
PART ONE 
 

Solutions to Exercises





Chapter 2 
Review of Probability 

 Solutions to Exercises 
1. (a) Probability distribution function for Y 

Outcome 
(number of heads) 

Y = 0 Y = 1 Y = 2 

probability 0.25 0.50 0.25 

(b) Cumulative probability distribution function for Y 

Outcome 
(number of heads) 

Y < 0 0 ≤ Y < 1 1 ≤ Y < 2 Y ≥ 2 

Probability 0 0.25 0.75 1.0 

(c) = ( ) (0 0.25) (1 0.50) (2 0.25) 1.00Y E Yμ = × + × + × =  

Using Key Concept 2.3: 2 2var( ) ( ) [ ( )] ,Y E Y E Y= −  and 

= × + × + × =2 2 2 2( ) (0 0.25) (1 0.50) (2 0.25) 1.50E Y  
so that 2 2 2var( ) ( ) [ ( )] 1.50 (1.00) 0.50.Y E Y E Y= − = − =  

2. We know from Table 2.2 that = = .Pr ( 0) 0 22,Y  = = .Pr ( 1) 0 78,Y  = = .Pr ( 0) 0 30,X  
= = .Pr ( 1) 0 70.X  So 

(a) 

( ) 0 Pr ( 0) 1 Pr ( 1)
0 0 22 1 0 78 0 78,

( ) 0 Pr ( 0) 1 Pr ( 1)
0 0 30 1 0 70 0 70

Y

X

E Y Y Y

E X X X

μ

μ

= = × = + × =

= × . + × . = .

= = × = + × =

= × . + × . = . .

 

(b) 
2 2

2 2

2 2

2 2

2 2

2 2

[( ) ]

(0 0.70) Pr ( 0) (1 0.70) Pr ( 1)
( 0 70) 0 30 0 30 0 70 0 21

[( ) ]

(0 0.78) Pr ( 0) (1 0.78) Pr ( 1)
( 0 78) 0 22 0 22 0 78 0 1716

X X

Y Y

E X

X X

E Y

Y Y

σ μ

σ μ

= −

= − × = + − × =

= − . × . + . × . = . ,

= −

= − × = + − × =

= − . × . + . × . = . .
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(c) Table 2.2 shows Pr ( 0, 0) 0 15,X Y= = = .  Pr ( 0, 1) 0 15,X Y= = = .  Pr ( 1, 0) 0 07,X Y= = = .  
Pr ( 1, 1) 0 63.X Y= = = .  So 

cov( , ) [( )( )]
(0 - 0.70)(0 - 0.78)Pr( 0, 0)

(0 0 70)(1 0 78)Pr ( 0 1)
(1 0 70)(0 0 78)Pr ( 1 0)
(1 0 70)(1 0 78)Pr ( 1 1)

( 0 70) ( 0 78) 0 15 ( 0 70) 0 22 0 15
0 30 ( 0 78) 0 07 0

XY X YX Y E X Y
X Y

X Y
X Y
X Y

σ μ μ= = − −
= = =

+ − . − . = , =
+ − . − . = , =
+ − . − . = , =

= − . × − . × . + − . × . × .
+ . × − . × . + .30 0 22 0 63

0 084,

0 084( , ) 0 4425
0 21 0 1716

XY

X Y

cor X Y σ
σ σ

× . × .
= .

.
= = = . .

. × .

 

3. For the two new random variables 3 6W X= +  and 20 7 ,V Y= −  we have: 

(a) 

( ) (20 7 ) 20 7 ( ) 20 7 0 78 14 54,
( ) (3 6 ) 3 6 ( ) 3 6 0 70 7 2

E V E Y E Y
E W E X E X

= − = − = − × . = .
= + = + = + × . = . .

 

(b) 
2 2 2

2 2 2

var (3 6 ) 6 36 0 21 7 56,

var (20 7 ) ( 7) 49 0 1716 8 4084
W X

V Y

X

Y

σ σ

σ σ

= + = ⋅ = × . = .

= − = − ⋅ = × . = . .
 

(c) 

(3 6 , 20 7 ) 6( 7) ( , ) 42 0 084 3 528
3 528( , ) 0 4425

7 56 8 4084

WV

WV

W V

cov X Y cov X Y

cor W V

σ
σ

σ σ

= + − = − = − × . = − .

− .
= = = − . .

. × .

 

4. (a)  = × − + × =3 3 3( ) 0 (1 ) 1E X p p p  

(b) = × − + × =( ) 0 (1 ) 1k k kE X p p p  
(c) =( ) 0.3E X  

= − = − =2 2var ( ) ( ) [ ( )] 0.3 0.09 0.21X E X E X  

Thus, = =0.21 0.46.σ  

To compute the skewness, use the formula from exercise 2.21: 
3 3 2 3

2 3

( ) ( ) 3[ ( )][ ( )] 2[ ( )]
0.3 3 0.3 2 0.3 0.084

E X E X E X E X E Xμ− = − +

= − × + × =
 

Alternatively, − − × + − × =3 3 3( ) = [(1 0.3) 0.3] [(0 0.3) 0.7] 0.084E X μ  

Thus, skewness 3 3 3( ) / .084/0.46 0.87.E X μ σ= − = =  
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To compute the kurtosis, use the formula from exercise 2.21: 
4 4 3 2 2 4

2 3 4

( ) ( ) 4[ ( )][ ( )] 6[ ( )] [ ( )] 3[ ( )]
0.3 4 0.3 6 0.3 3 0.3 0.0777

E X E X E X E X E X E X E Xμ− = − + −

= − × + × − × =
 

Alternatively, − − × + − × =4 4 4( ) = [(1 0.3) 0.3] [(0 0.3) 0.7] 0.0777E X μ  

Thus, kurtosis is 4 4 4( ) / = .0777/0.46 1.76E X μ σ− =  

5. Let X denote temperature in °F and Y denote temperature in °C. Recall that Y = 0 when X = 32 and 
Y = 100 when X = 212; this implies (100/180) ( 32) or 17.78 (5/9) .Y X Y X= × − = − + ×  Using Key 
Concept 2.3, = °70 FXμ  implies that 17.78 (5/9) 70 21.11 C,Yμ = − + × = °  and = °7 F Xσ  
implies (5/9) 7 3.89 C.Yσ = × = °  

6. The table shows that Pr ( 0, 0) 0 045,X Y= = = .  Pr ( 0, 1) 0 709,X Y= = = .  Pr ( 1, 0) 0 005,X Y= = = .  
Pr ( 1, 1) 0 241,X Y= = = .  Pr ( 0) 0 754,X = = .  = = .Pr ( 1) 0 246,X  = = .Pr ( 0) 0 050,Y  

= = .Pr ( 1) 0 950.Y  
(a) 

= = × = + × =

= × . + × . = . .

( ) 0 Pr( 0) 1 Pr ( 1)
0 0 050 1 0 950 0 950

YE Y Y Yμ  

(b) 

(unemployed)Unemployment Rate
(labor force)

Pr ( 0) 0 050 1 0 950 1 ( )

#
#

Y E Y

=

= = = . = − . = − .
 

(c) Calculate the conditional probabilities first: 

Pr ( 0, 0) 0 045Pr ( 0| 0) 0 0597,
Pr ( 0) 0 754
X YY X

X
= = .

= = = = = .
= .

 

Pr ( 0, 1) 0 709Pr ( 1| 0) 0 9403,
Pr ( 0) 0 754
X YY X

X
= = .

= = = = = .
= .

 

Pr ( 1, 0) 0 005Pr ( 0| 1) 0 0203,
Pr ( 1) 0 246
X YY X

X
= = .

= = = = = .
= .

 

Pr ( 1, 1) 0 241Pr ( 1| 1) 0 9797
Pr ( 1) 0 246
X YY X

X
= = .

= = = = = . .
= .

 

The conditional expectations are 

( | 1) 0 Pr ( 0| 1) 1 Pr ( 1| 1)
0 0 0203 1 0 9797 0 9797,

( | 0) 0 Pr ( 0| 0) 1 Pr ( 1| 0)
0 0 0597 1 0 9403 0 9403

E Y X Y X Y X

E Y X Y X Y X

= = × = = + × = =
= × . + × . = .

= = × = = + × = =
= × . + × . = . .
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(d) Use the solution to part (b), 

Unemployment rate for college grads
1 ( | 1) 1 0.9797 0.0203.

Unemployment rate for non-college grads
1 ( | 0) 1 0.9403 0.0597.

E Y X

E Y X

= − = = − =

= − = = − =

 

(e) The probability that a randomly selected worker who is reported being unemployed is a college 
graduate is 

Pr ( 1, 0) 0 005Pr ( 1| 0) 0 1
Pr ( 0) 0 050
X YX Y

Y
= = .

= = = = = . .
= .

 

The probability that this worker is a non-college graduate is 

Pr ( 0| 0) 1 Pr ( 1| 0) 1 0 1 0 9X Y X Y= = = − = = = − . = . .  

(f) Educational achievement and employment status are not independent because they do not satisfy 
that, for all values of x and y, 

Pr ( | ) Pr ( )Y y X x Y y= = = = .  

For example, 

Pr ( 0| 0) 0 0597 Pr ( 0) 0 050Y X Y= = = . ≠ = = . .  

7. Using obvious notation, = + ;C M F  thus = +C M Fμ μ μ  and 2 2 2 2cov( , ).C M F M Fσ σ σ= + +  This 
implies 
(a) = + =40 45 $85,000Cμ per year. 

(b) ( , )( , ) ,
M F

Cov M Fcor M F σ σ=  so that ( , ) ( , ).M FCov M F cor M Fσ σ=  Thus 
( , ) 12 18 0.80 172.80,Cov M F = × × =  where the units are squared thousands of dollars per year. 

(c) 2 2 2 2cov( , ),C M F M Fσ σ σ= + +  so that 2 2 212 18 2 172.80 813.60,Cσ = + + × =  and 

= =813.60 28.524Cσ  thousand dollars per year. 

(d) First you need to look up the current Euro/dollar exchange rate in the Wall Street Journal, the 
Federal Reserve web page, or other financial data outlet. Suppose that this exchange rate is e 
(say e = 0.80 euros per dollar); each 1$ is therefore with eE. The mean is therefore eμC (in units 
of thousands of euros per year), and the standard deviation is eσC (in units of thousands of euros 
per year). The correlation is unit-free, and is unchanged. 

8. = =( ) 1,Y E Yμ  2 var ( ) 4.Y Yσ = =  With = −1
2 ( 1),Z Y  

2 2

1 1 1( 1) ( 1) (1 1) 0,
2 2 2

1 1 1var ( 1) 4 1
2 4 4

Z Y

Z Y

E Y

Y

μ μ

σ σ

⎛ ⎞= − = − = − =⎜ ⎟
⎝ ⎠

⎛ ⎞= − = = × = .⎜ ⎟
⎝ ⎠
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9. 

Value of Y  

 14 22 30 40 65 

Probability 
Distribution of 

X 
1 0.02 0.05 0.10 0.03 0.01 0.21 
5 0.17 0.15 0.05 0.02 0.01 0.40 

Value of X 

8 0.02 0.03 0.15 0.10 0.09 0.39 
Probability distribution 
of Y 

0.21 0.23 0.30 0.15 0.11 1.00 

(a) The probability distribution is given in the table above. 

2 2 2 2 2 2

2 2

( ) 14 0.21 22 0.23 30 0.30 40 0.15 65 0.11 30.15
( ) 14 0.21 22 0.23 30 0.30 40 0.15 65 0.11 1127.23

Var(Y) ( ) [ ( )] 218.21
14.77Y

E Y
E Y

E Y E Y
σ

= × + × + × + × + × =

= × + × + × + × + × =

= − =
=

 

(b) Conditional Probability of Y|X = 8 is given in the table below 

Value of Y 
14 22 30 40 65 

0.02/0.39 0.03/0.39 0.15/0.39 0.10/0.39 0.09/0.39 

( | 8) 14 (0.02/0.39) 22 (0.03/0.39) 30 (0.15/0.39)
40 (0.10/0.39) 65 (0.09/0.39) 39.21

E Y X = = × + × + ×
+ × + × =

2 2 2 2

2 2

( | 8) 14 (0.02/0.39) 22 (0.03/0.39) 30 (0.15/0.39)
40 (0.10/0.39) 65 (0.09/0.39) 1778.7

E Y X = = × + × + ×

+ × + × =
2

8

Var( ) 1778.7 39.21 241.65
15.54Y X

Y
σ | =

= − =
=

 

(c) ( ) (1 14 0.02) (1 22 : 0.05) (8 65 0.09) 171.7E XY = × × + × + × × =L  
Cov( , ) ( ) ( ) ( ) 171.7 5.33 30.15 11.0X Y E XY E X E Y= − = − × =  
Corr( , ) Cov( , )/( ) 11.0 /(5.46 14.77) 0.136X YX Y X Y σ σ= = × =  

10. Using the fact that if 2,Y YY N μ σ⎛ ⎞
⎜ ⎟
⎝ ⎠

:  then ~ (0,1)Y

Y

Y Nμ
σ
−  and Appendix Table 1, we have 

(a) 

1 3 1Pr ( 3) Pr (1) 0 8413
2 2

YY − −⎛ ⎞≤ = ≤ = Φ = . .⎜ ⎟
⎝ ⎠

 

(b) 

Pr( 0) 1 Pr( 0)
3 0 31 Pr 1 ( 1) (1) 0 8413

3 3

Y Y
Y

> = − ≤

− −⎛ ⎞= − ≤ = − Φ − = Φ = . .⎜ ⎟
⎝ ⎠
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(c) 

40 50 50 52 50Pr (40 52) Pr
5 5 5

(0 4) ( 2) (0 4) [1 (2)]
0 6554 1 0 9772 0 6326

YY − − −⎛ ⎞≤ ≤ = ≤ ≤⎜ ⎟
⎝ ⎠

= Φ . − Φ − = Φ . − − Φ
= . − + . = . .

 

(d) 

6 5 5 8 5Pr (6 8) Pr
2 2 2

(2 1213) (0 7071)
0 9831 0 7602 0 2229

YY − − −⎛ ⎞
≤ ≤ = ≤ ≤⎜ ⎟

⎝ ⎠
= Φ . − Φ .
= . − . = . .

 

11. (a) 0.90 
(b) 0.05 
(c) 0.05 
(d) When 2

10~ ,Y χ  then 10,/10 ~ .Y F ∞  
(e) 2 ,Y Z=  where ~ N(0,1),Z  thus Pr ( 1) Pr ( 1 1) 0.32.Y Z≤ = − ≤ ≤ =  

12. (a) 0.05 
(b) 0.950 
(c) 0.953 
(d) The tdf distribution and N(0, 1) are approximately the same when df is large. 
(e) 0.10 
(f) 0.01 

13. (a) 2 2 2 2( ) Var ( ) 1 0 1; ( ) Var ( ) 100 0 100.Y WE Y Y E W Wμ μ= + = + = = + = + =  

(b) Y and W are symmetric around 0, thus skewness is equal to 0; because their mean is zero, this 
means that the third moment is zero. 

(c) The kurtosis of the normal is 3, so 
4

$
( )3 ;Y

Y

E Y μ

σ

−=  solving yields 4E( ) 3;Y =  a similar calculation 

yields the results for W. 

(d) First, condition on 0,X =  so that :S W=  
2 3 4 2

.( | 0) 0; ( | 0) 100, ( | 0) 0, ( | 0) 3 100E S X E S X E S X E S X= = = = = = = = ×  

Similarly, 
2 3 4( | 1) 0; ( | 1) 1, ( | 1) 0, ( | 1) 3.E S X E S X E S X E S X= = = = = = = =  

From the large of iterated expectations 

( ) ( | 0) Pr (X 0) ( | 1) Pr( 1) 0E S E S X E S X X= = × = + = × = =  
2 2 2( ) ( | 0) Pr (X 0) ( | 1) Pr( 1) 100 0.01 1 0.99 1.99E S E S X E S X X= = × = + = × = = × + × =  
3 3 3( ) ( | 0) Pr (X 0) ( | 1) Pr( 1) 0E S E S X E S X X= = × = + = × = =  
4 4 4 2( ) ( | 0) Pr (X 0) ( | 1) Pr( 1) 3 100 0.01 3 1 0.99 302.97E S E S X E S X X= = × = + = × = = × × + × × =  
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(e) ( ) 0,S E Sμ = =  thus 3 3( ) ( ) 0SE S E Sμ− = = from part d. Thus skewness = 0. 

Similarly, 2 2 2( ) ( ) 1.99,S SE S E Sσ μ= − = =  and 4 4( ) ( ) 302.97.SE S E Sμ− = =  
Thus, 2kurtosis 302.97 /(1.99 ) 76.5= =  

14. The central limit theorem suggests that when the sample size (n) is large, the distribution of the 
sample average ( )Y  is approximately 2,Y YN μ σ⎛ ⎞

⎜ ⎟
⎝ ⎠

 with 
22 .Y

nY
σσ =  Given 100,Yμ =  2 43 0,Yσ = .  

(a) 100,n =  
22 43

100 0 43,Y
nY

σσ = = = .  and 

100 101 100Pr ( 101) Pr (1 525) 0 9364
0 43 0 43

YY
⎛ ⎞− −

≤ = ≤ ≈ Φ . = . .⎜ ⎟
. .⎝ ⎠

 

(b) 165,n =  
22 43

165 0 2606,Y
nY

σσ = = = .  and 

100 98 100Pr ( 98) 1 Pr ( 98) 1 Pr
0 2606 0 2606

1 ( 3 9178) (3 9178) 1 000 (rounded to four decimal places)

YY Y
⎛ ⎞− −

> = − ≤ = − ≤⎜ ⎟
. .⎝ ⎠

≈ − Φ − . = Φ . = . .

 

(c) 64,n =  
22 43

64 64 0 6719,Y
Y

σσ = = = .  and 

101 100 100 103 100Pr (101 103) Pr
0 6719 0 6719 0 6719

(3 6599) (1 2200) 0 9999 0 8888 0 1111

YY
⎛ ⎞− − −

≤ ≤ = ≤ ≤⎜ ⎟
. . .⎝ ⎠

≈ Φ . − Φ . = . − . = . .

 

15. (a) 

9.6 10 10 10.4 10Pr (9.6 10.4) Pr
4/ 4/ 4/

9.6 10 10.4 10Pr
4/ 4/

YY
n n n

Z
n n

≤ ≤

≤

⎛ ⎞− − −
≤ = ≤⎜ ⎟

⎝ ⎠
− −⎛ ⎞

= ≤⎜ ⎟
⎝ ⎠

 

where Z ~ N(0, 1). Thus, 

(i) n = 20; 9.6 10 10.4 10Pr Pr ( 0.89 0.89) 0.63
4/ 4/

Z Z
n n

≤ ≤
− −⎛ ⎞

≤ = − ≤ =⎜ ⎟
⎝ ⎠

 

(ii) n = 100; 9.6 10 10.4 10Pr Pr( 2.00 2.00) 0.954
4/ 4/

Z Z
n n

≤ ≤
− −⎛ ⎞

≤ = − ≤ =⎜ ⎟
⎝ ⎠

 

(iii) n = 1000; 9.6 10 10.4 10Pr Pr( 6.32 6.32) 1.000
4/ 4/

Z Z
n n

≤ ≤
− −⎛ ⎞

≤ = − ≤ =⎜ ⎟
⎝ ⎠
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(b) 

10Pr (10 10 ) Pr
4/ 4/ 4/

Pr .
4/ 4/

c Y cc Y c
n n n

c cZ
n n

≤ ≤

≤

⎛ ⎞− −
− ≤ + = ≤⎜ ⎟

⎝ ⎠
−⎛ ⎞

= ≤⎜ ⎟
⎝ ⎠

 

As n get large 
4/
c

n
 gets large, and the probability converges to 1. 

(c) This follows from (b) and the definition of convergence in probability given in Key Concept 2.6. 

16. There are several ways to do this. Here is one way. Generate n draws of Y, Y1, Y2, … Yn. Let Xi = 1 if 
Yi < 3.6, otherwise set Xi = 0. Notice that Xi is a Bernoulli random variables with μX = Pr(X = 1) = 
Pr(Y < 3.6). Compute .X  Because X  converges in probability to μX = Pr(X = 1) = Pr(Y < 3.6), X  
will be an accurate approximation if n is large. 

17. μY = 0.4 and 2 0.4 0.6 0.24Yσ = × =  

(a) (i) P(Y  ≥ 0.43) = 0.4 0.43 0.4 0.4Pr Pr 0.6124 0.27
0.24/ 0.24/ 0.24/

Y Y
n n n

⎛ ⎞ ⎛ ⎞− − −
≥ = ≥ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(ii) P(Y  ≤ 0.37) = 0.4 0.37 0.4 0.4Pr Pr 1.22 0.11
0.24/ 0.24/ 0.24/

Y Y
n n n

⎛ ⎞ ⎛ ⎞− − −
≤ = ≤ − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(b) We know Pr(−1.96 ≤ Z ≤ 1.96) = 0.95, thus we want n to satisfy 0.41 0.4
0.24/

0.41 1.96
n

−= > −  and 
0.39 0.4

0.24/
1.96.

n
− < −  Solving these inequalities yields n ≥ 9220. 

18. Pr ( 0) 0 95,Y $= = .  Pr ( 20000) 0 05.Y $= = .  
(a) The mean of Y  is 

0 Pr ( 0) 20,000 Pr ( 20000) 1000.Y Y $ Y $ $μ = × = + × = =  

The variance of Y  is 

( )
( )

22

22

2 2 7

Pr 0 (20000 1000) Pr ( 20000)(0 1000)

( 1000) 0 95 19000 0 05 1 9 10 ,

Y YE Y

Y Y

σ μ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= −

= × = + − × =−

= − × . + × . = . ×

 

so the standard deviation of Y is 
1
27(1 9 10 ) 4359Y $σ = . × = .  

(b) (i) ( ) 1000,YE Y $μ= =  
2 72 51 9 10

100 1 9 10 .Y
nY

σσ . ×= = = . ×  

(ii) Using the central limit theorem, 

5 5

Pr ( 2000) 1 Pr ( 2000)

1000 2 000 1 0001 Pr
1 9 10 1 9 10

1 (2 2942) 1 0 9891 0 0109

Y Y

Y

> = − ≤

⎛ ⎞− , − ,
= − ≤⎜ ⎟

. × . ×⎝ ⎠
≈ − Φ . = − . = . .
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19. (a) 

1

1

Pr ( ) Pr ( , )

Pr ( | )Pr ( )

l

j i j
i

l

j i i
i

Y y X x Y y

Y y X x X x

=

=

= = = =

= = = =

∑

∑
 

(b) 

1 1 1

11

1

( ) Pr ( ) Pr ( | )Pr ( )

Pr ( | ) Pr ( )

( | )Pr ( )

i

i i

k k l

j j j j i i
j j i

kl

j j i
ji

l

i

E Y y Y y y Y y X x X x

y Y y X x X x

E Y X x X x

= = =

⎛ ⎞
⎜ ⎟

=⎜ ⎟
⎜ ⎟⎜ ⎟== ⎝ ⎠

=

= = = = = =

= = =

= = = .

∑ ∑ ∑

∑∑

∑

 

(c) When X  and Y  are independent, 

Pr ( , ) Pr ( )Pr ( )i j i jX x Y y X x Y y= = = = = ,  

so 

1 1

1 1

1 1

[( )( )]

( )( )Pr ( , )

( )( )Pr ( )Pr ( )

( )Pr ( ) ( )Pr (

( ) ( ) 0 0 0,

XY X Y
l k

i X j Y i j
i j

l k

i X j Y i j
i j

l k

i X i j Y j
i j

X Y

E X Y

x y X x Y y

x y X x Y y

x X x y Y y

E X E Y

σ μ μ

μ μ

μ μ

μ μ

μ μ

= =

= =

= =

= − −

= − − = =

= − − = =

⎛ ⎞⎛ ⎞
= − = − =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
= − − = × =

∑ ∑

∑ ∑

∑ ∑

 

0( , ) 0XY

X Y X Y

cor X Y σ
σ σ σ σ

= = = .  

20. (a) 
1 1

Pr ( ) Pr ( | , )Pr ( , )
l m

i i j h j h
j h

Y y Y y X x Z z X x Z z
= =

= = = = = = =∑∑  

(b) 

1

1 1 1

1 1 1

1 1

( ) Pr ( )Pr ( )

Pr ( | , )Pr ( , )

Pr ( | , ) Pr ( , )

( | , )Pr ( , )

k

i i i
i

k l m

i i j h j h
i j h

l m k

i i j h j h
j h i

l m

j h j h
j h

E Y y Y y Y y

y Y y X x Z z X x Z z

y Y y X x Z z X x Z z

E Y X x Z z X x Z z

=

= = =

= = =

= =

= = =

= = = = = =

⎡ ⎤
= = = = = =⎢ ⎥

⎣ ⎦

= = = = =

∑

∑ ∑∑

∑∑ ∑

∑∑
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where the first line in the definition of the mean, the second uses (a), the third is a rearrangement, 
and the final line uses the definition of the conditional expectation. 

21. (a) 

3 2 3 2 2 2 2 3

3 2 2 3 3 2 2 3

3 2 3

( ) [( ) ( )] [ 2 2 ]
( ) 3 ( ) 3 ( ) ( ) 3 ( ) ( ) 3 ( )[ ( )] [ ( )]
( ) 3 ( ) ( ) 2 ( )

E X E X X E X X X X X
E X E X E X E X E X E X E X E X E X
E X E X E X E X

μ μ μ μ μ μ μ μ

μ μ μ

− = − − = − + − + −

= − + − = − + −

= − +

 

(b)  
4 3 2 2 3

4 3 2 2 3 3 2 2 3 4

4 3 2 2 3 4

4 3 2 2 4

( ) [( 3 3 )( )]
[ 3 3 3 3 ]
( ) 4 ( ) ( ) 6 ( ) ( ) 4 ( ) ( ) ( )

 ( ) 4[ ( )][ ( )] 6[ ( )] [ ( )] 3[ ( )]

E X E X X X X
E X X X X X X X
E X E X E X E X E X E X E X E X
E X E X E X E X E X E X

μ μ μ μ μ
μ μ μ μ μ μ μ

− = − + − −

= − + − − + − +

= − + − +

= − + −

 

22. The mean and variance of R are given by 

2 2 2 2

0.08 (1 ) 0.05
 0.07 (1 ) 0.042 2 (1 ) [0.07 0.04 0.25]
w w
w w w w

μ

σ

= × + − ×

= × + − × + × × − × × ×
 

 where 0.07 0.04 0.25 ( ,  )s bCov R R× × =  follows from the definition of the correlation between 
Rs and Rb. 
(a) 0.065; 0.044μ σ= =  
(b) 0.0725; 0.056μ σ= =  

(c) w = 1 maximizes ; 0.07μ σ =  for this value of w. 
(d) The derivative of σ2 with respect to w is 

2
2 22 .07 2(1 ) 0.04 (2 4 ) [0.07 0.04 0.25]

 0.0102 0.0018

d w w w
dw

w

σ
= × − − × + − × × ×

= −

 

solving for w yields 18 /102 0.18.w = = (Notice that the second derivative is positive, so that this 
is the global minimum.) With 0.18, .038.Rw σ= =  

23. X and Z are two independently distributed standard normal random variables, so 

2 20, 1, 0.X Z X Z XZμ μ σ σ σ= = = = =  

(a) Because of the independence between X  and ,Z  Pr ( | ) Pr ( ),Z z X x Z z= = = =  and 
( | ) ( ) 0.E Z X E Z= =  Thus 2 2 2 2( | ) ( | ) ( | ) ( | ) 0E Y X E X Z X E X X E Z X X X= + = + = + = .  

(b) 2 2 2( ) 1,X XE X σ μ= + =  and 2 2( ) ( ) 1 0 1Y ZE X Z E Xμ μ= + = + = + = .  
(c) 3 3( ) ( ) ( ) ( ).E XY E X ZX E X E ZX= + = +  Using the fact that the odd moments of a standard normal 

random variable are all zero, we have 3( ) 0.E X =  Using the independence between X  and ,Z  we 
have ( ) 0.Z XE ZX μ μ= =  Thus 3( ) ( ) ( ) 0.E XY E X E ZX= + =  
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(d) 

( ) [( )( )] [( 0)( 1)]
( ) ( ) ( )

0 0 0
0( , ) 0

X Y

XY

X Y X Y

Cov XY E X Y E X Y
E XY X E XY E X

cor X Y

μ μ

σ
σ σ σ σ

= − − = − −
= − = −
= − = .

= = = .

 

24. (a) 2 2 2 2( )iE Y σ μ σ= + =  and the result follows directly. 

(b) (Yi/σ) is distributed i.i.d. N(0,1), 2
1
( / ) ,n

ii
W Y σ

=
= ∑  and the result follows from the definition of a 

2
nχ  random variable. 

(c) E(W) = 
2 2

2 2
1 1

( ) .
n n

i i

i i

Y Y
E W E E n

σ σ= =

= = =∑ ∑  

(d) Write 

2 2
2 2

1 1

( / )
1 1

/
n n
i i iY Y
n n

Y YV
σ

σ
= =∑ ∑
− −

= =  

which follows from dividing the numerator and denominator by σ. Y1/σ ~ N(0,1), 2
2
( / )n

ii
Y σ

=∑ ~ 
2

1nχ − , and Y1/σ and 2
2
( / )n

ii
Y σ

=∑  are independent. The result then follows from the definition of 
the t distribution. 



Chapter 3 
Review of Statistics 

 Solutions to Exercises 
1. The central limit theorem suggests that when the sample size ( n ) is large, the distribution of the 

sample average (Y ) is approximately 2,Y YN μ σ⎛ ⎞
⎜ ⎟
⎝ ⎠

 with 
22 .Y

nY
σσ =  Given a population 100,Yμ =  

2 43 0,Yσ = .  we have 

(a) 100,n =  
22 43

100 0 43,Y
nY
σσ = = = .  and 

100 101 100Pr ( 101) Pr (1.525) 0 9364
0 43 0 43

YY
⎛ ⎞− −

< = < ≈ Φ = . .⎜ ⎟
. .⎝ ⎠

 

(b) 64,n =  
22 43

64 64 0 6719,Y
Y

σσ = = = .  and 

101 100 100 103 100Pr(101 103) Pr
0 6719 0 6719 0 6719

(3 6599) (1 2200) 0 9999 0 8888 0 1111

YY
⎛ ⎞− − −

< < = < <⎜ ⎟
. . .⎝ ⎠

≈ Φ . −Φ . = . − . = . .

 

(c) 165,n =  
22 43

165 0 2606,Y
nY
σσ = = = .  and 

100 98 100Pr ( 98) 1 Pr ( 98) 1 Pr
0 2606 0 2606

1 ( 3 9178) (3 9178) 1 0000 (rounded to four decimal places)

YY Y
⎛ ⎞− −

> = − ≤ = − ≤⎜ ⎟
. .⎝ ⎠

≈ −Φ − . = Φ . = . .

 

2. Each random draw iY  from the Bernoulli distribution takes a value of either zero or one with 
probability Pr ( 1)iY p= =  and Pr ( 0) 1 .iY p= = −  The random variable iY  has mean 

( ) 0 Pr( 0) 1 Pr( 1) ,iE Y Y Y p= × = + × = =  

 and variance 
2

2 2

2 2

var( ) [( ) ]

(0 ) Pr( 0) (1 ) Pr( 1)

(1 ) (1 ) (1 )

i i YY E Y

p Y p Yi i
p p p p p p

μ= −

= − × = + − × =

= − + − = − .
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(a) The fraction of successes is 

1( 1)(success)ˆ
n
i ii Y# Y#p Y

n n n
=∑=

= = = = .  

(b) 

1

1 1

1 1ˆ( ) ( )
n n n
i i

i
i i

Y
E p E E Y p p

n n n
=

= =

⎛ ⎞∑
= = = = .⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  

(c) 

1
2 2

1 1

1 1 (1 )ˆvar( ) var var( ) (1 )
n n n
i i

i
i i

Y p pp Y p p
n nn n
=

= =

⎛ ⎞∑ −
= = = − = .⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  

The second equality uses the fact that 1Y , …, Yn are i.i.d. draws and cov( , ) 0,i jY Y =  for .i j≠  

3. Denote each voter’s preference by .Y  1Y =  if the voter prefers the incumbent and 0Y =  if the voter 
prefers the challenger. Y is a Bernoulli random variable with probability Pr ( 1)Y p= =  and 
Pr ( 0) 1 .Y p= = −  From the solution to Exercise 3.2, Y  has mean p  and variance (1 ).p p−  
(a) 215

400
ˆ 0 5375.p = = .  

(b) · ˆ ˆ(1 ) 0.5375 (1 0.5375) 4
400ˆvar( ) 6 2148 10 .p p

np − × − −= = = . ×  The standard error is SE
1
2ˆ ˆ( ) (var( )) 0 0249.p p= = .  

(c) The computed t-statistic is 

0ˆ 0 5375 0 5 1 506
ˆSE( ) 0 0249
pact p

t
p
μ ,− . − .

= = = . .
.

 

Because of the large sample size ( 400),n =  we can use Equation (3.14) in the text to get the 
p-value for the test 0 0 5H p: = .  vs. 1 0 5 :H p: ≠ .  

-value 2 ( | |) 2 ( 1 506) 2 0 066 0 132actp t= Φ − = Φ − . = × . = . .  

(d) Using Equation (3.17) in the text, the p-value for the test 0 0 5H p: = .  vs. 1 0 5H p: > .  is 

-value 1 ( ) 1 (1 506) 1 0 934 0 066actp t= −Φ = −Φ . = − . = . .  

(e) Part (c) is a two-sided test and the p-value is the area in the tails of the standard normal 
distribution outside ± (calculated t-statistic). Part (d) is a one-sided test and the p-value is the area 
under the standard normal distribution to the right of the calculated t-statistic. 

(f) For the test 0 0 5H p: = .  vs. 1 0 5,H p: > .  we cannot reject the null hypothesis at the 5% 
significance level. The p-value 0.066 is larger than 0.05. Equivalently the calculated t-statistic 
1 506.  is less than the critical value 1.645 for a one-sided test with a 5% significance level. The 
test suggests that the survey did not contain statistically significant evidence that the incumbent 
was ahead of the challenger at the time of the survey. 
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4. Using Key Concept 3.7 in the text 
(a) 95% confidence interval for p is 

ˆ ˆ1.96 ( ) 0.5375 1.96 0.0249 (0.4887,0.5863).p SE p± = ± × =  

(b) 99% confidence interval for p is 

ˆ ˆ2.57 ( ) 0.5375 2.57 0.0249 (0.4735,0.6015).p SE p± = ± × =  

(c) The interval in (b) is wider because of a larger critical value due to a lower significance level. 
(d) Since 0.50 lies inside the 95% confidence interval for p, we cannot reject the null hypothesis at a 

5% significance level. 

5. (a) (i) The size is given by ˆPr(| 0.5| .02),p − > where the probability is computed assuming that 
0.5.p =  

ˆ ˆPr(| 0.5| .02) 1 Pr( 0.02 0.5 .02)
ˆ0.02 0.5 0.021 Pr

.5 .5/1055 .5 .5/1055 .5 .5/1055
ˆ 0.51 Pr 1.30 1.30

.5 .5/1055
0.19

p p
p

p

− > = − − ≤ − ≤

− −⎛ ⎞
= − ≤ ≤⎜ ⎟

× × ×⎝ ⎠
−⎛ ⎞

= − − ≤ ≤⎜ ⎟
×⎝ ⎠

=

 

 where the final equality using the central limit theorem approximation 
(ii) The power is given by ˆPr(| 0.5| .02),p− >  where the probability is computed assuming that 

p = 0.53. 

ˆ ˆPr(| 0.5| .02) 1 Pr( 0.02 0.5 .02)
ˆ0.02 0.5 0.021 Pr

.53 .47/1055 .53 .47/1055 .53 .47/1055
ˆ0.05 0.53 0.011 Pr

.53 .47/1055 .53 .47/1055 .53 .47/1055
ˆ 0.531 Pr 3.25

.53 .47/1055

p p
p

p

p

− > = − − ≤ − ≤

− −⎛ ⎞
= − ≤ ≤⎜ ⎟

× × ×⎝ ⎠
− − −⎛ ⎞

= − ≤ ≤⎜ ⎟
× × ×⎝ ⎠

−
= − − ≤ ≤

×
0.65

0.74

⎛ ⎞
−⎜ ⎟

⎝ ⎠
=

 

 where the final equality using the central limit theorem approximation. 
(b) (i) 0.54 0.5

0.54 0.46/1055
2.61, Pr(| | 2.61) .01,t t−

×
= = > = so that the null is rejected at the 5% level. 

(ii) Pr( 2.61) .004,t > = so that the null is rejected at the 5% level. 

(iii) 0.54 1.96 0.54 0.46 /1055 0.54 0.03, or 0.51 to 0.57.± × = ±  

(iv) 0.54 2.58 0.54 0.46 /1055 0.54 0.04, or 0.50 to 0.58.± × = ±  

(v) 0.54 0.67 0.54 0.46 /1055 0.54 0.01, or 0.53 to 0.55.± × = ±  
(c) (i) The probability is 0.95 is any single survey, there are 20 independent surveys, so the 

probability if 200.95 0.36=  
(ii) 95% of the 20 confidence intervals or 19. 
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(d) The relevant equation is ˆ1.96 SE( ) .01or 1.96 (1 ) / .01.p p p n× < × − <  Thus n must be chosen so 

that 
2

2
1.96 (1 )

.01
,p pn −>  so that the answer depends on the value of p. Note that the largest value that 

p(1 − p) can take on is 0.25 (that is, p = 0.5 makes p(1 − p) as large as possible). Thus if 
2

2
1.96 0.25

.01
9604,n ×> =  then the margin of error is less than 0.01 for all values of p. 

6. (a) No. Because the p-value is less than 5%, μ = 5 is rejected at the 5% level and is therefore not 
contained in the 95% confidence interval. 

(b) No. This would require calculation of the t-statistic for μ = 5, which requires Y and SE ( ).Y  Only 
one the p-value for μ = 5 is given in the problem. 

7. The null hypothesis in that the survey is a random draw from a population with p = 0.11. The 
t-statistic is ˆ 0.11

ˆ( ) ,p
SE pt −=  where ˆ ˆ ˆ( ) (1 )/ .SE p p p n= −  (An alternative formula for SE( p̂ ) is 

0.11 (1 0.11) / ,n× −  which is valid under the null hypothesis that 0.11).p =  The value of the t-statistic 
is −2.71, which has a p-value of that is less than 0.01. Thus the null hypothesis 0.11p = (the survey is 
unbiased) can be rejected at the 1% level. 

8 ( )123
1000

1110 1.96±  or 1110 7.62.±  

9. Denote the life of a light bulb from the new process by .Y  The mean of Y  is μ  and the standard 
deviation of Y  is 200Yσ =  hours. Y  is the sample mean with a sample size 100.n =  The standard 
deviation of the sampling distribution of Y  is 200

100
20Y

Y n
σσ = = =  hours. The hypothesis test is 

0 : 2000H μ =  vs. 1 2000 .H μ: >  The manager will accept the alternative hypothesis if 2100Y >  
hours. 
(a) The size of a test is the probability of erroneously rejecting a null hypothesis when it is valid. 

The size of the manager’s test is 

7

size Pr( 2100| 2000) 1 Pr( 2100| 2000)

2000 2100 20001 Pr | 2000
20 20

1 (5) 1 0 999999713 2 87 10

Y Y

Y

μ μ

μ

−

= > = = − ≤ =

⎛ ⎞− −
= − ≤ =⎜ ⎟

⎝ ⎠
= −Φ = − . = . × .

 

Pr( 2100| 2000)Y μ> =  means the probability that the sample mean is greater than 2100 hours 
when the new process has a mean of 2000  hours. 

(b) The power of a test is the probability of correctly rejecting a null hypothesis when it is invalid. 
We calculate first the probability of the manager erroneously accepting the null hypothesis when 
it is invalid: 

2150 2100 2150Pr( 2100| 2150) Pr | 2150
20 20

( 2 5) 1 (2 5) 1 0 9938 0 0062

YYβ μ μ
⎛ ⎞− −

= ≤ = = ≤ =⎜ ⎟
⎝ ⎠

= Φ − . = −Φ . = − . = . .

 

The power of the manager’s testing is 1 1 0 0062 0 9938.β− = − . = .  
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(c) For a test with 5%, the rejection region for the null hypothesis contains those values of the 
t-statistic exceeding 1.645. 

2000 1 645 2000 1 645 20 2032 9
20

act
act actYt Y

−
= > . ⇒ > + . × = . .  

The manager should believe the inventor’s claim if the sample mean life of the new product is 
greater than 2032.9 hours if she wants the size of the test to be 5%. 

10. (a) New Jersey sample size 1 100,n =  sample average 1 58,Y =  sample standard deviation 
1

8.s =  

The standard error of 1Y  is SE 1

1

8
1 100

( ) 0 8.s
nY = = = .  The 95% confidence interval for the mean 

score of all New Jersey third graders is 

1 11 1 96SE( ) 58 1 96 0 8 (56 432 59 568)Y Yμ = ± . = ± . × . = . , . .  

(b) Iowa sample size 2 200,n =  sample average 2 62,Y =  sample standard deviation 2 11.s =  The 

standard error of 1 2Y Y−  is SE
2 2
1 2

1 2

64 121
1 2 100 200( ) 1 1158.s s

n nY Y− = + = + = .  The 90% confidence 

interval for the difference in mean score between the two states is 

1 2 1 21 2 ( ) 1 64SE( )
(58 62) 1 64 1 1158 ( 5 8299 2 1701)
Y Y Y Yμ μ− = − ± . −

= − ± . × . = − . ,− . .
 

(c) The hypothesis tests for the difference in mean scores is 

0 1 2 1 1 20 vs 0H Hμ μ μ μ: − = . : − ≠ .  

From part (b) the standard error of the difference in the two sample means is 
SE 1 2( ) 1 1158.Y Y− = .  The t-statistic for testing the null hypothesis is 

1 2

1 2

58 62 3 5849
SE( ) 1 1158

act Y Yt
Y Y
− −

= = = − . .
− .

 

Use Equation (3.14) in the text to compute the p-value: 

value 2 ( | |) 2 ( 3 5849) 2 0 00017 0 00034actp t− = Φ − = Φ − . = × . = . .  

Because of the extremely low p-value, we can reject the null hypothesis with a very high degree 
of confidence. That is, the population means for Iowa and New Jersey students are different. 

11. Assume that n  is an even number. Then Y% is constructed by applying a weight of 1
2  to the 2

n  “odd” 
observations and a weight of 3

2  to the remaining 2
n  observations. 

1 2 1

1 2 12

2
2 2

2

1 1 3 1 3( ) ( ) ( ) ( ) ( )
2 2 2 2

1 1 3
2 2 2 2

1 1 9 1 9var( ) var( ) var( ) var( ) var( )
4 4 4 4

1 1 9 1 25
4 2 4 2

n n

Y Y Y

n n

Y
Y Y

E Y E Y E Y E Y E Y
n

n n
n

Y Y Y Y Y
n

n n
n n

μ μ μ

σ
σ σ

⎛ ⎞
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

−

= + + +

⎛ ⎞= ⋅ ⋅ + ⋅ ⋅ =⎜ ⎟
⎝ ⎠
⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

⎛ ⎞= ⋅ ⋅ + ⋅ ⋅ = . .⎜ ⎟
⎝ ⎠

% L

% L
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12. Sample size for men 1 100,n =  sample average 1 3100,Y =  sample standard deviation 
1

200.s =  

Sample size for women 2 64,n =  sample average 2 2900,Y =  sample standard deviation 2 320.s =  

The standard error of 1 2Y Y−  is SE
2 2 2 21 2

1 2

200 320
1 2 100 64( ) 44 721.s s

n nY Y− = + = + = .  

(a) The hypothesis test for the difference in mean monthly salaries is 

0 1 2 1 1 20 vs 0H Hμ μ μ μ: − = . : − ≠ .  

The t-statistic for testing the null hypothesis is 

1 2

1 2

3100 2900 4 4722
SE( ) 44 721

act Y Yt
Y Y
− −

= = = . .
− .

 

Use Equation (3.14) in the text to get the p-value: 
6 6-value 2 ( | |) 2 ( 4 4722) 2 (3 8744 10 ) 7 7488 10actp t − −= Φ − = Φ − . = × . × = . × .  

The extremely low level of p-value implies that the difference in the monthly salaries for men 
and women is statistically significant. We can reject the null hypothesis with a high degree of 
confidence. 

(b) From part (a), there is overwhelming statistical evidence that mean earnings for men differ from 
mean earnings for women. To examine whether there is gender discrimination in the 
compensation policies, we take the following one-sided alternative test 

0 1 2 1 1 20 vs 0H Hμ μ μ μ: − = . : − > .  

With the t-statistic 4 4722,actt = .  the p-value for the one-sided test is: 
6-value 1 ( ) 1 (4 4722) 1 0 999996126 3 874 10actp t −= −Φ = −Φ . = − . = . × .  

With the extremely small p-value, the null hypothesis can be rejected with a high degree of 
confidence. There is overwhelming statistical evidence that mean earnings for men are greater 
than mean earnings for women. However, by itself, this does not imply gender discrimination by 
the firm. Gender discrimination means that two workers, identical in every way but gender, are 
paid different wages. The data description suggests that some care has been taken to make sure 
that workers with similar jobs are being compared. But, it is also important to control for 
characteristics of the workers that may affect their productivity (education, years of experience, 
etc.). If these characteristics are systematically different between men and women, then they may 
be responsible for the difference in mean wages. (If this is true, it raises an interesting and 
important question of why women tend to have less education or less experience than men, but 
that is a question about something other than gender discrimination by this firm.) Since these 
characteristics are not controlled for in the statistical analysis, it is premature to reach a 
conclusion about gender discrimination. 

13. (a) Sample size 420,n =  sample average 654 2,Y = .  sample standard deviation 19 5.Ys = .  The 
standard error of Y  is SE 19 5

420
( ) 0 9515.Ys

n
Y .= = = .  The 95% confidence interval for the mean test 

score in the population is 

1 96SE( ) 654 2 1 96 0 9515 (652 34 656 06)Y Yμ = ± . = . ± . × . = . , . .  
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(b) The data are: sample size for small classes 1 238,n =  sample average 1 657 4,Y = .  sample 
standard deviation 

1
19 4;s = .  sample size for large classes 2 182,n =  sample average 2 650 0,Y = .  

sample standard deviation 2 17 9.s = .  The standard error of 1 2Y Y−  is 
2 2 2 21 2

1 2

19 4 17 9
1 2 238 182( ) 1 8281.s s

n nSE Y Y . .− = + = + = .  The hypothesis tests for higher average scores in 

smaller classes is 

0 1 2 1 1 20 vs 0H Hμ μ μ μ: − = . : − > .  

The t-statistic is 

1 2

1 2

657 4 650 0 4 0479
SE( ) 1 8281

act Y Yt
Y Y
− . − .

= = = . .
− .

 

The p-value for the one-sided test is: 
5-value 1 ( ) 1 (4 0479) 1 0 999974147 2 5853 10actp t −= −Φ = −Φ . = − . = . × .  

With the small p-value, the null hypothesis can be rejected with a high degree of confidence. 
There is statistically significant evidence that the districts with smaller classes have higher 
average test scores. 

14. We have the following relations: 1 0 0254in m= .  (or 1 39 37 ),m in= .  1 0 4536lb kg= .  
(or 1 2.2046 ).kg lb=  The summary statistics in the metric system are 70 5 0 0254 1 79 ;X m= . × . = .  

158 0 4536 71 669 ;Y kg= × . = .  1 8 0 0254 0 0457 ;Xs m= . × . = .  14 2 0 4536 6 4411 ;Ys kg= . × . = .  
21 73 0 0254 0 4536 0 2504 ,XYs m kg= . × . × . = . ×  and 0 85.XYr = .  

15. Let p denote the fraction of the population that preferred Bush. 

(a) ˆ ˆ405/755 0.536; SE ( ) .0181;p p= = =  95% confidence interval is ˆ ˆ1.96 SE ( ) or 0.536 .036p p± ±  
(b) ˆ ˆ378/756 0.500; SE( ) .0182;p p= = =  95% confidence interval is ˆ ˆ1.96 SE( ) or 0.500 0.36p p± ±  

(c) 0.536(1 0.536) 0.5(1 0.5)
755 756ˆ ˆ ˆ ˆ0.036; SE( )Sep Oct Sep Octp p p p − −− = − = +  (because the surveys are independent. 

The 95% confidence interval for the change in p is ˆ ˆ ˆ ˆ( ) 1.96 SE( )Sep Oct Sep Octp p p p− ± −  or 

0.036 .050.±  The confidence interval includes ( ) 0.0,Sep Octp p− =  so there is not statistically 
significance evidence of a change in voters’ preferences. 

16. (a) The 95% confidence interval if 108
453

1.96 SE( ) or 1013 1.96 or 1013 9.95.Y Y± ± × ±  

(b) The confidence interval in (a) does not include μ = 0, so the null hypothesis that μ = 0 (Florida 
students have the same average performance as students in the U.S.) can be rejected at the 5% 
level. 

(c) (i) The 95% confidence interval is 1.96 ( )prep Non prep prep Non prepY Y SE Y Y− −− ± −  where 
2 2 2 295 108

503 453SE( ) 6.61;prep non prep

prep non prep

S S
prep Non prep n nY Y −

−−− = + = + =  the 95% confidence interval is 

(1019 1013) 12.96  6 12.96.or− ± ±  
 (ii) No. The 95% confidence interval includes 0.prep non prepμ μ −− =  
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(d) (i) Let X denote the change in the test score. The 95% confidence interval for μX is 
60
453

1.96 ( ), where SE( ) 2.82;X SE X X± = =  thus, the confidence interval is 9 5.52.±  

 (ii) Yes. The 95% confidence interval does not include μX = 0. 
 (iii) Randomly select n students who have taken the test only one time. Randomly select one half 

of these students and have them take the prep course. Administer the test again to all of the n 
students. Compare the gain in performance of the prep-course second-time test takers to the 
non-prep-course second-time test takers. 

17. (a) The 95% confidence interval is , 2004 ,1992 , 2004 ,19921.96 SE( )m m m mY Y Y Y− ± −  where 
2 2 2 2, 2004 , 1992

, 2004 , 1992

10.39 8.70
, 2004 ,1992 1901 1592SE( ) 0.32;m m

m m

S S
m m n nY Y− = + = + =  the 95% confidence interval is     

(21.99 − 20.33) ± 0.63 or 1.66 ± 0.63. 
(b) The 95% confidence interval is , 2004 , 1992 , 2004 ,19921.96 SE( )w w w wY Y Y Y− ± −  where 

2 2 2 2, 2004 , 1992

, 2004 , 1992

8.16 6.90
, 2004 ,1992 1739 1370SE( ) 0.27;w w

w w

S S
w w n nY Y− = + = + =  the 95% confidence interval is 

(18.47 17.60) 0.53− ±  or 0.87 ± 0.53. 
(c) The 95% confidence interval is 

, 2004 , 1992 , 2004 , 1992 , 2004 ,1992 , 2004 ,1992( ) ( ) 1.96 SE[( ) ( )],m m w w m m w wY Y Y Y Y Y Y Y− − − ± − − − where 
2 2 2 2 2 2 2 2, 2004 , 1992 , 2004 , 2004

, 2004 , 1992 , 2004 , 2004

10.39 8.70 8.16 6.90
, 2004 , 1992 , 2004 , 1992 1901 1592 1739 1370SE[( ) ( )] 0.42.m m w w

m m w w

S S S S
m m w w n n n nY Y Y Y− − − = + + + = + + + =

The 95% confidence interval is (21.99 − 20.33) − (18.47 − 17.60) ± 1.96 × 0.42 or 0.79 ± 0.82. 

18. 1 nY … Y, ,  are i.i.d. with mean Yμ  and variance 2 .Yσ  The covariance cov ( , ) 0,j iY Y =  .j i≠  The 

sampling distribution of the sample average Y  has mean Yμ  and variance var
22( ) .Y

nYY σσ= =  

(a) 
2 2

2 2

2 2

[( ) ] {[( ) ( )] }

[( ) 2( )( ) ( ) ]

[( ) ] 2 [( )( )] [( ) ]
var( ) 2cov( , ) var( ).

i i Y Y

i Y i Y Y Y

i Y i Y Y Y

i i

E Y Y E Y Y

E Y Y Y Y

E Y E Y Y E Y
Y Y Y Y

μ μ

μ μ μ μ

μ μ μ μ

− = − − −

= − − − − + −

= − − − − + −

= − +
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(b) 

1

1

2

2

2

cov( ) [( )( )]

( )

( )
( )

1 1[( ) [( )( )]

1 1 cov( , )

Y i Y

n
j j

Y i Y

n
j j Y

i Y

I Y j Y i Y
j i

Y j i
j i

Y

Y Y E Y Y

Y
E Y

n

Y
E Y

n

E Y E Y Y
n n

Y Y
n n

n

μ μ

μ μ

μ
μ

μ μ μ

σ

σ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟=⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

≠

≠

, = − −

∑
= − −

⎛ ⎞∑ −
= −⎜ ⎟⎜ ⎟

⎝ ⎠

= − + − −

= +

= .

∑

∑

 

(c) 

2 2

1

2

1

1

2 2
2

1

2

1

2

1 ( )
1

1 [( ) ]
1

1 [var ( ) 2cov( ) var( )]
1

1 2
1

1 1
1

.

n

Y i
i

n

i
i

n

i i
i

n
Y Y

Y
i

n

Y
i

Y

E s E Y Y
n

E Y Y
n

Y Y Y Y
n

n n n

n
n n

σ σ
σ

σ

σ

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

=

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎝ ⎠

⎛ ⎞
= −⎜ ⎟−⎝ ⎠

= −
−

= − , +
−

⎡ ⎤
= − × +⎢ ⎥− ⎣ ⎦

−
=

−

=

∑

∑

∑

∑

∑

 

19. (a) No. 2 2 2 2( ) and ( ) for .i Y Y i j YE Y E YY i jσ μ μ= + = ≠ Thus 

2
2 2

2 2
1 1 1

2 2

1 1 1( ) ( ) ( )

1

n n n

i i i j
i i i j i

Y Y

E Y E Y E Y E YY
n n n

n
μ σ

= = = ≠

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠

= +

∑ ∑ ∑∑
 

(b) Yes. If Y gets arbitrarily close to μY with probability approaching 1 as n gets large, then 2Y gets 
arbitrarily close to 2

Yμ  with probability approaching 1 as n gets large. (As it turns out, this is an 
example of the “continuous mapping theorem” discussed in Chapter 17.) 
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20. Using analysis like that in equation (3.29) 

1

1

1 ( )( )
1

1 ( )( ) ( )( )
1 1

n

XY i i
i

n

i X i Y X Y
i

s X X Y Y
n

n nX Y X Y
n n n

μ μ μ μ

=

=

= − −
−

⎡ ⎤ ⎛ ⎞= − − − − −⎜ ⎟⎢ ⎥− −⎝ ⎠⎣ ⎦

∑

∑
 

 because p
XX μ→  and p

YY μ→  the final term converges in probability to zero. 

 Let ( )( ).i i x i YW X Yμ μ= − −  Note Wi is iid with mean σXY and second moment 
2 2[( ) ( ) ].i X i YE X Yμ μ− − But 2 2 4 4[( ) ( ) ] ( ) ( )i X i Y i X i YE X Y E X E Yμ μ μ μ− − ≤ − −  from the Cauchy-

Schwartz inequality. Because X and Y have finite fourth moments, the second moment of Wi is finite, 

so that it has finite variance. Thus 1
1 ( ) .pn

i i i XYn W E W σ= → =∑  Thus, p
XY XYs σ→ (because the term 

1 1n
n− → ). 

21. Set nm = nw = n, and use equation (3.19) write the squared SE of m wY Y−  as 

2 2
1 1

2

2 2
1 1

1 1( ) ( )
( 1) ( 1)[ ( )]

( ) ( ) .
( 1)

n n
i mi m i wi w

m w

n n
i mi m i wi w

Y Y Y Y
n nSE Y Y

n n

Y Y Y Y
n n

= =

= =

∑ − ∑ −
− −− = +

∑ − + ∑ −
=

−

 

 Similary, using equation (3.23) 

2 2
1 1

2

2 2
1 1

1 1( ) ( )
2( 1) ( 1)

[ ( )]
2

( ) ( ) .
( 1)

n n
i mi m i wi w

pooled m w

n n
i mi m i wi w

Y Y Y Y
n n

SE Y Y
n

Y Y Y Y
n n

= =

= =

⎡ ⎤
∑ − + ∑ −⎢ ⎥− −⎣ ⎦− =

∑ − + ∑ −
=

−

 



Chapter 4 
Linear Regression with One Regressor 

 Solutions to Exercises 
1. (a) The predicted average test score is 

· 520 4 5 82 22 392 36TestScore = . − . × = .  

(b) The predicted change in the classroom average test score is 

· ( 5 82 19) ( 5 82 23) 23 28TestScoreΔ = − . × − − . × = .  

(c) Using the formula for
0β̂ in Equation (4.8), we know the sample average of the test scores across 

the 100 classrooms is 

0 1
ˆ ˆ 520 4 5 82 21 4 395 85TestScore CSβ β= + × = . − . × . = . .  

(d) Use the formula for the standard error of the regression (SER) in Equation (4.19) to get the sum 
of squared residuals: 

2 2( 2) (100 2) 11 5 12961SSR n SER= − = − × . = .  

Use the formula for 2R  in Equation (4.16) to get the total sum of squares: 

2 2

12961 13044
1 1 0 08
SSRTSS

R
= = = .

− − .
 

The sample variance is 2
Ys =  TSS 13044

1 99 131 8.n− = = .  Thus, standard deviation is 2 11 5.Y Ys s= = .  

2. The sample size 200.n =  The estimated regression equation is 

· 2(2 15) 99 41 (0 31) 3 94 0 81 SER 10 2Weight Height R= . − . + . . , = . , = . .  

(a) Substituting 70,  65, and 74Height =  inches into the equation, the predicted weights are 176.39, 
156.69, and 192.15 pounds. 

(b) · 3 94 3 94 1 5 5 91.Weight HeightΔ = . ×Δ = . × . = .  
(c) We have the following relations: 1 2 54 and 1 0 4536 .in cm lb kg= . = .  Suppose the regression 

equation in the centimeter-kilogram space is 

·
0 1ˆ ˆWeight Heightγ γ= + . 

The coefficients are 0ˆ 99 41 0 4536 45 092 ;kgγ = − . × . = − .  0 4536
2 541ˆ 3 94 0 7036 kgγ .
.= . × = . per cm. The 

2R  is unit free, so it remains at 2 0 81R = . . The standard error of the regression is 
10 2 0 4536 4 6267 .SER kg= . × . = .  
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3. (a) The coefficient 9.6 shows the marginal effect of Age on AWE; that is, AWE is expected to 
increase by $9.6 for each additional year of age. 696.7 is the intercept of the regression line. It 
determines the overall level of the line. 

(b) SER is in the same units as the dependent variable (Y, or AWE in this example). Thus SER is 
measures in dollars per week. 

(c) R2 is unit free. 
(d) (i) 696.7 9.6 25 $936.7;+ × =  
 (ii) 696.7 9.6 45 $1,128.7+ × =  
(e) No. The oldest worker in the sample is 65 years old. 99 years is far outside the range of the 

sample data. 
(f) No. The distribution of earning is positively skewed and has kurtosis larger than the normal. 
(g) 0 1

ˆ ˆ ,Y Xβ β= −  so that 0 1
ˆ ˆ .Y Xβ β= +  Thus the sample mean of AWE is 696.7 + 9.6 × 41.6 = 

$1,096.06. 

4. (a) ( ) ( ) ,f m fR R R R uβ− = − + so that var 2( ) var( ) var( ) 2 cov( , ).f m f m fR R R R u u R Rβ β− = × − + + × −  

But cov( , ) 0,m fu R R− = thus 2var( ) var( ) var( ).f m fR R R R uβ− = × − + With β > 1, var(R − Rf) > 
var(Rm − Rf), follows because var(u) ≥ 0. 

(b) Yes. Using the expression in (a) 
2var ( ) var ( ) ( 1) var ( ) var( ),f m f m fR R R R R R uβ− − − = − × − + which will be positive if 

2var( ) (1 ) var ( ).m fu R Rβ> − × −  

(c) 7.3% 3.5% 3.8%.m fR R− = − = Thus, the predicted returns are 
ˆ ˆˆ ( ) 3.5% 3.8%f m fR R R Rβ β= + − = + ×  

Kellog: 3.5% 0.24 3.8% 4.4%+ × =  
Waste Management: 3.5% 0.38 3.8% 4.9%+ × =  
Sprint: 3.5% 0.59 3.8% 5.7%+ × =  
Walmart: 3.5% 0.89 3.8% 6.9%+ × =  
Barnes and Noble: 3.5% 1.03 3.8% 7.4%+ × =  
Best Buy: 3.5% 1.8 3.8% 10.3%+ × =  
Microsoft: 3.5% 1.83 3.8% 10.5%+ × =  

5. (a) ui represents factors other than time that influence the student’s performance on the exam 
including amount of time studying, aptitude for the material, and so forth. Some students will 
have studied more than average, other less; some students will have higher than average aptitude 
for the subject, others lower, and so forth. 

(b) Because of random assignment ui is independent of Xi. Since ui represents deviations from 
average E(ui) = 0. Because u and X are independent E(ui|Xi) = E(ui) = 0. 

(c) (2) is satisfied if this year’s class is typical of other classes, that is, students in this year’s class 
can be viewed as random draws from the population of students that enroll in the class. (3) is 
satisfied because 0 ≤ Yi ≤ 100 and Xi can take on only two values (90 and 120). 

(d) (i) 49 0.24 90 70.6;  49 0.24 120 77.8;  49 0.24 150 85.0+ × = + × = + × =  
 (ii) 0.24 10 2.4.× =  
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6. Using ( | ) 0,i iE u X =  we have 

0 1 0 1 0 1( | ) ( | ) ( | ) ( | )i i i i i i i i i iE Y X E X u X E X X E u X Xβ β β β β β= + + = + + = + .  

7. The expectation of 0β̂  is obtained by taking expectations of both sides of Equation (4.8): 

0 1 0 1 1
1

0 1 1 0
1

1ˆ ˆ ˆ( ) ( )

1ˆ( ) ( | )

n

i
i

n

i i
i

E E Y X E X u X
n

E X E u X
n

β β β β β

β β β β

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟=⎝ ⎠

=

⎡ ⎤
= − = + + −⎢ ⎥

⎣ ⎦

= + − + = ,

∑

∑
 

 where the third equality in the above equation has used the facts that 1β̂  is unbiased so 1 1
ˆ( ) 0E β β− =  

and ( | ) 0.i iE u X =  

8. The only change is that the mean of 0β̂  is now β0 + 2. An easy way to see this is this is to write the 
regression model as 

0 1( 2) ( 2).i i iY X uβ β= + + + −  

 The new regression error is (ui − 2) and the new intercept is (β0 + 2). All of the assumptions of Key 
Concept 4.3 hold for this regression model. 

9. (a) With 1 0
ˆ ˆ0, ,Yβ β= =  and 0

ˆˆ .iY Yβ= =  Thus ESS = 0 and R2 = 0. 

(b) If R2 = 0, then ESS = 0, so that îY Y=  for all i. But 0 1
ˆ ˆˆ ,i iY Xβ β= +  so that îY Y=  for all i, which 

implies that 1
ˆ 0,β =  or that Xi is constant for all i. If Xi is constant for all i, then 2

1
( ) 0n

ii
X X

−
− =∑  

and 1β̂  is undefined (see equation (4.7)). 

10. (a) E(ui|X = 0) = 0 and E(ui|X = 1) = 0. (Xi, ui) are i.i.d. so that (Xi, Yi) are i.i.d. (because Yi is a 
function of Xi and ui). Xi is bounded and so has finite fourth moment; the fourth moment is non-
zero because Pr(Xi = 0) and Pr(Xi = 1) are both non-zero. Following calculations like those 
exercise 2.13, ui also has nonzero finite fourth moment. 

(b) var( ) 0.2 (1 0.2) 0.16iX = × − = and 0.2.Xμ =  Also 

2

2 2

var[( ) ] [( ) ]

[( ) | 0] Pr( 0) [( ) | 1] Pr( 1)
i X i i X i

i X i i i i X i i i

X u E X u

E X u X X E X u X X

μ μ

μ μ

− = −

= − = × = + − = × =
 

where the first equality follows because E[(Xi − μX)ui] = 0, and the second equality follows from 
the law of iterated expectations. 

2 2 2 2[( ) | 0] 0.2 1, and [( ) | 1] (1 0.2) 4.i X i i i X i iE X u X E X u Xμ μ− = = × − = = − ×  

Putting these results together 

1

2 2
2
ˆ 2

1 (0.2 1 0.8) ((1 0.2) 4 0.2) 1 21.25
0.16n nβ

σ
× × + − × ×

= =  
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11. (a) The least squares objective function is 2
11

( ) .n
i ii

Y b X
=

−∑  Differentiating with respect to b1 yields 
2

1 1

1

( )
11

2 ( ).
n
i i i

nY b X
i i ib i

X Y b X=∂∑ −
∂ =

= − −∑  Setting this zero, and solving for the least squares estimator 

yields 1
2

1
1

ˆ .
n
i i i
n
i i

X Y
X

β =

=

∑

∑
=  

(b) Following the same steps in (a) yields 1
2

1

( 4)
1

ˆ n
i i i

n
i i

X Y
X

β =

=

∑ −

∑
=  

12. (a) Write 

2 2 2
0 1 1

1 1 1

2

12 2
1 2

1 1

ˆ ˆ ˆˆ( ) ( ) [ ( )]

( )( )ˆ ( )
( )

n n n

i i i
i i i

nn
i i i

i n
i i i

ESS Y Y X Y X X

X X Y Y
X X

X X

β β β

β

= = =

=

= =

= − = + − = −

⎡ ⎤∑ − −⎣ ⎦= − =
∑ −

∑ ∑ ∑

∑
 

 So that 
2

12
2 2 2

1 1 1

2
1

11
2 21 1

1 11 1

2
2

( )( )

( ) ( ) ( )

( )( )

( ) ( )

n
i i i

n n n
i i i i i i

n
i i in

n n
i i i in n

XY
XY

X Y

X X Y YESSR
Y Y X X Y Y

X X Y Y

X X Y Y

s r
s s

=

= = =

=−

= =− −

⎡ ⎤∑ − −⎣ ⎦= =
∑ − ∑ − ∑ −

⎡ ⎤∑ − −⎢ ⎥=
⎢ ⎥∑ − ∑ −⎣ ⎦

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

 

(b) This follows from part (a) because rXY = rYX. 



Chapter 5 
Regression with a Single Regressor: 
Hypothesis Tests and Confidence Intervals 

 Solutions to Exercises 
1 (a) The 95% confidence interval for 1β  is { 5 82 1 96 2 21},− . ± . × .  that is 110 152 1 4884.β− . ≤ ≤ − .  

(b) Calculate the t-statistic: 

1

1

ˆ 0 5 82 2 6335ˆSE( ) 2 21
actt β

β

− − .
= = = − . .

.
 

The p-value for the test 0 1 0H β: =  vs. 1 1 0H β: ≠  is 

-value 2 ( | |) 2 ( 2 6335) 2 0 0042 0 0084actp t= Φ − = Φ − . = × . = . .  

The p-value is less than 0.01, so we can reject the null hypothesis at the 5% significance level, 
and also at the 1% significance level. 

(c) The t-statistic is 

1

1

ˆ ( 5.6) 0 22 0.10ˆSE( ) 2 21
actt β

β

− − .
= = =

.
 

The p-value for the test 0 1: 5.6H β = −  vs. 1 1: 5.6H β ≠ −  is 

-value 2 ( | |) 2 ( 0.10) 0.92actp t= Φ − = Φ − =  

The p-value is larger than 0.10, so we cannot reject the null hypothesis at the 10%, 5% or 1% 
significance level. Because 1 5.6β = −  is not rejected at the 5% level, this value is contained in 
the 95% confidence interval. 

(d) The 99% confidence interval for β0 is {520.4 2.58 20.4},± ×  that is, 0467.7 573.0.β≤ ≤  

2. (a) The estimated gender gap equals $2.12/hour. 
(b) The hypothesis testing for the gender gap is 0 1 0H β: =  vs. 1 1 0.H β: ≠  With a t-statistic 

1

1

ˆ 0 2.12 5.89ˆ( ) 0 36
actt

SE
β

β

−
= = = ,

.
 

the p-value for the test is 

-value 2 ( | |) 2 ( 5.89) 2 0 0000 0 000actp t= Φ − = Φ − = × . = .  (to four decimal places) 

The p-value is less than 0.01, so we can reject the null hypothesis that there is no gender gap at a 
1% significance level. 
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(c) The 95% confidence interval for the gender gap 1β  is {2 12 1 96 0 36},. ± . × .  that is, 
11 41 2.83.β. ≤ ≤  

(d) The sample average wage of women is 0
ˆ 12 52/hour.$β = .  The sample average wage of men is 

0 1
ˆ ˆ $12.52 $2.12 $14.64/hour.β β+ = + =  

(e) The binary variable regression model relating wages to gender can be written as either 

0 1 iWage Male uβ β= + + ,  

or 

0 1 iWage Female vγ γ= + + .  

In the first regression equation, Male  equals 1 for men and 0 for women; 0β  is the population 
mean of wages for women and 0 1β β+  is the population mean of wages for men. In the second 
regression equation, Female  equals 1 for women and 0 for men; 0γ  is the population mean of 
wages for men and 0 1γ γ+  is the population mean of wages for women. We have the following 
relationship for the coefficients in the two regression equations: 

0 0 1

0 1 0

γ β β
γ γ β

= + ,

+ = .
 

Given the coefficient estimates 
0β̂  and 

1β̂ , we have 

0 0 1

1 00 1

ˆ ˆˆ 14.64
ˆ ˆˆ ˆ 2 12

γ β β

γ γβ β

= + = ,

= − = − = − . .
 

Due to the relationship among coefficient estimates, for each individual observation, the OLS 
residual is the same under the two regression equations: .ˆ ˆi iu v= Thus the sum of squared 

residuals, 2
1

,ˆ
n

ii
SSR u=

=∑  is the same under the two regressions. This implies that both 

( )
1
2

1
SSR
nSER −=  and 2 1 SSR

TSSR = −  are unchanged. 

In summary, in regressing Wages  on ,Female  we will get 

· 14.64 2 12Wages Female= − . , 2 0 06 SER 4.2R = . , = .  

3. The 99% confidence interval is 1.5 × {3.94 ± 2.58 × 0.31) or 4.71 lbs ≤ WeightGain ≤ 7.11 lbs. 

4. (a) −3.13 + 1.47 × 16 = $20.39 per hour 
(b) The wage is expected to increase from $14.51 to $17.45 or by $2.94 per hour. 
(c) The increase in wages for college education is β1 × 4. Thus, the counselor’s assertion is that 

β1 = 10/4 = 2.50. The t-statistic for this null hypothesis is 1.47 2.50
0.07 14.71,t −= −  which has a 

p-value of 0.00. Thus, the counselor’s assertion can be rejected at the 1% significance level. A 
95% confidence for β1 × 4 is 4 × (1.47 ± 1.97 × 0.07) or $5.33 ≤ Gain ≤ $6.43. 
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5 (a) The estimated gain from being in a small class is 13.9 points. This is equal to approximately 1/5 
of the standard deviation in test scores, a moderate increase. 

(b) The t-statistic is 13.9
2.5 5.56,actt = =  which has a p-value of 0.00. Thus the null hypothesis is 

rejected at the 5% (and 1%) level. 
(c) 13.9 ± 2.58 × 2.5 = 13.9 ± 6.45. 

6. (a) The question asks whether the variability in test scores in large classes is the same as the 
variability in small classes. It is hard to say. On the one hand, teachers in small classes might able 
so spend more time bringing all of the students along, reducing the poor performance of 
particularly unprepared students. On the other hand, most of the variability in test scores might be 
beyond the control of the teacher. 

(b) The formula in 5.3 is valid for heteroskesdasticity or homoskedasticity; thus inferences are valid 
in either case. 

7. (a) The t-statistic is 3.2
1.5 2.13=  with a p-value of 0.03; since the p-value is less than 0.05, the null 

hypothesis is rejected at the 5% level. 
(b) 3.2 ± 1.96 × 1.5 = 3.2 ± 2.94 
(c) Yes. If Y and X are independent, then β1 = 0; but this null hypothesis was rejected at the 5% level 

in part (a). 
(d) β1 would be rejected at the 5% level in 5% of the samples; 95% of the confidence intervals would 

contain the value β1 = 0. 

8. (a) 43.2 ± 2.05 × 10.2 or 43.2 ± 20.91, where 2.05 is the 5% two-sided critical value from the t28 
distribution. 

(b) The t-statistic is 61.5 55
7.4 0.88,actt −= =  which is less (in absolute value) than the critical value of 

20.5. Thus, the null hypothesis is not rejected at the 5% level. 
(c) The one sided 5% critical value is 1.70; tact is less than this critical value, so that the null 

hypothesis is not rejected at the 5% level. 

9. (a) 1 1
1 2( )nX n Y Y Yβ = + + +L  so that it is linear function of Y1, Y2, …, Yn. 

(b) E(Yi|X1, …, Xn) = β1Xi, thus 

1 1 2 1

1 1 1

1 1( | , , ) ( )| , , )

1 1 ( )

n n n

n

E X X E Y Y Y X X
X n

X X
X n

β

β β

= + + +

= + + =

K L K

L
 

10. Let n0 denote the number of observation with X = 0 and n1 denote the number of observations with 
X = 1; note that 11

;n
ii

X n
=

=∑  1| ;X n n=  
1

1
11
;n

i in i
X Y Y

=
=∑  

( )2
1 01 12 2 2

1 11 1
( ) 1 ;n n n nn n

i i n n ni i
X X X nX n n

= =
− = − = − = − =∑ ∑  1 1 0 0 1

,n
ii

n Y n Y Y
=

+ =∑  so that 

01
1 0

nn
n nY Y Y= +  
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 From the least squares formula 

1 1 1 1
1 2 2

1 1 1 0

01
1 1 0 1 0

0 0

( )( ) ( )ˆ
( ) ( ) |

( )

n n n
i i i i i i i i i

n n
i i i i

X X Y Y X Y Y X Y Yn
X X X X n n n

nnn nY Y Y Y Y Y Y
n n n n

β = = =

= =

∑ − − ∑ − ∑ −
= = =

∑ − ∑ −

⎛ ⎞= − = − − = −⎜ ⎟
⎝ ⎠

 

 and 0 1 01 1
0 1 0 1 1 0 0 0

ˆ ˆ ( )n n nn nY X Y Y Y Y Y Y
n n n n

β β +⎛ ⎞= − = + − − = =⎜ ⎟
⎝ ⎠

 

11. Using the results from 5.10, 0
ˆ

mYβ =  and 1
ˆ .w mY Yβ = −  From Chapter 3, SE( ) m

m

S
m n

Y =  and 
2 2

SE( ) .m w

m w

s s
w m n nY Y− = +  Plugging in the numbers 0

ˆ 523.1β =  and 0 1
ˆ ˆSE( ) 6.22; 38.0β β= = −  and 

1̂SE( ) 7.65.β =  

12. Equation (4.22) gives 

( ) ( )0

2
ˆ 2 22

var ( )
where 1i i x

i i
ii

H u
H X

E Xn E H
β

μ
σ = , = − .

⎡ ⎤
⎣ ⎦

 

 Using the facts that ( | ) 0i iE u X =  and var 2( | )i i uu X σ=  (homoskedasticity), we have 

( ) ( )

( )

2 2

2

( ) ( ) [ ( | )]
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x x
i i i i i i i i i

i i

x
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E H u E u X u E u E X E u X
E X E X

E X

μ μ

μ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

= − = −

= − × = ,

 

 and 
2

2
2

2

2 2 2 2
2 2
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2 2
2 2
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x x
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 Because ( ) 0,i iE H u =  var 2( ) [( ) ]i i i iH u E H u= , so 
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( )
2

2 2
2

var ( ) [( ) ] 1 x
i i i i u
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 We can also get 
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 Thus 
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13. (a) Yes 
(b) Yes 
(c) They would be unchanged 
(d) (a) is unchanged; (b) is no longer true as the errors are not conditionally homosckesdastic. 

14. (a) From Exercise (4.11), ˆ
i ia Yβ =∑  where 

2
1

i
n

jj

X
i X

a
=

=
∑

. Since the weights depend only on iX  but 

not on iY , β̂  is a linear function of Y. 

(b) 1 1
1 2

1

( | , , )ˆ( | , , )
n
i i i n

n n
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X E u X X
E X X

X
β β β=

=

∑
= + =

∑
KK  since 1( | , , ) 0i nE u X X =K  

(c) 
2 2

1 1
1 2 22

11

( | , , )ˆ( | , , )
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i i i n

n nn
i ji j

X Var u X X
Var X X

XX

σβ =

==

∑
= =

∑⎡ ⎤∑⎣ ⎦

KK  

(d) This follows the proof in the appendix. 

15. Because the samples are independent, ,1
ˆ

mβ  and ,1
ˆ

wβ  are independent. Thus 

,1 ,1 ,1 ,1
ˆ ˆ ˆ ˆvar ( ) var ( ) var( ).m w m wβ β β β− = + ,1

ˆVar ( )mβ  is consistently estimated as 2
,1

ˆ[ ( )]mSE β  and 

,1
ˆVar ( )wβ  is consistently estimated as 2

,1
ˆ[ ( )] ,wSE β  so that ,1 ,1

ˆ ˆvar( )m wβ β−  is consistently estimated 

by 2 2
,1 ,1

ˆ ˆ[ ( )] [ ( )] ,m wSE SEβ β+  and the result follows by noting the SE is the square root of the 
estimated variance. 



Chapter 6 
Linear Regression with Multiple Regressors 

 Solutions to Exercises 
1. By equation (6.15) in the text, we know 

2 211 (1 ).
1

nR R
n k

−
= − −

− −
 

 Thus, that values of 2R  are 0.175, 0.189, and 0.193 for columns (1)–(3). 

2. (a) Workers with college degrees earn $5.46/hour more, on average, than workers with only high 
school degrees. 

(b) Men earn $2.64/hour more, on average, than women. 

3. (a) On average, a worker earns $0.29/hour more for each year he ages. 
(b) Sally’s earnings prediction is 4 40 5 48 1 2 62 1 0 29 29 15 67. + . × − . × + . × = .  dollars per hour. Betsy’s 

earnings prediction is 4 40 5 48 1 2 62 1 0 29 34 17 12. + . × − . × + . × = .  dollars per hour. The difference 
is 1.45 

4. (a) Workers in the Northeast earn $0.69 more per hour than workers in the West, on average, 
controlling for other variables in the regression. Workers in the Northeast earn $0.60 more per 
hour than workers in the West, on average, controlling for other variables in the regression. 
Workers in the South earn $0.27 less than workers in the West. 

(b) The regressor West is omitted to avoid perfect multicollinearity. If West is included, then the 
intercept can be written as a perfect linear function of the four regional regressors. Because of 
perfect multicollinearity, the OLS estimator cannot be computed. 

(c) The expected difference in earnings between Juanita and Jennifer is 0 27 0 6 0 87.− . − . = − .  

5. (a) $23,400 (recall that Price is measured in $1000s). 
(b) In this case ΔBDR = 1 and ΔHsize = 100. The resulting expected change in price is 23.4 + 0.156 × 

100 = 39.0 thousand dollars or $39,000. 
(c) The loss is $48,800. 
(d) From the text 2 21

11 (1 ),n
n kR R−
− −= − −  so 2 21

11 (1 ),n k
nR R− −
−= − −  thus, R2 = 0.727. 

6. (a) There are other important determinants of a country’s crime rate, including demographic 
characteristics of the population. 

(b) Suppose that the crime rate is positively affected by the fraction of young males in the 
population, and that counties with high crime rates tend to hire more police. In this case, the size 
of the police force is likely to be positively correlated with the fraction of young males in the 
population leading to a positive value for the omitted variable bias so that 1 1

ˆ .β β>  
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7. (a) The proposed research in assessing the presence of gender bias in setting wages is too limited. 
There might be some potentially important determinants of salaries: type of engineer, amount of 
work experience of the employee, and education level. The gender with the lower wages could 
reflect the type of engineer among the gender, the amount of work experience of the employee, 
or the education level of the employee. The research plan could be improved with the collection 
of additional data as indicated and an appropriate statistical technique for analyzing the data 
would be a multiple regression in which the dependent variable is wages and the independent 
variables would include a dummy variable for gender, dummy variables for type of engineer, 
work experience (time units), and education level (highest grade level completed). The potential 
importance of the suggested omitted variables makes a “difference in means” test inappropriate 
for assessing the presence of gender bias in setting wages. 

(b) The description suggests that the research goes a long way towards controlling for potential 
omitted variable bias. Yet, there still may be problems. Omitted from the analysis are 
characteristics associated with behavior that led to incarceration (excessive drug or alcohol use, 
gang activity, and so forth), that might be correlated with future earnings. Ideally, data on these 
variables should be included in the analysis as additional control variables. 

8. Omitted from the analysis are reasons why the survey respondents slept more or less than average. 
People with certain chronic illnesses might sleep more than 8 hours per night. People with other 
illnesses might sleep less than 5 hours. This study says nothing about the causal effect of sleep on 
mortality. 

9. For omitted variable bias to occur, two conditions must be true: X1 (the included regressor) is 
correlated with the omitted variable, and the omitted variable is a determinant of the dependent 
variable. Since X1 and X2 are uncorrelated, the estimator of β1 does not suffer from omitted variable 
bias. 

10. (a) 

1
1 2 1

2
2
ˆ 2 2

,

1 1
1

u

X X Xnβ

σ
σ

ρ σ

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 

Assume X1 and X2 are uncorrelated: 
1 2

2 0X Xρ =  

1

2
ˆ

1 1 4
400 1 0 6

1 4 1 0.00167
400 6 600

β
σ ⎡ ⎤= ⎢ ⎥−⎣ ⎦

= ⋅ = =

 

(b) With 
1 2, 0.5X Xρ =  

1

2
ˆ 2

1 1 4
400 1 0.5 6

1 1 4 .0022
400 0.75 6

β
σ ⎡ ⎤= ⎢ ⎥−⎣ ⎦

⎡ ⎤= =⎢ ⎥⎣ ⎦
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(c) The statement correctly says that the larger is the correlation between X1 and X2 the larger is the 
variance of 1

ˆ ,β  however the recommendation “it is best to leave X2 out of the regression” is 
incorrect. If X2 is a determinant of Y, then leaving X2 out of the regression will lead to omitted 
variable bias in 1

ˆ .β  

11. (a)  
2

1 1 2 2( )i i iY b X b X− −∑  

(b)  
2

1 1 2 2
1 1 1 2 2

1

2
1 1 2 2

2 1 1 2 2
2

( )
2 ( )

( )
2 ( )

i i i
i i i i

i i i
i i i i

Y b X b X
X Y b X b X

b

Y b X b X
X Y b X b X

b

∂ ∑ − −
= − − −

∂

∂∑ − −
= − − −

∂

∑

∑
 

(c) From (b), 1β̂  satisfies 

1 1 1 1 2
ˆ ˆ( ) 0i i i iX Y X Xβ β− − =∑  

or 1 2 1 2
1 2

1

ˆ
ˆ i i i i

i

X Y X X
X
β

β
∑ − ∑

=
∑

 

and the result follows immediately. 
(d) Following analysis as in (c) 

2 1 1 2
2 2

2

ˆ
ˆ i i i i

i

X Y X X
X
β

β
∑ − ∑

=
∑

 

and substituting this into the expression for 1β̂  in (c) yields 

2 1 1 2
2
2

ˆ

1 1 2

1 2
1

ˆ .
i i i i

i

X Y X X
i i iX

i

X Y X X

X

β

β

−∑ ∑∑ ∑∑=
∑

 

Solving for 1β̂  yields: 

2
2 1 1 2 2

1 2 2 2
1 2 1 2

ˆ
( )

i i i i i i i

i i i i

X X Y X X X Y
X X X X

β
∑ ∑ − ∑ ∑

=
∑ ∑ − ∑

 

(e) The least squares objective function is 2
0 1 1 2 2( )i i iY b b X b X− − −∑  and the partial derivative with 

respect to b0 is 
2

0 1 1 2 2
0 1 1 2 2

0

( )
2 ( ).i i i

i i i

Y b b X b X
Y b b X b X

b
∂∑ − − −

= − − − −
∂ ∑  

Setting this to zero and solving for 0β̂  yields: 0 1 1 2 2
ˆ ˆ ˆ .Y X Xβ β β= − −  
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(f)  

2
1 2 1 2 1 1

1

2
1 1 1 2 1 2

1 2 1 2
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(g) 
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Chapter 7 
Hypothesis Tests and Confidence Intervals 
in Multiple Regression 

 Solutions to Exercises 
1. 

Regressor (1) (2) (3) 
College (X1) 5.46** 

(0.21) 
5.48** 
(0.21) 

5.44** 
(0.21) 

Female (X2) −2.64** 
(0.20) 

−2.62** 
(0.20) 

−2.62** 
(0.20) 

Age (X3)  0.29** 
(0.04) 

0.29** 
(0.04) 

Ntheast (X4)   0.69* 
(0.30) 

Midwest (X5)   0.60* 
(0.28) 

South (X6)   −0.27 
(0.26) 

Intercept 12.69** 
(0.14) 

4.40** 
(1.05) 

3.75** 
(1.06) 

(a) The t-statistic is 5.46/0.21 = 26.0 > 1.96, so the coefficient is statistically significant at the 5% 
level. The 95% confidence interval is 5.46 ± 1.96 × 0.21. 

(b) t-statistic is −2.64/0.20 = −13.2, and 13.2 > 1.96, so the coefficient is statistically significant at 
the 5% level. The 95% confidence interval is −2.64 ± 1.96 × 0.20. 

3. (a) Yes, age is an important determinant of earnings. Using a t-test, the t-statistic is 0.29
0.04 7.25,=  with 

a p-value of 4.2 × 10−13, implying that the coefficient on age is statistically significant at the 1% 
level. The 95% confidence interval is 0.29 ± 1.96 × 0.04. 

(b) ΔAge × [0.29 ± 1.96 × 0.04] = 5 × [0.29 ± 1.96 × 0.04] = 1.45 ± 1.96 × 0.20 = $1.06 to $1.84 

4. (a) The F-statistic testing the coefficients on the regional regressors are zero is 6.10. The 1% critical 
value (from the 3,F ∞  distribution) is 3.78. Because 6.10 > 3.78, the regional effects are significant 
at the 1% level. 

(b) The expected difference between Juanita and Molly is (X6,Juanita − X6,Molly) × β6 = β6. Thus a 95% 
confidence interval is −0.27 ± 1.96 × 0.26. 
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(c) The expected difference between Juanita and Jennifer is (X5,Juanita − X5,Jennifer) × β5 + (X6,Juanita − 
X6,Jennifer) × β6 = −β5 + β6. A 95% confidence interval could be contructed using the general methods 
discussed in Section 7.3. In this case, an easy way to do this is to omit Midwest from the regression 
and replace it with X5 = West. In this new regression the coefficient on South measures the 
difference in wages between the South and the Midwest, and a 95% confidence interval can be 
computed directly. 

5. The t-statistic for the difference in the college coefficients is 

,1998 ,1992 ,1998 ,1992
ˆ ˆ ˆ ˆ( )/ ( ).college college college colleget SEβ β β β= − −  Because ,1998

ˆ
collegeβ  and ,1992

ˆ
collegeβ  are computed 

from independent samples, they are independent, which means that ,1998 ,1992
ˆ ˆcov( , ) 0college collegeβ β =  

Thus, ,1998 ,1992 ,1998 ,1998
ˆ ˆ ˆ ˆvar( ) var( ) var( ).college college college collegeβ β β β− = +  This implies that 

1
22 2

,1998 ,1992
ˆ ˆ( ) (0.21 0.20 ) .college collegeSE β β− = +  Thus, 1

2 2 2

5.48 5.29

(0.21 0.20 )
0.6552.actt −

+
= =  There is no significant 

change since the calculated t-statistic is less than 1.96, the 5% critical value. 

6. In isolation, these results do imply gender discrimination. Gender discrimination means that two 
workers, identical in every way but gender, are paid different wages. Thus, it is also important to 
control for characteristics of the workers that may affect their productivity (education, years of 
experience, etc.) If these characteristics are systematically different between men and women, then 
they may be responsible for the difference in mean wages. (If this were true, it would raise an 
interesting and important question of why women tend to have less education or less experience than 
men, but that is a question about something other than gender discrimination.) These are potentially 
important omitted variables in the regression that will lead to bias in the OLS coefficient estimator for 
Female. Since these characteristics were not controlled for in the statistical analysis, it is premature to 
reach a conclusion about gender discrimination. 

7. (a) The t-statistic is 0.485
2.61 0.186 1.96.= <  Therefore, the coefficient on BDR is not statistically 

significantly different from zero. 
(b) The coefficient on BDR measures the partial effect of the number of bedrooms holding house 

size (Hsize) constant. Yet, the typical 5-bedroom house is much larger than the typical 
2-bedroom house. Thus, the results in (a) says little about the conventional wisdom. 

(c) The 99% confidence interval for effect of lot size on price is 2000 × [.002 ± 2.58 × .00048] or 
1.52 to 6.48 (in thousands of dollars). 

(d) Choosing the scale of the variables should be done to make the regression results easy to read 
and to interpret. If the lot size were measured in thousands of square feet, the estimate coefficient 
would be 2 instead of 0.002. 

(e) The 10% critical value from the 2,F ∞  distribution is 2.30. Because 0.08 < 2.30, the coefficients 
are not jointly significant at the 10% level. 
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8. (a) Using the expressions for R2 and 2,R  algebra shows that 

2 2 2 21 11 (1 ), so 1 (1 ).
1 1

n n kR R R R
n k n

− − −
= − − = − −

− − −
 

2 420 1 1Column 1: 1 (1 0.049) 0.051
420 1

R − −
= − − =

−
 

2 420 2 1Column 2: 1 (1 0.424) 0.427
420 1

R − −
= − − =

−
 

2 420 3 1Column 3: 1 (1 0.773) 0.775
420 1

R − −
= − − =

−
 

2 420 3 1Column 4: 1 (1 0.626) 0.629
420 1

R − −
= − − =

−
 

2 420 4 1Column 5: 1 (1 0.773) 0.775
420 1

R − −
= − − =

−
 

(b) 0 3 4

1 3 4

: 0
: , 0

H
H

β β
β β

= =

≠ ≠

 

Unrestricted regression (Column 5): 2
0 1 1 2 2 3 3 4 4 unrestricted, 0.775Y X X X X Rβ β β β β= + + + + =  

Restricted regression (Column 2): 2
0 1 1 2 2 restricted, 0.427Y X X Rβ β β= + + =  

2 2
unrestricted restricted

unrestricted2
unrestricted unrestricted

( )/
, 420, 4, 2

(1 )/( 1)
(0.775 0.427)/2 0.348/2 0.174 322.22

(1 0.775)/(420 4 1) (0.225)/415 0.00054

HomoskedasticityOnly
R R q

F n k q
R n k

−
= = = =

− − −

−
= = = =

− − −

 

5% Critical value form F2,00 = 4.61; FHomoskedasticityOnly > F2,00 so Ho is rejected at the 5% level. 
(c) t3 = −13.921 and t4 = 0.814, q = 2; |t3| > c (Where c = 2.807, the 1% Benferroni critical value 

from Table 7.3). Thus the null hypothesis is rejected at the 1% level. 
(d) −1.01 ± 2.58 × 0.27 

9. (a) Estimate 

0 1 2 1 2( )i i i i iY X X X uβ γ β= + + + +  

and test whether γ = 0. 
(b) Estimate 

0 1 2 2 1( )i i i i iY X X aX uβ γ β= + + − +  

and test whether γ = 0. 
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(c) Estimate 

1 0 1 2 2 1( )i i i i i iY X X X X uβ γ β− = + + − +  

and test whether γ = 0. 

10. Because 2 2 21 , restricted unrestrictedSSR SSRSSR
unrestricted restrictedTSS TSSR R R −= − − =  and 21 .unrestrictedSSR

unrestricted TSSR− =  Thus 

2 2

2

( )/
(1 )/( 1)

/
/( 1)

( )/
/(

restricted unrestricted

unrestricted

unrestricted restricted

unrestricted unrestricted

SSR SSR
TSS

SSR
unrestrictedTSS

restricted unrestricted

unrestricted un

R R q
F

R n k

q
n k

SSR SSR q
SSR n k

−

−
=

− − −

=
− −

−
=

− 1)restricted −

 



Chapter 8 
Nonlinear Regression Functions 

 Solutions to Exercises 

1. (a) The percentage increase in sales is 198 196
196100 1.0204%.−× =  The approximation  

is 100 × [ln (198) − ln (196)] = 1.0152%. 
(b) When Sales2002 = 205, the percentage increase is −× =205 196

196100 4.5918% and the approximation 
is 100 × [ln (205) − ln (196)] = 4.4895%. When Sales2002 = 250, the percentage increase is 

250 196
196100 27.551%−× =  and the approximation is 100 × [ln (250) − ln (196)] = 24.335%. When 

Sales2002 = 500, the percentage increase is 500 196
196100 155.1%−× =  and the approximation is 100 × 

[ln (500) − ln (196)] = 93.649%. 

(c) The approximation works well when the change is small. The quality of the approximation 
deteriorates as the percentage change increases. 

2. (a) According to the regression results in column (1), the house price is expected to increase by 21% 
(= 100% × 0.00042 × 500 ) with an additional 500 square feet and other factors held constant. 
The 95% confidence interval for the percentage change is 100% × 500 × (0.00042 ± 1.96 × 
0.000038) = [17.276% to 24.724%]. 

(b) Because the regressions in columns (1) and (2) have the same dependent variable, 2R can be used 
to compare the fit of these two regressions. The log-log regression in column (2) has the 
higher 2 ,R so it is better so use ln(Size) to explain house prices. 

(c) The house price is expected to increase by 7.1% ( = 100% × 0.071 × 1). The 95% confidence 
interval for this effect is 100% × (0.071 ± 1.96 × 0.034) = [0.436% to 13.764%]. 

(d) The house price is expected to increase by 0.36% (100% × 0.0036 × 1 = 0.36%) with an 
additional bedroom while other factors are held constant. The effect is not statistically significant 
at a 5% significance level: = = <0.0036

0.037| | 0.09730 1.96.t  Note that this coefficient measures the 
effect of an additional bedroom holding the size of the house constant. 

(e) The quadratic term ln(Size)2 is not important. The coefficient estimate is not statistically 
significant at a 5% significance level: = = <0.0078

0.14| | 0.05571 1.96.t  

(f) The house price is expected to increase by 7.1% ( = 100% × 0.071 × 1) when a swimming pool is 
added to a house without a view and other factors are held constant. The house price is expected 
to increase by 7.32% ( = 100% × (0.071 × 1 + 0.0022 × 1) ) when a swimming pool is added to a 
house with a view and other factors are held constant. The difference in the expected percentage 
change in price is 0.22%. The difference is not statistically significant at a 5% significance level: 

= = <0.0022
0.10| | 0.022 1.96.t  
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3 (a) The regression functions for hypothetical values of the regression coefficients that are consistent 
with the educator’s statement are: 1 0β >  and 2 0.β <  When TestScore  is plotted against STR  
the regression will show three horizontal segments. The first segment will be for values of 
STR 20;<  the next segment for 20 25;≤ ≤STR  the final segment for 25.>STR  The first 
segment will be higher than the second, and the second segment will be higher than the third. 

(b) It happens because of perfect multicollinearity. With all three class size binary variables included 
in the regression, it is impossible to compute the OLS estimates because the intercept is a perfect 
linear function of the three class size regressors. 

4. (a) With 2 years of experience, the man’s expected AHE is 

· 2ln( ) (0.0899 16) (0.521 0) (0.0207 0 16) (0.232 2) 0.000368 2 )
(0.058 0) (0.078 0) (0.030 1) 1.215 2.578

= × − × + × × + × − ×
− × − × − × + =

AHE  

With 3 years of experience, the man’s expected AHE is 

· 2ln( ) (0.0899 16) (0.521 0) (0.0207 0 16) (0.232 3) (0.000368 3 )
(0.058 0) (0.078 0) (0.030 1) 1.215 2.600

= × − × + × × + × − ×
− × − × − × + =

AHE  

Difference = 2.600 − 2.578 = 0.022 (or 2.2%) 

(b) With 10 years of experience, the man’s expected AHE is 

· 2ln( ) (0.0899 16) (0.521 0) (0.0207 0 16) (0.232 10) (0.000368 10 )
(0.058 0) (0.078 0) (0.030 1) 1.215 2.729

= × − × + × × + × − ×
− × − × − × + =

AHE  

With 11 years of experience, the man’s expected AHE is 

· 2ln( ) (0.0899 16) (0.521 0) (0.0207 0 16) (0.232 11) (0.000368 11 )
(0.058 0) (0.078 0) (0.030 1) 1.215 2.744

= × − × + × × + × − ×
− × − × − × + =

AHE  

Difference = 2.744 − 2.729 = 0.015 (or 1.5%) 

(c) The regression in nonlinear in experience (it includes Potential experience2). 
(d) Yes, the coefficient on Potential experience2 is significant at the 1% level. 
(e) No. This would affect the level of ln(AHE), but not the change associated with another year of 

experience. 
(f) Include interaction terms Female× Potential experience and Female × (Potential experience)2. 

5. (a) (1) The demand for older journals is less elastic than for younger journals because the interaction 
term between the log of journal age and price per citation is positive. (2) There is a linear 
relationship between log price and log of quantity follows because the estimated coefficients on 
log price squared and log price cubed are both insignificant. (3) The demand is greater for 
journals with more characters follows from the positive and statistically significant coefficient 
estimate on the log of characters. 

(b) (i) The effect of ln(Price per citation) is given by [−0.899 + 0.141 × ln(Age)] × ln(Price per 
citation). Using Age = 80, the elasticity is [−0.899 + 0.141 × ln(80)] = −0.28. 

 (ii) As described in equation (8.8) and the footnote on page 263, the standard error can be found 
by dividing 0.28, the absolute value of the estimate, by the square root of the F-statistic 
testing βln(Price per citation) + ln(80) × βln(Age)×ln(Price per citation) = 0. 



Solutions to Exercises in Chapter 8  43 

 

(c) ( )ln ln( ) ln( )= −Characters
a Characters a  for any constant a. Thus, estimated parameter on 

Characters will not change and the constant (intercept) will change. 

6. (a) (i) There are several ways to do this. Here is one. Create an indicator variable, say DV1, that 
equals one if %Eligible is greater than 20% and less than 50%. Create another indicator, say 
DV2, that equals one if %Eligible is greater than 50%. Run the regression: 

 = + + × + × +0 1 2 3% 1 % 2 % other regressorsTestScore Eligible DV Eligible DV Eligibleβ β β β  

  The coefficient β1 shows the marginal effect of %Eligible on TestScores for values of 
%Eligible > 20%, β1 + β2 shows the marginal effect for values of %Eligible between 20% 
and 50% and β1 + β3 shows the marginal effect for values of %Eligible greater than 50%. 

 (ii) The linear model implies that β2 = β3 = 0, which can be tested using an F-test. 
(b) (i) There are several ways to do this, perhaps the easiest is to include an interaction term STR × 

ln(Income) to the regression in column (7). 
 (ii) Estimate the regression in part (b.i) and test the null hypothesis that the coefficient on the 

interaction term is equal to zero. 

7. (a) (i) ln(Earnings) for females are, on average, 0.44 lower for men than for women. 
 (ii) The error term has a standard deviation of 2.65 (measured in log-points). 
 (iii) Yes. But the regression does not control for many factors (size of firm, industry, profitability, 

experience and so forth). 
 (iv) No. In isolation, these results do imply gender discrimination. Gender discrimination means 

that two workers, identical in every way but gender, are paid different wages. Thus, it is also 
important to control for characteristics of the workers that may affect their productivity 
(education, years of experience, etc.) If these characteristics are systematically different 
between men and women, then they may be responsible for the difference in mean wages. 
(If this were true, it would raise an interesting and important question of why women tend to 
have less education or less experience than men, but that is a question about something other 
than gender discrimination.) These are potentially important omitted variables in the 
regression that will lead to bias in the OLS coefficient estimator for Female. Since these 
characteristics were not controlled for in the statistical analysis, it is premature to reach a 
conclusion about gender discrimination. 

(b) (i) If MarketValue increases by 1%, earnings increase by 0.37% 
 (ii) Female is correlated with the two new included variables and at least one of the variables is 

important for explaining ln(Earnings). Thus the regression in part (a) suffered from omitted 
variable bias. 

(c) Forgetting about the effect or Return, whose effects seems small and statistically insignificant, 
the omitted variable bias formula (see equation (6.1)) suggests that Female is negatively 
correlated with ln(MarketValue). 
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8. (a) and (b) 

 

(c)  
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(d)  

 

(e)  
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9. Note that 
2

0 1 2

2
0 1 2 2( 21 ) ( 21 ).

Y X X

X X X

β β β

β β β β

= + +

= + + + −
 

 Define a new independent variable 2 21 ,= −Z X X  and estimate 

0 2β γ β= + + + .iY X Z u  

 The confidence interval is ( )ˆ ˆ1 96 SE .γ γ± . ×  

10. (a) 1 1 2 1 2 1 1 3 1 2( , ) ( , ) ,Y f X X X f X X X X XΔ = + Δ − = Δ + Δ ×β β  so 
1 1 3 2.Y

X XΔ
Δ = +β β  

(b) 1 2 2 1 2 2 3 1 2( , ) ( , ) ,Y f X X X f X X X X XΔ = + Δ − = Δ + × Δ2β β  so 
2 2 3 1.Y

X XΔ
Δ = +β β  

(c) 

1 1 2 2 1 2

0 1 1 1 2 2 2 3 1 1 2 2

0 1 1 2 2 3 1 2

1 3 2 1 2 3 1 2 3 1 2

( , ) ( , )
( ) ( ) ( )( )

( )
( ) ( ) .

Y f X X X X f X X
X X X X X X X X

X X X X
X X X X X X

Δ = + Δ + Δ −
= + + Δ + + Δ + + Δ + Δ

− + + +

= + Δ + + Δ + Δ Δ

β β β β
β β β β

β β β β β

 



Chapter 9 
Assessing Studies Based on Multiple Regression 

 Solutions to Exercises 
1. As explained in the text, potential threats to external validity arise from differences between the 

population and setting studied and the population and setting of interest. The statistical results based 
on New York in the 1970’s are likely to apply to Boston in the 1970’s but not to Los Angeles in the 
1970’s. In 1970, New York and Boston had large and widely used public transportation systems. 
Attitudes about smoking were roughly the same in New York and Boston in the 1970s. In contrast, 
Los Angeles had a considerably smaller public transportation system in 1970. Most residents of Los 
Angeles relied on their cars to commute to work, school, and so forth. 

 The results from New York in the 1970’s are unlikely to apply to New York in 2002. Attitudes 
towards smoking changed significantly from 1970 to 2002. 

2. (a) When Yi is measured with error, we have = +% ,i i iY Y w  or = −% .i i iY Y w  Substituting the 2nd 

equation into the regression model β β= + +0 1i i iY X u  gives β β− = + +%
0 1 ,i i i iY w X u  

or β β= + + +%
0 1 .i i i iY X u w  Thus = + .i i iv u w  

(b) (1) The error term vi has conditional mean zero given Xi: 

= + = + = + =( | ) ( | ) ( | ) ( | ) 0 0 0.i i i i i i i i iE v X E u w X E u X E w X  

(2) i i iY Y w= +%  is i.i.d since both Yi and wi are i.i.d. and mutually independent; Xi and ( )jY i j≠%  

are independent since Xi is independent of both Yj and wj. Thus, ( , ), 1, ,i iX Y i n=% K  are i.i.d. 
draws from their joint distribution. 

(3) i i iv u w= +  has a finite fourth moment given that both ui and wi have finite fourth moments 
and are mutually independent. So (Xi, vi) have nonzero finite fourth moments. 

(c) The OLS estimators are consistent because the least squares assumptions hold. 
(d) Because of the validity of the least squares assumptions, we can construct the confidence 

intervals in the usual way. 
(e) The answer here is the economists’ “On the one hand, and on the other hand.” On the one hand, 

the statement is true: i.i.d. measurement error in X means that the OLS estimators are inconsistent 
and inferences based on OLS are invalid. OLS estimators are consistent and OLS inference is 
valid when Y has i.i.d. measurement error. On the other hand, even if the measurement error in Y 
is i.i.d. and independent of Yi and Xi, it increases the variance of the regression error 
σ σ σ= +2 2 2( ),v u w and this will increase the variance of the OLS estimators. Also, measurement 

error that is not i.i.d. may change these results, although this would need to be studied on a case-
by-case basis. 
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3. The key is that the selected sample contains only employed women. Consider two women, Beth and 
Julie. Beth has no children; Julie has one child. Beth and Julie are otherwise identical. Both can earn 
$25,000 per year in the labor market. Each must compare the $25,000 benefit to the costs of working. 
For Beth, the cost of working is forgone leisure. For Julie, it is forgone leisure and the costs 
(pecuniary and other) of child care. If Beth is just on the margin between working in the labor market 
or not, then Julie, who has a higher opportunity cost, will decide not to work in the labor market. 
Instead, Julie will work in “home production,” caring for children, and so forth. Thus, on average, 
women with children who decide to work are women who earn higher wages in the labor market. 

4.  

Estimated Effect of  a 10%
Increase in Average Income 

 State βln(Income) 
Std. Dev. of 

Scores In Points In Std. Dev. 
Calif. 11.57 

(1.81) 
19.1 1.157 

(0.18) 
0.06 

(0.001) 
Mass. 16.53 

(3.15) 
15.1  1.65 

(0.31) 
0.11 

(0.021) 

The income effect in Massachusetts is roughly twice as large as the effect in California. 

5 (a) 
γ β γ β γ β

γ β γ β
− −

= +
− −

1 0 0 1 1 1

1 1 1 1

.u vQ  

and 
β γ
γ β γ β

− −
= +

− −
0 0

1 1 1 1

.u vP  

(b) 
γ β γ β

γ β
−

=
−

1 0 0 1

1 1

( ) ,E Q  0 0

1 1

( )E P
β γ
γ β

−
=

−
 

(c) 
⎛ ⎞ ⎛ ⎞

= + = +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

⎛ ⎞
= +⎜ ⎟−⎝ ⎠

2 2
2 2 2 2 2 2
1 1

1 1 1 1

2
2 2

1 1
1 1

1 1( ) ( ), ( ) ( ), and

1( , ) ( )

u v u v

u V

Var Q Var P

Cov P Q

γ σ β σ σ σ
γ β γ β

γ σ β σ
γ β

 

(d) (i) 
+

→ =
+

γ σ β σ
β

σ σ

2 2
1 1

1 2 2

( , )ˆ ,
( )

p u V

u V

Cov Q P
Var P

 → −β0
( , )ˆ ( ) ( )

( )
p Cov P QE Q E P

Var P
 

 (ii) −

+
− → >σ γ β

σ σ
β β

2
1 1

2 2

( )
1 1

ˆ 0,u

u V

p  using the fact that γ1 > 0 (supply curves slope up) and β1 < 0 

(demand curves slope down). 
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6. (a) The parameter estimates do not change. Nor does the the R2. The sum of squared residuals from 
the 100 observation regression is 2

200 (100 2) 15.1 22, 344.98,SER = − × =  and the sum of squared 
residuals from the 200 observation regression is twice this value: 200 2 22, 344.98.SSR = ×  Thus, 

the SER from the 200 observation regression is 1
200 200200 2 15.02.SER SSR−= =  The standard 

errors for the regression coefficients are now computed using equation (5.4) where 
=∑ −200 2 2

1 ˆ( )i i iX X u  and =∑ −200 2
1 ( )i iX X  are twice their value from the 100 observation regression. 

Thus the standard errors for the 200 observation regression are the standard errors in the 100 
observation regression multiplied by −

− =100 2
200 2 0.704.  In summary, the results for the 200 

observation regression are 
2ˆ 32.1 66.8 , 15.02, 0.81

(10.63) (8.59)
Y X SER R= + = =  

(b) The observations are not i.i.d.: half of the observations are identical to the other half, so that the 
observations are not independent. 

7. (a) True. Correlation between regressors and error terms means that the OLS estimator is 
inconsistent. 

(b) True. 

8. No, for two reasons. First, test scores in California and Massachusetts are for different tests and have 
different means and variances. [However, converting (9.5) into units for Massachusetts yields the 
implied regression to TestScore(MA units) = 740.9 − 1.80 × STR, which is similar to the regression 
using Massachusetts data shown in Column 1 of Table 9.2.] Second, the regression in Column 1 of 
Table 9.2 has a low R2 suggesting that it will not provide a accurate forecast of test scores. 

9. Both regressions suffer from omitted variable bias so that they will not provide reliable estimates of 
the causal effect of income on test scores. However, the nonlinear regression in (8.18) fits the data 
well, so that it could be used for forecasting. 

10. There are several reasons for concern. Here are a few. 
Internal consistency: omitted variable bias as explained in the last paragraph of the box. 
Internal consistency: sample selection may be a problem as the sample used are full-time workers. 
External consistency: Returns to education may change over time because of the relative demands 
and supplies of skilled and unskilled workers in the economy. To the extent that this is important, the 
results shown in the box (based on 2004 data) may not accurately estimate the returns to education in 
2008. 

11. Again, there are reasons for concern. Here are a few. 
Internal consistency: To the extent that price is affected by demand, there may be simultaneous 
equation bias. 
External consistency: The internet and introduction of “E-journals” may induce important changes in 
the market for academic journals so that the results for 2000 may not be relevant in 2008. 



Chapter 10 
Regression with Panel Data 

 Solutions to Exercises 
1. (a) With a $1 increase in the beer tax, the expected number of lives that would be saved is 0.45 per 

10,000 people. Since New Jersey has a population of 8.1 million, the expected number of lives 
saved is 0.45 × 810 = 364.5. The 95% confidence interval is (0.45 ± 1.96 × 0.22) × 810 = 
[15.228, 713.77]. 

(b) When New Jersey lowers its drinking age from 21 to 18, the expected fatality rate increases by 
0.028 deaths per 10,000. The 95% confidence interval for the change in death rate is 0.028 ± 
1.96× 0.066 = [−0.1014, 0.1574]. With a population of 8.1 million, the number of fatalities will 
increase by 0.028 × 810 = 22.68 with a 95% confidence interval [−0.1014, 0.1574] × 810 = 
[−82.134, 127.49]. 

(c) When real income per capita in new Jersey increases by 1%, the expected fatality rate increases 
by 1.81 deaths per 10,000. The 90% confidence interval for the change in death rate is 1.81 ± 
1.64 × 0.47 = [1.04, 2.58]. With a population of 8.1 million, the number of fatalities will increase 
by 1.81 × 810 = 1466.1 with a 90% confidence interval [1.04, 2.58] × 810 = [840, 2092]. 

(d) The low p-value (or high F-statistic) associated with the F-test on the assumption that time 
effects are zero suggests that the time effects should be included in the regression. 

(e) The difference in the significance levels arises primarily because the estimated coefficient is 
higher in (5) than in (4). However, (5) leaves out two variables (unemployment rate and real 
income per capita) that are statistically significant. Thus, the estimated coefficient on Beer Tax in 
(5) may suffer from omitted variable bias. The results from (4) seem more reliable. In general, 
statistical significance should be used to measure reliability only if the regression is well-
specified (no important omitted variable bias, correct functional form, no simultaneous causality 
or selection bias, and so forth.) 

(f) Define a binary variable west which equals 1 for the western states and 0 for the other states. 
Include the interaction term between the binary variable west and the unemployment rate,  
west × (unemployment rate), in the regression equation corresponding to column (4). Suppose the 
coefficient associated with unemployment rate is β, and the coefficient associated with 
west × (unemployment rate) is γ. Then β captures the effect of the unemployment rate in the 
eastern states, and β + γ captures the effect of the unemployment rate in the western states. 
The difference in the effect of the unemployment rate in the western and eastern states is γ. Using 
the coefficient estimate ˆ( )γ  and the standard error ˆSE( ),γ  you can calculate the t-statistic to test 
whether γ is statistically significant at a given significance level. 

2. (a) For each observation, there is one and only one binary regressor equal to one. That is,  
0,1 2 3 1 .i i i itD D D X+ + = =  

(b) For each observation, there is one and only one binary regressor that equals 1. That is,  
0,1 2 1 .i i i itD D Dn X+ + + = =L  
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(c) The inclusion of all the binary regressors and the “constant” regressor causes perfect 
multicollinearity. The constant regressor is a perfect linear function of the n binary regressors. 
OLS estimators cannot be computed in this case. Your computer program should print out a 
message to this effect. (Different programs print different messages for this problem. Why not try 
this, and see what your program says?) 

3. The five potential threats to the internal validity of a regression study are: omitted variables, 
misspecification of the functional form, imprecise measurement of the independent variables, sample 
selection, and simultaneous causality. You should think about these threats one-by-one. Are there 
important omitted variables that affect traffic fatalities and that may be correlated with the other 
variables included in the regression? The most obvious candidates are the safety of roads, weather, 
and so forth. These variables are essentially constant over the sample period, so their effect is 
captured by the state fixed effects. You may think of something that we missed. Since most of the 
variables are binary variables, the largest functional form choice involves the Beer Tax variable. 
A linear specification is used in the text, which seems generally consistent with the data in Figure 8.2. 
To check the reliability of the linear specification, it would be useful to consider a log specification or 
a quadratic. Measurement error does not appear to a problem, as variables like traffic fatalities and 
taxes are accurately measured. Similarly, sample selection is a not a problem because data were used 
from all of the states. Simultaneous causality could be a potential problem. That is, states with high 
fatality rates might decide to increase taxes to reduce consumption. Expert knowledge is required to 
determine if this is a problem. 

4. (a) slope = β1, intercept = β0 
(b) slope = β1, intercept = β0 
(c) slope = β1, intercept = β0 + γ3 
(d) slope = β1, intercept = β0 + γ3 

5. Let D2i = 1 if i = 2 and 0 otherwise; D3i = 1 if i = 3 and 0 otherwise … Dni = 1 if i = n and 0 
otherwise. Let B2t = 1 if t = 2 and 0 otherwise; B3t = 1 if t = 3 and 0 otherwise … BTt = 1 if t = T and 
0 otherwise. Let β0 = α1 + μ1; γi = αi − α1 and δt = μt − μ1. 

6. it it itv X u= %% . First note that ( ) ( ) [ ( )] 0it it it it it itE v E X u E X E u X= = =% % %% | from assumption 1. Thus, 

cov( ) ( ) ( ) ( ) ( ),= = =% % % %%% %%it is it is it is it is it it is isv v E v v E X X u u E X u E X u  where the last equality follows because 
( , )it itu X%  is independent of ( , )is isu X%  from assumption (2). The result then follows from ( ) 0.it itE X u =%  

7. (a) Average snow fall does not vary over time, and thus will be perfectly collinear with the state 
fixed effect. 

(b) Snowit does vary with time, and so this method can be used along with state fixed effects. 

8. There are several ways. Here is one: let Yit = β0 + β1X1, it + β2t + γ2D2i +⋅⋅⋅+ γnDni + δ2(D2i × t) +⋅⋅⋅+ 
δn(Dni × t) + uit, where D2i = 1 if i = 2 and 0 otherwise and so forth. The coefficient λi = β2 + δi. 

9. This assumption is necessary for the usual formula for SEs to be correct. If it is incorrect, errors are 
correlated, the usual formula for SEs are wrong and inference is faulty. The appendix includes a 
discussion of more general formulae for the SEs when Assumption #5 is violated. 

10. (a) 1
1ˆ T

i t itT Yα == ∑  which has variance 
2

.u
T
σ  Because T is not growing, the variance is not getting small. 

ˆiα  is not consistent. 

(b) The average in (a) is computed over T observations. In this case T is small (T = 4), so the normal 
approximation from the CLT is not likely to be very good. 
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11. No, one of the regressors is −1.itY  This depends on −1.itY  This means that assumption (1) is violated. 



Chapter 11 
Regression with a Binary Dependent Variable 

 Solutions to Exercises 
1. (a) The t-statistic for the coefficient on Experience is 0.031/0.009 = 3.44, which is significant at the 

1% level. 
(b) 0.712 0.031 10 1.022; (1.022) 0.847Matthewz = + × = Φ =  
(c) = + × = Φ =0.712 0.031 0 0.712; (0.712) 0.762Christopherz  

(d) = + × = Φ =0.712 0.031 80 3.192; (3.192) 0.999,Jedz  this is unlikely to be accurate because the 
sample did not include anyone with more that 40 years of driving experience. 

2. (a) The t-statistic for the coefficient on Experience is t = 0.040/0.016 = 2.5, which is significant at 
the 5% level. 

(b) (1.059 0.040 10) 1.459

1 1Prob 0.811
1 1Matthew e e− + × −= = =

+ +
 

(c) − + × −= = =
+ +(1.059 0 .040 0) 1.059

1 1Prob 0.742
1 1Christopher e e

 

(d)  

 
The shape of the regression functions are similar, but the logit regression lies below the probit 
regession for experience in the range of 0 = 60 years. 
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3. (a) The t-statistic for the coefficient on Experience is t = 0.006/0.002 = 3, which is significant a the 
1% level. 

(b) ProbMatther = 0.774 + 0.006 × 10 = 0.836 
(c) ProbChristopher = 0.774 + 0.006 × 0 = 0.774 
(d)  

 

The probabilities are similar except when experience in large (>40 years). In this case the LPM 
model produces nonsensical results (probabilities greater than 1.0). 

4. (a)  

Group Probit Logit LPM 

Men  Φ(1.282 − 0.333) = 0.829 (2.197 0.622)

1 0.829
1 e− − =

+
 0.829 

Women Φ(1.282) = 0.900 (2.197)

1 0.900
1 e− =

+
 0.900 

(b) Because there is only regressor and it is binary (Male), estimates for each model show the 
fraction on males and females passing the test. Thus, the results are identical for all models. 
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5. (a) Φ(0.806 + 0.041 × 10 × 0.174 × 1 − 0.015 × 1 × 10) = 0.814 
(b) Φ(0.806 + 0.041 × 2 − 0.174 × 0 − 0.015 × 0 × 2) = 0.813 
(c) The t-stat on the interaction term is −0.015/0.019 = −0.79, which is insignificant at the 10% level. 

6. (a) For a black applicant having a P/I ratio of 0.35, the probability that the application will be denied 
is Φ(−2.26 + 2.74 × 0.35 + 0.71) = Φ(−0.59) = 27.76%. 

(b) With the P/I ratio reduced to 0.30, the probability of being denied is Φ(−2.26 + 2.74 × 
0.30 + 0.71) = Φ(−0.73) = 23.27%. The difference in denial probabilities compared to (a) is 4.4 
percentage points lower. 

(c) For a white applicant having a P/I ratio of 0.35, the probability that the application will be denied 
is Φ(−2.26 + 2.74 × 0.35) = 9.7%. If the P/I ratio is reduced to 0.30, the probability of being 
denied is Φ(−2.26 + 2.74 × 0.30) = 7.5%. The difference in denial probabilities is 2.2 percentage 
points lower. 

(d) From the results in parts (a)–(c), we can see that the marginal effect of the P/I ratio on the 
probability of mortgage denial depends on race. In the probit regression functional form, 
the marginal effect depends on the level of probability which in turn depends on the race 
of the applicant. The coefficient on black is statistically significant at the 1% level. 

7. (a) For a black applicant having a P/I ratio of 0.35, the probability that the application will be denied 
is 0.9805

1
1

( 4.13 5.37 0.35 1.27) 27.28%.
e

F
+

− + × + = =  

(b) With the P/I ratio reduced to 0.30, the probability of being denied is 

+
− + × + = =1.249

1
1

( 4.13 5.37 0.30 1.27)  22.29%.
e

F  The difference in denial probabilities compared to 
(a) is 4.99 percentage points lower. 

(c) For a white applicant having a P/I ratio of 0.35, the probability that the application will be denied 
is 2.2505

1
1

( 4.13 5.37 0.35)  9.53%.
e

F
+

− + × = =  If the P/I ratio is reduced to 0.30, the probability of 
being denied is 2.519

1
1

( 4.13 5.37 0.30)  7.45%.
e

F
+

− + × = =  The difference in denial probabilities is 
2.08 percentage points lower. 

(d) From the results in parts (a)–(c), we can see that the marginal effect of the P/I ratio on the 
probability of mortgage denial depends on race. In the logit regression functional form, 
the marginal effect depends on the level of probability which in turn depends on the race 
of the applicant. The coefficient on black is statistically significant at the 1% level. The logit 
and probit results are similar. 

8. (a) Since Yi is binary variable, we know E(Yi |Xi) = 1 × Pr(Yi = 1 |Xi) + 0 × Pr(Yi = 0 |Xi) = 
Pr(Yi = 1 |Xi) = β0 + β1Xi. Thus 

= − +

= − + =

β β
β β

0 1

0 1

( | ) [ ( )| ]
( | ) ( ) 0

i i i i i

i i i

E u X E Y X X
E Y X X

 

(b) Using Equation (2.7), we have 

= = − +

= + − +0 1 0 1

var( | ) Pr( 1| )[1 Pr( 1| )]
( )[1 ( )].

i i i i i i

i i

Y X Y X Y X
X Xβ β β β

 

Thus 

= − +

= = + − +
0 1

0 1 0 1

var( | ) var[ ( ) | ]
var( | ) ( )[1 ( )].

i i i i i i

i i i i

u X Y X X
Y X X X

β β
β β β β
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(c) var(ui |Xi) depends on the value of Xi, so ui is heteroskedastic. 
(d) The probability that Yi = 1 conditional on Xi is pi = β0 + β1Xi. The conditional probability 

distribution for the ith observation is −= = − 1Pr( | ) (1 ) .i iy y
i i i i iY y X p p  Assuming that (Xi, Yi) are 

i.i.d., i = 1,…, n, the joint probability distribution of Y1,…, Yn conditional on the X′s is 

=

−

=

−

=

= = = =

= −

= + − +

∏

∏

∏

K K

β β β β

1 1 1
1

1

1

1
0 1 0 1

1

Pr( , , | , , ) Pr( | )

(1 )

( ) [1 ( )] .

i i

i i

n

n n n i i i
i

n
y y
i i

i

n
y y

i i
i

Y y Y y X X Y y X

p p

X X

 

The likelihood function is the above joint probability distribution treated as a function of the 
unknown coefficients (β0 and β1). 

9. (a) The coefficient on black is 0.084, indicating an estimated denial probability that is 8.4 percentage 
points higher for the black applicant. 

(b) The 95% confidence interval is 0.084 ± 1.96 × 0.023 = [3.89%, 12.91%]. 
(c) The answer in (a) will be biased if there are omitted variables which are race-related and have 

impacts on mortgage denial. Such variables would have to be related with race and also be 
related with the probability of default on the mortgage (which in turn would lead to denial of the 
mortgage application). Standard measures of default probability (past credit history and 
employment variables) are included in the regressions shown in Table 9.2, so these omitted 
variables are unlikely to bias the answer in (a). Other variables such as education, marital status, 
and occupation may also be related the probability of default, and these variables are omitted 
from the regression in column. Adding these variables (see columns (4)–(6)) have little effect on 
the estimated effect of black on the probability of mortgage denial. 

10. (a) Let n1 = # (Y = 1), the number of observations on the random variable Y which equals 1; and n2 = 
# (Y = 2). Then #(Y = 3) = n − n1 − n2. The joint probability distribution of Y1,…, Yn is 

1 2 1 2
1 1

1

Pr( , , ) Pr( ) (1 ) .
n

n n n n n
n n i i

i

Y y Y y Y y p q p q − −

=

= = = = = − −∏K  

The likelihood function is the above joint probability distribution treated as a function of the 
unknown coefficients (p and q). 

(b) The MLEs of p and q maximize the likelihood function. Let’s use the log-likelihood function 

= = =

= + + − − − −

K1 1

1 2 1 2

ln[Pr( , , )]
ln ln ( ) ln(1 ).

n nL Y y Y y
n p n q n n n p q

 

Using calculus, the partial derivatives of L are 

1 1 2

2 1 2

, and
1

.
1

n n n nL
p p p q

n n n nL
q q p q

− −∂
= −

∂ − −
− −∂

= −
∂ − −
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Setting these two equations equal to zero and solving the resulting equations yield the MLE of 
p and q: 

1 2ˆ ˆ, .n np q
n n

= =  

11. (a) This is a censored or truncated regression model (note the dependent variable might be zero). 
(b) This is an ordered response model. 
(c) This is the discrete choice (or multiple choice) model. 
(d) This is a model with count data. 



Chapter 12  
Instrumental Variables Regression 

 Solutions to Exercises 

1. (a) The change in the regressor, −, 1995 ,1985ln( ) ln( ),cigarettes cigarettes
i iP P  from a $0.10 per pack increase in the 

retail price is ln 2.10 − ln 2.00 = 0.0488. The expected percentage change in cigarette demand 
is −9.94 × 0.0488 × 100% = −4.5872%. The 95% confidence interval is (−0.94 ± 1.96 × 0.21) × 
0.0488 × 100% = [−6.60%, −2.58%]. 

(b) With a 2% reduction in income, the expected percentage change in cigarette demand is 
0.53 × (−0.02) × 100% = −1.06%. 

(c) The regression in column (1) will not provide a reliable answer to the question in (b) when 
recessions last less than 1 year. The regression in column (1) studies the long-run price and 
income elasticity. Cigarettes are addictive. The response of demand to an income decrease will 
be smaller in the short run than in the long run. 

(d) The instrumental variable would be too weak (irrelevant) if the F-statistic in column (1) was 3.6 
instead of 33.6, and we cannot rely on the standard methods for statistical inference. Thus the 
regression would not provide a reliable answer to the question posed in (a). 

2. (a) When there is only one X, we only need to check that the instrument enters the first stage population 
regression. Since the instrument is Z = X, the regression of X onto Z will have a coefficient of 1.0 on 
Z, so that the instrument enters the first stage population regression. Key Concept 4.3 implies 
corr(Xi, ui) = 0, and this implies corr(Zi, ui) = 0. Thus, the instrument is exogenous. 

(b) Condition 1 is satisfied because there are no W’s. Key Concept 4.3 implies that condition 2 is 
satisfied because (Xi, Zi, Yi) are i.i.d. draws from their joint distribution. Condition 3 is also 
satisfied by applying assumption 3 in Key Concept 4.3. Condition 4 is satisfied because of 
conclusion in part (a). 

(c) The TSLS estimator is 1
ˆ ZY

ZX

sTSLS
sβ =  using Equation (10.4) in the text. Since Zi = Xi, we have 

1 12
ˆ ˆ .TSLS OLSZY XY

ZX X

s s
s s

β β= = =  

3. (a) The estimator =−= ∑ − −2 21
1 0 12

ˆ ˆ ˆˆ ( )n TSLS TSLS
a i i in Y Xσ β β  is not consistent. Write this as 

=−= ∑ − −2 21
1 12

ˆ ˆˆ ˆ( ( )) ,n TSLS
a i i i in u X Xσ β  where 0 1

ˆ ˆˆ .TSLS TSLS
i i iu Y Xβ β= − −  Replacing 1

ˆ TSLSβ  with β1, 
as suggested in the question, write this as 

= = =≈ ∑ − − = ∑ + ∑ − + −σ β β β2 2 2 2 21 1 1
1 1 1 1 1 1

ˆ ˆ ˆˆ ( ( )) [ ( ) 2 ( )].n n n
a i i i i i i i i i i i in n nu X X u X X u X X The first term on 

the right hand side of the equation converges to 2ˆ ,uσ  but the second term converges to something 
that is non-zero. Thus 2ˆaσ  is not consistent. 
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(b) The estimator =−= Σ − −σ β β2 21
1 0 12

ˆ ˆˆ ( )n TSLS TSLS
b i i in Y X  is consistent. Using the same notation as in (a), 

we can write 2 21
1ˆ ,n

b i in uσ =≈ Σ  and this estimator converges in probability to 2.uσ  

4. Using 0 1
ˆ ˆ ˆ ,i iX Zπ π= +  we have 0 1

ˆ ˆ ˆX Zπ π= +  and 

= =

= =

= − − = − − =

= − = − =

∑ ∑

∑ ∑

π π

π π

ˆ 1 1
1 1

2 2 2 2 2 2
ˆ 1 1

1 1

ˆ ˆ ˆ ˆ( )( ) ( )( ) ,

ˆ ˆ ˆ ˆ( ) ( ) .

n n

i i i i ZYXY
i i

n n

i i ZX
i i

s X X Y Y Z Z Y Y s

s X X Z Z s
 

 Using the formula for the OLS estimator in Key Concept 4.2, we have 

1 2
ˆ .ZX

Z

s
s

π =  

 Thus the TSLS estimator 

2

ˆ 1
1 2 2 2 2 2

ˆ 1 1

ˆˆ .
ˆ ˆ ZX

Z

TSLS XY ZY ZY ZY ZY
s

Z Z ZXZX s

s s s s s
s s s ss

π
β

π π
= = = = =

×
 

5. (a) Instrument relevance. iZ  does not enter the population regression for iX  

(b) Z is not a valid instrument. *X̂ will be perfectly collinear with W. (Alternatively, the first stage 
regression suffers from perfect multicollinearity.) 

(c) W is perfectly collinear with the constant term. 
(d) Z is not a valid instrument because it is correlated with the error term. 

6. Use 2R  to compute the homoskedasitic-only F statistic as 2

2
/ 0.05

0.95/ 981 / 1
5.16R k

HomoskedasitcOnly R T k
F

− − −
= = =  with 

100 observations in which case we conclude that the instrument may be week. With 500 observations 
the HomoskedasitcOnlyF  = 26.2 so the instrument is not weak. 

7. (a) Under the null hypothesis of instrument exogeneity, the J statistic is distributed as a 2
1χ random 

variable, with a 1% critical value of 6.63. Thus the statistic is significant, and instrument 
exogeneity E(ui |Z1i, Z2i) = 0 is rejected. 

(b) The J test suggests that E(ui |Z1i, Z2i) ≠ 0, but doesn’t provide evidence about whether the problem 
is with Z1 or Z2 or both. 

8. (a) Solving for P yields P = 0 0

1 1

d s
i iu uγ β

β β
− −+ ; thus 

2

1
( , ) susCov P u

σ

β

−
=  

(b) Because Cov(P,u) ≠ 0, the OLS estimator is inconsistent (see (6.1)). 
(c) We need a instrumental variable, something that is correlated with P but uncorrelated with us. In 

this case Q can serve as the instrument, because demand is completely inelastic (so that Q is not 
affected by shifts in supply). γ0 can be estimated by OLS (equivalently as the sample mean of Qi). 

9. (a) There are other factors that could affect both the choice to serve in the military and annual 
earnings. One example could be education, although this could be included in the regression as a 
control variable. Another variable is “ability” which is difficult to measure, and thus difficult to 
control for in the regression. 
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(b) The draft was determined by a national lottery so the choice of serving in the military was 
random. Because it was randomly selected, the lottery number is uncorrelated with individual 
characteristics that may affect earning and hence the instrument is exogenous. Because it affected 
the probability of serving in the military, the lottery number is relevant. 

10. 0 1 2 1 2( , ) ( , ) ( , ) ( , )ˆ
( , ) ( , ) ( , )

i i i i i i i i i i
TSLS

i i i i i i

Cov Z Y Cov Z X W u Cov Z X Cov Z W
Cov Z X Cov Z X Cov Z X

β β β β β
β

+ + + +
= = =  

(a) If ( , ) 0i iCov Z W =  the IV estimator is consistent. 
(b) If ( , ) 0i iCov Z W ≠ the IV estimator is not consistent. 



Chapter 13 
Experiments and Quasi-Experiments 

 Solutions to Exercises 
1. For students in kindergarten, the estimated small class treatment effect relative to being in a regular 

class is an increase of 13.90 points on the test with a standard error 2.45. The 95% confidence 
interval is 13.90 ± 1.96 × 2.45 = [9.098, 18.702]. 

 For students in grade 1, the estimated small class treatment effect relative to being in a regular class is 
an increase of 29.78 points on the test with a standard error 2.83. The 95% confidence interval is 
29.78 ± 1.96 × 2.83 = [24.233, 35.327]. 

 For students in grade 2, the estimated small class treatment effect relative to being in a regular class is 
an increase of 19.39 points on the test with a standard error 2.71. The 95% confidence interval is 
19.39 ± 1.96 × 2.71 = [14.078, 24.702]. 

 For students in grade 3, the estimated small class treatment effect relative to being in a regular class is 
an increase of 15.59 points on the test with a standard error 2.40. The 95% confidence interval is 
15.59 ± 1.96 × 2.40 = [10.886, 20.294]. 

2. (a) On average, a student in class A (the “small class”) is expected to score higher than a student in class 
B (the “regular class”) by 15.89 points with a standard error 2.16. The 95% confidence interval for 
the predicted difference in average test scores is 15.89 ± 1.96 × 2.16 = [11.656, 20.124]. 

(b) On average, a student in class A taught by a teacher with 5 years of experience is expected to score 
lower than a student in class B taught by a teacher with 10 years of experience by 0.66 × 5 = 3.3 
points. The standard error for the score difference is 0.17 × 5 = 0.85. The 95% confidence interval 
for the predicted lower score for students in classroom A is 3.3 ± 1.96 × 0.85 = [1.634, 4.966]. 

(c) The expected difference in average test scores in 15.89 + 0.66 × (−5) = 12.59. Because of random 
assignment, the estimators of the small class effect and the teacher experience effect are 
uncorreleated. Thus, the standard error for the difference in average test scores is 

1
22 2 2[2.16 ( 5) 0.17 ] 2.3212.+ − × =  The 95% confidence interval for the predicted difference in 

average test scores in classrooms A and B is 12.59 ± 1.96 × 2.3212 = [8.0404, 17.140]. 
(d) The intercept is not included in the regression to avoid the perfect multicollinearity problem that 

exists among the intercept and school indicator variables. 

3. (a) The estimated average treatment effect is TreatmentGroup ControlX X−  = 1241 − 1201 = 40 points. 

(b) There would be nonrandom assignment if men (or women) had different probabilities of being 
assigned to the treatment and control groups. Let pMen denote the probability that a male is 
assigned to the treatment group. Random assignment means pMen = 0.5. Testing this null 
hypothesis results in a t-statistic of − −

− −
= = =ˆ 0.5 0.55 0.5

1 1ˆ ˆ(1 ) 0.55(1 45)
100

1.00,Men

Men Men
men

p
Men

p p
n

t  so that the null of 

random assignment cannot be rejected at the 10% level. A similar result is found for women. 



Solutions to Exercises in Chapter 13  61 

 

4. (a) (i) Xit = 0, Gi = 1, Dt = 0 
 (ii) Xit = 1, Gi = 1, Dt = 1 
 (iii) Xit = 0, Gi = 0, Dt = 0 
 (iv) Xit = 0, Gi = 0, Dt = 1 
(b) (i) β0 + β2 
 (ii) β0 + β1 + β2 + β3 
 (iii)  β0 
 (iv) β0 + β3 
(c) β1 
(d) “New Jersey after − New Jersey before” = β1 + β3, where β3 denotes the time effect associated with 

changes in the economy between 1991 and 1993. “1993 New Jersey − 1993 Pennsylvania” = 
β1 + β2, where β2 denotes the average difference in employment between NJ and PA. 

5. (a) This is an example of attrition, which poses a threat to internal validity. After the male athletes 
leave the experiment, the remaining subjects are representative of a population that excludes 
male athletes. If the average causal effect for this population is the same as the average causal 
effect for the population that includes the male athletes, then the attrition does not affect the 
internal validity of the experiment. On the other hand, if the average causal effect for male 
athletes differs from the rest of population, internal validity has been compromised. 

(b) This is an example of partial compliance which is a threat to internal validity. The local area 
network is a failure to follow treatment protocol, and this leads to bias in the OLS estimator of 
the average causal effect. 

(c) This poses no threat to internal validity. As stated, the study is focused on the effect of dorm 
room Internet connections. The treatment is making the connections available in the room; the 
treatment is not the use of the Internet. Thus, the art majors received the treatment (although they 
chose not to use the Internet). 

(d) As in part (b) this is an example of partial compliance. Failure to follow treatment protocol leads 
to bias in the OLS estimator. 

6. The treatment effect is modeled using the fixed effects specification 

1 .it i it itY X uα β= + +  

(a) αi is an individual-specific intercept. The random effect in the regression has variance 

+ = + +

= +2 2

var( ) var( ) var( ) 2cov( , )i it i it i it

u

u u u

α

α α α

σ σ
 

 which is homoskedastic. The differences estimator is constructed using data from time period 
t = 2. Using Equation (5.27), it is straightforward to see that the variance for the differences 
estimator 

+ +
→ = αα σ σ

β
2 2

2
1

2 2

var( )ˆvar( ) .
var( ) var( )

differences i i u

i i

u
n

X X
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(b) The regression equation using the differences-in-differences estimator is 

1i i iY X vβΔ = Δ +  

 with ΔYi = Yi2 − Yi1, ΔXi = Xi2 − Xi1, and vi = ui2 − ui1. If the ith individual is in the treatment group 
at time t = 2, then ΔXi = Xi2 − Xi1 = 1 − 0 = 1 = Xi2. If the ith individual is in the control group at 
time t = 2, then ΔXi = Xi2 − Xi1 = 0 − 0 = 0 = Xi2. Thus ΔXi is a binary treatment variable and ΔXi = 
Xi2, which in turn implies var(ΔXi) = var(Xi2). The variance for the new error term is 

2 2
2 1 2 1 2 1var( ) var( ) var( ) 2cov( , ) 2v i i i i i i uu u u u u uσ σ= − = + − = , 

 which is homoskedastic. Using Equation (5.27), it is straightforward to see that the variance for 
the differences-in-differences estimator 

2 2

1
2

2ˆvar( ) .
var( ) var( )

diffs in diffs v u

i i

n
X X

σ σ
β − − → =

Δ
 

(c) When 2 2,uασ σ>  we’ll have ( ) ( )1 1
ˆ ˆvar vardifferences diffs in diffsβ β − −>  and the differences-in-differences 

estimator is more efficient then the differences estimator. Thus, if there is considerable large 
variance in the individual-specific fixed effects, it is better to use the differences-in-differences 
estimator. 

7. From the population regression 

1 2 0( ) ,it i it t i t itY X D W D vα β β β= + + × + +  

we have 

2 1 1 2 1 2 2 1 0 2 1 2 1( ) [( ) ] ( ) ( ).i i i i i i iY Y X X D D W D D v vβ β β− = − + − × + − + −  

By defining ΔYi = Yi2 − Yi1, ΔXi = Xi2 − Xi1 (a binary treatment variable) and ui = vi2 − vi1, and using 
D1 = 0 and D2 = 1, we can rewrite this equation as 

0 1 2 ,i i i iY X W uβ β βΔ = + + +  

which is Equation (13.5) in the case of a single W regressor. 

8. The regression model is 

0 1 2 3 ,it it i t itY X G B uβ β β β= + + + +  

Using the results in Section 8.3 
,

0

,
0 3

,
0 2

,
0 1 2 3

ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ

control before

control after

treatment before

treatment after

Y

Y

Y

Y

β

β β

β β

β β β β

=

= +

= +

= + + +

 

Thus 
− − = −

− −

= + − =

, ,

, ,
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ˆ ( )
( )
ˆ ˆ ˆ ˆ( ) ( )

diffs in diffs treatment after treatment before
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9. The covariance between 1i iXβ  and Xi is 

1 1 1

2
1 1 1 1

2
1 1

cov( , ) {[ ( )][ ( )]}

{ ( ) ( ) ( ) ( )}

( ) ( ) ( )

i i i i i i i i i

i i i i i i i i i i i

i i i i i

X X E X E X X E X

E X E X X X E X E X E X

E X E X E X

β β β

β β β β

β β

= − −

= − − +

= −

 

Because Xi is randomly assigned, Xi is distributed independently of β1i. The independence means 
2 2

1 1 1 1( ) ( ) ( ) and ( ) ( ) ( ).i i i i i i i iE X E E X E X E E Xβ β β β= =  

Thus 1cov( , )i i iX Xβ  can be further simplified: 

= −

=

2 2
1 1

2
1

cov( , ) ( )[ ( ) ( )]

( ) .
i i i i i i

i X

X X E E X E X

E

β β

β σ
 

So 
2

1 1
12 2

cov( , ) ( )
( ).i i i i X

i
X X

X X E
E

β β σ
β

σ σ
= =  

10. (a) This is achieved by adding and subtracting β0 + β1Xi to the right hand side of the equation and 
rearranging terms. 

(b) E[ui |Xi] = E[β0i − β0 |Xi] + E[(β1i − β1)Xi |Xi] |Xi] + E[vi |Xi] = 0. 
(c) (1) is shown in (b). (2) follows from the assumption that (vi, Xi, β0i, β1i) are i.i.d. random 

variables. 
(d) Yes, the assumptions in KC 4.3 are satisfied. 
(e) If β1i and Xi are positively correlated, cov(β1i, Xi) = E[(β1i− β1)(Xi − βX)] = E[(β1i − β1)Xi ] > 0, 

where the first equality follows because β1=E(β1i) and the inequality follows because the 
covariance and correlation have the same sign. Note 0 < E[(β1i − β1)Xi] = E{E[(β1i − β1)Xi |Xi]} by 
the law of iterated expectations, so it must the case that E[(β1i − β1)Xi |Xi] > 0 for some values of 
Xi. Thus assumption (1) is violated. This induces positive correlation between the regressors and 
error term, leading the inconsistency in OLS. Thus, the methods in Chapter 4 are not appropriate. 

11. Following the notation used in Chapter 13, let π1i denote the coefficient on state sales tax in the “first 
stage” IV regression, and let −β1i denote cigarette demand elasticity. (In both cases, suppose that 
income has been controlled for in the analysis.) From (13.11) 

→ = + = +1 1 1 1 1 1
1

1 1 1

( ) ( , ) ( , )ˆ ( ) Average Treatment Effect ,
( ) ( ) ( )

p
TSLS i i i i i i

i
i i i

E Cov Cov
E

E E E
β π β π β π

β β
π π π

 

where the first equality uses the uses properties of covariances (equation (2.34)), and the second 
equality uses the definition of the average treatment effect. Evidently, the local average treatment effect 
will deviate from the average treatment effect when 1 1( , )i iCov β π  ≠ 0. As discussed in Section 13.7, this 
covariance is zero when β1i or π1i are constant. This seems likely. But, for the sake of argument, 
suppose that they are not constant; that is, suppose the demand elasticity differs from state to state (β1i is 
not constant) as does the effect of sales taxes on cigarette prices (π1i is not constant). Are β1i and π1i 
related? Microeconomics suggests that might be. Recall from your microeconomics class that the lower 
is the demand elasticity, the larger fraction of a sales tax is passed along to consumers in terms of higher 
prices. This suggests that β1i and π1i are positively related, so that >1 1( , ) 0.i iCov β π  Because E(π1i) > 0, 
this suggests that the local average treatment effect is greater than the average treatment effect when β1i 
varies from state to state. 



Chapter 14 
Introduction to Time Series Regression and Forecasting 

 Solutions to Exercises 
1. (a) Since the probability distribution of Yt is the same as the probability distribution of Yt–1 (this is the 

definition of stationarity), the means (and all other moments) are the same. 
(b) E(Yt) = β0 + β1E(Yt–1) + E(ut), but E(ut) = 0 and E(Yt) = E(Yt–1). Thus E(Yt) = β0 + β1E(Yt), and 

solving for E(Yt) yields the result. 

2. (a) The statement is correct. The monthly percentage change in IP is −

−

− ×1

1
100t t

t

IP IP
IP  which can be 

approximated by 
−−− × = ×
11[ln( ) ln( )] 100 100 ln( )t

t

IP
t t IPIP IP  when the change is small. Converting 

this into an annual (12 month) change yields 
1

1200 ln( ).t

t

IP
IP−

×  

(b) The values of Y from the table are 

Date 2000:7 2000:8 2000:9 2000:10 2000:11 2000:12 
 IP 147.595 148.650 148.973 148.660 148.206 146.300 
 Y  8.55 2.60 −2.52 −3.67 −7.36 

 The forecasted value of Yt in January 2001 is 

− = + × − + × −

+ × − + ×
= −

| 1
ˆ 1.377 [0.318 ( 7.36)] [0.123 ( 3.67)]

[0.068 ( 2.52)] [0.001 (2.60)]
1.58.

t tY
 

(c) The t-statistic on Yt–12 is 0.054
0.053 1.0189t −= = −  with an absolute value less than 1.96, so the 

coefficient is not statistically significant at the 5% level. 
(d) For the QLR test, there are 5 coefficients (including the constant) that are being allowed to break. 

Compared to the critical values for q = 5 in Table 14.5, the QLR statistic 3.45 is larger than the 
10% critical value(3.26), but less than the 5% critical value(3.66). Thus the hypothesis that these 
coefficients are stable is rejected at the 10% significance level, but not at the 5% significance 
level. 
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(e) There are 41 × 12 = 492 number of observations on the dependent variable. The BIC and AIC are 
calculated from the formulas = + + = + +SSR( ) SSR( )ln 2BIC( ) ln[ ] ( 1) and AIC( ) ln[ ] ( 1) .p pT

T T T Tp p p p  

AR Order ( p) 1 2 3 4 5 6 
SSR (p) 29175 28538 28393 28391 28378 28317 

SSR( )ln p
T⎡ ⎤⎣ ⎦  4.0826 4.0605 4.0554 4.0553 4.0549 4.0527 

ln( 1) T
Tp +  0.0252 0.0378 0.0504 0.0630 0.0756 0.0882 

2( 1) Tp +  0.0081 0.0122 0.0163 0.0203 0.0244 0.0285 

BIC 4.1078 4.0983 4.1058 4.1183 4.1305 4.1409 
AIC 4.0907 4.0727 4.0717 4.0757 4.0793 4.0812 

 The BIC is smallest when p = 2. Thus the BIC estimate of the lag length is 2. The AIC is smallest 
when p = 3. Thus the AIC estimate of the lag length is 3. 

3. (a) To test for a stochastic trend (unit root) in ln(IP), the ADF statistic is the t-statistic testing the 
hypothesis that the coefficient on ln(IPt – 1) is zero versus the alternative hypothesis that the 
coefficient on ln(IPt – 1) is less than zero. The calculated t-statistic is 0.018

0.007 2.5714.t −= = −  From 
Table 14.4, the 10% critical value with a time trend is −3.12. Because −2.5714 > −3.12, the test 
does not reject the null hypothesis that ln(IP) has a unit autoregressive root at the 10% 
significance level. That is, the test does not reject the null hypothesis that ln(IP) contains a 
stochastic trend, against the alternative that it is stationary. 

(b) The ADF test supports the specification used in Exercise 14.2. The use of first differences in 
Exercise 14.2 eliminates random walk trend in ln(IP). 

4. (a) The critical value for the F-test is 2.372 at a 5% significance level. Since the Granger-causality 
F-statistic 2.35 is less than the critical value, we cannot reject the null hypothesis that interest 
rates have no predictive content for IP growth at the 5% level. The Granger-causality statistic is 
significant at the 10% level. 

(b) The Granger-causality F-statistic of 2.87 is larger than the 5% critical value, so we conclude at 
the 5% significance level that IP growth helps to predict future interest rates. 

5. (a) 

2 2

2 2

2 2

[( ) ] {[ ) ( )] }

[( ) ] 2 ( )( ) ( )

( ) .

W W

W W W W

W W

E W c E W c

E W E W c c

c

μ μ

μ μ μ μ

σ μ

− = − + −

= − + − − + −

= + −

 

(b) Using the result in part (a), the conditional mean squared error 

− − − − − −− = + −2 2 2
1 1 2 | 1 | 1 1[( ) | , ,...] ( )t t t t t t t t tE Y f Y Y Y fσ  

 with the conditional variance 2 2
| 1 | 1[( ) ].t t t t tE Y Yσ − −= − This equation is minimized when the second 

term equals zero, or when 1 | 1.t t tf Y− −=  
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(c) Applying Equation (2.27), we know the error ut is uncorrelated with ut – 1 if E(ut |ut – 1) = 0. From 
Equation (14.14) for the AR(p) process, we have 

1 1 0 1 2 2 3 1 1 2 1( , ,..., ),t t t t p t p t t t pu Y Y Y Y f Y Y Yβ β β β− − − − − − − − − −= − − − − − =L  

 a function of Yt – 1 and its lagged values. The assumption − − =1 2( | , ,...) 0t t tE u Y Y  means that 
conditional on Yt – 1 and its lagged values, or any functions of Yt – 1 and its lagged values, ut has 
mean zero. That is, 

− − − − −= =1 1 2 2( | ) [ | ( , ,..., )] 0.t t t t t t pE u u E u f Y Y Y  

 Thus ut and ut – 1 are uncorrelated. A similar argument shows that ut and ut – j are uncorrelated for 
all j ≥ 1. Thus ut is serially uncorrelated. 

6. This exercise requires a Monte Carlo simulation on spurious regression. The answer to (a) will 
depend on the particular “draw” from your simulation, but your answers should be similar to the ones 
that we found. 
(b) When we did these simulations, the 5%, 50% and 95% quantiles of the R2 were 0.00, 0.19, and 

0.73. The 5%, 50% and 95% quantiles of the t-statistic were −12.9, −0.02 and 13.01. Your 
simulations should yield similar values. In 76% of the draws the absolute value of the t-statistic 
exceeded 1.96. 

(c) When we did these simulations with T = 50, the 5%, 50% and 95% quantiles of the R2 were 0.00, 
0.16 and 0.68. The 5%, 50% and 95% quantiles of the t-statistic were −8.3, −0.20 and 7.8. Your 
simulations should yield similar values. In 66% of the draws the absolute value of the t-statistic 
exceeded 1.96. 
When we did these simulations with T = 200, the 5%, 50% and 95% quantiles of the R2 were 
0.00, 0.17, and 0.68. The 5%, 50% and 95% quantiles of the t-statistic were −16.8, −0.76 and 
17.24. Your simulations should yield similar values. In 83% of the draws the absolute value of 
the t-statistic exceeded 1.96. 
The quantiles of the R2 do not seem to change as the sample size changes. However the 
distribution of the t-statistic becomes more dispersed. In the limit as T grows large, the fraction of 
the t-statistics that exceed 1.96 in absolute values seems to approach 1.0. (You might find it 
interesting that t statistic

T
−  has a well-behaved limiting distribution. This is consistent with the Monte 

Carlo presented in this problem.) 

7. (a) From Exercise (14.1) E(Yt) = 2.5 + 0.7E(Yt – 1) + E(ut), but E(Yt) = E(Yt – 1) (stationarity) and E(ut) = 
0, so that E(Yt) = 2.5/(1−0.7). Also, because Yt = 2.5 + 0.7Yt – 1 + ut, var(Yt) = 0.72var(Yt – 1) + var(ut) 
+ 2 × 0.7 × cov(Yt – 1, ut). But cov(Yt – 1, ut) = 0 and var(Yt) = var(Yt – 1) (stationarity), so that var(Yt) = 
9/(1 − 0.72) = 17.647. 

(b) The 1st autocovariance is 

1 1 1

1 1

2

cov( , ) cov(2.5 0.7 , )
0.7var( ) cov( , )

0.7
0.7 17.647 12.353.

t t t t t

t t t

Y

Y Y Y u Y
Y u Y

σ

− − −

− −

= + +

= +

=

= × =
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 The 2nd autocovariance is 

− − − −

− − −

= + + + +

= + +

=

= × =

σ

2
2 2 1 2

2
2 1 2

2 2

2

cov( , ) cov[(1 0.7)2.5 0.7 0.7 , ]

0.7 var( ) cov( 0.7 , )

0.7

0.7 17.647 8.6471.

t t t t t t

t t t t

Y

Y Y Y u u Y

Y u u Y  

(c) The 1st autocorrelation is 
2

1
1 2

1

cov( , ) 0.7corr ( , ) 0.7.
var( )var( )

t t Y
t t

Yt t

Y Y
Y Y

Y Y
σ

σ
−

−
−

= = =  

 The 2nd autocorrelation is 
2 2

2
2 2

2

cov( , ) 0.7corr ( , ) 0.49.
var( )var( )

t t Y
t t

Yt t

Y Y
Y Y

Y Y
σ

σ
−

−
−

= = =  

(d) The conditional expectation of 1TY +  given YT is 

+1/T TY  =  2.5 + 0.7YT = 2.5 + 0.7 × 102.3 = 74.11. 

8. Because E(ut |Febt, Mart,… Dect) = 0, E(Yt |  Febt, Mart,… Dect) = β0 + β1Febt + β2Mart + ⋅⋅⋅ + 
β11Dect. For observations in January, all of the regressors are equal to zero, thus μJan = β0. For 
observations in February, Febt = 1 and the other regressors equal 0, so that μFeb = β0 + β1. Similar 
calculations apply for the other months. 

9. (a) E(Yt) = β0 + E(et) + b1E(et–1) + ⋅⋅⋅ + bqE(et–q) = β0 [because E(et) = 0 for all values of t]. 
(b) 

− − − − − + −= + + + + + +

= + + +

L L

L

2 2
1 1 1 1 1 1

2 2 2
1

var( ) var( ) var( ) var( ) 2 cov( , ) 2 cov( , )

(1 )
t t t q t q t t q q t q t q

e q

Y e b e b e b e e b b e e

b bσ
 

because var(et) = 2
eσ for all t and cov(et, ei) = 0 for i≠ t. 

(c) Yt = β0 + et + b1et–1 + b2et – 2 + ⋅⋅⋅ + bqet – q and Yt–j = β0 + et – j + b1et – 1 – j + b2et – 2 – j + ⋅⋅⋅ + bqet – q – j 
and cov(Yt, Yt – j) = = = − − −∑ ∑0 0 cov( , ),q q

k m k m t k t j mb b e e  where b0 = 1. Notice that cov(et–k, et–j–m) = 0 
for all terms in the sum. 

(d) ( )2 2
1var( ) 1 ,t eY bσ= +  − = σ 2

1cov( , ) ,t t j eY Y b  and − =cov( , ) 0t t jY Y  for j > 1. 

10. A few things to note: first, computing the QLR using 25% trimming will result in a statistic that is at 
least as large as just choosing one date (the usual F statistic) and a statistic that can be no larger than 
the QLR with 15% trimming (because with the test with 15% trimming chooses that maximum over a 
larger number of statistics). Thus the 25%-trimming critical values will be larger than the critical 
values for the F statistic and smaller than the critical values for the 15%-trimming QLR statistic. 
(a) The F statistic is larger than the 5% CV for 15% trimming (3.66), so it must be larger than the 

critical value for 25% trimming (which must be less than 3.66), so the null is rejected. 
(b) The F statistic is smaller than the 5% critival value from the F5,∞ distribution (2.21), so that it 

must be smaller than the critical value with 25% (which must be greater than 2.21), so the null is 
not rejected. 

(c) This is the intermediate case. Critical values for the 25% trimming would have to be computed. 



68  Stock/Watson - Introduction to Econometrics - Second Edition 

 

11. Write the model as Yt − Yt – 1 = β0 + β1(Yt – 1 − Yt – 2) + ut. Rearranging yields Yt = β0 + (1+β1)Yt – 1 − β1Yt – 2 
+ ut. 



Chapter 15 
Estimation of Dynamic Causal Effects 

 Solutions to Exercises 
1. (a) See the table below. βi is the dynamic multiplier. With the 25% oil price jump, the predicted 

effect on output growth for the ith quarter is 25βi percentage points. 

Period ahead 
         (i) 

Dynamic 
multiplier 

(βi) 

Predicted effect 
on output growth

(25βi) 

95% confidence 
interval 25 × [βi ± 

1.96SE (βi)] 
0 −0.055 −1.375 [−4.021, 1.271] 
1 −0.026 −0.65 [−3.443, 2.143] 
2 −0.031 −0.775 [−3.127, 1.577] 
3 −0.109 −2.725 [−4.783, −0.667] 
4 −0.128 −3.2 [−5.797, −0.603] 
5 0.008 0.2 [−1.025, 1.425] 
6 0.025 0.625 [−1.727, 2.977] 
7 −0.019 −0.475 [−2.386, 1.436] 
8 0.067 1.675 [−0.015, 0.149] 

(b) The 95% confidence interval for the predicted effect on output growth for the i’th quarter from 
the 25% oil price jump is 25 × [βi ± 1.96SE (βi)] percentage points. The confidence interval is 
reported in the table in (a). 

(c) The predicted cumulative change in GDP growth over eight quarters is 
25 × (−0.055 − 0.026 − 0.031 − 0.109 − 0.128 + 0.008 + 0.025 − 0.019) = −8.375%. 

(d) The 1% critical value for the F-test is 2.407. Since the HAC F-statistic 3.49 is larger than the 
critical value, we reject the null hypothesis that all the coefficients are zero at the 1% level. 

2. (a) See the table below. βi is the dynamic multiplier. With the 25% oil price jump, the predicted 
change in interest rates for the i’th quarter is 25βi. 

Period ahead 
         (i) 

Dynamic 
multiplier 

(βi) 

Predicted change
in interest rates 

(25βi) 

95% confidence 
interval 25 × [βi ± 

1.96SE (βi)] 
0 0.062 1.55 [−0.655, 3.755] 
1 0.048 1.2 [−0.466, 2.866] 
2 −0.014 −0.35 [−1.722, 1.022] 
3 −0.086 −2.15 [−10.431, 6.131] 
4 −0.000 0 [−2.842, 2.842] 
5 0.023 0.575 [−2.61, 3.76] 
6 −0.010 −0.25 [−2.553, 2.053] 
7 −0.100 −2.5 [−4.362, −0.638] 
8 −0.014 −0.35 [−1.575, 0.875] 
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(b) The 95% confidence interval for the predicted change in interest rates for the i’th quarter from 
the 25% oil price jump is 25 × [βi ± 1.96SE (βi)]. The confidence interval is reported in the table 
in (a). 

(c) The effect of this change in oil prices on the level of interest rates in period t + 8 is the price 
change implied by the cumulative multiplier: 

25 × (0.062 + 0.048 − 0.014 − 0.086 − 0.000 + 0.023 − 0.010 − 0.100 − 0.014) = −2.275. 

(d) The 1% critical value for the F-test is 2.407. Since the HAC F-statistic 4.25 is larger than the 
critical value, we reject the null hypothesis that all the coefficients are zero at the 1% level. 

3. The dynamic causal effects are for experiment A. The regression in exercise 15.1 does not control for 
interest rates, so that interest rates are assumed to evolve in their “normal pattern” given changes in 
oil prices. 

4. When oil prices are strictly exogenous, there are two methods to improve upon the estimates. The 
first method is to use OLS to estimate the coefficients in an ADL model, and to calculate the dynamic 
multipliers from the estimated ADL coefficients. The second method is to use generalized least 
squares (GLS) to estimate the coefficients of the distributed lag model. 

5. Substituting 

− − −

− − + −

= Δ + = Δ + Δ +

=
= Δ + Δ + + Δ +
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1 1 2

1 1

t t t t t t

t t t p t p

X X X X X X

X X X X
 

into Equation (15.4), we have 

− − + −

− − + −

− − + −

− + − + −
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− +

= + + + + + +
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t t t

r t r

r
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X

+ − +1) .r t r tX u

 

Comparing the above equation to Equation (15.7), we see δ0 = β0, δ1 = β1, δ2 = β1 + β2, 
δ3 = β1 + β2+ β3,…, and δr + 1 = β1 + β2 +⋅⋅⋅+ βr + βr + 1. 

6. (a) Write 
2

1 1 1 1
2 2

1

var( ) var( ) var( ) 2 cov( , )

var( )
t t t t t

t u

u u u u u

u

φ φ

φ σ
− −= + +

= + %

% %
 

where the second equality follows from stationarity (so that var(ut) = var(ut–1) and cov(ut–1, tu%) = 0. 
The result follows by solving for var(ut). The result of var(Xt) is similar. 
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(b) Write 

1 1 1 1

1

cov( , ) var( ) cov( , )
var( )

t t t t t

t

u u u u u
u

− − −= +
=

%φ
φ

 

showing the result for j = 1. For j = 2, write 

2 1 1 2 2

1 1
2

1

cov( , ) cov( , ) cov( , )
cov( , )

var( )

t t t t t t

t t

t

u u u u u u
u u

u

− − − −

−

= +
=

=

%φ
φ

φ

 

and similarly for other values of j. The result for X is similar. 

(c) cor(ut, ut−j) = cov( , ) cov( , )
var( )var( ) var( )

t t j t t j

tt t j

u u u u
uu u

− −

−
=  from stationarity. The result then follows from (b). The 

result for X is similar. 

(d) vt = (Xt − μX)ut 
 (i) 2 2 2 2 2 2 2( ) [( ) ] [( ) ] [ ] ,μ μ σ σ= − = − =t t X t t X t X uE v E X u E X E u  where the second equality 

follows because Xt and ut are independent. 
 (ii) cov(vtvt – j) = E[(Xt − μX)( Xt – j − μX)utut – j] = E[(Xt − μX)( Xt – j − μX)]E[utut – j] = 

1 1var( ) var( ),j j
t tX uγ φ  so that cor(vt, vt – j) = 1 1 .j jγ φ  Thus f∞ = 1 + 2 1 1

1 1

1
1 1 1 1( ) .γ φ

γ φγ φ +∞
= −∑ =i

i  

7. Write 0 1φ∞
= −= ∑ %i

t i t iu u  

(a) Because =%( | ) 0i tE u X  for all i and t, E(ui |Xt) = 0 for all i and t, so that Xt is strictly exogenous. 

(b) Because − + =%1( | ) 0t j tE u u  for j ≥ 0, Xt is exogenous. However E(ut+1 | 1tu +% ) = 1tu +%  so that Xt is not 
strictly exogenous. 

8. (a) Because Xt is exogenous, OLS is consistent. 
(b) The GLS estimator regresses Yt − φ1Yt – 1 onto Xt − φ1Xt – 1. The error term in this regression is .%tu  

Because Xt = 1,tu +%  Xt − φ1Xt–1 = 1tu +%  − φ1 ,tu%  which is correlated with the regression error. Thus 
the GLS estimator will be inconsistent. 

(c) 
2

1 1 1 1
1 1 1 12 2 2

1 1 1 1

cov( , )ˆ
var( ) (1 ) (1 )

p t t t u

t t u

X X u
X X

−

−

−
→ + = − = −

− + +
%

%

%φ σ φ φβ β β β
φ σ φ φ

 

9. (a) This follows from the material around equation (3.2). 
(b) Quasi differencing the equation yields Yt – φ1Yt – 1 = (1 − φ1)β0 + ,tu%  and the GLS estimator of 

(1 − φ1)β0 is the mean of Yt – φ1Yt – 1 = = −− ∑ −1
2 1 11 ( )T

t t tT Y Yφ . Dividing by (1 − φ1) yields the GLS 
estimator of β0. 

(c) This is a rearrangement of the result in (b). 
(d) Write −−

= =−= ∑ = + + ∑ 11 1 1 1
0 1 1 21

ˆ ( ) ,T TT
t t T t tT T T TY Y Y Yβ  so that 

−
=− − −− = + − ∑ − −11 1 1 1 1

0 0 1 2 11 1 1
ˆ ˆ ( ) ( )GLS T

T t t TT T T TY Y Y Y Yφβ β  and the variance is seen to be proportional 

to 2
1 .

T
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10. 

Multipliers 
 Lag Multiplier Cumulative Multiplier

0 2 2 
1 0 2 
2 0 2 
3 0 2 
4 0 2 
5 0 2 

 The long-run cumulative multiplier = 2. 



Chapter 16 
Additional Topics in Time Series Regression 

 Solutions to Exercises 
1. Yt follows a stationary AR(1) model, 0 1 1 .t t tY Y uβ β −= + +  The mean of Yt is 0

11( ) ,Y tE Y β
βμ −= =  

and =( | ) 0.t tE u Y  
(a) The h-period ahead forecast of + + −= K| 1, ( | , , ),t t h t t h t tY Y E Y Y Y  is 

( )

+ + − + − −

+ − + −

+ −

+ −

+ −

−

= = + +

= + = + +

= + +

= + + +

= + + +

=

= + + + +

−
= +

−

K K

L L

L

| 1 0 1 1 1

0 1 1| 0 1 0 1 2|

2
1 0 1 2|

2
1 0 1 0 1 3|

2 3
1 1 0 1 3|

1
1 1 0 1

1
0 1

1

( | , , ) ( | , , )
( )

(1 )

(1 ) ( )

(1 )

1

1
1

t h t t h t t t h t t t

t h t t h t

t h t

t h t

t h t

h h
t

h

Y E Y Y Y E Y u Y Y
Y Y

Y

Y

Y

Y

β β
β β β β β β

β β β

β β β β β

β β β β

β β β β

β
β β

β

= + −1 ( ).

h
t

h
Y t Y

Y

Yμ β μ

 

(b) Substituting the result from part (a) into Xt gives 
∞ ∞

+
= =

∞ ∞

= =

= = + −

= + −

−
= +

− −

∑ ∑

∑ ∑

| 1
0 0

1
0 0

1

[ ( )]

( ) ( )

.
1 1

i i i
t t i t Y t Y

i i

i i
Y t Y

i i

t YY

X Y Y

Y

Y

δ δ μ β μ

μ δ μ β δ

μμ
δ β δ

 

2. (a) Because R1t follows a random walk (R1t = R1t–1 + ut), the i-period ahead forecast of R1t is 

+ + − + −= = = =L L| 1| 2|1 1 1 1 .t i t t i t t i t tR R R R  

 Thus 

+
= =

= + = + = +∑ ∑|
1 1

1 11 1 1 .
k k

t t i t t t t t t
i i

Rk R e R e R e
k k

 

(b) R1t follows a random walk and is I (1). Rkt is also I (1). Given that both Rkt and R1t are integrated 
of order one, and Rkt − R1t = et is integrated of order zero, we can conclude that Rkt and R1t are 
cointegrated. The cointegrating coefficient is 1. 
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(c) When Δ = Δ+ Δ1 0.5 , 1t t tR u R is stationary but R1t is not stationary. 
1 21 1.5 1 0.5 1 ,t t t tR R R u− −= − + an AR(2) process with a unit autoregressive root. That is, R1t is 

(1)I . The i-period ahead forecast of 1tRΔ  is 

+ + − + −Δ = Δ = Δ = = ΔL L2
| 1| 2|1 0.5 1 0.5 1 0.5 1 .i

t i t t i t t i t tR R R R  

 The i-period ahead forecast of R1t is 

+ − ++

+ − + − +

+ +

= + Δ

= + Δ + Δ

=
= + Δ + + Δ

= + + + Δ

−
= + Δ

−

K K
L

L

1| |

2| 1| |

1| |

1 1 1

1 1 1

1 1 1

1 (0.5 0.5 ) 1

0.5(1 0.5 )1 1 .
1 0.5

t i t t i tt i t

t i t t i t t i t

t t t t i t

i
t t

i

t t

R R R

R R R

R R R

R R

R R

 

 Thus 

+
= =

= + = + − Δ +

= + Δ +

∑ ∑
φ

1 1

1 11 [ 1 (1 0.5 ) 1 ]

1 1 .

k k
i

t t t t tt i t
i i

t t t

Rk R e R R e
k k
R R e

 

 where == ∑ −φ 1
1(1 0.5 ).k i

ik  Thus 1 1 .t t t tRk R R eφ− = Δ + Thus Rkt and R1t are cointegrated. The 
cointegrating coefficient is 1. 

(d) When R1t = 0.5R1t – 1 + ut, R1t is stationary and does not have a stochastic trend. 
+ =|1 0.5 1 ,i

t i t tR R so that, 1 ,t t tRk R eθ= +  where == ∑θ 1
1 0.5 .k i

ik  Since R1t and et are I (0), then Rkt 
is I (0). 

3. ut follows the ARCH process with mean E (ut) = 0 and variance −= +σ 2 2
11.0 0.5 .t tu  

(a) For the specified ARCH process, ut has the conditional mean − =1( | ) 0t tE u u  and the conditional 
variance. 

− −= = +2 2
1 1var ( | ) 1.0 0.5 .t t t tu u uσ  

 The unconditional mean of ut is E (ut) = 0, and the unconditional variance of ut is 

− −

−

−

= +

= + +

= +

1 1

2
1

1

var ( ) var[ ( | )] [var ( | )]

0 1.0 0.5 ( )
1.0 0.5var ( ).

t t t t t

t

t

u E u u E u u

E u
u

 

 The last equation has used the fact that = + =2 2( ) var( ) ( )] var( ),t t t tE u u E u u  which follows because 
E (ut) = 0. Because of the stationarity, var(ut–1) = var(ut). Thus, var(ut) = 1.0 + 0.5var(ut) which 
implies 1.0

0.5var( ) 2.tu = =  
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(b) When 2 2
1 0.2, 1.0 0.5 0.2 1.02.t tu σ− = = + × =  The standard deviation of ut is σt = 1.01. Thus 

⎛ ⎞−
− ≤ ≤ = ≤ ≤⎜ ⎟

⎝ ⎠
= Φ −Φ − = − =

3 3Pr ( 3 3) Pr
1.01 1.01

(2.9703) ( 2.9703) 0.9985 0.0015 0.9970.

t
t

t

u
u

σ  

 When ut–1 = 2.0, 2 21.0 0.5 2.0 3.0.tσ = + × =  The standard deviation of ut is σt = 1.732. Thus 

⎛ ⎞−
− ≤ ≤ = ≤ ≤⎜ ⎟

⎝ ⎠
= Φ −Φ − = − =

3 3Pr ( 3 3) Pr
1.732 1.732

(1.732) ( 1.732) 0.9584 0.0416 0.9168.

t
t

t

u
u

σ  

4. Yt follows an AR(p) model 0 1 1 .t t p t p tY Y Y uβ β β− −= + + + +L  − − =K1 2( | , , ) 0t t tE u Y Y implies 
+ − =K1( | , , ) 0t h t tE u Y Y for h ≥ 1. The h-period ahead forecast of Yt is 

+ + −

+ − + − + −

+ − −

+ − − + −

+ − + −

=

= + + + +

= + +

+ +

= + + +

K
L K

K L
K K

L

| 1

0 1 1 1

0 1 1 1

1 1

0 1 1| |

( | , , )
( | , , )

( | , , )
( | , , ) ( | , , )

.

t h t t h t t

t h p t h p t h t t

t h t t

p t h p t t t h t t

t h t p t h p t

Y E Y Y Y
E Y Y u Y Y

E Y Y Y
E Y Y Y E u Y Y

Y Y

β β β

β β
β

β β β

 

5. Because 1 1 1 ,t t t t t tY Y Y Y Y Y− − −= − + = + Δ  

2 2 2 2
1 1 1

1 1 1 1 1
( ) ( ) 2 .

T T T T T

t t t t t t t
t t t t t

Y Y Y Y Y Y Y− − −
= = = = =

= + Δ = + Δ + Δ∑ ∑ ∑ ∑ ∑  

So 

2 2 2
1 1

1 1 1 1

1 1 1 ( ) .
2

T T T T

t t t t t
t t t t

Y Y Y Y Y
T T− −

= = = =

⎡ ⎤
Δ = × − − Δ⎢ ⎥

⎣ ⎦
∑ ∑ ∑ ∑  

Note that ( ) ( )− −
= = − = =∑ − ∑ = ∑ + − + ∑ =2 2 1 2 2 2 1 2

1 1 1 1 0 1
T T T T
t t t t t t T t tY Y Y Y Y Y 2 2 2

0T TY Y Y− =  because Y0 = 0. Thus: 

2 2
1

1 1

2
2

1

1 1 1 ( )
2

1 1 ( ) .
2

T T

t t T t
t t

T
T

t
t

Y Y Y Y
T T

Y Y
TT

−
= =

=

⎡ ⎤
Δ = × − Δ⎢ ⎥

⎣ ⎦
⎡ ⎤⎛ ⎞

= − Δ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑

∑
 

6. (a) Rewrite the regression as 

 Yt = 3.0 + 2.3Xt + 1.7(Xt+1 − Xt) + 0.2(Xt − Xt–1) + ut 

Thus θ = 2.3, δ–1 = 1.7, δ0 = 0.2 and δ1 = 0.0. 
(b) Cointegration requires Xt to be I(1) and ut to be I(0). 
 (i) No 
 (ii) No 
 (iii) Yes 
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7. 
1

1 11 1 1
2 2 21

1 1 1 1 1( ) ( )
ˆ .

TT T
t t tt t t t t t T

T T T
t t t t t tT

Y YY X Y Y
X Y Y

β = += = +

= = + = +

∑ Δ∑ ∑ Δ

∑ ∑ Δ ∑ Δ
= = =  Following the hint, the numerator is the same expression as (16.21) 

(shifted forward in time 1 period), so that = +∑ Δ → −
2 21

1 1 12 ( 1).uT d
t t tT Y Y σ χ  The denominator is 

= + = +∑ Δ = ∑ →2 2 21 1
1 1 1 1( ) pT T

t t t t uT TY u σ  by the law of large numbers. The result follows directly. 

8. (a) First note that Yt–1/t–2 = β11Yt–2 + γ11Xt–2 and Xt–1/–2 = β21Yt–2 + γ21Xt–2.                                           
Also Yt/t–2 = β11Yt–1/t–2 + γ11Xt–1/t–2. Substituting yields 

Yt/–2 = β11(β11Yt–2 + γ11Xt–2) + γ11(β21Yt–2 + γ21Xt–2) 
      = [β11β11 + γ11β21]Yt–2 + [β11γ11 + γ11γ21]Xt–2 

so that δ1 = β11β11 + γ11β21 and δ2 = β11γ11 + γ11γ21. 
(b) There is no difference in iterated multistep or direct forecast if the values of δ1 and δ2 were 

known. (This is shown in (a).) But, these parameters must be estimated, and the implied VAR 
estimates of these parameters are more accurate (have lower standard errors) if the VAR model is 
correctly specified. 

9. (a) From the law of iterated expectations 

( )
( )

( )
( )

2 2

2
0 1 1

2
0 1 1

2
0 1

( )t t

t

t

t

E u E

E u

E u

E u

σ

α α

α α

α α

−

−

=

= +

= +

= +

 

where the last line uses stationarity of u. Solving for 2( )tE u  gives the required result. 

(b) As in (a) 

( )
( )

( ) ( ) ( )
( ) ( ) ( )

2 2

2 2 2
0 1 1 2 2

2 2 2
0 1 1 2 2

2 2 2
0 1 2

( )t t

t t p t p

t t p t p

t t p t

E u E

E u u u

E u E u E u

E u E u E u

σ

α α α α

α α α α

α α α α

− − −

− − −

=

= + + + +

= + + + +

= + + + +

L

L

L

 

so that 
=

=
− ∑

2 0

1

( )
1t p

t i

E u
α

α
 

(c) This follows from (b) and the restriction that 2( )tE u > 0. 
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(d) As in (a) 

( )
( ) ( )

( )
( )

2 2

2 2
0 1 1 1 1

2
0 1 1 1

2
0 1 1

0

1 1

( )

( )

( )

1

t t

t t

t

t

E u E

E u E

E u

E u

σ

α α φ σ

α α φ

α α φ

α
α φ

− −

−

=

= + +

= + +

= + +

=
− −

 

(e) This follows from (d) and the restriction that ( )2 0.tE u >  

10. Write ΔYt = θΔXt + Δv1t and ΔXt = v2t; also v1t–1 = Yt–1 − θXt–1. Thus ΔYt = −(Yt−1 − θXt–1) + u1t and ΔXt 
= u2t, with u1t = v1t + θv2t and u2t = v2t. 



Chapter 17 
The Theory of Linear Regression with One Regressor 

 Solutions to Exercises 
1. (a) Suppose there are n observations. Let b1 be an arbitrary estimator of β1. Given the estimator b1, 

the sum of squared errors for the given regression model is 

2
1

1
( ) .

n

i i
i

Y b X
=

−∑  

 1
ˆ ,RLSβ  the restricted least squares estimator of β1, minimizes the sum of squared errors. That is, 

1
ˆ RLSβ  satisfies the first order condition for the minimization which requires the differential of the 

sum of squared errors with respect to b1 equals zero: 

1
1

2( )( ) 0.
n

i i i
i

Y b X X
=

− − =∑  

 Solving for b1 from the first order condition leads to the restricted least squares estimator 

1
1 2

1

ˆ .
n

RLS i i i
n
i i

X Y
X

β =

=

∑
=
∑

 

(b) We show first that 1
ˆ RLSβ  is unbiased. We can represent the restricted least squares estimator 1

ˆ RLSβ  
in terms of the regressors and errors: 

1 1 1 1
1 12 2 2

1 1 1

( )ˆ .
n n n

RLS i i i i i i i i i i
n n n
i i i i i i

X Y X X u X u
X X X

β
β β= = =

= = =

∑ ∑ + ∑
= = = +
∑ ∑ ∑

 

 Thus 

= =

= =

⎛ ⎞ ⎡ ⎤∑ ∑
= + = + =⎜ ⎟ ⎢ ⎥∑ ∑⎝ ⎠ ⎣ ⎦

K
β β β β1 1 1

1 1 1 12 2
1 1

( | , , )ˆ( ) ,
n n

RLS i i i i i i n
n n
i i i i

X u X E u X X
E E E

X X
 

 where the second equality follows by using the law of iterated expectations, and the third equality 
follows from 

=

=

∑
=

∑
K1 1

2
1

( | , , )
0

n
i i i n

n
i i

X E u X X
X

 

 because the observations are i.i.d. and E(ui |Xi) = 0. (Note, E(ui |X1,…, Xn) = E(ui |Xi) because the 
observations are i.i.d. 
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 Under assumptions 1−3 of Key Concept 17.1, 1
ˆ RLSβ  is asymptotically normally distributed. The 

large sample normal approximation to the limiting distribution of 1
ˆ RLSβ  follows from considering 

1
11

1 1 2 21
1 1

ˆ .
nn

RLS i i ii i i n
n n
i i i in

X uX u
X X

β β ==

= =

∑∑
− = =

∑ ∑
 

 Consider first the numerator which is the sample average of vi = Xiui. By assumption 1 of Key 
Concept 17.1, vi has mean zero: = =( ) [ ( | )] 0.i i i i iE X u E X E u X  By assumption 2, vi is i.i.d. By 
assumption 3, var(vi) is finite. Let 2 21

1 , then / .n
i i i v vnv X u nσ σ== ∑ =  Using the central limit theorem, 

the sample average 

=

= →∑
1

1/ (0, 1)
n

d
v i

iv

v v N
n

σ
σ

 

 or 

2

1

1 (0, ).
n

d
i i v

i
X u N

n
σ

=

→∑  

 For the denominator, 2
iX  is i.i.d. with finite second variance (because X has a finite fourth 

moment), so that by the law of large numbers 

2 2

1

1 ( ).
n

p
i

i
X E X

n =

→∑  

 Combining the results on the numerator and the denominator and applying Slutsky’s theorem 
lead to 

=

=

∑ ⎛ ⎞
− = → ⎜ ⎟∑ ⎝ ⎠

β β
1

1
1 2 21

1

var( )ˆ( ) 0, .
( )

n
i i iRLS n i id

u n
i in

X u X u
n N

X E X
 

(c) 1
ˆ RLSβ  is a linear estimator: 

1
1 2 21

1 1

ˆ , where .
n

nRLS i i i i
i i in ni

i i i i

X Y X
aY a

X X
β =

=
= =

∑
= = =
∑ ∑∑  

 The weight ai (i = 1,…, n) depends on X1,…, Xn but not on Y1,…, Yn. 
 Thus 

1
1 1 2

1

ˆ .
n

RLS i i i
n
i i

X u
X

β β =

=

∑
= +

∑
 

 1
ˆ RLSβ  is conditionally unbiased because 

=

=

=

=

⎛ ⎞∑
= +⎜ ⎟∑⎝ ⎠

⎛ ⎞∑
= + ⎜ ⎟∑⎝ ⎠
=

K K

K

1
1 1 1 12

1

1
1 12

1

1

ˆ( | , , | , ,

| , ,

.

n
RLS i i i

n nn
i i

n
i i i

nn
i i

X u
E X X E X X

X

X u
E X X

X

β β

β

β
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 The final equality used the fact that 

= =

= =

⎛ ⎞∑ ∑
= =⎜ ⎟∑ ∑⎝ ⎠

KK1 1 1
12 2

1 1

( | , , )
| , , 0

n n
i i i i i i n

nn n
i i i i

X u X E u X X
E X X

X X
 

 because the observations are i.i.d. and E (ui |Xi) = 0. 
(d) The conditional variance of β1

ˆ ,RLS  given X1,…, Xn, is 

=

=

=

=

=

=

=

⎛ ⎞∑
= +⎜ ⎟∑⎝ ⎠
∑

=
∑

∑
=

∑

=
∑

K K

K

β β

σ

σ

1
1 1 12

1

2
1 1

2 2
1

2 2
1

2 2
1

2

2
1

ˆvar( | 1, , ) var | , ,

var( | , , )
( )

( )

.

n
RLS i i i

n nn
i i

n
i i i n

n
i i

n
i i u

n
i i

u
n
i i

X u
X X X X

X

X u X X
X

X
X
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(e) The conditional variance of the OLS estimator 1β̂  is 

=

=
∑ −

K σ
β

2

1 1 2
1

ˆvar( | , , ) .
( )

u
n n

i i

X X
X X

 

 Since 

= = = = =

− = − + = − <∑ ∑ ∑ ∑ ∑2 2 2 2 2 2

1 1 1 1 1
( ) 2 ,

n n n n n

i i i i i
i i i i i

X X X X X nX X nX X  

 the OLS estimator has a larger conditional variance: >K Kβ β1 1 1 1
ˆvar( | , , ) var( | , , ).RLS

n nX X X X  
The restricted least squares estimator 1

ˆ RLSβ  is more efficient. 
(f) Under assumption 5 of Key Concept 17.1, conditional on X1,…, Xn, 1

ˆ RLSβ  is normally distributed 
since it is a weighted average of normally distributed variables ui: 

1
1 1 2

1

ˆ .
n

RLS i i i
n
i i

X u
X

β β =

=

∑
= +

∑
 

 Using the conditional mean and conditional variance of 1
ˆ RLSβ  derived in parts (c) and (d) 

respectively, the sampling distribution of 1
ˆ RLSβ , conditional on X1,…, Xn, is 

2

1 1 2
1

ˆ ~ , .RLS u
n
i i

N
X

σ
β β

=

⎛ ⎞
⎜ ⎟

∑⎝ ⎠
 

(g) The estimator 

1 1 1 1
1 1

1 1 1

( )n n n
i i i i i i i
n n n
i i i i i i

Y X u u
X X X

β
β β= = =

= = =

∑ ∑ + ∑
= = = +
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%  
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 The conditional variance is 

=

=

=

=

=
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∑

=
∑
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n
i i

n nn
i i

n
i i n

n
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u
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X X X X
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 The difference in the conditional variance of 1 1
ˆand RLSβ β%  is 

= =

− = −
∑ ∑

% K K σ σ
β β

2 2

1 1 1 1 2 2
1 1

ˆvar( | , , ) var( | , , ) .
( )

RLS u u
n n n n

i i i i

n
X X X X

X X
 

 In order to prove ≥% K Kβ β1 1 1 1
ˆvar( | , , ) var( | , , ),RLS

n nX X X X  we need to show 

= =

≥
∑ ∑2 2

1 1

1
( )n n

i i i i

n
X X

 

 or equivalently 
2

2

1 1
.

n n

i i
i i

n X X
= =

⎛ ⎞
≥ ⎜ ⎟
⎝ ⎠

∑ ∑  

 This inequality comes directly by applying the Cauchy-Schwartz inequality 

= = =

⎡ ⎤
⋅ ≤ ⋅⎢ ⎥

⎣ ⎦
∑ ∑ ∑

2
2 2

1 1 1
( )

n n n

i i i i
i i i

a b a b  

 which implies 
2 2

2 2 2

1 1 1 1 1
1 1 .

n n n n n

i i i i
i i i i i

X X X n X
= = = = =

⎛ ⎞ ⎛ ⎞
= ⋅ ≤ ⋅ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ ∑  

 That is = =Σ ≥ Σ ≥% K Kβ β2 2
1 1 1 1 1 1

ˆ( ) , or var( | , , ) var( | , , ).n n RLS
i i x i n nn X X X X X X  

 Note: because 1β% is linear and conditionally unbiased, the result 
≥% K Kβ β1 1 1 1

ˆvar( | , , ) var( | , , )RLS
n nX X X X  follows directly from the Gauss-Markov theorem. 
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2. The sample covariance is 

1

1

1 1

1 1

1

1 ( )( )
1

1 {[ ) ( )][ ) ( )]}
1

1 ( )( ) ( )( )
1

( )( ) ( )( )
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i X X i Y Y
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n n

i X i Y X i Y
i i

n n

i X Y X Y
i i

n

i X i Y X
i

s X X Y Y
n

X X Y Y
n

X Y X Y
n

X Y X Y

n nX Y X Y
n n n

μ μ μ μ

μ μ μ μ

μ μ μ μ

μ μ μ μ

=

=

= =

= =

=

= − −
−

= − − − − − −
=

⎧
= − − − − −⎨

− ⎩
⎫

− − − + − − ⎬
⎭

⎡ ⎤
= − − − − −⎢ ⎥− −⎣ ⎦

∑

∑

∑ ∑

∑ ∑

∑ )Y

 

where the final equality follows from the definition of andX Y  which implies that 
1 1( ) ( ) and ( ) ( ),n n

i i X X i i Y YX n X Y n Yμ μ μ μ= =Σ − = − Σ − = −  and by collecting terms. 

We apply the law of large numbers on sXY to check its convergence in probability. It is easy to see the 
second term converges in probability to zero because →p XX μ  and →p YY μ  so 
( )( ) 0p

X YX Yμ μ− − →  by Slutsky’s theorem. Let’s look at the first term. Since (Xi, Yi) are i.i.d., the 
random sequence (Xi − μX) (Yi − μY) are i.i.d. By the definition of covariance, we have 

[( )( )] .i X i Y XYE X Yμ μ σ− − =  To apply the law of large numbers on the first term, we need to have 

var[( )( )]i X i YX Yμ μ− − < ∞  

which is satisfied since 
2 2

4 4

var[( )( )] [( ) ( ) ]

[( ) ] [( ) ] .
i X i Y i X i Y

i X i Y

X Y E X Y

E X E Y

μ μ μ μ

μ μ

− − < − −

≤ − − < ∞
 

The second inequality follows by applying the Cauchy-Schwartz inequality, and the third inequality 
follows because of the finite fourth moments for (Xi, Yi). Applying the law of large numbers, we have 

1

1 ( )( ) [( )( )] .
n

p
i X i Y i X i Y XY

i
X Y E X Y

n
μ μ μ μ σ

=

− − → − − =∑  

Also, 1 1,n
n− →  so the first term for sXY converges in probability to σXY. Combining results on the two 

terms for sXY , we have → σ .p
XY XYs  

3. (a) Using Equation (17.19), we have 

=

=

=

=

= =

= =

= =

= =

∑ −
− =

∑ −

∑ − − −
=

∑ −

∑ − − ∑
= −

∑ − ∑ −

∑ − ∑
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∑ − ∑ −
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1
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n
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i in
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i i X X in

n
i in

n n
i i X i X i in n
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n n
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 by defining vi = (Xi − μX)ui. 
(b) The random variables u1,…, un are i.i.d. with mean μu = 0 and variance 20 .uσ< < ∞  By the 

central limit theorem, 

1
1( )

(0, 1).
n
i in du

u u

un u
N

μ
σ σ

=∑−
= →  

 The law of large numbers implies → − →μ μ
2
, or 0.p p

X XX X  By the consistency of sample 
variance, 21

1( )n
i in X X=Σ − converges in probability to population variance, var(Xi), which is finite 

and non-zero. The result then follows from Slutsky’s theorem. 
(c) The random variable vi = (Xi − μX) ui has finite variance: 

= −

≤ −

≤ − < ∞

μ μ

μ

μ

2 2

4 4

var( ) var[( ) ]

[( ) ]

[( ) ] [( ) ] .

i i X i

i X i

i X i

v X

E X u

E X E u

 

 The inequality follows by applying the Cauchy-Schwartz inequality, and the second inequality 
follows because of the finite fourth moments for (Xi, ui). The finite variance along with the fact 
that vi has mean zero (by assumption 1 of Key Concept 15.1) and vi is i.i.d. (by assumption 2) 
implies that the sample average v  satisfies the requirements of the central limit theorem. Thus, 

1
1

n
i in

v v

vv
σ σ

=∑
=  

 satisfies the central limit theorem. 
(d) Applying the central limit theorem, we have 

=∑
→

σ

1
1 (0, 1).

n
i in d

v

v
N  

 Because the sample variance is a consistent estimator of the population variance, we have 

=∑ −
→

21
1( )

1.
var( )

n
pi in

i

X X
X

 

 Using Slutsky’s theorem, 

=

=

∑

→
∑ −

σ

σ

1
1

21
1

2
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( )

n
i tn

v d
n
i tn

X

v

N
X X

 

 or equivalently 

=

=

∑ ⎛ ⎞
→ ⎜ ⎟∑ − ⎝ ⎠

1
1

2 21
1

var( )
0, .

( ) [var( )]

n
i in id

n
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v v
N
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 Thus 

= =

= =

∑ − ∑
− = −

∑ − ∑ −

⎛ ⎞
→ ⎜ ⎟

⎝ ⎠

μ
β β

1 1
1 1

1 1 2 21 1
1 1
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( ) ( )

var( )
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n n
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X X X X

v
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 since the second term for −1 1
ˆ( )n β β  converges in probability to zero as shown in part (b). 

4. (a) Write − = = = −1
1 1 1 1

ˆ ˆ( ) where and ( ).n n n nn
a S a S n Bβ β β  Now, → →0 and d

n na S S  where S is 
distributed N (0, a2). By Slutsky’s theorem 0 .d

n na S S→ ×  Thus 1 1
ˆPr (| | ) 0β β δ− > →  for any 

δ > 0, so that − →β β β1 1 1
ˆ ˆ0 andp  is consistent. 

(b) We have (i) → =
σ

2

2 1 and (ii) ( )u

u

ps g x x  is a continuous function; thus from the continuous 

mapping theorem 

= →
σσ

2

2 1.pu u

uu

s s
 

5. Because E(W4) = [E(W2)]2 + var(W2), [E(W2)]2 ≤ E (W4) < ∞. Thus E(W2) < ∞. 

6. Using the law of iterated expectations, we have 

= = =Kβ β β β1 1 1 1 1
ˆ ˆ( ) [ ( | , , )] ( ) .nE E E X X E  

7. (a) The joint probability distribution function of ui, uj, Xi, Xj is f (ui, uj, Xi, Xj). The conditional 
probability distribution function of ui and Xi given uj and Xj is f (ui, Xi |uj, Xj). Since ui, Xi, 
i = 1,…, n are i.i.d.,  f (ui, Xi |uj, Xj) = f (ui, Xi). By definition of the conditional probability 
distribution function, we have 

=

=

( , , , ) ( , | , ) ( , )

( , ) ( , ).
i j i j i i j j j j

i i j j

f u u X X f u X u X f u X

f u X f u X
 

(b) The conditional probability distribution function of ui and uj given Xi and Xj equals 

= = =
( , , , ) ( , ) ( , )

( , | , ) ( | ) ( | ).
( , ) ( ) ( )

i j i j i i j j
i j i j i i j j

i j i j

f u u X X f u X f u X
f u u X X f u X f u X

f X X f X f X
 

 The first and third equalities used the definition of the conditional probability distribution 
function. The second equality used the conclusion the from part (a) and the independence 
between Xi and Xj. Substituting 

=( , | , ) ( | ) ( | )i j i j i i j jf u u X X f u X f u X  

 into the definition of the conditional expectation, we have 
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=
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∫ ∫
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( | ) ( | )
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E u u X X u u f u u X X du du
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(c) Let Q = (X1, X2,…, Xi – 1, Xi + 1,…, Xn), so that f (ui|X1,…, Xn) = f (ui |Xi, Q). Write 

=

=

=

=

( , , )
( | , )

( , )
( , ) ( )

( ) ( )
( , )

( )
( | )

i i
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i
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f u X Q
f u X Q

f X Q
f u X f Q

f X f Q
f u X

f X
f u X  

 where the first equality uses the definition of the conditional density, the second uses the fact that 
(ui, Xi) and Q are independent, and the final equality uses the definition of the conditional 
density. The result then follows directly. 

(d) An argument like that used in (c) implies 
=K( | , ) ( | , )i j i n i j i jf u u X X f u u X X  

 and the result then follows from part (b). 

8. (a) Because the errors are heteroskedastic, the Gauss-Markov theorem does not apply. The OLS 
estimator of β1 is not BLUE. 

(b) We obtain the BLUE estimator of β1 from OLS in the following 

0 0 1 1i i i iY X X uβ β= + +% % % % 

 where 

= =
+ +

= =
+ +

% %

% %

0
0 1 0 1

1
0 1 0 1
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| | | |

i
i i
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Y
Y X

X X
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X u
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θ θ θ θ

θ θ θ θ

 

(c) Using equations (17.2) and (17.19), we know the OLS estimator, 1
ˆ ,β  is 

1 1
1 12 2

1 1

( )( ) ( )ˆ .
( ) ( )

n n
i i i i i i

n n
i i i i

X X Y Y X X u
X X X X

β β= =

= =

∑ − − ∑ −
= = +

∑ − ∑ −
 

 As a weighted average of normally distributed variables 1
ˆ,iu β  is normally distributed with mean 

=β β1 1
ˆ( ) .E  The conditional variance of 1

ˆ ,β  given X1,…, Xn, is 
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 Thus the exact sampling distribution of the OLS estimator, 1
ˆ ,β  conditional on X1,…, Xn, is 

=

=

⎛ ⎞∑ − +
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θ θ
β β

2
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1 1 2 2
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(d) The weighted least squares (WLS) estimators, 0 1
ˆ ˆandWLS WLSβ β , are solutions to 

=

− −∑ % % %
0 1

2
0 0 1 1,

1
min ( ) ,

n

i i ib b
i

Y b X b X  

 the minimization of the sum of squared errors of the weighted regression. The first order 
conditions of the minimization with respect to b0 and b1 are 

=

=

− − − =

− − − =

∑

∑
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 Solving for b1 gives the WLS estimator 
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Q Q Q

β
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where = = = = == ∑ = ∑ = ∑ = ∑ = ∑% % % % % % % % % %
00 1 0 0 01 1 0 1 11 1 1 1 0 1 0 1 1 1, , , , and .n n n n n
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Substituting 0 0 1 0i i i iY X X uβ β= + +% % % % yields 
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where = == ∑ = ∑% %% %0 1 0 1 1 1, and orn n
i i i i i iZ X u Z X u  
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−
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WLS i i i iQ X Q X u
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From this we see that the distribution of 
1

2
ˆ1 1 1

ˆ | ,... is ( , ),WLS
WLS

nX X N
β

β β σ  where 
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where the first equality uses the fact that the observations are independent, the second uses 
2 1,uσ =% the definition of Q00, Q11, and Q01, and the third is an algebraic simplification. 
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9. We need to prove 
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The definition of ˆiu  implies 

= + − + − − −

− − + − −

2 2 2 2 2
0 0 1 1 0 0

1 1 0 0 1 1
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Substituting this into the expression for =Σ − − − μ2 2 2 21
1 ˆ[( ) ( ) ]n

i i i i X in X X u X u  yields a series of terms 
each of which can be written as anbn where 0p

na →  and 1
1

n r s
n i i inb X u== Σ  where r and s are integers. 

For example, 1 1
ˆ( ), ( )n X na X aμ β β= − = −  and so forth. The result then follows from Slutksy’s 

theorem if =Σ →1
1

pn r s
i i in X u d  where d is a finite constant. Let r s

i i iw X u=  and note that wi is i.i.d. The 
law of large numbers can then be used for the desired result if 2( ) .iE w < ∞  There are two cases that 
need to be addressed. In the first, both r and s are non-zero. In this case write 

= <2 2 2 4 4( ) ( ) [ ( )][ ( )]r s r s
i i i i iE w E X u E X E u  

and this term is finite if r and s are less than 2. Inspection of the terms shows that this is true. In the 
second case, either r = 0 or s = 0. In this case the result follows directly if the non-zero exponent 
(r or s) is less than 4. Inspection of the terms shows that this is true. 

10. Using (17.43) with ˆW θ θ= −  implies 

−
− ≥ ≤

2

2

ˆ[( ) ]ˆPr(| | ) E θ θθ θ δ
δ

 

Since − → − > → − →θ θ θ θ δ θ θ2ˆ ˆ ˆ[( ) ] 0, Pr(| | ) 0, so that 0.pE  



Chapter 18 
The Theory of Multiple Regression 

 Solutions to Exercises 
1. (a) The regression in the matrix form is 

Y = Xβ + U 

 with 

2
1 1 1

2
2 2 2

2

1
1

,

1n n n

TestScore Income Income
TestScore Income Income

TestScore Income Income
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1
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2
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, .
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β
β β
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⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟

⎝ ⎠

U
M  

(b) The null hypothesis is 

Rβ = r 

versus Rβ ≠ r with 

= (0 0 1) and  = 0.R r  

The heteroskedasticity-robust F-statistic testing the null hypothesis is 
1

ˆ
ˆ ˆˆ( ) ( )/F q

−
⎡ ⎤′ ′= − −⎣ ⎦βRβ r RΣ R Rβ r  

With q = 1. Under the null hypothesis, 

, .dF Fq→ ∞  

We reject the null hypothesis if the calculated F-statistic is larger than the critical value of the 
,qF ∞  distribution at a given significance level. 

2. (a) The sample size n = 20. We write the regression in the matrix from: 

Y = Xβ + U 
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The OLS estimator the coefficient vector is 

1ˆ ( ) .−′ ′=β X X X Y  
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 By the definition of sample variance 
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( 1) .
n

i Y
i

Y n s nY
=

= − +∑  
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Thus using the sample means and sample variances, we can get 

=

= − +

= − × + × =

∑ 1

2 2 2
1 1

1
2

( 1)

(20 1) 0.80 20 7.24 1063.6,

n

i X
i

X n s nX
 

and 

=

= − +

= − × + × =

∑ 2

2 2 2
2, 2

1
2

( 1)

(20 1) 2.40 20 4.00 365.6.

n

i X
i

X n s nX
 

By the definition of sample covariance 

1 1

1 1( ) ( ) ,
1 1 1

n n

XY i i i i
i i

ns X X Y Y X Y XY
n n n= =

= − − = −
− − −∑ ∑  

we know 

1

( 1) .
n

i i XY
i

X Y n s nXY
=

= − +∑  

Thus using the sample means and sample covariances, we can get 

1

2

1 1
1

2 2
1

( 1)

(20 1) 0.22 20 7.24 6.39 929.45,

( 1)

(20 1) 0.32 20 4.00 6.39 517.28,

n

i i X Y
i

n

i i X Y
i

X Y n s nX Y

X Y n s nX Y

=

=

= − +

= − × + × × =

= − +

= − × + × × =

∑

∑
 

and 

1 21 2 1 2
1

( 1)

(20 1) 0.28 20 7.24 4.00 584.52.

n

i i X X
i

X X n s nX X
=

= − +

= − × + × × =

∑  

Therefore we have 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ ′= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

20 144.8 80.0 127.8
144.8 1063.6 584.52 , 929.45 .
80.0 584.52 365.6 517.28

X Y X Y  

The inverse of matrix X′X is 

1

3.5373 0.4631 0.0337
( ) 0.4631 0.0684 0.0080 .

0.0337 0.0080 0.0229

−

− −⎛ ⎞
⎜ ⎟′ = − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

X X  



90  Stock/Watson - Introduction to Econometrics - Second Edition 

 

The OLS estimator of the coefficient vector is 

1ˆ ( )
3.5373 0.4631 0.0337 127.8 4.2063
0.4631 0.0684 0.0080 929.45 0.2520 .
0.0337 0.0080 0.0229 517.28 0.1033

−′ ′=

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

β X Y X Y

 

That is, 0
ˆ 4.2063,β =  1̂ 0.2520,β =  and 2

ˆ 0.1033.β =  

With the number of slope coefficients k = 2, the squared standard error of the regression 2
ûs  is 

=

′= =
− − − −∑2

ˆ
1

1 1 ˆ ˆˆ .
1 1

n

u i
i

s u
n k n k

U U  

The OLS residuals ˆˆ ˆ ,β= − = −U Y Y Y X so 

ˆ ˆ ˆ ˆ ˆˆ ˆ ( ) ( ) 2 ' ' .′ ′ ′ ′ ′= − − = − +U U Y Xβ Y Xβ Y Y β X Y β X Xβ  

We have 

2 2 2

1
2

( 1)

(20 1) 0.26 20 6.39 821.58,

4.2063 127.8
ˆ ' 0.2520 929.45 825.22,

0.1033 517.28

n

i Y
i

Y n s nY
=

′ = = − +

= − × + × =

′⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ = =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑Y Y

β X Y  

 

and 

4.2063 20 144.8 80.0 4.2063
ˆ ˆ' 0.2520 144.8 1063.6 584.52 0.2520 832.23.

0.1033 80.0 584.52 365.6 0.1033

′⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

β X Xβ  

Therefore the sum of squared residuals 

2

1

ˆ ˆ ˆˆ ˆˆ 2

821.58 2 825.22 832.23 3.37.

n

i
i

SSR u β
=

′ ′ ′ ′ ′ ′= = = − +

= − × + =

∑ U U Y Y X Y X Xβ β  

The squared standard error of the regression 2
ûs  is 

2
ˆ

1 1ˆ ˆ 3.37 0.1982.
1 20 2 1us n k

′= = × =
− − − −

U U  

With the total sum of squares 

2 2

1

( ) ( 1) (20 1) 0.26 4.94,
n

i Y
i

TSS Y Y n s
=

= − = − = − × =∑  
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the R2 of the regression is 

2 3.371 1 0.3178.
4.94

SSRR
TSS

= − = − =  

(b) When all six assumptions in Key Concept 16.1 hold, we can use the homoskedasticity-only 
estimator ∑%̂β  of the covariance matrix of ˆ,β  conditional on X, which is 

−

− −⎛ ⎞
⎜ ⎟′∑ = = − − ×⎜ ⎟
⎜ ⎟− −⎝ ⎠

− −⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟− −⎝ ⎠

% 1 2
ˆ ˆ

3.5373 0.4631 0.0337
( ) 0.4631 0.0684 0.0080 0.1982

0.0337 0.0080 0.0229

0.7011 0.09179 0.0067
0.09179 0.0136 0.0016 .
0.0067 0.0016 0.0045

usβ X X

 

The homoskedasticity-only standard error of 1̂β  is 

± 1
2

1
ˆ( ) 0.0136 0.1166.SE β = =  

 The t-statistic testing the hypothesis β1 = 0 has a tn–k–1 = t17 distribution under the null hypothesis. 
The value of the t-statistic is 

±
1

1

ˆ 0.2520 2.1612,ˆ 0.1166( )
t

SE
β

β
= = =%  

 and the 5% two-sided critical value is 2.11. Thus we can reject the null hypothesis β1 = 0 at the 
5% significance level. 

3. (a) 
2Var ( ) [( ) ]

[( )( ) ]

[( )( ) ]
[(W )( ) ]

c var( )c

Q

Q Q

Q E Q

E Q Q

E
E

μ

μ μ

= −

′= − −

′ ′ ′ ′ ′= − −
′ ′= − −
′ ′= =

W W

W W

w

c W c c W c
c W c

W c Σ c

μ μ
μ μ

 

where the second equality uses the fact that Q is a scalar and the third equality uses the fact that 
μQ = c′μw. 

(b) Because the covariance matrix ∑W  is positive definite, we have 0′∑ >wc c  for every non-zero 
vector from the definition. Thus, var(Q) > 0. Both the vector c and the matrix ∑W  are finite, so 
var(Q) = ′∑wc c  is also finite. Thus, 0 < var(Q) < ∞. 

4. (a) The regression in the matrix form is 

Y = Xβ + U 
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 with 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = = ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

M M M M

1 1 1

2 2 2 0

1

1
1

, X , U , .

1n n n

Y X u
Y X u

Y

Y X u

β
β

β
 

(b) Because ′ = (1 ),i iX X  assumptions 1–3 in Key Concept 18.1 follow directly from assumptions 
1–3 in Key Concept 4.3. Assumption 4 in Key Concept 18.1 is satisfied since observations 
Xi ( 1,2,... )i n=  are not constant and there is no perfect multicollinearity among the two vectors of 
the matrix X. 

(c) Matrix multiplication of X′X and X′Y yields 

1
2

1 1

1

11

 .

.

n
i i

n n
i i i i

n
i i

nn
i i ii i i

n X
X X

Y nY
X YX Y

=

= =

=

==

⎛ ⎞∑′ = ⎜ ⎟⎜ ⎟∑ ∑⎝ ⎠
⎛ ⎞∑ ⎛ ⎞

′ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ∑∑ ⎝ ⎠⎝ ⎠

X X

X Y

 

 The inverse of X′X is 

−

− =

= =

= =

= = =

=

=

⎛ ⎞∑′ = ⎜ ⎟⎜ ⎟∑ ∑⎝ ⎠
⎛ ⎞∑ − ∑

= ⎜ ⎟⎜ ⎟∑ − ∑ −∑⎝ ⎠
⎛ ⎞∑ −

= ⎜ ⎟
∑ − −⎝ ⎠

1
1 1

2
1 1

2
1 1

2 2
1 1 1

2
1

2
1

( )

1
( )

/1 .
( ) 1

n
i i

n n
i i i i

n n
i i i i

n n n
i i i i i i

n
i i

n
i i

n X
X X

X X
n X X X n

X n X
X X X

X X

 

 The estimator for the coefficient vector is 

1

2
1

2
1 1

2
1 1

2
1 1

ˆ )

/1
( ) 1

1
( )

n
i i

n n
i i i i i

n n
i i i i i

n n
i i i i i

nYX n X
X X X X Y

Y X X X Y
X X X Y nXY

=

= =

= =

= =

′ ′= (

⎛ ⎞⎛ ⎞∑ −
= ⎜ ⎟⎜ ⎟ ⎜ ⎟∑ − − ∑⎝ ⎠ ⎝ ⎠

⎛ ⎞∑ − ∑
= ⎜ ⎟⎜ ⎟∑ − ∑ −⎝ ⎠

β X X X Y−

 

 Therefore we have 

1 1
2 2

1 1

( )( )ˆ ,
( ) ( )

n n
i i i i i i

n n
i i i i

X Y nXY X X Y Y
X X X X

β = =

= =

∑ − ∑ − −
= =

∑ − ∑ −
 



Solutions to Exercises in Chapter 18  93 

 

 and 

2
1 1

0 2
1

2
1 1

2
1

2 2
1 1

2
1

1
2

1

1

ˆ
( )

( )
( )

( )
( )

( )
ˆ .

n n
i i i i i

n
i i

n n
i i i i i

n
i i

n n
i i i i i

n
i i

n
i i i

n
i i

Y X X X Y
X X

Y X X X X X Y
X X

Y X X nX Y X X Y
X X

X Y nXY
Y X

X X

Y X

β

β

= =

=

= =

=

= =

=

=

=

∑ − ∑
=

∑ −

∑ − + − ∑
=

∑ −

∑ − + − ∑
=

∑ −

⎡ ⎤∑ −
= − ⎢ ⎥

∑ −⎢ ⎥⎣ ⎦

= −

 

 We get the same expressions for 0β̂  and 1̂β  as given in Key Concept 4.2. 

(d) The large-sample covariance matrix of ˆ,β  conditional on X, converges to 

ˆ
1
n

= -1 -1
X v XβΣ Q Σ Q  

 with QX = E ( )i i′X X  and ( ) ( ).i i i i i iE E u u′ ′= =vΣ V V X X  The column vector Xi for the ith 
observation is 

1
,i

iX
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

X  

 so we have 

2

1 1
(1 ) ,

,

i
i i i

i i i

i
i i i

i i

X
X

X X X

u
u

X u

⎛ ⎞ ⎛ ⎞
′ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

X X

V X
 

 and 

( )
2 2

2 2 2 .i i i i
i i i i i

i i i i i i

u u X u
u X u

X u X u X u
⎛ ⎞⎛ ⎞

′ = = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
V V  

 Taking expectations, we get 

2

1
( ) ,

( )
X

i i
X i

E
E X

μ
μ

⎛ ⎞
′= = ⎜ ⎟

⎝ ⎠
XQ X X  
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 and 

2 2

2 2 2

( )

( ) ( )

( ) ( )

var( ) cov( , )
.

cov( , ) var( )

i i

i i i

i i i i

i i i i

i i i i i

E

E u E X u

E X u E X u

u X u u
X u u X u

′=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

vΣ V V

 

 In the above equation, the third equality has used the fact that E ( | )i iu X  = 0 so 

= =

= =

= + = +

= + =

= + =

2 2 2

2 2 2

2 2

( ) [ ( | )] 0,
( ) [ ( | )] 0,

( ) var( ) [ ( )] var( ) [ ( )] var( ),

( ) var( ) [ ( )] var( ),

( ) cov( , ) ( ) ( ) cov( , ).

i i i

i i i i i

i i i i i i

i i i i i i i i

i i i i i i i i i i i

E u E E u X
E X u E X E u X

E u u E u u E u u

E X u X u E X u X u

E X u X u u E X u E u X u u

 

 The inverse of QX is 

1 2
1

2 2 2

1 ( )1 .
( ) 1( )

X i x

X i Xi X

E X
E X E X

μ μ
μ μμ

−
− ⎛ ⎞⎛ ⎞ −

= = ⎜ ⎟⎜ ⎟ ⎜ ⎟−−⎝ ⎠ ⎝ ⎠
XQ  

 We now can calculate the large-sample covariance matrix of ˆ,β  conditional on X, from 

− −∑ = ∑

=
−

⎛ ⎞ ⎛ ⎞⎛ ⎞− −
× ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠

1 1
ˆ

2 2 2

2 2

1

1
[ ( ) ]

var( ) cov( , )( ) ( )
.

cov( , ) var( )1 1

v

i X

i i i ii X i X

i i i i iX X

n

n E X

u X u uE X E X
X u u X u

β

μ

μ μ
μ μ

X XQ Q
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 The (1, 1) element of ∑β̂  is 

− +
−

= −
−

⎡ ⎤
= −⎢ ⎥

− ⎢ ⎥⎣ ⎦
⎡⎛ ⎞

= −⎜ ⎟⎜ ⎟⎡ ⎤ ⎝ ⎠
−⎢ ⎥

⎣ ⎦

2 2 2 2
2 2 2

2
2 2 2

2 2

2 2 2 2

2 22

2

1 {[ ( )] var( ) 2 ( ) cov( , ) var( )}
[ ) ]

1 var[ ( ) ]
[ ( ) ]

[ ( )]
var

[ ( ) ] ( )

1 var 1
( )

1
( )

i i i X i i i X i i
i X

i i X i i
i X

i X
i i i

i X i

X
i i

iX

i

E X u E X X u u X u
n EX

E X u X u
n E X

E X
u X u

n E X E X

X u
E X

n
E X

μ μ
μ

μ
μ

μ
μ

μ

μ

⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=
0

2
2 2

var( )
, (the same as the expression for given in Key Concept 4.4)

( ( )]
i i

i

H u
n E H βσ

 

by defining 

21 .
( )

X
i i

i

H X
E X

μ
= −  

 The denominator in the last equality for the (1, 1) element of β̂∑  has used the facts that 

2 2
2 2

2 2 2 2
21 1 ,

( ) ( ) ( )
X X

i i i i
i i i

XH X X X
E X E X E X

μ μμ⎛ ⎞
= − = + −⎜ ⎟⎜ ⎟

⎝ ⎠
 

 so 

2 2
2 2

2 2 2 2 2
2( ) 1 ( ) 1 .

[ ( )] ( ) ( )
X X X

i i X
i i i

E H E X
E X E X E X

μ μ μ
μ= + − = −  

5. PX = X (X′X)−1X′, MX = In − PX. 

(a) PX is idempotent because 

PXPX = X(X′X)−1 X′X(X′X)−1 X′ = X(X′X)−1X′ = PX. 

MX is idempotent because 

( )( )
2

n n n

n

= − − = − − +

= − + = − =
X X X X X X X X

X X n X X

M M I P I P I P P P P
I P P I P M

 

 PXMX = 0nxn because 

n   (   )          0n n×= − = − = − =X X X X X X X X XP M P I P P P P P P  

(b) Because −′ ′= 1ˆ ( ) ,β X X X Y  we have 

1ˆˆ ( )−′ ′= = = XY X X X X X Y P Yβ  
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 which is Equation (18.27). The residual vector is 

ˆ ˆ ( ) .n= − = − = − =X X XU Y Y Y P Y I P Y M Y  

 We know that MXX is orthogonal to the columns of X: 

MXX = (In − PX) X = X − PXX = X −X (X′X)−1  X′X =X − X = 0 
 so the residual vector can be further written as 

ˆ ( )= = + = + =X X X X XU M Y M X U M X M U M Uβ β  

 which is Equation (18.28). 

6. The matrix form for Equation of (10.14) is 

= +Y X U%% % %β  

with 

11 1 11 1

12 1 12 1

1 1 1 1

21 2 21 2

22 2 22 2

2 2 2 2

1 1

2 2

,

T T

T T

n n n n

n n n n

nT n nT n

Y Y X X
Y Y X X

Y Y X X
Y Y X X
Y Y X X

Y Y X X

Y Y X X
Y Y X X

Y Y X X

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜
⎜ ⎟ ⎜− −
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜− −
⎜ ⎟ ⎜

− −⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜− −⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠

Y X

M M

% %M M

M M

M M

11 1

12 1

1 1

21 2

22 2

2 2

1

2

,

T

T

n n

n n

nT n

u u
u u

u u
u u
u u

u u

u u
u u

u u

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟=⎟ ⎜ ⎟

⎟ ⎜ ⎟−
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟−
⎟ ⎜ ⎟

−⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟⎜ ⎟⎟ −⎟ ⎜ ⎟⎝ ⎠

U

M

% M

M

M

 

1β β=%  

The OLS “de-meaning” fixed effects estimator is 

−′ ′=% %% %%1
1 ( ) .DMβ X X X Y  

Rewrite Equation (10.11) using n fixed effects as 

1 1 21 2 .it it i i i n itY X D D Dn uγ γ γ= + + + + +Lβ  

In matrix form this is 

× × × × × ×= + +1 1 1 1 1 1nT nT nT n n nTγY X W Uβ  
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with the subscripts denoting the size of the matrices. The matrices for variables and coefficients are 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

L
L
LM M M M M
L
L

M M

M M

M M

11 11 1 1 1

12 12 1 1 1

1 1 1 1 1

21 21 2 2

22 22

2 2

1 1

2 2

1 2
1 2

1 2
1 2

, ,

T T

T T

n n

n n

nT nT

Y X D D Dn
Y X D D Dn

Y X D D Dn
Y X D D D
Y X

Y X

Y X
Y X

Y X

Y X W

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

M

L
LM M M M
L
MM M M M

L
L
LM M M M
L

11

12

1

2 21

2 2 2 22

2 2 2 2

1

2

1 2
, ,

1 2

1 2
1 2

1 2

T

T

n n n n

n n n n

n n n nT

u
u

u
n u

D D Dn u

D D Dn u

D D Dn u
D D Dn u

D D Dn u

U  

1

2
1, .

n

γ
γ

β

γ

⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M
β γ  

Using the expression for β̂ given in the question, we have the estimator 

( )

−

−

′ ′= =

′ ′=

1
1

1

ˆ ˆ ( )

( ) ( ).

BVβ W W

W W W W

X M X X M Y

(M X) (M X) M X M Y

β
 

where the second equality uses the fact that MW is idempotent. Using the definition of W, 

1

1

1

2

2

2

0 0
0 0

0 0
0 0
0 0

0 0

0 0
0 0

0 0

n

n

n

X
X

X
X
X

X

X
X

X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

WP X

L
L

M M L M
L
L
L

M M L M
L

M M M M
L
L

M M L M
L
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and 

11 1

12 1

1 1

21 2

22 2

2 2

1

2

0 0
0 0

0 0
0 0
0 0

0 0

0 0
0 0

0 0

T

T

n n

n n

nT n

X X
X X

X X
X X
X X

X X

X X
X X

X X

⎛ ⎞−
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟

−⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎜ ⎟⎝ ⎠

WM X

L
L

M M L M
L
L
L

M M L M
L

M M M M
L
L

M M L M
L

 

so that .=WM X X%  A similar calculation shows .=WM Y Y%  Thus 

( )−
′ ′= =%% %%1

1 1
ˆ ˆ .BV DNβ βX X X Y  

7. (a) We write the regression model, Yi = β1Xi + β2Wi + ui, in the matrix form as 

Y = Xβ + Wγ + U 

with 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = = =
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

M M M M

1 1 1 1

2 2 2 2, , , ,

n n n n

Y X W u
Y X W u

Y X W u

Y X W U  

1 2, .β β= =β γ  

The OLS estimator is 

−

−

−

= =

= =

⎛ ⎞ ′ ′ ′⎛ ⎞ ⎛ ⎞
⎜ ⎟ = ⎜ ⎟ ⎜ ⎟⎜ ⎟ ′ ′ ′⎝ ⎠ ⎝ ⎠⎝ ⎠

′ ′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′⎝ ⎠ ⎝ ⎠⎝ ⎠

′ ′ ′⎛ ⎞ ⎛ ⎞⎛ ⎞
= + ⎜ ⎟ ⎜ ⎟⎜ ⎟ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ∑ ∑
= +⎜ ⎟ ∑ ∑⎝ ⎠

1
1

2

1
1

2

11 1 1
1

1 1 1
2

21 1
1 1 1

1 1
2 1 1

ˆ

ˆ

n n n

n n n

n n
i i i i in n

n n
i i i i in n

X X W
W X W

β

β

β
β

β
β

β
β

X X X W X Y
W X W W W Y

X X X W X U
W X W W W U

X X X W X U
W X W W W U

−

=

=

⎛ ⎞∑⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∑⎝ ⎠ ⎝ ⎠

1 1
1

2 1
1

n
i i in

n
i i in

X u

Wu
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By the law of large numbers = =∑ → ∑ →2 2 2 21 1
1 1( ); ( );n p n p

i i i in nX E X W E W  =∑ → =1
1 ( ) 0n p

i i in X W E XW  

(because X and W are independent with means of zero); =∑ → =1
1 ( ) 0n p

i i in X u E Xu  (because X and 

u are independent with means of zero); 1
1 ( ) 0n p

i i in X u E Xu=∑ → =  Thus 

2

12
1 1

2
22

1
( )

2 ( )

ˆ 0( ) 0
ˆ ( )0 ( )

.

p

E Wu
E W

E X
E WuE W

β β
ββ

β
β

−⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ → + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞

= ⎜ ⎟⎜ ⎟+⎝ ⎠

 

(b) From the answer to (a) 2
( )

2 2 2( )
ˆ E W up

E W
β β β→ + ≠  if E(Wu) is nonzero. 

(c) Consider the population linear regression ui onto Wi: 

ui = λWi + ai 

where λ = E(Wu)/E(W2). In this population regression, by construction, E(aW) = 0. Using this 
equation for ui rewrite the equation to be estimated as 

1 2

1 2

1

( )
i i i i

i i i

i i i

Y X W u
X W a
X W a

β β
β β λ
β θ

= + +

= + + +

= + +

 

where 2 .θ β λ= +  A calculation like that used in part (a) can be used to show that 

−
== =

= = =

−

⎛ ⎞∑⎛ ⎞ ⎛ ⎞− ∑ ∑
⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∑ ∑ ∑− ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
→ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

1 121 1
11 1 1 1

21 1 1
1 1 12

12
1

2
2

ˆ( )
ˆ( )

( ) 0
0 ( )

nn n
i i ini i i i in n

n n n
i i i i in n i u in

d

X an X X W
W X W W an

SE X
SE W

β β

β θ
 

where S1 is distributed 2
2(0, ( )).aN E Xσ  Thus by Slutsky’s theorem 

⎛ ⎞
− → ⎜ ⎟

⎝ ⎠

σ
β β

2

1 1 2
ˆ( ) 0,

( )
d an N

E X
 

Now consider the regression that omits W, which can be written as: 

1i i iY X dβ= +  

where di = Wiθ + ai. Calculations like those used above imply that 

( ) ⎛ ⎞
− → ⎜ ⎟

⎝ ⎠

σ
β β

2

1 1 2
ˆ 0, .

( )
r d dn N

E X
 

Since 2 2 2 2( ),d a E Wσ σ θ= +  the asymptotic variance of 1̂
rβ  is never smaller than the asymptotic 

variance of 1̂.β  
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8. (a) The regression errors satisfy 1 1u u= % and 10.5i i iu u u−= + % for i = 2, 3,…, n with the random 

variables ( 1, 2, , )iu i n=% K  being i.i.d. with mean 0 and variance 1. For i > 1, continuing 
substituting ui – j = 0.5ui – j – 1 + i ju −%  ( j = 1, 2,…, i − 2) and 1 1u u= % into the expression 

ui = 0.5ui – 1 + iu% yields 

−

− −

− − −

− − − −

− − −
− −

−

=

= +

= + +

= + + +

= + + + +

=

= + + + + + +

= ∑

%
% %

% % %

% % % %
L L

% % % % % %L

%

1

2 1

2
3 2 1

3 2
4 3 2 1

1 2 3 2
1 2 3 2 1

1

0.5
0.5(0.5 )

0.5 (0.5 ) 0.5

0.5 (0.5 ) 0.5 0.5

0.5 0.5 0.5 0.5 0.5

0.5 .

i i i

i i i

i i i i

i i i i i

i i i
i i i

i
i j

j
j

u u u
u u u

u u u u

u u u u u

u u u u u u

u

 

Though we get the expression −
== ∑ %1 0.5i i j

i j ju u  for i > 1, it is apparent that it also holds for i = 1. 
Thus we can get mean and variance of random variables ui (i = 1, 2,…, n): 

1

2
2 2 2

2
1 1

( ) 0.5 ( ) 0,

1 (0.5 )var( ) (0.5 ) var( ) (0.5 ) 1 .
1 0.5

i
i j

i j
j

ii i
i j i j

i i j
j j

E u E u

u uσ

−

=

− −

= =

= =

−
= = = × =

−

∑

∑ ∑

%

%
 

In calculating the variance, the second equality has used the fact that iu% is i.i.d. 
Since −

== ∑ %1 0.5i i j
i j ju u  we know for k > 0, 

1 1 1

1

0.5 0.5 0.5 0.5

0.5 0.5 .

i k i i k
i k j k i j i k j

i k j j j
j j j i

i k
k i k j

i j
j i

u u u u

u u

+ +
+ − − + −

+
= = = +

+
+ −

= +

= = +

= +

∑ ∑ ∑

∑

% % %

%
 

Because iu% is i.i.d., the covariance between random variables ui and ui + k is 

1

2

cov( , ) cov , 0.5 0.5

0.5 .

i k
k i k j

i i k i i j
j i

k
i

u u u u u

σ

+
+ −

+
= +

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
=

∑ %
 

Similarly we can get 

− −= 2cov( , ) 0.5 .k
i i k i ku u σ  
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The column vector U for the regression error is 

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M

1

2 .

n

u
u

u

U  

It is straightforward to get 

2
1 1 2 1

2
2 1 2 2

2
1 2

( ) ( ) ( )
( ) ( ) ( )

( ) .

( ) ( ) ( )

n

n

n n n

E u E u u E u u
E u u E u E u u

E

E u u E u u E u

⎛ ⎞
⎜ ⎟
⎜ ⎟′ = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

UU

L
L

M M O M
L

 

Because E(ui) = 0, we have ( )2
iE u  = var(ui) and E(uiuj) = cov(ui, uj). Substituting in the results 

on variances and covariances, we have 

2 2 2 2 3 2 1 2
1 1 1 1 1

2 2 2 2 2 2 2
1 2 2 2 2

2 2 2 2 2 3 2
1 2 3 3 3

3 2 2 2 2 2 4 2
1 2 3 4 4

1 2 2 2 3 2 4 2 2
1 2 3 4

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

( )
0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

n

n

n

n

n n n n
n

E

σ σ σ σ σ
σ σ σ σ σ
σ σ σ σ σ
σ σ σ σ σ

σ σ σ σ σ

−

−

−

−

− − − −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

′Ω = = ⎜
⎜
⎜
⎜⎜
⎝ ⎠

UU

L
L
L
L

M M M M O M
L

⎟
⎟
⎟
⎟⎟

 

with −
=

−

2
2

2

1 (0.5 ) .
1 0.5

i

iσ  

(b) The original regression model is 

0 1 .i i iY X uβ β= + +  

Lagging each side of the regression equation and substracting 0.5 times this lag from each side gives 

1 0 1 1 10.5 0.5 ( 0.5 ) 0.5i i i i i iY Y X X u uβ β− − −− = + − + −  

for i = 2,…, n with 10.5 .i i iu u u−− = %  Also 

1 0 1 1 1Y X uβ β= + +  

with 1 1.u u= %  Thus we can define a pair of new variables 

− −= − −% % %
1 2 1 1( , , ) ( 0.5 , 0.5, 0.5 ),i i i i i i iY X X Y Y X X  

for i = 2,…, n and =% % %
1 11 21 1 1( , , ) ( ,1, ),iY X X Y X  and estimate the regression equation 

0 1 1 2i i i iY X X uβ β= + +% % % % 

using data for i = 1,…, n. The regression error iu% is i.i.d. and distributed independently of ,iX%  
thus the new regression model can be estimated directly by the OLS. 
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9. (a)  

1

1

1

ˆ ( )

( ) ( )

( ) .

−

−

−

′ ′=

′ ′= + +

′ ′= +

W W

W W

W W

X M X X M Y

X M X X M X W U

X M X X M U

β

β γ

β

 

The last equality has used the orthogonality MWW = 0. Thus 
1 1 1 1ˆ ( ) ( ) ( ).n n− − − −′ ′ ′ ′− = =W W W WX M X X M U X M X X M Uβ β  

(b) Using MW = In − PW and PW = W(W′W)−1W′ we can get 

− −

− −

− − − − −

′ ′= −

′ ′= −

′ ′ ′ ′= −

1 1

1 1

1 1 1 1 1

(

( )( ) ( ).

nn n

n n

n n n n

W W

W

X M X X I P )X

X X X P X

X X X W W W W X

 

First consider −
=′ ′= ∑1 1

1 .n
i i inn X X X X  The (j, l) element of this matrix is =∑1

1 .n
i ji lin X X  By 

Assumption (ii), Xi is i.i.d., so XjiXli is i.i.d. By Assumption (iii) each element of Xi has four 
moments, so by the Cauchy-Schwarz inequality XjiXli has two moments: 

≤ ⋅ < ∞2 2 4 4( ) ( ) ( ) .ji li ji liE X X E X E X  

Because XjiXli is i.i.d. with two moments, =∑1
1

n
i ji lin X X  obeys the law of large numbers, so 

1

1 ( ) .
n

p
ji li ji li

i
X X E X X

n =

→∑  

This is true for all the elements of n−1 X′X, so 

1
.

1

1 ( ) .
n

p
i i i i

i
n E

n
−

=

′ ′ ′= → = ∑∑ XXX X X X X X  

Applying the same reasoning and using Assumption (ii) that (Xi, Wi, Yi) are i.i.d. and 
Assumption (iii) that (Xi, Wi, ui) have four moments, we have 

−

=

−

=

′ ′ ′= → = ∑

′ ′ ′= → = ∑

∑

∑

1

1

1

1

,

,

1 ( )

1 ( )

n
p

i i i i
i

n
p

i i i i
i

n E
n

n E
n

WW

XW

W W WW WW

X W X W X W
 

and 

1

1

1 ( ) .
n

p
i i i i

i
n E

n
−

=

′ ′ ′= → = ∑∑ WXW X WX WX  
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From Assumption (iii) we know Σ Σ Σ Σ, , , andXX WW XW WX  are all finite non-zero, Slutsky’s 
theorem implies 

1 1 1 1 1 1( ) ( ) ( )
p

n n n n n− − − − − −′ ′ ′ ′ ′= −

→ −
W

-1
XX XW WW WX

X M X X X X W W W W X

Σ Σ Σ Σ
 

which is finite and invertible. 
(c) The conditional expectation 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

′ ′⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ ′⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠

M M

M M

1 1 1 1

2 2 2 2

1 1

2

( | , ) ( | , )
( | , ) ( | , )

( | , )

( | ) ( | , )

.

n n n n

n n

E u E u
E u E u

E

E u E u

2

X W X W
X W X W

U X W

X, W X W

W W
W W

W

W W

δ
δ

δ δ

δ

 

The second equality used Assumption (ii) that X W( , , )i i iY are i.i.d., and the third equality 
applied the conditional mean independence assumption (i). 

(d) In the limit 
−

×′ ′ ′ ′→ = = =
1

1
1( | , ( | , )p

kn E EW W W WX M U X M U X W) X M U X W X M W 0δ  

because .=WM W 0  

(e) − ′ WX M X1n  converges in probability to a finite invertible matrix, and − ′ WX M U1n  converges in 
probability to a zero vector. Applying Slutsky’s theorem, 

− −′ ′− = →1 -1 1ˆ ( ) ( ) .pn nW WX M X X M U 0β β  

This implies 

→ˆ .pβ β  

10 (a) Using the hint: Cq = λq, so that 0 = Cq − λq = CCq − λq = λCq − λq = λ2q − λq = λ(1 − λ)q, and 
the result follows by inspection. 

(b) The trace of a matrix is equal to sum of its eigenvalues. The rank of a matrix is equal to the 
number of non-zero eigenvalues. Thus, the result follows from (a). 

(c) Because C is symmetric with non-negative eigenvalues, C is positive semidefinite, and the result 
follows. 

11 (a) Using the hint C = [Q1 Q2]
1

2

'0
'0 0

r ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

QI
Q

, where Q′Q = I. The result follows with A=Q1. 

(b) W = A′V ~ N(A′0, A′InA) and the result follows immediately. 
(c) V′CV = V′AA′V = (A′V)′(A′V) = W’W and the result follows from (b). 



104  Stock/Watson - Introduction to Econometrics - Second Edition 

 

12 (a) and (b) These mimic the steps using TSLS. 

13 (a) This follows from the definition of the Lagrangian. 
(b) The first order conditions are 

(*) X′(Y−X %β ) + R′λ = 0 

and 
(**) R %β  − r = 0 

Solving (*) yields 

(***) %β  = β̂  + (X′X)–1R′λ. 

Multiplying by R and using (**) yields r = R β̂ +R(X′X)–1R′λ, so that 

λ = −[R(X′X)–1R′]–1(R β̂  − r). 

Substituting this into (***) yields the result. 
(c) Using the result in (b), Y − X %β  = (Y − X β̂ ) + X(X′X)–1R′[ R(X′X)–1R′]–1(R −ˆ ),β r  so that 

(Y − X %β )′(Y − X %β ) = (Y − X β̂ )′(Y − X β̂ ) + (R −ˆ )rβ ′[R(X′X)–1R′]–1(R β̂  − r) 
                          + 2(Y − X β̂ )′ X(X′X)–1R′[R(X′X)–1R′]–1(R β̂  − r). 

But (Y − X β̂ )′ X = 0, so the last term vanishes, and the result follows. 

(d) The result in (c) shows that (R β̂  − r)′[R(X′X)–1R′]–1(R β̂  − r) = SSRRestricted − SSRUnrestricted. Also 
2
us = SSRUnrestricted /(n − kUnrestricted – 1), and the result follows immediately. 

14. (a) β̂ ′(X′X) β̂  = Y′X(X′X)–1X′Y = Y′X1HX1′Y, where H is the upper k1 × k1 block of (X′X)–1. 

Also R β̂ = HX1′Y and R(X′X)–1R′ = H. Thus − −1 1ˆ ˆ( )'[ ( ' ) ] ( )β βR R X X R R  = Y′X1HX1′Y. 

(b) (i) Write the second stage regression as = +ˆ ,βY X U  where X̂  and the fitted values from the 

first stage regression. Note that ˆ ˆU'X = 0, where = − ˆˆ ˆ βU Y X  because OLS residual are 

orthogonal to the regressors. Now ˆ TSLSU =Y − X β̂ = Û  − − ˆ( )X X β̂ = − ˆˆ ˆ βU V , where V̂ is 
the residual from the first stage regression. But, since W is a regressor in the first stage 
regression, =ˆ ' .0V W  Thus = − =ˆˆ ˆ ˆ' ' ' ' .TSLS 0βU W U W V W  

 (ii) β̂ ′(X′X) β̂ = -1 -1ˆ ˆ( )'[ ( ' ) ] ( )β βR R X X R R  = SSRRest − SSRUnrest for the regression in KC 12.6, 
and the result follows directly. 
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15 (a) This follows from exercise (18.6). 
(b) i i iβ= +% % %Y X u , so that 
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i i

β β X X X u

X X X M Mu
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(c) Note Typo in problem: Should Read: − −
== = ∑ −%

% %1 1 2
1( ' ) ( )T

i i t it iX T E T E X XQ X X  
−

= == ∑ ∑ −%
1 21

1 1
ˆ ( ( ) ),n T

i t it inX T X XQ  where −
=∑ −1 2

1( ( ) )T
t it iT X X  are i.i.d. with mean %XQ  and finite 

variance (because Xit has finite fourth moments). The result then follows from the law of large 
numbers. 

(d) This follows the the Central limit theorem. 
(e) This follows from Slutsky’s theorem. 
(f) 2

iη  are i.i.d., and the result follows from the law of large numbers. 

(g) Let 1/ 2 1/ 2ˆ ˆˆ ' ( ) 'i i i i i iT Tη η β β− −= = − −% % %%X u X X . Then 

2 1/ 2 2 1 2 2 1/ 2ˆ ˆ ˆˆ ' ( ) ( ' ) 2 ( ) 'i i i i i i i i iT T Tη η β β β β η− − −= = + − − −% % % % %%X u X X X X  

and 2 2 1 2 2 1/ 21 1 1
1 1 1 1

1 ˆ ˆˆ ( ) ( ' ) 2 ( ) 'n n n n
i i i i i i i i i i in n nT T

n
− −

= = = =∑ − ∑ = − ∑ − − ∑% % % %η η β β β β ηX X X X  

Because ˆ( ) 0p
− →β β , the result follows from (a) =∑ →% % % %2 21

1( ' ) [( ' ) ]pn
i i i i in X X E X X  and (b) 

=∑ →% % % %1
1 ' ( ' ).pn

i i i i i i in X X E X Xη η  Both (a) and (b) follow from the law of large numbers; both (a) and 
(b) are averages of i.i.d. random variables.  Completing the proof requires verifying that 

2( ' )i i
% %X X  has two finite moments and 'i i iη % %X X  has two finite moments.  These in turn follow 

from 8-moment assumptions for (Xit, uit) and the Cauchy-Schwartz inequality.  Alternatively, 
a “strong” law of large numbers can be used to show the result with finite fourth moments. 


	SW_2e_ex_comp
	SW_2e_ex_ch02
	SW_2e_ex_ch03
	SW_2e_ex_ch04
	SW_2e_ex_ch05
	SW_2e_ex_ch06
	SW_2e_ex_ch07
	SW_2e_ex_ch08
	SW_2e_ex_ch09
	SW_2e_ex_ch10
	SW_2e_ex_ch11
	SW_2e_ex_ch12
	SW_2e_ex_ch13
	SW_2e_ex_ch14
	SW_2e_ex_ch15
	SW_2e_ex_ch16
	SW_2e_ex_ch17
	SW_2e_ex_ch18

	SW_2e_EE_ch03
	SW_2e_EE_ch04
	SW_2e_EE_ch05
	SW_2e_EE_ch06
	SW_2e_EE_ch07
	SW_2e_EE_ch08
	SW_2e_EE_ch09
	SW_2e_EE_ch10
	SW_2e_EE_ch11
	SW_2e_EE_ch12
	SW_2e_EE_ch13
	SW_2e_EE_Ch14
	SW_2e_EE_ch15
	SW_2e_EE_ch16

