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1.8 Annualized fees UĈ − UFourier (in basis points) that a
mean-variance investor would be willing to pay to switch
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Asset-Allocation under Microstructure Effects
via Fourier Methodology

Maria Elvira Mancino and Simona Sanfelici

We analyze the properties of different estimators of multivariate volatil-
ities in the presence of microstructure noise, with particular focus on
the Fourier estimator. This estimator is consistent in the case of asyn-
chronous data and is robust to microstructure effects; further, we prove
the positive semi-definiteness of the estimated covariance matrix. The
in-sample and forecasting properties of the Fourier method are ana-
lyzed through Monte Carlo simulations. We study the economic benefit
of applying the Fourier covariance estimation methodology over other
estimators in the presence of market microstructure noise from the per-
spective of an asset-allocation decision problem. We find that using
Fourier methodology yields statistically significant economic gains under
strong microstructure effects.

2. Market Liquidity, Stock Characteristics and Order
Cancellations: The Case of Fleeting Orders

Bidisha Chakrabarty and Konstantin Tyurin

We document stylized facts about very short-lived – fleeting – orders
submitted to a limit order trading platform, and study the dynamics of
fleeting order activity. Principal component analysis for the probabilities
of limit order cancellation shows that most of the cross-sectional vari-
ation in limit order cancellation probabilities can be explained by the
inverse of the relative tick size of the stock, which can be interpreted as
the limit order book granularity for this stock. We model the nonmar-
ketable limit order flow as a mixture of two order types; one for very short
duration orders and the other for longer duration orders. By allowing the
mixing probability to depend on time of the day, stock characteristics
and market conditions, we find that fleeting orders are more likely to
be observed at more aggressive prices and in markets characterized by
higher volatility, wider bid–ask spreads and higher volumes of hidden
transactions inside the spread.
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Availability of high-frequency exchange rate data for researchers has
improved technical details and statistical accuracy of exchange rate
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transaction activities, predictability of exchange rate movements and
impact of macroeconomic news announcements on returns in minute(s)
after the announcement.

4. The Intraday Analysis of Volatility, Volume
and Spreads: A Review with Applications to
Futures’ Markets

Dean Fantazzini

The growing interest in financial markets’ microstructure and the fact
that financial professionals have access to huge intraday databases have
made high-frequency data modeling a hot issue in recent empirical
finance literature. We analyze the 12 main issues that are at stake when
analyzing intraday financial time series, with particular emphasis on the
joint dynamics of volatility, volume and spreads. We review the main
econometric models used for volatility analysis in an intraday environ-
ment that works with non-equally spaced data and considers the whole
information set provided by the market. Given the growing importance
of tick-by-tick data analysis, we present an empirical application of ACD
and ordered probit models to the Standard & Poor 500 and Nasdaq100
index futures’ data, and we point out the advantages and disadvantages
of both approaches.

5. The Consumption-Based Capital Asset-Pricing Model
(CCAPM), Habit-Based Consumption and the Equity
Premium in an Australian Context

David E. Allen and Lurion Demello

We adopt the habit utility specification of Campbell and Cochrane (1995)
to estimate the Australian equity premium: the return on a market port-
folio of equities in excess of the risk-free rate. We use Australian quarterly
data for private household consumption, population, equity returns,
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risk-free asset returns, dividend yields and price dividend ratios taken
from Datastream InternationalTM over a 28-year period from January
1973 to June 2002 providing 118 observations. A habit utility specifi-
cation is able to reproduce an equity premium that is comparable to
the actual equity premium. A variance ratio test rejected the hypothesis
that the variance of estimates of the habit-based Arrow–Debreu equity
asset prices were the same as those based on estimates using CRRA to
assess volatility or on the Hansen–Jagannathan lower bound. The habit
model is able to account for more of the variability in equity prices than
the CRRA model. The smooth consumption puzzle is not as severe in
the Australian context when the habit model is applied to this data set.
However, the habit model still does not completely resolve the equity
premium puzzle in an Australian context – stock volatility is still too high
compared to consumption volatility and the coefficient of risk aversion
is unreasonable.

6. Testing the Lower Partial Moment Asset-Pricing
Models in Emerging Markets

Javed Iqbal, Robert D. Brooks and Don U.A. Galagedera

In the literature, the multivariate tests of asset-pricing models are devel-
oped focusing on the characteristics of developed markets. For example,
the pioneering Gibbons’ (1982) test of the “capital asset-pricing model”
(CAPM) and Harlow and Rao’s (1989) test of the “mean lower partial
moment” (MLPM) model both employ a “likelihood ratio test” that
assumes multivariate normality of monthly asset returns. Emerging mar-
ket returns are known to be non-normal and have greater predictability
than those of developed markets. Considering these stylized facts, the
paper extends Harlow–Rao’s likelihood ratio test to develop multivari-
ate tests robust to these features. In a sample of portfolio data from an
emerging market, namely Pakistan, it is shown that multivariate tests
of both CAPM and MLPM individually do not reject the restriction of
the two financial models, respectively. However, a more powerful nested
test of CAPM against MLPM with bootstrap p-values rejects the CAPM in
favor of MLPM.

7. Asset Pricing, the Fama–French Factor Model and the
Implications of Quantile-Regression Analysis

David E. Allen, Abhay Kumar Singh and Robert Powell

This chapter empirically examines the behavior of the three risk fac-
tors from the Fama–French factor model of stock returns using quantile
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regressions and a US data set. It draws on the work of Koenker and Basset
(1982) and Koenker (2005), who developed quantile regression which
features inference concerning conditional quantile functions. The study
shows that the factor models do not necessarily have consistent linear
relationships across the quantiles.

8. The Value of Liquidity and Trading Activity
in Forecasting Downside Risk

Lidia Sanchis-Marco and Antonio Rubia

In this paper, we analyze the role played by market liquidity and trading-
related variables in forecasting one-day-ahead “value-at-risk” (VaR). We
use the quantile-regression methodology, as this allows us to directly
study the effects of the predictive variables on the tail distribution of
returns. Our empirical setting builds on the so-called CAViaR model
put forward by Engle and Manganelli (2004) and extends it empirically
by incorporating further information beyond volatility. The backtesting
VaR analysis, based on unconditional and conditional coverage tests,
reveals that liquidity and trading variables considerably enhance the VaR
performance.

9. Portfolio Selection with Time-Varying Value-at-Risk

Erick W. Rengifo and Jeroen V.K. Rombouts

We propose a portfolio-selection model that maximizes expected returns
subject to a time-varying value-at-risk constraint. The model allows
for time-varying skewness and kurtosis of portfolio distributions esti-
mating the model parameters by weighted maximum likelihood in an
increasing-window setup. We determine the best daily investment rec-
ommendations in terms of percentage to borrow or lend and the optimal
weights of the assets in a risky portfolio. An empirical application illus-
trates in an out-of-sample context which models are preferred from a
statistical and economic point of view.

10. A Risk and Forecasting Analysis of West Texas
Intermediate Prices

David E. Allen and Abhay Kumar Singh

In this chapter, we perform a two-step analysis that involves a sample of
logarithmic returns formed from the daily closing prices of WTI oil prices.
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In the first step we employ CAViaR, a modeling approach formulated by
Engle and Manganelli in 2004 which is a “value-at-risk” (VaR) modeling
technique that uses quantile regression, to forecast WTI value-at-risk. In
the second step we show the applicability of “support-vector regression”
for oil-price prediction and compare it with more standard time-series
ARIMA modeling.
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1
Covariance Estimation and
Dynamic Asset-Allocation under
Microstructure Effects via Fourier
Methodology
Maria Elvira Mancino and Simona Sanfelici

1.1 Introduction

The recent availability of large, high-frequency financial data sets
potentially provides a rich source of information about asset-price
dynamics. Specifically, nonparametric variance/covariance measures
constructed by summing intra-daily return data (i.e. realized variances
and covariances) have the potential to provide very accurate estimates
of the underlying quadratic variation and covariation and, as a conse-
quence, accurate estimation of betas for asset pricing, index autocor-
relation and lead–lag patterns. These measures, however, have been
shown to be sensitive to market microstructure noise inherent in the
observed asset prices. Moreover, it is well known from Epps (1979) that
the nonsynchronicity of observed data leads to a bias towards zero in cor-
relations among stocks as the sampling frequency increases. Motivated
by these difficulties, some modifications of realized covariance-type esti-
mators have been proposed in the literature (Martens, 2004; Hayashi and
Yoshida, 2005; Large, 2007; Voev and Lunde, 2007; Barndorff-Nielsen
et al., 2008a; Kinnebrock and Podolskij, 2008).

A different methodology has been proposed in Malliavin and Mancino
(2002), which is explicitly conceived for multivariate analysis. This
method is based on Fourier analysis and does not rely on any data-
synchronization procedure but employs all the available data. Therefore,
from the practitioner’s point of view the Fourier estimator is easy to
implement as it does not require any choice of synchronization method
or sampling scheme.

3
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Most of the work concerning the comparison of the efficiency of differ-
ent variance/covariance estimators considers only simple statistics such
as “bias” and “mean squared error” (MSE). In this regard, some of the
most recent papers (Voev and Lunde, 2007; Griffin and Oomen, 2010)
investigate the properties of three covariance estimators, namely “real-
ized covariance,” “realized covariance plus lead- and lag-adjustments”
and the “covariance estimator” by Hayashi and Yoshida (2005), for price
observations that are subject to nonsynchronicity and contaminated by
i.i.d. microstructure noise. They conclude that the ranking of the covari-
ance estimators in terms of efficiency depends crucially on the level of
microstructure noise. Gatheral and Oomen (2010) compare 20 realized
variance estimators using simulated data and find that the best variance
estimator is not always the one suggested by theory. The bias and MSE of
the Fourier estimator of integrated volatility are computed in Mancino
and Sanfelici (2008a). The authors show through an analytical and an
empirical study that the Fourier estimator is nearly unaffected by mar-
ket microstructure effects. The analysis is extended to the multivariate
case in Mancino and Sanfelici (2008b), where both the nonsynchronicity
issue and the effect of (dependent) microstructure noise are taken into
account.

In this chapter, we consider a different approach to the comparison
of covariance estimators in the context of a relevant economic crite-
rion. We consider the gains offered by the Fourier estimator over other
covariance measures from the perspective of an asset-allocation decision
problem, following the approach of Fleming et al. (2001, 2003), Engle
and Colacito (2006), Bandi et al. (2008) and De Pooter at al. (2008),
who study the impact of volatility timing versus unconditional, mean-
variance, efficient static asset-allocation strategies and of selecting the
appropriate sampling frequency or choosing between different bias and
variance reduction techniques for the realized covariance matrices. A dif-
ferent issue is considered by Kyj et al. (2009), who analyze the effect of
conditioning techniques applied to large-dimension realized covariance
matrices in the context of mean-variance portfolio optimization. A pre-
liminary result we prove here concerns the positive semi-definiteness
of the estimated covariance matrix using Fourier methodology when
the “Fejer kernel” is used. This property has important consequences
in the asset-allocation framework. An investor is assumed to choose
his/her portfolio to minimize variance subject to required return con-
straints. Investors with different covariance forecasts will hold different
portfolios. Correct covariance information will allow the investor to
achieve lower portfolio volatility. Therefore we study the forecasting

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP01” — 2010/11/22 — 17:39 — PAGE 5 — #5

Covariance Estimation and Dynamic Asset-Allocation 5

power of the Fourier estimator and of other alternative realized variance
measures in the context of an important economic metric, namely the
“long-run utility” of a conditional mean-variance investor rebalancing
his/her portfolio each period. We show that the Fourier estimator care-
fully extracts information from noisy high-frequency asset-price data for
the purpose of realized variance/covariance estimation and allows for
nonnegligible utility gains in portfolio management.

Inspired by Fleming et al. (2001) and Bandi et al. (2008), we con-
struct daily variance/covariance estimates using the Fourier method, the
method proposed by Hayashi and Yoshida (2005), its subsampled ver-
sion proposed by Voev and Lunde (2007) and the multivariate realized
kernel by Barndorff-Nielsen et al. (2008a), as well as estimates obtained
by using conventional (in the existing literature) 1-, 5- and 10-minute
intervals and MSE-based optimally sampled continuously compounded
returns for the realized measures. From each of these series we derive one-
day-ahead forecasts of the variance/covariance matrix. A conditional
mean-variance investor can use these forecasts to optimally rebalance
his/her portfolio each period. We compare the investor’s long-run util-
ity for optimal portfolio weights constructed from each forecast. Our
simulations show that the gains yielded by the Fourier methodology are
statistically significant and can be economically large, although the sub-
sampled Hayashi–Yoshida estimator and the realized covariance with one
lead–lag bias correction and suitable sampling frequency can be compet-
itive. The analysis is conducted through Monte Carlo simulations using
the programming language Matlab.

The chapter is organized as follows. In Section 1.2 we describe
the Fourier estimation methodology and we prove the positive semi-
definiteness of the Fourier covariance matrix. In Section 1.3 we explain
the asset-allocation framework and metric to evaluate the economic
benefit of different covariance forecasts. Section 1.4 presents several
numerical experiments to value the gains offered by Fourier estimator
methodology in this context and to analyze its in-sample and forecasting
properties. Section 1.5 concludes.

1.2 Some properties of the Fourier estimator

The Fourier method for estimating co-volatilities was proposed in
Malliavin and Mancino (2002) considering the difficulties arising in
the multivariate setting when applying the quadratic covariation the-
orem to the true returns data, given the nonsynchronicity of observed
prices for different assets. In fact, the quadratic covariation formula is
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unfeasible when applied to estimate cross-volatilities because it requires
synchronous observations which are not available in real situations.
Being based on the integration of “all” data, the Fourier estimator does
not need any adjustment to fit nonsynchronous data. We briefly recall
the methodology below (see also Malliavin and Mancino, 2009).

Assume that p(t) = (p1(t), . . . ,pk(t)) are Brownian semi-martingales
satisfying the following Itô stochastic differential equations

dpj(t)=
d∑

i=1

σ
j
i (t)dWi(t)+ bj(t)dt j = 1, . . . ,k, (1.1)

where W = (W1, . . . ,Wd) are independent Brownian motions. The price
process p(t) is observed on a fixed time window, which can always be
reduced to [0, 2π ] by a change of the origin and rescaling, and σ∗∗ and
b∗ are adapted random processes satisfying the hypothesis

E

[∫ 2π

0
(bi(t))2dt

]
<∞, E

[∫ 2π

0
(σ

j
i (t))

4dt

]
<∞ i = 1, . . . ,d, j = 1, . . . ,k.

(H)

From the representation (1.1) we define the “volatility matrix,” which
in our hypothesis depends upon time

�ij(t)=
d∑

r=1

σ i
r (t)σ

j
r (t).

The Fourier method reconstructs �∗∗(t) on [0, 2π ] using the Fourier
transform of dp*(t).

The main result in Malliavin and Mancino (2009) relates the Fourier
transform of �∗∗ to the Fourier transform of the log-returns dp*. More
precisely, the following result is proved: compute the Fourier transform
of dpj for j = 1, . . . ,k, defined for any integer z by

F(dpj)(z)= 1
2π

∫ 2π

0
e−izt dpj(t)

and consider the Fourier transform of the cross-volatility function
defined for any integer z by

F(�ij)(z)= 1
2π

∫ 2π

0
e−izt�ij(t)dt ,
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then the following convergence in probability holds

F(�ij)(z)= lim
N→∞

2π
2N + 1

∑
|s|≤N

F(dpi)(s)F(dpj)(z − s). (1.2)

By formula (1.2) we gather all the Fourier coefficients of the volatility
matrix by means of the Fourier transform of the log-returns. Then it
is possible to obtain the reconstruction of the cross-volatility functions
�ij(t) (“instantaneous cross-volatility”) from their Fourier coefficients as
follows: define for i, j = 1,2

�i
N (z) := F(dpi)(z) for |z| ≤ 2N and 0 otherwise

and, for any |z| ≤ N,

�
ij
N (z) := 2π

2N + 1

∑
s∈Z

�i
N (s)�

j
N (z − s).

Finally, the Fourier–Fejer summation gives

�ij(t)= lim
N→∞

∑
|z|<N

(
1 − |z|

N

)
�

ij
N (z) exp(izt) for all t ∈ (0,2π). (1.3)

In Malliavin and Mancino (2009) it is proved that in the absence
of microstructure noise the Fourier estimator of instantaneous cross-
volatility is consistent in probability uniformly in time and converges
in law to a mixture of Gaussian distributions.

As a particular case (by choosing z = 0 in [1.2]) we can compute the
“integrated covariance,” given the log-returns of stocks, as the following
limit in probability∫

]0,2π [
�ij(t)dt = lim

N→∞
(2π)2

2N + 1

∑
|z|<N

F(dpi)(s)F(dpj)(−s). (1.4)

From this convergence result we can derive a suitable estimator for
the integrated covariance matrix. We assume that the price process
for asset j(j = 1, . . . ,k) is observed at high-frequency intra-daily times{
t j
l , l = 1, . . . ,nj

}
, which may be different on each daily trading period

normalized to length 2π . Let ρ(nj) := max1≤l≤nj−1|t j
l − t j

l+1| and for any
i, j let ρ(n) := ρ(ni)∨ρ(nj). Set

F(dpj
nj
)(s) := 1

2π

nj−1∑
l=1

exp(−ist j
l )δI j

l
(pj),
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where δ
I j
l
(pj) := pj(t j

l+1)−pj(t j
l ). The “Fourier estimator” of the integrated

covariance
∫ 2π
o �ij(t)dt is then

�

�
ij

N,ni,nj
: = (2π)2

2N + 1

∑
|s|≤N

F(dpi
ni
)(s)F(dpj

nj
)(−s)

=
ni−1∑
u=1

nj−1∑
l=1

DN (t
i
u − t j

l )δI i
u
(pi)δ

I j
l
(pj), (1.5)

where DN (x)= 1
2N+1

sin[(N+1/2)x]
sin(x/2) is the rescaled “Dirichlet kernel.”

In Mancino and Sanfelici (2008b) it is proved that the Fourier covari-
ance estimator is consistent under asynchronous observations; more
precisely, we have

Theorem 1.1 Let
�

�
ij

N,ni,nj
be defined in (1.5). If ρ(n)N → 0, the following

convergence in probability holds

lim
ni,nj,N→∞

�

�
ij

N,ni,nj
=
∫ 2π

0
�ij(t)dt . (1.6)

The construction of the estimator (1.5) can be modified by considering
the Fejer summation, therefore, in the sequel we will consider the variant
obtained through the “Fejer kernel”

�̃
ij
N,ni,nj

:=
ni−1∑
u=1

nj−1∑
l=1

FN (t
i
u − t j

l )δI i
u
(pi)δ

I j
l
(pj), (1.7)

where FN (x)=
(

sinNx
Nx

)2
. This estimator has the advantage of preserving

the positivity of the covariance matrix, as it is stated by the following:

Proposition 1.2 The Fourier estimator
∑̃

N is positive semi-definite.
Proof. Using Bochner theorem (see Malliavin, 1995: 255) it suffices to
prove that∫ ∞

0

sin2 t

t2 eitxdt ≥ 0 ∀x ∈ 	.

As the Fourier transform of πχ[− 1
2π , 1

2π ](t) is the function sinx
x ,

∫ ∞
0

sin2 t

t2 eitxdt = π2
∫ ∞

0
χ[− 1

2π , 1
2π ](x− t) χ[− 1

2π , 1
2π ](t)dt ≥ 0 ∀x ∈ 	.
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In the sequel we assume that the observed prices are affected by
“microstructure noise” in the form

p̃i(t)= pi(t)+ηi(t) i = 1, . . . ,k (1.8)

where pi(t) is the efficient log-price process and ηi(t) is the microstruc-
ture noise. We can think of pi(t) as the log-price in equilibrium, that
is, the price that would prevail in the absence of market microstructure
frictions. The econometrician does not observe the returns of the true
return series, but the returns contaminated by market microstructure
effects. Therefore, an estimator of the integrated covariance should be
constructed using the contaminated returns.

We assume that the noise process is i.i.d. and the following assump-
tions hold:

M1. p and η are independent processes, moreover η(t) and η(s) are
independent for s 
= t and E[η(t)] = 0 for any t .

M2. E[ηi(t)ηj(t)] = ωij <∞ for any t and i, j = 1, . . . ,k.

A structural model like (1.8) has been proposed in Aït-Sahalia et al.
(2005) and Bandi and Russell (2008). It is coherent with the model
free-volatility estimation method introduced in Malliavin and Mancino
(2002), but here we explicitly introduce microstructure effects. The instan-
taneous volatility process is allowed to display jumps, diurnal effects,
high persistence, nonstationarities and leverage effects.

Remark 1.3 In general the noise return moments may depend on the sam-
pling frequency. Here we consider the simplified case where the microstructure
noise displays an MA(1) structure. The MA(1) model is typically justified by
bid–ask bounce effects (Roll, 1984). It is known to be a realistic approxima-
tion in decentralized markets where trades arrive in a random fashion with
idiosyncratic price-setting behavior – the foreign exchange market being a valid
example (see Zhang et al., 2005, Bandi and Russell, 2006 and Hansen and
Lunde, 2006 for additional discussions on this point).

The statistical properties of the Fourier estimator are studied by Man-
cino and Sanfelici (2008a, 2008b), who show that the bias of the
covariance estimator is not affected by the presence of i.i.d. noise and the
MSE does not diverge as the number of observations increases under a
suitable growth condition for the number of frequencies N and the num-
ber of data n. This result is due to the following property of the Fourier
estimator: the high-frequency noise is ignored by the Fourier estimator
by cutting the highest frequencies. More precisely, the following result

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP01” — 2010/11/22 — 17:39 — PAGE 10 — #10

10 Maria Elvira Mancino and Simona Sanfelici

holds (see Mancino and Sanfelici, 2008b for the proof and the exact
specification of the sampling considered):

Theorem 1.4 Consider the model (1.8). Suppose that the observations of the
asset prices are asynchronous and the noise process satisfies assumptions M1
and M2, then if ρ(n)N → 0 as n,N → ∞, it holds that

E


 �∑ij

N,ni,nj
−
∫ 2π

0

∑ij
(t)dt

2
= o(1)

+ 2ωjj
∑ni−1

l=1
D2

N

(
ti
l − t j

nj/2−1

)
E

[∫ t i
l+1

t i
l

∑ii
(t)dt

]
+ 2ωii

×
∑nj/2−1

l=1
D2

N (t
i
ni−1 − t j

l )E

∫ t j
l+1

t j
l

∑jj
(t)dt

+ 4ωjjωiiD
2
N

(
ti
ni−1 − t j

nj/2−1

)
,

(1.9)

where o(1) is a term which goes to zero in probability.

We note that the term 4ωjjωiiD
2
N (t

i
ni−1 − t j

nj/2−1) converges to the

constant 4ωjjωii as n,N increase at the proper rate ρ(n)N → 0. In con-
clusion, the Fourier estimator of multivariate volatility is consistent
under asynchronous observations and it is robust in the presence of i.i.d.
microstructure noise. Mancino and Sanfelici (2008b) also investigate the
behavior of the estimator in the presence of noise correlated with the
efficient price process and show that the properties of the estimator are
not substantially affected.

In the final part of this section we recall, for completeness, the defi-
nition of the other estimators of covariance which will be considered in
our analysis.

The realized covariance-type estimators are based on the choice
of a synchronization procedure, which gives the observation times
{0 = τ1 ≤ τ2 ≤ ·· · ≤ τn = 2π} for both assets. The quadratic covariation-
realized covariance estimator is defined by

RCij :=
n−1∑
u=1

δu(pi)δu(pj),

where δu(p∗)= p∗(τu+1)−p∗(τu). It is known that the realized covariance
estimator is not consistent under asynchronous trading (Hayashi and
Yoshida, 2005).
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The realized covariance plus leads and lags estimator is defined by

RCLLij :=
∑
u

L∑
h=−l

δu+h(p
i)δu(pj). (1.10)

The estimator (1.10) has good properties under microstructure noise
contamination of the prices, but it is still not consistent for asynchronous
observations. This is due to the fact that all the realized covariance-type
estimators need a data-synchronization procedure, because of the defini-
tion of the quadratic covariation process. Nevertheless, the inclusion of
one lead and one lag appears to provide a correction for the downward
bias by nonsynchronous trading.

The estimator proposed by Hayashi and Yoshida (2005) is

AOij
ni,nj

:=
∑
l,u

δI i
l
(pi)δ

I j
u
(pj)I

(I i
l ∩I j

u 
=∅)
, (1.11)

where I(P) = 1 if proposition P is true and I(P) = 0 if proposition P is false.
We will refer to this estimator as the “all-overlapping” (AO) estimator.
It is unbiased in the absence of noise. However, in Griffin and Oomen
(2010) and Voev and Lunde (2007) the AO estimator is proved to be
inconsistent in the presence of microstructure noise, because the MSE
diverges as the number of observations increases. The same happens for
the realized covariance estimator.

A modification of the AO estimator which can lead to consistency is
the subsampled version proposed by Voev and Lunde (2007), where the
returns of the base asset span several ticks. While less efficient in the
absence of noise, it reduces the variance due to noise and has a bias-
reducing effect. This estimator can be written as

AOij
sub := 1

S

s∑
s=1

AOij(s), (1.12)

where the AOij(s)’s are computed on different nonoverlapping subgrids
using only the skip-S returns for the base asset.

Finally, we will consider the multivariate realized kernel of Barndorff-
Nielsen et al. (2008a):

Kij :=
H∑

h=−H

k
(

h
H + 1

)



ij
h ,

where 
ij
h is the h-th realized autocovariance of assets i and j and k(·)

is a weight function. The synchronization procedure uses the “refresh
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time,” that is, the first time when both posted prices are updated, setting
the price of the quicker asset to its most recent value (“last-tick interpo-
lation”). In order to reduce end effects, the asymptotic theory dictates
we need to average m prices at the very beginning and end of each day.
Barndorff-Nielsen et al. (2008a) prove that the estimator is consistent also
in the case of covariance stationary endogenous noise, that is, dependent
on the efficient price, if the realized kernel applied to the noise process
converges to zero as n → ∞.

1.3 Forecasting and asset allocation

We use the methodology suggested by Fleming et al. (2001) and Bandi
et al. (2008) to evaluate the economic benefit of the Fourier estimator
of integrated covariance in the context of an asset-allocation strategy.
Specifically, we compare the utility obtained by virtue of covariance
forecasts based on the Fourier estimator to the utility obtained through
covariance forecasts constructed using the more familiar realized covari-
ance and other recently proposed estimators. In the following, we adopt
a notation which is common in the literature about portfolio manage-
ment. It will not be difficult for the reader to match it with the one in
the previous section.

Let Rf and Rt+1 be the risk-free return and the return vector on k
risky assets over a day [t, t+1], respectively. Define µt = Et [Rt+1] and
�t = Et [(Rt+1 −µt )(Rt+1 −µt )

′] as the conditional expected value and
the conditional covariance matrix of Rt+1. We consider a mean-variance
investor who solves the problem

min
ωt

ω′
t�tωt ,

subject to

ω′
tµt + (1 −ω′

t 1k)R
f = µp,

where ωt is a k-vector of portfolio weights, µp is a target expected return
on the portfolio and 1k is a k × 1 vector of ones. The solution to this
program is

ωt = (µp − Rf )�−1
t (µt − Rf 1k)

(µt − Rf 1k)
′�−1

t (µt − Rf 1k)
. (1.13)

We estimate �t using one-day-ahead forecasts Ĉt given a time series
of daily covariance estimates obtained using the Fourier estimator, the
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realized covariance estimator, the realized covariance plus leads and
lags estimator, the AO estimator, its subsampled version and the ker-
nel estimator. The out-of-sample forecast is based on a univariate ARMA
model.

Given sensible choices of Rf, µp and µt , each one-day-ahead forecast
leads to the determination of a daily portfolio weight ωt . The time series
of daily portfolio weights then leads to daily portfolio returns. In order to
concentrate on volatility approximation and to abstract from the issues
that would be posed by expected stock-return predictability, for all times
t we set the components of the vector µt = Et [Rt+1] equal to the sam-
ple means of the returns on the risky assets over the forecasting horizon.
Finally, we employ the investor’s long-run mean-variance utility as a met-
ric to evaluate the economic benefit of alternative covariance forecasts
Ĉt , that is,

U∗ = R
p − λ

2
1
m

m∑
t=1

(Rp
t+1 − R

p
)2,

where Rp
t+1 = Rf +ω′

t (Rt+1 −Rf 1k) is the return on the portfolio with esti-

mated weights ωt , R
p = 1

m
∑m

t=1 Rp
t+1 is the sample mean of the portfolio

returns across m ≤ n days and λ is a coefficient of risk aversion.
Following Bandi et al. (2008), in order to avoid contamination induced

by noisy first-moment estimation, we simply look at the variance
component of U∗, namely

U = λ

2
1
m

m∑
t=1

(Rp
t+1 − R

p
)2, (1.14)

(see Engle and Colacito, 2006 for further justifications of this approach).
The difference between two utility estimations, say UA−UB, can be inter-
preted as the fee that the investor would be willing to pay to switch from
covariance forecasts based on estimator A to covariance forecasts based
on estimator B. In other words, UA − UB is the utility gain that can be
obtained by investing in portfolio B with the lowest variance for a given
target return µp.

1.4 Valuing the economic benefit by simulations

In the following sections we show several numerical experiments to
assess the gains offered by the Fourier estimator over other estima-
tors in terms of in-sample and out-of-sample properties and from the
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perspective of an asset-allocation decision problem. In Section 1.4.1
our attention is focused mainly on covariance estimation, since in
this respect effects due to both nonsynchronicity and microstructure
noise become effective. As for the finite sample variance analysis of the
Fourier method, we refer the reader to Mancino and Sanfelici (2008a)
for in-sample statistics and to Barucci et al. (2008) for the forecasting
performance. Nevertheless, the results in Sections 1.4.2, 1.4.3 and 1.4.4
can be fully justified only by considering the properties of the different
estimators for both the variance and the covariance measures. Following
a large literature, we simulate discrete data from the continuous time
bivariate Heston model

dp1(t)= (µ1 −σ2
1 (t)/2)dt +σ1(t)dW1,

dp2(t)= (µ2 −σ2
2 (t)/2)dt +σ2(t)dW2

dσ2
1 (t)= k1(α1 −σ2

1 (t))dt + γ1σ1(t)dW3,

dσ2
2 (t)= k2(α2 −σ2

2 (t))dt + γ2σ2(t)dW4

where corr(W1,W2) = 0.35, corr(W1,W3) = −0.5 and corr(W2,W4) =
−0.55. The other parameters of the model are as in Zhang et al. (2005):
µ1 = 0.05, µ2 = 0.055, k1 = 5, k2 = 5.5, α1 = 0.05, α2 = 0.045, γ1 = 0.5,
γ2 = 0.5. The volatility parameters satisfy Feller’s condition 2kα ≥ γ 2,
which makes the zero boundary unattainable by the volatility process.
Moreover, we assume that the additive logarithmic noises η1

l = η1(t1
l ),

η2
l = η2(t2

l ) are i.i.d. Gaussian, contemporaneously correlated and inde-

pendent from p. The correlation is set to 0.5 and we assume ω1/2
ii =

(E[(ηi)2])1/2 = 0,0.002,0.004, that is, we consider the case of no con-
tamination and two different levels for the standard deviation of the
noise. We also consider the case of dependent noise, assuming for sim-
plicity ηi

l = α[pi(ti
l )− pi(ti

l−1)] + ηi
l, for i = 1,2 and ηi

l i.i.d. Gaussian. We
set α= 0.1. From the simulated data, integrated covariance estimates can
be compared to the value of the true covariance quantities.

We generate (through simple Euler–Monte Carlo discretization) high-
frequency, evenly sampled efficient and observed returns by simulating
second-by-second return and variance paths over a daily trading period
of h = 6 hours, for a total of 21600 observations per day. In order to
simulate high-frequency unevenly sampled data we extract the obser-
vation times in such a way that the durations between observations
are drawn from an exponential distribution with means λ1 = 6 sec and
λ2 = 8 sec for the two assets, respectively. Therefore, on each trading day
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the processes are observed at a different, discrete unevenly spaced grid{
0 = ti

1 ≤ ti
2 ≤ ·· · ≤ ti

ni
≤ 2π

}
for any i = 1,2.

For the realized covariance-type estimators we generate equally spaced
continuously compounded returns using the previous tick method. We
consider 1-, 5- and 10-min sampling intervals or optimally sampled
realized covariances. Bandi et al. (2008) provide an approximate for-
mula for optimal sampling, which holds for uniform synchronous data.
Given our general data setting, the optimal sampling frequency can
be obtained by direct minimization of the true mean squared error. In
order to preserve the positive definiteness of the covariance matrices,
in the asset-allocation application we use a unique sampling frequency
for realized variances and covariances, given by the maximum among
the three optimal sampling intervals. For the Fourier and AO estima-
tors we employ all the available data set. In implementing the Fourier
estimator �̃12

N,n1,n2
, the smallest wavelength that can be evaluated in

order to avoid aliasing effects is twice the smallest distance between two
consecutive prices (the “Nyquist frequency”). Nevertheless, as pointed
out in the univariate case by Mancino and Sanfelici (2008a) and con-
firmed in the bivariate case in Mancino and Sanfelici (2008b), smaller
values of N may provide better variance/covariance measures. More
specifically, the optimal cutting frequencies for the various volatility
measures can be obtained independently by minimizing the true MSE.
Although the positivity result of Proposition 1.2 is ensured only when
the same N is used for all the entries of the covariance matrix, numerical
experiments show that the use of different optimal cutting frequen-
cies N for variances and covariances still preserves positive definiteness
of the covariance matrix both in the sample and in the forecasting
horizon. In the same vein, with regard to the kernel estimator, a single-
bandwidth parameter H should be considered for both variances and
covariances. Possible choices are the minimum, the maximum or the
average bandwidth. Nevertheless, in our simulations, the use of sepa-
rate parameters does not spoil the positive-definiteness property of the
estimator.

We employ the “flat-top Tukey–Hanning2” weight function. In partic-
ular, the diagonal elements are estimated by the flat-top realized kernel
of Barndorff-Nielsen et al. (2008b), which converges at a faster rate but
is less robust to endogeneity and serial dependence in noise – and in rare
cases it can go negative. Nevertheless, in our simulations this possibil-
ity never occurs. The jittering parameter is set to m = 2. Finally, in the
case of the subsampled all-overlapping estimator, the diagonal elements
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of the covariance matrix are estimated by the “two-scale estimator” of
Zhang et al. (2005), while the off-diagonal entries are given by (1.12);
the optimal number of subgrids S is obtained by minimizing the MSE for
the variances and the covariances separately.

1.4.1 Covariance estimation and forecast

As a first application we perform an in-sample analysis in order to shed
light on the properties of the different estimators in terms of different
statistics of the covariance estimates, such as bias, MSE and others. More
precisely, we consider the following relative error statistics:

µ= E

[
Ĉ12 − ∫ 2π

0 �12(t)dt∫ 2π
0 �12(t)dt

]
, std =

{
Var

[
Ĉ12 − ∫ 2π

0 �12(t)dt∫ 2π
0 �12(t)dt

]}1/2

which can be interpreted as relative bias and standard deviation of an
estimator Ĉ12 for the covariance. The estimators have been optimized by
choosing the cutting frequency N of the Fourier expansion, the parame-
ters H and S and the sampling interval for RCopt on the basis of their MSE.
The results are reported in Tables 1.1 and 1.2. Within each table, entries
are the values ofµ, std, MSE and bias, using 750 Monte Carlo replications,
which roughly correspond to three years. Rows correspond to the differ-
ent estimators. The sampling interval for the realized covariance-type
estimators is indicated as a superscript. The optimal sampling frequency
for RCopt is obtained by direct minimization of the true MSE of the covari-
ance estimates and corresponds to 1 min in the absence of noise, to 1.33

min when ω1/2
ii = 0.002, to 1.67 min when ω

1/2
ii = 0.004 and to 1.5 min

when ω
1/2
ii = 0.004 and the noise is dependent on the price. The other

optimal MSE-based parameter values are listed in the tables.
When we consider covariance estimates, the most important effect

to deal with is the “Epps effect.” The presence of other microstructure
effects represents a minor aspect in this respect. On the contrary, it may
in some sense even compensate the effects due to nonsynchronicity, as
we can see from the smaller MSE of the 1-min realized covariance esti-
mator with respect to the 5-min estimator in the cases with noise. We
remark that the corresponding 1-min estimator for variances is more
affected by the presence of noise, since it is not compensated for by
nonsynchronicity. Moreover, in the absence of noise the Epps effect
hampers consistency of the realized covariance estimates, yielding an
optimal MSE-based frequency of 1 min.

In fact, as with any estimator based on interpolated prices, the realized
covariance-type estimators suffer from the Epps effect when trading is
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Table 1.1 Relative and absolute error statistics for the in-sample covariance
estimates for different estimators and no noise

Method µ std MSE · 106 bias · 104
Optimal
Parameters

ωii = 0
RC1min −0.1222 0.1659 0.6740 −4.4364 –
RC5min −0.0168 0.3855 2.4043 −0.6813 –
RC10min −0.0119 0.5451 4.7389 −0.5420 –
RCLL1min −0.0006 0.2898 1.3100 0.1398 –
RCLL5min −0.0089 0.6400 6.4182 −0.3968 –
RCLL10min −0.0074 0.9118 13.6689 −0.9159 –
RCopt −0.1222 0.1659 0.6740 −4.4364 1
AO −0.0054 0.1095 0.2091 −0.1887 –
K −0.0878 0.1471 0.4837 −3.2381 4
AOsub −0.0054 0.1095 0.2091 −0.1887 1
Fourier −0.0864 0.1435 0.4504 −3.1598 258

Note: The optimal parameter values correspond to the sampling interval (in minutes), to the
number of autocovariances H, to the number of subgrids S and to the cutting frequency N.
The values of MSE and bias are multiplied by 106 and 104, respectively.

nonsynchronous. The lead–lag correction reduces such an effect, at least
in terms of bias, to the disadvantage of a slightly larger MSE. Note that the
lead–lag correction contrasts with the Epps effect, thus producing occa-
sionally positive biases. In the absence of noise the best performance is
achieved by the unbiased AO estimator and this justifies the optimal S
value for its subsampled version which is set to 1, that is, no subsampling
is needed. We remark that the optimal H value for the kernel estimator
(K) is set to 4, that is, the use of some weighted autocovariance is needed
to contrast with the Epps effect, differently from the variance estimation,
where the optimal MSE-based H value is equal to 0, which corresponds to
the realized variance. On the other hand, the presence of noise strongly
affects the AO estimator. This is due to the “Poisson trading scheme” with
correlated noise. In fact, the AO remains unbiased under independent
noise whenever the probability of trades occurring at the same time is
zero, which is not the case for Poisson arrivals. In the same fashion, the
Kernel estimator provides an acceptable estimate in the absence of noise
but is rapidly swamped by the presence of noise. This is quite striking,
because the corresponding variance estimator provides the best estimates
at the highest frequencies in the presence of noise, as already discussed
in Mancino and Sanfelici (2008a). Nevertheless, Barndorff-Nielsen et al.
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Table 1.2 Relative and absolute error statistics for the in-sample covariance
estimates for different estimators and different noise levels

Method µ std MSE · 106 bias · 104
Optimal
parameters

ωii = 0.002
RC1min −0.0943 0.2196 0.8764 −3.7488 –
RC5min −0.0196 0.3982 2.7114 −0.6585 –
RC10min −0.0197 0.5433 5.3391 −0.7647 –
RCLL1min 0.0219 0.3285 1.7748 1.0255 –
RCLL5min −0.0283 0.6531 7.8200 −0.7391 –
RCLL10min 0.0010 0.9532 16.3032 0.4461 –
RCopt −0.0667 0.2399 0.9451 −2.7689 1.33
AO 0.5739 0.3560 3.6314 17.6157 –
K 0.2567 0.3148 1.0142 6.0711 1
AOsub 0.0914 0.1801 0.5535 2.7958 6
Fourier −0.0662 0.1682 0.5268 −2.5972 264

ωii = 0.004
RC1min 0.0371 0.4202 1.7864 0.3246 –
RC5min 0.0201 0.4737 2.7938 0.3650 –
RC10min −0.0234 0.6046 5.1154 −0.8832 –
RCLL1min 0.0043 0.4639 2.3407 0.2869 –
RCLL5min −0.0265 0.7025 7.3021 −0.8156 –
RCLL10min 0.0044 0.9278 14.0091 −0.0225 –
RCopt 0.0434 0.4061 1.6860 0.8409 1.67
AO 2.3729 1.3924 52.2654 70.0999 –
K 0.1548 0.5854 3.7007 4.7011 14
AOsub 0.1532 0.2338 0.9723 4.7858 16
Fourier 0.0215 0.2683 0.7881 0.4342 208

ωii = 0.004 Dependent noise
RC1min −0.0827 0.4124 1.9353 −3.2344 –
RC5min −0.0181 0.4905 3.6050 −0.9942 –
RC10min 0.0211 0.6069 6.1241 0.5165 –
RCLL1min 0.0044 0.4561 2.8256 0.3324 –
RCLL5min 0.0353 0.7101 8.8449 1.5281 –
RCLL10min 0.0775 0.9594 16.6870 3.2548 –
RCopt −0.0407 0.3827 1.6816 −1.4413 1.5
AO 0.1189 0.5973 3.3385 4.6671 –
K 0.0257 0.6103 3.5066 1.3703 13
AOsub 0.0279 0.2247 0.6756 1.0456 9
Fourier −0.0276 0.2549 0.8358 −1.0891 190

Note: The optimal parameter values correspond to the sampling interval (in minutes), to the
number of autocovariances H, to the number of subgrids S and to the cutting frequency N.
The values of MSE and bias are multiplied by 106 and 104, respectively.
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(2008a) themselves, in their simulations, find out that there is not a
great deal of difference between the multivariate realized (Parzen) ker-
nel and the sparse-sampled realized covariance. Maybe this could be
related to the synchronization procedure, which may result in excessive
data reduction. On the contrary, both the Fourier and the subsampled
AO estimator enable estimation without data loss in situations where
asset prices are observed at very different frequencies. The Fourier esti-
mator provides good covariance measures, both in terms of bias and
MSE, in all the cases considered. Mancino and Sanfelici (2008b) show
that this covariance estimator is asymptotically unbiased under the con-
dition N/n → 0, as n,N → ∞. Its biasedness in finite samples is evident
in the no-noise case. Nevertheless, the choice of a suitable MSE minimiz-
ing cutting frequency makes this estimator invariant to the inclusion of
microstructure noise and it may have a bias-reduction effect as well. A
good alternative is provided by the subsampled Hayashi–Yoshida esti-
mator, which slightly outperforms Fourier in the absence of noise and
becomes comparable or is sometimes overcome by the Fourier estima-
tor for increasing noise. Therefore, we can conclude that contrary to the
other estimators the Fourier covariance estimator is not much affected by
the presence of noise, so that it becomes a very interesting alternative,
especially when microstructure effects are particularly relevant in the
available data.

Before turning to asset allocation, we evaluate the forecasting power of
the different estimators. In the tradition of Mincer and Zarnowitz (1969),
we regress the real daily integrated covariance over the forecasting period
on one-step-ahead forecasts obtained by means of each covariance mea-
sure. More precisely, following Andersen and Bollerslev (1998), we split
our samples into two parts: the first one containing 30 percent of total
estimates is used as a “burn-in” period to fit a univariate AR(1) model for
the estimated covariance time series and then the fitted model is used to
forecast integrated covariance on the next day. The choice of the AR(1)
model comes from Aït-Sahalia and Mancini (2008), who consider the
univariate Heston data-generating process. The total number of out-of-
sample forecasts m is equal to 525. Each time a new forecast is performed,
the corresponding actual covariance measure is moved from the forecast-
ing horizon to the first sample and the AR(1) parameters are reestimated
in real time. For each time series of covariance forecasts, we project the
real daily integrated covariance on day [t , t + 1] on a constant and the
corresponding one-step-ahead forecasts ĈFourier

t obtained from the series

of Fourier estimates and from each of the other covariance measures Ĉt .
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The regression takes the form∫ t+1

t
�12(s)ds = φ0 +φ1ĈFourier

t +φ2Ĉt + errort ,

where t = 1,2, . . . ,m. The R2 from these regressions provides a direct
assessment of the variability in the integrated covariance that is
explained by the particular estimates in the regressions. The R2 can there-
fore be interpreted as a simple gauge of the degree of predictability in the
volatility process and hence of the potential economic significance of the
volatility forecasts. The results are reported in Tables 1.3, 1.4, 1.5 and 1.6
for different shapes and extents of noise, using a Newey–West covari-
ance matrix. Let us start with Table 1.3 – the case with no noise. In this
case, the optimally sampled realized covariance and the subsampled AO
estimator reduce to the 1-min realized covariance and to the AO estima-
tor, respectively, and hence they are omitted. When we consider a single
regressor, the R2 is the highest for the AO estimator, immediately fol-
lowed by the Fourier and the kernel estimator, while RCLL10min explains
less than five percent of the time-series variability. For none of the esti-
mators can we reject the hypothesis that φ0 = 0 and φ1 = 1 (or φ0 = 0 and
φ2 = 1) using the corresponding t tests. When we include alternative
forecasts besides the Fourier estimator in the regression, the R2 improves
very little relative to the R2 based solely on Fourier. Moreover, the coef-
ficient estimates for φ1 are generally close to unity, while for the other
estimators the coefficients are not significantly different from zero at the
5 percent level. The only exceptions are given by the multiple regression
on Fourier and AO forecasts, as a consequence of the higher accuracy and
lower variability of AO covariance estimates, and by the multiple regres-
sion on Fourier and kernel forecasts, which has no statistically significant
coefficients at the 5 percent level, although the F-statistic is 64.57. In the
latter case, the explanatory powers of the explanatory variables over-
lap and the marginal contribution of each explanatory variable is quite
small. Table 1.4 refers to the case of simultaneously correlated noise with

ω
1/2
ii =0.002. In the upper panel, the highest R2 is achieved by the Fourier

estimator. For none of the estimators can we reject the hypothesis that
φ0 = 0 and φ1 = 1 (or φ0 = 0 and φ2 = 1) using the corresponding t tests,
except for RCLL10min, AO and K. When we include alternative forecasts
besides the Fourier estimator in the regression, the R2 does not change
much relative to the R2 based solely on Fourier. Moreover, the coeffi-
cient estimates for φ1 are generally close to unity, while for the other
estimators the coefficients are not significantly different from zero at the
5 percent level. These results are in agreement with the ones of Table 1.2,
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Table 1.3 OLS estimates from regressions of real integrated covariance on a
constant and each covariance forecast over the forecasting horizon for ωii = 0

Method φ0 φ1 φ2 R2

Fourier −0.000357
(0.000344)

1.189359
(0.102915)

– 0.193886

RC1min −0.000160
(0.000326)

– 1.175931
(0.101524)

0.189368

RC5min −0.000875
(0.000559)

– 1.253498
(0.155701)

0.131912

RC10min −0.000633
(0.000718)

– 1.180675
(0.199363)

0.095597

RCLL1min −0.000431
(0.000429)

– 1.101692
(0.115191)

0.156135

RCLL5min 0.000481
(0.000467)

– 0.872040
(0.129550)

0.095959

RCLL10min 0.000494
(0.000693)

– 0.878594
(0.193523)

0.042197

AO −0.000432
(0.000326)

– 1.115636
(0.090716)

0.208508

K −0.000345
(0.000351)

– 1.189693
(0.106857)

0.193926

F + RC1min −0.000367
(0.000342)

0.763583
(0.388643)

0.445468
(0.380325)

0.196213

F + RC5min −0.000523
(0.000547)

1.120893
(0.205312)

0.109524
(0.282750)

0.194250

F + RC10min −0.000494
(0.000655)

1.156734
(0.141495)

0.067775
(0.247474)

0.194055

F + RCLL1min −0.000411
(0.000422)

1.132873
(0.273765)

0.065820
(0.294081)

0.194006

F + RCLL5min −0.000536
(0.000436)

1.117881
(0.142965)

0.114582
(0.168453)

0.194842

F + RCLL10min −0.000274
(0.000674)

1.199005
(0.125196)

−0.031849
(0.224384)

0.193928

F + AO −0.000407
(0.000337)

−0.156772
(0.499995)

1.253392
(0.449527)

0.208696

F + K −0.000443
(0.000345)

0.606863
(0.411885)

0.609752
(0.409939)

0.198321

Note: Heteroskedasticity robust standard errors are listed in parenthesis.

upper panel, where the Fourier estimator provides the best covariance
measures. In Table 1.5, upper panel, the highest R2 is now achieved
by the subsampled AO estimator, immediately followed by the Fourier

estimator. Here ω1/2
ii = 0.004. For none of the estimators can we reject
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Table 1.4 OLS estimates from regressions of real integrated covariance on a

constant and each covariance forecast over the forecasting horizon for ω1/2
ii =

0.002

Method φ0 φ1 φ2 R2

Fourier −0.000332
(0.000480)

1.157481
(0.140910)

– 0.205784

RC1min −0.000289
(0.000451)

– 1.181207
(0.136302)

0.184666

RC5min −0.001000
(0.000742)

– 1.268707
(0.203271)

0.146490

RC10min −0.001001
(0.000962)

– 1.287550
(0.265957)

0.081930

RCLL1min −0.000318
(0.000641)

– 1.042285
(0.168353)

0.143733

RCLL5min 0.000950
(0.000772)

– 0.760240
(0.212317)

0.050982

RCLL10min 0.001794
(0.000502)

– 0.509909
(0.132649)

0.045674

RCopt −0.000264
(0.000511)

– 1.143849
(0.150600)

0.167163

AO −0.002548
(0.000787)

– 1.134663
(0.145365)

0.186150

K −0.002641
(0.000787)

– 1.451911
(0.184398)

0.178058

AOsub −0.000532
(0.000497)

– 1.051885
(0.126151)

0.200171

F + RC1min −0.000428
(0.000472)

0.961752
(0.296739)

0.229556
(0.285214)

0.206874

F + RC5min −0.000625
(0.000708)

1.043689
(0.178552)

0.184948
(0.259055)

0.206908

F + RC10min −0.000040
(0.000822)

1.204018
(0.172272)

−0.123419
(0.273671)

0.206204

F + RCLL1min −0.000168
(0.000578)

1.280343
(0.224206)

−0.152806
(0.239584)

0.206554

F + RCLL5min 0.000073
(0.000729)

1.240015
(0.153765)

−0.187946
(0.209257)

0.207853

F + RCLL10min −0.000356
(0.000546)

1.152115
(0.151030)

0.010830
(0.115970)

0.205800

F + RCopt −0.000327
(0.000494)

1.164856
(0.251018)

−0.008959
(0.240091)

0.205786

F + AO −0.000773
(0.000854)

0.989668
(0.284309)

0.185971
(0.284508)

0.206459

F + K −0.000844
(0.000674)

0.991119
(0.272156)

0.249324
(0.296789)

0.206783

F + AOsub −0.000427
(0.000502)

0.871595
(0.416460)

0.270876
(0.381009)

0.206504

Note: Heteroskedasticity robust standard errors are listed in parenthesis.
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Table 1.5 OLS estimates from regressions of real integrated covariance on a

constant and each covariance forecast over the forecasting horizon for ω1/2
ii =

0.004

Method φ0 φ1 φ2 R2

Fourier 0.000289
(0.000447)

0.934596
(0.127683)

– 0.159878

RC1min 0.000238
(0.000594)

– 0.958151
(0.171193)

0.097955

RC5min 0.001138
(0.000365)

– 0.708021
(0.106029)

0.106261

RC10min 0.000822
(0.000476)

– 0.821870
(0.138801)

0.089039

RCLL1min 0.000152
(0.000493)

– 0.981620
(0.141241)

0.124185

RCLL5min 0.000602
(0.000617)

– 0.871933
(0.174710)

0.068160

RCLL10min 0.000421
(0.000808)

– 0.899933
(0.223244)

0.047621

RCopt 0.000094
(0.000511)

– 1.032842
(0.142621)

0.153681

AO −0.006479
(0.001467)

– 0.960790
(0.141400)

0.120925

K 0.000697
(0.000472)

– 0.744498
(0.120660)

0.078797

AOsub 0.000027
(0.000472)

– 0.900493
(0.119631)

0.163476

F + RC1min 0.000290
(0.000584)

0.934879
(0.160315)

−0.000472
(0.209145)

0.159878

F + RC5min 0.000156
(0.000456)

0.804672
(0.162177)

0.166798
(0.125648)

0.162685

F + RC10min −0.000005
(0.000529)

0.829524
(0.143006)

0.192210
(0.148598)

0.162727

F + RCLL1min −0.000147
(0.000507)

0.725966
(0.180395)

0.330217
(0.201237)

0.165964

F + RCLL5min −0.000122
(0.000632)

0.860920
(0.143192)

0.189859
(0.188459)

0.162116

F + RCLL10min -0.000534
(0.000770)

0.869414
(0.134253)

0.288530
(0.216120)

0.163995

F + RCopt −0.000302
(0.000530)

0.560295
(0.154433)

0.531720
(0.201200)

0.174964

F + AO −0.002963
(0.001259)

0.712225
(0.142840)

0.383016
(0.136055)

0.170044

F + K 0.000325
(0.000486)

0.947413
(0.166833)

−0.020439
(0.142337)

0.159907

F + AOsub −0.000017
(0.000482)

0.430555
(0.231898)

0.525662
(0.234024)

0.169082

Note: Heteroskedasticity robust standard errors are listed in parenthesis.
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Table 1.6 OLS estimates from regressions of real integrated covariance on a con-

stant and each covariance forecast over the forecasting horizon for ω1/2
ii = 0.004

and dependent noise

Method φ0 φ1 φ2 R2

Fourier −0.000553
(0.000360)

1.206333
(0.101268)

– 0.228107

RC1min −0.000092
(0.000433)

– 1.156458
(0.130600)

0.133428

RC5min −0.000428
(0.000619)

– 1.175871
(0.168303)

0.077988

RC10min −0.001231
(0.001051)

– 1.337231
(0.274826)

0.057487

RCLL1min 0.000376
(0.000429)

– 0.916729
(0.112831)

0.108334

RCLL5min −0.000642
(0.000861)

– 1.144396
(0.219782)

0.065329

RCLL10min 0.000993
(0.000656)

– 0.700703
(0.158462)

0.055697

RCopt −0.000223
(0.000438)

– 1.133138
(0.125219)

0.155574

AO −0.000139
(0.000423)

– 0.950547
(0.103165)

0.132463

K −0.000353
(0.000460)

– 1.088604
(0.122791)

0.162078

AOsub −0.000498
(0.000325)

– 1.128151
(0.084872)

0.229336

F + RC1min −0.000565
(0.000421)

1.200380
(0.152692)

0.009791
(0.184195)

0.228111

F + RC5min 0.000013
(0.000556)

1.307011
(0.138977)

−0.255483
(0.208519)

0.230200

F + RC10min 0.000415
(0.000998)

1.296528
(0.121808)

−0.339960
(0.312605)

0.230547

F + RCLL1min −0.000405
(0.000405)

1.275637
(0.160140)

−0.105193
(0.169297)

0.228781

F + RCLL5min −0.000477
(0.000769)

1.214562
(0.119038)

−0.026815
(0.231508)

0.228132

F + RCLL10min −0.000942
(0.000627)

1.157871
(0.123250)

0.137724
(0.187821)

0.229891

F + RCopt −0.000611
(0.000411)

1.164916
(0.173187)

0.058059
(0.198324)

0.228247

F + AO −0.000712
(0.000412)

1.138820
(0.151219)

0.096222
(0.145790)

0.228750

F + K −0.001014
(0.000446)

0.985978
(0.126263)

0.326911
(0.143702)

0.235112

F + AOsub −0.000689
(0.000349)

0.603879
(0.265580)

0.605376
(0.230310)

0.237252

Note: Heteroskedasticity robust standard errors are listed in parenthesis.
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the hypothesis that φ0 = 0 and φ1 = 1 (or φ0 = 0 and φ2 = 1), except
for RC5min, AO and K. When we include alternative forecasts besides the
Fourier estimator in the regression, the R2 are generally slightly increased
relative to the R2 based solely on Fourier, but in general the coefficient φ2
does not significantly differ from zero. Exceptions are given by RCopt , AO
and AOsub. In particular, in both the regressions involving the AO esti-
mator, the intercept φ0 differs significantly from zero and, in particular,
in the multiple regression it represents a large part of the true integrated
volatility and in some sense it compensates for the large bias of the AO
estimates. Finally, let us consider the case with noise dependent on the
efficient price. In Table 1.6, upper panel, the highest R2 is achieved by the
subsampled AO estimator and by the Fourier estimator. When we include
alternative forecasts besides the Fourier estimator in the regression, the
R2 slightly increases, but the coefficients φ2 remain not significantly dif-
ferent from zero, while the coefficient estimates for φ1 are generally close
to unity and significant at the 5 percent level. The last two regressions
in the table provide coefficients which all significantly differ from zero
and the highest R2.

Therefore, we can conclude that the above results confirm the ranking
between different covariance estimators obtained in the in-sample anal-
ysis, because the higher accuracy and lower variability of Fourier and
subsampled-AO covariance estimates translate into superior forecasts of
future covariances.

1.4.2 Dynamic portfolio choice and economic gains

In this section, we consider the benefit of using the Fourier estimator with
respect to others from the perspective of the asset-allocation problem of
Section 1.3. Given any time series of daily variance/covariance estimates
we split our samples of 750 days into two parts: the first one contain-
ing 30 percent of total estimates is used as a “burn-in” period, while
the second one is saved for out-of-sample purposes. The out-of-sample
forecast is based on univariate ARMA models, as in the previous section.
More precisely, following Aït-Sahalia and Mancini (2008), the estimated
series of 225 in-sample covariance matrices is used to fit univariate AR(1)
models for each variance/covariance estimate separately.

The total number of out-of-sample forecasts m for each series is equal
to 525. Each time a new forecast is performed, the corresponding actual
variance/covariance measure is moved from the forecasting horizon
to the first sample and the AR(1) parameters are reestimated in real
time. Given sensible choices of Rf, µp and µt , each one-day-ahead
variance/covariance forecast leads to the determination of a daily
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portfolio weight ωt . The time series of daily portfolio weights then leads
to daily portfolio returns and utility estimation.

We implement the criterion in (1.14) by setting Rf equal to 0.03 and
considering three target µp values, namely 0.09, 0.12 and 0.15. In order
to concentrate on volatility timing and abstract from issues related to
expected stock-return predictability, for all times t we set the components
of the vector µt = Et [Rt+1] equal to the sample means of the returns on
the risky assets over the forecasting horizon. For all times t , the condi-
tional covariance matrix is computed as an out-of-sample forecast based
on the different variance/covariance estimates.

We interpret the difference UĈ − UFourier between the average utility
computed on the basis of the Fourier estimator and that based on alter-
native estimators Ĉ, as the fee that the investor would be willing to pay to
switch from covariance forecasts based on estimator Ĉ to covariance fore-
casts based on the Fourier estimator. Tables 1.7, 1.8 and 1.9 contain the
results for three levels of risk aversion and three target expected returns in
the different noise scenarios considered in our analysis. We remark that,
in general, the optimal sampling frequencies for the realized variances
and covariances are different within each scenario, due to the different
effects of microstructure noise and nonsynchronicity on the volatil-
ity measures. Therefore, in the asset-allocation application we chose
to use a unique sampling frequency for realized variances and covari-
ances, given by the maximum among the optimal sampling intervals
corresponding to variances and covariances. These sampling intervals

Table 1.7 Annualized fees UĈ − UFourier (in basis points) that a mean-variance
investor would be willing to pay to switch from Ĉ to fourier estimates

Method µp = 0.09 µp = 0.12 µp = 0.15

λ 2 7 10 2 7 10 2 7 10

RC1min 1.907 6.675 9.536 4.291 15.019 21.456 7.629 26.701 38.144
RC5min 0.361 1.262 1.803 0.811 2.839 4.056 1.442 5.048 7.211
RC10min 1.801 6.303 9.004 4.052 14.181 20.258 7.203 25.210 36.014
RCLL1min −1.817 −6.359 −9.084 −4.088 −14.308 −20.439 −7.267 −25.436 −36.337
RCLL5min 3.245 11.359 16.227 7.302 25.557 36.510 12.981 45.435 64.906
RCLL10min 8.587 30.056 42.937 19.321 67.625 96.607 34.349 120.222 171.746
RCopt 0.110 0.385 0.551 0.248 0.867 1.239 0.441 1.542 2.203
AO 5.236 18.326 26.180 11.781 41.133 58.905 20.944 73.304 104.720
K −1.169 −4.090 −5.844 −2.630 −9.204 −13.148 −4.675 −16.362 −23.374
AOsub −0.980 −3.429 −4.898 −2.204 −7.714 −11.020 −3.918 −13.714 −19.592

Note: Case ω1/2
ii = 0.002.
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Table 1.8 Annualized fees UĈ − UFourier (in basis points) that a mean-variance
investor would be willing to pay to switch from Ĉ to fourier estimates

Method µp = 0.09 µp = 0.12 µp = 0.15

λ 2 7 10 2 7 10 2 7 10

RC1min 4.673 16.355 23.364 10.514 36.799 52.570 18.691 65.420 93.457
RC5min 2.803 9.811 14.015 6.307 22.074 31.535 11.212 39.243 56.061
RC10min 3.505 12.268 17.526 7.887 27.603 39.433 14.020 49.072 70.103
RCLL1min 0.747 2.613 3.733 1.680 5.880 8.399 2.986 10.452 14.932
RCLL5min 5.145 18.009 25.727 11.577 40.520 57.886 20.582 72.036 102.909
RCLL10min 5.247 18.363 26233 11.805 41.317 59.024 20.986 73.452 104.931
RCopt 2.168 7.588 10.840 4.878 17.073 24.390 8.672 30.352 43.360
AO 4.206 14.722 21.032 9.464 33.125 47.322 16.826 58.889 84.128
K 3.088 10.808 15.440 6.948 24.318 34.740 12.352 43.232 61.760
AOsub 1.644 5.755 8.221 3.700 12.948 18.497 6.577 23.018 32.883

Note: Dependent Noise, with ω
1/2
ii = 0.004.

Table 1.9 Annualized fees UĈ − UFourier (in basis points) that a mean-variance
investor would be willing to pay to switch from Ĉ to fourier estimates

Method µp = 0.09 µp = 0.12 µp = 0.15

λ 2 7 10 2 7 10 2 7 10

RC1min 4.944 17.305 24.722 11.125 38.937 55.624 19.778 69.221 98.887
RC5min 1.805 6.316 9.023 4.060 14.211 20.301 7.218 25.264 36.091
RC10min 2.311 8.090 11.557 5.201 18.202 26.002 9.245 32.359 46.227
RCLL1min −0.066 −0.232 −0.332 −0.149 −0.522 −0.746 −0.265 −0.929 −1.327
RCLL5min 2.823 9.880 14.115 6.352 22.231 31.758 11.292 39.521 56.458
RCLL10min 4.689 16.412 23.446 10.551 36.927 52.753 18.757 65.649 93.784
RCopt 1.555 5.442 7.774 3.498 12.243 17.491 6.219 21.766 31.094
AO 8.509 29.782 42.546 19.146 67.010 95.728 34.037 119.128 170.183
K 0.918 3.213 4.590 2.066 7.229 10.328 3.672 12.852 18.360
AOsub −0.417 −1.461 −2.087 −0.939 −3.287 −4.695 −1.669 −5.843 −8.347

Note: Dependent Noise, with ω
1/2
ii = 0.004.

are 2.67 min when ω
1/2
ii = 0.002 and 4.5 min when ω

1/2
ii = 0.004. We

omit the case with no noise to keep the discussion shorter.

Consider Table 1.7, corresponding to ω1/2
ii = 0.002. The entries repre-

sent the difference UĈ −UFourier for three levels of risk aversion and three
target expected returns; therefore, a positive number is evidence in favor
of better performance of the Fourier estimator over Ĉ. For instance, when
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Ĉ = RC1min and the target is 0.09, the investor would pay between 1.9
basis points (when λ= 2) and 9.5 basis points (when λ= 10) per year to
use the Fourier estimator versus the RC1min estimator. When the target
is 0.12, the investor would pay between 4.3 basis points (when λ = 2)
and 21.5 basis points (when λ = 10). Finally, when the target is 0.15,
the investor would pay between 7.6 basis points (when λ= 2) and 38.1
(when λ= 10). The same investor would pay marginally less to abandon
RC5min. The remaining part of the table can be read similarly.1 In the last
two lines, the negative values imply a better performance of the kernel
and subsampled AO estimators.

Unexpectedly, a minor but statistically significant utility loss is
encountered when considering the RCLL1min estimator. Notice that
the optimally sampled realized covariance estimator cannot achieve the
same performance. In particular, this evidence partially contradicts the
conclusions of De Pooter at al. (2008) about the greater effects obtainable
by a careful choice of the sampling interval rather than by bias-correction

procedures. When we consider the case ω1/2
ii = 0.004 of Table 1.8, all the

entries are positive and we do not dwell on discussion. Finally, when
we allow for dependency between noise and price (cfr. Table 1.9) we
get a modest utility loss moving from the subsampled AO estimator
to the Fourier estimator, according to the good in-sample properties of
the former estimator for the whole covariance matrix, which translate
into precise forecasts. Unexpectedly, a modest utility loss is encountered
when considering the RCLL1min estimator as well. In all the other cases
there are nonnegligible utility gains to the investor associated with the
Fourier method.

1.4.3 The statistical significance of the economic gains

One way to assess the statistical significance of the economic gains result-
ing from Tables 1.7–1.9 is to perform the following joint statistical test.
For any targetµpand any estimator, one can define alternative covariance

forecasts Ĉt and portfolio returns Rp(Ĉ)
t+1 . Define

aĈ
t+1 =

(
Rp(Fourier)

t+1 − R
p(Fourier))2 −

(
Rp(Ĉ)

t+1 − R
p(Ĉ)

)2
.

Assessing the statistical significance of the economic gains of the
Fourier estimate over alternative forecasts can be conducted by testing

whether the mean of aĈ
t+1 is larger than (or equal to) zero against the

alternative that the mean is smaller than zero. Following Bandi et al.
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(2006), for any target return d = 0.09, 0.12, 0.15, we define the vector

Ad
t+1 = (aĈ1

t+1,aĈ2
t+1, . . . ,aĈr

t+1)
′,

where the r-uple of estimators (Ĉ1, Ĉ2, . . . , Ĉr ) is given by (RC1min, RC5min,
RC10min), (RCLL1min, RCLL5min, RCLL10min) and (RCopt , AO, K, AOsub)

or any other combination of methods we want to test. We also stack all
the methods simultaneously and check the overall ability of the Fourier
method to yield a significant economic gain over the others. We write
the regression model

Ad
t+1 = δd1r + εt+1,

where δd is a scalar parameter. Series aĈ
t+1 associated to losses (i.e. nega-

tive values in Tables 1.7–1.9) are multiplied by −1 before regression. We
perform the one-sided test H0: δd ≥ 0, against HA: δd < 0. The parameter
δd is estimated by GMM using a Bartlett HAC covariance matrix. A similar
approach is used by Engle and Colacito (2006). The t-statistics of all the
tests imply rejection of the null hypothesis, and hence statistical signif-
icance of the economic gains/losses at the 5 percent level. In particular,
we remark that when testing the different methods altogether (r = 10)
we get rejection of the null hypothesis even if we do not change the

sign of the series aĈ
t+1 associated to losses. Indeed, in this case the corre-

sponding t-statistics are −5.69, −4.44 and −7.30, respectively, revealing
that on average the Fourier methodology yields a statistically significant
economic gain at the 1 percent level.

1.5 Conclusion

We have analyzed the gains offered by the Fourier estimator from the
perspective of an asset-allocation decision problem. The comparison is
extended to realized covariance-type estimators, to lead–lag bias correc-
tions, to the all-overlapping estimator, to its subsampled version and to
the realized kernel estimator.

We show that the Fourier estimator carefully extracts information
from noisy high-frequency asset-price data and allows for nonnegligi-
ble utility gains in portfolio management. Specifically, our simulations
show that the gains yielded by the Fourier methodology are statistically
significant and can be economically large, while only the subsampled all-
overlapping estimator and, for low levels of market microstructure noise,
the realized covariance with one lead–lag bias correction and suitable
sampling frequency can be competitive.
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Analyzing the in-sample and out-of-sample properties of different
covariance measures, we find that for increasing values of microstruc-
ture noise the Fourier estimator continues to provide precise variance/
covariance estimates which translate into more precise forecasts with
respect to the other estimators under consideration, AOsub being the
only competitive method.

Note

1. As already noted by Bandi et al. (2008), the risk-aversion coefficient sim-
ply rescales the portfolio variances but does not affect the portfolio holding
directly. Hence the gains/losses are monotonic in the value of this coefficient.
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2
Market Liquidity, Stock
Characteristics and Order
Cancellations: The Case of
Fleeting Orders
Bidisha Chakrabarty and Konstantin Tyurin

2.1 Introduction

Estimates vary by the trading platform, sample period and sample stocks,
but the range of limit order “cancellations” documented in the literature
is generally between one-tenth and two-thirds of all order submissions
for US-based equities.1 While this is a significant proportion of total
orders submitted, the focus of both theoretical and empirical finance has
been on limit order “executions.” In studies that do model limit order
cancellations, all cancellations are usually treated as homogenous or are
characterized by a homogeneous index, which is the same for all limit
orders. Such characterization often leads to misspecified distributions
relative to the empirical properties exhibited by order cancellations.

Empirical observation of limit order termination shows that most of
the nonmarketable limit orders submitted to the order book end up
being cancelled without execution and the majority of cancelled orders
get cancelled within a very short time. Figure 2.1 presents the Weibull
probability plot for the survival to cancellation probability S(t) as a func-
tion of limit order duration t for ask limit orders for one stock, Comcast
Corporation (ticker: CMCSA), submitted via the INET ECN during regu-
lar trading hours on September 20, 2006. The limit order durations are
marked on the logarithmic scale on the horizontal axis, while the mono-
tonic double-negative logarithmic transformations ∼ln(∼ln(S(t))) of the
order survival-to-cancellation function are reported on the vertical axis.
The six equidistant dashed vertical lines on the graph mark the dura-
tion times (0.01, 0.1, 1, 10, 100 and 1000 seconds) since the limit order
submission.2 Between 50 and 90 percent of limit orders in each order
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Figure 2.1 Survival to cancellation for ask limit orders on CMCSA
Note: Limit orders arriving on September 20, 2006, between 9.30 am and 4.00 pm.

aggressiveness strata (where aggressiveness is measured by the tick dis-
tance from the best same-side quote) are cancelled within two seconds
after the order submission.

The four equidistant dashed horizontal lines are drawn at the
levels corresponding to the survival rates 99 percent, 90 percent,
35 percent and 0.0001 percent. Those values are chosen so that the
incremental distances between the horizontal lines on the double-
negative logarithmic scale ln(ln(0.90)/ln(0.99)) ≈ ln(ln(0.35)/ln(0.90))
≈ ln(ln(0.0001)/ln(0.35)) ≈ ln(10) are approximately equal to the incre-
mental distances ln(10) between the consecutive vertical lines on the
log-duration scale. Note that if order cancellations in any order aggres-
siveness category occurred according to the Weibull distribution, which
is a popular choice of the survival function literature, then the survival-
to-cancellation function S(t)= exp(̃Atβ) in the transformed scales would
be plotted as a straight line with slope ∼β. While the constancy of the
Weibull parameter 0 < β < 1 can be accepted if our focus is exclusively
on relatively large times to cancellation, approaching the fleeting orders
with the constant Weibull parameter assumption is clearly inappropriate.

While this is an illustration for one stock-day, our empirical analysis
finds that this pattern is robust. Yet, apart from a recent paper by Has-
brouck and Saar (2007), these fleeting orders have not been the focus of
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any study. There must be reasons why traders or algorithms submit limit
orders and subsequently cancel their orders within such a short period
of time.

What explains such a large number of cancellations, often within mil-
liseconds of placement? Under what market conditions do we expect this
type of order to be more prevalent? For what type of stocks are fleeting
orders likely to be observed more often? What types of orders are more
likely to be fleeting orders? How may the prevalence of fleeting orders
affect the shape and dynamics of the limit order book and the process
of price discovery? These are some of the questions we answer in this
study.

We find that the median time to cancellation is much shorter than
the median time to execution for a given limit order. For our sample of
Nasdaq 100 stocks the median ask (bid) order placed at the best quotes
gets cancelled within 2.41 (2.68) seconds while the comparable time to
execution is 11.33 (10.29) seconds. The highest priced stocks have a
much shorter time to cancellation. Fifty per cent of limit orders placed at
the best quotes for the 25 highest priced stocks are cancelled within 1.14
(1.15) seconds for ask (bid) orders. Interestingly, the time to cancellation
for high priced stocks is even lower for orders placed one tick away from
the best quotes on the same side, but increases once the quotes move
further away (deeper inside the book). We find a nonlinear relationship
between order aggressiveness and times to cancellation.

This difference in order cancellations at various price increments leads
us to the next step in our analysis. Here we model order cancellations
at various levels of quote aggressiveness and relate that to market condi-
tions and stock characteristics. For this, we draw upon the literature on
modeling the limit order book. For example, Lo et al. (2002) provide a
set of covariates that relate the limit order book characteristics to stock
characteristics. However, we find that some covariates are correlated and
perform a dimension reduction to extract the principal components and
find significant factor loadings for the first five components. Tick size,
volatility and quote aggressiveness emerge as the main drivers of order
cancellation.

The intuition we derive from the results so far is that order cancella-
tions at various price increments in the order book are not driven linearly
by the same factors. There are considerable variations in order cancella-
tion dynamics depending on the duration of the order and the relative
location of the quote vis-à-vis the best quote on the same side of the
book. Any modeling attempt should reflect this important dimension of
the data. We address this issue by employing a “mixture of distributions”
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model that specifies two distribution functions; one for cancellations at
very short durations and another for the longer duration cancellations.
We estimate this mixture of distributions model separately for each level
of quote aggressiveness and for each stock.

The results are consistent across stocks and days. For any observed limit
order submitted at the best quote, the probability that the order being
classified as “fleeting” is:

• increasing with the size of the bid–ask spread;
• decreasing with the depth on the same side of the limit order book

(and is most sensitive to the depth near the best quote);
• increasing with the depth on the opposite side of the book (and is

generally equally sensitive to the depth near and depth further away
from the best quote).
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Also, the estimated expected durations of “fleeting” orders (for the
orders submitted at the best quotes) are relatively stable3 across trading
days, even though there is some variation day-by-day and stock-by-
stock, centering around 0.1–0.2 sec. This is in contrast with the tradi-
tional two-second definition for fleeting order cut-off durations. Finally,
the intensity of limit order cancellations for Comcast Corporation
(ticker: CMCSA) at all-limit price levels is sensitive to time-of-the-day
(Figure 2.2), attaining its highest level in the morning hours and grad-
ually falling through the rest of the trading day. This distinct intra-day
pattern of cancellation intensities appears to be robust over time and
across liquid securities.

2.2 Literature review

A trader submitting an order to a limit order platform can choose between
placing a marketable limit order (which gets immediate execution at the
best prevailing price) or a limit order that enters the book and awaits
execution. Once the order is in the book, it “risks” termination either by
execution or by cancellation. Liu (2009) analyses the relation between
limit order submission risk and monitoring costs borne by the trader.
Limit order traders face two types of risk – first, they may be picked
off due to expected price changes and second, they face the possibility
of nonexecution. To mitigate these risks traders monitor the market and
cancel or revise their orders as needed. But monitoring is costly, resulting
in a trade-off between the cost of monitoring and the risks of limit order
submission. The theoretical model predicts that if the stock is actively
traded, limit order submission risks and order cancellations/revisions are
positively related. Stocks with wide bid–ask spreads have lower rates
of order cancellations and large capitalization stocks have lower costs
of gathering information (and hence more intense monitoring of limit
orders) and therefore more order revisions and cancellations. However,
the empirical evidence from our study suggests that this is not the case.

Apart from stock characteristics, order characteristics are also related to
the rates of cancellation. Menkhoff and Schmeling (2005) separate limit
orders into those that are aggressively priced – “screen orders” – and
ordinary ones that wait in the book. They find that screen orders have a
much lower cancellation rate than ordinary limit orders. In a study that
focuses on time to cancellation of limit orders, Eisler et al. (2007) show
that to correctly model the empirical properties of a limit order book
and price formation therein, it is essential to specify a correct functional
form for the cancellation process. They find that the transaction time,
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the first passage time, the time to (first) fill and time to cancel are best
described as asymptotically power-law distributed. In contrast, Challet
and Stinchcombe (2003) show that for four highly liquid stocks on the
Island ECN’s order book,4 the distribution for cancelled orders seems
to have an algebraic decay with particular numerical values of the expo-
nent.5 Rosu (2009) proposes a continuous time model of price formation
and shows that to generate results that are close to those observed in the
actual data, incorporating order cancellations is important.

While all the above studies tangentially focus on order cancellation, to
our knowledge the first paper to actually make the distinction between
order cancellations at longer durations and “fleeting order” cancellations
is Hasbrouck and Saar (2002). In that version of their paper they use order
data from the Island ECN and find that close to 28 percent of all visible
submitted orders are cancelled within two seconds. They coin the term
“fleeting orders” to describe these very short-lived orders. Although it is
the first to describe fleeting orders, the 2002 study does not focus on these
orders (in fact, these are eliminated from the sample in their subsequent
analysis).

Hasbrouck and Saar (2007) present a contemporaneous working paper
that is most closely related to ours. They offer three hypotheses to explain
the prevalence of fleeting orders. The “chasing hypothesis” argues that
fleeting orders arise as traders chase prices that are moving away by
cancelling the existing orders and repricing their orders. The “search
hypothesis” argues that fleeting orders are used to probe for hidden
liquidity in the book. The “cost of immediacy hypothesis” states that
fleeting orders arise when existing limit orders are cancelled, to be
resubmitted as marketable orders.

While Hasbrouck and Saar (2007) document interesting results at the
aggregate level, we show that at the disaggregate level the dynamics are
not a linear decomposition of the aggregate statistics. For example, we
show that for most stocks the probability of cancellation of orders sub-
mitted at best quotes is lower than the probability of cancellation of
orders at the nearest ticks above and below the best quotes, and that this
is true for both bid and ask sides. In other words, a limit order submitted
at the best quotes is less likely to be fleeting than limit orders submit-
ted at the neighboring ticks. However, for some stocks this trough in
the probability of cancellation is observed for orders submitted one tick
within the bid–ask spread. This is usually the case when stocks have a
wider bid–ask spread and higher price.

The probabilities of cancellation within two seconds tend to be almost
uniformly higher than those reported by Hasbrouck and Saar (2007). This
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is not surprising since their sample period of October 2004 is two years
older than ours. We document systematic differences in the shapes of
cancellation probabilities across alternative levels of order aggressiveness
and across stocks. These and other results discussed in the rest of the
chapter show that there are various facets of these fleeting orders that
could warrant further investigation.

2.3 Data sample characteristics

Our sample comprises of the Nasdaq 100 stocks and the sample period
is July–December 2006. We use the first three months (63 trading days)
for estimation purposes and the next three for out-of-sample robustness
checks. Our data comes from several sources. We use limit order place-
ment and cancellation data from the INET ECN. The ITCH® data feed
from INET provides anonymous histories for all limit orders – when the
orders were placed, modified, cancelled and executed – for all stocks
that are traded on that platform. We use CRSP data for our firm-specific
covariates and TAQ data from the NYSE to build the “National Best Bid
and Offer” (NBBO) series of spreads and depths for our sample stocks.
Additionally, we use earnings announcements data from I/B/E/S to par-
tition our sample days into anticipated news days versus nonnews days
in order to check the robustness of our estimates.

2.3.1 Firm-specific summary statistics

Table 2.1 shows some basic characteristics of our sample firms by price
deciles. Close to half of the 100 stocks (48 stocks) have INET spread
between one and two cents. The spread is even tighter when we look at
the NBBO spreads for the sample stocks, as shown in Table 2.2. With close
to ten million dollars, Google Inc. has the highest five-minute dollar
trading volume, while the vast majority of the sample (80 percent) has
under one-million-dollar’s worth of trading volume in the average five
minutes.

Table 2.2 shows some summary statistics of the sample, aggregated by
stock-days. The value weighted average share price is $39.37, which is
much higher than the average share price for the Nasdaq universe of
stocks. The lowest priced share in our sample is JDS Uniphase, whose
average price over the sample period is $2.23 (Table 2.1) but because of
its relatively higher market value, the value weighted minimum price
in our sample is about $4. Google Inc. is the highest priced share in
our sample. As expected, the Nasdaq 100 firms are all high market-
capitalization firms, so the mean market value of equity is 18.1 billion,
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Table 2.1 Price deciles of NASDAQ 100 stocks

Ticker JDSU SUNW SIRI JNPR FLEX TLAB BEAS XMSR ATVI DISCA
Decile Price ($) 2.23 4.53 4.02 14.42 11.34 10.39 12.78 12.45 12.74 13.88
1 INET sprd. ¢ 1.01 1.01 1.01 1.10 1.11 1.11 1.12 1.16 1.26 1.46

5’ range ¢ 1.2 1.6 1.3 3.8 2.7 3.7 3.7 4.3 3.7 2.5
5’ INET $ vol. 0.29 0.85 0.49 0.55 0.23 0.40 0.45 0.42 0.24 0.06

Ticker INTC ORCL AMAT SYMC ALTR CDNS CHKP APCC EXPE URBN
Decile 2 Price ($) 18.57 15.52 16.23 17.71 17.98 16.30 17.73 17.96 14.78 15.83
2 INET sprd. ¢ 1.02 1.02 1.02 1.09 1.10 1.43 1.48 1.51 1.51 1.57

5’ range ¢ 4.4 3.5 4.1 3.9 5.0 3.7 4.0 4.2 3.3 5.2
5’ INET $ vol. 5.49 3.26 1.78 1.01 0.40 0.15 0.16 0.17 0.13 0.23

Ticker CSCO DELL ATYT XLNX VRSN SPLS LBTYA MRVL CMVT RHAT
Decile 3 Price ($) 20.06 22.02 19.24 21.38 19.75 23.17 23.27 22.07 20.02 23.25
3 INET sprd. ¢ 1.02 1.07 1.07 1.12 1.34 1.35 1.47 1.63 1.63 1.81

5’ range ¢ 4.4 5.7 3.1 6.8 4.8 5.1 3.4 10.0 5.5 7.5
5’ INET $ vol. 4.65 2.27 0.96 0.73 0.31 0.45 0.15 0.95 0.24 0.43

Ticker MSFT EBAY BRCM NVDA IACI MEDI PTEN ROST PETM NTLI
Decile 4 Price ($) 25.05 26.20 26.95 24.27 26.68 26.98 25.90 24.79 24.71 24.40
4 INET sprd. ¢ 1.02 1.12 1.23 1.41 1.93 1.97 2.06 2.27 2.29 2.85

5’ range ¢ 3.9 8.1 11.1 9.7 5.1 6.2 8.7 5.1 5.0 6.5
5’ INET $ vol. 6.14 2.24 2.02 1.04 0.23 0.27 0.36 0.14 0.13 0.22

Ticker YHOO SBUX LLTC AMZN MXIM ADBE DISH NTAP ERIC INTU
Decile 5 Price ($) 28.50 32.18 32.28 30.26 29.22 31.72 32.31 32.07 31.98 31.93
5 INET sprd. ¢ 1.10 1.30 1.41 1.43 1.48 1.62 2.01 2.05 2.06 2.29

5’ range ¢ 6.9 7.4 8.7 8.5 9.0 9.2 6.2 9.6 4.7 7.8
5’ INET $ vol. 2.41 1.09 0.60 0.97 0.69 0.68 0.32 0.56 0.17 0.35

Ticker CMCSA BBBY TEVA MCHP PAYX CTXS BMET PDCO ADSK XRAY
Decile 6 Price ($) 34.03 34.29 33.76 32.92 35.86 32.67 32.54 32.80 33.33 36.18
6 INET sprd. ¢ 1.05 1.41 1.69 2.04 2.21 2.52 2.52 2.54 2.85 2.86

5’ range ¢ 5.7 6.2 7.2 8.3 6.3 10.1 6.9 5.4 9.4 5.2
5’ INET $ vol. 1.64 0.54 0.54 0.31 0.30 0.43 0.24 0.11 0.38 0.10

Ticker QCOM CTAS LNCR LRCX FAST AKAM CKFR MNST JOYG MICC
Decile 7 Price ($) 36.37 37.09 36.36 41.43 36.53 38.21 40.98 38.67 39.26 37.08
7 INET sprd. ¢ 1.32 2.75 2.80 3.59 3.68 3.97 4.06 4.24 4.91 5.02

5’ range ¢ 11.2 6.8 5.4 14.6 9.1 15.6 10.2 11.6 18.0 6.6
5’ INET $ vol. 2.58 0.15 0.12 0.57 0.17 0.70 0.26 0.28 0.49 0.08

Ticker KLAC BIIB FISV ERTS APOL CELG AMLN SEPR EXPD CHRW
Decile 8 Price ($) 42.34 42.73 44.52 48.62 47.85 43.98 46.00 47.97 44.63 46.27
8 INET sprd. ¢ 1.70 2.41 2.54 2.91 3.59 3.92 4.06 4.42 4.45 5.02

5’ range ¢ 13.3 11.1 7.3 12.6 9.9 14.4 13.5 13.9 14.5 14.4
5’ INET $ vol. 0.90 0.51 0.23 0.64 0.25 0.62 0.34 0.40 0.36 0.26

Ticker AAPL AMGN SNDK COST GILD GENZ WFMI LAMR CDWC NIHD
Decile 9 Price ($) 66.41 67.38 49.27 50.97 61.59 65.82 56.54 51.25 57.42 53.44
9 INET sprd. ¢ 1.37 1.87 2.07 2.26 2.76 3.86 4.01 4.29 4.70 6.01

5’ range ¢ 18.9 13.6 17.7 10.5 14.8 14.6 13.1 8.6 11.3 15.3
5’ INET $ vol. 8.43 2.03 2.18 0.92 0.93 0.58 0.45 0.16 0.22 0.31

Continued
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Table 2.1 Continued

Ticker RIMM PCAR SIAL ESRX CTSH WYNN GRMN SHLD GOOG ISRG
Decile 10 Price ($) 74.74 67.41 71.63 78.16 68.01 71.08 74.22 148.00 382.92 103.21
10 INET sprd. ¢ 4.04 5.11 5.46 5.76 6.34 7.41 9.04 10.76 12.84 14.27

5’ range ¢ 20.9 14.2 10.2 16.0 17.6 19.7 25.6 34.2 78.0 32.3
5’ INET $ vol. 1.61 0.34 0.13 0.50 0.39 0.43 0.64 1.15 9.97 0.45

Note: This table presents some disaggregated stock-specific summary measures for the Nasdaq
100 stocks trading on the INET ECN between July and September, 2006. We restrict the trading
time to the exchange open hours (9.30–16.00 EST). Stocks are sorted by INET transaction price
and placed into ten deciles, with Decile 1 being the lowest priced and Decile 10 being the
highest priced. INET spd. is the spread on the INET trading platform, which is usually a
little higher than NBBO spreads since INET does not route orders away to markets displaying
better prices. 5’ range is the difference between the highest and lowest INET trade price in
five-minute increments, aggregated over the 84 five-minute intervals in each trading day,
over the 63 trading days. 5’ INET $ vol. is INET trading volume, in millions of US dollars over
each such five-minute interval.

with the lowest and highest being 2.8 and 234.4 billion, respectively, for
JDSU and GOOG. Since our sample is a group of high-volume stocks,
we expected that the spreads for these stocks would be very tight – and
that is also what our data show. The average NBBO spread is just over
two cents, which is about 0.06 percent of price. INET spread is slightly
higher – close to 3 cents – which is 0.07 percent of price.

2.3.2 Times to order executions and cancellations

We approach the issue of characterizing fleeting orders in two alternative
ways. First we fix the probability of cancellation or execution (to one) and
examine, respectively, the time it takes for a given fraction of our sample
stocks (25 percent, 50 percent etc.) to be executed or cancelled. Alter-
natively, we fix the time to cancellation for fractions of sample stocks
(grouped by price deciles) and estimate the probabilities of cancellation
at various levels of quote aggressiveness within the fixed time. Below
we describe the first approach to calculate the times to execution and
cancellation.

We stratify limit orders by their quote aggressiveness and define quote
aggressiveness as in the previous literature, according to the position of
the limit order price on the pricing grid relative to the best quote available
on the same side of the book at the limit order arrival time.

Table 2.3 shows the median times to execution (Panel A) and cancel-
lation (Panel B). Pai (Pbi) denotes the category of ask (bid) limit orders
priced one tick better than the current best ask (bid) price. Pa0 (Pb0)

denotes the category of ask (bid) orders with a limit price equal to the
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Table 2.2 Cross-sectional summary statistics of daily averages

Distribution

Mean St Dev Min 25th % Median 75th % Max

Value weighted
average share
price ($)

39.37 41.40 4.03 21.23 32.60 44.98 391.82

Market value of
equity
(‘000,000 $)

18151 30837 2888 4895 7954 14956 234445

Average daily
volume (‘000
shares)

8171 12616 368 1749 3307 7889 64343

Average daily
INET volume
(‘000 shares)

2639 4224 136 572 1052 2619 22846

$ Quoted
spread
(NBBO)

0.022 0.018 0.010 0.011 0.015 0.029 0.124

% Quoted
spread
(NBBO)

0.06 0.03 0.02 0.04 0.05 0.07 0.23

$ Quoted
spread (INET)

0.028 0.024 0.010 0.013 0.020 0.037 0.143

% Quoted
spread (INET)

0.07 0.05 0.02 0.05 0.06 0.08 0.45

Average depth
at NBO (‘00
shares)

82 289 2.78 5.51 9.50 25.1 1957

Average depth
at NBB (‘00
shares)

83 292 2.87 5.66 9.02 24.7 1955

Average depth
at Best Ask
(INET)

74 278 2.07 4.40 7.25 17.8 1984

Average depth
at Best Bid
(INET)

73 278 2.14 4.58 6.89 17.3 1983

Average depth
at best ask to
best ask+4
(INET)

359 1355 5.07 14.3 31.7 86.7 9511

Average depth
at best bid to
best bid-4
(INET)

357 1351 5.36 16.0 29.7 88.0 9445

Note: This table presents the cross-sectional summary statistics of our sample stocks at the
daily level. Measures of interest are first averaged over the 63 trading days for each stock and
then averaged across stocks. Value weighted share price in the NBBO trade price is weighted
by the market value of equity. Both NBBO and INET spreads and depths for the same stocks
are shown for comparison purposes. Additionally, we also report cumulative depth on the
INET limit order book up to four ticks away from the best quote at any given time.
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Table 2.3 Times to execution and cancellation for limit orders

Grouping by price

Sample
median

Standard
deviation

1st
Quartile

2nd
Quartile

3rd
Quartile

4th
Quartile

Panel A: Times to execution
medtime(Pai) 2.26 5.19 4.30 1.62 2.07 2.16
medtime(Pa0) 11.33 36.81 25.81 11.49 8.34 6.70
medtime(Pa1) 25.29 207.12 74.46 29.96 18.12 14.16
medtime(Pbi) 2.18 4.16 3.68 1.28 2.09 2.00
medtime(Pb0) 10.29 30.02 25.13 10.13 7.83 6.24
medtime(Pb1) 25.71 217.99 76.23 30.29 19.47 13.49

Panel B: Times to cancellation
medtime(Pai) 1.11 96.13 6.02 1.11 0.81 0.41
medtime(Pa0) 2.41 3.73 7.49 2.71 2.13 1.14
medtime(Pa1) 2.19 21.26 7.57 2.34 1.71 0.91
medtime(Pa2) 4.72 47.79 21.52 4.88 3.56 1.85
medtime(Pa3) 10.42 57.05 24.88 12.98 8.29 4.01
medtime(Pa4) 10.73 21.73 30.89 12.34 6.79 3.57
medtime(Pbi) 1.01 60.14 5.50 1.14 0.78 0.40
medtime(Pb0) 2.68 3.83 8.26 2.82 1.94 1.15
medtime(Pb1) 2.25 28.25 10.87 2.91 1.71 0.89
medtime(Pb2) 4.62 46.58 24.44 5.02 3.65 1.65
medtime(Pb3) 10.61 43.34 28.57 14.03 8.22 3.99
medtime(Pb4) 10.22 24.00 32.92 13.42 7.04 4.12

Panel C: Sample characteristics
Price 44.19 50.73 22.19 38.49 53.01 78.27
Day range 0.97 1.18 0.47 0.80 1.21 1.86
Percentage
daily range

2.22 0.44 2.23 2.17 2.36 2.20

Note: This table presents the times to execution and the times to cancellation for orders
at various levels of quote aggressiveness. Median times to execution are shown in Panel A
and cancellation in Panel B. Panel C presents some summary characteristics of the stocks to
facilitate comparison of executions and cancellations across stock-specific characteristics. Pai
(Pbi) denotes an ask (bid) limit order arriving with a limit price which is one tick better than
the current best ask (bid) price. Pa0 (Pb0) is an ask (bid) limit order priced the same as the
existing best quote, Pa1 (Pb1) is placed one tick away from the prevailing best quote and so
on. Apart from sample medians, stocks are also grouped by price quartiles, where quartile 1
represents the lowest priced 25 stocks and quartile 4 represents the highest priced 25 stocks.

existing best ask (bid) quote, Pa1 (Pb1) denotes the category of limit
orders placed one tick away from the prevailing best quote and so on.

Comparing Panels A and B immediately makes it apparent that the
times to execution are much larger than times to cancellation for all
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levels of quote aggressiveness. The median price-improving order tends
to be cancelled (1.11 seconds for ask and 1.01 seconds for bid orders)
twice as fast as it is executed (2.26 seconds for ask and 2.18 seconds for bid
orders). This symmetry across ask and bid sides of the order book persists
for all levels of quote aggressiveness. Focusing on times to cancellation,
we note that price-improving limit orders are cancelled twice as fast as
orders placed at the existing best quotes. As we move deeper into the
limit order book, away from the best quotes, the speed of cancellation
decreases significantly.

2.3.3 Probabilities of order cancellations by
quote aggressiveness

Our second approach to examining the characteristics of fleeting orders
involves estimating the probability of cancellation given a fixed time
since order placement. We assume that for each order there are two
competing risks – execution and cancellation. If there is zero risk of can-
cellation, the probability of execution by a given time, say X seconds
after submission, would be given by the Kaplan–Meier estimate of the
survival function to execution at X seconds. One way to interpret this
is as the fraction of all executed orders that were executed within X
seconds, but adjusted for cancellations, which are treated as independent
censoring events. Similarly, assuming there is zero risk of execution, the
probability of cancellation by X seconds after submission would be given
by the Kaplan–Meier estimate of the survival function to cancellation at
X seconds (the fraction of all cancelled orders that happened to be can-
celled within X seconds, adjusted for executions, which are now treated
as independent censoring events). So the probability of cancellation (or
execution) would be estimated as one minus the Kaplan–Meier estimator
of the survival function to cancellations (or to executions, respectively)
evaluated at the duration of interest, in our case two seconds, half a
second and 100 milliseconds.

Table 2.4 shows the probabilities of order cancellation at various
aggressiveness levels. It is clear that the probability of order cancellation
at all levels of quote aggressiveness is higher for higher priced stocks. For
example, for orders placed at any level of aggressiveness there is more
than a 60 percent chance of cancellation within two seconds of order
placement for stocks that are in the highest price decile. However, the
probability of cancellation within two seconds varies between 24 percent
and 47 percent for the lowest price decile stocks, depending on where
the limit order arrived on the pricing grid. Similarly, the probability of
cancellation varies with the position of the limit order for other cut-off
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Table 2.4 Probability of order cancellations at various levels of quote
aggressiveness

Plim = Pii Plim = Pi Plim = P0 Plim = P1 Plim = P2 Plim = P3 Plim = P4 Plim = P5

Probability of cancellation in less than 2 seconds

Decile 1 0.47a 0.24 0.24 0.35 0.26 0.26 0.28 0.28
Decile 3 0.57b 0.41 0.41 0.47 0.44 0.41 0.41 0.40

Ask Decile 5 0.59 0.56 0.48 0.52 0.52 0.45 0.46 0.43
Side Decile 7 0.55 0.58 0.46 0.55 0.54 0.45 0.48 0.46

Decile 9 0.60 0.60 0.54 0.59 0.58 0.52 0.53 0.53
Decile 10 0.68 0.70 0.61 0.68 0.67 0.63 0.62 0.60

Decile 1 0.47a 0.27 0.23 0.28 0.24 0.25 0.27 0.27
Decile 3 0.55b 0.42 0.40 0.45 0.43 0.41 0.41 0.40

Bid Decile 5 0.59 0.57 0.47 0.51 0.50 0.45 0.45 0.44
Side Decile 7 0.55 0.59 0.46 0.55 0.53 0.45 0.48 0.45

Decile 9 0.61 0.62 0.54 0.59 0.57 0.52 0.53 0.52
Decile 10 0.69 0.70 0.62 0.69 0.68 0.63 0.63 0.61

Probability of cancellation in less than 0.5 seconds

Decile 1 0.36a 0.19 0.16 0.25 0.18 0.19 0.21 0.22
Decile 3 0.44b 0.33 0.29 0.33 0.33 0.30 0.30 0.31

Ask Decile 5 0.47 0.45 0.35 0.37 0.39 0.33 0.34 0.33
Side Decile 7 0.41 0.46 0.32 0.39 0.40 0.33 0.36 0.35

Decile 9 0.47 0.47 0.38 0.41 0.42 0.38 0.39 0.40
Decile 10 0.55 0.58 0.47 0.52 0.53 0.49 0.49 0.48

Decile 1 0.37a 0.22 0.15 0.20 0.17 0.18 0.21 0.21
Decile 3 0.44b 0.34 0.29 0.33 0.32 0.30 0.31 0.31

Bid Decile 5 0.48 0.46 0.34 0.36 0.38 0.33 0.34 0.34
Side Decile 7 0.42 0.47 0.32 0.40 0.39 0.33 0.36 0.35

Decile 9 0.48 0.49 0.38 0.42 0.41 0.38 0.39 0.39
Decile 10 0.56 0.58 0.47 0.53 0.54 0.49 0.50 0.48

Probability of cancellation in less than 100 milliseconds

Decile 1 0.24a 0.15 0.10 0.13 0.12 0.13 0.16 0.17
Decile 3 0.30b 0.24 0.19 0.20 0.22 0.20 0.21 0.23

Ask Decile 5 0.33 0.35 0.23 0.23 0.27 0.23 0.23 0.24
Side Decile 7 0.26 0.32 0.19 0.25 0.25 0.22 0.25 0.25

Decile 9 0.31 0.33 0.25 0.26 0.27 0.25 0.26 0.28
Decile 10 0.38 0.41 0.32 0.36 0.37 0.33 0.35 0.34

Decile 1 0.25a 0.16 0.10 0.12 0.11 0.12 0.15 0.16
Decile 3 0.31b 0.25 0.19 0.21 0.21 0.20 0.21 0.22

Continued

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP02” — 2010/11/26 — 09:11 — PAGE 46 — #14

46 Bidisha Chakrabarty and Konstantin Tyurin

Table 2.4 Continued

Plim = Pii Plim = Pi Plim = P0 Plim = P1 Plim = P2 Plim = P3 Plim = P4 Plim = P5

Bid Decile 5 0.35 0.36 0.23 0.23 0.26 0.23 0.24 0.25
Side Decile 7 0.27 0.33 0.19 0.24 0.25 0.22 0.25 0.25

Decile 9 0.32 0.35 0.24 0.26 0.27 0.25 0.26 0.27
Decile 10 0.39 0.41 0.31 0.36 0.38 0.34 0.35 0.35

Notes: This table presents the probabilities of cancellation for orders at various levels of aggres-
siveness. Assuming there is zero risk of execution, the probability of order cancellation within
time T after the order arrival is given by the Kaplan–Meier estimate of the survival function
to cancellation at duration T . Then the probability of cancellation within time T since the
order submission is estimated as 1 minus the Kaplan–Meier estimate of the survival function
to cancellation (execution) evaluated at duration T , where T = 2 sec, 0.5 sec or 100 millisec-
onds. Pii (Pi) denotes the limit order aggressiveness category that includes all arriving orders
with the limit price two (one) tick better than the concurrent best quote on the same side. P0
is the limit order price equal to the existing best quote on the same side, while Pk is the limit
order price that is k ticks inside the limit order book, away from the prevailing same-side best
quote. To conserve space, we report the probability of cancellation summaries for stocks in
six of the ten price deciles.
a Due to insufficient # of observations for 6 stocks in decile 1, this probability is based on
data for 4 decile 1 stocks.
b Due to insufficient # of observations for 3 stocks in decile 3, this probability is based on
data for 7 decile 3 stocks.

duration levels. For example, the probability to cancellation within half a
second varies between 47 percent and 58 percent for highest decile stocks
and between 15 percent and 37 percent for the lowest decile stocks.

When we reduce the order duration to truly fleeting level –
100 milliseconds – the results are more interesting. There is a better than
30 percent chance that orders placed at the best quotes will get cancelled
within 100 milliseconds for the stocks in the highest price decile. When
we look at orders that improve price by one tick the probability of cancel-
lation increases to over 40 percent. At all levels of quote aggressiveness
the probability that an order will be cancelled within 100 milliseconds
is more than twice for the highest decile stocks, compared to the lowest
decile ones.

Figures 2.3 and 2.4 show the limit order cancellation dynamics at other
time increments for various levels of quote aggressiveness. While the
probability of limit order execution increases monotonically with order
aggressiveness across price deciles and cut-off duration levels (Figure 2.3),
the probability of cancellation exhibits a non-monotone and potentially
complicated relationship (Figure 2.4). Overall, our results so far make it
clear that order cancellation times depend on stock-specific character-
istics such as its price and market capitalization, as well as the market
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Probability of limit order execution within 500 milliseconds after arrival
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Figure 2.3 Probability of limit order executions
Limit order execution probabilities within half a second and 10 seconds after
arrival by share price deciles. Decile 1 includes the least expensive shares; decile
10 includes the most expensive shares. Limit orders are stratified by side of the
limit order book (ask versus bid) and aggressiveness. Similar to Hasbrouck and
Saar (2007), the probabilities are calculated under the hypothetical scenario that
the limit orders are not cancelled within half a second after their arrival. The
actual execution probabilities will be smaller due to the censoring of executions
by cancellation events (i.e. by fleeting order activity).
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Probability of limit order cancellation in 500 milliseconds after arrival
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Figure 2.4 Probability of limit order executions
Limit order cancellation probabilities within half a second and 10 seconds after
arrival by share price deciles. Decile 1 (10) includes the least (highest) priced
shares. Limit orders are stratified by side of the limit order book (ask versus bid)
and aggressiveness. Similar to Hasbrouck and Saar (2007), the probabilities of limit
order cancellation within half a second are calculated under the hypothetical sce-
nario that the limit orders are not executed within half a second upon arrival. The
empirically observed cancellation probabilities will be smaller due to the censor-
ing of cancellations by execution events (mostly for the aggressively priced limit
order categories, Plim = Paii, Pai or Pa0 on the ask side and Plim = Pbii, Pbi or Pb0 on
the bid side). The graph illustrates clearly that orders on the ask side of the limit
order book are more likely to be cancelled within half a second than their bid side
counterparts. Note also the nonlinear dependence of the cancellation probability
on the limit price aggressiveness.
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conditions such the bid–ask spread, depth of the limit order book and
the relative position of the limit order on the pricing grid.

2.4 Principal components of execution and
cancellation probabilities

We use the following covariates for our principal components analysis:

• Price = the INET average transaction price per share,
• Sprd = the INET inside spread,
• Range = the five-minute INET price range,
• Disvol = the INET share volume from executions against displayed

limit orders,
• Hinvol = the INET volume of executions against hidden orders inside

the INET spread,
• Houtvol = the five-minute INET volume from executions against hid-

den orders on the edges of the INET bid–ask spread,
• Dep1 = the average displayed depth of the INET book at the best bid

and ask prices,
• Dep5 = the average displayed depth of the INET order book at the top

five ticks on bid and ask sides of the book, and
• Shrs = the number of outstanding common shares for each stock on

June 30, 2006.

Panel A of Table 2.5 shows the correlation matrix for the above covari-
ates. The majority of these variables have a coefficient of correlation
of greater than 50 percent with at least one of the other variables.
Given this, we apply principal component analysis to effect a dimen-
sion reduction. We extract the first five principal components for the
stock-specific averages of our covariates Logprice = ln(Price), Logsprd =
ln(Sprd–1), Logrange = ln(Range), Logdisvol = ln(Disvol), Loghinvol =
ln(Hinvol), Loghoutvol = ln(Houtvol), Logdep1 = ln(Dep1), Logdep5 =
ln(Dep5) and Logshrs = ln(Shrs). The five principal components PC1,. . .,
PC5 are constructed as linear combinations of the above covariates so
that they have orthonormal loading coefficients and PC1 is chosen to
explain the largest proportion of variation in the covariates, PC2 explains
the largest proportion of the variation that is left unexplained by the first
component, PC3 explains the largest proportion of variance unexplained
by the first two components and so forth. The linear combination coeffi-
cients for each principal component are reported in Panel C of Table 2.5.
The first five factors PC1, …, PC5 are related to our covariates by the
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following equations:

PC1 = 0.29Logprice + 0.38Logsprd + 0.26Logrange − 0.36Logdisvol

− 0.27Loghinvol − 0.31Loghoutvol − 0.38Logdep1 − 0.38Logdep5

− 0.35Logshrs,

PC2 = 0.46Logprice + 0.15Logsprd + 0.56Logrange + 0.25Logdisvol

+ 0.47Loghinvol + 0.35Loghoutvol − 0.13Logdep1 − 0.10Logdep5

+ 0.14Logshrs,

PC3 = −0.60Logprice + 0.10Logsprd − 0.11Logrange + 0.00Logdisvol

+ 0.11Loghinvol + 0.54Loghoutvol − 0.06Logdep1 − 0.06Logdep5

− 0.59Logshrs,

PC4 = 0.07Logprice + 0.04Logsprd + 0.16Logrange − 0.07Logdisvol

+ 0.53Loghinvol − 0.53Loghoutvol + 0.32Logdep1 + 0.18Logdep5

− 0.52Logshrs,

PC5 = 0.51Logprice − 0.42Logsprd + 0.19Logrange + 0.41Logdisvol

− 0.32Loghinvol + 0.01Loghoutvol − 0.15Logdep1 + 0.10Logdep5

− 0.53Logshrs.

The contributions to the first principal component PC1 are positive
(and have roughly equal size) for the nominal covariates Logrange, Log-
price and Logspread, and are negative (and have roughly equal size) for all
covariates measured as the number of shares traded or available to trade.
Therefore, we can interpret PC1 as the “granularity” of the limit order
book.

The contributions to PC2 are positive for all variables other than the
limit order book depth; the contributions of Logdep1 and Logdep5 are
both negative and equal to each other. Among the covariates, Logrange,
Logprice, Loghinvol, Loghoutvol and Logdisvol have the largest coefficients,
suggesting a natural interpretation for the second component as stock
volume-driven “liquidity.” Indeed, PC2 tends to be high for large dollar
volume stocks, which are also more volatile (due to a large amount of
trading) and have a large amount of hidden liquidity within and near
the current inside spread.

The contributions to the PC3 are negative (and approximately equal)
for share price and the number of outstanding shares, and positive for
the number of hidden shares executed at the edges of the bid–ask spread.
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Therefore, the third principal component can be interpreted as a measure
of “hidden liquidity”available behind the displayed depth of the INET
limit order book.

A tentative interpretation of the fourth principal component PC4 is
the amount of hidden liquidity supplied inside the INET bid–ask spread
relative to the hidden liquidity supplied outside of the bid–ask spread.
Finally, PC5 might be interpreted as the amount of liquidity available
away from the bid–ask spread, since the sensitivity of PC5 tends to be
positive for more expensive and more volatile stocks with large depth
available away from the current spread.

Table 2.6 presents the results of regression analysis for the times to
execution (Panel A) and cancellation (Panel B) on the five principal
components. The results can be qualitatively interpreted as follows:

(1) The times to cancellation tend to be uniformly smaller for stocks with
high values of the first two principal components, which confirms
our original observation that fleeting activity is more prevalent for
larger more liquid and more expensive stocks. Similarly, the times
to execution tend to be smaller for stocks with large values of the
first two principal components, with one exception. The times to
execution for orders submitted inside the bid–ask spread tend to be
unrelated to the value of PC1, which is closely associated with share
price and granularity of the tick grid of the order book.

(2) The sensitivity of time to cancellation to the third principal com-
ponent is significantly negative only for orders submitted inside the
bid–ask spread; the sensitivities to PC3 for less aggressively priced
limit orders are also negative but insignificant. The time to execu-
tion for displayed limit orders is also negatively related to the third
principal component, but only for the orders submitted sufficiently
close to the current market price. These two observations suggest
that stocks with greater hidden liquidity behind the best quotes
also tend to be the ones with more extensive limit order cancella-
tion activity, especially for the orders submitted inside the bid–ask
spread.

(3) The sensitivity of times to order cancellation to the fourth principal
component is negative for the limit orders submitted far away from
the current best quotes and positive for the limit orders submitted
inside the bid–ask spread. In contrast, the sensitivities of times to
order execution are positive and statistically significant for all limit
orders. Therefore, less aggressively priced limit orders, especially sub-
mitted three to five ticks away from the concurrent best quotes, are
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more likely to be fleeting for stocks with higher amounts of hidden
execution inside the bid–ask spread.

(4) Finally, the times to cancellation for relatively aggressive limit orders
and the times to order execution for all limit orders tend to be nega-
tively related to the fifth principal component, which is related to the
amount of liquidity provided further away from the current market
price of the stock.

2.5 The mixture of distributions model

We began our analysis by illustrating order cancellation rates for one
stock, Comcast (CMCSA) – showing the high rates of cancellation at very
short durations, which then taper off as time increases. We then showed
that this pattern is robust across stocks. The dynamics of order cancella-
tion at very short durations differ from those at longer time intervals. We
use these observations to posit that instead of specifying one distribution
to model order cancellations, a better approach would be to formulate
a mixture of distributions – one that draws the fleeting orders from one
distribution and longer duration orders from another.

2.5.1 Assumptions and notation

Assume we have access to the complete history of a limit order k, which
was entered into the limit order book at time T0. Prior to the limit order
entering the book, the observed covariates capturing the market condi-
tions were at the level xk0. Assume that the first change of the covariates
to the new level xk1 occurs at time T1, within tk1 seconds since the order
arrival; the second change of the covariates to the new level xk2 occurs
at time T2, within tk2 seconds since this limit order arrival; and so on,
until termination of the limit order at time Ti(k), within tki(k) seconds
after the order arrival and the covariates prior to the limit order termina-
tion stayed at the level xki(k). Assume there are three possible causes for
limit order termination: (1) cancellation, (2) full execution, and (3) cen-
soring. In addition, we may allow for the possibility of partial executions
during the lifetime of the limit order.

Upon arrival, the limit order assumes one of the two types: (1) fleeting
or (2) regular (non-fleeting). The newly arrived order is fleeting with prob-
ability π(xk0) = exp(−π ′xk0)/(1 + exp(−π ′xk0)) and non-fleeting with
the complementary probability 1/(1+exp(−π ′xk0)). If the order is fleet-
ing then the risk of its cancellation depends on the level of covariates
just prior to (or, alternatively, immediately after) this limit order arrival,
with the hazard rate of the cancellation given by the index function
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ν(xk0)= exp(ν′xk0) (or, alternatively, by ν(xk1)= exp(ν′xk1)). If the order
is non-fleeting then the instantaneous risk of its cancellation depends
on the contemporaneous level of covariates; therefore, for a non-fleeting
limit order observed within the duration episode �tki, the hazard rate of
its cancellation is given by the index function ξ(xki)= exp(ξ ′xki). Condi-
tional on the limit order being “at risk” of execution within the episode
�tki both fleeting and non-fleeting orders are subject to execution risk,
which is characterized by its hazard rate µ(xki)= exp(µ′xki). The indica-
tor of being “at risk” of being executed within the duration episode �tki
is given by Rki = R(xki), which is a zero-one switch function of covariates
xki. In addition, the limit order history may also be censored at time Ti(k)
without execution or cancellation, in which case it will be assumed that
the censoring occurs independently of the execution and cancellation
events.

2.5.2 The timeline of a limit order history

A stylized timeline of the limit order history is shown on the next page.
The first row marks the clock time Ti (measured in seconds since start of
the trading day), the second row marks the time tki since the moment tk0
of kth limit order arrival, the third row marks i(k) duration episodes �tki
between consecutive changes of covariates xki and the fourth row shows
the values of time-varying covariates immediately before the beginning
of each new episode of the limit order history. Row five shows the hazard
rate ν(xk0) of cancellation for fleeting orders, row six shows the hazard
rate ξ (xki) of cancellation for regular (non-fleeting) limit orders and row
seven shows the hazard rate µ(xki)R(xki) of order execution in each of
the durations prior to the kth limit order termination.

T0 T1 T2 Ti(k)–1 Ti(k) Clock time

Covar.

Canc. risk
ν(xk1) v(xk2) v(xk,i(k)–1) v(xk,i(k))...
ξ(xk1) ξ(xk2) ξ(xk,i(k)–1) ξ(xk,i(k))...

µ(xk1) µ(xk2) µ(xk,i(k)–1) µ(xk,i(k))...Exec. risk

LO arrival:
Fleeting with prob. π (xk0)

Regular with prob. 1– π (xk0)

xk0 xk1 xk2 xk,i(k)–1 xk,i(k)...
tk1 tk2 tk,i(k)–1 tk,i(k) Duration

LO termination

...
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2.5.3 The likelihood function

To derive the expression for the likelihood function Lk of kth limit order,
we start with the model where the risks of execution and cancellation are
conditionally independent given the values of covariates. Then we show
how the derived log-likelihood function can be maximized by standard
methods of survival analysis, since the likelihood function Lk can be
decomposed into the product of two terms, Lck and Lek, corresponding to
the likelihood terms of cancellation and execution risks. The likelihood
function of cancellation can be written as follows:

Lck(π ,ν,ξ)= e−π ′xk0

1 + e−π ′xk0
exp

[∑i(k)

i=1
(δki lnν(xk0)− ν(xk0)�tki)

]
+ 1

1 + e−π ′xk0
exp

[∑i(k)

i=1
(δki lnξ(xki)− ξ(xki)�tki)

]
,

where δki is the indicator of the event that ith duration episode is ter-
minated by cancellation. The likelihood function of execution is written
similarly as:

Lek(µ)= exp
[∑i(k)

i=1
(dki lnµ(xki)− R(xki)µ(xki)�tki)

]
,

where dki is the indicator of the event that ith duration episode is
terminated by execution.

The log-likelihood function corresponding to the cancellation risk can
be written in the additive form as follows:

lnLck(π ,ν,ξ)= −(π ′xk0 + ln(1 + e−π ′xk0)+ ln(1 + Zck(π ,ν,ξ)))

+
∑i(k)

i=1
(δki lnν(xk0)− ν(xk0)�tki),

where

Zck(π ,ν,ξ)= π ′xk0 +
∑i(k)

i=1
(δkiyki − ν(xk0)(1 − eyki )),

and

yki = lnξ(xki)− lnν(xk0).

The log-likelihood function corresponding to execution risk is written
similarly as follows:

lnLek(µ)=
∑i(k)

i=1
(dki lnµ(xki)− R(xki)µ(xki)�tki).
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The log-likelihood function corresponding to the entire data set captur-
ing the records of complete histories of K limit orders is given by

lnL(π ,ν,ξ)=
∑K

k=1
(lnLck(π ,ν,ξ)+ lnLek(µ)).

2.5.4 Estimation results

Panel A of Table 2.7 shows the results for the model of intensity of limit
order arrival at best quotes for ask orders for 13 randomly chosen stocks
and Panel B shows the same for the mixture model for cancellation of
limit orders arriving at best quotes. Estimates that have the same sign at
least 90 percent of the days are boldfaced.

Panel B shows that the probability of a fleeting order at best ask quotes
depends:

• positively on bid–ask spread,
• positively on recent buyer-initiated trading volume (in the last

5 seconds),
• positively (but not as strongly) on recent (last 5 seconds) executions

of hidden bid orders,
• negatively on LOB depth at and near the best quote on the same side,
• negatively (except for ISRG) on LOB depth at best quote on the

opposite side,
• negatively for small relative spread stocks (AAPL, CMCSA) and posi-

tively for larger relative spread stocks (AKAM, GOOG, ISRG) on recent
(in the last five seconds) seller-initiated trading volume.

The intensity of limit order arrival at best ask quotes (shown in Panel A)

• depends positively on bid–ask spread,
• depends positively on recent (in the last five seconds) buyer- and

seller-initiated trading volume, although more strongly on seller-
initiated trading volume,

• depends negatively on LOB depth at and near the best quote on the
opposite side,

• exhibits positive dependence on LOB depth near the same side best
quote for AMGN and ISRG and negative dependence on LOB depth
near the same side best quote for CMCSA.

In Table 2.8 we provide results from the mixture of distributions model
for orders placed with limit price that is one tick away from the best
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current ask price. The results are shown for 10 of the 13 stocks in the
previous Table 2.7, and these results are qualitatively similar.

2.6 Conclusion

Order cancellations are only very recently being recognized as important
events in identifying patterns in the limit order book. Prix et al. (2007)
use order cancellation patterns to identify traces of algorithmic trading
in the Xetra order submissions. Hendershott et al. (2007) show how
algorithmic trades improve liquidity, and identification of algorithmic
trades relies, in part, on order cancellation messages. We add to this
growing literature by showing that the times to cancellation of limit
orders depend nonlinearly on both stock-specific factors as well as market
conditions, and establishing the specific factors and market conditions
that have the highest power to explain order cancellations.

We document stylized facts about very short-lived – fleeting – orders
submitted to a limit order trading platform and study the dynamics of
fleeting order activity. We show that cancellation times are systematically
and jointly dependent upon (1) the degree of quote aggressiveness, and
(2) the stock price. In other words, to characterize an order as fleeting, we
would have to know where in the pricing grid the quote was placed rela-
tive to the existing best quotes, and what is the share price of that stock.

Principal component analysis for the probabilities of limit order can-
cellation shows that most of the cross-sectional variation in cancellation
probabilities can be explained by the stock price, which can be inter-
preted as the limit order book granularity for this stock. We model the
nonmarketable limit order flow as a mixture of two order types and inter-
pret one type in this mixture as fleeting orders. By allowing the mixing
probability to depend on stock characteristics and market conditions,
we find that fleeting orders are more likely to be observed for aggres-
sive quotes and in market conditions characterized by higher volatility,
wider bid–ask spreads and higher volumes of hidden transactions inside
the spread.

Notes

1. Biais et al. (1995) find that close to 11 percent of limit orders on the Paris Bourse
CAC 40 stocks are cancelled. Using data on 148 NYSE listed stocks’ trades for
one week in mid-2001, Ellul et al. (2005) find close to 33 percent of orders are
cancelled. Fong and Liu (2006) show that in the Australian Stock Exchange,
the frequency of order cancellations ranges from 10.1 percent (sell/small cap
stocks) to 14.1 percent (buy/large cap stocks). Prix et al. (2007) find that the
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percentage of no-fill orders that are terminated amount to close to 70 for the
DAX 30 stocks for January 5–12, 2005. The more recent studies indicate that
cancellation rates increased to more than 90 percent with proliferation of high-
frequency trading.

2. Note that the leftmost dashed line corresponds to cancellation within ten
milliseconds of submission. This is close to the technological limit on signal
transmission in ECNs (approximately one-third the speed of light in a glass
medium).

3. We note here that stability depends on the model specification and our com-
ment on stability is only with respect to the double-exponential mixture of
distributions that we have specified. We are currently also trying to use alter-
native models (Weibull distributions in particular) to examine if that could
improve the goodness-of-fit of our model.

4. Challet and Stinchcombe (2003) analyse high frequency data from the Island
ECN order book for four stocks – Cisco (CSCO), Dell (DELL), Microsoft (MSFT),
and Worldcom (WCOM). However, they use the screen-shots data that was
publicly available. This order submission data is truncated at the 15th highest
bids and lowest asks orders at a given time. Unlike theirs, our dataset comprises
of all orders placed / modified / executed / cancelled at all depths at any given
time.

5. Specifically, for time to cancellation, they find that the exponent could be in
the range of −2.1 ± 0.1.
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3
Market Microstructure of the
Foreign Exchange Markets:
Evidence from the Electronic
Broking System
Yuko Hashimoto and Takatoshi Ito

3.1 Introduction

The foreign exchange market remains sleepless. In contrast to stock
exchange markets which are subject to strict opening and closing times
each day and where transactions are done in a specific space (such as
the New York Stock Exchange and Tokyo Stock Exchange), someone is
trading somewhere all the time – 24 hours a day, (almost) 7 days a week
in foreign exchange markets.

The state of the global foreign exchange market is clarified by a market
survey conducted by central banks under coordination of the Bank for
International Settlements (BIS) once every three years. The most recent
survey was conducted in April 2007 and the BIS report was issued in
2007. According to the survey, as shown in Table 3.1, following a brief
decline between 1998 and 2001, the average daily turnover of the foreign
exchange steadily increased after 2001 reaching $1.8trl in 2004 followed
by the record high of $3.1trl in 2007.1 Of the turnover in 2007, spot trans-
actions accounted for $1005 billion,2 outright forward $361 for billion
and swaps $1714 billion. Decomposing into currencies, approximately
43 percent of transactions are in US dollars, 18 percent are in euros, 8 per-
cent in Japanese yen, 7 percent in pound sterling and 3 percent in Swiss
francs. As for the currency pairs, $/euro accounted for $840bil, $/yen for
$397bil and $/GBP for $361bil.

Foreign exchange transactions take place between dealers of reporting
financial institutions, between a dealer and another financial institution
or between a dealer and a nonfinancial customer. One of the remark-
able features is a recent sharp increase in transactions between dealers
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Table 3.1 Foreign exchange turnover

Billion of USD

1998 2001 2004 2007

Total foreign exchange
turnover, daily average

1430 1173.07 1794 3081

Spot 568 387 831 1005
Outright forwards 128 131 209 362
swaps 734 656 954 1714

Between Reporting dealers 908 688 956 1319
(Percentage share to Total

turnover)
(64) (59) (53) (43)

Between Dealer and other fin
institutions

279 329 585 1235

(Percentage share to Total
turnover)

(20) (28) (33) (40)

Between Dealer and non-fin
institutions

242 156 252 527

(Percentage share to Total
turnover)

(17) (13) (14) (17)

Specified currency against all
other currencies*

USD 1260 1060 1573 2660
Euro 503 442 659 1139
Yen 300 266 359 510
Pound sterling 158 155 299 461
Swiss franc 101 71 108 209

Currency pair (Top 3)
USD/Euro 348 354 503 840
USD/Yen 267 231 294 397
USD/GBP

118 125 248 361

Note: *Because two currencies are involved in each transaction, the sum of transactions in
individual currencies comes to twice the total reported turnover.
Source: Bank for International Settlements, Triennial Central Bank Survey of Foreign Exchange
and Derivatives Market Activity in 2007, December 2007 (BIS 2007).

and other financial institutions, whereas the percentage share of transac-
tions between dealers and between dealers and nonfinancial institutions
remains almost constant. The declining share of transactions between
dealers who report to the BIS surveys can be partly explained by the grow-
ing role of electronic brokers in the spot interbank market.3 This trend
means that “hot potatoes” (Lyons, 1997), transmissions of orders by large
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retail customers to a bank that generate multiplied transactions in the
interbank market through a price discovery process, are less important
now and a cool supercomputer has become increasingly important.

As electronic broking has become the dominant method of transaction
in foreign exchange markets, interbank transaction patterns have also
shifted. Until several years ago, bank policy allowed dealers who received
customer orders to hold their own proprietary positions for profit-taking.
They tended to add their own positions when they executed customers’
orders if they felt that these orders contained some valuable information.
Receiving customers’ orders meant a special information advantage in
forecasting the direction of the foreign exchange rate. Dealers in banks
now have only very small volumes of their own proprietary positions.
Responsibility for proprietary trading has been transferred to an indepen-
dent department, sometimes characterized as an in-house hedge fund,
and this proprietary trading section uses more computer modeling to
seek profit opportunities by betting on the direction of the exchange
rate within the very short-run; from a few minutes to several hours.

Given the background of the changing structure of the foreign
exchange market and the evolving trading behavior, this chapter aims
to shed light on the high-frequency foreign exchange market. More
precisely, we examine intraday patterns of the market and analyze the
reaction of exchange rates to the release of major macroeconomic statis-
tics in Japan using one-second sliced transaction data obtained from the
actual trading platform, EBS.

The rest of this chapter is organized as follows. Section 3.2 gives
a literature review. Section 3.3 describes data used in the analysis.
Section 3.4 summarizes intraday patterns of the foreign exchange mar-
ket. Section 3.5 shows the exchange rate reactions to macroeconomic
statistics’ releases. Section 3.6 concludes this chapter.

3.2 Literature review

Conventional wisdom in the academic literature is that the exchange
rate follows random walk for frequencies less than annual, for example,
daily, weekly or even monthly, whereas it sometimes shows time trends,
cyclicality or, in general, history dependence at lower frequencies. While
traditional economics textbooks are based on the random-walk hypoth-
esis, financial institutions continue to bet millions of dollars on the
predictability of exchange rate movements. The gap between the ran-
dom walk in academia and the prediction model in the real world is
remarkable, but in recent years there has been a growing academic
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literature on exchange rate forecasting and empirical investigation using
high-frequency data – “market microstructure” analysis.4

As for predictability and random walk, using high-frequency deal and
quote prices of USDJPY and EURUSD exchange rates, Hashimoto et al.
(2008) found that deal price movements tend to continue a run once
started, whereas quote prices mostly follow a random walk. Ito and
Hashimoto (2008) showed by using high-frequency data from the actual
trade platform that exchange rates could be predictable at up to five min-
utes and the predictability disappears after 30 minutes. Evans and Lyons
(2005a, 2005b) also examined daily EURUSD exchange rate returns based
on the end-user data and found a persistent (days) effect in currency
markets.

Some studies focus on whether exchange rates respond to pressures
of customers’ orders. Evans and Lyons (2002), for example, reported a
positive relation between daily exchange rate returns and order flows for
Deutsche mark/dollar. Love and Payne (2003) and Berger et al. (2005)
studied the contemporaneous relationship between order flow and the
exchange rate. Evans and Lyons (2005c) consider heterogeneity of order
flow in estimating its price impact. Based on the end-user order flow data,
they show that order flow provides information to market makers. Lyons’
series of papers (1995, 1996, 1997, 1998, 2001) developed a theoretical
model of order flows and information transmission. In line with the
information and pricing in markets, Lyons and Moore (2005) found that
exchange rate prices are affected by transactions.

Intraday activities such as the number of deals and transaction volume
in foreign exchange markets are also of interest in the market microstruc-
ture analysis. Admati and Pfleiderer (1988), Brock and Kleidon (1992)
and Hsieh and Kleidon (1996) provided theoretical and empirical back-
grounds of intraday patterns of the bid–ask spread and volatility. Baillie
and Bollerslev (1990) and Andersen and Bollerslev (1997, 1998) were
some of the earliest studies that examined intraday volatility of exchange
rates using indicative quotes. Finally, Chaboud et al. (2004), Berger
et al. (2005) and Ito and Hashimoto (2006, 2008) examine the intraday
behavior of exchange rates using up-to-date high-frequency data.

The examination of news impact on exchange rates has evolved with
data availability. Intraday exchange rate observations meant five times
per day at the time of Ito and Roley (1987). Once an electrically recorded
exchange rate database became available, many studies exploited the
data. Goodhart and Payne (1996) and Goodhart et al. (1996) were among
the first to use the Reuter trading platform data (D-3000). Andersen
and Bollerslev (1998) and Andersen et al. (2003) examined the effect
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of macroeconomic announcements on intra-daily exchange markets
using the Reuter indicative quote data. Hashimoto (2005) used the
“event-study approach” to examine the foreign exchange transaction
patterns during the Japanese banking crisis of 1997. Andersen et al.
(2007) and Faust et al. (2003) studied US news releases and their impact
on foreign exchange markets and Ehrmann and Fratzscher (2005) exam-
ined the impact of US, German and Euro Area news releases on the
foreign exchange markets.

In recent years, the EBS has provided researchers with data which
are recorded from the actual trading platform. Chaboud et al. (2004)
examined the impact of the US macroeconomic statistics’ releases on
the euro–dollar and dollar–yen exchange rates. Their findings are con-
sistent with those in recent literature in that the conditional mean of
exchange rates responds very quickly to an unexpected component of
news releases. Hashimoto and Ito (2009) studied the impact of the 12
Japanese macroeconomic statistics’ releases on the dollar–yen exchange
rates. They found that the exchange rate response to a surprise com-
ponent of news varies from one statistic release to another. Many of
the statistics’ announcements before 8.50 am are found to significantly
affect the exchange rate but not others, and the impact lasts at least up
to 30 minutes. As for the trading volume, both studies found that news
releases increase the volume of transactions. Surprisingly, a surge in trad-
ing volume is found even if the released news indicators are entirely in
line with expectations.

3.3 Data

The spot foreign exchange markets have evolved in recent years and
now the overwhelming majority of spot foreign exchange transactions
are executed through a global electronic broking systems such as EBS and
Reuters D-3000. These electronic broking systems provide trading tech-
nology and display quotes and transactions continuously for 24 hours
a day. Fifteen years ago brokers in the interbank market were mostly
human and direct deals between dealers held a substantial share of the
spot market. The foreign exchange market of today is very different. Now,
each financial institution that establishes an account with EBS and/or
Reuters D-3000 is given a specific computer screen and is able to trade
via this screen by putting in and hitting prices. The EBS has a stronger
market share in absolute terms than Reuters D-3000 in currencies such
as the dollar/yen, euro/dollar, euro/yen, euro/chf etc., and is said to
cover more than 90 percent of the dollar/yen and euro/dollar trades. In
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contrast, Reuters has significant market share in transactions related to
the pound sterling, the Canadian dollar and the Australian dollar.

The EBS data set has advantages over the frequently used indicative
quotes of exchange rate data such as the FXFX of Reuters in at least
two important aspects. First, the quotes in the EBS data set are “firm,”
in that banks that post quotes are committed to trade at those quoted
prices, when they are “hit.”5 In contrast, the indicative quotes of the
FXFX screen are those input by dealers for information only, without
any commitment for trade. Indicative quotes are much less reliable than
firm quotes in capturing the whole picture of a market reality. Second,
transactions’ data available in the EBS data set is simply not available
on the FXFX screen. Although exact trading volume is not disclosed,
transaction counts (counts of seconds that had at least one transaction)
and trade volume shares (a percentage share of trading volumes in one
minute) are available in the EBS data set.

As part of facilitating an orderly market, EBS requires any newly linked
institution to secure a sufficient number of other banks that are willing
to open credit lines with the newcomer. A smaller or a regional bank may
have fewer trading relationships, thus not as many credit relationships.
Then the best bid and ask for that institution may be different from the
best bid and ask of the market. A smaller or regional bank may post
more aggressive prices (higher bids or lower asks) because they will have
relatively fewer credit relationships, implying that they will see fewer
dealable prices generally.

The EBS global system consists of three regional computer sites based
in Tokyo, London and New York, and it matches orders either within the
same site or across different sites. Each region covers Europe, North Amer-
ica and Asia, respectively. The three regions are often abbreviated as LN,
NY and TY regions in this paper. The intra-regional deal of LN, for exam-
ple, consists of deals whose makers and takers are both from the London
region. And inter-regional deals of LN–NY consist of deals whose makers
and takers are from two different regions of London and New York.

The EBS system works as follows.6 A bank dealer places a “firm” limit
order, either ask or bid, with specified price and units that the dealer
is ready to trade if hit. The EBS computers collect these orders and
show “best ask,” “best bid,” “best ask for the member” and “best bid
for the member” on the screen. The former two do not necessarily agree
with the latter two, respectively, because the EBS system controls for
the bilateral credit lines and shows the best available quote for each
institution. Hence, if the member does not have a credit line with the
market maker(s) that is (are) posting the “best” ask/bid in the market,
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then the individually available best quotes deviate from the market best
quotes. The EBS-registered trader’s screen shows the best bid and best
offer of the market and best bid and best offer for that particular institu-
tion. In normal times, the best bid of the market is lower than the best
offer of the market, otherwise, an institution that has positive credit lines
with both institutions on the bid and ask sides will be able to make profits
by arbitrage. The computer continuously clears the order whenever the
sell and buy order matches at the same price – this could happen either
because a buyer hits the ask quote posted in the system or a seller hits
the bid quote posted in the system. The electronic broking system is a
centralized network of traders. In a sense, the electronic broking system
can be regarded either as a collection of large numbers of market makers
or as a continuous (Walrasian) auctioneer.

In recent years, the EBS has made price and trade volume data avail-
able to researchers.7 The EBS price data contains information on, among
other things, firm bid (best bid), firm ask (best ask), deal prices done on
the bid side (lowest given) and deal prices done on the ask side (highest
paid).8

The firm bid and firm ask data are the bid and offer that are committed
to trade if someone on the other side is willing to trade at that price. A
“firm ask” (“firm bid”) means that the institution that posts the quote
is ready to sell (buy, respectively) the shown currency (e.g. the dollar
in exchange for the quoted yen). The ask quote is almost always higher
than the bid quote.9 When the deal is done at the ask side, it means that
the firm ask (ready to sell) quote is “hit” by a buyer. When the deal is
done at the bid side, the firm bid quote is “hit” by a seller. Therefore
the ask deal is a buyer-initiated deal and the bid deal is a seller-initiated
deal, according to the description in Berger et al. (2005).10 If ask (bid)
deals are continuously hit, then the ask (bid) deal prices tend to move
up (down), because of the buy (sell, respectively) pressure.

The lowest given (bid-side deal) or highest paid (ask-side deal) are
recorded for each second when at least one deal on either side was exe-
cuted during the second.11 An ask-side deal means that the ready-to-sell
quote was hit by a buyer, thus it represents a buyer-initiated deal, that is,
a piece of buying pressure. A bid-side deal means that the ready-to-buy
quote was hit by a seller, thus it represents a seller-initiated deal, that is,
a piece of selling pressure.

Data used in this chapter covers from 1999 to 2005. The data on intra-
day patterns of foreign exchange market activities In Section 3.4 covers a
sample period from 1999 to 2001 for both the dollar/yen and euro/dollar
exchange rates, and the data on the effects of Japanese macroeconomic
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Data are of the 1-second time slice

Best
offer

Best
bid

Deal price done on the bid side
Recorded bid transaction price (lowest given) 
Deal price done on ask side 
Recorded ask transaction price (highest paid)

Figure 3.1 EBS data

statistics’ releases on the dollar/yen transaction cover from 2001 to 2005.
All the data are provided by EBS. Section 3.4 utilizes data on 1-second
sliced quote and deal prices and volume shares (the percentage share of
transaction volume of one minute relative to the total transaction vol-
ume of the day) and in Section 3.5 we use exchange rate data from EBS
and Japanese macroeconomic statistics’ releases (release timestamp and
the actual and predicted values) collected from Bloomberg.

3.4 Intraday patterns

3.4.1 Activities during a day

The intraday patterns of foreign exchange transaction are anecdotally
and instinctively known to bank dealers. However, only a few aca-
demic papers have statistically examined market activities so far. Ito and
Hashimoto (2004, 2006) were one of the first teams to analyze the foreign
exchange market using tick-by-tick deal data.

Following Ito and Hashimoto (2006), this section examines high-
frequency data on foreign exchange market activities such as the “num-
ber of quotes,” the “number of deals,” “bid–ask spread” and the “relative
volume share” in order to show the intraday patterns of the foreign
exchange market. The sample period is from 1999 to 2001. The num-
ber of quotes is calculated as the number of seconds where quotes are
recorded, and the number of deals is the sum of bid-side deals and ask-
side deals in each hour of the day.12 The “relative volume” is defined as
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Statistics of activity, Winter 1999–2001
excluding Sundays and JP, UK, US holidays
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Figure 3.2 Relative volume (USDJPY), winter 1999–2001

hourly aggregated relative volumes: the percentage share of transaction
volume in one minute relative to the total transaction volume in one day.
The hourly transaction volumes, with each contract (transaction) being
one million of the “base currency” (the first currency in the currency
pair name), are divided by the total trading volume of the day.13 These
indicators of market activities are calculated for one hour and then aver-
aged over three years with a differentiation of the standard and daylight
saving time.14

Figure 3.2 shows the intraday (Hour 0–23) patterns of the numbers of
deals, quotes and the bid–ask spread of the USDJPY and Figure 3.3 shows
those of the EURUSD.15

As is clear from these figures, there are several features in the intraday
patterns. First, there are three peaks and three troughs in the numbers of
deals and quotes in a day. For the dollar/yen exchange transactions, peaks
of the market activities are seen at GMT Hour 0, Hours 6–7 and Hours
12–14 in the summer and Hour 0, Hour 8 and Hours 13–15 in the winter.
The troughs are at Hour 3, Hours 10–11 and Hour 21 in the summer and
at Hour 3, Hour 11 and Hour 22 in the winter. Peaks and troughs also fall
on similar hours of the day for euro/dollar exchange rate transactions.
That is, the first peak corresponds to the opening of the Tokyo market,
the second peak corresponds to the opening of the London and European
markets and the third peak corresponds to the opening of the New York
market and the afternoon business hours of the London and European
markets. Each of the three troughs corresponds to Tokyo lunch time,

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP03” — 2010/11/22 — 17:40 — PAGE 75 — #10

Market Microstructure of Foreign Exchange Markets 75

Statistics of activity (Euro-USD), Winter 1999–2001
excluding Sundays and JP, UK, US holidays
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Figure 3.3 Relative volume (EURUSD), winter 1999–2001

London lunch time and the hours just before the Asia and the Pacific
markets open, respectively.

The decline in activities during the Tokyo lunch hour is remarkable.
There used to be regulations that prohibited interbank foreign exchange
trading during the lunch hour in Tokyo. The tradition seems to have
lasted even though the regulation was lifted in December 1994 – history
seems to matter.16

As for the peaks in the activities, the dollar/yen transaction and the
euro/dollar transaction have several distinctive features. The height of
the first peak at Hour 0 is much lower for the euro/dollar transactions
than the dollar/yen transactions. This means that in the Tokyo market
the euro/dollar trade is very small compared to the dollar/yen trade. It is
also remarkable that during peak London morning hours and the over-
lapping hours of London afternoon and New York morning, the second
and the third daily peaks, respectively, the number of deals becomes
quite large and exceeds the number of quotes. This is evidence that the
London and New York markets are thick enough for transactions not to
result in the change in exchange rate quotes.

Second, for the dollar/yen transactions we detect high correlation
between the number of deals and the number of quotes. Third, the bid–
ask spread is narrower during the first half of the day, then it becomes
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wider after GMT Hours 16–17 and peaks at Hours 21–22. More precisely,
the bid–ask spread tends to be negatively correlated with the number of
deals (or quotes). In the figures, three troughs in the number of deals
(quotes) mostly correspond to three peaks in the bid–ask spread. One
exception is Hour 0, when the bid–ask spread is higher than during other
business hours in the Tokyo market (except the lunch hour at Hour 3)
but the numbers of deals and quotes are also at one of the peaks. That
is, unlike other times of the day, there seems to be a positive correlation
between the bid–ask spread and the number of deals and quotes during
the first business hour of the Tokyo market.

In summary, by comparing USDJPY and EURUSD trading, intraday
activities are found to have similar patterns, with the following notable
exceptions. First, there seems to be a “home-market advantage.” That is,
activities of the Tokyo market relative to the London market are higher
for USDJPY and lower for EURUSD. In fact, the heights of the three peaks
for the dollar/yen transactions are roughly equal to each other. On the
other hand, the euro/dollar transactions during the Tokyo opening hour
have a distinctively lower peak. This means that the Tokyo (and the
Asian) market is not significantly active for euro/dollar trading. Second,
the EURUSD market is particularly deep in the London morning and
even deeper in the London afternoon hours that overlap with the New
York morning.

3.4.2 Regional contribution

The above analysis based on counts of deals and quotes reveals that the
transaction activities become exceptionally high during the overlapping
business hours of the currency pair home markets – the Tokyo afternoon
and London morning (the second peak) and the London afternoon and
the US morning (the third peak). The next question is on the regional
contribution to the surge in activities. For example, whether a surge in
activities in the Tokyo mid-afternoon hours and London morning hours
can be attributed to the activity of Tokyo participants or London partici-
pants. In the following section, we decompose the regional contributions
to the activity surge by the relative trading volume shares which have
the label of participants (regional names).

The regional contributions to the surge in trades for dollar/yen activ-
ities are shown in Figure 3.4 and for euro/dollar in Figure 3.5.17 The
dollar/yen trades during the overlapping hours of the Tokyo afternoon
and London morning are done by Tokyo (and Asian) participants (finan-
cial institutions in Japan and Asia region) and London (and European)
participants (financial institutions in Europe) around GMT Hours 6–8,
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Three major markets traffic pattern, Winter 1999–2001
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Figure 3.4 Relative volume (USDJPY), winter 1999–2001

Three major markets traffic Pattern (EUR/USD)
 1999–2001 winter
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Figure 3.5 Relative volume (EURUSD), winter 1999–2001
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with the majority of Tokyo participants at the beginning and then with
the increasing share of London participants. During this time period,
transactions from New York (the United States) participants (financial
institutions in North America) are quite small and almost negligible. On
the other hand, the dollar/yen trades during the overlapping hours of
the London afternoon and the New York morning are mainly done by
London and New York participants with some Tokyo participants.

The figures also reveal that transactions by Tokyo participants and Lon-
don participants exhibit a U-shape pattern, whereas the transactions by
New York participants have a single-peak pattern. The monotonic decline
in market activities, the number of deals and quotes, after the New York
afternoon may be due to two reasons: there is no pickup effect in the New
York afternoon (unlike the Tokyo or London markets) and the transac-
tions after GMT 16 are mainly done by the New York participants (almost
no participants from Tokyo and London). The very large trade volume
among the Tokyo participants during the Tokyo business hours (except
for lunch hours) implies that, for the dollar/yen trade, the Tokyo mar-
ket has new information, inducing heterogeneous reactions to the news,
thereby generating more trade.

As for the euro/dollar transactions, it is immediately clear from
Figure 3.2 that the share of Tokyo participants is quite small compared to
London and New York participants and also compared to their presence
in the dollar/yen trades. It is also interesting to note that even for the
euro trading, London and New York participants are almost nonexistent
during the Tokyo business hours.

Going back to regional contributions, the share of London partici-
pants is particularly high in the euro market during the two peaks in
the euro/dollar transactions (Hours 8 and 13–15 in winter; Hours 7 and
12–13 in summer). London participants are also dominant during the
overlapping hours of the Tokyo afternoon and London morning, and
New York participants share the market as much as London participants
do during the London afternoon and New York morning overlapping
hours.

Again, a U-shape pattern of transactions is found for Tokyo and Lon-
don participants, whereas transactions by New York participants have a
single-peak pattern. Although there is a U-shape pattern in the euro trad-
ing by Tokyo participants, the shape and height of the U-curve is quite
different: the U-shape is flatter and the second peak of the U-shape is
higher for the euro trading. This implies that, for the euro/dollar trade,
Tokyo participants have to wait for London participants to start their
transactions in order to find counterparties.
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3.4.3 Market opening hours

As seen in the analysis above, each market experiences a surge in trans-
actions during the opening hours. When there are many participants in
the market (the market is “deep”), trading volume tends to be higher
and spreads tend to be narrower. The opening hour of the Tokyo market
appears to have special characteristics because it follows a few hours of
extremely low activity after the New York market closes. In particular,
the Monday morning of the Tokyo market probably has some specific
activity patterns because the Tokyo market is the first to open after a
long weekend break, from Friday night to Monday morning. The first
hour of Tokyo on Monday (Hour 0 in adjusted GMT) may be different
because the volume of orders accumulated during the weekend (about
35 hours) is much larger than those accumulated during the overnight
gap (2–3 hours between the New York close and Tokyo opening) result-
ing in much higher activity compared to the same hour on any other
day of the week. Similarly, we expect the opening hours of the London
and New York markets to show some special characteristics in trading
activity.

Ito and Hashimoto (2006) examined the opening-hour effect of the
three markets (Tokyo, London and New York), the Monday morning
effect and the (lack of) U-shape pattern by testing the significance of
dummy variables that take the value 1 when deals/quotes are recorded
in the opening hours (or Monday opening hours). They found that, in
general, the negative relationship between the number of deals (quotes)
and the spread holds even for these opening hours. That is, when the
market is deep (when the number of price [quotes] changes is large) the
bid–ask spread tends to be narrower.

The Tokyo opening effect and Tokyo Monday opening effect are tested
by examining the relationship between the spread and the number of
deals/quotes with opening-hour dummies.18 For the Tokyo opening
effect in 1999, it turns out that the spread becomes narrower as the num-
ber of deals/quotes increases during the opening hour, 9 am Tokyo time,
for both the dollar/yen trade and the euro/dollar trade. On the other
hand, as for the Monday opening effect, it is found that the number of
deals significantly increases during the Monday opening hours for the
dollar/yen trade in 1999 and 2000, suggesting that the market partici-
pants carry out some orders accumulated over the weekend in the first
hour of the week, the Monday Tokyo morning at GMT Hour 0, despite
the relatively wide bid–ask spread. The Monday Tokyo effect is not found
for the euro/dollar trade.
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As for the London and New York opening effects, we find that the
number of deals becomes significantly larger during the opening hours
of London and New York, while the spread during the opening hours is
not significantly different from other hours for both the dollar/yen and
euro/dollar trades.19 The effects are (partly) significant during 1999 and
2000, but the effects are mostly insignificant as estimated during 2001.

The disappearance of the opening effect on the spread and the lack
of the upswing of the U-shape in the afternoon for the trading activ-
ities in the New York market in recent years are probably due to the
recent widespread practice of continuous trading and better control of
inventory. For the past several years, many financial institutions, from
small hedge funds to big banking groups, have invested in computer
programs that signal buy and sell orders in an automatic response to
the changes in market trends. Electronic broking systems have further
facilitated the execution of such trades. The U-shape, in particular the
increase in the afternoon, is often regarded as willingness to trade in
order to control inventory ahead of a long break (between the days or
over the weekend). However, the widespread use of computer trading
systems has made it much easier for dealers and proprietary traders to
find market rates and counter-parties even in other regions of the world
regardless of the local hours and to manage inventories continuously.
This may have contributed to the disappearance of the pickup of the
activities towards the end of the business hours in New York, and minor
changes of the bid–ask spread during the business hours from Tokyo,
London and New York.20 The widespread use of computer trading sys-
tems may, in the future, contribute to the elimination of the particular
intraday patterns.

3.5 News effects on the exchange rate21

As shown in the previous section, transaction volume tends to surge
during a particular time of the day. One of the reasons for a surge in
transactions is a concentrated arrival of new macro information in the
markets. The possible existence of private information may cause a dif-
ferent trading response by dealers, some of them informed and some
uninformed, to the arrival of new information. Then the trading may
be intensified between these two types of dealers, as described in the
“private information model” of Easley and O’Hara (1992).

In this section, the exchange rate reaction to the release of major
macroeconomic statistics is examined. In particular, this section exam-
ines how the dollar/yen exchange rate market digests information
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contained in the various macroeconomic statistics’ releases – to what
extent transactions and prices react to the macroeconomic statistics’
news, how long the news effect lasts and which news has the most/least
impact on the exchange rate. In the analysis, the unexpected compo-
nent of macroeconomic announcements, a “surprise,” is defined by the
difference between the actual indicator announcement and the aver-
age of predicted indicators by the market. The sample period is from
2001 to 2005 and we examine the impacts from 12 Japanese macroeco-
nomic statistics’ releases on the exchange rate returns, volatility and the
transaction volume.

3.5.1 Japanese macroeconomic announcements

Chaboud et al. (2004) study the impact of US macroeconomic announce-
ments on exchange rates using the following US macro variables: payroll,
GDP advanced, PPI, retail sales, trade balance and Fed funds rate (tar-
get). These authors found a significant impact on exchange rate returns
from a surprise component in the announcement. In the European per-
spective, Ehrmann and Fratzscher (2005) used GDP, Ifo business climate
index, business confidence balance, PPI, CPI, retail sales, trade balance,
M3, unemployment, industrial production and manufacturing orders as
proxies for Germany news releases.22

In contrast to US macroeconomic announcements, most of which
come out at 8.30 am (EST), the release time of Japanese news announce-
ments varies from news to news. Some of the announcements are
released in the morning and others in the afternoon. Most of the major
macroeconomic statistics come out at either 8.30 am, 8.50 am, 10.30 am,
2.00 pm or 2.30 pm.

After 2001, the announcement time for Japanese macroeconomic
statistics has become fairly standardized. Until 2000, however, a lot of
news was released one hour earlier than the current release time, while
some news releases were fixed later or went back and forth. For example,
the current CPI release time was set at 8.30 only in 2002. Release time of
three news announcements (balance of payments [8:50], trade balance
[8:50] and retail sales [14:30]) changed once in early 2000 and moved
back to the original time about six months later.

Figures 3.6 and 3.7 show the average of number of deals on news-
release days and non-announcement days for Tankan (Bank of Japan,
business survey) and GDP preliminary (GDPP, at 8.50 am JST). This
announcement time is just before the first peak in transactions within the
day and, therefore, this surge of activity may likely reflect the impact of
news releases.23 Each figure plots the 15-minute averages in the number
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Figure 3.6 Transaction and news release; Tankan (Bank of Japan, Business survey)
(JST 8.50 am)
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Figure 3.7 Transaction and news release; GDP preliminary (JST 8.50 am)

of transactions from 6 am to 12 noon for 2001–2005. The red line shows
the benchmark of no macro announcement, and the black line shows the
deal activity on announcement days. The top panel of the figure shows
the difference in the number of deals between news-announcement days
and non-announcement days.

A look at the graphs reveals that news releases such as Tankan and
GDPP result in a huge increase in the number of deals around the news-
announcement time. For example, the number of deals jumps more than
3 times when a Tankan indicator is released and the number of deals at
the time of GDPP releases is about 2.5 times higher than that of no-news
days. Intuitively, the surge in deals around 9.00 am (JST) seems, in part,
caused by macro news announcements of Tankan and GDPP.
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3.5.2 Impact of surprises on exchange rate activities

When an announcement has unexpected content the announcement is
expected to be followed by a change in the exchange rate, because market
participants react to this unexpected part by rebalancing their portfolio
positions. That is, a surprise would result in changes – positively or neg-
atively – in the exchange rate returns through changes in the number of
deals. The release of a news announcement itself, regardless of surprises,
may affect price volatility. Suppose that the actual announcement of a
macro announcement is exactly the same as the average of market expec-
tations. Then there should not be any positive or negative returns that
follow the announcement of no surprise. However, even if the “aver-
age” expectation is confirmed by the actual announcement, individuals
may be heterogeneous and some are positively surprised and some neg-
atively surprised. Hence, those who were off the average have incentives
to trade and price volatility may rise with returns being zero. The total
amount of deals may increase at the time of macroeconomic announce-
ment. Unless market participants are homogeneous in expectations on
the news – which is very unlikely – some deals are bound to occur right
after the announcement. When there is a surprise component in the
news, additional deal activities will be stimulated.

Hashimoto and Ito (2009) examined whether and how much an
unexpected component of a macroeconomic news announcement, a
“surprise,” will affect returns, volatility and the number of transactions
in the dollar/yen exchange market with the following estimations:24

Return regression:

�s(t ,u)=
n(u)∑

i(u)=1

αi(u)Ni(u)(t ,u)+ ε(t ,u) (3.1)

�s(t ,u)=
n(u)∑

i(u)=1

αi(u)Ni(u)(t ,u)+ δ�s(t ,u − k)+ θND(t ,u − k)+ ε(t ,u).

(3.2)

Volatility regression:

V(t ,u)= α0 +α1V(t ,u − 1)+
n(u)∑

i(u)=1

βi(u)|Ni(u)(t ,u)|

+
n(u)∑
i=1

γi(u)DUMNi(u)(t ,u)+ ε(t ,u). (3.3)
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Transaction regression:

TD(t ,u)= α0 +α1TD(t ,u − k)+
n(u)∑

i(u)=1

βi(u)|Ni(u)(t ,u)|

+
n(u)∑

i(u)=1

γi(u)DUMNi(u)(t ,u)+ ε(t ,u). (3.4)

In the return regressions (3.1) and (3.2), �s(t ,u)is the exchange rate
return measured by log-difference from time u to u + k on da yt ,k is
the number of minutes and u is the announcement time of the day for
news Ni(u). Ni(u)(t ,u) is a surprise of i-th macroeconomic news statistics
in a time window of uand measured as the difference between actual
(announced) values and the market-consensus forecast of macroeco-
nomic statistics’ releases. That is, Ni(u)(t ,u) is defined as “actual” minus
“expected” of a macroeconomic statistics’ release. In the time window
u, there are n(u) variables that are scheduled to be announced. In the
volatility regression (3.3), the volatility (V) of time window u on day t
is explained by one-lagged volatility (V(t ,u − 1)), the absolute value of
surprise components of macroeconomic announcements (|N|) and the
dummy variable of macroeconomic news release (DUMN). In the trans-
action regression (3.4), TD(t, u) is the total number of deals in the time
window from announcement time u to u + k minute. In all regressions,
a time interval of k is considered for four patterns, k = 1,5,15 and 30
minutes.

The estimation results show that a surprise in many macroeconomic
statistics’ releases in the morning, in particular the 8.30 am and 8.50
am announcements, significantly affects returns, increases volatility and
stimulates transactions.25 For returns, the coefficients of surprises are
more or less similar for the 1-, 5-, 15- and 30-minute windows – this sug-
gests that most of the exchange rate reaction occurs within one minute
after a news release as a onetime sudden jump to a new equilibrium. This
is consistent with what has been established in the literature on US macro
announcements. As for volatility, the absolute value of surprises in the
8:50 macroeconomic statistics’ releases are found to increase volatility
for at least 30 minutes after these news releases.

We also find that Tankan and GDPP have a significant impact on the
number of deals. In addition, estimated coefficients of surprises become
larger for longer time windows. For example, surprise coefficients of
Tankan are 23.22 for a 1-min window, 108 for 5-min, 215 for 15-min
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and 277 for 30-min windows. The deal activity increases by 23 trans-
actions (out of a possible 120 transactions) within the minute. This
means that the number of transactions jumps following the Tankan
(manufacturing) announcements, regardless of the size of surprise, and
continues to increase for up to 30 minutes. Similarly, the impact of
GDPP is large, suggesting that the announcement itself stimulates deal
activities. The fact that both Tankan and GDPP have a large impact on
transactions means that the announcements are subject to heteroge-
neous interpretations, so that disagreement has to be resolved with deal
activities.

3.6 Conclusion

This chapter examined intraday patterns of the foreign exchange market
using one-second sliced transaction data derived from the actual trading
platform, EBS, against the background of the changing structure of the
foreign exchange market and evolving trading behavior.

First, it is empirically observed that the foreign exchange rate activi-
ties have a significant intraday pattern: three peaks which correspond to
the Tokyo market, London market and New York market opening hours,
and three troughs during Tokyo lunch and London lunch hours and
after the New York market close. The opening-hour effects are empir-
ically examined to show the negative relationship between the spread
and the transaction volume. That is, the spread becomes significantly
narrower and the number of deals (quotes) significantly higher during
the opening hours of each market. The disappearance of the opening
effect on the spread and the lack of the upswing of the U-shape in the
afternoon for the trading activities in the New York market in recent years
are presumably because of the recent widespread practice of continuous
computer trading.

Second, we examine transaction volume on the Japanese news-
announcement days on a presumption that the surge in activities during
the opening hours may reflect macroeconomic statistics’ news releases.
We find that some of the Japanese macroeconomic statistics’ releases
at 8:50 (JST) significantly increase the number of deals. The surge in
activity at GMT 0 Hour (9.00 am Japanese Standard Time) may reflect
these JST 8:50 news releases. These findings are comparable to the US
case in that the US macroeconomic statistic’s releases have significant
impact on the foreign exchange market during the New York opening
hours.
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Notes
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1. The decline in transactions from 1998 to 2001 was partly attributed to “the
introduction of Euro” (BIS, 2002: 6).

2. All figures are shown in net basis: that is, data are adjusted for both local and
cross-border double counting.

3. “The use of electronic brokers implies that foreign exchange dealers generally
need to trade less actively among themselves” (BIS, 2002: 7).

4. For the general reference on the microstructure of the foreign exchange
market, see Goodhart and O’Hara (1997), Lyons (1995) and Lyons (2001).

5. See Goodhart and O’Hara (1997: 78) for general discussions on the difference
between indicative and firm quotes.

6. Details of the EBS system and characteristics of the data are explained in Ito
and Hashimoto (2004, 2006).

7. At first, the trade volume data was not fully available for most of the
researchers. Ito and Hashimoto (2006) used “relative trade volume shares”
that are the percentage share of trade volumes at one minute relative to the
total trading volumes of that day. Since 2009, more detailed (and volumi-
nous) foreign exchange rate data has become available for a fee from the EBS,
now a part of ICAP. As for bid and ask quote prices, they are available from
the best to the 10th (maximum) rank for the same timestamp, representing
how far the price is from the best price.

8. EBS data Ito and Hashimoto (2004) first used did not contain information on
the volume of transactions associated with bid, offer or deal.

9. However, in the EBS data set the reverse (bid higher than ask) can happen,
when the two parties do not have credit lines to each other and there is no
third party that has credit lines to the two quote-posting parties. The EBS sys-
tem facilitates, as part of the dealing rules, each institution to control bilateral
credit lines. Namely, each EBS-linked institution sets credit lines (including
zero) against all other potential counter-parties. Therefore, an institution faces
a restriction of bid, offer or deal from other institutions. When bid and offer
rates are posted for the system, they are not necessarily available to all par-
ticipants of the EBS system. The EBS-registered trader’s screen shows the best
bid and best offer of the market and best bid and best offer for that particular
institution. In normal times, the best bid of the market is lower than the best
offer of the market. Otherwise, an institution that has positive credit lines
with both institutions on the bid and ask sides will be able to make profits by
arbitrage.

10. The buyer-initiated trades (the seller-initiated trades) used in Berger et al.
(2005) correspond to the number of deals on the ask side (the number of
deals on bid side) in our chapter, respectively. The order flow, the net excess
of buyer-initiated trades in Berger et al., corresponds to the “netdeal” in our
paper. Berger et al. had access to the data of actual transaction volumes –
proprietary data of EBS – while we use the number of seconds in which at
least one deal was done. The number of deals, rather than the signed (actual)
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volume, is a good enough proxy for the volume of transaction. In fact, the
actual transaction volume is not revealed to participants other than parties
involved so that they are not able to be used in prediction of price movement
in real time.

11. The deal (on either side) recorded at zz second includes those that took place
between zz-1 second to zz second. When there are multiple trades within
one second, “lowest given price” and “highest paid price” will be shown. A
highest paid deal means the highest price hit (done) on the ask side within
one second and the lowest given deal means the lowest price hit (done) on
the bid side within one second.

12. Note that the number of quotes and the number of deals in the data set
may not exactly match the “true” total number of quotes and deals recorded
in the EBS system, because the data we use are in terms of the one-second
slice. Therefore, if there are multiple quotes and deals within one second,
the numbers in the data set are less than the true numbers. Accordingly, the
maximum number of quotes or deals in one hour is 3600.

13. The difference between the deal count and the trading volume share is
twofold. The deal count is the number of seconds in which there is one deal
or more. Therefore a second that experienced the deal may contain more than
one deal and one deal may mean one million US dollars or several millions of
US dollars. The trading volumes are the total amount of deals, but expressed
as the share within the day.

14. Daylight saving time in 1999 was from April 4 to October 31 in the United
States; from March 28 to October 31 in the United Kingdom; in 2000, from
April 2 to October 29 in the United States, and from March 26 to October
29 in the United Kingdom; and in 2001, from April 1 to October 28 in the
United States and from March 25 to October 28 in the United Kingdom.

15. Intraday patterns only for winter are shown in this section. For summer
figures, please see Ito and Hashimoto (2006). Aggregation for a year is divided
into two periods: Daylight Saving (Summer) Time from the first Sunday of
April to the last Sunday of October; and Standard (Winter) Time from January
to the last Sunday of March and from the last Monday (or the next working
day of the last Sunday) of October to the end of December. We eliminate the
one-week period in the spring when Europe is in Summer Time but the United
States is not. Also excluded from the sample are Saturdays, Sundays and days
in which one of the three markets is closed for national holidays.

16. Historically, the interbank foreign exchange transactions had a lunch break
(regulatory shutdown) during the lunch hours. When the regulation was
removed, the activities during the lunch hour increased at the expense of
those before and after; the net effect was higher. See Ito, Lyons and Melvin
(1998) and Covrig and Melvin (2005). Then, in the afternoon and market-
ending hours of the Tokyo market, activity again increases in terms of relative
transaction volume: it peaks around GMT Hours 5–6.

17. Again, only winter patterns are shown in this section. Please see Ito and
Hashimoto (2006) for summer intraday patterns.

18. For a description please see Ito and Hashimoto (2006). The estimation models
for the Tokyo opening effect and the Monday opening effect are as follows:
Spread(t)= constant + (a1 +a2*H0dum)*number of deals (or quotes)(t)+ε(t). In the
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model, H0dum is an hour 0 dummy for testing the Tokyo opening effect, and
Monday hour 0 dummy for the Monday opening effect.

19. The estimation model for London and New York opening effects is:y(t)= β*D1
+ γ *D2 +ε(t), where y is one of the three variables, number of price changes,
the number of deals or the bid–ask spread; and D1 and D2 are dummy vectors.
D1 consists of hour dummies to control the hour of the day effects. D2 are
dummy vectors that examine opening and lunch hours over and above the
GMT hour effect. Opening hours of London and New York can be identified
separately from the GMT hour dummies because the opening hour shifts
by one hour between summer and winter. Since the Tokyo market does not
observe daylight saving time, Tokyo local time does not shift against GMT
hour, and therefore we use the dummy vector D2 that identifies the London
opening, London lunch and New York opening over and above k hours after
Tokyo opens regardless of the daylight saving time. For more details please
see Ito and Hashimoto (2006).

20. We thank Rich Lyons for his suggestion of this interpretation.
21. This section follows Hashimoto and Ito (2009).
22. Chaboud et al. (2004) used the following US macro variables: Payroll, GDP

advanced, PPI, Retail sales, Trade Balance, and Fed Funds Rate (Target). Ander-
sen et al. (2003) used GDP (advance, preliminary, final), Nonfarm Payroll,
Retail Sales, Industrial Production, Capacity Utilization, Personal Income,
Consumer Credit, Personal Consumption Expenditure, New Home Sales,
Durable Goods Orders, Construction Spending, Factory Orders, Business
Inventories, Government Budget Deficit, Trade Balance, PPI, CPI, Consumer
Confidence Index, NAPM Index, Housing Starts, Index of Leading Indicators,
Target Federal Funds Rate and Money Supply. The Ifo Business Climate Index
is a closely watched indicator of German business conditions, based on a
monthly survey of about 7000 companies. It is widely seen as a barometer for
economic conditions of the Eurozone.

23. Ito and Hashimoto (2006) show that there are three peaks in a day: about
9–10am (JST), 4–6pm (JST), and 10pm-midnight (JST). They clearly corre-
spond to the Tokyo opening, London opening, and New York opening times,
respectively. The last peak corresponds to hours when London and New York
business hours overlap. Each of the three troughs, between 2am and 8am
(JST), about 12am-1pm (JST), and 8pm (JST), correspond to New York market
close, Tokyo lunch time, and London Lunch time, respectively.

24. In Chaboud et al. (2004), the estimation model takes the form of r = b*s+e,
where r is the return from one minute before the announcement release to
h minutes after the release and s is the unexpected surprise component. The
model is estimated only on days when there is a news release, not for the
whole sample period.

25. Please see Hashimoto and Ito (2009) for detailed descriptions of estimation.
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4
The Intraday Analysis of Volatility,
Volume and Spreads: A Review with
Applications to Futures’ Markets
Dean Fantazzini

4.1 Introduction

When an operator starts to analyze financial microdata that is passing
from a traditional “low-frequency” data set (usually daily or weekly)
to a “high-frequency” one (from hourly data to tick-by-tick data), the
volatility analysis tends to become more complex due to the strong rela-
tion among volatility, volume and spreads. This intraday relationship
presents very special patterns due to market organizations and different
kinds of market operators. This particular feature of financial markets
must be considered if we want to gain a better understanding of their
operation and consistent estimates to use in different financial fields,
such as portfolio management, option pricing etc. What we do in this
work is to review the main econometric models used for the analysis
of volatility in an intraday environment which works with non-equally
spaced data and considers the whole information set provided by the
market. We then present an empirical application of ACD and ordered
probit models to the Standard & Poor 500 (SP500) and Nasdaq100 index
futures’ data, and we point out the advantages and disadvantages of both
approaches.

The rest of the chapter is organized as follows. In Section 4.2 we
consider the main issues that arise when jointly modeling volatility,
volume and spreads in an intraday environment, while in Section 4.3
we present the econometric models used to test and analyze intraday
financial data. In Section 4.4 we apply the most important models with
American futures’ contracts SP500 and Nasdaq 100, while we conclude
in Section 4.5.
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4.2 Volatility, volumes and spreads

One of main characteristics of the intraday market process is that traded
volumes, price volatilities and bid–ask spreads follow a “U-shaped” path
(or to be more precise, an inverted J): these three variables reach their
highest values at the market opening then go down and reach their lower
point around the lunch hours. Finally, they rise again at the market clos-
ing. A similar pattern is present both in stock markets where there is
a separate opening with a single multilateral auction (NYSE, Milan, for
example), and in those without such a system, as in the CBOT (Sheikh
and Ronn, 1994) or the Toronto Stock Exchange (McInish and Wood,
1990), while it is not present in the FX market. The interesting fact
about these empirical regularities is that they are not easy to explain
from a theoretical point of view, in the case where we want to use the
traditional microstructural models with informed traders, uninformed
ones and market makers. For instance, if we use Admati and Pfleiderer’s
model (1988), you will expect uninformed traders to enter the market
when transactions costs are smaller, thus determining the already known
“cluster market” effects. Given such a convergence of market orders and
the consequent higher depth and market liquidity, the informed traders
would also enter the market during these temporal periods to hide their
identity. Since more private information is revealed, the asset prices
would show a greater volatility. For these reasons, you would expect
a strong correlation between volume and volatility, but not, at the same
time, with spreads (since liquidity traders would enter the market only
when transaction costs are smaller).

Similarly, you would expect a positive relationship between spreads
and volatility, but a negative relationship with depth (Lee et al., 1993): a
higher volatility would be associated with the revealing of private infor-
mation, and this new information would then lead to an increase in
market uncertainty and therefore in market spreads. The presence of
such a positive correlation is present in all the main microstructural
empirical studies, within which the direction of causality goes from
volatility to spreads, rather than in the opposite direction (which is
quite natural if you think that it is private information that moves
spreads, not the opposite!). At this point, the main problem is to under-
stand why traded volumes are so high at the markets’ opening and closing,
despite the high transaction costs that must be paid during these trading
periods.

In regard to this problem, it must be said that a similar temporal
path for volatility, spread and volume is not generalized to all financial
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markets: the London Stock Exchange, for instance (which, however, does
not have a separated opening and closing like the NYSE and other Euro-
pean stock exchanges), presents a U-shape for spreads and volatility,
while for traded volumes it has a double hump-shape path instead (see
Fantazzini, 2004 for a review). If we consider the Forex markets and use
the frequency of intraday quotes’ data as a reasonable proxy for traded
volumes, we can note that traded volumes do not show this U-shape
path at all during the American trading hours, while the European and
Asian markets show a rather weak temporal path (Demos and Goodhart,
1992).

This “strange” volume concentration at the opening and closing of
the markets was first modeled by Brock and Kleidon (1992), who extend
the Merton model (1971) in order to show how the number of trades is
greater and less elastic at the market opening and closing: news coming
out during the night and the subsequent necessity to rebalance assets
portfolios can explain the high traded volume at the market opening.
The fact that you cannot readjust your asset portfolios for more than
17 hours during the night and for 60 hours at the weekends, forces insti-
tutional investors and traders to adjust their portfolios just before the
closing. The presence of this concentrated trading produces an increase
both in volumes and in volatility, while the strong increase of market
orders reveals the presence of private information and interpretations of
public news. It is therefore easy to understand why an increase in volatil-
ity causes a widening of the spreads, whatever the implemented market
microstructure is.

Besides, Brock and Kleidon (1992) underline the monopoly position
of NYSE specialists and their ability to maximize profits by exploiting
the increasing and inelastic demand of trades at the market opening and
closing. This idea is confirmed by Chan et al. (1995), who pointed out
that Nasdaq spreads tend to be relatively stable during the day and then
narrow at the market closing. Similarly, Chan et al. (1995) showed that
stock options’ spreads quoted on the CBOE tend to go down after the
market opening and then stabilize: both the Nasdaq and the CBOE have
many “market makers,” while the NYSE has a single specialist.

One of the most interesting studies to analyze this matter is by Gwin-
lym et al. (1999), who use quotes and transaction prices of futures and
options listed on the LIFFE (London International Financial Futures and
Options Exchange). In respect to futures, the studies by Gwinlym et al.
(1999) highlight that both volumes and volatility respect the traditional
U-shape, even though both of these variables are higher at the opening
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than at the closing. An interesting aspect of their work is the importance
of “price reversals.” This is a price change that goes in the opposite direc-
tion to the previous one, while a price change that goes in the same
direction is called a “continuation.” Price reversals are generally the result
of the casual arrival of bid–ask orders which are executed at stationary bid
and ask prices, thus causing the known “bounce effect” between bid and
ask quotes. Continuations, however, are associated with new informa-
tion, which has the effect of producing an unbalance between offer and
demand and a subsequent modification of bid and ask quotes in order
to incorporate the new asset value.

Gwinlym et al. (1999) show that futures’ market openings present a
smaller number of price reversals than the daily average, so that high
volatility and high traded volumes would be the result of informed trad-
ing, thus sustaining Admati and Pfleiderer’s model (1988). However, a
very high percentage of reversals characterizes the high volumes and
volatility at the market closing and this fact cannot be explained by
the influx of new information. An interesting explanation that these
researchers propose is that high volumes and volatility at the market
closing are caused by particular operators, the “scalpers,” who operate
at the end of the trading day in order to close their positions before the
night. As for the FTSE100 index options, volatility presents the known
U-shape, while bid–ask spreads tend to be wide during the opening and
then decrease for the whole trading day until the market closing: this
spread decrease cannot be explained by informed trading nor by a greater
number of trades due to scalpers. This evidence is instead consistent
with Chan et al. (1995), who underline that market makers reduce their
spreads at the market closing in order to attract trades and therefore
reduce the inventories to maintain overnight. Their results confirm the
idea by Brock and Kleidon (1992) that market microstructure influences
spreads’ behavior: financial markets with many different market makers
present narrower spreads at the market closing than centralized markets’
spreads, which are instead characterized by a single specialist (like the
NYSE).

4.3 Econometric models for intraday volatility analysis

We now consider the main econometric models used for volatility analy-
sis in an intraday environment that make use of non-equally spaced data
(also known as “transaction-time” models), thus considering the whole
information set provided by the market.
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4.3.1 ACD models

Transaction-data models

A particular methodology that makes use of different time samples,
but that takes the whole informative set into account thanks to single-
transactions analysis, is represented by the ACD models (“autoregressive
conditional duration”), initially introduced by Engle and Russell (1995
and 1998) and which are a particular evolution of GARCH models. It is
an econometric representation for data not equally spaced, whose aim
is to forecast the expected duration till the next transaction and use
this information in order to determine if informed traders are present
in the market, and thus to infer if asset values are far away from their
equilibrium values.

Let’s call xi = ti − ti−1 the time interval between two consecutive trans-
actions (the so-called duration) and let ψ i be the expected value of the
i-th duration, conditional to the past history of xi(xi−1,xi−2, …, x1). The
ACD model can then be expressed in the following way,

xi =ψiεI (4.1)

ψi = ω+
m∑

j=1

αjxi−j +
q∑

k=1

βkψi−k (4.2)

where εi represents a sequence of random variables “independent and
identically distributed” (i.i.d.), with density function to be specified and
mean equal to 1 (it is common practice to use the exponential dis-
tribution or the Weibull one). Engle and Russell (1998) assume that
expected conditional durations depend on q past expected values and
m past durations, plus a constant. If the conditional mean of xi is ψ i, the
unconditional mean is

E(xi)= µ= ω

(1 −∑(αj +βj)
(4.3)

while when m = q = 1, the conditional variance of xi is ψ2
i , and the

unconditional one is,

σ2 = µ2

(
1 −β2 − 2αβ

1 −β2 − 2αβ− 2α2

)
. (4.4)

The ACD model (m,q) can be formulated as an ARMA(m,q) model in
the observed duration xi, using the transformation ηi = xi −ψi, which is

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP04” — 2010/11/22 — 17:40 — PAGE 97 — #6

Intraday Analysis of Volatility, Volume and Spreads 97

a martingale sequence by construction. In this case we have:

xi = ω+
max(m,q)∑

j=0

(αj +βj)xi−j −
q∑

j=0

βjηi−j + ηi. (4.5)

We review here four interesting cases:

(1) Exponential–ACD (EACD): when we use an exponential distribu-
tion for the error term εi, the maximum likelihood estimation is
a pseudo-ML. Engle and Russell (1998) show the consistency and
asymptotic normality of the ML estimation, and that the model can
be estimated by means of common ARCH software, using

√
xi as a

dependent variable and setting the mean equal to zero. The EACD
log likelihood is the following:

Logl(θ)= −
N(t)∑
i=1

[
log(ψi)+

xi
ψi

]
(4.6)

where xi is modeled as in (4.1)–(4.2), with the following constraints
on the coefficients: ω > 0, αi ≥ 0, βi ≥ 0 and 	(αi + βi) < 1. The last
constraint ensures the existence of the unconditional mean of the
durations, while the others ensure the positivity of the conditional
durations.

(2) Weibull–ACD (WACD): an alternative to the exponential model is
to consider a Weibull conditional distribution, which assumes that
(xi/ϕi)γ is exponential and where ϕi is a function of past values. If
we specify the observed duration as a mixing process:

xi = ϕiεi (4.7)

where εi ∼ i.i.d. and follows a Weibull distribution with parameters
(1, γ), and ϕi are proportional to the conditional expected durations
ψ i, which is modeled as the autoregressive process (4.2)

ψi = ω+
m∑

j=1

αjxi−j+
q∑

k=1

βkψi−k (4.8)

in this case, the condition that ψ i = E(xi| Ii−1) where Ii−1 is the
information set available at time ti−1, gives us a third equation that
allows us to connect (4.7) and (4.8):

ψi = �(1 + 1/γ)ϕi (4.9)
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where �(·) is the Gamma function. If γ = 1, the Weibull distribution
becomes an exponential and ϕi = ψi. The simplest WACD model is
the one with m = q = 1, whose log likelihood is the following

Logl(θ)=
N(T)∑
i=1

ln
(
γ

xi

)
+ γ ln

(
�(1 + 1/γ )xi

ψi

)
−
(
�(1 + 1/γ )xi

ψi

)γ
.

(4.10)

As before, if γ = 1 the log likelihood turns into an exponential one.
The constraints on the coefficients are the same as the ones for the
EACD model.

(3) Log–EACD: the logarithmic version of the ACD model modifies
equation (4.1) as follows:

xi = eψiεi (4.11)

where εi are i.i.d. and follow an exponential distribution, while the
conditional duration ψi = ln E(xi|Ii−1) is modeled according to an
autoregressive form (we consider here the case m = q = 1):

ψi = ω+αg(xi−1, εi−1)+βψi−1. (4.12)

Thanks to formula (4.11), we do not need to impose any restric-
tions on the sign of the parameters ω, αeβ to guarantee a posi-
tive result of xi. Bauwens and Giot (2000) propose two different
possibilities to model the function g(xi−1, εi−1):
(a) g(xi−1, εi−1) = lnxi−1. In this case, the logarithm of the condi-

tional duration is:

ψi = ω+α lnxi−1 +βψi−1, (4.13)

and ψi, is covariance stationary if |α+β|< 1.
(b) g(xi−1,εi−1)= εi−1. The logarithm of the conditional duration is

then given by:

ψi = ω+αεi−1 +βψi−1 = ω+α xi−1

eψi−1
+βψi−1, (4.14)

With this specification, the logarithm of the conditional duration
depends on its lagged value and on the lagged value of the “excess
duration.” ψi, is covariance stationary if |β|< 1.

Bauwens and Giot (2000) show that the second solution gives the
best results. For this reason, we will refer only to equation (4.14) from
now on.
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(4) Log–WACD: in this case we have,

xi = eφiεi (4.15)

where εi are i.i.d. and follow a Weibull distribution (1, γ ), while ϕi is
proportional to the logarithm of the conditional expectation of xi,
that is ψi, which has the following autoregressive form:

βψi = ω+α xi−1�(1 + 1/γ )

eψi−1
+βψi−1, (4.16)

The condition ψi = ln E(xi|Ii−1) or e�i = ln E(xi|Ii−1) provides us
with a third equation, linking (4.15) and (4.16):

eφi�(1 + 1/γ)= e�i . (4.17)

The log likelihood is then given by:

Logl(θ)=
N∑

i=1

ln(γ )− ln(xi)+ γ ln[xi�(1 + 1/γ )]

− γψi −
(

xi�(1 + 1/γ )
eψi

)γ
(4.18)

where ψi = is defined as in (4.16). As initial values, Bauwens and
Giot (2000) suggest setting x0 e eψ0 equal to the unconditional mean
of xi. The expected conditional value of xi is eψi by definition. The
analytical expression for the unconditional moments has been given
by Bauwens et al. (2008), to whom we refer for further information.

4.3.2 An extension: Intraday market patterns

The dynamic specification of the conditional durations can be easily
generalized by introducing nonlinear functions and including other
variables such as past trades and related marks:

ψi =ψxi−1, . . . ,xi−m; ψi−1, . . . ,ψi−p; zi−1, . . . ,zi−mθ). (4.19)

An important case is represented by the inclusion of intraday market
periodicities in (4.19), which are well documented in many empirical
papers (Engle, 2000; Bauwens and Giot, 2000, among others). It is a
well-known feature that the number of trades is higher at market opening
and closing, and thus expected duration must be decomposed in a deter-
ministic and a stochastic component, usually by using a multiplicative
function:

x̃i = xi/s(ti−1;θs) (4.20)
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where s(ti−1; θs) is the intraday pattern, while the expected duration is
equal to

Ei−1(xi)= s(ti−1; θs)ψ(x̃i−1, . . . , x̃1; θψ) (4.21)

where the two parameters can be jointly estimated with the previous log
likelihoods. Engle and Russell (1998) use a cubic spline with knots at
every hour, with a further knot for the last half hour, in order to have
more flexibility in modeling the intraday seasonal pattern. The equations
to be used within maximum likelihood estimation are thus the following:

EACD(1,1) : ψi = ω+α1x̃i−1 +β1ψi−1, where x̃i−1 = xi−1
s(ti−1)

s(ti−1)=
K∑

j=1

Ij[cj + d1,j(ti−1 − kj−1)+ d2,j(ti−1 − kj−1)
2 + d3,j(ti−1 − kj−1)

3]

(4.22)

where Ij is an indicator variable for the j-segment of the spline, so that
Ij = 1 if kj−1 ≤ ti−1 < kj, it is zero otherwise. c11 is normalized by restrict-
ing the unconditional mean of the diurnal factor to equal the observed
sample mean.

Andersen–Bollerslev (1998) and Pohlmeier–Gerhard (2001) use instead
a Fourier series approximation based on the work of Gallant (1981). If
we assume a polynomial of degree q, the deterministic seasonal pattern
is of the form:

s(δ, t∗i ,q)= δt∗i +
Q∑

q=1

(
δc,q cos(t∗i · 2πq)+ δs,q sin(t∗i · 2πq)

)
(4.23)

where δ, δc,q,δs,q are the coefficients to be estimated, while ti ∗ ε[0, 1]
is a normalized intraday time trend, which is defined as the number
of seconds from market opening until the occurrence of transaction i
divided by the length of the trading day.

It must be noted that ACD and spline parameters can be estimated
jointly or in a two-step procedure, where the seasonal pattern is
accounted for first. The normalized durations x̃i−1 are then used to
estimate the ACD model (Engle and Russell, 1998; Engle, 2000).

4.3.3 Models form intraday analysis of volatility,
volume and spreads

An interesting evolution of this model that analyses volatility dynamics
is the UHF–GARCH proposed by Engle (2000): the aim of this particular
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model is to measure price volatility by means of transactions’ data in
order to understand how the timing of the trades influence intraday
volatility. The returns and volatility equations of the basic model UHF–
GARCH (1,1) are the following ones:

ri√
xi

= ρ
ri−1√
xi−1

+ ei +φei−1 (4.24)

σ2
i = ω+αe2

i−1 +βσ2
i−1 (4.25)

where the observed returns ri divided by the square root of their dura-
tions, follow an ARMA(1,1) with innovations e (equation 4.24), while
the conditional variance σ2

i follows a GARCH(1,1) model, which is mod-
ified in order to account for irregular time samples (equation 4.25). Engle
(2000) includes the current duration into (4.24) as well, which can reflect
two conflicting effects: the longer the interval over which the return is
measured, the higher the expected return because both risk-free and risky
returns are measured per unit of time. However, if no trades mean bad
news as in Diamond and Verrecchia (1987), longer durations should be
associated with declining prices. This model can be estimated as a tradi-
tional GARCH(1,1) where the dependent variable is returns divided by
the square root of durations, while the conditional mean is modeled as
an ARMA, with the addition of the current duration. A wider specifica-
tion can include both observed durations and expected ones (which are
calculated thanks to an ACD(1,1) model of observed durations), a volatil-
ity long-memory component, as well as economic variables such as the
market spread and volume, so that microstructural models previously
discussed can be tested.

A more realistic and interesting specification, where the durations
enter the conditional variance equation directly, is given below:

σ2
i = ω+αe2

i−1 +βσ2
i−1 + γ x−1

i
. (4.26)

If the Easley and O’Hara (1992) hypothesis is true (“no trades, no news,
low volatility”), the parameter γ should be positive, as longer durations
imply a market without any news with stable prices and low volatil-
ity (Engle’s empirical results confirm this theory). A wider specification
includes both observed and expected durations as well as a long-run
volatility variable:

σ2
i = ω+αe2

i−1 +βσ2
i−1 + γ1x−1

i
+ γ2

xi
ψi

+ γ3ξi−1 + γ4ψ
−1
i (4.27)

where ξi is the long-run volatility component, which is estimated
by exponentially smoothing r2/x with a parameter equal to 0.995 as

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP04” — 2010/11/22 — 17:40 — PAGE 102 — #11

102 Dean Fantazzini

proposed by Engle (2000):

ξi = 0.005(r2
i−1/xi−1)+ 0.995ξi−1. (4.28)

If we estimate the model with equation (4.27), the impact of dura-
tions on volatility will be given by three coefficients which measure:
(1) reciprocal durations – γ1 –, (2) surprises in durations – γ2 –, and (3)
expected trade arrival rates – γ3 – (the reciprocal of expected durations).
Expected durations are estimated by an ACD(1,1) model on observed
durations. In order to improve the volatility forecasting, Engle also
introduces economic variables into this model, such as the spread and
the volume: Easley and O’Hara (1992) argue that a greater number of
informed traders causes a higher volatility and a widening of spreads.
Wider spreads should point out the presence of informed trading and
therefore improve the forecast of future volatility. Likewise, a greater
number of trades are likely to be indicators of information (private and
public) and therefore predictors of the volatility (Engle, 2000).

4.3.4 Ordered probit models

Theoretical background

As the first studies about high-frequency data were unable to consider
the three fundamental aspects of (1) asset prices’ discrete values, (2) the
timing of single transactions, and (3) the distribution of price changes
conditionally to traded volumes, durations and the sequence of past
prices changes, Hausman et al. (1992) have proposed the “ordered probit
model” with conditional variance to account for these important aspects.
They applied this model to the discreet movements of stock prices quoted
on the NYSE. Bollerslev and Melvin (1994) used the same approach for
the analysis of Forex quotes, as well as Hautsch and Pohlmeier (2001) for
BUND future data.

The ordered probit model (from now on “OP”) can be considered
the generalization of the linear regression model to the case where the
dependent variable is a discrete one. The basic idea of this model is a
“virtual” regression of a set of latent dependent variables Y∗, whose
conditional mean is a linear function of some observable explanatory
variables. Although Y∗ is not observable, however, it is linked to a dis-
creet random variable Y which is instead observable, and whose values
are determined by the particular state of Y∗. If the state space of the
latent variable Y∗ is partitioned into a finite number of separate regions,
Y can be considered as an indicator function for Y∗ over these regions: for
example, a discreet random variable Y with values [−0.01; 0; 0.01] can be
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modeled as an indicator variable that takes on the value −0.01 whenever
Y∗ ≤ α1, the value 0 whenever α1 < Y∗ ≤ α2 and the value +0.01 when-
ever Y∗ >α2. The OP model then estimates α1,α2 and the coefficients of
the unobserved “virtual” regression which determines the conditional
mean and variance of Y∗. Besides, since α1, α2 and Y∗ can depend on
a vector of regressors Z, the OP analysis is more general and complex
than its simple structure may suggest, and can analyze the price effects
of many economic variables in a way that models of the unconditional
distribution of price changes cannot (Hausman et al., 1992).

Let’s consider a price sequence p(t0),p(t1), . . . ,p(tn) observed at times
t0, t1, . . . tn, and use y1,y2, . . . ,yn as the corresponding price changes,
where yk = p(tk)− p(tk−1) is an integer multiple of some divisor called a
“tick” (for example, a Euro cent). Let y∗

k be an unobservable continuous
random variable such that

y∗
k = z′

kβ+ εk,E[εk|zk] = 0, εk ∼ i.n.i.d. N(0,σ2
k ) (4.29)

σ2
k = σ2

0
[
exp(ω′

kγ )
]2 (4.30)

where zk is a (K ×1) vector of observed independent variables that deter-
mine the conditional mean of y∗

k , while “i.n.i.d.” indicates that εk are
independently but not identically distributed, because their variance is
conditioned by a set of economic variables wk, through a multiplica-
tive heteroskedasticity form. The main idea of OP modeling is that price
changes yk are linked to the continuous variable y∗

k in the following way:

yk =



s1 if y∗
k ∈ S1

s2 if y∗
k ∈ S2

.

.

.
sm if y∗

k ∈ Sm

(4.31)

where the regions Sj represent a precise partition of the state space �∗
of y∗

k , that is, �∗ =⋃m
j=1 Sj and Si ∩ Sj = ∅ for i 	= j , while the sj are the

discrete values that comprise the state space � of yk.
As for this, it must be noted that even though the number of price

changes considered can be as high as needed, all past empirical works
assume m to be finite, so that the number of parameters to estimate is
finite: for example, in Hausman et al. (1992), the sj are equal to stock
“ticks” 0, −1/8, +1/8, −2/8, +2/8 and so on; in Hautsch and Pohlmeier’s
model (2001), they are instead equal to −2, −1, 0, +1, +2. Hausman et al.
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(1992) point out that the inclusion of further states to improve the esti-
mates does not change the asymptotic estimates of β on condition that
the model (4.29–4.30) is correctly specified. Besides, you cannot consider
an endless number of states due to the fact that the most extreme ones
do not have any observation so that the relative parameters cannot be
estimated anyway.

The conditional distribution of price changes �p, conditionally to zk
e wk, is determined by the partition of the state space �∗ and by the
distribution of εk. If εk are Gaussian, the conditional distribution is:

P(yk = si|zk,wk)= P(z′
kβ+ εk ∈ Si|zk,wk) (4.32)

=


P(z′

kβ+ εk ≤ α1|zk,wk) if i = 1
P(αi−1 < z′

kβ+ εk ≤ αi|zk,wk) if 1< i<m
P(αm−1 < z′

kβ+ εk|zk,wk) if i = m

=



�

(
α1−z′

kβ

σk

)
if i = 1

�

(
αi−z′

kβ

σk

)
−�

(
αi−1−z′

kβ

σk

)
if 1< i<m

1 −�
(
αm−1−z′

kβ

σk

)
if i = m

(4.33)

where�(.) is the normal cumulated distribution function. Hausman et al.
(1992) highlight that if we change the partition among the different
regions the OP model can be adapted to any multinomial distribution,
so that the normality assumption previously considered does not have
any particular role when estimating the probabilities of the different
states. However, a logistic distribution would have made the conditional
heteroskedasticity modeling much more difficult, and this is why it is
preferable to use the normal distribution. Given the partition bound-
aries of the state space�∗, a higher conditional mean z′

kβ means a higher
probability of observing a more extreme positive state: even though the
labeling of the states is arbitrary, the ordered probit model makes use of the
natural ordering of the states. Thus, by estimating the partition bound-
aries α and the coefficients β and γ of the conditional mean and variance,
the OP model captures the empirical relation between the unobservable
continuous state space �∗ and the observed discrete state space � as a
function of the economic variables zk e wk (Hausman et al., 1992).

Let cik be an indicator variable which is equal to 1 if the k−th obser-
vation yk is within the i−state si, and zero otherwise. The log-likelihood
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function for a price change vector Y = [y1,y2, . . . ,yn]′, conditionally to a
vector of explanatory variables Z = [z1,z2, . . . ,zn]′ is equal to:

Logl(Y |Z)=
n∑

k=1

{
c1k · log�

(
α1 − z′

kβ

σk

)
+

m−1∑
i=2

cik · log

[
�

(
αi − z′

kβ

σk

)
−�

(
αi−1 − z′

kβ

σk

)]

+ cmk · log

[
1 −�

(
αim−1 − z′

kβ

σk

)]}
. (4.34)

As we have seen previously, the conditional variance is heteroskedas-

tic, conditionally to a set of variables wk; that is σ2
k = σ2

0

[
exp(ω′

kγ )
]2

.

Furthermore, to completely identify the OP model, some restrictions
on α, β and γ must be set: if we were to double them the likelihood
would be unchanged. In fact, only the parameter vector [α’/σ0, β/σ0,γ ’]
is directly identifiable without any restriction: for the sake of simplicity,
it is usually assumed that σ2

0 = 1, as in Hautsch and Pohlmeier (2001)
and Hausman et al. (1992), even though the latter does not use a mul-
tiplicative conditional variance but an arithmetic sum, as we will see in
the next section.

The empirical specification of the model

Before we proceed to the empirical applications of the OP model, it is
necessary to specify three points: (1) the number of the states m, (2)
the explanatory variable zk, and (3) the specification of the conditional
variance.

(1) Number of the states m: when you have to choose m, you must
consider the fact that extreme regions will hardly have any observa-
tions. For this reason, it is useful to observe the price changes’ sample
histogram to understand which reasonable value m can take.

If we had a situation like the one depicted in Figure 4.1, a rea-
sonable value for m would be 7, where the extreme regions are
s1 = (−∞,−3]e s7 = [+3,+∞), while the states from s2 to s6 con-
tain the price changes of a single tick. Besides, the symmetry in the
price changes’ �p distribution suggests a similar symmetry for the
states si.

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP04” — 2010/11/22 — 17:40 — PAGE 106 — #15

106 Dean Fantazzini

0

5

10

15

20

25

–4 –3 –2 –1 0 1 2 3 4

Figure 4.1 A possible distribution for price changes �p

(2) Choice of explanatory variables Z’: the main variables that can be
considered within intraday applications are the following ones:

xk = the time elapsed between the k − 1th transaction and the kth (to
consider the time effect);
�bidask = the bid–ask spread, if available (to consider the bid–ask
bounce);
yk−l = a number of lags (l) of the dependent variable yk (persistence)
Vk−l = a number of lags of the traded volumes; if we deal with stocks,
the lagged volume weighted by the stock price, that is the so-called dollar
volume, which is defined as the price of the (k − l)−th transaction (in
euro or dollars, according to the market) times the number of traded
stocks (how the market reacts to bigger volumes).
INDk−l = a number of lags of the market main index returns (how the
market influences the single asset price).
IBSk−l = a number of lags of an indicator variable which take the value
of 1 if the (k − l)−th transaction price is bigger than the average value
between the bid and ask price quoted when the trade took place and
the value of −1 if the price is lower than the average value, and 0
otherwise – if available.
Dummy i= dummy variables to catch possible day-of-the-week effect.

(3) Conditional variable specification: Hausman et al. (1992) use the
following equation:

σ2
k = γ 2

0 + γ 2
1�xk + γ 2

2�bidask(k−1) (4.35)

where γ 2
0 is set equal to 1, to identify the model’s parameters. Hautsch

and Pohlmeier (2001) use the following multiplicative specification
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instead:

σ2
k = σ2

0 [exp(γ1 log(xk)+ γ2(log(xk−1)+ γ3(log(xk−2)

+ γ4(log(xk−3)+ γ5(log(Vk)+ γ6(log(Vk−1)+ TREND)]2
(4.36)

where the deterministic intraday trend is modeled with a Fourier
series approximation:

TREND = γ7t∗k +
5∑

q=1

(
γc,q cos(t∗k · 2πq)+ γs,q sin(t∗k · 2πq)

)
(4.37)

where γ7,γc,q,γs,q are the coefficients to be estimated, while t∗k ε[0,1]
is a normalized intraday time trend, which is defined as the number
of seconds from market opening until the occurrence of transaction
i divided by the length of the trading day. Hautsch and Pohlmeier
(2001) assume σ2

0 = 1 to completely identify α, β e γ ; nevertheless,
the two authors refer to more interesting selection methods for σ2

0 ,
such as “minimum distance” estimation or nonlinear restrictions (see
Pohlmeier and Gerhard, 2001 for further details).

Diagnostic tests

The first step in verifying the correct specification in a classical OLS model
is to examine the residuals’ properties: if all variables are included, the
residuals should approximate a white noise with no serial correlation
left. Unfortunately, we cannot directly estimate the residuals in the OP
model because we cannot observe the latent variable y∗

k and the related

residuals y∗
k − z′

kβ̂. However, we have an estimate of the distribution of
y∗
k conditional to z′

k, and a parameter vector estimated by maximum
likelihood. From this starting point, we can estimate a conditional dis-
tribution of the εk, and then build the generalized residuals ε̂k, following
Gourieroux et al. (1987):

ε̂k = E[εk|yk,zk,wk; θ̂ml] (4.38)

where θ̂ml are the maximum likelihood estimates of α̂, β̂, γ̂ . In our case, if
yk is equal to the j−th state, that is yk = sj, then the generalized residuals ε̂k
can be explicitly estimated using the moments of the truncated normal
distribution (Hausman et al., 1992):

ε̂k = E[εk|yk,zk,wk; θ̂ml] = σ̂k · φ(c2)−φ(c1)

�(c2)−�(c1)
, (4.39)
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where c1 = 1
σ̂k
(α̂j−1 − z′

kβ̂), c2 = 1
σ̂k
(α̂j − z′

kβ̂), and σ2
k = γ 2

0 + γ 2
1�xk +

γ 2
2�bidask(k−1) (if we follow Hausman et al.,1992), σ2

k =
[
exp(ω′

kγ )
]2

(if

we follow Greene, 2000 and Hautsch and Pohlmeier, 2001) and where
ϕ(.) is the probability density function of a standard normal, while �(.)
is the cumulated distribution function. It is common practice to define
α0 = −∞ and αm = +∞.

The generalized residuals can be used for different misspecification
tests, but they must be used with a certain caution: Gourieroux et al.
(1987) show that the autocorrelation of the generalized residuals ε̂k, in
general, is not equal to the theoretical autocorrelation of εk. Besides, if
the serial correlation is due to the omission of some lags of the endoge-
nous variables yk, the previous specification tests must be modified. In
order to deal with this problem, Gourieroux et al. (1987) built some
tests to analyze the serial correlation due to lagged endogenous variables
by using the “score statistic.” That is, the derivative of the log-likelihood
function w.r.t. the autocorrelation parameter, evaluated with the ML esti-
mates under the null hypothesis of no serial correlation. For example,
let’s consider the following model per y∗

k :

y∗
k = ϕy∗

k−1 + z′
kβ+ εk, con |φ|< 1 (4.40)

In this case, the score statistic ξ̂1 is the derivative of the log-likelihood
function w.r.t. φ, evaluated with the ML estimates under the null
hypothesis φ = 0, that is

ξ̂1 =
 n∑

k=2

ŷk−1ε̂k

2/ n∑
k=2

ŷ2
k−1ε̂

2
k , (4.41)

where ŷk = E[y∗
k |yk,zk,wk; θ̂ml]= z′

kβ̂+ ε̂k. When ϕ= 0, ξ̂1 is asymptotically

distributed as a χ2 with one degree of freedom. If we consider the general
case and we want to test for the omission of the lagged endogenous
variable of order bigger than one, we have:

y∗
k = ϕy∗

k−j + z′
kβ+ εk, con |φ|< 1 (4.42)

ξ̂j =
 n∑

k=j+1

ŷk−j ε̂k

2/ n∑
k=j+1

ŷ2
k−j ε̂

2
k (4.43)
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that is again asymptotically distributed as a χ2 with one degree of free-
dom, under the null hypothesis of φ= 0. Another way to test the possible
omission of a lagged endogenous variable is to estimate the sample corre-
lations ν̂j of the generalized residuals ε̂k with the estimated lagged values
ŷk−j. Under the null hypothesis of no serial correlation in the residuals
εk, the theoretical value of this correlation is zero: the sample correla-
tion can thus furnish a measure of the economic impact caused by model
misspecification (Hausman et al., 1992).

4.4 An application to futures’ markets: Chicago
mercantile exchange’s S&P 500 and Nasdaq 100

4.4.1 CME data handling

After having examined the theory of ACD and ordered probit modeling,
we now present some empirical applications employing intraday futures’
data relative to the Standard & Poor 500 and Nasdaq100 stock index
futures, quoted at the Chicago Mercantile Exchange (CME). Besides being
the most important stock index futures, these two derivatives have the
characteristics of being quoted almost 24 hours a day: to be more precise,
there is normal “pit” trading from 15.30 to 22.15 CET (“regular trading
hour, RTH”), and an electronic session from 22.45 until 15.15 the day
after (“Globex”). As the night session usually presents a low number
of trades, especially between the closing of American markets and the
opening of the Asian one, we analyze here only the data which took place
within the daily RTH session. This data has been downloaded from by
the CME’s web site, www.cme.com, that publishes the “Times and sales”
relative to every financial asset quoted during the preceding 24 hours
daily. This data is saved as text files and besides the price, they show the
hour/minute/second, the traded volumes and other marks relative to the
traded derivative (such as cancelled orders) that goes beyond the scope
of this chapter and will not be considered.

The analyzed data set runs from April 29, 2002 to June 28, 2002, which
covers nine weeks of trading, which took place between 8.30 Chicago
local time (9.30 New York local time, 15.30 CET), and 15.00 Chicago local
time (16.00 New York local time, 22.00 CET): among the 45 trading days,
only the data relative to Monday May 27, 2002 is missing, as the CME
was not operative on that day. We grouped the data for every day of the
week from Monday to Friday, in order to better estimate the intraday sea-
sonal pattern. Moreover, the first trade which took place every day after
8.30 in the morning (Chicago local time) has been deleted. The CME
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Table 4.1 Number of data used divided per day of the week

SP500 NASDAQ100

Monday (1 day is not present) 21838 9070
Tuesday 25043 10496
Wednesday 25282 11566
Thursday 24560 11010
Friday 23026 9707
Total 119749 51849

data, unlike the TAQ database by the New York Stock Exchange, does
not show the bid–ask quotes relative to every trade. When we observe a
duration equal to zero, we have a so-called split-transaction: this means
that the bid or sell market order was bigger than the first bid–ask level in
the market book, and it had to go down to lower market book levels to
be executed, thus generating different prices with the same timestamp.
Some empirical studies consider these “sub-transactions” separately, and
they fix their duration to 1 second. Here, we prefer to follow Grammig
and Wellner (2002) and Hautsch and Pohlmeier (2001): if the dura-
tions are equal to zero, the sub-transactions are united in a single trade
with the same timestamp (hh/mm/ss), the traded volume is equal to
the sum of single volumes and the price is the weighted average of
the single sub-transactions’ prices. After this data-handling process, the
amount of data used for the subsequent econometric analysis is detailed
below.

4.4.2 ACD modeling: Empirical results

Intraday market patterns

We estimated the intraday market pattern by using the linear splines by
Engle (2000): however, unlike Engle, and following Bauwens and Giot
(2000), the seasonalities have also been differentiated for every single
week day. The final results are reported in Figures 4.2–4.11 (the durations
in seconds are reported on the y axis, while the time interval of a single
day, that is 23400 seconds, is displayed on the x axis).

As it is possible to see from the previous graphs, the choice to dif-
ferentiate the seasonalities for a single weekday is surely a proper one.
Moreover, splines’ coefficients are significant in almost all cases at the
5 percent level (we do not report the result for the sake of space). The
common “U-shape” (normal or inverted) for durations and volatility is
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Figure 4.2–4.6 Intraday seasonality SP500 – durations
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Figure 4.7–4.11 Intraday seasonality SP500 – absolute value returns (Volatility)

also present here: trades are usually very quick and volatility is at its high-
est value at the opening of the market, while the durations are longer
and volatility is at its lowest value during lunchtime. The market close
presents quick trades and high volatility once again: however, as opposed
to the opening, durations are higher and volatility is slightly lower. This
fact confirms the idea that end-of-the-day trades are of a different nature
than the ones that take place in the morning, where the former are the
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result of closing daily positions and the latter are due to the necessity to
change portfolio allocations according to news coming out during the
night break. As for the day-of-the week-effect, we can observe a lower
volatility on Monday afternoon, especially from the lunch break until
the closing bell, while Friday morning presents the highest volatility,
which is probably due to the closing positions by institutional investors
before the weekend. The Nasdaq100 results are similar to the SP500’s
ones and for sake of space, we do not present them.

Comparison among different ACD models

After we removed the deterministic component using linear splines, we
model the correlation left in the normalized duration (4.20) by using the
four models presented in paragraph 4.3.1:

(1) Exponential–ACD (EACD).
(2) Weibull–ACD (WACD).
(3) Log–EACD.
(4) Log–WACD.

We used both lagged durations and other trademarks as regressors,
such as volumes, when they are greater than 1, and two lagged futures’
returns, similarly to Pohlmeier and Hautsch (2001) with the Bund future.
As for volumes, we decide to consider only volume greater than 1 since
most of the trades regarded only a single contract: this is not a surprise,
since SP500 and Nasdaq100 futures are mainly traded by institutional
investors and pension funds.

The specification for the expected duration espdur with the simple ACD
models by using the Eviews programming language, both exponential
and Weibull, is reported below (the one for the Nasdaq100 is similar, so
we do not report it):

(1) EXPONENTIAL /(2) WEIBULL model:

espdur = cost(1)+ alfa1(1)∗ spduration(−1)+ beta1(1)∗ espdur(−1)

+ alfa2(1)∗ spduration(−2)+ beta2(1)∗ espdur(−2)

+ teta1(1)∗ (spvol> 1)+ teta2(1)∗abs(spreturn(1))

+ teta3(1)∗ abs(spreturn(−2))
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For logarithmic ACD models, we used:

(3) EXPONENTIAL model:

espdur = cost(1)+ alfa1(1)∗ (spduration(−1)/exp(espdur(−1)))

+ beta1(1)∗ espdur(−1)+ alfa2(1)∗ (spduration(−2)/

exp(espdur(−2)))+ beta2(1)∗ espdur(−2)+ teta1(1)∗ (spvol> 1)

+ teta2(1)∗ abs(spreturn(−1))+ teta3(1)∗abs(spreturn(−2))

4) WEIBULL model:

espdur = cost(1)+ alfa1(1)∗ (spduration(−1)∗ lam/exp(espdur(−1)))

+ beta1(1)∗ espdur(−1)+ alfa2(1)∗ (spduration(−2)

∗ lam/exp(espdur(−2)))+ beta2(1)∗ espdur(−2)+ teta1(1)

∗ (spvol> 1)++teta2(1)∗abs(spreturn(−1))+ teta3(1)

∗ abs(spreturn(−2))

where lam = @gamma(1+1/gam(1)) and gam(1) is the estimate of the
Weibull parameter γ . This formulation basically reflects an ACD(2,2)
model: we opted for this specification because it was the one which had
the best empirical results (similarly to Engle and Russell, 1998). The final
results are shown in the table below.

The sum of all autoregressive coefficients is less than 1 in every model,
which means covariance stationarity and existence of the unconditional
mean. All considered models reduce the correlation in the normalized
duration, with better results for Weibull logarithmic models (similar
results are presented by Engle and Russell, 1998, and Bauwens and Giot,
2000). As for Nasdaq100 data, the results among the models are very
close, and even though both the Wald test and the LR test reject the
hypothesis of γ = 1, we need further diagnostic testing to determine
which one of the two distributions perform better. As the mean and
the standard deviation of the exponential distribution are equal, Engle
and Russell (1998) introduce a special Z-statistic to check the correct
specification of the residuals distribution:

Z = √
N

(
σ2
ε − 1√

8

)
(4.44)

where σ2
ε is the variance of the standardized residuals when we deal

with exponential models, while we use the variance of the following
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Table 4.2 SP500 ACD models’ estimation results

EACD(2,2) Coefficient Std. Error z-Statistic Prob.

COST(1) 0.020313 0.025756 0.788648 0.4303
ALFA1(1) 0.018218 0.004125 4.416818 0.0000
BETA1(1) 0.507759 0.074999 6.770187 0.0000
ALFA2(1) 0.022347 0.004233 5.279689 0.0000
BETA2(1) 0.422662 0.074905 5.642671 0.0000
TETA1(1) 0.049751 0.008636 5.760842 0.0000
TETA2(1) 0.025685 0.005512 4.659931 0.0000
TETA3(1) −0.026089 0.005579 −4.676487 0.0000

Log likelihood −118703.3 Akaike info criterion 1.982702
Avg. log lik. −0.991284 Schwarz criterion 1.983350
Number of Coefs. 8 Hannan–Quinn criterion 1.982897

WACD(2,2) Coefficient Std. Error z-Statistic Prob.

GAM(1) 1.247968 0.002681 465.4655 0.0000
COST(1) 0.026513 0.001664 15.93384 0.0000
ALFA1(1) 0.059019 0.002585 22.82888 0.0000
BETA1(1) 0.540370 0.018966 28.49100 0.0000
ALFA2(1) −0.024030 0.002659 −9.036271 0.0000
BETA2(1) 0.401573 0.018376 21.85277 0.0000
TETA1(1) 0.010289 0.001556 6.612735 0.0000
TETA2(1) 0.122849 0.003954 31.07282 0.0000
TETA3(1) −0.127738 0.003852 −33.15843 0.0000

Log likelihood −113616.0 Akaike info criterion 1.897751
Avg. log lik. −0.948800 Schwarz criterion 1.898479
Number of Coefs. 9 Hannan–Quinn criter. 1.897970

Log–EACD (2,2) Coefficient Std. Error z-Statistic Prob.

COST(1) −0.036495 0.011692 −3.121334 0.0018
ALFA1(1) 0.014108 0.004000 3.527073 0.0004
BETA1(1) 0.543728 0.098483 5.521033 0.0000
ALFA2(1) 0.015763 0.003939 4.002136 0.0001
BETA2(1) 0.405556 0.098540 4.115667 0.0000
TETA1(1) 0.037387 0.008598 4.348459 0.0000
TETA2(1) 0.022041 0.005659 3.894538 0.0001
TETA3(1) −0.022709 0.006071 −3.740522 0.0002

Log likelihood −118747.2 Akaike info criterion 1.983435
Avg. log lik. −0.991650 Schwarz criterion 1.984082
Number of Coefs. 8 Hannan-Quinn criter. 1.983630

Continued
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Table 4.2 Continued

Log-WACD(2,2) Coefficient Std. Error z-Statistic Prob.

GAM(1) 1.247617 0.002684 464.8801 0.0000
COST(1) −0.029107 0.001339 −21.74560 0.0000
ALFA1(1) 0.054047 0.002374 22.76384 0.0000
BETA1(1) 0.482814 0.020598 23.43978 0.0000
ALFA2(1) −0.019431 0.002442 −7.956889 0.0000
BETA2(1) 0.455358 0.019895 22.88754 0.0000
TETA1(1) 0.011623 0.001696 6.851715 0.0000
TETA2(1) 0.116230 0.003875 29.99455 0.0000
TETA3(1) −0.124143 0.003817 −32.52790 0.0000

Log likelihood −113664.0 Akaike info criterion 1.898554
Avg. log lik. −0.949202 Schwarz criterion 1.899282
Number of Coefs. 9 Hannan-Quinn criter. 1.898773

Table 4.3 SP500 ACD models’ residuals’ tests

Residuals: EACD(2,2) WACD(2,2) Log–EACD(2,2) Log–WACD(2,2)

LB(15)5% = 25 57.911 29.570 146.65 28.576

transformation when we deal with Weibull models:

ε
γ

i = (
εi ∗�(1 + 1/γ )

)γ (4.45)

which is distributed as an exponential if the Weibull assumption is
correct. The Z-statistic is asymptotically distributed as a normal with
5 percent critical value equal to ±1.96. The statistic values for the four
models are shown in Table (4.6).

The exponential models are nearer to the 5 percent critical value than
the Weibull ones in all cases, and for the Nasdaq100 data the statistic is
very close to 1.96 since as we are dealing with a high number N of data,
we can certainly say that it fits the data very well. A possible explana-
tion for the different behavior of the two futures can be proposed: the
SP500 future, as opposed to the Nasdaq100 future, is composed of both
Nyse stocks, which present low volatility and an advanced industrial
life cycle, and Nasdaq stocks, which instead show high volatility and
a young industrial life cycle. The presence of both of these categories
probably causes more noise in the data and a heterogeneity problem, so
that it is very difficult to impose a specific distribution to the residuals.
Although the Weibull distribution proved to be a good improvement in
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Table 4.4 NASDAQ100 ACD models’ estimation results

EACD(2,2) Coefficient Std. Error z-Statistic Prob.

COST(1) 0.056714 0.025803 2.198003 0.0279
ALFA1(1) 0.110803 0.007015 15.79476 0.0000
BETA1(1) 0.672378 0.171991 3.909379 0.0001
ALFA2(1) −0.012069 0.019833 −0.608510 0.5428
BETA2(1) 0.181647 0.142629 1.273566 0.2028
TETA1(1) 0.044101 0.027483 1.604661 0.1086
TETA2(1) −0.003146 0.007780 −0.404411 0.6859
TETA3(1) −0.006650 0.006880 −0.966639 0.3337

Log likelihood −50303.64 Akaike info criterion 1.94077
Avg. log likelihood −0.970232 Schwarz criterion 1.94214
Number of coefs. 8 Hannan–Quinn criterion 1.94120

WACD(2,2) Coefficient Std. Error z-Statistic Prob.

GAM(1) 1.141792 0.003626 314.9049 0.0000
COST(1) 0.006414 0.001019 6.295759 0.0000
ALFA1(1) 0.092273 0.004146 22.25808 0.0000
BETA1(1) 1.652490 0.029777 55.49641 0.0000
ALFA2(1) −0.082218 0.003692 −22.26823 0.0000
BETA2(1) −0.666535 0.027893 −23.89645 0.0000
TETA1(1) −0.006978 0.001519 −4.592952 0.0000
TETA2(1) 0.000401 0.004200 0.095494 0.9239
TETA3(1) −0.002486 0.004235 −0.586895 0.5573

Log likelihood −49454.91 Akaike info criterion 1.90807
Avg. log likelihood. −0.953862 Schwarz criterion 1.90960
Number of coefs. 9 Hannan–Quinn criterion 1.90855

Log–EACD(2,2) Coefficient Std. Error z-Statistic Prob.

COST(1) −0.032378 0.020237 −1.599896 0.1096
ALFA1(1) 0.086805 0.005474 15.85878 0.0000
BETA1(1) 1.025186 0.154045 6.655093 0.0000
ALFA2(1) −0.042512 0.014132 −3.008140 0.0026
BETA2(1) −0.104960 0.126345 −0.830742 0.4061
TETA1(1) 0.036922 0.028742 1.284613 0.1989
TETA2(1) −0.020247 0.008699 −2.327442 0.0199
TETA3(1) 0.004366 0.008612 0.506943 0.6122

Log likelihood −50399.46 Akaike info criterion 1.944470
Avg. log lik. −0.972081 Schwarz criterion 1.945836

Continued
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Table 4.4 Continued

Log–WACD(2,2) Coefficient Std. Error z-Statistic Prob.

GAM(1) 1.137815 0.003616 314.6226 0.0000
COST(1) −0.011261 0.001912 −5.889805 0.0000
ALFA1(1) 0.078850 0.004008 19.67264 0.0000
BETA1(1) 1.363993 0.059406 22.96065 0.0000
ALFA2(1) −0.059118 0.003934 −15.02876 0.0000
BETA2(1) −0.397115 0.055358 −7.173622 0.0000
TETA1(1) −0.018547 0.003902 −4.753659 0.0000
TETA2(1) −0.015076 0.005993 −2.515842 0.0119
TETA3(1) 0.006382 0.006093 1.047448 0.2949

Log likelihood −49612.45 Akaike info criterion 1.91414
Avg. log likelihood −0.956901 Schwarz criterion 1.91568
Number of Coefs. 9 Hannan-Quinn criter. 1.91463

Table 4.5 NASDAQ100 ACD models’ residuals’ tests

Residuals: EACD(2,2) WACD(2,2) Log–EACD(2,2) Log–WACD(2,2)

LB(15)5% = 25 48.071 22.766 20.676 16.847

Table 4.6 Z-statistic test estimated with ACD models residuals

EACD(2,2) WACD(2,2) Log–EACD(2,2) Log–WACD(2,2)

SP500 −24.87 35.27 −26.34 35.00
NASDAQ100 −3.06 25.32 −2.86 24.32

duration modeling both in diminishing the serial correlation and achiev-
ing a greater log likelihood, the high Z-statistic clearly points out that it
must be considered as only a partial approximation of reality. The Nas-
daq100 future presents a greater homogeneity among its constituents
instead, so that it is easier to assume a specific distribution.

Finally, let us investigate the sign of the explanatory variables: as for
SP500 futures, while the positive and negative coefficients for the two
lagged future returns highlight the well-known bid–ask bounce, the pos-
itive sign of big volumes (Spvol > 1) show an interesting result: bigger
traded volumes causes a longer expected duration. If this result is appar-
ently against the main microstructure theories, where greater volume
diminishes the expected duration, here we have to take into account the
fact that the most trades regard only 1 single contract and the opera-
tors are usually only big institutional funds. Since a single Bloomberg or
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Reuters platform, with the most important news features, costs about
$30000–$70000 per year, only big players can afford such costs; how-
ever, as small- and medium-size traders are not present in this market
and the common “greater volume–shorter duration” effect is caused by
such operators who have access to news with delay, it is easy to realize
that when many orders take place at the same time in this market, it
takes a while before we see the next trade.

As for Nasdaq100, the autoregressive structure is able to completely
model the correlation in the normalized durations, while the other trade-
marks are not statistically significant: this is not a surprise if we consider
that more than 90 percent of trades are 1-contract deals.

Volatility modeling

As we have seen in paragraph 4.3.3, a good model for intraday volatil-
ity analysis is the UHF–GARCH proposed by Engle (2000), which
can measure price volatility by using single-transaction data and thus
considers how the trade timing influences volatility.

The basic form of the UHF–GARCH(1,1) is this one:

ri√
xi

= δ duration +ρ ri−1√
xi−1

+ ei +φei−1, [conditional mean equation]
(4.46)

MODEL A : σ2
i = ω+αe2

i−1 +βσ2
i−1, [conditional variance equation]

(4.47)

while wider specifications include both observed durations and expected
ones, as well as a long-run volatility component and traded volumes:

MODEL B: σ2
i = ω+αe2

i−1 +βσ2
i−1 + γ x−1

i
(4.48)

MODEL C: σ2
i = ω+αe2

i−1 +βσ2
i−1 + γ1x−1

i
+ γ2

xi
ψi

+ γ3ψ
−1
i (4.49)

MODEL D: σ2
i = ω+αe2

i−1 +βσ2
i−1 + γ1x−1

i
+ γ2

xi
ψi

+ γ3ξi−1

+ γ4ψ
−1
i + γ5(spvol> 1) (4.50)

where ξ i is the long-run volatility, which is estimated by exponentially
smoothing r2/x with a parameter 0.995 (Engle, 2000):

ξi = 0.005(r2
i−1/xi−1)+ 0.995ξi−1 (4.51)

The final results for the SP500 are reported in Tables 4.7–4.8, while for
the Nasdaq100 in Tables 4.9–4.10 below.
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Table 4.7 SP500 UHF–GARCH models’ estimation results (Models A, B, C, D)

Model A Coefficient Std. Error z-Statistic Prob.

SPDURATION 0.001645 0.001307 1.259070 0.2080
AR(1) −0.202511 0.027240 −7.434433 0.0000
MA(1) 0.301866 0.026557 11.36674 0.0000

Variance equation
C 0.004833 0.000463 10.43909 0.0000
ARCH(1) 0.021754 0.000845 25.73806 0.0000
GARCH(1) 0.974877 0.000991 983.4212 0.0000

R-squared 0.012418 Mean dependent var −0.01224
Adjusted R-sq. 0.012377 S.D. dependent var 1.21220
Sum sq. resid 173774.6 Schwarz criterion 3.12335
Log likelihood −186972.7 Durbin–Watson stat 1.97447

MODEL B Coefficient Std. Error z-Statistic Prob.

SPDURATION 0.002070 0.001131 1.829721 0.0673
AR(1) −0.338054 0.042544 −7.945952 0.0000
MA(1) 0.382569 0.041838 9.143962 0.0000

Variance Equation
C −0.016218 0.003048 −5.320075 0.0000
ARCH(1) 0.098539 0.002944 33.46839 0.0000
GARCH(1) −0.026783 0.005419 −4.942162 0.0000
1/SPDURATION 0.641249 0.004368 146.8205 0.0000

R-squared 0.008025 Mean dep. var −0.01224
Adjusted R-sq. 0.007975 S.D. dependent var 1.212200
Sum squared resid 174547.6 Schwarz criterion 2.854312
Log likelihood −170858.1 Durbin-Watson stat 1.866143

Model C Coefficient Std. Error z-Statistic Prob.

SPDURATION 0.000994 0.002757 0.360434 0.7185
AR(1) −0.388228 0.032371 −11.99312 0.0000
MA(1) 0.448388 0.031392 14.28361 0.0000

Variance equation
C −0.123163 0.013933 −8.839834 0.0000
ARCH(1) 0.024609 0.002878 8.549505 0.0000
GARCH(1) 0.169754 0.006009 28.25108 0.0000
1/SPDURATION 0.331227 0.004304 76.96582 0.0000
SPDURATION/SPEXPDUR −0.026812 0.000421 −63.72151 0.0000
1/SPEXPDUR 0.410984 0.016059 25.59140 0.0000

R-squared 0.009785 Mean dependent var −0.01224
Adjusted R-sq. 0.009711 S.D. dependent var 1.21220
S.E. of reg. 1.206300 Akaike info criterion 2.91987
Sum sq. resid 174237.8 Schwarz criterion 2.92067
Log likelihood −174814.3 Durbin–Watson stat 1.89637

Continued
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Table 4.7 Continued

MODEL D Coefficient Std. Error z-Statistic Prob.

SPDURATION 0.002510 0.002375 1.056762 0.2906
AR(1) −0.881344 0.022758 −38.72613 0.0000
MA(1) 0.891905 0.021757 40.99357 0.0000

Variance Equation
C −0.234981 0.015941 −14.74100 0.0000
ARCH(1) 0.008682 0.002675 3.246019 0.0012
GARCH(1) 0.089181 0.005333 16.72391 0.0000
1/SPDURATION 0.284048 0.003709 76.57707 0.0000
SPDURATION/ SPEXPDUR −0.024529 0.000352 −69.76532 0.0000
1/SPEXPDUR 0.290762 0.018881 15.39975 0.0000
LONGVOL(−1) 0.250860 0.006704 37.41899 0.0000
SPVOL>1 0.179032 0.006136 29.17786 0.0000

R-squared 0.002175 Mean dependent var −0.012249
Adjusted R-sq. 0.002091 S.D. dependent var 1.212200
Sum sq.resid 175577.0 Schwarz criterion 2.895605
Log likelihood −173307.1 Durbin-Watson stat 1.800906

Table 4.8 SP500 UHF–GARCH models residuals tests

Initial
autocorrelation Residuals MODEL A MODEL B MODEL C MODEL D

LB(15) = 1615.6 {LB(15)5% = 25} 115.98 131.55 157.48 401.06

All models are able to diminish the serial correlation present in the
returns per unit of time SPRETURN/

√
SPDURATION = ri/

√
xi. However,

the last model which considers the long-run volatility component as well
is the worst, especially for the SP500 future. This explanatory variable
must be considered with great caution. Engle himself highlights that
the long-run volatility specification can be improved by optimizing the
parameters in equation (4.28).

If we compare the four models, we can clearly see that the introduc-
tion of the duration among the explanatory variables of the conditional
variance notably improve the log likelihood. The serial correlation in
the residuals is similar to the basic UHF–GARCH(1,1), with a slightly
worse result for the Nasdaq100 future. Besides, this variable reduces the
sum of the GARCH parameters α and β, thus improving the modeling of
volatility persistence: this result is similar to the one achieved by Engle
(2000), Ghose and Kroner (1995) and Andersen and Bollerslev (1997).
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Table 4.9 NASDAQ100 UHF–GARCH models estimation results (Models
A, B, C, D)

Model A Coefficient Std. Error z-Statistic Prob.

AR(1) 0.415078 0.032764 12.66874 0.0000
MA(1) −0.514595 0.030829 −16.69181 0.0000

Variance equation
C 0.009147 0.001301 7.030507 0.0000
ARCH(1) 0.017259 0.001224 14.09600 0.0000
GARCH(1) 0.976110 0.001902 513.0951 0.0000

R-squared 0.010399 Mean dependent var −0.002165
Adjusted R-sq. 0.010323 S.D. dependent var 1.179002
Sum sq. resid 71320.22 Schwarz criterion 3.133263
Log likelihood −81199.58 Durbin–Watson stat 1.964099

MODEL B Coefficient Std. Error z-Statistic Prob.

AR(1) 0.420843 0.031937 13.17715 0.0000
MA(1) −0.489002 0.030829 −15.86183 0.0000

Variance Equation
C 0.014850 0.002543 5.839832 0.0000
ARCH(1) 0.024899 0.004880 5.101759 0.0000
GARCH(1) −0.017738 0.005183 −3.422325 0.0006
1/NASDURATION 0.509999 0.002279 223.7784 0.0000

R-squared 0.009608 Mean dependent var −0.0021
Adjusted R-sq. 0.009513 S.D. dependent var 1.17901
Sum squared resid 71377.19 Schwarz criterion 2.65726
Log likelihood −68854.44 Durbin-Watson stat 2.02441

Model C Coefficient Std. Error z-Statistic Prob.

AR(1) 0.422356 0.031946 13.22083 0.0000
MA(1) −0.490382 0.030835 −15.90345 0.0000

Variance equation
C 0.042484 0.006599 6.438281 0.0000
ARCH(1) 0.025740 0.004885 5.269156 0.0000
GARCH(1) −0.018023 0.005224 −3.450299 0.0006
1/NASDURATION 0.507005 0.002844 178.2494 0.0000
NASDURATION/

NASEXPDUR −0.002104 0.000944 −2.228729 0.0258
1/NASEXPDUR −0.021175 0.006387 −3.315406 0.0009

R-squared 0.009605 Mean dependent var −0.002165
Adjusted R-sq. 0.009452 S.D. dependent var 1.179002
Sum squared resid 71377.47 Schwarz criterion 2.657730
Log likelihood −68850.14 Durbin–Watson stat 2.024664

Continued
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Table 4.9 Continued

MODEL D Coefficient Std. Error z-Statistic Prob.

AR(1) 0.427106 0.031221 13.68004 0.0000
MA(1) −0.495833 0.030099 −16.47354 0.0000

Variance Equation
C −0.087972 0.008457 −10.40246 0.0000
ARCH(1) 0.019988 0.002135 9.362335 0.0000
GARCH(1) −0.014275 0.001917 −7.447593 0.0000
1/NASDURATION 0.504070 0.002671 188.6876 0.0000
NASDURATION/

NASEXPDUR 0.000696 0.000812 0.857478 0.3912
LONGVOL(−1) 0.142079 0.006142 23.13348 0.0000
1/NASEXPDUR −0.081566 0.006780 −12.02972 0.0000
NASVOL>1 −0.041194 0.013004 −3.167823 0.0015

R-squared 0.009668 Mean dependent var −0.002165
Adjusted R-sq. 0.009496 S.D. dependent var 1.179002
Sum squared resid 71372.92 Schwarz criterion 2.653847
Log likelihood −68744.06 Durbin-Watson stat 2.023354

Note: The explanatory variable Nasduration, within the conditional mean, was not statisti-
cally significant for all four models, so we eliminate it.

Table 4.10 10 NASDAQ100 UHF–GARCH models’ residuals’ tests

Initial
autocorrelation Residuals MODEL A MODEL B MODEL C MODEL D

LB(15) = 628.82 {LB(15)5% = 25} 114.46 219.15 220.52 227.29

As for the sign of the coefficients, the conditional mean shows sig-
nificant ARMA parameters with alternate signs, reflecting the common
bid–ask bounce in the prices; the durations’ coefficient is not significant
for the Nasdaq100 future. For the SP500, the model with the highest log
likelihood presents a significant positive coefficient: this empirical evi-
dence seems to be against the Diamond and Verrecchia (1987) model,
which says that no trades mean bad news, so that longer durations
should be associated with diminishing prices. This result is reasonable
for one simple reason: Diamond and Verrecchia (1987) assume that some
market operators cannot short sell: if this can be true for the stock mar-
ket (such a result is found in Engle, 2000), this does not make any sense
for the futures’ market where everyone can buy and sell in a completely
symmetric fashion. The data simply reflect this characteristic of future
markets.
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The “conditional variance” equation presents in all models a signif-
icant positive sign for the reciprocal of durations, thus supporting the
Easley and O’Hara (1992) idea that no trades means no news and volatil-
ity fall. As in Engle (2000), observed durations divided by expected
durations (which can be considered as a measure of trading surprises)
have a negative coefficient, which is significant in almost all cases: the
short-term impact is the same as the previous one, that is, longer dura-
tions diminish volatility. The trading intensity which is given by the
reciprocal of expected duration is positive too, supporting again the idea
that more trades cause higher volatility. For the latter coefficient, contrar-
ily to the SP500 future, the Nasdaq100 presents a negative value which
is, however, significant only at the 5 percent level. As for traded vol-
umes, the SP500 future presents a high significant positive coefficient,
which confirms the idea that bigger volumes bring about higher volatil-
ity (Easley and O’Hara, 1992), while Nasdaq100’s coefficient is slightly
negative; however, the latter result must be viewed with caution as more
than 90 percent of trades are 1-contract deals.

4.4.3 Ordered probit modeling: Empirical results

Conditional mean and variance specification

The OP model is a “virtual” regression of a set of latent dependent vari-
ables Y∗, whose conditional mean is a linear function of some observable
explanatory variables. Although Y∗ is not observable, it is linked to a
discreet random variable Y which is observable, and whose values are
determined by the particular state of Y∗. The number of states sj that we
considered in our analysis and which constitute the state space � of the
price changes yk are:

SP500 NASDAQ100

�p<−0.4 1722
[−0.4, −0.3) 3297 �p<= −1.75] 781
[−0.3, −0.2) 29634 (−1.75, −1.25] 730
[−0.2, −0.1) 12701 (−1.25, −0.75] 22663
[−0.1, 0) 12972 (−0.75, 0.75) 3795
[0, 0.1] 12774 [0.75, 1.25) 22208
(0.1, 0.2] 12227 [1.25, 1.75) 714
(0.2, 0.3] 29290 [�p >= 1.75 953
(0.3, 0.4] 3060
�p> 0.4 2067

The conditional mean has been modeled with lagged price changes
(“deltaprice”), traded volumes (“vol”), and contemporaneous duration

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP04” — 2010/11/22 — 17:40 — PAGE 124 — #33

124 Dean Fantazzini

(“dur”), following Hausman et al. (1992) and Hautsch and Pohlmeier
(2001). The equations used are reported below:

SP500’s conditional mean specification:

�p∗
SP500 = beta(1)deltaprice(−1)+ beta(2)∗deltaprice(−2)

+ beta(3)∗deltaprice(−3)+ beta(4)∗ spvol

+ beta(5)∗Wednesday + beta(6)∗ spdur

NASDAQ100’s conditional mean specification:

�p∗
NASDAQ100 = beta(1)∗deltaprice(−1)+ beta(2)∗deltaprice(−2)

+ beta(3)∗deltaprice(−3)+ beta(4)∗nasvol

+ beta(5)∗Wednesday + beta(6)∗nasdur

As for the conditional variance, we follow Hautsch and Pohlmeier
(2001) and we model the intraday volatility using this specification:

σ2
k = σ2

0 [exp(γ1 log(xk)+ γ2(log(xk−1)+ γ3(log(xk−2)+ γ4(log(xk−3)

+ γ5(log(Vk)+ γ6(log(Vk−1)+ TREND + DumMONDAY + DumFRIDAY )]2
(4.52)

where x is the duration and V are the traded volumes, while Dummonday
and Dumfriday were the only dummy variables that we find significant to
differentiate single days of the week. The seasonal pattern TREND is the
Fourier series approximation (4.23),

TREND = γ7t∗k +
3∑

q=1

(
γc,q cos(t∗k · 2πq)+ γs,q sin(t∗k · 2πq)

)
(4.53)

where γ7,γc,q,γs,q are the coefficients to be estimated, t∗k ε [0, 1] is a nor-
malized intraday time trend, which is defined as the number of seconds
from market opening until the occurrence of transaction i divided by the
length of the trading day. Expressing the previous equation with Eviews
programming language, the conditional variance is as follows:

SP500’s conditional variance specification:

σ2
SP500 = exp(gam(1)∗ log(spdur)+ gam(2)∗ log(spdur(−1))

+ gam(3)∗ log(spdur(−2))+ gam(4)∗ log(spdur(−3))

+ gam(5)∗ log(spvol)+ gam(6)∗ log(spvol(−1))

+ gam(7)∗ sptrend + gam(8)∗ spcos1 + gam(9)∗ spcos2
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+ gam(10)∗ spcos3 + gam(11)∗ spsin1 + gam(12)∗ spsin2

+ gam(13)∗ spsin3 + gam(14)∗monday + gam(15)∗ friday)

NASDAQ100’s conditional variance specification:

σ2
NASDAQ100 = exp(gam(1)∗ log(nasdur)+ gam(2)∗ log(nasdur(−1))

+ gam(3)∗ log(nasdur(−2))+ gam(4)∗ log(nasdur(−3))

+ gam(5)∗ log(nasvol)+ gam(6)∗ log(nasvol(−1))

+ gam(7)∗ nastrend + gam(8)∗nascos1 + gam(9)∗nascos2

+ gam(10)∗ nascos3 + gam(11)∗nassin1 + gam(12)∗nassin2

+ gam(13)∗ nassin3 + gam(14)∗monday + gam(15)∗ friday)

Estimation results

The final results are reported in the Tables 4.11–4.12. All coefficients are
highly significant except for traded volumes [beta(4)] in both the SP500’s
and Nasdaq100’s conditional mean and the contemporaneous duration
for Nasdaq100 data, while in the Nasdaq100’s conditional variance the
first lagged duration [GAM(2)] and some Fourier series coefficients are
not significant. Moreover, the fourth region S4 of the latent variable
�p∗

NASDAQ100 was not significant: we decided, however, to keep it any-
way, since its elimination would have caused a large decrease in the log
likelihood and a worsening of all diagnostic tests.

As for the coefficients’ sign in the conditional mean equation, the lagged
price changes almost all have a negative sign, again supporting the
existence of “bid–ask bounce” effects; simultaneously traded volumes
are not significant for both the SP500 and the Nasdaq100, while the
contemporaneous duration is significantly positive for the SP500 (while
not significant for the Nasdaq100): longer durations usually cause a pos-
itive larger price change. This evidence is similar to what we found
previously with UHF–GARCH models and against the Diamond and
Verrecchia (1987) model, where longer durations should be associated
with declining prices. Again, their model does not make any sense here
because everyone can buy and sell in a completely symmetric fashion. An
interesting result from the previous tables is the significant positive coef-
ficient for the Wednesday dummy variable: this result is only apparently
surprising. As some anonymous traders pointed out during an informal
discussion, Wednesdays are usually positive days for the stock exchanges
(especially in the considered period). In predominantly negative weeks,
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Table 4.11 SP500 ordered probit estimation results

SP500 Coefficient Std. Error z-Statistic Prob.

BETA(1) 0.004439 0.000954 4.651659 0.0000
BETA(2) −0.004550 0.000976 −4.660623 0.0000
BETA(3) −0.003646 0.000955 −3.816728 0.0001
BETA(4) 0.000988 0.006896 0.143343 0.8860
BETA(5) 0.016132 0.006431 2.508516 0.0121
BETA(6) 0.002063 0.000346 5.954738 0.0000
GAM(1) 0.046859 0.002630 17.81731 0.0000
GAM(2) −0.046888 0.002679 −17.50479 0.0000
GAM(3) −0.011111 0.002586 −4.297303 0.0000
GAM(4) −0.019279 0.002614 −7.373854 0.0000
GAM(5) 0.198843 0.008236 24.14362 0.0000
GAM(6) 0.309784 0.007777 39.83143 0.0000
GAM(7) −0.196601 0.017312 −11.35638 0.0000
GAM(8) 0.096722 0.003422 28.26821 0.0000
GAM(9) 0.007639 0.003308 2.309037 0.0209
GAM(10) 0.011790 0.003282 3.592001 0.0003
GAM(11) −0.066028 0.006429 −10.27075 0.0000
GAM(12) −0.020968 0.004272 −4.908155 0.0000
GAM(13) 0.026224 0.003817 6.870004 0.0000
GAM(14) −0.053131 0.006328 −8.396262 0.0000
GAM(15) 0.065369 0.005955 10.97704 0.0000
ALFA(1) −2.123232 0.028739 −73.88095 0.0000
ALFA(2) −1.633849 0.022865 −71.45723 0.0000
ALFA(3) −0.490189 0.010874 −45.08031 0.0000
ALFA(4) −0.221846 0.009403 −23.59224 0.0000
ALFA(5) 0.031579 0.008988 3.513570 0.0004
ALFA(6) 0.281923 0.009718 29.01165 0.0000
ALFA(7) 0.541903 0.011369 47.66354 0.0000
ALFA(8) 1.679114 0.023722 70.78328 0.0000
ALFA(9) 2.099934 0.028488 73.71356 0.0000

Log likelihood −232550.4 Akaike info criterion 3.885569
Avg. log likelihood −1.942534 Schwarz criterion 3.887998
No. of coef. 30 Hannan-Quinn criterion 3.886300

it is usually the day of technical rebound, where those who short sold
stocks or sold futures in the first two days of the week cover their posi-
tions and realize profits. They thereby prepare themselves for a price fall
in the last two trading days. In positive weeks, Wednesday gives the “start-
ing sign for the weekend rally” where prices rise from Wednesday till
Friday. These traders stressed that this special day is not fixed to Wednes-
day, but can range from Tuesday to Thursday according to the economic
and financial news announcements: they did not say, however, which
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Table 4.12 NASDAQ100 ordered probit estimation results

NASDAQ100 Coefficient Std. Error z-Statistic Prob.

BETA(1) −0.096007 0.003611 −26.58375 0.0000
BETA(2) −0.062066 0.003137 −19.78420 0.0000
BETA(3) −0.012458 0.002798 −4.451803 0.0000
BETA(4) −0.068359 0.038918 −1.756502 0.0790
BETA(5) 0.034035 0.013881 2.451830 0.0142
BETA(6) 0.000228 0.000236 0.964131 0.3350
GAM(1) 0.064242 0.004479 14.34304 0.0000
GAM(2) −0.001290 0.004096 −0.314900 0.7528
GAM(3) 0.010372 0.004073 2.546620 0.0109
GAM(4) 0.009076 0.004112 2.207514 0.0273
GAM(5) 0.289238 0.031007 9.328179 0.0000
GAM(6) 0.680026 0.035743 19.02536 0.0000
GAM(7) −0.131552 0.033682 −3.905700 0.0001
GAM(8) 0.005325 0.006661 0.799384 0.4241
GAM(9) −0.002991 0.006151 −0.486305 0.6268
GAM(10) −0.007812 0.006397 −1.221222 0.2220
GAM(11) −0.088992 0.012489 −7.125761 0.0000
GAM(12) −0.033813 0.008290 −4.078589 0.0000
GAM(13) 0.010439 0.007099 1.470407 0.1415
GAM(14) −0.025550 0.011443 −2.232831 0.0256
GAM(15) 0.024920 0.010991 2.267426 0.0234
ALFA(1) −2.779756 0.076696 −36.24362 0.0000
ALFA(2) −2.401710 0.074094 −32.41448 0.0000
ALFA(3) −0.157096 0.040888 −3.842127 0.0001
ALFA(4) 0.058002 0.040577 1.429439 0.1529
ALFA(5) 2.215708 0.069417 31.91882 0.0000
ALFA(6) 2.534894 0.071994 35.20985 0.0000

Log likelihood −59350.04 Akaike info criterion 2.291886
Avg. log lik. −1.145422 Schwarz criterion 2.296501
Num.of Coefs. 27 Hannan-Quinn criter 2.293329

announcements change this day-of-the-week effect from one day to
another.

The conditional variance presents a positive sign for the contemporane-
ous duration and negative signs for lagged durations, as previously found
by Hausman et al. (1992) with stocks and Hautsch and Pohlmeier (2001)
with the Bund Future. The negative sign of the lagged durations shows
again that the greater the past trading intensity is (shorter durations), the
higher the conditional variance will be, similarly to Easley and O’Hara
(1992) and previous ACD results. Both contemporaneous and past vol-
umes show a positive sign. That is, that higher volumes cause higher
volatility, thus confirming previous ACD results and Easley and O’Hara’s
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Table 4.13 Generalized residuals’ tests

Generalized residuals
correlation SP500 NASDAQ100

LB(15)5% = 25 28.14 24.05

Table 4.14 j−th order score statistic tests

Score statistic Jth order SP500 (p – value) NASDAQ100 (p – value)

-1 0,71 0,41
-2 0,037 0,23
-3 0,27 0,34
-4 0,06 0,26
-5 0,17 0,50
-10 0,48 0,21

model (1992). The coefficients for the Fourier series approximation are
all significant, confirming the presence of strong intraday seasonality,
while the two dummy variables highlight a lower volatility for Monday
and a higher one for Friday: these results are similar to what we found
with the linear splines in paragraph 4.4.2.

As we have seen in paragraph 4.3.4, the main tools for checking the
correct specification of the model are the “generalized residuals” (4.39)
and the “score statistic” (4.41–4.43), which is asymptotically distributed
as a χ2 with one degree of freedom, under the null hypothesis of φ = 0.
The results for both statistics are shown in the following table.

Both models succeed in modeling the data very well, with a slightly
worse result for the SP500, probably due to the high number of histori-
cal observations (almost 120000), more than double that of Nasdaq100
(52000).

4.5 Conclusion

The aim of this chapter was to introduce the main issues operators or
researchers have to consider when analyzing intraday volatility, volumes
and spreads. We reviewed ACD and ordered probit models, which take
the entire information set into account thanks to single-transaction anal-
ysis: the former models are a particular evolution of GARCH models,
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while the latter models can be considered as a generalization of the linear
regression model to the case where the dependent variable is a discrete
one. As tick-by-tick data analysis becomes more and more important, we
presented an empirical application of ACD and OP models, employing
transaction data relative to the Standard & Poor 500 and Nasdaq100 stock
index futures, quoted by the Chicago Mercantile Exchange (CME). Both
models showed similar results in the conditional mean, where they were
able to catch bid–ask bounce effects and the symmetry nature of futures’
markets, where one can buy and sell without any restriction. The idea
that longer durations should be associated with declining prices (because
some market operators cannot short sell) must therefore be rejected. The
OP model produced the interesting result of a positive mean regularity
on Wednesday and we attempted to explain it with the help of some
traders. Both models gave similar results for the conditional variance too,
where they were able to shape intraday market seasonality and high-
light differences among days of the week (such as Monday and Friday).
Moreover, they gave support to the Easley and O’Hara (1992) model that
no trades means no news and volatility fall, while bigger volumes cause
higher volatility.

In comparison, even though ACD modeling requires less computa-
tional time than OP models, we have to point out that diagnostic tests
were quite different in the two cases: while Lyung-box and score-statistic
tests on generalized residuals showed that OP models were able to catch
the main features of the data with no correlation left, diagnostic tests for
ACD models gave much worse results. ACD models can therefore be used
as a “first glance” at the data, while OP models can then be employed
for more in-depth analysis. Nevertheless, ACD models can still be used
as the main tool in the case of illiquid financial assets, where defin-
ing the number of states for OP models can be very difficult due to few
observations.
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5
The Consumption-Based Capital
Asset-Pricing Model (CCAPM),
Habit-Based Consumption and the
Equity Premium in an Australian
Context
David E. Allen and Lurion Demello

5.1 Introduction

In this chapter, we apply a habit-based consumption model to investigate
the determinants of the equity premium in an Australian context. In the
derivation of the CCAPM it has been customary to use a utility function
displaying CCRA. Mehra and Prescott (1985) challenged the use of such
a function. The size of this premium requires unrealistically high coef-
ficients of risk aversion. Constantinides (1990) restated the problem in
terms of consumption growth being required to be too smooth, while
Weil (1989) raised the issue of the relative size of the risk-free rate. The
issue has been reinterpreted in terms of market frictions; see He and
Modest (1995) and Heaton and Lucas (1996). It is possible to appeal to a
combination of short-sale and borrowing constraints, plus trading costs
to weaken the case against the contention that the equity premium is
too high. Swan (2002) has also attacked the problem from this angle.
Bellamy and Heaney (1997) try to correlate the size of the Australian
equity premium with various factors and conclude market volatility is
significant, but do not address the issue of whether the premium is too
“large.”

Other work counters the assumptions of the CCRA model; Epstein
and Zin (1989) separate risk aversion and the elasticity of intertemporal
substitution by introducing habit, which can permit time-varying risk
aversion. Kreps and Porteous (1978) demonstrated this is not integral to
CCRA. It can also be argued that agents gain utility from relative but not
absolute levels of consumption and that past levels of consumption and
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related utility affect current levels – contrary to the CCRA assumption of
time separability of preferences.

Abel (1990) proposed a model of consumption choice in which con-
sumption preferences are dependent on external consumption patterns.
An alternative approach is to model internal agent experiences of prior
consumption in the determination of consumption “habit,” in the man-
ner of Constantinides (1990) and Sundaresan (1989). We adopt an
approach based on Abel’s (1990) external model.

This leads to a related issue of how to model the speed with which con-
sumption habits adjust. Hall (1978) adopted a random walk model that
implied that consumption would react immediately to shocks to con-
sumption. Campbell and Hamao (1992) used a model with exponential
decay, while in this chapter we adopt an autoregressive moving average
model with an AR(1) process.

Justifications for the adoption of a habit-based consumption model
include viewing it as a form of myopia in which the best prediction of
next period’s consumption is current consumption. Alternatively, the
approach could be viewed as involving “catching up with the Jones’s” in
which relative consumption is paramount. We adopt a habit-based con-
sumption approach and utilize it to demonstrate whether high relative
risk aversion related to the equity premium puzzle in an Australian con-
text can be attributed to preference specification, as opposed to market
frictions, noise traders or aggregation problems.

The chapter is divided into six sections: Section 5.2 introduces the
research method and models, Section 5.3 discusses the estimation pro-
cedures, Section 5.4 introduces the data, Section 5.5 provides the results
and Section 5.6 draws some general conclusions.

5.2 The research method and models adopted

We adopt the “habit model” of Campbell and Cochrane (1999) and to
generate time-varying expected returns, the model economy adds habit
persistence to the standard consumption-based specification. As bad
shocks drive consumption down towards the habit level, risk aversion
rises, stock prices decline and expected returns rise.

Consumption growth is an i.i.d. lognormal endowment process, where
it is assumed that consumption is a random walk with drift.

ct+1 = ct + g + ut+1

∴ ct+1 − ct = g + ut+1

∴�ct+1 = g + ut+1 (5.1)
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Consequently, consumption growth, g, is constant. The surplus con-
sumption ratio, St, is specified as the excess of consumption over the
level of habit, Xt.

St = Ct − Xt
Ct

(5.2)

Zero surplus habit consumption is the limit at which utility reaches zero.
The agent only values the consumption in excess of habit and St will
approach zero in bad times. The agent will still try to spread utility out
across his lifetime and expects consumption to grow. An expectation of
future higher consumption means that habit will grow.

Habit is modeled as an AR(1) process. Habit implies persistence, which
in turn implies that the surplus consumption ratio should contain a unit
root. Ruling out myopia, changes in habit should be close to permanent.
Consequently, the log surplus consumption ratio, st , is specified as an
AR(1) process with ϕ close to one.

St+1 = φSt + εt+1 (5.3)

Hence, a fully informed agent will maintain a constant surplus con-
sumption ratio. If φ �=1 then the surplus consumption ratio would revert
to zero (φ < 1) or explode to infinity (φ > 1). Under these specifications
habit would not exist. Myopia would allow for φ < 1 as long as the rever-
sion is slow enough to be considered realistic. ϕ controls the persistence
of changes in the surplus ratio. It has already been noted that because
consumption is a random walk and habit is persistent, ϕ should be one.
However, Hall (1978) finds that changes in stock price have a predic-
tive power in forecasting consumption. This is the main sense by which
rational expectations are incorporated. Fama and French (1988) show
that a rational investor can use the price dividend ratio to make forecasts
about future returns. Although transaction costs rule out price dividend
ratios for arbitrage, they will still give an indication of future returns and
hence consumption timing. If future consumption can be forecasted,
then rational habit should reflect this ability. Consequently, ϕ is the
autocorrelation coefficient from price dividend ratios.

The error terms from (5.1) and (5.2) are not the same: εt+1 �= (ct+1
− ct − g). In consequence, the unit root in habit does not imply con-
sumption shocks permanently affect habit on a one-for-one ratio. The
two errors are related using a sensitivity function. By including the sen-
sitivity function λ(st), shocks to consumption can be dampened before
they impact upon habit. This controls how the surplus consumption
ratio should respond to shocks in the growth rate of consumption,
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µt+1. Campbell and Cochrane specify three criteria for the sensitivity
function.

(1) Habit must change so that consumption is never permanently below
habit. It would not make sense for habit to be consistently above
consumption if consumption was not expected to grow in the future.

(2) Habit must not move for unit with consumption. Perfect correlation
would mean that the surplus consumption ratio was constant. This
would revoke the characteristics of habit consumption – intertempo-
ral changes in marginal utility and time-varying risk premium.

(3) Habit must be positively correlated with consumption so that habit
always increases with rising consumption.

Incorporating these criteria, the sensitivity function is specified as

λ(st )=
{

1
s

√
1 − 2(st − −

s −1, st ≤ smax

}
(5.4)

the above is 0 when s ≥ smax.
Based on this, the habit model is

st+1 = (1 −ϕ)s +ϕst +λ(st )µt+1 (5.5)

where s is the steady-state surplus consumption ratio or the uncon-
ditional expectation of the surplus consumption ratio. Campbell and
Cochrane state that the criteria for the sensitivity function imply that in
steady state, restriction (5.6) must hold

S = σ

√
η

1 −φ
where η is the curvature parameter of the utility function. (5.6)

The utility function is expressed as in (5.7). It is based on the time-
separable utility function, but instead agents obtain utility from surplus
consumption rather than the level of consumption.

U(t)= Et

 ∞∑
t=0

δj
Ct − Xt )

1−η− 1
1 − η

 (5.7)

δ - subjective discount factor

η - curvature parameter (note this is not the risk-aversion coefficient)
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Substituting the first and second derivatives of utility with respect to
consumption into the coefficient of relative risk aversion gives

γ = η

S
(5.8)

which is time varying if S varies. It has been established that a time-
varying risk-aversion coefficient is desirable. Risk aversion increases as
S declines. As consumption approaches habit, agents become more risk
averse. Intuitively this can explain some of the risk-aversion anomalies
since agents are often more prepared to take gambles that decrease dis-
counted future income, rather than equivalent gambles that decrease
income today.

We can appeal to the CCAMP to write the unconditional expected
return on an asset i, as shown below:

E
[
1 + Ri,t

]= 1
E [Mt ]

{
1 − Cov

[
(1 + Ri,t ),Mt

]}
This shows that the return on an asset increases as the Arrow–Debreu

security price falls, and decreases as the correlation between the return
and the Arrow–Debreu security price increases

Mt+1 = δ
u′(Ct+1)

u′(Ct )

and the marginal utility of consumption is

u′(Ct )= (Ct − Xt )
−η

∴ u′(Ct )=
[

Ct
Ct
(Ct − Xt )

]−η

∴ u′(Ct )= [CtSt ]−η

∴ u′(Ct )= C−η
t S−η

t

so the Arrow-Debreu price series is

Mt+1 = δ

[
C−η

t+1S−η
t+1

C−η
t S−η

t

]−η
(5.9)

Note that the volatility of the Arrow–Debreu prices now depends on
the surplus habit ratio as well as η. This confirms the habit-relative risk-
aversion coefficient, which included surplus consumption term S. It is
straightforward to derive an expression for the risk-free rate using the
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required equality of risk-adjusted returns in a CCAPM context as shown
below:

1 + Rf = 1
Et [Mt+1]

taking logs and using the property that log (1+x) = x when x is small:

log(1 + Rf )= log
1

Et [Mt+1]

∴ Rf = log1/δ

[
Ct

Ct+1

St
St+1

]−η

∴ Rf = − log δ−η log
[

Ct+1
Ct

]
− η log

[
St+1
St

]
∴ Rf = − log δ+ηg − η[st+1 − st ]

Some further substitution using equation (5.5) and manipulation
yields:

Rf = − log δ+ηg −η[(1 − θ)s + θst +λ(st )µt+1 − st ]
∴ Rf = − log δ+ηg −η[(1 − θ)s + (θ − 1)st +λ(st )µt+1]
∴ Rf = − log δ+ηg −η[(1 − θ)s − (1 − θ)st +λ(st )µt+1]
∴ Rf = − log δ+ηg −η[(1 − θ)(s − st )+λ(st )µt+1]

Rf = − log δ+ηg −η(1 − θ)(st − s)− η2σ2
g

2
[λ(st )+ 1]2 (5.10)

The third term is like an error-correction term. If describes how the
interest rate changes as the surplus consumption rate moves away from
the steady-state (mean) consumption ratio. If the surplus consumption
ratio is high, then marginal utility today is low. If the agent expects the
ratio to return to the steady state then marginal utility today is low. If
the agent expects the ratio to return to the steady state then marginal
utility will increase in the future. The agent tries to shift consumption
into the next period by saving, which lowers the interest rate. It is a form
of mean-reversion in marginal utility terms and it is not included in the
CRRA equation. The fourth term is a precautionary saving term in a man-
ner similar to the CRRA model, but it includes the sensitivity function as
well. Hence, the volatility of the risk can be controlled. The habit specifi-
cation has also increased the separation of the elasticity of intertemporal
substitution from the coefficient of risk aversion, which is a clear advan-
tage over the other models. Rearranging the risk-free equation (5.10)
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leaves the following expression:

∴ g = 1
η

log δ+ Rf +η(1 − θ)(st − s)+ η2σ2
g

2
[λ(st )+ 1]2

So the intertemporal substitution is ϕ = 1
η = 1

γ S . Changes in intertem-
poral substitution do not have to impact on relative risk aversion. They
can impact on the surplus habit ratio instead.

5.3 Estimating the model

To test the habit model an estimation of the equity premium was per-
formed. It was expected to compare favorably with actual series if the
model could correctly predict returns. First a series of implied habit-
based surplus consumption was generated, then the risk-free rate and
then finally the equity premium could be forecasted.

To produce a static series of St it was assumed that investors are rational
and make revisions to the short-run steady-state surplus consumption
ratio so that the actual surplus consumption ratio is the steady-state
consumption ratio. We are not forecasting habit by first removing the
agent’s inclination to follow habit because the preference for habit is
incorporated by the parameters ϕ and η. In addition, once the series
of steady-state habits was obtained, a one-period-ahead forecast of St+1
was produced by reintroducing habit. It was this series that was used to
estimate the risk-free rate. The steady-state consumption ratio is given
by the previously introduced equation (5.6)

S = σg

√
η

1 −φ (5.6)

and using the assumption of short-run steady-state revision gives

St = σgt

√
η

1 −φ (5.11)

In the long run the steady-state consumption ratio S will still be given
by equation (5.6) and this should be the same as the mean of the series
St generated by the equation above.

The conditional standard deviation of consumption growth was
obtained by running a GARCH (p, q) model. ϕ was estimated by running
an ARMA model on price dividend ratios and using the AR(1) coefficient.
The curvature parameter η was more difficult to estimate. One method
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is to follow Campbell and Cochrane and use the Hansen–Jagannathan
lower volatility equation shown below:

σMt (M)

M
= E(rit − rft )

σrit−rft

where M is the unconditional expectation of the Arrow–Debreu asset.
By taking the unconditional expectation of M there is an assumption

that the risk-free interest rate is constant in the long run. Nonethe-
less, Campbell and Cochrane’s method was followed. M can be esti-
mated by using CCAPM identity, if asset prices offer expected returns
commensurate with their risk:

1 + Rf = 1
Et [Mt+1]

hence,

M =

n∑
t=1

1
1+Rft

n

Then by trying different values of η in the habit utility function a
series of Mt can be generated until the Hansen–Jagannathan equality
holds. We utilize the values from Campbell and Cochrane (1995) that
are consistent with the Hansen–Jagannathan lower bound.

5.3.1 The method used to estimate the risk-free rate

Two forecasts of the risk-free rate were made.

(1) Implied risk-free rate

By taking the natural logarithm of St an implied risk-free interest rate
was generated using Equation (5.12) (shown below). This was compared
to the actual risk-free rate.

Rf = − log δ+ηg −η(1 − θ)(st − s)− −η2σ2
s

2
[λ(st )+ 1]2 (5.12)

The series St was generated using all the conditional information.
Hence, if the specification of the steady habit is corrected, then the series
should generate a risk-free rate that is close to perfectly correlated with
the nominal rate.

(2) Static one-period-ahead forecast
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The specification of habit equation (5.13) (shown below) was used to
make a static forecast of St+1. Using this forecasted series the risk-free
interest rate equation was used again to generate a static forecast of the
risk-free rate.

st+1 = (1 −ϕ)s +ϕst +λ(st )µt+1 (5.13)

5.3.2 The method used to estimate the equity premium

The equity premium was derived using the CCAPM definition of the
equity premium shown below:

E[Ri,t − Rft ] = −E[1 + Rft ]×Cov[(1 + Ri,t ),Mt

First the series of Arrow–Debreu prices Mt was generated using the
method described in the previous section. Then an ARCH(1,1) model
was used to estimate the conditional covariances between risky returns
Rt , and the Arrow–Debreu prices Mt . An approximation method was used
to estimate the ARCH model. Using the fact that a bivariate ARCH(1) can
be specified by equations (5.14) and (5.15), the conditional covariance
can be approximated by the static forecasts of the linear equation (5.16)
estimated using OLS.

var(Rt |It−1)= E[(Rt − E[Rt ])2|It−1] (5.14)

cov[(1 + Rt )Mt |It−1] = ω0 +ω1[(1 + Rt−1)− E[1 + Rt−1]]
× (Mt−1 − E[Mt−1]) (5.15)

cov[(1 + Rt )Mt |It−1] = ω0 +ω1(1 + Rt−1)Mt−1 +πt (5.16)

With a conditional covariance series and a forecast of the risk-free rate,
it is straightforward to generate an estimated equity premium using the
equity premium as defined by the CCAPM previously introduced. Two
equity premium series are generated, one from the in-sample period st
and one from the one-period-ahead forecasts st+1.

The forecasts of the equity premium and risk-free rate were compared
with the observed series. An OLS equation was run on the forecasted and
the actual series to determine whether they are the same. If the forecast
is accurate then the joint hypothesis H0 : β0 = 0,β1 = 1 should not be
rejected in the following regression.

yactual = β0 +β1yforecast
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5.4 Data

Our study required Australian data for nondurable consumption, equity
returns, risk-free asset returns and price dividend ratios. The sample fea-
tures observations of a quarterly frequency over a 28-year period from
January 1973 to June 2002. The data were taken from Datastream Inter-
national™. The stock market data includes the Australian stock market
indicator (with national holidays excluded) quoted in local currency
terms. The market index is calculated by Datastream International™ and
is a market capitalization weighted index incorporating approximately
80 percent of the market value at any given point in time.

Although a lot of studies in the United States use the Ibbotson Asso-
ciates data from 1926, there are almost as many using data over shorter
time periods, with time periods such as 50, 20 or even 10 years to come
up with historical risk premiums. The rationale presented by those who
use the shorter periods is that the risk aversion of the average investor is
likely to change over time, and that using a shorter time period provides
a more updated estimate. This has to be set against the cost associated
with using shorter time periods, which leads to greater noise in the risk
premium estimate. Damodaran (2002) finds that, given the annual stan-
dard deviation in stock prices between 1926 and 1997 of 20 percent, the
standard error associated with the risk premium estimate is estimated to
be 8.94 percent for 5 years, 6.32 percent for 10 years, 4.00 percent for
25 years and 2.83 percent for a 50-year sample.1

The data used in deriving the CRRA, CCAPM and the habit model
consists of quarterly observations using Australian data for private house-
hold consumption, population, equity returns, risk-free asset returns,
dividend yields and price dividend ratios. The sample includes 118 quar-
terly observations over the period from the 1st Quarter 1973 to the 2nd
Quarter 2002. The consumption data set is composed from the sets of
NIFC Private Final Consumption Expenditure Food and the NIFC Private
Final Consumption Expenditure Other Non Durables (Excluding Oil). It
is normalized to a per capita basis using quarterly population statistics.
The population includes every age group, including children, prisoners
and invalids, who may not be making consumption choice decisions
for themselves. This study assumes that population statistics are an
adequate proxy for the number of Australians making consumption
decisions.

The risk-free rate is represented by the nominal yield on the Australian
90-day Treasury bill. The inflation series is composed from the CPI index
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that excludes oil. Estimations were run with oil but the results are not
good. The nonlinear nature of inflation is not well accounted for in this
model. When oil is removed inflation is more stationary in the mean,
and the model performs better.

5.5 The results

In this section we present the results of the CRRA, CCAPM and habit
models. We also look at the actual and implied risk premium given by
our model.

5.5.1 Deriving parameters for the CCAPM and
habit models

The AR(1) estimation of the annual price dividend ratio gives a value of ϕ
as 0.996 (0.0308). The estimation was annualized to allow for seasonality.
However, neither the Augmented Dickey Fuller or Phillips–Perron tests
can reject a unit root, hence the estimate and the standard error are
irrelevant. Campbell and Cochrane (1995) used a long-run price dividend
ratio and estimate ϕ = 0.97 for US stocks. It was this value that was used
to estimate St .

The consumption growth rate was taken from the mean of the con-
sumption growth series. To estimate a conditional standard deviation σgt
a maximum likelihood GARCH(1,1) is estimated.

Variance Equation for Consumption Growth:

σgt = −0.0648 × ARCH(1)+ 0.838 × GARCH(1)

(0.629) (0.212)

The mean and standard error of the observed risk premium were
0.02022 and 0.1005, respectively. This gave a lower Hansen–Jagannathan
bound of 0.22. Using Campbell and Cochrane’s estimates, η was esti-
mated to be 2.5. Remember that η is not sensitive to the Hansen–
Jagannathan bound, so an approximate estimation should not cause
problems with the model. The last parameter to be estimated was the
discount rate, δ. Most studies find that a reasonable value of the dis-
count factor is between 0.95 and 0.98. Campbell and Cochrane (1995)
used 0.98, while Engsted (1998) chose the lower bound of 0.95. This
study takes an intermediary value of 0.97, which was a similar value to
the reciprocal of one minus the mean of the risk-free rate (Table 5.1).

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP05” — 2010/11/22 — 17:39 — PAGE 146 — #14

146 David E. Allen and Lurion Demello

Table 5.1 Parameter and brief statistics

Parameter Quarterly Annualized

ϕ 0.98 0.92
Mean return of equity (%) 3.13 12.53
Mean risk-free rate (%) 0.89 3.56
Mean risk premium (Ri− Rf ) (%) 2.022 8.09
Std error risk premium (%) 9.75 39.0
gt (%) 0.467 1.89
σ gt (%) 0.978 7.57
η 2.5 –
δ 0.97 –
Hansen–Jagannathan ratio 0.207 0.207
Covariance g and R 10.10 40.41
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Figure 5.1 Implied habit consumption and actual real consumption per capita

5.5.2 Generating implied habit consumption

Implied habit was derived using the definition introduced earlier, shown
below:

St = Ct − Xt
Ct

Using the one-period-ahead forecast of St+1, a series of implied habit
forecasts was made. Figure 5.1 shows implied habit and static forecast
habit along with observed consumption. The series are very similar,
which is not a surprise as ϕ is so close to one. Notice that, as expected,
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Figure 5.2 The difference between implied habit and actual consumption

the volatility of implied habit (s.e. = 0.298) is slightly greater than the
volatility of the forecast habit series (s.e. = 0.297).

The above curves for the three consumption series are very close, thus
indicating the smooth consumption patterns observed when we com-
pare actual consumption and the implied or derived consumption series.
This clearly addresses the issue of smooth consumption patterns that
Mehra and Prescott (1985) referred to in their seminal paper on the equity
premium puzzle. An interesting phenomenon is that implied habit and
actual consumption are diverging. Figure 5.2 plots the divergence. This
means that utility is increasing slowly through time. It also means that
either consumption is growing unexpectedly fast or habit is reaching
an asymptotic limit. A limit would imply that one-day consumption
would rise to such as level that an ultimate habit level is reached. If con-
sumption kept growing after habit leveled out then utility would rapidly
increase. An alternative explanation for the divergence between habit
and consumption is that the long-run consumption growth rate or the
price dividend autocorrelation coefficients were inaccurate.

5.5.3 The risk-free rate

Having made the assumption of a constant risk-free rate, the forecast
and actual risk-free series were not expected to be very closely related.
Table 5.2 presents the OLS regression for collinearity. Wald tests rejected
the hypothesis that either of the forecast series is the same as the actual
rate. The F-statistic for the implied risk-free rate rejects the OLS equation
altogether. This does not matter because it is only an implied rate, and
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Table 5.2 Risk premium results

Actual risk
premium (%)

Implied risk
premium (%)

Forecast risk
premium (%)

Mean 2.2 −0.89 −0.90
Standard error 9.75 1.20 1.19

Table 5.3 OLS regression for collinearity

Implied
risk-free rate

Static forecast
of risk-free rate

Implied risk
premium

Static forecast
of risk
premium

β0 0.018642
(0.0150)

0.036960
(0.110)

0.0337
(0.00961)

0.0330
(0.00965)

β1 −0.614316
(0.9412)

−1.824808
(0.689)

1.210
(0.518)

1.240
(0.541)

R2 0.002851 0.034764 0.036006 0.034764

F-Stat
(P-value)

0.426038
(0.5149)

7.014960
(0.00896)

5.416
(0.021338)

5.258
(0.023269)

P-Value
Ho:
β0 = 0 &
H1: β1 = 1

0.000000 0.000000 0.000999 0.00134

P-Value
H0: β1 := 1

0.086304 0.000041 0.690860 0.658159

the regression could not reject a positive relationship with β1 = 1. Of
more concern is the static forecast regression. It is significant with a
negative β1 coefficient, implying a negative relationship. Clearly this
is an inadequate forecast. Still it is the equity premium, not the risk-
free rate, that the model is interested in forecasting. The risk-free rate is
generated because it is needed for the premium’s estimation.

5.5.4 The equity premium

Table 5.3 shows that the risk premium equation has some predictive
power. The F-statistic indicates that the equation for the risk premium
has some limited explanatory power. Note that although Wald tests reject
the hypothesis that the series are the same, they do not reject the hypoth-
esis that the series are perfectly correlated (β1 = 1), although this is not

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP05” — 2010/11/22 — 17:39 — PAGE 149 — #17

CCAPM, Habit-Based Consumption and Equity Premium 149

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

Q
1 

19
73

Q
4 

19
74

Q
3 

19
76

Q
2 

19
78

Q
1 

19
80

Q
4 

19
81

Q
3 

19
83

Q
2 

19
85

Q
1 

19
87

Q
4 

19
88

Q
3 

19
90

Q
2 

19
92

Q
1 

19
94

Q
4 

19
95

Q
3 

19
97

Q
2 

19
99

Q
1 

20
01

Quarters

P
er

ce
nt

ag
e 

ch
an

ge

Actual risk premium Implied risk premium

Figure 5.3 Implied and actual risk premium
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Figure 5.4 One-period forecast and actual risk premium

clear looking at Figures 5.3 and 5.4. It was concluded that this was the
case due to the series having significantly different means. As previously
mentioned, the expected risk premium is 2.2 percent. The mean risk
premiums using recursive utility were −0.89 percent and −0.90 percent
(Table 5.2), respectively, which implies the market portfolio is a con-
sumption hedge. However, the standard errors for these means are large,
1.20 percent and 1.19 percent, respectively. Consequently, there is little
accuracy in the estimations of the mean risk premium. Nevertheless, the
95 percent confidence interval does not extend to include the actual risk
premium of 2.2 percent. Also, the standard errors are substantially less
than the standard error of the observed risk premium, 10.1 percent. It
appears that the model still cannot account for the large variability in
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equity returns compared with consumption variability. This was proba-
bly due, in part, to the composition of the market portfolio. It is made
entirely of equity, from which only a small proportion of the population
derive consumption. It may be that the model is predicting the volatility
of the true market portfolio – a portfolio that includes broader capital
such as property and human capital. Nonetheless, the equity portfolio
was used to afford comparisons with Mehra and Prescott (1985) and sub-
sequent papers. One aim of this study was to show that an alternative
utility function can help to resolve their puzzle. If the type of portfolio
was changed then there would be no basis for comparison.

5.5.5 The coefficient of relative risk aversion

Equation (5.8) is reproduced below and from it a series of the risk-
aversion coefficients were generated

γt = η
/
St

The average surplus consumption ratio, S, is 0.154. This implies an
average risk-aversion coefficient of 16.23. One of the benefits of the
habit model is that it allows for time-varying risk-aversion coefficients
and a series is generated. Figure 5.5 shows the time varying γt along
with de-trended consumption and real GDP. Note that risk aversion
increases as output and consumption decline. The derivation of this
model requires that the consumption and the risk-aversion coefficient
are contemporaneously correlated but the relationship with output may
be different. Sengupta (1992) suggests that risk aversion changes before
output falls. Business confidence is frequently reported in the media as
a weak predictor of business cycles. Future work could test whether the
assumption of contemporaneous risk aversion is adequate.
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Figure 5.5 Normalized de-trended real GDP and the related risk-aversion
coefficient
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The time-varying risk-aversion coefficient is negatively but weakly cor-
related with de-trended real GDP, as shown in Figure 5.5. Note the large
increases in risk aversion in 1974, 1975, 1978 and in 1989, corresponding
to recessions, OPEC shocks and the senate blocking of supply in 1975.
The recession of 1983 does not have a very large risk-aversion coefficient.
The only way the model could allow for such an anomaly is if people in
the early eighties had foreseen the recession and revised habit before
consumption fell. Risk aversion is highest when there are unforeseen
consumption shocks. In this sense risk aversion may be able to pre-
dict recessions assuming consumption shocks precede output shocks.
For curiosity the results for the Granger causality test are tabulated in
Table 5.4. Causality is rejected for all lags. Nonetheless, further work
may find some causality because it looks like it does exist in Figure 5.4.

5.5.6 Consumption volatility

Table 5.5 summarizes the market volatility results. The standard error
for the Arrow–Debreu asset prices is 0.152. The Hansen–Jagannathan
lower bound was 0.22. However, this is still an improvement on the
CRRA Arrow–Debreu volatility of 0.12. A variance ratio test rejected the
hypothesis that the variance of the habit Arrow–Debreu assets were the
same as the CRRA volatility or the Hansen–Jagannathan lower bound.
The habit model is able to account for more of the variability in equity
than the CRRA model. The smooth consumption puzzle is not as severe
with the habit model.

Table 5.4 Granger causality test for risk aversion predicting output shocks

Lag 1 Lag 2 Lag 3 Lag 4 Lag 8 Lag 10 Lag 12

γt does not
Granger
cause
rGDP

0.54154 0.27442 0.47044 0.65615 0.94182 0.83427 0.64042

Table 5.5 Volatility of Australian market portfolio

Hansen–Jagannathan
lower volatility bound 0.22

CRRA Habit model
Estimated

volatility
0.12 0.152
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5.6 Conclusion

We have investigated the habit utility specification of Campbell and
Cochrane (1995) an applied it empirically to estimate the Australian
equity premium. The results show that habit utility is able to reproduce
an equity premium that is comparable to the actual equity premium.

One of the implications is that preferences are not completely ratio-
nal. If habit is persistent, than fiscal shocks will have persistent effects
under certain circumstances. Providing that consumers cannot substitute
the increased government consumption for private consumption, total
consumption will increase. Once the new consumption level is reached,
habit will cause the shock to persist, so that when there is a fiscal con-
traction, aggregate demand will be maintained. Ricardian equivalence
is yet to be empirically proven (Gulley 1994; Vamvoukas 1999), but the
results of this study suggest the hypothesis is weak.

If habit is a robust phenomenon, then it has growth policy implica-
tions. Our results suggest that utility grows more slowly than the growth
rate of consumption. If utility is obtained from surplus consumption
then policy should move from emphasizing consumption growth to
smoothing consumption shocks. Although this study supports the exis-
tence of habit, the results are not clear enough to justify such a policy
shift.

Finally, Campbell and Cochrane’s model is able to alleviate part of the
equity premium puzzle in Australia. The relative risk-aversion coefficient
and the estimated volatility of returns are both more acceptable. The
habit model still does not completely resolve either of these problems –
stock volatility is still too high compared to consumption volatility and
the coefficient of risk aversion is unreasonable – however, the habit
specification has reduced the discrepancy.

Note

1. These estimates of the standard error are probably understated, because they
are based upon the assumption that annual returns are uncorrelated over time.
There is substantial empirical evidence that returns are correlated over time,
which would make this standard-error estimate much larger.
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6
Testing the Lower Partial Moment
Asset-Pricing Models in
Emerging Markets
Javed Iqbal, Robert D. Brooks and Don U.A. Galagedera

6.1 Introduction

Following Markowitz’s (1959) “portfolio optimization theory,” Sharpe
(1964) and Lintner (1965) developed a generic capital asset-pricing
model known as the CAPM that has now become a benchmark asset-
pricing model. The CAPM is based on mean and variance of the return
distribution and assumes multivariate normality of the joint return dis-
tribution of the underlying assets. The normality assumption makes
CAPM derivation statistically tractable but an investor’s preferences
are not necessarily consistent with the mean and variance of return.
The CAPM considers beta as the sole measure of systematic risk in a
diversified portfolio. The beta is estimated via a market model and is
assumed valid under all market conditions. However, several alternative
theories based on different perceptions of systematic risk have chal-
lenged the dominance of the mean–variance notion of the risk-return
relationship. One of the most prominent of these is the asset-pricing
theory that recognizes deviation only below a target rate of return as
risky. Downside risk measures and the associated asset-pricing mod-
els are motivated by economic and statistical considerations – investor
psychology is consistent with an asymmetric treatment of the varia-
tions in the returns and the empirical return distributions appear to be
non-normal.1

Harlow and Rao (1989) (henceforth referred to as H&R) developed an
asset-pricing model that measures risk based on the deviations of returns
from an arbitrary target rate. The asset-pricing model is similar to the
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CAPM and can be expressed as:

E(Ri)= Rf +βMLPM(τ )

i

[
E(Rm)− Rf

]
(6.1)

When E(Ri) and E(Rm) denote the expected returns of asset i and the
market m, respectively, then:

β
MLPM(τ )

i =
E
[
(Ri − Rf )min(Rm − τ ,0)

]
E [min(Rm − τ ,0)]2

(6.2)

where Rf is the risk-free rate and τ is an arbitrary target rate. In this
model, a particular asset contributes to the risk only if the market return
is below the target rate τ . We refer to (6.1) as the mean lower partial
moment (MLPM) model. Asset-pricing models based on the notion of
downside risk are appropriate when asset returns are not symmetrical.
Asymmetric asset returns are more pronounced in emerging markets
than in developed markets. With identical regulatory environments and
taxes, the extra utility of a dollar gain for a developed market investor
who has higher initial wealth is lower compared to an emerging market
investor with a lower wealth endowment. Conversely, the disutility of a
dollar loss in investment is higher for an emerging market investor with
lower initial wealth compared to the developed market investor. Hence,
downside risk measures may capture risk perceptions better in emerging
markets than in developed markets. In addition, with lower liquidity,
infrequent trading and volatile political and macroeconomic conditions,
the assumptions underlying smooth and symmetric behavior of asset
returns are unlikely to be satisfied in emerging markets.

Consistent with this consideration, Bekaert et al. (1998) show that
emerging market equities display significant skewness and kurtosis in
their returns, while Bekaert and Harvey (1995, 1997) observe that the
degree of skewness and kurtosis changes over time. Eftekhari and Satchell
(1996) and Claessens et al. (1995) also provide evidence of non-normality
of returns in emerging markets. Hwang and Pedersen (2004) linked
the applicability of the CAPM and the asymmetry of pricing models
to regional and timing effects in emerging markets and found that as
the market matures over time the returns tend to be more normal. In
addition, Harvey (1995) and Salomons and Grootveld (2003), among
others, provide empirical evidence that emerging market returns are
more predictable than developed market returns. Conscious of these
considerations, Harvey (2001) and Bekaert et al. (1998) argue that the
simple benchmark model – the CAPM, does not appropriately describe
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the empirical relationship between risk and stock returns in emerging
markets.

Harvey (2000) and Estrada (2000, 2002) tested various equilibrium-
and non-equilibrium-based risk measures and conclude that downside
risk measures such as the semi-standard deviation are relevant mea-
sures of risk for emerging market equity indices. Estrada (2000) suggests
that the downside risk measures are consistent with partially integrated
emerging markets. Harvey and Estrada employ the Fama and MacBeth
(1973) type of cross-sectional methods in their studies. We contribute to
the literature on testing asset-pricing models in a downside framework
by proposing multivariate tests that are likely to be more powerful. More
specifically, we extend the likelihood ratio test to Wald and GMM tests
that are robust to non-normality, heteroskedasticity and serial depen-
dence of returns. The aim is to provide tests that are applicable to the
relatively inefficient markets exhibiting extreme return movements and
greater volatility than those of relatively stable developed markets.

The “likelihood ratio” test, the “Lagrange multiplier” test and the
“Wald” test are generally applied when testing nonlinear parametric
hypotheses. Greene (2003: 110) points out that amongst the three
asymptotic tests only the Wald test is asymptotically valid under non-
normality. Computation of this test requires only the unrestricted
parameter estimates for which least squares estimates can be employed.
More generally, the GMM-based tests do not require strong distributional
assumption regarding normality, heteroskedasticity and serial indepen-
dence of the residuals. Following this, we formulate robust Wald and
GMM tests for the MLPM model of H&R. The GMM test is based on speci-
fying a set of orthogonality conditions between the residuals and market
portfolio returns fragmented between upside and downside movements.
Black’s (1972) “zero-beta” CAPM and the H&R asset-pricing model are
particularly relevant for emerging markets since empirical tests for these
models do not require specification of a risk-free rate. Due to imperfect
money markets in emerging economies a reliable risk-free rate is difficult
to obtain.

H&R also investigated nested tests of the CAPM restriction against the
MLPM alternative. Under the null hypothesis of the CAPM the betas in
up and down markets are equal. In this case, the critical parameter, the
target rate, becomes unidentified, while under the alternative of MLPM
the target rate is accommodated. This is a nonstandard hypothesis test-
ing problem and the asymptotic Chi-square p-values become no longer
valid. The H&R study does not address this issue and uses the asymptotic
Chi-square p-values with the target rate as the optimal rate obtained in
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MLPM tests. Tests for the nonstandard problems are addressed in the
econometric literature.2 To overcome the said problem, this chapter
uses a likelihood ratio test and the robust Wald and GMM tests with
the p-values generated from the bootstrap methodology.

We investigate the empirical application of the proposed multivariate
tests on the data from the Karachi Stock Market, which is the largest
stock exchange in Pakistan.3 This market has received considerable
attention in recent years when in 2002 it was declared as the best per-
forming stock market in the world in terms of the per cent increase in
the local market index value. It is interesting to study which of the
alternative risk measures and the associated asset-pricing models track
the risk-return behavior in this growing but volatile emerging market.
Figure 6.1 displays the time series of the KSE-100 index and the continu-
ously compounded monthly return over the sample period in the study.
The vertical line separates the two subperiods employed in this chapter.
The market is, in general, in a bearish mood in the second subperiod, but
occasional sharp downside movements also occur with greater frequency
in this period. Iqbal and Brooks (2007a, 2007b) found that unconditional
skewness among some other variables significantly affects the stock and
portfolio returns in this market. Following this introduction, the plan of
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the chapter is as follows: Section 6.2 discusses multivariate tests of the
CAPM and the MLPM model. In Section 6.3, robust tests proposed for the
MLPM model are discussed. The description of data portfolio construc-
tion is given in Section 6.4. Section 6.5 discusses the empirical results
and the conclusion is provided in Section 6.6.

6.2 Multivariate tests of the CAPM and
the MLPM model

This section describes the existing and the proposed multivariate tests of
asset-pricing models.

6.2.1 Tests of the zero-beta CAPM

Assume that the return-generating process is the familiar market model;

Rt = α+βRmt + εt , t = 1,2, . . . ,T (6.3)

where Rt = [R1t R2t . . .RNt ]′ is the N × 1 vector of raw returns on N port-
folios, εt is the N × 1 vector of disturbances, and α and β are N × 1
vectors of the intercept and slope parameters, respectively, for each of
the N time-series regressions. The zero-beta CAPM specifies the following
cross-sectional relation:

E(Rt )− γ IN = β(E(Rmt )− γ ). (6.4)

Here, γ is the parameter representing returns on a zero-beta portfolio.
Applying expectations on (6.3) yields

E(Rt )= γ (1 −β)+βE(Rmt ). (6.5)

The joint restrictions on the parameter imposed by the CAPM are
expressed in the following nonlinear hypothesis:

H0 : αi = γ (1 −βi), i = 1,2, . . .N. (6.6)

This is essentially a nonlinear restriction on the system of the market
model equations. Gibbons (1982) provides an iterative estimation and
testing of a likelihood ratio test of the null hypothesis where

LR = (T − N/2 − 3/2)(log |�̂ ∗ |− log |�̂|) d−→ χ2
N−1

. (6.7)

Here, �̂∗ and �̂ are the estimated restricted and unrestricted covari-
ance matrices of the system of the market model (6.3), respectively.
The test is derived under the assumption of multivariate normality of
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the returns. Chou (2000) developed a Wald test that permits the model
to be estimated entirely in terms of alphas and betas by expressing the
hypothesis as:

H0 :
αi

1 −βi
= γ , i = 1,2, . . .N. (6.8)

The resulting Wald test is

W = g(θ̂)′
[(

∂g
∂θ ′

∣∣∣
θ=θ̂

)
�̂⊗ (X′X)−1

(
∂g
∂θ ′

∣∣∣
θ=θ̂

)′]−1
g(θ̂)

d−→ χ2
N−1

(6.9)

Here, g(θ) = [g1 . . .gN−1]′, gi = αi(1 − βi+1) − αi+1(1 − βi), i = 1,2, . . .
N −1,θ = [α1β1 . . .αNβN ]′ and X is the T ×2 design matrix with a column
of 1’s and a column of the return on the market portfolio. The partial
derivatives ∂g

∂θ ′ are evaluated at the OLS estimates from the unrestricted
system. For extension to the GMM case, see Chou (2000). Prompted by
return predictability in emerging markets, Iqbal, Brooks and Galagedera
(2008) present a version of the GMM test that is more general and
allows for the dynamics of the residuals’ dependence in addition to
heteroskedasticity.

6.2.2 Tests of the MLPM model

The market model (6.3) assumes that beta is valid for all market condi-
tions. An alternative is to allow asymmetry of systematic risk; downside
and upside deviations. The downside risk is measured as the deviation
below a target rateτ . To investigate asymmetry in systematic risk Bawa
et al. (1981) developed a data-generating process called the asymmetric
response model (ARM), which is expressed as:

Rit = αi +β−
i R−

mt +β+
i R+

mt + δi(1 − Dt )+ εit (6.10)

where R−
mt =

{
Rmt if Rmt < τ

0 otherwise

R+
mt =

{
Rmt if Rmt > τ

0 otherwise

Dt =
{

1 if Rmt < τ

0 otherwise

This model, by construction, creates a distinction between downside
and upside movement in the market. The downside beta β−

i captures
the co-movement of asset i with the market when the market return
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falls below the target rate of return and β+
i measures the co-movement

of the asset with the market when the market return is above the tar-
get rate. Following H&R, we assume that δi = ϕ(β−

i − β+
i ) where ϕ =

E(R+
mt )/P(Rmt > τ) = E(Rmt |Rmt > τ). The ARM has been employed by

Pederson and Hwang (2003) and Eftekari and Satchel (1996), among
others, for estimating downside beta in emerging markets. The ARM
estimation is facilitated if expressed in a slightly different form, which
requires only one new variable Dt to be created.

Rit = αi +β−
i DtRmt +β+

i (1 − Dt )Rmt + δi(1 − Dt )+ εit . (6.11)

H&R show that β−
i is indeed the MLPM beta4 and derived the following

Gibbons’ (1982) type restriction for testing the zero-beta version of the
lower partial moment model:

H0 : αi = γ (1 −β−
i ). (6.12)

Assuming multivariate normality of the returns, they tested the restric-
tion as a Bartlett factor corrected likelihood ratio test (6.13) against an
unspecified alternative

LR = (T − N/2 − 3/2)(log |�̂∗|− log |�̂|) d−→ χ2
N−1

. (6.13)

Here, �̂∗ and �̂ are the estimated restricted and unrestricted residual
covariance matrices of the system of ARM(11), respectively.

It is well known that asymptotic tests such as those discussed above
have serious size distortions that impede their validity in empirical
applications. In this case, the residual bootstrap p-values provide an alter-
native means of obtaining more reliable decisions. It is well established
that if the test statistic is asymptotically pivotal, that is, the null distribu-
tion does not rely on unknown parameters, then the magnitude of the
error in size of the bootstrap test is only of the order O(n−j/2) compared to
that of the asymptotic test, which is of the order O[−n(j+1)/2] for j ≥ 1. All
of the three tests have their asymptotic distribution as Chi-square, which
depends only on the number of assets under consideration. Therefore,
in the empirical applications, only bootstrap p-values are reported.

6.3 Robust testing of the MLPM model

6.3.1 Test of the MLPM model

Assuming that the model disturbances are i.i.d., a normality robust Wald
test similar to that in (6.9) can be established for the MLPM model with
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the following 4N ×1 vector of parameters and N −1 vector of restrictions:

θ = [α1 β−
1 β+

1 δ1 α2 β−
2 β+

2 δ2 . . .αN β−
N β+

N δN ]′
(6.14)

gi = αi(1 −β−
i+1)−αi+1(1 −β−

i ), i = 1,2, . . .N − 1, . (6.15)

The T × 4 design matrix X in this case is

X = [1 D ◦Rm (1 − D) ◦ Rm (1 − D)]′. (6.16)

The partial derivatives ∂g
∂θ ′ (given in equation 6.22) are evaluated at the

“seemingly unrelated regression” (SUR) estimates from the unrestricted
system. The notation “◦” represents the element-wise product of the
vectors. A more robust GMM-based test that is valid under general return
distributions, heteroskedasticity and serial dependence of the residuals
can be established. If N assets and T time-series observations on each
asset are available, the moment conditions’ vector on the disturbance of
system (6.11) can be defined as:

fT (θ)=



ε1t (α1,β−
1 ,β+

1 ,δ1)
ε1t (α1,β−

1 ,β+
1 ,δ1)(Dt ◦ Rmt )

ε1t (α1,β−
1 ,β+

1 ,δ1)((1 − Dt ) ◦ Rmt )

ε1t (α1,β−
1 ,β+

1 ,δ1)(1 − Dt )

.

.

.
εNt (αN ,β−

N ,β+
N ,δN )

εNt (αN ,β−
N ,β+

N ,δN )(Dt ◦ Rmt )

εNt (αN ,β−
N ,β+

N ,δN )((1 − D)t ◦ Rmt )

εNt (αN ,β−
N ,β+

N ,δN )(1 − Dt )



= εt (θ)⊗ xt .

The sample moment conditions are defined as hT (θ)= 1
T

T∑
t=1

εt (θ)⊗ xt .

Here xt = [1Dt ◦ Rmt (1 − Dt ) ◦ Rmt (1 − Dt )]′,εt (θ) = [ε1tε2t . . . εNt ]′ and
εit =Rit −αi−β−

i DtRmt −β+
i (1−Dt )Rmt −δi(1−Dt ). The parameter vector

is as in (6.14). There are 4N moment conditions and 4N parameters to be
estimated and, therefore, the multivariate system of equations is exactly
identified. The GMM parameters (the just-identified system leads to a
simple method of moment estimator rather than a generalized method of
moment estimator and we continue to use the term GMM following sim-
ilar treatment of this case in the literature) are estimated by minimizing

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP06” — 2010/11/22 — 17:40 — PAGE 162 — #9

162 Javed Iqbal, Robert D. Brooks and Don U.A. Galagedera

a quadratic form of the sample moment restriction vector;

θ̂GMM = arg min hT (θ)
′UT hT (θ) (6.17)

Here UT is a positive-definite weighting matrix whose elements can be
functions of parameters and data. Hansen (1982) shows that the optimal
weighting matrix is

UT = S−1 = {Asy Var[√ThT (θ)]}−1. (6.18)

The asymptotic covariance matrix of the GMM estimator is:

V = [�′S−1�]−1 (6.19)

where � = P lim[ ∂
∂θ ′ hT (θ)]. In practice “S” and “�” are unknown but

the asymptotic results are valid for some consistent estimator “ST ” and
“�T .” We estimate �t and St matrices as follows:

�T = 1
T

T∑
t=1

IN ⊗ xtx
′
t = IN ⊗ X′X. (6.20)

The matrix “ST ” is estimated by the Newey and West (1987) HAC
covariance matrix (for details see Ray et al., 1998).

Following the MacKinlay and Richardson (1991) portfolio efficiency
testing case the MLPM hypothesis for this exactly identified case can be
tested by first estimating the unrestricted system and then computing
the test statistic of the market efficiency hypothesis that involves these
unrestricted estimates. In this case, the GMM estimator is independent
of the weighting matrix and is the same as the SUR estimator; however,
the covariance matrix must be adjusted to allow for heteroskedasticity
and serial correlation. The GMM estimates are asymptotically normally
distributed:

√
T(θ − θ̂ )∼ N(0,V)

Here, V is as defined above. Therefore any nonlinear function g(θ̂ ) of
the parameter is also asymptotically normal

√
T [g(θ)− g(θ̂)] ∼ N

[
0,
(
∂g
∂θ ′

)
V
(
∂g
∂θ ′

)′]
.

In the test of the MLPM model with g(θ) = [g1 . . .gN−1]′ where gi =
αi(1 − β−

i+1)− αi+1(1 − β−
i ), i = 1,2, . . .N − 1 the GMM Wald test of the
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MLPM restrictions can be formulated as:

W = (T − N − 1)
T

g(θ̂)′
[(

∂g
∂θ ′

∣∣∣
θ=θ̂

)
V̂T

(
∂g
∂θ ′

∣∣∣
θ=θ̂

)′]−1
g(θ̂)

d−→ χ2
N−1.

(6.21)

The test is adjusted by the small sample correction factor as in Jobson
and Korkie (1982).

Here the (N − 1)× 4N derivative matrix is

∂g
∂θ ′ =


1 −β−

2 α2 0 0 −(1 −β−
1 ) −α1 0 0 0 0 . . . . 0

0 0 0 0 1−β−
3 α3 0 0 −(1 −β−

2 ) −α2 0 . . . 0
.

. . .
. . .

0 0 0 . . . 0 1−β−
N αN 0 0 −(1 −β−

N−1) −αN−1


(6.22)

6.3.2 Test of the CAPM against the MLPM alternative

The asymmetric response model subject to the MLPM restriction is

Rit = γ (1 −β−
i )+β−

i R−
mt +β+

i R+
mt + δi(1 − Dt )+ εit . (6.23)

The CAPM can be deducted from this model with the restrictions
β−

i = β+
i and δi = 0 imposed. H&R test these restrictions as a likeli-

hood ratio test with asymptotic Chi-square critical values.5 The restricted
model is the CAPM, whereas the unrestricted model is the MLPM. They
strongly reject the null of CAPM against the MLPM alternative using the
target rate found in the MLPM test. It is, however, evident that in the
general case testing the null hypothesis of the CAPM is conditional on
a specified target rate parameter τ which is not identified under the null
hypothesis, while τ appears in the alternative. Therefore, the problem
of testing is nonstandard and the asymptotic Chi-square distribution is
not valid in this case. Tests for this nonstandard problem are well doc-
umented in the econometric literature; see for example, Hansen (1997)
for a discussion on the nonstandard problem and a bootstrap method to
test the hypothesis of linearity in a threshold autoregressive model. The
appropriate test is a likelihood ratio test whose sampling distribution is
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unknown. However, the p-values can be generated from the bootstrap
method as follows:

(1) Estimate the following system of the market model subject to the
null hypothesis of zero-beta CAPM using time-series regression by
SUR; generate the parameter estimates and form a residual matrix

Rit = γ (1 −βi)+βiRmt + εit i = 1,2, ..N. (6.24)

(2) Resample T rows of the residual matrix and using the parameter
estimates obtained in step (1) above generate the return from the
system

R∗
it = γ̂ (1 − β̂i)+ β̂iRmt + ε∗it . (6.25)

(3) Compute the likelihood ratio statistics.
(4) Repeat steps (2) and (3) a large number B of times and compute the

p-value of the test as the proportion of cases in which the boot-
strap statistic exceeds the test statistics obtained using the real data.
Reject the null hypothesis if this p-value is smaller than the level of
significance specified.

Although the chapter uses the bootstrap as a method of computing p-
values of the nonstandard test the superiority of the bootstrap-based tests
over the asymptotic tests in general is well established (see for example
MacKinnon, 2002). Keeping in mind the dependencies in the time series
of residuals, we have also employed the “sieve bootstrap” of Buhlmann
(1997). The results are, however, qualitatively not much different from
the i.i.d. case and therefore not reported.

The robust Wald and GMM tests can also be constructed for this case.
The 3N + 1 parameter vector is

θ = [γ β−
1 β+

1 δ1 β−
2 β+

2 δ2 . . . β−
N β+

N δN ]′. (6.26)

The 2N ×1 vector of null restrictions to be tested is

H0 : g(θ)= [β−
1 −β+

1 δ1 β−
2 −β+

2 δ2 . . . β−
N −β+

N δN ]′ = 0.
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The (2N × 3N + 1) matrix of derivatives simply contains 1,−1 and zeros
and is given by

∂g
∂θ ′ =



0 1 −1 0 0 0 0 . . 0
0 0 0 1 0 0 0 . . 0
0 0 0 0 1 −1 0 . . 0

. . .
. . .

. . .
0 0 . . . . . 0 0 1


. (6.27)

A Wald test can be easily constructed which employs the parameter
estimates under the unrestricted alternative model (6.11) and the null
hypothesis can be tested using a similar bootstrap procedure as adopted
in the likelihood ratio test.

6.4 The data

The tests discussed in Section 6.3 are applied to portfolios formed from a
sample of stocks listed in the Karachi Stock Exchange (KSE). The sample
period spans 15 years and two months from October 1992 to December
2007. The data consist of monthly closing prices of 231 stocks and the
Karachi Stock Exchange 100 index (KSE-100). We consider the KSE-100 as
a proxy for the market portfolio. All the available active stocks for which
prices have been adjusted for dividend, stock split, merger and other cor-
porate actions were obtained from the DataStream database. The KSE-100
index is a market capitalization weighted index. The index comprises top
companies in terms of their market capitalization from each industrial
sector classified by the exchange. The rest of the companies are selected
on the basis of market capitalization without considering their sector.
We use monthly data and compute raw returns assuming continuous
compounding. The 30-day repurchase option rate is used as a proxy for
the risk-free rate. This was the only interest rate available in the database
for the entire sample period considered in the study.

To investigate robustness of the empirical results we consider port-
folios based on three different sorting schemes. Some studies, such as
Groenewold and Fraser (2001), report that the conclusion of an analy-
sis may be different and even conflicting when different portfolios are
employed. H&R use only LPM beta portfolios in their analysis and when
testing the CAPM against the MLPM alternative, they use portfolios based
on the CAPM and LPM betas. We investigate the robustness of the results
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in this study to factors such as the size and industry by controlling for
them through construction of portfolios based on these characteristics.
Three sets of portfolios are constructed on the basis of size, market model
beta and industry sorting.

To construct size portfolios all stocks that have a previous three years
of price data are ranked into 12 portfolios with respect to market cap-
italization in ascending order using December 1995 size values. Using
this sort, equally weighted portfolios are constructed for all 12 months
of 1996. This process is repeated each year up to 2007. Thus, portfo-
lios are balanced each year. The number of stocks in each portfolio is
constant (to within one). The stock beta used in construction of beta
portfolios is estimated by the market model with Dimson thin-trading
adjustment using two forward and two backward adjustments. These
market model regressions involve time-series data from October 1992
to December 1995. Twelve equally weighted beta-sorted portfolios are
constructed for 1996. This process is repeated for each year. To construct
industry portfolios stocks are also classified into 12 industrial sectors. The
sector size ranges from 7 in telecommunication, travel and leisure to 33 in
other financial institutions. The industry sectors employed are automo-
bile, transport and allied; cement; chemicals and pharmacy; commercial
banks; engineering, metal and building material; food, beverages and
tobacco; household and personal goods, paper and board; insurance; oil,
gas and power; other financial institutions; telecommunication, travel
and leisure; and textile and related. The choice of twelve portfolios was
considered to handle the curse of dimensionality: not using a large num-
ber of portfolios in multivariate testing and avoiding over-aggregation
with too few portfolios.

6.5 Results of empirical analysis

6.5.1 Residual diagnostic tests

All residual diagnostics and the asset-pricing tests are performed for the
two distinct and equal-length subperiods (January 1996 to August 2001
and September 2001 to December 2007) and for the whole period (Jan-
uary 1996 to December 2007). The objective here is to examine the
stability of the risk-return relationship pre- and post-9/11. This is impor-
tant because volatile political and macroeconomic scenarios in emerging
markets are likely to render the return distributions nonstationary.

Table 6.1 reports the Mardia (1970) test of multivariate normality of
the residuals of the unrestricted asymmetric response model for the
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Table 6.1 Test of multivariate normality of asymmetric response model residuals

Size portfolios Industry portfolios Beta portfolios

Sample period
Skewness
(P-value)

Kurtosis
(P-value)

Skewness
(P-value)

Kurtosis
(P-value)

Skewness
(P-value)

Kurtosis
(P-value)

Jan 96–Aug 01 64.749
(0.000)

205.387
(0.000)

50.799
(0.000)

192.601
(0.000)

61.077
(0.000)

197.922
(0.000)

Sep 01–Dec 07 42.468
(0.000)

181.524
(0.001)

52.974
(0.000)

198.152
(0.000)

40.469
(0.000)

181.926
(0.000)

Jan 96–Dec 07 40.997
(0.000)

222.593
(0.000)

40.818
(0.000)

225.622
(0.000)

44.340
(0.000)

227.278
(0.000)

Table 6.2 Test of serial independence of asymmetric response model residuals

Size portfolios Industry portfolios Beta portfolios

Sample period Lag1 Lag2 Lag3 Lag1 Lag2 Lag3 Lag1

Jan 96–Aug 01 159.226
(0.182)

303.075
(0.259)

444.091
(0.345)

159.226
(0.182)

303.075
(0.259)

444.091
(0.345)

159.226
(0.182)

Sep 01–Dec 07 131.576
(0.762)

284.256
(0.551)

443.153
(0.344)

131.576
(0.762)

284.256
(0.551)

443.153
(0.344)

131.576
(0.762)

Jan 96–Dec 07 154.489
(0.260)

299.541
(0.307)

99.352
(0.272)

154.489
(0.260)

299.541
(0.307)

99.352
(0.272)

154.489
(0.260)

three sets of portfolios. This test is based on multivariate equivalents
of skewness and kurtosis measures. The results are reported for the test
based on multivariate skewness and kurtosis measures separately. The
tests are performed for the average market return as the target return.
Both skewness- and kurtosis-based tests provide overwhelming evidence
against normality for all three types of portfolios and for the three sample
periods. Table 6.2 reports the Hosking (1980) multivariate portmanteau
test of no autocorrelation for up to lag three in the asymmetric response
model residuals. The null hypothesis corresponds to the absence of pre-
dictability of returns or serial correlation in the residuals. This test is
a multivariate generalization of the univariate test of Box and Pierce
(1970). Except for the full sample period in the case of beta portfolios,
the results do not provide evidence of serial correlation or predictabil-
ity in the residuals. As the results in this case are mixed it is worthwhile
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pursuing empirical applications with both robust tests and the usual tests
that assume normality.

6.5.2 Multivariate tests of zero-beta CAPM and MLPM models

Table 6.3 presents the results of testing the zero-beta CAPM using three
types of multivariate tests. Wald, GMM and LR test results are reported
for the three sample periods and across the three sets of portfolios as
described in Section 6.4. The results reveal that the LR test rejects the
zero-beta CAPM in the post-9/11 subperiod as is evident by the size and
industry portfolios and for the full sample period. In the other cases, the
CAPM is not rejected. In the case of emerging markets, Iqbal et al. (2008)
show that the Wald- and GMM-based tests are generally less powerful
relative to the LR test. Hence, the mixed results we observe here may be
influenced by the power of the tests as well.

Table 6.4 reports the results of multivariate tests of the MLPM model
when the average risk-free rate and average market returns are specified

Table 6.3 Multivariate tests of zero-beta CAPM

Portfolio method Size Beta Industry

Panel A: Jan 96–Aug 01
Wald 8.295

(0.686)
6.925

(0.805)
13.409
(0.267)

GMM 9.316
(0.592)

10.582
(0.478)

12.289
(0.342)

LR 9.299
(0.594)

10.932
(0.448)

14.780
(0.192)

Panel B: Sep 01–Dec 07
Wald 10.864

(0.454)
8.695

(0.649)
11.265
(0.421)

GMM 12.308
(0.341)

9.765
(0.551)

19.213
(0.057)

LR 21.213
(0.031)

10.557
(0.481)

19.354
(0.055)

Panel C: Jan 99–Dec 07
Wald 22.210

(0.023)
8.380

(0.678)
9.955

(0.534)

GMM 27.832
(0.003)

9.421
(0.583)

12.340
(0.338)

LR 26.720
(0.005)

11.486
(0.403)

12.715
(0.313)
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Table 6.4 Multivariate tests of lower partial moment CAPM

Panel A: Size portfolios
Likelihood ratio test Wald test GMM test

Risk-free
rate

Average
market
return

Risk-free
rate

Average
market
return

Risk-free
rate

Average
market
return

Jan 96–Aug 01 6.144
(0.863)

11.219
(0.422)

1.173
(0.999)

2.492
(0.995)

3.209
(0.987)

4.815
(0.939)

Sep 01–Dec 07 10.086
(0.522)

10.697
(0.468)

2.462
(0.996)

0.426
(0.999)

0.957
(0.999)

1.472
(0.999)

Jan 96–Dec 07 16.932
(0.109)

15.324
(0.168)

1.941
(0.998)

1.626
(0.999)

4.033
(0.968)

2.403
(0.996)

Panel B: Beta portfolios
Likelihood ratio test Wald test GMM test

Risk-free
rate

Average
market
return

Risk-free
rate

Average
market
return

Risk-free
rate

Average
market
return

Jan 96–Aug 01 23.058
(0.017)

26.643
(0.052)

8.099
(0.704)

9.451
(0.580)

9.351
(0.589)

11.350
(0.414)

Sep 01–Dec 07 18.516
(0.070)

14.505
(0.206)

8.247
(0.699)

3.331
(0.985)

10.408
(0.494)

3.691
(0.978)

Jan 96–Dec 07 19.260
(0.056)

15.034
(0.181)

8.067
(0.707)

5.798
(0.886)

10.313
(0.502)

6.426
(0.843)

Panel C: Industry portfolios
Likelihood ratio test Wald test GMM test

Risk-free
rate

Average
market
return

Risk-free
rate

Average
market
return

Risk-free
rate

Average
market
return

Jan 96–Aug 01 13.907
(0.238)

16.517
(0.123)

11.251
(0.422)

12.308
(0.341)

29.297
(0.002)

30.094
(0.001)

Sep 01–Dec 07 12.159
(0.351)

12.338
(0.338)

1.242
(0.999)

0.941
(0.999)

2.804
(0.993)

2.801
(0.993)

Jan 96–Dec 07 19.656
(0.050)

15.640
(0.155)

10.085
(0.522)

4.173
(0.964)

11.003
(0.442)

5.338
(0.913)

as the target rate. The results remain similar when the observed period-
by-period risk-free rate is employed as the target rate as opposed to the
average over the sample period. With size portfolios (Panel A) none of the
three multivariate tests reject the restriction of the MLPM model in both
subperiods and in the full sample period. The LR test in the beta portfolios
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for the first period rejects the MLPM restrictions when the target rate is
specified as average risk-free rate (Panel B). For industry portfolios, the
GMM test rejects the MLPM model in the first period. Overall, the results
for the zero-beta CAPM and the MLPM model are mixed. It appears that
the highly volatile nature of the portfolio returns and the relatively low
power of some of the tests considered here, fail to differentiate the two
competing models.

Multivariate tests can be sensitive to the specified alternative hypoth-
esis. Intuitively, a test with an unspecified alternative seeks to find
evidence against the model in any direction of the sampling distribution
while with a specific alternative the test focuses only on the direction
of the specified alternative. As the CAPM is nested within the MLPM
one can test the CAPM restriction on the more general MLPM model.
Table 6.5 reports the results of the CAPM restriction on the MLPM as
an alternative through bootstrap tests. The bootstrap tests for the nested

Table 6.5 Multivariate tests of the null hypothesis of the black
CAPM against the alternative of the lower partial moment model

Portfolio method Size Beta Industry

Panel A: Jan 96–Aug 01
Wald 13.376

(0.962)
19.947
(0.02)

26.240
(0.000)

GMM 41.690
(0.000)

36.916
(0.048)

46.906
(0.000)

LR 11.751
(0.852)

19.581
(0.022)

26.178
(0.000)

Panel B: Sep 01–Dec 07
Wald 19.582

(0.074)
24.103
(0.000)

19.977
(0.002)

GMM 73.151
(0.000)

62.197
(0.000)

34.460
(0.038)

LR 25.135
(0.000)

25.108
(0.000)

26.365
(0.000)

Panel C: Jan 96–Dec 07
Wald 15.685

(0.042)
21.573
(0.028)

20.111
(0.002)

GMM 59.913
(0.000)

64.356
(0.000)

52.659
(0.000)

LR 17.303
(0.000)

23.876
(0.006)

20.173
(0.000)
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tests are computed over 500 simulations. As we argued elsewhere, the
asymptoticp-value may not be valid since the likelihood ratio, Wald and
GMM tests do not have a known sampling distribution even in large
samples. Therefore, the “nuisance parameter problem” makes inference
difficult. All three tests reject the CAPM restriction on the MLPM model
for industry portfolios. A similar result holds for the size portfolios in the
full sample period. In the first subperiod the results with the size port-
folio are inconsistent with the other types of portfolios where the Wald
and LR tests fail to reject the nested test of the CAPM on the MLPM alter-
native. Overall, the nested tests provide overwhelming support for the
MLPM model.

6.6 Conclusion

This chapter tests and compares the CAPM and the mean lower par-
tial moment (MLPM) asset-pricing model in the context of emerging
markets. Considering the stylized facts of emerging market returns the
paper extends Harlow and Rao’s (1989) likelihood ratio test of the MLPM
model to develop robust Wald and GMM tests that allow non-normality
and serial dependence in the returns. Also in testing the CAPM against
the MLPM alternative, the chapter remedies an econometric problem of
testing in the presence of a nuisance parameter with an arbitrary gen-
eral target rate. Applying the MLPM tests on portfolio data from the
Karachi Stock Exchange it is observed that individual zero-beta CAPM
and the MLPM tests do not provide unambiguous evidence to distin-
guish between the two models. However, a more powerful nested test of
the CAPM against MLPM alternatives provides overwhelming support for
the downside risk model. Thus, it appears that investment appraisal prac-
titioners are likely to benefit if the correct discount rates are derived from
the MLPM model. Practitioners of investment allocation and managed
funds may also gain a more realistic benchmark return if the expected
returns are estimated from the MLPM model. Thus, despite the fact that
the market has shown considerable growth during recent years, the pos-
sibility of portfolio strategies based on downside risk have the potential
to offer a more realistic picture of the riskiness and associated returns for
the invested funds in the emerging market under study.
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Notes

1. Non-normality of the asset return distribution is also well studied. As Kan and
Zhou (2006) remark “the reason for the wide use of the normality assump-
tion is not because it models financial data well, but due to its tractability
that allows interesting economic questions to be asked and answered without
substantial technical impediments”. Fama (1965), Kon (1984), Affleck-Graves
and McDonald (1989), Richardson and Smith (1993) and Dufour, Khalaf and
Beaulieu (2003), among others, provide strong evidence against normality of
stock returns.

2. For example, Hansen (1996, 1997) discussed the testing problem and provides
a bootstrap method to test the hypothesis of linearity in a threshold autoregres-
sive model. Andrews and Ploberger (1994) developed tests for structural breaks
for unknown change point-in-time series. Garcia (1998) developed a likelihood
ratio test for testing linearity against a Markov switching alternative.

3. Karachi Stock Exchange is the largest of the three stock markets in Pakistan.
On April 17, 2006 the market capitalization was US$ 57 billion which is 46 per
cent of Pakistan’s GDP for the fiscal year 2005–2006 (Ref: Pakistan Economic
Survey, 2005–06).

4. Taking expectation on both sides of (6.10):
E(Ri)= αi +β−

i E(R−
m)+β+

i E(R+
m)+ϕ(β−

i −β+
i )P(Rm> τ)

substituting ϕ = E(R+
mt )/P(Rmt > τ) and using the fact that R+ + R−

m = Rm it
follows that:

E(Ri)= αi +β−
i E(Rm).

5. The degrees of freedom employed by H&R Table 4 page 303 are N-2. However,
in the testing of the null hypothesis a total of 2N restrictions are imposed,
therefore the appropriate number of degrees of freedom with the asymptotic
Chi-square is 2N.
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7
Asset Pricing, the Fama–French
Factor Model and the Implications
of Quantile-Regression Analysis
David E. Allen, Abhay Kumar Singh and Robert Powell

7.1 Introduction

Traditionally, regression-based factor analysis is extensively used in
quantitative finance to analyze the performance of the factors in differ-
ent factor models. These factor models assume that the expected return is
linearly dependent on the risk factors and hence “ordinary least squares”
(OLS) is widely used to model the risk distribution for these models.
When it comes to risk assessment, the parts of the return distributions
in which the investor and risk managers are often interested, such as
extreme outcomes in the tails, which go beyond the mean values, are
not well analyzed by means of OLS.

“Quantile regression” promises to be a more effective tool than OLS
when it comes to analyzing the extremes of a distribution, as it captures
the behavior of the tails of a distribution more efficiently. In this chapter,
we analyze the expected return distribution of 30 stocks of the Dow Jones
Industrial average, obtained from the Fama–French three-factor model
using quantile-regression techniques.

The chapter is divided into six sections. Following this introductory
section we briefly review the Fama–French three-factor model, quantile
regression is introduced in Section 7.3, the data and research method
follows in Section 7.4, the results are presented in Section 7.5 and a brief
conclusion is provided in Section 7.6.

7.2 The Fama–French three-factor model

Volatility is a widely accepted measure of risk and is most commonly
quoted in terms of the standard deviation of returns. There is a greater
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risk involved for an asset whose return fluctuates more dramatically than
others. The familiar beta from the CAPM equation is a widely accepted
measure of systematic risk and unsystematic risk is captured by the error
term of the OLS application of the CAPM. Beta is measured below:

βA = cov(rA, rM )
σM2

(7.1)

where

rA is the return of the asset
rM is the return of the market
σM2 is the variance of the return of the market and
cov(rA, rM ) is covariance between the return of the market and the

return of the asset.

This was a direct development from the work of Jack Treynor (1961,
1962), William Sharpe (1964), John Lintner (1965) and Jan Mossin
(1966), who independently proposed “capital asset pricing theory”
(CAPM) to quantify the relationship between the beta of an asset and
its corresponding return. The CAPM relationship estimation is given in
equation (7.2).

rA = rf +βA(rM − rF)+α+ e (7.2)

where

rA is the return of the asset
rM is the return of the market
rf is the risk-free rate of return
α is the intercept of regression
e is the standard error of regression

Fama and French (1992, 1993) extended the basic CAPM to include
size and book-to-market as explanatory factors in explaining the cross-
section of stock returns. SMB, which stands for “small minus big,” is
designed to measure the additional return investors have historically
received from investing in stocks of companies with relatively small
market capitalization. This is often referred to as the “size premium.”

HML, which is short for “high minus low,” has been constructed to
measure the “value premium” provided to investors for investing in com-
panies with high book-to-market values. The HML factor suggests higher
risk exposure for typical “value” stocks (high B/M) versus “growth” stocks
(low B/M). On the other hand, the HML factor suggests higher risk expo-
sure for typical “value” stocks (high B/M) versus “growth” stocks (low
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B/M). The three-factor Fama–French model is written as:

rA = rf +βA(rM − rF)+ sASMB + hAHML +α+ e (7.3)

where SA and HA capture the security’s sensitivity to these two additional
factors.

7.2.1 Doubts about the model

Black (1993) suggested that the Fama–French results might be the effect
of data mining. Kothari et al. (1995) suggest that the use of annual
returns provides stronger evidence in favor of the influence of beta. Lev-
hari and Levy (1977) show that beta coefficients estimated with monthly
returns are not the same as betas estimated with annual returns. There
is an abundance of evidence that stock returns’ distributions have fat
tails. Knez and Ready (1997) undertook tests of the model after remov-
ing extreme observations from their data sets using a “least trimmed
squares” technique (LTS). They trimmed one per cent of the extreme
returns in their monthly data and found that this greatly reduced the
size effect. Horowitz et al. (2000) suggest that the size effect is not robust
across different sample periods and argue that it may have disappeared
since 1982. In this chapter we follow a lead first suggested by Chan and
Lakonishok (1992) and apply robust methods to explore the efficacy of
the three-factor model using quantile regressions.

7.3 Quantile regression

Linear regression represents the dependent variable as a linear function
of one or more independent variables subject to a random “disturbance”
or “error.” It estimates the mean value of the dependent variable for given
levels of the independent variables. For this type of regression, where we
want to understand the central tendency in a data set, OLS is a tried and
tested effective method. OLS loses its effectiveness when we try to go
beyond the median value or towards the extremes of a data set.

Quantile regression, as introduced in Koenker and Bassett (1978), is
an extension of classical least squares estimation of conditional mean
models to the estimation of a set of models for conditional quantile func-
tions. The central special case is the median regression estimator that
minimizes a sum of absolute errors. The remaining conditional quan-
tile functions are estimated by minimizing an asymmetrically weighted
sum of absolute errors. Taken together the set of estimated conditional
quantile functions offers a much more complete view of the effect of
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covariates on the location, scale and shape of the distribution of the
response variable.

In linear regression, the regression coefficient represents the change
in the response variable produced by a one-unit change in the predictor
variable associated with that coefficient. The quantile-regression param-
eter estimates the change in a specified quantile of the response variable
produced by a one-unit change in the predictor variable.

The quantiles, or percentiles or occasionally fractiles, refer to the gen-
eral case of dividing a data set into parts. Quantile regression seeks to
extend these ideas to the estimation of conditional quantile functions –
models in which quantiles of the conditional distribution of the response
variable are expressed as functions of observed covariates.

In quantile regression, the median estimator minimizes the symmetri-
cally weighted sum of absolute errors (where the weight is equal to 0.5)
to estimate the conditional median function. Other conditional quan-
tile functions are estimated by minimizing an asymmetrically weighted
sum of absolute errors, where the weights are functions of the quantile of
interest. This makes quantile regression robust to the presence of outliers.

We can define the quantiles through a simple alternative expedient as
an optimization problem. Just as we can define the sample mean as the
solution to the problem of minimizing a sum of squared residuals, we can
define the median as the solution to the problem of minimizing a sum of
absolute residuals. The symmetry of the piecewise, linear absolute value
function implies that the minimization of the sum of absolute residuals
must equate the number of positive and negative residuals, thus assuring
that there are the same number of observations above and below the
median.

The other quantile values can be obtained by minimizing a sum of
asymmetrically weighted absolute residuals (giving different weights to
positive and negative residuals). Solving

min
ξ∈R

∑
ρτ (yi − ξ) (7.4)

where ρτ (·) is the tilted absolute value function as shown in Figure 7.1,
this gives the τ th sample quantile with its solution. To see that this prob-
lem yields the sample quantiles as its solutions, it is only necessary to
compute the directional derivative of the objective function with respect
to ξ , taken from the left and from the right.

After defining the unconditional quantiles as an optimization prob-
lem, it is easy to define conditional quantiles in an analogous fashion.
The procedure is similar to ordinary least squares regression. In OLS, if
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rt (u)

t – 1 t

Figure 7.1 Quantile-regression ρ function

we have a random sample, {y1,y2, . . . ,yn}, we solve

min
µ∈R

n∑
i=1

(yi −µ)2 (7.5)

and we obtain the sample mean, an estimate of the unconditional popu-
lation mean, EY. If we now replace the scalar µ by a parametric function
µ(x,β) and solve

min
µ∈Rp

n∑
i=1

(yi −µ(xi,β))
2 (7.6)

we obtain an estimate of the conditional expectation function E(Y |x).
The procedure is paralleled in quantile regression. The conditional

median function is obtained by simply replacing the scalar ξ in the first
equation by the parametric function ξ(xt,β) and setting τ to 1

2 . Variants
of this idea were proposed in the mid-eighteenth century by Boscovich
and subsequently investigated by Laplace and Edgeworth, among others
(see the discussion in Koenker and Basset, 1985). To obtain estimates of
the other conditional quantile functions, we replace absolute values by
ρτ (·) and solve

min
ξ∈Rp

∑
ρτ (yi − ξ(xi,β)) (7.7)

The resulting minimization problem, when ξ(x,β) is formulated as
a linear function of parameters, can be solved by linear programming
methods.

This technique has been used widely in the past decade in many
areas of applied econometrics; applications include investigations of
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wage structure (Buchinsky and Leslie, 1997), earnings mobility (Eide and
Showalter, 1998; Buchinsky and Hahn, 1998) and educational attain-
ment (Eide and Showalter, 1998). Financial applications include Engle
and Manganelli (1999) and Morillo (2000) to the problems of “value
at risk” and “option pricing,” respectively. Barnes and Hughes (2002)
applied quantile regression to study CAPM in their work on cross-sections
of stock market returns.

7.4 Data and methodology

The study uses daily prices of the 30 Dow Jones Industrial Average
Stocks, for a period from January 2002–May 2009, along with the Fama–
French factors for the same period, obtained from French’s website,
to calculate the Fama–French coefficients (www.mba.tuck.dartmouth.
edu/pages/faculty/ken.french/data_library.html#International).

Table 7.1 gives the 30 stocks traded at the Dow Jones Industrial Average
and used in this study.

The approach here is to study the behavior of the return distribution
along the quantiles using quantile regression. The coefficients for all the
three factors of the model are calculated both by means of OLS and quan-
tile regressions. While OLS calculates the coefficients along the median
(0.50), quantile-regression calculates the values for 0.05, 0.25, 0.50, 0.75
and 0.95 quantiles at 95 percentile confidence levels. We also plot the fit-
ted values using OLS and the two extreme quantile values to examine the
behavior of fitted and actual values. The sequence of coefficients along
the quantiles is also plotted to show the nonconstant linear relationship
between the factors and the return. Both open source statistical software,

Table 7.1 Dow Jones industrial 30 stocks used in the study

3M Ei Du Pont De Nemours Kraft Foods
Alcoa Exxon Mobile McDonalds
American Express General Electric Merck & Co.
AT&T General Motors Microsoft
Bank of America Hewlett-Packard Pfizer
Boeing Home Depot Procter & Gamble
Caterpillar Intel United Technologies
Chevron International Bus.Mchs. Verizon Communications
Citigroup Johnson & Johnson Wal Mart Stores
Coca Cola JP Morgan Chase & CO. Walt Disney
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GRETL, and STATA is used to calculate the Fama–French coefficients for
the OLS and quantile-regression analyses.

7.5 Results: Quantile analysis of Fama–French factors

We have been emphasizing the fact that when it comes to risk assessment,
the tail distributions may be more interesting for an investor or risk man-
ager. Here we present the results of an analysis of the three factors, based
both on their coefficients as obtained from OLS and quantile regressions,

Table 7.2 Fama–French risk coefficients from OLS

Stock β s h

3M 0.008614 −0.00306 −0.00434
Alcoa 0.012955 0.005359 0.014032
American Express 0.010577 −0.00397 −0.00564
AT&T 0.009078 −0.00364 0.00204
Bank of America 0.009805 −0.00534 0.001711
Boeing 0.011219 −0.00175 −0.0042
Caterpillar 0.01278 0.004763 0.001788
Chevron 0.01319 −0.00306 0.023134
Citigroup 0.010753 −0.00629 −0.00209
Coca Cola 0.007274 −0.00456 −0.00284
Ei Du Pont De Nemours 0.009543 −0.00179 −0.00154
Exxon Mobile 0.013576 −0.00409 0.016094
General Electric 0.008281 −0.00569 −0.00783
General Motors 0.009435 0.002349 0.006133
Hewlett-Packard 0.011637 −0.00377 −0.0123
Home Depot 0.00994 −0.00298 −0.01052
Intel 0.013682 −0.00495 −0.01928
International Bus.Mchs. 0.008343 −0.00474 −0.0105
Johnson & Johnson 0.006264 −0.00811 −0.00738
JP Morgan Chase & Co. 0.013587 −0.00456 0.000826
Kraft Foods 0.004528 −0.00279 −0.00113
McDonalds 0.007624 −0.00072 −0.00257
Merck & Co. 0.009884 −0.00627 −0.004
Microsoft 0.009492 −0.00883 −0.01392
Pfizer 0.010272 −0.00765 −0.00424
Procter & Gamble 0.006126 −0.0038 −0.00562
United Technologies 0.008634 0.002649 0.00037
Verizon Communications 0.009882 −0.00424 −0.00373
Wal Mart Stores 0.007701 −0.00269 −0.00916
Walt Disney 0.008569 −0.00253 −0.004
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Table 7.3 Fama–French risk coefficients from quantile regression (0.05)

Stock β s h

3M 0.0087204 −0.005269 −0.005755
Alcoa 0.0118791 0.0058869 0.0236129
American Express 0.0086471 −0.002411 −0.004655
AT&T 0.0117791 −0.005055 0.0126947
Bank of America 0.0071695 −0.007957 0.0019138
Boeing 0.0085358 0.0001884 −0.001396
Caterpillar 0.0122212 0.0068914 0.0133572
Chevron 0.0097339 −0.003475 0.0233514
Citigroup 0.011633 −0.008887 0.0012689
Coca Cola 0.0063103 −0.004425 −0.004786
Ei Du Pont De Nemours 0.0087571 −0.001218 −0.000147
Exxon Mobile 0.0104406 −0.002919 0.0147583
General Electric 0.0104546 −0.008351 −0.011785
General Motors 0.0056712 0.0126481 0.0075143
Hewlett-Packard 0.0149214 −0.00439 −0.01119
Home Depot 0.008633 −0.006773 −0.006451
Intel 0.0149894 −0.002617 −0.018261
International Bus.Mchs. 0.0064724 −0.006006 −0.017403
Johnson & Johnson 0.0069007 −0.011523 −0.01487
JP Morgan Chase & Co. 0.0116703 −0.006588 0.0040308
Kraft Foods 0.0055943 −0.005914 0.0034399
McDonalds 0.0093003 0.0027243 0.0041196
Merck & Co. 0.0130209 −0.007923 −0.007142
Microsoft 0.0066115 −0.006191 −0.023396
Pfizer 0.0065584 −0.006634 −0.0112
Procter & Gamble 0.0058435 −0.006782 −0.006557
United Technologies 0.0093075 0.0031857 −0.006319
Verizon Communications 0.0093486 −0.003566 −0.001303
Wal Mart Stores 0.0065287 0.0004035 −0.001118
Walt Disney 0.0156589 −0.009912 0.001293

to examine whether OLS is able to capture the extreme tail distributions
and to explore whether the two techniques provide different insights.

Table 7.2, Table 7.3 and Table 7.4 provide the Fama–French risk coef-
ficients obtained for the stocks for the year 2006, using both OLS and
quantile regressions at the 0.05 and 95 quantiles, respectively.

Figure 7.2, Figure 7.3 and Figure 7.4, respectively, provide an example
of the values of the individual coefficients of beta s and h across different
quantiles plotted against the values obtained from OLS. The plots clearly
show that when it comes to boundary values in a distribution, the OLS
method becomes inefficient. The plots show that the return on a security
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Table 7.4 Fama–French risk coefficients from quantile regression (0.95)

Stock β s H

3M 0.0080196 −0.003683 −0.000769
Alcoa 0.006503 0.009062 0.0070458
American Express 0.0117947 −0.001636 0.0015644
AT&T 0.0094728 −0.004266 −0.013008
Bank of America 0.010973 −0.008827 0.0003039
Boeing 0.0139033 −0.004808 −0.00478
Caterpillar 0.0131213 0.0059623 −0.001055
Chevron 0.0129154 −0.005819 0.0149052
Citigroup 0.0104364 −0.004438 −0.001737
Coca Cola 0.0073888 −0.00249 0.0007961
Ei Du Pont De Nemours 0.0096405 −0.005718 −0.004336
Exxon MOBILE 0.0133279 −0.007701 0.0129131
General Electric 0.007438 −0.006239 −0.00714
General Motors 0.0016224 0.0117895 0.0151127
Hewlett-Packard 0.0146965 −0.008829 −0.019157
Home Depot 0.0073725 0.0017505 −0.019662
Intel 0.0138265 −0.005464 −0.026458
International Bus.Mchs. 0.0082471 −0.00066 −0.012062
Johnson & Johnson 0.0066735 −0.009286 −0.007984
JP Morgan Chase & Co. 0.0164231 −0.005876 0.0065938
Kraft Foods 0.0071095 −0.004679 0.0043544
McDonalds 0.0088204 0.0013117 −0.004949
Merck & Co. 0.0080509 −0.0051 −0.004088
Microsoft 0.0136497 −0.015331 −0.008998
Pfizer 0.0158166 −0.009497 0.0039776
Procter & Gamble 0.0070965 −0.002836 −0.007098
United Technologies 0.0110386 −0.000498 0.0035812
Verizon Communications 0.0111802 −0.005746 −0.011214
Wal Mart Stores 0.0096267 −0.003811 −0.016033
Walt Disney 0.009699 −0.002968 0.0011207

is not linearly dependent in the same way on these factors around the
whole distribution. The coefficients are calculated within a 95 percent
confidence band, and within this confidence level OLS is unable to cap-
ture the distribution of historical returns for the tail distributions. The
average relationship between return and beta for Alcoa in Figure 7.2 is
0.018.

In Figure 7.2, which depicts the relationship between the market factor
beta and Alcoa, the slope of the relationship changes across the quantiles,
moving from a steeper slope to less steep around the median, and then
more steep in the tail of the distribution. At the 0.05 quantile the slope is
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0.019, but the error band is broad. However, the estimate at the median,
which is significantly different from the OLS estimate, is only 0.016,
whilst at the 0.95 quantile it is above 0.020 and the error band does not
encompass the OLS estimate. Similarly, the coefficient on the size factor s
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Figure 7.4 Values of h across quantiles (Alcoa)

is insignificantly different from the OLS estimate and relatively constant
in the lower quantiles, but then becomes significantly different and more
negative in the 0.95 quantile where it approaches −0.02. Finally, the
coefficient on book-to-market, whilst having a negative slope, moves
from being insignificantly different from OLS to significantly different
and more negative as we move up the quantiles.

Another approach to understanding this is to plot the actual and fitted
values obtained from both of the regression methods for an actual stock.
Figures 7.5, 7.6 and 7.7 plot the fitted and actual values obtained from
historical daily returns for a year using OLS, and the 0.05 and 0.95 quan-
tiles, respectively. The plotted values clearly show that OLS is unable to
cover the extreme values in the distribution. When it comes to efficient
risk assessment, it becomes important for an investor or risk manager to
account for the extreme tails of a distribution, which is captured by the
quantile-regression fitted values.

Through this analysis we are able to show that quantile regression
gives more efficient results when it comes to the boundary values of a
distribution.

To further illustrate the additional information garnered by the tech-
nique we present some three-dimensional graphs (Figures 7.8–7.10) of
how the loadings on the three factors vary from year to year across
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Figure 7.5 Actual Versus Fitted Values of Expected Return for OLS
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Figure 7.6 Actual Versus Fitted Values of Expected Return for Quantile Regression
(0.05)

the quantiles. Standard OLS and asset-pricing techniques simply capture
the average; clearly the behavior is much more complex than perusal
of the averages would suggest. The results also suggest why simple
reliance on standard OLS-based asset-pricing models as benchmarks to
capture abnormal returns may produce highly inconsistent results.
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Figure 7.7 Actual Versus Fitted Values of Expected Return for Quantile Regression
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Figure 7.8 Annual beta estimates across the quantiles for Bank of America

The interesting feature of all three figures is that the direction or slope
of the coefficients across the quantiles is not consistent and frequently
changes slope as we move from the lowest to the highest quantiles. To be
consistent with asset-pricing theory and the implications of OLS analysis
these estimates should be a constant. This is clearly not the case.

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP07” — 2010/11/25 — 20:12 — PAGE 189 — #14

Asset Pricing, the Fama-French Factor Model 189

0.004

0.002

0

–0.002

2002 2003
2004

2005
2006

Years

Coefficients each year across quantiles

Q
ua

nt
ile

s

2007
2008

0.05

0.25

0.5

0.75

0.95

0.002-0.004
0-0.002
–0.002-0
–0.004-–0.002
–0.006-–0.004
–0.008-–0.006
–0.01-–0.008

–0.004

–0.006

–0.008

–0.01

Figure 7.9 Annual estimates of coefficientss (SMB) for Bank of America

0.035

0.025

0.015

0.01

0.005

0

–0.005
2002 2003 2004 2005 2006 2007 2008

0.05

0.25

0.5
0.75
0.95

0.03-0.035
0.025-0.03
0.02-0.025
0.015-0.02

0.01-0.015
0.005-0.01
0-0.005
–0.005-0
–0.01- –0.005–0.01

Years

Coefficient h each year across quantiles
Q

ua
nt

ile
s

0.02

0.03

Figure 7.10 Annual estimates of coefficients h (HML) for Bank of America

As a further test we examined the equivalence of slopes estimated
across different quantiles. We used a bootstrapping technique to test the
significances of the differences across the slopes. The results are reported
in the appendix. These just provide the results across the whole sample
period, for reasons of economy. Over ten percent of the slope estimates

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP07” — 2010/11/25 — 20:12 — PAGE 190 — #15

190 David E. Allen, Abhay Kumar Singh and Robert Powell

Table 7.5 Two-sample t-test for the fitted lower tail values

Stocks
P-Value
(OLS)

P-value
(Quantile
regression
(5%)) Stocks

P-value
(OLS)

P-value
(Quantile
regression
(5%))

3M 0.008197 0.186848 HP 0.000010 0.647671
Alcoa 0.000056 0.257715 IBM 0.000013 0.485589
American EX 0.001815 0.801880 Intel 0.005174 0.284515
AT&T 0.000000 0.999886 J&J 0.000020 0.498460
BOA 0.000343 0.757683 JP Morgan 0.002252 0.113751
Boeing 0.000050 0.064725 Kraft Food 0.000000 0.059104
Caterpillar 0.014409 0.286397 McDonalds 0.000000 0.730846
Chevron 0.000081 0.278451 Merk & Co 0.000014 0.085158
Citi Group 0.000578 0.583064 Microsoft 0.011107 0.366676
Coca Cola 0.000004 0.952945 P&G 0.000184 0.053473
Ei Du PONT 0.000349 0.221044 Pfizer 0.008405 0.180927
Exxon 0.000099 0.266374 United Tech 0.000313 0.530723
General Electric 0.000006 0.238482 Verizon 0.000004 0.111493
GM 0.000000 0.023882 Wal Mart 0.000006 0.220995
Home Depot 0.000236 0.229567 Walt Disney 0.000007 0.748839

across quantiles were significantly different at a ten percent level or better
across the whole sample period.

7.6 Conclusion

We have explored the relationship between a set of returns of the
30 Dow Jones Index stocks and the three-factor model using factors
obtained from Professor Ken French’s website for the period 2002 to
2009 and quantile-regression analysis. We report the implications of
the assumptions of OLS, as criticized originally by Frances Galton’s
famous exclamation against his statistical colleagues who: “limited their
inquiries to averages and do not seem to revel in more comprehensive
views.” This appears also to apply in finance in the large literature on
testing asset-pricing models. Our results reveal large and sometimes sig-
nificant differences between returns and these three factors both across
quantiles and through time. The picture that results from quantile-
regression analysis is far more complex than the assumptions inherent
in OLS would lead us to believe.
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Appendix 7.1 Bootstrapped tests of the equivalence
of slopes for 0.05 and 0.095 quantiles

For sample period 2004–2008

Rm-Rf SMB HML

m3 −0.00018 −0.00041 −0.00028
P> t 0.801 0.751 0.84
ALCOA 0.003963 −0.00257 −0.01131
P> t 0.002 0.31 0.001
American EX 0.000572 0.00221 0.001624
P> t 0.567 0.291 0.501
AT&T 0.000308 −0.00249 −0.001
P> t 0.649 0.091 0.518
BOA 0.000442 0.001006 0.017042
P> t 0.692 0.631 0
Boeing −0.0007 0.000695 0.001975
P> t 0.384 0.68 0.312
Caterpillar 0.000921 0.002288 −0.00187
P> t 0.355 0.196 0.291
Chevron 0.000376 −0.00285 −0.00256
P> t 0.661 0.083 0.227
Citi Grp 0.001962 0.001004 0.010286
P> t 0.3 0.812 0.023
Coca Cola −0.00046 0.001428 −9.8E-05
P> t 0.562 0.502 0.969
Ei Du PONT 0.000139 0.001511 −0.00037
P> t 0.849 0.127 0.83
Exxon −6.3E − 05 −0.00141 −0.00172
P> t 0.921 0.461 0.266
General Electric −0.00023 −0.00011 0.002797
P> t 0.753 0.955 0.07
GM −0.00114 0.005199 0.003719
P> t 0.658 0.292 0.454
HP −0.00056 −0.00218 −0.0003
P> t 0.498 0.266 0.861
Home Depot −1.4E-05 0.001231 0.003014
P> t 0.984 0.506 0.131
Intel −0.00165 0.00154 0.001875
P> t 0.069 0.616 0.443
IBM −0.00065 0.000105 3.31E-05
P> t 0.251 0.926 0.981
J&J 0.000704 0.000167 −0.00017
P> t 0.462 0.888 0.916
JP MORGAN −0.00214 0.003513 0.014611

Continued
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Appendix 7.1 Continued

Rm-Rf SMB HML

P> t 0.149 0.155 0
Kraft Food −0.00085 −0.00045 0.000127
P> t 0.385 0.812 0.943
MacD −0.00095 −0.00112 0.001548
P> t 0.211 0.52 0.339
Merk & Co 0.001212 0.000474 −0.0011
P> t 0.135 0.687 0.56
Microsoft −6.7E-05 −0.00114 −0.00138
P> t 0.94 0.415 0.491
Pfizer −0.00094 −0.00151 0.002897
P> t 0.182 0.285 0.031
P&G −2.5E-06 −0.00051 0.00024
P> t 0.997 0.676 0.867
United Tech 0.000871 0.000731 0.000507
P> t 0.191 0.658 0.746
Verizon −0.0008 0.001036 0.000593
P> t 0.436 0.555 0.722
WalMart −0.00031 0.00168 0.001433
P> t 0.743 0.379 0.416
Walt Disney 0.000414 0.001964 −0.0017
P> t 0.627 0.224 0.281

Note: Differences significant at .10 percent or better marked in bold.
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8
The Value of Liquidity and
Trading Activity in Forecasting
Downside Risk
Lidia Sanchis-Marco and Antonio Rubia

8.1 Introduction

The recent fallout of the sub-prime mortgage and the subsequent
international crisis in the financial markets have raised the need of effec-
tive risk-control and monitoring systems in the financial sector. The Basel
Committee on Banking Supervision has put considerable emphasis on
controlling market, credit and operational risk through the implemen-
tation of internal models, such as the well-known value-at-risk (VaR).
This statistical measure was explicitly introduced by the Basel II Amend-
ment in 1996 for determining capital requirements. Since then, it has
become the most common quantitative tool in risk management. The
vast literature devoted to downside risk modeling has suggested a num-
ber of alternative procedures to forecast VaR accurately, building mainly
on the time-series properties of daily returns. However, several empirical
studies (e.g. Kuester et al., 2006) show that most of these approaches
do not seem to perform successfully in practice, thus underlining the
large degree of complexity embedded in the VaR analysis for practical
purposes.

In this chapter, we analyze empirically whether one-day VaR fore-
casts could be enhanced by using market microstructure variables as
well as other environmental factors or, in other words, whether the tail
of the conditional distribution of returns can be forecast using observ-
able information beyond that conveyed by the return time series. More
specifically, we focus on variables that are related to market liquidity
and private information, such as bid–ask spread measures as well as vol-
ume and trading-related variables. Downside risk metrics, such as the
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VaR, are obviously linked to the conditional volatility of the histori-
cal returns, from which it is not surprising that this latent process had
taken a predominant position in parametric VaR modeling. What it is
more surprising, however, is the fact that the existing literature seems to
have ignored other effects beyond this variable. For instance, an implicit
assumption in all the econometric models analyzed in Kuester et al.
(2006) is that returns convey all the information needed for forecasting
VaR, whereas there is no economic reason to maintain this particularly
restrictive assumption, there exist arguments that support the inclu-
sion of additional variables. Putting aside the vast literature related to
liquidity and asset pricing, Jarrow and Protter (2009) have argued, for
instance, that execution and illiquidity costs become relevant, if not
essential, in a stress scenario. These arguments have motivated the inter-
est in so-called liquidity-corrected VaR models; see Jorion (2007) for an
overview. In addition, liquidity and trading-related variables generally
characterize the market environment and can reflect the market’s senti-
ment and collective beliefs, thereby conditioning the investor’s decision.
Consequently, investors may be able to advance large movements in
prices not only by analyzing volatility or historical returns, but also by
processing other observable information, such as bid–ask spreads and
trading-related variables.

Since ultimately this is an empirical question, we analyze the suitabil-
ity of these variables to predict the conditional tail of daily returns using
market data from the US Stock Market in the period January 4, 1988
to December 31, 2002. The most natural way to appraise the potential
forecasting ability of a set of instrumental variables in this context is by
using the “quantile regression” (QR) methodology developed by Koenker
and Bassett (1978). The central idea is to directly model the dynamics
of the conditional quantile by specifying a functional form that relates
the time-varying dynamics of the (unobservable) conditional VaR pro-
cess to the predictive variables, building on the CAViaR model by Engle
and Manganelli (2004). Since the estimation of these models is not triv-
ial, we adopt the “simulated-annealing” optimization algorithm which,
albeit being more computationally intensive, has good properties when
the objective function is highly nonlinear and non-differentiable. The
analysis on the conditional and unconditional coverage of the one-day
VaR forecasts in the standard backtesting analysis (Christoffersen, 1998)
suggests that variables such as the effective and relative bid–ask spreads
have good predictive power to forecast value-at-risk.

The remainder of the chapter is organized as follows. In Section 8.2 we
review the main elements in VaR modeling and describe the most popular
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parametric models, such as those based on the GARCH and EWMA proce-
dures. This methods will be used together with the “quantile-regression
model,” described Section 8.3. Section 8.4 is devoted the empirical
analysis. Finally, Section 8.5 summarizes and concludes.

8.2 Modeling downside risk: Value-at-risk

Banks, credit institutions, brokerage firms, investment funds and even
nonfinancial institutions quantify the risk of the trading positions by
computing the VaR measure; see Jorion (2007) for a monographic on
the topic. The enormous popularity of this statistical measure is due to
its conceptual simplicity. The VaR is an estimation of the percentile of
the probability distribution of the market value change for a portfolio
under normal market conditions. For instance, suppose that an investor
holds a portfolio on stocks for which the VaR for the next day has been
estimated to be one million dollars with 99 percent confidence. This
means that, under normal circumstances, the investor should expect
only a 1 percent chance for his or her portfolio to suffer a daily loss
larger than this amount. More formally, and in general terms, given the
set of information up to time t , say It , we define the h-period-ahead VaR
at the (1 − λ) percent confidence level as (minus) the expected value of
the λ-quantile of the conditional distribution of the returns, namely,

VaRλ,t+h ≡ −{x ∈ R : Pr(rt+h ≤ x|It )= λ
}

= −Qλ(rt+h|It ) (8.1)

where rt denotes the return at time t . As an example, the Basel Committee
suggests the 99 percent confidence level (λ= 0.01) over a 10-day horizon.

Since the VaR statistic has become the predominant measure in down-
side risk, the literature devoted to the topic has suggested a large variety
of procedures for its estimation. A complete review of this literature is
beyond the scope of this chapter. We only discuss briefly the most rel-
evant features in the “VaR–GARCH” and “VaR–RiskMetrics” approaches
in this section, since these shall be used in the empirical section together
with the “CAViaR.”

The distinctive feature of the GARCH and RiskMetrics risk models is
that they impose a parametric structure to model volatility to generate
h-ahead VaR forecasts, given the empirical distribution of standardized
returns or given an explicit assumption that characterizes the conditional
distribution of returns (e.g. normality). The GARCH(1,1) model is the
most popular approach to model volatility parametrically. It is largely
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appreciated due to its enormous computational tractability and impress-
ing forecasting accuracy; see, among others, Hansen and Lunde (2005).
More specifically, the standard GARCH(1,1) model assumes

rt = E
(
rt |It−1

)+ εt ; t = 1, . . . ,T

εt = σtηt , ηt |It−1 ∼ iid N(0,1)

σ2
t = ω+αε2

t−1 +βσ2
t−1, ω > 0,α,β ≥ 0

(8.2)

where E
(
rt |It−1

)
denotes the conditional mean of the (daily) return.

Although financial returns are largely known to be non-normally dis-
tributed both conditionally and unconditionally, it is convenient to
assume conditional normality as this ensures robustness in the parameter
estimation (Bollerslev and Woolridge, 1992) and, hence, consistency in
the one-day-ahead forecast of the conditional volatility process, namely,
σ̂2

T+1|T = ω̂ + α̂ε2
T + β̂σ̂2

T . Given this forecast, the GARCH–VaR fore-
cast at the (1 − λ) percent confidence level can readily be obtained as
VaRλ,T+1 =E

(
rT+1|IT

)+σ̂T+1|T Qλ
(
η̂t
)
, where Qλ

(
η̂t
)

denotes the empir-
ical λ-quantile of the standardized returns, η̂t = εt/σ̂t , with

{
σ̂t
}

being
the GARCH in-sample estimates of the volatility process. Note that, by
considering the empirical distribution of the standardized returns, we
have avoided imposing an a priori belief on the conditional distribution
of the returns.

Alternatively, the RiskMetrics approach popularized the “exponential
weighting moving average” (EWMA) scheme to estimate the volatility
process, setting σ2

t = δσ2
t−1 + (1−δ)r2

t−1, where the smoothing parameter
0 < δ < 1 is usually set equal to 0.95 for data recorded on a daily basis.
RiskMetrics assumes conditional normality, so the one-day EWMA–VaR
forecast is E

(
rT+1|IT

)−1.96σ̂T+1|T for the 5 percent quantile. Neverthe-
less, in order to ensure robustness against departures from normality,
we shall compute the empirical conditional quantile of the return as in
the GARCH model, considering Qλ

(
η̃t
)
from the standardized returns,

η̃t = εt/σ̃t , given the EWMA volatility estimates, σ̃t .
Finally, following standard practices, we shall consider the VaR analysis

on the demeaned returns after fitting a simple AR(1) model intended to
filter out any predictable component in the mean.

8.3 Modeling VaR: The CAViaR approach

The unconditional λ-quantile of the return time series is the value
Qλ(rt ) for which Pr

(
rt ≤ Qλ(rt )

)= λ. This can be estimated directly from
the returns’ time series as the corresponding empirical percentile, but
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the resultant estimation is known to be too inaccurate to be used as
a reliable estimation of the VaR. The conditional λ-quantile of rt is
Pr
(
rt ≤ Qλ,t (rt )|It−1

)= λ, where obviously Qλ,t (rt )≡ −VaRλ,t is the main
statistical object of interest in this chapter. Note that the notation used
in Qλ,t (rt ) emphasizes the conditional nature of the VaR measure.

Following Koenker and Bassett (1978, 1982), the conditional quan-
tile Qλ,t (rt ) could be written as a linear function on a set of explanatory
variables, say Xt , and a K × 1 vector of (unknown) coefficients βλthat
depends on the λ-quantile, namely, Qλ,t

(
rt
)= X′

t−1βλ. This is equivalent
to assume the quantile-regression model rt = X′

t−1βλ + ut ,λ, where the
distribution of the error term on the right-hand side is left unspecified.
More generally, Qλ,t (rt ) could be modeled in terms of a possibly nonlin-
ear function of the information set, namely g(Xt−1;βλ)≡ −VaRλ,t , from
which the relevant parameters can be estimated as:

β̂λ : arg min
βλ∈Rk

 ∑
rt≥g(Xt−1;βλ)

λ|rt − g(Xt−1;βλ)|

+
∑

rt<g(Xt−1;βλ)

(1 −λ)|rt − g(Xt−1;βλ)|
 (8.3)

Engle and Manganelli (2004) proposed this general specification and
derived the statistical properties of the resultant estimates (consistency
and asymptotic normality) under fairly general regularity conditions.
More specifically, they consider a family of models in which the evo-
lution of the quantile over time is seen as a latent autoregressive
process which may depend on predetermined values of observable vari-
ables, leading to the so-called conditional autoregressive value-at-risk
(CAViaR) model. For instance, the so-called symmetric absolute-value
(SAV) CAViaR model specifies:

VaRλ,t = βλ,0 +βλ,1VaRλ,t−1 +β∗
λ,1
∣∣rt−1

∣∣ (8.4)

The autoregressive structure ensures that the conditional quantile
changes smoothly over time, while the additional variables may be
empirically linked by the VaR to observable information. Note that the
SAV model includes lagged values of absolute return, that is, the most
common nonparametric proxy for the unobservable volatility. Taylor
(1999), in a close quantile-regression model, uses the in-sample volatil-
ity estimates from a GARCH(1,1) instead of

∣∣rt−1
∣∣ as the additional

explanatory variable. The empirical analysis in Kuester et al. (2006)
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shows that this simple model has a good performance in relation to more
sophisticated CAViaR-type specifications that involve nonlinear param-
eterizations. Hence, we shall use the SAV model in the current chapter
as a starting point for further specifications. These are discussed below.

8.3.1 Extending the CAViaR model

Several arguments seem to support the suitability of liquidity and
trading-related variables to forecast downside risk-measure VaR. The dis-
cussion, among others, in Bangia et al. (1998) and Jarrow and Protter
(2009), claiming for the relevance of execution and illiquidity costs,
justifies the study on bid–ask spreads and volumes. Also, the literature
related to market information asymmetry provides additional reasons to
consider these variables. Investors must trade in a context of asymmet-
ric information which forces them to make decisions and to reassess the
conditional risk of their portfolios under imperfect information. Dupuy
(2008) argues that, in this context, asset prices may not only discount
risk as measured by the objective probability of occurrence of a bad event,
but also the potential biases related to the estimation of this probabil-
ity under informational asymmetries. If the ambiguity and estimation
risk related to imperfect information and market asymmetries is able to
generate greater downside risk, the quantile-regression analysis would
show a positive relationship between the conditional tail distribution of
returns and those variables that are correlated to (or proxy for) the extent
of information asymmetry. It is widely accepted that bid–ask spreads
include a component that reflects informational asymmetry (e.g. Stoll,
1989), and which are positively correlated to the volatility of returns
(see, among others, the theoretical analysis in Admati and Pfleiderer,
1998; Easley et al., 1997 and the empirical analysis in Bollerslev and
Melvin, 1994) from which bid–ask spreads may be useful in VaR fore-
casting. Similarly, Blume et al. (1994) examined the informational role
of volume-finding positive correlation between price changes and trad-
ing volume (see also Campbell et al., 1993), arguing that large trades or
volume may be originated by asymmetric information due to either dif-
ferential information or differences in opinion. Hence, volume-related
variables may also convey useful information for VaR forecasting.

The estimation of the QR models is far from being trivial. In order
to keep our models as parsimonious as possible, we analyze the effects
of including a single variable in addition to the proxy for volatility. In
particular, we consider the series of models

VaRλ,t = βλ,0 +βλ,1VaRλ,t−1 +β∗
λ,1
∣∣rt−1

∣∣+β∗
λ,2
∣∣log ξt−1

∣∣ (8.5)
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where ξt−1 refers to any of the following specific variables:

Trading-related variables

This category includes trading volume measured in thousands of shares
(V); number of trades (NTrades); number of sell trades (NS); number of
shares sold in thousands (NSS); and traded volume in dollars (TVD).

Liquidity variables

This category includes quoted spread (QS); effective spread (ES); relative
quoted spread (RQS); and relative effective spread (RES).

Additionally, we considered other alternative variables which did not
yield qualitative changes. For instance, including the unexpected vol-
ume (measured as the residuals from an AR(1) model) instead of (the
logarithm of) volume did not produce major qualitative changes in the
out-of-sample analysis. Additional results are available from the authors
upon request.

8.4 Empirical analysis

8.4.1 Data and methodology

We use continuously compounded daily returns from the volume-
weighted portfolio in the US market over the period January 4, 1988 to
December 31, 2002, totaling 3782 observations. Transactions are aver-
aged over the day to obtain daily liquidity measures; see Chordia et al.
(2001).1 Table 8.1 shows some descriptive information on the return (in
levels) and the explanatory variables (in logarithms) used in the anal-
ysis. Returns exhibit the stylized features (large excess of kurtosis, mild
degree of skewness and autocorrelation), whereas the most salient feature
of the predictors is the strong degree of persistence as measured by the
first-order autocorrelation. Note that all the predictors are either strictly
positive or strictly negative, as indicated by the maximum–minimum
range. The cross-correlation between the predictive variables and the
absolute value of the return (not reported here due to space restric-
tions) ranges from 25 percent (RQS) to 40 percent (NSS). All variables
are positively correlated.

Following Alexander and Sheedy (2008), we consider a rolling window
with the last 2700 observations in the sample to forecast one-day-ahead
VaR at the {1 percent, 2.5 percent, 5 percent, 7.5 percent} quantiles.
Parameters, volatility and quantiles are re-estimated yielding over a
thousand out-of-sample VaR forecasts from (1) the GARCH–VaR and
EWMA–VaR models described in Section 8.2, (2) the benchmark SAV
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Table 8.1 Descriptive statistics of the variables involved in the analysis

Variable Mean Median Mode Max. Min. Var. Kurtosis Skewness Corr.(1)

Return 0.00 0.01 −6.68 5.54 −6.68 0.98 7.78 −0.20 −0.06
V 7.39 7.21 6.39 9.69 5.51 0.73 1.86 0.36 0.96
NTRADES 6.85 6.69 5.81 8.76 5.06 0.65 1.64 0.30 0.98
NS 6.09 5.94 5.04 8.02 4.24 0.65 1.67 0.29 0.98
NSS 6.51 6.33 5.10 8.80 4.50 0.73 1.86 0.35 0.96
TVD 11.10 11.04 9.13 13.00 9.13 0.76 1.66 0.17 0.96
QS −1.89 −1.74 −1.59 −1.23 −3.38 0.21 4.79 −1.64 0.99
ES −2.29 −2.11 −2.13 −1.52 −3.75 0.20 4.48 −1.53 0.99
RQS −5.39 −5.39 −5.31 −4.82 −6.86 0.20 3.23 −1.02 0.99
RES −5.96 −5.76 −5.70 −5.17 −7.24 0.20 3.08 −0.96 0.99

Note: See end of Section 8.2 for a description of these. The column Corr(1) shows the first-order
autocorrelation.
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Figure 8.1 Returns of the market portfolio

CAViaR model specified in equation (8.4), and (3) the one-variable
extended CAViaR models in (8.5) for any of the variables considered
in the analysis. The behavior of the market return in the in- and
out-of-sample periods is exhibited in Figure 8.1.

Daily returns are previously demeaned to estimate models by using
a simply AR(1) filter; see Hansen and Lunde (2005). The VaR–GARCH
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model can be estimated by optimizing the “Gaussian maximum like-
lihood” and does not pose any computational problem. By contrast,
the estimation of the CAViaR and the extended CAViaR models are far
from being trivial because of the computational complexity of the objec-
tive function. This prompted us to use the simulated-annealing (SA)
optimization algorithm (see Goffe et al., 1994) as an alternative to the
estimation process employed in Engle and Manganelli (2004).

The SA is a local random-search search algorithm which exploits the
analogy between the way a metal cools and freezes to obtain a minimum-
energy crystalline structure (annealing process) and the search for a
minimum in real-valued problems. The main characteristic of this algo-
rithm is that it randomly generates new solutions at any iteration. The
search process can accept values that increase the objective function
(rather than lower it) with a probability that decreases as the number
of iterations increases. The main purpose of this routine is to pre-
vent the search process from becoming trapped in local optima, which
additionally provides low sensitivity to the choice of the initial values.
Furthermore, because the SA algorithm does not require or deduce deriva-
tive information, it avoids the computation problems that may arise
with non-differentiable functions. When implementing SA in our empir-
ical analysis, we adopted the strategy of repeating the whole random
search process 1000 times more to minimize the possibility of getting
convergence to a non-global optimum. The optimization routine in
the rolling-window approach was initiated at the solution found in the
previous optimization.2

8.4.2 Out-of-sample analysis: Mean out-of-sample estimates

First, we discuss the parameter estimates for the simple SAV–CAViaR
model. Table 8.2 reports the average values of the parameter estimates
over the out-of-sample period. Loosely speaking, the results are consis-
tent with the empirical findings in previous chapters, showing a strongly

Table 8.2 Mean estimates over the out-of-sample period of
symmetric absolute-value CAViaR model in equation (8.4)

Model 100λ (%) β̂λ,0 β̂λ,1 β̂
∗
λ,1

SAV CAViaR 7.5 0.004 0.966 0.055
5.0 0.007 0.971 0.051
2.5 0.022 0.956 0.086
1.0 0.142 0.842 0.345
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persistent VaR process (the slope coefficient βλ,1 ranges from 0.84 to
0.97), and the positive effect of volatility, as captured by the param-
eter β∗

λ,1; see Table 8.2. Not surprisingly, the conditional dynamics of
the VaR are less persistent and more influenced by the volatility of the
observations when the size of λ decreases: extreme movements are less
predictable and driven by the excess of volatility caused by observations
that behave statistically as additive outliers.

The analysis on the mean estimates for the extended CAViaR mod-
els in (8.5) are reported in Tables 8.3 (volume-related variables) and
8.4 (liquidity variables). The estimated coefficient β̂∗

λ,2 is positive in all
cases, suggesting a positive dependence between VaR and liquidity and
trading-related variables. The inclusion of the additional variables has

Table 8.3 Mean out-of-sample estimates of extended CAViaR models in
equation (8.5)

100λ (%) β̂λ,0 β̂λ,1 β̂
∗
λ,1 β̂

∗
λ,2

Model Models with trading activity

Model A 7.5 −0.047 0.955 0.056 0.009
log(V) 5.0 −0.055 0.960 0.046 0.011

2.5 −0.099 0.934 0.076 0.023
1.0 −0.003 0.822 0.331 0.028

Model B 7.5 −0.047 0.955 0.055 0.010
log(Ntrades) 5.0 −0.034 0.965 0.045 0.008

2.5 −0.052 0.952 0.058 0.015
1.0 0.051 0.784 0.399 0.029

Model C 7.5 −0.041 0.954 0.056 0.010
log(NS) 5.0 −0.037 0.962 0.046 0.010

2.5 −0.079 0.937 0.065 0.025
1.0 −0.060 0.778 0.382 0.056

Model D 7.5 −0.042 0.954 0.056 0.010
log(NSS) 5.0 −0.041 0.963 0.045 0.010

2.5 −0.118 0.920 0.084 0.033
1.0 −0.167 0.775 0.369 0.073

Model E 7.5 −0.074 0.956 0.054 0.008
log(TVD) 5.0 −0.039 0.969 0.044 0.005

2.5 −0.072 0.956 0.058 0.010
1.0 0.059 0.789 0.435 0.015

Note: V denotes Volume; Ntrades is the Number of Trades; NS is Number of Sell Trades; NSS
Number of Shares Sold in Thousands; TVD stands for Trading Volume in Dollars. All variables
are in logarithms.
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Table 8.4 Mean out-of-sample estimates of liquidity-extended CAViaR models in
equation (8.5)

100λ (%) β̂λ,0 β̂λ,1 β̂
∗
λ,1 β̂

∗
λ,2

Model Models with Market Liquidity

Model F 7.5 −0.018 0.956 0.061 0.016
|log(QS)| 5.0 −0.018 0.970 0.046 0.017

2.5 −0.036 0.952 0.068 0.042
1.0 0.044 0.836 0.349 0.065

Model G 7.5 −0.032 0.954 0.062 0.020
|log(ES)| 5.0 −0.032 0.968 0.046 0.021

2.5 −0.044 0.955 0.064 0.036
1.0 0.028 0.844 0.308 0.060

Modelo H 7.5 −0.054 0.959 0.059 0.012
|log(RQS)| 5.0 −0.053 0.971 0.044 0.012

2.5 −0.115 0.960 0.054 0.027
1.0 −0.086 0.851 0.300 0.043

Model I 7.5 −0.088 0.954 0.062 0.017
|log(RES)| 5.0 −0.062 0.971 0.043 0.012

2.5 −0.079 0.963 0.052 0.019
1.0 −0.006 0.838 0.348 0.026

Note: QS denotes Quoted Bid–Ask Spread; ES denotes effective spread; RQS is Relative Quoted
Spread; RES is Relative Effective Spread. All variables are in logarithms and include in absolute
terms in the QR analysis.

large effects on the magnitude of the constant parameter. For most of
the predictors the constant is negative, since both the volatility and the
explanatory variables include nonzero unconditional effects. In contrast,
the inclusion of an additional variable has mild effects on average on the
autoregressive VaR coefficients. The sensitivity to volatility β∗

λ,1 exhibits
a more idiosyncratic behavior as a function of the specific quantile and
the variable involved. Since the main aim of VaR modeling is predictive,
we study whether the inclusion of these variables has a sizeable impact
on the VaR forecasts. Even if the in-sample contribution is moderate,
the inclusion of new variables may lead to large changes in the fore-
cast’s dynamics. This issue is addressed in the next subsection through
“backtesting VaR analysis” (see Jorion, 2007).

8.4.3 Out-of-sample analysis: Backtesting VaR models

Following Christoffersen (1998), we define the “exception variable” (also
called the “hit variable”) for any t = 1, . . . ,N in the out-of-sample space,
and for any of the alternative models considered, as a dummy taking
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value one whenever the actual return exceeds the VaRλ,t threshold and
zero otherwise. The main purpose is to test for the hypothesis of perfect
conditional coverage given by

E
[
Hλ,t |It−1

]= λ (8.6)

which implies that the VaR exceptions will approximately occur with the
correct conditional and unconditional probability. More specifically, we
consider the following sequence of tests:

Unconditional test

The main hypothesis of interest is H0 : E
[
Hλ,t

] = λ. The most basic
assumption is that the risk model provides a correct unconditional cov-
erage. Kupiec (1995) developed a “likelihood ratio” (LR) test defined as:

LRuc = 2(N − Nλ)
[
log

(
1 − Nλ

T

)
− log(1 −λ)

]
+ 2Nλ

[
log

Nλ
N

− logλ
]
∼χ2

(1)

(8.7)

where χ2
(1) stands for a Chi-squared distribution with one degree of free-

dom, Nλ is the number of exceptions, and N is the total number of
out-of-sample observations. Note that Nλ/N is simply the sample mean
of Hλ,t , which should be around λ theoretically.

Independence test

VaR forecasts should not exhibit patches or clusters, because the risk of
bankruptcy is higher in this case. Christoffersen (1998) proposes the anal-
ysis of the first-order serial correlation in the time-series dynamics of Hλ,t
through a binary first-order Markov chain with transition probability
matrix

∏
=
(

1 −π01 π01
1 −π11 π01

)
, πij = Pr(Hλ,t = j|Hλ,t−1 = i) (8.8)

For simplicity of notation, we shall denote Ht = Hλ,t in the sequel, as
the dependence of the hit variable on the quantile is already clear. The
approximate joint likelihood, conditional on the first observation, is

L(�;H2,H3, . . .HT |H1)= (1 −π01)
n00π

n01
01 (1 −π11)

n10π
n11
11 , (8.9)
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where nij represents the number of transitions from state i to state j, that

is, nij =
N∑

t=2
I(Ht = i|Ht−i = j), and the maximum-likelihood estimators

under the alternative hypothesis are π̂01 = n01
n00+n01

and π̂11 = n11
n10+n11

.
Under the null hypothesis of the independence, it follows that

L(π0;H2, . . .HT |H1)= (1 −π01)
n00+n10π

n01+n11
01 , (8.10)

where the parameter π0 can be estimated as π̂0 = Nλ/N, the main value
in the unconditional coverage test. The LR test for independence is then
given by:

LRind = 2
[
LogL(�̂;H2, . . . ,HT |H1)− LogL(π̂0;H2, . . . .,HT |H1)

]
∼ χ2

(1).

(8.11)

Conditional test

Finally, we can devise a joint test for independence and correct coverage,
that is, correct conditional coverage, by combining the previous tests. In
particular,

LRcc = 2
[
LogL(�̂;H2, . . . ,HT |H1)− LogL(λ;H2, . . . ,HT |H1)

]
∼ χ2

(2)

(8.12)

which corresponds to testing that if the sequence of exceptions Ht is
independent, and the probabilities to observe a VaR violation in the
next period given the set of available information corresponds to the
nominal level. Notice that the test is simply LRcc = LRuc +LRind and that
it involves two restrictions, hence the asymptotic convergence to a χ2

(2)
distribution.

8.4.4 Out-of-sample analysis: Main results

Table 8.5 reports the results for the benchmark models (VaR–GARCH,
VaR–EWMA and SA–CAViaR) over the out-of-sample period. The mean
estimates of the GARCH variance dynamics exhibits the usual empiri-
cal features, namely, large persistence and clustering effects, as revealed
by the average estimates of the parameters α̂ = 0.1 and β̂ = 0.896, from
which the dynamics of GARCH–VaR forecasts are persistent as well. The
overall performance of the VaR–GARCH and the SAV–CAViaR models is
very similar in the period analyzed. In general, both models are biased
towards yielding overconservative VaR forecasts and, accordingly, the
empirical percentage of rejections is higher. This result agrees with pre-
vious empirical evidence. The bias is particularly evident as the size of
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Table 8.5 Backtesting VaR analysis for the EWMA, GARCH and SAV–CAViaR
models

Model 100λ (%) Viol. (%) LRUC p-value LRind p-value LRcc p-value MeanFVaR

VaR–EWMA 7.5 8.9 2.677 0.102 0.670 0.413 3.377 0.185 1.904
5.0 5.5 0.511 0.475 0.000 0.986 0.521 0.771 2.240
2.5 1.5 4.777 0.029 0.457 0.499 5.214 0.074 2.977
1.0 0.5 3.094 0.079 0.050 0.823 3.134 0.209 3.945

VaR–GARCH 7.5 11.3 18.220 0.000 0.289 0.591 18.593 0.000 1.758
5.0 7.4 10.634 0.001 0.463 0.496 11.148 0.004 2.031
2.5 2.8 0.356 0.551 0.076 0.784 0.437 0.804 2.683
1.0 0.9 0.105 0.747 0.164 0.686 0.266 0.875 3.569

SAV–CAViaR 7.5 10.1 8.860 0.003 0.465 0.495 8.739 0.013 1.822
5.0 7.4 10.634 0.001 0.507 0.477 11.192 0.004 2.041
2.5 3.2 1.849 0.174 0.000 0.993 1.864 0.394 2.552
1.0 1.3 0.831 0.362 0.316 0.574 1.153 0.562 3.232

Note: The second column shows the estimation of the sample mean of empirical exceptions.
LRUC, LRind and LRcc denote the values of the tests for unconditional coverage, indepen-
dence and conditional coverage, respectively, whereas the columns labeled as p-value show
the p-values of the respective test statistics. Finally, MeanFVaR denotes the mean of the fore-
cast VaR over the out-of-sample period. Bold letters are used to denote statistical rejection at
the 5 percent asymptotic nominal size.

λ tends to increase. As a result, the backtesting analysis strongly rejects
the hypothesis of the perfect unconditional coverage hypothesis for both
models for λ= {5 percent, 7.5 percent} in this sample.

On the other hand, the VaR–EWMA model produces better results,
although it exhibits biases for λ= {1 percent, 2.5 percent} (overestimate
the true VaR) and λ= 7.5 percent (underestimate the true VaR) quantiles.
Overall, none of the risk models analyzed is able to pass the backtesting
analysis convincingly for the set of quantiles considered.

Next, we analyze the results from the extended CAViaR models. These
are shown in Tables 8.6 (volume-related variables) and 8.7 (liquidity vari-
ables). The most remarkable finding is that, whereas the standard CAViaR
model can be largely biased towards underestimating the true value-at-
risk, the inclusion of the volume-related and liquidity variables provides
a suitable correction such that most of the departures from the nominal
level are eliminated, particularly for the variables in the liquidity group.
The improvement in the unconditional properties of the VaR forecast
time series is achieved in all the cases without increasing statistically the
degree of serial dependence. As a result, all the extended CAViaR models
are able to pass the backtesting analysis at any of the usual confidence
levels. Note, for instance, that the p-values of the decisive LRCC test
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Table 8.6 Backtesting VaR analysis for the trading-extended models

Model 100λ (%) Viol. (%) LRUC p-value LRind p-value LRcc p-value MeanFVaR

Models with trading activity
Model A 7.5 8.1 0.507 0.477 0.064 0.801 0.428 0.808 1.952
log(V) 5.0 5.5 0.511 0.475 0.362 0.547 0.883 0.643 2.208

2.5 2.2 0.385 0.535 0.945 0.331 1.324 0.516 2.725
1.0 0.7 1.016 0.314 0.085 0.771 1.094 0.579 3.253

Model B 7.5 8.1 0.507 0.477 0.064 0.801 0.428 0.808 1.947
log(Ntrades) 5.0 6.0 1.984 0.159 0.609 0.435 2.615 0.271 2.158

2.5 2.3 0.169 0.681 1.037 0.309 1.201 0.549 2.677
1.0 0.9 0.105 0.747 0.145 0.703 0.248 0.883 3.274

Model C 7.5 8.2 0.687 0.407 0.033 0.855 0.553 0.759 1.945
log(NS) 5.0 5.5 0.511 0.475 0.362 0.547 0.883 0.643 2.183

2.5 2.0 1.100 0.294 0.776 0.378 1.866 0.393 2.693
1.0 0.6 1.886 0.170 0.060 0.806 1.939 0.379 3.347

Model D 7.5 8.0 0.353 0.552 0.012 0.914 0.247 0.884 1.954
log(NSS) 5.0 5.6 0.731 0.393 0.282 0.595 1.026 0.599 2.207

2.5 1.9 1.608 0.205 0.698 0.404 2.294 0.318 2.743
1.0 0.6 1.886 0.170 0.060 0.806 1.939 0.379 3.459

Model E 7.5 8.3 0.894 0.344 0.013 0.910 0.715 0.699 1.923
log(TVD) 5.0 6.1 2.388 0.122 1.448 0.229 3.859 0.145 2.133

2.5 2.8 0.356 0.551 0.076 0.784 0.437 0.804 2.621
1.0 1.2 0.380 0.538 2.449 0.118 2.833 0.243 3.309

Note: The second column shows the estimation of the sample mean of empirical exceptions.
LRUC, LRind and LRcc denote the values of the tests for unconditional coverage, indepen-
dence and conditional coverage, respectively, whereas the columns labeled as p-value show
the p-values of the respective test statistics. Finally, MeanFVaR denotes the mean of the fore-
cast VaR over the out-of-sample period. Bold letters are used to denote statistical rejection at
the 5 percent asymptotic nominal size.

statistics are well above the conventional statistical significance levels,
particularly for the set of liquidity-extended CAViaR risk models.

As an example, note that the mean value of exception for the CAViaR
model for λ = 7.5 percent is slightly greater than 10 percent, with the
GARCH(1,1) closely matching this value. By sharp contrast, the largest
mean value for the set of variables analyzed is 8.7 percent, with some
variables yielding an even larger bias reduction. For instance, includ-
ing variables such as effective spread (ES), relative effective spread (RES)
or number of shares sold (NSS) leads to an unconditional coverage not
greater than 8 percent. Overall, among all the predictors considered,
the ES and RES variables in the liquidity group seem to provide the best
results in the backtesting analysis.

Finally, Figure 8.2 shows the plots of the one-day forecasts from the
standard CAViaR model and the ES-extended CAViaR model for the
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Table 8.7 Backtesting VaR analysis for the liquidity-extended model

Model 100λ (%) Viol. (%) LRUC p-value LRind p-value LRcc p-value MeanFVaR

Models with market liquidity
Model F 7.5 8.6 0.507 0.477 0.064 0.801 0.428 0.808 1.919
|Log(QS)| 5.0 5.3 0.186 0.666 0.554 0.457 0.746 0.689 2.278

2.5 2.1 0.694 0.405 0.859 0.354 1.544 0.462 2.836
1.0 1.0 0.000 1.000 0.182 0.670 0.182 0.913 3.531

Model G 7.5 8.0 0.353 0.552 0.104 0.748 0.339 0.844 2.000
|Log(ES)| 5.0 5.0 0.000 1.000 0.924 0.336 0.924 0.630 2.320

2.5 2.2 0.385 0.535 0.945 0.331 1.324 0.516 2.849
1.0 0.9 0.105 0.747 0.145 0.703 0.248 0.883 3.446

Model H 7.5 8.6 1.671 0.196 0.095 0.758 1.503 0.472 1.919
|Log(RQS)| 5.0 5.5 0.511 0.475 0.362 0.547 0.883 0.643 2.215

2.5 2.4 0.042 0.838 1.132 0.287 1.171 0.557 2.717
1.0 0.7 1.016 0.314 0.085 0.771 1.094 0.579 3.308

Model I 7.5 7.9 0.227 0.634 0.002 0.968 0.136 0.934 1.969
|Log(RES)| 5.0 5.5 0.511 0.475 0.362 0.547 0.883 0.643 2.222

2.5 2.4 0.042 0.838 1.132 0.287 1.171 0.557 2.669
1.0 1.0 0.000 1.000 0.182 0.670 0.182 0.913 3.305

Note: See Tables 8.5 and 8.6 for details.
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Figure 8.2 Forecasts for the one-day-ahead VaR from the basic SAV and effective
spread-extended CAViaR models
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5 percent quantile. First, we can observe that the forecasts from the
liquidity-extended model tend to be much higher, so the inclusion of
liquidity variables tends to generate large changes in the VaR forecasts.
Second, and more importantly, the differences in the VaR forecast have
the correct sign and, hence, adding liquidity variables reduces signifi-
cantly the excessive number of exceptions in the baseline SAV–CAViaR
model. Similar results arise when analyzing volume-extended models.3

8.5 Conclusion

In this chapter we have analyzed the role played by different variables in
VaR forecasting by using the quantile-regression methodology proposed
by Engle and Manganelli (2004). More specifically, we have analyzed
whether market microstructure and trading-related variables have pre-
dictive power on the tail distribution of returns. The standard backtesting
VaR analysis largely supports the inclusion of these variables. The overall
evidence is robust against the inclusion of different measures of liquidity
and trading activity as well as for the consideration of different values of
the quantile parameter.

Our approach can be related to the so-called liquidity-corrected VaR
(LVAR: see Jarrow and Subramanian, 1997; Jorion, 2007), although
we provide a different perspective to the problem of forecasting VaR.
In particular, while LVAR determines the total VaR as the sum of the
“traditional” VaR (as termed in Jorion, 2007: 354) and an additional com-
ponent related to transaction costs, we use the information conveyed by
bid–ask spreads and other variables to forecast the standard VaR itself.
The fundamental premise, therefore, is that these variables convey useful
information to forecast the tail distribution of conditional returns. The
empirical evidence in this chapter strongly supports this hypothesis.

In this chapter, we have considered the value-at-risk measure as the
most representative case of a downside risk metric used in practice. Nev-
ertheless, several authors have suggested the use of the so-called expected
shortfall (ES), defined as the expected value of the loss of the portfolio
at the (1 − λ) percent confidence level, as a more appropriate measure
of risk; see, for instance, Artzner et al. (1999). Taylor (2008) recently
proposed a novel procedure in which the ES can be computed using
expectiles in a CAViaR-like specification. An interesting question, left
for future research, is whether modeling the ES in terms of liquidity and
environmental variables may outperform the models that solely consider
returns. In view of the empirical evidence discussed in this chapter, this
may likely be the case.

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP08” — 2010/11/25 — 20:13 — PAGE 211 — #18

Value of Liquidity and Trading Activity 211

Notes

1. Market daily data is available from the CRSP database. We thank Prof. Avanid-
har Subrahmanyam for making the remaining data publicly available on his
webpage.

2. Optimization is carried out using Matlab R2008a in a PC with processor Intel
Core 2, 2.40GHz, and 4.00GB RAM.

3. We do not report these results due to space limitations, but they are available
from the authors upon request.
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9
Portfolio Selection with
Time-Varying Value-at-Risk
Erick W. Rengifo and Jeroen V.K. Rombouts

9.1 Introduction

One important venue of portfolio-allocation research started with
Markowitz (1952). According to his model, investors maximize their
expected return given a risk level measured by the variance. Recently,
new risk measures have been proposed with “value-at-risk” (VaR) being
one of them. The VaR is defined as the maximum expected loss on an
investment over a specified horizon given some confidence level (see
Jorion, 1997 for more information).

Campbell et al. (2001) propose a model which allocates financial assets
by maximizing the expected return subject to the constraint that the
expected maximum loss should meet the VaR limits. Their model is
applied in a static context to find optimal weights between stocks and
bonds. In this chapter we propose to generalize the work of Campbell
et al. (2001), “CHK” hereafter, to a flexible forward-looking dynamic
portfolio-selection framework. We propose a dynamic portfolio-selection
model that combines assets in order to maximize the portfolio expected
return subject to a VaR risk constraint, allowing for future investment
recommendations. We determine, from both a statistical and economic
point of view, the best daily investment recommendations in terms of
percentage to borrow or lend and the optimal weights of the assets in a
risky portfolio. For the estimation of the VaR we use ARCH-type mod-
els and we investigate the importance of several parametric innovation
distributions.1

Moreover, following Guermat and Harris (2002) and Jondeau and
Rockinger (2003) and, in order to find more accurate VaR forecasts,
our approach not only considers time variation in the variance but
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also allows for evolution of the skewness and kurtosis of the portfolio
distributions. The latter is performed by estimating the model parame-
ters by “weighted maximum likelihood” (WML) in an increasing-window
setup.

For a data set consisting of two US indices (SP 500 and Russell 2000),
we perform out-of-sample forecasts applying our dynamic portfolio-
selection model to determine the daily optimal portfolio allocations. We
decided to work with two stock indices and not with a bond index in
order to capture the asymmetric dependence documented only for stock
returns as mentioned by Patton (2004). The dynamic model we propose
outperforms the CHK model in terms of failure rates, defined as the num-
ber of times the desired confidence level used for the estimation of the
VaR is violated and in terms of the dynamic quantile test of Engle and
Manganelli (2004) and used to determine the quality of our results. Based
on these statistical criteria, the APARCH model gives as good results as
the GARCH model. However, if we consider not only the failure rates
and the dynamic quantile test but also economic criteria such as the
achieved wealth and the risk-adjusted returns, we find that the APARCH
model outperforms the GARCH model. Finally, a sensitivity analysis of
the distribution innovation shows that the skewed-t is preferred to the
normal and Student-t distributions.

The plan of the chapter is as follows: in Section 9.2 we present the
optimal portfolio selection in a VaR framework. In Section 9.3, we
describe different model specifications for the estimation of the VaR.
Section 9.4 presents two empirical applications using out-of-sample fore-
casts to determine the optimal investment strategies. We compare the
performance of the different models using the failure rates, the dynamic
quantile test, the wealth achieved and the risk-adjusted returns as instru-
ments to determine the best model. Section 9.5 evaluates several related
aspects of the models and Section 9.6 concludes and provides an outlook
for future research.

9.2 Optimal portfolio selection

This section follows Campbell et al. (2001). The portfolio model allo-
cates financial assets by maximizing the expected return subject to a risk
constraint, where risk is measured by “value-at-risk” (VaR). The optimal
portfolio is such that the maximum expected loss should not exceed the
VaR for a chosen investment horizon at a given confidence level. We
consider the possibility of borrowing and lending at the market interest
rate, considered as given.
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Denote by Wt the investor’s wealth at time t, bt the amount of money
that he wants to borrow (bt > 0) or lend (bt < 0) at the risk-free rate rf ,
according to his desired VaR (VaR∗

t ), defined later. Consider n financial
assets with prices at time t given by pi,t , with i = 1, . . . ,n. Define�t ≡[wt ∈
Rn :

n∑
i=1

wi,t = 1] as the set of portfolio weights at time t, with well-defined

expected rates of return, such that xi,t = wi,t (Wt +bt )/pi,t is the number
of shares of asset i at time t. The budget constraint of the investor is
given by:

Wt + bt =
n∑

i=1

xi,t pi,t = x′
t pt . (9.1)

The value of the portfolio at t + 1 is

Wt+1(wt )= (Wt + bt )(1 + Rt+1(wt ))− bt (1 + rf ), (9.2)

where Rt+1(wt ) is the portfolio return at time t +1. The VaR of the port-
folio is defined as the maximum expected loss over a given investment
horizon and for a given confidence level α

Pt [Wt+1(wt )≤ Wt − VaR∗
t ] ≤ 1 −α, (9.3)

where Pt is the probability conditioned on the available information at
time t and VaR∗

t is the cut-off return or the investor’s desired VaR level.
Note that (1 − α) is the probability of occurrence. Equation (9.3) repre-
sents the second constraint that the investor has to take into account.
The portfolio optimization problem can be expressed in terms of the
maximization of the expected returns EtWt+1(wt ), subject to the budget
restriction and the VaR constraint:

w∗
t ≡ argmax

wt

(Wt + bt )(1 + EtRt+1(wt ))− bt (1 + rf ), (9.4)

s.t. (9.1) and (9.3). EtWt+1(wt ) represents the expected return of the
portfolio given the information at time t. The optimization problem
may be rewritten in an unconstrained way. To do so, replacing (9.1) in
(9.2) and taking expectations yields:

EtWt+1(wt )= x′
t pt (EtRt+1(wt )− rf )+ Wt (1 + rf ). (9.5)

Equation (9.5) shows that a risk-averse investor wants to invest a frac-
tion of his wealth in risky assets if the expected return of the portfolio is
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bigger than the risk-free rate. Substituting (9.5) (before taking the Et ) in
(9.3) gives:

Pt [x′
t pt (Rt+1(wt )− rf )+ Wt (1 + rf )≤ Wt − VaR∗

t ] ≤ 1 −α, (9.6)

such that,

Pt

[
Rt+1(wt )≤ rf − VaR∗

t + Wtrf
x′

t pt

]
≤ 1 −α, (9.7)

defines the quantile qt (wt ,α) of the distribution of the return of the port-
folio at a given confidence level α or probability of occurrence of (1−α).
Then, the budget constraint can be expressed as:

x′
t pt = VaR∗

t + Wtrf
rf − qt (wt ,α)

. (9.8)

Finally, substituting (9.8) in (9.5) and dividing by the initial wealth Wt
we obtain:

Et (Wt+1(wt ))

Wt
= VaR∗

t + Wtrf
Wt rf − Wtqt (wt ,α)

Et (Rt+1(wt )− rf )= (1 + rf ) (9.9)

therefore,

w∗
t ≡ argmax

wt

EtRt+1(wt )− rf
Wt rf − Wtqt (wt ,α)

. (9.10)

The two-fund separation theorem applies, that is, the investor’s initial
wealth and desired VaR (VaR∗

t ) do not affect the maximization procedure.
As in traditional portfolio theory, investors first allocate the risky assets
and second the amount of borrowing and lending. The latter reflects by
how much the VaR of the portfolio differs according to the investor’s
degree of risk aversion measured by the selected VaR level. The amount
of money that the investor wants to borrow or lend is found by replacing
(9.1) in (9.8):

bt = VaR∗
t + Wtqt (w∗

t ,α)

rf − qt (w∗
t ,α)

. (9.11)

In order to solve the optimization problem (9.10) over a large invest-
ment horizon T, we partition this in one-period optimizations, that is, if
T equals 30 days, we optimize 30 times one-day periods to achieve the
desired final horizon.
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9.3 Methodology

We observe the following steps in the estimation of the optimal portfolio
allocation and its evaluation:

(1) Portfolio construction
In order to implement the model presented in Section 9.2, we form
univariate time series of portfolios on which we base the rest of the
methodology. In order to do this, we define a grid of weights that

satisfy �t ≡ [wt ∈ Rn :
n∫

i=1
wi,t = 1]. With these weights we construct

different portfolios, one of which should be the optimal one.
(2) Estimation of portfolio returns

A typical model of the portfolio return Rt may be written as follows:

Rt = µt + εt , (9.12)

where µt is the conditional mean and εt an error term. In the
empirical application we forecast the expected return by the uncon-
ditional mean using observations until day t −1. We also modeled the
expected return by autoregressive processes, but the results were not
satisfactory, neither in terms of failure rates nor in terms of wealth
evolution. These results are not new, as mentioned for example by
Merton (1980) and Fleming et al. (2001), forecasting returns is more
difficult than forecasting of variances and covariances.

(3) Estimation of the conditional variance
The error term εt in equation (9.12) can be decomposed as σt zt
where (zt ) is an i.i.d. innovation with mean zero and variance
1. We distinguish three different specifications for the conditional
variance σ2

t :

• The CHK model, similar to the model presented in Section 9.2,
where σ2

t is estimated as the empirical variance using data until
t −1. In fact, this can be interpreted as a straightforward dynamic
extension of the application presented in Campbell et al. (2001).

• The GARCH(1,1) model of Bollerslev (1986), where

σ2
t = ω+αε2

t−1 +βσ2
t−1.

• The APARCH(1,1) model of Ding et al. (1993), where

σδt = ω+α1(|εt−1|−αnεt−1)
δ +β1σ

δ
t−1.
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with ω, α1, αn, β1 and δ parameters to be estimated. The parameter
δ (δ >0) is the Box–Cox transformation of σt . The parameter αn (−1<
αn < 1), reflects the leverage effect such that a positive (negative)
value means that the past negative (positive) shocks have a deeper
impact on current conditional volatility than the past positive shocks
of the same magnitude. Note that if δ = 2 and αn = 0 we get the
GARCH(1,1) model.
With respect to the innovation distribution, several parametric alter-
natives are available in the literature. In the empirical application,
see Section 9.4, we consider the normal, Student-t and skewed-t dis-
tributions. The skewed-t distribution was proposed by Hansen (1994)
and reparameterized in terms of the mean and the variance by Lam-
bert and Laurent (2001) in such a way that the innovation process
has zero mean and unit variance. The skewed-t distribution depends
on two parameters, one for the thickness of tails (degrees of freedom)
and the other for the skewness.

Following Mittnik and Paolella (2000) the parameters of the mod-
els are estimated by “weighted maximum likelihood” (WML). We
use weights which multiply the log-likelihood contributions of the
returns in period t, t = 1, . . . ,T . This allows us to give more weight
to recent data in order to obtain parameter estimates that reflect the
“current” value of the “true” parameter. The weights are defined by:

ωt = ρT−t . (9.13)

If ρ < 1, more weight is given to recent observations than those
far in the past. The case ρ = 1 corresponds to the usual maximum
likelihood estimation. The decay factor ρ is obtained by minimizing
the failure rate (defined later in this section) for a given confidence
level. Figure 9.1 illustrates the failure rate-ρ relationship for portfo-
lios made of Russell 2000 and S&P 500 indices for an investor using
VaR at the 90 percent level. The model used is the GARCH(1,1) with
normal innovation distribution. The optimal ρ that minimizes the
failure rate is equal to 0.994. We find similar results for other cases.
Moreover, the value of the optimal ρ is robust to different innovation
distributions. We use WML in an increasing-window set-up, that is,
the number of observations of the sample increases through time in
order to consider the new information available. The improvement
found, in terms of better approximation to the desired confidence
levels, by using WML in an increasing-window setup instead of ML
is of the order of 10 percent. See also Section 9.5 for more details.
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Figure 9.1 Failure rates–ρ relationship
Note: Failure rates (vertical axis) obtained with different ρ-values (horizontal axis)
using the geometric weighting scheme for a 1000 out-of-sample period. Portfolios
made of Russell 2000 and SP 500 indices for an investor’s desired VaR confidence
level of α = 90 percent. The model used is the GARCH with normal innovation
distribution. Out-of-sample period from January 2, 2004 until December 20, 2007
(1000 days).

By using WML in an increasing-window setup, q1−α in (9.14) takes
into account the time evolution of the degrees of freedom and asym-
metry parameters when we use the skewed-t distribution. We do not
specify an autoregressive structure for the degrees of freedom and
for the asymmetry parameter as in Jondeau and Rockinger (2003),
since they find that this approach is subject to serious numerical
instabilities.

(4) Estimation of the VaR
The VaR is a quantile of the distribution of the return of a portfolio
(see equations [9.3] and [9.7]). In an unconditional setup the VaR of
a portfolio may be estimated by the quantile of the empirical distri-
bution at a given confidence level α. In parametric models, such as
the ones that we use, the quantiles are functions of the variance of
the portfolio return Rt . The VaRt ,α (VaR for time t at the confidence
level α) is calculated as:

VaRt ,α = µ̂t + σ̂t q1−α , (9.14)
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where µ̂t and σ̂t are the forecasted conditional mean and variance
using data until t − 1 and q1−α is the (1 − α)-th quantile of the
innovation distribution.

(5) Determine the optimal risky-portfolio allocation
Once we have determined the VaR for each of the risky portfolios,
we use equation (9.10) to find the optimal portfolio weights. These
weights correspond to the portfolio that maximizes the expected
returns subject to the VaR constraint.

(6) Determine the optimal amount to borrow or lend
As shown in Section 9.2, the two-fund separation theorem applies.
Then, in order to determine the amount of money to borrow or lend
we simply use equation (9.11).

(7) Evaluate the models
A criterion to evaluate the models is the failure rate:

f = 1
n

T∑
t=T−n+1

1[Rt <−VaRt−1,a], (9.15)

where n is the number of out-of-sample days, T is the total number
of observations, Rt is the observed return at day t, VaRt−1,α is the
threshold value determined at time t−1 and 1 is the indicator func-
tion. A model is correctly specified if the observed return is bigger
than the threshold values in 100α per cent of the forecasts. One can
perform a likelihood ratio test to compare the failure rate with the
desired VaR level, as proposed by Kupiec (1995). We will call this test
the Kupiec–LR test in the rest of the chapter.

Another statistical test that we use is the dynamic-quantile test
proposed by Engle and Manganelli (2004). According to this test and
in order to determine the quality of the results, a property that a
VaR measure should have besides respecting the level is that the VaR
violations (“hits”) should not be serially correlated. This can be tested
by defining the following sequence:

ht = 1[Rt <−VaRt ,α]−α, (9.16)

where the expected value of this sequence is zero. The dynamic-
quantile test is computed as an F-test under the null hypothesis that
all coefficients, including the intercept, are zero in a regression of the
variable ht on its own past, on current VaR and on any other regres-
sors. In our case, we perform the test using the current VaR and 5 lags
of the VaR violations as explanatory variables.
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We also evaluate the models by analyzing the wealth evolution gener-
ated by the application of the portfolio recommendations of the different
models. With this economic criterion, the best model will be the one that
reports the highest wealth for similar risk levels. Finally, we evaluate the
models by comparing the risk-adjusted returns using equation (9.10),
where the expected return is changed by the realized return. With this
test we can compare the risk premium adjusted by the risk, measured by
the VaR.

9.4 Empirical application

We develop an application of the model presented in the previous
sections. We construct 1000 daily out-of-sample portfolio allocations
based on conditional variance forecasts of GARCH and APARCH mod-
els and compare the results with the ones obtained with the static CHK
model. The parameters are estimated using WML in a rolling-window
setup. We use the normal, Student-t and skewed-t distributions in order
to investigate the importance of the choice of several innovation den-
sities for different confidence levels. Each of the three models can be
combined with the three innovation distributions resulting in nine dif-
ferent specifications. In the applications, we consider an agent’s problem
of allocating his wealth (set to 1000 US dollars) among two different
US indices, Russell 2000 and S&P 500. For the risk-free rate we use the
one-year Treasury bill rate in January 2004 (approximately 4.47 percent
annual). We have considered only the trading days in which both indices
were traded. We define the daily returns as log price differences from the
adjusted closing-price series.

To construct the portfolios, according to the first step of Section 9.3,
we use a grid of weights of 0.01. Finally, for all the cases the investor’s
desired VaR∗

t is set to 1 percent of his cumulated wealth at time t − 1.
This assumption makes sense, since we are assuming that the investor is
following his investments day-by-day.

With the information until time t , the models’ one-day-ahead forecast
present the percentage of the cumulated wealth that should be borrowed
(bt > 0) or lent (bt < 0) according to the agent’s risk aversion expressed
by his confidence level α, and the percentage that should be invested in
the risky portfolio made of the two indices. The models give the optimal
weights of each of the indices in the optimal risky portfolio. We use the
real returns obtained with the investment recommendations of the pre-
vious day and determine the agent’s wealth evolution according to each
model’s suggestions. Since the parameters of the GARCH and APARCH
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models change slowly from one day to another, these parameters are rees-
timated every 10 days to take into account the expanding information
and to keep the computation time low. We also reestimate the parameters
daily, every 5, 15 and 20 days (results not shown). We find similar results
in terms of the parameter estimates. However, in the case of daily and
5-day reestimation, the computational time was about 10-times bigger.

For the estimation of the models we use a Pentium Xeon 2.6 Ghz.
The time required for the GARCH and APARCH models is 90 and 120
minutes on average, respectively. Estimating the models with a fixed
window requires 60 and 90 minutes on average to run the GARCH and
APARCH models, respectively.

In the next section we present the statistical characteristics of the data.
Due to space limitations, we introduce two specific examples to show
how the models work. Finally, we present the key results for all the mod-
els in terms of failure rates, the dynamic-quantile test, the total achieved
wealth and the risk-adjusted returns and stress the models’ differences.

9.4.1 Description of the data

We use daily data of the S&P 500 composite index (large stocks) and the
Russell 2000 index (small stocks). The sample period goes from January 2,
1990 to December 20, 2007 (4531 observations). Descriptive statistics are
given in the upper panel of Table 9.1. We see that for all indices skewness
and excess kurtosis is present and that the means and standard deviations
are similar.

Note that our one-day-ahead forecast horizon corresponds to approx-
imately four years (1000 days). During this period we observe mainly a
bull market, except for the last part of 2007, when the indices start a
sharp fall. The lower panel of Table 9.1 presents the descriptive statistics
corresponding to the out-of-sample period. Note that the volatility in
this period for Russell 2000 is higher than the previous one.

9.4.2 A general view of the daily recommendations

We present two examples of model configurations to illustrate our main
results. First, we explain the investment decisions based on the CHK
model using the normal distribution for portfolios made of Russell
2000–SP 500. The agent’s desired VaR confidence level is α = 90 percent,
that is, a less risk-averse investor. Figure 9.2(a) shows the evolution of the
percentage of the total wealth to be borrowed (bt > 0) or lent (bt < 0).
In this case the model suggests until day 829 to borrow at the risk-free
rate and to invest everything in the risky portfolio. However, after that
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Table 9.1 Descriptive statistics

02/01/1990–20/12/2007
N = 4531

SP 500 Russell 2000

Mean 0.036 0.039
Standard deviation 0.995 1.079
Skewness −0.039 −0.244
Kurtosis 3.694 2.663
Minimum −6.866 −7.256
Maximum 5.733 5.842

02/01/2004–20/12/2007
N = 1000

SP 500 Russell 2000

Mean 0.030 0.039
Standard deviation 0.759 1.313
Skewness −0.272 −0.142
Kurtosis 1.806 0.445
Minimum −3.473 −3.966
Maximum 2.921 3.973

Note: Descriptive statistics for the daily returns of the correspond-
ing indices. The mean, the standard deviation, the minimum and
maximum values are expressed in percent.

day the model recommendation is to change from borrowing to lend-
ing. This is a natural response to the negative change in the trend of the
indices and to the higher volatility observed in the stock market during
the last days of the out-of-sample period (the subprime problem starts
to appear in the US market). Figure 9.2(b) presents the evolution of the
share of the risky portfolio to be invested in the Russell 2000 index. The
model suggests for 807 days investing 70 percent of the wealth (on aver-
age) in the Russell 2000 index and the difference in the SP 500 index.
After that day, the model recommendations change drastically favoring
the investment in SP 500, which increases its portfolio weights to 66 per-
cent, that is, going from 30 percent to almost 50 percent at the end of
the out-of-sample period. Again, this responds to the higher volatility of
the Russell 2000 compared with the SP 500 during the last days of our
out-of-sample period. In summary, the model recommends shifting from
the more risky index to the less risky one and from the risky portfolio to
the risk-free investment.

 
Greg N. Gregoriou and Razvan Pascalau



GREGORIOU-2: “CHAP09” — 2010/11/22 — 17:40 — PAGE 224 — #12

224 Erick W. Rengifo and Jeroen V.K. Rombouts

0 100 200 300 400 500 600 700 800 900 1000

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

(a) Risk-free weights for portfolios made of Russell 2000 and SP 500 indices for an
investor’s desired VaR confidence level of α = 90 percent
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(b) Risky weights of Russell 2000 for an investor’s desired VaR confidence level of
α = 90 percent

Figure 9.2 Weights using CHK model with normal distribution: Out-of-sample
period from January 2, 2004 until December 31, 2007 (1000 days).

Figure 9.3 compares the wealth evolution obtained by applying the
CHK model suggestions with investments made in either one or the
other index. The wealth evolution is higher than the one that could
be obtained by investing only in Russell 2000 but lower if investing only
in SP 500 during the out-of-sample forecast period. We also include the
wealth evolution that an agent can realize when investing everything
at the risk-free rate (assumed as constant during the whole forecasted
period). More details can be found in Section 9.4.3.
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Figure 9.3 Wealth evolution using CHK model
Note: Portfolios made of Russell 2000 and SP 500 indices for an investor’s desired
VaR confidence level of α = 90 percent. Wealth evolution for 1000 out-of-sample
forecast using the model recommendations (Model) compared with the wealth
evolution obtained by investments made on Russell 2000 or SP 500 alone and
with investments done at the risk-free rate. Out-of-sample period from 02/01/2004
until 20/12/2007.

The previous illustration shows how the model recommendations
change according to new information coming to the market, allowing
the agent to maximize expected return subject to budget and risk con-
straints in a dynamic way. The next section presents more synthetically
the comparison of all models for different distributional assumptions
and different confidence levels.

9.4.3 Results

This section presents concisely the results of all the model configurations
we used. We compare the three different models explained in Section 9.3:
the CHK model in which the variance is estimated simply from the
observed past returns and the parametric dynamic model in which the
conditional variance is estimated using either the GARCH or the APARCH
model. Moreover, we investigate three different distributional assump-
tions: the normal, the Student-t and the skewed-t. We consider three
VaR confidence levels: 90 percent, 95 percent and 99 percent, corre-
sponding to increasing risk aversion and show how these levels affect
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the results. The parameters are estimated using WML in a rolling-window
setup.

From the optimization procedure presented in Section 9.2, see
equation (9.10), we determine the weights of the risky portfolio and,
considering the agent’s desired risk expressed by the desired VaR (VaR∗

t ),
the amount to borrow or lend; see equation (9.11). With this informa-
tion at time t the investment strategy for day t + 1 is set: percentage
of wealth to borrow or lend and percentage to be invested in the risky
portfolio. In order to evaluate the models we consider the wealth evolu-
tion of the initial invested amount, the risk-adjusted returns, the failure
rate of the returns obtained by applying the strategies with respect to
the desired VaR level and the dynamic-quantile test. A model is good
when the wealth and adjusted return are high, when the failure rate is
respected and when the VaR violations are not serially correlated.

We expect that the forecasted VaRs by the different models be less than
or equal to the threshold values. We present the Kupiec–LR test for the
portfolios made of Russell 2000–SP 500 (Table 9.2), for the probabilities of

Table 9.2 Results for portfolios made of Russell 2000 – SP 500

Normal Student-t Skewed-t

1−α Model FR p r FR p r FR p r

0.10 CHK 0.177 0.000 6.9 0.200 0.000 6.8 0.188 0.000 6.8
GARCH 0.114 0.148 7.9 0.130 0.002 7.8 0.117 0.080 7.7
APARCH 0.126 0.008 12.2 0.129 0.003 13.0 0.118 0.064 9.5

0.05 CHK 0.127 0.000 6.7 0.135 0.000 6.8 0.120 0.000 6.7
GARCH 0.071 0.004 7.3 0.074 0.001 7.3 0.060 0.159 7.1
APARCH 0.083 0.000 10.6 0.081 0.000 11.0 0.062 0.093 8.2

0.01 CHK 0.068 0.000 6.3 0.048 0.000 6.2 0.032 0.000 6.0
GARCH 0.029 0.000 6.6 0.021 0.002 6.7 0.011 0.754 6.4
APARCH 0.030 0.000 8.9 0.027 0.000 8.5 0.012 0.538 7.0

Notes: FR are the empirical tail probabilities for the out-of-sample forecast for portfolios made
of linear combinations of Russell 2000 and SP 500 indices. The Kupiec–LR test is used to
determine the specification of the models. The null hypothesis is that the model is correctly
specified, that is, that the failure rate is equal to the probability of occurrence 1 − α. p is
the p-value for this test. r is the annualized rate of return in (%). Bold numbers refer to the
results that do not satisfy the dynamic-quantile test at the 5 percent confidence level, in
terms of their p-values of the F-test under the null hypothesis that all coefficients, including
the intercept, are zero in a regression of the variable ht on its own past and on current VaR.
The risk-free interest rate is 4.47 percent annual. The results are obtained using WML with
ρ = 0.994.
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occurrence of 1−α = 10 percent (upper panel), 5 percent (middle panel)
and 1 percent (lower panel). Several failure rates are significantly differ-
ent from their nominal levels when we do out-of-sample forecasts. For
in-sample forecasts (results not presented) we found p-values as high as
those presented by Giot and Laurent (2004), for example. This is under-
standable since the information set, on which we condition, contains
only past observations so that the failure rates tend to be significantly
different from their nominal levels. However, these failure rates are not
completely out of scope of the desired confidence level (see, for example,
Mittnik and Paolella, 2000 for similar results).

Moreover, we estimate the dynamic-quantile test proposed by Engle
and Manganelli (2004) in order to determine the quality of our results.
With this test, we evaluate the property that any VaR measure should
have besides respecting the level: the VaR violations (ht ) should not be
serially correlated. We perform the test using the current VaR and 5 lags
of the VaR violations as explanatory variables. The results (shown in
the tables) suggest that most of the static results present serially corre-
lated VaR violations. The GARCH outputs present mixed results, and for
almost all the results of the APARCH model this test is satisfied, meaning
that in this case the VaR violations are not serially correlated.

Table 9.2 presents the failure rates, the p-values for the Kupiec–LR ratio
test and the annualized rate of returns for portfolios made of Russell 2000
and SP 500. In general, we observe that the dynamic model performs
considerably better than its CHK counterpart for any VaR confidence
level α. In terms of the distributional assumption we see that in the
case of the probability of occurrence of 1 − α = 10 percent the normal
distribution performs better than the Student-t even for low degrees of
freedom (7 on average). This happens because the two densities cross
each other at more or less that confidence level. See Guermat and Harris
(2002) for similar results. Looking at lower probabilities of occurrence
(higher confidence levels), one remarks that the skewed-t distribution
performs better than the other two distributions. This is due to the fact
that the skewed-t distribution allows not only for fatter tails but it can
also capture the asymmetry present in the long and short sides of the
market. This result is consistent with the findings of Mittnik and Paolella
(2000), Giot and Laurent (2003) and Giot and Laurent (2004), who used
single indices, stocks, exchange rates or a portfolio with unique weights.

With respect to the conditional variance models, we observe that for
all the confidence levels, the APARCH model performs almost as good as
the GARCH model. However, considering that an agent wants to max-
imize his expected return subject to a risk constraint, we look for good
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results for portfolio optimization (in terms of the final wealth achieved,
presented in Table 9.2 in terms of the annualized returns), respecting the
desired VaR confidence level (measured by the failure rate). We can appre-
ciate the following facts: first, the annualized rate of return obtained by
the static model is not only lower than those attained by the dynamic
models but also, as pointed out before, has a higher risk. Second, even
though we cannot select a best model between the APARCH and GARCH
models in terms of failure rates, we can see that for almost the same level
of risk the APARCH model investment recommendations allow the agent
to get the highest annualized rate of return. Therefore, we infer that the
APARCH model outperforms the GARCH model. Thus, if an investor is
less risk averse (1 −α = 10 percent) he could have earned an annualized
rate of return of 9.5 percent, two times bigger than simple investing at
the risk-free rate.

Finally, we compute the evolution of the risk-adjusted returns. On
average, 90 percent of the time the risk-adjusted returns obtained by
the APARCH model outperform the ones obtained using the GARCH
model. With this test, we can confirm that indeed the APARCH model
outperforms the GARCH model.

9.5 Evaluation

9.5.1 Risk-free interest rate sensitivity

We have used as a risk-free interest rate the one-year Treasury bill rate
in January 2004 (approximately 4.47 percent annual) as an approxima-
tion for the average risk-free rate during the whole out-of-sample period
(January 2004 to December 2007). In order to analyze the sensitivity
of our results to changes of the risk-free rate, we develop four scenar-
ios based on increments (+1 percent and +4 percent) or decrements
(−1 percent and −4 percent) with respect to the benchmark.

The results show that neither the borrowing/lending nor the risky port-
folio weights are strongly affected by either of these scenarios. This is due
to the fact that we are working with daily optimizations, and that those
interest rates (at a daily frequency) are low. For example, 4.47 percent
annual equals 0.01749 percent daily (based on 250 days).

9.5.2 Time-varying Kurtosis and asymmetry

As in Guermat and Harris (2002), our framework allows for time-varying
degrees of freedom parameters, related to the kurtosis, when working
with either the Student-t or the skewed-t distributions. Moreover, when
the skewed-t distribution is used we allow for time-varying asymmetry
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parameters. Figure 9.4 presents the pattern of the degrees of freedom and
asymmetry parameter of the skewed-t distribution estimated using the
APARCH model. Similar to Jondeau and Rockinger (2003), we find time
dependence of the asymmetry parameter but we also remark that the
degrees of freedom parameter is time varying.

We also test the significance of the asymmetry parameter and of the
asymmetry and degrees of freedom parameters, for the Student-t and
skewed-t , respectively. We find that they are highly significant.

9.5.3 Weighted maximum likelihood vs. maximum likelihood

We study the effect of using weighted maximum likelihood (WML)
instead of maximum likelihood (ML). Note that when ρ = 1 WML is
equal to ML. Table 9.3 presents a comparison of failure rates for portfo-
lios made of Russell 2000–SP 500. Both dynamic models improve their
failure rates by using WML in a rolling-window setup instead of ML. In
terms of the p-values (not presented) it turns out that when ML is used
almost none of the failure rates were significant at any level. Thus, using
WML helps to satisfy the investor’s desired level of risk.

9.5.4 Rolling window of fixed size

We analyze the effect of using a rolling window of fixed size. The idea
behind this procedure is that we assume that information until n days in
the past conveys some useful information for the prices, meanwhile the
rest of the information does not. We use a rolling window of fixed size
of n = 1000 days for performing the out-of-sample forecasts. The results
presented in Table 9.4 show that the gains in better model specification
are nil: the failure rates are worse and the final wealth achieved is almost
the same. The computational time decreases (about 30 percent less).

9.5.5 VaR subadditivity problem

According to Artzner et al. (1999), Frey and McNeil (2002) and Szegö
(2002), a coherent risk measure satisfies the following axioms: translation
invariance, subadditivity, positive homogeneity and monotonicity. They
show that VaR satisfies all but one of the requirements to be considered as
a coherent risk measure: the subadditivity property. Subadditivity means
that “a merger does not create extra risk,” that is, that diversification
must reduce risk. Moreover, the VaR is not convex with respect to port-
folio rebalancing no matter what the assumption made on the return
distribution. Following Consigli (2002), we do not discuss the limits
of the VaR and instead we try to generate more accurate VaR estimates
considering the asymmetry and kurtosis of the financial data.
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Figure 9.4 Time-varying degrees of freedom and asymmetry parameters
(a) Degrees of freedom
(b) Asymmetry parameter
Note: Time-varying degrees of freedom and asymmetry for the skewed-t inno-
vation distribution estimated using the APARCH model. The parameters are
estimated every 10 days during the out-of-sample forecast. The figure corresponds
to a portfolio made only of RUSSELL 2000.
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Table 9.3 Comparison of failure rates

Normal Student-t Skewed-t

1−α Model ML WML ML WML ML WML

0.10 CHK 0.177 0.177 0.200 0.200 0.188 0.188
GARCH 0.128 0.114 0.153 0.130 0.139 0.117
APARCH 0.132 0.126 0.149 0.129 0.126 0.118

0.05 CHK 0.127 0.127 0.135 0.135 0.120 0.120
GARCH 0.085 0.071 0.094 0.074 0.069 0.060
APARCH 0.085 0.083 0.086 0.081 0.068 0.062

0.01 CHK 0.068 0.068 0.048 0.048 0.032 0.032
GARCH 0.037 0.029 0.026 0.021 0.011 0.011
APARCH 0.040 0.030 0.030 0.027 0.014 0.012

Note: Comparison of empirical tail probabilities for the out-of-sample forecast for portfolios
made of linear combinations of Russell 2000 and SP 500 using the ML procedure (ρ = 1) with
WML with ρ = 0.994.

Table 9.4 Results for portfolios made of Russell 2000 – SP 500, using ML with
rolling window of fixed size

Normal Student-t Skewed-t

1−α Model FR p r FR p r FR p r

0.10 CHK 0.177 0.000 6.9 0.200 0.000 6.8 0.188 0.000 6.8
GARCH 0.133 0.001 7.0 0.148 0.000 6.4 0.129 0.003 6.8
APARCH 0.141 0.000 13.6 0.145 0.000 14.3 0.130 0.002 9.9

0.05 CHK 0.127 0.000 6.7 0.135 0.000 6.8 0.120 0.000 6.7
GARCH 0.081 0.000 6.6 0.088 0.000 6.5 0.069 0.009 6.5
APARCH 0.085 0.000 12.1 0.087 0.000 11.8 0.067 0.019 8.6

0.01 CHK 0.068 0.000 6.3 0.048 0.000 6.2 0.032 0.000 6.0
GARCH 0.039 0.000 6.2 0.028 0.000 5.9 0.012 0.538 5.7
APARCH 0.045 0.000 10.0 0.031 0.000 9.5 0.016 0.079 7.5

Notes: FR are the empirical tail probabilities for the out-of-sample forecast for portfolios made
of linear combinations of Russell 2000 and SP 500 using a rolling window of fixed size of
1000 days. The Kupiec–LR test is used to determine the specification of the models. The null
hypothesis is that the model is correctly specified, that is, that the failure rate is equal to the
probability of occurrence 1−α. p is the p-value for this test. r is the annualized rate of return
in (%). Bold numbers refer to the results that do not satisfy the dynamic-quantile test at the
5 percent confidence level, in terms of their p-values of the F-test under the null hypothesis
that all coefficients, including the intercept, are zero in a regression of the variable ht on its
own past and on current VaR. The risk-free interest rate is 4.47 percent annual. The results
are obtained using WML with ρ = 0.994.
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Figure 9.5 Compared VaR and wealth evolution: Russell 2000 – SP 500
Note: VaR evolution for a confidence level of α = 95 percent (above) and wealth
evolution (below) for SP 500, Russell 2000 and for the optimal portfolios using a
GARCH model with skewed-t innovation distribution. Out-of-sample period goes
from January 2, 2004 until December 20, 2007.

Figure 9.5 presents the VaR and wealth evolution for an investor whose
desired confidence level is 95 percent for portfolios made of Russell 2000
and SP 500, the model used is GARCH and the innovation distribution
is the skewed-t . The optimal portfolio VaRs are consistently smaller that
the VaRs of the individual series. This is the case for all the models in our
empirical application, implying that by combining the two indices opti-
mally we are reducing the risk. Moreover, the portfolio model not only
allows us to decrease risk but also to obtain portfolio returns between the
returns of the individual indices.

9.6 Conclusions and future work

The dynamic portfolio-selection model we propose performs well out-
of-sample statistically in terms of failure rates, defined as the number of
times the desired confidence level used for the estimation of the VaR is
violated and in terms of the dynamic-quantile test, used to determine the
quality of our results. Based on the failure-rate test, the APARCH model
gives as good results as the GARCH model. However, if we consider not
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only the failure-rate test but also the dynamic-quantile test, the wealth
achieved and the risk-adjusted returns, we find that the APARCH model
outperforms the GARCH model. A sensitivity analysis of the distribution
of the innovations shows that in general the skewed-t is preferred to the
normal and Student-t distributions. Estimating the model parameters by
weighted maximum likelihood in an increasing-window setup allows us
to account for a changing time pattern of the degrees of freedom and
asymmetry parameters of the innovation distribution and to improve
the forecasting results in the statistical and economical sense: smaller
failure rates, larger final wealth and risk-adjusted returns.

There are a number of directions for further research along the lines
presented here. A potential extension could use the dynamic model to
study the optimal time of portfolio rebalancing, as day-to-day portfolio
rebalancing may be neither practicable nor economically viable. A more
ambitious extension is to work in a multivariate setting, where a group of
different financial instruments are used to maximize the expected return
subject to a risk constraint. Another interesting extension of the model is
to investigate its intra-daily properties. This extension could be of special
interest for traders who face the market second-by-second during the
trading hours in the financial markets.

Notes

The authors would like to thank Walid Ben Omrane, Luc Bauwens, Pierre Giot,
Sébastien Laurent, Bruce Lehmann, Samuel Mongrut, Olivier Scaillet and Léopold
Simar for helpful discussions and suggestions. The usual disclaimers apply. This
research was partially carried out while both authors were at the Center for
Operations Research and Econometrics (CORE), at the Université Catholique de
Louvain, and we wish to extend particular thanks to Luc Bauwens and members
of CORE for providing a great research environment. The usual disclaimers apply.

Corresponding author. Economics Department, Fordham University, 441 East
Fordham Road, Bronx, NY 10458–9993, USA. Tel (+1) 718 817 4061, Fax (+1)
718 817 3518, e-mail: rengifomina@fordham.edu.
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A Risk and Forecasting Analysis of
West Texas Intermediate Prices
David E. Allen and Abhay Kumar Singh

10.1 Introduction

As one of the biggest traded commodities, the behavior of crude oil
prices has enormous significance and impacts the different parts of the
world economy including government, private enterprises and investors
among others. Therefore, there are increasing demands for a better
characterization and prediction of crude oil prices. The four major bench-
marks in the world of international oil trading today are: (1) West Texas
Intermediate (WTI), the reference crude for the USA, (2) Brent, the ref-
erence crude oil for the North Sea, (3) Dubai, the benchmark crude oil
for the Middle East and Far East, and (4) Tapis, the benchmark crude oil
for the Asia–Pacific region. West Texas Intermediate (WTI) is the major
benchmark of crude oil prices in the Australian market.

Various time-series modeling techniques including ARMA, ARIMA,
ARCH, GARCH etc. have been used in oil-price and volatility prediction
in the past. In addition, some advanced learning algorithms includ-
ing neural networks, genetic algorithms, machine learning etc. are
frequently tested. “Support-vector machines” (SVMs) are a new gener-
ation of learning systems based on recent advances in statistical learning
theory. The “Vapnik–Chervonenkis theory” (also known as VC theory)
was developed from 1960–1990 by Vladimir Vapnik and Alexey Cher-
vonenkis. The concept of the support-vector machine was developed by
Vapnik (1995) and his colleagues. The theory is a form of computational
learning theory which attempts to explain the learning process from a
statistical point of view. Established on the unique theory of the struc-
tural risk-minimization principle to estimate a function by minimizing
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an upper bound of the generalization error, SVM is resistant to the
over-fitting problem and can model nonlinear relations in an efficient
and stable way. Furthermore, SVM is trained as a convex optimiza-
tion problem resulting in a global solution that in many cases yields
unique solutions. Originally, SVMs were developed for classification tasks
(Burges, 1998). With the introduction of Vapnik’s ε -insensitive loss
function, SVMs have been extended to solve nonlinear regression and
time-series prediction problems; and they exhibit excellent performance
(Huang et al., 2005; Muller et al., 1997).

The widely used risk standard, “value-at-risk” (VaR), reduces the risk
associated with any kind of asset to just a number (an amount in terms of
a currency). One of the objectives of this study is to employ a new value-
at-risk methods’ approach proposed by Engle and Manganelli (2004)
to the forecasting of oil-price risk. Previous work in oil-price risk mea-
surement has employed various other techniques including the ARMA
historical simulation approach (Cabedo and Moya, 2003), ARCH-based
volatility measures (Kuper, 2002) and other VaR-based risk-measuring
techniques (Sauter and Awerbuch, 2002).

In this study we employ CAViaR, the value-at-risk modeling technique
that uses quantile regression, to forecast WTI value-at-risk, which has not
been used in its original state to predict value-at-risk for oil prices. We
also show the applicability of “support-vector regression” for oil-price
prediction and compare it with ARIMA modeling.

The rest of the chapter is divided into 6 sections; the following section
gives the background and introduces quantile regression, the CAViaR
model, ARIMA and support-vector machine regression. Section 10.3
presents the data and methodology used in the study. Section 10.4
discusses the results of the CAViaR implementation on WTI oil prices fol-
lowed by Section 10.5 which compares the forecasting results obtained
from ARIMA and support-vector regression techniques. Section 10.6
provides the conclusion.

10.2 Background

10.2.1 CAViaR and quantile regression

The problem in estimating VaR is that it is a particular quantile of
potential future portfolio values, conditioned on current available infor-
mation. However, portfolio returns and risk change over time, so a
time-varying forecasting procedure is required. Essentially this involves
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forecasting a value each period that will be exceeded with a probability
of (1 − θ) by the current portfolio value. In this case θ ∈ (0,1) are
representative of the confidence level attached to the VaR.

Engle and Manganelli (2004) used the robust technique of quantile
regression and proposed another method for calculation of value-at-risk,
which they termed “conditional autoregressive value-at-risk by regres-
sion quantiles,” or CAViaR. CAViaR uses quantile regressions and instead
of modeling the whole return distribution for calculation of VaR, it mod-
els the required quantiles of the return distribution directly. To predict
the value-at-risk by modeling the lower quantiles, the model uses a
conditional autoregressive specification, inspired by the fact that the dis-
tribution of volatilities over time is autocorrelated, hence the model. In
their CAViaR paper, Engle and Manganelli (2004) propose four different
specification processes for the calculation of value-at-risk: an “adaptive”
model, a “symmetric absolute value” model, an “asymmetric slope”
model and an “indirect GARCH” model. We follow suit and test the
relative suitability of all the four models on our Australian sample data
set in the calculation of VaR.

The first model, an adaptive model, is a smoothed version of a step
function (for finite G), and is given by

ft (β1)= ft−1(β1)+β1{[1 + exp(G[yt−1 − ft−1(β1)])]−1 − θ}, (10.1)

where G is some positive finite number. Engle and Manganelli suggest
that the adaptive model incorporates the following rule: “whenever VaR
is exceeded, you should immediately increase it, but in circumstances
where you do not exceed it, you should decrease it very slightly.” This
strategy serves to reduce the probability of sequences of hits whilst also
making it improbable that there will never be hits. The structure of this
model means it learns little from returns that are either close to the VaR or
are extremely positive, when G is large. It increases the VaR by the same
amount regardless of whether the returns exceed the VaR by a small mar-
gin or a large margin. This model has a unit coefficient on the lagged VaR.

A second model that features symmetric absolute values is set out
below:

ft (β)= β1 +β2ft−1(β)+β3|yt−1| (10.2)

A third has an asymmetric slope:

ft (β)= β1 +β2ft−1(β)+β3(yt−1)
+ +β4(yt−1)

− (10.3)

where, notation (x)+ = max(x,0), (x)− = −min(x,0).
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Whilst the fourth is an indirect GARCH(1,1):

ft (β)= (β1 +β2f 2
t−1(β)+β3y2

t−1)
1/2 (10.4)

Engle and Manganelli point out that both the first and third models
respond symmetrically to past returns, whereas the second is more flexi-
ble in the sense of permitting different responses to positive and negative.
Furthermore, all three models are mean-reverting given the coefficient
on the lagged VaR is not constrained to be 1.

Engle and Manganelli (2004) state that “the indirect GARCH model
would be correctly specified if the underlying data were truly a
GARCH(1, 1) with an independent and identically distributed (i.i.d.)
error distribution. The symmetric absolute value and asymmetric slope
quantile specifications would be correctly specified by a GARCH process
in which the standard deviation, rather than the variance, is modeled
either symmetrically or asymmetrically with i.i.d. errors.” Earlier ver-
sions of this type of model were developed by Taylor (1986) and Schwert
(1988), whilst Engle (2002) did further analysis of it. A merit of the
CAViaR specification, as suggested by Engle and Manganelli (2004), is
that it is more general than these GARCH models.

The VaR results from the four methods are tested using a dynamic-
quantile test, as proposed by Engle and Manganelli (2004). We will omit
further details of the methods for the sake of brevity, as further insights
can be obtained from their original paper.

Quantile regression

CAViaR uses quantile regression for estimation of its parameters. Quan-
tile regression was first introduced by Koenker and Bassett (1978).
Koenker and Bassett showed how to extend the notion of a sample
quantile to a linear regression model.

Quantile regression, as introduced in Koenker and Bassett (1978), is
an extension of classical least squares estimation of conditional mean
models to the estimation of a group of models for conditional quantile
functions. The central special case is the median regression estimator that
minimizes a sum of absolute errors. The remaining conditional quan-
tile functions are estimated by minimizing an asymmetrically weighted
sum of absolute errors. Taken together the set of estimated conditional
quantile functions offers a much more complete view of the effect of
covariates on the location, scale and shape of the distribution of the
response variable.

In linear regression, the regression coefficient represents the change
in the response variable produced by a one-unit change in the predictor
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variable associated with that coefficient. The quantile-regression param-
eter estimates the change in a specified quantile of the response variable
produced by a one-unit change in the predictor variable.

The quantiles or percentiles, or occasionally fractiles, refer to the gen-
eral case of dividing a data set into parts. Quantile regression seeks to
extend these ideas to the estimation of conditional quantile functions –
models in which quantiles of the conditional distribution of the response
variable are expressed as functions of observed covariates.

In quantile regression, the median estimator minimizes the symmetri-
cally weighted sum of absolute errors (where the weight is equal to 0.5)
to estimate the conditional median function – other conditional quan-
tile functions are estimated by minimizing an asymmetrically weighted
sum of absolute errors, where the weights are functions of the quantile of
interest. This makes quantile regression robust to the presence of outliers.

In summary, consider a series of observations y1, . . .yT generated by
the following model

yt = x′
tβ

0 + εθ t , Quantθ (εθ t |xt )= 0, (10.5)

where xt is a p-vector of regressors and Quantθ (εθ t |xt ) is the θ -quantile
of εθ t conditional on xt. Let ft (β)≡ xtβ. Then the θth regression quantile
is defined as any β̂ that solves:

min
β

1
T

T∑
t=1

[θ − I(yt < ft (β))] [yt − ft (β)] (10.6)

We will not discuss further the mathematical details of the regres-
sion technique – please refer to Koenker’s (2005) monograph for a
comprehensive discussion.

10.2.2 Autoregressive Integrated Moving Average (ARIMA)

Forecasting is the process of estimation in unknown situations from the
historical data. For example, forecasting weather, stock index values,
commodity prices etc. Time-series forecasting provides a method to fore-
cast future price levels using the historical price series of the commodities
in question; here oil. In statistics, ARIMA models, sometimes called Box–
Jenkins models after the iterative Box–Jenkins methodology usually used
to estimate them, are typically applied to time-series data for forecasting.

Given a time series of data Xt−1, Xt−2, . . .X2, X1, the ARIMA model
is a tool for understanding and, perhaps, predicting future values in this
series. The model consists of three parts, an autoregressive (AR) part, a
moving-average (MA) part and the differencing part. The model is usually
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then referred to as the ARIMA(p, d, q) model where p is the order of the
autoregressive part, d is the order of differencing and q is the order of
the moving-average part.

If d = 0, the model becomes ARMA, which is a linear stationary model.
ARIMA (i.e. d>0) is a linear nonstationary model. If the underlying time
series is nonstationary, taking the difference of the series with itself d
times makes it stationary, and then ARMA is applied onto the differenced
series.

The ARIMA(p, d, g) model is given by:

ϕ∇dXt = θεt (10.7)

where the AR part is

ϕ = 1 −
p∑

i=1

ϕiL
i

and the MA part is

θ = 1 +
q∑

j=1

θjL
j

And the I (difference) part is

∇ = (1 − L1)

Here L is a lag operator, that is, LiXt = Xt−i. ϕi and θj are the model
parameters which need to be found before applying the model for
forecasting. εt is a white-noise process with zero mean and variance σ2.
ϕi are the parameters of the autoregressive part of the model, θj are

the parameters of the moving-average part and the εt are error terms.
The error terms εt are generally assumed to be independent, identi-
cally distributed variables sampled from a normal distribution with zero
mean.

10.2.3 Support-Vector Machine (SVM) and Support-Vector
Regression (SVR)

SVM and SVR are a set of related supervised learning methods used for
classification and regression, respectively. They belong to a family of
generalized linear classifiers. A special property of SVMs is that they
simultaneously minimize the empirical classification error and maximize
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the geometric margin; hence they are also known as maximum mar-
gin classifiers. SVMs follow the “structured risk-management” (SRM)
principle.

Linear separating functions, however, generalized with an error-
minimization rate are not suitable for real-world applications. The idea
of the “support-vector machine” (SVM) is to map the input vectors into a
feature space with a higher number of dimensions, and to find an optimal
separating hyperplane in the feature space. For example, points in a two-
dimensional space (x1,x2) ∈ R2 may be mapped into the 5-dimensional
plane(x1,x2,x1x2,x2

1,x2
2) ∈ R5; a separating hyperplane in this larger

space will correspond to a conic separator in R2 (see Figure 10.1).
A kernel is used to construct a mapping into high-dimensional feature

space by the use of reproducing kernels. The idea of the kernel function is
to enable operations to be performed in the input space rather than the
potentially high-dimensional feature space. Hence, the inner product
does not need to be evaluated in the feature space. This provides a way
of addressing the curse of dimensionality. However, the computation is
still critically dependent upon the number of training patterns and to
provide a good data distribution for a high-dimensional problem will
generally require a large training set.

The kernel function K 〈., .〉 is a convolution of the canonical inner prod-
uct in the feature space. Common kernels for use in an SVM are the
following:

(1) Dot product: K(x,y)= x.y; in this case no mapping is performed, and
only the optimal separating hyperplane is calculated.

(2) Polynomial functions: K(x,y) = (x.y+1)d , where the degree d is given.

x1 x1
2

x1
2

x 2

2x
1x

2
√

Figure 10.1 Separating the hyperplane in a higher dimension
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(3) Radial-basis functions (RBFs): K(x,y)= e−γ‖x−y‖2
with parameter γ .

(4) Sigmoid (or neural) kernel: K(x,y)= tanh (ax.y + b) with parameters
a and b.

(5) ANOVA kernel: K(x,y) = (
∑n

i=1 e−γ (xi−yi))d , with parameters γ

and d.

Due to prior work with an emphasis on “radial-basis functions”’
kernels, it is used in the current study for prediction.

SVM for regression

The basic idea Suppose we are given training data {(x1,y1), . . . ,(xl,yl)} ⊂
X ×R where X denotes the space of input patterns (e.g. X = Rd). In ε−SV
regression, our goal is to find a function f (x) such that it has at most ε
deviation from the actually obtained targets yi for all the training data
and at the same time is as flat as possible. In other words, we do not
care about errors as long as they are less than ε, but will not accept
any deviation larger than this. We begin by describing the case of linear
functions f taking the form

f (x)= 〈w,x〉+ b with w ∈ X,b ∈ R (10.1)

where 〈., .〉 denotes the dot product in X. “Flatness” in this case (10.1)
means that one seeks a small lw. One way to ensure this is to minimize
the norm, that is, ||w||2 = 〈w,w〉. We can write this problem as a convex
optimization problem:

Minimize
1
2

||w||2

Subject to

{
yi −

〈
w,xi

〉− b ≤ ε〈
w,xi

〉+ b − yi ≤ ε (10.2)

Here, the assumption is that such a function f actually exists that
approximates all pairs (xi,yi)with ε precision, or in other words, a convex
optimization problem is really possible. Sometimes, however, this may
not be the case or we also may want to allow for some errors. This can be
achieved via introducing slack variables ξi,ξ

∗
i to cope with the otherwise

infeasible constraints of the optimization problem. Vapnik provided the
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following formulation:

Minimize
1
2

‖w‖2 + C
	∑

i=1

(ξi + ξ∗
i )

Subject to


yi −

〈
w,xi

〉− b ≤ ε+ ξi〈
w,xi

〉+ b − yi ≤ ε+ ξ∗
i

ξi,ξ
∗
i ≥ 0

(10.3)

The constant C > 0 determines the trade-off between the flatness of
f and the degree to which deviations larger than ε are tolerated. This
corresponds to dealing with a so-called ε-sensitive loss function |ξ |ε
described by

|ξ |ε :=
{

0 if |ξ | ≤ ε
|ξ |− ε otherwise

(10.4)

It turns out that in most cases the optimization problem can be solved
more easily in its “dual formulation.” The dual formulation provides the
key for extending the SVM to nonlinear functions.

The dual problem Now the Lagrange function is constructed from the
objective function and the corresponding constraints. It can be shown
that this function has a saddle point with respect to the primal and dual
variables at the solution.

L : = 1
2

||w||2 + C
	∑

i=1

(ξi + ξ∗
i )−

	∑
i=1

(ηiξi + η∗
i ξ

∗
i )

−
	∑

i=1

αi(ε+ ξi − yi +
〈
w,xi

〉+ b)

−
	∑

i=1

α∗
i (ε+ ξ∗

i + yi −
〈
w,xi

〉− b) (10.5)

Here L is the Lagrangian and ηi,η
∗
i ,αi,α

∗
i are Lagrange multipliers.

Hence, the dual variables in (10.5) have to satisfy positive constraints

α
(∗)
i ,η(∗)i ≥ 0 (10.6)

Note that by α(∗)i , we refer to αi and α∗
i .
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The Saddle point condition: partial derivatives L with respect to primal
variables (w,b,ξi,ξ

∗
i ) have to vanish for optimality.

∂bL =
	∑

i=1

(α∗
i −αi)= 0 (10.7)

∂wL = w −
	∑

i=1

(αi −α∗
i )xi = 0 (10.8)

∂
ξ
(∗)
i

L = C −α(∗)i −η(∗)i = 0 (10.9)

The dual optimization problem reduces to

maximize

{
−1

2
∑	

i,j=1(αi −α∗
i )(αj −α∗

j )
〈
xi,xj

〉
−ε∑	

i=1(αi +α∗
i )+

∑	
i=1 yi(αi −α∗

i )
(10.10)

subject to
	∑

i=1

(αi −α∗
i )= 0 and αi −α∗

i ∈ [0,C]

In deriving (10.10), we already eliminated the dual variables ηi,η
∗
i

through condition (10.9) which can be reformulated as η(∗)i = C −α(∗)i .
Equation (10.8) can be rewritten as follows:

w =
	∑

i=1

(αi −α∗
i )xi, thus f (x)=

	∑
i=1

(αi −α∗
i )
〈
xi,x

〉+ b (10.11)

This is support-vector expansion, that is, w can be completely
described by a linear combination of the training patterns xi. In a sense,
the complexity of a function’s representation by SVs is independent of
the dimensionality of the input space X and depends only on the number
of SVs.

10.3 Data and methodology

The current work analyses both the risk of oil prices and then attempts to
forecast them. The data used is a 15-year sample taken from October 21,
1994–October 10, 2009 of daily closing spot prices of WTI. We use the
new model developed by Engle and Manganelli (2004), CAViaR, which
uses quantile regression, and employ it as a means to model the value-
at-risk of the WTI oil-price return series. ARIMA and support-vector
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regression techniques are also utilized and compared for the purposes
of forecasting of oil prices. We make use of percentage daily returns cal-
culated in logarithms, which also makes the time-series stationary for
forecasting methods.

10.3.1 Risk analysis

We apply the four CAViaR methods to WTI spot-price data. We use three
window sizes to estimate the model: (1) 3000 daily observations with
2500 in-sample observations and 500 out-of-sample observations, (2)
2000 daily observations with 1600 in-sample observations and 400 out-
of-sample observations, and (3) 1000 daily observations with 700 in-
sample observations and 300 out-of-sample observations. We estimate
1 percent CAViaR using the model – the obvious choice of 1 percent for
VaR comes from the current industry standards.

Engle and Manganelli (2004) discuss the appropriate specifications
for testing these time-series models based on quantile regressions. They
derive both in-sample tests and out-of-sample tests. These essentially
feature measuring the proportion of hits of the limiting VaR and hav-
ing them equal to the target fraction with no correlation with their own
lagged values, no autocorrelation in the hits and the correct fraction of
exceptions. They explain that the in-sample test, or DQ test, is a speci-
fication test for the particular CAViaR process under study and it can be
very useful for model-selection purposes. They suggest the parallel DQ
out-of-sample tests could be used by regulators to check that the VaR
estimates submitted by a financial institution satisfy some basic model-
specification requirements such as unbiasedness, independent hits and
independence of the quantile estimates. We utilize their tests and Matlab
code in this chapter. (We are thankful to Simone Manganelli for making
available his MATLAB code for the exercise.)

10.3.2 Forecasting

We analyze two different forecasting techniques, ARIMA and support-
vector regression to forecast the oil prices. The logarithm percentage daily
returns are used for forecasting as it makes the time-series stationary,
which is nonstationary otherwise. The time series is tested for presence
of unit roots using the “augmented Dickey–Fuller” (ADF) test.

We use the last 1000 observations in the data set for prediction pur-
poses with 990 observations for building the model (in both ARIMA and
SVR) and 10 for testing purposes. The two models are compared based
on the errors of prediction given by the root mean square error and
mean error. The lower the error the better the prediction technique is.
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GRETL, an open-source software package is used for the ARIMA analysis.
The ARIMA model is identified based on the significance of coefficients
based on the t-statistics. WEKA java-based machine-learning software,
which uses LIBSVM wrapper class is used for support-vector regression
prediction.

SVR forecasting involves the following steps:

(1) Data sampling. We use WTI daily spot-price data for this research.
(2) Data preprocessing. The collected oil-price data may need to be trans-

formed into certain appropriate ranges for the network learning by
logarithmic transformation, difference or other methods. Here a log-
arithmic return series is used. Then the data should be divided into
in-sample data and out-of-sample data. We use the first 990 obser-
vations (in-sample) for training the SVR model and the other 10
observations (out-of-sample) for testing the built model.

(3) Training and learning. The SVM architecture and parameters are
determined in this step by the training results. There are no crite-
ria in deciding the parameters other than by a trial-and-error basis.
In this investigation, the RBF kernel is used because the RBF kernel
tends to give good performance under general smoothness assump-
tions. Consequently, it is especially useful if no additional knowledge
of the data is available. Finally, a satisfactory SVM-based model for
oil-price forecasting is reached.

(4) The parameters of SVR are tuned using the trial-and-error method.
The parameters are tuned based on the error received from the
forecasting results. We use the last 2 days’ returns as predictor
variables.

(5) Future price forecasting.

Both the methods are used to forecast the next 10-day’s returns and
then are analyzed based on the root mean square error received.

10.4 Analysis of results

10.4.1 CAViaR risk results

Table 10.1 gives the results obtained by using 1000 time-series returns
of WTI spot prices, with 700 in-sample and 300 out-of-sample obser-
vations. DQ test results show that while the value-at-risk is significant
for the in-sample period for the symmetric absolute value (SAV), asym-
metric slope (AS), and adaptive model, it is insignificant for the indirect
GARCH model. On the other hand, the indirect GARCH model gives
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Table 10.1 Estimates for four CAViaR specifications with 1000 return series

SAV AS
Indirect
GARCH ADAPTIVE

Beta1 2.8165 2.3795 0.3201 −0.0878
Std Errors 1.94 2.0784 0.607 0.1393
p-Values 0.0733 0.1261 0.299 0.2641
Beta2 0.32 0.3957 0.9444 0
Std Errors 0.4209 0.4483 0.0297 0
p-Values 0.2235 0.1888 0 0
Beta3 0.3354 0.2994 0.2795 0
Std Errors 0.1465 0.1572 0.2836 0
p-Values 0.011 0.0284 0.1621 0
Beta4 0 0.2576 0 0
Std Errors 0 0.1668 0 0
p-Values 0 0.0613 0 0
RQ 35.6822 35.1623 35.9985 37.4356
Hits in-sample (%) 0.7143 1.1429 0.8571 0.7143
Hits out-of-sample (%) 8 7.6667 0.6667 42
DQ In-sample (p-value) 0.9995 0.9915 0.0051 0.9996
DQ Out-of-sample (p-value) 0 0 0.9985 0

significant out-of-sample results when the rest of the models fail. Refer
also to Figure 10.2.

Table 10.2 gives the results from the last 2000 return series from the
experiments’ sample data with 1600 in-sample and 400 out-of-sample
observations. The results here change with sample size – it is evident
from the DQ test results that now all the four models are significant
for in-sample results. The out-of-sample results show that none of the
models are significant. This shows that the results from the caviar model
do change with sample size. (See Figure 10.3.)

Finally, Table 10.3 gives the results when we increase the sample size
further by 1000 observations. Here, the in-sample size is 2500 and the
out-of-sample size is 500, which matches the out-of-sample size used in
the original study by Engle and Manganelli (2004). The oil-price CAViaR
predictions show here that the first three models are efficient for both
in-sample and out-of-sample observations while, with this sample size,
the adaptive model fails to give significant results.

The results here show that with an increase in in-sample size the
first three models become more relevant than the adaptive model. (See
Figure 10.4.)
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Figure 10.2 Estimated 1 % CAViaR graph for sample 1

10.4.2 Forecasting result analysis

For oil-price prediction using ARIMA and SVR we use the last 1000 WTI
logarithmic return series. The series itself is not stationary and gives a
unit root when tested with an augmented Dickey–Fuller (ADF) test with
a constant. The return series is use, which is useful as it makes the sample
time-series stationary and hence it can be used for prediction.

ARIMA forecasting result analysis

Based on the significance of factor coefficients, ARIMA(2,0,2),
ARIMA(3,0,2) and ARIMA(2,0,3) models are identified. No differencing
of the series is needed as we are using the return series which is stationary.
We will forecast the time series using all the three models identified and
will choose the one having minimum “root mean square error” (RMSE).

Table 10.4 gives the error obtained from forecasting using the three
ARIMA models. ARIMA(3,0,2) gives the minimum error and hence it is
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Table 10.2 Estimates for four CAViaR specifications with 2000 return series

SAV AS
Indirect
GARCH ADAPTIVE

Beta1 6.3503 7.139 0.0622 0.3498
Std Errors 1.7954 1.8129 0.252 0.2684
p-Values 0.0002 0 0.4025 0.0962
Beta2 −0.3402 −0.4942 0.9816 0
Std Errors 0.3565 0.3403 0.0101 0
p-Values 0.17 0.0732 0 0
Beta3 0.3621 0.341 0.1055 0
Std Errors 0.0846 0.115 0.0908 0
p-Values 0 0.0015 0.1228 0
Beta4 0 0.2654 0 0
Std Errors 0 0.1048 0 0
p-Values 0 0.0057 0 0
RQ 102.1509 102.1364 102.7917 104.9777
Hits in-sample (%) 0.9375 1 1.0625 0.75
Hits out-of-sample (%) 7 7.25 1.75 3.75
DQ In-sample (p-value) 0.9793 0.9759 0.4681 0.1265
DQ Out-of-sample (p-value) 0 0 0.0002 0

10

8

6

4

2

2002 2003 2004 2005

1% WTICRUDE VaR - SAV 1% WTICRUDE VaR - AS

1% WTICRUDE VaR - GARCH 1% WTICRUDE VaR - Adaptive

2006 2007 2008 2009

10

8

6

4

2

2002 2003 2004 2005 2006 2007 2008 2009

10

8

6

4

2

2002 2003 2004 2005 2006 2007 2008 2009

10

8

6

4

2

2002 2003 2004 2005 2006 2007 2008 2009

Figure 10.3 Estimated 1 % CAViaR graph for sample 2
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Table 10.3 Estimates for four caviar specifications with 3000 return series

SAV AS
Indirect
GARCH ADAPTIVE

Beta1 1.5846 1.1258 6.914 0.5981
Std Errors 1.0244 0.6523 5.9457 0.2411
p-Values 0.0609 0.0422 0.1224 0.0065
Beta2 0.6348 0.6622 0.6611 0
Std Errors 0.1976 0.1226 0.1721 0
p-Values 0.0007 0 0.0001 0
Beta3 0.5567 0.6642 1.3579 0
Std Errors 0.1602 0.1161 1.5042 0
p-Values 0.0003 0 0.1833 0
Beta4 0 0.5028 0 0
Std Errors 0 0.1283 0 0
p-Values 0 0 0 0
RQ 212.4748 212.3826 213.6665 220.4636
Hits in-sample (%) 1.08 1.04 1.04 0.72
Hits out-of-sample (%) 1 0.8 0.8 2.2
DQ In-sample (p-value) 0.9044 0.9361 0.9184 0.0493
DQ Out-of-sample (p-value) 0.9943 0.9955 0.9798 0
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Figure 10.4 Estimated 1 % CAViaR graph for sample 3
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Table 10.4 Errors for ARIMA models

Model Root mean square error

ARIMA(2,0,2) 1.5653
ARIMA(3,0,2) 1.5427
ARIMA(2,0,3) 1.557
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Figure 10.5 Graph for actual and forecasted return series

used for the prediction of the remaining 10 observations after building
the model on the first 990 observations.

Figure 10.5 shows the forecasting results using the ARIMA(3,0,2)
model. The forecast here is a conditional mean forecast as the technique
uses the “ordinary least squares” (OLS) regression method.

Table 10.5 gives the rest of the prediction statistics for the model.

Support-vector regression-based forecasting

The main issue in time-series forecasting using SVR is the tuning of
parameters. Though more computationally intensive methods like grid
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Table 10.5 Prediction statistics for ARIMA
model

Mean error 1.1701
Mean squared error 2.3799
Root mean squared error 1.5427
Mean absolute error 1.3319
Mean percentage error 170.35
Mean absolute percentage error 140.15
Theil’s U 1.2044
Bias proportion, UM 0.57532
Regression proportion, UR 0.0452
Disturbance proportion, UD 0.37948
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Figure 10.6 Graph for actual and predicted returns obtained from SVR

search are available, we decided to use a trial-and-error approach for tun-
ing the parameters to save computational time and complexity. We tune
the first parameter C, the cost using the module “CV ParameterSelec-
tion.” The parameter is tested between 1000 < C < 2000 with 10 steps;
this gives an efficient value of 1500. Finally we tune the other two param-
eters, gamma γ and epsilon ε using trial-and-error. The final values used
for the parameters after trial-and-error optimization (based on minimum
RMSE) are, C = 1500, gamma = 0.333 and epsilon = 0.0001. The choice
of lagged predictor variables here is the last two days’ returns. This choice
can be further tested by widening the window size.
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Table 10.6 SVR forecasting statistics

Correlation coefficient 0.2062
Root mean squared error 1.3658
Mean absolute error 1.2194
Relative absolute error 97.7989 %
Root relative squared error 91.8446 %
Total number of instances 10

Figure 10.6 shows the graph for actual and predicted out-of-sample
values. This shows that even if the values are not so efficiently pre-
dicted they follow the trend better than the trend followed by the ARIMA
model. Table 10.6 gives the prediction test statistics; the value of RMSE
clearly indicates the efficiency of SVR over the ARIMA model. The cur-
rent model is tuned with a trial-and-error approach, which is more likely
to reduce the error when tuned using more computationally intensive
search algorithms.

10.5 Conclusion

In this work, we applied a new quantile-regression approach to modelling
VaR (“value-at-risk”); CAViaR on WTI spot-price returns. The analysis
shows that the proposed VaR risk-modeling technique though efficient,
is dependent on the sample size. There is further scope for improv-
ing the technique and testing via other sample sizes, thus facilitating
a comparative analysis. This research also focused on the prediction of
WTI price levels and presented a comparative analysis of two meth-
ods, ARIMA, a widely used method based on lag and momentum
effects and support-vector regression, a more efficient machine-learning
approach. The results obtained clearly indicate that SVR is more effi-
cient in predicting the future price levels. The current work can be
extended by using more sophisticated optimization routines for tun-
ing the parameters of SVR and also by changing the frequency of
data used.

This research work also made use of open-source software platforms
for the forecasting analysis, which are highly capable for financial
econometrics and machine-learning projects and can be further used by
researchers and practitioners to analyze market scenarios and financial
time series.
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