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Mathematical Models of Price Impact
and Optimal Portfolio Management in Illiquid
Markets

Nikolay Andreev

Abstract The problem of optimal portfolio liquidation under transaction costs
has been widely researched recently, producing several approaches to problem
formulation and solving. Obtained results can be used for decision making during
portfolio selection or automatic trading on high-frequency electronic markets.
This work gives a review of modern studies in this field, comparing models and
tracking their evolution. The paper also presents results of applying the most recent
findings in this field to real MICEX shares with high-frequency data and gives an
interpretation of the results.

Keywords Market liquidity * Optimal portfolio selection ¢ Portfolio liquidation *
Price impact

JEL Classification C61, G11

1 Introduction

With the development of electronic trading platforms, the importance of high-
frequency trading has become obvious. This requires the need of automatic trading
algorithms or decision-making systems to help portfolio managers in choosing
the best portfolios in volatile high-frequency markets. Another actual problem in
portfolio management field is optimal liquidation of a position under constrained
liquidity during a predefined period of time.

Mathematical theory of dynamic portfolio management has received much
attention since the pioneering work of Merton (1969), who obtained a closed-form
solution for optimal strategy in continuous time for a portfolio of stocks where the
market consisted of risk-free bank accounts and a stock with Bachelier—Samuelson
dynamics of price. Optimal criterion had the following form:
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2 N. Andreev

T
(C, X;,Y;) € Argmax E /e_‘”U (CHdr+ B(Wr,T) |,
0

where C; is consumption rate, X;, Y,—portfolio wealth in riskless asset and stocks
respectively, W, = X, 4+ Y, is total value of portfolio and U(C) = %, y < 1,or
log C—a constant relative risk-aversion (CRRA) utility function, B(W,, 1) is a func-
tion, increasing with wealth. This criterion formulates optimality as maximization
of consumption and portfolio value at the end of a period. Merton asserted that
it is optimal to keep assets in constant proportion for the whole period, that is
o= % = const. This result is known as the Merton line due to the strategy’s
linear representation in (X;, ¥;) plane.

2 Contemporary Price Impact Modeling

The ideal frictionless market of Merton (1969) does not adequately simulate the
more complex real market. First of all, price dynamics obviously depend on an
agent’s actions in the market; moreover, there is no single characteristic of an asset’s
market value (price). Since the 1990s, electronic trading through limit order books
(LOB) has been gaining popularity, providing the market with a set of orders with
different volumes and prices during any trading period. Inability to close a deal at
an estimated price led to the necessity of including transaction costs in portfolio
management models and price impact modeling. For the past two decades, research
in this field has provided complex models that allow for time varying forms of
LOBs, temporary and permanent price impact, resilience etc.

The most sophisticated and yet also fundamental way of estimating transaction
costs is estimating the whole structure of LOB. Usually the market is represented
as a complex Poisson process where each event is interpreted as the arrival/liquida-
tion/cancellation of orders at specific depth levels. Large (2007) considers the arrival
of ten kinds of market events (market bid/ask order limit bid/ask order, cancellation
of bid/ask order, etc.) according to a multivariate Hawkes process with intensity
depending on the past trajectory. Intensity in Large’s model does not depend on
order depth (distance from best quote).

Cont and Larrard (2012) introduced a complex Poisson model with time and
depth-varying intensity and obtained theoretical results on the subject. Unfortu-
nately, due to the extreme complexity of the general approach, it is extremely
difficult to calibrate the parameters. Thus, some simplifying assumptions, based on
empirical observations of a particular market, are necessary. On the other hand, the
Poisson model must be flexible enough to reflect dynamics of real events, otherwise
forecast errors will make the result useless for practice.
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Fig. 1 LOB forecast in terms of cumulative volume as a function of depth for MICEX RTKM
shares, 18 January 2006

Consider a simple LOB model with only two types of events: arrival and
cancellation of limit order at one side of the book. Intensities are stationary and
independent but depend on depth. Volume of each order is a random variable with a
priori given parametric distribution with unknown parameters depending on depth.
Thus, LOB is modelled via compound homogeneous space—time Poisson process.
We calibrated the following model to real MICEX data, assuming from empirical
observations that

1. event volume distribution is a mixture of discrete and lognormal;
2. intensities as functions of depth are power-law functions.

We estimate parameters 6 of the model from order flow history using maximum
likelihood and Bayesian methods. Then, using LOB structure L,, as initial state
of the system we model L, 47 |Ls, 68 and take 2,04_7 = E (Ly+r|Lsy, 0) as a
forecast. Results of forecasting structure for 30 s horizon and 90 % confidence
bounds are presented in Fig. 1. We see that even for small horizon confidence
interval is too wide for any practical use of such forecast. This is partly explained by
presence of discrete part in volume mixture distribution, which is usually difficult
to estimate from training sample. Atoms of volume distribution stand for volume
values preferred by participants (100, 1,000, 5,000 lot etc.), orders with preferred
volumes can amount up to 50 % of total number of orders.

Due to technical difficulties and intention to integrate an LOB model into
portfolio optimization, a simple a priori form of the book is usually considered.
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Fig. 2 Price impact aspects

Accent in modeling is made on the price impact function itself. Three main aspects
are considered in such an approach:

* Immediate response of best price after a trade, which affects future costs until
book replenishes.

» Resilience of LOB, i.e. ability to replenish after a trade; together with immediate
response, this is often called temporary price impact. Infinite resiliency means
that LOB replenishes instantaneously.

* Permanent price impact, or the effect of replenishment to a level other than pre-
trade value; this effect describes the incorporation of information from the trade,
which affects market expectations about ‘fundamental price’ of the asset (Fig. 2).

Permanent price impact is not considered in many classical models of optimal
portfolio selection. For a particular case—optimal liquidation—many works assume
the simplest dependence, where impact is a linear function of trade volume (i.e.,
Kyle 1985). Linear approximation can be considered appropriate in most practical
cases because of difficulty in calibration of a more complex function in the presence
of many agents.

Immediate response function is usually considered linear in volume, which is
equivalent to the assumption of the flat structure of LOB (Obizhaeva and Wang
2012), or the assumption that trade volumes a priori are less than current market
depth. Andreev et al. (2011) consider a polynomial form of immediate response
function with stochastic coefficients. Fruth (2011) presents the most general law of
immediate response in the form of a diffusion process under several mild conditions.
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Resilience has been recently included in impact models and is usually described
in exponential form with a priori given intensity: Suppose that K,, is immediate
response after a trade at time 7y, then

t

—/p(u)du

Temporary Impact, = Kye

Almgren and Chriss (1999) considered instantaneous replenishment: p, = oo;
Obizhaeva and Wang (2012), Gatheral et al. (2011) and others assumed expo-
nential resilience with constant intensity: p, = const. General law of deterministic
resilience rate has been presented in recent papers of Gatheral (2010), Gatheral et al.
(2012), Alfonsi et al. (2009), and Fruth et al. (2011).

3 Overview of Contemporary Portfolio Management Models
and Their Evolution

Davis and Norman (1990) introduced a consumption—investment problem for a
CRRA agent with proportional transaction costs and obtained a closed-form solution
for it. Another advantage of the model was allowing for discontinuous strategy. For
this purpose, the original Merton framework had to be upgraded to semimartingale
dynamics. Portfolio value in each of the assets is described by the following
equations:

dX;:(r,X,—C,)dt—(l—i—/\)dL;—}-(l—pL)dM,, X():x,
dYt =O(Ytdt+GY,dW,+dL;—dM,f, Y():y,

where coefficients A, u define proportional transaction costs, L;, M, are cumulative
amounts of bought and sold risky asset respectively. Results demonstrated the
existence of three behavioral regions for portfolio managers, and are presented in
Fig. 3.

Unlike Merton’s case, the so-called wait region appears due to transaction costs.
That is, it is suboptimal to trade while in the area. Leaving the area leads to
immediate buy or sell to get to the wait region’s border. Analogous results were
also obtained for the infinite horizon problem by Shreve and Soner (1994).

Another extension of the Merton model was presented by Framstad et al. (2001)
for jump diffusion price dynamics. It was shown that wait region is absent in
this case. That is, this strategy’s structure is the same as for Merton’s continuous
diffusion market.

A number of papers considered a price impact model instead of unrealistic
‘fundamental price’ dynamics. For example, Vath et al. (2007) presented the
following complex price impact function, depending on current price and volume
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Fig. 3 Buy, Sell and Wait
region in a model with .
proportional transaction costs Sell Region

Y

Wait Region

Buy Region

of a triggering trade. Around that time, Zakamouline (2002) took another step
toward a realistic market model that allowed both proportional and fixed transaction
costs. The proportional component described costs due to insufficient liquidity
of the market, while the fixed component represented the participation fee for
each transaction. Both papers considered discrete trading and produced interesting
results. Buy and sell borders were no longer straight lines, as seen in Fig. 3, but
still could be obtained beforehand and then used for decision making during trading
sessions.

Neither of the abovementioned models considered the form and dynamics of
the limit book itself—only the dynamic of an aggregated of a deal, which was
considered as price. Microstructure models of electronic limit order markets have
become quite popular in literature devoted to the problem of optimal liquidation of a
portfolio. This particular case differed from the consumption—investment framework
due to the terminal condition—predefined volume of the portfolio to be liquidated.
The most notable results in this field are from Almgren and Chriss (1999) and
Obizhaeva and Wang (2012). The framework has become quite popular in practice
due to the simple models and intuitive results. Both approached considered discrete
strategies and defined optimality functional not through utility function, but as a
weighted sum of expected value and standard deviation of portfolio value.

The work of Obizhaeva and Wang first appeared as a draft in 2005 and considered
a flat static structure of the limit book. Their approach has been adopted by many
authors, evolving into several directions. The most realistic models were presented
by Predoiu et al. (2011) and Fruth et al. (2011). Predoui et al. consider a general
form of order distribution inside a book and non-adaptive strategies of liquidation.
Fruth et al. postulate a flat but dynamic form of order distribution while allowing
for both discrete and continuous trading in the same framework, linear permanence
and general temporary price impact; the described model does not allow several
kinds of arbitrage and non-adaptive strategies, which proved to be optimal in the
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framework. Analytical solutions have been obtained for discrete cases and for
continuous trading.

4 Comparison of Portfolio Management Strategies

Despite the great potential of the developed models, most of them have not been
applied to real data. To prove the usefulness of portfolio management models for
practitioners, we apply some of the contemporary results in this field to real MICEX
trading data and give recommendations for their usage. Our database consists of
the complete tick-by-tick limit order book for MICEX shares from January 2006
through June 2007. We consider only liquid shares, such as LKOH, RTKM and
GAZP, because only during sufficiently intensive trading does it become possible to
calibrate models for the real market.

We consider the problem of optimal purchase of a single-asset portfolio over a
given period and compare the performance of the following strategies:

1. Immediate strategy—portfolio is obtained via a single trade at the moment of
decision-making. This strategy must lead to the largest costs but eliminates
market risk completely. It is recommended for high-volatility markets or in case
of information about unfavourable future price movements.

2. Fruth et al.’s (2011) strategy—this has the same goal as uniform strategy,
i.e. minimization of expected transaction costs but not market risk. The main
advantage of the model is its flexibility and consideration of several main
microstructure effects, such as time-varying immediate price impact, dynamic
model of the order book and time-varying resilience rate. Authors define price
impact for buy and sell sides (E; and D;) as the difference between best price
in the book and unaffected price. Permanent impact is proportional to volume of
the order and constant over time while immediate response function K(t,v) = K,v
changes over time. Temporary impact decays exponentially with a fixed time-
dependent, deterministic recovery rate p,, so that temporary impact of trade v,

t

. . _f Pudu .
occurred at time s, at time ¢ equals K;e *  v. General framework considers

both continuous and discrete time market models. It generalizes Obizhaeva and
Wang’s approach and postulates the following strategy: when price impact is low
and the agent still has much to buy, she buys until the ratio of impact to remaining
position is high enough, otherwise she waits for the impact to lower. After that,
the agent can make another deal or wait, etc. So, for each moment of time, the
agent has a barrier dividing her “Buy” and “Wait” regions.

3. Andreev et al. (2011) approach—a generalization of the Almgren and Chriss
framework. Optimality is considered as minimization of both transaction costs
and risk. This model has been obtained specifically for the MICEX market and
incorporates a parametric dynamic model of cost function, which provides more
accurate results: market model uses fundamental price instead of best bid-ask
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Fig. 4 Immediate response coefficient K, for the whole trading day (7 February 2006) and
dynamics during decline period (LKOH shares)

prices, which follows arithmetic Brownian motion. Transaction costs function
has polynomial form (third degree polynom) with stochastic coefficients, which
follow simple AR(1) model. No price impact is assumed. The strategy, unlike
the previous three, considered agent risk aversion, which is characterized by
the weighted sum of two criteria of optimality in minimization of functionality.
Thus, problem formulates as minimization of — E(Wr) + AVar(Wr), where Wr
is terminal wealth and A is a priori risk aversion parameter.

For example, consider a 100,000 LKOH-share portfolio, liquidated via six
consequent trades with 60-s wait periods. Consider also linear immediate response

function with coefficient K;. Rough estimate of K, is obtained via least-squares
M

method: K; = argmin Z (%C (t,vi) — K,fv,-)z, where C(z,v) is cost of trade with
i=1

volume v, reconstructed from order book shape, and 0 < v; < --- < vy = Visa

priori volume grid, for V' we take half of available trading volume at the moment.

Figure 4 shows dynamics of immediate response coefficient K;. Liquidation begins

when decline in response has been observed for some time (selected region in

Fig. 4).

Strategies 2 and 3 are presented in Fig. 5 and have quite different behaviours.
The form of the first strategy is obvious from the description. For Strategy 3, we
use the simplest calibration assumptions, considering resilience rate a constant and
immediate response as linear in time and volume. Assumptions are appropriate for
medium periods of time.

We ascertain that the performance of Fruth et al.’s approach is the best of
the three, while immediate buy is the worst. This result was expected because
Strategy 2 is better adjusted to a specific form of response and can often show
better performance if the form was guessed right. The strategy of Almgren and
Chriss shows inferior performance and higher aggressiveness (see Fig. 6) due to
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Fig. 5 Trading strategies for immediate strategy, approach by Fruth et al. (2011) and approach
by Andreev et al. (2011) with A = 0.01 for purchase of portfolio of 100,000 Lukoil shares via six
trades with 1-min intervals. Date: February 7, 2006
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Fig. 6 In Almgren and Chriss framework aggressiveness of the strategy increases with risk-
aversion parameter A. The figure demonstrates how volume left for execution depends on the
number of trade for different values of A. A =0 leads to equal size of trades. Initial volume is
10,000 shares, strategy allows the maximum of 20 trades

minimization of market risk if risk-aversion is sufficiently high.! The choice of
risk-aversion parameter heavily influences resulting strategy but cannot be chosen
automatically. Unfortunately some practitioners interpret this as a misspecification
and excessive difficulty of the model and therefore favor simpler strategies. It is also
not surprising that the Fruth et al. approach leads to lower costs than immediate

'Extreme case of Almgren and Chriss strategy with infinite risk-aversion (A = 0o) would be
immediate buy.
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strategy: the strategies in the model contains immediate buy, and dynamics in
the parameters of the market are taken into account. Immediate strategy doesn’t
consider specifics or the current situation on the market, so it can be frequently
outperformed by more elaborate methods.

Conclusion

Due to development of microstructure models and availability of high-
frequency historic data, mathematical portfolio selection strategies have been
extensively researched since the early 1990s. Nevertheless, very few frame-
works were applied by practitioners because underlying models of the market
were too unrealistic at the time. The aim of this research is to provide a review
of modern accomplishments in the field, including the ongoing work, and
demonstrate more realistic market models used in contemporary frameworks.
To illustrate the effect of using automatic algorithms of portfolio selection
and, in particular, optimal purchase/liquidation, we apply several approaches
to real MICEX shares-related trading data and compare the results.
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Evidence of Microstructure Variables’ Nonlinear
Dynamics from Noised High-Frequency Data

Nikolay Andreev and Victor Lapshin

Abstract Research of nonlinear dynamics of finance series has been widely dis-
cussed in literature since the 1980s with chaos theory as the theoretical background.
Chaos methods have been applied to the S&P 500 stock index, stock returns
from the UK and American markets, and portfolio returns. This work reviews
modern methods as indicators of nonlinear stochastic behavior and also shows some
empirical results for MICEX stock market high-frequency microstructure variables
such as stock price and return, price change, spread and relative spread. It also
implements recently developed recurrence quantification analysis approaches to
visualize patterns and dependency in microstructure data.

Keywords Chaos theory ¢ Correlation integral  Microstructure * Price dynam-
ics * Recurrence plot

JEL Classification C65,G17

1 Introduction

Since the nineteenth century, there have been attempts to describe behavior of
economic variables via simple linear deterministic systems. Unfortunately, unlike
nature phenomena, in many cases financial series could not be reduced to linear
dynamic model. Thus, stochastic models proved to be suitable for modeling
and prediction. Nevertheless, attempts to find an appropriate deterministic model
continued. They had determinism, introduced by Laplace in the early nineteenth
century, as a fundamental principle. Poincaré (1912) stated that even if all the
underlying laws were known, it would still be impossible to predict the state of the
system due to error in estimate of the initial condition. But if the system is not too
sensitive to the initial data, we can predict future states up to the error of the same
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order. This led to the assumption that unpredictable “stochastic” processes could be
replaced by fully deterministic but unstable (chaotic) systems. For a detailed review
history of nonlinear dynamics research in economics, see Prokhorov (2008).

Particular deterministic processes have been paid a great deal of interest lately
due to the quasi-stochastic properties of the generated signals. One of the simple
maps producing such effect is the well-known tent map:

Y, = a”'x-1,0 < xy <a,
' (I—a)'(I=x—1),a<x- <1,

which has first and second moment properties that are the same as first-order
autoregressive process and thus was called ‘white chaos’ by Liu et al. (1992).
Some values of parameters cause such processes to behave similar to the i.i.d. series
(Sakai and Tokumaru 1980). Thus, the natural question arises if stochastic trajectory
can be interpreted as completely deterministic and thus perfectly predictable if the
underlying map is completely known. It is necessary to note that predictability is not
the main goal and cannot be achieved for microstructure variables, as shown below.
The main advantage of the chaotic approach is the possibility to describe the data
with a more appropriate model that should be more reliable in times of crisis. This
intention is justified by the observed similar properties of microstructure data and
characteristics of chaotic natural phenomena, such as earthquakes and avalanches.
Therefore it is appropriate to assume that underlying laws of dynamics are similar.

2 Smoothing Data for Further Analysis and Preliminary
Observations

In this work several microstructure variables were researched, including

* Stock return and price
* Price change and its absolute value
* Spread and relative spread (ratio of spread to price)

Due to systematic noise in microstructure data, it is necessary to smooth the data
for further analysis. In this work, one of the modern wavelet methods was used.
The basic principle of wavelet smoothing is performing wavelet decomposition
and applying a “smoothing” transformation for wavelet coefficients for a certain
threshold level. By looking at the smoothed trajectory of a variable, we can already
discern whether its behavior is regular or not (Antoniou and Vorlow 2005). One
of the results is the visible regular dynamics of stock return, price changes and
relative spread, while other variables show randomness. To illustrate the effect,
Fig. 1 demonstrates the dependence of Lukoil stock characteristics (intraday data
aggregated by 10 s, 13th January 2006) from their delayed values with a rather
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Fig. 1 Phase trajectory for (a) price; (b) return; (c) price change; (d) absolute value of price
change; (e) spread; (f) relative spread

large lag of © =200s. Similar results hold for other lag lengths. Obtained results
are consistent with the work of Antoniou and Vorlow (2005) for FTSE100 stock
returns (daily data). As estimator of price we take arithmetic mean of best bid and
ask quotes; return means price change during 10 s divided by price value at the
beginning of the period; spread means simple bid-ask spread and relative spread is
ratio of spread to price value.
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Phase trajectories (b)—(d), (f) produce somewhat regular patterns [unlike (a) and
(e)], which can be considered as indirect evidence of nonlinear dynamics.' To verify
this we calculate BDS statistic for each series which shows at 0.5 % significance
level rejection of hypothesis that increments are i.i.d. which means that the data can
be generated by a low-dimensional chaotic or nonlinear model. Unfortunately BDS
statistic still cannot be a reliable criterion for short samples of data, even for whole
trading day (see below about BDS). It is important to note that any practical use
of the model can be achieved only in the case of low dimension. High-dimensional
systems usually have too many unknown parameters and are quite unstable, thus
unpredictable even for the short horizon. In this case, stochastic modeling will
be more appropriate. A fine illustration is given by Poincaré (1912), describing
atmospheric effects. It is theoretically possible to calculate the distribution of rain
drops on the pavement, but due to the complex nature of the generating process,
their distribution seems uniform; thus it is much easier to prove this hypothesis by
assuming that the generating system is purely stochastic (Poincaré 1912).

3 Correlation Dimension Approach to Research

Unfortunately, there exists no statistical test that has chaos as a hypothesis, nor
a characteristic property separating chaos from stochastic process. The basic
method for identification is the algorithm by Grassberger and Procaccia (1983),
presenting a characteristic property of a wide class of pure stochastic processes.
The algorithm is based on the concept of a correlation dimension for the observed
m-dimensional trajectory. The main idea of the method is the following: given
observable trajectory x;, x2, ... Xy, we reconstruct a series of m-dimensional vectors
Y= (X, X —ps - - xk_(m+1),,)”’>‘1. m and p are considered a priori given the
parameters of the method. Then we find an estimate of the so-called correlation
integral of the system:

__ number of pairs (yi,y‘/-): ||y,~—yj ||<s
Cm (8) - total number of pairs (y,- ,yj)

m
= lim oot > 0 (e — |y — y)]

m—o0M
ij=1

).

where 0(x) is a Heaviside step function. For small ¢ correlation integral grows
according to power law at the rate of D(m):

Cyn (g) ~ P

ISee, for example, phase trajectories of several well-known simple chaotic systems, such as the
Mackey-Glass and Genesio-Tesi systems, and trajectories of purely chaotic system such as Wiener
process.
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Fig. 2 Correlation dimension for Lukoil stock spread series (left) and relative spread series (right)

For stochastic white noise D(m) is proportional to m, but for a large class of
deterministic systems, correlation exponent D(m) has saturation level D’ which
can be used as a characteristic of non-stochastic behavior of the variable. Figure 2
demonstrates correlation exponent D(m) for Lukoil stock spread and relative spread.
Saturation of correlation exponent D can be seen for return, price changes and
relative spread, indicating the existence of complex nonlinear but deterministic
behavior. Price and spread show pure stochastic properties. Another advantage of
the Grassberger and Procaccia algorithm is that correlation dimension allows us
to find upper boundaries for generating system dimensions. Taken’s embedding
theorem implies that phase dimension of the system cannot be higher than 2D’ + 1,
where D’ is the saturation level.

Unfortunately, realization of the Grassberger and Procaccia method is quite
difficult in practice. One shortcoming is a priori value of lag parameter p. The
classical solution is to estimate an autocorrelation function of the series and take
the first lag value at which autocorrelation turns to zero. The main problem is
an insufficient amount of data for correlation integral estimate. While in natural
sciences the amount of data used for one test approaches 20,000-30,000, the usual
length of a financial series is about several thousand (for example, daily index
data or aggregated intraday data). This makes estimates of correlation dimensions
unreliable for m higher than 10-15. Moreover, small values of threshold ¢ lead to
insufficient number of summands in estimate and zero value of integral for rather
small values. Figure 3 shows a real form of correlation integral for different values of
a threshold in a logarithmic scale. For large lengths of input series, the dependency
must be close to linear, but in practice the property holds only for a certain range of
threshold values that must be chosen very carefully.

Another approach to identifying nonlinear behavior in data was introduced by
Brock et al. (1986). The authors presented a statistical test which has i.i.d. of the
series as a null hypothesis. Typical use of the method is fitting some a priori linear
model to given data and testing residuals for i.i.d. property. Necessary statistics uses
the correlation integral estimate, which raises all the above mentioned problems,
such as large amount of input data.
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Liu et al. (1992) examined the possibilities of a BDS test and found that its
power varies for different linear models, e.g., its power, is less for nonlinear moving
average models. It is also necessary to emphasize that rejection of the null cannot
be interpreted as the presence of chaotic model. It only implies some (probably
stochastic) nonlinearity.

4 Scheinkman and LeBaron Test for Predictability

Another interesting use of correlation integral was presented by Scheinkman and
Lebaron (1989). As before, Cy(e) stands for the correlation integral for M as a
phase dimension of reconstructed space, and threshold ¢. It is proven that

Cu+1 ()

Sus1(e) = Cor )

gives an estimate of conditional probability that

sup | yi4i — ya+il < &,
0<i<M

given that

sup  |yi+i — y2+il < e,
0<i<M—1
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Fig. 4 Scheinkman-LeBaron function for spread (left) and return (right)

Table 1

Scheinkman-LeBaron Variable Su(e)
function behavior Return Increases
Price Converges
to 0.96
Price change Increases

Absolute value of | Increases
price change

Spread Converges
to 0.9

Relative spread Increases

i.e. the conditional probability that two states of the system are close, given that
their past M histories are close.

This result can be implemented to define the measure of predictability and
determinism of the data. If Sy/(¢) does not saturate as M grows, then states of
the system depend on the information about its history. Otherwise the dynamics
are affected by some random factor unrelated to the system itself, which can be
interpreted as stochastic behavior of the process. As a result, Scheinkman and
Lebaron’s function gives the following criteria:

» If states are independent, then Sy(g) does not depend on M;
» If past values of the series help predict future values, Sy,(¢) will tend to increase
with M.

Figure 4 demonstrates the behavior of Sy (¢) for spread and return series and four
different threshold levels. Growth in case of spread indicates its stochastic nature.

Results for all six microstructure variables are given in Table 1. Predictability is
observed for all except spread and price series, which is consistent with previous
results.
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5 Recurrence Plot Approach

Two main problems with the correlation integral approach are: (1) considerable
amount of data necessary for reliable estimates and (2) a priori choice of embedding
parameters for reconstructed phase space. Recently, a more elaborate technique
proved to be useful for analysis of nonlinearity. This new approach uses recurrence
plots as a tool for visualization of observed trajectories. Recurrence plots show
similarity in dynamics over time without specifying the structure of underlying
processes. For observed series x; it can be expressed as

R(ti.1j) =0 (e — |xy — x;,]) .

where ¢ is a specified threshold parameter. Usually the system dimension must be 2
or 3 to allow visualization, otherwise its trajectories can be observed only through
projection on two or three dimensional subspaces. A recurrence plot enables us
to investigate m-dimensional trajectories through a two-dimensional representation
of its recurrences. Figure 5 demonstrates RPs for white noise processes and for
predictable periodic sine function (diagonal lines are marked red).

Continuous diagonal lines prevail for sine RP, which is expected for predictable
systems. Base structures in the recurrence plot can be easily interpreted: diagonal
lines parallel to the main diagonal mean predictability at some periods of time, line
length measures period of predictable behavior; horizontal and vertical lines indicate
stability of the system state over a period of time. Diagonal lines turn out to be the
main characteristic for research of complex deterministic behavior. Unfortunately,
real finance data series produce quite complicated RPs that cannot be analyzed
visually and need quantitative measures for determinism. Figure 6 shows RPs for
Lukoil stock return and price.

1000

800
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400

200

0 200 400 600 800 1000 0 260 460 5{)0 8;}0 1000
i i

Fig. 5 Recurrence plot for white noise process (left) and sine function (right)
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Table 2 Recurrence quantification analysis measures
Name Definition Interpretation

Recurrence rate (RR)
Determinism (DET)

Entropy (ENTR)

Percentage of black points in RP
Percentage of black points which
are part of diagonal lines of at
least length L

Shannon entropy of the
distribution of diagonal lines P(L)

Correlation integral
Measures predictability

Quantifies the complexity of the
deterministic structure

Laminarity (LAM) Same as DET for vertical lines Quantifies the occurrence of
laminar states
Trapping Time (77) | Mean length of vertical lines Measures the mean time that the

system sticks to a certain state

White spaces in a price’s RP mean abrupt changes in price dynamics, which is the
consequence of nonstationarity of the variable. Stationarity of the input signal is one
of the implied properties in many nonlinear analysis techniques. Correlation integral
methods described the above produced results consistent with our expectations
about price. However, as will be shown below for recurrence analysis, applying
methods to nonstationary data can lead to counterintuitive results.

A number of measures were introduced with the aim of quantifying structures
found in RP to go beyond visual classification. Table 2 shows some of the main
characteristics.

Results of quantification analysis are shown in Table 3. A presence of determin-
istic behavior is shown for stock returns, relative spread and absolute value of price
change. The situation is unclear for price change series and no determinism was
detected for spread. As we can also see, price series has the best DET value and low
entropy, which implies deterministic dynamics. The result is counterintuitive and
not consistent with expectations from a simple visual examination of RP, phase tra-
jectories or previous results. The observed effect originates due to the nonstationary
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Table 3 Recurrence quantification analysis results for stock dynamics

Variable RR (%) DET (%) ENTR LAM (%) TT
Return 6.23 0.91 0.19 56 16
Price 6.95 3.7 0.28 78.02 21
Price change 591 0.17 0.32 58.92 16
Absolute value of price change 7.91 0.39 0.26 69.81 17
Spread 8.19 0.03 0.68 78.38 21
Relative spread 6.43 0.51 0.23 73.92 18

nature of price dynamics and, thus, an insufficient number of recurrence points. This
leads to unreliable estimates of quantification measures.

Another use of recurrence plot approach was introduced by Thiel et al. (2004).
Let P.(]) be the probability to find a diagonal line of at least length /. It can be shown
that the following approximate equality holds:

P.(l) ~ gle K2

Where p is embedding lag parameter for reconstructed space (introduced in this
chapter), v is the correlation dimension and K, is order-2 Rényi entropy of the
system. Based on this formula one can estimate Rényi entropy as a slope of P.(l) in
log scale and correlation dimension via simple formula:

() (n(55)
v=Inl————):(In .
Peyac(l) s+ Ae

Thiel et al. (2004) have shown that both estimates are independent of embedding
parameters, which solves one of the correlation integral problems at least to some
extent.

Conclusion

A review of modern methods for identifying nonlinear dynamics was given;
all algorithms were applied to real microstructure intraday MICEX data while
describing difficulties of implementation in practice. It is worth mentioning
that all the procedures are applicable without a priori knowledge of the
underlying model or class of models. Results can be structured as follows:

* According to all identification techniques, return, price changes and rela-
tive spread show signs of a complex nonlinear underlying structure. Thus
a random walk model isn’t appropriate for them (such as Merton model
for returns). The Scheinkman—LeBaron procedure shows that the history

(continued)
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of these variables helps to predict future values. Unfortunately, obtained
results indicate but do not imply deterministic behavior of the variables.

* Price and spread dynamics in the correlation integral approach show purely
stochastic behavior, which can also be due to the large amount of noise in
initial data. Future values are not fully predicted by information in history.

* Recurrence quantification analysis shows the presence of determinism
in returns, relative spread and absolute price change dynamics, but no
determinism for spread. Results for price are clearly incorrect due to
nonstationarity of the initial series.

Nonstationarity also questions the reliability of obtained price results of
other methods. This can explain the contradictory conclusion: return and price
change appears to be deterministic in nature, while price is purely stochastic—
though it is a deterministic function of return/price change. A simple
explanation can be proposed: due to integral transformation of return/price
change, the price series loses stationarity and becomes inappropriate for
given methods. Dependency on time makes it impossible to recognize similar
patterns in data, so the price series is identified as stochastic process.
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Revisiting of Empirical Zero Intelligence Models

Vyacheslav Arbuzov

Abstract This paper describes a zero-intelligence approach implementation for the
modeling of financial markets. We construct a mechanism of order flow and market
engine simulation. We analyze stylized facts to estimate the quality of our models.
The research is based on a 1 month order and execution history data of the Moscow
Exchange (MOEX) for one stock (JSC “Aeroflot”).

Keywords Daniels model ¢ Market microstructure ¢ Mike—Farmer model e
Order flow * Stylized facts * Tail exponent ¢ Zero-intelligence models
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1 Introduction

Agent-based models play an important role in understanding the mechanisms of
financial markets driven by the advances in technologies that allow the creation
and calibration of complex and very detailed models. An adequate replication of
the mechanism of the price formation in those models is of the same or greater
importance than the replication of the behavior of the agents. As first shown in
Daniels et al. (2003), zero-intelligence (ZI) agent models are able to reproduce
statistical regularities of the market with the Continuous Double Auction (CDA).
ZI1 models are based on the hypothesis that the behavior of all agents can be
described by random order flow with empirically estimated parameters. We studied
the implementation of a ZI model on the Russian market. We reconstructed Daniels
and Mike—Farmer versions.

After the description of Farmer and Daniels models, we try to change some
details in the model and compare all our models with the real market.
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2 Data

Our study is based on detailed market data, which includes the order history (order
log) for Aeroflot stock (AFLT). Aeroflot is the largest Russian airline company and
its equity is referred to as blue chip and is included in the MICEX index. During the
observed period (21 trading days) there were, 2,765,074 orders which arrived and
31,572 which were executed (15,786 trades). Over this period, 15.3 million stocks
were bought and sold yielding a 779.4 million ruble (approximately $26 million)
turnover. All the data comes from the Moscow Exchange and is based in Perm State
National Research University clusters (Computer cluster for reverse engineering,
agent-based modeling and market microstructure researches of the Russian capital
market). Most calculations were made using statistical environment R (Core Team
R 2013). For calculations of the best bid and best asking prices from the order flow
we used an Rcpp package with low-level programming.

3 The Daniels Model (2003)

The first example of this model was presented in Daniels et al. (2003). After that
there were a few papers published with an analysis of this model (Farmer et al.
2005, 2006). The main assumption of this model was that orders are come onto the
market randomly. There are market orders that are executed immediately and limit
orders, which are placed at a fixed price level and executed only when there is a
counter-party on the market which wants to trade at this price. All orders have an
intensity of incoming, an intensity of canceling, a volume and a price (see Fig. 1).
All these parameters can be measured using empirical data, and this is the main
advantage of this model. We try to create a model as in the original papers.

For the estimation of parameter o we calculated the difference between the best
prices and incoming orders (relative price). The model suggested that most orders
come near the best prices (see Fig. 2a). According to the model, we estimated only
58 % of the distribution of the relative price for effective limit order placement.

We calculated Q;"" =12 tick size (the 60 percentile of distribution of the
relative price for effective limit order) and Qﬁ”we’ = — 11 tick size (the two
percentile of distribution of the relative price for effective limit order) and the
total number of effective limit orders 1,655,646 in this interval, so o = 3,427
orders/per day - per price or ¢ = 0.108 orders/per second- per price. The total
number of effective orders was 869 market orders and 3,390 limit orders with imme-
diate execution, so L = 0.0064 orders /per second (for more details of parameter
estimation see Appendix A.1 in Farmer et al. 2005). There is one important remark
that we estimated parameter § in terms of time (not in terms of events as in the
original work). We found that the average time of an order’s life is equal to 3.5 s
before cancellation.



Revisiting of Empirical Zero Intelligence Models 27

TVolume

Sell limit orders
Sell market orders I A \

[ | | | |
v v v v .

| p— N

— --
(" Buy limit orders
e Y

e
oO—
&

a

cancellation

Fig. 1 Scheme of the Daniels model

a Limit price & b Limit price 4>0
14 o N
. = x y.w
12
1
10 1 1000
E A
T 3 01
| 2
6 ~ =
bl ” 001
A .l
i " ;a‘. i
- L™ ¥ = 1624, 1x35%2
ki 0.001 R =0.8514
e
2 .‘u -e ""u-‘.n
-
~ R YN
)
0 '“ 0.0001
-10 0 10 20 30 a
a

& Buyorders @ Sell orders ® Buy orders X Sefl orders

Fig. 2 Histogram of (a) entering order price differences from the best price and (b) power-law
tails of order price



28 V. Arbuzov

Table 1 Parameters of the

. . Parameters | Description Value
Daniels model on the Russian | 5 ¢ limit ord 0.108
market (AFLT, January 2012) o ntensity of fimit orders | 0.

n Intensity of market orders | 0.006
8 Intensity of cancelations | 0.287
dp Tick size 0.01

o Volume of orders 1,184

All the parameters of this model you can see in Table 1. We understand that
the 1 month of our sample cannot be as representative as the length of 1 year and
some seasonal effects should be taken into account, but as a comparison of models
it would be good enough, so we are using these parameters in the comparison of
models. We would like to thank Oksana A. Kostousova for discussions on this
model.

4 The Mike-Farmer Model (2008)

In the publication of Farmer et al. (2006) in the Future Enhancement chapter, there
were announced important properties of the order flow for a future upgrade of the
model. Parts of these features were introduced in Mike and Farmer (2008). We call
this model the MF model. This model was distinguished from the previous one in:

* Trending of order flow
* Power placement of limit prices
* Non-Poisson order cancellation process

Later, this model was upgraded and analyzed in Chakraborti et al. (2011), Gu
and Zhou (2009), and He and Wen (2013). The first and most important assumption
that signifies order flow is a long memory process (Bouchaud et al. 2004; Lillo and
Farmer 2004, Lillo et al. 2005).

The first step for the construction of the model is the estimation of the Hurst
exponent using methods in Achard and Coeurjolly (2009) and realized in the
package dvfBm of the R environment (for the estimated parameters see Table 2).

Another important point in this research is the distribution of the order price. For
all the variables we use the same names as in Mike and Farmer (2008). In calculating
and fitting the relative distance from the best price (the best bid for buying orders
and the best ask for selling orders) we find that Student’s t-distribution is not the
best theoretical distribution for the description of our data. The positive tail of
distribution is quite definitely less than the theoretical tail of distribution. This means
that effective market orders will appear more often than in reality (see Fig. 3). The
negative tail of distribution does not differ too greatly from the theoretical values,
but it does describe the power-law tail of order price (see Fig. 2b).
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Table 2 Parameters of the Mike—Farmer model on the Russian market (AFLT, January 2012)

Parameters Description Value
H; Hurst exponent of the order sign series 0.73
oy Degrees of freedom of the order placement distribution 2.08
0,103 Scale parameter of the order placement distribution 6.76

A Parameter for the equation of order cancellation 0.0167
B Parameter for the equation of order cancellation 57.12
D, Parameter for the equation of order cancellation 0.283
D, Parameter for the equation of order cancellation 27.4

T Tick size 0.01

0.1

0.00 ALL
001 A
'y AAA A vy AA

0.0001
x- relative limit price from same best

Fig. 3 Fitting of the empirical price distribution using t-distribution

This crude assumption of our data can lead to bigger spreads than in reality, and
bigger returns, because the number of effective market orders would be more, and
these orders take away liquidity from the market. Later in our research, we try to
upgrade a theoretical description of this distribution.

In the MF model there are advanced cancellation processes, which differ from
the Poisson process. We calculate probability conditioned on position in the order
book as in the original paper (see Fig. 4).

We find that we are not able to have a good fit of this curve without redesigning
the functional form as:

p (C,-

y,-) = K; (1= Dyexp™)

After the estimation parameters, we calculated another important factor, which
determined an imbalance between buyers and sellers on the market: order book
imbalance (see Fig. 5).
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Fig. 5 The probability of cancellation conditioned on order book imbalance

After that we try to estimate probability conditioned on number of orders in the
order book and it was very surprising for us, because in Mike—Farmer data there
was inverse relationship (see Fig. 6).

In order to fit our data we bring an analytical form for the curve as in the process
conditioned on the position in the order book. Total conditional probability was
calculated as:

p (C,-

Yis Rimb, ntot) =A (1 - Dlexp_yi) (nimb —+ B) (1 — Dzexp_"tot)
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Fig. 6 The probability of cancellation conditioned on number of orders in the order book

At each step (in our case, each second) we generate one order with sign, volume and
price. After that, we calculate the conditions of the order cancellations. For details
of this realization see He and Wen (2013). It is interesting that during the process of
evolution, the structure of the financial market has undergone changes, especially
with the emergence of high frequency and algorithmic trading. Now algorithms
trade on financial markets at the “speed of light,” and many orders are cancelled
after the fact of entry onto the market. Most orders in our sample close after their
submission and so the probability of cancellation is very high.

5 The Mike-Farmer Model Without the Cancellation
Process (MFWC(C)

It is an interesting question about what there would be on the market if there were
no cancellations. Would trading or the market be stable or not? We realize the MF
model without cancellations (we call it MFWC).

6 Model Upgrading

The most important thing that we try to improve in the MF model is the distribution
of order price. We cut distribution into two parts: one with a positive tail and
one with a negative tail. We find that both tails of distribution fit a good by
power-law distribution with a tail exponent = —2.15 for positive values and a tail
exponent = —2.493 for negative values (we inversed the negative tails and after
that the estimate coefficients). Power-law poorly describes the center of distribution,
when orders are put at the best prices. We fit 210 ticks from the best prices (x = 0)
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using Student’s t-distribution. On the Russian market traders see only the first ten
prices for buy and sell, so this part of the orders should have another distribution
(for example t-distribution) (Figs. 7 and 8).

Another additional improvement related to the order cancellation process is
trying to take into account another metric of liquidity, for example RTCI:

Zj;l |pi —plen;

k

. pini
i=1

RTCI =

where

it order position in the order book, i=1.. .k,
k: total number of limit orders in the book,

pi: price of order i,

n;: volume of order i, n; <0 for buy side orders,
p: current market price.
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Fig. 9 The probability of cancellation conditional on the RTCI liquidity metric

Table 3 Parameters of the upgrade model on the Russian market (AFLT, January 2012)

Parameters Description Value
Qpositive Exponent of the positive tail —2.15
Qpegative Exponent of the negative tail —2.493
A-10773 Parameter for equation of the orders cancellation 2.87
Ds Parameter for the equation of the order cancellations —583.1
Bpositive * 10~ 6 Scale factor for the positive tail 40
Bregative - 1076 Scale factor for the negative tail 0.9

This metric allows the measurement of the sparseness of the order book. The
order book may contain a large number of orders, but all the orders are far away
from each other (in this case book it would be rarefied). For more details of this
metric, see Arbuzov and Frolova (2012).

We calculated the probability of cancellation conditional on RTCI and found that
it could be approximated by a linear function as in case of order book imbalance.
In Fig. 9, we can see a reasonably expected result, that when orders in the order
book are located far from each other, traders have no reasons to cancel their orders
(Table 3).

We calculated an RTCI metric at each step of our simulation. The total condi-
tional probability was calculated as:

j2 (Ci

Vi Nimbs nwr,RTCI) =A(1—=Diexp™) (nymp + B)

X (1 — Daexp™") (RTCI + D3)
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7 Quality Analysis of the Models

Stylized facts are a good test for the identification of model quality, but another
important aspect is parity of basic market characteristics:

1. Returns. It is a well-known fact that simple Brownian motion does not allow the
generation of heavy tails of distribution. The ZI model can generate fat tails, but
the MF and Daniels models (in our case) can generate more heavy tails than in
reality. It is interesting that MFWC generated returns, but without heavy tails
(Fig. 10).

2. Distribution of spread. Farmer et al. (2005, 2006) in their research concentrated
on spread. The spread of our model is not like the empirical one, but with heavy
tails in their distribution (Fig. 11).

3. Cancellation time. The order cancellation process plays an important role in asset
pricing, so it is important that its lifetime has heavy tails. The order cancellation
process in the MF model shows complicated behavior, which is conditional on
different market characteristics (just this process leads to a fat tail in an order’s
life) (Fig. 12).
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Conclusion
We construct and estimate the parameters of two well-known models: Daniels

and Mike—Farmer. During the process of the estimation of parameters, we
find that distributions of price and probability of cancellation are conditional
on the number of orders in the order book being quite different from the
MF model. It is important that this model is very sensitive to small details
in realization and small bugs in the code. Parameters being not carefully
estimated can lead to a significant worsening of model results. We have tried
to upgrade the model for our data, including an additional parameter for the

(continued)
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order cancellation process and fitting prices using two power-law distributions
with t-Student’s center. The upgrade model for our sample shows the best
results. It is important that the model represents only the microstructure
of the market of Aeroflot stocks in January and cannot be spread to other
instruments.
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Construction and Backtesting of a Multi-Factor
Stress-Scenario for the Stock Market

Kirill Boldyrev, Dmitry Andrianov, and Sergey Ivliev

Abstract Nowadays stress-testing is a popular framework for the analysis of the
financial stability of different markets’ institutes and objects. This work proposes
a new approach to trading book stress-testing by building price paths based on
generalized autoregressive conditional the heteroskedasticity (GARCH) model with
Pareto distribution for the random fluctuation of prices and t-copula for describing
the dependency structure between factors.

Keywords Copula theory ¢ Extreme value theory ¢ GARCH e Pareto
distribution * Stress-testing * Stylized facts

JEL Classification C49, G17

1 Introduction

Stress-testing is a set of various techniques which allows the gauging of an
institute’s vulnerability to “severe, but plausible” events (Basel Committee on
Banking Supervision 2009). Nowadays most interest in this comes not from
financial market participants, but from regulators. The recent crisis shows that risk
estimation methods have to be more flexible and versatile if we would like to see
the real picture (Sorge 2004). We have to take into account not only of large single
events which shock a situation, but also of their aftermath. Therefore we should
consider the dynamics of the market’s conditions, and stress-testing allows us to do
that.

This paper provides an approach to the stress-testing of a trading portfolio. As a
test portfolio for consideration we use the MICEX-10 index, which includes major
Russian blue chip stocks (HYDR, GMKN, VTBR, ROSN, GAZP, SNGS, URKA,
LKOH, SBERP, SBER). The proposed approach is based on two models: the risk
factors evolution model and the risk factors interrelation model.
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2 The Risk Factors Evolution Model

To describe this evolution, the following AR(1)-GARCH(1,1) model (Posedel 2005)
is applied for each risk factor:

Fe = QR+ mri-+ &

& = 0,8

of =+ pie}_ + o},
where r—return at time #, yu—basic value of return, e—model error, which is
decomposed to §,—stochastic component and o,—conditional standard deviation
at time ¢, w—basic value of o;.

The stochastic component of error §, is often considered as a simple random
variable with standard normal distribution. However from empirical data one can
clearly see that this cannot be true, because it’s distribution usually has heavy tails.

In this paper we use Pareto distribution from extreme value theory to simulate
this feature in the following way:

* The AR-GARCH model fitted onto historical returns gives historical values for
8

¢ Historical data on §; allows to build its distribution;

¢ The modeled distribution of §; used for the AR-GARCH forecast. Distribution §;
was constructed in the following way:

e The central part of the density curve obtained with univariate kernel density
estimator in the form:

~ n - X;
f(x.h) = ﬁziZlK(x " )

where X;—sample, K—smoothing kernel (function which satisfies f KXx)dx=1),
h—>bandwidth parameter.
Here we used Gaussian kernel:

K(x) =

1 ( x2 )
exp | ——
V2 P2
* Tails are fitted separately with a Pareto distribution. It is a base distribution from

an extreme value theory in the sense that every distribution of any extreme value
can be transformed into a Pareto distribution. It has the form:

rvj—

GPepg(x) =1— (1 + S%)_ )

where f—scaling, 1/6—tail index.
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Fig. 1 Returns simulated by the AR(1)-GARCH(1,1) model (fitted onto the second half of 2008):
black line—historical data, red line—simulated data (starts with 15th of May)
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Fig. 2 Returns simulated by the AR(1)-GARCH(1,1) model (fitted onto the first half of 2013):
black line—historical data, red line—simulated data (starts with 15th of May)
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Fig. 3 Prices simulated by the AR(1)-GARCH(1,1) model (fitted onto the second half of 2008):
black line—historical data, red line—simulated data (starts with 15th of May)

The proposed evolution model was applied to two historical periods:

1. Second half of 2008 (crisis conditions);
2. First half of 2013 (stable conditions).

Samples of returns and price dynamics forecast by this model are shown in
Figs. 1, 2, 3, and 4. One can see that it catches the volatility clustering effect and
correctly transfers initial the historical market conditions to the forecast period.
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Fig. 4 Prices simulated by the AR(1)-GARCH(1,1) model (fitted onto the first half of 2013): black
line—historical data, red line—simulated data (starts with 15th of May)

Table 1 t-copula parameter estimation (second half of 2008), number of freedom degrees =5

HYDR | GAZP | GMKN | LKOH | ROSN | SBER | SBERP | SNGS | URKA | VTBR
HYDR | 1.00 0.58 | 1.00 0.99 1.00 |0.71 |1.00 0.75 |1.00 1.00
GAZP |0.58 1.00 | 0.55 054 |055 [0.87 |0.55 0.81 |0.55 0.55
GMKN | 1.00 0.55 | 1.00 0.99 1.00 |0.68 |1.00 0.73 | 1.00 1.00
LKOH |0.99 0.54 |0.99 1.00 |0.99 |0.67 |1.00 072 10.99 0.99
ROSN | 1.00 0.55 | 1.00 0.99 1.00 |0.68 |1.00 0.73 | 1.00 1.00
SBER |0.71 0.87 ]0.68 0.67 |0.68 |1.00 |0.68 094 0.68 0.69
SBERP | 1.00 0.55 | 1.00 1.00 1.00 0.68 |1.00 0.72 | 1.00 1.00
SNGS | 0.75 0.81 |0.73 072 1073 1094 |0.72 1.00 0.73 0.73
URKA | 1.00 0.55 | 1.00 0.99 1.00 |0.68 |1.00 0.73 | 1.00 1.00
VTBR | 1.00 0.55 |1.00 0.99 1.00  |0.69 |1.00 0.73 | 1.00 1.00

3 The Risk Factor Interrelation Model

The dependence structure of risk factors was described by a #-copula (Genest et al.
2009). Copulas were used instead of the well-known Pearson’s linear correlation
because the latter one has many drawbacks (Schimdt 2006) such as:

 Itis impossible to capture the full dependency composition of risk factors;

 If the correlation is equal to zero it does not mean that the factors are independent;

* It does not work correctly for distributions with heavy tails because it supposes
that risk factor variances are finite (which contradicts the empirical data).

The maximum likelihood method was used to estimate the parameters of the ¢-
copula (Charpentier 2006). Historical data for stochastic component §, of the AR(1)-
GARCH(1,1) model error was used as a sample for this estimation. The results of
the estimation are illustrated in Table 1, Table 2 and Fig. 5.
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Table 2 t-copula parameter estimation (first half of 2013), number of freedom degrees =5

HYDR | GAZP | GMKN | LKOH | ROSN | SBER | SBERP | SNGS | URKA | VTBR
HYDR | 1.00 0.61 1.00 094 079 |1.00 |1.00 0.72 | 1.00 1.00
GAZP |0.61 1.00 | 0.61 052 079 |0.61 |0.61 0.85 |0.61 0.60
GMKN | 1.00 0.61 1.00 094 1079 |1.00 |1.00 0.72 | 1.00 1.00
LKOH |0.94 0.52 |0.94 1.00 [0.72 094 |0.94 0.64 0.95 0.95
ROSN |0.79 0.79 10.79 0.72 1.00 0.79 |0.79 093 10.79 0.79
SBER | 1.00 0.61 1.00 094 079 |1.00 |1.00 0.72 | 1.00 1.00
SBERP | 1.00 0.61 1.00 094 079 |1.00 |1.00 0.72 | 1.00 1.00
SNGS |0.72 085 [0.72 064 093 |0.72 |0.72 1.00 0.72 0.72
URKA | 1.00 0.61 1.00 0.95 0.79 |1.00 |1.00 0.72 | 1.00 1.00
VTBR | 1.00 0.60 |1.00 0.95 0.79 |1.00 |1.00 0.72 | 1.00 1.00
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Fig. 5 Simulated correlation between different stocks (as scatter plots) obtained on the basis of
t-copula estimation and simulation: red color—second half of 2008, black points—first half of
2013
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The dependence structure simulation in Fig. 5 reproduces the well-known
empirical fact that in a period of crisis and instability the correlation among separate
stocks increase. But also the simulation shows a discorrelation in some cases.
Perhaps this can be explained by links between the stocks in the portfolio under
consideration.

4 General Scheme of the Model Workflow

The model workflow includes the following steps:

1. The AR(1)-GARCH(1,1) model estimation of each risk-factor (i.e. returns on

each stock).

2. Distribution construction for historical §; (the stochastic component of the AR-
GARCH model error) with a Gaussian smoothing kernel and Pareto distribution
for the tails.

. A constructed distribution for §, used for 7-copula identification.

. t-copula used for generating values of §, during the forecast period.

5. Build return forecast for each stock based on the identified AR-GARCH model

(step 1) and generated §; (step 4) N times via the Monte-Carlo approach.
6. Calculation of the profit-loss profile and risk metrics values based on results from
step 5.

[N

5 Stress-Test Simulation

We analyzed two different use case scenarios:

» Basic scenario: no changes in conditions; we just built a forecast for the next 30
days and calculated a profit-loss profile for the portfolio on the 30th day.

» Stress-scenario: we simulated a 40 % idiosyncratic drop in GMKN stock, built a
forecast for the next 10 days after this drop, and after that calculated a profit-loss
profile for the portfolio on the 10th day.

Results of the stress tests are shown in Fig. 6 and Table 3.

6 Analysis and Backtesting

The backtesting of simulated return and price time-series shows that our approach is
able to reproduce some stylized facts (Andersen and Davis 2009). There is an auto-
correlation in the absolute values of simulated returns (Malmsten and Terasvirta
2004), but it decays very fast (Fig. 7).



Construction and Backtesting of a Multi-Factor Stress-Scenario for the Stock Market 43

Profit-loss profile

o i tifsusiaizie
- Rt 111111174 i
— — = basic scenarig
""" stress scenario
s S NUTSUURRRRRRRURN. SSCHRRURITRUURHS: OEn SRR
o
o R0 ANPGRS USROS [N 117 - T . I, GO0 VTR, (Y-
= o
=
[
=
2
s =
o 4
4
-
4

0.2
\
N\
\

0.0

returns

Fig. 6 Profit-loss distribution: historical, basic scenario, stress scenario “GMKN-40 %”

Table 3 Estimated risk-metrics on scenarios

Basic scenario Stress scenario “GMKN-40 %”

Maximum loss 39.90 % 42.30 %
Maximum profit 59.40 % 57 %

90 % VaR —13.90 % —16.30 %
95 % VaR —17.80 % —20.20 %
99 % VaR —26.80 % —29.20 %
90 % ES —21.10 % —23.50 %
95 % ES —26.90 % —29.30 %
99 % ES —39.90 % —42.30 %

QQ-charts show that the distribution of simulated returns differs from normal
and (Fig. 8) and demonstrates heavy-tails fairly close to the distribution of historical
returns (Fig. 9).
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Fig. 7 Auto-correlation function for the modulus of simulated returns for different stocks
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Fig. 9 QQ-charts for the distribution of simulated returns in comparison with the distribution of
historical returns

Conclusion

We propose a new approach for stress-testing of a given investment portfolio
based on the application of the GARCH model with a particular specification
for the model’s error together with the copula’s description of risk factors
dependency structure. This method can be backtested by the reproduction of
stylized facts known for returns and price time-series:

(continued)
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» There is autocorrelation in simulated return time-series, but it decays fairly
fast;

* The distribution of simulated returns differs from normal and has heavy
tails pretty close to the distribution of historical returns;

* There is a volatility clustering effect in the simulated returns;

* By using the copula for a dependency structure description it is possible to
catch various and complicated changes in dependencies between the risk
factors.

The model allows us to simulate the returns of the portfolio according to
the variations in risk factors for use for profit-loss distribution estimation, as
well as market risk measurement under stress conditions.
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Modeling Financial Market Using
Percolation Theory

Anastasiya Byachkova and Artem Simonov

Abstract Econophysics is a relatively new discipline. It is one of the most
interesting and promising trends in modeling complex economic systems such as
financial markets. In this paper we use the approach of econophysics to explain
various mechanisms of price formation in the stock market. We study a model,
which was proposed by Jean-Philippe Bouchaud and Dietrich Stauffer (Bouchaud
2002; Chang et al. 2002; Stauffer 2001; Stauffer and Sornette 1990), and used to
describe the agents’ cooperation in the market. The most important point of this
research is the calibration of the model, using real market conditions to proof the
model’s possibility of setting out a real market pricing process.

Keywords Agent modeling ¢ Econophysics * Financial markets modeling ¢
Percolation theory ¢ Quantitative finance

1 Elements of the Percolation Theory

Physics and finance are both based on the theory of random walks and on the
collective behavior of large numbers of correlated variables (Sornette et al. 1999).

The considered model is based on percolation theory, which describes phase
transition in physical systems. It regards the square lattice from L * L sites. Every site
can be “occupied” or “free”; the site can be occupied with probability p randomly.
The groups of neighboring occupied sites are formed in clusters.

The main task of the percolation theory is to search for an infinite cluster—
cluster, which extends from one side of the lattice to another. In this situation, most
parts of cells belong to one cluster. In this case p. is the percolation threshold,
the critical probability of infinite cluster appearance and the offensive of phase
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transition (Gould and Tobochnik 1990). Next, we turn to the application of the
model in finance.

2 Percolation Model of Stock Market Prices

It is well known that we often observe “clustering” (or herding) phenomena in the
financial markets—the situation when agents in the market prefer to make the same
decisions. This behavior is clear in terms of psychology, because people are used to
behaving dependently with each other; we might be easily influenced by others in
many aspects of our lives. This correlation comes from random clustering. In our
model, there are clusters of agents, i.e. groups of traders in the market that prefer to
act together, i.e. to buy or to sell securities simultaneously.

For market simulation, each occupied site is regarded as an agent, and clusters
are groups of traders who randomly decide to buy or to sell together (Stauffer 2001).
Argument g is a measure of a one-time step. Small value of a corresponds to a small
interval, and a value near the maximum of 1/2 corresponds to a large-time interval.
Argument has influences on an agent’s decisions: each cluster decided randomly to
sleep with probability 1 —2a or to be active with some probability. Argument p;,,
is the probability that an active agent prefers to buy. Argument ps; = 1 — pj,y is the
probability that an active agent prefers to sell. This parameter helps us to consider
influence of past and present trends on the market. It’s important to note that in this
model, we have an assumption that agents have only two possible activities—to buy
or to sell—and its sum is a full group of events.

Thus, for every time step, we analyze the existing clusters and find the number
ng of clusters containing s investors each. The distribution of x; closely follows the
percolation threshold of the scaling law:

ng~s " f (p—pe)s’] (1

with two critical o, t exponents, and a function f decaying exponentially in its
tails. Then each cluster randomly decides to buy, sell or sleep with some defined
probabilities pp,y, Psen, and (1 —2a) probability of sleeping. The price change in the
market in a one-time step, which is labeled as A(?), is proportional to the difference
of demand and supply in this market:

A(r) =) nes = ns, )

buy sell

where the total demand is sum of all agents in all clusters that decide to buy, and
total supply is the sum of all agents in all clusters that decide to sell (Stauffer 2001).

The important part of this research is the analysis of model behavior and price
change at the critical moment of percolation threshold occurrence. It’s possible to
explain this market mechanism: when p < p., price rises and more people enter the
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Fig. 1 Algorithm of the single iteration of Monte Carlo simulation

market. Therefore p rises until a big crash occurs at p =p,. In this moment the
price falls sharply, agents suffer losses and leave the market. As a result p falls and
the cycle starts again at low p. The market crash during the moment of percolation
threshold occurrence means that the most agents have the same opinion about their
strategy. It leads to mass selling or buying; such a situation causes a market crash or
a market boom (Chang et al. 2002).

Thus the basic purpose of the percolation model is to analyze the percolation
threshold, which characterizes the threshold probability of a market crash. The
model studies A empirical distribution as a distribution of price change in the
market.

For the modeling of percolation theory, we use the Monte-Carlo method, which
was realized in statistical environment R.

Results of our modeling were processed in MS Excel. The steps for the single
iteration of Monte Carlo simulation are presented in Fig. 1.

We study the A empirical distribution with different values of model parameters.
We have discovered a strong interrelationship of statistical characteristics of the
received distribution of size A from parameters pp,y, a (Figs. 2 and 3). It is possible
to note various curves shapes of the received functions. Sharper excess of function
is marked at the maximum difference between probability of purchase py,, and
probability of sale 1 — py,, and measure of time interval a.
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Fig. 3 Empirical distributions of A with different value of pbuy

If it’s necessary to receive authentic distribution of market price change, it is
important to pick up values of the parameters defining current market trends and
preferences of agents in this market.

3 Model Calibration

In order to understand this model’s properties and its advantages, it is necessary to
analyze how the model can reflect real data conditions. Thus, there is an issue of
calibration of the model and applicability of the model for the description of a real
market situation.

The percolation model allows us to simulate price change distribution in a one-
time step as a hypothetical situation of interaction of agents for a certain time
interval. The task of calibration is to select values of parameters and receive the
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model’s empirical distribution, which is similar to the real-world market distribution
in terms of some pre-selected measures Wiesinger et al. (2010).

This is the method of reverse engineering in the context of financial time-series.
With its parameters and strategies, it optimizes the similarity between the actual data
and simulated data.

An algorithm of the reverse engineering calibration of our model is presented in
Fig. 4. We have already noticed that values of a, py,, have very strong influence on
the empirical distribution of A. Because of this, we will find the values of a, py,
which will give the required similarity.

At the first stage, we do the processing of real market data. We consider hourly
log returns of RTS index (leading Russian stock index) during the period of January
1st, 2008 to December 31st, 2009. This period could be characterized as an instable
stage in the financial market. Thus, at calibration we are expecting a condition of
infinite cluster occurrence, which most precisely characterizes a crisis situation in
the market.

The next stage is optimization. There is the minimization of distance between a
real sample of price changes and the model sample of A, as a result of the Monte
Carlo simulation. The algorithm changes values of required parameters a, py,, and
generates a new percolation model as a result. We have a new sample of model price
changes as a result of this iteration step.

The part of calculation the distance between modeling and the fact sheet assumes
using various measures of distance between two probability distributions. In this
research we decide to use Kullback-Leibler divergence. This is non-symmetric
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measure of the difference between two probability distributions and used for discrete
and for continuous random variables. It defined to be:
p(x)

D (pg) =), p(¥)In . (3)

where p(x), g(x)—the probability density of the corresponding discrete random
variables X, Y. The main point of Kullback—Leibler divergence is that it base on
information theory and reflect the difference between entropies of two distributions.
It means that we try to minimize difference between indeterminacies of two samples
of information. There are some other properties of Kullback—Leibler divergence:

* non-symmetric
* always nonnegative
* non-parametric.

In case of this research it’s possible to use divergence without information about
form of distributions (Shengqiao 2012).

The optimization task was realized, using genetic algorithm. We minimize
of Kullback-Leibler divergence with DEoptim R package, which is a global
optimization algorithm from class of genetic algorithms, which uses biology-
inspired principles. The main argument for this choice is the possibility to work
with discontinuous and nondifferentiable functions, because we haven’t got enough
information about function we have to minimize (Ardia et al. 2012).

Results of calibration are empirical distribution of modeling price change
with parameters a = 0,02 and py,, = 0,31. The results of empirical function are
presented in Fig. 5.

The small value of parameter a = 0, 02 is interpreted as a short time interval when
market was observed. That’s why we can conclude, that high frequency traders are
presented in this market. The value of probability to buy pp,, = 0,31, which can
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0,8 |
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Fig. 5 Empirical distribution function of model and actual price changes
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be interpreted as a small asymmetry between demand and supply and the most of
agents prefer to sell in the market because of the critical crisis situation.

Conclusion

In this paper percolation model was used to describe agent’s cooperation
in the financial market. The results of Monte Carlo simulation allow ana-
lyzing model price changes distribution and concluding about price change
distribution and model parameters dependence. This dependence suggests
the possibility of model calibration. Using optimization procedures help to
find model parameters values which describe real market pricing process.
The result shows that presented model generally comply with real-market
data.
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How Tick Size Affects the High Frequency
Scaling of Stock Return Distributions

Gianbiagio Curato and Fabrizio Lillo

Abstract We study the high frequency scaling of the distributions of returns
for stocks traded at NASDAQ market as a function of the tick-to-price ratio.
The tick-to-price ratio is a measure of an effective tick size. We find dramatic
differences between distributions for assets with large and small tick-to-price ratio.
The presence of returns clustering is evident for large tick size assets. The statistical
differences between large and small tick size assets appear to reduce at higher time
scales of observation. A possible way to explain returns dynamics for large tick size
assets is the coupling of returns with bid-ask spread dynamics. A simple Markov-
switching model is able to reproduce the properties of the distribution of returns for
large tick size assets.

Keywords Bid-ask spread e Markov-switching models ¢ Returns clustering e
Returns distribution * Scaling * Tick size

1 Introduction

In financial markets, the price of an order cannot assume arbitrary values but it
can be placed on a grid of values fixed by the exchange. The tick size is the
smallest interval between two prices, i.e. the grid step, and it is measured in the
currency of the asset (Ascioglu et al. 2010). It is institutionally mandated and sets
a limit on how finely prices may be specified. All price information is discretized
by the tick size. Historically, the tick size of most securities has been consecutively
reduced, resulting in tick sizes of 1/100th or smaller. This process is often referred
to as decimalization (Gibson et al. 2003; He and Wu 2004; Chung et al. 2004;
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Loistl et al. 2004; U.S. Securities and Exchange Commission 2012). The current tick
size for stocks traded in US stock exchanges, such as the New York Stock Exchange
(NYSE) or the National Association of Securities Dealers Automated Quotations
(NASDAQ), is typically $0.01. An argument for maintaining the tick size is that it
serves to maintain a minimum level of profits for market makers and thus guarantees
the provision of liquidity (MacKinnon and Nemiroff 2004; Huang and Stoll 2001;
Bollen and Busse 20006), but a too large tick size increases the transaction cost to
investors by increasing the bid-ask spread. It is controversial whether a smaller tick
size generally improves market quality.

Tick size can affect prices in a direct way on different time scales, starting from
the microstructural scale to the daily scale. In this study we analyze the midprice
process, i.e. the dynamics of midpoint between bid and ask quotes, in transaction
time and in continuous time. We want to study the scaling of the distributional
properties of price fluctuations at different time scales, starting from the smallest
time scale, e.g. price changes and log-returns caused by 1 transaction. In this way we
can see the connection between high frequency dynamics of prices, i.e. 1 s or 1 min
dynamics, and low frequency dynamics, i.e. 1 h dynamics. The basic observation is
that at the smallest time scale the distributions of returns are very far from Gaussian
or Levy stable distributions, that are instead used to model price fluctuations at
higher time scales (Bouchaud and Potters 2009; Hautsch 2012; Dacorogna et al.
2001). The return distribution at the smallest time scales strongly depends on the
value of the tick-to-price ratio. We have large or small effective tick size assets if
this ratio is high or small. As it is known in the literature, the value of the tick size is
not the best indicator for understanding and describing the high frequency dynamics
of prices. The tick-to-price ratio is one of the definitions of the notion of an effective
tick size, introduced in order to account and quantify the different behavior of price
fluctuations. Another useful definition is based on the bid-ask spread. In this case the
measure is given by the frequency the spread is equal to one tick and we have a large
tick size if the spread is almost always equal to one tick. Usually these measures of
the effective tick produce the same ranking between different securities.

The key observation is that for large tick assets the price changes are clustered
on the grid of the possible integer values that they could assume. Specifically, we
find that even price changes are more populated than odd values. This property is
found to hold from small to high time scales. Instead for small tick size assets the
clustering of price changes is not present. The high frequency dynamics of price for
a large tick asset is characterized by the presence of clustering. A similar property
has been reported in literature (Harris 1991; Onnela et al. 2009) for daily closing
price series. The presence of clustering affects also the distribution of returns for
large effective tick size assets, instead this effect is negligible for small tick asset.

We want to quantify empirically the distortion of the shape of distributions of
price changes and returns as a function of the effective tick size, measured by the
tick-to-price ratio or by the frequency of bid-ask is equal to 1 tick. We expect
that, after a certain time scale of aggregation, the shape of distributions becomes
independent from the effective tick size of the asset. On one hand the distortion
can be characterized by measuring how far the distributions are from the Gaussian,
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and on the other hand by fitting a microstructural model, developed for large tick
assets, on our data in order to reproduce the statistical properties of price changes
and returns at different time scales.

We start in Sect. 2 by reviewing the effect of tick size on the market microstruc-
ture and the statistical properties of price fluctuations. In Sect. 3 we study the
influence of the effective tick size on the return distributions for four assets traded
on the NASDAQ market. In Sect. 4 we fit a recently introduced microstructural
model (Curato and Lillo 2013) on data of a large tick asset in order to reproduce the
statistical properties that we have measured. We summarize the results in section
“Conclusions”.

2 Literature Review

Most of the studies about tick size present in the literature are case studies of the
impact of a reduction of tick size on market quality, i.e. on microstructural quantities
like the narrowing of the bid-ask spread (Loistl et al. 2004) or liquidity provision
(Goldstein et al. 2000; Ahn et al. 2007). The part of literature more related with our
work is composed by papers that have revealed how the investors actually use the
price resolution allowed by the tick size. We focus also on statistical properties of
price fluctuations (Onnela et al. 2009; Miinnix and Schéfer 2010; La Spada et al.
2011; Gopikrishnan 1999; Plerou et al. 1999) and on the connection between bid-
ask spread and midprice dynamics (Dayri and Rosenbaum 2013; Wyart et al. 2008;
Robert and Rosenbaum 2011).

The concept of price clustering is known in the literature for daily price time
series. It appears that instead of making full use of the available price spectrum,
investors stick to a subset of it and use coarser prices instead. There are at least two
alternative explanations for this: natural clustering (Harris 1991; Osborne 1962) or
collusion (Christie and Schultz 1994; Christie et al. 1994). Harris (1991) studied the
frequency distribution of the integer portion of CSRP daily closing price stocks for
the years 1963 to 1987, including NYSE, AMEX and NASDAQ stocks. In this case
the minimum ticks size ranged from $1/8 to $1/16, and the tick size was smaller for
stocks with lower prices. He argued that stock price clustering is pervasive and that
clustering distributions from the mid-nineteenth century appear very similar to those
observed in the late twentieth century. Clustering increases with price level and
volatility and occurs if traders use discrete price sets to simplify their negotiations.
He claimed also that clustering must affect price changes distributions and bid/ask
quote distributions. Collusion instead refers to the idea that market makers quote
prices only in certain fractions in order to increase bid-ask spreads. Christie and
Schultz (1994), and Christie et al. (1994) show that many NASDAQ stocks exhibit a
paucity of odd-eights quotes and quote prices mainly in even-eights. Bessembinder
(2000, 1997, 1999, 2003) provides empirical evidence on relations between trade
execution costs and price rounding practices on the NYSE and NASDAQ. His
results indicate that higher execution costs are associated with the rounding of
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quotations and trade prices, and finds that the effect of clustering on trading costs
decreases as the tick size decreases.

Onnela et al. (2009) study the effect of changes in tick size, enabled by the
decimalization process, on asset log-returns. They analyze a set of NYSE and TSE
(Toronto Stock Exchange) cross-listed stocks that were traded under different tick
sizes. The data were daily closing prices from Jan-1-1990 to Jun-30-2003. They
show that investors do not use all price fractions uniformly as allowed for by the
tick size, leading to a clustering of prices on certain fractions, a phenomenon that
could potentially affect the way returns are distributed. This phenomenon persists
after decimalization. They observed that approximately 57 % of cases exhibit a price
clustering such that the effective tick size deviates from the nominal tick size. In
this study the tick-to-price ratio, i.e. a measure of the effective tick size, appears
to be indicative of the zero returns frequency. They conjectured that large effective
ticks lead to a distortion of the shape of return distribution, and this effect should
be particularly strong when the price of stock is low, i.e. when tick-to-price ratio
is high.

Miinnix and Schifer (2010) demonstrate that the tick size has a large impact
on the structure of financial return distributions. They analyze a basket of stocks
from the S&P 500 index ranging from 1 min to 1 day frequency during the first
half of 2007. They find returns clustering at 1 min frequency but do not connect
their statistical properties to an effective tick size. They observe that the discrete
distribution of price changes could lead to think that the transition from integer
price changes to relative price changes, i.e. returns, remove the discretization from
the distribution. A closer analysis instead reveals that the discretization effect are
still visible when considering returns. They argue that the discretization affects
returns on any time scale. They perform an approximate analysis that reveals a sort
of mapping between the discrete distribution of price changes and the distribution
of returns. They decompose the set of returns according to the absolute price
changes, i.e. one value of price change corresponds to a specific set of returns.
Their computations lead to the conclusion that the width of this sets are proportional
to the absolute value of price changes, while the distance between their centers
remains almost constant. In this way the sets of values of returns are increasingly
overlapping for larger values of absolute price changes. From their viewpoint the
discretization is only visible for small absolute price changes, i.e. one could see
an unusual distortion of return distribution near its center. Moreover they find that
the shape of the distribution of normalized returns compared to the underlying
normalized price changes are quite similar for time scales ranging from 5 min to
1 day. According to Miinnix and Schifer (2010) the meaning of clustering is that
the distribution of returns is defined on specific sets of the real line, i.e. we do not
have a smooth distribution like the Gaussian or Lévy distributions. This effect is
less and less visible if we have a large number of possible different values for price
changes, because we have the overlap of the different sets.
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Wyart et al. (2008) use a theoretical framework to obtain a linear relation between
the bid-ask spread and the instantaneous impact of market orders and then use
this relation to justify a strong empirical correlation between the spread and the
volatility per trade. They test this on empirical data and find good agreement with
the predicted bound for small tick electronic markets. The case of large tick stocks
is different since in this case the spread is nearly always one tick, with very large
volumes at both the bid and the ask, leading to a spread that is substantially larger
than that predicted for small tick stocks.

Curato and Lillo (2013) develop a statistical model in order to reproduce the
statistical properties of the discrete process of price changes for a large tick asset.
Large tick assets display a dynamics in which price changes and spread are strongly
coupled. They introduce a Markov-switching modeling approach that describes this
coupling and the dynamics of spread and return in transaction time. The latent
Markov process is the transition process between spreads. Montecarlo simulations
of this model reproduce remarkably well the statistical properties of time series
representing stocks on NASDAQ market.

3 Empirical Analysis

In this section we study the role of the effective tick size on the distributional
properties of price changes and log-returns at different time scales. We make use
of two simple definitions of the effective tick size, the first one is the tick-to-price
ratio and the second one is the unconditional frequency to have the bid-ask spread
equal to one tick. They are usually used in equivalent way in order to classify assets
in large and small tick assets (Eisler et al. 2012; Dayri et al. 2011). We use the first
definition mainly in Sect. 3, instead the second one is used to define a statistical
model in Sect. 4.

3.1 NASDAQ Data

In this paper we study high frequency data of highly liquid stocks traded at NAS-
DAQ market in the period from 01,/07/2009 to 31/08/2009 (42 trading days). We
analyze the stocks: Apple Inc. (AAPL), Amazon (AMZN), Microsoft Corporation
(MSFT), Cisco Systems (CSCO). Our data contain time stamps corresponding to
order executions, trade prices, bid-ask quotes, size of trading volume and direction
of trading. The time resolution is millisecond. The trading activity at NASDAQ
starts at 9 : 30 and ends at 16 : 00. We decide to discard all transaction data
corresponding to first and last 6 min of the day. During these minutes we observe
bursts of trading activity and an abnormal high price fluctuations that could affect
the statistical analysis of returns distributions.
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It is important to point out that, since when a market order hits several limit
orders, it results in several trades being reported, we choose to aggregate together
all such transactions and consider them as one trade if the millisecond time stamps
of trades in our database are the same. We are going to use these transactions as our
“events”, meaning that all relevant values are calculated at the time just before each
transaction. Hereafter we define the transaction or trade time as an integer counter
of events defined by the execution of a market order.

For each asset, we define the following time series in trade time:

e {; is the time of i-th trade, i € N is the transaction or trade time.

e b(i) =b(t;) anda (i) = a (t;) are respectively the best bid and ask prices just
before the i-th trade.

e p(@i)=p@) = (b@)+al(t))/2is the midpoint price just before the i-th
trade, p € N is measured in units of half tick.

e s(i) =s(t;) = a(t;) — b () is the spread just before the i-th trade, s € N is
measured in units of tick.

e Ap (i) = Ap(t;) = p (ti+1)— p (¢;) is the price change caused by the i-th trade,
Ap € 7Z is measured in units of half tick.

e r(i)=r () =log(p(ti+1)) —log(p (%)) is the log-return, r € R.

e Ap(i,n) = p(ti+,) — p (&) is the price change caused by n consecutive trades,
n is the trade time scale at which we observe the price change process.

e r(i,n) =log(p (ti+n)) —log (p (#;)) is the log-return caused by n consecutive
trades.

We want to study the price process also in continuous time. To this end we define
the midprice process p. (#) assuming that the price between two transactions is
given by the midprice just before the second transaction. This defines a piecewise
constant function like that shown in Fig. 1.

e p.(t) = p(ti+), where t,_1» <t < t;= is the time between the two subsequent
transactions i — 1* and i *.

e Ap.(t,At) = p. (ti*4n*) — pc (ti), is the price change observed sampling the
time series p. () at a time scale A¢. This change is caused by n* consecutive
trades. The number of trades n* is a stochastic variable for each fixed value of
the time scale At.

o 1. (t, At) = log(pe (tix4n%)) — log (pe (t;+)), is the log-return caused by n*
consecutive trades.

We develop an algorithm that samples the time series of trade time #; in order
to determine the index i* and n* of trades that we need to observe the series in
continuous time p, (¢), Ap, and r.. We report in Table 1 some sample statistic about
log-returns corresponding to the smallest time scales studied in this work. When we
observe prices in continuous time, the empirical returns distribution is more fat-
tailed than that defined in trade time. The increase of kurtosis can be explained if
we think to price process as a subordinated random process. We give same details
on the subordination hypothesis in Sect. 3.2.
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Fig. 1 Midprice process for the stock AAPL is the black piecewise constant curve. The price grid
is measured in units of one tick. The time is the number of seconds from the beginning of the
trading day. Circles indicate executions of market orders. We can observe trades that do not cause
price changes

Table 1 Sample statistic for log-returns

Stock Time scale Mean Std.deviation Skewness Ex.kurtosis
AAPL 1 trade 6.602e—08 7.553e—05 0.01434 5.268

1s 6.641e—08 8.043e—05 —0.00105 22.16
AMZN 1 trade 6.497e—08 1.484e—04 0.0442 8.177

1s 4.590e—08 1.097e—04 0.3164 41.25
MSFT 1 trade 1.038e—07 1.190e—04 0.0112 7.773

1s 5.949¢e—08 8.406e—05 —0.0146 50.50
CSCO 1 trade 1.173e—07 1.427e—04 0.00505 7.008

1s 5.587e—08 9.791e—05 0.1285 50.34

‘We make use of two definitions of the effective tick size:

e T, = 1/(p;) is the tick-to-price ratio, where the mean trade price (p;) is
measured in 0.01$, i.e. the value of one tick.

o T, =#[s (i) = 1] /N, is the fraction of times the spread is equal to 1 tick, N, is
the total number of trades in 42 days.

The symbol (---) denotes a temporal average over the entire length of the time
series. We can observe in Table 2 that these two measures divide the stocks in the
same manner in two groups: AAPL and AMZN are small tick size stocks, instead
MSFT and CSCO are large tick size stocks. It is important to observe that the two
measures lead to the same classification between large and small tick assets. As we
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Table 2 Effective tick size for NASDAQ stocks

Stock Tick size # Trades N, * Duration ® T, ¢ Ty Class

AAPL 0.01$ 918294 1.037 0.64 0.256 SMALL
AMZN 0.01$ 530076 1.797 1.2 0.243 SMALL
MSFT 0.01$ 532795 1.788 4.1 0.932 LARGE
CSCO 0.01$ 420963 2.263 4.9 0.932 LARGE

2 42 days of transactions
® mean time value in sec between 2 trades
¢ measured in basis points

will see in the following these two classes are different from the point of view of
the statistical properties of their price changes and returns distributions from small
to large time scales of observation.

3.2 Distributions

We start with the study of the shape of distributions of price changes Ap (i, n)
and log-returns r (i, n) as a function of the value of the tick-to-price ratio. In this
qualitative discussion we refer to price changes and returns computed in trade time
because we want to describe only the differences between discrete distributions and
distributions defined on a continuous support. Our findings are the same for the
continuous time case. We want to show that the effect of a discrete tick size is more
substantial for a high tick-to-price ratio. We choose to show the results for AAPL
and MSFT stocks because they exemplify the two types of qualitatively different
behavior.

The first important observation is the presence of price changes clustering when
we observe the process in trade time or in continuous time. The price change
clustering is the phenomenon for which we have an uneven use of price fractions of
the price grid. In Fig.2 we show the histogram of price changes at an aggregation
scale n = 128 for a large and a small tick asset. A large tick asset has a distribution
of price changes in which odd values are less populated then even values. Our
empirical observations indicate that the process Ap (i,n) shows clustering for
each value of n in the case of large tick assets. For example if we observe the
process Ap (i,n = 8192) the clustering is still present and 8192 transactions are
a significant part of the total transactions that we could have in one day of trade, e.g.
in the case of MSFT they correspond to an average execution time of four hours. So
this effect is not only visible at high frequency time scales, and we want to stress
that its origin comes from the price dynamics that we observe at the scale of single
transactions.

The effect of price changes clustering is not present at all in the case of a small
tick-to-price ratio. From the smallest time scale to the largest, i.e. from 1 to 8192
transactions, we observe a usual occupation of even and odd levels of price changes.
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Fig. 2 Histograms of price changes Ap (i,n = 128) and log-returns r (i,n = 128) for AAPL and
MSFT stocks. Price changes for MSFT are clustered on even values. The effect of clustering for
log-returns is clearly visible

When we refer to a usual occupation we mean an absence of systematic differences
in populations of price changes and a presence of a smooth discrete distribution like
a binomial or a Poisson distribution. The differences in the shape of price changes
distributions between small and large tick size assets are clear in Fig. 2 on the right
column of the panel. The observation of clustering at a daily time scale is already
known in literature (Onnela et al. 2009; Miinnix and Schéfer 2010; Harris 1991) but
it is not clearly connected to a measure of the effective tick size. Our observations,
instead, connect this property of prices directly to the effective tick.

In this way we conclude that we do not have a universal shape of distributions
of price changes, but we have a dependence from an effective tick size, measured
by T, or T;. There is a growing consensus that distributional properties of returns
are quite universal, i.e. the shape of the distribution is the same for all the assets,
especially for relatively large time scales (Cont 2001). How can we reconcile the
empirical observation of price change clustering with a universal shape of returns
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distributions? The presence of a discrete tick size has an effect on the distribution
of returns. Our empirical analysis shows that returns distributions are affected by
an effect of discretization and by returns clustering.! For small tick size asset only
the discretization effect is present, while for large tick asset there is the additional
effect of returns clustering. The effect of discretization is less present as the time
scale n increases, instead returns clustering is less present as the tick-to-price ratio
decreases. We want to stress the idea that the presence of discretization, coupled
with returns clustering, for an high tick-to-price ratio disappears at time scales n
higher than that relative to a low tick-to-price ratio.

In a small tick size asset like AAPL discretization effects on returns are visible
at time scale of one transaction but when n ~ 128 this effect disappears. Instead
for an asset like MSFT at the time scale of n ~ 128 the effect of discretization
and clustering are present as we can see in Fig.2. Our hypothesis is that we
should find some time scale in trade or continuous time at which the discretization
and clustering of returns disappear and we could find a universal shape for
distributions of price returns. This means that we should study the properties of
scaling of the distributions of returns. We made this analysis by means of the
empirical hypercumulants A, of distributions and the tail exponent o describing
the asymptotic power-law behavior of distributions.

In order to compare the behavior of distributions for different time scales, i.e. n
for trade time or At in continuous time, we define a normalized return g:

r(i,n) —(r(i,n))
VrZ ) —(r .n))?

The definition for the continuous case is similar. We analyze the scaling by the
moments defined by a fractional index ¢, i.e. the hypercumulants (Bouchaud and
Potters 2009; Gopikrishnan 1999; Plerou and Stanley 2007), of the distributions of
normalized returns g (i, n):

ey

g(i,n)=

Ag (n) = (g @.n) ), 2

in this way this quantity is defined as a function of the time scale 7.

We estimate also the tail exponent o for the normalized returns g. This exponent
describes the asymptotic power-law behavior of probability density functions in the
following way:

P (x) ~ x~ 1+, 3)

'Notice that for returns the discretization effect is different from clustering: discretization is a
consequence of the fact that price is defined on a grid, while clustering denotes the preference for
some price variations over others.
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where @ > 0. This estimate gives information on the existence of the moments of
a given distribution. A necessary condition for the gth moments to exist is that the
probability density P (x) should decay faster than 1/|x|¢*! for |x| going towards
infinity, then all the moments such that ¢ > « are infinite. The asymptotic behavior
of the density P (x) is also connected to properties of random variables under
summation. Consider the sum S,, = Y_'_, x; of independent identically distributed
(i.i.d) random variables x;. If the x;’s have finite second moments, the central limit
theorems holds and S, is distributed as a Gaussian in the limit m — oo. If the
random variables x; are characterized by a distribution having asymptotic power-
law behavior like that in Eq. (3) where 0 < o < 2, then S, converges to a Lévy
stable stochastic process of exponent 0 < o < 2 in the limit m — oo.

A common problem when studying a distribution that decays as a power-law is
how to obtain an accurate estimate of the exponent characterizing its asymptotic
behavior. We use a method developed by Clauset et al. (2009) in order to estimate
the exponent o and the value of x ,i.e. x,;,, beyond which we have the power-
law behavior. Their approach combines maximum-likelihood fitting methods with
goodness-of-fit tests based on the Kolmogorov-Smirnov statistics and likelihood
ratios. They studied the following probability density function defined on x > X,

P(x):a_l(x)_, (4)

Xmin Xmin

where X, is for us the lower bound of power-law behavior and o > 1. Here
we should make attention about the range of values of o because the power-law
exponent of Eq. (4) correspond to o + 1 of Eq. (3). They use the well-known Hill
maximum likelihood estimator:

m -1
&=1+m|:21n x’} , ()

Xy
i=1 min

where x;, i = 1,---,m, are the observed values of x such that x; > x,,,.

The Hill estimator is known to be asymptotically normal and consistent, i.e.
& — « in the limit of large m.

We compute the hypercumulants for our NASDAQ stocks at different time scales.
In trade time we use for A, (n) the following set of values for n: 1, 4, 8, 16, 32, 64,
128, 256, 512, 1024, 2048, 4096, 8192. In continuous time we use for A, (At) the
following set of values for Af measured in seconds: 1, 2, 5, 15, 30, 60, 120, 240,
480, 960, 1800, 3600 and 7200. Since the mean number of transactions in one day
ranges from 12000 to 21000, the highest values of n represent a significant fraction
of the entire daily transactions. In this way we can study the hypercumulants of
returns process from the scale of one transaction to a significant fraction of the daily
scale. In continuous time we investigate from the scale of 1 s to 2 h.

We can observe from Figs. 3 and 4 that the behavior of the hypercumulants for
the two classes of assets, i.e. large and small effective tick size, is different at small
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Fig. 3 Linear-log plot of the scaling of hypercumulants A, of normalized returns g for stocks
AAPL and MSFT, i.e. respectively a small and a large tick size asset. On the left we have the case
of normalized returns g (i, n) in trade time and on the right the case of normalized returns g (¢, Af)
in continuous time. The different style of lines indicates the different time scales At. The vertical
lines indicate the values of ¢, i.e. ¢ = 1,3, for which we illustrate the time scale dependence
Ay (n) or Ay (Ar) in Fig. 4

time scales but that they seem to converge at higher time scales. In these figures we
compute the corresponding values of A, for the standard Gaussian distribution in
order to control the convergence of distributions of price returns as a function of the
time scale of aggregation n or At. We show the dependence of the hypercumulants
from the power index ¢ in Fig. 3 for some fixed values of time scales. When we have
a large effective tick asset, the convergence of normalized returns g to a Gaussian
behavior is slower with respect to returns computed in presence of a small effective
tick asset. A possible motivation could be the presence of clustering of returns for
large tick size assets, i.e. we have a distortion of distribution that is almost absent
for the case of small tick size assets. We make this hypothesis on the basis of
the computed histograms of distributions of returns. Here we can observe that the
discretization effects starts to disappear after n = 32 for a small tick size stock,
instead this threshold is higher for large tick size stocks (where we have also the
presence of clustering), i.e. we find a value of n = 512 = 1024. If we observe the
returns process in continuous time the discretization effect disappears after a time
scale around Ar =~ 30 s for small tick stocks, instead for a large tick stock it starts
to disappear after around 16 min.



How Tick Size Affects the High Frequency Scaling of Stock Return Distributions 67

100

1 10 100 1000 1 10 100 1000
n At (sec)

Fig. 4 Log-linear plot of the scaling of hypercumulants Ay—3 (n) and A,—; 3 (At) for stocks:
AAPL, AMZN, MSFT and CSCO. We observe a different speed of convergence to a Gaussian
behavior between small and large tick size stocks. There is also a different behavior if we observe
the price process in trade time (left panels) or continuous time (right panels)

The behavior of A, as a function of trade time or of continuous time is showed
in Fig.4 for two values of g. We observe that, independently of the effective tick
size, in continuous time the convergence toward a Gaussian behavior is slower
with respect to trade time. This observation may be explained by the subordination
hypothesis. The original idea dates back to a paper by Mandelbrot and Taylor (1967)
that was later developed by Clark (1973a,b). Mandelbrot and Taylor proposed that
prices could be modeled as a subordinated random process Y (t) = X (z (¢)), where
Y is the random process generating returns, X is a Brownian motion and 7 (¢) is a
stochastic time clock whose increments are i.i.d. and uncorrelated with the process
X . Clark hypothesized that the time clock 7 (¢) is the cumulative trading volume in
time ¢, but more recent works indicated that the number of transactions, i.e. trade
time, is more important than their size (Ane and Geman 2000). Gillemot et al. (2006)
and La Spada et al. (2011) showed that the role of the subordination hypothesis in
fat tails of returns is strongly dependent on the tick size. From our point of view it
is important to stress that the stochastic clock 7 (¢) could modify the moments of
distributions for the increments AX and AY . For example Clark (1973a) showed
that if X is a Gaussian stochastic process with stationary independent increments,
and t (¢) has stationary independent positive increments with finite second moment
which are independent from X, then the kurtosis of the increments of X (z (¢)) is an
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increasing function of the variance of the increments of t (). We can observe such
effect in Table 1 of Sect.3.1. Our hypothesis is that a similar effect could be the
motivation of the distortion of the value of the hypercumulants for the same value
of time scale aggregation, i.e. the distribution of the sum of n = 100 identically
distributed values of 1 transaction returns is not the same distribution that we obtain
summing 100 identically distributed values of 1 s returns.

Let discuss now the results of the estimation of the tail exponent o of the
distribution of returns at different time scales of aggregation. Figure 5 shows the
estimated values of o with the error bars for aggregation in transaction time (left
panel) and in real time (right panel). For small values of aggregation (in real or
transaction time) a clear difference appears between large and small tick size assets.
The former type of assets displays a large estimated value of «, while for the latter
class the exponent is already quite small. When the aggregation scale increases, the
estimated tail exponent for large tick size assets rapidly decays and around n ~ 30
or At =~ 30 s their behavior becomes indistinguishable from that of small tick
assets. This suggests that the same underlying and latent price process characterizes
large and small tick size assets, but for the former class the large tick size hides the
process, at least until the crossover time scale.

After this crossing, the estimated exponent monotonically decreases (at least until
the maximal investigated time scale). It is worth noticing that at the largest time

I
i3 N 6—0 AAPL
8 —
£ 1 K @-0 AMZN
12 _ . MSFT
) - ‘I =-m CSCO E
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Fig. 5 Log-linear plot of the scaling of asymptotic tail exponent «, defined in Eq.(3), for
distributions of normalized returns g as a function of trade time n and continuous time Af for
stocks: AAPL, AMZN, MSFT and CSCO. The straight dashed line o« = 2 is the upper bound of
Lévy behavior, i.e. 0 < o < 2. The horizontal dotted line is the upper bound of the index for which
we computed A, g € [1,4]
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scales of aggregation the estimated exponent, both in real and in transaction time,
is smaller than 2, indicating a Levy-like regime. Before commenting this result it is
important to stress that the values shown in Fig. 5 are estimated exponents, i.e. there
is no guarantee that the distributions have a true power law tail. Clauset et al. (2009)
algorithm gives the best estimate of o and x,,;, assuming that the tail is power law.
Moreover as noticed in Clauset et al. (2009) when the sample is small, the method
can give incorrect estimations. This is the case of the last two points of Fig. 5, where
the sample size is around 100 data points. These two considerations highlight the
problems that could arise when estimating the tail exponent of a distribution which
has a discrete (and finite) support. In this case the tail is obviously not power law,
but the method gives in any case an estimated value. In fact numerical simulations of
iid models with finite support and thus finite variance (the model i.i.d. discussed in
the next section) display a similar behavior of the estimated tail exponent, including
a value smaller than 2 for large aggregation. This is clearly a misestimation result.

In conclusion, the analysis of the tail exponent shows two regimes, one in which
large and small tick size assets show a markedly different behavior and one where
tick-to-price ratio does not play any role. Moreover numerical simulations and
empirical analyses suggest to be very cautious when estimating tail exponent of a
distribution that is either defined on a discrete support (as for price changes) or has
an hidden discretization (as for log-returns). Arbitrarily small values of the exponent
could be (mis)estimated as a result of an improper use of statistical methods.

4 Statistical Models for Large Tick Assets

In this section we present briefly the statistical models recently introduced by Curato
and Lillo (2013) describing the high frequency dynamics of price changes for a large
tick size asset in trade time. We want to show that these models are able to reproduce
the phenomenon of clustering for log-returns and the scaling of hypercumulants
Ay (n) in trade time.

The building blocks of these models are simple: the distribution of price changes
caused by 1 transaction, i.e. Ap (i,n = 1), and the statistical properties of the
dynamics of the bid-ask spread s (7). In our model we impose a coupling between
the process of the price changes and of the spread in order to reproduce the price-
change clustering.

We consider first a benchmark model, hereafter called i.i.d. model, in which
this coupling is absent and where we use only the information contained in the
distribution of Ap (i,n = 1).? Our empirical analysis indicates that for a large tick
asset the distribution of Ap is mainly concentrated on Ap = 0. This observation
allows us to limit the discrete set on which we define the distribution at the scale
of 1 transaction, i.e. Ap € {—2,—1,0, 1,2} in units of half tick size. In the i.i.d.

2Hereafter we use Ap (i) or Ap instead of Ap (i,n = 1).
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model the Ap (i) process is simply an i.i.d. process in which each observation
has the distribution estimated from data. Numerical simulations and analytical
considerations show that this model is unable to reproduce price change clustering
at any scale, i.e. when we aggregate n values we recover a bell shaped distribution
for Ap (i,n) = 374, Ap ().

Our solution to recover price changes clustering is to use the process of spread
s (i). The key intuition behind our modeling approach is that for large tick assets
the dynamics of mid-price and of spread are intimately related and that the process
of price changes is conditioned to the spread process. For large tick assets the
spread can assume only few values. For example, for MSFT and CSCO spread size
is only 1 or 2 ticks. The discreteness of mid-price dynamics can be connected to
the spread dynamics if we observe that when the spread is constant in time, price
changes can assume only even values in units of half tick size. Instead when the
spread changes, price changes can display only odd values. This effect is visible
in Fig. 2 for MSFT stock where even values of price change are more populated
than odd values, because spread changes are relatively rare. The dynamics of price
changes is thus linked to dynamics of spread transitions. It is well known that
spread process is autocorrelated in time (Ponzi et al. 2009; Plerou et al. 2005; Dayri
and Rosenbaum 2013). In our models the spread process s (i) is represented by a
stationary Markov(1) process:

P@)=kls(-1)=js(—-2)=L-)=P(s()=kls( -1 =j)= p.
(6)

where j,k,l € {1,2} are spread values and i € N is the trade time. The spread
process is described by the transition matrix S € M (2,2) :

S — (Pn Plz)
P21 P22

where the normalization is given by Zi=l pjx = 1. For example for CSCO we
estimate p;; = 0.97 and p;; = 0.58, i.e. the transitions in which the spread
changes are not frequent. In this model the spread could assume 2 values so we
could have 4 possible transitions ¢ (i) between two subsequent transactions, that
we could identify with an integer number from 1 to 4. For example, the transition
s(i) =1 — s(@ +1) = 1is described by the state t (i) = 1, etc. In this way
we can derive a new Markov(1) process that describe the process ¢ (7). At this point
the mechanistic constraint imposed by a price grid, defined by the value of the tick
size, allows us to couple the price changes Ap (i) with the process of transitions
t (i). In this way we are able to define a Markov-switching model (Hamilton 2008)
for price changes Ap (i) conditioned to the Markov process ¢ (i) by the conditional
probabilities:

P (Ap ()|t (i) =m), (M
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where m € {1,2,3,4}. The estimation of such conditional probabilities enable
us to simulate the process for price changes. In order to compute log-returns we
follow a simple procedure. We generate the simulated series of price changes from
the Markov-switching model calibrated from data, then we integrate it choosing as
starting point the first mid-price recorded on the measured series. At this point we
have a synthetic discrete series of mid-price on which we can compute log-returns
r (i, 1) correspondent to 1 transaction. Then we aggregate individual transaction
returns on non-overlapping windows of width n to recover the process at a generic
time scale n. This model is able to reproduce clustering for price changes and for
log-returns. In fact as we can observe in Fig. 6 this model reproduces the returns
clustering at different time scales. The clustering starts to disappear beyond the time
scale of aggregationn = 512.

The Markov-switching model is not able to explain the empirically observed
correlation of squared price changes, that is related to the presence of volatility
clustering. Usually in financial econometrics an autoregressive conditional het-
eroskedasticity model (ARCH) (Bera and Higgins 1993; Engle et al. 2008) can
account for volatility clustering and non-Gaussianity of returns. We do not make use
of this class of models because they are defined by continuous stochastic variables.
Instead, we have seen in Sect. 3.2 that the high frequency return distribution is
characterized by the presence of discretization and clustering. For this reason we
have chosen to define our model directly on discrete variables as price changes,
but this choice prevents us from using models like ARCH. Therefore in Curato
and Lillo (2013) we develop a second model based on an autoregressive switching
model for price changes, which preserves the ideas of ARCH type models that past
squared returns affect current return distribution. This means that the conditional
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Fig. 6 Histograms of log-returns computed from the data generated by the Markov-switching
model defined by Egs. (6), and (7). On the left we have a time scale of aggregation n = 64, on the
right we have n = 512. We could observe that the effect of clustering is less and less present for
higher values of n
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probabilities of Eq. (7) can depend not only on the last spread transition, but also on
the recent past values of price changes. In the case in which regressors are defined
only by past squared price changes, our model can be viewed as a higher-order
double chain Markov model of order p (Berchtold 1999). For our purposes we
remember only that we have fitted this model for an order p = 50 on our data.
Here we use it to generate a series in order to study the scaling of hypercumulants
Ay (n). We refer to our original article (Curato and Lillo 2013) for the details and
definitions for this autoregressive model.

In order to fit our three models we split our daily time series in two series, the
first displays low volatility instead the second displays high volatility. Here we focus
on the low volatility series that starts at 10:30 and ends at 15:45, but our findings
are the same for the series with high volatility. We compute the log-returns from the
Montecarlo simulations of our models and then compute the normalized log-return
g (i,n) in trade time. The Montecarlo simulations generate 5961600 data points
that correspond to 1 year of transactions for a mean duration time, i.e. the interval
of time between two transaction, of 1 s and 6 h of trading activity each day. The
sample for the stock CSCO instead covers 2 months of trading for a total of 275879
transactions. We can observe from the Figs.7 and 8 that the proposed models
converge to a Gaussian behavior. The Markov-switching model and the double chain
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Fig. 7 Linear-log plot of the scaling of hypercumulants A, of normalized returns g (i,n) for
the stock CSCO and the correspondent simulated returns processes. The different style of lines
indicates the different time scales n. The vertical dotted lines indicate the values of ¢, i.e.
g = 1,2.5,3,3.5, for which we illustrate the time scale dependence A, () in Fig. 8
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Fig. 8 Log-linear plot of the scaling of hypercumulants A;— .53 3.5 (1) for the stock CSCO and
the related simulated returns processes

Markov model, i.e. DCMM in the figures, reproduce slightly better the scaling of
the hypercumulants respect to the simple i.i.d. model, although all models are very
close to the empirical moments. We could observe a little difference in Fig. 8 for
high values of n between simulation and real data. We think that this distortion
rises from the reduced number of the data sample used to compute A, for the stock
CSCO with respect to the number of data points available for simulated data. The
Markov-switching model results to be the simplest model able to reproduce at the
same time the clustering of price changes and log-returns together with the correct
scaling of hypercumulants toward a Gaussian behavior.

Conclusions

In this work we show empirically that the effective tick size affects strongly
the statistical properties of distributions of mid-price changes and log-returns
of stocks traded on a decimalized market like NASDAQ. The effect of
clustering of price changes on even values of the price grid is particularly
strong for stocks with a large effective tick size. The clustering of price
changes persists at each time scale in presence of a large effective tick. This
effect is absent in presence of a small effective tick. On the other hand, the

(continued)
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discrete nature of prices affects also the distribution of log-returns. The effect
of discretization for log-returns disappears when the time scale of observation
of the mid-price process is high enough, both for large effective tick than
for small effective tick. The difference between the two kinds of stock is
that for a large tick asset we have also the effect of returns clustering. For
example, if we observe the price process in continuous time for a time scale
around 15 min, the effect of discretization and clustering starts to disappear
for a large effective tick, instead for small effective tick sizes the discretization
disappears at shorter time scales, i.e. 30 s.

The analysis of the hypercumulants of distributions of log-returns indicates
a converge toward a Gaussian behavior for stocks with large and small
effective tick sizes. The presence of a large effective tick seems to slow down
the convergence toward a Gaussian behavior, coherently with a progressive
disappearance of clustering of returns. The analysis of convergence by means
of the Hill estimator shows a crossover time scale after which large and small
tick size assets behave in the same way. However our analysis characterize
how the blind use of estimators could lead to errors in the determination of
the tail exponents.

We develop statistical models in trade time for large tick size asset that are
able to reproduce the presence of clustering for price changes and log-returns.
We find that in order to reproduce the clustering effect we need a model
in which the dynamics of mid-price changes is coupled with the dynamics
of the bid-ask spread. A Markov-switching model, where the switching
process is defined by the possible transitions between subsequent values of
the spread, is able to reproduce the effect of clustering and the scaling of
hypercumulants computed from empirical data. This simple high frequency
statistical microstructural model, defined by quantities like bid and ask prices
on a discrete price grid determined by the value of the tick size, is able to
recover a Gaussian behavior for returns at the macroscopic time scale of the
hours.
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Market Shocks: Review of Studies

Mariya Frolova

Abstract This paper gives a brief description of the current state of research on
market shocks, presents its main results and denotes problems researchers are faced
with. We consider such aspects of shocks analysis as price formation mechanism,
origins of market jumps, price—volume relationship, cojumps, empirical description
of financial markets around shocks, shocks identification.

Keywords Cojumps ¢ Market shocks ¢ Price formation mechanism ¢ Shocks
identification

1 Price Formation Mechanism

The aim to understand the price formation mechanism is not novel. It is well
known that price process of any financial instrument follows a stochastic-like path:
a price path can include or not a deterministic trend; but in any case the price
process is smeared by noise movements. The noise movements are known as
market volatility, and they make the price unpredictable. These noise movements
can be decomposed into two components: the first component is called regular
noise, it represents noise that is frequent but does not bring any abrupt changes,
the second component is known as price jumps, it designates rare but very abrupt
price movements. The origin of regular noise is in the statistical nature of the
markets: any market is a result of the interplay between many different market
participants with different incentives, purposes and financial constraints. This
interaction of many different agents can be mathematically described as the standard
Gaussian distribution (Merton 1976), this assumption allows dealing easy with in
mathematical models of the price processes of financial instruments, calculating
expectations and establishing various characteristics of financial instruments. The
discontinuities in price evolution (price jumps) have been recognized as an essential
part of the price time series generated on financial markets. Price jumps can’t be
fitted by the description of the first noise component and thus have to be modeled
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on their own, (Merton 1976). But it is worth noting, that the unpredictability of the
price movements is not a negative feature, it is rather the nature of financial markets.

Many studies (Andersen et al. 2002; Gatheral 2006) demonstrate that continuous-
time models have to incorporate the discontinuous component. Andersen et al.
(2002) extend the class of stochastic volatility diffusions by allowing for Poisson
jumps of time-varying intensity in returns. However, the problem is the mathemat-
ical description of price jumps cannot be easily handled (Pan 2002; Broadie and
Jain 2008). The serious problems in the mathematical description of price jumps are
very often the reason why price jumps are wrongly neglected. However, the non-
Gaussian price movements influence the models employed in finance to estimate the
performance of various financial vehicles (Heston 1993; Gatheral 2006). Andersen
et al. (2007) conclude that most of the standard approaches in the financial literature
on pricing assets assume a continuous price path. Since this assumption is clearly
violated in most cases the results tend to be heavily biased.

The literature contains a broad range of ways to classify volatility. Each
classification is suitable for an explanation of a different aspect of volatility or
an explanation of volatility from a different point of view (see e.g. Harris 2003,
where the volatility is discussed from the financial practitioners’ points of view).
The most important aspect is to separate the Gaussian-like component from price
jumps (Merton 1976; Gatheral 2006).

Mathematical finance has developed a class of models that make use of jump
processes (Cont and Tankov 2004) and that are used for pricing derivatives and
for modeling volatility. Financial econometrics has developed several methods
to disentangle the continuous part of the price path from the discontinuous one
(Lee and Mykland 2008; Barndorff-Nielsen and Shephard 2006), and the latter is
modeled as jumps.

Bormetti et al. (2013) found that, as far as individual stocks are concerned, jumps
are clearly not described by a Poisson process, the evidence of time clustering can
be accounted for and modelled by means of linear self-exciting Hawkes processes.
Clustering of jumps means that the intensity of the point process describing jumps
depends on the past history of jumps, and a recent jump increases the probability
that another jump occurs. The second deviation from the Poisson model is probably
more important in a systemic context. Bormetti et al. find a strong evidence of a high
level of synchronization between the jumping times of a portfolio of stocks. They
find a large number of instances where several stocks (up to 20) jump at the same
time. This evidence is absolutely incompatible with the hypothesis of independence
of the jump processes across assets. Authors use Hawkes processes for modeling the
dynamics of jumps of individual assets and they show that these models describe
well the time clustering of jumps. However they also show that the direct extension
of the application of Hawkes processes to describe the dynamics of jumps in a multi-
asset framework is highly problematic and inconsistent with data. For this reason,
Bormetti et al. introduce Hawkes factor models to describe systemic cojumps. They
postulate the presence of an unobservable point process describing a market factor,
when this factor jumps, each asset jumps with a given probability, which is different
for each stock. In general, an asset can jump also by following an idiosyncratic
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point process. In order to capture also the time clustering of jumps, they model the
point processes as Hawkes processes. Authors show how to estimate this model
and discriminate between systemic and idiosyncratic jumps and they claims that the
model is able to reproduce both the longitudinal and the cross sectional properties
of the multi-asset jump process.

On the opposite, tests applied by Bajgrowicz and Scaillet (2011) do not detect
time clustering phenomena of jumps arrivals, and, hence, do not reject the hypothe-
sis that jump arrivals are driven by a simple Poisson process.

The presence of price jumps has serious consequences for financial risk man-
agement and pricing. Thus, it is of great interest to describe the noise movements
as accurately as possible. Nyberg and Wilhelmsson (2009) discuss the importance
of including event risk as recommended by the Basel II accord, which suggests
employing a VAR model with a continuous component and price jumps representing
event risks.

2 Origins of Market Shocks

It is still not clear what the main source of price jumps is. Price jumps, understood
as an abrupt price change over a very short time, are also related to a broad range
of market phenomena that cannot be connected to the noisy Gaussian distribution.
Researchers agree on the presence of price jumps, but they disagree about the
origins. All the explanations are very different in nature. One branch of the literature
considers new information as a primary source of price jumps (Lee and Mykland
2008; Lahaye et al. 2009; Cutler et al. 1989). They also show a connection between
macroeconomic announcements and price jumps on developed markets. A possible
explanation of the source of these jumps says that they originate in the herd behavior
of market participants (Cont and Bouchaud 2000; Hirshleifer and Teoh 2003). An
illustration of such behavior is a situation when a news announcement is released,
and every market participant has to accommodate the impact of that announcement.
However, this herding behavior can provide an arbitrage opportunity and can be
thus easily questioned. Bajgrowicz and Scaillet (2011) found that majority of news
do not cause jumps. One exception is share buybacks announcements, Fed rate news
have an important impact but rarely cause jumps. Another finding is that 60 % of
jumps occur without any news event. Also authors admit that liquidity pressures
are probably another important factor of jumps—for one third of the jumps with no
news they found there is unusual behavior in the volume of transactions.

Joulin et al. (2010) and Bouchaud et al. (2004) conclude that price jumps are
usually caused by a local lack of liquidity on the market and news announcements
have a negligible effect on the origin of price jumps. A hidden liquidity problem is
when either the supply or the demand side faces a lack of credit and thus is not able
to prevent massive price changes. Madhavan (2000) also claims that the inefficient
provision of liquidity caused by an imbalanced market microstructure can cause
extreme price movements. Easley et al. (2010) introduced a new metric Volume-
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Synchronized Probability of Informed trading (the VPIN) as a real-time indicator of
order flow toxicity. Order flow is toxic when it adversely selects market makers, who
may be unaware they are providing liquidity at a loss. They find the measure useful
in monitoring order flow imbalances and conclude it may help signal impending
market turmoil, exemplified by historical high readings of the metric prior to the
Flash crash. More generally, they show that VPIN is significantly correlated with
future short-term return volatility. In contrast, empirical investigation of VPIN
performed by Andersen and Bondarenko (201 1) documents that it is a poor predictor
of short run volatility, that it did not reach an all-time high prior, but rather after, the
Flash crash, and that its predictive content is due primarily to a mechanical relation
with the underlying trading intensity.

Filimonov and Sornette (2012) suggests that price dynamics are mostly endoge-
nous and driven by positive feedback mechanisms involving investors’ anticipations
that lead to self-fulfilling prophecies, as described qualitatively by Soros’ concept
of “market reflexivity”. Filimonov and Sornette introduce a new measure of activity
of financial markets that provides a direct access to their level of endogeneity. This
measure quantifies how much of price changes are due to endogenous feedback pro-
cesses, as opposed to exogenous news. They calibrate the self-excited conditional
Poisson Hawkes model, which combines exogenous influences with self-excited
dynamics, to the E-mini S&P 500 futures contracts traded in the Chicago Mercantile
Exchange from 1998 to 2010. They find that the level of endogeneity has increased
significantly from 1998 to 2010, with only 70 % in 1998 to less than 30 % since
2007 of the price changes resulting from some revealed exogenous information.
Filimonov and Sornette claim that this measure provides a direct quantification of
the distance of the financial market to a critical state defined precisely as the limit
of diverging trading activity in absence of any external driving. But Hardiman et al.
(2013) challenge this study and say that markets are and have always been close to
criticality and it is not the result of increased automation of trading. They also note
that the scale over which market events are correlated has decreased steadily over
time with the emergence of higher frequency trading.

The behavioral finance literature provides other explanations for price jumps.
Shiller (2005) claims that price jumps are caused by market participants who
themselves create an environment that tends to cause extreme reactions and thus
price jumps. Finally, price jumps can be viewed as a manifestation of Black Swans,
as discussed by Taleb (2007), where the jumps are rather caused by complex
systemic interactions that cannot be easily tracked down. In this view, the best way
to understand jumps is to be well aware of them and be ready to react to them
properly, instead of trying to forecast them.

Price jumps can also reflect moments when some signal hits the market or a part
of the market. Therefore, they can serve as a proxy for these moments and be utilized
as tools to study market efficiency (Fama 1970) or phenomena like information-
driven trading, see e.g., Cornell and Sirri (1992) or Kennedy et al. (2006). An
accurate knowledge of price jumps is necessary for financial regulators to implement
the most optimal policies, see Becketti and Roberts (1990) or Tinic (1995).
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3 Price-Volume Relationship

The price—volume relationship is one of the most studied in the field of finance when
studying price dynamics. One of the oldest models used to study price—volume
relationship is the model of Osborne (1959) who models the price as a diffusion
process with its variance dependent on the quantity of transaction at that particular
moment. Subsequent relevant work can be found in Karpoff (1987), Gallant et al.
(1992), Bollerslev and Jubinski (1999), Lo and Wang (2002), and Sun (2003). In
general this line of research studies the relationship between volume and some
measure of variability of the stock price (e.g., the absolute deviation, the volatility,
etc.). Most of these works use models in time, they are tested with low frequency
data and the main conclusion is that the price of a specific equity exhibits larger
variability in response to increased volume of trades. Engle and Russell (1998) use
the Autoregressive Conditional Duration (ACD) model which considers the time
between trades as a variable related to both price and volume. Bozdog et al. (2011)
study the exception of the conclusion presented in the earlier literature, they do
not consider models in time but rather make the change in price dependent on the
volume directly. Authors present a methodology of detecting and evaluating unusual
price movements defined as large change in price corresponding to small volume of
trades. They classify these events as “rare” and show that the behavior of the equity
price in the neighborhood of a rare event exhibits an increase in the probability
of price recovery. The use of an arbitrary trading rule designed to take advantage
of this observation indicates that the returns associated with such movements are
significant. Bozdog et al. confirm the old Wall Street adage that “it takes volume to
move prices” even in the presence of high frequency trading.

4 Jumps Identification

Before a price jump can be accounted for in an estimation stage, it first has to be
identified. Surprisingly, but the literature up to now does not offer a consensus on
how to identify price jumps properly. Jumps are identified with various techniques
that yield different results.

Generally, a price jump is commonly understood as an abrupt price movement
that is much larger when compared to the current market situation. But this
definition is too general and hard to define and test. The best way to treat this
definition is to define the indicators for price jumps that fit the intuitive definition.

The most frequent approach in the literature is based on the assumption that the
price of asset S, follows stochastic differential equation, where the two components
contribute to volatility:

dS[ == /,Ltdt + StdW[ + Yth[
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Table 1 A comparison of two modelling approaches

Jump-diffusion models Infinite activity models

Must contain Brownian component Do not necessarily contain Brownian
component

Jumps are rare events The process moves essentially by jumps

Distribution of jump sizes is known “Distribution of jump sizes is known” do not
exist: jumps arrive infinitely often

Perform well for implied volatility smile Give a realistic description of the historical

interpolation price process

Easy to simulate In some cases can be represented via Brownian
subordination, which gives additional
tractability

where p, is a deterministic trend, §; is time-dependent volatility, dW; is standard
Brownian motion and Y,dJ; corresponds to the Poisson-like jump process (Merton
1976). The term §,dW, corresponds to the regular noise component, while Y,dJ,
corresponds to price jumps, both terms together form the volatility of the market.
Based on this assumption for the underlying process, one can construct price jump
indicators and theoretically assess their efficiency. Their efficiency, however, deeply
depends on the assumption that the underlying model holds. Any deviation of the
true underlying model from the assumed model can have serious consequences on
the efficiency of the indicators.

Another approach to describe price formation mechanism is to use models with
infinite number of jumps in every interval, which are known as infinite activity Levy
models. Cont and Tankov (2004) provide detailed description of ways to define a
parametric Levy process. Table 1 compares the advantages and drawbacks of these
two approaches.

Since the price process is observed on a discrete grid, it is difficult if not
impossible to see empirically to which category the price process belongs. The
choice is more a question of modelling convenience than an empirical one (Cont
and Tankov 2004).

The key role price jumps play in financial engineering triggered interest in the
financial econometrics literature, especially how to identify price jumps. Numerous
statistical methods to test for the presence of jumps in high-frequency data have
been introduced in recent years. Novotny (2010) propose following classification
of market shocks filters: the model-independent price jump indicators, which do
not require any specific form of underlying price process, and the model-dependent
price jump indicators, which assume a specific form of the underlying price process
The first group includes such methods as extreme returns, temperature, p-dependent
realized volatility, the price jump index, and the wavelet filter, the second—integral
and differential indicators based on the difference between the bi-power variance
and standard deviation, and the bi-power statistics.
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4.1 Model-Independent Price Jump Indicators

1. Extreme returns indicator: a price jump occurs at time ¢ if the return at time ¢ is
above some threshold. The threshold value can be selected by two ways: it can
be selected globally—one threshold value for the entire sample, for example,
when the threshold is a given centile of the distribution of returns over the entire
data set. Or, it can be selected locally, and consequently, some sub-samples may
have different threshold values. A global definition of the threshold allows to
compare the behavior of returns over the entire sample, however, the distribution
of returns can vary, e.g., the width of the distribution can change due to changes in
market conditions, and thus the global definition of the threshold is not suitable
to directly compare price jumps over periods with different market conditions.
This group is represented by the works of Ait-Sahalia (2004), Ait-Sahalia et al.
(2009) and Ait-Sahalia and Jacod (2009a, b). The indicators have well-defined
analytic properties; but they do not identify price jumps one by one but rather
measure the jumpiness of the given period. These methods are more suitable to
assess the jumpiness of ultra-high-frequency data.

2. Temperature. Kleinert (2009) shows that high-frequency returns at a 1-min
frequency for the S&P 500 and the NASDAQ 100 indices have the property that
they have purely an exponential behavior for both the positive as well as negative
sides. The distribution can fit the Boltzmann distribution:

1 _
B(r) = ﬁexp( T'") 1)

where T is the parameter of the distribution conventionally known as the
temperature, and r stands for returns. The parameter 7' governs the width of the
distribution; the higher the temperature of the market, the higher the volatility.
Kleinert and Chen (2007) and Kleinert (2009) document that this parameter
varies slowly, and its variation is connected to the situation on the market.

3. p-dependent Realized Volatility. The general definition of the p-dependent
realized volatility can be written as:

1
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where the sample over which the volatility is calculated is represented by a
moving window of length 7" (Dacorogna 2001). The interesting property of this
definition is that the higher the p is, the more weight the outliers have. Since price
jumps are simply extreme price movements, the property of realized volatility
can be translated into the following statement: the higher the p is, the more price
jumps are stressed. The ratio of two realized volatilities with different p can be
thus used as an estimator of price jumps.
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4. Price Jump Index. The price jump index jr, at time ¢ (as employed by Joulin et al.
2010) is defined as

JTi =
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=
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Il
S

where T is the market history employed. Gopikrishnan et al. (1999), Eryigit
et al. (2009) and Joulin et al. (2010) take normalized price time series—the
normalization differs across these papers—and define the scaling properties of
the tails of the distributions. This technique has its roots in Econophysics, it is
based on the scaling properties of time series known in physics, see e.g. Stanley
and Mantegna (2000).

5. Wavelet Filter. The Maximum Overlap Discrete Wavelet Transform (MODWT)
filter represents a technique that is used to filter out effects at different scales. In
the time series case, the scale is equivalent to the frequency, thus, the MODWT
can be used to filter out high frequency components of time series. This can
be also described as the decomposition of the entire time series into high- and
low-frequency component effects (Gencay et al. 2002). The MODWT technique
projects the original time series into a set of other time series, where each of the
time series captures effects at a certain frequency scale.

4.2 Model-Dependent Price Jump Indicators

1. The Difference Between Bi-power Variance and Standard Deviation

The method is based on two distinct measures of overall volatility, where the
first one takes into account the entire price time movement while the second
one ignores the contribution of the model-dependent price jump component.
Barndorff-Nielsen and Shephard (2004a) discuss the role of the standard variance
in the models where the underlying process follows Eq. (1): the standard variance
captures the contribution from both the noise and the price jump process unlike
the realized variance, which does not take into account the term with price
jumps. It is called the realized bi-power variance. The difference between the
standard and the bi-power variance can be used to define indicators that assess
the jumpiness of the market. Generally, there are two ways to employ bi-power
variance: the differential approach and the integral approach.

1.1 The Differential Approach. The standard variance is defined as

T—1
R=gog X (g i) @
i=0
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The bi-power variance is defined according to Barndorff-Nielsen and
Shephard (2004b) as

t—1

o 1
o =75 Y Il )
t=t—T+2

The higher the ratio 'c?tz / :c?\tz, the more jumps are contained in the past T
time steps back.

1.2 The Integral Approach. The integral approach is motivated by the work of
Pirino (2009). The integral approach employs the two cumulative estimators
for the total volatility over a given period. The first one is the cumulative
realized volatility estimator defined as

RVaay =Y (r) 6)

day

The second estimator is the bi-power cumulative volatility estimator
defined in an analogous way:

b
BPVaey = 2} Irel Irei] (7)
day

Analogously the ratio of the two cumulative estimators RV ,,/BPV 4, can
be considered as a measure of the relative contribution of price jumps to the
overall volatility over the particular period.

2. Bi-power Test Statistics. The bi-power variance can be used to define the proper
statistics for the identification of price jumps one by one. This means testing
every time step for the presence of a price jump as defined in Eq. (1). These
statistics were developed by Andersen et al. (2007) and Lee and Mykland (2008)
and are defined as

Lt =3 (8)

Following Lee and Mykland, the variable £ is defined as

max;cu, |L:| —C,
Sy

—§ €))

Where A, is the tested region with n observations and the parameters are
defined as

_ @Inn)?  Inx +In(nn)
¢ 2c(21nn)%

Cy (10)
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Sy = ;1 (11)
c(2lnn)2
c= ﬁ (12)

The variable £ has in the presence of no price jumps the cumulative distribution
function P(§ <x) =exp(e™ ). The knowledge of the underlying distribution can be
used to determine the critical value £cy at a given significance level. Whenever &
is higher than the critical value £¢y, the hypothesis of no price jump is rejected,
and such a price movement is identified as a price jump. In contrast, when £ is
below the critical value, we cannot reject the null hypothesis of no price jump. Such
a price movement is then treated as a noisy price movement. These statistics can
be used to construct a counting operator for the number of price jumps in a given
sample. However, the main disadvantage of bi-power variation-based methods lie in
the sensitivity of the intraday volatility patterns, which leads to a high rate of jump
misidentification.

Jiang and Oomen (2008) modified this approach. They suggest to calculate Swap
Variance as:

n
SwV = 22 R, —r;
i=2

where
R, = Pz Py
p;
P; = exp(pi)
ri = pPi — Pi—1

Jiang and Oomen claim that employing swap variance further amplifies the
contribution coming from price jumps and thus makes the estimator less sensitive to
intraday variation. The Jiang—Oomen statistics is defined as

nBV RV
JO = 1—

N QSwV SwV
JO is asymptotically equal to z ~ N (0,1) and tests the null hypothesis that a given
window does not contain any price jump. The indicator for a price jump is defined
as those price movements for which JOt—1<® — 1(a) and JOt> & — 1(a). The
authors claim that their test is better than the one based on bi-power variation since
it amplifies the discontinuities to a larger extent, as they show with a comparative

analysis using Monte Carlo simulation. The amplification of discontinuities tends to
suppress the effects of intraday volatility patterns.
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To define extreme events on tick scale Nanex methodology can be applied. This
methodology defines down (up) shock if stock had to tick down (up) at least 10
times before ticking up (down)—all within 2 s and the price change had to exceed
0.8 %. Tick means a price change caused by trade(s).

Hanousek (2011) performed an extensive simulation study to compare the
relative performance of many price-jump indicators with respect to false positive
and false negative probabilities. The results suggest large differences in terms
of performance among the indicators: in the case of false positive probability,
the best-performing price-jump indicator is based on thresholding with respect to
centiles, in the case of false negative probability, the best indicator is based on
bipower variation. The differences in indicators is very often significant at the
highest significance level, which further supports the initial suspicion that the results
obtained using different price-jump indicators are not comparable.

Another problem specific for any statistical filter is spurious detection. The
problem is that performing the tests for many days simultaneously results in
conducting multiple testing, which by nature leads to making a proportion of
spurious detections equal to the significance level of the individual tests (Bajgrowicz
and Scaillet 2011). Bajgrowicz and Scaillet (2010) treat the problem of the spurious
identification of price jumps by adaptive thresholds in the testing statistics. The
problem with most of the price-jump indicators lies in what model they are built
upon and there is the need for robustness of each filter when dealing with price
jumps. Bajgrowicz and Scaillet (2011) developed a method to eliminate spurious
detections that can be applied very easily on top of most existing jump detection
tests, a Monte Carlo study shows that this technique behaves well infinite sample.
Applying this method on high-frequency data for the 30 Dow Jones stocks over the
3-year period between 2006 and 2008, authors found that up to 50 % of days selected
initially as containing a jump were spurious detections. Abramovich et al. (2006)
introduce the data adaptive thresholding scheme based on the control of the false
discovery rate (FDR). FDR control is a recent innovation in simultaneous testing,
which ensures that at most a certain expected fraction of the rejected null hypothesis
correspond to spurious detections. Bajgrowicz and Scaillet (2010) use the FDR to
account for data snooping while selecting technical trading rules. The choice of
which threshold to use: universal or FDR, depends on the application. If the main
purpose of research is the probability of a jump conditional on a news release,
the FDR threshold is more appropriate as it reduces the likelihood of missing true
jumps. If the goal is to study what kind of news cause jumps, it is better to apply
the universal threshold in order to avoid looking vainly for a news when in fact the
detection is spurious.

S Cojumps

Documenting the presence of cojumps and understanding their economic
determinants and dynamics are crucial for a risk measurement and management
perspective.
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Bajgrowicz and Scaillet (2011) did not detect cojumps affecting all stocks
simultaneously for the sample including high-frequency data for the 30 Dow
Jones stocks over the 3-year period between 2006 and 2008, which supports the
assumption in Merton (1976) that jump risk is diversifiable and thus does not require
a risk premium.

Other empirical studies of cojumps include Bollerslev et al. (2008) who examine
the relationship between jumps in a sample of 40 large-cap U.S. stocks and the
corresponding aggregate market index. To more effectively detect cojumps authors
developed a new cross product statistic, termed the cp-statistic, that directly uses
the cross-covariation structure of the high-frequency returns and examines cross co-
movements among the individual stocks. Employing this statistic allows to detect
many modest-sized cojumps. Cross product statistic defined by the normalized sum
of the individual high-frequency returns for each within-day period:

n

-1 n
1
Pij = mZ Z Vit jTle,j

=1/=i+1
where j=1, ..., M, M—total number of observations in a day, n—number of
stocks. The cp-statistic provides a direct measure of how closely the stocks move
together.

Lahaye et al. (2009) investigated cojumps between stock index futures, bond
futures, and exchange rates in the relation with news announcements, they found
that exchange rates experience frequent but relatively small jumps because they are
subject to news from two countries and because they probably experience more
idiosyncratic liquidity shocks during slow trading in the 24-h markets. Forex jumps
tend to be smaller than bond or equity jumps because national macro shocks produce
much smaller changes in expected relative fundamentals between currencies. Equity
and bond market cojumps are much more strongly associated with news releases
than foreign exchange cojumps. But also authors admit that most of news does not
cause jumps. A generic announcement only produces an exchange rate jump about
1-2 % of the time and a bond or equity jump only about 3—4 % of the time.

By investigating a set of 20 high cap stocks traded at the Italian Stock Exchange,
Bormetti et al. (2013) found that there is a large number of multiple cojumps,
i.e. minutes in which a sizable number of stocks displays a discontinuity of the
price process. As mentioned above, they show that the dynamics of these jumps
is not described neither by a multivariate Poisson nor by a multivariate Hawkes
model, which are unable to capture simultaneously the time clustering of jumps
and the high synchronization of jumps across assets. Authors introduce a one factor
model approach where both the factor and the idiosyncratic jump components are
described by a Hawkes process. They develop a robust calibration scheme which
is able to distinguish systemic and idiosyncratic jumps and show that the model
reproduces very well the empirical behaviour of the jumps of the Italian stocks.
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6 Empirical Description of Markets Around Shocks

A broad range of research works tries to give an empirical description for price
jumps and analyze their statistical properties and the behaviour of market quantities
around such events.

The attempt to compare shocks on different time scales is relatively little
explored. Fan and Wang (2007), for example, used wavelets to identify jumps on
multiple time scales, but the method is not used to compare shocks on different
scales, but to detect shocks using a multiscale tool. On the other hand the attempt to
investigate shocks and pre- and aftershock market behaviour is not novel. Lillo and
Mantegna studied the relaxation dynamics of the occurrence of large volatility after
volatility shocks (Lillo and Mantegna 2004), Zawadowski et al (2004) examined the
evolution of price, volatility and the bid-ask spread after extreme 15 min intraday
price changes on the New York Stock Exchange and the NASDAQ, Ponzi et al.
(2009) studied possible market strategies around large events and they found that
the bid-ask spread and the mid-price decay very slowly to the normal values when
conditioned to a sudden variation of the spread. Sornette found that the implied
variance of the Standard and Poor’s 500 Index after the Black Monday decays as a
power law with log-periodic oscillations (Sornette et al. 1996).

Mu et al. (2010) study the dynamics of order flows around large intraday
price changes using ultra-high-frequency data from the Shenzhen Stock Exchange.
They find a significant reversal of price for both intraday price decreases and
increases with a permanent price impact. The volatility, the volume of different
types of orders, the bid-ask spread, and the volume imbalance increase before the
extreme events and decay slowly as a power law, which forms a well established
peak. They also study the relative rates of different types of orders and find
differences in the dynamics of relative rates between buy orders and sell orders
and between individual investors and institutional investors. There is evidence
showing that institutions behave very differently from individuals and that they have
more aggressive strategies. Combing these findings, they conclude that institutional
investors are more informed and play a more influential role in driving large price
fluctuations.

Novotny (2010) tries to determine if there is any increase in market volatility and
any change in the behaviour of price jumps during the recent financial crisis. He
employs data on 16 highly traded stocks and one Exchange Traded Fund (ETF)
from the North American exchanges found in the TAQ database from January
2008 to July 2009. It was found that the overall volatility significantly increased
in September 2008 when Lehman Brothers filed for bankruptcy protection, the
periods immediately after this announcement reveal significantly higher levels of
volatility. However, the ratio between the regular noise and price jump components
of volatility does not change significantly during the crisis. The results suggest
individual cases where the ratio increases as well as decreases.
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Conclusion

The literature review suggests that the mathematical description of price
jumps cannot be easily handled, there is no general approach to model price
jumps, but it would be wrong to neglect their presence since market shocks
are the essential part of price time series and have serious consequences for
pricing models and financial risk management. Thus market shocks have to
be the subject for further research and analysis.
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Abstract We examine the synergy of the credit rating agencies’ efforts. This
question is important not only for regulators, but also for commercial banks if
the implementation of the internal ratings and the advanced Basel Approach are
discussed. We consider Russian commercial banks as a good example where
proposal methods might be used. Firstly, a literature overview was supplemented
with an analysis of the activities of rating agencies in Russia. Secondly, we discussed
the methods and algorithms of the comparison of rating scales. The optimization
task was formulated and the system of rating maps onto the basic scale was obtained.
As aresult we obtained the possibility of a comparison of different agencies’ ratings.
We discussed not only the distance method, but also an econometric approach. The
scheme of correspondence for Russian banks is presented and discussed. The third
part of the paper presents the results of econometric modeling of the international
agencies’ ratings, as well as the probability of default models for Russian banks. The
models were obtained from previous papers by the author, but complex discussion
and synergy of their systematic exploration were this paper’s achievement. We
consider these problems using the example of financial institutions. We discuss the
system of models and their implementation for practical applications towards risk
management tasks, including those which are based on public information and a
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1 Introduction

Ratings have been an essential tool for risk evaluation for more than a century and
their range of use is still growing. Ratings transform a great volume of information
into the rating agencies’ opinion on the current financial stability and risk of an
entity. They represent the result of a complex assessment of separate companies or
single financial instruments (further named as entities). An increasing number of
banks, especially those from emerging markets, have become a part of the rating
systems in recent years, and the expectation that banks and other entities are going
to be rated has become conventional. Rating costs are relatively low for both the
issuers and the investors, but the percentage of all banks and companies with ratings
is still not large. Moreover, there are no widely accepted instruments to compare
rating estimations by different agencies.

Previous research has shown that ratings are important for many reasons,
including: regulatory rules, as well as the Basel Accords, asset management and
investors for portfolio allocations, government and market regulation covenants for
investments and participation at financial tenders and auctions, information for fixed
income and equity markets, and so on.

We should also mention that interest in resolving these issues is still increasing.
The development of approaches based on internal ratings systems under the Basel
II Accord (Basel 2004) has a practical interest for internal ratings and their models
that would help to predict the credit ratings of banks using only freely accessible
public information, especially for developing markets. The topic has received
increased attention in connection with the global crisis that began in 2007 and
the implementation of Basel III (Basel 2010). The regulation of rating agencies’
activities was one of the main topics of the G20 meeting in Moscow in February
2013 (G20 2013).

The key goals of this research are to develop methods of comparison and to
compare the bank ratings of the main rating agencies from different points of view.
We focus on the synergy of the common use of the ratings of an entity estimated by
different agencies, as well as cooperated internal ratings in this integration process.
We also consider previous ratings and the probability of default models of different
entities to extend the sphere of influence of rating methods for risk management.

For this purpose we executed an analysis of the connected literature, as well
as the dynamics of the process of setting ratings to Russian banks (Sect. 2),
considering different methods and algorithms for the comparison of ratings (see
Sect. 3). Particular attention is devoted to the rating business in Russia and the
comparative analysis of ratings of Russian banks that has been rapidly developing
and redeveloping in recent years and has involved substantial efforts by the rating
agencies.

Later on in Sects. 4 and 5 we discuss the rating model system, which has
been obtained in previous papers from the synergy position. We briefly discuss the
structure and parameters of the databases, the type of econometric models (order
and binary choice), the financial and macroeconomic indicators for the models, and
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the comparison of the main international ratings connected with Russian financial
institutions. Conclusions are provided in last section.

2 Comparison of the Ratings: Literature and Practice
Overview

The process of rating assignment is similar for different international rating
agencies. Frequently, agencies publish their methodologies. However, they do not
include detailed information, but rather general directions for rating assessment.

The basic problem for using credit ratings by regulatory bodies and commercial
banks is the comparability of the ratings from different agencies. From a practical
point of view it is important to compare ratings. So the question is how a relationship
between the rating scales can be found when different levels of defaults and expected
losses are established.

2.1 Rating Comparisons in the Literature

Among the first papers aimed to compare the ratings of different agencies was the
one by Beattie and Searle (1992). Long-term credit ratings were gathered from 12
international credit rating agencies (CRA) that used similar scales. The sample of
differences between the pairs of ratings for the same issuer was found. Around 20 %
of the pairs in that sample involved differences in excess of two gradations. That
may be explained by differing opinions about the financial stability of the issuers,
as well as by different methodologies used by the rating agencies. But the average
difference between ratings of the main international agencies S&P and Moody’s
was insignificant.

Cantor and Packer (1994) compared Moody’s ratings of the international banks
with the ratings of nine other rating agencies. It was found that the differences
were greater on average than those discussed earlier. The average rating difference
among the biggest international and three Japanese rating agencies was nearly three
gradations.

The CRAs sometimes explain this effect in terms of a conservative approach
when dealing with an unrequested rating because they do not have as much
information about a company with which they have a rating contract, as they would
with a company that has entered into a rating agreement. Poon (2003) empirically
concluded that unrequested ratings were lower on average than the requested ratings,
and found that the effect could be explained as self-selection.

The questions connected with the desire of issuers to use rating shopping to
obtain the best ratings were developed to overcome the difficulties to apply ratings
for regulatory aims (Cantor and Packer 1994; Karminsky and Peresetsky 2009).
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A lot of studies have analyzed the reasons for differences in ratings from different
agencies rather than constructing a mapping between the different scales. Liss and
Fons (2006) compared the national rating scales supported by Moody’s with its
global rating scale.

Ratings have also been compared in Russia by some authors (Hainsworth et al.
2012), according to Russian bank ratings connected both national and international
agencies. Matovnikov (2008) looked at the relationship between the gradations of
rating scales and the total assets and capital of banks. Hainsworth used an iterative
application of linear regressions to find mappings between the rating scales of all
the credit rating agencies.

A wide array of literature on rating modeling uses econometric models; for
example, for bank ratings (Caporale et al. 2010; Iannotta 2006; Peresetsky and
Karminsky 2011). Typical explanatory variables from publicly available sources
have been defined for models of ordered choice. Examining changes in rating
gradation over time for a limited sample of international CRAs was fulfilled.

The selection of the explanatory variables is an important step for the elaboration
of such models. Firstly, quantitative indicators that are employed by the rating
agencies may be examined (see, for example, Moody’s 2007), as well as non-
confidential indicators that have previously been employed by other researchers.
Typical informative indicators are connected with the CAMELS classification and
include the size of the company, its profitability, stability, liquidity, and structure
of the business, as expressed through companies’ balance-sheet figures. In recent
years, the use of such factors as state support for banks or companies, and support
from the parent company or group of companies has also become more frequent.

Secondly, the use of macroeconomic indicators has become popular recently
(Carling et al. 2007; Peresetsky and Karminsky 2011). Among the most common
indicators there are inflation index, real GDP growth, industrial production growth
and oil prices, and changes in the foreign exchange cross-rates of currencies
for export-oriented countries. Because of the correlation between the majority
of macroeconomic indicators they may be used mostly separately. Thirdly, the
potential efficiency of market indicator exploration (Curry et al. 2008) for public
companies should be mentioned. It should also be noted that alternate indicators
may be informative for developing and developed markets.

At the Higher School of Economics and the New Economic School in Moscow
there has been research on modeling the ratings of international credit rating
agencies in Russia (Peresetsky et al. 2004; Karminsky et al. 2005; Peresetsky and
Karminsky 2011). These studies have focused on finding economic and financial
explanatory factors, that affect ratings, and on comparing the ratings of international
agencies.

2.2 Dynamic of the Rating Agencies Activities in Russia

The growth of the number of Russian agencies ratings has been significant in recent
years. Four Russian rating agencies achieved registration in the Russian Ministry
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of Finance as well as three international ones. Due to this fact, the question of
the integration of these agencies’ efforts and comparison of their rating scales is
important. As for now we have nearly 700 ratings for banks only. We observed a
threefold growth in 5 years (2006-2011). We also see that the number of ratings
given by Russian agencies is roughly similar to the international agencies’ ratings
(Karminsky et al. 2011b).

Despite the comparative growth in the number of ratings, the rating methods
are largely unclear, and expertise plays a significant role. This hinders the usage
of ratings for risk evaluation and decision-making even at the state level. It is the
reason for interest in the creation of internal ratings and model ratings.

Our long-term goal is to research the possibility of forecasting company ratings
based solely on publicly available information, including indicators from interna-
tional financial reports and market conditions on stock exchanges.

3 Comparison of Ratings: Methods and Algorithms

The rating process has some problems, such as

* A relatively small number of updated communicative ratings.

 Difficulties of comparison of estimation between different rating agencies.

* Absence of any integrative effect from available competitive estimations of
independent agencies.

* A demand for extended usage on independent rating estimations primarily owing
to modeling techniques.

We aim to achieve a comparison capability of independent estimations of
different ratings. In this way the elaboration and development of the approaches and
methods are especially urgent because of synergy opportunities connected with the
limitations mentioned above. For these aims the Joint Rating Environment (JRE)
was introduced, and included a selection of basic rating scales, the building of a
mapping system of external and internal ratings to a base scale, and the common
usage of all rating estimations for every class of issuer or financial instrument.

We used statistical approaches to calculate the distance between different ratings
for the same entities. Also we selected a basic scale, in which we proposed to
measure the difference between ratings, and proposed to use mapping between
rating scales, while our aim is to find functional approximations of such maps.

Econometric approaches were studied in the paper (Ayvazyan et al. 2011). In
this method, firstly, the econometric order choice models for every CRA were
determined. Then the correspondence between latent variables for the model for the
basic CRA and every other CRA model in polynomial form was estimated. These
gave an opportunity to determine the mapping of every CRA scale to the basic scale
at last.

The main points of distance algorithm for the rating scales’ comparison include
not only the methodology of agency-scales mapping, principles and criteria for
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Fig. 1 The system of scale Rating Numeric Basic
mappings scales scales scale

RS1 % NS1 \FT(GT)
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comparison of rating scales, but also the choice of an optimization algorithm, the
construction of a comparison scheme and a table, the principles of result auditing
during that time and so on (Hainsworth et al. 2012).

In this paper Moody’s rating scale is used as a basic scale, but the results must be
practically invariant to the choice. The system of mapping, which was presented
in Fig. 1, was established. In this figure the first group of mapping deals with
the correspondence between the rating and numerical scales, which is reasonable
because of the rating’s orderliness. The mappings to the basic scale

RSy NS,

F; (a;) : NS; — BS

for every rating scale R; were parameterized, and our aim is to find the vectors «;
foreach scalei=1,..., N, where N—the number of the scales.

We have considered some parameterization of mappings F;(a;) = aj; * fi(R;)
+ ajp, using functions fj(R;) from some classes and a vector of parameters of the
map o; =(aj;, ajp). At this step we have formulated the task of the parametric
optimization problem. We used a square measurement between rating images in
this research:

{ai’l_nzlilfi.N}XQ: (Fin (Rivjes i) — Fiz (Rinjr, @i2))

Above we mean that

Q—the set of combinations of points over time

q = {quarter t, bank j, the rating of the basic agency Rj;, the rating of the other
agency Rt}

Fi; and Fj—the maps for i/ and i2 scales as defined above.

During the research we compare linear, power and logarithmic function classes
f;, which were used for the evaluation of map dependences.

An additional analysis of the default statistics for Moody’s and S&P gives us an
opportunity to use a priority logarithmic approximation, which we use in this paper
for empirical analysis. It must also be mentioned that for the previous problem we
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Table 1 Table of parameters

! - Rating scale aj; ap
for bank scale mappings in a ;
logarithmic model Moody’s (Russian scale) 0.254 |2.202
specification Standard and poor’s 0.916 |0.146
Standard and poor’s (Russian scale) |0.265 |2.113
Fitch ratings 0.749 |0.594
Fitch ratings (Russian scale) 0.213 |2.162
AK&M 0.269 |2.491
Expert RA 0.373 |2.329
RusRating 0.674 | 1.016
National rating agency 0.163 |2.474
Number of estimations 3,432
Pseudo-R? 0.902
Italic texts were connected with statistical summaries of
the tables.

could have used econometric program packages such as eViews or STATA because
of the use of the quadratic criteria (the experiments with other criteria showed the
robustness of the comparison results).

We provided this analysis for both Russian and international data. For the
Russian data we had a sample for a time span of 20 quarters (from 1Q 2006 till
4Q 2010), as well as the data for periods until 2012 in other examples. We have
collected data from three international agencies (Moody’s, S&P and Fitch) on both
international and national scales, as well as from four Russian agencies (AK&M,
NRA, RusRating and Expert RA). This sample has included 7,000+ pairs of ratings
for 370 Russian banks with any rating during this time span.

The result of the optimization task decision is presented in Table 1.

The results derived from this can be presented both in scheme (Fig. 2) and table
interpretations. At this point we have constructed a scale correspondence, which
may be used in practice for regulatory and risk management purposes.

It should be mentioned that the correspondence between international agencies
on traditional scales are not identical, and we can compare the difference between
these agencies with the Russian banks.

It also should be noted that the results included in the scheme are stable. We have
compared the results not only with a different base scale, but also with two different
methods such as distance and econometric methods. The results obtained give us
the opportunity to acquire comparable estimations of entities for both regulation
and risk management aims.

For the international banks’ models an accurate forecast was generated in nearly
40 % of cases. The forecasting power may be estimated by mistakes on the part
of the models, which in the case of no more than two grades gave a probability of
1-2 %. These results were comparable with previous models, but extended to three
international rating agencies simultaneously.
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Fig. 2 Scheme of correspondence for CRA scales working in Russia

The signs for all the models were almost equal, and could be easily explained
from a financial point of view. Coefficient sign analysis allowed us to make the
following conclusions:

» The size of the bank is positive for a rating level increase, also as capital ratio
and asset profitability as the retained earnings to total assets ratio.

* Such ratios as debt to asset and loan loss provision to total assets have a negative
influence on the rating grade.

* Macro variables are also important for understanding the behavior of bank
ratings, and are presented with a negative sign for the corruption index and
inflation.

We also constructed models for Russian bank ratings using a Russian data base
and have concluded that the influence of financial indicators is mainly the same
(Vasilyuk et al. 2011).

4 Modeling of Ratings and the Probability of Default
Forecast Models

A lot of research is devoted to the difference in the ratings of the main international
CRAs. They provide adjustments of explanatory financial and macroeconomic
variables on the new horizon analysis dependence of ratings on their affiliation to
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specific groups of countries, their degradation over time, lags between dependence
and independence variables, etc.

Firstly, econometric rating modeling needs comprehensive and well-organized
data. Secondly, the class of econometric models and principles of their verification
should be selected. A modern risk management system based on best practice is the
next important component. Finally, such a system needs domestic experience data
that would take into account the specifics of a country.

In this section we systemize the practice of research of such models for banks,
corporations and countries in Russian bank applications. Additionally we will
discuss the opportunities of the probability of default models in the case of Russia.
We use the existing experience of such research, which was obtained and published
in previous works. In this paper we try to understand how this knowledge may be
accumulated in the JRE system.

4.1 Models and Data for Bank Ratings

Here, and further in this section, ordered probit/logit econometric models were
used to forecast rating grades (for example, see Peresetsky and Karminsky (2011)).
Numeric scales for ratings were also used as a result of the mappings mentioned
in Fig. 1. For the main international CRAs, nearly 18 corporate rating grades were
used.

The original databases for different classes of entity were used. There were two
different databases used separately for banks for both international and Russian
ones. The first database was obtained from Bloomberg data during the period 1995—
2009. The database includes 5,600+ estimations for 551 banks from 86 countries.
The data contains the banks from different countries including more than 50 % from
developed and 30 % from developing countries. Russian banks are also included in
the sample and form nearly 4 %.

The second database was constructed from the data for Russian banks according
to Russian financial reporting. It contains 2,600+ quarterly estimations from 2006
until 2010 for 370 Russian banks.

We carried out model choices from different points of view for three agencies
simultaneously. We determined which financial explanatory variables were the most
informative ones. Then we considered quadratic models, using macro, market and
institutional variables, as well as dummies. We used a rating grade as a dependent
variable where the lower numbers were associated with a better rating. So a positive
sign in the coefficient related to a negative influence on the ratings, and vice versa.

You can see the chosen models for international banks in Table 2 (Karminsky
and Sosyurko 2010).

For the international bank models, an accurate forecast was generated in nearly
40 % of the cases. The forecasting power may be estimated by the mistakes of
the models, which in the case of no more than two grades gave the probability of
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Table 2 Bank rating models: international banks

Variable

Ln (assets)

Equity capital/total
assets

Equity capital/risk
weighted assets

Loan loss
provision/average
assets

Long-term debt/total
assets

Interest
expenses/interest
income

Retained
earnings/total assets

Cash and near cash
items/total liabilities

Corruption index

Annual rate of
inflation

Exports/imports
GDP
Pseudo R?

Number of
estimations

Influence

+
+

+

S&P—
issuer
credit

0.045%5%

42.763%**

0.008%*

0.353%#*

—0.84

2.303#%*

—0.4087*
0.038:%*

—0.5847%
— 4,407
0.293
1,804

Fitch—
issuer
default

—0.561%*%*
—1.945%%*

0.014%*

37.284#%%

0.017%*

0.277%%%*

1.814%%%

—0.356%**
0.020%*

—0.400%*
—4 AQFE
0.266
1,985

Moody’s—
bank
deposits

—0.545%
—2.758#5

0.028%#*

19.188%**

0.023%3%

0.204%%%

—1.404*
1,985

—(0.383%%*
0.028%##*

—0.559%:#
—12.20%**
0.295
1,787

Notes: *, ** *** represent 10%, 5%, 1% levels of significant, respectively.
Italic texts were connected with statistical summaries of the tables.
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Moody’s—BFSR
—0.383%**
—1.607%**

12.245%%%

0.020%**

0.171%%%*

—2.345%%
19175+

—0.316%**
—0.009*

—0.017
—15.80%#*
0.192
1,897

1-2 %. These results were comparable with the previous models, but extended to
three international rating agencies simultaneously.

The signs for all the models were almost equal and could be easily explained
from a financial point of view. Coefficient sign analysis allowed us to make the
following conclusions:

* The size of the bank is positive for a rating level increase, as are capital ratio and
asset profitability as the retained earnings to total assets ratio.
* Such ratios as debt to asset and loan loss provision to total assets have a negative
influence on the rating grade.
e Macro variables are also important for understanding the behavior of bank
ratings, and are presented with a negative sign for the corruption index and

inflation.
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We also constructed the models for Russian banks ratings using a Russian
database, and have concluded that the influence of financial indicators is mainly
the same (Vasilyuk et al. 2011).

4.2 Models of Corporations and Sovereigns

The sample of corporations included information from different industries (oil and
gas, utilities, retail, telecom, etc.) and countries. We considered the rated companies
from these industries which also had financial and market indicators. Financial
explanatory variables included such group indicators as size of company, capitaliza-
tion, assets, management, efficiency, and liquidity. Among the macro indicators it
stands out on the corruption perception index by Transparency International. While
among market indicators the volatility of the market prices stands out. We also added
industry classification dummies, as well as such factors as groups of countries and
a company’s affiliation.

We used both the agencies’ and Bloomberg data for this sample. Financial
indicators were selected for 30+ countries during 2000-2009 for 211 corporations.
Our database included nearly 1,800 estimations (non-balance panel) for three
international rating agencies; S&P, Fitch and Moody’s ratings.

Order probit model parameters are presented in Table 3. We do not have the
opportunity to use all the explanatory variables. You can see the best models, which
differed in profitability indicators (Karminsky 2010).

The signs for all three models are equal, and have a good explanation from a
financial point of view. As for its interpretation, a positive sign of coefficient relates

Table 3 Comparison of corporate rating models for international CRA

Variable S&P Fitch Moody’s
LN (market capital) —0.692%#%%* —0.806%*** —0.691#%*
Sales/Cash 0.00004*** —0.00051 —0.00049
EBIT/interest expenses —0.0017%** 0.0006 —0.0054***
LT debt/capital 0.006%*%* 0.011%%* 0.019%%*%*
Retained earnings/capital —1.107%%%* —0.581%* —1.230%%%*
Volatility (360d) 0.012%%%* 0.013%%* 0.016%**
Corruption perception index —0.217%%%* —0.088**%* —0.088
Chemicals —0.235%%%* 0.381%%* —0.182
Metal and mining 0.322%%% 1.317%%* 0.947%%*
Pseudo-R* 0.215 0.220 0.276
Number of observations 1,362 423 339
|[Al=0 40.6 % 34.3 % 42.5 %
|Al<1 87.7 % 87.7 % 87.0 %

Notes: *, ** *¥* represent 10%, 5%, 1% levels of significant, respectively.
Italic texts were connected with statistical summaries of the tables.
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Fig. 3 Procyclicity of corporate ratings: year dummies dynamics

to a negative influence on rating, and vice versa, because of the fact that the scale
mapping choice should be taken into account. From this model we can make the
following conclusions:

» The size of the company, asset profitability and the EBITDA to interest expenses
ratio have a positive influence on the rating level. A ratio such as LT Debt to
Capital has a negative influence on the rating grade.

* Industry dummies are significant. We can see that companies from the utility and
oil and gas industries have higher ratings.

* Market variables are also important for understanding the behavior of companies,
for example, the corruption index has a negative influence.

Time has an important influence as well. We used a system of dummies during
the years 2000-2009 to understand the impact of methodology and crisis. Most of
the dummies are significant. We can see in Fig. 3 that all the agencies have the same
procyclicity connected with the crisis of 1998 and 2008.

The main explanatory variables for sovereign rating models may be classified
into 6 groups of quantitative variables such as: bank characteristics, economic
growth, international finance, monetary policy, and public finance and stock market
characteristics. In our research 30+ parameters from all groups were analyzed.

We also used dummies for regions, financial crisis type and indicators of
corruption (CPI index). Our sample included nearly 1,500 estimations for 100+
countries during the 1991-2010 periods. We dealt with Moody’s bank ceiling
ratings as a sovereign rating proxy. The models are presented in Karminsky et al.
(2011a).

We derived a strong association of sovereign ratings with economic growth, the
public sector, monetary policy, the banking sector, the foreign sector, stock market
variables and geographical regions. The forecast accuracy of the models is higher
for investment-level grades than for speculative-level grades.
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The majority of working explanatory variables for higher-investment ratings
consists of the financial sector variables and GDP per capita. The majority of
working explanatory variables for speculative-grade ratings includes budget deficit,
inflation growth rate, export-to-import ratio and GDP per capita.

4.3 Probability of Default Models

Here, and later in the paper, the default is understood as one of the following signals
for its registration:

* A bank’s capital sufficiency level falls below 2 %.

e The value of a bank’s internal resources drops lower than the minimum estab-
lished at the date of registration.

* A bank fails to reconcile the size of the charter capital and the amount of internal
resources.

* A bank is unable to satisfy the creditors’ claims or make compulsory payments.

* A bank is subject to sanitation by the Deposit Insurance Agency or another bank.

We propose a forecast probability of default (PD) model, which is based on
the relationship between banks’ default rates and public information. We have
constructed a quarterly bank-specific financial database on the basis of Mobile’s
information from 1998 to 2011: data in accordance with Russian Financial Report-
ing Standards, taken from bank Balance sheets and Profit and Loss statements.

During a 14-year period there were 467 defaults in compliance with our
definition, as well as 37 bank sanitations. The quarterly database created has a good
coverage of default events and the banking sector. We have applied a binary choice
logistic model to forecast default probability. The maximum likelihood approach is
used to estimate the model. The sample was split into two parts: “1998-2009"—to
estimate models, and “2010-2011"—to test the predictive power of the models.

Financial ratios used as explanatory variables were determined from the literature
review and common sense. They were tested on their separating power between
bankrupt and healthy banks, as well as being divided into blocks according to the
CAMELS methodology. We have also employed non-linearities in our model and
found the optimal lag on financial ratios.

* Macroeconomic variables are highly correlated, and there were only two vari-
ables used in order to account for the effect of the macroeconomic environment
on bank performance: quarterly GDP growth rates and the Consumer Price
Index. We also controlled for the impact of the following on a bank’s default
probabilities:

* Monopoly power of a bank on the market (with the Lerner index).

* Its participation in a Deposit insurance system (with a dummy variable).

* The territorial location of the bank’s operational activity (Moscow or regional)
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Our key findings (Karminsky et al. 2012) were that:

* Banks with extremely high and low profitability have higher default rates due to
their impact on the default probability of the profit-to-assets ratio (poor and risky
banks).

* Banks with a higher proportion of corporate securities in assets carry a higher
risk of a price crash on the market.

e Lower turnover on correspondent accounts in comparison with total assets
increases the probability of default (a bank’s potential inability to make pay-
ments).

* Banks with a considerable number of bad debts are less stable.

Additionally, a growing consumer price index increases a bank’s default proba-
bility:

» Inflation reduces the real return on loans.
* Depositors are able to withdraw money and deposit it into the bank again at a
higher interest rate or spend it.

We have also found that banks with a higher monopoly power are financially
stable. Moscow-based banks have higher PDs on average.

We have found no evidence that a bank’s participation in the Deposit insurance
system influences its PD. The explanation is that the set of System participants is
too diversified. The out-of-sample prediction performance of the model (for 2010—
2011) is prominent: over 60 % of bank failures were correctly classified with a
moderately sized risk group.

At the same time, the developed model underestimated the default probabilities
for 2009. This result reveals some unrecorded channels that significantly increased
the risks during the period of the recent financial crisis.

5 System of Models and Synergy of Rating Estimations

Previously we considered the capabilities which were given to us by rating mappings
and models. Later we will discuss the synergy of these approaches as instruments
of the Joint Rating Environment system (JRE-system). Such a system may be
used for risk management in commercial banks; its main components for financial
institutions are presented in Fig. 4.

The main part of such a system is the correspondence between rating scales,
including the connection with internal ratings. They provide the opportunity to
compare different ratings, as well as to use a comparable estimation of ratings
received by several models. The synergy of such estimations gives a basic scale
by independent risk weightings.

The system of models brings to the IRB Approach some possibilities, among
which there may indications such as
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Fig. 4 Rating model system for financial institutions

* A basic scale established for the development and practical usage of econometric
rating models within the IRB-approach for Russian and international rating
agencies.

* Rating scale comparison methods defined for different agencies including exter-
nal and internal rating reconciliation.

* Rating estimation forecasting approach and banking risk measurement dependent
on internal and external factors.

* Rating forecasting for financial and non-financial companies which have no
rating.

* Implementation of an econometric modeling system which requires:

— Structured databases (data warehouse).
— Support for all life cycle stages of models.
— Monitoring, data gathering and the integration problem solution.

Of course such systems may be constructed for all types of entity, which were
indicated at the specified risk management system according Basel II (Basel 2004,
2010). The details should be discussed for every bank or regulator separately. The
discussion of these details is beyond the scope of this paper and may be done later.

Conclusion
We considered some methods of rating system construction, including a
comparison of different rating estimates and modeling ratings for unrated
entities.

The mapping of rating scales was introduced as the foundation for the
comparison of rating scales using a distance method. We proposed this
method for all the international and national agencies, which were recognized

(continued)
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in Russia. This approach permits the synergy effect for rating agencies efforts
as alternative opinions for risk management analysis. It may be combined with
internal ratings for an increase in efficiency.

Moreover, the modeling and comparison of the main international rating
agencies were discussed. Important factors were determined for such models
as macro and market indicator influence etc. The remote assessment of
econometric models should become a mandatory part of internal bank rating
approaches. Data, monitoring and verification for econometric rating model-
ing were considered. The forecasting power of rating models was estimated,
and it was quite high (up to 99 % with no more than a divergence of two
grades).

Besides the bank rating models, the system should include corporate,
sovereign and bond rating models. Some of them were presented in the paper,
also as principles of their creations and main findings.

Bank and government financial regulators may be perspective users of
the proposed methods. They can use such methods for the synergy of rating
estimations.
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Spread Modelling Under Asymmetric
Information

Sergey Kazachenko

Abstract Bid-ask spread is a key measure of pricing efficiency in a microstructure
framework. Today there is no universal model of spread formation that includes
all three factors of transaction costs, inventory risk (losses in case of a changing
value of a stored asset) and information asymmetry that influence the behaviour
of traders and market-makers. Empirical evaluations of these three components
of spread are very contradictory (Campbell et al., The econometrics of financial
markets. University Press, Princeton, 1997; Easley and O’Hara, Microstructure
and asset pricing. In: George MC, Milton H, Rene HS (eds) Handbook of the
economics of finance. Elsevier, Amsterdam, pp 1022-1047, 2003). In our work,
after the introduction of the additional uncertainty about the real asset value, we
propose an algorithm of bid—ask spread formation for the market-maker, based
on classical model of Glosten and Milgrom (J Financ Econ 14:71-100, 1985).
Our modification allows us to the reproduce intertemporal spread dynamics under
asymmetric information and limited inventory risk of a market-maker.

Keywords Asymmetric information ¢ Bid-ask spreads * Glosten—Milgrom e
Inventory risk * Market microstructure * Price formation

JEL Classification G14, D47, D82

1 Introduction

Today there is some controversy about the asset pricing process between the
microstructure approach and macro models of finance theory. In history, we can
find a similar period of misunderstanding between the micro and macro economies
(Ball and Romer 1990). The experience of restoring the integrity of economic
theory draws attention to the efficient market hypothesis (Fama 1970). We can
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assume that the key “macro request” to microstructure analysis is a quantitative
measure of information efficiency (measure of market price deviation from fair
price) or mechanism designed to regulate the asset pricing process, which provides
given characteristics that suits assumptions of macro models. For instance, Agarwal
and Wang (2007) stated that there is an explanation of the high descriptive power
paradox of the empirical three-factor Fama—French model (Fama and French 1993),
which arises because transaction costs were not taken into account. In this case, the
spread acts as an indirect measure of information efficiency of the asset pricing (Roll
1984).

Bid—ask spread depends on three key factors: transaction costs (Roll 1984),
inventory risk (Stoll 1978) and information asymmetry (Glosten and Milgrom
1985). Today there is no universal model of spread formation that includes all three
factors. Generally, when authors have modelled spread formation, they took into
account only one factor, as discussed above. The impact of other factors is limited.
Empirical estimations of these three factors are controversial (Campbell et al. 1997;
Easley and O’Hara 2003).

The mechanism of information allocation and incorporation into the market price
plays a key role in bid—ask spread formation. The American scientists L. Glosten and
P. Milgrom provided in 1985 the basic research in this area. The authors, hereafter
referred to as GM, constructed their model to show the influence of information
asymmetry on bid—ask spread. That is why they introduced strict assumptions:

* Uniqueness of informational event and common knowledge of the moment when
informed traders receive information about real asset value

+ Knowledge of possible real asset value (V and V, lower higher price)

* Fixed volume for one transaction

* Traders cannot refuse to perform a transaction

* Informed traders have no power over price manipulation

* The market-maker has no need to account for inventory risk

* The market-maker has zero profit and losses

* Authors exclude competition between market-makers

The key point in obtaining a complex model of bid—ask spread formation, based
on the GM model, is the accounting of inventory risk. Straight incorporation of
inventory risk in a bid—ask spread yields explosive growth of spread and price. In
our work, we attempt to find such a relaxation of assumptions of the GM model that
allows the market-maker to implement simultaneous control of inventory costs and
costs from adverse selection and, at the same time, keep the key features of the GM
model (i.e. the martingale property of prices and intertemporal dynamics of spread).
In our study, we do not include transaction costs.

In our work, we have made following changes in assumptions of the GM model:

* We introduced uncertainty of market-maker’s expectations about real asset value
(the market-maker has no knowledge about expecting higher V and lower V.
prices. Instead, he/she knows only the range [KMM; VMM], where real asset value
is located).
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* Informed traders make errors, but they still know about the exact expected value
of real asset value (V or V).

* Informed traders can refuse to perform non-profitable transactions.

e We added some statistical functions to analyze inventory risk of the market-
maker and its financial result.

Other basic assumptions of the GM model remain unchanged. The proposed
modification of the original assumption was influenced by studies (Das 2005;
Zachariadis 2012; Gerig and Michayluk 2010). The logic of proposed changes to
the GM model is as follows:

* A necessary condition of write-off of the market-maker’s inventory costs is dilu-
tion of an informed trader’s monopoly by introducing informational uncertainty
for informed traders. After that, informational uncertainty for the market-maker
must also be introduced.

* The correct solution for the informed trader’s informational uncertainty problem
assumes introduction of the learning mechanism. However, in our study, we
restricted ourselves to the introduction of a simplified version of informed
traders’ information uncertainty, which involves the consideration of a certain
percentage of mistakes made by informed traders.

*  We accepted that the informed trader could refuse a non-profit transaction when
profit from expected operation (purchase or sale) generates a loss.

e We introduced an algorithm that allows the market-maker to correct bid—ask
spread by taking into account the refusals of informed traders.

Comparative analysis of the numerical example of the proposed modification
shows that the speed of incorporation of information decreases, which creates
opportunities for the market-maker to control some inventory risk and adverse
selection risk during bid—ask spread formation.

The rest of the paper is organized as follows. In the first chapter, we provide a
review of studies concerning GM model modifications and distinguishing features
of our extension. In the second chapter, we describe and analyze two stages of GM
model modifications: market-maker’s uncertainty about real asset value and errors
made by informed traders. In the third chapter, we conduct a comparative analysis of
results of modelling the basic GM model and the modified GM model. The findings
are attached.

Our violation of modification logic is connected with conservation of research
chronology, when we first searched for a solution for the market-maker strategy, as
the most complicated stage of GM model modification.
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2 Distinguishing Features of Glosten and Milgrom Model
Modification

There are numerous studies devoted to analysis of changing or relaxing assumptions
of the GM model. Back and Baruch (2004) investigate relations between two major
models of market mircostructure: the GM model and the Kyle model (Kyle 1985).
The authors show that, under certain conditions, the equilibrium of the GM model
converges into one of the equilibrium states of the Kyle model. Thus, an opportunity
arises to introduce the concepts of a strategic informed trader, i.e. volume and
classical characteristics of market microstructure (tightness, depth and resiliency)
in bid—ask spread models. However, the authors emphasize that they managed to
construct equilibrium in the GM model only for a special case and in numerical
form. It should be noted that most GM and Kyle models studies use the same
limitations. Takayama (2013) confirms this tendency in his 2013 paper: research of
microstructure price dynamics and information disclosure is not complete, because
there is no closed-form solution for equilibrium in a GM model; moreover, it is not
yet known if the equilibrium is unique in the Kyle model analytical solution.

Questions about a market-maker’s existence and regulation, and necessity and
conditions of competition, are closely related with the issue of High Frequency
Trading (HFT). HFT replaces classic market intermediaries by providing liquidity
to markets. Today, when there is no valid constraint on HFT activity, they have
a number of advantages over classic market-makers: information processing and
decision-making speed, instant arbitrage on many financial markets and the exclu-
sive right to stop trading at any moment, because they do not have any commitment
to maintain liquidity or pricing stability. Gerig and Michayluk (2010) tried to update
the GM model by adding multiple assets and introducing HFT into the list of market
participants. The authors conclude that the bid—ask spread on a market with a large
share of uninformed traders is lower than in the classic model. The opposite situation
is observed in a market with a high share of informed traders: bid—ask spread is
higher than in the classic model. Thus, HFT activity increases informed traders’
transaction costs. After adding elasticity of liquidity traders’ demand, Gerig and
Michayluk concluded that HFT helps to increase trading volume and generally
decreases the transaction costs of other market participants.

Zachariadis (2012) studied the issues of information allocation in time and
between market participants. In the GM model, information is distributed evenly
and simultaneously between informed traders. Zachariadis (2012) modified the GM
model by reducing the difference between informed and uninformed traders. This
renders the GM model more realistic, because in reality every market participant
has information about the real value of an asset, which changes over time. Thus,
information efficiency of asset pricing is not constant over time and does not depend
on the ratio of noise and informed traders. The author suggested giving every market
participant the ability to learn new information about the real value of an asset from
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price, spread and volume dynamics, and showed that in spite of eliminating pure
noise trading, the main conclusions of the GM model are still correct.

Das (2005) studied the GM model modification when the market-maker has no
information about possible real asset value (V or V). At the same time, the market-
maker knows the exact time when information that could change the asset price
comes to market. Informed traders are still the same, as in the standard GM model.
The market-maker is forced to learn real asset value from the actions of market
participants (buying, selling). To do that, the author suggests a numerical algorithm
for explicitly computing approximate solutions to the expected-value equations for
setting prices in an extension of the GM model. Moreover, Das (2005) trained the
market-maker in inventory control. Empirical analysis of the artificial time series,
obtained during the author’s modification of the GM model and real market data,
sufficiently differ from one another.

The main and distinguishing features of the GM model modifications discussed
above and our work are described in Table 1.

When GM (1985) discussed assumptions about the market-maker’s zero profit,
they accepted that a specialist accumulates inventory risk.! The long-term asset
market is rising; thus, according to GM (1985), the market-maker will accumulate
shorts on the rising market and will not be able to sell them without losses. The
authors argue that the market-maker may remain at break even in the case of
competition between market-makers. In GM’s opinion, the addition of competition
between market-makers must yield the Nash equilibrium (Nash 1951) and so
market-makers will remain at break-even. However, competition between market-
makers is not always possible. For instance, NYSE assigns only one market-maker
for each asset and GM’s assumption about market-maker’s break-even cannot be
satisfied.

Gerig and Michayluk (2010) created grounds for the possible relaxation of GM’s
assumption about market-makers’ competition by taking into account HFT influ-
ence. Competition between market-makers, needed to create the Nash equilibrium,
to some extent can be replaced with competition between the market-maker and
HFT, or only between HFT. This hypothesis needs additional verification and goes
beyond the scope of our work.

In contrast to straight incorporation of inventory costs into spread, as Das (2005)
did, in our work the introduction of information uncertainty for market participants
about real asset value allows us to change dynamic characteristics of the market-
maker’s inventory costs.

'For the GM model, we simulated straight incorporation of inventory costs into the bid-ask spread
and this leads to explosive growth of spread and price. Program code and results are available upon
the readers’ request.
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Table 1 Distinguishing features of our GM model modification

Paper Features and assumptions

Kyle (1985) In our GM model modification (unique
informational event with known for arrival
time of information participants and
market-makers), we do not use volume and
market microstructure characteristics
(tightness, depth, resiliency). There is no
chance for informed traders to build strategies
either

Gerig and Michayluk (2010) Only one market-maker is used and HFT
introduction is not analysed. Moreover, no
account is made of the consequences of
competition between market-makers or the
impact of HFT activity

Zachariadis (2012) Uneven informational allocation is simulated
when the market-maker does not know the
possible real asset value (V or V) and
informed traders receive information about
real asset value with error. The share of
informed traders is constant over time. There
is no trader who changes from informed
trader to noise trader (or vice versa) according
to received information during trade

Das (2005) We use an intuitively simple algorithm to help
the market-maker find real asset value, while
Das’s algorithm is very hard for the
market-maker to use, because it takes a very
long time to compute the next step We
introduce no assumption about the normal
distribution of real asset value Noise traders
cannot refuse to engage in buy or sell
operations when they meet with the
market-maker. Informed traders can skip
operations, but only if they are not profitable.
Informed traders are prohibited from making
timing-refusals with a view to profit We do
not introduce a market-maker’s inventory
control function

3 Unknown Real Asset Value and Informed Traders’ Errors
During the Trading Process

Our GM model extension is divided into two stages. During the first stage, the
market-maker loses its knowledge about possible real asset value, while conditions
for informed and uninformed traders remain the same. During the second stage,
in addition to uncertainty for the market-maker about possible real asset value, we
introduce errors of informed participants.
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The disruption of the modification sequence is motivated by conservation of
research chronology, when in the beginning our task was to search for a market-
maker’s strategy, since it was the hardest stage of GM model modification.

The first stage of modification is a relaxation of the assumption about the market-
maker’s knowledge of possible real asset value (V and V). This is the same as
in the work of Das (2005). In our study, informed traders can refuse unprofitable
transactions. Thus, the market-maker takes into account these actions and, with
some additional algorithms, reduces the range in which the real asset value is
located.

Indeed, original assumptions of GM about the market-maker’s knowledge of
possible real asset value moves the GM model away from reality. In the real asset
market, especially short-term and medium-term markets, market-makers do not
have time to calculate possible real asset value in the event of the arrival of new
information. Therefore, the assumption that the market-maker knows only the range
in which the real asset value is located seems more realistic.

In contrast to GM’s medium-term market, our modification characterizes bid—ask
spread formation on the short-term market, where information arrives frequently and
at different times, (Gerig and Michayluk 2010). Market is still pure dealership, so all
orders are market orders. There are informed traders, uninformed traders and only
one market-maker. The trading process is separated into 7 periods. In every period
there is only one deal.

At the beginning of trade, informed traders receive real asset value V, which will
be publically known at the moment of time 7. The market-maker knows that real
asset value is located in the range from V,,,, until Vi, ie. V€ [V V).
Limits of this range are used by the market-maker to calculate bid and ask price
instead of values VV and V of the standard GM model. The market-maker sets the bid
and asks price, using knowledge of V', V um, estimated share of informed traders
W and direction of price movement §. In the standard GM model, the § parameter
determines the probability of the real asset value equalling the higher or lower price.
In our modification the § parameter determines the probability that real asset value
will be above or below mid-range [V y,,: Vu |-

Subsequently, based on the actions of market participants (buy, sell, refusal of
a transaction) the market-maker corrects the higher or lower limit of the range
[V p1a13 Vmum ] so that one of these limits becomes equal to the real asset value.

After the market-maker has established bid and ask, a random trader observes
quotes and makes a decision: to buy or sell the asset or refuse the transaction.
We assume that only informed traders can refuse a transaction and they can make
a refusal only from non-profitable transactions. There is no timing refusal in our
model. Uninformed traders must make a deal at any price.

As in the GM model, we assume that in every moment of time, there is only one
transaction and trading volume is limited to one block of assets, e.g. one share.

Informed traders are prohibited from performing manipulative strategies, due
to random selection of traders. They cannot evaluate how many times they will
participate in trading. Thus, we exclude volume and price manipulation from our
modification.
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Informed participants buy if real asset value is higher than the ask price of the
market-maker. If real asset value is lower than bid price, informed traders sell the
asset. Finally, if real asset value is located between bid and ask, informed traders
refuse the transaction. In official terms, informed traders’ actions can be described
by the formula (Eq. (1)).

Sell, if V < Bid
Informed — 1 Refuse, if Bid <V < Ask , (D
Buy, if V > Ask

where V—real asset value, Bid, Ask—market-maker’s quotes to sell and buy, Sell,
Buy, Refuse—informed traders’ actions.

After each transaction or refusal of a transaction, the market-maker reviews
the bid and ask prices. A specialist knows that a refusal can only be made by an
informed trader when real asset value is between bid and ask quotes. Therefore, the
market-maker takes a refusal as a signal to correct the bid and ask quotes in a special
way.

After initial designations, we have constructed an event tree for the first stage
modification. For the full event tree, please see the appendix. The part of the event
tree that corresponds with the interaction of the market-maker and informed trader,
when real asset value is located below mid-range [KMM; VMM] , is shown on Fig. 1.

Ask <V, 1s the event when the ask is lower than the low limit of the range,
where, according to the market-maker’s suggestions, the real asset value is located.
AL is the possibility of event Ask < V,.,. Bid < V,,, is the event when the bid
is lower than the low limit of the range, where, according to the market-maker’s
suggestions, real asset value is located. BL—is the possibility of event Bid < V ;.
Events Bid > V y, Ask > Vs and their possibilities can be described in the same
manner.

AL

Buy
Informed -

1-—AL Bid < Vyum

Ask > Vi

1-BL Bid > Vyy

Fig. 1 Part of the event tree of the first stage modification



Spread Modelling Under Asymmetric Information 119

The difference between event trees of the standard GM model and our modifi-
cation of the first stage consists of the informed trader’s behaviour. The informed
trader, as before, uses knowledge of real asset value to maximize his/her profit from
every transaction. Consequently, he/she will sell if real asset value is lower than the
bid. This happens when Bid > V yy, or Bid > V ,,,, and Ask > V. take place at
one time. Moreover, the informed trader will buy if the ask is lower than real asset
value. This happens when Ask < V., or Bid < V yy and Ask < V s take place at
one time. In the classic GM model, V = V real asset value is above or equal to ask
during the entire trading process. In our modification, bid—ask spread can be above
or below real asset value. Thus, informed traders, by making buys and sells, give
signals to the market-maker about spread location relative to real asset value.

Moreover, in our first stage modification, it is possible that real asset value is
located within bid and ask. This happens when two conditions take place at one
time: Bid < V y and Ask >V or Ask > V., and Bid < V. In this case, the
informed trader has no incentives to trade, because he/she will incur losses, which
he/she cannot accept due to his/her utility function. Therefore, the informed trader
refuses the transaction. Consequently, refusal from trade is a signal to the market-
maker that real asset value lies between bid and ask.

We calculated the probability of traders’ buys and sells depending upon possible
events and placed them in Table 2.

As in the GM model, in our first stage modification, to calculate ask and bid, we
use formulas (Egs. (2) and (3)).

Ask = E [V)Buy] = Vo P [KMM‘Buy] + Vum P [VMM‘Buy] ?)

Bid=E [V Sell] =V P [KMM Sell] + Vo P [VMM Sell] 3)

Table 2 Probability of traders’ buys and sells
Location Location

Target Type of relative to | relative to | Type of
price trader Ask Bid deal Possibility
Youm Inf Ask < Vo | — Buy ALud
Vo Inf Ask < Vo |- Sell 0
Vo Inf Ask > Vs | Bid > V0, | Buy 0
Vo Inf Ask > Vs | Bid >V, | Sell (1—BL)(1 —AL)ué
Youm Uninf - - Buy 0.5(1 — )
Vo Uninf - - Sell 0.5(1 — )8
Voum Inf - Bid >V | Buy 0
Voum Inf - Bid >V | Sell BHu(1—6)
Voum Inf Ask >V | Bid <V | Buy (1 —AH)(1 — BH) ** (1 —§)
Voum Inf Ask > Vi | Bid < Vg | Sell 0
Voum Uninf - - Buy 0.5(1 — p)(1 —8)

V unt Uninf - - Sell 0.5(1 — p)(1—4§)
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Using Bayes’ rule and probability from Table 2, we derive final formulas for bid
and ask calculation. For final formulas of probability from Egs. (2) and (3), please
see the appendix.

After each transaction, the market-maker should review his/her suggestions
about § and the probability of real asset value falling above or below mid-range
[Vane: Vum]. Through 8, we denote the probability of real asset value being located
relative to mid-range [V ,;),; V| after transaction (buy or sell) in step r. For
example, if during ¢ period the trader bought an asset from the market-maker, then
8, will be calculated through the following formula (Eq. (4)).

8 (Buy,)
_ Si—1 (AL + 0.5 (1 — p))
81 (ALp 4+ 0.5(1 — ) + (1 —8,-1) (1 —AH) (1 = BH) ju + 0.5 (1 — p))
“4)

A similar expression can be written for §,(Sell,).

We did not attempt to construct an analytical form of equilibrium, because during
our review of literature we generally found that for GM model modifications, the
solution can be written only in numerical form. To simulate reduction of bid—ask
spread after the trader’s refusal of a transaction, we have chosen a simple and
intuitive bisection method. After refusal, the market-maker determines the direction
of the last transaction and corrects the corresponding limit of the range [ZMM; VMM]
with half the size of the spread. For instance, if the last transaction was closer to the
lower limit of range [ZMM; VMM], then correction can be calculated by the formula

(Eq. (5)).
Vo (@) =V (¢ — 1) + (Ask, — Bid,) /2, (5)

where V,,,,(¢) is the new value of the lower limit of the range, V,,, (t — 1) is
previous value of lower limit of range.
For a higher limit of range correction will be (Eq. (6)).

Vum(t) = Vg (t = 1) — (Ask, — Bid,) /2 (6)

In addition to the formulas of bid—ask spread, we have calculated the inventory
accumulation of the market-maker and his/her financial result to study inventory
risk. Inventory accumulation of the market-maker is calculated through formula (Eq.

).
t
rsNT, = Ztradek,t €[1,1], (7
k=1

where rsNT; is total specialist inventory after ¢ transactions, T is the whole number
of operations that the market-maker made before public disclosure of real asset
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value; tradey is the quantitative result of the transaction that reflects changes in
the specialist’s cash. The quantitative result of the transaction is calculated through
formula (Eq. (8)).

1, if Sell

—1,if Buy ’ ®)

trade, = {

where Sell, Buy are the market-maker’s sells or buys of an asset.
The financial result of the market-maker is the difference between committed
transactions and inventory liquidation at current price (Eq. (9)).

1
rsPT; = Zk_lPricek * tradey — rsNT; * Price;,t € [1,T], )

where rsPT, is the financial result of the specialist after committing ¢ transactions;
Price, is price of ¢ transaction.
Thus, our first stage of modification can be presented as follows:

* Unit of the market-maker’s valuations and decisions (we use Egs. (2)—(6)).

* Unit of traders’ valuations and decisions (we use probabilities at the end of nodes
of the event tree).

* Unit of statistical computations (we use Egs. (7)-(9)).

During the second stage of modification, to simulate information uncertainty
of informed traders, we introduce a determined share of informed traders’ errors.
Moreover, we assume that additional information uncertainty of informed traders
will help the market-maker to reduce inventory during the trading process.

Before the beginning of trade, the informed trader assumes that real asset value
will be equal to V or V. At the beginning of trading, the informed trader receives a
signal that future real asset value will be V' with the probability ;. Consequently,
the probability that real asset value will be V is equal to (1 — ;). The informed
trader takes into account this signal during transactions and trades in the direction of
V with the probability 7; and in the direction of V with the probability of (1 — 7).

Part of the tree that corresponds to the event when real asset value V = V is
located above mid-range [V ;,;: Vun | is shown on Fig. 2. For the full event tree,
see the appendix.

Designations on Fig. 2 are equal to Fig. 1.

Probability of buys and sells of the second-stage modification can be calculated
similarly to the probabilities in Table 2.

Formulas of bid and ask calculation can be derived using the same algorithm as in
the first-stage modification, taking into account the probability of informed traders’
errors.

The market-maker corrects limits of range [V,,,: V ym ] using the same algo-
rithm as in the first-stage modification (Egs. (5) and (6)). After correction of the
limit, the market-maker reviews bid and ask.
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Ask < !\r.\r

 Informed

Bid > Vi

Ask = Vigy

Fig. 2 Part of the event tree of the second-stage modification

4 Simulation Results

Our numerical simulation includes the GM model, first-stage modification (the
market-maker’s uncertainty about real asset value) and second-stage modification
(simultaneous uncertainty of the market-maker and the informed trader about real
asset value).

We made only one trial simulation of model modification to study changes
in inventory risk, price, spread and the market-maker’s financial result.” This
simulation is only the first attempt and we recognize the need for further simulations
to test our results.

We performed the simulation according to the following conditions: ¥ = 10$
(low value), V. = 20$ (high value), § =0.5 (starting possibility of V' = V),
n=0.2 (share of informed traders), 7= 1,000 (time periods). At the beginning
of the trading period, informed traders receive a signal that real asset value will be
V =V =208.

For the first-stage modification, we added conditions that V,,,, = 138, Vo =
22§$ (the range where the market-maker assumes the location of real asset value).
Under these conditions at the beginning of trading, the informed traders receive a
signal that real asset value will be ¥ = ¥ = 20$ and the market-maker learns the
real asset value by taking into account the traders’ actions. For the second-stage
modification, we introduce an additional parameter: the probability of informed
traders’ error, 7r; = 0.85.

2We made our simulation using a computer program, which is written in R. We can provide the
program code upon the reader’s request. You can send your request to the author via e-mail. We
have a code to simulate the GM model for straight incorporation of inventory risk into bid-ask
spread, and the first and the second stages of modification.
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Fig. 3 Price change for the first stage (Price modl) and the second stage of (Price mod2)
modification

We repeated our tests 500 times. After that, we took the averaged value for each
observed variable.

Price change graphs for the first- and second-stage modifications are shown in
Fig. 3.

Simulation results prove that the market-maker manages to determine real asset
value in spite of the absence of knowledge about higher and lower prices (V or V).
Thus, we manage to maintain the key properties of the GM model (incorporation of
informed trader information in market price) even when the market-maker has no
information about possible real asset value.

One can note that the quantity of trades needed for market price to become equal
to real asset price significantly increases from the first stage to the second stage of
modification. This result is quite predictable, because informed traders start to make
errors and trade in the opposite direction from real asset value. Thus, the share of
buys increases more slowly and the market-maker gradually changes bid and ask
quotes.

Graphs of bid—ask spread change for the GM model for the first- and second-
stage modification are shown in Fig. 4.

With an increase in number of transactions and refusals, the spread in our
modifications tends toward the lower. Consequently, knowledge of possible real
asset value (/. or V) is not a necessary assumption for the market-maker to find
real asset value during the trading process. The spread decreases more slowly in the
first-stage modification than in the GM model. This can be explained by increased
uncertainty for the market-maker about real asset value. The spread in the second-
stage modification decreases even more slowly, because actions of informed traders
bring less information through errors.
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Graphs of the market-maker’s inventory change for the GM model, for the first-
and the second-stage modifications, are shown in Fig. 5:

Due to the decrease of price learning speed, inventory accumulation becomes
smoother and the total volume significantly reduces in both the first and the second
stages of modification in contrast to the GM model. It should be noted that we have
no inventory control function, as did Das (2005). However, we reserve the right
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to introduce an additional inventory control function and to include the remaining
inventory costs into the spread.

Graphs of a market-maker’s financial result for the GM model, and for the first
and the second stages of modification, are shown in Fig. 6:

Market-maker’s financial result for the first stage significantly increases in
comparison with the GM model. The rate of profit growth is proportional to spread
decrease. We can conclude that our algorithm of bid—ask spread correction is very
attractive to the market-maker, because he/she earns profits. On the other hand, this
result shows that our algorithm is non-optimal, because the market-maker must earn
zero profit and has no losses. Due to the increased period of spread decrease in the
second-stage modification, the market-maker earns even bigger profits than in the
first-stage modification.

It should be noted that a positive financial result is not the purpose of our work.
Without additional study, we cannot affirm that this financial result is the outcome
of relaxation assumptions of the GM model. In any event, GM’s proposition about
the introduction of competition between market-makers should deprive them from
profits. Even in the absence of competition between market-makers, conclusions
Gerig and Michayluk (2010) show that some aspects of the competition effect are
created by HFT, which gradually drive out market-makers. Thus, we returned to
our starting point. However, we made a spiral motion instead of a circular motion,
because we achieved significant approximation of reality of the GM model.
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Conclusion
In our work, after the introduction of the additional uncertainty about the
real asset value, we propose an algorithm of bid—ask spread formation for the
market-maker, based on classical model of Glosten and Milgrom (1985). Our
modification allows us to reproduce the intertemporal spread dynamics under
the asymmetric information and limited inventory risk of a market-maker.

Our modification of the GM model is divided in two steps. During
the first step of modification we introduced uncertainty of market-maker’s
expectations about real asset value. The market-maker knows only the range,
where real asset value is located and learns it only by actions of traders.
The second step introduces information uncertainty of informed traders. We
modelled this process by introduction of a certain percentage of errors of
informed traders during transactions.

Results, obtained after the modification of the GM model, allow us to make
a step closer in building complex model of bid—ask spread formation. This
model will include all three factors of spread formation: transaction costs,
inventory risk and information asymmetry.

Our study can be extended in the following areas:

* Development of a model with the introduction of uncertainty about
frequency and arrival time of new information for traders and the market-
maker

* Development of the learning algorithm of informed traders

* Introduction of HFT in the trading process

* Incorporation of transaction costs

A.1 Appendix

A.l1.1 Calculation of Probabilities, Which Are Included in Bid
and Ask Quotes

According to Bayes’ rule:

P[Buy‘KMM]P[ZMM]

P [KMM‘BM)}] - P [Buy)
P [VMM Buy] = P [Buy Zﬂfﬂ;;lyf [VMM]
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Full probabilities of making buy and sell can be described by formulas:

P [Buyl = ALpS +05(1 —p)é
+(1-AH)(1-BH)pu(1-8)+05(1—-pn)(1-=95)

P[Sell] = (1 —BL) (1 —AL) 16 + 0.5 (1 — 1)
+BHu(1-8) +0.5(1 — p) (1 —8)

Integrating full probabilities into formulas, obtained according to Bayes’ rule, yields
final formulas for calculating probabilities, which are included in bid and ask quotes.
For example, the probability that real asset value asset is equal to lower limit of
range [V ,s: Vuu | can be calculated through this formula:

P [V By
§ (AL + 0.5 (1 — w))

TSALL+05(1—m) + (-8 (1—AH) (1 —BH) . + 0.5(1 — p))

Conditional probabilities P [VMM}Buy], P [KMM}Sell] and P [VMM‘Sell] can be
calculated in a similar way.

A.1.2 Event Tree for the First-Stage GM Model Modification
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A.1.3 Event Tree for the Second-Stage GM Model Modification
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On the Modeling of Financial Time Series

Aleksey Kutergin and Vladimir Filimonov

Abstract This paper discusses issues related to modeling of financial time series.
We discuss so-called empirical “stylized facts” of real price time-series and the
evolution of financial models from trivial random walk introduced by Louis
Bachelier in 1900 to modern multifractal models, that nowadays are the most
parsimonious and flexible models of stochastic volatility. We focus on a partic-
ular model of Multifractal Random Walk (MRW), which is the only continuous
stochastic stationary causal process with exact multifractal properties and Gaussian
infinitesimal increments. The paper presents a method of numerical simulation of
realizations of MRW using the Circulant Embedding Method and discuss methods
of its calibration.

Keywords Circulant Embedding Method ¢ Estimation of parameters ¢ Financial
time series * Multifractal Random Walk ¢ Numerical simulations * Stylized facts

1 Introduction

Financial modeling is being one of the most actively evolved topics of quantitative
finance for many decades. Having a numerous practical applications especially in
the fields of derivative pricing or risk management, it is of an extreme interest of
academic research as well. Financial markets are a global social system in which
many agents make decisions, every minute being exposed to risk and uncertainty.
Participants interact with each other trying to make profit, taking into account not
only recent news and internal market events but also action of other participants
as well. However the result of such complex behavior is reduced to a small set of
entities, by far the most important of which is the price of some given asset.

A. Kutergin (P<)
Prognoz Risk Lab, Perm, Russian Federation
e-mail: kutergin @prognoz.ru

V. Filimonov
Department of Management, Technology and Economics ETH Ziirich, Ziirich, Switzerland
e-mail: vfilimonov@ethz.ch

© Springer International Publishing Switzerland 2015 131
A K. Bera et al. (eds.), Financial Econometrics and Empirical Market
Microstructure, DOI 10.1007/978-3-319-09946-0__10


mailto:kutergin@prognoz.ru
mailto:vfilimonov@ethz.ch

132 A. Kutergin and V. Filimonov

The first attempt to describe observable assets price dynamics was made by
Bachelier in 1900 with his seminal work “Théorie de la spéculation” (Bachelier
1900). Bachelier suggested that asset prices follows random walk. In other words,
increments (returns) of the price are independent identically distributed (iid) random
variables which he suggested to have Gaussian probability distribution. Having
many merits, such simple model is not able to fully account for complex interaction
of many random factors underling the price formation process. However, analyt-
ical tractability due to simple construction and underlying Gaussian distribution,
allowed to construct on top of the random walk process many financial theories,
such as Black and Scholes option pricing theory or Markowitz portfolio theory.

Rebounding from the naive random walk, the evolution of the financial modeling
has brought a variety of models that are aimed to describe the complex statistical
properties of real price time series, summarized in the so-called “stylized facts”.
One of the most widely used is the “conditional volatility” models such as ARCH/-
GARCH family, that model volatility as an autoregressive process on the past values
of volatility and returns as well. Another class of models represent volatility as some
stochastic process. The most interesting subclass of these “stochastic volatility”
models are so-called multifractal models. Despite having simple construction,
multifractal models are able to represent most of the empirically observed “stylized
facts”. In this paper we focus on particularly one multifractal model, namely on the
Multifractal Random Walk (MRW) that was proposed by Bacry, Delour and Muzy in
2000 (Bacry et al. 2001), which is the only continuous stochastic stationary causal
process with exact multifractal properties and Gaussian infinitesimal increments.
We describe the procedure of numerical simulation of the realization of MRW
process and discuss issues related to estimation of parameters.

2 Stylized Facts

Though the empirical analysis of asset price time series has been performed for
more than half a century, only the development of computerized trading in 1980s
allowed to record enough data for robust statistical analysis. Recent two decades of
evolution of IT infrastructure opened new horizons for empirical finance by bringing
huge amount of high-frequency data, numerical tools and computational power for
analysis. Nowadays every large exchange record terabytes of high-frequency data at
every trading session.

The study of these new financial datasets results in a number of empirical
observations quantified with robust statistical methods. Interestingly, some of
these statistical laws were found to be common across many types of sufficiently
liquid instruments on many markets. These common statistical laws, discovered
independently by many researchers, were called “stylized facts” of financial time
series (Cont 2001; Bouchaud and Potters 2000; Lux 2009). Here we present a non-
exhaustive list of most important of “stylized facts™:
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1. Absence of linear autocorrelation in assets returns except short intra-day time
scales, where effects of market microstructure plays substantial role. Absence
of linear autocorrelation is perfectly described by the naive model of Bachelier
(1900), though this is almost the only “stylized fact” that this model could
reproduce. For this reason “stylized facts” could be viewed as a collection
of facts that differ real price dynamics from the random walk. Despite its
simplicity, absence of linear autocorrelation (which could be stated in other
words as absence of linear predictability) of financial returns plays extremely
important role in financial modeling. This observation was embedded in the so-
called no arbitrage hypothesis and Efficient Market Hypothesis (EMH) (Fama
1970, 1991), that in a very broad sense claim impossibility of obtaining excess
returns (more than a risk-free rate) without being exposed to risk.

2. Long memory in volatility. Despite the absence of linear autocorrelation in
signed price returns, autocorrelation function of absolute (or squared) returns
decays very slowly and are statistically significant even on scales of hundreds
days for intra-day returns.

3. Heavy tails in probability distribution of asset returns. The Bachelier’s
random walk model assume probability density function (pdf) of iid increments
(returns) to be Normal. However empirical analysis of real financial time series
at many time scales show that pdf of asset returns is very skewed, having
narrow peak and tails decaying as a power law with exponent y in the range
2 < y < 4 for intraday and daily time scales. Such “heavy tails” of asset
returns distribution accounts for the presence of extreme events (large positive
or negative returns) in real time series in contrast to the idealized Gaussian
random walk model.

4. Aggregational Gaussianity. The distribution function of the returns is not the
same at different time scales and exponent y of the tail of pdf depends in fact
on the scale over which returns are calculated and increase with increase of
this time scale. With moving from intraday returns towards weekly or monthly
returns the distribution slowly converges towards Gaussian distribution and for
quarterly or annual returns one typically can not reject the null hypothesis of
normal distribution. In a way this “stylized fact” is a direct consequence of the
Central Limit Theorem and the fact that exponent y was never found smaller
than 2, which ensures finite variance of returns.

5. Volatility clustering. Presence of long memory in volatility and heavy tails
of returns merged in an interesting observation that of sufficient irregularity of
returns time series. Its typical pattern has periods of high volatility, which are
followed by periods of low volatility, and vice versa. In other words, volatility
bursts tend to group into clusters.

6. Multifractal properties. Above properties (heavy tails, absence of autocorre-
lation, long-range memory in volatility) are observed at various time scales,
implying scale invariance of financial time series. More specifically, financial
time series are found to exhibit so-called multifractal properties (we discuss it
in details in Sect. 4) (Muzy et al. 2000; Arneodo et al. 1998b; Calvet and Fisher
2002; Liu et al. 2008).
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7. Leverage effect. One important observation of the financial time series is
absence of time-reversal symmetry. In other words, statistical properties of time
series in direct time and reversed time are different. Leverage effect describes
particular aspect of time-reversal asymmetry in terms of correlation function
between returns and volatility

E [rt2+t’rt]
L = — (D)
(7) E[r,z]3/2

which is negative for t >= 0 and decay to zero with T — oo and almost zero
for t < 0 (Bouchaud et al. 2001). In other words, past returns are negatively
correlated with future volatility, but past values of volatility do not correlate
with future signed returns, satisfying the absence of arbitrage hypothesis.

8. Gain-loss asymmetry. Leverage effect is tightly linked with another breaking
of symmetry in behavior of asset prices. In stocks, indices and their derivatives
one could observe large drawdowns in prices but not equally large drawups
(this is typically not true for exchange rates that are highly symmetrical in price
movements). Moreover, it typically takes longer time to reach a gain of a certain
value than a loss of a same value (Siven and Lins 2009).

9. Volume-volatility correlation. Most of the statistical properties of volatility
could be observed in series of trading volume as well. Moreover, trading volume
is correlated with all measures of volatility.

10. Extreme events. Finally, more than 400 years of history of financial markets
have shown that bubbles and crashes are not exceptions and observed extremely
often in different markets. Statistical properties of such extreme events are non-
trivial and differ from statistical properties of the financial time series in normal
regimes (Sornette 2003).

3 Brief Review of Financial Time-Series Models

As discussed above, the naive random walk model is too simple to describe
the complexity of price dynamics. The fractional Brownian motion (Mandelbrot
and Van Ness 1968), which is the natural extension of the random walk that
accounts for long memory, can not be directly applied for modeling due to the
presence of memory both in volatility and signed returns (violation of the “no
arbitrage hypothesis”). The most obvious way to account for the absence of linear
autocorrelation, but preserve structure in volatility is to separate noise term from
volatility term in the equation for returns in the following multiplicative manner:

e = Stota (2)
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where £; structure-less represents iid innovations (often considered to be Gaussian)
and o, represents volatility of the process. For 0, = 0y = const one recovers the
simple random walk model. Depending on the structure of o; models are typically
classified into two groups: stochastic volatility models,! where o, is modeled as
an independent from r, and & stochastic process, and conditional volatility models
where oy is defined as a functional form of the past values of r; and &, (for T < 7).

One of the most well-known models of conditional volatility family are
Autoregressive Conditional Heteroscedasticity model (ARCH) (Engle 1982) and
Generalized Autoregressive Conditional Heteroscedasticity (GARCH) (Bollerslev
1986) models. They are successfully used for reproducing volatility clustering and
non-trivial (but though sufficiently short) memory in volatility. The ARCH/GARCH
models gave birth to the whole family that accounts for more than 50 different
models (see review in Bollerslev (2010)), the most popular of which are: t-GARCH
with innovations having t-Student distribution that reproduces heavy tails of
returns distribution; EGARCH (Exponential GARCH) and T-GARCH (Threshold
GARCH) that model leverage effect; FIGARCH (Fractional Integrated GARCH),
MS-GARCH (Markov Switching GARCH) and LM-GARCH (Long Memory
GARCH) that account for long memory in volatility and some others. Without
spending time on discussion of all of them we suggest a number of reviews
and handbooks with details, such as (Engle 2001; Ait-Sahalia and Hansen 2009;
Zakoian and Francq 2010). Being very flexible with respect to modifications,
ARCH/GARCH family is constrained with its autoregressive form and does not
allow to easily and parsimoniously combine different stylized facts within one
model. However due to its simplicity and sufficient robustness the whole family is
being very widely used nowadays.

In the present paper we focus on another class of models—stochastic volatility
models, and in particular at its subclass of so-called multifractal models. The
theory of multifractal random processes started with rethinking and generalization
of cascade models that was introduced by Richardson (1961) and Kolmogorov
(1941, 1962). Being proposed to model velocity in turbulence, they reflect the
fact, that in turbulent gas or fluid flow energy is transferred from large-scale
vortices to small-scale vortices by cascades where structures at different scales
are similar to each other (resulting in self-similarity of the whole system). Similar
cascade structures for returns at different time scales were observed at financial
markets as well (Ghashghaie et al. 1996), and the idea of self-similar cascades
were used in several models, most successful of which are Multiplicative Cascades
Model (MCM) (Breymann et al. 2000) and Markov Switching Multifractal (MSM)
model (Calvet and Fisher 2008, 2004). When MCM model successfully reproduced
heavy tails of returns distribution, long memory in absolute returns and volatility
clustering, practical application of this model is limited due to nontransparent

'We must notice that typically stochastic volatility models are defined not within the framework of
Eq. (2), but as an extension of stochastic differential equation of the geometric Brownian motion.
Strictly speaking, these equations do not always have solution in form of (2).
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parametrization and absence of robust method of parameters estimation. In contrast,
when calibration of the MSM model is relatively simple and sufficiently robust, the
model describes heavy tails and long memory only in the limit of infinite number of
components. However despite these drawbacks and unclear economic underpinning
and a rather artificial discrete hierarchical structure, MSM model was shown to
be much better in terms of volatility forecasting than GARCH and some of its
siblings (Calvet and Fisher 2004).

The multifractal random walk (MRW) (Bacry et al. 2000, 2001) is the only
continuous stochastic stationary causal process with exact multifractal properties
and Gaussian infinitesimal increments. Being first introduced within stochastic
volatility framework (2), later it was shown to have also exact cascade represen-
tation (Bacry et al. 2008; Bacry and Muzy 2003). The exact multifractality comes
with a cost of a delicate tuning to a critical point associated with logarithmic
decay of the correlation function of the log-increment up to an integral scale. As
a consequence, the moments of the increments of the MRW process become infinite
above some finite order, which depend on the intermittency parameter of the model.
The extension of MRW—Quasi-Multifractal (QMF) model (Saichev and Filimonov
2008, 2007; Saichev and Sornette 2006)—was free of these drawbacks. Rather than
insisting on the exact multifractal properties, QMF model described process that
was approximately multifractal within the finite range of scales. This approximation
makes the model more flexible and removes above contradictions. Being very
successful in reproducing many stylized facts, most of multifractal models failed
to describe leverage and gain-loss asymmetry effects. To account for asymmetry
effects, the Skewed MRW (Pochart and Bouchaud 2002) explicitly introduce the
negative correlations between returns and volatility. More parsimonious way was
implemented in the so-called Self-Excited Multifractal (SEMF) model (Filimonov
and Sornette 2011), which describes the self-reinforcing feedback mechanism
(explicit dependence of the future returns on the dynamics of past returns) in a
manner similar to autoregressive models.

4 Multifractal Formalism for Stochastic Processes

Original definition of fractal was proposed by Mandelbrot with respect to sets. He
defined fractal as a mathematical set with fractal dimension is strictly larger than
its topological dimension (Mandelbrot 1975, 1982). Later he extends this definition,
calling a fractal any kind of self-similar structure (Mandelbrot 1985).

For the stochastic processes the notion of fractality is based on the defini-
tion of self-affine processes—processes that keep statistical properties under any
affine transformations. Being more strict, a stochastic process X = {X (¢);
t > 0;X(0) = 0} is called self-affine, if for V¢ > 0 and time moments
t,...,t > 0, the following expression holds:
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(X(t) oo Xt 2T X (1) ..o X (1)) 3)

where H is a constant named self-affine index and symbol «L» stands for equality
in distribution. For stochastic processes with stationary increments &; X (1) =
X (t+1)— X(¢) the self-affinity is usually defined not using the multivariate
probability distribution functions as in (3) but via moments of increments:

My () =E[l&: X @) 'l =E[X ¢ +D—-X @), 4)

where E [.. .] stands for averaging over ensemble of realizations. Functional form,
which describes the dependency of moments as a function of ¢, plays the key role
in the determination of scale invariance properties. If all moments of increments
M, (1) can be represented in a power law form:

M, (1) = K, 1%, ®)

where K, and {, depends only on ¢, then the process X (¢) is said to have
multifractal properties. The functional dependency of scale indices ¢, on order
q (& = f(q) is called a multifractal spectrum, and its form defines the
self-similarity properties of the process: stochastic process X(¢) is said to have
monofractal properties if ¢, is a linear function of ¢ ({;, = ¢H). If {, is a
nonlinear function of ¢ then the process is said to have multifractal properties.
Typical examples of monofractal processes are random walks, their genralisation of
fractional Brownian motion and Lévi flights. The examples of multifractal processes
were discussed in previous section.

We need to mention, that multifractal properties cannot be maintained for
arbitrary small or arbitrary large scales /. For strictly convex or strictly concave
function ¢, the interval of scales is bounded either from below or above correspond-
ingly (Mandelbrot et al. 1997). Alternatively, function ¢, may have both convex,
concave and linear part (like in the QMF model (Filimonov 2010)) and there exists
strictly bounded interval of scales

1<I<L, (6)

where scale index ¢, in (5) has nonlinear dependency with respect to g. Analogically
to turbulence theory, interval (6) is called inertial. Similarly to the theory of
turbulence, scale t is called scale of viscosity and scale L is an integral scale.
Finally, it can be shown analytically that multifractal spectrum of the strictly
nondecreasing stochastic process has to satisfy following condition (Filimonov
2010):

&g 21, when q > 1. @)
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5 Multifractal Random Walk Model

5.1 Model Description

As discussed above, continuous Multifractal Random Walk (MRW) (Bacry et al.
2000, 2001) process is the only continuous stochastic stationary causal process with
exact multifractal properties and Gaussian infinitesimal increments. It is defined as
a continuous limit

X (1) = lim Xa[f] ®)

of the discrete random process of following type

t/At t/At
Xarl] =) 8acXar kA1) = &nr [K] e W, )
k=1 k=1
where Xa, [0] = 0; &éa, [k] is iid Gaussian noise with zero mean and variance

0%At and wa, [k] is another Gaussian process uncorrelated with the first one
(Cor[Ea; [i],wa: [j]] = 0, Vi, j). In financial applications process (8) can be
interpreted as the process for logarithm of price and process 6a; X a; [k At] can be
viewed as the process for log-returns. Process wa, [k] can also be considered as a
log-volatility.

According to the definition, wa, [k] has zero mean and logarithmically decaying
covariance function

Cov [war[kil. warlkall = A% In pa; [Iki = Kol (10)
where
L . -
PAt [k]: (kT+DAr> |k|<E_1’
b k| > £ — 1.

One can see that here the support of the autocorrelation function of process wa, [k]
is bounded from above by the value of integral scale L.

Process (8) for scales / < L has strict multifractal properties and parabolic
multifractal spectrum

1 A2
=(=4+1*)qg-=4% 11
& (2 + )61 54 (11)
For scales / > L process (8) has monofractal properties and spectrum {, = q/2,

which is identical to the spectrum of regular Brownian motion with Hurst exponent
1/2.
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As discussed, exact multifractal properties comes along with two significant
shortcomings. First, the variance of the process wa, [k]

L
2] g2, &
E[a)A, [k] ] =2 (12)
is infinite in the limit
lim E[a)A, [k]z] — im A E = . (13)
At—0 At—0 At

In order to obtain convergence of variance, the mean value of wx, [k] was allowed
to decrease logarithmically

E [wa [k]] = —Var [wa, [k]] = =A% In é. (14)
Such modification provided the “physical meaning” for the variance, but made it
difficult to interpret the meaning of producing noise wa, [k] in applications. The
second issue is that multifractal spectrum does not exist for high orders (namely, for
orders ¢ > 1/A?). Nevertheless, MRW model is flexible enough and has relatively
straightforward way of calibration that is discussed below.

5.2 Numerical Simulation of the MRW Process

The bottleneck of numerical simulation of the MRW process (8) is simulation
of logarithmically correlated noise wa, [k]. Simulation of the discrete Gaussian
noise process with given autocorrelation function (covariance matrix) is a well-
known problem and is subjected to a trade-off: exact simulation processes usually
requires a lot of computation resources, and fast algorithms typically provide
only approximated solution. The most known exact simulation method is based
on the Cholesky or LU-decomposition of the covariance matrix into lower- and
upper-triangle matrices (Davis 1987). Though this method is very efficient for
short time-series, having computational complexity of O(N?) it is not suitable for
simulation of long (e.g. N > 10%) realizations. Much more efficient decomposition
algorithm is the so-called Circulant Embedding Method (CEM) (Dietrich and
Newsam 1997) that is based on the Fast Fourier Transform (FFT) and thus has
complexity of O(N log N).

Consider N x N covariance matrix R with elements R, ;, = r [|p —q|] = r [k]
fork =1,..., N — 1, where r[k] is the required covariance matrix and in our case
is given by (10). CEM consist in embedding of matrix R into a larger 2M x 2M
matrix S (where M > N —1). The optimal case of M = N —1 is called the minimal
embedding. The first row of S, denoted by s, consists of two parts of length N — 1
each: the original first row of R following with the first row of R in reverse order:
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skl=r[k], k=0,....,N—1,

15)
s2M — k] =r k], k=1,...,N—-2.

Since matrix S is circulant, any matrix extracted along its diagonal is a copy of R.
One of the properties of circulant matrices tells that matrix S can be decomposed
into a product 8 = FDF”, where F is a matrix of discrete Fourier transform
coefficients, and F# is the conjugate transpose of F. The matrix D is diagonal, and
elements along the diagonal can be obtained by the discrete Fourier transform of
first row or column of S: § = F.

Let us construct a vector y = FD!/?x, where x is a complex vector, having
iid N(0,I) real and imaginary parts. It was shown (Dietrich and Newsam 1997)
that any vector of size N, extracted from either real or imaginary part of y has
covariance matrix exactly equal to R. It should be noted that necessary and sufficient
condition of existence of auxiliary vector y is the matrix S to be nonnegative
definite (nonnegative eigenvalues s,, of the matrix S). Though for strictly positive
definite Toeplix matrices R the existence of nonnegative circulant embedding was
proven (Dembo et al. 1989), there is no general recipe and the necessary and
sufficient condition should be tested for any specific covariance matrix R.

Without providing a general proof that circulant matrix S for covariance matrix
given by (10) is nonnegative definite, while performing simulations we have tested
numerically eigenvalues S for all used parameter sets. According to the property
of circulant matrices, eigenvalues s, of matrix S are equal to the discrete Fourier
transform of the first row of S:

N—1 mk 2(N=1)—1 mk
Sm = Zrk exp (27{1 Z(N 1)) Z I2(N—1)—k €Xp (Zﬂlm) s
k=0 k=N
where i = —1 and ry = Cov[wa,[i],wa/[i + k]] are given by (10). After the

rearrangement and substitution of (10) we obtain:

N—2
L L L mk
=22 | Tlog = +(=1)"log ———— 42 Y " log ——— L
S |:OgAt+( Ve v T 1;1 OgAt(k+l)Cos(nN—1):|
(16)

As one can see, A is a multiplicative coefficient in (16) and the sign of s,, is fully
determined by the relation between L/At and N. For any used combination of
L/At and N we have tested that values (16) are nonnegative: s, > 0.

The CEM algorithm for minimal embedding case could be summarized in the
following steps (Dietrich and Newsam 1997):

1. Evaluate the first row of R for lags from 0 to N — 1;
2. Form the first row s of the circulant matrix S;

3. Compute FFT from s;

4. Compute square root from results of 3;
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Generate complex iid N(0,1) vector x of length 2(N — 1);
Multiply result from step 4 by x;
Evaluate y via inverse FFT of the result of previous step;
Extract vector of length N from real part of y;

9. Another vector could be extracted from real part of y;
10. To generate additional realizations, proceed to step 5.

=Y

The computational complexity of this algorithm is O(N log N') compared to O(N?)
for the Cholesky-based method. Additionally, the memory requirements is O(N)
for CEM compared to O(N?) for Cholesky decomposition. This allows to generate
extremely long (N = 10?°) realizations of MRW random process using standard
Core i5 4Gb RAM computer.

5.3 Statistical Properties of MRW Process

In order to demonstrate distinctive feature of MRW process, one can compare its
realization with realization of geometric Brownian motion (original random walk
model of Bachelier), which sample increments and path are shown in Figs. 1 and 2.
Sample realizations of increments and path of MRW are shown in Figs. 3 and 4.

Comparing Fig. 3 with Fig. 1, one can notice significant differences in the way,
which each process goes. When dynamics of increments of random walk (Fig. 1)
are very regular and one can not observe large deviations from the mean value, the
dynamics of MRW (Fig. 3) is much more intermittent, one can easily spot volatility
clustering and large excursions (extreme events).

0.02 0.03

0.01

X
0

—-0.03 -0.02 -0.01

0 2000 4000 6000 8000
n

Fig. 1 Increments of geometrical Brownian motion for o = 0.0078
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Fig. 2 Path of geometrical Brownian motion for o = 0.0078
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Fig. 3 Increments of MRW process for A2 = 0.06, 0 = 7.5- 107> and L = 1024

Presence of the heavy tails of pdf for MRW can be shown more clearly with
the ranking plot (see Fig.5) for various aggregation level. The interval of scales
1073 < 84, X, [t] < 1illustrates the tails of pdf which decay much slower than for
the normal distribution that is also presented on the plot for comparison. In other
words, the probability of observing extremely large increment (return) for MRW is
much larger than for the normal distribution where the probability of observing a
value larger than three-four standard deviations is essentially zero.

Figure 5 also illustrates another stylized fact, namely—aggregational gaussianity.
One can see from the Fig. 5, that slope of the tail line tends to the slope of the tail line
for normally distributed data, when aggregation level (which is defined as a number
of consecutive increments of initial MRW process that are summed to obtain single
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Fig. 4 Path of MRW process for A2 = 0.06, 0 = 7.5- 107° and L = 1024
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Fig. 5 Ranking plot for the increments of the MRW process for A2 = 0.06, 0 = 7.5- 107,
L = 1024 and length of realization N = 22°, Normally distributed (iid) sample has equal length
and simulated for mean value p and standard deviation o that are equal to the sample mean and
standard deviation of the realization of MRW process

increment of aggregated process) rises. For instance, for aggregation level equals
4096 tail of the distribution converges to Gaussian distribution.

Volatility clustering, that one can observe in Fig. 3 is a result of the presence of
long memory in volatility. In order to quantify it we have considered four different
measures of the volatility. The first one is the simplest squared values of returns
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(increments). Second is the definition of volatility as a standard deviation of returns
in a rolling window of size n;:

1 )

0; = rp—7)". 17
e ; (ri = 7) (17)
Third is the widely-used volatility estimator as a Exponentially-Weighted Moving
Average (EWMA), which can be defined as

or = \JhoX, + (1 -2k, (18)

where A € [0, 1] is the rate of decay of the exponential weight within time window.
Finally, we have also considered Miiller estimator of the volatility (Miiller 2000)
which is similar to the EWMA, but involves recursion both of lagged and current
squared returns:

oy, [t] = \/,u of [tl+w—wri +0-v)r2, (19)

where @ = (#,—t,—1)/7 is the rate of decay of the exponential weight; 4 = e¢™* is an
exponential weight itself and v = (1 — p)/«. Autocorrelation functions computed
for above estimators of volatility are presented in Fig. 6.

As one can see from the Fig. 6, autocorrelation of all proxies of volatility is signif-
icantly non zero in a very wide range (of the lags up to 1000 and more). Compared to

o T — T T T T T — T T T T T

o - EWMA

- Muller

® Sandard deviation
© Squared returns

1072
T
l

10° 10’ 102 10°
T

Fig. 6 Autocorrelation function of the volatility calculated on MRW sample of length 2!7 for
A% =0.06,0 = 7.5-107° and L = 2048. EWMA parameter was chosen to be Apwma = 0.94
and the size of rolling window is equal to n, = 5. Dashed horizontal lines represent insignificance
interval of the estimation
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Fig. 7 Log-log plot of moments of increments (4) calculated using the MRW sample of length 217
for A2 = 0.06,0 = 7.5- 107>, L = 2048 and q = 1,2,3,4,5. Dashed lines correspond to linear
fit of dependency (4)

autocorrelation for squared returns, the rate of decay of autocorrelations for standard
deviation, EWMA and Miiller estimator decay much slower due to the fact, that
above the three estimators perform recursive procedures for volatility computation.
These recursion-based estimators capture the features of volatility behavior better
than squared returns.

In order to illustrate the scale invariance in simulated MRW sample, one have
to consider moments of increments of the realization (4). As described above, the
presence of scale invariance is qualified with the power law behavior of the the
moments (4). As one can see from the Fig.7 this holds for the analyzed MRW
process, as the absolute moments M, (/) for all ¢ has linear or close to linear
(for ¢ = 5) form in log-log scale, which tells about the presence of power law
dependency in the ordinary scale.

5.4 Calibration of the Model

One of the most important issues for the practical applications is the estimation of
the three unknown parameters of MRW model (o, A, L) with the real data.

The parameter o can be estimated using the scaling relation for the variance of
the increments of the MRW process:

Var [5a; X as [K]] = 02 At, (20)
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Fig. 8 Calibration of 6> based on MRW sample of length 2!° for A2 = 0.06, 0 = 7.5- 107>
and L = 2048. Triangles represent empirical observations and red line corresponds to the linear
regression (20). The estimated 62 equals to 7.7237 - 10—

where At is the scale of log-returns (e.g, 1-, 5-, 10-, 20-min etc.). The parameter o2
can be then estimated with the linear regression of the Var [6a; X a; [k]] on At as it
is shown in Fig. 8.

Estimation of intermittency coefficient A and integral scale L is much more
complicated, because they define the unobserved log-volatility process wa; [k].
In Bacry et al. (2001) it is shown that the magnitude correlation function

Cp(r.l) =E[I8: X [k +1]17.18. X [K]["]. 21

where / is lag and T <« L is a scale of the log-returns, in the limit of small scales t
has the following asymptotic behavior

Zé'p Z _A2p2
C,(x.1) ~ K2 (%) (Z) : 22)

where the pre-factor K, is defined as

1 1

sz = LPJZP (2p— 1)!!/6[“1 /dup l—[lui —uj —4A2'
0

0 i<j
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Analyzing the limit of (22) when p — 0 one can find the following approximate
relation (Bacry et al. 2001):

C (t,]) ~—=A%In (i) . (23)
L

In other words, magnitude correlation function, for small enough t, has similar

behavior to the correlation function of underlying log-volatility process wa; [k].

Thus, regressing C (z,) on log/ one can estimate the parameter A2. Finally,

the integral scale L can be obtained as the scale / after which autocorrelation

function (23) is indistingushable from noise.

Figure 9 illustrates fits of the A% and L using relation (23). Measures of the slope
and intercept of C; (I) ~ In(l) provide good estimate of respectively A> and L,
though the estimation of the integral scale L is typically worse in comparison
with estimation of A2. The algorithm of determining L could be summarized as
follows:

1. Set the size of small rolling window;

2. Scan values of magnitude function within rolling window;

3. Stop scanning if all elements within rolling window belong to the interval of
insignificance;

4. Set L for the index of the middle point of rolling window at its last position.

C(l, 1)

|Oggl

Fig. 9 Magnitude correlation function C (,/) increments of MRW process sample of length 22!
for A2 = 0.06, 0 = 7.5-107°, L = 2048 and t = 15. Black solid line represents linear
regression (23). Horizontal dashed lines represent insignificance interval and vertical dashed line

denotes estimated value of L. The estimated A2 equals to 0.0623 and estimated Lis 1905



148 A. Kutergin and V. Filimonov

Fig. 10 Estimated
multifractal spectrum ¢, for
the realization of MRW
process of length 22! for

A2 =0.06,0 =7.5-107°
and L = 2048. Solid black
line corresponds to theoretical
spectrum (11)

However, this algorithm strongly depends on the choice of the rolling window size
7 and requires additional validation of the results.

Alternative way of estimation of intermittency coefficient A2 involves estimation
of the multifractal spectrum {, = f (q) of the process. Given the analytical
expression (11) one can then estimate A with the least squares estimator. Straight-
forward estimation of {, requires calculation of moments of increments M, (/)
as a function of scale / using the definition (4) and then regressing log M, (/)
on log! for different values of ¢, implying relation (5). Results of estimation
of the multifractal spectrum for MRW process are presented in Fig. 10. One can
see good agreement of the empirical spectrum with theoretical prediction up to
orders of ¢ = 6. The divergence of analytical and theoretical spectrum for
higher values of g results from the insufficient sample size. Alternative methods
of estimation of multifractal spectrum are based on the wavelet transform—so-
called Wavelet Transform Modulus Maxima (WTMM) (Arneodo et al. 1998a)
and detrended fluctuation analysis: Multifractal Detrended Fluctuation Analysis
(MF-DFA) (Kantelhardt et al. 2002) and Multifractal Detrended Moving Average
(MF-DMA) (Gu and Zhou 2010). However it should be noted that all these methods
are subjected to the bias for large values of ¢ and in real cases due to short observed
realizations are not efficient with respect to estimation of A2,

Conclusions

Concluding topics discussed above, MRW model allows to capture six main
stylized facts (absence of linear autocorrelation, volatility clustering, long
memory in volatility, heavy tails in probability distribution, aggregational
Gaussianity and multifractal scaling). Moreover some modifications of the

(continued)
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MRW such as Skewed MRW (Pochart and Bouchaud 2002) accounts also for
the leverage effect and most likely for related gain-loss asymmetry. MRW
model has an effective procedure for numerical simulation and relatively
robust method of calibration, and thus is a prominent candidate for the
option pricing applications, using the straightforward method of Monte-Carlo
simulations.
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The future is already here. It’s just not evenly distributed yet.
(William Gibson)

Abstract This essay examines lessons from systemic breakdowns, and presents a
framework for Adaptive Stress Testing to proactively manage systemic risks. The
framework is inspired by evolutionary ecosystems, including ecology, economics,
technology, psychology, and sociology. Adaptive Stress Testing harnesses network
intelligence to integrate early warning signals. We pre-diagnose systemic fragilities
by tapping into the marketplace of ideas, and then identify key metrics to monitor
market-based early warning signals. We apply the Technology Adoption Lifecycle
model to develop a theory of social diffusion of disruptive information in financial
markets. We start by taking a macro view of risk in its hidden potential form, and
then focus on phase transition signals as risk becomes visible. This process allows
us to better understand key systemic risks, and to more effectively sense and respond
to emerging risks.
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1 Introduction

The sudden onset and severity of crises catch most by surprise. Unpredictable events
emerge and quickly escalate out of control. The 2008 US subprime crisis was but the
latest of such systemic breakdowns. But not all were equally surprised. Structural
fragilities built up over years, and early warning signals escalated from 2006 to
2007. A prescient few foresaw the inevitable bust, mitigated their risk, alerted
regulators, and even issued public warnings (largely ignored, unfortunately). Indeed,
one might argue that the biggest surprise was the extent of risk myopia despite an
abundance of information. Why did some perceive risks that most were blind to?
And what can the rest of us learn from them? This essay proposes a methodology to
amplify social intelligence in the risk management community.

2 Amplification Mechanisms Drive Systemic Risk

A stress event is a systemic breakdown, which is a form of phase transition. We
observe phase transitions in all complex systems. Phase transitions are triggered
after a critical point is crossed at which point self-amplification causes a transfor-
mation into a state with radically different properties (e.g., solid, liquid, and gas).

The continual tension between amplifying and dampening mechanisms pow-
ers complex systems. Financial cycles are driven by the inter-linkage of asset prices,
leverage, and risk aversion. Furthermore, the social process of imitation is a major
amplifier. Imitation is an efficient form of social learning and adaptation, and is
prevalent especially during times of uncertainty (Keynes 1930).

Stability increases asset prices and leverage, and lowers risk aversion, which
sows the seeds of future instability (Minsky 1992). As bubbles expand and leverage
grows, markets become more tightly coupled and vulnerable to collapse. Eventually,
a surprise triggers increased risk aversion and a self-amplifying deleveraging
spiral (e.g., bank run). Key dampening mechanisms include countercyclical (and
symmetric) central bank intervention (Cooper 2008) and contrarian investment
strategies.

History is riddled with unpredictable exogenous shocks, or Black Swans (Taleb
2007). Dramatic examples include extinction events from meteorite impacts or flood
basalt eruptions, terrorist attacks like September 11, or technological breakdowns
such as the 2011 Fukushima meltdown.! And yet, according to Didier Sornette, the
majority of financial crises have endogenous origins and can be “pre-diagnosed,
quantified and predicted to a degree” (Sornette et al. 2009). He calls these Dragon

! Also noteworthy is that some Black Swans may be Dragon Kings to those with special insight:
astronomers might forecast an asteroid impact, security analysts might uncover a high likelihood of
a terrorist attack, while safety engineers might have insight about escalating risks of an industrial
breakdown.
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Kings (Sornette 2009). Systemic collapses can originate from the predicable
amplification of small perturbations in a tightly coupled system. Such endogenous
crises are our focus in this paper, as these are risks we can and must manage.

Endogenous crises are characterized by escalating Foreshocks that culminate in
a phase transition. We see such patterns throughout nature. Figure 1 from Didier
Sornette compares earthquakes and brain seizures, which both exhibit the same
pattern of amplifying Foreshocks and mean reverting Aftershocks.

The presence of Foreshocks implies that we need not be surprised by
endogenous crises, and that there is a window of opportunity to mitigate risk. A
phase transition progresses as follows:

1. A period of stability is interrupted by an outlier, which may be small in absolute
terms but unusual from a relative perspective.

2. This initial outlier sets off amplification mechanisms which results in a super-
exponential rate of change. This initial period of exponential growth is barely
perceptible and typically dismissed as noise initially. The window of opportunity
for control shuts quickly as the exponential curve gets steep.

Risk managers are continually on the lookout for emerging risks, and recognize
that the ability to control risk declines exponentially as risk escalates. This fleeting
window of opportunity for exerting control is illustrated (Fig. 2) based on an
illustration by reputation risk consultant.
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In summary, we can analyze systemic crisis as a function of the following:

1. The structural fragility of the environment (i.e., key fault lines, coupling,
amplification mechanisms)

2. A precipitating event (tremor) which pushes the system beyond a tipping point,
which sets of a self-amplifying cascade that result in a rapid phase transition (e.g.,
toppling dominoes)

3 Adaptive Stress Testing Framework

This model of systemic crises leads us to propose our Adaptive Stress Testing frame-
work, which is driven by the integration of top-down and bottom-up perspectives:

I. Macro: 1dentify potential risks (e.g., hidden fault lines). Build a Stress Library
by harnessing the intelligence of visionary thought leaders (Innovators) who
perceive risks in their potential form, while they are still dormant and hidden. An
example of an Innovator is Robert Shiller, who warned of the U.S. technology
stock bubble in 1999 and the U.S. housing bubble in 2005.

II. Micro: Monitor visible risks in financial markets (e.g., tremors). Build Stress
Indices for each macro scenario using key market factors, and monitor early
warning signals (e.g., outliers).

Macro and micro perspectives are interdependent and inform each other. At the
macro level, we expand our horizons with potential risks perceived by Innovators.
Given that innovators are ahead of their time, however, trading based on their views
is often a losing proposition. We therefore monitor confirmation that a theme has
been adopted by the marketplace, and transitioned from potential to visible risk.
In summary, (a) tap the social marketplace to identify a wide range of scenarios, and
(b) then hone in on emerging scenarios before critical points are crossed.
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4 Social Diffusion of Disruptive Information

As we have described, social imitation is an important amplifier in markets.
As in fashion, new themes constantly emerge and some cross critical points to
broad adoption due to social imitation. The Technology Adoption Lifecycle is a
sociological model about how disruptive innovation diffuses in the marketplace.
See Geoffrey Moore’s seminal “Crossing the Chasm” (1999) for a full description
of this punctuated equilibrium model. Disruptive innovation does not diffuse
gradually. Rather, the market remains in stasis as pressure builds up until the
conditions are right for a jump to Early Adopters.

Malcolm Gladwell’s The Tipping Point: How Little Things Can Make a Big
Difference (2000) describes Early Adopters as Connectors (social network hubs),
Mavens (information specialists), and Sales People (persuaders). Early Adopters
play a crucial role in the dissemination of disruptive innovation. It is only after
Early Adopters buy into a theme that a tipping point is crossed, which sets off social
amplification (imitation) that results in adoption by the Early and Late Majority.
How do entrepreneurs know when they when their disruptive innovation is crossing
the chasm? It feels like being “Inside The Tornado” (the title of Moore’s follow-up
book): swept up by super-exponential change and turbulence (Moore 2004).

Figure 3 illustrates the epidemiological jump process of social diffusion of
disruptive innovation.

1.Macro: Stress Scenario Library from Innovators

2. Micro: Market signals from Early Adopters

Late
Majority

Early Early

|
|
|
Innovators Adopters | Majority Laggards
|
|
|

Area under the curve
represe nts
number of customers

"The Chasm" |

Technology Adoption Lifecycle

Fig. 3 Social diffusion of disruptive innovation. Graph adapted from Wikipedia
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5 Building an Adaptive Stress Library

This insight that market intelligence is not evenly distributed drives the design
of our Adaptive Stress Library to harness intelligence from Innovators and Early
Adopters.

Innovators foresee potential risks that are imperceptive to most. As Frederic
Bastiat recognized in 1850, this ability to foresee is what differentiates visionary
and ordinary economists:

In the department of economy, an act, a habit, an institution, a law, gives birth not only to
an effect, but to a series of effects. Of these effects, the first only is immediate; it manifests
itself simultaneously with its cause - it is seen. The others unfold in succession - they are
not seen: it is well for us, if they are foreseen. Between a good and a bad economist this
constitutes the whole difference - the one takes account of the visible effect; the other takes
account both of the effects which are seen, and also of those which it is necessary to foresee.
Bastiat (1850)

6 Social Markets Hypothesis

This social adoption process suggests an amendment to the Efficient Markets
Hypothesis (EMH), which maintains that investors are rational and information is
fully reflected in prices. Given that human beings (still) make investment decisions,
extended periods of risk myopia and social diffusion of information is more
realistic. Crucially, disruptive new insights often enter from the periphery and
must first be validated by Early Adopters before diffusing into broader markets
in successive waves. This process can take many months. Far from being rational
homo economicus, investors are social decision makers, subject to cognitive biases
and herd mentality. While markets may approach efficiency in the long run, in the
short run a Social Markets Hypothesis is more realistic. Disruptive information
is not evenly distributed, and must contend with entrenched cognitive biases, and
jump through a successive social adoption hurdles. It might explain why U.S. equity
markets peaked October 2007, ignoring obviously escalating systemic risk for so
many months. A major implication is that prices only indirectly reflect all available
information. Absolute price levels and volatility are lagging indicators, while
outliers in price and volatility changes are leading indicators. We will illustrate
this theme with several case studies.

As William Gibson recognized: “The future is already here. It’s just not evenly
distributed yet” (1999). Or, information about credible potential risks is already
here. It just hasn’t been widely adopted yet.”

2] can’t help but think that we see this same effect in the climate change discussion, with climate
scientists as Innovators at the periphery of the public network, struggling to cross the chasm of
global adoption.
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7 Outliers as Early Warning Signals

Outliers play a crucial role in early warning. Outliers are the first visible signal of a
regime shift into abnormal markets as Early Adopters act on disruptive information.
HSBC’s February 23, 2007 $10.5 bn subprime loss announcement caused a tripling
of AAA subprime spreads in a single day (a 12 standard deviation outlier). Four days
later, this disruptive information cascaded into broad equity markets as February 27
saw exceptional downside outliers from China to the U.S. The Dow Jones recording
its 6th biggest daily surprise in over 100 years (Finger 2008) on that day. A —3.3 %
drop would hardly appear noteworthy, except that it happened just as volatility
reached historical lows and therefore represented a 7.8 standard deviation outlier.
See Table 1 for the top 10 DJIA surprise since 1900.

The Value-at-Risk (VaR) backtesting® graph of the DJIA (Fig. 4) shows how
the February 27th, 2007 outlier signaled the emergence of the subprime crisis
in broader markets. Notice the classic endogenous pattern of escalating systemic
risk as pent up invisible risk emerges as visible risk.

Table 1 Top ten DJIA outliers (1900-2008)

Rank Date Residual Return (%) Volatility (%)
1 26-September-55 —13.3 —6.5 8.1
2 19-October-87 —12.6 —22.6 324
3 29-July-27 —10.1 —5.2 8.3
4 13-October-89 —10 —6.9 114
5 26-June-50 —8.1 —4.7 9.3
6 27-February-07 —7.8 —3.3 6.8
7 20-January-13 —7 —4.9 11.4
8 30-July-14 —6.7 —6.9 16.9
9 28-July-14 —6.7 —3.5 8.5
10 15-November-91 —6.6 -39 9.6

Source: Finger 2008

3All VaR backtesting is based on the standard RiskMetrics methodology (exponential weighting
with 0.94 decay).
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Fig. 5 Financials VaR backtesting chart. Source: Laubsch (2010a, b)

The VaR backtesting chart of U.S. Financials (XLF) from 2006 to 2010 (Fig. 5)
shows an even more pronounced “death star pulse” of amplifying risk after the
February 27 outlier.

7.1 Gold Outlier Case Study: 2012-2013

The gold bubble burst which started in late 2012 is a classic early warning case
study. Figure 6 shows that a skew of positive outliers preceded gold’s peak in
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October 2012, after which a skew to negative outliers preceded gold’s slide and
precipitous drop of April 12-15.

7.2 European Divergence Case Study

The European Divergence Scenario illustrates the Adaptive Stress Testing frame-
work well. With the introduction of the Euro, credit spreads converged for all
member countries and started an unsustainable cycle of credit growth in high
inflation countries like Greece, Italy, Portugal, and Spain. The artificial stability
of the Euro currency was a classic Minsky case of stability breeding instability.
As hidden imbalances continued to build up in the Euro periphery, Innovators like
GaveKal Research analyzed the unsustainability of “PIGS” borrowing levels, and
launched a European Divergence Fund in November 2007:

For ten years, investors have made money on convergence trades (i.e., Italian rates falling
to meet German rates).These convergence trades were always based on politics, not
economics. However, in the long-run, economics always wins out. And now, as credit
conditions tighten around the world, should be the time when this happens.—Louis-Vincent
Gave, GaveKal Funds Newsletter, November 11th, 2007
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Early Adopters: European Divergence (PIGS) investment thesis leads launch of
several fund strategies in 2007 (e.g., Gavekal)

Basis Points
450 4

5 Year Sovereign CDS Spreads

——GREECE

~——IRELAND

Emerging
—ITALY

RN NRHHRRHEBRIHRH
i 53 Eit3 $iz3 i E3 iiz3 i

Fig. 7 Five year sovereign CDS spreads for PIGS. Source: Laubsch (2010a, b)

Figure 7 shows the escalation of the PIGS sovereign spreads from pre-crisis
2005 when risk was hidden, to 2007 when risk started to emerge and to 2008 when
markets went into crisis mode.

As with subprime bonds and equities, outliers were useful early warning signals.
Figure 8 shows Greece CDS vs. cumulative VaR outliers. Each wave of escalating
spreads is preceded by exceptionally low levels of outliers (e.g., unnaturally low
level of variability), and then a rapid phase transition to high volatility marked by
escalating outliers.

8 U.S. Subprime Case Study: 2006-2008

Even Nassim Taleb admits that the U.S. subprime crisis was no Black Swan.
The macro environment in 2006 was increasingly fragile. Classic macroeconomic
imbalances built up over years: low rates and easy credit inflated a U.S. housing
bubble amidst record levels of financial leverage.* Cracks appeared as the housing
market started to taper off in mid-2006, and JPMorgan was the first major bank

“Deregulation and increased global capital flows were additional systemic warning signals, as
noted by Rogoff and Reinhart (2009).
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Fig. 8 Greece CDS and VaR outliers. Source: Laubsch (2010a, b)

to exit subprime. It had already reduce subprime CDO underwriting as credit
spreads compressed to leave little margin for error. CEO Jamie Dimon made the
final decision to sell all its subprime holdings after observing a spike in subprime
delinquencies in its retail bank (Tully 2008).

8.1 The First Tremors in December 2006

And yet, complacency still reigned. Credit markets only registered the first small
tremor from December 12-21, 2006, when AAA subprime bond volatility tripled.
Most market participants did not notice, because the absolute level of volatility was
so low. Five year AAA subprime bonds traded around ten basis points (bps) over
Treasury’s, and were thus regarded as almost risk free securities.

Daily AAA bond spread volatility around averaged 2 % per day, or about 0.2
basis points. A tripling of volatility only amounted to 0.6 basis points, an increase
that was missed by all but the most vigilant institutions which specifically monitored
subprime risk. At JPMorgan (where I worked as a risk manager from 1993 to
1998) trading discipline called for meetings whenever VaR limits were breached.
At the 95 % daily confidence level, this normally meant such outlier discussions
would happen about once month (1 out of 20 trading days). Our objective was to
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interpret the market move. Was it signal or noise? When such meetings occurred
too often, alarm bells would go off. Risk was not normal and escalating. Goldman
Sachs famously decided to “get closer to home” and exit subprime after 10 days
of subprime VaR excessions in December 2006. Although absolute losses were
relatively low, it quickly became apparent that something was amiss in the subprime
world (Nocera 2009).

One crucial insight is that only investors who closely monitored subprime
P&L vs. VaR could observe the December 2006 tremors. Firms that mixed
subprime bonds with regular bonds would have missed these signals. Hence the
importance of defining a Stress Index with specific driving factors.

Figure 9 is a chart of AAA subprime bond yield changes plotted against 95 %
confidence VaR bands. Observe that the biggest outlier was February 23, which was
more surprising than any outliers observed during the actual crisis.

8.2 The Second Wave: HSBC’s February 2007 Loss

The second major jump in subprime volatility occurred on February 23, 2007, the
day after HSBC announced a $10.5 bn loss in their US subprime holdings. It looked
like a classic exogenous Black Swan shock, as AAA spreads instantaneously tripled
from 11 to 31 bp (an unprecedented 12 sd daily outlier). Spreads soon stabilized
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below 20 bp again, bolstered by “relative value” trades: traders bet that increasing
subprime delinquencies would hurt the first loss equity or mezzanine tranches of
CDOs, but thought that the AAA rated securities were immune. And they decided
to make the trades “carry neutral” and some even went so far as to characterize this
as a “hedge.” If BBB’s were trading at 200 bp and AAA’s were 20 bp, shorting $1
bn BBB meant buying $10 bn AAA. This was history’s most penny wise and pound
foolish trade, and would later explain Howie Hubler’s record setting $9 bn loss at
Morgan Stanley.’

Evidence of a housing bubble burst continued to mount, as prices fell and
subprime delinquencies spiked. Subprime lender NEW’s default in March 2007 was
no surprise to students of financial statements: 5 months earlier forensic accountant
CFRA published a report that they had obfuscated rising delinquencies in their June
2006 earnings release. In May 2007, two Bear Stearns subprime bond hedge funds
imploded, and the following month Merrill Lynch failed to sell their AAA rated
CDO collateral (bonds they had sold to Bear and held in their own inventory). But
even this failure could not shake the market’s confidence, as credit spreads and VIX
continued to hover at historical lows.

Astonishingly, it took until the week of July 9th, 2007 for S&P, Moody’s and
Fitch to announce their first subprime CDO downgrade. Only then did risk aware-
ness enter mainstream consciousness, and waves of successive selling followed.
Within a few weeks spreads rose to 150 bp before tightening once again to 50 bp,
and then widening to 250 bp, and eventually spiking to 400 bp by early 2008.

See Fig. 10 of absolute spread levels, which reveals classic fractal amplification
patterns different time scales: from daily ripples to weekly waves to monthly
tsunamis.

When looking at the subprime spread chart above, ask yourself when risk was
highest. According to VaR, risk peaked in 2008. But when considering hidden risk,
the most dangerous time was 2006-2007 as the chase for ever narrowing spreads
led banks to unprecedented leverage that would threaten the entire global economic
system.

9 Risk Myopia and Disruptive Information

How could markets have been so blind for so long? Credit markets appeared to have
outsourced credit risk assessment the ratings agencies, who were asleep at the wheel,
not to mention conflicted by lucrative subprime bond underwriting fees. Robert

SCFO.com, “Missing Pieces” by Avital Louria Hahn, March 2008, reported: “Morgan Stanley’s
fixed-income traders built a $2 billion short position on the sector. As protection, they bought
$14, billion worth of triple-A mortgage-backed securities. ... Morgan Stanley’s hedge collapsed,
triggering a $9.6 billion fourth-quarter write-down-nearly triple the $3.7 billion that Colm Kelleher,
Morgan Stanley’s newly appointed CFO, had forecast a month earlier.
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Fig. 10 AAA CDO spreads. Source: Alan Laubsch (2009)

Schiller (having warned of housing bubble since 2005) attributed this collective
denial to groupthink:

Suppose you imagine yourself and a group of experts who seem to have converged on an
enlightened opinion which has arguments to support it, and it has prominent influential
people saying that. It can be difficult for someone to stand up in that room and air what
seem to be half-baked or half-formed doubts about it. It can be kind of damaging to your
reputation. (Grove 2008)

Pervasive risk myopia is confirmed by behavioral economics. Cognitive biases
limit our ability to rationally assess risk and be open to new information. Well
known risk distorting biases include overconfidence, underestimation of small
probability events, confirmation bias, and missing new information when over-
focusing (Kahneman 2011). Nate Silver discusses these biases in The Signal And
The Noise (2012), and observes that they apply to financial professionals and
economists just as much as anyone else.

10 Innovation Comes from the Periphery

It therefore makes sense that innovative insights often emerge from the periphery,
free from the pressures of groupthink. Michael Lewis explores this theme in his
bestselling “The Big Short: Inside The Doomsday Machine” (2010). The visionaries
who recognize and acted on the inevitable collapse of subprime bonds before
everyone else were a diverse collection of renegades, often at the periphery of the
financial community. This included outsiders like Dr. Michael Burry, a medical
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doctor with Asperger’s turned fund manager, and the two inexperienced founders
of Cornwall Capital, who not too long ago had started their fund with $100,000 in a
Berkeley apartment.®

Liberated from the confines of groupthink, outsiders are more receptive to new
and disruptive information. Robert Shiller fits this archetypal Innovator at the
periphery, inspired by diverse interests:

I think I’'m a polymath. I'm interested in everything. When I was a senior in college at the
University of Michigan, I was dazzled by the choice set that we had. Young people, you
can do whatever you want, and I was disappointed that I had to choose one, realistically.
You like to be a renaissance man and do everything. I took long walks trying to decide
whether I wanted to be a physicist or a medical doctor or a sociologist, whatever-a scientist,
an astronomer. (Grove 2008)

Another characteristic of visionary Innovators is the ability to integrate infor-
mation from a variety of sources and to connect the dots. Nouriel Roubini
sources information from taxi drivers to Finance Ministers when traveling. After
being named as one of Time Magazines’ 100 Most Influential People of the World,
he explained:

In many ways I simply connected the dot in these different strands of thinking and
warnings . .. Kenneth Rogoff ... warned early on about . ..the US current account deficits
and of the global imbalances; Raghu Rajan presented ... analyses of the agency problems
and incentive distortions deriving from compensation schemes in financial institutions; ...
Stephen Roach, David Rosenberg ... warned about the shopped-out, saving-less, bubble-
addict and debt-burdened US consumer; ... William White and his colleagues at the BIS
were among the first. .. to analyze how the “Great Moderation” may paradoxically lead to
“Financial Instability”, asset and credit bubbles and financial crises (Roubini 2009)

11 Cycle of Hidden vs. Visible Risk

Hidden risk suddenly becomes visible risk similar to the way a spring’s potential
energy is released as Kkinetic energy. Until February 2007, banks were considered
rock solid (despite record debt and subprime concentrations, not to mention
warnings from luminaries like Roubini and Shiller). Visible risk (volatility) was
at historic lows, as tension mounted below the surface. HSBC’s February 23 loss
announcement was a classic Black Swan, and triggered a jump in volatility that
spread from subprime to equities on February 27. Even though risk would keep
escalating for the next 2 years, both the February 23 bond outlier and the
February 27 equity outlier would remain the largest surprise. Surprisingly,
though, both equity and bond markets dismissed these outliers as markets recovered
after each selloff. Subprime bonds started their bear market only after the July
ratings downgrade, and equity markets kept bubbling until their October 2007 peak.’

5As measured by one day standard deviation residual, using dynamic RiskMetrics volatility
estimation.

"Impressively, October 2007 was the bubble peak forecasted by Didier Sornette’s LPPL models.
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By the time the market hit bottom on March 6, 2009, volatility had been at sustained
record levels and only gradually started to decline. The market’s assessment of risk
and return was, in effect, exactly the backward. As NBIM’s founding CEO Knut
Kjaer notes: “The biggest pitfall in investments is herd behavior. Large gains in
performance can be achieved by investors with ability to consistently act contrarian”
(Kjaer 2011).

12 The Destabilizing Effect of Stability

Hyman Minsky’s “Financial Instability Hypothesis” (1992) is often summarized
as “stability breeds instability.” As Lawrence H. Meyer observed in Lessons from
the Asian Crisis (1999): “a period of stability induces behavioral responses that
erode margins of safety, reduce liquidity, raise cash flow commitments relative to
income and profits, and raise the price of risky relative to safe assets—all combining
to weaken the ability of the economy to withstand even modest adverse shocks.” In
the case of the Asian Crisis, it was pegged currencies which allowed Asian banks
and corporations to raise cheap USD financing. Financial imbalances built up, but
did not register in the artificial low volatility of pegged currencies.® When the first
FX tremors started in Thailand in May 1997, it was only a matter of time before
devaluation. Within days chain reaction spread to Indonesia, and the rest of South
East Asia. Corporations defaulted, bank NPL’s skyrocketed, and economic growth
plummeted.’ The Euro offers similar lessons. With the introduction of the common
currency, borrowing costs converged for vastly different economies. Greece and
Italy which traditionally ran at high inflation and borrowed at high rates suddenly
had access to the same rates as Germany. Unfortunately, it’s not possible to legislate
risk away. Rather, the artificial suppression of volatility allows imbalances to build
under the surface, resulting in hidden fragility. When cracks emerge, the system is
threatened with sudden collapse.

This destabilizing effect of stability has also been observed by ecologists: “When
the range of natural variation in a system is reduced, the system loses resilience”
(Holling and Meftfe 1995). And conversely, “the very fact of low stability seems to
produce high resilience” (Parameswaran 2009). This theme is the focus of Nassim
Taleb’s latest book, “Antifragile: Things That Gain from Disorder” (2012).

The implication for risk management is to be contrarian. While we must attend to
emerging visible risk first, we should not be lulled into complacency by periods of
calm. Steady trends with low volatility often points to a lack of diversity in opinion
and crowded trades. The most severe reversals come as everyone is forced to exit at

8Interestingly implied volatility did spike in THB options prior to the devaluation as an early
warning signal, as documented by Malz (2011).

This build-up of hidden risk until a dramatic collapse is a common theme with pegged currencies:
Argentina experienced a similar.
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the same time. Exceptionally low volatility (e.g., from pegged currencies to tapered
bond yields) should ring alarm bells and motivate us to seek out hidden risks.

13 Volatility is not Risk

When asking investors whether they would prefer high or low volatility investments,
most opt for low. Few can tolerate the turbulence of volatility. But low volatility
only means low visible risk. What if we put it this way: “Would you prefer low
volatility with the possibility of large hidden risk? Or high volatility, but at least what
you see is what you get?” Despite record low volatility, early 2007 was the most
risky time to be invested. And March 2009 presented exceptional opportunity for
returns, despite record short term volatility. As Knut Kjaer observes: “The (future)
reward for risk may be at the highest when the market sentiment for risk taking is at
the lowest.”

The implication is that as volatility declines, our priority should shift to iden-
tifying hidden structural risks. And during periods of high volatility, contrarian
investors might weigh the pain of P&L fluctuations against the potential for superior
long term returns opportunities.

The contrarian view of risk and opportunity is supported by mean reverting
market volatility. Periods of low volatility lull short term investors into a false sense
of security, as hidden risks build up until emerging as volcanic outbursts of volatility.
The exodus of investors as visible risk reaches elevated levels creates opportunities
for longer term investors who can stomach the adventure of a rocky ride. Hence,
it should not be surprising that equities—as the most volatile asset class—offer the
most superior long term returns on a diversified basis (Siegel 2007).

Figure 11 of annualized daily volatility for the DJIA index over the last century
illustrates this pattern. As with most major developed markets, volatility mean
reverts to a 15-20 % range.
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Fig. 11 DIJIA index volatility, 1900-2008. Source: Finger 2008



170 A. Laubsch
14 Macro Micro Polarity Management

As discussed above, the flux between immediate visible risks and longer term
fragilities presents a perpetual challenge. It’s not a problem that can be solved with
better statistical models. Indeed, better data and more precise analytics can lead
to overconfidence. This was part of the problem in the subprime crisis (“we were
busy looking at sand corns through a microscope when the tsunami hit” recalled
a bank risk manager). This is a classic polarity management challenge. Polarities
are interdependent opposites which power all complex systems. Barry Johnson’s
seminal “Polarity Management: Identifying and Managing Unsolvable Problems”
(1996) is an excellent primer.

15 Six Macro vs. Micro Risk Management Polarities

As you read the pairs below, consider which requires greater attention at this point
in the current market cycle:

. Potential vs. Visible

. Long term vs. Short term

. Top-down vs. Bottom-up

. Strategic vs. Tactical

. Qualitative vs. Quantitative
. Risk vs. Return

AN B W=

While we may have individual preferences, it’s important to recognize that each
polarity has both positive and negative attributes.

* For example, a focus on Potential risk allows investors to better prepare for
extreme tail risks. And yet over-focus on Potential risk can lead to excessive
risk aversion and failure to prioritize immediate needs.

* On the other hand, a focus on visible risk allows investors to manage risks that
matter now, and to be nimble and take advantage of short term opportunities. Yet
over focus on visible risk can result in myopia and underestimation of structural
risks.

Well managed polarities maximize positive attributes and minimize negative
ones, sparking a virtuous cycle. Polarities naturally move from the upside to the
downside of a polarity, and then to the upside and downside of the opposite polarity,
and so on. Poorly managed polarities (e.g., too much focus on one polarity) cause a
downward spiral. Appropriate timing varies by process, and according to changing
circumstances. The key to managing polarities well is to act on early warning signals
that suggest pivoting to the opposite polarity. This cycle illustrated in Fig. 12.

Polarity management is a core life practice. As individuals, we can only see one
perspective at a time, so we must keep changing perspectives to better perceive and
adapt to our dynamic and multi-faceted world. Indeed, according to developmental
psychology, the ability to take different perspectives is central to learning and
growth.
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Positive attributes Positive attributes
Search to identify hidden risks Concrete and present oriented
Forward looking Manage risks that matter now

Considers potential extremerisks

Early Warning Potential Early Warning

- Key indicators? - Key indicators?
Downsides if polarities not managed: Downsides if polarities not managed:
Excessive risk aversion, paralysis Reactive to current environment
May fail to prioritize immediate needs Myopic, underestimate potential tail risks

Fig. 12 Potential vs. visible risk focus. Source: Laubsch (2010a, b)

From an organizational perspective, the ability to shift perspectives is core to an
adaptive risk culture which continually sources new scenarios, while quickly honing
in on emerging risks.

As a practical current example, we might consider the monitoring of a potential
China Hard Landing scenario (Pivot Capital 2011).

1. Macro fault lines include credit dependent growth, a real estate bubble, counter-
party defaults, rising bank NPLs, reliance on manufacturing and export, slowing
economic growth, as well as social instability due to rural poverty and the rising
gap between rich and poor, corruption, and repressive government policies.

2. From a Micro perspective, we consider key market factors which correlate
to an emerging scenario (e.g., Chinese rates & bonds, equities, industrial
commodities). Our aim is to build Stress Indices with high correlation to specific
scenarios. In addition to monitoring emerging risk, Stress Indices could be used
for hedging or insurance (e.g., purchase 1 year 95 put protection for China Hard
Landing).

Just as in our Financial Meltdown scenario, we would plot a time series of our
China Hard Landing Stress Index (or Indices, as multiple variants are possible) and
hone in on outliers and escalating volatility.

16 Outlier Dashboards

Below is a mock dashboard report, which ranks stress themes by surprise (i.e.,
outlier move as measured in standard deviation). Useful reports will have drill down
capability, and the ability to view outlier activity in different dimensions such as
theme, country, industry, and asset class (Table 2).
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Table 2 Stress outlier dashboard [not real data]

95 % confidence outliers July 23,2013
Summary: Outlier activity on 4 stress scenarios, 3 asset classes, 2 sovereigns, 5 sectors
Stress Scenarios (4 outliers) Asset Class (3) | Sovereign (2) | Sector (5)
Stress Theme Outlier Ranking | Outlier (sd) Return Index level
1 China Hard Landing =32 =35 %
CHINA IR —4.1 +26 bp Red to black
CHINA BANKS —34 —5.20 %
CHINA INDUSTRIALS =29 —6.10 %
AUD/USD —2.1 —2.40 %
2 Japan Bubble =25 —1.60 %
N225 2.1 —3.40 %
JGB —=3.5 +12 bp
JPY/USD 2.1 2.30 %
3 BRIC slowdown —-2.1 —3.20 %
4 Commodity Bubble -1.9 —2.6 %

This sample report indicates a —3.2 standard deviation in the China Hard
Landing Scenario, and the drill down shows exceptional movements in interest rates,
banks, industrials, and AUD/USD. Other tabs could be viewed to look at outlier
activity in other dimensions (e.g., asset class, country, sector).

17 Introducing StressGrades™

Outlier based early warning is especially useful when considering the many
scenarios risk managers shock their positions with. A risk manager at a global
bank explained that they run close to 200 daily scenarios against hedge fund
counterparties alone, but that the amount of data was overwhelming and therefore
largely ignored.

This insight gave rise to the StressGrades methodology to prioritize attention
on escalating market based early warning signals. StressGrades are designed to
complement the existing stress testing process by (a) drawing attention on escalating
visible risk, as well as (b) highlighting abnormally low visible risk themes to search
for hidden risk.
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18 We Define Three Volatility Based Metrics

1. PStress = Market Implied Probability of a Stress Scenario, in bps per annum

2. DStress = Distance to stress scenario in standard deviations (e.g., a Z-score)

3. StressQ = Quantile (percentile) historical rank of stress scenario (e.g.,
StressQ = 0.82 implies stress levels have exceeded current levels 18 % of the
time)

19 StressGrades Amplify Market Based Risk Signals

As volatility based metrics, StressGrades will not directly uncover hidden structural
risk or predict Black Swans. StressGrades merely amplify existing market based
signals of risk, as a seismograph amplifies geological tremors.' And as with
earthquakes, the absence of tremors does not imply the absence of risk. Or, to
use a medical analogy, a stethoscope allows doctors to listen to what’s inside.
An experienced doctor can use it to detect imbalances without being fooled into
believing it provides a full picture of health. To be effective, StressGrades should
be used within the Adaptive Stress Testing framework: (a) prioritize immediately
escalating stress themes, and (b) probe for hidden risks in themes with abnormally
low volatility.
StressGrades require three major steps:

1. Design Stress Indices
As discussed earlier, Adaptive Stress Testing calls for the construction of
market based Stress Indices that are correlated with key scenarios. For example,
we might consider an oil shock scenario due to conflict with Iran, which we could
model at different levels of detail (e.g., oil price, FX prices, country and industry
equity sectors, and even down to the specific company level). Note that Stress
Indices might be constructed using options theory to model non-linearities (e.g.,
an oil call with a 130 strike 4 equity put struck at 90). Once we’ve modeled our
Stress Indices, we can start to monitor the tremors for each fault line that indicate
escalating risk.
2. Determine a Stress Point
We then determine a critical point which represents a stressed condition. In our
examples, we used maximum historical drawdowns over a 10 year period. After
calculating the volatility of our ETF time series, we then determine how many
standard deviations it would take to achieve such a daily loss to calculate DStress.
We implemented the RiskMetrics methodology to estimate daily volatility (i.e.,

1] am reminded of a statement by a HK hedge fund manager about Goldman Sachs, after we
discussed their use of VaR outlier signals to exit subprime. “They’re like geologists who make
their living right top of all the world’s fault lines line, monitoring every tremor.”
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Fig. 13 PStress and DStress assuming normal distribution

exponential weighting with 0.94 decay). Note, however, that in some cases a
maximum historical drawdown could be too severe a Stress Point to consider. In
practice a 99 % confidence Expected Shortfall over a decade (or a full market
cycle) could be reasonable to consider as a Stress Point. Subjective assessments
and analysis of similar asset classes should be applied for assets with limited loss
history (e.g., subprime bonds in 2006).

3. Calculate market implied Probability of Stress (PStress)

After making a distributional assumption, we can back out the implied
Probability of Stress (PStress). For example, assuming Normality, a DStress of
—2.33 would imply a PStress of 1 %, while a DStress of 1.65 would imply
a PStress of 5 %. In the examples below (Fig. 13), we will use a Normal
distribution assumption for simplicity. Clearly, accuracy of PStress could be
improved by using a fat tailed distribution such a Student (Zumbach 2007).
However, given that our initial objective is to flag outlier changes in market
implied stress probability, the use of a Normal distribution is appropriate (future
versions will consider Student t and other fat tailed distributions).

To summarize, StressGrades are volatility based metrics which can be used to
monitor market implied risk sentiment. To be useful, we need to start with a macro
perspective to understand key fault lines, and apply StressGrades both to monitor
emerging visible risk as well as identify artificially low levels of visible risk.

20 Backtesting StressGrades

Below we show several are early warning backtesting case studies on ETF’s
representing major asset classes. We calibrated DStress for each ETF based on
the largest daily drawdown dates (e.g., —9.6 % for SPY on December 1, 2008).
If StressGrades are predictive, we would expect an escalation in PStress and decline
and DStress as we approach the drawdown date (e.g., December 1 for SPY). In other
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words, we would expect volatility to be high and rising before the peak endogenous
stress events.

Again, for simplicity we use the Normal Distribution to calculate PStress in the
case studies below.

Given that StressGrades are driven by volatility, we expect StressGrades to fail
in predicting Black Swans, but to help in detecting Dragon Kings.

21 S&P 500 (SPY) Case Study

On December 1’08 SPY fell 9.6 % (log return), the biggest daily drop since Black
Monday in 1987.

Figure 14 shows a super-exponential increase in (Normal Distribution Implied)
PStress leading up to the December 1, 2008 stress event. Note the log scale, so any
increase above linear is super-exponential.

The following is noteworthy:

1. On February 27, PStress jumped by 170x from extremely low levels. It was
a Black Swan. PStress (i.e., equity market volatility) had no predictive power.
However, the extremely low level of volatility/implied stress could be viewed
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Fig. 14 S&P 500 PStress
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as a contrarian signal of high hidden risk and risk myopia/overconfidence as
discussed earlier.

2. From that point on PStress spiked over 1300x, implying super-exponential
increase of tail risk leading up to the December 1, 2008 drop. PStress picks up
well escalating endogenous risk signals.

22 DStress

Figure 15 shows SPY DStress during the same time period. Pre-crisis, a drop of
9.6 % would have represented a distant —24 sd event. After the February 27 outlier
DStress jumped to —10 sd, and then further contracted to —2 sd as we approach
December 1, 2008. In other words, the actual drop of 9.6 % on 1 December was not
much of a surprise by then.
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PStress for major asset classes in bps, log scale
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Fig. 16 PStress for major asset classes

23 Cross Asset Class ETF Analysis

StressGrades time series can help us visualize the interrelationship between risk
themes. Figure 16 represents major stress themes using ETFs. Observe the sequen-
tial cascading of systemic risk starting with the February 27, 2007 equity outlier. In
June an outlier drop in 10Y bond yields signaled deflation fear, and in August a jump
in GLD signaled escalating inflation fears. Again, note the log scale for PStress .

Especially noteworthy is the increasingly synchronized increase in (Normal
Implied) PStress observed across all asset classes after August 1, 2007 as systemic
risk increased. Equally noteworthy is the synchronized decline in (Normal Implied)
PStress in early 2009, signaling a systemic recovery.

24 StressQ

StressQ is a snapshot of where volatility levels are currently compared to the last
year. They can give clues about visible risk, and where we might search for hidden
risk. Figure 17 shows StressQ for the major asset classes as of July 14, 2012. We
can quickly see that volatility for commodities (DBC, USO, UNG) is at elevated
levels, while bonds (esp LQD & TIP) are at very low levels. DBC’s StressGrade
of 93 means that volatility has only exceeded this level 7 % of the time over the
last year. On the other extreme for LQD volatility is lower than 96 % of the time.
Most other assets are at average to low volatility levels (58-32), implying broadly
moderating volatilities.

A related analysis is to contrast StressQ comparisons with DStress, which
considers a longer time horizon anchored to the worst case loss experience by each
ETF over the last 10 years. Extremely high DStress for Credit/Interest Rate ETF’s
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Fig. 17 StressQ for major asset classes as of July 15, 2012
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Fig. 18 DStress for major asset classes

shows that market perception of these assets is close to risk free levels, a hint of
dangerous overconfidence and complacency. Energy commodities, EUR FX and
European stocks on the other hand are at quite elevated levels, less than five standard
deviation away from the largest historical moves (Fig. 18).
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In summary, StressGrades amplify market based risk signals and are a helpful
guide for prioritizing attention to both high and low volatility scenarios.

Micro perspective outlier analysis prioritizes attention the relevant emerging
risks. And when markets are calm, we can shift back to explore structural vulnera-
bilities from a macro perspective.

25 False Positives

When considering market based early warning signals, the million dollar question
how often we get false positives (type I errors). Despite Paul Samuelson’s famous
quip that the “stock market has predicted nine out of the last five recessions”
(Samuelson 1966), research suggests that there is predictive value in significant
price changes. Jeremy Siegel rebutted Samuelson with a study showing that “...38
of the 41 measured recessions since 1802 have been preceded by and 8 % decline
in the stock returns index. There have been twelve “false alarms” using this
criterion . . . .Despite these faulty signals there is a significant gain to stock investors
from being able to predict turning points in the business cycle over all time periods.”
(Siegel 1991)

The broad persistence of momentum in stock markets globally (Fama and French
2012) is further evidence of social (as opposed to instant) diffusion of information.
Didier Sornette and his Financial Crisis Observatory have a growing track record of
bubble forecasting in various asset classes.!! However, further careful and extensive
backtesting should be conducted to confirm that VaR outliers have predictive value.
Such backtests might measure conditional returns after VaR outliers in different
market regimes. These backtests should help provide insight about what proportion
of price change can be attributed to random noise versus signal. Given that noise
is likely to be a Gaussian distribution, we should expect that the market’s actual
fat-tailed distribution to be least be partly attributed to the social diffusion of
information. Note that according to RiskMetrics backtesting research, the Gaussian
distribution fits markets well until about 95 % confidence (e.g., 1.65 standard
deviations). After that, the accuracy of the Gaussian drops significantly, and a
Student t distribution with 5 degrees of freedom is significantly more accurate in
volatility forecasting from 1 day to 1 year (Zumbach 2007).

1See www.er.ertz.ch for updated information.
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From a practical perspective, the monitoring and discussion of outlier signals
should be part of investment discipline. At a minimum, VaR outliers should trigger
a formal discussion, as is the practice at active traders such as J.P. Morgan and
Goldman Sachs. Given that outlier signals are often ambiguous, expertise and
judgment is required to connect the dots. Therefore, outlier risk management should
not be formulaic, but rather based on a discipline of rigorous social intelligence.

26 Adaptive Stress Testing Visualizations

Visualization is a crucial component to Adaptive Stress Testing. Visualization draws
attention on emerging risks, and can help build intuition on how different risks are
interconnected.

We can use heatmaps to prioritize attention to escalating high probability
scenarios (red) and then escalating lower probability scenarios (Fig. 19).

Risk managers will focus first on the imminent threats, or escalating high PStress
scenarios. Escalating low PStress scenarios are emerging scenarios, and still offer
the potential for exerting control through proactive risk management. Black Swans
could be lurking underneath stable low PStress scenarios, which calls for harnessing
social intelligence to probe deeper into hidden fault lines.

We can also use network graphs to visualize emerging risk themes. Network
graphs are a great way to build intuition about how interrelationships are changing
over time, and we will show some examples of such graphs follows.
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Fig. 19 StressGrades heatmap
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27 Network Stress Testing in Practice

Network approaches are very effective for designing comprehensive stress sce-
narios. For example, consider the partial correlations stress testing methodology
developed by FNA, which shows how stress scenarios are likely to cascade through
a network. Partial correlations measure pairwise correlations between two random
variables, taking out the effect of other variables.

28 Japan Case Study

We’ll use a recent Japan stress test case study to illustrate how this would work. As
a consequence of massive quantitative easing, Japanese equities and bonds entered
an exceptional bull market from 2012 to early 2013. By April 4, 2013 Japan was
entering bubble territory with JGB yields reaching a historical low at 35 bp and
with equities up 80 % over the last year. JGB downside (price) outliers then started
escalating as Gold crashed on April 12 and 15. Then on May 23, after the Fed
announced potential tapering of QE and after a lower than expected China PPP
announcement, Japanese equities dropped by 7.32 % in 1 day. This was a classic
early warning signal—after a long ebullient run tied to low interest rates, risk
finally returned. This analysis was noted in our PRMIA Emerging Stress Scenarios
community on NextThought.com, and we contemplated the potential repercussions
of a Japan meltdown on global markets.

The visualization (Fig. 20) shows how a 10 % daily drop in the Japanese
Stock Index (EWJ) would likely affect other asset classes, using partial correlation
analysis. As opposed to using current data, we applied a historical stressed period
during the GFC (a month period starting 4 May, 2008).

Statistically significant partial correlations are shown as links between the nodes
(ETFs). Link widths denote the strength of dependence. Node sizes scale with the
predicted 1-day return on the day of the stress event. Node color denotes positive
(green) or negative (red) returns.

This analysis shows three layers of relatively weak connection between Japan
and other asset classes. Japan only shows a moderate primary link to EAFE (logical,
given its 21 % weighting in the index). So it was not surprising that as Japan stocks
continued to slide by over 10 %, EAFA dropped by just under 5 %, while broader
markets hardly reacted.
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Fig. 20 Japan equities partial correlations based stress scenario. Source: Samantha Cook, FNA

29 AIG Case Study Using FNA HeavyTails™ Outlier
Monitor

FNA'’s recently launched HeavyTails application is network implementation of the
Adaptive Stress Testing framework. The initial focus of HeavyTails is to monitor
global market outliers.?

AIG’s collapse during the U.S. subprime crisis is a classic early warning case
study. As policy makers wrestled with the implosion of Lehman Brothers, they were
blindsided by AIG, which would require a record $182 bn bailout. Policy makers
realized AIG was on the precipice only “days before its imminent collapse” recounts
Phil Angelides, Chair, Financial Crisis Inquiry Commission.

When analyzing the unusual price action of AIG stock, it becomes evident
that major market participants suspected AIG’s precarious state for many months.
Outlier based early warning signals would have been invaluable to policy makers in
prioritizing their focus.

Figure 21 shows the Minimum Spanning Tree (Mantegna 1999) correlation
network of major financial institutions on September 15, 2008, the day Lehman
defaulted and AIG’s shares collapsed. Outliers are highlighted in red, and ranked
by size. Lehman was the biggest surprise, as a 3.92 standard deviation (sd) loss,
followed by AIG, a 3.68 sd surprise.

12A detailed white paper of HeavyTails is available upon request, and visit HeavyTails.com for
more information.
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i

Fig. 22 AIG 95 % VaR graph, September 15, 2008. Source: FNA HeavyTails

AIG exhibited exceptional outlier activity leading up to the crisis. Figure 22
shows that there were 14 negative 95 % Confidence VaR outliers in the previous
100 trading days, almost triple the expected 5 % level. The probability of seeing 14
or more negative 5 % outliers in 100 days (assuming IID) is 0.0004632734.

AIG’s negative outliers were also exceptional when compared with other finan-
cial institutions. Table 3 ranks major institutions by number of negative VaR outliers
as of market close on September 15, 2008.

AIG’s unusual level of negative outliers commenced almost a year before its
eventual collapse. In Fig. 23 we can see that AIG’s stock experienced a —3.1 sd
outlier (12.5 % decline) on February 11, 2008 as it announced “material accounting
weakness” in its credit derivative portfolio. Again, outliers provided early warning,
as AIG had been running at 9 % downside outliers vs. 3 % upside in 100 days as
seen in Fig. 24. Notice AIG was the only major financial institution that experienced
an outlier on that day.
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Table 3 VaR outliers as of VaR outliers/100 days
September 15, 2008 AIG

Lehman

Positive | Negative
14

1
Citigroup

Bank of America
Goldman Sachs
JPMorgan
Morgan Stanley
Barclays

Source: FNA HeavyTails
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Fig. 23 AIG negative outlier February 11, 2008. Source: FNA HeavyTails

30 AQAL Risk Management

We’ll apply Integral Theory philosopher Ken Wilber’s All Quadrant All Levels
(AQAL) Framework to put the major components of Adaptive Stress Testing
in a larger context (Wilber 2001). Integral refers to “balanced, comprehensive,
interconnected, and whole” (Wilber 2006).

Wilber proposes consider at least four interdependent perspectives for an integral
understanding of reality. These perspectives consist of two pairs of polarities:

1. Objective Exterior vs. Subjective Interior
2. Individual vs. Collective
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Fig. 24 AQAL framework. Source: Laubsch (2010b)

This results in four interdependent perspectives shown in Fig. 24. The quadrants
can be summarized as “I” (Interior Individual), “We” (Interior Collective), “It”
(Exterior Individual) and “Its” (Exterior Collective).

Starting in the upper right, metrics are important (It), but we also need to take the
systems perspective (Its) and ensure sound processes and governance. This is the
science half of risk management. Without it, we’re flying blind. The left quadrants
are subjective, and are the art of risk management. In the upper left (I), we need
individuals with integrity, expertise, and the ability to question and be contrarian.
But even the best risk managers can’t help unless there is a risk culture (We). Culture
is defined by a group’s collective vision and values. It is the primary evolutionary
driver of organizations. As people and systems come and go, culture determines the
evolution and persistence of organizational learning. It’s an organization’s evolving
DNA.

Each of these interdependent quadrants plays an important role for Adaptive Risk
Management. It starts with the Innovators who are free from groupthink (I)."* In our
Adaptive Stress Library we aggregate credible scenarios by Innovators (We), and
then look for metrics that indicate early adoption of a theme (It), and put systems
and governance structures in place to act on such intelligence (Its).

31 Levels of Development

Both individual and collective learning progresses through sequential stages of
development (or Levels, in AQAL terminology). In simplified terms, you could
represent three sequential stages of development.

BInnovator would consider all four quadrants (and more perspectives) in their risk assessment.
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1. Intuitive risk management is dominated by a subjective view of risk. Risk
management (or lack thereof) is typically dominated by principals, who go with
gut instinct and are unwilling to consider multiple of perspectives. The focus is
on the parts, and not the whole.

2. Predict and control risk management is driven by objective classification and
measurement of risks. Managers seek to minimize risk through traditional
hierarchy, rules, and processes.

3. Integral risk management is characterized by networked intelligence. Risk
management is a core competence and risk culture is pervasive. Risk is viewed as
both danger and opportunity, and hence a higher tolerance for taking conscious
risks that don’t endanger the organization as a whole. Individuals are empowered,
risks are continually communicated, and the organization learns from survivable
failures.

These simplified stages represent an organizational center of gravity, where of
certain perspectives are predominant.

To summarize, risk management depends on healthy organizational development,
which is driven by the integration of ever more perspectives (e.g., from Subjective
to Objective to Integral). Perspectives from each stage are important.'* For example,
the qualitative opinion of a trader may give essential color, while a researcher might
provide useful objective analysis. To excel at managing risk, however, organizations
must efficiently process multiple streams of intelligence. Therefore, Integral risk
management builds on all previous stages (e.g., with checklists'> and metrics that
were implemented at the “Predict & Control” stage), but goes beyond measurement
to include qualitative dimensions such cultivating a broad range of ideas, promoting
a pervasive risk culture, and embracing risk as danger and opportunity.

32 Adaptive Learning

Risk management is a core discipline in a rapidly changing world. From finance
to ecology, we face unprecedented systemic risks from increasingly coupled global
systems. Non-linearities render long term predictions futile, and require considera-
tion of many possible paths. Indeed we’ve seen a paradigm shift from “Command
and Control” to “Sense and Respond” (Haeckel 2004). As in an ocean sailing race,
organizations must navigate changing conditions using dynamic steering (Robertson
2010) with continuous feedback. “Managing Uncertainty” has replaced “Change

14A famous example is legendary investor George Soros who developed gut instincts about risk.
He was known to presciently exit positions by listening to his body’s stress signals.

5Dr. Atul Gawande’s “Checklist Manifesto” (2009) provides great insights about importance of
well designed checklists for managing risk, with case studies from medicine, aviation, investments,
and construction.
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Positive attributes Positive attributes

Big picture, holistic, ecosystem view Agile, quick to respond to change
Long term orientation Highly focused, fast decisions
Aware of interdependentrisks Learning through feedback and data

' Macro

Early Warning
- Key indicators?

Early Warning
- Key indicators?

Downsides if polarities not managed: Downsides if polarities not managed:

Theoretical, ignores reality
Slow to learn and adapt
Rigid frameworks risk breakdown

Overfocus, misses big picture
Reactive, short term decisions
Uncoordinated, isolated

Fig. 25 Macro and micro polarity management. Source: Laubsch (2010a, b)

Management” in leadership seminars (change management makes no sense if the
direction of change is not clear).

Figure 25 shows how we can spark a positive organizational learning spiral by
managing macro and micro polarities.

This general macro to micro framework applies universally in risk management.
Duhigg (2012) describes a tragic case study of the consequences of macro &
micro level breakdowns in the 1987 London King’s Cross Fire case study. Outside
experts (fire brigade) who pre-diagnosed the fire hazard were ignored for years by
an overconfident organization with disaster myopia (no previous loss of life from
fire). Actionable early warning signals (a passenger reporting smoke) were not
transmitted in a siloed organization. A brief window of opportunity to extinguish
the fire and/or evacuate was lost, and 81 people were killed when the fire erupted in
a giant explosion.

33 Seek Out the New: Harnessing Network Intelligence

Adaptive Stress Testing builds a creative tension between contrarian views of
Innovators and the ‘“wisdom of crowds” (Surowiecki 2004). Innovators are
contrarians who perceive hidden risks that are not yet accepted by the market. Given
that there are potential risks that never materialize, we incorporate the agile sensory
intelligence of Early Adopters who are attuned to emerging market themes. Adaptive
Stress Testing helps mitigate systemic risk by proactive stress testing while risks
are still in potential form, as well as by counter cyclical investment (e.g., leaving
crowded theatres early).
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As hyper-connected individuals, we can access the entire world’s knowledge
with unlimited computational power. No longer bound by slow centralized forecast-
ing and management, we can rapidly adapt to changing conditions. And yet even
with the democratization of information, cognitive biases like overconfidence and
groupthink hold us back. “We are blinder than we think” notes Tim Harford (2011).
Even worse, when faced with uncomfortable truths, most opt for “willful blindness”
(Heffernan 2011).

Despite the discomfort, seeking out the new is an evolutionary imperative.
Harford’s Palchinski Principles are a wise guide: “First, seek out new ideas and try
new things; second, do [this] on a scale where failure is survivable; third, seek out
feedback and learn from your mistakes as you go along” (Harford 2011). We might
summarize this as:

1. Seek out new scenarios, and ensure that your stress library represents a diversity
of thinking.

2. Seek out new signals emerging from the marketplace, by monitoring outlier
activity and super-exponential rates of change.

Polarity management helps manage this process. We first analyze contrarian
views at the periphery, and then hone in on signals emerging by Early Adopters
who are connected to the broader marketplace.

34 Summary

Adaptive stress testing is a blend of art and science which continually integrates
qualitative macro and quantitative micro perspectives. The first challenge in stress
testing is to conceive of a wide range of credible potential threats before they
materialize. Let’s tap into the marketplace of ideas for scenarios, and harness the
ability of visionaries to perceive risk in potential form (think Albert Einstein).
After constructing Stress Indices to reflect scenarios, we monitor outliers, which
are precursors to regime shifts. The StressGrades methodology amplifies market-
based risk signals, which highlights cascading risk (e.g., super-exponential increases
in PStress). StressGrades are also useful in identifying assets with exceptionally
low volatility, which should be stressed for hidden risks (e.g., high DStress &
low StessQ). Let’s never forget that volatility only represents visible risk and
that risk managers must be contrarian and uncover risks that are invisible to
most. Low volatility is a temporary respite which allows us to search for hidden
risks and rebalance to build more resilient portfolios and institutions. By being
intelligently contrarian, we can mitigate systemic risks and transform future crises
into opportunity.
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Conclusions: Spark Network Intelligence

Evolutionary adaptation is a learning process: we sense changes in the
environment and respond with learning experiments. Failures are not only
inevitable, but essential to learning. As Tim Harford elegantly observes in
Adapt: Why Success Always Starts With Failure (2011): “the art of success
is to fail productively.” But to be able to learn from failure, we must be
able to survive and keep playing. The obvious priority for risk managers
is to ensure that their organization can withstand credible stresses. And yet
paradoxically, many risk strategies that are designed to reduce individual risk
(e.g., portfolio insurance, stop-loss limits, and liquidity hoarding in crisis
situations) increase coupling, and often even precipitate crises. In A Demon
Of Our Own Design (2008) Richard Bookstaber shows that many crises
were precipitated by flawed safety mechanisms. When faced with complexity,
tightly coupled systems eventually break down.

To manage systemic risks, we must look beyond individual nodes and
understand the non-linear processes driving ecosystems. In “Rethinking Cap-
italism” Nick Hanauer and Eric Liu implore us to transcend “Machinebrain”
linear thinking:

In the Gardenbrain story, markets are not perfectly efficient, but they are effective

if managed well. Humans are not perfectly rational, calculating and selfish; they are

emotional, approximating and reciprocal. And outcomes are not just as they should

be; rather, they reflect the kinds of compounding and feedback loops—virtuous
circles or death spirals—that distort all complex systems. (Hanauer and Liu 2012)

Industrial capitalism has fuelled economic growth and expanded wealth
worldwide. But it also comes with new liabilities (externalities), many of
which are in hidden form. We face serious disruptive threats across all
our global ecosystems.!® As Otto Scharmer writes in “Leading from the
Emerging Future: From Ego-System to Eco-System Economies” (2013),
individually oriented approaches are unsustainable:

What’s dying is an old civilization and a mindset of maximize ‘“me”—maximum

material consumption, bigger is better, and special-interest-group driven decision-

making that has led us into a state of organized irresponsibility, collectively creating
results that nobody wants.

Throughout history, humans have faced a basic choice when meeting
challenges: conflict or cooperation. Conflict, while unavoidable at times,
is negative sum. Cooperation yields far better results, and indeed is the

(continued)

16Major potential risk fault lines include rising economic inequality and environmental degradation
due to pollution, overuse of resources, and loss of biodiversity.
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foundation for sustainable growth and innovation (Johnson 2010). As inventor
Dean Kamen puts it: “if you have an idea and I have an idea and we exchange
them, then we both have two ideas. It’s nonzero (Diamandis and Kotler
2012).”

We see the benefits of cooperation throughout natural systems. Evolu-
tionary leaps occur when individual “holons” (Koestler 1967) cooperate,
for example as in the emergence of multi-celled organism, or hive insects
like ants and bees. Thriving ecosystems are characterized by ‘“cooperative
relationships, self-regulating feedback cycles, and dense interconnectedness”
(Benyus 2002).

The specter of disruptive global risks calls for mass collaboration plat-
Jorms to better share information and coordinate responses. Nate Silver
(2012) makes a case for predictive markets for economic data. Dan Tapscott
shows many practical examples of effective mass collaboration platforms
in Macro Wikinomics (2012), such as the mobile and Google Maps based
platform that helped coordinate the Haiti earthquake relief efforts. Why not
build sharing platforms for financial risk management, and specifically around
stress testing? Indeed, network visualization platforms such as FNA might
serve as the shared Google Maps of financial cartography, to help us better
understand and communicate about the dynamic financial landscape.’

A new sharing economy has emerged. Social networks have connected
us in online communities, and every like, tweet, and update has the potential
to increase collective intelligence. Each of us has the potential to contribute
in uniquely. Evolution, after all, is not an abstract force. We each embody
evolutionary intelligence, and are all co-creators in a world where a “flap
of a butterfly’s wings in Brazil [could] set off a tornado in Texas” (Lorenz
1972). Imagine a neuron within a vast network of neurons, each sensing and
responding to an ever changing world. Let’s spark an evolutionary leap in
intelligence by participating in collaboration platforms to share information
about the risks that affect us all. It’s not technology that’s holding us back.
The challenge is mindset, and a transition from an ego-centered to an eco-
centric perspective of risk.
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On Some Approaches to Managing Market Risk
Using VaR Limits: A Note

Alexey Lobanov

Abstract Market risk has been traditionally considered in a single-period setting,
with fixed positions in a static portfolio and losses caused by price volatility over
a specified time horizon. In the real world, however, trading losses are generally a
product of both position changes and adverse market movements. Market risk limits
have been widely used in the industry for controlling both ex-ante and ex-post losses
from traders’ actions, but the interplay of risk limits with risk measurement has been
scarcely studied in the literature. This note aims to provide insights into the broad
concepts of using limits in market risk management, as well as some approaches to
setting and managing market risk limits in a dynamic setting.

Keywords Market risk * Positions limits ¢ Traders’ actions ¢ Trading desk e
VaR limits
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1 Introduction

A common view on market risk presumes that losses are caused by adverse price
movements, while positions are fixed over a holding period. For example, in
RiskMetrics™ a value-at-risk (VaR) measure is calculated for a static portfolio over
a 1-day holding period under the assumption that changes in the portfolio structure
and/or composition can be neglected and hence daily P&L is entirely driven by
market movements (J. P. Morgan/Reuters 1996).
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In the real world, however, trading losses are a complex product of both
price movements and changes in the portfolio structure.! Traders’ actions require
revising risk estimated after each material change in the portfolio structure and
thus “contaminate” the P&L of a trading desk used in VaR backtesting (Basel
Committee on Banking Supervision 1996, 2006). This problem can be mitigated
for asset managers and, less effectively, for bank trading desks by checking the
results of such “dirty” backtesting, based on theoretical P&L driven only by price
movements against “clear” or “cleaned” backtesting? (Deutsch 2009). In high-
frequency trading, the information value of conventional risk measures, such as
VaR, tends to expire, as the holding period may barely exceed a time interval
between consequent price movements. For shorter holding periods, traders’ actions
come to the forefront as a distinct risk factor, which needs to be understood and
managed. Controlling traders’ activity by enforcing position and risk limits should,
therefore, be viewed as a primary risk management tool that complements hedging
strategies and economic capital.

2 Trading Strategy as a ‘“‘Shadow” Part of Market Risk

When considering the contribution of a trading strategy to the overall risk of the
position, we need to examine what determines a trader’s attitude to risk. Admittedly,
traders have a greater participation in the upside than in the downside of their trades
(Allen 2003). This means that a typical trader’s compensation resembles a payoff
on a longcall option with bonuses linked to profit which are potentially unlimited,
while the financial share a trader bears in losses is capped at his salary and any
deferred payments. Some of the highest disclosed traders’ compensations are a
good illustration of the upside potential, for example; Driss Ben-Brahmin (Goldman
Sachs) reportedly earned about £30 in 2006 (BBC 2004), Brian Hunter (Amaranth)
received over $100 m in 2005 (Petzel 2006), and Adam Levinson (Fortress) was
remunerated with £156 m in 2008 (Antonowicz 2008).

Since vega of a long option position is positive, traders have strong incentives
for risk-loving behavior because it increases their expected payoff. As long as a
profitable trading strategy keeps producing alpha (and, consequently, bonuses for
its owner), traders are reluctant to share the details about their strategies and risks
they are about to take with their peers and risk managers.

I'This viewpoint is consistent with Sharpe’s (1992) decomposition of a mutual fund’s return into
two components: the “style” (i.e. asset-class factors, such as large-cap stocks, growth stocks etc.)
and “selection” (i.e. an uncorrelated residual).

2The “cleaned” P&L is calculated in the same way as the “dirty” P&L, but without taking into
account position changes during the VaR horizon. Paid and received fees and commissions are
omitted from the calculation.
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This information asymmetry is inherent to any financial firm and means that the
risk of individual trading strategies and their undesirable interactions may not be
properly detected and controlled by the firm’s risk managers. This, in turn, enables
rogue traders to take and pile up hidden risks that, if realized, may increase the
trader’s propensity for operational risk, as illustrated by the collapse of Baring’s.

Ironically, losses incurred as a result of rogue risk-taking do not necessarily
mean an end of the trader’s career. Some evidence indicates that the trader’s market
value may be negatively correlated with failures. According to Allen (2001), “Even
firing does not have that large an effect — the tendency is for firms to hire traders
who have had spectacular blowups elsewhere, figuring they’ve learned a lesson (at
someone else’s expense). Nick Leeson going to jail was an aberration (possibly due
to different attitudes in Singapore than in the West).” The years which have passed
since the demise of Baring’s have shown that Mr. Leeson’s case was a precedent
rather than an exception. Since Baring’s collapse, the rogue trader “hall of fame”
has expanded to include Yasuo Hamanaka from Sumitomo (8 years in jail following
a $2.6 bn loss on copper trades in 1996), John Rusnak from the Allied Irish Bank
(7.5 years in jail after $691 m loss on FX options), Brian Hunter from Amaranth
(hedge fund liquidated after a loss of $6.69 bn on natural gas futures), Jérome
Kerviel from Societé Géneral (5 years in jail following a loss of €4.9 bn), and
Kweku Adoboli from UBS (7 years in jail after a loss of $2.3 bn on stock index
futures).? In hindsight, risk management in these institutions should have been held
responsible for failing to prevent these losses.

The trader’s risk appetite can be curbed by means of more symmetrical com-
pensation schemes (e.g. ‘golden cuffs’ and cash bonus clawbacks), internal controls
(e.g. regular audits, phone conversation recording), or even pre-committing traders
to specific loss limits by incentivizing them to share their forecasts with risk
managers4 (Miller 2001). It is more common, however, to limit the risk traders may
take from the top-down rather than bottom-up, by having a trader stick to externally
set limits. A typical market risk limit structure in a financial firm includes various
position limits, P&L (stop-loss) limits, limits on specific risk parameters (e.g. rate
buckets, “the Greeks,” markets, and liquidity), total risk limits (VaR/CVaR limits),
and limits based on stress testing. Now we will consider more closely the interplay
of risk limits, with VaR as a risk measure, and exposure (position) limits.

3 The Role of VaR Limits in Risk Budgeting

In market risk management, limit setting is driven by economic capital allocation,
and is normally conducted from the top-down. Economic capital is viewed as an
internal solvency constraint on a firm’s value-maximization function (Beeck et al.

3Source: Wikipedia.

“Expressed by the formula, “Lack of Identification of Risk + Unexpected Loss = Disciplinary
Action/Dismissal by Business” (Miller 2001).
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1999; Schroeck 2002). More specifically, economic capital serves as a probabilistic
loss bound over a target time horizon and is typically measured by value at risk
(VaR). Within the trading area, economic capital is allocated assuming that market
risk is consistently measurable at all levels.’ Breaching a limit should entail a book
closure and a re-allocation of limits set for other trading desks. The frequency
of capital allocation and, consequently, a limit re-setting, varies from quarterly to
annually (e.g. Johanning 1998; U.S. Bankruptcy Court 2010).

VaR has been used in the industry for setting and managing risk limits since
the 1990s. G-10 regulators have required that banks using the internal models
approach for calculating capital for market risk (Basel Committee on Banking
Supervision 1996, 2006) also employ their VaR models for setting trading limits.°
Thus, integrating a VaR model used for calculating the regulatory capital into the
limit setting process has been considered a necessary requirement of the model use-
test in a bank.

Designing a market risk limit system requires a number of problems to be solved
along both the spatial and temporal dimensions, as shown in Fig. 1. Most research
has been focused on the coherent treatment of risk diversification at all levels of
corporate organizational structure (e.g. Kimball 1998; Kuritzkes et al. 2003). Scarce
literature exists, however, on the interrelated problems of consistent time scaling of
risk limits, adjusting limits for traders’ P&L, and accounting for model risk in limit
setting and management. Progress made in these areas is further reviewed in this
note.

4 Do Risk Limits Add Value?

According to the Wall Street adage, one of the best ways to make money is not
to lose it. The importance of binding and enforceable internal limits has long been
recognized in financial firms, yet not always observed in practice. Five years after
the collapse of the Lehman Brothers, it appears that lax exposure limits could have
been one of the major causes of the firm’s failure (U.S. Bankruptcy Court 2010).
Let us consider an argument about two investment funds presented by Lo (2001).
Fund A has a portfolio with an expected return of 10 % p.a. and an annual volatility
of 75 %. Fund B replicates the portfolio of Fund A, but enforces a stop-loss limit
every time its annual returns fall down to —20 %. Assuming that the portfolio returns
of Fund A follow a log-normal distribution, it can be shown that Fund B would

3 A typical hierarchy within a trading function includes trading books run by trading desks, which,
in turn, are operated by individual traders. The Basel Committee on Banking Supervision has
recently attempted to give a regulatory definition of a trading desk (Basel Committee 2013).

5“The risk measurement system should be used in conjunction with internal trading and exposure
limits. In this regard, trading limits should be related to the bank’s risk measurement model in
a manner that is consistent over time and that is well understood by both traders and senior
management.” (Basel Committee on Banking Supervision 2006, §718(Lxxiv)-f).
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Fig. 1 Divisional and temporal dimensions of setting VaR limits for market risk (Straberger
2002)

exhibit not only a lower volatility of 67 %, but also a higher expected return of
21 %, more than double that of Fund A. Thus, truncating the loss tail of the returns
distribution reduces its variance and skews it towards the positive side. For a normal
distribution with mean y and variance o2, a one-sided truncation at level z (i.e.
enforcing a stop-loss limit) ensures a higher expected value and a lower variance:

E(X‘X>z)=,u+crxk(a)>m,

o? (X‘X > z) — 0% x (18 (@) < o*(X),

where a = (z—p)/o, M) = ¢p(@)/(1 - P(w)), §(a) = M) (M) — ),

¢(-)—the probability density function of the standard normal distribution,
®(-)—the cumulative probability function of the standard normal distribution.

Besides stop-loss limits, truncated distributions appear in other risk management
applications including margin trading (loss tail truncation at a margin call level),
private equity funds (profit tail truncation at an exit level), and hedging (e.g. two-

sided truncation at strike prices in bull/bear spreads).
Focusing on stop-loss limits in our further analysis, let us consider how these

ex-post limits can be embedded into ex-ante exposure limits.



200 A. Lobanov
5 Integrating Stop-Loss Limits into VaR Limits

The idea of accounting for the traders’ P&L over a specific period in the available
exposure limit is developed by Beeck et al. (1999) for a single equity position in
a discrete time. In their model, an annual risk limit is defined for the trader at the
beginning of the year as a yearly VaR of the position. The annual limit is scaled
down to a daily VaR limit with a square-root-of-time scalar, and then translated into
a position limit under the assumption that stock returns are normally distributed with
a zero or a non-zero mean. The authors consider three types of annual VaR limits:
(1) a “fixed” limit, when the trader has the same risk budget and position limit every
day, (2) a “loss-constraining” limit, when realized losses reduce the available annual
VaR limit while profits can increase it back to its initial size, and (3) a “dynamic”
limit, which differs from the stop-loss limit in that there is no cap on the recognition
of realized profits in the annual VaR and the limit may increase above its size at the
beginning of the year (see Table 1).

Based on a simulation study, Beeck et al. (1999) show that the stop-loss limit
is the most conservative option, while the dynamic limit yields the highest profit
potential at the expense of the largest P&L volatility. The results of the study also
indicate that enforcing the risk limits makes the actual confidence level of the yearly
VaR much lower than the one presumed in the VaR model.

Lobanov and Kainova (2005) extend the approach of Beeck et al. (1999) to
include historical simulation for calculating VaR limits. They also propose an
approach to adjusting position limits for model risk based on the results of the
regulatory back-testing (Basel Committee on Banking Supervision 2006) and an
alternative procedure of live-testing.

The methodology developed by Beeck et al. (1999) can be used for managing a
linear position with a single risk factor to ensure a single exposure limit for a given
risk limit. Extending this approach to a portfolio with multiple risk factors leads to
non-unique solutions for the position limit, i.e. the composition of the portfolio.

Other drawbacks of this approach make its use problematic even for a single-
factor position. Stralberger (2002) observes that an annual VaR implies that
positions are fixed for a 1-year horizon, which is unrealistic for proprietary trading.
Scaling an annual limit down to the daily VaR using the square-root-of-time rule
leads to an underestimation of the daily position limit and to severe underutilization
of economic capital.” Alternatively, if scaling is done with a square-root-of-time
remaining to the year-end, this leads to an uneven distribution of limits over the
year.

Finally, the approach by Beeck et al. (1999) appears to be overly conservative,
as the annual VaR will almost never be exceeded by losses if trading is halted after

E.g. a scaled daily risk limit is only 6.25 % of the yearly risk limit with T = 256 trading days.
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the annual risk limit is depleted. In reality, however, the daily position limit is not
always fully utilized by the trader, and the trading book is not necessarily closed till
the year-end after the cumulative loss has surpassed the allocated annual risk limit.

6 Setting VaR Limits Based on Portfolio Insurance
and Quantile Hedging

These drawbacks are addressed in a dynamic model proposed by Straberger
(2002). In this model, the market risk of a stock portfolio® is managed through
VaR limits in a continuous time. The underlying idea is a combination of portfolio
insurance with synthetic put options (Rubinstein and Leland 1981) and “quantile
hedging” (Follmer and Leukert 1999). As in the model by Beeck et al. (1999),
the annual risk limit is defined as a maximum cumulative loss over a year, and is
dynamically adjusted for the trader’s daily P&L. However, the annual risk limit
is translated not into a daily VaR limit, but directly into a daily position limit
using the daily VaR parameters.’ The daily position limit is adjusted using a risk-
aversion scalar (a,) and, by construction, is equal to or smaller than the annual
risk limit. This scalar is a function of the position delta and the standard Black—
Scholes parameters of a synthetic put option used to hedge the portfolio. Using the
notation from Table 1, the algorithm for deriving the daily position limit is shown
in Table 2.

The portfolio insurance is implemented as follows. The stock position is delta-
hedged by a long European-style synthetic put option replicated with a short position
in the stock and a long position in a risk-free asset:

Long stock + Long synthetic put = Net long position in stock
+ Long position in risk-free asset.

The strike price of the put option (i.e. the insurance bound) is set to achieve the
confidence level implied in the VaR model. Delta of the put option is continuously

Table 2 Deriving the position limit for a single-factor position

Limit type | One-year risk limit One-day risk limit | One-day position limit

t
Dynamic | YL, = YLo+ »  AV,—yt1| DL, =a, YL, P — ;ﬁ? (for pu # 0)

t
s=1

8 According to StraBberger (2002), this approach can be extended to a stock portfolio. In our
following discussion, we consider a single position in a stock.

9These are the mean and the standard deviation of portfolio returns, as VaR is calculated using the
variance—covariance approach.
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estimated, and the position is rebalanced accordingly.'? For a European put option,
delta is derived from the Black—Scholes model under an assumption of 7% = 0.5T"

8[ = N (d]) —1,

g In(S;/K)+ (r +0%/2) T*
L ovT* ’

where K € [0; Vo —YL,] is the strike price of the put option.

The risk-aversion scalar is defined as a ratio of the resulting net long position in
stock to the maximum available daily position limit, which is assumed to be fully
utilized by the trader:

TUHS) Vit M, ViN@)+K(I-N(d)

a;

where M; = K(1-N(d,)) is the size of the position in a risk-free asset under the
assumption of a zero risk-free rate;

d2:d1—0' T*.

StraBberger (2002) further improves the model by using a synthetic European
knock-out barrier option, as it ensures a minimum hedging cost (Follmer and
Leukert 1999). The stock position is insured through a synthetic down-and-in put
option with a barrier price U equal e.g. to portfolio initial value. If V, > U, the option
disappears, and its zero delta makes the annual risk limit fully available for the
trader.

In both the models, the algorithm for managing the risk limits over time is the
same as summarized in Table 3.

It can be shown that if the strike price of the put option is set exactly at K =
Vo—YL,, we obtain the same dynamic VaR limit as in Beeck et al. (1999). In the
more conservative case of K < V— YL,, the probability of keeping the position value
above the annual risk limit can be set equal to the VaR confidence level.

Table 3 Continuous management of market risk limits

Scenario Parameters Risk limits

t=0, orP&L, =0 Vo>K; 8, ~0,M;~0,ay~1 YL, =YLy; DL, =YL,
P&L, >0 Vi>Vo, Vi>K; 8, ~0,M,~0,ap~ 1 YL, >YLy; DL, =YL,
P&L, <0 V,<Vy; 8, <0,M;>0,ap<1 YL, <YLy; DL, < YL,

0Delta for a portfolio with long and short positions is calculated for changes in daily position
limits and not in the stock prices.
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Lokareck-Junge et al. (2000) use a Monte-Carlo simulation to estimate the option
strike price K sufficient to insure a stock position at a specified confidence level.
They show that, for instance, for a confidence level of 95 % the strike price of the
put option can be set at 50 % of the difference between the initial position value Vj
and the available annual risk limit YL,, which is approximately equal to 51 % of the
initial value of the position. Obviously, the hedging cost decreases with the strike
price of the put option.

This theoretically appealing marriage of VaR limits and quantile hedging has
many advantages over the management of risk limits in a discrete time. Firstly,
it ensures that the annual risk limit is consistent with the definition of VaR while
making a higher daily risk limit available for the trader. In this approach, the
risk limits are consistently managed over time and the risk aversion of the firm
management is explicitly and promptly reflected in the risk limit. Setting a barrier
price allows for more flexibility in achieving the desired confidence level.

While conceptually attractive, the high-frequency management of risk limits
is problematic in practice due to high transaction costs. Resetting the limits for
complex portfolios becomes prohibitively computer-intensive. In principle, a re-
allocation of all risk limits across the firm from the top down is required after any
material adjustment of the annual risk limit for any single portfolio. Besides, human
issues are likely to emerge, as traders will find it difficult to operate within constantly
changing limits. Finally, this approach is relatively complex for understanding by
senior management compared to more conventional techniques for setting VaR
limits.

Conclusion and Issues for Research

Along with market movements, the actions of traders or trading algorithms are
a distinct risk factor that can be effectively controlled both ex-post, by means
of stop-loss limits, and ex-ante, by enforcing exposure or risk limits. Using
internal VaR models for setting and managing market risk requires a number
of complex problems to be solved, from the allocation of economic capital
across trading desks, which would correctly account for risk diversification,
to deriving daily exposure limits from longer-term risk budgets and making
the exposure limits sensitive to the traders’ P&L.

The overview of some of the theoretical approaches to solving these
problems given in this note calls for empirical evidence. For instance, it would
be interesting to investigate the distribution of a trader’s P&L as a single asset
and decompose it into the “market” and “trader” components.

Another issue that definitely merits more research is modeling the interac-
tion of traders’ P&L at the desk and firm levels. While the Basel Committee
on Banking Supervision (2013) suggests using empirical correlation between
market returns in both the revised approaches (i.e. the internal models and

(continued)
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the standardized ones), the observed correlations of revenue returns between
various product segments may be spectacularly low, as found by Perold (2005)
(Table 4):

Table 4 Correlations between trading revenues of businesses within major product seg-
ments in a major New York investment bank

Interest-rate Equity Foreign exchange Commodity
Interest-rate 1
Equity 0.135 1
Foreign exchange 0.053 —0.111 1
Commodity 0.057 —0.007 —0.002 1

Source: Perold (2005).

The imperfect correlations between traders imply that risk limits may
be systematically underutilized from a firm-wide perspective. This warrants
research into ways of enhancing the utilization of exposure limits given risk
constraints.

In light of the fundamental review of the trading book (Basel Committee on
Banking Supervision 2013), it is worth studying how the expected shortfall as
well as other risk measures (e.g. lower partial moment) can be used for setting
trading limits, though employing the same internal model for purposes other
than calculating regulatory capital charge is no longer proposed by the Basel
Committee.

Ultimately, designing a manageable and incentive-compatible limit system
remains one of the major challenges in market risk management. The recent
cases of huge trading losses in some of the largest banks indicate that more
research is needed into the roots and factors of vulnerabilities in financial
institutions that can hardly be prevented, if not magnified, by technological
advances and regulatory changes.
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Simulating the Synchronizing Behavior
of High-Frequency Trading in Multiple Markets

Benjamin Myers and Austin Gerig

Abstract Nearly one-half of all trades in financial markets are executed by
high-speed autonomous computer programs—a type of trading often called high-
frequency trading (HFT). Although evidence suggests that HFT increases the
efficiency of markets, it is unclear how or why it produces this outcome. Here we
create a simple model to study the impact of HFT on investors who trade similar
securities in different markets. We show that HFT can improve liquidity by allowing
more transactions to take place without adversely affecting pricing or volatility. In
the model, HFT synchronizes the prices of the securities, which allows buyers and
sellers to find one another across markets and increases the likelihood of competitive
orders being filled.

1 Introduction

Financial markets have changed considerably over the last 20 years. During this
time, most exchanges have switched from floor-based to fully electronic trading
where orders can be sent to the market and executed with little or no human
involvement (MacKenzie 2012). As a result, automated trading has flourished. One
particular type of automated trading, known as high-frequency trading (hereafter
HFT), has especially grown in size and importance. HFT exploits short-term price
fluctuations and seeks a small profit per transaction many times throughout the day,
without taking on significant overnight positions. Although difficult to determine
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Fig. 1 Normalized price response of stock i due to stock j # i, for 40 US stocks traded on
NASDAQ, decomposed into the amount due to HFT activity (green), non-HFT activity (blue) and
uncategorized activity (red). Standard errors of the sample means are indicated in the shaded color.
Taken from (Gerig 2012) (Color online)

its true size, most studies estimate that about one-half of all transactions on major
exchanges are due to HFT.!

This study focuses on one particular effect linked to HFT—the synchronizing of
price responses across multiple related securities (Gerig 2012; Gerig and Michayluk
2010). Figure 1 (taken from a recent article) shows this effect. Here, to analyze price
synchronization in more detail, we simulate two markets where an identical security
is traded and compare investor welfare when the prices in these markets are and are
not aligned by the actions of HFT.

In our simulation, investors are modeled in a zero-intelligence framework (Gode
and Sunder 1993; Farmer et al. 2005). This treatment strips out the idiosyncrasies
of individuals’ behavior and assumes only local interactions are of significance—
investors are only interested in meeting their own specific price expectations and
they do not use complex strategies. To consider the effect of HFT, we simulate two
zero-intelligence markets where an identical security is traded and allow HFT to

I'Several research firms provide estimates of HFT activity for subscribers; examples are the TABB
Group, the Aite Group, and Celent. Publicly, this information is available in articles such as “The
fast and the furious”, Feb. 25, 2012, The Economist and “Superfast traders feel the heat as bourses
act”, Mar. 6, 2012, Financial Times.
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connect orders between the two markets when their prices cross. We show that HFT
activity (as defined in the model) increases the probability that a typical investor
entering the market will transact. Furthermore HFT activity reduces volatility so
that prices are closer to their fundamental value.

2 Model

The model simulates the continuous double auction, a market structure common to
most modern exchanges. Traders submit bids and offers to buy and sell respectively
at the best price they are willing to transact at. If prices cross—a bid meets or
exceeds a previous offer, or the converse—a transaction takes place at the earlier
listed price. If an incoming order is unable to transact with any existing orders,
it is placed in the limit order book. This consists of two lists, the bid book and
the ask book which contain the previously unfilled orders on the buy and sell side
respectively.

At each time step in our model, a random order of unit size is generated. Orders
have equal probability of being a buy or sell and are given a price drawn from a
uniform probability distribution with limits 1 and 200. These hard limits on order
prices should not be thought of as boundaries that would exist in real markets, but
instead are assumed for simplicity. In real markets, we would expect participants
to place limit orders according to some humped shaped distribution around the
equilibrium clearing price (which would change through time). For simplicity, we
assume this humped distribution is a uniform distribution with limits and that the
clearing price is constant through time. Using a dynamic clearing price and/or a
different distribution with open limits (such as a Gaussian), although perhaps more
realistic, would not change the main results of the paper.

Orders fill the limit order book until a transaction takes place. When a transaction
occurs, all unfilled orders in the limit order book are cleared and the process of
generating new orders is started again. Figure 2a illustrates this diagrammatically.

The HFT interaction is modeled by running two identical exchanges simultane-
ously. If transactions are unable to take place on either market in a given time step,
but would occur if the two markets were combined, HFT is permitted to transact
between the two markets. Figure 2b illustrates this diagrammatically. We make an
idealized assumption that HFT is perfectly competitive so that their profit is zero.
Therefore, the HFT transactions in the two markets take place at the same price,
which we set to the midpoint between the bid price and offer price of the two orders
in the two markets.

For example, let the bid price on market 1 be denoted by b, and the ask price on
market 2 be denoted by a,, where b; > a,. When HFT transacts with these orders,
the transactions take place at price (b; + a2)/2 in both markets.
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Fig. 2 A diagram of the order book in both scenarios modeled. (a) exhibits the market without
HFT, at time steps with and without a transaction occurring. Note that transactions can only occur
if a bid exceeds an offer. (b) shows the connecting effect HFT. The order book is cleared entirely
after each transaction

3 Results

When buying or selling a security, investors typically are interested in the following
three questions: How likely am I to transact? What price am I likely to receive?
How much does this transaction price vary? We therefore estimate the following
three observables in the model both with and without HFT: (1) the probability that a
submitted order will result in a transaction, (2) the average transaction price of filled
orders, and (3) the volatility of the transaction price of filled orders (the standard
deviation of the transaction price). We run the simulation 100 times for 10000 time
steps both with and without HFT, and we record average values of the relevant
observables. The results are shown in Figs. 3 and 4 and in Table 1, which we discuss
in more detail below.

The model reproduces several empirical findings that have otherwise been diffi-
cult to explain (Hendershott et al. 2011; Hasbrouck and Saar 2013; Brogaard et al.
2013):

1. Transaction prices are more accurate when HFT is present, i.e., they are closer to
the equilibrium value.

2. Volatility is reduced when HFT is present.

3. Liquidity is increased when HFT is present.

The equilibrium price, defined as the intersection of the expected aggregate
supply and demand curve in the simulation, is just the mean of the uniform
distribution of prices, i.e., 100.5. As seen in Table 1, the average transaction price
both with and without HFT converges to the equilibrium value within the 2 standard
error range that defines a 95 % confidence interval. However, the variance around
the equilibrium value is reduced when HFT is added. The reduction in variance is
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Fig. 3 Histogram of transaction prices in the simulation. (a) shows the market without HFT; (b)
shows the market with HFT, including transactions over both exchanges. Note that without HFT
the average transaction price is not observed as often as prices at the extremes

shown in Table 1 and can be seen in the comparison of the histogram of transaction
prices in Fig. 3a,b. As seen in the figure, HFT causes more transactions to occur
near the equilibrium price. This result matches previous empirical studies that have
shown algorithmic trading in general and HFT specifically increases the accuracy
of prices in markets (Brogaard et al. 2013; Hendershott et al. 2011).

Empirical studies have also found that HFT reduces intraday volatility (Has-
brouck and Saar 2013). Our simulation reproduces this result as well (see Fig. 4b).
Because the equilibrium price is constant in the model, any variance in transaction
price can be interpreted as excess volatility. Because HFT reduces the variance of
execution prices, it also reduces the volatility of the market.

The final metric we consider is liquidity. An asset is liquid if “it is more
certainly realizable at short notice without loss” (Keynes 1930). Liquidity can
be defined quantitatively in a number of ways. However, our model accounts for
the requirement of short notice, as orders are canceled if they do not result in a
transaction, and when they do transact, the price must satisfy the reservation price
initially generated. As a result, our measure of liquidity is the number of transactions
that take place per simulation, or the probability that an order transacts. As shown
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Fig. 4 Comparison plots of (a) average transaction price, (b) volatility, (¢) transaction probability,
and (d) volume (number of trades) in the simulation both with and without HFT. Note that the
introduction of HFT has no discernible effect on price, but statistically significant reduction of
volatility, along with an increase in the number of trades and the likelihood of a given order being
filled. Error bars denote 95 % confidence intervals

Table 1 Average of Parameter Base case | HFT

parameters over 100 runs -

of 10000 iterations of the Price 1005 100.5

simulation. Standard (1.38) 0.71)

deviations are shown in Volatility 60.1 47.4

parentheses below the (0.6) 0.4)

average. For the HFT case, Volume 2255 3580

the average is taken over both

markets (33) ©
Probability of Transaction | 0.226 0.358

in Table 1 and Fig. 4c.d, orders are more likely to be filled when HFT activity is
present in our model. Again, this result matches empirical findings (Hasbrouck and
Saar 2013).

Conclusions

In this chapter, we analyzed the effects of high-frequency trading in a simu-
lated environment. With the premise that HFT activity connects orders across
markets, we found that prices are closer to their equilibrium value, volatility
is reduced, and liquidity is increased when HFT is present. These results
suggest that connecting order flow across similar securities is important for
investor welfare, and to the extent that HFT performs this function, it serves
an important purpose in modern financial markets.
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Raising Issues About Impact of High Frequency
Trading on Market Liquidity

Vladimir Naumenko

Abstract The aim of this paper is to consider some problems with evaluation of
the impact of high frequency trading on market liquidity. The first part is devoted to
difficulties of disentangling the impact of high frequency on market liquidity from
other relevant factors. The remainder of the paper is intended to discuss some issues
affecting the evaluation of the influence of high frequency trading on particular
aspects of market liquidity.

Keywords Depth ¢ High frequency trading ¢ Market liquidity ¢ Resiliency ¢
Tightness

Over the last years, high-frequency trading (HFT) has become the object of ever-
increasing attention on the part of market participants and academics as well as
regulators. Plenty of academic studies were devoted to evaluating the impact of HFT
on different aspects of market quality such as liquidity, volatility, and informational
efficiency. It is not surprising that they have different, and sometimes diametrically
opposed views about HFT’s impact on modern financial markets. Despite the fact
that the opinions of experts in the field of financial markets split, the general
background of statements in mass media concerning HFT can be characterized as
negative. In addition, a number of initiatives were proposed by regulators all over the
world in response to changes in the nature of trading in financial instruments, largely
due to the prevalence of HFT (IOSCO 2011). These proposals also require serious
consideration, since their implementation in some cases can lead to far-reaching
consequences for the market quality, while not always clear and definite in advance.

The importance of thorough examination of the matter is confirmed by evidences
that a significant increase in number of trades and quotes attributable to HFT has
occurred over the past 5-10 years in many trading venues. Despite the stabilization
or even a slight decrease in the proportion of HFT in developed capital markets,
there is no doubt that in the near future the impact of this phenomenon on the
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market quality will continue to remain significant. In any case, despite the decline
in market share of HFT, there is no serious rationale to believe that HFT for any
reason will voluntary quit the markets in the coming years, albeit under the above
mentioned negative pressure from the mass media and scrutiny from the regulators.
Moreover, in the less developed trading venues, especially those based in developing
countries, a trend of inflow of HFT traders to markets remains (WFE 2013). In these
circumstances, it is of great importance to study the behavior of trading algorithms
and other things necessary to elaborate procedures in order to encourage positive
behavior and eliminate or at least mitigate possible negative effects.

1 How to Disentangle the Impact of HFT on Market
Liquidity from Other Factors?

There are a number of challenges for evaluation of the influence of HFT on market
quality. First, it is very difficult to disentangle the impact of HFT on the market
quality from other technological and regulatory innovations which led to substantial
changes in the market structure of many trading venues, e.g., decimalization in U.S.
equity markets. Then, it is also difficult to identify HFT traders even if researchers
have access to agent-resolved data, which is extremely rare (Kirilenko et al. 2011;
Hagstromer and Nordén 2013; Benos and Sagade 2012). One explanation suggests
that many traders pursue a variety of strategies which both provide and take liquidity
depending on market conditions. Then, it is possible that a single trading account
represents an omnibus account which may be used by several different agents, e.g.,
in the case of sponsored market access, provided by financial intermediaries to their
clients. Next, much research in this area refers to HFT as a certain homogenous
entity, while there is a multitude of trading strategies that have a different impact
on the market quality. Sometimes this is due to the above-described difficulties in
identifying the HFT traders.

Nevertheless, the positive changes in the market quality are sometimes attributed
to HFT as a whole. In this case, as rightly noticed by Tse et al. (2012), it is
possible that the positive effects of some HFT strategies (e.g., market-making and
statistical arbitrage) outweigh the negative effects produced by other strategies,
thereby masking the negative side effects of HFT on market quality. For instance,
academic studies examining the phenomenon of HFT consider market-making
strategies (Hendershott et al. 2011; Kirilenko et al. 2011), unwittingly spreading
their effects on HFT as a whole. It would be better to consider the impact of
peculiar trading strategies equipped with HFT technology on the market quality.
One can then try to analyze the combined effect of the strategies considered on
market quality. Ideally, one should conduct a comparative analysis of market quality
with and without HFT (Hendershott et al. 2011). Unfortunately, it seems pretty far
from feasibility.
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It is reasonable to pose the question how to determine the impact of HFT
on market quality when at the times of appearance and increasing use of HFT
there were many other significant changes in the market structures which could
not but affect the nature of trading in financial instruments. Even if one finds
correlation between the increase in HFT and improvement (deterioration) in some
market quality, correlation is not necessarily causation. “The challenge is to measure
the incremental effect of HFT beyond other changes in equity markets” (Jones
2013). Ideally, one would like to track changes in the market structure which led
to an increase in the proportion of HFT in the market, for example, autoquote
dissemination on the NYSE in first half of 2003 (Hendershott et al. 2011). Then,
one needs to compare the state of the market before and after the changes have
occurred. It is advisable in this case to establish a causal link between the increase in
the share of HFT and changes in the market structure of some trading venue. What
is really important is what metrics will be used to reflect a certain quality of the
market. Moreover, the task can be complicated by the fact that the metrics often do
not reflect all aspects of some dimension of market quality, especially dealing with
market liquidity. In other words, one needs to be more careful in the conclusions
and not to make hasty statements in the spirit of “post hoc ergo propter hoc”.

“HFT is not a strategy but a technology” (WFE 2013) that facilitates the
implementation of many traditional trading strategies whose effects on the market
quality vary considerably. In other words, the nature of the trading strategies is likely
to determine the effects of HFT on market quality rather than computerization of
these strategies in itself. HFT liquidity providers, in fact, have replaced many of the
traditional market makers which became less effective in highly automated order-
driven markets. It is obvious that the algorithms are better at monitoring market
conditions and adjusting orders than humans, for example, specialists on the NYSE.
According to Biais et al. (2010), the machines are more effective because they
obviously have no problems with limited attention or concentration required for
simultaneously implementing multiple tasks. Undoubtedly, algorithms are much
better at detecting and eliminating arbitrage opportunities, reducing, in fact, their
lifetime to a few milliseconds (Sorkenmaier and Wagener 2011), to be precise, up
to the time delay of the signal (latency) on a given trading platform. Ideally, when
assessing the impact of HFT on market quality, one should not consider HFT as a
whole but focus on individual trading strategies, using HFT technology. At the same
time it would be great to establish whether the use of this high-speed technology
exacerbates the problem generated by the strategy, e.g., market manipulation.
However, there is a problem herein with the fact that myriad of strategies can be
used by market participants, including those who process information on the number
of financial instruments and simultaneously trade on multiple trading venues. Even
having access to the source code and scripts underlying certain trading strategies it
can be difficult to determine their behavior in real markets.

As with any technology, HFT can bring more good than harm, or vice versa.
Ideally, appropriate application of technology can enhance market quality which
significantly reduces liquidity premium and subsequently the firm’s cost of capital.
Therefore, the question of the prohibition looks at least weird and can be even
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viewed as an attempt to stop scientific and technological progress. However, one
should understand how to behave with particular classes of trading strategies using
HFT technology to gain a competitive advantage. In other words, it is necessary
to highlight key points, i.e., a close attention must be paid to particular trading
strategies, while the technology for their application should be considered from
the point of view of the possibility of worsening the market quality. However, it
is clear that disruptive behavior exists and can be reinforced with HFT technology.
Thus, it is important to thoroughly consider these scenarios, stay aware of their
consequences and be ready to eliminate or mitigate their negative effects.

HFT strategies can be divided into “good” and “bad” according to their relation
to the short-term mispricing (Tse et al. 2012). Those strategies that profit from
detecting short-term mispricing and correcting it should be referred to the “good”
strategies that improve the market quality. Strategies that profit from the creation
of short-term mispricing and its subsequent removal may be considered as “bad”
strategies, which have a negative impact on market quality.

2 How to Evaluate the Impact of HFT on Particular Aspects
of Market Liquidity?

In general, market liquidity can be defined as ability to trade when you want to
trade (Harris 2002). To be more specific, a liquid market can be described as a
market where participants can rapidly execute large-volume transactions with a
small impact on prices (BIS 1999). Even the last definition is not precise enough,
since it’s not clear what the following expressions mean: “rapidly execute”, “large-
volume transactions” and ‘“small impact”. In order to somehow evaluate such
elusive characteristic of market quality, Kyle’s approach is usually applied in market
microstructure research (Kyle 1985). Its key idea is to consider separately three
different aspects of market liquidity: tightness, depth, and resiliency. Tightness is
the cost of opening and closing a position over a short period of time. It is well
characterized by the bid-ask spread. Depth denotes the volume of incoming order
required to change the price a given amount or the total amount of orders in limit
order book. Resiliency refers to the speed with which market recovers from a
random, uninformative shock. Next, we consider the impact of HFT on each of
these aspects of market liquidity.

Tightness. High-frequency traders (HFTs) have largely replaced traditional
market makers because they are able to post more competitive quotes, thereby
providing tighter bid-ask spread. In market microstructure research the bid-ask
spread is usually decomposed into three following components: order-processing
costs, asymmetric information costs and inventory-carrying costs (Huang and
Stoll 1997). Technological and regulatory changes gave to these “new” market
makers (Menkveld 2013) an advantage over the traditional ones. Firstly, they can
intermediate trades at lower costs. This is partly from the automation of trading
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process that has brought lower costs comparing with manual execution of trades.
Therefore, they have smaller order-processing component of their bid-ask spread.
However, they obviously have to incur additional costs of developing, testing and
maintaining algorithms as well as make investments in hardware and software to
implement them. Perhaps, there are some economies of scale in this case. Recently,
HFTs most likely had to incur serious start-up costs which were likely reimbursed
afterwards by profits from market-making due to speed advantage over traditional
market makers. It is possible, that this suggestion is supported by researchers’
findings on increases in realized spreads and other measures of liquidity supplier
revenues (Hendershott et al. 2011).

Secondly, due to automation of access to markets they can react more quickly
to any new information about multiple financial instruments. Furthermore, comput-
erized trading strategies have no problems with concentration or tiredness when
monitoring market conditions. So, they can make timely response to a relevant
event, if any. Thus, they reduce their exposure to the risk of being picked off
by informed traders that, in turn, reflects in smaller asymmetric information
component.

Thirdly, HFTs are also more efficient in inventory management due to holding
relatively small positions, keeping them for a very short period of time, not carrying
inventories overnight and having more diversified portfolio because of trading more
financial instruments. Thus, they reduce their exposure to the inventory risk that, in
turn, reflects in smaller inventory-carrying component.

Therefore, all of these effects lead to narrower bid-ask spreads. Many studies
(Angel et al. 2010; Hasbrouck and Saar 2013; Hendershott et al. 2011; Kirilenko
et al. 2011) support the narrowing of bid-ask spreads up to the size of the minimum
price increment (tick). Obviously, it witnesses improving of tightness. It turns out
that market participants, arranging small-volume transactions (i.e., not exceeding
the quoted depth), have benefited as their transaction costs have dramatically
reduced.

Depth. And what has happened with profitability of market participants making
large-volume transactions, i.e., exceeding the quoted depth? It seems that this
question cannot be answered definitely. On the one hand, they also have benefited
from lower bid-ask spreads, thereby reducing the value of their implicit transaction
costs as for the volume not exceeding the quoted depth. On the other hand, some
market participants indicate a decrease in the depth of the market, linking this
phenomenon primarily with a decrease in tick size (e.g., decimalization in U.S.
markets). Under these new conditions it is much easier to rearrange limit orders to
advance in the queue. This process resembles leapfrog, as Larry Harris describes it
(Harris 2002). In this case, implementing front-running strategies becomes cheaper,
since one more tick (i.e., one cent or penny nowadays) does not significantly
increase the costs of execution of trading strategies. It turns out that it makes
little sense to put a large amount of limit orders as faster market participants can
easily stand ahead in order to benefit from this situation (see “quote matching”
for more information on this type of front-running). As a result, many market
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participants reflect their trading intentions less intensively in their limit orders,
thereby increasing the amount of hidden liquidity, hanging over the market.

For the sake of justice it should be noted that before the proliferation of HFT
submission of large-volume limit orders often affected adversely on the financial
performance of their initiators. Thus, they also could become a victim of one of
the front-running strategies. The difference with the past is the following: under the
conditions of small tick sizes in markets pursuing such “parasitic” (Harris 2002)
strategies has become much less expensive, i.e., front-running has become more
feasible. Moreover, some market participants have a priori advantage in speed of
access to the market, which affects the distribution of the balance of power between
the market participants. In other words, without the same technology withstanding
front-running and protecting the value of the embedded option in limit order from
extraction is much more difficult. Submitting a limit order, especially with large
volume, this market participant provides to other traders, in fact, a free option
(Copeland and Galai 1983). In the event that it becomes “in-the-money”, HFT
traders having technological advantages in speed of access to the market will be
able to extract its value faster than the participant will be able to cancel this limit
order. In such circumstances, limit order submission is a luxury. Thus, the displayed
depth of the market likely has most likely deteriorated, but first of all it depends on
the tick size, which determines the profitability of the front-running strategy.

Tightness improvement together with depth deterioration has an ambiguous
effect on the implicit transaction costs of the market participants. On the one hand,
it decreases the value of the bid-ask spread. On the other hand, it increases the costs
of market impact. The final result will depend on the volume distribution between
the components of implicit transaction costs. In order to have a positive result the
additional gain referred to the volume below the quoted depth have to exceed the
additional loss from walking the book. So, the market participant faces trade-off
and needs to choose the volume to balance the bid-ask spread with costs of market
impact.

Market impact depends on the structure of the limit order book, particularly on
the distribution of volumes among price levels and the presence of gaps in the book.
By the wayj, it is possible that the rest of the amount will be executed at prices that
would have been inside the market when compared to the previous bid-ask spread,
or worse just one penny (by reducing the tick size). In general, one needs to evaluate
the entire magnitude of the implicit transaction costs for different levels of volume.
It might be supposed herein that upon reaching a certain level transaction costs will
increase, while remaining at a lower level in the new environment, and then they
will exceed the previous total implicit transaction costs after passing that level.

It should be considered whether such volumes were traded in the past, i.e., before
changes in market structure induced by HFT. Possibly, it wasn’t so feasible. Then,
there is no question herein. Before the era of automated trading block traders used
the services of intermediaries from upstairs market, i.e., the services of so-called
block broker/dealers, or acted in the market through a single or multiple floor
traders, who “quietly work the order”. It seems very plausible that the emergence
of algorithmic trading (especially after the seminal work of Almgren and Chriss
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2000) led to the switch of block traders from over-the-counter markets to organized
markets where securities were primarily listed. In this case, the performance of
block traders would be increased as it became possible to make transactions more
quickly and at lower cost in comparison with those arranged at the discretion of the
floor traders. In this case, there were eliminated any conflicts of interest associated
with the use by floor brokers information about the positions of block traders to
pursue their own interests to the detriment of the interests of their clients which is
the breach of fiduciary duty. Can it be said that some of the increase in the total
volume of trade associated with the appearance of algorithmic trading relates to
institutional investors trading in large volumes (block traders)? Some researchers
share this opinion, e.g., (Jorion 2007). However, the task of identifying block traders
is extremely difficult if one has no access to agent-resolved data, because it requires
integrating the small orders (“‘child” orders) in single “meta-order” (“parent” order).
Although it is possible that in the data there are certain patterns, reflecting a presence
of order-splitting strategy.

However, this has decreased the apparent depth of the limit order book, as shown
above. Perhaps for some market participants it has become more difficult to sell
their volumes, despite lowering bid-ask spreads. It is still necessary to check what
outweighs: gain from narrowing bid-ask spread or losses from the reduction in the
depth of the best available orders. Nevertheless, it is conceivable that most of the
volumes which became relatively more expensive to trade were hardly traded before.
It is possible that some of the volumes were executed for the next several price
levels of limit orders, and now it takes more price levels, i.e., one has to walk deeper
the book. However, the difference between two adjacent levels of ticks has most
likely decreased. How to unravel this tangle: the decimalization led to an increase
in algorithmic trading (it has become easier to rearrange the best limit orders, thus
reducing the value of time priority as an order precedence rule). It is unlikely that
anyone at once traded volumes of more than 5 % of the daily volume, a famous
ad-hoc rule used by traders to determine market liquidity. However, it needs
empirical checking. At the same time there are dark pools which are rather effective
substitutes of upstairs markets. However, trading at dark pools, as a rule, is
not conducted continuously. One might pose the question whether large volumes
participate in the price discovery given that they are directed to the dark pools,
where the price is usually taken from other trading venues. In other words, does
this practice lead to the fact that not all the information is reflected in the price?
Do we need then these dark pools? But in the upstairs markets the usual practice
was almost the same. It would be necessary to compare the two regimes, which is
practically impossible because of the lack of necessary data. Is it worth so worrying
about reducing the depth of the market after all? We compare the current state of
markets with what it was before, or with what we would like to have? Moreover, all
the consequences of this “ideal” world we can hardly evaluate. And then there is the
hidden liquidity, which is simply not reflected in the limit order book (partly also
due to the front-runners), but always ready to join in the action (fundamental buyers
and sellers in the terminology of Kirilenko et al. 2011).
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However, there are studies that claim that the depth of the market has increased
(Angel et al. 2010; Hasbrouck and Saar 2013). Can it be contributed to quote
stuffing, at least partly? Submission and immediate cancellation of orders located
deep inside the book really does not increase the depth of the market, unless the
random order with large volume is executed during the lifetime of this fleeting order.
However, not every methodology for measuring the liquidity of the market will be
able to properly take into account (more precisely, to exclude from consideration)
this effect. Most likely, the market depth metrics, taken on various time frames,
would demonstrate an increase in depth even after aggregating.

Resiliency. Even if the depth has decreased, then the slower execution of the
order (implying a splitting of the total order into smaller parts) may reduce market
impact costs subject to a decrease in time of market resiliency. There is evidence
that the algorithmic liquidity providers closely monitor the situation with the
anomalous expansion of the bid-ask spread. In this case HFTs promote liquidity
replenishment due to speed advantage over other market participants (Brogaard
2010). Furthermore, this effect can even be used to detect HFTs, i.e., detecting who
submit limit orders (which tighten the bid-ask spread) immediately after execution
of market or marketable limit orders which led to widening of the bid-ask spread.

However, under certain conditions (e.g., during the Flash Crash large amounts
were systematically dumped to one side of the market) liquidity providers become
liquidity takers (Kirilenko et al. 2011). It can be brought about by pursuing their
intentions to keep the level of inventory in the area of the preset target which
leads to a further increase in the bid-ask spreads and a sharp price movement in
an unfavorable direction. Put forward the assumption that up to a certain level
of the bid-ask spread new liquidity providers contribute to the resiliency of the
market, and above this level there comes a realization of systemic risk. So, liquidity
providers face another trade-off. However, under normal market conditions the time
of resiliency likely decreases considerably, thus compensating to a certain extent the
decrease of the market depth.

Thus, under these new conditions order-splitting has become even more mean-
ingful. For those who want to immediately sell significant volumes there are
different dark pools. Rather, in terms of fragmented liquidity there will be some
combination of rational order splitting and the use of dark pools. The answer to
the question what and when to use will depend on the current market conditions, the
rules of engagement into dark pools and pricing rules. Moreover, in order to improve
the efficiency of this strategy one needs to split the block not only in time but also
in space (across different trading venues) using smart order routing technology.

Thus, market microstructure theory identifies several positive and negative
effects on market liquidity which could be produced by HFTs. Ultimately, deter-
mining net effect is an empirical question given that methodological choices are
reasonable enough to reflect multi-faceted nature of market liquidity.
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Application of Copula Models for Modeling
One-Dimensional Time Series

Vadim Onishchenko and Henry Penikas

Abstract This paper proposes method of detecting a structural break/shift in
time series such as AR(1) with a nonlinear dependence structure of lagged value
and the estimation of the break point, based on nonparametric estimations of
the dependence’s copulas and comparison with some existing tests. However, we
assumed the time series to be stationary and homoscedastic. This paper compares
the efficiency of the standard test, considering only linear autoregressive dependence
nature. A suggested technique is given, some modifications of the evaluation scheme
is offered and a more flexible method of detecting structural break is proposed,
usefulness of our methodology is demonstrated through some applications to a few
macroeconomic and financial time series.

The paper is organized as follows: the first section contains a selective literature
review. The second section describes the generation’s procedure of time series, used
in further calculations. The problem of detection of the structural break with respect
to the nonlinear time series is formulated in the third section. The fourth section
contains results of evaluations using simulated data. In Sect. 5 we provide examples
of our suggested technique. The final section contains “Conclusions”.

Keywords Copula ¢ Nonlinear time series * Nonparametric estimation of
copula ¢ Structural break

1 Literature Review

Modern papers about economics and finance are increasingly using dependence
modeling with copulas. This approach has advantages of taking account of nonlinear
dependence structure. Moreover, unlike many other common dependence measures
(for example, Pearson’s correlation coefficient), the copula model is applicable
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when fat tails of distributions are observed, which lead to large values of fourth
moments that conflicts with the Gaussian character of distributions. Moreover
copulas provide a certain flexibility, allowing for model joint distribution of real
values separately from marginals.

Formally, a copula is defined as a function on the n-dimensional unit cube [0; 1]"
with values in segment [0; 1], satisfying further conditions:

—foranyi=1...niscorrectly C(uy,... uj—; , 0, wjgyy ... u)=0 (1)

—foranyi=1...niscorrectly C(1,...1, u; , 1...1) =y 2)

— C is n-increasing function, which means that it’s integral over any parallelepiped
n

contained in n-dimensional unit cube is non-negative: if B = l—[ [xi; yi] C[0;1]"

i=1

then

/ ac (u...,,) > 0. (3)

B

According to Sklar’s theorem (1959), any multivariate distribution function H(x/,

. x)=PX; <x, ... X, <x,) of random vector (X;, ... X,) with marginal
distribution functions F;(x) = P(X; < x), ... F,(x) = P(X,, < Xx) could be considered
asH(xy, ... x,) = C(Fi(x1), ... Fu(x,)), where C—some n-dimensional copula, and
if Fy, ... F, continuous, then copula C is unique.

Common theoretical aspects of applicability copula models to Markov chains
were formulated by Darsow et al. (1992) and extended to the case of Markov chains
of arbitrary order by Ibragimov (2009). In particular, the sufficient and necessary
conditions for the submission of a stationary Markov process of arbitrary order
using the copula have been introduced and have satisfied the Chapman—Kolmogorov
equation. To do this, an operation ¥ over the copulas was determined defined by the
following: if A and B are two copulas of dimensions m and n respectively such that:

A =1,...cup—p =1 vi...vik) =Aw=1,...up—r =1, vi ... w)
=C(V1 Vk), (4)

then the result of operation AB will be (m + n — k)—dimensional copula defined
by the follow formula:

Um—k+1 Uy

aA(uls---Mm—k. Vl---"'k)
AFB (Ui, .. Uppm—k) = / ... / vy...0vk AC (vy...vx)
vy...0vk
0 0
E)B(vl...vk, uerl...uer,,,k)
* vy...0vg dC (vy...vg) C (dV], N dvk)
Ivy...0vk

&)
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Then stochastic process {X,}, e r is the Markov process of order k if and only if for
anyt) <tp < ... tp,n>k, ;€T (i=1 ... n)it’s true that

k k  k
Ctl...t,, = Ctl...tk+1 Cl‘z...tk+2 Cl‘,,_k...t,, (6)

in particular when stationary consequences of random variables is C;, o=

Cogroctipipe VT
If the marginal distributions doesn’t change, then the first order Markov process
{X_ | follows:

G(i;yi—1) =CEFQ); F(yi-1). 7

A general problem of determining the structural shift in using the copula was
illustrated by Brodsky et al. (2009). It has been formulated for some samples {X;

X3, ... Xy} of independent random m-dimensional vectors X; = (x;1, ... X;,) With
cumulative distribution functions V; =V; (x;;, ... x;,). Marginal distributions F
... F,, are not changed. It is assumed that either V|, =V, = ... = Vy, or at some

point of time there is a change in joint distribution function of the components of
vectors X;, which could be defined using a copula. Formally, the problem can be
formulated as follows:

Vi, . xg) = GGI(Fl(xl),...Fm(xm)) ‘ i=1...L

2(F1 (x1) ... Fyy (X)) . i=L+1...N
Then the null hypothesis could be stated as Hp: G; = G, against the natural
alternative. In the case of rejection of the null hypothesis, we must construct the
estimation L of the structural break point. For this, the estimations of empirical
dependence’s copulas between x; ... x; are builtatany time L =1 ... N—1 based
on all observations before the anticipated structural shift and after:

efore 1 L L
DI @)= £ 3 1 (UL <) =Zi=l]_[:'f=11 Uy <uj)

1 N N m
N_L Zi=L+ll Uin-1L = u):Zi=L+ll—[j=ll (Ujn—r <uj)
©)

DY, () =

where U; . =(Uj1.1, ... U ) andforanyj=1,2 ... m

L k(i .
Uij,L:L—_HFj,L(xij):ran (XU)/L+1, i=1,...L

L k (xii .
Ujr = py e () =™ (xv)/N_L+1,1=L+1,...N (10)
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Then the following Kolmogorov—Smirnov statistic is constructed based on two
empirical copulas:

Viv-1 @ = (D} W = DY, @) « VEN =D [ an

L
and we find its maximum and point of maximum:

Tnx = maxigni<L<[(1-p)N] tSup,abs (W n—r (0))} (12)

iy = argmaxigy)<p <i—pyn) 5up,abs (Yr n—r (1))} (13)

If the statistic value Ty exceeded critical value, then it is interpreted as the presence
of a structural break, the estimation of which is value 7iy. Some properties of
this estimator have been identified, namely an exponential decrease in probabilities
of type I and type II errors with increasing sample size, assuming independence
of sample s (random vectors X;) and permanence marginal distribution functions.
Moreover, critical values have been calculated for Clayton and Gumbel copulas
with some identical parameters and a few lengths of samples using the Monte Carlo
method with 500 replications.

In the third part of this paper we describe the method of detecting a structural
break according to nonlinear time series like AR(1). Moreover, a modified Cramér—
von Mises statistic is proposed, with a changed coefficient by calculating ¥y 1(u)
in (11). In that formulation, a copula-based structural break detection method has
already been used by Penikas (2012) on an example of the U.S. quarterly GDP
from 1947 to 2012. A dependence was identified and showed statistical significance
of non-linear dependence only with the first lag. Next, a proposed copula test
revealed the presence of a structural break in 1980, in what could be interpreted
as a consequence of the oil crisis serving as an external shock. The Andrews—Zivot
test pointed to significantly earlier dates, reasonable interpretation of which is quite
difficult.

A previously proposed parametric estimation method using the empirical copula
is not only possible—the use of kernel estimates copula, according to Omelka et al.
(2009) is one of the natural ways to expand this work.

Azam (2012) proposed using a Bayesian approach, which extends this method
to the case of discrete marginal distributions. This survey is not exhaustive due
to the rapid popularity of the use of copula models in many modern problems
of economics, statistics and actuarial mathematics, including the analysis of time
series.
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2 Generation of Time Series

This section describes how to generate a time series such as AR(1) with non-linear
structure of dependence, defined by using a two-dimensional copula C(u, v). The
series is stationary, but the procedure can be easily generalized to non-stationary
series. Thus, let u = F(x;), v =F(x;_ ). According to (5) the joint distribution of the
time series is as follows:

F(x1,x2...x7) = C(x1,%2) C(x2,x3)" ... C(x7—2, x7-1)'C (x7—1,x7)  (14)

Let known realization x,. Joint distribution x, and x,4+; are settings per copula
C(F(x;+1), F(x;)) =C(u, v) where the denoted u =F(x;+ ), v="F(x;). Then con-
ditional distribution x; 4 | is set as

0C (F (x1+1), v)

aC (u, v
xt) = # v=F(x;) = T v=F(x;) (15)

C (Xr+1 e

It is worth noting we can take advantage of copulas’ remarkable property that
allows us to model the joint distribution of C(u;, ... ux) separately from
the marginal Fi(x;), ... Fi(xx), and move from observations x; ... x; to
pseudo-observations—probabilities, obtained by marginal distribution functions
uy =Fi(x1), ... we =Fi(xp).

Thus, the process of generation is constructed as follows:

1. First observation x; generates from marginal distribution F(x).

2. For current observation of the time series, x; derives a pseudo-observation with
marginal distribution function: v* = F(x;).

3. Then it obtains a conditional distribution function with a conditional copula:
G(u) = C(ulv) = X5 s

4. Generate number o from uniform distribution on segment [0,1]

5. Then we find solution u* of equation G(u|v)=oa. For this next procedure,
sequentially enumerated values 0, 0.1, 0.2 ... 0.9. We find the number 8; such,
that G(81) —a <0 and G(B;+0.1) —a > 0. Further, sequentially enumerated
values 81, 81 +0.01, 81 +0.02, ... B1+0.09 find such f,, that G(8,) —a <0
and G(B2 + 0.01) —a >0 and so on. Thus, you could easily find a solution of
G(u|v) = a up to any number of digits after the decimal point.

6. Knowing the value of u*, we restore the value of time series with the quantile
function F(x): x; 4 = F~ '(u*).

It is worth nothing that if we generate the entire time series at once, we
could not recalculate every observation and pseudo-observation. If we only work
with pseudo-observations, then the first observation is generated from a uniform
distribution in [0, 1], and then we use only steps (3)—(5), then we use the quantile
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function to find the number of observations. Moreover, this procedure could be
easily generalized to arbitrary dimension k, generating a pseudo-observation of the
conditional distribution function

1 (u, vi - i
G(u)=C(u‘vl..Vk_1) = avl(" V(;Vk lvk ) (16)

For generating the time series we can use six types of copulas: Clayton, Frank,
Gumbel, independent, Farlie-Gumbel-Morgenstern (FGM) and Plackett. The
first three are Archimedean copulas: they satisfy a certain analogy between the
axiom of Archimedes (for any positive numbers a and b could find natural
number n, in that n*a>b); for any u and v from [0;1] we could find natural
number n, in that M7 (u)>v where operation M{(t) is defined as follows via
Archimedean copula C: for any k M"CH(t):C(t, M"C(t)). Functionally, the
Archimedean copula have the function generator ¢(t) and are of the form C(u

cu)=¢ () + ... + @(uw)). The fourth copula is an independent copula
or product copula; it is the simplest example and specifies independent distribution
of random variables, i.e. their joint distribution is the precise product of the
partial distribution functions. The last two copula can’t be assigned to any of
the conventional classes. Farlie—-Gumbel-Morgenstern (FGM) copula, is often used
to model the random variables with small absolute values of the rank correlation.
Plackett copula is also often used in applied research. Every copula (except product)
is characterized by parameter 6, which takes values from some range of admissible
values. Each value of the parameter 0 corresponds to a specific value of rank
correlation, but not necessarily to each value of the rank correlation that corresponds
to a parameter 6 of range of admissible values. In the two-dimensional case,
Spearman’s pho and Kendall’s tau are expressed through copula C(u, v) = C(F(x),
G(y)) = H(x, y) as follows:

ps (X, y) = 12// (C (u, v) —u*v)dudv 17
05117

x (X, y) = 4// C (u, v)dC (u, v) — 1. (18)
[0;1)%

The annex contains the formulas of used copulas for two-dimensional cases,
the formulas of conditional copulas (for Archimedean copulas-specified generator
functions) and ranges of admissible values for parameters. It also contains some
examples of generated time series for the above copulas and scatter plots of
dependence between pseudo-observation and lagged pseudo-observation.
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3 Problem Statement

Following Brodsky et al. (2009), the problem of structural break detection could be
formulated through nonparametric estimation of copulas applied to time series. In
contrast to the original paper, this approach was stated for structural break detection
in time series; the hypothesis about independence of multidimensional vectors of
observations is not proven.

Let us look at a batch of observations of time series x| ... xy. Assuming
time series of the form AR(m) with nonlinear dependence structure of previous
observations, in any time of moment t=m+41 ... N, it can be assumed that
dependence from lagged values is defined through some continuous (m+ 1)-
dimensional copula C,(x;;x;—1; ... X;—pn). The problem of determining structural
break is that hypothesis Hy: C, = ... = Cy about the permanence of dependence

*
copulais true against alternative H;: Cr1 = =Ck=C

Cxy1=--=Cy=C™
In the case of rejecting the null hypothesis, it’s required to find a consistent
estimation K of the structural break moment.

The proposed technique is based on estimation in every moment of existing
dependence before and after the suspected moment, and if the difference between
the dependences is large enough, we could identify changing of dependence
copula in this moment of time. For estimation, the nonparametric method is used.
Nonparametric methods are based either on estimation of empirical copula or kernel
estimations (Penikas 2010). We construct an empirical copula at first estimates
marginal distribution functions for x;, L(x;), ... L™(x;) where L = lag operator, or

{0} o

where C* # C*",

em 1 N—m+s
FSP(X)ZN_mZizs_H I(x; <x), s=0,1...m (19)

Where I(A)—indicator of event A. Then we found estimations of pseudo-
observations:

X = F™ (x;), i=s+1,s+2..N-m+s;s=0,1,...m. (20)

Omelka et al. (2009) used Monte Carlo modeling to show that it’s better to use
asymptotically equivalent estimations:

N —
m F (x;), i=s+1,s+2.. N—-m+s;s=0,1,...m,

Xy = —————
N—-m+1"°
2D

in which small shifts move pseudo-observations to zero and works better on finite
samples. Thus N-m (m + 1)-dimensional observations of current and m lagged
values are derived, the dependence between which is assumed to be defined through
the corresponding (m + 1)-dimensional copula.
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It is worth noting that in this stage of derived empirical marginal distribution
functions F¢{"™(x), the stationary condition could be checked by comparing any
two obtained functions with two-sample test (Kolmogorov—Smirnov, Cramér—von
Mises, Anderson—Darling, chi-squared).

Further, for every time of moment L=m+1 ... N estimates of empirical
copulas are based before and after an anticipated moment of break:

L—m L—m+1 L
before 1
Cc;- uy,...u :—E E E I (uo > Xxo;
L ( 05 m) T—m =1 =2 im=m—+1 ( 0 — Ol())
x1 (“l z-xlil)*"'*](“m zxmim)

(22)

Cafer . N—m N—m+1 N / -
” Uug, ... U :—E E E Up > Xo;
L (uo m) = §r io=L—m+14—iy=L—m+2 im=L+1 (o 0io)
*1 (M1 > Xl,'l) keeek [ (Mm > xmim)
(23)

Copula evaluations may also be used depending on nuclear and evaluation. Then
Ch9°" and ¢ will be smooth multidimensional functions, weakly converging to
the true distributions.

A measure of difference between copulas Co7” and C#*" could be applied via
modified Kolmogorov—Smirnov statistic as suggested by Brodsky et al. (2009) and
used by Penikas (2012). At each time moment L=m+ 1 ... N following function
is constructed:

Wy (o, . . . tpy) = abs {Cfef”’e (o . . . tm) — C (u ... um)} «W(L), (24)

where W(L)—special correction factor, depending on proximity of the L. moment
to the middle of the sample of observations.
Then as a measure of value of statistic it’s accepted that:

Tks = maxpepvp) {sup(uowum)e[o;l]m+1 (WL (uo, . . um))} , (25)
and as a estimation of break moment
Kgs = argmaxp e g(y.g) (s"‘p(u(),...u,,,)e[o;1]"’+‘ (¥ (up, ... um))) , (26)

where B(N, B)—set of moments of time m 4 1 ... N not including share 8 of first
values and (1 — ) of last values: (N, 8) =m+ [B*(N-m-1)]+ 1, m + [8*(N-m-
D]I+2, ... N=[B*(N-m-1)] —2, N— [B*(N-m-1)] — 1. Due to the small quantity
of observations in estimation, one of the empirical copulas could have obtained
unlikely statistic values. In this approach, the difference between multidimensional
functions is determined by the maximal value of difference between copulas over
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all points of the (m 4 1)-dimensional unit cube and over all observations, except for
some shares from two ends of the sample.

In (Brodsky et al. 2009) they suggested W(L) = VL —m) s (N — L)/N —m
however the results of the next chapter convince, that more accurate results are
obtained, using the square of the coefficient: W(L) = (L —m) * (N —L)/(N — m)>2.
For convenience, in the denominator you can use the first degree. It will not affect
the assessment of the time shift, and will only increase the value of the statistics at
the time of L and the critical value of the statistic, which will be discussed later.

Moreover, we can use the difference between copulas, integrated over the unit
cube. The obtained modified statistic (modified Cramér—von Mises statistic) will be
expressed as follows:

TCM = MAaxpeB(N.p) {// +1lIIL (uo,...um) duodum} (27)
o;1]"

Key = argmaxpepy p) // Uy (uo, ... upm)dug. .. dum), (28)
[0;1]m+l

For every L finding maximum ¥ (ug, ... u,) and integration is carried out
numerically on grid with mesh size Q for each of the axes, i.e. with nodes of type

(iO/Q; ’m/Q),io, e in=0,1,... Q.

4 The Results of Evaluation on Generated Data

A suggested method of detecting and estimation of structural breaks in a time series
was used on a generated time series with a specified pattern of dependence.

For analysis we can use six types of copulas, described in Table 1. Dependence
from lagged value was generated at different levels, corresponding to Kendall’s rank
correlations —0.8, —0.6, —0.4, —0.2, 0, 0.2, 0.4, 0.6, 0.8. Since not all copulas can
describe all of the above levels of dependence, we only used 34 copulas.

Table 1 Generated copulas Copula | Value of rank correlation

Clayton | —0.8, —0.6, —0.4, —0.2, 0.2, 0.4, 0.6, 0.8
Frank —0.8, —0.6, —0.4, —0.2,0.2, 0.4, 0.6, 0.8
Gumbel |0,0.2,04,0.6,0.8

Product | 0

FGM —0.2,0,0.2

Plackett | —0.8, —0.6, —0.4, —0.2, 0, 0.2, 0.4, 0.6, 0.8
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For a fixed length of time series N = 1,000 and for every three parameters
of moment of structural break 6§ =0.3, § =0.5, § =0.7 where 6 = m/N, m-

observation, in which structural break occurs, we generated a time series for
all possible pairs of copulas from the 34 described above. In total we turned
3*%34%34 =3,468 various time series. In 3*34 =102 of them, the copula before
structural break are the same as after, i.e. there is no structural break. In 3*74 =222,
rank correlation changed without changing of copula. In 3¥210 = 630, rank correla-
tion didn’t changed but copula changed. In 3*838 = 2,514 changing occurred both
in rank correlation and copula. For every time series we calculated the suggested
statistics of Kolmogorov—Smirnov and Cramér—von Mises and Andrews—Zivot test
(all three modifications). For nonlinear statistics, values were found on a uniform
grid of a unit square of dimension of 50 at 50 nodes.

The Andrews—Zivot test, in general, did not lead to accurate results. The null
hypothesis of this unit root test (which means rejection structural break existence)
was not rejected only in two of 3,468 cases. In other time series tests, statistics have
pointed to existence of a structural break in the beginning or end of the sample, and
this result didn’t depend on whether or at what point there was a structural break.
Regardless, it is the specification of a structural shift test (in trend, intercept, or
both).

In Fig. 1, histograms of Andrews—Zivot statistic maximum’s distribution are
introduced (for every moment of break (in 300-th, 500-th and 700-th observation
of 1,000) and every specification of the test).

For nonlinear copula-based tests, the same trend of large quantity of false signals
about the structural break in both ends of sample are observed only with small
enough changes in rank correlation, and more for Kolmogorov—Smirnov statistic.
Overall, the Cramér—von Mises statistic gives more acceptable results. With the
Kolmogorov—Smirnov statistic, the anomaly of high values in edges occurs more
often. Using a grid with larger number of nodes decreases this effect, but doesn’t

Anrews-Zivot test (trend), break point at 300 Anrews-Zivot test (trend), break point at 500 Anrews-Zivot test (trend), break point at 700
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Fig. 1 Andrews—Zivot test results
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eliminate it, so the values of statistics have been adjusted for otherwise than
suggested by Brodsky et al. (2009). The correction factor equals the squared original
factor, which means more weight for values from the middle of sample.

This a reasonable compromise: decreasing the probability of receiving false
signals about structural breaks at the edges, thereby decreasing the chance to
determine if an actual shift occurred in the same place. Due to the small number
of observations, the statistic will show significantly less accurate approximations
of real dependence. Moreover, in time series without structural breaks, the large
values in the beginning or end of the row also have been observed, so the statistic’s
maximum in that range couldn’t be interpreted as an indicator of structural break
for small changes in rank correlation.

As an example, maximum’s histograms of Kolmogorov—Smirnov and Cramér—
von Mises statistic for structural breaks in the 700th observation and different rank
correlation changes are introduced in Figs. 2 and 3. The statistics do not count large
values in the first and last 5 % of observations.

Critical values in absolute scale for different pairs of copulas differ slightly,
which lets us calculate critical values as corresponding quantiles of the statistic’s
values sample in all different points of time and all possible combinations of copulas
before and after the structural break. Values are calculated for different levels in
rank correlation changes, and applied in time series generation: there are only 9
values from O to 1.6 increments by 0.2. Additionally, some calculations have been
performed by the same scheme for time series of length N =250 and N =500
observations. We traced the same character of revealed results, and concluded that
with equal change in rank correlation, the statistic value is bigger as a rule if there is
a change in copula. Critical values were calculated separately for observations with
and without change in copula for significance levels of 90, 95 and 99 %. Obtained
critical values were larger than found by Brodsky et al. (2009) approximately two
to three times. This explains the considerable difference in the problem statement,
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because now the components of the multi-dimensional vectors of observations are
not independent.

These values reveal one interesting fact: for almost all levels of rank correlation,
change corresponds to a bigger critical value, but for zero this value is large enough.

Thus, the model procedure of structural break detecting is as follows: first,
determine the maximal value of the test statistic and corresponding observation.
Then estimate the difference between Kendall’s tau of current and lagged values
before and after the suspected moment of structural. According to the critical value
of the nearest rank correlation change from the critical values tables and for given
significance level, we can make a decision about existence of structural break. If
the critical value is exceeded, the moment of the statistic’s maximum is taken as a
estimation of structural break point.

5 Examples of Using the Test

It is worth noting that, in general, the result may significantly affect the use of data in
levels or differences, since levels and differences often correspond to different levels
of rank correlation. In both the examples below, the data is used in absolute increases
of what is displayed on the relevant charts. Also, during computation, abnormally
high values in the beginning or end of the series are not noticed, allowing us to use
the same weight for observation as in Brodsky et al. (2009) or Penikas (2012).
Following Penikas (2012), the test statistic has been applied to determine the
structural shift to quarterly observations of U.S. GDP in the first quarter of 1947
to the second quarter of 2012. There are a total of 262 observations and 261
observations for differences. Tests were made for time series in differences (absolute
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Fig. 4 Copula-Based tests: GDPUSA

increases). In Fig. 4, we present the graphs and Kolmogorov—Smirnov and Cramér—
von Mises statistics.

We can see that the two statistics vary in results: Kolmogorov—Smirnov statistic
takes the maximum value of 0.2546 in 150th observation, which corresponds
to the second quarter of 1982. Kendall’s rank correlations between current and
lagged observation before and after 150th observation are respectively 0.290 and
0.251; Cramér—von Mises’ statistic takes the maximum value of 0.01794 at 173th
observation 173, which corresponds to the first quarter of 1990; with corresponding
rank correlations 0.278 and 0.243. Two statistics give different results, showing the
same behavior. Changes in rank correlation at the supposed structural break points
are 0.039 and 0.035 respectively. Therefore, to detect structural break, critical values
for length N =250 and zero change in rank correlation should be applied. After
comparing obtained values with the table’s critical numbers, we could ascertain
existence of a structural break with or without change in copula at significance levels
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Fig. 5 Copula-Based tests: S&P 500

of 10 and 5 %, but at significance level of 1 %, structural breaks are not revealed
(however, estimations of structural break’s moments are different for two statistics).

The test procedure was also applied to 823 observations of the S&P 500 stock
index, based on market capitalization of the 500 largest public companies traded in
USA stock markets.

Data represents weekly closing values of index from the 17th of August, 1995
to 30th of May, 2011 (source: http://finance.yahoo.com/). Results are presented in
Fig. 5.

Both statistics attain the maximum at the 244th observation (0.07623 and
0.010328 respectively for Kolmogorov—Smirnov and Cramér—von Mises), which
corresponds to the 24th of April, 2000. Rank correlations of current and lagged
values before and after the 244th observation are —0.1216 and —0.0317; difference
is 0.0899, which corresponds to zero change in rank correlation. Critical values
for N = 1,000 were used, and results of the test procedure do not reveal existence
of a structural break for this observations of time series for all statistics and all
significance levels, whether or not the copula changes. That corresponds with the
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findings of Patton (2012), whose method also didn’t detect a structural break in the
same data, thus assuming that the structural break’s moment is unknown (we used
the test for structural break in rank correlation, based on a parametric bootstrap).

Conclusions

The main contribution of this paper is the formulation and simulation study
of the use of a method of structural break detection in the time series, based
on nonparametric estimates of a dependence copula of the time series. This
study found that in the case of non-linearity of the structure of dependence,
our approach gives more reliable results—in contrast to the tests on the
structural changes that involve only linear dependence on lagged values.
This work made some corrections to the calculation of statistics. It is shown
that the accuracy of the method depends on the amount of change of rank
correlation with structural changes, as well as the change or non-change of the
copula depending upon the structural shift. We formulated a general algorithm
for the detection procedure of the structural shift based on the results, and
also provided examples of using this algorithm. Further work can be done
on a number of extensions, including a generalization of structural change
regarding the marginal distribution of the time series, using a broader class of
marginal distributions and copula, and using alternative assessment methods
copula. This could include other types of non-parametric estimates and the
Bayesian approach, using the Monte Carlo Markov chain method.
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Modeling Demand for Mortgage Loans Using
Loan-Level Data

Evgeniy Ozhegov

Abstract This paper is concerned with modeling the demand for mortgage loans.
The demand for loans can be represented as two functions: probability of borrowing
and the loan amount, depending on borrower-specific characteristics, contract terms
and set of macrovariables. The decision-making process for borrowing can be
described as the sequence of decisions on: (1) choosing the credit program; (2)
approving of a borrower; (3) choosing contract terms from a feasible set; (4) and
loan performance. The author proposes an econometric approach that deals with
endogeneity and self-selection of borrowers when estimating the demand-for-loan
equations and specifies the structure of data that is required for implementation.

Keywords Demand for loans * Endogeneity * Sample selection

JEL Classification C31, D12, D14, G21

1 Introduction and Literature Review

Demand for loans in general, and for mortgage loans in particular, is the function
of the probability of a credit contract agreement and of credit contract terms based
on characteristics of the borrower, the goal of crediting, expected loan performance
and some macroeconomic variables.

Econometric estimation of parameters of these functions face inconsistency
driven by endogeneity and sample selection. Endogeneity is generated by simul-
taneity in borrower and credit organization decisions on explanatory variables in
demand equations. A sample selection arises when the decision-making process
of borrowing is made sequentially and some explanatory variables are partially
observed in different stages of crediting.

However, these challenges in estimation process have not been addressed by
recent papers that studied the crediting process. Mortgage borrowing as a sequence
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of consumer and bank decisions was introduced by Follain (1990). He defines the
borrowing process as a choice of how much to borrow (the Loan-To-Value ratio
decision), if and when to refinance or default (the termination decision), and the
choice of mortgage instrument itself (the contract decision). Rachlis and Yezer
(1993) then suggested a system of four simultaneous equations for mortgage lending
analysis: (1) borrower’s application, (2) borrower’s selection of mortgage terms, (3)
lender’s endorsement, and (4) borrower’s payment according contract or default.

Phillips and Yezer (1996) compared the estimation results of the single-equation
approach with those of the bivariate probit model. They showed that discrimination
estimation is biased if the lender’s rejection decision is decoupled from the
borrower’s self-selection of loan programs, or if the lender’s underwriting decision
is decoupled from the borrower’s refusal decision.

Ross (2000) studied the link between loan approval and loan default and found
that most of the approval equation parameters have the opposite sign, compared with
the same from the default equation after correction for the sample selection.

Previous models that tackled sample selection bias in lending analysis are not
appropriate to estimate the loan amount or LTV ratio. The probit model of Ross
(2000) and bivariate probit model used by Philips et al. (1994) and Philips and Yezer
(1996) are suitable for estimating a binary outcome. The following papers studied
the dependence of the decision on loan amount as well as different endogenous
variables on the exogenous ones.

Ambrose et al. (2004) constructed a simultaneous equation system of LTV and
house value, which is used as a proxy for loan amount to account for endogeneity.
Bocian et al. (2008) used three-stage Least Squares for the simultaneous decisions
on pricing and credit rating and found empirical evidence that non-white borrowers
are more likely to receive higher-priced subprime credit than similar white borrow-
ers. Zhang (2010) investigated the sample selection bias and interaction between
pricing and underwriting decisions using the standard Heckman model.

Other literature on mortgage choice has focused on the optimal mortgage
contract, given uncertainty about future house prices, household income, risk
preferences, and, in some papers, mobility risk. Leece (2001) found the choice
between ARM and FRM in the UK market dependent on the expected level of rates.
Thus, with sustainable low interest rates, a household intends to lock into a FRM. In
order to construct consistent and unbiased estimates, he used a linear additive model
with time-dependent explanation variables.

Campbell and Cocco (2003) examine household choice between FRM and ARM
in an environment with uncertain inflation, borrowing constraints, and income and
mobility risk. They demonstrate that an ARM is generally attractive, but less so for
a risk-averse household with a large mortgage, risky income, high default cost, or
low probability of moving. Coulibaly and Li (2009), using survey data, also found
evidence that borrowers who were more risk-averse, with risky income and low
probability of future move prefer fixed rate mortgage contracts.

Forthowski et al. (2011) studied the demand for mortgage loans from the point
of choosing an ARM versus FRM as a function of expected mobility. They find that,
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with all else equal, those who choose ARM estimate their probability of moving in
the future as relatively high.

Firestone et al. (2007) analyzed the prepayment behavior of low- and moderate-
income (LMI) borrowers. Using the data containing the performance of 1.3 million
loans originated from 1993 to 1997 they found that lower-income borrowers
prepay more slowly than with higher income and this results are stable over
time. Courchane (2007) studied differences in pricing for different ethnicities after
controlling for other pricing and underwriting parameters. LaCour-Little (2007)
also focused on the question of choosing a credit program among LMI borrowers.
Using the loan level data from only one financial organization, he founds that
LMI borrowers are more likely to choose Federal Housing Administration-insured
mortgage programs and special programs that assumed less down payments and
higher scores of expected risks due to high levels of current debt or weaker credit
history. He also found that nonprime loans were preferred for those borrowers who
are time-limited in providing full documentation.

Some recent papers discussed the theoretical framework of optimal mortgage
contraction. For instance, Nichols et al. (2005) showed that rejection rates vary
directly with interest rates in the mortgage market and inversely in the personal
loan market. Theoretically they demonstrated that the discrete levels of mortgage
credit supply and the positive relationship between interest and rejection rates arise
from a separating equilibrium in the mortgage market. This separation does rely
on the simple observation that processing an application through the underwriting
process is costly, and is only partially covered by the application fee. When a
subprime lender tries to locate too closely (in credit risk space) to prime lenders,
the application costs overwhelm credit losses to the point where it is less costly
to lower credit standards and accept a higher proportion of applicants. Equilibrium
requires that the subprime lender move a substantial distance from prime lenders,
thus leading to a discrete and segmented mortgage market of those borrowers who
may apply for prime mortgages and for those who apply for subprime mortgages.

Ghent (2011) discussed the dynamic demand for mortgage loans and steady state
equilibrium for borrowers with hyperbolic, compared to exponential, discounting,
and the preference of such borrowers on the set of traditional fully amortizing
mortgages and no-down-payment mortgages. The main findings of this paper was
that young households and retirees are more likely to choose NDP mortgages that
arise when those households behave hyperbolically and the age of borrower also
explains decision-making process.

Piskorski and Tchistyi (2010, 2011) follow DeMarzo and Sannikov (2006)
and pose the theoretical model of choosing the optimal mortgage contract that
maximizes both lender’s and borrower’s combined surplus. These papers provide a
prediction of higher default rates for adjusted rate mortgages when the interest rate
increases but shows that, nevertheless, ARM is an optimal mechanism for mortgage
contraction.

Karlan and Zinman (2009) found a different method to solve the endogeneity
problem when modeling the loan amount equation. They generated a truly random
sample of credit proposals by sending letters to former borrowers. Using a simple
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Heckman model, they estimated the elasticities of demand for consumer credits to
maturity and interest rates for different risk types of borrowers.

Attanasio et al. (2008) introduced a more progressive approach of managing the
sample selection problem when modeling the empirical demand for a loan equation.
They studied the existence of credit constraints in different income segments.
Using loan-level data of car loans, they found that low-income households have
positive elasticity of demand for car loans on the maturity and zero reaction of
demand to interest rate change. This means that those households have credit
constraints. Attanasio et al. (2008) used a three-stage estimation methodology. At
the first stage, they estimated the participance equation. At the second stage, the
endogenous variables equations were estimated by semi-parametric regression with
correction for self-selection. Then endogenous variables in the demand equation
were replaced by fitted values and the parameters were estimated also by semi-
parametric regression. The only motivation of using semiparametric regression is
that the error terms of the loan amount, endogenous variables error terms and error
term from the participation equation are correlated in a non-linear way.

The main contribution of this paper is construction of a structural and econo-
metric model that can provide consistent estimates of the demand-for-loan function,
using loan-level individual data.

2 Structural and Econometric Model

Demand-for-mortgage function can be represented by the following equation:
ImL=8.D+4+y,C+6F+vY P+ u.M+ep (1)

where L is usually the loan amount (or LTV ratio), D are socio-demographic
characteristics of borrower, C are the contract terms, F are specific variables
that describe property, P are contract performance characteristics, and M are
macroeconomic and financial variables. All of them can be divided as endogenous
and exogenous ones, as described in Table 1.

The borrowing process can be represented by the following sequence of deci-
sions:

1. Application of borrower. Potential borrower realizes the necessity of borrowing,
chooses the credit organization and credit program that match her preferences,
and fills out an application form with demographic characteristics.

2. Approval of borrower. Considering the application form and recent credit history,
the credit organization endorses the application or not, inquires about the form
data and set the limit of loan amount when endorsed.

3. Choice of credit terms. The approved borrower makes a choice on contract
agreement and, when agreed, on property to buy and credit terms from a feasible
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Table 1 Explanatory variables in demand equation

Variables

Contract terms

Socio-demographic
characteristics

Desired property

Loan performance

Macro- and financial
variables

Endogenous for
borrower

Down payment;
maturity; annual
payment; date of
contract agreement;
program choice
(ARM/FRM,
prime/nonprime,
conventional/spe-
cial/FHA programs);
self-selection for
participation in
mortgage

Number of
co-borrowers;
aggregated income of
co-borrowers;
aggregated expenses
of co-borrowers;
income of borrower;
providing of full
documentation

Value

Month of first
delinquency; date of
first delinquency; flag
of delinquencys;
default, refinancing,
prepayment

Endogenous for
credit organization
Loan limit; program
parameters
(minimum down
payment, maximum
maturity)

Probability of
creditworthness
(FICO score of
riskiness); flag of
endorsement

245

Exogenous

Program parameters
(interest rate,
insurance,
Government
Subsidied
Enterprises); cost of
application

Expenses of
borrower; age;
number of children;
marriage status; level
of education;
parameters of job;
nationality/race;
expected mobility;
recent credit history

Specification the
property
Loss given default

Yield on treasury
notes; refinancing
rate; volatility of
interest rate;
unemployment rate;
volume of new
construction

set: approved loan amount, down payment, annual payment, rate and maturity
determined by the credit program.

4. Loan performance. Borrower chooses the strategy of loan payment: to pay in
respect to contract terms or to default, prepay or refinance the loan.
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Econometric model repeats the steps of structural one:

1. Using instrumental variables for endogenous demographic characteristics:

D" = ZpBp + ep, (2)
where D" is a vector of endogenous socio-demographic characteristics, Zp are
instrumental variables for demographics.

2. Modeling the probability of application:

L if DB+ MB) +er =

- 3
1 0, if DBL + MB), +e1 < ay, 3)

where y; = 1 is an application decision, D = (D”, l/)\e") is a vector of exogenous
demographics and fitted endogenous demographics, M —macrovariables.

3. Modeling the probability of approval for all applied:

1, if DB}, + MB3 +e2 >y
=1)= D M 4
(yz‘yl ) % 0. if DB + MB?, + e; < a3 ®

where y, = 1 is an approval decision.

4. Choice of loan amount limit for all endorsed:

(Z]y2=1) = DBE + MB; +er 5)

where L is a decision on loan limit.

5. Modeling the probability of contract agreement:

( } _1)_ L if DB} + MB}, + LB+ e3 > a3 ©
3|2 0. if DB + MBY, + LB +e5 < s
where y; = 1 is an agreement decision; L is a fitted value of loan amount limit.
6. Choice of credit terms and property:
-~ Cl C] Cl Cl
(cl‘y3 —1,Ce c) — DBS + MBS + C_BE, + FBS + e,
(N

(Celos = 1€ <€) = DB+ MpS) + Coupl, + BT+ e
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where C = (C;, C_;) is a vector of contract terms (LTV, annual payment, maturity,
interest rate), C is a feasible set of contract terms determined by credit program, F
is property characteristics.

7. Modeling the probability of contract events and loss given credit event:

(valys =1) = j. if DB+ MBYy +ChE +UsBY +es € L

4 R4 ®)
(Uj‘y4 = 1) = M/BM + C/BC —i—eU/

where y4 = is a fact of j-th credit event, C are fitted values of credit terms, U; is a
loss given j-th event.

Conclusion and Discussion

The proposed modelcan take care of endogeneity problem caused by simul-
taneity by instrumenting and fitting endogenous explanatory variables using a
multistage estimation procedure.

Inconsistency of estimates due the sample selection will be released
by introduction and estimation of the bias terms in outcome equations.
Effectiveness of this correction depends on accuracy of assumptions about
distribution of error terms in selection equations. Thus, it is appropriate to
use inverse Mills ratio in outcome equations when selection equation terms
are normally distributed. More general assumptions about the error term
distributions can be achieved through the use of semi-parametric methods for
correction for sample selection bias. But these estimates will be less effective
in terms of standard errors.

Questions could be raised about the rationality of borrower and credit
organizations’ decisions. Sequential estimation procedures like the multivari-
ate probit or multistage Heckman procedure, make no assumptions about
rationality of agents. We use partially observed data in selection equations
to consider lack of borrower’s ability to predict decisions made by her and
the credit organization. Full rationality of agents assumes that a borrower
in every stage of the decision-making process can predict outcomes of next
stages, and this prediction affects her present choice. A model of the fully
rational borrowing process should contain fitted predictions on future out-
comes as explanatory variables in all Egs. (2)—(8) which should be estimated
as a system of simultaneous equations. This strategy is very complex for
estimation purposes because of the discrete and continuous variable equations
compounded by the sample selection problems.
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Sample Selection Bias in Mortgage Market
Credit Risk Modeling

Agatha Lozinskaia

Abstract The mortgage crisis that started in the U.S. in 2007 and lasted until
2009 was characterized by an unusually large number of defaults on the subprime
mortgage market. As a result, it developed into a global economic recession and
placed the stability of the world banking system in jeopardy. Therefore, the issues
of credit risk modeling showed the shortcomings of the current credit risk practice.
Truncation, or partial observability, and simultaneous equations bias causes sample
selection bias. As a result, parameter estimates are biased and inconsistent. Firstly,
we provide an overview of current approaches in the mortgage literature to control
for the sample selection bias correction, such as the Heckman model and bivariate
probit model with selection. Secondly, a review of the most significant mortgage
studies discussing this problem is introduced. Specifically, different structural
models, specific datasets and empirical results are regarded. In addition, we discuss
such key credit risk determinants as borrower characteristics, terms of the mortgage
contract, mortgage characteristics, and macroeconomic conditions. Finally, we
conclude the discussion with possible research questions.

Keywords Credit risk ¢ Default « Mortgage * Sample selection bias

JEL Classification C10, C34, G21

1 Introduction

Different concepts are used to measure credit risk, such as probability of default
(PD); loss given default (LGD); exposure at default (EAD); maturity (M) and
correlated defaults. Default is arguably more relevant to the recent subprime
mortgage market collapse and related spillover effects. During the financial crisis,
almost one out of ten mortgages was delinquent.

Default imposes enormous costs on all market participants. First, there are credit
organizations and the Institute of the Mortgage Insurance Development (Russian
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stock life insurance company “AIGK”). The latter company insures a borrower’s
liability and financial risks of creditors. Second, a defaulted borrower at a minimum
meets the cost of moving and damages the borrower’s credit score, making it
difficult to buy another house and forcing a period of rental occupancy. In addition,
a lower credit score seriously restricts access to credit approval in the near future.
Finally, default is associated with additional psychic costs (Guiso et al. 2009).

Therefore, default modeling is an essential element of a risk management system
in any credit organization. However, the notion of mortgage default has not yet been
incorporated in the Russian legislation.

Usually, estimation results of default are obtained from a single-equation model,
which allows for an important inference about the credit risk and key determinants
of it. Moreover, test discrimination in the credit underwriting process plays a
significant role in the mortgage supply decision. However, such estimates could be
biased and inconsistent due to a sample selection bias. It leads to misunderstanding
and misinterpretation of the obtained results.

In the first section, we analyze some widely used econometric models for credit
underwriting and default processes, and focus on the sample selection bias problem.
The second part reviews mortgage literature that discusses the problems of credit
risk modeling and the sample selection bias. Then we discuss key credit risk
determinants and conclude with main research questions and suggestions for further
empirical work.

2 Econometric Models for Credit Underwriting and Default

Traditional credit risk models on the mortgage market employ a parametric
approach to estimate regression of the default probability. These are classical
binary choice models (probit and logit).

The idea is that we have a regression model:

vi=x/p+e (1)

where

y;.k—a latent variable, which is not observed,
xﬁ—a vector of independent variables,

B—a vector of constant coefficients,
gi—error term.

We observe a dichotomous variable y; defined by

_ | Lif yF >0,

10, otherwise.

Vi @)



Sample Selection Bias in Mortgage Market Credit Risk Modeling 251

In other words, y; is the PD, taking the value 1 or zero. In the process of credit
underwriting y; would be defined as a propensity to receive approval from a credit
organization.

L { 1, if the borrower is defaulted, 3)

0, otherwise.

The probit and logit models differ in the specification of distributional form of
the error term ¢ in (2).
If it is a normal distribution, we have a probit model.

Z: /o
F(Z,) / ! ( [2) dt “4)
t s p B
—0o0
If errors follow logistic distribution, we have a logit model.

__exp(Z)
F(Z) = Trep () &)

The problem of disproportionate sampling occurs in the credit risk modeling.
The number of defaulted borrowers would be much smaller than the number of
non-defaulted ones. However, if we use the logit or the probit model, or even the
liner probability model, the estimated coefficients are not affected by the unequal
sampling rates for two groups. It is only the constant term that is affected (Maddala
1992).

Sometimes, the sample is limited by censoring or truncation. This occurs when
we observe the independent variables for the entire sample, but for some observa-
tions we have only limited information about the dependent variable. Assume the
censored variable y; is defined as

* - *
yi= g e = ®)

Cif ¥ =0,

The error term in (1) is normally distributed &;~N (0, 0?). This model is
known as the tobit model (Tobin’s probit) or a censored normal regression model
(Tobin 1958). Tobin (1958) studied household expenditures on durable goods.
Consumers maximize utility by purchasing durable goods under the constraint that
total expenditures do not exceed income (Long 1997). A similar case is expenditures
on credit products, like a mortgage.

In the case of the truncated regression model, we have no data either yf or x; for
some observations because no samples are drawn if y;k is below or above a certain
level T (Maddala 1992).
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However, all above-listed models suffer from a sample selection bias, leading
to biased estimation. The first reason is the sample selection bias, owing to a
simultaneity bias. This problem arises when default modeling does not take into
consideration the underwriting process. The decision of approval or decline of a
credit application is based on the latter process. Moreover, the truncation or the
partial observability causes this bias. We are faced with this issue when information
about denied applicants is absent. Therefore, the magnitude of bias depends on the
degree of correlation between two processes—the default process and the credit
underwriting process. In addition, data completeness including credit history is
included in the dataset of defaulted and no-defaulted borrowers’ affects on the bias
(Ross 2000).

For a long time, the lack of public available mortgage data obstructed the
implementation of studies on credit risk modeling for the mortgage market. For
this reason, in earlier works small data from private sources of information were
used. Modeling credit risk in the mortgage market with the correction for the sample
selection bias was complicated because of lack of information about both groups
of applicants—approved and declined. Furthermore, to solve the issue of sample
selection bias, the affected factors are required only on the credit underwriting
process, but not on the probability of default in the sample.

The pioneer works of Heckman (1976, 1979) propose the self-selection model,
which has an endogenous discrete variable. It generalizes the tobit and truncated
regression models by explicitly modeling the mechanism that selects observations
as being censored or uncensored (Long 1997).

The aim is to estimate the model:

yi=x/B+e (7

Assume that y;k is observed not when y;k exceeds particular threshold t as in the
tobit and truncated regression models, but based on the value of a second latent
variable zf

*

= wla +u ®)

where

zf—a second latent variable, which is not observed,
wf—a vector of independent variables, which can have x/l variables in common,
o—a vector of constant coefficients,

u;—error term.

For now, we assume that y is observed only when unobserved latent z:.k variable
exceeds a particular threshold t. In a simple case T = (. Otherwise, y is unobserved.

xX[B+ei if >0,
unobserved, if z7 < 0.

Vi = €)
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Actually, we do not observe y. All we observe is a dichotomous variable z with
the value of 1 if z; variable exceeds a particular threshold (put it T=0) and 0
otherwise.

_VLif >0,

1 0, otherwise.

% (10

As aresult, we have a basic selection equation (10) and basic outcome equation
(9). In the literature it is called the Heckman model, sample selection model, tobit II,
or heckit model. In a special case, when y; = z; we have the tobit model. Typically,
we also make the following assumption about the distribution of, and relationship
between, the error terms in (9) and (10) equations:

& ~N (0, 0?) (11)
ui ~N (0, 1) (12)
corr (8;,U;) = Pey (13)

In other words, Egs. (11)—(13) show that we assume a bivariate normal distri-
bution with zero means and correlation p,,. The sample selection bias problem
arises when estimating P in the Eq. (7) if error terms &; and u; are correlated. The
conditional mean equals

E (yily,- =is observed) =F (yiizl’." > 0) =F (J’iiZi = 1) —

:E[xi/ﬁ+si|w{a+ui >0] :xl-/,B—FE[s,-’wi/a—}—u,- >O] = (14)

xi/,B +E [si|ui > —w{a]

If the errors terms &; and u; are independent, then the last term in (14) simplifies
to E[g;] = 0 means ¢ equals 0 and OLS regression of y on x in (7) will give consistent
estimates of B. However, any correlation between the two errors means that we need
to obtain E[g;|u; > — wga] when &; and u; are correlated.

Using derivations similar to the tobit model, Greene (2003) noted that

—w
up > —wi/a] = poA; ( W’a) (15)

E [Si

u

(16)
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where
Ai—Heckman’s \ or the inverse Mill’s ratio.

Thus, the conditional mean in the Heckman model is:

E (Yi

yi =1is observed) =F (yi

z;.">0) :xi/,B+E[8i u; >—wi/oc]
w{u
¢( a) (17)

(%)
(D O{LI
The widely used way to estimate the Heckman model (7)-(13) is Heckman’s

two-step procedure. It involves first estimating the probit model in Eq. (10) and
computing Heckman’s A

—wa
=x,-//3+pcrski( a )=x5ﬁ+pas

NAY ¢<Wf/&)
QO

1

where

¢ (w/ (/)\()—the standard normal density,

i
A . . .
d (wl/ a)—the cumulative density function.
AN
and then estimating the regression of y on x and A. The coefficient on the A

indicates if there is sample selection bias. As a result, estimators are consistent
and asymptotically normal. Alternatively, an MLE version is used to estimate a
Heckman model. However, this procedure is less robust than the two-step procedure
and it is sometimes difficult to get it to converge, but it will be more efficient
(Wooldridge 2002).

Technically, the Heckman model is identified when the same independent vari-
ables in the selection equation (10) appear in the outcome equation (9). However,
to avoid issues with identification (multicollinearity and imprecise estimates), we
nearly always want at least one independent variable that appears in the selection
equation but does not appear in the outcome equation (i.e., we need a variable that
affects selection, but not the outcome).

The example of using a Heckman model could be the case when we model
different parameters of the credit contract. However, we observe them only for
clients who receive approval. It means that the selection equation is a decision of
the underwriting process, and the outcome equation is a parameter of the credit
contract—like the loan-to-value ratio or the loan amount, the maturity, or the
contract rate.

The Heckman model is useful when the outcome equation involves a continuous
dependent variable. However, when we are interested in a case where the outcome
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equation involves a dichotomous dependent variable, a bivariate probit model with
selection (BVP with sample selection) or double probit model is used.

The simplest way is to start a bivariate probit model (BVP). The basic idea is that
we have two decisions that are interrelated, such as a borrower’s default decision
and lender’s decision in the credit underwriting process. We have two unobservable
variables y| and y, related to two binary dependent variables y; and y,.

yi=xi1p1 + e (19)

V; =X2B2 + & (20)
L if yf >0,

= : 21

N %O,ifyI‘EO. @D
L if y; >0,

= : 22

% {O,ify5‘50. 22)

In a bivariate probit model, we have two separate probit models with correlated
disturbances €; and &;. We typically assume that the errors are independent and
identically distributed as a standard bivariate normal with correlation p.

E (sl‘xl,xz) =F (sz}xl,xz) =0 (23)
Var (sl‘xl,xz) = Var (82))61,)62) =1 24)
corr(g1,8) = p (25)

If the errors between the two probit models are independent of one other i.e.
p =0, then we can just estimate the two probit models separately. In this case