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Abstract

The overall objectives of this review and synthesis are to study the
basics of information-theoretic methods in econometrics, to exam-
ine the connecting theme among these methods, and to provide a
more detailed summary and synthesis of the sub-class of methods
that treat the observed sample moments as stochastic. Within the
above objectives, this review focuses on studying the inter-connection
between information theory, estimation, and inference. To achieve
these objectives, it provides a detailed survey of information-theoretic
concepts and quantities used within econometrics. It also illustrates
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the use of these concepts and quantities within the subfield of
information and entropy econometrics while paying special attention
to the interpretation of these quantities. The relationships between
information-theoretic estimators and traditional estimators are dis-
cussed throughout the survey. This synthesis shows that in many cases
information-theoretic concepts can be incorporated within the tradi-
tional likelihood approach and provide additional insights into the data
processing and the resulting inference.

Keywords: Empirical likelihood; entropy, generalized entropy; informa-
tion; information theoretic estimation methods; likelihood;
maximum entropy; stochastic moments.

JEL codes: C13, C14, C49, C51



Preface

This review and synthesis is concerned with information and entropy
econometrics (IEE). The overall objective is to summarize the basics
of information-theoretic methods in econometrics and the connecting
theme among these methods. The sub-class of methods that treat the
observed sample moments as stochastic is discussed in greater detail.
Within the above objective, we restrict our attention to study the inter-
connection between information theory, estimation, and inference. We
provide a detailed survey of information-theoretic concepts and quan-
tities used within econometrics and then show how these quantities are
used within IEE. We pay special attention for the interpretation of these
quantities and for describing the relationships between information-
theoretic estimators and traditional estimators.
In Section 1, an introductory statement and detailed objectives are
provided. Section 2 provides a historical background of IEE. Section 3
surveys some of the basic quantities and concepts of information the-
ory. This survey is restricted to those concepts that are employed within
econometrics and that are used within that survey. As many of these
concepts may not be familiar to many econometricians and economists,
a large number of examples are provided. The concepts discussed

ix
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include entropy, divergence measures, generalized entropy (known also
as Cressie Read function), errors and entropy, asymptotic theory, and
stochastic processes. However, it is emphasized that this is not a survey
of information theory. A less formal discussion providing interpretation
of information, uncertainty, entropy and ignorance, as viewed by sci-
entists across disciplines, is provided at the beginning of that section.
In Section 4, we discuss the classical maximum entropy (ME) princi-
ple (both the primal constrained model and the dual concentrated and
unconstrained model) that is used for estimating under-determined,
zero-moment problems. The basic quantities discussed in Section 3, are
revisited again in connection with the ME principle. In Section 5, we
discuss the motivation for information-theoretic (IT) estimators and
then formulate the generic IT estimator as a constrained optimization
problem. This generic estimator encompasses all the estimators within
the class of IT estimators. The rest of this section describes the basics
of specific members of the IT class of estimators. These members com-
pose the sub-class of methods that incorporate the moment restrictions
within the generic IT-estimator as (pure) zero moments’ conditions,
and include the empirical likelihood, the generalized empirical likeli-
hood, the generalized method of moments and the Bayesian method
of moments. The connection between each one of these methods, the
basics of information theory and the maximum entropy principle is
discussed. In Section 6, we provide a thorough discussion of the other
sub-class of IT estimators: the one that views the sample moments as
stochastic. This sub-class is also known as the generalized maximum
entropy. The relevant statistics and information measures are summa-
rized and connected to quantities studied earlier in the survey. We
conclude with a simple simulated example. In Section 7, we provide a
synthesis of likelihood, ME and other IT estimators, via an example.
We study the interconnections among these estimators and show that
though coming from different philosophies they are deeply rooted in
each other, and understanding that interconnection allows us to under-
stand our data better. In Section 8, we summarize related topics within
IEE that are not discussed in this survey.
Readers of this survey need basic knowledge of econometrics, but do
not need prior knowledge of information theory. Those who are familiar
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with the concepts of IT should skip Section 3, except Section 3.4 which
is necessary for the next few sections. Those who are familiar with
the ME principle can skip parts of Section 4, but may want to read
the example in Section 4.7. The survey is self contained and interested
readers can replicate all results and examples provided. No detailed
proofs are provided, though the logic behind some less familiar argu-
ments is provided. Whenever necessary the readers are referred to the
relevant literature.
This survey may benefit researchers who wish to have a fast introduc-
tion to the basics of IEE and to acquire the basic tools necessary for
using and understanding these methods. The survey will also bene-
fit applied researchers who wish to learn improved new methods, and
applications, for extracting information from noisy and limited data
and for learning from these data.
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1

Introductory Statement, Motivation,
and Objective

All learning, information gathering and information processing, is based
on limited knowledge, both a priori and data, from which a larger
“truth” must be inferred. To learn about the true state of the world
that generated the observed data, we use statistical models that repre-
sent these outcomes as functions of unobserved structural parameters,
parameters of priors and other sampling distributions, as well as com-
plete probability distributions. Since we will never know the true state
of the world, we generally focus, in statistical sciences, on recovering
information about the complete probability distribution, which repre-
sents the ultimate truth in our model. Therefore, all estimation and
inference problems are translations of limited information about the
probability density function (pdf) toward a greater knowledge of that
pdf. However, if we knew all the details of the true mechanism then
we would not need to resort to the use of probability distributions to
capture the perceived uncertainty in outcomes that results from our
ignorance of the true underlying mechanism that controls the event of
interest.

Information theory quantities, concepts, and methods provide a uni-
fied set of tools for organizing this learning process. They provide a

1



2 Introductory Statement, Motivation, and Objective

discipline that at once exposes more clearly what the existing methods
do, and how we might better accomplish the main goal of scientific
learning. This review first studies the basic quantities of information
theory and their relationships to data analysis and information pro-
cessing, and then uses these quantities to summarize (and understand
the connection among) the improved methods of estimation and data
processing that compose the class of entropy and information-theoretic
methods. Within that class, the review concentrates on methods that
use conditional and unconditional stochastic moments.

It seems natural to start by asking what is information, and what
is the relationship between information and econometric, or statistical
analysis. Consider, for example, Shakespeare’s “Hamlet,” Dostoevsky’s
“The Brothers Karamazov,” your favorite poem, or the US Consti-
tution. Now think of some economic data describing the demand for
education, or survey data arising from pre-election polls. Now consider
a certain speech pattern or communication among individuals. Now
imagine you are looking at a photo or an image. The image can be sharp
or blurry. The survey data may be easy to understand or extremely
noisy. The US Constitution is still being studied and analyzed daily
with many interpretations for the same text, and your favorite poem,
as short as it may be, may speak a whole world to you, while disliked
by others.

Each of these examples can be characterized by the amount of
information it contains or by the way this information is conveyed or
understood by the observer — the analyst, the reader. But what is
information? What is the relationship between information and econo-
metric analysis? How can we efficiently extract information from noisy
and evolving complex observed economic data? How can we guarantee
that only the relevant information is extracted? How can we assess that
information? The study of these questions is the subject of this survey
and synthesis.

This survey discusses the concept of information as it relates to
econometric and statistical analyses of data. The meaning of “informa-
tion” will be studied and related to the basics of Information Theory
(IT) as is viewed by economists and researchers who are engaged in
deciphering information from the (often complex and evolving) data,
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while taking into account what they know about the underlying process
that generated these data, their beliefs about the (economic) system
under investigation, and nothing else. In other words, the researcher
wishes to extract the available information from the data, but wants to
do it with minimal a priori assumptions. For example, consider the fol-
lowing problem taken from Jaynes’s famous Brandeis lectures (1963).
We know the empirical mean value (first moment) of, say one million
tosses of a six-sided die. With that information the researcher wishes
to predict the probability that in the next throw of the die we will
observe the value 1, 2, 3, 4, 5 or 6. The researcher also knows that
the probability is proper (sum of the probabilities is one). Thus, in
that case, there are six values to predict (six unknown values) and two
observed (known) values: the mean and the sum of the probabilities.
As such, there are more unknown quantities than known quantities,
meaning there are infinitely many probability distributions that sum
up to one and satisfy the observed mean. In somewhat more general
terms, consider the problem of estimating an unknown discrete prob-
ability distribution from a finite and possibly noisy set of observed
(sample) moments. These moments (and the fact that the distribu-
tion is proper — summing up to one) are the only available informa-
tion. Regardless of the level of noise in these observed moments, if the
dimension of the unknown distribution is larger than the number of
observed moments, there are infinitely many proper probability distri-
butions satisfying this information (the moments). Such a problem is
called an under-determined problem. Which one of the infinitely many
solutions should one use? In all the IEE methods, the one solution cho-
sen is based on an information criterion that is related to Shannon’s
information measure — entropy.

When analyzing a linear regression, a jointly determined system
of equations, a first-order Markov model, a speech pattern, a blurry
image, or even a certain text, if the researcher wants to understand
the data but without imposing a certain structure that may be incon-
sistent with the (unknown) truth, the problem may become inherently
under-determined. The criterion used to select the desired solution is
an information criterion which connects statistical estimation and infer-
ence with the foundations of IT. This connection provides us with an
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IT perspective of econometric analyses and reveals the deep connection
among these “seemingly distinct” disciplines. This connection gives us
the additional tools for a better understanding of our limited data, and
for linking our theories with real observed data. In fact, information
theory and data analyses are the major thread connecting most of the
scientific studies trying to understand the true state of the world with
the available, yet limited and often noisy, information.

Within the econometrics and statistical literature the family of
IT estimators composes the heart of IEE. It includes the Empirical
(and Generalized Empirical) Likelihood, the Generalized Method of
Moments, the Bayesian Method of Moments and the Generalized Max-
imum Entropy among others. In all of these cases the objective is to
extract the available information from the data with minimal assump-
tions on the data generating process and on the likelihood structure.
The logic for using minimal assumptions in the IEE class of estimators
is that the commonly observed data sets in the social sciences are often
small, the data may be non-experimental noisy data, the data may be
arising from a badly designed experiment, and the need to work with
nonlinear (macro) economic models where the maximum likelihood esti-
mator is unattractive as it is not robust to the underlying (unknown)
distribution. Therefore, (i) such data may be ill-behaved leading to
an ill-posed and/or ill-conditioned (not full rank) problem, or (ii) the
underlying economic model does not specify the complete distribution
of the data, but the economic model allows us to place restrictions on
this (unknown) distribution in the form of population moment condi-
tions that provide information on the parameters of the model. For
these estimation problems and/or small and non-experimental data
it seems logical to estimate the unknown parameters with minimum
a priori assumptions on the data generation process, or with minimal
assumptions on the likelihood function. Without a pre-specified likeli-
hood, other non maximum likelihood methods must be used in order to
extract the available information from the data. Many of these methods
are members of the class of Information-Theoretic (IT) methods.

This survey concentrates on the relationship between econometric
analyses, data and information with an emphasis on the philosophy
leading to these methods. Though, a detailed exposition is provided
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here, the focus of this survey is on the sub-class of IT estimators that
view the observed moments as stochastic. Therefore, the detailed for-
mulations and properties of the other sub-class of estimators that view
the observed moments as (pure) zero-moment conditions will be dis-
cussed here briefly as it falls outside the scope of that review and
because there are numerous recent reviews and texts of these meth-
ods (e.g., Smith, 2000, 2005, 2007; Owen, 2001; Hall, 2005; Kitamura,
2006). However, the connection to IT and the ME principle, and the
inter-relationships among the estimators, is discussed here as well.





2

Historical Perspective

This section provides a look back at the history of statistical and
econometrics thoughts that led to the current state of Information and
Entropy Econometrics. Though IEE builds directly on the foundations
of Information Theory and the Maximum Entropy Formalism, it is
also greatly affected by developments within statistics and economet-
rics. For a nice historical perspective and synthesis of IEE during the
last century with an emphasis on the more traditional methods see
Bera and Bilias (2002). Figures 2.1 and 2.2 present a long-term and a
short-term (brief) history of IEE.

Generally speaking, facing a sample of data, the researcher’s objec-
tive is to extract the available information from the data and then use
these estimated values to decide if the data supports her/his original
belief or hypothesis. In a more common language, in analyzing data
one is trying to fit a certain distribution or a certain (linear or non-
linear) function to the data. Translating that objective to practical
(optimization) models means that the estimation problem boils down
to minimizing a certain distance measure between two distributions.

This philosophy and approach, within statistics and econometrics,
goes a long way back, but it is mostly emphasized in the early work of

7



8 Historical Perspective

Fig. 2.1 Historical perspective: Information and entropy econometrics.

Fig. 2.2 Post 1990: Information and entropy econometrics.
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Pearson on the Goodness-of-Fit measure and the Method of Moments
(Pearson, 1894, 1900). That philosophy was continued by Fisher (1912,
1922) in his work on the Maximum Likelihood method and continued
later with a (seemingly) competing approach known as the Minimum
Chi-Square (Neyman and Pearson, 1928a,b), that led to Ferguson’s
Method of Moments (Ferguson, 1958). The latter approach extended
the original Method of Moments to cases where there are more observed
moments than unknown parameters. At the same period, Sargan (1958,
1959) developed his work on instrumental variables within a linear
framework. In a parallel line of research, but via a somewhat logi-
cally simplified way, Godambe (1960) and Durbin (1960) developed
the Estimating Functions approach to estimation for a similar class of
problems. For a nice survey, see Bera and Bilias (2002).

In a most ingenious way Hansen (1982) developed the general the-
ory of the Generalized Method of Moments (GMM) which builds on
all of the previous work. His paper became one of the most influen-
tial papers in econometrics. Though the GMM was developed for dif-
ferent reasons than some of the other IT methods, it uses the same
basic philosophy. The background to GMM was the research agenda in
macro-econometrics in the late 1970’s and early 1980’s. For the mod-
els that were becoming of interest then, it was recognized that Maxi-
mum Likelihood (ML) was an unattractive method of estimation. The
problem is that the implementation of ML requires the specification of
the probability distribution of the data and that the ML estimator is
only guaranteed to have desirable statistical properties if the method is
implemented using the true distribution. Prior to the late 1970’s, most
empirical models (in economics) were linear and in these models it had
been shown that ML under normality — the most common distribu-
tional assumption — is still consistent and asymptotically normal even
if the true distribution is not normal. However, ML does not exhibit a
similar robustness in the types of nonlinear models that became of inter-
est at that period. This was a major problem for researchers because
the underlying economic models (theory) did not specify the distribu-
tion of the data. Thus, in order to implement ML, it was necessary to
make an arbitrary assumption on the distribution which, if incorrect,
would likely undermine all subsequent inferences. GMM came about
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because it was recognized that, while the underlying economic model
does not specify the complete distribution of the data, the economic
model does place restrictions on this distribution in the form of popu-
lation moment conditions that provide information on the parameters
of the model. GMM provides a convenient method for estimation of the
parameters based on population moment conditions.

In approximately the same time (mid 1980’s) the foundations of the
Empirical Likelihood (EL) were established (Owen, 1988, 1990; Qin
and Lawless, 1994). The EL is a nonparametric method for statistical
inference. The EL allows the researcher to use likelihood methods but
without assuming knowledge of the exact likelihood or knowledge of
the exact family of distributions that generated the observed data.
Using the wrong family of distributions can cause ML estimates to be
inefficient and the corresponding confidence intervals and tests may
be incorrect. In that respect the EL grew out of the same logic that
brought about the classical ME — estimating the unknown parameters
with minimal distributional assumptions.

Later on, in the 1990’s the direct connection of the GMM to IEE and
IT was shown (Kitamura and Stutzer, 1997; Imbens et al., 1998). This
connection will be revisited shortly. At the same time, a generalized
version of the EL (GEL) was introduced and it encompasses the ME
and EL as well as other estimators within IEE and outside IEE (e.g.,
Imbens et al., 1998; Imbens, 2002; Smith, 2005, 2007; Kitamura, 2006).

In a parallel and independent research, in the late 1980’s and early
1990’s, the ME method was generalized (e.g., Golan and Judge, 1992;
Golan et al., 1996b). The objectives of this line of research were to
develop an estimation method that (i) can be used efficiently for esti-
mating common economic data (that may be ill-behaved or ill-posed),
(ii) uses minimal assumptions on the likelihood (or the data gener-
ating process), (iii) can incorporate the optimal conditions resulting
from economic (or behavioral) theory, and (iv) can incorporate prior
information. This method is known as the Generalized ME (GME) and
it is another member of the IT family of estimators. The connection
between all of these estimators is discussed in this review and synthesis.

With the above in mind, it is interesting to note the paths, outside
of the social sciences, leading to the classical Maximum Entropy (ME)
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via Information Theory. It seems logical to break these paths into two
somewhat parallel paths.

The first path may be identified with the 18th century work of Jakob
Bernoulli,1 on the principle of insufficient reason and published eight
years after his death in 1713, the work of Bayes (1763) and that of
Laplace (1774). The fundamental question investigated by the above is
to do with the basic problem of calculating the state of a system based
on a limited number of expectation values (moments) represented by
the data. This early work was later generalized by Jeffreys (1939) and
Cox (1946) and is now known as Statistical Inference.

The second path leading to the classical Maximum Entropy, via the
basics of IT, can be identified with the 19th century work of Maxwell
(1859, 1876) and Boltzmann (1871), continued by Gibbs (1902) and
Shannon (1948). This work is geared toward developing the mathemat-
ical tools for statistical modeling of problems in mechanics, physics,
communication and information.

These two independent lines of research are similar. The objective
of the first line of research is to formulate a theory/methodology that
allows understanding of the general characteristics (distribution) of a
system from partial and incomplete information. In the second line of
research, this same objective is expressed as determining how to assign
(initial) numerical values of probabilities when only some (theoretical)
limited global quantities of the investigated system are known. Recog-
nizing the common basic objectives of these two lines of research aided
Jaynes (1957a,b) in the development of his classical work, the Maximum
Entropy (ME) formalism. The ME formalism is based on the philos-
ophy of the first line of research (Bernoulli, Bayes, Laplace, Jeffreys,
Cox) and the mathematics of the second line of research (Maxwell,
Boltzmann, Gibbs, Shannon).

The interrelationship between Information Theory, statistics and
inference, and the ME principle started to become clear in the early
work (1950’s) of Kullback, Leibler and Lindley. Building on the basic
concepts and properties of IT, Kullback and Leibler connected some of
the fundamental statistics, such as sufficiency and efficiency (developed

1 Known also as Jacque and James Bernoulli.
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earlier within the context of ML by R. A. Fisher) to IT as well as pro-
vided a generalization of the Cramer–Rao inequality, and thus were
able to unify heterogeneous statistical procedures via the concepts of
IT (Kullback and Leibler, 1951; Kullback, 1954, 1959). Lindley (1956),
on the other hand, provided the interpretation that a statistical sam-
ple could be viewed as a noisy channel (Shannon’s terminology) that
conveys a message about a parameter (or a set of parameters) with
a certain prior distribution. In that way, he was able to apply Shan-
non’s ideas to statistical theory by referring to the information in an
experiment rather than in a message.

The interrelationship between Information Theory (IT), statistics
and inference, and the ME principle may seem at first as coincidental
and of interest only in a small number of specialized applications. But,
by now it is clear that when these methods are used in conjunction, they
are useful for analyzing a wide variety of problems in most disciplines of
science. Examples include (i) work on image reconstruction and spectral
analysis in medicine (such as brain scans and ECG signal analysis, mag-
netic resonance imaging known as MRI, X-ray computed tomography
known as CT, positron emission tomography known as PET, as well as
forecasting the potential spread of HIV), physics (such as tomography
and deconvolution, molecular imaging and nuclear medicine as well as
facial and voice recognition), chemistry and biology (such as sequences
of proteins or DNA as well as modeling of species), topography (such as
satellite images and constructions of maps), engineering, communica-
tion and information (such as search engines, information transmission
and data updating), operations research (such as general matrix balanc-
ing and constrained optimization), political science (such as analyzing
political surveys) and economics (input–output and social account-
ing analyses, linear and nonlinear regression analysis, Markov models
and analysis of economic data while incorporating economic-theoretic
information), (ii) research in statistical inference and estimation (lin-
ear and nonlinear models with minimal distributional assumptions),
and (iii) ongoing innovations in information processing and IT.

The basic research objective in all of the above is how to formu-
late a theory/methodology that allows understanding of the general
characteristics (distribution) of a system from partial and incomplete
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information. That objective may be couched in the terminology of sta-
tistical decision theory and inference in which one has to decide on the
“best” way of reconstructing an image (or a “message” in Shannon’s
work), making use of partial information about that image. Similarly,
that objective may be couched within the more traditional terminology,
where the basic question is how to recover the most conservative2 esti-
mates of some unknown function from limited data. The classical ME
is designed to handle such questions and is commonly used as a method
of estimating a probability distribution from an insufficient number of
moments representing the only available information.

IEE is a natural continuation of IT and ME. All of the studies in IEE
(developed mostly during the 1990s) build on both IT and/or ME to
better understand the data while abstracting away from distributional
assumptions or assumptions on the likelihood function. The outcome
of these independent lines of study was a class of information-based
estimation rules that differ but are related to each other. All of these
types of methods perform well and are quite applicable to large classes
of problems in the natural sciences and social sciences in general, and
in economics in particular.

2 By “conservative” we mean here the most uniform estimates that are based on minimal
assumptions on the underlying likelihood.





3

Information and Entropy — Background,
Definitions, and Examples

In this section a summary and discussion of the basics of IT is pro-
vided. Only concepts related to IEE are discussed. Readers who are
familiar with these concepts should move to Section 4. The context of
this section is taken from numerous sources. However, detailed discus-
sions of most quantities discussed here can be found in the nice text
of Cover and Thomas (1991). Detailed discussion of the basics and
recent innovations in IT can be found in the recent survey (2004) in
Foundations and Trends in Communications and Information Theory
by Csiszar and Shields.

3.1 Information and Entropy — The Basics

3.1.1 Informal Definitions

The word “information” is very broadly defined. For example, the
Oxford dictionary defines information as “The action of informing;
formation or molding of the mind or character, training, instruction,
teaching; communication of instructive knowledge.” In the Webster’s
dictionary, “information” is defined as:

“1: the communication or reception of knowledge or
intelligence

15
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2a(1): knowledge obtained from investigation, study,
or instruction (2): intelligence, news (3): facts, data b:
the attribute inherent in and communicated by one of
two or more alternative sequences or arrangements of
something (as nucleotides in DNA or binary digits in a
computer program) that produce specific effects c(1): a
signal or character (as in a communication system or
computer) representing data (2): something (as a mes-
sage, experimental data, or a picture) which justifies
change in a construct (as a plan or theory) that repre-
sents physical or mental experience or another construct
d: a quantitative measure of the content of informa-
tion; specifically : a numerical quantity that measures
the uncertainty in the outcome of an experiment to be
performed.”

Though by studying the above definitions it is obvious that “infor-
mation” is a word packed with seemingly many meanings and somewhat
vague in the more ordinary usage, it is still possible to specify a core
concept of information (and related concepts, such as entropy) and use
this precise mathematical definition as the basic measure that allows
us to understand information, information processing, and data anal-
ysis. That precise definition is provided below. But before these con-
cepts are precisely defined, it is helpful to briefly study the meaning of
four basic concepts (information, uncertainty, entropy, and ignorance)
as interpreted by scientists who work in these areas.1 These interpreta-
tions are less vague than the dictionary definition and are more directly
related to the basic questions asked by scientists in different disciplines.
Though at first sight the interpretation of these concepts by different
researchers seem quite different, this brief discussion below reveals that
they are practically similar.

1 The definitions of these four concepts are based on ideas and definitions sent to me by
Essie Maasoumi, Ehsan Soofi, Arnold Zellner, Steve Kuhn, Jeff Perloff, Adom Giffin and
Ariel Caticha, as well as definitions included in Cover and Thomas (1991), MacKay (2003),

Rényi (1961, 1970), Shannon (1948), von Baeyer (2004), and comments provided by Alan
Isaac, Essie Maasoumi, and Elise Golan.
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Going back to the Greek philosophers, information may be viewed
as a transfer of “form” from one medium to another. “Form” expresses
relationship. Within the human context “transfer” is represented by
“communication.” Thus, information can be viewed as the “communi-
cation of relationships.” In more recent history, information has two
interconnected meanings. The informal one refers to the meaning of a
message (data). The more scientific meaning emphasizes the symbols
used to transmit a message or data (letters, numbers, zero–one digits,
etc). In philosophical logic the information conveyed by a message, be
it a sentence or any data, is sometimes identified with the number of
possible words that it rules out. For example “A and B,” conveys more
information (i.e., is more informative) than A, and A conveys more
information than “A or B”.

Though expressed differently, the above definitions tell us that infor-
mation reflects the decrease in ambiguity regarding a phenomenon.
A common view of researchers in statistics, econometrics and other
social sciences is that when we do not know a phenomenon with cer-
tainty, whatever reduces the bounds of possibility, or concentrates prob-
ability of possible outcomes, informs us. It is an addition to one’s
stock of knowledge; however measured and of whatever quality. For the
applied researcher this means that information is anything, such as a
fact or an opinion that affects one’s estimates or decisions. It is “mean-
ingful content.” For example, the information in the random variable
X about (the random variable) Y is the extent to which X changes
the uncertainty about Y . When X is another random prospect, a par-
ticular outcome of it may increase or decrease uncertainty about Y .
On average, however, if X and Y are related, knowledge of outcomes
of X should decrease uncertainty about prediction of outcomes of Y .
More technically, the information content of an outcome (of a ran-
dom variable) is an inverse function of its probability. Thus, anything
“surprising” (an outcome with a low probability) has a high level of
information.

In natural sciences information is sometimes viewed as that quan-
tity that represents distinguishability. Information is our connection
to the world but it has no meaning by itself. If two pieces of infor-
mation are indistinguishable then they are the same. Thus, informa-
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tion only exists in the context of distinguishability. In more economic
terms, and as viewed by some scientists across disciplines, like a force
that induces a change in motion, information is whatever induces a
rational agent to change her/his beliefs in a way that is prompted, but
constrained, by the new information.

To summarize, the above different ways of reducing the vague-
ness of the ordinary meaning of the word information by researchers
across the sciences, reveals that each discipline and scientist have their
own interpretation and definition within the context of their research
and understanding. However, a simple translation of these definitions
reveals that we all (the Greek philosophers and the current logicians,
the statisticians and the economists, the applied researchers in behav-
ioral and in natural sciences) talk about data, the context of these
data, data interpretation, and how to transfer data from one entity
to another.

Uncertainty is a knowledge state in which it is impossible to rea-
son logically to explain situations, events, experimental outcomes, etc.
Uncertainty is sometimes called a “Knightian” state of limited knowl-
edge or “doubt.” Something is uncertain if it is possible but not known.
(Here we mean “possibility” in what philosophers call an epistemic
sense.) Stated differently, a proposition is uncertain if it is consistent
with knowledge but not implied by knowledge. Connecting this notion
of uncertainty with that one of information means that uncertainty is
the amount of expected information that observations or experiments
could reveal. The more they can reveal, the more uncertainty there is to
be reduced. Uncertainty captures the unpredictability of an unknown
prospect Y reflected in a probability distribution f(y). The more con-
centrated is the probability distribution, the outcomes are more pre-
dictable, and hence the uncertainty about Y is lower. Therefore, the
absolute bench mark of uncertainty is a uniform distribution (within
the potential range of possibilities). To summarize, though coming from
different disciplines and schools of thoughts (as with the word infor-
mation) we all view uncertainty as arising from a proposition or a set
of possible outcomes where none of the choices or outcomes is known
with certainty. Therefore, these outcomes are represented by a certain
probability distribution. The more uniform the distribution (given the
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bounds) the higher the uncertainty that is associated with this set of
propositions, or outcomes.

Entropy is expected information. It reflects what we expect to
learn from observations, on average and it depends on how we mea-
sure information. In more technical words, entropy is a measure of
uncertainty of a single random variable. Therefore, entropy can be
viewed as a measure of uniformity. Similarly, but within a different
context, entropy is also a measure of disorder of a system. The second
law of thermodynamics states that the entropy of a (closed) system
(like the universe) increases with time. It represents the progression of
the system toward equilibrium that is reached at the highest level of
entropy.

Entropy difference (or ratio) is a measure for comparison of uni-
formity. Relative entropy is a measure of “deviation” of uncertainty
between two distributions. Within the notion of distinguishability and
information, entropy is the tool that we use to determine the degree to
which things are distinguished. Entropy is a tool for updating our prior
probabilities (beliefs) to posterior (post-data) probabilities when new
information becomes available. As with the other concepts discussed
earlier, all of these different definitions converge to one coherent def-
inition of entropy as an expected measure of information (or gain of
information) measured relative to “uniformity,” degree of distinguish-
ablility and disorder.

Ignorance (or absolute ignorance) is not knowing (or not acknowl-
edging) that there is uncertainty, and that (at a more abstract level)
there is a distribution of possible outcomes or states of nature. It is
a complete lack of knowledge, or information that would assist one in
making a decision. Once we admit that all outcomes and states have a
“law” that governs their realizations, we can debate about what that
law is. Disagreements on the latter are not “ignorance.” Not incorporat-
ing all that one might know to choose the “law” is being “uninformed,”
which is a relative concept, compared with ignorance. To summarize,
unlike the previous three concepts, the concept of ignorance is defined
similarly across disciplines. In practice, many researchers do not dis-
tinguish between the technical meanings of ignorance and uncertainty
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as it is not relevant to a quantitative discussion of inference by rational
agents.2

Finally, it is important to note that the views of information and
its relationship with uncertainty expressed above are common to all
researchers analyzing random processes or random data. But, for infor-
mation that is absolutely certain, what is the link between information
and probability (or a degree of rational belief) or uncertainty? If, for
example I know a person’s particulars, I have information about that
person that I did not have before, but there is no real necessity for
pondering uncertainty here. One could do that, but it is not absolutely
necessary. This case is not discussed here as we are concerned here with
estimation of random data representing life and behavior.

The above brief discussion on the meaning of information, entropy,
uncertainty and ignorance, as commonly understood by scientists who
work in these area, tells us that perhaps the meanings of the terms
are approximately the same in different fields, but the objects to which
they apply are different. In econometrics these objects are the data. The
mathematical concepts of information and entropy are now defined.

3.1.2 Formal Definitions

Let A = {a1,a2, . . . ,aM} be a finite set and p be a proper probabil-
ity mass function on A. “Proper” probability distribution means that
all elements are nonnegative and the sum over all M elements equals
exactly one. The amount of information needed to fully characterize all
of the elements of this set consisting of M discrete elements is defined
by I(AM ) = log2 M and is known as Hartley’s formula (Hartley, 1928).
This formula is developed within the context of communication theory.
It is the logarithm of the number of possibilities (M) and, as such, it is
a logarithm measure of information. Shannon (1948) built on Hartley’s
formula, within the context of communication process, to develop his
information criterion. The Shannon’s information content of an out-
come ai is h(ai) = h(pi) ≡ log2

1
pi

. As noted by Hartley (1928) the most
natural choice for information measure is a logarithm function (as it

2 As noted to me by Ariel Caticha, M. Tribus used the word “confusion” to refer to a
situation where we do not even know what it is that we are ignorant or uncertain about.
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captures additivity of information, discussed below). The choice of the
logarithmic base corresponds to the choice one wishes to have for mea-
suring information (Shannon, 1948). If the base 2 is used, the resulting
units are “bits.” A “bit” is a binary digit — a one or a zero and it
is a basic unit of information. All information (data) can be specified
in terms of bits. For example, the number 11000100 consists of 8 bits
(or a “byte” — a unit of measurement of information storage in com-
puter science). A random variable with two possible outcomes stores
one bit of information. N such random variables store N bits of infor-
mation because the total number of possible observed states/outcomes
is 2N and log2(2N ) = N (Shannon, 1948). The choice of base 2 seems
to be a natural choice (see examples below and in following sections)
as it provides the most efficient (cheapest) way of coding and decoding
the data.

Shannon’s criterion, called entropy,3 reflects the expected informa-
tional content of an outcome and is defined as

H(p) ≡
M∑
i=1

pi log2

1
pi

= −
M∑
i=1

pi log2 pi = E[log2(1/p(X))] (3.1)

for the random variable X and with x log2(x) tending to zero as x

tends to zero. This information criterion, expressed in bits, measures
the uncertainty or informational content of X that is implied by p.

Example. Suppose the English language had only five letters: A, B, E,
Y , and Z. Table 3.1 summarizes the informational content of each letter
and the entropy under two scenarios. Scenario 1 reflects the idea that
all letters are used with the same frequency, while in scenario 2 the fre-
quency used of each letter is more realistic and is based on the relative
frequency observed in the English language. In the second scenario, the
entropy is lower because there is less uncertainty (more information)
about the next outcome of the random variable X because, in that case,

3 In completing his work, Shannon noted that “information” is already an overused term.

The “legend” is that he approached his colleague John von Neumann, who responded:
“You should call it entropy for two reasons: first, the function is already in use in thermo-
dynamics under the same name; second, and more importantly, most people do not know

what entropy really is, and if you use the word entropy in an argument you will win every
time.”
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Table 3.1 Shannon information and entropy of a five letter english language.

Scenario 1
Uniform

Scenario 2
Non-Uniform

ai pi h(pi) pi h(pi)

a 0.2 2.322 0.322 1.635

b 0.2 2.322 0.072 3.796

e 0.2 2.322 0.511 0.969
y 0.2 2.322 0.091 3.458

z 0.2 2.322 0.004 7.966

Sum 1 1
Entropy 2.322 1.641

the letters “A” and “E” occur with much higher probabilities than the
other three letters.

These two scenarios can be viewed as two different discrete ran-
dom variables with similar outcomes but with different probabilities
associated with the outcomes. Consider, a second example of a ran-
dom variable X that takes the value of one with probability p, and
the value of zero with probability 1 − p. In that case H(X) = H(p) =
−p log2 p − (1 − p) log2(1 − p). H(p) reaches a maximum level of one
bit when p = 1/2 and is equal to zero when p = 0 or p = 1. From this
example one learns that H(p) is concave in p, reaches a maximum for
uniform probabilities (complete ignorance) and is equal to zero (per-
fect certainty) when one of the probabilities is exactly one (p = 0 or
p = 1). More generally speaking, the entropy measure H(p) reaches a
maximum when p1 = p2 = · · · = pM = 1/M (and is equal to Hartley’s
formula) and a minimum with a point mass function. The entropy H(p)
is a function of the probability distribution p and not a function of the
actual values taken by the random variable. If X is a random vari-
able with possible distinct realizations x1,x2, . . . ,xM with correspond-
ing probabilities p1,p2, . . . ,pM , the entropy H(p) does not depend on
the values x1,x2, . . . ,xM of X, but rather depends on p1,p2, . . . ,pM (e.g.,
Table 3.1).

Example (Probability, Information, and Entropy). For the binary
probability distribution (with p and 1 − p), Table 3.2 and Figures 3.1
and 3.2 present Shannon’s information, h(ai) = h(pi), and the entropy
H(p) as functions of p for p ∈ (0,1).
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Table 3.2 Information and entropy of an outcome of a random variable with probabilities

p and 1 − p.

p Information Entropy

1.00E-05 16.61 1.81E-04

1.00E-04 13.288 0.001

0.001 9.966 0.011
0.01 6.644 0.081

0.1 3.322 0.469

0.15 2.737 0.61
0.2 2.322 0.722

0.25 2 0.811
0.3 1.737 0.881

0.35 1.515 0.934

0.4 1.322 0.971
0.45 1.152 0.993

0.5 1 1

Fig. 3.1 The relationship between information and probability.

To get a better idea of the meaning of information and entropy, con-
sider the following common example (e.g., Clarke, 2007), that analyzes
the minimal number of binary questions (yes–no; 0–1) needed to deter-
mine the value of the random variable X. Let X be a random variable
with three possible realizations: Blue (B), Red (R), and Yellow (Y). The
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Fig. 3.2 The relationship between probability and entropy.

probability associated with each realization is 1/2, 1/4, and 1/4, respec-
tively. The entropy H(p) = −1/2 log2(1/2) − 1/4log2(1/4) − 1/4log2(1/4) =
1/2log22 + 1/4log24 + 1/4log24 = 3/2. Now, for those that are unfamiliar
with the concept of entropy, but want to get an idea of the informa-
tion associated with X, it is possible to proceed in a different way.
In that case, they want to determine the value of X with a minimal
number of binary questions. (We relate this to minimal error proba-
bility in Section 3.6.) To reach that minimum, it is possible to follow
a tree diagram describing the possible events from highest to lowest
probability, and start with a question on the event with the highest
probability: “Is X = B?” If the answer is “no” (half the times), our
second question is “Is X = R?” or similarly, “is X = Y ?” In that case
the answer is yes half the times and no the other half. But this answer
is contingent on moving on to the second question. The expected num-
ber of binary questions is 3/2(= 1 × 1/2 + 2×1/2). This example shows
that the entropy of this random variable equals the minimal number of
binary questions necessary to determine the value of X. Therefore, the
entropy reflects the maximal possible amount of information about that
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random variable. If for example, one starts with the “wrong” question
(for an event with probability smaller than 1/2 in that example) say, “Is
X = Y ?” the expected number of binary questions increases (1×1/4 +
2×3/4 > 3/4). Shannon showed that the minimum expected number of
binary questions required to fully determine the value of any random
variable X is between H(X) and H(X) + 1.

Before concluding our discussion of Shannon’s entropy, a different
derivation of that quantity, via a combinatorial argument, is provided.
This is a large sample derivation. Suppose N outcomes resulting from
an experiment with K possible outcomes are observed. Let N1, . . . ,NK

be the number of observed outcomes for each state K in the N tri-
als. Thus,

∑
k Nk = N and Nk ≥ 0. Naturally, there are KN possible

sequences resulting from the N trials. Out of the N trials, one can
use the multiplicity factor, W = N !Q

k Nk! , to find the number of ways
a particular set of frequencies (or Nk) can be realized. But first, it
is helpful to define the frequency πk ≡ Nk

N or Nk = πkN . Using the
transformation logW = logN ! −

∑
k logNk!, and Stirling’s approxima-

tion (logx! ≈ x logx − x as 0 < x→∞ where “≈” stands for approxi-
mation) one gets

logW ≈ N logN − N −
∑

k

Nk logNk +
∑

k

Nk

= N logN −
∑

k

Nk logNk

N→∞= N logN −
∑

k

Nπk logNπk

= N logN −
∑

k

Nk logN − N
∑

k

πk logπk

= −N
∑

k

πk logπk

and finally,

N−1 logW ≈ −
∑

k

πk logπk = H(π).
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To summarize, the entropy is the number of bits needed, on average,
to describe a random variable and consequently it captures the average
uncertainty in that random variable.4

3.2 Discussion

After Shannon introduced this measure, a fundamental question arose:
whose information does this measure capture? Is it the information of
the “sender,” the “receiver” or the communication channel?5 Similarly,
is this the information in the data or the information of the observer?
To try and answer this question, let us first suppose that H measures
the increase in the knowledge level of the receiver after receiving the
message. But this seemingly natural interpretation contradicts Shan-
non’s idea. He used H to measure the overall capacity required in a
channel to transmit a certain message at a given rate. Therefore, H is
free of the receiver’s level of ignorance. So what does it measure?

Going back to our earlier discussion, one answer to this question is
that H is a measure of the expected amount of information in a mes-
sage or in some data. To measure information, one must abstract away
from any form or content of the message itself. For example, in the
old-time telegraph office, where only the number of words was counted
in calculating the price of a telegram, one’s objective was to minimize
the number of words in a message while conveying all necessary infor-
mation. Likewise, the information in a message can be expressed as the
number of signs (or distinct symbols) necessary to express that mes-
sage in the most concise and efficient way. Any system of signs can be
used, but the most reasonable (efficient) one is to express the amount
of information by the number of signs necessary to express it by zeros
and ones. In that way, messages and data can be compared by their
informational content. Each digit takes on the values zero or one, and
the information specifying which of these two possibilities occurred is
called a unit of information (see earlier definition of “bit”). The answer
to a question that can only be answered by “yes” and no” contains

4 In other words, entropy is the minimal descriptive complexity of a random variable.
5 Within the context of IT, “channel” means any process capable of transmitting
information.
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exactly one unit of information regardless of the meaning of that ques-
tion. This unit of information is called a “bit” or a binary digit.6

Rényi (1961, 1970) showed that, for a (sufficiently often) repeated
experiment, one needs, on average, a total of H(p) + ε binary symbols
(for any positive ε) in order to fully characterize an outcome of that
experiment. Thus, it seems logical to argue that the outcome of an
experiment contains the amount of information H(p).

The information discussed here is not “subjective” information
of a particular researcher. The information contained in a single
observation, or a data set, is a certain quantity that is independent
of whether the observer (e.g., an economist or a computer) recognizes
it or not. Consequently, H(p) measures the average amount of infor-
mation provided by an outcome of a random drawing governed by p.
In the same way, H(p) is a measure of uncertainty about a specific
possible outcome before observing it, which is naturally related to the
amount of randomness represented by p.7

In a more common econometric and statistical terminology, H(p)
can be viewed in the following way. The researcher never knows the true
underlying values characterizing an economic system. Therefore, one
may incorporate her/his understanding and knowledge of the system
in reconstructing (estimating) the image (unknown parameters) where
this knowledge appears in terms of some global macro-level quantities,
such as moments. As is shown and discussed in Section 4 below, out of
all possible such images, where these moment conditions are retained,
one should choose the image having the maximum level of entropy, H.
The entropy of the analyzed economic system measures the uncertainty
(or relative ignorance) of the researcher who knows only some moments’
values representing the underlying population. For a more detailed dis-
cussion of the statistical meaning of information see the nice texts by
Cover and Thomas (1991) and MacKay (2003), as well as the original

6 Shannon’s realization that the binary digits could be used to represent words, sounds,

images and ideas, is based on the work of Boole (1854), the 19th-century British mathe-
matician, who invented the two-symbol logic in his work “The Laws of Thought.”

7 According to both Shannon and Jaynes, within the theory of communication and infor-
mation, H measures the degree of ignorance of a communication engineer who designs the
technical equipment of a communication channel because it takes into account the set of
all possible messages to be transmitted over this channel during its life time.



28 Information and Entropy — Background, Definitions, and Examples

work of Shannon (1948) and Rényi (1970) and more recent articles,
within the econometric literature, by Maasoumi (1993), Soofi and Ret-
zer (2002), Clarke (2007) and Zellner (1988, 2002).

3.3 Multiple Random Variables, Dependency,
and Joint Entropy

Consider now extending the notion of entropy to more than a single ran-
dom variable. For ease of notation, I use “log” and “log2” interchange-
ably.8 Let X and Y be two discrete random variables with possible
realizations x1,x2, . . . ,xK and y1,y2, . . . ,yJ , respectively. Let p(X,Y ) be
a joint probability distribution. Now, define P (X = xk) = pk, P (Y =
yj) = qj , P (X = xk,X = yj) = wkj , P (X|Y ) = P (X = xk|Y = yj)
= pk|j , and P (Y |X) = P (Y = yj |X = xk) = qj|k where pk =

∑J
j=1 wkj ,

qj =
∑K

k=1 wkj and the conditional probabilities satisfy wkj = qjpk|j =
pkqj|k.

The joint entropy of X and Y is

H(X,Y ) ≡
∑
k,j

wkj log
1

wkj
= −

∑
k,j

wkj logwkj .

The conditional entropy H(X|Y ) is the total information in X with
the condition that Y has a certain value:

H(X|Y ) =
∑

j

qj

[
−
∑

k

pk|j logpk|j

]

=
∑

j

qj

[
−
∑

k

(
wkj

qj

)
log
(

wkj

qj

)]

=
∑
k,j

wkj log
(

qj

wkj

)
.

The relationship among all of the above entropies is easily seen in
the following quantity representing the entropy of a composite event
which equals the sum of the marginal and conditional entropies (chain

8 There is a one to one transformation of the entropy value from a log base b to a log base
a : Hb(X) = logb(a)[Ha(X)].
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rule for entropies):

H(X,Y ) = H(Y ) + H(X|Y ) = H(X) + H(Y |X). (3.2)

If X and Y are independent (wkj = pkqj), the above equation reduces to

H(X,Y ) = H(X) + H(Y ). (3.3)

The relative entropy that provides an informational distance
between two proper distributions is now defined. The relative entropy,
also known as the Kullback–Liebler distance function (or cross-
entropy), between the two probability mass functions p and q for the
random variables X and Y is

D(p||q) ≡
K∑

k=1

pk log(pk/qk). (3.4)

The relative entropy D(p||q), or sometimes called D(X||Y ), reflects
the gain in information resulting from the additional knowledge in p

relative to q. It is an information-theoretic distance of p from q that
measures the inefficiency of assuming a priori that the distribution is
q when the correct distribution is p (see Gokhale and Kullback, 1978).
If Popeye believes the random drawing is governed by q (for example,
qk = 1/K for all k = 1,2, . . . ,K) while Olive Oyl knows the true proba-
bility p (which is different than uniform), then D(p||q) measures how
much less informed Popeye is relative to Olive Oyl about the possi-
ble outcome. Similarly, D(p||q) measures the gain in information when
Popeye learns that Olive Oyl is correct — the true distribution is p,
rather than q. Equivalently, D(p||q) represents Popeye’s loss of infor-
mation when he uses q. In a more information-theoretic language, if
Popeye knew the true distribution of the random variable, he could con-
struct a code with an average description length of H(p) to describe
the random variable. But if he uses his code for the incorrect distri-
bution q, he will need H(p) + D(p||q) bits on the average to describe
the random variable. In more econometric terms, using the incorrect
likelihood, or model, when analyzing data is costly not only in terms
of efficiency and precision but also may lead to an inconsistent esti-
mator. For further discussion on this measure see Cover and Thomas
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(1991). Note that D(p||q) is not a true distance and is not symmetric
[D(p||q) 6= D(q||p)].

Finally, it is worthwhile noting the relationship between
D(p||q) and the L1 distance function. Recall that L1 ≡ ‖p − q‖1 =∑

x |p(x) − q(x)|, then

D(p||q) ≥ 1
2ln2

L2
1 =

1
2ln2

‖p − q‖2
1.

For applications of this within the IEE literature see for example
Antoine et al. (2007). The above divergence measures are also known
as a class of f -divergence measures of a distribution p from q. See the
nice discussion in Csiszar and Shields (2004).

To find out the amount of information contained in a random vari-
able about another random variable, called the mutual information
between the random variables X and Y , the following quantity is
defined:

I(X;Y ) ≡
∑
k,j

wkj log
wkj

pkqj
= D(wkj ||pkqj) = H(X) − H(X|Y ).

The mutual information I(X;Y ) captures the reduction in uncertainty
of X due to our knowledge of Y . It is the marginal additional informa-
tion the econometrician, analyzing X, gains from knowing Y .

Following the logic of Jensen’s inequality, it is possible to show that

1. I(X;Y ) ≥ 0 with equality if and only if X and Y are
independent.

2. D(p||q) ≥ 0 with equality if and only if pk = qk for all k.

Generally speaking, the above quantities show that the additional
information coming from another random variable, or data, results in
reducing the uncertainty (or ignorance) one has about the original
random variable (or data) X. Conditioning reduces entropy for non-
independent random variables. Related to the above, but stated slightly
different, it can be shown that given n random variables Xi, i = 1, . . . ,n,
H(X1,X2,X3, . . . ,Xn) ≤

∑n
i=1 H(Xi) where the equality holds if and

only if all the Xi’s are independent.
The example below presents the different entropy quantities, defined

above for a joint distribution of two discrete random variables. The
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Table 3.3 Joint probabilities.

P (x,y) x P (y)

1 2 3

1 0 0 1/3 1/3
y 2 1/9 1/9 1/9 1/3

3 1/18 1/9 1/6 1/3

P (x) 1/6 2/9 11/18

relationships among these quantities are shown as well. This example
also demonstrates the relationships between information, uncertainty,
uniformity, and entropy. These are represented in the entropy values of
the two random variables: X and Y (where the uncertainty associated
with Y , relative to X, is higher).

Example. Different entropies resulting from the joint distribution pre-
sented in Table 3.3.

Table 3.4 Entropies of Table 3.3.

H(X) = 1.347

H(Y ) = 1.585 = log2(3) = Max(H)
H(X,Y ) = 2.600

H(X|Y ) = 1.015

H(Y |X) = 1.252
D(p||q) = 0.238

D(q||p) = 0.237 Note: D(p||q) 6= D(q||p)

I(X;Y ) = 0.333
H(X,Y ) = H(Y ) + H(X|Y ) = H(X) + H(Y |X)

2.6 = 1.585 + 1.015 = 1.347 + 1.252
I(X;Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X)

0.3326 = 1.3472 − 1.0146 = 1.585 − 1.2524

The above values can also be presented graphically:

Building on the above example, it is easy to see (Table 3.5) that, on
average, more data is better: H(X|Y ) < H(X). Note that for a specific
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Table 3.5 Conditional entropies.

P (x,y) x H(X|Y )

1 2 3

1 0 0 1 0
y 2 1/3 1/3 1/3 1.585

3 1/6 1/3 1/2 1.459

H(X|Y ) = 1.015

outcome, say y = 1, H(X|y = 1) is smaller than H(X) while for y = 2
or y = 3 H(X|y) > H(X), but on average, H(X|Y ), there is a gain in
information.

Finally, two quantities that resemble the correlation and covariance
are shown. Let X and Y be identically distributed random variables
so H(X) = H(Y ). Then, the following measure reflects the (linear and
nonlinear9) correlation between these two random variables:

r(X,Y ) = 1 − H(X|Y )
H(Y )

=
I(X;Y )
H(Y )

,

where 0 ≤ r(X,Y ) ≤ 1, r(X,Y ) = 0 iff X and Y are independent
(I(X;Y ) = 0), and r(X,Y ) = 1 if X is a function of Y (H(X|Y ) = 0).
The following quantity connecting the different entropies of these two
variables, resemble a covariance:

c(X,Y ) = H(X|Y ) + H(Y |X)

= H(X) + H(Y ) − 2I(X;Y )

= H(X,Y ) − I(X;Y )

= 2H(X,Y ) − H(X) − H(Y ).

3.4 Generalized Entropy

Building on Shannon’s work, a number of generalized information mea-
sures were developed. Though none of these measures exhibits the exact
properties of the Shannon’s entropy, these measures are used often in
econometrics and provide a basis for defining IT estimators. These gen-
eralized information measures are all indexed by a single parameter α.

9 See also discussion in the next section.
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Starting with the idea of describing the gain of information, Rényi
(1961) developed the entropy of order α for incomplete random vari-
ables.10 The relevant generalized entropy measure of a proper proba-
bility distribution (Rényi, 1970) is

HR
α (p) =

1
1 − α

log
∑

k

pα
k . (3.5)

The Shannon measure is a special case of this measure where
α→ 1. Similarly, the (Rényi) cross-entropy (between two distributions:
p and q) of order α is

DR
α (x|y) = DR

α (p‖q) =
1

1 − α
log
∑

k

pα
k

qα−1
k

, (3.6)

which is equal to the traditional cross-entropy measure (3.4) as α→ 1.
Building on Rényi’s work, and independent of his work, a number of

other generalizations were developed. These generalizations include the
less known Bergman distance and the f-entropy measures. However, the
more commonly used generalized measures in IEE are those that were
developed during the 1980’s by Cressie and Read (1984) and Tsallis
(1988). The cross-entropy version of the Tsallis measure is

DT
α (x|y) = DT

α (p‖q) =
1

1 − α

(∑
k

pα
k

qα−1
k

− 1

)
. (3.7)

It is interesting to note that the functional form of (3.5) — Rényi —
resembles the CES production function, while Tsallis’s Eq. (3.7) is sim-
ilar to the Box-Cox function.

The commonly used Cressie–Read (1984) measure is

DCR
α (x|y) = DCR

α (p‖q) =
1

α(1 + α)

∑
k

pk

[(
pk

qk

)α

− 1
]
. (3.8)

The Rényi and Tsallis entropies have been compared in Tsallis
(1988) and Holste et al. (1998) to show that:

HR
α (x) = [1/(1 − α)] log[1 + (1 − α) logHT

α ].

10 If η is an incomplete, discrete random variable with M distinct realizations, thenP
i pi ≤ 1 (rather than

P
i pi = 1) where pi > 0; i = 1, . . . ,M .
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It has been further shown (Golan, 2002) that all of these measures
(including Cressie–Read) are connected:

DR
α+1(p‖q) = − 1

α
log[1 − αDT

α+1(p‖q)]

= − 1
α

log[1 + α(α + 1)DCR
α (p‖q)] (3.9)

where the Tsallis and Rényi measures of order (α + 1) are compared
with that of Cressie–Read measure of order α. To make this comparison
more general, Eq. (3.9) is in terms of the “cross-entropy” between the
two distributions p and q, where the traditional cross-entropy measure
is a special case of the above for α→ 0.

All of the above measures are commonly known as α-entropies. For
completeness, it is noted that the α-entropy is also known as “Chernoff
entropy.” Chernoff (1952) introduced this measure in his classical work
on asymptotic efficiency of hypothesis tests. Chernoff entropy is found
by starting with (3.9), and letting α = 1 − β with 0 < β < 1.

With Shannon’s entropy measure, events with high or low probabil-
ity do not contribute much to the measure’s value. With the generalized
entropy measures for α > 1, higher probability events contribute more
to the value than do lower probability events. Unlike the Shannon’s
measure (3.1), the average logarithm is replaced by an average of prob-
abilities raised to the α power. Thus, a change in α changes the relative
contribution of event k to the total sum. The larger the α, the more
weight the “larger” probabilities receive in the sum.11

3.5 Axioms

Shannon’s entropy can also be derived from a set of primitive axioms.
For completeness one such set of axioms is provided here. A parallel

11 Versions of Eq. (3.9) are commonly used to investigate the linear and nonlinear depen-

dence among random variables. For example, take the mutual information (defined as the
expected information in an outcome of a random draw from Y about an outcome of a ran-

dom draw from X) version of (3.9) for two discrete random variables X and Y of dimen-

sion N , and for α = 1 yields DR
2 (X||Y ) ≡ HR

2 (Y ) − [HR
2 (X,Y ) − HR

2 (X)]. This measure
equals zero if and only if X and Y are statistically independent, and it equals log(N) if
and only if Y = f(X), where f can be any linear or nonlinear function. In general, this

type of measure is used for any value of α. For more, see for example, Soofi (1994), Holste
et al. (1998), Maasoumi and Racine (2002) and Racine and Maasoumi (2007).
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set of axioms is discussed in Csiszar and Korner (1981). However, as
noted by Shannon, “ . . . these axioms and the following theorem are in
no way necessary for the present theory [information theory] . . . the real
justification of these [information and entropy] definitions, however, will
reside in their implication” (Shannon, 1948, p. 11).

For some discrete random variable with a set of possible realizations
characterized by a known proper probability distribution p, we are
searching for a measure, H, describing the amount of our uncertainty
of the outcome. Let HK(p1,p2,p3, . . . ,pK) be a sequence of symmetric
functions satisfying the following properties:

1. Normalization. H2

(
1
2 , 1

2

)
= 1. (The measure H should be

unchanged if the outcomes are reordered, should reach a
maximum level for uniform probabilities and should increase
with the number of possible outcomes.)

2. Continuity. H2(p,1 − p) is a continuous function of p.
(Changing the probabilities by a very small amount will
change the measure H by a very small amount.)

3. Shannon’s Additivity. HK(p1,p2,p3, . . . ,pK) = HK−1(p1 +
p2,p3, . . . ,pK) + (p1 + p2)H2

(
p1

p1+p2
, p2

p1+p2

)
. (Breaking the

data into two mutually exclusive sub-sets should not change
the total amount of H. More formally, if a choice is bro-
ken down into two mutually exclusive choices, the original
measure H should be the weighted sum of the individual
broken H ′s.)

Then, for any K = 2,3, . . . ,HK(p1,p2,p3, . . . ,pK) =
∑K

k=1 pk log2 pk.
With that in mind it is beneficial to look at the axiomatic differences

between the Shannon’s entropy and the other entropies. These measures
share three properties. First, all these entropy measures are nonnegative
for any arbitrary p. These measures are strictly positive except when all
probabilities but one equals zero (perfect certainty). Second, these mea-
sures reach a maximum value when all probabilities are equal. Third,
each measure is concave for arbitrary p. In addition, the generalized
entropy measures share the property that they all are monotonically
decreasing functions of α for any p.
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The entropy measures differ in terms of their additivity proper-
ties. Following (3.2) and (3.3), Shannon entropy has the property that
a composite event equals the sum of the marginal and conditional
entropies:

H(X,Y ) = H(Y ) + H(X|Y ) = H(X) + H(Y |X). (3.10)

This property does not hold for the generalized measures. But, if X

and Y are independent, Eq. (3.10) reduces to

H(X,Y ) = H(X) + H(Y ), (3.11)

which is the property of standard additivity, that holds for both the
Shannon and Rényi entropy measures, but not for the Tsallis measure
which is pseudo-additive. For two independent subsets A and B, HT

α is
“pseudo-additive” and satisfies

HT
α (A,B) = HT

α (A) + HT
α (B) + (1 − α)HT

α (A)HT
α (B) for all α

where

HT
α (A,B) ≡ HT

α (X,Y ) =

∑
k,j

wα
kj − 1

/(1 − α).

Finally, only the Shannon and Tsallis measures have the property
of Shannon additivity defined above. For completeness, that property
is restated now in a more general way. The total amount of informa-
tion in the entire sample is a weighted average of the information in
two mutually exclusive subsamples, A and B. Let the probabilities for
subsample A be {p1, . . . ,pL} and those for B be {pL+1, . . . ,pK}, and
define pA =

∑L
k=1 pk and pB =

∑K
k=L+1 pk. Then, for all α, (including

α = 1),

HT
α (p1, . . . ,pK) = HT

α (pA,pB) + pα
AHT

α (p1/pA, . . . ,pL/pA)

+pα
BHT

α (pL+1/pB, . . . ,pK/pB).

3.6 Errors and Entropy

In this section, it is shown that entropy measures can be used to bound
the probability of error when analyzing conditional or unconditional
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data. Consider a traditional estimation problem of say, the next out-
come of a discrete random variable X with an underlying probability
distribution p(x). But rather than observing X, the random variable
Y that is conditioned on X is observed. For simplicity it is assumed
here that X and Y are of the same dimension. Let X̂ = f(Y ) be an
estimate of X. With that estimate, the next natural question is what
is the probability that X̂ = X? Let Pe ≡ Prob{X̂ 6= X} be the proba-
bility of error. Then, using Fano’s inequality (Fano, 1961) representing
the relationship between the entropy (or the conditional entropy) and
the probability of error is shown to be

H(Pe) + Pe log(K − 1) ≥ H(X|Y ),

where K is the dimension of X or Y .12 A weaker version of this
inequality is

Pe ≥ [H(X|Y ) − 1]/ log(K),

which is just a function of the entropy. We will revisit this relationship
in later sections.

Example. In this example the mathematical relationships of the above
(Fano) inequalities are calculated for the unconditional and conditional
cases. Consider the simple, unconditional P (x) = (1/6, 2/9, 11/18) in
Table 3.3. Since X = 3 has the highest probability, our best estimate
is X̂ = 3 so the probability of error here is Pe = 1 − p(X = 3) = 0.389.
Now, H(Pe) = −Pe logPe − (1 − Pe) log(1 − Pe) = 0.964 and K = 3, so
0.964 + 0.389log(2) = 1.353 ≥ H(X) = 1.347 and the above inequal-
ity is satisfied. Similarly, using the weaker inequality, one gets Pe ≥
[H(X) − 1]/ log(K) = 0.219. Again, the above weak inequality is satis-
fied. Now consider the conditional distribution (Table 3.5). Substituting
H(X|Y ) = 1.015 into the weak inequality yields Pe ≥ [H(X|Y ) − 1]/
log(K) = 0.009, so as expected the additional information decreases the
probability of error. Finally, note that if all probabilities are uniform,
H(Pe) + Pe log(K − 1) = H(X|Y ).

12 In the more mathematical and information theoretic literature “K” is often called the
number of elements in the alphabet of X, where “alphabet” is the set of all outcomes

of X. For example, let X be a discrete random variable with alphabet ℵ, then |ℵ| = K
and | · | represents the number of elements in a set.
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The above example shows that entropy can be used to calculate the
bound on the error of the estimates, and that this error decreases as
additional information becomes available.

Example (A Simple Derivation of Fano’s Inequality). Consider a
“general” die-like (unconditional) problem. For a discrete random
variable Y , k = 1,2,3, . . . ,K, let Prob(Y = k) = pk where p1 ≥ p2 ≥
p3 ≥ ·· · ≥ pK . Since Y = 1 has the highest probability, then the mini-
mal error probability (Pe) must be associated with the estimator Ŷ = 1,
so Pe = 1 − p1. We want to calculate the bound on Pe (Fano’s inequal-
ity). One way to proceed is to maximize H(p) subject to the Pe con-
straint. This is actually the ME principle discussed in Section 4. This
maximization will provide a relationship between Pe and the entropy
H. Specifically,

H(p) = −
K∑

k=1

pk logpk = −p1 logp1 −
K∑

k=2

pk logpk

= −p1 logp1 −
K∑

k=2

Pe
pk

Pe
log

pk

Pe
− Pe logPe

= PeH

(
p2

Pe
,
p3

Pe
,
p4

Pe
, . . .

)
+ H(Pe)

≤ H(Pe) + Pe log(K − 1),

where the last inequality holds because the maximal value of
H
( p2

Pe
, p3

Pe
, p4

Pe
, . . .
)

is achieved for the uniform distribution. Thus, any
data Y that can be estimated with a probability of error Pe must sat-
isfy the condition H(Y ) ≤ H(Pe) + Pe log(K − 1) and a lower bound
(weaker condition) of

Pe ≥
H(Y ) − 1
log(K − 1)

.

Numerically, for an unbalanced die Y (K = 6 and Y = 1,2,3,4,5,6)
let p(Y ) = 0.323,0.258,0.194,0.129,0.065,0.032. Then, Pe = 1 − p1 =
0.677, H(p) = 2.286, and H(Pe) = 0.907. Substituting these quantities
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into the above equations yields

H(p) = 2.286 = 0.527 + 1.378 + 0.381

= 1.379 + 0.907

≤ 0.907 + 1.573 = 2.480

and the lower bound for the error probability is

Pe = 0.677 ≥ H(Y ) − 1
log(K − 1)

=
2.286 − 1
2.3219

= 0.554.

Finally, it is noted that this example can be easily extended to the
conditional case.

3.7 Asymptotics

For iid random variables Xi, i = 1,2, . . . ,n with p(X1,X2, . . . ,Xn)
representing the probability of observing the sequence x1,x2, . . . ,xn,
the Asymptotic Equipartition Property, AEP (which is the IT vari-
ation of the Law of Large Numbers) states that the probability
p(X1,X2, . . . ,Xn) of the observed sequence (data) is approximately
2−nH where H is the entropy. More technically, for iid X1,X2, . . . ,Xn,

− 1
n

log2 p(X1,X2, . . . ,Xn) Pr→H(X),

where Pr→ stands for convergence in probability. Note that

− 1
n

log2 p(·)→ H ⇒ − 1
n

log2 p(·) ∼= H

⇒ − log2 p(·) = nH ⇒ p(·) = 2−nH .

Example. Consider flipping n identical coins each with a probability θ

of landing “Heads.” Let X be one if “Head” is up, and zero otherwise.
After n flips the values X1,X2, . . . ,Xn are observed. The probability
of this specific sequence is just p(X1,X2, . . . ,Xn) = p(x1)p(x2) · · ·p(xn).
If for example, θ = 0.5, the coin is flipped 10 times, and 6 heads are
observed, then, using the above, p(X1,X2, . . . ,Xn) = 2−nH = 0.00098
(recall that H(1/2,1/2) = 1). If, on the other hand, θ = 0.7, and 8
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“Heads” out of n = 10 flips are observed, the calculations show that
p(X1,X2, . . . ,Xn) = 0.005 6= 2−nH= 0.002 where H = 0.881.

More generally, assume the sequence x1,x2, . . . ,xn, generated from
a discrete random variable X ∈ {0,1}, say a coin, with the probability
mass function p(1) = θ and p(0) = 1 − θ, is observed. The probability of
the observed sequence is

∏n
i=1 p(xi) = θ

P
xi(1−θ)(n−

P
xi). For example, if

the observed sample is (1, 1, 1, 0, 1), then its probability is θ4(1 − θ).
But there are 2n sequences of length n and, as clearly seen in the
example, not all of these sequences have the same probability. However,
based on the above it can be shown that the number of 1’s in that
sequence is close to nθ where all such sequences have (approximately)
the same probability of 2−nH(p) = 2−5H(p) = 2−5(0.722) = 0.082.

It is possible to relate the above to the notion of a typical set.
Let Xi, i = 1,2, . . . ,n be iid random variable drawn from some dis-
tribution p(x) with alphabet ℵ (with |ℵ| possible realizations). All of
the possible sequences (X1,X2, . . . ,Xn) can be divided into two dis-
tinct sets: the typical set and the non-typical set. The typical set
has 2nH elements with a probability of almost one. The elements in
that set are (practically) equally probable. Specifically, a typical set
is the set of sequences (x1,x2, . . . ,xn) ∈ ℵn that satisfies 2−n(H+ε) ≤
p(x1,x2, . . . ,xn) ≤ 2−n(H−ε) for any ε > 0. If a sequence is in the typ-
ical set, its probability is equal to 2−n(H±ε). The number of elements
in that set is no more than 2n(H+ε). For our purposes what important
is the following. Analyzing a sample of data, one can divide the set of
all possible sequences into two basic sets: the typical one and the non-
typical one. In the typical set, the sample’s entropy is close (with high
probability) to the true (but unknown) entropy. This is not the same
for the non-typical set. The significance of this is that any property that
holds for the typical set (or typical sequence) is true with a probability
close to one. Therefore, any property (value) of the typical set is fully
consistent with the mean property (value) of a large sample. Loosely
speaking, the moments of the typical set in the observed sample are
practically the same as the (unobserved) moments of the underlying
population. For a more basic discussion, within the basics of informa-
tion theory, see for example Cover and Thomas (1991). For discussion
of typical sets and large deviations in econometrics see Kitamura and
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Stutzer (2002), (Stutzer, 2003a,c), Kitamura (2006) and Kitamura and
Otsu (2005).

Example (AEP and the Relative Entropy D(p||q)). Let Xi, i =
1,2, . . . ,n be iid, discrete random variable drawn from some distribution
p(x) and x ∈ {1,2,3, . . . ,m}. (Recall that p(X1, . . . ,XK) =

∏K
k=1 p(Xk)

and 1
K p(X1, . . . ,XK)→ H(X).) Let q(x) be another probability (say,

prior probability) mass function on the same support {1,2,3, . . . ,m}.
Then,

lim− 1
n

log2 q(X1,X2, . . . ,Xn) = lim− 1
n

∑
i

log2 q(Xi)→−E[log2 q(X)]

= −
∑

i

p(x) log2 q(x) = D(p||q) + H(p),

and the limit of the log-likelihood ratio 1
n log p(X1,...,Xn)

q(X1,...,Xn) is

lim− 1
n

log2

q(X1,X2, . . . ,Xn)
p(X1,X2, . . . ,Xn)

= lim− 1
n

∑
log2

q(Xi)
p(Xi)

→ −E

[
log2

q(X)
p(X)

]
= −

∑
i

p(x) log2

q(x)
p(x)

= D(p||q).

The AEP is quite a powerful law for analyzing subsets of typi-
cal sequences for discrete random variables. A more powerful method
(especially for econometricians) that allows us to consider sequences
with the same empirical distribution is the method of types. With this
method, the bounds on the number of such sequences (or a particu-
lar empirical distribution) and the probability of each sequence in that
set can be calculated. The basic idea, its relationship to the theory of
Large Deviations and econometrics are briefly discussed below.13 For

13 Study of the theory of typical sets allows us also to relate the Fisher’s information and

entropy even though Fisher’s information matrix is defined for a family of parametric

distributions, while the entropy is defined for all distributions. This comparison is done
after reparameterizing any distribution, say f(x) by some location parameter β and then

redefining Fisher’s information for the family of densities f(x − β). Cover and Thomas

show that the entropy relates to the volume of the typical set, while Fisher information
is related to its surface.
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detailed derivations within IT see Cover and Thomas (1991), the orig-
inal work of Csiszar (1984, 1991), Sanov (1961) and the nice text of
Dembo and Zeitouni (1998). For early applications in econometrics see
Stutzer (2000, 2003a,b,c), Kitamura and Stutzer (2002) and Kitamura
(2006).

Let X1,X2, . . . ,Xn be a sequence of n symbols (or n observed val-
ues) from the alphabet ℵ with |ℵ| elements. The empirical probability
distribution, or type, Px of the sequence x1,x2, . . . ,xn is the relative
proportion of occurrences of each one of the symbols of ℵ. Next, define
Pn to be the set of types with the denominator n.

Example. Let ℵ = {0,1}, then the set of all possible types with denom-
inator n = 3 is

Pn=3 =
{

(P (0),P (1)) :
(

0
3
,
3
3

)
,

(
1
3
,
2
3

)
,

(
2
3
,
1
3

)
,

(
3
3
,
0
3

)}
.

The type class of P is T (P ) = {(x1,x2, . . . ,xn) ∈ ℵn|Px = P}. T (P )
is the set of all sequences with length n and type Pn.

Example. Continuing with above example, but let n = 4 and the
observed sequence (sample) be x = 0010. The type Px is Px(0) = 3/4
and Px(1) = 1/4. The type class of Px is the set of all sequences of length
n = 4, with three zero’s and a single one, so T (Px) = {0001, . . . ,1000},
and the number of elements in T (P ) is |T (P )| =

(
4

3,1

)
= 4!

3!1! = 4.

The method of types’ basic theorem shows that the number of types
is at most polynomial in n: |Pn| ≤ (n + 1)|ℵ|. Recalling that the number
of sequences is exponential in n, means that at least one type has expo-
nentially many sequences in its type class. Further, as noted before for
the AEP, the method of types is also related to the entropy and the rel-
ative entropy measures. To see that relationship, assume X1,X2, . . . ,Xn

are iid according to some true distribution Q(x). The probability of the
sequence x1,x2, . . . ,xn is Qn(x1,x2, . . . ,xn) = 2−n(H(Px)+D(Px‖Q)) which
is a function of its type. Naturally, if the sequence x1,x2, . . . ,xn is in
the type class of Q, the above reduces to Qn(x1,x2, . . . ,xn) = 2−nH(Q).

Example. Let X be a discrete random variables with possible real-
izations 1, 2, 3, and 4, with the corresponding probabilities 4/8, 2/8,
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1/8, and 1/8, respectively. The probability of observing a sequence with
these frequencies is 2−nH( 1

2
, 1
4
, 1
8
, 1
8) for n being any multiple of 8.

The lower and upper bounds on the size of the type class of P ,
T (P ) is

1
(n + 1)|ℵ|

2nH(P ) ≤ |T (P )| ≤ 2nH(P ).

Example. Consider the binary case (ℵ ∈ {0,1}). In this simple case,
the type is fully defined by the number of one’s (or zero’s) in the

sequence. The size of the type class is just
(n
k

)
and the bounds are

1
(n+1)2

nH( k
n) ≤

(n
k

)
≤ 2nH( k

n).

The basic theorems on types show (i) that there is only a poly-
nomial number of types, while there are an exponential number of
sequences of each type, (ii) the exact formula for the probability of any
sequence of type P under some distribution Q, and (iii) the approx-
imation for the probability of a type class. These theorems allow us
to evaluate the behavior of long sequences (large data) based on the
properties of the type of the sequence. For example, from (i) above
it is possible to conclude that since the probability of each type
depends (exponentially) on the relative entropy between the type P

and the distribution Q, type classes that are far away from the true
(unknown) distribution have exponentially smaller probability (the
probability of a typical set goes to one as n goes to infinity). The
last statement can be formalized as follows. Let X1,X2, . . . ,Xn be iid
and distributed according to P (x) with a finite alphabet ℵ. It can be
shown that

Prob{D(Px1,x2,...,xn‖P ) > ε} ≤ 2−n
�
ε−|ℵ| log2(n+1)

n

�
.

Thus, D(Px1,x2,...,xn‖P )→ 0 with probability one. A stronger version
of typicality exists but is not discussed here. The above takes us to the
theory of Large Deviations. This theory and its implications, though
at the heart of IT, are outside the scope of that review. But for com-
pleteness, I provide a brief discussion here and then point toward its
econometric implications.
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The theory of Large Deviations (LD) deals with estimating the prob-
ability of an infrequent event — an event with an a priori small proba-
bility. Consider the iid, discrete random variable X that has a Bernoulli
distribution: f(x;θ) = θx(1 − θ)(1−x) for x = 0,1. Let θ be 0.4. The the-
ory of LD deals with questions like: “What is the probability that the
expected value of the observed random variable (sequence) is greater
than 0.9?” This question deals with a “large deviation” between the
true mean of the distribution and the observed (sample) mean. In terms
of the typical sequences discussed above, an expected value of 0.9 is just
Px1,x2 = (0.1,0.9). Thus, the probability that the sample’s mean is close
to 0.9 is exactly the probability of that type. The probability of that
large deviation, pLD, is a function of the relative entropy and the sample
size. In our example, pLD, which cannot be approximated well enough
using the central limit theorem, is approximately 2−nD(0.1,0.9‖0.6,0.4).
For n = 5, 10, and 100, pLD = 0.064, 0.004, and 1.2E-24, respectively.
The above is expressed in the famous Sanov’s theorem (Sanov, 1961)
which is sketched below.

Let E be a certain subset of the set of proper probabil-
ity distributions (E ⊆ P ). Let X1,X2, . . . ,Xn be iid generated by
the distribution Q(x) with the set of possible outcomes (alpha-
bet) ℵ. Then, Qn(E) = Qn(E ∩ Pn) ≤ (n + 1)|ℵ|2−nD(P ∗‖Q) for P ∗ =
argminP∈E D(P‖Q). Note that P ∗ is the closest distribution (in
entropy terms) to Q in E. If the set E is the closure of its interior,
then 1

n log2 Qn(E)→−D(P ∗‖Q).
The relationship between this theorem and the principle of Maxi-

mum Entropy is discussed in the next section. But, for now to see the
depth of that theorem imagine that you observe a sample of data, and
you are asked to verify whether a certain set of conditions (say, the
observed sample’s moments) is consistent with your prior beliefs (the
distribution Q(x)). What this theorem tells us is that this probabil-
ity is found by minimizing the relative entropy D(·‖·) subject to these
constraints (e.g., observed sample moments). Using the Lagrangean
approach yields the desired (exponential) probability distribution P ∗.
Specific examples are presented in Section 4. Applications to hypothe-
sis testing and inference as well as to the likelihood ratio statistic will
be discussed in Sections 6 and 7 (see also Kitamura, 2006).
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3.8 Stochastic Process and Entropy Rate

Consider now a more realistic process involving dependent random
variables that form a stationary process. To capture the main quan-
tities and to relate it to familiar econometric problems, consider a
first-order Markov Chain that is stationary and for simplicity is also
time-invariant.

Let X be a discrete random variable with alphabet ℵ and a probabil-
ity mass function p(x) = Pr{X = x}, x ∈ ℵ. Let the stochastic process
X1,X2, . . . ,XT (t = 1,2, . . . ,T is a discrete time index) be such that
Pr(Xt+1 = xt+1|Xt = xt) for all x1,x2, . . . ,xT ∈ ℵ. This process can be
specified as

αxt+1 =
∑
xt

αxtPxtxt+1 with
∑
xt

αxt = 1, (3.12a)

where P is the stationary first-order Markov probability matrix. More
compactly, this process can be specified as

αk(t + 1) =
∑

j

αj(t)Pjk with
∑

j

αj = 1 and
∑

k

Pjk = 1.

(3.12b)

We will go back to this process in Section 7.
We already know that the entropy reflects the average amount of

information in a random variable, or data. With a stochastic process,
one wants to measure the change, or incremental increase, of (average)
information with the process, or how does the entropy of the sequence
increases with t. Example include measuring the increase in information
due to additional period of data collected from the same process as the
current data, or trying to better understand the process behind an
evolving economic (time series) data. The Entropy Rate captures that
increase.

The Entropy Rate of some stochastic process {Xt} is

H(ℵ) ≡ lim
T→∞

1
T

H(X1,X2, . . . ,XT )

when the limit exists. H(ℵ) reflects the entropy per symbol of the T

random variables. A related (conditional) quantity is

H∗(ℵ) ≡ lim
T→∞

H(XT |XT−1,XT−2, . . . ,X1)
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when the limit exists. H∗(ℵ) is the conditional entropy — the entropy
of the last random variable conditional on the past T − 1 values. If
the stochastic process is stationary, then H(ℵ) = H∗(ℵ). The entropy
rate is the expected number of bits per symbol necessary to describe
the process. Going back to the first-order, stationary Markov process,
these two measures are related through

H(ℵ) = H∗(ℵ) = H(X2|X1) = −
∑
jk

αjPjk logPjk

=
∑

k

αk

[
−
∑

j

Pjk logPjk

]
.

Example. Consider a three-state, stationary, Markov process. Let
the stationary (and known) distribution α be α = (0.5,0.3,0.2)′.
Using (3.12a) or (3.12b), this stationary process is characterized by

Pjk =

0.553 0.284 0.163
0.465 0.312 0.223
0.420 0.322 0.258

 =

p1

p2

p3

 where

H(p1) = 1.415
H(p2) = 1.521
H(p3) = 1.556

 .

The entropy of state X at period t is H(Xt) = H(α) = 1.485, while
H(ℵ) = 1.475. Note that H(P ) = 4.492, while H(pj) equals 1.415,
1.521, 1.556, respectively for j = 1,2,3. If, on the other hand, all prob-
abilities are uniform (α = (1/3,1/3,1/3)′ so pjk = 1/3 for all j and k)
then H(ℵ) = 1.585, H(pj) = 1.585 for each j = 1,2,3 and H(P ) =
4.755. As expected, all entropies of this (more uncertain) case are
higher. It is harder to describe that process that can be thought of
as a more “noisy” process.

3.9 Continuous Random Variables

A brief discussion of the differential entropy, defined for a continuous
random variable, is now provided. Let X be a continuous random vari-
able with probability distribution P and density f(x) with respect to
some dominating measure µ. The entropy is

H(P ) ≡
∫

f(x) log
1

f(x)
dµ(x), (3.13)
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where this differential entropy does not have all of the properties of the
discrete entropy (3.1) and there are some basic philosophical questions
regarding that quantity. However, this measure can be generalized to
the “cross-entropy” equivalent of the discrete case. Let Q be another
probability distribution with density q(x) with respect to the same
measure µ. Then,

D(P ||Q) ≡
∫

f(x) log
f(x)
q(x)

dµ(x)

and it measures the information discrepancy between the two distribu-
tions P and Q.

Example. The differential entropy for Xi (i = 1, . . . ,n) that are multi-
variate normal with mean θ and covariance matrix Σ is

H(X1, . . . ,XT )

= H(multivariate normal)

= −
∫

f(x)
[
−1

2
(x − θ)′Σ−1(x − θ) − log(

√
2π)T |Σ|1/2

]
dx

=
1
2

log(2πe)T |Σ| ,

where f(x) is the probability density function of X1, . . . ,XT , “| · |”
stands for the determinant and the natural log is used here.

Similarly the Shannon mutual information between two random
variables can be specified as the relative entropy between their joint
distribution and the product of their marginal distributions. For the
random variables X and Y with joint distribution PXY and marginal
distributions PX and PY with densities pXY, pX, and pY, respectively,
the Shannon mutual information is

I(X;Y ) = D(PXY ||PX × PY ).

This measure can naturally be extended as a conditional measure with
respect to another variable. In Sections 4 and 5 the differential entropy
is used for specific estimation models. However, since most models
within IEE use the discrete entropy, not much background is provided
here but the reader is referred to some nice and detailed discussions of
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the continuous (differential) entropy and related measures (Soofi, 1994,
2000; Maasoumi and Racine, 2005; and Clarke, 2007). For use of the
differential entropy for stochastic process and the extension of quan-
tities like the differential entropy rate and spectral estimation (with
the normal process), see Burg (1975) and Cover and Thomas (1991,
Chap. 11).14

14 A number of tests using entropy exist and are not fully covered in this review. These
tests include a test for normality based on the sample’s entropy (Vasicek, 1976), and
testing of fit for exponentiality, based on the cross entropy (divergence) measure D(·||·)
is introduced by Ebrahimi et al. (1992). See these studies for details.
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The Classical Maximum Entropy Principle

4.1 The Basic Problem and Solution

Facing the fundamental question of drawing inferences from limited
and insufficient data, Jaynes proposed the ME principle, which he
viewed as a generalization of Bernoulli and Laplace’s Principle of
Insufficient Reason. The ME formalism was introduced by Jaynes
(1957a,b, 1963) and is based on Shannon’s entropy measure. This
formalism was extended and applied by a large number of researchers
(e.g. Levine, 1980; Levine and Tribus, 1979; Tikochinsky et al.,
1984; Skilling, 1989a; Hanson and Silver, 1996; Golan et al., 1996b).
Axiomatic foundations for this approach were developed by Shore and
Johnson (1980); Skilling (1989b) and Csiszar (1991). See also Jaynes
(1984) and his nice text (Jaynes, 2003) for additional discussion.

In more recent work within econometrics and statistics, and fac-
ing similar problems of how to estimate the unknown distribution of
a random variable with minimal assumptions on the underlying likeli-
hood function, methods similar in philosophy to the ME principle are
developed. These methods include the Empirical Likelihood, the Gen-
eralized EL, versions of the Generalized Method of Moments as well
as the Bayesian method of Moments. In these methods the Shannon’s

49
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entropy measure is substituted for other measures within the class of
α-entropies or for the differential entropy. These methods are discussed
in the next section. Using the tools of the calculus of variations the
classical ME is summarized below.1

Suppose the first T (zero or “pure”) moment conditions of an
unknown K-dimensional (K > T + 1), proper probability distribution
p corresponding to the K-dimensional, discrete random variable, are
observed. In the linear case, these T pure moments are yt =

∑
k xtkpk,

where X is a T × K design matrix and y are the observed (zero) sample
moments. Similarly, these moments can be expressed as

y = Xp, or y − Xp = 0.

A number of examples help clarify these notations. Consider the
case where the researcher only knows the sample’s mean (X̄) and
variance (σ̂2) of a single discrete random variable X with alpha-
bet ℵ and |ℵ| = K (i.e., a K-dimensional discrete random variable).
Though these moments are based on a sample of N observations, the
researcher does not have that sample. In that case T = 2, and let
x1k = xk and x2k = (xk − X̄)2, so y1 = X̄ =

∑
k x1kpk =

∑
k xkpk and

y2 = σ̂2 =
∑

k x2kpk =
∑

k (xk − X̄)2pk. Economic examples and appli-
cations of such cases include the estimation of income distribution
or size distribution of firms based on observed first moments, opti-
mal portfolio and asset choices based on observed assets’ means as
well as estimating Input–Output coefficients, Social Accounting Matri-
ces or Markov transition probabilities from observed aggregated data.
Consider another example where the researcher observes all of the N

observations in the above sample and, rather than form a likelihood
function, wishes to estimate the natural weight of each observation
pi (i = 1,2, . . . ,N) in that sample. In that case y1 = X̄ =

∑N
i=1 xipi and

y2 = σ̂2 =
∑N

i=1 (xi − X̄)2pi. This case is discussed further in Section 5.
The ME principle is now presented.

Given the T (pure) moments y, our objective is to estimate the K-
dimensional, unknown distribution p for the case where K > T + 1
(an under-determined problem). Using here the natural log (rather

1 ME is a standard variational problem.
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than log2) the ME formulation is

ME =

p̂ = argmax{H(p) ≡ −
∑

k pk logpk}

s.t. y − Xp = 0;
∑

k pk = 1
. (4.1)

Similarly, the cross-entropy (CE) formulation when prior informa-
tion q is available is

CE =

p̃ = argmin{D(p||q) ≡
∑

k pk log(pk/qk)}

s.t. y − Xp = 0;
∑

k pk = 1
. (4.2)

Note that under the ME formulation one maximizes the entropy while
under the CE formulation the entropy difference between p and q is
minimized. The two procedures are similar in the sense that the ME
(4.1) can be viewed as the CE (4.2) with uniform priors (q’s).

The CE solution is

p̃k =
qk exp

(∑T
t=1 λ̃txtk

)
∑

k qk exp
(∑T

t=1 λ̃txtk

) ≡ qk exp
(∑T

t=1 λ̃txtk

)
Ω

, (4.3)

where Ω(λ̃) ≡
∑

k qk exp
(∑T

t=1 λ̃txtk

)
is a normalization factor known

also as the partition function and λ̃ is the T -dimensional vector of
estimated Lagrange multipliers. If p̃ is the solution to such an opti-
mization problem, it can be shown that I(p;q) = I(p; p̃) + I(p̃;p)
for any p satisfying the set of constraints in (4.1) or (4.2). This is
the analogous to the Pythagorean Theorem in Euclidean geometry,
where I(p;q) can be regarded as the analog for the squared Euclidean
distance.

4.2 Duality — The Concentrated Model

The ME and CE formulations above are constructed in terms of a
constrained optimization (call it the primal model) where the opti-
mization is carried with respect to the p’s. However, it is possible to
construct both the ME and CE as an unconstrained dual model, which
is equivalent to a concentrated likelihood function. The advantages of
the dual formulation is that first, an unconstrained model is simpler
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(and computationally superior), second by moving from the probabil-
ity space to the Lagrange multipliers’ space the dimension of the model
decreases significantly (recall K is much greater than T + 1), and third,
that formulation allows a direct comparison with the more traditional
likelihood methods.

To derive the dual formulation (concentrated model), one starts by
constructing the Lagrangean for model (4.2) but without the proper
probability requirement

(∑
k pk = 1

)
. The CE solution (4.3), that

already satisfies the proper probability requirement, is then inserted
into the first right-hand side term of `(λ) that yields the concentrated
CE model

`(λ) =
∑

k

pk log(pk/qk) +
∑

t

λt

[
yt −

∑
k

xtkpk

]

=
∑

k

pk(λ)

[∑
t

λtxtk − log(Ω(λ))

]
+
∑

t

λt

[
yt −

∑
k

xtkpk

]

=
∑

t

λtyt − log(Ω(λ)). (4.4)

In a more condensed notations, the primal–dual relationship is

Min
p∈P

I(p,q) = Max
λ∈D

{λ′y − logΩ(λ)}

= Max
λ∈D

{∑
t

ytλt − log

[∑
k

qk exp

(
T∑

t=1

λtxtk

)]}
. (4.5)

Looking at (4.5) it is quite clear that it has the same form of a
likelihood function. In fact, under uniform priors (q), it is equivalent
to the ML Logit for a discrete choice model. Detailed comparison is
done in Section 6.

In a slightly more general notation let the moments be represented
by
∑

k pkgt(X) = E[gt] where X is a T × K matrix. Then, the rela-
tionship between the Lagrange multipliers and the data is easily seen
from

− ∂ logΩ
∂λt

= E[gt] (4.6)
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while the higher moments are captured via

∂2 logΩ
∂λ2

t

= Var(gt) and
∂2 logΩ
∂λt∂λs

= Cov(gtgs). (4.7)

The formulations above are for the discrete case. A detailed example
of that case is provided at the end of this section (Section 4.6). To show
that above principle can be used for continuous random variables, a few
examples are provided below.

Example (Single Constraint: Normalization). Maximizing the differ-
ential entropy subject to normalization

(∫
f(x)dx = 1

)
yields

f̂(x) = exp(−1 − µ̂),

where µ̂ is the Lagrange multiplier associated with the only constraint.
If X is confined to some range (a,b) then f(x) = 1/(b − a) is uniformly
distributed with mean (a + b)/2 and variance (b − a)2/12, µ = log(b −
a) − 1 and H(x) = − log(b − a). This example shows that the uniform
distribution is the ME density function resulting from maximizing the
differential entropy subject to one condition — the requirement that
the density function is proper (normalization). This is consistent with
the basic philosophy behind the ME principle (and the principle of
insufficient reason) where the maximal level of entropy is associated
with the uniform distribution — a state of maximal uncertainty.

Example (Two Constraints: Normalization and First Moment). For a
nonnegative random variable X, if one knows that the expectation is∫

xf (x)dx = m, then the ME method yields f̂(x) = (1/m)exp(−x/m)
which is the exponential distribution with mean m, variance m2, and
H = 1 + log(m).

Example (Three Constraints: Normalization and Two First Moments).
Let a random variable X be distributed over the whole real line with
the two first moments

∫
xf (x)dx = m and

∫
(x − m)2f(x)dx = σ2. For

simplicity, let m = 0. Maximizing the differential entropy subject to
these constraints (and as usual the proper density requirement) yields
(for the Lagrange multipliers µ,λ1,λ2),

f̂(x) = exp(−1 − µ̂ − λ̂1x − λ̂2x
2) =

√
1/2πσ2 exp(−x2

/
2σ2),



54 The Classical Maximum Entropy Principle

where µ̂ = (1/2) log(2πσ2) − 1, λ̂1 = 0, λ̂2 = 1
/
2σ2 and H =

(1/2) ln(2πeσ2). Note that this is just the normal distribution.
Thus, the normal density function, is the ME density function result-
ing from maximizing the entropy subject to the first two moments.
This provides an additional motivation for using the normal density
function in applied work. This example is revisited in Section 5.5
dealing with Zellner’s Bayesian method of moments.

Finally, a short discussion on hypothesis tests and entropy is
provided. A more detailed discussion and some applications are
summarized in the next sections. Based on Eq. (4.1) and/or (4.2)
hypothesis tests can be constructed. The basic idea is briefly sum-
marized below via a simple example. Let X1,X2, . . . ,XN be a sample
of size N generated iid from the probability distribution P0. Within
the context of comparing two probability distributions, consider two
competing hypotheses: H1

0 :P0 = P1 and H2
0 :P0 = P2. Let α and β be

the two probabilities of error: α = Prob(P0 = P2|H1
0 is true) and β =

Prob(P0 = P1|H2
0 is true). The likelihood ratio test provides an optimal

test (Neyman–Pearson Lemma) for testing these two hypotheses:

L ≡ P1(X1, . . . ,XN )
P2(X1, . . . ,XN )

> K for K ≥ 0.

To relate that test to the relative entropy, note that

l = logL = log
P1(X1, . . . ,XN )
P2(X1, . . . ,XN )

= N [D(P̃X(N)||P2) − D(P̃X(N)||P1)],

and

L ≡ P1(X1, . . . ,XN )
P2(X1, . . . ,XN )

> K

⇔ [D(P̃X(N)||P2) − D(P̃X(N)||P1)] >
1
N

logK.

Building on the above, the relationship between the likelihood ratio
test and the relative entropy leads to the entropy ratio test formulated
and discussed later. Further, loosely speaking, the above relationship,
is related to Stein’s Lemma (see for example Cover and Thomas, 1991)
stating that, for the above hypotheses and probability of errors α(N)
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and β(N), both as functions of the sample size N , the following state-
ment holds:

lim
N→∞

1
N

logβ(N) = −D(P1||P2).

For example, the relative entropy corresponding to the test whether
the sample came from an underlying normal distribution with mean
zero2 but different variances is

D(P1||P2) =
1
2

[
log
(

σ2
2

σ2
1

)
+

σ2
1

σ2
2

− 1
]

for P1 ∼ N(0,σ2
1) and P2 ∼ N(0,σ2

2).

As a second (extreme) example consider the hypothesis contrast-
ing P ’s resulting from a certain Bernoulli distribution, say P1 ∼
Bernoulli

(
θ = 1

3

)
and P2 ∼ Bernoulli(θ = 1). In that case, one gets

D(P1||P2) =
1
3

log
1/3
1

+
2
3

log
2/3
0
→∞.

In that case, D(·)→∞, it can be said that, for large samples, it is
possible to distinguish the two probability distributions P1 and P2 with
probability one.

4.3 The Entropy Concentration Theorem

The Entropy Concentration Theorem, ECT, (Jaynes, 1978a,b) provides
another convincing rationale for the ME principle. This theorem states
that out of all distributions that satisfy the observed data (moments),
a significantly large portion of these distributions are concentrated suf-
ficiently close to the one of maximum entropy. Similarly, the subset of

2 Recall the simpler case of deriving the entropy of a random variable X that is distributed
as f(x) = (1/

√
2πσ2) × exp(−x2

�
2σ2) and has the entropy

H(f) = −
Z ∞

−∞
f(x) lnf(x)dx = −

Z
f(x)

�
−

x2

2σ2
− ln

√
2πσ2

�
dx

=
E[X2]

2σ2
+

1

2
ln2πσ2 =

1

2
+

1

2
ln2πσ2.
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distributions (satisfying the data) that have significantly lower entropy
than the maximum are the subset of atypical distributions.

More formally, consider a random experiment with K possible
states/realizations at each trial, so in N trials there are KN pos-
sible outcomes. The word “state” used here means a realization
of a single trial, while “outcome” refers to the experiment as a
whole. Each outcome yields a set of observations {Nk}, or frequencies
{fk = Nk/N ; 1 ≤ k ≤K}, with an entropy of H(f) = −

∑
k fk logfk.

Let P be the subclass of all possible outcomes that could be observed in
the N trials and satisfy the T < K linearly independent constraints
in (4.1) or (4.2). The ECT states that a high percentage of outcomes in
the class P will have entropy in the range

H∗ − ∆H ≤ H(f) = H(f1, . . . ,fK) ≤ H∗

≡ Max
p∈P

H
[
p|y − Xp = 0,

∑
pk = 1

]
= H(p̂), (4.8)

where ∆H ≡ χ2
(K−T−1;α)/2N and α is the upper α percentile of the χ2

distribution with (K − T − 1) degrees of freedom. Other distributions
{fo

k} that are consistent with the constraints (sample data) will have
entropy levels smaller than H∗. Their concentration near this upper
bound is given by the above ECT.

This theorem tells us that asymptotically, 2N∆H is distributed
over the class P as a χ2

(K−T−1) independently of the structure of the
T constraints. Hence, approximately (1 − α)100% of the frequencies
satisfying the observed data/constraints, have entropy within the range
specified by (4.8).

Example. Suppose a die is tossed N = 100 times. Though one would
expect the observed mean to be approximately 3.5 (for a fair die), the
observed mean is 5. In this case there are two constraints: normalization
and the first moment. Within the above notation (Eqs. (4.1) and (4.2),
T = 1 and K = 6 and, y = 5. The ME solution p̂ is 0.021, 0.038, 0.072,
0.136, 0. 255, and 0.478, respectively for k = 1, . . . ,6,H(p̂) = 1.973 and
λ̂ = 0.908. Applying the CTE (for α = 0.05), χ2

(6−1−1;0.05) = χ2
(4;0.05) =

9.488, so ∆H = 0.0474, and 1.9256 ≤ H ≤ 1.973. If, on the other hand,
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we have a larger sample of N = 1000, then, the CTE yields the more
concentrated interval: 1.9683 ≤ H ≤ 1.973.

As noted by Jaynes, an important feature of the ECT is that, for
example the above 95% concentration range H∗ − (9.488/2)

N ≤ H ≤ H∗

is valid asymptotically for any random experiment with four degrees
of freedom (though naturally H∗ will vary based on the exper-
iment/problem analyzed). Consider a higher significance level of
α = 0.005. For N = 100, 99.5% of all outcomes (allowed by the
sample’s constraints) have entropy in the range of width ∆H =
(2N)−1χ2

(4;0.005) = 14.86(2N)−1 = 0.0743, so 1.899 ≤ H ≤ 1.973, while
for N = 1000,1.966 ≤ H ≤ 1.973. The ECT provides a compelling argu-
ment in favor of using the ME principle. It shows that for large N ,
the overwhelming majority of all distributions consistent with our lim-
ited information (the T constraints) have entropy value very close to
the maximum. The width (∆H) of the concentration region decreases
at a fast rate of N−1. The ECT also provides an indirect motivation
for using the normal distribution (see example on Section 4.2 show-
ing that the normal density function is the MaxEnt density function
resulting from maximizing the differential entropy subject to the first
two moments).

4.4 Information Processing Rules and Efficiency

Zellner (1988, 2002) showed that Bayes theorem is an efficient Informa-
tion Processing Rule (IPR) and it satisfies the information conservation
principle (ICP) stating that the total input information equals the total
output information. Any IPR that satisfies that principle is defined as
efficient in the sense that the ratio of output to input information is
one. Any IPR that does not satisfy that rule is inefficient (ratio < 1)
or “produces” information (ratio > 1) within the estimation process.
Following Zellner’s work, it is possible to show that the ME principle
is an efficient IPR. To show this, I provide some background below.

Information in the inputs and outputs can be measured in terms of
their entropy level. The two inputs are the data density or likelihood
function, F (y,θ) ≡ L(y,θ), and the prior distribution on θ, q(θ). The
two outputs are the post-data (or posterior in the Bayesian context)
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distribution of θ, p(θ|y) and the marginal distribution m(y) which is
the partition function Ω in the ME/CE case. The respective information
contained in the inputs and outputs is represented as the expectations,
with respect to p(θ|y), of the logarithm of the inputs and outputs.
For example, the negative entropy in the data density or likelihood
function is given by

∑
θ p(θ|y) logF (y,θ). With these definitions and

background, it is possible to show that the CE is an efficient (or 100%
efficient) IPR for any prior.

Let I1(p̃) ≡ −
∑

k p̃k logqk and I2(p̃) ≡ −
∑

k p̃k log[exp(−
∑

i λ̃i

xik)] =
∑

k,i p̃kλ̃ixik be the input information. Similarly, let O1(p̃) ≡
−
∑

k p̃k log p̃k and O2(p̃) ≡ −
∑

k p̃k logΩ(λ̃) = − logΩ(λ̃) be the two
output information. We want to show that

O1(p̃) + O2(p̃) − [I1(p̃) + I2(p̃)] = 0. (4.9)

Substitute the input and output information into Eq. (4.9) yields

−
∑

k

p̃k log p̃k − logΩ(λ̃) +
∑

k

p̃k logqk −
∑
k,i

p̃kλ̃ixik. (4.9a)

The sum of the first and third elements in Eq. (4.9a) is identically
equal to the negative of the CE (see Eq. (4.2)). The optimal value of
the concentrated CE model (4.4) is∑

i

λ̃iyi − logΩ(λ̃) ≡
∑

k

p̃k log p̃k −
∑

k

p̃k logqk. (4.10)

Finally, substituting Eq. (4.10) for the first and third terms in Eq. (4.9a)
and canceling the logΩ terms, yields∑

i

λ̃iyi −
∑
k,i

p̃kλ̃ixik =
∑

i

λ̃i

(
yi −

∑
k

p̃kxik

)
, (4.11)

which must be zero under the first-order conditions for an optimal
solution p̃ and λ̃.

4.5 Entropy — Variance Relationship

It is possible to show that for any under-determined problem, out
of all possible solutions (that are consistent with the observed
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data/moments), the ME (or CE) solution p̃ yields the estimated λ

with the smallest possible variances. Intuitively speaking, the higher
the entropy of p (or the uncertainty of the corresponding distribution),
the higher the value of the Fisher information matrix of λ, I(λ). Since
Var(λ) is the inverse of I(λ), the above statement is confirmed. Simi-
larly, a higher entropy of p means that the T moment constraints do
not have much information. Since these observed data do not add much
information, one expects that from sample to sample, the variability
of the unknown/unobserved parameters λ, represented by Var(λ), will
be small. In a more precise way, Cover and Thomas show a direct rela-
tionship between Fisher’s information matrix and the relative entropy.
They show that for the parametric family {pθ(x)}

lim
θ̃→θ

1
(θ − θ̃)2

D(pθ||pθ̃) =
1

ln4
I(θ),

where I(θ) is Fisher’s information matrix and “ln” stands for the nat-
ural logarithm.

4.6 Discussion

With his basic formulation of the ME principle, Jaynes was able to
provide some new insight into the ongoing debate on “probabilities
vs. frequencies” by defining the notion of probabilities via Shannon’s
entropy measure. His principle states that in any inference problem, the
probabilities should be assigned by the ME principle, which maximizes
the entropy subject to the requirement of proper probabilities and any
other available information.3

3 In the fields of economics and econometrics, it was probably Davis (1941) who conducted

the first work within the spirit of ME. He conducted this work before the work of Shannon
and Jaynes, and therefore he did not use the terminology of IT/ME. In his work, he
estimated the income distribution by (implicitly) maximizing the Stirling’s approximation

of the multiplicity factor subject to some basic requirements/rules. For a discussion of
Davis’s work and of the earlier applications and empirical work within IEE in economics/

econometrics see Zellner (1991) and Maasoumi (1993). Other related studies that preceded

Jaynes’s classical papers on ME include the work of Esscher on the Esscher transform
(1932), and discussed nicely by Gerber (1980). The transform looks like an exponential
tilting approach similar in spirit to the ME procedure proposed by Efron and Tibshirani

(1993). In a different context, Pearson’s work provides a way to fit density functions from a
finite set of moments. Though, this is not an IT method, it has many of the same features.
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Two basic questions keep coming up in the literature: Is the ME
principle “too simple?” and does the ME principle “produces some-
thing from nothing?” The answer to the above questions is contained
in the simple explanation that, under the ME principle, only the rel-
evant information is used, while all irrelevant details are eliminated
from the calculations by an averaging process that averages over them.
Therefore, it does not produce “something” from “nothing” but rather
it only makes use of the available observed information where that
information enters as constraints in the optimization. Maximizing the
entropy subject to no constraints but the proper probability distri-
bution requirement yields the uniform distribution that represents a
state of complete uncertainty (or ignorance). Introducing the observed
moments into the optimization takes the distribution away from unifor-
mity. The more information there is in the data, the further away the
resulting distribution is from uniformity or from a state of complete
ignorance. In that way, one can view the ME method as a method
that yields the most uninformed distribution that is consistent with
the observed sample moments. Going back to our earlier discussion
of information in Section 3.1.1, if we also view information as what
constrained our beliefs (or the assignment of our probabilities), then
information is represented as constraints on probabilities. Thus, the
ME method is a natural way for handling information.

This basic principle and its philosophy motivate much of the
Bayesian literature on “How to decide on prior probabilities.” The
ME principle provides a coherent way of doing so. For example, see
the series of proceedings based on the annual International Workshop
on Bayesian Inference and Maximum Entropy Methods in Science and
Engineering started in 1980.4

See Solomon and Stephens (1978) for a recent article that nicely describes that procedure,

and Bera and Bilias (2002) for discussion of Pearson’s work, and others, within the IEE
framework.

4 Stating it differently (A. Caticha, private communication) entropy (or relative entropy)

can be thought of as a tool for updating prior probabilities to posterior probabilities

when new information (constraints) becomes available. The usual Gibbs–Shannon–Jaynes
entropy is the special case that applies to discrete probabilities when the prior happens to

be uniform. The information can be in the form of data (and this reproduces Bayes’ rule)

or in the form of any other kind of constraint such as expected values. In this approach
Bayesian and ME methods are unified into one coherent whole. Further, under that view,
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4.7 Example

Consider the die example discussed in Section 1. Assuming the observed
mean value after n tosses is y = 5. The ME formulation is

Max
{p}

H(p) = −
6∑

k=1

pk log2 pk

s.t
∑

k

pkxk = y and
∑

k

pk = 1,

where k = 1,2, . . . ,6, xk = 1,2, . . . ,6 and log2 is used. The solution is

p̂k =
2−λ̂xk∑6

k=1 2−λ̂xk

≡ 2−λ̂xk

Ω
.

For y = 5, the solution p̂ is 0.021, 0.038, 0.072, 0.136, 0.255, and 0.478,
respectively for k = 1, . . . ,6, H(p̂) = 1.973 and λ̂ = 0.908.

Next, we ask the question: “What is the probability that the
mean observed value, after n tosses, is no less than 5 if the die
is a fair one?” Following the Large Deviations (LD) derivations
(Section 3.7) Qn(E) , 2−nD(P̂‖Q) for P̂ = argminP∈E D(P‖Q) such
that the constraint

∑
k pkxk ≥ 5 is satisfied, and where , means the

two terms are equal to the first order in the exponent (e.g., dn , fn ≡
limn→∞

1
n log dn

fn
= 0). For uniform Q (a fair die), D(P̂‖Q) = 0.612. The

probability that the observed mean of n tosses of a fair die is no less
than 5 is 2−nD(P̂‖Q) = 2−n(0.612). For n = 10, 100, and 1000 that proba-
bility is 0.014, 3.7E-19, and 5.4E-185, respectively. More examples are
presented in the section on Inference below.

Similarly, using the relative entropy to test the competing hypothe-
ses of a fair die vs. a die with mean of 5 (p̂ above), one gets

[D(P̂ ||P2(y = 5)) − D(P̂ ||P1(uniform : y = 3.5))] = 0 − 0.612

= −0.612,

entropy needs no interpretation in terms of heat, or as a measure of multiplicity, disorder

or amount of information. Entropy is merely a tool for inference.
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while the hypothesis of a fair die vs. a die with mean 6 yields

[D(P̂ ||P2(y = 6)) − D(P̂ ||P1(uniform : y = 3.5))]→∞.

In the second case, it is possible to distinguish the two probability
distributions with probability one (as n→∞).

The ECT in this example is already investigated and discussed in
Section 4.3 above.



5

Information-Theoretic Methods of
Estimation — I: Basics and Zero Moments

5.1 Background

The ME principle opened the way for a whole new class of estimation
methods. All of these IT methods have the objective of extracting all
of the available information from the data, but with minimal assump-
tions on the underlying distribution generating the data. All of these
methods can be constructed as maximization (minimization) of a cer-
tain information criterion subject to the observed sample information.
In this section I discuss these methods under a unified optimization
framework.

Among econometricians who want to analyze data with minimal
assumptions or avoid specifying a likelihood function, the IT class of
estimators is increasingly popular. This class includes the Empirical
Likelihood (EL), the Generalized EL (GEL), the Generalized Maximum
Entropy (GME) and the Generalized Method of Moments (GMM), as
well as the Bayesian Method of Moments (BMOM). Though most of
these moment based estimators are not originally designed to uncover
the complete distribution but rather only the (structural) parameters
that appear in the moment condition, these methods can also be viewed

63
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as solutions to under-determined problems (in the probability space).
If one tries to avoid distributional assumptions, or assumptions on the
likelihood function, all problems become under-determined (ill-posed)
in probability space. There are always more unknowns than knowns
regardless of the sample size. To solve such problems, either the number
of unknowns is reduced via the moment conditions that are introduced,
or there is a need for a certain criterion to choose among the many
solutions (sets of estimates) that are consistent with the observed data,
or usually a combination of both of the above is used. The common
feature of the methods within the class of IT estimators is their entropy-
type criterion that is used to choose one of the many solutions that are
consistent with the observed information that is represented in terms
of moments or data. This criterion, the entropy of order α (or higher
order entropy), is more familiar to econometricians as the Cressie–Read
criterion (Eq. (3.9)). Though all of these IT methods are related via
that criterion, they differ in two basic ways: the pre-specified α-level of
the generalized entropy objective function, and the way the observed
data enter into the optimization.

The relationship of this criterion to entropy and other information-
theoretic measures is discussed in Kitamura and Stutzer (1997), Imbens
et al. (1998), Golan et al. (1996b), (Mittelhammer et al., 2000,
Chapters 12–13), (Golan, 2002), Kitamura (2006), and Smith (2000,
2004, 2005).

5.2 The Generic IT Model

Let Y = {Y1,Y2, . . . ,YT } be a sample of iid observations from an
unknown distribution F0. There is an N -dimensional parameter vec-
tor θ0 that is related to F0 in the sense that the information about
θ0 and F0 is available in the form of M ≥ N moments (or function-
ally independent unbiased estimating functions). An IT “likelihood”
of this parameter vector is defined by considering the distributions
supported on the sample, where Yi is assigned a probability pi where
p′ = {p1,p2, . . . ,pT }. For a specified value of the parameter vector, say
θ1, the IT (empirical) likelihood is defined as the maximal value of
some function f(·), defined below, over all such probability distribu-
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tions satisfying the relationship between y, p, and θ1 that are specified
via the M -dimensional vector equation g(y,p,θ1) = [0]. Often the ele-
ments of the function g(·) are called parametric information functions
(PIF’s). Under that approach, one starts by defining the feasible set
of proper probability distributions supported on the sample observa-
tions. The feasible set is characterized by a set of M restrictions on
the unknown probabilities p. These restrictions are based on the PIFs
specified as parametric functions of the data. Usually these functions
are the moments. Given the T observations and M PIF restrictions
(moment conditions), the objective is to obtain estimates of the prob-
ability p. These estimates represent the (unobserved empirical) weight
of each observed data point. In most common cases M � T (where
“�” stands for “much smaller”), implying the problem of estimating
p based on the observed information in the PIFs is under-determined.

With the above in mind, in the class of Information-Theoretic
estimators rather than starting with a pre-specified likelihood, the
observed data are used to estimate the empirical distribution (or nat-
ural weights) p, that is most consistent with the M observed sample
moments. Regardless of the sample size, there are infinitely many sets
of “weights” that are consistent with the observed sample, making the
problem an under-determined problem. Like the ME formulation, a
simple way to solve such an under-determined (ill-posed) problem is
to transform it into a well-posed, constrained optimization problem.
This is done by minimizing a certain criterion subject to the observed
sample moments or any other function of the data. But which solu-
tion should one choose? Or stating it differently, what criterion should
be minimized? The objective function used in all the IT estimators is
the generalized entropy measure (entropy of order α), also known as
the Cressie–Read function (see Eq. (3.9)) for different values of the α,
where Shannon’s entropy is just a special case of that function. All
of these measures are entropy divergence measures reflecting a certain
entropy distance between two distributions; say a prior and an empirical
one. Using these divergence measures form a basis for optimal decision
making and for statistical inference.

Let the vector q be a proper distribution on the same support as
p, say q′ = {q1, q2, . . . , qT }. These q’s can be viewed as some priors. Let
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f(p||q) be any function defined on p and q denoting some well defined
distance between these two proper probability distributions. A class of
possible estimators for solving the above under-determined problem is

Generic Estimator =



p∗ = argmin{f(p‖q)}
s.t.

gm(y,p,θ1) = [0]; m = 1,2, . . . ,M∑T

i=1
pi = 1; i = 1,2, . . . ,T and M < T − 1

.

The IT class of estimators is a subset of the above class of esti-
mators. Substitute the generalized entropy function (3.6), DR

α (p‖q) =
1

1−α log
∑

i
pα

i

qα−1
i

, (or Eq. (3.9)), representing an information-divergence

measure between p and q, for f(·) yields

IT Estimators =



_
p = argmin{f(p‖q) = DR

α+1(p‖q)}
s.t.

gm(y,p,θ1) = [0]; m = 1,2, . . . ,M∑T

i=1
pi = 1; i = 1,2, . . . ,T and M < T − 1

.

The class of IT estimators {_
p} is a subset of the estimator class

{p∗} where each specific estimator in that class (to be discussed below)
depends on the pre-specified α and on the exact specification of gm(·).
If, for example, α→ 0, f(p;q) = DR

α+1(p,q) becomes the Kullback–
Liebler divergence measure D(p||q) ≡

∑T
i=1 pi log(pi/qi), and the CE

solution p̃ results. If in addition, the q’s are uniform (qi = 1/T for all
i = 1,2, . . . ,T ) p̃ = p̂ which is equivalent to using the negative of the
Shannon’s entropy H(p) ≡ −

∑T
i=1 pi log2 pi as the objective function,

resulting in the ME solution p̂.
The formulation above is presented as a constrained optimization

problem. Like the ME, the solution is derived via the Lagrangean. Once
the optimal solution _

p is found, the dual, unconstrained formulation
(or the concentrated model) can be formulated. This is done via the
same route discussed in Section 4.2, Eq. (4.4). The transformation from
the primal (constrained) model to the dual (unconstrained) model
is one of the great advantages of that framework. By doing so, it is
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possible to move from the higher dimensional probability space to the
much lower dimension of the parameter space. Further, the Lagrange
multipliers, which are directly related to the estimated parameters,
also reflect the contribution of each constraint (moment) to the optimal
value of the objective function. In the IT class, the objective is an
informational criterion, meaning the estimated Lagrange multipliers
reflect the marginal information of each constraint (data point,
moment, etc.). It is the same Lagrange multipliers that enter as the
parameters in the estimated probability distribution. This issue and
its relationship to hypothesis tests are discussed in Sections 6 and 7.
A brief discussion of the members of the IT family of estimators that
have one common property: they all use zero-moment conditions, is
now provided. Another member of that family, that uses stochastic
moment conditions, is discussed in Section 6.

5.3 Empirical Likelihood

Letting α→−1 subject to the same set of M + 1 restrictions yields
the Empirical Likelihood method. Given the M moments, our objec-
tive is to estimate the T -dimensional, unknown distribution p. Let
y be a T dimensional random vector characterized by an unknown
T -dimensional distribution p with a vector of unknown parameters θ

and gm(yt;θ) represents the M moments of the distribution p. For
example, if M = 2, gm(yt;θ) may be

∑
t ptyt = θ1 and

∑
t pty

2
t = θ2.

Similarly if y is a function of a set of covariates X, y = f(X), these
two moments can be expressed accordingly. The M (pure) moments
can be expressed as ∑

t

ptgm(yt;θ) = 0,

where θ is an unknown parameter (or a vector of parameters). Using
the framework discussed above and letting α→−1 the EL criterion is
simply the probability of the observed sample or its natural logarithm
(i.e., the log empirical likelihood):

T∏
t=1

pt or
T∑

t=1

log(pt) or
1
T

T∑
t=1

log(pt).
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Following Owen (1990, 1991, 2001), DiCiccio et al. (1991) and Qin
and Lawless (1994), the EL approach for choosing the probability dis-
tribution p is

Max
p

1
T

T∑
t=1

logpt (5.1)

subject to the structural and general constraints∑
t

ptgm(yt;θ) = 0, (5.2)

∑
t

pt = 1, (5.3)

pt ≥ 0 . (5.4)

The corresponding Lagrangean and first-order conditions with
respect to p are

LEL =
1
T

∑
t

logpt −
∑
m

λm

[∑
t

ptgm[yt,θ]

]
+ η

(
1 −

∑
t

pt

)
(5.5)

∂L

∂pt
=

1
T

1
pt
−
∑
m

λmgm(yt,θ) − η = 0, (5.6)

from which it follows that∑
t

pt
∂L

∂pt
=

1
T

T − η = 0, (5.7)

so η = 1. The resulting optimal estimated weights (probabilities) are

p̂t = T−1

[∑
m

λ̂mgm(yt;θ) + 1

]−1

. (5.8)

For completion, consider the simple linear model discussed in
Section 4.1 Let X be an M × T design matrix X, the M observed

1 Note that now, in order to be consistent with the notation in this section, the indices for

p and X are different than those in Section 4, but the meanings of p and X and their
relationship to y are unchanged.
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moments are y = Xp (or y − Xp = 0), p is a T -dimensional proper
probability distribution and T > M . Then,

EL =

p̂ = argmax
{

1
T

∑
t
logpt

}
s.t. y − Xp = 0;

∑
t
pt = 1; pt ≥ 0

and

p̂t = T−1

[∑
m

λ̂mxmt + 1

]−1

. (5.9)

Example (The Linear Regression Model). Consider the linear regres-
sion model y = Xβ + ε where y is a T -dimensional vector of observed
data, X is a T × K matrix and ε is a T -dimensional random vector
with mean zero. The EL model is

`(β,θ;y) ≡Max
p,β

{
T∑

i=1

logpi

}
s.t.
T∑

i=1

pixi

(
yi −

∑
k

xikβk

)
= 0

T∑
i=1

pi = 1; pi ≥ 0.

(5.10)

For p̂i(EL) = 1/T for all i = 1, . . . ,T (uniform), the EL solution is
equivalent to the least squares solution.2 If, for example and loosely
speaking, the X’s are correlated with the ε, a set of instruments
S that are correlated with X but not with ε can be used. In that
case, rather than using the moments E[X ′ε] in the linear equa-
tion, as is done in (5.10) above, we are using the instruments to

2 Note that in the OLS case, the parameter vector is just identified by the moment conditions
so the EL estimator is just the method of moments’ estimator which is the OLS in that case.
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form the moments E[S′ε]:

`(β,θ;y) ≡Max
p,β

{
T∑

i=1

logpi

}
s.t.
T∑

i=1

pisi

(
yi −

∑
k

xikβk

)
= 0

T∑
i=1

pi = 1; pi ≥ 0.

(5.11)

If all probabilities are uniform (pi = 1/T for all i = 1, . . . ,T ), the EL
solution is equivalent to the traditional instrumental variable (IV) solu-
tion3: β̂IV = (S′X)−1S′y.

For more details, including examples and test-statistics, see Owen
(2001), Qin and Lawless (1994) and Mittelhammer, Judge, and Miller
(2001, Chap. 12). For recent advancements and a survey of the EL (and
GEL) see Smith (2000, 2005), Ramalho and Smith (2002), Kitamura
(2006) and Schennach (2004).

Two notes in conclusion. First, substituting the objective function
within the EL framework for the entropy of order α (or the Cressie
Read function — Eq. (3.9)) takes us back to the generic IT estimator
discussed in the previous section. This idea goes back to the work of
Imbens et al. (1998) that discuss three special cases of that objective
function. As discussed earlier, in that class of estimators, the researcher
has to specify the α in Eq. (3.9). However, only the case where α→ 0
is fully consistent with Shannon’s entropy. Second, Smith (1997) con-
sidered a more general class of estimators which he called General-
ized EL (GEL). Under the GEL, the constrained optimization model is
transformed into a concentrated model. Rather than working with the
larger probability space the problem is respecified as a concentrated
(likelihood-like) model in the parameters space (or the Lagrange mul-
tipliers space). This idea is similar to the original work of Agmon et al.
(1979) who were the first to construct the concentrated ME model
(Eq. (4.4)), and then applied and extended to the Generalized ME by
Golan and Judge (1993), Golan et al. (1994), Miller (1994)and Golan

3 See previous footnote.
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et al. (1996b). See for example Golan et al. (1996b) for detailed exam-
ples and derivations. The GME is discussed in Section 6.

5.3.1 Efficiency and Information

Building on Section 4.4, it is easy to show that the EL is an efficient (or
100% efficient) IPR. A 100% efficient IPR is defined as an IPR where
the output and input information are equal. To simplify exposition, the
linear case is presented here. Let

I1(p̂) ≡ −
∑

t

p̂t logqt = −
∑

t

p̂t log
1
T

= − log
1
T

= log(T )

and

I2(p̂) ≡ −
∑

t

p̂t log

[∑
m

λ̂mxmt + 1

]−1

=
∑

t

p̂t log

[∑
m

λ̂mxmt + 1

]
be the input information. Similarly, let O(p̂) ≡ −

∑
t p̂t log p̂t be the

output information. Like the ME (CE) we want to show that the output
information equals the input information:

−
∑

t

p̂t log p̂t − log(T ) −
∑

t

p̂t log

[∑
m

λ̂mxmt + 1

]
= 0. (5.12)

Substituting p̂t Eqs. (5.8) and (5.9) into Eq. (5.12) yields

−
∑

t

p̂t log

(T−1)

(∑
m

λ̂mxmt + 1

)−1
 − log(T )

−
∑

t

p̂t log

(∑
m

λ̂mxmt + 1

)

= log(T ) +
∑

t

p̂t log

(∑
m

λ̂mxmt + 1

)
− log(T )

−
∑

t

p̂t log

(∑
m

λ̂mxmt + 1

)
= 0. (5.13)

As one would expect, the EL is a 100% efficient IPR. This result is
now used to compare the input information of the EL and ME. Holding
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the prior information under both models to be the same, I1(p̂) = I1(p̃),
it is sufficient to compare I2(p̂) and I2(p̃) — the “likelihood” functions
of both methods. It was shown earlier that for all λ 6= 0 O(p̂) < O1(p̃).
Consequently, it follows that I2(p̂) < I2(p̃) which completes this argu-
ment. This argument shows that the EL model uses more input infor-
mation than the ME model. This additional information enters through
the EL’s likelihood function.

Example (EL and the ECT ). Consider the die problem of Section 4,
but now one uses the EL rather than the ME to estimate the
probabilities:

Max
{p}

1
K

6∑
k=1

logpk

s.t∑
k

pkxk = y and
∑

k

pk = 1

for k = 1,2, . . . ,6, xk = 1,2, . . . ,6 and y = 5. The EL solution is p̂EL =
0.044, 0.053, 0.069, 0.098, 0.167, and 0.570, and H(p̂EL) = 1.909.
Recalling the ME solution of p̂ is 0.021, 0.038, 0.072, 0.136, 0.255, and
0.478, respectively for k = 1, . . . ,6 and H(p̂) = 1.973, one can calculate
∆H via the ECT. For N = 100 and α = 0.05, χ2

(4;0.05) = 9.488. Thus,
∆H = 0.0474 and 1.9256 ≤ H ≤ 1.973. Consequently, the EL solution
is outside the 95% concentration range. In the ECT terms, the p̂EL is
an atypical set. Figure 5.1 shows these two estimated distributions.

5.4 Generalized Method of Moments — A Brief Discussion

5.4.1 Background

The GMM framework and its many applications within econometrics
are beyond the scope of this review as it demands its own review and
books. However, the literature on GMM and IT is briefly discussed
here. The focus here is (i) to show the relationship between the GMM
and IT methods and (ii) to show that though the GMM and other
related, alternative methods, are developed for handling over-identified
problems, if one looks at it in a different space — the unknown discrete
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Fig. 5.1 The EL and ME estimated distributions for the die problem with mean of 5.

probability space — then it is exactly the under-determined problem
solved via the ME principle.

Under its original specification (Hansen, 1982), the GMM estima-
tor makes use of functions of the random variables and the unknown
parameters (zero-moment functions) that have expectation of zero
when evaluated at the true (unknown) values of the parameters. One
advantage of the GMM is that it is easily connected to economic the-
ory where the zero-moment conditions are expressed as resulting from
agents’ optimization. Under the GMM, the unknown parameters are
estimated by setting the sample means of the moment conditions as
close as possible to zero. The other main advantage of the GMM is that
it can handle the exactly identified case (number of moment conditions
equals the number of unknown parameters) and the over identified case
where there is more information (observed moments) than unknown
parameters to be estimated. Hansen’s innovation here was to set up a
linear combination of all the moment conditions where the dimension
of the linear combinations equals the dimension of the unknown param-
eters.4 In this way, all the available information in the data (moments)
can be captured. Originally, Hansen proposed a two-step GMM estima-
tor where the first step is used for estimating that linear combination.
But, in practice, that first step is inefficient and has an impact on the
small sample properties of the GMM estimator. Since Hansen’s (1982)

4 The GMM method generalizes the method of moments. See Bera and Bilias (2002) for a
historical perspective and synthesis.
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paper, much work has been done on the choice of the “optimal” linear
combination. A large portion of that work connects the information-
theoretic estimators with the GMM estimator (for over-identified esti-
mation problems) in order to increase the efficiency.

Since Hansen’s seminal paper, the GMM became a unifying
framework for estimation and inference in econometrics. The success of
the GMM is not only due to its properties and applicability to economic
problems, but also because it encompasses many of the commonly
used estimation methods (including maximum likelihood, ordinary least
squares, generalized least squares, instrumental variables, and two-stage
least squares). Generally speaking, though GMM has desirable large
sample properties, it is well known that its small sample performance
is quite poor for certain applications (Hansen et al., 1996). Examples
include possible bias of the two-step GMM estimator and lack of
accuracy of the confidence intervals. In view of this, an IT alternative
model was proposed originally by Kitamura and Stutzer (1997). Within
the linear regression model framework, their model is an innovation on
the ME formulation. They use the relative entropy measure D(p‖q)
subject to the observed sample’s moments to estimate the (implicit)
empirical weights associated with each observation. They then derive its
dual formulation, as discussed in Section 4, which relates the Lagrange
multipliers to the estimated β’s. At approximately the same time,
Imbens et al. (1998) developed their IT approach for inference in moment
condition problems. Using the same logic as above, they use the relative
entropy measure to construct a class of unconstrained optimization
problems that provide alternatives to the GMM. Loosely speaking,
the main advantage of the IT estimators is to provide alternatives
to the original GMM that utilize the available, observed information
more efficiently and therefore produce more efficient estimators. By
constructing the estimator in its concentrated (dual unconstrained)
form (Eq. (4.4)), it becomes computationally more efficient. For recent
reviews and advancements of GMM see Hall (2005). For a more detailed
discussion of GMM and its relationships to EL and GEL see Imbens
(2002), Kitamura (2006) and Otsu (2006). For a nice synthesis of the
method of moments, GMM and information-theoretic methods see Bera
and Bilias (2002). A short discussion of GMM and IT is now provided.
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5.4.2 GMM and IT

A more concise discussion of GMM and the different alternative IT
estimators is now discussed. These alternative estimators provide the
information-theoretic interpretation to the over-identified GMM esti-
mator. The discussion here is restricted to the main logic behind the
class of IT estimators’ alternatives to GMM. A detailed discussion of
each one of these models is outside the scope of this review.

Using the framework in Imbens (2002), let θ∗ be a K-dimensional
vector (θ∗ ∈ Θ ⊂ RK). Let y be a random vector of dimension P with
its supports in y ⊂ RP . Define the moment function as g : y × Θ→
RM which is a known vector valued function such that E[g(y, θ∗)] = 0
and E[g(y, θ)] 6= 0 for all θ ∈ Θ and θ 6= θ∗. Given our random sample
y1, . . . ,yT we wish to find an estimator for θ∗ and to evaluate the large
sample properties of that estimator.

In the just identified case where K = M (dimension of θ equals the
dimension of g) we can estimate θ∗ by solving

1
T

∑
i

g(yi, θ̂GMM) = 0. (5.14)

Replacing the sample mean by the expectation yields the unique solu-
tion that is equal to θ∗. This estimator is unique and consistent
(Hansen, 1982; Newey and McFadden, 1994).

If we have more moment conditions than unknown parameters
(M > K) then there is no solution to (5.14). Hansen (1982) idea was
to generalize the above optimization problem to a minimization of the
quadratic problem QW,T (θ):

QW,T (θ) =
1
T

[∑
i

g(yi, θ)

]′
W

[∑
i

g(yi, θ)

]
(5.15)

for some M × M positive definite and symmetric (weight) matrix W .
Hansen (1982) and Newey and McFadden (1994) develop the large sam-
ple properties of the minimand of Eq. (5.15), θ̂GMM. In the just identi-
fied case, the choice of the weight matrix W is irrelevant because, for
large samples, θ̂GMM will be equal to the value of θ that sets the average
moments exactly to zero and the solutions for model (5.14) and (5.15)
coincide.
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In the overidentified case, on the other hand, the choice for the
weight matrix is crucial. Loosely speaking, the optimal choice for W

(in terms of minimizing the asymptotic variance) is just the inverse of
the covariance of the moments. Unfortunately, this choice is unknown
to the empirical researcher. Therefore, Hansen proposed a non-optimal
solution, known as the two-step GMM. In the first step, one can obtain
an estimate of θ∗ by minimizing QW,T (θ) using some arbitrary (positive
definite and symmetric) weight matrix W . With this initial estimate

^

θ ,
the optimal W can be estimated via

Ŵ−1 =

[
1
T

∑
i

g(yi,
^

θ)g(yi,
^

θ)′
]−1

.

Substituting Ŵ for W in (5.15), in the second stage, we estimate θ∗

by minimizing QŴ ,T (θ). The resulting estimator θ̂GMM has the same
first-order asymptotic distribution as the minimand of the quadratic
form (Eq. (5.15)) with the true W . For more details, specific tests and
further interpretations for this basic framework see for example Hansen
(1982) and Imbens (2002). Some tests are also discussed below.

As discussed earlier, though the two-stage GMM has appealing large
sample properties and it provides a new framework for analyzing prob-
lems characterized by over identified set of functions (moments), it is
not efficient for small samples, is biased in some cases and there may be
lack of precision in evaluating confidence intervals. A number of alterna-
tive estimators were developed. Here, just the class of IT estimators is
discussed briefly. The basic idea is to find a way to estimate the weight
matrix W . But rather than to estimate it directly (which is inefficient
with the information the researcher usually possesses) it is estimated
indirectly. If one assumes that the observed sample data are discrete
with some support and unknown probabilities, then, the basic parame-
ters of interest (appearing in the moment conditions) can be expressed
as functions of these support points and probabilities. In other words,
one can estimate the unknown weights (natural probabilities) associ-
ated with each observation. These probabilities are functions of the
Lagrange multipliers associated with each moment condition which are
one-to-one functions of the unknown parameters θ. In that way, rather
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than estimating W directly, the parameters of interest are estimated
directly while using all of the available information efficiently. Further
more, one can view the estimated Lagrange multipliers as the “shadow
values” of the informational content of each one of the moment con-
ditions. This method will work whether the problem is exactly iden-
tified or over-identified in the parameter space. In fact, under that
view, unless one knows (or assumes) the likelihood function, for all
common estimation problems where T > M , and regardless whether
M = K or M > K, the problem in the probability space is always
under-determined. To fix ideas, consider the following example.

Consider a sample of iid y1, . . . ,yT univariate observations from an
unknown distribution F with mean θ and E[y2] = m(θ) where m(·) is a
known function. Examples include the single parameter problem (Qin
and Lawless, 1994) E[y] = θ and E[y2] = m(θ) = 2θ2 + 1. The objec-
tive is to estimate the unknown parameter θ. The information about F

can be expressed via the two estimating functions
∑

i piyi − θ = 0 and∑
i piy

2
i
− 2θ2 − 1 = 0. Thinking of this problem in probability space,

means that this problem is exactly the ME problem discussed ear-
lier. Given M = 2 observed moments (and the third requirement that∑

i pi − 1 = 0), the full distribution of dimension T > 3 is estimated
via the ME principle. The ME solution is the MaxEnt (exponential)
distribution with the Lagrange multipliers being the “real” parameters
of interest and are one-to-one related to θ. Explicitly,

Min
p,θ

D(p||q) ≡
∑

i

pi log(pi/qi)

s.t∑
i

piyi − θ = 0

∑
i

piy
2
i
− 2θ2 − 1 = 0

∑
i

pi − 1 = 0

and for generality, the cross-entropy D(p||q) is used here, where q is a
vector of prior probabilities (or empirical distribution) that is taken to
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be uniform. Solving the Lagrangean yields the MaxEnt distribution

p̃i =
qi exp(λ̃1yi + λ̃2y

2
i )∑

i qi exp(λ̃1yi + λ̃2y2
i )

=
qi exp(λ̃1yi + λ̃2y

2
i )

Ω(λ̃)
,

where θ̃ = − λ̃1

4λ̃2
.

As was shown earlier, that problem can be written as an uncon-
strained (concentrated) model with respect to the Lagrange multipliers
λ (see Eq. (4.4)), which in turn yields θ̃. Then, estimating the Covari-
ance of these Lagrange multipliers, or any other function of them, is
straight forward. See for example (Golan et al., 1996b, Appendix 3C),
for derivation of the covariance matrix for both the primal (constrained)
and concentrated (unconstrained) entropy models and the transfor-
mation between the covariance in parameter space to the probability
space.

The above problem can be solved with any one of the IT methods
under the generic IT estimators of Section 5.2. Consider for example the
EL method. Substitute the entropy (or entropy divergence) objective
for the EL objective

∑
i logpi and maximize with respect to p and θ,

subject to the same three constraints, yields the EL solution

p̂i(EL) = [λ̂1yi + λ̂2y
2
i + 1]−1 with θ̂ = − λ̂1

4λ̂2

.

In both cases, the solutions F̃ME and F̂EL satisfy the observed moment
functions.5 The same can be done with any one of the IT estimators
(different values of α in the entropy of order α, or the Cressie–Read
function, Eq. (3.9)). To relate it back to the GMM estimator, if rather
than specifying W , one wishes to estimate the common distribution
of the T observations, a natural choice is the (uniform) empirical dis-
tribution of 1/T . But within the over-identified GMM case the choice
of equal/uniform weights does not satisfy the requirement that the
expected value of the random variable is θ. Instead, with the above
approach, one searches for the distribution F that is the closest as pos-
sible to the empirical distribution 1/T . In information-theoretic terms,

5 Qin and Lawless (1994) present sampling experiments based on that example. Golan and
Judge (1996) use sampling experiments to contrast the EL with the ME for that example.
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one searches for the least informed distribution out of the infinitely
many distributions satisfying the observed moments representing the
only available information. That distribution is related to the unknown
parameters of interest via the Lagrange multipliers associated with
each observed moment (or data point). These moments represent the
only available information. They capture the amount of information
contained in each one of the moment equations and are the basic
parameters that determine the estimated p’s. Similarly, through their
one-to-one relation to θ they provide the estimated distribution F̂ .

There are a number of advantages for that approach. First, one does
not have to start by estimating W which results in increase efficiency.
Though the IT estimators, such as the EL and GEL, use the same
set of moments (information), they remove some of the imprecision
resulting from estimating the weight matrix. Second, the estimated
Lagrange multipliers have information-theoretic interpretation. They
capture the informational content of each observed moment. They cap-
ture the marginal informational contribution of each moment function
to the optimal value of the objective function. (Note that the objec-
tive function is an information measure). Third, the structural param-
eters of interest are functions of these multipliers. Fourth, as is shown
in the literature, under that approach, confidence intervals and other
likelihood-like tests can be easily performed. Fifth, the IT estimators
can be constructed as concentrated (unconstrained) models making
them computationally more efficient. This result goes back to Agmon
et al. (1979) within the ME.

To summarize, the two-step GMM and all other zero-moment IT
estimators discussed here are first-order asymptotically efficient. Qin
and Lawless (1994) and Imbens (1997) show that for properly spec-
ified moment conditions, the EL and the two-step GMM estimators
are equivalent to the order of OP (N−1/2). Imbens (2002) discusses the
differences among these estimators by calculating approximations to
their finite-sample distributions. These results are based on Newey
and Smith (2004) and Imbens and Spady (2001). These approxima-
tions show that the two-step GMM has a number of terms that do not
appear in the GEL class of estimators. Some of these terms increase
in magnitude as the number of moments increases. In terms of bias,
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the bias of the GMM estimator increases (linearly) with the number
of moment conditions. The bias under the GMM estimator is linear in
the number of over-identifying restrictions, with the coefficient equals
to the correlation between the moments and their derivatives. In con-
trast, the bias (up to the order analyzed) in the exponential tilting
(entropy) estimator is not affected by the number irrelevant moments.
It seems that the main reason for the differences between the IT esti-
mators and the GMM for estimating over-identified problems is that
under the IT framework that goes back to Jaynes’s (1957a,b) work on
the ME principle, the information is contained in the constraints and
adding an irrelevant information means the value of the objective func-
tion is unchanged. Within the over-identified GMM structure adding
irrelevant information may have a direct impact on W which impacts
the values of the estimated parameters.

See Imbens (2002) for a detailed discussion on GMM and EL,
the earlier work of Chamberlain (1987) on efficiency (within GMM),
Kitamura and Stutzer (1997) for discussion of the dependent case
for the GMM and the Kullback–Liebler discrepancy function, and
Mittelhammer et al. (2000) for a general discussion of GMM and EL.

5.4.3 GMM and Tests

A basic question within the GMM framework is how can one confirm
the validity, and test the informational content, of the over-identifying
set of restrictions. These tests are easily formulated within the IT class
of estimators. A simpler version of these tests was discussed in Section 3.
A generalized version of these tests is discussed below (Section 6) within
the context of the Generalized ME. These tests are the empirical like-
lihood ratio test, the Wald test, and the Lagrange multipliers tests.
Imbens (2002) shows that the leading terms in these tests are identical
to the leading term of the test developed in Hansen’s original paper.
The EL ratio test is based on the difference between the restricted
and unrestricted values of the EL (or entropy of order α) objective
functions. Under a certain set of regularity conditions, two times the
difference is distributed as a χ2 with degrees of freedom equals to
the number of over-identifying conditions for the test statistic under
the null hypothesis.
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A test analogous to the traditional Wald test is based on the differ-
ence between the mean moments and their probability limit under the
null hypothesis of zero. Like Hansen’s (1982) test the average moments
are weighted by their covariance matrix. Unlike the GMM framework
where the covariance is estimated based on an initial estimates of the
unknown parameters, under the IT estimators, the estimated probabil-
ities themselves are used.

The third test is analogous to the Lagrange multiplier test. Imbens
(2002) discusses two versions of this test. The first uses a generalized
inverse for the covariance in order to compare the Lagrange multipliers
to zero. The second, proposed by Imbens et al. (1998) is to use the
inverse of the covariance matrix directly. The second version is simpler
and is found to perform better in sampling experiments. Like the other
two test statistics, both of these Lagrange multipliers tests (in large
samples) have a χ2 distribution with degrees of freedom equals the
number of over-identifying restrictions.

For recent developments and specific applications in IT-GMM see
recent work by Smith (2007), Kitamura and Stutzer (2002), Antoine
et al. (2007), Hall et al. (2007a), Wu and Perloff (2007), Judge and
Mittelhammer (2007), Journal of Econometrics Special issue on IEE
(2002, 2007), Econometric Reviews (2008) and the recent text by Hall
(2005).

5.5 Bayesian Method of Moments — A Brief Discussion

The above IT methods were discussed within the philosophy of “sam-
pling theory.” However, with the same objective of estimating with min-
imal a priori assumptions on the likelihood, much work has been done
within the Bayesian philosophy. This trend started with the seminal
work of Zellner on the Bayesian Method of Moments, BMOM, (Zell-
ner, 1994, 1996a, 1997; Tobias and Zellner, 2001). As with the other IT
estimators discussed earlier, the idea behind the BMOM method is to
estimate the unknown parameters with minimum assumptions on the
likelihood function. As stated by (Zellner, 1997, p. 86), “The BMOM
approach is particularly useful when there is difficulty in formulating
an appropriate likelihood function. Without a likelihood function, it is
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not possible to pursue traditional likelihood and Bayesian approaches
to estimation and testing. Using a few simple assumptions, the BMOM
approach permits calculation of post-data means, variances and other
moments of parameters and future observations.”

To avoid a likelihood function Zellner proposed to maximize the
differential (Shannon) entropy (3.13) subject to the empirical moments
of the data. This yields the most conservative (closest to uniform) post
data density. In that way the BMOM uses only assumptions on the
realized error terms which are used to derive the post data density.
Stating it differently, under the BMOM one gets around the need to
specify priors by deriving the posterior directly from an ME argument.
To do so, the BMOM equates the posterior expectation of a function of
the parameter to its sample value and chooses the posterior to be the
(differential) maximum entropy distribution subject to that constraint.

Consider the linear model y = Xβ + ε and define Data ≡
(y,X). The first assumption out of the two basic assumptions is
X ′E[ε|Data] = 0. Thus, β̂LS = E(β|Data) = (X ′X)−1X ′y so the pos-
terior mean of β is the least squares estimate and E(ε|Data) = ε̂.
The second assumption is Var(ε|σ2,Data) = σ2X(X ′X)−1X ′ where σ2

is the error variance. Thus, Var(β|σ2,Data) = σ2(X ′X)−1 and finally,
Var(β|Data) = s2(X ′X)−1, where s2 is an estimator of σ2. With these
assumptions, and under that framework, the posterior mean and vari-
ance of β are the traditional estimates in large sample Bayesian
approaches.

Going back to the ME principle, if one maximizes the (differen-
tial) entropy of the posterior density subject to the above two moment
constraints (and the requirement of a proper density function) on β,
then E(β|Data) = (X ′X)−1X ′y and Var(β|Data) = s2(X ′X)−1. Then,
recalling our earlier derivation that the normal distribution is the
maximum entropy under the first two moments (Section 4.2), we get
β ∼ N(β̂,s2(X ′X)−1). Interestingly enough, this is the exact same
density for (β|Data) one gets from the usual analysis. Thus, Zellner
was able to show that the usual analysis is optimal in a maximum
entropy sense. Note that this is called the BMOM because the moment
constraints enter under the posterior distribution. The BMOM coin-
cides with the Bayesian posterior under a normal likelihood and diffuse
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(non-informative) prior. For recent discussion of Bayesian methods and
information processing see Zellner (2007) and Clarke (2007). They also
provide a discussion on the choice of moments and other BMOM exam-
ples where more than just two moments, or other transformations on
the parameters, are used.

5.6 Discussion

So far the generic IT estimator and some specific methods within the IT
family of estimation rules were discussed. The connection to informa-
tion theory was developed and discussed. All the methods discussed so
far have one thing in common: the moment conditions used are zero-
moment conditions, gm(y,p,θ1) = [0]. However, different values of α

(in the objective function) are used within both the discrete and differ-
ential entropies. In the next section I discuss another member of that
family that is different than the above methods by treating all moment
conditions as stochastic.





6

Information-Theoretic Methods of
Estimation — II: Stochastic Moments

6.1 Generalized Maximum Entropy — Basics

A basic property of the classical ME (or CE) approach, as well as the
EL, GEL, GMM, and BMOM, is that the moment conditions have to
be exactly fulfilled (zero-moment conditions). This property is satisfac-
tory for (relatively) large samples or for well behaved samples. Unfor-
tunately, in both the social and natural sciences we are often trying
to understand small and/or ill-behaved (and often non-experimental)
data where the zero-moments’ restrictions may be too costly. Another
basic concern for researchers is how to incorporate in the estimation
procedure information resulting from economic-theoretic behavior such
as agents’ optimization. As was discussed in Section 5.4 above, a main
advantage of the GMM is that it is easily connected to economic the-
ory where the zero-moment conditions may be formulated as functions
of agents’ optimization. But even within the GMM framework, as well
as within the other IT estimators discussed in Section 5, the task of
incorporating that information may become very complicated, or even
impossible. A main reason for that is the need to incorporate all of
that information in terms of (zero) moment conditions or in terms of
restrictions on these moments.

85
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In this section, another member of the IT class of estimators is
discussed. This estimator accommodates for the basic two problems
raised above. It uses a more flexible set of moment conditions in the
optimization. This provides a greater flexibility resulting in more stable
estimates for finite and/or ill-behaved data and provides the researcher
with a general framework for incorporating economic theoretic and
other behavioral information in a simple way that is consistent with
information theory. This information can be in terms of linear, non-
linear or inequality functions and does not have to be formulated in
terms of zero-moment functions. Generally speaking, the classical ME
is reformulated with stochastic moment conditions. We define the term
“stochastic moments” as moment conditions, or functions of the ran-
dom variables and the unknown parameters, with additive terms that
have expectation of zero. These moments, or functions, can be condi-
tional or unconditional.

The stochastic moments can be introduced in two ways. First, by
allowing for some additive noise (with mean zero) for each one of the
moment conditions. Second, by viewing each observation as a noisy
moment resulting from the same data generating process. In that view,
each observed data point can be treated as a composite of two com-
ponents: signal and noise. The Generalized Maximum Entropy (GME)
model that was developed in the early 1990’s has the above view in
mind and treats the moments (or each observation) as stochastic.1 For
detailed background, development and applications of the GME see
the text of Golan et al. (1996b). For more examples and properties
see also Golan et al. (1996c, 1997) as well as earlier work by Golan
and Judge (1992) and Miller (1994). To introduce the idea here, rather
than repeat previous formulations and examples, I describe the GME
for the traditional linear regression model and for the more general
framework — the second case. Section 7 provides another example of
the GME, connects it to stochastic moments within discrete choice
modeling, and connects it with the ML method.

1 For axiomatic derivation of the GME, which is an extension of the ME axiomatic literature,
see Golan and Perloff (2002).
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Consider the linear regression model with T observations and K

explanatory variables,

y = Xβ + ε, (6.1)

where y is a T -dimensional vector of observed random variable, X is
a T × K matrix of exogenous variables, β is a K-dimensional vector
of the unknown parameters that we want to recover from the data,
and ε is a T -dimensional vector of the unobserved and unobservable
random errors. In line with tradition, it is assumed that the set of true
(unknown) parameters is bounded: β ∈ B where B is a convex set. The
LS solution for that model: βLS = (X ′X)−1X ′y.

Rather than search for the point estimates β, each βk is viewed as
the mean value of some well defined random variable z. The unobserved
error vector ε is also viewed as another set of unknowns, and similar to
the signal vector β, each εt is constructed as the mean value of some
random variable v. Similar to other IT estimators discussed earlier,
our main objective here is to estimate the unknown β with minimal
distributional assumptions. Under the GME framework, however, we
estimate simultaneously the full distribution of each βk and each εt

(within their support spaces) with minimal distributional assumptions.
Without loss of generality, let each (k) element of β be bounded

below by zk and above by z̄k:

B = {β ∈ <K |βk ∈ (zk, z̄k), k = 1,2, . . . ,K}. (6.2)

Let zk be an M -dimensional vector zk ≡ (zk, . . . , z̄k)′ = (zk1, . . . ,zkM )′

for all k = 1,2,3, . . . ,K, and Z is a K × M matrix consisting of the
individual M -dimensional vectors zk and the elements zkm. Let pk be
an M -dimensional proper probability distribution defined on the set zk

such that

βk =
∑
m

pkmzkm ≡ Epk
[zk] or β = EP [Z]. (6.3)

In this formulation, the observed data, y, are viewed as the mean pro-
cess Z with a probability distribution P that is defined on the supports
zk’s and is conditional on X. Thus, the econometrician chooses the sup-
port space zk, and then uses the data to estimate the P ’s which in turn
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yield the point estimates (β). Note that β can be constructed as the
median or any other quantity of interest, within this framework.

Similarly, assume that ε ∈ V where V is a convex set that is sym-
metric around zero. As done with the β’s above, each error term is
redefined as

εt =
∑

j

wtjvj ≡ Ewt [v] or ε = EW [V ]. (6.4)

That is, the observed errors are viewed as elements taken as random
draws from a certain distribution with probability weights {wtj}. The
dimension of the matrices V and W is T × J . For simplicity, the above
support spaces are constructed as discrete and bounded. It is possible,
within the same framework, to construct unbounded and continuous
supports (Golan and Gzyl, 2002, 2003, 2006).

Having reformulated β and ε, the linear model is specified as

yt =
K∑

k=1

M∑
m=1

zkmpkmxtk +
∑

j

vjwtj , or y = XEP [Z] + EW [V ].

The GME estimation method is

GME =



p̂ = argmaxp,w

{
{H(p) + H(w)}

≡ −
∑

k

∑
m

pkm logpkm −
∑

t

∑
j
wtj logwtj

}
s.t.

yt =
∑K

k=1

∑M

m=1
zkmpkmxtk +

∑
j
vjwtj

(or y = XEP [Z] + EW [V ]),∑
m

pkm = 1,
∑

j
wtj = 1.

(6.5)

The estimated probabilities for the signal vector β are

p̂km =
exp(−zkm

∑
t λ̂txtk)∑

m exp(−zkm
∑

t λ̂txtk)
≡

exp(−zkm
∑

t λ̂txtk)
Ωk(λ̂)

, (6.6)

and the estimated probabilities for the noise vector ε are

ŵtj =
exp(−λ̂tvj)∑
j exp(−λ̂tvj)

≡ exp(−λ̂tvj)
Ψt(λ̂)

. (6.7)
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The estimated values of β and ε are

β̂k ≡
∑
m

zkmp̂km (6.8)

and

ε̂t ≡
∑

j

vjŵtj . (6.9)

As with the ME, it is possible to transform the primal optimization
GME model to a dual, concentrated model which is a function of the
Lagrange multipliers λ (Golan and Judge, 1992; Golan et al., 1996b):

Max
p∈P,w∈W

H(P,W ) = Min
λ∈D

{∑
t

ytλt +
∑

k

logΩk(λ) +
∑

t

logΨt(λ)

}

= Min
λ∈D

{∑
t

ytλt +
∑

k

log

[∑
m

exp(−zkm

∑
t

λtxtk)

]

+
∑

t

log

∑
j

exp(−λtvj)

 .

The concentrated model is solved by minimizing with respect to λ,
to obtain the optimal λ. The optimal λ is then used to obtain the P ’s
via Eq. (6.6), with which the set of β’s is recovered via Eq. (6.8). The
Hessian matrix of the GME problem is negative definite for P,W � 0
and thus satisfies the sufficient condition for a unique global minimum
(Golan et al., 1996b).2

The GME minimizes the joint entropy distance between the data
and the state of complete uncertainty (the uniform distribution). It
is a dual-loss function that assigns equal weights to prediction and
precision.3 Equivalently, it can be viewed as a shrinkage estimator that
shrinks the data to the priors (uniform distributions) and toward the
center of their supports.

2 Here, the GME is expressed in term of discrete and bounded support spaces. For specifi-

cation of continuous and unbounded supports see Golan and Gzyl (2002, 2006).
3 The objective function puts equal weights on the p and w entropies. If the researcher
prefers to use unequal weights, it is possible. See Golan et al. (1996c) for a discussion of
why unequal weights might be used and the implications for estimation.
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The estimated probabilities provide the full distribution (within
its pre-specified support) of each one of the parameters of interest
(β and ε). The β’s are direct functions of the Lagrange multipliers
(λ). These multipliers reflect the marginal information of each obser-
vation. Like the EL (and GEL) they capture that natural weight of each
observation and convey that information in the estimated exponential
distributions p̂km and ŵtj . This is shown in Section 6.5.

Like all IT methods, the available information is represented here as
constraints in the basic (primal) constrained optimization model. There
is no additional (hidden) information or implicit assumptions. Once this
optimization is solved, the concentrated (unconstrained) model is con-
structed. As discussed previously, the transformation from the primal to
the dual, concentrated model means that the problem is transformed
from the probability space to the Lagrange multipliers’ space. This
means that the complexity of our GME model is not changed as the
number of support points increases. This is because the real parame-
ters here are the Lagrange multipliers. Finally, if additional informa-
tion, such as information on the underlying distribution, the covariance
structure or economic-theoretic information is available, it can be eas-
ily incorporated within this framework. This is shown in Section 6.2.
Two applications of the GME are now presented.

Example (Stochastic Moments). Consider now the case where rather
than optimizing with respect to each observed data points (method 6.5
or its concentrated version), one optimizes with respect to the observed
moments, but in line with the GME method, these moments are viewed
as stochastic (zero moments with additive noise):∑

t

xtkyt =
∑
t,k,m

xtkxtkzkmpkm +
∑
t,j

xtkvjwtj ,

where the errors’ support space V shrinks to zero as the sample size
increases (Golan et al., 1996b, Chap. 6.6). In line with the EL linear
model of Section 5.3, the above can be written as

T∑
t=1

xt

yi −
∑
k,m

xtkzkmpkm −
∑

j

vjwtj

 = 0.
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The (Relaxed) Stochastic Moments GME is

GME =



p̂ = argmaxp,w

{
{H(p) + H(w)}

≡ −
∑

k

∑
m

pkm logpkm −
∑

t

∑
j
wtj logwtj

}
s.t.∑T

t=1
xt

yi −
∑
k,m

xtkzkmpkm −
∑

j
vjwtj

 = 0∑
m

pkm = 1,
∑

j

wtj = 1.

(6.5a)

The estimated probabilities for the signal vector β are

p̂km =
exp

(
−zkmλ̂k

∑
t xtkxtk

)
∑

m exp
(
−zkmλ̂k

∑
t xtkxtk

) ≡ exp
(
−zkmλ̂k

∑
t xtkxtk

)
Ωk(λ̂)

,

where now the dimension of the Lagrange multipliers λ is K. The
estimated probabilities for the noise vector ε are

ŵtj =
exp

(
−vj

∑
k λ̂kxtk

)
∑

j exp
(
−vj

∑
k λ̂kxtk

) ≡ exp
(
−vj

∑
k λ̂kxtk

)
Ψt(λ̂)

,

and finally, β̂ and ε̂ are found via Eqs. (6.8) and (6.9). Following previ-
ous discussion, the concentrated model (as a function of the Kλ’s) is:

Max
p∈P,w∈W

H(P,W ) = Min
λ∈D

∑
t,k

ytxtkλk +
∑
k

logΩk(λ) +
∑

t

logΨt(λ)


= Min

λ∈D

{∑
t

ytxtkλk +
∑
k

log

[∑
m

exp

(
−zkmλk

∑
t

xtkxtk

)]

+
∑

t

log

∑
j

exp

(
−
∑

k

λkvjxtk

) . (6.10)

(Golan et al., 1996b, Chap. 6) developed this class of estimation
methods. They discuss different ways to incorporate the sample data
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in the GME optimization. Examples include the individual noisy obser-
vation shown in model 6.5, the stochastic moments’ case shown in above
example, and weighted stochastic moments. They also develop the large
sample results. It is just noted here, that it is immediate to see that for
(6.10 or 6.5a), as T →∞, β̂GME = β̂LS as long as the support space Z

spans the true values of β. See Golan et al. (1996b) for small and large
sample properties of the GME. For additional results and applications
see also Golan and Gzyl (2006). For completion, the above model is
formulated below in terms of our six-sided die example.

Example (GME and the Dice Problem). Within the GME, the
(stochastic first moment) die problem is

Max
{p,W }

H(P ,W ) = −
6∑

k=1

pk logpk −
J∑

j=1

wj logwj

s.t∑
k

pkxk +
∑

j

wjvj = y,
∑

k

pk = 1, and
∑

j

wj = 1,

where xk = 1,2, . . . ,6, y ∈ (1,6), v is a J-dimensional support space and
the natural log is used. The concentrated model is

`(λ) = λy + log

[∑
k

exp(−λxk)

]
+ log

∑
j

exp(−λvj)


= λy + logΩ + logΨ.

Though this example may seem very simple, it does reflect a wide
range of problems. For example, consider two separate samples with two
different means. In that case, the ME cannot be used (with a very high
probability there is no unique probability distribution that satisfies the
two sets of moments). However, under the GME framework a solution
always exists. In a related context, consider the work of Hellerstein
and Imbens (1999) on combining data sets. They are using a GMM
framework to solve that estimation problem. The above example shows
that the GME approach can also be used for estimating the same types
of problems.
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Finally, we refer the reader to a less known method called the
maximum entropy on the mean (MEM) method (Bercher et al., 1996;
Besnerais et al., 1999; Gamboa and Gassiat, 1997; Gzyl, 1993). This
method is an extension of the classical ME method and closely related
to the GME. In fact, the MEM can be constructed as a special case of
the GME with non-stochastic moments. This method is not discussed
further in that review.

6.2 GME — Extensions: Adding Constraints

Equality, inequality or nonlinear restrictions can be imposed within
the GME model. To do so, one needs to incorporate these restric-
tions within the IT–GME optimization model. These restrictions reflect
additional information the researcher possess and then test. This addi-
tional information can be incorporated within the IT–GME framework
only due to the fact that all moments/data enter as stochastic. This
stochastic nature allows for the additional freedom that does not exist
within the zero-moment IT methods discussed previously. There are
many applications where constraints are incorporated into the model
where these constraints reflect theoretical information resulting from
economic behavior and/or statistical information related to the nature
of the randomness. See for example Golan et al. (1996b), or a collection
of applications in industrial organization (Perloff et al., 2007).

Consider the following example to correct for the statistical nature
of the data. Assume our data exhibit first-order autocorrelation: εt =
ρεt−1 + $t, where ρ is the autocorrelation coefficient with ρ ∈ (−1, 1)
and $ is a vector of independently and identically distributed errors
with mean zero. That additional set of restrictions can be incorpo-
rated in model (6.5) so that if there is first-order autocorrelation
in the data, our model will capture it; however, the “model” does
not force that correlation to exist and bias the estimates in the
absence of autocorrelation. The GME with first-order autocorrelation
version of (6.5) is

Max
{p,w,ρ}

−∑
k,m

pkm logpkm −
∑
tj

wtj logwtj


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s.t.

yt =
K∑

k=1

M∑
m=1

zkmpkmxtk + εt (or y = XEP [Z] + ε)

εt = $t =
∑

j

wtjvj for t = 1

εt = ρεt−1 + $t = ρεt−1 +
∑

j

wtjvj for t = 2,3, . . . ,T

∑
m

pkm = 1;
∑

j

wtj = 1.

It is worth noting here, that under the above framework,
autocorrelation is not forced on the model, but rather it is picked up if
it exists in the data. In a similar way, all other covariance structures,
such as higher order autocorrelations and heteroskedasticity can be
captured. Soft data coming from economic theory, such as game theoretic
restrictions, can be incorporated in the same way. In that case, it is
first needed to construct the optimal (economic) conditions and then
incorporate them as stochastic version of these conditions within the
optimization model (e.g., Golan et al., 2000; Golan, 2001). In both cases
(statistical and theoretic conditions), the constraints provide additional
information that reduces the feasible solution space. Tests to verify
the relationship between these additional restrictions and the data are
discussed below. For examples of GME with nonlinear constraints see
Golan et al. (1996a). For examples of GME with inequality constraints
see Golan et al. (1997) and Golan et al. (2001).

6.3 GME — Entropy Concentration Theorem
and Large Deviations

Since the GME is a natural extension of the classical ME, it is possible
to build on the ME results and provide more motivations and further
results for the GME. I concentrate here on two basic ideas: The Entropy
Concentration Theorem, ECT, and Large Deviations.

The ECT, discussed in Section 4.3 for the classical ME is easily
extended to the GME and provides another powerful motivation for
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that method. Let H∗(p̂,ŵ) ≡ H(p̂) + H(ŵ) be the entropy value for
model (6.5) or its concentrated counterpart model. Let P be the sub-
class of all possible outcomes that could be observed from our sample
data that satisfy (i) the constraints (stochastic moments) and/within
(ii) the support spaces Z and V (in Eq. (6.5)). The ECT, applied to the
GME, states that a significant percentage of outcomes in the class P

(and within the pre-specified support spaces Z and V ) will have an
entropy in the range

H∗ − ∆H ≤ H(p,w) ≤ H∗ ≡ Max
p∈P

H(Eq. (6.5))

= H∗(p̂,ŵ) ≡ H∗(p̂) + H∗(ŵ),

where ∆H ≡ χ2
(C;α)

/
2T , T is the number of observations, α is the

upper percentile of the χ2 distribution with C degrees of freedoms
(which changes based on the structure of the model). Other, atypi-
cal distributions {pkm,wtj}, that are conditional on Z and V and are
consistent with the constraints (sample data), will have entropy levels
smaller than H∗ and their concentration near this upper bound is given
by the above ECT.

Example (Calculating ∆H). For the stochastic moment prob-
lem (6.5a) 0 ≤ H(p,w) ≤K logM + T logJ . There are K stochastic
moments (K basic unknown parameters, or in terms of probabili-
ties there are KM + TJ unknowns and 2K + T constraints), so C =
KM + TJ − (2K + T ) = K(M − 2) + T (J − 1) and 2T∆H = χ2

(C;α).
For the stochastic data problem (6.5) the bounds on the entropy are the
same: 0 ≤ H(p,w) ≤K logM + T logJ . However, there are T stochas-
tic constraints in this case, so C = K(M − 1) + T (J − 2).

A brief discussion of Large Deviations interpretation for the GME
model is now provided. (Note however, that a complete formal model is
not developed here.) For β = f(y,X|Z,V ) we want to find the proba-
bility that the estimated parameters (conditioned on the observed data)
have values similar to the center of their supports, meaning all prior
probabilities on these supports are uniform. Following Section 3 (and
examples in Section 4), define the set E as a set of all proper probabil-
ity distributions satisfying the observed moment conditions represented
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explicitly in (6.5), or (6.5a):

E ≡
{

P,W |Z,V and
∑

fs(y,X) ≥ cs, s = 1, . . . ,S
}

,

where S = T for the stochastic data model (6.5) and S = K for the
stochastic moments model (6.5a). To find the closest distribution to
the prior distribution {P 0,W 0}, minimize D(P,W ||P 0,W 0) subject
to the observed stochastic sample’s data (or moments) as specified
by (6.5) and (6.5a). This yields the estimated probabilities p̂km and ŵtj

(together with λ̂). These are the estimated probabilities, conditionals
on Z and V , that satisfy the observed data and that are closest (in
entropy) to the priors. For example, for the uniform priors (p0

km = 1
M

for m = 1, . . . ,M and w0
tj = 1

J , j = 1, . . . ,J), 2−(T−1)D(P̂ ,Ŵ ||P 0,W 0) is the
probability that conditional on the observed data (and Z and V ), all
estimated probabilities are uniform, and therefore the estimated β are
all at the center of their Z support spaces and all the ε’s are zeros. For
example, if all signal supports Z are symmetric about zero, the above
describes the probability that all β’s are zero.

6.4 GME — Inference and Diagnostics

There are a number of basic statistics and diagnostics available for the
GME. Most of these measures are just applications and extensions of
methods discussed in earlier sections. These statistics are part of the
output provided in SAS, LIMDEP, SHAZAM, and other software that
include the GME procedure.

Because the GME is an IT method, it makes sense to start with
the information measures known as the normalized entropy measures.
These measures quantify the relative informational content in the data.
For each variable k, the entropy measure is a continuous function from
zero to log(M). For convenience in making comparisons, these entropies
are normalized to the zero–one interval. The normalized entropy mea-
sures S(·) for the GME model is

S(p̂) =
−
∑

k,m p̂km log p̂km

K logM
,
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where S(p̂) ∈ [0,1]. Note that this measure is conditional on the choice
of Z. This measure is further discussed in the context of discrete choice
models in the next section.

Similarly, the same measures can be used to evaluate the informa-
tion in each one of the variables k = 1,2, . . . ,K:

S(p̂k) =
−
∑

m p̂km log p̂km

logM
.

These variable-specific information measures reflect the relative contri-
bution (of explaining the dependent variable) of each one of the inde-
pendent variables. The above normalized entropy measure can be con-
nected to Fano’s inequality and the probability of errors (Section 3.6).
An example and further discussion is provided in Section 7.5.

The asymptotic variance of the GME model is

Var(β̂) =
σ2(β̂)

$2(β̂)
(X ′X)−1,

where

σ2(β̂) ≡ 1
T

∑
i

λ̂2
i

and

$2(β̂) ≡

 1
T

∑
i

∑
j

v2
ijŵij −

∑
j

vijŵij

2−1


2

.

The Entropy Ratio (ER) test — which corresponds to the likeli-
hood ratio, or empirical ratio, test4 — measures the entropy discrep-
ancy between the constrained (say, β = β0) and the unconstrained (β̂)
models:

ER =
2$2(β̂)

σ2(β̂)
|HU (β̂) − HR(β = β0)| ∼= 2|HU (β̂) − HR(β = β0)|,

4 See also discussion in Section 5. Many of these tests are similar to other tests within

the IT family of estimators reflecting entropy differences between the unconstrained and
constrained cases as reflected by the null hypotheses.



98 Information-Theoretic Methods of Estimation — II

where HR is the restricted hypothesis and HU is the unrestricted
hypothesis. For example, the entropy-ratio statistic for testing the null
hypothesis (H0) that all parameters are zero is

ER(β = 0) = 2HR(β = 0) − 2HU (β̂).

Under certain regularity assumptions (see for example, Owen, 1990;
and Qin and Lawless, 1994; Golan and Gzyl, 2006; Mittelhammer and
Cardell, 1996), ER(β = 0)→ χ2

K as T →∞, when the restriction is
true and K is the number of restrictions. The approximate α -level
confidence interval for the estimates is obtained by setting ER(•)≤ Cα,
where Cα is chosen so that Pr(χ2

K < Cα) = α where Cα is the critical
value of the χ2

K statistic (with K degrees of freedom) at a significance
level of α. Similarly, it is possible to test any other hypothesis of the
form H0 : β = β0 for all, or any subset, of the parameters.

A goodness of fit measure for the GME estimator is

R∗ = 1 − HU (β̂)
HR(β = 0)

,

where R∗ = 0 implies no informational value of the dataset, and R∗ = 1
implies perfect certainty or perfect in-sample prediction. This mea-
sure, R∗, is the same as the information index of Soofi (1996) and is
directly related to the normalized entropy measure (Golan et al., 1996b)
and to Fano’s inequality (probability of error).

The Wald Test (WT) to examine hypotheses about possible convex
combinations of β can also be used. For the null hypothesis H0: Lβ = c,
where L is a set of linearly independent combinations of some, or all,
of the β’s and c is a specific value (such as zero), the Wald Statistic is

WT = (Lβ − c)′(L(Var(β̂))L′)−1(Lβ − c),

which, under H0 has a central χ2 with degrees of freedom equal to
Rank(L). All of these tests can be performed directly on the Lagrange
multipliers λ, which determine β in the GME framework.

Additional tests, like the tests for over-identifying restrictions
(Section 5.4.3), can be formulated here as well within the same
framework.
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6.5 GME — Further Interpretations and Motivation

6.5.1 Independence of Signal and Noise

Using the objective functional H(p,w) = H(p) + H(w) in our basic
IT–GME model (6.5) means one uses the traditional assumption of
independence between the signal and noise. It is important to confirm
that the post-data estimates obey the same property. To do so, rather
than starting with the above separable function H(·), it is possible to
define the entropy objective on a joint (support) set B∗. Let

y = Xβ + ε = [X,I]
(

β

ε

)
≡ X∗δ. (6.11)

As before, we view β = EP [z] and ε = EP [v] where z ∈ B, v ∈ V so
B∗ = B × V .

Let Q be the prior information, within the relevant subspaces, so
dQ(δ) = dQβ(z) ⊗ dQε(v) where the priors are taken to be continuous
uniform distributions defined on the lower and upper bounds.5 The
continuous/differential version of the IT–GME solution is

dPGME(δ, λ̃) =
e〈−λ̃,X∗δ〉

Ω(λ̃)
dQ(δ), (6.12)

where 〈a,b〉 denotes the Euclidean scalar (inner) product of vectors a

and b and Ω(·) is the partition function. Letting α = X ′β, and omitting
“∼” for simplicity, the general partition function (over B∗) is

Ω(λ) =
∫

B∗
e−〈X

′λ,δ〉dQ(δ) =
∫

B

∫
V

e−〈α,δ〉dQβ(z)dQε(v)

=
∫

B
e−〈α,z〉dQβ(z)

∫
V

e−〈λ,v〉dQε(v) = Ωβ(λ)Ψε(λ). (6.13)

Finally,

dPGME(δ,λ) =
e−〈λ,XZ〉

Ωβ(λ)
dQβ(z)

e−〈λ,v〉

Ψε(λ)
dQε(v) = dPβ(z)dPε(v).

(6.14)

5 Note that this formulation is more general and allows us to couch all the different data

representations under a single model (see Golan et al., 1996b, Chap. 6, and Golan and
Gzyl, 2002, 2003, 2006).
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Starting with the general case of PGME, we ended up with the two
distinct elements dPβ(z) and dPε(v), implying the signal and noise are
independent and thus the GME rule does not violate the basic a priori
independence assumption used in the linear model (6.1).

6.5.2 The Continuous Limit

The continuous limit of the GME is now investigated. To do so, the
behavior of the GME at the limit of M →∞ and J →∞ is studied,
while holding everything else unchanged. This is related to the notion
of super-resolution (e.g., Bercher et al., 1996; Besnerais et al., 1999;
Gamboa and Gassiat, 1997).6 Within our previous definition, let zk ≤
βk ≤ z̄k and let B = ×K

k=1[zk, z̄k].
Assuming uniform a priori information (within B) for each covari-

ate, implies

dQ(ζ) =
K
⊗

k=1

dζj

(z̄k − zk)
, (6.15)

where, as above, Q reflects our prior knowledge. The post-data P is
dP (ζ) = ρ(ζ)dQ(ζ). Maximizing the differential relative entropy (or
similarly minimizing the cross-entropy)

D(P ||Q) =
∫

B
ρ(ζ) logρ(ζ)dQ(ζ)

subject to the data and the normalization requirements yields

dPλ(ζ) =
e−〈λ,X∗ζ〉

Ω(λ)
dQ(ζ). (6.16)

Finally, using the same notations as in Eq. (6.13), the partition
function is

Ω(λ) =
∫

B
e−〈λ,Xζ〉dQ(ζ) =

∫
B

e−〈X
′λ,ζ〉dQ(ζ)

=
K∏

k=1

∫ z̄k

zk

e−αkζk
dζk

z̄k − zk

=
K∏

k=1

e−αkzk − e−αk z̄k

αk(z̄k − z)
. (6.17)

6 Viewing this problem as inherently ill-posed this limit can be thought of as a certain type

of “consistency” which is different than the traditional consistency of investigating the
properties as the number of observations increases.
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The continuous partition function for each k = 1,2, . . . ,K is

Ωk(λ̂) =
e−α̂kzk − e−α̂k z̄k

α̂k(z̄k − zk)
, (6.18)

and the point estimate, β̂k, is

β̂k =
1

(z̄k − zk)

(
− ∂

∂α̂k

)∫ z̄k

zk

e−α̂kζkdζk

=
1

(z̄k − zk)

{
zke

−α̂kzk − z̄ke
−α̂k z̄k

α̂k
+

e−α̂kzk − e−α̂k z̄k

α̂2
k

}
. (6.19)

Similarly, the continuous version of the partition function for the noise
terms is

Ψi(λ̂) =
e−λ̂iv − e−λ̂iv̄

λ̂i(v̄ − v)
(6.20)

and

êi =
1

(v̄ − v)

{
ve−λ̂iv − v̄e−λ̂iv̄

λ̂i

+
e−λ̂iv − eλ̂iv̄

λ̂2
i

}
. (6.21)

Within the GME model (6.5), for a given sample and a given prior
support space B∗, as the number of elements in this support goes to
infinity (M →∞,J →∞) the amount of information approaches its
upper bound. This implies, that for a given data set and a given B∗ =
B × V , the continuous version of the GME yields (on average) the best
possible estimates for this type of estimation rule. Nevertheless, it is
important to note that it is possible (in some special cases) for the GME
with a finite number of support points to be superior (in terms of MSE)
to the continuous GME version as long as the number of support points
is greater than two. For related work on the continuous approximation
see LaFrance (1999) for the uniform case and Golan and Gzyl (2002,
2006) for the other distributions.7

7 In a different setup, and within the MEM approach, Gamboa and Gassiat (1997) show
that for the case of ill-posed noisy moment problems, as the number of discrete support

points goes to infinity the MEM and Bayes approaches converge to the same rule. However,
their result is quite different than the one presented here for the GME. Specifically, with
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6.5.3 The Natural Weights

Within the GME model (6.5), the “natural weight” of each observation
(or the “natural empirical distribution”) is just a function of the T

Lagrange multipliers

πi(λ̂) =
exp(−λ̂i)∑
i exp(−λ̂i)

. (6.22)

As T →∞, π → uniform distribution. Unlike the other IT estimators
discussed earlier, under the GME method, the weights are direct func-
tion of the information in the data. Specifically, the estimated Lagrange
parameters reflect the contribution (in terms of information) to the
optimal level of the entropy (objective) and as such they capture the
contribution of each observation to the “explanation” of the signal. The
resulting empirical distribution, π, is a function of these λ’s.

6.5.4 Efficiency

Following our earlier discussion on efficient IPR’s, it is possible to
demonstrate that the GME is also a 100% efficient IPR. Recall that a
100% efficient IPR is one that satisfies the “information conservation
principle” where the input information equals the output information.
Thus, there is no loss of information in the inversion process.

For the GME (uniform priors), the two input information compo-
nents are

Input1 ≡ −
∑

k

∑
m

p̃km logqkm −
∑

i

∑
j

w̃ij logw0
ij

= K logM + T logJ (6.23)

Input2 ≡ −
∑
k,m

p̃km log[Ωk(α̃)] −
∑
t,j

w̃tj log[Ψt(λ̃)]

=
∑
k,m

p̃kmα̃kzkm +
∑
t,j

w̃tjλ̃tvj , (6.24)

the objective of solving an ill-posed noisy moments problem, they start with a continuous
model that can be solved only by a special “discretization.” Each one of these ill-posed

“discretized” cases is solved by ME. Then, they investigate the limit of this set of solutions.
See also the general discussion in O’Sullivan (1986).
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where the RHS of (6.23) holds only for the uniform priors case. The
output information components are

Output1 ≡ −
∑

k

∑
m

p̃km log p̃km −
∑

i

∑
j

w̃ij log w̃ij (6.25)

Output2 ≡ −
∑
k,m

p̃kmΩk −
∑
t,j

w̃tj logΨt = −
∑

k

logΩk −
∑

t

logΨt.

(6.26)

To show 100% efficiency one needs to prove that the input to output
ratio is one. Following our earlier formulation and taking into account
the first-order conditions and noting that all the partition functions
cancel each other, we have∑

i

λ̃iyi −
∑

k

∑
m

p̃kmzkmxik −
∑

i

∑
j

w̃ijvj , (6.27)

which must be zero for an optimal solution. This proves that the GME
inversion procedure is a 100% efficient information processing rule.
Though it is beyond the scope of this review, it is noted that if one’s
objective is to compare estimation rules in term of their a priori infor-
mation (or set of basic assumptions), as was done earlier for the EL
and ME, a possible way is to compare all 100% efficient IPR’s in terms
of their input information.

6.6 Numerical Example

Using simulated data for the linear model y = Xβ + ε, this example
presents a small number of numerical applications of estimation and
inference for the GME method. It is not aimed at comparing methods
of estimations, but rather as a brief tutorial. The data for that experi-
ment were generated as follows: x1 = 1, x2 and x3 are taken from a Uni-
form(0, 20), and x4 = x3 + Normal(0, 0.2), β = (1,−2,3,0)′, and ε is
iid Normal(0, 2). The support space z for each k = 1, . . . ,4, with M = 5,
is symmetric around zero [zk = (−100,−50,0,50,100)], and J = 3 for v

with the traditional three empirical sigma rule (e.g., Pukelsheim, 1994).
Using uniform priors for both signal and noise the estimated β’s

for T = 10 are 1.898, −2.070, 1.364, and 1.609 for the GME and 3.116,
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−2.130, 0.901, and 2.021 for the OLS. In both models the only coeffi-
cient that is statistically significant at the 5% level is the intercept. For
T = 1000 the estimated β’s are 1.278, −2.007, 3.160, and −0.16966 for
the GME and 1.285, −2.008, 3.330, −0.3401 for the OLS. In this case
all coefficients are significant.

Hypothesis A. Let H0 : β4 = 0 vs. H1 : β4 6= 0. Using the ER test for
T = 10:

ER = 2[H∗(unrestricted) − H∗(β4 = 0)]

= 2(17.417 − 17.416) = 0.002 < χ2
(1,0.05)

so the null hypothesis is not rejected.

Hypothesis B. Let H0 : β2 ≥ 0 vs. H1 : β2 < 0. Using the ER test, for
T = 10:

ER = 2(17.417 − 17.225) = 0.384 < χ2
(1;0.05)

so the null hypothesis is not rejected. Repeating hypothesis B for T =
1000, one gets

ER = 2(1,104.3 − 1,078.1) = 52.4 > χ2
(1;0.055)

and the null hypothesis is rejected.
In terms of large deviation (LD) analysis for the same hypothesis,

one gets for T = 10

Prob(β2 ≥ 0) = 2−TD(P̂ ,Ŵ ||P 0,W 0) = 2−10×0.199 ∼= 0.252,

and for T = 1000

Prob(β2 ≥ 0) = 2−TD(P̂ ,Ŵ ||P 0,W 0) = 2−1000×26.9 ∼= 0.0000.

Both results are consistent with the ER (χ2) tests above.
In terms of the Entropy Concentration Theorem, for T = 10,

H∗ = 17.417 and (2 × 10)∆H = χ2
(C;α) with C = K(M − 1) + T (J −

1) − T = 26, so χ2
(C;α) = χ2

(26;.05) = 38.885 so ∆H = 1.944. Thus, 95%
of possible distributions, consistent with the sample data and the sup-
port spaces Z and v, have entropy in the interval [15.473, 17.417].
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Similar calculations for T = 1000 yield χ2
(C;α) = χ2

(1016;.05)
∼= 43.8

and ∆H = 43.8/2000 = 0.022, so 95% of sample’s consistent distribu-
tions have entropy H ∈ [1,104.28,1,104.30]

Finally, for T = 1000, and GCE with uniform priors the hypothe-
sis H0 : β = 0 vs. H1 : β 6= 0 is tested. ER = 2208.6 > χ2

(C,α) so cannot
accept the null hypothesis of β = 0. In terms of LD, the probabil-
ity that all probabilities are uniform within their supports (so β = 0),
given the data, is 2−TD(P̂ ,Ŵ ||P 0,W 0) = 4.02E − 226 which is consistent
with the ER test above. A similar test, applied just for the signal prob-
abilities, P , yields a probability of 0.018.

6.7 Summary

So far the generic IT estimator and two basic members of that class
(those with zero-moment conditions — Section 5 — and those with
stochastic moment conditions — Section 6) were discussed. In the next
section, a simple example is used to further connect the two and to
relate it to some of the more traditional estimation methods.

A note on computation is in place. For the ME and GME models,
one can use the concentrated (dual), unconstrained model. Computa-
tionally, these are efficient methods that are easy to compute. A num-
ber of leading software packages have integrated the ME and GME
procedures in them. This includes, SAS, LIMDEP (for discrete choice)
and SHAZAM. Since the concentrated model is unconstrained, it can
easily be used within any other software that allows for optimization,
using matrix operations. In addition, using optimization software, such
as GAMS, makes it easy to construct these methods in their primal
(constrained optimization) form, which makes it easier for estimating
time-series data and nonlinear problems. In contrast to the ME and
GME models, the EL, GEL, and GMM models are often computation-
ally more complex, even when the concentrated (unconstrained) model
is used. See Imbens (2002) and Kitamura (2006) for brief discussions
on this issue.





7

IT, Likelihood and Inference — Synthesis via
a Discrete Choice, Matrix Balancing Example

7.1 The Basic Problem — Background

To study the interconnection between IT, likelihood and inference, the
problem of Matrix Balancing (or contingency tables) is investigated
and studied. To introduce the problem, consider the familiar matrix-
balancing problem, where the goal is to fill the cells of a matrix from
aggregated data. Given the row and column sums we wish to recover
the cells (each pixel) of the matrix. This basic problem is a simpli-
fied version of a large class of common estimation problems discussed
below.

To make our example more visual, consider the following matrix:

107
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The bold symbols (x,y) reflect the data we have, and the P ’s reflect
the unknown quantities the researcher wishes to estimate from the
data. Each yi is the sum of all the cells in its respective row (e.g.,
y1 = P11 + · · · + P1K). Similarly, each xj is the sum of all the elements
in its respective column. In many problems, data on y and x are in
terms of real values (say dollars). In these cases, y and x can be nor-
malized to satisfy the above requirement. Once the P ’s are estimated,
the quantities of interest (such as dollars or flows in each cell) can be
recovered by a renormalization process.

Before solving this problem, a short discussion of a number of com-
mon applications of this type of model, is given. First, let y be a
K-dimensional vector of proportions for each one of the kth states
in period (t), and let x be a K-dimensional vector of proportions for
each state k in period t + 1, then P is a (K × K) matrix of first-
order Markov transition probabilities. If more than two periods of data
exist, the same framework holds with T K-dimensional vectors yt and
xt. Other examples within economics include social accounting (and
input–output) balancing from cross section and/or time-series data
(Golan and Vogel, 2000), unordered multinomial choice and other dis-
crete choice problems, as well as management problems like the “trav-
eling sales-person,” airline routing, distribution of goods among retail-
ers, and work on spectral analysis. This basic problem is also quite
common in other disciplines such as medicine, physics, chemistry, biol-
ogy, topography, engineering, communication, information, operations
research, and political science. Within these disciplines, practical exam-
ples include work on image reconstruction, analysis of political surveys,
tomography1 and much more. In all of these problems the observed data
can be normalized to the [0, 1] interval and the P ’s could therefore be
viewed as probabilities.

This example is chosen because it encompasses a large class of linear
models, it allows a direct derivation of both the IT model and the ML,
and it allows us to further develop, study, and utilize all the quantities
defined and discussed in Sections 3–6 for estimation and inference.

1 See for example Golan and Volker (2001). For a nice discussion of hypothesis testing,
within the classical ME, for these types of problems, see Good (1963).
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7.2 The IT-ME Solution

What do we know and observe?

1. The hard data: x and y. These data are just the row and
column sums.

2. We also know (assume) that the linear relationship between
the data (x and y) and the unobserved P is:

yi = Σjpijxj (7.1)

and

Σipij = 1. (7.2)

These two sets of equations reflect all we know about these data. It
reflects the interrelationship between the (unknown) elements in the
matrix and the (known) sums of each row and column, and it reflects
the fact that, in this example, the elements of each column can be
viewed as a proper probability distribution.

Our objective is to estimate the matrix P with minimal
assumptions.

Is it possible to achieve this goal with the data we have? To answer
this, it is helpful to first look at what we know and what we want to
know. Looking at the table above it is clear that there are all together
K2 unknowns. Also it is clear that there are K known quantities (or
data points) in the first equation and an additional set of K known
quantities from the second equation. All together there are 2K knowns.
Therefore (for all K > 2), the problem is under-determined; there are
infinitely many P ’s that satisfy these two equations. To solve such a
problem we resort to the ME (or CE) principle.

Let P 0 be the set of prior probabilities. We then solve this problem by
minimizing the relative entropy D(p||p0) subject to the set of observed
moments (7.1) and the set of proper probabilities’ requirements (7.2).2

2Note, that rather than using the relative entropy in (7.3), we can use the EL objective to get:

L =
1

K

KX
k=1

log(pk) +
X

i

λi(yi −
X

j

pijxj) +
X

j

µj(1 −
X

i

pij).

However, our interest here is to connect the traditional ME and ML.



110 IT, Likelihood and Inference

The Lagrangean is

L = D(p||p0) +
∑

i

λi

(
yi −

∑
j

pijxj

)
+
∑

j

µj

(
1 −

∑
i

pij

)
. (7.3)

Using the natural log, the estimated coefficients are

p̃ij =
p0

ij exp(λ̃ixj)∑
i p

0
ij exp(λ̃ixj)

≡
p0

ij exp(λ̃ixj)

Ωj(λ̃i)
. (7.4)

If the priors are all uniform, p0
ij = 1

K for all i and j, than p̃ij = p̂ij

(ME = CE).
The concentrated, dual, formulation is

`(λ) =
∑

i

∑
j

pij log(pij

/
p0

ij) +
∑

i

λi

(
yi −

∑
j

pijxj

)

=
∑

i

∑
j

pij log

[
p0

ij exp(λixj)
Ωj

]
−
∑

i

∑
j

pij logp0
ij

+
∑

i

λiyi −
∑

i

∑
j

λipijxj

=
∑

i

λiyi −
∑

i

∑
j

pij logΩj +
∑

i

∑
j

pij logp0
ij

−
∑

i

∑
j

pij logp0
ij +

∑
i

∑
j

pijλixj −
∑

i

∑
j

pijλixj

=
∑

i

λiyi −
∑

i

∑
j

pij logΩj(λ)

=
∑

i

λiyi −
∑

j

logΩj(λ). (7.5)

Maximizing the dual, unconstrained (concentrated) problem `(λ),
with respect to λ and equating to zero yields λ̃ which, in turn, yields
the estimates p̃ij via Eq. (7.4). As was discussed previously, the concen-
trated model (7.5) is computationally much more efficient. It is worth
noting here that, like similar problems, there are exponent functions
in (7.5) and therefore it is useful to normalize the data. Like other dis-
crete choice models, if the normalization is done correctly, the P ’s are
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not affected (though the Lagrange multipliers are affected). A normal-
ization used often is dividing each element of x and y by Max{xj ,yi}.

7.3 The Maximum Likelihood Solution

To contrast the concentrated (dual) CE/ME estimators with the ML
consider the following approach. Given the above re-normalized data
where each yi ∈ [0,1] and ignoring the priors (or similarly, assuming all
priors are uniform), the likelihood function can be expressed as

L =
K∏

j=1

py1
1jp

y2
2j . . .pyK

Kj , (7.6)

and the log-Likelihood function is

log(L) ≡ ` =
∑

i

∑
j

yi logpij . (7.7)

Letting P be the logistic (exponential) distribution:

pij =
exp(βixj)∑
i exp(βixj)

≡ exp(βixj)

1 +
∑K

i=2 exp(βixj)
≡ exp(βixj)

Ωj(β)

for i = 2, . . . ,K (7.8)

and

p1j =
1

1 +
∑K

i=2 exp(βixj)
≡ 1

Ωj(β)
for i = 1 (7.9)

where Ωj(β) ≡ 1 +
∑K

i=2 exp(βixj).
Substituting (7.8) and (7.9) into (7.7) yields

` =
∑

i

∑
j

yi log

[
exp(βixj)

1 +
∑K

i=2 exp(βixj)

]

=
∑

i

∑
j

yiβixj −
∑

i

∑
j

yi logΩj(β)

=
∑

i

yiβi −
∑

j

logΩj(β), (7.10)

which is just a simple version of the ML multinomial logit.
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In this problem, for uniform priors (p0
ij = 1

K for all i and j), the ML-
logit is equivalent to the dual unconstrained model (7.5) with β = λ.

Finally, the first-order conditions (FOC) of (7.10), and similarly
of (7.5), are just

∂`

∂λi
= yi −

∑
j

pijxj = 0 (7.11)

and the diagonal elements of the Hessian are

∂2`

∂λ2
i

= −
∑

j

∂pij

∂λi
xi = −

∑
j

[−pij(1 − pij)xj ]xj =
∑

j

pij(1 − pij)x2
j ,

(7.12)
where

∂pij

∂λi
= −pij(1 − pij)xj (7.13)

and the non-diagonal elements of the Hessian are

∂2`

∂λi∂λl
= −

∑
j

pijpljx
2
j . (7.14)

The information matrix is

I(λ) = E

(
− ∂2`

∂λi∂λl

)
=

−
∑

j
pij(1 − pij)x2

j for i = l∑
j
pijpljx

2
j for i 6= l.

(7.15)

The covariance matrix and the standard errors are easily calculated
from (7.15).

So far, we have seen that for that discrete problem, the ME and ML
(logit) are equivalent. Next, the above formulation is generalized.

7.4 The Generalized Case — Stochastic Moments

Consider the more realistic case where the observed moments are noisy.
In that case one can handle it, within the IT–ME philosophy, as stochas-
tic constraints. (This is similar in spirit to the model described in Chap-
ter 6.) Following Golan et al. (1996b) and Golan et al. (1996c) Eq. (7.1)
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can be written as

yi =
∑

j

pijxj + ei. (7.16)

As discussed earlier, both x and y are normalized to the [0, 1] interval,
so each error ei ∈ [−1,1]. Following the GME literature (7.16) can be
specified as

yi =
∑

j

pijxj +
∑

h

vhwih, (7.17)

where wi is an H-dimensional vector of weights satisfying∑
h

wih = 1 and
∑

h

vhwih ≡ ei (7.18)

and v is an H-dimensional support with H ≥ 2 and symmetric around
zero. Building on the IT–CE model of Section 7.2 and on Section 6,
the new generalized model is

Min
p,w

{D(p,w||p0,w0)} = Min
p,w

{D(p||p0) + D(w||w0)}

s.t.

yi =
∑

j

pijxj +
∑

h

vhwih (7.19)

∑
i

pij = 1;
∑

h

wih = 1

The optimization yields

p̃ij =
p0

ij exp(λ̃ixj)∑
i p

0
ij exp(λ̃ixj)

≡
p0

ij exp(λ̃ixj)

Ωj(λ̃i)
(7.20)

and

w̃ih =
w0

ih exp(λ̃ivh)∑
h w0

ih exp(λ̃ivh)
≡

w0
ih exp(λ̃ivh)

Ψi(λ̃)
, (7.21)

where w0
ih are the prior probabilities defined over the support space v

and are taken to be uniform.
The concentrated, dual, IT (GCE) estimation rule is

`(λ) =
∑

i

λiyi −
∑

j

logΩj(λ) −
∑

i

logΨi(λ). (7.22)
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This is an IT GCE/GME which is a generalized ML-logit. If ei = 0
for all i, then the ML = ME= GME/GCE. By allowing stochastic
moments, and using the relative entropy D(·||·) as the objective, all
the errors are “pushed” toward zero but are not forced to be exactly
zero. In that way, the sample’s moments are allowed (but not forced)
to be different than the underlying population moments, a flexibility
that seems natural for finite data sets. This flexibility means that the
resulting estimates are more stable (lower variances) relative to esti-
mates resulting from zero-moment restrictions.

With that basic framework, the IT model summarized here can
be easily extended to include time-series data as well as any other
information that may be captured via its cross moments with x and y.
See for example Golan and Vogel (2000) and Golan et al. (2007).

7.5 Inference and Diagnostics

As before, one can define the information measures (Golan, 1988).

S(P̃ ) ≡
−
∑

i

∑
j p̃ij log p̃ij

K log(K)
for uniform priors, or

S(P̃ ) ≡
−
∑

i

∑
j p̃ij log p̃ij

−
∑

i

∑
j p0

ij logp0
ij

and

S(p̃j) ≡
−
∑

i p̃ij log p̃ij

logK
or S(p̃j) ≡

−
∑

i p̃ij log p̃ij∑
i p

0
ij logp0

ij

,

where both sets of measures are between zero and one with one reflect-
ing uniformity (complete ignorance: λ = β = 0) of the estimates, and
zero reflecting perfect knowledge. The first measure reflects the infor-
mation in the whole system, while the second one reflects the informa-
tion in each moment/column j. Note that similar information measures
can be constructed for each desired sub-matrix of P. Similar informa-
tion measures like I(P̃ ) = 1 − S(P̃ ) are also used (e.g., Soofi, 1996).

The normalized entropy can easily be connected to Fano’s inequal-
ity, formulating a bound on the probability of error, discussed in
earlier sections. In the context of this section, consider the follow-
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ing example. Assume the researcher knows that the highest proba-
bility for each vector in the matrix is on the diagonal (e.g., within
a Markov process it means the highest probability is associated with
“no change” in states between two consecutive periods). For each prob-
ability vector j (j = 1,2, . . . ,K) let the estimator p̂j = pjj . The prob-
ability of error in each vector (proper probability distribution) j is
pej = 1 − p̂j = 1 − pjj . Recall that H(pej) is just the entropy of the two
elements pej and 1 − pej . With these definitions, Fano’s inequality is

H(pej) + pej log(K − 1) ≥ H(pj),

and the weaker inequality (providing a bound on the error) is

pej ≥
[H(pj) − 1]

logK
= S(pj) −

1
logK

.

Once an error probability (as a function of the entropy or the normal-
ized entropy) is constructed for each one of the K probability distribu-
tions, it can be easily extended for the full matrix.

Following the likelihood literature (the traditional likelihood ratio
test), the empirical likelihood literature (Owen, 1988, 1990; Hall, 1990;
Qin and Lawless, 1994), the derivations of Section 6.3 and building
on the quantities presented in Sections 3 and 5, an entropy ratio test
can be used. Let `Ω be the unconstrained likelihood, and `ω be the
constrained one where, say β = λ = 0. Then, the log-likelihood ratio
statistic is −2log `Ω

`ω
. Given the equivalence between the ML and the

ME, the log-likelihood value of the constrained problem is just the value
of Max(H) while log`ω = K logK. Thus, the log-likelihood, or entropy-
ratio statistic is just

W (IT − ME) = 2log`ω − 2log`Ω = 2K log(K)[1 − S(P̃ )]

or

W (CE) = 2H(P 0)[1 − S(P̃ )].

For the non-uniform priors and S(P̃ ) ≡ H(P̃ )/H(P 0).
Under the null hypothesis, W (IT–ME) converges in distribution to

χ2
(K−1). Finally, McFadden (1974) Pseudo-R2 gives the proportion of
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variation in the data that is explained by the model (a measure of
model fit):

Pseudo − R2 ≡ 1 − log`Ω

log`ω
= 1 − S(P̃ ).

Finally, to see the similarity between the D(p||p0), the CE objective,
and the χ2 statistic, in a different way, consider the following. Let {pij}
be a set of K observed distributions where each distribution is over K

observations. Let the null hypothesis be H0 : P = P 0. Then,

χ2
(K−1) =

∑
i

∑
j

1
p0

ij

(pij − p0
ij)

2.

But, a second-order approximation of D(p||p0) yields

D(p||p0) ≡
∑

i

∑
j

pij log(pij/p0
ij) ∼=

1
2

∑
i

∑
j

1
p0

ij

(pij − p0
ij)

2,

which is just the log-likelihood ratio statistic of this estimator. Since
two times the log-likelihood ratio statistic corresponds approximately
to χ2, the relationship is clear. All statistics discussed here apply for
both the ME and GME methods.

This derivation emphasizes the basic difference between the ME
and CE (or GME and GCE) approaches. Under the ME (or GME)
approach, one investigates how “far” the data pull the estimates away
from a state of complete ignorance (uniform distribution). Thus, a high
value of χ2 implies the data tell us something about the estimates, or
similarly, there is valuable information in the data. Under the CE (or
GCE) approach, the question becomes how far the data take us from
our initial (a priori) beliefs — the priors. A high value of χ2 implies
that our prior beliefs are rejected by the data. For some discussion and
background on goodness of fit statistics for multinomial type problems
see, for example, Koehler and Larntz (1980) and Greene (2008). Fur-
ther discussion of diagnostics and testing for ME–ML model (under
zero-moment conditions) appears in Soofi (1994). He provides mea-
sures related to the normalized entropy measures discussed above and
provides a detailed formulation of decomposition of these information
concepts.
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7.6 IT and Likelihood

Though coming from different philosophies and approaching the esti-
mating problem differently, under the formulation used here, the ME
is equivalent to the ML for the problem discussed here. More generally,
for discrete choice problems with zero-moment conditions, the ME and
the ML-logit are the same. This equivalency allows us to understand
some of the inherent relationship between IT and ML. In investigat-
ing both primal (constrained) and dual (unconstrained) models, it is
easy to see that the basic unknowns of interest are the Lagrange mul-
tipliers: λ ≡ −β. Using the normalization λ1 = β1 = 0, the objective
is to recover these K − 1 unknowns which in turn yield the K × K

matrix P .3

In both the likelihood and the IT–ME approaches the basic param-
eters are the parameters that enter the exponential distribution. In the
ML-logit model, the likelihood (or underlying distribution) is specified
a priori. In the IT approach, no likelihood is specified. However, using
Shannon’s entropy as the objective (or the Kullback–Liebler entropy
divergence measure) the solution to the optimization problem is the
exponential (logistic) distribution. With this in mind, it is possible to
have better interpretation to the estimated parameters (known also as
the MaxEnt distribution). These parameters are not only the param-
eters of the estimated distribution, they also represent the additional
information in each data point (moment). It is the marginal informa-
tion of each one of the observed moments.

So far the simpler — zero moments — case was discussed. Extend-
ing the synthesis to the stochastic moments example reveals that the
IT–GCE (or GME) model is a generalization of the ME–ML model
(e.g., Golan et al., 1996b,c). This is a semi parametric, IT model
that is more efficient than the ML for all finite data, yet exhibits the

3 Note that since we seek to evaluate the impact of the x′js on each pij , just like with

the traditional discrete choice models, the more interesting parameters are the marginal

effects. The marginal quantities for the classical cross-entropy are

∂p̃ij

∂xj
= λ̃ip̃ij − p̃ij

P
i p0

ij exp(λ̃ixj)λ̃i

Ωj
= p̃ij

�
λ̃i −

X
i

p̃ij λ̃i

�

.
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same level of complexity. Looking at the concentrated model (7.22),
one sees that the parameters of interest in the generalized model are
the same as in the zero-moment model. There is no added complex-
ity. By treating the observed data as stochastic, greater flexibility is
achieved.

Finally, and of most importance is to note that by redeveloping that
model from an IT perspective, all results and quantities developed and
defined in Sections 3–6 apply here as well. Of utmost importance are
(i) the ECT that provides a new rationale for using the ML for large
samples and the GME for smaller samples, and (ii) the large devia-
tions interpretation that under that IT framework can be immediately
applied, and used, for the ML.

7.7 A Specific Example: Conditional, Time Series
Markov Process

Consider a first-order (conditional) Markov Chain that is station-
ary and for simplicity is also time-invariant, discussed in Section 3.8.
Let Y be a discrete random variable with alphabet ℵ and a prob-
ability mass function p(y) = Prob{Y = y}, y ∈ ℵ. Let the stochastic
process Y1,Y2, . . . ,YT be such that Prob(Yt+1 = yt+1|Yt = yt) for all
y1,y2, . . . ,yT ∈ ℵ and the time subscript t. To simplify notations (sim-
ilar to Section 3.8), let the indices j and k represent the states at
period t + 1 and t, respectively. Then, for each individual (observa-
tion) i = 1,2, . . . ,N , this process can be specified as

yj(t + 1) =
∑

k

yk(t)Pkj with
∑

j

yj = 1 and
∑

k

Pjk = 1, (7.23)

where P is the stationary first-order Markov probability matrix. Let
yitj be the observed state of individual i at period t = 1,2, . . . ,T . Then
Eq. (7.23) becomes

yitj =
K∑

k=1

pkjyi,t−1,k, (7.24)

where yitj is a K-dimensional vector of binary variables for each indi-
vidual that takes the value yitj = 1 if state j is observed at time t and
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yitj = 0 for all other K− 1 states.4 This Markov process is conditional
on individual characteristics and other data Z. Within the spirit of
the IT class of estimators, we would like to introduce the Data Z with
minimal assumptions. If we do not know the exact functional form con-
necting Y and Z, a possible way to incorporate this relationship is via
the cross moments.

Let Z be a matrix of individual covariates with the elements zits,
so Pt+1 = f(yt(zts),zts) = f(zts), or more explicitly, pkj(t + 1) =
fs(yt(zts),zts) = fs(zts). Since, the researcher does not know f , in this
example (the relationship between the observed data, the unknown
probabilities and the covariates Z) it can be captured via the cross
moments:

T∑
t=2

N∑
i=1

yitjzits =
T−1∑
t=1

N∑
i=1

K∑
k=1

pkjyitkzits. (7.25)

Given the above framework, our objective here is to estimate the K2

unknown P ’s using different IT estimators discussed above. By using
the same framework for all estimators, we are able to see explicitly the
different assumptions and information used for each method and the
relationship among these different estimators.

7.7.1 Different IT Estimators

Case A. The Zero (pure) Moments

The Classical ME (Uniform Priors) is

Max
p

H(p)

s.t.
T∑

t=2

N∑
i=1

yitjzits =
T−1∑
t=1

N∑
i=1

K∑
k=1

pkjyitkzits;
∑

k

pkj = 1

4 For example, if K = 6 and the ith individual is in state j = 2 in time t, then yit2 =
(0 1 0 0 0 0).
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with the solution

p̂kj =
exp

(
−
∑T−1

t=1

∑
i,s yitkzitsλ̂sj

)
∑

j exp
(
−
∑T−1

t=1

∑
i,s yitkzitsλ̂sj

)
≡

exp
(
−
∑T−1

t=1

∑
i,s yitkzitsλ̂sj

)
Ωk

. (7.26)

The Concentrated (Dual ) ME is

`(λ) =
T∑

t=2

K∑
j=1

∑
i,s

yitjzitsλsj +
∑

k

logΩk(λ).

Solving with respect to λ, and substituting in Eq. (7.26) yields P̂ ’s.

The Cross Entropy (Non-Uniform Priors) is

Min
p
{D(p||p0)}

s.t.
T∑

t=2

N∑
i=1

yitjzits =
T−1∑
t=1

N∑
i=1

K∑
k=1

pkjyitkzits;
∑

k

pkj = 1

with the solution

p̃kj =
p0

kj exp
(∑T−1

t=1

∑
i,s yitkzitsλ̃sj

)
∑

j p0
kj exp

(∑T−1
t=1

∑
i,s yitkzitsλ̃sj

)

≡
p0

kj exp
(∑T−1

t=1

∑
i,s yitkzitsλ̃sj

)
Ωk

. (7.27)

Note that the CE is an extension of the ME for non-uniform priors.
If all priors are uniform (i.e., p0

kj = 1/K for all k and j), then the CE
solution is the same as the ME solution (P̃ = P̂ ).

The Concentrated (Dual ) CE is

`(λ) =
T∑

t=2

K∑
j=1

∑
i,s

yitjzitsλsj −
∑

k

logΩk(λ),
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and, similar to the concentrated ME, we solve with respect to λ, and
then substitute the estimated λ’s into Eq. (7.27) which yields P̃ ’s.

The Maximum Likelihood — Logit To construct the zero-moment ML-
Logit model, one starts by specifying the traditional log-likelihood func-
tion and substituting in the desired functional form connecting the P ’s
and the data. Choosing the exponential (or logistic) distribution yields

log(L) ≡ ` =
∑
i,t,j

yitj logpkj (zits)

=
∑
i,t,j

yitj log

 exp
(∑T−1

t=1

∑
i,s yitkzitsβsj

)
∑

j exp
(∑T−1

t=1

∑
i,s yitkzitsβsj

)


=
∑
i,t,s,j

yitjzitsβsj−
∑
i,t,k

yitk log
∑

j

exp

T−1∑
t=1

∑
i,s

yitkzitsβsj


=
∑
i,t,s,j

yitjzitsβsj−
∑

k

logΩk(β).

For completion, the information matrix is

I(λ) = E

(
− ∂2`

∂λ∂λ′

)
.

Solving with respect to the unknown parameters λ, and substituting
them into the logistic distribution yields the optimal solution P̂ML. This
solution is equivalent to the ME solution P̂ . Thus, for that problem the
ML Logit is equivalent to the ME method (and to the CE with uniform
priors).

The Generic-IT It is possible to construct this problem within the
generic IT framework of Section 5.2. It is best to start with the primal
(constrained) model.

Min
p
{f(p||p0) = DR

α+1(p||p0)}

s.t.
T∑

t=2

N∑
i=1

yitjzits =
T−1∑
t=1

N∑
i=1

K∑
k=1

pkjyitkzits;
∑

k

pkj = 1.
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Note, that in this case, one needs to choose α prior to the estima-
tion. Then, going through the same steps discussed above (construct-
ing the Lagrangean and solving) yields P̃Generic−IT. For example, for
α→ 0, P̃Generic−IT = P̃CE and if all priors are uniform P̃Generic−IT =
P̃CE = P̂ = P̂ML. If, α→−1, then the EL solution (developed below)
results. Finally, similar to the above methods, the generic IT model can
be specified as an unconstrained, concentrated model (see Sections 5
and 6).

The Empirical Likelihood is

Max
p

 1
KJ

∑
k,j

logpkj


s.t.
T∑

t=2

N∑
i=1

yitjzits =
T−1∑
t=1

N∑
i=1

K∑
k=1

pkjyitkzits;
∑

k

pkj = 1.

The solution is

p̂kj = (KJ)−1

[
T−1∑
t=1

∑
i,s

yitkzitsλ̂sj + 1

]−1

.

Note that the P̂EL 6= P̂ME = P̂ML. Like the previous models, the EL
can be specified as a constrained optimization model (above) or as a
concentrated, unconstrained model (see Section 5).

Finally, consider the case where the researcher has additional
information in terms of parametric information functions (PIF’s)
g(y,p,θ) = [0] where y is conditional on Z. The above EL (or simi-
larly the GEL or the Generic-IT estimator) can be formulated in terms
of that information. Just substitute these PIF’s for the cross-moment
conditions above and optimize with respect to the unknown parame-
ters. This problem is of a lower dimension and utilizes more information
(information that enters via the PIF’s).

Case B. The Stochastic Moments Models

We now discuss the class of estimators where the moment condi-
tions are specified as stochastic conditions. Rewriting the zero-moment
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conditions (Eq. (7.25)) as stochastic yields

T∑
t=2

N∑
i=1

yitjzits =
T−1∑
t=1

N∑
i=1

K∑
k=1

pkjyitkzits +
T−1∑
t=1

N∑
i=1

zitsεitj

=
T−1∑
t=1

N∑
i=1

K∑
k=1

pkjyitkzits +
T−1∑
t=1

N∑
i=1

M∑
m=1

zitswitjmvm,

(7.25a)

where the additive noise ε ∈ [−1,1] has zero mean, v is the errors’ sup-
port space of dimension M ≥ 2 (and if desired for a certain problem it
can be specified to be inversely related to the sample size) and W is the
set of probability distributions defined on the same support such that
their expected value is εitj (εitj =

∑
m witjmvm and 1 =

∑
m witjm).

The GME is

Max
p,w

{H(p,w)} = Max
p,w

{H(p) + H(w)}

s.t.
T∑

t=2

N∑
i=1

yitjzits =
T−1∑
t=1

N∑
i=1

K∑
k=1

pkjyitkzits +
T−1∑
t=1

N∑
i=1

M∑
m=1

zitswitjmvm

∑
i

pij = 1;
∑
m

witjm = 1

with the solutions

p̂kj =
exp

(
−
∑

t=1

∑
i,s

yitkzitsλ̂sj

)
∑

j
exp

(
−
∑

t=1

∑
i,s

yitkzitsλ̂sj

)

≡
exp

(
−
∑

t=1

∑
i,s

yitkzitsλ̂sj

)
Ωk(λ̂)

and

ŵitjm =
exp

(
−
∑

s zitsvmλsj

)
∑

m exp
(
−
∑

s zitsvmλsj

) ≡ exp
(
−
∑

s zitsvmλsj

)
Ψitj(λ̂)
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GME (Concentrated Model ) is
Following the same logic as before, the concentrated model is

`(λ) =
T∑

t=2

K∑
j=1

∑
i,s

yitjzitsλsj +
∑

k

log

∑
j

exp

−∑
t=1

∑
i,s

yitkzitsλsj


+
∑
i,t,j

log

[∑
m

exp

(
−
∑

s

zitsvmλsj

)]

=
T∑

t=2

K∑
j=1

∑
i,s

yitjzitsλsj +
∑

k

logΩk(λ) +
∑
i,t,j

logΨitj(λ). (7.28)

Solving with respect to λ, and substituting in the above solutions (p̂kj)
yields P̂GME 6= P̂ME = P̂ML. As discussed earlier, the level of complexity
of the GME is exactly the same as the ME and all other IT estimators
discussed. This is because the real parameters of interest are the λ’s
and their dimension is not affected by M . Further, in this example, the
GME is just a generalization of the ME (or ML Logit).

GCE (Concentrated Model) is
For brevity of exposition, only the concentrated model is presented
below. For non-uniform priors P 0, the GCE concentrated model is

`(λ) =
T∑

t=2

K∑
j=1

∑
i,s

yitjzitsλsj −
∑

k

log

∑
j

p0
kj exp

∑
t=1

∑
i,s

yitjzttsλsj


−
∑
i,t,j

log

[∑
m

w0
itjm exp

(∑
s

zitsvmλsj

)]

=
T∑

t=2

K∑
j=1

∑
i,s

yitjzitsλsj −
∑

k

logΩk(λ) −
∑
i,t,j

logΨitj(λ),

where Ωk(λ) =
∑

j p0
kj exp(

∑
t=1

∑
i,s yitkzitsλsj), Ψitj(λ) =

∑
m w0

itjm

exp(
∑

s zitsvmλsj) and where all errors’ priors, W 0, are taken to be
uniform within their supports. If, in addition, all priors P 0’s are uni-
form then P̃GCE = P̂GME 6= P̂ML
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7.7.2 Entropy, Information, and Inference

So far we looked at different IT estimators for this problem. We now,
look at some basic information measures, rates of information, and
possible tests for that problem. These tests can be used for each one
of the methods discussed, be it a zero moment or a stochastic moment
model and for each value of α — the parameter in the generalized
entropy (or Cressie Read) function.

Entropy Rate
The Entropy Rate of the stochastic process {Yt} is

H(ℵ) ≡ lim
T→∞

1
T

H(Y1,Y2, . . . ,YT )

when the limit exists. In that case H(ℵ) reflects the incremental
increase of the (average) information with the process. It captures the
amount of entropy change with t. The conditional entropy of the last
random variable given the past is

H∗(ℵ) ≡ lim
T→∞

H(YT |YT−1,YT−2, . . . ,Y1)

when the limit exists. In this example (stationary process)

H(ℵ) = H∗(ℵ) = H(Y2(Z)|Y1(Z))

= −
∑
kj

ykPkj(Z) logPkj(Z) =
∑

j

yj

[
−
∑

k

Pkj(Z) logPkj(Z)

]
.

For the practical user, this measure can be used to measure the incre-
mental information (or entropy) contribution of each additional period
of observed data.

Joint Entropy and Marginal Entropy

H(P̂ ) = −
∑
kj

P̂kj log P̂kj , H(p̂k) = −
∑

j

P̂kj log P̂kj .

These measures reflect the total entropy in the signal P or in each
vector pk.
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Joint Normalized Entropy (Information Measure) and Marginal
Normalized Entropy

S(P̂ ) =

[
−
∑

kj P̂kj log P̂kj

]
K logK

, S(p̂k) =

[
−
∑

j P̂kj log P̂kj

]
logK

These measures are just a normalized (to the zero–one interval) version
of the previous measures. They are related to the entropy ratio statistic,
the pseudo R2 (Sections 5 and 6 and below) and to the probability of
errors (Fano’s inequality) discussed below.

The Relative Entropy

D(p̃||p0) =
∑
kj

P̃kj log(P̃kj/P 0
kj).

This measure reflects the entropy distance between the post data (pos-
terior) P ’s and the priors.

For conditional entropies and the relationship among all of these
measures see Section 3.3 and Tables 3.3–3.5.

Probability of Errors
Roughly speaking, if Y is a function of Z, then let Ŷ = f(Z) be an esti-
mate of Y . What is the probability that Ŷ = Y ? Let Pe = Prob{Ŷ 6= Y }
be the probability of error. With a slight abuse of notations (for sim-
plicity) we get

H(Pe) + Pe log(K − 1) ≥ H(Y |Z).

The weaker version of this inequality is

Pe ≥
[H(Y |Z) − 1]

log(K)
= S(Y |Z) − 1

logK
.

Both of the above, provides us with a direct relationship between the
estimated entropy and the probability of error.

Large Deviations Interpretation
For pkj(t + 1) = fs(yt(zts),zts) = fs(zts) we want to find the probabil-
ity that the estimated transitions (conditioned on the observed data)



7.7 Conditional, Time Series Markov Process 127

are equal to the prior probabilities p0:

Prob

{
1

T − 1

∑
t

fs(zts) ≥ cs, s = 1, . . . ,S

}
.

Following Sections 3 and 6, define the set E as a set of all proper prob-
ability distributions satisfying the observed moment conditions f(·)
represented explicitly in (7.25):

E ≡

{
P

∣∣∣∣∑
t

fs(zts) ≥ cs, s = 1, . . . ,S

}

=

{
P

∣∣∣∣T−1∑
t=1

N∑
i=1

K∑
k=1

pkjyitkzits

≥
T∑

t=2

N∑
i=1

yitjzits, s = 1, . . . ,S; j = 1, . . .K

}
,

where the second equality reflects our explicit example. To find the
closest distribution to the prior distribution P 0, minimize D(P ||P 0)
subject to the observed moments (see (7.26)). This yields the estimated
probabilities p̃kj (together with λ̃). See Eq. (7.27). These are the esti-
mated probabilities that satisfy the observed data and that are closest
(in entropy) to the priors. For example, for the uniform priors (p0

kj = 1
K

for j = 1, . . . ,J), 2−(T−1)D(P̃ ||P 0) is the probability that conditional on
the observed data (moments), all transition probabilities are uniform.
The same idea can be extended for the stochastic moment (GCE) case.

The Entropy Concentration Theorem
This case is more consistent with the original ECT for the classical
ME (Jaynes, 1978a,b). Since the simple zero moment case was already
discussed in Section 4, a more general ECT is discussed here. The
main extension is that now the possible states/realizations are con-
ditioned on the covariates and that the sample moments are viewed
as stochastic. Let H∗(p̂,ŵ) ≡ H(p̂) + H(ŵ) be the entropy value for
the conditional stochastic moment problem. Let P be the subclass of
all possible outcomes that could be observed from our sample data
that satisfy the constraints (stochastic moments). The ECT, applied
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to that GME model, states that a significant percentage of outcomes
in the class P will have an entropy in the range

H∗ − ∆H ≤ H(p,w) ≤ H∗ ≡Max
p∈P

H (or the value of Eq. (7.28))

= H∗(p̂,ŵ) ≡ H∗(p̂) + H∗(ŵ),

where 2(TN)∆H ≡ χ2
(C;α), N is the number of individuals and T is the

number of time periods, α is the upper a percentile of the χ2 distribu-
tion with C degrees of freedoms. The degree of freedom, C, depends
whether one uses zero-moment conditions or stochastic moment con-
ditions. Other distributions {pkm,wtj}, that are conditional on V and
are consistent with the constraints (sample data), will have entropy
levels smaller than H∗ and their concentration near this upper bound
is given by the above ECT. For the zero-moment conditions, the above
becomes

H∗ − ∆H ≤ H(p) ≤ H∗ ≡Max
p∈P

H (of the ME) = H∗(p̂).

Hypothesis Tests
Consider the hypothesis H0 : λs = 0 for some s ∈ S vs. the alternative
H1 : λs 6= 0 for some s ∈ S. Let `Ω be the value of the maximal entropy
(subject to all the data). Let `ω be the optimal entropy value subject
to all the data and the restriction λs = 0. Using the ER test, we have

W = 2|`ω(λs = 0) − `Ω(λ′s are not constrained)| → χ2
(K−1)

under the null.

Hypotheses and Models with Stochastic Moments
All statistics and tests described above can be used for all IT esti-
mators (zero-moment models, stochastic moments, and for all levels
of α in the α-entropy). However, it is important to note that in all
stochastic moments’ models (GME, GCE) these tests are “more con-
servative.” By “more conservative” I mean that given a sample of data
and a certain null hypothesis, W is smaller and the probability of a
large deviation is larger, for the stochastic moments’ estimators. To
understand that point, recall that when one uses stochastic moments,
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as defined in Section 6, the magnitude of the estimated Lagrange mul-
tipliers must be, on average, smaller. Therefore, the optimal relative
entropy (in the objective) is smaller; the distance between the priors
(uniform or non-uniform) and the estimated probabilities (post-data)
is smaller (on average) relative to the zero-moment conditions. Looking
at the above tests and probability of large deviations, this statement is
clear.





8

Concluding Remarks and Related Work
Not Surveyed

The basic information quantities and concepts, used within economet-
rics, for estimation and inference were reviewed. It was also shown that
all methods within IEE are special cases of the generic IT estimator of
Section 5.2:

IT Estimators =


_
p = argmin{f(p‖q) = DR

α+1(p‖q)}
s.t.
gm(y,p,θ1) = [0]; m = 1,2, . . . ,M∑T

i=1 pi = 1; i = 1,2, . . . ,T and M � T − 1.

In Section 3, a number of basic IT quantities were reviewed. These
quantities and ideas were employed in following sections. However,
within the objectives of the current review, I just discussed estimation
and related inference issues. Therefore, a large number of IT related
topics that fall within IEE were not discussed. A very short list of
these topics is provided below.

First is the literature on IT–GMM. Though, I have discussed it
here, this class of methods within IEE, deserves much deeper review.
However, the connection of GMM to IT and ME was discussed in
detail. To summarize, the original framework of the IT–GMM, uses
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α→ 0, which is the relative entropy D, together with zero-moment
conditions (see Kitamura and Stutzer, 1997 and Imbens et al., 1998).
Some other immediate applications include specific cases of the GEL
(e.g., Smith, 2004, 2005) and the Euclidean Empirical Likelihood,
where the L2 norm is substituted for the objective in the generic
IT-estimator. Though much work is being done on IT-estimators (all
with zero-moments conditions) that are directly related to the EL,
GEL, and GMM, I did not cover most of it in this review. But I
did show exactly where they fit within IEE and some of the phi-
losophy behind it. One of the main motivations for moving toward
IT methods is that it is known by now that the GMM estimators
may be substantially biased in finite samples, especially so when there
are large numbers of unconditional moment conditions. Therefore, a
number of alternative IT estimators that are first-order equivalent to
the GMM have been proposed. See, for example the nice discussion
in Smith (2007) on efficient IT inference in the case of conditional
moment restrictions and the work of Kitamura et al. (2004) and Tri-
pathi and Kitamura (2003). They develop an efficient “local” version
of the objective in the IT (minimum discrepancy) estimator (EL and
GEL) methods that avoid the necessity of explicit estimation of the
conditional Jacobian and variance matrices of the conditional moment
restrictions, and provide empirical conditional probabilities for the
observations.

Second, is the analysis of complex, nonlinear systems where the
generalized entropy (Eq. (3.9)) with values of α > 0 is used to cap-
ture linear and nonlinear dependence among random variables. Quan-
tities such as the Lyapunov exponents (measuring the nonlinearity of
a system and whether the system is chaotic or not), fractal and multi-
fractal dimensions and correlation dimensions are just a few examples.
All of these quantities describe the amount of information, or infor-
mation decay (related to entropy rate discussed earlier), in a system
and are used to investigate nonlinear (dynamic) systems within para-
metric and non-parametric frameworks. For example, take the mutual
information (defined as the expected information in an outcome of
a random draw from Y about an outcome of a random draw from
X) version of (3.9) for two discrete random variables X and Y of
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dimension N , and for α = 1:

IR
2 (X;Y ) ≡ HR

2 (Y ) − [HR
2 (X,Y ) − HR

2 (X)].

This measure equals zero if and only if X and Y are statistically inde-
pendent, and it equals log(N) if and only if Y = f(X), where f can
be any linear or nonlinear function. In general, this type of measure
is used for any value of α where α is directly related to the system’s
(embedding) dimension, or where α is related to (multi) fractal dimen-
sion in a nonlinear-chaotic system. For details see the large literature
on nonlinear systems and chaos. Within econometrics, see for exam-
ple, Soofi (1994), Maasoumi and Racine (2002), Racine and Maasoumi
(2007) and Ullah (2002). For related work on the basic notions of com-
plexity within IT see Cover and Thomas (1991) and Csiszar and Shields
(2004).

The third concept is called minimum description length (MDL) and
is based on the idea that the best way to extract information from the
observed data is when one uses the shortest possible description code.
Thus, the best statistical model to fit the data is the one that leads to
the shortest description, while taking into account that the model itself
must be described (in that code) as well. For a tutorial on MDL see,
for example Bryant and Cordero-Brana (2000). For deeper formulation
with statistical implications, the relationship between MDL and ML
and model selection criteria, such as the BIC, see (Csiszar and Shields,
2004, Section 8) and Clarke (2007).

Fourth, for a deeper and comprehensive discussion of IT see the
texts of Cover and Thomas (1991) and MacKay (2003), as well as the
original work of Shannon (1948) and Rényi (1970) and the tutorial of
Csiszar and Shields (2004). For more recent articles, within the econo-
metric literature, see for example Maasoumi (1993), Soofi and Retzer
(2002), Clarke (2007) and Zellner (1999, 2002).

The fifth concept dealing with recent, and evolving, issue of much
concern to econometricians is how to identify the informational content
of instruments in the case of over identified problems. Stated differently,
a common problem facing researchers, within the GMM framework, is
what possible set of moments, from a possible set of candidates, should
be used in the estimation. This issue was discussed in Section 5.4.3, but
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more is needed. For example, one can use the inherent logic of IT to
construct such tests. After all, the sample moments enter as constraints
within an optimization and the objective is an informational one. Thus,
it seems natural to base that choice on the informational content of
the moment conditions relative to the desired inferences. This idea
is starting to evolve in recent research. Recent work shows that the
entropy measure can be used toward this goal. Examples include the
work of Hall et al. (2007a) and Hall et al. (2007b). See also the text of
Hall (2005) for more detailed discussions.

Sixth, I did not provide here a survey of Bayesian IT models (except
for a summary of Zellner’s BMOM). There is much research in that area
and tight connections between Bayes rule and Bayesian econometrics.
This body of research demands its own review. It was just noted here
that the ME principle is used often in Bayesian methods as the proper
way to assign the most uninformed prior probabilities. For basic reviews
and analysis of recent work see Zellner (1996b, 1999, 2007), Clarke
(2007) and the annual on Maximum Entropy and Bayesian Methods.

Seventh, the class of regularization methods often used for ill-
conditioned data was not discussed here. Though it fits within the
generic IT estimator, this class deserves its own review and study. The
objective of these models is to extract the signal from the (very noisy
and often ill-conditioned, highly collinear) data. To do so, a penalty
function is introduced in the dual objective function yielding regular-
ization methods that exhibit relatively good risk characteristics. Within
the more traditional maximum-entropy approach, (e.g., Csiszar, 1991,
1996; Donoho et al., 1992; Bercher et al., 1996; Ertl et al., 1996; Gzyl,
1998) regularization methods are used for analyzing such noisy prob-
lems. One approach, for example, for recovering the unknown probabil-
ity distribution/s is to subtract from the entropy objective, or from the
negative of the cross-entropy objective, a regularization term penalizing
large values of the errors. Typically, the regularization term is chosen
to be δ

∑
i ε

2
i , where εi is the error term and δ > 0 is the regularization

parameter to be determined prior to the optimization (e.g., Donoho
et al., 1992), or is iteratively determined during repeated optimization
cycles (e.g., Ertl et al., 1996). However, this approach, or variations of
it, works fine when one knows the underlying distribution of the ran-
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dom variables (and the true variances). For example, the assumption
of normal noise is frequently used. This assumption leads to the χ2 dis-
tribution with a number of (random) constraints minus one degree of
freedom. (Note here that the GME, or GCE, can be viewed as “regular-
ization” methods where instead of a direct regularization parameter,
the support spaces are specified.) Finally, the solution to this class
of noisy models was also approached via the maximum entropy in the
mean formulation (e.g., Navaza, 1986; Bercher et al., 1996). In that for-
mulation the underlying philosophy is to specify an additional convex
constraint set that bounds the possible solutions.

For a detailed comparison and discussion of other entropy and non-
entropy regularization methods, as well as the maximum entropy on
the mean, see for example Donoho et al. (1992), (Golan et al., 1996b,
Chap. 8), Bercher et al. (1996) and Golan (2001).

Finally, another topic that was covered here but needs much more
(both in terms of review and development) is to do with hypothesis tests
and IT. Details of many tests and examples of different hypotheses, as
well as a brief review of large deviations, were provided. But more
survey and more research is needed. The basics of that subjects can be
found in Cover and Thomas (1991) and Csiszar and Shields (2004).
Application of large deviations in econometrics, within IEE can be
found in the work of Stutzer (2000, 2003a,c), Kitamura and Stutzer
(2002), and Kitamura (2006).

The above list of topics reflects many of the issues studied within
IEE, but is not comprehensive. Interested readers can find good com-
plements for this survey as well as current advances in IEE in recent
volumes of the Journal of Econometrics (2002, 2007) and Economet-
ric Reviews (2007). Readers who are interested in IT and Bayesian
econometrics/statistics should look at the series of annual proceedings
of the Maximum Entropy and Bayesian methods conferences.
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