speci�ed models (called congruent), and when important

mis-speci�cations occur: Section 4.9.

8. Dynamic models are essential to characterize macroeconomic time series: Sec-

tion 4.10.

9. Simple equations for unemployment demonstrate that not all models are

equally useful, and that graphical statistics and formalmis-speci�cation testing

can reveal �aws in poor representations: Section 4.11.
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4.1 Economic theory

Economic theory provides abstract models of the behaviour of economic agents,

usually optimizing some objective. Such theories are often non-stochastic, assum-

ing a ‘steady state’, and always have many (often implicit) ceteris paribus clauses.
The aggregate is then taken to be a scaled up version of the micro-behaviour, al-

though what may be optimal for one agent taking all others as given may be far

from optimal if all try the same actions (as in many motorists simultaneously try-

ing to avoid a tra�c jam by using the same detour). Realistically, aggregationmust

be across heterogeneous individuals with con�icting objectives (as in buyers and

sellers), whose endowments shift over time, often abruptly.

As a simple illustration, consider an economic analysis which suggests:

y � 1 (z) (4.1)

where y depends on n ‘explanatory’ variables denoted z. The form of the func-

tion 1 (·) in (4.1) depends on the speci�c utility or loss functions of the agents, the

constraints they face, and the information they possess. Analyses often just assume

some speci�c form for 1 (·), that 1 (·) is constant, that only z matters in determining

y, and that the z are ‘exogenous’, a termwe discuss below, but taken to entail being

determined outside the present analysis. Theories like (4.1) are a helpful starting

point—but many aspects must be ‘data determined’, which requires postulating a

statistical model of (4.1).

4.2 Statistical theory

A statistical model is also a theory—of how the data are generated. The simplest

example for y � 1 (z) in (4.1) is a linear model, with independent normal errors, a

single exogenous regressor, zt , and constant parameters, β0 and β1, such that:

yt � β0 + β1zt + εt where εt ∼ IN
�
0, σ2ε

�
, (4.2)

where successive εt are Independently drawn from a Normal distribution, with

mean E[εt] � 0, variance Var[εt] � σ2ε , and independent of zt so that E [εt zt] � 0.

The move from (4.1) to (4.2) also involved introducing the subscript t for

time, so the relevant epoch over which (4.2) holds must also be speci�ed, as say,

t � 1, 2, . . . , T where 1 and T relate to precise historical time periods (usually 1860–

2011 above). Moreover, the length of the time span from t − 1 to t must be de�ned

and often (as here with annual observations) depends on data availability rather

than a ‘natural’ unit of time associated with agents’ decision taking, although eco-

nomic analyses rarely specify the precise meaning of t.
Although a formulation like (4.2) is simple, generalizations to many explana-

tory variables are easy, where zt denotes a vector of variables as in (4.1). Already,

(4.2) has some implications that need to be noted, the most important of which

is seen on taking expectations of both sides conditional on zt since (4.2) entails

E [εt |zt] � 0 leading to:

E
�
yt | zt

�
� β0 + β1zt (4.3)

as E[zt |zt] � zt . From (4.2), the variation around the regression line in (4.3) is

normal and has a constant variance of σ2ε (called homoskedastic, with the converse

of a changing variance being called heteroskedastic).
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The distributions of growth rates of aggregate data are often near normal after

dealing with a few major location shifts. Figure 4.1 illustrates the data densities of

the �rst and second di�erences of a number of UK macroeconomic variables with

a reference normal density also shown as a dashed line. Then, using normality as

a baseline, ‘outliers’ can be de�ned as substantial deviations (like the spike in real

wages in 1940). Figure 4.1 shows that quite a few of the variables may be near to

normal after removing a small number of outliers.
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Figure 4.1
Densities of �rst and second di�erences of UK macroeconomic variables.

Importantly, the statistical properties of estimators of the parameters in models

like (4.2) are well behaved for normal distributions, in which case (4.2) becomes a

regression model, a case we now discuss.

4.3 The regression model

Conditional on zt , taking the expectation of yt in (4.2) yielded (4.3), so that:

yt |zt ∼ IN
�
β0 + β1zt , σ

2

ε

�
(4.4)

In (4.4), the statistical model entails that for a given value of zt , observations on

yt are generated by a random ‘shock’ εt perturbing β0 + β1zt , possibly an agent’s

‘plan’, to produce the independent outcomes {yt}.
Even in this simple setting, there are three unknowns: the two regression pa-

rameters, β0 and β1, and the error variance, σ2ε . Systematic procedures for cal-

culating the values of such unknown parameters from the data are now needed,

assuming that the data are indeed generated by the statistical model. In turn, this

requires well-de�ned criteria to determine which procedures are ‘best’.
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4.4 Estimation methods

An estimator is a function of the available data sample (y1 . . . yT , z1 . . . zT)—also

denoted by (y , z) where the bold face denotes a vector—and the choice of that

function determines the statistical properties of the resulting estimator, such as its

mean and variance.

The three methods for estimating unknown parameters of statistical models

that are the most common in econometrics are respectively called least squares,

instrumental variables and maximum likelihood. We consider the �rst in section

4.5 and the second in section 4.8.3, but will not consider the third which is exten-

sively discussed in Hendry and Nielsen (2007). Illustrations of least squares were

provided by the trend lines �tted in Chapter 1, and by the regression line �tted to

my name in Figure 1.4.

4.5 Least squares

In the simplest case where the value of β0 in (4.2) is known to be zero (to sim-

plify the algebra), the least-squares estimator (often denoted OLS, for ordinary

least squares) for a sample of size T can be derived as follow. Multiply the re-

gression equation:

yt � β1zt + εt (4.5)

by zt to get:

zt yt � β1z2t + ztεt (4.6)

and average over the sample observations:

1

T

T∑
t�1

zt yt � β1 *
,
1

T

T∑
t�1

z2t +
-
+

1

T

T∑
t�1

ztεt (4.7)

As E [εt zt] � 0, so the population average covariance is zero, the estimator β̂1 of

β1 is obtained by setting the corresponding sample average 1/T
∑T

t�1 ztεt to zero

in (4.7) to obtain:

1

T

T∑
t�1

zt yt � β̂1 *
,
1

T

T∑
t�1

z2t +
-

(4.8)

and assuming 1/T
∑T

t�1 z2t , 0, solving for β̂1 delivers:

β̂1 � *
,
1

T

T∑
t�1

zt yt+
-
/ *

,
1

T

T∑
t�1

z2t +
-

(4.9)

To derive the properties of β̂1 in (4.9) as an estimator for the unknown β1, �rst
substitute for yt from (4.2), remembering that β0 � 0, which delivers:

β̂1 � β1 +
1

T
∑T

t�1 ztεt

1

T
∑T

t�1 z2t
� *

,
1

1

T
∑T

t�1 z2t
+
-
1

T

T∑
t�1

ztεt (4.10)

In (4.10), the {zt} are taken as �xed, as we are conditioning on them, so only the

normally distributed {εt} are stochastic. Thus, β̂1 − β1 is a linear function of the
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{εt} given in (4.2), from which we can obtain the properties of β̂1 as:

E
[
β̂1

]
� β1

so β̂1 is an unbiased estimator of β1 in this simple setting. Also:

Var
[
β̂1

]
�

σ2ε∑T
t�1 z2t

(4.11)

Thus, the distribution of β̂1 is:

β̂1 ∼ N

β1 ,

σ2ε∑T
t�1 z2t


(4.12)

and so: √∑T
t�1 z2t

(
β̂1 − β1

)
σε

∼ N [0, 1] (4.13)

Although β1 and σε are never known, (4.13) points towards a useful way to test

hypotheses about the value of β1, such as the null hypothesis (denoted H0) that

H0:β1 � 0, as we will show shortly.

Next, the �t of the model is given by ŷt � β̂1zt . When the regression equation

has an intercept like (4.2), the square of the correlation between yt and ŷt , denoted

byR2
and called the squaredmultiple correlation, is usually reported as ameasure

of the ‘goodness of �t’ of the model.

The residuals whose squares are minimized by least squares are given by:

ε̂t � yt − ŷt � yt − β̂1zt (4.14)

and it can be proved that

∑T
t�1 ε̂

2

t is the smallest sum of squared residuals that can

be achieved by the choice of β̂1 in (4.9). Moreover we can estimate σ2ε by:

σ̂2ε �
1

(T − 1)
T∑

t�1

ε̂2t (4.15)

The divisor of (T − 1) in (4.15) is called the degrees of freedom and is one less than

T because we have estimated one parameter, β̂1, which constrains the residuals.

The variance of β̂1 in (4.11) can be estimated by:

V̂ar[β̂1] � *
,

σ̂2ε∑T
t�1 z2t

+
-

(4.16)

where the square root of the right-hand side is called the (estimated) standard

error, ESE, of β̂1 and denoted by SE[β̂1] below.
Building on (4.13), using our estimate of σε, and hence having an estimate of

the denominator on the left-hand side, we can test the null hypothesis H0:β1 � 0

using:

tβ1�0 �
β̂1

SE[β̂1]
(4.17)
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which is distributed as Student’s t under H0 (rather than a standard Normal). Stu-

dent was the pseudonym for W.S. Gosset, who �rst derived the distribution in

(4.17), published as Student (1908). When the sample size T is large, Student’s t is
close to a standard Normal under the null, but allows for bigger departures from

its mean of zero when T is small. The alternative hypothesis is H1:β1 , 0 and

when H1 is true, (4.17) has a non-zero mean and the resulting distribution is said

to be ‘non-central’. The test procedure is to reject H0 when the value calculated by

(4.17) is far from zero. The probabilities of such departures from the mean under

the null hypothesis are tabulated in many sources, andmost econometric software

packages calculate them automatically.

Two key values under H0 for moderate T (larger than 50, say) are that |tβ1�0 | ≥ 2

occurs approximately 5% of the time, and |tβ1�0 | ≥ 2.68 about 1% of the time. As

such a large value is likely to occur less than once in a hundred under H0, it is

more reasonable to assume the null hypothesis is false, so reject it in favour of the

alternative that β1 , 0.

We will not prove these results here, but illustrate them in the next section.

4.5.1 Interpreting regression estimates
What do such formulae entail when applied to actual data, andwhat properties do

such estimators possess? It is easiest to understand estimator distributions from

‘arti�cial data’ of the kind we generated in section 2.9.1. Such data use random

numbers for εt ∼ IN[0, σ2ε], here setting σ2ε � 1. To generate {zt}, I used the equa-

tion zt � 0.005t + 0.8zt−1 + νt , where νt ∼ IN[0, 1]. Then I set β0 � 1 and β1 � 2 to

generate:

yt � 1 + 2zt + εt (4.18)

as in (4.2) when T � 100. This provides one trial from which we can estimate β0
and β1 by least squares. Here that outcome was:

ŷt � 1.26
(0.12)

+ 1.96
(0.05)

zt

R2

� 0.942 σ̂ε � 1.062 (4.19)

In (4.19), σ̂ε is the residual standard deviation, estimating σε, and coe�cient stan-

dard errors are shown in parentheses below coe�cient estimates. The estimates of

β0, β1 and σε are quite close to the true values; and the �t is ‘good’ as measured by

R2
.

4.5.2 Interpreting regression graphs
It is helpful to graph various aspects of that outcome. Figure 4.2 illustrates four

features in its four panels.

Panel a records the outcomes yt and �tted values ŷt � β̂0 + β̂1zt � 1.26 + 1.96zt . As

can be seen, the ‘tracking’ is close: ŷt is very similar to yt .

Panel b shows the residuals ε̂t � yt − β̂0 − β̂1zt as in (4.14), but scaled by σ̂ε, so
ε̂t/σ̂ε are plotted. Consistent with panel a, the residuals look ‘random’ with most

lying between ±2 (95% should do so if normally distributed).

Panel c shows the residual histogram and a smoothed density estimate, also show-

ing a normal density for comparison.



i
i

“UGQE2book15” — 2015/4/15 — 10:47 — page 65 — #77 i
i

i
i

i
i

Two key ingredients: economic theory and statistical analysis 65

Panel d reports the correlogram of the residuals: like panel b, there is little evidence
of residual autocorrelation.
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Figure 4.2
Fitted and actual values, residuals, residual density and correlogram.

All the graphs are consistent with the assumptions made, which is hardly a

surprise as the model is a correct representation of the data generating process,

and the data are accurately measured.

4.6 Econometric estimation in general

A model of y |z is de�ned by its distribution fy(y |z , β), characterized by the pa-

rameters denoted by the vector β. In (4.4), fy(y |z , β) is yt |zt ∼ IN
�
β0 + β1zt , σ2ε

�
for

t � 1, . . . , T, where the unknown β � (β0 , β1), which needs to be estimated from

the sample data (y , z) � �
y1 . . . yT , z1 . . . zT

�
by estimators β̂ � 1(y |z).

Estimators and tests have sampling distributions such as fβ(β̂|β) for β̂ as in

(4.13). Such distributions assume the model fy(y |z , β) is the process which gener-

ated (y1 . . . yT), namely the data-generating process, denoted by Dy(y1 . . . yT |z , θ)
where θ are the parameters of the economic agents’ decision rules in that DGP.

Estimators are then derived as if fy(y |z , β) was the DGP, which is what we did in

Section 4.5.

‘Good’ estimators correctly re�ect ‘true’ but unknown parameter values. For

example, an unbiased estimator where E[β̂] � β, ensures the average estimated

value is the correct parameter. Another desirable property of an estimator is a

small variance. However, in economics, interest really focuses on how close β is

to the unknown θ, and how constant β is over time and across di�erent policy

regimes, issues we will address in the remainder of this chapter, particularly Sec-

tion 4.9.
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4.6.1 Distributions of regression estimates
When the data are arti�cial, we can generate thousands of samples of {yt , zt}, t �
1, 2, . . . , T, estimate the parameters in every sample, and graph the resulting dis-

tributions in what is called a Monte Carlo simulation (yes, it is named after the

famous Casino, as random numbers are used). Figure 4.3 illustrates the density

of β̂0 in panel a when estimating (4.18), showing that it is close to normal with a

mean of 1 and a standard deviation of 0.14 (somewhat above 1/
√

T � 0.1 as zt does

not have a mean of zero). Next, the density of β̂1 is shown in panel b, and is again

close to normal, but nowwith a mean of 2 and a standard deviation of 0.06. Third,

the density of σ̂ε appears in panel c, which is actually quite close to normal with a

mean of 1 despite being an always-positive standard error. However, the density

of R2
in panel d is skewed left with a mean of 0.92.
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Figure 4.3
Distributions of parameter estimates and tests.

We considered tests of the form tβ1�0 in (4.17), and the densities for tβi�0 �

β̂i/SE[β̂i] are shown in panels e and f respectively. These are distributed as Stu-

dent’s t under the null hypotheses that βi � 0. That is false here for both parame-

ters, and indeed the two tests reject their null hypotheses almost 100% of the time.

Overall, our one sample in (4.19) was ‘representative’.

4.7 Statistical models and data properties

Derivations like those in (4.5)–(4.15) require that the model is the DGP, so:

fy(y |z , β) � Dy(y |z , θ) (4.20)

such that both the distribution fy(·) � Dy(·) and the parameters are the same so

β � θ. Statistical derivations will not in general deliver the correct results, namely
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that their implications match what actually happens, if fy(y |z , β) , Dy(y |z , θ).
Econometrics has developed many tests of whether a model matches the asso-

ciated DGP. In practice, such tests often reject, after which it is unclear what an

empirical investigator should do to ‘�x’ the problem. The only viable solution is

to specify an initial statistical model that is general enough to ensure that it is not

immediately rejected as failing to represent the DGP.

Since interdependence is a standard aspect of macroeconomic data, as our al-

ready examining a range of variables including w , p , 1 , l , k , Ur , e , RL , RS , pw
re�ects, statistical models often involve many variables and require multiple re-

gression. We have also seen that time-series variables are highly dependent over

time, that trends and breaks are common features, and that models need to be

dynamic because reactions are not instantaneous, as seen in the Phillips loops:

consequently statistical models must include all these features to match ‘realistic’

economic data.

4.8 Empirical econometrics confronts important di�culties

Among the most important di�culties are:

(A) Econometric models must allow jointly for all the complications of stochastic

trends, breaks, dynamics, non-linearity, and interdependence.

(B) As the macroeconomy DGP is not known, investigators must specify a class of

models general enough to include the DGP, then select the ‘best choice’ from

that class.

(C) Economic theories are too abstract to adequately characterize the DGP. Fortu-

nately, useful economic insights can be ‘embedded’ in the general model in (B)

as part of the explanation, while letting the empirical evidence guide what ad-

ditional aspects are needed.

(D) A general class of models may include dozens, perhaps hundreds, of variables

to capture (A), far too large for humans to handle, though not too big for com-

puters to tackle.

(E) Finally, it is important to check that themodel really does describe the available

data, leaving open how to proceed if it fails to do so.

We will illustrate these di�culties shortly by modelling the unemployment

rate.

4.8.1 Simultaneity induced correlations
Consider two variables yt and zt with the joint distribution:(

yt
zt

)
∼ IN2

[(
µ1

µ2

)
,

(
σ11 σ12
σ12 σ22

)]
(4.21)

In (4.21), each of yt and zt has a normal distribution, withmeans µ1 and µ2 respec-

tively and variances σ11 and σ22, where the two variables are written in a column

(as a vector) for convenience. The main new feature in (4.21) is the covariance σ12
between yt and zt .
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Above we related the regression model (4.2) to the conditional expectation of

yt given zt in (4.4) which for the joint distribution in (4.21) leads to:

yt | zt ∼ N
�
µ1 + β12

�
zt − µ2

�
, ω11

�
(4.22)

where β12 � σ12/σ22 and ω11 � σ11 − σ2
12
/σ22, which is the conditional variance.

(4.22) can be expressed as the regression model:

yt � β11 + β12zt + νt where νt ∼ N [0, ω11] (4.23)

with β11 � µ1 − β12µ2, then (4.23) can be estimated by least squares from the avail-

able data yielding β̂11, β̂12, ω̂11 and R2
.

It is also possible to formulate the ‘reverse’ regression:

zt | yt ∼ N
�
µ2 + γ21

�
yt − µ1

�
, ω22

�
. (4.24)

In (4.24), γ21 � σ21/σ11 with ω22 � σ22 − σ2
21
/σ11. In turn, (4.24) can be expressed as

the model:

zt � γ11 + γ21yt + wt where wt ∼ N [0, ω22] (4.25)

yielding estimates γ̂11, γ̂21, ω̂22 and R2
. Notice that R2

is the same in (4.23) and

(4.25)–as an exercise, prove the useful result that β̂12 × γ̂21 � R2
.

Both (4.22) and (4.24) are equally ‘good’ regressions in this context, which raises

the issue as to which to use, and how to make that choice? Fortunately, it is rare in

macroeconomics to have so little structure, namely no trends, breaks, or other de-

terminants of either variable. If either variable depended on an ‘outside’ in�uence,

say wt , then one can select which equation to model, as we now discuss.

4.8.2 Exogeneity
On the information given in the previous section, it is impossible to choose between

the two directions of regression because yt and zt are simultaneously determined.

For example least squares will estimate the coe�cients β11 and β12 of (4.23), but
as yt and zt are jointly determined those parameters may not correspond to the

agents’ decision parameters, somay not be useful, as the following example shows.

Consider an economy where the agents made plans to keep their ‘permanent’

consumption E[yt] � µ1 proportional to their ‘permanent’ income E[zt] � µ2 such

that µ1 � κµ2, so κ is of considerable importance to economic policy. An investi-

gator estimates the relation in (4.23) as it entails:

E[yt] � β11 + β12E[zt] (4.26)

expecting β̂11 ≈ 0, so interprets β̂12 as κ̂. However, when µ1 � κµ2 what (4.23)

really entails is:

yt �

(
κ −

σ12
σ22

)
µ2 +

σ12
σ22

zt + νt (4.27)

Consequently, β̂12 estimates the ratio of the error covariance to the variance of zt .

For β̂12 to be an estimate of κ requires that κ � σ12/σ22, so the means µ1 � κµ2

are linked by the same parameter as the covariance: σ12 � κσ22. If so, then indeed

β11 � 0 and β12 � κ. If that condition holds, zt is said to be weakly exogenous for

the parameters of (4.23) (see Engle, Hendry, and Richard, 1983).
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The key idea behindweak exogeneity is that the parameters of the yt and zt pro-

cesses are linked in (4.27) unless σ12 � κσ22, as µ2 enters both otherwise. Thus, if

µ2 were to shift, as a consequence of a changed economic policy say, the regression

relation between yt and zt would shift as well, making (4.27) useless. Conversely,

when weak exogeneity holds, a regression of yt on zt would capture the constant

parameter κ of interest. When weak exogeneity holds across one or more shifts

in the parameters of conditioning variables, it is called super exogeneity: Section

6.8.1 provides an example of testing that hypothesis. As an exercise, prove that

then yt cannot also be weakly exogenous for the parameters of (4.26). Thus, one

solution to the ‘direction of regression’ issue is to establish suitable weak exogene-

ity conditions.

The other solution is to determine an outside variable wt that is weakly exoge-

nous for the parameters of one of the yt and zt equations. If, say, wt directly af-

fected zt , but was incorrectly excluded from (4.24), and only in�uenced yt through

zt , then one could model the equation in (4.23) using that knowledge. Thus, when

wt is weakly exogenous for the parameters of (4.23), even though zt is not, wt can

be used in an alternative estimation method known as instrumental variables.

4.8.3 Instrumental variables
We will again assume all means are zero to simplify the algebra. The regressor

variable, zt , may be correlated with the error on the equation in (4.22) re-written

as:

yt � β1zt + νt (4.28)

because of their joint determination in (4.21), and hence E[ztνt] , 0. Thus, least-

squares estimates of β1 will be biased. Instead of (4.6), instrumental variables uses

another variable, wt , where E[wtνt] � 0, to multiply by:

wt yt � β1wt zt + wtνt (4.29)

and average over the sample data:

1

T

T∑
t�1

wt yt � β1 *
,
1

T

T∑
t�1

wt zt+
-
+

1

T

T∑
t�1

wtνt (4.30)

Assuming that E [wtνt] � 0 is correct, the estimator is obtained by setting the cor-

responding sample average to zero:

1

T

T∑
t�1

wtνt � 0 (4.31)

so that:

β̃1 �

∑T
t�1 wt yt∑T
t�1 wt zt

. (4.32)

A solution to (4.32) will exist only if

∑T
t�1 wt zt , 0, whereas

∑T
t�1 z2t , 0 pro-

vided any zt , 0. Thus, the two key requirements for a viable instrumental variable

wt is that it is correlated with the regressor zt but not correlated with the error on

the equation of interest. Remember that the very need for using an instrumental

variable was that zt was correlated with that error, so wt has to steer a �ne line of

being correlated only with that component of zt that is unrelated to the error.
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Squared residuals are not minimized by instrumental variables, but residuals

are still de�ned by:

ν̃t � yt − β̃1zt (4.33)

and when there is only one regressor:

σ̃2ν �
1

(T − 1)
T∑

t�1

ν̃2t (4.34)

The only equivalent of R2
in equations with intercepts is the squared correlation

between yt and ỹt .

4.9 Congruent models and modelling

Given the turbulence that has a�icted the last 150 years as seen in graphs above,

and the absence of evidence that unanticipated large shocks have ceased (viz the re-
cent Financial Crisis), many features ofmacroeconomic datawill not be included in

economic analyses, however good such theories may be. Thus, econometric mod-

elling is not simply the science of ‘estimating a fully-speci�ed theory-model’ by

choosing the ‘best estimator’, but requires tools to ‘match’ a model to the available

data within the theoretical framework adopted.

The �rst step is to de�ne what is meant by a ‘match’ when the theory-based

statistical model speci�cation does not coincide with the DGP. There is a large lit-

erature devoted to debating that issue, but here we will focus on what is known as

the theory of reduction, that relates any postulated model to the DGP from which

it was derived by a series of reductions: see e.g., Hendry (2009). As the DGP is

very large and undoubtedly very complicated for non-stationary data, the reduc-

tions mainly concern eliminating variables that are not substantively relevant to

the model under analysis. If that can be achieved, the resulting model will pro-

vide a good approximation to the DGP of the set of variables under consideration;

otherwise not. Many aspects of model speci�cations are open to empirical evalu-

ation.

A key aspect of such reductions is that they lead to six main characteristics that

any empirical model should satisfy if it is to be a good representation of the DGP

for the variables bring studied. We will �rst list then discuss these:

I homoskedastic, innovation errors {εt};
II exogenous conditioning variables zt ;

III constant, invariant parameters of interest, β;

IV theory-consistent, identi�ed structures;

V data-admissible on accurate observations; and

VI able to explain �ndings of rival models (encompassing).

We now discuss these in turn.

Errors like {εt} are homoskedastic when they have the same variance at all

points in the sample (here over time) so E[ε2t ] is constant. Those errors are an inno-

vation process (called a martingale di�erence sequence) when E[εtεs] � 0 ∀t , s,
so are not autocorrelated.
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A conditioning variable like zt in (4.5), or wt in instrumental variables estima-

tion, needs to be exogenous, as discussed in section 4.8.2, so is determined ‘outside’

of the model under analysis. Exogeneity is not an easy concept (see the various

de�nitions evaluated by Engle, Hendry, and Richard, 1983, and the application to

non-stationary processes in Hendry, 1995b), and weak exogeneity can be hard to

test in some settings, but that the conditioning variable is independent of {εt} is

sometimes su�cient.

A parameter β is constant if it does not change over the sample, and is invariant

if β remains constant when the process determining zt is changed. We saw above

that the presence in a conditional model of the parameters from the process gen-

erating the conditioning variable will preclude invariance to location shifts, as will

happen when zt is a variable used for economic policy.

A model is said to be congruent if it satis�es these �rst three conditions. This

uses the analogy to triangles, where two are congruent if they preciselymatch after

suitable rotations: however, one triangle may actually be the side of a pyramid, so

the match is only in two dimensions, and there is no match at all in the third.

Similarly a congruent model matches the DGP in aspects that have been checked,

but may not do so in directions that remain unknown, so cannot be said to be ‘true’

in any useful sense.

A structure is an invariant system, which is theory-consistent when it does

not contradict the theory from which it was supposedly derived, and is identi-

�ed when its parameters are a unique representation (so di�erent parameters are

not equally good).

A data-admissible model is one that cannot generate impossible values, such

as negative �tted values for Ur , which is constructed to be positive.

Finally, there are almost always competing explanations of macroeconomic

phenomena. If one knew the DGP, it would be straightforward to account for all

the existing empirical �ndings. A more demanding requirement, called encom-

passing, is to ask if one model can account for the �ndings of all rival models,

which would be feasible if that model was indeed the DGP.

4.9.1 Evaluating empirical models
Econometric modelling involves discovering sustainable relationships, and reject-

ing models otherwise—so both construction and destruction are needed. We con-

sider destruction �rst: while it will not make you friends, it may in�uence people,

and is far easier than constructing useful empirical models. Evaluation tests if any

proposed empiricalmodel is congruent, so ‘matches’ the evidence. Corresponding

to I–VI in the previous section, there are six null hypotheses to test:

i) the past: �t should only deviate from observations by homoskedastic, innova-

tion residuals;

ii) the present: contemporaneous variables should be exogenous;

iii) the future: parameters should be constant and invariant to policy interventions;

iv) theory information: models must have unique parameters related to theory;

v) measurement information: observations should be accurate, and the model

‘data admissible’;

vi) encompassing: the speci�ed model should account for the �ndings of other

models.
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Non-congruentmodels are ones that fail the evidence on i)–iii): see (4.47) below
for an example. We can now consider themore positive process of how to construct

a model that might survive the tests in i)–vi).

4.9.2 General-to-speci�c modelling
General-to-speci�c, Gets, is an approach to constructing congruent relationships

that begins from the most general unrestricted model (GUM) that it is reason-

able to postulate initially, given the sample size of data, previous empirical evi-

dence, available economic theory, institutional knowledge and measurement in-

formation. A GUM tries to allow for everything that might matter substantively in

a relationship, so has many variables, includes dynamics, breaks, non-linearities

and trends, etc., but is formulated after a careful theoretical analysis and sensible

data transformations. The aim of the GUM is to be su�ciently general that the

DGP will be well approximated by it, preferably as a special case. Then reduc-

tions applied to simplify the GUM will eliminate unnecessary features to provide

a parsimonious congruent representation of that DGP for the relevant variables.

To model the evidence, one �rst checks that the GUM is congruent, using

the criteria in I–III, then it is simpli�ed to a congruent, parsimonious, and inter-

pretable, econometricmodel. In particular, parsimonious encompassing is de�ned

by the selected model being able to encompass the GUM from which it was de-

rived. The �nal model choice is tested as a valid representation of the DGP by

seeing how well it can encompass other rival models; and when there have been

any shifts in the processes determining the unmodelled variables, by also testing

that the selected model is invariant to those shifts.

4.9.3 Automatic Getsmodel building
When the GUM is very large, the simpli�cation process may be infeasible for a

human investigator to undertake manually. Consequently, automatic techniques,

programmed to build models by a general-to-speci�c model selection strategy

without human intervention, are invaluable. Since every reduction stage is well

de�ned, a computer can be programmed do it: Gets is just a step up from a com-

puter calculating regression estimates as in (4.8) rather than doing so by hand. In

fact, as computers can handle very large initial general models, it is feasible to al-

low for more variables in the GUM at the start than the number of observations, a

case that will arise in Section 5.5.

Instead of a simple regression as in (4.5), you now need to imagine dozens of

variables in the GUM as in:

yt �

N∑
i�1

βi zi ,t + εt (4.35)

where N might be large and some of the zi ,t may be lags and perhaps non-linear

functions of variables. Then the computer eliminates all of the z j,t with estimated

coe�cients that are insigni�cant on t-tests at the pre-assigned level like 1%, while

ensuring that the resultingmodel remains congruent, and can still parsimoniously

encompass the initial GUM in (4.35).
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4.10 Formulating dynamic models

So far in this chapter, we have only considered static equations of the form:

yt � β0 + β1zt + εt (4.36)

Section 3.2 introduced autocorrelations between successive values of a variable,

and the simplest formulation is an autoregressive equation such as:

yt � γ0 + γ1yt−1 + νt (4.37)

where νt ∼ IN[0, σ2ν] and |γ1 | ≤ 1. In the easiest case where γ0 � 0:

E[yt yt−1] � γ1E[y2

t−1] � γ1σ2y (4.38)

so there is a �rst-order autocorrelation of γ1. As an exercise show that the second-

order autocorrelation is γ2
1
, and so on at longer lags declining as γs

1
for s lags.

A stable dynamic equation requires |γ1 | < 1, which is also needed for (4.37) to

represent a stationary process.

We can combine (4.36) and (4.37) in a more general dynamic model called an

autoregressive distributed-lag (often denoted ADL):

yt � β0 + β1zt + β2yt−1 + β3zt−1 + εt (4.39)

In (4.39), yt responds to zt , to its own previous value, yt−1 (the autoregressive

part), and to the lag zt−1 (the distributed lag). To be a stable equation requires

|β2 | < 1 (if β2 � 1, the equation needs to be expressed in di�erences; and |β2 | > 1

is an explosive process, which can occur in hyperin�ations). That relation is then

perturbed by the randomerror εt ∼ IN[0, σ2ε] as in (4.2). Thus, (4.39) adds dynamics

(yt−1, zt−1) to inter-dependence (zt), which are two of the four key ingredients

that need to be included in any model that hopes to characterize the data we have

graphed above. When zt has a stochastic trend, (4.39) will re�ect that as well, with

yt and zt being cointegrated when |β2 | < 1 and β1 + β3 , 0.

4.10.1 Interpreting dynamic equations
To interpret a dynamic equation like (4.39), we will �rst transform it. The �rst step

is subtracting yt−1 from both sides to create the �rst di�erence on the left-hand

side:

yt − yt−1 � β0 + β1zt +
�
β2 − 1

�
yt−1 + β3zt−1 + εt (4.40)

Next, subtract β1zt−1 from β1zt , to create a di�erence, and to keep the equation

balanced, add β1zt−1 to β3zt−1:

∆yt � β0 + β1∆zt −
�
1 − β2

�
yt−1 +

�
β1 + β3

�
zt−1 + εt (4.41)

which reveals that β1 is in fact the impact of ∆zt on ∆yt .

Now collect the terms in yt−1 and zt−1 when |β2 | < 1 as:

∆yt � β0 + β1∆zt −
�
1 − β2

� �
yt−1 − κ1zt−1

�
+ εt (4.42)

where:

κ1 � (β1 + β3)/(1 − β2) (4.43)
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Finally, it is convenient to collect the intercept with the last term as well, writing

(4.42) as:

∆yt � β1∆zt −
�
1 − β2

� �
yt−1 − κ0 − κ1zt−1

�
+ εt (4.44)

where κ0 � β0/(1 − β2). This formulation will prove important in interpreting

dynamic equations and is called an equilibrium-correction mechanism.

When change ceases in (4.44), so ∆yt � ∆zt � 0, with no shocks, so εt � 0

both ∀t, then (4.44) becomes y � κ0 + κ1z, which is the equilibrium and is why the

model in (4.44) is called an equilibrium-correction mechanism (often abbreviated

to EqCM).When growth occurs,∆yt ‘corrects’ to the previous deviation (yt−1−κ0−
κ1zt−1) from equilibrium, at a rate depending on the magnitude of (1− β2) > 0, as

well as reacting to ∆zt and εt . The test that −1 < β2 < 1 will transpire to check for

cointegration when the data are integrated (see Task 30 in Chapter 8).

Initially, EqCM derivations assumed that ∆yt � ∆zt � 0 occurred in a static

world so yt � yt−1 � y and zt � zt−1 � z, but that is unrealistic in economics.

Instead, we consider a constant growth rate, where∆yt � ∆zt � 1 ∀t and (yt−κ0−
κ1zt) is a cointegrating relation, so both yt and zt are I(1). Now, (4.44) incorporates

three of our main features, and we will return to how breaks are handled shortly.

First, however, we will apply some of these developments to two simple models of

unemployment.

4.11 First empirical models of the UK unemployment rate

Wewill estimate versions of two hypothetical theory models of the UK unemploy-

ment rate Ur,t :

the �rst is that a high wage share causes higher unemployment because labour is

‘too expensive’;

the second is that high unemployment leads to high unemployment from

‘deskilled workers’ being unable to obtain jobs.

Formulate the �rst theory model as the linear regression:

Ur,t � µ0 + β1(wt − pt − 1t + lt − µ1) + εt � β0 + β1(wt − pt − 1t + lt) + εt (4.45)

where µ0 is the ‘equilibrium’ level of unemployment when the wage share (wt −

pt − 1t + lt) is at its mean µ1.

The second is speci�ed as the autoregression:

Ur,t � µ0 + γ1(Ur,t−1 − µ0) + νt � γ0 + γ1Ur,t−1 + νt (4.46)

Both are ‘straw’ examples, essentially designed to illustrate how not to proceed.

4.11.1 Wage-share model of unemployment rate
Estimation of (4.45) from the sample of data from 1860 to 2004 yields:

Ûr,t � 0.40
(0.10)

− 0.19
(0.05)

�
wt − pt − 1t + lt

�

R2

� 0.078 σ̂ε � 0.034 (4.47)

As earlier, estimated coe�cient standard errors are shown in parentheses below

coe�cient estimates. The reported estimates ‘seem signi�cant’—in that the tβi�0
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statistics would reject their null hypotheses—but wewill question that implication

shortly. If they were signi�cant, then apparently a high wage share would lower

unemployment, which is the ‘wrong’ sign. The �t is very poor: an R2 � 0.078
suggests thatmost of themovements in unemployment are not explained by (4.47).

Figure 4.4 records a range of graphical statistics which reveal numerous problems,

as the various panels clarify that (4.47) is not really explaining the unemployment

rate.

 Ur 
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c Ur residuals 
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d Ur residual correlogram 

Figure 4.4
Wage share model of UK unemployment.

Panel a shows that there is almost no relationship between the �tted line, Ûr,t ,

which is given by 0.4−0.19(wt − pt − 1t + lt), and the data on Ur,t . In fact, (wt − pt −

1t + lt) does not have the correct ‘time-series pro�le’ to explain unemployment, as

a comparison of Figure 2.7 with Figure 3.7 con�rms. Thus, by itself (wt−pt−1t+ lt)
cannot account for the behaviour of Ur,t , although that need not preclude it being

a part of an explanation.

Because the �t is so poor, the scaled residuals, (Ur,t − Ûr,t)/σ̂ε, in panel bmove

systematically, and are far from ‘random’. Panel d shows their correlogram is

highly positively autocorrelated as far back as 10 years. Consequently, one of the

crucial assumptions on which calculations of estimated coe�cient standard errors

depends is violated: the errors are not sequentially independent. Hence the so-

called tβi�0 statistics do not have their supposed Student-t distribution under the

null, and di�erent critical values would be needed for an appropriate test. The

autocorrelation here is positive, and amore di�cult exercise is for you to prove that

then the estimated coe�cient standard errors under-estimate the correct standard

errors arising from sampling variability (see Tasks 16 Section 4.16 for simulations

and 26 Section 7.10 for analysis).

Panel c plots the residual histogram, with an estimate of the density and a nor-

mal density for comparison. There is ‘ocular’ evidence of non-normality, so the

explanation, such as it is, is uneven.
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Conversely, unemployment by itself also cannot explain the wage share as the

R2 � 0.078 must be the same. Now, consider the performance of the ‘rival’ model

in (4.46).

4.11.2 Autoregressive model of the unemployment rate
Estimation of (4.46) yields:

Ũr,t � 0.006
(0.002)

+ 0.88
(0.04)

Ur,t−1

R2

� 0.78 σ̂ν � 0.016 (4.48)

The �t is much better as measured by R2 � 0.78 which is ten time larger, but more

importantly, the residual standard deviation of 0.016 is less than half that of 0.034

for (4.47). Much of themovement over time in unemployment is explained by (4.48)

as seen in Figure 4.5 panel a. The residuals in panel b are now less systematic, but

there is a large ‘spike’ or ‘outlier’ in 1920, which remains even though least squares

tries to minimize squared residuals, and hence ‘makes every e�ort’ to reduce the

largest discrepancies. Consequently, nothing in the model can explain that jump

in unemployment. The residual histogram in panel c is closer to the normal den-

sity, with a large outlier, and the residual correlogram in panel d is much ‘�atter’

than for (4.47). While far from a complete explanation of UK unemployment—

unsurprisingly for such a simple model—it is obvious that (4.48) is much better

than (4.47).
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Figure 4.5
Autoregressive model of UK unemployment.

Here an encompassing test of whether (4.48) can account for the results in (4.47)

can be conducted by including the wage share (w − p − 1 + l)t and its lagged value

in the autoregressive model of Ur,t in (4.48) and testing their signi�cance. If either



i
i

“UGQE2book15” — 2015/4/15 — 10:47 — page 77 — #89 i
i

i
i

i
i

Two key ingredients: economic theory and statistical analysis 77

is signi�cant, then the wage share adds to the explanation of unemployment, so

(4.48) cannot mimic the DGP and explain even the poor �t of (4.47). Conversely,

if neither matters, the wage share is irrelevant, and (4.48) ‘predicts’ that (4.47) will

�t very poorly. Equation (4.49) records the outcome.

Ũr,t � 0.89
(0.04)

Ur,t−1 − 0.04
(0.05)

− 0.09
(0.06)

(w − p − 1 + l)t

+ 0.11
(0.06)

(w − p − 1 + l)t−1

R2

� 0.79 σ̂ν � 0.016 (4.49)

In fact, the wage share adds little to the �t of (4.48), with R2 � 0.79 when it was

0.78. Conversely, (4.47) cannot explain why (4.48) �ts so well when it deems Ur,t−1
to be irrelevant: encompassing is asymmetric.

4.11.3 What lessons can we learn from these models?
First, and obviously, simple theories and models may not be su�cient to charac-

terize macroeconomic data that are bu�eted by many forces. Second, it is easy to

see the failure of the simplest model in (4.47), from which we learn the important

lesson that empirical �ndings can contradict the assumptions of the models on

which they are based. Even the sign of the estimated coe�cient of the wage share

in (4.47) contradicted the theory. Third, some models describe the evidence much

better than others, so we learn that not all models are born equal. Fourth, destruc-

tive testing can reveal the �aws in poor representations. However, an approach of

postulating a sequence of simple models and �nding they all fail is not a produc-

tive methodology, and could go on endlessly without delivering a useful outcome.

Worse, it is di�cult to judge the statistical properties of a later model, which may

be designed to ‘camou�age’ a problemdiscovered in an earlier trial. Consequently,

we need to allow for all the major determinants, stochastic trends, breaks, dynam-

ics, non-linearities and interdependence jointly. While the prospect of such a large

model may seem daunting, progress is feasible by letting the computer take the

strain as we will see in the next Chapter.

4.12 Chapter 4 key points

(A) Economic-theory models can provide invaluable insights, but are only part of

the explanation of macroeconomic data.

(B) Statistical models, fy(y |z , β), are theories of the data-generation process (DGP)

Dy(y |z , θ).
(C) The unknownparameters β of suchmodels need to be estimated from the avail-

able data.

(D) However, the ‘best’ methods for doing so, and the resulting estimator distribu-

tions, assume that the statistical model is the DGP.

(E) Statistical properties of estimators and tests can be easily illustrated using

computer-generated data.

(F) To ensure that fy(·) � Dy(·), all substantively relevant variables, dynamics,
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breaks, non-linearities, and trends must be modelled.

(G) The simple unemployment equations illustrated that not all models are equally

useful, and that destructive testing can reveal the �aws in poor representations.

(H) Graphical statistics can reveal a great deal about howwell an estimated model

describes the associated time-series evidence.

The next step is apply these ideas to develop a more useful model of UK unem-

ployment.

4.13 Task 13: Model formulation and estimation

We now move on to using PcGive for econometric modelling. Click on the

‘building block’, fourth from the right on the Icon line (or Alt+Y). The Category

should show Models for time-series data, where the Model class should be

Single-equation Dynamic Modelling using PcGive.1

Next, click on the Formulate button to bring up the dialog Formulate

- Single-equation Dynamic Modelling - UKHist2013.xls. As with the

Graphics dialog, Selection is the left column, Database the right, and the

centre moves highlighted variables between them (or clears the selection). Unlike

the Graphics dialog, variables are not temporarily removed from the Database, in

case you want a longer lag (say). Set Lags to zero.

Double click on Ur, and then on wpgl to formulate (4.45) where we want to

replicate (4.47): a Constant term is automatically added (double click on selected

variables to remove them). OK brings up the dialog for Model Settings: for the

moment just click OK again, to see the dialog for Estimatewhere you may need to

set Estimation ends at to 2004, then OK to estimate the equation.

PcGive can record estimated equation output in several formats, including

LAT
E
X, which can be included in TeX �les to ensure fast and accurate reporting.

Click on the Test Menu (second last on the right of the Icon line, or Alt+T) and
tick the box for Further Output.... In that dialog, click on Write model results

and select LaTeX format. Directly pasting that output into a TeX �le as here would

produce:

Ur � 0.4048
(0.102)

− 0.1926
(0.0554)

wpglt

The number of digits written to the output �le can be set by changing the value op-

posite Significant digits for parameters, or std.errors. Other output and

test outcomes will have to be addedmanually, but be careful with pasting statistics

like Chiˆ 2(2) to a TeX �le without marking it as mathematics.

Next, Part.Rˆ 2 is the squared correlation of each regressor with the depen-

dent variable having removed the e�ects of the other regressors, so is the partialR2
.

Also, sigma is the estimated equation standard error (σ̂ε), RSS is the residual sum

of squares, the F(1,150) statistic tests the null hypothesis that all the non-constant

regressors’ coe�cients are zero, Adj.Rˆ 2 is R2
adjusted for the number of esti-

mated coe�cients, log-likelihood is calculated assuming a normal distribution

(seeHendry andNielsen, 2007, for explanations and a likelihood-based approach),

then there are notes of the numbers of observations and estimated parameters, and

the mean and standard error of the dependent variable (here Ur).

1 We now dispense with longer headers like ‘Single-equation Dynamic Modelling’.
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To produce the estimation graphics, click on the Test Menu icon (second last on

the right on the Icon line, or Alt+T), and tick the Graphic Analysis... box, then

OK for the Graphic Analysis dialog. Two boxes for Actual and fitted values

and Residuals (scaled) should be ticked: also tick the boxes for Residual

density and histogram (kernel estimate) and Residual autocorrelations

(ACF) to obtain the four-quadrant �gure. The discussion in section 4.11 provided

their interpretation. PcGive also reports more format tests of the assumptions in

(4.2), so we consider these next.

4.14 Task 14: Model evaluation

This is a rather di�erent Task, concernedwith testing the speci�cation of estimated

models and interpreting the additional output produced beyond just coe�cient

estimates, their estimated standard errors and the ratios of those, denoted t-value.

Congruent models were discussed in section 4.9.1, which listed 6 null hypothe-

ses to test. Here we consider i), that a model’s �t should only deviate from the

observations by homoskedastic, innovation residuals. The default setting for Pc-
Give is to report various tests of i). The �rst is of innovation residuals against the

alternative hypotheses that the residuals are autocorrelated, here a second-order

autoregressive process reported as ‘AR 1-2 test: F(2,148) = 267.55 [0.0000]**’ (which

wewill write below as Far(2, 148) � 267.6∗∗) where the two asterisks denote that the

null hypothesis of no autocorrelation is rejected at the 1% level, and the number in

brackets ‘[0.0000]’ is the probability of observing a value of 267.55 from a statistic

with an F(2,148) distribution (see e.g., Godfrey, 1978, for details). This matches the

manifest residual autocorrelation in Figure 4.4 panels b and d.
There are three tests of homoskedastic residuals against di�erent heteroskedas-

tic alternatives. The �rst is whether the squared residuals are autocorrelated,

shown by ‘ARCH1-1 test: F(1,150) = 215.62 [0.0000]**’, whereARCH is the acronym

for Autoregressive Conditional Heteroskedasticity, and strongly rejects the null

(see Engle, 1982), denoted Farch(1, 150) � 215.6∗∗.
Before reporting the next two, there is a test of the residuals being normally

distributed, shown as ‘Normality test: Chiˆ 2(2) = 25.340 [0.0000]**’, which again

strongly rejects, consistent with Figure 4.4 panels c (see Doornik and Hansen,

2008), denoted χ2

nd(2) � 25.3∗∗.
The two remaining heteroskedasticity statistics respectively test if the squared

residuals are correlatedwith the squared regressors, or squares and cross products

of regressors (which are the same here, but di�er if there is more than one varying

regressor) shown as ‘Hetero test: F(2,149) = 1.5919 [0.2070]’ and ‘Hetero-X test:

F(2,149) = 1.5919 [0.2070]’ (see White, 1980), denoted Fhet(2, 149) � 1.59.
Finally, there is a test for whether the relationship is linear based on testing the

signi�cance of adding the square and cube of the �tted value ŷt to the regression,

shown as ‘RESET23 test: F(2,148) = 14.453 [0.0000]**’ which also rejects at 1% (see

Ramsey, 1969), denoted Freset(2, 148) � 14.5∗∗.
Rejecting on so many mis-speci�cation tests raises an important methodolog-

ical issue. Under the null that the model is correctly speci�ed with homoskedas-

tic, normally distributed innovation errors, then the tests of innovation errors, ho-

moskedasticity and normality are nearly independent (i.e., in a simulation across

many replications, there would be little correlation between the test outcomes).
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However, once one of the assumptions is false, that no longer holds. For example, if

there was an unmodelled location shift in the equation under test, so the intercept

was not constant, then the residuals would be autocorrelated, non-normal, and

heteroskedastic, and many of the above tests would reject. Consequently, it is in-

correct to infer that �ndings for residuals entail that the errors have the same prop-

erties: autocorrelated and heteroskedastic residuals can occur with homoskedastic

independent errors when there is an unmodelled location shift. ‘Fixing’ the prob-

lem of residual autocorrelation would not correct the more fundamental di�culty

of the location shift. Thus, a strategy of generalizing simple models in response

to failures of mis-speci�cation tests does not have a sound basis (see e.g., Mizon,

1995).

To create and estimate the autoregressive model in (4.46), Formulate, and

Clear the previous model selection if necessary, set Lags to one, and double click

onUr, then OK, OK, OK to replicate. Its 4-quadrant graphs follow as in Task 14 Section

4.14. Discuss its mis-speci�cation test outcomes.

Finally, formulate and estimate equation (4.49) and its graphics.

4.15 Task 15: Monte Carlo simulations

We used arti�cial data in Section 4.6.1, and here we will apply the same Monte

Carlo technique to simulate the distributions of the estimated parameters of a �rst-

order autoregressive model (denoted AR(1)) like (4.37) mimicking (4.46) when the

AR(1) is also the DGP:

yt � ρ0 + ρ1yt−1 + εt t � 1, . . . , T (4.50)

where εt ∼ IN[0, σ2ε] and |ρ1 | ≤ 1. In the simpler case where ρ0 � 0, the estimator

of ρ1 is based on:

1

T

T∑
t�1

yt yt−1 � ρ1 *
,
1

T

T∑
t�1

y2

t−1
+
-
+

1

T

T∑
t�1

yt−1εt

and since E[yt−1εt] � 0, setting the last term to zero:

ρ̂1 �
1

T

T∑
t�1

yt yt−1/ *
,
1

T

T∑
t�1

y2

t−1
+
-

(4.51)

A similar formula holds after taking deviations from means when an intercept is

present as in (4.50).

To de�ne the DGP in (4.50) for a simulation experiment requires specifying

numerical values for ρ0, ρ1, T, and σ2ε , as well as the distributional properties of

{εt} (here independent normal, with σ2ε � 1), and the initial condition y0, which

should be set at E[y] � ρ0/(1 − ρ1) for a stationary process (here PcNaive discards
the �rst N � 20 observations to o�set starting from y0 � 0). We will use ρ0 � 0,

ρ1 � 0.9 with the largest T � 50.

Select Model, and change the Category to Monte Carlo, so the Model class

should be AR(1) Experiment using PcNaive. The simulation program PcNaive
is embedded within PcGive, but operates rather di�erently as we will see. Click

Formulate which brings up the Formulate � AR(1) Experiment dialog. The top
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block concerns de�ning ρ0 and ρ1: the defaults are zero and 0.9 so we will �rst

use those. The next block concerns the AR(1) model to be estimated: the defaults

are including just yt−1 and no constant, which matches the DGP. The third block

concerns the settings for theMonte Carlo experiment, namely the number of repli-

cations, and the value(s) for the sample size T (and how often any exogenous vari-

able is to be renewed, which is not relevant here so shown in faint). A replication

is a draw of T observations on (4.50) generating y1 , . . . , yT from which one set of

model parameter estimates can be calculated, denoted ρ̂1,i . That is then repeated

i � 1, . . . ,M times, so set M to 1000. The line Sample size: start:[step]end

allows many Monte Carlo experiments to be done at the same time across a range

of sample sizes. Here, use 20:[1]50, so the output will graph ρ1 �
1

M
∑M

i�1 ρ̂1,i at
T � 20, T � 21, ..., up to T � 50.

Next, we set the Monte Carlo Output: tick the box for Coefficients if it is

not already marked. Finally, tick the box for Live Graphics which will show the

progress of the simulation as M increases across all the chosen values of the sam-

ple size. Tick the boxes for Recursive coefficients and tests (although we

have not requested any tests yet), and Histograms of coefficients and tests,

which shows the shapes of the densities of ρ̂1 as T changes. Also tick the box for

Set plot frequency, and set Plot frequency to 100, so every 100 replications the

screenwill show the latest updated results. Click OK, and for the simple experiment

here, the simulation is run immediately and should only take a few moments on

a modern PC. All the output is written to the Results �le, but we will focus on the

graphs here.

Density of ρ̂ 1 at T=50 

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05

2

4

6 Density of ρ̂ 1 at T=50 

Recursive estimates of ρ1 as T increases with ±2 MCSD[ρ̂ 1] 

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0

0.6

0.8

1.0

T→

Recursive estimates of ρ1 as T increases with ±2 MCSD[ρ̂ 1] 

Figure 4.6
Simulation density and recursive estimates of ρ

1
� 0.9.

Two graphs should show on the screen, the top one for the density of ρ̂1 as

T changes, illustrating how that density shifts across sample sizes, and the lower

for ρ1 at each sample size, which provides an estimate of E[ρ̂1] at that sample

size. Also shown on the graph are dashed lines at ±2MCSD[ρ̂1] calculated from

the variation across the M values of {ρ̂1,i} at each sample size (called MCSD, for
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Monte Carlo Standard Deviation):

MCSD[ρ̂1] �
√√√

1

(M − 1)
M∑
i�1

�
ρ̂1,i − ρ1

�
2

(4.52)

At the end of the experiment, the top graph is the density of ρ̂1 at T as shown in

Figure 4.6 (edited for clarity). Even for T � 50, that density is quite skewed with

a long left tail, with a few values outside the stationary range above unity. The

lower graph shows that ρ1 started at about 0.81 at T � 20 and ended around 0.87

at T � 50, so throughout provided a downward biased estimate of the population

parameter of ρ1 � 0.9, but with the bias decreasing as T increased.

Now return to the Formulate � AR(1) Experiment dialog and this time in-

clude a Constant in the model, leaving the DGP value at zero (you may need to

reset the Plot frequency at 100), and rerun. This time there are four graphs, den-

sities for ρ̂1 and ρ̂0 and recursive graphs for each as shown in Figure 4.7 (unedited).

The density for ρ̂0 should be approximately normal, and its recursive mean is cor-

rectly close to zero throughout. It is the recursive graph for ρ̂1 that has changed
most: ρ1 now starts around 0.7 and ends at 0.82, so is much more biased. This

downward bias is well known (see Hendry, 1984), and shows that the extent of

autoregressive inertia is generally underestimated.
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Figure 4.7
Simulation density and recursive estimates of ρ

1
, ρ0.

Monte Carlo extends the capabilities of econometricians to investigate prob-

lems that are analytically intractable, or extremely di�cult. We can modify our

present experiment a little to look at what happens to the density of ρ̂1 when ρ1 �
1 so the DGP is an integrated process. Select Formulate � AR(1) Experiment

and change Ya_1 coefficient to unity in the block for AR(1) DGP leaving the

Constant at zero, tick the box for t-tests and leave all other entries unchanged.

Even though ρ1 � 1, almost all estimates ρ̂1 are less than unity, and themode of the

density is around 0.92. Any test for the presence of a unit root has to allow for that

outcome. Further, the density of ρ̂0 is non-normal, and has ‘twin peaks’ on either
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side of the true value of zero, especially marked on its ‘t-test’ density, which rejects

the null hypothesis much more often than a 5% signi�cance level would suggest.

A surprise is the ‘t-test’ for H0:ρ1 � 0 being skewed to the right.

The interesting test is of H0:ρ1 � 1 which we cannot simulate on this sim-

ple design menu. The adventurous reader can do so by selecting Model class

as Advanced Experiment using PcNaive & Ox Professional. PcNaive actually
just designs Monte Carlo experiments, and writes a computer program in the lan-

guage Ox (see Doornik, 2007, which is where the name and code for OxMetrics
come from), then that program needs to be saved and executed by Ox, which re-

quires Ox Professional. Task 16 in Section 4.16 will explain how to use this more

�exible approach. However, even with the simpler dialog here, we can simulate

one interesting property as follows. Return to set ρ1 to 0.9, a model with a Con-

stant, and set Sample size: start:[step]end to 200 (so only the one value of

T); run the experiment, change the colours of the density of ρ̂1 by light shading

inside the histogram using the Edit Graph Menu, and copy that density on top of

the one for T � 50, then repeat all those steps again at T � 800 (now with dark

shading), so the resulting graph shows the three sets of densities as the sample

size has increased fourfold twice. Now repeat these two additional experiments

with ρ1 � 1 and collect all the densities of ρ̂1 in one �gure as shown in Figure 4.8.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
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20

Densities of  ρ̂ 1 when ρ 1=0.9 at T=50, 200, 800
a
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Densities of  ρ̂ 1 when ρ 1=1.0 at T=50, 200, 800

b
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Densities of ρ̂ 1 when ρ 1=0.9, 1.0 at T=50

c

0.70 0.75 0.80 0.85 0.90 0.95 1.00
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Densities of ρ̂ 1 when ρ 1=0.9, 1.0 at T=200
d

Figure 4.8
Simulation densities of ρ̂

1
when ρ

1
� 0.9, 1.

The markedly di�erent shapes of the densities in the top row (panels a and b)

are obvious, with the density when ρ1 � 1 becoming much more concentrated in

the neighborhood of unity as T increases than happens around 0.9 for ρ1 � 0.9.
Both graphs have been placed on the X-axis range 0.65–1.05 to highlight that prop-

erty, known as ‘super convergence’, which arises from the integrated process cu-

mulating all past shocks. That entails larger critical values are needed to correctly

reject the null of a unit root in favour of a stationary process, or a cointegrating

combination.

As the bottom row shows, at T � 50 there is considerable overlap between the

densities of ρ̂1 for ρ1 � 0.9 (unshaded) and ρ1 � 1, making discrimination between
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a stationary and an integrated process di�cult, even at T � 200 (panel d).

4.16 Task 16∗: Simulating the e�ect of error autocorrelation on
ESEs

One of the crucial assumptions onwhich calculations of estimated coe�cient stan-

dard errors depends is that the errors in a model are sequentially independent. If

instead, errors are positively auto-correlated then the estimated coe�cient stan-

dard errors (denoted ESEs) under-estimate the correct sampling standard errors

arising from variability across samples. Consequently, the so-called tβi�0 statis-

tics testing null hypotheses about parameter values do not have their assumed

Student-t distribution under the null, and di�erent critical valueswould be needed

for an appropriate test. In this Task, wewill check that claim by aMonte Carlo sim-

ulation, and Task 26 in Section 7.10 will analyze the downward bias in ESEs for the
simplest univariate equation.

To perform this simulation, select Monte Carlo then the Model class as

Advanced Experiment using PcNaive & Ox Professional. Task 15 Section 4.15

noted that PcNaive designs Monte Carlo experiments, then writes a computer pro-

gram which needs to be saved and executed by Ox, so the present Task requires

Ox Professional (the experimental design is stored in ESEBias.ox). The DGP is:

yt � βxt + ut (4.53)

where both

�
yt

	
and {xt} are stationary processes with:

ut � ρut−1 + εt where εt ∼ IN
�
0, σ2ε

�
(4.54)

such that |ρ < 1| and:
xt � λxt−1 + νt where νt ∼ IN

�
0, σ2ν

�
(4.55)

also with |λ < 1|, and E [εtνs] � 0 ∀t , s. The selected DGP parameter values are

β � 1, ρ � 0.9, λ � 0.9, with σε � σν � 1, T � 20, . . . , 100 in blocks of 5 (so 20, 25,

etc.), using M � 1000 replications.

The estimated model is (4.53) ignoring the error autocorrelation, simulated at

a range of sample sizes to illustrate recursive Monte Carlo. In the DGP Design di-

alog, set q to 1, click on PcNaive DGP Extras and tick ARMA errors, then OK. In

the next dialog for DGP parameters, set A2 to 1 (corresponding to β), click Y DGP

errors and set B0 to 0.9 (corresponding to ρ), then click Z DGP and set C0 to 0.9

(corresponding to λ), leaving all other settings at their default values, which im-

plements σε � σν � 1, then OK. Themodel is just Ya and Za, with no lags or constant

term, then OK and OK (to skip the next dialog).

In the Monte Carlo Designdialog, setM=1000, then Sample size as 20:[5]100.

Next, click Monte Carlo Output and tick Coefficients and Standard errors,

then click Live Graphics and tick Histograms of estimates and Recursive

Mean of estimates (the graph below also selected Standardized data and

edited the outcome), and perhaps set Plot frequency to 100, then OK. Save the

�le as ESEBias1.ox, then OK to run.

The recursive estimateswill appear on screen, and the (edited) graph produced

should look like Figure 4.9.
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Figure 4.9
Monte Carlo recursive output for mis-speci�ed autocorrelated errors

The two variables are clearly highly correlated, and the distributions of β̂
(shown as Za), and its ESE seem �ne, with the former centered correctly on unity.

It is the �nal panel that reveals the problem: the MCSD is much larger than the

ESE at all sample sizes, about three fold as the output in Table 4.1 con�rms, with

the MCSD at T � 100 being 0.30 as against the mean ESE of just under 0.1. Task 28

will explain why this result occurs.

moments of estimates mean MCSD
Za 1.0040 0.30087

ESE[Za] 0.098909 0.029186

Table 4.1
Monte Carlo moments of estimates

A new concept is the MCSD of an ESE. This measures the variation across the

Monte Carlo of the ESEs obtained in each of the M replications, so when divided

by

√
M, represents the uncertainty with which the mean ESE is estimated in the

simulation. As M � 1000 here,

√
M ≈ 32 so the uncertainty in estimating the mean

ESE of roughly 0.1 is just under 0.001.

Repeat the experiment �rst with ρ � 0, λ � 0.9, then with ρ � 0.9, λ � 0

to check that in both cases the MCSD is close to the ESE: both the error and the

regressor need to be autocorrelated.

4.17 Chapter 4 exercises

1. Estimate the regression of real-wage in�ation, ∆(w−p)t , on the unemployment

rate, Ur,t . Discuss the coe�cient estimate and evaluation statistics.
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2. Now estimate the regression of (w − p − 1 + l)t on Ur,t and (w − p − 1 + l)t−1.

Discuss the coe�cient estimates and mis-speci�cation statistics.

3. Can you compare the outcome with that from the model of ∆(w − p)t in i)?
4. Estimate the regression in ii) for sub-samples before 1914; between 1919 and

1939; and after 1945. How would you test if the observed variation over time

was due to parameter change or sampling variation?

5. Discuss the di�erence between a DGP like Dy(y1 . . . yT |z1 . . . zT , θ) and an

econometric model like fy(y1 . . . yT |z1 . . . zT , β).
6. Are all models of Dy(·) equally useful? Can mis-speci�cation tests help distin-

guish good models from bad?
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Modelling UK unemployment

Chapter 5 guide posts

1. Economic-theory models rarely allow for the sudden shifts seen in data, but

may still help inform a statistical model speci�cation: Section 5.1.

2. Theory can guide the formulation of a general unrestricted model (GUM) pro-

vided the GUM re�ects previous evidence and institutional knowledge and

incorporates dynamics, non-linearities, breaks and trends: Section 5.2.

3. A linear dynamic equation can be transformed to an equilibrium-correction

model (denoted EqCM), which eliminates stochastic trends by cointegration:

Section 5.3.

4. Multiple location shifts can be tackled by impulse-indicator saturation (de-

noted IIS), with little impact when there are in fact no shifts or outliers: Section

5.4.

5. The resulting GUMs can be too large for humans to handle, andmay havemore

variables than the sample size, but automaticmodel selection software can han-

dle suchGUMs, and still �nd aparsimonious congruent representation that can

also explain all the intermediate results (called encompassing): Section 5.5.

6. AnEqCMmodel of unemployment describes the evidence reasonablywell, and

remains constant over 2005–2011 despite the turbulence of the ‘Great Reces-

sion’: Section 5.6.

7. Thatmodel is not a ‘causal’ explanation, as a key regressor is contemporaneous,

with components that are undoubtedly a�ected by unemployment, but still has

some economic policy implications: Section 5.7.

5.1 Postulating better models

Poverty was perhaps the greatest problem that would face you living in 1860, with

its attendant problems of malnourishment and disease, but it would be exacer-

bated by unemployment, as there was essentially no other source of income for the

majority of the population than their earnings (or the Workhouse). Garraty (1979)

estimates that the unemployed have beenwith us even since theMiddle Ages, then
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in the form of sturdy beggars. As Figure 3.7 showed, unemployment rates �uctu-

ated considerably before the First World War, and could reach 10% of the labour

force, but that was dwarfed by the persistently high levels in the interwar period,

a phenomenon that regrettably returned after the benign post-war reconstruction

(and Keynesian) era with the Oil Crises of the 1970s and Mrs Thatcher’s economic

policies. It is obviously important to understand the behaviour of unemployment

much better than the simple models in Chapter 4.

Progress in understanding any economic relationship requires better models,

which here could be based on either or both of:

[A] better economic theories of aggregate unemployment;

[B] more general empirical models that tackle stochastic trends, breaks, dynamics,

non-linearities and interdependence.

We discussed [A] in section 3.7. Ur,t is the outcome from the supply of and de-

mand for labour, aggregated across all prospective workers (Ls
t ), facing demands

for many di�erent types of workers from all companies and the public sector (Ld
t ).

In turn those labour demands depend on demands at pro�table prices for the

goods and services produced. The DGP implicit in such a framework is far too

complicated to model in detail here, so instead, we will turn to [B] and relate Ur,t
directly to aggregate demand and supply. One way of doing so is to use the ‘gap’

between potential output, 1∗t , and actual, 1t as an approximation to Ls
t − Ld

t . Such

an approach is quite widely used, but 1∗ depends on the potential �ows of capital

services worked on by quality-adjusted hours of available labour inputs, both of

which are essentially unknown.

5.1.1 Measuring the gap
Sometimes, 1t − 1

∗

t is calculated using deviations of 1t from its ‘trend’ growth, but

we have already seen that the growth rate is not constant, which can lead to very

mistaken estimates of periods of excess demand and supply.

GDP with a single trend 

1860 1880 1900 1920 1940 1960 1980 2000 2020

11

12

13 GDP with a single trend 

GDP with 5 trends 

1860 1880 1900 1920 1940 1960 1980 2000 2020

11

12

13 GDP with 5 trends 

Figure 5.1
Log GDP with one and 5 trends.
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The top panel shows one trend line, revealing that 1t was ‘above trend’ from

1860–1920 and 1980–2004. Such an outcome is sometimes interpreted as excess de-

mand, with being below suggesting excess supply, although nothing in the histor-

ical record would support such interpretations. Rather the converse, as the latter

part of the 19th Century was once known as the Great Depression till that nomen-

clature was switched to the 1930s. Certainly the deviations are below trend dur-

ing the 1920s and 1930s but remain so during the post-WWII reconstruction boom

when the unemployment rate was often less than 1%. Thus, deviations from trend

are an unreliable guide to excess demand or supplywhen the trend is not constant.

The lower panel has �ve separate trend lines, and the much smaller residuals

show that the trend changed several times—and consequently this measure of the

‘gap’ assigns di�erent periods to excess demand and supply. Notice that choosing

di�erent sample periods will therefore lead to di�erent assignments of excess de-

mand or supply. As the rates of technical progress over time, and changes therein,

are unknown, and the choice of �ve breaks in trend is arbitrary, we will pursue an

alternative approach. However, Chapter 8 returns to the issue of modelling excess

demand for goods and services.

5.2 An alternative empirical model of unemployment

Instead of the ‘gap’, we will use a measure related to it, albeit rather more descrip-

tive than causal of unemployment: see Hendry (2001). This measure assumes that

unemployment will fall when hiring labour is pro�table, and will increase if it is

not pro�table. While there is also little accurate data on aggregate pro�tability,

there is a possible ‘proxy’—namely an observable variable that is usually reason-

ably closely related to pro�ts. On the demand side, changes in aggregate revenues

are re�ected by changes in GDP, namely ∆1t . On the cost side, we saw above the

close connection between (w − p)t and (1 − l)t , so average real labour costs are

matched by productivity. That leaves capital costs, and while not well measured,

those depend on real borrowing costs, which can be taken as (RL − ∆p)t . Com-

bining these steps, we approximate the behaviour of changes in real pro�ts by the

di�erential dt � ([RL −∆p −∆1])t , using the negative to have the same time shape

as Ur,t , recorded in Figure 5.2.

The match is less close after WWII, so other factors probably matter as well,

which we will consider later when allowing for location shifts.

5.2.1 Modelling unemployment by the pro�ts proxy
Since the paths of the two time series, dt and Ur,t , have some commonmovements,

we will model Ur,t over T � 1862 − 2004b yanADLlike(4.39), using dt for zt :

Ûr,t � 0.007
(0.002)

+ 0.86
(0.035)

Ur,t−1 + 0.24
(0.024)

dt − 0.10
(0.027)

dt−1

R2

� 0.88 σ̂ε � 0.013 Far(2, 137) � 3.08∗ Farch(1, 141) � 2.44

χ2

nd(2) � 7.16∗ Fhet(6, 136) � 4.97∗∗ Freset(2, 137) � 5.53∗∗ (5.1)

As a rise in dt corresponds to a fall in pro�ts, unemployment rises, so the expected

sign of its impact in (5.1) is positive. The �t is better than either previous model,
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Figure 5.2
Pro�ts proxy and unemployment.

and the impacts of both dt and its lag are apparently statistically signi�cant on the

basis of dividing each estimated coe�cient by its standard error to get a statistic

that has a t139 distribution under the null that each coe�cient is zero, using the

criterion of lying outside±2.6 to reject the null hypothesis at the 1% level. However,

several of the mis-speci�cation tests discussed in Task 15 Section 4.15 reject their

null hypotheses at 1%, so t-tests are possibly unreliable, and a better model should

be feasible.
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Figure 5.3
Graphical statistics for the dynamic unemployment model (5.1).
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Figure 5.3 records the actual Ur,t and �tted values Ûr,t in panel a, the standard-

ized residuals ε̂t/σ̂ε � (Ur,t−Ûr,t)/σ̂ε in panel b, and their density and correlogram

in panels c and d respectively. The residuals are close to an innovation, and seem

to be reasonably normally distributed, but are somewhat heteroskedastic, and we

still need to consider the constancy of the parameters and the validity of condi-

tioning on dt , issues we must leave for the moment. The model is also not ‘data

admissible’ as it generates negative �tted values of Ur,t , although that could be

‘�xed’ by modelling either log(Ur,t) or the logistic log[Ur,t/(1 −Ur,t)].

5.3 Interpreting the dynamic unemployment model

According to (5.1), a rise in dt �rst raises unemployment, but then appears to lower

it in the next periodwhen−0.10dt−1 ‘kicks in’, which seems odd at �rst sight. How-

ever, we can apply the analysis in section 4.10.1 to (5.1) to understand that equa-

tion better. Interpreting (5.1) as in (4.39), then β̂0 � 0.007, β̂1 � 0.24, β̂2 � 0.86, and

β̂3 � −0.10, so that κ̂0 � 0.007/0.14 � 0.05 and κ̂1 � (0.24 − 0.10)/0.14 � 1.0 from

(4.43).1 Written as in (4.44), then (5.1) becomes:

∆Ûr,t � 0.24∆dt − 0.14 (Ur,t−1 − 0.05 − 1.0dt−1) (5.2)

so the long-run equilibrium using rounded coe�cients is:

Ur � 0.05 + d (5.3)

or 5% unemployment when d � 0, which is its mean.

Unemployment rises or falls by approximately 1% for every 1% decrease or

increase in d � (RL − ∆p − ∆1). The immediate e�ect of a change in d is an impact

of ±0.24%, so unemployment only moves part of the way to the eventual impact of

1%and that creates a disequilibrium. Then, 14%of that deviation fromequilibrium

is removed each period. Thus, the apparently hard to interpret positive e�ect from

dt−1 transpires to be the natural consequence of an equilibrium correction.

That interpretation requires that (1− β̂2) and (β̂1 + β̂3)/(1− β̂2) are signi�cantly
di�erent from zero, allowing for the variables to be non-stationary, which entails

larger critical values than conventional (see e.g., Banerjee, Dolado, Galbraith, and

Hendry, 1993). In fact, the PcGive t-test for a unit root in (5.1) indeed rejects, so the

equilibrium in (5.3) is I(0): see Task 18 Section 5.10.

5.3.1 Allowing for longer lags
Although the dynamic model in (5.2) is now interpretable, it has an important

restriction—we only allowed for one lag, so excluded any e�ects from lagged

changes like ∆Ur,t−1 and ∆dt−1 (or longer). Those are easily added to equations

like (5.2), and doing so delivers:

∆Ûr,t � 0.16
(0.07)

∆Ur,t−1 + 0.24
(0.02)

∆dt − 0.12
(0.03)

(Ur,t−1 − 0.05 − dt−1)

(R∗)2 � 0.48 σ̂ε � 0.012 Far(2, 137) � 0.32 Farch(1, 140) � 3.25

χ2

nd(2) � 16.2∗∗ Fhet(6, 135) � 5.77∗∗ Freset(2, 137) � 3.50∗∗ (5.4)

1 These use rounded estimates: when the actual values are used, κ̂1 � 1.05.
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As can be seen, ∆Ur,t−1 is signi�cant when added, but ∆dt−1 was not, so was elimi-

nated. Since (5.4) does not have a free intercept, (R∗)2 is calculated when a constant

term is added. The resulting much smaller value than in, say (5.1), is because the

dependent variable is ∆Ur,t , rather than Ur,t : σ̂ε is smaller, so the model is de�-

nitely an improvement, and in turn R2
is revealed to be an unreliable measure of

‘goodness of �t’.

The e�ect of ∆Ur,t−1 is to increase the inertia in unemployment, adding to rises

as unemployment increases. The graphical statistics for (5.4) are shown in Fig-

ure 5.4. Although the match of dt and Ur,t seemed best in the 19th Century in

Figure 5.2, the �tted values track the outcomes least well for the changes in unem-

ployment over that period. However, the unemployment data then were based al-

most entirely on Unionmembers. The resulting signi�cant rejections of Normality,

homoskedasticity and linearity are possibly due to that change in measurement,

but will be addressed shortly. Notice that congruence in even a greatly improved

model can still be rejected, re-emphasizing the drawbacks of a strategy of aug-

menting overly simple initial models.
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Figure 5.4
Graphical statistics for the equilibrium correction unemployment model (5.4).

5.4 Outliers and location shifts

Earlier we noted fourmean shifts in Ur,t , but indicators for thesewere not included

when estimating (5.4). Moreover, a couple of ‘outliers’, or large scaled residuals,

de�ned as outside ±2, are visible in panels b and c of Figure 5.4. Both features

need to be included, albeit the formerwill not be neededwhen there is co-breaking

between Ur,t and dt , but the latter are a slight danger signal as follows. Let:

yt � µ0 +

�
µ1 − µ0

�
1{t≥T1} (5.5)
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so there is a location shift at time T1. Then, di�erencing:

∆yt �
�
µ1 − µ0

�
∆1{t≥T1} (5.6)

As ∆1{t≥T1} must be zero when the indicator is zero, which happens for all t < T1,

and must also be zero when the indicator is unity, as occurs for all t > T1, then

it is only non-zero at the switch point, t � T1. Thus, the change in the mean-shift

indicator is an ‘impulse’ indicator, 1{t�T1}:

∆yt �
�
µ1 − µ0

�
1{t�T1} (5.7)

Consequently, �nding impulse indicators in an equilibrium-correction model can

entail that a location shift has occurred but has been di�erenced.

However, care is required in how one checks for outliers and shifts. Figure

2.12 illustrated a location shift in the arti�cial data series generated by (2.12), so

yt � µ0+

�
µ1 − µ0

�
1{t≥T1} where the shift was µ1−µ0 � 5 error standard deviations,

which occurred at T1 � 0.23T � 23 from µ0 � 15. This graph is reproduced as

Figure 5.5.
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scaled residuals 

0 20 40 60 80 100

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

scaled residuals 

Figure 5.5
Location shift with no outliers at 1%.

The right-hand panel now records the scaled residuals that result if the �tted

model is just a constant as shown in the left-hand panel: the estimated mean is

the weighted average of (0.22 ∗ 15 + 0.78 ∗ 20) � 18.9, so there is a large residual

standard deviation. Thus, despite the large shift of 5 standard deviations, there

are no outliers at 1%, as all residuals lie in the range ±2.575σ̂. The absence of large
residuals need not entail the absence of shifts. This example has also been included

to highlight the dangers of not looking at themodel’s graphics, which clearly reveal

the shift and the mis-representation of the evidence by a single mean.

5.4.1 Allowing for outliers and location shifts in Ur,t

A �rst test of (5.4) is to add the four location-shift indicators for 1860–1913, 1914–

1938, 1939–1979, and 1980 onwards, noting that there is no free intercept to cause

perfect collinearity problems (because a linear combination of the indicators equals

the constant, there would be two intercepts if (5.4) already included one). That ad-

dition yields t-values of−1.7, 1.94,−0.90, and 1.1, none ofwhich rejects the null that
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their e�ect is zero, nor does a test of their joint signi�cance reject. Thus, (5.4) seems

to have ‘captured’ those four location shifts, evidence of co-breaking between Ur,t
and dt . However, given the lesson from (5.7), we next check for outliers.

Problematic indicators would correspond to the years when the jumps oc-

curred, namely 1914, 1939, and 1980. One could just add those impulse indicators,

but there may be other shifts relative to this model that derive from the presence

of dt , which might mask the signi�cance of any or all of those three. A general

approach would be to allow for possible impulse indicators at every data point to

check for both location shifts and outliers. At �rst sight, that may seem impossi-

ble, as doing so would involve T indicators for T observations and surely lead to

a perfect �t. Surprisingly, however, it can be done, and is called impulse-indicator

saturation, abbreviated to its acronym IIS. While it is beyond the level of this intro-

duction to o�er a detailed theoretical explanation, we nowdiscuss how it is statisti-

cally feasible to allow for T indicators and additional variables for T observations.

The distributions of the indicators and the resulting parameter estimates have been

derived for models of the type we are estimating here (see Hendry, Johansen, and

Santos, 2008, and Johansen and Nielsen, 2009); and IIS has been programmed as

an option in PcGive (called Autometrics: see Doornik, 2009).

5.5 Impulse-indicator saturation

The logic behind adding a complete set of impulse indicators,

�
1{t}

	
for t �

1, . . . , T, to a model selection procedure can be understood by considering two

stages, each ofwhich uses feasible subsets ofT/2, known as the split-half approach:

see Hendry and Nielsen (2010). An impulse indicator at observation τ ensures a

zero residual ε̂τ � 0. Including the �rst half of T indicators therefore ensures a per-

fect �t over that sub-sample, and is said to ‘dummy out’ those observations, i.e., is

equivalent to dropping them from the estimation sample. Consequently, only the

second-half data are used to estimate any other parameters. Under the null that

there are no outliers or shifts, such estimateswill be unbiased, although ine�cient,

which also holds for σ̂. Now checking the signi�cance of the indicators from the

�rst half can reveal which observations are discrepant. On replacing the �rst half

by the second, that analysis holds again; so we have successfully checked for shifts

and outliers at all observations.

A basic probability result is that when testing N independent null hypotheses

at a signi�cance level α, then on average Nα will reject by chance. For example, if

N � 100 and α � 0.01, one hypothesis is likely to be falsely rejected. Somewhat sur-

prisingly, such a result continues to hold for testing T hypotheses, as with impulse

indicators which are mutually orthogonal. Since there are T impulse indicators

used in IIS, it seems natural to set α � 1/T, so on average one irrelevant indicator

will be retained by chance from a distribution with no outliers or location shifts.

Figures 5.6 and 5.7 illustrate how impulse-indicator saturation works, based

on the split-half approach, �rst seeing how it would perform under the null when

there is no shift and then when the shift in Figure 5.5 is present.

The outcome under the null when there is no location shift is shown in Figure

5.6. The left-most column records which impulse indicators were included; the

middle column shows which impulse indicators were signi�cant; and the right

hand column records the resulting �tted and actual values when those indicators



i
i

“UGQE2book15” — 2015/4/15 — 10:47 — page 95 — #107 i
i

i
i

i
i

Modelling UK unemployment 95

0 50 100

0.5

1.0
Indicators included initially

B
lo

ck
 1

Selected model: actual and fitted

0 50 100

0.5

1.0
Indicators retained

Actual Fitted 

0 50 100

20.0

22.5

Actual Fitted 

0 50 100

0.5

1.0

B
lo

ck
 2

0 50 100

0.5

1.0

0 50 100

20.0

22.5

0 50 100

0.5

1.0

0 50 100

0.5

1.0

0 50 100

20.0

22.5

Figure 5.6
Split-half IIS under the null.

were retained even though none is needed. The top row is when the �rst set of T/2
impulse indicators are included; the middle row is the second set after the �rst set

are dropped; and the bottom row is when the signi�cant impulse indicators from

those two stages are combined, and re-selected for signi�cance. As can be seen,

when there is no break, one impulse indicator is retained when undertaking indi-

vidual t-tests at a 1% signi�cance level, which iswhatwould be expected to happen

on average under the null when T � 100 indicators are tested (see Castle, Doornik,

and Hendry, 2012, for a discussion of applying IIS to non-normal distributions).

Figure 5.7 records the outcome when there is a location shift. The top row

shows that 23 impulse indicators are retained initially matching the shift, as the

mean is shifted by 5 after T � 23. The second row shows that none of the ad-

ditional indicators are retained: the large late onset outlier is missed as the error

standard deviation is in�ated by not including the indicators from the �rst period.

The third row demonstrates that combining the impulse indicators selected at the

�rst two stages and re-selecting need not alter the outcome (but can do), as here

only those from the �rst stage matter. As these all have similar magnitudes and

the same sign they could be combined into a single location-shift indicator (see

Hendry and Santos, 2005). In practice, IIS is an option in Autometrics, which un-

dertakes many searches cumulating ‘knowledge’ about the process under analysis

before terminating when no further outliers can be found and the model is the

most parsimonious congruent representation. Here, IIS locates the later outlier as

well as retaining the �rst 23 indicators.

IIS has surprising implications. Despite testing for any number of location

shifts and outliers anywhere in the sample by adding T impulse indicators in large

blocks, the cost under the null is eliminating one observation at α � 1/T from the

single impulse indicator retained on average by chance. That is a tiny cost against

the potential bene�ts of removing breaks that could distort inference. Further, IIS
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Figure 5.7
Split-half IIS for a location shift.

demonstrates that having more variables than observations need not be an infea-

sible setting when handled appropriately.2

5.5.1 IIS for the unemployment model
Rather than just the two half-samples, Autometrics uses repeated blocks of multi-

ple sample splits, such as T/3, T/4, T/5, usually selecting relevant indicators at a

tight signi�cance level such as 1% or 0.5% depending on the sample size. We can

apply Autometrics to check for outliers in (5.4) at every data point using IIS at the

very tight signi�cance level of 0.1%, so there is just one chance in 1000 of �nding

an impulse where there was no genuine outlier: all the economic variables were

retained while doing so. This yielded the following signi�cant impulse indica-

tors, with their magnitudes shown in parentheses: 1879 (3.0%), 1880 (−5.0%), 1884

(4.5%), 1908 (2.8%), 1921 (5.3%), 1922 (−5.1%), 1930 (3.5%), and 1939 (−3.6%). Con-

sequently, several early outcomes, the 1921–1922 crash, and the start of the Great

Depression in 1930 are not captured by the model in (5.4). However, only 1939

matches the date for a danger signal, as it is close to the timing and magnitude

of the third location shift (µ3 − µ0) of about −3%. Thus, the model may not be

explaining the low unemployment over the post-war reconstruction era, although

that is not a feature that can be discerned in Figure 5.8.

2 A variant of this technique, called step-indicator saturation–which uses step, rather than impulse,

indicators described in Castle, Doornik, Hendry, and Pretis (2015)–was used to estimate the parameters

of (1.6) at a 0.1% signi�cance level: see Section 6.2.1.
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Figure 5.8
Graphics of the EqCM unemployment model with IIS.

5.6 ‘Forecasts’ from the EqCM unemployment model

Models like (5.4) estimated above were in fact developed a few years ago. Since

then, there have been seven new annual outcomes on all the variables. The pe-

riod includes the sharp rise in unemployment during 2008, which nevertheless

was much smaller than expected given a fall of more than 6% in real GDP. A sec-

ond check on (5.4) is to ‘forecast’ these recent outcomes. Such ‘forecasts’ are just

the �tted values of (5.4) over 2005–2011, not genuine statements about the future,

which would require forecasts of d. We use the estimates after IIS which were:

∆Ûr,T+h |T+h−1 � 0.16∆dT+h + 0.35∆Ur,T+h−1

−0.08
�
Ur,T+h−1 − 0.05 − dT+h−1

�
(5.8)

where T � 2004 and h � 1, . . . , 7, so ‘forecasting’ 1-step at a time from known

current and past outcomes.

Figure 5.9 records the �ndings of that check for both the levels and changes

in the unemployment rate, and shows that the estimated model tracks the new

data accurately. The top panel reports the whole history with the �tted values

and forecasts, which are shown with error bands estimating the uncertainty that

should include the outcomes 95% of the time when the new data are consistent

with the estimated model. The lower panel for the changes show 95% vertical

bars. Both sets of forecast intervals easily include all the outcomes. In e�ect, this is

a test of the constancy of the model over a turbulent period, when the increase in

unemployment was far less than might have been expected for the very large fall

in GDP.
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Figure 5.9
‘Forecasts’ from the EqCM unemployment model (5.8).

5.7 Some policy implications of the unemployment model

Equation (5.4) entails a number of policy implications as follows.

(i) When the real long-term interest rate, RL − ∆p, equals the real growth rate,

∆1, so d � 0, equilibrium unemployment is about 5%, close to the average histor-

ical unemployment rate. The model does not explain why 5% occurs, merely that

movements from 5% are associated with non-zero values of d.
(ii) To permanently lower Ur below 5%would require lowering d, either by reduc-

ing real long-run interest rates, or raising the long-run growth rate of GDP. Both

are policies the government favours, but the latter is di�cult to maintain while

imposing austerity, especially when that reduces education of the next generation.

(iii) Unemployment can be well below its equilibrium for long periods when d < 0

also holds, as occurred over 1939–1968. A key policy issue is the possible conse-

quence of that for in�ation, namely did the persistently low unemployment rate

during the post-war reconstruction era lead to the high in�ation of the 1970s, or

did that have a di�erent cause? We turn to modelling wage in�ation next, after

summarizing some of the lessons of this chapter.

5.8 Chapter 5 key points

(A) Economic-theory models rarely allow for sudden shifts, so often fail to ade-

quately characterize macroeconomic data, but may still help inform a statistical

model speci�cation.

(B) To represent the DGP at all accurately, one must start an empirical analysis

from a general unrestricted model (GUM) that includes all the substantively rele-

vant variables suggested by economic theories, previous evidence and institutional

knowledge, as well as their dynamics, possible non-linearities, breaks and trends.
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(C) Dynamic equations can be transformed to equilibrium-correction models (de-

noted EqCMs), which eliminate stochastic trends in cointegrated relations, and

make interpretation easier.

(D) Multiple location shifts can be tackled by indicator saturation, which has little

impact on an empirical modelling exercise when there are no shifts or outliers.

(E) The general unrestricted models that result from (B) and (D) will not only be

too large for humans to handle, they will usually contain more variables plus in-

dicators than the sample size.

(F) Nevertheless, as illustrated for some simple IIS examples, automatic computing

software can handle such GUMs, and reduce the initial proliferation to a parsimo-

nious, congruent and encompassing selection.

(G) The unemployment EqCMmodel based on dt � (RL −∆p −∆1)t describes the

evidence relatively well, and is constant on the new data over 2005–2011 despite

the turbulence of the ‘Great Recession’.

(H) Thatmodel is not a ‘causal’ explanation, as dt is contemporaneous and its com-

ponents are almost surely a�ected in turn by the level of unemployment.

The next chapter will apply the methodology we have developed so far to model

realwages, thenChapter 7will considermodellingUKmoney demand, and �nally

Chapter 8 will investigate price in�ation.

5.9 Task 17: Estimating a dynamic equation

Create and estimate the dynamic model of Ur in (5.1): Formulate, and Clear any

previousmodel selection if necessary, set Lags to one, and double click onUr, then
d, then OK, OK, and if T � 1862 − 2004, then OK to estimate. Its 4-quadrant graphs

follow as in Task 14 Section 4.14. Discuss its mis-speci�cation test outcomes, and

compare these to earlier estimated equations for Ur .

5.10 Task 18: Estimating an equilibrium-correction equation

PcGive can solve for the implicit equilibrium of (5.1), and test that the relation is

a cointegrating one as follows. In the Test Menu tick the Dynamic Analysis box,

then OK to bring up its dialog. Tick the boxes for Static long-run solution and

Lag structure analysis, then OK. The former solves for the equilibrium as in

section 5.3, and the second provides the PcGive t-test for a unit root (and hence

for cointegration when the variables are I(1)). The solved equilibrium should be

as in (5.3) when rounded, and the Unit-root t-test is tur � −4.03∗∗ so rejects

at 1% (see Ericsson and MacKinnon, 2002). Although both Ur,t and dt are non-

stationary, neither is integrated, but the procedure can still be applied and con�rms

the absence of a unit root.

Round the expression ‘ECM = Ur - 0.0492471 + 1.04499*d;’ and rename to ‘EC-

MUrd = Ur - 0.05 + d;’ highlight and Ctrl+A to calculate and add to the end of the

database. To Formulate (5.4), Clear then with one lag set, double click on DUr,
then Dd and �nally ECMUrd. Click inside the Selection window and delete the

current-dated ECMUrd but keep its lag (the contemporaneous value would lead

to a perfect �t as it is just a linear combination of Ur,t and dt). OK, OK, then set the

sample to 1863 − 2004. The estimates should show that the Constant and Dd_1
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are insigni�cant, so return to formulate, remove them and re-estimate to replicate

(5.4).

You have just done manual model selection: let’s compare that with automatic

selection. Return to Formulate, and at the foot of the Selectionwindow, click on

the down arrow at Recall a previous model to reinstate the general equation

with the Constant and Dd_1 included. OK, but this time tick the box for Automatic

model selection, set Target size to Medium: 0.025, accepting the remaining

default options, OK then set the sample to 1863 − 2004 and OK. The outcome might

surprise: the selected model retains Dd_1 even though it is insigni�cant. The ex-

planation is that by doing so, Autometrics substantively reduces the magnitude of

the heteroskedasticity tests, as you can see on comparing with your simpli�ed re-

estimation of (5.4). The selection procedure is predicated on starting from a con-

gruent model, which is not the case here, so the terminal choice can re�ect that.

We now need to address the non-congruence.

5.11 Task 19: Impulse-indicator saturation

To tackle the issue of changes in measurement and possible outliers and loca-

tion shifts, we need to use impulse-indicator saturation as discussed in section

5.5. Fortunately, this is easy. Formulate and reinstate the general model for

Task 18 with 5 regressors. Highlight these, right click with the mouse and se-

lect U: Unrestricted (fixed), so that all will be retained while searching by

IIS for shifts etc. OK, and again tick the box for Automatic model selection,

setting Target size to Tiny:0.001 as we only want important shifts removed;

and double click on None opposite Outlier and break detection, setting that to

Impulse-indicator saturation (IIS), then OK and OK, after which calculations

may take some time. This should replicate the results in section 5.5.1. Eliminating

both the insigni�cant Constant and Dd_1 now improves the diagnostic statistics,

with only Normality in doubt: the very stringent signi�cance level for IIS could

omit outliers that appeared signi�cant at 5%.

So far, we have only considered the default mis-speci�cation tests (called di-

agnostics when they are used to guide the selection of congruent models). On the

Test Menu, those can be calculated by ticking the box for Test Summary. However,

other tests are available, including the test for non-linearity in Castle and Hendry

(2010). On the Test Menu tick the box for Test ... and then tick the box for Index

test for non-linearity on the Test dialog. The output provides two versions,

which are usually similar, and here the second (Core index test) delivers ‘F(9,122)

= 1.20’, which does not reject.

5.12 Task 20: ‘Forecasting’

The �nal Task in this chapter is ‘forecasting’ the seven withheld data points, 2005–

2011, which period includes the Financial Crisis and the Great Recession. How-

ever, as dt is a contemporaneous regressor, so could not be known for a genuine ex
ante forecast, the exercise is really one of checking parameter constancy outside the

estimation sample. Indeed, as the Financial Crisis was essentially unanticipated a

year ahead, a crystal ball would be needed for a genuine forecast.
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Express (5.8) in a general notation where ∆yT+h is to be forecast successively

1-step ahead over a period h � 1, . . . ,H from a forecast origin at T with one

known regressor xT+h using estimated parameters {β̂i , i � 1, . . . , 3}, where the

equilibrium-correction estimated parameters are {κ̂i , i � 1, 2} as:
∆ ŷT+h |T+h−1 � β̂1∆xT+h + β̂2∆yT+h−1 + β̂3

�
yT+h−1 − κ̂0 − κ̂1xT+h−1

�
(5.9)

At each time T + h − 1, the right-hand side is known, so ∆ ŷT+h |T+h−1 can be calcu-

lated.

The ‘forecast’ errors are the deviations ûT+h |T+h−1 � ∆yT+h − ∆ ŷT+h |T+h−1 from

which statistics such as root mean square forecast errors (RMSFEs) can be calcu-

lated, where RMSE� 1

H
∑H

h�1 û2

T+h |T+h−1. Forecasts for the level yT+h can be derived

from:

ŷT+h |T+h−1 � ∆ ŷT+h |T+h−1 + yT+h−1.

The RMSFE for yT+h forecast by ŷT+h |T+h−1 is calculated by:

1

H

H∑
h�1

(yT+h − ŷT+h |T+h−1)2.

Select Model, Formulate and keep the model from Task 19, OK and OK, then

set the sample to 1863 − 2011 and change Less forecasts from 0 to 7. The esti-

mated equation should be unaltered, with some new output shown below 1-step

(ex post) forecast analysis 2005�2011. The main statistic of interest here is

‘Chow F(7,131) = 0.34077 [0.9338]’ which does not reject the null of parameter con-

stancy (see Chow, 1960).

∆Ûr ,T+h |T+h−1 
∆Ur ,T+h 

1995 2000 2005 2010

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025
∆Ûr ,T+h |T+h−1 
∆Ur ,T+h 

Figure 5.10
Fan chart ‘forecasts’ for ∆Ur .

A more detailed analysis is provided by selecting Test Menu, and ticking the

box for Forecast... to bring up its dialog. Tick h-step forecasts, making

sure that h=1 is set. Next, double click on Error variance only under Forecast

standard errors to change that to With parameter uncertainty, so that inter-

val forecasts re�ect the parameter estimation variances. Those intervals can be
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represented graphically in a number ofways and for di�erent intervalmagnitudes:

the defaults are error bars and 2 standard errors. Click on Graph Options to reset

the �rst to Use error fans, and OK to see Figure 5.10 (after a little editing, where

Ûr,T+h |T+h−1 denotes the forecast value of Ur,T+h made at time T + h − 1).

All the outcomes lie within the intervals of the fan chart, where lighter shading

denotes a lower probability region. Given the large fall in GDP, the relatively small

rise in unemployment has been considered surprising, but appears consistent with

this historical relation, as the drop in RL and the failure of in�ation to fall combined

to o�set much of the impact of the large negative value of ∆1.

The detailed forecast statistics are also written to the Results �le, and show

that the RMSFE is 0.0051, which is smaller than σ̂ε � 0.0087, so the model �ts

better over the later data without any impulse indicators, than it did in-sample

with indicators, which is a rare occurrence in macro-econometrics.

5.13 Chapter 5 exercises

1. Estimate the regression of Ur,t on Ur,t−1, without the constant, over a sample

ending in 2011, with 7 observations retained for forecasting. Discuss the coef-

�cient estimate and the model evaluation statistics.

2. How well does the forecast RMSFE compare to that of the model in Task 20,

Section 5.12? Is this a fair comparison, given that the forecasts from i) are gen-
uinely ex ante?

3. Can you explain why an unsatisfactory model like i) can forecast respectably

over the Great Recession?
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Chapter 6 guide posts

1. Empirical analyses need to start from GUMs that include all the theory sug-

gested variables, their dynamics, shifts and non-linearities: Section 6.1.

2. Location shifts are reasonably captured by a generalization of IIS called step-

indicator saturation (denoted SIS): Section 6.2.

3. A non-linear response of real wages to erosion from in�ation shows an in-

creasing reaction at higher in�ation, consistent with the historical occurrence

of ‘wage-price spirals’: Section 6.3.

4. Viable empirical models of real-wage growth can be developed, which can be

transformed to explain the nominal or real level of wages: Section 6.4.

5. There is little evidence that expectations of future values play an important role

in the wage model: Section 6.5.

6. There is also a non-linear response to unemployment, with real wages rising

as more workers become unemployed, consistent with unemployment being

involuntary: Section 6.6.

7. Even starting with many candidate explanatory variables, their lagged values

and non-linear functions thereof, the selected relationship is still perturbed by

a few large shifts, mainly coinciding with wars, but selecting location shifts by

SIS does not preclude �nding non-linearities nor do non-linearities capture all

the shifts, so both play important roles: Section 6.7.

8. Despite selecting from a GUM with more candidate variables than observa-

tions, the �nal real-wage model is readily interpretable—with a long-run equi-

libriumof a constant share ofwages inGDP embodied in an EqCM that corrects

real-wage ‘losses’ from previous incomplete adjustments to changes in in�a-

tion, unemployment and productivity—is constant over the Great Recession,

encompasses other empirical models, and passes a stringent test of its invari-

ance to regime changes (called super exogeneity): Section 6.8.

6.1 Wage determination theories

Returning to 1860, and how well you might be doing, Mackenzie (1921) records

the median, upper and lower quartiles of adult men’s wages in the UK in 1860,
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1880 and 1914. She shows ranges of 14s.6d to 22s.6d in 1860, rising to 25s.2d–

39s.4d in 1914 (there were 20 shillings to a £and 12 pence, denoted d, to a shilling):

these square with the data in Pember Reeves (1913). Your wage would not buy you

very much with bread costing about 1.5d per pound, milk 2d per pint, and (e.g.)

bacon 1s per pound. Johnson (1988) suggests that over half of total expenditure

was allocated to food (Mackenzie, 1921 has the �gure nearer to 66%), 20%–30%

to rent, about 8% to fuel and light, and between 3% and 7% to clothing. On ei-

ther estimate, almost no income was left, and malnutrition was rife. We need to

understand why 1860 workers were doing so badly on average, and why matters

improved so greatly.

Most analyses of wage in�ation postulate the labourmarket as themain source,

through:

(i) excess demand for labour;

(ii) competition over the pro�t share.

Factor markets seem to determine wages, and the prices of capital goods. But fac-

tor demands are derived from �nal demands, so the latter must be the primary

determinants of price in�ation (addressed in Chapter 8): in�ation usually needs

adequate �nal demand to sustain it.

Amodel of the overall in�ation process needs equations for: prices (or the pro�t

markup of prices over costs), wages, excess demands for goods and services, and

unemployment. These usually depend on productivity (output per employee),

costs (usually unit labour costs or wages relative to productivity), import prices,

commodity prices, taxes and bene�ts, and exchange rates, as well as special factors

(such as the price and availability of energy), sometimes �nancial variables like in-

terest rates and money supply, all with lagged reactions and perhaps expectations

of future prices. However, some models of ‘in�ation’ con�ate wages and prices.

Policy analyses of ‘in�ation’ have emphasized the ‘natural rate of unemploy-

ment’ or ‘non-accelerating in�ation rate of unemployment’ (NAIRU)—when vol-

untary unemployment fell below its ‘natural rate’, it was claimed in�ation would

accelerate inde�nitely: see Friedman (1977), with UK contributions from Nickell

(1990), and Layard, Nickell, and Jackman (1991) inter alia. The model is almost

the opposite of that in Keynes (1936) and Phillips (1958), who stressed the role of

involuntary unemployment putting downward pressure on wages. Some models

of price-setting �rms treat wages as ‘cost-push’, raising �nal-goods prices: see for

example Dicks-Mireaux and Dow (1959) and Godley and Nordhaus (1972).

Wage-price dynamic interactions (spirals) are also important in the literature:

see Sargan (1964), Sargan (1980) for the UK, and (e.g.) de Brouwer and Ericsson

(1998) for Australia. Rowlatt (1988) is a good summary of the forces driving UK

in�ation over 1969–85, when it reached high—almost hyperin�ationary—levels.

Nevertheless, few theory models allow for major unanticipated shifts.

6.2 Wage, price and unemployment location shifts

Chapter 1 described the data on the two nominal variables wages, W , and prices,

P. As an economy has only one nominal level, we transform w and p to create one

real (or constant price) variable, w − p, and one nominal level, p, from which both

nominal variables can be recovered if required. Real wages are modelled in this

chapter and nominal prices, or rather in�ation ∆p, in Chapter 8.
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We �rst extend Table 2.2 to Table 6.1 by adding the comparable statistics for

shifts in the UK unemployment rate and productivity growth, ∆(1 − l), shown in

Figures 3.7 and 1.12. As discussed in Section 3.9, the four shifts in Ur do not match

the eight shifts in wage and price in�ation, helping explain the unstable Phillips

curves in Figure 3.9. More of a surprise is that many of the shifts in ∆(1 − l) do not

match those in∆(w−p). However, the location shifts inwage and price in�ation are

closely similar, con�rmed by the considerable co-breaking between wage in�ation

and price in�ation shown by real-wage changes having only one large spike in

1940, and a di�erent mean pre and post WWII as seen in Figure 2.3.

Sub-sample ∆w ∆p Ur ∆(1 − l) ∆(w − p)
1861–1913 1.00 0.20 4.2 1.09 0.80
1914–1920 14.6 14.0 1.5 −1.60 0.60
1921–1923 −12.2 −11.9 9.5 3.70 −0.30
1924–1938 0.50 −0.50 9.9 1.10 0.90
1939–1945 8.20 5.90 1.6 0.50 2.30
1946–1968 6.00 3.90 1.5 2.30 2.10
1969–1981 13.4 11.9 4.3 1.74 1.60
1982–2011 5.20 3.50 7.9 1.79 1.70

Table 6.1
Means of ∆w, ∆p, Ur , ∆(1 − l) and ∆(w − p) over eight sub-periods in % p.a.

6.2.1 Step-indicator saturation
An extension of IIS to step-indicator saturation (SIS: see Castle, Doornik, Hendry,

and Pretis, 2015) provides a more powerful approach to �nding location shifts.

Instead of de�ning a complete set of impulse indicators as in section 5.5, a complete

set of increasing step indicators

{
1{t≤ j} , j � 1, . . . , T

}
is added. Step indicators are

the cumulation of impulse indicators up to each next observation, as shown in the

following Table.

Impulses Step shifts



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0

. . .





1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1



Table 6.2
IIS and SIS indicators

Figures 6.1 and 6.2 illustrate the ‘split-half’ approach of SIS applied to:

yt � 15 + λ × 1{t≥23} + εt where εt ∼ IN [0, 1] (6.1)

where λ � 0 (null) then λ � 5. Aswith IIS, the three rows correspond to adding the

�rst half of the indicators, dropping those, then adding the second half, then com-

bining the selected indicators. The three columns report the indicators entered, the

indicators retained, and the �tted and actual values of the selected model. When
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Figure 6.1
Illustrating SIS under the null of no shift in (6.1): λ � 0

λ � 0 and the �rst �fty step indicators are added, none is retained at 1% (row 1),

but one second-half indicator is retained (row 2), so selecting over that retained

indicator again keeps it.
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Figure 6.2
Illustrating SIS for a shift in (6.1): λ � 5

When λ � 5, three step indicators are retained at 1% from the �rst �fty (row

1), capturing the location shift and oscillations around it, and one retained from

the second-half indicators (row 2), which is the one closest to the earlier location

shift (a phenomenon that can be proved mathematically), and now selecting over

the four retained indicators only keeps the �rst 3, as the second-half indicator is

not needed to represent the location shift. The Autometrics version of SIS applied
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to this arti�cial data series just retains the step for the location shift. Like IIS, SIS

can be used when selecting jointly with all the other modelling complications.

6.2.2 SIS in action
If we apply SIS to ∆(w − p)t , ∆pt , ∆(1 − l)t , and Ur,t , we �nd similar but also

somewhat di�erent, outcomes to those in Table 6.1 as shown in Figure 6.3 where

the indicators shown were selected at 0.1% signi�cance, so are very unlikely to be

due to chance.

∆(w−p)t 
SIS outcome 

1900 1950 2000

0.00

0.05

0.10

0.15

0.8% pa
      ↓

1.9% pa
    ↓

∆(w−p)t 
SIS outcome 

∆pt 
SIS outcome 

1900 1950 2000

-0.1

0.0

0.1

0.2

∆pt 
SIS outcome 

∆(g−l)t 
SIS outcome 

1900 1950 2000

-0.05

0.00

0.05

     ↑
1.7% pa

1.2% 
   pa
  ↓

∆(g−l)t 
SIS outcome 

Ur ,t 
SIS outcome 

1900 1950 2000

0.05

0.10

0.15 Ur ,t 
SIS outcome 

Figure 6.3
Location shifts in ∆(w − p), ∆p, ∆(1 − l) and Ur found by SIS.

The large mean shift is found for ∆(w − p) around 1945, and the spike in 1940,

but with a small dip in between. The outcomes for ∆p are as described earlier, but

for ∆(1 − l), its mean shift starts in 1921 following the very sharp drop over 1918-

1919 as WWI ended (and the major �u’ pandemic was under way). Thus, as Table

6.1 suggested, ∆(w − p) and ∆(1 − l) do not co-break. Consequently, any model

linking them will need to allow for their di�erent shifts in addition to any direct

connection. The picture changes again for Ur , where additional ‘within regime’

shifts are detected, with the business cycles of the early and mid 1880s being es-

pecially severe, and the impact of the Great Depression treated as a further shift.

These extra shifts do not alter the earlier notion of four unemployment regimes.

6.3 Wage and price adjustments

Researchers have investigated many determinants of both real and nominal wage

adjustment including unemployment; insiders versus outsiders; Trades Unions;

worker-employer bargaining; staggered wage contracts; institutional factors; and

price indexation among others for the former; and capacity utilization or the out-

put ‘gap’; the NAIRU; money growth; exchange rates; and terms of trade shocks

for the latter (i.e., nominal wages). If nominal and real wage models both include

∆pt as a contemporaneous conditioning variable, they must be equivalent, so any
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other determinants should be the same. However, that would not apply if ∆pt
was excluded from a nominal wage model, in which case the determinants of ∆pt
would need to be included instead.

Somemodellers focused on one basic determinant and one adjustment process,

which has led to a proliferation of empirical claims. Since economic variables are

highly inter-correlated and autocorrelated, as well as subject to both common and

di�erent location shifts, it is easy to imagine that some claims can achieve empirical

‘corroboration’ evenwhen they could also be refuted. An obvious idea is to include

in the GUMall the variables postulated as relevant in any of themain theories, and

see which are actually relevant empirically when included with all the others.

6.3.1 Real wages and the impact of price in�ation
Despite starting from a very large GUM, economic theory can still inform key as-

pects of a model’s speci�cation. In particular, to include all the potentially relevant

variables assumes they operate equally over the data sample—but some variables

may be dominant at some times, and irrelevant at others. Moreover, policy regimes

change and that can alter which variables matter in di�erent sub-periods.

As one example, when price in�ation is low, there is little bene�t to workers

from seeking frequent pay negotiations (see Reis, 2006, for a related approach to

‘inattentive producers’). However, if price in�ation rises, it pays workers to be

more attentive, and act to prevent erosion of their real wages. That reasoning sug-

gests a non-linear reaction of real wages to in�ation, where one possible mapping

is:

∆(w − p)t � ft∆pt + · · · (6.2)

where ft ' −1 when∆pt ' 0, so there is some real wage erosion, but at little cost to

workers because in�ation is low. Conversely, ft ' 0 when ∆pt is large, as workers

act strongly to avoid the substantial erosion that would otherwise occur. While∆pt
is always relevant because of (6.2), there would appear to be a less than complete,

and possibly changing, impact of price in�ation on real wages in a linear repre-

sentation. Between these extremes of very low and very high price in�ation there

will be some erosion of real wages, but that too can be recouped by an equilibrium

correction, albeit with a lag. Interestingly, one of the �rst EqCM models arose in

the context of modelling real wages: see Sargan (1964).

The speci�c form for (6.2) used by Castle and Hendry (2009) was:

ft �
−1

1 + θ(∆pt)2 . (6.3)

They set θ � 1000 so that there was almost no erosion by ∆pt � 0.1 (approximately

10% p.a.). Figure 6.4 panel a shows the resulting response calculated from the

historical data on ∆pt (panel b is discussed in Section 6.7).

Real wages have also adjusted almost completely by ∆pt < −0.1, presumably

not because workers fought to achieve that, although employers certainly would,

but in fact those data points were mainly determined by the indexation of wages

during World War I continuing to operate after the war, as noted in Figure 2.10.

Such a reaction seems bound to create the wage-price spirals that bedevilled the

UK in the late 1960s and 1970s: once price in�ation stimulates a wage reaction,

�rms’ costs rise prompting further price increases.
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Figure 6.4
Non-linear responses (a) of real wages to in�ation, and (b) to unemployment.

6.4 An empirical model of UK real wages

The initial GUM in Castle and Hendry (2009) for ∆
�
w − p

�
t in (6.2) included 25

candidate variables to allow data evidence to determine which mattered, as well

as the dynamics and the adjustment process (6.3). Selection of indicators using IIS

at 0.1%, while retaining all the regressors without selection, found indicator vari-

ables for 1918, 1940, 1975+1977 (the Oil Crisis and a period with Incomes Policies),

and a group forWWII, measuring 3%, 14%, −5%, and 3% respectively. Then the re-

gressors in the GUMwith these indicators were selected at 1%, yielding σ̂ � 1.24%
(of the level of real wages–see Section 1.2.1–a convention used below for equations

explaining log variables), with no signi�cant mis-speci�cation tests.

∆
�
w − p

�
t � 0.76

(0.13)
ft × ∆pt − 0.14

(0.04)
∆2Ur,t−1 + 0.39

(0.05)
∆

�
1 − l

�
t

+ 0.13
(0.05)

∆
�
1 − l

�
t−2 − 0.08

(0.01)
�
ulcp∗ − µ̂

�
t−2 + 0.010

(0.002)

R2

� 0.75 σ̂ � 1.24% T � 1863–2004 (6.4)

Only a fewvariables actuallymattered as (6.4) records (indicators not shown).1 The

variable denoted ulcp∗t—for real unit labour costs—is (w−1+l−p)t � ct−pt (where

we came across ct in Section 2.6.2), which is also the labour share, but adjusted for

known changes in average hours worked. ∆2Ur,t � Ur,t − Ur,t−2 is the change in

unemployment over 2 years.

The coe�cient of ft∆pt is highly signi�cant, and although somewhat less than

unity, is not signi�cantly so. Since that entails some real wage erosion, and only

0.39 + 0.13 ' 0.5 of productivity changes are re�ected in real wages within two

years, equilibrium correction is needed to ‘catch up’ on past real wage losses. Real

1 The indicators were estimated as 0.027I1918 + 0.14I1940 − 0.05(I1975 + I1977) +

0.03 (I1942 + I1943 − I1944 − I1945).
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wages eventually converge to an equilibrium determined by ulcp∗ � µ, where µ is

the long-run wage share, which is µ̂ � 1.85 over this period given the data units

(prices and wages are indexes): see Figure 1.11, which shows the ‘common trend’

of real wages and productivity, and Figure 2.7 for a graph of the wage share (not

adjusted for changes in hours). Unemployment only matters through changes, not

its level, and those anyway just have a small e�ect. Despite the many variables

initially allowed, the �nal model is relatively parsimonious and reasonably inter-

pretable, although the intercept of 1% p.a. reveals unexplained real wage growth,

so other variables, or location shift indicators, may matter, as we will investigate

below.

Change in real wages 
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0.00
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Scaled residuals 
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Figure 6.5
Graphical statistics of model �t and residual statistics for (6.4) and 1-step ‘forecasts’ with

±2σ̂ over 1991–2004

The graphs of the model �t, the residuals and their density are shown in Fig-

ure 6.5, together with some ex post ‘forecasts’ over 1991–2004 made using pre-1990

estimates. The �t is relatively poor during the post-war reconstruction 1950s and

60s, when unemployment was exceptionally low and real growth quite high, al-

though the residuals are homoskedastic and near normal overall. Following the

Thatcher era labour-market reforms, and the 1992 exit from the ERMwith its large

devaluation and expectations of subsequent higher in�ation, constancy over the

last period provides a useful check on the speci�cation, which does not include

any expectations measures often deemed important in wage models.

6.4.1 Graphical translation of real-wage in�ation
It is possible to ‘translate’ the model of ∆(w − p)t in (6.4) to explain either of the

real-wage level (w − p)t given (w − p)t−1, or the level of nominal wages wt given

pt , wt−1 , pt−1. The left panel below shows the former, and the right panel the latter.
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Both show ‘near perfect’ �ts, and would have R2
values near unity, an illusion

from the strong trends, as the residuals are the same as those in (6.4).

6.5 An expectations-augmented wage model

To test the possible importance of expectations about future wages in determining

presentwage,∆wt+1 was added to (6.4) using as instrumental variables (RS−RL)t−i ,

∆po ,t−i , ∆pw ,t−i , ∆pt−i for i � 1, 2. These were selected as signi�cant explanatory

variables in the model for price in�ation where pw ,t and po ,t are world prices and

oil prices respectively. The real wage was split into its nominal wage and price

components, leading to:

∆wt � − 0.15
(0.10)

Et−1 [∆wt+1] − 0.02
(0.04)

∆wt−1 + 0.014
(0.003)

+ 1.1
(0.10)

∆pt

+ 0.70
(0.17)

ft × ∆pt + 0.46
(0.08)

∆
�
1 − l

�
t + 0.17

(0.07)
∆

�
1 − l

�
t−2

− 0.11
(0.02)

(ulcp∗ − µ̂)t−2 − 0.15
(0.06)

∆2Ur,t−1 (6.5)

σ̂ � 1.4% T � 1876 − 2001

where the same indicators were included but are not shown. The expectation is de-

noted Et−1[∆wt+1] and is equivalent to the forecast of ∆wt+1 from the instruments

listed above. As can be seen, its addition leaves thewagemodel almost unchanged,

and that measure of expectations even has the ‘wrong sign’: similar �ndings for

other models of in�ation are reported in Castle, Doornik, Hendry, and Nymoen

(2014), and in Chapter 8.

6.6 A new empirical model of UK real wages

Several developments prompted a new analysis of real-wage determinants, re-

ported in Castle and Hendry (2014). First, seven new observations became avail-

able, spanning the turbulent period of the Great Recession, allowing a test of
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the general speci�cation for continued constancy. We will consider how well the

model ‘forecasts’ those in Section 6.8.2. Secondly, the test for non-linearity in Cas-

tle and Hendry (2010) suggested that more general non-linearities were required

(Section 6.6.1). Thirdly, the extension of IIS (denoted SIS)was developed to address

location shifts more directly (Section 6.2.1 above). Fourthly, there were several ri-

val models, so encompassing tests thereof were feasible (section 6.6.2). Together,

these led to a new empirical model of UK real wages in section 6.7. Finally, SIS also

provided a powerful new test of super exogeneity (section 6.8.1).

6.6.1 Including other non-linear functions
The low-dimensional test for non-linearity in Castle and Hendry (2010) discussed

in section 2.11 applied to (6.4) rejected linearity. However, their test had suggested

a method for including general non-linear functions of variables during automatic

model selection at the same time as IIS. Instead of estimating the linear model

then checking for possible omitted non-linearities, add the powers and exponential

functions of either the principal components or the current dated variables to the

GUM. This led to including non-linear functions for Ur,t .

6.6.2 Encompassing
So far, the only encompassing test was in section 4.11.2 between the two mis-

speci�ed equations. There is a range of possible tests, but the easiest to imple-

ment, and to understand, is that of nesting all the contending models in an ‘arti�-

cial’ GUM and testing the validity of reductions to each in turn. Moreover, even if

none of the individual models proves valid, the most parsimonious yet acceptable

reduction of that GUM provides a baseline for future studies.

The non-linear model of real wages in Nielsen (2009) had allowed for parame-

ters shifting pre and post WWII, but encompassing tests against an updated ver-

sion of (6.4) revealed that neither encompassed the other, nor did several other

contenders considered by Castle and Hendry (2014), including a version of the

logistic smooth transition model in section 2.11.

Combining all of these developments led to the model in the next section.

6.7 A SIS-based model of real wages

To allow for the many potentially relevant variables, the dynamic adjustments, the

possible (and known) non-linearities, and the location shifts, the approach was as

follows. First, the GUM included an intercept and the following regressors, all

of which were speci�ed as �xed, so not selected over initially, noting that perfect

collinearities will be eliminated during later selection:

∆(w − p)t−1, ∆(w − p)t−2,

∆(1 − l)t , ∆2(1 − l)t , ∆2(1 − l)t−1, (∆(1 − l)t)2, (∆(1 − l)t−1)2,
(∆(1 − l)t) exp(−|(∆(1 − l)t)|), (∆(1 − l)t−1) exp(−|(∆(1 − l)t−1)|), (∆(1 − l)t)3, (∆(1 −
l)t−1)3,
Ur,t , Ur,t−1, ∆2Ur,t , ∆2Ur,t−1, (Ur,t − 0.05)2, (Ur,t−1 − 0.05)2, (Ur,t − 0.05)3, (Ur,t−1 −

0.05)3, (Ur,t − 0.05) exp(−|(Ur,t |), (Ur,t−1 − 0.05) exp(−|(Ur,t−1)|), ft∆pt , ft−1∆pt−1,

∆2pt , ∆
2pt−1, ∆

2pt−2, (∆pt)2, (∆pt−1)2, (∆pt)3, (∆pt−1)3,
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(∆pt) exp(−|(∆pt)|), (∆pt−1) exp(−|(∆pt−1)|),
(w − p − 1 + l − µ̂)t−1, (w − p − 1 + l − µ̂)t−2,

(S2011 − S1946)∆ur,t , I1916, I1977, (I1942 + I1943 − I1944 − I1945).
This speci�cation builds on all the earlier empirical �ndings, so the formulation

retains the non-linear reaction to price in�ation in (6.3), and that the equilibrium

correction is (w−p−1+ l− µ̂) (not corrected for hours) although the lag is selected.

However, other non-linearities are of the general form in (2.17).

Secondly, SIS was applied at 0.1% so only the very largest outliers and shifts

would be selected. This led to three step indicators being retained, for 1939, 1940

and 1943, implicitly entailing a step shift from 1944. Then the status of the �xed

variables was removed, and the resulting equation was selected at 1%, leading to

the model in (6.6).

Although the GUM di�ers from that in Castle and Hendry (2014), as well as

using a di�erent approach to selection, equation (6.6) is similar to that reported by

them, with a slightly di�erent dynamic structure. No diagnostic test rejects. The �t

is considerably better than (6.4), where σ̂ � 0.0124, yet variables in common have

relatively similar coe�cient estimates.

∆
�
w − p

�
t � 0.031

(0.003)
+ 0.303

(0.041)
∆

�
1 − l

�
t + 0.123

(0.032)
∆2

�
1 − l

�
t−1 +0.725(0.012)

�
ft∆pt

�

− 0.158
(0.028)

�
w − p − 1 + l − µ̂

�
t−2 − 0.201

(0.035)
Ur,t −0.14(0.045)

∆2Ur,t

+ 3.22
(0.69)

�
Ur,t −U r

�
2

− 0.145
(0.029)

∆2pt − 0.149
(0.011)

S1939 + 0.166
(0.014)

S1940

− 0.044
(0.008)

S1943 − 0.025
(0.008)

(S2011 − S1946)∆ur,t −0.038(0.011)
I1916

+ 0.050
(0.007)

(I1942 + I1943 − I1944 − I1945) − 0.045
(0.011)

I1977 (6.6)

R2

� 0.823; σ̂ � 1.03%; T � 1864 − 2004;

χ2

nd (2) � 1.06; Far (2, 123) � 0.06; Farch (1, 139) � 1.571;

Fhet (21, 116) � 0.92; Freset (2, 123) � 2.7; Fchow (7, 125) � 1.03.

To interpret the estimated equation, the short-run impact of ∆(1 − l) is a little

greater than 0.5 (note that 0.123∆2(1 − l)t−1 entails a response of 0.246 at annual

rates), whereas the long-response is unity from the equilibrium correction, so the

remaining shortfall is removed at about 16% p.a. by the EqCM term. Next, the

reaction of real wages to price in�ation erosion shown in Figure 6.4 a is a little

smaller than unity at 73%, but no other term in∆p was retained including the other

possible non-linear functions (∆2p is the change in in�ation). Thus, (6.3) seems to

capture the impact of the level of in�ation on real wages, and shows it depends on

the magnitude workers face. Castle and Hendry (2014) show that the formulation

is close to a logistic smooth transition.

The level of unemployment enters non-linearly: when expressed as a percent-

age (so 0.05 is 5%), the combined term can be written as −.5Ur,t(1 − 6.4Ur,t) and
is shown in Figure 6.4 b. Thus, as unemployment increases, its negative impact

on real wages increases till about 8% unemployment then starts to decrease, and

even changes sign when unemployment exceeds about 15%. A possible explana-

tion is that initially workers su�er a loss of bargaining power, but then movements

down the marginal product of labour curve raise real wages for the more produc-

tive workers still employed. There is also a small negative impact from changes in
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unemployment. The regime-shift term in ∆ logUr,t from Nielsen (2009) was also

signi�cant for the post WWII epoch, adding to the overall negative impact on real

wages of increases in unemployment.

6.8 Evaluating the SIS-based wage model

Figure 6.6 records the actual and �tted values, the scaled residuals the residual

density and the residual correlogram.
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Figure 6.6
Graphical statistics for (6.6)

The graphs are consistent with the formal mis-speci�cation tests, and now

show a relatively constant �t over most of the 150 years. As (6.6) was designed

to encompass previous empirical equations, there is no additional evaluation in

that direction.

6.8.1 Testing super exogeneity
However, SIS can be used to test the super exogeneity of the k linear contemporane-

ous conditioning variables, denoted xt say, in the selectedmodel. Super exogeneity

requires that shifts in the process generating xt do not alter the parameters of the

conditional model. Autometrics can be used to develop dynamic models for the xt
using SIS, either for each individual xi ,t or for the vector xt using a vector autore-

gression (VAR), although we only consider the former here (Castle and Hendry,

2014, used both IIS and SIS for a VAR).

Equations with up to 2 lags of 1− l, ∆p, Ur and w− p, but no contemporaneous

variables, were formulated for the �rst three variables, and selectedwith SIS at α �

0.005, then the retained indicators in the resultingmarginal models were tested for

signi�cance in (6.6). Table 6.3 records for each marginal model (�rst column), how

many step indicators were retained (q in the second column), the distribution of



i
i

“UGQE2book15” — 2015/4/15 — 10:47 — page 115 — #127 i
i

i
i

i
i

Modelling UK wages 115

Variable q null distribution SIS test

(1 − l)t 2 F(2, 123) 0.77
∆pt 7 F(7, 118) 1.87
Ur,t 14 F(14, 111) 1.37

Table 6.3
SIS based super-exogeneity test of (6.6).

the test statistic under the null (third column), and the value of the test statistic

outcome (�nal column). In no case does the test reject, so the step shifts that were

signi�cantly perturbing the conditioning variables did not a�ect themodel in (6.6),

consistent with those regressors being super exogenous for its parameters.

6.8.2 ‘Forecasting’ real wages
Task 20 Section 5.12 described the basic ideas behind ‘forecasting’ from a single

equation when some of the regressors are contemporaneous.

~∆(w−p)[T+h |T+h−1] ∆(w−p)T+h 

1995 2000 2005 2010

-0.025

0.000

0.025

0.050
a~∆(w−p)[T+h |T+h−1] ∆(w−p)T+h 

~∆(w−p)[T+h |T+h−1],IC 
∆(w−p)T+h 
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0.025

0.050 b~∆(w−p)[T+h |T+h−1],IC 
∆(w−p)T+h 

Figure 6.7
‘Forecasting’ real wages without and with intercept corrections

Figure 6.7 reports two sets of 1-step ahead forecasts from (6.6) for∆(w−p)t over

2005–2011. The top row (panel a) shows the forecasts made using the equivalent of

(5.9), but with many more regressors. All the ‘forecasts’ lie inside the forecast in-

tervals of ±2σ̂ f calculated taking account of the parameter-estimation uncertainty,

and the RMSFE = 0.0108, which is close to the in-sample σ̂ of 0.0103.

The bottom row (panel b) shows ‘forecasts’ made with an intercept correction

(IC). An IC is an indicator variable with the value unity at and after the forecast

origin, but zero before, so is almost equal to the last in-sample residual. Clements

and Hendry (1998) show that ICs can o�set systematic forecast errors made after

a location shift, and Task 29 Section 8.8 analyses the properties of ICs based on an

indicator variable for the �nal observation of the form used here. A seen in Figure

6.7, the IC improves the ‘forecasts’, leading to a RMSFE = 0.0098, which is smaller
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than σ̂, even though the IC indicator is estimated from just one observation. Both

panels, however, show that there has not been a substantive shift in (6.6) over the

Great Recession.

6.9 Chapter 6 key points

(A) Viable empirical models of real wages can be developed: the fundamental de-

terminant of increased realwages since 1860 has been increased output perworker,

sustained by increased capital, improved technology, and better education.

(B) The selected models of real-wage growth, ∆(w − p)t , can be mapped back to

(wt , pt) to explain the nominal or real levels, given prices, {pt}.
(C) The empirical analyses started from GUMs with all the theory-suggested vari-

ables, their dynamics, and non-linearities.

(D) Location shifts were reasonably captured by step-indicator saturation.

(E) ∆(w − p)t had a non-linear response to ∆pt , showing increasing reactions to

real-wage erosion from in�ation.

(F) There was also a non-linear response to unemployment, consistent with invol-
untary unemployment as more workers are unemployed at higher real wages.

(G) Selecting location shifts by step indicator saturation did not preclude �nding

non-linearities, and vice versa, so both had roles to play.

(H) The long-run equilibrium was a constant wage share, which corrected past

real-wage ‘losses’ from previous incomplete adjustments to changes in in�ation,

unemployment and productivity.

(I) Even with many candidate explanatory variables, lags and non-linear functions

thereof, the relationship was perturbed by a few large shifts, mainly coinciding

with wars.

(J) Despite selecting from more variables and indicators than observations, the �-

nal model was readily interpretable, passed a stringent super exogeneity test, and

was constant over the Great Recession.

6.10 Task 21: How not to estimate wage models

First, estimate the regression of the log of wages, w, on that of prices, p, brie�y
discuss the resulting coe�cient, and plot some graphs to help interpret how well

the model describes w.

As before, click on the ‘building block’ Icon (fourth from the right on the Icon

line, or Alt+Y). Choose Models for time-series data, and if not already set, se-

lect Single-equation Dynamic Modelling using PcGive.

Click on the Formulate button to bring up its dialog. Set Lags to zero, double click

on ‘w’, and then on ‘p’ to formulate the equation, remembering that a Constant

term is automatically added. OK brings up Model Settings, OK again to see the di-

alog for Estimate, set Estimation ends at 2011, and input 7 for Less forecasts
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then OK to estimate the equation.

wt � 0.235
(0.016)

+ 1.38
(0.009)

pt

R2

� 0.995 σ̂ � 13.9% Far(2, 141) � 986.70∗∗ Farch(1, 143) � 932.17∗∗

χ2

nd(2) � 5.58 Fhet(142) � 2.56 Freset(2, 141) � 24.75∗∗ FChow(7, 143) � 0.01

A coe�cient of 1.38 does not make sense, as wt − pt then rises or falls by 0.38%

for every 1% that pt rises or falls: it merely re�ects the historical fact that wages

have risen faster than prices on average. DespiteR2 � 0.995, σ̂ � 13.9% is huge, and

Figure 6.8 reveals that the �t is very poor, the residuals systematic and non-normal,

and there ismassive residual autocorrelation. Almost all themis-speci�cation tests

reject. Nevertheless, panel a in Figure 6.8 shows that the set of 1-step conditional

‘forecasts’, or more precisely, the out of sample �t, is �ne, a result con�rmed by

the tiny outcome on the Chow test of parameter constancy. Bad models can still

forecast well.
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Figure 6.8
Graphical statistics for regressing wt on pt

Next, estimate the regression of wage in�ation, ∆w, on price in�ation, ∆p, and
brie�y discuss the resulting coe�cient, again plotting graphs to help interpret how

well the regression describes ∆w. The PcGive commands are exactly as before,

except you will need to clear the current model �rst, and instead select ‘Dw’ and

‘Dp’.

∆wt � 0.013
(0.002)

+ 0.997
(0.04)

∆pt

R2

� 0.85 σ̂ � 2.36% Far(2, 140) � 0.14 Farch(1, 142) � 0.61

χ2

nd(2) � 74.8∗∗ Fhet(2, 141) � 0.82 Freset(2, 140) � 1.76 FChow(7, 142) � 0.51

An almost 1-1 e�ect of price in�ation on wage in�ation is estimated, with σ̂ �

2.36%, so the �t is dramatically better despite a lowerR2 � 0.85. Only the normality
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mis-speci�cation test fails, mainly from the huge spike in real wages in 1940, as

Figure 6.9 con�rms.
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Figure 6.9
Graphical statistics for regressing wt on pt

Finally, estimate the regressions of wage in�ation, ‘Dw’, on the unemployment

rate, ‘Ur’, over the three sub-samples before 1914; between 1919 and 1939; and after

1945, and discuss your results. You should �nd the following:

∆̂wt � 0.03
(0.004)

− 0.52
(0.08)

Ur,t

R2

� 0.45 σ̂ � 1.3% Far(2, 49) � 13.0∗∗ Farch(1, 51) � 6.86∗

χ2

nd(2) � 7.61∗ Fhet(2, 50) � 2.83 Freset(2, 49) � 5.93∗∗ T � 1861 − 1913

∆̂wt � 0.09
(0.04)

− 1.01
(0.42)

Ur,t

R2

� 0.235 σ̂ � 6.4% Far(2, 17) � 5.78∗ Farch(1, 19) � 0.26

χ2

nd(2) � 12.2∗∗ Fhet(2, 18) � 0.03 Freset(2, 17) � 3.24 T � 1919 − 1939

∆̂wt � 0.08
(0.009)

− 0.088
(0.15)

Ur,t

R2

� 0.008 σ̂ � 4.2% Far(2, 62) � 48.2∗ Farch(1, 64) � 12.2∗

χ2

nd(2) � 22.0∗∗ Fhet(2, , 63) � 2.50 Freset(2, 62) � 2.48 T � 1946 − 2011

The parameter estimates and �ts vary dramatically, so a single �t to the whole

period will hardly describe the evidence. Omitting the war years loses the most

informative periods of change, but is sensible if breaks are not also being handled.
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6.11 Task 22: Step indicator saturation

The aim is to apply SIS for the observed variable ∆(w − p)t using the tight level

of 0.1% and compare the outcome to the mean shift shown in Figure 2.3. First, we

will do a small analysis of the impact of a step indicator. Consider the equation:

yt � λ1{t≥T1} + εt for εt ∼ IN[0, σ2ε] (6.7)

over t � 1, 2, . . . , T where T1 < T, and 1{t≥T1} is an indicator variable equal to

zero when t < T1 and unity when t ≥ T1. We will derive the formula for the least

squares estimator λ̂ of λ, then interpret its impact on the residuals ε̂t � yt−λ̂1{t≥T1}
from (6.7):

λ̂ �

T∑
t�1

yt1{t≥T1}/ *
,

T∑
t�1

12{t≥T1}
+
-

�

T∑
t≥T1

yt/
*.
,

T∑
t≥T1

1
+/
-
�

1

T − T1 + 1

T∑
t≥T1

yt � y(2)

where y(2) is the sub-sample mean of yt over T1 , T1 + 1, . . . , T, using:

12{t≥T1} � 1{t≥T1} � 1 for t ≥ T1.

Then:

ε̂t � yt − λ̂1{t≥T1} �
{

yt for t < T1

yt − y(2) for t ≥ T1

(6.8)

To implement SIS, select Model, Formulate, choose ‘Dwp’ with no lags,

highlight the Constant, right click with the mouse and select U: Unrestricted

(fixed), OK, then tick the box for Automatic model selection, setting Target

size to Tiny:0.001 and double click on Outlier and break detection, setting

that to Step indicator saturation (SIS), OK. Set the sample to 1861–2011, and

OK to see:

G∆
�
w − p

�
t � − 0.16

(0.018)
S1939 + 0.13

(0.02)
S1940 + 0.044

(0.013)
S1943

− 0.028
(0.008)

S1949 + 0.019
(0.002)

R2

� 0.43 σ̂ � 1.78% Far(2, 142) � 0.83 Farch(1, 147) � 0.14

χ2

nd(2) � 1.93 T � 1861 − 2011

After the search process is complete, Figure 6.10 shows the complete outcome

you should see (after editing legends).

This SIS selection can check the main sub-sample mean shifts, originally found

‘ocularly’, by eliminating the indicators that tracked the WWII dip after the spike

in 1940. How close were your estimates to those in Chapter 2 exercise iv), Section
2.18?
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Figure 6.10
Mean shifts and outliers for real-wage growth

6.12 Task 23: Estimate a non-linear model

The approach builds on the test for non-linearity in Castle and Hendry (2010) (see

section 2.11), but here uses the non-linear functions of the data variables rather

than their principal components. To create these, select Algebra (Alt+A) and en-

ter the following nine transforms:

UrSq=(Ur-0.05)ˆ 2;

DglSq = Dglˆ 2;

DpSq = Dpˆ 2;

UrCub=(Ur-0.05)ˆ 3;

DglCub = Dglˆ 3;

DpCub = Dpˆ 3;

UrExp=(Ur-0.05)*exp(-abs(Ur));

DglExp = (Dgl)*exp(-abs(Dgl));

DpExp = (Dp)*exp(-abs(Dp));

These can also be typed in the Results window, highlighted and computed by

Ctrl+A.

Here wewill only select from a simpli�ed version of (6.6) using 1 lag. So Model,

Formulate, set Lags to 1, and select ‘Dwp’, ‘Dgl’, ‘Ur’, ‘wpglm’, ‘Dpfna’, and the

nine created non-linear terms (which will also enter lagged once), so there will

be 28 variables (counting the dependent variable). OK, OK to estimate over 1864–

2004. Very few of the coe�cients will be individually signi�cant. First we will

test the signi�cance of the 18 non-linear functions jointly. Test, tick Exclusion

Restrictions, OK, and highlight the 18 non-linear terms, OK to see F(18,114) =

1.0853. Apparently there is no additional non-linearity. There are two reasons

for that outcome: the �rst is the failure to jointly allow for location shifts, and the

second is that one should only expect a few of the 18 non-linear terms to matter,

so a joint F-test will lack power to reject.
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6.13 Task 24: Model selection with SIS

The aim of the 2-stage selection process that follows is to use much tighter sig-

ni�cance levels for shifts than variables. Continuing with the general non-linear

equation, return to Model, Formulate, where the 28-variable equation should still

be showing, highlight all 27 regressor variables, and right click with the mouse

to select U: Unrestricted (fixed), OK, then tick Automatic model selection.

Set Target size to Tiny:0.001 and double click on the option for Outlier and

break detection, choosing Step indicator saturation (SIS), OK, then set the

sample to 1864–2004, with no forecasts and OK. SIS selects indicators for 1939, 1940,

1941, 1943, 1945, 1975, and 1977.

Return to Formulate to see the model with the step indicators, and Clear

status on the previously �xed variables, then OK. Tick Automatic model

selection, setting the Target size to Small:0.01 and double click on Outlier

and break detection, setting that to None, as we have already found the major

shifts. Twenty terminal models ‘look alike’ when this overly simpli�ed GUM is

used. Somewhat tighter signi�cance levels for non-linear than linear terms could

also be used, clearing status for the 18 non-linear terms only but keeping the

others as �xed, select, then clear all and re-select at Medium:0.025.

6.14 Chapter 6 exercises

1. Estimate the regression of∆(w−p)t on∆(w−p)t−1 with a constant (both regres-

sors marked as �xed), using SIS at 0.1%, over a sample ending in 2011, with 7

observations retained for forecasting. Discuss the coe�cient estimates and the

model evaluation statistics.

2. Can you explainwhy the outcome is close to that found in Task 22, Section 6.11?

3. Howwell does the forecast RMSE compare to that of the model used in Section

6.8.2? Is this a fair comparison, as the forecasts from i) are genuinely ex ante?
4. What does the fact that in both cases the forecast RMSEs are close to their re-

spective in-sample σ̂s tell us about forecasting real wages over the Great Reces-

sion?

5. Prove that the 1-step forecasts for a variable ∆yt are the same as those for yt
when yt−1 is a regressor. Prove that such a claim is false when when yt−1 is

not a regressor. Consequently, discuss the distinction between transforming

the dependent variable in an equation to a di�erence by subtracting its lagged

value, and di�erencing the variables in an equation.
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Chapter 7
Modelling UK money demand

Chapter 7 guide posts

1. As with other aspects of the macroeconomy, there have been huge changes to

the �nancial system since 1860: Section 7.1.

2. To create a measure of money relevant throughout, namely the broad compo-

nent M4, various time series had to be spliced together: Section 7.2.

3. An analysis of motives for holding money guides the formulation of the GUM:

Section 7.3 .

4. An earlier selected empirical model of money demand matches a theory with

nominal short-run adjustment within bands and real long-run reactions shift-

ing those bands in line with in�ation and real income growth: Section 7.4.

5. The long-run equilibriumof themodel is a relation between the inverse velocity

of circulation of money (namely the log ratio of real money to real GDP) and

the net interest rate cost from holding money, and updating that earlier model

after recent data revisions delivers similar results: Section 7.5.

6. Re-estimating themoney-demandmodel over the longer sample period to 2011

produces recognizably similar coe�cients to the initial equation, and the coin-

tegrating relation found up to 1975 is almost unchanged: Section 7.6.

7. However, step-indicator saturation is needed to capture several important lo-

cation shifts since 1970: Section 7.7.

7.1 Money demand and supply

As we have seen in earlier chapters, a household in 1860 would have had little

money, receiving it as a weekly wage, and spending almost all, including repaying

short-term loans, before the next payday. Money was a �ow to most people: only

the wealthy had bank accounts, holding a stock of money as an asset, or as a pre-

caution against negative events. When economists discuss the demand for money,

all three reasons—transactions, asset and precautionary—occur, noting that the

outstanding stock has to be held by someone at every point in time.

Historically, in�ation was seen as the process whereby prices of goods and ser-

vices rose in terms of the amount of commodity money (gold or silver) that had to
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be exchanged to purchase them. This was essentially a fall in the price of ‘money’,

usually occasioned by an increase in its volume (see the elegant discussion of the

in�ation of the 16th Century from the in�ux of gold from South America to Eu-

rope by Hume, 1752). De�ation occurred when the supply of goods rose (as after

the industrial revolution) without a concomitant increase in the supply of gold or

silver, making ‘money’ relatively scarcer. In both cases, supply-side forces drove

the outcome, either from an ‘exogenous’ increase in the supply of precious met-

als (as with the Californian gold rush of 1848, followed by the Australian in 1851,

as well as many others), or conversely from proli�c harvests or technological im-

provements.

The introduction of a large number of �nancial innovations over time, from

bills of exchange, paper money and fractional-reserve banking, through personal

cheque books in the 1830s, the telegraph in the 1860s, credit cards, to ATMs and

on-line banking, as well as the creation of many di�erent types of asset that can

count as ‘money’, have complicated that story (already seen to be a problem by

Marshall, 1926). At the start of our period, Building Societies (equivalent to Sav-

ings and Loans in theUSA),were small cooperative institutions. They grewgreatly

over the next century, and began to rival commercial banks in their scale. Indeed,

throughout the 1990s,most large Building Societies converted to commercial banks

and commenced borrowing on wholesale money markets, at a time when bank

liquidity ratios were allowed to decrease, setting the scene for the �nancial crisis

where many previous Societies went into liquidation or were taken over. Changes

in the spectrum of competing interest rates from�nancial innovation have plagued

previous econometricmodels of variousmeasures ofmoney both broad (nowmea-

sured by M4) and narrow, such as M1 (notes and coin plus demand deposits at

commercial banks), sometimes called transactions money: see Hacche (1974) and

Hendry and Mizon (1978); Coghlan (1978) and Hendry (1979); as well as Goldfeld

(1976) and Baba, Hendry, and Starr (1992) for the USA.

Moreover, the roles of Central Banks have changed greatly from ‘controlling

the money supply’ under the Gold Standard that operated till the 1930s, through

a plethora of regimes, to now targeting in�ation and unemployment. In the UK,

money creation is akin to that of virtual particles in physics, where an asset and

a matching liability are simultaneously produced (or annihilated), with recourse

to discounting assets at the Central Bank if liquidity becomes scarce. In e�ect,

the quantity of money outstanding is usually determined by the demand to hold

the stock of it, although the Government could have an impact through unfunded

budget de�cits, but even the massive £375 billion purchases of Government debt

by the Bank of England was accompanied by a fall in the volume of broad money.

Thus, the demand for the assets that can count as ‘money’ has become themain

focus, although there remains a tradition (exempli�ed by Friedman and Schwartz;

Friedman and Schwartz, 1963, 1982, among others) that in�ation is primarily a

monetary phenomenon, criticized by Hendry and Ericsson (1991). Friedman and

Schwartz (1982) estimate demand for money functions with real money as the

dependent variable, then solve them to express prices as dependent on nominal

money, which is treated as ‘exogenous’. We will address that theory by checking

the validity of ‘inverting’ the status of money and prices in a model of UK money

demand in Task 25 Section 7.9.
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7.2 Money and interest rates
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Figure 7.1
Time series of mt , (m − p)t , (m − 1 − p)t , Rn ,t and RS,t

Figure 7.1 panel a records the time series on the log of nominal broad money

(created by splicing ever-increasing coverage of the data series on ‘money’ over

time, discussed in the Appendix) with the log of prices. Panel b plots the logs

of the stock of real money (in constant prices) and real GDP, which shows major

departures between them. Real money increased markedly during the Thatcher

‘monetary control’ regime, which also coincided with substantial deregulation of

the banking system, then slowed during the recession of the late 1980s–early 1990s

before rising sharply again. Panel c plots the log of the relative amount of money

in circulation in the UK compared to nominal GDP, which rose almost 3-fold from

its low 1980, ending near its highest value, as discussed in Section 1.12. Finally,

panel d records the short-term interest rate (on 3-month Treasury bills) RS,t , and

the competing interest rate net of the own interest rate, denoted Rn ,t . These are

essential the same until 1985, after which they depart markedly, with the latter

falling to near zero by the late 1990s as the de�nition ofmoney has become broader

with a larger proportion of ‘money’ paying interest: see e.g., Ericsson, Hendry, and

Prestwich (1998).

Figure 7.2 panel a plots ∆pt with its mean shifts (section 2.8 de�ned the eight

sub-periods); panel b shows the time series plots of ∆pt and ∆mt ; panel c records
the corresponding location shifts in∆mt ; and panel d the scatter plot of∆pt against

∆mt showing the dates and a regression linewith projections. Panel b revealsmany

systematic departures between∆pt and∆mt with an absence of co-breaking, high-

lighted in panel c by the di�erent location shifts in ∆mt found by SIS. Finally, the

upward slope of the regression in panel d cannot be interpreted as ‘money causes

in�ation’ because as prices rise, people need more money to buy the same quanti-

ties of goods and services. Indeed, not only do mt and pt fail to cointegrate (even
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Figure 7.2
Location shifts in price in�ation and money growth

allowing for shifts), using only ∆mt to ‘explain’ ∆pt (with 4 lags of each, �rst se-

lecting by SIS at 0.1%, then over regressors at 1%) yields the long-run relation

∆p � 0.39∆m which is well short of proportionality with σ̂ � 0.021. In compar-

ison, an autoregression in ∆pt selected by SIS has σ̃ � 0.022. Money may be one of

the determinants of price in�ation, but is clearly not the only one: Chapter 8 will

examine that issue. Here, we investigate the demand for broad money.

7.3 Formulating a demand for money model

Why would anyone want to hold paper money? It has no intrinsic value (unlike

commodity money), is easily eroded by in�ation, and its use for transacting de-

pends on the willingness of others to accept it in exchange for real goods and ser-

vices. The answer given by Starr (2012) is to pay taxes, as Governments both issue

money and agree to accept it back for that purpose. Once it has such a use, other

transactions follow suit.

Having given money the status of ‘legal tender’ the next question is howmuch

money would economic agents then wish to hold? There are a plethora of theories

of money demand, although many are only relevant to ‘narrow’ or transactions

demand, summarized in Ericsson, Hendry, and Prestwich (1998). Various motives

have been proposed: to �nance ‘physical’ transactions, to facilitate speculation in

�nancial markets, as a store of value, and as a precaution against short-term �uc-

tuations in incomes. All seem likely to depend on levels of expenditure or income

(and probably wealth), and possibly on the opportunity cost of holding money as

an idle asset. That cost is the interest it could have earned when invested in other

safe but interest-bearing assets (like 3-month Treasury Bills), and the depreciation

in value over time of all nominal assets from in�ation.
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These ideas lead to a general formulation of aggregate money demand (de-

noted md
in logs) depending on GDP, 1, prices, p, and the opportunity cost, often

measured by the interest rate on an outside asset, RS less the interest rate paid on

the proportion of M that earns interest Ro (like deposit accounts) denoted Rn , and

in�ation ∆p:
md

� f
�
1 , p , Rn ,∆p

�
(7.1)

or in a log-linear form:

md
� θ11 + θ2p + θ3Rn + θ4∆p (7.2)

where θ1 > 0, θ2 > 0, θ3 < 0, θ4 < 0, often with θ1 � θ2 � 1 so real money demand

is proportional to real GDP. A speci�cation like (7.2) is an equilibrium relation, so

at best corresponds to a cointegrating relationship, as a model of actual mt would

need to allow for dynamic adjustments, possible non-linearities, and shifts.

7.4 Modelling the demand for money

For the period 1878–1975 then available, Hendry and Ericsson (1991) found that

the inverse velocity of circulation of money, namely (m− 1− p)t , cointegrated with

the competing interest rate RS,t (which coincided with the net interest rate Rn ,t
over most of their sample), as:

ũt �
�
m − p − 1

�
t + 0.309 + 7RS,t (7.3)

where {ũt} did not have a unit root.

Their selected model, which included a non-linear equilibrium correction in ũ,
denoted by et−1 � (ũt−1 − 0.2)ũ2

t−1, was:

∆(m − p)t � 0.47
(0.06)

∆(m − p)t−1 − 0.11
(0.04)

∆2(m − p)t−2 − 0.59
(0.04)

∆pt

+ 0.41
(0.05)

∆pt−1 − 0.017
(0.006)

∆rS,t − 0.078
(0.019)

∆2rL,t

− 1.15
(0.19)

ẽt−1 + 0.034
(0.006)

(D1 + D3) + 0.007
(0.002)

+ 0.071
(0.010)

D4 + 0.090
(0.020)

D4∆rS,t (7.4)

R2

� 0.88 σ̂ � 1.48% Far(6, 81) � 1.19 Farch(2, 83) � 1.31

χ2

nd(2) � 2.9 Fhet(18, 68) � 0.43 T � 1878 − 1975

where D1+D3 were dummy variables taking the value unity during the twoworld

wars respectively and zero elsewhere, and D4 is a dummy which is unity only

over the period 1971–75. Changes to �nancial regulations (called Competition and

Credit Control) over 1971–75 required changing RS to Rn and adding both the

dummy D4 and its interaction with changes in interest rates, D4∆rS,t . The mis-

speci�cation tests show that (7.4) was congruent, and they demonstrated that it

was constant over the sample to 1970, but that ‘inverting’ to have ∆pt as the de-

pendent variable with ∆mt treated as exogenous was not constant. The small net
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negative coe�cient of in�ation in (7.4), obtained by combining the coe�cients of

∆pt and ∆pt−1, shows some erosion of the value of real money holdings.

To interpret (7.4), the formulation of et−1 preserves the sign of the disequilib-

rium feedback, as the cubic component dominates, but there are two possible equi-

libria, one when u � 0, the usual cointegration solution, and the other at u � 0.2.
The second seems mainly to account for the discrepancy between m − p and 1

over 1921–1955 that is visible in Figure 7.1 panel b, although et−1 operates over the

whole sample period. Real money growth is strongly autoregressive, and in�ation

and changes in (log) interest rates have net negative e�ects as expected.

Alternatively, (7.4) can be expressed in terms of nominal short-run money de-

mand:

∆mt ≈ 0.41∆pt + 0.11∆2pt−2 + 0.47∆mt−1 − 0.11∆2mt−2 · · ·

with long-run demand being in real terms as determined by the cointegrating rela-

tion (7.3). That matches a theory of money demand where in the short-run, agents

adjust their holdings within bands, and in the longer run adjust those bands as the

price level and income change: seeMiller and Orr (1966) andMilbourne (1983). Fi-

nally, money demand increased by about 4% during both World Wars.

7.5 Updating the demand for money model

Although there have been important data revisions since their study, it was possi-

ble to obtain a reasonably close replication of (7.4):

∆(m − p)t � 0.40
(0.07)

∆(m − p)t−1 − 0.14
(0.05)

∆2(m − p)t−2 − 0.62
(0.05)

∆pt

+ 0.38
(0.06)

∆pt−1 − 0.025
(0.006)

∆rn ,t − 0.104
(0.031)

∆2rL,t−1

− 2.80
(0.54)

ẽt−1 + 0.037
(0.006)

(D1 + D3) + 0.009
(0.002)

+ 0.065
(0.010)

D4 + 0.087
(0.028)

D4∆rn ,t (7.5)

R2

� 0.87 σ̂ � 1.62% Far(2, 85) � 1.66 Farch(1, 96) � 0.004

χ2

nd(2) � 7.16∗ Freset(2, 85) � 0.69 Fhet(18, 79) � 1.50 T � 1878 − 1975

Most of the coe�cients in (7.5) in common with (7.4) have the same signs and

similar magnitudes, noting that rn ,t replaces rS,t , and one lag length has changed,

although the coe�cient of et−1 is larger. The additional variable ∆1t had been in-

signi�cant in (7.4), but was signi�cant if added to (7.5). As long-run money de-

mand depends on 1, it had been a surprise that its change (and lags thereof) was

insigni�cant when included in (7.4).

7.6 Extending the demand for money model

There have been a number of updates of equations like (7.4) by other authors, in-

cluding Escribano (2004) who examines a range of alternative non-linear equilib-

rium correction formulations, and concludes with a constant-parameter represen-

tation to 2000 similar to (7.4). The long-run solution in Hendry (2001) which was
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estimated as a cointegrating relation over 1870–1991 holds essentially unchanged

to 2011 when estimated as a static regression, despite continuing major changes to

the UK’s �nancial system:

ũt � (m − p − 1)t + 0.38 + 7.4Rn ,t (7.6)

where Rn ,t is the opportunity cost of holding money. Consequently, the previous

non-linear equilibrium correction term et−1 was retained.

Equation (7.7) records the outcome of extending the model including ∆1t over

the additional quarter of a century 1976 to 2011, so the whole sample is T � 1878−

2011:

∆
�
m − p

�
t � 0.60

(0.07)
∆

�
m − p

�
t−1 − 0.10

(0.05)
∆2

�
m − p

�
t−2 − 0.71

(0.06)
∆pt

− 0.51
(0.07)

∆pt−1 − 0.021
(0.007)

∆rn ,t − 0.044
(0.027)

∆rL,t−1

− 1.26
(0.25)

et−1 + 0.032
(0.007)

(D1 + D3) + 0.003
(0.003)

+ 0.039
(0.001)

D4 + 0.055
(0.023)

D4∆rS,t + 0.19
(0.07)

∆1t (7.7)

R2

� 0.77 σ̂ � 2.12% Far(2, 120) � 1.46 Farch(1, 132) � 2.61

χ2

nd(2) � 4.79 Fhet(20, 113) � 2.08∗∗ Freset(2, 120) � 0.72

The estimated coe�cients are recognizably similar, especially compared

to those in (7.4), but the �t is much poorer and the heteroskedasticity mis-

speci�cation test rejects.

7.7 Recent location shifts in the demand for money model

Both of these problems occur primarily because of the recent turbulent period, and

given the step shifts seen in Figure 7.2c and the marked departure between the

time-series behaviour of ∆mt and ∆pt after 1980, suggests applying step-indicator

saturation, selecting at α � 0.001 so only the most important shifts are found.

∆
�
m − p

�
t � 0.57

(0.06)
∆

�
m − p

�
t−1 − 0.12

(0.04)
∆2

�
m − p

�
t−2 − 0.67

(0.050)
∆pt

+ 0.51
(0.06)

∆pt−1 − 0.021
(0.006)

∆rn ,t − 0.060
(0.024)

∆rL,t−1

− 1.56
(0.26)

et−1 + 0.030
(0.007)

(D1 + D3) − 0.020
(0.012)

+ 0.051
(0.008)

D4

+ 0.05
(0.02)

D4∆rn ,t + 0.17
(0.06)

∆1t + 0.03
(0.010)

S1973 − 0.06
(0.015)

S1979

+ 0.05
(0.015)

S1981 − 0.04
(0.008)

S1999 + 0.05
(0.013)

S2008 (7.8)

R2

� 0.86 σ̂ � 1.81% Far(2, 115) � 1.56 Farch(1, 132) � 0.12

χ2

nd(2) � 2.15 Fhet(25, 108) � 1.12 Freset(2, 115) � 0.46
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Although �ve step shifts are retained, the other coe�cient estimates are not greatly

altered. The diagnostic tests are all insigni�cant, though the �t remains less good

than over the shorter period to 1975.

∆(m−p)t ∆̂ (m−p)t 
steps 

1900 1950 2000

-0.1

0.0

0.1

∆(m−p)t ∆̂ (m−p)t 
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scaled residuals 
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2

3
scaled residuals 
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residual correlogram 

Figure 7.3
Money model extension using SIS

Figure 7.3 shows the graphical outcome, where panel a reports the combination

of the step indicators. The main periods not captured by the economic variables

are 1980–1999, where a negative location shift was needed, followed by a large

positive step over 2000–2008.

7.8 Chapter 7 key points

(A) There have been huge changes in the �nancial system over the last 150 years.

(B) This necessitates creating a spliced time series to measure money, where the

broad component M4 is used here.

(C) Updating the earlier model in Hendry and Ericsson (1991) for data revisions

delivered similar results to theirs.

(D) The empirical models reasonably matched a theory of money demand with

nominal short-run adjustment within bands and real long-run reactions shifting

those bands in line with in�ation and real income growth.

(E) The cointegrating relation was almost unchanged when extending the sample

period from 1976 to 2011.

(F) Re-estimating the dynamic money demand model over the longer sample re-

vealed recognizably similar coe�cients to the initial equation.

(G) However, step-indicator saturation was needed to capture several important

location shifts since 1970.
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7.9 Task 25: ‘Inverting’ money-demand equations to explain in-
�ation

As noted in Section 7.1, Friedman and Schwartz (1982) solve equations with real

money to express prices as the dependent variable, with nominal money treated as

‘exogenous’. Because (7.8) has a dependent variable ∆(m − p)t , it can be expressed

either with ∆mt or ∆pt on the left-hand side with the other component carried

to the right-hand side. As ∆pt is already a regressor, (7.8) is equivariant under

this change, other than the coe�cient of ∆pt changing. However, collecting ∆pt
terms on the left and moving ∆mt as an ‘exogenous’ variable to the right can alter

estimates radically, as the direction of conditioning matters considerably.

To conduct this Task, �rst formulate and estimate (7.7), mark all regres-

sors as fixed, and re-estimate, ticking Automatic model selection, using

Step-indicator saturation at a Tiny:0.001 Target size to obtain (7.8). Now

return to Formulate, and delete Dmp as the dependent variable, mark Dp as

Y:endogenous, and add Dm and Dm_1 as regressors, removing Dmp_1. (7.9)

shows the estimates of this in�ation model.

∆pt � 0.35
(0.08)

∆pt−1 + 0.79
(0.12)

∆mt + 0.09
(0.04)

∆rL,t−1 − 0.24
(0.13)

∆mt−1

+ 1.61
(0.44)

et−1 + 0.04
(0.01)

∆rn ,t + 0.11
(0.07)

∆2
�
m − p

�
t−2 − 0.04

(0.10)
∆1t

− 0.00
(0.01)

(D1 + D3) − 0.03
(0.02)

D4 − 0.08
(0.03)

D4∆rn ,t − 0.06
(0.01)

S1973

+ 0.06
(0.03)

S1979 − 0.01
(0.02)

S1981 + 0.04
(0.01)

S1999 − 0.04
(0.02)

S2008 + 0.008
(0.019)

R2

� 0.78 σ̂ � 2.82% Far(2, 115) � 1.04 Farch(1, 132) � 16.81∗∗

χ2

nd(2) � 20.44∗∗ Fhet(25, 108) � 2.15∗∗ Freset(2, 115) � 9.39∗∗ (7.9)

The estimates are radically altered, the �t is very much worse as judged by σ̂, and
most mis-speci�cation tests reject at 1% or more.

Figure 7.4 records the graphical statistics, which reveal the main problem is a

serious mis-�t around WWI and the early 1920s. Thus, delete the step indicators

from (7.9) making sure all regressors are fixed, and re-select again using SIS at

0.1% to obtain (7.10).

∆pt � 0.30
(0.06)

∆pt−1 + 0.25
(0.08)

∆mt + 0.09
(0.03)

∆rL,t−1 + 0.03
(0.09)

∆mt−1

+ 0.49
(0.26)

et−1 + 0.02
(0.01)

∆rn ,t + 0.00
(0.05)

∆2
�
m − p

�
t−2 + 0.02

(0.07)
∆1t

+ 0.00
(0.01)

(D1 + D3) + 0.01
(0.01)

D4 − 0.05
(0.02)

D4∆rn ,t − 0.08
(0.01)

S1914

+ 0.22
(0.02)

S1920 − 0.15
(0.02)

S1922 − 0.07
(0.01)

S1973 + 0.07
(0.01)

S1980 + 0.006
(0.007)

R2

� 0.89 σ̂ � 2.00% Far(2, 115) � 0.79 Farch(1, 132) � 6.09∗

χ2

nd(2) � 7.89∗ Fhet(25, 108) � 0.92 Freset(2, 115) � 0.31 (7.10)
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Figure 7.4
Graphical statistics for the money-demand model re-normalized on in�ation.

The mis-speci�cation tests are greatly improved, although two remain signi�cant

at 5%. However, apart from S1973, all the other selected steps di�er from (7.8), and

most regressors are now insigni�cant.

To eliminate the insigni�cant variables, undo the fixed status of all regres-

sors, choose Automatic model selection at 1%, setting Outlier and break

detection to None, as we have already found the step indicators. The outcome

should be (7.11).

∆pt � 0.31
(0.05)

∆pt−1 + 0.28
(0.04)

∆mt + 0.11
(0.02)

∆rL,t−1 − 0.08
(0.01)

S1914

+ 0.23
(0.02)

S1920 − 0.16
(0.02)

S1922 − 0.06
(0.01)

S1973 + 0.07
(0.01

S1980

(R∗)2 � 0.87 σ̂ � 2.06% Far(2, 124) � 0.89 Farch(1, 132) � 6.12∗

χ2

nd(2) � 7.05∗ Fhet(11, 122) � 2.31∗ Freset(2, 124) � 0.01 (7.11)

where (R∗)2 is the value when a constant is included. Very little remains of the

original money demand model, and three diagnostic tests remain signi�cant at

5%.

The next step is to test the invariance of the two representations. First, add

the remaining four step indicators S1979 , S1981 , S1999 , S2008 from (7.8) to (7.11)

and re-estimate. Click on the Test menu icon, and tick the box for Exclusion

Restrictions, OK, then highlight the four added step indicators, OK, and the test

outcome should be F(4, 122) � 1.36. Thus, the major unexplained shifts in money

did not a�ect in�ation, other than that for 1973 which appears in both models.

You should be able to carry out the converse test for excluding the step indi-

cators S1914, S1920, S1922, S1980 in (7.11) from (7.8) to obtain F(4, 113) � 0.53. Conse-
quently, ∆mt and ∆pt co-break other than in 1973. However, S1973 has a negative
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e�ect on ∆pt in (7.11) but was positive and of the same magnitude as the War

dummy in (7.8), suggesting it is ‘picking up’ di�erent e�ects in the two equations.

7.10 Task 26∗: Deriving the impact of error autocorrelation on
ESEs

Task 16 Section 4.16 simulated the impact on ESEs of error autocorrelation: here
we look at a simple case where it is feasible to analyse the outcome.

Consider the equation:

yt � βxt + ut (7.12)

when both

�
yt

	
and {xt} are stationary processes:

ut � ρut−1 + εt where εt ∼ IN
�
0, σ2ε

�
(7.13)

with |ρ < 1| and:
xt � λxt−1 + νt where νt ∼ IN

�
0, σ2ν

�
(7.14)

also with |λ < 1|, and E [εtνs] � 0 ∀t , s. Then letting E[u2

t ] � σ2u � σ2ε/
�
1 − ρ2

�
:

E [ut ut−k] � ρkσ2u (7.15)

and as E[x2

t ] � σ2x � σ2ν/
�
1 − λ2

�
:

E [xt xt−k] � λkσ2x (7.16)

When the error autocorrelation in (7.13) is ignored during estimation of β:

β̂ � β +

∑T
t�1 xt ut∑T

t�1 x2

t

because of the strong assumption that {xt} is independent of {ut} implied by

E [εtνs] � 0 ∀t , s, then β̂ is unbiased for β conditional on {xt}:

E
[
β̂

]
� β +

∑T
t�1 xtE [ut]∑T

t�1 x2

t

� β.

The variance of β̂ is:

E
[(
β̂ − β

)
2

]
� E


*
,

∑T
t�1 xt ut∑T

t�1 x2

t

+
-

2
� E



∑T
t�1

∑T
s�1 (xt xs ut us)

T2

�
T−1

∑T
t�1 x2

t

�
2


(7.17)
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Approximate the denominator in (7.17) by

�
Tσ2x

�
2

, and use the independence of

{xt} and {ut} so that:

E
[(
β̂ − β

)
2

]
≈

1

�
Tσ2x

�
2

T∑
t�1

T∑
s�1

(E [xt xs]E [ut us])

�
σ2xσ

2

u�
Tσ2x

�
2

*
,
T + 2T

T∑
k�1

λkρk+
-

�
σ2u

Tσ2x
*
,
1 + 2λρ

T−1∑
k�0

λkρk+
-

≈
σ2u

Tσ2x
*
,
1 +

2λρ�
1 − λρ

� +
-

�
σ2u

�
1 + λρ

�

T
�
1 − λρ

�
σ2x

(7.18)

The estimated standard error (ESE) of β̂ is is the square root of its convention-
ally calculated variance given by:

Var
[
β̂

]
�

σ2u∑T
t�1 x2

t

≈
σ2u

Tσ2x
(7.19)

which under-estimates E[(β̂ − β)2] in (7.18) by

�
1 + λρ

�
/

�
1 − λρ

�
. For example, if

λ � ρ � 0.9, that is more than 9-fold, so the t-ratios are in�ated 3-fold! However,

the bias in (7.19) for (7.18) vanishes if either λ or ρ is zero.

All three results match the Monte Carlo in Task 16 Section 4.16, where the ratio

of the simulation MCSD to the average ESE, was three, and the ratio was unity if

either λ or ρ was zero.

7.11 Task 27: Using lags to eliminate residual autocorrelation

Set the Category to Models for time-series data, and the Model class to

Single-equation Dynamic Modelling using PcGive.

Click on Formulate, set lags to 0 and select m, then OK, OK, OK, to estimate mt
regressed on a constant. Click on the Test Menu icon (second last on the right on

the Icon line, or Alt+T), and tick the Graphic Analysis... box, then OK for the

Graphic Analysis dialog. Untick the two boxes for Actual and fitted values

and Residuals (scaled) and tick the box for Residual autocorrelations

(ACF). The residual correlogram is everywhere high and positive, declining

slowly (the actual successive correlations are very close to unity even for 12 years

previously), as seen in Figure 7.5 panel a. Copy the correlogram to a new data

plot. Repeat, but with lags set to 1, then 2, and �nally 4. When mt is regressed on

mt−1 and a constant as in panel b, the residual autocorrelations soon change sign

and become small. Extending the model to mt being regressed on mt−1 , . . . ,mt−4
and a constant, the residual autocorrelations are all small as seen in panel d, and
are not signi�cantly di�erent from zero, even though mt trends strongly and is

obviously non-stationary.
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0 5 10

0.25

0.50

0.75

1.00
mt on a constant

a

0 5 10

-0.5

0.0

0.5

1.0
mt on mt−1 and a constant

b

0 5 10

-0.5

0.0

0.5

1.0
mt on mt−1 , mt−2 and a constant

c

0 5 10

-0.5

0.0

0.5

1.0
mt on mt−1 ,...,mt−4 and a constant

d

Figure 7.5
Nominal money residual correlograms

It is intuitively clear why additional lags can reduce residual autocorrelations.

For example, substituting (4.53) into (4.54) delivers:

yt � βxt + ρyt−1 − βρxt−1 + εt (7.20)

so adding both lagged variables induces the independent error εt .

7.12 Task 28∗: Sequential factorization

However, there is a more fundamental result underlying outcomes like Figure 7.5,

called sequential factorization. This generalizes a well-known result about the

probability P(A, B) of two events, A and B, say, which can be written as:

P(A, B) � P(A | B)P(B) (7.21)

where P(A|B) is the probability of A happening given that B has occurred, times

the probability of B happening. In (7.21), P(A|B) is the conditional probability, and
B is the marginal probability. So in the UK, for example, the probability of being

rich and young is the probability of being rich when young, times the probability

of being young, and the names derive from tables of distributions of income by

age, where the margins of the table recorded the distributions of income and of

age, and the rows in the table showed the incomes at any given age.

The result in (7.21) can be extended to a series of probabilities:

P(A, B, C) � P(A | B, C)P(B |C)P(C) (7.22)

where C might denote being female.

When {yt} is a stationary process over a long history, t � . . .− 2,−1, 0, 1, 2, . . .,
then (y1 , y2 , . . . , yT−1 , yT) can be interpreted as a single observation on that pro-

cess, with a common mean, E[yt] � µ, variance Var[yt] � σ2y , and autcorrelations
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E[yt yt−k] � ρk , with |ρk | < 1. Consider ‘explaining’ yt by its conditional expecta-

tion given its history, (yt−1 , yt−2 , yt−3 , . . .):
yt � E[yt | yt−1 , yt−2 , yt−3 , . . .] + εt (7.23)

Taking expectations on both sides conditional on (yt−1 , yt−2 , . . .):
E[yt | yt−1 , yt−2 , . . .] � E[yt | yt−1 , yt−2 , . . .] + E[εt | yt−1 , yt−2 , . . .] (7.24)

so that E[εt |yt−1 , yt−2 , . . .] � 0. Thus, {εt} cannot be explained by the past any

better than its mean of zero, and as εt � yt − E[yt | yt−1 , yt−2 , . . .] from (7.23), it is

not autocorrelated: E[εt |εt−1 , εt−2 , . . .] � 0, so we have created a ‘random’ error.1

This process can be applied at every t, so we can write the joint distribution,

Dy(·) of (y1 , y2 , . . . , yT−1 , yT) in reverse time order as:

Dy
�
yT , yT−1 , . . . , y2 , y1 , y0

�
� Dy

�
yT | yT−1 , . . . , y2 , y1 , y0

�
×

Dy
�
yT−1 , . . . , y2 , y1 , y0

�

� Dy
�
yT | yT−1 , . . . , y2 , y1 , y0

�
×

Dy
�
yT−1 | yT−2 , . . . , y2 , y1 , y0

�
×

Dy
�
yT−2 , . . . , y2 , y1 , y0

�

�
...

�

T∏
t�1

Dy
�
yt | yt−1 , . . . , y2 , y1 , y0

�
(7.25)

where

∏T
t�1 denotes the product of the conditional distributions. Now we can

apply (7.23) to each of these conditional distributions Dy(yt |yt−1 , . . . , y2 , y1 , y0),
which havemeans E[yt |yt−1 , yt−2 , . . .], the deviations fromwhich are the not auto-

correlated errors {εt}. Such a result holds irrespective of the extent of the original

autocorrelations E[yt yt−k] � ρk between the yt .

7.13 Chapter 7 exercises

1. Repeat Task 27 Section 7.11 for (m − p)t over a sample ending in 2011 for re-

gressions on a constant and 0, 1, 2, and 4 lags, collecting the four residual cor-

relogram plots. Compare the outcomes with those shown in Figure 7.5 for mt .

2. Next, repeat i) with all regressorsmarked as �xed over the same sample ending

in 2011, but select by SIS at 0.1%. Paste each residual correlogram onto that in

i) to compare the impact of SIS on residual autocorrelation (see Figure 7.6).

3. What, if anything, can be deduced about the impact of location shifts on resid-

ual autocorrelation ?

4. Calculate the correlograms for ‘Dmp’ (∆(m − p)t) and ‘DDmp’ (namely ∆2(m −
p)t) and compare them to those from the regressions of (m − p)t on (m − p)t−1
and a constant, and (m−p)t on (m−p)t−1, (m−p)t−2 and a constant respectively.

Explain any similarities and any large di�erences.

5. Finally, calculate the residual correlograms from separate regressions for∆(m−
p)t on a constant marked as �xed with IIS and SIS and discuss the results.

1 Technically, {εt} is called a martingale di�erence sequence, and such processes are important in

�nance.
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Figure 7.6
Real money residual correlograms without SIS (dark) and with (light)
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Modelling UK prices

Chapter 8 guide posts

1. There are many potential theory-relevant domestic and foreign determinants

of in�ation: Section 8.1.

2. A previous empirical analysis starting from a GUM that included all theory-

suggested variables and their dynamics found most such variables were rele-

vant yet the model still had many large shifts: Section 8.2.

3. To update and extend that equation to 2011 requires modeling all the excess

demand in�uences on in�ation, and investigating their importance: Section

8.3.

4. Location shifts are reasonably captured by impulse and step indicators: Section

8.4.

5. The price in�ation model has two equilibrium corrections, one from the ex-

cess demand for goods and services, and the other from the price markup over

home and imported costs and despite the emphasis in some theories of the role

of unemployment in the price in�ation process little evidence of its importance

is found: Section 8.5.

6. Also, expectations of future in�ation are not found to matter greatly: Section

8.6.

7. Overall, viable empirical models of price in�ation can be developed despite its

turbulent history.

8.1 Price in�ation determinants

We have noted many major di�erences between life in 1860 and that over the en-

suing 150 years, and the �nal one concerns in�ation. During a working life from

1860 to 1900, as Figure 2.1 showed, the price level would have risen by less than

10%, andmost of that rise occurred in 1900 itself (probably fromdemand pressures

during the Boer War). During the equivalent 1960–2000, the price level rose more

than 1300%. To complete the explanation of the nominal level in the UK economy,

we need to model prices.
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We addressed the theory that in�ation is primarily amonetary phenomenon in

Chapter 7 by modelling UK money demand using the broad money measure M4,

and showing that ‘inverting’ the status of money and prices to explain in�ation led

to a poor model. In a modern economy, price in�ation seems to be the resultant

of all the excess demands in the economy, from money, cost push, especially from

wages, demand pull, devaluation, and pro�igate governments. No single factor

seems an adequate explanation, so as with modelling wages, we will include them

all. This necessitates measures for:

(a) excess demands for goods and services;

(b) excess money holding;

(c) excess demands for factors of production;

(d) major changes to exchange rates and the prices of imports;

(e) excess government demands (unfunded de�cits);

(f) special factors such as wars, commodity prices bubbles, and wage or price

controls.

We will measure these respectively by:

(a) the deviation of output from capacity (the ‘gap’);

(b) excess money supply (modelled in Chapter 7);

(c) nominal wage in�ation, unemployment, and the markup of prices over costs;

(d) purchasing power parity deviations and imported in�ation;

(e) national debt, and long- and short-run interest rates;

(f) indicator variables, commodity prices, and lagged rates of change.

8.2 An earlier price in�ation model

The price in�ation model in (8.1) is taken from Hendry (2001), and was selected

before IIS was available: the indicators used are discussed in section 8.2.1.

∆pt � 0.18
(0.03)

1d
t−1 − 0.19

(0.02)
π∗t−1 − 0.83

(0.09)
(RS − RL + .0065)t−1

+ 0.62
(0.11)

∆RS,t−1 + 0.19
(0.03)

∆mt−1 + 0.27
(0.03)

∆pw ,t

+ 0.27
(0.03)

∆pt−1 + 0.04
(0.01)

∆po ,t−1 + 0.04
(0.002)

Id ,t (8.1)

R2

� 0.975 σ̂ � 1.4% T � 1875 − 1991

In (8.1), 1d
t denotes the excess demand for goods and services calculated as the

deviation of 1t from the estimated production function approximating Figure 1.9,

with changing rates of technical progress. π∗ denotes the markup of prices over

ulc∗, nominal unit labour costs adjusted for hours, computed as:

π∗t �
�
pt − 0.675ulc∗t − 0.25p£,t − 0.075po ,t

�
+ 0.11I2,t + 0.25. (8.2)
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where p£,t � pw ,t − et denotes world prices in sterling, ∆pw ,t , ∆po ,t are world price

and oil price in�ation, and I2,t is an indicator equal to unity after WWII. Finally,

Id ,t is a composite indicator which we will now discuss.

8.2.1 Impulse indicators for price in�ation
Prior to the invention of IIS, impulse indicators were based on institutional knowl-

edge of turbulent periods and outliers (de�ned as greater than 3σ̂ here), which are

observations that remain discrepant even after all the explanatory variables are

included. Indicator variables were needed for huge, large, and medium outliers,

roughly 12%, 6% and 4% respectively, making 22 in total as noted in the Appendix,

then were combined into an overall index, Id , with weights of 3, 1.5, and unity:

Id ,t � 3Ib ,t + 1.5IL,t + Im ,t (8.3)

Such a plethora of indicators reveals that the largest shifts in UK price in�ation are

not explained by any variables suggested from thewide range of economic theories

discussed above—and the model still needed I2,t . Although indicators will re�ect

large measurement errors as well as shifts, only 1880–1881 does not correspond to

an important historical event, so may re�ect measurement errors.

∆p 
fit 

1875 1900 1925 1950 1975 2000

-0.1

0.0

0.1

0.2 ∆p 
fit 

residuals 

1875 1900 1925 1950 1975 2000

-2

-1

0

1

2
residuals 

0 5 10

-0.5

0.0

0.5

1.0 Correlogram
N(0,1) 

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4
Density

N(0,1) 

Figure 8.1
Price in�ation model (8.1) graphics

Figure 8.1 records the usual graphical statistics. The close �t, with homoskedas-

tic, serially uncorrelated, near normal residuals, is due in no small way to themany

indicators used. Dropping Id ,t from (8.1) increases the residual standard deviation

markedly to σ̂ � 0.029.
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8.3 Updating and extending the price in�ation model

Given the 20 new observations, and the advances in econometric technology since

(8.1) was modelled, we will now develop an extended version. That requires se-

lecting ‘auxiliary’ models for the price in�ation determinants (a)–(f) in section 8.1

as follows.

8.3.1 (a): deviation of output from capacity
The ‘production function’ for (1 − l)t discussed in section 1.7 was modelled as fol-

lows. The GUM was speci�ed as a generalization of (1.6) with four lags of (1 − l)t
and (k−wpop)t , where the log-ratio of capital to the working population was used

to avoid sudden shifts due to changes in unemployment. Those regressors, con-

stant and trend were �xed, and SIS implemented for 1862–1944 at 0.1%. Then the

lags were unrestricted, with selection at 1%, which ensured the ‘static’ production

function was retained. The same procedure was then used for the period 1945–

2004.

The resulting equations were similar to those in section 3.1 of Hendry (2001).

�
1 − l

�
t � 0.705

(0.068)
�
1 − l

�
t−1 + 0.083

(0.055)
�
k − wpop

�
t + 0.651

(0.27)

+ 0.002
(0.0009)

t − 0.116
(0.015)

S1918 − 0.092
(0.015)

S1920

R2

� 0.992 σ̂ � 1.89% Far(2, 75) � 1.44 Farch(1, 81) � 0.79

χ2

nd(2) � 2.93 Fhet(8, 74) � 0.52 Freset(2, 75) � 3.18∗ (8.4)

leading to the long-run solution (without step indicators), where tur � −4.34∗:

e1l1,t �
�
1 − l

�
t − 2.21 − 0.0068t − 0.28

�
k − wpop

�
t (8.5)

For 1945–2004, the static production function with location shifts yielded:

�
1 − l

�
t � 1.69

(0.31)
+ 0.39

(0.049)
�
k − wpop

�
t + 0.015

(0.0013)
t + 0.035

(0.01)
S1946

+ 0.044
(0.008)

S1973 + 0.028
(0.008)

S1978 + 0.042
(0.007)

S1989 + 0.016
(0.007)

S1995

R2

� 0.999 σ̂ � 1.23% Far(2, 50) � 5.01∗ Farch(1, 58) � 0.32

χ2

nd(2) � 0.42 Fhet(9, 50) � 1.24 Freset(2, 50) � 1.06 (8.6)

leading to (including but not reporting the step indicators):

e1l2,t �
�
1 − l

�
t − 1.69 − 0.015t − 0.39

�
k − wpop

�
t (8.7)

This was then extended to 2011. Capacity (denoted capt) was calculated by com-

bining the right-hand sides of (8.5) and (8.7), so the measure of excess demand for

goods and services, 1d
t , is e1l1,t , e1l2,t combined.

Figure 8.2 panel a, shows the plot of capt with

�
1 − l

�
t and panel b the resulting

excess demand (or supply), 1d
t . The depressions at the start of period, the inter-war

epoch and the ‘Great Recession’ from 2008 are very visible, as are the peaks of the

BoerWar, WWI andWWII, together with the so-called ‘stop-go’ economic policies

of the post-war till the mid 1970s.
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Figure 8.2
Capacity, excess demand for goods and services, velocity and interest rates, and excess de-

mand for money

8.3.2 (b) excess demand for money
The excess demand formoneywas computed as md � ũ from (7.6). Figure 8.2 panel

c shows the graph of inverse velocity (i.e., (m − p − 1)t) and the negative of Rn ,t
(matched as −7.4Rn ,t), and panel d records md

t . The increase in md
t starting from

the trough in the mid 1980s has been very large. As discussed in Chapter 7, both

Ericsson, Hendry, and Prestwich (1998) and later Escribano (2004) showed that

the earlier dynamic model of UK money demand in Hendry and Ericsson (1991)

remained constant for their extended samples, updated to 2011 above, although

the latest period required additional step indicators.

8.3.3 (c) unit labour costs and the markup
Unit labour costs ct � (w + l − 1)t were introduced in Section 2.6.2, and formed

a key component of the markup π∗t adjusted for hours in (8.2), which was highly

signi�cant in (8.1). Here we use essentially the same formulation:

πt � pt − 0.675 (ct + 0.005t) − 0.25p£,t − 0.075po ,t + 0.05I2,t − 1.55. (8.8)

where p£,t � pw ,t−et as before, the implicit adjustment for changes in hours is 0.5%

p.a. and the remaining coe�cients are as in (8.2): the constant re�ects revisions and

changes in base years, and I2,t has a smaller e�ect.

Figure 8.3 panel a, plots πt . The sharp drop in the markup since 2000 is con-

sistent with competition from China, and the lower rate of in�ation the UK has

experienced this Century compared to last, closer to 19th Century experiences.
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Figure 8.3
Markup, UK prices, world prices in Sterling, and in�ation rates, ∆pt and ∆pw ,t

8.3.4 (d) world price in�ation and PPP deviations
Figure 2.8 presented graphs for the £ sterling exchange rate index, et , the logs of

the UK price level, pt , and world prices, pw ,t (middle panel), and the purchasing

power parity given by pppt � et + pt − pw ,t .

Here, Figure 8.3 records the comparative levels of UK and world prices in Ster-

ling (panel b), and the in�ation rates, ∆pt and ∆pw ,t (panel c). Expressed in a com-

mon currency, pt and p£,t behave quite similarly, although in their own currencies,

UK andworld price in�ation exhibit many substantial departures. However, ∆pw ,t
helps explain ∆pt below.

8.3.5 (e) interest rates and National Debt
Figure 2.9 showed the UK’s long-term and short-term interest rates, RL and RS,

and their spread, RL −RS. However, the role of National Debt is surprisingly hard

to ascertain econometrically. Figure 8.4 records four transformations of potential

relevance: (N/PG)t (panel a), ∆nt (b), ∆(n − p)t (c) and ∆(n − p − 1)t (d).

The ratio of National Debt to nominal National Income (N/PG)t in panel a is

shown from1820, and is back to levels around themiddle of the 19thCenturywhen

Debt accumulated during the Napoleonic Wars was being repaid. Nevertheless,

(N/PG)t remains well below its peak values, which were eliminated quite quickly

during the 1950s as nominal GDP grew relatively rapidly.1 Indeed, (N/PG)t is

below its historical average, although at much higher levels, the UK was able to

�nance the Industrial Revolution (see Allen, 2009), and build a large empire. The

growth of nominal National Debt ∆nt is primarily associated with War Finance:

1 For a discussion of Net (as against Gross here) National Debt up to the late 1970s, see Hendry,

1980.
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Figure 8.4
UK National Debt

impulses at the Boer War, WWI, and WWII are manifest in the period before Gov-

ernments attempted to stabilize the economy. Thereafter, the next three fast, and

relatively similar, increases are during the 1974–1978 oil Crisis, then the 1990–1995

recession under John Major, and the Great Recession from 2007. Given the dra-

matic fall in GDP, the last increase is actually surprisingly small. In constant prices,

the last two rises are similarly fast, and comparable to WWII. Relative to GDP, the

most recent rise is the fastest, partly because GDP fell considerably, but no role was

found for National Debt in explaining UK in�ation.

8.3.6 (f) commodity prices and special events
Figure 8.5 panels a and b show the log level and changes in an index of nominal

raw material prices (including fuel).

Nominal price changes have been large, with WWI, the post-war crash, the

Great Depression, WWII, the two Oil Crises, the rise of China during the �rst

decade of the 21st Century, and the Great Recession all too visible, albeit not the

only times of large shifts. Figure 8.5 panels c and d show the levels of nominal

and real commodity prices measured in £: the former has risen much more than

$ prices because of the relative fall in the value of the £, whereas the latter has not

really trended since the end of the 19th Century, with a marked recent recovery,

probably due to China’s large demands to sustain its rapid growth.

A price index for commodities raises an interesting econometric issue, namely

the meaning of a constant relationship. By construction:

po ,t �

n∑
i�1

wi ,t pi ,t
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Figure 8.5
Commodity prices

where the

�
pi ,t

	
are the prices of individual commodities, including many di�er-

ent metals, �bres, foods, and fuels. The

�
wi ,t

	
are their weights in the index, often

based on value shares, sometimes on trade weights. In 1860, at the start of our

period, various commodities were very important, such as coal and whale oil in

fuels, whereas others like petroleum and natural gas, were not yet so important. By

2011, the weights of most will have changed substantively. The impact of a change

in the price of any commodity on overall in�ation will have altered with its im-

portance in production and consumption, so it seems unlikely that any individual

pi ,t would have a constant relation to pt over 150 years. However, that does not by

itself preclude a constant relationship between po ,t and pt , where all the change

is ‘hidden’ in the shifting weights

�
wi ,t

	
. More general settings are discussed in

Hendry (1996).

8.3.7 Measurement errors
Economic data seek to accuratelymeasure the corresponding variables that arise in

theoretical reasoning. Thus, ∆pt here seeks to measure ‘UK in�ation’. In practice,

there are many concepts of in�ation andmeasures thereof, most being implicit de-

�ators of aggregates like GDP, and subject to the analysis in the previous section.

Over very long historical periods, measurement errors relative to the underlying

‘reality’ must be common, especially as the data were rarely recorded initially, and

have been reconstructed since from archival information. An example here is that

unemployment statistics only use Trades Unions membership information. Incor-

rect measurements can bias parameter estimates, induce autocorrelated errors in

dynamic models, and can lead to non-constancy in estimated equations.

Earlier chapters showed that the levels of most of the time series are I(1) with

location shifts, so have very large and non-constant data second moments. Thus,

even if the data were incorrectly measured by I(1) measurement errors, changes
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in both data and measurement errors will be I(0), but the data will remain per-

turbed by breaks, so the ‘signal-noise’ ratio will remain high. Of course, changes

to the measurement system and its accuracy induce a further non-stationarity for

the econometrician to handle. Revisions add further to the practical problems that

must be addressed (Hendry, 1995a, ch.14, discusses the impacts of revisions on

post-war quarterly in�ation time series). Nevertheless, as noted above, analyses of

other long historical time series have yielded insights into money demand, and es-

tablished constant-parameter relationships. Thus, the available empirical evidence

merits modelling even if there are caveats about measurement accuracy.

8.4 The updated and extended in�ation model

Over the same sample period 1875–1991 as (8.1), that equation could be closely

replicated on the revised and extended data as follows, using πt−1 rather than π∗t−1
as noted.

∆pt � 0.19
(0.04)

1d
t−1− 0.24

(0.04)
πt−1− 0.74

(0.09)
(RS − RL + .0065)t−1+ 0.19

(0.03)
∆mt−1

+0.59
(0.12)

∆RS,t−1+ 0.28
(0.03)

∆pw ,t+ 0.27
(0.03)

∆pt−1+ 0.03
(0.01)

∆po ,t−1+ 0.04
(0.002)

Id ,t

(R∗)2 � 0.962 σ̂ � 1.30% SC − 8.43 Far(2, 106) � 0.39

V � 0.14 J � 1.57 Farch(1, 115) � 0.51

χ2(2) � 0.14 Freset(2, 106) � 2.0 Fhet(18, 98) � 2.3∗∗ (8.9)

The test for non-linearity in Castle and Hendry (2010) yielded Fnl(27, 81) � 1.72∗.
Despite the similarities in the estimated coe�cients, the heteroskedasticity and

non-linearity tests reveal that the data revisions and di�erent measures of the con-

structed excess demand and markup have somewhat altered the relationship.

Thus, retaining all of its variables, (8.9) was selected over the sample 1875–

1999 using SIS at 0.5% (a technique that was not available when the earlier model

was selected), leading to the retention of 7 step indicators, for 1936 (−1.7%), 1949

(3.8%), 1950 (−7.0%), 1951 (3.8%), 1973 (−3.3%), 1975 (3.0%), and 1993 (2.0%), only

the last lying outside the earlier sample: these are denoted {Si ,t} below. Finally,

the equation was estimated to 1999, so the data for the 21st Century could be used

as a parameter constancy ‘forecast test’ over 2000–2011.

∆pt � 0.12
(0.03)

1d
t−1 − 0.13

(0.04)
πt−1 − 0.54

(0.10)
(RS − RL + .0065)t−1

+ 0.14
(0.03)

∆mt−1 + 0.47
(0.11)

∆RS,t−1 + 0.25
(0.03)

∆pw ,t

+ 0.29
(0.03)

∆pt−1 + 0.03
(0.01)

∆po ,t−1 + 0.04
(0.002)

Id ,t + {Si ,t} (8.10)

(R∗)2 � 0.968 σ̂ � 1.1% SC − 8.49 Far(2, 107) � 0.09

χ2(2) � 3.6 Farch(1, 123) � 0.85 Freset(2, 107) � 4.0∗

Fhet(23, 99) � 1.42 Fnl(27, 82) � 1.38 Fchow(12, 109) � 0.97

The improved �t is mainly due to detecting the earlier step shifts using SIS (al-

though the three for 1949, 1950 and 1951 essentially combine to impulses), and



i
i

“UGQE2book15” — 2015/4/15 — 10:47 — page 148 — #160 i
i

i
i

i
i

148 Chapter 8

the earlier heteroskedasticity and non-linear test rejections have been removed (a

constant is insigni�cant if added).

The outcome in (8.10) is consistent with a more benign in�ation environment

since the previous study ended, where 22 large or very large impulses had needed

indicators. In late 1992, theUK left the EuropeanExchangeRateMechanism (ERM)

on what is often called Black Wednesday, but transpired to be the start of one of

the longest and fastest periods of economic growth till 2008 when the world-wide

Financial Crisis and Great Recession hit. The step indicator up to 1993 of 2.0% is

consistent with a much lower in�ation rate thereafter: the Bank of England was

granted independence in 1998 to follow an in�ation target of around 2.5%, and

there was considerable downward pressure on prices from the rapid growth of

China’s economy and its competitive exports. Even with these important changes,

the estimated model in (8.1) has not shifted substantively over the 20 years since it

was �rst developed. Although quite a few of the �nal ‘forecasts’ are over-estimates,

so in�ation has been somewhat lower thanmight otherwise have been anticipated,

the Chow test value is less than unity, so the �t is better to this last period than on

average over the sample with indicators. All but the last forecast lie well within

the 95% intervals shown as error bands.

∆pt ∆ p̂t ∆~pt 
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-0.1

0.0
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0.2
{Si ,t}

a
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Figure 8.6
Price in�ation model (8.10) graphical statistics

Figure 8.6 records the graphical statistics, which are consistent with the more

formal tests above.

8.5 Interpreting the in�ation model

To put the impact of the step indicators in context, panel a shows their combined

e�ect in {Si ,t} as a dashed line: as can be seen, despite �nding seven signi�cant

at 0.5%, the step indicators account for little of the explanation, mainly a slightly
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higher average in�ation rate over the post-war period till 1993. In contrast, the 22

impulse indicators in Id ,t represented very large jumps and drops, from 12% for

the largest to 4% for the smallest, all at what would otherwise be outlier residuals.

Their role is not only to adjust for aspects of ∆pt that are not explained by the

regressors, but also correct for shifts in the regressors that do not match those of

the dependent variable, although here the former role seems dominant.

Most theories of in�ation transpire to be part of the overall explanation in

(8.1) and (8.10). The signi�cant proximate determinants include the excess de-

mand for goods and services (1d
t−1, representing (a) above), nominalmoney growth

(∆mt−1, b), the markup of prices over costs (πt−1, c), world price in�ation (∆pw ,t ,

d), the long-short interest rate spread and short-term interest rate changes ((RS −

RL + 0.0065)t−1 and ∆RS,t−1, e), and commodity prices and special events (∆po ,t−1,

plus many step and impulse indicators, f). Indicators for many special events re-

main crucial despite all these theoretically-suggested variables. Several important

episodes are not explained, especially the high in�ation during the First World

War, followed by the collapse in 1920–22, the rapid in�ation in 1940 then low in�a-

tion for the rest ofWorldWar II (almost certainly re�ecting the success of rationing

and price controls), step shifts after that war, and the high in�ation during the

1970’s oil crises ‘stag�ation’, with only the departure from the ERM in the 30 years

since. Finally, in�ation is not highly inertial, as the lagged value has a coe�cient

of only 0.29, and although there are seven step indicators implicit in (8.10), there

were none in (8.1) where lagged in�ation had a similar coe�cient.

The price in�ation model in (8.10) has two equilibrium corrections, one from

the excess demand for goods and services, and the other from the price markup

over home and imported costs. The �rst will a�ect in�ation so long as 1d , 0

or rounding and setting ur � log(0.05) ≈ −3, until 1 ' 0.6l + 0.4k + 0.015t +

0.5, i.e., actual output equals potential (as determined by the production function

estimated above). Thismatches one of the variables that the Bank of England seems

to use in judging the state of the economy. The second can be written as:

−πt � 0.675
�(w − p + l − 1)t + 0.005t

�
+ 0.25

�
p£,t − pt

�
+ 0.075

�
po ,t − pt

�

− 0.05I2,t + 1.55 (8.11)

The results con�rm the discussion in the introduction to this chapter that no

‘single-cause’ explanation of price in�ation su�ces, with seven groups of forces all

mattering. However, the variables for ppp deviations, excessmoney, national debt,

and labour demand (unemployment and wages, other than through the markup)

were not found to matter. Thus, �at money has most certainly not been the only

direct cause of in�ation in the modern UK economy, even if commodity money

(usually gold) may have played that role in the 15th–18th centuries after the im-

ports thereof plundered from South America.

8.6 Models with expectations

The New-Keynesian Phillips curve (NKPC) includes expected future in�ation as a

‘feed-forward’ variable to explain current in�ation, often written as:

∆pt � γ1
≥0

Et
�
∆pt+1 | It

�
+ γ2
≥0

∆pt−1 + γ3
≥0

st + ut (8.12)
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where Et
�
∆pt+1 |It

�
denotes today’s expected in�ation one-period ahead given It ,

the information available today, st denotes �rms’ real marginal costs and the antic-

ipated signs of the coe�cients are shown: see Galí andGertler (1999), Galí, Gertler,

and Lopez-Salido (2001) and Castle, Doornik, Hendry, and Nymoen (2014).

To make (8.12) operational, Et[∆pt+1 |It] is replaced by the actual outcome plus

an error νt+1:

Et
�
∆pt+1 | It

�
� ∆pt+1 + νt+1 (8.13)

where by taking expectations on both sides of (8.13):

Et
�
∆pt+1 |It

�
� Et

�
∆pt+1 |It

�
+ Et[νt+1 | It] (8.14)

so Et[νt+1 | It] � 0, and hence νt+1 must be unpredictable from available informa-

tion. Then, substituting (8.13) into (8.12):

∆pt � β1∆pt+1 + β2∆pt−1 + β3st + εt (8.15)

where εt ∼ D[0, σ2ε]. Since νt+1 in (8.13) is not independent of ∆pt+1, neither is εt in

(8.15), so estimation requires a set of ‘exogenous’ variables zt as instruments (see

Sections 4.8.3 and 6.5).

In the absence of good data on real marginal costs (see Section 1.8), we use real

unit labour costs, or thewage share, (w−p−1+l)t for st , treated as endogenous. The

estimates of (8.15) using as additional instruments (w−p−1+ l)t−1, (w−p−1+ l)t−2,

∆(1 − l)t−1, ∆(1 − l)t−2, RL,t−1, and RL,t−2, based on Chapter 6, were:

∆pt � 0.65
(0.09)

∆̂pt+1 + 0.023
(0.06)

G(w − p − 1 + l)t + 0.50
(0.08)

∆pt−1

− 0.11
(0.07)

∆pt−2 − 0.05
(0.11)

(8.16)

σ̂ � 2.89% Far(2, 141) � 1367.2∗∗ Farch(1, 146) � 1.78

χ2

nd(2) � 70.54∗∗ χ2

Sar(4) � 8.95 Fhet(8, 139) � 5.34∗∗

All the anticipated signs are found, although the coe�cients of the in�ation vari-

ables add to more than unity with (w − p − 1 + l)t insigni�cant, and both the

normality and heteroskedasticity tests strongly reject, probably from unmodelled

location shifts. The one new statistic reported, χ2

Sar(k) is a test of the validity of

the instruments (see Sargan, 1964). Overall, such estimates are similar to those

reported for more recent quarterly data and other countries.

To check for location shifts, SIS was applied at 0.5%, retaining all the regressors

in (8.16), and found 18 signi�cant step indicators, denoted {Si ,t}, leading to:

∆pt � − 0.034
(0.06)

∆̂pt+1 + 0.37
(0.09)

G(w − p − 1 + l)t + 0.28
(0.05)

∆pt−1

− 0.10
(0.05)

∆pt−2 − 0.68
(0.17)

+

�
Si ,t

	
(8.17)

σ̂ � 1.74% Far(2, 123) � 2.75 Farch(1, 146) � 2.72

χ2

nd(2) � 6.81∗ χ2

Sar(18) � 33.56∗ Fhet(24, 121) � 0.92

Now γ̂1 is negative and insigni�cant, (w − p − 1 + l)t is highly signi�cant, and

in�ation inertia has disappeared. Most of the mis-speci�cation tests are also in-

signi�cant. The rejection at 5% on χ2

Sar(18) is due to a step indicator at 1974 being
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omitted from the model but included in the instruments, and adding it back to the

model produces χ2

Sar(17) � 26.61. The remaining non-normality re�ects the strin-

gent signi�cance level of 0.5% used when selecting by SIS, and the omission from

(8.17) of the important regressors in (8.10) where σ̂ � 1.1%.

As Castle, Doornik, Hendry, and Nymoen (2014) found in their analysis of

NKPC models (based on IIS), the apparent signi�cance of ∆pt+1 in equations like

(8.16) is due to the future value acting as a proxy for the unmodelled shifts. It

would have taken remarkable prescience for anyone in 1914 to have anticipated

the dramatically higher in�ation of 1915, or even in 1916 anticipated a doubling

in 1917; and they would have had to anticipate price controls restraining in�ation

during the Second World War.

8.7 Chapter 8 key points

(A) Viable empirical models of price in�ation can also be developed.

(B) ∆pt depended on most theory-relevant domestic and foreign variables, yet the

model still had many large shifts.

(C) The empirical analyses started from GUMs with all the theory-suggested vari-

ables, their dynamics, shifts and trends.

(D) Location shifts were reasonably captured by impulse and step-indicators.

(E) The price in�ation model had two equilibrium corrections, one from the excess

demand for goods and services, and the other from the price markup over home

and imported costs.

(F) Despite its emphasis in some theories, there was little direct role for unemploy-

ment in the price in�ation process.

8.8 Task 29: Forecasting with an intercept correction

We �rst need to create an indicator with the value unity at and after the forecast

origin, but zero before, denoted 1{t≥T}, to act as the intercept correction (IC). Esti-

mating an equation with such an indicator will ensure a perfect �t at the forecast

origin, so deliver an IC coe�cient almost equal to the last in-sample residual.

Consider the simple equation:

yt � β0 + φ1{t≥T} + εt where εt ∼ IN [0, 1] (8.18)

First, when no indicator is included, the model is simply:

yt � β0 + νt (8.19)

so when φ , 0, estimating β0 leads to:

β̃0 � T−1
T∑

t�1

yt � β0 + T−1φ + T−1
T∑

t�1

εt � β0 + T−1φ + ε (8.20)

Letting ε̃t � yt − ỹt where ỹt � β̃0:

ε̃t �
(
β0 − β̃0

)
+ φ1{t≥T} + εt � εt − ε +

�
1{t≥T} − T−1

�
φ
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and hence the last residual is:

ε̃T � εT − ε +
�
1 − T−1

�
φ (8.21)

leading to a forecast error for yT+1 of ε̃T+1 � yT+1 − ỹT+1|T , so:

ε̃T+1 �
(
β0 − β̃0

)
+ φ + εT+1 � εT+1 − ε +

�
1 − T−1

�
φ (8.22)

When φ is large, substantial forecast errors can result.

However, let ∆ε̃T+1 � ε̃T+1 − ε̃T , then from (8.21) and (8.22), notice that:

∆ε̃T+1 � εT+1 − ε +
�
1 − T−1

�
φ −

�
εT − ε +

�
1 − T−1

�
φ

�
� ∆εT+1 (8.23)

so the shift has been eliminated. Thus, adding ε̃T , the last residual, to ỹT+1|T � β̃0
to create the corrected forecast:

ŷT+1|T � β̃0 + ε̃T (8.24)

leads to the forecast error ε̂T+1 � yT+1 − ŷT+1|T where:

ε̂T+1 � β0 + φ + εT+1 − β̃0 − ε̃T (8.25)

which from (8.21) and (8.22) cancels the shift as in (8.23) to deliver:

ε̂T+1 � εT+1 − εT � ∆εT+1 (8.26)

which is the di�erence of the error that would have been made using just β̃0. For
large magnitude φ, such di�erencing can substantively improve forecasts.

The �nal step is to notice that adding an impulse indicator 1{t�T} for the �nal

in-sample observation (the forecast origin) to the model in (8.19) leads to the last

in-sample residual being exactly zero (within the limits of a computer’s compu-

tational accuracy). The indicator 1{t�T} shortens the sample by one observation,

so the in-sample parameter estimates are slightly changed by adding it. However,

the coe�cient of the indicator is usually close to ε̃T , so implements the intercept

correction. That outcome is not a�ected by de�ning the indicator 1{t≥T}, which

carries the correction into future periods, as was done with the real-wage forecasts

in Figure 6.7.

To carry out this approach to the Task, �rst obtain the original forecasts for the

selected model in Task 23. Return to Model, Formulate, OK, OK, then set the estima-

tion sample to end in 2011, with 7 forecasts, OK. Next, Test, tick Forecast..., tick

h-step forecasts with h=1 to see the RMSE. Save or rename the forecast graph.

To implement the IC for forecasting over 2005–2011 from 2004, create a dummy

variables that is zero till 2003, then unity after:

IC2004 = dummy(2004,1,2011,1);

Next add IC2004 to the equation (Formulate, Lags=0, double click on IC2004), OK,

OK, OK, and repeat the forecast analysis. Finally compare the RMSEs and forecast

graphs for models with and without ICs.

To compare the residual-based approach to this Task, re-estimate the model

from Task 23, click on Test, tick Store Residuals etc. in Database, OK, tick

Residuals in the Store in Database dialog, and name the residuals (e.g.,

NoICResDmp). Look for the observation for 2004 in the last column of the database

that stores NoICResDmp, which is the �nal residual. This should be −.00416472
compared to the IC coe�cient of −0.00428626. Thus, the two forms of correction

are close in this case.
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8.9 Task 30: More on forecasting

Breaks, and especially location shifts are very di�cult to forecast. Indeed, even

after the occurrence of outliers and shifts for UK price in�ation, it was di�cult to

explain them using a wide range of economically-relevant variables and functions

thereof, signi�ed by the need for themany impulse, Id ,t , and step indicators, {Si ,t},
found. The WWI high in�ation and post-war crash are primarily accounted for by

indicators, and involved the major institutional change of the temporary introduc-

tion of wage indexation, so there is little hope of ‘forecasting’ that period even ex
post. However, the 1970’s high in�ation o�ers a possibility despite the many ‘wage

and price controls’ tried by successive governments.

First, the combined indicator, Id ,t , has to be revised to eliminate the impulses

for 1971 onwards. Then, for the model in (8.10), select the sample 1875–1982 with

12 ‘forecasts’, over 1971–1982. The RMSE� 0.044, so is more than three times as

large as σ̂ � 0.013, with a signi�cant non-constancy test FChow(12, 86) � 7.59∗∗,
with many large forecast errors, most of which are positive so the outcomes are

under-predicted. Figure 8.7 panels a and b show the forecasts, ∆p̂T+h+1|T+h , with

95% error bars and forecast errors respectively.

∆ p̂T+h+1|T+h ∆pT+h+1 

1970 1975 1980

0.05

0.10

0.15

0.20

0.25
a

∆ p̂T+h+1|T+h ∆pT+h+1 scaled residuals forecast errors 

1960 1965 1970 1975 1980

-2

0

2

4
b

scaled residuals forecast errors 

∆~pT+h+1|T+h ∆pT+h+1 

1970 1975 1980

0.05

0.10

0.15

0.20

0.25
c

∆~pT+h+1|T+h ∆pT+h+1 scaled residuals forecast errors 

1960 1965 1970 1975 1980

-2

0

2

4
d

scaled residuals forecast errors 

Figure 8.7
1970’s price in�ation ‘forecasts’ with and without intercept correction

Next, create an intercept correction indicator with zero till 1970 and unity from

1971–1982, as explained in Task 29 Section 8.8. Add it to the equation, moving one

period forward to estimate up to and including 1971, and forecast the remaining 11

years (1-step ahead each time, butwithout updating). The improvement ismarked:

RMSE� 0.016 as against σ̂ � 0.013, and FChow(11, 86) � 0.83, so now the model

forecasts better than it �ts over that turbulent period. Figure 8.7 illustrates the

results graphically in panels c and d. The forecast errors from∆p̃T+h+1|T+h aremuch

smaller, and not all are positive, with no outcomes outside the 95% error bars.



i
i

“UGQE2book15” — 2015/4/15 — 10:47 — page 154 — #166 i
i

i
i

i
i

154 Chapter 8

8.10 Task 31: Cointegration simulations

We begin with a short analysis of cointegration in a simple setting. Consider the

following model over t � 1, 2, . . . , T:

yt � µ0 + λxt + et with et ∼ IN[0, σ2e ]
zt � µ1 + xt + νt and νt ∼ IN[0, σ2ν] (8.27)

when:

xt � xt−1 + β + εt where εt ∼ IN[0, σ2ε] (8.28)

and x0 is a �xed number. Then xt can be expressed in terms of current and past

values of εs, x0, and β:

xt � xt−1 + β + εt � xt−2 + 2β + εt + εt−1 � · · · � x0 + βt +
t∑

s�1

εs

so {xt} is a random walk with drift β, which is also a stochastic trend at rate β.
Since yt and zt depend on xt , they are also both I(1).

Cointegration requires us to obtain a relationship between yt and zt that does

not depend on xt , which can be done by subtracting λ times zt from yt :

yt − λzt � µ0 + λxt + et − λµ1 − λxt − λνt

�
�
µ0 − λµ1

�
+ et − λνt

which only depends on I(0) errors and not on xt , so yt and zt are cointegrated.

It is possible to prove that such a relationship between yt and zt is unique by

considering any other value δ than λ so that:

yt − δzt � µ0λxt + et − δµ1 − δxt − δνt

�
�
µ0 − δµ1

�
+ (λ − δ) xt + et − δνt

which depends on {xt} when δ , λ.
Task 15 Section 4.15 explained the basics of Monte Carlo simulations. The ex-

periment here involves creating a DGPwith two I(1) cointegrated series, yt and zt ,

where zt has a large location shift, so requires the Advanced Experiment option.

Then we will simulate estimation and inference in an AD(1,1) model.

Select Model, and change the Category to Monte Carlo, and then the Model

class to the option Advanced Experiment using PcNaive

& Ox Professional. The experimental design is stored in PcNaive_CI1.ox, and

you will needOx Professional to run that �le (this is essentially the same �le for the

next experiment in Task 31: only the model di�ers). The DGP is:

yt � β1yt−1 + β2zt + β3zt−1 + εt where εt ∼ IN
�
0, σ2ε

�

zt � zt−1 + λ1{T1≤t≤T2} + et where et ∼ IN
�
0, σ2e

�
(8.29)

The selected DGP parameter values are β1 � 0.8, β2 � 0.5, β3 � −0.3, with σε �

σe � 1, T � 100, λ � 0.5, T1 � 50, T2 � 70, M � 10000 replications. The model is

the �rst equation in (8.29), which can be expressed as the EqCM:

∆yt � β2∆zt −
�
1 − β1

� �
yt−1 − κzt−1

�
+ εt
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where κ �
�
β2 + β3

�
/

�
1 − β1

�
(equal to unity for the values here), but that informa-

tion is not used in the simulations.

There is considerable graphical output during the simulations (shown in Figure

8.8 below), and at their termination, output will be stored in PcNaive_CI1.out. The

key aspects here are the results for rejection frequencies (shown in Table 8.1) and

moments of estimates (shown in Table 8.2). In the former, for example, t-Ya_1 in

the output denotes the t-test for the null hypothesis that the coe�cient β1 of yt−1 is

zero, and so on: thus, that is rejected 100% of the time at both 1% and (hence also)

5%. Similarly, H0 : β2 � 0 and H0 : β3 � 0 are rejected 99% and 41% at α � 0.01,
with the last rising to 65% at α � 0.05.

1% 5%

t-Ya_1 1.0000 1.0000

t-Yb 0.98710 0.99730

t-Yb_1 0.40560 0.65340

AR1 0.0095000 0.050800

DW 0.0021000 0.021300

Hetero 0.015700 0.053100

H_z(p<=0|n+1) 0.99990 1.0000

[ASE] 0.00099499 0.0021794

Table 8.1
Monte Carlo rejection frequencies

Next, AR1, DW, andHetero show the rejections on thosemis-speci�cation tests

(for �rst-order residual autocorrelation, the Durbin–Watson test, and for resid-

ual heteroskedasticity–the �rst and third being the tests used above), which are

roughly equal to the nominal signi�cance, except that DW is not appropriate in

AD(1,1) models so under-rejects (see Nerlove and Wallis, 1966). The second bot-

tom row shows the rejection of the null of no cointegration, which correctly does

so 100% of the time. The last row, [ASE], shows the value of

√
α × (1 − α)/M which

is the standard error under the null of estimating a probability of α from M trials.

mean MCSD
Ya_1 0.77262 0.060455

Yb 0.49824 0.10024

Yb_1 -0.27265 0.11450

ESE[Ya_1] 0.057000 0.0079860

ESE[Yb] 0.099197 0.010176

ESE[Yb_1] 0.11503 0.010649

sigmaˆ 2 0.99785 0.14384

Rˆ 2 0.95951 0.045363

Table 8.2
Monte Carlo moments of estimates

The means andMonte Carlo Standard Deviations (MCSDs) of the estimates are

shown in Table 8.2, as well as their Estimated Standard Errors (ESEs). The MCSD
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are calculated as shown in (4.52), so represent the actual variability in the coe�-

cient estimates generated by the simulation. In contrast, the mean ESEs, which

are the ‘standard errors’ reported below coe�cient estimates in empirical regres-

sions, are based on the square root of the right-hand side formula in (4.16), denoted

SE[β̂i] above. The derivation of (4.16) made many assumptions (including IN er-

rors, constant parameters, accurate data, etc.), and only when all of those assump-

tions are satis�ed will the ESE equal the corresponding MCSD, which happens

here (despite the data being I(1)). For example, the MCSD for Yb_1 is 0.1145 and

the corresponding ESE is 0.11503.

Here, the MCSDs are about 10% of the mean ESEs, so the �nding would be

reported as (e.g.) ESE[Yb_1]=0.1150±0.0002 for a 95% interval, so that is very ac-

curately determined.

Finally, sigmaˆ 2 and Rˆ 2 are the respective outcomes for σ̂2ε (where the DGP

value is unity) and R2
, where the very high value re�ects the data being I(1). Re-

turning to the mean estimated parameter values these are close to their respective

DGP values of β1 � 0.8, β2 � 0.5, β3 � −0.3, so least-squares estimation of the

AD(1,1) worked well even for this cointegrated setting.

Ya 
Yc 

Yb 
Yd 
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0

2

Std.Data, M=10000
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Figure 8.8
Cointegration simulations graphical output

The simulation graphs in Figure 8.8 report the output at the last replication, so

record the last draw of all the data series in the top-left plot, the histograms and

empirical density estimates in the remainder of the top row, then the densities of

the three ESEs (fromwhich theMCSDs just discussed are calculated), the densities

of sigmaˆ 2 and Rˆ 2, then the densities of the t-tests of the null that each βi is zero

(from which the rejection frequencies in Table 8.1 are calculated), and the last row

shows the densities of the test statistics, the �rst three under the null and the last

for cointegration under the alternative.
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8.11 Task 32: Understanding integration and cointegration

The �nal Task for this chapter returns to Section 2.6 to investigate why so many

economic time series are integrated. Imagine an economy with just consumption,

ct , and income, yt , where these two variables are connected by:

ct � β0 + β1yt + β2yt−1 + β3ct−1 + ε1,t where ε1,t ∼ IN
�
0, σ2

1

�
(8.30)

with

�
β3

�
< 1 and:

yt � λ0 + λ1ct−1 + λ2yt−1 + ε2,t with ε2,t ∼ IN
�
0, σ2

2

�
(8.31)

where |λ2 | < 1. These equations can be re-arranged into a more interpretable form

by subtracting their lagged values from the left-hand side variables to express them

as changes,∆ct and∆yt , then combining the remaining levels terms as ‘feedbacks’.

For example:

∆ct � β0 + β1yt + β2yt−1 +
�
β3 − 1

�
ct−1 + ε1,t

� β0 + β1∆yt +
�
β1 + β2

�
yt−1 +

�
β3 − 1

�
ct−1 + ε1,t

� β0 + β1∆yt +
�
1 − β3

� �
κyt−1 − ct−1

�
+ ε1,t

where κ �
�
β1 + β2

�
/

�
1 − β3

�
. When κ � 1:

∆ct � β1∆yt + γ(yt−1 − ct−1 − µ0) + ε1,t (8.32)

where yt−ct is saving, 1 >
�
1 − β3

�
� γ > 0 and µ0 � β0/

�
β3 − 1

�
. Thus, the change

in consumption responds by β1 to a change in income, and by γ to the previous

deviation of savings from µ0. Similarly:

∆yt � δ(yt−1 − θct−1 − µ1) + ε2,t (8.33)

where δ � λ2 − 1 < 0, θ � λ1/(1 − λ2) and µ1 � λ0/(1 − λ2). This derivation also

establishes that equilibrium-correction formulations are equally applicable to I(0)
processes.

In a non-stochastic equilibrium where all changed has ceased, denoting the

resulting outcomes by a superscript
∗
, so E[∆c∗t] � E[∆y∗t ] � 0, then (8.32) and (8.33)

respectively imply that y∗ � c∗ + µ0 and y∗ � θc∗ + µ1, which are two equations in

the two unknowns c∗ and y∗, with the unique solution that c∗ � (µ1 − µ0)/(1 − θ)
and y∗ � µ0 + (µ1 − µ0)/(1 − θ) when 1 > θ > 0. This economy converges on that

point, and so ct and yt are stationary.

Such an outcome no longer holds if θ � 1, imposing µ1 � µ0 for con-

sistency. When the two equations respond to just one equilibrium correction,

(yt−1 − ct−1 − µ0), the variables ct and yt are integrated of order 1, I(1), and coin-

tegrated. Thus, the economy now moves along an equilibrium trajectory with a

constant equilibrium savings rate, but changing levels of ct and yt . Thinking of

(yt−1 − ct−1 − µ0) as the decision-making variable, and ct and yt as the decisions,

then the general result is that data are integrated when there are fewer decision-

making variables thandecisions. If all economic variables are eventually connected

(like a water bed, where a push anywhere disturbs the bed everywhere), then all

economic variables are integrated, and the number of decision-making variables

like (yt−1− ct−1−µ0) in (8.32) determine the number of separate cointegrated rela-

tionships. This fundamental result is due to Clive Granger—see Robert Engle and

Granger (1987): Hendry (2004) reviews the history and o�ers further explanation.
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8.12 Chapter 8 exercises

1. Create and execute the following Monte Carlo study using the setup in-

structions in Task 15 Section 4.15, but selecting the Model class as Static

Experiment using PcNaive. The DGP is:

yt � β0 + β1z1,t + β2z2,t + εt where εt ∼ IN
�
0, σ2

�
(8.34)

where zi ,t ∼ IN[0, 1] and σ2 � 1. The aim is to compare the impact on the

distribution of β̂1 when omitting the regressor z2,t as against including it, once

when it is orthogonal, and oncewhen it is highly correlatedwith z1,t . Set β1 � 1

(the default) and β2 � 2, noting β0 � 0, using 1000 replications. Accept all the

other default options, but tick all the Monte Carlo Output boxes except AR(1)

test, DW, and all the Live Graphics options, choosing a plot frequency of 100.

Twomodels need to be formulated, one including and the other excluding z2,t ,
denoted ‘Zb’ in the PcNaive program. Excluding ‘Zb’ is the default so run that

experiment �rst, rename the output graph, then rerun with the Zb box ticked.

2. Check that the data generated in both experiments is identical, then change the

second set of estimated densities for β̂1, SE[β̂1], σ̂2 and tβ̂1 by light grey shading

inside the histograms, where the �rst (mis-speci�ed) set are denoted β̃1, SE[β̃1],
σ̃2 and tβ̃1 .

3. Paste these second set of density plots on the corresponding �rst set, only re-

taining those four plots.

4. Return to Formulate, change the Correlation between Za and Zb to 0.95

(denoted ρ below), exclude ‘Zb’ from the model again and rerun, renaming

the graph. Repeat with ‘Zb’ included, then follow the same procedures as iii).
The outcome, combined in one graph, should be like Figure 8.9.

5. Derive the expected value E[β̃1] in both cases. Can you derive the variance

Var[β̃1] in both cases?

6. If ρ � corr[z1,t , z2,t] remained constant over a forecast period, would the omis-

sion of z2,t matter in either case? Would your answer change if ρ shifted over

the forecast horizon?

Panels a–d in Figure 8.9 report outcomes for the orthogonal z2,t , and e–h are for
when corr[z1,t , z2,t] � 0.95. You should be able to discern advantages in both set-

tings from avoiding a serious mis-speci�cation. When corr[z1,t , z2,t] � 0, although

β̃1 is not biased for β1, its density is more spread out, the ESE and σ̃2 are much

larger, and the density of the t-test is shifted towards the origin.

When the omitted variable z2,t is highly correlated with the included, a very

di�erent picture emerges. Now β̃1 is badly biased for β1, but has a much smaller

ESE, as the high correlation between the regressors greatly increases the uncer-

tainty as to the true value of β1 when both regressors are correctly included. This

increased variance carries over to a smaller t-test distribution for β̂1 even though

σ̂2 is smaller than σ̃2.
To summarize, β̃1 is precise, but is actually estimating the wrong parameter,

namely β1 + ρβ2: that could matter greatly for economic policy, but for a constant

ρ, may have only a small impact on forecasts.
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Figure 8.9
Simulation graphical output for correctly and incorrectly speci�ed models
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Chapter 9
Conclusions

Huge changes have occurred over the past 150 years in technological and �nan-

cial innovations, new laws, health, demography, social reforms, wars, educational

availability, policy-regime shifts, and so on. Overall, these combined have resulted

in great improvements in real wages, but also in large rises in the price level, and

varying levels of unemployment. Breaks and shifts were pervasive, and needed to

be modelled to understand how economies work. To do so, we used di�erences,

cointegration, impulse and step indicator saturation, co-breaking, dynamics, non-

linear functions and related variables to tackle inter-dependence, evolution, abrupt

shifts, and changing relationships.

Modelling methodology yields insights into how to undertake and evaluate

empirical analyses, and emphasizes that all forms of non-stationaritymust bemod-

elled, including stochastic trends, measurement changes, non-linearities and loca-

tion shifts. Moreover, all substantively relevant variables and their dynamics must

be included, so initial general unrestricted models will be large even before tack-

ling non-linearities and indicator saturation. The large numbers of potentially rele-

vant variables requires computer software to choose the empirical models, a move

from humans doing so that is analogous to the earlier application of computers

to regression analysis replacing calculations previously done by hand. Indicator

saturation can only be undertaken by a computer program–but Autometrics does
so successfully as we have seen.

The selected models of real-wage growth and price in�ation explain much of

the observed movements over almost 150 years, but despite allowing for many

potential in�uences, still needed indicator variables for the largest shifts. The un-

employment rate was also subject to major location shifts, which help explain ap-

parent non-constancies in the ‘Phillips curve’. However, neither unemployment

nor expectations of future in�ation played direct roles in either real-wage or price-

in�ation equations. Money demandwas di�cult tomodel as �nancial innovations

changed its measurements intermittently. No role was found for ‘excess money’ in

in�ation, although money growth was signi�cant.

The teaching of empiricalmacro-econometrics often eschews the complications

that are ever present in macroeconomic data because they are ‘too di�cult’. Hav-

ing seen the prevalence of strong yet changing trends, abrupt shifts, high correla-

tions between variables and with their own lags, this short introduction could not

sensibly avoid tackling their joint interactions, so addressed all the main concepts
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and some of the basic tools. The power, �exibility and ease of use of computer soft-

ware that can reduce a high-dimensional initial formulation to an interpretable,

parsimonious and encompassing �nal selection makes it feasible to adopt such an

approach to teaching, and many of the models presented above can be illustrated

live in the classroom, hopefully empowering future generations of empirical mod-

ellers.

Notwithstanding the di�culties many experienced after the 2008 Financial

Crisis and ensuing Great Recession, and valid worries about inequality, climate

change and new pandemics, the present is one of the best ever times in history

to be alive: I cannot imagine many readers wanting to go back and live a median

life in 1860. Although living 150 years ago was not quite as bad as “the life of

man, solitary, poor, nasty, brutish, and short” (to quote from Thomas Hobbes’s

Leviathan, 1651), about 15% of infants died in their �rst year of life. The vast

improvements in almost every aspect of life are beautifully captured visually in

http://www.ourworldindata.org/: change is the norm in them all, just as we have

seen in macroeconomics.
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The variables used in the above analyses were de�ned as follows:

Pt � implicit de�ator of GDP, (1860=1) [6], p.836, [9]a (1993), [20] code:ABML.

Gt � real GDP, £million, 1985 prices [6], p.836, [9]a (1993), [20] code:YBHH.

Ut � unemployment [7], [9]c (1993), [19] code: MGSC.

Wpopt � working population [7], [9]c (1993), [19] code: MGSF.

Ur,t � Ut/Wpopt (unemployment rate)

Lt � employment (= Wpopt − Ut ) [4], [5]

Wt � average weekly earnings [17], [18], [19] code: LNMM

Kt � total capital stock [6], p.864, [9]c (1972,1979,1988,1992)

RL,t � bond rate [1], [2]

RS,t � short-term interest rate [1], [2]

Mt � nominal broad money, £million [1], [2]

Rn ,t � opportunity-cost of money measure [3]

Nt � nominal National Debt, £million [8]

Et � £ e�ective exchange rate index [1], [2], [10]

Pw ,t � trade-weighted world price index [1], [2], [10]

Po ,t � price index, raw materials & fuels [11]

TUt � Trades Unions membership [6], p.137, [15], Table 6.20, [16]

Bt � replacement ratio [12] code: 1.6.4/NQDNAU, [13],

[14] 1989 Table 34.01, 1992 Table A2.36;

St � days lost through strikes, millions [6], p.144 and AA,Table 6.1; [21]

NICt � National Insurance Contributions [12] code: 11.1 / CEANAU

Wr,t � nominal wage rates [5], [12], [18]

Ht � normal hours (from 1920) [6], p.148, [9]

ULCt � unit labour costs

�
� LtWr,t/Gt

�

Id � combined indicator: see below [22]

1abcd � indicator equal to unity in year abcd
∆xt � (xt − xt−1) for any variable xt
∆2xt � ∆xt − ∆xt−1

Sources:

[1] Friedman and Schwartz (1982);

[2] Att�eld, Demery, and Duck (1995);

[3] Ericsson, Hendry, and Prestwich (1998);

[4] Shadman-Mehta (1995) (citing Sleeman, 1981. and Thomas, 1984, as sources);

[5] Phillips (1958);

[6] Mitchell (1988);

[7] Feinstein (1972);

[8] Bank of England;

[9] Bean (from (a) Economic Trends Annual Supplements, (b)Annual Abstract of Statis-
tics, (c) Department of Employment Gazette, and (d) National Income and Expenditure,
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as well as other sources cited here);

[10] from Gavin Cameron and John Muellbauer;

[11] UN Statistical Yearbook and Christopher Gilbert;

[12] O�ce for National Statistics (ONS), Blue Book;
[13] Board of Trade (1860–1908);

[14] Social Security Statistics (now Social Security and Child Support Statistics);
[15] ONS, Annual Abstract of Statistics;
[16] ONS, Labour Market Trends;
[17] Crafts and Mills (1994);

[18] Feinstein (1990);

[19] ONS, Labour Force Survey;
[20] ONS, Economic Trends Annual Supplement;
[21] ONS, Social Trends;
[22] Hendry (2001).

Notes:

Average weekly wages: a measure of full-time weekly earnings for all blue collar

workers, where the coverage has been extended to include more occupations, and

allows for factors such as changes in the composition of the manual labour force

by age, sex, and skill, and the e�ect of variations in remuneration under piece rates

and other systems of payments, but not adjusted for time lost through part-time

work, short-time, unemployment etc. A reduction in standard hours worked that

was o�set by a rise in hourly wage rates would not be re�ected in the index. From

1855–1880, the data are from Feinstein (1990), but not revised to increase coverage.

Prior to that, the data come from a number of sources on average wage rates for

blue collar workers.

Nominal wage rates: hourly wage rates prior to 1946, then weekly wage rates af-

terwards, so the latter were standardized by dividing by normal hours. The trend

rate of decline of hours is about 0.5% p.a. (based on a drop from 56 to 40 hours per

week between 1913 and 1990, with an additional increase in paid holidays), and

spliced to an average earnings index for the whole economy including bonuses

[ONS: LNMM] from 1991 and rebased to 2000=1. The average earnings index was

discontinued in 2010, and replaced with average weekly earnings. The unit labour

cost measure ulc∗ was adjusted accordingly.

The ‘replacement ratio’ is the ratio of unemployment bene�ts to average wages.

Bene�ts are measured by the amount expended for poor relief in unionized in-

dustries/number of paupers (from [13]) to 1908 (data for England and Scotland).

Interwar and post-WWII data on value of bene�ts from [14], Table 34.01 (1989), Ta-

ble A2.36 (1992) and [12] total government bene�t expenditure/population. Data

are spliced over 1909-1919 and 1939-1945. The unemployment data were based on

Trades Unions members till 1945. The unemployment rate is measured as a frac-

tion. Hours lost through strikes, p.a., are only available from 1890.

For GDP, code:YBHH was at 2005 prices, so scaled to 1985.

Exchange rate is the annual £/$ rate till 1954, then an annual aggregate of quarterly

data on the trade-weighted e�ective exchange rate, spliced to the £/$ rate in 1955.

World prices were US prices till 1954, then a trade-weighted annual aggregate of

quarterly data on the corresponding PPP values, from which the price data were

derived and spliced to US prices in 1955. Commodity prices are a composite price

index for raw materials and fuels. Revised data from 1868–1933 were kindly pro-

vided by Christopher Gilbert, and spliced to the index in Hendry (2001).
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The short-term interest rate RS,t is the three-month treasury bill rate, fraction p.a.,

and the long-term interest rate RL,t is the long-term bond rate, fraction p.a.

Nominal money is a spliced series of broad money measures, using M2 (‘old def-

inition’) till 1968; M3 from 1963 though 1987; and M4 (adjusted for de�nitional

breaks) from 1982 onwards. The corresponding measure of the opportunity cost

of holding money, Rn � RS × (Ha/Ma) where H is ‘high-powered money’, which

is non-interest bearing, and the superscript
a
denotes that the actual (rather than

rescaled after splicing) values were used: see Ericsson, Hendry, and Prestwich

(1998).

Hendry (2001) found 22 indicators were needed to remove large outliers given by:

Ib �

{
1 for 1915, 1917, 1919
−1 for 1921, 1922

Il �

{
1 for 1916, 1918, 1920, 1975
−1 for 1943, 1945, 1973

Im �

{
1 for 1880, 1900, 1939, 1940, 1970, 1971, 1980
−1 for 1881, 1942, 1944.

where Id combined these with weights of 3, 1.5, and 1.

Hendry and Ericsson (1991) and Hendry (2001) provide detailed discussions

about many of these series.
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