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1

APPLIED MACROECONOMETRICS. AN INTRODUCTION

1.1 Introduction

Once upon a time there was consensus both on the theoretical foundations of
macroeconomics and on the correct approach to macroeconometric modelling
(see, for example, Pesaran-Smith [7]). Such consensus, which was built around
the “Cowles Commission” approach to model building, broke down dramatically
at the beginning of the seventies when it was discovered that “...the models
did not represent the data...did not represent the theory... were ineflective for
practical purposes of forecasting and policy...”. The breakdown of consensus has
been rather spectacular, but, as Faust and Whiteman ([23]) put it “... even more
impressive are the deep rifts that have emerged over the proper way to tease
empirical facts from macroeconomic data...”

This book has the ambitious aim of discussing and illustrating the different
approaches currently taken by the profession in doing applied macroeconomet-
rics. We concentrate on the (large) subset of macroeconometrics dealing with
time-series data. It is fair to say that the emergence of the deep rifts on the
proper way to tease empirical facts from macroeconomic data has been paired
with a deep awareness of the specificity of time-series data. We shall discuss
the emergence of a plurality of approaches in macroeconomic modelling, within
the framework provided by the statistical analysis of time series data. We begin
our work with this introductory chapter, which reviews the basic in economet-
rics, describes the interaction between theory and data in applied work, and
illustrates the importance of using time series instead of cross-section data in
macroeconometrics.

1.2 From theory to data: the new-classical growth model.

Consider the Solow model of growth! This model takes as given the saving rate
s, the rate of growth of population n, while technology, A, grows at a constant
rate g. There are two inputs: capital, K,and labour, L, paid their respective
marginal productivity. Output, Y, is determined by a Cobb-Douglas function
with constant returns to scale:

Y, = K& (ALy)' ™" 0<a<l1 (1.1)

1The original reference is Solow ([9]). The data and the empirical analysis of this chapter
replicate the results reported in Mankiw, Romer and Weil ([6]). For an excellent introduction
to macroeconomic models of growth see Farmer ([1]).
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Li=L; 1(1+n) (1.2)

A :At71(1—|—g) (13)

Note that the number of effective unit of labour grows (approximately) at
the rate (n+g). The model is built by considering the production function
together with two accounting identities and an ad hoc relation between savings
and output. The two accounting identities are:

St :It (14)

Kt:Kt,1 (1—5)—'—]15 (15)

where I, denotes investment, S,denotes savings and § represents the rate of
depreciation of the capital stock K. (1.4) makes immediately clear that we are
considering a closed economy with no government sector.

The relationship between output and saving is determined by assuming a
constant marginal propensity to save s:

S

— = 1.6

5o (16)
We define as k and y respectively the stock of capital per effective unit of

labour (K/AL) and the level of output per effective unit of labour (Y/AL). By

using all the equations in the model we have:

ke (14+n) (14 9) = iy (1— 8) + sk (1.7)

Equation (1.7) determines the pattern over time of the stock of capital per
effective unit of labour. From this relation we can pin down the steady state
value of k, by setting &* = k;1; for each i:

1

pe(— )7 (1.8)
S \ndg+6 '

(1.8) makes clear that the steady state k is positively related to the sav-
ing rate and negatively related to the rate of growth of population, the rate of
technological progress and the rate of depreciation of capital.



FROM THEORY TO DATA: THE NEW-CLASSICAL GROWTH MODEL. 9

By substituting (1.8) in the production function and taking logarithms we
can derive the per capita steady state output as :

Y*
1n<Ltt>:1nA0+gt+1fa1n(s)_1fa1n(n+g+5) (1.9)

(1.8) makes very specific predictions on the impact on output of the saving
rate and the rate of depreciation of capital, the rate of technological progress
and the rate of depreciation of capital.

It is natural at this stage to raise a question on the empirical support to
such well specified predictions. Mankiw, Romer and Weil ([6]) choose to test
the model on data from a cross-section of countries. Such data are available
in a database constructed by Summers-Heston (1988), which contains series on
real output, private and government consumption, investment and population
for virtually all countries in the world, excluding planned economies. The data
are available at annual frequencies. Mankiw,Romer and Weil concentrate on the
variables of interest for the period 1960-1985. The rate of growth of population,
n, is measured by the average rate of growth of population in working age (15-
64 years old). The rate of savings, s, is measured by the ratio of investment to
GNP. n and s are averages for the period 1960-1985. y is measured by the log of
GDP per working age person in 1985. (g + §) is not directly observable and it is
assumed constant at a value of 0.05. We concentrate on a sample of 75 countries
labelled Intermediate by Mankiw, Romer and Weil and obtained considering
non-oil producers countries with population higher than one million in 1960 and
reliable data, thus excluding from the sample oil producers (as the bulk of GDP
for such countries is not value added but extraction of existing resources), small
countries and countries with low-quality data (receiving a grade of ”D” from
Summers and Heston). The data are contained, in EXCEL format, in the file
MRW XLS.

Now we have data and we have (1.9), which makes specific, theory-based pre-
dictions, on the relations between variables in our data set, the natural question
is how we test empirically the Solow model?

The first point to note is that there is no stochastic structure in (1.9).
Mankiw, Romer and Weil add a stochastic structure to the data by ignoring
the difference between Y and Y * and by concentrating on the term A. In fact A
reflects not only the state of technology but also other factors, such as natural
resources, climate, institutions, therefore the following specification is adopted

for A :
Indg =a+¢;

where @ is a constant and &; represents a country-specific shock. (1.9) be-
comes Now:
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[0

Iny; = In Ao + gt + In(n; +g+46)+e (1.10)

In(s;) —
11—« n(s) l—«

which forms the basis for the empirical investigation.

1.3 The estimation problem: Ordinary Least Squares

The basis for the empirical test of the predictions of the Solow’s growth model is
the estimation of (1.10) . Consider the estimation of the following model on our
sample of 75 countries:

Iny; = By + By In(s8;) + By In(n; + g + 6) + <. (1.11)

If the Solow model describes correctly the data, then the parameter 3, should
capture the term In Ay + g¢f, which is a constant of the cross-section of data,
while 8, should be equal to %= and (3, should instead take the value of —3=-.
Therefore, independent information on factor shares could be used to assess the
magnitude of the estimated coefficient: Mankiw,Romer and Weil claim that data
on factor shares suggest one-third as a plausible value for o and therefore the
elasticities of y; with respect to s; and (n; + ¢ + &) should be respectively 0.5
and -0.5. Moreover, under the null of the validity of the Solow model, we have a
testable restrictions on the parameters, namely 8, = —f,.

To illustrate how estimation can be performed, consider the following general
representation of our model:

y=XB+¢
hn T11 T12 - - T1k
y = ;o X =
YN ZIN1IN2 -- TNk
61 €1
8= €=
ﬁ.k 5;\!

In our case N = 75, k = 3, the vector y contains 75 observations on per
capita GDP while matrix X is (75 x 3). Note that the first column of X is made
entirely of ones, the second column contains observations on
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In (s;), while the third one contains observations on In (n; + g + 8) . The vec-
tor B contains three parameters: a constant and the two elasticities of interest
in our economic problem.

The simplest method to derive estimates of the parameters of interest is
the Ordinary Least Squares (OLS) method. Such method chooses values for
the unknown parameter to minimize, in some sense, the magnitude of the non-
observable components. Define the following quantity:

e(B)=y—-Xg

where e (8) is a (n x 1) vector . If we treat X3, as a (conditional) prediction
for y, then we can consider e (3) as a forecasting error. The sum of the squared
errors is then

S(B)=e(B) e(B)

OLS produces an estimator of 3, ,@, defined as follows:

S (E) — Bmine (8)' e (B)

Given ,@, we can define an associated vector of residual € as

€=y —Xp. The OLS estimator can be derived by considering the necessary
and sufficient conditions for 3 to be a unique minimum for S :

i) X'e€=0

ii) rank(X) = k

Condition i) imposes orthogonality between the right-hand side variables on
the OLS residuals, and ensures that the residual have an average of zero when a
constant is included among the right-hand side variables (the regressors). Con-
dition ii) requires that the columns of the X matrix are linearly independent: no
variable in X can be expressed as a linear combination of the other variables in
X.

From i) we can derive an expression for the OLS estimates:

X=X (y _ Xfa) — X'y —X'XB=0
B=(XX) "Xy
1.3.1 Properties of the OLS estimates

We have derived the OLS estimator without any assumption on the statistical
structure of the data. In fact the statistical structure of the data is not needed
to derive the estimator but to define its properties. To illustrate such properties
we refer to the basic concepts of mean and variance of vector variables.
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Given a generic vector of variables, x

1

Ln

we define the mean vector F (x) and the mean matrix of outer products
E (xx') as follows:

.’IJ% L1 . . 1Ly
Ty . .X2Tn

E(23) E(x122) .. F(2174)

n

The variance-covariance matrix of x is the defined as follows:

var (x) = B (x—F (x)) E (x—E (x)) =
=FE((xx') - F(x)E(x)

Note that the variance-covariance matrix is symmetric and positive definite,
by construction. In fact, given an arbitrary A vector of dimension n, we have :

var (A'x) = Alvar (x) A

The first relevant hypothesis for the derivation of the statistical properties
of OLS regards the relationship between disturbances and regressors in the esti-
mated equation. This hypothesis is constructed two parts: first it is assumed that
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E (y; | x;) = %}, this rules out the contemporaneous correlation between residu-
als and regressors (it is therefore valid if there are not omitted variables correlated
with the regressors), second it is assumed that the components of the available
sample are independently drawn. The second part of this assumption guaran-
tees the equivalence between E (y; | x;) = xi8 and E(y; | X1, --.X;, ...Xp) = X}0.
Using vector notation we have

E(y|X)=X8

which can be written equivalently as

E(e|X)=0 (1.12)

Note that hypothesis (2.6) is very demanding. In fact, it implies that

E(e | x1,..%i,..%,) =0 (i=1,..n)

The conditional mean is in general a non-linear function of (x1,...x;,...X,),
(2.6) requires that such function is a constant of zero. Note that (2.6) requires
that each regressor is orthogonal not only to the error term associated to the
same observation (F (z5¢;) = 0 for all k) but also to the error tem associated to
each other observations (I (xjze;) = 0 for all j # k). This statement is proofed
by using the properties of conditional expectations.

Given that (e | X) = 0 implies, by the Law of Iterated Fxpectations, that
E () =0, we have

E(éi |.’,Ujk):E[E(€i |X) |$Jk]:0 (113)

Then
B (eiwjn) = EE (eitjn | Tjr)] (1.14)
=0 (1.16)

In the context of the Solow model (2.6) requires that s and n are independent
from €. Of course, such hypothesis is not going to hold in any time-series models
when the time-series show some degree of persistence (in practice, always). Think
of the simplest time-series model for a generic variable y :

Yy = Qo + 01Yr—1 + Uy

It is clear that if a; # O, then, although it is true that E(u; | y;—1) = 0,
E(u;_1 | ¥:—1) # 0 and (2.6)is destroyed, without any omitted variable problem.
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This explains why we have used a cross-section example in our introductory
chapter, we shall then complicate the framework to deal properly with time-series
observations.

The second hypothesis defines constancy of the conditional variance of shocks:

E(ee| X) =0l (1.17)
where 02 is a constant independent from X.
The third hypothesis is the one, already introduced, which guarantees that
the OLS estimator can be derived:

rank (X) =k (1.18)

Under hypotheses (2.6) — (1.18) we can derive the properties of the OLS
estimator.

Property 1: unbiasedness

The conditional expectation (with respect to X) of the OLS estimates is the
vector of unknown parameters 3 :

B=(X'X) "X (XB+e)
= B+ (X'X) ' X'e
E(B|X) =8+ (X'X) ' X'E (] X)
=g
by hypothesis (2.6) .

Property 2: variance of OLS
The conditional variance of the OLS estimator is o2 (X’X)71

var (,@ | X) <<,6 ,8) | X)
—E ((X’X) X'ee'X (X'X) ! )
= (X'X) 'X'E (ee' | X)X (X'X) "
= (X'X) ' X0 IxX (X'X) "
=2(X'X) !
Property 3: Gauss-Markov theorem
The OLS estimator is the most efficient in the class of linear unbiased esti-

mators.
Consider the class of linear estimators:
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Br =Ly

This class is defined by the set of matrices (kzn) L, which are fixed when
conditioning upon X. L does not depend on y.Therefore we have:

E(B;|X)=F(LX8+Le | X)
=LXg3
and LX8 = 8 only if LX = I). Such condition is obviously satisfied by the
OLS estimator, which is obtained by setting L = (X’X)71 X'. The variance of

the general estimator in the class of linear unbiased estimators is readily obtained
as:

var (B | X) = E (Lee'L’ | X)
= o?LL.
To show that the OLS estimator is the most efficient within this class we
have to show that the variance of the OLS estimator differ from the variance of

the generic estimator in the class by to a positive semi-definite matrix.
To this aim define D = L— (X’X)71 X'; LX = I requires DX = 0.

LL = ((x’x)*1 X'+ D) (X (X'X) '+ D’)
= (X'X) ' X'X(X'X) "+ (X'X) 'X'D' +
+DX (X'X)" ' + DD’
= (X'X) '+ DD’

from which we have that

var (B, | X) = var (,@ | X) +0’DD’

which proves the point; in fact for any given matrix D, not necessarily square,
the symmetric matrix DD’ is positive semidefinite.

1.4 OLS estimation of the Solow growth model

The results of the application of OLS to the Solow growth model are reported in
Table 1. We report point estimates along with standard errors (square roots of
the elements in the principal diagonal of the variance-covariance matrix of the
OLS estimates). The Table is based on a regression run by using F£- Views and
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exactly replicates the results in Table 1 of Mankiw, Romer and Weil (1992, p.
414).

TABLE 1: The estimation of the Solow model

Variable Coefficient Std. Error t-ratio Prob.
C 5.367698 1.540082  3.485333 0.0008
ln(s) 1.325353 0.170611  7.768281 0.0000

In(n+g¢g+6) -2.013390 0.532830 -3.778672 0.0003

R-squared 0.601703 S.E. of regression 0.609456

In(s) : log of savings rate (defined as LNS in MRW.XLS)

In(n + g + 6) :log of 0.05+ rate of growth of population
(defined as LNNGD in MRW .XLS)

Some consideration on these results are in order.

First, we have specified a model by deriving it directly from the theory and
we have estimated it to derive empirical evidence on the validity of the model’s
prediction. In the light of the adoption of this specific strategy for research, the
residual of the estimated model could be informative in that they reflect the
impact of all variables omitted from the chosen specification. The analysis of
residuals could be revealing on the mis-specification of the estimated model.

Second, the coeflicients have the expected sign but the restriction implied by
the theory are not exactly satisfied. In fact, the absolute values of the point es-
timates of the two elasticities are different, and their magnitude does not match
available information on the capital-output ratio. MRW observe that the empir-
ical observation of a capital-output ratio of about one third is consistent with
an elasticity of the pro-capita output with respect to the saving rate of about
0.5 and elasticity of the pro-capita output with respect to (n + g + §) of about
—0.5. The natural question which raises at this point is related to the nature
of estimated parameters. Given that they are random variable, it seems obvious
to try and derive their distribution in order to test statistically hypothesis of
economic interest. An interesting general hypothesis regards the significance of
the estimated coeflicients, while more specific hypothesis are of interest in testing
the prediction of the theory (in our case 3, = —3,, 3, = 0.5, 3, = —0.5).

1.5 Residual analysis

Consider the following representation:

t=y-Xp
—y - X(X'X) 'X'y =My

where M = I,,—Q, and Q = X (X'X) ' X’. The (n x n) matrices M and Q,
have the following properties:
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i) they are symmetric: M'= M, Q'= Q;

ii) they are idempotent: QQ = Q, MM = M;

i) MX =0,MQ =0,QX = X.

Note that the OLS projection for y can be written as y = X,@ = Qy, note
also that € = My, from which we have the known result of orthogonality between
the OLS residuals and regressors. We also have

My = MX3 + Me = Mg, given that MX = 0. Therefore we have a very
well specified relation between the OLS residuals and the errors in the model
‘€ = Me, which cannot be used to derive the errors given the residuals as the M
matrix is not invertible.

We can re-write the sum of squared residuals as:

S (,@) =¢'€ = ¢€M'Me = ¢ Me

S (,@) is an obvious candidate for the construction of an estimate for o2. To

derive an estimate of 0% from S (,@) the concept of trace is useful. The trace of a
square matrix is the sum of all elements on its principal diagonal. The following
properties are relevant:

i) given any two square matrices A and B,tr (A + B) = trA + {rB;

ii) given any two matrices A and B,tr (AB) =tr (BA);

iii) the rank of an idempotent matrix is equal to its trace.

By using property ii) together with the fact that a scalar coincides with its
trace we have :

€'Me =ir (¢’ Me) = tr (Mee')

Now we can analyze the expected value of S (,@) ,conditional upon X:

£(5(B) 1X) = B (Mee' | X)

= trk& (Mee' | X)
=trM (Fee' | X)
= o*trM

but, by using properties i) and ii), we have:

M = trL,—tr (X (x'x) ! X’)
= n—tr (X’X (X’X)*l)
=n—=k

Therefore an unbiased estimate of 02 is given by S (,@) /(n—k).
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This results allows the construction of the standard errors for the estimated
OLS parameters reported in the second column of Table 1.

Using the result of orthogonality between the OLS projections and the OLS
residuals we can write:

var (y) = var (¥) +var (€)

from which we can derive the following, residual based, indicator of goodness

of fit:

o var(y) _ war (e)
= var (y) L var (y)

The information contained in the R? is to be associated with the information
contained in the standard error of the regression, which is the squared root of
the estimated variance of OLS residuals. Note that, when a model is estimated
in logarithms, the standard error of the regression does not depend on the unit
of measures in which the variables are expressed. In fact, we have:

€=log(y) —log(y)

:10g<¥> :10g<1—|—y:y> :y:y
y y y

When the models are not specified in logs, standard errors are usually in-
tepreted by dividing them by the mean of the dependent variable.

1.6 Elements of distribution theory

We consider the distribution of a generic n-dimensional vector x, together
with the derived distribution of the vector y = ¢ (x) which admits inverse x =
h(y),withh = g~ 1. If prob(z; < z < 23) = f;f f(z)dz,and prob(y; <y < ys) =

yyf I* (y) dy, then

Ohy Oh.,
dy1 T A
where J = | ... ... ... | = ‘88—;,‘,
Ohy Oh.,
Oyn =" Oyn

1.6.1 The normal distribution

The standardized normal univariate has the following distribution:
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= e (4)

E(2) =0,var(z)=1

By considering the transformation x = o2z + i, we derive the distribution of
the univariate normal as:

B (2) = p,var (2) = 02

Consider now the vector z = (21,22...2 ) , such that

flz)=i= 1ﬁf () = (27) % exp <—%z’z>

z is ,by construction, a vector of normal independent variables with zero mean
and identity variance-covariance matrix. The conventional notation is z ~ N (0, I,) .
Consider now the following linear transformation

x=Az+p

where A is an (nzn)invertible matrix. We consider the following transforma-
tion z = A~1 (x — ) with Jacobian J = |A’1| = ﬁ. By applying the formula
for the transformation of variable, we have:

£00.=(2m) % A~ oxp (5 =)/ A VA (x ))

which, by defining the positive definite matrix ¥ = AA’ can be re-written as
follows:

F)=@n %z

ow (- c—w/' s m) (119

The conventional notation for the multivariate normal is x ~ N (g, %). An
useful theorem is related to the multivariate normal:

Theorem 1.1 For anyx ~ N (p,X) given any (mxn) B matric and any (mx1)
vector d,if y = Bx+d, theny ~ N (Bu + d,BXB').
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Consider partitioning a n-variate normal vector in two sub-vector of dimen-
sions 1 and n — ny as follows:

(o)) ()

By applying the above theorem, we obtain the two following results:

i) x; ~ N (g, 211), which is obtained by applying the theorem in the case
d=0,B=(l,, 0);

i) (x1]x2) ~ N (g + 2125855 (X2—ps) , E11 — L12355 Y21) , which is ob-
tained by applying the theorem in the case d = 2122521)(2, B= (Inl — 2122521) .

Results ii) shows clearly that absence of correlation is equivalent to inde-
pendence within the framework of a multivariate normal. This result is justified
by the fact that the normal distribution is entirely described by its first two
moments.

1.6.2 Distributions derived from the normal

Consider z ~ N (0,1,,) , an n-variate standard normal . The distribution of w =
z'z is defined as a x? with n degrees of freedom. Consider now two vectors z;
and zo respectively of dimension 1, and ns with the following distribution:

() -~(6)-(5 )

Then we have wy = ziz; ~ x?(n1), wo = zhze ~ x? (n2), and w; + we =
721 +2522 ~ x? (ny +n2), in general the sum of two independent ? is in itself
distributed as x? with a number of degrees of freedom equal to the sum of the
degrees of freedom of the two x2.

From our discussion of the multivariate normal it follows that if x ~ N (g, 3),
then (x — p)' B (x — p) ~ x? (n).

A related result establish that if z ~ N (0,7,) and M is a symmetric idem-
potent (n x n) matrix of rank r, then z'Mz ~ X2 (r).

Another distribution related to the normal is the F' distribution. The F' dis-
tribution is obtained as the ratio of two independent x? divided by the respective
degrees of freedom. Given w; ~ X% (ny),and ws ~ X2 (n2), we have:

wl/nl
WQ/TLQ

The Student’s ¢ distribution is then defined as follows:

t, =/ F(1,n).

Another useful result establish that two quadratic forms in the standard
multivariate normal, z’Mz and z'Qz, are independent if MQ = 0. We can finally

~ F (ng,mng2).
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state the following theorem, which is fundamental to the statistical inference in
the linear model:

Theorem 1.2 Ifz ~ N (0,1,) with M and Q symmetric and idempotent matri-
ces of respectively of rank r and s and MQ = 0, then we hcwe:ﬁ%% ~F(s,1).

1.7 Inference in the linear regression model

In order to perform inference in the linear regression model a further hypothesis
is needed to specify the distribution of y conditional upon X :

y| X ~N(XB,0%1) (1.20)

or, equivalently

u| X ~N(0,0%]) (1.21)

given (1.20) we can immediately derive the distribution of (,@ | X) which,

being a linear combination of a normal distribution, is also normal:

(E | X) ~N ([3,02 (X’X)*l) . (1.22)

(1.22) constitutes the basis to construct confidence intervals and to perform
hypothesis testing in the linear regression model. Consider the following expres-
sion:

(3 - B),X’X (E - 5) X (X'X) ' X'X(X'X) ! X'u
o2 o2
u'Qu

o2

and, by applying the results derived in the previous section, we know that :

u’'Qu

o2

X~ X2 () (1.23)

(1.23) is not very useful in practice, as we do not know 0?. However, we know
that

s (/@) X wMu
2
o2 =2 | X o x“ (T — k). (1.24)
As MQ = 0, we know the distribution of the ratio of (1.23) to (1.24), more-
over by taking ratio we get rid of the unknown term o2 :
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A-8)xX'X(8-
Bo)XX(p-  wQu

22 u'Mu
a

(T — k) ~ kF (k,T — k). (1.25)

Result (1.25) can be used by obtaining from the tables of the F distribution
the critical value F* (k,T — k) such that:

prob[F (k,T—k)> F; (k,T—k)l]=a 0<a<l

for different values of @ we are in the position of evaluating exactly inequality
of the following form:

prob{(,@—,@),X’X (B—ﬁ) < ks?E? (k:,T—k:)} —l—a

which define confidence intervals for 3 centered upon ,@ Hypothesis testing is
strictly linked to the derivation of confidence interval. When we test hypothesis
we aim at rejecting the validity of restrictions imposed on the model on the ba-
sis of the sample evidence. Within this framework our hypothesis (2.6) — (1.22)
are the maintained hypothesis and the restricted version of the model is iden-
tified with the null hypothesis Hy. Following the Neyman-Pearson approach to
hypothesis testing a statistic with known distribution under the null is derived.
Then the probability of first type error (reject Hy when it is true) is fixed at .
For example a test at the level a of the null hypothesis 3 = 3;, based on the
F-statistic, is given when we do not reject the null Hy if 3 lies within the con-
fidence interval associated to the probability 1 — . However, in practice, this is
not a useful way of proceeding, as very rarely the economic hypotheses of interest
involve a number of restrictions equal to the number of estimated parameters.
Reconsider the Solow’s growth model: we have three estimated parameters but
only one restriction.

The general case of interest to the economist is the one when we have r
restrictions on the vector of parameters where r < k. If we limit our interest to
the class of linear restrictions, we can express them as follows:

HOZRBZI‘

where R is a (r X k) matrix of parameters with rank & and r is and (r x 1)
vector of parameters. To illustrate how R and r are constructed, consider the
base line case of the Solow model: we want to impose the restriction 8, = —3,
on the following specification:
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Iny; =08+ By In(s;) + ByIn(n; + g+ 6) + ¢ (1.26)
RB=r
Bo
(011) [ B | =(0).
Ba

The distribution of a known statistic under the null can be derived by apply-
ing known results.

If (,@ | X) ~N (,8,02 (X’X)fl) , then we have

<RB x| X) ~N (RB —1,0?R(X'X) " R’) (1.27)
The test is constructed by deriving the distribution of (1.27) under the null
RB—-r=0.
Given that

<RBA— | X) —RB-r+R(X'X) *Xu

under Hp, we have

<RBA— r) , (R (xX'x) ! R’)il <RBA— r)

1 !

1 Xu

-1
—u'X(X'X) 'R (R(X’X)*IR’) R(X'X)"
=u'Pu

where P is a symmetric idempotent matrix of rank r, orthogonal to M.
We have then :

<RBA— r)l (R (x'x)"" R’) B <RBA— r)

52

~rF (r,7—k) under Hy.

Which can be used to test relevant hypothesis. We report the application of
this methodology to our economic case of interest in Table 2.
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TABLE 2: Testing linear restrictions on equation (1.11)
F(nl,ng) Probability

B, = —04 F(1,72) = 1.255627  0.266204

B8, =05, 8, =-0.5 F(2,72) =23.48172 0.000000

The null hypothesis 3, = —85 cannot be rejected for values of o smaller
than 0.2662, therefore such hypothesis cannot be rejected at the conventional
five per cent. While the null hypothesis 3, = 0.5,3, = —0.5 is rejected at the
conventional five per cent, and also at the one per cent level. Note that, in Table 1,
we have already reported the t-values on estimated coefficients, which did reject
the null hypothesis of the coeflicient being equal to zero at conventional critical
levels. An interesting specific case of the test of the validity of restrictions on
estimated coeflicients are test for the significance of subset of coeflicients, which
we are going to discuss in the next section.

1.7.1  Testing the significance of subset of coefficients

In the general framework to test linear restrictions set r = 0,R = [Ir 0] , and
partition in a corresponding way (3 into [ B ,82] . In this case the restrictions
RB —r = 0 are equivalent to 3; = 0 in the partitioned regression model:

y=X18, +X28; +u

in which partitioning creates two blocks of dimension r and k — r.
Before proceeding to the discussion of hypothesis testing it useful to derive
the formula for the OLS estimator in the partitioned regression model. To obtain

o~ 7
such results partition as follows the “normal equations” X'X8 =Xy :

() e (3) - ()

XiX; XX B T\ Xy '

system (1.28) can be resolved in two stages by deriving first an expression

or, equivalently

,@Qas follows:

By = (X3X) ' (Xby - X4Xu 3y )

and then by substituting it in the first equation of (1.28) to obtain:
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XiX1B, + X{ X (XpX0) ' (Xhy - X5XuB, ) = Xiy

from which we have?:

B, = (X{M,X;) ' X|May
M, = (I _ X, (X, Xs) ! X’Q) .

Note that, as My is idempotent, we can also write:

Br = (XiMpMoX1) ' XiMyMay

and ,@lcan be interpreted as the vector of OLS coeflicients of the regression of
y on the matrix of residuals of the regression of X; on Xs. So an OLS regression
on two regressors is equivalent to two OLS regressions on a single regressor
(Frisch-Waugh theorem).

Finally, consider the residuals of the partitioned model:

u=y—-X;06, — X208,
G-y - X,B- Xa (XpXe) ' (Xoy - X3XuB, )

u=Myy — M2X1E1
= Moy — MoX, (X! M,X,) ' X/ Moy
= (Mz—M2X1 (X,11V12X1)71 X’1M2) y

but we already know that U = My therefore it must be that

M = (1\/12—1\/12X1 (XIMX,) ! X’lMg) (1.29)

We are now in the position of reconsider testing for our null of interest. Under
Hp X; has no additional explicatory power for y with respect to Xo, therefore:

2Note that the expression for the estimator can be obtained by applying directly on the
normal equations the formula of the partitioned inverse:

ABY ' E —EBD1
C D “\-Dlce D'+ D lcEBD!

E=(A-BD 1C)™!
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Hy:y=XB,+u, (u|X;,X2)s N(0,0%I).

Note that the statement

y =Xov, +u, (u|X,) ~ N (0,0%1)

it is always true within our maintained hypotheses. However, in general 4, #
Bs.

In order to derive a statistic to test Hg remember that the general matrix
R (X’X)71 R’ is the upper left block of (X’X)71 , which we can now write as
(X’1M2X1)71 . The statistic takes then the following form:

~1 —~
/81 (X,1M2X1) /81 —
752

_ y'MoX, (X[M2X,) " X\ Moy T — k

~F(T -k 1.30

y/My P ( 77‘) ( )
given (1.29),(1.28) can be re-written as:
Moy —y My T —%

N ~ F(T — k,r) (1.31)

y' My r

where the denominator is the sum of squared residuals in the unconstrained
model, while the numerator is the difference between the sum of residuals in the
constrained model and the sum of residuals in the unconstrained model.

Consider now the limit case in 7 = 1 and 3, is a scalar. In this case the
F-statistic takes the following form:

~2
2,6—1 s F(T —k,r) under Hy
$2 (X M2X,)
where (X’1M2X1)71 is now the element (1,1) of the matrix (X’X)71 .
Using the result on the relation between the F and the Student’s ¢ distribution
we have :

By

— = — ~t(I'— k) under Hy.
s (X[ MoXy)"? ( )

Therefore an immediate test of significance of coefficient can be performed,
as it is done in Table 1, by taking the ratio between each estimated coefficient
and the associated standard error.

Let us now reconsider our results on the Solow growth model. We cannot
reject the null of the validity of the model but the point estimates are rather
far from the predicted coeflicient on the basis of the theory.
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Two questions naturally rise at this stage.

First what is the impact on our coefficient of having estimated the model
without imposing the theoretical restrictions? Second, is it possible to explain
the discrepancies between the estimated elasticities and the one predicted by the
theory on the basis of the mis-specification of the model, i.e. of the omission from
the estimated model of some variables relevant to explain y?

In the following two sections we take these two questions in turn.

1.8 Estimation under linear constraints

In this section we analyze the impact on the OLS estimator of a kind of mis-
specification deriving from ignoring the existence of constraints on estimated
parameter. To analyze mis-specification we introduce the difference between the
estimated model and the Data Generating Process (DGP).

The estimated model is the linear model analyzed up to now:

y=XB+u

while the DGP is instead:

y=XB8+u
sto RB—r=0.
Where the constraints have been expressed using the so called implicit form.

A very useful alternative way of expressing constraints, known as the ”explicit
form” has been expressed by Sargan (1988):

B=S860+s

where S is a (k x (k —r)) matrix of rank k£ —r and s is a k x 1 vector.

To show how constraints are specified in the two alternatives let us recon-
sider the restrictions of the Solow growth model 3, = —f3; on the following
specification:

Inyi = B + By In(s:) + B2 In(ni + g + 6) + & (1.32)
Using RB —r = 0 we have:

Bo
(011) 8, | =(0)
B

while using 3 = S6 + s we have
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In practice the constraints in explicit form are written by considering 8 as
the vector of free parameters. Note that there is no unique way of expressing
constraints in explicit form, in our case the same constraint could have been
imposed as follows:

1 0

B, l=10-1 <6°>+ 0
Ba 01 Pz 0

As the two alternatives are indifferent RS — r = 0 is equivalently written as
RSO + Rs — r = 0 which implies:

i) RS =0;

ii) Rs —r=0.

We shall use the explicit form of imposing constraints to derive the Restricted

Least Squares (RLS) estimators and to evaluate consistency and relative effi-
ciency of OLS and RLS.

1.8.1 The Restricted Least Squares (RLS) estimator

To construct RLS substitute the constraint in the original model to obtain:

y—Xs=XS6+u (1.33)

equation (1.33)could be rewritten as :

y'=X"6+u (1.34)

where y* =y — Xs, X" = X8S.

Note that the transformed model features the same residuals with the original
model; therefore if hypotheses (2.6) — (1.20) hold for the original model, then
they also hold for the transformed model. So we apply OLS to the transformed
model to obtain:

6= (X"X*) " X*y* (1.35)
— (§'X'XS) "S'X! (y — Xs)
from (1.35) the RLS estimation is easily obtained by applying the tranforma-

i N
tion ,BT =80 +s. Similarly the variance of the RLS estimator is easily obtained
as follows:
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var (5 | X) = 0% (XVX") L = 02 (8'X'XS) !

~rls ~
var (,8 |X) =var <80+s | X)
= Svar (5 | X) S’
— 028 (S'X'XS) 'S
We report in Table 3 the RLS estimator of the Solow growth model. By
comparing Table 1 and Table 3 we note that estimated coeflicients are very close
but estimates in Table 3 are more precise. We also note that the hypothesis

81 = 0.5,3, = —0.5 is still rejected, despite our imposition of the theory-based
constraint on our estimated coeflicients.

TABLE 3: The estimation of the constrained Solow model

Variable Coefficient Std. Error t-ratio Prob.
C 7.0857 0.1453 48.65 0.0000
Ins-lnngd  1.43687 0.13882 10.35 0.0000

R-squared 0.594 S.E. of regression 0.61

This observation leads naturally to the discussion of the properties of OLS
and RLS in the case of a DGP with constraints.

unbiasedness

This is easy, under the assumed DGP they are both unbiased as such prop-
erties depend on the validity of hypotheses (2.6) — (1.20), which is not affected
by the imposition of constraints on parameters.

efficiency

On this issue we note immediately that if we interpret RLS ad the OLS
estimator on the transformed model (1.35)we immediately derive the results
that the RLS is the most efficient estimator as the hypotheses for the validity
of the Gauss-Markov theorem are satisfied when OLS is applied to (1.35) . Note
that, by posing L = (X’X)71 X' in the context of the transformed model, we do
not in general obtain OLS but we obtain an estimator whose conditional variance
with respect to X, coincides with the conditional variance of the OLS estimator.

We support this intuition with a formal argument by showing that the dif-
ference between the variance of the OLS estimator and the variance of the RLS
estimator is a positive semi-definite matrix.
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~ ~rls _ -
var (6 | X) —var (6 | X) =o?(X'X) ' —o?s(S'X'X8) 'S

Define A as follows:

A=(X'X)'-s(E'xX'X8) '8

given that

AX'XA = ((X’X)*1 _S(s'X'XS)"! s’) X'X ((X’X)*1 _5(s'X'XS)"! s’)

1

= (X'X) ' —28(9/X'XS) '8/ +S(S'X'XS) ' §'S(S'X'XS)”
= (X'X) ' —s(8'X'XS) 's'=A

S/

we have that A is positive semi-definite, being the product of a matrix and
its transpose.

The OLS estimator ignores available information and therefore it is less effi-
cient than the RLS estimator. However, there is no difference between the two
estimators in terms of unbiasedness.

So far we have evaluated the gains of imposing true restrictions, a related
interesting exercise is the evaluation of the loss of imposing false restrictions.

1.9 The effects of mis-specification

We consider two general cases of mis-specification to evaluate empirically their
importance within the Solow model. We take first the case of under-parameterization
(the estimated model omits variables in the DGP) to move on to the case of over-
parameterization (the estimated model includes more variables than the DGP).
We evaluate the effects of mis-specification on the OLS estimators by using re-
sults from the partitioned regression model.

1.9.1 Under-paramelerisation
Given the following DGP:

y =X 81+X28s+u, (1-36)

for which hypotheses (2.6) — (1.20) hold, the following model is estimated :

yv=X,6,+v. (1.37)

Therefore, the OLS estimates are given by the following expression
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~up _
By = (XiXy) ' Xiy (1.38)

while the OLS estimates which would have been obtained by estimation of
the DGP would have been:

By = (X{M2X,) ' X{May (1.39)

The estimates in (1.39) are Best Linear Unbiased Estimators by construction,
while the estimates in (1.38) are biased unless the correlation between Xjand
Xy, is zero. To show this point consider that:

B = (XiX)) ' (Xiy - X{ X, ) (1.40)
— B+ DB, (141

where D is the vector of coefficients in the regression of X9 on X;,and ,@2 is
the OLS estimator obtained by fitting the DGP.
To provide further interpretation of these results note that if we have:

E(y|X,,X2) =X,8,+X20,
E(X:| X,) = X,D

then

E(y | Xl) = X1/81+X1D,62 — X10¢.

Therefore the OLS estimator in the underparameterised model is a biased
estimator of By, but it is an unbiased estimator of c. Then, if the objective
of the model is forecasting and X; is more easily observed than X, than the
undeparameterised model can be safely used. On the other hand, if the objective
of the model is to test specific predictions on parameters (as it is the case with
the Solow’s growth model), than the use of the under-parameterised model will
deliver biased results. When we are interested in the effect of Xy on y, inde-
pendently from other factors, it is crucial to control for the effects of omitted
variables.

1.9.2  Over-parameterization
Given the following DGP:

y=X,8,+u (1.42)

for which hypotheses (2.6) — (1.20)hold, the following model is estimated :
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y=X;08; +X28; +v. (1-43)

The OLS estimator of the over-parameterized model is

B = (X{MXy) ™' X{ My (1.44)

while, by estimating the DGP, we obtain:

B =(X{X,) ' Xjy. (1.45)

By substituting y from the DGP it is immediately shown that both estimators
are unbiased. The difference is now made by the variance. In fact we have :

1

var (@ip | Xth) =0 (X{M2Xy) (1.46)

var (,@1 | Xl,Xg) = o2 (X’1X1)71

(1.47)

It can be shown that the estimator derived from the correct model is more
efficient. In fact, the difference between the two variance-covariance matrices is a
positive semi-definite matrix. To show this result remember that if two matrices
A and B are positive definite and A — B is positive semi-definite, then also the
matrix B"'—A ! is positive semi-definite. Then we have to show that XX —
XiMs3X, is a positive semi-definite matrix. Such result is almost immediately
shown:

X\ X, — X\MoX, = X, (I—- My) X,
= X1Q2X; = X[ Q2Q:2X;.

We can then conclude that overparameterization impact on the efficiency of
estimators and on the power of tests of hypotheses.

1.10 Human capital in the Solow’s growth model

Let us reconsider the question of the estimated elasticities in the Solow growth
model. We have seen that the theory implied restriction on the equality of elas-
ticities cannot be rejected, but that imposing such constraint does not solve the
problem of the implausibly high values for the point estimates of elasticities. Our
discussion of the effect of omitted variables on OLS estimation illustrates a po-
tential solution to the problem. MRW follow this lead and point out that human
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capital could be the relevant omitted variable. To illustrate the impact of human
capital on the Solow growth model, let us augment our simple specification to
consider three inputs: physical capital, K, human capital, H and labour, .. By
keeping a constant-returns-to-scale Cobb-Douglas production function, we have:

Y: = KPHP (AL 2" (1.48)

Define as s, the fraction of output invested in physical capital and as s;, the
fraction of output invested in human capital. We maintain all the other original
assumption in the Solow’s model and we also assume that physical and human
capital depreciate at the same speed. The evolution of the economy over time is
now governed by the two following dynamic equations:

e (L+n)(14+g) =ke—1 (1 —6) + spye-—1 (1.49)

he(T4+n) (1+g)=het (1 —8) + spye—1. (1.50)

By assuming a+0 < 1, we can derive the steady-state of the economy defined
by the two following relationships:

1

18\ T
k= (-fﬁ——fi-> (1.51)

n+g+6

1
l-a a \ T=a=p
Bt — (M) . (1.52)

n+g+6

By substituting these two relationship in the production function and taking
logs we have an expression for the pro-capita level of output in steady-state:

)/t*
In <Lt> =Indo+gt+ ﬁln (sr) + (1.53)
—I—%ln(sh) - %ln(n+g+5).

(1.52) shows how pro-capita output depends on the rate of growth of popula-
tion, the rate of accumulation of human capital and the rate of accumulation of
physical capital. (1.52) nests (1.8), and illustrate how direct estimation of (1.8)
might deliver biased estimates of the parameters of interest as a consequence of
under-parameterization. MRW construct a proxy for the rate of accumulation of
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human capital by merging two data-sets to obtain a measure of the percentage of
working-age population that is in secondary. They call such variable SCHOOL
and they include its logarithm in the regression. In this case even if SCHOOL
is only proportional to sp,it can be safely used in the estimation of the equation
of interest as only the constant will be affected. On the other hand if SCHOOL
is measured with error, the measurement error will deliver bias in the estimates
only if it is correlated with the other regressors.

The results of the estimation of the augmented Solow model are reported in
Table 4.

TABLE 4: The estimation of the augmented Solow model

Variable Coefficient Std. Error t-ratio Prob.

C 4.451 1.153 3.859 0.0002
Ins 0.709 0.15 4.725 0.0000
Inngd -1.497 0.402 -3.719 0.0004
Isch 0.728 0.095 7.666 0.0000

R-squared 0.782 S.E. of regression 0.45

Note that now all the model-based restrictions on coefficients cannot be re-
jected and that estimated parameters are compatible with values of about 1/3 for
« and B. Such values are deemed to be very reasonable by MRW who conclude
that the estimation of the Solow model without human capital can be considered
as a benchmark case to illustrate the effect of underparameterization.

1.11 The importance of time-series in macroeconomics

Results obtained thus far are based on a cross-sectional analysis of different
countries, without using information on the time-series behaviuor of relevant
variables. However, most of the interesting questions in macroeconomics are an-
swered by analyzing the time-series behaviour of variables. The Solow’s model
predicts that each economies converges to its own steady-state. The obvious
implication is that, over-time, differences in per capita output of countries fea-
turing the same rate of capital accumulation and the same rate of growth of
population should disappear. The empirical validity of such prediction has been
heavily questioned. Recently an alternative theory of growth has developed: the
endogenous growth theory (Lucas [5], Romer ). Such theory basically modifies
the new-classical growth model by introducing constant returns to scale in the
production function for output in effective units of labour (« + 8 = 1, instead
of a«+ 3 < 1). In such type of models the steady-state level of output is not
defined®. Therefore, differences between countries can persist indefinitely even if

3The non-existence of equilibrium generates some problems for the construction of a theory
of distribution. These problems are solved by introducing the idea of an aggregate production
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the countries share the same rates of accumulation of capital and of growth of
population.

If one considers time-series data, then it is very easy to discriminate between
the two models on the basis of their different predictions. Consider the i-th
country in our sample. If we have ¢ = 1,...T time series observations on the
relevant variables , then we can estimate the \; parameter in the following model:

Alnyie =N (Inyse—1—Iny], ) + it (1.54)
A Iny;; = (lnyi,t - lnyi,tfl) .

The new-classical growth model predicts A; < 0, while the endogenous growth
model predicts A; > 0.

In fact A; < 0 warrants convergence of ¥ to its steady-state (which it is time-
varying in that the rate of accumulation of capital and the rate of population
growth might be time-varying). While in the case A; > 0, we do not have conver-
gence of ¥ to its steady-state. The main complication in estimating and testing
the model of interest within a time-series context is that the hypothesis £ (u | X)
= 0 does not hold and the derivation of properties of estimators and statistical
distribution for hypotheses testing requires a new appropriate framework, which
we will discuss in the following chapter.

To reinforce our point on the importance of time series in evaluating macroe-
conomic theories we evaluate the loss of information when J); is estimated by
using the 75 cross-sectional observation used so far.

We can re-write(7.15) as follows:

lnym = (1 —+ )‘z) lnym,l —+ )\i lny;Fl —+ Eit (155)

by recursively substituting in (1.55) ,we have:

t—1

Iny;; —Iny;o=— (1 -1+ )\i)t) nyio — \ilnyj =0 (1+ )’ 41.56)

t
+j = OZ (1+X) €ip

which can be re-written as

Inyi, — Inyio = — (1 1+ )\i)t) Inyio + (1 (14 )\i)t) Iny! + ve(157)
t

vp=7J= OZ(1+)\i)j Eit—1- (1.58)

function different from the production function faced by the specific firm, in fact productivity
gains at firm levels are not expgenous as they depend on the general level of industrialization
of the society (theory of the ”learning by doing”). For a very clear discussion of this point see
Farmer(1996).
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Where in all derivation we have taken the steady-state to be constant. Now
by adding to this assumption A\; = A, constant across countries. It is possible
to estimate (1.57) on our cross section of 75 countries, by taking as dependent
variable the difference between initial and final output. MRW do so by taking
the difference between output in 1985 and output in 1960. Note that the error
time in the cross-sectional model is much larger then the error term in the time-
series model, being the cumulation of 25 time series residuals. We report MRW
in Table 5. Note that we compare three models: the unconditional convergence
model, and two conditional convergence model (Solow and augmented Solow).
As expected the results on the estimation of A change as the specification is
changed. The richer model gives a point estimate for A of —0.02, giving some
support to the new-classical model (what is the standard-error associated to this
point estimate?)

TABLE 5: Testing convergence (dep.var. lyl85-1y60)

Variable Unconditional Solow Augmented Solow
Constant  0.568 (0.432)  2.26 (0.847) 2.48 (0.795)
ly160 -0.002 (0.054) -0.23 (0.056) -0.36 (0.066)
Ins - 0.65 (0.103) 0.55 (0.101)
Inngd - -0.45 (0.304) -0.54 (0.286)
Insch - - 0.27 (0.079)
R? 0.00002 0.38 0.47

o 0.41 0.32 0.30

A -0.0078 -0.01 -0.018

1.12 Alternative strategies of research in macroeconometrics

Some final remarks on the research strategy behind the empirical work considered
so far can be useful to set out the general framework for the organization of the
material in this book. The starting point of the research strategy of Mankiw,
Romer and Weil is a theoretical model, the Solow growth model. The estimated
empirical relation is derived from the solution of the model. As the estimation of
the relation explicitly derived from Solow growth model delivers disappointing
results, a modification of the model is considered by introducing human capital in
the original framework. Such modification generates satisfactory empirical results
and it is capable of explaining the empirical failure of the original specification.
At this point the authors have their message and are able to convey it to the
profession.

Any empirical research strategy is based on the combination of theoretical
analysis and work on the data to produce models of the economies. We have
shown that time-series are the most natural empirical counterpart of varaiables in
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macroeconomic models. In the next chapter we discuss the statistical framework
necessary to analyse time-series.

We shall then introduce identification; the crucial stage of research in applied
macroeconometrics where theory and statistical analysis of the data are brought
together. In fact, the different approaches currently adopted in applied empir-
ical work in macroeconomics could be understood as different solutions to the
identification problem. On the basis of the working knowledge of fundamentals
built in these two chapters, we shall then consider the different approaches to
applied macroeconometrics. We start from the Cowles Commission approach,
by discussing a model of the monetary transmission mechanism built on the
most famous ”ad-hoc” framework (the IS-LM model augmented by some supply
function) imposed on the data to ask the time honoured question "what does
monetary policy do”. Such model is designed to identify the impact of policy vari-
ables on macroeconomic quantities. The objective of the exercise is to determine
the value to be assigned to the monetary instruments to achieve a given target
for the macroeconomic variables. Exogeneity of the policy variables is assumed
on the ground that these are the instruments controlled by the policymaker. We
illustrate how the model is used by estimating a small odel of the US economy
and replicate the empirical failure of the generation of macroeconometric models
in achieving the objective of their simulation.

Such failure has been rationalized in different ways, leading to different ap-
proaches to replace the Cowles Commission research programme.

The LSE ([3])approach explains the failure of the Cowles Commission method-
ology by attributing it to the lack of attention for the statistical model underlying
the particular econometric structure adopted to analyse the effect of alternative
monetary policies. The LSE methodology considers econometric policy evalua-
tion an interesting and feasible exercise. However, the way in which the Cowles
Commission approach deals with a legitimate question is not seen as correct. The
lack of sufficient interest for the statistical model is interpreted as the root of
the failure of the Cowles Commission approach to provide at acceptable answer
to an interesting question. The diagnosis is careful diagnostic checking on the
specification adopted. By applying the LSE approach to the same problem faced
by the Cowles Commission model we shall show merits and limits. On the posi-
tive side, we evaluate the improvements on the econometric specification, while,
on the negative side, we show why such methodology has not been universally
adopted as a unique substitute for the Cowles Commission approach.

Differently from the LSE explanation of traditional structural modelling the
two most famous and demolishing critiques, due to Lucas ([36]) and Sims ([48]),
concentrate on the weak theoretical basis for the Cowles Commission models.
The Lucas critique explains the failure of structural models when the coefficent
describing the impact of monetary policy on the macroeconomic variables of in-
terest depend on the monetary policy regimes; in this case no model estimated
under a specific regime can be used to simulate the effects of a different monetary
policy regime. Such situation is naturally generated when agents behaviour is de-
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termined by intertemporal optimization. The Sims critique attacks identification
from a different perspective, pointing out that the restrictions needed to support
exogeneity in structural Cowles Commision-type models are “incredible” in an
environment where agents optimise intertemporally.

The natural outcome of these two critiques is that policy simulation should
not be undertaken on the basis of structural econometric models but rather on
the basis of simulation of model economies based on microeconomic foundations.

However, econometrics play still an important role for the selection of the
appropriate model economy and for the estimation of the deep parameters de-
scribing taste and technology and independent from expectations.

The research programme initiated by Sims lead to the estimation of VAR
models in empirical macroeconomics. VAR models of the transmission mecha-
nism are not estimated to yield advice on the best monetary policy; they are
rather estimated to provide empirical evidence on the response of macroeco-
nomic variables to monetary policy impulses in order to discriminate between
alternative theoretical models of the economy. Monetary policy actions should
be identified using theory-free restrictions, taking into account the potential en-
dogeneity of policy instruments.

The Generalised Method of Moments is the econometric methodology natu-
rally applied to the first order conditions for the solution of intertemporal opti-
misation problems to derive estimates of the deep parameters in the economy.

Once deep parameters of interest are estimated, the micro-founded model can
be calibrated and the effect of relevant economic policies can then be assessed.

We shall devote three chapters to VAR models, GMM estimation and calibra-
tion to illustrate the strategy of empirical research in macroeconomics consistent
with the view that policy advice should be based on the simulation of theoretical
models considering explicitly the intertemporal optimisation problem of agents.
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THE PROBABILISTIC STRUCTURE OF TIME SERIES DATA

2.1 Introduction: what is a time-series 7

In the previous chapter we have introduced time-series to show that one of the
fundamental properties necessary to perform valid estimation and inference in
the linear model is generally violated by time-series. In this chapter we shall
discuss this issue at greater depth and length by defining precisely time series
and the fundamental concepts to analyze them, by illustrating how the problem
introduced can be resolved in the context of stationary time-series, to finally
extend our discussion to non-stationarity and cointegration.
We write a time-series as

{1,290, xr} or {z}, t=1,..T

where ¢ is an index denoting the period in time in which z occurs. We shall
treat x; as a random variables, hence a time-series is a sequence of random
variables ordered in time. Such sequence is known as a stochastic process. The
probability structure of a sequence of random variables is determined by the
joint distribution of a stochastic process.

A possible probability model for such a joint distribution is :

Ty = €, € ~n.i.d. (0,02)

i.e. z; is normally independently distributed over time with constant vari-
ance and zero mean. In other words z; is a white-noise process. A white-noise
process is not a proper model for most macroeconomic time-series because it
does not feature their most common characteristic, namely persistence. To show
the point consider the data-set USUK.XLS which contains, in EXCEL format,
quarterly time series data for nominal and real personal disposable income and
consumption in the UK and the US over the sample 1959:1-1998:1. The data-set,
retrieved from DATASTREAM, contains nine variables:
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TABLE 1: Dataset USUK.XLS

ukpdispid personal disposable income in the UK at constant 1992 prices
uspdispid  personal disposable income in the US at constant 1992 prices
uscndurb  consumption of durable goods in the US at current prices

uscndurb  consumption of durable goods in the US at constant 1992 prices
uscnnondb  consumption of non-durable goods in the US at current prices
uscnnondd  consumption of non-durable goods in the US at constant 1992 prices
uscnservb  consumption of services in the US at current prices

uscnservd  consumption of services in the US at constant 1992 prices

All series are adjusted for seasonality. To assess the behaviour of an typical
economic time series against the benchmark of the white-noise process, we have
imported all series in an E-Views workfile and run the following routine:

smpl 1959:1 1998:1

genr lyus=log(uspdispid)
genr WN= 8.03+0.36*nrnd
plot WN lyus

The routine generates the log of US real disposable income and an artificial
series defined as a constant (8.03) plus a normal random variable with zero mean
and standard deviation of 0.36, where 8.03 and 0.36 are respectively the sample
mean and the sample standard deviation of lyus. Having generated the series the
program plots them to obtain the following result:

Figure 2.1 clearly shows that the white noise model does not capture the
interesting property of persistence that motivates the study of time series. In
order to construct more realistic models combinations of ¢;. We shall concentrate
on a class of models created by taking linear combinations of white noise, the

ARMA models:

AR(): z=pri1+¢
MA(): zy=¢ +0¢_1
AR(p): 2 =p 21+ petyo+ ...+ PpTi—p + &
MA(q): zi =€ +0161+...+ 0464
ARMA(p,q): = pyi—1+ .. + PpTe-p 0161+ ..+ 046

In case it is not already clear, we shall show why ARMA models are obtained
by taking linear combinations of white noise in the next section, where we discuss
the strictly necessary fundamentals to analyze time series.

Note that each of the above models can be easily put to action to generate
the equivalent time-series by modifying appropriately and running the following
programme in Eviews, which generates an AR(1) series:

smpl 1 1
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Fia. 2.1. A white-noise process and the log of US real disposable income

genr X=0
smpl 2 200
series x=0.5*x(-1) +NRND

The programme above generates a sample of 200 observations from an AR(1)
model with p = 0.5. The series is first initialized for the first observations, the
command series then generates the series for the specified process, each observa-
tion is 0.5 time the previous observation plus a random disturbance drawn from
a serially independent standard normal distribution.

The time series behaviour of the generated X is plotted in Figure 2.2.

The following modified version of the programme will generate an ARMA(1,1)
series:

smpl 1 1
genr X=0
smpl 1 200
genr u=NRND
smpl 2 200
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F1a. 2.2. A stationary ARMA(1,1) process
series x=0.5%x(-1) +u +0.4*u(-1)

2.2 Analyzing time-series: the fundamentals.

To illustrate empirically all the fundamentals we consider an interesting member
of the the ARMA family: the AR model with drift :

Ty =P+ pP1Te-1+ 6 (2.1)
€ ~ n.a.d. (07 af)

Given that each realization of our stochastic process is a random variable, the
first relevant fundamental is the density of each observations. In particular, we
distinguish between conditional and unconditional densities. Having introduced
these two concepts we shall define and discuss stationarity, we then generalize
form our specific member to the whole family of ARMA models, to end this
section with a discussion of deterministic and stochastic trends and de-trending
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methods. Note that at this introductory stage we concentrate almost exclusively
on univariate models. We do so just for the sake of exposition. After the com-
pletion of our introductory tour, we shall concentrate on multivariate models,
which are the focus of this book.

2.2.1 Conditional and unconditional densities

We distinguish between conditional and unconditional density of a time-series.
The unconditional density is obtained under the hypothesis that no observa-
tion on the time series is available, while conditional densities are based on the
observation of some realization of the random variables. In the case of the time
series we derive unconditional by putting ideally ourselves at the moment in time
preceeding the observation of any realization of the time series. At the moment
the information set is given only by the knowledge of the process generating
the observations. As observations become available conditional densities can be
computed. As distributions are summarized by their moments, let us illustrate
the difference between conditional and unconditional densities by looking at our
AR(1) model.

The moments of the density of x; conditional upon z; 1 are immediately
obtained from (8.18)as follows:

E (¢ | m-1) = po + p17e-1
Var (z; | 2 1) = 02
Cov (x| xe-1),(xe—j | 26— j-1)] =0 for each j

To derive the moments of the density of x; conditional upon z; 2, we need
to substitute for x;_; in terms of x;_g from (8.18) to obtain:

E (x| m-2) = po + popr + piwe_o
Var(z, | x—2) = af (1 —l—p?)
Cov[(we | we—2), (we—j | 2e—j-2)]
Cov (s | x1-2), (Te—j | 2 j-2)]
Finally, unconditional moments are derived by substituing recursively from
(8.18) to express x; as a function of information available at time time to, the
moment before we start observing realizations of our process.

FE
Var

2) = po (L4 pyr+p7 4+ 007") +plo
z)) =02 (L+p} +p1 + .01 7)
(7) = Cov(z¢, 2 5) = Pl Var (z;)
P () = Cov (x4, 2 j) _ p{ Var (xy)
VVar (x) Var (me—1)  /Var (z) Var (z-1)

(
(
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Note that v (j) and p(j) are function of j, known respectively as the auto-
covariance function and the autocorrelation function.

2.2.2  Stationarity

A stochastic process is said to be stricly stationary if its joint density function
does not depend on time. More formally a stochastic process is stationary if ,for
each ji,j2.. Jn, the joint distribution,

f (xt7 xt+j1 ) xt+j27xt+.jn)

does not depend on t.

A stochastic process is said to be covariance stationary if its two first undi-
conditional moments do not depend on time, i.e. if the following relations are
satisfied for each h,i,j:

B (x) = E(xn) =
B (i3) = (1) = 1y
E($t+i3«”t+j) = Hij

In the case of our AR(1) process the condition for stationarity is that |p,| < 1.
In fact, when such condition is satisfied we have:

Po
E X = E Tirp) =
(@) = B (wran) = 722
o2
Var (z¢) = Var (2i4n) = ——
L—p1
Cov (zg,z¢—j) = p) Var(x)
on the other hand it easily shown that, when |p,| = 1, the process is non

stationary.
In fact we have:

E(x1) = pot + 20
Var (z;) = o2t

Cov (z, 24 ;) = 02 (t —7)

To illustrate graphically the properties of different AR process we generate,
using the programme in E-views described above, we generate three AR process
with p; set to 0.6 (series X1), 0.8 (series X2), and 1 (series X3) respectively. To
allow direct comparison we do not include a drift in all process so for all of them
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F1a. 2.3. First order autoregressive processes with p, = 0.6 (X1), p; = 0.8
(X2), py = 1 (X3)

we have p, = 0. The time-series behaviour of the three-processes is reported in
Figure 2.3.

Note that X1 and X2 tend to revert towards their unconditional mean rather
quickly. The unconditional mean of X3 is also zero but X3 does not show any
tendency for reverting towards its mean, in fact, as the sample size grows, the
variance of X3 increases without any bound.

2.2.3 ARMA processes

Before introducing the fundamentals of time-series we have asserted that white-
noise processes were too simplistic to describe economic time series and that a
closer fit could be obtained by considering combination of white-noises. we have
then introduced ARMA models and discussed the fundamentals to understand
their properties, but we have not yet shown that ARMA models can be considered
as combination of white-noise processes. The point is shown by considering a
time-series as a polynomial distributed lag of a white-noise process:
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Ty = U + 01Uz 1 + bl 2+ DUy g
= (L4 b1 L +boL® + ..+ by L) g

where I is the lag operator. The Wald-decomposition theorem, which states
that any stationary stochastic process could be expressed as the sum of a de-
terministic component and of a stochastic moving average component warrant
generality of our representation. However in general, to describe successfully a
time-series, a very high order in the polynomial b(L) is required. This feature
can be problematic for estimation, given the usual limitations for sample sizes.
This potential problem if the polynomial b(L.) can be represented as the ratio of
two polynomial of lower order. In this case we have:

zy =b(L)wy
e,
(L)
c(L)zy =a(L)w (2.2)

(2.2) is an ARMA process. The process is stationary when the roots of ¢ (L) =
0 lie outside the unit circle. The MA component is said to be invertible when the
roots of @ (L) = 0 lie outside the unit circle. Invertibility of the MA components
allow to represent it as an autoregressive process.

To illustrate how the autocovariance and the autocorrelation functions of
an ARMA model are derived, we consider the simplest case: the ARMA(1,1)
process:

Ty = Ci1%e_1 + € + Q1601 (2.3)
l-al)z,=01+al)¢

(2.3) can be re-written as:

1 —+ CLILG

l—aL "

=(1+4+a1l) (1 + e L+ (e L)* + ) €

= [1 +(ar+c)L4c(ar+e)L2+cE(ar +er) LB+ ] €

Ty =

Then we have

Var(z,) = {1 +(ar+c)’+E (a1 4+61)° + ] o?

:l1+§iiﬁﬁ

2
1—¢f

2
€
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Cov (xeae1) = [(al +c)te(ar+er)+ 2 (a1 +c¢1) + ] o?

2
cilar +c¢
= (CL1+01)+% f
1
Hence

C _
p(1) = ov (x¢,x 1)
Var (x;)
(1 + alcl) (Cbl + Cl)
1+ c%+2a1¢,

Successive values for p(j) are obtained from the recurrence relation p (j) =
cp(j—1) for j > 2.

To illustrate the difference between an AR and an ARMA, we have gener-
ated an AR(0.7) process and an ARMA (0.7, 0.4) process in E-Views. The two
autocorrelation functions (for lags up to 10) are reported in Table 2.

TABLE 2: Autocorrelation functions

AR (0.7) ARMA (0.7,0.4)
0.712 0.336
0.561 0.639
0.437 0.491
0.304 0.364
0.254 0.305
0.270 0.305
0.270 0.313
0.298 0.326
0.279 0.323
0.296 0.316

Note that the autocorrelation of the ARMA(1,1) process is higher than the
autocorrelation of the AR(1) process, this is because aq > 0.

2.2.4  Deterministic and Stochastic Trends

Figure 2.1 at the beginning of this chapter shows that macroeconomic time series,
beside being persistent, feature (generally) upwarding trends. Non-stationarity
of time-series is a possible manifestation of a trend. Consider for example the
random walk with drift:
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Ty =00 +Te—1+ €&
€ ~ n.a.d. (0,0?)

In this case recursive substitution yields:

1
Ty = X0+ aot +1 = OZet,i (2.4)

which shows that the non-stationary series contains both a deterministic (agt)
i—1
and a stochastic| ¢ =0 e_; | trend.

One of the easiest way to make a non-stationary series stationary is by dif-
ferencing it:

Ar,=xy— 2 1 =1 —L)z;=ao+¢

In general if a time series needs to be differenced k times to be stationary,
then that series is said to be integrated of order &k or 7(k). Our random walk is
I(1).When the d — th difference of a time-series z, A%x;, can be represented by
an ARMA(p, ¢) model we say that ; is an integrated moving-average process of
order p,d, ¢ and we denote it as ARIMA(p, d, q).

It interesting to compare the behaviour of integrated process with that of
trend stationary process. Trend stationary processes feature only a deterministic
trend:

n=a+0t+¢ (2.5)

The z; process is non-stationary, but the non-stationary is removed just by
regressing 2; on a deterministic trend. This is not the case for integrated pro-
cesses like (5.26) where the removal of the deterministic trend does not deliver
a stationary time-series. Deterministic trend have no memory while integrated
variables have infinite memory. Both integrated variable and deterministic trend
exhibits systematic variations, but in one case the variation is predictable in the
other case it is not. This point is easily seen in Figure 2.4 where we report three
series for a sample of 200 observations. The series are generated in E-views by
running the following programme:

smpl 1 1

genr 3T1=0
genr 3T2=0
smpl 2 200
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series ST1= 0.1+8T1(-1) +nrnd
series ST2=0.1+8ST2(-1)+nrnd
serieg DT= 0.1%Q@trend +nrnd

We have a deterministic trend (DT) generated by simulating equation (2.5)
with @« = 0,8 = 0.1, and a white-noise independently distributed as a standard
normal (nrnd), and two integrated series (ST1 and ST2), which are random
walks with a drift of 0.1. The only difference between ST1 and ST2 is in the
realizations from the error terms, which are different drawings from the same
serially independent standard normal distribution.
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F1G. 2.4. Deterministic (DT) and stochastic (ST1 and ST2) trends

2.3 Persistence. A Monte-Carlo experiment

Persistence of time-series destroys one of the crucial properties to implement
valid estimation and inference in the linear model. We have already seen that in
the context of the linear model

y=XB+e€
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The following property is required to implement valid estimation aand infer-
ence

E(e|X)=0 (2.6)

Hypothesis (2.6) implies that

E(ei | X1, X, Xn) =0 (Z = 1, TL)

Think of the simplest time-series model for a generic variable y :

Y =00+ 01Y-1+ €&

It is clear that if a; # 0, then, although it is true that F (¢ |y, 1) = O,
E(e—1 | y1—1) # 0 and (2.6)is destroyed.

The question is how serious is the problem. To assess intuitively the conse-
quence of persistence we construct a small Monte-Carlo simulation on the short
sample properties of the OLS estimator of the parameters in an AR(1) process.

A Monte-Carlo simulation is based on the generation of a sample from a
known Data Generating Process(DGP). A set of random numbers from a given
distribution is generated first (a normally independent white-noise disturbance
in our case) for a sample size of interest (in our case 200 observations) and then
the process of interest is constructed (in our case an AR(1) process). When a
sample of observations on the process of interest is available, then the relevant
parameters can be estimated and their fitted value can be compared with the
known true value. For this reason the Monte-Carlo simulation is a sort of con-
trolled experiment. The only potential problem with this procedure is that the
set of random numbers drawn is just one possible outcome and the estimates are
dependent on the sequence of simulated white-noise residuals. To overcome this
problem in a Monte-Carlo study the DGP is replicated many times. For each
replication a set of estimates is obtained and then averages across replications of
the estimated parameters are computed to be assessed against the known true
values.

Our Monte-Carlo simulation is performed by running the following programme
in E-Views:

genr alsum=0

for !i=1 to 500

smpl 1 1

genr y{!i}=10

smpl 2 200

series y{!i}=1+0.9%y{!i}(-1) +nrnd
equation eq.ls y{!i}= c(1)+c()*y{!i}(-1)
eq.rls(c,s)
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genr alsum=alsum+R_c2
next
genr almean=alsum/500

The first line of the programme generate a series to store the values of the
estimated a1 in each replication. In the next step we set a counter to keep track
of the replications (in the specific case we have 500 of them).The loop for the five
hundred replications is then set. In each replications a sample of two hundred
observations from an AR(1) is generated and then the autoregressive parameters
is estimated. Note that such estimation is performed recursively starting with
a sample of five observations and then by adding one observation at the time
until the last one. The series of these estimates is stored at each replications
with the command eq.rls(c,s). At the end of all replications we have 500 hundred
series each containing a series of 195 estimated parameters (the first being
the parameter estimated on the sample 1-5, the second being the parameter
estimated on the sample 1-6, the last one being the parameter estimated on the
full sample). We report the average across replications in Figure 2.5.

1.0

0.8 1

0.6

0.4

0.2 1

0.0
HH‘HH‘HH‘HH‘HH‘\H\‘HH‘HH‘HH‘\H\‘HH‘HH‘HH‘HH‘HH‘HH‘HH‘HH‘HH‘HH
20 40 60 80 100 120 140 160 180 200

— AIMEAN —— TRUEA1

Fi1a. 2.5. Small sample bias



THE TRADITIONAL SOLUTION: ASYMPTOTIC THEORY 53

From the Figure 2.5 we note that the estimate of a4 is heavily biased in small
samples, but the bias is reduced as the sample gets larger to eventually disappear.
In fact, it can be shown analytically that the average of the OLS estimate of aq
is a1 (1 — %) This is an interesting result, which could be generalized. For
stationary time-series, the correlation, which destroys the orthogonality between
residuals and regressors in the linear regression model, tends to disappear as the
distance between observations increases. Therefore, as we shall show in the next
section, the finite sample results can be extended to time-series by considering
large samples. Such aim is obtained by introducing asymptotic theory.

2.4 The traditional solution: asymptotic theory

Stationary time-series feature time-independent distributions, as a consequence
the effect of any specific innovation disappear as time elapses. We shall show in
this section of the intuition given by the simple Monte-Carlo simultaion can be
extended and asymtptotic theory can be used to perform valid estimation and
inference when modelling stationary time-series.

2.4.1 Basic elements of asymptotic theory

In this section we shall introduce the elements of asymptotyc theory necessary
to illustrate how all the results in estimation and inference for the linear model
applied to cross-sectional data in Chapter 1 can be extended to time-series mod-
els*.

Consider a sequence { X7} of random variables with the associated sequence
of distribution functions {Fr} = Fi,..., Fr, we give the following definitions of
convergence for Xp

2.4.1.1 Convergence in distribution Given a random variable X with distri-
bution function F', X7 converges in distribution to X if the following equality is
satisfied:

T — oolimpr {Xr < xo} = pr{X < xo}
for all zg,where the function F(z) is continuous.

2.4.1.2  Convergence in probability Given a random variable X with distribu-
tion function F, X7 converges in probability to X if , for each € > 0,the following
relation holds:

T — oolimpr {|Xp — X| < e} =1
Note that convegence in probability implies convergence in distribution.

4For a formal treatment of all these topics see White([60])
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2.4.1.3 Central limit theorem (formulation of Lindeberg-Levy) Given a se-
quence { X7} of identically and independently distributed random variables with
mean 4 and finite variance o2, defining

w converges in distribution to a standard normal.

2.4.1.4 Slutsky’s Theorem For any random variable X such that plimX, =
a, where @ is a constant, given a function ¢(-) continuous in @, we have that

plimg (Xr) =g(a).

2.4.1.5 Cramer’s Theorem Given two random variables X7 and Y7 such that
Yr converges in distribution to Y and X7 converges in probability to a constant
@, the two following relationships hold:

e X1 + Yy converges in distribution to (@ +Y)
e Yp/ar converges in distribution to (Y/a)
e Yy - ar converges in distribution to (Y - )

Note that all theorems introduced so far are extended to vectors of random
variables.

2.4.1.6 Mann-Wald Theorem Consider a vector z; (kr1) of random variables
which satisfies the following property:

T
plim7T % = 1Zztz; =Q

where Q is a positive definite matrix. Consider also a sequence €; of random
variables identically and independently distributed with zero mean and finite
variance o2, for which finite moments of each order are defined. If E (zer) =
0,then we have

T T
pEmT i =13 "ze, = 0,\/;' =1 "z 4 N (0,0%Q)

2.4.2  Application to models for stationary time-series

Consider the following time-series model:
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Ye = Y1 + Pay + 1wy

where zx; is a stationary variable and |a| < 1. As already shown F (ytut,i) #0
and the OLS estimator of « is biased.
Re-write the model as :

Yt = ZeY + Uz

2= [y 1 2]
v~ 5]

By applying the Mann-Wald results we can derive the asymptotic distribution
of the OLS estimator of 7,7 :

74 N [v,0*Q ]

and all the finite sample results available for cross-section can be extended
to stationary time-series just by considering large-sample theory.

2.5 Stochastic-trends and spurious regressions

From what we have discussed so far it should be clear that most econometric
analysis is based on the variance and covariance among variables. In the case
of indepedent sampling (cross-section) we can use finite sample moments for
estimation and inference, in the case of stationary time-series the consideration
of moments in large samples can solve the problems peculiar to time-series in
small samples. Within this framework it should be immediately clear that non-
stationary causes problems. In fact, we know unconditional moments are not
defined for non-stationary time-series. Consider, for the sake of illustration, an
OLS regression of an 1(0) variable y, on an I(1) variable z;. The OLS estimator
of the regression y; on x; converges to zero as the sample size increases, in fact
the variance of x;, being divergent, dominates the covariance between the two
variables. In general asymptotic theory is not applicable to non-stationary time-
series (see, for example, Hatanaka([23]) and Maddala-Kim([39]) . So, unless all
the trends observed in time-series are deterministic, the solution of reverting to
asymptotic theory is not directly accessible.

To give an intuition of the importance of non-stationarity in time-series and
to illustrate the problems related to non-stationarity, consider the results of a
”crazy” regression, obtained by relating the log of consumption in the US to the
log of personal disposable income in the UK :
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TABLE 3: Regressing US consumption on UK disposable income
Sample : 1959 :1 1998 : 1, Dependent Variable LCUS

Variable Coefficient Std. Error t-Statistic Prob.
C -5.612676  0.160374 -34.99740 0.0000
LYUK 1.208592  0.014419 83.81657 0.0000

R-squared 0.978413, S.E. of regression 0.052291, DW-stat 0.140469

Note that the regression features a very high R? and the UK disposable
income is very significant in explaining US consumption. We have a case of a
spurious regression, which witnesses the relevance of non-stationarity in eco-
nomic time-series. To elaborate on this point consider the two following simple
univariate time-series models for LYUS and LYUK.

TABLE 4: Univariate Time-series models for US consumption and UK disposable income

Coeflicient Std. Error t-Statistic Prob.
Dependent variable LCUS
C 0.039 0.008 4.91 0.0000
LCUS(-1) 0.996 0.001 964.9 0.0000

R-squared 0.999835, S.E. of regr 0.004537, DW stat 1.397403.

Dependent variable LCUS
C 0.050 0.049 1.00 0.3185
LYUK(-1) 0.996 0.004 222 0.0000

R-squared 0.999835, S.E. of regr 0.004537, DW stat 1.397403.

despite the simplicity of the two time-series models for LYUS and LYUK, we
note that they can both be approximated by random walk models:

LCUSt = ag + LCUSt,1 + €1+
LYUK; =by+ LYUK; 1 + €9
€1 ~ n.a.d. (0,0?1)

€op ~ N.2.d. (0,0?2)

As we already know, recursive substitution yields:
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t—1
LCUS, = LCUSy + aot +1i = ozelH
t—1

LYUK, = LYUKy + byt +1i = ozegH

When the following model is estimated

LOUS, =& + 3 LYUK+ 1y,

the coeflicient 3 is significant as both series have a deterministic trend. However,
in order to have a non-spurious relation we would need that the regression re-
moves also the stochastic trend from the dependent variables, leaving stationary
residuals. If this does not happen, then the correlation we observe can be labelled
as spurious. We report in Figure 2.6 the residuals from the OLS regression of
LCUS on LYUK,

visual impression confirms the intuition that the regression has delivered
a spurious relation, having not removed the stochastic trend form the non-
stationary dependent variable. The reported DW statistic of 0.14 gives a more
formal background to the visual impression. In fact the Durbin-Watson statistic,
originally designed to test for the presence of first order autocorrelation in the
residuals, can be re-calibrated to test for stationarity. We have

=2 (U — Uyp—1)

DW = =

~2(1-7)

where p is the OLS coeflicient from the regression of #; on ;s 1. The test
was originally tabulated to test the hypothesis Hy : p = 0, but critical values
for the null of non-stationarity Hy : p = 1, have been provided by Sargan-
Bhargava([51]). According to such critical values the null of non-stationarity
cannot be rejected by an observed value of 0.14 for the DW statistic.

In conclusion we note that non-stationarity of time-series is problematic in
that it might generate spurious regression and it does not allow the use of stan-
dard large-sample theory for valid estimation and inference in the linear model.
Before considering the solutions to the problem we shall in the section clarify it
further by re-illustrting it form a different perspective.

2.5.1 Non-stationarity and the likelihood function.

Consider a vector X; containing observations an time series variables at time .
A sample of T time series observations on all the variables can be represented
as follows:
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In general, estimation is performed by considering the joint sample density func-
tion, known also as the likelilihood function, which we can express as D (XIT | Xo, 9) .
The likelihood function is defined on the parameters space O, given the observa-
tion of the observed sample X1, and of a set of initial conditions X¢. Such initial
conditions can be interpreted as the pre-sample observations on the relevant vari-
ables (which are usually not available). In case of independent observations the
likelihood function can be written as the product of the density functions for each
observation. However this is not the relevant case for time-series, as time-series
observations are in general sequentially correlated. In the case of time-series the
sample density is then constructed using the concept of sequential conditioning.
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The likelihood function, conditioned with respect to initial conditions, can al-
ways be written as the product of a marginal density and a conditional density
as follows:

D (X} | X,8) = D(x1 | Xo,0) D (X% | X4,6).

Obviously we also have

D (X% | Xo,0) = D (x2 | X1,0) D (X5 | Xo,0)

and, by recursive substitution, we eventually obtain :

T
D (X} | Xo,0) =t =1][D (x| X¢ 1,6).

Having obtained D (XIT | Xo, 9) we can in theory derive D (XIT, 9) by integrating
with respect to Xy the density conditional on pre-sample observations. In practice
this could be not tractable analitically as D (Xp) is not known. The hypothesis
of stationarity becomes crucial at this stage, as stationarity restricts the memory
of time series and limits to the first observations in the sample the effects of pre-
sample observations. This is the reason why, in the case of stationary processes,
initial conditions can be simply ignored. Clearly the larger the sample, the better,
as the weight of the information lost becomes smaller. Moreover note also that,
even by omitting initial conditions we have:

T
D (X} | Xo,0) = D(x1 | Xo,0)t =2][D (x| X¢-1,6).

Therefore the likelihood function is separated in the product on 7T'— 1 con-
ditional distribution and one unconditional distribution. In the case of non-
stationarity the unconditional distribution is not defined. On the other hand,
in the case of stationarity the DGP is completely described by the conditional
density function D (x; | X; 1,8).

2.5.1.1 An illustration: the first order autoregressive process To give more em-
pirical content to our case, let us consider again the case of the univariate first
order autoregressive process.

2 | Xeoy ~ N (Awg_1,07) (2.7)

T
D (X5 | A,0%) =D (21 | \o?) e =2[[D (| Xi-1,0,0%) . (28)

From (2.8) it is clear that the likelihood function involves 7' — 1 conditional
densities and one unconditional densities. The conditional densities are given by
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(2.7), the unconditional density can be derived only in the case of stationarity.
In fact given :

Ty = ATy 1+ Uy
w, ~ N.I.D(0,0%),

we can obtain by recursive substitution:

Ty = U + Mg 1 + oo+ AT ug + A",

And only if || < 1, the effect of the initial condition disappear and we can
write the unconditional density of z; as:

2 o
D(.’L’t|)\70'>:N<0,m>

There under stationarity we can write down the exact likelihood function as:

vl

D (X} |\ 0%) = (27m)"
(2.9)

and estimates of the parameters of interest are derived by maximizing this
function. Note that A cannot be derived by analytical methods using the exact
likelihood function,but it requires conditioning the likelihood and operating a
grid search. Note also that the idea of using in large sample the approximate
likelihood function by dropping the first observation works only under the hy-
pothesis of stationarity in a large samples. When the first observation is dropped
and the approximate likelihood fnction is considered, it can be shown analytically
that the ML estimate of A coincides with the OLS estimate.

2.6 Univariate decompositions of time-series

The general solution proposed to the problem introduced in the previous section
is the search for a stationary representation of non-stationary time-series. This
has been done both in an univariate and in a multivariate framework. As an
introduction we shall briefly discuss methodologies used in a uni-variate frame-
work to move swiftly to decompositions in a multivariate framework, which are
at the heart of our discussion of modern macroeconometrics.

Beveridge-Nelson (1981) provide an elegant way of decomposing a non-stationary

time-series into a permanent component and a temporary, cyclical,component by
applying ARIMA methods. For any non-stationary time-series z; integrated of

T
0T (1= %)% exp [—% ((1 — A2+ =2) (w— A1)

)
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the first order the Wold decomposition theorem could be applied to its first
difference, to deliver the following representation:

Az =pu+C(L)¢
€ ~ n.1.d. (0,02)

where C' (L) is a polynomial of order q in the lag operator. Consider now the
polynomial D (1) defined as follows:

D(L)=C (L) —C(1) (2.10)

given that C' (1) is a constant, also D (L) will be of order ¢. It can immediately
be seen that

D(1)=0

therefore 1 is a root of D (L), and we can write

D(L)=C"(L)(1— L) (2.11)

where C* (L) is a polynomial of order ¢ — 1.
By equating (2.10) to (2.11) we have:

C(L)=C*(L)(1— L) +C (1)

and

by integrating (2.12) we finally have:
2 =C*" (L) e +put+C(1) 2
— Ct + TRt

where z; is a process for which we have Az; = €;. C} is the cyclical component
and T R; is the trend component made of a deterministic trend and a stochastic
trend. Note that the trend component can be represented as follows:

TRt = TRt,1 + M + C (1) €.
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2.6.1 Beveridge-Nelson decomposition of an IMA(1,1) process

Consider the process:

A.’L’tzﬁt—FHGt,l, 0<8<1.

In this case we have:

C(L)=1+0L

Cl)y=1+0

ci-c

¢ =—7=7

= —0.

The BN decomposition gives the following result:

Ty = Ct +TR1§
—0615 —+ (1 —+ 0) L.

2.6.2 Beveridge-Nelson decomposition of an ARIMA(1,1) process

Consider the process:

Axy = pAxy 1 + €+ 0y

In this case we have

C1)= o7
0@):%%%
_ . O+p
 (l=p)(1—pL)

and the BN decomposition gives the following result:

Ty = Ct +TR1§
0+ p 1+46

T TUepa-D T

2t
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2.6.3 Deriving the Beveridge-Nelson decomposition in practice

The practical derivation of a BN decomposition for any ARIMA process is easily
derived by applying a methodology suggested by Cuddington and Winters([6]) .
For any 1(1) process, we have seen that the stochastic trend can be represented
as follows:

TR, =TR, 1+p+C(1)¢ (2.13)

The decomposition can then be applied by the following steps:

e identify the appropriate ARIMA model and estimate €; and all the param-
eters in @ and C (1) and

e given an initial values for TRy use (2.13) to generate the permanent com-
ponent of the time-series

e generate the cyclical component as the difference between the observed
value in each period and the permanent component

The above procedure will give the permanent component up to constant, if
the precision of this procedure isnot satisfactory, one can use further conditions
to identify more precisely the decomposition. For example one can impose the
condition that the sample mean of the cyclical component is zero to pin down
the constant in the permanent component.

To illustrate how the procedure works in practice we have simulated an
ARIMA(1,1,1) in E-Views for a sample of 200 observations, by running the
following programme:

smpl 1 2

genr x=0

smpl 1 200

genr u=nrnd

smpl 3 200

series x= x(-1) +0.6*x(-1)-0.6*x(-2) +u+0.5*u(-1)

From the previous section we know the exact BN decomposition of our z; :

Ty = Ct + TRt
1.1 4L
= — € —2Z
(1-06)(1—06L) " 04"
1.5
TRt = TRt,1 + mﬁt

we can therefore generate the permanent component of X and the transitory
component as follows:

smpl 1 2
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genr p=0

smpl 3 200

series TR= TR(-1)+(1.5/0.4)*u
genr CYCLE=X-TR

The series X, TR and CYCLE are reported in Figure 2.7.
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F1a. 2.7. A Beveridge-Nelson decomposition of an ARIMA(1,1,1) process

This is exactly the procedure that we follow in practice except that we esti-
mate parameters rather than impute them from the known DGP.

2.6.4 Assessing the Beveridge-Nelson decomposition

The properties of the permanent and temporary component of an integrated
time-series delivered by the BN decomposition are worth some comments. The
innovations in the permanent and the transitory components are perfectly nega-
tively correlated, moreover the trend component is more volatile than the actual
time series as the negative correlation between the permanent and the transitory
component, acts to smooth the original time-series. These results are easily seen
for the simplest case we have already discussed. For example in the case of the
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IMA(1,1) process the correlation between the innovations in the permanent and
transitory component is -F;(1.5¢,0.5¢;,) = 1, the variance of the innovation in
trend component is (1.5)2 02 > o2, Note that in general the variance of inno-
vation might have economic interpretation and economic theory might suggests
different pattern of correlations between innovations from a perfect negative cor-
relation. As we shall see in one of the next chapters, an interesting pattern could
be the absence of correlation between the innovation in the cycle and trend
component of an integrated time-series. In general, different restrictions on the
correlation between the trend and cycle components lead to the identification
of different stochastic trends for integrated time-series. As a consequence the
Beveridge-Nelson decomposition is not unique. In general uni-variate decompo-
sitions are not unique. To see this point more explicitly we can compare the BN
trend with the trend extracted using an alternative technique which has been
recently very successful in time-series analysis: The Hodrick-Prescott filter.

Hodrick and Prescott proposed their method to analyze postwar U.S. busi-
ness cycles in a working paper circulated in the early 1980s and published in
1997([27]). The Hodrick-Prescott (HP) filter computes the permanent compo-
nent T'R; of a series x; by minimizing the variance of x; around T Ry, subject to
a penalty that constrains the second difference of T'R; . That is, the HP filter is
derived by minimizing the following expression:

T T-1
t=1% (2, —TR)* + At =2 [(TJ-L£+1 ~TR)? — (TR, — TR,1)?|.

The penalty parameter \ controls the smoothness of the series, by controlling
the ratio of the variance of the cyclical component to the variance of the series.
The larger the A, the smoother the T'R; approaches a linear trend as A goes
to infinite. In practical applications X is set to 100 for annual data, 1600 for
quarterly data and 14400 for monthly data.

In the following Figure we report the BN trend and the HP trend (with
A = 100) for the data generated in the previous section.

Note that the BN trend is more volatile than the HP trend. It is possible to
increase the volatility of the HP trend by reducing the parameter X\, however the
HP filter can reach at most the volatility of the actual time series which, as we
already know, is smaller than the volatility of the BN trend.

The HP filter has the advantage of removing the same trend from all time
series; this might be desirable as some theoretical models, as for example real
business cycle models, indicate that macroeconomic variables share the same
stochastic trend. However, it has been shown by Harvey and Jaeger([22])that
the use of such filter can lead to the identification of spurious cyclical behaviour.
In fact the two authors above predicate a different approach to modelling time-
series, known as structural time series modelling, which, we do not consider in
our analysis as it is not related to macroeconomic models, but certainly merits
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F1a. 2.8. Trend components: Hodrick-Prescott versus Beveridge-Nelson

some attention.’

The comparison between the HP and the BN trend reinforces the argument
of non-uniqueness of univariate decomposition made before, moreover we are left
with the problem of how to use the filtered series in applied macroeconometrics
and how to relate them to theoretical models. The empirical counterparts of the-
oretical macroeconomic models are multivariate time-series. Theoretical models
often predict that different time-series share the same stochastic trend. The nat-
ural question at this point is if it is possible that the problem of non-stationarity
in time-series could be resolved by considering multivariate models. In this con-
text, stationarity is obtained by considering combination of non-stationary time
series sharing the same stochastic trends. If such results could be achieved, it
would be in principle possible to justify the identification of trends by relating
them to macroeconomic theory. We shall consider this possibility in the next
sections.

5We refer the interested reader to the work by Andrew Harvey and Augustin Maravall.
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2.7 Multivariate decompositions and dynamic models

Let us reconsider our spurious regression for US consumption in the context
of a dynamic model. We do so by augmenting the static regression to consider
consumption and income lagged up to one year, i.e. we consider four lags of each
variables. Results shown over Table 4, witness that the spurious regression result
disappears: i.e contemporaneous and lagged US disposable income is significant
in explaining US consumption, while contemporaneous and lagged UK disposable
income is not.

TABLE 4: A dynamic model for US consumption
Dependent variable LCUS;, regression by OLS, 1960:1-1998:1

Model with US income Model with UK income
Coeflicient S.E. Coeflicient S.E

c 0.367 0.106 0.333 0.150
LCUS;_; 0.987 0.087 1.197 0.083
LCUS;_o -0.006 0.120 -0.156 0.131
LCUS;_3 0.012 0.121 0.142 0.130
LCUS;_4 -0.172 0.085 -0.196 0.082
LYUS 0.258 0.037
LYUS,_; -0.126 0.049
LYUS; > -0.068 0.050
LYUS; 3 0.021 0.049
LYUS;_4 0.034 0.042
LYUK 0.009 0.020
LYUK, ; 0.018 0.028
LYUK;_ o -0.034 0.028
LYUK;_3 -0.0163 0.028
LYUK;_4 0.0015 0.0229
Trend 0.00039 0.0001 0.00023 0.0001
R? 0.99 0.99
S.E. 0.0037 0.0042
F-test on income F(5,155)=10.324 F(5,155)=1.239

This is an interesting result which leads to think that, in the case also the
problems related to non-stationarity could be solved, dynamic multivariate time-
series models are the right foundation for macroeconometrics.

2.7.1  Cointegration and FError Correction Models

To explain why the spurious results disappear when dynamic models are esti-
mated let us consider a simplified version of the dynamic specification estimated
for consumption:

Ct = Qo+ A1C¢—1 + QoY + A3Yr—1 + Ut (2.14)
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This specification has some interesting dynamic properties which are worth
discussing. First note that the short-run elasticity of consumption with respect
to income is different from the long-run elasticity. In fact the short-run elastic-
ity is ao while the long-run elasticity is % The long-run elasticity is found
by setting all variables in the dynamic model (2.14)to their steady state value
Ciri =C, Yy =C . To see immediately this point consider the following re-

parameterisation of (2.14):

Ac; = ap + a2 Ay — a (-1 — Byyi—1) + (2.15)

ag +a
a=(l-a), =" (2.16)

a1

The estimated dynamic model includes both first differences and levels. The
presence of the level variables generates a long-run solution, derived by setting
all first differences either to zero (steady-state with no deterministic trend) or
to a constant(steady-state). Note now the role of the terms in level: we can
interpret 5,y:_1 as the long-run equilibrium level ¢* for the log of real consump-
tion c. When o < 0 consumption increases at time t whenever ¢;,_1 < ¢;_q,
and decreases whenever ¢;_1 > c¢;_,.The system equilibrates in presence of dis-
equilibrium (i.e. a discrepancy between ¢ and ¢*) such error correction features
guarantees that in the long-run the consumption will converge to its equilibrium
value. For this reason the specification (7.15) ,with @ < 0, is termed Frror Cor-
rection Model. Note that, in the case of an ECM representation, the difference
between ¢ and c* is a stationary series. This defines co-integration. We say that
two non stationary variables integrated of order ¢ are cointegrated of order p if
there exist a linear combination of them which is integrated of order p — ¢. The
case p = 1, ¢ = 1, is interesting in that co-integration implies an ECM represen-
tation, which allows to re-write a model in levels, which involves non-stationary
time-series, as a model which involves only stationary variables. Such variables
are stationary either because they are first diferences of non-stationary variables
or because they are stationary linear combination of non-stationary variables
(cointegrating vectors).

The inclusion of both differences and levels in the estimated relationship is the
key factor to the solution of the problems related to non-stationarity of the level
of variables included in the specification. This solution to the non-stationarity
problem has also the feature of revealing immediately to the economist the long-
run properties of the estimated model. To see this point practically we can use
E-Views to simulate the following bivariate model:

ACt = 025Ayt —0.2 (Ct,1 — ytfl) + 0003u1t (217)
Ay = 0.02 4+ 0.009u9;

where uy; and uy; are independently distributed standard normal, the param-
eters are calibrated to reflect the long-run properties of the consumption function
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reported in Table 4. The volatility of the innovations are again calibrated to es-
timated processes on real data for the US economy; income is more volatile than
consumption.

To show the properties of the model, we first generate samples for the two
innovation process, then we generate artificial data for consumption and income
by constructing the above model and solving it dynamically. We do so for a
sample of 100 observations, the simulated series are plotted in Figures 2.9 and
2.10.
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Fia. 2.9. Two cointegrated series

Note that the the levels of LC and LY, share a stochastic trend, which
disappears from the series (LC-LY). The parameter o in the ECM spefication
determines the speed of adjustment in presence of disequilibrium. To illustrate
the role of this parameter we report the two series (LC-LY) generated by taking
the same innovations for the sample 1 200. The innovations are drawn for normal
independent for all observations, except for observation 101 where the residuals
in the income process are augmented by 0.036. We have then a shock four stan-
dard deviation away from the mean of the distribution, we can then visually
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F1a. 2.10. Disequilibrium

inspect the behaviour of the simulated series in the presence of an outlier. The
process (2.17) is used to generate the first time-series of disequilibria, while the
second time-series is generated using keeping all parameters unchanged with the
exception of «, which is trebled to 0.6 from 0.2. The resulting observations for
disequilibria are reported in the Figure 2.11.

The disequilibria from the second simulation run are less persitent to witness
that the second system feature a fastest speed of adjustment in presence of
disequilibrium. All the simulated series are contained in the E-Views workfile
ECM.WF1, with which the reader can experiment to convince herself of the
properties of Error Correction Models.

As an application of further interest let us reconsider the static regression in
the light of our discussion of dynamic models.

Given the following DGP:
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Fi1a. 2.11. Speed of adjustments and disequilibrium

Yt = Q1Ye—1 + QT + A3Ti_1 + Uns (2.18)

Ty = b1y 1 + ug
U1t 0 J11 0
(i) = 2ere((0)- (78 o)

a static model is estimated by OLS:

Yt = YTt + &¢

~ thyt
v= 2
>

Assess the results of running the static model by taking p lim 'y
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thytfl/T+a2+a32xtxt71/T+ thut/T
/T >ai/T /T

under the hypothesis that (2.18) is stationary (b1 < 1) we can substitute for
2 in terms of ;1 and ugs and apply Slutsky’s and Cramer’s theorem to derive
the following result:

plim# = plim |ay

lim#y = 9279301
P 7= 1— Cblbl
a9 + as

1—601

az < plimy <

Note that as b; approaches 0 the elasticy of y with respect to x delivered by
the static regression goes asymptotically to the true short-run elasticity, while
as by approaches to 1 such elasticity converges to the long-run elasticity. Tech-
nically speaking we cannot show what happens when by is one because this
violates the stationarity conditions which we have used to derive the asymp-
totic behaviour of the OLS estimator. However, confirming the above intuition,
Stock([55]) has shown that the OLS estimator of the parameters determining
the long-run relationship non-stationary cointegrated series is super-consistent.
In fact it converges towards the true value at speed (%) Jhigher than the speed

of much (%) ,with which the OLS estimator converges to its true value in re-

gression between stationary time series. This result has given some background
to a two-step research strategy, according to which the cointegrating relations is
estimated first in static model and the used to estimate a dynamic ECM model,
involving only stationary variables. This strategy is less efficient than the simul-
taneous estimation of short-run and long-run dynamics. In fact the static regres-
sion delivers super-consitent estimates of the cointegrating parameter despite
being mis-specified, because the omitted variables are the stationary variables
determining the short-run dynamics, which, in large-samples, should not affect
the estimation of cointegrating parameters. It has been shown through Monte-
Carlo simulation that the dimension of the samples required to appeal to the
super-consitency theorem are much higher than the dimension of the samples
usually available for time-series modelling (see, for example, [2],[3], [4]). More-
over the empirical counterpart of macroeconomic models are usually dynamic
multivariate time-series models. Therefore, there must be a price to be paid in
considering static uni-variate models as a basis for empirical work. We shall
devote more attention to this issue in the next section.

2.7.2  Cointegration in a multivariate framework

So far we have stressed the importance of the magnitude of the adjustment
parameter a as the relevant discriminant to decide on cointegration, but we
have not yet provided a statistical framework to test for such an hypothesis. We
also mentioned the importance of dimensionality of the system to be considered



MULTIVARIATE DECOMPOSITIONS AND DYNAMIC MODELS 73

in empirical work. In this section we shall elaborate on these points and illustrate
the Johansen’s([30], [34]) approach to cointegration in a multivariate framework.

So far we have considered cointegration in a bi-variate context. Things differ
when we consider a multivariate context. In fact , in general between n non-
stationary series we can have up to n — 1 cointegrating vector and the single
equation dynamic modelling can cause serious troubles when there are multi-
ple cointegrating vectors. To illustrate the problem let us consider the case of an
investigator who uses cointegration techniques to investigate money demand. Fol-
lowing the standard economic background to empirical investigations of money
demand (see, for example, Hendry and Ericsson,[26]) the chosen data set includes
money, m, a price index, p, real income, y, the own interest rate on money, R™,
and the opportunity cost of holding money, R?. All variables are in logarithms,
with the exception of interest rates. The investigator specifies a dynamic single-
equation model for real money, towards the identification of a money demand
equation, which takes the following shape:

(m—p), =a+ar (m—p), | +a2ye—1+asy—2 + (2.19)
+as R +asRM™ o +agRY_; +arRY_ o +

This statistical model fits the data well. As it is found that a; < 1, the
investigation leads to the identification of a long-run equilibrium money demand,
which results clearly form the ECM re-parametrization of the dynamic model

(2.19) :

A(m—p), = ao— azAy; 1 — asAR" | — agAR} | + (2.20)
(a1 = 1) [(m=p),_y — (m—p);_;] +w
x az + ag a4+ as ., ag +ar
— = - R R
(m p)t,l 1—a Ye—1+ 1—a, i—1 T 1—ay t—1

However, the good fit of the statistical model might be combined with an
incorrect identification of the long-run solution. Think, for example, of the case in
which the non-stationary vector containing the five variables of interests admits
two cointegration relationships:(m — p —y) and (Rm — ﬁggRb) . Where the first
one is generated by the stationarity of the velocity of circulation of money and
the second one by the behaviour of the banking sector, which sets the interest
rate on money as a mark-down on the opportunity cost of holding money. In the
short-run money reacts to disequilibria with respect to both long-run solutions,
hence money demand is correctly parametrised as follows:

A(m—p), =m0 +T1Ay;—1 + T2 AR | + T3ARY (2.21)
—oy (Mg — pr1 — Y1) + o (R — 522357& + Uy
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Note that the statistical specification of (7.15) and (2.21) is identical, in
fact the residuals u; are the same, however identification is very different. In
fact when (2.21) represents the correct specification, (7.15) identifies as long-run
elasticities what in fact are mixtures of cointegrating parameters and parameters
determining the speed of adjustment with respect to disequilibria in the true
model. Single-equation approach leads to believe that the long-run elasticity
of money demand with respect to the opportunity cost of holding money is
“fj'—;lz,while in fact such estimated coeflicient is a convolution of the parameter
g, determining the speed with which money demand reacts to a disalignment
of interest rates with respect to their equilibrium value, and the parameter c,
determining the mark-down of the own interest rate on money with respect to the
interest rate on the opportunity cost of holding money. This identification has
serious consequences in the intepretation of estimated parameters. In fact when
the above problem occurs a structural instability in the short-term adjustment
parameter 59 would mis-lead the researcher into the belief that long-run money
demand is unstable.

The solution of this identification problem requires a framework to allow the
researcher to find the number of cointegrating vectors among a set of variables
and to identify them. The procedure proposed by Johansen([30],[32]) within the
framework of the Vector Autoregressive Model achieves both results.

2.7.3 The Johansen Procedure

To illustrate the procedure proposed by Johansen consider the multivariate gen-
eralisation of the single-equation dynamic model discussed so far, i.e. a Vec-
tor Autoregressive Model (VAR) for the vector of, possibly non-stationary, m-
variables y:

Ye=A1yr 1 +Agyi o+ ALYty (2.22)
by proceeding in the same way we did for the simple single-equation dynamic
model, we can reparameterise the VAR in levels as a model involving levels and
first-differences of variables.
Start by subtracting y:_1 from both sides of the VAR to obtain:
Ay; = (A1 =Dy 1 +Agy o+ F ARy n+ 1y (2.23)

now subtract (A; —I)y;_2 from both sides to obtain:

Ayt = (A1 — I) Aytq + (Al + Ag — I) Yo+ ...+ Anyt,n + uy (224)

By iterating this procedure until n-1, we end up with the following specifica-
tion:
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Ay, =1 Ay, 1 + 1Ay, o+ ..+ 1y, +w, (2.25)
n—1
=i=1) LAy, ;+1ly, , +u (2.26)

where :

I = — (I—j:li:AJ)
m=— (I-i:@nin)

Clearly the long-run properties of the system are described by the properties
of the matrix II. There are three cases of interest:

e rank (II) = 0. The system is non-stationary, with no cointegration between
the variables considered. This is the only case in which non-stationarity is
correctly removed just by taking first difference of the variables considered

e rank (IT) = m, full. The system is stationary.

e rank (II) = k£ < m. The system is non stationary but there are k cointe-
grating relationships among the considered variables. In this case we have
I = aB', where  is an (m x k) matrix of weights and B3 is an (m x k)
matrix of parameters determining the cointegrating relationships.

Therefore, the rank of II is crucial in determining the number of cointegrating
vectors. The Johansen procedure is based on the fact that the rank of a matrix
is equal to the number of its characteristic roots that differ from zero. Here is
the intuition on how the tests can be constructed. Having obtained estimates
for the parameters in the II matrix, we associate to them estimates for the
m characteristic roots and we order them as follows Ay > X2 > ... > \,,. If the
variables are not cointegrated, then the rank of Il is zero and all the characteristic
roots will be zero. In this case each of the expression In(1 — A;) will be zero. If
instead the rank of II is one, and 0 < A; < 1, then In(1 — A\y) will be negative
and In(1 — A2) =In(1 — A3) = ... =In(1 — A,,) = 0. Johansen derives a test on
the number of characteristic roots that are different from zero by considering the
two following statistics:

o~
)

Atrace (k) =-Ti=k+ 12 In (1 — A )

Amas (ks k+1) = —TIn (1 . X,M)
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where T is the number of observations used to estimate the VAR. The first
statistic test the null of at most &k cointegrating vectors against a generic al-
ternative. The test should be run in sequence starting from the null of at most
zero cointegrating vectors up to the case of at most m cointegrating vectors.
The second statistic tests the null of at most k cointegrating vectors against the
alternative of at most & 4+ 1 coitegrating vectors. Both statistics will be small
under the null hypothesis. Critical values are tabulated by Johansen and they
depend on the number of non-stationary component under the null and on the
specification of the deterministic component of the VAR. Johansen has shown
in the past ([33]) some preference for the trace test on the argument that the
maximum eigenvalue test does not give rise to a coherent testing strategy.

To illustrate briefly the intuition behind the procedure, consider the VAR
representation of our simple dynamic model (2.18), introduced in one of the
previous sections, for the two variables x and y:

()=o) ()= () o)

(2.27) can be reparameterised as follows in terms of the VECM representa-

tion:
Ay fain—1lann Yi-1 Uy
<A.’Ilt> o < 0 0 > <.’L’t1 + U2t (228)

from which it is clear that

(a1 —1az _fan—1 r a
H_< 0 0 >7Oé_< 0 >76 _<1_1*1@211>

To expand on this intuition let us reconsider our example on money demand

from the previous section.
The baseline VAR could be specified as follows:

(m —p), (m—p);_, (m—p), Uy

Yt Yi—1 Yi—2 Uzt
=Ag+ A + A +

R R 2 Ty uz,

R R}, Ry, Uy

Which could then be reparameterised in VECM form:

A (m—p), (m—p)tfl A(m—p)kl Ute
A _ JAVT I U
v R e L I e ISR Il P
t 1 1
AR? R?7 1 AR?7 1 Uqt

Given that we know that there are two cointegrating vectors, we have:
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I =apf
rank Il =2

, _[1-10 o0
6‘[0 0 1—522}

As we have analysed only one equation in our previous discussion of the
system, the only constraints we have on the specification for o are a1 < 0, a9 >
0. A possible specification for @ would then be:

Q11 Q12
0 0
0 32
0 0

with the above specification for the loadings, money demand adjusts both in
presence of misalignements of velocity with respect to the equilibrium velocity
and of misalignments of interest rates with respect to their equilibrium spread. In
particular money demand increases when velocity is "too high” and the opportu-
nity cost of holding money is ”too low”. In case of disequilibrium in interest rates
it is the interest on money which adjusts, while the dynamics of interest rates
on the alternative of money in agents’portfolio does not react to disequilibria.

Q11 012 Q11 —01 12 —0412522
0 0 1-10 O . 0 0 0 0
0 asz| |0 0 108y 0 0 a3 —a3fby

0 O 0O 0 O

2.7.4 Identification of multiple coinlegraling vectors

The Johansen procedure allows to identify the number of cointegrating vectors.
However, in the case of existence of multiple cointegrating vectors, an interest-
ing identification problem arises. In fact, o and (3, are only determined up to
the space spanned by them and, for any non-singular matrix £ conformable by
product, we have:

M=af =at s

In other words 8 and 5’¢ are two observationally equivalent basis of the coin-
tegrating space. The obvious implication is that, before solving such identification
problem, no meaningful economic interpretation of coeflicients in cointegrating
vectors can be proposed. The solution to such problem is achieved by imposing
a suflicient number of restrictions on parameters such that the matrix satisfying
such constraints in the cointegrating space is unique. Such criterion is derived in
Johansen(1992) and discussed in the work of Johansen-Juselius, Giannini([15])
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and Hamilton([20]). Given the matrix of cointegrating vectors 3 we can formulate
linear constraints on the different cointegrating vectors using the R; matrices of
dimensions r; X n. Let us consider the columns of 3, i.e. the parameters in each
cointegrating vectors, ignoring the normalisation constraint tol of one variable in
each cointegrating vector. Any structure of linear contraints can be represented
as follows:

R:3,=0

R;(r; xn), B;(n x 1),rank R; = r;.
The same constraints can be expressed in explicit forms as follows:

B; = Si0;
Si (TL X (TL— Ti)) s ,81(71 X 1)701' ((TL —Ti) X 1) s rank Si =n— Ti,RiSi =0.

A necessary and sufficient condition for identification of parameters in the
1 — th cointegrating vectors is the following;:

rank (R;8)=r—1 (2.29)

when (6.5) is satisfied it is not possible to replicate the cointegrating vector
1 —th by taking linear combinations of the parameters in the other cointegrating
vectors. In this case the matrix obtained by applying to the cointegrating space
the restrictions of the ¢ — th cointegrating vectors has rank r — 1.

A necessary condition for identification is immediately derived in that R;3
must have enough rows to satisfy condition (6.5) , therefore a necessary condition
for identification is that each cointegrating vectors has at least » — 1 restrictions.

A sufficient condition for identification is provided by Johansen by considering
the implicit and explicit form of expressing constraints:

Theorem 2.1 The i-th cointegrating vector is identified by the constraints Si,Sa,...S,
if for each k=1,...,m7-1 and for each set of indices 1 < j1 < ... < jp < 7, not con-
taining i, we have that : rank [R;S;,,...R;S;, | > k

Given identification of the system we can distinguish the case of just-identification
and over-identification. In case of over-identification, the over-identifying restric-
tions are testable.

2.7.4.1  An illustrative example Let us reconsider our example on money de-
mand.Considering the following vectorial representation of the series (m —py R™ R? )
and leaving aside normalizations, the matrix 3 can be represented as follows:

7
b

B O
B 0
0 fs

0 —Byp
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given the following general representation of the matrix 3 :

611 612
621 622
631 632
641 642

our constraints imply the following specification for the matrices R; ans 5; :

1100 fl
Ri=[0010|.S ="
0001 0

00

1000 00
R”‘<0100>752_ 10
01

The necessary conditions for identification are obviously satisfied, while the
sufficient conditions for identification requires: rank(£;52) > 1, rank(R251) > 1.
They are also satisfied, in fact:

00

RiS; = 107&&:<i>
01

2.7.5 Hypothesis testing with multiple coinlegrating vectors

The Johansen procedure allows for testing the validity of restricted forms of coin-
tegrating vectors. More precisely, the validity of restrictions in additions(over-
identifying restrictions) to those necessary to identily the long-run equilibria
could be tested. The intuition behind the construction of all tests is that when
there are r cointegrating vectors only these r linear combination of variables are
stationary, therefore the test statistics involve comparing the number of coin-
tegrating vectors under the null and the alternative hypothesis. Following this
intuition, we understand immediately why only over-identifying restrictions can
be tested, in fact just-identified model feature the same long-run matrix II, and
therefore the same eigenvalues of II. Consider the case of testing restrictions on a
set r of identified cointegrating vectors stacked in the matrix 8. The test statistic
involves comparing the number of cointegrating vectors under the null and the
alternative hypothesis. Let Ay, Az ..., A, the ordered eigenvalues of the II matrix

in the unrestricted model, and Xi,X; ey X:the ordered eigenvalues of II matrix
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in the restricted model, restricitions on 3 are testable by forming the following
test statistic:

-

Ti=1%" [m (1 . X:) Tl (1 . Xi)] (2.30)
Johansen ([32]) shows that the statistic (2.30) takes a x? distribution with de-
grees of freedom equal to the number of over-identifying restrictions. Note that
small values of Xj with respect to Xi imply a reduction of rank of II when the
restrictions are imposed and hence the rejection of the null hypothesis. This test-
ing procedure can be extended to tests on restrictions on the matrix of weigths
« or on the deterministic components (constant and trends) of the cointegrating
vectors.

2.7.6  Cointegration and Common Stochastic Trends

Having discussed the VECM representation for a vector of m non-stationary
variables admitting k£ cointegrating relationships, it is interesting to compare
it with the multivariate extension of the Beveridge-Nelson decomposition. Con-
sider the simple case of an I(1) vector y, featuring first order dynamics and no
deterministic components:

Ay; = afyi1+w (2.31)

where « is the (m x k) matrix of loadings and 3 is the (m x k) matrix of param-
eters in the cointegrating relationships. When As y, is I1(1), we can apply the
Wold decomposition theorem to Ay; to obtain the following representation:

Ayt = C (L) Ug

From which, by applying the algebra illustrated in our discussion of the univariate
Beveridge-Nelson decomposition, we can derive the following stochastic trends
representation:

Y = C* (L) U —'—C(l)Zt

where Z; is a process for which we have Az; = u;. The existence of cointegra-
tion imposes some restrictions on the C matrices, in fact the stochastic trends
must cancel out when the k stationary linear combinations of the variables in y;
are considered in other words we must have:

g'c()=0
By investigating further the relation between the VECM and the stochastic

trends representations we can give a more precise parameterisation of the matrix

cQ).
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Note first that equation (2.21) can be re-written as :

Vi = (Im + a,@’) Yi-1 + U (232)

Premultiplying this system by 8’ yields:

By: =B (In+af)yi1+8'w
= (r+aB')Byi1+ 8w

Solving this model recursively, we obtain the MA representation for the & coin-
tegrating relationships:

By =i=0> (I +oB) Bu. (2.33)

By substituting (2.33) in (2.21) we have the MA representation for Ay; :

Ay, =i = 12 Ik + 06/8 /8,111571' +u;

from which we have:

c)=IL—a(fa)'g (2.34)

Now note the beatiful® relation

=8, () B8) "o} +a(fa) '@ (2.35)

where 3, ,a, are ((m x (m — k)) matrices of rank m — k such that o/, o« =
0,68, 8=0.
By using (2.35) in (2.34) , we have

C()=p8, (alﬁﬂil o,

and

vi=C'(L)u + 8, (O/LBLYI (o' )

which shows that a system of m variables with %k cointegrating relationships
features (m — k) linearly independent common trends (TR). The common trends

6See Johansen([34]) ,page 40
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are given by (o, z;), while the coefficients on these trends are 3 | (O/LBLYI . Note
also that stochastic trends depend on a set of initial conditions and on cumulated
disturbances in fact

TRt = TRtfl —+ C(l) L)

Our brief discussion should have made clear that the VECM model and the
MA model are complementary. As a consequence the identification problem rel-
evant for the vector of parameters in the cointegrating vectors [ is also relevant
for the vector of parameters determining the stochastic trends « . However,
there is one aspect in which the two concepts are different. In theory, identified
cointegrating relationships on a given set of variables should be robust to aug-
mentation of the information set by adding new variables, which should have
a zero coeflicient in the cointegrating vectors of the VECM representation of
the larger information set. This is not true for the stochastic trends. Consider
the case of augmenting an information set consiting of m variables admitting
k cointegrating vectors to m -+ n variables, the number of cointegrating vectors
is constant while the number of stochastic trends increases by n, moreover an
unanticipated shock in a small system need not to be unanticipated in a larger
system. Note that we have added in theory to our statement, this is because,
in practice, given the size of available samples application of the procedure to
analyze cointegration in a larger set of variables might lead to identify different
cointegrating relationships from those obtained on a smaller set of variables.

2.7.7 VECM and common lrends represenlalions

The joint behaviour of consumption and income under the Permanent Income
Hypothesis (PTH) is a good empirical example to illustrate VECM and common
trends representations. Let y,yland ¢; denote respectively the logarithms of
aggregate disposable income, permanent income and consumption. Under PIH
the joint distribution of consumption and income can be characterised as follows:

Y =Yy + o

P _ P

yt _/’Ly +yt71+ut
Ct:yf

permanent income is the stochastic trend of income, which is made of the per-
manent component and of a transitory component, v; and u; are the shocks to
the transitory and the permanent component of income, it is natural to think of
them as orthogonal shocks normally and independently distributed. Consump-
tion and income are cointegrated, in fact they share the single unobservable
common stochastic trend in this system.

By eliminating the unobservable stochastic trend from the system, we have
a bi-variate structural representation:
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Yy = C¢ =+ V¢ (236)
Ct = oy +C1 + Uy

We obtain the VAR(1) representation by substituting for ¢; in the first equa-
tion from the second equation of (2.36)

Y\ = (Y (9L (Y ) (e
Ct Hy 01 Ci—-1 U
We = Ug +Ut

From which we immediately obtain the VECM representation

(3)= () (o) () (%)

where

The derivation of the common trends representation is derived by considering
that, as y; — ¢; = v¢, the MA representation for consumption and income growth

is then
Ayt . /,Ly 10 Wy —11 We_1
<Act> o <uy + 01 Uy + 00 U1

from which we have
Yt — /’Ly t C* I Wy C 1
()= () e () vown

C1) =B, (@ B)) "ol

@)- (e ()] v

Given that in this application (o', 8 L)71 = 1, it follows that consumption and
income have a single common stochastic trend. Such trend can be represented as

and
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¢

1

o) (My> i+ ! Zt:wt , and only shocks to the permanent component
Hy i =15

of income enter the trend.

2.8 Multivariate cointegration: an application to US data

To illustrate empirically how cointegration analysis is performed let us con-
sider monthly data from the US economy for the variables considered in ba-
sic macroeconomic models: the log of the real M2 (m — p) ,annual, seasonally
adjusted, CPI inflation (7) , the log of monthly real GDP (y), the nominal
own return on M2 (R™), the nominal opportunity cost of holding money as
measured by the interest rate on three-month Treasury Bills (Rb) . All series
except R™ are those used in Leeper-Sims-Zha([38]), R™ has been retrieved by
the St.Louis FED Website at http://www.stls.frb.org/fred/. They are available in
the file LSZUSA.XLS. We shall perform cointegration analysis using the package
PC-FIML by Doornik and Hendry ([5]), alternative menu-driven packages are
available in RATS (see [41], [21]), E-Views does not allow to perform all the
steps of the analysis in that specification and testing of the long-run restrictions
are not (yet) available.

2.8.1 Specification of the VAR

The first step of the empirical analysis is the specification of the VAR. The
specification of the VAR requires the consideration of two issues pertaining re-
spectively to the set of variables included in the VAR and to the lag length
of the VAR. These are important issues in that mis-specification of the VAR
leads to misleading inference. In general the set of variables to be included in
the VAR is determined by the economic problem at hand, however this criterion
does not rule out the possibility of mis-specification. Consider the case of the
set of variables chosen for our example, they include all the variables used in a
simple IS-LM model of a closed economy, but nothing guarantees that the US
economy is correctly described by such model. Suppose that the central bank
targets expected inflation by using short term interest rates as an instrument.
The model is mis-specified if it omits any leading indicator for inflation mon-
itored by Central Bank. An obvious candidate is the commodity price index
but there might be more, such as long-term interest rates or other asset prices.
In absence of an obvious baseline model, the behaviour of residuals is taken as
an indicator of mis-specification. In a correctly specified model residuals should
be random normal variables with zero mean and constant variance-covariance
matrix, departure of fitted residuals from those hypotheses could be taken as an
indicator of mis-specification. However, even when all the relevant variables have
been included, the model could be still mis-specified because of omitted relevant
dynamics. The selection of the order of the VAR is an important step in the
specification. Sims([48]) suggests a statistics to test the validity of restrictions
imposed on a general model:
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(T — k) [log |Z,| — log | Zuns|]

where T is the sample size, k is the number of parameters estimated in each
equation of the VAR, |¥,| is the determinant of the variance-covariance ma-
trix of the residuals of the fitted restricted model, |y, | is the determinant of
the variance-covariance matrix of the residuals of the fitted general unrestricted
model. The statistic has a x? distribution with degrees of freedom equal to the
number of restrictions in the system. The term (7" — k) includes a small sample
correction, in fact as T becomes larger the correction for small sample (7' — k) /T
converges towards unity. Obviously, the selection of variables and the selection of
the lag length are not independent processes, in fact a longer lag length might be
the consequence of omission of one relevant variable from the VAR. In practice
we shall start from a baseline VAR including the set of variables suggested by
the theory and a sufficiently long lag, check the behaviour of residuals. When
well-behaved residuals are obtained, we proceed to reduction of the lag length
by testing the validity of the implied restrictions.

Our general baseline model is a VAR estimated over the sample 1960:1-1979:6,
including fifteen lags of each of the five variables, a constant and a trend, so we
have:

Yz Yt
Tt 14 T
(m—p), | =a,+ait+i=1 AL [ (m—p), [+u. (2.37)
Ry R
Ry Ry

We have chosen to end our estimation in 1979 because, from the second part
of 1979 to 1982, the Fed has changed is operating procedure moving from an
interest rate targeting regime to a reserves targeting regime. As a consequences
paramaters in the Fed’s reaction function must have changed. It is very impor-
tant to estimate cointegrating models using data from a single regime. In fact,
structural instability might be very dangerous when cointegrated models are
used. The intuition is very simple, in the presence of parameters instability a co-
integrated model is very likely to push the system towards the "wrong” long-term
equilibria with very serious consequences for forecasting and policy simulation.
Checking residual behavious is very important also with this respect, as patho-
logic behaviour of residuals is a clear symptom of parameters’ instability.

The estimation of our base-line model delivers the set of residuals reported
in Figure 2.12.

The residual are normalized, hence residual with absolute value higher than
1.96 occur with a probability of one percent under the null of normality. We
note many outliers, in fact when a formal test of normality of residuals is per-
formed the null is strongly rejected”. This is worrying in that non-normality

“We shall discuss tests for normality at a later stage of the book
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Fic. 2.12. VAR residuals with outliers

might signal mis-specification but also in that departure from normality might
induce misleading inference in the application of the Johansen procedure. In-
terestingly, most outliers occur on occasion of the oil price crises. So, prob-
ably a commodity price index is the relevant omitted variables causing non-
normality in the residuals. However, the inclusion of a commodity price index
as a further endogenous variable in our system would simply shift the out-
lier problem from our equation for interest rates to the commodity price in-
dex. In fact no variable included in this system has an high explanatory po-
tential for a commodity price index. We have then included in the system
contemporaneous and lagged (up to the sixth lag) commodity price inflation.
We consider commodity price inflation as a stationary exogenous variable, this
choice shall be discussed later on. We have also included dummies for excep-
tional periods during the oil price crises as exogenous variables in our sys-
tem. In general, dumMMYY is a variable taking value 1 in the MM month
of the year YY and zero anywhere else. We include the following dummy vari-
ables: dum7306,dum7307, dum7308, dum7310, dum7311, dum7312, dum7402,
dum7403, dum7407, dum7408,dum7409, dum7501, dum7505, dum7806, dum7808,
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dum7811, dum7904. Note that the inclusion of dummies and exogenous variables
in the specification modifies the deterministic nucleus of our model and appro-
priate critical values for the tests should be re-computed(see??,7?). We do not
take this step and report the critical values automatically indicated by version 9
of Pc-Fiml in Table 7.

The inclusion of the dummies in the system delivers a new set of residuals,
reported in Figure 2.13, which are virtually free from outliers and do not show

any departure from the hypothesis of normality.
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Fic. 2.13. VAR residuals without outliers

We proceed then to assess the possibility of simplification of the system. The
progressive simplification strategy, based on the likelihood ratio tests discussed
above, leads us to a specification with 6 lags.

2.8.2 Selection of the deterministic components in the VECM specification

The choice of the determistic components in the VAR is not trivial, given that it
affects the distribution of the relevant statistics to perform cointegration analysis.
Given the following general VECM model:
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Ay, =g+t + I Ay, + 1Ay o+ .. +1ly,_,, +u,

five possible specifications for the deterministic components have been con-
sidered in the literature:

(¢) po =0, 1y = 0 this would determine a zero mean in the I(0) components
and a non-zero mean in the I(1) components

(#9) o = af, 1y = 0 this would restrict the constant to belong to the
cointegrating space inducing a non-zero mean both in the I(0) and the I(1)
components

(#91) o = unrestricted, y1r; = 0 this would generate a zero mean in the 1(0)
components and a linear trend in the I(1) component

(i) py = unrestricted, iy = af, this would generate a linear trend both in
the I(0) and the I(1) components

(v) po = unrestricted, i, = unrestricted, this would generate a linear trend
in the I(0) components and a quadratic trend in the I(1) components

Different critical values have been tabulated for each specification ([?]) and
are now automatically available in all packages peforming the Johansen proce-
dure. Note that the inclusion of intervention dummies also modifies the determin-
istic components of the VAR and this requires in principle in ad-hoc tabulation
of the relevant critical values([11]).

In our application we choose specification (iv) as some of our series show
trends in levels and, as already stated, we ignore the modification of the relevant
distribution generated by the inclusion of dummies.

2.8.3 Test for the rank of 11

Having specified the VAR and chosen the specification of th deterministic com-
ponent , we can estimate the II matrix and start our analysis of the long-run
properties of the system.We apply the Johansen procedure to identify the rank
of the matrix II in the following re-parameterisation of our model:

27%; do 11 6
AR R 0> FiAsLPCM, ; + g'DUM, +
b do 31
AR, do 41
A (m—p), i
Ay Yi—6 U1t
5 Ame_; Tt—6 U2
i=1Y Dy | ARP, +11 | R + | use
AR?,Z' R?,G Uyt
A(m—p),, (m—p)_ Ust

The results of the Johansen procedure are reported in Table 6:
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TABLE 6: Analysis of the II matrix in the estimated VAR model

Figenvalue Hg : rank = p Eigenval C.Eigenval 95% Trace C.Trace 95%

0.185 p=20 45.74 39.61 375 1341 1161 87.3
0.148 p<1 35.93 31.11 31.5 88.36 76.53 63

0.133 p<2 32.14 27.84 255 5244 4541 424
0.083 p<3 19.56 16.94 19  20.3 1758 253
0.0033 p<A4 0.74 0.64 12.3 0.74 064 123

where Eigenvalis the max eigenvalue test, C.Eigenvalue is the max eigenvalue
test corrected for small sample, i.e. using T — & instead of T', Trace is the trace
test, C.Trace is the trace test corrected for small sample amd 95% are the critical
values tabulated for our specification of the deterministic components. Table 7
poses an interesting problem to the applied reseracher in that the trace statistics
and the maximum eigenvalue statistic deliver different results, with more relevant
differences in the case of the adoption of small sample correction for the statistics.
We opt for rejecting the null of at most one cointegating vector and do not reject
the null of at most two. Of course, such choice is debatable.

Note that, before any identifying restrictions are introduced, most available
cointegrating packages do deliver some point estimates of the a and 8 matrices
as follows:

TABLE 7: Cointegrating vectors: the Johansen interpretation.

Standardised 3’

Y T m—p R™ R° Trend
1 0.078 -0.40 3.55 -3.96 -0.18
1.08 1 -0.61 -1.20 -1.08 -0.15
Standardised o
Y -0.02 -0.013
™ 0.02 -0.005
m—p 0.047 -0.018

Rr™ -0.00008 -0.002
RY 0.03 0.01

These estimates are obtained by imposing a default identification which de-
livers cointegrating vectors orthogonal to each other ([36]) . In some context, for
example a demand and supply system, this assumption might be the economic
case of interest. However, this is not the case in general and in our specific exam-
ple. In the next section we shall evaluate the potential of different identification
of economic interest by checking the validity of over-identifying restrictions.
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2.8.4 Specification and testing of the long-run restrictions

We consider two different proposals. In the first one we identify a traditional
money demand and a relation beween the own interest rate on money and the
opportunity cost of holding money. As an alternative, we identify an interest rate
reaction funcion in which the nominal interest rate responds to inflation, output
and a linear trend, alongwith a relation between interest rates and inflation. We
have selected these two specifications because, as we shall see, they form the
basis for two alternative targeting strategies: inflation targeting via the control
of money growth and inflation targeting via the control of interest rates.

We can parameterise the restrictions implied the first identification scheme
as follows:

Q11 Q12
Q21 Qg2
Q31 Q32
Qg1 Q42
Q51 Os2
Qg1 Qg2

8 = <511 0 1084 B 561)
0 B220 1 Bsy O

The results, reported in Table 9, show that the two over-identifying restric-
tions are not rejected. The first cointegrating vector is consistent with a money
demand function as far as the semi-elasticities with respect to interest rates are
concerned, the elasticity with respect to income is somewhat high, although it is
compensated by a deterministic trend with the opposite sign. However, looking
at the weights on the cointegrating vectors we note that real money reacts very
little to disequilibrium in the first cointegrating relationship. In fact the only
strongly significant weight is the one describing the reaction of real income to
disequilibrium in the second cointegrating relationship.
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TABLE 9: A scheme of overidentified cointegrating vectors

Standardised 3’

Y T m—p R™ R® Trend
(0.17)—2.20 0 1 (2.16)—7.29  (0.96)7.51 (0.06)0.38
0 (0.22)1.08 0 (0.59)—3.16 1 0

Standardised «

y (0.015)0.064  (0.036)—0.17
™ (0.009)—0.0016  (0.021)—0.034
m—p (0.009)—0.019  (0.023)—0.014
R™ (0.0001)—0.0006  (0.003)0.002

RP (0.008)—0.023  (0.02)0.03

LR-test, rank=2:x?(2) = 1.03 [0.59]

We then consider the second alternative and parameterise restrictions as fol-
lows:

II=af
Q11 Q12
Q21 (22
Q31 (32
Qg1 Q42
Q51 (52
Qg1 (g2

8 = B3 —1001 B,
0 10100

The results, reported in Table 9, show the plausibility of the interpretation
of the first cointegrating relation as a reaction function for the monetary policy
maker. Policy rates react to inflation, with a coefficient which can be restricted
to one, and to deviation of output form a deterministic trend (a non-stationary
variable in our specification). The estimated weights strongly support the iden-
tification of this relationship as an equilibrium for the policy rates. The second
cointegrating vector does not differ significantly from the one obtained within
the first identification scheme.
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TABLE 9: A scheme of overidentified cointegrating vectors

Standardised 3’

Y T m—p R™ R® Trend
(0.03)—0.22 -1 0 0 (0.68)1 (0.009)0.08
0 (0.17)—0.96 0 (0.47)2.75 1 0

Standardised «

y (0.069)0.13213 (0.039)—0.002
™ (0.038)0.047  (0.022)—0.017
m—p (0.042)—0.09  (0.034)—0.09
R™ (0.005)0.007  (0.0029)0.003
RP (0.036)—0.13  (0.021)—0.062

LR-test, rank=2: x%(4) = 6.1 [0.19)]

We conclude our analysis of these two alternative identification schemes by
stressing that statistical criteria do not lead to an unequivocal identification,
then the choice between the two alternatives is very likely to rely on economic
criteria.

2.9 Multivariate decompositions: some considerations

The purpose of our illustration of the Johansen procedure in the previous section
was to show that the identification of cointegrating vectors requires involves a
multi-step process. The outcome of many of these steps is not so clear-cut and
therefore the final product might be differ across researchers. The presence of
structural breaks paired with the specification issues and size of available sam-
ples have an important impact on the empirical application of the procedure.
Alternative methods to the this procedure have been proposed in the literature,
see, for example, Horvath and Watson([28]), Phillips ([45]), Reimers([47]) and
Saikkonen([49]) . However, it is important to remember that the specification of
a dynamic model in levels has proved sufficient to remove the spurious regres-
sion problem and that the VECM representation of a VAR model in level is
just a reparameterisation, before the rank reduction restrictions are imposed.
Sims,Stock and Watson([51]), argue that a VAR model in levels in the pres-
ence of cointegration is over-parameterised and therefore leads to inefficient but
consistent estimates of the parameters of interest. The loss of efliciency has to
be weighted against the risk of inconsistency of estimates which occurs when
the "wrong” cointegrating restrictions are imposed. Imposing the ”wrong” coin-
tegrating parameters will make the system converge to the "wrong” long-run
equilibria but it will also bias the short-run dynamics as the system is pulled in
the wrong direction. For this reason the recent research has taken a defined line
and VAR in levels rather than co-integrated VARs are used when the issue of
economic interest is not related to the short-run rather than to the long-run. A
standard example is the analysis of the monetary transmission mechanism. Of
course there is more in Sims,Stock and Watson([51]) than these considerations.
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In fact they show that standard distribution can be applied when doing inference
in a VAR model which involves variables admitting stationary linear combina-
tions, reverting to non-standard distributions is necessary only when the subsets
of variables on which inference is performed do not admit any stationary linear
combination.
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As a matter of fact cointegrated VARs are mainly data-driven specifications.
The macro-model for the relevant DGP is not fully specified, as it is clearly
the case with the example discussed in this chapter where we started off our
investigation by a model centered on money and we end up specifying a long-run
structure where the quantity of money, being fully demand determined, plays
no role in the monetary transmission mechanism. It is not easy to interpret the
results from a simultaneous model, when we have (loose) theories generating only
a subset of the equations. Moreover, there are difliculties with an approach aimed
discriminating between theories on the basis of the outcome of test statistics,
based on a number of joint hypothesis, some of which are clearly independent
from the theories tested. There is also an issue with the critical values for the
testing procedures in the Johansen framework. First, they depend crucially on
the specification of the deterministic nucleus of the VAR , so the inclusion of
dummies for outliers introduces modifications in the relevant critical values. A
solution to this problem is available, see Johansen-Nielsen[11]. Second, recent
work by Johansen|[35], has shown that it is important to implement small sample
corrections for the asymptotic critical values, when applicable. Taking these two
aspects together, it is likely that a re-assessment of all the empirical evidence
proposed in the nineties without implementing the appropriate corrections is
necessary. So what do we make of all the sentences issued on theories using the
wrong critical values?

Note also that cointegration analysis based on a multi-step framework: speci-
fication of the VAR and its deterministic component, identification of the number
of cointegrating vectors, identification of the parameters in cointegrating vec-
tors, tests on the speed of adjustment with respect to disequilibria. The results
of the final test depend on the outcome of the previous stages in the empirical
analysis, but the outcome of each step is not so easily and uniquely established
empirically.

Of course there is something to be said for a methodology aimed at exploit-
ing cointegration to deliver a stationary representation of a non-stationary vector
autoregressive process in which short-run and long-run dynamics are naturally
separated and sound statistical inference can be applied. However, the prac-
tical implementation of such methodology requires theresearcher to deal with
specification and identification problems which are not easily, and above all not
uniquely, solved.
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3

THE IDENTIFICATION PROBLEM IN
MACROECONOMETRICS

3.1 Introduction

VAR in levels and VECM representations specify the probabilistic structure of
the data. Consider the case of an empirical investigation of the monetary trans-
mission mechanism gear to evaluate the impact of monetary policy on macroe-
conomic variables, and partition the vector of n variables of interest into two
subsets: Y ,which represesents the vector of macroeconomic variables of interest
and M, the vector of monetary variables determined by the interaction between
the monetary policy maker and the economy. As we have seen that the VECM is
obtained by imposing restrictions on the VAR, consider the general unrestricted

system:

<1\‘Z> = Dy (L) (;Zi) + uy (3.1)

"
i — ugw

w | Iy ~nid. (0,2)

(i 172) = (2 (n) X

This system specifies the statistical distribution for the vector of variables of
interest conditional upon the information set available at ¢ — 1. In the case of a
VECM specification, after the solution of the identification problems of cointe-
grating vectors, the information set available at ¢ — 1 contains n lagged endoge-
nous variables and r cointegrating vectors. We face an identification problem in
that there is more than one structure of economic interest which can give rise to
the same statistical model for our vector of variables.
In fact for any given structure,

A (;Z) = Ci(L) (hﬁi) +B (1’/’5;) (3.2)
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which give rise to the observed reduced form (4.11) when the following restric-
tions are satisfied:
ul vy
ATIC(L) =Du(L), A b )= i
u; Vi
there exists a whole class of structures which give rise to the same statistical
model (4.11) under the same class of restrictions :

FA (;Z) = FC4y(L) (;Zi) +FB (:}é) (3.4)

where F' is an admissible matrix in the sense it is conformable by product
with A, C; (L), B and FA, FCy(L), FB feature the same restriction with A,
C, (1), B.

3.1.1 Identifiability

A model is identifiable if all its possible structure are identifiable, i.e. each struc-
ture is associated to a different distribution, this happens when the only admis-
sible F' matrix is identity.

Let us show the point by considering identification of the first equation. In
order to achieve identification some restrictions must be imposed, as the number
of parameters in the reduced form (4.11) is smaller than the number of param-
eters in the structure (3.2). For the sake of exposition we begin by considering
zero restrictions on the matrices A and C;, determining the first moment of the
conditional distributions of the vector of variables of interest and concentrate on
a first order autoregressive representation:

() =e ()« () »
(&)-= ()

Zero restrictions on the first equations can be represented as follows:

1 1,a1 0 ¢ 0
so (n —mn;) endogenous variables and (n — k1) exogenous variables are re-
stricted to zero. A is a ((n — 1) X ny) matrix containing the coefficients with
which the nqvariables entering contemporaneously the first equation enters the
remaining n—1 equations in the system, Ay isa ((n — 1) (n — n1)) matrix contain-
ing the coeflicients with which the n — nqvariables entering contemporaneously

the first equation enters the remaining n — 1 equations in the system. Analo-
gously, C is a ((n — 1) X k) matrix containing the coefficients with which the
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ky variables entering with a lag in the first equation enters the remaining n — 1
equations in the system, C; is a ((n — 1) (n — k1)) matrix containing the coeffi-
cients with which the n—n, variables not entering with a lag in the first equation
enters as lagged variables the remaining 7 — 1 equations in the system. Represent
the first row of I as (1 f ) . Admissibility implies

f (A C) =0

in fact only when these conditions are satisfied the first row of F'A, FCy
feature the same restriction with A, Cj.

Identification implies that the only solution is f7 = 0, as the first rows of an
(n x n) identity matrix has unity as the first element and zeroes as the remaining
(n — 1) elements. Therefore the condition for identification is

rank (4, |C1) =n—1.

This is a necessary and sufficient condition for identification. As (A | By)
has (n—1) rows and (n —mny) + (n — k1) columns, a necessary condition for
identification is that the number of colums is sufficiently large to let the rank be
equal ton —1:

n—klznl—l.

Therefore, in order for the first equation to be identified, we need that the
number of omitted lagged variables must be greater than the number of included
contemporaneous variables minus one (the one variable with respect to which the
equation is normalized). At this point it is natural to state that the mode is not
identified when n—k; < ny —1, the model is just-identified when n—k; = nq —1,
the model is over-identified, with n+1—(ny + k1) > over-idenifying restrictions,
when n — k1 > ny — 1.

This discussion of identifiability can be generalised to non-zero restrictions
by considering the following representation:

Y,

the system becomes
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DWt = € (36)
D;
D= .
D/

General restriction on the i-th equation can be represented as:

R;D; =0,
where R; is the (k; X (n +n)) matrix imposing k; restrictions on the 2n

elements of i-th equation in the system.
Necessary and suflicient condition for identification are then

rank R; (D1 |Dg... | Dy)=n—1

which shows the equivalences between the conditions for short-run identifi-
cation and the conditions required to achieve long-run identification of cointe-
grating parameters. We end this section by noting the short-run and long-run
identification in a VECM are two completely separated problems ([16]) . Consider
the simplest VECM representation of a first order VAR:

Ay; = (A Dy, 1 +uy
=1y, 1+ u.
When the long-run identification problem is solved we decompose II into a3’

and we can re-write the VECM as follows:

Ay, = azi 1 +w
Zi 1 = /8,th1

which makes clear that the identification of parameters in the structural form:

AAy; = Aaz; 1+ Auy

is independent from the identification of parameters in the matrix 3.
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3.2 Identification in the ”Cowles Commission” approach

The traditional, usually referred to as the Cowles Commission, approach to
econometric modelling of the monetary transmission mechanism is aimed at the
quantitative evaluation of the effects of modification in the exogenous variables
in the system on the endogenous variables in the system. Variables controlled
by the monetary policy maker (the instruments of monetary policy) are taken
as exogenous, while macroeconomic variables, which represents the final goals
of the policy maker, are taken as endogenous. The policy experiment of interest
consists usually in modifying such exogenous variables to assess the impact on
the macroeconomic variables of interest. Leaving aside the deterministic compo-
nent, the Cowles Commission specification modifies the general dynamic model
of the previous section , as follows:

A (;Za) — Ci(L) (;Zi) +Cy(L) (Mt) + (jw) (3.7)

where Y represents the vector of macroeconomic variables of interest, while
M is the vector of monetary variables determined by the interaction between
the monetary policy maker and the economy and Af represents a sub-vector of
the monetary variables, assumed exogenous because directly and fully controlled
by the monetary policy maker. The process generating these variables does not
contain any interaction with the other variables in the system. C; (L), Cg(L) are
polynomials in the lag operator L, taking the general form C;(L) = ¢p + 1L +
ol + ...c, "

The general conditions for identification derived in the previous section are
applicable to the above specification. In fact the consideration of some variables
as exogenous aids identification in that exogenous variables are treated, from the
point of view of identification, as the lagged endogenous variables. Considering
the general conditions for identification

rank R; (D1 |Dg... | Dy)=n—1

note that the inclusion of exogenous variables increase the columns of the matrix
R; (D | Do... | D,,) and therefore the chances for the model to be identified.

3.2.1 An illustration: identifying the IS-LM-AD-AS model

Let us consider the simplest possible macroeconomic model for a closed economy
to illustrate how conditions for identification can be checked. The model consists
of four equations:
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Ye = e +yp — ais(Re — ) +ene (3.8)
T = mg +ag1 (Yo — yi) + €ar (3.9)
My — Py = €13 + 31y — asz Ry + €3y (3.10)
g = Bre1+ (1 — B) me + €as. (3.11)

Equation (3.10) describes an LM equation, which, for a; = 1, relates the
nominal interest rate to (the log of) money velocity circulation. Equation (7.57)
describes an IS curve in close economy and shows immediately that monetary
policy authority can influence the level of activity only if, by controlling the nom-
inal interest rate, it manages to influence the real interest rate. Equation (7.58) is
an expectations augmented Phillips curve, according to which actual inflation is
determined by expected inflation and deviations of output from its potential level
y*, which we take as a deterministic trend. Equation (3.11) describes the mech-
anism with which expectations are formed. The extreme case of price-stickines
is obtained by posing 8 = 1, while the case of rational expectations-perfect price
flexibility is obtained by posing 3 = 0.

Note that no equation for money is included in the model . In fact money
supply is not modelled as it is considered exogenous, i.e. fully controlled by
the monethary authority. The econometrician’s task is the estimation of the
unknown parameters to simulate the impact of different path for the exogenous
variable controlled by the monetary authority. The model uses four equations
to determine four endogenous variables, 7, 7%, R; ed y;, for given values of the
two exogenous variables y; and m;. The exogeneity status is attributed to y;
and my, either because they describe the available technology and demography
or because they are fully controlled by the policy-maker.

Consider the extreme case of price-stickiness, given by 3 = 1, and use equa-
tion (3.11) to eliminate expected inflation from the model, the IS-LM-AD-AS
model can be specified as a special case of our general specification (3.7) :

Yt €1t
Pt 1 Yi—1 Ui o €2t
AR | =Cy [t} +Cq | pe1 | +Co [pt 2} + | €3 (3.12)
my mi €4
M €5t

—a921 0 0 a21
A= esr 1 1 1
ass a33 a33
0 0 0 1 0
0 0 0 0 1
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co,11 0 0ai30
€0,21 0 02 0
Co = | €0,31 0 s Cl =1{00 0
€041 0 00 1
€051 €052 00 O
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Note that y; is a deterministic trend and money is exogenous in that its rate
of growth is fixed to c41, the effect of monetary policy on macroeconomic vari-
ables is evaluated by assessing the impact on the system of modifications in this
parameter. To apply to this specific case our general discussion of identifiability
consider that, using the representation (3.6), we have:

1 0 a13 0 -1 €o,11 0

— Q921 1 0 0 a21 €0,21 0
— | —aa _ 1 1
- as3  ass 1 ass 0 €0,31 0

0 0 01 0 cu0

0 a13 0 —Q13 0

02 00
00 00
00 10

0 0 0 0 1 €0,51 €0,52 00 00

coo |

The restrictions in the first equations are imposed by the following matrix:
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[01 0 0000000007
00 0 100000000
100 010000000
00 0 000100000
Ry,=|000000010000

00-1000001000
00 0 000000100
00-1000000010
00 0 000000001

The first equation is then over-identified with five (nine-four) over-identifying
restrictions when the following rank condition is satisfied:

rank Ry (Dy | Dg...|Ds5) =4

—agy 1 00 a21¢09210 0200 -1
a 1 1
rank —ﬁ —Elgo 007310 00000
0 0 01 0 co410 00100

0 0 00 1 cos 5200000

=4

By applying the procedure to all the equations in the system it can be shown
that the second equation is over-identified with five over-identifying restrictions,
the third equation is over-identified with three over-identifying restrictions, the
fourth equation is over-identified with six over-identifying restrictions, the fifth
equation is over-identified with five over-identifying restrictions. We conclude
that the model is identified and imposes a total twenty-four over-identifying
restrictions.

3.3 The great critiques

Cowles Commission approach to identification of structural econometric models
broke down in the seventies when it was discovered that this type of models

“...did not represent the data, ... did not represent the theory... were ineffective for
practical purposes of forecasting and policy evaluation...” ([17]).

Different explanations of the failure of Cowles Commission approach gave
rise to the different prominent methods of empirical research: the LSE (Lon-
don School of Economics) approach, the VAR approach, and the intertemporal
optimization-Real Business Cycle approach. We shall discuss and illustrate the
empirical research strategy of these three alternative approaches by interpreting
them as different proposals to solve problems observed in the Cowles Commission
approach.

The LSE approach was initiated by Denis Sargan but owes its diffusion to
a number of Sargan’s students and it extremely well described in the book by
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David Hendry ([9]) . This approach to macroeconometric modelling explains the
ineffectiveness of the Cowles Commission models for practical purposes of fore-
casting and policy in terms of their incapability of representing the data. The
root of the failure of the traditional approach lies in the little attention paid
to the statistical model implicit in the estimated structure. Consider our sim-
ple example of the IS-LM-AD-AS model, the identified structure is estimated
without checking that the implicit statistical model is an accurate description
of the data. Spanos ([20]) considers tha case of a simple demand and supply
models to show how reduced form are ignored in the traditional approach, in
fact most of the widely used estimators allow to derive numerical values for the
strucutral parameters without even seeing the statistical models represented by
the reduced form. There are several possible causes for the inadeguacy of sta-
tistical models implicit in structural econometric models: omission of relevant
variables, omission of the relevant dynamics for the included variables (note, for
example, that the estimated money demand in our simple example relation is
a simple, static equation), invalid assumptions of exogeneity. The LSE solution
to the specification problem is the theory of reduction. Any econometric model
is interpreted as a simplified representation of the unobservable Data Generat-
ing Process (DGP). For the representation to be valid or “congruent”, to use
Hendry’s own terminology, the information lost in moving from the DGP to the
its representation, given by the adopted specification, must be irrelevant to the
problem at hand. Adequacy of the statistical model is evaluated by analyzing the
reduced form. Therefore, the prominence of structural model with respect to re-
duced form representation in the Cowles Commission approach to identification
and specification is reversed. The LSE approach starts its specification and iden-
tification procedure by specifying a general dynamic reduced form model. The
congruency of such model cannot be directly assessed against the true DGP,
which is not observable. However, a series of diagnostic tests are proposed as
criteria for evaluating the congruency of the baseline model. The general prin-
ciple guiding the application of such criteria is that congruent models should
feature true random residuals, hence any departure of the vector of residuals
from a random normal multivariate distribution should be taken as a symptom
of mis-specification. Once the base-line model has been validated, the reduction
process begins by simplifying the dynamics and by reducing the dimensionality
of the model by omitting to include equtions for those variables for which the
null hypothesis of exogeneity is not rejected. In fact the concept of exogeneity
is refined within the LSE approach and is broken down in different categories,
determined by the purpose of the estimation of the econometric model. A further
stage in the simplification process could be the imposition of the rank reduction
restrictions in the matrix determining the long-run equilibria of the system and
the identification of cointegrating vectors. The product of this stage is a statisti-
cal model for the data, possibly discriminating between short-run dynamics and
long-run equilibria. Only after this validation procedure structural model are
identified and estimated. Just-identified specification do not require any further
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testing, as their implicit reduced form does not impose any further restrictions
on the base-line statistical model. The validity of over-identified specification is
instead tested by evaluating the validity of the restrictions implicitly imposed on
the general reduced form. After this last diagnostics for the validity of the reduc-
tion process have been performed, structural models are used for the practical
purposes of forecasting and policy evaluation.

If the LSE approach finds its explanation of the failure of Cowles Commis-
sion models in their incapability of representing the data, different approaches,
initiated by two famous critiques by Lucas ([36]) and Sims ([48]), relate their
explanations of the failure to the incapability of Cowles Commission models to
represent the theory. The general class of theoretical models of reference for
these two critiques are forward-looking intertemporal optimization models. Lu-
cas attacks the identification scheme proposed by the Cowles Commission by
pointing out that these model do not take explicitly into account expectations
and therefore identified parameters within the Cowles Commission approach are
in fact mixture of “deep parameters” describing preference and technology into
the economy and expectational parameters which, by their nature, are not stable
across different policy regimes. The main consequence of such instability across
different regime is that traditional structural macro-model are useless for the
purpose of policy simulation. To show the point let us reconsider the case of our
simple model of the monetary transmission mechanism estimated for simulating
the impact of different monetary policies on macroeconomic variables.

Assume the following DGP, in which expected monetary policy matters for
the determination of macroeconomic variables in the economy:

Yt . thl — € uzf
(Mt> — Dy(L) <Mt1 + D (M) + i (3.13)
A Cowles Commission model is estimated without explicitly including expec-
tations over a sample featuring the following money supply rule:

Mt+1 = Qg —+ Mt' (314)

The fitted model will therefore have the following specification:

(%) =pw () wpaosmaonr (). o

t

(3.15) is not the correct model to simulate the impact of any rule different
from (3.14) . Consider the case of :

M1 =ar + M;

The correct model, in terms of observable variables, for simulating the effect
of the new policy would be:
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t

(1\2) = Ds(L) (;Zi) + Daay + Do (M) + <3}YM> (3.16)

and simulation based on (3.15) would give the wrong prediction on the effect
of monetary policy.

The Sims ([48]) critique runs parallel to the Lucas critique but concentrate
on the statust of exogeneity arbitrarily attributed to some variables to achieve
identification within structural Cowles Commission models. Sims argues that no
variable can be deemed as exogenous in a world of forward-looking agents whose
behaviour depends on the solution of an intertemporal optimization model. Again
with reference to our example, reconsider the case for exogeneity of money sup-
ply. If the monetary authority uses money supply as an instrument to achieve
given targets for the macroeconomic variables, then it would be very ”natural”
for money supply to react not only the output and inflation but also to leading in-
dicators for these variables. Assuming money supply as exogenous, the estimated
model omits completely a very relevant feedback and looses an important fea-
ture of the data. Moreover, by assuming incorrectly exogeneity, the model might
induce a spurious statistic efficacy of monetary policy in the determination of
macroeconomic variables. The endogeneity of money does generate a correlations
between macroeconomic variables and monetary variables, which, by assuming
invalidly, money as exogenous could be interpreted as a causal relation running
from money to the macroeconomic variables.

We shall devote to some deeper illustration of the different approaches to
identification in response to the problems with the Cowles Commission approach,
we shall then devote the rest of the book to the illustration of how such different
approaches are put to work to constrcut macroeconometric models.

3.4 Identification in the LSE methodology

To illustrate the LSE approach to identification re-consider the Cowles Commis-
sion specification of the IS-LM-AS model. The Cowles Commission’s strategy
direct specifies of an identified structure of interest such as (5.1). The LSE re-
search strategy begins form the specification of a general statistical model, i.e.
a reduced form. There are no specific rule in the choice of the baseline speci-
fication, the only constraint being that such specification should be sufficently
general to deliver a congruent representation of the underlying unknown Data
Generating Process. A possible baseline specification could be the following:
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Yt do,11 do12

Dt do 21 do22 1

Ry | = | dos31 do32 [t} + (3.17)
my do 41 do 42

y{ do 51 do 52

di1 dii2 di13 dias dias | | Yet
dy21 dyoo dy o3 dypg dios | | Peo1

+ [dig1 dise di33 digadizs | | Ren | +
di a1 dia2 d143 diag dias | | M1
dis1 dise diss disa diss | | Yig

do 11 do12 d213 do14 d2 15 | | Ye—2 Uy
do21 do 22 d223 do 24 daos | | Pi—2 Uy
do 31 da232 d233 d2 34 da 35 R o | + |us;
do 41 do a2 d 43 do 44 do a5 | | 42 Uyy
dosi dose doss dasa doss | | Yio Usy

Note that this model is much more general than the Cowles Commission
specification as far as the dynamics of all variables is concerned, moreover no a-
priori restriction on the nature of the trend is imposed. The first step of the model
validation procedure consists in the evaluation of the lag truncation: is the chosen
length of the polynomial in the lag operator (L = 2, in our case) long enough
to capture the dynamics in the data ? If the answer is yes, then the next step
of the specification strategy can be taken, to identify the long-run structure and
re-specify the reduced form as a VECM. As we have already pointed out this step
can be skipped at the only risk of loss in efficiency. To keep the LSE specification
more directly comparable with the Cowles Commission IS-LM-AS model, we do
run this risk and keep the reduced form in levels. The last step of the LSE
identification strategy is the specification of structural models. Just-identified
model do not impose any further restriction on validated reduced form, while
over-identified structure do impose testable restrictions on the reduced form.
Testing such restrictions is the final model evaluation criteria. We have seen
that in our specific example we have twenty five over-identifying restrictions.
The validity of the over-identifying restrictions can be checked by comparing
the reduced form implicit in the structural model (5.1) with the general reduced
form (3.17) . The reduced form implicit in the structural model (5.1) is found by
pre-multiplying the model by:

0 0
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as33 —a13 —13033 a3 (ass + a21013)
az1033 (@33 +@31013) —021013033 021013 —a31021013
=k a1 +az 1 as3 -1 asy
0 0 0 1 0
0 0 0 0 1
1

a33 + a21013 + a31013

Yt co,11 0

Dt co,21 0 h

B | =A1|cos0 e (3.18)
my co41 0 .

(' €0,51 €0,52

0a;3000| |yt
02 000 |pe
+A" 100 000| | Ry | +
00 010 |my,
00 000]| |y,

—a130 000 | [y2 €14
0 —1000 Pi—2 €9¢
Al 0 0 000 [Reo|+A"' e
0 0 000 Me—2 €4t
0 0 000 Yi_a €5¢

note that (3.18) imposes more than twenty-five restrictions on (3.17), in
fact it imposes twenty-five over-identifying restrictions on (3.17) in addition to
those necessary to determine the chosen specification for m; and y;. The LSE
methodology finds the roots of the failure of Cowles Commission models in the
choice of specification rather than general baseline specifications.

3.5 Identification in the VAR methodology

We have seen that the LSE methodology has intepreted the failure of the tradi-
tional Cowles Commission approach as the result of a specification strategy lead-
ing to mis-specified and ill-identified model. The LSE methodology however does
not question the potential of macroeconometric modelling for simulation and
econometric policy evaluation. The VAR approach share with the LSE approach
the diagnosis of the problem of Cowles Commission models but also questions the
potential of macroeconometric modelling for policy simulation and econometric
policy evaluation. VAR models differ from structural LSE models as to the pur-
pose of their specification and estimation. In the traditional approach the typical
question asked within a macroeconometric framework is “What is the optimal
response by the monetary authority to movement in macroeconomic variables in
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order to achieve given targets for the same variables?”. After the Lucas’ critique
questions like “How should a Central Bank respond to shocks in macroeconomic
variables?” are to be answered within the framework of quantitative monetary
general equilibrium models of the business cycle. So the answer has to be based
on a theoretical model rather than on an empirical ad-hoc macroeconometric
model. Within this framework there is a new role for empirical analysis, i.e. to
provide the evidence on the stylized facts to be included in the theoretical model
adopted for policy analysis and to decide between competing general equilibrium
monetary models. The operationalization of this research programme is very well
described in a recent paper by Christiano, Eichenbaum and Evans ([14]). Three
are the relevant steps:

e monetary policy shocks are identified in actual economies;

e the response of relevant economic variables to monetary shocks is then
described;

e the same experiment is then performed in the model economies to compare
actual and model-based responses as an evaluation tool and a selection
criterion for theoretical models.

To pin down more precisely the symmetries and diflerences between LSE-
type structural models and VAR models consider again the case of the monetary
transmission mechanism (MTM). The two type of models have a common struc-
ture which we have represented as follows:

A (1\‘/{11> = (L) (;Zi) +B (ZE;) (3.19)

The main difference between the two approaches lies in the aim for which models
are estimated.

Traditional Cowles Commission structural models are designed to identify
the impact of policy variables on macroeconomic quantities in order to determine
the value to be assigned to the monetary instruments (M) to achieve a given
target for the macroeconomic variables (Y), assuming exogeneity of the policy
variables in M on the ground that these are the instruments controlled by the
policymaker. Identification in traditional structural models is obtained without
assuming the orthogonality of structural disturbances: remember that we have
labelled as structural disturbance in traditional models and LSE models the

vector €, where
&\ _g ("
et ) A\

As we shall see the impact of monetary policy is described by dynamic multi-
pliers, which descibe the response of macroeconomic variables to a modification
in the exogenous monetary instruments controlled by the policy maker. Dynamic
multipliers are traditionally computed without separating changes in the mone-
tary variable into the expected and unexpected components.
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The assumed exogeneity of the monetary variables makes the model invalid
for policy analysis if monetary policy reacts endogenously to the macroeconomic
variables. LSE methodology would recognise the problem of the invalid exogene-
ity assumption for M, it would then proceed to the identification of an alterna-
tive enlarged model (presumably such identification will be obtained through the
imposition on a-priori restrictions on the dynamics of the lagged variables). How-
ever, the new model would be still used for simulation and econometric policy
evaluation, whenever the appropriate concept of exogeneity (respectively, as we
shall see, strong-exogeneity and super-exogeneity ) where satisfied by the adopted
specification.

VAR modelling would reject the Cowles Commision identifying restrictions as
“incredible” for reason not very different from the ones pinned down by the LSE
approach, however VAR models of the transmission mechanism are not estimated
to yield advice on the best monetary policy; they are rather estimated to pro-
vide empirical evidence on the response of macroeconomic variables to monetary
policy impulses in order to discriminate between alternative theoretical models
of the economy. Monetary policy actions should be identified using restrictions
independent from the competing models of the transmission mechanism under
empirical investigation, taking into account the potential endogeneity of policy
instruments.

In a series of papers, Christiano, Eichenbaum and Evans ([12], [13]) apply
the VAR approach to derive “stylized facts” on the effect of a contractionary
policy shock, and conclude that plausible models of the monetary transmission
mechanism should be consistent at least with the following evidence on price,
output and interest rates:

(i) the aggregate price level initially responds very little;

(i) interest rates initially rise;

(iii) aggregate output initially falls, with a j-shaped response, with a zero
long-run effect of the monetary impulse.

Such evidence leads to the dismissal of traditional real business cycle model,
which are not compatible with the liquidity eflect of monetary policy on interest
rates, and of the Lucas ([35]) model of money, in which the effect of monetary pol-
icy on output depends on " price misperceptions”. The evidence seems to be more
in line with alternative intepretations of the monetary transmission mechanism
based on sticky prices models (Goodfriend and King [11]), limited participation
models (Christiano and Fichenbaum [11]) or models with indeterminacy-sunspot
equilibria (Farmer [21]).

Having stated the objective of VAR models we are now in the position of
assessing how the technical opportunities for identification, estimation and sim-
ulation are exploited to analyse the MTM. VAR models concentrate on shocks.

First the relevant shocks are identified, the response of the system to shocks
is described by analyzing impulse responses (the propagation mechanism of the
shocks), forecasting error variance decomposition, and historical decomposition.
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Following Amisano and Giannini ([1]), we represent the general structural
model of interest as follows:

A <1\‘/{Ii> = C(L) <1\Y/Iil1> +B <:§Yw> (3.20)

where Y and M are vectors of macroeconomic (non-policy) variables (e.g. output
and prices) and variables controlled by the monetary policymaker (e.g. interest
rates and monetary aggregates containing information on monetary policy ac-
tions) respectively. Matrix A describes the contemporaneous relations among

vY

the variables and C(L) is a matrix finite-order lag polinomial. v = oM is
a vector of structural disturbances to the non-policy and policy variables nor-
mally independently distributed with identity variance-covariance matrix; non-
zero off-diagonal elements of B allow some shocks to affect directly more than
one endogenous variable in the system.

The structural model (6.2) is not directly observable, however a VAR can be

estimated as the reduced form of the underlying structural model :

() = e (32) (3 am

where u denotes the VAR residual vector, normally independently distributed
with full variance-covariance matrix . The relation between the VAR residuals
in u and the structural disturbances in v is therefore:

Y Y
u; oy _ vV,
A(2)=5(2) -
undoing the partitioning we have
Uy = AilBI/t

from which we can derive the relation between the variance-covariance matrix
of u; (observed) and the variance-covariance matrix of v; (not observed) as
follows:

E(wu)) = A 'BE (v,v,) BPA™L

Substituting population moments with sample moments we have:

Y =A'BIB'A™!

3 contains % different elements, this is the maximum number of iden-
tifiable parameters in matrices A and B, terefore identifying restrictions are
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imposed on these matrices. We shall analyze the different type of identifying re-
strictions in one of the next chapters, devoted to VAR models. Once shock have
been identified, the dynamic properties of the system can be described by ana-
lyzing the response of all variables in the system to such shocks. Note that VAR
models do not include explicitly expectations and might therefore be subject to
the Lucas critique. The general defense of VAR modellers against the Lucas cri-
tiques relies upon the fact that the variables shocked are the shocks and therefore
the estimated parameters are not modified for simulation purposes.

3.6 Identification in intertemporally optimized models

The natural outcome of the Lucas critique are intertemporally optimized mod-
els in which deep parameters, independent from a particular policy regime, are
identified separately from expectational parameters, specific to policy regimes.
The intertemporal optimisation approach to macroeconomics leads naturally to
a framework for identification and estimation of the deep parameters of interest.
In fact the first order condition for the solution of intertemporal optimization
problems are orthogonality conditions which can be exploited for identification
and estimation of the structural parameters of interest. To illustrate the point
consider the simplest possible version of the inflation targeting problem, see
Svensson ([21]). The central bank faces the following intertemporal optimisation
problem:

Minimize Egi=0Y 6L (3.23)
where:
_ 1 )2 2
L= B (e — ) + Axg (3.24)

where F; denotes expectations conditional upon the information set available
at time ¢, § is the relevant discount factor, L is the loss function of the central
bank, 7; is inflation at time ¢, 7* is the target level of inflation, x represents
deviations of output from its natural level, A is a parameter which determines
the degree of flexibility in inflation targeting. When A = 0 the central bank is
defined as a strict inflation targeter. As the monetary instrument is the policy
rate, ¢; , the structure of the economy must be described to obtain an explicit
form for the policy rule. We consider the following specification for aggregate
supply and demand in a closed economy®:

Trar = By — B, (it — Beepr— T) +ujy, (3.25)

8As we shall see in one of the next chapter these two function are the outcome of the
solutions of intertemporal optimisation problems by agents in the private sector.
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Te41 = Tt + e + U§+1 (326)

Note that macroeconomic variables do not react contemporaneously to the in-
strument of monetary policy, this is a first identifying restriction for the relevant
parameters in the model. As shown in Svensson ([21]), the first order conditions
for optimality may be written as follows:

dL
d—it = (Etﬂ-t—}-Q — 7T*) = _5a kEtxt+1 (327)
Y

(7.59) are orthogonality conditions involving all the deep parameters describ-
ing the structure of preferences of the central banker, 7*, §, A and just one pa-
rameter coming from the structure of the economy, «,. By using (7.58) in (7.57)
we obtain:

Etﬁt+2 = Et7Tt+1 + Oém[ﬁz.’f]t — ﬁr(it — Etﬂt+1— 7‘)] (329)

and by substituting (7.61) in (7.59) we derive an interest rate rule:

. - * 1 + Qg T *
=7 +7T + <a—ﬁ6> (Etﬂ-t—&-l — T ) + (330)
B A1
—X _— X .
3, t Saak 0B, tTet1

The parameters in the interest rate rule (7.62) are convolutions of the pa-
rameters describing central banks preferences (7%, ), 8) and of those describing
the structure of the economy (Oéz, By By, 7“) . It is then impossible to assess from
the estimation of the rule if the responses of central banks to output and in-
flation are consistent with the parameters describing the impact of the policy
instrument on these variables. Note, for example, that the estimation of an in-
terest rate rule relating the policy rate to the output gap and to the deviation of
expected inflation from target does not help to distinguish a strict inflation tar-
geter (A =0, in the terminology of Svensson), from a flexible inflation targeter
(A>0).

In fact, there is only one empirical implication of the rule which can be
confronted with the data independently from the identification of the parame-
ters of interest, namely whether the parameter describing the reaction of pol-
icy rates to a gap between expected and target inflation is larger than one. A

monetary policy which accommodates changes in inflation, 8}2?—::,5“ < 1,will not
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in general converge to the target rate 7*. This empirical prediction is the one
which has attracted most of the discussion on estimated monetary policy rules
(see Clarida,Gali and Gertler, [4],[7], [8]).

By comparing the first order conditions for optimality, known as Euler equa-
tions, with the explicit interest rate rule we note that the deep parameters of
interest are much more easily identifiable from (7.59) . In fact, while in our specific
example (7.59) depend mainly on deep parameters describing taste and technol-
ogy, there are macroecnomic applications in which the Fuler equations depend
only on these parameters. The identification and estimation strategy naturally
consistent with the intertemporal optimization approach, is then to derive first
the Euler equation and use them to pin down the deep parameters of interest.
This step can be achieved by applying an estimation method directly based on
orthogonality conditions, the Generalised Method of Moments. Numerical values
to the remaining parameters in the model are then attributed, not necessarily
by estimation. Then models are simulated and evaluated by comparing actual
data with simulated data.

In the next chapters of the book we shall consider more deeply all the different
approaches to macroeconometric modelling by considering a common macroeco-
nomic issue: the analysis of the monetary transmission mechanism.
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4

THE COWLES COMMISSION’S APPROACH

4.1 Introduction

The traditional, usually referred to the Cowles Commission, approach to econo-
metric modelling of the monetary transmission mechanism is aimed at the quan-
titative evaluation of the effects of modification in the variables controlled by
the monetary policy maker (the instruments of monetary policy) on the macroe-
conomic variables which represents the final goals of the policy maker. We can
identify three stages in the traditional approach:

e specification and identification of the theoretical model;

e estimation of the relevant parameters, and assessment of the dynamic prop-
erties of the model, with particular emphasys for the long-run properties;

e simulation of the eflects of monetary policies.

We have already discussed the Cowles Commission approach to specification
and identification in the previous chapters.

Before illustrating the approach at work we shall devote sections to the dis-
cussion of estimation, simulation and policy evaluation.

4.2 Estimation in the Cowles Commission Approach

The crucial features in the identification-specifcation stage, which are well shown
by our IS-LM-AD-AS example, is that the specified empirical model is usually
loosely related to theoretical models and that identification is achieved by im-
posing many a-priori restrictions delivering exogeneity status to a number of
variables. As a consequence, identification is easily achieved within Cowles Com-
mission models, usually with a large number of over-identifying restrictions. We
have also seen that criticisms of this approach attributes the roots of its failure
in the imposition of too many restrictions and in their incapability of recovering
the structural deep parameters of economic interest, describing preference of the
agents and the satus of technology.

However it is interesting to note that traditional modelling was in a sense
aware of the presence of some mis-specification in the estimated equations. Such
presence of mis-specification resulted in departure from the conditions which
warrant that OLS estimators are BLUE. The solution proposed was not re-
specification but rather modification of the estimation techniques. This is well
reflected in the structure of the traditional textbooks, see for example Gold-
berger ([5]), Johnston, where the OLS estimator is introduced first and then
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different estimators are considered as solutions to different pathologies in the
model residuals. Pathologies are identified as departures from the assumptions
which guarantee that OLS are BLUE. 1 think that it is by now very well estab-
lished that correcting the estimator is a strategy clearly inferior to improving the
specification, i.e. correcting the model. Nevertheless, we devote some space to
the discussion of alternative estimators in that they could be a last resort, to be
used when models could not be improved for lack of the necessary informations.

4.2.1  Heteroscedasticity, autocorrelation and the GLS estimator

Let us reconsider the single equation model of Chapter 1, to generalize it to
the case in which the hypotheses of diagonality and constance of the conditional
variances-covariance matrix of the residuals do not hold:

y=XB+¢€ (4.1)
€ ~ n.i.d. (07 0'29)

where the vector y contains 7' observations on the dependent variables, X
contains (7' x K) observations on the K explanatory variables exogenous for
the estimation of the vector (K x 1) 8, and Q is a (T'x T') symmetric and
positive definite matrix. When the OLS estimator it is applied to model (4.1) it
delivers estimators which are consistent but not efficient, moreover the traditional
formula for the variance-covariance matrix of the OLS estimators, o2 (X' X)fl,
is wrong and it leads to incorrect inference. In fact, by using the standard algebra
of Chapter 1 it can be shown that the correct formula for the variance-covariance
matrix of the OLS estimator is:

o (X'X) ' X'OX (X'X) .

A general solution to this problem is found in general by remembering that
the inverse of a symmetric definite positive matrix is also symmetric and definite
positive and that for a given matrix €2, symmetric and definite positive, it always
exists a (T x T) non-singular matrix K such that K'K = Q" and KQK'= Ir.

To find how the solution is implemented consider the regression model ob-
tained by pre-multiplying both the right hand side and the left hand side of (4.1)
by K :

Ky = KXg38+ Ke (4.2)
Ke ~n.i.d. (0,6°Ir) .
The OLS estimator of the parameters of transformed model (4.2) satisfies all

the conditions for the applications of the Gauss-Markov theorem, therefore the
estimator
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Bops = (X'K'KX) ' X'K'Ky
= (X' X)Xy

known as the Generalised Least Squares estimator, is BLUE. The variance of
the GLS estimator, conditional upon X, becomes

Var <bGLS| X) =02 (X'Q'X) "

Note that, from the applicability of the Gauss-Markov theorem, it follows
immediately that the variance of the GLS estimator is equal to the sum of the
variance of any other linear estimator and a positive semi-definite matrix. Con-
sider for example the variance of the OLS and of the GLS estimators. Using the
fact that if A and B are positive definite and A — B is positive semi-definite,
then B-1—A ™! is also positive semi-definite, we have:

(X'07'X) — (X'X) (X'0X) " (X'X)
- X'K'KX — (X'X) (X’K’l (K')™* X)fl (X'X)
= X'K' <I ~(K)'X (X’K*l (K')* X)fl X,K1> KX
= X'K'M}, My KX
w=(K)'X

My = (I —w(w'w)?

7
W)

The applicability of the GLS estimator requires an empirical specification
for the matrix K. We consider here two specific applications, where appropriate
choice of the such matrix leads to fix problems in the OLS estimator generated
respectively by the presence of first order serial correlation and of heteroscedas-
ticity in the residuals.

Consider first the case of first order serial correlation in the residuals, we have
the following model:

Y = X, B+
Up = PUL—1 + &
€ ~ n.i.d. (07 af)

which, using our general notation, can be re-written as:
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y=XB+e¢ (4.3)
€ ~ n.i.d. (07 0'29)
2

2 o
o’ = 7 (4.4)
1 o pr T

,02 1 P . pT72

Q=1 7 1.

21
_prlpT72 Cop 1

In this case the knowledge of the parameter p allows the empirical imple-
mentation of the GLS estimator. An intuitive procedure to implement the GLS
estimator, could then be the following;:

e estimate the vector 3 by OLS and save the vector of residuals
e regress U; on Us_ 1 to obtain an estimate p of p

e construct the transformed model and regress (v, — py—1) on (X, — PXy—1)
to obtain the GLS estimator of the vector of parameters of interest.

Note that the above procedure, known as the Cochrance-Orcutt procedure,
could be iterated until convergence.
In the case of heteroscedasticity our general model becomes

y=XB+e (4.5)
€ ~ n.i.d. (0,8) (4.6)
(02 00 0]
0 020 0
Q=
0 ..00% , 0
(00.. 0 o%]

In this case, in order to construct the GLS estimator, we need to model
heteroscedascity choosing appropriately the K matrix. White ([16]) proposes a
specification based on the consideration that in the case of heteroscedasticity the
variance-covariance matrix of the OLS estimator takes the form:
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o2 (X'X) ' X'OxX (X'X) !

which could be used for inference, once an estimator for {2 is available. The
following unbiased estimator of €2 is proposed

[4200. . 0]

0u¢0. . 0
0=

0 ..0u% ,0

(00 .. 0 u3]

Alternative models for heteroscedasticity, known as ARCH (Autoregressive
Conditional Heteroscedasticity) processes, useful for high-frequency financial se-
ries, and based upon simultaneous modelling of the first two moments of time-
series processes have been proposed by Engle([4]) and Bollerslev([1]) .

4.2.2  Endogeneity

The estimation of simultaneous system needs the solution of a problem, indepen-
dent of mis-specification, which has prompted most of the advances in estimation
theory within the Cowles Commission approach: simultaneity.

To discuss simultaneity we consider the following representation of a model
of interest:

By, + Iz, = w, (4.7)
u; ~ n.i.d.(0,%)

where y; is a (G x 1) vector of endogenous variables, z; is a (M x 1) vector
of exogenous variables, these variables are considered exogenous in that they
are orthogonal to residuals. Therefore, in the case of a dynamic specification,
it contains all contemporaneous variables considered orthogonal to residuals,
their lags, and the lags of the variables y;. B and I' are matrices of parameters,
respectively (G x () and (G x M) . Using matrix notation we can represent (4.7)
alternatively as follows:

By +1z =u’ (4.8)

where y is a (T' x G) matrix, z is a (T X M) matrix and u is a (T' x G) matrix.
To illustrate the problems with the OLS estimator generated by endogeneity
consider the first equation of model, which we write as
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Y1 = X161 +uy (49)

where y; is a (T' x 1) vector containing all the observations on the first en-
dogenous variable in the model, x; is a (7" x (G; + M; — 1)) containing all ob-
servations on the M; exogenous variables included in the first equation and on
the G1 — 1 contemporaneous endogenous variables included in the first equation.
Given that the matrix x; contains some endogenous variables, in general we
have:

1
plim Tx’lul #0 (4.10)

and the OLS estimator of the parameters of interest is not consistent. Con-
dition (4.10) is immediately understood by referring to the reduced form of the
system (4.7)

y: =B 'Tz; + B 'w, (4.11)
u; ~ n.2.d.(0,%)

which shows that, with the exception of special configurations for the matrices
B and X2, all endogenous variables are correlated with all residuals in uy.

423 GIVE estimators

The Generalized Instrumental Variables (GIV F) estimator is derived by con-
sidering that, in the simultaneous model, condition (4.10) holds but we have
also

1
plim TZ,ul =0 (4.12)

therefore a consistent estimator of the parameters of interest can be derived by
solving the following system of equations:

7z, =0 (4.13)
z’ <Y1 - X131) =0

System (4.13) contains a number of equations equal to the number of variables
in z1, M, the number of unknowns is equal to the number of parameters in the
vector 81, K1 = G1 + M; — 1. We have then three cases of interest:

(i) M < Kj : the number of unknowns is larger than the number of equations
and no estimators of the parameters of interest can be derived. Not surprisingly,
in fact in this case the equation is not identified.
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(i) M = K; : the number of uknowns is exactly equal to the number of
equations, the system is just identified and the solution to (4.13) has a unique
solution and delivers an estimator of the parameters of interest:

8, = (z’x1)71 z'yq

(iii) M > K : the number of equations is larger than the number of un-
knowns, the equation is over-identified and the estimator of parameters of inter-
est is not unequivocally determined by the orthogonality condition (4.13)

An intuitive solution for the over-identification case is obtained by taking K
linear combinations of the M; orthogonality conditions. Define a matrix L of
dimensions (K7 x M) . Pre-multiplying the system (4.13) by L, we have:

Lz't; =0 (4.14)
LZ, <Y1 — Xlgl) =0

from (7.27) we derive the following estimator:

61 = (Lz'xi) ' Lz'y, (4.15)

From (4.15) it follows that

61— 6 = (Lz'x)) ' Lz'wy (4.16)

and

1
VT (31 — 61) = <%Lz’x1> LTz, u, (4.17)

Given that consistency of the estimator is guaranteed by the hypothesis
(4.12) , assuming that

1
plim ~Lz'x; = LM..,, VTz'u, L N(0,001M.,)

we can apply the Cramer’s theorem to conclude that:

VT (81— 81) ~ N (0,014 (EM.,) ' EML.L' (M, L) ') (418)

(4.18) characterizes completely the properties of the estimator, however em-
pirical implementation requires the knowledge of the matrix L. Note that the
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variance of the estimator depends on L, hence a natural criterion for choosing
this matrix is the maximization of the efficiency of the estimator. Sargan([12])
shows that the variance of the estimator is minimized when L = Mmle;zla in
which case we have

VT (31 . 51) ~N (0, o (MIIZM;;MZII)”) (4.19)

The choice of L defines the following estimator:

N -1
& = (x’lz (z’z)flz’xl) xiz (z'z) ' z'yy (4.20)

whose variance-covariance matrix can be estimated as follows:

2 / [ -1

89 (xlz (z'z) le)
2_ 1 3,) 3
51 = T <Y1—X1 1) <Y1—X1 1)

(7.27) defines the Genaralized Instrumental Variables Estimator (GIVE).
It is easy to see that in the case of exact identification GIVE simplifies to
(z'x1) ' 2'y1.

An equivalent estimator to GIVE is derived by the following two-step proce-
dure:

e regress by OLS x; on z and construct fitted values X; = = (Z’Z)71 z'x; =

zQ:
e regress by OLS y; on X; to obtain

1y
X1

o1 = (X1X1)
/ Ian—1 g -1 Fn—1
= (xlz (z'z) "z xl) x1z(z'z) " z'yy
Which is known as the Two-Stage Least Squares (TSLS) estimator. Note
that, in order to obtain a TSLS estimator as efficient as the GIVE estimator,
it is important to avoid generating an estimate of the variance of the estimator
using the residuals from the second stage. In fact we have:

ﬁ1,TSLS =Y¥Y1— §1g1
=¥Y1— X131 - (§1 - X1)31
= ﬁ1,GIVE - X1g1 - (§1 - X1) 31
which would result in an upward biased estimator of the variance. The prob-

lem is easily solved, and in virtually all econometric packages available there is
no difference between the TSLS and the GIVE estimators.
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More interesting problems are generated by mis-specification. In general we
have mis-specification when the instruments are correlated with residuals. The
classical form of mis-specification is omitted variables. Consider the following
case:

The Data Generating Process can be represented as follows:

yi =x101 + %707 +wy

The following model is estimated:

Y1 =x161+Vv;
The GIVE-TSLS estimator of 8; is:

~ -1
81 = (x’lz (z’z)flz’xl) X1z (z' )71z’y1
-1
=8i+ (xiz(2'n) ta'xi)  Xiz(a'n) A (xi6] +w)

which is not consistent whenever xj is correlated with z. In this case we have

1
plim TZ,VI #0

and the instruments in z cannot be considered as valid.
Sargan ([12]) derived a statistic to test the null hypothesis of validity of
instruments by showing that the quantity:

1o~

Uz (z'z) ' 2t

2
51

1 ~\/ -~
3? = T <Y1 - X151) (}"1 - X151)

is distributed as a x? with M — K degrees of freedom under the null hy-
pothesis of validity of instruments.

C =

4.2.4  Three-stage least squares (3SLS) and Seemingly Unrelated Regressions
(SURE) estimators

The estimators we have considered so far solve the problems generated by simul-
taneity without reverting to the specification of the full structural model. For this
reason GIVE-TSLS estimators are known as limited information estimators. To
analyze full-information estimators we need to introduce some new definitions.

Far any two matrices A (m x n) and B (p x ¢) define as the Kronecker product
A ® B the matrix (mp x ng) obtained by multiplying each element of A by B.
The following properties are related to the Kronecker product:
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e (A®B)(C®D) = AC ® BD, whenever the matrices AC and BD are
defined

e (A®B)=A'0B
e (A® B)71 = A ' ©B~!, whenever the matrices A and B! are defined

Define vec(A), the vectorization of the A, as the vector (mn x 1) obtained
by stacking the m transposed rows of A :

m X nA =

11

Q1n
a21

vec(A) =

G2n,

a/’ﬂ’ﬂ

Vectorization and Kronecker product are linked by the following property:

vec (ABC) = (A © C) vec(B)

To discuss full-information estimation, consider that the i-th equations of our
model can be represented as

Yi =X +u

where y; is a (T X 1) vector containing 7" observations on i-th endogenous
variables, X; is a (T' x K;) matrix, with K; = (G; + M; — 1) containing all ob-
servations on the GG; — 1 endogenous and on the M; exogenous variables included
in the i-th equation. We can give the following compact representation of the
model:
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yT =xT6" +u” (4.21)
G
where yTis a (GT x 1) vector, x™ is a (GT X 1= IZKZ) matrix, 67 is a

G
<i =1> K; x 1) ,ut is a (GT x 1) vector:

Y1 X100.0
. 0 xo .
+ + 2
Y=o 7o
Yo 0 . . Xa
&, u
5T = : u =
5G Ug

The following properties hold for ut

E(u")=0
E(uu)) E(uuh) .. F(uuy)
E (upuy) E(uzuy)
E (u+u+’) =

where each block of the above matrix is (7' x T) .
Assuming that all residuals are contemporaneously correlated but not serially
correlated, with non singular variance-covariance matrix £, ° we have:

1D (u+u+’) =X®Ir
oudr owlr .. o1glr
02IIT UQQIT ..

UGIIT . .. Ugng
The problem to be solved is the estimation of parameters in (4.21) taking

into account simultaneity and the strucutre of correlations in X. These problems
are solved in turn by the Three-Stage Least Squares (3SLS) estimator.

9the last assumption requires that all identities are excluded from the model
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4.2.4.1 First stage: the diagonalization of ¥ Consider the following decompo-
sition for 7!
» ! =HH (4.22)

which always exists. From(4.22) we have

HYH = I,

By pre-multiplying (4.21) by H' ® I, we obtain

Holn)y =HoIr)x 6 +(H oIr)u’ (4.23)

where residuals of (4.23) feature a diagonal variance-covariance matrix:

E ((H’ @Ir)uut (H © IT)') =HoIr)(Zolr)(H oIr)
=HYolr)(HoIr)
=Ic®Ir = Igr

The completion of the first stage has left us with the following transformed
model:

Holn)y =HoIr)x™ 6 +(H oIr)u’ (4.24)
y'=x"6"+u" (4.25)
E(u*)=0, E(u'u")=Igr (4.26)

in which, the variance-covariance matrix is diagonal, but we still have simul-
taneity, in fact
im=x"u
P

4.2.4.2 The second stage: choice of instruments To select instruments, remem-
ber that the reduced form of our original system can be represented as follows:

y =B Tz +B v (4.27)

Vectorisation of (4.27) delivers:
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vee (y') = vec (B™'T'z’) 4+ vec (B~ 'u) (4.28)

from which it follows that
y© =vec(IgB 'Tz') + vec (B~ 'u') (4.29)
= (I ©® z)vec (B~ 'T2) +vec (B~'') (4.30)

Then, the natural choice of instruments is (Ig @ )

4.2.4.3 The third stage: applying the GIVE principle By applying the GIVE
principle to (4.25) ,choosing z*= (I ® z) as instruments, we have

~ ~1

5:_ = (x*’z* (z*’z*)71 z*’x*) x*'g* (z*’z*)71 z''y*
At this stage, remembering that
=x7’ (H ® IT) (IG ® Z)

Icoz)Ic0z) =102z

X*,Z*
Z*,Z*
z*’y* Ic® Z,) (H ®IT) y+ — (H’ ®Z,) y+

= (
= (
we can show the following results:

(x*’z* (z*'z*) " z*’x*) —x" (Hoz)(lc0zz) '(H oz)x"

=x" (E*I ©z(z'z) " z’) x*t

(X*,Z* (Z*/Z*)*l z*’y*) — xT! (H ®Z) (IG ®Z,Z)71 (H/ ®Z,) y+
=x7 (Efl ©z(z'z) " z’) y*
and, finally, we have an expression for the 3SLS estimator

-1

31+ = <x+’ (E’l ©z(z'z) " z’) x+)

The asymptotic distribution of the 3SLS can be written as follows:

x* (Efl ©z(z'z) " z’) y*
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31+ ~ N <5+, <x+’ (E’l ©z(z'z) " z’) x+)1>

To make the estimator operational an estimate of X is needed. This can be
obtained by using the sample correlations of the residuals from 25SLS estimation.

To analyze the estimator more closely we can re-write in a more extensive
format. In fact, we have

xt (Efl ©z(z'z) " Z’) xT =

x; 000 anz(z’z)flz’ . 011% (z’z)flz’ x; 000
0 X’2 . 0 Xo

0 0

0 . .xq 012 (z’z)flz’ ..0cqQZ (z’z)flz’ 0 . .x¢

xt! (Efl Qz (z’z)71 z’) yt =

G
J=1Y0uxiz(2'2) 7'y,

G
j=1%0axLz(z'2) ' 2'y;

where o0;; represents the generic element 4,5 of the matrix ¥~ We are now
in the position of considering some specific cases of the 3SLS estimator.

Note first that the 3SLS estimator coincides with the 2SLS when the matrix
> is diagonal. In this case we have:

;3+ = <x+’ (Efl ®z (z’z)71 z’) x+)7 x T (Efl ®z (z’z)71 Z’) y©

-1
(x’lz (z'z) " z’xl) X'z (z'z) ' 2'y;

-1
(x’Gz (z'z) " Z’XG) X}z (2'z) ' z'ya

This equivalence result holds also when all the equations in the system are
exactly identified.



134 THE COWLES COMMISSION’S APPROACH

Another interesting case arises when the matrix B in our structural model
(4.7) is diagonal, when we have:

yT=xT6" +u” (4.31)
E(ut)=0 (4.32)
E(wu™)=Xolr (4.33)

1
plim T}ﬁ"u+ =0 (4.34)

The particular structure of B implies that all the simultaneity in the system
comes from the correlation of residuals, therefore after the implemetation of the
first stage of the 3SLS, the diagonalization of the variance-covariance matrix, a
consistent estimator is derived by applying OLS to the transformed model. The
relevant estimator is then:

o+
5 = (X*/x*)*l x*’y*

(x+’ (271 ® IT) x+)71 xt! (271 ® IT) yT
which is known as the Seemingly Unrelated Regression Equations (SURF)
or Zellner’s estimator.
A further interesting specific case of the SURE estimator is obtained when
each equation of the system contains the same set of regressors:

x; 000
+ 0X2.
0
0 . . X@

x00.0
0x . .
=lo. . . |[=1ox
0. .x

by substituting for xT in the expression for the Zellner estimator, we obtain:

= (Tox) (T 'oly)(Tox) (Tox) (3 'eln)y"
= <1271]®X,ITX>71 (IE’I ®X’IT) yT

which gives a compact representation of the OLS estimators applied equation
by equation.
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4.2.5  FIML estimator

Lastly, we give a brief description of the most general full-information esimator:
the Full Information Maximum Likelihood (F7ML) estimator. Considering the
reduced form of our model (4.11) and taking logarithms, we can write the joint
distribution of y1, ..., y7, as follows:

—-GT

log L =
og 5

log (2) — glog B~'sB" |+ (4.35)
e 12T: (ye—B 'Tx,) B'X 'B(y, - B 'I'x,)
2
Note now that

<Yt — Bilrxt), B' = (By, — I'x,)’

and that, from a standard results on determinants, it follows that:

T T
—5 log B 'SB" | =T|logB| - 5 log |3
So we can re-write our log-likelihood function as:

log . =

T T
log (27) + T [log B| — 3 log || + (4.36)

T
1 -
—5t= 1} (By, - I'x))' 7' (By, — I'xy)

FIML estimator are derived by maximizing (4.36) with respect to B,[',X. A
number of technical issue arise as the problem is non-linear. For a good discussion
of these problems, and solutions, see Hendry ([7]). The FIML estimator is the
most general system estimator in that all other estimators can be derived as its
special cases, for a detailed derivation see Hendry([6]) .

4.3 Simulation

Having identified the model and estimated the parameters of interest it is possible
to proceed to the simulation. For given values of the parameters and of the
exogenous variables, values for the endogenous variables are found by finding
the dynamic solution of the model. To illustrate how this result is accomplished,
consider the following general representation of a model including n endogenous
variables y=(y1 ¥2...y») and in k exogenous variables x=(r{ zs...x1) ;:
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Y1t = f1 Wiy Ynt, A1 (L)ye—1,%e, B1 (L) X¢-1)

Yot = fo (Y1, --Ynt, A2(L)ye—1,%¢, Ba (L) X¢-1)

Yt = [ (Y1t, - Ynt, Ap(L)ye—1, Xe, B (L) X¢-1)

Ynt = Fn W1ty - Ynt, An (LD)Yi—1,%¢, By, (L) X4—1)

In the specifications discussed so far the functions f; are linear, but more
general specification could be accomodated within this framework.
Solving the model amounts to find a fixed-point such that:

ye=1f (anA (L) Yi1,%:,B (L) Xt71)~

A popular numerical method, implemented in many widely available pack-
ages, such as E-Views, is the Gauss-Seidel method. Guass-Seidel method finds
the fixed-point by iteration using the updating rule:

yir' = (yL ALy 1%, B (L) x1)

Gauss-Seidel solves the equations in the order that they appear in the model.
So if an endogenous variables that has already been solved for appears later in
some other equation, Gauss-Seidel uses the value as solved in that iteration. To
illustrate matters, the k-th variable in the i-th iteration is solved by:

Yie = fr (Ve ~~~7yli—1tvylitvy;;11t7 Uit Ar(L)Yi—1.X¢, By, (L) X¢—1)

As a consequence the ordering of the variables matters and equations with
relative few right-hand side endogenous variables should be listed early in the
model. As the model is solved by setting disturbances to zero we have a determin-
istic solution, a stochastic solution can easily be generated solving the model by
adding drawings from random variables and taking expected values afterwards.



POLICY EVALUATION 137

4.4 Policy Evaluation

Dynamic simulation can be used to evaluate the effect of different policies, defined
by specifying different patterns for the exogenous variables. Policy evaluation is
implemented by examining how the predicted values of the endogenous variables
change after an (some) exogenous variables is (are) modified. Policy evaluation
implies simulating the model twice: first a baseline, control, simulation is run.
Such simulation can be run within sample, in which case observed data are
available for the exogenous variables, or outside the available sample, in which
case values are assigned to the exogenous variables. In the case of out-of-sample
simulation, which is equivalent to forecasting the endogenous variables for a
given scenario for the exogenous variables, it is useful to assign values to the
exogenous variables such that the baseline simulation path exhibits standard
historical patterns for the endogenous variables. The results of such baseline
simulation are then compared with those obtained from an alternative, disturbed,
simulation, based on the modification of the relevant exogenous variables. Policy
evaluation is usually based on dynamic multipliers.

Consider the case of the simulation of a model over a sample of size T, and
index by ¢ the generic observation in that sample. Denote by x% the series of
values attributed to the exogenous variable x in the baseline simulation, and by
xf = x? + & the series of alternative values attributed to the same variables in the
disturbed simulation. Similarly, denote by 42, the solved value for the endogenous
variable ¥, at time ¢ in the baseline simulation and by y¢, the solved value for
the endogenous variable y,, at time ¢ in the disturbed simulation.

The dynamic multiplier is the defined as follows

(ygt - th) N (ygt - th)

DM = (xf—x?) a §

(4.37)

When model are stable, long-run multipliers, obtained for large ¢, converge to
fixed numbers. Note that in linear systems long-run multipliers can be also ob-
tained by giving a temporary (one period) impulse to the exogenous variable and
by then computing the cumulative response of the endogenous variables.

To illustrate matters assume that the estimation over a given sample, say
1960:1-1998:1, of a simple dynamic model for consumption and income, has de-
livered the following results, similar to those obtained in the dynamic model of
US consumption discussed in Chapter 2,.

Act = 0.25 % Ayt —0.15 % (thl — ytfl)
Ay, = 0.008
We aim at deriving the dynamic multiplier, describing the response of con-

sumption to a one per cent increase in income by simulating the model over the
period 1998:2-2020:4.
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The following E-Views programme (run after having opened the file USUK.WF1)
achieves the result:

SMPL 1998:1 1998:1

LCUS=LYUS

SMPL 1998:2 2020:4

model consinc

consinc.append LCUS =LCUS(-1)-0.1B5+LCUS(-1)+0.15*LYUS(-1) +0.250*(LYUS-LYUS(-1))

consinc.append LYUS =0.008 +LYUS(-1)

COPY CONSINC M_TEMP

M_TEMP.APPEND ASSIGN @ALL _BL

M_TEMP.SOLVE

delete M_TEMP

SMPL 1998:1 1998:1

LYUS=LCUS+0.01

SMPL 1998:2 2020:4

COPY CONSINC M_TEMP

M_TEMP.APPEND ASSIGN Q@ALL _DS

M_TEMP.SOLVE

delete M_TEMP

SMPL 1998:1 2020:4

genr DM=100%(LCUS_DS-LCUS_BL)

plot DM

SMPL 1998:1 1998:1

LYUS=LCUS-0.01

The programme begins by setting all variables at their long-run solution.
Then the relevant model is constructed by defining it as CONSINC and by
including the specification for the two equations. The Model CONSINC is then
copied to a temporaray model, which is solved dynamically for the sample 1998:2
2020:4, and the suffix _BL, for baseline, is attributed to the variables generated
by the solution.In the following step the disturbed solution is generated by adding
a one per cent shock for one period (1998:1) to LYUS. Note that, as LYUS has a
unit root, the one-period shock has permanent effect. The disturbed solution is
then computed and the suffix DS is attached to the generated variables. Lastly
the dynamic multiplier is computed by applying formula (4.37), we report it in
the following Figure :

Having illustrated the basics with this simple case we move to discuss a
more articulated model Cowles Commission model of the monetary tranmsission
mechanism, by taking all steps from specification to simulation.

4.5 A model of the monetary transmisssion mechanism
4.5.1 Specification of the theoretical model

We consider the close-economy IS-LM specification with autoregressive expecta-
tions:
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Fic. 4.1.

Yo = o1 +y; —a13(Ry — ) +€qy
=Ty + a1 (Yo — Y7 ) +ex
T =T
My — Py = Co 31 + @31y — @33 + €34
my = Co41 + Mit—1

.
Yy = €051 + Co52l + €y

Note that money supply is not stochastic as it is considered as fully controlled
by the monethary authority. The econometrician’s task is the estimation of the
unknown parameters to simulate the impact of different path for the exogenous
variable controled by the monetary authority. The model uses four equations
to determine four endogenous variables, 7., 7¢, R ed y;, for given values of the
two exogenous variables y; and m;.The exogeneity status is attributed to y;
and my, either because they describe the available technology and demography
or because they are fully controlled by the policy-maker. Note that, under the
hypothesis of dynamic stability of the estimated model, the estimated values
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for the parameters will only determine the short-run dynamics of output and

inflation,

as the long-run equilibrium solutions are determined almost indepen-

dently (totally independently in the case ¢; = 1) from the estimated parameters
(m = Am — a1 Ay*, y = y*).

4.5.2 Estimation of the parameters of interest

We consider a monthly data-set for the US economy (which we take as a close
economy) to construct, estimate and simulate a version of the macroeconomic
model. The data-set, available in EXCEL format as LSZUSA.XLS contains the
following variables for the sample 1959:7-1996:3 (for a complete description of
the data-set see Leeper-Sims-Zha (1997))

CPISA: Consumer price index adjusted for seasonality

M1SA:
M2SA:

PCM

M1 stock adjusted for seasonality
M2 stock adjusted for seasonality

: IMF index of commodity price in dollars
RGDP :

real US GDP at quarterly frequencies

RGDPMON : real US GDP at quarterly frequencies (quarterly data
interpolated by Chow-Lin procedure)

TBILL3 : annually compounded nominal return on three-month TBills
TBOND10: annually compounded redemption yield on 10-year TBonds

Having imported the data in EXCEL format into EViews the following trans-
formation are performed using the programme files LSZ.PRG . The program is
listed as follows:

genr
genr
genr
genr
genr
genr
genr
genr
genr
genr

1p=100*log(cpisa)
1ly=100*log(rgdpmon)
infl=(1p-1p(-12))
rr=tbill3-infl(-1)
1m1=100%log(mlsa)
1m2=100%log(m2sa)
d121m2=(1m2-1m2(-12))
d121m1=(1m1-1m1(-12))
lyst=773.27+0.275%@TREND (1959:1)
vel=1lp+ly-1m2

We initially deal with non-observable variables. We solve the problem of ex-
pected inflation by setting (arbitrarily) 8 = 1 in equation (3.11)and substituting
lagged inflation for expected inflation. We the obtain an observable proxy for
potential output fitting a simple deterministic trend for output.
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TABLE 1: LYST=C(1)+C(2)*QTREND(1959:1)

Coefficient Estimate Std. Error t-Statistic Prob.

C(1) 773.2748 0.466437  1657.833  0.0000
C(2) 0.274909 0.002476  111.0279  0.0000
R-squared 0.975006 Mean dependent var 818.4973

Adjusted R-squared 0.974927 S.D. dependent var 25.59787
S.E. of regression 4.053267 Akaike info criterion 2.805316
Sum squared resid 5191.555  Schwarz criterion 2.828976
Log likelihood -895.2677 F-statistic 12327.19
Durbin-Watson stat 0.018264 Prob(F-statistic) 0.000000

Note that from the estimated parameter values we have that potential ouptut
grows at annual rate of (14-0.0027)12 -1 = 0.0329 per cent.

We proceed now to the estimation of all the structural relations included in
the model. We begin by money demand, which we simplify to a linear relation
between the log of velocity of circulation of money and the short-term interest
rate, which we take as a proxy of the opportunity cost of holding money.

TABLE 2: VEL =C(1)4+C(2)*TBILL3

Coefficient Estimate Std. Error t-Statistic Prob.

C(1) 527.9095 0.431272  1224.075  0.0000
C(2) 1.781791 0.061783  28.83933  0.0000
R-squared 0.724668 Mean dependent var 539.0975

Adjusted R-squared 0.723797 S.D. dependent var 6.392876
S.E. of regression 3.359777 Akaike info criterion 2.430019
Sum squared resid 3567.040  Schwarz criterion 2.453679
Log likelihood -835.5954 F-statistic 831.7067
Durbin-Watson stat 0.117228 Prob(F-statistic) 0.000000

Note that the semi-elasticity of the velocity circulation with respect to inter-
est rate is 1.78, implying that increase of hundred basis point in short-term rates

is paired with a 178 points increase in velocity circulation. Note that this is not
(pt+y—m)

the elasticity, in fact the elasticity N vEL = W,While the semi-elasticity
SN vpL = % , therefore 1, v, = $n, v pr* Ras dlog(R) = 42, There-

fore by specifying the money demand with the log of real money as a function
of the level of the nominal interest rate has the important implication of making
the elasticity of money demand with respect to the opportunity cost of hold-
ing money function of the level of interest rates. This is important in that it is
not desirable to impose that the elasticity of money demand to interest rate is
constant.

The third relation we estimate is an aggregate demand curve:
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TABLE 3: LY= C(1)+ LYST +C(2)*(TBILL3-INFL(-1))

Coefficient Estimate Std. Error t-Statistic Prob.

C(1) 1.470880 0.274338  5.361572  0.0000
C(2) -0.383906 0.102396  -3.749208 0.0002
R-squared 0.970221 Mean dependent var 820.4813

Adjusted R-squared 0.970123 S.D. dependent var 24.21989
S.E. of regression 4.186429 Akaike info criterion 2.870232
Sum squared resid 5310.435  Schwarz criterion 2.894627
Log likelihood -868.4866 F-statistic 9871.903
Durbin-Watson stat 0.021376 Prob(F-statistic) 0.000000

Note that LYST is included in the fitted relation with a coefficient constrained
to unity. As a consequence we can easily compute the level of long-run equilibrium
real interest (as the real interest rate obtained by setting y = y*), such level is
3.82=(1.47/0.38).

The fourth estimated relation is the aggregate supply function:

TABLE 4: INFL=C(1)*INFL(-1)+C(2)*(LY-LYST)

Coefficient Estimate Std. Error t-Statistic Prob.
C(1) 0.9996 0.0032 319.10 0.0000
C(2) 0.027 0.0047 5.89 0.0000
R-squared 0.99 Mean dependent var 5.100013
Adjusted R-squared 0.99 S.D. dependent var 3.296546
S.E. of regression 0.32 Akaike info criterion 0.60

Sum squared resid 32.14056 Schwarz criterion 0.63
Log likelihood -89.62183 Durbin-Watson stat 1.54

Note that the estimated values for the parameters are extremely close to the
case of maximum price stickiness and the adjustment of inflation with respect to
the gap between output and potential output is significant but extremely slow.

4.5.3  Simulating the effect of monetary policy

Having estimated the model, we are now in the position to proceed to simulating
it by considering the estimated equations as a system of differential equations,
which can be solved after the specification of a money supply function.This
procedure allows the construction of a baseline, which can be used to evaluate
the effect of monetary policy by specifying an alternative rule for monetary policy
and by computing multipliers. The E-VIEWS programme SOLVED1.PRG allows
the computation of the dynamic multipliers generated by an one per cent increase
in money supply. The programme contains the following statements:

’ This a program to compute dynamic multipliers

if @isobject(’’m_temp’’)=1 then
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delete m_temp

endif

if @isobject(’’dfbase’’)=1 then

delete dfbase

endif

if Qisobject(’’dfshock’’)=1 then

delete dfshock

endif

’baseline simulation

smpl 1986:01 2001:12

’define growth rate of money

genr x=6

model dfbase

’define exogenous variables

dfbase.append 1lm2=1m2(-12) +x
dfbase.append lyst=773.27+0.275*@TREND (1959:01)
’loadind endogenous variables

dfbase .merge df

copy dfbase m_temp

m_temp.append assign Qall _bl
m_temp.solve

delete m_temp

group exog_bl di12Im2_bl d12lyst_bl

group endog_bl tbill3_bl infl_bl di12ly_bl
’disturbed simulation

smpl 1986:01 2001:12

’define shock to the growth rate of money
genr y=1

model dfshock

’exogenous variables

dfshock.append 1m2=1m2(-12) +(x+y)
dfshock.append lyst=773.27+0.275*@TREND(1959:01)
’loading endogenous variables
dfshock.merge df

copy dfshock m_temp

m_temp.append assign Qall _ds
m_temp.solve

delete m_temp

group exog_ds d12Im2_ds d12lyst_ds

group endog_ds tbill3_ds infl_ds di12ly_ds
plot tbill3_bl tbill3_ds

plot infl_bl infl_ds

plot di12ly_bl di2ly_ds

’computing dynamic multipliers

143
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genr dm_tbill3=(tbill3_ds-tbill3_bl)/(x+y)
genr dm_infl=(infl _ds-infl bl)/(x+y)

genr dm_d121y=(d121ly_ds-d121y_bl)/(x+y)
group dm dm_tbill3 dm_infl dm_di2ly

plot dm

The first block of the programme defines objects that will contain the baseline
model (dfbase) and the disturbed model (dfshock); it also defines a temporary
object (m_temp) which will contain the model to be simulated in each round:

if @isobject(’’m_temp’’)=1 then

delete m_temp

endif

if @isobject(’’dfbase’’)=1 then

delete dfbase

endif

if Qisobject(’’dfshock’’)=1 then

delete dfshock

endif

A baseline simulation is then created. The simulation sample is first chosen;
as the model has been estimated over the sample 1959:07-1985:12 we proceed to
simulate in from 1986:1 onwards. In fact the sample for the simulation is purely
artificial as all series are model generated when computing dynamic multipliers.
Chosing a specific sample make sense only when historical values are considered
for some of the variables. Having chosen the sample we set the rate of growth
of money x at six per cent, the exogenous policy controlled variable. Then all
the estimated equations in the previous section are included into the model. The
exogenous variables are included using an append statement, while the endoge-
nous variables are included by importing directly into model dfbase the model
df, containing all the estimated equations. Then the model is solved dynamically
by using Gauss-Seidel and the extension bl is appended to all generated vari-
ables. The variables are then grouped according to their status into exogenous
and endogenous.

’baseline simulation

smpl 1986:01 2001:12

’define growth rate of money

genr x=6

model dfbase

’define exogenous variables

dfbase.append 1lm2=1m2(-12) +x

dfbase.append lyst=773.27+0.275*@TREND (1959:01)

’loadind endogenous variables

dfbase .merge df

copy dfbase m_temp

m_temp.append assign Qall _bl
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m_temp.solve

delete m_temp

group exog_bl di12Im2_bl d12lyst_bl

group endog_bl tbill3_bl infl_bl di12ly_bl

A disturbed sumulation is then created following the same steps

’disturbed simulation

smpl 1986:01 2001:12

’define shock to the growth rate of money

genr y=1

model dfshock

’exogenous variables

dfshock.append 1m2=1m2(-12) +(x+y)

dfshock.append lyst=773.27+0.275*@TREND(1959:01)

’loading endogenous variables

dfshock.merge df

copy dfshock m_temp

m_temp.append assign Qall _ds

m_temp.solve

delete m_temp

group exog_ds d12Im2_ds d12lyst_ds

group endog_ds tbill3_ds infl_ds di12ly_ds

plot tbill3_bl tbill3_ds

plot infl_bl infl_ds

plot di12ly_bl di2ly_ds

At the end of the block simulated values for the endogenous variables are
plotted. Finally dynamic multiplier are computed , grouped into dm and plotted

’computing dynamic multipliers

genr dm_tbill3=(tbill3_ds-tbill3_bl)/(x+y)

genr dm_infl=(infl _ds-infl bl)/(x+y)

genr dm_d121y=(d121ly_ds-d121y_bl)/(x+y)

group dm dm_tbill3 dm_infl dm_di2ly

plot dm

We report in the computed dynamic multipliers in Figure 2:

The one per cent increase in money supply has a one-to one impact on infla-
tion in the long-run and a zero impact on deviation on GDP growth. Money is
neutral in the long-eun but it does have a short-run impact on the output cycle
as prices are sticky. As a consequence of price stickiness we also observe a short-
run liquidity effect on interest rates while in the long run the Fisher relationship
applies and monetary policy does not have any impact on real interest rates.
Note that there is some cyclicality in the interest rate multiplier, this is due to
the cycle in nominal interes rates generated by the model. In fact the cycle of
output is not matched by any cycle in money supply, which has just a trend.
As a consequence nominal interest rates reflect to some extent fluctuations in
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Fia. 4.2. Dynamic Multipliers

output. Setting money supply as completely exogenous generates artifical series
incapable of replicating some feature of the observed data. We shall re-address
this point later.

At this stage we feel it is more important to concentrate on the reliability of
the description of the response of the economy to monetary poicy derived from
the dynamic multipliers.

4.6 Assessing econometric evaluation of monetary policy.

To have a first assessment of the reliability of our simulations we the following
approach: we assume that the monetary authority has followed rule which deliv-
ered the observed data on the money stock and, using such variable as exogenous,
we endogenously generated the relevant macroeconomic time series foe a sample
covering both the estimation (up to 1985:12) and the simulation (from 1986:1
to 1996:3) period. Such result is obtained by solving the following version of the
baseline model:

assign Qall _fal
lyst=773.27+0.275*QTREND (1959:01)
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’1m2=1m2(-12)+10

tbill3=(-1/1.7568218) * (1lm2-1p-1ly) -(527.8596/1.758218)
ly=1yst+1.47-0.383+(tbill3-infl(-1))

(1p-1p(-12))=0.1 +0.975%(1p(-1)-1p(-13))+0.029*(1ly-1lyst)
INFL=(1p-1p(-12))

d121m2=1m2-1m2(-12)

d12lyst=lyst-lyst(-12)

d121ly=1y-1y(-12)

cycle=ly-lyst

Note that now the equation for Im2 is commented out: the model will now be
solved by taking lm2 as exogenous ad using the historical values for this variable.

We report in Figure 3 and 4 the simulated (defined with suffix _fal) and
observed relevant macroeconomic variables: cycle (defined as the deviation of
output from trend output) and inflation.

10
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Fi1a. 4.3. Observed and simulated cycle

Shaded areas distinguish the simulation sample from the estimation sam-
ple.The analysis of Figures 3-4 reveals two problems. Over the estimation period
the simulated series do no have a sufficiently rich dynamics match the observed
time series. However, there is no tendency for a systematic deviation of simulated
series from observed series: the difference between model generated and observed
time series has a long-memory but there is a pattern for a reversion toward the
zero mean. When we revert to the simulation period the first problem persist
and, in addition, we start observing a systematic pattern in the divergence be-
tween simulated and observed time-series. Such evidence probably justifies some
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Fic. 4.4. Observed and simulated inflation

skepticism towards econometric evaluation of monetary policy. To further elabo-
rate on this point we consider some diagnosis of the causes behind the problem to
discuss the solutions proposed by recent developments in econometric modelling
of the monetary transmission mechanism.

4.7 What is wrong with econometric policy evaluation?

The two problems with the our application of the Cowles Commission approach
seems to be serious enough to warrant some discussion. We shall organize our
discussion by dividing explanation in two classes: those explanations concen-
trating on modifications in the estimation technique and those suggesting some
modifications in he modelling strategy.

The small structural model we have considered is estimated using single equa-
tion OLS method. This method is clearly not appropriate, even by taking the
”a priori”exogeneity assumptions on money supply and trend output as valid.
Consider the money demand equation, alongwith the aggregate demand and sup-
ply schedules. These relations establish a simultaneous feedback between output,
prices and the interest rate which make not appropriate OLS as the estimation
method. In the velocity equation, for example, the nominal interest rate, the
only stochastic regressor, should be correlated with the residual and therefore
the OLS estimate of the semi-elasticity of money demand with respect to inter-
est rate should be biased. Biased estimates of the parameters of interest could
obviously explain the disappointing performance of the model under simulation.
However this potential explanation does not seem to be the relevant one. We re-
port in the following table the results of the estimation of the velocity equation
by GIVE using valid instruments.
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TABLE 5: VEL =C(1)+C(2)*TBILL3
GIVE Estimation

Coefficient Estimate Std. Error t-Statistic Prob.
C(1) 527.41 0.439 1212 0.0000
C(2) 1.85 0.06 29.46 0.0000

Instruments:C TBILL3(-1) LY(-1) LP(-1) LP(-2) LM2(-1)

R-squared 0.72 Mean dependent var 539.0975
Adjusted R-squared 0.72 S.D. dependent var 6.392876
S.E. of regression 3.34 AXkaike info criterion 2.42

Sum squared resid 3567.040 Schwarz criterion 2.44
Log likelihood -835.5954 F-statistic 868
Durbin-Watson stat 0.125 Prob(F-statistic) 0.000000

Note that the GIVE estimates are not very different from the OLS. This result
is robust to the consideration of full information estimation methods'®. The
observed problems under simulations do not seem to be explained by the chosen
estimation method but rather by problems in identification and specification.
These are the two issues closely addressed by modern aproaches to econometric
modelling. The first problem, i.e. the incapability of the estimated model to
capture the observed dynamics of the variables of interest, could be explained
by the following considerations:

e The statistical model implicit in the estimated structure is "too restrictive”.
There are two interpretation of the excessive simplicity in the specification:
omission of relevant variables, omission of the relevant dynamics for the
included variables (note, for example, that the estimated money demand
relation is a simple, static equation)

e the identifying restrictions, altough necessary from to make the estimation
meaningful, deliver a structure which cannot adequately describe reality.
Think of money supply in the estimated model: if the monetary author-
ity uses money supply as an instrument to achieve given targets for the
macroeconomic variables, then it would be very "natural” for money supply
to react not only the output and inflation but also to leading indicators for
these variables. Assuming money supply as exogenous, the estimated model
omits completely a very relevant feedback and looses an important feature
of the data. Moreover, by assuming incorrectly exogeneity, the model might
induce a spurious statistic efficiacy of monetary policy in the determina-
tion of macroeconomic variables. The endogeneity of money does generate
a correlations between macroeconomic variables and monetary variables,
which, by assuming invalidly, money as exogenous could be interpreted as a

10A useful exercise
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causal relation running from money to the macroeconomic variables (Sims
critique).

The worsening of the model’s performance under simulation could instead be
explained by the following considerations:

e incorrect specification. Omitted variables have an effect which, not detected
when the model is estimated (possibly because the omitted variables were
silent”) becomes relevant in explaining parameters’ instability of the es-
timated equations in the simulation period. Incorrectly specified dynamic
models feature parameters’ instability in out-of-sample simulations.

e Model simulation implies considering alternative monetary policy regimes.
A change in regime might imply a structural shift in the parameters of the
estimated equations, therefore, the model estimated under the ”baseline”
regime cannot be used to evaluate the effect of the ”control” policy. In
other words the ”Lucas critique” applies.

In the next chapters we shall consider in turn all these explanations by dis-
cussing all the alternative modern approaches to applied macroeconometrics.



REFERENCES

Bollerslev T.(1986) ” Generalized Autoregressive Conditional Heteroscedastic-
ity”, Journal of Econometrics, 31, 307-327

Chow G. and Lin

Doornik J. and D.F. Hendry (1996) PcFIML: Interactive econometric modelling
of dynamic system, International Thompson Publishing, London

Engle R.F.(1982) ” Autoregressive conditional heteroscedasticity with estimates
of the variance of United Kingdom inflation”

Goldberger A.S.(1991) ”A course in econometrics”, Harvard University Press,
Cambridge, Massachussets

Hendry D.F.(1976) ” The structure of simultaneous equation estimators” Jour-
nal of Econometrics, 4, 51-88

Hendry D.F. (1996) Dynamic Econometrics, Oxford University Press, Oxford

Klein L.(1983) Lectures in Econometrics, North-Holland, Amsterdam

Johnston (1972) Econometric Methods, 2™ edition, New-York:McGraw-Hill

Leeper E.M., C.A. Sims and T. Zha (1996) “What does monetary policy do?”,
available at ftp://ftp.econ.yale.edu/pub/sims/mpolicy

Lucas R.E. Jr. (1976) “Econometric Policy Evaluation: A Critique”, in K. Brun-
ner and A. Meltzer (eds.) The Phillips curve and labor markets, Amsterdam,
North-Holland

Sargan D.(1988) " Lectures on advanced econometric theory”, Basil Blackwell,
Oxford

Sims C.A. (1980) “Macroeconomics and Reality”, Econometrica, 48, 1-48

Sims C.A. (1992) “Interpreting the Macroeconomic Time-Series Facts: the Ef-
fects of Monetary Policy”, European Fconomic Review, 36, 975-1011

Spanos A. (1990) “The simultaneous-equations model revisited. Statistical ad-
equacy and identification”, Journal of Econometrics, 44, 87-105

White A.(1980) ” A heteroskedastic consistent covariance matrix estimator and
a direct test for heteroscedasticity” Econometrica, 48, 817-838



THE LSE APPROACH

5.1 Introduction

The LSE approach explains the failure of the Cowles Commission methodology
by attributing it to the lack of attention for the statistical model underlying
the particular econometric structure adopted to analyse the effect of alternative
monetary policies. The LSE methodology considers econometric policy evalua-
tion an interesting and feasible exercise. However the way in which the Cowles
Commission approach deals with a legitimate question is not seen as correct.
The lack of sufficient interest for the statistical model is at the root of the fail-
ure of the Cowles Commission approach to provide at acceptable answer to an
interesting question. As it can be seen form the application discussed in the
previous chapter, the econometric analyses within the Cowles Commission tra-
dition begin from the idea that the structural form of the process generating the
data is known qualitatively, reduced form are then derived from such structures.
Within such framework the validity of the reduced form is not tested. The LSE
approach views this lack of validation of the reduced form as undermining the
credibility of the structural parameter estimates. The LSE approach recognizes
that economic theory suggests the general specification of the relevant form, but
the precise representation of the Data Generating Process is almost never known
in advance. Thus modelling procedure are required to determine the credibility of
the estimated models. The reduced form takes a central role within this approach
in that it represents the crucial probabilistic structure of the data (see [15],[10]).
The traditional logic of the Cowles Commission, according to which the reduced
form is derived given the structural model, is turned upside down within the
LSE approach. The reduced form is defined first, by defining a system via the
set of variables considered, their classification into modelled and non-modelled
variables (endogenous and exogenous in the traditional terminology) and the
specification of the lag polynomials. The system is then validated by applying
the three basic principles of econometrics :” test, test and test”. The null hy-
pothesis of interest here being the absence of symptoms of mis-specification,
such as residual non-normality, autocorrelation, heteroscedasticity, parameters
non-constancy. If the null is not rejected and the system can be considered as
a congruent representation of the unknown Data Generating Process, then non-
stationarity can be dealt with and the long-run properties of the sytem can be
identified by implementing cointegration analysis. Note again that cointegration
analysis is fully implemented on the reduced form and the identification of the
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structural long-run relationships is a totally separated problem from the identi-
fication of the structural short-run simultaneous relationships. In the last step
a structural model is identified and estimated. No further validation is possible
for just-identified model as they impose no restrictions on the system, while the
validity of over-identified models is testable by testing the validity of the over-
identifying restrictions implicitly imposed on the redeuced form. Finally, policy
simulation can be performed after testing that the necessary requirement for the
model to be robust to the Lucas critique, i.e. superexogeneity of the relevant
variables for the estimation of the parameters of interest, is satisfied.

5.2 The LSE diagnosis.

The LSE diagnosis of the problems displayed by Cowles Commission models is
simple

”...the statistical properties attributed to the structural estimators and re-
lated tests are in general invalid unless the probabilistic structure imposed on the
data via the reduced form is invalid. A glance at the empirical literature confirms
that not only are the statistical assumptions underlying the reduced form not
tested, but the reduced form is rarely estimated explicitly. Indeed, the most pop-
ular estimation methods for the structural parameters are limited-information
instrumental-variable methods such as two-stage least squares which do not even
specify the implied reduced form...” ([15], p.90) .

Consider the structural model used to illustrate the Cowles Commission ap-
proach in the previous chapter :

Y Y1 Y2 €1t
Pt 1 Pt—1 Pt—2 €2¢
AR | =Cy [t} +Cy | R | +Co | Bi—a | + | €3¢ (5 1)
my me1 me—2 €4
( (P Yt 2 €51

A=~ el a0
0 0 0 1 0
0 0 0 0 1
€011 0 0a130 —a130
021 0 02 0 0 -1
Co=|co31 0 , C;=1]00 0|, Cy=|0 ©
o410 00 1 0 0
€051 €052 00 0 0 0

only parameters different from zero or one are to be considered ”free” and
are then estimated to describe the economic properties of the adopted structure.
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From this representation we immediately note the the exogeneity assumptions
implies a remarkable number of the restrictions on the set of the parameters
of interest. Another substantial set of restrictions derives from the very limited
dynamics adopted in the specification of the model. The implied reduced form
features a remarkable number of restrictions, as easily checked by pre-multiplying
the model by A~ :

Dt [do.11 do 12 d11100d130| [Py
Yy doz21 do22 | 1 d121000d; 230 |y
Ry | = | doz1 do32 + | d13100di 230 | By
™My do,41 0 —TREND 0 00 1 O Mi_1
yi | do51 do 52 0 00 0 Of |y

[d211 00007 [peo €14

d221 0000 [y—2 €2

d310000| |Rio | +A ! | e

0 0000 Mi_9 €4t

0 0000] |y, s

According to the LSE criticism the validity of such reduced form is not prop-
erly addressed within the Cowles Commission tradition. Structural inference with
based on an improper statistical model is the LSE diagnosis for the failure of the
Cowles Commission approach model by evaluating the properties of the residuals.

5.3 The reduction process

Econometric modelling is formalized within the LSE camp as the result of a
reduction process. The starting point of the reduction process is a long way up:
think of a vector x; containing observations an all economic variables at time ¢.
A sample of T" time series observations on all the variables can be represented
as follows:

X1

Xt

The starting point of the reduction process is a model for the Data Generating
Process(DGP). The DGP is described by the joint density function D (XIT, 9)
where X; 1 is the matrix incuding observations on all variables in x from time
1 to time t — 1, and 8 is a set of parameters.

Model specification amounts to choosing a particular functional form for the
density. Having chosen the model, a structure for the model is pinned down by
identifying parameters and estimating them. In general estimation is performed
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by considering the joint sample density function, known also as the likelilihood
function, which we can express as D (XIT | XO,B) .The likelihood function is
defined on the parameters space O, given the observation of the observed sample
XIT and of a set of initial conditions Xg. Such initial conditions can be interpreted
as the pre-sample observations on the relevant variables (which are usually not
available). In case of independent observations the likelihood function can be
written as the product of the density functions for each observation. However
this is not the relevant case for time-series, as time-series observations are in
general sequentially correlated. In the case of time-series the sample density is
then constructed using the concept of sequential conditioning. The likelihood
function, conditioned with respect to initial conditions, can always be written as
the product of a marginal density and a conditional density as follows:

D (X} | Xo,0) = D (x1 | Xo,0) D (X7 | X1,0)

Obviously we also have

D (X% | Xo,0) = D(x2 | X1,0) D (X3 | X2,6)

and, by recursive substitution, we eventually obtain :

T
D (X% | X0,0) =t =1][D (x| X;1,6)

Having obtained D (XIT | Xo, 9) we can in theory derive D (XIT, 9) by integrating
with respect to Xy the density conditional on pre-sample observations. In practice
this could be not tractable analitically as D (Xg) is not known. The hypothesis
of stationarity becomes crucial at this stage, as stationarity restricts the memory
of time series and limits to the first observations in the sample the effects of pre-
sample observations. This is the reason why, in the case of stationary processes,
initial conditions can be simply ignored. Clearly the larger the sample, the better
as the weights of the information lost becomes smaller. Moreover note also that,
even by omitting initial conditions we have:

T
D (X} | Xo,60) = D (x1 | Xo,0)t = 2] [P (x¢ | X¢-1,6)

therefore the likelihood function is separated in the product on T — 1 con-
ditional distribution and one unconditiona distribution. In the case of non-
stationarity the unconditional distribution is not defined. On the other hand,
in the case of stationarity the DGP is completely described by the conditional
density function D (x; | X; 1,8).
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The base line of the reduction process, the DGP or the Haavelmo distribution,
is then completely described by D (%, | X;—1,8) . The first step of the reduction
process can be understood by partitoning x in three types of variables:

Xt = (Wt7Yt7Zt)

w; identifies variables which are not observables or are not relevant to the
problem investigated by the econometrician. In practice these variables are ig-
nored, in theory such result is obtained by factorising the joint density and
integrating it with respect to wy:

D(Yt7zt | Yt717zt717/8) = //D(Yt7zt7wt | Yt717zt717wt71,9)
DW;_1|Y1,Z1,0)dW,_1dw;

In this case we have a potential information loss which becomes real when
the variables judged irrelevant for the problem at hand are not so. In formal
terms, we do not have any information loss only if:

D(Yt7zt | Yt717zt717/8) - D(Yzhzzhwt | Yt717zt717wt71,0)

This is the statistical description of the model considered by the econome-
trician, it is in other words the reduced form of the structure of interest to the
economy. In general, at the empirical level this, is the earliest stage of the reduc-
tion process, in fact a reduced form for all the variables of interest (a VAR) is the
most general model we fitted to the data. However, such general model viable
for empirical estimation does not certainly coincide with the Haavelmo distri-
bution for all economic variables! How can we be sure that no loss of relevant
information occurred in moving from the Haavelmo distribution to the estimated
empirical model ? By applying the three fundamental rules of LSE econometrics
“test, test and test” to our reduced form. In fact D (y;,2: | Yio1,Ze—1,0) is
empirically constructed by parameterising F (y,2¢ | Yi—1, %1, 3) as follows:

st vezens = (G 3010) (50

From the specification of conditional means the vector of innovations u; is derived

w= () (a0 Bz )
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Going back to our application to the monetary transmission mechanism, the
baseline of the investigation is a reduced form of the type:

(1\‘/{11> = Dy(L) <1\Y/Iil1> + Daay + (1‘11;”) (5.2)

Any empirical model is in itself the product of some step in the reduction
process. So the starting point of the empirical analysis is the implementation of
a battery of diagnostic tests, where the null hypothesis of interest is the validity
of the baseline model as a simplified representation of the unknown DGP

5.4 Test, test and test

Given that the GDP is unknown, the validity of reduction can be checked by
ensuring that the vector of innovations u; possesses all the features of true statis-
tical innovations: absence of correlation, heteroscedasticity, non-normality. Any
pattern of this type or any instability in the 3 parameters can then be interpreted
as a signal of a loss information occurred in the hidden reduction from the DGP
to the particular estimated form adopted. The three fundamental principles of
the LSE methodology are "test, test, and test” because only by implementing
diagnostic checks we can discard invalid structural models. Testing usually con-
centrates on residuals because any non-randomness in residual behaviour could
be interpreted as a signal of incorrect specification of the underlying model. The
residuals of a statistical model are generated by the specification adopted by
the econometrician and are a by-product of omitted variables (both in the sense
of omitted important variables and of omitted lags of included variables), and
errors-in-included-variables of several type (measurement errors, expectational
errors). We illustrate how the relevant tests can be constructed with reference
to the statistical model (5.2).

5.4.1 Testing autocorrelated residuals

Residual autocorrelation is usually tested via a Lagrange Multiplier test [4],
which uses the following formulation:

AY Y
Y, : o s Y1 el

=i=1) & + Dy (L + Doay + 5.3
R EIED YA (il G Sy R R e IS
t t—1

So residuals autocorrelation of the n-th order is checked by testing if the
components of lagged fitted residuals not explained by the regressors in the
original model are significant in explaining contemporaneous fitted residuals. A
test against the null of absence of serial correlation of order n is implemented by
consider lags up to the n-th of fitted residuals. The null hypothesis of interest
is:



158 THE LSE APPROACH

HoZ(SiZO

The test, based on the R? of the auxiliary system, is asymptotically dis-
tributed as a x? with nm? degrees of freedom, where m is the number of the
variables entering the reduced form[8]. An F-approximation with small sample
corrections is also available[12]. The intuition of this procedure of model eval-
uation by variable addition is understood by considering that, nder the null
hypothesis, the component of lagged residuals not explained by the regressors in
the model is not significant in explaining current residuals[14].

5.4.2 Testing heteroscedastic residuals

To illustrate tests for the null of homoscedasticity, consider the simple case where
we have a system including two variables, one monetary variable and one macroe-
conomic variable. After estimation of (5.2) , a tests can be performed by running
the following auxiliary model:

()

MY 2 st271 €1¢
Yi My €3¢

Y. M
Under the null hypothesis the variance-covariance of the system residuals is con-
stant. Hence, we have

Ho:D*(L)=0

The test is easily generalized to systems of m variables, with the proviso that,
as m gets large, the limitation in degrees of freedom might make it not feasi-
ble. The procedure is best interpreted as an extension of the heteroscedasticity
tests proposed by White[17] in the context of single-equation models. Of course,
whenever the degrees of freedom problem is binding, a White test can be run on
all the equations separately. Not rejecting the null in this case would satisfy a
necessary condition for homoscedasticity of the sytem residuals. The condition is
not sufficient because it does not provide a test for constancy of covariances. At
the single equation level, ARCH[6] type of tests could also be run, by specifying
the following models:



TEST, TEST AND TEST 159

[
&

Where the null of interest is:

=8 +i= 1zn:5; <Uty> + (e”> (5.5)

HoZ(SiZO

Note that all the test for heteroscedasticy here presented take some estimate
of the variance-covariance matrix of the system residual and check its constancy
over time. The difference between different tests lies in the specification of the
alternative, i.e. of the variables used to capture the fluctuations over time of the
moments under the alternative distribution.

5.4.3  Testing residuals normality

Normality of residuals is a crucial property in that all the statistical framework
used to "test, test and test” is based on this assumption. A vector normality

tests has been proposed by Doornik and Hansen [5].
Y oM
The test is constructed by first standardising the residuals (ut u, ) Define

the vector of standardised residuals(ry,...,rr) as R. So C = T 'R'R, is the
correlation matrix. The standardised residuals, normally distributed under the
null with zero mean and variance-covariance matrix C, can be transformed into
independent standard normals:

e; = EAf%E’rt

where A is a diagonal matrix with the eigenvalues of C on the principal
diagonal and the columns of E are the correspondent eigenvectors, such that
E'E =1, and A = E'CE.

The test is performed by computing univariate skewness and kurtosis of each
transformed residuals and comparing them with those of the normal distribu-
tion. Define by = (b11,..., bim ) , by = (ba1,...,bam ) , as the vectors containing the
sample estimates of the skewness and kurtosis of the transformed residuals of
the m equations included in the model we have that the test statistic:

Th)b, N T (by — 3i)' (bg — 3i) asy

2
5 51 X~ (2m)

where i is the unit vector. As the above requires large samples, corrected
versions are proposed and implemented in the PC-FIML package.
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5.4.4 Testing paramelers stability

Within the LSE methodology variable parameters is an oxymoron. In fact ”...Mod-
els which have no set of constancies will be useless for forecasting the future,
analysing economic policy, or test economic theories, since they lack entities on
which to base those activities...”[7]. Testing parameter constancy is therefore
an important aspect of the diagnostic checking procedure. This is usually done
within the LSE tradition by estimating models recursively and applying Chow
tests for parameters stability[?].

Single equation Chow tests include 1-step F-tests, break-point F'-tests and
forecast F-tests.

1-step forecasts tests are F'(1,£ —k — 1) under the null of constant param-
eters, for t = N,...T and k included regressors. A typical statistic is calculated
as:

(RSS, — RSS,_1) (t— k — 1)
RSS,_,

Where RSS; is the residual sum of squares computed from the estimation
on t observations. And they are computed by PC-GIVE and PC-FIML for all
possible break points after initialization of the estimation.

Break-point F-tests are F(T' —t+ 1,1 — k — 1) for ¢t = N,..T. The null of
interest is the stability of parameters when model is estimated on the sample 1
to ¢ against an alternative which allows any form of change over t + 1 to 7. A
typical statistic is calculated as

(RSSy — RSS, 1) (t—k—1)
RSS, 1 (T —k—1)

Forecast F-test are F(T— N +1,M —k—1) for t = N, ..T, they test stability
of the model estimated on the sample 1 to (N — 1) against an alternative which
allows any form of change over N to T'. A typical statistic is calculated as

(RSSp — RSSy 1) (N —k—1)
RSSy 1 (T —N—1)

All these tests can be extended to systems by defining F-approximations to
likelihood ratios statistics[4].

Chow tests are tests for instability generated by a single-break point, occur-
ring at a known date within the sample. Refinements of the testing procedure
have been proposed to deal with breaks occuring at uncertain dates and with
multiple breaks. Andrews [1] proposes to deal with uncertainty by using trim-
ming points to define a subsample in which the break has likely occurred , by
then computing all possible Chow tests (in Y2 form) for every breakpoint. The
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largest statistic so obtained provides a stability test (“maximum Chow” test)
for an unknown break point. The article provides the underlying distributional
theory and critical values, which are function of degres of fredom and trimming
points.

5.5 Testing the Cowles Commission model

We consider as a baseline modelling the following generalization of the statistical
model underlying the simple Cowles Commission specification:

L do11 do12 . Mg Uiy
Yt _ | do21dop2| |1 . | Y Uy
R, = | dos1 dos [TREND} +i=1) Di | B s
(m —p), do,a1 do 42 (m—p),_; Uy

We estimate the abover specification by OLS, using PC-FIML, over the sam-
ple 1959:7-1985:12. The residuals for the four equation in the system are reported
in Figure (?7), while diagnostic tests are reported in Table 1.

TABLE 1: Diagnostic tests

AR1 — 7F(7,267) Normalityx2(2) ARCHTF(7,260) Xi 2F(50,223)

LY 0.7691 [0.6137] 19172 [0.0856]  0.72095 [0.6543]  0.60953 [0.9807]
INFL 2.671 [0.0109] *  9.9844 [0.0068] ** 0922 [0.4898]  1.5344 [0.0196] *
LM2P 1.9475 [0.0625]  21.096 [0.0000] **  2.4126 [0.0208] *  1.1241 [0.2807]

TBILL3 ~ 2.1913 [0.0353] *  162.11 [0.0000] **  20.494 [0.0000] **  4.7914 [0.0000] **
Vector  2.4529 [0.0000] **  214.5 [0.0000] ** - 1.3827 [0.0000] **

The plot of the residuals and the results of the diagnostic tests reported in
Table 1 make a point: the adopted specification does not deliver an acceptable
statistical model. Given that this model is more general than the simple specifi-
cation used to illustrate the Cowles commission approach, the results is valid a
fortiori for such model.

5.6 Searching for a congruent specification

In the previous section we have illustrated the diagnosis of the problems of the
Cowles commission models proposed by LSE. We consider now the prognosis:
begin the search of the final specification starting from an appropriate statis-
tical model for the data. Looking at the behaviour of the residuals from the
previous estimated model we note that the equation for the interest rate shows
a substantial degree of instability over the period 1979-1982. In fact in this pe-
riod a different monetary regime has been adopted by the Fed who abandoned a
strategy aimed at controlling interest rates to embrace a non-borrowed reserves
targeting regime. As a consequence the volatility of short-term interest rates
changes dramatically over the period 1979-1982. Such volatility goes back to
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pre-1979 levels only when non-borrowed reserves targeting is abandoned at the
end of 1982 (see Walsh|[?]) motivation to be introduced here. Mixing two differ-
ent policy regimes is a recipe for parameters instability, therefore we concentrate
on a single regime and shorten the sample to end estimation in 1979:10. A sec-
ond problem is detected by the diagnostics in the equation for inflation. Several
outliers here are generated by the oil price shocks of 1973 and 1979. To fix this
problem we include among the variables in the system an index of commodity
prices. Such variable could also be important in modelling the monetary policy
maker behaviour, if it palys a role as a leading indicator for inflation. Lastly
to model properly money demand it seems necessary to consider explicitly the
own return on money in the construction of the opportunity cost of holding this
asset. A time series for this variable is made available by the Fed at the inter-
net site http//www.?7.77. . we extend our baseline system to include such new
variable. We re-estimate the system over the shortened sample with the new
endogenous and exogenous variables. As the residuals show some persistent sign
of non-normality we include a set of dummies to remove outliers (observations
generating observed residuals of a magnitude exceeding, in absolute value, three
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times the standard deviation of fitted residuals). We then choose the following
as our baseline model:

ijri 20,11 20,12 | 6 ?Tiili
O [ +1= 1500 1 s
(m—p), o1 7042 (m—p),
6 Ut
+i = 0% FiALPCM,;_; +g'DUM,+ ZZ
U4t

DUM,, is a vector of dummy variables containing: dum7306,dum7307, dum7308,
dum7310, dum?7311, dum7312, dum7402, dum7403, dum7407, dum7408,dum7409,
dum7501, dum7505, dum7806, dum7808, dum7811, dum7904. In general, dum-
MMYY is a variable taking value 1 in the MM month of the year YY and zero
anywhere else.

We plot the residuals in Figure (5.2) and report the diagnostic tests in Table

2.
TABLE 2:
AR1 —TF(7,267) Normalityxz@) ARCHT7F(7,260) Xi 2F(50,223)
LY 0.92159 [0.4913] 1.577 [0.4545] 1.0196 [0.4196] 0.82561 [0.7929)
INFL 1.4775 [0.1787] 3.1857 [0.2033] 0.38832 [0.9081] 0.59005 [0.9874]
LM2P 2.0011 [0.0580 3.04 [0.2187] 0.49178 [0.8395] 0.69226 [0.9418]

#512.04 [0.0024] % 0.70325 [0.6693]  1.0182 [0.4606]
6.6683 [0.0356] *  2.8439 [0.0081] **  0.89271 [0.6835]
#24.745 [0.0058] ** 0.66171 [1.0000]

TBILL3 1.0123 [0.4246

[
[

M20OWN  5.2877 [0.0000
[

Vector 1.4779 [0.0004

The situation looks much improved now, although the equation for the own
rate on money shows still some problem of autocorrelation and non-normality,
signalled both by the single-equation and the system diagnostics. We attribute
this problems to the very peculiar time-series behaviour of this series (see Figure
X) and decide to proceed further in our analysis by considering 5.6 as a congruent
representation for the unknown Data Generating Process.

5.7 Cointegration Analysis

The next step in the specification strategy is the identification of the long-run
equilibria in our model. The number of cointegrating vectors can be detected by
applying the Johansen procedure to identify the rank of the matrix II in the
following re-parameterisation of our model:
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We have already seen in Chapter 2 that two identification schemes deliver
alternative representations of the long-run equilibria based on over-identifying
restrictions not rejected by the data. The first scheme is centered upon a money
demand relation, while the second is centered upon an interest rate reaction
function. We have also shown that the analysis of the adjustment parameters
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makes the second scheme preferable. On the basis of these results, we opt for
the second identification scheme and proceed to specify a structural model for
the policy rates, output and inflation. Within such scheme, real money is com-
pletely determined by the demand side and looses any interest for the analysis
of monetary policy. When the researcher looses interest in real money the re-
turn on money becomes also uninteresting. Our economic interpretation of the
results of the cointegration analysis makes our baseline reduced form unneces-
sarily complicated. The natural question at this point regards the legitimacy of
a simplification of the model in moving from the reduced form to the structural
model of interest.

5.8 Specifying the structural model

Having validated the reduced form, the econometrician is left with the problem
of identifying the appropriate structure. Moreover, we have seen that the reduced
form might constitute in itself a model unnecessarily complicated for the problem
at hand. It is then important to identify the cases in which further simplification,
obtained by reducing the dimension of the estimated system, is viable with no
loss of relevant information for the purposes of analysis.

5.8.1 FExogeneily

Suppose that the relevant problem is inference on subset B; of the parameters
determiningthe joint density of

V¢, and z;.In general it is always possible to re-write D (y¢,2; | Y;_1,Z: 1,03)
as follows:

D(ye,z¢ | Yeo1,Z:-1,8) =D (yt | 26, Ye-1,Z¢-1,81,82) D(2¢ | Yeo1,Z¢-1,81,85)
(5.7)

The general case admit as a specific case the existence of a ”sequential cut”,
which we represent as follows:

D(Yt7zt | Yt717zt717/8) - D(Yt | Zt7Yt717Zt717181)D(Zt | Yt717zt717182)
(5.8)

If this is the case and if the set on which the parameters 3,are defined is
totally independent from the set on which the parameters 3, are defined (3, and
B, are variation free) then inference on B,could be performed by concentrating
only on the conditional density for y;, without explicitly treating the marginal
density for z;. To have an intuition of this argument think of the problem of
deriving an estimator of 3; by using the(5.8) as the likelihood function. Taking
logs of (5.8) we have:
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IOgD(Ytht | Yt717zt717/8) - IOgD(Yt | Zt7Yt717Zt717/81) +10gD(Zt | Yt717zt717182)
(5.9)

from which it is clear that the log of the joint process is equal to the sum
of two factors. The second factor is a constant with respect to 3; , it does not
affect the maximum likelihood estimator of B; and can be ignored when the
main interest of research is inference on (B3;. When the sequential cut can be
operated and 3; and B, are "variation free”, z; is said to be weakly exogenous
for the estimation of 3;. Weak exogeneity can be confronted with Granger non-
causality (Granger(1987)). z; Granger-causes y; if the knowledge of z; helps the
prediction of y;.;,j>0. Granger- causality is independent from the choice of the
parameters of interest, while weak exogeneity obviously is. As a consequence it
is perfectly admissible that z; is not Granger-caused by y but these variables are
not weakly exogenous for the estimation of the parameters of interest. Think of
the following case:

D(ye,ze | Yio1,Zi-1,8) =D (y¢ | 26, Yi—1,Z¢—1,81,82) D (2 | Zi—1, 84, B3)
(5.10)

The link between Granger causality and weak-exogeneity is established by
the concept of strong-exogeneity, which is defined as the intersection of the two
concepts, therefore we have strong-exogeneity when the joint density can be
factorised as follows:

D(ye.2ze | Ye 1,2t 1,8) =D (ye |26, Y 1,2t 1,8,) D (z¢ | Zs1,8,) (5.11)

Weak exogeneity constitute the basis for the definition of a third concept
of exogeneity: super-exogeneity. Superexogeneity requires weak exogeneity and
that the conditional model D (y; |z, Yi—1,Z;—1,(3;)is structurally invariant,
i.e. changes in the ditribution of the marginal model for z; do not affect the 3,
parameters.

These three concept are useful to define the validity of the reduction from
the data congruent reduced form and the adopted structural model.

If the objective of the analysis is inference on the (3, parameters, then the
joint-density can be reduced to a conditional model if z; is weakly exogenous for
the estimation of the parameters of interest.

If the objective of the analysis is dynamic simulation, then the joint-density
can be reduced to a conditional model if z; satisfies the conditions for strong
exogeneity

If the objective of the analysis is econometric policy evaluation, then the
joint-density can be reduced to a conditional model if z; satisfies the conditions
for super-exogeneity.
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Tests for the validity of all these three concepts have been devoleped to sustain
the validity of the last stage of the reduction processes.

5.8.2 Exogeneity in ECM representations

To illustrate how the concepts of exogeneity are applied to linear dynamic models,
consider the following DGP:

Ye = al122 + €1 (5.12)
e =pe—1+ur 0<p<l
aO21y; + aO222; = alo1yy 1 + alooz 1 + €2

€9t = €2¢—1 + U2t

(i )wrn ] (5) (35 )]

This is a non-stationary process, integrated of the first order, admitting one
cointegrating vector. The non-stationarity of the process stems from the presence
of a unit root in e1¢,while the cointegrating vector is defined by y; — a122¢, as 14
is stationary. The system([?]) can be re-parameterised as follows:

Ay, _ Ay Ye—1 Uy
Ay <Azt ) =A; <Azt1 ) +C <Zt1 + oy (5.13)

_ 1 —CL012 _ 0 0
AO o <CL021 CL022 > ’ Al o <CL121 CL122> ’

c— <—(1—p) aolg(l_p)>

0 0
C= AoO&,@’

Note that (6.11)can be considered a congruent representation of the DGP,
as it features well-behaved residuals. This is not true of (5.12) which features
autocorrelated residuals. Autocorrelation is generated by the omitted first order
dynamics in the static equation. The omitted dynamics admit specific restrictions
known as COMFAC (common factor restriction). 11

To analyse the different concepts of exogeneity, consider the probabilistic
structure of the data underlying model (6.11) .In other words, let us derive the
reduced form associated with (6.11) :

11 The common factor restriction is singular in that the effects of the omitted dynamic can
be cured by a Cochrane-Orcutt estimator (static model+autocorrelated error terms).
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Ay a010alz a012a122 Ay 1
B)- @) e
a022(1 P) Yi1
+ a021(1 ko (1—@012)< e )—I— (5.15)
@022 alj1o U
I il 1t 5.16
(—nﬁ ) .

1
a0g22 — a021a012

K =

From the reduced form we have that the conditional joint density of y; and
z; can be written as follows:

Ayt My Uyy Uyz
(Azt |It1> N.I.D. KM Aot onr (5.17)

where
a0y2al a0q19al a099 (1 —

1y = 12}6 2L Ay, |+ 12}6 22 N5 | — % (yt—1 — a0122¢ 1)
al a a0 1-—

My = —kQIA -1+ %A t—1 = (k: p) (Ye-1 — aO122-1)

o o CL022 CL021 P CL012 1 o
yz — 2 2 11 2 L 22

By applying the known properties of the multivariate normal, we derive from
the statistical representation of the data the conditional mean of Ay; with respect
to Az; and I;_; as follows:

Oys

E(Aye | Aze, I1) = py + ay (2 —p,) (5.18)

z¢ is said to be weakly exogenous for the estimation of the parameters of

interest if the conditional mean for Ay, derived from (5.18)coincides with the

conditional mean for Ay, derived from the first equation of model (6.11) . As the
conditional mean from the first eqaution of (6.11) is :
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E(Ay; | Az, I 1) = a019A2 — (1 — p) (y4—1 — a0122¢ 1) (5.19)

Weak exogeneity of Az; for the estimation of the parameter a0;2 is obtained
when a0g; = 0.

Strong exogeneity requires Granger non-causality in addition to weak exo-
geneity, strong exogeneity is satisfied when a0z; = 0, als; = 0.

Super-exogeneity requires weak-exogeneity and independence of the parame-
ters of interest from the distribution of Az;. In our example, whenever the con-
ditions for weak-exogeneity are satisfied, super-exogeneity also holds. To show a
case in which this does not happen, consider the following modification of our

DGP:

Y = CL012E (Zt+1 | It) + €1t (520)

2g = alopzs 1+ €24

(2 ) [(2) (50

In this case the conditional mean F (y; | 2, {;—1) is given by the following
expression:

E(y | 2, Ii—1) = a012alanz (5.21)

and it depends on algg, the parameter determining the conditional mean of
Zg.
We conclude with the following remarks:

e exogeneity is defined independently form the parameters defining the coin-
tegrating vectors, but it is related to the weigths. Weak exogeneity has a
precise relation with the direction of adjustment in presence of disequilibria

e this is a special case, as we take a diagonal variance-covariance matrix. In
general weak exogeneity requires a lower triangular structure and absence
of correlation in the variance covariance-matrix.

e note the impossibility of reverse regression. The condition of weak exo-
geneity of Az; for the estimation of a0;2 are mutually exclusive with the
condition of weak exogeneity of Ay; for the estimation of ﬁm.

5.8.3 Testing exogeneitly

The preceeding example shows how weak-exogeneity can be tested for within the
framework of cointegration. To provide a more general introduction to the issue
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of testing exogeneity consider a bivariate process for two generic variables y; and
z¢ conditioned with respect to the information available, which includes all past
history for the process:

y vy Yz
Ye J23 0;° 07
I, 1| N.I.D. , 2 oy 5.22
(i) ven|GE) (o)) o
the conditional model for y; can be written as:
(ye | 2, Iy_1) N.I.D ?(zt—ut)—l—ut,at |\ o= (5.23)
¢ t

and the marginal model for z; is instead:

(20| 1) N.I.D (uf,07%) (5.24)

The parameters of interest feature the following relationship:

pf = Bui +wid (5.25)

of which, for the sake of exposition, we consider the special case:

Y = B2+ w18 +u (5.26)

where w;_1is included in f;_1.

Weak exogeneity of z; for the estimation of § implies that this parameter
could be estimated directly from (5.26)without any loss of relevent information.
For this to happen, it is necessary that we have a sequential cut and that the con-
ditional model does not depend on u?,0¢*, 0% . To pin down formally conditions
for weak exogeneity substitute (5.25) in (5.23) obtaining:

yz

o o?*
(ye | 2¢, Ii—1) N.I.D [ﬁzt +w; 8+ <02;Z —6) (20 —pf), 0¥ — <#>}
t t
(5.27)

Therefore we have weak exogeneity of z for the estimation of 3, if the following
condition is satisfied:

yz
Ot

=0

2z
Oy

From this condition we can easily understand test for exogeneity available in
the literature (Hausman(1978), Wu(1973)) and based on two-stages procedures.
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In the first stage pf is parameterised by fitting a conditional model for 2; of
the following type:

2y = 52’577 =+ u; (528)

Where vector s includes all variables necessary to obtain a satisfactory spec-
ification for z;. In the second stage the significance of residuals from (5.28) in
equation (5.26) and the null of weak exogeneity coincide with the null of non-
significance of such constructed variable. The argument here can be extended to
test the null of super-exogeneity (Engle-Hendry(1993), Favero-Hendry(1992)).
The alternative hypothesis is now complicated as follows:

z2z
Ot

B(u7,07") = Bo + Bipi + B207" + B3 E (5.29)

t

and the null of interest is weak exogeneity augmented by 5; = 85 = 85 =0
To see ho the test is derived, substitute from (5.29) (5.25) in (5.23) obtaining:

(yt | 2ty Itfl) N.I.D (//LmQt) (530)

a? z 2\2 2% ,,% 7
= B+ w18+ (S — Bo ) (21 — 1) + By (15)° + Bo03 i + 5307

Q= o — oy’
¢ =

by using the first-order expansion:
Z_Z = o + 61077
Wte reach the following estimable relation:

Y = Bort+ Wi 8+(80 — Bo) (2 — 4 )+6107% (21 — 1) +8y () *+5,07 i +
Bs07”

where the null hypothesis of interest can now be empirically tested by pa-
rameterising the first two moments of the conditional model for 2;.

Hendry[?] provides an alternative assessment of superexogeneity by analysing
the encompassing implications of feedback versus feedforward models.

This procedure is based on the explicit consideration of two alternative spec-
ifications for the DGP.

The feedback model, denoted Hp,is:

ye = B'ze +v (5.31)
Eb (ZtUt) =0

The feedforward model, denoted Hy is:
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Y = 6,E (Zt+1 | It) + € (532)
Zi = Y21+ Wy (5.33)
Ef (Ztﬁt) =0

U ~ 2.d. (07 Qt)

Note that in Hy the parameters of the marginal model for z; are function of
time through v, and €);. Moreover, we restrict ourselves to the case in which the
only relevant information in I; to predict z;,jare the realizations at time t of z.

We can now explore the encompassing predictions of each model for the other.
We do so by evaluating the performance of each model when the congruent
representation of the DGP is the alternative model.

When a (5.31) and (5.28) are a congruent representation of the DGP, the
following implications hold.

(1) When v, and , are non-constant, also the projection of y; on z;_; is
non-constant, in fact

Ey (ye | 2e-1) = B'v,26-1

(2) the error-variance is also non constant:

Ye — By (ye | 2e-1) = By +ve =,
By (¢7) = 02+ B'uB

(3) the projection of 4, on z;_1should fit worse than the behavioural model
[?], in fact

I, (@?) =02 + 8B >0?,

(4) the behavioural model ([?]) should feature constant parameters

When instead (5.32) and (5.28) are a congruent representation of the DGP,
the following implications hold.

(1) the conditional model cannot be constant when the marginal model for
z; is sufliciently variable since:

Ef (yt | Zt) = 6,7tzt71

(2) the projection of ¥, on z;_; is non constant but with parameter vector

5,’)’1&’7154-1
(3) no variance ranking is possible as:
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yr — Iy (yt | Zt) = €

as in (5.32).

The analysis of the encompassing implications of the two cases reveals
that when the feedback model is stable and the marginal process is not stable,
then the feedforward specification cannot be a congruent representation of the
DGP. As a consequence, the relevance of the Lucas critique could be analysed
by assessing simultaneously the stability of the feedback structural model and
the stability of the marginal models for the regressors in the feedback model.

This procedure deserves some discussion.

A first observations is related to the power of tests for structural stability, in
fact for the procedure to work it is essential that the marginal model is sufficiently
variable and that such variability is detectable through tests for parameters’
stability. As we have already seen, the issue is not trivial in that multiple breaks
at unknown points are not so easily detected.

Setting aside the power of the tests, there is a logical issue related to the re-
duction procedure. In fact, if parameters stability is taken as one of the criteria
for congruency, then congruent reduced forms should never feature parameters
instability. In practice, as we have seen in our application, congruent specifica-
tions often need the inclusion of dummies. Therefore, the significance of the same
dummies in different equations of the adopted model could be exploited to apply
the procedure for the evaluation of the relevance of the Lucas critique.

A related question refers to the power of the procedure in the case of limited
information, i.e. the case in which the parameters instability is generated by
omitted variables in the marginal models. Hendry[?] considers explicitly such
case, by adopting the following alternative specification for the marginal model:

Zy = Y121+ Y2Si-1 + Uz (5.34)

Uy, ~ i.d. (0,y) (5.35)

when (5.34) is a congruent representation of the DGP, (5.28) features insta-
bility because of a limited information problem: the omission of s; 1 from the

relevant information set. However, if(5.28) is observed, then the relation between
z; and s; cannot be constant, in fact it must be the case that:

Xt = % + &,
€, ~id. (0,2,

and then

Yi = Y1+ Yol
N = Qo + 2575
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and the result of stability of the feedback model paired with the instability
of the (mis-specified) marginal model can still rule out the congruency of the
feedforward model.

5.9 A model of the monetary transmission mechanism

To illustrate the specification of a structural model for the monetary transmission
mechanism we consider as a baseline the cointegrated reduced form discussed in
one of the previous sections:

Ay, do, 11 6
Amy | = |doa | +i=0Y FALPCM, ;+gDUM, + (5.36)
AR? do 31
5 Ay o1 Uit
i= 1ZDi Amy | + | ann (qu - R?L) + | u2e
AR?,Z' 31 U3¢
RV =7 14022y, ; —0.08t

Note that (5.36) is the result of the reduction of the baseline model, which
contains five equations. The original model delivered two cointegrating relation-
ships, we have identified the first one as an interest rate reaction function and
the second one as a rule for determining the interest rate on bank deposits. To
describe the monetary transmission mechanism under interest rate targeting we
need to supplement the interest rate reaction function with equations for the
target variables, inflation and output. Real money, being demand determined,
looses interest and so does the opportunity cost of holding money. Therefore we
have omitted from the original model the two equations determining real money
and the interest rate on bank deposits together with the equilibrium relationships
for the interest rate on bank deposits. The validity of this step in the reduction
process is testable. Congruency of our selected specification requires that the
weights on the second cointegrating vector can be constrained to zero in our
three maintained equations, that the weights on the first cointegrating vector
can be constrained to zero in the equations for real money and the interest rate
on bank deposits, and finally that lagged value of real money and the interest
rate on bank deposits do not enter significantly system (5.36). Having asserted
the validity of this further step in reduction, we proceed to the specification of
the following structural model:

Ay, = (0.03)0.23 + (0.06)0.33Ay; 1 — (0.09)0.21AR? ; — (0.46)1.19DUM7312 — (0.46)1.11.DU M7308
(5.37)
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Am; = (0.02)—0.05 4 (0.03)0.08Ay, 1 + (0.03)0.06Ay; 5 + (0.05)0.2A7; 5 + (0.05)0.14Am; ¢ (5.38)
+(0.005)0.03A15LPCM; 1 — (0.006)0.02A15 LPCM; 5 — (0.27)0.92DU M7307
+(0.26)0.87 DU M 7308 + (0.26)0.69DU M7407 — (0.25)0.56 DU M7408 + (0.25)1.04DU M7409
—(0.25)0.75.DU M7505

AR} = —(3.08)8.34 + (0.13)0.31Am; + (0.03)0.08Ay; 5 + (0.06)0.36AR;_; + (0.006)0.01A 1, LPCM{(5.:

(

(0.005)0.0183A12 LPCM;_1 — (0.018)0.04 FCM;_1 + (0.24)0.60DU M 7306 + (0.28)0.71 DU M 72
(0.24)0.90DU M7310 + (0.25)1.06 DU M 7311 — (0.24)0.76 DU M 7312 — (0.24)0.86 DU M 7402
(
(

+(0.24)1.13DU M 7403 + (0.25)1.64DU M7408 — (0.28)1.72DU M 7409 — (0.24)0.72DU M 7501
+(0.23)0.49DU M 7808 + (0.28)0.57 DU M7811

LR test of over-identifying restrictions: x? (89) = 95.3354 [0.3037].

The model is estimated over the sample 1961:2 1979:8 by FIML. The 89 over-
identifying restrictions imposed by the reduced form implicit in our structure on
the unconstrained reduced form are not rejected. The first equation can be inter-
preted as an aggregate demand equation along which the output gap (deviation
of output form a stochastic trend) depends on lagged change in nominal interest
rates. The second equation is stylised aggregate supply which determines infla-
tion as a function of past inflation, the commodity price inflation and the output
gaps. Finally, the third equation is an interest rate reaction function which de-
scribes short-run dynamics around a long-run solution determined by response
of interest rates to inflation and output. Note that, because of the dynamic spec-
ification, the response of the monetary instruments to fluctuations in the target
variables is different in the short.run and in the long-run. To illustrate the within
sample performance of the model we report actual and fitted values in Figure5.3

5.9.1 Simulating monetary policy

We are now in the position of simulating monetary policy. We simulate the im-
pact of an hundred basis point exogenous monetary policy shock by computing
dynamic multipliers. The baseline model is obtained by simulating dynamically
, for given values of the exogenous variables, the three endogenous variables are
generated by equations (5.38),(5.37), (5.39) over the sample considered for es-
timation. The perturbed solution is obtained by adding an exogenous one-off
100 basis point shock to equation (5.39) in the first period of the simulation.
Obviously a one-ofl hundred basis point shock to the first difference of the pol-
icy rates is a permanent one-hundred basis points shock to the level of policy
rates. Dynamic multipliers are then computed by adapting the E-Views proce-
dures already discussed in chapter four. All computations are available in the file
LSE.WF1. We report dynamic multipliers in Figure 5.4
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F1G. 5.3. Actual and fitted values from the structural model

Dynamic multipliers confirm the stability of the model and reveal a much
stronger impact of monetary policy on outptut fluctuations than on inflation.
Note also that the pattern of multipliers is much smoother than the correspond-
ing pattern for the model used to illustrate the Cowles Commission strategy.
Such smoothness is a consequence of the better dynamic specification of the
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Fia. 5.4. Dynamic multipliers
LSE model.

5.9.2  Model Evaluation

To complete our comparative evaluation of the LSE and the Cowles commission
specifications we have still considered out-of -sample evaluation, where the per-
formance of the Cowles commission specification was at its worst. We simulate
the LSE model dynamically over the period 1985:01- 1996:03. In doing so we
deliberately skip the period of non-borrowed reserves targeting where our speci-
fication is clearly not appropriate. The dynamically simulated series are reported
with the actual series in Figure 5.5.

Figure 5.5 shows an improved performance with respect to the Cowles com-
mission specification but clearly there are problems in the out-of-sample sim-
ulation. The implementation of diagnostic tests guarantees the quality of the
within sample results but cannot ensure against structural shifts in parameters:

congruent models within sample might perform very poorly in out-of-sample
simulations.



178 THE LSE APPROACH

910

900

890

880

870

860

850

85 86 87 88 89 90 91 92 93 94 95 96

INFL === INFL_BL

10

85 86 87 88 89 90 91 92 93 94 95 96

TBILLB === TBILL3_BL

Fi1c. 5.5. Out-of-sample dynamic simulation

5.9.3 Testing the Lucas crilique

Our simple model of the monetary transmission mechanism offers an opportunity
to implement empirically tests for super-exogeneity.

In our discussion of identification in chapter 3 we have shown that when a
central bank faces the following intertemporal optimisation problem:
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Minimize Egi=0Y 6L (5.40)
where:
_ 1 *\2 2
L= 5 (my — )" + Axg (5.41)

under the constraints of the following specification for aggregate supply and
demand in a closed economy:

Trar = By — B, (it — Bemepr— T) +ujy, (5.42)

Te41 = Tt + e + U§+1 (543)

the optimal interest rate rule can be written as:

14+ a,.f,
.0,
3, A1

== —F .
+6r T+ Sank and, tLe41

where k is a combination of parameters describing the structure of the econ-

=T 4+t 4 < > (Etﬂ-t—}-l — 7T*) + (544)

omy and the preferences of the central banker. We have then an intertemporal
optimization framework which offer a feedforward monetary rule, in which output
gap and inflation are not superexogenous for the estimation of the parameters
of interest. Contrast this specification with equation (5.39) in our model. Our
estimated egaution is a feedback specification, which does not include explicitly
expectations and whose parameters are estimated independently from those in
the aggregate demand and supply schedules. Therefore we have a natural candi-
date to test the validity of the Lucas critique. Tests of feedforward versus feedback
model are difficult to apply in that we have designed our model to pass diag-
nostic tests, however note that the reaction function and the aggregate supply
and demand equation contain a common set of dummies. This a clear indication
of common outliers in the three equations which does not refute the hypothesis
of validity of the feedforward interpretation. The presence of dummies shall also
impact on the Engle-Hendry superexogeneity tests. This test is applicable by
exploiting the specification of supply and demand equations to derive proxies
for the first two moments in the conditional model for these two variables and
then by adding them to the interest rate reaction function. The impact of the
dummies on the test is determined by the fact that they capture some portion
of the variability in the additional regressors on which joint significant is tested.
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5.10 What have we learned?

In our opinion, the major strengths of the LSE methodology are related to a
careful diagnosis of the problems of the Cowles Commission approach and to the
attept of giving ”scientific dignity” to the specification of dynamic econometric
models. The concept of cointegration fits naturally in the context of dynamic
specification of ECM models. Such research strategy is based on a multi-step
framework: specification of the VAR and its deterministic component, identifi-
cation of the number of cointegrating vectors, identification of the parameters
in cointegrating vectors, tests on the speed of adjustment with respect to dis-
equilibria. The results of the final test depend on the outcome of the previous
stages in the empirical analysis, but the outcome of each step is not so easily
and uniquely established empirically. The reduction process has been criticised
by macroeconomist for its tendency to deliver preferred specification ”...a bit
over-cooked...” and to loosen considerably the link between econometric model
and economic theory. Consider the following money demand specification, taken
from Baba, Hendry, Starr[?], as a typical LSE model:

A (m—p), = [0.097]-0.334A4 (m — p),_, — [0.039]0.156A2 (m — p),_, — [0.015]0.249 <m —p— %@45)
t—2

—[0.046]0.33A p —[0.132]1.097A4p; 1 + [0.079]0.859V; + [1.49]11.68ASV;_4
—[0.104]1.409AS; — [0.063]0.973 AR, — [0.049]0.255A Rypq ¢ + [0.055]0.435 Ry g0

£]0.07]0.395A Ay, + [0.003]0.013D, + [0.02]0.3524 1,

where heteroscedasticity consistent estimators are reported in brackets. The BHS
specification for U.S. money demand, is estimated on quarterly data covering the
period 1960-1988. m is the log of M1; y is the log of real GNP using 1982 as
base vear; p is the log of the deflator; A? is the square of the difference operator

Ay AP=A1+A)p; Ay(m—p),_, =025 ((m—p),_, —(m—p),_5); V¢ is
a nine-quarter moving-average of quarterly averages of twelve-month moving
standard deviations of 20-year bond yields; SV, = max (0, S;) * V; where S is the
spread between the 20-year Treasury bond yield and the coupon equivalent yield
on a one-month TBIill; AS; = 0.5(S; +S;—1); ARy, is a two-quarter moving-
average of the one-month T-bill yield; Ry is the maximum of a passbook
savings rate, an weighted certificate of deposit rate and a weighted money market
mutual fund rate; Rys,, is the average of weighted NOW and SuperNow rates;
Ay, = 0.5 (yy +y;_1)and Dy is a credit control dummy which is -1 in 1980(2), 1
in 1980(3), and zero everywhere else. BHS report 11 diagnostics, all passed.
The achievement of data congruency implies some evident cost in terms of
parsimony of the specification and economic interpretability of the results.equation
77 also illustrates why the LSE methodology is not easily applied to system of
equations, even of very limited dimensions. General-to-specific methodology is
usually applied in single-equation specification (money demand and consumption
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of non-durables functions are the preferred application of the LSE approach),
applications to system with few variables are reported in the literature but it
becomes very hard and very rare to apply such methodology when the dimen-
sion of the system exceeds a small dimension (say five equtions). Moreover, we
have seen that the applicability of the concept of cointegration is very rapidly
complicated as n increases in n-variate systems.

Faust and Whiteman|[23] note that ??is a much richer specification than the
one implicitly contained in the standard VAR approach, including moving aver-
ages and moving standard deviations of interest rates. I am somewhat skeptical
that such specification could be produced by a VAR approach to cointegration, or
by any VAR analysis. Criticism of the use of this generated variables are mainly
based on the argument that, by constuction, they capture within- sample fluc-
tuations in the data and their peformance out-of-sample worsens considerably.
Moreover such transformations, being data instigated, are usually related to the-
ory with some difficulty. Many applied macroeconometricians feel not at ease in
using variables which perform well empirically but whose links with theory are
not so clear. Of course, for the LSE methodology, this is a problem with the pro-
fession rather than with the econometric methodology. In fact, this is probably
the centre of the debate.
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THE VAR APPROACH

6.1 Introduction: why VAR models ?

The LSE methodology has intepreted the failure of the traditional Cowles Com-
mission approach, heralded by the critiques due to Lucas [36] and Sims [48], as
the result of the use of mis-specified and ill-identified models. The LSE method-
ology however does not question the potential of macroeconometric modelling for
simulation and econometric policy evaluation. In fact, at the stage of simulation
and policy evaluation, there no difference between the traditional Cowles com-
mission approach and the LSE approach. The LSE solution to the problems of
traditional macroeconometric modelling is concentrated on the stages of identifi-
cation and specification. The importance of estimation is de-emphasized, in that
congruency of the specification is considered as a much higher priority than the
choice of the most appropriate estimator. No innovation is proposed at the stage
of the simulation and policy evaluation: the traditional methods are applied,
after having tested, tested, and tested.

The VAR approach shares with the LSE approach the diagnosis of the prob-
lem of Cowles Commission models but also questions the potential of traditional
macroeconometric modelling for policy simulation and econometric policy eval-
uation. VAR models of the monetary transmission mechanism differ from struc-
tural LSE models as to the purpose of their specification and estimation. In
the traditional approach the typical question asked within a macroeconomet-
ric framework is ”What is the optimal response by the monetary authority to
movement in macroeconomic variables in order to achieve given targets for the
same variables?”. The VAR approach recognizes fully the potential of the Lu-
cas’critique and acknowledges that questions like "How should a central bank
respond to shocks in macroeconomic variables?” are to be answered within the
framework of quantitative monetary general equilibrium models of the business
cycle. So the answer has to be based on a theoretical model rather than on
an empirical ad-hoc macroeconometric model. Within this framework there is a
new role for empirical analysis, i.e. to provide evidence on the stylized facts to be
included in the theoretical model adopted for policy analysis and to decide be-
tween competing general equilibrium monetary models. The operationalization
of this research programme is very well described in a recent paper by Christiano,
Eichenbaum and Evans [14]. Three are the relevant steps:

e monetary policy shocks are identified in actual economies
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e the response of relevant economic variables to monetary shocks is then
described

e the same experiment is then performed in the model economies to compare
actual and model-based responses as an evaluation tool and a selection
criterion for theoretical models.

LSE-type structural models and VAR models of the monetary transmission
mechanism have a common structure which, using the notation of Chapter 3,
can be represented as follows:

A (;Z) = C(L) (;Zi) +B (Zzi) (6.1)

where Y and M are vectors of macroeconomic (non-policy) variables (e.g. output
and prices) and variables controlled by the monetary policymaker (e.g. interest
rates and monetary aggregates containing information on monetary policy ac-
tions) respectively. Matrix A describes the contemporaneous relations among

vY

the variables and C() is a matrix finite-order lag polinomial. v = oM is a
vector of structural disturbances to the non-policy and policy variables; non-
zero off-diagonal elements of B allow some shocks to affect directly more than
one endogenous variable in the system. The main difference between the two
approaches lies in the aim for which models are estimated.

Traditional Cowles Commission structural models are designed to identify the
impact of policy variables on macroeconomic quantities in order to determine the
value to be assigned to the monetary instruments (M) to achieve a given target
for the macroeconomic variables (Y'), assuming exogeneity of the policy variables
in M on the ground that these are the instruments controlled by the policymaker.
Identification in traditional structural models is obtained without assuming the
orthogonality of structural disturbances. Dynamic multipliers are used to de-
scribe the impact of monetary policy variables on macroeconomic quantities. In
the computation of dynamic multipliers the responses of macroeconomic vari-
ables to monetary policy can be obtained without decomposing monetary policy
into its endogenous and exogenous components, and, in fact, in most traditional
empirical applications such decomposition is not implemented.

The assumed exogeneity of the monetary variables in the traditional approach
makes the model invalid for policy analysis if monetary policy reacts endoge-
nously to macroeconomic variables. The LSE methodology would recognise the
problem of the invalid exogeneity assumption for M,it would then proceed to
the identification of an alternative enlarged model (presumably such identifi-
cation will be obtained through the imposition on a-priori restrictions on the
dynamics of the lagged variables). However, the new model would be still used
for simulation and econometric policy evaluation, whenever the appropriate con-
cept of exogeneity (respectively strong and super) where satisfied by the adopted
specification.
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VAR modelling would reject the Cowles Commision identifying restrictions
as "incredible” for reason not very different from the ones pinned down by the
LSE approach, however VAR models of the transmission mechanism are not
estimated to yield advice on the best monetary policy. They are rather esti-
mated to provide empirical evidence on the response of macroeconomic variables
to monetary policy impulses in order to discriminate between alternative the-
oretical models of the economy. It becomes then crucial to identify monetary
policy actions using restrictions independent from the competing models of the
transmission mechanism under empirical investigation, taking into account the
potential endogeneity of policy instruments.

In a series of recent papers, Christiano, Fichenbaum and Evans [12], [13] apply
the VAR approach to derive “stylized facts” on the effect of a contractionary
policy shock, and conclude that plausible models of the monetary transmission
mechanism should be consistent at least with the following evidence on price,
output and interest rates: (i) the aggregate price level initially responds very
little; (#i) interest rates initially rise, and (iii) aggregate output initially falls,
with a j-shaped response, with a zero long-run effect of the monetary impulse.
Such evidence leads to the dismissal of traditional real business cycle model,
which are not compatible with the liquidity eflect of monetary policy on interest
rates, and of the Lucas [35] model of money, in which the effect of monetary
policy on output depends on price misperceptions. The evidence seems to be more
in line with alternative intepretations of the monetary transmission mechanism
based on sticky prices models (Goodfriend and King [26]), limited participation
models (Christiano and Fichenbaum [11]) or models with indeterminacy-sunspot
equilibria (Farmer [21]).

Having stated the objective of VAR models we are now in the position of as-
sessing how identification, estimation and simulation are implemented to analyse
the monetary transmission mechanism.

VAR models concentrate on shocks.

First the relevant shocks are identified, the response of the system to shocks
is described by analyzing impulse responses(the propagation mechanism of the
shocks), forecasting error variance decomposition, and historical decomposition.

6.2 Identification and Estimation

We have introduced the identification problem for VAR in Chapter 3. Given the
representation of the general structural model of interest :

A (;Z) = C(L) (;Zi) +B (Zzi) (6.2)

The structural model (6.2) is not directly observable, however a VAR can be
estimated as the reduced form of the underlying structural model :
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()= em () (3) o

where u denotes the VAR residual vector, normally independently distributed
with full variance-covariance matrix . The relation between the VAR residuals
in u and the structural disturbances in v is therefore:

A <3§Yw> =B (ﬁ;) (6.4)

undoing the partitioning we have
Ui— A~ L B’Ut

from which we can derive the relation between the variance-covariance matrix
of u; (observed) and the variance-covariance matrix of v; (not observed) as
follows:

FE(wu)) = A 'BE (v,v)) B'A™?
Substituting population moments with sample moments we have:

1 Al a1

Z:Ai BIB A (6.5)

> contains w different elements, this is the maximum number of identifi-
able parameters in matrices A and B. Therefore, a necessary condition for identi-
fication is that the maximum number of parameters contained in the two matrices
is w, such condition makes the number of equations equal to the number of
unknowns in system 6.5. As usual, for such condition to be also sufficient for iden-
tification it also needed that no equations in 6.5 is a linear combinations of any
of the other equations in the system, Amisano-Giannini[1], Hamilton[30]. As for
traditional models we have the three possible cases of under-identification, just-
identification and over-identification. As for traditional models, the validity of
over-identifying restrictions can be tested via a statistic distributed as a 2 with
a number of degrees of freedom equal to the number of over-identifying restric-
tions Amisano-Giannini[1]. Once identification has been achieved, the estimation
problem is solved by applying Generalised Method of Moments estimation. We
shall describe this class of estimators in the next chapter.

In practice , identification requires the imposition of some restrictions on the
parameters of the A and B. This step has been historically implemented in a
number of different ways, we concentrate on the most widely used strategies in
the next subsections
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6.2.1  Choleski Decomposition

In the famous article which introduced VAR methodology to the profession,
Sims[48] proposed the following identification strategy, based on the Choleski
decomposition of matrices:

1 00 0 50 0 0
A = a1 1 (1) 0 7 B 0 b22 2 0 (66)
Anp1 - Apn—1 1 0O 0 0 bnn

This is obviously a just-identification scheme, where the identification of
structural shocks depends on ordering of variables. It corresponds to a recur-
sive economic structure, with the most endogenous variable ordered last

6.2.2  Structural models with contemporaneous restrictions

In this identification scheme some a-priori information is used to impose restric-
tions on the elements of matrices A and B, different from the Choleski ordering.
If the objective of VAR is provide evidence to choose between competing models,
the identifying restrictions should be independent from the theoretical predic-
tions of those models. The recent literature on the monetary transmission mecha-
nism, (Strongin[57], Bernanke-Mihov[5], Christiano, Eichenbaum and Evans[12],
Leeper,SimsandZha[33]), offers good examples on how this kind of restrictions
can be derived. VARs of the monetary transmission mechanism are specified on
six variables, with the vector of macroeconomic non-policy variables including
gross domestic product (GDP), the consumer price index (P) and the commod-
ity price level (Pem), the vector of policy variables includes the federal funds
rate (F'F), the quantity of total bank reserves (T'R) and the amount of nonbor-
rowed reserves (N BR). Given the estimation of the reduced form VAR for the six
macro and monetary variables, a structural model is identified by: (¢) assuming
orthogonality of the structural disturbances; (#) imposing that macroeconomic
variables do not simultaneously react to monetary variables, while the simulta-
neous feedback in the other direction is allowed, and (4i) imposing restrictions
on the monetary block of the model reflecting the operational procedures im-
plemented by the monetary policy maker. All identifyng restrictions satisfy the
criterion of independence from specific theoretical models, in fact ,within the
class of models estimated on monthly data, restrictions (i) are consistent with a
wide spectrum of alternative theoretical structures and imply a minimal assump-
tion on the lag of the impact of monetary policy on macroeconomic variables,
whereas restrictions (4#i¢) are based on institutional analysis.

Restrictions (ii) are made operational by setting to zero an appropriate block
of elements of the A matrix.

The contemporaneous relations among the Fed funds rate and the reserve
aggregates are derived, as in Bernanke and Mihov [5], from a specific model of
the reserve market.
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ut® = —auf P (6.7)
uBE = gt 4B (6.8)
uVBE = PP 4 oPuB 41 (6.9)

Equation (6.7) and (6.8) describe banks’ demand equations (expressed in in-
novation -i.e. VAR residual- form) for total and borrowed reserves BR (time
subscripts are omitted): the federal funds rate affects negatively the demand for

total reserves (6.7) and positively the demand for borrowed reserves'?. v¥ and

vE are disturbances to total and borrowed reserves respectively. The supply of
nonborrowed reserves in (6.9) reflects the behaviour of the Federal Reserve. In
particular, by means of open-market operations, the Fed can change the amount
of NBR supplied to the banking system in response to (readily observed) dis-
turbances to total and borrowed reserve demand. Moreover, variations in non-
borrowed reserves may be due to monetary policy shocks unrelated to reserve
demand behaviour. In (6.9) the coefficients ng and gbB measure the reaction of
the Fed to total and borrowed reserve demand movements respectively, and v
represents the monetary policy shock to be empirically identified. The market
for reserves featuring the assumed simultaneous relations is described by the
following figure :

Combining the market for reserves with the macroeconomic variables, we can

explicitly rewrite (6.4) as follows:
1 0 000 0 utGDP 100 0 00 yﬁp
ay 1 0 0 0 O utp 010 0 0O yé\gp
az1 a3 1 0 0 O utPcm . 001 0 0O I/é\ip (6 10)
Q41 042 Q43 1 —% % utFF B 000—% 00 I/tB ’
asi asz asz @ 1 0 ult 0000 10 vP
ag1 agz ags 0 0 1) \uPFf 0006% 71/ \ ¥/

Several features of (6.10) must be noted. First, VAR residuals from the first
three equations, describing the non-policy part of the system, are orthogonalized
simply by assuming a recursive (Choleski) structure for the corresponding block
of the A matrix. This procedure yields orthogonal disturbances to which we do
not attach a specific “structural” interpretation, labelling them simply as va P
(¢ =1,2,3), where N P denotes a non-policy shock.

Second, as shown by Bernanke and Mihov [5], the general formulation in
(6.10), is still not identified, but identification can be completed by a careful
analysis of the operational procedures followed by the Central Bank.

e Case 1: Federal funds targeting

12We assume from the start that movements in the discount rate, which would enter (6.8)
with a negative sign, are completely anticipated, so that the innovation in the Fed funds-
discount rate differential is entirely attributable to the former rate.
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>

Resenes

F1G. 6.1. The U.S. market for bank reserves

In this case we have p? = 1,¢% = —1. Central Banks uses NBR to neutralize
shocks coming from banks and households behaviour . We then have for the
monetary block identification:

TR o D
Uy 1 Bto 0 Ve

ulVBRl =11 1 -1 vy
UfF 0— 5_‘_;& I/tB

The model is now over-identified . Choleski plus additional restrictions

e Case II: targeting NBR.

¢ =0,¢" =
wBRl =10 1 0 vy

NBR is now informative on monetary policy shocks
e Case III: Strongin identification (1994)
Shocks to reserves are demand shocks which the CB has to accomodate.

Therefore monetary policy shocks are the shocks to NBR orthogonal to shocks
to TR. Moreover CB does not react to Borrowed Reserves. a = 0, ¢® = 0
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ul? 1 0 O vP
u{VBR = QOd 1 0 I/ts

FF 41 11 B
i 5 5 el L

NBR is now informative

e Case IV: controlling Borrowed Reserves

b_— a

In this case TR-NBR is only function of shocks *. ¢% =1, = 5 In questo
caso si ha:

TR a  a D

uNBR ! Pre 4 Vts
(07

o el B

Uy 0_54-_04 -3 vy

It is easily seen that alternative regime would imply identification which
are technically not far from Choleski’s triangularization, with different ordering
of the monetary variables. In a Fed Fund targeting regime FF does not react
contempéoraneously to the other monetary variables while in a Non-Borrowed
Reserves targeting regime it is NBR that does not react contemporaneously to
the other two monetary shocks. Moreover, information on the operating proce-
dure by the FED are important in determining the appropriate identification
scheme and, more importantly, VAR models of the MTM should be estimated
within a single policy regime. Bagliano and Favero [2], provide evidence on the
structural instability of VAR of the MTM estimated across different monetary
policy regimes.

6.2.3  Structural model with long-run restrictions

Often long-run behavour of shocks provide restrictions acceptable within a wide
range of theoretical model. A typical restriction compatible with virtually all
macroeconomic models is that in the long-run demand shocks have zero im-
pact on output. Blanchard-Quah [§] show how these restrictions can be used to
identify VARs.

The structural model of interest is specified by posing A equal to the identity
matrix and by not imposing any zero restriction on the B matrix. We then have
for a generic vector of variables y; the following specification:

p
yi=1t= 1ZAth7i + Bv;

from which it is possible to derive the matrix which describes the long-run
effect of the structural shocks on the variables of interest as follows:

-1
r
(1 —i= 1ZA1-> Bv, = —IT 'Bv,

Coeflicients in II are obtained from the reduced form, therefore we are able
to impose long-run restrictions given the estimation of the reduced form
Two points are worth noting
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e (I — Ay) is -ILfor this matrix to be invertible the VAR must be specified
on stationary variables

e the long-run restrictions are restrictions on the cumulative impulse re-
sponse function

Let us now consider the Blanchard-Quah[8] data-set. The authors aim at
separating demand shocks from supply shocks, they consider a VAR on two
variables, the unemployment rate, UN, and the quarterly rate of growth of GDP,
ALY. The original sample contains quarterly data from 1951:2 to 1987:4, we
have retrieved the two series from Datastream and they are available only for
the sample 1951:2-1987:4. The series are available in the file BQ.WKS. The VAR
is specified with 8 lags a constant and a deterministic trend (in the original paper
a break in the constant for ALY is also allowed but we do not allow it) as follows.

ALY\ _ , (ALY, ALY, g 1 g
<UNt ) =4 <UNt1 ) o de <UNt8 ) +4o <TREND> + <u%>

The structure of interest is the following:

ALY\ ALY; 4 ALY g 1 b11 bi2
<UNt ) =4 <UNt1 ) o de <UNt8 ) +Ao <TREND> + <b21 b22> <

To obtain the identifying restrictions consider that

~1
P
DLY; . b11 bi2 V1t
=[I-i=1) A; =
<UNt ) ( Z ) <b21 b22> <Uzt>
_ k11 k1o b11 D12 V1t
ko1 koo ba1 bag J \ Vo

demand shocks are identified by imposing that their long-run impact on the level
of output is zero:

k11b11 + ki2b21 =0

Note that by imposing the restriction that the cumulative impulse response of
the rate of outptut growth to a demand shock is zero we impose the restriction
that the impulse response of the level of outptut to a demand shock is zero in
the long-run. As the variables are stationary the long-run response of ALY and
UN to all shocks is zero by definition.

We implement the procedure on the data by using MALCOLM[41], a package
written for RATS.

V1t
V2t

)
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We from the estimation of the VAR, we then implement Johansen on this
VAR, we make sure that the null of stationarity is not rejected. We then retrieve

. 0.1451 0.2168
the II matrix. II = [_0.5741 —0.0693} ,

-1 __ | —0.1451 —0.2168 ! | 60572 1.8949
~10.5741  0.0693 | —5.0179 —1.2683
and our long-run identifying restriction is

Then we specify (—11I)

6057201, + 1.8949by; = 0

Note the difference between this methodology and the Cholesky decomposi-
tion, which would simply restrict bo; to zero.

6.2.4 Identification in cointegrated VARs

Let us consider now how the identification problem changes when we have a
cointegrated VAR. Considering, for simplicity, only first order dynamics, the
cointegrated reduced form is :

Ay; = Iy, | +v;

where IT = a3’. As we know, identification of the cointegrating vectors is a
problem totally separated from identification of the structural shocks of interest.
Therefore, having solved the identification of the cointegrating relationships, we
have still to deal with the problem of posing appropriate restrictions on the
parameters of the B matrix in order to pin down the shocks u;

Ay, =1ly, ; + Bu,

In the context of cointegration, the identification problem can be solved
in a very natural way. Consider, for simplicity, the case of a bivariate model
vt = (Y¢,2¢), in which variables are non stationary I(1) but cointegrated with
cointegrating vector(1,—1) , so the rank of the II matrix is 1 and we use the
following representation of the stationary reduced form:

Ay, a1 Yi—1 bi1 b2 Vit
= 1-1 6.11
<A$t> <0421 ( ) ve1 ) T\ bar bz ) v (6:11)
model (6.11) can be re-written as follows[40]
-11 1-L0 (Z/t - l’t) _ [ Q11 0 (yt71 - $t71) + b11 D12 V1t
0 1 0 1 ALEt B Q921 0 A$t71 b21 b22 Vog
(6.12)

The two representation are absolute identical (same residuals). The second
representation has been widely use in research based on present value models.
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The cointegrating properties of the system suggests the presence of two types
of shocks: a permanent one(to be related to the single common trend shared
by the two variables) and a transitory one (to be related to the cointegrating
relation). It seems therefore natural to identify one shock as permanent the other
as transitory. Given that we have a stationary system, the identification of shocks
is obtained by deriving long-run responses of the variables of interest to relevant
shocks. From (6.12) we have:

() GO = (oo () = () ()
(6.13)

From which long-run responses are obtained by setting L=1 and by inverting
the matrix pre-multiplying variables in the stationary representation of VAR

(ye — =) —aqp 1 ! b11 D12 V1t
= 6.14
<A$t —an 1 b21 b2z Vot (6-14)

—b11+b21 b1o—bas
(yt - xt) — 0%1*0421 T 11— asr Vit (6 15)
Az, —oabiitaribey —oao1biatoribas Vo

Q11— Q21 Q11— Q21

S0 vg; can be identified as the transitory shock by imposing the following
restriction:

—ao1big + ap1b22 =0

which, given knowledge of the o parameters from cointegration analysis,
provides the just-identifying restriction for the parameters in B . Interestingly,
there is one case in which this identification is equivalent to the Choleski ordering,
the case in which ay; = 0.Note that this is the case in which Ay; is weakly
exogenous for the estimation of b2;. An application of this identifying scheme is
provided in Favero, Giavazzi, Spaventa,[24] where the procedure is implemented
to separate international from local factors in the determination of interest rates
fluctuations

6.3 Why shocks ?

Having identified the “monetary rule” by proposing an explicit solution to the
problem of the endogeneity of money, the VAR approach concentrates on devi-
ations from the rule. Deviations from the rule can be obtained either by chang-
ing the systematic component of monetary policy or by considering exogenous
shocks, which leave systematic monetary policy unaltered. In the former case the
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deviation from the rule is obtained by changin some parameters in the A matrix
describing the simultaneous relations among variables, while in the latte case the
parameters in the matrices A and B are not altered. Consider for example the
case of federal fund targeting. The first type of deviations is obtained by mod-
ifying the response of the federal fund targeting to macroeconomic conditions,
i.e.fluctuations in output, commodity prices and the consumer price index, while
the second type of deviations is obtained by considering an exogenous shock
which does not alter the response of the monetary policy maker to macroeco-
nomic conditions.

VAR modellers have exclusively concentrated on simulating shocks, leaving
the sytematic component of monetary policy unaltered.

The VAR approach to the monetary transmission mechanism has been crit-
icised on the basis that it views central banks as “random number generators”.
This does not seem to be correct: in fact, monetary policy rules are explicitly
estimated in structural VAR models. However, the focus is not on rules but on
deviations from rules, since only when central banks deviate from their rules it
becomes possible to collect interesting information on the response of macroe-
conomic variables to monetary policy impulses, to be compared with the pre-
dictions of the alternative theoretical models. In fact, deviations from monetary
policy rules provide researchers with the best opportunity to detect the response
of macroeconomic variables to monetary impulses that are not expected by the
market. The first chain of most models of the monetary transmission mechanism
links the policy rates to the term structure of the interest rates and the most
popular model of the term structure, the expectational model, predicts that the
term structure does not generally react to expected monetary impulses. The
monetary impulses relevant to the transmission analysis are therefore structural
shocks in (6.2).

Recently, McCallum[?] has criticised the choice of VAR modellers of con-
centrating on shocks which leave the systematic component of monetary policy
unaltered. It is argued that the emphasis on the shock component is misplaced
because the unsystematic portion of policy-instrument variability is very small
in relation to the variability of the sytematic component. ... Indeed, it is con-
ceivable that the policy behaviour could be virtually devoid of any unsystematic
component. In the limit, that is, the variance of the shock component could ap-
proach zero. But this would not imply that monetary policy is unimportant for
price level behaviour, central bank’s main responsibility....” ([?],p.5).

The simulation of systematic monetary policy requires, for robustness to the
Lucas’critique, the specification of a forward-looking model in which ”deep pa-
rameters” are identified independently from nuisance parameters describing ex-
pectations formation and dependent on the policy regime. This is what McCal-
lum effectively does in a series of papers[?],[39] where the impact of modifications
in the monetary policy maker reaction function is dynamically simulated.

However, it is important to note that McCallum work is not aimed at model
selection but rather at model simulation. The question of using the empirical evi-
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dence to judge between different theoretical model is not addressed in McCallum
work, based on a specific model.

If VAR models are instead used to describe the empirical evidence relevant
to the choice between alternative theoretical models, then there is a possible
defense of the choice of concentrating on shocks rather than on the systematic
components of monetay policy. Such defense is related to the Lucas critique.

Consider the following Data Generating Process:

Yt = 1My + QoY1 + U

my = bo + D1ys—1 + bamy 1 4 ugy

Where y is the macroeconomic variable and m is the monetary policy variable.

The DGP is the relevant theoretical model, which is unknown to the empir-
ical researcher. The empirical researcher tries instead to describe the empirical
relation between the monetary instruments and the macroeconomic variables by
specifying the following structural VAR:

Yt = Co + C11Mt + CaYt 1 + V1 (6.16)
My = bg + 01Ye—1 + bamy_1 + Vo

Where the following restrictions hold: ¢, = a1bg, ¢c1 = a1b2,co = as + a1b1.

6.16 is not viable for econometric evaluation of sytematic monetary policy,
in that the parameters in the equation for y cannot be kept constant when
the sytematic component of the monetary policy rule is altered. However, the
simulation of the dynamic impact of a monetary policy shocks identified a-la-
Choleski ordering m first is still viable in that it is perfomed while keeping all
parameters constant.

Note that this small example reiterates the importance of estimating param-
eters in the Structural VAR models by concentranting on a single policy regime,
in fact regime shifts require different parameterizations.

6.4 Description of VAR models

After the identification of structural shocks of interest, the properties of VAR
models are described using impulse response analysis, variance decomposition
and historical decomposition.

Consider a strucutral VAR model for a generic vector y¢, containing m
variables:

P
Agy; =1 = 1ZAth7i +Bv,

which we can rewrite as :
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[Ag — A (L)]y; = Bv,
Al)=i= 1zp:AiLi

now by inverting [Ag — A (L)] (under the assumption of invertibility of this
polynomial) we obtain the moving average representation for our VAR process:

yi =C(L)v; (6.17)
i =Covi +Civy 1 +... + Cyvy g

(1) =[A0— A (D)
Co=A,'B

To illustrate the concept of an impulse response function, we interpret the
generic matrix C;within the moving average representation as follows :

_ 3}’t+s

Cs
avt

in other word the generic element {4,j} of matrix C; represent the impact
of a shock hitting the j-th variable of the system at time t on the i-th variable of
the system at time t+s. As s varies we have a function describing the response
of variable i to an impulse in variable j. For this function of partial derivative to
be meaningful we must allow that a shocks in variable j occurs while all other
shocks are kept to zero. Of course this is allowed for structural shocks, as they
are identified by imposing they are orthogonal to each other. Note howeve that
the concept of an impulse response function is not applicable to reduced form
VAR innovations, which, in general, are correlated to each other.

Hystorical decomposition is obtained by using the structural MA representa-
tion to separate series in the components(orthogonal to each other) attributable
to the different structural shocks.

Finally Forecasting Error Variance Decomposition are obtained from(6.17)
by deriving the error in forecasting y s period in the future as:

(Viss — Etyiys) = Covi + C1viq + ... + Coves

from which we can construct the variance of such forecasting error as:

Var (yt+s — Etyt+s) = COIC(,) + CIIC,1 + ...+ CSIC;

from which we can compute the share of the total variance attributable to
the variance of each structural shocks. Note again that such composition make
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sense only if shocks are orthogonal to each other. In fact it is only in this case
that we can write the variance of the total forecasting error as a sum of varinces
of the single shocks (as the covariance terms are zero following the orthogonality
property of structural shocks).

To illustrate the three concepts consider the following bivariate VAR, in which
structural parameters have been identified and estimated via a Choleski decom-
position:

Yie\ [ a1 a12 Y11 b11 0 V1t
= +
Yor a1 G2 Yor1 b1 ba2 Va¢

the MA representation is

Yie \ _ 011 0 V1t 11 Q12 611 0 Vit—1
= + +
Yor b1 ba2 Vgt a21 G22 ba1 b2 Vg1
4 [0 0a2 * (1,0 Vlt—s
a1 22 ba1 b2 Vot s

From which impulse response functions, historical decomposition and Fore-
casting Frror Variance Decomposition are immediately obtained.

6.5 Monetary policy in closed economies

Cumulative work on the analysis of the monetary transmission mechanism in
the U.S. led to the specification of a VAR system which has by now become the
standard reference model. We have already seen and discussed this benchmark
specification which contains six variables: gross domestic product (GDP), the
consumer price index (P) and the commodity price level (Pcem) together with
the federal funds rate (F'F'), the quantity of total bank reserves (T'R) and the
amount, of nonborrowed reserves (N BR).

It is interesting to see how the specification of the benchmark model has
developed over-time.

Initially models were estimated on rather limited set of variables, i.e. prices,
money and output, and identified imposing a diagonal form to the matrix B and
a lower triangular form to the matrix A with money coming last in the ordering
of the variables included in the VAR (Choleski identification). This first type of
models are discussed in Leeper,Sims e Zha [33], we replicate their results on the
data-set LSZUSA.WF1. The underlying structural model is specified as follows:
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k
Agyr=1= 12 Ay, +Buv; (6.18)
_pt 1 0 O

Yie = | Y: s Ao = | G921 1 0
Rz asy asz 1
(5170 O

B=|0 00 |,v;~N.ID.(0,])
0 0 b

All variables are expressed in logs. Identification is Choleski with money
ordered last. This is a model geared to deliver monetary policy shocks, so the
identification of shocks to LP and LY does not matter. As [33],we have estimated
the model on the sample 1960:1-1996:3, including six lags of each variable. The
following impulse responses are obtained:

Prices slowly react to monetary policy, output responds in the short-run,
in the long-run (from two years after the shock onwards) price start adjusting
and the significant effect on output vanishes. There is no strong evidence for
the endogeneity of money. This is easily checked by looking at the estimated
parameters in Ag and by analysing FEVD

Macroeconomic variables play a very limited role in explaining the variance
of the forecasting error of money, while money plays instead an important role
in explaining fluctuations of both the macroeconomic variables.

Sims [?] extended tha VAR to include the interest rate on Federal Funds or-
dered just before money as a penultimate variables in the Choleski identification.
The idea is to see the robustness of the above results after identifying the part
of money which is endogenously to the interest rate. Impulse response functions
are modified as follows:

while FEVD is modified as follows:

Impulse response function and FEVD raise a number of issues:

e though little of the variation in money is predictable from past output and
prices, a considerable amount becomes predictable when past short-term
interest rates are included in the information set.

e it is difficult to interpret the behaviour of money as driven by money supply
shocks. The response to money innovations gives rise to the ”liquidity puz-
zle”: the interest rate declines very slightly contemporaneously in response
to a money shock to start increasing afterwards.

e There are diffiuclties also with interpreting shocks to interest rates as mon-
etary policy shocks. The response of prices to an innovation in interest rates
gives rise to the ”price puzzle”: prices increase significantly after an inter-
est rate hike. An accepted intepretation of the liquidity puzzle relies on
the argument that the money stock is dominated by demand rather than
by supply shock.Moreover the interpretation of money as demnd shocks
driven is consistent with the impulse response of money to interest rates.
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Response to One S.D. Innovations + 2 S.E.
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F1a. 6.2. Impulse Response functions in a three-variables VAR of the MTM

Note also that, even if the money stock were to be dominated by sup-
ply shocks, it would be reflecting both the behaviour of central banks and
of the banking system. For both these reasons the broad monetary ag-
gregate has been substituted by narrower aggregates, bank reserves, on
which is easier to identify shocks mainly driven by the behaviour of the
monetary policy maker. The "price puzzle” has been attributed to mis-
specification of the four-variables VAR used by Sims. Suppose that there
exists a leading indicator for inflation to which the FED reacts. If such
a leading indicator is omitted from the VAR, we have then an omitted
variable positively correlated with inflation and interest rates which makes
the VAR misspecified and explains the positive relation between prices and
interest rates observed in the impulse response functions. It has been ob-
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Variance Decomposition
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F1Gc. 6.3. FEVD in a three-variables VAR of the MTM

served Christiano, Eichenbaum and Evans[12],Sims[53] that the inclusion
of a Commodity Price Index in the VAR solves the ”price puzzle”. Our
brief historical record of the empirical analysis of closed economy VAR of
the MTM has brought us to the justification of the six-variables included
in what is by now known as the benchmark VAR model. We have already
discussed its identification, let us now examine impulse response function
derive by using the FED fund targeting identifying restrctions.

The evidence reported in the IRF represents the relevant fact to be included
in theoretical models of the MTM. It is this kind of evidence that has established
that plausible models of the monetary transmission mechanism should be consis-
tent at least with the following evidence on price, output and interest rates: (%)
the aggregate price level initially responds very little; (ii) interest rates initially
rise, and (%) aggregate output initially falls, with a j-shaped response, with a
zero long-run effect of the monetary impulse.
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Response to One S.D. Innovations + 2 S.E.
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Fi1a. 6.4. Impulse responses in a four-variables VAR of the MTM

6.6 Monetary policy in open economies

Various papers have examined the effects of monetary shocks in open economies,
but this strand of literature has been distinctly less successful in providing ac-
cepted empirical evidence than the VAR approach in closed economies.

The first results have been provided by Eichenbaum and Evans (1995), using
an open-economy VAR with the following structure:

k
Agyr =1= 1ZAth7i + B, (6.19)

where y; = LYtUS PUS NBRX{®(FF,) Y/O" pFOR RFOR et(‘]t)],

YUS PUS are logs of US output and price, NBRXY? is the ratio of non-
borrowed to total reserves (the appropriate variable from which extract mone-
tary policy shocks under a regime of non-borrowed reserves targeting). F'F' is
the Federal Funds rate, which is considered in alternative to NBRXYS, and it
is the informative variable for the extraction of monetary policy shocks under
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Variance Decomposition
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Fic. 6.5. FEVD in a four-variable VAR of the MTM

FOR FOR FOR
YFOR p R

the regime of interest rate targeting; , and are respectively
the logs of output, prices, and the level of short-term interest rate in the foreign
country; e is the nominal bilateral exchange rate, while ¢ is the real bilateral ex-
change rate. The matrix B is diagonal and A is lower-triangular. The empirical
analysis is implemented by considering in turn as a foreign country each of the
G7 countries on a sample of monthly data from 1974:1 to 1990:5. The following
evidence emerges: (%) a restrictive US monetary policy shock generates a signifi-
cant and persistent appreciation of the US dollar; (i%) a restrictive US monetary
policy shock generates a significant and persistently larger effect on the domestic
interest rate with respect to the foreign rate; (i) and () imply a sharp deviation
from the uncovered interest parity condition in favour of US dollar-denominated
investments (the “forward-discount puzzle”); (#ii) identified US monetary policy
shocks are not different from the shocks derived within closed-economy VARs
(#v) the closed-economy response of US prices and output to monetary policy
shocks is robust to the extension of the VAR to the open economy; (v) a restric-
tive foreign monetary policy shock generates an appreciation of the US dollar
(the “exchange-rate puzzle”); and (vi) the response of the real exchange rate to
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Response to One S.D. Innovations + 2 S.E.
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Fi1a. 6.6. Impulse response functions in a six variables VAR of the MTM

the US and foreign monetary policy shocks does not differ significantly from the
response of the nominal exchange rate. Such evidence is substantially confirmed
by the the work of Schlagenhauf and Wrase (1995), who consider a very similar
specification for the G-5 countries over the sample 1972:2-1990:2, using quarterly
data.

Some considerations are in order to help the interpretation of the above
results.

First, the empirical models are estimated over samples including shifts in
US and foreign monetary policy regimes: therefore, parameter instability is a
potential problem.

Second, the extension to the open economy features the omission from the
VAR of the commodity price index and of the monetary variables not relevant
to the extraction of the policy shocks. While the simplification of the monetary
block is sustainable in the light of the absence of contemporaneous feedback
between the informative variables and the other monetary variables under the
chosen identification schemes, the omission of the commodity price index is not
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justifiable as it leads to the same misspecification as in the closed economy model
for US monetary policy shocks. Moreover, such omission might well also bias
the identification of the foreign monetary policy shocks if the commodity price
index is regarded as a leading indicator of inflation by the foreign policymaker.
Therefore, it could be argued that the observed puzzles might depend on the
incorrect specification of the VAR generated by the omission of the commodity
price index.

Third, on the identification scheme. While some rationale can be provided
for a quasi-recursive scheme in closed economies, a similar justification is much
harder to provide in open economies. In fact, the recursive identification scheme
with the exchange rate ordered last implies that neither the US nor the foreign
monetary authority react contemporaneously to exchange rate fluctuations. This
assumption seems to be sustainable for the US (the FED benign neglect for the
dollar) but it is certainly heavily questionable when the foreign countries are
considered, as they are much more open economies than the US. The failure of
the recursive identification scheme could also be responsible for the observation
of the puzzles. In fact, most of the recent empirical work is aimed at breaking
such recursive structure in the identification scheme.

Kim and Roubini (1997) obtain such aim by introducing a structural identi-
fication by the explicit consideration of a money demand and supply functions.
Their specification can be described as follows for the generic non-US country:

K
Aoy =i=1Y_ Ajy; i +Bu, (6.20)
[OPW; ] (1 0 0 0 0 0 0 ]
FF, apy 1l 0O 0 0 0 O
Yy [FoR az370 1 0 0 0 O
yvi= |PFO® |  Ag=|an 0 a3l 0 0 O (6.21)
MtFOR 0 0 a53 454 1 ase 0
RfOR Qg1 0 0 0 Qg5 1 ag7
| e | | @71 @72 Q73 Q74 Q75 G76 1|
vy ~ N.I.D.(0,1) (6.22)

with R¥CF denoting the short-term non-US policy rate, M % a monetary
aggregate (MO or M1), PFOF the log of consumer price index, YFOF the log
of industrial production, OPW the world index of oil price in dollars, F'F' the
Federal Funds rate, and e the nominal exchange rate against the dollar. B is
a diagonal matrix. The model is estimated over the sample 1974:7-1992:5, on
monthly data. The main differences between the proposed strucutral identifi-
cation and the recursive identification scheme can be understood by analysing
the Ap matrix. Some elements under the principal diagonal are set to zero to
allow the introduction of simultaneous feedbacks between demand and supply
for money and central bank behaviour and exchange rates. The estimated model
is over-identified in that 23 parameters are estimated in the Ag and B matrix,
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out of a possible maximum of 28. The over-identifying restrictions are tested
and not rejected. The identifying restrictions are rather standard.US economy is
taken as exogenous and the exchange rate does not enter in the FED reaction
function, US output and prices are not included in the VAR, while a simulta-
neous feedback is allowed between money demand and supply (the central bank
rule). According to this rule, contemporaneous US interest rate movements are
relevant to the foreign central bank only if they affect the exchange rate. Only
the exchange rate is allowed to contemporaneously react to news in all the other
variables.

Unfortunately the coeflicients in the Ag matrix are estimated rather impre-
cisely. If we consider the case US-Germany the only significant parameters in the
matrix are as3z and aro. The first parameter is diflicult to intepret, given that the
identification scheme does not address explicitly macroeconomic shocks, while
the point estimate of second parameter implies an appreciation of the dollar
against the D-mark in response to a US restrictive monetary policy. The poten-
tial simultaneous feedback between foreign monetary policy and the exchange
rate does not seem to be empirically relevant. However, all the puzzles disap-
pears and the empirical results for the impulse response functions seem to be
broadly in line with results from the US closed economy model. Given that this
VAR included some proxy for commodity price index the evidence cannot be
decisive on the source of the "puzzles”, although the fact that the simultaneous
feedback between foreign interest rates and the exchange rate is not significant
is consistent with attributing a substantial role to the omisson of commodity
prices.

Also in this case the sample considered spans different regime, moreover this
methodology brings back into the specification broad monetary aggregates. In-
terestingly money is now used to extract demand rather than supply shocks,
however the specification of money demand implicit in the VAR might not be
rich enough to capture the dynamic in the data. As pointed out by Faust and
Whiteman(97), single equation work by Hendry and colleagues on money demand
has clearly shown the importance of including in the model the opportunity cost
of holding money, which is often a spread between the interest rates. Interest
spreads capturing the opportunity cost of holding money are never included in
VAR models of the MTM. An identification similar to the one adopted by Kim-
Roubini is the one proposed for the Canadian case by Cushman-Zha(97), who
aid the strucutral identification by introducing explicitly the trade sector into
the model.

An interesting alternative approach to the identification of the simultaneous
feedback between non US interest rates and exchange rates is proposed by Smets
[54],[55]. Smets considers the following structural model for non-US countries:
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k
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where Ay; is output growth, Ap; is inflation, R is a short term interest
rate and Ae; is the exchange rate appreciation. No US variables are intro-
duced, and the commodity price index is also excluded. However Smets is more
ambitious than average aiming at identifying both macroeconomis and mon-
etary shocks. Three type of restrictions are imposed. first the semi-structural
restrictions, macro variables do no react contemporaneously to monetary vari-
ables. Second, macroeconomic supply shocks are identified for macroeconomic
demand shocks by assuming that the long-run effect of demand shocks on out-
ptut is zero. Third, monetary policy shocks are identified from exchange rate
shocks by assuming that the Central Bank reacts proportionally to interest
rate and exchange-rate developments (short-term MCI). Macroeconomic shocks
are separated into demand and supply shocks by noting that the long-run re-
sponse of output to a demand shock is given by the element (1,1) of the matrix

& -1
<A0 —i= 12141') B. Given the block-recursiveness assumption on Ag,the ele-
k -1 k -1
ments of [ Ag —i = 1) _A4; relevant to determine the element (1,1) of | Ag — @ = 12141') B

will be not be function of the Ay matrix and therefore from the estimation
of the reduced-form VAR one can retrieve all the elements in the A; matrix

a generate an identifying restriction for the structural parameters in the B
-1

k
matrix by setting the element (1,1) ( Ag —i=1>_A; B to zero. In prac-

k11 k12 k1 k1a
ko1 kog oz kog
k31 k3a kaz k3a
ka1 kao Ky kaa
that k1, k12, k13, k14 are determined independently form the parameters in Ag,
therefore restricting to zero the long-run effect of demand shock on output,
k11011 + K12021 + k13631 + K14ba1, we have by = 7(k11b“+k]1€i’531+k14b41').

Lastly in the monetary block, monetary policy shock are identified from ex-
change rate shocks by assuming that the appropriate indicator of exogenous
monetary stance is a short-term MCI where exchange rate and interest rate

~1
,it can be easily shown

i
tice, given that <A0 —i= 12141')
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are appropriately weighted. The weights can be estimated or imposed given the
knowledge of the relative weights in several Central Banks MCI’s. This approach
encompasses as special case the pure interest rate targeting and the pure ex-
change rate targeting. The main empirical problem with this procedure are the
instability of the estimated w and the potentially disruptive implications of mis-
specification for the identification of aggregate demand and supply shocks,(see
Faust and Leeper[22]on this point).

6.6.1 Replicating the empirical evidence

The data-set BERLIN.WF'1 contains the relevant variables to replicate the dis-
cussed so far on open-economy VAR models.

We estimate first a benchmark open economy model for the US and the
German economy without including the Commodity Price Index. The model is
estimated on monthly data over the sample 1983:1 1997:12. The VAR is specified
by including six lags of US industrial production, US consumer price index,
Federal Funds rate, German industrial production,German consumer price index,
German call money rate, and the US-dollar/Deutschemark nominal exchange
rate (unit of DM for oneUS dollar). The choice of the sample is motivated by
the need of having a single monetary policy regime for the US, featuring Fed
funds targeting, Bagliano-Favero([2]) . Impulse responses for all variables to US
and German monetary policy shocks are reported in the following figures.
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Figure 6.7 Impulse responses to US monetary policy shock in the
benchmark VAR open-economy model
(dashed lines: 68% confidence interval bands)

0.002

0.001

-0.001

-0.002

0.0010|

0.0005|
y

-0.0005|

-0.0010|

0.3

0.24

0.14

0.04

-0.14

B A 0’ NS S U [ N N R O N
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50 15 20 25 30 35 40 45 50
YVS to FF PUSto FF FFto FF
0.00 0.002 0.20
"""" 0.1
0.00 0.0015
) 0.1
2 0.001 / )
0.00: 00
0.00¢ 0.000! 0.0
-0.05
-0.002 0.000(
-0.14
0008 s o perre ] 00008y M rrrr e <0t e
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
YCGER o FF PCEER o FF RGEE 14 FF
0.015
0019

0.004

-0.00!

|
\
\
\
\
Vo ~.
v T
v
\\)/




MONETARY POLICY IN OPEN ECONOMIES

209

Figure 6.8: impulse responses to German monetary policy shock
in the benchmark VAR open-economy model

(dashed lines: 68% confidence interval bands)
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We have confirmation of all the facts and puzzles observed in the litera-
ture. The analysis of the contemporaneous feedback between variables within
the recursive specification provides evidence on the endogeneity of US monetary
policy, which reacts significantly to internal conditions, and of the German mon-
etary policy which reacts to both internal conditions and, less significantly to
US monetary policy. The exchange rates reacts contemporaneously significantly
to US monetary policy (positive interest rate shock in the US induces appreci-
ation of the US dollar vis-a-vis the DM) and to macroeconomic conditions in
US and Germany (a positive shock in US industrial production and in German
price lead contemporaneously to an appreciation of the US dollar) both it is not
contemporaneously significantly affected by German monetary policy.

The analysis of the responses to monetary impulses in the US and Germany
confirms all the main findings of the literature namely:

e a significant U-shaped response of US output to US monetary policy

e the existence of a price puzzle both for the US and Germany

e the existence of a forward discount puzzle generated by US monetary policy
restriction

e exchange rate puzzle for German monetary policy shock

6.6.2 Omitted variables

Our analysis of VAR models of the MTM in close has shown a crucial importance
of the Commodity Price Index in the derivation of monetary policy shocks. The
arguments made for the inclusion of this variable in close-economy VAR of the
MTM are also compelling for open economy VAR. It might be vary well the
case that puzzles observed in open-economies are related to mis-specification,
via the omission of a commodity price index in the benchmark open-economy
VAR. We consider this potential explanation, by concentrating of open economy
VAR model linking the US and the German economy.

We then include a commodity price index by keeping the Choleski identifi-
cation and considering Pcm as a macroeconomic variables influencing both US
and German monetary policy. The new impulse responses are reported in figures
6.9 and 6.10.
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Figure 6.9: Impulse responses to US monetary policy shock in the

benchmark VAR with commodities price index

(dashed lines : 68% interval confidence band)
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Figure 6.10: Impulse responses to German monetary policy shock
in the benchmark VAR with commodities price index

(dashed lines : 68% interval confidence bands)
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The results in the two figures show that the inclusion of commodity price
solves the price puzzle for both countries, moreover also the forward discount
bias puzzle and the exchange rate puzzle tend to disappear. Finally, although we
do not observe a symmetric contemporaneous effect of US and German monetary
policy on the exchange rate, the impulse response functions of the exchange rate
to the two monetary shocks over an horizon of four year show a remarkable
degree of symmetry.

Altough the inclusion of commodity prices seems very relevant in fixing many
of the empirical problems in open-economy VAR we have open the issue of po-
tential simultaneity between the exchange rate and the policy rate in small open
economy and not yet addressed it. We shall consider this issue by looking at the
more general problem of assessing the reliability of the measurement of monetary
policy with VAR models.

6.7 VAR and non-VAR measures of monetary policy.

Econometric measurement of monetary policy has always been a debated is-
sue. VAR models are linear, constant-parameters autoregressive distributed lag
models, bound to include a very limited number of variables with a very parsi-
monous lag parameterization. The crucial step to derive evidence from the data
using VARs, is the possibility of posing identifying restrictions independently
from theoretical models. We have illustrated how a consensus has been reached
in the case of closed economy and how the same result has not yet been reached
for open economies. We have provided an intepretation of this difference in the
light of the difficulties in identifying monetary policy shocks in open economies.
Recently, VAR based monetary policy shocks have been compared with monetary
policy shocks measured by alternative approaches. We think that these develop-
ments can be useful not only to evaluate VAR methodologies, but also to help
identification when, as in the case of the open economy models, the traditional
VAR methods have problems in delivering the necessary number of identifying
restrictions.

6.7.1  Non-VAR measures of monelary policy shocks

Historically alternative to econometric measurement of monetary policy have
been always considered, think for example of qualitative indicators of monetary
policy derived adopting the “narrative approach” of Romer and Romer ([44] and
[45]). In a recent paper, Leeper [34] shows that even the dummy variable gen-
erated by the “narrative approach” (identifying episodes of deliberate monetary
contractions) is predictable from past macroeconomic variables, thus reflecting
the endogenous response of policy to the economy, and the estimated coefficients
cannot provide an unbiased estimate of the response of the macroeconomic vari-
ables to a monetary impulse.

Recently the attention of monetary economists has turned to financial mar-
kets, which are a potential source of very powerful information and measurement
of monetary policy. We shall consider a variety of measures of monetary policy
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derived from financial market and assess their role in the evaluation of VAR
based monetary policy shocks in open and close economies.

A first possible alternative has been originally proposed by Rudebusch [46]
and further analyzed by Brunner [9]. Monetary policy shocks are derived from
the 30-Day Fed funds future contracts, which have been quoted on the Chicago
Board of Trade since October 1988, and are bets on the average overnight fed
funds rate for the delivery month, the variable included in benchmark VARs.
Shocks are constructed as the difference between the federal funds rate at month
t and the 30-day federal funds future at month £ — 1. Such choice is based on the
evidence, that the regression of the federal funds rate at ¢ on the 30-day federal
funds future at £ — 1 produces an intercept not significantly different from zero,
a slope coeflicient not significantly different from one, and serially uncorrelated
residuals:

FF; = —(0.0436)0.037 + (0.007)0.999FFF, 1 + @,
R?>=099 o0=0.145 DW = 1.86

Note that this procedure produces shocks, labelled F'F'F', which are comparable
to the reduced form innovations from the VAR and not to the structural mone-
tary policy shocks, because surprises relative to the information available at the
end of month ¢ — 1 may reflect endogenous policy responses to news about the
economy that become available in the course of month ¢. However if an identifica-
tion scheme is available, then innovations derived from the future contract can be
transformed in the relevant shocks by applying to them the standard VAR iden-
tification procedure. A non-trivial problem with this procedure is generated by
the fact that Federal Funds future are available on from 1988 onwards, on a more
extended sample future on the 1-month euro-dollar are available. Given that the
properties of the series generated by 1-month Euro-dollar are very close to the
properties of Federal Funds future, the direct measurement based on 1-month
Eurodollar could be used on a extended sample.

A second non-VAR measure of policy shocks is based on the work of Skinner
and Zettelmeyer [53]. They derive a measure of unanticipated monetary pol-
icy shocks by following a two-step methodology: first, using information from
central bank reports and newspapers a list of days on which monetary pol-
icy announcements occurred is constructed; second, monetary policy shocks are
identified with the changes in the three-month interest rate on the days of pol-
icy announcements. The validity of such procedure require that (¢) short rates
(e.g the overnight rate) are affected by policy; (i7) arbitrage is effective between
the overnight and the three-month interest rate; (¢74) the impact of other news
affecting the three-month rate on the day of the policy decision is negligible;
(tv) policy actions are not endogenous responses to information that becomes
available on the day when the decision is taken. To ensure that conditions (41%)
and (iv) are applicable, Skinner and Zettelmeyer go through reports of the policy
actions and exclude from their sample those which do no conform to requirement
(#44) and (iv). The main problem with the index so obtained is that it can only
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pin down shocks associated to monetary policy decisions reflected in some action
on controlled variables, whereas shocks associated with no action (while some
action was expected by the markets) are neglected.

An alternative approach which might overcome this problem has been pro-
posed by Bagliano and Favero (1998), applying the methodology set out in Svens-
son (1994) and Soderlind and Svensson (1997). The methodology is based on the
use of instantaneous forward rates as monetary policy indicators. Forward rates
are interest rates on investments made at a future date, the settlement date,
and expiring at a date further into the future, the maturity date. Instantaneous
forward interest rates are the limit as the maturity date and the settlement date
approach one another.

To illustrate our derivation of spot rate let us start by the consideration of
a zero-coupon bond issued at time ¢ with a face value of 1, maturity of m years
and price Pﬂgtc . The simple yield Y,,,; is related to the price as follows:

1
pPC=__ — 6.24
Defining the spot rate 7., as log(1+Y,y,,), which is the continuously compounded

yield, and the discount function D,,; as the price at time ¢ of a zero coupon that
pays one unit at time ¢ 4+ m, we then have :

PhY = exp (—mrmi) = Doy (6.25)

Consider now a coupon bond that pays a coupon rate of ¢ per cent annually and
pays a face value of 1 at maturity. The price of the bond at trade date is given
by the following formula:

Pt =Y_ Dyt + Dy (6.26)
k=1

Given the observation of prices of coupon bonds, spot rates on zero coupon
equivalent can be derived by fitting a discount function based on the following
specification for the spot rates:

1 —exp (—Tﬁ) 1 —exp (—Tﬁ) L
er(Ca) L, (o) (8

Tt = 60 + 61 & & -
T1 T1
1 —exp <_Tk_2) L
+63 T — €Xp _T_2 (627)

T2

Such specification has been originally introduced by Svensson [58] and it is an
extension of the parametrization proposed by Nelson and Siegel [42]. Implied
forward rates can be calculated from spot rates. A forward rate at time ¢ with
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trade date ¢ + ¢’ and settlement date t + T can be calculated as the return on
an investment strategy based on buying zero-coupon bonds at time { maturing
at time ¢ + 7" and selling at time ¢ zero-coupon bonds maturing at time ¢ + ¢’.
The forward rate is related to the spot rate by the following formula:

TTT,t — t’?"t/ K

6.28

ft+T,t+t’,t =

so the forward rate for a 1-year investment with settlement in 2 years and

maturity in 3 years is equal to three times the 3 year spot rate minus twice

the two year spot rate. The instantaneous forward rate is the rate on a forward
contract with an infinitesimal investment after the settlement date:

St = m forriimy (6.29)
T—m
In practice we identify the instantaneous forward rate with an overnight forward

rate, a forward rate with maturity one day after the settlement. The relation
between instantaneous forward rate and spot rate is then:

_ el ndr
Tt = —r—
m
or, equivalently
Qrm +
mt = T'm —_— 6.30
Sfmt = Tme +m am ( )

Given specification (6.27) for the spot rate, the resulting forward function is as
follows:

k k k k k
et = By + By exp <—;> + 62; exp <—T—1> —0—637_—2 exp <_E> (6.31)

Therefore as k goes to zero the spot and the forward rate coincide at 5,+ 3, and
as k goes to infinity the spot and the forward rate coincide at 3. The forward
rate function features a constant, an exponential term decreasing when 3, is
positive, and two “hump shape” terms. In principle 3y 4+ (5;can be restricted to
match the observed overnight rate, but, we do not follow this strategy. A stan-
dard practice in the application of this curve-fitting approach is to include the
overnight rate in the information set, sometime constraining the fitted overnight
rate to match the observed one in estimation. However, a monetary policy shock
implies by definition a jump in, at least, the short end of the term structure.
Forcing the smooth instantaneous forward rate curve to fit exactly the observed
overnight rate would not allow to seize an eventual expected monetary policy
action. For this reason, we exclude the overnight rate from the information used
for estimation. Then, exploiting the continuity of the functional form, we re-
construct the very short end of the term structure allowing for a gap between
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the estimated overnight and the observed overnight. Such a gap represents the
jump in the very short-end of the term structure associated with expectations
of intervention by the central bank.An example can clarify matters. On occasion
of the meeting held on the 2nd of December 1993 the Bundesbank reduced the
repo rate by 25 basis points. On the close of the markets before the meeting we
observed the structure of spot rates relevant to the estimation of our yield curves
reported in Table 1

TABLE 1: German Interest rates
date || 30/11/93 | 2/12/93
o/n 6.70 6.35
7-days 6.44 6.31
1l-month || 6.44 6.31
3-month (| 6.19 6.06
6-month || 5.81 5.75
1-year 5.37 5.25
2-year 5.08 5.03
3-year 5.05 5.02
4-year 5.16 5.15
5-year 5.3 5.29
7-year 5.69 5.68
10-year || 6.16 6.17

In figure 11 we report Nelson-Siegel interpolants. More precisely we report
the two instantaneous forward curves associated respectively to the spot curve
estimated excluding the overnight rate (IFW) and to the spot curve estimated
including the overnight rate (IFOY).



218 THE VAR APPROACH

7.5

7.0

6.5

6.0 -

5.5

5.0

4.5-

40 \\\\‘\\\\‘\\\\‘\\\\\\\\‘\\\\‘\\\\‘\\\\\\\\‘\\\\‘\\
11/30/93 10/31/95 9/30/97 8/31/99 7/31/01 7/01/03

—— IFOY IFW/

FI1G.6.11. Estimated forward-rate curves on the 30/11/93 with and without
the overnight rate

fitting the curve on data including the overnight without allowing for a jump
in the term structure from the date of the Bundesbank Council meeting after-
wards, would have spuriously generated an interest rate shock.

If the pure expectational model is valid and there is no term premium, then
instantaneous forward rates at future dates can be interpreted as the expected
spot interest rates for those future rates. The observable equivalent of the in-
stantaneous forward rate is the overnight rate.

The following strategy for identification of monetary policy shocks exploits
directly the relation between spot rates and instantaneous forward rates

e Exploiting the fact that intervention on policy rates for Germany and US
takes place on occasion of regular meetings of the Bundesbank Council and
of the FOMC (since 1994), collect data on the term structure of interest
rates the day before the monetary policy meetings. Observations on one-
day, seven-days rate, lm euro, 3m euro, 6m euro, 12m euro, 3, 5, 7, and
10-year fixed interest rate swap are available on DATASTREAM and other
databases
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e estimate a term structure for spot rates and the associated curve of instan-
taneous ratea

e interpret the instantaneous rate as the overnight rate, and derive from the
curve the expected implicit overnight rate for the day after the monetary
policy meeting

e derive monetary policy shocks subtracting from the observed overnight rate
the day after the policy meeting the overnight rate implicit in the curve
the day before the policy meeting

e aggregate the above daily measures (concentrated in a few special days) to
construct monthly measures of shocks

There are several difficulties that one should overcome in constructing this
measure of monetary policy shocks. Following [3], we illustrate examples of mon-
etary shocks generated by unanticipated action or by unanticipated inaction
by the Bundesbank, and examples of markets’ anticipation of Bundesbank be-
haviour when expectations on monetary policy turned out to be correct and no
shocks were observed.We consider the sample 1984-1997.

Consider first July 1988. In this month the Bundesbank Council met twice,on
the 14th and on the 28th. During the first Council the Bundesbank didn’t take
any action, during the second the Council it was decided to raise the Lombard
Rate by 50bp. In Figure 6.12 we report the the weekly and the overnight rate,
alongwith the monetary policy action(PMA).
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July 1988, two Bundesbank Councils
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FIG.6.12.Monetary policy interventions and short-term interest rates in
Germany. July 1988

We shade areas of three days centered around meetings. We note that no
monetary policy action was expected during the first meeting, while some action
was expected before the second one. Six days before the meeting the weekly rate
contains the first six days of maturity which doesn’t include the action and the
seventh one which instead does include the action, so the weekly rate should
start to “reflect” the monetary policy action six days before the meeting. Of
course the weight of the seventh day is one-seventh so the information doesn’t
appear clearly six days before, but as we approach the date of the council the
weight of the action becomes greater and the expectation discloses itself. It can
be observed that the weekly rate starts reacting three days before the meeting.
It is also possible than the market realizes that the Bundesbank will act only
a few days before the Council (say less than six days before), in this case the
weekly rate starts reacting later than six days before the Council. The weekly
rate should be the best observed interest rate to identify expections on monetary
policy actions. In fact Council meetings take place fortnightly and the 1-month
rate immediately before any meeting reflects expectations on the outcome of the
following two meetings.

The second episode we consider is the tightening of monetary policy occurred
after German reunification in January-February 1991. Two meetings were held in
this period, the 17th of Janauary and the 2nd of February. As Figure 6.13 clearly
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shows, the weekly rate increased sharply just before the first Council revealing
an expected increase in the interest rates.

January 1991, two Bundesbank Councils
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FIG.6.13.Monetary policy interventions and short-term interest rates in
Germany. January 1991

The Bundesbank didn’t act on that meeting.We immediately observe than
the expected tightening happened during the following Council meeting, when
the Bundesbank raised the Discount Rate and the Lombard Rate by 50 bp. To
summarize, on the fourteenth of January we observed a monetary policy shock
arising from an anticipated action that did’t occur, meanwhile on the second of
February there is no shock as the policy move has been correctly anticipated.

The third episode we single out occurred in December 1991 (see Figure 6.14)
when the Bundesbank tightened the monetary policy, raising once again the
Discount Rate and the Lombard Rate by 50 bp.The dates of the Bundesbank
Councils are the 5th and the 19th of December. During the latter meeting the
Bundesbank surprised the market, and we observe a shock arising from an un-
expected policy action.
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December 1991, two Bundesbank Councils
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FI1G.6.14.Monetary policy interventions and short-term interest rates in
Germany. December 1991

The main strength of the methodology based on foward interest rate curves
is its flexibility and its capability to capture shocks independently from the
specification and parameterization ofa linear autoregressive model. The main
limitation of this approach is caused by the volatility of very short-term rates
not related to expectations on monetary policy. Figure 6.15-6.16 reports daily
observations on the over-night rate and the weekly rate for the estimation sample
period used in the VAR.
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FIG. 6.16 The German overnight rate

We immediately note a number of blips in the series. Those blips could be
very damaging to our methodology whenever they happen on occasion of a Bun-
desbank Council meeting. Most of those blips are generated by banks reserves
management which run into a non perfecly liquid markets, such as on the occasion
of the last day of the average reserves maintenaince period. We make an effort
to render our inference robust to blips. In fact, we have estimated our curves
starting from the 7-day rather than the overnight rate, and our methodology
of estimation considers the information contained in the whole term structure.
However, we have run a further check and avoid to label as policy shocks all un-
expected movements in policy rates which have disappeared within a week after
the Council Meeting. Such correction led us to single out two outliers in 1988:9
and 1991:12. The 1988:9 outlier, whose determination is described in Figure 13,
is the only one of a relevant magnitude.

In Figure 6.17 we report the behaviour of the 7-days and the 1-month rate in
the course of September 1988. No policy intervention was decided in September
1988, however just before the meeting of mid September we observe an hike
in the 7-days rate. Such hike is not reflected in the term structure for longer
maturities (we report 1-month for reference). This hike would have been labelled
as a shock by the methodology, however, as it is reversed, within the week after
the meeting this episode should be considered as a monetary policy shock.
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FIG. 6.17. The German 7-days and one-month rate in September 1988

6.8 Empirical results

Non-VAR measures of monetary policy can be directly compared with VAR
measures, they can also be used to assess the robustness of the VAR based
descriptions of the monetary transmsission mechanism, finally, they can be ex-
ploited, within a VAR, to aid identification of other structural shocks. To illus-
trate these possibilities we consider in turn the close economy(US) case and the
open-economy (US-Germany) case.

6.8.1 Close economy (US)

To evaluate the role of non- VAR based measures of monetary policy shock, we
first estimate the close-economy four-variable version of the VAR model for the
US and compute impulse response functions of all variables to a shock in the
Federal funds rate. Our model is specified as follows:

Pemy Pemy_q Vi

A =C(L + B 6.32
s | =cw | P (6:32)
FFt FFt,1 I/fF

(6.33)
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where A is lower triangular and B is diagonal.

The ordering chosen allows for a contemporaneous response of the policy rate
to innovations in output, consumer prices and the commodity price level. The
orthogonalized residual of the Federal funds rate equation, ¥¥'F, is identified as
a monetary policy shock. No structural interpretation is given to the (orthogo-
nalized) residuals from the other equations in the system. We then consider two
non-VAR measures of monetary policy: that derived from one-month Eurodollar
forward rate (EU R$) and that derived from the estimation of the instantaneous
forward rate curve on occasion of FOMC meetings({ F'SY). These alternative
shocks are plotted with the VAR based shocks in Figures 6.18-6.19.
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FIG.6.18. Three-month centered moving averages of FURS$ shocks (solid line)
and close economy VAR monetary policy shocks (dotted line)
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F1G.6.19.1FSYS shocks (solid line) and close economy VAR monetary policy
shocks (dotted line)
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Note that the KU R$ measure is available on a larger sample than the 1 FSYS
measure as the practice of modifying monetary policy rates on occasion of given
and announced dates started only in the nineties. We report in Table 2 the
correlations of VAR and non-VAR measures of monetary policy.

TABLE 2: VAR and non-VAR monetary policy shocks
Sample: 1988(11)-1996(10)

Correlation coefficients (standard errors on the diagonal)

EURS$ IFSUS vFF
EUR$ [0.185
IFSUS| 0203  0.169
vFF 10352 0.319 0.123
Sample: 1988(11)-1996(10)
EURS VPP
EURS 0277

2 0.500 0.211

Rudebusch[46] using the Federal Funds future contract obtains very similar
results to those obtained in our shorter-sample to conclude that VAR based
measured of monetary policy do not make sense. We note that much better
results are obtained in the enlarged sample. To provide further evidence we
specify a VAR augmented by the non-VAR meausure of monetary policy shocks,
considered as an exogenous variable.Following Amisano and Giannini (1996), we
represent the estimated system as follows:

Pemy Pemy_y g2 vy
A =C(L + v+ B 6.34
pos | =Cm) | R eeB| h | 639
FF, FF_y 94 vi”
x = EURS,IFSYS (6.35)

where A is lower traingular and B is diagonal. The estimated values of the
coeflicients ¢; are reported in Table 3

TABLE 3:Coefficients on EURS$ and ITFSY? in the benchmark VAR

Sample 1088(11)-1997(11)

yus Pcem pUs FF
EURS  (0.0032)0.0061 (0.0121)0.0055 (1.0633)0.0013 (0.097)0.468
IFSUS (0.0031)0.0025 (0.0116)0.0082 (0.0013)0.0009 (0.099)0.356
Sample: 1984(1)-1997(11)

yvs Pem pUs FF
EURS$ (0.0016)0.0026 (0.0006)0.0007 (0.0063)0.0058 (0.062)0.552
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We note that none of the macroeconomic variables responds to the non-VAR
monetary policy shocks, while the Federal Fund rates does. As suggested by the
correlations between shocks results are stronger on the larger sample. We then
concentrate on this sample and compare impulse responses to monetary policy
shocks in the traditional benchmark VAR specification with impulses responses
to non-VAR monetary policy shocks in our augmented specification.

The results, shown in Figure 6.20, illustrate that a contractionary monetary
policy shock produces the expected negative effect on output and a persistent
effect on the Federal funds rate.

The inclusion of the commodity price index is successful in solving the price
puzzle: the consumer price level does not show a perverse response to restrictive
policy.

The pairs of impulse response functions, based on the VAR and the non-VAR
shocks, describe a very similar transmission mechanism, supporting the evidence
already provided by Brunner (1996) and Bagliano and Favero (1998) with dif-
ferent exogenous measures. Despite a correlation of 0.5 between EUR$ and the
measure of policy shock obtained from the benchmark VAR, the dynamic effects
of monetary policy show very close features: both measures capture unexpected
variations in the policy rate related to monetary policy and the existence of other
non-policy disturbances does not change the basic features of the response to a
policy shock.
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Figure 6.20
Impulse responses to alternative U.S. monetary policy shocks
in close economy
Responses to FU R$ shocks (solid line) and to VAR-based structural shocks
vIF (dotted line) with one standard deviation confidence intervals from the
benchmark VAR
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6.8.2  Open economy (US-Germany)

THE VAR APPROACH

Let us now consider the open-economy version of the VAR system. We begin by

a baseline specification which includes the commodity price index:

Us
Y,

Pemy

Us
F;

FF,
A YGEtR = C(L)

t
GER
Py
€¢
GER
Ry

vYi
Pemy_q

pg
Fr_
vors
Pegs

€t—1
GER
Ry

+B

where A is lower triangular and B is diagonal.
As we have done for the close economy case, we compare orthogonalized resid-

ual of the German call money rate equation (

VRGER)

(6.36)

with the non-VAR measure

of German monetary policy shocks T FS“FE  derived from instateneuos forward
rates. Figure 6.21 and Table 4 confirms the results for correlations obtained in
the close-economy case.
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FI1G.6.21Three-month centered moving averages of IFSSE® shocks (solid line)
and open economy VAR German monetary policy shocks (dotted line)

TABLE 4: VAR and non-VAR monetary policy shocks

Sample: 1984(1)-1997(11)

JFSCER LRGER
IFSGER 0,194
yRGEER 0.163 0.169

As in the close-economy case, we augment the previously estimated system
by including the exogenous measure of German monetary policy shocks I FSEFE
described in the previous section.
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The open-economy VAR is now the following;:

vys V7§ 9 Vi
Pemy Pemy_q g 1/?
Ps P |
A Y?%R = C(L) Qg’}gg + zg IFSSPR L B ”;? (6.37)
povs ke | | vt
€t €1 gr ve
RtGER thib;R s yRGER

Using our exogenous measure of monetary policy shocks in combination with
a Choleski ordering with the German policy rate coming last, we are able to
directly address the issue of simultaneity between German monetary policy and
the exchange rate. The contemporaneous effect of a monetary policy shock on
the exchange rate is given by the coefficient on TFSSF® in the exchange rate
equation (g7), while the response of the German interest rate to innovations in
the exchange rate is endogenized by the ordering chosen. As shown in Table 5, the
simultaneous relations, we do not observe a significant contemporaneous feed-
back between the German interest rate and the exchange rate in any direction.
In our framework, this is a testable proposition rather than an assumed iden-
tified restriction. We note that our measure of monetary policy shocks enters
significantly in the German policy rate equation and that the contemporane-
ous response of U.S. output to German monetary policy shocks is small but
marginally significant.'

TABLE 5:Coefficients on TFS“FE  and simultaneous responses of e in the benchmark VAR

YUS Pem PUS FF YGER PGER
TFSSEE(0,002)—0.007 (0.008)—0.01 (0.0008)—0.0013 (0.1146)—0.0892 (0.0011)0.00002 (0.007)(
e (0.037)1.36  (0.11)—0.15 (1.09)—0.15 (0.0083)0.022  (0.126)0.045  (0.79)2

The pair of impulse response functions shown in Figure 6.22, alongwith one-
standard deviation bands, confirm qualitatively the results obtained for the close
US economy: measuring monetary policy shocks using financial market data
does not alter the main features of the monetary transmission mechanism for
Germany.

13We report impulse responses based on restricting such coefficient to zero; relaxing this
restriction does not affect the shape and magnitude of the impulse responses.
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Figure 6.22
Impulse responses to alternative German monetary policy shocks
in open economy
Responses to IFSFFR shocks (solid line) and to VAR-based structural shocks
yRGEER (dotted line) with one standard deviation confidence intervals from the
benchmark VAR
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6.9 Conclusions

The VAR approach to the monetary transmission mechanism is aimed at the
derivation of stylized facts to help the selection of the theoretical model to be
used for simulating the effects of monetary policy. The identification of parame-
ters in these type of models does not allow to separate deep parameters describ-
ing taste and technology from expectational parameters dependent on policy
regimes. However, by estimating this type of models on a single policy regime
and by describing the responses of variables to structural shocks of interest, it
is hoped to derive some stylized facts on the monetary transmission mechanism.
Such stylized facts should help the selection of the relevant theoretical model to
be used for policy simulation. We have intepreted the choice of concentrating
on shocks as a consequence of the impossibility of identifying deep parameters
independently from expectational parameters. Unfortunately, structural shocks
are not directly observable and the imposition of a set of identifying restrictions
is a necessary prerequisite for the analysis. Given the aim of the analysis, it is
essential that identifying restrictions are posed independently from specific theo-
ries. All the developments of the Choleski ordering that we have discussed in the
chapter provide the researcher with tools for achieving this aim. In particular, we
have shown how informations from financial markets can be used both to assess
robustness of results derived within traditional VAR models of the monetary
transmission mechanism and to aid identification in cases when traditional anal-
ysis does not deliver a sufficient number of restrictions. Within this framework
for analysis it is also natural that the number of identifying restrctions is kept
at a minimum. VAR models of the monetary transmission mechanism are very
rarely cointegratd VARs. We have seen that multivariate cointegration analy-
sis requires the solution of a long-run identification problem, and that imposing
cointegrating restrictions on a VAR in levels increases efficiency in the estimator
at the cost of the risk of inconsistency when the incorrect identifying restrictions
are imposed. The monetary transmission mechanism is a short-run phenomenon
and this explains why researchers prefer to employ unrestricted VAR to eval-
uate impulse response analysis over a short to medium horizon. Cointegrated
VAR are however an almost inevitable choice when the relevant, theory neutral
restrictions, are long-run restrictions.

As VAR models are the natural empirical counterparts of dynamic general
equilibrium monetary models, their statistical adequacy is not as closely scruti-
nized as the adequacy of reduced form specification within the LSE approach.
In particular, in many of the applications outliers are not removed and non-
normality is not an uncommon feature. Parameters stability is also an issue in
the debate. As far as identification is concerned, the idea of using restrictions
neutral with respect to the theories under scrutiny is nice but not always imple-
mentable. In fact, VAR models of the monetary transmission in open economies
have not been as successful in establishing stylized facts, probably because of the
difficulties in generating a “neutral” identification scheme. Moreover our analysis
of the empirical evidence on the monetary transmission mechanism has shown
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a high level of uncertainty associated with VAR based results. In fact, rather
large standard errors are associated to the point estimates of impulse response
functions. The more so in the case of VAR in open economies, where practition-
ers have developed the habit of reporting one-standard deviation bands rather
than two standard deviations bands. The main consequence of such uncertainty
is that the aim of the exercise, once again model selection, is difficult to achieve
in practice.
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7

INTERTEMPORAL OPTIMISATION AND THE GMM
METHOD

7.1 Introduction

The intertemporal optimisation approach to macroeconomic thoery takes the
Lucas critique very seriously and is based on the convinction that questions like
”How should a central bank respond to shocks in macroeconomic variables?” are
to be answered within the framework of quantitative monetary general equilib-
rium models of the business cycle.

The evaluation of the eflects of monetary policy is a question for theoretical
models rather than for empirical ad-hoc macroeconometric models. We have seen
that VAR based empirical evidence helps the selection of the relevant theoreti-
cal model. However, once the model selection problem has been solved, two are
the relevant issues: parameterization and simulation. In this chapter we mainly
concentrate on parameterization while we shall devote the next chapter to sim-
ulation and policy evaluation. The intertemporal optimisation approach takes
no interest in the parameters estimated by traditional macroeconometric mod-
elling. In fact, traditional structural econometric modelling delivers parameters
which are convolutions of the interesting “deep” parameters describing tastes
and technology and of expectational parameters, which are dependent on the
specific policy regime.

Interestingly, the intertemporal optimisation-Rational Expectations paradigm
generates in a very natural way an alternative econometric approach to estimate
deep parameters of interest: the Generalized Methods of Moments (GM M).

This chapter is devoted to the illustration of the empirically relevant aspect of
the GMM methodology. We shall consider applications to consumer’s behaviour
and the estimation of monetary policy rules. We shall start by illustrating the
close relationship between the econometric methodology and the intertemporal
optimisation achieved by the implementation of the GMM method in the esti-
mation of Euler equations. We shall then consider technically the definition of
the estimator, the problems related to the estimation of the covariance matrix
and the inference within GMM models.

Having considered the technical aspects of the estimator, we evaluate its
success in the new-classical camp and its extremely rare utilization by Keyne-
sian macroeconomist by giving an econometric interpretation to a statement by
Mankiw, Rotemberg e Summers [23] who assert that

”... The major difference between modern neoclassical and traditional Keyne-
sian macroeconomic theories is that the former regard observed levels of employ-
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ment, consumption and output as realizations from dynamic optimizing decisions
by both households and firms, while the latter regard them as reflecting constraints
on households and firms...”

We shall conclude by showing applications of the GMM approach to the
estimation of deep parameters describing (representative) consumer behaviour
and to the estimation of deep parameters describing central banks’ preferences
in monetary policy rules.

7.2 Euler Equations and ”closed form solutions”:

Consider the standard optimisation problem for the representative consumer:

Crair ArpiMazEyi = 0% (1+46)" U (crgs) (7.1)

subject to the following constraints

Ay = (L+7) A1+ Yeri — Con
i — ocolimFy A (1+7) ' =0

Where y is disposable labour income, ¢ is consumption of non-durable goods
and services, A is wealth (a single financial asset) giving a return of 7, U is a
utility function featuring both intertemporally and intra-temporal separability.
All variables are expressed in real terms. The § parameter describe the rate
of the intertemporal preferences of the representative consumer, who has an
infinite horizon and does not face liquidity constraints of any form.Therefore,
she can run negative balances of A in any period with the only constraint that
the present discounted value of wealth in time t approaches zero as t approaches
infinite (transversality condition).Lastly, by E; we denote expectation formed
conditionally upon the information set available at time .

We solve the intertemporal optimisation problem by finding the maximum of
the following Lagrangean function:

Ciiiy At+iMCL$Eti = OZ (1 + 5)71‘ Gt+i (72)

Giri = Ulceqi) + Mg (A — (L4 7) Aprio1 — Yeri + o)

We assume that the real return is non-stochastic and that the utility function
is Constant Relative Risk Aversion (CRRA):
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Cy
U (eess) = 72 (7.3)
where the v parameter describes the consumer’s risk aversion. This specifica-
tion completes the setup of our problem. We note that there are two parameters
which describes tastes and could be defined as deep in Lucas’s terminology:y and
6.

First order conditions for optimality could be stated as follows:

Ei () — Behri =0 Vi (7.4)
147 .
By — <m)\t+i+1> =0 v

By eliminating the Lagrange multipliers and by considering the specific case of
i=0, we obtain

I+r _ _
Ey <mct—ﬁl — ¢ 7) =0 (7.5)

Some comnsideration on equation (7.5), known as the Euler equation, are in
order. First, this relation clearly confutes the idea that economic theory gives
mainly predictions on the long-run behaviour of economic variables: in fact, the
Euler equation imposes restriction on the short-run dynamics of economic vari-
ables. Second, the only parameters entering equation(7.5) are -y and 6, the ”deep”
parameters describing consumer’s preferences. Third, as equation(7.5) does not
represent the ”closed form solution” of the intertemporal optimisation problem
but just the first order condition for optimality, it cannot interpreted as a con-
sumption function. However, from (7.5) we derive the falsifiable proposition that,
under the joint hypothesis of Rational Expectations, the only significant variable
in predicting consumption at time t+1 given the inforamation available at time
t is consumption at time t. Under our hypotheses the logarithm of consumption
behaves as a “random walk” (Hall, [17]). The conditional expectation for time
t+1 taken at time t of the expression between brackets in (7.5) is zero, and such
expression is orthogonal to any other variable than consumption included in the
agent’s information set at time t. Labelling f; 1 the expression between brackets
in (7.5)we have:

Eiftt1=0, Eifi1z.=0 (7.6)

where z is a vector containing any economic variable observable at time t.
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Note that the Euler equation does not have any implication for the relation
between consumption and other economic variables: the significance of income in
explaining contemporaneous fluctuations in consumption is perfectly compatible
with our intertemporal optimization model, which only rules out the significance
of income at time t in explaining the difference between the marginal utility of
savings at time t for time t+1 (if consumer does not consume one unit at time
t, she will invest it in the financial asset and have (1+r) unit at time t+1, the
dlscounted value of this quantity being 7 1+’" Jand the marginal utility of con-
sumption at time t. Finally, note that if the rate of intertemporal preference and
the interest rate are equal, fluctuations in consumption are determined exclu-
sively by stochastic shocks. To further illustrate the relationship between Euler
equation and consumption function and to provide a firmer background to our
discussion of econometric methodology we take advantage of the simplicity of
our specification to derive analytically a closed form solution to our intertempo-
ral optimisation problem. To simplify matters even further consider ”certainty
equivalence”.

From the first order conditions we derive the following relationship between
consumption at time t and consumption in any period following t:

1+7 &
Ciiq = Ct <1—_|_5> (77)

Aggegate now over time the period budget constraint and impose the transver-
ality condition to obtain:

. [e’e) Ct+i . [e’e) yt-H'
2202 — T —=i=0 —— 4+ (14+r) A, 7.8
(1+7) (147) ( )4 78)

By using (7.7)in (7.8)to substitute consumption in all future period with an
expression in terms of current consumption, we obtain :

c=(p—1) (_OZ e (14r) A ) (7.9)

1+7)
where p = (H—éiil, and p is assumed to be greater than one. When § = r
(14r)7

expression (7.9)simplifies drastically in the following

1—0—7“

¢ =7 ( = OZ e )AL ) (7.10)

Equation (7.10)represents the closed form solution to the intertemporal op-
timisation problem and it is the structural consumption function for our rep-
resentative consumer under the hypothesis of certainty equivalence. Note that
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consumption is function of permanent income, which includes current income,
and that the reaction of consumption to the modifications in the real interest
rate depends on an income effect and on a substitution effect. The sign of the
income effect depends on the consumer’s financial position: if the consumer is
in debt (A;—1 < 0) the income effect is negative, while for a consumer in credit
(A;—1 > 0) the income effect is positive. The substitution effect is always nega-
tive, as an increase in the interest rate lowers the discounted stream of future
income.

The closed form solution is useful to understand the skepticism of newclassical
economists towards the use of empirical ad-hoc structural macroeconometric
models to simulate the effect of macroeconomic policy. To see the point quickly'*
let us re-write relation (7.9)omitting ”perfect foresight”

Byt
e =(p—1) (_OZ 2L (1) Ay 1)—0—815 (7.11)

1—0—7“

p—1)i= OZ (Yeti — Etyt—H)
B B 1—0—7“

in order to interpret in the light of (7.11)traditional ad-hoc macroeconometric
models, which do not usually explicitly incorporates expectations, we need to
solve for future income in terms of current income. We do so by assuming a
simple autoregressive process for income:

Yo = @1Yr—1 + ug (7.12)
using repeatedly (7.11)in (7.11)we have:

1+7r
1+7r—aq

Parameters in (7.13)are convolutions of the deep parameters contained in p

a=pP-1)0+r)A_1+(p—1) Ye + €t (7.13)

and of the expectational parameter a;, which will change every time the process
generating income is subject to modification. Moreover, given the estimation
of (7.13) ,the structural parameters describing consumer’s tastes, § and v, are
even not identifiable. Note also that the residual term in (7.13)is, by construnc-
tion, autocorrelated. If we can represent autocorrelation in the following, simple,
manner

Er = 561571 + vy (714)

then the best representation of the Data Generating Process will then be the
following:

14This amounts to a little cheating, which simplifies matter greatly without having any
substantial effect on our final conclusions.
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147
147
—(1-9) <Ct1 —(p=D A+ A 2—(p—1) —1—0—7“—@1%1) + U

which, obviously, is an Error Correction Mechanism (ECM).

It is clear that when the income generating process is constant a specification
like (7.15)will perform extremely well in fitting the data. Note that such spec-
ification can be obtained without any reference to the theoretical intertempo-
ral optimisation approach, being derived by LSE type econometric specification
search within the class of ECM representations of cointegrating regressions. How-
ever, if the Data Generating Process is the one postulated by the intertemporal
optimization theory, then the estimated model cannot be used for policy simula-
tion. No empirical question involving simulating the impact on consumption of
different policies determining the income process can be meaningfully answered
on the basis of the estimation of a model like (7.15). In fact the estimated pa-
rameters are function of the parameters in the income process and they become
misleading if the interesting policy to be simulated implies a change in the in-
come generating process. Within the intertemporal optimisation framework the
answer to interesting policy question has to be based on the theoretical model
rather than on an empirical ad-hoc macroeconometric model. Therefore the im-
pact of different policy on consumption is to be based on the direct simulation of
alternative processes for income within the framework of the theoretical model
(7.11). Obviously, to implement meaningfully this approach, some estimate of the
parameter p and hence of the parameters § and «y, which describes appropriately
the preferences of consumers are needed. Now, the Euler equation qualifies im-
mediately as the best relations to be estimated empirically for the identification
of the parameters of interest. In fact, it allows identification of the parameters
of interest and it does not depend at all on the expectational parameters. More-
over, it allows by its nature the implementation of an estimator: the Generalised
Method of Moments. We devote the next section to the econometric analysis of
this estimator.

7.3 Estimating Euler equations: The GMM method.

Generlizing the results of the specific problem discussed in the previous section we
can represent the first order condition from a generic intertemporal optimisation
problem as follows:

By [f (%¢+1,0) 2] =0 (7.16)

where 8 is the (px1) vector containing the parameters of interest and z is the
(nx1) vector of variables that theory suggests orthogonal to f(x;.4,6). In our
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example 8 = (6,7), f(x41:,0) = (}ig Cih — c{w)and Z;contains any variables
observable at time t other than consumption.

It is intuitively clear that a necessary condition for identification of param-
eters of interest is n>p, with overidentification in the case of strict inequality
and just-identification in the case of equality. If n<p, then the parameters of
interest are not identified. Let us concentrate on the over-identification case,
of which just-identification is a special case. This is going to be the relevant
case in many economic example, as deriving Euler equations from intertempo-
ral optimisation and Rational Expectations usually selects a potentiallly infinite
number of valid instruments. Think of our application to the consumer prob-
lem: any lagged variable is a valid instrument under the null that the rational-
expectations/intertemporal optimisation model is the Data Generating Process.

The estimator is ”naturally”derived from (7.16)by substituting population
moments with sample moments:

t = 12 (X¢44,0)2:] =0 (7.17)

where T is the size of the available sample. Obviously, in case of over-identification
(7.17)produces a system of n equations in p unknowns, which does not admit a
unique solution. This problem is solved by considering p linear combinations of
the n first order conditions and therefore by minimising the ” Euclidean distance”

between #t = 12 [f (x¢+4,0) z;] and the null vector. This implies solving the
following minimisation problem:

fmin (t—lz (X¢14,0 zt> (t—lz (X1, 0 t]) (7.18)

where A is a an appropriate (nxn) weighting matrix. By defining a (7'zn) ma-
trix F'(X¢yi,2¢, 0) ,with typical element f(x¢+;,8) 25, where j=1,..n, t=1,...,T
,the minimisation problem can be re-written as

Hmini’F (Xt+i7 Zy, 0) AF (Xt+i7 Zy, 0) )

where iis a (Tx1) identity vector. It can be shown [7] that any symmetric positive
definite matrix A will yield a consistent estimate of the vector of parameters of
interest. However, Hansen [18] has shown that a necessary (but not sufficient)
condition to obtain an symptotically efficient estimate of 8 is to set A equal
to the inverse of the covariance matrix of the sample moments. The intuition
behind this choice is simple: less weight is put on the more imprecise conditions.

T
Therefore if W = Var [t =1> [f (x¢+4,0) Zt]> ,GMM estimates are obtained by

solving the following minimisation problem:
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&mnG—qE: (X¢1:,0 %0 G—qzj (X¢1:,0 %0 (7.19)

Note that in general, as Wis function of 8,it would be necessary to proceed in
at least two step. In fact, exploiting the fact that any arbitrary weigthing matrix
will deliver consistent estimates of 8. This vector of parameters is estimated

first, then a ¥ is constructed and the minimization (7.19) is then performed. Of
course, the two-step procedure is easily extended to an iterative procedure.

Hansen [18] has shown that the minimised criterion function can be also
used to test the validity of instruments in case of over-identification, in fact the
quantity:

(e Epet)el) o (- Eret)e]) o

is distributed as a x? with n-p degrees of freedom. The quantity (7.20)is
known in the literature as the J statistic. GMM is a very general class class of
estimators and many of the known estimators can be set up as special cases of
GMM. Consider for example the Generalised Instrumental Variables Estimator.

The relevant problem is to estimate the vector of unknown parameters 8 in
the linear model :

y=XB+u (7.21)

where y is a (Tx1) vector of observations on the dependent variable, X is a
(Txp) matrix of observations on the explanatory variables, 3 is the (px1) vector
of parameters of interest, and u is the (Tx1) vector of observations on the error
term with zero mean and variance-covariance matrix equal to 027. Assume that
X are not weakly exogenous for the estimation of the parameters of interest, we
have then:

1
plim —X'u # 0 (7.22)

However, there exists a Z matrix containing T observations on n valid instru-
ments, for which we have :

1
plim =Z'u =0 (7.23)

Condition (7.23), which defines instruments as valid, gives also a set of or-
thogonality restrictions to construct a GMM estimate. Let us concentrate on
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the overidentification case, where n>p. Applying formula (7.19), the relevant
estimate is derived by solving the following problem:

BMin (0/'Z¥" ' Z'u) (7.24)

where the appropriate choice for the matrix ¥ is:

U =E(Z'ua'Z) =0°Z'Z (7.25)

Therefore, the GMM estimate will minimize the following criterion:

1 _
BMin <§u’z (z'z) " z’u> (7.26)
which admits GIVE as the solution :

~1
8= (x’z (z'z)"" Z’X) X'7Z(2'7) ' Z'y (7.27)
Similarly, the J-statistic will take the following form:

~ 1 -
u Z(Z'2) "7 u

J= =2

(7.28)

where u=y — X B and s* = %2 (7.28) is distributed as a x* with n-p de-
grees of freedom and it is the very well known test for the validity of instru-
ments originally proposed by Sargan within the context of the GIVE estimator
(see, for example, Sargan (1988)).

7.3.1 Covariance Matrixz Estimation

So far we have implicitly considered the case in which the empirical moments
were serially independent. In general it is worthwhile to relax such assumption,
as in many macroeconometric applied cases some dependence in the empirical
moments will be generated. Think for example the case of estimation of central
bank reaction functions. As we shall see later, a Central Bank’s policy rule can
be specified by assuming that CB set their instrument, the interest rate, to
react to contemporaneous output gap, the difference between implies current and
potential output, and to deviation of future expected inflation from the target
for inflation. Future inflation is the relevant variable because the existence of
lags between monetary action and their effect on the economy makes reacting
to contemporaneous target useless. The literature takes the relevant horizon for



248 INTERTEMPORAL OPTIMISATION AND THE GMM METHOD

future inflation to be about one-year. So the following rule could be specified on
monthly data:

7o = ao + a1 By (1o — 7)) + a2 By (ye — y7) + v (7.29)

where v; is an exogenous i.i.d. disturbance. To fit (7.29)to the data, the
unobservable forecast variables are eliminated by rewriting the rule in terms of
realized variables as follows:

7y =ag+ a1 (Tir12 — 7)) + a2 (ye — Y7 ) + & (7.30)

g1 = a1 [Fy (mepae — 7)) — (T — m7)] + a2 [By (ve —y7) — (We —y1)] +
(7.31)

Labelling z; the vector of variables within the central bank’s information set at
the time the interest rate is chosen, we can construct the GMM estimator using
the following set of orthogonality condition:

Ei(e)2)=0 (7.32)

however, by construction, the composite disturbance term ¢, features an MA(11)
structure and empirical moments cannot be considered as serially independent.

To deal with this case we rewrite ¥, the covariance matrix of the empirical
moments, as follows:

T T
. 1
V=T — oolim TP= 12(] = 12 E(F) (Xtxi,26,0) Fy (Xi1.4,2,0))
(7.33)
where Fy (X¢+i,2t,80) is the ' row of the (Txn) matrix F (X¢+;,%, 0) . The first

step to find a consistent estimator of ¥ is to define the autocovariances of the
empirical moments as follows:

T

. 1 . .

r{)= TP=1 +1 E E (Fp’ (X¢xi, 2¢,0) Fpj (xt+i,zt,0)) forj > 0(7.34)
T

I'(j) = FP=—i+ 12 E(F} L (Xeqi,2¢,0) Fy (Xe46,2¢,0)) for j <(T.35)

In terms of the (nxn) matrices I' (), the right hand side of (7.33)without the
limit becomes:
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U =j = —To:jlu 1y T () (7.36)

If there were no serial correlations between observations, then only I' (0) would
be non-zero and we would have

T
N 1
V=T (0)=5p= 1Y B (F) (Xtti, 26,0) Fp (44,24, 6)) (7.37)

which could be useful to deal with heteroscedasticity in the empirical moments.
To see this point empirically let us consider again the case of GIVE with het-
eroscedastic disturbances.

The relevant problem is to estimate the vector of unknown parameters 8 in
the linear model :

y=XB+u (7.38)

where y is a (Tx1) vector of observations on the dependent variable, X is a
(Txp) matrix of observations on the explanatory variables, 3 is the (px1) vector
of parameters of interest, and u is the (Tx1) vector of observations on the error
term with zero mean and variance-covariance matrix equal to 2.

0%.0
Where Q= |. .. . As before we assume that X are not weakly exoge-
0 00%
nous for the estimation of the parameters of interest, but there exists a Z matrix
containing T observations on n valid instruments. Applying formula (7.19), the
relevant estimate is derived by solving the following problem:

BMin (W'Z¥ 'Z'u) (7.39)

where the appropriate choice for the matrix ¥ is:

T
U ="1(0)=2'0Z= % p=1> E(v)Z,Z, (7.40)
which can be consistently estimated by using any consistent estimator of the
parameters of interest and by substituting E (ug) with the just the square of the
corresponding residual.
This estimator is intepretable as an extension of the Heteroscedaticity Con-
sistent estimator proposed by White(1982) within the OLS framework to the
GIVE case.
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to eliminate all the non-observable variables from the Euler equation. Therefore,
GMM is not empirically feasible anymore. This simple example shows rather
clearly why when constraints are introduced in the intertemporal optimisation
problem, the GMM method becomes much less popular.

It is fair to say that several solutions have been proposed to the problem gen-
erated by the introduction of liquidity constraints, but none of them replicate the
neat correspondance between solution to the economic problem and implemen-
tation of the econometric methodology obtained in the case of the intertemporal
optimisation without market imperfections.

Deaton (1991,1992) observes the impossibility of finding an analitycal solu-
tion to (7.48)and proposes to characterise the properties of the numeric solu-
tion obtained under the hypothesis of very simple DGP for the income process.
However, even for a very simple autoregressive process for income, the compu-
tational burden is rather heavy. Pesaran-Smith(1994) propose to approximate
the unknown Lagrange multipliers by a general function of observable variables.
Within this context it is important to gather institutional information to help the
identification of the appropriate functional form and of the appropriate argument
for such function. Favero-Pesaran(1994) apply this methodology to the empirical
modelling of oil investment using institutional and geological information to iden-
tify the appropriate function. Abandoning time-series there is the possibility to
revert, to panel data to identify liquidity constrained agents Zeldes(1989). Brave
attempts to identify the relevance of liquidity constraints using time series data
have been proposed by Campbell-Mankiw(1987), and Jappelli-Pagano(1989).
Aggregate time series consumption is thought of as the result of the aggregation
of consumption by two type of agents: those who are liquidity constrained and
those who are not liquidity constrained. To allow aggregation utility is assumed
to be quadratic, then the behavoiur of the uncostrained agents is described by
the usual FEuler equation while constrained agents are assumed to consume all
their disposable income in each period. By assuming that a fixed proportion of
income accrues to each type of agents the Euler equation for the unconstrained
agents and the consumption function for the constrained agents are aggregated
into a macroeconomic consumption function, which, interestingly, takes the form
of an ECM model. One of the estimated parameter in such consumption function
is the proportion of income accruing to the constrained agents. The importance
of liquidity constraints in the economy can therefore be empirically evaluated
on macro time-series data. It is not clear however why the proportion of income
accruing to the liquidity constrained agents is thought of as a parameter rather
than a variable.

7.4.2  FEmpirical Problems

The main empirical problem with the GMM approach to estimate structural
parameters has been noted by a series of authors (Ghysels-Hall(1990a, 1990b),

Garber-King(1983), Oliner S., Rudebusch G. e Sichel D.(1992)) for the US data.
In fact it has been observed that in general the parameters estimated on ag-
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gregate time-series data by implementing GMM on Euler equations derived by
different intertemporal optimisation problem are not stable over time. Such in-
stability is clearly not compatible with their nature of parametrs describing taste
and technology suggested by the theoretical models. There are several possible
interpretation of instability: it could signal the incorrect specification of the esti-
mated model or it could be generated by the fact that representative agents model
are applied on aggregate data without taking proper care of aggregation. This
second interpretation has generated a research programme which refrain from
estimating the ”deep” parameters from aggregate macroeconomic time-series.
”"Deep” parameters are insteadtaken from microeconometric studies on disag-
gregated data, using these parameters thoeretical model are then calibrated and
simulated, finallly properties of the simulated data are compared with proper-
ties of macroeconomic time-series to evaluate the ability of the theoretical model
to replicate features of the real data. We shall concentrate on the calibration
methodology later on. We conclude now our analysis of the GMM method by
looking at empirical applications of this methodology.

7.5 An application to the consumer’s problem

The first illustrative example which we consider involves the estimation of the

Euler equation (7.5) : £, (%c{ﬁl — c;V) = 0,using the a data set on monthly

US data, which is the version of the Hansen-Singleton(1993) data-set made avail-
able as a tutorial data-set for Microfit version 4.0(See Pesaran and Pesaran(1997)).
The data set is available in Excel format as HS.XLS. It contains monthly data
for the sample 1959:3-1978:12 on the following variables:
X1: ratio of consumption in time period t-1 to consumption in time period t
X2: 14 the one-period real return on stocks
Estimation of the Euler equation is implemented using the appropriate rou-
tine in E-Views, using the Bartlett weights and the Newey-West criterion to
choose the lag truncation parameter. The following results are obtained:
Method: Generalized Method of Moments
Sample(adjusted): 1959:04 1978:12
Included observations: 237 after adjusting endpoints
Bandwidth: Fixed (4)
Kernel: Bartlett
Convergence achieved after: 3 weight matricies, 4 total coef iterations
C(1H)*(X1~C(2))*X2-1
Instrument list: C X1(-1) X2(-1)
Coeff Estimate Std. Error t-Statistic. Prob
C(1) 0.998082 0.004465 223.5548  0.0000
C(2) 0.891202 1.814987 0.491024  0.6239
S.E. of regression 0.041502 Sum squared resid 0.404766
Durbin-Watson stat 1.828192 J-statistic 0.006453
Note that the parameters are estimated by using the following three orthog-
onality conditions:
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therefore we have one over-identifying restrction whose validity can be tested
by using the J-statistic. such statistic is easily computed multiplying by the num-
ber of observations the J-statistic reported in the E-views output. Such statistic
is distributed as a x? with one degree of freedom. Given that the observed value
is 1.5294 (237%0.006453), we do not reject the null of validity of instruments.
Note that the coeflicient of risk aversion is estimated rather poorly, while the
discount factor is instead estimated rather precisely. To evalute the relevance of
the correction for heteroscedasticity and correlation of unknown form we imple-
ment the GMM without such correction. This result is obtained by defining a
variable u; taking a value of zero everywhere and estimating the following model

[ a \'
Upp] = ———— —1+4+¢ 7.49
t+1 156 <Ct+1> t+1 ( )

The GMM estimates can be obtained by estimating (7.49)by instrumental vari-

Ct—1

ables, using the constant, r;, and as instruments. The following results

are obtained:
Dependent Variable: U
Method: Two-Stage Least Squares
Date: 08/07/98 Time: 10:43
Sample(adjusted): 1959:04 1978:12
Included observations: 237 after adjusting endpoints
Convergence achieved after 8 iterations
U=C(1)*(X1~C(2))*X2-1
Instrument list: X1(-1) X2(-1) C
Coeff Estimate Std. Error t-Statistic. Prob
C(1) 0.998945 0.004947  201.9470  0.0000
C(2) 0.864734 2.044035 0.423052  0.6726
S.E. of regression 0.041545 Sum squared resid 0.405609
Durbin-Watson stat 1.829335
Results are unaltered. An interesting exercise here is to assess the stability
of estimated parameters over time.
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7.6 GMM and monetary policy rules

We have already introduced the discussion of the estimation of monetary rules
by GMM to illustrate the issue of the possibility of correlation in the sample
moments. We now investigate this topic at greater depth, referring to the empir-
ical work by Clarida, Gali and Gertler(1997, 1998). Specification (7.29) although
useful for some illustrative purposes, is not successful in capturing the observed
persistence in the interest rates. Therefore, in the literature the following empir-
ical model is usually specified:

7": =7 —|—CL1E1§ (7Tt+12 - 7T*) + CLQEt (yt - y:) (750)

re=(L—p)r{ +pre1+v (7.51)

where r*is the target interest rate and ag is the equilibrium value for r*. The
partial adjustment mechanism introduced by equation ([?])is justified by the
empirical observation of tendency of central banks to smooth interest rates (see
Goodfriend(1991)).Moreover a constant target rate of inflation is assumed in the
estimated version of the rule. Combining equation (7.50) with (7.51) we derive
the following set of orthogonality conditions:

Eqlry — (1 - P) ap — a1 (1 - P) Eymiy10 —ag (1 - ,0) By (yt - y:) — Pre-1 | u =0
(7.52)
Where u; includes all the variables in central bank’s information set at the
time interest rates are chosen. GMM can be used in this framework to estimate
the parameters of interest ag,a;,ag and p. The J-test for the validity of over-
identifying restrictions can then be used to assess if the simple specification of
the monetary policy rule in (7.52) omits important variables which in fact enter
the central bank rule. Obvious candidates for the role of omitted variables are
monetary aggregates, foreign interest rates, long-term interest rates, exchange-
rate fluctuations and possibly stock-markets overvaluation (do central banks care
of "irrational exuberance” 7). Moreover the estimation of parameters of interest
allows some relevant consideration on monetary policy. In fact, given(7.50) , it is
possible to write an equilibrium relation for the real interest rate as follows:

rr; =i+ (ay — 1) By (12 — 7%) + aoFy (ye — ;) (7.53)

Where 77 is the equilibrium real interest rate, independent from monetary policy.
Equation (7.53)illustrates the criticale role of parameter a;. If a3 > 1 the target
real rate is adjusted to stabilize inflation, while with 0 < a; < 1 it instead moves
to accomodate inflation: the central bank raises the nominal rate in response
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to an expected rise in inflation but it does not increase it sufficiently to keep
the real rate from declining. Taylor(1998) and Clarida,Gali,Gertler(1998) have
shown that 0 < a; < 1 are consistent with the possibility of persistent, self-
fulfilling fluctuations in inflation and output. Therefore the value of one for aq
is an important discriminatory criterion to judge central bank behaviour. Clar-
ida,Gali,Gertler(1998) show that in the pre October 1979 period the FED rule
features rules ay < 1,while the post October 1979 period features a; > 1. Finally,
it is possible to use the fitted values for the parameters ag, a;to recover an esti-
mate of the central banks’ constant target inflation rate 7*. In fact, the empirical
model does not allow separate identification of the equilibrium inflation rate and
of the equilibrium real interest rate but it does provide a relation between them
conditional upon ag,and aq. Given that ag =7 —a;7* and 7r=7 —x*, we have
then

T —ao
— 7.54
= (7.54)

which establishes a relation between the target rate of inflation and the equi-
librium real interest rate defined by the parameters ag,and a1in the policy rule.
Clarida, Gali, Gertler (1997) set the real interest rate to the average in the sample
and use (7.54) to recover the implied value for 7*.

The database CGG contains monthly data for the US and German economy
taken from DATASTREAM and from the database on US monthly data used
in Sims,Leeper and Zha(1996), which should enable replication of the reaction
function estimated by the authors, as well as testing for a number of interesting
overidentifying restrictions. The following

variables for the sample 1979:1-1996:12 are available:

GERCMR: German average (of the month) call money rate

GERI10Y: redemption yield on German 10-year government bonds

GERCP: German consumer price index

GERINFTAR: Bundesbank announced inflation target (rate of medium term
unavoidable inflation)

GERM1: German M1

GERM3: German M3

GERIP: German Industrial Production

PCM: IMF world commodity price index (in US dollars)

SMNBR: US smoothed (by a 36-month moving average) non-borrowed re-
serves

SMTR: US smoothed (by a 36-month moving average) total reserves

TOTMKUS DY 01: US stock market dividend-yield

TOTMKUS PE_01: US stock market price-earning ratio

TOTMKUS _PI 01: US stock market price index

US10Y: redemption yield on US 10-year government bonds

USCP: US consumer price index
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USDM: US dollar/ D.Mark exchange rate
USFDTRG: US Federal Funds target

USFF: US average Federal fund rate

USIP:US industrial production

USLABCOSE: US unit labour cost

USM2SA: US M2

USMANHERA: US manufacturing hourly earnings
USOPERATE: US capacity utilisation rate

7.6.1 The estimation of a baseline policy rule for the FED

We concentrate first on the US case, trying to replicate the results in CGG(97).
A series of empirical problem must be solved in order to perform GMM esti-
mation of the monetary policy rule. The first issue we take is the measurement
of the output gap. CGG(97) take deviation of the log of industrial production
from a quadratic trend. This is easily obtained by taking the residuals of an OLS
regression of the log of industrial production on a constant, a linear trend and
a quadratic trend. Such measurement of the cycle would be correct only if the
log of industrial production features a deterministic quadratic trend. To check
robustness of the definition of the cycle to alternative de-trending methods we
compare the original CGG proposal (USGAP1) with the difference between in-
dustrial production and an Hodrick-Prescott filter with penalty parameter set
to 14400 (USGAP2) and with the demeaned capacity utilization rate(USGAP3).
We construct USGAP1, USGAP2, and USGAP3, on the sample 1981:10 1997:12,
as we would like to start estimation of the policy rule from 1982:10 (the begin-
ning of the interest rate targeting regime). We the alternative measures of output
gaps in Figure 1.

We note that the three different measure do not show evident discrepancies
as far as the location of the turning points in the cycle is concerned up to 1990,
from 1990 onwards USGAPI1 signal a persistent recession, not shared by the
other two measures. Obviously such difference does show up in a corresponfing
difference in policy rates. Orphanides[26] has considered extensively the problem
of measuring the output gap to show that different behaviours by the Fed in the
course of the seventies and the eighties can be explained by different measures
of the output gaps rather than by different parameters in the reaction function.
To keep our results comparable with CGG we keep USGAP1 as the relevant
measure of the gap, checking robustness to different detrending choices could be
an interesting exercise.

The second empirical problem is the choice of the instruments. Here we follow
CGG by taking as instruments the constant, the first six lags, the ninth and the
twelvth lag of output gap, the first six lags, the ninth and the twelwth lag of the
federal fund rate, the first six lags, the ninth and the twelvth lag of inflation,
the first six lags, the ninth and the twelvth lag of the log IMF commodity price
index.
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Fia. 7.1. Alternative measures of US output gap

We then implement estimation by GMM, using the correction for heteroscedas-
ticity and autocorrelation of unknown form with a lag truncation parameter of
12 and choosing Bartlett weights to ensure positive definitess of the estimated
variance-covariance matrix. The following results are obtained by implementing
GMM in E-Views:

Dependent Variable: USFF Method: Generalized Method of Moments

Sample(adjusted): 1982:10 1996:12, 171 observations

No prewhitening

Bandwidth: Fixed (12)

Kernel: Bartlett

Convergence achieved after: 78 weight matricies, 79 total coef

iterations

USFF= C(2)*USFF(-1) +(1-C(2))*(C(1)4+C(3)*USINFL(+12) +C(4)

*USGAP1)

Instrument list: C USGAP1(-1) USGAP1(-2) USGAP1(-3) USGAP1(-4)

USGAP1(-5) USGAP1(-6) USGAP1(-9) USGAP1(-12) USINFL(-1)
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USINFL(-2) USINFL(-3) USINFL(-4) USINFL(-5) USINFL(-6)
USINFL(-9) USINFL(-12) USFF(-1) USFF(-2) USFF(-3) USFF(-4)
USFF(-5) USFF(-6) USFF(-9) USFF(-12) DLPCM(-1) DLPCM(-2)

-2
-9

DLPCM(-3) DLPCM(-4) DLPCM(-5) DLPCM(-6) DLPCM(-9)
DLPCM(-12)

Coefl Estimate Std. Error t-Statistic. Prob

C(2) 0.92 0.012 73.82 0.0000

C(1) 2.87 0.99 2.90 0.0004

C(3) 173 0.25 6.87 0.0000

C(4) 0.66 0.10 6.60 0.0000

R-squared 0.98 Mean dependent var 6.713957

Adjusted R-squared 0.98 S.D. dependent var 2.191514

S.E. of regression 0.28 Sum squared resid 13.74

Durbin-Watson stat 1.06 J-statistic 0.0611

So we have an estimated ag—2.87,an estimated a; = 1.73, an estimated as =
0.66, while p = 0.92. Estimates are in line with the one obtained by CGG, with
a; > 1, altough our slightly different. Such difference could be explained by their
choice of second order lag in the adjustment, while we restrict to first order
dynamics.'®

The statistic for the validity of instruments, distibuted as a x2 with 29 (33
instruments for 4 parameters) takes the value of 10.45 (0.0611*171as the reported
statistic in E-Views is divided by the number of observations) and does not reject
the null of validity of instruments. If we follow the practice suggested by CGG to
derive an estimate for the inflation target by using the estimated parametrs and
the average real interest rate over the sample as a proxy for the real equilibrium
interest rate, we get a point estimate of 0.5 with a rather wide confidence interval
(as the 95 confidence interval for ag spans 0.89-4.85). Overall the rule is rather
successful in explaining the Fed behaviour as illustrated in Figure 2, where we
report observed policy rates and the 95 per cent confidence interval from our
estimated equation:

7.6.2  Does the Fed care for the long-lerm interesl rate ¢

Within the GMM framework it is rather easy to check the importance of omitted
variables in the policy rule. In fact if there are important omitted variables from
the policy rule, for such variables the orthogonality condition should be violated
and the test for the validity of instruments should then reject the null hypothesis.
There is a rather wide literature concentranting on the importance of long-term
interest rates for the FED explicitly related to their signalling role for ”inflation
scares”. As pointed out by Goodfriend[16], the behaviour of long-term interest
rate could be informative on agents expectations for inflation and on the effects
of monetary policy on such expectations. Campbell(1995) concentrates on the
collapse of bond price in 1994 relating it to movements in the term premium

186Checking this empirically could be a useful exercise
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F1a. 7.2. Observed US policy rates and the 95 per cent confidence interval from
the estimated policy rule

generated by a rise in expected inflation, not matched by any movement in the
same direction in actual inflation. Looking at the 1994 data we see clearly that
the Fed reacted lately to the increase in long-term interest rates and it took sev-
eral tightening steps in the target federal funds rate to convinve markets of the
central bank determination in fighting inflation. In fact only after several tight-
ening movements in the policy rate the long-term interest rate started revertig
its upwrd trend. All this discussion show that there are good theoretical and
policy reason for the Central Bank to monitor long-term interest rates, and the
omission of long-term interest rates from the rule seems an obvious candidate for
putting our testing procedure at work. We then re-estimate the base-line model
by including the level of contemporaneous long-term interest rates in the set of
instruments. The following results are obtained:

Dependent Variable: USFF

Method: Generalized Method of Moments

Date: 08/06/98 Time: 15:51

Sample(adjusted): 1982:10 1996:12
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Included observations: 171 after adjusting endpoints

No prewhitening

Bandwidth: Fixed (12)

Kernel: Bartlett

Convergence achieved after: 64 weight matricies, 65 total coef
iterations

USFF= C(2)*USFF(-1) +(1-C(2))*(C(1)4+C(3)*USINFL(+12) +C(4)
*USGAP1)

Instrument list: C USGAP1(-1) USGAP1(-2) USGAP1(-3) USGAP1(-4)
USGAP1(-5) USGAP1(-6) USGAP1(-9) USGAP1(-12) USINFL(-1)
USINF1L(-2) USINFL(-3) USINFL(-4) USINFL(-5) USINFL(-6)
USINFL(-9) USINFL(-12) USFF(-1) USFF(-2) USFF(-3) USFF(-4)
USFF(-5) USFF(-6) USFF(-9) USFF(-12) DLPCM(-1) DLPCM(-2)
DLPCM(-3) DLPCM(-4) DLPCM(-5) DLPCM(-6) DLPCM(-9)
DLPCM(-12) US10Y US10Y(-1)

Coeff Estimate Std. Error t-Statistic. Prob

C(2) 0.95 0.007 120.63 0.0000
C(1) 4.23 1.10 3.84 0.0002
C(3) 1.48 0.27 5.37 0.0000
C(4) 0.86 0.11 7.47 0.0000

R-squared 0.98 Mean dependent var 6.713957
Adjusted R-squared 0.98 S.D. dependent var 2.191514
S.E. of regression 0.27 Sum squared resid 12.69
Durbin-Watson stat 1.17 J-statistic 0.067

The point estimates of the parameters are slightly modified but the tests for
validity of instruments does not reject the null(0.067 * 171 = 11.45). In the light
of this evidence we can conclude that the long-term interest rate affects the Fed
behaviour as a leading indicator for future inflation but not as an independent
argument of the monetary policy rule.

7.7 Interest rate rules and central banks’ preferences

Monetary policy rules like those we have so far considered are empirically suc-
cessful and useful to show how the GMM methodology is applied. However, they
are not in line with our introduction to the GMM methodology in that they are
not derived explicitly from an intertemporal optimization problem and therefore
no deep parameters describing central banks’ preferences are identifiable. In fact
it is perhaps surprising that the GMM methodology has been used to estimate
reaction functions, while the optimization problem of the central banks provides
first order conditions which are instead a more natural object of GMM esti-
mation. Following Svensson[?], we consider the simplest possible version of the
inflation targeting problem. The central bank faces the following intertemporal
optimisation problem:
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Minimize Egi=0Y 6L (7.55)
where:
1
L=3 (o= 7)? + 2t (7.56)

where F; denotes expectations conditional upon the information set available
at time t , 6 is the relevant discount factor, 7; is inflation at time t , 7* is the
target level of inflation, x represents deviations of output from its natural level,
A\ is a parameter which determines the degree of flexibility in inflation targeting.
When A = 0 the central bank is defined as a strict inflation targeter. As the
monetary instrument is the policy rate, i; , the structure of the economy must
be described to obtain an explicit form for the policy rule. We consider the
following specification for aggregate supply and demand in a closed economy:

Tipr = Bpts — B, (is — Byt — T) +ufy, (7.57)

Tpr1 = Mg + 0Ty + U§+1 (758)

As shown in Svensson[21], the first order conditions for optimality may be
written as follows:

dL
d—it = (Etﬂ-t—}-Q — 7T*) = _5a kEtxt+1 (759)
Y

Note that(7.59) deliver the set of orthogonality conditions, which constitute
the natural object for GMM estimation. Joint estimation of (7.58),(7.57), and
(7.59) allows identification and estimation of the parameters describing the struc-
ture of the economy and of the parameters describing central banks’ preferences.
Alternatively (7.58),(7.57), and (7.59), can be used to derive an interest rate
rule. In fact, by substituting from (7.58) in (7.57) we obtain:

Lo = Iymeq + am[ﬁzxt - ﬁr(it — By — 7“)] (7-61)

and by substituting (7.61)in (7.59) we derive a standard interest rate rule:

. _ . 14+ a0, .
=7+ + <—a 66 > (Etﬂ-t—}-l — T )—|— (762)
A 1
ey 2L,

67“ 50[1-]@ Oél‘ﬁr

A number of comments on this rule are in order:
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e If the rule is estimated as a single equation, then the fitted parameters
are convolutions of the parameters describing central banks preferences
(7*, X, 8) and of those describing the structure of the economy (Oéz, 8.5, 7“) .
Thus the estimated parameters in the interest rate rules are not ”deep” in
the sense of Lucas (1976).

e As the structure of the economy cannot be identified from the estimation
of the rule only, it is impossible to assess if the responses of central banks to
output and inflation are consistent with the parameters describing the im-
pact of the policy instrument on these variables. Note, for example, that the
estimation of an interest rate rule relating the policy rate to the output gap
and to the deviation of expected inflation from target does not help to dis-
tinguish a strict inflation targeter(A = 0 , in the terminology of Svensson),
from a flexible inflation targeter (A > 0).

e Econometric identification of the rule requires the timing assumption that
the central bank can set policy rates in response to contemporaneous macro
variables in the economy, but policy rates do not have a contemporaneous
impact on those variables. This assumption is commonly used to identify
VAR models of the monetary transmission mechanism.

e In order to make (7.62) consistent with the data, the rule has been inter-
preted as delivering "target” interest rates, and a sluggish adjustment of
actual to target rates has been imposed (Clarida, Gali and Gertler, 1997).
Direct estimation of the policy rule does not allow to identify a structure of
central bank’s preferences which is consistent with interest rate smoothing.

e There is only one empirical implication of the rule which can be confronted
with the data independently from the identification of the parameters of
interest, namely whether the parameter describing the reaction of pol-
icy rates to a gap between expected and target inflation is larger than
one. In fact a monetary policy which accommodates changes in inflation,
5 E?;ftﬂ < 1,will not in general converge to the target rate 7*. This em-
pirical prediction is the one which has attracted most of the discussion
on estimated monetary policy rules (See again Clarida, Gali and Gertler,

1997).

To provide a better mapping from central banks’ behavior to their prefer-
ences a strategy, closer to the spirit of intertemporal optimisation, seems more
appropriate. First, estimate the structure of the economy to identify the param-
eters of the aggregate supply and demand functions. Second, estimate the Euler
equation for the solution of the intertemporal optimisation problem to identify
central banks preferences. In this step (and in reference to the simple example
analyzed above), given the knowledge of azand 3, , we can identify directly,
from the estimation of the first order conditions (7.59), the A and 7* associ-
ated to each assumed value of the discount rate, § . Third, test if the monetary
policy rule consistent with the structure of the economy and the preferences of
the central bank matches the actual behavior of policy rates. This strategy has
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been followed by Favero and Rovelli[12], whose empirical investigation leads to
select a strict inflation targeting with real interest rate smoothing (with esti-
mated relative weigths of about four to one) as the best model to describe the
Fed behaviour in the eighties.
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8.1 Introduction
to be added ...
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8.2 Basic set-up

We follow McCallum and Nelson (1997) and assume that our economy is inhab-
ited by a large number of infinitely-living identical price-taking households. They
can be aggregate into a single representative household, whose preferences are
summarized by the following intertemporal utility function:

oo - ~\ 1-n
B A M,
U =F C, 40— 8.1

where p € (0,00) is the reciprocal of the intertemporal elasticity of sub-
stitution, 8 € (0,1) is the intertemporal discount factor, C; € RT is the real

consumption level at date ¢, %’5 € R™ is the stock of real money balances held at
the start of period ¢, and 6 € (0,00) is the relative weight of real money balances
in the felicity function. As stated in McCallum and Nelson (1997, p. 15), “... the
rationale for the inclusion of is of course that holdings of the economy=s medium
of exchange provide transaction services that reduce ... (the) resources needed
in ‘shopping’ for the numerous distinct consumption goods whose aggregate is
represented by .C}”.

Following again McCallum and Nelson (1997), we assume that each house-
hold produces a single good using the following constant-returns-to-scale Cobb-
Douglas production function:

5’715 = CLtI’\(/tlia (Ztﬁt)a (82)

with o € (0,1), where K, € RT is the stock of capital held by the household
at date t, Z, = ' € RTT is labor-augmenting exogenous technical progress,
ng € [0,1] is the labor input, and a; € R is a stochastic measure of Total Factor
Productivity (TFP). We assume that the natural logarithm of follows a first-
order univariate AR process:

In(a;41) = (1 —p)In(a) + pln(a;) + ¢ (8.3)

where @ is the unconditional mean, p € (0, 1) the persistence parameter, and
€S N (07 02) the iid innovation. By adequately choosing units, we impose a = 1.

Each household inelastically supplies one unit of labor to a competitive labor
market, from which the same household as a producer purchases the labor input
at the real wage rate W;. Furthermore, a market for a one-period government
bond exists. These bonds pay between date £ — 1 and ¢ an interest rate equal to
Te.

The following representative household’s budget constraint has to hold each
period with probability one:
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- L -
K+ (1 +m) =2 4+ By =
t+1

(8.

~ M, ~ ~ e~
(1—6) K, + —Pt + (L47) By 4+ a, K (Z,75,)> — Cy — (7o — 1) Wy —
t

where Et € RT is the stock of government bonds held at the beginning of
period ¢, P, is the money price of goods, 7y = (Pyr1 — P;) /P is the inflation
rate, V; is a lump-sum tax levied on the household, and § is the depreciation
rate.

The presence of exogenous technical progress introduces a non-stationary
component, in the system. This implies that the model will not converge to a
steady-state in the long-run. The original non-stationary model can be trans-
formed into a stationary one simply by normalizing all equations with regard to
Zt17.

Normalizing equation (8.1) gets:

~s—1

if— (Eﬁ*“ +0(mt)1“)] (8.5)

—p

Ut:Et

where 5 =Byl K G = ét/Zt, and M, = M/ (P, 7). To assure the finiteness

of our objective function we further impose that 3 < 1.
Similarly, normalizing (8.4) we obtain:

Vhes1 + (L4 7¢) Yiigss + Ybers =

(3.6)

(1 — 5)%15—'—7%15 + (1—'—7"15)’515—'—@15’];%7&%? —Et — (ﬁt — 1)U)t — Ut

where small letters identify normalized variables.

8.2.1 The household’s problem

The representative household solves a stochastic optimal control problem, with
consumption and labor as control variables, and capital, money, and bonds as
endogenous state variables . Formally, she maximizes (8.5), evaluated at date 0,
subject to (8.6) and the initial conditions for all endogenous state variables.

In order to obtain the first order conditions, we form a Lagrangian in expec-
tations:

17Since vy is exogenous, the normalization can be easily reversed: the original and the trans-
formed model are isomorphic. Any qualitative conclusion we may reach studying normalized
model can be immediately extended to the original one.



BASIC SET-UP 271

ot | (G M em MY s T T Tleama s _ (=
L:Et Zﬁ T +)\t [(1—5)kt+mt—|—(l—l—rt)bt—l—atkt Ty —ct—(nt—l)wt—v

(8.7)

where )\; is a vector of present-value costate variables, and derive it with
respect to €, Mg, ki1, Mer1, bery and Ay, The first order conditions are:

=3, (8.8)
aa koY = w, (8.9)
BE, [Xm (1= ) a3 7%+ Nr (1= 8)| =4 (8.10)
BE, (9m;+“1 n XM) = [1+ B, (m)] v (8.11)
Vherr + (L+70) ¥ar + 1 = (8.12)

(1 — 5) ’];t —|—77’Lt + (1 —'—7"15)’515 + at%gfo‘ﬁta — Et — (ﬁt — 1) W — Vg.

Conditions (8.8)-(8.12), together with the following trasversality condition:

t—— 00

e [ . ~
lim [5 by (k:m ey + thﬂ —0, (8.13)

are necessary and sufficient for the household’s problem, ie. they completely
characterize the sequence of probability measures that solve the household’s
stochastic optimal control problem. Given that the state variables are always
positive, we may rewrite (8.13) as three separated trasversality conditions:

lim Fol Aoy = 0, lim Py [Btitmtﬂ} =0, lim Py [thtzm} —0.
(8.14)
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8.2.2 The government

To close the model, we need to specify a government budget constraint that
holds each period with probability one. We simply assume that all seigniorage
revenues are immediately payed back to the households as lump-sum transfers:

—ve = (L4+7) ymesn — me + Yorrn — (1 4+7¢) b (8.15)

where m; is the per-household real money supply and b; is the per-household
supply of government bonds.

The dynamics of government bonds has to satisfy also the so-called No-Ponzi-
Game (NPG) condition with probability one:

8

lm F, 1_[(1+7~j)*1b,5+s+1 > 0. (8.16)
j=t

The NPG condition states that the present value of government bonds cannot
be strictly negative in the long-run. In other words, it rules out the possibility
for the government to repay existing debt contracting always new debt. The
(intratemporal) budget constraint (8.15) together with the NPG condition (8.16)
forms an intertemporal budget constraint.

For the sake of simplicity, we impose that normalized lump-sum transfers are
constant over time, ie. that v; = v V¢. Furthermore, we assume that the nominal
money stock grows at an exogenously given rate 7,:

M, =T [ n:Mo. (8.17)

Finally, we assume that the logarithm of 7, follows a stationary AR process:

In(n41) = (1= ¢)In(m) +Cn (1) + & (8.18)

where 7 is the unconditional mean, { € (0,1 )the persistence parameter, and
€S N (07 02) the iid innovation.

Equation (8.17) can be interpreted as a “degenerated” version of the central
banker reaction function, since monetary policy, ie. the growth rate of nominal
money balances, does not depend on any endogenous variable. In this frame-
work, then, monetary policy shocks can be modeled as unexpected shocks to the
exogenous growth rate of nominal money balances. In other words, they coincide
with the iid innovations in (8.18).
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8.3 Dynamic equilibrium

To characterize a dynamic equilibrium, we note first of all that, being all house-
holds identical, in equilibrium individual and aggregate per-household quantities
have to coincide; this implies that all tildes have to be dropped. Furthermore,
we impose the following conditions:

~ . M; ~
nt:nt:L mt:mt:ﬁ, bt:bt (819)
where in (8.19) M, is the per-household nominal money supply. Equation
(8.19) equates demand and supply for the labor input, the stock of nominal
money balances, and the stock of government bonds.
Combining (8.17) and (8.19) with the definition of inflation rate we obtain:

14m =2 Tt (8.20)

Y Myl
There are two other things to note:

1. The variable m;, a state variable from the household point of view, be-
comes a forward-looking aggregate decision variable when considered from
the aggregate point of view. The reason is the following. The nominal
money supply is exogenous, while the demand for real money balances is
endogenous. The price level P, has to equate supply and demand, ie. un-
der rational expectations, has to satisfy the first order condition governing
the accumulation of real money balances, equation (8.11). The price level,
then, substitutes M; as an aggregate endogenous variable, with the differ-
ence that P; is not a state variable, but a forward-looking variable that can
be treated as a costate variable. The variable my, then, is the ratio between
M;~™¢, an exogenous process, and P;. To stress this point, we may rewrite
my as 1/p, where p; = v Py /M, is a normalized stationary variable.

2. Since both the nominal money supply and the lump-sum transfers are
exogenous, bonds have to counterbalance seigniorage in order to keep the
government budget balanced. The supply of government bond is then, in
some sense, exogenous too. More precisely, it is not under the government
control. The demand for government bonds is, however, still endogenous.
The real interest rate r; has to equate supply and demand for bonds,
ie. under rational expectations, has to satisfy condition (12). Also , then,
becomes an aggregate forward-looking decision variable.

We now substitute (16) and (8.20) in the household first order conditions, in
order to obtain a system of stochastic difference equations that fully describe a
dynamic competitive equilibrium in our economy™® :

18For the sake of simplicity, we dropped equation (?7)
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ot = Ay (8.21)

By Peer [(1— @) apar kil +1—68]] = %)\t (8.22)
I _ R )‘t

Et <0pt+1 + )\t+1> = Et (pt+1) _ (823)
B Dt

_ 7
Et [)\t+1 (1 + 7“15+1)] = g)\t (824)
Y1 = (1= 8) ks +acki ® — ¢ (8.25)
_Ll-n
’)/bt+1 = D + (1 + 7"15) bt — Uy. (826)
t

Furthermore, the trasversality conditions (8.14) can be restated as:

. ~t . ~t N
lim Fof Akiaq :0,t11m Ey |3

t—— 00

= O’t,lim Fo {Bt)\tbt_u} =0. (8.27)

Pi+1

Note that the last trasversality condition in (8.27) implies (check!) the NPG
condition (8.16). Note furthermore that, as in Benassy (1995), the dynamics of
consumption and investment is driven by real shocks only (consider equations
8.21, 8.22, and 8.25: they represent a stand-alone Brock-Mirman model). The
“real” world is in some sense completely separated from the “monetary” world.
The dynamics of government debt, on the other side, is driven by both monetary
and real shocks. This “separation” result is of course not robust, depending on
our very particular assumptions as far as the structure of preferences and the
money creation process are concerned.

In summary, equations (8.22)-(8.26), together with the initial conditions and
(8.27), form a system of stochastic difference equations that completely describe
the competitive equilibrium allocations for our economy. The solution to such a
system is an infinite sequence of conditional probability measures that converge
in the long-run to a invariant, or unconditional, distribution; in other words, a
sequence { P (¢t, e, e, Ae, be, e,y Pio, bo, a0, M) o » where each P (-) represents
a probability measure on R3°, converging to P (c,p,r, A\, k,b,1,1) as t — oo.
Given the recursive structure of our system, a solution can be also seen as a set
of aggregate decision rules for c;, ps, rs, At, ke 1 and by q, expressed as functions
of k¢, by, ar and 7;.
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8.4 An IS-LM interpretation

One of the main contributions of McCallum and Nelson (1997) is the prove that
the simple addition of an expectational term is suflicient to make the standard
IS function match a fully optimizing model, whereas no changes are needed as
far as the LM function is concerned.

We can easily replicate their argument in our framework. We can combine
(8.23) with (8.21) and (8.22), obtaining:

Et <0m;_¢l’1 + C;_ﬁli) = [1 + Et (7(-15)] Et [C;_fi (1 + Tt+1)] (828)

Following Sargent (1987, pp. 94-95), we can approximate!'® (8.28) with:

By (0myfy) = By (e f1) {1+ Be (w)] [L+ By (resn)] = 1} (8.29)

Equation (8.29) can be rewritten as:

B¢ (0m, 1) = Ex (¢, 1)) Ex (1) (8.30)

where 4,11 = (1 +m;) (1 +7,,1) — 1 is the nominal interest rate between date
t and ¢ + 1. Furthermore, we can combine (8.21) and (8.22) to get:

BE, [e;fy (L +7e1)] = ve, * (8.31)

Consider now equations (8.30) and (8.31). The first one differs only by a
random term from a standard LM function m; = LM (¢;,4;), where the real
money balances depend upon a transaction variable and an opportunity cost
variable. The second one, instead, can be interpreted as an extended IS function
by imposing a further assumption. If, as stated in McCallum and Nelson (1997,
pp. 7-10), we are able to approximate fluctuations in income with fluctuations in
consumption (at least for business cycle purposes) , then we may substitute to in
(8.31), and get an extended IS function of the form y; = IS [E; (yex1), Er (rep1)]-
The previous IS function is non-standard since it incorporates expectational
terms for both the income level and the real interest rate. This forward-looking
aspect is usually absent in standard IS — LM analysis.

8.5 Calibration
Before focusing on the solution method, we need to choose a value for all deep pa-

rameters of the model. To specify a particular value for all exogenous parameters

Given two random variables, & and y, we have that E (xy) = F (z) E (y) + Cov (2,y) .
Sargent () approximates the conditional covariance term by zero.
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is a quite demanding task indeed, since many of these parameters are difficult,
or practically impossible, to estimate.

The approach we follow here is known as calibration, and is extensively dis-
cussed in Cooley (1997), among others. He states (p. 56) that “calibration is
a strategy for finding numerical values for the parameters of artificial economic
worlds...[it] uses economic theory extensively as the basis for restricting a general
framework and mapping that framework into the measured data.”

The main difference between the calibration approach and the standard
econometric approach lies in the bidirectional relationship between theory and
measurement. First of all, the theory defines the quantities of interest to be mea-
sured, and suggests how available measurements have to be reorganized, since
they may be not consistent with the theory. For example, the concept of in-
vestment in our model is a fairly broad one; since no government or foreign
sectors are explicitly modeled, to obtain a measure of investment that matches
our theoretical concept we have to reorganize available data, and sum up private
fixed investment, private consumption of durable goods, government investment,
and net exports. An extensive discussion of this and other topics can be found
in Cooley and Prescott (1995), where a standard neoclassical growth model is
carefully calibrated to the US economy.

Then, measurements are used to give empirical content to the theory, and in
particular to provide empirically based values for unknown parameters; in other
words, the parameters are chosen, according to Cooley (1997, p. 58), “so that
the behavior of the model economy matches features of the measured data in as
many dimensions as there are unknown parameters”. In our case, the features
we want to match are long-run features of the real and monetary variables, since
our main interest are the short-run cyclical properties of the model.

Note that estimation and calibration are not substitutes, but complements.
In other words, the calibration approach is mostly useful when a sub-set of the
parameters is unobservable or difficult to estimate, while standard econometric
methods are still preferable when the parameters are observable and the appro-
priate data easily available.

Note furthermore that the diffused practice of borrowing parameter values
from other studies is admissible only if the data were reorganized in way com-
patible with our needs, and if the measurements obtained refer to the same
theoretical concept. We will follow this practice too, and borrow many param-
eter values from Cooley and Prescott (1995), Cooley and Hansen (1995), and
Gavin and Kydland (1999); we stress, however, that the requirements previously
discussed are in our case completely fulfilled.

Now, the complete list of parameters we have to pin down is the following: ,
the intertemporal elasticity of substitution, &, the intertemporal discount factor,
0, the relative weight of real money balances in the felicity function, «, the
technology coefficient, §, the depreciation rate, -, the long-run growth rate, 7,
the unconditional mean of money growth, v, the constant level of normalized
transfers, p, the persistence parameter for TFP, and ¢, the persistence parameter
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for money growth?.

A large sub-set of these parameters is easily estimated using available data.
In particular, the long-run quarterly growth rate v can be estimated by fitting a
linear trend to the logarithm of quarterly GDP; Cooley and Prescott (1995) ob-
tain v = 1.004. The persistence parameter for TFP may be estimated by fitting
an AR model on the standard Solow residual. Symmetrically, the parameters
governing the stochastic process for money growth can be estimated simply fit-
ting an AR model on the logarithm of the actual money growth rate. Again,
Cooley and Prescott (1995) obtain p = 0.95, while Cooley and Hansen (1995)
obtain 7 = 1.013 and ¢ = 0.49..

Finally, empirical estimates exist also for the elasticity of intertemporal sub-
stitution; most authors agree on a figure that lies between 1 and 2, so we chose
the standard value of 2 for our experiments.

The remaining parameters, namely 3, 8, «, v, and , are left for our calibration
exercise. Not that the first two parameters are in principle unobservable. As
already anticipated, we choose values for these parameters that make the model
reproduce some long-run features of actual US data. First of all, then, we have
to find out what the long-run features of the model are.

We immediately recognize that the Cobb-Douglas technology implies a labor
share in income constant and equal to . This leads us to choose a value for equal
to the long-run labor share in total income. Cooley and Prescott (1995) carefully
reconstruct a consistent measure of total income and capital income, obtaining
a long-run capital share equal to 0.4. We borrow their result and choose .

We impose then a certainty equivalence assumption, assuring this way that
the unconditional mean of the invariant distribution to which the solution tends
in the long-run is equal to the steady-state of the deterministic version of our
system. The steady-state of this deterministic system can be easily computed
dropping all expectations and time indexes from (22)-(27):

= (8.32)
Y _7

Opt = (% - ) A (8.34)

l+7r== (8.35)

w2

20Note
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7:1—5+é (8.36)
|t/

w=—14Ip—v (8.37)
p B

Equations (33)-(38) define implicitly the steady-state values for the control, en-
dogenous state and costate variables. Furthermore, we may easily obtain a closed
form solution for the steady-state capital-output ratio, the income velocity of
money, the consumption share in total income, and the government bond-output
ratio. From (34) we get:

E:M (8.38)
Y 7—5(1—0—5) .

Combining (33) and (35), we obtain:

ey _(1=8Y
——_( % ) (8.39)

Solving (37) for the investment-capital ratio gets:

%:7—1+5 (8.40)

Finally, from (38):

%} B (8.41)

bZB—(l—n) 3

Y

Combining (39) and (41) we get an expression for the investment share i/y =
(¢/k) (k/y) and indirectly for the consumption share, ¢/y =1 —i/y..

Empirical estimates of the long-run capital-output ratio, the government
bond-output ratio, the income velocity, and the consumption share are readily
available. In particular, Cooley and Prescott (1995) obtain a long-run quarterly
capital-output ratio equal to 13.28 and a consumption share equal to 0.75; Gavin
and Kydland (1999) report a long-run M1 income velocity equal to 5.3.

Reference for b/y

Manipulating (39)-(42), we can express the parameters B,0,68 and v, as a
function of these observable long-run properties:
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5:1—7+<1—5>% (8.42)

5= 7 (8.43)

p=1_F <QE>H (8.44)

(8.45)

The implied values are § = 0.015, 5 =0.989, 6 = 1.22, and .

As already noted, our certainty equivalence assumption makes the uncon-
ditional mean of the invariant distribution to which the system tends in the
long-run to match its deterministic steady-state. With this im mind, calibration
can be interpreted as a method of moments estimation that focuses only on a
limited subset of the parameters, setting only the discrepancy between the first
moment, of the data and the model to zero.

8.6 The KPR procedure

To obtain the decision rules, we apply the well known King, Plosser and Rebelo
(1988, KPR) solution procedure. As anticipated in the previous section, we start
by imposing certainty equivalence. As a consequence, the unconditional mean
of the invariant distribution to which the solution tends in the long-run corre-
sponds to the deterministic steady-state. Then, we linearize the system around
the steady-state and solve it with the Blanchard-Khan algorithm.

8.6.1 Log-linearization

To implement operationally this procedure, we start by considering a determin-
istic version of the first order conditions:

= X (8.46)

Mepr [(1= @) appak +1— 6] = %)\t (8.47)
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1 Pe+1

Hpg—&-l + )\t+1 = = )\t (848)
8 Dt
Aewt (14 7eeg) = 2N, (8.49)
5
Y1 = (1 =8 ki 4+aky ® — ¢ (8.50)
1=
’)/bt+1 = + (1 + 7"15) bt —V (851)

t

We linearly approximate conditions (47)-(52) with a first-order Taylor ap-
proximation around the deterministic steady-state, expressing the approximated

conditions in percentage deviations from the steady-state itself.

Consider equation (47), and rewrite it as?! :

e e = e (8.52)

where Z = In (x;). The first-order Taylor approximation of (53) is equal to®?

e MG — ) = e (Xt - X) (8.53)

Since in steady-state exp (—u¢) = exp (X), and since Z; — T = In(x¢/x),

condition (54) can be simplified as?® :

— 118 = N (8.54)
where Z; = In(z;/z). Equation (55) is a log-linearized version of condi-

tion (47), expressed in percentage deviation from the steady-state, since Z; t

(xy —x) /.

Consider now condition (48), and rewrite it as:

21 Along an optimal path both ¢; and A¢ are strictly positive.

22The first order Taylor expansion of a non-linear function f (z) around a point zg is given
by f(x) = Af (xo)(x — zo) + €(x). This implies that f(z)t Af(xo)(x — z0).

23There is an easier way to get ():take logs of (), add and subtract In (A) from thwe left-hand
side of the result, and consider that In(A) = —pIn (¢) . Note thet this approachis feasible only
because () is aleady log-linear. Note furthermorethat condition is not an approximation, but
simply a transformation.
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ej\tﬂ {(1 _ a) el e*a%hkl +1— 5} = %ej\f (8.55)

The first-order Taylor approximation of (56) around the steady-state is:

(1-a) e ok (Xt+1 — X) +(1-«w exefo‘%&tﬂ — osteXefo‘% (EH-I — E) +(1-9) e (Xt+1 — X) = e

(8.56)

Equation (57) can be rewritten as:

[(1 —a) % r1- 5} Mot +(1— a) %A&M —a(l-a) %AEH - %Ait

(8.57)
since exp (%) = = and:
X, ok o kKo y
l-a)ete ™™ =1—-a) M “=(1—a)A 2 :(1_Q)E (8.58)
Taking into account that in steady-state:
Y Y
l—a)=4+1-6 A== 8.59
(-0 L+ . (559
we can divide everything by (1 — a) £X and rewrite (59) as:
—Oé%t_‘_l —|—th+1 — th = —6t+1 (860)
where:
k
s=2_7 (8.61)

YB(1-a)

Note that in equation (61), all endogenous state and costate variables are
grouped on the left-hand side, while the (unique) exogenous state variable is
isolated on the right-hand side. This is done for future notational convenience.

Conditions (49) and (50) can be log-linearly approximated by (check!):

l/ﬁ (1 - g) - 1] Di+1 +De + gxt—}-l - Xt =7, (8.62)

7/“\25—}-1 + Xt+1 - Xt - 0 (863)

147
Finally, conditions (51)-(52) can be log-linearly approximated by (again,
check!):
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ke~ k ~ C..
7§kt+1— (1—5)5—'—1—0& t:—gct—FCLt (864)
'YZH-I -1+ T)gt + (1 —=n) b — 17 = —nh, (8.65)
where ¢ = (m/y) (y/0).
Equations (3) and (19) directly imply that:
at+1 = pat + € (866)
N1 = Gl + €t (8.67)
8.6.2 The linearized system
Defining 4, = [&], 8, = Et |3t | Dt | 7 | Xt , and € = [a; | 7,], we can rewrite
(55) as:
Mu u@t - Mu s/s\t + Mueé\t (868)

where My, = [—p], Mys =[0]0]0|0]|1],, andM,. =[0] 0] .
Conditions (61) and (63)-(66) can be jointly rewritten as:

Mss (L) §t+1 == Msu (L) at+1 + Mse (L) €t+1 (869)

where L is the lag operator, or as:

(M.?s + Msls . L) §t+1 = (M.Su + Mslu . L) at+1 + (M.?e + Msle . L) €t+1 (870)

where:

—a 0 0 0 A
0 0u<1—§)—1 0 2
My, =100 0 | (8.71)
720 0 0
0 v 0 0 0
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0 0 0 0 —-A
0 0 1 0 -1
ML = 0 0 0 0 -1 (8.72)
—(1-8f+1-a 0 0 0 0
0 -1+ Q—ne-—r 0
0 0 —10 0 0
0 0 00 0 1
M =|0| ,ML,=|0 | .M =|00O|,ML=|0 O (8.73)
0 —5 00 1 0
0 0 00 0 —np
Assuming is invertible, we can solve (69) for ;:
a25 = Qusgt + Quegt (874)

where Qus = My Mys and Que = My M. Evaluating (74) at date ¢ + 1
and substituting the result into (71) we get:

(Mgs + Msls . L) §t+1 = (Mgu + Mslu . L) (Qu5§t+1 + Queéﬁ—&-l) + (Mge + ]\4516 . L) €t+1

(8.75)
Rearranging terms, we may rewrite (75) as:
(M2 + M) L)Sy = (M2 + M} - L) € (8.76)

where M.? = M.?s - M.?uQusa Msl = Msls - MsluQuSa M(? = M.?e + M.?uQu(ia
M} = M+ Mg, Qe

u
If M? is invertible, we can solve for 3;,, obtaining:

§t+1 - Wgt + R€t+1 + Qgt (877)

where W = — (M%) ML, R= (M%) ™" MY, and Q =.(M9) ™" M.

Under our certainty equivalence assumption, randomness can be reintroduced
by simply taking the conditional expectation of (77):

Et (/S\t+1) = Wgt + REt (é\t—Fl) + Q/e\t (878)

Clearly Fy (€;41) = Pé,, where:

pP= [” 0} (8.79)

and (78) becomes:
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Et (§t+1) - Wgt + (RP + Q) gt - Wgt + Agt (880)

where A = RP + Q.
Equation (80) is a linear system of expectational difference equations, and
can be solved by applying the Blanchard-Khan algorithm.

8.6.3 The Blanchard-Khan algorithm

If P is the modal matrix of W and p its canonical form (with the eigenvalues on
the diagonal ordered in ascending absolute value), and if P is invertible, we may
decompose W as W = PuP~ 1. We partition the vector of endogenous state vari-

’

ables as §; = [S1/; | S2¢] , where 51/, = {Et |3t} contains the backward-looking

variables, S31; = {@ | 7% | Xt] and the forward-looking ones. Let us furthermore

partition the matrices W, u , P~! and A as:

O e R (R CTAREIF S

Wa1 W2 G21 qo2 0 pg as

The dynamics of (80) are governed by the eigenvalues of W. Assuming that
the first two eigenvalues are stable (strictly less than one in absolute value)
and the last three unstable, the system will be saddle-point stable and there
will be only one initial vector of forward-looking variables compatible with the
transversality conditions.

Pre-multiplying (80) by P!, we can transform the original system in a trans-
formed system comprised of two decoupled vectors of difference equations:

where 2; = P15, and B = P~ 'A. The transformed system is comprised
of two difference equations describing the behaviour of the backward-looking
variables, iy, and three difference equations describing the behaviour of the
forward-looking variables, Sy;.

The backward-looking sub-system can be rewritten as:

Et (2125—}-1) = Mlglt + blag (883)

where by is implicitly defined by B = [b; | bg]/. Since the eigenvalues in p, are
less than one in absolute value, equation (83) is stable in the forward direction;
furthermore, since §;; is predetermined, the initial conditions completely pin
down its solution.
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Unfortunately, the forward-looking sub-system:

Et (2225—}-1) = /,622215 + bgag (884)

is stable in the backward direction, since the elements of u, exceed one in
absolute value. This means that it is necessary to impose a terminal rather than
an initial condition, ie. we have to impose the stochastic TVC.

Rewrite (84) as

Zor = M;lEt (Za1) + M;lbzgt = d1 E (Z2441) + doéy. (8.85)

Applying well-known results?*, we can show that the solution to (80) is given
by:

Bpy = Zdldgﬂ5 Erer) dedgp € = Lecty. (8.86)
k=0

Applying the VEC operator to L.. we easily get:

f@e = —(1—,0,®d1)7172 (887)
By construction:
21t = qu181¢ + qu282t, 22t = 21811 + Go252t (8.88)

We can solve the second expression in (88) for §y;:

B2t = 90 22t — Qoo 21511 (8.89)
or:
S2t = LsS1t + Le€r = LUy (8.90)
where L., = QQ21L557 L= —qulfhh L, = [Ls | Le]a and U; = [glt | gt],

>From (80) we can isolate the first two equations of the original system,
given by:

248ee Sargent (1987).



286 INTERTEMPORAL OPTIMISATION AND CALIBRATION

By (S1441) = w1181 + w1282 + 61€;. (8.91)

Since §y; is predetermined in the Blanchard-Kahn sense (expectational error
equal to zero), we can rewrite (91) as:

81t+1 = W1151¢ + W1282: + Q1€¢. (8.92)

Taking into account (90), we can rearrange (92) as:

S1e+1 = (w11 + wi2Ls) 516 + (wiaLe + a1) €. (8.93)

Combining (93), (67), and (68) we get:

’Ijt+1 - My;t + it (894)

where:

| (wi +wiels) (wigle +a1) | . 0
M, = [ 0 i = e (8.95)
>From (69) we have that:
~ 5 ~
Uy = Qus |:Ll,1’lt7t:| + Queet (896)
where Qs = My M,s and Q. = M, M,..
Partitioning the matrix @, we may rewrite (91) as:
at - UU’Dt (897)

where U, = [ vl Que] + Q% L,.

Given an exogenous sequence of innovations, the (endogenous and exogenous)
state variables evolve according to (94), the control variables according to (97),
and the costate variables according to (90). Equation (94) describes a first-order
vector autoregression; iterating on (94) and taking into account (90) and (97)
we can to recover the sequence of probability distributions that represents the
(approximated) solution to our non-linear system of stochastic difference equa-
tions.
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8.6.4 Variables of interest
25

There are two other variables of interest we would like to recover=, ie. output
and investment, defined as:
Y = ak; i =adk ® —cp (8.98)
We can log-linearize (98) as:
~ ~ -~ -~ ~ -~ C.
Y = Q¢ + (1 — Oé) kt7 1t = %Cbt + (1 — Oé) %kt — ZCt. (899)
We can write the previous system in a more compact form as:
fi = FVyiiy + FV, Dy 4+ FV, 5y, (8.100)
—~ ~ 77
where f, = {ﬂt |zt} and:
0 l—a 010 000
e YR T R

Substituting (90) and (97) into (100) we can rewrite it more compactly as
fi = F,U;, where F, = FV,U, + FV, + FV,L,. For notational convenience,

~ ~ ' -
we define also a new vector h; = {@t | f: |§2t} such that h, = H,U;, where
H,=[U,|F,|L)J.

8.6.5 MATLAB code

The whole procedure described until now can be easily translated in the MAT-
LAB matrix programming language. First of all, we need a main file, called
main.m, containing all the building blocks needed to run the KPR procedure
itself.

The first part of the file defines the variables’ names and their position in
the system. Then, it stores the number of variables that belong to each relevant
group, ie. the number of controls, states, and so on. Finally, it stores the total
number of variables in the system, and the total number of endogenous state
and costate variables.

% we create a vector containing the names of all the variables in
the model,

25Note thet, since the real wage is simply output times a constant, their dynamic properties
will coincide; there is no value-added in studying the real wage separately, and we simply drop
it from our variables of interest.
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% and store the position of each variable in this vector:

na.me=[’k 7;7b 7;78. 7;76 7;7C 7;7y 7;7i 7;7p 7;7I‘ 7;71 7];

kp=1; bp=2; ap=3; ep=4; cp=b; yp=6; ip=7; pp=8; rp=9; 1lp=10;

% we store also the dimension of all relevant vectors (nc: controls,
% ns: states, nl: costates, nn: exo. states, nxf: vars of interest,
% nvar: total number of vars, nt: states+costates):

nc=1; ns=2; nl=3; nn=2; nxf=2; nvar=ns+nl+nc+nn+nxf; nt=nl+ns;

The second part of the file stores the complete parameterization used in our
exercise, and creates the covariance matrix of the vector of innovations defined
as ¢; in equation (90).

% Our parameterization:

mu=2; % risk aversion

sn=0.6; % alpha

8¢=0.75; % c/y share

g=1.004; Y growth rate

rky=13.28; % capital-output ratio

rmy=5.3; I money income velocity

rby=0.6; I bonds-output ratio

eta=1.013; ’, money growth rate

rho=[0.95 0;0 0.49]; 7 persistence of shocks
covar=[1 0;0 1]; % covariance matrix

% we define the covar. matrix of iota in equation (90):
lmat=zeros (ns+nn) ;
lmat(ns+1:ns+nn,ns+1:ns+nn)=chol(covar)’;

The third part solves for the steady-state and obtains the value of all cali-
brated parameters.

% calibration and steady-state:

sk=1-sn; % 1-alpha

gi=l-sc; % i/y share

d=1-g+si/rky; % delta

be=g/ (sk/rky+1-d); % beta tilde

r=(g?be)/be; J real int. rate

theta=((eta?be) /be)*(rmy/sc) “mu; % pref. param.
rvy=(1%7be)/ (g*be) *rby+(l-eta) *rmy; % v/y ratio
vpi=(g/be)*(rky/sk); % capital delta
vphi=rmy/rby;

% we store a vector of steady-state values:
yss=rky~(sk/sn); kss=rky*yss; bss=rby*yss;
css=sc*yss; iss=si*yss; lss=css”(-mu);
pss=((eta/be?1)*(lss/theta)) " (1/mu) ;
steady=[kss;bss;l;eta;css;yss;iss;pss;r;lss];
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Finally, the fourth part stores the matrices that describe the linearized system
that will be solved by the KPR procedure.

% we define the matrices describing the linearized system:

muu=-mu ;

mus=[0,0,0,0,1];

mue=[0,0];

msg0=[-¢n,0,0,0,vpi; 0,0,mux(1l-be/eta)-1,0,be/eta; 0,0,0,r/(1+r),1;...
g*rky,0,0,0,0; 0,g,0,0,0];

ms1=[0,0,0,0,-vpi; 0,0,1,0,-1; 0,0,0,0,-1; -(1-d)*rky-=sk,0,0,0,0;...
0,-g/be, (1-eta)*vphi,-r,0];

mu0=[0;0;0;0;0];

mul=[0;0;0;-s8c;0];

me0=[-1,0;0,0;0,0;0,0;0,0];

mel1=[0,0;0,1;0,0;1,0;0,-eta*vphil;

fvu=[0;-sc/si];

fvv=[sk,0,1,0;s8k/si,0,1/2i,0];

fvs=[0,0,0;0,0,0];

The KPR procedure is then implemented by two external functions. The first,
kpr.m, performs step by step the algorithm described in the previous paragraphs,
following as strictly as possible the notation:

function [h,mv]=kpr (muu,mus,mue,mul,mul,ms0,msl,meO,mel,fvu,fvv,fvl,rho);
nl=size(fvl,2); % recover the number of costate vars
nt=size(mus,2); % recover the number os state+costate vars
ns=nt-nl; % recover the number of state vars

qus=muu\mus;

que=muu\mue ;

qusi=qus(:,1:ns);

qus2=qus(:,ns+l:nt);

msss0=msO-muO*qus;

msssl=msl-mul*qus;

msseO0=meO+mul*que;

mssel=mel+mul*que;

w=-msssO0\msssl;

a=msss0\ (msseO*rho+mssel) ;

[1v,mv]=bk(w,a,rho,ns);

uv=[[qusl, quel +qus2*1lv];

fv=fvukxuv+fvv+vlixlv;

h=[uv;fv;1v];

end;

The second, bk.m, performs the core Blanchard-Khan solution algorithm,
describe in par. 1.6.3, following again the same notation:

function [lv,mv]=bk(w,a,rho,ns)
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nt=size(w,1);

nl=nt-ns;

nn=size(rho,1);

wll=w(l:ns,1:ns);

w12=w(1:ns,ns+1:nt);
[evec,eval]l=eig(w);

[mul, ind]=sort (abs(diag(eval)));
mu=diag(eval);

mu=mu(ind) ;

p=evec(:,ind);

mu2=diag(mu(ns+1:nt));
ps=p\eye(size(p));

b=ps*a;

dl=mu2\eye (size (mu2));
d2=d1*b(ns+1:nt,:);
lee=-(eye(nl#*nn)-kron(rho’,d1))\d2(:);
lee=reshape(lee,nl,nn);
ls=-ps(ns+1l:nt,ns+l:nt)\ps(ns+l:nt,l:ns);
le=ps(ns+1:nt,ns+1:nt)\lee;
lv=[1s,le]l;
mv=[wll+w12*ls,wl2*%le+a(l:ns, :) ;zeros(nn,ns),rho];
end;

Once the main.m file has been run, we recall kpr.m, which in turn recalls
bk.m, to obtain the matrices that characterize the approximated solution.

8.7 Impulse response functions

Once the approximated solution for the chosen parameterization is available, we
may be interested in studying the effect of an unexpected shock to one of the
exogenous state variables, for example a 1% increase in TFP.

Assume that the system at date 0 is in steady-state, ie. 7y = 0; iterating on
(89 and assuming €; = 0 for j = 1,2,...,¢, we get that:

U = Me (8.102)

This implies that dv,/de, represents the effect on of an unexpected shock at
date 0, if for j = 1,2,...,t. The derivative dv;:/0¢jo = [Mﬁ]ij, considered as a
function of time, is called the impulse response function of the state variable ¢ for
shocks to the state variable 7, if all other shocks at all other dates are zero. Given
(99, it is easy to recover the impulse response functions of all control variables
and all variables of interest.

To operationally perform the impulse response analysis, we have first of all
to choose the state variable to shock; then, we have to define an initial vector of

innovations, for example ¢g = [0] 0] 1] 0]’ if we are assuming a positive shock



STOCHASTIC SIMULATIONS 291

to TFP. Then, given ¢y and 7y = 0, we obtain from (89, ¥, fi, and I; from (98.
Assuming ¢; = 0 Vi > 1, we iterate the procedure for finite number 1" of periods;
finally, we plot the simulate series, obtaining the impulse response functions.

The MATLAB code that performs this task is contained in a file called im-
pulse.m.

clear;

main;

n=60; % Simulation horizon

pr=0; % Flag: if O, plot on screen, if 1, save on disk
shockto=[’A ’;’Eta’];

sim=zeros(nvar,n);

[h,mv]=kpr (muu,mus,mue ,mul,mul,ms0,msl,me0,mel,fvu,fvv,fvl,rho);
for i=1:2;

% Build a matrix of innovations:

sck=zeros(nn+ns,n+1);

sck(i+2,1)=1;

g=sck(:,1);

% Simulate the system:

for j=1:n;

gim(:,j)=[s;h*s];

s=mv*s+sck(:,j+1);

end;

% Plot the results:

t=1:n;

subplot(3,1,1), hnd=plot(t,sim(yp,:)’,’k-’,t,sim(cp,:)’, k.7 ,t,sim(ip,:)’, k:’);
legend(hnd,’y’,’c’,’i’,1);

title([’Shock to ’ shockto(i,:)]1);

ylabel(’Y, Deviation’);

subplot(3,1,2), hnd=plot(t,sim(pp,:)’,’k:’);
legend(hnd, ’p’,1);

subplot(3,1,3), hnd=plot(t,sim(kp,:)’,’k?’,t,sim(bp,:)’,’k:’);
legend(hnd, ’k’,’b’,1);

if pr==0

pause;

else

eval([’print -dbitmap fig’ num2str(i)]);

end;

end;

The results are plotted in Figures 1-2.

8.8 Stochastic simulations

To estimate the small sample stochastic properties of the model, we can perform
a Montecarlo experiment. In other words, we can draw from a random number
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generator a finite sequence of innovations (the simulation horizon is typically
T=100) and iterate to get the simulate series for all exogenous and endogenous
variables.

To isolate the dynamic behavior of our model at business cycles frequencies,
we filter the simulated series applying the so called Hodrik-Prescott (HP) filter,
with a smoothing parameter equal to 1600. Then, we calculate all statistics
of interests, for example the relative standard deviation of each variable with
regard to output, the autocorrelation coefficient, the correlation coefficient with
output, and so on. We repeat this procedure for at least 1000 times, storing each
round the results in a matrix. Finally, we summarize the empirical distribution
of our statistics of interest calculating their mean, standard deviation, and so on,
across the 1000 replications. In Appendix ? we provide a MATLAB program that
performs a set of 1000 stochastic simulations on a 100 periods horizon, calculating
the simulate distribution of the relative standard deviations, autocorrelations,
and correlations with output for all main variables. Results are summarized in
Tables 1-3.



