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Preface 

Econometrics by Example (EBE) is written primarily for undergraduate students in 
economics, accounting, finance, marketing, and related disciplines. It is also intended 
for students in MBA programs and for researchers in business, government, and re­
search organizations. 

There are several excellent textbooks in econometrics, written from very elemen­
tary to very advanced levels. The writers of these books have their intended audiences. 
I have contributed to this field with my own books, Basic Econometrics (McGraw-Hill, 
5th edn, 2009) and Essentials of Econometrics (McGraw-Hill, 4th edn, 2009). These 
books have been well received and have been translated into several languages. EBE is 
different from my own books and those written by others in that it deals with major 
topics in econometrics from the point of view of their practical applications. Because 
of space limitations, textbooks generally discuss econometric theory and illustrate ec­
onometric techniques with just a few examples. But space does not permit them to 
deal with concrete examples in detail. 

In each chapter discusses one or two examples in depth. To give but one illus-
tration of this, Chapter 8 discusses binary dummy dependent variable regression 
models. This specific example relates to the decision to smoke or not to smoke, taking 
the value of 1 if a person smokes or the value of 0 if helshe does not smoke. The data 
consist of a random sample of 119 US males. The explanatory variables considered are 
age, education, income, and price of cigarettes. There are three approaches to model­
ing this problem: (I) ordinary least-squares (OLS), which leads to the linear probabil­
ity model (LPM), (2) the logit model, based on the logistic probability distribution, and 
(3) the probit model, based on the normal distribution. 

Which is a better model? In assessing this, we have to consider the pros and cons of 
all of these three approaches and evaluate the results based on these three competing 
models and then decide which one to choose. Most textbooks have a theoretical dis­
cussion about this, but do not have the space to discuss all the practical aspects of a 
given problem. 

This book is self-contained in that the basic theory underlying each topic is dis­
cussed without complicated mathematics. It has an appendix that discusses the basic 
concepts of statistics in a user-friendly manner and provides the necessary statistical 
background to follow the concepts covered therein. In EBE all the examples I analyse 
look at each problem in depth, starting with model formulation, estimation of the 
chosen model, testing hypotheses about the phenomenon under study, and post-esti­
mation diagnostics to see how well the model performs Due attention is paid to com­
monly encountered problems, such as multicollinearity, heteroscedasticity, 
autocorrelation, model specification errors, and non-stationarity of economic time 
series. This step-by-step approach, from model formulation, through estimation and 
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hypothesis-testing, to post-estimation diagnostics will provide a framework for Ie 
experienced students and researchers. It will also help them to understand empiric 
articles in academic and professional journals. 

The specific examples discussed in this book are: 

1 Determination of hourly wages for a group of US workers 

2 Cobb-Douglas production function for the USA 

3 The rate of growth of real GDP, USA, 1960-2007 

4 The relationship between food expenditure and total expenditure 

5 Log-linear model of real GDP growth 

6 Gross private investment and gross private savings, USA, 1959-2007 

7 Quarterly retail fashion sales 

8 Married women's hours of work 

9 Abortion rates in the USA 

10 US consumption function, 1947-2000 

11 Deaths from lung cancer and the number of cigarettes smoked 

12 Model of school choice 

13 Attitude toward working mothers 

14 Decision to apply to graduate school 

15 Patents and R&D expenditure: an application of the Poisson probabilit 
distribution 

16 Dollar/euro exchange rates: are they stationary? 

17 Closing daily prices of IBM stock: are they a random walk? 

18 Is the regression of consumption expenditure on disposable personal incom 
spurious? 

19 Are 3-month and 6-month US Treasury Bills cOintegrated? 

20 ARCH model of dollar/euro exchange rate 

21 GARCH model of dollar/euro exchange rate 

22 An ARMA model of IBM daily closing prices 

23 Vector error correction model (VEC) of3-month and 6-month Treasury Bill rate~ 

24 Testing for Granger causality between consumption expenditure and per capit 
disposable income 

25 Charitable donations using panel data 

26 Duration analysis of recidivism 

27 Instrumental variable estimation of schooling and socio-economic variables 

28 The simultaneity between consumption expenditure and income 

The book is divided into four parts: 
Part I discusses the classical linear regression model, which is the workhorse 0 

econometrics. This model is based on restrictive assumptions. The three chapten 
cover the linear regression model, functional forms of regression models, and qualita· 
tive (dummy) variables regression models. 
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Part II looks critically at the assumptions of the classical linear regression model 
and examines the ways these assumptions can be modified and with what effect. Spe­
cifically, we discuss the topics of multicollinearity, heteroscedasticity, autocorrelation, 
and model specification errors. 

Part III discusses important topics in cross-section econometrics. These chapters 
discuss and illustrate several cross-sectional topics that are, in fact, not usually dis­
cussed in depth in most undergraduate textbooks. These are logit and probit models, 
multinomial regression models, ordinal regression models, censored and truncated 
regression models, and Poisson and negative binomial distribution models dealing 
with count data. 

The reason for discussing these models is that they are increasingly being used in 
the fields of economics, education, psychology, political science, and marketing, 
largely due to the availability of extensive cross-sectional data involving thousands of 
observations and also because user-friendly software programs are now readily avail­
able to deal with not only vast quantities of data but also to deal with some of these 
techniques, which are mathematically involved. 

Part IV deals primarily with topics in time series econometrics, such as stationary 
and non stationary time series, co integration and error-correction mechanisms, asset 
price volatility (the ARCH and GARCH models), and economic forecasting with re­
gression (ARIMA and V AR models). 

It also discusses three advanced topics. These are panel data regression models 
(that is, models that deal with repeated cross-sectional data over time; in particular we 
discuss the fixed effects and random effects models), survival or duration analysis of 
phenomena such as the duration of unemployment and survival time of cancer pa­
tients, and the method of instrumental variables (IV), which is used to deal with sto­
chastic explanatory variables that may be correlated with the error term, which 
renders OLS estimators inconsistent. 

In sum, as the title suggests, Econometrics by Example discusses the major themes 
in econometrics with detailed worked examples that show how the subject works in 
practice. With some basic theory and familiarity with econometric software, students 
will find that "learning by doing" is the best way to learn econometrics. The prerequi­
sites are minimal. An exposure to the two-variable linear regression model, a begin­
ning course in statistics, and facility in algebraic manipulations will be adequate to 
follow the material in the book EBE does not use any matrix algebra or advanced 
calculus. 

EBE makes heavy use of the Stata and Eviews statistical packages. The outputs ob­
tained from these packages are reproduced in the book so the reader can see clearly the 
results in a compact way. \Vherever necessary, graphs are produced to give a visual feel 
for the phenomenon under study. Most of the chapters include several exercises that 
the reader may want to attempt to learn more about the various techniques discussed. 
Although the bulk of the book is free of complicated mathematical derivations, in a 
few cases some advanced material is put in the appendices. 

Companion website 

The data used in this textbook are posted on the companion website and notes within 
each chapter direct the reader to this at the relevant points. Students are encouraged 
to use these data in several end-of-chapter exercises to practice applying what they 
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have learned to different scenarios. The instructor may also want to use these data for 
classroom assignments to develop and estimate alternative econometric models. For 
the instructor, solutions to these end-of-chapter exercises are posted on the compan­
ion website in the password protected lecturer zone. Here, (s)he will also find a collec­
tion of Power Point slides which correspond to each chapter for use in teaching. 
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A personal message from the author 

Dear student, 

Firstly, thank you for buying Econometrics by Example. This book has been written 
and revised in response to feedback from lecturers around the world, so it has been de­
signed with your learning needs in mind. Whatever your course, it provides a practical 
and accessible introduction to econometrics that will equip you with the tools to 
tackle econometric problems and to work confidently with data sets. 

Secondly, I hope you enjoy studying econometrics using this book. It is still in fact a 
comparatively young field, and it may surprise you that until the late nineteenth and 
early twentieth century the statistical analysis of economic data for the purpose of 
measuring and testing economic theories was met with much skepticism. It was not 
until the 1950s that econometrics was considered a sub-field of economics, and then 
only a handful of economics departments offered it as a specialized field of study. In 
the 1960s, a few econometrics textbooks appeared on the market, and since then the 
subject has made rapid strides. 

Nowadays, econometrics is no longer confined to economics departments. Econo­
metric techniques are used in a variety of fields such as finance, law, political science, 
international relations, sociology, psychology, medicine and agricultural sciences. 
Students who acquire a thorough grounding in econometrics therefore have a head 
start in making careers in these areas. Major corporations, banks, brokerage houses, 
governments at all levels, and international organizations like the IMF and the World 
Bank, employ a vast number of people who can use econometrics to estimate demand 
functions and cost functions, and to conduct economic forecasting of key national and 
international economic variables. There is also a great demand for econometricians by 
colleges and universities all over the world. 

What is more, there are now several textbooks that discuss econometrics from very 
elementary to very advanced levels to help you along the way. I have contributed to 
this growth industry with two introductory and intermediate level texts and now I 
have written this third book based on a clear need for a new approach. Having taught 
econometrics for several years at both undergraduate and graduate levels in Australia, 
India, Singapore, USA and the UK, I came to realize that there was clearly a need for a 
book which explains this often complex discipline in straightforward, practical terms 
by considering several interesting examples, such as charitable giving, fashion sales 
and exchange rates, in depth. This need has now been met with Econometrics by 
Example. 

What has made econometrics even more exciting to study these days is the avail­
ability of user-friendly software packages. Although there are several software pack­
ages, in this book I primarily use Eviews and Stata, as they are widely available and easy 
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to get started with. Student versions of these packages are available at reasonable cost 
and I have presented outputs from them throughout the book so you can see the re­
sults of the analysis very clearly. I have also made this text easy to navigate by dividing 
it into four parts, which are described in detail in the Preface. Each chapter follows a 
similar structure, ending with a summary and conclusions section to draw together 
the main points in an easy-to-remember format. I have put the data sets used in the 
examples in the book up on the companion website, which you can find at 
www.palgrave.com/economics/ gujarati. 

I hope you enjoy my hands-on approach to learning and that this textbook will be a 
valuable companion to your further education in economics and related disciplines 
and your future career. I would welcome any feedback on the text; please contact me 
via my email address on the companion website. 
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The linear regression model: an overview 

As noted in the Preface, one of the important tools of econometrics is the linear re­
gression model (LRM). In this chapter we discuss the general nature of the LRM and 
provide the background that will be used to illustrate the various examples discussed 
in this book. We do not provide proofs, for they can be found in many textbooks. l 

1.1 The linear regression model 

The LRM in its general form may be written as: 

Yj =B1 +B2X2i +B3 X 3i + ... +BkXki +ui (1.1) 

The variable Yis known as the dependent variable. or regressand, and the X variables 
are known as the explanatory variables, predictors, covariates, or regressors, and U is 
known as a random, or stochastic, error term. The subscript i denotes the ith observa­
tion. For ease of exposition. we will write Eq. (1.1) as: 

(1.2) 

where BX is a short form for Bl + B2X2i +B3 X 3i + ... + BkXki' 
Equation (1.1), or its short form (1.2), is known as the population or true model. It 

consists of two components: (1) a deterministic component, BX, and (2) a 
nonsystematic, or random component, Uj. As shown below, BX can be interpreted as 
the conditional mean of Yb E(Yj I X), conditional upon the given X values.2 Therefore, 
Eq. (1.2) states that an individual Yi value is equal to the mean value of the population 
of which he or she is a member plus or minus a random term. The concept of popula­
tion is general and refers to a well-defined entity (people, firms, cities, states, coun­
tries. and so on) that is the focus of a statistical or econometric analysis. 

For example. if Y represents family expenditure on food and X represents family 
income. Eq. (1.2) states that the food expenditure of an individual family is equal to the 
mean food expenditure of all the families with the same level of income, plus or minus 

1 See, for example, Damodar N. Gujarati and Dawn C. Porter, Basic Econometrics, 5th edn, McGraw-Hili, 
New York, 2009 (henceforward, GujaratiiPorter text); Jeffrey M. Wooldridge, Introductory Econometrics: A 
Modern Approach, 4th edn, South-Western, USA, 2009; James H. Stock and Mark W. Watson, Introduction 
to Econometrics, 2nd edn, Pearson, Boston, 2007; and R. Carter Hill, William E. Griffiths and Guay C. Lim, 
Principles o/Econometrics, 3rd edn, John Wiley & Sons, New York, 2008. 

2 Recall from introductory statistics that the unconditional expected, or mean, value of Ii is denoted as 
E(Y;. but the conditional mean, conditional on given X, is denoted asE(YIX). 
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a random component that may vary from individual to individual and that may depend 
on several factors. 

In Eq. (1.1) Bl is known as the intercept and B2 to Bk are known as the slope coeffi­
cients. Collectively, they are called regression coefficients or regression parameters. 
In regression analysis our primary objective is to explain the mean, or average, behav­
ior of Y in relation to the regressors, that is, how mean Y responds to changes in the 
values of the X variables. An individual Yvalue will hover around its mean value. 

It should be emphasized that the causal relationship between Yand the Xs, if any, 
should be based on the relevant theory. 

Each slope coefficient measures the (partial) rate of change in the mean value of Y 
for a unit change in the value of a regressor, holding the values of all other regressors 
constant, hence the adjective partial. How many regressors are included in the model 
depends on the nature of the problem and will vary from problem to problem. 

The error term ui is a catchall for all those variables that cannot be introduced in the 
model for a variety of reasons. However, the average influence of these variables on the 
regressand is assumed to be negligible. 

The nature of the Y variable 

It is generally assumed that Yis a random variable. It can be measured on four different 
scales: ratio scale, interval scale, ordinal scale, and nominal scale . 

... Ratio scale: A ratio scale variable has three properties: (1) ratio of two variables, (2) 
distance between two variables, and (3) ordering of variables. On a ratio scale if, say, 
Ytakes two values, Y1 and Y2, the ratio Y!iY2 and the distance (Y2 - Y1) are meaning­
ful quantities, as are comparisons or ordering such as Y2 :0; Y1 or Y2 ~ Y1. Most eco­
nomic variables belong to this category. Thus we can talk about whether GDP is 
greater this year than the last year, or whether the ratio of GDP this year to the GDP 
last year is greater than or less than one . 

... Interval scale: Interval scale variables do not satisfy the first property of ratio scale 
variables. For example, the distance between two time periods, say, 2007 and 2000 
(2007 - 2000) is meaningful, but not the ratio 2007/2000 . 

... Ordinal scale: Variables on this scale satisfy the ordering property of the ratio scale, 
but not the other two properties. For examples, grading systems, such as A, B, C, or 
income classification, such as low income, middle income, and high income, are or­
dinal scale variables, but quantities such as grade A divided by grade B are not 
meaningful. 

... Nominal scale: Variables in this category do not have any of the features of the ratio 
scale variables. Variables such as gender, marital status, and religion are nominal 
scale variables. Such variables are often called dummy or categorical variables. 
They are often "quantified" as 1 or 0,1 indicating the presence of an attribute and 0 
indicating its absence. Thus, we can" quantify" gender as male = 1 and female = 0, or 
vice versa. 

Although most economic variables are measured on a ratio or interval scale, there 
are situations where ordinal scale and nominal scale variables need to be considered. 
That requires specialized econometric techniques that go beyond the standard LRM. 
We will have several examples in Part III of this book that will illustrate some of the 
specialized techniques. 
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The nature of X variables or regressors 

The regressors can also be measured on anyone of the scales we have just discussed, 
although in many applications the regressors are measured on ratio or interval scales. 
In the standard, or dassicallinear regression model (CLRM), which we will discuss 
shortly, it is assumed that the regressors are nonrandom, in the sense that their values 
are fixed in repeated sampling. As a result, our regression analysis is conditional, that 
is, conditional on the given values of the regressors. 

We can allow the regressors to be random like the Yvariable, but in that case care 
needs to be exercised in the interpretation of the results. We will illustrate this point in 
Chapter 7 and consider it in some depth in Chapter 19. 

The nature of the stochastic error term, U 

The stochastic error term is a catchall that includes all those variables that cannot be 
readily quantified. It may represent variables that cannot be included in the model for 
lack of data availability, or errors of measurement in the data, or intrinsic randomness 
in human behavior. Whatever the source of the random term u, it is assumed that the 
average effect of the error term on the regressand is marginal at best However, we will 
have more to say about this shortly. 

The nature of regression coefficients, the Bs 

In the CLRM it is assumed that the regression coefficients are some fixed numbers and 
not random, even though we do not know their actual values. It is the objective of re­
gression analysis to estimate their values on the basis of sample data. A branch of sta­
tistics known as Bayesian statistics treats the regression coefficients as random. In this 
book we will not pursue the Bayesian approach to the linear regression models. a 

The meaning of linear regression 

For our purpose the term "linear" in the linear regression model refers to linearity in 
the regression coefficients, the Bs, and not linearity in the Y and X variables. For in­
stance, the Y and X variables can be logarithmic (e.g. In X 2), or reciprocal (l/Xa) or 
raised to a power (e.g. Xi), where In stands for natural logarithm, that is, logarithm to 
the base e.4 

Linearity in the B coefficients means that they are not raised to any power (e.g. Bi) 
or are divided by other coefficients (e.g. B2IBa) or transformed, such as In B4. There 
are occasions where we may have to consider regression models that are not linear in 
the regression coefficients. 5 

a Consult, for instance, Gary Koop, Bayesian Econometrics, John Wiley & Sons, West Sussex, England, 
200a. 

4 By contrast, logarithm to base 10 is called common log. But there is a fixed relationship between the 
common and natural logs, which is: Inc X = 2.30261og lO X. 

5 Since this is a specialized topic requiring advanced mathematics, we will not cover it in this book. But 
for an accessible discussion, see Gujarati/Porter, op cit., Chapter 14. 
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1.2 The nature and sources of data 

To conduct regression analysis, we need data. There are generally three types of data 
that are available for analysis: (1) time series, (2) cross-sectional, and (3) pooled or 
panel (a special kind of pooled data). 

Time series data 
A time series is a set of observations that a variable takes at different times, such as 
daily (e.g. stock prices, weather reports), weekly (e.g. money supply), monthly (e.g. the 
unemployment rate; the consumer price index CPI), quarterly (e.g. GDP), annually 
(e.g. government budgets), quinquenially or every five years (e.g. the census of manu­
factures), or decennially or every ten years (e.g. the census of population). Sometimes 
data are collected both quarterly and annually (e.g. GDP). So-called high-frequency 
data are collected over an extremely short period of time. In flash trading in stock and 
foreign exchange markets such high-frequency data have now become common. 

Since successive observations in time series data may be correlated, they pose spe­
cial problems for regressions involving time series data, particularly, the problem of 
autocorrelation. In Chapter 6 we will illustrate this problem with appropriate 
examples. 

Time series data pose another problem, namely, that they may not be stationary. 
Loosely speaking, a time series data set is stationary if its mean and variance do not 
vary systematically over time. In Chapter 13 we examine the nature of stationary and 
nonstationary time series and show the special estimation problems created by the 
latter. 

If we are dealing with time series data, we will denote the observation subscript by t 
(e.g. Yt, Xt). 

Cross-sectional data 
Cross-sectional data are data on one or more variables collected at the same point in 
time. Examples are the census of population conducted by the Census Bureau, opinion 
polls conducted by various polling organizations, and temperature at a given time in 
several places, to name a few. 

Like time series data, cross-section data have their particular problems, particularly 
the problem of heterogeneity. For example, if you collect data on wages in several 
firms in a given industry at the same point in time, heterogeneity arises because the 
data may contain small, medium, and large size firms with their individual characteris­
tics. We show in Chapter 5 how the size or scale effect of heterogeneous units can be 
taken into account. 

Cross-sectional data will be denoted by the subscript i (e.g. Yi> XJ 

Panel, longitudinal or micro-panel data 
Panel data combines features of both cross-section and time series data. For example, 
to estimate a production function we may have data on several firms (the cross-sec­
tional aspect) over a period of time (the time series aspect). Panel data poses several 
challenges for regression analysis. In Chapter 17 we present examples of panel data 
regression models. 

Panel observations will be denoted by the double subscript it (e.g. Yu, Xu). 
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Sources of data 

The success of any regression analysis depends on the availability of data. Data may be 
collected by a governmental agency (e.g. the Department of Treasury), an interna­
tional agency (e.g. the International Monetary Fund (IMF) or the World Bank), a pri. 
vate organization (e.g. the Standard & Poor's Corporation), or individuals or private 
corporations. 

These days the most potent source of data is the Internet. All one has to do is 
"Google" a topic and it is amazing how many sources one finds. 

The quality of data 
The fact that we can find data in several places does not mean it is good data. One must 
check carefully the quality of the agency that collects the data, for very often the data 
contain errors of measurement, errors of omission or errors of rounding and so on. 
Sometime the data are available only at a highly aggregated level, which may not tell us 
much about the individual entities included in the aggregate. The researchers should 
always keep in mind that the results of research are only as good as the quality of the 
data. 

Unfortunately, an individual researcher does not have the luxury of collecting data 
anew and has to depend on secondary sources. But every effort should be made to 
obtain reliable data. 

1.3 Estimation of the linear regression model 

Having obtained the data, the important question is: how do we estimate the LRM 
given in Eq. (l.l)? Suppose we want to estimate a wage function of a group of workers. 
To explain the hourly wage rate (y), we may have data on variables such as gender, eth­
nicity, union status, education, work experience, and many others, which are the X 
regressors. Further, suppose that we have a random sample of 1,000 workers. How 
then do we estimate Eq. (1.l)? The answer follows. 

The method of ordinary least squares (OLS) 

A commonly used method to estimate the regression coefficients is the method of or­
dinary least squares (OLS).6 To explain this method, we rewrite Eq. (1.1) as follows: 

Uj = 1j -(Bl +B2X2i +B3X 3i + ... +BkXki ) 

= 1j -BX 
(1.3) 

Equation (1.3) states that the error term is the difference between the actual Yvalue 
and the Yvalue obtained from the regression model. 

One way to obtain estimates of the B coefficients would be to make the sum of the 
error term Ui (='Lui) as small as possible, ideally zero. For theoretical and practical rea­
sons, the method of OLS does not minimize the sum of the error term, but minimizes 
the sum of the squared error term as follows: 

6 OLS is a special case of the generalized least squares method (GLS). Even then OLS has many 
interesting properties, as discussed below. An alternative to OLS that is of general applicability is the 
method of maximum likelihood (ML). which we discuss briefly in the Appendix to this chapter. 
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(1.4) 

where the sum is taken over all observations. We callI.ul the error sum of squares 
(ESS). 

Now in Eq. (1.4) we know the sample values of Yi and the Xs, but we do not know the 
values of the B coefficients. Therefore, to minimize the error sum of squares (ESS) we 
have to find those values of the B coefficients that will make ESS as small as possible. 
Obviously, ESS is now a function of the B coefficients. 

The actual minimization of ESS involves calculus techniques. We take the (partial) 
derivative of ESS with respect to each B coefficient, equate the resulting equations to 
zero, and solve these equations simultaneously to obtain the estimates of the k regres­
sion coefficients? Since we have k regression coefficients, we will have to solve k equa­
tions simultaneously. We need not solve these equations here, for software packages 
do that routinely.s 

We will denote the estimated B coefficients with a lower case b, and therefore the 
estimating regression can be written as: 

(1.5) 

which may be called the sample regression model, the counterpart of the population 
model given in Eq. (1.1). 

Letting 

Y; =b1 +b2X 2i +b3 X 3i + ... +bkXki =bX 

we can write Eq. (1.5) as 

1i = Y; + ei = bX + ei 

(1.6) 

(1.7) 

where Y; is an estimator of BX. Just as BX (i.e. E(Yj X)) can be interpreted as the popu­
lation regression function (PRF), we can interpret bX as the sample regression func­
tion (SRF). 

We call the b coefficients the estimators of the B coefficients and ei, called the re­
sidual, an estimator of the error term Ui. An estimator is aformula or rule that tells us 
how we go about finding the values of the regression parameters. A numerical value 
taken by an estimator in a sample is known as an estimate. Notice carefully that the es­
timators, the bs, are random variables, for their values will change from sample to 
sample. On the other hand, the (population) regression coefficients or parameters, the 
Bs, are fixed numbers, although we do not what they are. On the basis of the sample we 
try to obtain the best guesses of them. 

The distinction between population and sample regression function is important, 
for in most applications we may not be able to study the whole population for a variety 
of reasons, including cost considerations. It is remarkable that in Presidential elections 
in the USA, polls based on a random sample of, say, 1,000 people often come close to 
predicting the actual votes in the elections. 

7 Those who know calculus will recall that to find the minimum or maximum of a function containing 
several variables, the first-order condition is to equate the derivatives of the function with respect to each 
variable equal to zero. 

S Mathematically inclined readers may consult Gujarati/Porter, op cit., Chapter 2. 
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In regression analysis our objective is to draw inferences about the population re­
gression function on the basis of the sample regression function, for in reality we rarely 
observe the population regression function; we only guess what it might be. This is im­
portant because our ultimate objective is to find out what the true values of the Bs may 
be. For this we need a bit more theory, which is provided by the classical linear regres­
sion model (CLRM), which we now discuss. 

1.4 The classical linear regression model (CLRM) 

The CLRM makes the following assumptions: 

A-I: The regression model is linear in the parameters as in Eq. (1.1); it mayor may not 
be linear in the variables Yand the Xs. 

A-2: The regressors are assumed to be fixed or nonstochastic in the sense that their 
values are fixed in repeated sampling. This assumption may not be appropriate for all 
economic data, but as we will show in Chapters 7 and 19, if X and u are independently 
distributed the results based on the classical assumption discussed below hold true 
provided our analysis is conditional on the particular X values drawn in the sample. 
However, if X and u are uncorrelated, the classical results hold true asymptotically (Le. 
in large samples.)9 

A-3: Given the values of the X variables, the expected, or mean, value of the error term 
is zero. That is,10 

E(udX) 0 (1.8) 

where, for brevity of expression, X (the bold X) stands for all X variables in the modeL 
In words, the conditional expectation of the error term, given the values of the X vari­
ables, is zero. Since the error term represents the influence of factors that may be es­
sentially random, it makes sense to assume that their mean or average value is zero. 

As a result of this critical assumption, we can write (1.2) as: 

E(Yt I X) BX + E(uj I X) 
(1.9) 

=BX 

which can be interpreted as the model for mean or average value of Yi conditional on 
the X values. This is the population (mean) regression function (PRF) mentioned 
earlier. In regression analysis our main objective is to estimate this function. If there is 
only one X variable, you can visualize it as the (population) regression line. If there is 
more than one X variable, you will have to imagine it to be a curve in a multi-dimen­
sional graph. The estimated PRF, the sample counterpart of Eq. (1.9), is denoted by 
Y; bx. That is, Y; == bx is an estimator of E(Y! I X). 

A-4: The variance of each Uj, given the values of X, is constant, or homoscedastic 
(homo means equal and scedastic means variance). That is, 

var(ui I X) = 0-2 (1.10) 

9 Note that independence implies no correlation, but no correlation does not necessarily imply 
independence. 

10 The vertical bar after ui is to remind us that the analysis is conditional on the given values of X 
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Note: There is no subscript on 

A-5: There is no correlation between two error terms. That is, there is no 
autocorrelation. Symbolically, 

(1.11) 

where Cov stands for covariance and i andj are two different error terms. Of course, if i 
= j, Eq. (I.ll) will give the variance of Ui given in Eq. (1.10). 

A-6: There are no perfect linear relationships among the X variables. This is the as­
sumption of no multicollinearity. For example, relationships like Xs = 2X 3 + 4X 4 are 
ruled out. 

A-7: The regression model is correctly specified. Alternatively, there is no specifica­
tion bias or specification error in the model used in empirical analysis. It is implicitly 
assumed that the number of observations, n, is greater than the number of parameters 
estimated. 

Although it is not a part of the CLRM, it is assumed that the error term follows the 
normal distribution with zero mean and (constant) variance . Symbolically, 

A-8: (1.12) 

On the basis of Assumptions A-I to A-7, it can be shown that the method of ordi­
nary least squares (OLS), the method most popularly used in practice, provides esti­
mators of the parameters of the PRF that have several desirable statistical properties, 
such as: 

1 The estimators are linear, that is, they are linear functions of the dependent 
variable Y. Linear estimators are easy to understand and deal with compared to 
nonlinear estimators. 

2 The estimators are unbiased, that is, in repeated applications of the method, on 
average, the estimators are equal to their true values. 

3 In the class of linear unbiased estimators, OLS estimators have minimum vari­
ance. As a result, the true parameter values can be estimated with least possible 
uncertainty; an unbiased estimator with the least variance is called an efficient 
estimator. 

In short, under the assumed conditions, OLS estimators are BLUE: best linear un­
biased estimators. This is the essence of the well-known Gauss-Markov theorem, 
which provides a theoretical justification for the method of least squares. 

With the added Assumption A-8, it can be shown that the OLS estimators are them­
selves normally distributed. As a result, we can draw inferences about the true values of 
the population regression coefficients and test statistical hypotheses. With the added as­
sumption of normality, the OLS estimators are best unbiased estimators (BUE) in the 
entire class of unbiased estimators, whether linear or not. With normality assumption, 
CLRM is known as the normal classical linear regression model (NCLRM). 

Before proceeding further, several questions can be raised. How realistic are these 
assumptions? What happens if one or more of these assumptions are not satisfied? In 
that case, are there alternative estimators? Why do we confine to linear estimators 
only? All these questions will be answered as we move forward (see Part II). But it may 
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be added that in the beginning of any field of enquiry we need some building blocks. 
The CLRM provides one such building block. 

1.5 Variances and standard errors of OLS estimators 

As noted before, the OLS estimators, the bs, are random variables, for their values will 
vary from sample to sample. Therefore we need a measure of their variability. In statis­
tics the variability of a random variable is measured by its variance cr2 , or its square 
root, the standard deviation cr. In the regression context the standard deviation of an 
estimator is called the standard error, but conceptually it is similar to standard devia­
tion. For the LRM, an estimate of the variance of the error term Ui, cr2 , is obtained as 

1:e2 
I 

n-k 
(l.13) 

that is, the residual sum of squares (RSS) divided by (n - k), which is called the degrees 
of freedom (df), n being the sample size and k being the number of regression parame­
ters estimated, an intercept and (k - 1) slope coefficients. Gis called the standard error 
of the regression (SER) or root mean square. It is simply the standard deviation of the 
Yvalues about the estimated regression line and is often used as a summary measure of 
"goodness of fit" of the estimated regression line (see Sec. 1.6). Note that a "hat" or 
caret over a parameter denotes an estimator of that parameter. 

It is important to bear in mind that the standard deviation of Yvalues, denoted by 
Sy, is expected to be greater than SER, unless the regression model does not explain 
much variation in the Yvalues. ll If that is the case, there is no point in doing regression 
analysis, for in that case the X regressors have no impact on Y. Then the best estimate 
of Y is simply its mean value, Of course we use a regression model in the belief that 
the X variables included in the model will help us to better explain the behavior of Y 
that Y alone cannot. 

Given the assumptions of the CLRM, we can easily derive the variances and stan­
dard errors of the b coefficients, but we will not present the actual formulas to com­
pute them because statistical packages produce them easily, as we will show with an 
example. 

Probability distributions of OLS estimators 

If we invoke Assumption A-B, Uj ~ N(O, cr2 ), it can be shown that each OLS estimator 
of regression coefficients is itself normally distributed with mean value equal to its 
corresponding population value and variance that involves cr2 and the values of the X 
variables. In practice, cr2 is replaced by its estimator &2 given in Eq. (1.13). In practice, 
therefore, we use the t probability distribution rather than the normal distribution 
for statistical inference (i.e. hypothesis testing). But remember that as the sample size 
increases, the t distribution approaches the normal distribution. The knowledge that 
the OLS estimators are normally distributed is valuable in establishing confidence in­
tervals and drawing inferences about the true values of the parameters. How this is 
done will be shown shortly. 

11 The sample variance of Yis defined as: s}: I(Yi - 'iV~n - 1) where f is the sample mean. The square 
root of the variance is the standard deviation of 1', Sy. 
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1.6 Testing hypotheses about the true or population 
regression coefficients 

Suppose we want to test the hypothesis that the (population) regression coefficient Bk 
O. To test this hypothesis, we use the ttest of statistics, 12 which is: 

where se(bk) is the standard error of bk. This tvalue has (n k) degrees of freedom (df); 
recall that associated with a t statistic is its degrees of freedom. In the kvariable regres­
sion, df is equal to the number of observations minus the number of coefficients 
estimated. 

Once the t statistic is computed, we can look up the ttable to find out the probabil­
ity of obtaining such a t value or greater. If the probability of obtaining the computed t 
value is small, say 5% or less, we can reject the null hypothesis thatBk = O. In that case 
we say that the estimated t value is statistically significant, that is, significantly different 
from zero. 

The commonly chosen probability values are 10%, 5%, and 1%. These values are 
known as the levels of significance (usually denoted by the Greek letter a (alpha) and 
also known as a Type I error), hence the name ttests of significance. 

We need not do this labor manually as statistical packages provide the necessary 
output. These software packages not only give the estimated t values, but also their p 
(probability) values, which are the exact level of significance of the t values. If a p 
value is computed, there is no need to use arbitrarily chosen a values. In practice, a low 
p value suggests that the estimated coefficient is statistically significant. 13 This would 
suggest that the particular variable under consideration has a statistically significant 
impact on the regressand, holding all other regressor values constant. 

Some software packages, such as Excel and Stata, also compute confidence inter­
vals for individual regression coefficients usually a 95% confidence interval (CI). 
Such intervals provide a range of values that has a 95% chance of including the true 
population value. 95% (or similar measure) is called the confidence coefficient (CC), 
which is simply one minus the value of the level of significance, a, times 100 - that is, 
CC = 100(1 - a). 

The (1- a) confidence interval for any population coefficient Bk is established as 
follows: 

(1.14) 

where Pr stands for probability and where t a/2 is the value of the t statistic obtained 
from the tdistribution (table) for a/2level of significance with appropriate degrees of 
freedom, and se(bk) is the standard error of bk. In other words, we subtract or add ta/2 

times the standard error of bk to bk to obtain the (1 a) confidence interval for true Bk. 

12 If the true cr2 is known, we can use the standard normal distribution to test the hypothesis. Since we 
estimate the true error variance by its estimator, &2, statistical theory shows that we should use the t 
distribution. 

13 Some researchers choose a values and reject the null h}'Pothesis if the p lIalue is lower than the chosen 
a value. 
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[bk -t all se(b k)] is called the lower limit and [bk +t allse(bk)] is called the upper limit 
of the confidence interval. This is called the two-sided confidence interval. 

Confidence intervals thus obtained need to be interpreted carefully. In particular 
note the following: 

1 The interval in Eq. (1.14) does not say that the probability of the true Bk lying be­
tween the given limits is (1- a). Although we do not know what the actual value of 
Bk is, it is assumed to be some fixed number. 

2 The interval in Eq. (1.14) is a random interval- that is, it will vary from sample to 
sample because it is based on bk, which is random. 

3 Since the confidence interval is random, a probability statement such as Eq. (1.14) 
should be understood in the long-run sense - that is in repeated sampling: if, in re­
peated sampling, confidence intervals like Eq. (1.14) are constructed a large 
number of times on the (1- a) probability basis, then in the long run, on average, 
such intervals will enclose in (1- a) of the cases the true Bk. Any single interval 
based on a single sample mayor may not contain the true Bk' 

4 As noted, the interval in Eq. (1.14) is random. But once we have a specific sample 
and once we obtain a specific numerical value of B k' the interval based on this 
value is not random but is fixed. So we cannot say that the probability is (1- a) that 
the given fixed interval includes the true parameter. In this case Bk either lies in 
this interval or it does not. Therefore the probability is 1 or O. 

We will illustrate all this with a numerical example discussed in Section 1.8. 
Suppose we want to test the hypothesis that all the slope coefficients in Eq. (1.1) are 

simultaneously equal to zero. This is to say that all regressors in the model have no 
impact on the dependent variable. In short, the model is not helpful to explain the be­
havior of the regressand. This is known in the literature as the overall significance of 
the regression. This hypothesis is tested by the Ftest of statistics. Verbally the F statis­
tic is defined as: 

F '" ESS/df 
RSS/ df 

(1.15) 

where ESS is the part of the variation in the dependent variable Yexplained by the 
model and RSS is the part of the variation in Y not explained by the model. The sum of 
these is the total variation in y, call the total sum of squares (TSS). 

As Eq. (1.15) shows, the F statistic has two sets of degrees of freedom, one for the 
numerator and one for the denominator. The denominator df is always (n k) - the 
number of observations minus the number of parameters estimated, including the in­
tercept - and the numerator df is always (k 1) - that is, the total number of regressors 
in the model excluding the constant term, which is the total number of slope 
coefficients estimated. 

The computed Fvalue can be tested for its significance by comparing it with the F 
value from the F tables. If the computed F value is greater than its critical or bench­
mark F value at the chosen level of a, we can reject the null hypothesis and conclude 
that at least one regressor is statistically significant. Like the p value of the t statistic, 
most software packages also present the p value of the F statistic. All this information 
can be gleaned from the Analysis of Variance (AOV) table that usually accompanies 
regression output; an example of this is presented shortly. 
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It is very important to note that the use of the t and F tests is explicitly based on the 
assumption that the error term, Ui, is normally distributed, as in Assumption A-8. If 
this assumption is not tenable, the t and F testing procedure is invalid in small samples, 
although they can still be used if the sample is sufficiently large (technically infinite), a 
point to which we will return in Chapter 7 on specification errors. 

1.7 R2: a measure of goodness of fit of the estimated 
regression 

The coefficient of determination, denoted by R2, is an overall measure of goodness of 
fit of the estimated regression line (or plane, if more than one regressor is involved), 
that is, it gives the proportion or percentage of the total variation in the dependent 
variable Y(TSS) that is explained by all the regressors. To see how R2 is computed, let 
us define: 

Total Sum of Squares (TSS) = 'LYf = 'L(lj - y)2 

Explained Sum of Squares (ESS) = 'L(~ - y)2 

Residual Sum of Squares (RSS) = 'Lef 

Now it can be shown that 

(1.16)14 

This equation states that the total variation of the actual Y values about their sample 
mean (TSS) is equal to sum of the total variation of the estimated Yvalues about their 
mean value (which is the same as Y) and the sum of residuals squared. In words, 

TSS = ESS + RSS (1.17) 

Now we define R2 as: 

(1.18) 

Thus defined, the coefficient of determination is simply the proportion or percentage 
of the total variation in Yexplained by the regression model. 

R2 therefore lies between 0 and 1, provided there is an intercept term in the model. 
The closer it is to 1, the better is the fit, and the closer it is to 0, the worse is the fit. Re­
member that in regression analysis one of the objectives is to explain as much variation 
in the dependent variable as possible with the help of the regressors. 

Alternatively, R2 can also be defined as: 

R2 =1- RSS 
TSS 

(1.19)15 

14 Hint: Start with Yi = Yi + ei, take the sum of square of this term on both sides and keep in mind that 
LYiei = 0 as a result of OLS estimation. 

15 TSS = ESS + RSS. Therefore, bESS/TSS + RSS/TSS. That is, 1 = R2 - RSS/TSS. Rearranging this, we 
get Eq. (1.19). 
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One disadvantage of R2 is that it is an increasing function of the number of 
regressors. That is, if you add a variable to model, the R2 values increases. So some­
times researchers pay the game of "maximizing" R2, meaning the higher the R2, the 
better the model. 

To avoid this temptation, it is suggested that we use an R2 measure that explicitly 
takes into account the number of regressors included in the model. Such an R2 is called 
an adjusted R2, denoted as Jj2 (R-bar squared), and is computed from the (unad­
justed) R2 as follows: 

Jj2 =1_(1_R2)n-1 (1.20) 
n-k 

The term "adjusted" means adjusted for the degrees of freedom, which depend on 
the number of regressors (k) in the model. 

Notice two features of Jj2: 

1 If k > 1, Jj2 < R2, that is, as the number of regressors in the model increases, the 
adjusted R2 becomes increasingly smaller than the unadjusted R2. Thus, Jj2 im­
poses a "penalty" for adding more regressors. 

2 The unadjusted R2 is always positive, but the adjusted R2 can sometimes be 
negative. 

Adjusted R2 is often used to compare two or more regression models that have the 
same dependent variable. Of course, there are other measures of comparing regres­
sion models, which we will discuss in Chapter 7. 

Having covered the basic theory underlying the CLRM, we now provide a concrete 
example illustrating the various points discussed above. This example is a prototype of 
multiple regression models. 

1.8 An illustrative example: the determinants of hourly wages 

The Current Population Survey (CPS), undertaken by the U.S. Census Bureau, periodi­
cally conducts a variety of surveys on a variety of topics. In this example we look at a 
cross-section of 1,289 persons interviewed in March 1995 to study the factors that de­
termine hourly wage (in dollars) in this sample.16 Keep in mind that these 1,289 obser­
vations are a sample from a much bigger population 

The variables used in the analysis are defined as follows: 

Wage: Hourly wage in dollars, which is the dependent variable. 

The explanatory variables, or regressors, are as follows: 

Female: Gender, coded 1 for female, 0 for male 

Nonwhite: Race, coded 1 for nonwhite workers, 0 for white workers 

Union: Union status, coded 1 if in a union job, 0 otherwise 

Education: Education (in years) 

16 The data used here are from the Current Population Survey which is obtained from the US Census 
Bureau. It also appears in Paul A. Ruud, An Introduction to Classical Econometric Theory, Oxford University 
Press, New York, 2000. 
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Potential work experience (in years), defined as age minus years of schooling 
minus 6. (It is assumed that schooling starts at age 6). 

Although many other regressors could be added to the model, for now we will con­
tinue with these variables to illustrate a prototype multiple regression model. 

Note that wage, education, and work experience are ratio scale variables and 
female, nonwhite, and union are nominal scale variables, which are coded as dummy 
variables. Also note that the data here are cross-section data. The data are given in 
Table 1.1, which can be found on the companion website. 

In this book we will use the Eviews and Stata software packages to estimate the re­
gression models. Although for a given data set they give similar results, there are some 
variations in the manner in which they present them. To familiarize the reader with 
these packages, in this chapter we will present results based on both these packages. In 
later chapters we may use one or both of these packages, but mostly Eviews because of 
its easy accessibility. I? 

Using Eviews 6, we obtained the results in Table 1.2. 

Table 1.2 Wage regression. 

Dependent Variable: WAGE 
Method: Least Squares 
Sample: 1 1289 
Included observations: 1289 

Coefficient Std. Error 

FEMALE 

NONWHITE 

UNION 

EDUCATION 

EXPER 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

0.323339 
0.320702 
6.508137 
54342.54 

-4240.370 
122.6149 

-7.183338 1.015788 

-3.074875 

-1.565313 

1.095976 

1.370301 

0.166607 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

t-Statistic Prob. 

-7.071691 0.0000 

-8.433184 0.0000 

-3.074139 0.0022 

2.165626 0.0305 

20.79231 0.0000 

10.38205 0.0000 

12.36585 
7.896350 
6.588627 
6.612653 
1.897513 
0.000000 

The format of Eviews is highly standardized. The first part of the table shows the 
name of the dependent variable, the estimation method (least squares), the number of 
observations, and the sample range. Sometimes we may not use all the sample obser­
vations, and save some observations, called holdover observations, for forecasting 
purposes. 

The second part of the table gives the names of the explanatory variables, their esti­
mated coefficients, the standard errors of the coefficients, the t statistic of each coeffi-

17 Excel can also estimate multiple regressions, but it is not as extensive as the other two packages, 
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cient, which is simply the ratio of estimated coefficient divided by its standard error,18 
and the p value, or the exact level of significance of the t statistic. For each coefficient, 
the null hypothesis is that the population value of that coefficient (the big B) is zero, 
that is, the particular regressor has no influence on the regressand, after holding the 
other regressor values constant. 

The smaller the p value, the greater the evidence against the null hypothesis. For ex­
ample, take the variable experience, Exper. Its coefficient value of about 0.17 has a t 
value of about 10.38. If the hypothesis is that the coefficient value of this variable in the 
PRF is zero, we can soundly reject that hypothesis because the p value of obtaining 
such a tvalue or higher is practically zero. In this situation we say that the coefficient of 
the experience variable is highly statistically significant, meaning that it is highly sig­
nificantly different from zero. To put it differently, we can say work experience is an 
important determinant of hourly wage, after allowing for the influence of the other 
variables in the model - an unsurprising finding. 

Ifwe choose ap value of 5%, Table 1.2 shows that each of the estimated coefficients 
is statistically significantly different from zero, that is, each is an important determi­
nant of hourly wage. 

The third part of Table 1.2 gives some descriptive statistics. The R2 (the coefficient 
of determination) value of ,:::Q.32 means about 32% of the variation in hourly wages is 
explained by the variation in the five explanatory variables. It might seem that this R2 
value is rather low, but keep in mind that we have 1,289 observations with varying 
values of the regressand and regressors. In such a diverse setting the R2 values are typi­
cally low, and they are often low when individual-level data are analyzed. This part also 
gives the adjusted R2 value, which is slightly lower than the unadjusted R2 values, as 
noted before. Since we are not comparing our wage model with any other model, the 
adjusted R2 is not of particular importance. 

If we want to test the hypothesis that all the slope coefficients in the wage regression 
are simultaneously equal to zero, we use the Ftest discussed previously. In the present 
example this F value is "" 123. This null hypothesis can be rejected if the p value of the 
estimated Fvalue is very low. In our example, the p value is practically zero, suggesting 
that we can strongly reject the hypothesis that collectively all the explanatory variables 
have no impact on the dependent variable, hourly wages here. At least one regressor 
has significant impact on the regressand. 

The table also lists several other statistics, such as Akaike and Schwarz information 
criteria, which are used to choose among competing models, the Durbin - Watson sta­
tistic, which is a measure of correlation in the error term, and the log likelihood statis­
tic, which is useful if we use the ML method (see the Appendix to this chapter). We will 
discuss the use of these statistics as we move along.19 

Although Eviews does not do so, other software packages present a table known as 
the Analysis ofYariance (AOY) table, but this table can be easily derived from the in­
formation provided in the third part of Table 1.2. However, Stata produces not only 
the coefficients, their standard errors, and the aforementioned information, but also 

18 The implicit null hypothesis here is that the true population coefficient is zero. We can write the t ratio 
as: t ~ (bk - Bk) I se(bk), which reduces to t ~ bk I se(bk) if Bk is in fact zero. But you can test any other 
hypothesis for Bk by putting that value in the preceding t ratio. 

19 Eviews also gives the Hannan-Quinn information criterion, which is somewhere between the Akaike 
and Schwarz information criteria. 
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Table 1.3 Stata output of the wage function. 

w Coef. Std. Err. t P>ltl [95% Conf. Interval] 

female -3.074875 .3646162 -8.43 0.000 -3.790185 -2.359566 

nonwhite -1.565313 .5091875 -3.07 0.002 -2.564245 -.5663817 

union 1.095976 .5060781 2.17 0.031 .1031443 2.088807 

education I 1.370301 .0659042 20~ 1.241009 1.499593 

experience .1666065 .0160476 10. . 00 .1351242 .1980889 

cons -7.183338 1.015788 -7.07 0.000 -9.176126 -5.190551 

Note: I tl means the absolute t value because t can be positive or negative. 

the AOV table. It also gives the 95% confidence interval for each estimated coefficient, 
as shown in Table 1.3. 

As you can see, there is not much difference between Eviews and Stata in the esti­
mates of the regression coefficients. A unique feature of Stata is that it gives the 95% 
confidence interval for each coefficient, computed from Eq. (1.14). Consider, for exam­
ple, the education variable. Although the single best estimate of the true education co­
efficient is 1.3703, the 95% confidence interval is (1.2410 to 1.4995). Therefore, we can 
say that we are 95% confident that the impact of an additional year of schooling on 
hourly earnings is at least $1.24 and at most $ 1.49, ceteris paribus (holding other things 
constant). 

So, if you hypothesize that the true education coefficient is, say, 1.43, as noted ear­
lier, we cannot say that 1.43 lies in this interval because this interval is fixed. Therefore, 
1.43 either lies in this interval or does not. All we can say is that if we follow the proce­
dure of establishing confidence intervals in the manner of Eq. (1.14) in repeated sam­
pling we will be reasonably sure that the confidence interval includes the true Bk. Of 
course, we will be wrong 5% of the time. 

Impact on mean wage of a unit change in the value of a regressor 

The female coefficient of"" -3.07 means, holding all other variables constant, that the 
average female hourly wage is lower than the average male hourly wage by about 3 dol­
lars. Similarly, ceteris paribus, the average hourly wages of a nonwhite worker is lower 
by about $1.56 than a white worker's wage. The education coefficient suggests that the 
average hourly wages increases by about $1.37 for every additional year of education, 
ceteris paribus. Similarly, for every additional year of work experience, the average 
hourly wage goes up by about 17 cents, ceteris paribus. 

Test of the overall significance of the regression 

To test the hypothesis that all slope coefficients are simultaneously equal to zero (Le. 
al! the regressors have zero impact on hourly wage), Stata produced Table 1.4. 

The AOV gives the breakdown of the total sum of squares (TSS) into two compo­
nents; one explained by the model, called the explained sum of squares (ESS) - that is 
the sum of squares explained by the chosen model, and the other not explained by the 
model, called the residual sum of squares (RSS), terms we have encountered before. 

Now each sum of squares has its associated degrees of freedom. The TSS has (n 1) 
df, for we lose one df in computing the mean value of the dependent variable Y from 
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Table 1.4 The AOV table. 

~~~~4---~~--4-~~4-----~~--4 
Number of obs 1289 

~~~-+--=~?!..:.f::.~+-_~+-.....--:~~~!:...j F(5, 1283) 122.61 

~~~~-t-2..::~~~~~~~----'!:~~~!:...j Prob > F 0.0000 

L.!:~~ __ ...L~!.::!::!..~~-L-=~~ __ ~~~~~ R-squared = 0.3233 
Adj R-squared = 0.3207 

Root MSE = 6.5081 

the same data. ESS has (k -1) degrees of freedom, the k regressors excluding the inter­
cept term, and RSS has (n - k) degrees of freedom, which is equal to the number of ob­
servations, n, minus the number of parameters estimated (including the intercept). 

Now if you divide the ESS by its df and divide RSS by its df, you obtain the mean 
sums of squares (MS) of ESS and RSS. And if you take the ratio of the two MS, you 
obtain the Fvalue. It can be shown that under the null hypothesis all slope coefficients 
are simultaneously equal to zero, and assuming the error term Uj is normally distrib­
uted, the computed Fvalue follows the F distribution with numerator df of (k 1) and 
denominator df of (n - k). 

In our example, this F value is about 123, which is the same as that obtained from 
Eviews output. As the table shows, the probability of obtaining such an F or greater is 
practically zero, suggesting that the null hypothesis can be rejected. There is at least 
one regressor that is significantly different from zero. 

If the AOV table is not available, we can test the null hypothesis that all slope coeffi-
cients are simultaneously equal to zero, that is, B2 = B3 =... = 0, by using an in-
teresting relationship between F and R2, which is as follows: 

F R2/(k-l) 
(1-R2)/(n-k) 

(1.18)20 

Since the R2 value is produced by all software packages, it may be easier to use Eq. 
(1.18) to test the null hypothesis. For our example the computed R2 is 0.3233. Using 
this value, we obtain: 

F 0.3233/5 "" 122.60 
(1-03233) 11283 

(1.19) 

This value is about the same as that shown in the Stata AOV table. 
It should be emphasized that the formula given in Eq. (1.18) is to be used only jfwe 

want to test that all explanatory variables have zero impact on the dependent variable. 
As noted before, R2 is the proportion of the variation in the dependent variable ex­

plained by the regressor included in the model. This can be verified if you take the ratio 
ofESS to TSS from the AOV table 25967.2805/80309.8247) = R2 = 0.3233. 

20 For proof, see GujaratilPorter, op cit., p. 241. 
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1.9 Forecasting 

Sometimes we may want to use the estimated regression model for forecasting pur­
poses. Return to our wage regression given in Table 1.2. Suppose we are given infor­
mation about a prospective wage earner concerning his or her X values. Given that 
information and the regression coefficients given in Table 1.2 we can easily calculate 
the expected (average) wage of this person. Whether that prospective wage earner will 
actually get the wages calculated from the regression in Table 1.2 cannot be told with 
certainty. All we can say is what a person with the given (X) characteristics might earn. 
This is the essence of forecasting. 

Forecasting is generally used in the context of time series analysis. In Chapter 16 we 
will explore this topic more fully with illustrative examples. 

1.10 The road ahead 

Now that we have presented the basics of the CLRM, where do we go from here? The 
answer follows. 

The wage regression given in Table 1.2 is based on the assumptions of the 
CLRM. The question that naturally arises is: how do we know that this model satis­
fies the assumptions of the CLRM? We need to know answers to the follOWing 
questions: 

1 The wage model given in Table 1.2 is linear in variables as well as parameters. 
Could the wage variable, for instance, be in logarithmic form? Could the variables 
for education and experience be also in logarithmic form? Since wages are not ex­
pected to grow linearly with experience forever, could we include experience 
squared as an additional regressor? All these questions pertain to the functional 
form of the regression model, and there are several of them. We consider this 
topic in Chapter 2. 

2 Suppose some of the regressors are quantitative and some are qualitative or nomi­
nal scale variables, also called dummy variables. Are there special problems in 
dealing with dummy variables? How do we handle the interaction between quan­
titative and dummy variables in a given situation? In our wage regression we have 
three dummy variables, female, nonwhite, and union. Do female union workers 
earn more than non-union female workers? We will deal with this and other as­
pects of qualitative regressors in Chapter 3. 

3 If we have several regressors in a regression model, how do we find out that we do 
not have the problem of multicollinearity? If we have that problem, what are the 
consequences? And how do we deal with them? We discuss this topic in Chapter 
4. 

4 In cross-sectional data the error variance may be heteroscedastic rather than 
homoscedastic. How do we find that out? And what are the consequences of 
heteroscedasticity? Are OLS estimators still BLUE? How do we correct for 
heteroscedastidty? We answer these questions in Chapter 5. 

5 In time series data the assumption of no autocorrelation in the error term is un­
likely to be fulfilled. How do we find that out? What are the consequences of 
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autocorrelation? How do we correct for autocorrelation? We will answer these 
questions in Chapter 6. 

6 One of the assumptions of the CLRM is that the model used in empirical analysis 
is "correctly specified" in the sense that all relevant variables are included in the 
model, no superfluous variables are included in the model, the probability distri­
bution of the error term is correctly specified, and there are no errors of measure­
ment in the regressors and regressand. Obviously, this is a tall order. But it is 
important that we find out the consequences of one or more of these situations if 
they are suspected in a concrete application. We discuss the problem of model 
specification in some detail in Chapter 7. We also discuss briefly in this chapter 
the case of stochastic regressors instead of fixed regressors, as assumed in the 
CLRM. 

7 Suppose the dependent variable is not a ratio or interval scale variable but is a 
nominal scale variable, taking values of 1 and O. Can we still apply the usual OLS 
techniques to estimate such models? If not, what are the alternatives? The answer 
to these questions can be found in Chapter 8, where we discuss the logit and 
probit models, which can handle a nominal dependent variable. 

S Chapter 9 extends the bivariate logit and probit models to multi-category nominal 
scale variables, where the regress and has more than two nominal values. For ex­
ample, consider the means of transportation to work. Suppose we have three 
choices: private car, public bus, or train. How do we decide among these choices? 
Can we still use OLS? As we will show in this chapter, such problems require non­
linear estimation techniques. Multinomial conditional logit or multinomial 
probit models discussed in this chapter show how multi-category nominal scale 
variables can be modeled. 

9 Although nominal scale variables cannot be readily quantified, they can some­
times be ordered or ranked. Ordered logit and ordered probit models, discussed 
in Chapter 10, show how ordered or ranked models can be estimated. 

10 Sometimes the regressand is restricted in the values it takes because of the design 
of the problem under study. Suppose we want to study expenditure on housing by 
families making income under $50,000 a year. Obviously, this excludes families 
with income over this limit. The censored sample and truncated sample model­
ing discussed in Chapter 11 show how we can model phenomena such as this. 

11 Occasionally we come across data that is of the count type, such as the number of 
visits to a doctor, the number of patents received by a firm, the number customers 
passing through a check-out counter in a span of 15 minutes, and so on. To model 
such count data, the Poisson probability distribution (PPD) is often used. Be­
cause the assumption underlying the PPD may not always be fulfilled, we will dis­
cuss briefly an alternative model, knows as the negative binomial distribution 
(NBD). We discuss these topics in Chapter 12. 

12 In cases oftime series data, an underlying assumption of the CLRM is that the time 
series are stationary. If that is not the case, is the usual OLS methodology still ap­
plicable? What are the alternatives? We discuss this topic in Chapter 13. 

13 Although heteroscedasticity is generally associated with cross-sectional data, it 
can also arise in time series data in the so-called volatility clustering phenomenon 



l The linear regression model: an overview 21 

observed in financial time series. The ARCH and GARCH models discussed in 
Chapter 14 will show how we model volatility clustering. 

14 If you regress a nonstationary time series on one or more nonstationary time 
series, it might lead to the so-called spurious or nonsense regression phenome­
non. However, if there is a stable long-term relationship between variables, that is 
if the variables are cointegrated, there need not be spurious regression. In Chap­
ter 15 we show how we find this out and what happens if the variables are not 
co integrated. 

15 Forecasting is a specialized field in time series econometrics. In Chapter 16 we dis­
cuss the topic of economic forecasting using the LRM as well as two prominently 
used methods of forecasting, namely, ARIMA (autoregressive integrated moving 
average) and VAR (vector autoregression). With examples, we show how these 
models work. 

16 The models discussed in the preceding chapters dealt with cross-sectional or time 
series data. Chapter 17 deals with models that combine cross-sectional and time 
series data. These models are known as panel data regression models. We show 
in this chapter how such models are estimated and interpreted. 

17 In Chapter 18 we discuss the topic of duration or survival analysis. Duration of a 
marriage, duration of a strike, duration of an illness, and duration of unemploy­
ment are some examples of duration data. 

18 In Chapter 19, the final chapter, we discusses a topic that has received consider­
able attention in the literature, namely, the method of Instrumental Variables 
(IV), The bulk of this book has been devoted to the case of nonstochastic or fixed 
regressors, but there are situations where we have to consider stochastic, or 
random, regressors. If the stochastic regressors are correlated with the error term, 
the OLS estimators are not only biased but are also inconsistent - that is, the bias 
does not diminish no matter how large the sample. The basic principle of IV is that 
it replaces the stochastic regressors with another set of regressors, called instru­
mental variables (or simply instruments), that are correlated with the stochastic 
regressors but are un correlated with the error term. As a result, we can obtain 
consistent estimates of the regression parameters. In this chapter we show how 
this can be accomplished. 

In the remainder of the book, we will discuss all these topics with concrete exam­
ples. Of course, the list of topics discussed does not by any means exhaust all the ec­
onometric techniques, which are continuously evolving. But I hope the topics and 
examples discussed in this book will provide beginning students and researchers a 
broad exposure to the commonly used econometric techniques. I further hope that the 
examples discussed in the book will whet the reader's appetite to study more advanced 
econometric techniques. 

Exercise 

1.1 Consider the regression results given in Table 1.2. 
(a) Suppose you want to test the hypothesis that the true or population regres­

sion coefficient of the education variable is 1. How would you test this hy­
pothesis? Show the necessary calculations. 
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(b) Would you reject or not reject the hypothesis that the true union regression 
coefficient is I? 

(c) Can you take the logs of the nominal variables, such as gender, race, and 
union status? Why or why not? 

(d) What other variables are missing from the model? 
(e) Would you run separate wage regressions for white and nonwhite workers, 

male and female workers, and union and non-union workers? And how 
would you compare them? 

if) Some states have right-to-work laws (i.e. union membership is not manda­
tory) and some do not have such laws (I.e. mandatory union membership is 
permitted). Is it worth adding a dummy variable taking the value of 1 if the 
right-to-work laws are present and 0 otherwise? A priori, what would you 
expect if this variable is added to the model? 

(h) Would you add the age of the worker as an explanatory variable to the 
model? Why or why not? 

--) 
[ The method of maximum 1ike1ihood (Nt) 

As noted earlier, an alternative to OLS is the method of maximum likelihood (ML). 
This method is especially useful in estimating the parameters of nonlinear (in parame­
ter) regression models, such as the logit, probit, multinomiallogit, and multinomial 
probit models. We will encounter ML in the chapters where we discuss these models. 

To minimize the algebra, we consider a two-variable regression model: 

(1) 

where 

(2) 

That is, the error term is independently and identically distributed as a normal distri­
bution with zero mean and constant variance (i.e. standard normal distribution), 

SinceB1 andB2 are constants and X is assumed to be fixed in repeated sampling, Eq. 
(2) implies: 

(3)21 

that is, li is also independently and identically distributed as a normal distribution 
with the stated parameters. Therefore we can write 

f (Y.) = _1_ exJ __ 1_ (y. - B1 - B2X.)2 ] 
I cr-tIiC 1 2cr2 I I 

(4) 

21 Recall from introductory statistics that the density of a random normal variable X with mean J.! and 
variance cr2 is 

1 r I(X') = --exp -
cr-./2ii L 

J.!)2} - co<X<oo, cr2 >0. 
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which is the density function of a normally distributed .l'j with mean and variance 
given in Eq. (3). Note: exp means e raised to the power of the expression in the curly 
brackets, e being the base of the natural logarithm. 

Since each .l'j is distributed as in Eq. (4), the joint density (Le. joint probability) of the 
Yobservations can be written as the product of n such terms, one for each Yi. This 
product gives: 

(5) 

If Yv Y 2, ... , Yn are given or known but Bv B2, and (32 are unknown, the function in 
Eq. (5) is called a likelihood function, denoted by LF. 

The method of maximum lil<elihood, as the name suggests, consists of estimating 
the unknown parameters in such a way that the probability of observing the sample Ys 
is the maximum possible. Therefore, we have to find the maximum ofEq. (5). It is easy 
to find the maximum if we take the logarithm of this function on both sides to yield: 

-~ln(32 -~ln(21t) 1 I(Yi -Bl -B2 XY (6) 
2 2 2 (32 

Since the last term in Eq. (6) enters negatively, to maximize (6) we have to minimize 
this last term. Apart from (32, this term is nothing but the squared error term of OLS. If 
you differentiate the last term with respect to the intercept and slope coefficient, you 
will find that the estimators of Bl and B2 are the same as the least squares estimators 
discussed in the text. 

There is, however, a difference in the estimator of (32. It can be shown that this esti­
mator is: 

(7) 
n 

whereas the OLS estimator is: 

(8) 

In other words, the ML estimator of the unknown variance is not adjusted for the de­
grees of freedom, whereas the OLS estimator is. In large samples, however, the two es­
timators give about the same value, although in small sample the ML estimator is a 
biased estimator of the true error variance. 

If you look at the regression results of our wage example given in Table 1.2, you will 
see the In LF value is -4240.37. This is the maximized value of the log likelihood func­
tion. !fyou take the anti-log of this value, you will see it to be close to zero. Also note 
that the values of all the regression coefficients given in that table are also ML esti­
mates under the assumption that the error term is normally distributed. 

So, for ail practical purposes, the OLS and ML estimates of the regression coeffi­
cients are the same, assuming the error term is normally distributed. That is why it is 
important to find out if the error term is in fact normally distributed in anyapplica­
tion. We will discuss this topic further in Chapter 7. 
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The ML estimators have many desirable large sample properties: (1) they are as­
ymptotically unbiased; (2) they are consistent; (3) they are asymptotically efficient -
that is, in large samples they have the smallest variance among all consistent estima­
tors; and (4) they are asymptotically normally distributed. 

Keep in mind the distinction between an unbiased estimator and a consistent esti­
mator. Unbiased ness is a property of repeated sampling: keeping the sample size fixed, 
we draw several samples and from each sample we obtain an estimate of the unknown 
parameter. If the average value of all these estimates is equal to the true value of the pa­
rameter, then that estimator (or that method of estimation) produces an unbiased 
estimator. 

An estimator is said to be consistent if it approaches the true value of the parameter 
as the sample size gets larger and larger. 

As noted previously, in OLS we use R2 as a measure of goodness of fit of the esti­
mated regression line. The equivalent of R2 in the ML method is the pseudo R2, which 
is defined as:22 

pseudo-R2 = 1 
ifLo 

(9) 

where ifL is the log likelihood of the model under consideration and ifLo is the log like­
lihood without any regressors in the model (except the intercept). The pseudo-R2 thus 
measures the proportion by which ifL is smaller (in absolute size) than ifLo. 

Since log likelihood represents joint probability, it must lie between 0 and L There­
fore the value of ifL must be negative, as in our illustrative example. 

In OLS we test the overall significance of the regression model by the F test. The 
equivalent test under ML is the lil,elihood ratio statistic A. 

This is defined as: 

(10) 

Under the null hypothesis that the coefficients of all regressors are jointly equal to 
zero, this statistic is distributed as a X2 (chi-square) distribution with (k 1) df, where 
(k -1) is the number of regressors. As with other tests of significance, if the computed 
chi-square value exceeds the critical chi-square value at the chosen level of signifi­
cance, we reject the null hypothesis. 

22 The following discussion follows Christopher Dougherty, Introduction to Econometrics, 3rd edn, 
Oxford University Press, Oxford, 2007, pp. 320-1. 
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Functional forms of regression models 

You will recall that our concern in this book is primarily with linear regression models, 
that is, models linear in parameters; they mayor may not be linear in variables. In this 
chapter we consider several models that are linear in parameters but are not necessar­
ily so in the variables. In particular, we will discuss the following models, which are fre­
quently used in empirical analysis. 

1 Log-linear or double-log models where the regress and as well as the regressors are 
all in logarithmic form. 

2 Log-lin models in which the regressand is logarithmic but the regressors can be in 
log or linear form. 

3 Lin-log models in which the regressand is in linear form, but one or more 
regressors are in log form. 

4 Reciprocal models in which the regressors are in inverse form. 

5 Standardized variable regression models 

We will use several examples to illustrate the various models. 

2.1 Log-linear, double log or constant elasticity models 

We consider the celebrated Cobb-Douglas (CD) production function, which may be 
expressed as:1 

(2.1) 

where Q output, L := labor input, J( := capital, and Bl is a constant. 
This model is nonlinear in the parameters and to estimate it as it stands requires 

nonlinear estimation techniques. However, if we take the logarithm of this function, 
we obtain 

(2.2) 

where In denotes natural logarithm. 
Writing In Bl := A, we can write Eq. (2.2) as: 

InQj =A+B2InLj +B3InJ(j (2.3) 

1 See any microeconomics textbook for the history and details of the Cobb-Douglas production 
function. 
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Equation (2.3) is linear in the parameters A, B2' and B3 and is therefore a linear 
equation, although it is nonlinear in the variables Q, L, and K.2 

Adding the error term Ui to Eq. (2.3), we obtain the following LRM: 

(2.4) 

Equation (2.4) is known as a log~log, double~log, log~linear, or constant elasticity 
model, because both the regressand and regressors are in the log form. 

An interesting feature of the log-linear model is that the slope coefficients can be in­
terpreted as elasticities.3 Specifically, B2 is the (partial) elasticity of output with respect 
to the labor input, holding all other variables constant (here capital, or K). That is, it gives 
the percentage change in output for a percentage change in the labor input, ceteris pari­
bus.4 Similarly, B3 gives the (partial) elasticity of output with respect to the capital input, 
holding all other inputs constant. Since these elasticities are constant over the range of 
observations, the double-log model is also known as constant elasticity model. 

An advantage of elasticities is that they are pure numbers, that is, devoid of units in 
which the variables are measured, such as dollars, person-hours, or capital-hours, be­
cause they are ratios of percentage changes. 

Another interesting property of the CD function is that the sum of the partial slope 
coefficients, (B2 + Bg), gives information about returns to scale, that is, the response of 
output to a proportional change in the inputs. If this sum is 1, then there are constant 
returns to scale that is, doubling the inputs will double the output, tripling the 
inputs will triple the output, and so on. If this sum is less than 1, then there are de~ 
creasing returns to scale that is, doubling the inputs less than doubles the output. 
Finally, if this sum is greater than 1, there are increasing returns to scale - that is, 
doubling the inputs more than doubles the output. 

Before presenting a concrete example, it should be noted that in a log-linear regres­
sion model involving several variables, the slope coefficient of each regressor gives the 
partial elasticity of the dependent variable with respect to that variable, holding all 
other variables constant. 

The Cobb-Douglas production function for the USA 

To illustrate the CD function, we present in Table 2.1 data on output (as measured by 
value added, in thousands of dollars), labor input (worker hours, in thousands), and 
capital input (capital expenditure, in thousands of dollars) for the US manufacturing 
sector. The data is cross-sectional, covering 50 states and Washington, DC, for the 
year 2005. The table can be found on the companion website. 

The OLS regression results are given in Table 2.2. 

2 Note thatA InBI . Therefore, Bl '" anti-log (Aj, which is nonlinear. However, in most applications the 
intercept may not have any viable economic interpretation. 

3 An elasticity is simply the ratio of the percentage change in one variable divided by the percentage in 
another variable. For example. if Q is quantity and P is price. then the percentage change in quantity divided 
by the percentage in price is called the price elasticity. 

4 That is. 

B _ 81nQ 
2 - 81nL 8L/L 

8Q L 

8L '(5' 
where we are using the curly d to indicate that we are taking the partial derivative. 
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Table 2.2 Cobb-Douglas function for USA, 2005. 

Dependent Variable: LOUTPUT 
Method: Least Squares 
Sample: 1 51 
Included observations: 51 

R-squared 0.964175 
Adjusted R-squared 0.962683 
S.E. of regression 0.266752 
Sum squared resid 3.415520 
Log likelihood -3.426721 
F-statistic 645.9311 

Note: L stands for the log of. 

Interpretation of the results 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

16.94139 
1.380870 
0.252028 
0.365665 
1.946387 
0.000000 

The first point to notice is that all the regression coefficients (Le. elasticities) are indi­
vidually statistically highly significant, for their p values are quite low. Secondly, on the 
basis of the F statistic we can also conclude that collectively the two factor inputs, labor 
and capital, are highly statistically significant, because its p value is also very low. The 
R2 value of 0.96 is also quite high, which is unusual for cross-sectional data involving 
heterogeneous states. The Akaike and Schwarz criteria are alternatives to R2, which 
are further discussed later in the chapter. The Durbin-Watson statistic, although rou­
tinely produced by Eviews, may not always be useful in cross-sectional data, although 
sometimes it is an indication of model specification errors, as we will show in Chapter 
7 on specification errors. 

The interpretation of the coefficient of InLABOR of about 0.47 is that if we increase 
the labor input by 1 %, on average, output goes up by about 0.47 %, holding the capital 
input constant. Similarly, holding the labor input constant, if we increase the capital 
input by 1%, on average, the output increases by about 0.52 %. Relatively speaking, it 
seems a percentage increase in the capital input contributes more towards the output 
than a percentage increase in the labor input. 

The sum of the two slope coefficients is about 0.9896, which is close to 1. This 
would suggest that the US Cobb-Douglas production function was characterized by 
constant returns to scale in 2005.5 

Incidentally, if you want to get back to the original production function given in Eq. 
(2.1), it is as follows: 

Qi 48.79LO'47 K 0.51 (2.5) 

Note: 48.79 is approximately the anti-log of 3.8876.6 

5 We will not discuss here the question of whether a production function for the USA as a whole is 
meaningful or not. There is a vast literature about this topic. Our main objective here is to illustrate the 
double-log model. 

6 Remember that A = In Bl, therefore Bl = anti-log of A. 
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Evaluation of the results 
Although, judged by the usual statistical criteria, the results of the Cobb-Douglas pro­
duction function given in Table 2.2 look impressive, we have to guard against the pos­
sibility of heteroscedasticity. This is because our "sample" consists of very diverse 
states, with diverse manufacturing sectors. Also, the physical size and population den­
sity varies from state to state. In Chapter 5, on heteroscedasticity, we will reconsider 
the Cobb-Douglas production function to see if we have the problem of 
heteroscedasticity. 

In Chapter 7, on specification errors, we will also find out if the error term is nor­
mally distributed, for the t and F tests dependent critically on the normality assump­
tion, especially if the sample size is small. In that chapter we will also consider if there 
is any specification error in the Cobb-Douglas production function used in our 
example. 

Although the double-log specification of the Cobb-Douglas production function is 
standard in the literature, for comparative purposes we also present the results of the 
linear production function, namely, 

(2.6) 

The results of this regression are shown in Table 2.3. 
The labor and capital coefficients in this regression are statistically highly signifi­

cant. If labor input increases by a unit, the average output goes up by about 48 units, 
holding capital constant. Similarly, if capital input goes up by a unit, output, on aver­
age, goes up by about 10 units, ceteris paribus. Notice that the interpretations of the 
slope coefficients in the log-linear production function and those in the linear produc­
tion function are different. 

Which is a better model, the linear model or the log-linear one? Unfortunately, we 
cannot compare the two models directly, as the dependent variables in the two models 
are different. Also, we cannot compare the R2 values of the two models, because to 
compare the R2s of any two models the dependent variable must be the same in the 
two models. In Section 2.8 we will show how we can compare the linear and log-linear 
models. 

Table 2.3 Linear production function. 

Dependent Variable: OUTPUT 
Method: Least Squares 
Sample: 1 51 
Included observations: 51 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

0.981065 
0.980276 
6300694. 
1.91E+15 

-869.2846 
1243.514 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

43217548 
44863661 
34.20724 
34.32088 
1.684519 
0.000000 
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2.2 Testing validity of linear restrictions 

The log-linear Cobb-Douglas production function fitted to the production data 
showed that the sum of the output-labor and output-capital elasticities is 0.9896, 
which is about 1. This would suggest that there were constant returns to scale. How do 
we test this explicitly? 

If in fact B2 + B 3 = 1, which is an example of a linear restriction, one way of testing 
for constant returns to scale is to incorporate this restriction directly into the estimat­
ing procedure. To see how this is done, we can write 

(2.7]7 

As a result, we can write the log-linear Cobb-Douglas production function as: 

InQi =A+(I-B3 )lnLj +B3 In ](j +ui 

Collecting terms, we can write Eq. (2.8) as: 

InQj -inLi =A+B3 (ln](i -lnLj)+ut 

Using the properties of logarithms, we can write this equation as:8 

(KJ In t +Ut 

(2.8) 

(2.9) 

(2.10) 

where Qj / Li output-labor ratio, or labor productivity, and](i / Lj capital-labor ratio, 
two of the "great" ratios of economic development and growth. 

In words, Eq. (2.10) states that labor productivity is a function of capital labor ratio. 
We call Eq. (2.10) the restricted regression (RS) and the original Eq. (2.4) the unre­
stricted regression (URS) for obvious reasons. 

Once we estimate Eq. (2.10) by OLS, we can obtain the estimated value of B3, from 
which we can easily obtain the value of B2 because of the linear restriction (B2 + B3 
1). How do we decide if the linear restriction is valid? To answer this question, we first 
present the results of the regression based on Eq. (2.10): Table 2.4. 

These results suggest that if the capital-labor ratio goes up by 1 %, labor productiv­
ity goes up by about Yz%. In other words, the elasticity of labor productivity with re­
spect to capital-labor ratio is Yz, and this elasticity coefficient is highly significant 
Note that the R2 of about 0.38 is not directly comparable with the R2 value of Table 2.2 
because the dependent variables in the two models are different. 

To test the validity of the linear regression, we first define: 

RSSR = residual sum of squares from the restricted regression, Eq. (2.10) 

RSSUR= residual sum of squares from the unrestricted regression, Eq. (2.4) 

m = number of linear restrictions (1 in the present example) 

k = number of parameters in the unrestricted regression (3 in the present example) 

n = number of observations (51 in the present example). 

7 We can also express the linear restriction as B3 1-B2. 
8 Note that InXY= In X + In Y; In(X/Y) In X -In Y; In Xk k In X (where kis a constant), but note that In 

(X + Y)ctlnX + In Y. 
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Table 2.4 Cobb-Douglas production function with linear restriction. 

Dependent Variable: LOG(OUTPUT/LABOR) 
Method: Least Squares 
Sample: 151 
Included observations: 51 

R-squared 
Adjusted R-squared 
S,E, of regression 
Sum squared resid 
Log likelihood 
F-statistic 

0,378823 
0,366146 
0,264405 
3,425582 

-3,501732 
29,88247 

Mean dependent var 
S,D, dependent var 
Akaike info criterion 
Schwarz criterion 
Prob(F-statistic) 
Durbin-Watson stat 

4.749135 
0.332104 
0.215754 
0.291512 
0.000002 

1.93684 

Now to test the validity of the linear restriction, we use a variant of the F statistic 
discussed in Chapter 1.9 

F (2.11) 

which follows the F probability distribution of statistics, where m and (n k) are the 
numerator and denominator degrees of freedom, It should be noted that RSSR is never 
smaller than RSSUR, so the F ratio is always nonnegative. 

As usual, if the computed F exceeds the critical Fvalue at the chosen level of signifi­
cance and the appropriate degrees of freedom, we reject the null hypothesis; other­
wise, we do not reject it. 

From Table 2.2 we obtain RSSUR 3.4155, and from Table 2.4 we obtain RSSl\ 
3.4255. We know that m 1 and n 51. Putting these values in Eq. (2.11), the reader 
will find that the estimated Fvalue is about 0.142, For 1 df in the numerator and 48 df 
in the denominator, this F value is not significant; actually the p value of obtaining 
such an F (the exact level of significance) is about 0,29, Therefore the conclusion in the 
present example is that the estimated Cobb-Douglas production function in Table 2.2 
probably exhibits constant returns to scale. So there is no harm in using the produc­
tion function given in Eq. (2.10). But it should be emphasized that the F testingproce­
dure outlined above is valid only for linear restriction,' it is not valid for testing 
nonlinear restriction(s), such as B2B3 1. 

2.3 Log-lin or growth models 

A topic of great interest to economists, the government, the business sector, and 
policy makers is the rate of growth of key economic variables, such as GDP, money 
supply, population, employment, productivity and interest rates, to name a few. 

9 For details, see Gujarati/Porter, op cit" pp, 243-6, 
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To see how the growth rate of an economic variable can be measured, we proceed as 
follows. To be specific, suppose we want to measure the rate of growth of real GDP (i.e. 
GDP adjusted for inflation) for the USA for the period 1960-2007. For this purpose, 
suppose we use the following model: 

RGDPt RGDP1960 (I+r)f (2.12) 

where RGDP stands for real GDP, r is the rate of growth, and t is time measured 
chronologically. 

Equation (2.12) is the well-known compound interest formula from basic finance. 
Taking the natural log of both sides of Equation (2.12), we obtain 

InRGDPt =lnRGDP1960 +tln(l+r) (2.13) 

Now letting Bl = In RGDP1960 and B2 In (l + r), we can write Equation (2.13) as 

In RGDPt = Bl + B2t (2.14) 

Adding the error term Ut to (2.14), we obtain the following regression modeI:l0 

(2.15) 

Equation (2.15) is like any other regression model; the only difference is that here 
the regressor is "time", which takes values of 1,2, ... , 47. 

Model (2.15) is called a semilog model because only one variable (in this case the 
regressand) appears in the logarithmic form, whereas the regressor (time here) is in 
the level or linear form. For descriptive purposes we can call (2.15) a log-lin model. 

Equation (2.15) can be estimated by the usual OLS routine. But before we present 
the regression results, it may be noted that the slope coefficient B2 in (2.14) measures 
the constant proportional or relative change in the regressand for a given absolute 
change in the value of the regressor. That is, 

relative changein regressand 
B2 =---------­

absolute change in regressor 
(2.16)11 

In practice we multiply B2 by 100 to compute the percentage change, or the growth 
rate; 100 times B2 is also known as the semi-elasticity of the regressand with respect 
to the regressor. 

Regression results 
Using the data on Real GDP for the USA for 1960-2007, we obtain the results given 
in Table 2.6. Table 2.5, containing the data, can be found on the companion 
website. 

10 We add the error term to take into account the possibility that the compound interest formula may 
not hold exactly. 

11 Readers familiar with calculus can differentiate Equation (2.15) with respect to t, to obtain: 
d(InRGDP) I dt =B2• But d(lnRGDP) I dt (1/ RGDP}(d(RGDP) I dt), which is a relative change in RGDP. 
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Table 2.6 Rate of growth of real GDP, USA, 1960-2007. 

Dependent Variable: LRGDP 
Method: Least Squares 
Sample: 19602007 
Included observations: 48 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

0.994454 
0.994333 
0.033280 
0.050947 
96.24727 
8247.650 

Interpretation of the results 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F -statistic) 

8.647156 
0.442081 

-3.926969 
-3.849003 

0.347740 
0.000000 

These results show that over the period of 1960-2007 the USA's real GDP had been in­
creasing at the rate of 3.15% per year. This growth rate is statistically significant, for the 
estimated t value of about 90.82 is highly significant. 

What is the interpretation of the intercept? If you take the anti-log of 7.8756, you 
will obtain anti-log (7.8756) = 2632.27, which is the beginning value of real GDP, that 
is, the value at the beginning of 1960, our starting point. The actual value of RGDP for 
1960 was about $2501.8 billion. 

Figure 2.1 shows the scatter diagram of the log of real GDP and time and the fitted 
regression line: 

. A technical note: The coefficient B2 gives the instantaneous (at a point in time) rate 
of growth and not the compound (over a period of time) rate of growth, r. But it is easy 
to compute the latter, noting thatB2 In(l + r). Therefore, r anti-Iog(B2) 1. Now 
anti-log (B2) 1.03199. Therefore the compound rate of growth is 0.03199 or about 
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3.2%, which is slightly greater than the instantaneous rate of gro\A.1h of about 3.1 %. The 
difference is due to compounding. 

The linear trend model 

Suppose that, instead of estimating the groMh model (2.14), we estimate the following 
model: 

(2.17) 

This is known as the linear trend model and the time variable is known as the trend 
variable. The slope coefficient A2 in this model gives the absolute (not relative or per­
centage) change in RGDP per unit time period. If A2 is positive, there is an upward 
trend in RGDP, but if it is negative, there is a downward trend in RGDP or any 
regressand. 

Using the data given in Table 2.5, we obtain the results in Table 2.7. 
These results show that over the period 1960-2007, real GD P in the USA increased 

by about $187 billion per year, showing an upward trend - not a surprising finding. 
The choice between the growth model of (2.15) and the linear trend model of (2.17) 

is up to the individual researcher, although for comparing RGDP across regions or 
countries it is the relative growth that may be more relevant. Note that since the de­
pendent variables in the log-linear and linear trend models are not the same, it is not 
appropriate to compare the two R2 values in determining which model to choose. But 
more on this in Section 2.7. 

Since we are dealing with time series data, the Durbin-Watson statistic, which is a 
measure of autocorrelation in the error term, is an important statistic. In Chapter 6 on 
autocorrelation we will see how we interpret this statistic. Suffice to note here that if 
there is no autocorrelation the value of the Durbin-Watson statistic is about 2;12 the 
closer it is to zero, the greater the evidence of autocorrelation. 

Table 2.7 Trend in Real US GDP, 1960-2007. 

Dependent Variable: RGDP 
Method: Least Squares 
Sample: 1960 2007 
Included observations: 48 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

0.971878 
0.971267 
450.1314 
9320440. 

-360.3455 
1589.756 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

6245.569 
2655.520 
15.09773 
15.17570 
0.069409 
0.000000 

12 As we will show in Chapter 6, this statistic is based on several assumptions. 
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2.4 Lin-log models 

In the log-lin, or growth, models, we are interested in finding the percent growth in the 
regress and for a unit change in the regressor. What about measuring the absolute 
change in the regressand for a percentage change in the regressor? If that is the objec­
tive of analysis, we can estimate the following model: 

(2.18) 

We call Eq. (2.18) a lin-log model, for obvious reasons. 
What does the slope coefficient B2 tell us in this model? As we know, the slope coef­

ficient gives the change in Y for a unit change in the regressor. So, 

Absolute change in Y Absolute change in Y 
B2 = -------­

Change in In X Relative change in X 
(2.19) 

Remember that a change in the log of a number is a relative change, or percentage 
change, after multiplication by 100. 

Letting t. denote a small change, we can write (2.19) as 

Or, 

t.Y 
B2 =-­

MIX 

t.Y = B2 (M I X) 

(2.20) 

(2.21) 

Equation (2.21) states that the absolute change in Y (= t.Y) is equal to slope times 
the relative change in X. Thus, if (M I X) changes by 0.01 unit (or 1 %), the absolute 
change in Yis 0.01 (B2). If in an application one finds B2 = 200, the absolute change in Y 
is (0.01)(200) = 2. 

Therefore, when we estimate an equation like (2.18), do notforget to multiply the 
value of the estimated slope coefficient by O. 01 or (what amounts to the same thing) 
divide it by 100. If you do not follow this procedure, you may be drawing misleading con­
clusions from your results. 

The lin-log model has been used in Engel expenditure functions, named after the 
German statistician Ernst Engel (1821-1896). Engel postulated that "the total expen­
diture that is devoted to food tends to increase in arithmetic progression as total ex­
penditure increases in geometric proportion".13 Another way of expressing this is that 
the share of expenditure on food decreases as total expenditure increases. 

To shed light on this, Table 2.8 gives data on food and nonalcoholic beverages con­
sumed at home (Expfood) and total household expenditure (Expend), both in dollars, 
for 869 US households in 1995.14 This table can be found on the companion website. 

Regression of the share of food expenditure (SFDHO) in total expenditure gives 
Table 2.9. 

13 This quote is attributed to H. Working (1943) Statistical laws of family expenditure, Journal of the 
American Statistical Association, vol. 38, pp. 43-56. 

14 This is a random sample from data collected for about 5,000 households in the Quarterly Interview 
Survey of the Consumer Expenditure Survey conducted by the US Department of Labor, Bureau of Labor 
Statistics. The data used here are discussed in Christopher Dougherty, Introduction to Econometrics, 3rd 
edn, Oxford University Press. 
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Table 2.9 Lin-log model of expenditure on food. 

Dependent Variable: SfDHO 
Method: Least Squares 
Sample: 1 869 
Included observations: 869 

Coefficient 

C 0.930387 

LOG (EXPEND) -0.077737 

Std. Error 

0.036367 

0.003591 

t-Statistic 

25.58359 

-21.64822 

R-squared 0.350876 Mean dependent var 0.144736 
Adjusted R-squared 0.350127 S.D. dependent var 0.085283 
S.E. of regression 0.068750 Akaike info criterion -2.514368 
Sum squared resid 4.097984 Schwarz criterion -2.503396 

likelihood 1094.493 Durbin-Watson stat 1.968386 
f-statistic 468.6456 Prob(f-statistic) 0.000000 

Prob. 

0.0000 

0.0000 

Note: SfDHO = share of expenditure on food and nonalcoholic beverages in the total 
expenditure and Expend = total household expenditure. 

All the estimated coefficents are individually highly statistically significant. The in­
terpretation of the slope coefficient of about -0.08 is that if total expenditure increases 
by 1%, on average, the share of expenditure on food and nonalcoholic beverages goes 
down by about 0.0008 units, thus supporting the hypothesis. This can be seen 
more clearly in Figure 2.2. (Note: Do not forget to divide the slope coefficient by 100). 
Alternatively, the slope coefficient can be interpreted as: If total expenditure increases 
by 100%, on average, the share of expenditure on food and nonalcoholic beverages 
goes down by about 0.08 units. 

Although we have fitted a lin-log modeL Figure 2.2 shows that the relationship be­
tween SFDHO and log (EXPEND) seems nonlinear. There are methods of capturing 
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Figure 2.2 SFDHO and log of expenditure. 
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nonlinear relationships among variables, such as the reciprocal models or polynomial 
regression models, which we now discuss. 

2.5 Reciprocal models 

Sometimes we come across situations where the relationship between the regressand 
and regressor(s) is reciprocal or inverse, as in the following regression model: 

11 =B1 +Bz( ;i )+Uj (2.22) 

This model is nonlinear in X because it enters the model inversely or reciprocally, but 
it is an LRM because the parameters, the Bs, are linear. 

Some of the properties of this model are as follows. As X increases indefinitely. the 
term B2 (11 Xi) approaches zero (note: B2 is a constant) and Yapproaches the limiting 
or asymptotic value B 1• The slope of Eq. (2.22) is given by 

Therefore, if B2 is positive, the slope is negative throughout, and if B2 is negative, the 
slope is positive throughout. 

Illustrative example: food expenditure revisited 

In the previous section we fitted the lin-log model to food expenditure in relation to 
total expenditure. Let us see if the reciprocal model can also be fitted to the same data. 
So we estimate (Table 2.10) 

SFDHO=B1 +B2( 1 )+Ui 
Expendj 

Table 2.10 Reciprocal model of food expenditure. 

Dependent Variable: SFDHO 
Method: Least Squares 
Sample: 1 869 
Included observations: 869 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

0.333236 
0.332467 
0.069678 
4.209346 
1082.843 
433.3100 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

0.144736 
0.085283 

-2.487556 
-2.476584 

1.997990 
0.000000 

(2.23) 
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Figure 2.3 Share of food expenditure in total expenditure. 

Interpretation of the results 
Both regression coefficients are statistically highly significant, for their p values are 
practically zero. The intercept value of about 0.08 suggests that if total expenditure in­
creases indefinitely, the share of food and nonalcoholic expenditure in total expendi­
ture will eventually settle down to about 8%. The slope coefficient B2 is positive, 
suggesting that the rate of change of SFDHO with respect to total expenditure will be 
negative throughout. This can be seen more vividly from Figure 2.3. 

If you compare Figures 2.2 and 2.3, you will see that they are similar in appearance. 
The practical question is: which is a better model - lin-log or reciprocal? 

This is a common problem in empirical work - the choice of the appropriate model. 
Since both models fit the data reasonably well, it is hard to choose between the two. On 
the basis of the R2 criterion, the lin-log model gives a slightly higher value, but the dif­
ference in the two R2s is not very large. Incidentally note that we can compare the two 
R2 values because the dependent variable in the two models is the same. 

2.6 Polynomial regression models 

Let us revisit the linear trend model considered in Eq. (2.17) in which we regressed real 
GDP (RGDP) on the trend variable, time. Now consider the following model: 

+ A2 time + A3 time2 + Ut (2.24) 

Equation (2.24) is an example of a quadratic function, or more generally, a 
second-degree polynomial in the variable time. If we had added time3 to the model, it 
would have been a third-degree polynomial equation, the highest power of the 
regressor representing the degree of the polynomial. 

The first point to note about Eq. (2.24) is that it is an LRM, that is, linear in the 
parameters, although the time variable enters the model linearly as well as 
quadratically. Second, the variables time and time2 are functionally related and will be 
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Table 2.11 Polynomial model of US GDP, 1960-2007. 

Dependent Variable: RGDP 
Method: Least Squares 
Sample: 19602007 
Included observations: 48 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

0.996787 
0.996644 
153.8419 
1065030. 

-308.2845 
6979.430 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
P rob(F -statistic) 

6245.569 
2655.520 
12.97019 
13.08714 
0.462850 
0.000000 

highly correlated. Will this create the collinearity problem, which will violate one of 
the assumptions of the CLRM that there are no exact linear relationships among the 
regressors? No, because time2 is a nonlinear function of time. 

Using the data on RGDP, we obtained the results in Table 2.11. 
First, notice that all the estimated coefficients are statistically significant, assuming 

the usual assumptions of the classical models hold. How do we interpret these results? 
In Eq. (2.17) with only the time variable as regressor, the coefficient of time was about 
186.99, suggesting that RGDP was increasing by a constant amount of $186.99 billion 
per year. 

But for the quadratic model RGDP is increasing at an increasing rate because both 
the coefficients of time and time-squared are positive. To see this differently, for the 
quadratic model given in Eq. (2.24), the rate of change of RGDP is given as 

dRGDP 

dtime 
+2A3time 

which is positive because both A2 and are positive. 

(2.25) 

Note: The left-hand side of this equation is the derivative ofRGDP with respect to 
time. 

Using the results in Table 2.11, we obtain: 

dRGDP 

dt 
68.53 + 2(2.42) time 

= 68.53 + 484time 

(2.26) 

As (2.26) shows, the rate of change of RGDP depends on the time at which the 
rate of change is measured. This is in strong contrast to the linear trend model, Eq. 
(2.17), which showed a constant rate of change of about $187 billion per year. 15 

15 If you tal<e the second derivative ofEq. (2.24) with respect to time, you will obtain the value of 4.84. So 
it is the rate of change of the rate of change that is constant over time. (Note that the positive second 
derivative implies that the RGDP is increasing at an increasing rate.) 
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Table 2.12 Polynomial model oflog US GDP, 1960-2007. 

Dependent Variable: LRGDP 
Method: Least Squares 
Sample: 19602007 
Included observations: 48 

e 
TIME 

TIMEA2 

R-squared 
Adjusted R-squared 
S.£. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

Coefficient 

7.833480 

0.036551 

0.000103 

0.996095 
0.995921 
0.028234 
0.035873 
104.6665 
5738.826 

Std. Error t-Statistic 

0.012753 

0.001201 

2.38E-05 

Mean dependent val' 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

614.2239 

30.44292 

8.647157 
0.442081 

-4.236106 
-4.119156 

0.471705 
0.000000 

Log-lin model with quadratic trend variable 

Prob. 

0.0000 

0.0000 

0.0001 

Suppose instead of estimating Eq. (2.24) that we estimate the following model: 

(2.27) 

The regression results of this model are shown in Table 2.12. 
It is interesting to note that in Table 2.11 the trend and trend-squared coefficients 

are positive, whereas in Table 2.12 the trend coefficient is positive but the 
trend-squared term is negative. This suggests that although the rate of growth of 
RGDP is positive, it is increasing at a decreasing rate. To see this clearly, differentiating 
Eq. (2.27) with respect to time, we obtain (after suppressing the error term) 

dlnRGDP -B 2B 
----- 2 + 3t 

dt 
(2.28)16 

That is, 

_l_dRGDP ",B +2B t 
RGDP t 2 3 

(2.29) 

But the left-hand side of this equation is the rate of growth of RGDP. 

Rate of growth of RGDP B2 + 2B 3t 

0.0365 -0.0002t 
(2.30) 

As Eq. (2.30) shows, the rate of growth ofRGDP decreases at the rate of 0.0002 per 
unit of time. 

Notice carefully that in Eq. (2.24) we are measuring the rate of change in RGDP, but 
in Eq. (2.27) we are measuring the rate of growth in RGDP. Dimensionally, these are 
different measures. 

16 Recall that dlnY I dX = (l/y)dY I dX, which is a relative change in Y. lfit is multiplied by 100, it will 
become percentage change in Y or the growth rate in Y. The point to keep in mind is that the change in the 
log of a variable is a relative change. 
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2.7 Choice of the functional form 

The practical problem in doing empirical work is to decide on the functional form of 
the regression model that may be appropriate in a given situation. In the two-variable 
regression model this choice is very often not difficult because we can always plot the 
regressand and the (single) regressor and visually decide the functional form. But 
when it comes to the multiple regression models this choice is not easy, for it is diffi­
cult to draw a multi-dimensional plot. 

In practice, therefore, we need to lmow the properties of the models we have dis­
cussed in this chapter. One way of accomplishing this is to consider the slope and the 
elasticity coefficients of the various models, which are summarized in Table 2.13. 

If there is more than one regressor in the modeL one can compute the partial slope 
and partial elasticity coefficients, holding other variables in the model constant. 17 

Table 2.13 Summary of functional forms. 

Model Form Slope Elasticity 

(~) (~}y 
Linear Y "'Bt +B2X B(X)-

2~y 

Log-linear InY '" Bt + B21nX B2(~) B2 

Log-lin InY=Bt + B2X B2(y) B2(X)' 

Lin-log Y =Bt + B21nX B2(~) B eJ 2 Y 

Reciprocal 
Y = Bt +B2(~) -B2(~2 ) B ( 1 )-

- 2~XY 

Note: • indicates that the elasticity coefficient is variable, depending on the values taken 
by X or Yor both. If no X and Yare specified, these elasticities are often evaluated at the 
mean values of X and Y, namely X and:f. 

2.8 Comparing linear and log-linear models 

A frequently encountered problem in research is the choice between linear and 
log-linear models. 18 Consider our discussion about the production function for the 
US economy. Equation (2.4) is an example of a log-linear production function, the 
Cobb-Douglas function, whereas Eq. (2.6) is an example of a linear production func­
tion. Which is a better model for the data given in Table 2.1? We have already given 
the results of fitting these models in Tables 2.2 and 2.3, respectively. 

On their own, both models fit the data well. But we cannot directly compare the two 
models, for the dependent variables in the two models are different. But a simple 

17 For example. for the model Y = BI + B2X + B3X2, the slope coefficient is dYldX = B2 + 2BgX and the 
elasticity coefficient is(dYldX)(X IY) = (B2 + 2B3X)(X IY)and this elasticity will depend on thevaIues ofXand Y. 

18 In the log-linear model the regressand is in log form. butthe regressors could be in log form or linear form. 
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transformation of the dependent variable can render the two models comparable. We 
proceed as follows: 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Compute the geometric mean (GM) of the dependent variable; call it 
Q*,19 For the data in Table 2.1, the GM of the output variable is 
e16.94139 = 22842628. 

Divide Qi by Q* to obtain: (Qi /Q") = Oi 
Estimate Eq. (2.4) using Oi in lieu of Qi as the dependent variable (Le. 
use In Oi as the dependent variable). 

Estimate Eq. (2.6) using Oi as the dependent variable instead of Qi' 

The dependent variables thus transformed are now comparable. Run the trans­
formed regressions, obtaining their residual sum of squares (RSS) (say RSS1 for the 
linear model and RSS2 for the log-linear model) and choose the model that has the 
lowest RSS. To save space, we will not reproduce the results of these transformed re­
gressions except for the following statistics: 

RSS 
log-linear model 3.4155 
linear model 3.6519 

Since the RSS of the log-linear model is lower, we may choose it over the linear 
model, although the two RSS are quite close. But a more formal test is available. 

If the null hypothesis is that both models fit the data equally well, we can compute20 

''-=!!.-In(RSS1)~ 2 
2 RSS2 Xl 

(2.31) 

where RSS1 is the RSS from the linear model and RSS2 is the RSS from the log-linear 
model. If the computed "-(lambda) exceeds the critical chi-square value for 1 df, we can 
reject the null hypothesis and conclude that it is the log-linear production function 
that is a better model. If, however, the computed "-is less than the critical value, we fail 
to reject the null hypothesis, in which case both models perform equally wel1.21 

For our example, it can be shown that "- = 74.2827. The 5% critical chi-square value 
for 1 df. is 3.841. Since the computed chi-square value of74.2827 is much greater than 
the critical chi-square value, we can conclude that the log-linear model performs 
better than the linear model. 

Since the log-linear model is easy to interpret in terms of elasticities of labor and 
capital and the returns to scale parameter, we may choose that model in practice. 

2.9 Regression on standardized variables 

In the various examples discussed so far the regressand and regressors were not neces­
sarily expressed in the same unit of measurement. Thus in the Cobb-Douglas 

19 The geometric mean of Yl and Y2 is (ljY2JlI2, the GM of Yv Y2 and Y3 is (Yjy2y3)113 and so on. 
20 See Gary Koop, Introduction to Econometrics, John Wiley & Sons Ltd, England, 2008, pp. 114-15. 
21 If RSS2 > RSSl, put the former in the numerator of Eq. (2.31) and RSSI in the denominator. The null 

hypothesis here is that both models perform equally well. If this hypothesis is rejected, then it is the linear 
model that is preferable to the log-linear model. 
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production function discussed earlier output, labor input and capital input were mea­
sured in different units of measurement. This affects the interpretation of regression 
coefficients, because the size of the (partial) regression coefficient depends on the 
units of measurement of the variable. 

But this problem can be avoided if we express all variables in the standardized form. 
In the standardized form we express the value of each variable as deviation from its 
mean value and divide the difference by the standard deviation of that variable, such as 

y'= 
t Sy 

x. -x 
X~=_t __ 

t Sx 
(2.32) 

where Syand Sxare the sample standard deviations and Y andX are the sample means 
of Yand X, respectively. Y/ and X; are called standardized variables. 

It is easy to prove that the mean value of a standardized variable is always zero and 
its standard deviation value is always 1, no matter what its original mean and standard 
deviation values are. It is also interesting to note that the standardized variables are 
what are called pure (Le. unit-free) numbers. This is because the numerator and de­
nominator of the standardized variables are measured in the same unit of 
measurement. 

If you now run the following regression: 

+uj (2.33) 

you will find that bi is zero.22 
The starred regression coefficients are called the beta coefficients, or standardized 

coefficients, whereas the regression coefficients of unstandardized variables are called 
unstandardized coefficients. 

The slope coefficient in this regression is interpreted as follows: if the standardized 
regressor increases by one standard deviation unit, on average, the standardized 
regressand increases by B; standard deviation units. The point to remember is that, 
unlike the usual OLS regression, we measure the impact of a regressor not in terms of 
the original units in which Y and X are measured, but in standard deviation units. 

It should be added that if we have more than one regressor, we can standardize all 
the regressors. To illustrate, we revisit the linear production function for the USA con­
sidered earlier (see Table 2.3) and reestimate it using standardized output, labor and 
capital variables. The results are shown in Table 2.14. 

As expected, the intercept term is zero. The two standardized variables have indi­
vidually significant impacts on (standardized) output The interpretation of a coeffi­
cient of about 0.40 is that if the labor input increases by one standard deviation unit, 
the average value of output goes up by about 0.40 standard deviation units, ceteris pa­
ribus. The interpretation of the capital coefficient of about 0.60 is that if the capital 
input increases by one standard deviation unit, on average, output increases by about 
0.60 standard deviation units. Relatively speaking, capital has more impact on output 
than labor. The regression coefficients in Table 2.3, by contrast, are unstandardized 
coefficients. 

22 Note that: bi Y - b;K, but the mean values of the standardized variables are zero, so hi is zero ipso 
facto. 
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Table 2.14 Linear production function using standardized variables. 

Dependent Variable: 01.rfPUTSTAR 
Method: Least Squares 
Sample: 1 51 
Included observations: 51 

C 

LABORSTAR 

CAPITALSTAR 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log liketihood 
F-statistic 

I Coefficient 

2.52E-08 

0.402388 

0.602185 

0.981065 
0.980276 
0.140441 
0.946735 
29.29145 
1243.514 

Std. Error t-Statistic 

0.019666 

0.059185 

0.059185 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

1.28E-06 

6.798766 

10.17455 

5.24E-09 
1.000000 

-1.031037 
-0.917400 

1.684519 
0.000000 

Note: STAR variables are standardized variables. 

Prob. I 

l~ O. 

0.0000 

If you look at the results shown in Table 2.3, you might thinl< that labor has rela­
tively more impact on output than capital. But since labor and capital are measured in 
different units of measurement, such a conclusion would be misleading. But in a re­
gression on standardized variables, it may be easier to assess the relative importance of 
the various regressors, because by standardizing we put all regressors on an equal 
footing. 

But note that whether we use standardized or unstandardized variables, the t, F, and 
R2 values remain the same, thus not affecting statistical inference. 

2.10 Measures of goodness of fit 

If you look at the various computer printouts given in the preceding tables, you will ob­
serve that there are several measures of "goodness of fit" of the estimated model; that 
is, how well the model explains the variation in the regressand. These measures in­
clude: (1) coefficient of determination, R2, (2) adjusted R2, usually denoted by R2, (3) 
Akaike's Information Criterion, and (4) Schwarz's Information Criterion. 

1 R2 measure 
As noted earlier, this measures the proportion of the variation in the regress and ex­
plained by the regressors. It lies between 0 and 1, 0 indicating complete lack of fit and 1 
indicating a perfect fit. R2 usually lies within these limits; the closer it is to 0, worse is 
the fit, and the closer it is to 1, the better is the fit. A drawback of this measure is that by 
including more regressors in the model we can generally increase the R2 value. This is 
because R2 is an increasing function of the number of regressors in the model. 

Although we have defined R2 as the ratio of ESS to TSS, it can also be computed as 
the squared correlation coefficient between the actual Yand the estimated Y (= Y) 
from the regression model, where Y is the regressand, that is: 

(I;ytYi)2 

I;yt I;yt 
(2.34) 
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where YI (lj andYi =(~ 

2 Adjusted R2 
We have already discussed the adjusted R2 (= Jj2). The adjusted R2 is used to compare 
two or more regression models that have the same dependent variable, but differing 
numbers of regressors. Since the adjusted R2 is usually smaller than the unadjusted R2, 

it seems it imposes a penalty for adding more regressors to the model. 

3 Akaike's Information Criterion (AIC) 
Like the adjusted R2, the AIC criterion adds a somewhat harsher penalty for adding 
more variables to the modeL In its logarithmic form, AIC is defined as follows: 

(2.35) 

where RSS residual sum of squares and 2k I n is the penalty factor. 
The AIC criterion is useful in comparing two or more models. The model with the 

lowest Ale is usually chosen. The AIC criterion is also used for both in-sample and 
out-of-sample forecasting performance of a regression model. 

4 Schwarz's Information Criterion (SIC) 
This is an alternative to the AIC criterion, which in its log form can be expressed as: 

k (RSS) InSIC = ;lnn +In---;;- (2.36) 

The penalty factor here is [(k I n)ln n], which is harsher than that of Ale. Like AIC, the 
lower the value of SIC, the better the model. Also, like AIC, SIC can be used to com­
pare in-sample or out-of-sample forecasting performance of a model. 

It should be added that the idea behind adding the penalty factor is Occam's razor, 
according to which "descriptions should be kept as simple as possible until proved in­
adequate". This is also known as the principle of parsimony. 

On the basis of this principle, which is a better criterion, AIC or SIC? Most often 
both these criteria select the same model, but not always. On theoretical grounds, AlC 
may be preferable, but in practice one may choose the SIC criterion, for it may select a 
more parsimonious model, other things remaining the same.23 Eviews presents both 
these criteria. 

If you compare the linear trend model given in Table 2.7 with the quadratic trend 
model given in Table 2.12, you will find that for the linear model the Akaike value is 
15.0 and for the quadratic model it is -4.23. Here you would choose the quadratic 
trend model. On the basis of the Schwarz criterion, these values are 15.17 for the linear 
trend model and -4.12 for the quadratic trend model. Again, you would choose the 
latter model on the basis of this criterion. However, for the quadratic trend model, the 
Akaike value of -4.23 is more negative than the Schwarz value of giving Akaike 
a slight edge in the choice. 

It may be interesting to note that for the LRM both these criteria are related to the 
F test as follows: "For a large enough sample size n, the comparison of AlC values 

23 For a discussion about the relative merits of the various model selection criteria, see Francis X. 
Diebold, Elements of Forecasting, 3rd edn, Thomson/South-Western Publishers, 2004, pp. 87-90. 
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corresponds to an F test with critical value 2 and SIC corresponds to an F test with 
critical value log(n)."24 

If we are dealing with nonlinear-in-parameter regression models, estimated by the 
method of maximum likelihood (ML), the goodness of fit is measured by the likelihood 
ration (LR) statistic A, which is explained in the Appendix to Chapter 1, which dis­
cusses the ML method. In Part III we will discuss models in which we use the LR 
statistic. 

2.11 Summary and conclusions 

In this chapter we considered a variety of linear regression models that is, models 
that are linear in the parameters or can be made linear with suitable transformations. 
Each model is useful in specific situations. In some applications more than one model 
may fit the data. We discussed the unique features of each model in terms of slope and 
elasticity coefficients. 

In comparing two or more models on the basis of R2 we pointed out that the de­
pendent variable in these models must be the same. In particular, we discussed the 
choice between a linear and a log-linear model, two of the commonly used models in 
research. 

Although we have discussed the various models in terms of two-variable or 
three-variable linear regression models for expository purposes, they can be easily ex­
tended to regression models involving any number of regressors.25 We can also have 
models in which some regressors are linear and some are log-linear. 

We briefly discussed the role of standardized variables in regression analysis. Since 
a standardized variable has zero mean and unit standard deviation, it is easier to com­
pare the relative influence of various regressors on the regress and. 

We can evaluate a model in terms of the expected signs of the regression coeffi­
cients, their statistical significance in terms of the t value of the coefficients, or the F 
test if we are interested in the joint significance of two or more variables. We can judge 
the overall performance of a model in terms ofR2. Ifwe are comparing two or more re­
gression models, we can use the adjusted R2 or the Akaike or Schwarz information 
criteria. 

In this chapter we also discussed how we can incorporate linear restrictions in esti­
mating regression models. Such restrictions are often suggested by economic theory. 

Exercises 

2.1 Consider the following production function, known in the literature as the tran­
scendental production function (TPF). 

Q. = BILB2 K B
3 

I I I 

where Q, L, and K represent output, labor, and capital, respectively. 
(a) How would you linearize this function? (Hint: logarithms.) 

24 See Christiaan Heij. Paul de Boer. Philip Hans Franses. Teun Kloek. and Herman K. van Dijk, 
Econometrics Methods with Applications in Business and Ecol1omics, Oxford University Press. Oxford, UK. 
2004. p. 280. 

25 To handle such multivariable regression models, we need to use matrix algebra. 
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(b) What is the interpretation of the various coefficients in the TPF? 
(c) Given the data in Table 2.1, estimate the parameters of the TPF. 
(d) Suppose you want to test the hypothesis that B4 Bs = O. How would you 

test these hypotheses? Show the necessary calculations. (Hint: restricted 
least squares.) 

(e) How would you compute the output-labor and output-capital elasticities 
for this model? Are they constant or variable? 

2.2 How would you compute the output-labor and output-capital elasticities for 
the linear production function given in Table 2.3? 

2.3 For the food expenditure data given in Table 2.6, see if the following model fits 
the data well: 

SFDHOi = Bl + B2 Expendi + B3 Expendr 

and compare your results with those discussed in the text. 

2.4 Would it make sense to standardize variables in the log-linear Cobb-Douglas 
production function and estimate the regression using standardized variables? Why or 
why not? Show the necessary calculations. 

2.5 Show that the coefficient of determination, R2, can also be obtained as the 
squared correlation between actual Yvalues and the Yvalues estimated from the re­
gression model 2;), where Y is the dependent variable. Note that the coefficient of 
correlation between variables Yand X is defined as: 

r 

whereYi 1j 
namely, Y. 

Xi = Xi -X. Also note that the mean values of Yi and Yare the same, 

2.6 Table 2.15 gives cross-country data for 83 countries on per worker GDP for 1997 
and Corruption Index for 1998.26 

(a) Plot the index of corruption against per worker GDP. 
(b) Based on this plot what might be an appropriate model relating corruption 

index to per worker GDP? 
(c) Present the results of your analysis. 
(d) If you find a positive relationship between corruption and per capita GDP, 

how would you rationalize this outcome? 

26 Source: http://www.transparency.org/pressreleases_archive/1998/1998.09.22.cpi.html (for corruption 
index; Source: http://www.worldbank.org/research/growth/ (for per worker GDP). 
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Most of the linear regression models we have discussed so far involved a quantitative 
regress and and quantitative regressors. We will continue to assume that the 
regressand is quantitative, but we will now consider models in which the regressors 
are quantitative as well as qualitative. In Chapter 8 we will consider regressands that 
are also qualitative in nature. 

In regression analysis we often encounter variables that are essentially qualitative in 
nature, such as gender, race, color, religion, nationality, geographical region, party af­
filiation, and political upheavals. For example, in the wage function we discussed in 
Chapter 1, we had gender, union affiliation, and minority status among the regressors 
because these qualitative variables play an important role in wage determination. 

These qualitative variables are essentially nominal scale variables which have no 
particular numerical values. But we can "quantify" them by creating so-called dummy 
variables, which take values of ° and 1, 0 indicating the absence of an attribute and 1 
indicating its presence. Thus the gender variable can be quantified as female = 1 and 
male 0, or vice versa. In passing, note that dummy variables are also called indicator 
variables, categorical variables, and qualitative variables. 

In this chapter we show how the dummy variables can be handled within the frame­
work of the classical linear regression model (CLRM). For notational convenience, we 
will indicate the dummy variables by the letter D. 

To set the stage, we start with a concrete example. 

3.1 Wage function revisited 

In Chapter 1 we considered the determination of hourly wage for a cross-section of 
1,289 persons based on the data obtained from the Current Population Survey (CPS) 
for March 1995. The variables used in the analysis and the regression results are given 
in Table 1.2. 

Let us write the wage function in a different format to emphasize the role of dummy 
variables in the regression. 

1 For more details, see Gujarati/Porter, op cit., Chapter 9. 
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Table 3.1 A model of wage determination. 

Dependent Variable: WAGE 
Method: Least Squares 
Sample: 1 1289 
Included observations: 1289 

Coefficient Std. Error 

C 

FEMALE 

NONWHITE 

UNION 

EDUCATION 

EXPER 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

I 

0.323339 
0.320702 
6.508137 
54342.54 

-4240.370 
122.6149 

-7.183338 1.015788 

-3.074875 0.364616 

-1.565313 0.509188 

1.095976 0.506078 

1.370301 0.065904 

0.166607 0.016048 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F -statistic) 

t-Statistic 

-7.071691 

-8.433184 

-3.074139 

2.165626 

20.79231 

lO.38205 

12.36585 
7.896350 
6.588627 
6.612653 
1.897513 
0.000000 

Prob. 

0.0000 

0.0000 

0.0022 

0.0305 

0.0000 

0.0000 

where D2i 1 if female, 0 for male; D3i = 1 for nonwhite, 0 for white; and 1 if 
union member, 0 for non-union member, where the Ds are the dummy variables. 

For convenience, we are reproducing the results of the regression given in Table 
1.2, using the notation given in Eq. (3.1) (Table 3.1). 

Before we interpret the dummy variables, some general comments about these vari­
ables are in order. 

First, if an intercept is included in the model and if a qualitative variable has m cate­
gories, then introduce only (m 1) dummy variables. For example, gender has only two 
categories; hence we introduce only one dummy variable for gender. This is because if 
a female gets a value of 1, ipso facto a male get a value of zero. Of course, if an attribute 
has only two categories, it does not matter which category gets the value of 1 or zero. 
So we could code male as 1 and female as O. 

If, for example, we consider political affiliation as choice among Democratic, Re­
publican, and Independent parties, we can have at most two dummy variables to rep­
resent the three parties. If we do not follow this rule, we will fall into what is called the 
dummy variable trap, that is, the situation of perfect collinearity. Thus, if we have 
three dummies for the three political parties and an intercept, the sum of the three 
dummies will be I, which will then be equal to the common intercept value of 1, lead­
ing to perfect collinearity.2 

Second, if a qualitative variable has m categories, you may include m dummies, pro­
vided you do not include the (common) intercept in the model. This way we do not fall 
into the dummy variable trap. 

Third, the category that the value of 0 is called the reference, benchmark or 
comparison category. All comparisons are made in relation to the reference category, 
as we will show with our example. 

2 Note that including an intercept in the model is eqUivalent to including a regressor in the model whose 
value is always one. 
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Fourth, if there are several dummy variables, you must keep track of the reference 
category; otherwise, it will be difficult to interpret the results. 

Fifth, at times we will have to consider interactive dummies, which we will illus­
trate shortly. 

Sixth, since dummy variables take values of 1 and 0, we cannot take their loga­
rithms. That is, we cannot introduce the dummy variables in log form. 3 

Seventh, if the sample size is relatively small, do not introduce too many 
dummy variables. Remember that each dummy coefficient will cost one degree of 
freedom. 

Interpretation of dummy variables 

Returning to the wage function given in Table 3.1, let us interpret the female dummy 
coefficient of -3.0748. Its interpretation is that the average hourly salary of a female 
worker is lower by about $3.07 as compared to the average salary of a male worker, 
which is the reference category here, of course holding all other variables constant. 
Similarly, the average hourly wage of union workers is higher by about $1.10 as com­
pared to the average pay of non-union workers, which is the reference category. Like­
wise, the average hourly wage of a nonwhite worker is lower by about -$1.57 than a 
white worker, which is the reference category. 

In passing, note that all the dummy coefficients are individually statistically 
highly significant, for their p values are practically 0. These dummy coefficients are 
often called differential intercept dummies, for they show the differences in the 
intercept values of the category that gets the value of 1 as compared to the refer­
ence category. 

\Vhat does the common intercept value of about -7.18 denote? It is the expected 
hourly wage for white, non-union, male worker. That is, the common intercept value 
refers to all those categories that take a value ofO. Of course, this is the mechanical in­
terpretation of the intercept term.4 As we have remarked on several occasions, a nega­
tive intercept value very often does not have a viable economic interpretation. 

The interpretation of the quantitative regressors is straightforward. For example, 
the education coefficient of 1.37 suggests that holding all other factors constant, for 
every additional year of schooling the average hourly wage goes up by about $1.37. 
Similarly, for every additional year of work experience, the average hourly wage goes 
up by about $0.17, ceteris paribus. 

3.2 Refinement of the wage function 

We have found that the average salary of a female worker is lower than that of her male 
counterpart and we also found that the average salary of a nonwhite worker is lower 
than that of his white counterpart. Is it possible that the average salary of a female non­
white worker is different from the average salary of a female worker alone or a non­
white worker alone? If that turns out to be the case, does it say something about 
possible discrimination against nonwhite female workers? 

3 However, if instead of 1 and 0 you choose 10 and 1 as the dummy values, you may take their logs. 
4 Basically, it shows where the regression line (or plane) lies along the Y-axis, which represents the 

dependent variable. 



SO The linear regression model) 

Table 3.2 Wage function with interactive dummies. 

Dependent Variable: WAGE 
Method: Least Squares 
Sample: 1 1289 
Included observations: 1289 

Coefficient Std. Error ~c 
e -7.088725 1.019482 3264 

D2(Gender) -3.240148 0.395328 

D3(Race) -2.158525 0.748426 

D4(Union) 1.115044 0.506352 

EDUe 1.370113 0.065900 

EXPERI 0.165856 0.016061 

D2*D3(GenderRace) 1.095371 1.012897 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

0.323955 
0.320791 
6.507707 
54293.02 

-4239.783 
102.3875 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

-8.196106 

-2.884087 

2.202113 

20.79076 

10.32631 

1.081424 

12.36585 
7.896350 
6.589267 
6.617298 
1.898911 
0.000000 

Prob. 

0.0000 

0.0000 

0.0040 

0.0278 

0.0000 

0.0000 

0.2797 

To find this out, we reestimate the wage function by adding to it the product of the 
female and nonwhite dummies. Such a product is called an interactive dummy, for it 
interacts the two qualitative variables. Adding the interactive dummy, we obtain the 
results in Table 3.2. 

The coefficient of the interactive dummy (D2 x D3) is about 1.10, but it is not statis­
tically significant, for its p value is about 28%. 

But how do we interpret this value? Ceteris paribus, being a female has a lower aver­
age salary by about $3.24, being a nonwhite has a lower average salary by about $2.16 
and being both has an average salary lower by about $4.30 -3.24 - 2.16 + 1.10). In 
other words, compared to the reference category, a nonwhite female earns a lower av­
erage wage than being a female alone or being a nonwhite alone. 

We leave it for the reader to find out if a female union worker or a nonwhite union 
worker earns an average wage that is different from the reference category. You can 
also interact female and union dummies, female and experience dummies, nonwhite 
and union dummies, and nonwhite and experience dummies. 

3.3 Another refinement of the wage function 

We implicitly assumed that the slope coefficients ofthe quantitative regressors, edu­
cation, and experience, remain the same between male and female, and between white 
and nonwhite wage earners. For example, this assumption would imply that for every 
additional year of schooling or every additional year of work experience, male and 
female workers earn the same incremental amount of hourly wage. Of course this is an 
assumption. But with dummy variables, we can test this assumption explicitly. 

Let us express the wage function as follows: 
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Wagej Bl +B2D2i +B3D3i +B4D4i + BSEdUCj 

+B6 ExPi + B7 (D2i EdUCj) + B 8 (D3iEduCi) 

+B9 (D4j EdUCj) + BlO (D2i ExPi) + BU (D3ib:p i) 

+ B12 (D 4i ExP'i ) + ui 

(3.2) 

In (3.2) B2! B3! and B4 are differential intercept dummies! as before! and B7 
through Bn are differential slope dummies. If, for example, b7, the estimated coeffi­
cient of B7! is statistically significant, it would suggest that the rate of average salary 
progression per additional year of education is different for female than the reference 
group! which is white male, whose slope coefficient isBs. Other differential slope coef­
ficients are to be interpreted similarly. 

The results of regression (3.2) are shown in Table 3.3. Compared to the results in 
Tables 3.1 and 3.2, the results in Table 3.3 are revealing. The differential slope coeffi­
cients for females with respect to education and experience are negative and statisti­
cally significant, suggesting that the rate of progression of average hourly wage for 
female workers vis Ii vis mal~ workers is smaller with respect to education and experi­
ence. For nonwhite workers the rate of wage progression with respect to education is 
negative and lower than for white workers and it is statistically significant at the 10% 
level. The other differential slope coefficients are not statistically significant. 

For discussion purposes we will drop the differential slope coefficients D3*EX and 
D4*ED and D4*EX. The results are given in Table 3.4. 

Table 3.3 Wage function with differential intercept and slope dummies. 

Dependent Variable: W 
Method; Least Squares 
Sample: 1 1289 
Included observations: 1289 

Coefficient Std. Error t-s~atistic I 
C -11.09129 1.421846 

D2 3.174158 1.966465 1.614144 

D3 2.909129 2.780066 1.046424 

D4 4.454212 2.973494 1.497972 

ED 1.587125 0,093819 16.91682 

EX 0.220912 0,025107 8.798919 

D2'ED -0.336888 0,131993 -2,552314 

D2*EX -0.096125 0.031813 -3,021530 

D3*ED -0.321855 0,195348 -1.647595 

D3"EX -0.022041 0.044376 -0.496700 

= -0.198323 0.191373 -1.036318 

-0.033454 0.046054 -0,726410 

R-squared 0.332811 Mean dependent var 12,36585 
7.896350 
6.583840 
6.631892 
1.893519 
0.000000 

Adjusted R-squared 0.327064 S.D, dependent var 
S.E. of regression 6.477589 Akaike info criterion 
Sum squared resid 53581.84 Schwarz criterion 
Log likelihood -4231.285 Durbin-Watson stat 
F-statistic 57.90909 Prob(F-statistic) 
Note: The symbol • denotes multiplication. 

Prob. 

0.0000 

0.1067 

0.2956 

0.1344 

0.0000 

0,0000 

0.Ql08 

0.0026 

0.0997 

0.6195 

0.3003 

0,4677 
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Table 3.4 Reduced wage function. 

Dependent Variable: W 
Method: Least Squares 
Sample: 1 1289 
Included observations: 1289 

C 

FE 

NW 

UN 

ED 

EX 

FE"ED 

FE"EX 

NW*ED 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

Coefficient 

-10.64520 

3.257472 

2.626952 

1.078513 

1.565800 

0.212623 

-0.346947 

-0.094908 

-0.329365 

0.331998 
0.327823 
6.473933 
53647.11 

-4232.069 
79.52030 

Std. Error t-Statistic 

1.371801 -7.760020 

1.959253 1.662609 

2.417874 1.086472 

0.505398 2.133988 

0.091813 17.05422 

0.022769 9.338102 

0.131487 -2.638639 

0.031558 -3.007409 

0.186628 -1.764817 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 

Prob(F-statistic) 

12.36585 
7.896350 
6.580402 
6.616442 
1.889308 
0.000000 

Prob. 

0.0000 

0.0966 

0.2775 

0.0330 

0.0000 

0.0000 

0.0084 

0.0027 

0.0778 

From these results we can derive wage functions for male, female and nonwhite, 
and non-union workers, which are as follows: 

Wage function of white male non-union wage earners: 

W;gej = -10.6450 + 1.5658 Educj + 0.2126 Experj 

Wage function of white non-union female wage earners 

W;gej = (-10.6450 + 3.2574) + (1.5658 -0.3469)Educj 

+(0.2126 - 0.0949)Experj 

= -73876 + 1.2189Educj + 0.1177 Experj 

Wage function for nonwhite male non-union workers 

A 

Wagej = (-10.6450 -2.6269) + (1.5658 -0.3293)EduCi 

+0.2126Experj 

= -8.0181 + 1.2365Educj + 0.2126Expelj 

Wage function for white male union workers 

W;gej = (-10.6450 + 1.0785) + 1.5658Educj + 0.2126Experj 

= 9.5665 + 1.5658Educj + 0.2126Expelj 

Of course, there are other possibilities to express the wage function. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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For example, you may want to interact female with union and education 
(female*union*education), which will show whether the females who are educated and 
belong to unions have differential wages with respect to education or union status. But 
beware of introducing too many dummy variables,for they can rapidly consume degrees 
of freedom. In the present example this is not a serious problem, because we have 1,289 
observations. 

3.4 Functional form of the wage regression 

-

c-

I 
I 

o 

i-

It is common in labor economics to use the logarithm of wages instead of wages as the 
regressand because the distribution of wages tends to be highly skewed, which can be 
seen from Figure 3.1. 

This histogram of wage rates shows that it is right-skewed and is far from the 
normal distribution. If a variable is normally distributed, its skewness coefficient (a 
measure of symmetry) is ° and its kurtosis coefficient (a measure of how tall or flat the 
normal distribution is) is 3. As the statistics accompanying this fIgure shows, in the 
present case skewness is about 1.85 and kurtosis is about 7.84, both values being far 
different than those of a normal distribution. The Jarque-Bera (JB) statistic, which is 
based on the skewness and kurtosis measures, will be discussed in Chapter 7. Suffice it 
to note here that for a normally distributed variable the value of the JB statistic is ex­
pected to be zero, which is obviously not the case here, for the estimated JB value is 
about 1990, which is far from zero and the probability of obtaining such a value is prac­
tically zero.5 

On the other hand, the distribution of log of wages shows that it is symmetrical and 
normally distributed, as can be seen from Figure 3.2. 

r-

i-

i-

~ 

1n--r-n Jl r:::::::>. 
I I I I 

Series: W 
Sample 1 1289 
Observations 1289 

Mean 
Median 
Maximum 
Minimum 
Std. Dev. 
Skewness 
Kurtosis 

Jarque-Bera 
Probability 

12.36585 
10.08000 
64.08000 
0.840000 
7.896350 
1.848114 
7.836565 

1990.134 
0.000000 

10 20 30 40 50 60 

Figure 3.1 Distribution of wage rates. 

5 Under the that a variable is normally distributed, Jarque-Bera have shown that in large 
samples the JB statistic follows the chi -square distribution with 2 df. 
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Sample 1 1289 
Observations 1289 

Mean 
Median 
Maximum 
Minimum 
Std. Dev. 
Skewness 
Kurtosis 

Jarque-Bera 
Probability 

2.342416 
2.310553 
4.160132 

-0.174353 
0.586356 
0.013395 
3.226337 

2.789946 
0.247840 

Figure 3.2 Distribution of log of wages. 

That is why it is preferable to use the log of wage rates as the regressand. Also, in the 
log-transform the problem of heteroscedasticity is usually less severe. 

Using the log of wage rate as the regressand (LW), the estimate ofEq. (3.1) is shown 
in Table 3.5. This shows that all the estimated coefficients are individually (on the 
basis of the t test) as well as collectively (on the basis of the Ftest) highly significant, be­
cause their p values are so low. But how do we interpret these coefficients? 

Table 3.5 Semi-log model of wages. 

Dependent Variable: LW 
Method: Least Squares 
Sample: 11289 
Included observations: 1289 

C 

D2 

D3 

D4 

EDUC 

EXPER 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

Coefficient 

0.905504 

-0.249154 

-0.133535 

0.180204 

0.099870 

0.012760 

0.345650 
0.343100 
0.475237 
289.7663 

-867.0651 
135.5452 

Std. Error t-Statistic 

0.074175 12.20768 

0.026625 -9.357891 

0.037182 -3.591399 

0.036955 

0.004812 

0.001172 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic} 

4.876316 

20.75244 

10.88907 

2.342416 
0.586356 
1.354639 
1.378666 
1.942506 
0.000000 

Prob. 

0.0000 

0.0000 

0.0003 

0.0000 

0.0000 

0.0000 
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Recall from our discussion of functional forms of regression models in Chapter 2 
that in Table 3.5 we are estimating a semi-log model where the wage rate variable is in 
the log form whereas the regressors are in linear form. As we know, with respect to the 
quantitative variables, education and work experience, their coefficients represent 
semi-elasticities that is, relative (or percentage) change in the wage rate for a unit 
change in the regressor. Thus, the education coefficient of 0.0999 suggests that for 
every additional year of schooling, the average wage rate goes up by about 9.99%, cet­
eris paribus. Likewise, for every additional year of work experience, the average wage 
rate goes up by about 1.3%, ceteris paribus. 

What about the dummy coefficients? One could interpret the female dummy coef­
ficient of -0.2492 as suggesting that the average female wage rate is lower by 24.92% as 
compared to the male average wage rate. But if one wants to get a correct percentage 
change, we have to take the antilog (to base e) of the coefficient of the dummy variable, 
subtract 1 from it and multiply the difference by 100.6 Following this procedure, we 
find that 0.7794. Subtracting 1 from this, we obtain -0.2206. Multiplying 
this by 100, we find -22.06%. That is, holding all other variables constant, the female 
average wage rate is lower than the male average wage rate by about 22.06%, which is 
different from 24.92%. 

Therefore, the dummy coefficients given in Table 3.5 can be interpreted as percent­
age changes only as approximations. To get the correct percentage change we have to 
follow the procedure just described. 

The results of the linear and log-linear regressions given in Tables 3.1 and 3.5 show 
that in both cases the coefficients of the regressors are highly significant, although 
their interpretations are different But one important point to remember is that the R2 
value given in Table 3.1 (0.3233) and that given in Table 3.5 (0.3457) are not directly 
comparable for reasons already discussed in the chapter on functional forms of regres­
sion models. To wit, in the linear model the R2 measures the proportion of the varia­
tion in the regressand explained by all the regressors, whereas in the log-linear model 
it measures the proportion of the variation in the log of the regressand. And the two 
are not the same. Recall that a change in the log of a variable is a proportional or 
relative change. 

It is left for the reader to replicate the results of Tables 3.2, 3.3, and 3.4, using log of 
wage rate as the regressand. 

3.5 Use of dummy variables in structural change 

Suppose we want to study the relationship between gross private investments (GPI) 
and gross private savings (GPS) in the USA over the period 1959-2007, a span of 49 
years. For this purpose let us consider the following investment function: 

GPIt (3.7) 

where B2 is the marginal propensity to invest (MPI) - that is, additional investment out 
of an additional dollar of savings. See Table 3.6 on the companion website. 

In 1981-1982 the US suffered its worst peace-time recession, until the severe reces­
sion of 2007-2008. It is quite likely that the investment-savings relationship postu­
lated in Eq. (3.7) may have gone a structural change since then. To see if in fact the US 

6 For a technical discussion, see Gujarati/Porter, op cit., Chapter 9, p. 298. 
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Table 3.7 Regression ofGPI on GPS, 1959-2007. 

Dependent Variable: GPI 
Method: Least Squares 
Date: 07/06/10 Time: 15:27 
Sample: 19592007 
Included observations: 49 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 
Prob(F-statistic) 

0.968607 
0.967940 
114.8681 
620149.8 

-300.9524 
1450.170 
0.000000 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Hannan-Quinn criter. 
Durbin-Watson stat 

760.9061 
641.5260 
12.36541 
12.44262 
12.39470 
0.372896 

economy has undergone a structural change, we can use dummy variables to shed light 
on this. Before we do that, let us present the results of regression (3.7) without taking 
into account any structural breaks. The results are shown in Table 3.7. 

These results shows that the MPI is about 1.10, meaning that if GPS increases by a 
dollar, the average GPI goes up by about $1.10. The MPI is highly significant, although 
we may have to worry about the problem of autocorrelation, which we will address in 
another chapter. 

To see if there is a structural break, we can express the investment function as: 

(3.8) 

where Recession81 is a dummy variable taking a value of 1 for observations beginning 
in 1981 and 0 before that year. As you will recognize, B3 is a differential intercept, tell­
ing us how much the average level of investment has changed since 1981. The regres­
sion results are shown in Table 3.8. 

The recession dummy coefficient is not significant, suggesting that there has been 
no statistically visible change in the level of investment pre- and post-1981 recession. 
In other words, the results would suggest that there is no structural break in the US 
economy. We have to accept this conclusion cautiously, for it is quite likely that not 
only the intercept but the slope of the investment-savings regression might have 
changed. To allow for this possibility, we can introduce both differential intercept and 
differential slope dummies. So we estimate the following model: 

GPIt = Bl + B2GPSt + B3Recession81 
(3.9) 

In this equation B3 represents the differential intercept and B4 the differential slope 
coefficient; see how we have interacted the dummy variable with the GPS variable. 

The results ofthis regression are shown in Table 3.9. The results in this table are 
quite different from those in Table 3.8: now both the differential intercept and slope 
coefficients are statistically significant. This means that the investment-savings rela­
tionship has gone structural change since the recession of 1981. From this table we can 
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Table 3.8 Regression of GPI on GPS with 1981 recession dummy. 

Dependent Variable: GPI 
Method: Least Squares 
Sample: 19592007 
Included observations: 49 

Variable 

C 

GPS 

I RECESSION81 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 
Prob(F-statistic) 

Coefficient 

-77.89198 

1.099832 

6.496153 

0.968817 
0.967461 
115.7225 
616017.9 

-300.7887 
714.5717 
0.000000 

Std. Error t-Statistic 

27.72938 -2.809006 

0.032306 

11.69500 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Hannan-Quinn criter. 
Durbin-Watson stat 

34.04453 

0.555464 

760.9061 
641.5260 
12.39954 
12.51536 
12.44348 
0.385512 

Table 3.9 Regression of GPI on G,PS with interactive dummy. 

Dependent Variable: GPI 
Method: Least Squares 
Sample: 19592007 
Included observations: 49 

Variable 

e 
GPS 

~Y81 
GPS'DUMMY81 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 
Prob(F-statistic) 

Coefficient 

-32.49016 

1.069202 

-327.8491 

0.244142 

0.981283 
0.980035 
90.64534 
369746.0 

-288.2824 
786.4151 
0.000000 

Std. Error t-Statistic 

23.24972 -1.397443 

0.025916 41.25623 

61.75397 -5.308955 

0.044594 5.474721 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Hannan-Quinn criter. 
Durbin-Watson stat 

760.9061 
641.5260 
11.92989 
12.08433 
11.98849 
0.828988 

Prob. 

0.0073 

0.0000 

0.5813 

Prob. 

0.1691 

0.0000 

0.0000 

0.0000 

derive the investment-savings regressions for the period pre- and post-1981 as fol­
lows: 

Investment-savings relationship before 1981 
A 

GPIt = -32.4901 + 10692GPSt 

Investment-savings relationship after 1981 
A 

GPIt (-32.4901-327.8491) + (10692 + 0.2441)GPSt 

= -360.3392 + 13133GPSt 

This example is a reminder that we have to be careful in using the dummy variables. 
It should also be added that there might be more than one structural break in the 
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economy. For example, the USA underwent another recession right after the 1973 oil 
embargo imposed by the OPEC oil cartel. So we could have another dummy to reflect 
that event. The only precaution you have to exercise is that if you do not have a large 
enough samples, introducing too many dummy variables will cost you several degrees 
of freedom. And as the degrees of freedom dwindle, statistical inference becomes less 
reliable. This example also reminds us that in estimating a regression model we should 
be wary of mechanically estimating it without paying due attention to the possibility of 
structural breaks, especially if we are dealing with time series data. 

3.6 Use of dummy variables in seasonal data 

An interesting feature of many economic time series based on weekly, monthly, and 
quarterly data is that they exhibit seasonal patterns (oscillatory movements). Some 
frequently encountered examples are sales at Christmas time, demand for money by 
households at vacation times, demand for cold drinks in the summer, demand for air 
travel at major holidays such as Thanksgiving and Christmas, and demand for choco­
late on Valentine's Day. 

The process of removing the seasonal component from a time series is called 
deseasonlization or seasonal adjustment and the resulting time series is called a 
deseasonalized or seasonally adjusted time series? 

Important time series, such as the consumer price index (CPI), producer's price 
index (PPI), unemployment rate, housing starts, and index of industrial production are 
usually published in seasonally adjusted basis. 

There are various methods of deseasonalizing a time series, but one simple and 
rough and ready method is the method of dummy variables.8 

We illustrate this method with a concrete example. See Table 3.10 on the compan­
ion website.9 

Since sales of fashion clothing are season-sensitive, we would expect a good deal of 
seasonal variation in the volume of sales. The model we consider is as follows: 

(3.10) 

where D2 = 1 for second quarter, D3 = 1 for third quarter, D4 ;: 1 for fourth quarter, 
Sales = real sales per thousand square feet of retail space. Later we will expand this 
model to include some quantitative regressors. 

Notice that we are treating the first quarter of the year as the reference quarter. 
Therefore A2' A3' andA4 are differential intercept coefficients, showing how the mean 
sales in the second, third, and fourth quarters differ from the mean sales in the first 
quarter. Al is the mean sales value in the first quarter. Also note that we assume that 
each quarter is associated with a different season. 

7 It may be noted that a time series may contain four components: seasonal, cyclical, trend, and random. 
8 For an accessible discussion of the various methods, see Francis X. Diebold, Elements a/Forecasting, 4th 

edn, South Western Publishing, 2007. 
9 The data used here are taken from Christiaan Heij, Paul de Boer, Philip Hans Franses, Teun Kloek, 

Herman K van Dijk, Econometric Methods with Applications in Business and Economics, Oxford 
Press, 2004, but the original source is: G.M. Allenby, 1. Jen, and R.P. Leone, Economic Trends and Being 
Trendy: The influence of Consumer Confidence on Retail Fashion Sales, Journal 0/ Business and Economic 
Statistics, 1996, pp. 103-111. 
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Table 3.11 Results of regression (3.10). 

Dependent Variable: SALES 
Method: Least Squares 
Sample: 1986Ql1992Q4 
Included observations: 28 

C 

D2 

D3 

D4 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

Coefficient 

73.18343 

14.69229 

27.96471 

57.11471 

0.823488 
0.801424 
10.52343 
2657.822 

-103.4731 
37.32278 

Std. Error t-Statistic 

3.977483 

5.625010 

5.625010 

5.625010 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

18.39943 

2.611957 

4.971496 

10.15371 

98.12636 
23.61535 
7.676649 
7.866964 
1.024353 
0.000000 

Prob. 

0.0000 

0.0153 

0.0000 

0.0000 

The data for estimating Eq. (3.10) are given in Table 3.10 along with data on some 
other variables, which can be found on the companion website. 

The results of the regression (3.10) are given in Table 3.11. These results show that in­
dividually each differential intercept dummy is highly statistically significant, as shown 
by its p value. The interpretation of, say, D2 is that the mean sales value in the second 
quarter is greater than the mean sales in the first, or reference, quarter by 14.69229 units; 
the actual mean sales value in the second quarter is (73.18343 + 14.69229) = 87.87572. 
The other differential intercept dummies are to be interpreted similarly. 

As you can see from Table 3.11, fashion sales are highest in the fourth quarter, 
which includes Christmas and other holidays, which is not a surprising finding. 
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Figure 3.3 Actual and seasonally adjusted fashion sales. 
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Table 3.12 Sales, forecast sales, residuals, and seasonally adjusted sales. 

obs SALES SALESF RESID SEAD] 

1986Q1 53.7l400 73.18343 -19.46943 78.65417 

1986Q2 71.50100 87.87572 -16.3747l 81.74889 

1986Q3 96.37400 101.1481 -4.774143 93.34946 

1986Q4 125.0410 130.2981 -5.257143 92.86646 

1987Q1 78.61000 73.18343 5.426571 103.5502 

1987Q2 89.60900 87.87572 1.733286 99.85689 

1987Q3 104.0220 101.1481 2.873857 100.9975 

1987Q4 108.5580 130.2981 -21.74014 76.38345 

1988Q1 64.74~ 73.18343 -8.442429 89.68118 

80.0580 I 87.87572 -7.817714 90.30589 

110.6710 101.1481 9.522857 107.6465 

1988Q4 144.5870 130.2981 I 14.28886 112.4125 

1989Q1 81.58900 73.18343 8.405571 106.5292 

1989Q2 91.35400 87.87572 3.478286 101.6019 

1989Q3 108.1330 101.1481 6.984857 105.1085 

1989Q4 135.1750 130.2981 4.876857 103.0005 

1990Q1 89.13400 73.18343 15.95057 114.0742 

1990Q2 97.76500 108.0129 

1990Q3 97.37400 101.1481 -3.774143 94.34946 

1990Q4 124.0240 130.2981 -6.274143 91.84946 

1991Q1 74.58900 73.18343 I 1.40557l 99.52917 

1991Q2 95.69200 87.87572 7.816286 105.9399 

1991Q3 96.94200 101.1481 -4.206143 93.91746 

1991Q4 126.8170 130.2981 -3.481143 94.64246 

1992Q1 69.90700 73.18343 -3.276428 94.84717 

1992Q2 89.15100 87.87572 1.275286 99.39889 

1992Q3 94.52100 101.1481 -6.627143 91.49646 

1992Q4 147.8850 130.2981 17.58686 115.7105 

Note; Residuals == actual sales - forecast sales; sead) seasonally adjusted sales, which are 
obtained by adding to the residuals the average value of sales over the sample period, 
which is 98.1236. 

Since the sales volume differs from quarter to quarter, how do we obtain the values 
of the fashion sales time series that take into account the observed seasonal variation? 
In other words, how do we deseasonalize this time series? 

In order to deseasonalize the sales time series, we proceed as follows: 

1 From the estimated model (3.10) we obtain the estimated sales volume. 

2 Subtract the estimated sales value from the actual sales volume and obtain the 
residuals. 

3 To the estimated residuals, we add the (sample) mean value of sales, which is 
98.1236 in the present case. The resulting values are the deseasonalized sales 
values. We show the calculations in Table 3.12. 
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Figure 3.3 (p. 59) shows the actual and adjusted fashion sales. As you can see from this 
figure. the seasonally adjusted sales series is much smoother than the original series. 
Since the seasonal factor has been removed from the adjusted sales series. the ups and 
downs in the adjusted series may reflect the cyclical. trend. and random components 
that may exist in the series (see Exercise 3.12). 

From the retailers' point of view. knowledge of seasonal factors is important as it en­
ables them to plan their inventory according to the season. This also helps manufac­
turers to plan their production schedule. 

3.7 Expanded sales function 

Besides sales volume. we have data on real personal disposable income (RPDI) and 
consumer confidence index (CONF). Adding these variables to regression (3.10), we 
obtain Table 3.13. 

The first point to note is that all the differential dummy coefficients are highly sig­
nificant (the p values being very low in each case). suggesting that there is seasonal 
factor associated with each quarter. The quantitative regressors are also highly signifi­
cant and have a priori expected signs; both have positive impact on sales volume. 

Following the procedure laid out for deseasonalizing a time series, for the expanded 
sales function we obtain the seasonally adjusted sales as shown in Table 3.14. Figure 3.4 
shows the results graphically. 

As you would expect, the seasonally adjusted sales figures are much smoother than 
the original sales figures. 

A technical note: We found seasonality in the fashion sales time series. Could there 
be seasonality in the PPDI and CONF series? If so. how do we deseasonalize the latter 
two series? Interestingly, the dummy variables used to deseasonalize the sales time 
series also deseasonalize the other two time series. This is due to a well-known 

Table 3.13 Expanded model offashion sales. 

Dependent Variable: SALES 
Method: Least Squares 
Sample: 1986Q11992Q4 
Included observations: 28 

Ie 

RPm 

eONF 

D2 

D3 

D4 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

Coefficient 

-152.9293 

1.598903 

0.293910 

15.04522 

26.00247 

60.87226 

0.905375 
0.883869 
8.047636 
1424.818 

-94.74461 
42.09923 

Std. Error t-Statistic 

52.59149 -2.907871 

0.370155 

0.084376 

4.315377 

4.325243 

4.427437 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

4.319548 

3.483346 

3.486421 

6.011795 

13.74887 

98.12636 
23.61535 
7.196043 
7.481516 
1.315456 
0.000000 

Prob. 

0.0082 

0.0003 

0.0021 

0.0021 

0.0000 

0.0000 
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Table 3.14 Actual sales, forecast sales, residuals, and seasonally adjusted sales. 

SALES FORECAST RESIDUALS SADSALES 
SALES 

53.71400 65.90094 -12.18694 85.93666 

71.50100 83.40868 -11.90768 86.21592 

96.37400 91.90977 4.464227 102.5878 

125.0410 122.7758 2.265227 100.3888 

78.61000 66.77385 11.83615 109.9598 

89.60900 78.80558 10.80342 108.9270 

104.0220 95.25996 8.762036 106.8856 

108.5580 122.1257 -13.56774 84.55586 

64.74100 73.55222 -8.811222 89.31238 

80.05800 86.16732 -6.109321 92.01428 

110.6710 104.9276 5.743355 103.8670 

144.5870 133.7971 10.78986 108.9135 

81.58900 83.36707 -1.778069 96. 

91.35400 92.49550 -1.141502 96.98210 

108.1330 111.1844 95.07224 

135.1750 140.9760 -5.801002 92.32260 

89.13400 81.99727 7.136726 105.2603 

97.76500 92.76732 4.997684 103.1213 

97.37400 97.34940 0.024596 98.14819 

124.0240 121.5858 2.438186 100.5618 

74.58900 70.90284 3.686156 101.8098 

95.69200 90.00940 5.682596 103.8062 

96.94200 104.7525 -7.810495 90.31310 

126.8170 127.3469 -0.529909 97.59369 

69.90700 69.78981 0.117194 98.24079 

89.15100 91.47620 -2.325197 95.79840 

94.52100 102.6534 -8.132355 89.99124 

147.8850 143.4796 4.405374 102.5290 

Note: Seasonally adjusted sales (SADSALES) '" residual + 98.1236 

theorem in statistics, known as the Frisch-Waugh TheoremlO (see Exercise 3.9). So 
by introducing the seasonal dummies in the model we deseasonalize all the time series 
used in the modeL So to speak, we kill (deseasonalize) three birds (three time series) 
with one stone (a set of dummy variables). 

The results given in Table 3.13 assume that the intercepts, reflecting seasonal fac­
tors, vary from quarter to quarter, but the slope coefficients of RPDl and CONF 
remain constant throughout. But we can test this assumption, by introducing differen­
tial slope dummies as follows: 

10 "In general the theorem shows that if variables are subject to prior adjustment by ordinary least 
squares and the residuals subsequently used in a regression equation then the resulting estimates are 
identical to those from a regression which uses unadjusted data but uses the adjustment variables explicitly." 
Adrian C. Darnell, A Dictionary of Econometrics, Edward Elgar, UK, 1997, p. 150. 
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Figure 3.4 Actual and seasonally adjusted sales. 

SaleSt Al +A2D2t +A3 D 3t +A4D4t + B1RDPlt +B2CONF 

(D2 "RPDlt ) + B4 (D3 • RPDlt ) + B5 (D4 * RPDlt ) 

1992 

(3.11) 

+B6(D2 *CONFt )+B7 (D3 *CONFt )+Bs (D4 *CONFt)+Ut 

In this formulation, the differential slope coefficients B3 through Bs allow us to find 
out if the slope coefficients of the two quantitative regressors vary from quarter to 
quarter. The results are shown in Table 3.15. 

Since none of the differential slope coefficients are statistically significant, these re­
sults show that the coefficients ofRPDr and CONF do not vary over the seasons. Since 
these results also show that none of the seasonal dummies are significant, there are no 
seasonal variations in the fashion sales. But if we drop the differential slope coeffi­
cients from the model, all the (differential) intercept dummies are statistically signifi­
cant, as we saw in Table 3.13. This strongly suggests that there is a strong seasonal 
factor in fashion sales. 

What this implies is that the differential slope dummies do not belong in the model. 
So we will stick with the model given in Table 3.12. 

Even then the exercise in Table 3.15 is not futile because it shows that in modeling a 
phenomenon we must take into account the possibility of the differences in both the 
intercepts and slope coefficients. It is only when we consider the full model, as in Eq. 
(3.11), that we will be able to find out whether there are differences in the intercepts or 
slopes or both. 
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Table 3.15 Fashion sales regression with differential intercept and slope 
dummies. 

Dependent Variable: SALES 
Method: Least Squares 
Sample: 1986Ql1992Q4 
Included observations: 28 

C 

D2 

D3 

D4 

RPDI 

CONF 

D2*RPDI 

D3*RPDI 

D4*RPDI 

D2*CONF 

D3'CONF 

D4'CONF 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 
Prob(F-statistic) 

Coefficient 

-191.5847 

196.7020 

123.1388 

50.96459 

2.049795 

0.2809~ 
-1.110584 

-1.218073 

-0.049873 

-0.294815 

0.065237 

0.057868 

0.929307 
0.880706 
8.156502 
1064.456 

-90.66249 
19.12102 
0.000000 

Std. Error t-Statistic 

107.9813 -1.774239 

221.2632 0.888995 

163.4398 0.753420 

134.7884 0.378108 

0.799888 2.562601 

0.156896 1.790602 

1.403951 -0.791042 

1.134186 -1.073963 

1.014161 -0.049176 

0.381777 -0.772219 

0.259860 0.251046 

0.201070 0.287803 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Hannan-Quinn criter. 
Durbin-Watson stat 

98.12636 
23.61535 
7.333035 
7.903980 
7.507578 
1.073710 

3.8 Summary and conclusions 

Prob. 

0.0951 

0.3872 

0.4621 

0.7103 

0.0209 

0.0923 

0.4405 

0.2988 

0.9614 

0.4512 

0.8050 

0.7772 

Qualitative, or dummy, variables taking values of 1 and 0 show how qualitative 
regressors can be "quantified" and the role they play in regression analysis. 

If there are differences in the response of the regressand because of qualitative 
regressors, they will be reflected in the differences in the intercepts, or slope coeffi­
cients, or both of the various subgroup regressions. 

Dummy variables have been used in a variety of situations, such as (1) comparing 
two or more regressions, (2) structural break(s) in time series, and (3) deseasonalizing 
time series. 

Despite their useful role in regression analysis. dummy variables need to be handled 
carefully. First, if there is an intercept in the regression model, the number of dummy 
variables must be one less than the number of classifications of each qualitative vari­
able. Second, of course, if you drop the (common) intercept from the model, you can 
have as many dummy variables as the number of categories of the dummy variable. 
Third, the coefficient of a dummy variable must always be interpreted in relation to the 
reference category, that is, the category that receives the value of O. The choice of the 
reference category depends on the purpose of research at hand. Fourth, dummyvari­
abIes can interact with quantitative regressors as well as with qualitative regressors. 
Fifth, if a model has several qualitative variables with several categories, introduction 
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of dummies for all the combinations can consume a large number of degrees of free­
dom, especially if the sample size is relatively small. Sixth, keep in mind that there are 
other more sophisticated methods of deseasonalizing a time series, such as the Census 
X-12 method used by the US Department of Commerce . 

. Exercises 

3.1 How would you compare the results of the linear wage function given in Table 
3.1 with the semi-log wage regression given in Table 3.5? How would you compare the 
various coefficients given in the two tables? 

3.2 Replicate Table 3.4, using log of wage rate as the dependent variable and com­
pare the results thus obtained with those given in Table 3.4. 

3.3 Suppose you regress the log of the wage rate on the logs of education and experi­
ence and the dummy variables for gender, race, and union status. How would you in­
terpret the slope coefficients in this regression? 

3.4 Besides the variables included in the wage regression in Tables 3.1 and 3.5, what 
other variables would you include? 

3.5 Suppose you want to consider the geographic region in which the wage earner 
resides. Suppose we divide US states into four groups: east, south, west, and north. 
How would you extend the models given in Tables 3.1 and 3.5? 

3.6 Suppose instead of coding dummies as 1 and 0, you code them as -1 and + 1. How 
would you interpret the regression results using this coding? 

3.7 Suppose somebody suggests that in the semi-log wage function instead of using 1 
and 0 values for the dummy variables, you use the values 10 and 1. What would be the 
outcome? 

3.8 Refer to the fashion data given in Table 3.10. Using log of sales as the dependent 
variable, obtain results corresponding to Tables 3.11, 3.12, 3.13, 3.14, and 3.15 and 
compare the two sets of results. 

3.9 Regress Sales, RPDI, and CONF individually on an intercept and the three dum­
mies and obtain residuals from these regressions, say Sl, S2, S3' Now regress Sl on S2 

and S3 (no intercept term in this regression)l1 and show that slope coefficients of S2 

and S3 are precisely the same as those of RPDI and CONF obtained in Table 3.l3, thus 
verifying the Frisch- Waugh theorem. 

3.10 Collect quarterly data on personal consumption expenditure (PCE) and dispos­
able personal income (DPI), both adjusted for inflation, and regress personal con­
sumption expenditure on personal disposable income. If you think there is a seasonal 
pattern in the data, how would you deseasonalize the data using dummy variables? 
Show the necessary calculations. 

11 Since the mean value of OLS residuals is always zero, there is no need for the intercept in this 
regression. 

12 This is taken from Table 4 of Rashad (Kelly), Inas, Obesity and diabetes: the roles that prices and 
policies play. Advances in Health Economics and Health Services Research, vol. 17, pp. 113-28,2007. Data 
come from various years. 
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3.11 Continuing with Exercise 3.10, how would you find out if there are structural 
breaks in the relationship between PCE and DPI? Show the necessary calculations. 

3.12 Refer to the fashion sales example discussed in the text. Reestimate Eq. (3.10) by 
adding the trend variable, taking values of 1, 2, and so on. Compare your results with 
those given in Table 3.10. What do these results suggest? 

3.13 Continue with the preceding exercise. Estimate the sales series after removing 
the seasonal and trend components from it and compare your analysis with that dis­
cussed in the text. 

3.14 Estimate the effects of ban and sugar_sweeCcap on diabetes using the data in 
Table 3.16, which can be found on the companion website, 12 where 

diabetes diabetes prevalence in country 
ban = 1 if some type of ban on genetically modified goods is present, 0 otherwise 
sugar_sweeCcap domestic supply of sugar and sweeteners per capita, in kg 
What other variables could have been included in the model? 
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Regression diagnostic I: multicollinearity 

One of the assumptions of the classical linear regression model (CLRM) is that there is 
no exact linear relationship among the regressors. If there are one or more such rela­
tionships among the regressors we call it multicollinearity or collinearity, for short. At 
the outset, we must distinguish between perfect collinearity and imperfect 
collinearity.l To explain, consider the k-variable linear regression model: 

(4.1) 

If, for example, X 2i +3X3i =1 we have a case of perfect collinearity for X 2i 1-3X3i . 

Therefore, if we were to include both X2i and X31 in the same regression model, we will 
have perfect collinearity, that is, a perfect linear relationship between the two vari­
ables. In situations like this we cannot even estimate the regression coefficients, let 
alone perform any kind of statistical inference. 

On the other hand, if we have X 2i + 3X 31 + Vi = 1, where Vi is a random error term, 
we have the case of imperfect collinearity, for X 2i 1-3X 31 -Vi' Therefore, in this 
case there is no perfect linear relationship between the two variables; so to speak, the 
presence of the error term Vi dilutes the perfect relationship between these variables. 

In practice, exact linear relationship(s) among regressors is a rarity, but in many ap­
plications the regressors may be highly collinear. This case may be called imperfect 
collinearity or near-collinearity. Therefore, in this chapter we focus our attention on 
imperfect collinearity.2 . 

1 If there is just one perfect linear relationship between two more regressors, we call it collinearity, but if 
there is more than one perfect linear relationship, we call it multicollinearity. However, we will use the terms 
cotlinearity and multicollinearity interchangeably. The context of the problem at hand will tell us which one 
we are dealing with. 

2 To give an extreme example of perfect collinearity, suppose we introduce income variables in both 
dollars and cents in the consumption function, relating consumption expenditure to income. Since a dollar 
is equal to 100 cents, including this will lead to perfect collinearity. Another example is the so-called dummy 
variable trap, which, as we saw in Chapter 3, results if we include both an intercept term and all categories of 
the dummy variables. For example, in a regression explaining hours of work in relation to several economic 
variables, we include two dummies, one for male and one for female. and also retain the intercept term. This 
will lead to perfect collinearity. Of course, if we suppress the intercept term in this situation, we will avoid 
the dummy variable trap. In practice it is better to retain the intercept but include just one gender dummy; if 
the dummy takes a value of 1 for females, it will take a value of 0 whenever a male worker is involved. 



l Regression diagnostic I: multicollinearity 69 

4.1 Consequences of imperfect collinearity 

1 OLS estimators are still BLUE, but they have large variances and covariances, 
making precise estimation difficult. 

2 As a result, the confidence intervals tend to be wider. Therefore, we may not reject the 
"zero null hypothesis" (i.e. the true population coefficient is zero). 

3 Because of (1), the t ratios of one or more coefficients tend to be statistically 
insignificant. 

4 Even though some regression coefficients are statistically insignificant, the R2 
value may be very high. 

5 The OLS estimators and their standard errors can be sensitive to small changes in 
the data (see Exercise 4.6). 

6 Adding a collinear variable to the chosen regression model can alter the coeffi­
cient values of the other variables in the model. 

In short, when regressors are collinear, statistical inference becomes shaky, espe­
cially so if there is near-collinearity. This should not be surprising, because if two vari­
ables are highly collinear it is very difficult to isolate the impact of each variable 
separately on the regressand. 

To see some of these consequences~ we consider a three-variable model, relating the de­
pendent variable Yto two regressors, X2 and Xg. Thatis, we consider the following model: 

(4.1) 

Using OLS, it can be shown that the OLS estimators are as follows3 

(4.2) 

(4.3) 

(4.4) 

where the variables are expressed as deviations from their mean values - that is, 

Yi =Yi x2i =X2i andX3i 
Notice that the formulae for the two slope coefficients are symmetrical in the sense 

that one can be obtained form the other by interchanging the names of the variables. 
It can be further shown that 

()2 2 
var(b2 ) ~VIF 

Lxii 
(4.5) 

and 

var(b3 ) 
()2 ()2 

VIF 
Lx§i (I-rig) 

(4.6) 

g See Gujarati/Porter, op cit., pp. 193-4. 
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Table 4.1 The effect of increasing r23 on the variance of OLS estimator b2• 

Value ofr23 VIF Var(b2) 

0.0 1.00 0-
2 /Dc~i =K 

0.50 1.33 1.33 x K 

0.70 1.96 1.96 x K 

0.80 2.78 2.78 x K 

0.90 5.26 5.26 x K 

0.95 10.26 10.26 x K 

0.99 50.25 50.25 x K 

0.995 100.00 100 xK 

1.00 Undefined Undefined 

Note: A similar table can be shown for the variance of b. 

where 

VIF=_I_ 
1-r~3 

(4.7) 

where (J2 is the variance of the error term Ui and r23 is the coefficient of correlation be­
tween X2 and X3 and VIF is the variance-inflating factor: a measure of the degree to 
which the variance of the OL5 estimator is inflated because of collinearity. To see this, 
consider Table 4.1. 

It is clear from this table that as the correlation coefficient between X2 and X3 in­
creases, the variance of b2 increases rapidly in a nonlinear fashion. As a result, the con­
fidence intervals will be progressively wider and we may mistakenly conclude that the 
true B2 is indifferent from zero. 

It may be noted that the inverse of the VIF is called tolerance (TOL) - that is 

TOL = _1_ (4.8) 
VIF 

When r~3 = 1 (Le. perfect collinearity ), TOL is zero, and when it is 0 (Le. no 
collinearity), TOL is 1. 

The VIF formula given for the two-variable regression can be generalized to the 
k-variable regression model (an intercept and (k - 1) regressors) as follows: 

Var(bk)=~(_I-J=~ VIF (4.9) 
LXt 1-Rt LXt 

where RZ is the R2 from the regress~n of the kth regressor on all other regressors in 
the model and where LXZ = L(X k -X k)2 is the variation in the kth variable about its 
mean value. The regression of the kth regressor on the other regressors in the model is 
called an auxiliary regression, so if we have 10 regressors in the model, we will have 10 
auxiliary regressions. 

The Stata statistical package computes the VIFand TOL factors by issuing the com­
mand estat vif after estimating an OL5 regression, as we show in the following 
example. 
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4.2 An example: married women's hours of work in the labor 
market 

To shed light on the nature of multicollinearity, we use the data from the empirical 
work done by Mroz4 see Table 4.2 on the companion website. He wanted to assess 
the impact of several socio-economic variables on married women's hours of work in 
the labor market. This is cross-sectional data on 753 married women for the year 1975. 
It should be noted that there were 325 married women who did not work and hence 
had zero hours of work. 

Some of the variables he used are as follows: 

Hours: hours worked in 1975 (dependent variable) 

Kidslt6: number of kids under age 6 

Kidsge6: number of kids between ages 6 and 18 

Age: woman's age in years 

Educ; years of schooling 

Wage: estimated wage from earnings 

Hushrs: hours worked by husband 

Husage: husband's age 

Husedue: husband's years of schooling 

Huswage: husband's hourly wage, 1975 

Famine: family income in 1975 

Mtr: federal marginal tax rate facing a woman 

motheduc: mother's years of schooling 

fatheduc: father's years of schooling 

Unem: unemployment rate in county of residence 

exper: actual labor market experience 

As a starting point, we obtained the regression results of Table 4.3. 
A priori, we would expect a positive relation between hours of work and education, 

experience, father's education and mother's education, and a negative relationship be­
tween hours of work and age, husband's age, husband's hours of work, husband's 
wages, marginal tax rate, unemployment rate and children under 6. Most of these ex­
pectations are borne out by the statistical results. However, a substantial number of 
coefficients are statistically insignificant, perhaps suggesting that some of these vari­
ables are collinear, thus leading to higher standard errors and reduced t ratios. 

4.3 Detection of multicollinearity 

As we will see in the chapters on autocorrelation and heteroscedasticity, there is no 
unique test of multicollinearity. Some of the diagnostics discussed in the literature are as 
follows. 

4 See T. A. Mroz, The sensitivity of an empirical model of married women's hours of work to economic 
and statistical assumptions, Econometrica, 1987, vol. 55, pp. 765-99. 
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Table 4.3 Women's hours worl(ed regression. 

Dependent Variable: HOURS 
Method: Least Squares 
Sample (adjusted): 1428 
Included observations: 428 after adjustments 

C 

AGE 

EDUC 

EXPER 

FAMINC 

FATHEDUC 

HUSAGE 

HUSEDUC 

HUSHRS 

HUSWAGE=t 
KIDSGE6 

KIDSLT6 

WAGE 

MOTHEDUC 

MTR 

UNEM 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

Coefficient 

8595.360 

14.30741 

-18.39847 

22.88057 

0.013887 

-7.471447 

-5.586215 

-0.473 

-141.7821 

-24.50867 

-191.5648 

-48.14963 

-1.837597 

-6272.597 

-16.11532 

0.339159 
0.315100 
642.4347 
1.70E+08 

-3366.286 
14.09655 

Std. Error t-Statistic 

1027.190 8.367842 

9.660582 1. 

19.34225 -0.951207 

4.777417 4.789319 

0.006042 2.298543 

11.19227 -0.667554 

8'938425

1 

-0.624966

1 

13.987 -0.483940 

0.0732 

16.61801 -8. 

28.06160 -0.873388 

87.83198 -2.181038 

10.41198 -4.624447 

11.90008 -0.154419 

1085.438 -5.778864 

10.63729 -1.514984 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

1302.930 
776.2744 
15.80507 
15.95682 
2.072493 
0.000000 

Prob. 

0.0000 

0.1394 

0.3421 

0.0000 

0.0220 

0.5048 

0.5323 

0.6287 

0.0000 

0.0000 

0.3830 

0.0297 

0.0000 

0.8774 

0.0000 

0.1305 

1 HighR2 but few significant t ratios. In our example the R2 value of 0.34 is not par­
ticularly high. But this should not be surprising in cross-sectional data with several 
diverse observations. However, quite a few t ratios are statistically insignificant, 
perhaps due to collinearity among some regressors. 

2 High pairwise correlations among explanatory variables or regressors. Recall 
that the sample correlation coefficient between variables Y and X is defined as: 

(4.10) 

where the variables are defined as deviations from their mean values (e.g. 
Yi = Yi Y). Since we have 15 regressors, we will have 105 pairwise correlations.5 

We will not produce all these correlations. Most of the correlation coefficients are 
not particularly high, but some are in excess of 0.5. For example, the correlation 
between husband's age and family income is about 0.67, that between mother's 

5 Of course not all these correlations wHl be different because the correlation between Yand Xis the same 
as that between X and Y. 
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education and father's education is about and that between the marginal tax 
rate and family income is about -0.88. 

It is believed that high pairwise correlations between regressors are a sign of 
collinearity. Therefore one should drop highly correlated regressors. But it is not a 
good practice to rely on simple or bivariate correlation coefficients, because they 
do not hold the other variables in the model constant while computing the 
pairwise correlations. 

3 Partial correlation coefficients: To hold the other variables constant, we have to 
compute partial correlation coefficients. Suppose we have three variables Xl> X2, 
and X3. Then we will have three pairwise correlations, r12' r13, and r23 and three par­
tial correlations, r12.3, r13.2, and r23.1; r23.1' for example, means the correlation be­
tween variables X2 andX3, holding the value of variable Xl constant (see Exercise 4.4 
about computing partial correlation coefficients). It is quite possible that the corre­
lation between andX3 r23) is high, say, 0.85. But this correlation does not take 
into account the presence ofthe third variable Xl' If the variable Xl influences both 
X2 and X3, the high correlation between the latter hvo may in fact be due to the 
common influence of Xl on both these variables. The partial correlation r23J com­
putes the net correlation between X2 and X3 after removing the influence of Xl. In 
that case it is quite possible that the high observed correlation of 0.85 between X2 
and X3 may be reduced to, say, 0.35. 

However, there is no guarantee that the partial correlations will provide an in­
fallible guide to multicollinearity. To save space, we will not present the actual 
values of the partial correlations for our example. Stata can compute partial corre­
lations for a group of variables with simple instructions. 

Table 4.4 The VIP and TOL factors. 

Variable VIP OL = l/VIF 

mtr 7.22 0.138598 

age 5.76 0.173727 

husage 5.22 0.191411 

famine 5.14 0.194388 

huswage 3.64 0.274435 

edue 2.02 0.494653 

hushrs 1.89 0.529823 

huseduc 1:861 0.536250 

fathedue 1.61 0.621540 

motheduc 1.60 0.623696 

expel' 1.53 0.652549 

kidsge6 1.41 0.708820 

wage 1.23 0.813643 

kidslt6 1.23 0.815686 

unem 1.08 0.928387 

Mean VIP 2.83 
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4 Auxiliary regressions: To find out which of the regressors are highly collinear 
with the other regressors included in the model, we can regress each regressor on 
the remaining regressors and obtain the auxiliary regressions mentioned earlier. 

Since we have 15 regressors, there will be 15 auxiliary regressions. We can test 
the overall significance of each regression by the F test discussed in Chapter 2. The 
null hypothesis here is that all the regressor coefficients in the auxiliary regression 
are zero. If we reject this hypothesis for one or more of the auxiliary regressions, 
we can conclude that the auxiliary regressions with significant F values are collin­
ear with the other variables in the model. Of course, if we have several regressors, 
as in our example, calculating several auxiliary regressors in practice will be te­
dious, if not computationally impossible. 

5 The variance inflation (VIF) and tolerance (TOL) factors 
The VIF and TOL factors for our example, which are obtained from Stata, are 
given in Table 4.4. 

This table clearly shows that there is high degree of collinearity among several vari­
ables; even the average VIF is in excess of 2. 

4.4 Remedial measures 

There are several remedies suggested in the literature.6 Whether any of them will work 
in a specific situation is debatable. Since the OL5 estimators are BLUE as long as 
collinearity is not perfect, it is often suggested that the best remedy is to do nothing but 
simply present the results of the fitted model. This is so because very often collinearity 
is essentially a data deficiency problem, and in many situations we may not have choice 
over the data we have available for research'? 

But sometimes it is useful to rethink the model we have chosen for analysis to make 
sure that all the variables included in the model may not be essential. Turning to the 
model given in Table 4.3, the variables father's education and mother's education are 
likely to be correlated, which in turn would mean that the daughter's education may 
also be correlated with these two variables. One can also question whether including 
children over the age of six as an explanatory variable makes any sense. Also, wife's and 
husband's ages are also correlated. Therefore if we exclude these variables from the 
model, maybe the collinearity problem may not be as serious as before.8 

The results of the revised model are given in Table 4.5. 
As you can see, most of the variables are now statistically significant at the 10% or 

lower level of significance and they make economic sense, the exception being the un­
employment rate, which is significant at about the 11 % level of significance. The corre­
sponding VIF and TOL factors for the coefficients in this table are given in Table 4.6. 

Although the average vrF has dropped, there is still considerable collinearity 
among the regressors included in the revised model. We could estimate more such 
models using various combinations of the explanatory variables given in Table 4.3 to 

6 For a detailed discussion, see Gujarati/Porter, op cit., pp. 342-6. 
7 The econometrician Arthur Goldberger called this the problem of "micronumerosity", which simply 

means small sample size and or lack of sufficient variability in the values of the regressors. See his A Course 
in Econometrics, Harvard University Press, Cambridge, MA, 1991, p. 249. 

8 But be\'i'are of specification bias. One should not exclude variables just to get rid of collinearity. If a 
variable belongs in the model, it should be retained even if it is not statistically significant. 
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Table 4.5 Revised women's hours worked regression. 

Dependent Variable: HOURS 
Method: Least Squares 
Sample (adjusted): 1 428 
Included observations: 428 after adjustments 

C 

AGE 

EDUC 

EXPER 

FAMINC 

HUSHRS 

HUSWAGE 

KIDSLT6 

WAGE 

MTR 

UNEM 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F -statistic 

Coefficient 

8484.523 

-17.72740 

-27.03403 

24.20345 

0.013781 

-0.486474 

-144.9734 

-180.4415 

-47.43286 

-6351.293 

-16.50367 

0.335786 
0.319858 
640.1992 
1.71E+08 

-3367.375 
21.08098 

Std. Error t-Statistic 

987.5952 8.591094 

4.903114 -3.615540 

15.79456 -1.711604 

4.653332 5.201315 

0.005866 2.349213 

0.070462 -6.904046 

15.88407 -9.126972 

86.36960 -2.089178 

10.30926 -4.600995 

1029.837 -6.167278 

10.55941 -1.562935 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 

Prob(F-statistic) 

1302.930 
776.2744 
15.78680 
15.89112 
2.078578 
0.000000 

Prob. 

0.0000 

0.0003 

0.0877 

0.0000 

0.0193 

0.0000 

0.0000 

0.0373 

0.0000 

0.0000 

0.ll88 

see which model may be least collinear. But this strategy, called "data mining" or "data 
fishing", is not recommended. If we have a model containing several variables that le­
gitimately belong in the model, it is better to leave them in the model. If some coeffi­
cients in this model are not statistically significant, so be it. There is very little we can 
do to the data short of collecting new da ta or a different set of data, if tha t is feasible. 

Table 4.6 VIr and TOL for coeficients in Table 4.5. 

Variable VIF TOL =l/VIF 

mtr 6.54 0.152898 

famine 4.88 0.204774 

huswage 3.35 0.298295 

hushrs 1.76 0.568969 

age 1.49 0.669733 

exper 1.46 0.683036 

educ 1.36 0.736669 

wage 1.21 0.824171 

kidslt6 1.19 0.837681 

unem 1.07 0.935587 

Mean VIF 2.43 
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4.5 The method of principal components (PC) 

A statistical method, known as the principal component analysis (PCA), can transform 
correlated variables into orthogonal or uncorrelated variables.9 The orthogonal vari­
ables thus obtained are called the principal components. Returning to our 
hours-worked regression given in Table 4.3, we have 15 regressors. The method of PC 
will in principle compute 15 principal components, PCs, denoted as PClt PC2, ... , PClS, 
such that they all are mutually uncorrelated. These PCs are linear combinations of the 
original regressors. In practice we need not use all the 15 pes, because a smaller number 
will often be adequate to explain the phenomenon under study, as we show below. 

The basic idea behind peA is simple. It groups the correlated variables into 
sub-groups so that variables belonging to any sub-group have a "common" factor that 
moves them together. This common factor may be skill, ability, intelligence, ethnicity, 
or any such factor. That common factor, which is not always easy to identify, is what 
we call a principal component. There is one pe for each common factor. Hopefully, 
these common factors or pes are fewer in number than the original number of 
regressors. 

The starting point of the pe analysis is the correlation matrix of the original vari­
ables. The 15 x 15 correlation matrix is too big to reproduce here, but any statistical 
package will produce them. From the correlation matrix, using Minitab 15, we ob­
tained the following pes (Table 4.7), 15 in totaL We will not discuss the actual mathe­
matics of extracting the pes, for it is rather involved. 

Interpretation of the pes 

The first part of the above table gives the estimated 15 pes. PCl> the first principal 
component, has a variance eigenvalue) of 3.5448 and accounts for 24% of the total 
variation in all the regressors. PC2, the second principal component, has a variance of 
2.8814, accounting for 19% of the total variation in allIS regressors. These two pes ac­
count for 42% of the total variation. In this manner you will see the first six pes cumu­
latively account for 74% of the total variation in all the regressors. So although there 
are 15 pes, only six seem to be quantitatively important. This can be seen more clearly 
in Figure 4.1 obtained from Minitab 15. 

Now look at the second part of Table 4.7. For each pe it gives what are called load­
ings or scores or weights that is, how much each of the original regressors contrib­
utes to that pc. For example, Take PCl: education, family income, father's education, 
mother's education, husband's education, husband's wage, and MTR load heavily on 
this pc. But if you take PC4 you will see that husband's hours of work contribute 
heavily to this Pc. 

Although mathematically elegant, the interpretation of pes is subjective. For in­
stance, we could think of PCl as representing the overall level of education, for that 
variable loads heavily on this pc. 

Once the principal components are extracted, we can then regress the original 
regressand (hours worked) on the principal components, bypassing the original 

9 Literally interpreted, the term orthogonal means intersecting or lying at right angles. Uncorrelated 
variables are said to be orthogonal because when plotted on a graph, they form right angles to one of the 
axes. 
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Table 4.7 Principal components of the hours-worked example. 

Eigenanalysis of the Correlation Matrix 
428 cases used, 325 cases contain missing values 

EDUC 

EXPER 

FAMINC 

FATHEDVC 

HVSAGE 

HVSEDVC 

HVSHRS 

. HVSWAGE 

KIDSGE6 

KIDSLT6 

WAGE 

MOTHEDVC 

MTR 

VNEM 

3.5448 2.8814 1.4598 

0.236 0.192 0.097 

0.526 

0.4151 

0.028 

0.952 

PC2 

0.528 

-0.073 

-0.008 0.513 

0.368 -0.091 

0.053 -0.129 

0.382 0.093 

-0.057 -0.320 

0.014 -0.276 

0.232 0.052 

0.224 -0.214 

-0.451 -0.127 

0,086 0.071 

1.2965 

0.086 

0.612 

0.3469 

0.023 

0.975 

PC3 

0.114 

0.278 

0.267 

-0.314 

0.459 

0.106 

0.129 

0.099 

-0.373 

-0.309 

0,018 

-0.031 

0.450 

0.228 

-0.039 

1.0400 0.8843 0.8259 0.6984 

0.069 0.047 

PC6 

0.D75 

0.150 

0.025 0.255 0.058 

0.179 -0.029 -0.026 

-0.081 -0.289 -0.142 

0.021 -0.141 0.033 

0,015 0.069 0.230 

0.718 0.049 0.461 

-0.240 -0.141 -0.185 

0.062 

-0.278 

-0.054 

-0.031 

-0.197 

-0.508 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Component number 

Figure 4.1 Plot of eigenvalues (variances) against principal components. 
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Table 4.8 Principal components regression. 

Hours = 1303 - 1..5 C23 + 84.0 C24 + 18.6 C25 + 106 C26 + 4.8 C27 - 56.4 C28 
428 cases used, 325 cases contain missing values' 

Coef SE 
1302.93 

-1.49 

84.04 21.57 

18.62 30.30 

PC4 105.74 32.16 

PC5 4.79 35.90 

PC6 -56.36 38.94 

S" 756.605 R-Sq = 6.3% R-Sq(adj) = 5.0% 
Note: • 325 married women had zero hours of work. 
•• This is the standard error of the regression (= &) 

Coeft P(P value) 

35.63 0,000 

-0.08 0.939 

3.90 0.000 

0.61 0.539 

3.29 0.001 

0.13 0.894 

-1.45 0.149 

Note: The first column gives the name of the regressors that is, the PCs, the third 
column gives their estimated standard errors, the fourth column gives the estimated t 
values, and the last column gives the p values (Le. the exact level of significance.) 

regressors: To illustrate, suppose we use only the first six PCs, as they seem to be the 
most important. Regressing hours worked on these six PCs, we obtain the results in 
Table 4.8 from Minitab15. 

From these results it seems that PC2 and PC4 seem to explain the behavior of 
women's hours worked best. Of course, the rub here is that we do not know how to in­
terpret these principal components. However, the method of principal components is 
a useful way of reducing the number of correlated regressors into a few components 
that are uncorrelated. As a result, we do not face the collinearity problem. Since there 
is no such thing as a free lunch, this simplification comes at a cost because we do not 
know how to interpret the PCs in a meaningful way in practical applications. If we can 
identify the PCs with some economic variables, the principal components method 
would prove very useful in identifying multicollinearity and also provide a solution for 
it. 

In passing it may be mentioned that the method of ridge regression is another 
method of dealing with correlated variables. The estimators produced by ridge regres­
sion are biased, but they have smaller mean squared error (MSE) than the OLS estima­
tor8.10 A discussion of ridge regression is beyond the scope of this book.ll 

4.6 Summary and conclusions 

In this chapter we examined the problem of multicollinearity, a problem commonly 
encountered in empirical work, especially if there are several correlated explanatory 
variables in the model. As long as collinearity is not perfect, we can work within the 

10 The MSE of an estimator, say ~ofA, is equal to its variance plus the square of the bias in estimating it. 
11 For a user-friendly discussion, see Samprit Chatterjee and Ali S. Hadi, Regression Analysis by 

Example, 4th edn, John Wiley &Sons, New York, 2006, pp. 266-75. 
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framework of the classical linear regression model, provided the other assumptions of 
the CLRM are satisfied. 

If collinearity is not perfect, but high, several consequences ensue. The OLS estima­
tors are still BLUE, but one or more regression coefficients have large standard errors 
relative to the values of the coefficients, thereby making the t ratios small. Therefore 
one may conclude (misleadingly) that the true values of these coefficients are not dif­
ferent from zero. Also, the regression coefficients may be very sensitive to small 
changes in the data, especially if the sample is relatively small (see Exercise 4.6). 

There are several diagnostic tests to detect collinearity, but there is no guarantee 
that they will yield satisfactory results. It is basically a trial and error process. 

The best practical advice is to do nothing if you encounter collinearity, for very 
often we have no control over the data. However, it is very important that the variables 
included in the model are chosen carefully. As our illustrative example shows, redefin­
ing a model by excluding variables that may not belong in the model may attenuate the 
collinearity problem, provided we do not omit variables that are relevant in a given sit­
uation. Otherwise, in reducing collinearity we will be committing model specification 
errors, which are discussed in Chapter 7. So, think about the model carefully before 
you estimate the regression model. 

There is one caveat. If there is multicollinearity in a model and if your objective is 
forecasting, multicollinearity may not be bad, provided the collinear relationship ob­
served in the sample continues to hold in the forecast period. 

Finally, there is a statistical technique, called principal components analysis, 
which will "resolve" the problem of near-collinearity. In PCA we construct artificial 
variables in such a way that they are orthogonal to each other. These artificial vari­
ables, called principal components (PC), are extracted from the original X regressors. 
\Ve can then regress the original regressand on the principal components. We showed 
how the PCs are computed and interpreted, using our illustrative <::"'G<111I>'''' 

One advantage of this method is that the PCs are usually smaller in number than the 
original number of regressors. But one practical disadvantage of the PCA is that the 
PCs very often do not have viable economic meaning, as they are (weighted) combina­
tions of the original variables which may be measured in different units of measure­
ment. Therefore, it may be hard to interpret the PCs. That is why they are not much 
used in economic research, although they are used extensively in psychological and 
education research. 

Exercises 

4.1 For the hours example discussed in the chapter, try to obtain the correlation 
matrix for the variables included in Table 4.3. Eviews, Stata, and several other pro­
grams can compute the correlations with comparative ease. Find out which variables 
are highly correlated. 

4.2 Do you agree with the following statement and why? Simple correlations between 
variables are a sufficient but not a necessary condition for the existence of 
multicollinearity. 

4.3 Continuing with Exercise 4.1, find out the partial correlation coefficients for the 
variables included in Table 4.2, using Stata or any other software you have. Based on 
the partial correlations, which variables seem to be highly correlated? 



80 Critical evaluation of the classical linear regression mOdel) 

4.4 In the three-variable model, Yand regressors X2 and X3, we can compute three 
partial correlation coefficients. For example, the partial correlation between Yand X2, 

holding X3 constant, denoted as r12.31 is as follows: 

where the subscripts 1, 2, and 3 denote the variables Y, X 2, and X3, respectively and r12, 

r13 and r23 are simple correlation coefficients between the variables. 
(a) When will r12.3 be equal to r12? What does that mean? 
(b) Is r12.3 less than, equal to or greater than r12? Explain. 

4.5 Run the 15 auxiliary regressions mentioned in the chapter and determine which 
explanatory variables are highly correlated with the rest of the explanatory variables. 

4.6 Consider the sets of data given in the following two tables: 

Table 1 Table 2 

Y X2 X3 Y X2 X3 

1 2 4 1 2 4 

2 0 2 2 0 2 

3 4 12 3 4 0 

4 6 0 4 6 12 

5 8 16 5 8 16 

The only difference between the two tables is that the third and fourth values of X3 are 
interchanged. 

(a) Regress Yon X2 and X3 in both tables, obtaining the usual OLS output. 
(b) What difference do you observe in the two regressions? And what accounts 

for this difference? 

4.7 The following data describes the manpower needs for operating a US Navy bach­
elor officers' quarters, consisting of 25 establishments. The variables are described 
below and the data is given in Table 4.9,12 which can be found on the companion 
website: 

Y: Monthly manhours needed to operate an establishment 
Xl: Average daily occupancy 
X2: Monthly average number of check-ins 
X3: Weekly hours of service desk operation 
X4: Common use area (in square feet) 
X5: Number of building wings 
X6: Operational berthing capacity 
X7: Number of rooms 

Questions: 

Are the explanatory variables, or some subset of them, collinear? How is this detected? 
Show the necessary calculations. 

12 Source: R. J. Freund and R. C. Littell (1991) SAS System/or Regression. SAS Institute Inc. 
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Optional; Do a principal component analysis, using the data in the above table. 

4.8 Refer to Exercise 4.6. First regress Yon X3 and obtain the residuals from this re­
gression, say eli. Then regress X2 on and obtain the residuals from this regression, 
say e2i. Now regress eli on e2i. This regression will give the partial regression coeffi­
cient given in Eq. (4.2). What does this exercise show? And how would you describe 
the residuals eli and 
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Regression diagnostic II: 
heteroscedasticity 

One of the problems commonly encountered in cross-sectional data is 
hetero-scedasticity (unequal variance) in the error term. There are various reasons for 
heteroscedasticity, such as the presence of outliers in the data, or incorrect functional 
form of the regression model, or incorrect transformation of data, or mixing observa­
tions with different measures of scale (e.g. mixing high-income households with 
low-income households) etc. 

5.1 Consequences of heteroscedasticityl 

The classical linear regression model (CLRM) assumes that the error term Ui in the re­
gression model has homoscedasticity (equal variance) across observations, denoted by 
cr2 • For instance, in studying consumption expenditure in relation to income, this as­
sumption would imply that low-income and high-income households have the same 
disturbance variance even though their average level of consumption expenditure is 
different. 

However, if the assumption of homoscedasticity, or equal variance, is not satisfied, 
we have the problem of heteroscedasticity, or unequal variance, denoted by crT (note 
the subscript i). Thus, compared to low-income households, high-income households 
have not only higher average level of consumption expenditure but also greater vari­
ability in their consumption expenditure. As a result, in a regression of consumption 
expenditure in relation to household income we are likely to encounter 
heteroscedasticity. 

Heteroscedasticity has the following consequences: 

1 Heteroscedasticity does not alter the unbiasedness and consistency properties of 
OLS estimators. 

2 But OLS estimators are no longer of minimum variance or efficient. That is, they 
are not best linear unbiased estimators (BLUE); they are simply linear unbiased es­
timators (LUE). 

3 As a result, the t and F tests based under the standard assumptions of CLRM may 
not be reliable, resulting in erroneous conclusions regarding the statistical signifi­
cance of the estimated regression coefficients. 

1 For details, see GujaratilPorter text, op cit., Chapter 11. 
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4 In the presence of heteroscedasticity, the BLUE estimators are provided by the 
method of weighted least squares (WLS). 

Because of these consequences, it is important that we check for heteroscedasticity, 
which is usually found in cross-sectional data. Before we do that, let us consider a con­
crete example. 

5.2 Abortion rates in the USA 

What are the factors that determine the abortion rate across the 50 states in the USA? 
To study this, we obtained the data shown in Table 5.1, which can be found on the 
companion website.2 

The variables used in the analysis are as follows: 

State name of the state (50 US states). 

ABR = Abortion rate, number of abortions per thousand women aged 15-44 in 1992. 

Religion = the percent of a state's population that is Catholic, Southern Baptist, 
Evangelical, or Mormon. 

Price the average price charged in 1993 in non-hospital facilities for an abortion at 10 
weeks with local anesthesia (weighted by the number of abortions performed in 1992). 

Laws a variable that takes the value of 1 if a state enforces a law that restricts a mi­
nor's access to abortion, 0 otherwise. 

Funds = a variable that takes the value of 1 if state funds are available for use to pay 
for an abortion under most circumstances, 0 otherwise. 

Educ = the percent of a state's population that is 25 years or older with a high school 
degree (or equivalent), 1990. 

Income = disposable income per capita, 1992. 

Picket = the percentage of respondents that reported experiencing picketing with 
physical contact or blocking of patients. 

The model 

As a starting point, we consider the following linear regression model: 

ABRi = Bl +B2Relj +B3Pricei +B4Lawsj +BsFundsj 

+B6EduCi +B7Incomei + BsPicketi +Uj 

i = L2, ... ,50 

(5.1) 

A priori, we would expect ABR to be negatively related to religion, price, laws, 
picket, education, and positively related to fund and income. We assume the error 
term satisfies the standard classical assumptions, including the assumption of 
homoscedasticity. Of course, we will do a post-estimation analysis to see if this as­
sumption holds in the present case. 

Using Eviews6, we obtained the results of Table 5.2, which are given in the standard 
Eviews format. 

2 The data were obtained from the website of Leo H. Kahane, http://www.cbe.csueastbay.edu/-kahane. 
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Table 5.2 OLS estimation of the abortion rate function. 

Dependent Variable: ABORTION 
Method: Least Squares 
Sample: 150 
Included observations: 50 

Coefficient 

e ¢1428396 
D"C TrTA 0.020071 

PRICE . -0.042363 

LAWS 

FUNDS 

EDUC 

INCOME 

PICKET 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

-0.873102 

282~ -0.287 

0.002 

-0.116871 

0.577426 
0.506997 
7.062581 
2094.962 

-164.3286 
8.198706 

Std. Error t-Statistic 

15.07763 0.947361 

0.086381 0.232355 

0.022223 -1.906255 

2.376566 -0.367380 

2.783475 1.013123 

0.199555 -1.439483 

0.000455 5.274041 

0.042180 -2.770782 

Mean dependent var 
S.D. dependent var 
Al<aike info criterion 
Schwarz criterion 
Durbin-\Vatson stat 
Prob(F-statistic) 

20.57800 
10.05863 
6.893145 
7.199069 
2.159124 
0.000003 

Prob. 

0.3489 

0.8174 

0.0635 

0.7152 

0.3168 

0.1574 

0.0000 

0.0083 

As these results show, on the basis of the t statistic, price, income, and picket are 
statistically significant at the 10% or lower level of significance, whereas the other vari­
ables are not statistically significant, although some of them (laws and education) have 
the correct signs. But remember that if there is heteroscedasticity, the estimated tvalues 
may not be reliable. 

The R2 value shows that 58% of the variation in the abortion rate is explained by the 
modeL The F statistic, which tests the hypothesis that all the slopes' coefficients are si­
multaneously zero, clearly rejects this hypothesis, for its value of 8.199 is highly signifi­
cant; its p value is practically zero. Again, keep in mind that the F statistic may not be 
reliable if there is heteroscedasticity. 

Note that the significant F does not mean that each explanatory variable is statisti­
cally significant, as the t statistic shows that only some of the explanatory variables are 
individually statistically significant. 

Analysis of results 

As noted, a commonly encountered problem in cross-sectional data is the problem of 
heteroscedasticity. In our example, because of the diversity of the states we suspect 
heteroscedasticity. 

As a simple test of heteroscedasticity, we can plot the histogram of squared residu­
als (SIS) from the regression given in Table 5.2; see Figure 5.1. 

It is obvious from this figure that squared residuals, a proxy for the underlying 
squared error terms, do not suggest that the error term is homoscedastic.3 

3 Recall that the OL5 estimate of the error variance is given as: &2 = 'LeT I (n - k) - that is, residual sum of 
squares divided by the of freedom. 
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Figure 5.1 Histogram of squared residuals from Eq. (5.1). 

We can get a better glimpse of heteroscedasticity if we plot the squared residuals 
(SlS) against the estimated abortion rate from the regression model (Figure 5.2). 

Note: ABORTIONF is the estimated abortion rate from model (5.1). 
It seems that there is a systematic relationship between the squared residuals and 

the estimated values of the abortion rate, which can be checked by some formal tests of 
heteroscedasticity (see also Eq. (5.3) below). 
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Figure 5.2 Squared residuals vs. fitted abortion rate. 
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5.3 Detection of heteroscedasticity 

Besides the graphic methods described in the previous section, we can use two com­
monly used tests ofheteroscedasticity, namely, the Breusch-Pagan and White tests.4 

Breusch-Pagan (BP) test 

This test involves the following steps: 

1 Estimate the OLS regression, as in Table 5.2, and obtain the squared OLS residu­
als, ef, from this regression. 

2 Regress ef on the k regressors included in the model; the idea here is to see if the 
squared residuals (a proxy for true squared error term) are related to one or more 
X variables.5 You can choose other regressors also that might have some bearing 
on the error variance. Now run the following regression: 

ef 
I 

where Vi is the error term. 
Save R2 from regression (5.2); call it R~ux' where aux stands for auxiliary, since 

Eq. (5.2) is auxiliary to the primary regression (5.1) (see Table 5.3). The idea 
behind Eq. (5.2) is to find out if the squared error term is related to one or more of 
the regressors, which might indicate that perhaps heteroscedasticity is present in 
the data. 

3 The null hypothesis here is that the error variance is homoscedastic - that is, all 
the slope coefficients in Eq. (5.2) are simultaneously equal to zero.6 You can use 
the Fstatisticfrom this regression with (k 1) and (n k) in the numerator and de­
nominator df, respectively, to test this hypothesis. If the computed F statistic in 
Eq. (5.2) is statistically significant, we can reject the hypothesis of homo­
scedasticity. If it is not, we may not reject the null hypothesis. 

As the results in Table 5.3 show, the F statistic (7 df in the numerator and 42 df 
in the denominator) is highly significant, for its p value is only about 2%. Thus we 
can reject the null hypothesis. 

4 Alternatively, you can use the chi-square statistic. It can be shown that under the 
null hypothesis ofhomoscedasticity, the product ofR~ux (computed in step 2) and 
the number of observations follows the chi-square distribution, with df equal to 
the number of regressors in the model. If the computed chi-square value has a low 
p value, we can reject the null hypothesis of homoscedasticity.7 As the results in 
Table 5.3 show, the observed chi-square value (=nR~ux) of about 16 has a very low 
p value, suggesting that we can reject the null hypothesis of homoscedasticity. To 

4 The details of these and other tests can be found in Gujarati/Porter text, op cit .. Chapter 11. 
5 Although et are not the same thing as ut, in large samples the former are a good proxy. 
6 If that is the case, the constantA1 would suggest that the error variance is constant or homoscedastic. 
7 Recall the relationship between F and X 2 statistics, which is: mFm,n = X Ii, as n ~ 00; that is, for large 

denominator df, the numerator df times the Fvalue is approximately equal to the chi-square value with the 
numerator df, where m and n are the numerator and denominator df, respectively (see Statistical Appendix). 
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Table 5.3 The Breusch-Pagan test ofheteroscedasticity. 

Heteroskedasticity Test: Breusch-Pagan-Godfrey 
F-statistic 2.823820 Prob. F(7,42) 0.0167 

0.0251 
0.1582 

Obs*R-squared 16.00112 Prob. Chi-Square(7) 
Scaled explained SS 10.57563 Prob. Chi-Square(7) 

Test Equation: 
Dependent Variable: RESIDI\2 
Method: Least Squares 
Date: 10/05/09 Time: 13:14 
Sample: 150 
Included observations: 50 

C 

RELIGION 

PRICE 

LAWS 

FUNDS 

£OUC 

INCOME 

PICKET 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statlstic 

Coefficient 

16.68558 

-0.134865 

0.286153 

-8.566472 

24.30981 

-1.590385 

0.004710 

-0.576745 

0.320022 
0.206693 
51.59736 
111816.1 

-263.7616 
2.823820 

Std. Error t-Statistic 

110.1532 0.151476 

0.631073 -0.213707 

0.162357 1.762492 

17.36257 -0.493387 

20.33533 1.195447 

1.457893 -1.090879 

0.003325 1.416266 

0.308155 -1.871606 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

41.89925 
57.93043 
10.87046 
11.17639 
2.060808 
0.016662 

Prob. 

0.8803 

0.8318 

0.0853 

0.6243 

0.2386 

0.2815 

0.1641 

0.0682 

put it differently, the regression in Table 5.2 suffers from the problem of 
heteroscedasticity. 

A cautionary note: this test is a large sample test and may not be appropriate in 
small samples.s 

In sum, it probably seems that the abortion rate regression suffers from 
heteroscedasticity. 

Returning to our example, we obtain the results shown in Table 5.3. 

White's test of heteroscedasticity 

We proceed in the spirit of the BP test and regress the squared residuals on the seven 
regressors, the squared terms of these regressors, and the pairwise cross-product term 
of each regressor, for a total of 33 coefficients. 

As in the BP test, we obtain the R2 value from this regression and multiply it by the 
number of observations. Under the null hypothesis that there is homoscedasticity, this 

8 One might argue that the data we have is not really a random sample, for we have all the states in the 
Union. So. we actually have the whole population. But remember that the abortion rate data are only for one 
year. ltis quite possible thatthis rate will vary from year to year. Hence we can treat the data used for a single 
year as a sample from all possible abortion rates for all the years that we have data. 
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product follows the chi-square distribution with df equal to the number of coefficients 
estimated. The White test is more general and more flexible than the BP test. 

In the present example, if we do not add the squared and cross-product terms to the 
auxiliary regression, we obtain nR2 == 15.7812, which has a chi-square distribution with 
7 df. The probability of obtaining such a chi-square value or greater is about 0.03, 
which is quite. low. This would suggest that we can reject the null hypothesis of 
homoscedasticity. 

Ifwe add the squared and cross-product terms to the auxiliary regression, we obtain 
nR2 = 32.1022, which has a chi-square value with 33 df.9 The probability of obtaining 
such a chi-square value is about 0.51. In this case, we will not reject the null hypothesis. 

As this exercise shows, White's chi-square test is sensitive to whether we add or 
drop the squared and cross-product terms from the auxiliary regression. 10 Remember 
that the White test is a large sample test. Therefore, when we include the regressors 
and their squared and cross-product terms, which results in a loss of 33 df, the results 
of the auxiliary regression are likely to be very sensitive, which is the case here. 

To avoid the loss of so many degrees of freedom, White's test could be shortened by 
regressing the squared residuals on the estimated value of the regressand and its 
squares.ll That is, we regress: 

(5.3) 

where Abortion! == forecast value of abortion rate from Eq. (5.1). Since the estimated 
abortion rate is a linear function of the regressors included in the model ofEq. (5.1), in 
a way we are indirectly incorporating the original regressor and their squares in esti­
mating Eq. (5.3), which is in the spirit of the original White test. But note that in 
(5.3) there is no scope for the cross-product term, thus obviating the cross-product 
terms as in the original White test. Therefore the abridged White test saves several de­
grees of freedom. 

The results of this regression are given in Table 5.4. The interesting statistic in this 
table is the F statistic, which is statistically highly significant, for its p value is very low. 
So the abridged White test reinforces the BP test and concludes that the abortion rate 
function does indeed suffer from heteroscedasticity. And this conclusion is arrived at 
with the loss of fewer degrees of freedom. 

Notice that even though the F statistic is significant, the two partial slope coeffi­
cients are individually not significant. Incidentally, if you drop the squared 
ABORTIONF term from (5.3), you will find that the ABORTIONF term is statisti­
cally significant.l2 The reason for this is that the terms ABORTIONF and its square 
are functionally related, raising the spectre of multicollinearity. But keep in mind that 
multicollinearity refers to linear relationships between variables and not nonlinear re­
lationships, as in Eq. (5.3). 

9 This is because we have 7 regressors, 5 squared regressors and the cross-product of each regressor with 
the other regressors. But note that we do not add the squared values of the dwnmy variables, for the square 
of a dummy that takes a value of 1 is also 1. Also note that the cross-product of religion and income is the 
same as the cross-product of income and religion, so avoid double-counting 

10 That is why it is noted that the White test has weak (statistical) power. The power of a (statistical) test 
is the probability of rejecting the null hypothesis when it is false. 

11 See Jeffrey M. Wooldridge, Introductory Econometrics: A Modern Approach, 4th edn, South-Western 
Publishing, 2009, p. 275. 

12 The coefficient of Abortionf is 3.1801 with a t value of 3.20, which is significant at the 0.002 level. 
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Table 5.4 Abridged White test. 

Dependent Variable: RES"2 
Method: Least Squares 
Sample: 1 50 
Included observations: 50 
White Heteroskedasticity-Consistent Standard Errors & Covariance 

Std. Error t -Statistic 

C 0241 27.0932 0.745663 

ABOR 3.121734 -0.466173 

0.081634 1.316014 

R-squared 0,193083 Mean dependent var 41.89925 
Adjusted R-squared 0.158746 S.D. dependent var 57.93043 
S,E. of regression 53,13374 Akaike info criterion 10.84163 
Sum squared resid 132690.1 Schwarz criterion 10.95635 
Log likelihood -268.0406 Durbin-Watson stat 1.975605 
F-statistic 5.623182 Prob(F-statistic) 0.006464 

Prob. 

0.4596 

0.6432 

0.1946 

It should be noted that whether we use the BP or White or any other test of 
heteroscedasticity, these tests will only indicate whether the error variance in a spe­
cific case is heteroscedastic or not. But these tests do not necessarily suggest what 
should be done if we do encounter heteroscedasticity. 

5.4 Remedial measures 

Knowing the consequences of heteroscedasticity, it may be necessary to seek remedial 
measures. The problem here is that we do not know the true heteroscedastic vari­
ances, crT, for they are rarely observed. If we could observe them, then we could obtain 
BLUE estimators by dividing each observation by the (heteroscedastic) cri and esti­
mate the transformed model by OLS. This method of estimation is known as the 
method of weighted least squares (WLS).l3 Unfortunately, the true crT is rarely 
known. Then what is the solution? 

In practice, we make educated guesses about what crT might be and transform the 
original regression model in such a way that in the transformed model the error vari­
ance might be homoscedastic. Some of the transformations used in practice are as fol­
lowS:14 

1 If the true error variance is proportional to the square of one of the regressors, we 
can divide both sides of Eq. (5.1) by that variable and run the transformed regres­
sion. Suppose in Eq. (5.1) the error variance is proportional to the square of 
income. We therefore divide Eq. (5.1) by the income variable on both sides and es­
timate this regression. We then subject this regression to heteroscedasticity tests, 
such as the BP and White tests. If these tests indicate that there is no evidence of 
heteroscedasticity, we may then assume that the transformed error term is 
homoscedastic. 

13 Since each observation is divided (Le. weighted) by a;, an observation with large a; will be discounted 
more heavily than an observation with low ai. 

14 For details, see GujaratilPorter, op cit., pp. 392-5. 



90 Critical evaluation of the classical linear regression model) 

2 If the true error variance is proportional to one of the regressors, we can use the 
so-called square transformation, that is, we divide both sides of (5.1) by the 
square root of the chosen regressor. We then estimate the regression thus trans­
formed and subject that regression to heteroscedasticity tests. If these tests are 
satisfactory, we may rely on this regression. 

There are practical problems in the applications of these procedures. First, how 
do we know which regressor to pick for transformation if there are several 
regressors? We can proceed by trial and error, but that would be a time-consum­
ing procedure. Second, if some of the values of the chosen regressor are zero, then 
dividing by zero obviously will be problematic. 

The choice of the regressor problem can sometimes be avoided by using the es­
timated Yvalue (i.e. Y;), which is a weighted average value of all the regressors in 
the model, the weights being their regression coefficients, the bs. 

It may be noted that all these methods of transformations are somewhat ad hoc. 
But there is not much we can do about it, for we are trying to guess what the true 
error variances are. All we can hope for is that the guess turns out to be reasonably 
good. 

To illustrate all these transformations would be time- and space-consuming. 
However, we will illustrate just one ofthese transformations. If we divide (5.1) by 
the estimated abortion rate from (5.1), we obtain results in Table 5.5. 

We subjected this regression to Breusch-Pagan and White's tests, but both 
tests showed that the problem of heteroscedasticity still persisted. 15 

It should be added that we do the transformations for the purpose of getting rid 
of hetersoscedasticity. We can get back to the original regression by multiplying 
through by ABORTIONF the results in Table 5.5. 

3 The logarithmic transformation: sometimes, instead of estimating regression 
(5.1), we can regress the logarithm of the dependent variable on the regressors, 
which may be linear or in log form. The reason for this is that the log transforma­
tion compresses the scales in which the variables are measured, thereby reducing a 
tenfold difference between two values to a twofold difference. For example, the 
number 80 is 10 times the number 8, but In 80 (= 4.3280) is about twice as large as 
In 8 (= 2.0794). 

The one caveat about using the log transformation is that we can take logs of 
positive numbers only. 

Regressing the log of the abortion rate on the variables included in Eq. (5.1), we 
obtain the following results in Table 5.6. 

Qualitatively these results are similar to those given in Table 5.1, in that the 
price, income, and picket variables are statistically significant. However, the inter­
pretation of the regression coefficients is different from that in Table 5.1. The vari-
0us slope coefficient measure semi-elasticities - that is, the relative changes in 
the abortion rate for a unit change in the value of the regressor.16 Thus the price 
coefficient of -0.003 means if price goes up by a dollar, the relative change in the 

15 To save space, we do not present the detailed results. Readers can verify the conclusion by running 
their own tests, using the data given in Table 5.1. 

16 Recall our discussion about the semi-log models. 
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Table 5.5 Transformed Eq. (5.1). 

Dependent Variable: ABORTION/ABORTIONF 
Method: Least Squares 
Sample: 150 
Included observations: 50 

Coefficient Std. Error t-Statistic 

l! ABORTIONF 12.81786 11.22852 

RELIGION/ ABORTIONF 0.066088 0.068468 

PRICE/ABORTIONF -0.051468 0.017507 -2. 

LA WS/ABORTIONF -1.371437 1.819336 -0. 

FUNDS/ ABORTIONF 2.726181 3.185173 0.855897 

EDUCt ABORTIONF -0.228903 0.147545 -1.551408 

INCOME! ABORTIONF 0.002220 0.000481 4.616486 

PICKET/ABORTfONF -0.082498 0.031247 -2.640211 

R-squared 0.074143 Mean dependent var 1.011673 
Adjusted R-squared -0.080166 S.D. dependent var 0.334257 
S.E. of regression 0.347396 Akaike info criterion 0.868945 
Sum squared resid 5.068735 Schwarz criterion 1.174869 
Log likelihood -13.72363 Durbin-Watson stat 2.074123 

Note: Abortionf is the abortion rate forecast from Eq. (5.1) 

Table 5.6 Logarithmic regression of the abortion rate. 

Dependent Variable: LABORTION 
Method: Least 
Date: 10/09/09 
Sample: 150 
Included observations: 50 

Coefficient 

00458 

PRICE -0.003112 

LAWS -0.012884 

FUNDS 0.087688 

EDUC -0.014488 

INCOME 0.000126 

PICKET -0.006515 

R-squared 0.589180 
Adjusted R-squared 0.520710 
S.E. of regression 0.353776 
Sum squared resid 5.256618 
Log likelihood -14.63355 
F-statistic 8.604924 

Note: Labortion log of abortion 

Std. Error t-Statistic 

0.755263 3.75136 

0.004327 0.105742 

0.001113 -2.795662 

0.119046 -0.108226 

0.139429 0.628907 

0.009996 -1.449417 

2.28E-05 5.546995 

0.002113 -3.083638 

Mean dependent var 2.904263 
S.D. dependent var 0.511010 
Akaike info criterion 0.905342 
Schwarz criterion 1.211266 
Durbin-Watson stat 1.929785 
Prob(F-statistic) 0.000002 

16 Recall our discussion about the semi-log models. 

Prob. 

0.2601 

0.3969 

0.1283 

0.0000 

0.0116 

Prob. 

0.0005 

0.9163 

0.0078 

0.9143 

0.0036 
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abortion rate is -0.003 or about -0.3%. All other coefficients are to be interpreted 
similarly. 1 8 

When this regression was subjected to Breusch-Pagan and White's test (with­
out squared and cross-product terms), it was found that this regression did not 
suffer from heteroscedasticity. Again, this result should be accepted cautiously, 
for our "sample" of 51 observations may not be large enough. 

This conclusion raises an important point of about heteroscedasticity tests. If 
one or more of these tests indicate that we have the problem of heteroscedasticity, 
it may not be heteroscedasticity per se but a model specification error, a topic we 
will discuss in Chapter 7 in some detail. 

White's heteroscedasticity-consistent standard errors or robust 
standard errors19 

If the sample size is large, White has suggested a procedure to obtain 
heteroscedasticity-corrected standard errors. In the literature these are known as 
robust standard errors. White's routine is now built in several software packages. The 
procedure does not alter the values of the coefficients given in Table 5.2, but corrects 
the standard errors to allow for heteroscedasticity. Using Eviews, we obtain the results 
shown in Table 5.7. 

If you compare these results with those given in Table you will see some 
changes. The price variable is now less significant than before, although the income 
and picket coefficients have about the same level of significance. But notice that the es­
timated regression coefficients remain the same in the two tables. 

But do not forget that the White procedure is valid in large samples, which may not 
be the case in the present example. Let us revisit the wage function first considered in 
Chapter 1 and the hours worked function discussed in Chapter 4; in both cases our 
samples are reasonably large. 

Wage function revisited 

In Table 1.2 we presented a wage function of 1,289 workers. Since the data used in this 
table are cross-sectional, it is quite likely that the regression results suffer from 
heteroscedasticity. To see if this is the case, we used the BP and White's tests, which 
gave the following results. 

BP test: When the squared residuals obtained from the model in Table 1.2 were re­
gressed on the variables included in the wage regression, we obtain an R2 value of 
0.0429. Multiplying this value by the number of observations, 1,289, we obtained a 
chi-square value of about 55. For 5 df, the number of regressors in the wage function, 
the probability of obtaining such a chi-square value or greater was practically zero, 
suggesting that the wage regression in Table 1.2 did indeed suffer from 
heteroscedasticity. 

White's test ofheteroscedasticity: To see if the BP test results are reliable, we used 
White's test, both excluding and including the cross-product terms. The results were 
as follows. Excluding the cross-product terms, nR2 = 62.9466, which has the 

18 But recall the warning given in the previous chapter about interpreting dummy variables in semi-log 
regressions. 

19 Details can be found in Gujarati/Porter, op cit., p. 391. 
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Table 5.7 Robust standard errors of the abortion rate regression. 

Dependent Variable: ABORTION RATE 
Method: Least Squares 
Sample: 150 
Included observations: 50 
White Heteroskedasticity-Consistent Standard Errors & Covariance 

C 

RELIGION 

PRICE 

LAWS 

FUNDS 

EDUC 

INCOME 

PICKET 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

Coefficient 

14.28396 

0,020071 

-0.042363 

-0.873102 

2.820003 

-0.287255 

0.002401 

-0.116871 

0.577426 
0.506997 
7,062581 
2094.962 

-164.3286 
8.198706 

Std. Error t-Statistic 

14.90146 0.958561 

0.083861 0.239335 

0.025944 -1.632868 

1.795849 -0.486178 

3.088579 0.913042 

0.176628 -1.626329 

0,000510 4.705512 

0.040420 -2.891415 

Mean dependent var 
S,D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

20.57800 
10.05863 
6.893145 
7.199069 
2.159124 
0.000003 

Prob. 

0.3433 

0.8120 

0.1100 

0.6294 

0.3664 

0.1114 

0.0000 

0.0060 

chi-square distribution with 5 df. The probability of obtaining such a chi-square value 
or greater is practically zero, thus confirming that the wage regression did in fact have 
heteroscedasticity. When we added the squared and cross-product terms of the 
regressors, we obtained nR2 =79.4311, which has a chi-square distribution with 17 df 
(5 regressors, 2 squared regressors, and 10 cross-product terms ofthe regressors). The 
probability of obtaining a chi-square value of as much as 79.4311 or greater is practi­
cally zero. 

In sum, there is strong evidence that the wage regression in Table 1.2 suffered from 
heteroscedasticity. 

Instead of transforming the wage regression in Table 1.2 by dividing it by one or 
more regressors, we can simply correct the problem of heteroscedasticity by comput­
ing White's robust standard errors. The results are given in Table 5.8. 

If you compare these results with those in Table 1.2, you will see that the regression 
coefficients are the same, but some standard errors have changed, which then changed 
the t values. 

Hours worked function revisited 

Consider the results given in Table 4.2 about hours worked by 753 married women. 
These results are not corrected for heteroscedasticity. On the basis of the BP test and 
the White test, with or without squared and cross-product terms, it was found that the 
hours worked function in Table 4.2 was plagued by heteroscedasticity.20 

20 For the BP test nR2 = 38.76, which has a chi-square distribution with 10 df. The probability of 
obtaining such a chi-square value or greater is almost zero. For the White test, nR2 40.19 without the 
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Table 5.8 Heteroscedasticity-corrected wage function. 

Dependent Variable: W 
Method: Least Squares 
Sample: 1 1289 
Included observations: 1289 
White Heteroskedasticity-Consistent Standard Errors & Covariance 

C 

FEMALE 

NONWHITE 

UNION 

EDUC 

EXPER 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

Coefficient 

-7.183338 

-3.074875 

-1.565313 

1.095976 

1.370301 

0.166607 

0.323339 
0.320702 
6.508137 
54342.54 

-4240.370 
122.6149 

Std. Error t-Statistic 

1.090064 -6.589834 

0.364256 -8.441521 

0.397626 -3.936647 

0.425802 

0.083485 

0.016049 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

2.573908 

16.41372 

10.38134 

12.36585 
7.896350 
6.588627 
6.612653 
1.897513 
0.000000 

Prob. 

0.0000 

0.0000 

0.0001 

0.0102 

0.0000 

0.0000 

Since the sample is reasonably large, we can use the \Vhite procedure to obtain 
heteroscedasticity-corrected standard errors. The results are given in Table 5.9. 

If you compare these results with those given in Table 4.2, you will see a few changes 
in the estimated standard errors and t values. Family income and kids under 6 vari­
ables are now less significant than before, whereas the unemployment rate variable is a 
bit more significant. 

The point to note here is that if the sample size is reasonably large, we should pro­
duce White's heteroscedasticity-corrected standard errors along with the usual OLS 
standard errors to get some idea about the presence of heteroscedasticity. 

5.5 Summary and conclusions 

In this chapter we considered one of the violations of the classical linear regression 
model, namely, heteroscedasticity, which is generally found in cross-sectional data. 
Although heteroscedasticity does not destroy the unbiasedness and consistency prop­
erties of OLS estimators, the estimators are less efficient, making statistical inference 
less reliable if we do not correct the usual OLS standard errors. 

Before we solve the problem of heteroscedasticity, we need to find out if we have the 
problem in any specific application. For this purpose we can examine the squared re­
siduals from the original model or use some formal tests of heteroscedasticity, such as 
the Breusch-Pagan and White's tests. If one or more ofthese tests show that we have 
the heteroscedasticity problem, we can then proceed to remediation of the problem. 

squared and cross-product terms, and 120.23 when such terms are added. In both cases, the probability of 
obtaining such chi-square values or greater is practically zero. 



l Regression diagnostic II: heteroscedasticity 95 

Table 5.9 Heteroscedasticity-corrected hours function. 

Dependent Variable: HOURS 
Method: Least Squares 
Sample (adjusted): 1 428 
Included observations: 428 after adjustments 
White Heteroskedasticity-Consistent Standard Errors & Covariance 

Coefficient 

C 8484.523 

AGE -17.72740 

EDUC -27.03403 

EXPER 24.20345 

FAMINC 0.013781 

HUSHRS -0.486474 

HUSWAGE -144.9734 

KIDSLT6 -180.4415 

WAGE -47.43286 

MTR -6351.293 

UNEM -16.50367 

R-squared 0.335786 
Adjusted R-squared 0.319858 
S.E. of regression 640.1992 
Sum squared resid 1.71E+08 
Log likelihood -3367.375 
F-statistic 21.08098 

Std. Error t-Statistic 

1154.4 

5.2630 68262 

15.70405 -1.721468 

4.953720 4.885914 

0.007898 1.744916 

0.073287 -6.637928 

17.58257 -8.245293 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

1302.930 
776.2744 
15.78680 
15.89112 
2.078578 
0.000000 

Prob. 

0.0000 

0.0008 

0.0859 

0.0000 

0.0817 

0.0000 

0.0000 

The problem of heteroscedasticity can be solved if we know the heteroscedastic 
variances, crt, for in that case we can transform the original model (5.1) by diving it 
through by cri and estimate the transformed model by OLS, which will produce esti­
mators that are BLUE. This method of estimation is known as weighted least squares 
(WLS). Unfortunately, we rarely, if ever, know the true error variances. Therefore we 
need to find the second best solution. 

Using some educated guesses of the likely nature of crt we transform the original 
model, estimate it, and subject it to heteroscedasticity tests. If these tests suggest that 
there is no heteroscedasticity problem in the transformed model, we may not reject 
the transformed model. If, however, the transformed model shows that the problem of 
heteroscedasticity still persists, we can look for another transformation and repeat the 
cycle again. 

However, all this labor can be avoided if we have a sufficiently large sample, be­
cause in that case we can obtain heteroscedasticity-corrected standard errors, using 
the procedure suggested by White. The corrected standard errors are known as 
robust standard errors. Nowadays there are several micro data sets that are pro­
duced by several agencies that have a large number of observations, which makes it 
possible to use the robust standard errors in regression models suspected of the 
heteroscedasticity problem. 
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Exercises 

5.1 Consider the wage model given in Table 1.2. Replicate the results of this table, 
using log of wage rates as the regressand. Apply the various diagnostic tests discussed 
in the chapter to find out if the log wage function suffers from heteroscedasticity. If so, 
what remedial measures would you take? Show the necessary calculations. 

5.2 Refer to the hours worked regression model given in Table 4.2. Use log of hours 
worked as the regressand and find out if the resulting model suffers from 
heteroscedasticity. Show the diagnostic tests you use. How would you resolve the 
problem of heteroscedasticity, if it is present in the model? Show the necessary 
calculations. 

5.3 Do you agree with the following statement: "Heteroscedasticity has never been a 
reason to throw out an otherwise good model"?21 

5.4 Refer to any textbook on econometrics and learn about the Park, Glejser, 
Spearman's rank correlation, and Goldfeld-Quandt tests ofheteroscedasticity. Apply 
these tests to the abortion rate, wage rate, and hours of work regressions discussed in 
the chapter. Find out if there is any conflict behveen these tests and the BP and White 
tests of heteroscedasticity. 

5.5 Refer to Table 5.5. Assume that the error variance is related to the square of 
income instead of to the square of ABORTIONF. Transform the original abortion rate 
function replacing ABORTIONF by income and compare your results with those 
given in Table 5.5. A p1'iori, would you expect a different conclusion about the pres­
ence of heteroscedasticity? Why or why not. Show the necessary calculations. 

21 N. Gregory Mankiw, A quick refresher course in macroeconomics, Journal of Economic Literature, 
vol. XXVIII, , p. 1648. 
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Regression diagnostic III: autocorrelation 

A common problem in regression analysis involving time series data is 
autocorrelation. Recall that one of the assumptions of the classical linear regression 
model (CLRM) is that the error terms, Ut, are uncorrelated that is the error term at 
time t is not correlated with the error term at time (t - 1) or any other error term in the 
past. If the error terms are correlated, the following consequences follow: 1 

1 The OLS estimators are still unbiased and consistent. 

2 They are still normally distributed in large samples. 

3 But they are no longer efficient. That is, they are no longer BLUE (best linear unbi­
ased estimator). In most cases OLS standard errors are underestimated, which 
means the estimated t values are inflated, giving the appearance that a coefficient 
is more significant than it actually may be. 

4 As a result, as in the case of heteroscedasticity, the hypothesis-testing procedure 
becomes suspect, since the estimated standard errors may not be reliable, even as­
ymptotically (Le. in large samples). In consequence, the usual t and Ftests may not 
be valid. 

As in the case ofheteroscedasticity, we need to find out if autocorrelation exists in a 
specific application and take corrective action or find alternative estimating proce­
dures that will produce BLUE estimators. Before we undertake this task, let us con­
sider a concrete example. 

6.1 US consumption function, 1947-2000 

Table 6.1 gives data on real consumption expenditure (C), real disposable personal 
income (DPI), real wealth (W) and real interest rate (R) for the USA for the years 
1947-2000, the term "real" meaning "adjusted for inflation".2 Table 6.1 can be found 
on the companion website. 

Now consider the follOWing regression model: 

(6.1) 

1 For details, see Gujarati!Porter. op cit .• Chapter 12. 
2 The data were obtained from various government sources, such as the Department of Commerce. 

Federal Reserve Bank and the Economic Report of the President. 
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Notice that we have put the subscript t to indicate that we are dealing with time 
series data. Also note that In stands for natural logarithm. 

For simplicity of explanation we will call Eq. (6.1) the consumption function. The 
explanatory variables, or regressors, in this equation are the commonly used variables 
in the consumption function, although there may be variations in the choice of DPI, 
wealth, and interest rate. Refer to any macroeconomics textbook for the theory behind 
the consumption function. 

Observe that we have introduced C, DPI, and Win log forms but R in linear form be­
cause some of the real interest rates were negative. B2 and B3 are the elasticities of con­
sumption expenditure with respect to disposable income and wealth, respectively, and 
B4 is semi-elasticity with respect to real interest rate (recall our discussion about func­
tional forms of regression models in Chapter 2).3 A priori, we expect the income and 
wealth elasticities to be positive and the interest rate semi-elasticity to be negative. 

Regression results 

The results of the estimated regression are given in Table 6.2. 

Evaluation of results 

As expected, the slope coefficients have the expected signs. If the standard assump­
tions of CLRM hold, all the estimated coefficients are "highly" statistically significant, 
for the estimated p values are so low. The income elasticity of 0.8 suggests that, holding 
other variables constant, if real personal disposal income goes up by 1%, mean real 
consumption expenditure goes up by about 0.8%. The wealth coefficient of about 0.20 
suggests that if real wealth goes up by 1 %, mean real consumption expenditure goes up 
by about 0.2%, ceteris paribus. The interest semi-elasticity suggests that if interest rate 

Table 6.2 Regression results of the consumption function. 

Dependent Variable: LOG( C) 
Method: Least Squares 
Sample: 19472000 
Included observations: 54 

Coefficient 
-0.467711 

0.804873 

0.201270 

R -0.002689 

R-squared 0.999560 
Adjusted R-squared 0.999533 
S.E. of regression 0.011934 
Sum squared resid 0.007121 
Log likelihood 164.5880 
F-statistic 37832.59 
Note: L stands for natural log. 

Mean dependent val' 
S.D. dependent val' 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

7.826093 
0.552368 

-5.947703 
-5.800371 

1.289219 
0.000000 

Prob. 

0.0000 

0.0000 

0.0000 

0.0009 

3 In the analysis of the consumption function it is common to use the log or semi-log forms, for the 
coefficients can be interpreted as elasticities or semi-elasticities. 
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goes up by one percentage point (not 1%), mean real consumption expenditure goes 
down by about 0.26%, ceterisparibus. 

The high R2 and other statistics given in the above table would suggest that the 
fitted model gives an excellent fit, although we should be wary of an R2 value of practi­
cally one. This is because of the possibility of spurious correlation which arises when 
both the regressand and regressors are growing over time. But we will discuss this 
topic in greater detail in the chapter on time series econometrics (Chapter 13). 

Since we are dealing with time series data, we have to guard against auto-, or serial, 
correlation. If there is autocorrelation in the error term, the estimated standard errors 
and, ipso facto, the estimated t values will be suspect. Therefore, before we accept the 
results given in the preceding table, we need to check for the presence of 
autocorrelation. 

6.2 Tests of autocorrelation 

Although there are several tests of autocorrelation, we will discuss only a few here, 
namely, the graphical method, the Durbin-Watson test, and the Breusch-Godfrey 
(BG) test.4 

Graphical method 

In evaluating regression results it is always good practice to plot the residuals from the 
estimated model for clues regarding possible violation of one or more OL5 assump­
tions. As one author notes: "Anyone who tries to analyse a time series without plotting 
it is asking for trouble."5 

For example, in our discussion of heteroscedasticity, we plotted the squared residu­
als against the estimated value of the regressand to find some pattern in these residu­
als, which may suggest the type of transformation one can make of the original model 
so that in the transformed model we do not face heteroscedasticity. 

Since autocorrelation refers to correlation among the error terms, Ut, a rough and 
ready method of testing for autocorrelation is to simply plot the values of Ut chrono­
logically. Unfortunately, we do not observe UtS directly. What we observe are their 
proxies, the ets, which we can observe after we estimate the regression model. 

Although the etS are not the same thing as UtS, they are consistent estimators of the 
latter, in the sense that as the sample size increases, ets converge to their true values, 
UtS. Our sample of 54 observations may not be technically large, but they cover the 
bulk of the post-Second World War period data. Even if we extend our sample to the 
end of 2009, we will have at most nine more observations. Therefore we cannot do 
much about our sample size. 

By plotting the data on etS chronologically we can get a visual impression of the pos­
sibility of autocorrelation. Doing so, we obtain Figure 6.1. 

This figure shows the residuals 51 obtained from regression (6.1) and the standard­
ized residual, 52, which are simply 51 divided by the standard error of the regression. 
For scale comparability, we have multiplied 51 by 100. 

4 For the various methods of detecting autocorrelation, see Gujarati/Porter, op cit" Chapter 12, pp. 
429-40. 

5 Chris Chatfield, The Analysis of Time Series: An Introduction, 6th edn, Chapman and Hall, 2004, p. 6. 
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Figure 6.1 Residuals (magnified 100 times) and standardized residuals. 

The Sl and S2 curves show a see-saw pattern, suggesting that the residuals are cor­
related. This can be seen more clearly if we plot residuals at time t against residuals at 
time (t - 1), as in Figure 6.2. 

The sketched regression line in Figure 6.2 suggests that the residuals are positively 
correlated. 

.04 
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Durbin-Watson d test6 

The most celebrated, and often over-used, test for detecting serial correlation was de­
veloped by statisticians Durbin and Watson, and is popularly known as the 
Durbin-Watson d statistic, which is defined as: 

d = ='--=--;---- (6.2) 

This is the ratio of the sum of squared differences in successive residuals to the resid­
ual sum of squares. Note that the df in the numerator is (n 1), as we lose one observa­
tion in taking successive differences of residuals. Also note that the d value always lies 
between 0 and 4.7 

The d value for our example is 1,2829::::: 1,28. What do we do with this value? 
Before we see how the d statistic works, it is very important to bear in mind the as-

sumptions underlying the d statistic. These assumptions are: 

1 The regression model includes an intercept term.8 

2 The explanatory variables, or regressors, are fixed in repeated sampling. 

3 The error term Ut follows the first-order autoregressive (ARl) scheme: 

(6.3) 

where p (rho) is the coefficient of autocorrelation and it lies in the range 
-1 S P slit is called first-order AR because it involves only the current and 
one-period lagged error term. Vt is a random error term. 

4 The error term Ut is normally distributed. 

5 The regressors do not include the lagged value(s) of the dependent variable, Yt, 

that is, regressors do not include Yt - 1, Yi-2 and other lagged terms of Y. 

As you can see, these assumptions may be quite restrictive in practice. 
The exact probability distribution of d is difficult to derive because it depends in a 

complicated way on the values taken by the regressors. And since the values taken by 
regressors are sample-specific, there is no unique way to derive the sampling distribu­
tion of d. 

However, based on the sample size and the number of regressors, Durbin and 
Watson were able to establish two critical values of the d statistic, dL and du, called the 
lower and upper limits, so that if the computed d value lies below the lower limit, or 
above the upper limit, or in between the two limits, a decision could be made about the 
presence of autocorrelation. 

The decision rules are as follows: 

1 If d < dv there probably is evidence of positive autocorrelation. 

2 If d > du, there probably is no evidence of positive autocorrelation. 

6 For details, see GujaratilPorter, op cit., Chapter 12. 
7 For details, see Gujarati/Porter, op cit., Chapter 12, pp. 435-6. 
8 If the constant term is absent, Farebrother has modified the d test to take this into account. For further 

details, see Gujarati/Porter, op cit., p. 434. 
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3 If dL < d < dU' no definite conclusion about positive autocorrelation may be 
made. 

4 If dlJ < d < 4-du, there is probably no evidence of positive or negative 
autocorrelation. 

5 If 4-du < d < 4-dL , no definite conclusion about negative autocorrelation may 
be made. 

6 If 4-dL < d < ':4 there probably is evidence of negative autocorrelation. 

As noted, the d value lies between 0 and 4. The closer it is to zero, the greater is the 
evidence of positive autocorrelation, and the closer it is to 4, the greater is the evidence 
of negative autocorrelation. If d is about 2, there is no evidence of positive or negative 
(first-) order autocorrelation. 

Durbin and Watson prepared tables that give the lower and upper limits of the d 
statistic for a selected number of observations (up to 200) and a number of regressors 
(up to 10) and for 5% and 1% levels of significance. 

Returning to our consumption function, we have n = 54, X (number of regressors) 
3. The 5% critical d values for this combination are (using n 55): (1.452, 1.681). Since 
the computed d value is about 1.28, it lies below the lower limit, leading to the conclu­
sion that we probably have positive autocorrelation in the error term. 

The 1 % critical d values are (1.284, 1.506). The computed d value is slightly below 
the lower limit, again suggesting that our regression probably suffers from positive 
(first-order) autocorrelation. 

Breusch-Godfrey (BG) general test of autocorrelation9 

To avoid some of the restrictive features of the d test, Breusch and Godfrey have devel­
oped a test of autocorrelation that is more general in that it allows for (1) lagged values 
of the dependent variables to be included as regressors, (2) higher-order auto­
regressive schemes, such as AR (2) and AR (3), and (3) moving average terms of the 
error term, such as ut-l' u t-2 and so on.1O 

To illustrate the BG test, suppose in Eq. (6.1), the error term follows the following 
structure: 

(6.4) 

where Vt is the error term that follows the usual classical assumptions. 
Equation (6.4) is an AR (P) autoregressive structure where the current error term 

depends on previous error terms up to p lags. The precise value of p is often a trial and 
error process, although in most economic time series one does not have to choose a 
high value of p. 

The null hypothesis Ho is: 

(6.5) 

That is, there is no serial correlation of any order. 

9 For details, see Gujarati/Porter, op cit., pp. 438-4Q, 
10 An AR(2) scheme. for example. involves regressing the current value of variable on its values Jagged 

one and two periods, In an MA(I), for example. the current error term and its immediate previous value are 
involved. MA is discussed further in Chapter 16. 
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In practice we only observe ets, the residuals, which are estimators of the UtS. There­
fore the BG test involves the following steps: 

1 Estimate (6.1) by OLS and obtain the residuals, et. 

2 Regress eton the regressors in model (6.1) and the p autoregressive terms given in 
(6.4), that is, run the following regression 

et Al + ~ In DPft In Wt + A4Rt 
(6.6) 

and obtain R2 from this auxiliary regression. 

3 If the sample size is large (technically, infinite), BG have shown that 

(6.7) 

That is, in large sample, (n - p) timesR2 follows the chi-square distribution with p 
degrees of freedom. 

4 As an alternative, we can use the Fvalue obtained from regression (6.6) to test the 
null hypothesis given in (6.5). This F value has (p,n - k - p) degrees of freedom in 
the numerator and denominator, respectively, where k represents the number of 
parameters in (6.1) (including the intercept term). 

Therefore, if in an application the chi-square value thus computed exceeds the crit­
ical chi-square value at the chosen level of significance, we can reject the null hypothe­
sis of no autocorrelation, in which case at least one p value in (6.6) is statistically 
significantly different from zero. In other words, we have some form of auto­
correlation. Most statistical packages now present the p value of the estimated 
chi-square value, so we need not choose the level of significance arbitrarily. 

Similarly, if the computed F value exceeds the critical Fvalue for a given level of sig­
nificance, we can also reject the null hypothesis of no autocorrelation. Instead of 
choosing the level of significance, we can rely on the p value of the estimated F statistic 
and reject the null hypothesis if this p value is low. 

These two tests give similar results, which should not be surprising in view of the re­
lationship between the F and X 2 statistics.H 

Before we illustrate the test, the following features of the BG test may be noted: 

1 The test requires that the error variance of Ut, given the values of the regressors 
and the lagged values of the error term, is homoscedastic. If that is not the case, we 
will have to use heteroscedasticity-corrected variance, such as the White's robust 
error terms. 

2 A practical problem in the application of the BG test is the choice of the number of 
lagged error terms, p, in Eq. (6.4). The value of p may depend on the type of time 
series. For monthly data, we may include 11 lagged error terms, for quarterly data 
we may include three lagged error terms, and for annual data, one lagged error 
term may suffice. Of course, we can choose the lag length by trial and error and 

11 This relationship is as follows: For large denominator de the numerator df times the F value is 
approximately equal to the chi-square value with the numerator df, where m and n are denominator and 
numerator dE. respectively. 
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Table 6.3 BG test of autocorrelation of the consumption function. 

Breusch-Godfrey Serial Correlation LM Test: 
F-statistic 5.345894 Prob. F(1,49) 
Obs'R-squared 5.311869 Prob. Chi-Square(l) 

Test Equation: 
Dependent Variable: RESID (el) 
Method: Least Squares 
Sample: 19472000 
Presample missing value lagged residuals set to zero. 

0.0250 
0.0212 

Coefficient Std. Error t-Statistic 

C 

L(DPI) 

i L (w) 

R 

RESID(-l) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

0.000739 

-0.000259 

0.000131 

0.000181 

0.330367 

0.098368 
0.024765 
0.011447 
0.006420 
167.3839 
1.336473 

0.041033 0.018016 

0.016784 -0.015433 

0.016875 

0.000735 

0.142885 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

0.007775 

0.246196 

2.312119 

-7.07E-19 
0.011591 

-6.014218 
-5.830053 

1.744810 
0.269759 

Prob. 

0.9857 

0.9877 

0.9938 

0.8066 

0.0250 

choose the value of p based on the Akaike and Schwarz information criteria (see 
Chapter 2). The lower the value of these criteria, the better is the modeL 

Returning to our consumption function, the results of regression (6.6) are as fol­
lows: For illustration, we only include one lagged value of the residuals in this regres­
sion because we have annual data. The results are shown in Table 6.3. 

As these results show, there is strong evidence of (first-order) autocorrelation, for 
both the F and X? values are highly significant because their p values are so low. 

We also estimated the model including 2 and 3 lagged error terms. The Akaike in­
formation criterion gave these values as -6.01, -6.00, and -5.96 for one, two, and three 
lagged error terms in Eq. (6.6). Although there is not a substantial difference in these 
values, on the basis of the Akaike criterion, we choose the model with the largest nega­
tive value, which is -6.01, thus justifying the use of one lagged error term in Eq. (6.6).12 
Also, the coefficients of the second and third lagged terms were statistically 
insignificant. 

6.3 Remedial measures 

If we find autocorrelation in an application, we need to take care ofit, for depending on 
its severity, we may be drawing misleading conclusions because the usual OLS stan­
dard errors could be severely biased. Now the problem we face is that we do not know 
the correlation structure of the error terms Ut, since they are not directly observable. 

12 Note that -5.96 is greater than -6.0, which is greater than -6.1. 
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Hence, as in the case of heteroscedasticity, we need to resort to some educated 
guesswork or some kind of transformation of the original regression model so that in 
the transformed model we do not face the serial correlation problem. There are several 
methods that we could try. 

First-difference transformation 
Suppose autocorrelation is of AR(l) type, as in Eq. (6.3), which we can write as: 

(6.8) 

If we know the value of p, we can subtract from the current value of the error term p 
times the previous value of the error term. The resulting error term, Vt will satisfy the 
standard OLS assumptions. Therefore we can transform the original regression as: 

InCt -plnCt _ l == Bl (l-p)+ B2 (In DPlt -plnDPlt _ 1) 

+B3 (lnWt -plnWt _ l )+B4 (Rt -pRt - l ) (6.9) 

+(Ut -PUt_l) 

The last term in this equation is simply Vt, which now is free from serial correlation. 
The transformed model can therefore be estimated by OLS. All we have to do is 

transform each variable by subtracting from its current value p times its previous value 
and run the regression. The estimators obtained from the transformed model are 
BLUE. 

But note that in this transformation we lose one observation, because for the very 
first observation there is no antecedent. If the sample is reasonably large, loss of one 
observation may not matter much. But if the sample size is small, the loss of the first 
observation means the estimators will not be BLUE. However, there is a procedure, 
called the Prais-Winsten transformation, that can take into account the first obser­
vation.13 

Now the question is: how do we estimate p? We know that -1 s: p s: L Therefore, any 
value in this range can be used to transform the original model, as in (6.9). But which 
one value should we choose, for literally there is an infinite number of values in this 
range? 

Many economic time series are highly inter-correlated, suggesting that perhaps a 
value p 1 may be appropriate to transform the original model. If this is indeed the 
case, Eq. (6.9) can be written as: 

(6.10) 

where l!. is the first-difference operator. l!.ln Ct == (In Ct -In Ct - l ), etc. 
Equation (6.10) is called, appropriately, the first-difference transformation. By 

contrast, Eq. (6.1) is called the level form regression. 
In estimating (6.10), notice that there is no intercept in it. Therefore, in estimating 

this model you have to suppress the intercept term. Most software packages can do 
that without much trouble. 

Using Eviews, the empirical counterpart of Eq. (6.10) is shown in Table 6.4. 

13 We will not pursue this transformation here, which is now built into software packages. For details, 
see Gujarati/Porter, op cit., pp. 442-3. 
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Table 6.4 First difference transform ofthe consumption function. 

Dependent Variable: D(LC) 
Method: Least Squares 
Sample (adjusted): 19482000 
Included observations: 53 after adjustments 

D(LDPI) 

D(LW) 

D(R) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient 

0.848988 

0.106360 

0.000653 

0.614163 
0.598730 
0.011134 
0.006198 
164.7233 
2.026549 

Std. Error t-Statistic 

0.051538 16.47313 

0.036854 2.885941 

0.000826 0.790488 

Mean dependent var 0.035051 
S.D. dependent var 0.017576 
Akaike info criterion -6.lO2765 
Schwarz criterion -5.991239 
Hannan-Quinn criter.-6.059878 

Prob. 

0.0000 

0.0057 

0.4330 

Note: D stands for the first difference operator Ll and L stands for natural logarithm. 

If we test this regression for autocorrelation using the BG test, we find that there is 
no evidence of autocorrelation, whether we use 1, 2, or more lagged error terms in Eq. 
(6.4). 

If we compare the regression results of the original regression given in Table 6.2 and 
those obtained from first difference transformation given in Table 6.4, we see that the 
income elasticity is more or less the same, but the wealth elasticity, although statisti­
cally significant, is almost half in value and the interest rate semi-elasticity is practi­
cally zero and has the wrong sign. This outcome could be due to the wrong value of p 
chosen for transformation. But more fundamentally it may have to do with the 
stationarity of one or more variables, a topic that we explore in depth in the chapter 
on time series econometrics (Chapter 13). 

It should be emphasized that the R2 values in the level form (Le. given in Table 6.2) 
and in the first-difference form (i.e. Table 6.4) are not directly comparable because the 
dependent variable in the two models is different. As noted before, to compare two or 
more R2 values, the dependent variable must be the same. 

Generalized transformation 
Since it will be a waste of time to try several values ofp to transform the original model, 
we may proceed somewhat analytically. For instance, if the AR(I) assumption is ap­
propriate, we can regress et on et-l> using et as a proxy for Ut, an assumption that may 
be appropriate in large samples, because in large samples et is a consistent estimator of 
p. That is we estimate: 

(6.11) 

where p is an estimator of p given in (6.8). 
Once we obtain an estimate of p from Eq. (6.11), we can use it to transform the 

model as in Eq. (6.9) and estimate the model thus transformed. 
The estimates of the parameters thus obtained are known as feasible generalized 

least squares (FGLS) estimators. 
Using our data, it can be shown that p = 0.3246. 
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Another method of obtaining an estimate of p, especially in large samples, is to use 
the following relationship between p and Durbin-Watson d, which is: 

d P ,d 
2 

(6.12) 

where d is the DW d obtained from the original regression. In our example, d was 
found to be 1.2892. Therefore we get 

p == 1 12892 = 0.3554 
2 

We can use this estimated value of p to transform the original modeL 
The estimates obtained from Eqs. (6.11) and (6.12) are about the same. It should be 

noted thatp estimated from (6.11) or (6.12) provides a consistent estimate of the true p. 
For illustration we use p = 0.3246 and obtain the results shown in Table 6.5. 

Now we analyze the residuals from this regression for serial correlation, using, say, 
the BG test. Using 1 and 2 lagged terms in Eq. (6.6), it was found that the estimated BG 
statistic was not statistically significant, indicating that the residuals in the AR(l) 
transformation were not auto correlated: the BG chi-square value allowing for one 
lagged residual term was 0.0094, whose probability was about 92%. 

If you compare the results in this table with those given in Table 6.2, you will see 
that the standard errors of the coefficients in the two tables are substantially different, 
but keep in mind that Table 6.2 does not correct for autocorrelation, whereas Table 
6.5 does. The magnitudes of the income and wealth elasticities are about the same in 
the two tables, although the standard errors, and therefore the t values, are different. 

The lower absolute t values in Table 6.5 suggest that the original OLS standard 
errors were underestimated, which follows our discussion of the consequences of OLS 
estimation in the presence of autocorrelation. 

The interest rate coefficient in the transformed model has the correct sign, but it is 
statistically insignificant. Again this may be due to the reasons discussed previously. 

Table 6.5 Transformed consumption function using p =0.3246. 

Method: Least Squares 
Date: 10/18/09 Time: 19:12 
Sample (adjusted): 19482000 
Included observations: 53 after adjustments 

I Coefficient Std. Error t-Statistic 

Ie -0.279768 0.033729 -8.294681 

I LDPI-0.3246'LDPI(-1) 0.818700 0.021096 38.80871 

I LW-0.3246*LW(-I) 

I R-0.3246*R( -I} 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 
Prob(F-statistic) 

0.183635 0.020986 8.750235 

-1.84E-05 0.000969 -0.019017 

0.999235 
0.999188 
0.010423 
0.005323 
168.7547 
21333.54 
0.000000 

Mean dependent var 5.309128 
S.D. dependent var 0.365800 
Akaike info criterion -6.217159 
Schwarz criterion -6.068458 
Hannan-Quinn criter. -6.159976 
Durbin-Watson stat 1.448914 

Prob. 

0.0000 

0.0000 

0.0000 

0.9849 
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The R2 values in the two tables are about the same, but we cannot compare them di­
rectly for reasons already discussed, 

Before proceeding further, it should be noted that the AR(l) transform is a specific 
case of the more general transformation, AR(P) shown in Eq. (6.4). If, for example, the 
error term follows AR(2), 

(6.13) 

then 

(6.14) 

where Vt now follows the standard OLS assumptions. In this case we will have to trans­
form the regress and and regressors by subtracting from the current value of each vari­
able their previous two values, each multiplied by the autocorrelation coefficients PI 
and P2' respectively. 

In practice, of course we replace the unobserved us by their counterparts, the es. 
But there is no need to do this manually. In Eiews, for example, if you add the terms 
AR(l) and AR(2) when running the OLS regression, you will get the results practically 
instantly. 

In deciding how many AR terms to add, we may have to use the Akaike or similar in­
formation criterion to decide the value of p. If your sample is not very large, you may 
not want to add too many AR terms, for each added AR term will consume one degree 
of freedom. 

The Newey- West method of correcting OLS standard errors 
All the methods of searching for autocorrelation coefficient(s) discussed thus far are 
essentially trial and error methods, Which method will succeed in a concrete applica­
tion will depend on the nature of the problem and on the sample size. 

But if the sample size is large (technically infinite), one can estimate an OLS regres­
sion in the usual manner but correct the standard errors of the estimated coefficients, 
by a method developed by Newey and West. The standard errors corrected by their 
procedure are also known as HAC (heteroscedasticity and autocorrelation consistent) 
standard errors.14 Generally speaking, if there is autocorrelation, the HAC standard 
errors are found to be larger than the usual OLS standard errors. 

The HAC procedure is now incorporated in several software packages. We illus­
trate this procedure for our consumption function. Using Eviews, we obtained the re­
sults in Table 6.6. 

If you compare the HAC standard errors with the OLS standard errors given in 
Table 6.2, you will observe that they do not differ substantially. This would suggest 
that despite the evidence of autocorrelation based on several autocorrelation tests, the 
autocorrelation problem does not seem to be very serious. This may be due the fact 
that the observed correlation found in the error term, of between 0.32 and 0.35, may 
not be very high. Of course, this answer is specific to our data set and there is no guar­
antee that this will happen in every case. 

14 The mathematics behind this method is rather complicated. If you are familiar with matrix algebra, 
you can consult William H. Greene, EconometricAnalysis, 6th edn, Pearson/Prentice Hall, New Jersey, 2008, 
Chapter 19. 
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Table 6.6 HAC standard errors of the consumption function. 

Dependent Variable: LC 
Method: Least Squares 
Sample: 1947 2000 
Included observations: 54 
Newey-West HAC Standard Errors & Covariance (lag truncation=3) 

Coefficient Std. Error t-Statistic 

C -0.467714 0.043937 -10.64516 

LDPI 0.804871 0.017117 47.02132 

LW 0.201272 0.015447 13.02988 

R 0.002689 O.OOORRO 3.056306 

R-squared 0.999560 Mean dependent var 7.826093 
Adjusted R-squared 0.999533 S.D. dependent var 0.552368 
S.E. of regression 0.011934 Akaike info criterion -5.947707 
Sum squared resid 0.007121 Schwarz criterion -5.800374 
Log likelihood 164.5881 Durbin-Watson stat 1.289237 
F-statistic 37832.71 Prob(F-statistic) 0.000000 

Prob. 

0.0000 

0.0000 

0.0000 

0.0036 

Incidentally, observe that the estimated coefficient values in the two tables are the 
same, as are the other summary statistics. In other words, the HAC procedure only 
changes the standard errors, and hence the t statistics and their p values. This is similar 
to White's robust error terms which also do not affect the original regression coeffi­
cients and other summary statistics. 

But keep in mind that the HA C procedure is valid in large samples only. IS 

6.4 Model evaluation 

An important assumption of the CLRM is that the model used in the analysis is "cor­
rectly specified". This is often a tall order, for searching for the correct model is like 
searching for the Holy GraiL In practice we use prior empirical work that has been 
published in the field as a guide, obtain the best available data, and use the best possible 
method of estimation. 

Even then, model building is an art. In the context of this chapter, autocorrelation 
can arise for several reasons, such as inertia, specification error, Cobweb phenomenon, 
data manipulation, and nonstationarity.16 

To illustrate, we will consider the case of model specification error. Now consider a 
re-specification of model (6.1): 

InCt (6.15) 

This model differs from (6.1) in that we have added the log of consumption expendi­
ture lagged one period as an additional regressor and changed the coefficient notation 
from B to A to see if there is any difference between them. 

Model (6.15) is called an autoregressive model because one of the regressors is the 
lagged value of the regressand. The reason for adding the lagged consumption 

15 For some of the limitations of the HAC procedure, see Jeffrey M. Wooldridge, Introductory 
Econometrics, 4th edn, South-Western, Ohio, 2009, pp. 428-31. 

16 For a brief discussion about this, see Gujarati/Porter, op cit., pp. 414-18. 
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Table 6.7 Autoregressive consumption function. 

Dependent Variable: LC 
Method: Least Squares 
Sample (adjusted): 19482000 
Included observations: 53 after adjustments 

Coefficient 

C 

LINC 

LW 

R 

LC(-1) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
P-statistic 

-0.316023 

0.574832 

0.150289 

-0.000675 

0.276562 

0.999645 
0.999616 
0.010619 
0.005413 
168.3126 
33833.55 

Std. Error t-Statistic Prob. 

0.055667 -5.677048 

0.069673 8.250418 

0.020838 7.212381 

0.000894 -0.755458 

0.080472 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(P-statistic) 

3.436754 

7.843870 
0.541833 

-6.162741 
-5.976865 

1.395173 
0.000000 

0.0000 

0.0000 

0.0000 

0.4537 

0.0012 

expenditure value is to see if past consumption expenditure influences current con­
sumption expenditure. If so, that will show the inertia factor mentioned previously. 

It is dear from this table that lagged consumption affects current consumption ex­
penditure, ceteris paribus. This may be due to inertia. The coefficients in Tables 6.2 
and 6.7 look different at face value, but they really are not, for if you divide both sides 
by (1 - 0.2765) = 0.7235 you will obtain coefficient values that are about the same as in 
Table 6.2P 

Do we have autocorrelation in the revised model? Here we cannot use the 
Durbin-Watson d test because, as noted earlier, this test is not applicable if the model 
contains lagged value(s) of the dependent variable, which is the case here. 

Assuming first-order autocorrelation, Durbin has developed an alternative test for 
such models, called Durbin's h statistic.l8 

Under the null hypothesis that p 0, in large samples, the h statistic follows the 
standard normal distribution, that is, h~ N(O,l). Now from the properties of the 
normal distribution we know that the probability that I hi> 196 is about 5%, where I hi 
means the absolute value of h. For our example, the h value is about 5.43, which ex­
ceeds the 5% critical h value, leading to the conclusion that model (6.15) also suffers 
from first-order autocorrelation. 

Instead of using this test, we will use the BG test, for it allows for lagged value(s) of 
regressand as regressors. Using the BG test, and using two lagged values of the residu­
als, there still was evidence of autocorrelation; the estimated p values of 0.09 test) 
and 0.07 (chi-square test) (Table 6.8). 

Whether we use model (6.1) or (6.15), it seems we have serial correlation in our 
data. 

17 In the long-run when consumption expenditure stabilizes. LCt =LCt_l' Therefore. if you transfer 
0.2765 LCt to the left-hand side, you will get about 0.7235 LCt. Then dividing through by 0.7235 you will get 
results comparable to Table 6.2. 

18 For a discussion of this test, see Gujarati!Porter, op cit., p. 465. 
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Table 6.8 BG test of autocorrelation for autoregressive consumption function. 

Breusch-Godfrey Serial Correlation LM Test: 
F-statistic 2.544893 Prob. F(2,46) 0.0895 

0.0714 Obs*R-squared 5.280090 Prob. Chi-Square(2) 

Test Equation: 
Dependent Variable: RESID 
Method: Least Squares 
Sample: 19482000 
Included observations: 53 
Presample missing value lagged residuals set to zero. 

C 

L1NC 

LW 

R 

LC(-I) 

RESID(-I) 

RESID(-2) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

Coefficient 

-0.024493 

0.036462 

0.009814 

-8.02E-06 

-0.045942 

0.354304 

-0.136263 

0.099624 
-0.017816 

0.010293 
0.004873 
171.0936 
0.848298 

Std. Error t-S ta tistic 

0.055055 -0.444876 

0.070518 0.517061 

0.020666 0.474868 

0.000879 -0.009121 

0.081647 -0.562685 

0.159237 2.225013 

0.155198 -0.877992 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob{F-statistic) 

2.05E-16 
0.010202 

-6.192213 
-5.931986 

1.924355 
0.539649 

Prob. 

0.6585 

0.6076 

0.6371 

0.9928 

0.5764 

0.0310 

0.3845 

A technical note: Since we have a lagged dependent variable as one of the 
regressors and serial correlation, the estimated coefficients in Eq. (6.15) may be biased 
as well as inconsistent. One solution to this problem is to use an instrumental variable 
(IV), or instrument, for the lagged regressand in such a way that the chosen IV is cor­
related (possibly highly) with the regressand but uncorrelated with the error term. 
This topic is rather involved and we have devoted an entire chapter to IV estimation 
(see Chapter 19). One suggested solutions is to use the lagged value of income as in­
strument for the lagged value of consumption expenditure. But we will have more to 
say about this in Chapter 19. 

To get rid of autocorrelation in the error term we can use one or more of the reme­
dial methods discussed above, or we can use the Newey-West method and obtain 
robust or HAC standard errors. This gives the results shown in Table 6.9. 

Comparing the results in Tables 6.6 and 6.9, it is evident that the standard errors of 
the coefficients in Table 6.6 were underestimated. Again keep in mind that the HAC 
correction procedure is valid in large samples only. 

Model (6.15) is not the only way in which the original model can be re-specified. In­
stead of including the lagged value of the regressand among the explanatory variables, 
we could introduce the lagged value(s) of the explanatory variable, LDPL Or we could 
include both.19 

19 For details, see GujaratilPorter, op cit., Chapter 17. 
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Table 6.9 HAC standard errors of the autoregressive consumption function. 

Dependent Variable: LC 
Method: Least Squares 
Sample (adjusted): 19482000 
Included observations: 53 after adjustments 
Newey-West HAC Standard Errors & Covariance (lag truncation=3) 

C 

LINC 

LW 

R 

LC(-l) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

Coefficient 

-0.316023 

0.574832 

0.150289 

-0.000675 

0.276562 

0.999645 
0.999616 
0.010619 
0.005413 
168.3126 
33833.55 

Std. Error t-Statistic 

0.069837 -4.525140 

0.090557 6.347768 

0.021847 6.879011 

0.001157 -0.583479 

0.100655 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

2.747633 

7.843870 
0.541833 

-6.162741 
-5.976865 

1.395173 
0.000000 

6.5 Summary and conclusions 

Prob. 

0.0000 

0.0000 

0.0000 

0.5623 

0.0084 

In this chapter we covered in some depth the topic of autocorrelation. Time series data 
are often plagued by autocorrelation. First we discussed the nature and consequences 
of autocorrelation, then we discussed the methods of detecting autocorrelation, and 
then we considered ways in which the problem of autocorrelation can be resolved. 

Since we generally do not know the true error terms in a regression model, in prac­
tice we have to infer the nature of autocorrelation in a concrete application by examin­
ing the residuals, which are good proxies for the true error term if the sample size is 
reasonably large. We can plot the residuals, or use the Durbin-Watson or 
Breusch-Godfrey (BG) tests. 

If the tests of autocorrelation suggest that autocorrelation exists in a given case, we 
can transform the original model so that in the transformed model we do not face 
autocorrelation. This is easier said than done, for we do not know the true structure of 
autocorrelation in the population from which the sample was drawn. We therefore try 
several transformations, such as the first-difference and generalized difference trans­
formations. Very often this is a trial and error process. 

If the sample size is reasonably large, we can use the robust standard errors or HAC 
standard errors, which do not require any special knowledge of the nature of 
autocorrelation. The HAC procedure simply modifies the OLS standard errors, with­
out changing the values of the regression coefficients. 

Since the OLS estimators are consistent despite autocorrelation, the thrust of the 
corrective methods discussed in this chapter is to estimate the standard errors of the 
regression coefficients as efficiently as possible so that we do not draw misleading con­
clusions about the statistical significance of one or more regression coefficients. 
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Exercises 

6.1 Instead of estimating model (6.1), suppose you estimate the following linear 
model: 

(6.16) 

(a) Compare the results of this linear model with those shown in Table 6.2. 
(b) What is the interpretation of the various coefficients in this model? 

What is the relationship between the A coefficients in this model and the B 
coefficients given in Table 6.2? 

(c) Does this regression suffer from the autocorrelation problem? Discuss the 
tests you would conduct. And what is the outcome? 

(d) If you find autocorrelation in the linear model, how would resolve it? Show 
the necessary calculations. 

(e) For this model how would you compute the elasticities of C with respect to 
DPI, W, and R? Are these elasticities different from those obtained from re­
gression (6.1)? If so, what accounts for the difference? 

6.2 Reestimate regression (6.1) by adding time, t, as an additional regressor, t taking 
values of 1, 2, ... , 54. t is known as the trend variable. 

(a) Compare the results of this regression with those given in Table 6.2. Is there 
a difference between the two sets of results? 

(b) If the coefficient of the trend variable is statistically significant, what does it 
connote? 

(c) Is there serial correlation in the model with the trend variable in it? Show the 
necessary calculations. 

6.3 Repeat Exercise 6.2 for the model given in Eq. (6.15) and comment on the results. 

6.4 Re-run the regression in Table 6.7 using In INC( -1) as a regressor in place ofLC( -1), 
and compare the results with those in Table 6.7. What difference, if any, do you see?\X'hat 
may be logic behind this substitution? Explain. 
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Regression diagnostic IV: model 
specification errors 

One of the assumptions of the classical linear regression model (CLRM) is that the 
model used in analysis is" correctly specified". This is indeed a tall order, for there is no 
such thing as a perfect model. An econometric model tries to capture the main fea­
tures of an economic phenomenon, taking into account the underlying economic 
theory, prior empirical work, intuition, and research skills. If we want to take into ac­
count every single factor that affects a particular object of research, the model will be 
so unwieldy as to be of little practical use. 

By correct specification we mean one or more of the following: 

1 The model does not exclude any "core" variables. 

2 The model does not include superfluous variables. 

3 The functional form of the model is suitably chosen. 

4 There are no errors of measurement in the regressand and regressors. 

5 Outliers in the data, if any, are taken into account. 

6 The probability distribution of the error term is well specified. 

7 What happens if the regressors are stochastic? 

8 The Simultaneous Equation Problem: the simultaneity bias. 

In what follows we will discuss the consequences of what happens if one or more of 
the specification errors are committed, how we can detect them, and what remedial 
measures we can take. 

7.1 Omission of relevant variables 

We do not deliberately set out to omit relevant variables from a model. But sometimes 
they are omitted because we do not have the data, or because we have not studied the 
underlying economic theory carefully, or because we have not studied prior research 
in the area thoroughly, or sometimes just because of carelessness. This is called 
underfitting a model. Whatever the reason, omission of important or "core" variables 
has the following consequences.1 

1 For details, see Gujarati/Porter, op cit., pp. 471-3. 
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1 If the left-out, or omitted, variables are correlated with the variables included in 
the model, the coefficients of the estimated model are biased. Not only that, the bias 
does not disappear as the sample size gets larger. In other words, the estimated co­
efficients of the misspecified model are biased as well as inconsistent. 

2 Even if the incorrectly excluded variables are not correlated with the variables in­
cluded in the model, the intercept of the estimated model is biased. 

3 The disturbance variance cr2 is incorrectly estimated. 

4 The variances of the estimated coefficients of the misspecified model are biased. 
As a result, the estimated standard errors are also biased. 

5 In consequence, the usual confidence intervals and hypothesis-testing procedures 
become suspect, leading to misleading conclusions about the statistical signifi­
cance of the estimated parameters. 

6 Furthermore, forecasts based on the incorrect model and the forecast confidence 
intervals based on it will be unreliable. 

As you can see, the consequences of omitting relevant variables can be very serious. 
Naturally, we would like to avoid such consequences. Now the trouble is that it is 

easy to document the consequences of misspecification if we are told what the true 
model is. For in that case we can estimate the "correctly" specified model and compare 
the results with the results of the misspecified model. But this brings us back to the 
question of what is the "correctly specified" model? Searching for a "correctly speci­
fied" model is like searching for the Holy Grail. 

Where do we begin then? Besides being meticulous in specifying the model, the best 
we can do is to compare the chosen model with an alternative model that may be a can­
didate for consideration, perhaps a model suggested by peer reviewers. 

An illustrative example: wage determination revisited 

In Chapter 1 we considered a model of hourly wage determination, using the CPS 
(Current Population Survey) 1995 data on 1,289 workers. The results of that model are 
given in Table 1.2, which for convenience we reproduce here in Table 7.1. 

This table considered only gender, race, union status, education, and experience as 
the determinants of hourly wage. But it is a common experience that wages increase as 
work experience increases, holding other variables constant. But do wages increase at 
a slower or faster rate as work experience increases? To allow for this possibility, let us 
expand the wage model in Table 7.1 by adding to it the squared-experience as an addi­
tional regressor. The results are given in the Table 7.2 

Comparing these results with those in Table 7.1, we see that the variable experi­
ence-squared is highly statistically significant (p value practically zero). Interestingly, 
the coefficient of the experience-squared variable is negative, but that of experience is 
positive. What this suggests is that although hourly wages increase with more work ex­
perience, the rate of increase declines with more work experience.2 

For the present purposes, it seems that by omitting the experience-squared variable 
from the model in Table 7.1 we have committed the bias of omitting a relevant 

2 Holding the other variables constant, if you take the derivative of wage with respect to experience, you 
will obtain, after rounding, dWage / dExper 0.4245 - 0.0124Exper, which shows that the rate of change of 
wage with respect to experience declines at the rate of 0.0124 per additional year of work experience. 
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Table 7.1 Determinants of hourly wage rate. 

Dependent Variable: WAGERATE 
Method: Least Squares 
Sample: 1 1289 
Included observations: 1289 

C 

FEMALE 

NONWHITE 

UNION 

EDUCATION 

EXPERIENCE 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F -sta tistic 
Prob(F -sta tis tic) 

Coefficient 

7.183338 

-3.074875 

1.565313 

1.095976 

1.370301 

0.166607 

0.323339 
0.320702 
6.508137 
54342.54 

-4240.370 
122.6149 
0.000000 

Std. Eno "tatistic 

1.015 7.071691 

0.364616 -8.433184 

0.509188 3.074139 

0.506078 2.165626 

0.065904 20.79231 

0.016048 10.38205 

Mean dependent var 
S.D. dependent var 
Akaike info cd terion 
Schwarz criterion 
Hannan-Quinn criter. 
Durbin-Watson stat 

12.36585 
7.896350 
6.588627 
6.612653 
6.597646 
1.897513 

Table 7.2 Expanded wage function. 

Method: Least Squares 
Sample: 11289 
Included observations: 1289 

Coefficient 

C -8.419035 

!-'F::..;:E::.!.M::;:AC-"'L==E'---_-I-_-:-3.009360 
NONWHITE 

UNION 

EDUCATION 

EXPERIENCE 

EXPERS 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

1.026979 

1.323745 

0.424463 

-0.006183 

0.336483 
0.333378 
6.447128 
53286.93 

-4227.728 
108.3548 

Std. Error t-Statistic 

1.035710 -8.128758 

0.361432 -8.326210 

0.504448 -3.045066 

0.501521 .047728 

0.065937 0.07597 

0.053580 7.922076 

0.001227 -5.039494 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-\Vatson stat 
Prob(F-statistic) 

12.36585 
7.896350 
6.570562 
6.598593 
1.901169 
0.000000 

Prob. 

0.0000 

0.0000 
-

0.0305 

0.0000 

0.0000 

Prob. 

0.0000 

0.0000 

0.0024 

0.0408 

0.0000 

0.0000 

0.0000 

variable(s) from the model. Although in Table 7.2 all the coefficients are individually 
and collectively statistically significant, their values are in several cases substantially 
different from those given in Table 7.1. This substantiates the points made earlier that 
in situations like these the OLS estimates given in Table 7.1 are biased. 

But this model can be further modified if you interact (Le. multiply) experience with 
gender. This refined model gives the results of Table 7.3. 
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Table 7.3 Refinement ofthe wage model. 

Dependent Variable: W 
Method: Least Squares 
Sample: 11289 
Included observations: 1289 

C 

FEMALE 

NONWHITE 

UNION 

EDUC 

EXPER 

EXPERSQ 

EXPER"FEMALE 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

Coefficient 

-9.200668 

-1.433980 

-1.481891 

0.949027 

1.318365 

0.471974 

-0.006274 

-0.084151 

0.340315 
0.336711 
6.430992 
52979.16 

-4223.994 
94.40528 

Std. Error t-Statistic 

1.072115 

0.680797 

0.503577 

0.501081 

0.065801 

0.056212 

0.001224 

0.030848 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic} 

-8.581792 

-2.106326 

-2.942730 

1.893958 

20.03554 

8.396344 

-5.124559 

-2.727939 

12.36585 
7.896350 
6.566322 
6.598357 
1.892702 
0.000000 

Prob. 

0.0000 

0.0354 

0.0033 

0.0585 

0.0000 

0.0000 

0.0000 

0.0065 

This table shows that the interaction coefficient between gender and experience is 
statistically very significant. The negative value of this coefficient suggests that females 
earn less than their male counterparts with similar work experience. Whether this is 
due to gender discrimination is hard to tell, although it might be the case. 

It seems that it is worth expanding the original model given in Table 7.1 by adding 
the experience-squared and the gender-experience variables to the model. We can es­
tablish this formally by using the Ftest. For this purpose call the model in Table 7.1 the 
restricted model and the one in Table 7.3 the unrestricted model. Let R; and Rar repre­
sent the restricted and unrestricted R2 values. 

Now consider the following expression: 

F = (RaT -Rl:)lm 
(1-R3r)/ (n - k) 

(7.1)3 

where m ;;; number of restrictions (2 in our example, for the restricted model excludes 
two variables), n number of observations, and k number of regressors in the unre­
stricted model (m = [(n -k)-(rz -k -2) =2]). 

The F statistic in Eq. (7.1) follows the F distribution with m and (n - k) degrees of 
freedom in the numerator and denominator, respectively. 

Putting the appropriate values from Table 7.1 and Table 7.3, we obtain the follow­
ing result: 

3 Note that the formula given in Eq. (7.1) is valid only if the dependent variable in both models is the 
same. In this case, the Ftest in Eq. (7.1) is equivalent to the Ftest in Eq. (2.11). If that is notthe case, use theF 
test in Eq. (2.11). See also Eq. (1.18). 
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F = (03403-03233)/2 ::;,16.67 
(1-.3403)1 (1289 -8) 

(7.2) 

For 2 df in the numerator and 1,281 df in the denominator, this Fvalue is highly sig­
nificant, suggesting that it is worth adding the two variables to the original model. In 
this sense, the original model is misspedfied because it omits two relevant variables. 

Again notice that as we go from Table 7.1 to 7.2 to 7.3, the coefficients of some vari­
ables change substantially. This reinforces the point made earlier that if we omit rele­
vant variables from a model the coefficients in the (incorrectly specified) model are 
biased and there is no guarantee that this bias will disappear as the sample size in­
creases. In our example, we have a reasonably large sample. 

Observe that the R2 value of 0.3403 in the expanded model may not seem much 
larger than the R2 value of 0.3233 in the original model, but the incremental contribu­
tion of the two added variables is statistically quite significant, as the F test shows. 

7.2 Tests of omitted variables 

Although we have illustrated the consequences of omitting relevant variables, how do 
we find out if we have committed the omission variable bias? There are several tests of 
detecting the omission of relevant variables, but we will consider only two here, 
namely, Ramsey's RESET test and the Lagrange multiplier (LM) test.4 

Ramsey's RESET test 
Ramsey's regression specification error test, RESET for short, is a general test of model 
specification errors. To explain this test, once again let us revert to the wage determi­
nation modeL We saw that in relation to Tables 7.2 and 7.3, the model in Table 7.1 was 
misspecified. Without worrying about the results in the other tables for now, let us 
concentrate on the results in Table 7.1. 

We first explain the steps involved in the RESET and then consider the rationale 
behind it. 

1 From the (incorrectly) estimated wage model given in Table7.1, we first obtain the 
estimated, or fitted, values of the hourly wage rate; call it Wtf'gej. 

2 Reestimate the model in Table 7.1 including Wager, Wager (and possibly higher 
powers of the estimated wage rate) as additional regressors. 

3 The initial model in Table 7.1 is the restricted model and the model in Step 2 is the 
unrestricted model. 

4 Under the null hypothesis that the restricted (I.e. the original model) is correct, we 
can use the Ftest given in Eq. (7.1). This F statistic has m = 2 df in the numerator 
and (n - k) {1289 - 8) 1281 drin the denominator, for in the regression in Step 
2 we are estimating eight parameters, including the intercept. 

5 If the F test in Step 4 is statistically significant, we can reject the null hypothesiS. 
That is, the restricted model is not appropriate in the present situation. By the 
same token, if the F statistic is statistically insignificant, we do not reject the origi­
nal model. 

4 For details of the other tests, see Gujarati/Porter, op cit., pp. 479-82. 
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Table 7.4 RESET test of the wage model. 

Ramsey RESET Test: 
F-statistic 20.12362 
Log likelihood ratio 39.87540 

Test Equation: 
Dependent Variable: WAGE 
Method: Least Squares 
Sample: 1 1289 
Included observations: 1289 

C 

FEMALE 

NONWHITE 

UNION 

EDUCATION 

EXPER 

FITTEDI\2 

FITTEDI\3 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

Coefficient 

4.412981 

-0.059017 

-0.195466 

0.124108 

0.080124 

0.000969 

0.044738 

-0.000311 

0.343951 
0.340366 
6.413247 
52687.19 

-4220.433 
95.94255 

Prob. F(2,1281) 
Prob. Chi-Square(2) 

0.0000 
0.0000 

Std. Error t-Statistic 

2.453617 1.798561 

0.797535 -0.073999 

0.631646 -0.309454 

0.564161 0.219987 

0.302395 0.264966 

0.042470 0.022809 

0.020767 2.154294 

0.000601 -0.517110 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

12.36585 
7.896350 
6.560795 
6.592830 
1.894263 
0.000000 

Prob. 

0.0723 

0.9410 

0.7570 

0.8259 

0.7911 

0.9818 

0.0314 

0.6052 

The idea behind this test is simple. If the original model is correctly specified, the 
added squared and higher powers of the estimated wage values should not add any­
thing to the model. But if one or more coefficients of the added regressors are signifi­
cant, this may be evidence of specification error. 

Using Eviews 6, we obtained the results in Table 7.4. The important finding of this 
table is that the estimated F value of 20.12 is highly statistically significant; its p value is 
practically zero. As you can also see, the coefficient of the squared fitted values of the 
wage rate is statistically highly significant.5 

Although simple to apply, the RESET test has two drawbacks. First, if the test shows 
that the chosen model is incorrectly specified, it does not suggest any specific alterna­
tive. Second, the test does not offer any guidance about the number of powered terms 
of the estimated values of the regressand to be included in the unrestricted model. 
There is no definite answer to this, although in practice we could proceed by trial and 
error and select the powered terms on the basis of information criteria, such as Akaike 
or Schwarz. 

The Lagrange multiplier (LM) test 
We illustrate this test with our wage rate example. 

5 The importantF statistic here is the Fvalue given in the Ramsey RESET test in the top part of this table. 
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1 From the original model given in Table 7.1, we obtain the estimated residuals, ei. 

2 If in fact the model in Table 7.1 is the correct model, then the residuals ei obtained 
from this model should not be related to the regressors omitted from that 
model, namely, Exper2 and the interaction between gender and experience, 
Exper· Female. 

3 We now regress ei on the regressors in the original model and the omitted vari­
ables from the original model. Call this the auxiliary regression, auxiliary to the 
original regression. 

4 If the sample size is large, it can be shown that n (the sample size) times the R2 ob­
tained from the auxiliary regression follows the chi-square distribution with df 
equal to the number of regressors omitted from the original regression; two in the 
present case. Symbolically, 

nR2 ~ Xfm) (asymptotically) (7.3) 

where m is the number of omitted regressors from the original model. 

5 If the computed X2 value exceeds the critical chi-square value at the chosen level 
of significance, or if its p value is sufficiently low, we reject the original (or re­
stricted) regression. This is to say, that the original model was misspecified. See 
Table 7.5. 

Therefore, we have 

nR2: (1289)(0.0251)Rl 32.35 ~ X~ 

Table 7.5 The LM test of the wage model. 

Dependent Variable: Sl 
Method: Least Squares 
Date: 11/25/09 Time: 12:36 
Sample: 1 1289 
Included observations: 1289 

C 
FE 

NW 
I UN 

ED 

EX 

EXA 2 

EX "FE 

R-squared 
Adjusted R-squared 
S.E. of regreSSion 
Sum squared resid 
Log likelihood 
F-statistic 

Coefficient 

-2.017330 

1.640895 

0.083422 

~ 
0.305367 

-0.006274 

-0.084151 

0.025089 
0.019761 
6.430992 
52979.16 

-4223.994 
4.709394 

Std. Error t-Statistic 

1.072115 -1.881636 

0.680797 2.410258 

0.503577 0.165659 

0.501081 -0.293264 

.065801 0.789287 

0.056212 5.432437 

0.001224 -5.124559 

0.030848 -2.727939 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F statistic) 

5.44E-09 
6.495492 
6.566322 
6.598357 
1.892702 

.0.000031 

Note: Sl (= ei), residuals from the model in Table 7.1. 

{7.4} 

Prob. 

0.0601 

0.0161 

0.8685 

0.7694 

0.4301 

0.0000 

0.0000 

0.0065 
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For 2 df the probability of obtaining a chi-square value of 32.35 or greater is ex­
tremely smalL practically zero. 

On the basis of the LM test, we can conclude that the original model in Table 7.1 
was misspecified, thus reinforcing the conclusion based on the Ramsey's RESET test. 
Keep in mind that our sample of 1,289 observations is quite large so that the LM test in 
this case is valid. 

7.3 Inclusion of irrelevant or unnecessary variables 

Sometimes researchers add variables in the hope that the R2 value of their model will 
increase in the mistaken belief that the higher the R2 the better the modeL This is 
called overfitting a modeL But if the variables are not economically meaningful and 
relevant, such a strategy is not recommended because of the following consequences:6 

1 The OLS estimators of the "incorrect" or overfitted model are all unbiased and 
consistent. 

2 The error variance is correctly estimated. 

3 The usual confidence interval and hypothesis testing procedures remain valid. 

4 However, the estimated coefficients of such a model are generally inefficient 
that is, their variances will be larger than those of the true model. 

Notice the asymmetry in the two types of specification error - underfitting and 
overfitting a model. In the former case the estimated coefficients are biased as well as 
inconsistent, the error variance is incorrectly estimated, and the hypothesis-testing 
procedure becomes invalid. In the latter case, the estimated coefficients are unbiased 
as well as consistent, the error variance is correctly estimated, and the hypothesis-test­
ing procedure remains valid; the only penalty we pay for the inclusion of irrelevant or 
superfluous variables is that the estimated variances, and hence the standard errors, 
are relatively large and therefore probability inferences about the parameters are less 
precise. 

One may be tempted to conclude that it is better to include unnecessary variables 
(the so-called "kitchen sink approach") than omit relevant variables. Such a philoso­
phy is not recommended because the inclusion of unnecessary variables not only leads 
to loss of efficiency of the estimators but may also lead, unwittingly, to the problem of 
multicollinearity, not to mention the loss of degrees of freedom. 

An illustrative example 

To give a glimpse of this, let us continue with our wage determination example by 
adding to the model in Table 7.1 the variable "age of the worker". We could not run 
this regression because of near perfect collinearity between age and work experience. 
This is because the variable "work experience" was defined as (age years of schooling 
- 6).7 This can be verified by regressing work experience on age, which gives the 
results shown in Table 7.6. 

As you can see, the two variables are highly correlated, the correlation coefficient 
between them being 0.9705 .J0.942016). 

6 For details, see Gujarati/Porter, op cit., pp. 477-82. 
7 Presumably, education starts at age 6. 
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Table 7.6 Regression of experience on age. 

Dependent Variable: EXPER 
Method: Least Squares 
Sample: 11289 
Included observations: 1289 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

0.942016 
0.941971 
2.809491 
10158.60 

-3159.552 
20908.71 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Hannan-Quinn criter. 
Prob(F-statistic) 

18.78976 
11.66284 
4.905434 
4.913443 
4.908440 
0.000000 

This exercise suggests that we can include age or work experience as a regressor but 
not both. 

7.4 Misspecification of the functional form of a regression 
model 

In Chapter 2, on the functional form of regression models, we discussed the choice be­
tween linear and log-linear (Cobb~Douglas) production functions. In both cases we 
had data on output (as measured by GDP), labor input (as measured by hours of work), 
and capital (capital expenditure) for the 50 states in the USA and Washington, DC, for 
1995. There we discussed the general procedure for comparing such models. Here we 
will discuss it with reference to the wage determination model. 

In labor economics researchers often choose the log of wages as the regressand. 
This is because the distribution of wages across the population tends to be skewed, 
with many workers at the low end of the distribution and a few at the high end of the 
distribution. On the other hand, the distribution oflog of wages tends to be more sym­
metrical and it also has homoscedastic variance (see Figures 3.1 and 3.2). 

For our wage example, which is a better model: linear or log-linear? We have al­
ready given the results of the linear model in Table 7.3. Table 7.7 presents the results of 
the log model. 

All the regressors are individually highly significant, as their t statistics have very 
low p values. Collectively also all the variables are highly Significant, as the Fvalue of 
about 109 has a p value that is practically zero. 

Of course, the interpretation of the coefficients in Table 7.7 is different from that in 
Table 7.3 because the dependent variables in the two models are different. For exam­
ple, the coefficient of 0.0948 suggests that if schooling increases by a year, the average 
hourly wage goes up by about 9.48%, ceteris paribus. (Recall the interpretation of the 
semi-log model discussed in Chapter 2.) It is left for the reader to interpret the other 
coefficients in this table. 

Which is a better mode: the linear model in Table 7.3 or the log-linear model in 
Table 7.17 
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Table 7.7 Determinants oflog of wages. 

Dependent Variable: LOG (WAG E) 
Method: Least Squares 
Sample: 11289 
Included observations: 1289 

Coefficient 

C 0.732446 

FEMALE -0.148060 

NONWHITE -0.127302 

UNION 0.168485 

EDUCATION 0.094792 

EXPER 0.041946 

EXPER A2 -0.000637 

EXPER"FEMALE -0.005043 

R-squared 0.373017 
Adjusted R-squared 0.369591 
S.E. of regression 0.465556 
Sum squared resid 277.6474 
Log likelihood -839.5302 
F-statistic 108.8741 

Std. Error t-Statistic 

0.077613 9.437130 

0.049285 -3.004179 

0.036455 -3.492000 

0.036275 4.644705 

0.004764 19.89963 

0.004069 10.30778 

8.86E-05 -7.187309 

0.002233 -2.258065 

Mean dependent var 2.342416 
S.D. dependent var 0.586356 
Akaike info criterion 1.315020 
Schwarz criterion 1.347055 
Durbin-Watson stat 1.926178 
Prob(F-statistic) 0.000000 

Prob. 

0.0000 

0.0027 

0.0005 

0.0000 

0.0000 

0.0000 

0.0000 

0.0241 

For the linear model R2 is about 0.34 and for the log-linear model, it is 0.37. But we 
cannot compare these two R2s because the dependent variables in the two models are 
different. How then do we compare the two models? 

We follow the steps outlined in Chapter 2 (for brevity of writing, we let W stand for 
the wage rate). 

1 We compute the geometric mean of wages, which is about 10.406.8 

2 We construct a new variable wi Wi /10.406, that is, we divide wages by the geo­
metric mean of wages. 

3 We estimate the model in Table 7.3, using wi instead of Wi as the regressand and 
obtain the RSS from this regression, call it RSS1' 

4 We reestimate the model in Table 7.3, using In Wi", instead of In Wi as the 
regressand and obtain the RSS (residual sum of squares) from this regression, call 
it RSS2. 

5 We then compute: 

~ln(RSSI)~ 2 
2 RSS2 Xl 

Note: Put the larger RSS in the numerator. 

(7.5) 

That is, the expression on the left-hand side of Eq. (7.5) follows the chi-square dis­
tribution with 1 df. If the chi-square value computed from Eq. (7.5) is statistically sig­
nificant, we can conclude that the model with the lower RSS is the better model. 

8 The GM (WI' W2· ... · W1289)1/1,289 e2.342416 '" 10.406 in the present example. 
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To save space, we will not produce all the results except to note that in the present 
case: RSS1 = 489.2574 and RSS2 = 277.6474. As a result: 

1289 lJ 489.2574) ~ 365.11 (7.6) 
2 '\277.6474 

This chi-square value for 1 df is so large that we can confidently conclude that it is 
the log-linear model given in Table 7.7 that is superior to the linear model given in 
Table 7.3. 

The conclusion then is that the functional form of the wage model given in Table 
7.3 is misspecified. 

7.5 Errors of measurement 

One of the assumptions of CLRM is that the model used in the analysis is correctly 
specified. Although not explicitly spelled out, this presumes that the values of the 
regressand as well as regressors are accurate. That is, they are not guess estimates, ex­
trapolated, interpolated or rounded off in any systematic manner or recorded with 
errors. 

This ideal, however, is not very often met in practice for several reasons, such as 
non-response errors, reporting errors, missing data, or sheer human errors. Whatever 
the reasons for such errors, measurement errors constitute yet another specification 
bias, which has serious consequences, especially if there are such errors in the 
regressors. 

Errors of measurement in the regressand 

Although we will not prove it here, if there are errors of measurement in the depend­
ent variable, the following consequences ensue.9 

1 The OLS estimators are still unbiased. 

2 The variances and standard errors of OLS estimators are still unbiased. 

3 But the estimated variances, and ipso facto the standard errors, are larger than in 
the absence of such errors. 

In short, errors of measurement in the regress and do not pose a very serious threat 
to OLS estimation. 

Errors of measurement in the regressors 

The situation here is more serious, for errors of measurement in the explanatory vari­
able(s) render OLS estimators biased as well as inconsistent. lO Even such errors in a 
single regressor can lead to biased and inconsistent estimates of the coefficients of the 
other regressors in the model. And it is not easy to establish the size and direction of 
bias in the estimated coefficients. 

It is often suggested that we use instrumental or proxy variables for variables sus­
pected of having measurement errors. The proxy variables must satisfy two 

9 For details, see Gujarati/Porter, 5th edn, pp. 482-3. 
10 For details, see Gujarati/Porter, op cit., 483-6. 
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requirements - that they are highly correlated with the variables for which they are a 
proxy and also they are uncorrelated with the usual equation error Ui as well as the 
measurement error. But such proxies are not easy to find; we are often in the situation 
of complaining about the bad weather without being able to do much about it. There­
fore this remedy may not be always available. Nonetheless, because of the wide use of 
instrumental variables in many areas of applied econometrics, we discuss this topic at 
length in Chapter 19.11 

All we can say about measurement errors, in both the regressand and regressors, is 
that we should be very careful in collecting the data and making sure that some obvi­
ous errors are eliminated. 

7.6 Outliers, leverage and influence data 

In Chapter 1 we discussed the basics of the linear regression model. You may recall 
that in minimizing the residual sum of squares (RSS) to estimate the regression param­
eters, OLS gives equal weight to every observation in the sample. But this may create 
problems if we have observations that may not be "typical" of the rest of the sample. 
Such observations, or data points, are known as outliers, leverage or influence points. 
It is important that we know what they are, how they affect the regression results, and 
how we detect them . 

... Outliers: In the context of regression analysis, an outlier is an observation with a 
large residual (el), large in comparison with the residuals of the rest of the observa­
tions. In a bivariate regression, it is easy to detect such large residual(s) because of 
its rather large vertical distance from the estimated regression line. Remember that 
there may be more than one outlier. One can also consider the squared values of el, 
as it avoids the sign problem - residuals can be positive or negative . 

... Leverage: An observation is said to exert (high) leverage if it is disproportionately 
distant from the bulk of the sample ob,servations. In this case such observation{s) 
can pull the regression line towards itself, which may distort the slope of the 
regression line . 

... Influence point: If a levered observation in fact pulls the regression line toward 
itself, it is called an influence point. The removal of such a data point from the 
sample can dramatically change the slope of the estimated regression line. 

To illustrate some of these points, consider the data given in Table 7.8, which can 
be found on the companion website. 

This table gives data on the number of cigarettes smoked per capita (in 100s), and 
deaths from the cancers of bladder, lung, kidney and leukemia (per 100,000 popula­
tion) for 43 states and Washington, DC, for the year 1960. 

To illustrate the outlier problem, we regress deaths from lung cancer on the 
number of cigarettes smoked. The results are given in Table 7.9. 

Without implying causality, it seems that there is a positive relationship between 
deaths from lung cancer and the number of cigarettes smoked. If we increase the 

11 For an interesting. but somewhat advanced. discussion of this topic see Joshua D, Angrist and 
Torn-Steffen Pischke. Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University 
Press. Princeton. NJ, 2009, Chapter 4. 
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Table 7.9 Deaths from lung cancer and number of cigarettes smoked. 

Dependent Variable: LUNGCANCER 
Method: Least Squares 
Sample: 143 
Included observations: 43 

R-squared 
Adjusted R-squared 
S.£. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

0.516318 
0.504521 
2.983345 
364.9142 

-106.9913 
43.76646 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic} 

19.74000 
4.238291 
5.069362 
5.151279 
2.662271 
0.000000 

number of cigarettes smoked by 1 unit, the average number of deaths from lung cancer 
goes up by 0.54 units. 

Detection of outliers 

A simple method of detecting outliers is to plot the residuals and squared residuals 
from the estimated regression model. An inspection of the graph will give a rough and 
ready method of spotting outliers, although that may not always be the case without 
further analysis. 

For the lung cancer regression, we obtain Figure 7.1. This figure shows that there is 
a large spike in the residuals and squared residuals at observation 25, followed by rela­
tively smaller spikes at observations 7, 15, and 32. Observation 25 is for Nevada and 
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Figure 7.1 Residuals and squared residuals of regression in Table 7.9. 
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Table 7.10 Regression results without Nevada. 

Dependent Variable; LUNGCANCER 
Method: Least Squares 
Sample; 1 43 IF CIG < 41 
Included observations: 42 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

0.579226 
0.568707 
2.796383 
312.7904 

-101.7606 
55.06290 

Mean dependent var 
S.D. dependent val' 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

19.66167 
4.258045 
4.940979 
5.023725 
2.646356 
0.000000 

observation 7 is for Washington, DC. Cigarette smoking seems to be more prevalent in 
these two states, possibly because of the large tourist industry. 

Consider the observation for Nevada. The mean value of cigarettes consumed in 
the sample is about 24.8 and the standard deviation is about 5.62. The value for Nevada 
is 42.4, which is about 3.13 standard deviations above the sample mean. Perhaps the 
value for Nevada is an outlier. 

The fact that an observation is an outlier does not necessarily mean that it is a high 
leverage or influence point. For a (data) point to be influentiaL its removal from the 
sample must substantially change the regression results (the slope coefficient, its stan­
dard error etc.). One way of finding this out is to see how the regression results change 
if we drop the Nevada observation. 

If you compare the regression coefficients in Tables 7.9 and 7.10, you will notice 
that both the intercept and slope coefficients have changed substantially in the two 
tables, perhaps suggesting that the Nevada observation is an influence point. 

There are several other methods of detecting leverage and influence points, but 
these are somewhat involved and require the use of matrix algebra. 12 However, Stata 
has a routine that computes a leverage measure for every single observation in the 
sample. 

There are other methods of detecting outliers, such as recursive least squares and 
recursive residuals, but the discussion of these methods will take us far afield, so we 
will not pursue them here. 13 

Our objective in discussing the topic of outliers is to warn the researcher to be on 
the lookout for them, because OL5 estimates can be greatly affected by such outliers, 
especially if they are influential. 

12 For an accessible discussion, see Samprit Chatterjee and Ali S. Hadi, Regression Analysis by Example, 
4th edn, Wiley, New Jersey, 2006, Chapter 4. 

13 See, for instance, Chatterjee and Hadi, op cit., pp. 103-8. 
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almost zero.16 The use of the JB statistic in both cases may be appropriate because we 
have a fairly large sample of 1,289 observations. 

On the basis of the JB statistic, it would be hard to maintain that the error term in 
the wage regression is normally distributed. 

It may be interesting to note here that the distribution of wages is highly 
non-normal, with Sbeing 1.84 and Kbeing 7.83 (the JB statistic is about 1900). On the 
other hand, the distribution of log of wages is normal, with an S value of about 0.1 and a 
K value of about 3.2 (the JB statistic is only 2.8) (see Exercise 7.8.). 

Non-normal error term 

If the error term ui is not normally distributed, it can be stated that the OLS estimators 
are still best linear unbiased estimators (BLUE); that is, they are unbiased and in the 
class oflinear estimators they have minimum variance. This is not a surprising finding, 
for in establishing the BLUE (recall the Gauss-Markov theorem) property we did not 
invoke the normality assumption. 

What then is the problem? The problem is that for the purpose of hypothesis testing 
we need the sampling, or probability, distributions of the OLS estimators. The t and 
Ftests that we have used all along assume that the probability distribution of the error 
term follows the normal distribution. But if we cannot make that assumption, we will 
have to resort to large or asymptotic sample theory. 

Without going into technical details, under the assumptions of CLRM (not 
CNLRM) in large samples, the OLS estimators are not only consistent (Le. they con­
verge to their true values as the sample size increases indefinitely), but are also asymp­
totically normally distributed with the usual means and variances discussed in 
Chapter 1. Interestingly, the t and F tests that we have used extensively so far are also 
approximately valid in large samples, the approximation being quite good, as the 
sample size increases indefinitely. 

Therefore, even though the JB statistic showed that the errors in both the linear 
wage model and the log-linear wage model may not be normally distributed, we can 
still use the t and F tests because our sample size of 1,289 observations is quite large. 

7.8 Random or stochastic regressors 

The CLRM, as discussed in Chapter 1, assumes that the regressand is random but the 
regressors are nonstochastic or fixed that is, we keep the values of the regressors 
fixed and draw several random samples of the dependent variable. For example, in the 
regression of consumption expenditure on income, we assume that income levels are 
fixed at certain values and then draw random samples of consumers at the fixed levels 
of income and note their consumption expenditure. In regression analysis our objec­
tive is to predict the mean consumption expenditure at various levels of fixed income. 
If we connect these mean consumption expenditures the line (or curve) thus drawn 
represents the (sample) regression line (or curve). 

16 For the linear wage model in Table 7.3 S is about 2 and K = 10.79, and for the log wage model in Table 
7.7, S = -0.44 and K = 5.19. In both cases the Sand K measures are far from the normal values of 0 and 3, 
respectively. 
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Although the assumption of fixed regressors may be valid in several economic situ­
ations, by and large it may not be tenable for all economic data. In other words, we 
assume that both Y(the dependent variable) and the XS (the regressors) are drawn ran­
domly. This is the case of stochastic or random regressors. The important question 
that arises is whether the results of regression analysis based on fixed regressors also 
hold if the regressors are as random as the regressand. Although a detailed answer will 
be given in Chapter 19, for the topic is rather involved, we can make the following 
points. 

If the stochastic regressors and the error term u are independently distributed, the 
classical results discussed in Chapter 1 (the Gauss-Markov theorem) continue to hold 
provided we stress the fact that our analysis is conditional on given values of the 
regressors. If, on the other hand, the random regressors and the error term are 
uncorrelated, the classical results hold asymptotically - that is in large samplesP 

But what happens if neither of these conditions holds? In other words, what hap­
pens if the regressors and the error term u are correlated? We have already discussed 
the case of measurement errors in the regressor earlier and stated that in this situation 
we may have to resort to alternative estimating method(s), such as instrumental vari­
ables. But there are other situations where the regressors and the error term are corre­
lated. Because of the importance of this topic, we discuss it at length in Chapter 19 on 
stochastic regressors and instrumental variables estimation. Suffice it to note here that 
in some situations we can find appropriate instruments, so that using them in lieu of 
the original stochastic regressors we can obtain consistent estimates of the parameters 
of interest. 

7.9 The simultaneity problem 

Our focus thus far has been on single-equation regression models, in that we ex­
pressed a single dependent variable Yas a function of one or more explanatory vari­
ables, the Xs. If there was any causality between Yand the Xs, it was implicitly assumed 
that the direction of causality ran from the Xs to Y. 

But there are many situations where such a unidirectional relationship between Y 
and the Xs cannot be maintained, for it is quite possible that some of the Xs affect Ybut 
in turn Yalso affects one or more Xs. In other words, there may be a feedback relation­
ship between the Yand X variables. To take into account of such feedback relation­
ships, we will need more than one regression equation. This leads to a discussion of 
simultaneous equation regression models - that is, models that take into account 
feedback relationships among variables. 18 In what follows, we discuss briefly why OLS 
may not be appropriate to estimate a single equation that may be embedded in a 
system of simultaneous equation model containing two or more equations. 

17 Remember that independence implies no correlation, but no correlation does not necessarily imply 
independence. 

18 In the 1970s and 1980s the topic of simultaneous equation models was an integral part of every 
student of econometrics. But of late, these models have lost favor because of their poor forecasting 
performance. Competing econometric models involving multi-equations, such as autoregressive moving 
average (ARMA) and vector autoregression (VAR), are increasingly replacing the traditional simultaneous 
equation models. However, the Federal Reserve Board and the US Department of Commerce and several 
private forecasting agencies still use them along with ARMA and V AR models. 
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Simple Keynesian model of income determination 

Every student of introductory macroeconomics knows the following Keynesian model 
of the determination of aggregate income. Here we replace the Yand X notation with 
the traditional macroeconomics mnemonics, namely C for consumption expenditure, 
Y for income and I for investment: 

Income Identity: (7.9) 

The simple Keynesian model assumes a closed economy that is, no foreign trade or 
government expenditure.19 

When dealing with simultaneous equation models, we have to learn some new vo­
cabulary. First, we have to distinguish between endogenous and exogenous variables. 
Endogenous variables are those variables whose values are determined in the model, 
and exogenous variables are those variables whose values are not determined in the 
modeL In the simple KeyneSian model C and Yare endogenous, or jointly dependent, 
variables, and I is an exogenous variable. Sometimes, exogenous variables are called 
predetermined variables, for their values are determined independently or fixed, 
such as the tax rates fixed by the government.20 

Another distinction is between structural, or behavioral, equations and identities. 
Structural equations depict the structure or behavior of a particular sector of the econ­
omy, such as the household sector. The consumption function in the Keynesian model 
tells us how the household sector reacts to changes in income. The coefficients in the 
structural equations are known as structural coefficients: and B2 in our example. 

is the marginal propensity to consume (MPC) - that is the additional amount of 
consumption expenditure for an additional dollar's worth of income - which lies be­
tween 0 and L 

Identities, like Eq. (7.9), are true by definition; in our example total income is equal 
to consumption expenditure and investment expenditure. 

The simultaneity bias 

Suppose we want to estimate the consumption function given in Eq. (7.8) but 
neglect to take into account the second equation in the system. What are the 
consequences? To see them, suppose the error term u includes a variable that cannot 
be easily measured, say, consumer confidence. Further suppose that consumers 
become upbeat about the economy because of a boom in the stock market or an im­
pending tax cut. This results in an increase in the value of u. As a result of the increase 

19 Of course, we can extend the model to include government expenditure and foreign trade, in which 
case it will be an open economy model. 

20 It should be noted that the determination of which variables are endogenous and which are exogenous 
is up to the researcher. Variables such as weather, temperature, hurricanes, earthquakes and so on, are 
obviously exogenous variables. If we extend the simple KeyneSian model to make investment as a function of 
interest rate, then investment becomes an endogenous variable and interest rate becomes exogenous. If we 
have another equation that gives interest rate as a function of the money supply, then interest rate becomes 
endogenous and money supply becomes exogenous. As you can see, the simple Keynesian model can be 
expanded very quicldy. It is also clear that sometimes the classification of variables into endogenous and 
exogenous categories can become arbitrary, a criticism leveled against simultaneous equation modeling by 
the advocates of vector autoregression (V AR), a topic we discuss in Chapter 16. 
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in u, consumption expenditure increases. But since consumption expenditure is a 
component of income, this in turn will push up income, which in turn will push up 
consumption expenditure, and so on. So we have this sequence: u => C => Y => C. As 
you can see, income and consumption expenditure are mutually interdependent. 

Therefore, if we disregard this interdependence and estimate Eq. (7.8) by OLS, the 
estimated parameters are not only biased (in small or finite samples), but are also in­
consistent (in large samples). The reason for this is that in the consumption function, 
Yt and Ut are correlated, which violates the OLS assumption that the regressor(s) and 
the error term are uncorrelated. The proof of this statement is given in the appendix to 
this chapter. This is similar to the case of stochastic regressor(s) correlated with the 
error term, a topic we have discussed earlier. 

How then do we estimate the parameters of the consumption function ? We can use 
the method of indirect least squares (ILS) for this purpose, which we now discuss. 

The method of indirect least squares (ILS) 

There is an interesting way of looking at Eqs. (7.8) and (7.9). If you substitute Eq. (7.8) 
into Eq. (7.9), you will obtain, after simple manipulation, the following equation. 

BIll 
yt =--+--It +--Ut 

1-B2 1-B2 1-B2 (7.10) 

Similarly, if you substitute Eq. (7.9) into Eq. (7.8), you will obtain: 

B1 B2 1 
Ct =--+--It +--Ut 

1-B2 1-B2 1-B2 (7.11) 

=A3 +A4ft +Vt 

Each of these equations expresses an endogenous variable as a function of exogenous, 
or predetermined, variable(s) and the error term. Such equations are called re­
duced-form equations. 

Before proceeding further, it may be noted that the coefficients of the reduced form 
equations are called impact multipliers. They give the ultimate impact of a dollar's in­
crease in investment (or any other variable on the right-hand side of the preceding 
equations) on consumption and income. Take, for instance, the coefficient of It 
(= B2 1(1-B2 )). Let us increase investment by one dollar. Then from Eq. (7.9), income 
will initially increase by one dollar. This will then lead to an increase in consumption of 
a B2-dollar, which will then lead to a B2 increase in income, which will then lead to Bi 
increase in consumption and so on. The ultimate effect will be an increase in con­
sumption of B2 1(1-B2).21 So if MPC B2 = 0.7, the ultimate impact of a dollar's in­
crease in investment expenditure on consumption expenditure will be 0.7 10.3 =$233. 
Of course, the higher the MPC, the higher is the impact on the consumption 
expenditure. 

Now the reduced form equations can be estimated by OLS, for the exogenous vari­
able I and the error term are uncorrelated, by design. The key question now is whether 

21 Thus we have a sequence like B2 + Bi + Bq + ... = B2 (1 + B2 + B~ + ... ) = B2 / (1- B2), following the 
sum of an infinite geometric series. Keep in mind that 0 < B2 < 1. 
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we can obtain unique estimates of the structural coefficients from the reduced from 
coefficients. This is known as the problem of identification. Thus, if we can uniquely 
estimate the coefficients of the consumption function from the reduced form coeffi­
cients, we say that the consumption function is identified. So far as Eq. (7.9) is con­
cerned, we do not have the problem of identification, for that equation is an identity 
and all its coefficients are known (= 1). 

This process of obtaining the parameters of the structural equations from the re­
duced form coefficients is known as the method of indirect least squares (ILS), be­
cause we obtain the estimates of the structural coefficients indirectly by first 
estimating the reduced form coefficients by OLS. Of course, if an equation is not iden­
tified, we cannot obtain the estimates of its parameters by OLS, or for that matter, by 
any other method. 

Returning to the consumption function, you can verify that 

(7.12) 

So we can obtain unique values of the parameters of the consumption function 
from the reduced form coefficients. But note that the structural coefficients are non­
linear functions of the reduced form coefficients. 

In simultaneous equation models involving several equations it is tedious to obtain 
reduced form coefficients and then try to retrieve the structural coefficients from 
them. Besides, the method of indirect least squares is of no use if an equation is not 
identified. In that case we will have to resort to other methods of estimation. One such 
method is the method of two-stage least squares (2SLS), which we discuss at some 
length in Chapter 19 on instrumental variables. 

Before we illustrate ILS with a numerical example, it may be noted that the estima­
tors of the structural coefficients obtained from ILS are consistent estimators - that is, 
as the sample size increases indefinitely, these estimators converge to their true values. 
But in small, or finite, samples, the lLS estimators may be biased. As noted before, the 
OLS estimators are biased as well as inconsistent. 

An illustrative example: aggregate consumption function for USA, 
1960-2009 

To illustrate the method of indirect least squares, we obtained data on consumption 
expenditure (PCE), investment expenditure (GDPI), and income(Y) for the USA for 
1960-2009; the data for 2009 are provisional. GDPI is gross domestic private invest­
ment and PCE is personal consumption expenditure. The data are in Table 7.11, 
which can be found on the companion website. 

It should be pointed out that the data on income are simply the sum of consumption 
and investment expenditure, following the Keynesian income identity. We first esti­
mate the two reduced form equations given in Eqs. (7.10) and (7.11), which are given 
by Tables 7.12 and 7.13. 

Table 7.12 shows that if GDPI goes up by a dollar, on average, personal consump­
tion goes up by about $4.45, showing the power of the multiplier. 

From Table 7.13 we see that if GDPI increases by a dollar, on average, income in­
creases by $5.45. Of this increase, $4.50 is for consumption expenditure and $1 for in­
vestment expenditure, thus satisfying the income identity. 
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Table 7.12 Reduced form regression ofPCE on GDPI. 

Dependent Variable: PCE 
Method: Least Squares 
Sample: 1960 2009 
Included observations: 50 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 

0.978067 
0,977610 
460.5186 

10179716 
-376.5440 

2140.508 

Mean dependent var 
S,D, dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

3522.160 
3077.678 
15.14176 
15.21824 
0.555608 
0.000000 

Table 7.13 Reduced form regression of income on GDPI. 

Dependent Variable: INCOME 
Method: Least Squares 
Date: 07/30/10 Time: 20:41 
Sample: 1960 2009 
Included observations: 50 

Variable 

C 

GDPI 

R-squared 
Adjusted R-squared 
S.E, of regression 
Sum squared resid 
Log likelihood 
F-statistic 

Coefficient 

-109.9016 

5.450478 

0.985269 
0.984962 
460.5186 
10179716 

-376.5440 
3210.500 

Std. Error t-Statistic 

102.0025 -1.077440 

0.096194 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 
Prob(F-statistic) 

56.66127 

4338.266 
3755.416 
15.14176 
15.21824 
0.555608 
0.000000 

We can use the results in Tables 7.12 and 7.13 to estimate the original structural 
parameters of the consumption function, using Eq. (7.12). The reader is urged to 
verify the following consumption expenditure function, the empirical counterpart of 
Eq. (7.8). 

-20.1636 + 0.8165yt (7.13)22 

For comparison, we give the results of OLS in Table 7.14. 
The results of 1LS and OLS show that there is not much difference in the estimates 

of MPC, but the intercepts in the two regressions are different. Of course, there is no 
guarantee that in all applications OLS and lLS results will be similar. The advantage of 

22 Since the structural coefficients are nonlinear functions of the reduced form coefficients, there is no 
simple way to obtain the standard errors of the structural coefficients, 
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Table 7.14 OLS results of the regression of PCE on income. 

Dependent Variable: PCE 
Method: Least Squares 
Date: 07/31110 Time: 10:00 
Sample: 19602009 
Included observations: 50 

Variable 

C 

INCOME 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
F-statistic 
Prob(F-statistic) 

Coefficient 

-31.88846 

0.819232 

0.999273 
0.999257 
83.86681 
337614.8 

-291.3879 
65939.59 
0.000000 

Std. Error t-Statistic 

18.22720 -1.749498 

0.003190 256.7871 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
Hannan-Quinn criter. 
Durbin-\Xlatson stat 

3522.160 
3077.678 
11.73551 
11.81200 
11.76464 
0.568044 

Prob. 

0.0866 

0.0000 

ILS is that it takes into account directly the simultaneity problem, whereas OLS simply 
ignores it. 

We have considered a very simple example of simultaneous equation models. In 
models involving several equations, it is not easy to identify if all the equations in the 
system are identified. The method of ILS is too clumsy to identify each equation. But 
there are other methods of identification, such as the order condition of identifica­
tion and the rank condition of identification. We will not discuss them here, for that 
will take us away from the main theme of this chapter, which is to discuss the major 
sources of specification errors. But a brief discussion of the order condition of identifi­
cation is given in Chapter 19. An extended discussion of this topic can be found in the 
references.23 

7.10 Summary and conclusions 

WI e have covered a lot of ground in this chapter on a variety of practical topics in ec­
onometric modeling. 

If we omit a relevant variable(s) from a regression model, the estimated coefficients 
and standard errors of OLS estimators in the reduced model are biased as well as in­
consistent. We considered the RESET and Lagrange Multiplier tests to detect the 
omission of relevant variables bias. 

If we add unnecessary variables to a model, the OLS estimators of the expended 
model are still BLUE. The only penalty we pay is the loss of efficiency (i.e. increased 
standard errors) of the estimated coefficients. 

The appropriate functional form of a regression model is a commonly encountered 
question in practice. In particular, we often face a choice between a linear and a 
log-linear model. We showed how we can compare the two models in making the 
choice, using the Cobb-Douglas production function data for the 50 states in the USA 
and Washington, DC, as an example. 

23 See, for instance, GUjarati/Porter, op cit., Chapters 18-20. 
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Errors of measurement are a common problem in empirical work, especially if We 
depend on secondary data. We showed that the consequences of such errors can be 
very serious if they exist in explanatory variables, for in that case the OLS estimators 
are not even consistent. Errors of measurement do not pose a serious problem if they 
are in the dependent variable. In practice, however, it is not always easy to spot the 
errors of measurement. The method of instrumental variables, discussed in Chapter 
19, is often suggested as a remedy for this problem. 

Generally we use the sample data to draw inferences about the relevant population. 
But if there are "unusual observations" or outliers in the sample data, inferences based 
on such data may be misleading. Therefore we need to pay special attention to outlying 
observations. Before we throw out the outlying observations, we must be very careful 
to find out why the outliers are present in the data. Sometimes they may result from 
human errors in recording or transcribing the data. \Ve illustrated the problem of out­
liers with data on cigarette smoking and deaths from lung cancer in a sample of 42 
states, in addition to Washington, DC. 

One of the assumptions of the classical normal linear regression model is that the 
error term included in the regression model follows the normal distribution. This as­
sumption cannot always be maintained in practice. We showed that as long the as­
sumptions of the classical linear regression model (CLRM) hold, and if the sample size 
is large, we can still use the t and F tests of significance even if the error term is not 
normally distributed. 

Finally, we discussed the problem of simultaneity bias which arises if we estimate an 
equation that is embedded in system of simultaneous equations by the usual OLS. If 
we blindly apply OLS in this situation, the OLS estimators are biased as well as incon­
sistent. There are alternative methods of estimating simultaneous equations, such as 
the methods of indirect least-squares (ILS) or the two-stage least squares (2SLS). In 
this chapter we showed how ILS can be used to estimate the consumption expenditure 
function in the simple Keynesian model of determining aggregate income. 

Exercises 

7.1 For the wage determination model discussed in the text, how would you find out 
if there are any outliers in the wage data? If you do find them, how would you decide if 
the outliers are influential points? And how would you handle them? Show the neces­
sary details. 

7.2 In the various wage determination models discussed in this chapter, how would 
you find out if the error variance is heteroscedastic? If your finding is in the affirmative, 
how would you resolve the problem? 

7.3 In the chapter on heteroscedasticity we discussed robust standard errors or 
White's heteroscedasticity-corrected standard errors. For the wage determination 
models, present the robust standard errors and compare them with the usual OLS 
standard errors. 

7.4 What other variables do you think should be included in the wage determination 
model? How would that change the models discussed in the text? 

7.5 Use the data given in Table 7.8 to find out the impact of cigarette smoking on 
bladder, kidney, and leukemia cancers. Specify the functional form you use and 
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present your results. How would you find out if the impact of smoking depends on the 
type of cancer? \Vhat may the reason for the difference be, if any? 

7.6 Continue with Exercise 7.5. Are there any outliers in the cancer data? If there are, 
identify them. 

7.7 In the cancer data we have 43 observations for each type of cancer, giving a total 
of 172 observations for all the cancer types. Suppose you now estimate the following 
regression model: 

Ci ==Bl +B2Cig j +B3Lungi +B4KidneYi +B5Leukemiai +Uj 

where C = number of deaths from cancer, Cig number of cigarettes smoked, a 
dummy taking a value of 1 if the cancer type is lung, 0 otherwise, Kidney = a dummy 
taking a value of 1 if the cancer type is kidney, 0 other wise, and Leukemia 1 if the 
cancer type is leukemia, 0 otherwise. Treat deaths from bladder cancer as a reference 
group. 

(a) Estimate this model, obtaining the usual regression output. 
(b) How do you interpret the various dummy coefficients? 
(c) What is the interpretation of the intercept in this model? 
(d) What is the advantage of the dummy variable regression model over esti­

mating deaths from each type of cancer in relation to the number of ciga­
rettes smoked separately? 

Note: Stacl< the deaths from various cancers one on top of the other to generate 172 ob­
servations on the dependent variable. Similarly, stack the number of cigarettes 
smoked to generate 172 observations on the regressor. 

7.8 The error term in the log of wages regression in Table 7.7 was found to be 
non-normally distributed. However, the distribution oflog of wages was normally dis­
tributed. Are these findings in conflict? If so, what may the reason for the difference in 
these findings? 

7.9 Consider the following simultaneous equation model: 

Yu ==Al +A2Y2t +A3X U +uu 

Y2t ==BI +B2YU +B3X 2t +u2t 

(1) 

(2) 

In this model the Ys are the endogenous variables and the Xs are the exogenous vari­
ables and the us are stochastic error terms. 

(a) Obtain the reduced form regressions. 
(b) Which of the above equations is identified? 
(c) For the identified equation, which method will you use to obtain the struc­

tural coefficients? 
(d) Suppose it is known a priori that A3 is zero. Will this change your answer to 

the preceding questions? Why? 
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Inconsistency of the OLS estimators of the 
consumption function 
The OLS estimator of the marginal propensity to consume is given by the usual OLS 
formula: 

where c andy are deviations from their mean values, e.g. Ct =Ct -c. 
Now substitute Eq. (7.8) into (1) to obtain: 

where use is made of the fact that EYt = 0 and D)tYt I Eyl = 1. 
Taking the expectation of (2), we obtain: 

E(b2) =B2 +E[EYtUt] 
EYr 

(1) 

(2) 

(3) 

Since E, the expectations operator, is a linear operator, we cannot take the expecta­
tion of the nonlinear second term in this equation. Unless the last term is zero, b2 is a 
biased estimator. Does the bias disappear as the sample increases indefinitely? In other 
words, is the OLS estimator consistent? Recall that an estimator is said to be consistent 
if its probability limit (plim) is equal to its true population value. To find this out, we 
can take the probability limit (plim) of Eq. (3): 

plim(b2) = p lim(B2) + p lirnf EYt~t In] "1 EYt In 

p lim(EYtut In) 
= B2 + ----::---

p lim(Ey[1 n) 

(4) 

where use is made of the properties of the plim operator that the plim of a constant 
(such as B2) is that constant itself and the plim of the ratio of two entities is the ratio of 
the plim of those entities. 

As the sample size n increases indefinitely, it can be shown that 

plim(~) 1 (cr~ 1 
+ I-B2 cr~ (5) 

where cr~ and cr} are the (population) variances of U and 1', respectively. 
Since (MPC) lies between 0 and 1, and since the two variances are positive, it is 

obvious that p lim (b2) will always be greater than B2, that is, b2 will overestimate B2, no 
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matter how large the sample is. In other words, not only is b2 biased, but it is inconsis­
tent as well. 
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Table 9.2 Multinomial logistic model of school choice. 

Multinomial logistic regression Number of obs '" 1000 
LR ehi2 (14) =377.82 
Prob > ehi2 = 0.0000 
Pseudo R2 = 0.1855 Log likelihood = -829.74657 

I psechoice Co Std. Err. z P>izl [95% Conf. Interval] 

2 

hseath -.9250111 7103556 -0.00 1.000 -1.3ge+07 1.3ge+07 

grades -.2995178 .0558307 -5.36 0.000 -.4089439 -.1900917 

famine .0098115 .0041953 2.34 0.019 .0015888 .0180342 

famsiz -.0971092 .0726264 -1.34 0.181 -.2394543 .045236 

pareoll .2899096 1.82 0.069 .0417638 1.094661 

female .1415074 .1961643 0.72 0.471 -.2429676 .5259824 

black I .5559303 .4296774 1.29 0.196 -.286222 1.398083 

cons 2.268805 .5782357 3.92 0.000 1.135484 3.402126 

3 
I hseath 31.86893 5023750 0.00 1.000 -9846337 9846400 

grades -.6983134 .05744 -12.16 0.000 -.8109118 -.5857151 

famine .0148592 .00412 3.60 0.000 .0067797 .0229387 

famsiz -.0665881 .0720734 -0.92 0.356 -.2078494 .0746732 

parcoll 1.024194 .2773905 3.69 0.000 .4805189 1.56787 

female -.0575686 .1964295 -0.29 0.769 -.4425633 .3274262 

black 1.495133 .4170371 3.59 0.000 .6777555 2.312511 

cons 5.u08016 .5671225 8.83 0.000 3.896476 6.119556 

(psechoice==1 is the base outcome) 

gives similar information for school choice 3 (a 4-year college) in relation to choice 1 
(no college). That is, it gives estimates of the logit (9.7). 

Before we interpret these results, let us look at the statistical significance of the esti­
mated coefficients. Since the sample size is quite large, we use z (standard normal) 
rather than the t statistic to test the statistical significance.6 The above table gives the z 
values as well as the p values (the exact level of significance) of these zvalues. In Panel 1 
grades, family income, and parental education and in Panel 2 grades, family income, 
parental education, and black variables are statistically significant. 

In multiple regressions we use R2 as a measure of goodness of fit of the chosen 
model. The R2 value lies between 0 and 1. The closer is R2 to 1, the better is the fit. But 
the usual R2 does not work well for MLM.7 However, a pseudo R2 measure is devel­
oped by McFadden, which is defined as: 

In Lf't pseudoR2 =1 ___ 1_ 

InLo 
(9.9) 

6 Recall that as the sample size increases indefinitely the t distribution converges to the normal 
distribution. 

7 This is generally true of all nonlinear (in the parameter) regression models. 



162 Regression models with cross-sectional data 

where Lft likelihood ratio for the fitted model and Lo likelihood ratio for the model 
without any explanatory variables. For our example the pseudo R2 is about 0.1855. 

Instead of the pseudo R2 we can use the likelihood ratio test, which is generally com­
puted when we use the ML method. Under the null hypothesis that none of slope coef­
ficients are statistically significant, the computed LR follow the chi-square (X 2) 
distribution with df equal to the total number of slope coefficients estimated, 14 in the 
present case. The estimated LR of ~ 377 is highly statistically significant, its p value 
being practically zero. This suggests that the model we have chosen gives a good fit, al­
though not every slope coefficient is statistically significant. 

How do we interpret the results given in the preceding table? There are various 
ways of interpreting these results, which are described below. 

Interpretation in terms of odds 

Take, for example, Eq. (9.6), which gives the log of the odds (i.e.logit) in favor of school 
choice 2 over school choice 1 that is, a 2-year college over no college. A positive coef­
ficient of a regressor suggests increased odds for choice 2 over choice 1, holding all 
other regressors constant. Likewise, a negative coefficient of a regressor implies that 
the odds in favor of no college are greater than a 2-year college. Thus, from Panel 1 of 
Table 9.2 we observe that if family income increases, the odds of going to a 2-year col­
lege increase compared to no college, holding all other variables constant. Similarly, 
the negative coefficient of the grades variable implies that the odds in favor of no col­
lege are greater than a 2-year college, again holding all other variables constant (re­
member how the grades are coded in this example.) Similar interpretation applies to 
the second panel of the Table 9.2. 

To be concrete, let us interpret the coefficient of grade point average. Holding other 
variables constant, if the grade point average increases by one unit, the logarithmic 
chance of preferring a 2-year college over no college goes down by about 0.2995. In 
other words, -0.2995 gives the change in In (1t2i 11t1i) for a unit change in the grade av­
erage. Therefore, if we take the anti-log ofln(1t2i 11tu), we obtain 1tZi l1tli = e-0.2995 

0.7412. That is, the odds in favor of choosing a 2-year college over no college are only 
about 74%. This outcome might sound counterintuitive, but remember a higher grade 
point on a 13-point scale means poor academic performance. Incidentally, the odds 
are also known as the relative risk ratios (LRR). 

Interpretation in terms of probabilities 

Once the parameters are estimated, one can compute the three probabilities shown in 
Eqs. (9.3), (9.4), and (9.5), which is the primary objective of MLM. Since we have 1,000 
observations and 7 regressors, it would be tedious to estimate these probabilities for all 
the individuals. However, with appropriate command, Stata can compute such proba­
bilities. But this task can be minimized if we compute the three probabilities at the 
mean values of the eight variables. The estimated probabilities for 1,000 individuals 
are given in the data table. 

To illustrate, for individual #10, a white male whose parents did not have advanced 
degrees and who did not go to a Catholic school, had an average grade of 6.44, family 
income of 42.5, and family size 6, his probabilities of choosing option 1 (no college), or 
option 2 (a 2-year college) or option 3 (a 4-year college) were, respectively, 0.2329, 
0.2773 and 0.4897; these probabilities add to 0.9999 or almost 1 because of rounding 
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errors. Thus, for this individual the highest probability was about 0.49 (i.e. a 4-year col­
lege). This individual did in fact choose to go to a 4-year college. 

Of course, it is not the case that the estimated probabilities actually matched the 
choices actually made by the individuals. In several cases the actual choice was differ­
ent from the estimated probability of that choice. That is why it is better to calculate 
the choice probabilities at the mean values of the variables. We leave it for the reader 
to compute these probabilities.8 

Marginal effects on probability 

We can find out the impact of a unit change in the value of a regressor on the choice 
probability, holding all other regressors values constant. That is, we can find out 
fJrei} / 8Xik I which is the partial derivative of Tti} with respect to the kth explanatory 
variable. However, the marginal impact calculations are complicated. Not only that, 
the marginal impact of Xk on the choice probability may have a different sign than the 
sign of the coefficient of Xk' This happens because in MLM all the parameters (not just 
the coefficient of Xk) are involved in the computation of the marginal impact of Xk on 
the choice probability.9 

It is for this reason that in practice it is better to concentrate on the odds or relative 
risk ratios. 

A word of caution in the use of MLM: the independence of irrelevant 
alternatives (IIA) 

A critical assumption of MLM is that the error term in estimating ni}' the choice prob­
ability for individual i for alternative j, is independent of the error term in estimating 
nik' the choice probability for individual i for alternative k (k ;# j). This means that the 
alternatives facing an individual must be sufficiently different from each other. This is 
what is meant by IIA. Stated differently, 1IA requires that in comparing alternative j 
and k, the other alternatives are irrelevant. 

To see how the IIA assumption can be violated, we can consider the classic "red bus, 
blue bus" paradox. Suppose a commuter has two choices: travel by car or travel by bus. 
The choice probability here is t. Therefore, the ratio of the two probabilities is 1. 

Now suppose another bus service is introduced that is similar in all attributes, but 
that it is painted in red color whereas the previous bus was painted in blue color. In this 
case one would expect the choice probability to be t for each mode of transportation. 
In practice, though, commuters may not care whether it is the red bus or the blue one. 
The choice probability for the car is still t, but the probability for each bus choice is t. 
As a result, the ratio of the choice probability for car and that for bus service is 2 in­
stead of 1. Obviously, the assumption of IIA is violated because some of the choices are 
not independent, as required by IIA. 

8 The mean values for the explanatory variables for 1.000 observations are as follows: school choice 
2,305, choice of Catholic school. 0.019. grade. 6,53039, family income, 51.3935, family size. 4.206, parents' 
higher education, 0.308. female, 0,496, black, 0.056. school choice 1. 0.222. school choice 2, 0.251. and school 
choice 3, 0.527. 

9 This can be seen from the following expression: Citij I aXik = r'(;(pj rJ=2J':ilf3i). 
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The upshot of this example is that MLM models should not be considered if the al­
ternatives are close substitutes.10 

9.3 Conditionallogit model (CLM) 

As noted previously, MLM is appropriate when regressors vary across individuals and 
eLM is appropriate when regressors vary across choices. In eLM we cannot have 
regressors that vary across individuals. 11 Intuitively, we can see why. Suppose we have 
to choose among four alternatives for transportation to work, say, auto, train, water 
taxi, and bike, each with its own characteristics. Ifwe also want to include the charac­
teristics of an individual, such as, say, income, it will not be possible to estimate the co­
efficient of income because the income value of that individual will remain the same 
for all four means of transportation. 

To estimate eLM, we rewrite (9.2) as follows: 

(9.10) 

where 'itij is the probability associated with the jth choice or alternative. 
Note the critical difference between Eqs. (9.2) and (9.10): in Eq. (9.2) a and P differ 

from choice to choice, hence the j subscript on them, whereas in (9.10) there is no 
subscript on them. That is, in Eq. (9.10) there is a single intercept and a single slope co­
efficient (or a vector of slope coefficients if there is more than one regressor). Another 
difference between the MLM and eLM is that the regressors have two subscripts (i 
and j) in eLM, whereas in MLM there is only subscript (i). In the MLM the i subSCript 
varies from individual to individual (e.g. the income variable in the school choice 
model), but remains the same across the alternatives. In eLM, on the other hand, the j 
subscript for an individual varies across the alternatives. 

Like the MLM, eLM is also estimated by the method of maximum likelihood. As in 
the MLM, and for ease of interpretation, eLM can be expressed in logit form as: 

loi 'itij ) (X if - X ik )' P 
5~ 'itik 

(9.11) 

This equation states that the log-odds between alternatives j and k is proportional to 
the difference between the subject's values on the regressors, the difference being 
weighted by the estimated regression coefficient or coefficients if there is more than 
one regressor, in which case P will represent a vector of coefficients. 

Before we proceed further, we consider a concrete example. 

10 Hausman and McFadden have developed a test of the lIA hypothesis, but Long and freese, op cit., (p. 
244) do not encourage this test. One can allow for correlation in the error terms of the choice probabilities 
by considering the multinomial probit model. But because it is complicated, in practice researchers prefer 
MLM. 

11 But if we consider mixed MLM (=MXL), we can allow for individual characteristic by making use of 
appropriate dummy variables, as discussed in Section 9.4. 
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Choice of travel mode 

A common problem facing a traveler is to decide the means of transportation. This 
problem was studied by Greene and Hensher, among others.12 The data here consists 
of 840 observations on 4 modes of travel for 210 individuals. The variables used in the 
analysis are as follows: 

Mode = Choice: air, train, bus or car 

Time = Terminal waiting time, 0 for car 

Invc = In-vehicle cost-cost component 

Invt =: Travel time in vehicle 

GC = Generalized cost measure13 

Hinc Household income 

Psize = Party size in mode chosen 

See Table 9.3 on the companion website. 
Time, invc, invt, and GC are choice-specific variables, for they vary among choices. 

Hinc and Psize are individual-specific variables and they cannot be included in the 
CLM because their values remain the same across the modes of transportation. Of 
course, if we consider the mixed model, we can include both choice-specific and indi­
vidual-specific variables 

We will first consider the CLM which only includes the choice-specific variables. 
As in the case of MLM, we use the method of maximum likelihood to estimate CLM. 
As in the MLM, we also estimate this model, treating one means of transportation as 
the reference choice.l4 We use car as the reference choice and consider the other 
choices in relation to car. 

Using the clogit routine in Stata 10, we obtained the results shown in Table 9.4. 
Before interpreting these results, notice that all estimated coefficients are highly statis­
tically significant, for their p values are practically zero. The likelihood ratio statistic of 
about 213 is also highly significant; if we were to maintain that all the slope coefficients 
are simultaneously equal to zero, we can reject this hypothesis overwhelmingly. 

The negative coefficients of termtime, invect, and traveltime make economic sense. 
If for instance, the travel mode that has longer waiting time at the terminal than travel 
by car, people will tend to choose less that mode of travel. Similarly, if the travel time is 
greater for one means of transportation than car, that mode of transportation is less 
likely to be chosen by the individual. The positive sign of travel cost, which includes 
the opportunity cost, also makes sense in that people will choose that mode of trans­
portation that has lower opportunity cost than the car. 

Air, train, and bus in Table 9:4 are choice-specific constants. 
Another way of looking at the results presented in the preceding table is in terms of 

the odds ratios, which are shown in Table 9.5. 

12 For a discussion of this study and the data, see http://pages.stern.nyu.edu/-wgreene/Text/ 
econometric analysis.htm. 

13 This equals the sum of lnvc and Invt and the opportunity cost of the individual's time. 
14 Remember that the sum of the probabilities of the four means of travel must be 1. Hence, we cannot 

estimate all the probabilities independently. Once we estimate probabilities of three modes of 
transportation (any three will do), the probability of the fourth mode is determined automatically. 
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Table 9.4 Conditionallogit model of travel mode. 

Conditional (fixed-effects) logistic regression Number of obs '" 840 
LR chi2(7) '" 213.23 
Prob > chi2 '" 0.0000 
Pseudo R2 = 0.3662 Log likelihood -184.50669 

choice Coef. Std. Err. z 

termtime -.1036495 .0109381 -9.48 

invehiclec~t -.0849318 .0193825 -4.38 

traveltime -.0133322 .002517 -5.30 

travelcost .0692954 .0174331 3.97 

air 5.204743 .9052131 5.75 

train 4.360605 .5106654 8.54 

bus 3.763234 .5062595 7.43 

Table 9.5 Conditionallogit model of travel mode: odds ratios. 

Conditional (fixed-effects) logistic regression Number of obs '" 840 
LR chi2(7) '" 213.23 
Prob > chi2 = 0.0000 
Pseudo R2 = 0.3662 Log likelihood -184.50669 

~ invehiclec~t 

traveltime 

travelcost 

air 

train 

bus 

Odds Ratio Std. Err. z P>lzl [95% Conf. Interval] 

.9015412 .0098612 -9.48 0.000 .8824193 .9210774 

.9185749 .0178043 -4.38 0.000 .8843337 .954142 

.9867563 .0024837 -5.30 0.000 .9819004 .9916362 

1.071753 .0186839 3.97 0.000 1.035751 1.109005 

182.134 164.8701 5.75 0.000 30.89387 1073.767 

78.30446 39.98738 8.54 0.000 28.78109 213.0422 

43.08757 21.81349 7.43 0.000 15.97435 116.22 

The interpretation of the odds ratios is as follows. Take, for example, the value of 
::::; 0.99 of travel time. For any mode of transportation, holding other modes constant, 
increasing travel time by 1 minute decreases the odds of using that mode by a factor of 
0.98 or 2%. Likewise, for any mode of transportation, holding the other modes con­
stant, increasing the terminal time by 1 minute decreases the odds of that model by a 
factor of,:::; 0.90 or about 10%. 

The alternative-specific constants, or intercepts, usually are not of interest except 
for estimating probabilities. The positive and statistically significant values of these 
constants suggest that the threshold values of travel by air, train and bus are distinct 
from the that of travel by car. 

Stata's predict command can be used to predict probabilities for each alternative 
for each individual, where the predicted probabilities sum to 1 for each individual. Re­
member that each traveler has a choice of four means of transportation. For example, 
the probabilities of traveling by air, train, bus, and car for the first traveler in our 
sample are: 0.06, 0.28, 0.12, and 0.54, respectively, the sum of these probabilities being 
1. These probabilities would suggest that this traveler would probably choose travel by 
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car. In actuality, he did choose to travel by car. Of course, this will not necessarily be 
true of all other travelers. 

In addition to the odds ratio, we can also compute the marginal, or incremental, 
effect of a unit change in the value of a regressor on the choice probabilities, holding all 
other regressors constant. You will recall that in the multinomiallogit model (MNL) 
all the (slope) parameters are involved in determining the marginal effect of a 
regressor on the probability of choosing the mth alternative. In the conditionallogit 
model (eLM), on the other hand, the sign ofBm , the coefficient of the mthregressor, is 
the sign of the marginal effect of that regressor on the choice probability. The actual 
computations of these marginal effects can be done using the asclogit routine of 
Stata, which we do not pursue here. 

9.4 Mixed logit (MXL) 

As noted, in the MLM we consider only the subject-specific attributes, whereas in 
eLM we consider only the choice-specific attributes or characteristics. But in MXL we 
can include both sets of characteristics. In our travel data, we also have information 
about household income Chinc) and party size (psize), the number of people traveling 
together. These are subject-specific characteristics. To incorporate them in the analy­
sis, MXL proceeds as follows: 

Interact the subject-specific variables with the three modes of transportation, air, 
train, and bus, keeping in mind that car is the reference mode of transportation. In 
other words, multiply the subject-specific variables and the three modes oftransporta­
tion as follows: 

air*hinc, train*hinc, bus*hinc, air*psize, train*psize, and bus·psize. 

Then use the clogit command of Stata to obtain Table 9.6. 
Again to help us interpret these numbers, we will compute the odds ratio (Table 

9.7). 
The odds ratio for terminal time, in-vehicle time, and travel time show that a unit 

increase in each of these values reduces the attractiveness of that means oftransporta­
tion compared with travel by car. If you look at the odds ratio of the interaction vari­
ables, we see, for instance, that a unit increase in family income, decreases the odds of 
travelling by train by about 5.75% [(1 0.94250) x 100], holding all else constant. Simi­
larly, if the party size increases by one member, the odds of travelling by air decreases 
by about 60.25% [(1 0.3975) x 100], ceteris paribus. 

\X! e leave it for the reader to interpret the other odds coefficient. 

9.5 Summary and conclusions 

In this chapter we considered three models, multinomial logit (MNL), conditional 
logit (eL), and mixed logit (MXL) models. Faced with several choices in a variety of sit­
uations, these models attempt to estimate the choice probabilities, that is, probabili­
ties of choosing the best alternative, best in the sense of maximizing the utility or 
satisfaction of the decision maker. 
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Table 9.6 Mixed conditionallogit model of travel mode. 

Iteration 0: log likelihood = -186.1019 
Iteration 1: log likelihood -172.82527 
Iteration 2: log likelihood -172.46893 
Iteration 3: log likelihood = -172.46795 
Iteration 4: log likelihood -172.46795 
Conditional (fixed-effects) logistic regression 

Log likelihood -172.46795 

choice Coef. Std. Err. 

termtime -.1011797 .0111423 

invehiclec~t -.00867 .0078763 

traveltime -.0041307 .0008928 

air 6.03516 1.138187 

train 5.573527 .7112915 

bus 4.504675 .7957919 

airXinc .0074809 .0132027 

trainXinc -.0592273 .0148923 

busXinc -.0208984 .0163505 

airXpartys -.9224203 .2585064 

trainXparty .2162726 .233638 

busXparty -.1479247 .3427697 

Number of obs 840 
LR chi2(12) = 237.31 
Prob > chi2 0.0000 
Pseudo R2 0.4076 

z P>lzl 
-9.08 0.000 

-1.10 0.271 

-4.63 0.000 

5.30 0.000 

7.84 0.000 

5.66 0.000 

0.57 0.571 

-3.98 0.000 

-1.28 0.201 

-3.57 0.000 

0.93 0.355 

-0.43 0.666 

Table 9.7 Mixed conditionallogit model of travel mode: odds ratios. 

Conditional (fixed-effects) logistic regression 

Log likelihood -172.46795 

choice Odds Ratio Std. Err. 

termtime .9037706 .0100701 

invehiclec-t .9913675 .0078083 

traveltime .9958778 .0008891 

air 417.8655 475.609 

train 263.3614 187.3268 

bus 90.43896 7l.97059 

airXinc 1.007509 .0133018 

trainXinc .9424926 .0140359 

busXinc .9793185 .0160124 

airXpartys .3975557 .1027707 

trainXparty 1.241441 .2900477 

busXparty .862496 .2956375 

Number of obs 840 
LR chi2(12) = 237.31 
Prob > chi2 0.0000 
Pseudo R2 = 0.4076 

z P>lzl 
-9.08 0.000 

-1.10 0.271 

-4.63 0.000 

5.30 0.000 

7.84 0.000 

5.66 0.000 

0.57 0.571 

-3.98 0.000 

-1.28 0.201 

-3.57 0.000 

0.93 0.355 

-0.43 0.666 

[95% Conf. Interval] 

-.1230182 -.0793412 

-.0241073 .0067673 

-.0058806 -.0023808 

3.804355 8.265965 

4.179422 6.967633 

2.944952 6.064399 

-.0183959 .0333577 

-.0884157 -.Q300388 

-.0529448 .0111481 

-1.429084 -.415757 

-.2416494 .6741945 

-.819741 .5238915 

[95% Conf. Interval} 

.8842476 .9237247 

.976181 1.00679 

.9941366 .997622 

44.89628 3889.223 

65.32806 1061.707 

19.00974 430.2639 

.9817723 1.03392 

.9153803 .9704078 

.9484324 1.01121 

.2395283 .6598406 

.7853314 1.962452 

.4405457 1.688586 
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In MLM the choice probabilities are based on individual characteristics, whereas in 
eLM these probabilities are based on choice-specific characteristics. In the MXL we 
incorporate both the individual and choice-specific characteristics. 

All these models are estimated by the method of maximum likelihood, for these 
models are highly nonlinear. 

Once these models are estimated, we can interpret the raw coefficients themselves 
or convert them into odds ratios, as the latter are easy to interpret. We can also assess 
the marginal contribution of regressors to the choice probability, although these cal­
culations can sometimes be involved. However, statistical packages, such as Stata, can 
compute these marginal effects with comparative ease. 

The main purpose of discussing these topics in this chapter was to introduce the be­
ginner to the vast field of multi-choice models. The illustrative example in this chapter 
shows how one can approach these models. Once the basics are understood, the 
reader can move on to more challenging topics in this field by consulting the refer­
ences. I5 It is beyond the scope of this book to cover the more advanced topics. But we 
will discuss one more topic in this area, the topic of ordinal or ordered logit in the 
next chapter. 

In closing, a warning is in order. The models discussed in this chapter are based on 
the assumption of HA, independence of irrelevant alternatives, which may not always 
be tenable in every case in practice. Recall the "red bus, blue bus" example we dis­
cussed earlier. Although one can use. the Hausman-type tests to assess IIA, they do not 
always work well in practice. However, there are alternative techniques to deal with 
the IIA problem, for which we refer the reader to the Long-Freese and Greene texts 
cited earlier. 

Exercises 

Several data sets are available on the websi tes of the books listed in the footnotes in this 
chapter. Access the data of your interest and estimate the various models discussed in 
this chapter so that you can be comfortable with the techniques discussed in the pre­
ceding pages. 

15 See, Christiaan Heij. Paul de Boer, Philip Hans Franses, Teun Kloek and Herman K. van Dijk, 
Econometrics Methods with Applications in Business and Economics, Oxford University Press, Oxford, UK, 
2004, Ch. 6; A. Colin Cameron and Pravin K. Trivedi, Microeconometrics: Methods and Applications, 
Cambridge University Press, New York, 2005, Ch. 15; Philip Hans Franses and Richard Papp, Quantitative 
Models in Marketing Research. Cambridge University Press, Cambridge, U.K., 2001, Chapter 5. 
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Ordinal regression models 

In Chapter 1 we discussed four types of variables that are commonly encountered in 
empirical analysis: ratio scale, interval scale, ordinal scale, and nominal scale. The ear­
lier chapters largely discussed regression models that dealt with interval scale or ratio 
scale variables. In Chapter 8 we discussed binary nominal scale variables and in Chap­
ter 9 we considered multi-category nominal scale variables. In this chapter we discuss 
regression models that involve ordinal scale variables. 

In our travel example, discussed in the previous chapter, we considered four means 
of transportation - air, train, bus, and car. Although we labeled these means of trans­
portation 1, 2, 3, and 4, we did not attribute ordinal properties to these numbers. They 
are simply nominal or category labels. 

However, in many applications in the social and medical sciences the response cate­
gories are ordered or ranked. For example, in the Likert-type questionnaires the re­
sponses may be "strongly agree", "agree", "disagree", or "strongly disagree". Similarly, 
in labor market studies we may have workers who work full time (40+ hours per week), 
or who work part time (fewer than 20 hours per week) or who are not in the workforce. 
Another example is bond ratings provided by companies, such as Moody's or S&P. 
Corporate bonds are rated as B, B+, A, A+, A++, and so on, each higher rating denot­
ing higher creditworthiness of the entity issuing the bonds. 

Although there is clear ranking among the various categories, we cannot treat them 
as interval scale or ratio scale variables. Thus we cannot say that the difference be­
tween full-time work and part-time work or between part-time work and no work is 
the same. Also, the ratio between any two categories here may not be practically 
meaningful. 

Although MLM models can be used to estimate ordinal-scale categories, they do 
not take into account the ordinal nature of the dependent variable. l The ordinallogit 
and ordinal probit are specifically developed to handle ordinal scale variables. Be­
cause of the mathematical complexity of the ordinal probit model, we will only discuss 
the ordinallogit model in this chapter. In practice it does not make a great difference 
whether we use ordinal probit or ordinal log it models. 2 

1 There are also technical reasons. Compared to MLM, ordinal logit or ordinal probit models are more 
parsimonious in that we need to estimate fewer parameters. 

2 Several statistical packages have routines to estimate both these models. The difference between the 
two models lies in the probability distribution used to model the error term. The error term in the ordinal 
probit model is assumed to be normally distributed, whereas the error term in the ordinal logit model is 
assumed to follow the logistic distribution. 
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10.1 Ordered multinomial models (OMM) 

Suppose we have the following model: 

Y/ ==B1X n +B2Xa + ... +BkXik +ui 

k 
LBnXin +Ui 

11=1 

(10.1) 

where yt* is unobserved, the XS are the regressors and ui is the error term. 
yt* is often known as a latent or index variable. For example, it may denote the 

creditworthiness of a company, or happiness index of an individual. Although we 
cannot observe it directly, the latent variable depends on one or more regressors, such 
as diet, weight, or height of an individual in a medical study.3 

Further suppose we have n independent individuals (or observations) and they face 
I-ordered alternatives, such that 

yt == 1, if Yi s a1 

yt 2, if al S yt* S ~ 

yt 3,if a2 S yt' S a3 (10.2) 

where al < ~ < a3 ... < a J-l' 

That is, we observe an individual Yi in one of the I ordered categories, these catego­
ries being separated by the threshold parameters or cutoffs, the as. In other words, 
the threshold parameters demarcate the boundaries of the various categories. Return­
ing to the bond rating example, if a bond is rated B, it will be in a lower category than a 
bond rated B+, which will lie below the category that gets an A- rating, and so on. 

The ordered logit model estimates not only the coefficients of the X regressors but 
also the threshold parameters. But note that the slope coefficients of the X regressors 
are the same in each category; it is only that their intercepts (cutoffs) differ. In other 
words, we have parallel regression lines4, but they are anchored on different intercepts. 

That is why OLM are also known as proportional odds models.s 

10.2 Estimation of ordered logit model (OLM) 

The method of estimation, as in all multinomial regression models, is by the method of 
maximum likelihood. The underlying estimation principle is simple: we want to 
estimate 

3 The latent variable is treated as continuous and the observed responses represent crude measurement 
of that variable. Even though we people as liberal or conservative, there is conceivably a continuum 
of conservative or liberal ideology. 

4 More correctly, parallel regression surfaces. 
5 For further details, see Daniel A. Powers and Yu Xie, Statistical Methods for Categorical Data Analysis, 

2nd edn, Emerald Publishers, UK, 2008, p. 229. 
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Pr(Yt s j) == Pr(B1Xli + B2X 2i + ... + B kXki +Uj s aj) 

Pr(uj saj -B1Xjj -B2X 2i .. -BkXk) 
(10.3) 

That is, Eq. (10.3) gives the (cumulative) probability that Yj falls in a category j and 
below (Le. in category 1, 2, ... , or j). 

Recall that to compute the probability that a random variable takes a value equal to 
or less than a given number, we use the cumulative distribution function (CDF) of 
probability distribution, the main question being: which probability distribution? As 
noted elsewhere, if the error term Uj is assumed to follow the logistic distribution, we 
obtain the ordered logit model (OLM), but if it follows the normal distribution, we 
obtain the ordered pro bit model (OPM). For reasons stated earlier, we will estimate 
OLM.6 

Models for ordered responses use cumulative probabilities as shown in Eq. (10.3). 
Now to compute such probabilities, we use 

-BX) 

1 + exp(aj -EX) 
(10.4)7 

which is the CDF of the logistic probability distribution. Note that EX standsmr 
2:fBk X k · 

Now the effect of a regressor on the ordered dependent variable is nonlinear, as it 
gets channeled through a nonlinear CDF (logit in our case).8 This makes interpreta­
tion of the OLM somewhat complicated. To make the interpretation easier, we can 
make use of the odds ratio. 

Since the outcomes on the left-hand side ofEq. (10.2) reflect the ordering of the re­
sponse scale, it is customary to consider the odds ratio defined by 

PrlYi s;lX] 
(10.5) 

PrlYi > jlX) Pr[l-Pr(Yt s;jX)] 

where 

PrlYi sjIX)'" tPrlYi =mlX] (10.6) 
m=l 

which denotes the cumulative probability that the outcome is less than or equal to 
j. 

Now if we use the logistic CDF given in 
Eq. (10.5) and take the log of this odds 
simplification, 

(10.4) to compute the odds ratio in 
ratio (Le. logit), we obtain, after 

6 The following discussion is based on John Fox, AppliedRegression Analysis, Linear Models, andRelated 
Methods, Sage Publications, California, 1997, pp. 475-7, and Alan Agresti, An Introduction to Categorical 
Data Analysis, 2nd edn, Wiley, New York, 2007. 

7 The PDF of a standard logistic distribution of variable Yhas mean of zero and a variance of 1t 2 13 and is 
given by f(Y) exp(Y) 1 [1 + exp(Y)J2 and its CDF is given by F(Y) exp(Y) 1 [1 + exp(Y)j 

8 CDFs are elongated S-shaped curves, which are obviously nonlinear. 
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f ;
Modeling count data: the Poisson and
negative binomial regression models

In many a phenomena the regressand is of the count type, such as the number of visits
to a zoo in a given year, the number of patents received by a firm in a year, the number
of visits to a dentist in a year, the number of speeding tickets received in a year, the
number of cars passing through a toll booth in a span of, say, 5 minutes, and so on. The
underlying variable in each case is discrete, taking only a finite non-negative number
of values.

Sometimes count data also include rare or infrequent occurrences, such as getting
hit by lightning in a span or a week, winning Mega Lotto in two successive weeks,
having one or more traffic accidents in a span of a day, and the number of appoint-
ments to the Supreme Court made by a President in a year. Of course, several more ex-
amples can be cited.

A unique feature of all these examples is that they take a finite number of non-nega-
tive integer, or count, values. Not only that, in many cases the count is 0 for several ob-
servations. Also note that each count example is measured over a certain finite time
period. To model such phenomena, we need a probability distribution that takes into
account the unique features of count data. One such probability distribution is the
Poisson probability distribution. Regression models based on this probability distribu-
tion are known as Poisson Regression Models (PRM). An alternative to PRM is the
Negative Binomial Regression Model (NBRM), which is based on the Negative bino-
mial probability distribution and is used to remedy some of the deficiencies of the
PRM. In what follows we first discuss the PRM and then consider the NBRM.

12.1   An illustrative example

Before we discuss the mechanics of PRM, let us consider a concrete example.

Patents and R&D expenditure

A topic of great interest to students of Industrial Organization is the nature of the rela-
tionship between the number of patents received and the expenditure on research and
development (R&D) by manufacturing firms. To explore this relationship. Table 12.1
(available on the companion website) gives data on the number of patents received
by a sample of 181 international manufacturing firms and the amount of their R&D
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expenditure for the year 1990.1 The table also gives dummy variables representing five
major industries - aerospace, chemistry, computers, machines and instruments, and
motor vehicles; food, fuel, metal and others being the reference category. Also given in
the table are country dummies for two major countries, Japan and USA, the compari-
son group being European countries. The R&D variable is expressed in logarithmic
form, as the figures for individual industries vary considerably.

If you examine the patent data you will see that they vary considerably, from a low of
0 to a high of 900. But most of them are at the lower end.

Our objective is to determine the influence of R&D, industry category and the two
countries on the mean or average number of patents received by the 181 firms.2 As a

starting point, and for comparative purposes, suppose we fit a linear regression model
(LRM), regressing patents, on the log of R&D (LR90), the five industry dummies and
the two country dummies. The OLS regression results are given in Table 12.2.

As expected, there is a positive relationship between the number of patents re-
ceived and R&D expenditure, which is highly statistically significant. Since the R&D
variable is in the logarithmic form and the patent variable is in the linear form, the
R&D coefficient of 73.17 suggests that if you increase R&D expenditure by 1%, the av-
erage number of patents received will increase by about 0.73, ceteris paribus.5

Of the industrial dummies, only the dummies for the chemistry and vehicles indus-
tries are statistically significant; Compared to the reference category, the average level
of patents granted in the chemistry industry is higher by 47 patents and the average
level of patents granted in the vehicles industry is lower by 192. Of the country dum-
mies, the US dummy is statistically significant, but its value of about -77 suggests that
on average US firms received 77 fewer patents than the base group.

The OLS regression, however, may not be appropriate in this case because the
number of patents granted per firm per year is usually small, despite some firms ob-
taining a large number of patents. This can be seen more vividly if we tabulate the raw
data (Table 12.3).

It is clear from this table that a preponderance of firms received fewer than 200 pat-
ents; actually much fewer than this number. This can also be seen from the following
histogram of Figure 12.1.

This histogram shows the highly skewed distribution of the patent data, which can
be confirmed by the coefficient of skewness, which is about 3.3, and the coefficient of
kurtosis is about 14. Recall that for a normally distributed variable the skewness coeffi-
cient is zero and kurtosis is 3. The Jarque-Bera (JB) statistic clearly rejects the hypoth-
esis that patents are normally distributed. Recall that in large samples the JB static
follows the chi-square distribution with 2 df. In the present case the estimated JB value
of 1,308 is so large that the probability of obtaining such a value or greater is practically
zero.

1 These data are obtained from the website of Marno Verbeek, A Guide to Modern Econometrics, 3rd edn,

Join Wiley & Sons, UK, 2008, but the original source is: M, Cincera, Patents, R&D, and technological
spillovers at the firm level: some evidence from econometric count models for panel data. Journal of Applied
Econometrics, vol. 12, pp. 265-80, 1997. The data can be downloaded from the archives of the Journal of
Applied Econometrics.

2 Recall that in most regression analysis we try to explain the mean value of the regressand in relation to
the explanatory variables or regressors.

3 Recall our discussion of semi-log models in Chapter 2.
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Table 12.2 OLS estimates of patent data.

Dependent Variable: P90
Method: Least Squares
Sample: 1 181
Included observations: 181

Coefficient Std. Error t-Statistic Prob.

C -250.8386 55.43486 -4
.
524925 0

.
0000

LR90 73.17202 7
.
970758 9

.
180058 0

.
0000

AEROSP -44.16199 35.64544 -1
.
238924 0

.
2171

CHEMIST 47.08123 26.54182 1
.
773851 0

.
0779

COMPUTER 33.85645 27.76933 1
.
219203 0

.
2244

MACHINES 34.37942 27.81328 1
.
236079 0

.
2181

VEHICLES -191.7903 36.70362 -5
.
225378 0

.
0000

JAPAN 26.23853 40.91987 0
.
641217 0

.
5222

US -76.85387 28.64897 -2
.
682605 0

.
0080

R-squared 0.472911 Mean dependent var 79.74586
Adjusted R-squared    0.448396 S.D. dependent var 154.2011
S

.
E

. of regression        114.5253 Akaike info criterion 12.36791
Sum squared resid      2255959. Schwarz criterion 12.52695
Log likelihood -1110.296 Durbin-Watson stat 1.946344
F-statistic 19

.29011 Prob(F-statistic) 0.000000

Note: P(90) is the number of patents received in 1990 and LR(90) is the log of R&D
expenditure in 1990. Other variables are self-explanatory.

Table 12.3 Tabulation of patent raw data.

Tabulation ofP90

Sample: 1 181
Included observations: 181

Number of categories: 5

Cumulative Cumulative

# Patents Count Percent Count Percent

[0, 200) 160 88.40 160 88.40

[200, 400) 10 5
.
52 170 93.92

[400, 600) 6 3
.
31 176 97.24

[600, 800) 3 1
.
66 179 98.90

[800, 1000) 2 1
.
10 181 100.00

Total 181 100.00 181 100.00

Obviously, we cannot use the normal probability distribution to model count data.
The Poisson probability distribution (PPD) is often used to model count data, espe-
cially to model rare or infrequent count data. How this is done is explained below.
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Figure 12.1 Histogram of raw data.

12.2   The Poisson regression model (PRM)

If a discrete random variable follows the Poisson distribution, its probability density
function (PDF) is given by

p -  1 y.

/(y| )=Pr(y= .)=- '-. =0,U..
yi]

(12.1)

where f{Y\ yi) denotes the probability that the discrete random variable Y takes
non-negative integer value and where y . (read as j,

- factorial) stands for y] =
yx(y -l)*(y -2) x... x 2 x 1 with 0! = 1 and where X is the parameter of the Poisson dis-
tribution. Note that the Poisson distribution has a single parameter, A, unlike a normal
distribution which has two parameters, mean and variance.

It can be proven that

(12.2)

(12.3)

A unique feature of the Poisson distribution is that the mean and the variance of a
Poisson-distributed variable are the same. This property, which is known as
equidispersion, is a restrictive feature of the Poisson distribution,/or in practice the
variance of count variables is often greater than its mean. The latter property is called
overdispersion.

The Poisson regression model can be written as:

Vi =Ebli) + ui =h +«i (12.4)

where the s are independently distributed as Poisson random variables with mean 
for each individual, expressed as

A,- =E{yi |X,
-) =exp[B1 +8  +... + BkXki] = exp{BX) (12.5)
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where exp{BX) means e raised to the power of the expression BX, the latter being a
short-hand for the multiple regression shown in the brackets.

The X variables are the regressors that might determine the mean value of the
regressand. Therefore, ipso facto, it also determines the variance value if the Poisson
model is appropriate. For example, if our count variable is the number of visits to the
Bronx Zoo in New York in a given year, this number will depend on variables such as
income of the visitor, admission price, distance from the museum, and parking fees.

Taking the exponential of BX will guarantee that the mean value of the count vari-
able, X, will be positive.

For estimation purposes, our model can be written as

m=yi\x\-
yi  (12.6)

= =0
,

1
,
2
,...

This model is nonlinear in parameters, necessitating nonlinear regression estimation.
This can be accomplished by the method of maximum likelihood (ML). We will not
discuss the details of ML estimation in the context of the Poisson regression model, for
the details are somewhat technical and can be found in the references.4 However, a

heuristic discussion of ML is given in the appendix to Chapter 1.
We first present the ML estimates of the patent data and then discuss the results

and some of the limitations of the model; see Table 12.4.

The estimated mean value of the /th firm is therefore:

%. =e  = exp[-0.74+0.86ZJ?90; -OWAerospi +0.77Chemisti

+0A6Computeri + 0.64Machinesi -ISOVehiclesi (12.7)
-0

.0038Japani -0.41 /5,]

A log-transformation of Eq. (12.7) gives:

Inif =BX = -0.74:+0.86LR90i - 079Aerospi +0.77Chemisti
+0A6Computeri + 0.64Machinesi -lS0Vehiclesi (12.8)
-0

.0038Japani -0A1US1

Interpretation of the results

First, notice that in nonlinear models like PRM the/?2 is not particularly meaningful. It
is the LR, the likelihood ratio, statistic that is important. Its value in the present in-
stance is 21,482, which is highly significant because itsp value, or exact level of signifi-
cance, is practically zero. This suggests that the explanatory variables are collectively
important in explaining the conditional mean of patents, which is A,,-.

Another way of stating this is to compare the restricted log-likelihood with the un-
restricted log-likelihood function. The former is estimated under the hypothesis that

4 An accessible reference is; J. Scott Long, Regression Models for Categorical and Limited Dependent
Variables, Sage Publications, Thousand Oaks, California, 1997.
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Table 12.4 Poisson model of patent data (ML estimation).

Dependent Variable: P90
Method: ML/QML - Poisson Count (Quadratic hill climbing)
Sample: 1 181
Included observations: 181

Convergence achieved after 6 iterations
Covariance matrix computed using second derivatives

Coefficient Std. Error z-Statistic

C -0
.
745849 0

.
062138 -12.00319

LR90 0
.
865149 0

.
008068 107.2322

AEROSP -0
.
796538 0

.
067954 -11.72164

CHEMIST 0
.
774752 0

.
023126 33.50079

COMPUTER 0
.
468894 0

.
023939 19.58696

MACHINES 0
.
646383 0

.
038034 16.99479

VEHICLES -1
.
505641 0

.
039176 -38.43249

JAPAN

US

-0
.
003893

-0
.
418938

0
.
026866

0
.
023094

-0
.
144922

-18.14045

R-squared
Adjusted R-squared
S

.
E

. of regression
Sum squared resid
Log likelihood

0
.
675516

0
.
660424

89.85789

1388804.

-5081.331

Mean dependent var
S

.
D

. dependent var
Akaike info criterion

Schwarz criterion

LR statistic

Prob(LR statistic)Restr. log likelihood -15822.38
,

Avg. log likelihood -28.07365

Note: LR90 is the logarithm of R&D expenditure in 1990.

79.74586

154.2011

56.24675

56.40579

21482.10

0
.
000000

Prob.

0
.
0000

0
.
0000

0
.
0000

0
.
0000

0
.
0000

0
.
0000

0
.
0000

0
.
8848

0
.
0000

there are no explanatory variables in the model except the constant term, whereas the
latter includes the explanatory variables. Since the restricted LR is -15,822 and the un-
restricted LR is -5,081, numerically the latter is greater (i.e. less negative) than the
former.5 Since the objective of ML is to maximize the likelihood function, we should
choose the unrestricted model, that is, the model that includes the explanatory vari-
ables include in the above table.

Now let us interpret the estimated coefficients given in Eq. (12.8). The LR90 coeffi-
cient of 0.86 suggests that if R&D expenditure increases by 1%, the average number of
patents given a firm will increase by about 0.86%. (Note that R&D expenditure is ex-
pressed in logarithmic form.) In other words, the elasticity of patents granted with re-
spect to R&D expenditure is about 0.86% (see Eq. (12.8)).

What is the interpretation of the machines dummy coefficient of 0.6464? From
Chapter 2 we know how to interpret the dummy coefficient in a semi-log model. The
average number of patents in the machines industry is higher by
100[ea6464 -1] =100(19086-1) =90.86% compared to the comparison category. In

5 As shown in the Appendix to Chapter 1, the LR statistic X is computed as 2(ULLF - RLLF), where ULLF
and RLLF are the unrestricted and restricted log-likelihood functions. The LR statistic follows the
chi-square distribution with df equal to the number of restrictions imposed by the null hypothesis: seven in
the present example. For our example, \ = 2[-5081 - (-15,822)] = 21,482.10, which is the value in Table
12.4.
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similar fashion, the coefficient of the US dummy of -0.4189 means the average
number of patents in the USA is lower by 100[e-a4189 -1] = 100(0.6577 -1) = -3423%
compared to the base group.

If you examine the results given in Table 12.4, you will see that, except for the Japan
dummy, the other variables are highly statistically significant.

Marginal impact of a regressor

Another way to interpret these results is to find the marginal impact of a regressor on
the mean value of the count variable, the number of patents in our example.

It can be shown that the marginal impact of a continuous regressor, say, X , on this
mean value is:

' B Eiy B, (12.9)«
k

As Eq. (12.9) shows, the marginal impact of the regressor depends not only on its
coefficient B  but also on the expected value oiY[= P90), which depends on the values
of all the regressors in the model. Since we have 181 observations, we will have to do
this calculation for each observation. Obviously this is a laborious task. In practice, the
marginal impact is computed at the mean values of the various regressors. Stata and
other statistical packages have routines to compute the marginal impact of continuous
regressors.

How about computing the marginal impact of a dummy regressor?
Since a dummy variable takes a value of 1 and zero, we cannot differentiate A,; with

respect to the dummy variable. However, we can compute the percentage change in
mean patents obtained by considering the model when the dummy variable takes the
value of 1 and when it takes the value of 0.7

Computing the estimated probabilities

How do we compute the probability of obtaining, say, m patents, given the values of
the regressors? This probability can be obtained from Eq. (12.6) as:

exp L)
Vr:{Yi=m\X) = - --, m = 0,1,2,... (12.10)

ml

a A

where A, = £X.

In principle we can compute such probabilities for each observation for each value
m or for an m of particular interest. Of course, this is a tedious computation. Software
such as Stata can compute these probabilities relatively easily.

12.3   Limitation of the Poisson regression model

The Poisson regression results for the patent and R&D given in Table 12.4 should not
be accepted at face value. The standard errors of the estimated coefficients given in

6 Using the chain rule of calculus, we obtain: dE{Y \ X)ldXk = (de /dXB)  (dxmxk) = e . Remember
that the derivative of an exponential function is the exponential function itself.

7 For details, consult Long, op cit.
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that table are valid only if the assumption of the Poisson distribution underlying the
estimated model is correct. Since the PPD assumes that the conditional mean and the

conditional variance of the distribution, given the values of the X regressors, are the
same, it is critical that we check this assumption: the assumption of equidispersion.

If there is overdispersion, the PRM estimates, although consistent are inefficient
with standard errors that are downward biased. If this is the case, the estimated Z

values are inflated, thus overestimating the statistical significance of the estimated co-
efficients.

Using a procedure suggested by Cameron and Trivedi, which is incorporated in
Eviews, the assumption of equidispersion can be tested as follows:

1

2

3

4

5

6

Estimate the Poisson regression model, as in Table 12.4, and obtain the predicted
A

value of the regressand, P90,
'

.

A

Subtract the predicted value P 90; from the actual value P90i, to obtain the residu-
als, ei = P9Qi -P90;.

Square the residuals, and subtract from them -P90p i.e. ef -P90L
A

Regress the result from Step 3 on P90j.
If the slope coefficient in this regression is statistically significant, reject the as-
sumption of equidispersion. In that case reject the Poisson model.

If the regression coefficient in Step 5 is positive and statistically significant, there is
overdispersion. If it is negative, there is under-dispersion. In any case, reject the
Poisson model. However, if this coefficient is statistically insignificant you need
not reject the PRM.

Using this procedure, we obtained the results in Table 12.5. Since the slope coeffi-
cient in this regression is positive and statistically significant, we can reject the Poisson
assumption of equidispersion. Actually, the results show overdispersion.8 Therefore

the reported standard errors in Table 12.4 are not reliable; actually they underestimate
the true standard errors.

There are two ways of correcting the standard errors in Table 12.4: one by the
method of quasi-maximum likelihood estimation (QMLE) and the other by the

Table 12.5 Test of equidispersion of the Poisson model.

Dependent Variable: (P90-P90F)A2-P90
Method: Least Squares
Sample: 1 181
Included observations: 181

Coefficient Std. Error t-Statistic Prob.

P90FA2 0
.
185270 0

.
023545 7

.
868747 0

.
0000

R-squared
Adjusted R-squared
S

.
E

. of regression
Sum squared resid
Log likelihood

0
.185812 Mean dependent var 7593.204

0
.185812 S.D. dependent var 24801.26

22378.77 Akaike info criterion 22.87512

9
.
01E+10 Schwarz criterion 22.89279

-2069.199 Durbin-Watson stat 1.865256

Note: P90F is the predicted value of P90 from Table 12,4 and P90FA2 = P90F squared.

8 This test is also valid for underdispersion, in which case the slope coefficient will be negative. That is,
the conditional variance is less than the conditional mean, which also violates the Poisson assumption.
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Table 12.6 Comparison of MLE, QMLE and GLM standard errors (SE) of the
patent example.

Variable MLE SE

(Tablel2.4)
QMLE SE GLMSE

Constant 0
.
0621

(-12.0031)

0
.
6691

(-1
.1145)

0
.
4890

(-1
.5250)

LR90 0
.
0080

(107.2322)

0
.
0847

(10.2113)

0
.
0635

(13.6241)

ARROSP 0
.
0679

(-11.7210)

0
.
3286

(-2
.42350)

0
.
5348

(-1
.4892)

CHEMIST 0
.
0231

(33.5007)

0
.
2131

(3.6350)

0
.1820

(4.2563)

COMPUTER 0
.
0239

(19.5869)

0
.
2635

(1.7791)

0
.
1884

(2.4885)

MACHINES 0
.
0380

(16.9947)

0
.
3910

(1.6568)

0
.
2993

(2.1592)

VEHICLES 0
.
0391

(-38
.4324)

0
.
2952

(-5
.0994)

0
.
3083

(-4
.8829)

Japan 0
.
0268

(-0
.1449)

0
.
3259

(-0
.0119)

0
.
2114

(-0
.0184)

US

L

0
.
0230

(-18
.1405)

0
.
2418

(-1
.7318)

0
.
1817

(-2
.3047)

Note: Figures in parentheses are the estimated Z values.

method of generalized linear model (GLM). The mathematics behind these methods
is complicated, so we will not pursue it. But we will report the standard errors com-
puted by these two methods along with the standard errors reported in Table 12.4 so
the reader can see the differences in the estimated standard errors. In all cases the esti-

mates of the regression coefficients remain the same, as in Table 12.4.
But before we do that, it may be noted that even though QMLE is robust to general

misspecification of the conditional distribution of the dependent variable, P90 in our
example, it does not possess any efficiency properties, whereas GLM directly corrects
for overdispersion and may therefore be more dependable.

As you can see from Table 2.6, the standard errors shown in Table 12.4, which are
obtained by the method of maximum likelihood, underestimate the standard errors
substantially, and thereby inflate the estimated Z values a great deal. The other two
methods show that in several cases the regressors are statistically insignificant, thus
showing the extent to which MLE underestimated the standard errors.

The main point to note is that if one uses the Poisson Regression Model it should be
subjected to overdispersion test(s), as in Table 12.5. If the test shows overdispersion,
we should at least correct the standard errors by QMLE and GLM.

If the assumption of equidispersion underlying the PRM cannot be sustained,
and even if we correct the standard errors obtained by ML, as in Table 12.6, it might be
better to search for alternatives to PRM. One such alternative is the Negative Binomial
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Regression Model (NBRM), which is based on the Negative Binomial Probability Dis-
tribution (NBPD).9

12.4   The Negative Binomial Regression Model (NBRM)

The assumed equality between the mean and variance of a Poisson-distributed
random variable is a major shortcoming of the PRM. For the NBPD it can be shown
that

a
2

u2
= H+-; n>0,

 r>0
r

(12.11)

where a2 is the variance, \i. is the mean and r is a parameter of the model.10
Equation (12.11) shows that for the NBPD the variance is always larger than the

mean, in contrast to the Poisson PDF in which mean equals variance. It is worth
adding that as r co and p ->1 the NBPD approaches the Poisson PDF, assuming the
mean [i stays constant. Note: p is the probability of success.

Because of the property (12.11), NBPD is more suitable to count data than the PPD.
Using Ev/ewsf) we obtained Table 12.7. If you compare these results of the negative

Binomial regression given in Table 12.7 with those of the Poisson regression in Table
12.4, you will again see the differences in the estimated standard errors.

Incidentally, the shape parameter given in the table gives an estimate of the extent
to which the conditional variance exceeds the conditional mean. The shape parameter
is equal to the natural log of the variance, In A,,-. Taking the antilog of this, we obtain
1

.2864, which suggests that the (conditional) variance is greater by about 0.28 than the
conditional mean.

12.5   Summary and conclusions

In this chapter we discussed the Poisson regression model which is often used to
model count data. The PRM is based on the Poisson probability distribution. A unique
feature of the PPD is that the mean of a Poisson variable is the same as its variance.

This is also a restrictive feature of PPD.

We used patent data for 181 manufacturing firms for 1990 on the number of pat-
ents each firm received along with information on the R&D expenditure incurred by
these firms, the industry in which these firms operate (represented by dummy vari-
ables) and dummies for two major countries, Japan and USA.

Being a nonlinear model, we estimated PRM by the method of maximum likeli-
hood. Except for the Japan dummy, all the other variables were statistically significant,

But these results may not be reliable because of the restrictive assumption of the
PPD that its mean and variance are the same. In most practical applications of PRM
the variance tends to be greater than the mean. This is the case of overdispersion,

9 Consult any standard textbook on probability to learn more about the negative binomial probability
distribution. Suffice it to say here that in the binomial probability distribution we look for the number of
successes, r, in n trials, where the probability of success is p. In the negative binomial probability distribution
we look for the number of failures before the rth success in n trials, where the probability of success is p.

10 For the NBPD the parameters are p (the probability of success) and r (the number of successes), the
same parameters as that of the Binomial PDF.
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Table 12.7 Estimation of the NBRM of patent data.

Dependent Variable: P90
Method: ML - Negative Binomial Count (Quadratic hill climbing)
Sample: 1181
Included observations: 181

Convergence achieved after 6 iterations
Covariance matrix computed using second derivatives

Coefficient Std. Error z-Statistic Prob.

C -0
,
407242 0

.
502841 -0

.
809882 0

.
4180

LR90 0
.
867174 0

.
077165 11.23798 0

.
0000

AEROSP -0
.
874436 0

.
364497 -2

.399022 0
.
0164

CHEMIST 0
.
666191 0

.
256457 2

.
597676 0

.
0094

COMPUTER -0
.
132057 0

.
288837 -0

.
457203 0

.
6475

MACHINES 0
.
008171 0

.
276199 0

.
029584 0

.
9764

VEHICLES -1
.
515083 0

,
371695 -4

.
076142 0

.
0000

JAPAN 0
.
121004 0

,
414425 0

.
291981 0

.
7703

US -0
.
691413 0

.
275377 -2

.
510791 0

.
0120

Mixture Parameter

SHAPE:C(10)
R-squared
Adjusted R-squared
S

.
E

. of regression
Sum squared resid
Log likelihood

0
.
251920

0
.
440411

0
.
410959

118.3479

2395063.
-835.4504

Restr. log likelihood -15822.38
Avg. log likelihood -4.615748

0
.
105485       2.388217 0.0169

Mean dependent var 79.74586
S

.
D

. dependent var 154.2011
Akaike info criterion 9.341994

Schwarz criterion 9.518706

Hannan-Quinn criter. 9.413637
LR statistic 29973,86

Prob(LR statistic) 0.000000

We used a test suggested by Cameron and Trivedi to test for overdispersion and
found that for our data there indeed was overdispersion.

To correct for overdispersion, we used the methods of Quasi Maximum Likelihood
Estimation (QMLE) and Generalized Linear Model (GLM). Both these methods cor-
rected the standard errors of the PRM, which was estimated by the method of maxi-
mum likelihood (ML). As a result of these corrections, it was found that several
standard errors in the PRM were severely underestimated, resulting in the inflated sta-
tistical significance of the various regressors. In some cases, the regressors were found
to be statistically insignificant, in strong contrast with the original PRM estimates.

Since our results showed overdispersion, we used an alternative model, the Nega-
tive Binomial Regression Model (NBRM). An advantage of NBRM model is that it
allows for overdispersion and also provides a direct estimation of the extent of overes-
timation of the variance. The NBRM results also showed that the original PRM stan-
dard errors were underestimated in several cases.

Exercises

12.1 Table 12.1 also gives data on patents and other variables for the year 1991. Repli-
cate the analysis discussed in this chapter using the data for 1991.
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12.2 Table 12.8 (see the companion website) gives data on the extramarital affairs of
601 people and is obtained from Professor Ray Fair's website:
http://fairmodel.econ.yale.edu/rayfair/pdf/1978ADAT.ZIP. The data consists of:

y = number of affairs in the past year
zl = sex

z2 = age
z3 = number of years married
z4 = number of children

z5 = religiousness
z6 = education

z7 = occupation

z8 = self-rating of marriage

See if the Poisson and/or Negative Binomial Regression Model fits the data and com-
ment on your results.

12.3 Use the data in Table 12.1. What is the mean number of patents received by a
firm operating in the computer industry in the USA with an LR value of 4.21? (Hint:
Use the data in Table 12.4). For your information, a firm with these characteristics in
our sample had obtained 40 patents in 1990.



205

:

Topics in time series econometrics

13 Stationary and nonstationary time series

14 Cointegration and error correction models

15 Asset price volatility: the ARCH and GARCH models

16 Economic forecasting

17 Panel data regression models

18 Survival analysis

19 Stochastic regressors and the method of instrumental
variables



206

Stationary and nonstationary time series

In regression analysis involving time series data, a critical assumption is that the time
series under consideration is stationary. Broadly speaking, a time series is stationary if
its mean and variance are constant over time and the value of covariance between two

time periods depends only on the distance or gap between the two periods and not the
actual time at which the covariance is computed.1

A time series is an example of what is called a stochastic process, which is a se-
quence of random variables ordered in time.2

13.1   Are exchange rates stationary?

To explain what all this means, we consider a concrete economic time series, namely
the exchange rate between the US dollar and the euro (EX), defined as dollars per unit
of euro. The exchange rate data are daily from 4 January 2000 to 8 May 2008, for a total
of 2,355 observations. These data are not continuous, for the exchange rate markets
are not always open every day and because of holidays. These data are provided in
Table 13.1, which can be found on the companion website.

In Figure 13.1 we have shown the log of the daily dollar/euro exchange rate {LEX).
The idea behind plotting the log of the exchange rate instead of the exchange rate is
that the change in the log of a variable represents a relative change (or rate of return),
whereas a change in the variable itself represents an absolute change. For comparative
purposes, it is the former that is generally more interesting.

A look at this figure suggests that the LEX series is not stationary, for it is generally
drifting upward, albeit with a great deal of variation. This would suggest that neither
the mean nor the variance of this time series is stationary. More formally, a time series
is said to be stationary if its mean and variance are constant over time and the value of
the covariance between two time periods depends only on the distance between the two

1 A time series with these characteristics is known as weakly or covariance stationary. A time series is
strictly stationary if all moments of its probability distribution and not just the first two (i.e. mean and
variance) are invariant over time. If, however, the stationary process is normal, the wealdy stationary
stochastic process is also strictly stationary, for the normal process is fully specified by its two moments,
mean and variance.

2 The term "stochastic" comes from the Greek word stokhos, which means a target or bull's-eye, Anyone
who throws darts at a dartboard knows that the process of hitting the bull

's eye is a random process; out of
several darts, a few will hit the bull, but most of them will be spread around it in a random fashion.
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Figure 13.1 LEX: the logarithm of the dollar/euro daily exchange rate.

time periods and not the actual time at which the covariance is computed. Such a time
series is known as weakly stationary or covariance stationary.3

13.2   The importance of stationary time series

Why should we worry whether a time series is stationary or not? There are several rea-
sons. First, if a time series is nonstationary, we can study its behavior only for the
period under consideration, such as the one in our dollar/euro exchange rate. Each
time series will therefore be a particular episode. As a result, it is not possible to gener-
alize it to other time periods. For forecasting purposes, therefore, nonstationary time
series will be of little practical value.

Second, if we have two or more nonstationary time series, regression analysis in-
volving such time series may lead to the phenomenon of spurious or nonsense regres-
sion. That is, if you regress a nonstationary time series on one or more nonstationary
time series, you may obtain a high J?2 value and some or all of the regression coeffi-
cients may be statistically significant on the basis of the usual t and f tests. Unfortu-
nately, in cases of nonstationary time series these tests are not reliable, for they assume
that the underlying time series are stationary. We will discuss the topic of spurious re-
gression in some detail in the next chapter.

3 As noted earlier, it is said to be strictly stationary if all the moments of its probability distribution and
not just the mean and variance are time invariant.
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13.3   Tests of stationarity

For the reasons just stated, it is important to find out if a time series is stationary.

There are basically three ways to examine the stationarity of a time series: (1) graphical
analysis, (2) correlogram, and (3) unit root analysis. We discuss the first two in this sec-
tion and take up the last one in the next section.

Graphical analysis

A rough and ready method of testing for stationarity is to plot the time series, as we
have done in Figure 13.1. Very often such an informal analysis will give some initial
clue whether a given time series is stationary or not. Such an intuitive feel is the start-
ing point of more formal tests of stationarity. And it is worth remembering that
"

Anyone who tries to analyse a time series without plotting it first is asking for trou-
ble".4

Autocorrelation function (ACF) and correlogram

Figure 13.2 plots LEX at time t against its value lagged one period. This figure shows
very high correlation between current LEX and LEX lagged one day. But it is quite pos-
sible that correlation may persist over several days. That is, the current LEX may be
correlated with LEX lagged several days. To see how far back the correlation extends,
we can obtain the so-called autocorrelation function (ACF). The ACF at lag /cis de-
fined as:
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Figure 13.2 Current vs. lagged LEX.
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4 Chris Chatfield, The Analysis of Time Series: An Introduction, 6th edn, Chapman & Hall/CRC Press,
2004, p. 6.
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_

 Y k 
_

 covariance at lag k
Pk~- ;  (13.1)

Yo variance

In practice, we compute the ACF from a given sample, denoted as p/c, which is

based on the sample covariance at lag k and the sample variance. The actual formulae
need not detain us, for modern software packages compute them routinely.

The main practical question is about the length of the lag, k. We can use the Akaike
or Schwarz information criterion to determine the lag length.5 But a rule of thumb is
to compute ACF up to one-quarter to one-third the length of the time series. We have
2

,355 observations. One quarter of this would be about 589 lags. We will not show the
ACF at all these lags, but consider only the first 30 lags to give you some idea about the
nature of the ACF. A plot of against k, the lag length, is called the (sample)
correlogram. For the time being, neglect the column of partial correlation (PAC),
which we will need in Chapter 16 on time series forecasting.

For the dollar/euro exchange rate the correlogram is given in Table 13.2.
Before we proceed further, we should mention a special type of time series, namely

a purely random, or white noise, time series. Such a time series has constant mean,
constant (i.e. homoscedastic) variance, and is serially uncorrelated; its mean value is
often assumed to be zero. Recall that the error term ut entering the classical linear re-
gression model is assumed to be a white noise (stochastic) process, which we denoted
as Mi ~ IID(0, a2), that is ut is independently and identically distributed with zero mean
and constant variance. If in addition, ut is also normally distributed, it is called a
Gaussian white noise process. For such a time series the ACF at various lags hovers
around zero and the correlogram shows no discernible pattern.

Returning to our example, let us concentrate on the ACF column and its graphic
representation (i.e. correlogram) given in the first column. As you can see, even up to
30 days lag the correlation coefficient is very high, about 0.95. Not only that, the esti-
mated autocorrelation coefficients, pk, decline very slowly. This is in strong contrast
to the correlogram of a white noise time series (see Table 13.5).

We can test the statistical significance of each autocorrelation coefficient by com-
puting its standard error. The statistician Bartlett has shown that if a time series is
purely random, the sample autocorrelation, p k, is approximately (i.e. in large samples)
distributed as follows:

p~N(0,l/n) (13.2)

That is, in large samples p is approximately normally distributed with mean zero and
variance equal to one over the sample size. Our sample size is 2,355. Therefore, the
variance is 1/2,355 or about 0.00042 and the standard error is V0.00042 = 0.0206.

Therefore, following the properties of the normal distribution, the 95% confidence in-
terval for pk is [0± 196(0.0206)] or (-0.0404 to 0.0404).

None of the estimated correlations lies in this interval. Therefore we can conclude

that all the estimated autocorrelation coefficients shown in the table are statistically
significant. This conclusion does not change even if we compute ACF up to 150 lags!
This is a very strong indication that LEX is nonstationary.

Instead of assessing the statistical significance of an individual autocorrelation co-
efficient, we can also find out if the sum of autocorrelation coefficients squared is

5 We discussed these criteria in Chapter 2.
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Table 13.2 Sample correlogram of dollar/euro exchange rate.

Autocorrelation Partial Correlation ACF PAC Q-Stat Prob
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997 0
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3 0
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.
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.
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5 0
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.
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15 0
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.
000
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20 0
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.
000
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22 0
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964 0
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23 0
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.
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,
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25 0
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.
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26 0
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.
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.
000
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28 0
.
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000

I ******* 29 0
.
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,
000

30 0
.
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.
000

statistically significant. This can be done with the aid of the Q statistic developed by
Box and Pierce, which is defined as

m

k=l

(13.3)

where n is the sample size (2,355 in our example), and m is the total number of lags
used in calculating ACF, 30 in the present example. The Q statistic is often used to test
whether a time series is purely random, or white noise.

In large samples, Q is approximately distributed as the chi-square distribution with
m df. If in an application the computed Q value exceeds the critical Q value from the
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chi-square distribution at the chosen level of significance, we can reject the null hy-
pothesis that the all the true p  are zero; at least some of them must be nonzero.

The last column of Table 13.1 gives the p (probability) value of Q. As the table
shows, the Q value up to 30 lags is 67,666 and the probability of obtaining such a Q
value is practically zero. That is, our time series is nonstationary.

To summarize, there is strong evidence that the dollar/euro time series is
nonstationary.

13.4   The unit root test of stationarity

Without going into the technicalities, we can express the unit root test for our
dollar/euro exchange rate as follows;6

ALEXt =B1+B2t+B3LEXt_1+Ut (13.4)

where ALEXt =LEXt -i£J j_1, that is, the first difference of the log of the exchange
rate, t is the time or trend variable taking value of 1, 2, till the end of the sample, and ut
is the error term.

In words, we regress the first differences of the log of exchange rate on the trend
variable and the one-period lagged value of the exchange rate.

The null hypothesis is that-63, the coefficient oiLEXt_i is zero. This is called the unit
root hypothesis.7 The alternative hypothesis is: .63 < 0.8 A nonrejection of the null hy-

pothesis would suggest that the time series under consideration is nonstationary.
It would seem that we can test the null hypothesis that .63 = 0 by the usual t test. Un-

fortunately, we cannot do that because the t test is valid only if the underlying time
series is stationary. However, we can use a test developed by statisticians Dickey and
Fuller, called the x (tau) test whose critical values are calculated by simulations and
modern statistical packages, such as Eviews and Statu, produce them routinely. In the
literature the tau test is know as the Dickey-Fuller (DF) test.

In practice we estimate Eq. (13.4) by OLS, look at the routinely calculated  value of
the coefficient of LEXt_i (= .63), but use the DF critical values to find out if it exceeds
the DF critical value. If in an application the computed t (= tau) value of the estimated
.63 is greater (in absolute value) that the critical DF value, we reject the unit root hy-
pothesis - that is, we conclude that the time series under study is stationary. In that
case the conventional  test is valid. On the other hand, if it does not exceed the critical

tau value, we do not reject the hypothesis of unit root and conclude that the time series
is nonstationary. The reason for considering the absolute tau value is that in general
the coefficient Bo

, is expected to be negative.9
Let us return to our illustrative example. The results of estimating (13.4) are given

in Table 13.3.

6 For an accessible discussion, see Gujarati/Porter, op cit., Chapter 21.
7 To see intuitively why the term unit root is used, we can proceed as follows: Let LEXt - Bi + i f + £3

LEXt_i + Up Now subtract LEXxt-\ from both sides of this equation to give {LEXt ~ LEXt-i) = -Bj + + C
LEX i - LEXt-i + ut, which then yields t LEXt =  + Btf + (C - tfLEX  -nit, where £3 = (C - 1). Thus, if
C is in fact equal to 1, -63 in regression (13.4) will in fact be zero, hence the name unit root.

8 We rule out the possibility that -63 > 0, for in that case C > 1, in which case the underlying time series is
explosive.

9 NoteB3 = (C - 1). So if C < 1, B3 < 0.
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Table 13.3 Unit root test of the dollar/euro exchange rate.

Dependent Variable: A(LEX)
Method: Least Squares
Date; 11/24/08 Time; 17:00

Sample (adjusted): 2 2355
Included observations: 2354 after adjustments

Coefficient Std. Error t-Statistic Prob.

C -0
.
000846 0

.
000292 -2

.
897773 0

.0038

t 1
.
21E-06 3

.
22E-07 3

.
761595 0

.
0002

LEX(-l) -0
.
004088 0

.
001351 -3

.
026489 0

.
0025

R-squared
Adjusted R-squared
S

.
E

. of regression
Sum squared resid
Log likelihood
F-statistic

0
.005995 Mean dependent var 0.000113

0
.005149 S.D. dependent var 0.005926

0
.
005911 Akaike info criterion -7.422695

0
.082147 Schwarz criterion -7.415349

8739.512 Durbin-Watson stat 1.999138

7
.089626 Prob(F-statistic) 0.000852

Look at the coefficient of LEX lagged one period. Its t {=tau) value is -3.0265. If you
look at the conventionally computed p or probability value of this coefficient, it is
0

.0025, which is very low. Hence you would be tempted to conclude that the estimated
coefficient of about -0.004 is statistically different from zero and so the US/EU time
series is stationary.10

However, the DF critical values are: -3.9619 (1% level), -3.4117 (5% level) and
-3

.1277 (10% level). The computed t value is -3.0265. In absolute terms, 3.0265 is
smaller than any of DF critical t values in absolute terms. Hence, we conclude that the
US/EU time series is not stationary.

To put it differently, for us to reject the null hypothesis of unit root, the computed t
value oiLEXt_i must be more negative than any of the critical DF values. On the basis
of the DF critical value the probability of obtaining a tau {= t) value of -3.0265 is about
12%. As can be seen from the preceding table, the conventional t statistic shows that
-3

.0264 is significant at the 0.0025 level. It is evident that the conventionally com-
puted significance level of the estimated t value can be very misleading when it is ap-
plied to a time series which is nonstationary.

Some practical aspects of the DF test

The DF test can be performed in three different forms:

Random walk: ALDQ = fi3L£ _1 + ut (13.5)

Random walk with drift: ALEXt =B1+ BjLEX  +ut (13.6)
Random walk with drift around a deterministic trend:

MEXt =B1+B2t + B LEXt  + ut
(13.7)

10 In this case (C - 1) = -0.004, which gives C = 0,996, which is not exactly equal to 1, This would suggest
that the LEX series is stationary.
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In each case the null hypothesis is that .63 =0 (i.e. unit root) and the alternative hypoth-
esis is that £3 < 0 (i.e. no unit root). However, the critical DF values are different for
each of these models. Which model holds in an application is an empirical question.
But guard against model specification errors. If model (13.7) is the "correct" model, fit-
ting either model (13.5) or (13.6) would constitute a model specification error: here
the omission of an important variable(s).

Which of the Equations (13.5), (13.6), and (13.7) should we use in practice? Here are
some guidelines:11

1 Use Eq. (13.5) if the time series fluctuates around a sample average of zero.

2 Use Eq. (13.6) if the times series fluctuates around a sample average that is
nonzero.

3 Use Eq. (13.7) if the time series fluctuates around a linear trend. Sometimes the
trend could be quadratic.

In the literature, model (13.5) is called a random walk model without drift (i.e. no
intercept), model (13.6) is called a random walk with drift (i.e. with an intercept), Bi
being the drift (or shift) parameter, and model (13.7) is a random walk model with
drift and deterministic trend, so called because a deterministic trend value B2 is
added for each time period. We will have more to say about the deterministic trend
shortly.

Let us find out if regression (13.7) characterizes LEX. The results are given in Table
13.4.

The Eviews output given in this table is divided into two parts. The lower part gives
the usual OLS output of Eq. (13.7). It shows that all the estimated coefficients are indi-
vidually 

"highly" statistically significant on the basis of the t test and also the lvalue is
"highly" significant, suggesting that collectively all the regressors are significant deter-
minants of LEX.12

For the present purposes the important coefficient is that of the lagged LEX value.
The i value of this coefficient is significant at the 0.0025 level, whereas if you look at the
tau value of this coefficient given in the upper half of the above table, it is significant at
about the 0.125 level, which is much higher than the critical 1%, 5%, and 10% critical
tau values. In other words, on the basis of the tau test, the coefficient of the lagged LEX
is not different from zero, thus suggesting that the LEX time series is nonstationary.
This reinforces the conclusion based on the simple graphic picture as well as the
correlogram.

This exercise shows how misleading the conventional t and F tests can be if we are
dealing with a nonstationary time series.

Augmented Dickey-Fuller (ADF) test

In Models (13.5), (13.6), and (13.7) it was assumed that the error term ut is
uncorrected. But if it is correlated, which is likely to be the case with model (13.7),
Dickey and Fuller have developed another test, called the augmented Dickey-Fuller

11 See R. Carter Hill, William E. Griffiths and Guay C. Lim, Principles of Econometrics, 3rd edn, John
Wiley & Sons, New York, 2008, p. 336.

12 We also estimated the model with both linear and quadratic trend terms, but the quadratic trend term
was not statistically significant, its p value being 26%.
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Table 13.4 Unit root test of dollar/euro exchange rate with intercept and trend
terms.

Null Hypothesis: LEX has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic based on SIC, MAXLAG=0)

t-Statistic Prob,*

Augmented Dickey-Fuller test statistic -3
.
026489 0

.1251

Test critical values: 1% level -3
.
961944

5% level -3
.
411717

10% level -3
.
127739

'MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LEX)
Method: Least Squares
Date: 01/26/10 Time: 12:04

Sample (adjusted): 2 2355
Included observations: 2354 after adjustments

Coefficient Std. Error t-Statistic Prob.

LEX(-l) -0
.
004088 0

.
001351 -3

.
026489 0

.
0025

C -0
.
000846 0

.
000292 -2

.
897773 0

.0038

@TREND(1) 1
.
21E-06 3

.
22E-07 3

.
761595 0

.
0002

R-squared                0,005995 Mean dependent var 0.000113
Adjusted R-squared    0.005149 S.D. dependent var 0.005926
S

.
E

. of regression       0.005911 Akaike info criterion -7.422695
Sum squared resid     0.082147 Schwarz criterion -7.415349
Log likelihood           8739.512 Durbin-Watson stat 1.999138
F-statistic                7.089626 Prob(F-statistic) 0.000852

Note: @Trend is Eviews' command to generate the trend variable. D is Eviews' symbol for
taking first differences.

(ADF) test. This test is conducted by "augmenting" the three equations by adding the
lagged values of the dependent variable ALEXt as follows:

m

ALEXt =Bi+ #2* + B3LEXt_1 + £ a; ALEX  + (13.8)

where et is a pure white noise error term and where m is the maximum length of the
lagged dependent variable, which is determined empirically.13 The objective is to
make the residuals from Eq. (13.7) purely random.

As in the DF test, the null hypothesis is that .S3 in Eq. (13.8) is zero.
For our illustrative example we used m = 26. Even then, the conclusion that the

dollar/euro exchange rate time series is nonstationary did not change.

13 But notice that if we introduce too many lags, they will consume a lot of degrees of freedom, which
might be a problem in small samples. For annual data we may include one or two lags, while for monthly data
we may include 12 lags. Of course, the purpose of introducing the lagged ALEX terms is to make the
resulting error term free of serial correlation.
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In sum, it seems the evidence is overwhelming that the dollar/euro exchange rate is
nonstationary.

Is there a way we could make the dollar/euro exchange rate stationary? The answer
follows.

13.5   Trend stationary vs. difference stationary time series

As Figure 13.1 shows, the dollar/euro exchange rate time series has generally been
upward trending. A common practice to make such a trending time series stationary is
to remove the trend from it. This can be accomplished by estimating the following
regression;

LEXt =A1 +A2t+vt (13.9)

where t (time) is a trend variable taking chronological values, 1, 2,2,355, and vt is
the error term with the usual properties.14 After running this regression, we obtain

v =LEXf -ai - (13.10)

The estimated error term in Eq. (13.10), vt, now represents the detrended LEX time
series, that is LEX with the trend removed.

The procedure just described is valid if the original LEX series has a deterministic
trend. The residuals obtained from regression (13.10) are shown in Figure 13.3.

This figure very much resembles Figure 13.1. If you subject the series in Figure 13.3
to unit root analysis, you will find that the detrended LEX series is still
nonstationary.15 Therefore the de-trending procedure just outlined will not make a

.
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Figure 13.3 Residuals from the regression of LEX on time.

14 A quadratic trend could also be added.
15 Even if you add the quadratic trend term, fl, to Eq. (13,9), the residuals from this regression still show

that they are nonstationary.
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Figure 13.4 First differences of LEX.

nonstationary time series stationary, because such a procedure is valid only if the
series contains a deterministic trend. What then?

If a time series becomes stationary if we detrend it in the manner suggested, it is
called a trend stationary (stochastic) process (TSP). It may be pointed out here that a
process with a deterministic trend is nonstationary but not a unit root process.

Instead of detrending a time series in the manner suggested above, suppose we take
the first differences of LEX (subtract the preceding value of LEX from its current
value). This gives us Figure 13.4.

Unlike Figure 13.1, we do not see a discernible trend in the first differences of LEX.
If we obtain the correlogram of the first differences of LEX, we obtain Table 13.5.

As you can see, up to 30 lags, none of the autocorrelation coefficients are statisti-
cally significant at the 5% level; neither is the Q statistic.

An application of the unit root tests also showed that there is no unit root in the first
differences of LEX. That is, it is the first difference of the LEX series that is stationary.

If a time series becomes stationary after we take its first differences, we call such a
time series a difference stationary (stochastic) process (DSP).16

It is important to note that if a time series is DSP but we regard it as TSP, this is
called under-differencing. On the other hand, if a time series is TSP and we treat it as
DSP, this is called over-differencing. In Figure 13.3 we in fact under-differenced the
LEX series.

The main conclusion we reach is that the LEX time series is difference stationary.

16 Occasionally we may have to difference a time series more than once to make it stationary.
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Table 13.5 Correlogram of first differences of LEX.

J:

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

AC

0
.
002

-0.
001

-0
.
017

0
.
051

-0
.
036

0
.
016

0
.
020

-0
.
024

0.
003

-0.
013

-0
.
003

0.
012

0
.
034

-0.
003

-0.
032

0
.
011

0
.
002

0
.
021

0
,
019

0
.
022

-0
.
035

0
.
041

0
.
033

0
.
038

-0
.
007

0
.
008

-0
.
015

-0
.
028

-0
.
014

0
.
012

PAC Q-Stat

0
.
002

-0
.
001

-0
.
017

0
.
052

-0
.
037

0
.
016

0
.
022

-0
.
028

0
.
008

-0
.
015

-0
.
004

0
.
016

0
.
030

-0
.
001

-0
.
031

0
.
010

0
.
000

0
.
022

0
.
021

0
.
017

-0
.
032

0
.
041

0
.
032

0
.
037

-0
.
004

0
.
001

-0
.
013

-0
.
027

-0
.
015

0
.
010

0
.
0113

0
.
0125

0
.
6673

6
.
9213

10.017

10.643

11.582

12.970

12.997

13.379

13.396

13.735

16.482

16.501

18.857

19.140

19.148

20.222

21.085

22.193

25.141

29.088

31.619

35.079

35.189

35.341

35.903

37.786

38,230

38.570

Prob

0
.
915

0
.
994

0
.881

0
.
140

0
,
075

0
.
100

0
.
115

0
.
113

0
.
163

0
.
203

0
.
268

0
.
318

0
.
224

0
.
284

0
.
220

0
,
261

0
.
320

0
.
320

0
.
332

0
.
330

0
.
241

0
.
142

0
.
108

0
,
067

0
.
085

0
.
104

0
.
117

0
.
103

0
.
117

0
.
136

Integrated time series

In the time series literature you will often come across the term "integrated time
series"

. If such a time series becomes stationary after differencing it once, it is said to
be integrated of order one, denoted as 1(1). If it has to be differenced twice (i.e. differ-
ence of difference) to make it stationary, it is said to be integrated of order two, de-
noted as 1(2). If it has to be differenced d times to make it stationary, it is said to be
integrated of order d, denoted as 1(d), 4 stationary time series is 1(0), that is, integrated
of order zero. Therefore the terms 

"

stationary time series
"

 and "time series integrated
of order zero" mean the same thing. By the same token, if a time series is integrated, it
is nonstationary.
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It may be added that an 1(0) series fluctuates around its mean with constant vari-
ance, while an 1(1) series meanders wildly. Another way of putting this is that an 1(0)
series is mean reverting, whereas an 1(1) series does not show such a tendency. It can
drift away from the mean permanently. That is why an 1(1) series is said to have a sto-
chastic trend. As a result, the autocorrelations in a correlogram of an 1(0) series de-
cline to zero very rapidly as the lag increases, whereas for an 1(1) series they decline to
zero very slowly, as the correlogram of the LEX series in Table 13,2 shows clearly.

Most nonstationary economic time series generally do not need to be differenced
more than once or twice.

To sum up, a nonstationary time series is known variously as an integrated time
series or a series with stochastic trend.

Before we conclude this chapter, we will discuss briefly a special type of
nonstationary time series that figures prominently in the finance literature, namely the
random walk time series.

13.6   The random walk model (RWM)

It is often said that asset prices, such as stock prices and exchange rates, follow a
random walk, that is, they are nonstationary.17 We distinguish two types of random
walk: (1) random walk without drift (i.e. no constant term or intercept) and (2) random
walk with drift (i,e, a constant term is present).

Random walk without drift

Consider the following model:

Yt=Yt_l+ut (13.11)

where Yt is, say, today
's stock price and Yt.i is yesterday

'

s price, and where Mf is a white
noise error term with zero mean and variance a2

.

We can think of Eq. (13.11) as a regression of Y at time t on its value lagged one
period. Believers in the efficient market hypothesis maintain that stock prices are
random and therefore there is no scope for profitable speculation in the stock
market.18

By successive substitution in Eq. (13.11), it can be shown that

Yt=YQ+ ut (13.12)
where Yq is the initial stock price.

Therefore,

E{Yt)=E{YQ) + E&ut)=YQ (13.13)

since the expectation of each ut is zero.
By successive substitution, it can also be shown that (see Exercise 13.1):

17 The term random walk is often compared with a drunkard's walk. On leaving a bar, the drunkard
moves a random distance ut at time t and, continuing to walk indefinitely, will eventually meander farther
and farther away from the bar. The same can be said about stock prices. Today

'

s stock price is equal to
yesterday

'

s stock price plus a random shock.
18 Technical analysts, or chartists as they are called, do not believe in such a hypothesis and believe that

they can predict stock price patterns from historically observed stock prices.
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vai(Yt)=tG2 (13.14)

From the preceding discussion we see that the mean of Y is equal to its initial, or
starting, value, which is constant, but as t, the time horizon, increases indefinitely, the
variance of Y also increases indefinitely, thus violating one of the conditions of
stationarity that the variance is a finite constant.

In short, the random walk model without drift is a particular, and important, case of
a nonstationary stochastic process.

Interestingly, if we write Eq. (13.11) as

Yt-Yt_1=kYt=ut (13.15)

where A is the first difference operator.
Therefore, even though Ytis nonstationary, its first difference is stationary. To put it

differently, the RWM without drift is a difference stationary process.

Random walk with drift

Now let us revise Eq. (13.11) and write it as

Yt=8+Yt_1+ut (13.16)

where 8 (delta) is known as the drift parameter, which is basically an intercept in the
RWM.

For the RWM with drift, it can be shown that

E(Yt) = Y0+6t (13.17)

var(Y()=£a2 (13.18)

As you can see, for the RWM with drift both the mean and variance increase over time,
again violating the condition of stationary time series.

Let us rewrite Eq. (13.16) as

Yt-Yt_1=AYt =& + ut (13.19)

which is the first difference of a RWM with drift. It is easy to verify that

E(AYt) = 8 (13.20)

var(Ayf) = a2 (13.21)

cov(AYt, AYt.s) =E(utu s) = 0 (13.22)

because ut is the white noise error term.
What all this means is that although the RWM with drift is a nonstationary time

series, its first difference is a stationary (stochastic) process. To put it differently,
RWM with drift is an 1(1) process, whereas its first difference is an 1(0) process. Here
the constant Sacts like a linear trend because in each period the level of Yt shifts, on av-
erage, by the amount S
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An example: closing daily prices of IBM stock, 4 January 2000 to 20
August 2002

To see whether IBM prices over the sample period followed a random walk, we first
plotted the log of the closing daily prices of the stock, giving Figure 13.5 (see Table
13.6 on the companion website).

Visually, it Seems the logs of IBM prices are nonstationary.
Can we verify this statistically? You might be tempted to run the following regres-

sion (let Y represent the log of daily closing IBM prices):

Yt =JB1+JB2ri_1+Mf (13.23)

and test the hypothesis that B2 = 1 with the usual t test. However, in cases of
nonstationary time series, the t test is severely biased toward zero. To circumvent this,

we manipulate Eq. (13.23) as follows: Subtract Yt_i from both sides of this equation to
obtain:

Yt - Y ! =B1 +B2Yt_l -l ! +ut

that is

AYf = Bl+ l.Yt_i +ut

(13.24)

where A, = -82 ~1-
So instead of estimating Eq. (13.23), we estimate Eq. (13.24) and test the hypothesis

that A, = 0 against the alternative hypothesis that A, < 0.19 If A = 0, then B2 = 1 and Y is a
random walk (with drift), that is, it is nonstationary. Technically, the ytime series has a
unit root. On the other hand, if A < 0, we can conclude that Yt is stationary.20
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Figure 13.5 Log of daily closing of IBM stock.

19 We are essentially performing a unit root analysis.
20 If A, = (Bj - 1) for stationarity, B2 must be less than 1. For this to happen A, must be negative.
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After you estimate regression (13.24), you cannot test the null hypothesis that X = 0
with the usual t test because the t value of the estimated coefficient of Yt_i does not
follow the t distribution even in large samples.

As noted earlier, in situations like this, we use the Dickey-Fuller tau statistic, whose
critical values have been formulated by them and have since been expanded by
MacKinnon, which are now incorporated in several econometric packages.

UsingEviews 6, we obtained the results shown in Table 13.7. The second part of this
table gives the usual OLS output. The i value of the lagged closing price of the IBM co-
efficient is -1.0026 withp value of about 0.30, suggesting that this coefficient is not dif-
ferent from zero, and thus supporting the hypothesis that the IBM closing stock prices
are a random walk or that the IBM price series is nonstationary.

If you look at the first part of this output, you will find that the p value of the
Dickey-Fuller tau value of the lagged closing price of IBM coefficient is about 0.75,
again supporting the random walk hypothesis. But note how the level of significance of
the usual t statistic and the tau statistic can differ substantially.

Are the first differences of IBM closing prices stationary?

Since we know that the first differences of the log IBM stock prices are stationary be-
cause the first differences of an RW model are stationary, it would not surprise us to

Table 13.7 Unit root test of IBM daily closing prices.

Null Hypothesis: LCLOSE has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic based on AIC, MAXLAG=0)

t-Statistic

Augmented Dickey-Fuller test statistic -1
.
026066

Test critical values: 1% level

5% level

10% level

-3
.
439654

-2
.
865536

-2
.
568955

'MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LCLOSE)
Method: Least Squares
Date: 01/25/10 Time: 12:03

Sample (adjusted): 1/04/2000 8/20/2002
Included observations: 686 after adjustments

Coefficient Std. Error t-Statistic

LCLOSE(-l) -0
.
006209 0

,
006051

C 0
.
027766 0

.
027984

-1
.
026066

0
.
992236

Prob.*

0
.
7455

Prob.

0
.
3052

0
.
3214

R-squared                0.001537 Mean dependent var -0.000928
Adjusted R-squared    0.000077 S.D. dependent var 0.026385
S

.
E

. of regression       0.026384 Akaike info criterion -4.429201
Sum squared resid      0.476146 Schwarz criterion -4.415991
Log likelihood           1521.216 Hannan-Quinn criter.-4.424090
F-statistic                1

.
052811 Durbin-Watson stat 2.099601

Prob(F-statistic) 0.305223

Note: In this table, D stands for first difference and Lclose is the log of daily IBM price at
the close of the stock market in the USA.
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Table 13.8 Unit root test of first differences of IBM daily closing prices.

Null Hypothesis: D(LCLOSE) has a unit root
Exogenous: None
Lag Length: 0 (Automatic based on SIC, MAXLAG=0)

t-Statistic Prob,*

Augmented Dickey-Fuller test statistic -27.65371 0
.
0000

Test critical values: 1% level -2
.
568342

5% level -1
.
941286

10% level -1
.
616388

'MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LCLOSE,2)
Method: Least Squares
Date: 01/26/10 Time: 11:15

Sample (adjusted): 1/05/2000 8/20/2002
Included observations: 685 after adjustments

Coefficient Std. Error t-Statistic Prob.

D(LCLOSE(-l)) -1
.
057102 0

.
038226 -27.65371 0

.
0000

R-squared 0.
527857

Adjusted R-squared 0.527857
S

.
E

. of regression 0.026351
Sum squared resid 0.474941
Log likelihood 1519.367
Durbin-Watson stat 1.989376

Mean dependent var 0.000116
S

.
D

. dependent var 0.038349
Akaike info criterion -4.433187

Schwarz criterion -4.426575

Hannan-Quinn criter. -4.430629

find that that is indeed the case. If you estimate the correlogram of the first differences,

you will find that the correlations hover around zero, which is typically the case of a
white noise time series.

If we do a formal unit root analysis, we obtain the results in Table 13.8. These results
suggest that we can reject the unit root hypothesis in the first differences of the logged
IBM stock price series. The estimated tau (= t) is more highly significantly negative
than even the 1% critical tau value. In this case the tau and t statistics are the same.

Earlier we noted that we cannot use a nonstationary time series for forecasting pur-
poses. Can we use the first-differenced LEX or IBM stock prices for forecasting? How
do we then relate the forecast first-difference series to the original (undifferenced)
time series? We will take up this task in a later chapter (see Chapter 16 on ARIMA
models).

13.7   Summary and conclusions

Although we have studied only two financial economic time series, the ideas and tech-
niques discussed in this chapter are applicable to other economic and financial time
series, for most economic time series in level form are nonstationary. Such series often
exhibit an upward or downward trends over a sustained period of time. But such a
trend is often stochastic and not deterministic. This has important implications for re-
gression analysis, for regressing a nonstationary time series on one or more
nonstationary time series may often lead to the phenomenon of spurious or














































































































































































































































































































