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Foreword

During the last four decades Siegfried Heiler has had a great influence on the
development of Statistics in Germany and on the international community. On the
one hand, he has been an active researcher. On the other hand, he held leading
positions in statistical societies.

Siegfried has a wide research spectrum. His main research interests are in the
fields of time series analysis and robust statistics. In many cases his research was
motivated by empirical problems of relevance and he introduced new statistical
methods to deal with. One of the most important examples is the Berlin Method
that is inter alia used by the German Federal Statistical Office.

Over a long period Siegfried was very active in the German Statistical Society.
From 1980 to 1988 he was Chairman of the Section “Neuere Statistische Methoden”
renamed as “Statistical Theory and Methodology”. Moreover, he was President of
the Society from 1988 to 1992. This was the time of the German reunification and
as well an important time for the Society. During the board meeting in Konstanz
on January 19, 1990 there was an intensive discussion about the opportunity to
communicate with statisticians from the GDR. The integration and promotion of
this group was also topic of the board meeting in Trier on June 6, 1990. Due
to the difficult implementation of regulations of the Article 38 of the Unification
Treaty referring to science and research the German Statistical Society decided a
Memorandum on the Development of Statistics at the Universities of the new federal
states at the end of 1991. “Statistik im vereinten Deutschland” was also the main
topic of the Annual Meeting of the Society in Berlin in 1991.

Very early Siegfried detected the importance of computers for statistics and
particularly raised this point. In his time as President of the Society he intensified
the contacts with international statistical societies. After his term as President he
was Vice-President of the German Statistical Society from 1992 to 1996. Moreover,
Siegfried was a board member of the European Course in Advanced Statistics over
many years and its President from 1994 to 1997.
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viii Foreword

Siegfried has done much for the German Statistical Society and we are deeply
indebted to him for his numerous activities.

Happy Birthday, Siegfried!

Frankfurt, Germany Wolfgang Schmid
October 2013



Editorial

This edited book on recent advances in empirical economic and financial research
was proposed as a Festschrift for celebrating the 75th Birthday of Prof. (em.)
Siegfried Heiler, Department of Mathematics and Statistics, University of Konstanz,
Germany. The contributions are written by his former students, friends, colleagues
and experts whose research interests are closely related to his work. We are grateful
to all authors for submitting their work, which ensured that this issue reflects the
state of the art in the area. Our special acknowledgements go to Prof. Walter
Krämer, Department of Statistics at TU Dortmund, Germany, and the corresponding
colleagues of Springer-Verlag for kindly agreeing to publish this book in the Series
“Advanced Studies in Theoretical and Applied Econometrics”, which is a very
suitable host for the current issue.

We would also like to thank Prof. Dr. Roland Jeske, Faculty of Business
Administration, University of Applied Sciences Kempten, Germany, and a few
other former students of Siegfried Heiler, who have provided us with details on
his academic career and other useful information. Their kind help allowed us to
carry out this project smoothly while keeping it a secret until its publication on his
birthday.

Finally, we would like to thank Mr. Christian Peitz and Ms. Sarah Forstinger, both
in the Faculty of Business Administration and Economics, University of Paderborn,
Germany, for their invaluable help in editing this book. Mr. Peitz took over most
of the technical tasks and parts of the organization. Ms. Forstinger integrated all
single submissions into an entire LaTex file and, in particular, helped to retype two
submissions in Word format into LaTex.

Konstanz, Germany Jan Beran
Paderborn, Germany Yuanhua Feng
Hamburg, Germany Hartmut Hebbel
October 2013
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Introduction

Jan Beran, Yuanhua Feng and Hartmut Hebbel

This edited volume consists of 30 original contributions in the two closely related
research areas of empirical economic research and empirical financial research.
Empirical economic research, also called empirical economics, is an important
traditional sub-discipline of economics. The research activities in this area are
particularly reflected by the journal “Empirical Economics” published by Springer-
Verlag since 1976, and by the parallel series “Studies in Empirical Economics,”
which consists of 21 volumes published from 1989 to 2009 on different topics in
this area. In recent years research in empirical economics has experienced another
booming phase due to easy availability of very large data sets and the fast increase of
computer power. This trend is reflected by the fact that the Econometric Society has
published a new journal in quantitative/empirical economics, called “Quantitative
Economics,” since 2010. Stevenson and Wolfers (2012) note that the research in
economics after the global financial crisis in 2008 is showing “a long-running shift
toward a more empirical field, to the study of what hard data can tell us about the
way the world really works.” On the other hand, empirical financial research, also
called empirical finance, has a relatively short tradition but the development in this
area seems to be even faster than that of empirical economics, because, as indicated
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2 J. Beran et al.

by Campbell et al. (1996), “Financial economics is a highly empirical discipline,
perhaps the most empirical among the branches of economics : : : : : : for financial
markets are not mere figments of theoretical abstraction.” The rapidly growing
research in empirical finance is of course also pushed by the empirical success
of ARCH (autoregressive conditional heteroskedasticity, Engle, 1982), GARCH
(generalized ARCH, Bollerslev, 1986) and SV (stochastic volatility) models (Taylor,
1986), and a huge number of extensions with a wide range of applications in
financial research. A detailed review in this context may be found, for instance,
in Andersen and Bollerslev (1998). No doubt, empirical economic and financial
research are closely related disciplines. Firstly, there is a clear overlap between
statistical and econometric methods employed in both areas. Secondly, sometimes
topics from the two disciplines are or must be studied together. This is in particular
true when the impact of financial markets on economy is considered or when the
economic sources of financial market volatility are studied. See, e.g., the recent
study of Engle et al. (2008) on the latter topic. From a general point of view, finance
can also be viewed as a sub-discipline of economics and hence empirical finance
can be understood as a sub-area of empirical economics.

As an edited volume in honor of the 75th birthday of Siegfried Heiler, the
selected subject areas reflect the broad range of his research. He worked on different
topics of empirical economics since the late 1960s. One of his main areas was the
analysis of macroeconomic time series. The Berlin Method (BV, Berliner Verfahren,
Heiler, 1969, 1970) and further extended versions (Heiler, 1976, 1977) have become
standard methods of the German Federal Statistical Office since the early 1970s for
calculating major business-cycle indicators. Its fourth version (BV4) is used by the
German Federal Statistical Office since 1983 (see Heiler and Michels, 1994; Speth,
2006 and references therein), and also by the DIW-Berlin (German Institute for
Economic Research) and other institutes involved in empirical economic research.
Since then, further improvements of the BV have been worked out by Heiler and
his students. For instance, optimal decomposition of seasonal time series using
spline-functions is discussed by Hebbel and Heiler (1978, 1987a), smoothing of
time series in an error-in-variables model was studied by Hebbel and Heiler (1985),
decomposition of seasonal time series based on polynomial and trigonometric
functions is proposed in Hebbel and Heiler (1987b). Also a generalized BV has
been developed (see the next chapter for a detailed description and applications).
The application of local regression with polynomials and trigonometric functions as
local regressors is discussed in Heiler and Michels (1994), algorithms for selecting
the bandwidth based on this approach are developed in Heiler and Feng (1996,
2000) and Feng and Heiler (2000). Other significant contributions include robust
estimation of ARMA models (Allende and Heiler, 1992; Heiler, 1990) and related
topics in economic time series analysis.

Since the early 1990s, Prof. Heiler’s research focused on further developments
of nonparametric time series analysis, solving in particular the crucial problem
of bandwidth selection (see Heiler, 2001 for an overview). New algorithms for
bandwidth selection in nonparametric regression are published in Heiler and Feng
(1998), Beran et al. (2009), and Feng and Heiler (2009). Nonparametric time series
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models for empirical financial research may be found in Abberger et al. (1998),
Abberger and Heiler (2001, 2002), and Feng and Heiler (1998). Another area
Prof. Heiler was involved in is environmental statistics. Results in this context are
summarized, for instance, in Hebbel and Heiler (1988) and Heiler and Michels
(1986, 1989) (also see his contribution in Ghosh et al., 2007). In the early years
of his academic career, he also worked on some research topics in demography
(Heiler, 1978, 1982). At that time, Heiler (1978) already indicated possible effects
of the decline in the birthrate on the future of the German social security system.

The contributions to this volume are divided into three parts: (1) Empirical
Economic Research; (2) Empirical Financial Research; (3) New Econometric
Approaches. The first part, chapters “Decomposition of Time Series Using the
Generalised Berlin Method (VBV)” through “The Precision of Binary Measurement
Methods”, consists of methods most suitable for empirical research in economics.
Properties of the methods are discussed and applications are illustrated by real
data examples. This part also includes two case studies to show how a project in
empirical economics can be carried out using existing methods in the literature.
In the second part, chapters “On EFARIMA and ESEMIFAR Models” through
“Zillmer’s Population Model: Theory and Application”, different new models with
a clear emphasis on applications in empirical financial research are introduced.
Their theoretical properties and practical implementation are discussed in detail,
together with applications to real financial data. A case study on the development of
a currency crises monitoring system is also included. Finally, the third part, chap-
ters “Adaptive Estimation of Regression Parameters for the Gaussian Scale Mixture
Model” through “On a Craig–Sakamoto Theorem for Orthogonal Projectors”,
consists of general contributions to econometric and statistical methodology. Here
the emphasis is on the discussion of theoretical properties. In some contributions
theoretical results are confirmed by simulation studies.

The topics in the three parts are closely related to each other. Some contributions
may be logically allocated to more than one part. Moreover, topics in environ-
mental statistics and demography are also involved in some of the contributions,
but these are not indicated separately. From the methodological perspective the
contributions cover a wide range of econometric and statistical tools, including uni-
and multivariate time series analysis, different forecasting methods, new models
for volatility, correlations and high-frequency financial data, approaches in quantile
regression, panel data analysis, instrument variables, and errors in variables models.
The methodological characteristic was not a criterion for the allocation to Parts I, II,
and III. Hence, contributions to specific statistical methods may occur in any of
the three parts. Within each part, the contributions are, as far as possible, arranged
following a methodological structure. In Part I the contributions are given in the
following order (1) time series; (2) panel data; (3) other topics. Contributions in the
second part are arranged in the sequence (1) univariate time series; (2) multivariate
time series; (3) other financial data. The third part follows the sequence (1) cross-
sectional data; (2) univariate time series; (3) multivariate time series; and (4) general
econometric and statistical methods.
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This book covers theory, methods, and applications of empirical economic and
financial research. The purpose is to establish a connection between the well-
developed area of empirical economic research and the emerging area of empirical
financial research, and to build a bridge between theoretical developments in both
areas and their application in practice. Most of the contributions in this book
are originally published here. The book is a suitable reference for researchers,
practitioners, and graduate and post-graduate students, and provides reading for
advanced seminars in empirical economic and financial research.
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Decomposition of Time Series Using
the Generalised Berlin Method (VBV)

Hartmut Hebbel and Detlef Steuer

Abstract The Generalised Berlin Method (Verallgemeinertes Berliner Verfahren,
or VBV) is a flexible procedure to extract multiple unobservable components from
a discrete or continuous time series. The finite number of observations doesn’t have
to be equidistant. For economic time series (mostly monthly or quarterly data) the
interesting components are trend (economic cycle) and season. For financial data
(daily, hourly, or even higher frequency data) two components are of interest: a
long-time component (length of support, i.e. 201 observations) and a short-time
component (length of support, i.e. 41–61 observations). The VBV has control
parameters to result in components satisfying subjective preferences in the shape
of these components. In a special case the solutions coincide with the known Berlin
Method (Berliner Verfahren, or BV) in its base version.

1 Introduction

The decomposition of time series (particularly economic) in various components or
their seasonal adjustment has a century long tradition. A large number of methods
and procedures were developed to handle these problems. As examples for such
methods and procedures a few shall be named: Census I, Census II, its variant
Census X-11, X-11-ARIMA, X-12-ARIMA (starting 1997) and X-13-ARIMA-
SEATS (starting 2006) in combination with RegARIMA and TRAMO (Time series
Regression with ARIMA noise, Missing values and Outliers) or SEATS (Signal
Extraction in ARIMA Time Series) program, see, for example, Shiskin et al. (1967),
Dagum (1980), Findley et al. (1998), Deutsche Bundesbank (1999), Ladiray and
Quenneville (2001), U.S. Census Bureau and Time Series Research Staff (2013),
Bell (1998), Gómez and Maravall (1998).

Another method belonging to this group of procedures, which were defined
initially by a series of algorithmic steps and later on translated into a model-based
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approach is SABL (Seasonal Adjustment at Bell Laboratories, see Cleveland et al.
1982).

Other exemplary methods are the Berliner Verfahren developed by Heiler in its
recent version BV 4.1 (see Nullau et al. 1969; Speth 2006) and the robust, data-
driven method of the Berliner Verfahren (Heiler and Feng 2004), further DAINTIES,
developed by the European Commission 1997 as a tool to harmonise methods across
the EU.

Furthermore worth to be noted are the model-based time discrete procedures by
Schlicht (1976), Pauly and Schlicht (1983), BAYSEA of Akaike (cf. Akaike 1980
and Akaike and Ishiguro 1980), the generalisation of Hebbel and Heiler (1987),
DECOMP (see Kitagawa 1985) and the software package STAMP (Structural Time
Series Analyser, Modeller and Predictor) (see Koopman et al. 2010) in version 9 in
2013.

We can only start to list the vast amount of relevant literature about seasonal
adjustment, see, e.g., Foldesi et al. (2007) or Edel et al. (1997) for a more complete
overview. All methods and procedures were discussed extensively and controversial.
Main points in these discussions were, if an approach in the time domain or in
the frequency should be chosen, if the components are smooth enough or flexible
enough for the respective application (see Statistisches Bundesamt 2013) or if
seasonal adjustment or a decomposition of a time series is the goal.

This paper summarises the theory of the generalised Berliner Verfahren and
its transfer to practical applications. VBV is a flexible method to decompose
continuous or discrete time series of all kinds in various components. During talks
and discussions in various working sessions and conferences with a multitude of
different institutions (Statistisches Bundesamt, Deutsche Bundesbank, economical
research institutes, environment agencies, partners in industry, universities) four
important goals for a decomposition method arose.

First a method is sought which works fully automatic to handle even huge
amounts of time series without manual intervention for tuning.

Second the method should work even with continuous variables observed at non-
equidistant points in time (missing data, irregular grid). Such behaviour is found in
particular in environmental or technical time series.

Third the method should find its foundation in a plausible model (demand for
model). That way a discussion may be transferred to the domain of model selection.
After selecting a proper model the method will result in reproducible outcomes
concerning the parameters defining the model.

Fourth an implementation of the method as a usable computer program is
required. Otherwise such a method wont be applied in practise (demand for
implementation).

While economic time series are defined by sampling some variable on a regular
time grid (daily, weekly, monthly, quarterly) and consequently missing data are very
rare, in technical settings measurements are often performed without relying on a
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regular time grid. Those time series are continuous by nature but often will only be
observed on an irregular time grid. So most of the data in these series are missing,
particularly all data in between two measurements.

The generalised Berlin Method (VBV), developed in the early 1980s, which is
based on polynomial and trigonometric splines, see Hebbel (1982), approximately
fulfils all those four requirements for a well-behaving method.

The idea to use spline functions for analysing time series was invented by Heiler.
The name was motivated by Söll of the Statistisches Bundesamt Wiesbaden when
it could be shown that the base version of the Berliner Verfahren IV, used by
the Statistisches Bundesamt until the EU harmonised approaches throughout its
member states, is a special case of VBV.

Finally this article aims for giving a complete and comprehensive presentation
of VBV. Afterwards own experiments with VBV and modifications of VBV will be
possible without too much effort. There are of course a lot of papers on decomposing
time series using splines, e.g. Bieckmann (1987), Hebbel (1978, 1981, 1984, 1997),
Hebbel and Heiler (1985, 1987), Hebbel and Kuhlmeyer (1983), but these mostly
focused on a common smoothness parameter for trend and season. Furthermore
some of these papers discuss the topic on an abstract level in some general Hilbert-
or Banach-spaces only to derive the application as special case for some well-chosen
function space. Only in 1997 the decomposition using two smoothness parameters
for trend and season in some relevant function space was introduced. A general
solution was given there, but no further research was conducted.

VBV also is very capable to do chart analysis on finance data. Usual chart
analysis uses moving averages over (in most cases) 200 days, sometimes 30, 40,
or 90 days, which are then identified with the current observation, not, as statistical
theory would expect, with the mid-interval observation, seems plain wrong. In the
same way all the different support lines and formations are missing a theoretical
foundation. Most importantly classical chart technique is unable to give reliable
results for the latest observations (direction of trend, change in trend). All these
shortcomings are overcome by VBV if adequately used for time series of finance
data.

In other domains VBV already found its applications, e.g. in water quality
measurement, cf. Uhlig and Kuhbier (2001a,b), or in dendrology, cf. Heuer (1991).

2 Components and Base Model

For economic time series it is common to assume six different components: long-
term development (trend), long-term cycles of trend (economic cycle), seasonal
differences around the trend-cycles (season), calendar effects, an inexplicable rest
and some extreme values and outliers, cf. Heiler and Michels (1994, pp. 331 ff).
Those components are not observable directly.
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2.1 Components of an Econometric Time Series

Trend Trend is explained by effects which change only slowly and continuously.
Examples for such a long-term effect are slow changes in population or improve-
ments in productivity.

Economic Cycle Economic cycle names the medium-term up and down movement
of economic life. The phenomenons which are described by the whole multitude
of the theory of the economic cycle show themselves as multi-year, not repeating
fluctuations around the trend figure. The periods for these fluctuations are between
2 and 12 years, mostly 5–7 years.

Season All (nearly) regular periodic fluctuations with periods below 1 year (one
base period) are called seasonal effects or season. The cause of these seasonal effects
is mostly natural or institutional influences which unfold cyclically. Most important
is the earth moving around the sun in 365.25 days. As is well known this period
shows up in all kinds of natural variables like temperature, daily sunshine duration,
rainfall, etc. Equally well known is the 24 h day–night sequence showing up in a
lot of mostly ecological time series. More seldom the moon cycle shows up in data,
i.e. the tides. Institutional causes contain regular dates, e.g. quarterly, tax or interest
dates.

Calender Effects There are effects caused by the structure of the used calendar.
Months have different lengths, the number of working days changes from month to
month, holidays, etc. Sometimes a correction for these effects is possible. A simple
factor may be enough to correct for different month lengths or number of working
days. Nowadays these corrections are harder to perform, because working weekends
or clerical holidays is much more common.

Rest The rest component subsumes all irregular movements, which are caused by
inexplicable causes and do not work constantly in one direction. Most important are
short-lived, unexpected influences and variances like special weather conditions,
errors in the data collection processes, measurement errors and/or erroneous
reactions.

Extreme Values, Outliers Relevant irregular discrepancies caused by extraordi-
nary, often one-time events are called extreme values or outliers. Some examples are
strikes, catastrophes or unexpected political changes. We differentiate between:

• Additive outliers: In one isolated point in time we see one value completely out
of line with usual measurements.

• Innovative outliers: At some point in time a relevant change in the data generating
systems happens. Possible results are level changes which slowly return to the old
level, or which stay on the new level, or a change that defines a slowly increasing
deviation from the old data structure to something different (“crash”).
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There is an additional problem if there are outliers in more or less regular distances.
These may be caused by repeating events like fairs or holidays.

2.2 Components of the Decomposition Model

What is described in the following for economic time series is easily transferred into
other domains by changing the natural base period length of a “season”. The length
of the base period helps to distinguish between trend (long-term) and (economic)
cycle (medium-term).

We have to note that trend does not necessarily mean trend line. This often leads
to discussions after analysis. Therefore it is strongly recommended to discuss these
notions beforehand.

VBV assumes an additive composition of preferable three components in the
variable under investigation. If the composition is multiplicative, the logarithm must
be applied first.

2.2.1 Trend-Cycle (Short: Trend)

Often there are arguments against a strict distinction between trend and economic
cycle. Such a distinction would only seem appropriate, if there were different sets
of variables influencing trend and cycle. That is normally not the case. Therefore
these two components, the long-term and the medium-term economic variations, are
consolidated into one smooth component. In this paper the term smooth component
is used in the context of smoothing a time series and is therefore reserved for a
combined component of trend and season. Trend and cycle are one component in
the following description. That component may contain singular innovative outliers.
Splitting the component further would easily possible, cf. Michel (2008). Note that
level changes remain in this component. So we call that combined variable in the
following trend and it contains the mid-term and long-term course of a time series.

2.2.2 Season-Calendar (Short: Season)

For the above noted difficulties in identifying calendar components the Statistisches
Bundesamt refrains from splitting the two components for some time already. We
do alike in this paper. Additionally this combined component may contain cyclical
innovative outliers. This way it is allowed that the pattern we simply call season is
irregular and varying from one period to the next. This does not hinder splitting a
calendar component afterwards if needed.
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2.2.3 Rest- and Extreme Values (Short: Rest)

The third component is called rest for the sake of simplicity. It contains all irregular
movements and all additive outliers. If a model looks sensitive against such outliers
either the extreme values have to be removed before analysis or a robust approach of
the model should be used, which doesn’t require explicit removal of extreme values.

2.3 Base Model

Based on the above discussion a time series x.t/ with possibly continuous time
index t in an interval Œa; b� will be analysed and additively decomposed in the
unobservable important and interpretable components trend (and economic cycle)
x1.t/ and season (and calendar) x2.t/. The rest u.t/ contains the unimportant,
irregular unobservable parts, maybe containing additive outliers.

An “ideal” trend Qx1.t/ is represented by a polynomial of given degree p � 1
and an “ideal” season Qx2.t/ is represented by a linear combination of trigonometric
functions of chosen frequencies (found by exploration) !j D 2�=Sj with Sj D
S=nj and nj 2 N for j D 1; : : : ; q. Here S is the known base period and Sj leads
to selected harmonics, which can be defined by Fourier analysis.

Therefore holds

Qx1.t/ D
p�1X

jD0
aj t

j and Qx2.t/ D
qX

jD1
.b1j cos!j t C b2j sin!j t/ ; t 2 Œa; b� :

In applications the components x1.t/ and x2.t/ won’t exist in ideal represen-
tation. They will be additively superimposed by random disturbances u1.t/ and
u2.t/. Only at some points in time t1; : : : ; tn in the time interval Œa; b� the sum x.t/

of components is observable, maybe flawed by further additive errors "1; : : : ; "n.
The respective measurements are called y1; : : : ; yn.

Now we have following base model

x1.t/ D Qx1.t/C u1.t/

x2.t/ D Qx2.t/C u2.t/
t 2 Œa; b� state equation

yk D x1.tk/C x2.tk/C "k ; k D 1; : : : ; n observation equation ;

cf. Fig. 1.
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a t1 t2 . . . . . .tk tnt tbn−1

x(t)
x1(t)
yk

a b t

x2(t)
u(t)

Fig. 1 Unknown original series x.t/, trend x1.t/, seasonal component x2.t/, rest u.t / and
observations yk

3 Estimation Principle and Solutions

We are looking for appropriate estimations Ox1.t/, Ox2.t/ for unobservable com-
ponents x1.t/, x2.t/ for all points in time in the interval Œa; b� not only at the
observation points t1; : : : ; tn. The solution for the trend component Ox1.t/ shall
replicate the medium and long-term course of the time series without being too
smooth or too “rough”. The seasonal estimator Ox2.t/ shall contain the important
oscillations during a standard period S . It shall be flexible enough to catch pattern
changes from period to period. In this component too much and too little smoothness
must be avoided.

3.1 Construction of the Estimation Principle

For evaluation of smoothness (in contrast to flexibility) the following smoothness
measures are constructed (actually these are roughness measures).

By differentiation D D d
dt the degree of a polynomial is reduced by 1. Therefore

for a trend x1.t/ as polynomial of degree p � 1 always holds Dpx1.t/ D 0. On the
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other hand, every function x1.t/ with this feature is a polynomial of degree p � 1.
Therefore

Q1.x1/ D
Z b

a

jDpx1.t/j2 dt measure of smoothness of trend

is a measure of the smoothness of an appropriately chosen function x1.
For any sufficiently often differentiable and quadratically integrable function x1

in interval Œa; b� Q1.x1/ is zero iff x1 is there a polynomial of degree p � 1, i.e.
x1.t/ D Pp�1

jD0 aj tj , a smoothest (ideal) trend. The larger the value of Q1 for a
function x1 in Œa; b� the larger is the deviation of x1 from a (ideal) trend polynomial
of degree p � 1.

Two times differentiation of the functions cos!j t and sin!j t gives�!2j cos!j t

and �!2j sin!j t such that
Qq
jD1.D

2 C !2j I/ (I: identity) nullifies any linear
combination x2.t/ of all functions cos!j t and sin!j t , j D 1; : : : ; q. That is
because the following

.D2 C !2j I/.b1k cos!kt C b2k sin!kt/ D
D b1k.!2j �!2k/ cos!kt C b2k.!2j �!2k/ sin!kt for j; kD1; : : : ; q;

nullifies for the case j D k the respective oscillation. This also proves the
exchangeability of the operators D2 C !2j I, j D 1; : : : ; q.

If inversely
Qq
jD1.D

2 C !2j I/x2.t/ D 0 holds, the function x2.t/ is a linear
combination of the trigonometric functions under investigation. Consequently

Q2.x2/ D
Z b

a

ˇ̌
ˇ

qY

jD1
.D2 C !2j I/x2.t/

ˇ̌
ˇ
2

dt measure of seasonal smoothness

is a measure for seasonal smoothness of the chosen function x2. For any sufficiently
often differentiable and quadratically integrable function x2 in interval Œa; b� Q2.x2/

is zero iff x2 is there a linear combination of the trigonometric functions cos!j t and
sin!j t , j D 1; : : : ; q, i.e. x2.t/ D Pq

jD1.b1j cos!j t C b2j sin!j t/, a smoothest
(ideal) seasonal component. The larger the value of Q2 for a function x2 in Œa; b�
the larger is the deviation of x2 from an ideal seasonal component.

The goodness of fit of trend and season at observation times is measured by the
usual least squares principle. With

Q.x1; x2I y/ D
nX

kD1
jyk � x1.tk/� x2.tk/j2 Goodness of fit

and vectors

y D
 y1
:::

yn

!
; x1 D

 x1.t1/
:::

x1.tn/

!
; x2 D

 x2.t1/
:::

x2.tn/

!
;
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is Q.x1; x2I y/ D 0 iff trend and season interpolate the data, i.e. yk D x1.tk/ C
x2.tk/, k D 1; : : : ; n. Normally this results in too unruly “figures” for trend and
season. Therefore a compromise between smoothness and fit must be sought. For
that we introduce a weighted sum of smoothness measures and goodness of fit which
must be minimised.

min
x1; x2

.�1 Q1.x1/C �2 Q2.x2/CQ.x1; x2I y// :

Trend and season must be functions which p-th, respectively, 2q-th differenti-
ation exist and which are quadratic integrable in the Lebesgue-measure, i.e. stem
from the Sobolev-spacesHp2Œa; b�, respectively,H2q;2Œa; b�.

The parameters �1 and �2, which must be given first, control smoothness of trend
and season. The larger the parameter, the smoother (in the sense of the above given
measurements) the respective component is chosen.

The minimum doesn’t change if the functional to minimise is multiplied by a
constant c2 ¤ 0 (factor of scale):

min
x1;x2

� Q�1 Q1.x1/CQ�2 Q2.x2/C c2 Q.x1; x2I y/
�

with Q�1 D c2�1 ; Q�2 D c2�2 :

With Qx1 D c x1, Qx2 D c x2 and Qy D c y scaling and estimation may be interchanged
(cf. Sect. 3.3.1). Without restriction a constraint is possible, e.g. Q�1 D 1 (c2 D
1=�1), Q�2 D 1 (c2 D 1=�2) or Q�1 C Q�2 C c2 D 1 with Q�1; Q�2; c2 2 Œ0; 1�.

The minimum remains constant, too, for all �1; �2 with �1 � �2 D 1 (hyperbola,
therefore for inverse �1; �2). Choosing c2 D 1=.�1 � �2/ D 1, we get Q�1 D 1=�2
and Q�2 D 1=�1.

The extreme cases can easily be discussed looking at the minimisation problem
to solve.

• For �1 ! 0 and �2 > 0 fixed, the optimisation is minimised with minimum
0 if season is smoothest (i.e. Q2.x2/ D 0) and data are interpolated (i.e.
Q.x1; x2I y/ D 0/. Therefore the solutions consist of most flexible trend and
smoothest season.

• In case of �2 ! 0 and �1 > 0 fixed we find in analogy solutions consisting of
smoothest trend and most flexible season. (Following from interpolation of data
with trend and season.)

• If at the same time �1 ! 1 and �2 ! 1 holds, then the goodness of fit loses
its role in the minimisation. That way we get those smoothest trend and season
figures which approximate the data best in the sense of the measure for goodness
of fit. This is the same as a linear regression consisting of polynomial trend and
trigonometric season (as given above), estimated with least squares methodology.
(Base version of Berliner Verfahren IV, modified moving form.)

At least the first two extremal versions don’t give acceptable solutions to our
problem. In the first extremal case the trend is much to unruly, in the second the
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seasonal component has way too many oscillations. In the third case both trend and
season are smooth, but the goodness of fit will normally be very low. Therefore
the control parameters have to be chosen with care. For the special case if the base
model consists only of a polynomial Whaba (1990) uses cross validation to find
good parameter settings.

Now it becomes obvious that we look for an “optimum” in between least squares
solution and interpolation. This “optimum” can be found selecting good control
parameters. The problem therefore is a calibration problem, too.

If a so-called �-function is chosen instead of the quadratic “loss function”,
the problem is transformed in a rugged problem, which will only be solvable
numerically.

To characterise the solution of the minimisation problem we need some nota-
tions. For arbitrary (maybe complex-valued) functions x, y which are quadratically
integrable in interval Œa; b� � R we write

hx; yi D
Z b

a

x.t/ y.t/ dt D hy; xi and kxk2 D hx; xi D
Z b

a

jx.t/j2 dt

(The bar means conjugated complex). If differential operators

T1 D Dp and T2 D
qY

jD1
.D2 C !2j I /

are used, the target functional for a given data vector y 2 Rn can be written as

S.x1; x2I y/ D �1 kT1x1k2 C �2 kT2x2k2 C jy � x1 � x2j2 :
For arbitrary given Ox1 2 Hp2Œa; b�, Ox2 2 H2q;2Œa; b� be y1 D x1� Ox1, y2 D x2� Ox2.
Then follows

S.x1; x2I y/ D �1hT1 Ox1 C T1y1; T1 Ox1 C T1y1i C �2hT2 Ox2 C T2y2; T2 Ox2 C T2y2iC
C.y � Ox1 � Ox2 � y1 � y2/0.y � Ox1 � Ox2 � y1 � y2/;

where Ox1, Ox2 and y1, y2 (like x1, x2) are defined as vectors of function values at
observation points t1; : : : ; tn.

Multiplication of the integrands gives

S.x1; x2I y/ D S. Ox1; Ox2I y/C �1kT1y1k2 C �2kT2y2k2 C jy1 C y2j2C
C2Re

�
�1hT1 Ox1; T1y1i C �2hT2 Ox2; T2y2i � .y � Ox1 � Ox2/0.y1 C y2/

�
;

because for a complex number z always holds zC z D 2Re.z/ (Re: real part).
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From that the following theorem follows easily

Theorem 1 (Characterisation Theorem) Functions Ox1, Ox2 are a solution of the
minimisation problem minx1;x2 S.x1; x2I y/, i.e. it holds

S.x1; x2I y/ � S. Ox1; Ox2I y/ for all x1 2 Hp2Œa; b� ; x2 2 H2q;2Œa; b�

iff

Re
�
�1hT1 Ox1; T1y1i � .y � Ox1 � Ox2/0 y1

� D 0
Re
�
�2hT2 Ox2; T2y2i � .y � Ox1 � Ox2/0 y2

� D 0 for all
y1 2 Hp2Œa; b�

y2 2 H2q;2Œa; b� :

If Ox.1/1 , Ox.1/2 and Ox.2/1 , Ox.2/2 are two solutions, then the relation holds

Ox.1/1 D Ox.2/1 C y1
Ox.1/2 D Ox.2/2 C y2

with
T1 y1 D 0
T2 y2 D 0

and y1 C y2 D 0 ;

i.e. y1, y2 is solution of minx1;x2 S.x1; x2I 0/. Therefore we get a unique solution iff
for y1 2 Hp2Œa; b�, y2 2 H2q;2Œa; b� with

T1 y1 D 0 ; T2 y2 D 0 and y1 C y2 D 0 always y1 D 0 ; y2 D 0

follows, i.e. if the null function is the only best approximating function for the null
vector.

From this characterisation theorem a representation theorem follows directly.

Theorem 2 (Representation Theorem) If w1k , w2k are a solution of the minimi-
sation problem above with respect to the unity vector ek 2 Rn, k D 1; : : : ; n, then
Ox1, Ox2, represented by

Ox1.t/ D
nX

kD1
w1k.t/yk D w1.t/

0y

Ox2.t/ D
nX

kD1
w2k.t/yk D w2.t/

0y
t 2 Œa; b� ;

is a solution of the minimisation problem with respect to the data vector y DPn
kD1 ykek and is characterised by

�1

Z b

a

T1y1.t/ � T1w1k.t/ dt
ReD y0

1.ek � wk/

�2

Z b

a

T2y2.t/ � T2w2k.t/ dt
ReD y0

2.ek � wk/

for all
y1 2 Hp2Œa; b�

y2 2 H2q;2Œa; b� ;
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with wk D w1k C w2k , written as vectors and matrices

�1

Z b

a

T1y1.t/ � T1w1.t/
0
dt

ReD y0
1.I �W /

�2

Z b

a

T2y2.t/ � T2w2.t/
0
dt

ReD y0
2.I �W /

f0r all
y1 2 Hp2Œa; b�

y2 2 H2q;2Œa; b�

with unit matrix I , where

w1.t/
0 D �w11.t/ � � � w1n.t/

�
; w2.t/

0 D �w21.t/ � � � w2n.t/
�

W1 D
0

@
w1.t1/

0
:::

w1.tn/
0

1

A ; W2 D
0

@
w2.t1/

0
:::

w2.tn/
0

1

A and W D W1 CW2 :

The symbol
ReD means equality in the real part.

3.2 Representation of Solutions

As we already noted in the introduction the solutions Ox1 and Ox1 for trend and
season are natural polynomial and trigonometric spline functions. For each point
in time with an observation tk polynomial and trigonometric function are changed
appropriately by the additional functions which are “cut” there

g1.t � tk/ D .t � tk/2p�1

g2.t � tk/ D
qX

jD1
aj
�
bj sin!j .t � tk/ � .t � tk/ cos!j .t � tk/

�

für t > tk und 0 für t � tk , k D 1; : : : ; n, mit

aj D 1

2!2j
Qq

iD1
i¤j

.!2i � !2j /2
; bj D 1

!j
� 4!j

qX

iD1
i¤j

1

!2i � !2j
; j D 1; : : : ; q :

To find a solution also the weight function w1k and w2k of the representation theorem
are chosen as natural polynomial and trigonometric spline functions. Written as
vectors and matrices with

f1.t/0 D
�
1 t : : : t

p�1 �

F1 D

0
B@
1 t1 : : : t

p�1
1

:::
:::

:::

1 tn : : : t
p�1
n

1
CA

g1.t/0 D
�
g1.t � t1/ � � � g1.t � tn/

�

G1 D

0
B@
g1.t1 � t1/ � � � g1.t1 � tn/

:::
:::

g1.tn � t1/ � � � g1.tn � tn/

1
CA
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and

f2.t/0 D
�

cos!1t sin!1t : : : cos!qt sin!qt
�

F2 D

0
B@

cos!1t1 sin!1t1 : : : cos!qt1 sin!qt1
:::

:::
:::

:::

cos!1tn sin!1tn : : : cos!qtn sin!qtn

1
CA ;

g2.t/0 D
�
g2.t � t1/ : : : g2.t � tn/

�

G2 D

0
B@
g2.t1 � t1/ : : : g2.t1 � tn/

:::
:::

g2.tn � t1/ : : : g2.tn � tn/

1
CA :

The following representations hold (with real-valued coefficient matrices)

w1.t/
0D f1.t/0B1C g1.t/0A1 ; especially W1DF1B1 CG1A1 with F 0

1A1D 0 ;
w2.t/

0D f2.t/0B2C g2.t/0A2 ; especially W2DF2B2CG2A2 with F 0
2A2D 0 :

The constraints for A1 and A2 are typical for natural spline functions (special
smoothness at borders) and it holds the
spline-orthogonality relation

Z b

a

T1y1.t/ � T1w1.t/
0 dt D y0

1A1
Z b

a

T2y2.t/ � T2w2.t/
0 dt D y0

2A2

for all
y1 2 Hp2Œa; b�

y2 2 H2q;2Œa; b� ;

cf. Hebbel (2000). Following the representation theorem now holds

�1 y0
1A1 D y0

1 .I �W /

�2 y0
2A2 D y0

2 .I �W /
bzw. A WD I �W D �1 A1 D �2 A2 ;

because y1, y2 arbitrary. Consequently holds

W1 D F1B1 C 1
�1
G1A

W2 D F2B2 C 1
�2
G2A

with side condition
�
F 0
1

F 0
2

�
A D 0

and therefore

I �A D W D W1 CW2 D
�
F1 F2

��B1
B2

�
C � 1

�1
G1 C 1

�2
G2
�
A :
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After these considerations the following theorem holds:

Theorem 3 The solutions of the minimisation problem which are linear homoge-
neous in the data are given by

Ox1.t/ D w1.t/
0y ; Ox2.t/ D w2.t/

0y ;

where

w1.t/
0 D f1.t/0B1 C 1

�1
g1.t/0A D

��
f1.t/0 0

�
1
�1

g1.t/0
� �

B
A

�

w2.t/
0 D f2.t/0B2 C 1

�2
g2.t/0A D

��
0 f2.t/0

�
1
�2

g2.t/0
� �

B
A

� B D
�
B1
B2

�

and matrices B and A are solutions of

�
0 F 0
F H

��
B
A

�
D
�
0
I

�
resp. F 0A D 0

FBC HA D I

with identity matrix I and

F D �F1 F2
�
; H D I C 1

�1
G1 C 1

�2
G2 :

Remark 1 Note thatG1 andG2 contain only zeros above the diagonal and therefore
H has the form of a lower triangular matrix with ones on the diagonal.

For the complete solution Ox.t/ D Ox1.t/C Ox2.t/ holds

Ox.t/ D w.t/0y ;

where

w.t/0 D w1.t/0 C w2.t/0 D
�

f.t/0 1
�1

g1.t/0C 1
�2

g2.t/0
� �

B
A

�
; f.t/0 D � f1.t/0 f2.t/0

�
:

Especially for t D t1; : : : ; tn the solutions are given in vector form as

Ox1 D W1 y ; Ox2 D W2 y and Ox D Ox1 C Ox2 D W y

with

W1 D F1 B1 C 1
�1
G1A D

��
F1 0

�
1
�1
G1

� �
B
A

�

W2 D F2 B2 C 1
�2
G2A D

��
0 F2

�
1
�2
G2

� �
B
A

� W D W1 CW2 D I � A :
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Remark 2 The theoretical-empirical rest component is given by

Ou.t/ D y.t/ � Ox1.t/ � Ox2.t/ D y.t/ � Ox.t/ D y.t/ �w.t/0y ; t 2 Œa; b� :

But as only the observations y1; : : : ; yn at points in time t1; : : : ; tn of the theoretical
measurement curve y.t/ exist, empirical rests can only be calculated at those points
in time:

Ou.tk/ D yk � Ox1.tk/ � Ox2.tk/ ; k D 1; : : : ; n ;

or as vectors

Ou D y � Ox1 � Ox2 D y � Ox D y �W y D .I �W /y D Ay :

Because of F 0A D 0 it holds especially

F 0 Ou D 0 and especially 10 Ou D 0 resp. 10y D 10 Ox ;

because F has in its first column the vector of ones 1, i.e. the sum of the empirical
rests is zero just like in a regression model with constant term.

Remark 3 With respect to the linear independence of the columns of F2 special
care is needed, especially for integer points in time (alias effect). At least in that
case should

0 < !j � � ; j D 1; : : : ; q

hold. If the harmonic � is used it is to note that for integer observation times the
last column in F2 contains only zeros. In such a case in the measure of smoothness
of the seasonal component the operator D2 � �2I D .D � i�I/.DC i�I/ could be
replaced with D � i�I, which nullifies the function ei�t D cos�t D .�1/t in Z.
f2.t/ would only contain cos�t and not the null-function sin�t . g2.t � tk/ should
be modified analogously, cf. Hebbel (1997).

Remark 4 (Uniqueness and Matrix Properties) The system of equations above has
a unique solution iff F has full rank pC2q � n in the columns. In that case exactly
one solution of the spline optimisation problem exists. In this situation holds

�
0 F 0
F H

��1 D
� �.F 0H�1F /�1 .F 0H�1F /�1F 0H�1
H�1F.F 0H�1F /�1 H�1 �H�1F.F 0H�1F /�1F 0H�1

�

D
��D B
C A

�
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with

D D .F 0H�1F /�1; C D H�1F.F 0H�1F /�1 D H�1FD

B D .F 0H�1F /�1F 0H�1; A D H�1 �H�1F.F 0H�1F /�1F 0H�1

D H�1.I � FB/ :

We get immediately

F 0C D I
FD D HC

F 0A D 0
FBC HA D I and

BF D I
DF0 D BH

AF D 0
CF0 C AH D I

and especially

A0HA D A0 resp. A0H 0A D A and AHA D A ; BHA D 0 ; AHC D 0 :

In particular AHAH D AH and HAHA D HA holds and therefore AH and HA are
idempotent with eigenvalues zero or one.

The inverse of

H D I CG with G D 1
�1
G1 C 1

�2
G2

may be calculated as H�1 D I CPn�1
kD1.�G/k , because

�
I CPn�1

kD1.�G/k
�
.I C

G/ D I � .�G/n and Gn D 0. With each power of G the null diagonal moves
one diagonal further down. Nevertheless numerical problems may arise in the
calculation of A using this formula, if �1, �2 are small.

Remark 5 Alternatively the solution of the system of equations

�
0 F 0
F H

��
B
A

�
D
�
0
I

�
bzw.

h�
0 F 0
F I

�
C
�
0 0
0 G

�i�
B
A

�
D
�
0
I

�

can be represented with respect to the smoothest solution according to BV (cf. item
0 below limiting cases in this subsection). This way of calculating turned out to be
much more stable numerically. Multiplication with

�
0 F 0
F I

��1 D
��.F 0F /�1 .F 0F /�1F 0
F.F 0F /�1 I � F.F 0F /�1F 0

�
D
��.F 0F /�1 B�

B�0 A�
�
;

where B� D .F 0F /�1F 0 and A� D I � F.F 0F /�1F 0 D I � FB� (with property
A�A� D A�, B�A� D 0), results in

�
I B�G
0 I C A�G

��
B
A

�
D
�
B�
A�

�
resp. B D B�.I � GA/

.I C A�G/A D A�; ADA�.I �GA/
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therefore

A D .I C A�G/�1A� with A�A D AA� D A :

Remark 6 If we choose a “symmetric” form for functions g1.t � tk/ and g2.t � tk/,
such that the matrixH is symmetric and positive definite, then the estimation in the
base model comes out as best linear forecast if the rest processes possess special
covariance structures, see Hebbel (2000) and Michel (2008).

3.3 Properties of Solutions

The components found as solutions have interesting properties and many conse-
quences can be formulated.

3.3.1 Properties of Linearity

Solutions are linear homogeneous in the date. If

Ox.i/1 .t/ D w1.t/
0y.i/ ; Ox.i/2 .t/ D w2.t/

0y.i/

are solutions found for the observed single time series y.i/, i D 1; : : : ; k, then the
“aggregated” components

Ox1.t/ D
kX

iD1
ai Ox.i/1 .t/ D w1.t/

0y ; Ox2.t/ D
kX

iD1
ai Ox.i/2 .t/ D w2.t/

0y

are solutions for an “aggregated” observed time series y DPk
iD1 aiy.i/.

3.3.2 Spline Properties

The solutions

Ox1.t/ D w1.t/
0y

Ox2.t/ D w2.t/
0y

with
w1.t/

0 D f1.t/0B1 C 1
�1

g1.t/0A

w2.t/
0 D f2.t/0B2 C 1

�2
g2.t/0A

are, just like the weight functions, natural spline functions, because obviously the
representation holds

Ox1.t/ D f1.t/0 Ǒ1 C 1
�1

g1.t/0 Ǫ
Ox2.t/ D f2.t/0 Ǒ2 C 1

�2
g2.t/0 Ǫ

with
Ǒ
1 D B1y
Ǒ
2 D B2y

Ǒ D
� Ǒ

1

Ǒ
2

�
D By ; Ǫ D Ou D Ay :
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and with F 0 Ǫ D F 0Ay D 0, so F 0
1 Ǫ D 0 and F 0

2 Ǫ D 0, the necessary and sufficient
side condition for natural splines is fulfilled, s. Hebbel (2000).

Because of

� Ǒ
Ǫ
�
D
�
B
A

�
y und

�
0 F 0
F H

��
B
A

�
D
�
0
I

�

the coefficients are a solution of

�
0 F 0
F H

�� Ǒ
Ǫ
�
D
�
0
y

�
:

3.3.3 Weight Properties

For the (spline-) weight functions

w1.t/
0 D

��
f1.t/0 0

�
1
�1

g1.t/0
� �

B
A

�

w2.t/
0 D

��
0 f2.t/0

�
1
�2

g2.t/0
� �

B
A

� with
�
0 F 0
F H

��
B
A

�
D
�
0
I

�

the following properties hold:

• Independence of origin

Moving the origin along the time axis to t0 2 R doesn’t change weights.
For the transformation t 7�! Qt D t � t0 holds .t � t0/j D Pj

iD0
�
j
i

�
t i .�t0/j�i

and therefore

�
1 t � t0 � � � .t � t0/p�1 � D �

1 t � � � tp�1 �

0
BBB@

1
�
1
0

�
.�t0/1 � � �

�
p�1
0

�
.�t0/p�1

1 � � ��p�1
1

�
.�t0/p�1

O
: : :

:::

1

1
CCCA

„ ƒ‚ …
M1; detM1D1

f1.Qt /0 D f1.t/0M1 ; especially QF1 D F1M1 ;

and

�
cos!j .t � t0/ sin!j .t � t0/

� D � cos!j t sin!j t
� � cos!j t0 � sin!j t0

sin!j t0 cos!j t0

�

„ ƒ‚ …
M2j ; detM2jD1
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and therefore

�
cos!1 Qt sin!1 Qt � � � cos!q Qt sin!q Qt

� D

D �
cos!1t sin!1t � � � cos!qt sin!qt

�
0

@
M21 O: : :O M2q

1

A

„ ƒ‚ …
M2; detM2D1

f2.Qt /0 D f2.t/0M2 ; especially QF2 D F2M2 :

Consequently holds

QF D � QF1 QF2
� D �F1 F2

� �M1 0

0 M2

�

„ ƒ‚ …
M; detMD1

D FM

and the transformation matrix M falls out of the weight vectors w1.Qt /0 and w2.Qt/0,
so that it coincides with w1.t/

0 and w2.t/
0.

When calculating weights w1.t/
0, w2.t/

0 the independence of the origin can be
used directly to move the origin, for example, in the middle of the interval Œa; b� or
to design a local “moving” version of the method.

• Invariance and summation properties

Furthermore holds

w1.t/
0F D �f1.t/0 0

�

w2.t/
0F D �0 f2.t/0

�
W1F D

�
F1 0

�

W2F D
�
0 F2

� WF D F :

Because f1.t/0 has a one in the first position and therefore F has a vector of ones
in the first column 1, in particular holds

w1.t/
01 D 1

w2.t/
01 D 0

W11 D 1

W21 D 0
W 1 D 1 ;

i.e. the sum of trend weights always is one and the sum of season weights always is
zero.

• Values of smoothness

If the components from w1 or w2 are inserted into the spline orthogonality
relation for y1 or y2, then in matrix notation follows (note the symmetry of the
“smoothness matrices”)
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Z b

a

T1w1.t/ � T1w1.t/
0 dt D W 0

1A1 D 1
�1
W 0
1A D 1

�1
A0W1

Z b

a

T2w2.t/ � T2w2.t/
0 dt D W 0

2A2 D 1
�2
W 0
2A D 1

�2
A0W2

and W 0A D A0W ;

becauseW D W1 CW2.

• Properties of symmetry and definiteness

Therefore for above “smoothness-matrices” holds

W 0
1A D 1

�1
A0G0

1A; W
0
2A D 1

�2
A0G0

2A;

W 0A are symmetric and not negative definite.

FromW D I �A follows after multiplication with A resp. A0 in each case W 0A D
A�A0A, A0W D A0 �A0A and therefore A D W 0ACA0A D A0W CA0A D A0,
i.e.

A is symmetric not negative definite,

because W 0A C A0A has this property. Herewith W is symmetric, too, because it
is W D I � A D I � A0 D W 0 and from 0 � z0W 0Az D z0W 0.I � W /z D
z0W 0z � z0W 0W z, i.e. z0W z � z0W 0W z � 0 for any z 2 Rn, follows

W is symmetric not negative definite.

3.3.4 Property of Interpolation

If the data are interpolated by smoothest function consisting of a polynomial plus
trigonometric sum, that is y is of the form

y D Fˇ ; ˇ arbitrary;

then holds, because of the invariance property of the weight function,

Ox1.t/ D w1.t/
0y D w1.t/

0Fˇ D �f1.t/0 0
�
ˇ D f1.t/0ˇ1

Ox2.t/ D w2.t/
0y D w2.t/

0Fˇ D �f2.t/0 0
�
ˇ D f2.t/0ˇ2

and with this trend and season will be completely reconstructed independent of the
choice of �1, �2.
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3.3.5 Values of Smoothness of Solutions

The solutions Ox1.t/ D w1.t/
0y, Ox2.t/ D w2.t/

0y have smoothness values (cf.
measurement of smoothness of weight functions)

Q1. Ox1/ D
Z b

a

jT1 Ox1.t/j2dt D 1

�21
y0A0G0

1Ay D 1
�1

y0W 0
1Ay D 1

�1
Ox0
1 Ou � 0 ;

Q2. Ox2/ D
Z b

a

jT2 Ox2.t/j2dt D 1

�22
y0A0G0

2Ay D 1
�2

y0W 0
2Ay D 1

�2
Ox0
2 Ou � 0 :

If follows that estimations of components in observation points are always non-
negative correlated with the empirical rests Ou D y � Ox. Furthermore holds

�1Q1. Ox1/C �2Q2. Ox2/ D y0W 0Ay D Ox0 Ou � 0 ; W D W1 CW2 ; Ox D Ox1 C Ox2
Q.Ox1; Ox2I y/ D jy � Ox0

1 � Ox2j2 D jy � Oxj2 D jOuj2 D Ou0 Ou D y0A0Ay � 0

and therefore for the minimum

S. Ox1; Ox2I y/ D �1Q1. Ox1/C �2Q2. Ox2/CQ.Ox1; Ox2I y/ D Ox0 OuC Ou0 Ou D y0 Ou D y0Ay

D y0y � y0W y � y0y :

3.3.6 Empirical Coefficient of Determination

From y D Ox C Ou and Ou D 0 (i.e. y D Ox) follows for empirical covariances or
variances (for x; y 2 Rn defined as sxy D 1

n
x0y � x y and s2x D sxx. The bar stands

for the arithmetical mean)

y0y D Ox0 OxC Ou0 OuC 2Ox0 Ou
1 D R20 C Ou0 Ou

y0y C 2 Ox0 Ou
y0y

resp.
s2y D s2Ox C s2Ou C 2sOxOu

1 D R2 C s2
Ox
s2y
C 2 s2Ou

s2y

with “empirical coefficients of determination”

R20 D
Ox0 Ox
y0y

; R2 D s2Ox
s2y

und 0 � R2 � R20 � 1 ; 0 � Ox
0 Ou

y0y
� sOxOu
s2y

<
1

2
:

1. ForR20 D 1 orR2 D 1 is Ou D 0 and Ox0 Ou D �1Q1. Ox1/C�2Q2. Ox2/ D 0. Therefore
we have an interpolation of data with a smoothest solution (with T1 Ox1 D 0,
T2 Ox2 D 0).
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2. ForR2 D 0 resp. Ox D Ox1 D y1 is s2Ou D s2y , sOxOu D 0 resp. �1Q1. Ox1/C�2Q2. Ox2/ D
0. Consequently Ox1.t/ D y, Ox2.t/ D 0 is a solution (with T1 Ox1 D 0, T2 Ox2 D 0,
Ox D y1), “consisting of no trend and no season”.

3.3.7 Properties of Monotonicity

To investigate the monotonicity of the functions

Q1. Ox1I�1; �2/ ; Q2. Ox2I�1; �2/ ; Q.Ox1; Ox2I yI�1; �2/ ; and S. Ox1; Ox2I yI�1; �2/

we look at the partial derivatives in �1, �2. With the general rule of derivation

dM�1.x/
dx

D �M�1.x/
dM.x/

dx
M�1.x/ and especially

@G

@�i
D � 1

�2i
Gi

(because G D 1
�1
G1 C 1

�2
G2) after Remark 5 holds

@A

@�i
D �.ICA�G/�1.�A� 1

�2i
Gi /.ICA�G/�1A� D 1

�2i
AGiA D 1

�i
W 0

i A ; i D 1; 2 :

The result is the “matrix of smoothness” of the weight function wi .t/.

• For the minimum S. Ox1; Ox2I y/ holds

@S. Ox1; Ox2I y/
@�i

D 1
�i

y0W 0
i Ay D Qi. Oxi / � 0 ; i D 1; 2 :

Therefore S. Ox1; Ox2I yI�1; �2/ is monotonically not falling in both directions �1,
�2. Furthermore it is convex (cf. Hebbel 2000):

• For Q.Ox1; Ox2I y/ holds (because of symmetry)

@Q.Ox1; Ox2I y/
@�i

D y0

�
A
@A

@�i
C @A

@�i
A
�

y D 2

�2i
y0W 0

i AAy D 2
�i
Ox0

iA Ou � 0 ; i D 1; 2 :

• For Qi. Oxi / resp. �iQi. Oxi / D Ox0
i Ou D 1

�i
AGiA hold (because of symmetry) with

application of

@.AG1A/

@�i
D 1

�i
W 0
i AG1AC 1

�i
AG1AW i D 2�1�i W 0

i AW1;
@.AG2A/

@�i
D2�2

�i
W 0
i AW2
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the relationships

@.Ox0
1 Ou/

@�1
D � 1

�1
Ox0
1 OuC 2

�1
Ox0
1AOx1 ;

@.Ox0
1 Ou/

@�2
D 2

�2
Ox0
1AOx2 � 0 ;

@.Ox0
2 Ou/

@�1
D 2

�1
Ox0
2AOx1 � 0 ;

@.Ox0
2 Ou/

@�2
D � 1

�2
Ox0
2 OuC 2

�2
Ox0
2AOx2

and analogously

@Q1. Ox1/
@�1

D � 2

�21
Ox0
1 OuC 2

�21
Ox0
1AOx1 � 0 ;

@Q1. Ox1/
@�2

D 2
�1�2
Ox0
1AOx2 � 0 ;

@Q2. Ox2/
@�1

D 2
�1�2
Ox0
2AOx1 � 0 ;

@Q2. Ox2/
@�2

D � 2

�22
Ox0
2 OuC 2

�22
Ox0
2AOx2 � 0 :

3.3.8 Limiting Cases

The limiting cases which already were considered shortly in Sect. 3.1. can now be
investigated more thoroughly. As a base we use the (spline-)representation

Ox1.t/ D f1.t/0 Ǒ1 C 1
�1

g1.t/0 Ou
Ox2.t/ D f2.t/0 Ǒ2 C 1

�2
g2.t/0 Ou

with
�
0 F 0
F H

�� Ǒ
Ou
�
D
�
0
y

�
; Ǒ D

� Ǒ
1Ǒ
2

�

and Ǒ D By, Ou D Ay.

0. �1 ! 1, �2 ! 1 (smoothest trend and smoothest season in the sense of best
fit according to Q.Ox1; Ox2I y/): Because of

H D I C 1
�1
G1 C 1

�2
G2 ! I

�
0 F 0
F H

�� Ǒ
Ou
�
D
�
0
y

�
!
�
0 F 0
F I

�� Ǒ�
Ou�
�
D
�
0
y

�

holds

Ox1.t/! f1.t/0 Ǒ�1 DW Ox�
1 .t/ ; Ox2.t/! f2.t/0 Ǒ�2 DW Ox�

2 .t/

with smoothness values

Q1. Ox�
1 / D 0 ; Q2. Ox�

2 / D 0 and S. Ox�
1 ; Ox�

2 I y/ D y0 Ou� D Ou�0 Ou� :
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Hereby

F 0 Ou� D 0
F Ǒ� C Ou� D y

also F 0F Ǒ� D F 0y ; Ǒ� D .F 0F /�1F 0y ; Ou� D y� F Ǒ�

is the classical least squares estimator. Because of this property BV 4.1 in its base
version is a special case of the method introduced here.

1. �1 ! 0, �2 > 0 fixed (most flexible trend and smoothest season in the
interpolation case): The results are independent of �2. From

�1H D �1I CG1 C �1
�2
G2 ! G1 ;

1
�1
Ou! Ǫ .1/; i. e. Ou! 0

�
0 F 0
F �1H

�� Ǒ
1
�1
Ou
�
D
�
0
y

�
!
�
0 F 0
F G1

�� Ǒ.1/
Ǫ .1/

�
D
�
0
y

�

(solution of the system of equations, e.g. following Remark 5 with .G1 � I /
instead of G) follows

Ox1.t/! f1.t/0 Ǒ.1/1 C g1.t/0 Ǫ .1/ DW Ox.1/1 .t/ ; Ox2.t/! f2.t/0 Ǒ.1/2 DW Ox.1/2 .t/

with maximum and minimum smoothness values

Q1. Ox.1/1 / D Ox.1/
0

1 Ǫ .1/ ; Q2. Ox.2/2 / D 0 and S. Ox.1/1 ; Ox.1/2 I y/ D 0 :

2. �2 ! 0, �1 > 0 fixed (smoothest trend and most flexible season in case of
interpolation): The results are independent of �1. From

�2H D �2I CC�2
�1
G1 CG2 ! G2 ;

1
�2
Ou! Ǫ .2/; i. e. Ou! 0

�
0 F 0
F �2H

�� Ǒ
1
�2
Ou
�
D
�
0
y

�
!
�
0 F 0
F G2

�� Ǒ.2/
Ǫ .2/

�
D
�
0
y

�

(solution of the system of equations, e.g. following Remark 5 with .G2 � I /
instead of G) follows

Ox1.t/! f1.t/0 Ǒ.2/1 DW Ox.2/1 .t/ ; Ox2.t/! f2.t/0 Ǒ.2/2 C g2.t/0 Ǫ .2/ DW Ox.2/2 .t/

with minimum and maximum smoothness values

Q1. Ox.2/1 / D 0 ; Q2. Ox.2/2 / D Ox.2/
0

2 Ǫ .2/ and S. Ox.2/1 ; Ox.2/2 I y/ D 0 :

3. �1 ! 1, �2 > 0 fixed (smoothest trend): The results are dependent on �2.
Because of
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H D I C 1
�1
G1 C 1

�2
G2 ! I C 1

�2
G2

�
0 F 0
F H

�� Ǒ
Ou
�
D
�
0
y

�
!
�
0 F 0
F I C 1

�2
G2

�� Ǒ.3/
Ou.3/

�
D
�
0
y

�

(solution of the system of equations e.g., following Remark 4 or 5 with G D
1
�2
G2) holds

Ox1.t/! f1.t/0 Ǒ.3/1 DW Ox.3/1 .t/ ; Ox2.t/! f2.t/0 Ǒ.3/2 C 1
�2

g2.t/0 Ou.3/ DW Ox.3/2 .t/

with smoothness values

Q1. Ox.3/1 / D 0 ; Q2. Ox.3/2 / D 1
�2
Ox.3/02 Ou.3/ and S. Ox.3/1 ; Ox.3/2 I y/ D y0 Ou.3/ :

4. �2 ! 1, �1 > 0 fixed (smoothest season): The results depend on �1. Because
of

H D I C 1
�1
G1 C 1

�2
G2 ! I C 1

�1
G1

�
0 F 0
F H

�� Ǒ
Ou
�
D
�
0
y

�
!
�
0 F 0
F I C 1

�1
G1

�� Ǒ.4/
Ou.4/

�
D
�
0
y

�

(solution of the system of equations, e.g. following Remark 4 or 5 with G D
1
�1
G1) holds

Ox1.t/! f1.t/0 Ǒ.4/1 C 1
�1

g1.t/0 Ou.4/ DW Ox.4/1 .t/ ; Ox2.t/! f2.t/0 Ǒ.4/2 DW Ox.4/2 .t/

with smoothness values

Q1. Ox.4/1 / D 1
�1
Ox.4/01 Ou.4/ ; Q2. Ox.4/2 / D 0 and S. Ox.4/1 ; Ox.4/2 I y/ D y0 Ou.4/ :

3.3.9 Property of Iteration

It is interesting to see what solution this method produces if it is applied on the
“smoothed” solution Ox D Ox1 C Ox2 instead of y etc. After m D 1; 2; : : : iterations we
get with “starting values” Ox.1/1 .t/ D Ox1.t/, Ox.1/2 .t/ D Ox2.t/ and Ox.0/ D y

Ox.m/1 .t/ D w1.t/
0 Ox.m�1/

Ox.m/2 .t/ D w2.t/
0 Ox.m�1/

Ox.m/.t/ D Ox.m/1 .t/C Ox.m/2 .t/

with

�1Q1. Ox.m/1 / D Ox.m/01 Ou.m/
�2Q2. Ox.m/2 / D Ox.m/02 Ou.m/

�1Q1. Ox.m/1 /C �2Q2. Ox.m/2 / D Ox.m/0 Ou.m/
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and Ou.m/ D Ox.m�1/ � Ox.m/ . Now holds

Ox.m/1 .t/�Ox.mC1/
1 .t/ D w1.t/

0 Ou.m/ ; Ox.m/2 .t/�Ox.mC1/
2 .t/ D w2.t/

0 Ou.m/ ; t 2 Œa; b� :

Because of the minimum property it is easy to see that limn!1 j Ou.m/j2 D 0, that is
Ou.m/ ! 0 converges. If Ou.m/ D 0 is already reached in stepm the solutions remain in
a fixed point and are smoothest solutions in the sense of this method. Otherwise the
solution converge to the smoothest solutions in the sense of the method, see Hebbel
(2000) or Bieckmann (1987, p. 57 ff).

3.4 Choice of Smoothing Parameters

The choice of smoothing parameters �1, �2 depends on the question how “smooth”
trend function Ox1 and how “smooth” season function Ox2 should be to give at the
same time a good fit to the data. Following the subsection on smoothness values of
the solutions holds

S. Ox1; Ox2I y/ D
�1 Q1. Ox1/‚…„ƒ
Ox0
1 Ou C

�2 Q2. Ox2/‚…„ƒ
Ox0
2 Ou C Ou0 Ou D Ox0 OuC Ou0 Ou D y0 Ou D y0yC Ox0y � y0y

resp.

y0y D Ox0 OxC Ou0 OuC 2Ox0 Ou D Ox0 OxC Ox0 OuC S. Ox1; Ox2I y/ D Ox0yC S. Ox1; Ox2I y/

The part of variation explained by the fit Ox0 Ox=y0y shall be large, therefore the parts
explained by weighted smoothness values Ox0

1 Ou=y0y and Ox0
2 Ou=y0y must be relatively

small. An obvious idea is to try to choose these two parts equal in size.
Generalised cross validation

min
�1;�2

V .�1; �2/ D mit V D Ou0 Ou
1
n
.tr.A//2

doesn’t produce satisfactory results in the following examples. Its solution tends to
produce too rough seasonal components. Therefore it is recommended to choose
values near the minimum such that weighted smoothness values are of same size or
keep some predefined value.

4 Local, Moving Version

One can think of a lot of causes to modify the described method. May be it
is irritating for a user that figures for the past change if new values enter the
calculations. May be there occur numerical problems for long time series when
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very large matrices must be inverted. This problem may be avoidable if an iterative
approach to estimation is chosen. In the following we will use the property of
invariance against shifts in time, the same way BV 4.1 tries to avoid some of the
problems.

It’s natural, as in the Berliner Verfahren, to formulate the model not for the
complete, possible observation time interval, but only for smaller parts of support of
possible observation times, which “slides” over the time axis. This sliding technique
is useful especially for equidistant (in time) data and odd number of observations.
Estimations are performed for the first, second and finally last, moving window. As
seen in Sect. 3.2 the weight vectors Ow1.t/ and Ow2.t/ resp. weight matrices W1 and
W2 must be calculated and multiplied by the respective data vector for each moving
support window. Trend and season in these observational point then are given by

Ox1 D W1y and Ox2 D W2y

in each support window.
The big advantage of this approach is that the weight matrices have to be

calculated only once (invariance against shift). While estimating “in the middle”
of the data there are m different supports areas around a point t which can be used
for estimation in point t . Any of the rows of the weight matrix W1 resp. W2 could
possibly be used to be multiplied with the data and generate an estimation. Naturally
the question arises, if there is a good choice between the columns. Should some row
be preferred?

The theory of filters suggests the use of a symmetric weight row. That way phase
shifts in the oscillations can be avoided. Symmetric rows, on the other hand, are
only found in the middle of the weight matrices W1 resp. W2, if m is odd. If m is
even, the mean of the two middle rows of the weight matrices could be used.

Nearing the edges we simply use the next row of weights, therefore at the edges
(of length k D m�1

2
) we have a usual regression estimation (different weight rows,

fixed data) and in the area away from the edges we have a sliding estimation (fixed
weight rows (same filter), different data (shifted by one unit of time each)).

Thus the estimators of trend (i D 1) and season (i D 2) (m odd) in points in time
t D 1; : : : ; n can be written as follows:

0
BBBBBBBBBBBBBBB@

Oxi .1/
:::

Oxi .kC1/
:::
:::

Oxi .n�k/
:::

Oxi .n/

1
CCCCCCCCCCCCCCCA

D

0

BBBBBBBBBBBBBBBB@

w.i/�k;�k : : : w.i/�k; k
:::

:::

w.i/0;�k : : : w.i/0; k 0

: : :
: : :

: : :
: : :

0 w.i/0;�k : : : w.i/0; k
:::

:::

w.i/k;�k : : : w.i/k; k

1

CCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

y1
:::

ykC1
:::
:::

yn�k
:::

yn

1
CCCCCCCCCCCCCCCA
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with weight matrix

Wi D

0

BB@

w.i/�k;�k : : : w.i/�k; k
:::

:::

w.i/k;�k : : : w.i/k; k

1

CCA ; i D 1; 2

for a support area of lengthm D 2k C 1.
For choosing a suitable length of support we can use the experiences from using

the Berliner Verfahren. The choice of different lengths of support for different
components (for example, 27 for trend and 47 for season in the case of monthly
data see Speth 2006) seems inconsequential, just as the procedure at the edges.

At the edges we can’t choose weights according to filter criteria, because filters
are defined only for time intervals, not for points in time. Therefore it looks natural
to change to “regression estimation” there according to the construction of the
model. We recommend a support of length m D 25 : : : 31. In that case only the last
12–15 values are “intermediate”, because older values of components don’t change
any more if new data arrives.

5 Examples for Decompositions with VBV

We want to show two exemplary decompositions of time series performed with VBV
as described in this paper. The source code implementing VBV in R (R Core Team
2013) is available from http://r-forge.r-project.org in package VBV.

5.1 Algorithm

The algorithm used follows the steps outlined below.

5.1.1 Parameter Settings

Time t 2 Œa; b� is measured in units that are natural to the problem (e.g. sec, min, h,
d, weeks, months, quarters).

• Observation times t1; : : : ; tn with data y1; : : : ; yn
• Order of polynomial of trend functionp, i. a. p D 2

http://r-forge.r-project.org
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• Order of trigonometric polynomial of the seasonal function n1; : : : ; nq 2 N for
base period S � b � a (with nj < S

2
), results in “seasonal frequencies” !j D

2�
S
nj , set n D 1

q

Pq
jD1 nj , ! D 2�

S
n

• smoothness penalty parameter for trend �1
• smoothness penalty parameter for season �2 bzw. Q�2 D 2!4q�1�2

5.1.2 Truncated Functions

• Elements of trend, in dependence of p, tk

g1.t � tk/ D
�
t � tk

�2p�1
; t > tk

and 0 for t � tk
• elements of season, in dependence of !j , tk

Qg2.t � tk/ D
qX

jD1
Qaj
� Qbj sin!j .t � tk/� !.t � tk/ cos!j .t � tk/

�
; t > tk

and 0 for t � tk with

Qaj D 1
�
�j
Qq

iD1
i¤j

.�2i � �2j /
�2 ; Qbj D 1

�j
� 4�j

qX

iD1
i¤j

1

�2i � �2j
and �j D nj

n
:

5.1.3 Vector Functions and Matrices

Preparation of

f10.t/0 D .1 t � � � tp�1 0 0 � � � 0 0/; F10 D

0

B@
f10.t1/0
:::

f10.tn/0

1

CA

f02.t/0 D .0 0 � � � 0 cos!1t sin!1t � � � cos!qt sin!qt/; F02 D

0
B@

f02.t1/0
:::

f02.tn/0

1
CA
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and here, because of the independence of the origin the points in time t (and
therefore the points in time t1; : : : ; tn) can be replaced with Qt D t � t0 with any
t0, i.e. t0 D 1

2
.aC b/ or t0 D 1

2
.t1 C tn/,

g1.t/0 D
�
g1.t � t1/ � � � g1.t � tn/

�
; G1 D

0
B@

g1.t1/0
:::

g1.tn/0

1
CA

Qg2.t/0 D
� Qg2.t � t1/ � � � Qg2.t � tn/

�
; QG2 D

0
B@
Qg2.t1/0
:::

Qg2.tn/0

1
CA

and

F D F10 C F02 ; QG D 1
�1
G1 C 1

Q�2
QG2 :

5.1.4 Intermediate Calculations

B� D .F 0F /�1F 0 ; A� D I � FB� gives A D �I C A� QG��1A� :

5.1.5 Weight Functions and Weight Matrices

w1.t/
0 D f10.t/0B C Qg1.t/0A

w2.t/
0 D f02.t/0B C Qg2.t/0A

esp. W1 D

0

B@
w1.t1/

0
:::

w1.tn/
0

1

CA ; W2 D

0

B@
w2.t1/

0
:::

w2.tn/
0

1

CA

5.1.6 Solutions for Data-Vector

Ox1.t/ D w1.t/
0y

Ox2.t/ D w2.t/
0y

esp. Ox1 D

0
B@
Ox1.t1/
:::

Ox1.tn/

1
CA D W1y ; Ox2 D

0
B@
Ox2.t1/
:::

Ox2.tn/

1
CA D W2y :

5.2 Decomposition of Unemployment Numbers in Germany

We use the last 103 observations of German monthly unemployment numbers
from the Federal Employment Agency (Statistik der Bundesagentur für Arbeit,
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Fig. 2 Decomposition of unemployment numbers in Germany (�1 D 6, �2 D 68)

statistik.arbeitsagentur.de, Statistik nach Themen, Zeitreihen) starting in January
2005. The parameters used in Fig. 2 were �1 D 6, �2 D 68. These parameters
were chosen near to a solution from generalised cross validation but improved
using the constraint that the weighted smoothness values �1Q1. Ox1/ D Ox0

1 Ou and
�2Q2. Ox2/ D Ox0

2 Ou are equal. The decomposition performed is the global version
using all observations at the same time.

As a reference we use the same data to fit a local model (see Fig. 3) withm D 31
and the same �1; �2 as above.
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original and saison trend - - - - - trend + saison
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Fig. 3 Decomposition of unemployment numbers in Germany—a local model with m D 31 and
�1 D 6, �2 D 68

5.3 Decomposition of the DAX Closings

We use the DAX closings since 2012-01-01 (from Yahoo Finance, created with
quantmod) to show an example of VBV in its local variant using moving windows
for local estimations (Fig. 4).

The parameters used were m D 201; S D 56; �1 D 10;000; �2 D 1;000.
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original and “saison” trend - - - - - trend + “saison”
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Fig. 4 Decomposition of the DAX closings (m D 201, S D 56, �1 D 10;000, �2 D 1;000)
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Time Series Segmentation Procedures to Detect,
Locate and Estimate Change-Points

Ana Laura Badagián, Regina Kaiser, and Daniel Peña

Abstract This article deals with the problem of detecting, locating, and estimating
the change-points in a time series process. We are interested in finding changes in
the mean and the autoregressive coefficients in piecewise autoregressive processes,
as well as changes in the variance of the innovations. With this objective, we
propose an approach based on the Bayesian information criterion (BIC) and binary
segmentation. The proposed procedure is compared with several others available
in the literature which are based on cusum methods (Inclán and Tiao, J Am Stat
Assoc 89(427):913–923, 1994), minimum description length principle (Davis et al.,
J Am Stat Assoc 101(473):229–239, 2006), and the time varying spectrum (Ombao
et al., Ann Inst Stat Math 54(1):171–200, 2002). We computed the empirical size
and power properties of the available procedures in several Monte Carlo scenarios
and also compared their performance in a speech recognition dataset.

1 Introduction

In this article we consider the problem of modelling a nonstationary time series by
segmenting it into blocks which are fitted by stationary processes. The segmentation
aims to: (1) find the periods of stability and homogeneity in the behavior of the
process; (2) identify the moments of change, called change-points; (3) represent
the regularities and features of each piece; and (4) use this information in order to
determine the pattern in the nonstationary time series.

Time series segmentation and change-point detection and location has many ap-
plications in several disciplines, such as neurology, cardiology, speech recognition,
finance, and others. Consider questions like: What are the main features of the brain
activity when an epileptic patient suffers a seizure? Is the heart rate variability
reduced after ischemic stroke? What are the most useful phonetic features to
recognizing speech data? Is the conditional volatility of the financial assets constant?
These questions can often be answered by performing segmentation analysis. The
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reason is that many series in these fields do not behave as stationary, but can be
represented by approximately stationary intervals or pieces.

Segmentation analysis aims to answer the following questions: Did a change
occur? When did the changes occur? If more than one change occurs, how can we
locate them? Whereas the first two questions refer to the problem of defining a
statistical criteria for detecting, estimating, and locating a change-point, the last one
is related with the difficult task of creating a strategy, implemented in an algorithm,
in order to search for multiple change-points.

When multiple change-points are expected, as its number and location are usually
unknown, the multiple searching issue is very intricate. It is a challenge to jointly
estimate the number of structural breaks and their location, and also provide a
estimation of the model representing each interval. This problem has received
considerably less attention than the detection and estimation of a single change-
point, due to the difficulty in handling the computations. Many algorithms exist to
calculate the optimal number and location of the change-points, some of them were
presented by Scott and Knott (1974), Inclán and Tiao (1994), Auger and Lawrence
(1989), Jackson et al. (2005), and Davis et al. (2006)

The main contributions of this paper are: (a) proposing a procedure based on
the BIC joint with the binary segmentation algorithm to look for changes in the
mean, the autoregressive coefficients, and the variance of perturbation in piecewise
autoregressive processes, by using a procedure; (b) comparing this procedure with
several others available in the literature, which are based on cusum methods (Inclán
and Tiao 1994; Lee et al. 2003), minimum description length (MDL) principle
(Davis et al. 2006), and the time varying spectrum (Ombao et al. 2002). For that,
we compute the empirical size and the power properties in several scenarios and we
apply them to a speech recognition dataset.

The article is organized as follows. In Sect. 2 we present the change-point
problem. Following, in Sect. 3, we briefly present cusum methods, Auto-PARM
and Auto-SLEX procedures. The final part of this section is dedicated to the
informational approach procedures and the proposed procedure based on BIC is
presented. Section 4 presents different algorithms that are useful to search for
multiple change-points. In Sect. 5 we compute and compare the size and the power
of the presented approaches. In Sect. 6 they are applied to real data of speech
recognition, and finally, the final section presents the conclusions.

2 The Change-Point Problem

The problem we deal is the following. Suppose that x1; x2; : : : ; xT is a time series
process with m change-points at the moments k�

1 ; : : : ; k
�
m, with 1 � k�

1 � : : : �
k�
m � T . The density function f .xt=�/, with � the vector of parameters, is assumed

to be
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f .xt=�/ D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

f .xt=�1/ ; t D 1; : : : ; k�
1 ;

f .xt=�2/ ; t D k�
1 C 1; : : : ; k�

2 ;

:

:

:

f .xt =�mC1/ ; t D k�
m C 1; : : : ; T:

for �1 ¤ �2 ¤ : : : ¤ �mC1:

The values of �i ; i D 1; 2; : : : ; m C 1 can be a priori known or unknown and the
goal is to detect and locate k�

1 ; k
�
2 ; : : : ; k

�
m, and also estimate �i ’s when they are

unknown.
Then, in general, the change-point problem consists of testing

H0 Wxt � f .xt =�/ ; t D 1; : : : ; T
H1 Wxt � f .xt =�1/ ; t D 1; : : : ; k�

1 ; xt � f .xt =�2/ ; t D k�
1 C 1; : : : ; k�

2 ; : : :

: : : ; xt � f .xt =�mC1/ ; t D k�
m C 1; : : : ; T; for �1 ¤ �2 ¤ : : : ¤ �mC1:

(1)

If the distributions f .xt=�1/ ; f .xt=�2/ ; : : : ; f .xt =�m C 1/ belong to a common
parametric family, then the change-point problem in (1) is equivalent to test the null
hypothesis:

H0 W �1 D �2 D : : : D �mC1 D �
H1 W �1 D : : : D �k�

1
¤ �k�

1 C1 D : : : D �k�

2
¤ : : :

: : : ¤ �km�1C1 D : : : D �km ¤ �kmC1 D : : : D �T : (2)

Most of the parametric methods proposed in the literature for change-point problems
consider a normal model. If the density function is constant over time, the change-
point problem consists on testing whether the mean or the variance registered a
change over the period analyzed.

3 Segmentation Procedures to Detect, Locate, and Estimate
Change-Points

There are many approaches for solving the problem of detecting, estimating, and
locating a change-point for independent or linear autocorrelated random variables
that can be based on parametric (Chen and Gupta 2001, 2011) and non-parametric
methods (Brodsky and Darkhovsky 1993; Heiler 1999, 2001). The main idea
consists of minimizing a loss function which involves some criteria or statistic
selected to measure the goodness of the segmentation performed. The computation
of those statistics is useful to detect a potential change-point, by comparing the
corresponding statistic computed under the hypothesis of no changes with the one
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assuming a change-point at the most likely period (Kitagawa and Gersch 1996; Chen
and Gupta 1997; Al Ibrahim et al. 2003; Davis et al. 2006).

3.1 Cusum Methods

One of the statistics most often used to segment a time series is the cumulative
sum or cusum (Page 1954). In fact, many procedures for change-point detection
are based on cusum statistics (Inclán and Tiao 1994; Lee et al. 2003; Kokoszka
and Leipus 1999; Lee et al. 2004 among others). The procedure in Inclán and Tiao
(1994) is useful to test the null hypothesis of constant unconditional variance of a
Gaussian uncorrelated process xt , against the alternative of multiple change-points.
The test statistic is defined as:

IT D pT=2 max
k
Dk (3)

where

Dk D
Pk

tD1 x2tPT
tD1 x2t

� k

T
; (4)

with 0 < k < T . The asymptotic distribution of the statistic IT is the maximum of
a Brownian bridge (B.k/):

IT !DŒ0;1� maxfB.k/ W k 2 Œ0; 1�g

This establishes a Kolmogorov–Smirnov type asymptotic distribution. The null
hypothesis is rejected when the maximum value of the function IT is greater than the
critical value and the change-point is located at period k D Ok where the maximum
is achieved:

Ok D fk W IT > c:v:g:

where c.v. is the corresponding critical value.

3.2 Automatic Procedure Based on Parametric Autoregressive
Model (Auto-PARM)

In Davis et al. (2006) an automatic procedure called Auto-PARM is proposed
for modelling a nonstationary time series by segmenting the series into blocks of
different autoregressive processes.
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Let kj the breakpoint between the j -th and the .j C 1/-st AR processes, with
j D 1; : : : ; m, k0 D 1 and km < T . Thus, the j -th piece of the series is modelled
as:

Xt D xt;j ; kj�1 � t < kj ; (5)

where
˚
xt;j

�
is an AR(pj ) process.

xt;j D 	j C 
j1xt�1;j C : : :C 
j;pj xt�pj ;j C �j �t ;

where �j WD
�
	j ; 
j1; : : : ; 
j;pj ; �

2
j

�
is the parameter vector corresponding to this

AR(pj ) process and the sequence f�t g is iid with mean 0 and variance 1. This model
assumes that the behavior of the time series is changing at various times. Such a
change might be a shift in the mean, a change in the variance, and/or a change in the
dependence structure of the process.

The best segmentation is the one that makes the maximum compression of the
data possible measured by the MDL principle of Rissanen (1989). MDL is defined
as1:

MDL .m; k1; : : : ; km; p1; : : : ; pmC1/ D (6)

logmC .mC 1/ logT C
mC1X

jD1
logpj C

mC1X

jD1

pj C 2
2

logTjC
mC1X

jD1

Tj

2
log

�
2� O�2j

�
:

wherem is the number of change-points located at k1; k2; : : : ; km, Tj is the number
of observation in each segment j , pj is the order of the autoregressive model fitted
to the segment j , and O�2j is the Yule Walker estimator of �2j (Brockwell and Davis
1991).

3.3 Automatic Procedure Based on Smooth Localized Complex
EXponentials (Auto-SLEX) Functions

In Adak (1998), Donoho et al. (1998), Ombao et al. (2002), and Maharaj and
Alonso (2007) the segmentation is performed by using a cost function based on
the spectrum, called evolutionary spectrum, because the calculation is made by the
spectrum of each stationary interval. Ombao et al. (2002) created SLEX vectors
which are calculated by applying a projection operator on the Fourier vectors, to get
a basis which is simultaneously orthogonal and localized in time and frequency and
is useful to compute the spectrum of nonstationary time series.

1For more details see Davis et al. (2006).
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The cost function of the block Sj D Œkj ; kjC1� is given by

Cost .S/ D
X

Sj

log ǪSj C ˇpmj ; (7)

where ǪSj is the SLEX periodogram, ˇ is a penalty parameter generally equal to 1
(Donoho et al. 1998), and mj is the number of breaks in the block. The cost for a
particular segmentation of the time series is the sum of the costs at all the blocks
defining that segmentation. The best segmentation is the one having the smallest
cost.

3.4 Informational Approach

Information criteria, which commonly are useful as a measure of goodness of fit of a
model, can be used to detect and estimate change-points. The first and most popular
of the information criteria is the Akaike information criterion (AIC), which was
introduced in 1973 for model selection in statistics. This criterion has found many
applications in time series, outliers detection, robustness and regression analysis.
AIC is defined as:

AIC D T log O�2MV C 2p:

where O�2MV is the maximum likelihood estimator of �2, and p is the number of free
parameters. A model that minimizes the AIC is considered the appropriate model.
The limitation of the minimum estimated AIC is that it is not an asymptotically
consistent estimator of the model order (Schwarz 1978).

Another information criterion was introduced by Schwarz in 1978, and com-
monly is referred to as BIC or SIC. The fundamental difference with the AIC is the
penalization function, which penalizes more the number of model parameters and
leads to an asymptotically consistent estimate of the order of the true model. BIC is
defined as

BIC D T log O�2MV C p logT;

where O�2MV is the maximum likelihood estimator of �2, p is the number of free
parameters, and T is the length of the time series. In this setting, we have two
models corresponding to the null and the alternative hypotheses.

Let BIC0.T / the BIC under H0 in (2) where no changes occur in the process
along whole the sample and BIC1.k/ the criterion assuming that there is a change-
point at t D k, where k could be, in principle, 1; 2; : : : ; T .

The rejection of H0 is based on the principle of minimum information criterion.
That is, we do not rejectH0 if BIC0.T / < minkBIC1.k/, because the BIC computed
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assuming no changes is smaller than the BIC calculated supposing the existence of
a change-point at the most likely k, that is, in the value of k where the minimum
BIC is achieved. On the other hand,H0 is rejected if BIC0.T / > BIC1.k/ for some
k and estimate the position of the change-point k� by Ok such that

BIC. Ok/ D min2<k<TBIC1.k/:

In Chen and Gupta (1997) a procedure which combine BIC and the binary seg-
mentation is proposed2 to test for multiple change-points in the marginal variance,
assuming independent observations. In this article BIC is used for locating the
number of breaks in the variance of stock returns. Liu et al. (1997) modified the
BIC by adding a larger penalty function and Bai and Perron (1998) considered
criteria based on squared residuals. In the following section we present the approach
of Chen and Gupta (1997) for testing a single change-point in the variance of
independent normal data. In Al Ibrahim et al. (2003) the BIC is used to detect
change-points in the mean and autoregressive coefficients of an AR(1).

3.5 A Proposed Procedure to Detect Changes in Mean,
Variance, and Autoregressive Coefficients in AR Models

In this section, we propose an informational approach procedure for detecting
changes in mean, variance, and autoregressive coefficients for AR(p) processes. Let
x1; x2; : : : ; xT be the T consecutive observations from a Gaussian autoregressive
process of order p given by:

xt D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

c1 C 
11xt�1 C : : :C 
1pxt�p C �1�t ; �1 < t � k1
c2 C 
21xt�1 CC
2pxt�p C �2�t ; k1 < t � k2

:

:

:

cm C 
m1xt�1 C : : :C 
mpxt�p C �m�t ; km�1 < t � km
cmC1 C 
mC1;1xt�1 C : : :C 
mC1;pxt�p C �mC1�t ; km < t � 1

(8)
The null hypothesis is that

H0 W c1 D : : : D cmC1; 
11 D : : : D 
mC1;1; 
1p D : : : D 
mC1;p and

�21 D : : : D �2mC1:

Under the null hypothesis, the formula for the BIC, denoted as BIC0.T /, is given by:

2Binary segmentation is a searching procedure in order to detect multiple change-points in one
time series. We will explain it in Sect. 4.
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BIC0 .T / D .T � p/ O�20 C .p C 2/ log .T � p/ ; (9)

where O�20 D 1
T�p

PT
tDpC1

�
xt � Oc1 � O
1xt�1 � : : : � O
pxt�p

�2
, Oc, O
1, . . . , O
p are

the conditional maximum likelihood estimators of �2, c1, and the autoregressive
parameters, respectively.

The BIC1.k/ for the piecewise AR(p) model under the alternative hypothesis is
given by:

BIC1.k/ D .k1 � 1/ log O�21 C : : :C .T � km/ log O�2mC1 C .mC 1/ .p C 2/ logT:
(10)

where O�21 D 1
k1�1

Pk1
tD2.xt � Qc1 � Q
11xt�1 � : : : � Q
1pxt�p/2,. . . , O�2mC1 D

1
T�km

PT
tDkmC1.xt � QcmC1 � Q
mC1;1xt�1 � : : : � Q
mC1;pxt�p/2, Qc1,. . . , QcmC1,

Q
11,. . . , Q
mC1;p are the conditional maximum likelihood estimators of the variances,
�21 ,. . . ,�2mC1, the constants, c1,. . . , cmC1 and the autoregressive parameters,

11,. . . ,
mC1;p, respectively.
H0 is not rejected if BIC0.T / < minkBIC1.k/ C c˛ , where c˛ , and ˛ have the

relationship 1 � ˛ D P ŒBIC0.T / < minkBIC1.k/C c˛=H0�.

4 Multiple Change-Point Problem

When multiple change-points are expected, as its number and location are usually
unknown, it is a challenge to jointly estimate the number of structural breaks, their
location, and also provide a estimation of the model representing each interval.
Many algorithms exist to calculate the optimal number and location of the change-
points, some of them were presented by Scott and Knott (1974), Inclán and Tiao
(1994), Davis et al. (2006), and Stoffer et al. (2002).

Binary segmentation (Scott and Knott 1974; Sen and Srivastava 1975; Vostrikova
1981) addresses the issue of multiple change-points detection as an extension of the
single change-point problem. The segmentation procedure sequentially or iteratively
applies the single change-point detection procedure, i.e. it applies the test to the total
sample of observations, and if a break is detected, the sample is then segmented
into two sub-samples and the test is reapplied. This procedure continues until no
further change-points are found. This simple method can consistently estimate the
number of breaks (e.g., Bai 1997; Inclán and Tiao 1994) and is computationally
efficient, resulting in an O.T logT / calculation (Killick et al. 2012). In practice,
binary segmentation becomes less accurate with either small changes or changes
that are very close on time. Inclán and Tiao (1994) applied a such of modified binary
segmentation in its Iterative Cusums of Square (ICSS) algorithm, by sequentially
applying the statistic IT presented in Sect. 3.1.
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In Davis et al. (2006) a genetic algorithm is used for detecting the optimal number
and location of multiple change-points by minimizing the MDL. These algorithms
make a population of individuals or chromosomes “to evolve” subject to random
actions similar to those that characterize the biologic evolution (i.e., crossover and
genetic mutation), as well as a selection process following a certain criteria which
determines the most adapted (or best) individuals who survive the process, and the
less adapted (or the “worst” ones), who are ruled out. In general, usual methods
for applying genetic algorithm encode each parameter using binary coding or gray
coding. Parameters are concatenated together in a vector to create a chromosome
which evolve to a solution of the optimization problem.

Finally, other algorithms set a priori the segmentation structure. For instance,
some procedures perform a dyadic segmentation to detect multiple change-points.
Under this structure, time series can be divided into a number of blocks which are a
power of 2. The algorithm begins setting the smallest possible size of the segmented
blocks or the maximum number of blocks. Ideally, the block size should be small
enough so that one can ensure the stationary behavior, but not too small to guarantee
good properties of the estimates. Stoffer et al. (2002) recommended a block size
greater or equal than 28. Then, the following step is to segment the time series in
28; 27; : : : ; 21; 20 blocks, which is equivalent to consider different resolution levels
j D 8; 7; : : : ; 1; 0, respectively. At each level j , we compare a well-defined cost
function computed in that level j (father block) with respect to that computed in the
level j � 1 (two children blocks). The best segmentation is that which minimizes
the cost function.

Some papers focusing on multiple change-point problem for autocorrelated data
are Andreou and Ghysels (2002) and Al Ibrahim et al. (2003). In Andreou and
Ghysels (2002) an algorithm similar to ICSS (Inclán and Tiao 1994) is applied to
detect multiple change-points in financial time series using cusum methods. In the
first step the statistic is applied to the total sample and if a change-point is detected,
the sampled is segmented and the test is applied again to each subsample up to five
segments. Other algorithms are applied in this paper, using a grid search approach
or methods based on dynamic programming. In Al Ibrahim et al. (2003) the binary
segmentation algorithm combined with the BIC is used for piecewise autoregressive
models.

Given the merits of binary segmentation saving a lot of computational time
and the better performance with respect to ICSS algorithm, in order to design
the simulation experiments, and, for empirical applications below, we propose to
combine the BIC statistic assuming the model in Eq. (8) with binary segmentation
(referred as BICBS).

5 Monte Carlo Simulation Experiments

In this section we evaluate the performance of the methods presented above, by
computing the empirical size and power under different hypotheses. We have used
four methods: ICSS (Inclán and Tiao 1994), BICBS (BIC for model in (8) with
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binary segmentation), Auto-PARM (Davis et al. 2006), and Auto-SLEX (Ombao
et al. 2002). In the tables below, where these procedures are compared, the results
for BICBS, which is the proposed procedure, are highlighted with bold font.

5.1 Empirical Size

First, we compute the empirical size, that is, how many times the corresponding
methodology incorrectly segments a stationary process. The length of the simulated
series is set equal to 4,096. Table 1 presents the results for 1,000 replications for
a Gaussian white noise with unitary variance, and for AR(1) and MA(1) stationary
processes.

All the procedures analyzed seems to appear undersized in finite samples.
Applying them to stationary processes we obtain only one block or segment in
most of the cases, and only a very small percentage of processes are segmented
in two blocks. For example, for ICSS, BICBS, and Auto-PARM the rate of
wrong segmented stationary processes is almost zero. The hypothesis that the type
of autocorrelation (i.e., autoregressive and moving average) could influence the
segmentation is rejected, given that the results for MA(1) and AR(1) processes are
similar leading to the conclusion that the type of serial correlation seems to be not
important for the size of these procedures.

5.2 Power for Piecewise Stationary Processes

We compute the power of the methods by counting how many times the corre-
sponding methodology correctly segments piecewise stationary processes in 1,000
replications. Two stationary segments or blocks are assumed. We observe if the
procedure finds the correct number of segments or blocks and if the changes occur
in a narrow interval centered on the correct breakpoint (k� ˙ 100). For a time
series of length T D 4096, we evaluate the performance of the procedures when
the data present serial correlation and the perturbation’s variance changes. The
simulated process is an AR(1) with autoregressive parameter 
 2 .�1; 1/ changing
the perturbation variance from 1 to 2 in k� D 2048.

Table 1 Size of ICSS, BICBS, Auto-PARM, and Auto-SLEX

Processes ICSS BICBS Auto-PARM Auto-SLEX

White noise 0.000 0.04 0.000 0.000

AR(1) 
 2 .�1; 1/ 0.000 0.000 0.005 0.025

MA(1) � 2 .�1; 1/ 0.000 0.000 0.001 0.011
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Table 2 Power of the procedures segmenting piecewise autoregressive processes with 
 2
.�1; 1/, where the perturbation’s variance changes from 1 to 2 in t D 2048

Processes ICSS BICBS Auto-PARM Auto-SLEX

Precise detection 0.951 0.960 0.961 0.923

Oversegmentation 0.001 0.040 0.039 0.077

No segmentation 0.048 0.000 0.000 0.000

In Table 2 we present the results, where the autoregressive coefficient is generated
as 
 2 .�1; 1/, and the perturbation term is a white noise with unitary variance in the
first piece (t D 1; : : : ; 2048), shifting to 2 in the second piece (t D 2049; : : : ; 4096).

All the procedures obtained excellent results when the perturbation’s term
variance changes, where the best results were for Auto-PARM and BICBS.

Finally, we analyze the performance of the tests detecting multiple change-points
in three processes. The first one is given by:

xt D
8
<

:

�t ; 1 < t � 1365
2�t ; 1366 < t � 2730
0:5�t ; 2731 < t � 4096;

(11)

where we are interested in changes in the scale of the perturbation term, when the
process does not have autocorrelation. The second is:

xt D
8
<

:

0:5xt�1 C �t ; 1 < t � 1365
0:8xt�1 C �t ; 1366 < t � 2730
�0:5xt�1 C �t ; 2731 < t � 4096;

(12)

where it is introduced first order autocorrelation in the process and the change-points
are due to the autoregressive coefficient. The third process is given by:

xt D
8
<

:

0:5xt�1 C �t ; 1 < t � 1365
0:8xt�1 C �t ; 1366 < t � 2730
0:8xt�1 C 2�t ; 2731 < t � 4096;

(13)

where also is introduced autocorrelation in the data and there is both a change-point
in the autoregressive coefficient and another one in the variance of the perturbation.
It is assumed that �t � N(0,1) and x0 D 0. The results are presented in Table 3.

When multiple change-points are present in the time series, some procedures
performed well only if the data have no serial correlation [process (11)]. That is the
case of ICSS, BICBS, and Auto-PARM. Auto-SLEX detected the change-point, but
with a big rate of oversegmentation. For autocorrelated data, the procedures with
the best performance were BICBS and Auto-PARM, with powers greater than 0.91.
ICSS has smaller power and often it does not segment or only finds one of the two
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Table 3 Proportion of detected change-points in piecewise stationary processes with two changes
presented in Eqs. (11)–(13)

ICSS BICBS Auto-PARM Auto-SLEX

Process with no autocorrelation as in (11)

Precise detection 0.999 0.910 1.000 0.626

One change-point 0.000 0.000 0.000 0.000

Oversegmentation 0.000 0.005 0.000 0.372

No segmentation 0.001 0.085 0.000 0.000

Process AR(1) as in (12)

Precise detection 0.673 0.992 0.995 0.029

One change-point 0.000 0.000 0.000 0.000

Oversegmentation 0.001 0.001 0.000 0.914

No segmentation 0.326 0.007 0.005 0.057

Process AR(1) in (13)

Precise detection 0.753 0.910 0.954 0.023

One change-point 0.206 0.028 0.045 0.000

Oversegmentation 0.013 0.062 0.001 0.945

No segmentation 0.000 0.000 0.000 0.032

change-points that the process exhibits. Finally, Auto-SLEX performed badly, again
detecting more than the right number of change-points.

In summary, Monte Carlo simulation experiments showed that Auto-PARM
and the proposed BICBS have the better performance, with high power in the
different simulation experiments. Thus, the proposed method provides an intuitive
and excellent tool to detect and locate the change-points and has the advantage with
respect to Auto-PARM of the simplicity, without the need of a complex searching
method as the genetic algorithm.

6 Application to a Speech Recognition Dataset

The performance of the procedures is illustrated by applying them to a speech
dataset consisting in the recordings of the word GREASY with 5,762 observations.
GREASY has been analyzed by Ombao et al. (2002) and Davis et al. (2006). The
resulting segmentations of the four procedures are presented in Fig. 1. Breakpoints
are showed with vertical dashed lines.

GREASY appears in the figure as nonstationary, but it could be segmented into
approximately stationary blocks. Note that in the behavior of the time series we
can identify blocks corresponding to the sounds G, R, EA, S, and Y (Ombao et al.
2002). Auto-SLEX was the procedure which found more breakpoints also for this
time series. The performance of ICSS, BICBS, and Auto-PARM seems to be better,
finding 6–13 change-points, most of them limiting intervals corresponding to the
sounds compounding the word GREASY.
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Fig. 1 Changepoints of GREASY estimated by ICSS, BICBS, Auto-PARM, and Auto-SLEX

Table 4 Standard deviation, AIC, BIC, and number of change-point in the segmentation by each
methodology

ICSS BICBS Auto-PARM Auto-SLEX

Std. dev. 51.97 52.44 118.32 137.84

AIC 4.0409 4.0409 4.0486 4.0898

BIC 4.0763 4.0759 4.1178 4.1712

# change-points 7 6 13 18

In order to compare the goodness of the segmentation, we compute the standard
deviation, Akaike and Bayesian Information criteria for the resulting segmentation
by each method. We present the results in Table 4, where the best values of the
statistics proposed are highlighted with italic font.

Although the segmentation with less standard deviation is reached by ICSS, the
information criteria selected as the best the segmentation performed by BICBS.
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Conclusions
In this paper we handled the problem of detecting, locating, and estimating
a single or multiple change-points in the marginal mean and/or the marginal
variance for both uncorrelated and serial correlated data. By combining the
BIC with binary segmentation we propose a very simple procedure, which
does not need a complex searching algorithms, with excellent performance in
several simulation experiments.
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Regularization Methods in Economic
Forecasting

Gunther Schauberger and Gerhard Tutz

Abstract Modern regularization techniques are able to select the relevant variables
and features in prediction problems where much more predictors than observations
are available. We investigate how regularization methods can be used to select
the influential predictors of an autoregressive model with a very large number of
potentially informative predictors. The methods are used to forecast the quarterly
gross added value in the manufacturing sector by use of the business survey data
collected by the ifo Institute. Also ensemble methods, which combine several
forecasting methods are exemplarily evaluated.

1 Introduction

Regularization methods are a major topic in current statistical research. Many
models and algorithms have been proposed that are designed to deal with complex
regression problems where conventional methods are severely restricted, as in the
case of correlated covariates or large data sets. Shrinkage methods like the Lasso
estimator allow for a biased but less variable estimation. Frequently, regularization
is combined with a dimension reduction of the covariates space. For a broad
introduction to regularization methods see, for example, Hastie et al. (2001).
Regularization methods can be very helpful in forecasting problems since a large
amount of available predictors that potentially can contribute to predictions, can
be handled easily. As a useful side effect, some regularization methods also
automatically perform variable selection, which enforces interpretability.

There is a wide body of literature on the analysis of time series and forecasting
methods with a small number of predictors, including Feng and Heiler (1998) and
Heiler and Feng (2000). Forecasting problems in which the number of covariates
exceeds the number of observations were mostly solved by factor forecasting. This
strategy was addressed, for example, by Bai and Ng (2002), Stock and Watson
(2006) and Stock and Watson (2011). Methods that perform variable selection
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have been discussed in the forecasting literature more rarely. Recently, Bai and
Ng (2009) and Buchen and Wohlrabe (2011) used the newly developed method
of boosting, whereas De Mol et al. (2008) studied shrinkage forecasting from a
Bayesian view. Bai and Ng (2008) used shrinkage methods to perform variable
selection for forecasting with targeted predictors. Shafik and Tutz (2009) and
Robinzonov et al. (2012) examined boosting for additive time series models from
a rather technical point of view. The objective of the present paper is to evaluate
exemplarily how modern shrinkage and selection methods can be used to improve
prediction accuracy.

2 Data and Model

The data we are considering were provided by the Munich ifo Institute. The
objective is to forecast the quarterly gross added value in the manufacturing sector
in Germany. Since 1949, the ifo Institute for Economic Research conducts the
ifo Business Survey. Based on these data, since 1972 it monthly releases the ifo
Business Climate Index, one of the most followed early indicators for economic
development in Germany. It is based on roughly 7,000 monthly responses from all
economic areas. As the two central questions of the survey, the companies are asked
for their assessments of the current business situation and their expectations for the
next 6 months. From these two questions the Business Climate Index is calculated.
These two and all other questions that are asked are measured on a 3-level scale (e.g.
“good”, “satisfactory” or “poor”). The companies that are part of the manufacturing
sector are classified into r D 68 branches. For every single branch and for each
question, a (metric) balance value is calculated as the difference of fractions of
positive and negative answers. In the case of a branch with 40% positive, 50%
undecided and 10% negative answers, a balance value of 40 � 10 D 30 results.
For further information on the data pool of the ifo Business Survey, see Becker and
Wohlrabe (2007).

Since the time series of the gross added value is released once per quarter, the
arithmetic means of the monthly values corresponding to one quarter are used as
predictors. We only use the data from the manufacturing sector in the period from
1991 to 2010. As forecasting series, the rate of change per quarter yt  yt�yt�1

yt�1
�100

and a forecasting horizon of h D 1 are used. The learning set for the first forecast
encompasses 40 observations from 1991 to 2000, the first forecast is calculated for
the first quarter of 2001. For every forecast, the information set is enlarged by one
observation and a new forecasting model is calculated.

The basic model that is used is the autoregressive model with exogenous
covariates, denoted as AR-X model,

E.yt / D ˛0 C
qX

iD1
˛iyt�i C

r �mX

jD1

qX

iD1
	
.j /
i z.j /tC1�i D xtˇ: (1)
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Here, ˇ denotes the parameter vector ˇT D .˛0; ˛1; : : : ; ˛q; 	.1/1 ; : : : ; 	
.r �m/
q / and

xt D .1; yt�1; : : : ; yt�q; z.1/t ; : : : ; z
.r �m/
tC1�q/ is the number of used covariates. The

predictors that are included are the q lags of the forecasting series yt�1; : : : ; yt�q
and the exogenous covariates x.j /s ; s D t; : : : ; t � q C 1, where j refers to one
specific combination of the r branches and m questions. We choose q D 4 to cover
the period of one year. The exogenous covariates can be used from the current date
t since they are available long enough before the forecasting is released.

Assuming one question (m D 1) to be the only exogenous covariate, the total
number of coefficients, that is, the dimension of ˇ, is 277 (r D 68; q D 4; 1 C
4 C 4 � 68 D 277). For the largest setting from this study including five questions
from the ifo data pool, 1;365 coefficients have to be estimated. Therefore, one has a
rather low number of observations and a comparatively high number of predictors.

3 Regularization Methods

In the following, the regularization methods used in forecasting are shortly sketched.
To simplify notation, we assume the data to have the form .y ;X/, where y D
.y1; : : : ; yn/

T denotes the response vector and X D .1;x1; : : : ;xp/, xj D
.x1j ; : : : ; xnj /

T , denote the data matrix and the observations of the j th variable,
which are assumed to be standardized. Therefore, we represent the AR-X model
as a simple linear model and estimate the parameter vector ˇT D .ˇ0; ˇ1; : : : ; ˇp/

from the model E.y/ D ˇ0 CPp
jD1 ˇj xj or, equivalently,E.y/ D Xˇ.

3.1 L2-Boosting

L2-Boosting, as outlined by Bühlmann and Hothorn (2007), uses the method of
stepwise gradient descent for parameter estimation. It is based on AdaBoost, which
was proposed by Freund and Schapire (1996), and extended by Bühlmann and Yu
(2003). Generally, Boosting is an algorithm for a stepwise solution of the problem

f �.xxx/ D argmin
f .xxx/

E.�.y; f .xxx///;

where �.:; :/ is a differentiable loss function. In our case of L2-Boosting, the
quadratic loss

�L2.y; f / D
1

2
jy � f j2

is used. L2-Boosting uses the following algorithm:
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Step 1 Initialize offset Of Œ0� D y, Ǒ̌̌ Œ0� D 0, m D 0
Step 2 m ! m C 1: Compute residuals ui D yi � Of Œm�1�.xxxi/; i D 1; : : : ; n,

which is the negative gradient of the loss function (3.1).
Step 3 Choose Oı by

Oı D argmin
0�j�p

nX

iD1

�
ui � Ǒj xij

�2

as the variable that causes the greatest reduction of prediction by simple
regression of the variable on the residuals.

Step 4 The parameter of variable Oı is updated by

Of Œm�.XXX/ D Of Œm�1�.XXX/C � �
nX

iD1
ǑOıxi Oı;

where �, 0 < � � 1, is a shrinkage factor which prevents overfitting.
Step 5 Iterate steps 2–4 until m DM .

The maximal number of steps M has to be chosen sufficiently high. Afterwards,
the optimal number of Boosting steps mopt has to be chosen, it is the main
tuning parameter in the Boosting procedure. Like all the tuning parameters for the
regularization methods we used, mopt will be chosen by ten-fold cross validation.
Boosting automatically performs variable selection as only those variables remain
in the model that have been chosen at least once by the iterationmopt. Therefore, the
smallermopt is chosen the more variables are excluded and the more parameters are
shrinked. Computation will be done by use of the R package mboost.

3.2 Lasso

The Lasso estimator has been proposed by Tibshirani (1996) and is described in
Hastie et al. (2009). It simultaneously shrinks the parameter estimates and performs
variable selection. It is defined by

Ǒ̌̌ lasso D argmin
ˇ̌̌

nX

iD1

0

@yi � ˇ0 �
pX

jD1
ˇj xij

1

A
2

; where
pX

jD1
jˇj j � t

or, equivalently, in Lagrange form by



Regularization Methods in Economic Forecasting 65

Ǒ̌̌ lasso D argmin
ˇ̌̌

0
B@
1

2

nX

iD1

0

@yi � ˇ0 �
pX

jD1
ˇj xij

1

A
2

C �
pX

jD1
jˇj j

1
CA :

In contrast to the least squares estimator, the Lasso estimator is biased but more
robust. It tends to generate parameter estimates with lower variance and therefore
to reduce the prediction error. The tuning parameter � determines the amount of
regularization. With growing � the number of variables that are included in the
model reduces. For � D 0 (and p � n), the least squares estimator is obtained. For
� > 0, a unique solution for the parameter estimates can be computed also in the
p > n case.

3.3 Elastic Net

The Ridge estimator, proposed by Hoerl and Kennard (1970), is very similar to the
Lasso approach. Instead of penalizing the L1-norm of the parameter vector, the L2-
norm is penalized. It is defined by

Ǒ̌̌ ridge D argmin
ˇ̌̌

nX

iD1

0

@yi � ˇ0 �
pX

jD1
ˇj xij

1

A
2

; where
pX

jD1
ˇ2j � t

or, in Lagrangian form, by

Ǒ̌̌ ridge D argmin
ˇ̌̌

0

B@
nX

iD1

0

@yi � ˇ0 �
pX

jD1
ˇj xij

1

A
2

C �
pX

jD1
ˇ2j

1

CA

In contrast to the Lasso, Ridge does not perform variable selection, it is a shrinkage
method only. The higher the tuning parameter �, the more the parameter estimates
are shrinked towards zero.

Zou and Hastie (2005) proposed the Elastic Net estimator

Ǒ̌̌ elasticnet

D argmin
ˇ̌̌

0

B@
nX

iD1

0

@yi � ˇ0 �
pX

jD1
ˇj xij

1

A
2

C �
pX

jD1
..1 � ˛/1

2
ˇ2j C ˛jˇj j/

1

CA :

as a combination of the approaches of Lasso and Ridge, simultaneously penal-
izing the L1-norm and the L2-norm of the parameter vector. The total amount
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Fig. 1 Parameter paths for simulated data for estimating procedures Lasso, Ridge and Elastic Net
(˛ D 0:2). The x-axes represent the L1-norm of the parameter estimates. The axes above the plots
represent the current numbers of covariates in the model

of regularization is again controlled by the tuning parameter �. To control the
weighting of L1- and L2-penalty, the additional tuning parameter ˛, 0 � ˛ � 1,
is used. ˛ D 0 generates the Ridge estimator, ˛ D 1 generates the Lasso estimator.
For ˛ ¤ 0, Elastic Net can perform variable selection.

Figure 1 shows exemplarily the parameter paths for a simulated data set for
Lasso, Ridge and Elastic Net (˛ D 0:2). The paths represent the parameter estimates
of the corresponding method depending on the current value of the tuning parameter
�. The x-axis represents the L1-norm of the parameter vector. Therefore, � is
reduced along the x-axis with the ML estimates being seen at the right-hand side.
It can be seen that Ridge does not enforce variable selection and therefore all
parameter paths start at the same point. In contrast, Elastic Net with ˛ D 0:2

performs variable selection, but not as strictly as Lasso. The parameter paths for
Elastic Net start for higher values of �.

For the estimation of Lasso or Elastic Net estimators, various algorithms have
been developed, e.g. by Efron et al. (2004) or Goeman (2010). We will use the
R package glmnet, an implementation of an algorithm using coordinate descent
proposed by Friedman et al. (2010).

3.4 Generalized Path Seeking

Friedman (2012) proposed to extend the Elastic Net to the so-called Generalized
Elastic Net. It is defined as

Ǒ̌̌ D argmin
ˇ̌̌

0
B@

nX

iD1

0

@yi � ˇ0 �
pX

jD1
ˇj xij

1

A
2

C �
pX

jD1
..	 � 1/ˇ

2
j

2
C .2 � 	/jˇj j/

1
CA
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for 1 � 	 � 2 and

Ǒ̌̌ D argmin
ˇ̌̌

0
B@

nX

iD1

0

@yi � ˇ0 �
pX

jD1
ˇj xij

1

A
2

C �
pX

jD1
log..1 � 	/jˇj j C 	/

1
CA

for 0 < 	 < 1. For 1 � 	 � 2, this matches the definition of Elastic Net as
defined above and bridges the penalties from Lasso (	 D 1) to Ridge (	 D 2).
For 0 < 	 < 1, this bridges the penalties from the so-called all-subset regression
(	 ! 0) to Lasso (	 ! 1). All-Subset regression is a penalty performing quite
strict variable selection by penalizing the number of nonzero parameters. Since
the penalties for 0 < 	 < 1 are non-convex, they usually are rather hard to
optimize. Friedman (2012) proposed an algorithm called Generalized Path Seeking
to easily approximate all penalties within the Generalized Elastic Net family without
repeatedly solving (possibly non-convex) optimization problems. Generally, this
algorithm is applicable for all penalties where

@P .ˇ̌̌/

@jˇj j > 0 8 j D 1; : : : ; p

holds. This requirement is met for the Generalized Elastic Net where P.ˇ̌̌/ is
denoted as

P .ˇ̌̌/ D

8
ˆ̂̂
<

ˆ̂̂
:

pP
jD1

..	 � 1/ˇ
2
j

2
C .2 � 	/jˇj j/ 1 � 	 � 2

pP
jD1

log..1 � 	/jˇj j C 	/ 0 < 	 < 1:

All parameters are initialized to be zero and are updated stepwise during the
algorithm. In every loop, for every variable it is checked how much the quadratic
loss can be reduced and how much the penalty term would increase simulta-
neously. The variable with the best compromise (i.e. the largest ratio) between
these two aspects is updated. For more details on this algorithm, see Friedman
(2012). The GPS algorithm (implementation for R available on http://www-
stat.stanford.edu/~jhf/R-GPS.html) can be used to approximate solutions for the
family of Generalized Elastic Net penalties using the penalties from the set 	 2
f0:0; 0:1; 0:2; : : : ; 1:9; 2:0g.

3.5 Group Lasso

An important extension of the Lasso is the so-called Group Lasso, proposed by
Yuan and Lin (2006) and Meier et al. (2008). If the covariates are grouped within

http://www-stat.stanford.edu/~jhf/R-GPS.html
http://www-stat.stanford.edu/~jhf/R-GPS.html
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the data set (for example, all the dummy variables for one categorical predictors
form a group), it can be useful to focus selection on groups of variables. In our case,
the different lags for one covariate are seen as one group. Group Lasso deals with
groups in the data set as a whole. Either, the group is left out completely or every
covariate within the group is taken into the model. Group Lasso is defined as

Ǒ̌̌ D argmin
ˇ̌̌

 
jjy � ˇ0111 �

LX

lD1
XXXlˇ̌̌ l jj22 C �

LX

lD1

p
Kl jǰˇ̌l jj2

!
;

where XXXl represents the predictor matrix for group l out of L groups. ˇ̌̌ l and Kl

represent the parameter vector and the group size for group l, jjaaajj2 denotes the
Euclidian norm

jjaaajj2 D
p
haaa;aaai D

q
a21 C : : :C a2n

of an n-dimensional vector aaa. The Euclidian norm can only be zero if all the
components of the corresponding vector are zero. Therefore, a group only can
be excluded from the model as a whole. We apply Group Lasso by treating
all lags x.j /t ; : : : ; x

.j /
tC1�q corresponding to one covariate j as a group, also the

autoregressive terms are treated as a group. Group Lasso estimates will be computed
with help of the R package grplasso, see also Meier (2009).

3.6 Principal Components Regression

Principal Components Regression (PCR) is a well-established alternative to least
squares regression, described, e.g., in Kendall (1957). PCR uses the principal
components of the data matrix instead of the original covariates. The principal
components are linear combinations of the covariates that are orthogonal and are
chosen to capture as much variance within the data set as possible.

Principal components can be used for dimension reduction in regression. As
every principal component captures the maximal amount of variance within the data,
typically most of the information can be captured by a few principal components.
These principal components are used as regressors, the number of regressors is used
as tuning parameter in this case. This dimension reduction does not include variable
selection, as every principal component is a linear combination of all underlying
covariates. Principal components can be calculated by eigendecomposition where
the eigenvalues represent the amount of variance that is represented by the cor-
responding eigenvector. It should be mentioned that the extraction of the principal
components does not use the regression model which is called unsupervised learning
in the learning community.
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3.7 Partial Least Squares Regression

Partial Least Squares Regression (PLSR), first proposed by Wold (1975), is
strongly related to PCR. While principal components only maximize the fraction
of explained variance within the data matrix of the explanatory variables, partial
least squares creates linear combinations of the explanatory variables maximizing
the covariance of the data matrix and the response variable. Thus, it can be assured
that the information captured by the linear combinations is correlated to the response
variable.

Apart from that, PLSR has the same characteristics as PCR. It performs
dimension reduction without variable selection because linear combinations out
of the original variables are used as explanatory covariates. The number of linear
combinations is used as tuning parameter. PCR and PLSR will be calculated with
help of the functions pcr and plsr from the pls package, see also Mevik et al.
(2011).

4 Comparison of Forecasts

All the methods presented above will be used to fit model (1) as a forecasting model.
For benchmarking, we will use the AR-4 model

Oyt D
4X

iD1
ˇiyt�i C �t :

with four autoregressive terms and the more general AR-p model

Oyt D
pX

iD1
ˇiyt�i C �t ; j D 1; : : : ; pmax

where p � pmax is determined by AIC and pmax equals q from (1). In R, these
models are calculated by the function ar from the stats package.

To measure the forecasting accuracy, the most popular choice is the relative mean
squared forecasting error (RMSFE)

RMSFE. Oyt / D

TP
tD1
. Oyt � yt /2

TP
tD1
. OyBt � yt /2

;

where Oyt ; t D 1; : : : ; T , is the predicted value for yt . The RMSFE is calculated as
the ratio of the mean squared forecasting errors of the corresponding method and the
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benchmark model OyBt (AR-p). Additionally, we will use the geometric mean relative
absolute error (GMRAE)

GMRAE. Oyt / D
 

TY

tD1

j Oyt � yt j
j OyBt � yt j

! 1
T

as recommended by Armstrong and Collopy (1992). Here, corresponding forecasts
are directly compared to each other and therefore the mean growth rate of the abso-
lute forecasting error is compared to the benchmark forecast OyB D . OyB1; : : : ; OyBT/.

Harvey et al. (1998) proposed the so-called HLN-Test as a test on equal
forecasting accuracy of two competing forecasts. It is based on the popular Diebold-
Mariano-Test (DM-Test), proposed by Diebold and Mariano (1995). The vector
d D .d1; : : : ; dT /, dt D . Oyt�yt /2�. OyBt�yt /2, contains the differences of quadratic
loss between the forecasts and the true values. The HLN-Test is used to test the null
hypothesis

H0 W E.d/ D 0
assuming equal forecasting accuracy for the competing forecasts. Following Harvey
et al. (1998), the test statistic (assuming a forecasting horizon h D 1) is

DM D .T � 1/ dq
OV .d/

(2)

and will be compared to the T � 1 t-distribution.
Clements and Harvey (2007) stated that a similarly constructed test statistic (2)

can also be used to perform encompassing tests. Assuming two forecasting series
Oy1t and Oy2t one wants to test the null hypothesis

H0 W � D 0
referring to a combination of the two series,

Oyct D .1 � �/ Oyt C � OyBt; 0 � � � 1:
If the null hypothesis holds, it is assumed that OyBt does not contain any additional
information to that from Oyt . Then, Oyt encompasses OyBt. The test statistic DM is used
with dt defined by dt D . Oyt � yt /2 � . Oyt � yt /. OyBt � yt /.

5 Results

In the following, forecasting results for all the methods are given. The methods AR-
p and AR-4 are used as benchmarks: PLSR and PCR represent the more traditional
techniques of forecasting with dimension reduction by aggregating information into
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Table 1 Relative mean squared forecasting errors (RMSFE) of forecasting the gross added value
relative to the AR-p Model; lowest values per setting in boldface

Business Business Business All covariatesa

situations expectations climate

AR-p 1.000 1.000 1.000 1.000

AR-4 1.062 1.062 1.062 1.062

Lasso 1.175 0.604 0.742 0.758

Elastic Net 0.969 0.713 0.844 0.690

Group Lasso 0.702 0.737 0.632 0.680

GPS 1.038 0.775 0.748 0.805

Boosting 1.130 0.618 0.648 0.612
PLSR 1.005 0.567 0.649 0.816

PCR 0.857 0.746 0.703 0.707
a All covariates encompass the variables business expectations, business situations, past and current
volume of orders and the current business climate

Table 2 Geometric mean relative absolute errors (GMRAE) of forecasting the gross added value
relative to the AR-p Model; lowest values per setting in boldface

Business Business Business All covariatesa

situations expectations climate

AR-p 1.000 1.000 1.000 1.000

AR-4 1.006 1.006 1.006 1.006

Lasso 1.169 0.904 1.125 0.658
Elastic Net 0.943 0.846 0.912 0.902

Group Lasso 0.790 0.868 0.934 1.105

GPS 0.937 0.864 1.107 0.905

Boosting 0.997 0.960 0.784 1.048

PLSR 1.097 0.803 0.901 0.981

PCR 1.215 1.086 1.045 0.939
aAll covariates encompass the variables business expectations, business situations, past and current
volume of orders and the current business climate

factor variables. Finally, the methods Lasso, Elastic Net, Group Lasso, GPS and
Boosting represent regularization methods with the feature of variable selection.
Tables 1, 2 and 3 show the results, namely the forecasting errors RMSFE and
GMRAE and the p-values for the HLN-Tests on equal forecasting accuracy. In
total, four different covariate settings were considered. The first three settings only
used one exogenous covariate from every branch, namely the covariates business
situations, business expectations and business climate. The last setting, denoted as
all covariates, uses all three covariates as well as the past and current volume of
orders simultaneously for all branches as exogenous covariates. In Tables 1 and 2
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Table 3 p-Values for HLN-Tests on equal forecasting accuracy of forecasting the gross added
value relative to the AR-p Model; lowest values per setting in boldface

Business Business Business All covariatesa

situations expectations climate

AR-p 0.500 0.500 0.500 0.500

AR-4 0.953 0.953 0.953 0.953

Lasso 0.734 0.074 0.143 0.161

Elastic Net 0.461 0.091 0.256 0.115

Group Lasso 0.012 0.023 0.007 0.014
GPS 0.548 0.028 0.119 0.052

Boosting 0.687 0.039 0.072 0.075

PLSR 0.507 0.028 0.053 0.260

PCR 0.235 0.061 0.066 0.090
aAll covariates encompass the variables business expectations, business situations, past and current
volume of orders and the current business climate
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Fig. 2 Boxplots for squared forecasting errors for different methods of forecasting of the gross
added value by use of the exogeneous covariate business expectations

values smaller than 1 denote better forecasting performance than AR-p. The best
method is given in boldface.

In general, the methods including exogenous covariates distinctly dominate the
benchmark methods AR-p and AR-4 in terms of RMSFE. Most of them also perform
better in terms of GMRAE. The regularization methods easily compete with PLSR
and PCR. The p-values for the HLN-Tests are most distinct for the Group Lasso. It
turns out to have a significant higher forecasting accuracy for all settings, even for
the setting business situations which turned out to be the one with the lowest gain
of additional information.

Figure 2 shows boxplots of the squared forecasting errors for the setting with
the business expectations as the only exogenous covariates. This setting turned out
to be the one with the most additional information when compared to the simple
autoregressive model. All methods including exogenous covariates decrease the
forecasting errors when compared to the benchmark models AR-p and AR-4. The
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regularization methods achieve remarkably more stable forecasts than PCR and
PLSR.

6 Ensemble Methods

As an extension, we consider the combination of the presented methods into one
joint forecast. Combining forecasts has become a well-accepted principle in the
forecasting community. In Clemen (1989), a comprehensive overview on combina-
tion methods and related literature is presented. Armstrong (2001) provides some
practical instructions for the correct combination of forecasts. More recently, Stock
and Watson (2006) presented and evaluated an extensive collection of combination
methods. The main issue addressed by forecasting combinations is to gain more
stable results than by restricting the forecast to one single method.

6.1 Methods

The combination methods we use differ with regard to their complexity. Simple
methods to combine a list of n time series, Oy1t ; : : : ; Oynt , for observation t are the

Arithmetic Mean

Oyct D 1

n

nX

iD1
Oyit; (3)

the Median

Oyct D
8
<

:
Oy
. nC1

2 /t
n uneven

1
2

�
Oy. n2 /t C Oy. n2C1/t

�
n even

(4)

and the Trimmed Mean

Oyct D 1

n � 2 � b˛nc
n�b˛ncX

iDb˛ncC1
Oy.i/t ; (5)

where Oy.1/t ; Oy.2/t ; : : : ; Oy.n/t represents the order statistic for observation t and ˛
represents the proportion of the highest and lowest forecasts eliminated in the
trimmed mean. In our application, ˛ D 0:1 is used.

The three methods do not use any information from former forecasts and can
therefore also be used for rather small data sets. All the following methods try to
use some information on the forecasting accuracy of the single methods in former
forecasts.
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6.1.1 Weighted Means

One possibility to use information from the forecasting accuracy of the respective
methods is to use weighted means of the forecasted values. Using weights wit; i D
1; : : : ; n, where

nP
iD1

wit D 1, the combined forecast for observation t can be

calculated by

Oyct D
nX

iD1
wit Oyit:

The weights can be calculated in numerous ways:.

6.1.2 Ridge-Weights

For the combination method Ridge-Weights, a linear model

E.ys/ D ˇ0 C
nX

iD1
Oyisˇit; s D 1; : : : ; t � 1

is calculated by Ridge estimation. The estimated parameters Ǒ1t ; : : : ; Ǒnt are used
to calculate the weights by

wit D
Ǒ
it

nP
jD1
Ǒ
jt

:

6.1.3 Shrinkage-Forecast

The method of Shrinkage-Forcast, adapted from Stock and Watson (2004), uses the
Ridge-Weights from above and seeks to get a compromise between the method of
Ridge-Weights and the simple Arithmetic Mean. The weights are calculated by

wit D ˛
Ǒ
it

nP
jD1
Ǒ
jt

C .1 � ˛/1
n
:

Therefore, depending on the tuning parameter ˛, the weights will be a weighted
mean between the equal weights from the Arithmetic Mean and the Ridge-Weights.
We will use ˛ D 0:5 and ˛ D 0:75 in our application.
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6.1.4 MSFE and MAFE

The forecasting accuracy of the single methods can be measured by the mean
squared forecasting error or the mean absolute forecasting error (MSFE and MAFE).
For method i , the MSFE for observations 1; : : : ; t � 1 is calculated by

mi;t�1 D 1

t � 1
t�1X

sD1
.ys � Oyis/

2;

whereas the MAFE is calculated by

mi;t�1 D 1

t � 1
t�1X

sD1
jys � Oyisj:

The forecasting accuracy is measured by the inverse of the respective error.
Therefore, the weights are calculated by

wit D m�1
it�1

nP
jD1

m�1
jt�1

;

respectively. See also Stock and Watson (2004) for these combination methods.

6.1.5 HLN-Test

The last method of combining forecasts is the so-called HLN-Test method, proposed
by Kisinbay (2010). An algorithm is used that tests the single forecasting methods
against each other by the encompassing test (see Sect. 4) from Clements and Harvey
(2007). The algorithm has the following structure:

Step 1: Calculate the MSFE mit�1; i D 1; : : : ; n; (see above) for every forecast
and choose Oybt such, that b D argmin

i

.mit�1/

Step 2: Test Oybt against all other forecasts using the encompassing test and delete
all forecasts with no significant additional information (for a given level of
significance ˛)

Step 3: Repeat Step 2 with the forecast with the lowest MSFE within the
remaining forecasts

Step 4: Repeat with the third-best forecast and so on until there is no needless
forecast left

Last step: Calculate the arithmetic mean from the remaining forecasts

For our application,˛ will be taken from the set ˛ 2 .0:01; 0:05; 0:1; 0:2; 0:3; 0:4/.
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6.2 Results

In Sect. 5, the business expectations turned out to be the most informative covariate.
Therefore, we used these forecasts and combined them by the afore-mentioned
methods. Figure 3 shows the boxplots of the squared forecasting errors for all
combination methods and the AR-p model as benchmark model.

Table 4 shows the RMSFE, the GMRAE and the p-values for the HLN-
tests on equal forecasting accuracy against the benchmark model AR-p. Both
Fig. 3 and Table 4 show that the mean squared forecasting errors are reduced
significantly by most of the combination methods compared to the AR-p model.
The smallest p-values are found for the simple methods Arithmetic Mean, Median
and Trimmed Mean and by the methods MSFE and MAFE. Therefore, also very
simple methods seem to be able to improve the forecasting performance of
a combination of forecast over the performance of the single forecasts. How-
ever, the rather complicated method HLN-Test does not seem to be the best
choice.

The combination methods have also been applied to the forecasts where all
available covariates (setting All covariates) have been used. Table 5 shows the
accuracy measures for these combinations. Again, several methods have significant
improvement over the benchmark model with the simple methods among the best
ones.
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Fig. 3 Boxplots of squared forecasting errors for combinations of the forecasts of the gross added
value by use of the exogenous covariate business expectations
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Table 4 Accuracy measures for combinations of the forecasts of the gross added value by use of
the exogenous covariate business expectations; lowest values per setting in boldface

RMSFE GMRAE p-Value

Arithmetic mean 0.682 1.026 0.020
Median 0.647 1.032 0.021

Trimmed mean 0.686 1.072 0.022

Ridge-Weights 0.786 1.005 0.247

Shrinkage-Forecast (˛ D 0:5) 0.700 0.955 0.076

Shrinkage-Forecast (˛ D 0:75) 0.734 0.912 0.148

MSFE 0.665 1.024 0.025

MAFE 0.676 1.029 0.022

HLN-Test (˛ D 0:01) 0.681 1.080 0.099

HLN-Test (˛ D 0:05) 0.683 1.082 0.101

HLN-Test (˛ D 0:1) 0.662 1.112 0.068

HLN-Test (˛ D 0:2) 0.656 1.046 0.053

HLN-Test (˛ D 0:3) 0.695 0.973 0.066

HLN-Test (˛ D 0:4) 0.725 0.889 0.073

Table 5 Accuracy measures for combinations of the forecasts of the gross added value by use
of the exogenous covariates business expectations, business situations, past and current volume of
orders and the current business climate; lowest values per setting in boldface

RMSFE GMRAE p-Value

Arithmetic mean 0.698 0.839 0.039
Median 0.652 1.022 0.056

Trimmed mean 0.692 0.788 0.043

Ridge-Weights 0.679 0.933 0.078

Shrinkage-Forecast (˛ D 0:5) 0.684 0.873 0.056

Shrinkage-Forecast (˛ D 0:75) 0.680 0.882 0.067

MSFE 0.694 0.810 0.048

MAFE 0.699 0.827 0.042

HLN-Test (˛ D 0:01) 0.779 0.941 0.194

HLN-Test (˛ D 0:05) 0.779 0.941 0.194

HLN-Test (˛ D 0:1) 0.779 0.941 0.194

HLN-Test (˛ D 0:2) 0.656 0.975 0.069

HLN-Test (˛ D 0:3) 0.765 0.963 0.073

HLN-Test (˛ D 0:4) 0.784 0.770 0.102
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Concluding Remarks
We used several regularization methods to forecast the quarterly added value
in the manufacturing sector by using data provided by the Munich ifo Institute.
The used methods are well established in the statistical literature but are still
rarely used in the forecasting community. The methods turned out to be very
strong competitors for the established forecasting methods. Especially, Group
Lasso turned out to have a strong performance in terms of forecasting. Group
Lasso has also an advantage when it comes to interpretation of the forecasting
models. Because of its feature of group-wise variable selection, it can uncover
the sectors which do or do not have influence upon the gross added value. We
also found that ensemble methods can improve the accuracy of forecasting.
Especially in cases where none of the methods is obviously dominating,
combinations can provide more robust forecasts than a single method. In our
application, the weighted means with respect to previous forecasting errors
(MSFE or MAFE) and the simple methods of arithmetic mean, median and
trimmed mean turned out to perform best.

Acknowledgements We thank the Munich ifo Institute for providing the data from the surveys
of the ifo Business Climate Index. Especially, we thank Kai Carstensen, Johannes Mayr, Klaus
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Investigating Bavarian Beer Consumption

Michael Bruckner and Roland Jeske

Abstract This article investigates various influencing factors such as weather
conditions and economic factors which are considered to determine the monthly
beer consumption in Bavaria. Therefore, two regression models are used to identify
influencing factors. The results indicate that besides seasonal effects, sunshine
duration and beer price are the main influencing factors of the Bavarian beer
consumption.

1 Introduction

While many parts of Germany appear to be interchangeable concerning their
attitudes, behaviors, and mentalities, the image of Bavaria and Bavarian lifestyle
seems to be dominated by some outstanding properties and products such as King
Louis’ castles, FC Bayern Munich, some special rural dishes, and of course Bavarian
beer. This perception of Bavaria and the Bavarians by themselves but also from
abroad makes this country somehow special.

Hardly any item of food production is that important for Bavaria rather than beer
(Bayerischer Brauerbund 2012b). Bavarian beer consists of some 4,000 trademarks
(Bayerischer Brauerbund 2012c), standing for about three quarters of the German
total, while more than 600 production facilities of Bavarian beer amounting nearly
half of all German breweries (Bayerischer Brauerbund 2012a,d). Therefore, the
question arises what makes Bavarian beer special and what are possible influence
factors on Bavarian beer consumption.
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Fig. 1 Monthly beer consumption in Bavaria Jan 2000 to Oct 2011

2 Data

The concrete Bavarian beer consumption is not collected by German official
statistics. As compensation the monthly taxable sales volume of alcohol-containing
beer in Bavaria between January 2000 and October 2011 was considered.1 Figure 1
shows this monthly beer consumption for the given time period. This time series
obviously seems to have a remarkable seasonal pattern. Therefore, a smoothing by
Berlin method (see, e.g., Heiler 1970) was added.

Even graphically the greater beer consumption during the summer is visible
while beer consumption during the winter months seems to decrease. Therefore,
one might expect some climatic influences on the Bavarian beer consumption. As
possible covariables, monthly sunshine duration, air temperature, wind velocity,
precipitation amount, and cloud coverage2 were taken into consideration. Since
these climatic indicators were provided for 16 single Bavarian weather stations (see
Fig. 2), simple averages of these indicators were calculated except for three stations
due to their exposed positions.

Another important aspect might be the influence of tourism since Bavaria is
one of the most popular regions in Germany for making holidays. In order to
measure this influence of tourism industry, the amount of overnight guests (only in

1Source: Bavarian State Office for Statistics and Data Processing.
2Source: German Meteorological Service (DWD), Offenbach.
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Fig. 2 Weather stations in Bavaria (annotation: those marked with filled star were excluded)

hostels with capacity exceeding eight beds) and the monthly turnover development
in Bavarian gastronomy index were taken into consideration.3

Finally, the beer price index4 was considered concerning its influences on beer
consumption.

In addition, a trend variable was considered in the first model in order to
accommodate the declining sales volumes. Last but not least due to the seasonal
fluctuations in beer consumption the season was modelled with 11 monthly dummy
variables.

3Both Sources: Bavarian State Office for Statistics and Data Processing.
4Source: Bavarian State Office for Statistics and Data Processing.
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3 Considered Models

Focus was put on the following two models:

Model 1: At a first step a regression model with all mentioned covariables and
additional monthly dummies was performed by using OLS. This model was
reduced by variable selection in a top down modelling approach.

Model 2: A two-stage model was performed. At first a factor analysis of the
described covariables was performed in order to use these factors as independent
variables once again in an OLS approach.

Bruckner (2012) additionally performed a distributed lag model, which however
yielded worse results and therefore is not mentioned here.

4 Results

Concerning the unreduced model 1 several indicators turned out to be insignificant
such as trend, wind velocity, cloud coverage, precipitation amount as well as
overnight guests and gastronomy index. Surprisingly the latter two indicators did not
have a significant influence on beer consumption at all. This might be due to several
aspects. On the one hand, for both indicators it could be argued that non-negligible
carry-over effects and substitution effects exist. On the other hand, it might be due
to data’s quality. The gastronomy index is sampled more or less unchanged since
1995 neglecting any economic dynamics in the tourism sector. Concerning the time
series of the overnight guests it has to be seen critical that only accommodations
with nine beds and more are considered while a lot of Bavarian regions—as well as
areas in Rhineland-Palatine and along the German sea side—are highly dependent
on accommodations with less than nine beds.

The variable-reduced model was well fitted with an adjusted R2 D 0:88

and consisted of three components: the sunshine duration, measuring the weather
impact, the beer price index as the structural component, and the season which
reflected the yearly fluctuations in the sales volumes. An increase in the sunshine
duration had a highly positive impact whereas increasing beer prices influenced the
beer consumption negatively (see Table 1).

Further investigations of the reduced model did not provide any indication of
multicollinearity: neither the variance inflation factors nor the condition index
or the proportions of variance showed abnormalities. Moreover the QQ-Plot of
standardized residuals did not stand for a violation of the Gaussian distributional
assumption (Fig. 3). Based on the Breusch–Pagan LM-test the null hypothesis that
homoscedasticity exists could not be denied (p D 0:709). Last but not least the
Durbin–Watson-Statistic with 2.5 turned out to be unobtrusive.

Secondly, a two-step model was performed. Here, in a first step, a princi-
pal component analysis (PCA) was made. Therefore the weather indicators, the
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Table 1 Regression results for reduced model 1

Variable Coefficient Standard error t-Statistic p-Value

(Constant) 2,478,441.79 95,928.560 �25.836 0.000

Sunshine duration 1,514.80 227.104 6.670 0.000

Price index of beer �9,836.85 941.213 �10.451 0.000

Dummies

January �278,381.49 36,086.80 �7.714 0.000

February �344,959.63 36,659.58 �9.410 0.000

March �187,062.61 39,299.06 �4.760 0.000

April �80,717.52 45,145.76 �1.788 0.076

May 78,888.10 47,933.45 1.646 0.102

June 86,285.07 50,075.33 1.723 0.087

July 132,762.14 49,223.26 2.697 0.008

August 97,830.88 47,421.77 2.063 0.041

September �59,581.67 42,145.73 �1.414 0.160

October �118,747.37 38,206.00 �3.108 0.002

November �163,985.57 36,814.49 �4.454 0.000

Fig. 3 QQ-plot of
standardized residuals
(model 1)

gastronomy index, the overnight guests, and the beer price index were used as input
data. Within the PCA the Varimax-method was used as rotation-method in order to
derive orthogonal factors (see Table 2). Based on the screeplot (Fig. 4) three under-
lying factors could be identified: A weather factor, a factor of weather-depending
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Table 2 Rotated component matrix of factor analysis

Variable Component 1 Component 2 Component 3

Cloud coverage �0.899 �0.054 �0.009

Sunshine duration 0.790 0.446 �0.094

Wind velocity �0.663 �0.055 �0.154

Precipitation amount �0.364 0.867 0.018

Overnight guests 0.485 0.793 0.163

Air temperature 0.583 0.759 �0.023

Gastronomy index 0.392 0.681 �0.284

Beer price index 0.093 �0.019 0.974

Fig. 4 Screeplot (model 2)

sectors, and a price factor. All together these three factors reproduced the original
variables to more than 80.6 % and thus were taken as dependent variables in the
downstream OLS approach.

That factor-regression model highlighted some interesting findings. On the one
hand, the factor which included the gastronomy index and the overnight guests
time series was insignificant whereas the weather and the beer price factor were
significant. Moreover the goodness of fit was not attached (adjusted R2 D 0:88).
Thus model 2 supports the findings of model 1 (see Table 3).
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Table 3 Regression results for reduced model 2

Variable Coefficient Standard error t-Statistic p-Value

(Constant) 1,610,228.24 27,652.12 �58.232 0.000

Weather factor 42,136.72 9,251.18 4.555 0.000

Price factor �83,438.654 7,541.60 �11.064 0.000

Dummies

January �233,410.77 37,051.86 �6.3 0.000

February �276,163.53 37,085.74 �7.447 0.000

March �82,615.27 37,053.75 �2.23 0.028

April 41,327.88 38,946.50 1.061 0.291

May 247,524.36 38,187.62 6.482 0.000

June 278,741.32 38,872.58 7.171 0.000

July 323,514.30 38,525.30 8.397 0.000

August 272,128.94 39,233.64 6.936 0.000

September 42,616.72 39,313.60 1.084 0.280

October �59,115.55 38,321.19 �1.543 0.125

November �130,944.39 37,860.95 �3.459 0.001

5 Summary

Bavarian beer consumption can be fairly well described by linear regression mod-
elling. Both considered models show good performances and result in qualitatively
similar results: they indicate sunshine duration, beer price index, and seasonal
dummies as explaining variables. There is high evidence that sunshine duration has
a deep positive impact on Bavarian beer consumption, whereas beer price index
influences beer consumption negatively. The seasonal effects in both models point
out that the beer garden seasons led to over averaged beer consumption in Bavaria.
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Sources of Data

• Bayerisches Landesamt für Statistik und Datenverarbeitung, www.statistik.bayern.de
• Deutscher Wetterdienst, www.dwd.de
• Statistisches Bundesamt, www.destatis.de

www.statistik.bayern.de
www.dwd.de
www.destatis.de


The Algebraic Structure of Transformed Time
Series

Tucker McElroy and Osbert Pang

Abstract Invertible transformations are often applied to time series data to generate
a distribution closer to the Gaussian, which naturally has an additive group structure.
Estimates of forecasts and signals are then typically transformed back to the original
scale. It is demonstrated that this transformation must be a group homomorphism
(i.e., a transformation that preserves certain arithmetical properties) in order to
obtain coherence between estimates of quantities of interest in the original scale, and
that this homomorphic structure is ensured by defining an induced group structure
on the original space. This has consequences for the understanding of forecast
errors, growth rates, and the relation of signal and noise to the data. The effect of the
distortion to the additive algebra is illustrated numerically for several key examples.

1 Introduction

The analysis of time series data is often focused on producing estimates of signals,
forecasts, and/or growth rates, all of which are typically estimated by methodologies
that assume an additive group structure of the data. For example, many signal
extraction estimates assume that the sum of signal and noise equals the original data
process; forecasts have their performance evaluated by taking their difference with
the future value (this defines the forecast error). However, it is not uncommon for
data to be initially transformed by an invertible function so as to make a Gaussian
distribution more plausible. Any signal estimates, forecasts, or growth rates would
then be transformed back into the original scale by inverting the transformation.
This mapping necessarily distorts the additive group structure.

For example, many monthly retail series exhibit dramatic seasonal behavior and
hence are candidates for seasonal adjustment (Bell and Hillmer, 1984; McElroy,
2012). Due to the underlying linkage of retail to inflation, exponential growth is
not uncommon, and typically a logarithmic transformation is suitable for producing
a more symmetric, light-tailed marginal distribution. Seasonal adjustments, which
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are an application of signal extraction techniques, can then be produced using an
additive group structure. Inverting the initial transformation by exponentiation maps
the addition operator to the multiplication operator. That is, in the original data
scale the seasonal and nonseasonal estimates no longer sum to the data process, but
instead their product equals the data process.

This is the only transformation with an intuitive induced algebra on the original
space. All transformations induce a group structure on the original space, which can
be used to understand how the data process is decomposed into signal and noise,
or how growth rates are to be properly understood; however, multiplication is the
only familiar induced group structure.1 The main result of this paper is to explicitly
derive the induced group structure, and study its impact on several examples, such
as the hyperbolic sine and logistic transformations.

Section 2 gives background concepts, with a brief discussion of the statistical
motivation for our results, which arise from time series data that have been affected
by the use of transformations. Section 3 contains our main results, and develops the
algebra of the parent space, which is induced by the additive group structure of the
transformed space. Section 4 continues the main examples and provides plots of
level curves for the new group operations. Section 5 gives two empirical examples
that compare the new group operator to addition in the parent space for the square
root and logistic transformations. Section 6 provides our conclusions and discusses
the implications for interpreting signal extractions, forecasts, and growth rates.

2 Statistical Background

Let us label the original domain of the data as the “parent space,” and all variables
will be written in bold. The “transformation space” arises from application of
a one-to-one mapping ', which is chosen so as to reduce heteroscedasticity,
skewness, and kurtosis in an effort to produce data that is closer to having a
Gaussian structure. For Gaussian time series variables, the additive group structure
is extremely natural: optimal mean square error estimates of quantities of interest
(such as future values, missing values, unknown signals, etc.) are linear in the data,
and hence are intimately linked to the addition operator. Errors in estimation are
assessed by comparing estimator and target via subtraction—this applies to signal
extraction, forecasting, and any other Gaussian prediction problem. Therefore the
additive operator is quite natural for relating quantities in the transformation space.

It is for the above reasons (the linearity of estimators when the data is Gaussian)
that the sum of signal and noise estimates equals the data process; no other algebraic
operation is natural for relating Gaussian signal and noise. Given an observed time
series fXtg in the parent space, say for 1 � t � n, the analyst would select '

1The original use of the logarithm, as invented by John Napier, was to assist in the computation of
multiplications of numbers (McElroy, 2005).
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via exploratory analysis such that Xt D '.Xt / is representable as a sample from
a Gaussian process. Most of the classical results on signal extraction (Bell, 1984;
McElroy, 2008) and projection (Brockwell and Davis, 1991) are interpretable in
terms of a Gaussian distribution. More precisely, the estimates commonly used in
time series applications minimize the mean squared prediction error among all linear
estimators, and are also conditional expectations when the process is Gaussian. If '
does not produce a Gaussian distribution, at a minimum it should reduce skewness
and kurtosis in the marginal distributions.

Also, it is necessary that ' be invertible, and it will be convenient for it to be
a continuously differentiable function. Denoting the joint probability distribution
function (pdf) of the transformed data by pX1;��� ;Xn.x1; � � � ; xn/, the joint pdf of the
original data is then

pX1;��� ;Xn.x1; � � � ; xn/ D pX1;��� ;Xn.x1; � � � ; xn/ �…n
tD1

@'.xt /
@x

: (1)

Of course, here xt D '.xt /. If we select a parametric family to model pX1;��� ;Xn ,
e.g., a multivariate Gaussian pdf, then (1) can be viewed as a function of model
parameters rather than of observed data, and we obtain the likelihood. It is apparent
that the Jacobian factor does not depend on the parameters, and hence is irrelevant
for model fitting purposes. That is, the model parameter estimates are unchanged by
working with the likelihood in the parent space.

There may be estimates of interest in the transformation space, which are some
functions of the transformed data. Typically we have some quantity of interest Z
that we estimate via OZ in the transformed space, perhaps computed as a linear
function of the transformed data (though the linearity of the statistic is not required
for this discussion). If we have a measure of the uncertainty in OZ, we can compute
probabilities such as PŒa � OZ � b� and PŒa � OZ � Z � b�. Since ' is invertible,
the former probability can be immediately converted into a confidence interval for
the parent space, via

P

h
'�1.a/ � '�1. OZ/ � '�1.b/

i
:

This assumes that ' is increasing (else the inequalities will be flipped around).
Then our estimate of Z D '�1.Z/ would be '�1. OZ/, with uncertainty interval
given by the above equation; a knowledge of the probability in the transformed
space immediately provides the probability in the parent space. However, when
uncertainty about an estimate is assessed in terms of its relation to a target quantity
Z, which may be stochastic, it is less obvious how to proceed. This is typically the
situation in time series analysis, where Z is often a signal or a future value of the
data process, and so is a stochastic quantity. If we apply the inverse transformation
to PŒa � OZ �Z � b�, we obtain

P

h
'�1.a/ � '�1. OZ �Z/ � '�1.b/

i
; (2)
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which tells us nothing of the relationship of Z to its estimate '�1. OZ/. That is,
there should be some algebraic relation between Z and '�1. OZ/ such that a suitable
notion of their discrepancy can be assessed probabilistically, and (2) can become
interpretable in terms of natural quantities in the parent domain. Supposing that
some operator ˚ were defined such that '�1. OZ � Z/ D '�1. OZ/ ˚ Z�1, for an
appropriate notion of the inverse of Z, then we could substitute into (2) and obtain
a confidence interval for the statistical error. The next section develops the unique
operator˚ possessing the requisite properties.

3 Algebraic Structure of the Parent Space

Given an additive operation in the transformed space, e.g., xt C xt�1, it is crucial
to define a corresponding composition rule ˚ in the parent domain such that ' is
a group homomorphism. A group is a set together with an associative composition
law, such that an identity element exists and every element has an inverse (Artin,
1991). A homomorphism is a transformation of groups such that the laws of
composition are respected. The groups under consideration are R D .R;C/ for
the transformed space, and G D .'�1.R/;˚/ for the parent space. Consider the
situation of latent components in the transformed space, where Xt D St C Nt is a
generic signal-noise decomposition. Then the components in the parent space are
'�1.St / D St and '�1.Nt/ D Nt , which can be quantities of interest in their own
right. How do we define an algebraic structure that allows us to combine St and Nt ,
such that the result is always Xt? What is needed is a group operator˚ such that

St ˚ Nt D Xt D '�1 .St CNt/ D '�1 .'.St /C '.Nt // :

This equation actually suggests the definition of ˚: any two elements a;b in the
parent group G are summed via the rule

a˚ b D '�1 .'.a/C '.b// : (3)

This definition “lifts” the additive group structure of R to G such that: (1) '�1.0/ D
1G is the unique identity element of G ; (2) G has the associative property; (3) the
unique inverse of any a 2 G is given by a�1 D '�1.�'.a//. These properties
are verified below, and establish that G is indeed a group. Moreover, the group is
Abelian and ' is a group isomorphism.

First, a ˚ '�1.0/ D '�1.'.a/ C 0/ D a, which together with the reverse
calculation shows that '�1.0/ is an identity; uniqueness similarly follows. Asso-
ciativity is a book-keeping exercise. For the inverse, note that a ˚ '�1.�'.a// D
'�1.'.a/�'.a// D '�1.0/ D 1G . This shows that G is a group, and commutativity
follows from (3) and the commutativity of addition; hence, G is an Abelian group.
Finally, ' is a bijection as well as a homomorphism, i.e., it is an isomorphism.
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What goes wrong if we use another composition rule to define G ? We would lose
the group structure, and more importantly we no longer have the important property
that '.Xt / D '.St /C '.Nt /. For example, suppose that '.x/ D sign.x/

pjxj, and
for illustration suppose that Xt ;St ;Nt are all positive. But if an additive structure
is assigned to the parent space, then we would have Xt D St C Nt , and as a
consequence

p
Xt D

p
St C Nt ¤

p
St C

p
Nt : Instead, ˚ should be defined via

(for positive inputs a and b) the following: a˚b D aCbC2pab. Now this example
results in an unfamiliar operator for ˚, but when ' is the logarithm, we obtain
multiplication. Although some conceptual realignment is required, the requisite
algebraic structure is uniquely determined by ' and cannot be wished away.

Example 1: Logarithm

Suppose that '.x/ D logx and the domain is all positive real numbers. Then
a˚ b D expflog aC log bg D a � b, i.e., the group operator is multiplication. The
identity element of G is unity, and inverses of elements are their reciprocals. This is
a familiar case, and it works out nicely; the homomorphic property of the logarithm
is well known. In application, seasonal noise is viewed in the parent domain as
a “seasonal factor” that divides the data, with the residual being the seasonally
adjusted data.

Example 2: Box–Cox

Suppose that '.x/ D sign.x/jxj�, which is essentially a Box–Cox transform (see
Box and Jenkins 1976) when � 2 .0; 1�. The case � D 1 is trivial, and �! 0 essen-
tially encompasses the case of logarithmic transformation. Typically the transform
is utilized on positive data, but we include the sign operator to ensure the homomor-
phic property, as well as invertibility of '. The composition law in G is then

a˚ b D sign
�

sign.a/jaj� C sign.b/jbj�
�
�
ˇ̌
ˇsign.a/jaj� C sign.b/jbj�

ˇ̌
ˇ
1=�

:

The identity is also zero, and a�1 D sign.�a/jaj. When we restrict the spaces to

R
C, the rule simplifies to a˚ b D .a� C b�/

1=�
(but then additive inverses are not

well defined, and R becomes a semi-group).

Example 3: Logistic

Suppose that '.x/ D log.x/�log.1�x/ defined on .0; 1/, with inverse ex=.1Cex/.
This transform is sometimes used for bounded data that represents a percentage or
rate. The composition law is
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a˚ b D ab
1 � a � bC 2ab

with identity element 1=2 and inverses a�1 D 1 � a. This rule tells one way that
percentages may be composed so as to ensure the result is again a percentage.

Example 4: Hyperbolic Sine

The function '.x/ D .ex � e�x/=2 is the hyperbolic sine transformation, which
maps R to R, with inverse '�1.y/ D log.yCpy2 C 1/. Then the composition law
is

a˚ b D '�1 �.eb � e�a/.1C ea�b/=2
�
:

The identity element is zero, and inverses are the same as in R, i.e., a�1 D �a.

Example 5: Distributional Transforms

Any random variable with continuous invertible cumulative distribution function
(cdf) F can be transformed to a standard Gaussian variable via ' D 
 ı F , where

 is the quantile function of the standard normal. Letting ˚ denote the Gaussian
cdf andQ D F�1 the given variable’s quantile function, clearly '�1 D Qı˚ . This
transform takes a random variable with cdf F in the parent domain to a Gaussian
variable, and the corresponding composition rule is

a˚ b D Q f˚ .
ŒF.a/�C
ŒF.b/�/g :

For example, F might correspond to a �2, student t , uniform, or Weibull distri-
bution. A �2 variable on 2 degrees of freedom (i.e., an exponential variable) has
F.x/ D 1 � e�x , with Q.u/ D � log.1 � u/. Then

a˚ b D � log
˚
1 � ˚ �
Œ1 � e�a�C
Œ1 � e�b�

��

defines the composition law.

4 Numerical Illustrations

In order to assess the degree of distortion that ˚ generates in quantities, in
comparison with the C operator, one can examine the level curves c D a ˚ b for
various values of c, i.e.,
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Lc D f.a;b/ W a˚ b D cg D f.a; c˚ a�1/ W a; c 2 '�1.R/g:

When ' is the identity mapping, the level curves are just the lines of slope �1, with
y intercepts given by various values of c. By plotting the various level curves Lc in
comparison with the straight lines for the operator C, we can form a notion of the
extent of distortion involved to the group structure of R.

To compute the level curves, we must calculate c˚ a�1 in each case, which we
write as fc.a/ for short; then the level curve is the graph of fc. For the logarithmic
transform, fc.a/ D c=a. For the Box–Cox, the general formula is cumbersome.
For example, when a; c > 0 and � D 1=2 we obtain fc.a/ D sign.

p
c � pa/ �

jpc �paj2. For the logistic, we have

fc.a/ D c.1� a/
a � cC 2c.1� a/

:

For hyperbolic sine, we have fc.a/ D '�1..e�a � e�c/.1C ecCa/=2/, which does
not simplify neatly. For distributional transforms,

fc.a/ D Q f˚ .
ŒF.c/� �
ŒF.a/�/g :

Various level curves are plotted in Figs. 1, 2, 3, and 4. We focus on values of
c D i=10 for 1 � i � 10, and all values of a 2 Œ0; 1�. We consider Examples 1
and 2 in Fig. 1, Examples 3 and 4 in Fig. 2, and Example 5 in Figs. 3 and 4, where
the distributional transforms include student t with 2 degrees of freedom, �2 with 1
degree of freedom, the uniform (on Œ0; 1�) distribution, and the Weibull with shape
parameter 1:5 and unit scale.
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Fig. 1 Level curves Lc for the logarithmic (left panel) and square root Box–Cox (right panel)
transformations. The red (dotted) lines are level curves for aC b, while the black (solid) lines are
level curves for a˚ b, where c D 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0
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Fig. 2 Level curves Lc for the logistic (left panel) and hyperbolic sine (right panel) transforma-
tions. The red (dotted) lines are level curves for aCb, while the black (solid) lines are level curves
for a˚ b, where c D 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0

a a

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 3 Level curves Lc for the student t (left panel) and �2 (right panel) transformations. The red
(dotted) lines are level curves for a C b, while the black (solid) lines are level curves for a ˚ b,
where c D 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0

We see that the level curves for the logistic and uniform transforms are similar
(though not identical, see Figs. 2 and 4), which is intuitive since they both map the
space Œ0; 1� into R. Also, the logarithmic (Fig. 1), �2 (Fig. 3), and Weibull (Fig. 4)
are quite similar. The hyperbolic sine (Fig. 2) and student t (Fig. 3) both offer little
distortion, but have opposite curvature.
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Fig. 4 Level curves Lc for the uniform (left panel) and Weibull (right panel) transformations. The
red (dotted) lines are level curves for aCb, while the black (solid) lines are level curves for a˚b,
where c D 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0

5 Empirical Illustrations

How much does the ˚ operator differ from addition in practice? To answer this
query we provide two data illustrations. In these examples, a data set fX t g that has
undergone some transformation ' will be seasonally adjusted using X-12-ARIMA
(Findley et al., 1998), being applied to Xt D '.Xt / in the transformed space. We
then demonstrate that the additive decomposition into seasonal and nonseasonal
components in the transformed space does not reproduce an additive decomposition
of these inverted components in the parent space. For this application, if Xt
decomposes into a trend-cycle Ct , seasonal St , and irregular component It , then
we have Xt D Ct C St C It . The nonseasonal component will be composed of the
trend-cycle and the irregular effect, so let us label the adjusted component Nt as
Nt D Ct C It . Note that while the signal-noise decomposition uses St to denote
signal and Nt to denote noise, for the additive seasonal decomposition described
here, the nonseasonal portionNt is the signal, and the seasonal component St is the
noise. What we show is that although Xt D Nt C St and Xt D '�1.Xt/ are both
true, '�1.Xt / can be quite a bit different from '�1.Nt/C '�1.St / D Nt C St when
' is not a linear transformation.

5.1 Example 1: Square Root Transform

The first example is the U.S. Census Bureau monthly series of total inventory of
nonmetallic mineral products in the USA, between the years 1992 and 2011. The
default square root transform in X-12-ARIMA is 0:25 C 2.

p
Xt � 1/, which is
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Table 1 Comparison of log
likelihoods and AICCs for
three transforms of total
inventory data

Transform (Adj.) log likelihood AICC

None �1,353.0860 2,712.2800

Logarithm �1,352.1446 2,710.3974

Square root �1,350.8787 2,707.8655

a shifted and scaled version of the basic
p

Xt square root transform, and the two
adjusted log likelihoods are identical. Using X-12-ARIMA’s automdl and transform
specs, we compare the square root transform to both a logarithmic transform and to
no transform at all. Typically, the model with the smallest AICC would be preferred
over other contenders, but since the same SARIMA (0 2 1)(0 1 1) model was found
to fit all three transforms of the data, the best transform would equivalently be
indicated by the highest log likelihood. Table 1 displays the log likelihoods (adjusted
for the transformations) along with the corresponding AICC. We see that the square
root transform yields the highest log likelihood in the parent space and also the
lowest value for AICC; this leads us to prefer the use of a square root transform for
this total inventory series.

We proceed by using X-12-ARIMA to obtain an additive decomposition of the
series fXtg, where Xt is just the square root of Xt . In checking the difference series
Xt � .Nt C St/, we note that the differences appear to be centered around 0, with
a maximum magnitude no greater than 5 � 10�13; numerical error from rounding
and computer precision explains why this difference is not identically 0. Similar
results hold for the difference between Xt and Nt ˚ St , which is just the application
of '�1 to Nt C St . However, there are substantial discrepancies between Xt and
Nt C St , as expected. For Nt D '�1.Nt/ and St D '�1.St /, Fig. 5 shows a plot of
the untransformed series Xt along with Nt C St on the top panel, and on the bottom
panel, we have the difference series obtained by subtracting NtCSt from Xt . The top
panel of Fig. 5 confirms that the additive decomposition in transformed space does
not translate to an additive decomposition in parent space, and the bottom panel
shows that the deviations from 0 in this case are quite pronounced. Furthermore,
while the lower panel of Fig. 5 indicates that the differences are roughly unbiased
(the series is centered around zero), it also displays a highly seasonal pattern
evincing some heteroskedasticity. We explain this behavior below.

Noting that the seasonal St can be negative, it follows that St can be negative as
well; however, if the original data Xt is always positive, it follows that

St ˚ Nt D St C Nt C sign.StNt /
p
jSt j jNt j:

Typically Nt is positive as well, so that

St ˚ Nt � .St C Nt / D sign.St /
p
jSt j

p
Nt :

Thus, the discrepancy between ˚ and the addition operator is equal to the square
root of the product of the seasonal and nonseasonal, multiplied by the sign of the
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Fig. 5 The top plot shows Xt and Nt CSt together, while the bottom plot displays Xt � .Nt CSt /,
where Xt is the series for U.S. total inventory of nonmetallic mineral products between 1992 and
2011. Nt and St are the signed squares of Nt and St , the nonseasonal and seasonal components
from an additive decomposition of Xt D p

Xt

seasonal; we can expect this time series to be centered around zero, because St
is centered around zero. This explains the seasonal behavior of the lower panel in
Fig. 5.

5.2 Example 2: Logistic Transform

The second example is the monthly unemployment rate for 16–19-year-old individ-
uals of Hispanic origin between the years 1991 and 2011; the data was obtained
from the Bureau of Labor Statistics. For rate data, the logistic transform '.a/ D
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Table 2 Comparison of log
likelihoods and AICCs for
three transforms of
unemployment rate data

Transform (Adj.) log likelihood AICC

None 506.2443 �1,006.3864

Logarithm 508.9064 �1,011.7107

Logistic 511.0460 �1,015.9900

log.a/ � log.1 � a/ is sometimes warranted, as it ensures fits and predictions
that are guaranteed to fall between 0 and 1. As in the previous example, we
use X-12-ARIMA’s automdl and transform specs to help us compare the logistic
transform to both a logarithmic transform and to no transform at all. Again, the
procedure selects the same SARIMA (0 1 1)(0 1 1) model for all three transforms,
so whichever transform has the highest log likelihood in the parent space will
also have the lowest AICC. Table 2 displays the log likelihoods (adjusted for
the transformations) along with the corresponding AICC, and we see that the
logistic transform does indeed result in a better model compared to the other two
transformations.

We proceed by performing a logistic transform on Xt and then running X-12-
ARIMA on the transformed series to obtain an additive seasonal decomposition.
Checking the series of differencesXt � .Nt CSt /, we find that the magnitude of the
differences is bounded by 6� 10�15. These deviations from 0 are entirely explained
by numerical error produced from passing the data through X-12-ARIMA. Similar
results hold for Xt � .Nt ˚ St /. But there are notable discrepancies between Xt and
.NtCSt /, as in the previous illustration, as shown in Fig. 6. The top panel shows that
the additive nature of the decomposition in transformed space is not preserved when
mapped back to the parent space, while the bottom panel shows that this discrepancy
(in the parent space) is a time series centered around �0:5. Also, the lower panel of
discrepancies Xt�.NtCSt / exhibits seasonal structure; we explain this phenomenon
next.

For the logistic transform, the composition operator˚ is defined as

St ˚ Nt D St � Nt

1 � St � Nt C 2St � Nt

;

where St and Nt in the parent space are mapped using 1=.1Ce�St / and 1=.1Ce�Nt /
from the transformed space. To explain the behavior of the lower panel in Fig. 6, we
calculate the difference:

St ˚ Nt � .St C Nt / D St � Nt

1 � .St C Nt /C 2St � Nt

� .St C Nt /

D �1
2
C 1

2
.St C Nt � 1/

�
1

1 � .St C Nt /C 2St � Nt

� 2
�
:
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Fig. 6 The top panel shows Xt and Nt C St together, while the bottom panel displays Xt � .Nt C
St /, where Xt is the unemployment rate among 16–19 year old Hispanic individuals between 1991
and 2011. Nt and St are the inverse transforms of the Nt and St from the additive decomposition
of Xt D log.Xt /� log.1� Xt /

Given that St and Nt are both restricted between 0 and 1, the second term in the final
expression above is a time series that fluctuates about zero (we cannot claim that
its expectation is zero). This explains why the discrepancies in parent space were
centered around �0:5. The second part of the sum helps account for the variation
around the �0:5 center in the discrepancies St ˚ Nt � .St C Nt /.
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6 Discussion

The primary applications of time series analysis are forecasting and signal extrac-
tion. In the transformed space, the data process is equal to signal plus noise, but their
proper relation is different in the parent space, being given by St ˚ Nt D Xt . Also,
for Gaussian time series the forecast error is defined via OXtC1 �XtC1, which in the
parent space becomes OXtC1˚X�1

tC1. If the transformation is logarithmic, the forecast
error in the parent space is the ratio of estimate and future value. Other relations can
be worked out for the logistic and distributional transformations.

There is also much applied interest in growth rates, which in the transformed
space is given by definition as Xt �Xt�1 (these might also be computed in terms of
a signal of interest, say St � St�1). For a logarithmic transform, the growth rate
becomes Xt =Xt�1 in the parent space, which might be interpreted as a percent
increase over the previous value. But a growth rate for another transformation looks
much different, e.g., in the logistic case

Xt ˚ X�1
t�1 D

Xt .1 �Xt�1/
Xt�1 �Xt C 2Xt .1 �Xt�1/

:

Likewise, growth rate formulas can be written down for the other transformations,
although typically the expressions do not simplify so neatly as in the logarithmic
and logistic cases.

These new formulas for growth rates, forecast errors, and relations of signal
and noise to data can be counterintuitive. Only with the logarithmic transformation
we do attain a recognizable group operation, namely multiplication. In order
for ' to be a homomorphism of groups—which is needed so that quantities in
the parent space can be meaningfully combined—one must impose a new group
operator on the parent space, and oftentimes this operator ˚ results in unfamiliar
operations. However, there seems to be no rigorous escape from the demands of the
homomorphism, and familiarity can develop from intimacy.

To illustrate a particular conundrum resolved by our formulation, consider the
case alluded to in Sect. 2, where Z represents a forecast or signal of interest in
the parent domain, and '�1. OZ/ is its estimate. Note that '�1.Z/ D Z�1, and the
corresponding error process is then '�1. OZ/˚ Z�1. The probability (2) becomes

P

h
'�1.a/ � '�1. OZ/˚ Z�1 � '�1.b/

i
:

Hence the confidence interval for the statistical error (in the parent domain) is
expressed as Œ'�1.a/; '�1.b/�, which exactly equals the probability that in the
transformed domain OZ �Z lies in Œa; b�. This type of interpretation is not possible
unless ' is a homomorphism, which the particular definition of˚ guarantees.
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We can also manipulate PŒa � OZ �Z � b� to obtain an interval for Z:

P

h
a � OZ �Z � b

i
DP

h OZ � b � Z � OZ � a
i

DP

h
'�1. OZ � b/ � Z � '�1. OZ � a/

i
:

Although the last expression allows us to easily compute the interval for Z,
it is not directly expressed in terms of the parent estimate '�1. OZ/. Using the
homomorphism property, the interval can be written as

h
'�1. OZ/˚ b�1; '�1. OZ/˚ a�1i :

In summary, the chief applications of time series analysis dictate that quantities
in the parent space of a transformation must satisfy certain algebraic relations, and
the proper way to ensure this structure is to define a group operator ˚ via (3).
As a consequence, the notions of statistical error (for forecasts, imputations, signal
extraction estimates, etc.) are altered accordingly, as are the definitions of growth
rates and the relations of signal and noise to data. Such relations are already intuitive
and well accepted when the transformation is logarithmic, but for other transforms
there remains quite a bit of novelty.

Disclaimer

This article is released to inform interested parties of research and to encourage
discussion. The views expressed on statistical issues are those of the authors and not
necessarily those of the U.S. Census Bureau.
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Reliability of the Automatic Identification
of ARIMA Models in Program TRAMO

Agustín Maravall, Roberto López-Pavón, and Domingo Pérez-Cañete

Abstract In so far that—as Hawking and Mlodinow state—“there can be no model-
independent test of reality,” time series analysis applied to large sets of series needs
an automatic model identification procedure, and seasonal adjustment should not
be an exception. In fact, the so-called ARIMA model-based seasonal adjustment
method (as enforced in programs TRAMO and SEATS) is at present widely used
throughout the world by data producers and analysts. The paper analyzes the results
of the automatic identification of ARIMA models of program TRAMO. Specifically,
the question addressed is the following. Given that many ARIMA models are
possible, how likely is it that (default) use of TRAMO yields a satisfactory result?
Important requirements are proper detection of seasonality, of non-stationarity (i.e.,
of the proper combination of unit autoregressive roots), and of the stationary ARMA
structure, and eventual identification of either the correct model, or a relatively
close one that provides zero-mean normally identically independently distributed
residuals and good out-of-sample forecasts. A comparison with the default AMI
procedure in the present X12-ARIMA and DEMETRAC programs (based on older
versions of TRAMO) is made.

The simulation exercise shows a satisfactory performance of the default auto-
matic TRAMO procedure applied to very large sets of series; certainly, it can also
provide good benchmark or starting point when a careful manual identification is
intended.

1 Introduction

Seasonality, i.e., the seasonal component of a time series, is never directly observed,
nor does it have a generally accepted and precise definition, and these limitations
obscure proper treatment and analysis. In the early 1980s, a seasonal adjustment
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based on minimum mean squared error (MMSE) estimation of unobserved com-
ponents in linear stochastic time series models—namely, ARIMA models—was
proposed by Hillmer and Tiao (1982) and Burman (1980). The approach came to
be known as the ARIMA-model-based (AMB) seasonal adjustment. The proposal
seemed interesting because it would provide the analyst with a precise definition
of seasonality (as well as of the other unobserved components) by means of a
model consistent with the model identified for the observed series. The approach
would further permit model-derived diagnostics and parametric inference. Some
extensions of the approach are found in, for example, Pierce (1979), Bell and
Hillmer (1984), Maravall (1987), Gómez and Maravall (2001b), Bell and Martin
(2004), and McElroy (2008). However, application of the approach when many
series are to be treated was discarded because it seemed to imply exceedingly heavy
computational and time series analyst resources. Besides, many series need some
preadjustment before they can be assumed the output of an ARIMA process: perhaps
the series requires some transformation (such as the log), non-periodic calendar
effects—such as TD—may need removal, and the series may be contaminated
by outliers and/or by other special effects. Because not all users need to be time
series modeling experts, and because—even if they are—the number of series that
need treatment may be too big, an automatic model identification (AMI) procedure
is needed. The procedure should address both preadjustment of the series and
identification of the ARIMA model.

In the 1990s, Gómez and Maravall presented a first version of two linked
programs that enforced the AMB approach and contained an AMI option. The
first program, TRAMO (“Time series Regression with ARIMA Noise, Missing
Observations and Outliers”) performed preadjustment and ARIMA model identi-
fication. The second program, SEATS (“Signal Extraction in ARIMA Time Series”)
decomposed the series into unobserved components and, in particular, performed
seasonal adjustment (Gómez and Maravall, 1996).

The two programs are widely used throughout the world, most notably at
statistical offices, central banks, and agencies involved with analysis and production
of economic data; see, for example, European Statistical System (2009) and United
Nations (2011). Together with X12, they are part of the new X13-ARIMA-SEATS
program (U.S. Census Bureau 2012), and of the Eurostat-supported program
DEMETRAC (Grudkowska 2012).

Over the years, the empirical performance of TRAMO and SEATS has been
discussed, and a large-scale analysis of their (early) AMI performance is contained
in Fischer and Planas (2000). (This work had led to a recommendation for its use
in official production; Eurostat 1998.) New versions of the programs have just
been released, and the new version of TRAMO (to be referred to as TRAMOC)
incorporates modifications and improvements in the AMI procedure. In what
follows, the performance of this procedure is analyzed in terms of the following
questions: if a series has been generated by an ARIMA model, will AMI properly
detect presence/absence of seasonality, stationarity or the lack thereof (i.e., unit
roots), the ARMA structure (i.e., model orders)? Will the identified model provide
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normally, identically, independently distributed (n.i.i.d.) residuals? Will the out-of-
sample forecast performance be acceptable?

Program TSWC (the Windows version of TRAMO-SEATSC) has been used, in
all cases in an entirely automatic mode.

2 Summary of the Automatic Identification Procedure

2.1 The Regression-ARIMA Model

Let the observed time series be z D .zt 1 ; zt 2 ; : : : ; ztm/ where 1 D t1 < t2 < � � � <
tm D T . (There may be missing observations and the original observations may
have been log transformed.) The Reg-ARIMA model is

zt D y0
t ˇ C xt (1)

where yt is a matrix with n regression variables, and ˇ is the vector with the
regression coefficients. The variable xt follows a (possibly nonstationary) ARIMA
model. Hence, in (1), y0

t ˇ represents the deterministic component, and xt the
stochastic one.

If B denotes the backward shift operator, such that Bj zt D zt�j , the ARIMA
model for xt is of the type

�t D ı.B/xt ; (2)


 .B/ Œ�t � ��� D �.B/at ; at � niid.0; Va/; (3)

where �t is the stationary transformation of xt , �v its mean, ı.B/ contains regular
and seasonal differences; 
.B/ is a stationary autoregressive (AR) polynomial in B;
�.B/ is an invertible moving average (MA) polynomial in B. For seasonal series, the
polynomials typically have a “multiplicative” structure. Letting s denote the number
of observations per year, in TRAMOC, the polynomials in B factorize as

ı.B/ D .1 � B/d .1 � Bs/ds D rdrdss
where r and rs are the regular and seasonal differences, and


.B/ D 
p.B/˚ps .Bs/ D .1C 
1B C : : :C 
pBp/.1C 
sBs/ (4)

�.B/ D �q.B/�qs .Bs/ D .1C �1B C : : :C �qBq/.1C �sBs/ (5)
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Stationarity and invertibility imply that all the roots of the polynomials in B in
the right-hand-side of (4) and (5) lie outside the unit circle. In what follows, the
variable xt will be assumed centered around its mean and the general expression for
the model will be the ARIMA .p; d; q/.ps; ds; qs/s model:


p.B/˚ps .B
s/rdrdss xt D �q.B/�qs .Bs/at ; (6)

where p; q D 0; 1; 2; 3I d D 0; 1; 2I ds; ps; qs D 0; 1.
In what follows, the only regression variables will be the outliers that may

have been automatically identified by the program run in a default mode. Three
types of possible outliers are considered: additive outlier (AO), i.e., a single spike;
transitory change (TC), i.e., a spike that takes some time to return to the previous
level; and level shift (LS), i.e., a step function. TRAMOC will pre-test for the
log/level transformation and perform automatic ARIMA model identification joint
with automatic outlier detection, estimate by exact maximum likelihood the model,
interpolate missing values, and forecast the series.

2.2 AMI in the Presence of Outliers

The algorithm iterates between the following two stages.

1. Automatic outlier detection and correction: The procedure is based on Tsay
(1986) and Chen and Liu (1993) with some modifications (see Gómez and
Maravall 2001a,b). At each stage, given the ARIMA model, outliers are detected
one by one, and eventually jointly estimated.

2. AMI: TRAMOC proceeds in two steps: First, it identifies the differencing
polynomial ı.B/ that contains the unit roots. Second, it identifies the ARMA
model, i.e, 
p.B/,˚ps .B

s/, �q.B/, and�qs .B
s/. A pre-test for possible presence

of seasonality determines the default model, used at the beginning of AMI and at
some intermediate stages (as a benchmark comparison). For seasonal series the
default model is the so-called Airline model, given by the equation

rrsxt D .1C �1B/.1C �sBs/at (7)

i.e., the IMA.0; 1; 1/.0; 1; 1/s model. For nonseasonal series the default model is

rxt D .1C �B/C �; (8)

i.e., the IMA (1,1) plus mean model.
Identification of the ARIMA model is performed with the series corrected for

the outliers detected at that stage. If the model changes, the automatic detection
and correction of outliers is performed again from the beginning.
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2.2.1 Identification of the Nonstationary Polynomial ı.B/

To determine the appropriate differencing of the series, we discard standard unit root
tests. First, when MA roots are not negligible, the standard tests have low power.
Second, a run of AMI for a single series may try thousands of models, where the
next try depends on previous results. There is, thus, a serious data mining problem:
the size of the test is a function of prior rejections and acceptances, and its correct
value is not known.

We follow an alternative approach that relies on the superconsistency results of
Tiao and Tsay (1983), and Tsay (1984). Sequences of multiplicative AR(1) and
ARMA(1,1) are estimated, and instead of a fictitious size, the following value is
fixed “a priori”: How large the modulus of an AR root should be in order to accept
it as 1? By default, in the sequence of AR(1) and ARMA(1,1) estimations, when the
modulus of the AR parameter is above 0.91 and 0.97, respectively, it is made 1. Unit
AR roots are identified one by one; for MA roots invertibility is strictly imposed.

2.2.2 Identification of the Stationary ARMA Polynomials

Identification of the stationary part of the model attempts to minimize the Bayesian
information criterion given by

BICP;Q D ln. O�2P;Q/C .P CQ/
ln.N �D/
N �D :

where P D pCps ,Q D qCqs , andD D d Cds . The search is done sequentially:
for fixed regular polynomials, the seasonal ones are obtained, and vice versa. A
more complete description of the AMI procedure and of the estimation algorithms
can be found in Gómez and Maravall (1993, 1994, 2001a); Gómez et al. (1999); and
Maravall and Pérez (2012).

3 Performance of AMI on Simulated Series

3.1 Simulation of the Series

Monthly series of n.i.i.d.(0,1) innovations Œat � were simulated in MATLAB, and
.d C ds/ arbitrary starting conditions were set (see Bell, 1984). For 50 ARIMA
models, 500 series with 120 observations (“short” series) and 500 “long” series
with 240 observations were generated. Thus two sets of 25,000 series each were
obtained. Each set was divided into three subsets as follows:
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• The first subset is formed by 8,500 series simulated with Airline-type models, as
in (7). The combinations of MA parameters .�1; �s/ were (�0.9,�0.7),
(�0.8,�0.4), (�0.7,�0.3), (�0.6,�0.4), (�0.6,0), (�0.5,�0.95), (�0.5,�0.5),
(�0.4,�0.6), (�0.4,0), (�0.3,�0.7), (0,�0.7), (0,�0.5), (0.3,�0.6), (0.3,0),
(0.4,�0.8), and (0.5,�0.6).

• The second set contains 8,000 series simulated from the following non-seasonal
models.
Stationary models: xt D at ; .1 � 0:7B/xt D at ; xt D .1 C 0:6B2/at ; .1 �
0:8B/xt D .1� 0:5B/at ; .1� B C 0:6B2/xt D at ; .1� 0:41B � 0:37B2/xt D
.1�0:30B/at ; .1C0:3B2�0:5B3/xt D at . Non-stationary models:rxt D .1�
0:7B/at ;rxt D .1�0:3B/at ;rxt D at ; .1�0:7B/rxt D at ; .1�0:6B/rxt D
.1C0:5BC0:7B2/at ; .1�0:40BC0:42B2/rxt D at ; .1C0:7B12/rxt D at ;
r2xt D .1 � 0:8B/at ; r2xt D .1� 0:31B C 0:36B2/at :

• The third set is formed by 8,500 seasonal series not of the Airline-type; it will be
referred to as the “Other-seasonal models” set.

Stationary models: .1 � 0:6B/.1 � 0:6B12/xt D at ;
.1�0:8B12/xt D .1�0:4B12/at ; .1�0:7B/.1�0:85B12/xt D .1�0:3B/at I
.1 � 0:7B12/rxt D .1 � 0:4B C 0:7B2/at .
Non-stationary models: r12xt D .1�0:5B12/at ; .1�1:4BC0:7B2/r12xt D
.1�0:5B12/at ; .1C0:4B12/r12xt D .1�0:5B12/at ;rr12xt D .1�0:23B�
0:19B2/.1 � 0:56B12/at ; .1 � 0:5B12/rr12xt D .1 � 0:4B/at ;
.1�0:4B/rr12xt D .1C0:4BC0:4B2/.1�0:4B12/at ;.1�0:3B/rr12xt D
.1 � 0:6B12/at ; .1 C 0:3B/rr12xt D .1 � 0:6B/.1 � 0:3B12/at ; .1 C
0:4B12/rr12xt D .1� 0:5B/.1� 0:5B12/at ; .1� 0:6B C 0:5B2/rr12xt D
.1� 0:8B12/at ; .1C 0:5B � 0:3B3/rr12xt D .1� 0:4B12/at ; .1C 0:1B �
0:17B2 � 0:34B3/rr12xt D .1 � 0:48B12/at ; .1 C 0:4B12/r2r12xt D
.1 � 0:4B/at .

Therefore, 16 % of the models are stationary (40 % of them seasonal), and 84 %
are non-stationary (75 % of them seasonal). The models’ orders cover the following
ranges:
p D 0; 1; 2; 3; d D 0; 1; 2; q D 0; 1; 2; ps D 0; 1; ds D 0; 1; qs D 0; 1;
so that the maximum order of differencing is r2 r12 and 384 models are possible.
Factorizing the AR polynomials, real and complex roots are present, with varying
moduli and frequencies. In particular, identification of unit roots implies identifica-
tion of one of the pairs (d; d12/ D .0; 0/; .1; 0/; .2; 0/; .0; 1/; .1; 1/, and (2,1).

The complete set contains many models often found in practice. Non-seasonal
series are possibly over represented, yet it was thought important to detect reliably
which series have seasonality and which ones do not. Some models with awkward
structures are also included. As a simple example, the model with seasonal orders
.1; 0; 0/12 and seasonal AR polynomial .1 C 
12B

12/ with 
12 > 0 displays
spectral holes at seasonal frequencies. Not being associated with seasonality, nor
with trend-cycle, the spectral peaks will generate a transitory component. Such an
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AR structure may appear, for example, when modeling SA series: the spectral holes
induced by seasonal adjustment are associated with negative autocorrelation for
seasonal lags in the seasonally adjusted series and are implied by “optimal” MMSE
estimation (see, for example, Gómez and Maravall, 2001b).

3.2 AMI Results

TSWC was applied to the simulated series in automatic mode with no trading-day
pre-testing.

3.2.1 Preadjustment

Log-Level Test

The 50,000 simulated series were exponentiated, then the log/level (likelihood ratio)
test was applied to the total 100,000 series. Table 1 presents the results.

The test is accurate (averaging all groups, the error percentage is 0.4 %), and
shows a slight bias that favors levels. It can be seen that most errors occur for models
with d D 2 (often, appropriate for models with smooth trend-cycle component).

Seasonality Detection

Next, the series were pre-tested for possible presence of seasonality. The pre-test
is based on four separate checks. One is a �211 non-parametric rank test similar to
the one in Kendall and Ord (1990), one checks the autocorrelations for seasonal
lags (12 and 24) in the line of Pierce (1978), and uses a �22; one is an F-test for the
significance of seasonal dummy variables similar to the one in Lytras et al. (2007),
and one is a test for the presence of peaks at seasonal frequencies in the spectrum of
the differenced series. The first three tests are applied at the 99 % critical value. The
fourth test combines the results of two spectrum estimates: one, obtained with an
AR(30) fit in the spirit of X12-ARIMA (Findley et al., 1998); the second is a non-
parametric Tuckey-type estimator, as in Jenkins and Watts (1968), approximated by
an F distribution.

Table 1 Errors in log/level
test (in % of series)

Series is in levels Series is in logs

Series length 120 240 120 240

Airline model 0.1 0.0 0.2 0.0

Other-seasonal 0.4 0.1 1.1 0.1

Non-seasonal 0.0 0.0 1.6 1.0

Total average 0:2 0:0 1:0 0:4
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The results of the four tests have to be combined into a single answer to the
question: Is there seasonality in the series? The tests are first applied to the original
series, and determine the starting model in AMI. Once the series has been corrected
for outliers, the tests are applied again to the “linearized” series; these are the results
reported in Table 2. The first four columns show the percentage of series (in each
of the six groups) for which the tests have made an error (not detecting seasonality
when there is some, or detecting seasonality when there is none). Leaving aside the
Airline model case, for which all tests are close to perfect, in all other cases the
spectral test performs worse. The “overall test” in column 5 combines the results of
the previous four tests, assigning weights broadly in accordance with their relative
performance: more weight is given to the autocorrelation and F tests, and little
weight is given to the spectral one. The overall test assumes seasonality even when
the evidence is weak; its role is to orient AMI, but the final decision as to whether
seasonality is present in the series is made by the AMI itself, i.e., by the final model
obtained by TRAMOC, and the way it is decomposed by SEATSC. The errors in
this final decision are displayed in the last column of Table 2. It is seen that the test
implied by AMI outperforms all other tests, including the overall one. On average,
for the short series, this final test fails one out of 200 cases; when the series is long,
the proportion becomes 1 out of 500, well below the 1 % critical value used in the
individual tests.

It can be seen that most errors in Table 2 are failures of the test to detect highly
stationary seasonality, and that a slight over detection of seasonality in non-seasonal
series is also present.

Outlier Detection

No outliers were added to the simulated series and hence detected outliers can be
seen as spurious; the average number detected per series is shown in Table 3.

Table 2 Errors in the detection-of-seasonality-in-series tests (in % of series in group)

Non- Auto- Model

Series parametric correlation Spectral Overall produced by

length test test test F-test test AMI

Airline 120 0.0 0.0 0.0 0.1 0.0 0.0

Model 240 0.0 0.0 0.0 0.1 0.0 0.0

Other-seasonal 120 2.9 0.2 6.2 2.0 0.1 0.3

Models 240 1.9 0.0 4.9 1.4 0.0 0.1

Non-seasonal 120 1.5 1.6 2.5 0.8 2.1 1.3

Models 240 1.9 1.8 3.1 0.7 2.4 0.7

Total 120 1:5 0:6 2:9 1:0 0:7 0:5
240 1:2 0:6 2:6 0:7 0:8 0:2
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Table 3 Average number
of outliers per series

Series length 120 240

Airline model 0.18 0.11

Other-seasonal 0.16 0.10

Non-seasonal 0.17 0.09

Total 0:17 0:10

However, because our interest is automatic use of TRAMOC with input param-
eters set at default values and this use includes automatic outlier detection and
correction, outliers may show up in the identified model. These spurious outliers
may cause some distortion in AMI, yet this distortion is likely to be minor. (In
9,000,000 generated observations some are bound to exceed the critical value for
outlier detection. For example, approximating the probability of detecting an AO
(the most frequently detected type of outlier) in random samples of 120 and 240
observations, or an LS in random walks of equal lengths, the results of Table 3 are
below the proportion of outliers that could be expected from the critical values used
in the outlier detection tests (close to 3.5) and the fact that three types of outliers
are tested for each observation. The numbers in Table 3 can be seen as type I errors
of the test; they are seen to decrease significantly for the long series, in accordance
with the increase in accuracy of AMI.

Identification of the Differencing Polynomial (Unit Root Detection)

An important part of AMI is identification of the non-stationary roots (i.e., the orders
d and ds of the regular and seasonal differencing). Given that d D 0; 1; 2, and
ds=0,1, six combinations (d ,ds) are possible. Table 4 displays the % of errors made
when detecting unit roots in the six groups of series, short and long, separating
the errors made in the detection of d from the errors in the detection of ds , and
distinguishing between errors due to over—or to under—detection. First, it is seen
that the results improve considerably for the long series: doubling the number of
observations cuts—on average—in more than half the proportion of errors. In terms
of identification of the complete differencing polynomial, the % of errors decrease
from 5.6 % (series with 120 observations) to 2.6 % (series with 240 observations).
For all groups, when present, seasonal unit AR roots are captured with less than
1 % of errors; spurious seasonal unit roots occur with the same frequency (<1 %),
except for the case of “non-seasonal model” short series (2.3 %).

As for regular unit AR roots, over-estimation of d in “Other seasonal models”
and under estimation of d in the “Airline model” group for short series present the
highest proportion of errors (about 4 and 3.5 %, respectively). In all other cases the
percentage of errors is below 2.5 % (short series) and 1.5 % (long series).

Table 5 is as Table 4, but the errors are classified according to the orders of the
differencing polynomial of the model generating the series. The largest proportion
of errors is due to regular over-differencing of stationary series (i.e., the group with
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Table 4 Errors in unit root detection (in % of series grouped by type of model)

Regular unit Seasonal unit

roots (d ) roots (ds)

Complete

# of Under Over Under Over differencing

series in esti- esti- esti- esti- polynomial

Group # observ. group mation mation mation mation (d and/or ds)

Airline model 120 8,500 3.5 0.2 0.4 0 4.0

Other-seasonal models 120 8,500 1.6 4.2 0 0.6 6.3

Non-seasonal model 120 8,000 2.4 2.1 0.8 2.3 6.8

Total 120 25;000 2:5 2:1 0:4 1:0 5:6
Airline model 240 8,500 0.6 0.1 0 0 0.7

Other seasonal models 240 8,500 0.2 3.8 0 0.6 4.6

Non-seasonal model 240 8,000 0.6 1.4 0 0.8 2.6

Total 240 25;000 0:4 1:7 0 0:4 2:6

Table 5 Errors in differencing polynomials (in % in grouped by orders of differencing)

Simulated model Errors in d Errors in ds
Regular Seasonal Total errors

differences differences # of obs. # of series Under Over Under Over in diff.

d ds in series in group diff. diff. diff. diff. polynomial

0 0 120 4,500 – 7.4 – 4.4 10.4
240 4,500 – 6.6 – 1.7 7.8

1 0 120 4,000 0.0 1.5 – 1.0 2.5
240 4,000 0.0 0.8 – 0.5 1.2

2 0 120 1,000 12.8 – – 0.6 13.1
240 1,000 1.8 – – 1.2 3.0

0 1 120 1,500 – 4.2 0.7 – 4.9
240 1,500 – 3.2 0.0 – 3.2

1 1 120 13,500 3.7 0.5 0.6 – 4.6
240 13,500 0.8 0.4 0.0 – 1.2

2 1 120 500 3.2 – 1.2 – 4.4
240 500 0.4 – 0.0 – 0.4

Total 120 25;000 2:5 2:1 0:4 1:0 5:6
240 25;000 0:5 1:7 0:0 0:4 2:6

d=ds=0), and of short series with (d D 0,ds=1), to regular under-differencing of
short series with (d D 2,ds D 0), and to seasonal over-differencing of short
stationary series. In all other cases the percentage of errors is in the range (0–3.7 %).

Altogether, the proportion of successes in identifying correctly the complete
differencing polynomial is 94.4 % for the series with 120 observations, and 97.4 %
for those with 240 observations. Most of the errors concern regular differencing
in short series, in particular stationary ones, and are concentrated in the series
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generated with models that have a large and positive AR real root (for example,
0.8, or 0.85). By default, when the estimated root in the model finally obtained
is above 0.92 (seasonal roots) or 0.95 (regular roots), the program sets it equal to 1
and re-estimates the model. Thus, when a stationary and non-stationary specification
seem both possible, AMI tends to favor non-stationarity. This (slight) bias towards
non-stationarity is justified by the fact that ARIMA models are basically short-term
tools, that IMA(1,1) structures are more stable than ARMA(1,1) ones, and that non-
stationary models tend to yield more regular seasonal component and smoother
trend-cycle.

ARMA Model Parameters

Concerning the stationary ARMA model given by (3), Table 6 presents the average
number of parameters per model. This number is remarkably close to the average
number of parameters in the models used to generate the series.

Identification of the ARIMA Model Orders

Next, exact identification of the ARIMA model orders .p; d; q/ .ps; ds; qs/12 is
considered. The first and fourth columns of Table 7 show (in bold values) the
percentage of series in each group for which identification has produced the correct
values for the six-order parameters. It should be kept in mind that by default, the
AMI of TRAMOC considers 384 possible combinations of model orders. Some of

Table 6 Average number
of stationary parameters per
series

120 240 In simulation model

Airline model 1.9 1.8 1.7

Other-seasonal 2.4 2.6 2.6

Non-seasonal 1.5 1.5 1.5

Total 1:93 1:97 1:94

Table 7 Correct identification of the ARIMA model

# obs. Complete model orders Differencing polynomial (d and ds)

in series TSWC X13A-S DemetraC TSWC X13A-S DemetraC
Airline-type 120 78:0 68.6 71.6 96:0 94.8 96.4

Models 240 85:6 79.9 79.9 99:3 98.9 99.3

Other-seasonal 120 47:4 37.3 43.3 93:2 86.5 85.9

Models 240 71:7 50.8 66.3 97:4 86.8 88.5

Non-seasonal 120 69:1 37.8 54.0 93:7 70.4 76.6

models 240 79:4 36.3 64.5 95:4 68.1 80.4

Total 120 64:8 48:1 56:4 94:5 84:2 86:8
240 78:9 56:1 70:3 97:4 84:9 89:6
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these models are close and hence difficult to distinguish when the series is relatively
short. Simple examples are the ARMA(1,1) and IMA(1,1) when the AR parameter
is close to �1; the ARMA(1,1,1) and ARMA(2,1,0) when the roots of the AR(2) are
real and not large; or the ARI(1,1) and IMA(1,1) models when the AR parameter is
small in modulus.

The average group performance varies between a minimum of 1 out of 2 and a
maximum of 6 out of 7 correct identifications of the complete model (short series
with non-seasonal models and long series with Airline-type models, respectively).
Averaging all groups, automatic default run of TRAMOC yields the following
results: the model is correctly identified 2/3 of the time for the series with 120
observations and 4/5 of the time for series with 240 observations.

Identification of unit roots is considerably accurate (the range of success varies
between 93.2 and 99.3 %). Therefore, most of the failures in the identification of
the full model affect the smaller roots of the ARMA polynomials and, as Table 6
suggests, the effect of the misspecification is likely to be moderate.

A Remark on the Default Model

It is a well-known fact that, in practice, the default model (namely, the Airline model
of Eq. (7)) provides a good fit to many economic time series. Table 8 presents the
errors in model identification having to do with cases in which an Airline model is
identified for a series generated with a different model, and in which the generating
model was an Airline model, yet the identified model is not. Table 8 evidences that,
contrary to an often expressed belief, there is no over-detection of Airline models;
rather the opposite is true.

A Comparison of Results

Up to the year 2011, programs TRAMO and SEATS (and TSW) maintained the
basic structure of the Gómez and Maravall (1996) programs, and revisions were
kept moderate. In the year 2001 work was started on new versions that corrected,
completed, and extended the standard ones. This paper presents the AMI results of
the new versions, TRAMOC, SEATSC, and TSWC.

The TRAMO and SEATS programs made available for the routine RegARIMA in
X12-ARIMA and X13-ARIMA-SEATS, and for DEMETRAC, were older versions

Table 8 Errors in airline
model detection (in % of
series in group)

120 240

Airline model 21.9 14.4

Other-seasonal 15.0 6.1

Non-seasonal 0.3 0.2

Total 12:6 7:0
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of the new programs that will eventually be updated (at least, partially). Over the last
2 years, considerable amount of work has been done on the AMI procedure. (Most
notably, the old versions had a tendency to over-difference the series, over-detect
outliers, and over-adjust for seasonality.)

To get a feeling for the differences in AMI between the older and present
versions, X13-ARIMA-SEATS (release version 1.0, build 150) and DEMETRAC
(version 1.0.4.323) were applied to the set of 50,000 series and compared to the
results of TSWC (version 750). Table 7 presents the comparison. It should be
mentioned that the difference between the three AMIs is not simply due to revisions
in the TRAMOC versions. In both, DEMETRAC and X12-ARIMA, when adopting
TRAMO’s AMI, some modifications were made. Still, Table 7 provides a fair idea
of the effects of the TRAMOC revisions on the AMI procedure, and of the relevance
of updating older versions.

TSWC yields the best results. For the Airline-type group, the percentage of
correctly identified models increases by an amount between 6 and 10 percent
points (p.p.). For the groups Other-Seasonal and Non-seasonal the improvement is
considerably larger, most notably when the comparison is made with X12-ARIMA.
(This reflects the fact that the TRAMOC version in the present DEMETRAC
program is more recent.) Notice that the improvement is largest for the group of
Non-seasonal models where the % of successful identification is between 15 and
40 p.p. higher for the case of TSWC. Further, contrary to the case of the Airline-
model group, for the Other-seasonal and Non-seasonal groups, improvement in unit
root detection accounts for an important fraction of the total improvement. In any
event, identification of unit roots is always more successful than identification of the
stationary orders.

3.2.2 Model Diagnostics

Residual Diagnostics and Out-of-Sample Performance

TSWC offers two types of diagnostics. One is aimed at testing the n.i.i.d. assump-
tion on the residuals; the other performs out-of-sample forecast tests. The Normality
assumption is checked with the Behra-Jarque Normality test, plus the skewness
and kurtosis t-tests; the autocorrelation test is the standard Ljung–Box test (with
24 autocorrelations); independence is further checked with a non-parametric t-test
on randomness of the residual sign runs; and the identical distribution assumption
is checked with the constant mean and variance test, that tests, first, for equality of
means between the first and second half of the series residuals; if accepted, equality
of variances is then tested. The out-of-sample checks are, first, a test whereby one-
period-ahead forecast errors are sequentially computed for the model estimated for
the series with the last 18 observations removed (with the model fixed), and an F-test
compares the variance of these errors with the variance of the in-sample residuals.
The second test computes the standardized out-of-sample one-period-ahead forecast
error for each of the series in the group, and computes the proportion that lie beyond
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the 1 % critical value of a t distribution. (The option TERROR, i.e., “TRAMO for
errors,” applied to the full group, directly provides the answer.)

The diagnostic checks for n.i.i.d. residuals are presented in Table 9. Each entry
shows the % of series in the group that fail the test at the 1 % size. All residual
tests perform satisfactorily. The empirical size falls, in all cases, within the range
(0.2–1.3 %), with the N test at the top of the range, and randomness in signs and
lack of autocorrelation lying at the bottom. For 32 of the 36 groups, the empirical
sizes are smaller than the theoretical 1 % one. Sample variation may cause that a
slightly misspecified ARMA model produces slightly better diagnostics, and hence
is selected by AMI. Because of this fact, a bias towards smaller empirical sizes in
the in-sample tests for the simulated series could be expected. Given that the effect
of sample variation should decrease with the length of the series, it seems reasonable
that the long series—as seen in Table 9—are closer to the 1 % (approximate)
theoretical size.

However, the better performance of the misspecified model is unlikely to extend
out of sample, so that the bias towards a smaller size induced by the sampling
variation should be smaller in out-of-sample tests. In fact, as Table 10 shows the
proportion of errors in the out-of-sample forecast tests lies in the interval (1.1–
2.3 %) for the short series. For the long series the interval becomes (0.9–1.5 %),
in agreement with the increased accuracy in model identification.

Seasonality in Residuals

When the models are to be used in seasonal adjustment, it is important to check for
whether seasonality may still remain in the model residuals. Table 11 exhibits the
% of series in each group that show evidence of seasonality according to the same

Table 9 Simulated series: model diagnostics; % of series in group that fail the test

n.i.i.d. assumption on residuals

Series Constant mean Auto- Random

length and variance correlation signs Normality Skewness Kurtosis

Airline model 120 0.8 0.2 0.2 0.9 0.8 0.6

(8,500) 240 0.8 0.3 0.2 1.3 0.8 0.8

Other-seasonal 120 0.6 0.3 0.3 1.2 0.8 0.8

(8,500) 240 0.8 0.4 0.2 1.3 0.9 1.0

Non-seasonal 120 0.7 0.6 0.3 0.7 0.6 0.5

(8,000) 240 0.8 0.6 0.2 0.7 0.7 0.5

Total 120 0:7 0:4 0:3 1:0 0:7 0:6
(25,000) 240 0:8 0:4 0:2 1:1 0:8 0:7
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Table 10 Out-of-sample forecast tests (% of series that fail the test)

Out-of-sample forecast

Series length F-test (18 final periods) t-test (1-period-ahead)

Airline model 120 1.7 1.5
(8,500) 240 1.1 1.2

Other-seasonal 120 2.3 1.2
(8,500) 240 1.5 0.9

Non-seasonal 120 1.9 1.1
(8,000) 240 1.1 0.9

Total 120 2:0 1:3
(25,000) 240 1:2 1:0

Table 11 Seasonality and calendar residual effects (% of residual series in group that show
evidence)

Evidence of seasonality in residuals

Non- Spectral evidence
Series Seasonal parametric Spectral Overall of TD effects in
length autocorrel. test evidence test residuals

Airline model 120 0.0 0.1 0.1 0.0 0.1

(8,500) 240 0.0 0.0 0.1 0.0 0.1

Other-seasonal 120 0.1 0.1 0.1 0.1 0.1

(8,500) 240 0.1 0.2 0.1 0.1 0.1

Non-seasonal 120 0.1 0.2 0.2 0.0 0.1

(8,000) 240 0.1 0.2 0.2 0.1 0.1

Total 120 0:1 0:1 0:2 0:0 0:1
(25,000) 240 0:1 0:1 0:1 0:1 0:1

set of tests as those in Table 2 with the exception of the F-test. For all cases, the
frequency of detecting seasonality in the model residuals is—at most—1 every 500
series; for the overall test, it is—at most—1 every 1,000.

Summary and Conclusions
In so far as time series have different dynamic structures, an appropriate model
for each series needs to be identified. Because all analysts need not be time
series modeling experts, or because, even if they are, the number of series to
be treated is too big—as is often the case in seasonal adjustment—an AMI
procedure is required.

In this paper some evidence on the performance of the AMI procedure in
TRAMOC is discussed. The question addressed is: does the AMI procedure
captures well series that follow ARIMA models? To answer the question,

(continued)
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50,000 series that follow 50 different ARIMA models (stationary and non-
stationary, seasonal and non-seasonal) were simulated. For each model, 500
series with 120 observations and 500 series with 240 observations were
generated.

The series were exponentiated and the resulting 50,000 series were added
to the original ones; then, the log/level test was applied to the 100,000 series.
On average, an error is made every 250 series. As for the detection-of-
seasonality sequence of tests, the final result yields, on average, one error for
every 200 series (short series) and one error for every 500 series (long series).
Further, the full model is correctly identified 2 out of 3 cases (short series)
and 4 out of 5 cases (long series). The complete differencing polynomial (that
allows for regular differencing of order 0, 1, or 2, and seasonal differencing of
order 0 or 1) is correctly identified 94.4 % of the time (short series) and 97.4 %
of the time (long series). Model diagnostics that test the n.i.i.d. assumption for
the residuals are excellent (the size of the test is always 1 %, and the empirical
size is below 1.3 % in all 36 groups), and the two out-of-sample forecast tests
perform satisfactorily (between 1 and 2 % of errors). Concerning seasonality,
no seasonality and no evidence of trading-day effect is left in the residuals
(one error every 1,000 series in about all groups). In conclusion, the AMI in
TRAMOC is a reliable tool for modeling series that follow ARIMA models.

TRAMOC has been applied in automatic mode with all input parameters
set at default values. The automatic procedure can be maintained while some
parameters are changed to non-default values. For example, for series that
fail the Normality test and have no outliers, lowering the critical value for
outlier detection is likely to improve Normality at the price of some additional
outlier. As another example, if favoring non-stationarity is desired, one may
change the default critical value of the unit root parameters. Or, to get better
results for the longer series, one may remove some of the early periods. But
the purpose of this paper was to show the performance of TRAMOC when
run automatically by default, i.e. blindly, on a large number of series.
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Panel Model with Multiplicative Measurement
Errors

Hans Schneeweiss, Gerd Ronning, and Matthias Schmid

Abstract The analysis of panel data is a common problem in economic research.
Because panel data are often subject to measurement error, it is important to develop
consistent statistical estimation techniques that take the measurement error into
account. A related problem is given when statistical offices anonymize confidential
panel data before publication. In this case, artificial “measurement” errors are often
imposed on the data to prevent the disclosure of the identity of observations.
Consequently, the anonymized data can be analyzed by using the same statistical
techniques as those for measurement error models. While most articles in the
literature deal with the analysis of additive measurement errors, this paper is
concerned with the estimation of a panel data model when multiplicative error is
present. Using the generalized method of moments (GMM), we construct consistent
estimators of the parameters of the panel data model and compare them to traditional
estimators that are based on the least squares principle.

1 Introduction

In this paper we analyze the effect of the superposition of multiplicative measure-
ment errors on the estimation of a panel data model. Panel data consists of doubly
indexed random variables like xnt and ynt, n D 1; : : : ; N , t D 1; : : : ; T , where
N is the number of items (e.g., individuals, households, companies) and T is the
number of time periods (waves). A linear relation between xnt and ynt is assumed
to hold, which is the subject of the analysis. Typically N is large and T is small.
So asymptotic results will always be concerned with N going to infinity. A main
assumption is the independence assumption between items n.
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The variables xnt and ynt are assumed to be contaminated with measurement
errors, which are independent of the underlying true values �nt and �nt, respectively.
The problem is to estimate the true linear relation between �nt and �nt when
the variables can only be observed as error contaminated variables xnt and ynt,
respectively. The errors may be of an additive or a multiplicative nature. Here we
are mainly concerned with multiplicative measurement errors.

The variances (and covariance) of the errors may be known or unknown. Both
cases occur in practice. In particular, known error variances occur when errors are
deliberately added to the original true data by data collecting agencies in order
to protect them from identification. Because the majority of officially collected
data are confidential and can therefore not be distributed to data users in their
original form, statistical offices often anonymize data before publication by using
a number of anonymization techniques (Hundepool 2012; Ronning et al. 2005;
Schmid 2007; Willenborg and de Waal 2001. One such technique, applicable to
continuous variables, is to superimpose random errors on the original data either
in an additive or a multiplicative way (Abowd et al. 2005). The error contaminated
data are then released to the (scientific) public together with the error variances. An
advantage of this anonymization technique is that econometricians can analyze the
data in the same way as they would analyze data with measurement errors (Biewen
and Ronning 2008; Ronning et al. 2005). Multiplicative errors are preferred to
additive errors because they protect large values of the true variables, which are
often the more sensitive values, better than additive errors. Multiplicative errors
have, for example, been recommended as anonymization technique for statistical
offices in Germany (Ronning et al. 2005). This is the case we are investigating in
the present paper.

There are a number of papers on panel data models with additive measurement
errors (Biorn 1996; Biorn and Krishnakumar 2008; Griliches and Hausman 1986;
Hsiao and Taylor 1991; Wansbeek 2001; Wansbeek and Koning 1991). However,
there are much fewer papers on multiplicative errors in panel data (Ronning and
Schneeweiss 2009; Schneeweiss and Ronning 2010; Ronning and Schneeweiss
2011). Multiplicative measurement errors in other models are treated in, e.g., Carroll
et al. (2006), Hwang (1986), and Lin (1989).

In the papers by Ronning and Schneeweiss on multiplicative errors, the parameter
estimation is based on a correction of within least squares. The present paper goes
beyond this approach in so far as it adds more estimating equations resulting from
the use of lagged variables as instrumental variables. The estimating equations are
then aggregated in order to yield a GMM estimator. This approach is very similar to
Wansbeek (2001) approach except that here multiplicative errors instead of additive
errors are the subject of the study. This, however, implies that some additional
nuisance parameters, which do not occur in the additive case, have to be dealt with.

For the sake of simplicity, we deal only with one error ridden exogenous (and
one endogenous) variable just as in Wansbeek (2001). A further simplification
as compared to Wansbeek is that we do not include error free variables in the
model equation in addition to the error contaminated variables and we assume serial
independence in the errors. On the other hand, we incorporate in our model the
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possibility of a correlation between the measurement errors of the exogenous and
the endogenous variables. We also construct a different weighted GMM estimator.

The paper is organized as follows: in Sect. 2 we formally introduce the panel data
model and provide details on anonymization by multiplicative errors. In Sects. 3
and 4 we derive new GMM estimators for the error contaminated panel data model.
Section 5 contains some remarks on related estimators, especially on the least
squares estimator derived in Ronning and Schneeweiss (2011). Section 6 contains
a simulation study on the theoretical results derived in Sect. 3. Section 7 considers
a real-world example on the econometric analysis of an officially collected data
set. A summary and discussion of the results is given in section “Conclusion and
Discussion”.

2 The Model

A panel consists of a sample of N items, n D 1; : : : ; N , observed in T waves,
t D 1; : : : ; T . For each pair .n; t/ we have a pair of real variables .�nt; �nt/, which,
however, are not directly observable. We assume a linear relation between �nt and
�nt as follows:

�it D ˛n C �ntˇ C "nt; (1)

where ˛n is the individual effect, giving rise to unobserved heterogeneity. ˇ is the
slope parameter to be estimated. All variables including the ˛n are assumed to be
random.

The “errors in the equation” "nt follow the usual assumptions: they are iid with
mean 0 and variance �2" , and they are independent of the ˛n and �nt and also
independent of the measurement errors to be introduced below.

We assume that the vectors .˛n; �n1; � � � ; �nT/, n D 1; : : : ; N , are iid. We
therefore often simply omit the index n in the sequel (i.e., we study a randomly
drawn arbitrary item n from the sample).

We make no assumptions about the joint distribution of .˛n; �n1; : : : ; �nT /

except that the moments as far as necessary exist. In particular, the �nt may be
autocorrelated and the ˛n may be correlated with the �nt.

Instead of the latent variables �nt and �nt, we observe error ridden manifest
variables xnt and ynt, which are the original variables contaminated with error. In
the case of additive errors they are given by

xnt D �nt C vnt;

ynt D �nt C wnt; (2)

and for multiplicative errors by

xnt D �ntVnt;

ynt D �ntWnt; (3)
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with Vnt D 1 C vnt and Wnt D 1 C wnt. In both cases, the pairs .vnt;wnt/ are iid
with mean vector (0, 0) and variances �2v , �2w, and with covariance �vw. In the case
of masking the data by error perturbation, which is the case we are considering
here, these parameters are supposed to be known. The errors are assumed to be
independent of all the .�nt; �nt/.

Note that in the case of multiplicative errors vnt and wnt are dimensionless. They
should be greater than �1, but this property will not be used in the sequel.

3 Estimating Equations for ˇ

Here we mainly study multiplicative errors; additive errors will be mentioned only
as an aside.

We first have to eliminate the individual effects ˛n. We do this by switching to
deviations from the time mean. Let mxn D 1

T

PT
tD1 xnt and Qxnt D xnt � mxn. The

same notation is used for all the other variables. The model equations (1) and (3)
then become

Q�nt D Q�ntˇ C Q"nt;

Qxnt D Q�nt CA�ntvnt; (4)

Qynt D Q�nt CA�ntwnt:

In the following we omit the index n, i.e., we write xt instead of xnt etc.
In order to derive a GMM estimator, we first collect all the mixed moments of xt

and Qys , t D 1; : : : ; T , s D 1; : : : ; T . Using (4) and the independence assumptions
between measurement errors, equation error, and latent variables, we find

Ext Qys D Ext . Q�s C e�sws/
D Ext Q�sˇ C Ext e�sws

D Ext . Qxs �e�svs/ˇ C E�t vt e�sws

D ŒExt Qxs � E�tvte�svs�ˇ C E�tvt e�sws

D ŒExt Qxs � �2v E�2t .ıts � 1
T
/�ˇ C �vwE�t �t .ıts � 1

T
/:

Under the assumption that �2v and �vw are known, we thus have the following
provisional set of T 2 equations for the unknown scalar parameter ˇ:

Ext Qys � �vwE�t �t .ıts � 1
T
/ D ŒExt Qxs � �2v E�2t .ıts � 1

T
/�ˇ: (5)
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However, they contain the nuisance parameters E�2t and E�t�t , which have to be
eliminated.

The equation xt D �t C �t vt implies

Ex2t D E�2t .1C �2v /

and thus

E�2t D
1

1C �2v
Ex2t :

Similarly,

E�t �t D 1

1C �vw
Extyt :

Substituting these identities into (5) we finally get the following set of T 2 equations:

Ext Qys � �vw

1C �vw
Extyt .ıts � 1

T
/ D

	
Ext Qxs � �2v

1C �2v
Ex2t .ıts � 1

T
/



ˇ: (6)

There are redundancies in these equations. To see this more clearly and also for
the further development, it is helpful to write (6) in matrix form. To this end, given
any particular item n, let us introduce a time series vector x for the xt , i.e., x WD
.x1; : : : ; xT /

>, again omitting the index n. The vectors y; Qy; Qx, etc. are similarly
defined. Let A D I � 1

T
��> be the centralization matrix such that, e.g., Qy D Ay.

Here I D IT is the unit matrix and � D �T is the T -dimensional vector consisting of
ones. For any square matrix S let diagS be a diagonal matrix of the same size and
having the same diagonal elements as S . Then (6) can be written as

A

	
Eyx> � �vw

1C �vw
diag.Eyx>/



D A

	
Exx> � �2v

1C �2v
diag.Exx>/



ˇ:

(7)

The redundancies in this equation system are now clearly seen: Multiplying both
sides of (7) from the left by �> results in T -dimensional zero-vectors on both sides.

The next step will be to arrange the T 2 equations for ˇ in a column. We do this
by applying the vec operator to (7). For any matrix B , vecB is the vector consisting
of the columns of B stacked one underneath the other. Let D and C denote the
matrices on the left and right sides of (7), respectively, without the expectation sign,
so that (7) reads

ED D ECˇ:
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Let d D vecD and c D vecC , then (7) turns into

Ed D Ecˇ: (8)

There are several ways to write c and d . For example, using the identities
vec.A1A2/ D .I ˝ A1/vecA2 for matrices and vec.a1a>

2 / D a2 ˝ a1 for vectors,

c WD .IT ˝ A/
	
x ˝ x � �2v

1C �2v
vec diag.xx>/



;

d WD .IT ˝ A/
	
x ˝ y � �vw

1C �vw
vec diag.xy>/



: (9)

Note that

.I ˝ �>/c D .I ˝ �>/d D 0; (10)

in accordance with the remark after (7).
Now we derive the GMM estimator for ˇ from (8), written in the form

E.d � cˇ/ D 0:

We replace the expectation sign E by the averaging operator 1
N

P
n, i.e., we replace

Ed by Nd D 1
N

PN
nD1 dn and Ec by Nc D 1

N

PN
nD1 cn, and minimize the quadratic

form

. Nd � Ncˇ/>V. Nd � Ncˇ/ (11)

with some positive definite weight matrix V that has to be chosen. The simplest
choice is V D I , yielding the unweighted GMM estimator as a least squares
solution:

Ǒ D . Nc> Nc/�1 Nc> Nd : (12)

Under general conditions, the unweighted GMM estimator is consistent and asymp-
totically normal. Its asymptotic variance can be derived from the estimating error

Ǒ � ˇ D . Nc> Nc/�1 Nc>. Nd � Ncˇ/:

and is given by

asvar. Ǒ/ D 1
N
. Nc> Nc/�1 Nc>W Nc. Nc> Nc/�1

with

W D E.d � cˇ/.d � cˇ/>;
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which can be consistently estimated by

OW D .d � c Ǒ/.d � c Ǒ/>:

According to general GMM theory, W �1 (or rather its estimate OW �1) would be
an optimal weight matrix. However, in this particular case, W (and also OW ) turns
out to be singular and therefore cannot be used as a weight matrix. Indeed, because
of (10), .I ˝ �0/W D 0 (and also .I ˝ �0/ OW D 0). A way out might be to use
certain reduced vectors c� and d� instead of c and d . Let the .T � 1/ � T matrix
J be defined by J D .IT�1; 0/, where 0 is a (T-1)-dimensional zero-vector, and let
c� D Kc and d� D Kd , where K D IT ˝ J . The vector c� is derived from c by
deleting every T ’th element from c and similarly for d�. Obviously,

E.d� � c�ˇ/ D 0;
and thus

ˇ� WD . Nc�> Nc�/�1 Nc�> Nd� (13)

is a consistent asymptotically normal estimator of ˇ with

asvar.ˇ�/ D 1
N
. Nc�> Nc�/�1 Nc�>W � Nc�. Nc�> Nc�/�1; (14)

whereW � D E.d� � c�ˇ/.d� � c�ˇ/>, which can be estimated by

OW � D .d� � c�ˇ�/.d� � c�ˇ�/>: (15)

Note that ˇ� D Ǒ for T D 2.
A weighted GMM estimator can now be constructed by

Ǒ
GMM WD . Nc�> OW ��1 Nc�/�1 Nc�> OW ��1 Nd� (16)

with asymptotic variance

asvar. ǑGMM/ D 1
N
. Nc�>W ��1 Nc�/�1; (17)

where again W � is estimated by (15). (Another estimator of W � may be used by
replacing ˇ� with Ǒ in (15), but we will not do so here.)

4 Estimating � 2"

For any of the time series of the model, say for x D .x1; : : : ; xT /, define the variance
s2x D 1

T�1
P

t Qx2t , adjusted for degrees of freedom, and the quadratic momentmxx D
1
T

P
t x

2
t . Then the model equations (4) together with (3) imply
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Es2� D Es2� ˇ
2 C �2" ;

Es2y D Es2� C �2wEm��;

Es2x D Es2� C �2v Em��;

Emyy D .1C �2w/Em��;

Emxx D .1C �2v /Em��:

Putting these equations together, we get

�2" D Es2y �
�2w

1C �2w
Emyy �

�
Es2x �

�2v
1C �2v

Emxx

�
ˇ2; (18)

which implies the following estimator of �2" :

O�2" D s2y �
�2w

1C �2w
myy �

�
s2x �

�2v
1C �2v

mxx

�
Ǒ2; (19)

where again the bar indicates averaging over the items n. Here Ǒ may be any of the
above estimates of ˇ, preferably ǑGMM .

5 Remarks

5.1 Additive Measurement Errors

If we have additive measurement errors (2) instead of multiplicative errors (3),
Eq. (8) is replaced with

Eda D Ecaˇ;

where

ca WD .IT ˝ A/


x ˝ x � �2v vecI

�
;

da WD .IT ˝ A/ Œx ˝ y � �vwvecI � ;

from which the various estimators of ˇ follow in the same way as in Sect. 3. For
instance, the unweighted GMM of ˇ is

Ǒ
a D . Nc>

a Nca/�1 Nc>
a
Nda; (20)
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and �2" is estimated by

O�2" D s2y � �2w �
�
s2x � �2v

� Ǒ2: (21)

Note that O�2" may become negative. To avoid this, one can modify the estimator
along the line of Cheng et al. (2000), but we will not follow up this line.

5.2 The Within Least Squares Estimator

It is always possible to omit some of the equations (6). In particular, if we retain
only the equations with t D s, these are

Ext Qyt � �vw

1C �vw
Extyt .1 � 1

T
/ D

	
Ext Qxt � �2v

1C �2v
Ex2t .1 � 1

T
/



ˇ: (22)

Summing over t and dividing by T � 1 we get

Esxy � �vw

1C �vw
Emxy D

	
Es2x �

�2v
1C �2v

Emxx



ˇ; (23)

from which we derive the following estimating equation for the error-corrected
Within Least Squares (LS) estimator of ˇ:

sxy � �vw

1C �vw
mxy D

	
s2x �

�2v
1C �2v

mxx



Ǒ
LS; (24)

the solution of which is

Ǒ
LS D

sxy � �vw
1C�vw

mxy

s2x � �2v
1C�2v mxx

: (25)

This is the same estimator as in Ronning and Schneeweiss (2011). Its efficiency as
compared to the (weighted) GMM estimator ǑGMM of (16) is one of the issues of the
ensuing simulation study. Its asymptotic variance can be estimated by

1asvar. ǑLS/ D 1
N
.s2x � �2v

1C�2v mxx/
�2Œsxy � �vw

1C�vw
mxy � .s2x � �2v

1C�2v mxx/ ǑLS�2:

(26)

In an error free panel model ǑLS is optimal, as it is simply the LS estimator
of a linear model with N dummy variables, one for each ˛n, e.g., Baltagi (2005).
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This might imply that ǑGMM would be inferior to ǑLS. However, one can show that
in the error free panel model ǑLS and ǑGMM have the same asymptotic properties,
in particular they have the same asymptotic variance (see Appendix). This does
not mean that the same holds true for error contaminated panel models in general,
though for some models, depending on the �t -process, it may well be so, while for
others the two estimators differ in their asymptotic properties. They may also differ
in their finite sample properties, as is shown in the subsequent simulation study.

6 Simulation Study

In order to investigate the finite sample behavior of the proposed estimators and
also to study the dependence of the asymptotic variances of the estimators on the
model parameters, we carried out a simulation study using different sample sizes
and parameter settings. All simulations are based on a first order autoregressive
panel model with normally distributed variables �nt with variance V.�nt/ D 22 and
with correlation coefficients cor.�nt; �n.t�s// D �t�s; j�j < 1; for all s � t (i.e.,
we assume the �nt to follow a stationary AR(1)-process). The slope parameter ˇ
in model (1) was set to 1 throughout, and the residual variance was kept fixed at
�2� D 1. The individual effects ˛n were generated from a normal distribution with
mean 1 and standard deviation 2.

Concerning the correlation parameter �, we considered two values (� D 0:5; 0:7),
which corresponded to the realistic case of positively autocorrelated data. Also, we
note that similar values of � were observed in a real-world study on panel data
conducted by Biewen and Ronning (2008). We further considered three values of the
standard deviation �v (�v D 0:2; 0:3; 0:4, corresponding to measurement errors of
20, 30, and 40%, respectively, on average). Note that we assume �v to be known in
advance; this setting is typical in situations where a statistical office (or some other
data holder) releases a set of anonymized data and communicates the value of �v to
data analysts. As we were solely interested in the effect of measurement errors in the
regressor variable, we did not contaminate the response variable with measurement
errors, implying that we set �2w D �vw D 0. For each parameter combination 1,000
simulation runs were carried out.

Qualitatively, due to the multiplicative nature of the measurement errors, we
expect the effect of the multiplicative error on the performance of the estimators
to depend on the expression

� D �2v
E.m��/

E.s2� /
; (27)

so that both the variance of the �t ; t D 1; : : : ; T , and the arithmetic mean of their
squares affect the estimation results. This expression may be contrasted with the
similar construct of the noise-to-signal ratio �2v =�

2
� in the context of a linear cross
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section model with additive measurement errors, e.g., Cheng and Van Ness (1999).
The new panel variant � of the noise-to-signal ratio can be justified by the following
reasoning: When we consider a linear cross section model �n D ˛ C ˇ�n C "n
with multiplicative measurement error and write the measurement equation in the
form xn D �n C �nvn, it is seen that the term �nvn corresponds to an additive
(though heteroscedastic) measurement error. The noise-to-signal ratio would then
turn into E�2�2v =�

2
� . In the panel model with multiplicative measurement errors

we then simply replace �2� with Es2� and E�2 with Em�� . We thus obtain the
panel variant (27) of the noise-to-signal ratio. It can be estimated by replacing the
expectation sign in (27) with the averaging operator 1

N

P
n. In the special case of a

stationary AR(1) �t -process with E�nt D �� and V�nt D �2� , � becomes

� D �2v .1C
�2�

�2�
/
. 


1 � 2
T�1f.1 � 1

T
/�C .1 � 2

T
/�2 C � � � C 1

T
�T�1g� : (28)

Clearly � increases with increasing �v, increasing ��=�� and increasing �, and one
can show that it decreases with increasing T .

To start with, we set E.�nt/ D 0 and considered the small sample behavior of
the proposed estimators for N D 100. In this case, for T D 2, the expression (28)
becomes equal to � D 2 � �2v if � D 0:5 and equal to � D 3:33 � �2v if � D 0:7.
Similarly, for T D 8, (28) becomes equal to � D 1:27 � �2v if � D 0:5 and
equal to � D 1:68 � �2v if � D 0:7. Consequently, we expect the magnitude of the
estimation error to be positively correlated with � and to be negatively correlated
with the value of T . Tables 1 (corresponding to T D 2) and 2 (corresponding
to T D 8) show the mean estimates of ˇ, as obtained from the weighted GMM
estimator ǑGMM in (16) and the LS estimator ǑLS in (25). In addition, Tables 1 and 2
contain the standard deviation estimates of the estimators (that were obtained by
computing the finite sample variances of the 1,000 values of ǑGMM and ǑLS) and
the respective mean squared error (MSE) values. Also, they contain the average
estimated asymptotic standard deviations of the two estimators (as obtained from
estimating the asymptotic variances given in (17) and (26)).

Table 1 Results of the simulation study, as obtained from 1,000 simulation runs with E.�nt/ D 0,
T D 2 and N D 100

ǑGMM ǑLS

� �v Mean sd MSE as. sd Mean sd MSE as. sd

0.5 0.2 1.00 0.085 0.0072 0.079 1.00 0.084 0.0071 0.080

0.3 1.00 0.098 0.0096 0.091 1.00 0.098 0.0096 0.094

0.4 1.02 0.120 0.0148 0.110 1.01 0.120 0.0145 0.110

0.7 0.2 1.01 0.110 0.0122 0.110 1.01 0.110 0.0122 0.110

0.3 1.02 0.130 0.0173 0.130 1.01 0.130 0.0170 0.130

0.4 1.02 0.180 0.0328 0.160 1.02 0.180 0.0328 0.170
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Table 2 Results of the simulation study, as obtained from 1,000 simulation runs with E.�nt/ D 0,
T D 8 and N D 100

ǑGMM ǑLS

� �v Mean sd MSE as. sd Mean sd MSE as. sd

0.5 0.2 1.00 0.030 0.0009 0.015 1.00 0.026 0.0007 0.025

0.3 1.00 0.034 0.0012 0.016 1.00 0.030 0.0009 0.029

0.4 1.00 0.039 0.0015 0.018 1.00 0.034 0.0012 0.033

0.7 0.2 1.00 0.036 0.0013 0.016 1.00 0.029 0.0008 0.029

0.3 1.00 0.041 0.0017 0.018 1.00 0.034 0.0012 0.033

0.4 0.99 0.046 0.0022 0.020 1.00 0.040 0.0016 0.039

From Table 1 it is seen that the two estimators ǑGMM and ǑLS are almost unbiased,
even if the sample size is as small as N D 100. However, there is a clearly visible
pattern in the standard error estimates: As expected, the variances of the estimators
(and also their MSE values) become larger as the correlation � between the panel
waves increases from � D 0:5 to � D 0:7. The same result is observed if the variance
�2v is increased for fixed �. Interestingly, the least squares estimator ǑLS performs
better than the weighted GMM estimator ǑGMM w.r.t. to the MSE criterion, although
the former estimator is based on less information (i.e., fewer moments) than ǑGMM .
Apparently, ǑLS is more robust than ǑGMM w.r.t. to random variations in the data.
The same results hold true if T is increased from T D 2 to T D 8 (see Table 2),
where the standard errors and the MSE values of the estimators decreased because
of the larger number of waves (and the resulting increase of information contained
in the data). Concerning the estimation of the asymptotic standard deviations of
the estimators, it is seen that the estimators of asvar. ǑGMM/ and asvar. ǑLS/ tend to
underestimate the true variances of ǑGMM and ǑLS, respectively, the former more
so than the latter. This is apparently a small-sample phenomenon as it almost
completely vanishes for N D 1;000, see Table 3. Note that the estimates of the
asymptotic variances depend on forth moments of the data [see (17) and (26)], and
these are notoriously rather unstable.

Tables 3 and 4 show the behavior of the estimators ǑLS and ǑGMM if the sample
size is increased from N D 100 to N D 1;000. Our hypothesis was that,
given the increased amount of information contained in the data, the weighted
GMM estimator ǑGMM exploits this information to a larger degree than the least
squares estimator ǑLS and hence results in smaller standard errors and MSE values.
However, as seen from Tables 3 and 4, the least squares estimator still shows a very
good behavior. In fact, the results obtained from ǑGMM and ǑLS are almost identical.

In addition to the results presented in Tables 1, 2, 3, and 4, we also compared the
weighted GMM estimator to the unweighted GMM estimator Ǒ in (12). We do not
present the respective simulation results here, as the unweighted GMM estimator
performed worse than the weighted GMM estimator in all analyzed settings (w.r.t.
both bias and variance) and is hence not recommended for practical use.
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Table 3 Results of the simulation study, as obtained from 1,000 simulation runs with E.�nt/ D 0,
T D 2 and N D 1;000

ǑGMM ǑLS

� �v Mean sd MSE as. sd Mean sd MSE as. sd

0.5 0.2 1.00 0.025 0.0006 0.026 1.00 0.025 0.0006 0.026

0.3 1.00 0.032 0.0010 0.030 1.00 0.032 0.0010 0.030

0.4 1.00 0.036 0.0013 0.036 1.00 0.036 0.0013 0.036

0.7 0.2 1.00 0.035 0.0012 0.034 1.00 0.035 0.0012 0.034

0.3 1.00 0.043 0.0018 0.042 1.00 0.042 0.0018 0.042

0.4 1.00 0.054 0.0029 0.053 1.00 0.054 0.0029 0.054

Table 4 Results of the simulation study, as obtained from 1,000 simulation runs with E.�nt/ D 0,
T D 8 and N D 1;000

ǑGMM ǑLS

� �v Mean sd MSE as. sd Mean sd MSE as. sd

0.5 0.2 1.00 0.0081 0.0000656 0.0076 1.00 0.0079 0.0000624 0.0080

0.3 1.00 0.0095 0.0000903 0.0087 1.00 0.0093 0.0000865 0.0092

0.4 1.01 0.0110 0.0002210 0.0098 1.00 0.0100 0.0001000 0.0106

0.7 0.2 1.00 0.0094 0.0000884 0.0087 1.00 0.0090 0.0000810 0.0091

0.3 1.00 0.0110 0.0002210 0.0099 1.00 0.0110 0.0002210 0.0106

0.4 1.01 0.0130 0.0002690 0.0110 1.00 0.0130 0.0001690 0.0120

Table 5 Results of the simulation study, as obtained from 1,000 simulation runs with E.�nt/ D 8,
T D 2 and N D 100

ǑGMM ǑLS

� �v Mean sd MSE as. sd Mean sd MSE as. sd

0.5 0.2 1.04 0.33 0:1105 0.26 1:11 0.62 0.3965 0.42

0.3 0.95 2.25 5:0650 2.15 1:44 6.58 43.4900 26.09

0.4 0.66 3.65 13:4381 5.66 1:27 17.12 293.1673 191.03

0.7 0.2 0.96 1.29 1:6657 0.82 1:94 23.70 562.5736 210.30

0.3 0.62 1.57 2:6093 1.63 �4:11 100.03 10,032.11 10,173.44

0.4 0.27 0.95 1:4354 1.15 �0:20 18.88 357.8944 393.88

Next, we increased E.�nt/ from 0 to 8, implying that the expression (28) increased
by the factor 17. The results for N D 100 and T D 2 are presented in Table 5.
Obviously, according to the MSE values, the weighted GMM estimator is clearly
preferable to the LS estimator (which is now extremely volatile). If T is increased
to 8, however, the LS estimator performs better than the weighted GMM estimator
w.r.t. the MSE criterion (Table 6). This is mostly due to the relatively large bias of
the weighted GMM estimator, whereas the LS estimator shows only little bias in
this case.
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Table 6 Results of the simulation study, as obtained from 1,000 simulation runs with E.�nt/ D 8,
T D 8 and N D 100

ǑGMM ǑLS

� �v Mean sd MSE as. sd Mean sd MSE as. sd

0.5 0.2 0.76 0.150 0.0801 0.034 1.00 0.066 0.0044 0.065

0.3 0.68 0.170 0.1313 0.039 1.00 0.130 0.0169 0.127

0.4 0.54 0.140 0.2312 0.038 1.02 0.250 0.0629 0.232

0.7 0.2 0.45 0.173 0.3324 0.037 1.03 0.089 0.0088 0.084

0.3 0.36 0.170 0.4385 0.039 1.05 0.190 0.0386 0.171

0.4 0.28 0.140 0.5380 0.035 1.08 0.370 0.1433 0.343

Table 7 Results of the simulation study, as obtained from 1,000 simulation runs with E.�nt/ D 8,
T D 2 and N D 1;000

ǑGMM ǑLS

� �v Mean sd MSE as. sd Mean sd MSE as. sd

0.5 0.2 1.01 0.08 0.0065 0.08 1.01 0:08 0:0065 0:08

0.3 1.01 0.17 0.0290 0.15 1.03 0:18 0:0333 0:17

0.4 1.04 0.38 0.1460 0.28 1.15 1:62 2:6469 1:05

0.7 0.2 1.01 0.13 0.0170 0.12 1.02 0:14 0:0200 0:14

0.3 1.06 0.55 0.3061 0.27 1.12 0:66 0:4500 0:43

0.4 0.95 0.77 0.5954 0.50 1.30 14:92 222:6233 90:04

Table 8 Results of the simulation study, as obtained from 1,000 simulation runs with E.�nt/ D 8,
T D 8 and N D 1;000

ǑGMM ǑLS

� �v Mean sd MSE as. sd Mean sd MSE as. sd

0.5 0.2 1.00 0.022 0.000484 0.017 1.00 0.021 0.000441 0.021

0.3 0.98 0.036 0.001696 0.027 1.00 0.038 0.001444 0.039

0.4 0.92 0.058 0.009764 0.038 1.01 0.067 0.004589 0.065

0.7 0.2 0.99 0.026 0.000776 0.020 1.00 0.026 0.000676 0.026

0.3 0.96 0.045 0.003625 0.030 1.00 0.051 0.002601 0.051

0.4 0.87 0.069 0.021661 0.040 1.01 0.086 0.007496 0.087

Finally, we increased the sample size from N D 100 to N D 1;000. The results
(presented in Tables 7 and 8) show a very similar pattern as the results forN D 100:
For small T , the weighted GMM estimator is clearly preferable to the LS estimator
due to its smaller MSE values. Conversely, if T is increased from 2 to 8, the LS
estimator performs better w.r.t. the MSE criterion (which is mostly due to the smaller
bias of the LS estimator if compared to the weighted GMM estimator).

Based on the results of the simulation study, we conclude that the LS estimator
performs surprisingly well, but also that the weighted GMM estimator is to be
preferred if the amount of measurement error is large and if the number of waves
(and hence the amount of available information in the data) is small.
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7 An Empirical Example

We illustrate our results obtained from simulations by an empirical example. The
data have first been used by Dahlberg and Johansson (2000) and can be obtained
from the data archive of Journal of Applied Econometrics.1 They consider the—
dynamic—impact of both tax income and grants (from the central government) on
the expenditure behavior of 265 municipalities in Sweden during T D 9 subsequent
years (1979–1987). The authors were primarily interested in the lag structure of
the two kinds of revenues. Their main finding based on bootstrapped test statistics
was that tax income has an 1-year lagged impact whereas no dynamic effect was
found in case of grants. Since our own analysis is constrained to the case of a
single regressor, we will aggregate both revenue categories, which, by the way,
has also been suggested by Dahlberg and Johansson (2000, p. 407). We call the
resulting regressor variable x “total revenues,” which is related to the dependent
variable “total expenditures” denoted by y. Furthermore, we will consider only the
contemporaneous relation disregarding any dynamic structure.

In order to illustrate our theoretical results, we anonymize the Swedish data set
by multiplicative errors with various values of �v (in the same way as in Sect. 6)
and compare the results from this panel regression with results obtained from the
original data. The mean of the eight first order autocorrelation coefficients of the
�nt; t D 1; : : : ; 9, was estimated to be 0.89. The expressions E.m��/ and E.s2� /

were estimated to be 0.0003583428 and 0.0000028918, respectively. Consequently,
the coefficient � was estimated with the help of (27) to be 123:92 � �2v . Because the
value 123.92 is very large, we subtracted the overall empirical mean of the total
revenues (which was estimated to be 0.01865859) from both the regressor and the
dependent variable. This will not change the value of ˇ in the model. If all �nt are
replaced with ��

nt D �nt C c, where c is a constant, then � changes to

�� D �
�
1C 2cEm� C c2

Em��

�
; (29)

with m� D 1
T

P
t �nt, as can be seen from (27). As a result, with c D �0:01865859,

� became approximately equal to 3:53��2v . This value is comparable to � D 3:28��2v ,
which is the value that we would have obtained from (28) for � D 0:89, T D 9,
and �� D 0. Note that T D 9 is in close agreement with the value T D 8 used in
the simulations. Last but not least it should be noticed that the estimated regression
coefficient ˇ will be close to 1.0 since total expenditures consist mainly of tax and
grants.2

1See http://econ.queensu.ca/jae/.
2The estimated coefficient obtained from a pooled regression is 0.955.

http://econ.queensu.ca/jae/
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The results obtained from the weighted GMM estimator ǑGMM and from the
least squares estimator ǑLS are presented in Table 9. As expected, the values of
the estimators are close to 1.0 in case the data are not anonymized (�v D 0).
Also, there is almost no difference between the estimates based on the non-
anonymized data (�v D 0) and the estimates based on the anonymized data
(�v > 0). This result indicates that on average the original estimates can be
preserved very well by the two estimators, despite the anonymization of the data.
On the other hand, anonymization causes an efficiency loss that is expressed in
the asymptotic variance estimates shown in Table 9: As expected, the estimated
asymptotic variances of both estimators increase as �v increases. It is also seen from
Table 9 that the weighted GMM estimator is superior to the LS estimator in this
case, as the estimated asymptotic variance of the latter estimator is larger for all
values of �v.

Interestingly, there is quite a large difference between the two estimators
even in the non-anonymized case. This result is somewhat surprising, as the
weighted GMM and the LS estimators should be equal in the limit. A possible
explanation for this result might be that the sample size (N D 265) is too small
for the asymptotic theory (on which the two estimators are based) to become
effective. Another explanation might be that some of the assumptions on which
the estimators are based are not satisfied in case of the data by Dahlberg and
Johansson. For example, errors might be heteroscedastic, or the effect of the total
revenues on total expenditures might vary across the municipalities (implying that
ˇ depends on n). To investigate this issue, it would be possible, for example, to
base statistical analysis on a mixed-model approach with flexible error structure
(Verbeke and Molenberghs 2000). To our knowledge, however, no estimators for
mixed models that take into account multiplicative measurement errors have been
developed yet.

In the final step, we standardized the data such that the expression (27) increased
by the factor 17 (as in the second part of our simulation study, so that � D
17 � 3:53 � �2v ). This was done by subtracting the constant 0.0058835 from the
values of both the original regressor and the dependent variable and referring
to (29). The results are presented in Table 10. Obviously, with the amount of
noise being much larger than in Table 9, there is a clear effect of the error
variance �2v on the finite-sample bias of both estimators. While anonymization
seems to induce a downward bias in the weighted GMM estimator, the LS
estimator seems to be upward-biased. On the other hand, the asymptotic variance
estimates shown in Table 10 again suggest that the weighted GMM estimator
is probably superior to the LS estimator in case of the data by Dahlberg and
Johansson.
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Table 9 Results obtained
from the analysis of the data
set by Dahlberg and
Johansson (2000)

ǑGMM ǑLS

�v Mean sd (asymptotic) Mean sd (asymptotic)

0.0 0.88 0.0093 0.81 0.0171
0.0 0.87 0.0090 0.81 0.0170

0.1 0.87 0.0096 0.81 0.0181

0.2 0.87 0.0110 0.81 0.0210

0.3 0.87 0.0130 0.82 0.0270

0.4 0.87 0.0150 0.82 0.0350

The estimated standard deviations were obtained by applying formulas (17) and (26). As explained
in Sect. 7, data values were standardized such that the expression (27) became equal to 3:53 � �2v .
All estimates represent the mean results obtained from 1,000 randomly generated sets of the error
variable vnt. The first data line (in bold face) contains the estimates that were obtained from the
original data with �2v D 0 and without standardization

Table 10 Results obtained
from the analysis of the data
set by Dahlberg and
Johansson (2000)

ǑGMM ǑLS

�v Mean sd (asymptotic) Mean sd (asymptotic)

0.0 0.88 0.0093 0.81 0.0171
0.0 0.88 0.0093 0.81 0.0171

0.1 0.89 0.0180 0.82 0.0300

0.2 0.86 0.0320 0.82 0.0780

0.3 0.81 0.0420 0.85 0.1780

0.4 0.76 0.0490 1.07 6.0030

The estimated standard deviations were obtained by applying formulas (17) and (26). As explained
in Sect. 7, data values were standardized such that the expression (27) became equal to 17�3:53��2v .
All estimates represent the mean results obtained from 1,000 randomly generated sets of the error
variable vnt. The first data line (in bold face) contains the estimates that were obtained from the
original data with �2v D 0 and without standardization

Conclusion and Discussion
We have proposed a new estimation method for a linear panel model with
multiplicative measurement errors. Despite some similarity to corresponding
methods for panel models with additive measurement errors, the new method
is more involved as it has to deal with certain nuisance parameters.

Multiplicative measurement errors turn up, in particular, when confidential
data have been masked by error superposition before being released to the
scientific public. In such a case the error variances are typically communicated
to the researcher, so that these can be used in the estimation process. We have
therefore developed methods for known error variances. It should be noted,
however, that unknown error variances may also occur. Developing estimators
for this case might be a project for future research.

(continued)
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We have constructed a weighted GMM estimator for the slope parameter
of the panel model along similar lines as in Wansbeek (2001) for additive
measurement errors. In contrast to the method by Wansbeek, however, we
used a different weight matrix for the GMM estimator. In a next step, we
compared the GMM estimator to the Within LS estimator, which has been
proposed in a previous paper by Ronning and Schneeweiss (2011).

Our simulation study suggests that both estimators work equally well in
large samples, but in small to medium sized samples they seem to differ in
their stochastic properties. Depending on the model parameters, sometimes
GMM outperforms LS while in other cases GMM is inferior.

In Sect. 7, we have also analyzed a real data problem with these estimation
methods. To evaluate the error proneness of the data, we have introduced
a new error-to-signal ratio adapted to panel models with multiplicative
measurement errors. It turns out that this ratio is extremely high in the
empirical data. We therefore subtracted a constant from the data values and
obtained a better manageable data set without changing the slope parameter.
The results confirmed those obtained from simulations experiments.
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Appendix: Equivalence of GMM and LS in the Error Free
Panel Model

We want to prove the following proposition:

Proposition In the error free panel model the estimators ǑLS and ǑGMM have equal
asymptotic variances.

Proof The error free panel model is characterized by the model equation

ynt D ˛n C xntˇ C "nt:

The LS estimator is given by ǑLS D sxy = s2x . Its asymptotic variance can be
computed as follows:

asvar. ǑLS/ D E.sxy � ˇs2x/2
N.Es2x/

2
D E.sx"/

2

N.Es2x/
2
:

www.dfg.de
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Now

E.sx"/
2 D 1

.T � 1/2E. Qx
>"/2 D �2"

T � 1Es
2
x

and thus

asvar. ǑLS/ D �2"
N.T � 1/Es2x

:

As to the GMM estimator, we first note that in the error free model the vectors c
and d of (9) reduce to

c D .I ˝ A/.x ˝ x/;
d D .I ˝ A/.x ˝ y/ D .I ˝ A/Œ.x ˝ x/ˇ C .x ˝ "/�

and thus

W D E.d � cˇ/.d � cˇ/>

D .I ˝ A/EŒ.xx>/˝ ."">/�.I ˝ A/
D �2" .I ˝A/ŒE.xx>/˝ I �.I ˝A/
D �2"E.xx>/˝A:

With K D I ˝ J it follows that

W � D KWK> D �2"E.xx>/˝ .JAJ>/

and consequently

W ��1 D 1

�2"
.Exx>/�1 ˝ .JAJ>/�1:

With c� D Kc D .I ˝ JA/.x ˝ x/ D .I ˝ JA/vec.xx>/ we get

Ec�>W ��1
Ec� D 1

�2"
vec>.Exx>/Œ.Exx>/�1 ˝M�vec.Exx>/

with the projection matrixM WD AJ>.JAJ>/�1JA. Using the identity
.A˝ B/vecC D vec.BCA>/ for matching matrices A;B;C , we get

Ec�>W ��1
Ec� D 1

�2"
vec>.Exx>/vecŒMExx>.Exx>/�1�
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D 1

�2"
tr.Exx>M/

D 1

�2"
EtrŒMx.Mx/>�:

It turns out that M D A, so that Mx D Ax D Qx and thus by (17)

asvar. ǑGMM/ D �2"
NEtr. Qx Qx>/

D �2"
NE Qx> Qx D

�2"
N.T � 1/Es2x

;

which is just asvar. ǑLS/.
In order to prove that M D A first note that

JAJ> D IT�1 � 1

T
�T�1�>T�1

and consequently,

.JAJ>/�1 D IT�1 C �T�1�>T�1:

Now define the .T � T /-matrix I0 and the T -vector �0 by

I0 D
�
IT�1 0
0 0

�
and �0 D

�
�T�1
0

�
;

Then clearly

J>.JAJ>/�1J D I0 C �0�>0 :

With some algebra one can now verify that

M D A.I0 C �0�>0 /A D .I � 1
T
��>/.I0 C �0�>0 /.I � 1

T
��>/ D I � 1

T
��> D A:
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A Modified Gauss Test for Correlated Samples
with Application to Combining Dependent Tests
or P-Values

Joachim Hartung, Bärbel Elpelt-Hartung, and Guido Knapp

Abstract In combining several test statistics, arising, for instance, from economet-
rical analyses of panel data, often a direct multivariate combination is not possible,
but the corresponding p-values have to be combined. Using the inverse normal
and inverse chi-square transformations of the p-values, combining methods are
considered that allow the statistics to be dependent. The procedures are based
on a modified Gauss test for correlated observations which is developed in the
present paper. This is done without needing further information about the correlation
structure. The performance of the procedures is demonstrated by simulation studies
and illustrated by a real-life example from pharmaceutical industry.

1 Introduction

To judge whether, for example, a whole panel of economical or financial time series
can be considered as stationary, the individual Dickey–Fuller unit root tests on
stationarity may be combined in a suitable way. A difficulty arises from the fact
that the several single test statistics from the same panel data are, in general, not
independent. So a solution of this problem is provided by the results presented in
the following.

Given normally distributed random variables with variances known or estimated
with high precision, a question of interest is whether at least one of them has a mean
value greater than zero. An answer can be given by the common Gauss test if the
random variables are assumed to be uncorrelated. A Gauss test statistic is one which
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is N .0; 1/-distributed. Now suppose the variables are correlated, e.g. the variables
can arise from observations in identical or overlapping populations, as, for instance,
so-called multiple endpoints in empirical studies. A method is introduced that is able
to draw enough information, just only from the given variables, about a possible
correlation structure in order to extend the Gauss test to the case of dependent
observations. If at first individual tests, e.g. t-tests, are performed and the resulting
p-values under the null-hypotheses are transformed to (at least approximately)
standard normally distributed variables, then the method is applicable also in
situations where the variance estimates are not of high precision.

Most methods for combining tests, or p-values, assume independence of tests,
which might not be fulfilled. In this case a direct multivariate combination might not
be possible. The proposed methods allow the use of the inverse normal and inverse
�2-transformations of the resulting p-values where the independence assumption is
dropped. Furthermore, in the �2-case, the properties of the procedures for combining
independent p-values to be sensitive and sturdy, or not fragile, in the sense of
Marden (1991), are preserved.

Simulation studies in Sect. 4 show a convincing behaviour of the proposed
method with respect to significance level and power. A real-life example from
pharmaceutical industry in Sect. 5 illustrates the application.

A first (inverse normal) combining proposal, derived under more restrictive
assumptions, is given by Hartung (1999). Demetrescu et al. (2006) extensively used
this proposal in the econometrical applications mentioned above, and for further
considerations, see Hartung et al. (2009).

In the meta-analysis for combining the results of several studies or forecasts, the
studies or forecasts are usually assumed to be independent, cf. e.g. Hartung (2008),
Hartung et al. (2009). By the main result in the present paper, namely the modified
Gauss test for correlated observations, possibilities are offered to consider also non-
independent studies or forecasts. Essentially just two possibilities are discussed in
detail in the following.

Let us denote for a vector a 2 Rn by a0 D .a1; : : : ; an/ its transpose and a2 WD
.a21; : : : ; a

2
n/

0. For i D 1; : : : ; n denote �i WD .0; : : : ; 0; 1; 0; : : : ; 0/0 2 Rn, with
the 1 at the i -th place, the i -th unit vector in Rn, � WD Pn

iD1 �i the vector of ones,
Ii WD �i �0i , and I DPn

iD1 Ii the identity matrix in Rn�n. On Rn we take the natural
semi-order induced by componentwise ordering, Rn�0 be the nonnegative and Rn

>0

the positive orthant of Rn. With A 2 Rn�n stands tr A for the trace of A.

2 A Modified Gauss Test

Here the Gauss test is extended to deal with correlated variables, too. Let x D
.x1; : : : ; xn/

0, n � 2, be an n-dimensional normally distributed random variable
with unknown mean � D .�1; : : : ; �n/

0 2 Rn and variance–covariance matrix

cov.x/ D C D
�
fcijg iD1;:::;n

jD1;:::;n

�
being an unknown correlation matrix, i.e.
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x � N .� ; C/ ; with var.xi / D cii D 1; for i D 1; : : : ; n : (1)

Of interest are the hypotheses

H0;x W � D 0 vs. H1;x W � � 0; � ¤ 0; (2)

where the alternative may be written more suggestively as:� � 0 and
Pn

iD1 �i > 0.
Let � be a vector of positive normed weights,

� 2 Rn
>0 ; �0� D 1 ; � D .�1; : : : ; �n/0 ; (3)

defining the transformation

x� WD
 

nX

iD1
�i Ii

!
x � N .��;C�/ (4)

with �� WD
Pn

iD1 �i �i �i , C� WD
�Pn

iD1 �i Ii
�

C
�Pn

iD1 �i Ii
�

, and

�0x� D �20x � N
�
�20�;�20C�2

�
: (5)

We need now a further statistic for getting information about the variance of �0x�.
Desirable would be to have a statistic that is stochastically independent of �0x�,
but this is not possible since C is unknown. So we consider for the present a sub-
model of (4), assuming � to be one-parametric:� D �0 � � , �0 2 R. This leads to
Ex� D �0 � �, and a maximal invariant linear statistic with respect to the group of
one-parametric mean value translations is given now by Seely (1971) and Hartung
(1981)

xŒM�� WD .I� ��0/x� DW M�x� : (6)

Now this was just for motivating the projector M� to be used in the following, and
we return to the general model (1), or (4). Let us refer to, e.g., Mathai and Provost
(1992) for moments of quadratic forms, and note that the i -th diagonal element of
C�, cf. (4), is given by c�;ii D �2i , i D 1; : : : ; n, then the desired variance estimator
is characterized by the following theorem.

Theorem 1 In model (1) there holds with respect to var.�20x/, cf. (4)–(6),

1. under the null-hypothesisH0;x:

EH0;xxx
�
1 � x0

�M�x�
� D var

�
�20x

�
; (7)

2. under the alternative hypothesisH1;x:

EH1;xxx
�
1 � x0

�M�x�
� � var

�
�20x

�
: (8)
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Proof We have, with �0� D 1 and (5),

E
�
1 � x0

�M�x�
� D 1 � tr.M�C�/� �0

�M���

D 1 � tr.IC�/C tr.��0C�/ ��0
�M���

D 1 � trC� C �0C�� ��0
�M��� (9)

D 1 �
nX

iD1
�2i C �20C�2 � ��M���

D var.�20x/��0
�M��� ;

where �0
�M��� is zero under H0;x and nonnegative under H1;x since M� as a

projector is positive semidefinite. Note that M��� stays zero if �� has only one
parameter underH1;x, cf. (6), as in the usual Gauss test. ut
So a suitable test statistic would be

.�20x/=.1� x0
�M�x�/1=2 ; (10)

provided the denominator is positive, which leads in expectation by use of (8) to
higher values under H1;x than under H0;x. We notice that the normality assumption
is not necessary for this statement, respectively, for Theorem 1.

Now in (10), we have to recognize that the square root function is concave,
leading by Jensen’s inequality Ef.1� x0

�M�x�/1=2g � fE.1� x0
�M�x�/g1=2 and by

(7), even under H0;x, to an underestimation of the denominator, which additionally
has to be assured to stay positive. For both reasons, a small amount of an estimate for
the standard deviation of the variance estimator will be added in the denominator of
(10). We get this desired estimate via an approximation of C by the easier to handle
matrix of an equicorrelation.

Theorem 2 Let be

D WD .1 � �/IC � ��0; � 2 R W �1=.n� 1/ � � � 1 ; (11)

and assume cov.x/ D D, then with � D 0 there holds

E
n
	�.	� C 1/�1

�
x0
�Mx�

�2o D var
˚
1 � x0

�M�x�
�
; (12)

where 	� WD 2fPn
iD1.�4i � �6i /g=.1� �20�2/2.

Proof Note that corresponding to (4) there is, interchanging C by D,

D� D .1 � �/
nX

iD1
�2i Ii C ���0 : (13)
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For cov.x/ D D we get

var.�20x/ D .1 � �/�20�2 C �.�0�/2 D �20�2 � �.�20�2 � 1/; (14)

and with (7): var.�20x/ D E.1 � x0
�M�x�/, so that by equating to (14) we get

1 � � D .1 � �20�2/�1E �x0
�M�x�

�
: (15)

Then we have with this and (13), by noting that M2
� D M�, M�� D 0, cf. (6),

var.1 � x0
�M�x�/ D var.x0

�M�x�/

D 2tr.M�D�/2

D 2.1� �/2tr.
nX

iD1
�2i IiM�/

2

D 2.1� �/2tr..
nX

iD1
�2i Ii /

2M�/

D 2.1� �/2tr.
nX

iD1
�4i .Ii � Ii��0// (16)

D 2.1� �/2
nX

iD1
.�4i � �6i /

D 2.1� �20�2/�2f
nX

iD1
.�4i � �6i /g

˚
E.x0

�M�x�/
�2

D 	�
˚
E.x0

�M�x�/
�2

D 	�.	� C 1/�1E
˚
.x0
�M�x�/2

�
;

where the last equality follows analogously to the “general lemma” in Hartung and
Voet (1986), which completes the proof. ut

Regarding D as an approximation to the arbitrary C in the sense that � may
represent the mean correlation, we use now the estimate implied by (12) also for the
general case. Further we have to see that the estimator x0

�M�x� is useless if it takes
on values greater than one, since then the variance would be estimated negatively.
Therefore we replace now everywhere x0

�M�x� by

mx;� WD min
˚
1 ; x0

�M�x�
�
: (17)

That means under H0;x, v2 WD 1 � mx;� is the truncated nonnegative estimator
of �2 WD var.�20x/ and s2.v2/ WD 	�.	� C 1/�1m2

x;� is an estimate of var.v2/.
Both �2 and v2 are bounded by 1, and if v2 ! 1, then s2.v2/ ! 0. The idea is
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now to introduce a regularization parameter or function �, 0 < � < 1, and to take
v� WD fv2C �s.v2/g1=2 as an admissible, positive estimator of � that corrects for the
concavity of the square root function, where �f	�=.	� C 1/g1=2 � v� � 1. So an
optimal choice of � under H0;x would always satisfy E.v�/ D � , yielding, by (8),
to an underestimation of � under the alternative H1;x. But since we have to assure
v� to stay positive under H0;x, we cannot avoid an overestimation if � becomes
small, which particularly occurs for a negative correlation of x. On the other hand,
choosing � too low leads even under H0;x to an underestimation of � in the other
situations. Now �20x =� � N .�; 1/, and replacing � by its admissible estimator
v� , we get the following test statistic:

Sx;� WD .�20x/
ı

1 �mx;� C �f	�=.	� C 1/g1=2mx;�

�1=2
; (18)

which underH0;x is approximately N .0; 1/-distributed.
Our general proposals are � D �1 WD 0:2, being somewhat conservative for

nonpositive equicorrelations, and � D �2 WD 0:1 f1C .n � 1/mx;�g=.n � 1/ for a
less regularization than with �1, working mainly in case of smaller correlations. So
�2 is more liberal holding the level better for larger n in the independent case and
for negative equicorrelations. But both �1 and �2 are well performing with respect
to level and power, particularly if the correlations are varying within one sample,
cf. the simulation results in Sect. 4. H0;x is rejected at level ˛ in favour of H1;x if
Sx;� exceeds the .1 � ˛/-quantile u1�˛ of the N .0; 1/-distribution.

3 Combining Tests or p-Values

The modified Gauss test is now applied to combine dependent test statistics. Let
for i D 1; : : : ; n, n � 2, be Ti one-sided test statistics for testing the null-
hypothesis Hi;0 W #i D #i;0 for some real valued parameters #i , against the
one-sided alternatives Hi;1 W #i > #i;0, where large values of Ti may lead to a
rejection ofHi;0. It is desired to test the global, combined null-hypothesis, denoting
# D .#1; : : : ; #n/0, #0 D .#1;0; : : : ; #n;0/0,

H0;G W # D #0; vs. H1;G W # � #0; # ¤ #0 : (19)

Under Hi;0, Ti may have a continuous distribution function Fi;0, such that the
p-values

pi WD 1 � Fi;0.Ti /; i D 1; : : : ; n; (20)

underHi;0 are uniformly distributed on the open interval .0; 1/, cf. e.g. Hedges and
Olkin (1985), Marden (1991), and Hartung et al. (2008), also for the following. The
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Ti ’s arising, for instance, from multivariate problems may be arbitrarily stochas-
tically dependent, and consequently the pi ’s are also stochastically dependent,
i D 1; : : : ; n. Based on the fact that stochastical dependence and correlation
coincide in the normal case we can handle the dependent case if the p-values are
transformed to normal, or approximately normal, variables. Applying then the test
of Sect. 2,H0;G is rejected in favour ofH1;G if, with the transformed variables,H0;x

is rejected in favour of H1;x in Sect. 2.
The inverse normal transformation

zi WD �˚�1.pi /; i D 1; : : : ; n; (21)

suggests itself, where ˚ denotes the N .0; 1/-distribution function, leading under
H0;G to zi � N .0; 1/ so that with z D .z1; : : : ; zn/0 instead of x in Sect. 2 we get
the test statistic Sz;� , cf. (18). Here �20z is considered as approximately normally
distributed if the zi ’s are not claimed to be jointly normal underH0;G .

Prominent transformations are delivered by the family of �2-distributions. Let
denoteF�2.�/ the distribution function of the (central) �2-distribution with � degrees
of freedom, then

qi .�/ WD F�1
�2.�/

.1 � pi /; i D 1; : : : ; n; (22)

belongs under H0;G to a �2.�/-distribution. To these variables, we apply now the
very well approximating transformation of Wilson and Hilferty (1931), respectively,
its inverse, cf. e.g. also Mathai and Provost (1992), in order to get underH0;G nearly
N .0; 1/-distributed variables

yi .�/ WD

fqi.�/=�g1=3 C 2=.9�/� 1

�
.9�=2/1=2; i D 1; : : : ; n; (23)

such that with y.�/ D fy1.�/; : : : ; yn.�/g0 instead of x in Sect. 2 we get the test
statistic Sy.�/;� , cf. (18). We may also choose � D �i differently for i D 1; : : : ; n.

A combining method may be called to possess the Marden (1991) property if in
his sense the method is “sensitive” and “sturdy”, or not “fragile”. This property is
met if the convergence of a sequence of one of the p-values to 0 leads after a finite
number of steps to a rejection of H0;G , irrespectively of the behaviour of the other
p-values. The corresponding, equivalent statement is given in the last passage on
p. 927 of Marden (1991); [note that by an mistake there the term “rejection region”
has to be interchanged by “acceptance region”].

Looking now at our test statistic (18), we see that the denominator is bounded
by some positive constants. Further we perceive qi .�/ in (22) and consequently
yi .�/ in (23), contrarily to zi in (21), to be bounded below, i D 1; : : : ; n. If
now for a sequence fpi0;j gj2N, with pi0;j 2 .0; 1/, j 2 N, of one of the p-
values, i0 2 f1; : : : ; ng, we have pi0;j ! 0, for j ! 1, j 2 N, then
the corresponding sequence of values of the test statistic fSy.�/j ;�gj2N converges
uniformly to infinity, i.e. for some j � 2 N: Sy.�/j�;� > u1�˛ . So we can say: For
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inverse �2.�/-transformed p-values our method preserves the Marden property as
known for combining independent p-values.

Essentially based on Tippett’s combining statistic pŒn� D minfp1; : : : ; png,
rejecting H0;G if pŒn� lies below some critical value, Berk and Jones (1978) give a
general approach to combine dependent test statistics observed in the same sample
for testing a common hypothesis. To realize the proposed procedures, the main work
consists of getting the asymptotic null distribution. So like in our approach, which
is based on the inverse normal and inverse chi-square combining statistics, if one
does not assume to observe a running sequence of the family of test statistics, one
has to find some suitable statistics characterizing the dependency in the only once
observed multiple test statistics. With this information, the null distribution then
may be got, for instance, by Monte Carlo methods. However, in our approach by use
of (7) and (12) for simulating the null distribution, we could not obtain better results
than those to be presented in the next section. Further we remark that the combining
statistics considered here are constructed to be more sensitive for alternatives with
large

Pn
iD1 #i caused not only by a single parameter. In the latter case Tippett’s

combining statistic, if applicable, is more powerful. In these considerations note
that by going over to the p-values we have a standardization in the sense that the #i
implicitly are transformed to parameters of the same possible size.

4 Simulation Results

Now let us come to some simulation results, confirming the good performance of the
proposed method. We consider the inverse normal transformed z, since this under
H0;G meets here in the simulations the assumptions of Sect. 2 exactly, and so we get
generally valid results of our method for dependent observations. From the inverse
�2.�/—transformations we choose the case � D 2, because this leads in the case of
independent p-values to the Fisher method. For a better representation in the tables
we introduce the following notation, cf. (18) with the subsequent remark, and (21),
(22), (23),

Y1 D Sy.2/;�1 ; Y2 D Sy.2/;�2 I Y0 D
nX

iD1
qi .2/ ; (24)

Z1 D Sz;�1 ; Z2 D Sz;�2 I Z0 D n�1=2
nX

iD1
zi : (25)

We notice that Y0 and Z0 are the correct combining statistics in the case of
independent p-values, where at size ˛H0;G is rejected by Y0, if Y0 exceeds the
.1 � ˛/-quantile �2.2n/1�˛ of the �2.2n/-distribution. The other statistics have
all u1�˛ as critical value. Further we take everywhere the unweighted version,
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i.e. we put �2 D .1=n/�, leading to 	�=.1 C 	�/ D 2=.n C 1/ and mx;� D
minf1; .1=n/Pn

iD1Œxi � .1=n/
Pn

jD1 xj �2g in (18).
In the simulations now we receive dependent p-values pi by the transformation

pi D ˚.ti /, i D 1; : : : ; n, where t D .t1; : : : ; tn/
0 are generated according to

t � N .0;C/, C being a correlation matrix. Our methods are then applied to
p1; : : : ; pn to test H0;G vs. H1;G at level ˛ D 0:05. For n D 2; 3; 5; 10; 25 at first,
by 10,000 runs each, the levels are estimated for the independent case and several
equicorrelations � of t, i.e. C is chosen as .1� �/IC ���0, cf. Table 1. We observe a
satisfying behaviour of our statistics Yk, Zk for k D 1; 2, with main differences for

Table 1 Estimated sizes Ǫ%, respectively, ranges of Ǫ%, of the statistics Yk; Zk , cf. (24), (25), for
testing the global hypothesis H0;G at nominal size ˛ D 5%, for several cases of equicorrelation
�, as well as for randomly chosen correlation matrices; correlations and correlation matrices are
taken for ˚�1.p1/; : : : ; ˚

�1.pn/

Estimated sizes Ǫ%

Number n of hypotheses H1;0; : : :, Hn;0

˛ D 5% 2 3 5 10 25

� k Yk Zk Yk Zk Yk Zk Yk Zk Yk Zk

0 2.6 1.1 2.3 1.0 2.1 1.1 2.0 1.0 1.6 1.0

� 1
2.n � 1/

1 3.2 2.6 2.5 2.0 1.7 1.4 0.7 0.6 0.2 0.2

2 3.2 2.6 3.5 3.2 3.6 3.0 2.6 2.2 1.7 1.0
0 4.8 5.0 4.8 4.8 5.2 4.9 5.1 5.1 5.2 4.9

0:0 1 5.1 5.0 4.7 4.6 4.2 3.8 2.8 2.6 1.6 1.1
2 5.1 5.1 5.7 5.6 6.1 5.8 5.4 5.0 4.4 3.5
0 5.0 5.4 5.5 5.6 6.0 6.5 7.5 8.8 11.2 13.4

0:05 1 5.1 5.0 5.1 4.9 4.9 4.5 4.2 4.0 4.1 4.0
2 5.2 5.1 6.0 5.8 6.6 6.5 6.8 6.6 7.0 7.0
0 5.2 5.8 6.2 6.4 7.0 8.0 9.7 11.5 15.1 18.4

0:1 1 5.2 5.2 5.3 5.1 5.2 5.0 5.1 5.0 5.6 5.6
2 5.3 5.2 6.3 6.1 7.1 6.9 7.6 7.5 8.3 8.3
0 5.8 6.7 7.0 8.2 8.7 10.9 12.9 16.6 19.6 24.7

0:2 1 5.3 5.2 5.5 5.5 5.9 5.8 6.0 5.8 6.5 6.7
2 5.4 5.3 6.4 6.3 7.6 7.4 8.3 8.1 8.5 8.4
0 7.3 8.9 9.4 12.5 12.4 17.3 18.0 24.6 24.5 35.6

0:5 1 5.2 5.1 5.5 5.5 5.8 5.7 5.7 5.6 5.1 5.0
2 5.4 5.2 6.2 6.1 6.5 6.4 6.3 6.1 5.6 5.4
0 9.3 12.2 12.5 17.2 16.2 23.3 21.1 31.2 26.1 37.5

1 1 5.1 5.0 4.9 4.8 4.9 4.9 5.2 5.1 5.1 4.9
2 5.1 5.0 4.9 4.8 4.9 4.9 5.2 5.1 5.1 4.9

Randomly

chosen 1 4.5–5.5 4.5–5.5 4.5–5.5 4.5–6 4–6

correlation 2 4.5–6 4.5–6 4.5–6 4.5–6.5 4–7

matrices
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low � and large n between Y1, Z1 and Y2, Z2, respectively. In those constellations
the latter ones hold the level better, with the consequence of being somewhat liberal
in the other situations.

Furthermore, correlation matrices C are randomly chosen, between 50 for n D 2
and 500 for n D 25, and for each matrix the level is estimated by 10,000 independent
replications of the methods. Now, the results are so similar that we restrict ourselves
and report only the ranges of the observed Ǫ , cf. the last row in Table 1. As
expected, the extreme cases we have for some constellations with an equicorrelation
do not occur if the correlations are varying within one sample. The results are quite
convincing. Some different simulations for the inverse normal combining method
are reported by Hartung (1999) showing also quite satisfying results.

Now to get an impression of the power of the tests we consider for n D 5

hypotheses in the independent and in the various equicorrelated situations the case
that the expectation of just one of the p-values is getting smaller, say of p1.
For this we take the equicorrelated t1; t2; : : : ; tn as above and get the p-values
p1 D ˚.t1 � �1/; p2 D ˚.t2/; : : : ; pn D ˚.tn/, on which our methods Yk and
Zk , k D 1; 2, are now applied. For �1 D 0; 1; 2; 3; 5 the results, by 10,000 runs
each, are given in Table 2, where in the independent case for comparison besides
Fisher’s Y0 also the common inverse normal combining statistic Z0 is considered,
cf. (24), (25). We see that Z0 is dominated by Y0 clearly, by Y1 mostly, by Y2,
and in particular, being a consequence of (8), also by Z1 mostly and by Z2, where
with regard to Y2, Z2 the higher levels as starting points of the power functions

Table 2 Estimated values of the power functions [in %] at �1 D �Ef˚�1.p1/g and 0 D
Ef˚�1.ph/g, h D 2; : : : ; n; with: cov

˚
˚�1.pi /; ˚

�1.pj /
� D �, i ¤ j

n D 5 �1

˛ D 5% 0 1 2 3 5

� k Yk Zk Yk Zk Yk Zk Yk Zk Yk Zk

0 5.2 4.9 12 11 34 22 65 38 98 72

0.0 1 4.2 3.8 10 10 26 26 49 49 82 84
2 6.1 5.8 14 14 34 34 58 58 89 89
1 1.7 1.4 6.9 6.5 22 22 50 50 91 92

-0.125 2 3.6 3.0 11 11 33 32 62 62 96 96
1 4.9 4.5 11 11 27 27 49 49 80 81

0.05 2 6.6 6.5 15 15 34 34 57 57 86 87
1 5.2 5.0 12 12 28 28 49 49 78 79

0.1 2 7.1 6.9 15 15 35 35 57 57 84 85
1 5.9 5.8 13 12 30 29 49 49 75 77

0.2 2 7.6 7.4 16 16 35 35 56 56 81 82
1 5.8 5.7 13 12 30 30 49 50 70 71

0.5 2 6.5 6.4 14 14 35 34 55 55 75 76
1 4.9 4.9 9.3 9.2 24 25 51 52 65 67

1.0 2 4.9 4.9 9.5 9.4 26 26 56 57 69 71
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have to be taken into consideration. For k D 1; 2 the statistics show also a good
behaviour in the correlated situations. Only for �1 D 5 the increasing correlation
markedly diminishes the power, but on a high level. The behaviour of our statistics
is surprising for negative equicorrelation. Although they have here only a small
size, the power grows most quickly, above the values obtained for nonnegative
correlations.

Summarizing the simulation results, we can state that the proposed test proce-
dures prove to possess a quite satisfying performance. It should be noticed that,
besides for � D 0 and � � 0, the statistics Y1, Z1 and Y2, Z2, respectively, show
a nearly identical behaviour. This speaks for the good approximation by the Wilson
and Hilferty transformation, yielded already in the case of only � D 2 degrees of
freedom for the �2-variables involved here in the transformation.

5 An Example

In an Alzheimer’s disease multi-centre study (N D 450 patients) of a drug named
idebenone, we have three treatment groups j consisting of: patients who receive
placebo (j D 1), patients who receive idebenone 90 mg tid (j D 2), and patients
who receive idebenone 120 mg tid (j D 3). According to the Alzheimer-Disease-
Guideline, the cognitive part of the Alzheimer’s Disease Assessment Scale, ADAS
cog, is the dominating primary variable, and thus the ADAS cog: baseline (i D 1)
value of the patients becomes a main risk factor. The two other risk factors are age
(i D 2) and sex (i D 3) of the patients, cf. Weyer et al. (1996) for a detailed
description of the study and of these subjects. The characteristic values of the risk
factors in the three treatment groups are put together in Table 3. The resulting p-
values of the homogeneity tests are:

p1 D 0:044 ; p2 D 0:463 ; p3 D 0:172 :

Let �ij denote the expected value of the risk variable i in the j -th group, then we

put formally #i DP3
jD1

�
�ij � 1

3

P3
kD1 �ik

�2 � 0 ; and the test on homogeneity of

the i -th risk factor with respect to the three treatment groups can be written asHi;0 W
#i D 0 vs. Hi;1 W #i > 0 ; i D 1; 2; 3 ; which fits our general formulation given
in Sect. 3. To be tested now at size ˛ D 0:05 is the global hypothesis H0;G W #1 D
#2 D #3 D 0 vs. H1;G W at least one of #1; #2; #3 is positive, or:

P3
iD1 #i > 0 :

For a better comparison the test values of the statistics in our example are put
together in Table 4. Whereas the “independence statistics” Y0 and Z0 are close to a
rejection, the other statistics considering the dependence in the data stay far away
from rejecting the global homogeneity hypothesisH0;G with respect to the three risk
factors ADAS cog: baseline, age, and sex.
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Table 3 Characteristic values of the risk factors in the treatment groups and the p-values of the
homogeneity tests

N total

450 Risk factor

Treatment ADAS cog: baseline Age Sex
group Standard Standard

(N ) Mean deviation Mean deviation Male Female

Placebo group (153) 34.27 9.32 68.93 11.38 55 98

Idebenone 90 mg tid (148) 35.26 9.33 70.33 11.55 42 106

Idebenone 120 mg tid (149) 32.68 8.10 70.39 11.85 57 92

p-Value p1 D 0:044 p2 D 0:463 p3 D 0:172

Test F-test F-test �2-test

Table 4 Test values of the statistics Yk and Zk , k D 0; 1; 2, cf. (24), (25), for testing the global
homogeneity hypothesis H0;G at size ˛ D 0:05 in the data of Table 3

Test statistic Y0 Z0 Y1 Z1 Y2 Z2

Test value 11.31 1.58 1.17 1.16 1.20 1.19

Critical 12.59 1.65

value (�2.6/0:95) (u0:95)

Acknowledgements Thanks are due to Takeda Euro Research and Development Centre for the
permission to publish the homogeneity results presented in Sect. 5.
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Panel Research on the Demand of Organic Food
in Germany: Challenges and Practical Solutions

Paul Michels

Abstract Since the demand structure of organic food and beverages markets
was rather non-transparent, the German Government funded the development of
a reporting system covering all important retail channels. We suggested a puzzle
approach merging three commercial panels in Germany. In close collaboration with
the panel institutes, we met a lot of challenges like confusion of consumers when
classifying organic fresh food, or missing intensive buyers of organic products
in consumer panels. Up to now, parts of the system are used by manufacturers
and retailers, national and federal administration bodies as well as by researchers.
Selected examples of applications, based on our fundamental work, are quoted in
this paper. Finally, the necessity for an adaptation of the methods is outlined to meet
today’s market situation and information requirements.

1 Introduction

Retail and consumer panels play an important role in commercial market research
on fast moving consumer goods (fmcg). The operation of these panels requires high
investments as well as a very specific know-how in collecting, processing, analyz-
ing, and interpretation of data. Hence, worldwide there are only few companies
operating fmcg panels. In order to defend their competitive advantages, the research
institutes usually do not share their know-how and their data with public research
institutions. For this reason, there is a lack of methodological literature concerning
commercial panel research.

From the beginning of the twenty-first century, organic food and beverages are
strongly emerging segments within the fmcg markets of Northern and Western
Europe. The largest among them is the German organic market, which achieved
a sales volume of 7 billion Euros in the year 2012.

However, up to 2007, neither in official statistics nor in major fmcg panels,
organic and conventional products were distinguishable. Fmcg-producers are not
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legally obligated to distinguish between organic and conventional products, when
reporting production and sales data to the bureaus of official statistics. Also, customs
numbers for foreign trade do not differentiate between the two forms of producing
food. Before 2007, the commercial panel operators showed little engagement in
building up appropriate tools to record the demand for organic food, because a lot of
detailed work is necessary and the prospective clients are few and rather poor. For
the years 2000 to 2008 the total sales volume of organic food and beverages was
yearly estimated by Hamm and Rippin (2007) based on expert interviews. These
figures were well accepted among the stakeholders of the organic sector, but did not
deliver detailed data concerning products and channels of distribution.

Thus, any specific information on the demand side of the organic markets
was missing. To overcome this shortage, the German Government funded the
development of a reporting system covering all important retail channels. ZMP1

suggested a puzzle approach merging three suitable panels in Germany. In this
paper we provide some insights into the handling of commercial panel data by
describing challenges and solutions of this project. After quoting selected examples
of applications, the necessity for an adaptation of the methods is outlined.

2 Commercial FMCG Panels in Germany

In Germany three important panel institutes provide insights into fmcg markets for
manufacturers and retailers:

• GfK2 drives a panel with 30,000 households called ConsumerScan. They collect
their purchases of fmcg via in-home scanning of the bar codes on the product
packages. Obviously, the method is not suitable for products without bar code.
This occurs especially in categories like meat, sausage, cheese, fruit, vegetables,
potatoes, eggs, and bread. Therefore, 13,000 households record fresh food items
by scanning bar codes out of a code book provided by GfK. This subsample
is named ConsumerScan-Fresh Food. The GfK panels are considered to be
representative for the universe of all 40 million German households.

• Nielsen3 runs two fmcg panels. Within the retail panel MarketTrack Nielsen
receives scanner data from a sample of about 1,000 fmcg retail stores. Nielsen
Homescan is based on 20,000 households recording their purchases using a

1Zentrale Markt- und Preisberichtstelle für Erzeugnisse der Land-, Forst- und
Ernährungswirtschaft GmbH, a provider of market and price information for agriculture,
food industry, and forestry. The author was responsible for the project as head of the division
“market research, consumer-prices-panel, food service” at ZMP. Most of the analyses were carried
out by Barbara Bien, research assistant at ZMP.
2GfK SE is a full service market research institute, market leader in Germany, no. 4 worldwide.
3Nielsen is the global market leader in market research and the market leader in panel research for
fmcg in Germany.
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methodology comparable to GfK ConsumerScan. However, Nielsen does not
collect fresh food items as detailed as GfK. The hard discounters Aldi, Lidl,
and Norma do not cooperate with Nielsen. The missing data are estimated via
Nielsen Homescan and integrated into Nielsen MarketTrack in order to achieve
a full coverage of the grocery and drug stores in Germany.

• SymphonyIRI also conducts a retail panel using a technique comparable to
Nielsen MarketTrack.

The above panels are designed to measure the sales of conventional retailers only.
However, within organic food market a significant part of the sales is generated
by special organic food stores. These outlets are not represented in Nielsen’s retail
sample. Furthermore, they are covered poorly by household panels for reasons
described later.

Since 2004 the startup enterprise bioVista discovered the blank area in panel
research and built up its own retail panel of organic food stores delivering aggregated
sales statistics free-accessible for the participating retailers and selling analyses to
manufacturers. By now, bioVista has access to scanner data of 400 organic and
health stores. In 2004 they started with less than 100 participants.

3 Building Up an Information System for Organic Food
and Beverages

Decision makers are not willing to invest money in non-transparent markets. At
least, they need information on the development of purchase volumes, sales, and
prices. A reliable evaluation of the demand side provides farmers, administration,
retailers, and manufacturers with information to better match the future needs of
the organic markets. In the following a selection of applications for the different
stakeholders is denoted:

• Benchmarking and new business development for manufacturers: manufacturers
can benchmark their own business comparing it with the development of the total
market, i.e. they can determine their current market share. Furthermore, they can
identify consumer trends, which are worth to invest in by creating new products
or building up new production facilities.

• Decision making support for farmers considering a conversion from conventional
to organic farming: usually, the quantitative yield of organic farming is lower
than that of conventional farming. In a conversion period of 2 or 3 years the
product prices remain on the level of conventional products, because in the
meantime it is not permitted to use organic labels. Significantly higher prices for
organic food in the long run have to exceed the effect of the initial poor returns.
Steadily growing demand is essential for high prospective farm prices.

• Controlling of political targets: politicians like to formulate ambitious targets,
e.g. achieving a certain growth for the organic market within a given period. In
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case of deviations from the desired course, suitable measures can be undertaken,
e.g. rise of funding during the conversion period.

In order to improve the level of transparency of the demand side of organic food and
beverages in Germany, the Federal Program of Organic Farming4 announced a call
for research projects. The proposal of ZMP,5 based on the integration of the existing
panels described above, was accepted and funded. Hence, from November 2004
to June 2007, ZMP in cooperation with the panel providers developed a reporting
system. We decided to use a mixture of existing panels using their strengths of
capturing certain retail segments of the market.

Nielsen was charged to deliver data for important categories of packaged food
and beverages for the food retailers and drug discounters. The main reason
for this decision was the higher number of purchases represented by a retail
panel as compared to a household panel: Nielsen MarketTrack recorded purchase
transactions from about 1,000 retail stores sampled proportional to the their sales.
According to Nielsen, these stores represented about 2–3 % of the fmcg retail
sales. Thirty thousand GfK sample households in a universe of 40 million German
households correspond to a sampling fraction of 3

4
per mill. This comparatively

low sampling fraction leads to high standard errors in volume, value, and price
estimations for products with low penetration rates.6 This was especially true for
most of the organic packaged goods. The second provider of retail panel technology,
SymphonyIRI, was not interested in building up an organic reporting.

Nielsen’s retail panel MarketTrack had no access to organic food stores. There-
fore, we had to apply the scanner panel bioVista for packaged goods from organic
food stores.

GfK is the only panel provider operating a fresh food panel. In the subpanel
ConsumerScan-Fresh Food, 13,000 panelists collect detailed information on the
categories fruits, vegetables, potatoes, eggs, meat, sausage, bread, and cheese.
Due to the lack of alternatives, the decision for GfK ConsumerScan-Fresh Food
was mandatory. Fortunately, fresh organic food was better penetrated compared to
packaged products such that the standard errors of the estimations remained on an
acceptable level, especially when total categories were observed. GfK data were
used for all retail channels.

Table 1 summarizes the choices of the panel providers within the puzzle
approach. For fresh food data collection, there was no alternative to GfK Com-
sumerScan in all types of stores. For packaged food and beverages Nielsen was
adequate for food retailers and drug discounters, bioVista for organic food stores.
At bakeries, butcheries, markets, and farms the packaged goods could be neglected.

4In German: Bundesprogramm Ökologischer Landbau, BÖL. In the meantime extended to
Federal Program of Organic Farming and other forms of Sustainable Farming, in German:
Bundesprogramm Ökologischer Landbau und andere Formen nachhaltiger Landwirtschaft, BÖLN.
5See Footnote 1.
6The penetration rate is defined as percentage of buying household of all sample households.
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Table 1 Choice of suitable panel providers for different segments of stores and products.

Type of stores

Food retailers, Organic food Bakeries, Markets Farmers
Type of product drug discounters stores butcheries

Fresh fooda GfK GfK GfK GfK GfK

Packaged food
and beveragesb

Nielsen bioVista Negligible Negligible Negligible

a In the project the fresh food categories meat, sausage, cheese, fruits, vegetables, potatoes, eggs,
and bread were considered
b The categories of interest in this project were the packaged goods milk, yogurt, curd, butter, baby
food, baby formula, cereals, pasta, frozen vegetables, flour, vegetable spreads, cookies, fruit and
vegetable juices

In each of the three panels miscellaneous problems had to be solved during the
setup of the information system. A selection of problems and solutions is presented
in the next section.

4 Challenges and Solutions

The following challenges had to be overcome during the project:

1. How can organic products with bar codes be identified?
2. How can organic products without bar codes be identified by panel households?
3. How can sales data be projected in case of missing information on the universe?
4. How can projections based on the different sources be combined to total market

estimates?

4.1 How Can Organic Products with Bar Codes be Identified?

Bar codes like the common Global Trade Item Number (GTIN, former EAN) do not
contain the information whether a product is organic or not. The first seven digits
of a 13-digit GTIN refer to the country of origin and the manufacturer who had
packaged the product, digits 8–12 are defined individually by the manufacturers and
the last digit is a control digit. Thus, only for exclusive organic manufacturers the
GTIN leads back to the way of production (i.e., organic or conventional). Nielsen
cooperates with food retailers who provide scanner-based data from a sample of
their stores. The delivered product information corresponds more or less to that on
the shoppers’ checkout slips, i.e. bar code, product description, number of packages,
price per package, and total amount for the product.

At the beginning of the project Nielsen’s product description database had not
contained the characteristic “organic or not.” Hence, a lot of detailed work was
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necessary to establish a classification process. Initially, all products of a category
had to be classified using checkout slip descriptions, price lists of manufacturers,
internet tools, and personal store checks. After building up the initial classification
for the product categories specified in the project,7 the identification process could
be concentrated on new products. The projected sales volumes were presented to
experts, who judged their sizes and trends. In many cases reworks were necessary—
mainly when organic products were missing, but also when conventional products
were misclassified as organic.

Many packaged goods are included in the fresh food categories, too (e.g.,
packaged sausage, bread, and cheese). Hence, GfK had to use the similar techniques
of classification as mentioned above.

4.2 How Can Organic Products Without Bar Codes
be Identified by Panel Households?

Fruits and vegetables, cheese, eggs, and bread belong to the pioneer categories
of organic production. Bar codes are often not available, because many of these
products are not pre-packed. Therefore, the GfK panelists are provided with manual
containing bar codes for fresh food items defined by GfK. After scanning one of
these codes, the household is prompted on the scanner display to enter the price and
the volume of the product as well as to classify whether the item is organic or not.
In this manual the common seals (e.g., labels of EU-organic or of an association
for organic agriculture like Bioland, Demeter, or Naturland) are displayed in order
to facilitate the identification of organic fresh food by the panelist. New panelists
are instructed how to classify organic food and beverage. For existing panelists the
instruction is repeated once a year.

All these measures did not prove sufficiently successful, because in the case
of unpacked food items the home-scanning panelist has to remember the product
information from the point of sale. If products are positioned naturally or offered
in a natural surrounding people tend to believe that they are organic. From a
psychological point of view, purchasing organic products is socially desirable and
causes a feeling of being a good soul protecting animals, nature, and environment.
The highest degree of confusion is observed when products are purchased at farms,
weekly markets, regional butcheries or bakeries. However, in usual grocery shops
organic and conventional products are also mixed up. Consequently, in case of
relying on the classification capabilities of the panelists the volume share of organic
food in fresh food categories would be overestimated to an unrealistically high
extent.

Therefore, we had to establish a validation step before processing the raw data
from the panelists. In order to check the correctness of the panelists’ classification

7See footnote “b” in Table 1.
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we used their price entries. As organic food is pretty expensive we were able
to fix lower price limits and accepted as organic only purchases beyond these
limits, otherwise the entry was switched to “nonorganic.” The records were checked
monthly for all important fresh food products separately for different store types.
Eggs and carrots are the major organic fresh food items and suit well to explain the
classification procedure.

Eggs are offered in packages with six or ten units. However, the identification
of the bar codes is complex and time-consuming, because there are a lot of small
regional packagers using their individual codes. Basically, the prices of eggs depend
on the way of hen keeping, the size of eggs, the package size, and the shop type.
Panelists tend to mix up organic eggs and eggs from free-range hens. Figure 1 shows
the entries of purchases in discounters assigned to these two ways of hen farming.
There are four clusters of prices belonging to eggs from caged hens, barn eggs,
eggs from free range hens and organic eggs. Evidently, the 258 entries of e2.20
and more are plausible for organic eggs. According to experts, the price range from
e1.20 to e1.59 belongs to eggs from free-range hens. For these prices organic eggs
cannot even be produced. However, there are 101 entries of organic eggs in this price
range. Objectively, the panelists performed rather well, because they misclassified
as organic only 101 of 2,232 purchases, which corresponds to a share of 4.5 %.
In 2005, 43 % of eggs at German retailers came from caged hens, 26 % from barn,

Fig. 1 Distribution of consumer prices of eggs from purchases classified as organic or as free
range, 1st. Quarter 2005. Previously published by ZMP Zentrale Markt- und Preisberichtstelle für
Erzeugnisse der Land-, Forst- und Ernährungswirtschaft GmbH
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22 % from free-range hens, and only 4 % from organic farming. Even if the panelists
have low misclassification rates, when purchasing conventional eggs, the absolute
number of misclassified organic eggs is high as compared to the absolute number
of plausible entries of organic eggs. In this case we defined a lower price level of
e1.90 and classified only purchases beyond this level as organic. The lower price
limit for eggs is checked quarterly and adopted if necessary.

In the meantime the panelists use the first digit of the stamp on the egg to classify
the way of hen keeping (0 for organic, 1 for free-range, 2 for barn, 3 for cage).

Figure 2 shows a typical distribution of prices of carrots classified as organic
or conventional. When the share of organic food entries in a price class was
low, we assumed misclassification and processed the corresponding purchase as
conventional. The lower price level is fixed at the lower class limit of the first class,
where the percentage grows considerably (in this case e0.60 per kilo). Vegetable
prices seasonally vary in large scale. Consequently, the lower price limit has to
be checked and adopted monthly. For the majority of products the discounter
distributions of organic and conventional entries permit clear decisions for the lower
price limits. In supermarkets the distributions are overlapping to a greater extent,
because they offer a wide range of products, e.g. conventional regional products
in the price range of organic food. The situation for weekly markets and farm
stores is even more difficult. Here we defined a lower price level by adding a
certain amount to the level of supermarket prices. The classification work was done

Fig. 2 Distribution of consumer prices of carrots from purchases in discounters, 1st quarter 2005.
In brackets: percentage of organic entries in the price class. In brackets: percentage of organic
entries in the price class. Previously published by ZMP Zentrale Markt- und Preisberichtstelle für
Erzeugnisse der Land-, Forst- und Ernährungswirtschaft GmbH



Panels for Organic Products 167

manually by looking at suitable tables for all important fresh food items. In the case
of uncertainty experts were consulted.

For items with lower penetrations and purchase frequencies an algorithm was
developed. It selected those panelists that had no or few problems in classifying
organic fresh food. The products with manually defined lower price limits were used
to judge the classification performance of the panelists. Households were selected
reporting organic food only in case of prices beyond the lower price level. Among
the 13,000 panel household we found approximately 1,000 with good classification
skills. For low penetrated organic products we defined the lower price limit as the
minimum price8 that these 1,000 panelists entered.

The procedure described above proved to be suitable for regular prices. Problems
occurred when retailers used bargain offers to stimulate their sales of organic
food. In this case, the bargain prices often fell below the lower price limits and
the corresponding purchases were wrongfully classified as conventional ones. The
effect was not negligible, because the purchase volumes are very high when
significant price offs are offered by big retailers. To avoid these effects, we bought
promotion data from a supplier that collected information from offer brochures and
newspaper ads. The lower price limit was reduced exclusively for the retailer in the
identified promotion weeks.

After we had installed the above described routines the main hurdle of the project
was jumped over. Finally we succeeded in extracting the truly organic purchases
from the panelists. The methods were developed in close cooperation with GfK who
offered ZMP deep insights into the processing of raw data which went far beyond
the usual business practice of market research institutes. GfK and ZMP developed a
well-working division of labor: the data validation process was taken over by ZMP
and the projection of the validated data was done by GfK.

4.3 How Can Sales Data be Projected in Case of Missing
Information on the Universe?

Usually panel operating companies project their sample data to a well-known
universe. Nielsen uses data from official statistics and own surveys to define a
universe as the base of its projection system. In 2007, the universe for the special
organic food stores was unknown. Estimates for the number of organic stores
ranged from 2,500 to 3,500. Sales estimates showed a comparable range. Because of
missing universe information, bioVista’s panel for organic food stores did not offer
projected data. However, for our project, projection to the universe of organic stores
was crucial.

Therefore the following method was tested: bioVista asked a selection of
manufacturers for the volumes of their brands realized with organic retailers and

8To achieve more robustness against outliers we replaced the minimum by an appropriate rank
statistic.



168 P. Michels

wholesalers in Germany. The attempt was successful for most of the categories of
our interest.9 Based on the delivered data, a projection factor for each category was
calculated as

volume of coop.manufacturers in the universe

volume of coop.manufacturersin the bioVista sample
(1)

These projection factors were applied to cooperating and non-cooperating manufac-
turers of the corresponding categories. Thus, the projected category volumes could
be calculated. The method works, because organic retailers emphasize on brands
exclusively sold in organic shops. Therefore, the sales to organic and conventional
retailers can be easily separated.

4.4 How Can Projections Based on the Different Sources
be Combined to Total Market Estimates?

Up to now we had solved special issues of the three involved panel methods. Below,
we come to the challenge of combining the different approaches to an estimate of
total sales, volumes, and market shares.

Concerning the two retail panels from Nielsen and bioVista, we did not expect a
considerable bias in measuring sales volumes and values. Therefore, we considered
the projected values of these panels as unbiased estimates and used them without
bias corrections. Consequently, for packaged food and beverages we could simply
consolidate sales volumes and values by summing up the respective figures from the
two instruments. In contrast, the situation of household panel data in the fresh food
sector was more difficult.

Household panels tend to underestimate the market volume. There is a variety of
reasons for the missing coverage of household panels, e.g.

• panelists consciously or unconsciously skip purchases,
• purchases for out-of-home consumption are not likely to be scanned,
• purchases of re-sellers, gastronomists, and caterers are represented by retail

panels but not regarded by household panels.

Among the clients of household panel data these shortcomings are well known
and will not be treated in this paper. Instead of it we examine the question to what
extent the coverages of conventional and organic products differ. These differences
are crucial, especially when calculating market shares of organic products. Unfortu-
nately, in the current project a direct comparison of household and retail panels
was not feasible, because Nielsen’s and bioVista’s retail panels do not provide
information on fresh food. Hence, the coverage analysis had to be carried out

9See Footnote 7.
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for selected dairy categories instead of fresh food. Both, dairy and fresh food are
characterized by high purchase frequencies and considerable relevance of organic
products. Furthermore, the products of both categories are usually brought home
directly after shopping. For these reasons and the lack of alternatives, we assumed
similar coverage pattern of the considered dairy and fresh food categories.

For the universe of conventional food retailers, the coverage is defined by

projected sales of GfK household panel

projected sales of Nielsen retail panel
� 100 (2)

For the examined dairy categories milk, yogurt, curd, and butter the coverage
values for conventional products at conventional food retailers were close to each
other, the average is about 90 %. For organic products the coverage proved to be
much smaller, on average 66 %. This relatively poor coverage could be explained
by the following two arguments:

• Organic products are expensive and panelists use to be more price-sensitive as
compared to the universe of all households in Germany.

• The intensive buyers of organic food show a distinctive anonymity requirement.
Hence, many of them are not willing to report their purchase behavior to
commercial panel institutes.

Taking account of the above coverage figures, sales of conventional products (cp)
measured by the GfK household panel should be expanded by the factor 1=0:9 D
1:11 and sales of organic products by the factor 1=0:66 D 1:52. With these coverage
correction factors, the market share of organic products (op) at conventional stores
(cs) like supermarkets, consumer markets, and discounters can by calculated by

sales of op in cs � 1.52

sales of op in cs � 1.52 + sales of cp in cs � 1.11’
(3)

using sales estimates from the GfK household panel.
The coverage analyses of GfK household panel with respect to organic stores

(small bio shops and bio supermarkets) are based on further data sources. Hamm
and Rippin (2007) published sales figures of different market segments based on
interviews with experts from retailers and direct marketers. For the year 2005
they estimated the sales volume for organic stores of about 1 billion Euros.
The share of the most important fresh food categories is quantified by Klaus
Braun Kommunikationsberatung,10 a consulting agency using operating data from
a sample of organic retailers including category-specific sales figures. Combining
the two results yields a sales volume of 425 million Euros for fresh food of which
the GfK household panel covers about 50 %. The reasons for the coverage gap are

10Klaus Braun Kommunikationsberatung collects data from its clients (e.g., organic store owners).
The sample is stratified by the sales values of the organic stores. For more information see www.
klausbraun.de.

www.klausbraun.de
www.klausbraun.de
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quoted above. They can be applied for the clients of organic shops (os) to an even
higher extent. Thus, we have the formula

sales of op in cs � 1.52C sales of op in os � 2.00

sales of op in cs � 1.52C sales of cp in cs � 1.11C sales of op in os � 2.00
(4)

for a coverage corrected market share of organic fresh food products. Again, the
sales figures are based on the GfK household panel. Similar correction factors can
be derived using purchase volume instead of sales estimates. Actually, the volume-
based coverage proves to be slightly higher, because of the price sensitivity of the
panelists mentioned above.

5 Applications of Panel Data for Organic Food
and Beverages

In the project report, Bien and Michels (2007) presented many examples of the use
of the developed reporting facilities for specific analysis on the organic market. Up
to now parts of our fundamental research have been used to describe the purchase
behavior on the organic markets.

The sales of organic food and beverages have steadily increased from 3.9 billion
Euros in 2005 to 7.0 billion Euros in the year 2012. The corresponding average
growth rate of 8.7 % is definitely remarkable in the German food and beverage
sector. Once a year the change rates and the corresponding sales values of the total
organic market are estimated by a working team11 using the sources of our proposed
puzzle approach and taking into account the strengths and weaknesses derived in
this paper. Every year in February, the results are published at the world’s largest
trade fair for organic products Biofach in Nuremberg. The new market figures are
widely distributed by mass media and special media reporting on the occasion of
the Biofach.

After implementation of the classification and validation processes as described
above, especially the data of GfK household panel offer a large potential for the
further research. A follow-up project proposal from the University of Kassel and
ZMP was funded again by the Federal Program of Organic Farming and other forms
of Sustainable Agriculture. This project treated the dynamics in purchase behavior
for organic food with descriptive and inductive statistical methods (Buder et al.
2010).

11Members of the working team: Hamm, U., University of Kassel, Michels, P., University of
Applied Sciences Weihenstephan-Triesdorf, representatives from the research institutes GfK,
Nielsen, bioVista, Klaus Braun Kommunikationsberatung, Agrarmarktinformations-Gesellschaft
(coordinating) and from the umbrella organization Bund Ökologischer Lebensmittelwirtschaft
BÖLW.
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Within this project, about 40 million purchase acts were investigated. For the
years 2004–2008 they reflect the food and beverage demand of 20,000 GfK panel
households in 41 product categories. Selected results are given below:

• Household segmentation by loyalty showed that only 17 % of the shoppers stood
for 76 % of the sales of organic food and beverages. Hence the organic market
was strongly dependent on few loyal customers. Growth potential was identified
especially in the group of occasional buyer. This result had to be handled with
caution, because of the findings of the above coverage analyses. Missing heavy
intensive buyers in the GfK sample may lead to an underestimation of the share
of loyal shoppers.

• Once a year, the GfK panelists answer to questionnaires on socio-demographics,
attitudes, media, and leisure behavior. The results can be used to analyze
the motivation of buying organic food. By using structural equation models,
significant factors of influence were discovered: the purchase behavior was
primarily determined by selfish buying motives. Consumers bought organic
products, because they find that they taste better, contain fewer residues, and
are considered to be healthier.

• Classical consumer segmentation criteria like “income” and “education” were
not significant.

• Up to now, a blank area of the organic market is the target group with positive
attitudes towards fast food and snacks. Useful offers in this field may attract
young people to organic food.

In a project for the Bavarian Ministry for Food, Agriculture and Forestry, Michels
et al. (2013) quantified the development and the structure of the demand for organic
food and beverages in Bavaria by using GfK household panel data and considering
the learnings of the above coverage analyses. This is a part of a current evaluation of
the Bavarian organic sector and the basis of future funding strategies of the Bavarian
state government. The analyses showed that Bavarians are above-average affine to
organic food as compared to other German regions. Their demand is rather resistant
to economic crisis. Furthermore, food categories and shop types that Bavarians
prefer are identified. This information can be used to support the development and
the marketing of regional organic food.

6 Further Research Requirements

The basic research project dates back to the year 2007 (Bien and Michels 2007).
Until today the solutions proposed in this paper are adopted still to GfK data.
In the meantime the sales volume of the organic market has doubled. Further
methodological work is needed with respect to the following issues:

• In 2012 GfK has generally improved the coverage by applying a different
projection technology. In the meantime, the universe of organic shops has
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been surveyed. The corresponding sales values have been applied to the yearly
estimations of the total market mentioned above. Furthermore, today organic
food and special organic stores are closer to mainstream. Therefore, the question
is obvious whether the coverage values derived in this paper are still valid.

• The methods of this paper only work for bias reduction of volume, sales (includ-
ing related shares), and price estimations. However, the facts like penetrations,
purchase frequencies, or shares of requirement are very important for deeper
consumer insights. Here further research is needed, too.

• The coverage of GfK household panel for fresh food in the small trade sector
(bakeries, butcheries, weekly markets, or farmers) is completely unknown, be-
cause there are no further sources that can serve as benchmarks.
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The Elasticity of Demand for Gasoline: A
Semi-parametric Analysis

Pin T. Ng and James L. Smith

Abstract We use a semi-parametric conditional median as a robust alternative to
the parametric conditional mean to estimate the gasoline demand function. Our
approach protects against data and specification errors, and may yield a more
reliable basis for public-policy decisions that depend on accurate estimates of
gasoline demand. As a comparison, we also estimated the parametric translog
conditional mean model. Our semi-parametric estimates imply that gasoline demand
becomes more price elastic, but also less income elastic, as incomes rise. In addition,
we find that demand appears to become more price elastic as prices increase in real
terms.

1 Introduction

Projections of future gasoline consumption are conditioned by the elasticity of
demand. Thus, the design and success of various energy and environmental policy
initiatives that pertain to gasoline necessarily involve judgments regarding this
important aspect of consumer behavior. The magnitude of price elasticity, for
example, largely determines the potency of excise taxes as a tool for raising govern-
ment revenues, discouraging consumption and emissions, encouraging conservation
and fuel switching, and attaining certain national security goals regarding energy
independence. Moreover, the magnitude of income elasticity may influence the
way in which economic growth and development affect progress towards achieving
specific policy goals over time.

Numerous empirical studies have contributed to our understanding of the
elasticity of demand for gasoline; see, e.g., Baltagi and Griffin (1997), Brons
et al. (2008), Espey (1998), Kayser (2000), Nicol (2003), Puller and Greening
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(1999), Schmalensee and Stoker (1999), and Wadud et al. (2010). Dahl and Thomas
(1991)’s very useful survey of previous research encompasses an almost bewildering
variety of models, but finds a certain general consistency of results. They show,
for example, that when appropriate allowances are made for differences in the
treatment of dynamic adjustment processes and the effect of intervening variables,
the preponderance of evidence suggests that gasoline demand is slightly inelastic
with respect to price (the long-run elasticity being in the neighborhood of �0:9),
but elastic with respect to income (approximately 1.2 in the long-run).

Although this body of previous research may suggest plausible consensus
values that reflect the tendencies of representative consumers, the evidence is less
conclusive on the question of whether it is appropriate to regard demand elasticities
as being constant across groups of consumers who face different price and income
levels. A study by McRae (1994), for example, shows that the demand for gasoline
in the developing countries of Southeast Asia is somewhat less price elastic, but
more income elastic, than that in the industrialized countries of the OECD. If this
difference is due to variation in income levels between the two groups, we would
then expect the rapid rate of increase in gasoline consumption that has been observed
in the Asian countries to moderate as their incomes continue to rise. Wadud et al.
(2010) also find substantial heterogeneity in price and income elasticities based
on demographic characteristics and income groupings. A more precise forecast,
however, would require further knowledge of how elasticities vary with respect to
price and income levels.

Most studies of gasoline consumption rely on models of the form:

Q D g.P; Y;Z/C � (1)

which specifies the quantity of gasoline demandedQ as some unknown parametric
function g.�/ of the price of gasoline P , disposable income Y , and a vector of other
explanatory variablesZ, e.g., demographic characteristics, plus the disturbance term
� which captures the unexplained portion of demand. Economic theory provides
information on the signs of partial derivatives of g, but not its functional form nor
the specific nature of �. Almost all analyses of gasoline demand to date, however,
utilize some form of parametric specification on g (most notably linear, log-linear,
or translog) and assume the distribution of � to be normal with zero mean and fixed
variance. The demand function g is then estimated by the conditional mean of Q
using least-squares regression.

Although easy to apply, this method is not well suited for studying the potential
variation in the elasticity of demand. The problem, of course, is that each functional
specification “sees” a different pattern of variation in elasticities and imposes rigid
constraints on what can be deduced from a given set of data. Reliance on the linear
form forces estimated elasticities to vary hyperbolically, regardless of what the data
might look like. Reliance on the log-linear form, on the other hand, is tantamount to
assuming that elasticities are constant.

In this paper, we utilize a semi-parametric extension of the quantile regression
technique of He and Ng (1999), He et al. (1998), and Koenker et al. (1994) to
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study gasoline demand in the USA. This approach, which is based on tensor product
polynomial splines, protects against misspecification in the demand functional form
and achieves robustness against departures of the disturbance term from normality.
Because we do not impose any predetermined structure on the demand function,
the resulting estimates of demand elasticities, and their variation across price and
income levels, reflect patterns of consumer choice that are inherent in the underlying
data. We also develop and report confidence intervals that reflect the degree of
uncertainty that is associated with the estimates that result from this semi-parametric
procedure.

One of the earlier studies that attempt a non-parametric specification of the
gasoline demand function is Goel and Morey (1993). They estimate the conditional
mean using a kernel estimator and report considerable variation in the price
elasticity of U.S. demand across the range of gasoline prices observed before
and after the 1973 Arab oil embargo. However, they attribute all fluctuations in
demand to variations in gasoline prices and ignore the influence of income and other
variables. Therefore, the price elasticities which they report, which are sometimes
positive, are probably contaminated by the confounding effects of omitted variables.
Hausman and Newey (1995) also discuss a kernel estimator of the gasoline demand
function, but since they do not report on elasticities, we cannot compare our results
to theirs. Schmalensee and Stoker (1999) also specify the functional form of the
income component non-parametrically in their semi-parametric model and find
no evidence that income elasticity falls at high income levels. Similar to Goel
and Morey (1993), Schmalensee and Stoker (1999)’s conclusions are also drawn
from estimation of the conditional mean functions instead of the robust conditional
median that we use in this paper.

2 Theory and Data

Economic theory suggests a negative relationship between prices and quantity
consumed. In addition, there is a positive income effect on consumption, at least
if gasoline is a normal good. For the cross-sectional time-series data we use in
this study, variations in population density across states also play an important role
in determining consumption. For sparsely populated states like Montana, Nevada,
New Mexico, and Wyoming, where alternative forms of public transportation are not
readily available, people rely heavily on the automobile as a means of transportation.
The lack of close substitutes for automobile transportation suggests a relatively
inelastic demand function.

The raw data spans from 1952 to 1978 for 48 states. Alaska and Hawaii are
dropped from the sample due to lack of data on gasoline prices. After 1978,
gasoline was reclassified into regular, leaded, and unleaded grades, as well as full-
service and self-service. Our sample, therefore, ends in 1978 to avoid inconsistent
calibration in the data set. The gasoline prices and consumption used in this study
are essentially those of Goel and Morey (1993). Quantity demanded is measured
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by gasoline consumption subject to taxation, as compiled by the Federal Highway
Administration. Prices are the average service station gasoline prices within each
state, as reported by Platt’s Oil Price Handbook and Oilmanac. Annual per-
capita personal income is taken from the Survey of Current Business. Population
density is computed from state population divided by geographic areas, using
figures from the Statistical Abstract of the United States. The price deflator is the
consumer price index (1967 dollars) also from the Statistical Abstract of the United
States.

Figure 1 presents scatter plots of annual gasoline consumption per capita in
gallons (Q), prices per gallon in 1967 dollars (P ), annual incomes per capita
in 1967 dollars (Y ), and population densities in 1,000 persons per square mile
(D). To ameliorate the nonlinearity of the data, we show a second set of scatter
plots in Fig. 2 with all variables measured in logarithmic form. In both figures,
there appears to be a negative relationship between quantity and prices, a positive
income effect, and a negative relationship between quantity and population density.
There also seems to be a strong interaction between prices and income. The states
with extremely sparse population (less than 50 persons per square mile) and high
gasoline consumption (more than 750 gallons per person) are Montana, Nevada,
New Mexico, and Wyoming. In these states few means of alternative transportation
are readily available. The scatter plot between Q and its one period lag Q�1 also
suggests a significant inertia in gasoline consumption adjustment.

To illustrate the effect of per-capita income and population density on the
demand curve, we present a series of conditional scatter plots of consumption
per capita on prices over various intervals of income and density in Fig. 3. The
conditional plots allow us to see how quantity depends on prices given relatively
constant values of the other variables (income and density). The different income
ranges are given in the top panel while the given density levels are in the right
panel in the figure. As we move from left to right, across a single row, income
increases. Population densities rise as we move from the bottom to the top of each
column. Also superimposed in the conditional scatter plots are cubic basis spline
(B-spline) fits to the data in each panel; see de Boor (1978) or Schumaker (1981)
for definition and construction of B-spline. Figure 3 gives us a rough idea of how
the demand curve looks over different income and population density regions. The
conditional plots seem to suggest that both very low and very high income states
have relatively price inelastic demand functions while the middle income and the
moderately populated states have more elastic demand functions. Moving left to
right horizontally across each row shows the positive income effect on consumption.
Moving from bottom to top also reveals the negative population density effect on
consumption. The highly populated states seem to have lower gasoline consumption
per capita holding all else constant. We should, of course, emphasize that the
conditional plots in Fig. 3 only provide a very crude and tentative picture of the
demand surface behavior.
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Fig. 1 Scatter plots of raw data
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Fig. 2 Scatter plots of logarithmic transformed raw data
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3 Models and Estimation Techniques

3.1 The Semi-parametric Model

As we have seen in Fig. 2, logarithmic transformations manage to remove a
considerable amount of nonlinearity from the data. Using lowercase to denote
logarithmically transformed variables, we adopt the following semi-parametric form
of the demand equation:

qi D ı C g12 .pi ; yi /C g3 .di /C ˛q�1;i C �i (2)

for i D 1; � � � ; N , where g3 is a univariate continuous function, g12 is a bi-variate
smooth function, ˛ is a scalar, and ı is the intercept term. The fact that g3 and g12
are not confined to any specific parametric family provides flexibility to the model
while the linear lag consumption component facilitates the traditional adaptive
expectation dynamic analysis. The analysis of variance (ANOVA) decomposition in
(2) has the virtue of separating the contributions of the covariates into main effects
captured by the univariate functions and joint effect represented by the bi-variate
function; see He and Ng (1999). It also provides a parsimonious representation of a
potentially much more complex functional. Stone (1994) provides a theoretical jus-
tification for the use of ANOVA-type decomposition in multivariate function estima-
tion using polynomial splines and their tensor products. We do not separate the main
effect functions g1 and g2 for p and y from the joint-effect function g12 because the
estimate of g12, a tensor product bi-linear B-spline, spans the spaces of the univariate
B-spline estimates Og1 and Og2; see He et al. (1998). Including these main effect func-
tions would introduce perfect multicollinearity and pose an identification problem
during estimation. The population density d does not enter in interaction form be-
cause both economic theory and the data in Fig. 1 seem to suggest that no interaction
with other explanatory variables is warranted. Our parametric model chosen by the
Akaike information criterion (AIC) in Sect. 3.5 does not suggest any interaction
between d and other explanatory variables either. We also estimated a fully non-
parametric version of (2) with ˛ q�1;i replaced by a univariate continuous function
g4.q�1;i /. The result is identical to that of the semi-parametric specification. This
supports our decision to model the lag of logarithmic consumption linearly.

3.2 Quantile Smoothing B-Splines

The demand equation (2) is estimated by solving the following optimization
problem:

min
.ı;˛/2R2Ig3;g122G

PN
iD1 �� .qi � ı � g12 .pi ; yi / � g3 .di / � ˛q�1;i /

C�
n
V12

�
@g12
@p

�
C V21

�
@g12
@y

�
C V3

�
g0
3

�o
(3)
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where G is some properly chosen functional space, � 2 Œ0; 1� specifies the desired
conditional quantile, �� .u/ D u .� � I .u < 0// is the check function which assigns
a weight of � to positive u and � � 1 otherwise, � 2 .0;1/ is the smoothing
parameter, and V3, V12, and V21 are measures of roughness defined in He et al. (1998)
and Koenker et al. (1994). For a given � and �; the estimated � th conditional quantile
consumption function is

Oq�;i D Oı� C Og12�;� .pi ; yi /C Og3�;� .di /C Ǫq�1;i

The special case of � D 0:5 yields the estimated conditional median consumption
function. The portion in (3) associated with the check function controls the fidelity
of the solution to the data.

For an appropriately chosen G , Koenker et al. (1994) show that, in the special
case where there is only one covariate, the solution, which they call the � th quantile
smoothing spline, is a linear smoothing spline, i.e. continuous piecewise linear
function with potential breaks in the derivatives occurring at the knots of the mesh.
With the linear smoothing spline characterization, the objective function (3) can
be written in the form similar to that of the linear regression quantile in Koenker
and Bassett (1978). This facilitates computation of the � th conditional quantile via
modified versions of some familiar linear programs; see Koenker and Ng (1992) for
a simplex algorithm, and Koenker and Ng (2005) for a Frisch-Newton algorithm.
Convergence rates of the quantile smoothing splines are given in He and Shi (1994),
Portnoy (1997), and Shen and Wong (1994).

Even though computation of the quantile smoothing splines is feasible with an
efficient linear program, it is still quite formidable for even a moderately large data
set. In this paper, we suggest a B-spline approximation to the solution which utilizes
a much smaller number of uniform knots in each mesh, hence saving tremendous
memory and computing cycles as suggested in He and Ng (1999).

The fact that the solution is computed via a linear program leads to a very
useful by-product—the entire family of unique conditional quantile estimates
corresponding to the whole spectrum of � can be computed efficiently by parametric
programming; see Koenker et al. (1994) for details. The same is true for the
whole path of �. This property will be exploited later in determining the optimal
smoothing parameter and constructing the confidence interval of the conditional
median estimate.

3.3 Choice of the Smoothing Parameter

The smoothing parameter � in (3) balances the trade-off between fidelity and
roughness of the objective function. Its choice dictates the smoothness of the
estimated conditional quantile. As �!1, the paramount objective is to minimize
the roughness of the fit and the solution becomes the linear regression quantile of
Koenker and Bassett (1978). On the other hand, when �! 0, we have a linear spline
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which interpolates every single qi . We could, of course, assign different smoothing
parameters to V3, V12, and V21 to produce different degrees of roughness along the
direction of the separate covariates. Doing so, however, would complicate the choice
of the correct smoothing parameters. In the single covariate problem, Koenker
et al. (1994) suggest using a modified version of Schwarz (1978)’s information
criterion (SIC) for choosing �. The procedure is computationally feasible due to
the univariate parametric programming nature of the problem in (3). Introducing
more than one � would require higher dimensional parametric programming.

The single smoothing parameter in the conditional median is chosen to minimize

SIC .�/ D log
�
1
N

PN
iD1

ˇ̌
ˇqi � Oı� � Og12�;� .pi ; yi /� Og3�;� .di / � Ǫ� q�1;i

ˇ̌
ˇ
�

C k.�/

2N
log .N / (4)

where k, which is inversely proportional to �, is the effective dimensionality of the
solution defined in Koenker et al. (1994).1 The fidelity part of (4) can be interpreted
as the log-likelihood function of the Laplace density. The second portion is the
conventional dimension penalty for over-fitting a model.

The piecewise linear nature of the spline solution is particularly convenient for
elasticity analysis. If the demand function is in fact log-linear, the optimal choice
of � will be very large and the demand function will be that characterized by the
conventional log-linear model. If the demand function is only piecewise linear, the
chosen � will be relatively small and our quantile smoothing spline will produce a
piecewise linear structure.

3.4 Confidence Set

Zhou and Portnoy (1996) suggests a direct method to construct confidence sets in
the linear regression model

yi D x0
iˇ C �i (5)

The 100 .1 � 2˛/% point-wise confidence interval for the � th conditional quantile
at x0 is given by

In D
h
x0 Ǒ

��bn ; x0 Ǒ
�Cbn

i

1The effective dimension of the estimated conditional median function is the number of interpo-
lated qi . Its value varies between N and the number of explanatory variables in (3) plus one (for
the intercept). We can treat k as the equivalent number of independent variables needed in a fully
parametric model to reproduce the semi-parametric estimated conditional median. When k D N ,
there is no degree of freedom and the estimated conditional median function passes through every
response observation.
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where bn D z˛
p
x0Q�1x� .1 � �/, Q D Pn

iD1 xix0
i , za is the .1 � ˛/ quantile

of the standard normal distribution, and Ǒ��bn and Ǒ�Cbn are the .� � bn/th
and .� C bn/th regression quantiles of the linear regression model, respectively.
Utilizing the compact formulation of the pseudodesign matrix QX in Eq. (13) of
Appendix A in He et al. (1998), we can adapt the direct method to compute the
confidence sets of our estimated quantiles by treating the upper partitioned matrix
B of QX as the design matrix of (5). The lower partitions V y and V x of QX determine
only the smoothness of the fitted quantile function and is irrelevant once an optimal
� has been chosen.

3.5 A Parametric Conditional Mean Model

To see how much our semi-parametric conditional median estimate differs from the
conventional parametric conditional mean estimation, we fit the following translog
model to the same data set:

qit D ı C ˇ1pit C ˇ2yit C ˇ12pityit C ˇ3dit C ˇ4d2it C ˛qit�1 C �it (6)

The model is chosen by minimizing the AIC in a stepwise model selection
procedure.

4 Estimation Results

The minimizing � is 0:418 which occurs at an SIC of 0:021. The corresponding
effective dimension k of the semi-parametric quantile smoothing B-splines fit is 17.

The quantile smoothing B-splines estimated ˛ is 0:959 and hence the long-run
elasticity multiplier is 24:4. As we have observed from the scatter plots in both
Figs. 1 and 2, the inertia of short-run adjustment is quite high.

The dimension of the translog model (6) is 7, which is about 2=5 of the dimension
.k D 17/ of the semi-parametric model. This suggests that the semi-parametric
model prefers a more complex structure than the translog model can offer. The least
squares estimate of ˛ is 0:95 and the long-run elasticity multiplier is 20 which is
only slightly smaller than the semi-parametric estimate of 24:4.

We compute the perspective plot of the estimated semi-parametric and translog
demand surfaces conditioned at the median population density and lag consumption.
There are altogether 25 grid points along both the price and income axes. The
slightly positively sloped demand curves over the very low income region are the
result of a boundary effect. There is just not enough data to make an accurate
estimation near the boundary. As a result, in Figs. 4 and 5, we discard the first
and last five grid points (the boundaries) and slice through the demand surface at
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Fig. 4 Smoothing B-splines confidence intervals for the demand curves: magnitude of price effect
observed at increasing income levels

the different income grid points starting at the sixth and ending at the twentieth
when plotting quantity on the vertical axis and price on the horizontal axis. Also
superimposed in the figures are the 95 % point-wise confidence intervals. The
boundary effect along the price direction is also reflected as wider intervals near
the edges in each panel. The effect is more drastic for the semi-parametric model
reflecting the slower convergence rate of the nonparametric approach.
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Fig. 5 Confidence intervals for the translog demand curves: magnitude of price effect observed at
increasing income levels

Figure 4 depicts the phenomenon we observed in the conditional plots in Fig. 3.
The price elasticity seems to be lower (in magnitude) when income is lower. As
income increases, demand generally becomes more price sensitive. This confirms
for U.S. consumers the type of income effect that McRae (1994) discovered in
comparing price elasticities in industrialized and developing nations. Short-run
price elasticity plots of the demand slices are shown in Fig. 6. The price elasticity
functions are step functions reflecting the piecewise linear nature of our quantile
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Fig. 6 Smoothing B-splines short-run price elasticity

smoothing B-splines.2 Short-run demand also seems to be less price elastic at lower
prices and to become more elastic as prices increase. The translog model produces
somewhat different result, as shown in Fig. 7. As before, the price elasticity of
demand appears to increase with income. However, the estimated price elasticity
generally increases with price, which contradicts the semi-parametric estimates.

2Since we have measured all variables in logarithmic form, the slope of each log-linear segment of
the demand curve corresponds to the elasticity.
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Fig. 7 Short-run price elasticity for the translog model

Our semi-parametric estimates of short-run price elasticity range (across price
and income levels) from�0:205 to�0:017with a median of�0:134: This compares
to the average value of �0:24 reported by Dahl and Thomas (1991) for models
that use a comparable partial adjustment mechanism. Our short-run price elasticity
evaluated at the median of the data is �0:205, which is even closer to the number
reported by Dahl and Thomas (1991). Our estimates of long-run price elasticity
range from �5:02 to �0:415, which extends well beyond the highest long-run price
elasticities reported by Dahl and Thomas (1991). Our median estimate of �3:27 is
about four times the magnitude of their average long-run elasticity.
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Estimates of short-run price elasticity we obtain from the parametric translog
model range from �0:295 to �0:045 with a median of �0:189. The elasticity at the
median of the data is �0:206. In general, gasoline demand appears slightly more
elastic when fitted to the translog model instead of the semi-parametric model.

A generally positive effect of income on consumption is also apparent in Figs. 8
and 9, in which we slice through the demand surface at fixed price levels to illustrate
the Engel curves, and again superimpose the 95 % confidence intervals in the plots.
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Fig. 8 Smoothing B-splines confidence interval for the demand curves: magnitude of income
effect observed at increasing price levels
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Fig. 9 Confidence interval for the translog demand curves: magnitude of income effect observed
at increasing price levels

The slight negative income effects evident at extremely high price levels are artifacts
of the data that cannot be taken too seriously in view of the very wide confidence
intervals that are found at the boundaries of the data set. The quantile smoothing
B-splines estimates of short-run income elasticity corresponding to each panel in
Fig. 8 are presented in Fig. 10 while estimates derived from the translog model are
shown in Fig. 11. Apart from the boundary effects noted above, short-run income
elasticities seem to fall as income rises. This finding is also consistent with McRae
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Fig. 10 Smoothing B-splines short-run income elasticity

(1994)’s conclusion that income elasticities are generally lower in the relatively
prosperous industrialized countries than in the developing countries of South East
Asia.

Discarding the negative values near the boundary, our semi-parametric estimates
of short-run income elasticity fall between 0 and 0:048, with a median value of
0:008. The short-run income elasticity evaluated at the median of the data is 0:042
which is substantially lower than the average short-run income elasticity of 0:45
reported by Dahl and Thomas (1991). Our estimates of long-run income elasticity



The Elasticity of Demand for Gasoline: A Semi-parametric Analysis 191

income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 29.39
income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 30.12
income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 30.86

income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 31.59
income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 32.32
income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 33.06

income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 33.79
income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 34.52
income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 35.26

income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 35.99
income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 36.72
income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 37.46

income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 38.19
income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 38.92
income

el
as

tic
ity

2000 4000 6000 8000

0.
0

0.
02

0.
04

price= 39.65

Fig. 11 Short-run income elasticity for the translog model

range from 0 to 1:17, with a median value of 0:195. Our long-run income elasticity
of 1:03 evaluated at the median of the data is fairly close to the average long-run
elasticity of 1:31 which Dahl and Thomas (1991) reports.

The estimates of short-run income elasticity we derive from the translog model
range between 0 and 0:06 with a median of 0:01: These values are quite close to
our semi-parametric estimates. They also confirm again the general tendency of
income elasticities to decline as incomes rise. At the median of the data, the short-
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run income elasticity is 0:012, which is only 1=4 of that of the semi-parametric
model.

Conclusion
We have applied a new, semi-parametric estimator to test the hypothesis
that the elasticity of gasoline demand varies systematically across price
and income levels. The approach we take uses the conditional median to
produce a robust alternative to conventional parametric models that rely on
the conditional mean. Our results tend to confirm, with different data and
methods, both of McRae (1994)’s suggestions: gasoline demand appears to
become more price elastic, but also less income elastic, as incomes rise. In
addition, we find that demand appears to become more price elastic as prices
increase in real terms.

In comparison with previous parametric estimates of gasoline demand, our
results tend to indicate that long-run adjustments are quite large relative to
short-run effects. Regarding the effect of prices on demand, our short-run
estimates are generally consistent with the consensus of previous short-run
elasticities. Regarding the income effect, however, our long-run estimates tend
to be much more consistent with the results of previous studies than are our
short-run estimates. Further empirical research would be useful in helping to
clarify what appears to be an important difference in the nature of dynamic
adjustments to income versus price changes.
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The Pitfalls of Ignoring Outliers in Instrumental
Variables Estimations: An Application to the
Deep Determinants of Development

Catherine Dehon, Rodolphe Desbordes, and Vincenzo Verardi

Abstract The extreme sensitivity of instrumental variables (IV) estimators to
outliers is a crucial problem too often neglected or poorly dealt with. We address this
issue by making the practitioner aware of the existence, usefulness, and inferential
implications of robust-to-outliers instrumental variables estimators. We describe
how the standard IV estimator can be made robust to outliers, provide a brief
description of alternative robust IV estimators, simulate the behaviour of both the
standard IV estimator and each robust IV estimator in presence of different types of
outliers, and conclude by replicating a celebrated study on the deep determinants of
development in order to establish the danger of ignoring outliers in an IV model.

1 Introduction

In 1977, Nobel Prize laureate George Stigler compiled a list of the most common
comments heard at Economics conferences. Among them figures prominently
worry about the lack of identification of the parameters. Indeed, while the applied
researcher is usually interested in uncovering a causal relationship between two
variables, there is no guarantee that the parameter of interest will be consistently
estimated due to reverse causality, measurement error in the explanatory variable
or an omitted confounding variable. For this reason, instrumental variables (IV)
estimations have become a cornerstone of empirical economic research. However,
despite their widespread use in empirical applications, little attention has been paid
to a key condition underlying IV estimators: the absence of outliers, i.e. observations
which are substantially different from the others and whose presence in the sample
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can strongly influence the estimates. Unfortunately, even one outlier may cause an
IV estimator to be heavily biased. In the jargon of the statistics literature, the IV
estimator is said to be not a robust estimator. Although it must be acknowledged
that some studies report having paid attention to outliers, it is unlikely that they
have successfully dealt with this issue. They used outlier diagnostics based on least
squares residuals. Given that the least squares estimator is extremely non-robust
to outliers, these diagnostics share the same fragility and very often fail to detect
atypical observations (this effect is called the masking effect). Furthermore, their
approach did not take into account the combined influence of outliers in the first and
second stages of their IV estimations. Hence, to the already long list compiled by
George Stigler should be added a question about the robustness of the results to the
potential presence of outliers in the sample.

The purpose of this paper is to make the practitioner aware of the distorting
effects that outliers can have on the standard IV estimator since the latter is shown
to be very sensitive to contamination of the dependent variable, the endogenous
variable(s), the exogenous variable(s) and/or the instrument(s). Consequently, we
motivate the usefulness and inferential implications of robust-to-outliers instrumen-
tal variables (ROIV) estimators. We first explain how the standard IV estimator
can be adapted to be robust to outliers by describing a two-stage methodology.
We focus on this estimator because it is relatively simple and efficient, is strongly
resistant to all types of outliers and allows access to robustified versions of the
tests for the quality of the instruments. Afterwards, we offer a brief description
of the other robust IV estimators suggested in the literature and we present Monte
Carlo simulations, which assess the relative performance of six alternative robust
IV estimators in presence of different types of outliers. The method that we propose
appears to behave the best, with a low mean squared error in whatever scenario
is devised. Finally, we revisit the findings of Rodrik et al. (2004) on the deep
determinants of development, in order to illustrate the distorting effects of outliers in
the data. We show that the specification used become under-identified once outliers
are removed from the sample, as their instrument for institutional quality, “settler
mortality”, loses its relevance.

The remainder of the paper is organized as follows: Sect. 2 reviews the standard
IV estimator. Section 3 presents the new ROIV. Section 4 describes alternative
robust IV estimators and provides Monte Carlo simulations to assess the relative
performance of each IV estimator in presence of various types of outliers. Section 5
replicates an early study to demonstrate that outliers are a common feature in
most data and that their presence can frequently result in misleading econometric
inferences. The final section concludes.

2 Classical IV Estimator

The multiple linear regression model is used to study the relationship between a
dependent variable and a set of regressors using the simplest relation, the linear
function. The linear regression model is given by:
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yi D xti� C "i i D 1; : : : ; n; (1)

where yi is the scalar dependent variable and xi is the .p � 1/ vector of covariates
observed.1 Vector � of size .p�1/ contains the unknown regression parameters and
needs to be estimated. On the basis of an estimated parameter O� , it is then possible to
fit the dependent variable by Oyi D xti O� , and to estimate the residuals ri . O�/ D yi � Oyi
8i D 1; : : : ; n. Although � can be estimated in several ways, the underlying idea is
always to try to get as close as possible to the true regression hyperplane by reducing
the total magnitude of the residuals, as measured by an aggregate prediction error.
In the case of the well-known ordinary least squares (LS) estimator, this aggregate
prediction error is defined as the sum of squared residuals. The vector of parameter
estimated by LS is then

O�LS D arg min
�

nX

iD1
r2i .�/ (2)

with ri .�/ D yi � xti� for i D 1; : : : ; n:
Using matrix notations with X the .n � p/ matrix containing the values for the

p regressors (constant included) and y as the .n � 1/ vector containing the value of
the dependent variable for all the observations, the solution of Eq. (2) leads to the
well-known formula

O�LS D
�
XtX

��1
Xty: (3)

However, if at least one regressor is correlated with the error term, the parameter
estimated by LS is inconsistent. To tackle this problem the method of instrumental
variables (IV) is generally used. More precisely, define Z as the (n � m) matrix
(wherem � p) containing instruments. This matrix is composed of two blocks: the
included instruments (i.e. the variables in X that are not correlated with the error
term) and the excluded instruments (i.e. variables not in X that are correlated with
the endogenous regressors but independent of the error term). Continuous variables
are in submatrix (n � m1) ZC and dummies in submatrix (n � m2) ZD, with m D
m1 Cm2. The standard IV estimator is given by

O� IV D .XtZ.ZtZ/�1ZtX/�1XtZ.ZtZ/�1Zty; (4)

which can be interpreted as a two-step estimation procedure where the first step is
needed to purge the endogenous regressors of their correlation with the error term
before a standard linear regression is run in the second stage.

A serious drawback of this IV method is that if outliers are present in the data,
all the estimated parameters are distorted, possibly causing the IV estimators to take

1For the sake of clarity, vectors and matrices are in bold font and scalars are in normal font.
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on values arbitrarily far from the true values of the regression parameters. These
outliers can be present in the dependent variable, the endogenous variable, and/or in
the included and excluded instruments.

3 Robust IV Estimator

In order to deal with this issue, several robust-to-outliers estimators have been
proposed. Some authors, e.g. Amemiya (1982) or Wagenvoort and Waldmann
(2002) suggest using robust estimators in each step of the two-stage instrumental
variables procedure. Others, such as Lee (2007) and Chernozhukov et al. (2010),
adopt the same logic but employ the control function approach.2 A third group
of authors, among others Lucas et al. (1997), Ronchetti and Trojani (2001),
Wagenvoort and Waldmann (2002) and Honore and Hu (2004), propose to achieve
robustness by modifying the moment conditions of general method of moments
(GMM) estimators. While the theory behind all these estimators is appealing, not
all of them behave well in presence of all types of outliers. For example, Amemiya
(1982), Lee (2007) and Chernozhukov et al. (2010) rely on quantile regressions that,
though being resistant to the presence of vertical outliers (i.e. points lying far away
from the regression hyperplane in the vertical dimension but having standard values
in the space of the explanatory variables) behave poorly in the case of existence
of bad leverage points (i.e. points associated with outlying values in the space
of the explanatory variables and lying far away from the regression hyperplane).
Similarly, Honore and Hu (2004) propose several GMM estimators considering
moment conditions based on the median or the rank of the error term. Here again, we
expect these estimators to be fairly robust against vertical outliers but not necessarily
with respect to bad leverage points.

Another idea proposed by Cohen-Freue et al. (2013) is based on the robustifi-
cation of the IV’s closed-form formula (see Eq. (4)). Instead of using the classical
covariance matrices in Eq. (4), the authors replace it by robust multivariate location
and scatter S-estimator (see Maronna et al. 2006 for further details on this method)3

that withstand the contamination of the sample by outliers. The advantage of this
estimator is that it takes simultaneously into account all the possible types of
outliers: outliers in the response variable, in the regressors, or in the instruments.

However, we adopt a slightly different approach here. Our approach is a two-step
procedure. We first identify outlying observations simultaneously in the response,
the regressors, or the instruments variables, using the Stahel (1981) and Donoho
(1982) univariate projections estimator and then apply Eq. (4) on this contamination-

2Note that these authors were more interested in the advantages offered by quantile regressions
to study the distribution of a given variable than in the resistance of a median regression-type
estimator to certain types of outliers.
3We have implemented Cohen-Freue et al. (2013)-type RIV estimators in Stata, see Desbordes and
Verardi (2013) for a description of the ready-to-use—-robivreg—package.
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free subsample. Three main reasons motivate our strategy. First, standard tests for
the strength and validity of the excluded instruments are readily available, since we
end up by running a standard IV estimation on a sample free of outliers. Second,
a substantial gain in efficiency with respect to the robust IV estimator proposed by
Cohen-Freue et al. (2013) can be attained. Third, the Stahel and Donoho estimator
can easily be adapted to cope with the presence of dummies in the data, in contrast
to the sub-sampling algorithms used to compute S-estimates that can easily fail if
various dummies are among the regressors, due to perfect collinearity within sub-
samples. Welsh and Ronchetti (2002) point out that the “cleaning process” which
takes place in the first step could lead to an underestimation of the standard errors
of the final stage. However, in the simulation section, we show that this effect is
negligible.

The logic of the Stahel and Donoho estimator is that a multivariate outlier must
also be a univariate outlier in some one-dimensional projection of the data. Hence,
the data cloud is projected in all possible directions and the degree of outlyingness
of each point is measured as its maximal univariate robust standardised distance
from the centre of a given projection. For example, the data for each projection can
be centred around the median and standardised by the median absolute deviation.
As hinted above, special attention needs to be paid to dummies. Maronna and
Yohai (2000) highlight that if the size of one (or several) of the groups identified
by a dummy is much smaller than the others, all of the points belonging to this
group might be considered as outliers when dummies are neglected from the outlier
identification step on the grounds that they do not generate themselves outlyingness.
Following the logic of these authors, for each projection, we partial out the effect of
dummies on the basis of a regression M-estimator. The M-estimator of regression
is a generalisation of the least squares estimator. When another function �.�/ of the
residuals is minimised instead of the square function, this results in M-estimators
of regression, which have been introduced by Huber (1964). Function �.�/ must
be even, non-decreasing for positive values and less increasing than the square
function. The vector of parameters estimated by an M-estimator is then

O�M D arg min
�

nX

iD1
�.
ri .�/

O�M
/ (5)

where O�M is robustly estimated beforehand and is needed to guarantee scale
equivariance. M-estimators are called monotonic if �.�/ is convex over the entire
domain and redescending if �.�/ is bounded.

Defining XC the .n � p1/ submatrix of X containing only continuous variables,
XD the (n � p2/ submatrix of X containing only dummy variables (with p D
p1 C p2), ZEC the (n � m3/ submatrix of ZC containing only excluded continuous
instruments and ZED the (n � m4/ submatrix of ZD containing only excluded
dummy instruments, the matrix M D .y;XC ;ZE

C/ of dimension n � q (where
q D 1 C p1 C m3) is projected in “all” possible directions. Given a direction
a 2 Rq�1, with kak D 1, the projection of the dataset M along a is k.a/ D a0M,
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and we define the outlyingness with respect to M of a point mi 2 Rq�1 along a,
partialling out XD and ZED , as

ıi .M/
:::.XD;ZED/

D max
kakD1

ˇ̌
ˇ Qki .a/ �m. Qk.a//

ˇ̌
ˇ

s. Qk.a// (6)

where, as suggested by Maronna and Yohai (2000), Qk.a/ is the result of partialling
out the effect of the dummies from k, i.e. Qk.a/ D k.a/ � Ok.a/ with Ok.a/ being
the predicted value of k.a/ obtained by regressing it on the set of dummies using

a monotonic M-estimator. The notation
:::.XD;ZED/

indicates the partialling out of XD

and ZED . Qk.a/ is thus the part of k.a/ not explained by the dummies figuring in the
econometric model, m is a measure of location and s is a measure of dispersion
of Qk.a/. The partialling out of the dummies is done for each projection and not
only done once before using the Stahel–Donoho estimator, as it would otherwise
lead to a regression but not affine equivariant estimate, i.e. an estimate that does
not change in accord with a linear transformation of the explanatory variables.
When XD contains only the intercept, Ok.a/ is the predicted value of k.a/ obtained
by regressing it on a constant. It is therefore a robust location parameter. Finally
if �.:/ used in Eq. (5) is the absolute value function, it is easy to show that the
location parameter will be the median and the measure of dispersion will be the
median absolute deviation. As stated by Maronna et al. (2006), the square of the
outlyingness distance is approximatively distributed as �2q . We can therefore define

an observation as being an outlier if ı2i .M/
:::.XD;ZED/

is larger than a chosen quantile

of a �2q distribution. Having identified outliers, it is now easy to estimate a robust
counterpart of Eq. (4). The robust instrumental variable estimator is:

O�RIV D . QX
0 QZ. QZ0 QZ/�1 QZ0 QX/�1 QX 0 QZ . QZ0 QZ/�1 QZ0 Qy (7)

where the tilde symbol indicates that only non-outlying observations are consid-
ered.4

4 Alternative Robust IV Estimators and Monte Carlo
Simulations

4.1 Alternative Robust IV Estimators

The proposed two-step estimator is by no means the only robust IV estimators
available in the literature. We nevertheless believe that our robust-to-outlier IV

4Ready-to-use Stata code for the Stahel and Donoho estimator is available upon request to the
authors.
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estimator is particularly well suited for the applied researcher because of (1) its
simplicity and efficiency (2) its strong resistance to all types of outliers and (3)
the immediate availability of robustified versions of the tests for the quality of the
instruments.

In order to better grasp the behaviour of existing estimators with our ROIV
in presence of outliers, we run some Monte Carlo simulations. We compare our
proposed estimator with:

(1) A standard IV estimator. We do not expect this estimator to resist to any type of
outlier.

(2) The Cohen-Freue et al. (2013) estimator based on the robustification of the IV’s
closed-form formula. We expect this estimator to resist to any type of outlier
but with low efficiency.

(3) The Lee (2007) estimator based on a control function approach estimator. This
estimator follows a two-stage procedure. In the first stage, the endogenous
regressor(s) is (are) regressed on the instruments calling on a median regression
estimator. The first stage residuals are fitted and, using again a median regres-
sion estimator, the dependent variable is regressed in a second stage on the set
of explanatory variables and a flexible function of the first stage residuals. We
do not expect this two-stage median regression estimator to be very resistant to
bad leverage points, neither in the first nor in the second stage of the procedure,
given that median regression estimators are known to be not robust to this type
of outliers.5

(4) Honore and Hu (2004) GMM estimator. This is a GMM estimator where the
moment conditions have been modified to increase robustness against outliers.
Indeed the standard IV estimator can be naturally interpreted as a GMM
estimator with moment conditionsE Œ"Z� D 0. Since this estimator is fragile to
outliers, Honore and Hu (2004) propose to modify the moment conditions using
rank of variables instead of the values. This generalized method-of-moment
estimator based on ranks should make the IV estimator less sensitive to extreme
values. We expect this estimator to behave reasonably well in the case of vertical
outliers. However, given that resistance to leverage points is not guaranteed
by the moment conditions as they are written, it is possible that this estimator
will not always be resistant to outliers in the included instruments when the
regressors are uncorrelated (such as in our simulations), and to outliers in the
endogenous regressor(s) or the excluded instruments when the regressors are
correlated.

(5) Lucas et al. (1997) GMM-type estimator. This estimator is also based on a
modification of the moment conditions of the standard GMM-IV estimator to
make it resistant to outliers. In contrast to Honore and Hu (2004), robustness

5We have implemented this estimator using the -cqiv- Stata code written by Chernozhukov et al.
(2010), given that other interested practitioners are likely to turn to the same source. However, note
that we obtain similar results when we adopt a more flexible function of the first-stage residuals in
the second stage. Results are available upon request.
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to outliers is achieved by using weights in the moment conditions. More
specifically, their idea is to use two types of weights: (a) weight ! to reduce the
importance of leverage outliers among the explanatory variables and excluded
instruments and (b) weight 
 to reduce the importance of vertical outliers.6

Being based on weighted moment conditions where the weights minimise the
influence of outlying values in (a) the regressors and the excluded instruments
and (b) the residuals, we expect this estimator to behave reasonably well under
all contamination scenarios.

(6) Wagenvoort and Waldmann (2002) estimator. This estimator is a two-stage
procedure. In the first stage, the endogenous regressor(s) is (are) regressed
on both the included and excluded instruments calling on a generalised M-
estimator. The generalised M-estimator considered in this first stage is a
weighted M-estimator with a Huber loss function.7 The weighting of leverage
points is needed since a monotonic M-estimator (such as the median regression
estimator or the one used here) cannot withstand contamination of the sample
by bad leverage outliers. The endogenous regressor(s) is (are) predicted for all
the individuals. In the second stage, the parameters are estimated minimising
again a Huber function of the residuals while considering only non-outlying
observations. Being based on a two-stage procedure where both stages are
estimated using highly robust estimators, we expect this estimator to resist to
all types of outliers.

4.2 Monte Carlo Simulations

The simulation set-up considered here is similar to that of Cohen-Freue et al. (2013).
We first generate 1;000 observations for five random variables .x0;u; v; z;w/ drawn
from a multivariate normal distribution with mean � D .0; 0; 0; 0; 0/ and covariance

˙ D

0

BBBBB@

1 0 0 0:5 0

0 0:3 0:2 0 0

0 0:2 0:3 0 0

0:5 0 0 1 0

0 0 0 0 1

1

CCCCCA
:

The considered data generating process (DGP) is y D 1C 2x0CwC u. We then
assume that only variable x;measured with error (x D x0Cv), can be observed. If we

6For the simulation, we define !i D I

 
ıi .XC :ZE

C/
:
:
:.XD;ZED/

<
q
�2p1Cm3;0:95

!
, 
i D �

 i .
ri
� /

ri
,

 i.u/ D u
h
1� �

u
1:546

�2i2
I .juj � 1:546/ where I is the indicator function.

7The loss function is defined as �.u/ D u2

2
I .juj � 4:685/C

�
4:685 juj � u2

2

�
I .juj > 4:685/.
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simply regressed y on x and w, we would obtain biased and inconsistent estimators
since x and u are not independent (the correlation coefficient r between u and v is
about 0.70). We therefore have to call on an instrumental variable estimator using
instrument z. The latter is a good instrument because it is independent of u and
strongly correlated with x (r D 0:50).

We start the simulations with a dataset without contamination. We then contami-
nate the data by generating 10 % of outliers consecutively in the x; the y, the w and
the z variables. In each case the outliers are generated by taking the simulated value
observed for the variable of interest in the clean sample and by increasing it by 2
units in a first scenario, by 5 units in a second scenario and by 20 units in a third
scenario. For example, in the first scenario, when we consider contamination of the
x variable, we replace x by x C 2 for 100 observations without modifying neither
w, y or z. In this way we create different types of outliers, be they in the first or
in the second stage. We then estimate the model using alternatively the classical IV
estimator or one of the six RIV estimators. We re-do this exercise 1,000 times and
calculate the Bias and Mean Squared Error (MSE) for all the estimated regression
parameters of the final equation.

Table 1 presents the simulation results. For the sake of brevity, we do not report
the results associated with the clean sample as all estimators perform comparably
well.8 The upper part of Table 1 clearly shows that neither the standard IV estimator
nor the Lee (2007) or the Honore and Hu (2004) estimators behave well in the
presence of outliers. While the last two estimators appear robust to vertical outliers
(except for the estimation of the constant), they tend to suffer from a large bias when
the outliers are in other variables than y. For the three estimators, it is likely that all
coefficients would have been biased in most simulations if X , w and Z had been
correlated and leverage points had been present in any of these variables. The lower
part of Table 1 shows that the Lucas et al. (1997) estimator, the Wagenvoort and
Waldmann (2002) estimator, the modified Cohen-Freue et al. (2013) estimator and
the robust two-stage estimator we propose behave much better than the Lee (2007)
or the Honore and Hu (2004) estimators. The bias remains low in all contamination
scenarios for these three estimators. But on the basis of the MSE criterion, our
proposed ROIV estimator performs the best.

Overall, we have shown in this section that outliers in IV estimations can be a
serious source of bias and that among robust IV estimators, the robust two-step IV
estimator we propose offers a very good protection against the distorting influence
of outlying observations in the dependent variable, the endogenous variable,
and/or in the included and excluded instruments. We now turn to an empirical
example, which illustrates how outliers can result in misleading econometric
inference.

8Obviously, in the absence of contamination, the standard IV estimator should be adopted.
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5 Empirical Example: The Deep Determinants
of Development

In a seminal paper, Rodrik et al. (2004) investigate the separated contributions of ge-
ography, international trade and institutions in explaining cross-sectional variation
in income levels measured by the logarithm of GDP per capita. Conscious that their
measures of international integration and institutional quality may be endogenous,
they use as instruments the variables proposed by Frankel and Romer (1999)
(constructed “natural” openness) and Acemoglu et al. (2001) (settler mortality).
They find that “the quality of institutions ‘trumps’ everything else” (p. 131).

Using the data made available by Dani Rodrik on his website,9 we replicate
their preferred specification, based on Acemoglu et al. (2001)’s extended sample.10

Column (1) of Table 2 shows that institutions appear indeed to exert a statistically
and economically strong positive effect on income, while the coefficients on
geography and openness are negative and statistically insignificant. According to
these estimates, a one standard deviation increase in institutional quality would
increase income by a factor of about e1:98 � 1 '6. The multivariate first-stage F -
statistics suggest that the regression parameters are identified as the instruments
appear to be relevant, even though the F -statistic for “settler mortality” is slightly
below the Staiger and Stock (1997)’s rule of thumb value of 10.11

To demonstrate that their results are robust to outliers, Rodrik et al. (2004) use
the DFBETA statistics proposed by Belsley et al. (1980), to identify influential
observations.12 They find that their main results hold once the outliers (Ethiopia
and Singapore) are discarded from the sample. Although these observations have
not been formally flagged as outliers, a similar conclusion is reached when neo-
European countries (Australia, Canada, New-Zealand, the USA) are omitted from
the sample. Unfortunately, common outlier diagnostics, including DFBETAs, are
themselves not robust to the presence of several outliers in the data as they
fundamentally rely on the non-robust LS estimator. Furthermore, these diagnostics
are ill-suited in an IV model, which combines multiple stages.

For these two reasons, we re-estimate their IV regression using our robust IV
estimator. In the first stage, observations with an outlyingness distance exceeding
the squared root of the 90th quantile of a �26 distribution are considered to be

9http://www.hks.harvard.edu/fs/drodrik/research.html.
10As in Rodrik et al. (2004), regressors have been scaled by expressing them as deviations from
their mean divided by their standard deviation.
11The first-stage F -statistics measure the correlation of the excluded instruments with the
endogenous regressors, adjusted for the presence of two endogenous regressors. With weak
identification, the classical IV estimator can be severely biased.
12The DFBETA statistics measure how each regression coefficient changes when each observation
is deleted in turn.

http://www.hks.harvard.edu/fs/drodrik/research.html
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Fig. 1 Identification of outliers

outliers.13 Column (2) of Table 2 indicates that the results of Rodrik et al. (2004)
are extremely sensitive to outliers. Once we account for them, the multivariate
first-stage F -statistics become extremely small and we cannot reject the joint
insignificance of all the explanatory variables in the second-stage regression (panel
(I)). Columns (3) and (4) show that the culprit is the instrument “settler mortality”,
which loses its relevance once outliers are omitted from the sample. In other words,
the model estimated in column (2) is underidentified because there is only one
valid instrument for two endogenous variables, as underlined by the absence of a
statistically significant impact of “settler mortality” on institutions in the first-stage
regression (panel (IIa)) in columns (2) and (3). Interestingly, in column (4), even
when omitting the institutional variable and despite “constructed openness” being a
strong instrument (panel (IIb)), we do not find any statistical evidence that greater
international integration raises income.

Figures 1 and 2 provide a graphical identification of the outlying observations.
In Fig. 1, the robust outlyingness distance of each observation is plotted against the
index of the observation. The full points above the horizontal line, which intersects
the vertical axis at the critical cut-off value above which an observation is considered

13The value for the degrees of freedom of the Chi-Square distribution corresponds to the presence
in the IV model of one dependent variable, three explanatory variables and two excluded
instruments with 1C 3C 2 D 6.
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Fig. 2 Common features of outliers

to be a potential outlier, are the outliers in the sample. In Fig. 2, we group the
19 outlying observations according to geographical or historical common features.
In agreement with Rodrik et al. (2004), we also find that Ethiopia and Singapore
are strong outliers, with large outlyingness distances. On the other hand, contrary
to what their DFBETA statistics indicated, the four Neo-European countries also
appear to be outliers, in addition to a number of African countries, the other Asian
Tiger figuring in the sample (Hong Kong) and six other countries. Hence, once we
use robust diagnostic tools and take into account that outliers may be present both
in the first and second stages of the IV estimations, we find many more outliers than
Rodrik et al. (2004). It is worthwhile to note that, in a disparate way, these outlying
observations have frequently been recognised as problematic by studies exploiting
these data and an IV strategy, e.g. Frankel and Romer (1999) for Singapore, Dollar
and Kraay (2003) for the four neo-European countries or Albouy (2012) for several
African countries.

An imperfect way of controlling for these outliers is to identify the first three
groups (Neo-Europes, Africa, Asian Tigers) with a separate regional dummy
indicator in an econometric model estimated with a standard IV estimator.14 Column

14Note that these dummies take the value of one for all countries in a specific group. They are
not restricted to the identified outliers. These dummies capture therefore common group (regional)
effects.
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(5) of Table 2 shows that the introduction of these dummies generates qualitative
findings very similar to those obtained using the RIV estimator. Once these dummies
are included, settler mortality becomes an irrelevant instrument for institutional
quality (panel (IIa)), while panels (IIa) and (IIb) suggest that Neo-Europes and
Asian Tigers are indeed strong first-stage outliers. Furthermore, as in column (2),
panel (I) shows that none of the “deep determinants” of differences in income levels
is statistically significant.

Finally, in column (6), we follow Dollar and Kraay (2003) and treat institutions
as exogenous, using the outlier-free sample. Under this heroic assumption, we
find, once again, that the quality of institutions trumps everything else, including
geography and trade openness. However, the impact of institutions on income is
lower than that obtained in column (1) and there is no guarantee that simultaneity,
an omitted variable or measurement error do not invalidate these results.

Conclusion
We have shown in this paper that outliers can be a real danger for the validity
of Instrumental Variables (IV) estimations. Hence, we believe that testing for
their presence in the sample should be as common as testing for the relevance
and exogeneity of the excluded instruments. Fortunately, this can easily be
done by the practitioner through the use of a robust two-stage IV estimator
resistant to all types of outliers that we have described and implemented in
various forms in Stata.
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Evaluation of Job Centre Schemes: Ideal Types
Versus Statistical Twins

Rainer Schlittgen

Abstract Control groups for evaluation studies are mostly constructed by match-
ing. Propensity score matching is the preferred method. With it a control group is
constructed which has mean values of covariates close to that of the treated group.
A summary statistic based on Cox regression was used when job centre schemes
were evaluated. In that situation it is possible to use the centre of the covariates of
the treatment group itself. This is elaborated here. Both methods are applied to a
simulated data set mimicking the one which was used in the real evaluation.

1 Problem

The reorganisation of the social system in Germany, the so called Hartz reform, took
place in 2003–2005. An evaluation of it was performed in 2004–2006. One part of
research dealt with job centre schemes, ABM (Arbeitsbeschaffungsmaßnahmen).
Here, the question was if there could be shown a positive effect with respect to the
statutory goals, especially if and how much the chances of the participants were
enhanced to become reintegrated into the labour market again.

There are several studies dealing with the reintegration into the labour market,
see, for example, Lechner (2002), Caliendo et al. (2003, 2004) and Reinowski
et al. (2003). But only in 2004 the integrated employment biographies of the Labor
Institute became available. This large database makes it possible to do an evaluation
on a broad basis for whole Germany.

For the evaluation it is important that the outcome variable is chosen properly.
First and foremost it has to reflect the goal of the job centre schemes. This
is as formulated in the SGB III §260 and is the occupational stabilisation and
the qualification of employees to enhance their opportunities for regular work.
Therefore, a suitable outcome variable is the time of regular employment after the
participation in ABM. With the help of this variable the question can be answered
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Fig. 1 Duration time and censoring (filled star D transition into first labour market, open cir-
cle D censoring due to moving, death, etc. or end of observation time, respectively)

if a participant who has been in ABM gets easier a regular employment than an
employee who did not participate in ABM. Unfortunately, because of the data that
are available it is not possible to use this as outcome variable. Instead the duration is
used that a person is registered as seeking employment, ASU (arbeitssuchend). One
has to take into account that a person who participated in ABM usually had an ASU
phase before. Therefore, the time periods ASU phase, time in ABM and following
ASU time (if any) are considered as one ASU phase.

Let’s suppose that at the end of all ASU times the persons get a job in the “first
labour market” (the “second labour market” consists of subsidised jobs) and that
these times were completely observed. Then it is easy to calculate the proportion of
the probands remaining longer than time t in ASU. It is

S.t/ D Number of ASU times � t
number of all probands

: (1)

But not all ASU phases end during the time period under consideration that way.
Additionally, not few probands became dropouts from the cohort for reasons not
connected with the topic of the study. The related times are called censored times
(Fig. 1).

The proportions are to be determined with the help of the methods of survival
analysis, cf. Klein and Moeschberger (1997). Using these methods also implies
that S.t/ cannot be interpreted any more as a simple proportion. Instead it must
be considered as probability that a single proband who is randomly selected from
the group of all probands under consideration has a survival time larger than t . These
probabilities would approximately result however, when one would many times
randomly select a proband from this group and calculate eventualy the proportions.

2 Determination of Twins by Propensity Score Matching

Any evaluation of a labour policy is to be based on a comparison of a group of people
attaining the consequences of the policy and another group not obtaining them. The
groups are called treatment group and control group, respectively. The statistical
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comparison is done by using summary statistics of the outcome variable. Even then
it is not obvious that it is possible to interpret a difference of the summaries as causal
effects. Only groups of people that are identical with respect to all other features
allow to interpret them that way. In the context of evaluation of job centre schemes
the summary statistic is S.t/.

To come to that requirement as close as possible for every proband in the
treatment group a statistical twin is chosen from the control group. A statistical
twin is one who has the same values of all relevant covariates. Differences of the
values in the outcome variable for a pair of twins are interpreted as being causal.
The resulting causal effect is interpreted as individual net effect from the job centre
schemes. It cannot be attributed to the whole population, see Rosenbaum and Rubin
(1985, S. 103).

The determination of the statistical twins is done by matching, cf. Rässler (2002).
Matching means that to every proband a statistical twin is chosen randomly from
his twins in the control group. It can be successful only if all relevant covariates
are considered and if for all probands there are twins in the control group. This is a
possible weak point of the matching approach. Only those covariates can be taken
into account that were observed. There is some danger that the selection problem
cannot be resolved completely due to unobserved heterogeneity resulting from the
characteristics not observed.

A second issue at stake is high dimensionality when all relevant covariates are
taken into account. With m binary covariates there are 2m combinations of their
values that are to be dealt with to find statistical twins. Fortunately the propensity
score offers a way to overcome this curse of dimensionality. The propensity score p
is a one dimensional constructed variable, p D p.x/, for a row vector x of realised
values of the covariates. In the context of simple random sampling from the set of
probands and controls it is the conditional probability that a proband is selected. The
condition is that the values of the covariates are held fixed. The propensity score is
usually computed by logistic or probit regression. The dependent variable in the
regression is the indicator which takes the value 1 for probands and 0 for controls.
For the logistic regression the underlying model is

q.x/ D ln

�
p.x/

1 � p.x/
�
D ˛ C xˇ ; (2)

where ˇ is a column vector of parameters. Since q.x/ is in a one-to-one relation to
p.x/ it can be used instead.

The basis of the propensity score are results by Rosenbaum and Rubin (1983).
They showed that it is possible to choose twins in such a way that the mean values
of the covariates tend to be equal. This balance is only a tendency. In an application
it is necessary to check if it is true. Otherwise it is necessary to improve it with the
help of additional criteria, see Rosenbaum and Rubin (1985).

Matching with the propensity score is based on adjusting the centres of the
groups. It does not choose statistical twins. Propensity score twins can be quite
different with respect to the values of the covariates because different linear
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combinations can result in the same value q.x/. Therefore, using propensity score
matching means that the initial idea of choosing statistical twins to approximate
individual effects has been given up.

An other justification of the matching via propensity score is the insinuation that a
twin determined that way has at least the same chance to participate in the treatment
as his twin in the treatment group. This would avoid a selection bias that would
result from consideration of all people in the control group. To enter the treatment
a person had to fulfill some prerequisites. This seems not to hit the point. The
prerequisites may be accepted realised when the vector of covariate values fulfill
some side conditions. In the same way as argued above the propensity score results
from a linear combination of these values and the same score can be the result from
quite different values. Also the idea of the propensity score as a probability is not
convincing. The size of Op depends essentially on the size of the control group. And
that can be chosen quite large. In fact, Op.x/ is an estimate of a proportion determined
from already chosen groups.

On the other hand, consideration of the propensity score may be very helpful.
The common support condition states that the values of the propensity score in both
groups must be in the same range. A serious infringement of this condition shows
that there are a large number of people in the control group showing quite different
values of the covariates. Comparison of such groups can be problematic.

3 Cox Regression and Ideal Types

The statistical behaviour of duration times T are described with the help of a
survivor function S.t/ D P.T > t/. Influence of covariates to duration is
incorporated by suitably modifying a baseline survivor function S0.t/. Proportional
hazard rate models result from the assumption that the covariates act through a linear
combination xˇ in the following way:

S.t jx/ D S0.t/exp.xˇ/: (3)

This is also called Cox regression model.
The exponent is greater than zero. This ensures that S.t jx/ always fulfil the

formal conditions imposed to survivor functions. It is not necessary to specify the
functional form of the baseline survivor function. No ex ante distributional assump-
tions must be stated. Only covariates are considered that are fixed over the time.

The usual goal of a Cox regression model is the determination of the influence
of the covariates. It would be possible to model the treatment as covariate itself. But
that is not suitable. This model would impose to strong restrictions. For example,
this approach implies that the baseline survivor functions are the same in the
treatment and control group. Therefore one has to estimate the models for the two
groups separately.
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A comparison may be based on the survivor functions computed at the respective
centres of the covariate values Nx and Nx0 for the treatment and control group.
These means represent ideal types of the two groups. “Ideal type” means that all
characteristics are the average characteristic of the corresponding group. With ST
and SC being the respective survivor functions one has to compare ST .t j Nx/ D
S0T .t/

exp. Nxˇ/ and SC .t j Nx0/ D S0C .t/
exp. Nx0ˇ0/. The survivor functions differ in form

(S0T and S0C ), in the parameters (ˇ and ˇ0), and in the centres ( Nx and Nx0).
This approach compares the ideal types of the treatment and the control groups.

As is explained above such a comparison may be biased since the ideal type of the
control group may be influenced too much from that part of the group that is not
eligible. Instead for an unbiased comparison it is essential that also the group centre
of the control group is the same as of the treatment group. The ideal types are then
indistinguishable with respect to the covariates and a remaining difference in the
survivor functions can be attributed solely to the outcome variable. A way to do that
is to compute the survivor function of the control group at the point Nx, the centre of
the covariates of the treatment group. So the comparison is to be based on the two

baseline survival functions to the powers exp. Nx Ǒ / and exp. Nx Ǒ 0/, respectively.
Figure 2 illustrates the two approaches of matching and using ideal types.

The upper part shows the matching approach. Corresponding to the (small) group
of treatments a comparable group of controls is determined. For both groups
the survivor functions are estimated. They are adjusted for the centres of these
two groups. The lower part shows the ideal type approach. For both groups, the
treatments and controls, the survivor functions are estimated. They are both adjusted
for the centre of covariates given by the treatment group.

Non-TreatmentsTreatments

.

Non-TreatmentsTreatments

Fig. 2 Matching and adjustment of survivor function
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The ideal type approach is advantageous compared to matching. The matching
approach starts with the goal to establish a net effect by allowing comparison of
people who can be considered as statistical twins. But since the matching is almost
always performed via propensity score matching, one can only hope that the centres
are almost equal. On the other hand, the ideal type approach ensures this completely.
Also, it does not lead to erroneous interpretations which are often seen by writers
who are not quite clear about the limitations of matching. Additionally, a rule of
thumb says that there should be 25 times the treatments in the control group to get
a satisfactory matching. They can all be used to estimate the survivor function for
the control group. So that can be based on a larger number of observations. This
allows also to consider subgroups. For those it is often more difficult to get matches
belonging to the group of matchings since there need not to be real statistical
twins.

4 Application of the Two Methods

The original data from the large database cannot be used here because of data-
protection. Instead data were simulated taking the situation of the year 2002 for
the so-called region III as a basis.

For the simulation the original data were transformed to become normally
distributed. With the resulting covariance matrix normally distributed random
variates were generated. These were inversely transformed. Censored and non-
censored data were generated separately since they differ considerably, 1200 data
for male participants in job centre schemes and 20 times of that for controls. The
ratio of censored to non-censored observation is 1.75:1. Matching was done in a
way that controls could not be selected more than once.

The variables of the data set are:
education with categories NA (D without any school-leaving qualifications), MH
(D completed secondary modern school), MR (D intermediate school-leaving
certificate), FH (D technical college degree), and HR (D university degree),
age (years), employment, duration of employment before unemployment in days,
begin, the beginning quartal of unemployment, benefits, daily benefits.

The means of the covariates in the two groups of treated and non-treated persons
differ naturally. Because of the theoretical properties the subgroup determined by
propensity score matching should have a centre much closer to that of the treated
persons. But as the figures in Table 1 show propensity score matching does not
always lead to a remarkable reduction of these differences.

In the original evaluation the means of the covariate values of the treated group
and the matched group were much closer. The reduction of mean differences seems
to be greater for larger groups. This corresponds with the theoretical properties of
propensity score matching.

Figure 3 illustrates that persons who attended job centre schemes have a tendency
to finish their unemployment phase earlier than the other. This results from the
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Table 1 Standardised
differences of the mean
values of the covariates

Covariate All non-treated Propensity score match

Education MH �0.01229 �0.00863

Education MR �0.22300 0.06167

Education FR �0.05594 0.13526

Education HR �0.00216 0.07095

Benefits �0.46082 0.06635

Age �0.01388 �0.01336

Employment �0.31817 0.17152

Begin �1.18835 �0.10309

Oq.x/ 1.17799 0.00041

Op.x/ 1.01966 0.00046

Fig. 3 Survivor functions
versus time (days); people in
ABM (lowermost curve),
matched group (uppermost
curve) and non-ABM with
the centre of the ABM group
(middle curve)

comparison of the lowermost curve with each of the other two. They show the results
for the two approaches, propensity score matching and using the survivor function
of all people not in ABM but for the centre values of the treated group. The last one
is nearer to that of the treated group.
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The Precision of Binary Measurement Methods

Peter-Th. Wilrich

Abstract In analogy to quantitative measurement methods the precision of binary
measurement methods used in a population of laboratories can be characterised by
the repeatability standard deviation and the reproducibility standard deviation of
the probability of detection, POD. In order to estimate these standard deviations an
interlaboratory experiment with k laboratories, each performing n repeated binary
measurements at identical samples, is carried out according to ISO 5725-2 and
analysed with a one-way analysis of variance. The variance estimates are, e.g., used
for a test of equal POD of all laboratories and for the determination of a 90%-
expectation tolerance interval for the PODs of the laboratories.

1 Introduction

“Qualitative analysis is often used to determine whether or not a particular feature
appears or is absent in tests, in quality control procedures, identification scans,
go/no go measurements and many other fields. Generally, such analysis uses
simple measuring methods that classify the analyzed property value into two
comprehensive and exclusive classes/categories. The performance reliability of such
binary measurement systems (BMSs) is usually assessed by false positive and false
negative rates” Bashkansky and Gadrich (2013, p. 1922). In this paper we are not
interested in the misclassification rates of binary measurement methods but in a
problem that particularly arises in the application of these methods in microbiology.

Microbiological tests form an important part of quality control for a wide
range of industries, covering products as diverse as food, cosmetics, detergents and
packaging. They help to assess the safety or efficacy of raw materials, components,
ingredients and final products and to avoid the contamination of goods under normal
use conditions. A large number of microbiological tests are carried out in order to
determine the absence or the occurrence of specified pathogenic microorganisms in
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a substance, e.g. a particular food product or a source of drinking water or process
water. A single application of such a test gives the binary measurement result
“specified microorganism detected” or “specified microorganism not detected”.

We deal with the problem of determination of the precision of such binary
measurement methods, expressed as the components of standard deviation within
and between laboratories.

2 The Model

We deal with the case of binary measurements where the measurement value x of
a single measurement is either 1 (positive result, detected) or 0 (negative result, not
detected).

The probability p of obtaining a measurement result 1 in a laboratory that is
randomly chosen from a population of laboratories, its probability of detection POD,
is modelled as the realisation of the continuous1 random variable P that has the
probability density fP .p/ with E.P / D �0 and

�2L D V.P / D
Z 1

0

.p � �0/2fP .p/dp

D
Z 1

0

p2fP .p/dp� �20

�
Z 1

0

pfP .p/dp� �20 D �0 � �20 D �0.1 � �0/I (1)

�2L is called the between-laboratory variance. The equality sign in �2L � �0.1� �0/
holds if fP .p/ is a two-point distribution at p D 0; 1.

Given that the POD of a randomly chosen laboratory is p, a measurement value x
obtained in this laboratory is the realisation of the random variable X that is, under
the condition P D p, Bernoulli distributed, i.e. it has the probability function

fX jP .xjp/ D P.X D xjP D p/ D px.1 � p/1�x I x D 0; 1: (2)

Expectation and variance of X jP are

E.X jP/ D pI V.X jP/ D p.1 � p/: (3)

The measurement value x obtained in a randomly chosen laboratory is the
realisation of a random variable X that has the unconditional probability function

1The following results also hold for discrete random variables P . However, for the sake of
simplicity only the case of a continuous random variable P is considered.
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fX.x/ D P.X D x/ D
Z 1

0

fX jP .xjp/fP .p/dp

D
Z 1

0

px.1 � p/1�xfP .p/dpI x D 0; 1: (4)

X has expectation

E.X/ D E.E.X jP// D E.P / D �0 (5)

and variance

�2R D V.X/ D E.V.X jP//C V.E.X jP//
D E.P.1 � P//C V.P / D E.P / �E.P 2/C V.P /
D E.P / � V.P / �E2.P /C V.P / D E.P / � E2.P /

D �0.1 � �0/: (6)

In a particular laboratory with probability of detection p the within-laboratory
variance is p.1 � p/, i.e. the within-laboratory variances of laboratories with dif-
ferent p are also different. We define the repeatability variance of the measurement
method as the expectation of the within-laboratory variances,

�2r D E.P.1 � P// D
Z 1

0

p.1 � p/fP .p/dp

D
Z 1

0

pfP .p/dp �
Z 1

0

p2fP .p/dp

D �0 � .�2L C �20 / D �0.1 � �0/� �2L: (7)

We find

�2r C �2L D �0.1 � �0/ � �2L C �2L D �0.1 � �0/ D �2R: (8)

�2R, the reproducibility variance, is a function of the expectation�0 of the probability
of detection of the laboratories, i.e. for a given expectation �0 of the probability
of detection it is a constant. However, depending on the variation between the
probabilities of detection of the laboratories it splits differently into its components,
the between-laboratory variance �2L and the repeatability variance �2r .

In cases where the measurandX is continuous the variation between laboratories
in relation to the variation within laboratories is often described by the ratio of
the reproducibility variance to the repeatability variance, �2R=�

2
r . Since this does

not make sense for binary measurands we propose to use instead the ratio of the
between-laboratory variance to the reproducibility variance,
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�2L
�2R
D �2L
�0.1 � �0/ I (9)

it is 0 if all laboratories have the same POD �0, and it is 1 if the fraction �0 of the
laboratories has the POD 1 and the fraction 1��0 of the laboratories has the POD 0.

Given that the POD of a randomly chosen laboratory is p and that it performs
n independent measurements X1;X2; : : : ; Xn, the conditional distribution of the
number Y D Pn

iD1 Xi of positive measurement results is the binomial distribution
with the probability function

fY jP .yjp/ D
 
n

y

!
py.1 � p/n�y I 0 � p � 1; n 2 N; y D 0; 1; : : : ; n (10)

with expectation E.Y jP/ D np and variance V.Y jP/ D np.1 � p/.
The number of positive measurement results, Y D Pn

iD1 Xi , in a series
of n independent measurements X1;X2; : : : ; Xn obtained in a randomly chosen
laboratory has the unconditional probability function

fY .y/ D
Z 1

0

fY jP .yjp/fP .p/dp D
Z 1

0

 
n

y

!
py.1 � p/n�yfP .p/dp: (11)

Y has expectation

E.Y / D E.E.Y jP// D E.nP / D nE.P / D n�0 (12)

and variance

V.Y / D E.V.Y jP//C V.E.Y jP//
D E.nP.1 � P//C V.nP / D nE.P / � nE.P 2/C n2V.P /
D nE.P / � nV.P / � nE2.P /C n2V.P /
D n�0.1 � �0/C n.n � 1/�2L: (13)

The fraction of positive measurement results among the n measurement results
of a laboratory, OP D Y=n; has expectation and variance

E. OP / D E.Y=n/ D E.Y /=n D �0 (14)

and

V. OP / D V.Y=n/ D V.Y /=n2 D �0.1� �0/
n

C
�
1 � 1

n

�
�2L; (15)
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respectively. From (1) and (15) we see that V. OP / is bounded:

�0.1 � �0/
n

� V. OP/ � �0.1 � �0/: (16)

Of course, the variance V. OP / is equal to �0.1 � �0/ D �2R for n D 1 and tends to
�2L for n!1.

3 The Determination of the Precision of a Binary
Measurement Method

In order to determine the precision of a binary measurement method we perform
an interlaboratory experiment. k laboratories are randomly selected from a large
population of laboratories, and each of the laboratories obtains n independent mea-
surement results under repeatability conditions. The measurement series yij I j D
1; : : : ; n in laboratory i is a series of ones and zeros. We apply the one-way analysis
of variance as described in ISO 5725-2 (1994) to these binary measurements and
find (see Wilrich 2010) the ANOVA Table 1.

Opi D Nyi D 1

n

nX

jD1
yij (17)

is the fraction of positive measurement results in laboratory i and

Np D 1

k

kX

iD1
Opi D NNy D 1

kn

kX

iD1

nX

jD1
yij D 1

k

kX

iD1
Nyi (18)

Table 1 ANOVA table of the statistical analysis of the interlaboratory experiment for the
determination of the precision of a binary measurement method

(1) (2) (3) (4) (5)

Source Sum of squares Degrees of
freedom

Mean square Expected
mean square

SQ f MS D SQ=f E.MS/

Between laboratories n
kP
iD1

. Opi � Np/2 k � 1 s2II n�2L C �2r

Within laboratories n
kP
iD1

Opi .1� Opi / k.n� 1/ s2I �2r

Total kn Np.1� Np/ kn � 1 – –
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is the average fraction of positive measurement results in all k laboratories
participating in the interlaboratory experiment.

An unbiased estimate of the repeatability variance �2r is

s2r D s2I D
� n

n � 1
�
� 1
k

kX

iD1
Opi.1 � Opi / D

� n

n � 1
�
s2r (19)

where

s2r D
1

k

kX

iD1
Opi .1 � Opi/ (20)

is the average of the estimated within-laboratory variances s2ri D Opi .1 � Opi / of the
laboratories.

The expectation of s2ri D Opi .1 � Opi / is

E.s2ri/ D
n� 1
n

pi.1 � pi / D n � 1
n

�2riI (21)

s2ri is a biased estimate of �2ri; its bias is corrected by multiplying Opi .1 � Opi / with
n/(n-1).

An unbiased estimate of the between-laboratory variance �2L is

s2L;0 D .s2II � s2I /=n

D

kP
iD1

. Opi � Np/2

k � 1 �

kP
iD1
Opi .1 � Opi /
k.n � 1/

D s2Op �
s2r
n � 1 D s

2
Op

0

@1 �
s2r =s

2
Op

n � 1

1

A D s2Op
�
1 � 1

c.n � 1/
�

(22)

where

s2Op D
1

k � 1
kX

iD1
. Opi � Np/2 (23)

is the variance of the fractions of positive measurement results Opi of the laboratories
and

c D s2Op=s2r : (24)
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This estimator s2L;0 is unadmissable because it is negative if c < 1=.n � 1/. We
consider two modifications of this estimator. In the first modification we replace
negative values of s2L;0 by 0, i.e.

s2L;1 D max

�
0; s2Op

�
1 � 1

c.n � 1/
��

: (25)

However, if the PODs of the laboratories are not extremely different, there is a high
probability of obtaining the value s2L;1 D 0 with the erroneous conclusion that the
PODs of all laboratories are equal. Hence, we do not use this modification. Instead
we follow a proposal of Federer (1968) and Wang and Ying (1967),

s2L D s2Op
�
1 � exp.1 � c.n � 1//

c.n � 1/
�
: (26)

We observe that s2L;0 � s2L;1 � s2L and, since E.s2L;0/ D �2L the estimator s2L;1 is
positively biased and s2L is slightly more positively biased than s2L;1.

The estimate of the reproducibility variance �2R D �0.1 � �0/ [see (6)] is

s2R D s2r C s2LI (27)

it does not carry information on the variation of measurement results within or
between laboratories. We use it for the definition of the ratio

LR D s2L
s2R
I (28)

LR is 0 if the interlaboratory experiment does not show any variation of the PODs of
the laboratories and it approaches 1 if the variation of the PODs of the laboratories
becomes extremely large.

4 The Interlaboratory Variation of the PODs

Wilrich (2010) presents a Chisquared test of the null hypothesis that the PODs of
all laboratories are equal, H0 W pi D p for all laboratories i D 1; 2; : : :. Its test
statistic is

�2k�1 D
n.k � 1/
Np.1 � Np/s

2
OpI (29)

at the significance level ˛ the null hypothesisH0 is rejected if �2k�1 > �2k�1I1�˛ .
However, as indicated in Macarthur and von Holst (2012) practitioners are

more interested in an interval that covers a particular fraction of the PODs of the
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population of laboratories. As such an interval we choose the .1 � 	/-expectation
tolerance interval, i.e. the interval calculated with the results of the interlaboratory
experiment that is expected to cover the fraction .1 � 	/ of the PODs of the
population of laboratories.

Generally, a .1 � 	/-expectation tolerance interval can be constructed (1) if the
type of distribution of the PODs of the laboratories is unknown as a nonparametric
tolerance interval or (2) if the type of distribution of the PODs of the laboratories is
known as a parametric tolerance interval.

(1) If the PODs pi I i D 1; : : : ; k of the k randomly chosen laboratories included
in the interlaboratory experiment could be directly observed, we could use
the interval Œpmin D min.pi /; pmax D max.pi /� as a nonparametric .1 � 	/-
expectation tolerance interval with the expectation .1� 	/ D .k � 1/=.k C 1/,
see Graf et al. (1987). For example, if k D 10 laboratories would participate
in the interlaboratory experiment, this interval were expected to cover 9=11 D
0:8 D 80% of the PODs of the population of laboratories. However, the PODs
pi of the laboratories cannot be observed. Instead, we observe the fractions
Opi D yi=n of positive results among the n repeated measurements in each of

the laboratories; yi is binomial distributed with the parameter pi . The .1 � 	/-
expectation tolerance interval Œ Opmin D min. Opi /; Opmax D max. Opi /� is expected
to cover .1�	/ D .k�1/=.kC1/ of the fractions Opi D yi=n, but not of the pi .
Hence, we cannot construct a nonparametric tolerance interval for the PODs pi
of the laboratories.

(2) In order to construct a parametric tolerance interval for the PODs of the
laboratories we have to assume a particular type of distribution of these PODs.
Macarthur and von Holst (2012) assume a Beta distribution with probability
density

fP .pI˛; ˇ/ D p˛�1.1 � p/ˇ�1

B.˛; ˇ/
I 0 � p � 1 (30)

with parameters ˛ > 0; ˇ > 0, where B.˛; ˇ/ denotes the (complete) Beta
function. The Beta distribution is a flexible distribution model: it includes
unimodal distributions for (˛ > 1; ˇ > 1), J-shaped distributions for (˛ D
1; ˇ > 1) or (˛ > 1; ˇ D 1), U-shaped distributions for (˛ < 1; ˇ < 1) and
the rectangular distribution for (˛ D 1; ˇ D 1), however, it does not include
multimodal distributions.

Expectation and variance of P are �0 D E.P / D ˛=.˛Cˇ/ and �2L D V.P / D
�0.1��0/=.˛CˇC1/, respectively. The parameters ˛ and ˇ, expressed as functions
of �0 and �2L, are

˛ D �0
�
�0.1 � �0/

�2L
� 1

�
I ˇ D .1 � �0/

�
�0.1 � �0/

�2L
� 1

�
: (31)
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The number of positive measurement results, Y D Pn
iD1 Xi , in a series

of n independent measurements X1;X2; : : : ; Xn obtained in a randomly chosen
laboratory follows the Beta-Binomial distribution with the probability function

fY .yIn; ˛; ˇ/ D
Z 1

0

fY jP .yjp/fP .p/dp

D
Z 1

0

 
n

y

!
py.1 � p/n�y p˛�1.1� p/ˇ�1

B.˛; ˇ/
dp

D
 
n

y

!
B.y C ˛; n � y C ˇ/

B.˛; ˇ/
: (32)

Y has expectation and variance

E.Y / D n�0 D n ˛

˛ C ˇ ; V .Y / D
n˛ˇ.˛ C ˇ C n/

.˛ C ˇ/2.˛ C ˇ C 1/ ; (33)

respectively.
The fraction of positive measurements among the n measurement results, OP D

Y=n; has expectation and variance

E. OP/ D ˛

˛ C ˇ D �0I V.
OP/ D ˛ˇ.˛ C ˇ C n/

n.˛ C ˇ/2.˛ C ˇ C 1/ ; (34)

respectively.
Macarthur and von Holst (2012) calculate estimates Ǫ and Ǒ of ˛ and ˇ of the

Beta distribution of the PODs pi by substituting �0 by the estimate Np and �2L by the
estimate s2Op in Eq. (31), take these estimates as being the true values ˛ and ˇ and
calculate the 90%-expectation tolerance interval A as

Œb˛;ˇI0:05; b˛;ˇI0:95� (35)

where b˛;ˇI0:05 and b˛;ˇI0:95 are quantiles of the Beta distribution. This interval would
cover 90% of the PODs of the laboratories if they were distributed according to
this Beta distribution with ˛ D Ǫ and ˇ D Ǒ. However, the coverage of this
tolerance interval is unknown because (a) the estimation method uses Eq. (31) for
the Beta distribution of the PODs pi instead of equation (34) for the Beta-Binomial
distribution of the observed Opi , (b) the variance �2L in (31) is substituted by s2Op and

not by its estimate s2L, (c) the estimates Ǫ and Ǒ that are seriously biased are taken
as the true values of the Beta-distribution of the PODs pi of the laboratories and (d)
it is uncertain whether the distribution of the PODs pi is at all a Beta distribution.

(3) We propose directly to use Np and sL for the calculation of a 90%-expectation
tolerance interval for the PODs of the laboratories with lower limit Np�2sL and upper
limit Np C 2sL. If the lower limit is negative we substitute it by 0, and if the upper
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limit is larger than 1 we substitute it by 1. Hence, the proposed 90%-expectation
tolerance interval B for the PODs of the laboratories is

Œmax.0; Np � 2sL/; min.1; Np C 2sL/�: (36)

If the estimates of the PODs, Opi D yi=ni , of all laboratories are equal we
have s2Op D 0 and s2L D 0 and hence, the tolerance intervals A and B degenerate
to the single point Np. Macarthur and von Holst (2012) recommend to use in such
cases the total number of positive measurements, ytotal D Pk

iD1
Pn

jD1 yij and the
total number of measurements, kn, for the calculation of a confidence interval for
the mean �0 of the PODs of the laboratories, under the assumption of a binomial
distribution of ytotal.

In order to investigate the coverage of the tolerance intervals A and B according
to (35) and (36), respectively, we run a simulation experiment with k D 5; 10

laboratories each performing n D 5; 10; 20 repeated measurements where the
PODs of the laboratories are Beta distributed with means �0 D 0:5; 0:75; 0:95

and standard deviations �L D .0:25; 0:5; 0:75/ � p�0.1 � �0/. For each of these
54 scenarios 5,000 simulation runs have been carried out and the coverage of the
tolerance intervals calculated. Each point in Fig. 1 represents the average of the
5,000 coverages of A as abscissa and of B as ordinate. Red symbols represent
k D 5, green symbols k D 10, open circle n D 5, open triangle n D 10, plus
symbol n D 20. The average of the coverages over all scenarios is 0.88 for A and
0.89 for B (solid straight lines). A has a little larger spread than B. The coverage for
k D 10 is slightly larger than for k D 5. Dependencies on the other parameters are
not visible.
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Fig. 1 Plot of coverage of the 90%-expectation tolerance interval B against that of the 90%-
expectation tolerance interval A for various Beta-distributed PODs of the laboratories. Red symbols
represent k D 5, green symbols k D 10, open circle n D 5, open triangle n D 10, plus symbol
n D 20. The average of the coverages over all scenarios is 0.88 for A and 0.89 for B (solid straight
lines)
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Fig. 2 Plot of coverage of the 90%-expectation tolerance interval B against that of the 90%-
expectation tolerance interval A for various mixed distributions of the PODs of the laboratories
consisting of two Beta-distributed components. Red symbols represent k D 5, green symbols k D
10, open circle n D 5, open triangle n D 10, plus symbol n D 20. The average of the coverages
over all scenarios is 0.88 for both A and B (solid straight lines)

In order to find out what happens if the distribution of the PODs is not a Beta
distribution as assumed for the tolerance interval A we run a simulation experiment
with k D 5; 10 laboratories and n D 5; 10; 20 repeated measurements in each
laboratory and with two mixed Beta distributions, the first one being chosen with
probability !1 D 0:25; 0:5; 0:75 and having mean �1 D 0:25; 0:5 and standard
deviation �L;1 D .0:25; 0:5; 0:75/ � p�1.1 � �1/, the second one having mean
�2 D 0:75; 0:99 and standard deviation �L;2 D .0:25; 0:5; 0:75/ � p�2.1 � �2/.
For each of these 648 scenarios 5,000 simulation runs have been carried out and
the coverage of the tolerance intervals calculated. Each point in Fig. 2 represents
the average of 5,000 coverages of A as abscissa and of B as ordinate. The average
of the coverages over all scenarios is 0.88 for A and B, and again, A has a little
larger spread than B, the coverage for k D 10 is slightly larger than for k D 5 and
dependencies on the other parameters are not visible.

We conclude that the tolerance intervals A and B are roughly equivalent and have
an average coverage almost identical to the desired value of 90%. However, since
the tolerance interval B uses directly the estimate sL of the standard deviation of the
PODs of the laboratories and is much easier to calculate than the tolerance interval
A we recommend to use the tolerance interval B.

5 An Example

We analyse an example that is presented in AOAC Guidelines (2012, pp. 40–42).
Each of k D 12 laboratories has performed n D 12 measurements of a bacterial
contamination. Table 2 shows the measurement results and Table 3 the results of the
statistical analysis.
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Table 2 Measurement
results of an interlaboratory
experiment (from AOAC
Guidelines (2012))

Laboratory n y

1 12 7

2 12 9

3 12 6

4 12 10

5 12 5

6 12 7

7 12 5

8 12 7

9 12 11

10 12 9

Table 3 Results of the
statistical analysis of the data
of Table 2

Equation Estimate

18 Np D 0:6333

19 sr D 0:4735

23 s Op D 0:1721

25 sL;1 D 0:1046

26 sL D 0:1215

27 sR D 0:4850

28 LR D 0:063

29 �2k�1 D 13:78

�2k�1I1�˛ D �29I0:95 D 16:92

31 Ǫ D 4:330

31 Ǒ D 2:507

35 Œb
Ǫ ; ǑI0:05 D 0:328; b

Ǫ; ǑI0:95 D 0:892�

36 Œmax.0; Np � 2sL/ D 0:390; min.1; Np C 2sL/

D 0:876�

The estimate s2L of the laboratory variance is only 6:3% of the estimate of the
reproducibility variance and the Chisquared test does not reject the null hypothesis
of no variation of the PODs of the laboratories at the significance level ˛ D 0:05

(�2k�1 D 13:78 < �2k�1I1�˛ D �29I0:95 D 16:92). The 90%-expectation tolerance
intervals for the PODs of the laboratories according to method A and B are almost
equal. We prefer B because it is not based on the assumption of a Beta distribution
of the PODs and its calculation is very simple.

6 Summary

In analogy to quantitative measurement methods the precision of binary measure-
ment methods used in a population of laboratories can be characterised by the
repeatability standard deviation and the reproducibility standard deviation of the
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probability of detection, POD. In order to estimate these standard deviations an
interlaboratory experiment with k laboratories, each performing n repeated binary
measurements at identical samples, is carried out according to ISO 5725-2 and
analysed with a one-way analysis of variance. The variance estimates are, e.g.,
used for a test of equal POD of all laboratories and for the determination of a
90%-expectation tolerance interval for the PODs of the laboratories. A simulation
experiment shows that the tolerance interval Œmax.0; Np � 2sL/; min.1; Np C 2sL/�
(where Np is the estimate of the mean of the PODs of the laboratories and s2L is an
estimate of the between-laboratory variance proposed by Federer (1968) and Wang
and Ying (1967)) has an average coverage near to 90%.
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On EFARIMA and ESEMIFAR Models

Jan Beran, Yuanhua Feng, and Sucharita Ghosh

Abstract An exponential FARIMA (EFARIMA) and an exponential SEMIFAR
(ESEMIFAR) model for modelling long memory in duration series are introduced.
The EFARIMA model avoids using unobservable latent processes and can be
thought of as an exponential long-memory ACD model. The semiparametric
extension, ESEMIFAR, includes a nonparametric scale function for modelling slow
changes of the unconditional mean duration. Estimation and model selection can be
carried out with standard software. The approach is illustrated by applications to
average daily transaction durations and a series of weekly means of daily sunshine
durations.

1 Introduction

Duration analysis refers to event history when a sequence of event occurrences
are observed over time. We are concerned with positive random variables termed
durations that correspond to the length of time between two consecutive occurrences
of an event. In this paper, we refer mostly to the financial literature although this
topic is dealt with in reliability engineering, survival analysis, political science, eco-
nomics, and other fields, as, for instance, in the study of natural event occurrences.
In financial econometrics, the autoregressive conditional duration (ACD) model
was introduced in Engle and Russell (1998). For extensions and further details see,
e.g., Bauwens and Giot (2000), Dufour and Engle (2000), Fernandes and Grammig
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(2006), Bauwens and Hautsch (2007), Hautsch (2012), Pacurar (2008), and Russell
and Engle (2010).

Most extensions of the ACD model can only capture short-range dependence
in conditional durations. In practice however durations are often found to exhibit
long-range dependence (see, e.g., Jasiak 1998, Sun et al. 2008, Deo et al. 2009,
2010, Hautsch 2012). Early work on long-memory duration models can be found in
Jasiak (1998), Koulikov (2003), and Karanasos (2004). Modelling durations is also
important in other scientific fields beyond financial applications (see Fig. 2).

In this paper we will introduce an EFARIMA (exponential FARIMA) model
and extended it to the semiparametric ESEMIFAR (exponential SEMIFAR) model
that allows for simultaneous modelling of systematic changes, and short- and long-
range dependence in duration data. Statistical properties of the models are derived.
Estimation and model selection can be carried out with standard software. The
approach is illustrated by applications to average daily transaction durations and
a series of weekly averages of daily sunshine durations.

The paper is organized as follows. The EFARIMA model is introduced in
Sect. 2. The relationship between the EFARIMA and EACD1 models as well as
statistical properties and estimation is discussed in Sect. 3. The ESEMIFAR model
is introduced in Sect. 4, and its properties and estimation are discussed. Applications
to data sets illustrated the methods in Sect. 5. Final remarks in Sect. 6 conclude the
paper.

2 The Exponential FARIMA Model

Let Xt (t D 1; : : : ; T ) denote the duration process of interest. We define a multi-
plicative error model (MEM, see Engle 2002) as follows. Let

Xt D ��t�t ; (1)

where � > 0 is a scale parameter, �t > 0 denotes the conditional mean of Xt=�
determined by the �-algebra of past observations, and �t are positive i.i.d. random
variables such that all moments of �t D log.�t / exist and E .�t / D 0. It will be
assumed that

Zt D logXt � log � D log�t C �t
follows a zero mean FARIMA(p, d , q) model with innovations �t , i.e.

.1 � B/d
.B/Zt D  .B/�t ; (2)

where 0 < d < 0:5 is the memory parameter, and 
.z/ D 1 � 
1z � : : : � 
pzp

and  .z/ D 1 C  1z C : : : C  qzq are MA- and AR-polynomials with all roots
outside the unit circle. It should be noted that, in contrast, for instance, to stochastic
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volatility models (SV models), the �t in Zt coincides with the innovations on the
right hand side defining the FARIMA process. Therefore, no unobservable latent
process (which would make estimation more difficult) is involved here. Let �t D
log�t denote the conditional mean of Zt . Then the equation can be rewritten as

�t D



�1.B/ .B/.1 � B/�d � 1� �t : (3)

In particular, due to the FARIMA assumption (2) on Zt we have E.�t / D 0.
Models defined by (1) and (2) will be called exponential FARIMA (EFARIMA)
model, and in the special case where the �t are normal the model will be called a
Gaussian EFARIMA model. (Note that Taqqu and Teverovsky 1998 used the same
term “exponential FARIMA” for a different model, namely a FARIMA process with
exponentially distributed innovations.)

It is well known that the stationary solution of (2) is given by

Zt D
1X

jD0
aj �t�j (4)

where aj � caj
d�1 for large j with ca > 0, with � indicating that the ratio of

both sides tends to one. The autocorrelations of Zt are not summable, since they
are of the form �Z.k/ � cZ� jkj2d�1, where cZ� > 0 is a constant. Under sufficient
moment conditions on �t we obtain the stationary solution by taking the exponential
transformation

Xt D �
1Y

iD0
�
ai
t�i : (5)

To simplify further discussion we define X�
t D Xt=� D exp.Zt /. In summary we

have the following result:

Lemma 1 Assume thatZt D ln.X�
t / is a FARIMA(p; d; q) process as defined in (2)

with zero mean, 0 < d < 0:5 and all roots of 
.B/ and .B/ outside the unit circle.
Then

X�
t D

1Y

iD0
�
ai
t�i

is a weakly and strictly stationary process and Xt D �X�
t is a stationary solution

of (1) and (2).

Remark 1 In particular, if Zt D ln.X�
t / is a Gaussian FARIMA(p; d; q) process,

then X�
t D

1Q
iD0

�
ai
t�i is a weakly and strictly stationary process with an LN.0; �2/

marginal distribution, where �2 D �2�
1P
iD0

a2i .
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3 Properties and Estimation of the EFARIMA Model

3.1 Relationship Between EFARIMA and EACD1

The so-called EACD1 model (Bauwens and Giot, 2000; Karanasos, 2008) is a short-
memory version of the EFARIMA model defined above. More specifically, (1) and
(2) with d D 0 correspond to an EACD1 defined by Eqs. (4) and (7) in Bauwens
et al. (2003) or Eqs. (5) and (6) in Karanasos (2008).

To show the connection to the definitions in Bauwens et al. (2003) and Karanasos
(2008), note that

�t D ln.�t / D ln.X�
t / � ln.�t / D Zt � �t

and E.�t / D 0. Define

�.B/ D .1 � B/d
.B/ D 1 �
1X

iD1
�iB

i

and

˝.B/ D  .B/ ��.B/ D
1X

jD1
!jB

j

where !j D �j C j , for 1 � j � q, and !j D �j , for j > q. By rewriting (2) we
obtain the representation

�.B/ ln.�t / D ˝.B/ ln.�t / (6)

which is a fractional extension of Eq. (5) in Karanasos (2008). Equation (6) can also
be represented as an extension of Eq. (7) in Bauwens et al. (2003),

ln.�t / D
1X

iD1
�i ln.�t�i /C

1X

jD1
!j ln.�t�j /: (7)

For 0 < d < 0:5, the hyperbolic decay of �i and !j implies long memory in ln.�t /.
This can be seen more clearly from the MA(1) representation of �t . Taking the
first term on the right-hand side of (7) to the left, and applying the inverse operator
��1.B/ we obtain

�t D
1X

jD1
aj �t�j (8)
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with nonsummable coefficients aj . It is clear that �t is a stationary process with

mean zero and variance var.�t / D �2� D �2�

1P
iD1

a2i . Under sufficient moment

conditions on �t , (8) implies that a strictly stationary solution of �t is given by

�t D
1Y

iD1
�
ai
t�i : (9)

Note that in general some coefficients aj may be negative, although this is not the
case as j ! 1. Nevertheless, the conditional mean in Eq. (9) is always positive,
as required for a reasonable ACD-type model. A further attractive feature is that the
distribution of the conditional mean duration is completely known. In particular, if
�t D log�t are normal, then �t has an LN.0; �2�/ marginal distribution.

3.2 Moments, acf and Persistence of the EFARIMA Model

Now we will discuss some detailed statistical properties of the proposed model.
Following the definition, the memory parameter d is fixed for the Gaussian
FARIMA processZt . An important question concerns the relationship between long
memory in Zt and Xt . In other words, if we have obtained an estimate of d from
Zt , can we use this as an estimator of the memory parameter in Xt? Fortunately, the
answer is yes. Due to the transformation Xt D � exp.Zt / that is of Hermite rank
one, and well-known results on Hermite polynomials (see, e.g., Taqqu 1975, Beran
1994, Dittmann and Granger 2002) the process Xt with �t Gaussian has the same
long-memory parameter d as Zt . For non-Gaussian innovations, the same is true
under suitable additional assumptions on the distribution of �t (see, e.g., Giraitis and
Surgailis 1989, Surgailis and Vaiciulis 1999). In the Gaussian case, more specific
formulas for moments, autocovariances

	X�.k/ D cov.X�
t ; X

�
tCk/

and autocorrelations �X.k/ D �X�.k/ can be obtained.

Theorem 1 Under the same assumptions in Lemma 1 and �t Gaussian, we have

i) EŒ.X�
t /
s� D exp

˚
s2�2=2

�
:

ii) var.X�
t / D e�

2
�
e�

2 � 1
�
;

	X�.k/ D e�2
"

exp

 
�2�

1X

iD0
aiaiCk

!
� 1

#
:
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iii)
�X.k/ D

"
exp

 
�2�

1X

iD0
aiaiCk

!
� 1

#�
e�

2 � 1
��1

:

iv) For k !1 we have

�X.k/ � cX� jkj2d�1;

where cX� D ce
� � cZ� is a positive constant and 0 < ce

� < 1.

Items i )–iii) mean that the moments of any order and the correlations of X�
t (or

Xt ) are completely known, and that these processes are weakly stationary. This is in
contrast to most duration and volatility models where conditions for the existence of
high order moments, the correlation structure, and the unconditional distribution are
usually very complex or even unknown. Furthermore, a simple estimation procedure
is implied since the long-memory parameters of X�

t (or Xt ) and Zt are the same
and no unobservable latent process is present. As we will see, a Gaussian MLE
coincides with the ML estimators for the original non-negative process. The last
result iv) means that, although the persistence levels in Xt and Zt are the same, the
autocorrelations of Xt are asymptotically smaller than those of Zt . Finally note that
the results of Theorem 1 hold for d < 0. In particular, using Theorem 1 iv) it can
be shown that

P
�X.k/ > 0 for d < 0, i.e. Xt does not exhibit antipersistence; for

related findings see, e.g., Dittmann and Granger (2002).
Of particular interest is the autocorrelation function of the conditional mean

duration �t . First the following asymptotic formula can be obtained:

Lemma 2 Under the assumptions of Theorem 1 and �t Gaussian, the asymptotic
formula of the autocorrelations of �t is given by

��.k/ � c��jkj2d�1 .k !1/

where c�� D cZ� c�� and where c�� D �2=�2� > 1.

In particular we conclude that for d > 0, �t has the same long-memory parameter
asZt . However the constant in ��.k/ is slightly larger than that for �Z.k/. For ��.k/
a result similar to Theorem 1 can be obtained:

Corollary 1 Under the assumptions of Theorem 1 and if �t are Gaussian we have

i)
��.k/ D

"
exp

 
�2�

1X

iD1
aiaiCk

!
� 1

#�
e�

2
� � 1

��1

ii) For k !1 we have

�� � c�� jkj2d�1

where c�� D Qce
� 	 c�� is a positive constant and 0 < Qce

� < 1.
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We conclude again that �t has the same long-memory parameter d , however with
a slightly higher constant than in ��.k/. Other properties of �t can be obtained by
combining Theorem 1 and Corollary 1. In particular moments of �t of any order
exist and the sth moment of �t is given by E.�st / D exp

˚
s2�2�=2

�
.

3.3 Estimation of the Model

Suppose that we observe Xt (t D 1; 2; : : : ; n) generated by an EFARIMA process
with an unknown parameter vector

# D ��; �2" ; d; 
1; : : : ; 
p;  1; : : : ;  q
�T
:

Recall that, due to (3), Xt is not an SV model with unobservable latent random
components so that maximum likelihood estimation does not cause any major
difficulty. Suppose, for instance, that the innovations �t are normal. By assumption,
Yt D logXt has expected value � D log � and Zt D Yt � � is a centered Gaussian
FARIMA process. Given a consistent estimator O� of �, the FARIMA parameter
vector

ˇ D ��2� ; d; 
1; : : : ; 
p;  1; : : : ;  q
�T

can be estimated by applying a Gaussian MLE for FARIMA models to OZt D
logYt � O� (t D 1; 2; : : : ; n). The asymptotic distribution of ǑMLE is known (see,
e.g., Fox and Taqqu 1986, Giraitis and Surgailis 1990, Beran 1995) and various
approximate ML-methods and algorithms exist (Haslett and Raftery 1989; Fox and
Taqqu 1986; Beran 1995). Furthermore, the generally unknown orders p and q can
be chosen using one of the known model selection criteria such as the BIC. For
results on the BIC in the context of stationary and integrated FARIMA models see
Beran et al. (1998). For practical purposes it is often sufficient to set q D 0, so that
model choice reduces to estimating p only. This will be the approach taken here.

4 The Exponential SEMIFAR Model

Duration series may exhibit a nonstationarity in the mean which can be modelled
by a nonparametric multiplicative scale function. Let �t D t=n denote rescaled time
and �.�/ a smooth function of � . We then replace the constant � D log � in the
EFARIMA model by a nonparametric regression function, i.e.

Yt D �.�t /CZt ; (10)

where Zt is the zero mean FARIMA(p, d , q) process defined in (2). Model (10)
can be thought of as a SEMIFAR process (Beran and Feng, 2002a) with integer
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differencing parameter m D 0 (and the possible addition of an MA part). Note
however that, as before, we have the additional structural assumptionZt D log�tC
�t implying (3).

Using the notation

�.�t / D expŒ�.�t /�

the observed series Xt D exp.Yt / is of the form

Xt D �.�t /X�
t D �.�t /�t�t D g.�t /�t ; (11)

where �t > 0 is the conditional mean as defined before, �.�/ > 0 is a positive
nonparametric scale function (or local mean function), X�

t D exp.Zt / is the log-
normally distributed stationary long-memory process as defined before and

g.�t / D �.�t /�t
will be called the total mean in the original process. Under suitable regularity
conditions Xt defined in (11) is a locally stationary process as defined in Dahlhaus
(1997). In what follows (11) will be called an ESEMIFAR (exponential SEMIFAR)
model.

By analogous arguments as before, it can be seen that the ESEMIFAR model
is a semiparametric long-memory EACD1 model. It allows for simultaneous
modelling of slowly changing scaling factors, long-range dependence, and short-
range dependence. As for the EFARIMA model, different conditional distributions
can be used for the ESEMIFAR model. Such modifications are of particular interest
when analyzing intraday trade durations.

In analogy to the earlier discussion, fitting ESEMIFAR models can be done by
applying algorithms for SEMIFAR processes. This involves, for instance, kernel
or local polynomial regression for estimating the trend function g and maximum
likelihood estimation of the other parameters from the residuals. Theoretical results
on estimators of g may be found, for example, in Hall and Hart (1990) and Beran
and Feng (2002a,c). For properties of estimated parameters based on residuals see,
e.g., Beran and Feng (2002a). Data-driven algorithms for selecting the bandwidth
are proposed in Ray and Tsay (1997) and Beran and Feng (2002a,b). The algorithm
of Beran and Feng (2002b) is implemented in the S-Plus module FinMetrics (see
Zivot and Wang 2003).

After fitting an ESEMIFAR model, one obtains O�.�t /, the estimate of the local
mean in Yt . The estimated local mean of Xt is given by O�.�t / D expŒ O�.�t /�.
Another important task is the computation of conditional and local total means.
Note that under the conditions of Lemma 1 the processZt is invertible with AR(1)
representation

Zt D
1X

jD1
bjZt�j C �t ; (12)
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where bj � cbj�d�1 (as j !1), 0 < d < 0:5 and
1P
jD1

bj 
 1. This leads to

�t D
1X

jD1
bjZt�j D

1X

jD1
bj .Zt�j C �/ � � (13)

D
1X

jD1
bj logXt�j � log � D

1X

jD1
bj logX�

t�j (14)

and

�t D exp.�t / D
1Y

jD1
.X�

t�j /bi : (15)

The conditional means �t and �t can be approximated based on these results. Let Obj
be the estimated values of bj . Set O�1 D 0,

O�t D
t�1X

jD1
Obj Œyt�j � O�.�t�j /� (t D 2; : : : ; n) (16)

and

O�t D exp. O�t / D
t�1Y

jD1
Œyt�j � O�.�t�j /� Obi :

Finally

OXt D Og.�t / D O�.�t / O�t D expŒ O�.�t /C O�t � (17)

are the estimated total means. Similarly, forecasts of total means can be obtained by
combining the forecasts of both conditional and unconditional parts.

5 Data Examples

In this section we analyze two data sets: (1) a daily average trade duration data set
from Germany and (2) a sunshine duration data set from Switzerland.
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5.1 Daily Average Trade Durations

We consider daily average trade durations of Deutsche Post AG (DPA) observed
on XETRA (source: Thomson Reuters Corporation). Using the notation xti (i D
1; : : : ; Nt ) for intraday durations observed on day t , where Nt is the random
number of observations on that day, the daily average duration on day t is defined
by xt D P

xti=Nt . This definition leads to an equidistant duration series whose
features differ from nonequidistant intraday duration series. In particular, we will
see that long-range dependence tends to occur in these series. The duration data are
displayed in Fig. 1a.

Figure 1a indicates that the marginal distribution is asymmetric, however, due
to averaging of a large number of intraday durations, only a few observations are
close to zero. In particular, distributions with a peak at zero, such as the exponential
distribution, are not suitable. Furthermore, there appears to be a systematic trend
in the mean, and the variability tends to be higher where the trend function
assumes higher values. A log-transformation therefore seems to be appropriate.
The transformed data together with an estimated nonparametric trend function O�.�/
(with a data-driven bandwidth of 0.1943) are shown in Fig. 1b. A local linear
estimator with the Epanechnikov kernel as weight function was used. For the
Gaussian parametric part, an EFARIMA(0; d; 0) model with Od D 0:398 is selected
by the BIC for O�t . The long-memory parameter is clearly significant with a 95 %-
confidence interval of Œ0:357; 0:440�. The estimated conditional means O�t and the
total means OXt calculated according to formulae (16) and (17) are shown in Fig. 1c,
d. Note that O�t looks stationary whereas this is not the case for OXt .

5.2 Average Sunshine Durations

Figure 2a shows logarithms of weekly averaged daily sunshine durations (after
seasonal adjustment) in the city of Basel (Switzerland) between January 1900 to
December 2010. Fitting an ESEMIFAR model (with the BIC for model choice)
leads to no significant trend function and an EFARIMA(0; d; 0) process with d D
0:1196 (95%-confidence interval Œ0:0994; 0:1398�). Thus, there is no evidence of
any systematic change regarding sunshine duration, however dependence between
sunshine durations appears to be far reaching. For a confirmation of the fit, Fig. 2
shows the log–log-periodogram of the data together with the fitted spectral density
(in log–log-coordinates), Fig. 2c displays the histogram of O"t . Here, the residuals
are not exactly normally distributed, but do not appear to be particularly long-tailed.
As mentioned above, the asymptotic behavior of autocorrelations is still the same in
such cases, the Gaussian MLE (and the semiparametric SEMIFAR algorithm) can
be used (as a QMLE) and parameter estimates have the same asymptotic properties.

As a general comment we may add that the lack of a significant trend could be due
to having considered one time series only. In some recent empirical studies based
on large numbers of sunshine duration series at various geographic locations, it has
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Year

Daily average durations of Deutsche Post from Jan 2, 2006 to Apr 29, 2011

Log−transformation of the data in (a) with trend estimated by the ESEMIFAR

Year

Estimated conditional means in the lod−data using the ESEMIFAR model
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Fig. 1 Daily average durations of Deutsche Post (a); log-transformation together with the
estimated trend (b); estimated conditional means in the log-data (c); estimated total means in the
original data (d)
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Fig. 2 (a) Logarithms of weekly averaged daily sunshine durations (seasonally adjusted) in Basel
between January 1900 and December 2010; (b) log–log periodogram and fitted spectral density for
the sunshine durations in figure (a); (c) histogram of O"t
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been argued that there may be evidence for an increase in average sunshine durations
in the last few decades (see, e.g., Raichijk 2012). These studies did however not
take into account the possibility of long-range dependence. A systematic empirical
spatial-temporal study using ESEMIFAR models would be useful to examine the
conjecture of global dimming and brightening.

6 Final Remarks

In this paper we introduced an EFARIMA model and extended it to the semipara-
metric ESEMIFAR model that allows for simultaneous modelling of systematic
changes, and short- and long-range dependence in duration data. Fitting these
models can be done using existing software. The usefulness of the approach was
illustrated by applications to duration data from finance and environmental sciences.

It might be possible to apply the same ideas to modelling volatility in financial
returns. Note that the Log-ACD1 (or EACD1) is defined following the idea of the
Log-GARCH (see, e.g., Geweke 1986). It may be expected that a long-memory
Log-GARCH model can be defined by applying the idea of an EFARIMA to
the Log-GARCH model. Another well-known long-memory exponential GARCH,
which is closely related to the EFARIMA model, is the FIEGARCH (fractionally
integrated exponential GARCH) introduced by Bollerslev and Mikkelsen (1996).
This is a long-memory extension of the EGARCH model proposed by Nelson
(1991). The relationship between the EFARIMA and the FIEGARCH models
should be clarified in future research. Recently, Lopes and Prass (2012) proved
that under mild conditions a FIEGARCH(p, d , q) process can be rewritten as
a FARIMA(p, d, 0) process. This indicates in particular that a semiparametric
extension of the FIEGARCH model after introducing a scale function should be an
ESEMIFAR model (without the MA part). It will therefore be worthwhile to discuss
a possible combination of FIEGARCH and SEMIFAR models. If an ESEMIFAR
model can be successfully defined as a semiparametric extension of the FIEGARCH
model, then it should also be possible to apply the existing data-driven SEMIFAR
algorithms to these models.
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Prediction Intervals in Linear and Nonlinear
Time Series with Sieve Bootstrap Methodology

Héctor Allende, Gustavo Ulloa, and Héctor Allende-Cid

Abstract Forecasting is one of the main goals in time series analysis and it has
had a great development in the last decades. In forecasting, the prediction intervals
provide additional assessment of the uncertainty compared with a point forecast,
which can better guide risk management decisions. The construction of prediction
intervals requires fitting a model and the knowledge of the distribution of the
observed data, which is typically unknown. Hence, data are usually assumed to
follow some hypothetical distribution, and the resulting prediction interval can be
adversely affected by departures from that assumption (Thombs and Schucany,
J Am Stat Assoc 85:486–492, 1990). For this reason, in the last two decades
several works based on free distributions have been proposed as an alternative
for the construction of prediction intervals. Some alternatives consist in the sieve
bootstrap approach, which assumes that the linear process admits typically an
autoregressive AR representation, and it generates “new” realizations from the same
model but with the resampled innovations (Alonso et al., J Stat Plan Inference
100:1–11, 2002; Chen et al., J Forecast 30:51–71, 2011). The linear nature of the
models has not limited the implementation of the sieve bootstrap methodology in
nonlinear models such as GARCH, since the squared returns can also be represented
as linear ARMA process (Shumway and Stoffer, Time series analysis and its
applications with R examples (2nd ed.). New York: Springer, 2006; Francq and
Zakoian, GARCH Models: Structure, statistical inference and financial applications.
Chichester: Wiley, 2010; Chen et al., J Forecast 30:51–71, 2011).
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The focus of this chapter will be on the construction of prediction intervals with
sieve bootstrap. Linear and nonlinear models in time series like AR, ARIMA,
ARCH, and GARCH will be analyzed as well as their sieve bootstrap versions. We
evaluate their performance with current techniques using Monte Carlo simulations
and real data used as benchmark. Finally future research directions will be included,
as the application to hybrid models, missing data in time series, and applications in
others areas in which the time series have shown great promise.

1 Stochastic Processes

A stochastic process is a family of random variables fXtgt2T defined over a
probability space .˝;˙;P /, which is indexed by an index set T . The index set
T usually corresponds to the integer set Z D f0;˙1;˙2; : : : g or the real set R.C/,
which indicates if the process is discrete or continuous. In the rest of this chapter we
assume T D Z.

Stochastic processes are represented by a space of states (range of possible
values of the random variables Xt ), by its index set T and by the relation of
dependency between the random variables Xt . According to the Kolmogorov
theorem a stochastic process fXtgt2T can be specified if we know the finite-
dimensional distributions

F.x1; : : : xnI t1; : : : ; tn/ D P.Xt1 � x1; : : : ; Xtn � xn/; (1)

for all n � 1.
A stochastic process can also be represented by X D fXt;!gt2T;!2˝ , whose

domain is the cartesian product between index set T and the sample set ˝ .
A stochastic process fXtgt2T is strictly stationary if all its finite-dimensional
distributions are invariant to translations over time t (Eq. (1)). This definition of
stationarity is too strict for the majority of the applications and is difficult to evaluate
in a single data set. A less strict version corresponds to the weak stationarity. A
stochastic process fXtgt2T is weakly stationary if the mean and covariance between
Xt and XtCh its invariant in t 2 T , where h is an arbitrary integer. This process is
also known as a second degree stationary process, since it requires the existence of
the first two population moments.

More specifically fXtgt2T is weakly stationary if:

(i) E.X2
t / <1; 8t 2 Z;

(ii) E.Xt/ D �; 8t 2 Z;

(iii) Cov.Xt ; XtCh/ D 	X.h/8t; h 2 Z:

The function 	X.�/ is called also autocovariance function of fXtgt2T . Note that
condition (iii) also implies that Var.Xt/ D �2; 8t 2 Z.
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2 Time Series

A time series corresponds to a realization or a trajectory of a stochastic process
where the index set T corresponds to time. In practical terms, time series are a
sequence of numerical data points in successive order, usually occurring in uniform
intervals.

2.1 Linear Models in Time Series

Linear time series models are stochastic processes with a high degree of temporal
dependence which admits a general linear representation or MA.1/

xt D �C "t C
1X

jD1
 j "t�j ; (2)

where � is the mean of xt and f"tgt2T is a white noise process with EŒ"t � D 0

and variance �2. In order that the latter process is stationary, it is necessary that the
coefficients t are absolutely addable

P1
jD0 j j j <1. Since we can always center

the process around the mean �, we can assume without loss of generality that X is
zero mean.

xt D "t C
1X

jD1
 j "t�j ; (3)

Linear models can also be described as a function of past and present observa-
tions of random shocks f"tgt2T

xt D f ."t ; "t�1; : : : /; (4)

where f .�/ is a linear function.
Other representation for time series models that can be found in the literature

(Tsay, 2005) is the one that takes into account the first two conditional moments
until the time step t � 1,

xt D g.Ft�1/C
p
h.Ft�1/�t ; (5)

where Ft�1 is the �-algebra generated in terms of the information available until
time t � 1 and g.�/ and h.�/ are well-defined functions with h.�/ > 0 and �t D "t

�t
.

For linear series (2), g.�/ is a linear function of elements of Ft�1 and h.�/ D �2" .
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3 Parametric Time Series Models

General linear time series models are often insufficient for explaining all of
the interesting dynamics of a time series. So, the introduction of correlation
as a phenomenon that may be generated through lagged linear relations leads
to proposing the well-known autoregressive moving average (ARMA) models.
Adding nonstationarity to the model leads to the autoregressive integrated moving
average model (ARIMA). In this subsection we will present the ARIMA model
and its extensions, the long memory ARMA and Fractional Differencing ARIMA
(ARFIMA). In addition we discuss the nonlinear generalized autoregressive con-
ditionally heteroscedastic models GARCH. This models are motivated by finance
time series and assume a nonconstant variance.

3.1 ARMA Model

The ARMA stationary processes can be represented by

˚.B/Xt D �.B/"t ; (6)

where ˚.B/ and �.B/ are backward shift polynomials of operator B , which are
defined by

˚.B/ D 
0 � 
1B � 
2B2 � � � � � 
pBp; 
0 D 1; 
p ¤ 0; 
j 2 R; (7)

and

�.B/ D �0 C �1B C �2B2 C � � � C �qBq; �0 D 1; �q ¤ 0; �j 2 R; (8)

where

Bk W RZ ! R
Z (9)

Xt ! Xt�k: (10)

and k 2 Z.
An ARMA.p; q/model is causal and stationary if it can be expressed by a linear

combination of its past innovations as

Xt D
1X

jD0
 j "t�j ; (11)

where its backward shift polynomial operator is �.B/ DP1
jD0  jBj , which must

comply the restriction of being absolutely addable
P1

jD0 j j j <1. Complying the
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former restrictions of stability, it is possible, with the Z transform, to express the
polynomial �.B/ as a rational function

 .z/ D
1X

jD0
 j zj D �.z/

˚.z/
; jzj � 1; z 2 C (12)

with which the infinite coefficients of the linear process can be calculated by means
of two finite polynomials of order q and p.

To ensure the restriction of causality it is necessary that ˚.z/ ¤ 0 for jzj � 1, or
that its roots are outside the unity circle.

An ARMA.p; q/ model is invertible if it can be expressed as an infinite
autoregressive process AR.1/

�.B/Xt D
1X

jD0
�j xt�j D "t ; (13)

this is equivalent to asking that the moving average polynomial has its roots outside
the unity circle �.z/ ¤ 0, for jzj � 1 with �q ¤ 0. The coefficients of �.B/ can be
calculated by solving equation

�.z/ D
1X

jD0
�j zj D ˚.z/

�.z/
; z 2 C: (14)

Note that the invertibility property or AR.1/ representation guarantees the unity in
the determination of the model.

3.2 ARIMA and ARFIMA Models

The ARIMA.p; d; q/ models are represented as

�.B/Zt D �.B/"t ; (15)

where �.B/ is an autoregressive linear shift operator of the form

�.B/ W RZ ! R
Z (16)

Zt ! �.B/Zt : (17)

The �.B/ autoregressive operator has to satisfy the following condition: d of its
roots �.B/ D 0 have value of 1, found in the limit of the unity circle, and the rest
are outside of the circle.
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We can express the model (15) in the following way

�.B/Zt D ˚.B/.1 � B/dXt D �.B/"t ; (18)

where˚.B/ is an autoregressive stationary operator and d 2 Z
C
0 . Once the seriesXt

has been derived d times, we can assume that it can be represented by a stationary
ARMA process

˚.B/Wt D �.B/"t ; (19)

whereWt D .1 � B/dXt .
The ARFIMA.p; d; q/models, in comparison with the ARIMA.p; d; q/models,

have a fractionary differentiation, where � 1
2
< d < 1

2
.

3.3 GARCH Model

The GARCH models are a generalization of autoregressive conditional
heteroscedastic (ARCH) models, a family of models proposed in 1986 by Bollerslev.
This models are nonlinear, because the observations Xt are nonlinear functions of
past and present random shocks

xt D f ."t ; "t�1; : : : /;

where f .�/ is a nonlinear function with respect to the variance �2t , which is
expressed as a function of time t .

We can define the GARCH.p; q/ model as

yt D �t"t ; (20)

�2t D ˛0 C
pX

iD1
˛iy

2
t�i C

pX

jD1
ˇj �

2
t�j ; (21)

where f"tgt2T is an i.i.d. process with mean zero and variance �2 D 1. This
generalization adds to the model the past q conditional volatilities, introducing q
new parameters ˇ (a change in the restrictions)

˛0 � 0; ˛i � 0 and ˇj � 0; for i D 1; : : : ; p y j D 1; : : : q (22)

and

max .p;q/X

iD1
.˛i C ˇi / < 1: (23)
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Despite the nonlinear nature of the GARCH models, these can be represented as
a linear ARMA model, which presents linearity in the mean and variance Shumway
and Stoffer (2006); Francq and Zakoian (2010).

y2t D ˛0 C
mX

iD1
.˛i C ˇi /y2t�i C �t �

qX

jD1
ˇj �t�j (24)

where fygTiD1 is a ARMA.m; q/ model with m D max.p; q/ and f�gTiD1 is a white
noise. The latter expression is not generally i.i.d. unless one assumes the strict
stationarity of fygTiD1 (Chen et al., 2011) .

4 Bootstrap in Time Series

In many statistical procedures it is necessary to know the sample distribution of
the statistics or the used estimators. For example, for the construction of confidence
intervals and hypothesis tests it is necessary to know the quantiles of the distribution
of the estimator, and for estimation problems it is necessary to know a precision
measure like the variance, skew, or mean squared error (Alonso et al., 2002b).

The classic approach to determine the quantiles of the estimator distributions
is by means of the use of pivotal statistics, which converges asymptotically to a
known distribution when the law of probability of the observed process satisfies
some assumptions, e.g. gaussian distribution.

For the case of precision measures of an estimator, the estimation is performed
by means of the empirical analogous of the analytic formulas obtained from a deter-
mined model. These approximations require some assumptions and simplifications
of the model. If these assumptions do not hold, the approximations produce wrong
results. On the other hand, it is difficult or impossible to obtain analytic formulas of
the precision measure for most of the statistics.

Resampling methods evaluate the statistics of the obtained resamples from the
original sample, where these values are used to estimate the distribution function
of the estimators, in order to avoid analytic derivations based on assumptions that
may not be true. The most popular resampling method is bootstrap, a method based
on resamples of an i.i.d. sample. Due to the fact that the structure of correlations
of the time series violates the independence assumption of the observed data,
several extensions to the classic bootstrap method for time series models, like block
bootstrap and sieve bootstrap, need to take into account the structure of temporal
dependence (Efron and Tibshirani, 1995; Bühlmann, 2002).

The classic approach to time series analysis and the generation of prediction
intervals corresponds to the Box–Jenkins methodology. This methodology relies on
assumptions of normality for the distribution of the innovative process. The obtained
prediction intervals are affected in a malicious way when there are deviations from
the normality assumption. To treat this problem, several methods based on bootstrap
techniques have been proposed, which give more robust results than the classic
approach (Bühlmann, 2002; Politis, 2003; Härdle, 2003; Pascual et al., 2004).
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There are several works about bootstrap in time series estimation in the literature
over the years. The authors in Stine (1987) proposed a bootstrap method to estimate
the mean squared error of the prediction, of a linear AR.p/ model, where p is
known. In 1990, Thombs and Schucany proposed a backward and forward bootstrap
method for prediction intervals of an AR.p/ also with a known p value. In 1997,
Cao et al. proposed a faster alternative, which consists in generating resamples
only from future realizations (forwards), without obtaining bootstrap estimations
of the autoregressive parameters. After that, Pascual et al. (2004) generalized the
Cao approximation for ARMA.p; q/ models with known parameters. Alonso et al.
(2002a) proposed an AR.1) sieve bootstrap procedure, which consists in inverting
a mean average stationary process of order infinity.

5 Bootstrap

The bootstrap method is a method based on resampling with substitution from a
random sampleX1;X2; : : : ; Xn, which allows us to estimate the distribution of some
statistic G.x/ of interest. This method also allows to estimate the precision of the
estimations and the statistical tests performed based on a methodology, that uses
less or no structural and parametric assumptions of the process under analysis. The
bootstrap method was proposed in 1979 by Bradley Efron. The algorithm can be
summarized in the following steps:

1. Generate B samples with replacement X�
1 ; : : : ; X

�
n from X1; : : : ; Xn.

2. Compute B times the statistic of interest O� .
3. Estimate the distribution G.x�/ from (2).

Step 1 consists in generating B resamples with replacement from a random
sampleX1; : : : ; Xn. The usual number ofB is� 1000 to estimate the expected value
and the variance of one statistic. This resampling is performed from the estimated
distribution function OF .x/, which can be obtained in two ways, one parametric and
one nonparametric. The parametric bootstrap assumes that the distribution function
that was generated from the random sample X1; : : : ; Xn, comes from a known
parametric or theoretical family F.x; �/, and estimates OF as OF .x/ D F.x; O�/,
where O� is a Fisher estimator. The obtained resamples X�

1 ; : : : ; X
�
n can take values

within the range of F.x; O�/, which can be continuous or discrete. The nonparametric
bootstrap instead uses the empirical function distribution, estimated from the sample
X1;X2; : : : ; Xn, which assigns the same probability 1

n
to each element of the sample.

That is why in the resample X�
1 ; : : : ; X

�
n only elements of the original sample

appear. In the nonparametric resampling case, each element of the random sample
X1; : : : ; Xn can appear more than once in the resample X�

1 ; : : : ; X
�
n .

In step 2, with every resample we estimate the statistic of interest by means of
its empirical version O�.x�/. Finally, with the bootstrap estimation of the statistics of
interest we can obtain an estimation of distribution G.x�/ by means of OG.x�; OF /
and some characteristics of its population moments. For example, if we need to
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estimate the expected value and precision of a specific statistic O� , we can obtain its
estimations in the following way:

O��
O� D

1

B

BX

bD1
O��
b

for the expected value of O� and the estimation of the standard error is

O��
O� D

vuut 1

B � 1
BX

bD1

� O��
b � O��

O�
�

5.1 Bootstrap Confidence Intervals

Confidence intervals correspond to random sets with limits which do not depend on
unknown quantities .�; F /, including the real unknown parameter � with a specific
probability (e.g., 95%).

P
� O�˛ � � � O�1�˛

�
D 1 � 2˛

The approximation of the intervals by means of bootstrap is based mainly on
the empirical quantiles obtained from the B estimations O�� obtained from the
resamplings.

The percentile intervals can be obtained in the following way:
h O� �̨

2
I O��
1� ˛

2

i
(25)

where O� �̨ corresponds to the 100 � ˛ empirical percentile of the O��.
The percentile intervals, being based on the empirical quantiles, estimate in a

more reliable way the probability distribution of the estimator O� than the classic
symmetric intervals, which are valid only when the distributional assumptions are
met (Davison and Hinkley, 1997).

The BCa (Bias Corrected accelerated) confidence intervals are also based on
the bootstrap percentiles, but with the difference that the selected percentiles take
into account the skew and asymmetry of the empirical distribution of the estimator
(Efron and Tibshirani, 1995; Davison and Hinkley, 1997)

h O� �̨
1
I O� �̨

2

i

where in general the percentiles O� �̨
1

and O� �̨
2

have not the same probability in the
tails. These differences make that the obtained intervals are more precise than the
percentile intervals.
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6 Bootstrap Methods in Time Series

In this subsection we will present two of the main bootstrap methods for time series:
block bootstrap and sieve bootstrap.

6.1 Block Bootstrap

The block bootstrap method uses an i.i.d. resampling method with replacement from
blocks of l observations of the time series. It uses blocks XtC1; : : : ; XtCl in order
to preserve the dependence structure of the time series in each block, where its
length must be adequate to capture the structure and to keep independence between
them (Bühlmann, 2002). This idea was first proposed in Hall (1992), but the formal
proposition can be found in the work of Künsch (1989).

The obtained blocks can have overlapping observations, which increments the
quantity of generated blocks in comparison with a version with nonoverlapping
blocks. TheB bootstrap resamples generateB trajectories or series that are designed
to preserve the structure of the original series. Before applying an estimator O� of a
parameter of the time series, it is important to consider the dimension of the distribu-
tion function of parameter � , which is a functional of them-dimensional distribution
of the time series, so we can estimate it as O� D T . OFm/. The dimension will depend
on which parameter we are interested, for example, if we want to determine the
autocorrelation of the time series in one step ahead, �.Xt ; XtC1/, the dimension is
m D 2, so before generating the necessary blocks we need to vectorize the consec-
utive observations Yt D .Xt�m; : : : ; Xt / t D m; : : : ; n with which we will build
the overlapped blocks .Ym; : : : ; YmCl�1/; .YmC1; : : : ; YmCl /; : : : ; .Yn�lC1; : : : ; Yn/,
where l 2 N is the length of the blocks. This vectorization avoids the separation, and
posterior union of the blocks that will affect the estimation of the statistics, because
consecutive observations, for example, �.Xt ; XtC1/ may be altered.

This method does not assume that the observed time series belongs to any
parametric family, so we could say that this method is not parametric and, in this
sense, more general than the sieve bootstrap method that will be explained in the
following subsection.

6.2 Sieve Bootstrap

Sieve bootstrap, as Block bootstrap, is a bootstrap method to generate trajectories
from the original time series maintaining its probabilistic structure. The sieve
bootstrap method is based on resampling with replacement from the residuals
obtained from estimating the stochastic process that generated the observed time
series. The sieve bootstrap method is based on the approximation of an infinite
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dimensional or nonparametric model by means of a sequence of finite dimensional
parametric models, due that the order of the model converges to infinity as n!1
(Bühlmann, 1997). The sieve bootstrap method is based on the Wold theorem, which
establishes that if we decompose a stationary stochastic process fXtgt2Z, and we
take the stochastic part, it can be represented as a stochastic mean average stationary
process fXtgt2Z of order infinity or general linear model

Xt � �X D
1X

jD0
 j "t�j ;  0 D 1; t 2 Z (26)

where f"tgt2Z is an i.i.d. process with EŒ"t � D 0 y
P1

jD0  2j < 1. This general
linear representation plus some assumptions allow us to use the sieve method in
linear autoregressive and mean average autoregressive models.

7 Sieve Bootstrap Confidence Intervals

The sieve bootstrap confidence intervals are built from the empirical quantiles
obtained from the B bootstrap observations X�

TCh. These observations, h steps
ahead, are part of the B bootstrap trajectories generated by means of the sieve
bootstrap algorithm for prediction intervals, with which we estimate the conditional
distribution of XTCh, given the known or past observations until a time T .

In Fig. 1 we observe an ARMA(1,1) time series together with the trajectories
obtained with sieve bootstrap. The new trajectories approximate the probabilistic
structure of the original time series.

TIME

0 20 40 60

−
4

−
2

0
2

4 ORIGINAL  
RESAMPLE
RESAMPLE

Fig. 1 Original series and bootstrap trajectories
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Despite the fact that the sieve bootstrap procedure has been proven more efficient
than the classic methodology of Box and Jenkins, the prediction intervals obtained
are affected by the presence of innovative outliers, generating an inflation in the
length of the prediction intervals. This effect is unwanted, because what we expect
from a prediction interval is that it concentrates a high probability of containing a
future observation and at the same time that its length is as short as possible.

7.1 Winsorized Sieve Bootstrap

The innovative outliers present in the time series affect the estimated residuals and
then the bootstrap time series and its respectives obtained prediction intervals, where
they suffer from an increase of its lengths, thus losing precision.

One way to deal with this problem is to add a stage to the existing sieve bootstrap
algorithms for interval prediction, like AR-sieve bootstrap (Alonso et al., 2002a)
and GARCH-sieve bootstrap (Chen et al., 2011). This stage consists in using a
winsorized filter of order k, over the residuals that have been obtained after adjusting
a high order linear process over the observed time series, AR or ARMA respectively.
The difference between the winsorized filter and the truncated filters is that the
winsorized filter replaces the k statistics of extreme orders with statistics of order
X.kC1/ and X.n�k�1/, which correspond to the extreme values of the remaining
ordered residual samples. In both algorithms the winsorized filter is added at stage 4.

The winsorized sieve bootstrap algorithms for prediction intervals for linear and
nonlinear GARCH models are the following:

7.2 Winsorized AR-Sieve Bootstrap

(1) Given an observed time series fX1; : : : ; XT g, and an estimated order p by
means of AICc.

(2) Estimate the autoregressive coefficients . O
1; � � � ; O
 Op/ by mean of the Yule–
Walker estimators.

(3) Estimate the residuals O"t with:

O"t D Xt �
OpX

jD1
O
j .Xt�j � O�X/ for t D Op C 1; Op C 2; � � � ; T (27)

(4) Apply the winsorized filter of order k over the residuals

O".t/ D
8
<

:

O". OpCkC1/ if t < Op C k C 1
O".t/ if Op C k C 1 � t � T � k

O".T�k/ if t > T � k
(28)

where O".t/ represents the order statistic t .



Prediction Intervals in Linear and Nonlinear Time Series with Sieve Bootstrap. . . 267

(5) Obtain the empirical distribution of the centered residuals

OFQ".x/ D 1

T � Op
TX

pC1
1fQ"t�xg (29)

where: Q"t D O"t � O".�/ y O".�/ D 1
T� Op

PT
pC1 O"t

(6) Generate a resample of the residuals "�
t with i.i.d. observations from OFQ".

(7) Generate a new series fX�
1 ; : : : ; X

�
n g with the following recursion:

X�
t � O�X D

OpX

jD1
O
j .X�

t� � O�X/C "�
t (30)

where the first Op values are: .X1; � � � ; X Op/ D . O�X; � � � ; O�X/.
In practice series of length nC 100 are generated, discarding the first 100

observations.
(8) Estimate the autoregressive bootstrap coefficients . O
�

1 ; � � � ; O
�
Op/ as in step 2.

(9) Calculate the future bootstrap observation with the following recursion:

X�
TCh � O�X D

OpX

jD1
O
�
j .X

�
TCh�j � O�X/C "�

t (31)

where h > 0 and X�
t D Xt , for t � T

(10) Repeat steps 6–9, B times.
(11) Finally, using F �

X�

TCh

obtain the prediction interval of 100.1 � ˛/% for XTCh
given by ŒQ�

.˛=2/;Q
�
.1�˛=2/� where Q�

.�/ is a quantile of the estimated bootstrap
distribution.

7.3 Winsorized GARCH-Sieve Bootstrap

(1) Estimate the ARMA coefficients Ǫ0, .2˛1 C ˇ1/; : : : ; .3˛m C ˇm/, Ǒ1; : : : ; Ǒq ,

by means of the mean square algorithm. Then estimate Ǫi D .2˛1 C ˇ1/ � Ǒi
for i D 1; : : : ; p.

(2) Estimate the residuals f O�tgTtDmC1
with

O�t D y2t � Ǫ0�
mX

iD1
.2˛i C ˇi /y2t�iC

qX

jD1
Ǒ
j �t�j for t D mC1; � � � ; T (32)
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(3) Center the estimated residuals with

Q�t D
 
O�t � 1

T �m
TX

tDmC1
O�t
!

(33)

where the empirical distribution is

OF�;T .y/ D
TX

mC1
1fQ�t�yg (34)

(4) Apply the winsorized filter of order k over the residuals

Q�
.t/
D

8
<̂

:̂

Q�
.pCkC1/

if t < p C k C 1
Q�
.t/

if p C k C 1 � t � T � k
Q�
.T�k/

if t > T � k
(35)

where Q�
.t/

represents the statistic of order t .

(5) Generate a resample f��
t gTtD1

from OF�;T .y/.
(6) Generate a bootstrap resample of the squared fy2�t gTtD1

with

y2�t D Ǫ0 C
mX

iD1
.2˛i C ˇi /y2�t�i C ��

t �
qX

jD1
Ǒ
j �

�
t�j (36)

where y2�k D Ǫ0
1�Pm

iD1.b˛iCˇi /
y ��

k D 0 for k � 0
(7) Given fy2�t gTtD1

from step 6, estimate the coefficients Ǫ�0 , .2˛1 C ˇ1/�; : : : ;
.3˛m C ˇm/�, Ǒ�1 ; : : : ; Ǒ�q , Ǫ�i D .2˛1 C ˇ1/� � Ǒ�i para i D 1; : : : ; p. The
bootstrap sample for the volatility isf�2�t gTtD1

and is obtained by means of

�2�t D Ǫ�0 C
pX

iD1
Ǫ�i y2�t�i C

qX

jD1
Ǒ�
j �

2�
t�j for t D mC 1; � � � ; T (37)

with �2�t D Ǫ0
1�Pm

iD1. ǪiC Ǒ
i /

, for t D 1; � � � ; m.

(8) Resample with replacement from OF�;T .y/ to obtain the error process of the
bootstrap prediction f��

tChgshD1
where s � 1.

(9) Be y�
TCh D yTCh, ��

TCh D Q�TCh y �2�TCh D �2�TCh for h � 0

y2�TCh D Ǫ�0 C
mX

iD1
.2˛i C ˇi /�y2�TCh�i C ��

TCh �
qX

jD1
Ǒ�
j �

�
TCh�j (38)
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�2�TCh D Ǫ�0 C
pX

iD1
Ǫ�i y2�TCh�i C

qX

jD1
Ǒ�
j �

2�
TCh�j f h D 1; : : : ; s (39)

(10) Repeat steps 4–8, B times.
(11) Finally, we obtain prediction intervals 100.1� ˛/% for yTCh and �2TCh using

OF �
y2�
TCh

and OF �
�2�
TCh

.

• For yTCh:
h
�
q
H�
.1�˛/;

q
H�
.1�˛/

i
; h D 1; � � � ; s (40)

where H�
.1�˛/ is the quantile 1 � ˛ of OF �

y2�
TCh

• For �2TCh:
h
0;K�

.1�˛/
i
; h D 1; � � � ; s (41)

where K�
.1�˛/ is the quantile 1 � ˛ of OF �

�2�
TCh

7.4 Simulations

The outliers in the innovative process (IO) tend to generate a bigger impact on the
time series than the additive outliers (AO), because its effect is related strongly with
the order of the process (deterministic part of the process). The innovative outlier
model was proposed in 1972 by Fox

F"t D .1 � �/N.0; �20 /C �N.0; �21 / (42)

where �21 � �20 and � corresponds to the contamination level.
Next, some results showing the performance of algorithms based on sieve

bootstrap for interval prediction are presented.
The simulated processes are the following:

• ARMA(1,1):

Xt D 0:4Xt�1 C 0:3"t�1 C "t (43)

• ARCH(2):

yt D �t � "t (44)

�2t D 0:1C 0:2y2t�1 C 0:15y2t�2 (45)
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Table 1 Simulate results
with innovative process
F"t D .1� �/N.0; 1/

C �N.0; 10/

h k Method Coverage (s.d.) Length (s.d.) CQM

h D 1 – BJ 96.36 (0.24) 4.54 (0.04) 0.173

– SB 95.32 (0.19) 4.51 (0.05) 0.150

1 WSB 95.31 (0.19) 4.54 (0.05) 0.153

2 WSB 94.39 (0.21) 4.22 (0.04) 0.080

3 WSB 93.21 (0.24) 4.01 (0.04) 0.039
4 WSB 91.72 (0.22) 3.72 (0.03) 0.086

5 WSB 90.22 (0.24) 3.53 (0.03) 0.150

h D 3 – BJ 96.34 (0.15) 5.62 (0.05) 0.447

– SB 95.40 (0.19) 5.58 (0.07) 0.136

1 WSB 94.91 (0.19) 5.37 (0.05) 0.087

2 WSB 94.03 (0.20) 5.06 (0.05) 0.033
3 WSB 93.14 (0.22) 4.85 (0.04) 0.039

4 WSB 92.19 (0.21) 4.63 (0.03) 0.093

5 WSB 91.67 (0.22) 4.55 (0.03) 0.115

The parameters of the simulation were:

• S D 1; 000 time series simulated for ARMA and ARCH processes.
• B D 1; 000 sieve bootstrap trajectories.
• R D 1; 000 simulations of future observations XTCh for both processes and for

the ARCH process we add �2TCh for h steps ahead.

The following tables show the results of the comparison of the models regarding
coverage and length of the intervals, in addition to the combined metric CQM
proposed in Alonso et al. (2002a), which depends on the theoretical coverage and
length, and the empirical values obtained with the bootstrap prediction intervals.
This metric is a discrepancy metric between the theoretical aim and the empirical
performance, for that, a smaller value obtained in this metric indicates a better
performance of the prediction interval.

In Table 1 we can see for h D 1 and h D 3 steps-ahead, that the methods (SB)
and (WSB) perform better than the classical method (BJ), with respect to the metric
CQM. We observe an inflection point in k D 3 for h D 1 step-ahead and in k D 2

for h D 3 steps-ahead, which is observed in the combined metric CQM. The method
(WSB) has better results for h D 1 and h D 3 steps-ahead than the method (SB)
and (WSB) when k > 1, because the winsorized filter diminishes the impact of the
outliers. We can see the best results in bold.

In Table 2 we observe that under the presence of contamination in the innovative
process the prediction intervals of the algorithm (SB) are clearly affected by the
coverture of the returns and volatility, and also the increment in the length of them.
Also it is observed that the method (WSB) has a positive impact on the performance
of the prediction intervals of the returns and volatility. It seems that if the filter order
of algorithm WSB increases, the covertures and lengths of the prediction intervals
converge to the theoretical covertures and lengths.
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8 Closing Remark

The inference bootstrap proposed by Efron for independent data can be extended for
dependent data, in particular it can be used on time series, where two of the main
approximations correspond to: block bootstrap and sieve bootstrap.

The block bootstrap is the most general method but has several disadvantages.
It is necessary to perform a prevectorization of the data, and the resampling could
exhibit artifacts where resampled blocks are linked together, implying that the plug-
in rule for bootstrapping an estimator is not appropriate. Double bootstrapping,
which could give us more precision, does not seem promising (Bühlmann, 2002).
Instead, sieve bootstrap, where the resampling is performed from a reasonable
time series model, implies that the plug-in rule makes sense for defining and
computing the bootstrapped estimator. Double bootstrap potentially leads to higher
order accuracy, which has led this model to become much more popular.

Inference techniques based on bootstrap have demonstrated to have better results,
in comparison with classic inference techniques, which assume a known distribution
of the underlying process. The prediction intervals obtained with sieve bootstrap
have shown, by means of simulations, to obtain better results in coverage and
shorter lengths, which has been studied in Alonso et al. (2002a) together with the
performance of the combined metric CQM.

Despite the fact that sieve bootstrap is widely used in linear time series modeling,
specially the AR sieve bootstrap, this method can be used in nonlinear models
ARCH/GARCH, because the squared returns can be represented as AR/ARMA
processes (Chen et al., 2011). Hence, we can adopt a sieve bootstrap procedure to
estimate the prediction intervals for the returns and volatility of GARCH models,
which can be less expensive, from a computational cost, than other bootstrap
proposals, as those presented in Pascual et al. (2006).

In this chapter we presented the impact produced in interval prediction by the
presence of innovative outliers in time series, which produces a loss in precision
and efficiency, because the length of the intervals is affected. We also showed that
the use of a winsorized filter over the estimated residuals can diminish the impact of
isolated outliers, which is perceived in a lower value of the combined metric CQM.

In order to reduce the impact of outliers over the prediction, it may be interesting
to study the effect that the incorporation of robust statistic approaches could
produce, not only over the estimated residuals, but also in stages of parameter
estimation of the models or even for the estimation of their structural parameters.
Also it is necessary to investigate the effect that patch outliers could produce.
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Do Industrial Metals Prices Exhibit Bubble
Behavior?

Walter Assenmacher and Robert Czudaj

Abstract Between 2004 and 2008, prices for industrial metals increased signifi-
cantly but they experienced a subsequent decline after the turmoil of the financial
crisis. A crucial question is if the prices of internationally traded metals have been
driven by an explosive speculative bubble or if such a huge price increase was
fundamentally justified. Based on data from the Dow Jones UBS Commodity Index,
which uses metals traded on the London Metal Exchange and US exchanges, this
study attempts to answer this question by applying the sup ADF test proposed by
Phillips et al. (Int Econ Rev 52(1):201–226, 2011) which allows to test for explosive
bubbles and to date the origin and collapse of the bubbles. Overall, our findings
indicate that prices of industrial metals have shown explosive bubble behavior. More
precisely, prices for copper and nickel have been subject to a speculative bubble
around 2006 and 2008 whereas the evidence for the accumulation of a bubble in zinc
prices is weak and aluminum prices do not exhibit any indication of a speculative
bubble.

1 Introduction

The large swings in the prices of several commodities including industrial metals
especially between 2004 and 2008 have recently become the subject of an extensive
debate in the media and in academia. For instance, nickel prices increased by nearly
500 % from May 2004 until May 2007 and then dropped sharply by around 83 %
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until December 2008. Besides other factors such as the increasing importance of
emerging economies like China and India as market players, the engagement of
speculative capital has been identified as a main source of those swings (Chen 2010).
Among others, Masters (2008), Masters and White (2008), and Gensler (2009) argue
that extensive buy-side pressure from index funds recently created a speculative
bubble in commodity prices, with the consequence that prices heavily exceeded
their fundamental values at the highest level. Such a volatility increase evokes risk
for both producers and consumers and should therefore be observed carefully by
researchers and policymakers (Beckmann and Czudaj 2013).

The idea that asset or commodity prices have the potential to deviate from their
intrinsic values based on market fundamentals due to speculative bubbles is already
well established in the literature (Tirole 1982, 1985) and could be outlined by
Stiglitz’s famous definition:

[I]f the reason that the price is high today is only because investors believe that the selling
price is high tomorrow – when “fundamental” factors do not seem to justify such a price –
then a bubble exists (see Stiglitz, 1990, p.13).

In this vein, the number of speculative traders which are active in a market and
their potential impact on the evolution of prices could be time-varying. Thus, in
periods where a large number of such traders are active the data generating process
of prices possibly changes from a mean-reverting process consistent with the real
demand and supply for this commodity to an explosive bubble process.

Based upon this idea Phillips et al. (2011) suggest an approach that allows testing
for the presence of speculative bubbles. Basically, this methodology relies on the
estimation of recursive unit root test regressions. However, unlike the application of
standard unit root tests where the applicant concerns to test the unit root null against
the alternative of stationarity, which is located on the left-side of the probability
distribution of the test statistic, testing the alternative of an explosive root yields
a test statistics that is located on the right-side of the probability distribution. The
main advantages of this procedure are that (1) it does not require the estimation
of a fundamental value of the certain asset or commodity, which is a notoriously
difficult task in the latter case, and (2) it not only provides a tool for identifying
bubble behavior, but also the dating of its origin and collapse.

Therefore, the aim of this study is to apply this methodology to test if the prices
of industrial metals exhibit a speculative bubble. To do so, we use data from January
2, 1991 to October 19, 2011 for prices of aluminum, copper, nickel, and zinc, as well
as a composite index. Seen as a whole, our results indicate that prices of industrial
metals have shown explosive bubble behavior. However, this finding is not clear-
cut for each metal price. While prices for copper and nickel have been subject to a
speculative bubble around 2006 and 2008, the evidence for a bubble in zinc prices
is weak and aluminum prices do not exhibit any indication of a speculative bubble.

The reminder of this paper is organized as follows. The following section
provides a brief presentation of the testing approach while Sect. 3 intends to state a
behavioral foundation for the testing procedure. Section 4 describes our dataset and
presents our findings. The last section concludes.
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2 Testing Approach

In this study we follow the approach recently proposed by Phillips et al. (2011),
which is based on the classical present value theory of finance. In terms of the latter
the fundamental prices for industrial metals could be represented by the sum of the
present discounted values of the expected future dividend sequence. Therefore the
standard no arbitrage condition should hold:

Pt D Et.PtC1 C �tC1/
1CR ; (1)

where Pt refers to the price for any industrial metal at time t , �t denominates the
convenience yield from storing this commodity from t�1 to t ,1 R gives the constant
and nonnegative discount rate, and Et is the expectations operator conditional on
information available at time t . In order to achieve an empirically more tractable
representation and to decompose the price for an industrial metal in a fundamental
component (pft ) and a bubble component (bt ), a log-linear approximation of Eq. (1)
is used as follows2:

pt D pft C bt ; (2)

with

p
f
t D

� � 	
1� � C .1 � �/

1X

iD0
�iEt tC1Ci ;

bt D lim
i!1�iEtptCi ;

Et .btC1/ D 1

�
bt D .1C exp. � p//bt ;

pt D ln.Pt /;  t D ln.�t /;

	 D ln.1CR/; � D 1=.1C exp. � p//;

� D � ln.�/ � .1 � �/ ln

�
1

�
� 1

�
; (3)

1See, among others, Kaldor (1939) or Working (1949) for details regarding the convenience yield.
2See Campbell and Shiller (1988, 1989) for details. In addition, it should be noted that the concept
presented in Eq. (2) is notationally very similar to various types of fad models, which are also
often used in the literature to explain bubble behavior in asset prices. The basic idea is that markets
could sometimes be driven by animal spirits unrelated to fundamentals. See, for instance, Summers
(1986).
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where  � p indicates the average convenience yield-price ratio and 0 < � < 1.
If the growth rate of the natural logarithm of the bubble exp. � p/ > 0, then
the so-called rational bubble bt is a submartingale process, which is explosive in
expectation3:

bt D 1

�
bt�1 C "b;t D .1C g/bt�1 C "b;t ; (4)

where Et�1."b;t / D 0, g D 1
�
� 1 D exp. � p/ > 0, and "b;t is a martingale

difference sequence, since its autoregressive coefficient is larger than unity. In case
of bt D 0 8t , i.e. a bubble does not exist, the price for an industrial metal is
determined solely by fundamental factors and thus by the discounted expected future
convenience yield  t , as can be seen from Eq. (3). Phillips et al. (2011) show
that if pt and  t are both integrated of order one, bt D 0 ensures that both are
cointegrated. This becomes evident if the first equation in (3) is inserted into Eq. (2)
and rearranged. On the contrary, if bt ¤ 0, i.e. in the presence of a bubble, pt
will show explosive behavior, as shown in Eq. (4). Therefore, �pt can never be
stationary, no matter if  t is integrated of order one or of order zero.

Hence, Diba and Grossman (1988) have firstly motivated the application of unit
root tests on�pt , i.e. the return of an asset, which in our case is a specific industrial
metal, to check for the existence of a bubble in the price series pt . If the unit root
null on �pt can be rejected, then the prices for industrial metals do not exhibit any
indication of explosive behavior. In case of the latter pt should be cointegrated with
the convenience yield, if  t is integrated of order one, i.e. I.1/. However, Evans
(1991) claimed that a periodically collapsing bubble process cannot be detected
using standard unit root tests, since it could behave like an I.1/ process or even
like a stationary process. While looking at the historical patterns of many financial
assets, it seems plausible that explosiveness of pt is a temporary phenomenon.

Therefore, Phillips et al. (2011) suggest looking at sub-sample periods and
propose a recursive application of the augmented Dickey–Fuller (ADF; Dickey and
Fuller, 1979) test for a unit root against the alternative of an explosive root (the
right-tailed). The latter is based upon the following test regression:

yt D �C ıyt�1 C
JX

jD1

j�yt�j C "y;t ; t D 1; : : : ; T ; (5)

where yt indicates a time series for which the bubble hypothesis should be checked
and "y;t is an independently and normally distributed random error term with zero
mean and constant variance. As stated above, the null hypothesis being tested is
H0 W ı D 1 and the right-tailed alternative is H1 W ı > 1. In the empirical part of

3The expression “rational” used by many authors referring to bubble behavior indicates that this
concept is consistent with rational expectations.
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this study the test regression given in Eq. (5) is estimated recursively by starting with
�0 D ŒTr0� observations and incrementing the sample period by one observation
at each step. r0 indicates a sufficient fraction of the whole sample period T and
Œ�� denotes an integer-valued function. Thus, Eq. (5) is estimated for each fraction
� D ŒTr� with r0 � r � 1 and the corresponding test statistic is denoted by ADFr .
Under the unit root null it follows:

sup
r2Œr0;1�

ADFr ) sup
r2Œr0;1�

R r
0
QW dW

�R r
0
QW 2
�1=2 ; (6)

where W denotes the Brownian motion and QW .r/ D W.r/ � 1
r

R 1
0
W denominates

the demeaned Brownian motion (see Phillips et al. 2011 for details). The unit root
null is rejected, if the test statistic supr ADFr exceeds the corresponding right-tailed
critical value. In order to locate the date of the origin (re) and the burst (rf ) of
the bubble in case of a rejection, one can simply match the series of the recursive
test statistic ADFr against the right-tailed critical values of the standard ADF test.
Estimates can be achieved as follows:

Ore D inf
s�r0

˚
s W ADFs > cvADF

˛ .s/
�
; Orf D inf

s�Ore
˚
s W ADFs < cvADF

˛ .s/
�
; (7)

where cvADF
˛ .s/ indicates the right-tailed critical values of the standard ADF test

with significance level ˛.4 For the critical value cvADF
˛ .s/, Phillips et al. (2011)

propose the following choice: cvADF
˛ .s/ D lnŒln.T s/�=100 with s 2 Œ0:1; 1�.

3 Behavioral Motivation

Recently, Baur and Glover (2012) have provided a behavioral foundation for the
testing approach introduced in Sect. 2, which should be explained in the following.
The baseline assumption for the latter is given by the type of the structural model
for the price formation stated below:

ptC1 D pt C �
 

HX

hD1
dht � st

!
C "p;t ; (8)

where dht denotes the demand for an industrial metal by an agent of type h and
st denominates the supply of this commodity. As it is the case for several other

4Homm and Breitung (2012) show that this testing procedure is much more robust against multiple
breaks than alternative tests. For a summary of alternative bubble detection tests see Homm and
Breitung (2012). For a rolling window version and a bootstrap approach for this test see also
Gutierrez (2013).
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commodities as well, the demand for industrial metals can be subdivided into
industrial demand (dIt ) and speculative demand. The latter is modeled by two
different types of chartists behavior, viz. “trend followers” (d TF

t ) and “threshold
traders” (d TT

t ).
Supply and industrial demand is simply modeled by the following equations:

dIt D ˛d � ˇdpt ; st D ˛s C ˇspt ; ˇi > 0; i D d; s : (9)

However, both types of chartists’ demands depend on the heterogeneous beliefs of
each agent as given below:

dht D
Nh
tX

jD1
˛hj

h
E
h;j
t .ptC1/� pt

i
; h D TF;TT : (10)

where Nh
t indicates that the number of agents of type h, which are active in the

market at time t , could be time-varying. Each agent’s subjective beliefs are reflected
in their expectations Eh;j

t .ptC1/ as follows:

E
TF;j
t .ptC1/ D ptCˇTF

j .pt�pt�kj /; E
TT;j
t .ptC1/ D ptCˇTT

j .pt�cjt / ; (11)

where the time window over which trend followers extrapolate past trends is given
by kj and cjt denotes the threshold value, which indicates that the beliefs of a
threshold trader depend on the fact whether today’s price is above or below a certain
value that could also be time-varying. Both values, kj and cjt , could differ for several
agents.5

It can easily be shown that inserting Eqs. (9), (10), and (11) into Eq. (8) yields
the following representation of the model for the price formation:

ptC1 D ˛ C .1� ˇ/pt C
N TF
tX

jD1
!TF
j .pt � pt�kj /C

N TT
tX

jD1
!TT
j .pt � cjt /C "p;t ;

˛ 
 �.˛d � ˛s/; ˇ 
 �.ˇd C ˇs/; !hj 
 �˛hj ˇhj ; h D TF;TT : (12)

Using the convention that ˛t 
PN TT
t

jD1 !TT
j c

j
t and ˇTT

t 

PN TT

t

jD1 !TT
j Eq. (12) can be

rearranged to:

ptC1 D .˛ � ˛t /C .1 � ˇ C ˇTT
t /pt C

KX

kD0
N!TF
t;k�pt�k C "p;t ; (13)

5It is worth noting that threshold traders could also be interpreted as “fundamentalists,” since the
threshold value could also be seen as each agent’s subjective estimate of the fundamental value of
a certain industrial metal.
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where N!TF
t;k 


PK
iDkC1

PN TF
t

jD1 !TF
j I.kj D i/. Finally, it becomes evident that

Eq. (13) is notationally equivalent with the sequential ADF test equation given in
(Eq. (5)) and this demonstrates that the methodology by Phillips et al. (2011) is also
consistent with the heterogeneous agents literature.

4 Data and Empirical Results

In this section we provide a detailed description of our dataset and present the
findings of our empirical analysis.

4.1 The Data

Our dataset comprises spot6 prices for several industrial metals and these are
taken from the Dow Jones UBS Commodity Index (DJUBSCI) provided by Dow
Jones Indexes7 (http://www.djindexes.com/commodity/), which is composed of
commodities traded predominantly on U.S. exchanges with the exception that some
of the included industrial metals, viz. aluminum, nickel, and zinc, are traded on
the London Metal Exchange (LME). In addition to the latter, we also incorporate
copper and an index which aggregates all four of the industrial metals used. The
DJ-UBSCI is weighted by the relative amount of trading activity for a particular
commodity. Besides the S&P Goldman Sachs Commodity Index (GSCI) the DJ-
UBSCI is one of the two largest indices by market share.8 Our sample period covers
each working day from January 2, 1991 to October 19, 2011 and thus exhibits a
sufficient sample size that contains the low volatility period up to the early 2000s
as well as the high volatility period thereafter, as shown in Fig. 1.9 As is common
practice, each series is taken as natural logarithm. Table 1 reports the descriptive

6Alternatively, we have run the whole analysis with futures prices and found qualitatively the same
results. These are available upon request.
7The Dow Jones-UBS Commodity IndexesSM are a joint product of DJI Opco, LLC, a subsidiary
of S&P Dow Jones Indices LLC, and UBS Securities LLC (“UBS”) and have been licensed for use.
S&Pr is a registered trademark of Standard & Poor’s Financial Services LLC, Dow Jonesr is a
registered trademark of Dow Jones Trademark Holdings LLC, and UBSr is a registered trademark
of UBS AG. All content of the Dow Jones-UBS Commodity Indexes c�S&P Dow Jones Indices
LLC and UBS and their respective affiliates 2014. All rights reserved.
8Following Tang and Xiong (2010), the correlation between the GS and the DJ-UBS commodity
indices is over 0.9. As a result, using GSCI would not significantly change our findings.
9Czudaj and Beckmann (2012) show that most spot and futures markets for several commodities
including metals were efficient until the turn of the Millennium, but appear to be inefficient
thereafter owing to an increase in volatility, which might be attributed to the intense engagement
of speculation in commodity markets.

http://www.djindexes.com/commodity/
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Fig. 1 Natural logarithms of the industrial metals cash prices

Table 1 Descriptive
statistics

Ind. metal Mean Std. dev. Skewness Kurtosis

Index 4.61 0.41 0.76 2.38

Aluminum 4.09 0.23 0.10 2.23

Copper 4.96 0.61 0.78 2.10

Nickel 4.65 0.67 0.60 2.45

Zinc 4.28 0.34 0.16 2.94

statistics of each series and shows that each is subject to excess skewness and a
shortage in kurtosis compared to a Gaussian. When splitting the sample period into
a pre-2000 and a post-2000 period, it becomes evident that the variance of each
series has increased significantly.

4.2 Empirical Results

We have used the natural logarithm of the price for each industrial metal (aluminum,
copper, nickel, and zinc) and the whole index to estimate Eq. (5) recursively starting
with a sample period that includes the first 10 % of the data (r0 D 0:1), which
means that the initial sample runs from January 1, 1991 to January 29, 1993 and
is incremented by one observation until the entire sample is reached. The adequate
lag length has been chosen by minimizing the Schwarz criterion.10 Table 2 gives the

10To achieve robustness, we have also determined the lag length according to the significance of
the highest lag as proposed by Campbell and Perron (1991). In general, the corresponding findings
confirm ours and are therefore not reported, but are available upon request.
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Table 2 Test statistics Ind. metal ADF1 supr2Œr0;1� ADFr
Index �1:06 1:90��

Aluminum �2:48 �1:05
Copper �0:53 2:50���

Nickel �1:22 2:02��

Zinc �2:16 0:29

Note: ��� indicates significance at a 1 % level, �� at
a 5 % level, and � at a 10 % level. The critical values
for the (i) ADF1 statistic and the (ii) supr2Œr0;1� ADFr
statistic are taken from Phillips et al. (2011): (i) 1 %
0.60, 5 % �0.08, 10 % �0.44, (ii) 1 % 2.09, 5 % 1.47,
10 % 1.18, respectively

corresponding ADF1 and the supr2Œr0;1� ADFr test statistics. It becomes apparent that
according to Evans (1991) explosiveness is a temporary phenomenon and therefore
cannot be detected using the standard ADF test, since in this case the unit root null
of the prices cannot be rejected for each industrial metal. So, if one has conducted
a standard unit root test to check for an explosive bubble, one would conclude that
there was no significant evidence of exuberance in metals prices.11 However, when
conducting the supr2Œr0;1� ADFr test statistic the null is rejected for copper at a 1 %,
for nickel at a 5 %, and for the whole index also at a 5 % level. This clearly points
in favor of a speculative bubble in copper and nickel prices.

In order to locate the date of the origin and the burst of the bubble, we have
plotted the recursively generated ADFr2Œr0;1� test statistics with their corresponding
critical values cvADF

˛ .s/ D lnŒln.T s/�=100 with s 2 Œ0:1; 1� for each industrial metal
prices series in Fig. 2. For instance, the entire index exhibits a speculative bubble
that started on April 6, 2006 and burst on July 16, 2008. Copper and nickel prices
experienced a speculative bubble between January 2006 and September 2008 as well
as August 2006 and November 2007, respectively. Nickel prices also show a bubble
at the beginning of the nineties. As already indicated by the supr2Œr0;1� ADFr statistic,
the evidence for a bubble in zinc prices is very weak, since the recursively generated
ADFr2Œr0;1� test statistics only slightly crosses the critical value line around 2006
whereas the historical pattern of aluminum prices do not indicate any explosive
bubble behavior.12 When performing a sub-sample analysis that only includes the
period after the turn of the Millennium, our findings still hold. The corresponding
statistics and graphs are not reported to save space, but are available upon request.

11This finding is consistent with other studies that examined other assets or commodities such as,
for instance, Gutierrez (2013) in the case of agricultural commodities.
12When using futures instead of spot prices, the evidence for a speculative bubble in zinc prices
becomes stronger.
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Fig. 2 Recursive ADFr statistics

Conclusion
In this study we intended to answer the question if prices for industrial metals
exhibit a speculative bubble using a novel framework. Seen as a whole, our
results indicate that prices of industrial metals have behaved like a bubble for
the period between 2006 and 2008. As outlined in Sect. 3, this may be traced
back to the dominance of the trading strategies followed by chartists facing

(continued)



Do Industrial Metals Prices Exhibit Bubble Behavior? 285

certain price thresholds. However, this finding is not clear-cut for each metal
price. While prices for copper and nickel have been subject to a speculative
bubble around 2006 and 2008, the evidence for a bubble in zinc prices is weak
and aluminum prices do not exhibit any indication of a speculative bubble.

Therefore, it is possible that index traders have amplified price movements
for industrial metals during that period and that financial activity in their
futures markets and/or speculation may be the reason for the explosive
behavior of prices around 2006 and 2008. However, given that one may
think of Eq. (5) as a reduced form of an unknown structural model, this
approach solely allows detecting periods where actual prices deviated from
their fundamentals. It remains unclear whether these deviations may be
attributed to factors such as financial speculation, hoarding or the actions
of positive feedback traders. To examine the causes for the found bubble
behavior, structural models are required. The construction of these is left for
future research.

Further research should also be concerned about the appropriate policy
response if a bubble is detected. Although asset price bubbles exhibit a
challenge for both researchers and policymakers over several decades, the
abatement and the prevention of such a bubble (and especially an abrupt
bursting of a bubble) is still of crucial importance.
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Forecasting Unpredictable Variables

Helmut Lütkepohl

Abstract Stock market indexes are difficult to predict at longer horizons in efficient
markets. Possibilities to improve forecasts of such “unpredictable” variables are
considered. In particular, forecasts based on data transformations and multivariate
forecasts are compared, using monthly data. Although standard statistical methods
indicate that forecast improvements may be possible by using multivariate models,
mean squared error gains are not obtained in out-of-sample forecasting. Forecasts
based on the log transformation lead to improvements in forecast accuracy, however.

1 Introduction

The recent stock market turbulences have caused many certificates based on major
stock market indexes such as the European Euro Stoxx 50, the German DAX, or
the American Dow Jones to violate critical thresholds. Thereby their payoff has
become a function of the level of their underlying index. In fact, in many cases the
payoff is simply a constant multiple of the index level. Hence, it is desirable to have
predictions of the levels of the stock indexes to decide on a good time for selling or
buying the certificates.

On the other hand, assuming efficient markets, stock returns are often viewed
as unpredictable at least at longer horizons such as a month or more. This result
would suggest that also the levels of the stock indexes are unpredictable. Although
arguments have been put forward, why there may still be some predictability in
stock returns, there are also studies that by and large confirm that longer term
predictability of stock returns is very limited or absent.

Although in this situation one cannot hope to find a great potential for forecast
improvements, it is conceivable that the levels of the stock indexes contain
predictable components even if the returns are largely unpredictable. The objective
of this study is to explore a number of possibilities for improving predictions of the
levels of a range of stock indexes.
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Forecasting is a traditional objective of time series analysis (e.g., Heiler, 1980,
1991). A number of models and methods exist that have been developed for that
purpose. In this study I explore the potential of some methods that may be promising
for improving forecast precision for the variables of interest in the present context.

The first idea is based on a classical result by Granger and Newbold (1976)
stating that the unbiased minimum mean squared error (MSE) forecast of the
exponential of a variable is not the exponential of the optimal forecast of the
variable. Stock returns are typically determined as first differences of natural
logarithms (logs) of stock prices. Thus, computing a forecast of a stock index
directly from a corresponding forecast of the returns may not be optimal. Also, of
course, predicting the stock indexes directly, say, with an autoregressive moving
average (ARMA) model may not be optimal. Generally, forecasting nonlinear
transformations of a variable may be preferable to forecasting the variable directly.
The aforementioned result by Granger and Newbold (1976) tells us that simply
inverting the forecast of the transformed series may not result in the best forecasts
of the original variable. Indeed, Lütkepohl and Xu (2012) found that forecasts
based on logs may have smaller MSEs than forecasts based on the levels directly.
Therefore in this study I explore the potential of the more general Box–Cox class
of transformations to improve standard predictions of stock indexes. I consider an
estimator of the optimal predictor based on such transformations.

A further potentially useful extension of these ideas is to consider multivariate
systems. There is in fact some evidence that the major stock indexes are related
(e.g., King and Wadhwani, 1990; Hamao et al., 1990; Cheung and Ng, 1996). It
is investigated whether combining the additional information available in a set of
stock indexes with nonlinear transforms of the variables may improve forecasts.

I use end-of-month values for the period 1990M1 to 2007M12 of nine stock
indexes, the Dow Jones Euro Stoxx 50 (Stoxx), FTSE, DAX, CAC 40 (CAC), Dow
Jones (DJ), Nasdaq, S&P 500 (SP), Nikkei and HangSeng (HS). Using data up to
2007 only means, of course, that the recent crisis years are largely excluded. In this
kind of investigation this may be useful in order to avoid possible distortions that
may arise from structural changes caused by the crisis in the generation mechanisms
of the stock index series of interest. The indexes cover a good range of different
regions and segments of the stock markets in the world. The data are obtained from
Datastream. They are also used by Lütkepohl and Xu (2012) in analyzing whether
forecast precision can be improved by using logs.

The forecast precision is measured by the MSE. Of course, one could use
measures tailored precisely to the payoff function of a specific certificate. In this
study I prefer to work with the MSE as a general purpose measure because thereby
the results may be of more general interest and use. It is found that using the
log transformed series as basis for predictions tends to improve the forecast MSE.
Although multivariate methods in-sample indicate a potential for gains in forecast
accuracy, such gains are not obtained in out-of-sample forecast comparisons.

The structure of this study is as follows. In the next section I summarize results
related to optimal forecasts of time series when forecasts of a transformed variable
are of interest. Moreover, an estimator of the optimal predictor is proposed. In Sect. 3
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univariate forecasts of the stock indexes based on the Box–Cox transformation
are explored and in Sect. 4 forecasts based on multivariate models are considered.
Finally, the last section concludes.

2 Minimum MSE Forecasts Based on Nonlinear
Transformations

Suppose we are interested in forecasting a variable yt that is a function of another
variable xt , that is, yt D '.xt /. If a forecast of xt is available, it can be used to
construct a forecast for yt . Let xtChjt denote the optimal (minimum MSE) h-steps
ahead predictor of xtCh based on information up to time t . It is well known that
xtChjt is the conditional expectation (e.g., Lütkepohl (2005, Chap. 2)),

xtChjt D E.xtChjxt ; xt�1; : : : / 
 Et.xtCh/:

An h-steps ahead forecast of yt may be obtained as

ynai
tChjt D '.xtChjt /:

It is known from the work of Granger and Newbold (1976) that this forecast may not
be optimal which is why they call it a naïve forecast. In fact, denoting the forecast
error associated with xtChjt by u.h/t D xtCh � xtChjt , it is clear that

Et.ytCh/ D Et'.xtCh/ D Et'.xtChjt C u.h/t / ¤ '.xtChjt /

in general.
Consider, for instance, the case where xt D log.yt / so that '.�/ D exp.�/, i.e.,

yt D exp.xt /. In that case,

Et.ytCh/ D Et Œexp.xtChjt C u.h/t /� D exp.xtChjt /Et .exp u.h/t /: (1)

If u.h/t � N .0; �2x.h//, where N .�; �/ signifies a normal distribution and �2x .h/

denotes the forecast error variance, then E.exp u.h/t / D expŒ 1
2
�2x .h/� so that the

optimal predictor for ytCh is

y
nopt
tChjt D expŒxtChjt C 1

2
�2x .h/�: (2)

This result was also established by Granger and Newbold (1976) and the forecast
was considered by Lütkepohl and Xu (2012) for the stock indexes of interest in
the present study. Clearly, the forecast error u.h/t will be normally distributed if
xt is a Gaussian (normally distributed) ARMA process. In that case the forecast
error variance �2x .h/ can be estimated straightforwardly and, hence, the same is true



290 H. Lütkepohl

for the normal optimal forecast for yt based on the optimal forecast of xt . Using
the normal optimal predictor based on the normal distribution is plausible if the
variable yt is transformed into xt with the explicit objective to get a more normally
distributed data generation process (DGP). The log transformation is often used for
that purpose and, hence, reverting it by the exponential function, the optimal forecast
given in (2) is relevant. To distinguish it from the forecast proposed in the following,
I call it the normal optimal forecast.

In general, assuming a Gaussian DGP for xt is not suitable and neither is the use
of the forecast (2). In particular, such an assumption is problematic for the stock
index series of interest in the present study. Even in that case finding an estimator
for the optimal forecast may not be difficult. Given that the exponential function
is of primary interest in the following, I consider the case yt D exp.xt / now. In
fact, the DGP of xt will typically be an autoregressive process of order p [AR.p/],
xt D � C ˛1xt�1 C � � � C ˛pxt�p C ut , so that

xtCh D � C ˛1xtCh�1 C � � � C ˛pxtCh�p C utCh

D �.h/ C ˛.h/1 xt C � � � C ˛.h/p xtC1�p
CutCh C 
1utCh�1 C � � � C 
h�1utC1;

where �.h/ and ˛.h/i , i D 1; : : : ; p, are functions of the original AR parameters and


i D
min.i;p/X

jD1

i�j ˛j

may be computed recursively for i D 1; 2; : : : , using 
0 D 1 (e.g., Lütkepohl (2005,
Chap. 2)). This suggests an estimator

OEt.exp u.h/t / D .T � hC 1/�1
TX

tDh
exp.ut C 
1ut�1 C � � � C 
h�1ut�hC1/ (3)

of the correction term for adjusting the naïve forecast. Hence, the estimated optimal
h-steps ahead forecast of yt has the form

y
opt
tChjt D exp.xtChjt / OEt.exp u.h/t /: (4)

A standard law of large numbers can be invoked to show consistency of this
estimator. For example, if ut is independent white noise with time invariant, finite
variance, standard asymptotic results can be applied.

Notice that, although we have presented the optimal forecast for a single
transformed variable, the formulae and arguments carry over to the case where the
variable of interest is part of a multivariate system. In that case the forecast, the
associated forecast error, and the forecast error variance are computed from the
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system under consideration. Apart from that, all arguments carry over as long as
the nonlinear transformation is applied to the individual variables (see Ariño and
Franses (2000) and Bårdsen and Lütkepohl (2011) for discussions of special cases).

Of course, in practice we also have to replace the forecasts and the quantities
on the right-hand side of the equality sign in (3) by estimates. The usual parameter
estimates and estimation residuals are used for that purpose in the next section.

3 Univariate Forecasts of Stock Indexes

Before a comparison of different predictors for the variables of interest is performed
in Sect. 3.3, their unit root properties are discussed in Sect. 3.1 and the Box–Cox
class of transformations is considered in Sect. 3.2.

3.1 Unit Root Analysis

I have performed a unit root analysis for the full sample period from 1990M1 to
2007M12 for the original variables and their logs. For that purpose I have applied
Dickey–Fuller (DF) tests with linear trend and present the results in Table 1. All
tests are based on AR(1) models, that is, no lagged differences are used in the
test regression. Assuming efficient markets, the model under the unit root null
hypothesis is plausible, that is, the changes of the variables or the returns (first
differences of logs) should not be predictable. Also the standard model selection
criteria (AIC, HQ, SC) suggest order one for all series when a maximum lag
order of five is allowed for.1 The only exception is the Stoxx series for which the
more profligate AIC estimates order two. Thus, overall using the DF rather than an
augmented DF test is justified.

With only one exception the unit root null hypothesis cannot be rejected. The
Nikkei index is the exception when the original variable is used, whereas even for
this series a unit root cannot be rejected at the 10 % level when logs are considered.
This result is in line with a finding by Granger and Hallman (1991). They point out
that for a random walk xt , the autocorrelations of yt D exp.xt / may decay more
quickly than for a variable integrated of order one (I.1/ variable) and a DF test
tends to reject a unit root more often than for a standard I.1/ variable. Thus, if the
log index series are indeed random walks, one would expect occasional rejections
of a unit root in the original series. This result for the Nikkei index is still worth

1The computations reported in this subsection and in Sect. 4.1 are performed with the software
JMulTi, see Lütkepohl and Krätzig (2004), where more details on the criteria and statistical
methods can be found.
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Table 1 Unit root tests for
stock index series, sample
period: 1990M1–2007M12

Original variables Logs

Index DF KPSS DF KPSS

Stoxx �1.37 0.439 �1.28 0.646

FTSE �1.47 0.564 �1.49 0.715

DAX �1.33 0.335 �1.59 0.512

CAC �1.54 0.293 �1.70 0.379

DJ �2.07 0.483 �1.45 0.856

Nasdaq �1.93 0.404 �1.53 0.723

SP �1.55 0.490 �1.25 0.761

Nikkei �3.99 0.373 �2.45 0.359

HS �1.17 0.298 �2.33 0.569

DF tests all based on AR(1) (as recommended by SC and mostly
also by AIC) model with trend, critical values: �3.13 (10 %),
�3.41 (5 %), �3.96 (1 %). KPSS tests allowing for a linear trend
and with four lags, critical values: 0.119 (10 %), 0.146 (5 %),
0.216 (1 %). Computations performed with JMulTi (Lütkepohl
and Krätzig 2004)

keeping in mind because it may have an impact in the multivariate cointegration
analysis to be carried out in Sect. 4.1.

To confirm the DF test results, I have also performed KPSS tests where the null
hypothesis is stationarity. The results are also presented in Table 1. Again a linear
trend is allowed for. For all series, both original and in logs, the corresponding
test value exceeds the critical value associated with a 1 % significance level. Thus,
stationarity for all series is clearly rejected in favor of a unit root. Although this
result was to be expected and the return series (first differences of logs) are typically
used in economic analyses, these findings are reassuring because they confirm that
the statistical properties of the series are indeed in line with those assumed in other
studies. They also lend support to the “unpredictability” property of the returns.
Whether forecast improvements are still possible is, of course, the issue to be
investigated in the following.

3.2 Box–Cox Transformation

The original series and the logs are the two extreme ends of the Box–Cox
transformed series (Box and Cox, 1964). For a variable yt and a nonnegative real
number �, the Box–Cox transformation is defined as

y
.�/
t D

8
<

:

y�t � 1
�

for � > 0;

logyt for � D 0:
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Thus, for � D 1 this is just the original series shifted by �1, whereas for � ! 0

the transformation approaches the log. The transformation is meant to stabilize the
variance and more generally to make the distribution of the transformed variable
more normal (see also Heiler, 1981, p. 391). Thus, if yt is such that y.�/t is normally
distributed for � 2 Œ0; 1�, the transformation may be useful also from a forecasting
point of view because Gaussian variables may be predicted well by linear processes
such as ARMA processes.

Although the Box–Cox transformation with � ¤ 0 and � ¤ 1 may lead to a
variable that is difficult to interpret from an economic point of view, for the present
purposes the statistical properties are of central importance and, hence, I consider
the Box–Cox transformation for the stock index series. If the transformation actually
leads to a normally distributed variable, estimation of � by minimizing the variance
of the transformed variable seems plausible. Denoting the differencing operator by
� and assuming that�y.�/t is Gaussian white noise for some � 2 Œ0; 1�, the estimator
for � is chosen so as to minimize the sample variance of�y.�/t , that is, the objective
function is T �1PT

tD2.�y
.�/
t ��y.�//2. Using a grid search over �, it turns out that

the log transformation is indeed optimal for all nine series.2

Clearly, for the set of index series under consideration the normality assumption
is problematic even after transformation. In fact, the return series have quite
nonnormal features such as outliers and volatility clusters. Still using the sample
variance as basis for estimating � seems plausible, given the objective of the
transformation. In fact, more sophisticated procedures for estimating � exist (see
Proietti and Lütkepohl, 2013). I do not consider them here but base the following
analysis exclusively on the original variables and the logs.

3.3 Estimating the Optimal Predictor Based on Logs

In the forecast comparison I account for the fact that the sample period is
characterized by rather special periods for some of the markets. Therefore, using
only one sample and one forecast period for comparison purposes may give a
misleading picture. Hence, I use two different sample beginnings for estimation
and model specification, the first one is 1990M1 and the second one is 1995M1.
Moreover, I use three different periods for forecast evaluation, 2001M1–2007M12,
2003M1–2007M12, and 2005M1–2007M12.

I compare four different predictors for the original index series. The first one is
the standard linear predictor based on an AR model for the first differences of the
original variable. This predictor will be referred to as linear forecast (ylin

tChjt ). The

second predictor is the naïve one presented in Sect. 2 (ynai
tChjt ) which is based on

the exponential transformation of a forecast for the logs. In this case the forecasts

2Computations of this and the following subsection are performed with own MATLAB programs.
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are based on AR models for the returns. Finally, based on the same models, the
optimal forecasts under normality (ynopt

tChjt ) and the optimal forecasts with estimated

correction term (yopt
tChjt ) are considered.

Models are fitted to increasingly larger samples. For instance, for the longer
sample period starting in 1990M1 and a forecast period 2001M1–2007M12, the first
model is fitted to data from 1990M1 to 2000M12 and 1- to 6-steps ahead forecasts
are produced for 2001M1–2001M6. Then one observation is added to the sample
and model fitting is repeated. Thereby the shortest sample for model specification
and fitting has T D 132 observations and for each forecast horizon eventually 79
out-of-sample forecasts are produced and used for computing MSEs. Whenever the
sample is increased by a new observation, a full new specification and estimation is
performed. For AR order selection I have used primarily the parsimonious SC with
a maximum lag order of 4, although I have also experimented with AIC. The results
were qualitatively the same. Using SC for model specification means effectively that
all forecasts are based on random walks for the levels or the logs of the series, as
appropriate. Thus, the results that are discussed in the following indicate the MSE
gains due to the log transformation and not due to differences in the number of AR
lags or the like. This point is important to remember when it comes to comparisons
with the multivariate forecasts in Sect. 4.2.

In Table 2 I use the linear forecast (ylin
tChjt ) as a benchmark and report the MSEs

of the optimal forecasts (yopt
tChjt ) relative to those of the linear forecasts. An asterisk

indicates that the difference between the forecast MSEs is significant at the 5 %
level based on a two-sided Harvey et al. (1997) version of the Diebold and Mariano
(1995) (DM) test. Numbers greater than one mean, of course, that the corresponding
linear forecast has a smaller MSE than the optimal forecast.

From Table 2 it is apparent that there are some markets for which the linear
forecast beats the optimal one in the forecast period 2001M1–2007M12. Clearly
this period includes the period of market consolidation in Europe and the USA after
the new market bubble bursted in the early years of the new millennium. Note,
however, that only in one case the linear forecast is significantly superior to the
optimal predictor (see the one-step ahead forecasts of Stoxx for the sample period
starting in 1995M1 and the forecast period 2001M1–2007M12). The gains from
using the optimal forecast are in some cases quite substantial. For instance, for the
HS index there are a number of cases where the optimal forecast produces an MSE
that is less than 80 % of that of the linear forecast. The overall conclusion from
Table 2 is that the gains from using the optimal forecast can be substantial whereas
the losses tend to be small.

Of course, one may wonder about the relative performance of the other two
forecasts under consideration. In particular, comparing the optimal to the normal
optimal forecast may be of interest. Therefore I present the MSEs of the optimal
forecast (yopt

tChjt ) relative to the normal optimal forecast (ynopt
tChjt ) in Table 3. The

most striking observation from that table is perhaps that all numbers are rather
close to one. Thus, the two forecasts do not differ much. Sometimes the normal
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Table 2 MSEs of univariate optimal forecasts (yopt
tChjt

) relative to univariate linear forecasts

(ylin
tChjt

)

Beginning of sample period: 1990M1 Beginning of sample period: 1995M1

Forecast Forecast period Forecast period

Index horizon 2001–2007 2003–2007 2005–2007 2001–2007 2003–2007 2005–2007

Stoxx 1 1.0463 0.9667 0.9493 1.0720* 0.9749 0.9592

3 1.1215 0.8940 0.8678 1.1926 0.9138 0.8910

6 1.2313 0.7003* 0.6603 1.3701 0.7223 0.6870

FTSE 1 1.0256 0.9747 0.9684 1.0270 0.9812 0.9770

3 1.0750 0.8906 0.8907 1.0719 0.9250 0.9235

6 1.1327 0.7404* 0.7306 1.1268 0.8402* 0.8258

DAX 1 1.0136 0.9433 0.9211 1.0296 0.9423 0.9187

3 1.0382 0.8631 0.8329 1.0877 0.8497 0.8147

6 1.0669 0.7293* 0.6936* 1.1616 0.6899* 0.6452*

CAC 1 1.0286 0.9655 0.9568 1.0590 0.9715 0.9624

3 1.0762 0.9080 0.9054 1.1610 0.9198 0.9203

6 1.1373 0.8048 0.8107 1.3109 0.8004 0.8276

DJ 1 1.0360 0.9799 0.9915 1.0473 0.9945 1.0054

3 1.0952 0.9031 0.8970 1.1197 0.9457 0.9395

6 1.1965 0.8153 0.7344 1.2308 0.8983 0.8190

Nasdaq 1 1.0426 0.9914 1.0421 1.0479 0.9976 1.0448

3 1.1414 0.9652 1.0446 1.1501 0.9815 1.0523

6 1.3095 0.9062 0.9006 1.3385 0.9405 0.9267

SP 1 1.0424 0.9730 1.0034 1.0534 0.9869 1.0168

3 1.1112 0.8998 0.9399 1.1349 0.9380 0.9809

6 1.2182 0.7761 0.7721 1.2638 0.8567 0.8691

Nikkei 1 0.9286* 0.8705* 0.9024* 0.9826 0.9580* 0.9713

3 0.8500 0.7609* 0.8202 0.9594 0.9038* 0.9357

6 0.7763 0.6838* 0.7678 0.9372 0.8503* 0.9043

HS 1 1.0071 0.8996 0.8702 0.9982 0.9264* 0.9053

3 0.9889 0.7794 0.7324 0.9758 0.8630 0.8308

6 0.9164 0.7240 0.6999 0.9404 0.8548 0.8377

AR order selection based on SC with maximum lag order 4
* Significant at 5 % level according to DM test with two-sided alternative

optimal forecast is significantly better than the optimal forecast and in other cases
the situation is just the other way round. A clear winner is not apparent in the table.

I have also compared the naïve forecasts to the other three forecasts and found
that it is typically quite close to the optimal and normal optimal forecast. This
finding is also reported by Lütkepohl and Xu (2012) as far as the normal optimal
forecast is concerned. Therefore I do not report detailed results here. The overall
conclusion so far is then that using logs for prediction can be quite beneficial
in terms of forecast MSE. Whether the naïve, the normal optimal or the optimal
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Table 3 MSEs of univariate optimal forecasts (yopt
tChjt

) relative to univariate normal optimal

forecasts (ynopt
tChjt

)

Beginning of sample period: 1990M1 Beginning of sample period: 1995M1

Forecast Forecast period Forecast period

Index horizon 2001–2007 2003–2007 2005–2007 2001–2007 2003–2007 2005–2007

Stoxx 1 0.9998 1.0001 1.0002 0.9996* 1.0001 1.0002

3 1.0074 0.9949 0.9928 1.0155 0.9945 0.9915

6 1.0258 0.9719* 0.9777* 1.0479 0.9652* 0.9750

FTSE 1 0.9999 1.0001 1.0001 0.9999 1.0002 1.0002

3 1.0070 0.9911* 0.9920 1.0010 1.0018 0.9994

6 1.0212 0.9813* 0.9908* 1.0099 1.0412 1.0445

DAX 1 0.9999 1.0006 1.0008 0.9998 1.0006 1.0008

3 1.0007 1.0033 1.0029 1.0076 0.9961 0.9942

6 1.0091 0.9944 0.9962 1.0264 0.9800* 0.9818*

CAC 1 0.9998 1.0002 1.0003 0.9997* 1.0001 1.0002

3 1.0024 0.9981 0.9967 1.0101 0.9952 0.9933*

6 1.0076 1.0074 1.0074 1.0388 0.9825* 0.9886

DJ 1 0.9999 1.0000 0.9999 0.9997 0.9999 0.9998

3 0.9946 0.9983 0.9932 0.9861* 0.9960 0.9866

6 0.9825 0.9971 0.9906 0.9554 0.9869 0.9727

Nasdaq 1 0.9996 0.9998 0.9993 0.9992 0.9997 0.9989

3 1.0036 1.0008 1.0015 0.9967 0.9990 0.9926*

6 1.0219 0.9984 0.9819* 1.0152 0.9919 0.9451

SP 1 0.9999 1.0000 0.9999 0.9997* 1.0000 0.9998

3 0.9975 0.9986 0.9929 0.9921 0.9984 0.9865

6 1.0032 0.9968 0.9794 0.9947 0.9963 0.9553

Nikkei 1 1.0001 1.0003* 1.0003 1.0001 1.0003* 1.0002

3 0.9988 0.9964 0.9965 0.9994 0.9893 0.9911

6 0.9973 0.9916 0.9921 1.0007 0.9696 0.9766

HS 1 0.9998 1.0002 1.0003 0.9997 1.0006 1.0007

3 0.9971 1.0081 1.0088 0.9939 1.0298 1.0311

6 1.0019 1.0294 1.0354 1.0132 1.0767 1.0790

AR order selection based on SC with maximum lag order 4
* Significant at 5% level according to DM test with two-sided alternative

predictor is used to convert forecasts for the logs into forecasts for the original
variables is of limited importance.

So far I have not taken into account serial dependence although I have in
principle allowed for it. My statistical procedures favor simple random walk models.
The different markets underlying the stock indexes are related, however, and that
fact may be useful to take into account in forecasting. I will do so in the next
section.
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4 Multivariate Forecasts of Stock Indexes

It is a straightforward implication of the discussion in Lütkepohl (2005, Sect. 6.6)
that a genuine cointegration relation between integrated series implies Granger-
causality between them at least in one direction and, thus, improvements in
forecasts. Therefore I first check the cointegration relations among the series in
Sect. 4.1 and in Sect. 4.2 the multivariate forecasts are compared.

4.1 Cointegration Analysis

In Table 4 cointegration tests for all pairs of series for the full sample period
1990M1–2007M12 are reported. The table shows the VAR orders proposed by AIC
when a maximum order of 4 is allowed for as well as the corresponding p-values of
the Johansen trace test (Johansen, 1995) for the null hypothesis of no cointegration.
The test is based on a model which allows for a linear trend in the variables but
not in the cointegration relation, that is, the trend is orthogonal to the cointegration
relation. Rejecting the null hypothesis suggests that there is a cointegration relation
between the two variables. Indeed in Table 4 there are a number of small p-values,
say smaller than 5 %. Thus, there may be a number of cointegration relations in the
set of variables under consideration. Evidence for cointegration is found both in the
original variables and the logs.

There are 13 p-values in the column associated with the original variables which
are smaller than 0.05. Eight of them are associated with pairs involving the Nikkei
index. One may be tempted to conclude that the Nikkei index is cointegrated with all
the other variables. Recalling, however, that the DF unit root test for the Nikkei has
rejected the unit root, qualifies this conclusion. It may well be that those features
of the Nikkei index that caused the DF test to reject are now responsible for a
significant cointegration test. Note that the cointegration rank of a bivariate system
with one I.1/ and one stationary variable is one, the cointegration relation being
a trivial one that consists of the stationary variable only. Hence, the cointegration
findings in pairs involving the Nikkei index may not be genuine cointegration
relations. Thus, they may not induce forecast improvements. Ignoring those pairs,
there are still five pairs left where genuine cointegration is found: (Stoxx, FTSE),
(Stoxx, Nasdaq), (Stoxx, SP), (CAC, Nasdaq), (CAC, SP). Such an outcome in 36
tests is not likely to be purely due to chance, although the properties of the tests
may be problematic given that the series have outliers and volatility clustering in
the residuals. Still, there may well be strong relations between the series that can be
exploited for improving forecasts.

On the other hand, if there is a genuine cointegration relation between (Stoxx,
Nasdaq) and (CAC, Nasdaq), say, then there must also be a cointegration relation
between Stoxx and CAC. A similar comment applies to Stoxx, SP and CAC. Such a
relation is not found, however. Of course, the inability to reject the null hypothesis
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Table 4 Bivariate cointegration analysis for stock index series, sample period: 1990M1–2007M12

Original variables Logs

Index pair VAR order p-Value VAR order p-Value

Stoxx/FTSE 3 0.019 1 0.001

Stoxx/DAX 3 0.975 1 0.878

Stoxx/CAC 4 0.649 1 0.618

Stoxx/DJ 3 0.656 1 0.256

Stoxx/Nasdaq 1 0.000 1 0.000

Stoxx/SP 3 0.009 2 0.002

Stoxx/Nikkei 1 0.002 1 0.084

Stoxx/HS 2 0.849 1 0.186

FTSE/DAX 3 0.114 3 0.004

FTSE/CAC 3 0.084 1 0.046

FTSE/DJ 1 0.911 1 0.717

FTSE/Nasdaq 1 0.339 1 0.185

FTSE/SP 1 0.681 1 0.458

FTSE/Nikkei 1 0.009 1 0.194

FTSE/HS 1 0.991 1 0.536

DAX/CAC 1 0.978 1 0.828

DAX/DJ 3 0.725 1 0.252

DAX/Nasdaq 1 0.151 1 0.010

DAX/SP 3 0.210 1 0.026

DAX/Nikkei 1 0.004 1 0.146

DAX/HS 1 0.439 1 0.084

CAC/DJ 4 0.385 2 0.101

CAC/Nasdaq 1 0.000 1 0.004

CAC/SP 4 0.004 3 0.001

CAC/Nikkei 1 0.004 1 0.148

CAC/HS 1 0.964 1 0.397

DJ/Nasdaq 1 0.699 1 0.530

DJ/SP 1 0.894 1 0.750

DJ/Nikkei 1 0.007 1 0.116

DJ/HS 1 0.994 1 0.626

Nasdaq/SP 1 0.447 1 0.377

Nasdaq/Nikkei 1 0.006 1 0.118

Nasdaq/HS 1 0.961 1 0.698

SP/Nikkei 1 0.007 1 0.117

SP/HS 1 0.996 1 0.714

Nikkei/HS 1 0.017 1 0.116

The null hypothesis is no cointegration, that is, cointegration rank zero. p-Values for Johansen’s
trace test obtained from JMulTi (Lütkepohl and Krätzig, 2004) with linear trend orthogonal to
cointegration relation. VAR order choice by AIC with maximum order 4
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of no cointegration relation may be blamed to the lack of power of the test. Given
the very large p-value of 0.649 of the test of cointegration between Stoxx and CAC,
such an argument has little bite, however. In fact, I have checked for cointegration
between these two variables also with the test proposed by Saikkonen and Lütkepohl
(2000) that may be more powerful in the present situation and also did not find
evidence for a cointegration relation between Stoxx and CAC. This discussion
suggests that it is not at all clear that the cointegration relations found for the original
variables in Table 4 are in fact real. Hence, it is not at all clear that there will be gains
in forecast precision from using systems of stock indexes.

Note, however, that the VAR orders chosen by AIC indicate that there may be
short-term dynamics in some of the bivariate models that may again be exploited for
prediction. Overall, for the original variables the evidence in Table 4 may lead to the
expectation that there are gains in forecast precision from using multivariate models.
The evidence is by no means clear, however, and an out-of-sample comparison of
forecasts is needed to settle the matter.

The situation is similar for the logs of the series. In this case the VAR orders are
one with only four exceptions. A cointegration relation is found in nine of the 36
pairs of variables if a 5 % significance level is used for the cointegration tests. Now
none of the indexes cointegrates with the log Nikkei which lends further support to
the argument that the cointegration found between the original Nikkei and the other
indexes may not reflect a proper cointegration relation. The nine pairs of possibly
cointegrated log variables are (Stoxx, FTSE), (Stoxx, Nasdaq), (Stoxx, SP), (FTSE,
DAX), (FTSE, CAC), (DAX, Nasdaq), (DAX, SP), (CAC, Nasdaq), (CAC, SP).
Thus, I find a cointegration relation in one fourth of the pairs which is difficult to
blame to chance if there are no such relations. On the other hand, there are again
many inconsistencies in the results. In other words, if the nine pairs of variables are
really cointegrated, then there must be many more pairs of cointegrated variables
which are not confirmed by the p-values in Table 4.

Thus, the overall conclusion from the cointegration analysis is that the evidence
for relations that can be exploited for improving predictions is limited and rather
mixed. It is sufficient, however, to justify the ex ante forecast comparison that is
conducted in the following.

4.2 Forecast Comparison

Since some of the results in Table 4 are consistent with bivariate systems of two
independent random walks, I exclude all pairs of series where such a DGP may be
at work. In fact, I focus on those systems where a cointegration relation is found
in both the levels and the logs because they should in theory beat the univariate
forecasts. This reduces the set of pairs to be considered in the forecast comparison
to five: (Stoxx, FTSE), (Stoxx, Nasdaq), (Stoxx, SP), (CAC, Nasdaq), (CAC, SP).
For some of these bivariate systems the AIC also detects short-term dynamics that
justify higher lag orders than one. Thus, based on standard time series methodology
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there should be some gain in forecast precision relative to the univariate case. This
is the first issue considered.

Relative forecast MSEs of the optimal bivariate forecasts divided by the corre-
sponding univariate linear forecast MSEs are presented in Table 5. The underlying
forecasts are based on models chosen by the parsimonious SC. The reason for
considering SC forecasts is that a more parsimonious model was found to be better

Table 5 MSEs of bivariate optimal forecasts relative to univariate linear forecasts

Beginning of sample period: 1990M1 Beginning of sample period: 1995M1

Forecast Forecast period Forecast period

Index horizon 2001–2007 2003–2007 2005–2007 2001–2007 2003–2007 2005–2007

Stoxx 1 0.9512 1.0113 0.9930 0.9984 1.0992 1.0451

3 0.8960 1.1315 0.9690 1.0368 1.4446 1.1156

6 0.8392 1.3465 0.8416 1.0997 2.2464 1.1810

FTSE 1 1.0028 1.0097 0.9895 1.0543 1.0788 1.0205

3 1.0155 1.0563 0.9314 1.1693 1.3794 1.0246

6 1.0348 1.0776 0.7975 1.3037 1.8453 1.0219

Stoxx 1 0.9232 1.0077 1.0438 0.9471 1.0087 1.0359

3 0.7879 1.0357 1.0933 0.8623 1.0639 1.0801

6 0.6351 1.1268 1.0528 0.7554 1.2196 0.9951

Nasdaq 1 1.0425 1.0184 1.0956 1.1210 1.0286 1.0937

3 1.1363 1.0530 1.1465 1.4065 1.0770 1.1482

6 1.2676 1.1326 1.0750 1.7120 1.1684 1.0861

Stoxx 1 0.9757 1.0619 0.9242 0.9969 1.2126 0.9896

3 0.9109 1.1357 0.8113 0.9705 1.6071 0.9774

6 0.8539 1.2693 0.4567 0.9870 2.4416 0.6931

SP 1 1.0309 1.0662 1.1377 1.0890 1.1927 1.2138

3 1.0504 1.1227 1.2412 1.2118 1.4734 1.4642

6 1.1241 1.3551 1.3126 1.4069 2.1527 1.8452

CAC 1 0.9696 1.1209 1.2464 0.9522 1.0715 1.1778

3 0.8757 1.2652 1.5392 0.8155 1.1976 1.3858

6 0.7875 1.5522 2.0574 0.6945 1.4557 1.6637

Nasdaq 1 1.0214 0.9989 1.1010 1.1167 1.0120 1.0719

3 1.0628 1.0193 1.2144 1.3738 1.0448 1.1171

6 1.1057 1.1082 1.3912 1.6429 1.0925 1.0307

CAC 1 0.9702 1.0699 1.1433 0.9742 1.0170 0.9463

3 0.8925 1.1266 1.3100 0.9276 1.0831 0.9258

6 0.8202 1.2571 1.6576 0.9173 1.1572 0.7893

SP 1 0.9963 1.0142 1.1557 1.0621 1.0490 1.1239

3 0.9695 1.0431 1.4600 1.1571 1.1108 1.2253

6 0.9637 1.1894 2.0395 1.2899 1.2470 1.3073

VAR order selection based on SC with maximum lag order of 4. None of the MSE differences is
significant at the 5 % level according to a DM test



Forecasting Unpredictable Variables 301

suited for multivariate forecasting in previous studies. Thus, overall in Table 5 I
give an advantage to the multivariate models. Theoretically the best multivariate
predictor is compared to the worst univariate one. Of course, at this point it is not
fully clear that the estimated optimal predictor is really superior to its competitors
in the multivariate case. I will return to this point later when I discuss the robustness
of the results.

A first glimpse at Table 5 shows that there are many numbers greater than one.
Hence, the worst univariate predictors seem to outperform the best multivariate
ones. A closer examination reveals in fact that none of the MSE differences is
significant at the 5 % level according to the DM test. There are some significant
differences at the 10 % level which are not indicated, however. Although there are
cases where the multivariate forecasts produce a smaller MSE than the univariate
ones, it seems fair to conclude that overall no gains in out-of-sample prediction
accuracy can be expected from using the multivariate models for the stock indexes.
Of course, this is not the first study with that kind of conclusion. In the present
case it is striking, however, how clearly the multivariate modelling technology
points at potential for forecast improvements due to the enlarged information
set. Of course, one may argue that our procedures for multivariate modelling
are flawed because the residuals may still contain conditional heteroskedasticity.
Vilasuso (2001) indeed finds that tests for Granger-causality, for example, tend to
reject noncausality too often in the presence of ARCH in the residuals. Still the
methodology is quite standard and can apparently lead to misleading conclusions
regarding out-of-sample predictions. In fact, Cheung and Ng (1996) found Granger-
causal relations in more frequently observed SP and Nikkei data even when
conditional heteroskedasticity is taken into account. Based on the present out-
of-sample forecast comparison, it is difficult to find arguments in favor of the
multivariate forecasts, however.

I also checked the robustness of these results in different directions. First of
all, I used the AIC for specifying the VAR order in the multivariate case and I
compared to univariate random walks (AR(0) for the first differences) as before.
Many results do not change at all because the AIC often also selects VAR order
one. Generally, the same picture emerges as in Table 5. As one would expect, in
some cases the multivariate forecasts even get worse when a larger VAR order is
used.

It may also be of interest whether the optimal forecast in the multivariate case
actually performs better than other forecasts based on logs. Therefore I compared
the bivariate linear and optimal forecasts. In the multivariate case the results (not
shown) are indeed less clearly in favor of the optimal predictor than for univariate
models. Although in some cases the optimal forecast delivers sizeable reductions in
the MSE, overall it tends to provide no improvements or makes things worse. Hence,
it is perhaps justified to take a closer look at a comparison between multivariate and
univariate linear forecasts. Relative MSEs are given in Table 6. They confirm slight
improvements for the bivariate forecasts over the situation seen in Table 5. Still the
general conclusion remains: A general clear advantage of the bivariate forecasts is
not apparent.
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Table 6 MSEs of bivariate linear forecasts relative to univariate linear forecasts

Beginning of sample period: 1990M1 Beginning of sample period: 1995M1

Forecast Forecast period Forecast period

Index horizon 2001–2007 2003–2007 2005–2007 2001–2007 2003–2007 2005–2007

Stoxx 1 0.9500 0.9719 0.9599 0.9816 1.0875 1.0023

3 0.8854 0.9982 0.8820 0.9768 1.3842 0.9892

6 0.8072 1.0493 0.6927 0.9697 2.0025 0.8916

FTSE 1 0.9797 1.0087 0.9921 1.0177 1.0498 1.0083

3 0.9455 1.0545 0.9387 1.0517 1.2147 0.9895

6 0.9071 1.0965 0.8400 1.0791 1.4060 0.9393

Stoxx 1 0.9169 1.0172 1.1085 0.9068 1.0333 1.1252

3 0.7932 1.0782 1.2546 0.7739 1.1173 1.3038

6 0.6336 1.2209 1.4124 0.6059 1.3312 1.5547

Nasdaq 1 1.0554 1.0007 1.0111 1.0767 1.0008 1.0154

3 1.1793 1.0044 1.0202 1.2566 1.0056 1.0297

6 1.2822 1.0075 1.0228 1.3591 1.0132 1.0403

Stoxx 1 0.9824 1.0819 0.9246 0.9802 1.1643 0.9891

3 0.9194 1.1673 0.8130 0.9215 1.4288 0.9778

6 0.8453 1.2931 0.4531 0.8565 1.8687 0.6997

SP 1 0.9910 1.0194 1.0894 1.0024 1.0459 1.1041

3 0.9343 1.0135 1.1377 0.9835 1.0950 1.1779

6 0.8786 1.0867 1.0978 0.9565 1.2045 1.2027

CAC 1 0.9506 1.1226 1.2700 0.9364 1.1179 1.2559

3 0.8284 1.2921 1.5837 0.8043 1.3171 1.5728

6 0.6923 1.5568 2.0072 0.6639 1.6755 2.0461

Nasdaq 1 1.0160 1.0029 1.0503 1.0698 1.0020 1.0158

3 1.0398 1.0247 1.1298 1.2207 1.0144 1.0385

6 0.9995 1.0663 1.2839 1.2766 1.0242 1.0423

CAC 1 0.9666 0.9937 1.0028 0.9438 0.9860 0.9330

3 0.8866 0.9491 1.0045 0.8519 1.0028 0.8814

6 0.8080 0.8660 0.9795 0.7796 1.0051 0.6960

SP 1 0.9826 0.9946 1.1096 0.9923 1.0080 1.0695

3 0.9296 0.9852 1.2844 0.9727 1.0300 1.1269

6 0.8746 1.0447 1.5645 0.9447 1.0746 1.1522

VAR order selection based on SC with maximum lag order of 4

Conclusions
In this study I consider a range of methods for improving forecasts of stock
market indexes. Such variables should be difficult or impossible to predict
at longer horizons of several months in efficient markets. I use a monthly

(continued)
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dataset for nine stock price indexes and I compare a range of methods and
forecasts using different sample and forecast periods. Varying the sample and
forecast periods turns out to be important because the results are to some
extent sensitive to these periods.

For univariate forecasts I investigate the potential of nonlinear transforma-
tions of the Box–Cox type for improving prediction accuracy as measured
by the forecast MSE. It turns out that applying the log transformation which
is a boundary case of the Box–Cox transformation can be beneficial in
forecasting. For some sample and forecast periods substantial gains in forecast
precision are obtained even if a naïve forecast is used that simply reverses the
log to get a forecast of the original variable of interest. Improvements from
using more sophisticated transformed forecasts are overall limited.

Since there is some spillover between the markets underlying the indexes
considered, it seems plausible to use also multivariate methods for prediction.
Standard multivariate time series methods indicate that some of the indexes
are cointegrated and, hence, taking advantage of that relationship should
theoretically result in superior forecasts. Unfortunately, gains in forecast
precision are not found in out-of-sample comparisons. Thus, although one
may conclude from a standard analysis that there is a potential for gains in
forecast precision from using multivariate methods these may be illusionary
in practice. On the other hand, using logs for forecasting and transforming
the log variables to obtain forecasts of the original variables of interest can be
recommended.
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Dynamic Modeling of the Correlation Smile

Alfred Hamerle and Christian Scherr

Abstract We discuss the equity-based pricing of CDX tranches within a structural
dynamic approach and focus on the valuation impact of general model specifica-
tions. Therefore, we examine the influence of market dynamics, idiosyncratic jumps,
loss term structures, and portfolio heterogeneity on the pricing of tranches. The
resulting spread deviations are quantified through implied correlations because this
scales premium payments across all tranches to a comparable level and, in addition,
enables reliable inferences on the meaning of the discussed model features.

1 Introduction

The recent debate on the relative pricing of equity and credit risk markets (see
Collin-Dufresne et al., 2012; Coval et al., 2009; Hamerle et al., 2012; Li and
Zhao, 2011; Luo and Carverhill, 2011) raises the issue of the extent to which the
applied models themselves drive the published results. In particular, this emerges
all the more with respect to the large variety of proposed models and corresponding
findings. An initial way to address this topic seems to be a comparison of different
valuation techniques by referring to a homogenous set of input data. However, this in
fact fails because even within a certain class of model type the number of parameters
and model components turns out to be significantly different. Concerning structural
approaches, one might deal, for example, with static models, comprising only a
sparse number of parameters (see, e.g., Coval et al., 2009), or adopt fully dynamic
techniques with dozens of variables as in Collin-Dufresne et al. (2012).

Because of these differences, we restrict ourselves to a structural dynamic
approach and examine the impact of general model specifications on the pricing
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of credit derivatives, such as the inclusion of idiosyncratic jumps. In this sense,
we proceed similarly to Agca et al. (2008), who quantify the effects of ignoring
empirical regulatories on the valuation of CDO tranches. Their aim, however, is
different because they wish to explain the appearance of the so-called correlation
smile (see also Andersen and Sidenius, 2004; Kalemanova et al., 2007; Moos-
brucker, 2006), which proves the poor reliability of the standard one-factor Gaussian
copula model. In addition, all proposed techniques are of static nature, whereas
our analysis refers to a basic approach that already captures the most important
empirical phenomena and thus serves as a reference for measuring the impact of
general model specifications.

To set up the basic approach, we adopt the structural model recently proposed
by Hamerle et al. (2013). Using CAPM-like techniques, they introduce a sim-
ple dynamic model to overcome the main disadvantages associated with purely
diffusion-based techniques. In addition to a component that depicts continuous
changes, they also include jumps to capture discontinuous information. Hence,
our basic model contains the most important characteristics that, according to
Collin-Dufresne et al. (2012), a reliable approach should offer. Firstly, it is
intended to be fully dynamic, which is accomplished by definition because we
are dealing with a time-continuous stochastic process. Secondly, the model must
not be exclusively based on a diffusion motion because this leads to the so-called
predictability of default, and thus short-time spreads become vanishingly low (see,
e.g., Sepp, 2006). Due to the presence of jumps, our approach is not in danger of
exhibiting these disadvantages.

To quantify the impact of different model specifications, we compare the
corresponding risk premiums to those of our basic approach. However, the spread
rates of different tranches are generally of a different scale, and thus, if measured in
absolute values, slight deviations in the equity tranche acquire much more weight
than large deviations within the senior tranches. To avoid such effects, we adopt
the concept of implied correlations because, as a consequence, quotes are of the
same magnitude and spread deviations become comparable. Thus, we evaluate the
deviations with respect to our basic model and report the pricing effect of model
changes in terms of implied correlations.

The proposed model changes are chosen in such a way as to preserve the
analytical tractability of the different approaches. For example, we add idiosyncratic
jumps to the asset value process. Analogously to the idiosyncratic diffusion motion,
these depict changes in firm value that are not influenced by the macroeconomic
dynamics but reflect information causing discontinuous movements. A crucial
topic within our analysis is the weight we assign to these idiosyncratic jumps
because this directly influences the magnitude of correlation among the assets in
the modeled reference pool. Correlation matters, because it affects the terminal loss
distribution of the portfolio, which in turn influences tranche prices. For example,
if there is a significant number of scenarios in which the portfolio loss is close
to zero, the equity tranche can survive, at least in part. Hence, the spread rates
of equity tranches decrease. For senior tranches, things are different. Increasing
the probability of extreme losses entails the eventuality of subordinated capital



Dynamic Modeling of the Correlation Smile 307

being wiped out completely and also senior tranches getting hit. Because spread
rates reflect expected losses, premium payments have to increase. A decreasing
correlation reduces the incidence of extreme events and the loss distribution
becomes more centered. As a consequence, equity tranches often suffer substantial
losses and have to offer high spread payments. Conversely, senior tranches are hit
sparsely and thus only have to yield low premiums on the notional.

However, if the correlation were the only quantity determining tranche prices,
dynamic models would not yield significant advantages in the context of modeling
credit derivatives because terminal distributions are also specified by proposing
static models. Yet, static models have a tremendous disadvantage: they cannot
describe the evolution of portfolio loss dynamics over time. Yet, these are also
essential to evaluate the loss dynamics of tranches. The temporal growth of tranche
losses affects the spread rate of a tranche because spread payments always refer to
the remaining notional. If tranches are likely to suffer early losses, spread rates have
to rise in return for missed payments. Senior tranches are expected to have very low
losses, and therefore the explicit loss dynamics should not significantly influence
the associated premiums. This changes, however, as one moves through the capital
structure down to the equity tranche. Due to its position, this exhibits maximum
sensitivity to early defaults in the portfolio. This motivates our quantitative analysis,
which determines the extent to which loss dynamics in the underlying portfolio
influence tranche prices.

Besides idiosyncratic jumps and loss dynamics, there are two more topics
we wish to discuss in the course of this paper, namely the meaning of market
return dynamics and the homogeneity assumption. Whereas there is no doubt
about the influence of equity dynamics, a clear economic theory on the impact of
the homogeneity assumption is missing. Therefore, our empirical analysis is also
intended to yield new insights into this topic.

Accordingly, the remainder of the paper is organized as follows. In Sect. 2, we
provide a brief overview of credit derivatives and some details on the correlation
smile. The mathematics of the market and the asset value dynamics are discussed
in Sect. 3. In the context of the model analysis presented in Sect. 4, we quantify
the impacts of the proposed model changes. A conclusion is given in section
“Conclusion”.

2 Credit Derivatives and Correlation Smile

2.1 Credit Derivatives

2.1.1 CDS Indices

Analogous to equity indices, comprising a certain number of stocks, CDS indices
represent a portfolio of credit default swap contracts. In the empirical section
of this article, we focus on the CDX North American Investment Grade index
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(CDX.NA.IG), which aggregates 125 equally weighted CDS contracts, each written
on a North American investment grade name. There are several maturities of this
index, namely 1, 2, 3, 4, 5, 7, and 10 years, whereby the contract with the 5-year
horizon offers the highest degree of liquidity. The CDX.NA.IG is revised every
6 months on March 20 and September 20, the so-called roll dates. On these dates,
both defaulted and illiquid names are replaced. Similar to a CDS contract, the issuer
(protection buyer) has to pay quarterly spread premiums to the investor (protection
seller). In the case of default, the latter is obliged to render compensation for the loss
caused by the defaulted company. In general, this loss, also referred to as Loss Given
Default (LGD), is a firm-specific, stochastic variable. For reasons of simplicity, here
we fix the LGD to the standard value of 0:6. As a further consequence of default, the
notional value of the contract is reduced by a factor of 1

125
, disregarding the actual

loss. In a risk-neutral environment, the spread rate of this contract is given by

si WD LGD �Pn
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Here, �j WD tj � tj�1 denotes the time period between two subsequent payment
dates, r the risk-free interest rate, and �i the default time of reference name i .

2.1.2 Index Tranches

By dividing their capital structure, CDS indices are also used to create structured
finance securities, called index tranches. These tranches induce a vertical capital
structure on the index and are specified by the covered loss range. A tranche
begins to suffer losses as the portfolio loss Lt exceeds the attachment point ˛,
and its notional is completely wiped out if the portfolio loss increases beyond
the detachment point ˇ. For example, the CDX.NA.IG has the tranches 0–3 %
(equity), 3–7 % (mezzanine), 7–10 %, 10–15 %, 15–30 % (senior), and 30–100 %
(super-senior). The spread rate of a tranche is given by
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where the loss profile of a tranche follows

Lt˛;ˇ WD
min .ˇ;Lt /�min .˛; Lt /

ˇ � ˛ (3)
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2.2 Correlation Smiles

In the context of modeling credit derivatives, the one-factor Gaussian copula model
is similar to the Black–Scholes approach for the pricing of options. Hence, it does
not come as a surprise that there is also a phenomenon, called the correlation smile,
that corresponds to the empirically observed volatility smile.

2.2.1 Volatility Smile

The famous Black–Scholes pricing formula owes its popularity mainly to the fact
that, based on the intuitive Brownian motion, Black and Scholes (1973) elaborated
an analytical formula for the pricing of European options, including the contem-
porary stock price S0, the strike level K , the maturity T , the interest rate r , and
the volatility � of the underlying asset. Whereas S0, K , T , and r are explicitly ob-
servable quantities or parameters characterizing the proposed contract, the volatility
can, at best, be estimated. In turn, only the volatility parameter is available to control
the results within the Black–Scholes model. Given the market price of a completely
specified European option, one can fit the Black–Scholes model to this quote by
choosing the (unique) volatility that yields the desired value. If the Black–Scholes
model could completely describe market dynamics, all the (implied) volatilities
would be identical across different maturities and strike levels. Yet, these volatilities
are not generally constant but yield patterns that resemble smiles or skews if
plotted against the strike level or maturity. This suggests that the Black–Scholes
model is not suited to replicate option prices. However, the general popularity
of this model is testified by the fact that it is market convention to quote option
prices in terms of implied volatility. This fictive number, placed in the “wrong”
Black–Scholes formula, by construction reveals the predefined value and therefore
offers an alternative way to report prices of options.

2.2.2 Correlation Smile

Within the Gaussian model, there are only two parameters that can be used to control
the model’s features, namely the default barrier QD and the homogenous asset return
correlation �. It is a general convention to fix the default barrier such that the
model spread matches the empirically observed index spread. As a consequence,
� is the only parameter affecting tranche prices, and the market spread of a fixed
tranche is replicated by evaluating the level of the generic or implied correlation
that yields this spread. For a given set of tranche prices on an arbitrary day, this
procedure is expected to reveal five different correlations.1 The resulting confliction

1Super-senior tranches of the pre-crisis CDX.NA.IG are commonly assumed to be (almost) riskless
and thus omitted from our analysis.
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can be resolved simply by realizing that the one-factor Gaussian copula model
does not offer a reliable description of the pooled assets (see, e.g., Shreve, 2009).
However, analogous to the Black–Scholes model, the Gaussian approach also offers
an analytical formula for the valuation of tranches,2 which in turn explains its
popularity and the fact that tranche spreads are also quoted in terms of implied
correlations.

3 Asset Value Dynamics

3.1 General Model Features

With respect to our basic asset pool model, we specify the firm value dynamics to
satisfy the stochastic differential equation stated by Kou (2002):

dA.t/

A.t�/ D .r � �a�a/ dtC �adBa.t/C d
2

4
Nm
a .t/X

iD1
.Va;i � 1/

3

5 (4)

Hence, three basic components control the evolution of a company’s asset value
return: the drift component, the diffusion motion, and the jump part. The drift
rate is specified by .r � �a�a/, which contains the risk-free interest rate as well
as the compensator that accounts for the expected drift caused by the jump process.
Continuously occurring changes are depicted by the Brownian diffusion �aBa.t/.
The jump part specifies systematic jumps to which all companies are exposed. The
number of these jumps is denoted by Nm

a .t/ and follows a Poisson process with the
intensity �a. The random number Va;i ; i 2 f1; : : :; Nm

a .t/g ; is characterized by the
density of its logarithmic version

Ya;i WD ln.Va;i / (5)

that follows an asymmetric double exponential distribution:

fYa;i .y/ D p � �1e��1y1y�0 C q � �2e�2y1y<0; �1 > 1; �2 > 0 (6)

Therefore, p; q � 0; p C q D 1; define the conditional probabilities of upward
and downward jumps. Because Nm

a .t/ and Va;i are stochastically independent, the
process

2For technical details, we refer interested readers to Scherr (2012).
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is a compound Poisson process, with expectation
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Performing calculations in the context of exponential Lévy models, one generally
refers to logarithmic returns because these can be treated more easily. Applying Itô’s
Lemma to

X.t/ WD ln ŒA.t/� (9)

yields
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Without loss of generality, we assume A0 D 0, and hence the logarithmic return
X.t/ is given by a standard Lévy process that comprises continuous as well as
discontinuous movements.

3.2 First Passage Time Distribution

In modeling credit risk, dynamic approaches are usually specified as first passage
time models. This concept was introduced by Black and Cox (1976) and accounts
for the fact that a company can default at any time during the credit period. A default
is triggered the moment the asset value touches or crosses some predefined default
boundary, which represents the company’s level of liabilities. The first passage time
� is defined mathematically as follows:

� WD inf ft jAt � Dg D inf ft jXt � bg (11)

Here, D denotes the default barrier and b its logarithmic version. Because in our
model setting the loss dynamics are determined solely by the default dynamics, the
distribution of the first passage time, according to (2), is crucial.

There are only a few types of processes that offer an analytically known
distribution of � . For example, this pertains to the standard Brownian motion and
spectrally negative Lévy processes. The Kou model applied in this paper also
features an analytically known distribution of the first passage time, as formulated
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by Kou and Wang (2003) and Lipton (2002). For a comprehensive summary of the
(technical) details, we refer interested readers to Scherr (2012).

The analytical nature of the proposed first passage time model enables a very
fast (numerical) determination of loss dynamics and, based on these, the company’s
spread rate. In turn, given a quoted spread rate, the calibration of a homogenous pool
can be conducted by a numerical optimization algorithm, due to the linearity of the
expectation operator. If there were no analytically known distribution, calibration
would have to be done by simulation techniques, which, despite the rapid growth of
computational power, are still very time-consuming and also may potentially yield
biased results. This especially appears over the course of extended time periods
as well as processes with jumps (Broadie and Kaya, 2006; Kou and Wang, 2003).
Therefore, the analyticity of our modeling approach, enabling unbiased and fast
evaluations at firm and portfolio level, constitutes a major advantage of the presented
approach.

3.3 Integration of Market Risk

3.3.1 Modeling Equity Dynamics

Besides analytical knowledge about the first passage time distribution, there is
another important feature of the Kou model, namely the closed-form option-pricing
formula. Extending the classical Black–Scholes approach, Kou (2002) calculated
an explicit pricing function for European options where the underlying equity
dynamics are given by

dS.t/

S.t�/ D .r � �s�s/ dtC �sdBs.t/C d
2

4
Ns.t/X

iD1
.Vs;i � 1/

3

5 (12)

Analogous to the asset value model, the random number Vs;i , i 2 f1; : : :; Ns.t/g, is
characterized by the density of its logarithmic version

Ys;i WD ln.Vs;i / (13)

that also exhibits an asymmetric double exponential distribution:

fYs;i .y/ D p � �1e��1y1y�0 C q � �2e�2y1y<0; �1 > 1; �2 > 0 (14)

Hence, the price C .K; T / of a European call option written on an equity asset that
follows (12) can be evaluated as a function of the strike levelK and the maturity T 3:

3The explicit functional dependence is stated in Scherr (2012).
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C .K; T / D �
�
r C 1

2
�2s � �s�s; �s; Q�s; Qp; Q�1; Q�2I ln .K/ ; T

�

�K exp .�rT/ � �
�
r � 1

2
�2s � �s�s; �s; �s; p; �1; �2I ln .K/ ; T

�

(15)

where

Qp D p

1C �s �
�1

�1 � 1;
Q�1 D �1 � 1; Q�2 D �2 C 1; Q�s D �s .�s C 1/ (16)

If we specify S.t/ to reflect the dynamics of an equity index, for example the
S&P 500, and use this index as a proxy for the market dynamics, the logarithmic
market returns are also given by a double exponential jump-diffusion process. By
calibrating these equity dynamics to market data, given a fixed �s , we can ascertain
the unknown parameter values of the jump part. Following Hamerle et al. (2013),
we choose �s D 0:1.

3.3.2 Coupling Equity and Asset Dynamics

In our asset value model, the diffusion parameter �a, as well as �a, are used to
set up the coupling between market and asset dynamics. This coupling reflects the
notion that companies are exposed to both market and idiosyncratic risks. Whereas
market risk simultaneously influences the evolution of all companies in a portfolio,
idiosyncratic risks independently affect firm values. Adopting this basic idea of the
CAP-model, we specify the asset value diffusion to follow the market diffusion up
to a factor ˇ. Additionally, we introduce an independent Brownian motion Bi

a to
depict the continuous evolution of idiosyncratic risk. Thus, the asset value diffusion
is given by

�aBa D ˇ�sBs C �iaBi
a � N

�
0; �2a

�
(17)

Here, we made use of the fact that the superposition of independent Brownian
motions again turns out to be Brownian.

With respect to the jump part of our firm value model, we apply the parameters
�s and �s to specify the corresponding asset value dynamics. Due to the fact that
jumps in the firm value are caused exclusively by jumps in the equity process, we
fix the jump rate �a to be equal to �s . However, the jump distribution must be
different because within our approach the level of debt is assumed to be constant,
which in turn reduces the effects of discontinuous movements in the market value.
We account for this fact by adopting the ˇ factor introduced above and define

Ya;i WD ˇ � Ys;i (18)
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Applying the transformation formula, it is easy to show that this way of proceeding
preserves the distribution characteristic and thus proves to be consistent with the
given firm value dynamics. Furthermore, the distribution parameter of Ya;i can be
evaluated as follows:

�a D 1

ˇ
�s (19)

reflecting, on average, the damped amplitude of jumps. For reasons of simplicity,
we restrict ourselves to the limiting case of q D 1, concerning both asset and equity
dynamics. Thus, we define �a WD �2 and �s WD �2.

4 Model Changes and Correlation Smiles

4.1 Data Description

The database for our analysis relies primarily on quotes that were offered in addition
to the publication of Coval et al. (2009) and are available at the webpage of the
publishing journal. These quotes comprise data on 5-year S&P 500 index options,
spread rates of the 5-year CDX.NA.IG and associated tranches as well as time-
congruent swap rates. The swap rates are also offered by www.swap-rates.com and
used as risk-free interest rates. The time series cover the period from September 22,
2004 to September 19, 2007, which corresponds exactly to the duration period of
the CDX.NA.IG Series 3 through Series 8. In addition, the data on S&P 500 index
options provide daily information on option prices with respect to 13 different strike
levels and also report the time series of the S&P 500 index level.

4.2 Basic Model

For the purpose of calibrating our basic model, we utilize prices of S&P 500 index
options and spread rates of the 5-year CDX.NA.IG that were observed on February
6, 2006. We choose this date because within our analysis we wish to analyze the
pricing impact of model changes with respect to a common market environment.4

On average, the pre-crisis spread rate of the 5-year CDX.NA.IG can be calculated
to about 45 bps (the exact mean value amounts to 45:87 bps), which, for example,
was the market quote on February 6, 2006. In addition, this date is also located in
the center of our time series.

4According to Collin-Dufresne et al. (2012) and Coval et al. (2009), we specify Series 3 through 8
to represent the pre-crisis period.

http://www.swap-rates.com
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To calibrate our market model, we must back out the optimal value of .�s; �s/.
Because all the other input variables required for the pricing of options are known,
namely the contemporary index level, strike price, interest rate, and maturity, we
perform a numerical optimization procedure that minimizes the sum of in-sample
quadratic pricing errors:

E .�s; �s/ WD
13X

iD1


 QPi .�s; �s/� Pi
�2

(20)

where QPi denotes the model price and Pi the corresponding empirical value. As a
result of this procedure, we obtain

.�s; �s/opt WD .0:125; 2:91/ (21)

which is used to determine the model implied volatility skew shown by the solid
line in Fig. 1. This curve, as well as the market-implied volatilities, marked by the
crosses, is plotted against the moneyness levelm, which we define by

m WD K

S0
(22)

On average, the relative pricing error amounts to 0:30%, which emphasizes
the high fitting quality of the chosen market model, relying only on two degrees
of freedom. Concerning the pool model, we choose ˇ D 0:5 and �a D 0:2 to
capture the main results of a corresponding survey performed by Collin-Dufresne
et al. (2012). In this regard, the sparse number of parameters constitutes a further
advantage of our approach because besides .�s; �s/opt we only have to determine the

Fig. 1 Implied volatility �I of the market model. The solid line shows the resulting function
extracted from 5-year S&P 500 index option prices (marked by the crosses). All values are quoted
in percent
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logarithmic default boundary b. This can be done by evaluating the (unique) zero of

smi .b/ � sei (23)

where smi denotes the model implied spread rate and sei the empirically observed
index spread of the CDX.NA.IG on February 6, 2006. A simple numerical procedure
yields b D �1:141, which completes our setup.

4.3 Market Dynamics

The basic concept of our pricing model refers to the notion that the common
dynamics of asset values are affected only by the temporal evolution of the
corresponding equity market. In this context, predefined changes in the market
dynamics are intended to have a similar impact on the model implied spread rates.
If, for example, the risk neutral probability of negative market states increases,
premium payments on senior tranches are supposed to rise. By contrast, if option
prices imply a significant incidence of positive market states, equity spreads are
expected to fall.

Here, we analyze the pricing impact of market dynamics by adopting the couples
of jump parameters that imply the minimum and maximum as well as the 25 %,
50 %, and 75 % quantile of the terminal logarithmic return variance in our time
series:

V Œln .ST /� D �2s T C 2
�T

�2s
(24)

We use the resulting parameters to specify our asset value model (besides the
default boundary, we keep all the other parameters fixed) and perform a recalibration
to match the target value of 45 bps. Accordingly, a further advantage of our
modeling approach emerges. Given the numerically determined default barrier, we
can prove the reliability of simulated tranche spreads because the applied Monte
Carlo techniques must also yield the desired index level. Otherwise, computational
efforts have to be increased to avoid biased results. We use the modeled spread
rates to back out the implied correlations within the Gaussian model and depict the
resulting values in Fig. 2.

In addition, Table 1 presents the deviations compared to our basic model.
Concerning equity and senior tranches, the extreme specifications of market dy-
namics impact significantly on the premium payments. In line with the economic
mechanism discussed above, the low variance scenario causes equity spreads to
rise and senior spreads to fall, whereas the high variance scenario implies reduced
payments on equity and heightened payments on senior notionals. These results can
be simply explained by the different incidences of both positive and negative market
states. Due to its position in the capital structure, the mezzanine tranche exhibits
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Fig. 2 Implied correlation �I with respect to changes in market dynamics. The dashed curve refers
to our basic model, whereas the legend symbols specify the different equity dynamics. All values
are quoted in percent

Table 1 Deviations of implied correlations caused by the use of different market dynamics. z
symbolizes the various quantiles of the terminal logarithmic return variance and �i denotes the
deviation of the ith tranche, where i D 1 refers to the equity tranche, i D 2 to the mezzanine
tranche, etc.

z 0% 25% 50% 75% 100%

�1 5.4 1.2 0.6 2.9 6.1

�2 0.0 0.4 0.3 2.6 0.6

�3 6.6 1.1 0.0 0.7 5.1

�4 7.3 1.8 0.5 0.3 6.1

�5 4.9 1.8 0.0 2.4 6.9

only a minimum response to the market dynamics, and consequently spread rates
also vary only slightly. In addition, if we focus on the range that comprises the
scenarios between the 25% and 75% quantile of the logarithmic return variance,
the pricing impact occurs in the economically expected direction, but, surprisingly,
also appears to be limited. This finding may potentially be ascribed to the tempered
market environment within the pre-crisis period, which causes the corresponding
market dynamics to be at a comparable level. However, given our results, a more
detailed analysis of the pricing impact of market dynamics would seem to be a
worthwhile objective of future research.
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4.4 Idiosyncratic Jumps

The jump part of our basic model captures solely the arrival of “discontinuous”
information, such as political power changes, judicial decisions, and so on, which
commonly affect the modeled asset values. Hence, a more general approach
comprises the embedding of idiosyncratic jumps that depict sudden firm-specific
events, for example, an unexpected change in the board of directors. Integrating
these jumps, of course, entails the mutual dependencies of the company dynamics
to decline. Consequently, equity spread rates are expected to rise, whereas senior
rates are supposed to fall.

To examine these suggestions, we include idiosyncratic jumps by adding the
compound Poisson process

C i
a.t/ D

Ni
a .t/X

iD1
.Va;i � 1/ (25)

with jump intensity �ia and independent jump variables, whose logarithmic values
again follow a double exponential distribution.5 Furthermore, we choose the jump
intensities to follow

�ma D % � �a
�ia D .1 � %/ � �a; 0 � % � 1

(26)

and define

�ma WD �ia WD �a (27)

Assuming stochastic independence between the systematic and the idiosyncratic
jump part, we obtain, in total, a compound process with jump intensity

% � �a C .1 � %/ � �a D �a (28)

and jump parameter �a. Hence, in terms of distribution, the jump part of our basic
and the present approach is identical. This can easily be seen from the characteristic
function of the compound Poisson process C.t/:

˚Ct .u/ D exp

	
�t

Z

R

�
eiux � 1�f .x/dx



(29)

5Analogous to our basic model, we restrict ourselves to the limit of almost surely negative jumps.
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where � denotes the jump intensity and f .x/ the density of the jump distribution.
Due to the distributional equivalence, the present model does not have to be
recalibrated, and one can simply adopt the default boundary of the basic model.
In addition, the model implied spread rates of indices with shorter maturities also
remain unchanged because within this approach the choice of % does not affect the
term structure of losses.

In turn, this means that we can calibrate the model to reproduce the quoted index
spread, but nevertheless have the flexibility to choose the weighting of jumps. At
the limit % D 1, the proposed model coincides with the basic one, whereas % D 0

implies that there are no systematic jumps.
To analyze the impact of different levels of %, we strobe the interval Œ0:8; 0:0� by

steps of 0:2. The corresponding results are depicted in Fig. 3, which in particular
shows that across all tranches the choice of % crucially affects the implied correla-
tions. Due to the numerical decline of extreme events, equity spreads significantly
rise, whereas senior spreads almost vanish. As reported in Table 2, especially the
impact on the most senior tranche turns out to be very substantial. In the case of
� D 0:2, as well as � D 0:0, the Gaussian model cannot reproduce the spread rates
of the mezzanine tranche implied by the model and, in addition, a degeneration of
the smile pattern can be observed.

From a general perspective, these results imply that introducing idiosyncratic
jumps does not necessarily yield a significant contribution to the term structure
properties of a dynamic model but may dramatically influence the pricing of
tranches. This finding constitutes the main contribution of our paper, in particular

Fig. 3 Implied correlation �I with respect to the inclusion of idiosyncratic jumps. The dashed
curve refers to the basic model, whereas the legend symbols specify the jump weighting %. All
values are quoted in percent
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Table 2 Deviations of
implied correlations caused
by the inclusion of
idiosyncratic jumps

% 0:0 0:2 0:4 0:6 0:8

�1 20.1 17.1 13.0 8.9 5.1

�2 – – 10.4 4.0 1.7

�3 15.9 12.5 9.4 6.4 3.3

�4 28.4 18.8 13.2 8.4 4.3

�5 41.3 21.5 14.2 8.4 4.4

with respect to the contemporary debate on the relative pricing of equity and credit
derivatives.

4.5 Term Structure of Tranche Losses

According to the terms of contract, premium payments of tranches always refer to
the remaining notional that has not been exhausted as a consequence of portfolio
losses. In that regard, due to the absence of loss enhancement, the equity tranche
exhibits maximum sensitivity to defaults in the portfolio. For example, if a company
declares insolvency soon after contract release, the equity holder immediately loses
0:6

125�0:03 D 16% of his spread payments. By contrast, senior tranches are expected to
suffer very low losses, and thus the explicit loss dynamics should not significantly
affect risk premiums. An examination of the impact of loss dynamics is of particular
importance with respect to static models because within the modeling process one
has to fix generically the corresponding term structures. In the case of the standard
Gaussian model, the expected portfolio loss is assumed to grow with a constant
hazard rate and thus according to the function

E .Lt / D 1 � e��t (30)

Here, the hazard rate � is chosen so that E .LT / meets the desired level of loss at
maturity.

A further alternative to fixing generically the temporal evolution of losses
can be seen from the source code published by Coval et al. (2009).6 Evaluating
tranche prices, they assume linearly declining notionals. The term structure implied
by our dynamic model is based on the assumption that a company defaults as
soon as the asset value touches or deceeds a predefined default barrier. Based on
this threshold, the portfolio analysis can be conducted by applying Monte Carlo
simulation techniques, whereas the results, among others, are used to determine the
term structures of expected losses implied by the model.

6In the following, we use the abbreviation CJS.
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Fig. 4 Comparison of relative loss term structures QLt . The calculations refer to the one-factor
Gaussian copula model (dashed line), the CJS model (solid line), and our basic approach (dotted
line) and comprise the equity (left-hand side) and the most senior tranche (right-hand side)

Table 3 Deviations of
implied correlations caused
by applying various term
structures of tranche losses

	 1
4

1
2

1 2 4

�1 17.8 13.1 7.4 2.0 1.9

�2 19.1 9.7 4.8 1.6 0.3

�3 6.7 4.9 2.8 1.0 0.3

�4 5.4 4.1 2.5 1.0 0.1

�5 4.1 3.2 2.1 1.0 0.2

To compare the temporal evolution of losses across different tranches, we have
to take into account that expected tranche losses are of a different scale. Hence, for
each tranche, we rescale the dynamics of losses by the expected loss at maturity and
obtain modified loss curves that start at zero, increase monotonically and take one
as their terminal value. Figure 4 shows the resulting term structures for the equity
and the most senior tranche within the Gaussian, the CJS, and our basic approach.
Concerning the equity tranche, the one-factor approach shows a “frontloaded” term
structure, whereas expected losses of the most senior tranche are “backloaded.” By
definition, within the CJS-model, tranche exposures decline linearly over time. The
term structures of our basic approach have a similar shape, and both exhibit a convex
pattern.

To examine the impact of loss dynamics on the tranche spreads in a general
setting, we substitute the first passage time dynamics by

L
	

˛;ˇ.t/ D f	.t/ � LT˛;ˇ (31)

where

f	.t/ WD
�
t

T

�	
; 	 2

�
1

4
;
1

2
; 1; 2; 4

�
(32)

Based on the chosen scenario, denoted by 	 , we adopt the terminal tranche losses
offered by our basic model and evaluate the spread rates by applying the polynomial
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Fig. 5 Implied correlation �I with respect to the use of different loss dynamics. The dashed curve
refers to the basic model, whereas the legend symbols specify the generic loss scenarios. All values
are quoted in percent

term structures. Furthermore, we back out implied correlations and calculate the
corresponding deviations to measure the effects on our reference scenario.

Moving from 	 D 1
4

to 	 D 4, premium payments decline because losses
tend to occur later and, on average, the outstanding notionals are higher. According
to Table 3, the sensitivity of the single tranches decreases by moving the capital
structure upwards. As economically expected and discussed above, the timing of
defaults seriously impacts on the spread rates of equity and mezzanine tranches,
whereas senior tranches are less sensitive to the term structure pattern. These
findings are also displayed in Fig. 5. Hence, the term structures of losses may
significantly affect premium payments of tranches, and in particular the generic
specification of loss dynamics should be conducted carefully to avoid biased results.

4.6 Portfolio Heterogeneity

Our basic model refers to a homogenous pool, which implies that under the
risk-neutral measure all companies offer identical default dynamics. On the one
hand, this assumption is quite a simplification, but, on the other hand, it also enables
an analytical calibration of the portfolio model and thus ensures the approach to
be highly applicable. The easiest way to analyze the impact of this assumption is
to split the portfolio into two parts that are homogenous by themselves and offer
spread rates resembling the observed index spread.
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Here, we fix the homogenous spread rates of n1 WD 63 companies to a certain
level sp1 and calculate the corresponding value sp2 of the remaining n2 WD 62

companies. In this context, we follow Bluhm and Overbeck (2006, p. 270), who
propose a pricing formula of a CDS index, based purely on the properties of the
pooled contracts. Rewriting this formula yields

ı2 �
�
si � sp2

� D n1

n2
� ı1 �

�
s
p
1 � si

�
(33)

The risky duration ıi ; i D 1; 2, is defined by

ıi WD
KX

kD1
e�rti

�
1 � ptki

�
; tK D T (34)

where

pti WD P .�i � t/ (35)

Given sp1 , the corresponding default boundary can easily be evaluated. To back
out the default boundary of the second part, we use Eq. (33). Again, due to the
analytically known first passage time distribution, we can perform computations
very quickly and without bias. The calibration procedure thus yields two different
default barriers, which are used to specify the temporal evolution of the portfolio as
well as the loss dynamics of tranches. Table 4 reports the corresponding numerical
results. The correlation smiles displayed in Fig. 6 show a significant impact of
portfolio heterogeneity, in particular with respect to the tranches of lower seniority.
Figure 6 also shows that an amplification of the portfolio heterogeneity entails a
heightened level of implied correlation.

Hence, the homogeneity assumption may imply downward biased spread rates
of senior tranches and also cause equity spreads which exceed the actual level. As
a consequence, in the context of modeling multi-name derivatives, there should
always be a pre-testing of the pooled entities to determine whether or not the
homogeneity assumption constitutes a valid simplification.

Table 4 Deviations of
implied correlations caused
by introducing portfolio
heterogeneity

s
p
1 5 bps 15 bps 25 bps 35 bps

�1 10.3 5.6 2.2 0.3

�2 – 10.8 5.8 1.9

�3 10.1 5.3 2.8 1.4

�4 4.6 2.5 1.9 1.1

�5 3.5 2.6 1.9 1.1
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Conclusion
In this article, we analyze the pricing of pre-crisis CDX.NA.IG tranches
within a structural dynamic approach. As expected, the mutual dependencies
of asset value dynamics, controlled by the weighting of idiosyncratic jumps,
affect spread rates at most, whereas the choice of the term structure of losses,
as well as the homogeneity assumption, particularly drives tranches of lower
seniority. Disregarding portfolio heterogeneity also seems to imply system-
atically biased results. Surprisingly, our analysis additionally demonstrates a
comparatively limited impact of market dynamics on the tranche spreads.

Of course, there are many issues left that were not covered by our analysis.
This is mainly reasoned by the fact that the proposed alterations are chosen
in such a way as to ensure analytical tractability, at least at the single-name
level. In this regard, further research might, for example, deal with the impact
of generalizing model scalars into random variables, which includes recovery
rates as well as interest and dividend rates. In addition, the default boundary
could be specified as a function of time and the heterogeneity of the pool
might be accounted for at a more fine-grained level. However, increasing
model complexity always involves the danger of hidden effects emerging, as
clearly demonstrated in this article.
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Findings of the Signal Approach: A Case Study
for Kazakhstan

Klaus Abberger and Wolfgang Nierhaus

Abstract This study concentrates on the signal approach for the monitoring of
currency crises risks. It focuses on the properties of individual indicators prior to
observed currency crises in Kazakhstan. The indicators are used to build composite
indicators. An advanced approach uses principal components analysis for the
construction of composite indicators. Furthermore, the common signal approach is
improved by robust statistical methods. The estimation period reaches from 1997 to
2007. It is shown that most of the composite indicators are able to flag the reported
crises in this time span at an early stage. In a second step it is checked whether the
crisis observed in 2009 is signalled in advance.

1 Introduction

Forecasting currency crises is a challenging task. A well-known standard approach
is the signal approach developed by Kaminsky, Lizondo and Reinhart (KLR). Fol-
lowing this approach currency crises are identified by means of a foreign exchange
market pressure index. This pressure index serves as a reference series for dating
currency crises. In a second step KLR propose the monitoring of macroeconomic
variables (single indicators) that may tend to show unusual behaviour in periods
(1 or 2 years) prior to currency turbulences. An indicator sends a crisis warning
signal whenever it moves beyond a given critical threshold. Moreover, composite
indicators can be constructed that encompass the signalling behaviour of the selected
individual indicators. Finally, crises probabilities can be estimated. This procedure,
which can be performed for each single country with reported currency crises,
characterizes the signal approach.
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The following case study concentrates on the signal approach for Kazakhstan. It
focuses on the signalling properties of individual macroeconomic indicators prior
to episodes of foreign exchange market turbulences in Kazakhstan, as indicated by
the exchange market pressure index. The individual indicators are used to build
composite currency crises indicators by exploiting the signal behaviour of each
individual indicator. A refined approach uses principal components analysis of the
individual indicators to construct composite indicators. The estimation period of
the critical thresholds reaches from January 1997 to December 2007. For this time
span it is shown that most of the composite indicators are able to flag the two
reported currency crises in this time span at an early stage (in-sample analysis).
In a second step it is checked whether the crisis observed in February 2009 is
signalled by the composite indicators in advance (out-of-sample analysis). All
data were taken from the Agency of Statistics of the Republic of Kazakhstan, the
National Bank of Kazakhstan and International Financial Statistics (IFS), published
by the International Monetary Fund. An important requirement for an early-warning
system to function properly is timeliness. For this reason this study is based on
monthly data or on quarterly data, which has been transformed into monthly data by
means of temporal disaggregation techniques.

2 The Signal Approach

2.1 Defining Currency Turbulences

Following the signal approach, currency turbulences should be defined using
definite criteria. Currency crises are identified by means of a foreign exchange
market pressure index relying on the symptoms of such episodes of currency
turbulences1:

• a sudden and sharp devaluation of a currency,
• a substantial decrease in foreign exchange reserves

It is quite important to focus on both aspects, because currency crises can break out
that leads to a sharp devaluation of a currency. But sometimes monetary institutions
try to avoid these devaluations. They intervene to avoid or soften the devaluation.
Although no sharp devaluation occurred in these cases, they are also currency crises
because the authorities were forced to intervene. Such hidden or sometimes avoided
crises are visible in the foreign exchange reserves because they are used to intervene.
For a method that is used to give early warnings on currency crises it is important
that visible and hidden or avoided crises are included in the calculations. Hence
an index of pressure in the foreign exchange market IPt at month t is constructed

1See Kaminsky et al. (1998), Schnatz (1998, 1999a,b), Deutsche Bundesbank (1999), and Nierhaus
(2000).
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by using the monthly rates of change of the foreign exchange reserves and the real
exchange rate.

IPt D 	1�wrt � 	2�rert (1)

�wrt is the rate of change of the foreign exchange reserves; �rert is the rate
of change of the real exchange rate, which is given by the nominal exchange
rate of the domestic currency to the USD, adjusted for consumer prices .rert D
erCURRENCYjUS$;t � CPIUS;t =CPIt /.

A rise in the real exchange rate corresponds to a real depreciation of the currency.
A real depreciation of the currency follows from a nominal depreciation of the
currency and/or a rise in US consumer prices and/or a decline in domestic consumer
prices. Since the variances of �rert and �wrt are different, they are weighted (	1
and 	2) by using the standard deviation of the variables. The real exchange rate is
used to avoid corrections for periods with high inflation differentials between home
and abroad.2

Tensions in the foreign exchange market are identified for periods when the
foreign exchange market index swings deeply into the negative. In the present study,
for a currency turbulence, the pressure index IPt must be below its mean � more
than three times the standard deviation � D p

var.IPt /, as proposed by KLR.3 If
a new event occurs within three quarters, then the time in-between is defined as a
crisis episode. Otherwise the last point in time of the event is fixed as the end of the
episode.4

The true � is unknown and must be estimated from data at hand.5 Since the
analysis of currency crises means searching for extreme events in time series,
the question arises as to how to measure scale. Empirical variance and empirical
standard deviation are estimators, which are very sensitive against outliers. Data
used for the analysis of currency crises contain extreme events or outliers, therefore
robust estimation methods might be preferable. With non-robust estimators, outliers
could mask themselves. One robust measure of scale is the median of absolute
deviations from the median (MAD). This robust scale estimator is used in the study
at hand. The MAD is adjusted by a factor for asymptotically normal consistency. It
holds

E Œ1:4862 �MAD.X1;X2;X3; : : :/� D � (2)

for Xj ; j D 1; 2; 3; : : :; n; distributed as N.�; �/ and large n.

2See Schnatz (1999b).
3See Kaminsky et al. (1998, p. 16).
4See Schnatz (1999b).
5Also unknown is �, which is estimated by the arithmetic mean m of IPt .
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2.2 Selecting Indicators

The signal approach uses indicators to detect currency crises in advance. Since cur-
rency crises are extreme events, they usually are preceded by extreme developments
or imbalances. So they might be detected by leading indicators, showing exceptional
high or low values before the crises start. With this conception in mind it is obvious
to condense the information contained in leading indicators to a binary variable,
which differentiates whether the indicator is in a normal or in an extreme range.
This is an important feature of the signal approach. The indicators are transformed
to binary variables and are not used in their original form. A leading indicator is
said to issue a warning signal if it exceeds (is below) a critical threshold level. This
level has to be chosen appropriately to balance the risks of having numerous false
signals and the risk of not registering crises.6

From the statistical point of view the signal approach can be characterized as a
nonparametric approach, since it does not require the assumption of a specific model
(in contrast to logit models or Markov-switching models). Indeed the parametric
models may be more efficient when the models assumptions hold in reality. The
signal approach, on the other hand, should be a quite versatile method.

To fix ideas, let St be a binary signal variable, depending on the value of the
individual indicator Vt at time t , the critical cutoff value ı and the expected sign
(+/-) before crises:

SC
t D

�
1 if Vt > ı
0 if Vt � ı or S�

t D
�
1 if Vt < ı
0 if Vt � ı (3)

In this concept the informative content of an observation at time t is reduced to
one of the two possibilities: either the indicator exceeds (is below) the threshold
ı and gives a crisis warning signal .St D 1/, or it is below (exceeds) the threshold
sending no signal .St D 0/. However, there may be correct signals and false signals.
An indicator sends a correct signal if St D 1 and a crisis happens within 12 months
or St D 0 and no crisis happens within a time-window of 12 months. In the first
case the indicator sends a signal and is followed within 12 months by a currency
crisis. In the second case the indicator does not send a signal and is not followed by
a crisis.

By contrast, the indicator issues a false signal if St D 1 and no crisis happens
within 12 months or St D 0 and a crisis happens within 12 months. In the third
case the indicator sends a signal and is not followed by a crisis. In the last case the
indicator does not send a signal and is followed by currency turbulence. Altogether,
the performance of an indicator can be measured in terms of Table 1.

Following KLR, a perfect indicator would only produce signals that belong to the
north-west and south-east cells of the matrix. It would issue a signal in every month

6See Kaminsky et al. (1998).
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Table 1 Classification table

Crisis within No crisis within

12 months 12 months

Signal is sent: St D 1 A (=number of signals) B (=number of signals)

No signal is sent: St D 0 C (=number of signals) D (=number of signals)

Table 2 Conditional crisis
probabilities

Crisis within No crisis within

12 months 12 months

Signal is sent: St D 1 A /(A+B) B/(A+B)

No signal is sent: St D 0 C/(C+D) D/(C+D)

that is followed by a crisis .A > 0/, so that the number of missing warning signals
C equals zero, and it would not send a signal in every month that is not followed by
a crisis .D > 0/, so that the number of wrong warning signals B equals zero.

On the basis of this concept, the overall performance of an indicator Vt (that is
the ability to issue correct signals and to avoid false signals) can be measured by
the noise-to-signal ratio !. This figure is defined as the ratio of the number of false
warning signals divided by the number of observations in tranquil periods B=.B C
D/ and the number of correct warning signals divided by the number observations
in the run-up period A=.A C C/. Indicators with ! > 1 are excluded from the
analysis.

Following KLR, another way of interpreting the results of noisiness of the
indicators is by comparing the probability of a crisis conditional on a warning signal
from the indicator P.Crisisjwarning signal/ D A=.AC B/ with the unconditional
probability of a crisis P.Crisis/ D .A C C/=.AC B C C C D/. If the indicator
has useful information, then the conditional probability of a crisis should be higher
than the unconditional one (see Table 2).

Another measure for the quality of an indicator Vt is the odds ratio 	 . The odds
for a currency crisis within 12 months (or not), given a signal St (that is warning
signal or not) can be defined in terms of conditional crisis probabilities. The odds for
a crisis conditional on a warning signal is ŒA=.ACB/�=ŒB=.ACB/� D A=B . The
odds for a crisis conditional on a missing warning signal is C=.C CD/�=ŒD=.C C
D/ D C=D. Then the odds ratio 	 is defined as

	 D .A=B/=.C=D/ D .A �D/=.B � C/ (4)

Finally, in order to discriminate between “normal” and “abnormal” behaviour of
an individual indicator, the threshold ı has to be defined. If the cutoff value is set at
a rather high level, the indicator is likely to miss all but the most severe crises. In
contrast, if the threshold is set very low, the indicator is likely to catch all crises but is
also likely to send many false warning signals in tranquil periods. A commonly used
way is to set the cutoff value ı in relation to specific percentiles of the distribution
of indicator observations. Here an ˛-percentile is calculated corresponding to the
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maximum possible number of correct signals prior to currency crisis (here generally
12) in relation to the total number of available observations. Subtracting this value
from one puts the threshold in the area of the frequency distribution with the high
values.7

2.3 Composite Indicators

Based on the assumption that the greater the number of leading indicators signalling
a crisis, the higher the probability that such a crisis would actually occur, KLR pro-
posed a number of composite leading indices. Composite indicators are constructed
by weighting together the signals Sr;;t of k individual indicators Vr;t .8

St D
X

rD1;:::;k
Sr;;twr and

X

rD1;:::;k
wr D 1: (5)

Obviously there are two rules for determining the weights of the specific indicator
signals. One approach focuses on equal weights; the other would exploit the
observed forecasting performance of the individual indicators before past crises.
The latter approach is clearly favourable if future crises are driven by the same
economic factors as the past crises, whereas the equal weight approach is neutral.

2.4 Calculating Crisis Probabilities

While composite currency crises indicators show changes in the strength or
weakness of crisis warning signals, the index levels cannot be directly interpreted.
However, it is possible to assign a particular estimated crisis probability to any value
of a composite crisis indicator by dividing the entire sample into several groups,
each corresponding to a particular range of the composite indicator, and calculating
the proportion of months associated with crises for each group, using the formula

P . crisisja < St < b/ D (6)

Number of months with a < St < b and a crisis following within 12 months

Number of months with a < St < b

7˛ D 1� (Max no. of alarms/Total no. of observations). For indicators with an expected sign
(�) this rule has to be modified: ˛ D(Max no. of alarms/Total no. of observations). See Schnatz
(1999a).
8See Kaminsky (1998) for a detailed discussion of combining individual indicators.
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where St is the value of the composite indicator at time t , a is the lower bound of a
particular range of the index, b is the upper bound of the range, and P.crisis ja <
St < b/ is the estimated probability of a crisis occurring within 12 months
conditional on St lying in the range between the lower and upper bounds a and
b.9 In the present study, the entire sample was divided, ranked by the value of
the composite indicator, into five groups. The groups are classified in intervals as
follows: 0, 0–30, 30–40, 40–50, 50–100.

3 Results for Kazakhstan

3.1 Observed Currency Crises

Figure 1 illustrates the conduct of an exchange market pressure index calculated for
Kazakhstan. As said before, tensions in the foreign exchange market are identified
for periods when the pressure index swings sharply into the negative. For dating a
currency crisis, the pressure index IPt must exceed its mean three times the adjusted
MAD (see solid line). Following these rules, three crisis periods were detected for
Kazakhstan (shaded areas).

The most prominent observation is the 1998/99 turbulence. The exchange rate
devalued within 10 months from 79.4 Tenge per USD (September 1998) to 130.4
Tenge per USD (June 1999), and the currency reserves dropped in September 1998
by 12.8 % and in March 1999 by 15.4 %. In August 2007 the Banking Crisis took

Fig. 1 Pressure index for Kazakhstan

9See Zhuang and Dowling (2002) and Knedlik and Scheufele (2007).
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place, accompanied by a remarkable decrease in foreign exchange reserves. In
February 2009, the National Bank of Kazakhstan (NBK) defined a new level of
exchange rate of the national currency, 150 Tenge per USD ˙3 % or ˙5 Tenge
(before: band within 117–123 Tenge per USD or 120 Tenge ˙2 %). Starting from
the fourth quarter of 2008 until February, the NBK spent US$ 6 billion (including
US$ 2.7 billion in January 2009) to maintain stability in the foreign exchange
market.10

3.2 Identifying Individual Indicators for Kazakhstan

The signal approach proposes the monitoring of a quantity of macroeconomic
variables (single indicators) that show unusual patterns in periods prior to currency
turbulences. The following list of indicators with noise-to-signal ratios below one
displayed a conspicuous behaviour prior to currency turbulences, and will be used
in this study for that reason.11

• Deviation of the real exchange rate from its least absolute deviations trend
(LAD trend). The LAD trend minimizes the sum of absolute values of deviations
(errors) from the trend line. The least absolute deviations trend is robust in that
it is resistant to outliers in the data. A negative difference from the LAD trend
indicates an overvaluation. A multi-country comparison of real exchange rates
shows that currencies often tend to be overvalued prior to speculative attacks.

• Export growth. An overvaluation of a currency should have repercussions on
trade flows. Export growth often declines in the run-up to currency crises,
including periods prior to the outbreak of the crises.

• Balance on current account as a share of Gross domestic product (GDP).
Current account deficits as a percentage of GDP were typically higher prior to
speculative attacks than in tranquil periods. Not only the loss of international
competitiveness, which should show up already in a deterioration of the trade
account, but also the funds necessary to service international debts, which is
reflected in the current account position, may have been important for assessing
a country’s vulnerability to speculative attacks.

• Growth of domestic credit as a share of GDP. The growth of domestic credit as a
percentage of GDP could indicate that a country is conducting an excessively
expansionary economic policy. Moreover, a large level of domestic credit
growth could indicate excessive lending financed by an exchange-rate-orientated
monetary policy.

• Change of oil price (Brent). Energy (production of crude oil and natural gas) is
the leading economic sector in Kazakhstan.

10See National Bank of Kazakhstan, press release No. 3, February 4, 2009.
11For a detailed discussion see Schnatz (1998) and Ahec-Šonje and Babić (2003).
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• Real interest rate. An increase of real interest rates could mean shrinking
liquidity in the financial system of a country.

• Growth of real GDP. An overvaluation of a currency should dampen economic
activity, measured by real gross domestic product.

• Money Supply. An increase in M1 means that the monetary policy is expansion-
ary, causing pressure for the domestic currency.

• Lending/deposit interest rates differential. A widening lending to deposit rate
differential can signal a risk increase and deterioration of bank portfolios, as well
as lack of competition and supervisory and regulatory weaknesses.

• External debt as a share of GDP. A growing external dept to GDP ratio often
signals an increasing external vulnerability.

The individual indicators were analysed according to the methods of KLR.
Thresholds were calculated for the time span January 1997 to December 2007.

4 Conduct of Composite Indicators

4.1 Signal Approach

As composite leading indices contain more information and are in general more
reliable than single indicators, they are used for predicting currency crises in
Kazakhstan. The first approach focuses on the traditional signal method. Under
the signal approach, composite indicators are constructed by weighting together the
warning signals of single indicators. Indicator S1 gives equal weights (=1/10) to all
individual signal variables Sr

S1t D
X

rD1;:::;10
Sr;t=10 (7)

In any month, we can observe between zero and ten signals, so 0 � S1t � 1.
A second indicator uses the information on the forecasting accuracy of each indi-

cator Sr by exploiting the noise-to-signal ratios !r D ŒBr=.Br CDr/�=ŒAr=.Ar C
Cr/�:

S2t D
X

rD1;:::;10
Sr;t � 1=!rP

rD1;:::;10 1=!r
: (8)

Here the signals of the individual indicators are weighted by the inverse of their
noise-to-signal ratios, which were divided by the sum of the inverse noise-to-signal
ratios to add up to unity. Composite indicator 2 gives more weight to the signalling
behaviour of individual indicators with low noise-to-signal ratios.
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Composite indicator 3 uses the information coming from the specific odds-ratios
	r D .Ar �Dr/=.Br � Cr/ of the single indicators Sr :

S3t D
X

rD1;:::;10
Sr;t � 	rP

rD1;:::;10 	r
: (9)

This indicator gives more weight to the signalling behaviour of individual
indicators with high odds-ratios.

Figure 2 shows the conduct of the three composite indicators in Kazakhstan.
Crises periods are represented by shaded areas. The dotted line shows the calculated
indicator thresholds ıS . The composite indicator sends a warning signal whenever
the indicator moves above ıS . The estimation period for the thresholds reaches from
January 1997 to December 2007, thus allowing an out-of-sample test with the crisis
in Kazakhstan, which happened in February 2009. In addition, the estimated crises
probabilities are shown in Fig. 2. Here the dotted lines mark the 50 % probability
for a currency crisis.

Fig. 2 Currency crises indicators for Kazakhstan
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4.2 Mixed Approach: Principal Components and Single
Indicators

A larger number of indicators can be firstly condensed with the help of principal
component analysis (PCA).12 The first principal component accounts for as much
variability (measured by variance) in the data as possible. Each succeeding com-
ponent accounts for as much of the remaining variability as possible, under the
constraint that every principal component is uncorrelated with the preceding ones.
Mathematically, PCA leads to an eigenvalue decomposition of the covariance, or as
in this analysis of the correlation matrix of the leading indicators. The eigenvectors
give the weighting scheme of the indicators, and the corresponding eigenvalues
are equal to the variance, explained by the corresponding principal component. To
condense the information contained in the whole indicator set, only a few principal
components are extracted and used in the signal approach. Here a relative ad hoc
procedure is used. Only principal components with eigenvalues greater than one
are chosen. This simple procedure is called Kaiser criterion. In a second step the
components are examined for plausibility.

Here a mixed approach is pursued. On the one hand, two predominant individual
indicators, namely the real exchange rate (deviation from LAD trend)13 and the
change of oil price, are used as input for the composite indicator; on the other hand,
the principal components with eigenvalues greater than one of the remaining eight
indicators. For the identification of the “expected sign” of the principal components
before currency crises, a cross-correlation analysis with the pressure index for the
time span January 1997 to December 2000 was carried out. The inverse direction
of the observed largest cross-correlation was taken for the expected sign of the
principal component.

Indicator S4 gives equal weights to the warning signals of the five individual
input series. Indicator S5 uses the information on the forecasting accuracy of each
input series by exploiting the specific noise-to-signal ratios. Once again the warning
signals are weighted by the inverse of their noise-to-signal ratios. Finally indicator
S6 uses the odd-ratios of the input series as a weighting scheme. Figure 3 presents
the composite indicators and the estimated crises probabilities.

Obviously, there is no unambiguous composite indicator that shows best results
for Kazakhstan (see Table 3). This finding is not very astonishing, taking into
account that all time-series are relatively short and that there are only two observed
currency turbulences in the in-sample-period 1997–2007. However, the noise-to-
signal ratios of all composite crises indicators are well below unity. The estimated
conditional probability for a currency crisis P.Crisisjsignal/ is in all cases higher
than the unconditional probability for a crisis. Furthermore, the odds ratios are

12See Jolliffe (2002).
13A multi-country comparison of real exchange rates shows that currencies often tend to be
overvalued prior to speculative attacks.
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Fig. 3 Currency crises indicators for Kazakhstan, mixed approach

Table 3 Performance of composite currency crises indicators

P(Crisis j
Noise-to- Odds- P(Crisis j signal)
signal ratio ratio signal) -P(Crises)

Signal approach

Composite indicator (1) 0.11 15.57 0.69 0.49

Composite indicator (2) 0.12 22.25 0.67 0.47

Composite indicator (3) 0.11 25.71 0.70 0.50

Mixed approach

Composite indicator (4) 0.11 12.90 0.70 0.50

Composite indicator (5) 0.15 13.15 0.62 0.42

Composite indicator (6) 0.10 21.75 0.72 0.52
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clearly above one. Consequently, all indicators exhibit useful information (see
Table 3).

Indicator 1 as well as indicator 4 misses the 2007 crisis, the remaining four
indicators signal all crises in the in-sample-period 1997–2007. Concerning the out-
of-sample-crisis 2009, only indicators 5 and 6 from the mixed approach gave correct
warning signals in the preceding year 2008. Finally, indicators 2 and 3 as well as
indicators 5 and 6 showed some false alarms in 2001/2002.

Conclusions
This study concentrates on the signal approach for the monitoring of currency
crises risks in Kazakhstan. Currency crises are identified by means of a
foreign exchange market pressure index. This pressure index serves as a
reference series for dating currency crises. Individual indicators are used to
build composite currency crises indicators by exploiting the signal behaviour
of each individual indicator. A refined approach uses principal components
analysis of the individual indicators to construct composite indicators. A
mixed approach is then used in the article: On the one hand, two predominant
individual indicators, namely the real exchange rate (deviation from LAD
trend) and the change of oil price, are used as input for the composite
indicator; on the other hand, the principal components with eigenvalues
greater than one of remaining eight indicators.The estimation period of the
critical thresholds reaches from January 1997 to December 2007. For this time
span it is shown that most of the composite indicators are able to flag the two
reported currency crises in this time span at an early stage. However, there is
no unambiguous composite indicator that shows best results for Kazakhstan.
This finding is not very astonishing, taking into account that all time-series
are relatively short and that there are only two observed currency turbulences
in the in-sample-period 1997–2007.

The signal approach was developed by Kaminsky, Lizondo and Reinhart
(KLR) in 1998. Since then various modification were suggested and alter-
native approaches developed. For example, the signal approach has been
criticized for being a nonparametric approach. Various alternative model
based approaches have been discussed. Prominent model based approaches
are binary-choice models and the Markov-switching approach.14 An early
warning system based on a multinomial logit model was developed by
Bussiere and Fratscher (2006). However their aim was to predict financial
crises. Markov-switching models in some studies outperformed binary-choice
models.15 Unlike the other approaches, the Markov-switching approach does
not depend on an a priori definition of crises. The crises are estimated by
the model. However, this is often seen as a drawback because economic
interpretation of the regimes could be arbitrary. Since all approaches have

(continued)
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their pros ad cons the nonparametric signal approach has its own value.
Some recent developments may help to improve the signal approach further.
For example, El Shagi et al. (2012) propose a bootstrap approach to assess
significance.
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Double Conditional Smoothing
of High-Frequency Volatility Surface
Under a Spatial Model

Christian Peitz and Yuanhua Feng

Abstract This article investigates a spatial model to analyze high-frequency returns
in a nonparametric way. This model allows us to study the slow change of the
volatility over a long period of time as well as the daily volatility patterns at the same
time. A double conditional kernel regression is introduced to estimate the mean
as well as the volatility surface. The idea is to smooth the data over the time
of day on a given day in a first step. Those results are then smoothed over all
observation days in a second step. It is shown that our proposal is equivalent to
a common two-dimensional kernel regression. However, it runs much quicker than
the traditional approach. Moreover, the first conditional smoothing also provides
useful intermediate results. This idea works both for ultra-high frequency data and
for adapted equidistant high frequency data. Asymptotic results for the proposed
estimators in the latter case are obtained under suitable conditions. Selected
examples show that the proposal works very well in practice. The impact of the
2008 financial crisis on the volatility surface is also discussed briefly.

1 Introduction

The analysis of financial market behavior based on high-frequency data became one
of the most important sub-areas of financial econometrics. Especially the analysis
of the volatility is an important topic in this area, because it can give valuable
information about the risk of an asset, for example. Analyzing time series or
return series without considering its volatility over time leads to a huge loss of
information and inappropriate investment or trading decisions (French et al., 1987).
The volatility is defined as the degree of price or return movement derived from
historical time series. Its main property is that it is not constant but that it varies
significantly over time (Andersen et al., 2001).
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The aim of this paper is to analyze high frequency financial data over a relatively
long period, in order to discover changes in the daily pattern of the volatility before,
during and after the 2008 financial crisis. A widely used model in this context was
introduced by Andersen and Bollerslev (1997, 1998) and by Andersen et al. (2000),
where the volatility is decomposed into a deterministic intraday and a conditional
daily component. This idea is extended in different ways. The focus of this paper
is on examining the impact of the financial crisis on the localized average volatility
variance. At first, we propose to represent the return data in a three-dimensional
form. Under this new model the deterministic volatility component is defined as
a volatility surface, which can, e.g., be estimated by a common two-dimensional
kernel regression. The problem with this traditional method is that it runs extremely
slowly in the current context due to the huge number of observations. A double-
conditional smoothing technique is hence introduced to solve this problem, where
the data is first smoothed in one dimension and the intermediate smoothing results
are smoothed again in the other dimension. It is shown that this approach is
equivalent to a common two-dimensional kernel regression, which runs however
much faster than the traditional method. Moreover, this approach also helps us
to obtain more detailed answers of many questions, which may also open a new
research direction.

So far as we know, the spatial model and the double-conditional smoothing
technique are original approaches for modelling high-frequency returns. Note that
the intraday seasonality considered in Andersen and Bollerslev (1997, 1998) and
Engle and Sokalska (2012) can be thought of as the average curve of this volatility
surface over all trading days, while the long-term deterministic volatility component
in Feng and McNeil (2008) corresponds to the average curve of the volatility surface
over all trading time points. Another very important advantage of this new method
is that it provides more detailed results. Already after the first smoothing step,
we obtained some interesting and important intermediate results, which cannot
be provided by the traditional approach. The new method runs therefore not only
much faster, but is also more powerful than the common two-dimensional kernel
smoothing. Application of the new approaches is illustrated using 1-min returns of
two German firms within a period of several years. The model itself is common.
However, it is clear that the proposed spatial model and the double-conditional
smoothing can also be applied to other kinds of data with suitable structure.

The remaining part of this paper is structured as follows. In Sect. 2 the model is
defined and its setup is described. Section 3 discusses the econometric issues. The
model is applied to real financial data examples in Sect. 4. Section “Conclusion”
concludes the paper.

2 The Model

The method of smoothing in two steps introduced in this section is the main
outcome of this work, since it is a new developed model which allows us to discuss
high frequency data over a day, but also over a particular time span every day.
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Concerning the computing time, this new approach is clearly better than the
traditional approach.

With this new method, time series can be transformed into a spatial model. In
this (new) direction, there are many open questions which will be addressed at a
later point in this paper. The basic definition of the model is that the observations
are defined as a two-dimensional variable, the return matrix:

rxi ;tj W f1; 2; : : : ; nt g � f1; 2; : : : ; nxg (1)

where

xi is the return series of the trading day i
tj the return series of the trading time j or point in time
nt reflects the total number of returns on day i
nx is the number of trading days

Note:

(1) in a single time series: ri ; i D 1; : : : ; N whereN is the total number of returns.
(2) in the two-dimensional form: r

�
xi ; tj

�
; i D 1; : : : ; nx; j D 1; : : : ; nt , where

nx is the number of observed days and nt the number of returns on day i .
Altogether have n DPnx

iD1 nt
The setup of the two-dimensional lattice spatial model is:

r
�
xi ; tj

� D m �xi ; tj
�C � �xi ; tj

�
"ij (2)

where

r
�
xi ; tj

�
is the return matrix which includes all time series

m
�
xi ; tj

�
is a smooth mean function

�
�
xi ; tj

�
represents the smooth scale function (or volatility trend)

"ij is the error term

Note:

(1) In our assumption xi and tj are equidistantly distributed. But as noted above, tj
can be non-equidistant as well. If tj is equidistantly distributed, we define our
data as high frequency data and if tj is non-equidistantly distributed, we define
it as ultra-high frequency data.

(2) For the sake of simplicity, only equidistant data is used and considered in this
work.

This two-dimensional volatility model offers an advantageous approach to
capture the volatility change at any time point, such as local volatility at a fixed
time interval at all trading days or intraday volatility in various moments within
1 day.
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3 Econometric Issues

In this section we will discuss statistical properties of our two-step smoothing
estimator and we will estimate the smooth mean function and the smooth scale
function. Their asymptotic properties are derived. For more theoretical results,
details, and proofs please see the Appendix.

3.1 Estimation of m

Consider the estimation of m.x; t/ first. Let yij denote the observations. Assume
that the data are arranged in the form of a single time series Qyl associated with the
coordinates . Qxl ; Qtl /, where l D 1; : : :; n and n D nx 	 nt is the total number of
observations. The common bivariate kernel estimator of m.x; t/ is defined by

Om.x; t/ D
nX

lD1
Qwml Qyl ; (3)

where

Qwml D K�

� Qxl � x
hmx

;
Qtl � t
hmt

�" nX

lD1
Km

� Qxl � x
hmx

;
Qtl � t
hmt

�#�1
: (4)

Km.ux; ut / is a bivariate kernel function, and hmx and hmt are the bandwidths for Qx
and Qt , respectively. Under the data structure of Model (2), the above bivariate kernel
estimator can be represented as

Qm.x; t/ D
DX

dD1

ndX

tD1
wmdtrdt; (5)

where

wmdt D Km

 
xd � x
hmx

;
yt � y
hmy

!"
DX

dD1

ndX

tD1
Km

 
xd � x
hmx

;
yt � y
hmy

!#�1
: (6)

Assume thatKm is a product kernelKm.ux; ut / D Km
x .ux/K

m
t .ut /, then Om.x; t/ can

be rewritten as

Om.x; t/ D
nxX

dD1

ntX

tD1
wmix wmjt yij; (7)
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which can be further rewritten as

Om.x; t/ D
nxX

dD1
wmix Omx.xi ; �/ (8)

or

Om.x; t/ D
ntX

tD1
wmjt Omt.�; tj /; (9)

where

wmix D Km
x

�
xi � x
hmx

�" nxX

dD1
Km
x

�
xi � x
hmx

�#�1
;

wmjt D Km
t

�
tj � t
hmt

�" ntX

tD1
Km
t

�
tj � t
hmt

�#�1

are common kernel weights of a univariate kernel regression, and

Omx.xi ; �/ D
ntX

tD1
wmjt yij (10)

and

Omt.�; tj / D
nxX

dD1
wmixyij (11)

are two univariate kernel estimators over the daytime and all observation days
carried out on a given observation day or at a given time point, respectively. In
this paper Omx.xi ; �/ and Omt.�; tj / will be called the first stage conditional kernel
estimators of a bivariate kernel regression under Model (2), each of them consists
of a panel of smoothed curves obtained by univariate kernel regression over one
of the two explanatory variables, conditional on the other. The final estimators
defined in (8) or (9) are hence called double-conditional kernel estimators, which
provide two equivalent procedures of the double-conditional smoothing approach. It
is obvious that all estimators defined in (3), (5), and (7) through (9) are all equivalent
to each other. Note however that the first estimator applies to any bivariate kernel
regression problem but the others are only defined under Model (2).
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3.2 Estimation of � 2

As mentioned before, our main purpose is to estimate the high-frequency volatility
surface �.x; t/ by means of an estimator of �2.x; t/. The latter can be estimated
from the squared residuals using kernel (see, e.g., Feng and Heiler 1998; Heiler
2001). To this end let rij D yij � m.xi ; tj / be the centralized returns. Following
Model (2) we have

r2ij D �2.xi ; tj /C �2.xi ; tj /."2ij � 1/
D �2.xi ; tj /C �2.xi ; tj /�ij; (12)

where �ij D "2ij � 1 with EŒ�ij� D 0. In this paper, we will assume that �ij is again
a weakly stationary random field. Corresponding assumptions on its dependence
structure will be stated later. We see, the variance surface is itself the mean function
of another heteroskedastic nonparametric regression model, where �2.x; t/ is also
the volatility surface at the same time. Let Om.x; t/ be as defined above and define
Orij D yij � Om.xi ; tj /. Again, let K�.u/ D Kx

� .ux/K
t
�.ut / be a product kernel, and

h�x and h�t be the corresponding bandwidths. We propose to estimate the variance
surface as follows:

O�2.x; t/ D
nxX

iD1
w�ix O�x.xi ; �/ (13)

or

O�2.x; t/ D
ntX

jD1
w�jt O�t .�; tj /; (14)

where w�ix and w�jt are defined similarly to w�ix and w�jt but usingKx
� .ux/ andKt

�.ut /,
respectively,

O�2x .xi ; �/ D
ntX

jD1
w�jt Or2ij (15)

and

O�2t .�; tj / D
nxX

iD1
w�ix Or2ij : (16)

The volatility surface is then estimated by O�.x; t/ D p O�2.x; t/. Again, O�2t .xi ; �/
and O�2t .�; tj / are valuable intermediate smoothing results.
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We see, the double-conditional smoothing approach does not provide new kernel
estimators of m.x; t/ and �.x; t/. The resulting estimators are exactly the same as
those obtained by the common bivariate kernel approach. Hence the above is just
another algorithm to carry out kernel smoothing under the proposed lattice spatial
model with repeat observations in each dimension. However, in this context the
double-conditional algorithm runs much faster and it also exhibits some further
important advantages compared to the traditional approach. This will be explained
in the next subsection.

4 Practical Implementation and Empirical Results

4.1 Data

The data set to which the introduced algorithm was applied consists of two high
frequency financial time series, namely the stock of the BMW AG and the Allianz
AG. Both companies are listed in the German DAX. The ultra-high frequent
data was directly obtained from the Thomson Reuters Tick History Database and
processed accordingly in order to obtain 1-min data. Stocks listed in the XETRA
are traded from 9:00 to 17:30, thus the number of 1-min observations per day is
511. The examined time period, i.e., the number of observed days starting from
January 2006 to September 2011 is 1,442. Thus, the total number of observations is
736,862. The data of the BMW AG and the Allianz AG was chosen as both show the
typical characteristics described in the prevailing literature. Concerning the fitting of
the spatial model to the selected data, the bandwidths h�x D 200 and h�t D 100were
chosen for modelling the number of observed days and the time of day, respectively.
The values were selected based on experience as well as trial and error, making a
trade-off between the bias and the variance.

4.2 The Results

First of all the base for the carried out calculations is shown graphically in
the following in the form of the two-dimensional returns surface. The abscissa
represents the observation period (the years). The ordinate represents the trading
time and the applicate the dimension of the returns. In the following, the results
for BMW are displayed in the left figure and the ones for Allianz in the right one
(Fig. 1).

When looking at the figures of the returns the influence of the financial crisis
on them becomes directly apparent. The large fluctuations which are highlighted in
green show the acute phase of the financial crisis where returns increase abruptly as
a consequence. The analysis of the change in the volatility in two directions is of
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Fig. 1 Returns of BMW and Allianz in a three-dimensional space

Fig. 2 Surfaces of the volatilities of BMW and the Allianz

great interest, but requires the development of new methods. One was proposed in
this paper: The idea of the spatial model based on the double-conditional smoothing
approach. With the package “rgl” in R we can obtain the three-dimensional image
plots, which show the complete estimated surface of the volatility in high-frequency
returns.

Figure 2 shows the surface of the volatility in a three-dimensional space. It is
visible directly that the two saddle surfaces show a very similar pattern, on a slightly
different level. A minor difference is that the daily U-shape pattern is slightly more
pronounced at BMW than at Allianz. The change in color from orange to green
indicates that the volatility changes from small to large. That is, the volatility is
large in the middle of this observation period and small at the beginning and at the
end of it. In the vertical direction the volatility near the open and close of XETRA
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Fig. 3 First smoothing step for the surfaces of the volatilities of BMW and the Allianz

is generally larger than that around noon. Figure 2 further shows that the daily
pattern of volatilities is typically U-shaped whereas the pattern of the entire period
of analysis is inversely U-shaped.

As described earlier, the practical implementation of this new approach allows
for analyzing intermediate results. As can be seen in Fig. 3 the results of the first
smoothing step, i.e. each time of a trading day smoothed over the entire observation
period can be visualized and thus examined in detail. The same can be done for the
second smoothing step, where the individual days of the observation period each
are smoothed over the times of day. Thus for the first smoothing step, there are 511
discs representing the time of trading day, which makes the identification of outliers
possible. Consequently for the second smoothing step there are 1,442 smoothed day-
curves. The data example of BMW shows significantly more outliers than the one
of Allianz. Specifically, in this example you can see again very closely the increase
in volatility from mid-2008 to end of 2009. In times of the world financial crisis, the
volatility increases by a multiple (Fig. 4).

In order to present the results in a more conventional manner, three randomly
selected days of both examined stocks were compared individually. The black curve
shows the volatility on 14 June 2006, i.e. shortly prior to the financial crisis. The
green curve shows the volatility of BMW on 14 June 2010, i.e. shortly after the
financial crisis. The influence of the financial crisis can be directly seen when
looking at the red curve, which reflects the 14 June 2008. Apparently the volatility
during the financial crisis is much higher than before and after it. Please note that
this effect is of course also visible for days other than the here selected ones. The
examples were chosen to represent a day, before, during, and after the financial crisis
each. Therefore similar results are expected when different days of the same periods
are chosen (Fig. 5).

Simultaneously to examining 3 days in detail in the following three times of day
are discussed for the whole period of observation. The three chosen times of day
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Fig. 4 Second smoothing step for the surfaces of the volatilities of BMW and Allianz

Fig. 5 Volatilities of BMW and Allianz (three times of day over the daytime)

are 9:00, 13:00, and 16:00 as practical examples and literature suggests that those
are times of much, little and much trading activity, respectively. What can be seen
at first glance is that the volatility at 13:00 is the lowest whereas the volatility at
9:00 is the highest and at 16:00 the volatility is at a middle level. This is in line
with the results of the prevailing literature which states that the volatility is low
when little is traded and vice versa. In addition the influence of the financial crisis
can be seen here as well. Over the course of time the volatility increases notably
during the period of the financial crisis. Despite the clearly defaring volatility levels
of the examined times of day, their volatilities follow a very similar trend. With the
beginning of the financial crisis the volatilities in all three times of day increase at
the same slope. The same holds for the decrease after the financial crisis.

The volatility of these return series is a typical example for the fact that the
volatility is highest near the opening of the trading days in the period of financial
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Fig. 6 Volatilities of BMW and Allianz (3 days over a long period)

crisis. When one-dimensional returns on the vertical axis are fixed, there is an
obvious change in the local volatility. It means that the volatility takes a higher
value in the middle of the observation period (in 2008) than the other years, and
the volatility at the end of the observation period is larger than that at the beginning
(Fig. 6). When one-dimensional returns on the horizontal axis are fixed, we can
obtain the intraday volatility which appears in the vertical direction. The intraday
volatility shows that the volatility is highest near the opening of the trading day,
lowest at noon, and before the close it is higher than at noon (Fig. 5). The intraday
volatility has a higher value in the period of financial crisis. All in all we can see
that the volatility is highest at the opening of a trading day in 2008, due to the
simultaneous effect of the financial crisis and the intraday effect.

Conclusion
The model of the double-conditional smoothing brings innovations in several
ways. First of all with the new method (and the associated algorithm) it is
now possible to get a surface of the volatility in two directions very quickly.
Especially by the enormous advantage in the computing time, the possibilities
of analysis with the new method exceed the ones of the two-dimensional
kernel regression by far.

On the other hand, it is possible to obtain valuable intermediate results. So
far, there was no way to represent these results. With the gained knowledge
it is possible to implement the model in several other economic fields. It
is confirmed that the new algorithm not only provides the same results as
the traditional algorithm, but moreover, the algorithm is more flexible. The

(continued)
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new algorithm is far superior concerning running time, amount of results,
flexibility, and usage.

It is clear that there are a few open questions in this new area. One
open question is the computing time: How strong is the computing time
really reduced? What other advantages does the algorithm have? Also a
deeper comparison of the two methods of analyzing examples with additional
applications is necessary. A further point is the adaptation of different
GARCH models.

Appendix: Some Technical Details

Detailed discussion on the theoretical background, possible extensions, and asymp-
totic properties of the double-conditional smoothing may be found in Feng (2013).
In the following the main findings of that study together with some new results (see
Corollary 1 below) are summarized briefly without proof. For more information we
refer the reader to the abovementioned paper.

Note that the effect of the error in the estimation of the mean surface �.x; t/
on the proposed nonparametric estimators of the volatility surface is asymptotically
negligible. In the following it is hence assumed that �.x; t/ 
 0 for convenience.
The asymptotic properties of the proposed estimators of the volatility surface will
be established under the following spatial multiplicative component GARCH for
intraday returns with random effects:

ri;j D n�1=2
t �.xi ; tj /Yi;j ; i D 1; : : :; nx; j D 1; : : :; nt ; (17)

where n�1=2
t is a standardizing factor and we will define Qri;j D pnt ri;j . The

stochastic part of this model is specified as follows:

Yi;j D !1=2i h
1=2
i �

1=2
j q

1=2
i;j "i;j ; (18)

where hi is a daily conditional variance component and is governed by a separate
exogenous stochastic process, and qi;j stand for unit intraday volatility components.

We will denote the intraday GARCH processes by Zi;j D q
1=2
i;j "i;j . Models (17)

and (18) together extend the multiplicative component GARCH of Engle and
Sokalska (2012) in different ways. The latter is again an extension of the general
framework for high-frequency returns of Andersen and Bollerslev (1998). In the
case without random effects, i.e. when !i 
 �j 
 1, Model (18) reduces to

Yi;j D h1=2i q
1=2
i;j "i;j ; (19)
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which is similar to that defined by Eqs. (6) and (7) in Engle and Sokalska (2012).
Models (17) and (19) hence provide an extension of their model with the intraday
seasonality there being replaced by the entire nonparametric volatility surface, while
keeping the stochastic part to be the same.

For driving the asymptotic properties of the nonparametric estimators of the
volatility surface, the following regularity assumptions are required.

A1. Assumed that Yi;j is defined by (18), where "i;j are i.i.d. random variables with
zero mean, unit variance, and finite fourth momentm"

4 <1.
A2. For given i ,Zi;j follows a GARCH model, whose coefficients are independent

of i , unit variance, and finite fourth moment mZ
4 D m

q
2m

"
4. Furthermore, it is

assumed that the intraday GARCH processes on different days are independent
of each other.

A3. The daily conditional variance component hi is independent of "i;j , stationary
with unit mean, finite variance, and exponentially decaying autocovariances.

A4. Furthermore, it is assumed that !i , �j , Zi;j and hi are mutually independent.
A5. K .u/ is a product kernel K .u/ D K1.ux/K2.ut /. For simplicity assume that

K1 andK2 are the same Lipschitz continuous symmetric density on the support
Œ�1; 1�.

A6. �2t .x; t/ is a smooth function with absolutely continuous second derivatives.
A7. bx and bt fulfill bx ! 0, nxbx ! 1 as nx ! 1, bt ! 0 and ntbt ! 1 as

nt !1.

Conditions for the existence of the fourth moments of a GARCH model are well
known in the literature (see, e.g., Bollerslev, 1986, and He and Teräsvirta, 1999).
For instance, ifZi;j follows a GARCH(1, 1) with i.i.d. standard-normal innovations,
this condition reduces to 3˛2 C 2˛ˇ C ˇ2 < 1. The assumption that the GARCH
coefficients on all days are the same is necessary for the stationarity of the random
field Zi;j . A3 ensures that the daily volatility hi can be estimated and eliminated
beforehand. The assumption that the autocovariances of hi decay exponentially is
made for convenience but unnecessary. This condition is, e.g., fulfilled, if hi follows
a daily GARCH model with finite fourth moment. A4 is made for simplification.
Assumptions A5 through A7 are standard requirements used in bivariate kernel
regression.

Now, we will define the acf response function of a kernel function, which will
simplify the derivation and representation of the asymptotic variance of O�2.x; t/.
Definition 1 For a univariate kernel function K.u/ with support Œ�1; 1�, its acf
response function �K.u/ is a nonnegative symmetric function with support Œ�2; 2�:

�K.u/ D
Z uC1

�1
K.v/K.v� u/dv (20)
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for u 2 Œ�2; 0�,

�K.u/ D
Z 1

u�1
K.v/K.v � u/dv (21)

for u 2 Œ0; 2� and zero otherwise.

The acf response function of a product kernel function K .u1; u2/ is defined by
�K .u1; u2/ D �K.u1/�K.u2/. The acf response function of a kernel function
measures the asymptotic contribution of the acf of certain lag to the variance of
a kernel estimator and is a useful tool for driving the asymptotic variance of a
bivariate kernel regression estimator under dependent errors. In the univariate case,
well-known results on the asymptotic variance of a kernel regression estimator with
time series errors can be easily proved by means of this concept.

Furthermore, we define �2.K/ D
R

u2K1.u/du, R.K/ D R
K2
1.u/du and

I.�K/ D
R
�K.u/du. Our main findings on the double-conditional kernel estimator

O�2.x; t/ and the two associate intermediate smoothers in the first stage are summa-
rized in the following theorem.

Theorem 1 Consider the estimation at an interior point 0 < x; t < 1. Under the
assumptions A1 through A7 we have

(i) The mean and variance of conditional smoother O�2.t jxi / are given by

EŒ O�2.t jxi /� 
 hi!i
�
�2.xi ; t/C �2.K/

2
b2t Œ�

2.x; t/�00t
�
; (22)

var Œ O�2.t jxi /� 
 h2i !2i
�4.xi ; t/Vt

nxbx
R.K/: (23)

(ii) The mean and variance of conditional smoother O�2.xjtj / are given by

EŒ O�2.xjtj /� 
 �j
�
�2.x; tj /C �2.K/

2
b2xŒ�

2.x; t/�00x
�
; (24)

var Œ O�2.xjtj /� 
 �2j
�4.x; tj /Vx

nxbx
R.K/: (25)

(iii) The bias and variance of O�2.x; t/ are given by

BŒ O�2.x; t/� 
 �2.K/

2

˚
b2xŒ�

2.x; t/�00x C b2t Œ�2.x; t/�00t
�
; (26)

var Œ O�2.x; t/� 
 �4.x; t/
	

VR2.K/

nxbxntbt
C
�
mh
2�

2
! C Vh
nxbx

C �2�
ntbt

�
R.K/I.�K/



;

(27)

where Vx, Vt , V , and Vh are constants as defined in Feng (2013).
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Theorem 1 shows in particular that the intermediate estimators of the volatility
surface are inconsistent and the rate of convergence of the final estimator is
dominated by the order maxfOŒ.nxbx/�1=2�; OŒ.nt bt /�1=2�g, which is much lower
than OŒ.nxbxntbt /�1=2�, the rate of convergence in the case with i.i.d. innovations.

If the volatility surface is estimated under the multiplicative component GARCH
of Engle and Sokalska (2012) without random effect, as defined in (19), the
asymptotic variances of the proposed estimators are simplified. That for the final
volatility surface estimator is given in the following corollary.

Corollary 1 Assume that Yi;j is defined in (19). Under corresponding conditions
of Theorem 1, the variance of O�2.x; t/ is given by

var Œ O�2.x; t/� 
 �4.x; t/
	
V �R2.K/
nxbxnt bt

C VhR.K/I.�K/

nxbx



; (28)

where V � denotes another constant.

We see, if there is no random effect, the asymptotic variance O�2.x; t/ is dominated
by the daily GARCH component. The rate of convergence of O�2.x; t/ is now of the
orderOŒ.nxbx/�1=2�, which is again much lower than OŒ.nxbxnt bt /�1=2�.
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Zillmer’s Population Model: Theory
and Application

Peter Pflaumer

Abstract August Zillmer (1831–1893) was a German life insurance actuary in
Berlin. He is credited for one of the first German textbooks on actuarial mathe-
matics. His name is associated with the Zillmer method of calculating life insurance
reserves. In this paper, August Zillmer’s early contribution to demographic analysis,
which is virtually unknown, is described and appreciated. In 1863 he published a
discrete population model, and produced several age distributions using a given life
table and different population growth rates. He showed that the resulting age dis-
tributions will eventually become stable. Although the stable model in demography
can be traced back to Euler in 1760, Zillmer’s model is the first dynamic analysis
of the influence of changes in population growth rates on the age distribution and
population parameters such as mean age. His results and conclusions are discussed
and compared with modern demographic methods. Finally, Zillmer’s model is
considered as a tool for special population forecasts, where new inputs (births) do
not depend on the population size of other age-groups.

1 Introduction

A stable population is a population in which proportions in all age classes remain
fixed if mortality is constant and births increase exponentially over time. The
concept of a stable population can be traced to Euler in 1760. Some years later,
Thomas Malthus employed the results of stable population theory in collaboration
with Joshua Milne, an English actuary (cf. Coale, 1979).

In Germany, Ludwig Moser, a professor of physics in Königsberg, refers in his
book to Euler’s work (cf. Moser, 1839). Ladislaus von Bortkiewicz formulated a
continuous version of the stable model (cf. Bortkiewicz, 1898, 1911).

Alfred Lotka rediscovered independently the fundamentals of the stable
Malthusian theory (cf. Lotka, 1907). In an important paper written with Francis
R. Sharpe, he showed that a closed population with fixed fertility and mortality

P. Pflaumer (�)
University of Applied Sciences Kempten, Kempten, Germany
e-mail: peter.pflaumer@tu-dortmund.de

© Springer International Publishing Switzerland 2015
J. Beran et al. (eds.), Empirical Economic and Financial Research,
Advanced Studies in Theoretical and Applied Econometrics 48,
DOI 10.1007/978-3-319-03122-4_22

357

mailto:peter.pflaumer@tu-dortmund.de


358 P. Pflaumer

rates acquires a stable age distribution (cf. Sharpe and Lotka 1911). Although he
was not the first to discover the age composition of a population with a fixed life
table and a constant rate of increase (Lotka himself referred to such a population as
Malthusian, not stable), he was the first who proved that the continued prevalence
of fixed schedules of fertility and mortality would generate a stable population (cf.
Coale, 1979).

Virtually unknown is August Zillmer’s contribution to the stable model in
demography. In 1863 he published a discrete population model, and produced
several age distributions using a given life table and different population growth
rates. He showed that the resulting age distributions will eventually become stable
(cf. Zillmer, 1863a). August Zillmer (1831–1893) was a German life insurance
actuary in Berlin. He is credited for one of the first German textbooks of actuarial
mathematics (cf. Zillmer, 1861). His name is associated with the Zillmer method of
calculating life insurance reserves (cf. Zillmer, 1863b). Lotka later knew that both
Bortkiewicz and Zillmer independently developed the fundamentals of the stable
Malthusian theory (cf. Lotka, 1932).

However, neither Bortkiewicz nor Zillmer applied self-renewal models in pop-
ulation analysis (cf. Lotka, 1937; Samuelson, 1976). As a demographer, Zillmer
is almost unknown in Germany today. He is not even cited in the biographical
lexicon of the history of demography, in which almost 400 biographies of German
population scientists are published (cf. Lischke and Michel, 2007).

In this paper, the population model of Zillmer is presented and compared to
modern methods of demography. The notation and symbols of today will be used.
The model with a geometric increase in births is described in detail. Zillmer’s
calculations are recalculated using Microsoft Excel. Zillmer’s results differ from
the recalculated results, which are shown here, only by rounding errors. Zillmer’s
results, which he obtains using a model with an arithmetic increase in the number
of births, are only briefly mentioned.

2 Zillmer’s Demographic Model

First, Zillmer derives formulas of the parameters of the stationary model or life table
model. He uses the life table of 17 English life insurance companies of the actuary
Jones (1843). This life table was expanded through the age classes 1–10 (cf. Heym,
1863).

Under the assumption that births occur simultaneously at the beginning of the
year, while deaths in all age classes are distributed uniformly over the year, he
obtains the following parameters of the life table or the stationary population,where
lx is the number of persons surviving to exact age x, and dx is the number of deaths
between exact ages x and x C 1:



Zillmer’s Population Model: Theory and Application 359

Life expectancy:

o
eo D

l0Cl1
2
C l1Cl2

2
C l2Cl3

2
C � � �

l0
D
P!

xD0 lx � l0
2

l0
D
P!

xD0 lx
l0

� 1
2

Birth rate (reciprocal value):

1

b
D o
eo :

Death rate (reciprocal value):

1

d
D o
eo :

Mean age at death:

� D 1 � d0 C 2 � d1 C 3 � d2 C � � �
l0

� 1
2

D .l0 � l1/C 2 � .l1 � l2/C 3 � .l2 � l3/C � � �
l0

� 1
2

D l0 C l1 C l2 C � � �
l0

� 1
2
D o
eo :

Mean age of the stationary population:

� D
P!

xD0
�
x C 1

2

� lxClxC1

2P!
xD0 lx � l0

2

D
P!

xD0 .x C 1/ � lx � 1
2

P!
xD0 lxP!

xD0 lx � l0
2

� 1
2
:

Life expectancy and mean age in the continuous case with l.0/ D 1
are (cf. Keyfitz, 1977):
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With the assumed life table, one obtains the following parameter values (cf. also
Zillmer, 1863a, 74) (Table 1).

Now Zillmer assumes a geometric increase in the number of births, l0t D l0 � qt ,
where l0t is the number of births at time 0 and q > 1 is the growth factor. It is easy
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Table 1 Life table
parameters

Life expectancy 41.105

Birth rate (reciprocal value) 41.105

Death rate (reciprocal value) 41.105

Mean age at death 41.105

Mean age of the stationary population 32.433

to show that the population Pn and the number of deaths Dn at time n < ! are
given by

Pn D
n�1X
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Zillmer derives the following parameters:

Birth rate (reciprocal value) at time n:
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Death rate (reciprocal value) at time n:
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Mean age of the population at time n:
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The parameters become substantially simpler if n > ! (cf. Zillmer, 1863a, 78)
as follows:

Birth rate (reciprocal value):
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Because n no longer occurs in the parameter definitions, they are independent
of the time n. The age structure no longer changes and the population is stable. If
q D 1, one obtains the parameters of a stationary population. In the continuous case
of a stable population the parameters are (cf. Lotka, 1939 or Keyfitz, 1977):

Birth rate (reciprocal value):
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Z !

0

e�rxl.x/dx :
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Death rate (reciprocal value):
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is the force of mortality.

Mean age at death:
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With the assumed life table and the derived formulas, Zillmer calculates popula-
tion parameters at time n, which are presented in the following tables.

In contrast to a comparative static analysis, in which only the condition at time 0
is compared with that at time 100, Zillmer carries out a dynamic analysis, in which
the temporal flow between both time points is regarded.

Finally, Zillmer calculates parameters for the stable population assuming differ-
ent growth factors.

Zillmer was not able to explain the increase of the death rate d (decrease of
1=d ) with the increasing population growth rate. He wrote: “Diese Tabelle zeigt
die eigenthümliche Ertscheinung, daß bei mässiger Vermehrung der Geburten die
Sterbeziffer höher, also scheinbar günstiger ist, als bei stärkerer Vermehrung der
Geburten” (cf. Zillmer, 1863a, 114).

This problem was first formally solved by Bortkiewicz (1898). He concluded that
if the force of mortality function is an increasing function of age x, d is a decreasing
(or 1=d an increasing) function of the growth rate; if the force of mortality function
is a falling function of x, then d is an increasing (or 1=d a decreasing) function of
the growth rate. If the force of mortality is constant, then d or 1=d are also constant
(Tables 2 and 3).

In a real life table, the force of mortality is first decreasing and then increasing.
Current life tables in industrial countries are characterized by a predominantly
increasing function of the force of mortality. Therefore, the death rate will decline
with an increase in the growth rate. The life table used by Zillmer shows a sharp
falling force of mortality up to the age of 10. It reflects the typical mortality pattern
of a pre-industrial country: high child and youth mortality. This bath-tub function
of the force of mortality explains the death rate pattern. At first, the death rate d
will decrease with moderate growth rates due to the younger age structure of the
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Table 2 Population
parameters with an annual
growth rate of 1 %

n 1=b 1=d � � 100 d=b

0 41.105 41.105 41.105 32.433 100.00

10 37.617 40.465 40.067 32.145 92.96

20 35.056 40.187 38.754 31.454 87.23

30 33.238 40.331 37.332 30.568 82.41

40 32.012 40.827 35.869 29.678 78.41

50 31.246 41.580 34.440 28.933 75.15

60 30.827 42.435 33.147 28.417 72.64

70 30.645 43.165 32.151 28.146 71.00

80 30.594 43.562 31.617 28.054 70.23

90 30.588 43.655 31.485 28.041 70.07

100 30.588 43.659 31.480 28.041 70.06

Table 3 Population
parameters with an annual
growth rate of 3.5 %

n 1=b 1=d � � 100 d=b

0 41.105 41.105 41.105 32.433 100.00

10 30.340 38.758 37.357 31.372 78.28

20 24.150 37.458 32.511 28.764 64.47

30 20.706 37.391 27.500 25.610 55.38

40 18.884 38.185 22.900 22.866 49.45

50 17.991 39.389 19.108 20.995 45.68

60 17.608 40.569 16.341 19.981 43.40

70 17.477 41.392 14.675 19.567 42.22

80 17.448 41.750 13.988 19.459 41.79

90 17.445 41.818 13.857 19.446 41.72

100 17.445 41.820 13.853 19.446 41.71

population; the proportion of elderly persons with high mortality declines. This
favorable effect is reversed into the opposite direction if the growth rate climbs
further. The proportion of children and young people with a high mortality risk then
becomes so large that the advantage of the younger age structure is lost. Altogether,
the high proportion of children and young people with high mortality causes an
increase in the death rate d or a decline in the reciprocal value 1=d (cf. Table 4).

Finally, let us briefly mention Zillmer’s analysis under the assumption of a linear
increase in births. He develops corresponding formulas for this case as well (cf.
Zillmer, 1863a, S. 114f). In contrast to the geometric increase, the parameters are
not independent of time n. The population converges for large n against the original
stationary population. The stationarity explains itself simply through the fact that a
linear increase in births implies a declining growth rate of births. After a sufficient
period of time, the growth rate becomes more or less zero, resulting in the age
structure of the stationary population.
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Table 4 Parameters of the
stable model

q 1=b 1=d � � d=b

1 41.105 41.105 41.105 32.433 1.000

1.01 30.588 43.659 31.480 28.041 0.701

1.025 21.268 43.652 19.449 22.461 0.487

1.03 19.187 42.858 16.409 20.886 0.448

1.035 17.445 41.820 13.853 19.447 0.417

1.04 15.973 40.624 11.738 18.138 0.393

3 Population Forecasting with the Zillmer Model

Population forecasts have received a great deal of attention during recent years.
They are widely used for planning and policy purposes. Planners and policy makers
need a reliable insight into future developments of size and composition of their
populations.

A population projection model that is generally used is based on the well-known
cohort-component method and leads to a population projection that is broken down
into categories of age and sex. This model is based on a projection of the population
through its components, fertility, mortality, and migration. The initial population
that is broken down into categories of age and sex is taken as the basis for the
model. This population is reduced by the number of deaths for each interval in the
projected time frame by means of age- and sex-specific death rates. The number
of births will be determined with help from age-specific birth rates for surviving
women. The entire birth figure will then become the new birth cohort in the
projection model. Finally, the expected figure for immigrants and emigrants has to
be estimated. The following representation of the cohort-component method refers
back to Leslie (1945). The projection model for the female population is represented
by the following recurrence equation:

ntC1 D Lt � nt C It for t D 0; 1; 2; : : :

The vector nt represents the number of women in the different age classes at
time t . After one projection interval, the population ntC1, broken down by age,
can be obtained by multiplying nt with the projection matrix Lt and adding a net
immigration vector It , which is adjusted by the number of births and deaths in the
corresponding time interval. The projection or Leslie matrix contains age-specific
maternity rates in the first row and age-specific survivor rates in the sub-diagonal.
Otherwise it contains only zeros.
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BBBBBBBB@
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:::
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0 0 : : : sn�1t 0

1
CCCCCCCCA

:

Details of the calculation of the elements of the vector and matrices of the projection
model are shown, e.g., in Keyfitz (1977) or Pflaumer (1988a).

An early application of the Leslie model for the Federal Republic of Germany
can be found in Heiler (1978). Already at this time, Heiler realized in his long-term
population projection the problems for the future of the social security system in
countries with low fertility. He proposed solutions long before policy and economics
addressed this problem.

Most users of population forecasts now realize that populations are not perfectly
predictable. As a result, there has been an increasing interest in questions related to
the performance of population projection models. Several ways exist of considering
the uncertainty which inevitably arises with population forecasting. One method
makes several forecast variants, e.g., high, medium, and low projections are made.
Alternative approaches are the formulation of population models, in which the vital
rates are either probabilities (cf. Pollard, 1973; Heiler, 1982) or random variables
(cf., e.g., Bohk, 2011). The stochastic assumptions imply that the population size at
a certain time is also a random variable. Its distribution and its confidence intervals
can be deduced either by theoretical methods (e.g., Sykes, 1969) or by means of
Monte Carlo simulation methods (e.g., Pflaumer, 1988b).

If the new inputs (births) do not depend on the populations of the other age-
groups (e.g., forecasting size and age structure of students at universities, or
manpower demand in human resource), then the Leslie matrix has to be modified. In
this case, the new exogenous input must be modeled as a time series. An overview
of various methods of time series analysis can be found, e.g., in Heiler (1981).
A simple assumption is the geometric development of the new input, as has been
assumed by Zillmer (1863a) in his population analysis, with q as the growth factor.
The transition described by Zillmer from a stationary to a stable population is,
in principle, a population projection with a stationary population as an original
population. Formally, Zillmer’s model can be described by the previous recurrence
equation and the following projection matrix, which is a special case of the Leslie
matrix:
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The growth factor is represented by q, which is the stable eigenvalue of the matrix
Z. If q > 1, then the population grows; if q < 1, then it decreases; and in the case
of a stationary population, the growth factor is given by q D 1.

Boes (2004) essentially applies the Zillmer model in order to calculate survivor
functions for German university students, i.e., the probabilities that a student will
still be enrolled at the end of a given semester.

In Zillmer’s investigation, ergodicity is achieved when age-specific death rates
have been constant for a long time and births increase at a fixed growth rate.
Zillmer did not consider age-specific fertility rates in his analysis. Zillmer’s model
would imply that the age-specific fertility rates or the net reproduction rate would
change over time until the population became stable. Lotka (1939) demonstrated,
however, that a population subjected to fixed age-specific mortality and fertility rates
will eventually become stable. The number of births will fluctuate with decreasing
oscillations and finally grow with a constant rate in the stable situation.

Conclusion
Zillmer is one of the pioneers of quantitative demography. Long before
Bortkiewicz (1898) and Lotka (1907), he analyzed the relationship between
birth rate and age structure of a population. His approach is dynamic in con-
trast to the comparative static approach, which is limited to the consideration
of the initial and final state of a population. Zillmer’s dynamic model aims to
trace and study the behavior of the population through time, and to determine
whether this population tends to move towards equilibrium.

He showed the relationship between average age of death, birth and death
rate, and clearly recognized that the average age of death depends on the
growth rate of a population, and is therefore not an appropriate measure
of the mortality of a population. These empirically based results were later
mathematically proven in a continuous model by Bortkiewicz (1898).

Although these relationships have long been researched and published,
these facts do not seem to be known in some applications, for example, when
the mean number of years spent at universities are calculated incorrectly.
Along with Siegfried Heiler and other professors of the Department of
Statistics at the University of Dortmund, Davies (1988) criticized the incorrect

(continued)
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method of calculating this average in a commissioned report of the Ministry
of Science and Research in North Rhine-Westphalia. However, as an answer
to the critics, the Ministry declared the correctness of the numbers by decree.

Appendix

See Table 5.

Table 5 Life table of the 17 English life insurance companies with additions of Zillmer (1863a)
and Heym (1863)

x lx x lx x lx x lx

0 144,218 26 89,137 51 68,409 76 21,797

1 122,692 27 88,434 52 67,253 77 19,548

2 114,339 28 87,726 53 66,046 78 17,369

3 110,050 29 87,012 54 64,785 79 15,277

4 107,344 30 86,292 55 63,469 80 13,290

5 105,471 31 85,565 56 62,094 81 11,424

6 104,052 32 84,831 57 60,658 82 9,694

7 102,890 33 84,089 58 59,161 83 8,112

8 101,889 34 83,339 59 57,600 84 6,685

9 100,996 35 82,581 60 55,973 85 5,417

10 100,179 36 81,814 61 54,275 86 4,306

11 99,416 37 81,038 62 52,505 87 3,348

12 98,691 38 80,253 63 50,661 88 2,537

13 97,992 39 79,458 64 48,744 89 1,864

14 97,310 40 78,653 65 46,754 90 1,319

15 96,636 41 77,838 66 44,693 91 892

16 95,965 42 77,012 67 42,565 92 570

17 95,293 43 76,173 68 40,374 93 339

18 94,620 44 75,316 69 38,128 94 184

19 93,945 45 74,435 70 35,837 95 89

20 93,268 46 73,526 71 33,510 96 37

21 92,588 47 72,582 72 31,159 97 13

22 91,905 48 71,601 73 28,797 98 4

23 91,219 49 70,580 74 26,439 99 1

24 90,529 50 69,517 75 24,100 100 0

25 89,835

Source: Zillmer (1861, 1863a) and Heym (1863)
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Adaptive Estimation of Regression Parameters
for the Gaussian Scale Mixture Model

Roger Koenker

Abstract A proposal of Van der Vaart (1996) for an adaptive estimator of a location
parameter from a family of normal scale mixtures is explored. Recent developments
in convex optimization have dramatically improved the computational feasibility
of the Kiefer and Wolfowitz (Ann Math Stat 27:887–906, 1956) nonparametric
maximum likelihood estimator for general mixture models and yield an effective
strategy for estimating the efficient score function for the location parameter in this
setting. The approach is extended to regression and performance is evaluated with a
small simulation experiment.

1 Introduction

The Princeton Robustness Study, Andrews et al. (1972), arguably the most influ-
ential simulation experiment ever conducted in statistics, compared performance
of a 68 distinct location estimators focusing almost exclusively scale mixtures of
Gaussian models. While such scale mixtures do not constitute an enormous class,
see, for example, Efron and Olshen (1978), they are convenient for several reasons:
their symmetry ensures a well-defined location estimand, their unimodality affirms
Tukey’s dictum that “all distributions are normal in the middle,” and probably most
significantly, conditional normality facilitates some nice Monte-Carlo tricks that
lead to improvements in simulation efficiency.

A prototypical problem is the Tukey contaminated normal location model,

Yi D ˛ C ui (1)

with iid ui from the contaminated normal distribution, F�;� .u/ D .1 � �/˚.u/ C
�˚.u=�/. We would like to estimate the center of symmetry, ˛, of the distribution
of the Yi ’s. Yet we do not know �, nor the value of � ; how should we proceed? Of
course we could adopt any one of the estimators proposed in the Princeton Study,
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or one of the multitudes of more recent proposals. But we are feeling greedy, and
would like to have an estimator that is also asymptotically fully efficient.

The Tukey model is a very special case of a more general Gamma mixture model
in which we have (1), and the ui ’s are iid with density,

g.v/ D
Z 1

0

	.vj�/dF.�/

where � D �2, and 	 is the �2.1/ density with free scale parameter � ,

	.vj�/ D 1

� .1=2/
p
2�

v�1=2 exp.�v=.2�//

Our strategy will be to estimate this mixture model nonparametrically and employ
it to construct an adaptive M-estimator for ˛. This strategy may be viewed as an
example of the general proposal of Van der Vaart (1996) for constructing efficient
MLEs for semiparametric models.

2 Empirical Bayes and the Kiefer–Wolfowitz MLE

Given iid observations, V1; � � � ; Vn, from the density,

g.v/ D
Z 1

0

	.vj�/dF.�/

we can estimate F and hence the density g by maximum likelihood. This was
first suggested by Robbins (1951) and then much more explicitly by Kiefer and
Wolfowitz (1956). It is an essential piece of the empirical Bayes approach developed
by Robbins (1956) and many subsequent authors. The initial approach to computing
the Kiefer–Wolfowitz estimator was provided by Laird (1978) employing the
EM algorithm, however EM is excruciatingly slow. Fortunately, there is a better
approach that exploits recent developments in convex optimization.

The Kiefer–Wolfowitz problem can be reformulated as a convex maximum
likelihood problem and solved by standard interior point methods. To accomplish
this we define a grid of values, f0 < v1 < � � � < vm <1g, and let F denote the set
of distributions with support contained in the interval, Œv1; vm�. The problem,

max
f 2F

nX

iD1
log.

mX

jD1
	.Vi ; vj /fj /;

can be rewritten as
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minf�
nX

iD1
log.gi / j Af D g; f 2 S g;

where A D .	.Vi ; vj // and S D fs 2 R
mj1>s D 1; s � 0g. So fj denotes

the estimated mixing density estimate Of at the grid point vj , and gi denotes the
estimated mixture density estimate, Og, evaluated at Vi .

This is easily recognized as a convex optimization problem with an additively
separable convex objective function subject to linear equality and inequality con-
straints, hence amenable to modern interior point methods of solution. For this
purpose, we rely on the Mosek system of Andersen (2010) and its R interface,
Friberg (2012). Implementations of all the procedures described here are available
in the R package REBayes, Koenker (2012). For further details on computational
aspects see Koenker and Mizera (2011).

Given a consistent initial estimate of ˛, for example as provided by the sample
median, the Kiefer–Wolfowitz estimate of the mixing distribution can be used to
construct an estimate of the optimal influence function, O , that can be used in turn
to produce an asymptotically efficient M-estimator of the location parameter. More
explicitly, we define our estimator, Ǫn, as follows:

(1) Preliminary estimate: Q̨ D median.Y1; � � � ; Yn/
(2) Mixture estimate: Of D argmaxf 2F

Pn
iD1 log.

Pm
jD1 	.Yi � Q̨ ; vj /fj /,

(3) Solve for Ǫ such that O .Yi � ˛/ D 0, where O .u/ D .log Og.u//0, and Og.u/ DR
	.u; v/d OF .v/.

Theorem 1 (Van der Vaart (1996)) For the Gaussian scale mixture model (1) with
F supported on Œv1; vm�, the estimator Ǫ is asymptotically efficient, that is,

p
n. Ǫn�

˛/Ý N.0; 1=I.g//, where I.g/ is the Fisher information for location of the density,
g.u/ D R 	.u; v/dF.v/.
This result depends crucially on the orthogonality of the score function for the
location parameter with that of the score of the (nuisance) mixing distribution and
relies obviously on the symmetry inherent in the scale mixture model. In this way
it is closely related to earlier literature on adaptation by Stein (1956), Stone (1975),
Bickel (1982), and others. But it is also much more specialized since it covers a
much smaller class of models. The restriction on the domain of F could presumably
be relaxed by letting v1 ! 0 and vm !1 (slowly) as n!1. From the argument
for the foregoing result in van der Vaart it is clear that the location model can be
immediately extended to linear regression which will be considered in the next
section.
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3 Some Simulation Evidence

To explore the practical benefits of such an estimator we consider two simple
simulation settings: the first corresponds to our prototypical Tukey model in which
the scale mixture is composed of only two mass points, and the other is a smooth

mixture in which scale is generated as
q
�23=3, so the Yi ’s are marginally Student t

on three degrees of freedom. We will consider the simple bivariate linear regression
model,

Yi D ˇ0 C xiˇ1 C ui

where the ui ’s are iid from the scale mixture of Gaussian model described in the pre-
vious section. The xi ’s are generated iidly from the standard Gaussian distribution,
so intercept and slope estimators for the model have the same asymptotic variance.
The usual median regression (least absolute error) estimator will be used as an initial
estimator for our adaptive estimator and we will compare performance of both with
the ubiquitous least squares estimator.

3.1 Some Implementation Details

Our implementation of the Kiefer–Wolfowitz estimator requires several decisions
about the grid v1; � � � ; vm. For scale mixtures of the type considered here it is natural
to adopt an equally spaced grid on a log scale. I have used m D 300 points with
v1 D log.maxf0:1;minfr1; � � � ; rngg/ and vm D log.maxfr1; � � � ; rng/. Bounding
the support of the mixing distribution away from zero seems to be important, but a
corresponding upper bound on the support has not proven to be necessary.

Given an estimate of the mixing distribution, OF , the score function for the
efficient M-estimator is easily calculated to be

O .u/ D .� log Og.u//0 D
R

u'.u=�/=�3d OF .�/
R
'.u=�/=�d OF .�/ :

We compute this estimate again on a relatively fine grid, and pass a spline
representation of the score function to a slightly modified version of the robust
regression function, rlm() of the R package MASS, Venables and Ripley (2002),
where the final M-estimate is computed using iteratively reweighted least squares.



Adaptive Estimation for Scale Mixtures 377

Table 1 MSE scaled by
sample size, n, for Tukey
scale mixture of normals

n LAE LSE Adaptive

100 1.756 1.726 1.308

200 1.805 1.665 1.279

400 1.823 1.750 1.284

800 1.838 1.753 1.304

1 1.803 1.800 1.256

Table 2 MSE scaled by
sample size, n, for Student
t(3) mixture of normals

n LAE LSE Adaptive

100 1.893 2.880 1.684

200 1.845 2.873 1.579

400 1.807 2.915 1.540

800 1.765 2.946 1.524

1 1.851 3.000 1.500

3.2 Simulation Results

For the Tukey scale mixture model (1) with � D 0:1 and � D 3 mean and median
regression have essentially the same asymptotic variance of about 1.80, while the
efficient (MLE) estimator has asymptotic variance of about 1.25. In Table 1 we see
that the simulation performance of the three estimators is in close accord with these
theoretical predictions. We report the combined mean squared error for intercept
and slope parameters scaled by the sample size so that each row of the table is
comparable to the asymptotic variance reported in the last row.

It seems entirely plausible that the proposed procedure, based as it is on
the Kiefer–Wolfowitz nonparametric estimate of the mixing distribution, would
do better with discrete mixture models for scale like the Tukey model than for
continuous mixtures like the Student t(3) model chosen as our second test case.
Kiefer–Wolfowitz delivers a discrete mixing distribution usually with only a few
mass points. Nevertheless, in Table 2 we see that the proposed adaptive estimator
performs quite well for the Student t(3) case achieving close to full asymptotic
efficiency for sample sizes 400 and 800.

Conclusions
Various extensions naturally suggest themselves. One could replace the
Gaussian mixture model with an alternative; Van der Vaart (1996) suggests
the logistic as a possibility. As long as one maintains the symmetry of the
base distribution adaptivity is still tenable, but symmetry, while an article of
faith in much of the robustness literature, may be hard to justify. Of course,
if we are only interested in slope parameters in the regression setting and are

(continued)
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willing to maintain the iid error assumption, then symmetry can be relaxed as
Bickel (1982) has noted.

The challenge of achieving full asymptotic efficiency while retaining some
form of robustness has been a continuing theme of the literature. Various
styles of  -function carpentry designed to attenuate the influence of outliers
may improve performance in small to modest sample sizes. Nothing, so far,
has been mentioned about the evil influence of outlying design observations;
this too could be considered in further work.
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The Structure of Generalized Linear Dynamic
Factor Models

Manfred Deistler, Wolfgang Scherrer, and Brian D.O. Anderson

Abstract In this contribution we present a structure theory for generalized linear
dynamic factor models. Generalized dynamic factor models have been proposed
approximately a decade ago for modeling of high dimensional time series where the
cross sectional dimension is of the same order of magnitude as the sample size. In
these models the classical assumption for factor models, that the noise components
are mutually uncorrelated, is relaxed by allowing for weak dependence. Structure
theory turns out to be important for estimation and model selection. The results
obtained heavily draw from linear system theory.

The contribution consists of two main parts. In the first part we deal with
“denoising”, i.e. with getting rid of the noise in the observations. In the second part
we deal with constructing linear dynamic systems for the latent variables. Here an
important result is the generic zerolessness of the transfer function relating the latent
variables and the dynamic factors. This allows for modeling the latent variables by
(singular) autoregressions which simplifies estimation.

1 Introduction

Analysis and forecasting of high dimensional time series is an important area in
the so-called big data revolution. High dimensional time series can be found in
many fields such as econometrics, finance, genetics, environmental research and
chemometrics.

The main reasons for joint modeling of high dimensional time series are:

• The analysis of dynamic relations between the time series
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• Extraction of factors or features common to all time series (construction of
indices)

• The improvement of forecasts, by using the past of many time series.

The “traditional” approach to multivariate time series is plagued by the so-
called curse of dimensionality. Let T denote the sample size and N denote the
cross sectional dimension. If we perform “unstructured” AR modeling, then the
dimension of the parameters space is N2p C N.N C 1/=2 (where p is the AR
order). Thus this dimension increases with N2, whereas the number of data points,
NT , is linear in N . For this reason, for high dimensional time series, model classes
with reduced complexity have been used. There are several approaches for this:

• Traditional structural macro-econometric modeling which uses over-identifying
a-priori restrictions

• Hierarchical Bayesian modeling, where the prior distribution of the original
parameter depends on a few hyper parameters (Doan et al. 1984).

• “Sparse” AR models. A particular class of such sparse models corresponds
to the so-called graphical time series models, where, e.g. the zero coefficients
correspond to lack of conditional Granger causality (Flamm et al. 2012).

• Factor models and (dynamical) principal components analysis. Such models
allow for dimension reduction in cross section by using co-movements in the
time series.

Here we consider a particular class of factor models, the so-called generalized linear
dynamic factor models (GDFMs). GDFMs generalize

• Generalized linear static factor models, as introduced in Chamberlain (1983)
and Chamberlain and Rothschild (1983). These models generalize static factor
models with strictly idiosyncratic noise, i.e. with uncorrelated noise components,
by allowing for “weak dependence” between the noise components.

• Linear dynamic factor models with strictly idiosyncratic noise (Engle and Watson
1981; Geweke 1977; Sargent and Sims 1977; Scherrer and Deistler 1998)

The main features of GDFMs are

• They allow for modeling of dynamics (here in a stationary context)
• Uncorrelatedness of the noise components is generalized to weak dependence
• “Co-movement” of the individual single time series has to be assumed.
• Whereas the observations are ordered in time the results are “permutation invari-

ant” in cross section. Of course, here additional structure, e.g. corresponding to
spatial distance, might be imposed

• Strictly speaking, for GDFMs, sequences of model classes, indexed by the cross
sectional dimension N are considered.

GDFMs have been developed over the last 13 years, say, and have been successfully
applied, for instance, in macroeconometrics since. The main early references are
Forni et al. (2000), Forni and Lippi (2001), and Stock and Watson (2002) and further
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important contributions are Bai and Ng (2002), Bai (2003), Deistler et al. (2010),
and Doz et al. (2011).

The rest of the paper is organized as follows: In Sect. 2 the model class
is described. Section 3 is concerned with denoising. Section 4 deals with the
realization of latent variables and static factors by state space and ARMA systems.
Section 5 deals with the AR case, which is generic in the “typical” situation
considered here. Section 6 treats the Yule–Walker equations for singular AR systems
and Sect. 7 outlines the relevance of our results for estimation and model selection.

2 GDFMs: The Model Class

We assume that the N -dimensional observations, yNt , are of the form

yNt D OyNt C uNt ; t 2 Z (1)

where OyNt are the latent variables and uNt is the (weakly dependent) noise.
Throughout we impose the following assumptions:

(A.1) E OyNt D EuNt D 0 2 R
N for all t 2 Z

(A.2) . OyNt / and .uNt / are wide sense stationary1 with absolutely summable covari-
ances.

(A.3) E OyNt .uNs /0 D 0 for all t; s 2 Z

Thus the spectral densities exist and, using an obvious notation, we obtain for the
spectral densities

f N
y .�/ D f N

Oy .�/C f N
u .�/; � 2 Œ��; �� (2)

For GDFMs the asymptotic analysis is performed for T ! 1 and N ! 1; thus,
we consider sequences of GDFMs for N !1. In addition we assume throughout
that the entries in the vectors are nested, e.g. OyNC1

t is of the form .. OyNt /0; OyNC1;t /0
where Oyi;t denotes the i -th component of OyNC1

t .
The following assumptions constitute the core of our definition of GDFMs. Here

we always assume that N is large enough:

(A.4) (Strong dependence of the latent variables): f N
Oy is a rational spectral density

matrix with constant (i.e. for all � 2 Œ��; ��) rank q < N ; q does not depend
on N . The first q eigenvalues of f N

Oy diverge to infinity for all frequencies, as
N !1:

(A.5) (Weak dependence in the noise): The largest eigenvalue of f N
u .�/ is

uniformly bounded for all � 2 Œ��; �� and all N .

1It should be noted, however, that recently GDFMs for integrated processes have been proposed.
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Since we assume that the spectral density f N
Oy of the latent variables OyNt is rational,

it can be realized by a state space or ARMA system. Here our focus is on state space
systems

xNtC1 D FNxNt CGN"NtC1 (3)

OyNt D HNxNt (4)

where xNt is an n-dimensional, say, (minimal) state and FN 2 R
n�n, GN 2 R

n�q ,
HN 2 R

N�n are parameter matrices. We assume that the system is minimal, stable
and miniphase and accordingly

OyNt D wN .z/"Nt (5)

where wN .z/ D HN.I � FN z/�1GN is a rational, causal and miniphase transfer
function and where z is used for the backward shift on the integers Z as well as for a
complex variable. This will be discussed in detail in Sect. 4. In (5), "Nt is a minimal
dynamic factor of dimension q.

The above representation (5) shows that the latent variables are driven by the
q dimensional factor process "t . Typically q � N holds. This generates the co-
movement of the latent variables and the observed variables. The assumption (A.5)
implies that the noise components are only weakly dependent, which means that
the noise can be eliminated by suitable (dynamic) cross sectional averages. This
property will be used for “denoising”, i.e. for getting OyNt from yNt (for N ! 1),
as will be discussed in Sect. 3.

In a number of applications GDFMs have been quite successfully applied which
shows that the above assumptions in many cases at least provide a reasonable ap-
proximation of the true data generating mechanism. There exist (testing) procedures
which try to assess whether the given data is compatible with the assumptions. In
particular estimation routines (see, e.g., Hallin and Liška 2007) for the number of
factor q implicitly test this assumption.

In addition we assume:

(A.6) The spectral density f N
Oy corresponds to a state space system (3),(4) with

state dimension n, independent of N .

By (A.6) the McMillan degree of the spectral density f N
Oy is smaller than or equal

to 2n, independent of N . (A.6) is an assumption of bounded complexity dynamics.
It is justifiable in a number of applications, e.g. when there is a true underlying
system (of finite order) and the numberN of sensors is increasing (over sensoring).
Recently a theory for the case where q is independent of N , but n is allowed to
increase with N has been developed in Forni et al. (2011).

As will be shown in Sect. 4, (A.6) implies that the minimal dynamic factor "t ,
the state xt and F , G in (3), (4) can be chosen independent of N . Furthermore this
assumption implies the existence of a static factor, zt say, which may be chosen
independent of N and thus
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OyNt D LN zt (6)

holds. Note that zt is called a static factor since the factor loading matrixLN 2 R
N�r

is a constant matrix whereas the corresponding factor loading matrix wN .z/ for "Nt
in (5) is a transfer function matrix. Let us denote the minimal dimension of such a
static factor zt by r . Then clearly

q � r

holds. In a certain sense the case q < r is of particular interest, since it allows for
further complexity reduction.

Given the assumptions, the decomposition (1) of the observed variables into
latent variables and noise is unique, asymptotically with N going to infinity.
However, the factor loading matrix LN and the static factor zt are only unique up to
post-respectively pre-multiplication with non-singular matrices. If we assume that
the dynamic factors "Nt are the innovations of the latent variables, then they are
unique up to pre-multiplication by non-singular matrices.

3 Denoising

In this section we consider the problem of estimating the factors and/or the latent
variables Oyit, i.e. we want to eliminate the noise uit from the observationsyit. We will
concentrate on the estimation of the static factors zt and corresponding estimates of
the latent variables. The dynamic case will be shortly treated in Sect. 3.2.

3.1 Estimation of the Static Factors zt

Here we consider the static factor model as defined in (6). Since the spectral density
f N

u of .uNt / is uniformly bounded by (A.5) it follows that the covariance matrices
	Nu .0/ D EuNt .u

N
t /

0 are also bounded, i.e. there exists a constant, 	 <1 say, such
that

	Nu .0/ � 	IN for all N 2 N (7)

holds. For the latent variables OyNt D LN zt we assume

(A.7) 	z.0/ D Ezt z0
t is positive definite and the minimum eigenvalue of .LN /0LN

converges to infinity for N !1.
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This assumption (together with the assumptions above) implies that

yNt D OyNt C uNt D LN zt C uNt

is a (static) generalized factor model as defined in Chamberlain (1983) and
Chamberlain and Rothschild (1983) and the denoising can be performed by a simple
static principal component analysis (PCA) as described below.

A sequence of row vectors .aN 2 R
1�N jN 2 N/ with aN .aN /0 ! 0 is called

an averaging sequence, since by the property (7) it follows that aN uNt converges to
zero in mean squares sense. This key idea has been proposed in Chamberlain (1983),
however with a different name, namely “well diversified portfolio”. Therefore such
sequences may be used for “denoising” purposes. If aNyNt has a (non-zero) limit,
then this limit has to be an element of the space spanned by the components of the
factors zit, i D 1; : : : ; r in the Hilbert space L2 of the underlying probability space
.˝;A ; P /. A straightforward generalization is to consider sequences of matrices
.AN 2 R

r�N jN 2 N/ with AN .AN /0 ! 0 2 R
r�r . Clearly

ANyNt D ANLN zt C AN uNt �! zt

holds if and only if .ANLN /! Ir and thus averaging sequences with this property
yield consistent estimates of the static factors zt . There are a number of possible
ways to construct such a denoising sequence AN .

First let us assume that we know the factor loadings matrix LN and the
covariance matrices 	z.0/ and 	Nu .0/. The best (in the mean squares sense) linear
estimate of zt given yNt is

Ozt D E.zt .yNt /
0/
�
E.yNt .y

N
t /

0/
��1

yNt

D 	z.0/.L
N /0.LN	z.0/.L

N /0 C 	Nu .0//�1yNt
D �

	z.0/
�1 C .LN /0.	Nu .0//�1LN

��1
.LN /0.	Nu .0//�1„ ƒ‚ …

DWAN
yNt (8)

This estimate is the orthogonal projection of zt onto the space spanned by the
observed variables yNt . If we in addition to (7) assume that the noise covariances
are bounded from below by

	Nu .0/ � 	IN for all N 2 N with 	 > 0 (9)

then it is easy to prove that the sequence .AN / defined above is an averaging (matrix)
sequence and that ANLN ! Ir . Thus we get consistent estimates of the factor zt .
In the above formulas one may even replace 	Nu .0/ by a rough approximation 	0IN ,
	0 � 0 and one still gets a consistent estimate

Ozt D
�
	0	z.0/

�1 C .LN /0LN ��1 .LN /0yNt (10)

for the factor zt .
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The latent variables are given by OyNt D LN zt . Therefore an obvious estimate of
OyNt , for known LN , is

OOyNt D LN Ozt (11)

Clearly this estimate is consistent if Ozt is a consistent estimate of the true factor zt .
To be more precise if Ozt ! zt in mean squares sense then OOyit ! Oyit in mean squares
sense where Oyit and OOyit denote the i -th component of OyNt and OOyNt , respectively. If we
use the estimate Ozt defined in (8), then OOyNt D LN Ozt equals the projection of OyNt onto
the space spanned by the observed variables yNt , i.e. OOyNt D LN Ozt is the best (in a
mean squares sense) estimate of OyNt .

Of course in practice the above estimates are not operational because the param-
eters, in particular the loading matrix LN , are not known. For many (operational)
estimates the PCA is a starting point. The PCA is a decomposition of the covariance
matrix 	Ny .0/ D EyNt .y

N
t /

0 of the form

	Ny .0/ D U1$1U
0
1 C U2$2U

0
2

where U D .U1; U2/ 2 R
N�N is an orthogonal matrix whose columns are the

eigenvectors of 	Ny .0/ and $1 2 R
r�r , $2 2 R

.N�r/�.N�r/ are diagonal matrices
with diagonal elements equal to the eigenvalues of 	Ny .0/. The eigenvalues (and
thus the diagonal entries of $1 and $2) are arranged in decreasing order which in
particular implies that the minimal diagonal element of $1 is larger than or equal
to the maximum diagonal element of $2. Note that Ui and $i depend on the cross
sectional dimension N . However, for simplicity we do not use an explicit notation
for this dependence. Our assumptions together with basic properties of eigenvalues
of symmetric matrices imply

�r.$1/ D �r.	Ny .0// � �r.LN	z.0/.L
N /0/!1

�1.$2/ D �rC1.	Ny .0// � �1.	Nu .0// � 	

Here �k.M/ denotes the k-th eigenvalue of a symmetric matrixM DM 0 where the
eigenvalues are ordered as �1.M/ � �2.M/ � � � � .

An estimate of zt now is defined as

Ozt D $�1=2
1 U 0

1„ ƒ‚ …
DWAN

yNt (12)

where $�1=2
1 is the diagonal matrix defined by .$

�1=2
1 /.$

�1=2
1 / D $�1

1 . This
estimate, in general, is not consistent for zt , but gives a consistent estimate for the
space spanned by the components of zt in the following sense. Let T N D ANLN

then
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..T N /�1Ozt � zt /! 0 for N !1

and T N .T N /0 is bounded from below and from above from a certain N0 onwards,
i.e. there exists constants 0 < c � c <1 such that

cIr � T N .T N /0 � cIr for all N � N0
First note that AN .AN /0 D $�1

1 ! 0, i.e. .AN / is an averaging sequence which
implies that AN uNt ! 0 and thus

.Ozt � T N zt / D ANyNt � ANLN zt D AN uNt ! 0

Furthermore this implies

ET N zt z
0
t .T

N /0 � EOzt Oz0
t D T N 	z.0/.T

N /0 � Ir ! 0

Together these two statements prove the above claim.
The latent variables then are estimated as follows. Note that Oyit is the projection of

yit onto the space spanned by the components of the factor zt since uit is orthogonal
to zt . Correspondingly one may estimate the latent variables by the projection of the
observed variables yit onto the estimated factor Ozt . For the PCA estimate Ozt defined
in (12) we get

OOyNt D EyNt Oz0
t

�
EOzt Oz0

t

��1 Ozt D 	Ny .0/.AN /0
�
AN	Ny .0/.A

N /0
��1

ANyNt D U1U 0
1y

N
t

Since the PCA based estimate Ozt gives a consistent estimate of the space spanned by
zt one can easily show that the above estimate of the latent variables is consistent
too, i.e. OOyit �! Oyit for N !1.

Up to now we have assumed that we have given the covariance matrix 	Ny .0/.
However, given suitable regularity assumptions which guarantee consistency of the
sample covariances one can show that PCA gives consistent estimates of the factors
and of the latent variables if one replaces in the above formulas the population
moments with sample moments. See, e.g., Bai (2003), Bai and Ng (2002), and Stock
and Watson (2002).

A slightly different route for the estimation of the factors and the latent variables
is taken in Forni et al. (2005). Suppose for the moment that we have given
the covariance matrices 	NOy .0/ and 	Nu .0/ of the latent variables and the noise,

respectively. A linear combination aNyNt D aN OyNt C aN uNt is close to the factor
space if the variance of aN OyNt is large compared to the variance of aN uNt . Therefore
it makes sense to determine the weights aN as the solution of the optimization
problem

max
a2RN

a	NOy .0/a
0 s.t. a	Nu .0/a

0 D 1
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Iterating this argument one determines r such weighting vectors aj , j D 1; : : : ; r

recursively by

aj D arg max
a2RN

a	NOy .0/a
0 s.t. a	Nu .0/a

0 D 1 and a	Nu .0/a
0
i D 0 for 1 � i < j

The solutions aj are generalized eigenvectors of the pair .	NOy .0/; 	
N
u .0//, i.e. they

satisfy

aj 	
N
Oy .0/ D �j aj 	Nu .0/; j D 1; : : : ; N

with the normalization constraints aj 	Nu .0/a
0
j D 1 and aj 	

N
u .0/a

0
i D 0 for

i ¤ j . The �j ’s are the associated generalized eigenvalues. Now let AN D
..1C �1/�1=2a0

1; .1C �2/�1=2a0
2; : : : ; .1C �1/�1=2a0

r /
0 and define

Ozt D ANyNt (13)

as an estimate for the factors zt . It is immediate to see that EOzt Oz0
t D Ir and that AN

is an averaging sequence if the noise variances are bounded from below as in (9).
One can also show that Ozt is a consistent estimate for the factor space. The latent
variables then are estimated by the projection of the latent variables onto the space
spanned by the estimated factors, i.e.

OOyNt D E OyNt Oz0
t

�
EOzt Oz0

t

��1 Ozt D 	NOy .0/.AN /0ANyNt (14)

This estimation scheme gives the same factor space as the estimate (8) and
thus the corresponding estimates for the latent variables coincide, provided that
	NOy .0/ D LN	z.0/.L

N /0 holds. In order to get a feasible estimate one has first

to estimate the covariance matrices 	NOy .0/ and 	Nu .0/. The authors Forni et al.
(2005) obtain such estimates via the dynamic PCA as will be outlined at the end
of Sect. 3.2. Since this procedure incorporates information about the underlying
(dynamic) factor model one may hope for an improvement as compared to the
(static) PCA scheme.

The above estimates for the factors and the latent variables ignore possible serial
correlations which might help to improve the estimates. A possible strategy for
doing so was introduced by Doz et al. (2011). Suppose that the factor process .zt /
is an AR(p) process2 of the form zt D a1zt�1 C � � � C apzt�p C �t where .�t /
is a white noise process and that the noise uNt is a (spherical) white noise with
	Nu .0/ D EuNt .u

N
t /

0 D 	0IN . A state space model for the observed variables yNt is
as follows:

2A motivation for the choice of an AR model for the static factors zt is given in Sect. 5.
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0

BBB@

zt
zt�1
:::

zt�pC1

1

CCCA

„ ƒ‚ …xt

D

0

BBB@

a1 � � � ap�1 ap
I 0

: : :

I 0

1

CCCA

0

BBB@

zt�1
zt�2
:::

zt�p

1

CCCA

„ ƒ‚ …xt�1

C

0

BBB@

I

0
:::

0

1

CCCA �t

yNt D .LN ; 0; : : : ; 0/xt C uNt

With a Kalman smoother one then may obtain the best linear estimate of zt (rsp.
the state xt ) given a sample yN1 ; : : : ; y

N
T , i.e. the linear projection of zt onto the

space spanned by the components of yN1 ; : : : ; y
N
T . If the above model is correct,

then this dynamic estimate of course improves the “static” estimate (8) since more
information is used to construct the estimates for zt . Furthermore one can show
that this estimate is consistent even in the case that the above state space model is
(slightly) miss specified, in particular even if the noise uNt does not satisfy the very
restrictive assumptions above. The drawback of this approach is that the estimates
for zt depend both on future and past values of the observed variables yNt and
thus this estimate is not suited for prediction purposes. Secondly the quality of the
estimate depends on time t , i.e. it makes a difference whether the factors at the start
(t 
 1), at the end (t 
 T ) or in the middle of the sample (t 
 T=2) are considered.

In order to obtain a feasible estimation algorithm one first has to estimate the
parameters of the above state space model. In Doz et al. (2011) the following
procedure is proposed to this end. The PCA procedure gives initial estimates Ozt
for the factors zt ; an estimate OLN D U1$

1=2 for the factor loading matrix and
O	0 D 1

N
tr.U2$2U

0
2/ is an estimate for the variance of the errors uit. (Note that here

Ui ,$i are computed from the sample covariance matrix O	Ny .0/.) Then an AR model
is fitted to the estimated factors Oz1; : : : ; OzT yielding estimates for the AR parameters
a1; : : : ; ap and the covariance matrix of the noise �t . It is shown in Doz et al. (2011)
that (given suitable assumptions) this procedure gives consistent estimates for the
factors (resp. the factor space).

3.2 Estimation of the Dynamic Factors

In order to estimate the dynamic factors "t , see Eq. (5), the concept of averaging
sequences is generalized to the so-called dynamic averaging sequences as follows,
see Forni and Lippi (2001). Let aN .z/ denote a sequence of 1 � N dimensional
filters for which

Z �

��
aN .e�i� /.aN .e�i� //�d� �! 0 for N �!1
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holds. Then by assumption (A.5) the filtered noise aN .z/uNt converges in mean
squares to zero and if aN .z/yNt has a limit then this limit is an element of the space
spanned by the factor process ."t /.

The starting point for the estimation of "t and of the latent variables Oyit is the
dynamic PCA as described in Brillinger (1981, Chap. 9). Let �j .�/ and uj .�/
denote the j-largest eigenvalue of f N

y .�/ and uj .�/ be the corresponding (left)

eigenvector. This means we have f N
y .�/ D

PN
jD1 �j .�/u�

j .�/uj .�/. (Again for
simplicity we do not explicitly notate the dependence of the eigenvectors and
eigenvalues on N .) Note that by assumption (A.4) �j .�/ converges to infinity for
1 � j � q and N ! 1 and that �j .�/ is bounded for j > q. Analogously to the
static PCA then estimates of the factor "t are defined as

O"t D AN .z/yNt
where the (dynamic averaging) filter AN .z/ are computed by

AND
1X

kD�1
aNk zk; .aNk /

�D 
.aN1k/�; : : : ; .aNrk /
�� and aNskD

Z �

��
��1=2
s .�/us.�/e

ik�d�

(15)
Furthermore let

OOyNt D .BN .z//�BN .z/yNt (16)

where

BN .z/ D
1X

kD�1
bNk zk ; .bNk /

� D 
.bN1k/�; : : : ; .bNrk /
�� and bNsk D

Z �

��
us.�/e

ik�d�

(17)
It is proven in Forni and Lippi (2001) that these estimates are consistent for the
factors and for the latent variables. In the paper Forni et al. (2000) a feasible
estimation scheme is constructed based on the above ideas. First the population
spectral density f N

y .�/ is replaced by a consistent estimate, Of N
y .�/ say. From the

eigenvalue decomposition of this estimated spectral density then estimates for the
filter AN and BN are computed as in (15) and (17). In order to get operational
estimates the infinite filters furthermore are approximated by finite order filters of
the form

OAN D
MX

kD�M
OaNk zk and OBN D

MX

kD�M
ObNk zk (18)

where the order M converges to infinity with increasing sample size. Note that
the above filters (and the estimated filters) are in general two sided. This holds in
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particular for the filters related to the latent variables. Therefore these estimates for
the latent variables are not suited for prediction purposes.

At the end of this sub-section we shortly explain the estimation of the covariance
matrix of the latent variables and of the noise which is used in one of the denoising
schemes explained in Sect. 3.1, see Eqs. (13) and (14). The spectral density of the
estimated latent variables, see (16), is equal to

Pr
jD1 �j .�/u�

j .�/uj .�/ and thus the
covariance matrices are estimated through

O	NOy .0/ D
Z �

��

2

4
rX

jD1
�j .�/u

�
j .�/uj .�/

3

5d�

and

O	Nu .0/ D
Z �

��

2

4
NX

jDrC1
�j .�/u

�
j .�/uj .�/

3

5 d�

Of course starting from a sample the eigenvalues and eigenvalues are computed from
an eigenvalue decomposition of an (consistent) estimate of the spectral density f N

y .

4 Structure Theory for the Latent Process

In this and the next section we deal with structure theory for the latent process.
In this idealized setting we assume that the observations have been completely
denoised and we commence from the population spectral density f N

Oy of the latent

variables OyNt , We proceed in three steps

• Spectral factorization
• Construction of a minimal static factor zt
• Construction of a model for the dynamics of .zt / with the dynamic factors "t as

innovations.

4.1 The Spectral Factorization and the Wold Representation
of the Latent Process

The following result is well known (Hannan 1970; Rozanov 1967). Here we omit
the superscriptN if no confusion can arise.

Theorem 1 Every (N � N -dimensional) rational spectral density f Oy of constant
rank q can be factorized as

f Oy.�/ D w.e�i�/w.e�i�/� (19)
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where

w.z/ D
1X

jD0
wj zj ; wj 2 R

N�q

is rational, analytic in jzj � 1 and has rank q for all jzj � 1. Here � denotes the
conjugate transpose. In addition such a w is unique up to post multiplication by
constant orthogonal matrices.

A transfer function matrix w with the above properties is called a stable, miniphase
factor of f Oy . There exist q dimensional white noise ."t / with E"t "0

t D 2�Iq such
that

Oyt D w.z/"t D
1X

jD0
wj "t�j (20)

Now let

w D ulv (21)

where u and v are unimodular polynomial matrices and where l is an N � q-
dimensional, quasi diagonal rational matrix whose .i; i/-th element is of the form
ni .z/=di .z/ where ni , di are coprime and monic polynomials and ni divides niC1
and diC1 divides di . Then (21) is called the Smith McMillan form of w.z/ (Hannan
and Deistler 1988, Chap. 2). As easily seen a particular left inverse of w is

w� D v�1.l 0l/�1l 0u�1 (22)

where w� is rational and has no poles and zeros for jzj � 1. This implies that (20) is
already a Wold representation and the innovations "t in (20) are minimal dynamic
factors.

A transfer function matrix w is called zeroless if all numerator polynomials of
the diagonal elements of l are equal to one. In this case w� is a polynomial matrix.

4.2 Minimal Static Factor

From (4) it is clear that xNt is a static factor, which is not necessarily minimal, as
discussed below. Then

rk E OyNt . OyNt /0„ ƒ‚ …
D	N

Oy
.0/

D rkHNExNt .x
N
t /

0.HN / � n
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and therefore, by (A.6), rk	NOy .0/ is bounded by n, independent of N . This implies

that the rank of 	NOy .0/ is constant from a certainN0 onwards. Let r denote this rank,

i.e. let rk.	NOy .0// D r for all N � N0. Furthermore, we see that also the minimal
static factor zt can be chosen independent of N . Take, for instance, a zt consisting
of the first basis elements in OyNt spanning the space generated by the components of
OyNt in the Hilbert spaceL2. Minimal static factors are unique up to premultiplication
by constant non-singular matrices. They may be obtained via a factorization

	NOy .0/ D LN .LN /0; LN 2 R
N�r ; rk.LN / D r

of the covariance matrix 	NOy .0/ as

zt D
�
.LN /0LN

��1
.LN /0

„ ƒ‚ …
LN�

OyNt (23)

Clearly zt has a rational spectral density of the form

fz.�/ D LN�f N
Oy .L

N�/0

and, for q < r , fz is singular. Note that

zt D LN�wN .z/„ ƒ‚ …
DkN .z/

"Nt D kN .z/"Nt (24)

is a Wold representation of .zt /, because wN�LN zt D "Nt and wN�LN is a causal
transfer function. Thus kN .z/ is a causal miniphase spectral factor of fz. Since
such a spectral factor is unique up to post multiplication by non-singular matrices it
follows that we may chose "t and k independent of N .

Remark A.1 As shown above (A.6) implies that the rank of 	NOy .0/ is bounded. Vice

versa it is easy to see that a bound on the rank of 	NOy .0/ implies (A.6) under our
assumptions (A.1)–(A.5).

4.3 State Space Realizations for the Latent Process
and the Minimal Static Factors

The problem of realization is to find a system for a given transfer function. Here our
focus is on state space systems, for instance for a minimal static factor zt D k.z/"t
we have

xtC1 D Fxt CG"tC1 (25)
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zt D Cxt (26)

where xt is an n-dimensional, say, (minimal) state and F 2 R
n�n, G 2 R

n�q ,
C 2 R

r�n are parameter matrices. We assume minimality (i.e. the system (25), (26)
is controllable and observable), stability, i.e.

j�max.F /j < 1

where �max.F / is an eigenvalue of F of maximum modulus and the miniphase
condition, i.e. that

M.z/ D
�
I � F z �G
C 0

�
(27)

has rank n C q for jzj � 1. Note that the zeros of M.z/ are the zeros of k.z/ D
C.I � F z/�1G as defined via its Smith McMillan form (see Kailath 1980). For
given k a unique state space realization may be obtained, e.g. by echelon forms, see
Deistler et al. (2010).

From this state space realization we immediately get a state space realization for
the latent variables OyNt D LN zt

xtC1 D Fxt CG"tC1 (28)

OyNt D LNC„ƒ‚…
HN

xt D HNxt (29)

This state space system is minimal, stable and miniphase. We also see that due to
our assumptions the state xt , the innovations "t and the matrices F and G may be
chosen independent of N , compare (3) and (4). Only the matrixHN depends onN ,
however note that theHN ’s are nested, i.e. the first N rows ofHNC1 coincide with
HN .

The rational transfer function k.z/ in (24) may be written as a left matrix fraction
k.z/ D a�1.z/b.z/ (Hannan and Deistler 1988, Chap. 2) giving rise to an ARMA
realization

a.z/zt D b.z/"t
where we w.r.o.g. assume that .a.z/; b.z// are left coprime, stable and miniphase.

Alternatively, we may write a right matrix fraction

k.z/ D d.z/c�1.z/

see Forni et al. (2005). This gives rise to a factor representation of OyNt of the form

OyNt D DN.z/�t ; D
N .z/ D LNd.z/ and c.z/�t D "t
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i.e. with a minimal dynamic factor �t which is an AR process and a factor loading
matrixDN .z/ D LNd.z/ which is a finite impulse response filter.

5 Zeroless Transfer Functions and Singular AR Systems

In this section we will show that for the case r > q, generically, the static factor can
be modeled by an AR system. This is important because estimation of AR systems
is much easier compared to the ARMA case.

Let us repeat that a transfer function is called zeroless if all numerator polyno-
mials in l in its Smith McMillan form are equal to one.

Lemma 1 The transfer function w.z/ is zeroless if and only if k.z/ is zeroless.

Proof As is shown in Kailath (1980), w.z/ is zeroless if and only if the associated
M.z/ in (27) has rank nC q for all z 2 C. An analogous statement holds for k.z/
and thus

�
I � F z �G
HN 0

�
D
�
I 0

0 LN

��
I � F z �G
C 0

�
(30)

together with rk.LN / D r yields the desired result. ut
The proof of the theorem below is given in Anderson and Deistler (2008b) and
Anderson et al. (2013). Note that a property is said to hold generically on a given
set, if it holds on an open and dense subset.

Theorem 2 Consider the set of all minimal state space systems .F;G;C / for
given state dimension n, output dimension r and input dimension q, where r > q

holds. Then the corresponding transfer functions are zeroless for generic values of
.F;G;C / 2 R

n�n � R
n�q � R

r�n.

The theorem states, that, in a certain setting, tall transfer functions are generically
zeroless. For simple special cases this is immediate. Consider, e.g., the MA(1) case
for r D 2; q D 1:

z1t D b11"t C b12"t�1
z2t D b21"t C b22"t�1

then the system is zeroless whenever

b11b22 � b12b21 ¤ 0
holds.

We have (see Anderson and Deistler 2008a)

Theorem 3 Let k denote a stable miniphase factor of the spectral density fz of .zt /.
(Remember that such a factor is unique up to post multiplication with non-singular
matrices.) The following statements are equivalent
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1) k is zeroless.
2) There exist a polynomial left inverse k� for k.
3) .zt / is an AR process, i.e.

zt D a1zt�1 C � � � C apzt�p C �t (31)

where

det.I � a1z� � � � � apzp/ ¤ 0 for jzj � 1 (32)

and .�t / is white noise with 	�.0/ D E�t�0
t and rk.	�.0// D q.

Remark A.2 We call an AR system (31) regular if rk.	�.0// D r and singular if
rk.	�.0// < r holds. This means that in the case q < r we have to deal with singular
AR systems. Clearly we may write (31) as

a.z/zt D b"t (33)

where 	".0/ D E"t "0
t D Iq and rk.b/ D q, and where 	�.0/ D bb0 holds.

Remark A.3 Two AR systems .a.z/; b/ and . Na.z/; Nb/ are called observationally
equivalent if their transfer functions a�1.z/b and Na�1.z/ Nb are the same up to post
multiplication by an orthogonal matrix. Let ı.a.z// denote the degree of a.z/. We
assume throughout that the specified degree of a.z/ is given by p, i.e. ı.a.z// � p,
the stability condition (32), and a.0/ D I . Note that our notion of observational
equivalence is based on the stationary solution

zt D a�1.z/b"t

and does not take into account other solutions, compare Deistler et al. (2011).

Proof Let

k D u

	
l

0r�q�q



v

denote the Smith McMillan form of k, where u; v are two unimodular matrices, l
is a q � q diagonal matrix and 0r�q�q denotes a zero matrix of suitable dimension.
The i -th diagonal entry of l is ni .z/=di .z/ where ni , di are coprime and monic
polynomials. The spectral factor k is zeroless if and only if ni D 1 holds for i D
1; : : : ; q.

Clearly

k� D v�1 
 l�1 0
�

u�1
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is a left inverse of k and k� is polynomial if and only if k is zeroless. Note that
this left inverse corresponds to (22). This proves 1)) 2). Conversely, if there exist
a polynomial left inverse, k� say, then k�k D Iq implies k�u1l D v�1 where
u D Œu1; u2� has been partitioned conformingly. This implies ni .z/ ¤ 0 for all z 2 C

and thus k must be zeroless.
Next we define

Nk D u

	
l 0q�r�q

0r�q�q Iq


 	
v 0q�r�q

0r�q�q Ir�q




which gives

zt D k.z/"t D Nk.z/
	
"t
0r�q




and thus

	
"t

0r�q



D Nk�1.z/zt D

	
v�1.z/ 0q�r�q
0r�q�q Ir�q


 	
l�1.z/ 0q�r�q
0r�q�q Iq



u�1.z/zt

If k is zeroless, then Nk�1 is polynomial and premultiplying the above equation with
Nk.0/ yields a stable AR system

Nk.0/ Nk.z/�1„ ƒ‚ …
a.z/

zt D a.z/zt D Nk.0/
	
"t
0r�q




„ ƒ‚ …
�t

D �t

with a.0/ D Ir . Thus 1)) 3).
To prove the converse first note that (see, e.g., Anderson and Deistler 2008b) k

is zeroless if and only if for every left coprime MFD Na�1 Nb D k, the polynomial
matrix Nb is zeroless. If we start with an AR system (33), then for q < r , the
pair .a.z/; b/ is not necessarily left coprime. By a.0/ D I , the greatest common
divisor r.z/ of .a.z/; b/ may be chosen with r.0/ D I and thus extracting such
a common divisor (see Hannan and Deistler 1988; Kailath 1980) we obtain a left
coprime system . Qa.z/; b/ (where b remains the same) and thus, as rk.b/ D q,
k D a.z/�1b D Qa�1.z/b is zeroless. ut

The next theorem (see Anderson et al. 2012a) states that for . Na.z/; b/ non-
necessarily left coprime, there is an observationally equivalent left coprime pair
.a.z/; b/ satisfying the same degree restriction p.

Theorem 4 Every AR system . Na.z/; b/ with ı. Na.z// � p can be transformed to an
observationally equivalent AR system .a.z/; b/ such that ı.a.z// � p and .a.z/; b/
are left coprime.



The Structure of Generalized Linear Dynamic Factor Models 397

6 The Yule–Walker Equations

As is well known and has been stated before, in the usual (regular) case, estimation
of AR systems is much easier than estimation of ARMA systems or state space
systems, because AR systems can be estimated, e.g., by the Yule–Walker equations,
which are linear in the AR parameters, whereas in the ARMA (or state space)
case usually numerical optimization procedures are applied. This also holds for the
singular case and shows the importance of Theorem 2.

The Yule–Walker equations are of the form

.a1; : : : ; ap/�p D .	z.1/; : : : ; 	z.p// (34)

	�.0/ D 	z.0/� .a1; : : : ; ap/.	z.1/; : : : ; 	z.p//
0 (35)

where 	z.j / D EztCj z0
t and

�m D .	z.j � i//i;jD1;:::;m

are the population moments of .zt /. From an estimator Ozt of zt , these second
moments can be estimated and yield a Yule–Walker estimator of .a1; : : : ; ap/ and
	�.0/ via (34) and (35).

As is well known and easy to see, �m for a regular AR process is non-singular for
all m. On the other hand for a singular AR process, premultiplying (31) by a vector
a ¤ 0 such that a	�.0/ D 0 yields a dependence relation between the components
in .z0

t ; z
0
t�1; : : : ; z0

t�p/ and thus �pC1 is singular. However, the matrix �p may be
singular or non-singular. Now (33) may be written in companion form as

0

BBB@

zt
zt�1
:::

zt�pC1

1

CCCA

„ ƒ‚ …
xt

D

0

BBB@

a1 � � � ap�1 ap
I 0
: : :

I 0

1

CCCA

„ ƒ‚ …
F

0

BBB@

zt�1
zt�2
:::

zt�p

1

CCCA

„ ƒ‚ …
xt�1

C

0

BBB@

b

0
:::

0

1

CCCA

„ƒ‚…
G

"t

zt D .I; 0; : : : ; 0/xt
As is well known and easy to see,

�p D Extx0
t

is non-singular if and only if .F;G/ is controllable. For this case, the Yule–Walker
equations (34) and (35) have a unique solution. As shown in Anderson et al. (2012b)
.F;G/ is generically controllable in the parameter space. However, in this context,
the notion of genericity has to be used with care, as it depends on the choice of p.
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If �p is singular, of course the solution of (34) are not unique, where 	�.0/ remains
unique. Because of the linearity the solution set of (34) has an affine structure
in the sense that every row of .a1; : : : ; ap/ is of the form one particular solution
plus the left kernel of �p . Since 	z.j /, j > p are uniquely determined by 	z.k/,
k D 0; : : : ; p the solution set of (34) is the set of all observationally equivalent AR
systems (without imposing the stability condition (32)). The structure of the solution
set has been discussed in Chen et al. (2011). In case of singular �p , uniqueness in
(34) may be achieved by taking the minimum norm solution (see Deistler et al. 2010;
Filler 2010) or by describing column degrees in a(z) (see Deistler et al. 2011).

7 Estimation and Model Selection

Structure theory as described in the previous sections is important for understanding
data driven modeling for GDFMs. In general terms, here, data driven modeling
consists of two main parts, parameter estimation and model selection, where the
latter is performed by estimation of integers such as r or q. We do not treat
estimation (and in particular properties of estimators) in detail here. Let us only
mention that the estimation procedure we have in mind (and we had also in mind in
Deistler et al. 2010) is of the following form:

1. Estimation of the (minimal) dimension r of the static factors zt as well as the
static factor itself using a PCA on 	Ny .0/, as described in Sect. 3.1.

2. Estimate the maximum lag p in the AR system (33) from the given Ozt using an
information criterion and estimate a1; : : : ; ap from the Yule–Walker equations as
described in Sect. 6.
If the estimate of �p is “close to being singular”, a truncation procedure as
described in Deistler et al. (2010) and Filler (2010) or a specification of columns
degrees in a.z/ as in Deistler et al. (2011) may be used.

3. Using the Yule–Walker estimate for the covariance of �t in (31) a PCA is
performed to estimate the dimension of the minimal dynamic factors, as well
as "t itself and thus of b in (33).

Remark A.4 Under a number of additional assumptions, for instance assumptions
guaranteeing that the sample second moments converge to their population counter
parts, the procedure sketched above can be shown to be consistent. There is a
number of alternative procedures available (see, e.g., Doz et al. 2012; Stock and
Watson 2002) and in addition our procedure may be improved, for instance by
iterations.

Remark A.5 Our focus is on data driven modeling of the latent variables. However,
sometimes also noise models, e.g. univariate AR systems for the components of ut ,
are used.
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8 Summary

Forecasting and analysis of high dimensional time series is part of the “big data
revolution” and it is important in many areas of application. GDFMs which have
been proposed slightly more than a decade ago (Forni et al. 2000; Forni and
Lippi 2001; Stock and Watson 2002) are an important tool for this task. In our
contribution we present a structure theory for this model class. In particular we
consider denoising and realization, the latter in the sense of finding a system
representation for the spectral density of the latent variables. The importance of AR
modeling is emphasized. Yule–Walker equations and their solutions are discussed.
Finally an estimation procedure making use of the structure theory is described.
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Forecasting Under Structural Change

Liudas Giraitis, George Kapetanios, Mohaimen Mansur, and Simon Price

Abstract Forecasting strategies that are robust to structural breaks have earned
renewed attention in the literature. They are built on weighted averages downweight-
ing past information and include forecasting with rolling window, exponential
smoothing or exponentially weighted moving average and forecast pooling. These
simple strategies are particularly attractive because they are easy to implement,
possibly robust to different types of structural change and can adjust for breaks
in real time. This review introduces the dynamic model to be forecast, explains
in detail how the data-dependent tuning parameter for discounting the past data is
selected and how basic forecasts are constructed and the forecast error estimated. It
comments on the forecast error and the impact of weak and strong dependence of
noise on the quality of the prediction. It also describes various forecasting methods
and evaluates their practical performance in robust forecasting.

1 Introduction

Dealing with structural change has become one of the most crucial challenges in
economic and financial time series modelling and forecasting. In econometrics,
structural change usually refers to evolution of a parameter of interest of a dynamic
model that makes its estimation and/or prediction unstable. The change can be as
dramatic as an abrupt shift or permanent break caused, for example, by introduction
of a new monetary policy, breakdown of an exchange rate regime or sudden rise in
oil price; or the change can be slow, smooth and continuous induced, for example,
by gradual progress in technology or production. Empirical evidence of structural
change is widespread and well documented. Stock and Watson (1996) investigate
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many US macroeconomic time series and find instability in both univariate and
bivariate relationships. In finance, structural changes are detected in interest rates
(see, e.g., Garcia and Perron 1996; Ang and Bekaert 2002) and stock prices
and returns (see, e.g., Timmermann 2001; Pesaran and Timmermann 2002). Such
structural change or parameter instability has been identified as one of the main
culprits for forecast failures (see Hendry 2000) and, not surprisingly, detection
of breaks and forecast strategies in the presence of breaks have earned a lot of
attention among researchers. Nonetheless, real time forecasting of time series which
are subject to structural change remains to be a critical challenge to date and is often
complicated further by presence of other features of time series such as persistence
(see Rossi 2012).

A natural strategy for forecasting in an unstable environment would be finding
the last change point and using only the post-break data for estimation of a model
and forecasting. However, standard tests of structural breaks are hardly suitable for
real time forecasting, small breaks are difficult to detect, and the amount of post-
break data may be insufficient. Moreover, Pesaran and Timmermann (2007) point
out that a trade-off between bias and forecast error variance implies that it is not
always optimal to use only post-break data, and generally beneficial to include some
pre-break information.

A second line of strategies involves formally modelling the break process itself
and estimating its characteristics such as timing, size and duration. A standard
model of this kind is the Markov-switching model of Hamilton (1989). Clements
and Krolzig (1998), however, demonstrate via a Monte Carlo study that despite the
true data generating process being Markov-switching regime, switching models fail
to forecast as accurately as a simple linear AR(1) model in many instances.

Research on Bayesian methods learning about change-points from past and
exploiting this information as priors in modelling and forecasting continues to
evolve rapidly (see, e.g., Pesaran et al. 2006; Koop and Potter 2007; Maheu and
Gordon 2008). As an alternative to the dilemma of whether to restrict the number
of breaks occurring in-sample to be fixed or to treat it as unknown, a class of the
time-varying parameter (TVP) models arises, which assume that a change occurs
each point in time (see, e.g., Stock and Watson 2007; D’Agostino et al. 2013).

The difficulty in finding a single best forecasting model leads to the idea
of combining forecasts of different models by averaging (see, e.g., Pesaran and
Timmermann 2007; Clark and McCracken 2010).

Robust forecasting approaches have earned renewed attention in the literature.
This class of methods builds on downweighting past information and includes
forecasting with rolling windows, exponential smoothing or exponentially weighted
moving averages (EWMA), forecast pooling with window averaging, etc. These
simple strategies are particularly attractive because they are easy to implement,
possibly robust to different types of structural change and can adjust for breaks
without delay, which is particularly helpful for real time forecasting. On the
downside, a priori selected fixed rate discounting of the old data may prove costly
when the true model is break-free.
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A significant contribution in this respect is due to Pesaran and Timmermann
(2007). These authors explore two strategies: one is selecting a single window
by cross-validation based on pseudo-out-of-sample losses and the other is pooling
forecasts from the same model obtained with different window sizes which should
perform well in situations where the breaks are mild and hence difficult to detect.
The issue of structural change occurring in real time and the challenge it poses for
time series forecasting is partly but systematically addressed in Eklund et al. (2010).
They exploit data-downweighting break-robust methods. One crucial question they
do not answer is how much to downweight older data. The challenge of forecasting
under recent and ongoing structural change has been dealt in a generic setting in
a recent work of Giraitis et al. (2013). Alongside breaks these authors consider
various other types of structural changes including deterministic and stochastic
trends and smooth cycles. They exploit the typical data-discounting robust-to-break
models such as rolling windows, EWMA, forecast averaging over different windows
and various extensions of them. However, they make the selection of the tuning
parameter which defines the discounting weights data-dependent by minimising
the forecast mean squared error. They provide detailed theoretical and simulation
analyses of their proposal and convincing evidence of good performance of methods
with data-selected discount rates when applied to a number of US macroeconomic
and financial time series.

While Giraitis et al. (2013) consider persistence in time series through short
memory autoregressive dependence in noise process, they do not explore the
possibility of long memory which is often considered as a common but crucial
property of many economic and financial series. Mansur (2013) extends the work
of Giraitis et al. (2013) by offering a more complex yet realistic forecasting
environment where structural change in a dynamic model is accompanied by noises
with long range dependence. This adds a new dimension to the existing challenge of
real time forecasting under structural changes. It also contributes to an interesting
and ongoing argument in the econometric literature about possible “spurious”
relationship between long range dependence and structural change and potential
forecasting difficulties this may create. Many researchers argue that presence of
long memory in the data can be easily confused with structural change (see, e.g.,
Diebold and Inoue 2001; Gourieroux and Jasiak 2001; Granger and Hyung 2004;
Kapetanios 2006). This aggravates the already difficult problem of forecasting under
structural change further. Given that it is often difficult to distinguish between the
two, it is desirable to establish forecast methods that are robust to structural change
and also appropriately account for long memory persistence.

The rest of the paper is structured as follows. Section 2 introduces the dynamic
model to be forecast that was proposed and developed in Giraitis et al. (2013) and
Mansur (2013). We discuss in detail how the tuning parameter defining the rate of
downweighting is optimally selected from data and how forecasts are constructed.
Section 3 contains theoretical results and Sect. 4 reviews the forecast strategies and
presents Monte Carlo evidence for evaluation of performance of robust forecast
strategies.
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2 Adaptive Forecast Strategy

Our adaptive forecast strategy aims at out-of-sample forecasting under minimal
structural assumptions. It seeks to adapt to the unknown model and does not involve
model fitting and parameter estimation. Such forecasting introduced in Pesaran
and Timmermann (2007) and Eklund et al. (2010) was subsequently developed by
Giraitis et al. (2013). It considers a simple but general location model given by

yt D ˇt C ut ; t D 1; 2; : : : ; T (1)

where yt is the variable to be forecast, ˇt is a persistent process (“signal”) of
unknown type and ut is a dependent noise. Unlike most of the previous works where
ˇt ’s mainly describe structural breaks, this framework offers more flexibility and
generality in the sense that it does not impose any structure on a deterministic and
stochastic trend ˇt and adapts to its changes, such as structural breaks in the mean.

While Giraitis et al. (2013) specify the noise ut to be a stationary short memory
process, Mansur (2013) explores the possibility of long range dependence in
the noise. Standard definitions in the statistical literature define short memory
as the absolute summability of the auto-covariances 	u.k/ D Cov.ujCk; uj /,P1

kD0 j	u.k/j < 1, and long memory as the slow decay of 	u.k/ � c	k
�1C2d ,

as k increases, for some 0 < d < 1=2 and c	 > 0. Unlike short memory, the
autocorrelations of long memory processes are non-summable.

One can expect the long memory noise process ut to generate substantial amount
of persistence itself, which is a common feature of economic and financial time
series, to be forecast by our adaptive method, and to feed into yt diluting the
underlying model structure. Forecasting perspectives of such persistent series yt ,
undergoing structural change, are of great interest in applications.

The downweighting forecasting method relies simply on a weighted combination
of historical data. A forecast of yt is based on (local) averaging of past values
yt�1,. . . , y1:

Oyt jt�1;H D
t�1X

jD1
wtj;Hyt�j D wt1;H yt�1 C : : :C wt;t�1;H y1 (2)

with weights wtj;H � 0 such that wt1;H C : : :Cwt;t�1;H D 1 and parameterised by a
single tuning parameterH: Two types of weighting schemes are particularly popular
in practice, namely the rolling window and the EWMA. Such forecasting requires
choosing a tuning parameter which determines the rate at which past information
will be discounted. Performance of such forecast methods using a priori selected
tuning parameter is known to be sensitive to the choice of the tuning parameter, see
Pesaran and Pick (2011) and Eklund et al. (2010). Clearly, setting the discounting
parameter to a single fixed value is a risky strategy and unlikely to produce accurate
forecasts if a series is subject to structural change.
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Adaptive Methods Giraitis et al. (2013) advocate a data-dependent selection of
the tuning parameterH and provide theoretical justification on how such a selection
can be optimal. It does not require any particular modelling and estimation of the
structure of ˇt . The data based tuning parameter H is chosen on the basis of in-
sample forecast performance evaluated over a part of the sample. The structure of
the kernel type weights wtj;H is described in what follows.

Their definition requires a kernel functionK.x/ � 0; x � 0 which is continuous
and differentiable on its support, such that

R1
0
K.u/du D 1, K.0/ > 0, and for

some C > 0, c > 0,

K.x/ � C exp.�cjxj/; j.d=dx/K.x/j � C=.1C x2/; x > 0:

For t � 1, H > 0, we set

wtj;H D K.j=H/
Pt�1

sD1 K.s=H/
; j D 1; � � � ; t � 1:

Examples The main classes of commonly used weights, such as rolling window
weights, exponential weights, triangular window weights, etc. satisfy this assump-
tion.

(i) Rolling window weights wtj;H ; j D 1; 2; : : : ::; t � 1; correspond to K.u/ D
I.0 � u � 1/. They are defined as follows:

forH < t , wtj;H D H�1I.1 � j � H/;
for H � t , wtj;H D .t � 1/�1I.1 � j � t � 1/; where I is the indicator

function.
(ii) EWMA weights are defined with K.x/ D e�x; x 2 Œ0;1/: Then, with � D

exp.�1=H/ 2 .0; 1/,
K.j=H/ D �j ; wtj;H D �j =Pt�1

kD1 �k; 1 � j � t � 1:
While the rolling window simply averages the H previous observations, the

EWMA forecast uses all observations y1; � � � ; yt�1, smoothly downweighting the
more distant past. These classes of weights are parameterised by a single parameter
H .

Selection of the Tuning Parameter, H Suppose we have a sample of T obser-
vations y1; : : : ; yT : The one-step-ahead forecast OyTC1jT;H requires to select the
tuning parameter H . Data adaptive selection of H is done by a cross-validation
method using the evaluation sample of in-sample forecasts Oyt jt�1;H , t D T0; � � � ; T
to compute the mean squared forecast error (MSFE),

QT;H WD 1

Tn

TX

tDT0
.yt � Oyt jt�1;H /2;

and then choosing the tuning parameterH which generates the smallest MSFE:
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OH WD arg min
H2IT

QT;H :

Here Tn WD T � T0 C 1 is the length of cross-validation period, T0 is the starting
point and the minimisation interval IT D Œa; Hmax� is selected such that T 2=3 <
Hmax < T0T

�ı with 0 < ı < 1 and a > 0.
Although the adaptive forecast OyTC1jT; OH cannot outperform the best forecast
OyTC1jT;Hopt with the unknown fixed value Hopt minimising the MSE, !T;H WD
E.yTC1 � OyTC1jT;H /2, it is desirable to achieve asymptotic equivalence of their
MSFEs. Giraitis et al. (2013) show that the forecast OyTC1jT; OH of yTC1, obtained

with the data-tuned OH , minimises the asymptotic MSE, !T;H , in H , hence making
the weighted forecast procedure OyTC1jT; OH operational. It is also asymptotically
optimal:

!T; OH D !T;Hopt C o.1/;

and the quantityQT; OH provides an estimate for the forecast error !T; OH :

QT; OH D !T; OH C op.1/:

Giraitis et al. (2013) show that for a number of models yt D ˇt C ut with
deterministic and stochastic trends ˇt and short memory ut ’s,

QT;H D O�2T;u CEŒQT;H � �2u �.1C op.1//; T !1; H !1; (3)

uniformly in H , where �2u D Eu21 and O�2T;u WD T �1
n

PT
jDT0 u2j . They verify that

the deterministic function EŒQT;H � �2u � has a unique minimum, which enables
selection of the optimal data-tuned parameter H that asymptotically minimises the
objective functionQT;H .

3 Theoretical Results

We illustrate the theoretical properties of the weighted forecast OyTC1jT; OH with data

selected tuning parameter OH by two examples of yt D ˇt C ut where ˇt is either a
constant or a linear trend and the noise ut has either short or long memory.

The following assumption describes the class of noise processes ut . We suppose
that ut is a stationary linear process:

ut D
1X

jD0
aj "t�j ; t 2 Z; "j � IID.0; �2" /; E"41 <1: (4)

In addition, we assume that ut has either short memory (i) or long memory (ii).



Forecasting Under Structural Change 407

(i) ut has short memory (SM) property
P1

kD0 j	u.k/j <1, and

s2u WD
1X

kD�1
	u.k/ > 0;

X

k�n
j	u.k/j D o.log�2 n/:

(ii) ut has long memory (LM): for some c	 > 0 and 0 < d < 1=2,

	u.k/ � c	k�1C2d ; k !1:

Cases (i) and (ii) were discussed in Giraitis et al. (2013) and Mansur (2013),
respectively.
Define the weights

wj;H D K.j=H/=
1X

sD1
K.s=H/; j � 1:

In (ii) aT � bT denotes that aT =bT ! 1, as T increases. We write op;H .1/ to
indicate that
supH2IT jop;H .1/j !p 0, while oH.1/ stands for supH2IT joH.1/j ! 0, as
T !1.

3.1 Forecasting a Stationary Process yt

The case of a stationary process yt D � C ut provides an additional illustrative
evidence of the practical use of weighted averaging forecasting. For i.i.d. random
variables yt , the optimal forecast of yTC1 is the sample mean NyT D T �1PT

tD1 yt ,
(rolling window over the period t D 1; � � � ; T ). However, when persistence
increases, for a long memory or near non-stationary process yt , the sample mean
forecast NyT will be outperformed by averaging OyTC1jT; OH D H�1PT

tDTC1�H yt
over the last few observations yTC1�H ; : : : ; yT .

Data based selection of the tuning parameter H allows the selection of the
optimal rolling window widthH even if the structure of yt is not known, providing
a simple and efficient forecasting strategy for persistent stationary process yt . (Such
a strategy extends also for unit root processes, see Giraitis et al. 2013.)

We shall use notation

qu;H WD E
�
u0 �

1X

jD1
wj;Hu�j

�2 � �2u :
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For SM ut , set �2 D
R1
0 K2.x/dx and �0 D K.0/ and define

�SM D s2u.�2 � �0/C �2u �0:

For LM ut , define

�LM D c	

 Z 1

0

Z 1

0

K.x/K.y/jx � yj�1C2ddydx� 2
Z 1

0

K.x/x�1C2d dx
�
:

Theorem 1 Suppose that yt D �Cut ; t � 1, where ut is a stationary linear process
(4), satisfying either SM assumption (i) or LM assumption (ii).
Then, as T !1, for H 2 IT ,

QT;H D O�2T;u C qu;H
�
1C op;H .1/

�
;

!T;H D �2u C qu;H
�
1C oH .1/

�
;

where, as
H !1,

qu;H D �SMH
�1.1C o.1// under (i);

qu;H D �LMH
�1C2d .1C o.1// under (ii):

Theorem 1 implies that QT;H is a consistent estimate of !T;H . The following
corollary shows that the forecast yTC1jT; OH computed with the data-tuned OH has the
same MSE as the forecast yTC1jT;Hopt with the tuning parameterHopt.

Corollary 1 If qu;H reaches its minimum at some finite H0, then

!T; OH D !T;Hopt C op.1/;
QT; OH D !T; OH C op.1/ D �2u C qu;H0 C op.1/:

Remark 1 Corollary 1 implies that the quality of a forecast with the tuning
parameter OH is the same as with the parameter Hopt that minimises the forecast
error !T;H . While OH can be evaluated from the data, Hopt is unknown. Observe
that �SM < 0 and �LM < 0 in view of (5) imply that OH remains bounded when
T increases, so only a few most recent observations will contribute in forecasting.
In turn, whether �SM < 0 or �LM < 0 holds depends on the shape of the kernel
functionK and the strength of dependence in ut .

For example,�LM < 0 holds for the rolling window weights and LM ut ’s. Indeed,
then K.x/ D I.0 � x � 1/, and
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�LM D c	

Z 1

0

Z 1

0

K.x/K.y/jx � yj�1C2ddxdy� 2c	
Z 1

0

K.x/x�1C2d dx

D c	
� Z 1

0

Z 1

0

jx � yj�1C2ddxdy� 2
Z 1

0

x�1C2ddx
�

D 2c	
� Z 1

0

Z x

0

u�1C2ddudx� 1

2d

� D � 2c	

1C 2d < 0:

Thus, the width OH of the rolling window remains finite, as T increases, and the
error of the rolling window forecast is smaller than �2u .

On the contrary, under short memory, property �SM < 0 cannot be produced by
the rolling window weights, because they yield �2 D �0 D 1, and thus �SM D �2u is
always positive. However, for the exponential kernel K.x/ D e�x , x � 0, �SM D
�2u � s2u=2 becomes negative when the long-run variance of ut is sufficiently large:
s2u > 2�

2
u , for example, for an AR(1) model ut with autoregressive parameter greater

than 1=3.

3.2 Forecasting a Trend Stationary Process

When forecasting a process yt D at C ut , that combines a deterministic trend and a
stationary noise ut , it is natural to expect the weighted average forecast to be driven
by the last few observations which is confirmed by theoretical results.

Denote

qˇ;H WD .
1X

jD1
wj;H j /

2; � WD .
Z 1

0

K.x/xdx/2:

Notation qu;H is the same as in Theorem 1.

Theorem 2 Let yt D at C ut ; t D 1; � � � ; T , a ¤ 0, where ut is a stationary linear
process (4), satisfying either SM assumption (i) or LM assumption (ii).
Then, as T !1, for H 2 IT ,

QT;H D O�2T;u C qˇ;H C qu;H C op;H .H2/;

!T;H D �2u C qˇ;H C qu;H C oH.H2/;

where qˇ;H C qu;H D �H2 C o.H2/, as H !1.

Theorem 2 allows us to establish the following basic properties of the forecast
yTC1jT; OH of a trend stationary process yt .
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Corollary 2 Under assumptions of Theorem 2, OH stays bounded:

!T; OH D !T;Hopt C op.1/;
QT; OH D !T; OH C op.1/ D �2u C qˇ;H0 C qu;H0 C op.1/;

where H0 is a minimiser of qˇ;H C qu;H .

In the presence of a deterministic trend the optimal OH will take small values and
the averaging forecast will be based on the last few observations.

4 Practical Performance

4.1 Forecast Methods

We resort to the range of parametric forecast methods analysed in Giraitis et al.
(2013). Their weights are defined as functions of a tuning parameter. They
discount past data and are known to be robust to historical and ongoing structural
changes. For comparison, we consider parametric methods with fixed and data-
dependent discounting parameters. We compare forecasts against a number of
simple benchmark models. In Sect. 2 we have introduced the Rolling window and
EWMA methods.

Rolling Window The weights are flat in the sense that all the observations in the
window get equal weights while the older data get zero weights. The one-step-ahead
forecast Oyt jt�1 is then simply the average of H previous observations. In the tables
we refer to this method as Rolling H: Besides selecting H optimally from data we
use two fixed window methods with H D 20 and 30:

Exponential EWMA Weights The closer the parameter � is to zero the faster is
the rate of discounting and the main weights are concentrated on the last few data
points. The closer � is to 1 the slower is the rate and significant weights are attached
to datum in distant past. In tables this method is denoted as Exponential �. We
consider several fixed value downweighting methods with � D 0:4; 0:6; 0:8; 0:9.
The data-tuned parameter is denoted as O�.

Polynomial Method This uses weights

wtj;H D .t � j /�˛=
�Xt�1

kD1 k
�˛
�
; 1 � j � t � 1; with ˛ > 0:

The past is downweighted at a slower rate than with exponential weights. This
method is referred to as Polynomial ˛: We do not consider any fixed value for ˛
and only report data-dependent downweighting with estimated parameter Ǫ .
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Dynamic Weighting Giraitis et al. (2013) proposed a more flexible extension
of exponential weighting where the weights attached to the first few lags are
not determined by parametric functions, but rather freely chosen along with the
tuning parameter, H . Thus, analogously to an AR process, the first p weights,
w1;w2; : : : ;wp are estimated as additional parameters, while the remaining weights
are functions of H . The weight function is defined as:

Qwtj;H D
�

wj ;
K.j=H/;

j D 1; : : : ; p
j D p C 1; : : : :; t � 1; H 2 IT ; (5)

and the final weights are standardised as wtj;H D Qwtj;H =
�Pt�1

jD1 Qwtj;H

�
to sum to

one. Note that QT is jointly minimised over w1;w2; : : : ;wp and H . We consider a
parsimonious representation by specifying p D 1 and choose exponential kernelK .
We refer to it as Dynamic.

Residual Methods Giraitis et al. (2013) argue that if a time series explicitly allows
for modelling the conditional mean of the process and a forecaster has a preferred
parametric model for it, then it might be helpful to first fit the model and use
the robust methods to forecast the residuals from the model. The original location
model (1) is restrictive and not suitable for conditional modelling and a more generic
forecasting model is therefore proposed to illustrate the approach:

yt D f .xt /C y0
t ; t D 1; 2; : : : :

where yt is the variable of interest, xt is the vector of predicted variables which
may contain lags of yt ; and y0

t is the vector of residuals which are unexplained by
f .xt /. In the presence of structural change, y0

t is expected to contain any remaining
persistence in yt such as trends, breaks or other forms of dependence, and the robust
methods should perform well in such scenario. Forecasts of f .xt / and y0

t are then
combined to generate improved forecasts of yt .

We adopt the widely popular AR(1) process to model the conditional mean which
gives f .xt / D 
yt�1: The residuals y0

t are forecasted using the parametric weights
discussed above. The forecast of ytC1 based on y1; y2; : : : ; yt is computed as OytC1 DO
yt C Oy0

tC1jt; OH : Two versions of the residual methods are considered.

Exponential AR Method In this method the tuning parameter H and the autore-
gressive parameter 
 are jointly estimated by minimising the in-sample MSFE,
QT;H D QT;H
 which is computed by defining y0

t D yt � 
yt�1 and using
exponential weights. We refer to this as Exp: AR:

Exponential Residual Method This is a two-stage method, where the autore-
gressive parameter 
 at yt�1 is estimated by OLS separately from the parameters
associated with forecasting y0

t . It forecasts residuals y0
t D yt � 
yt�1 using

exponential weights producing OH and the forecast Oy0
tC1jt; OH : We refer to it as

Exp: Residual:
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4.1.1 The Benchmark and Other Competitors

Full Sample Mean This benchmark forecast is the average of all observations in the
sample:

Oybenchmark;TC1 D 1

T

TP
tD1
yt :

AR(1) Forecast We include forecasts based on an AR(1) dynamics which is often
considered as a stable and consistent predictor of time series. The one-step-ahead
forecast is given by:

OyTC1jT D O
 yT :

Last Observation Forecast For unit root process a simple yet competitive forecast
is simply ‘no change’ forecast:

OyTC1jT D yT :

Averaging Method Pesaran and Timmermann (2007) advocate a simple robust
method where the one-step-ahead forecast yTC1jT is the average of the rolling
window forecasts OyTC1jT;H obtained using all possible window sizes, H , that
include the last observation:

yTC1jT D
1

T

TP
HD1
OyTC1jT;H ; OyTC1jT;H D 1

H

TP
tDT�HC1

yt :

This method does not require selection of any discount parameter but the min-
imum window size is used for forecasting, which is usually of minor significance.
We refer to this as Averaging.

4.2 Illustrative Examples, Monte Carlo Experiments

Now we turn to the practical justification of the optimal properties of the selection
procedure of H for yt D ˇt C ut , where ˇt is a persistent process (deterministic or
stochastic trend) of unknown type, and ut is a stationary noise term. Our objective
is to verify that the forecast yTC1jT; OH of yTC1 with the optimal tuning parameter OH
produces comparable MSEs to those of the best forecast yTC1jT;H with the fixedH ,
e.g., we use H D 20; 30 for the rolling window and � D 0:4; 0:6; 0:8 and 0:9 for
the exponential weights.
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a b

c d

e f

Fig. 1 Plots of generated series yt D 0:05tC3ut in Ex3 for different noise ut : (a) i.i.d., (b) AR(1)
with � D 0:7, (c) ARFIMA(0,d,0) with d D 0:3, (d) AR(1) with � D �0:7, (e) ARFIMA(1,d,0)
with d D 0:3 and � D 0:7, (f) ARFIMA(1,d,0) with d D 0:3 and � D �0:7

We consider ten data generating processes as in Giraitis et al. (2013):

Ex1: yt D ut : Ex7: yt D 2T �1=2Pt
iD1 vi C 3ut :

Ex2: yt D 0:05t C 5ut : Ex8: yt D 2T �1=2Pt
iD1 vi C ut :

Ex3: yt D 0:05t C 3ut : Ex9: yt D 0:5Pt
iD1 vi C ut :

Ex4: yt D
�

ut ; t � 0:55T
1C ut ; t > 0:55T:

Ex10: yt DPt
iD1 ui :

Ex5: yt D 2 sin.2�t=T /C 3ut :
Ex6: yt D 2 sin.2�t=T /C ut :

In order to get a first-hand idea about the dynamic behaviour of the generated series
yt , it is useful to analyse their plots. Figure 1 shows plots of a trend stationary
process yt of Ex3, for more plots see Mansur (2013). In Ex7 � 9, vi � IID.0; 1/.

4.2.1 General Patterns, Observations, Conclusions

In Ex1, yt is determined by the noise process alone and there is no structural
change. It is not surprising that forecasting an i.i.d. process requires accounting
for a long past and that the benchmark sample mean should perform the best;
see Table 1. Similarly, it is expected that a simple AR.1/ benchmark will be
difficult to outperform when forecasting persistent autoregressive processes. Long-
term dependence can create a false impression of structural change and make prior
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Table 1 Monte Carlo results

Experiments

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10

Exponential � D O� 1.09 0.70 0.44 0.79 0.80 0.25 1.03 0.70 0.21 0.04

Rolling H D OH 1.07 0.69 0.45 0.81 0.80 0.28 1.01 0.70 0.27 0.15

Rolling H D 20 1.04 0.66 0.41 0.76 0.76 0.26 0.98 0.67 0.32 0.27

H D 30 1.03 0.65 0.42 0.77 0.76 0.31 0.97 0.69 0.40 0.37

Exponential � D 0:9 1.04 0.66 0.41 0.75 0.76 0.26 0.97 0.65 0.27 0.19

� D 0:8 1.10 0.69 0.43 0.78 0.80 0.24 1.02 0.67 0.21 0.10

� D 0:6 1.23 0.77 0.47 0.86 0.89 0.26 1.14 0.73 0.20 0.06

� D 0:4 1.41 0.89 0.54 0.98 1.03 0.30 1.30 0.83 0.21 0.05

Averaging 1.00 0.75 0.59 0.85 0.84 0.58 0.97 0.78 0.64 0.62

Polynomial ˛ D Ǫ 1.03 0.73 0.49 0.81 0.82 0.31 0.99 0.70 0.32 0.15

Dynamic 1.16 0.72 0.45 0.81 0.82 0.26 1.08 0.71 0.21 0.05

Exp. AR 1.11 0.73 0.46 0.83 0.83 0.27 1.07 0.72 0.22 0.04

Exp. residual 1.09 0.71 0.47 0.86 0.82 0.32 1.03 0.72 0.25 0.04

Last obs. 1.95 1.23 0.74 1.36 1.44 0.41 1.79 1.14 0.27 0.04

AR.1/ 1.00 0.81 0.60 0.83 0.87 0.38 0.98 0.84 0.31 0.05

T D 200. ut 	 IID.0; 1/. Relative MSFEs of one-step-ahead forecasts with respect to the full
sample mean benchmark

selection of a forecast model difficult. Additional persistence through autoregressive
dependence could make the series closer to unit root. An AR(1) benchmark should
still do well, but as persistence increases the “last observation” forecasts should be
equally competitive.

Both Ex2 and Ex3 introduce linear monotonically increasing trends in yt and
differ only in the size of variance of noise process. Giraitis et al. (2013) argue that
such linear trends may be unrealistic but they can offer reasonable representations of
time series which are detrended through standard techniques such as differencing or
filtering. Moreover, Fig. 1 confirms that the effects of such trends are small enough
to be dominated and muted by the noise processes. While linear trends are visually
detectable for an i.i.d. noise, they become more obscure with increasing persistence.
The panel (e) of Fig. 1 confirms that when short and long memory persistence are
combined, the trends can vanish completely.

The functional form of yt in Ex4 accommodates structural break in the mean.
The break occurs halfway the sample at time t0 D 0:55T . Giraitis et al. (2013) argue
that since the post-break period is greater than

p
T , as required by their theory, the

robust forecasting methods should take into account of such “not-too-recent” breaks
and yield forecasts that are significantly better than the benchmark sample mean.
Their Monte Carlo study confirms their claims. Although the shift in mean can be
well identified in i.i.d. or weak long memory series, it becomes more concealed with
increasing persistence in the noise process. Thus, it is of interest to see how methods
with data-dependent discounting cope with these complex situations.
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The purpose of Ex5 and Ex6 is to introduce smooth cyclical bounded trends as
observed in standard business cycles. Such trends are less likely to be completely
removed from standard detrending and therefore more realistic than a linear
trend. The sample mean benchmark should do poorly, particularly for Ex6 where
oscillation of the trend is wider compared to the variance of the noise process.
Realisations of such processes show that higher persistence can distort shapes of
smooth cycles to substantial extent.

Ex7 and Ex8 accommodate the bounded stochastic trend ˇt ’s and represent
increasingly popular time-varying coefficients type dynamic models. Ex9 considers
unbounded random walk (unit root) process, observed under noise ut . Ex10 analyses
the standard unit root model.
In general, the time series plots of Ex1–10 show that long memory can give
false impression of structural change. Moreover, persistence in the noise processes
induced by long memory or mixture of short and long memory dependence can
confound types of structural changes in a time series. Thus is worth investigating
whether typical robust-to-structural-change methods, such as rolling window and
EWMA methods, can perform well in forecasting in presence of long memory. We
argue that as long as the choice of tuning parameter is data-dependent such methods
can generate forecasts that are comparable to the best possible fixed parameter
forecasts.

4.2.2 Monte Carlo Results

We discuss Monte Carlo results of small sample performance of the adaptive
forecasting techniques in predicting time series yt D ˇt C ut with i.i.d. and long
memory noise ut . In modelling the noise we use the standard normal i.i.d. noise
ut � IID.0; 1/, and we opt to use the long memory ARFIMA.1; d; 0/ model for ut
defined as:

.1 � �L/.1 � L/dut D "t ;

where j�j < 1 is the AR(1) parameter, 0 < d < 1=2 is the long memory parameter
that induces long memory property (ii) and L is the lag operator.

After choosing a starting point � D T � 100, we apply reported methods to con-
struct one-step-ahead forecasts Oyt jt�1;H ; t D �; : : : ; T . We compare performance of
method j with the forecast error

MSFEj D .T � � C 1/�1
XT

tD� . Oy
.j /

t jt�1;H � yt /2

with the benchmark forecast by sample mean Nyt with the forecast error
MSFEsm WD .T � � C 1/�1PT

tD� . Nyt � yt /2 by computing the relative RMSFE D
MSFEj
MSFEsm

: Results for different long memory specifications of the noise processes are
presented in Tables 2 and 3.
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Table 2 Monte Carlo results

Experiments

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10

Exponential � D O� 0.90 0.66 0.42 0.68 0.67 0.21 0.85 0.62 0.19 0.01

Rolling H D OH 0.96 0.75 0.46 0.74 0.73 0.25 0.90 0.69 0.28 0.06

Rolling H D 20 0.97 0.73 0.48 0.79 0.77 0.34 0.92 0.76 0.51 0.30

H D 30 0.98 0.76 0.53 0.83 0.84 0.53 0.94 0.82 0.63 0.45

Exponential � D 0:9 0.89 0.65 0.42 0.68 0.67 0.24 0.84 0.63 0.30 0.10

� D 0:8 0.87 0.64 0.41 0.66 0.65 0.21 0.82 0.60 0.22 0.04

� D 0:6 0.90 0.66 0.45 0.67 0.67 0.21 0.86 0.61 0.19 0.02

� D 0:4 0.98 0.71 0.45 0.72 0.72 0.22 0.91 0.66 0.19 0.01

Averaging 0.96 0.79 0.66 0.85 0.84 0.58 0.93 0.82 0.66 0.53

Polynomial ˛ D Ǫ 0.87 0.65 0.46 0.67 0.66 0.28 0.82 0.63 0.30 0.02

Dynamic 0.89 0.65 0.42 0.67 0.66 0.21 0.83 0.62 0.20 0.01

Exp. AR 0.89 0.66 0.42 0.68 0.67 0.21 0.84 0.62 0.20 0.01

Exp. residual 0.88 0.66 0.43 0.67 0.68 0.25 0.83 0.63 0.22 0.01

Last obs. 1.26 0.90 0.56 0.92 0.93 0.28 1.17 0.83 0.23 0.01

AR(1) 0.85 0.67 0.47 0.67 0.68 0.25 0.81 0.63 0.21 0.01

T D 200. ut 	 ARFIMA.0; 0:3; 0/. Relative MSFEs of one-step-ahead forecasts with respect to
the full sample mean benchmark

Table 3 Monte Carlo results

Experiments

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10

Exponential � D O� 1.01 0.76 0.52 0.76 0.78 0.26 0.95 0.70 0.24 0.02

Rolling H D OH 1.03 0.78 0.53 0.76 0.79 0.28 0.96 0.71 0.30 0.07

Rolling H D 20 1.01 0.75 0.53 0.77 0.78 0.38 0.94 0.76 0.50 0.33

H D 30 1.00 0.78 0.57 0.81 0.84 0.54 0.95 0.82 0.63 0.49

Exponential � D 0:9 1.03 0.76 0.51 0.74 0.77 0.27 0.95 0.69 0.30 0.11

� D 0:8 1.17 0.83 0.55 0.78 0.82 0.26 1.03 0.76 0.24 0.05

� D 0:6 1.35 0.99 0.66 0.93 0.99 0.30 1.26 0.84 0.24 0.03

� D 0:4 1.70 1.26 0.83 1.16 1.24 0.38 1.55 1.05 0.28 0.02

Averaging 1.00 0.81 0.65 0.84 0.85 0.59 0.95 0.83 0.65 0.55

Polynomial ˛ D Ǫ 1.00 0.84 0.62 0.83 0.85 0.34 0.97 0.76 0.33 0.16

Dynamic 0.76 0.55 0.37 0.54 0.55 0.17 0.70 0.51 0.20 0.02

Exp. AR 0.74 0.56 0.38 0.55 0.55 0.17 0.69 0.52 0.19 0.02

Exp. residual 0.74 0.59 0.47 0.61 0.61 0.38 0.71 0.65 0.36 0.03

Last obs. 2.93 2.14 1.43 1.99 2.13 0.65 2.67 1.79 0.45 0.03

AR(1) 0.75 0.83 0.77 0.83 0.82 0.49 0.81 0.84 0.38 0.03

T D 200. ut 	 ARFIMA.1; 0:3; 0/ with � D �0:7. Relative MSFEs of one-step-ahead forecasts
with the full sample mean benchmark
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The columns represent data-generating models Ex1–10 and the rows represent
different forecasting methods. Entries of the tables are MSFE of different methods
relative to sample average, as defined above.

We begin by discussing the results in Tables 1 and 2 which feature i.i.d and
long memory ARFIMA.0; 0:30; 0/ noises. Table 1 records sole dominance of the
benchmark over the competitors when yt D ut which is expected, and gains over
the benchmark when yt has a persistent component ˇt .

In Table 2, RMSFE values below unity suggest that, in general, all the reported
forecasting methods, both with fixed and data-driven discounting, are useful for
processes with moderately strong long memory. Even the simplest case of “no
structural change”, yt D ut reported in the first column Ex1 of Table 2 shows that
forecasts of most of the competing methods, including the rolling-window schemes,
outperform the benchmark of the full-sample average. The gains are, however,
small. Gains over the benchmark are more pronounced when yt has a persistent
componentˇt . Then, even naive “last observation” forecasts are better than the mean
forecast in most of the experiments. Persistence entering yt through long memory ut
requires stronger discounting than for i.i.d. noise ut and using information contained
in the more recent past.

The data-dependent exponential weights do not exactly match the best fixed
value forecast method but are reasonably comparable and are never among the worst
performing methods.

Methods using data-adjusted rolling-window forecast better than methods with
fixed windows of size H D 20 and H D 30 and also outperform the averaging
method of rolling windows advocated by Pesaran and Timmermann (2007). This
justifies the use of data-driven choice of downweighting parameter for rolling
windows.

Overall, comparison of competing forecasting methods in Tables 1 and 2 show
that the full sample AR(1) forecasts are in general very good compared to the
benchmark, but are often outperformed by most of the adaptive data-tuned methods.
Forecasts based on the residual methods are impressive. Among the adaptive robust
forecasting methods the dynamic weighting method, where the weight of the last
observation is optimally chosen from data simultaneously with the exponential
weighting parameter, consistently provides forecasts that are comparable to the
best possible forecasts for all the experiments. The exponential AR method is also
equally competitive.

The advantages of data-based adaptive forecasting methods become clearly evi-
dent when we consider ARFIMA.1; 0:3; 0/ noise ut with a negative AR coefficient
� D �0:7. Table 3 reports the corresponding RMSFEs. Although the full sample
AR(1) forecast consistently beats the benchmark sample mean, it is outperformed by
most of the adaptive forecasting techniques including the rolling window methods.
Notable differences between the results of ARFIMA.1; 0:3; 0/with positive � D 0:7,
which we do not report, and those from models with negative AR coefficient,
are that margins of gains over the benchmark are higher in the former and that
forecasts using data-tuned exponential and rolling-window methods become more
comparable, to AR forecasts, in the latter. For � D �0:7, the data-based selection
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of downweighting, particularly, the dynamic weighting and the exponential AR
weighting are the most dominant predictors. The residual methods also generate
very good forecasts in most of the experiments. Maximum reduction in relative
MSFE of the fixed parameter EWMA methods comes from methods with very
low discounting rates emphasising the necessity of including information of the
more distant past. The optimally chosen exponential weights lead to forecasts that
are comparable to the forecasts generated by the best performing fixed parameter
methods. The “no-change” (Last Observation) forecast is by far the worst reporting
RMSFEs which are mostly much higher than unity.

The Monte Carlo experiments with i.i.d. and long memory time series noise ut
generated by ARFIMA models confirm that accuracy of forecasts varies based on the
degree of persistence and consequently depends on appropriate downweighting of
past observations. The facts that many of the data-tuned discounting always match,
if not outperform, the best forecast with fixed downweighting parameter and that
the optimal rate of discounting cannot be observed in advance, prove the superiority
of data-tuned adaptive forecasting techniques, particularly when facing structural
changes.
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Distribution of the Durbin–Watson Statistic
in Near Integrated Processes

Uwe Hassler and Mehdi Hosseinkouchack

Abstract This paper analyzes the Durbin–Watson (DW) statistic for near-
integrated processes. Using the Fredholm approach the limiting characteristic
function of DW is derived, in particular focusing on the effect of a “large
initial condition” growing with the sample size. Random and deterministic initial
conditions are distinguished. We document the asymptotic local power of DW when
testing for integration.

1 Introduction

In a series of papers Durbin and Watson (1950, 1951, 1971) developed a celebrated
test to detect serial correlation of order one. The corresponding Durbin–Watson
(DW) statistic was proposed by Sargan and Bhargava (1983) in order to test the
null hypothesis of a random walk,

yt D �yt�1 C "t ; t D 1; : : : ; T ; H0 W � D 1 :

Bhargava (1986) established that the DW statistic for a random walk is uniformly
most powerful against the alternative of a stationary AR(1) process. Local power of
DW was investigated by Hisamatsu and Maekawa (1994) following the technique
by White (1958). Hisamatsu and Maekawa (1994) worked under the following
assumptions: (1) a model without intercept like above, (2) a zero (or at least
negligible) starting value y0, (3) serially independent innovations f"tg; and (4)
homoskedastic innovations. Nabeya and Tanaka (1988, 1990a) and Tanaka (1990,
1996) introduced the so-called Fredholm approach to econometrics. Using this
approach, Nabeya and Tanaka (1990b) investigated the local power of DW under
a more realistic setup. They allowed for an intercept and also a linear trend in the
model and for errors displaying serial correlation and heteroskedasticity of a certain
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degree. Here, we go one step beyond and relax the zero starting value assumption.
To this end we adopt the Fredholm approach as well.1

In particular, we obtain the limiting characteristic function of the DW statistic for
near-integrated processes driven by serially correlated and heteroskedastic processes
with the primary focus to reveal the effect of a “large initial condition” growing withp
T , where T is the sample size. This starting value assumption has been picked out

as a central theme by Müller and Elliott (2003), see also Harvey et al. (2009) for a
recent discussion.

The rest of the paper is organized as follows. Section 2 becomes precise on the
notation and the assumptions. The underlying Fredholm approach is presented and
discussed in Sect. 3. Section 4 contains the limiting results. Section 5 illustrates the
power function of DW. A summary concludes the paper. Proofs are relegated to the
Appendix.

2 Notation and Assumptions

Before becoming precise on our assumptions we fix some standard notation. Let
I.�/ denote the usual indicator function, while IT stands for the identity matrix of
size T . All integrals are from 0 to 1 if not indicated otherwise, and w.�/ indicates a
Wiener process or standard Brownian motion.

We assume that the time series observations fyt g are generated from

yt D xt C �t ; �t D � �t�1 C ut ; t D 1; : : : ; T; (1)

where xt is the deterministic component of yt which we restrict to be a constant or a
linear time trend. We maintain that the following conventional assumption governs
the behavior of the stochastic process futg.
Assumption 1 The sequence futg is generated by

ut D
1X

jD0
˛j "t�j with ˛0 D 1 ;

1X

jD0
j˛j j <1 ; a WD

1X

jD0
˛j ¤ 0 ;

while f"tg is a sequence of martingale differences with

plimT!1

1

T

TX

tD1

E
�
"2t jFt�1

� D �2 ; plimT!1

1

T

TX

tD1

E
�
"2t I

�
j"t j >

p
T 	
�
jFt�1

�
D 0,

1Further applications of this approach in a similar context are by Nabeya (2000) to seasonal unit
roots, and by Kurozumi (2002) and Presno and López (2003) to stationarity testing.
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for any 	 > 0, 0 < �2 < 1, and that Ft is the �-algebra generated
by the "s; s � t . Also we let �2u WD limT!1 1

T

PT
tD1 E

�
u2t
�

and !2u WD
limT!1 T �1E

�PT
tD1 ut

�2 D �2a2.
Assumption 2 In model (1) we allow � to be time-dependent and set �T D 1 � c

T

with c > 0, where the null distribution is covered as limiting case (c ! 0).

Assumption 3 For the starting value �0 D � we assume: a) � D op.
p
T / (“small

starting value”), where � may be random or deterministic; b) � D ı
q
!2u=

�
1 � �2T

�

where ı � N


�ıI

�
�2ı D 0

�
; �2ı

�
and independent from futg (“large starting

value”).

Assumption 1 allows for heteroskedasticity of futg. If we assume homoskedas-
ticity, E

�
"2t jFt�1

� D �2, then futg is stationary. Under Assumption 1 an invariance
principle is guaranteed (see, for example, Phillips and Solo 1992). By Assumption 2,
the process f�t g is near-integrated as defined by Phillips (1987). The initial condition
under Assumption 3a) will be negligible as T !1. The effect of initial condition
under Assumption 3b) will not be negligible and the specification of ı, compactly,
covers both random and fixed cases depending on the value of �ı.

We distinguish the model with demeaning from that with detrending using � and
� for the corresponding cases. The test statistics DWj;T (j D �, �) are given by

DWj;T D T

O!2
PT

tD2
�
O�jt � O�jt�1

�2

PT
tD1

�
O�jt
�2 ; (2)

where O�jt are OLS residuals calculated from (1) with O!2 being a consistent estimator
of �2u =!

2
u (see Hamilton 1994, Sect. 10.5, for further discussions).

DWj;T rejects a null hypothesis of � D 1 in favor of � < 1 for too large values.
The critical values are typically taken from the limiting distributions, DWj , which
are characterized explicitly further down,

DWj;T

D! DWj ; j D �; � ;

where
D! denotes convergence in distribution as T !1.
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3 Fredholm Approach

The Fredholm approach relies on expressing limiting distributions as double
Stieltjes integrals over a positive definite kernel K.s; t/ that is symmetric and
continuous on Œ0; 1�� Œ0; 1�.2 Given a kernel, one defines a type I Fredholm integral
equation as

f .t/ D �
Z
K.s; t/ f .s/ ds ;

with eigenvalue � and eigenfunction f . The corresponding Fredholm determinant
(FD) of the kernel is defined as (see Tanaka 1990, Eq. (24))

D.�/ D lim
T!1 det

 
IT � �

T

	
K

�
j

T
;
k

T

�


j;kD1;:::;T

!
: (3)

Further, the so-called resolvent � .s; t I�/ of the kernel (see Tanaka 1990,
Eq. (25)) is

� .s; t I�/ D K .s; t/C �
Z
� .s; uI�/K .u; t/ du : (4)

Those are the ingredients used to determine limiting characteristic functions
following Nabeya and Tanaka (1990a) and more generally Tanaka (1990).3

Let DWj (j D �; �) represent the limit of DWj;T . DW�1
j can be written as

SX D
R fX .t/C n .t/g2 dt for some stochastic process X .t/ and an integrable

function n .t/. Tanaka (1996, Theorem 5.9, p. 164) gives the characteristic function
of random variables such as SX summarized in the following lemma.

Lemma 1 The characteristic function of

SX D
Z
ŒX .t/C n .t/�2 dt (5)

for a continuous function n .t/ is given by

Eei�SX D ŒD .2i�/��1=2 exp

	
i�

Z
n2 .t/ dt � 2�2

Z
h .t/ n .t/ dt



; (6)

2Nabeya (2000, 2001) extend the Fredholm approach to cover a class of discontinuous kernels.
3For a more extensive discussion of integral equations of the Fredholm type, we refer to Hochstadt
(1973) and Kondo (1991).
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where h .t/ is the solution of the following type II Fredholm integral equation

h .t/ D m.t/C �
Z
K .s; t/ h .s/ ds, (7)

evaluated at � D 2i� , K .s; t/ is the covariance of X .t/ ; and m.t/ DR
K .s; t/ n .s/ ds.

Remark 1 Although Tanaka (1996, Theorem 5.9) presents this lemma for the
covariance K .s; t/ of X .t/, his exposition generalizes for a more general case.
Adopting his arguments one can see that Lemma 1 essentially relies on an
orthogonal decomposition of X .t/, which does not necessarily have to be based
on the covariance of X .t/. In particular, if there exists a symmetric and continuous
function C .s; t/ such that

Z
X2 .t/ dt D

Z Z
C .s; t/ dw .s/ dw .t/ ,

then we may find h .t/ as in (7) by solving h .t/ D R
C .s; t/ n .s/ ds C

�
R
C .s; t/ h .s/ ds. This may in some cases shorten and simplify the derivations.

As will be seen in the Appendix, we may find the characteristic function of DW�

resorting to this remark.

4 Characteristic Functions

In Proposition 2 below, we will give expressions for the characteristic func-
tions of DW�1

j (j D �; �) employing Lemma 1. To that end we use that

DW�1
j D

R 

Xj .t/C nj .t/

�2
dt for some integrable functionsnj .t/ and demeaned

and detrended Ornstein–Uhlenbeck processes X� .t/ and X� .t/, respectively, see
Lemma 2 in the Appendix. n� .t/ and n� .t/ capture the effect of the initial condition
whose exact forms are given in the Appendix. Hence, we are left with deriving the
covariance functions of X� .t/ and X� .t/. We provide these rather straightforward
results in the following proposition.

Proposition 1 The covariance functions of X� .t/ and X� .t/ from DW�1
j D

R 

Xj .t/C nj .t/

�2
dt are

K� .s; t/ D K1 .s; t/ � g .t/ � g .s/C !0;
K� .s; t/ D K1 .s; t/C

X8

kD1 
k .s/  k .t/ ;

where K1 .s; t/ D 1
2c



e�cjs�t j � e�c.sCt /� and the functions 
k .s/,  k .s/,

k D 1; 2; : : : ; 8 , and g .s/ and the constant !0 can be found in the Appendix.
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The problem dealt with in this paper technically translates into finding hj .t/ as
outlined in Lemma 1 for Kj .s; t/, j D �; � , i.e. finding hj .t/ that solves a type II
Fredholm integral equation of the form (7). Solving a Fredholm integral equation in
general requires the knowledge of the FD and the resolvent of the associated kernel.
The FD forKj .s; t/ (j D �; �) are known (Nabeya and Tanaka 1990b),but not the
resolvents. Finding the resolvent is in general tedious, let alone the difficulties one
might face finding hj .t/ once FD and the resolvent are known. To overcome these
difficulties, we suggest a different approach to find hj .t/ which follows.4 As we
see from Proposition 1 kernels of the integral equations considered here are of the
following general form

K .s; t/ D K1 .s; t/C
Xn

kD1 
k .s/  k .t/ :

Thus to solve for h .t/ in

h .t/ D m.t/C �
Z
K .s; t/ h .s/ ds, (8)

we let & D p� � c2 and observe that (8) is equivalent to

h00 .t/C &2h .t/ D m00 .t/ � c2m .t/C �
Xn

kD1 bk


 00
k .t/ � c2 k .t/

�
; (9)

with the following boundary conditions

h .0/ D m.0/C �
Xn

kD1 bk k .0/ ; (10)

h0 .0/ D m0 .0/C �
Xn

kD1 bk 
0
k .0/C �bnC1; (11)

where

bk D
Z

k .s/ h .s/ ds, k D 1; 2; : : : ; n and bnC1 D

Z
e�csh .s/ ds. (12)

The solution to (9) can now be written as

h .t/ D c1 cos&t C c2 sin &t C gm .t/C
Xn

kD1 bkgk .t/ (13)

where gk .t/, k D 1; 2; : : : ; n, are special solutions to the following differential
equations

4Nabeya and Tanaka (1988) use a similar method to find the FD of kernel of the general form
K .s; t/ D min .s; t /CPn

kD1 
k .s/  k .t/. See page 148 of Tanaka (1996) for some examples.
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g00
k .t/C &2gk .t/ D �



 00
k .t/ � c2 k .t/

�
, k D 1; 2; : : : ; n;

and gm .t/ is a special solution of

g00
m .t/C &2gm .t/ D m00 .t/ � c2m .t/ :

Using the boundary conditions (10) and (11) together with equations from (12) the
unknowns c1, c2, b1, b2, . . . , bnC1 are found giving an explicit form for (13). The
solution for h .t/ can then be used for the purposes of Lemma 1. It is important to
note that if we replace K1 .s; t/ with any other nondegenerate kernel, the boundary
conditions (10) and (11) need to be modified accordingly.

Using the method described above we establish the following proposition
containing our main results for DWj (j D � ; �).

Proposition 2 For DWj (j D � ; �) we have under Assumptions 1, 2, and 3b)

E
h
ei�DW�1

j

i
D 


Dj .2i�/
��1=2

�
1 � �

2
ı

c



i��j � 2�2�j .� I c/

���1=2
�

exp

(
�2ı


i��j � 2�2�j .� I c/

�

2c � 2�2ı


i��j � 2�2�j .� I c/

�
)
;

where Dj .�/ is the FD of Kj .s; t/ with & D p� � c2,

D� .�/ D e�c

&4



&
�
�� c3� sin & � �c2&2 C 2c�� cos & C 2c�� ;

D� .�/ D e�c

" 
c5 � 4�c2

&4
� 12� .c C 1/

�
c2 C ��

&6

!
sin &

&

C
�
c4

&4
C 8�c3

&6
� 48�

2 .c C 1/
&8

�
cos & C 4�&2c2 .c C 3/C 48�2 .c C 1/

&8



;

and

�� D e�2c

2c2
.�1C ec/ .c � 2ec C cec C 2/ ;

�� D e�c

c4


�4 ��6C c2� � 8 �3C c2� cosh c C c �24C c2� sinh c
�
;

where �j .� I c/ for j D �; � are given in the Appendix.

Remark 2 Under Assumption 3a) the limiting distributions of DWj , j D �, � ,
are the same as the limiting distributions derived under a zero initial condition in
Nabeya and Tanaka (1990b) . These results are covered here when �ı D �2ı D 0.
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Remark 3 The Fredholm determinants,Dj .�/, are taken from Nabeya and Tanaka
(1990b).

Remark 4 It is possible to derive the characteristic functions using Girsanov’s
theorem (see Girsanov 1960) given, for example, in Chap. 4 of Tanaka (1996).
Further, note that Girsanov’s theorem has been tailored to statistics of the form of
DWj under Lemma 1 in Elliott and Müller (2006).

5 Power Calculation

To calculate the asymptotic power function of DWj;T (j D �; �) we need the
quantiles cj;1�˛ as critical values where (j D �; �)

P.DWj > cj;1�˛/ D P
�

DW�1
j < c�1

j;1�˛
�
D ˛ :

Our graphs rely on the ˛ D 5% level with critical values c�;0:95 D 27:35230

and c�;0:95 D 42:71679 taken, up to an inversion, from Table 1 of Nabeya and
Tanaka (1990b). Let 
.� I c/ stand for the characteristic functions obtained in
Proposition 2 for large initial conditions of both deterministic and random cases
in a local neighborhood to the null hypothesis characterized by c. With x D c�1

j;1�˛
we hence can compute the local power by evaluating the distribution function of
DW�1

j where we employ the following inversion formula given in Imhof (1961)

F .xI c/ D 1

2
� 1

�

Z 1

0

1

�
Im


e�i�x
 .� I c/� d� . (14)

When it comes to practical computations, Imhof’s formula (14) is evaluated using a
simple Simpson’s rule while correcting for the possible phase shifts which arise due
to the square root map over the complex domain (see Tanaka 1996, Chap. 6, for a
discussion) .5

Figure 1 shows the local power functions of DWj (j D �; �) for a deterministic
large initial condition, that is for �2ı D 0 in Assumption 3b). As is clear from
Proposition 2, the power function is symmetric around�ı D 0 and decreasing in �2ı
for any level of the local-to-unity parameter c.

For the random case we set �ı D 0. Figure 2 contains graphs for
�ı 2 f0; 0:1; : : : ; 3g; to keep shape conformity with the case of a large deterministic
initial condition the graphs are arranged symmetrically around 0. Figure 2 shows by
how much the power decreases in the variance of the initial condition.

5The inversion formula (14) is derived in Gurland (1948) and Gil-Pelaez (1951).
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Fig. 1 Power function of DWj (j D �; � ) for a large deterministic initial condition with �ı 2
f�3;�2:9; : : : ; 3g, c 2 f0; 1; : : : ; 10g and �ı D 0

3 2 1 0 1 2 3

0
2

4
6

9
10
0

0.2

0.4

0.6

σ
δ

Model with constant mean

c
3 2 1 0 1 2 3

0
2

4
6

9
10
0

0.2

0.4

0.6

σ
δ

Model with linear trend

c

Fig. 2 Power function of DWj (j D �; � ) for a large random initial condition with �ı 2
f3; 2:9; : : : ; 0; 0:1; : : : ; 3g, c 2 f0; 1; : : : ; 10g and �ı D 0

6 Summary

We analyze the effect of a large initial condition, random or deterministic, on
the local-to-unity power of the Durbin–Watson unit root test. Using the Fredholm
approach the characteristic function of the limiting distributions are derived. We
observe the following findings. First, the local power after detrending is consid-
erably lower than in case of a constant mean. Second, a large initial value has a
negative effect on power: the maximum power is achieved for �ı D �ı D 0, which
corresponds to a “small initial condition.” Finally, comparing Figs. 1 and 2 one
learns that deterministic and random initials values have a similar effect depending
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only on the magnitude of the mean or the standard deviation, respectively, of the
large initial condition.

Appendix

First we present a preliminary result. Lemma 2 contains the required limiting
distributions in terms of Riemann integrals.

Lemma 2 Let fyt g be generated according to (1) and satisfy Assumptions 1 and 2.
It then holds for the test statistics from (2) asymptotically

DWj;T

D! DWj D
�Z ˚

wjc .r/
�2
dr

��1
, j D �; � ,

where under Assumption 3b)

w�c .r/ D wc .r/ �
Z

wc .s/ ds;

w�c .r/ D w�c .r/ � 12
�
r � 1

2

�Z �
s � 1

2

�
wc .s/ ds;

with wc .r/ D w .r/ for c D 0 and

wc .r/ D ı .e�cr � 1/ .2c/�1=2 C Jc .r/ for c > 0

and the standard Ornstein–Uhlenbeck process Jc .r/ D
R r
0
e�c.r�s/dw .s/.

Proof The proof is standard by using similar arguments as in Phillips (1987) and
Müller and Elliott (2003).

Proof of Proposition 1

We set & D p� � c2. For DW� we have w�c .s/ D wc .r/ �
R

wc .s/ ds, thus

Cov


w�c .s/ ;w

�
c .t/

� D Cov

	
Jc .s/�

Z
Jc .s/ ds; Jc .t /�

Z
Jc .s/ ds




D K1 .s; t /�
Z

Cov ŒJc .s/ ; Jc .t /� ds �
Z

Cov ŒJc .s/ ; Jc .t /� dt

C
Z Z

Cov ŒJc .s/ ; Jc .t /� ds

D K1 .s; t /� g .t/� g .s/C !0
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where

g .t/ D e�c.1Cs/ .1 � ecs/ .1 � 2ec C ecs/

2c2
;

!0 D �3 � 2c C e
�2c � 4e�c

2c3
.

For DW� we have w�c .s/ D w�c .s/� 12
�
s � 1

2

� R �
u � 1

2

�
wc .u/ du, thus

Cov


w�c .s/ ;w

�
c .t/

� D Cov


w�c .s/ ;w

�
c .t/

� � 12
�
t � 1

2

�Z �
u � 1

2

�

Cov

	
Jc .s/ �

Z
Jc .v/ dv; Jc .u/



du

�12
�
s � 1

2

�Z �
u � 1

2

�
Cov ŒJc .u/ ; Jc .t/

�
Z
Jc .v/ dv



du

C144
�
s � 1

2

��
t � 1

2

�Z Z �
u� 1

2

��
v � 1

2

�

�Cov ŒJc .u/ ; Jc .v/� dudv

D Cov


w�c .s/ ;w

�
c .t/

�

�12
�
t � 1

2

�Z �
u � 1

2

�
Cov ŒJc .s/ ; Jc .u/� du

C12
�
t � 1

2

�Z Z �
u � 1

2

�
Cov ŒJc .v/ ; Jc .u/� dvdu

�12
�
s � 1

2

�Z �
u � 1

2

�
Cov ŒJc .u/ ; Jc .t/� du

C12
�
s � 1

2

�Z Z �
u � 1

2

�
Cov ŒJc .u/ ; Jc .v/� dvdu

C144
�
s � 1

2

��
t � 1

2

�Z Z �
u� 1

2

��
v � 1

2

�

�Cov ŒJc .u/ ; Jc .v/� dudv

With some calculus the desired result is obtained. In particular we have with

1 .s/ D �1, 
2 .s/ D �g .s/, 
3 .s/ D �3f1 .s/, 
4 .s/ D �3 .s � 1=2/, 
5 .s/ D
3!1, 
6 .s/ D 3!1 .s � 1=2/, 
7 .s/ D 6!2 .s � 1=2/, 
8 .s/ D !0,  1 .t/ D g .t/,
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 2 .t/ D  6 .t/ D  8 .t/ D 1,  3 .t/ D  5 .t/ D  7 .t/ D t � 1=2 and  4 .t/ D
f1 .t/ while

f1 .s/ D e�c.1Cs/

c3
� 
2C c C 2cec � .2C c/ e2cs C 2cecCcs .2s � 1/� ;

!1 D e�2c .ec � 1/
c4

� Œ2C c C .c � 2/ ec� ,

!2 D e�2c

c5
�
h
�3 .c C 2/2 � 12c .2C c/ ec C �12c � 9c2 C 2c3 C 12� e2c

i
:

This completes the proof.

Proof of Proposition 2

Let L .X/ D L .Y / stand for equality in distribution of X and Y and set
A D ı .2c/�1=2. To begin with, we do the proofs conditioning on ı. Consider first
DW�. To shorten the proofs for DW� we work with the following representation
for a demeaned Ornstein–Uhlenbeck process given under Theorem 3 of Nabeya and
Tanaka (1990b), for their R.2/1 test statistic, i.e. we write

L

 Z �
Jc .r/�

Z
Jc .s/ ds

� 2
dr

!
D L

�Z Z
K0 .s; t/ dw .t/ dw .s/

�
;

where K0 .s; t/ D 1
2c



e�cjs�t j � e�c.2�s�t /� � 1

c2
p .s/ p .t/ with p .t/ D 1 �

e�c.1�t /. Using Lemma 2, we find that

n� .t/ D A
�
e�ct � 1� �A

Z �
e�ct � 1� dt:

For DW� we will be looking for h� .t/ in

h� .t/ D m� .t/C �
Z
K0 .s; t/ h� .t/ .s/ ds; (15)

where m� .t/ D
R
K0 .s; t/ n� .s/ ds. Equation (15) is equivalent to the following

boundary condition differential equation

h00
� .t/C &2h� .t/ D m00

� .t/ � c2m� .t/C �b1, (16)
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with

h� .1/ D m� .1/� 1

c2
�b1p .1/ ; (17)

h0
� .1/ D m0

� .1/� �e�cb2 � 1

c2
�p0 .1/ b1; (18)

where b1 D
R
p .s/ h� .s/ ds and b2 D

R
ecsh� .s/ ds. Thus have

h� .t/ D c�1 cos&t C c�2 sin&t C g� .t/C b1g1 .t/ ;

where g� .t/ is a special solution to g00
� .t/C&2g� .t/ D m00

� .t/�c2m� .t/ and g1 .t/
is a special solution to g00

1 .t/ C &2g1 .t/ D �. Boundary conditions (17) and (18)
together with h� .t/ imply

c
�
1 cos& C c�1 sin & C

	
g1 .1/C 1

c2
�p .1/



b1 D m� .1/� g� .1/ ;

�c�1 & sin & C c�1 & cos& C
	
1

c2
�p0 .1/C g0

1 .1/



b1 C �e�cb2 D m0

� .1/� g0
� .1/ ;

while expressions for b1 and b2 imply that

c
�
1

Z
p .s/ cos&sdsC c�1

Z
p .s/ sin &sdsC b1

�Z
p .s/ g1 .s/ ds� 1

�

D �
Z
p .s/ g� .s/ ds

c
�
1

Z
ecs cos&sdsC c�1

Z
ecs sin &sdsC b1

Z
ecsg1 .s/ ds� b2

D �
Z
ecsg� .s/ ds

These form a system of linear equations in c�1 , c�2 , b1, and b2, which in turn
identifies them. With some calculus we write

Z
n� .t/ h� .t/ dt D Ae�2c

2c2�&
�

Œ�A .�1C ec/ .2C c C .�2C c/ec/
C2ec �cc�2 � � cec

�
c2c

�
2 � c2c�1 � .�1C c/c�2 &2

��

C2cec �c3c�2 � cc�2 �C c�2 .�1C ec/ � � c2c�1 &
�

cos&

�2cec �c3c�1 � cc�1 �C c�1 .�1C ec/ �C c2c�2 &
�

sin&
�
:
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Solving for c�1 and c�2 we find that they are both a multiple of A, hence

�� .� I c/ D 1

A2

Z
n� .t/ h� .t/ dt,

is free of A. Now with �� D
R
n2� .t/ dt, an application of Lemma 1 results in

E
h
ei�

R fw�c .r/g2dr jı
i
D 
D� .2i�/

��1=2
exp



i�A2�� � 2�2A2�� .� I c/

�
:

As
p
2cA D ı � N

�
�ı; �

2
ı

�
, standard manipulations complete the proof for

j D �.
Next we turn to DW� . Using Lemma 2 we find that

n� .t/ D A
	�
e�ct � 1� �

Z �
e�ct � 1� dt � 12 .t � 1=2/

Z
.t � 1=2/ �e�ct � 1� dt



:

Here we will be looking for h� .t/ in the

h� .t/ D m� .t/C �
Z
K� .s; t/ h� .t/ .s/ ds; (19)

where m� .t/ D
R
K� .s; t/ n� .s/ ds and K� .s; t/ is from Proposition 1. Equa-

tion (19) can be written as

h00
� .t/C&2h� .t/ D m00

� .t/� c2m� .t/C�
X8

kD1 bk


 00
k .t/ � c2 k .t/

�
; (20)

with the following boundary conditions

h� .0/ D m� .0/C �
X8

kD1 bk k .0/ ; (21)

h0
� .0/ D m0

� .0/C �
X8

kD1 bk 
0
k .0/C �b9; (22)

where

bk D
Z

k .s/ h� .s/ ds, k D 1; : : : ; 8 and b9 D

Z
e�csh .s/ ds. (23)

The solution to (20) is

h� .t/ D c�1 cos&t C c�2 sin &t C g� .t/C
X8

kD1 bkgk .t/ (24)
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where gk .t/, k D 1; 2; : : : ; 8, are special solutions to the following differential
equations

g00
k .t/C &2gk .t/ D �



 00
k .t/ � c2 k .t/

�
, k D 1; 2; : : : ; 8;

and g� .t/ is a special solution of g00
� .t/C&2g� .t/ D m00

� .t/�c2m� .t/. The solution
given in (24) can be written as

h� .t/ D c�1 cos&t C c�2 sin &t C g� .t/ � b1 �
&2
� �c

2

&2
.b2 C b6 C b8/ (25)

C .b3 C b5 C b7/ �c2 1� 2t
2&2

C b4�1� 2t
2&2

:

The boundary conditions in (21) and (22) imply

m� .0/� g� .0/ D c�1 C
�

2&2
.�2b1 C b4/

C�
2

�
c2

&2
C 1

�
.�2b2 C b3 C b5 � 2b6 C b7 � 2b8/

m0
� .0/� g0

� .0/ D c�2�� �b1g0 .0/� �
�
c2

&2
C 1

�
.b3 C b5 C b7/

�
�
1

&2
C f 0 .0/

�
�b4 � �b5;

while expressions given under (23) characterize nine more equations. These equa-
tions form a system of linear equations in unknowns c�1 ; c

�
2 ; b1; : : : ; b9, which

can be simply solved to fully identify (25). Let �� D
R
n� .t/

2 dt. Also as for the
constant case we set

�� .� I c/ D 1

A2

Z
n� .t/ h� .t/ dt,

whose expression is long and we do not report here. When solving this integral
we see that �� .� I c/ is free of A. As before we apply Lemma 1 to establish the
following

E
h
ei�

R fw�c .r/g2dr jı
i
D ŒD� .2i�/�

�1=2 exp


i�A2�� � 2�2A2�� .� I c/

�
.

Now, using E
h
ei�

R fw�c .r/g2dri D EE
h
ei�

R fw�c .r/g2dr jı
i
, standard manipulations

complete the proof.
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Testing for Cointegration in a Double-LSTR
Framework

Claudia Grote and Philipp Sibbertsen

Abstract This paper investigates the finite-sample properties of the smooth transi-
tion-based cointegration test proposed by Kapetanios et al. (Econ Theory 22:279–
303, 2006) when the data generating process under the alternative hypothesis is a
globally stationary second order LSTR model. The provided procedure describes
an application to long-run equilibrium relations involving real exchange rates with
symmetric behaviour. We utilise the properties of the double LSTR transition
function that features unit root behaviour within the inner regime and symmetric
behaviour in the outer regimes. Hence, under the null hypothesis we imply no
cointegration and globally stationary D-LSTR cointegration under the alternative.
As a result of the identification problem the limiting distribution derived under
the null hypothesis is non-standard. The Double LSTR is capable of producing
three-regime TAR nonlinearity when the transition parameter tends to infinity as
well as generating exponential-type nonlinearity that closely approximates ESTR
nonlinearity. Therefore, we find that the Double LSTR error correction model has
power against both of these alternatives.

1 Introduction

Ever since the concept of cointegration has been introduced by Granger (1981) and
Engle and Granger (1987), research on cointegrated time series has experienced a
broad expansion. Yet it is still developing and of great importance for economic
applications such as exchange rates and equity indices, cf. Maki (2013) or Zhang
(2013). One of the latest research branches is the extension of cointegration to
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nonlinear dynamics and regime-switching error correction mechanisms. With regard
to the nonlinear cointegration literature, a distinction is drawn between time-varying
cointegration on the one hand, cf. Bierens and Martins (2010) or Shi and Phillips
(2012), and nonlinear adjustment processes on the other hand. Recently, the latter
has been of major interest implying unsteady and unproportional correction of the
disequilibrium error which is why particular attention has been directed towards
testing the existence of nonlinearities, cf. Kapetanios et al. (2006) henceforth
KSS, or Kiliç (2011). Thus, due to the ability to incorporate smooth dynamic
adjustment via smooth transition (STR) functions, STR-models are widely applied
for modelling the disequilibrium error.
Regime-switching cointegration can be considered as an approach that deals with
the combination of nonlinearities and nonstationarities. It combines cointegration
as the global problem and nonlinearity as the local problem, cf. Balke and Fomby
(1997). Depending on the specification, the underlying testing problem can be
formulated as either unit root or linearity against STR cointegration, see also
Dufrénot et al. (2006). First approaches suggested a null hypothesis of no nonlinear
adjustment in a linear cointegration framework and consequently based inference
on a linear error correction model (ECM), cf. Seo (2004) or Nedeljkovic (2011).
Among others KSS established appropriate theoretical foundations for inference
based on a nonlinear ECM. In accordance with these authors it is reasonable to
utilise a test that is designed to have power against the alternative of nonlinear
dynamic adjustment.
The reason why research focus has come to allow nonlinear short-run dynamics in
the adjustment process to deviations from long-run equilibrium relations is, e.g.,
contemporaneous price differentials for a certain good. Since it is acknowledged
that Jevons’s law of one price does not apply intertemporally, researchers have
decided to ease conventional restrictions like the assumption of efficient markets.
For instance, exchange rates under the purchasing power parity in the presence
of transaction costs exemplify the necessity of regime-switching dynamics in
econometrics, compare Taylor et al. (2001) or Taylor (2001).
However, first advances in nonlinear cointegration refer to Balke and Fomby (1997)
who introduced threshold cointegration. According to them error correction requires
the disequilibrium error to exceed a critical threshold, implying that price deviations
between two locations are corrected by arbitrage only when deviations were
sufficiently large. Subsequent extension can be found in Siklos and Granger (1997)
or Chen et al. (2005). For particular contributions with respect to testing see Enders
and Granger (1998), Lo and Zivot (2001) or Hansen and Seo (2002). If the switch is
rather smooth than discrete, STR ECMs, brought forward by, e.g., Taylor and Peel
(2000) or Kiliç (2011), are applied. If the transition between the slowly adjusting
inner regime and the quickly adjusting outer regimes are associated with small and
large price deviations, respectively, an exponential STR ECM should be employed.
If negative and positive deviations are corrected differently, the adjustment process
is subject to asymmetric behaviour. In that case a logistic transition function is just
appropriate for the adjustment process.
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In this paper we propose D-LSTR as an overall generalisation of STR functions.
More precisely this work addresses STR-based nonlinear adjustment processes and
especially a globally stationary Double-LSTR cointegration process with symmetric
behaviour in the outer regimes. The aim is to show that D-LSTR cointegration
has better power than other STR functions. We are especially interested in the
power results compared to KSS’s nonlinear cointegration test based on a globally
stationary exponential-STR cointegration alternative.
The rest of the paper is organised as follows. In Sect. 2 the testing framework for
the t- and F -type test is set up and in Sect. 3 the cointegration tests are introduced.
Section 4 presents the power results and section “Conclusion” concludes.

2 Model Setup

We start with a nonlinear vector error correction model (VECM) as in KSS, derived
from an .n � 1/-vector zt D .z1t ; : : : ; znt/, consisting of I(1) stochastic processes
being given by

�zt D ˛ˇ0zt�1 C G .ˇ0zt�1/C
pX

iD1
� i�zt�i C "t ; with t D 1; : : : ; T: (1)

The first and second terms on the right-hand side represent the linear and nonlinear
error correction term. ˛.n�r/ contains the linear adjustment parameters that describe
the percentaged correction in period t , while ˇ.n�r/ is the cointegrating vector. The
cointegration relation is assumed to be linear which is why the second error correc-
tion term simply underlies a nonlinear transformation according to the insinuated
nonlinear transition function, G .�/. Concerning the specific transition function G .�/
in our testing approach we will go into detail in the ongoing subsection. For some
further explanatory power of the model lagged autocorrelations are included in � ,
depending on the optimal lag order p. The .n � n/ error process "t is iid .0;˙ /
with ˙ being a positive definite matrix. It is assumed that the initial values Z0 

.z�p; : : : ; z0/ are known and A.z/ is given by .1� z/In �˛ˇ0z�Pp

iD1 � i .1� z/zi .
If detA.z/ D 0, then jzj > 1 or z D 1 which implies that the number of unit roots
equals n � r with r being the quantity of cointegration relations.
Since we intent to analyse at most one conditional long-run cointegration relation
the vector zt is decomposed into .yt ; x0

t /
0, the dependent and the explanatory

variable, respectively. The scalar yt is hereby conditioned by xt given the past values
of zt . Hence we obtain

�zt D ˛ut�1 C G .ut�1/C
pX

iD1
� �zt�i C "t ; t D 1; : : : ; T (2)
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whereby the linear cointegration relation is enclosed in

ut D yt � ˇ0
xxt ; (3)

with ˇx � .k � 1/ containing the cointegration parameters and k equal to .n � 1/.

2.1 Double Logistic STR

In our model setup we presume that the switches between regimes are induced by a
second-order logistic STR or double LSTR (D-LSTR) process, originally proposed
by Jansen and Teräsvirta (1996), derived from

G .st I 	; c/ D .1C expf�	.st � c1/.st � c2/g/�1 ; c1 � c2; 	 > 0 :

st is the state variable that causes the switch between regimes. Here st is replaced
by the lagged variable of the cointegration relation’s error ut�1 where the value of
ut�1 determines if the threshold is met or not. The threshold values c1 and c2 are
chosen to be c1 D �pc and c2 D pc assuming that �c1 D c2 holds. Therefore,
G .�/ simplifies to

G .st I 	; c/ D
�
1C expf�	.y2t�1 � cg

��1
; 	 � 0 ; (4)

and a symmetric transition function is obtained. The smoothness parameter 	
determines the gradual changing strength of adjustment for the changes in regimes.
The reason why we propose D-LSTR in contrast to an ESTR function is that the D-
LSTR approach features special properties. Firstly D-LSTR can display symmetric
and stationary behaviour in the outer regimes once ut�1 < �pc or ut�1 >

p
c,

on the one hand. On the other hand, it can display unit root behaviour at the
central regime when �pc < ut�1 <

p
c. Secondly, it is capable of generating

exponential-type nonlinearity that closely approximates ESTR nonlinearity, when
the transition parameter tends to infinity, cf. Sollis (2011), even though the D-LSTR
model does actually not nest an ESTR-model. Contingent on the value of 	 and
due to its special properties the D-LSTR function covers not only exponential-
type nonlinearity for small and moderate 	 but nests 3-regime TAR nonlinearity
for 	 ! 1. Consequently, a self-exciting TAR model is obtained since the state
variable equals the transition variable depending on whether the linear combination
of yt and xt is stationary or not. This means that the switching of the model depends
on the cointegratedness of yt and xt. With respect to the assumptions on c1 and c2
the outer regimes of this self-exciting TAR model are restricted to be identical.
Furthermore, D-LSTR offers more flexibility concerning the range of the nonsta-
tionary regime due to the scaling parameter c, e.g. Kaufmann et al. (2012). In
contrast to D-LSTR a possible drawback of an exponential transition function would
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be that for 	 ! 0 and 	 !1, the model becomes linear, cf. van Dijk et al. (2002).
It should be mentioned that unlike the logistic function the second order logistic
function is not bounded between Œ0; 1�. For finite 	 the D-LSTR function realises
a minimum different from zero, see van Dijk and Franses (2000). In fact, when
	 D 0, the D-LSTR function G .�/ reduces to 0.5 and the model becomes linear. For
this reason, in our testing approach we propose the transition function

G .ut�1I 	; c/ D
h�
1C expf�	.u2t�1 � c/g

��1 � 0:5
i
; 	 > 0 ; (5)

following Teräsvirta (1994), who included �0:5 in order to derive linearity tests. In
our case subtracting 0:5 ensures that there is no cointegration at all and therefore
enables us to test the problem under consideration, what will be issued in an instant.
So far, our partitioned model assembles to

�yt D 
ut�1 C �ut�1
h�
1C expf�	.u2t�1 � c/g

��1 � 0:5
i
C!0�xt

C
pX

iD1
 0
i���zt�i C �t

�xt D
pX

iD1
� xi�zt�i C "xt :

(6)

Under the assumption that 
 D � � 	 with � < 0 the conditional double logistic
STR ECM for�yt and a marginal vector autoregression model for�xt is obtained.
For further assumptions and details on certain parameter constraints see KSS.

2.2 Testing Problem

We want to test no cointegration against the alternative of globally stationary D-
LSTR cointegration. This implies that under the null hypothesis it has to be assured
that there is no cointegration in the process. Nonlinear cointegration is solely
embodied via the transition function (5) and (6), which consequently needs to be
excluded under H0. As G .�/ reduces to 0:5, when 	 D 0, subtracting one half
establishes a feasible null hypothesis. This enables us straightforwardly to formulate
the hypotheses as

H0 W 	 D 0 vs. H1 W 	 > 0

for testing against globally stationary D-LSTR cointegration. Obviously, 	 D 0

implies that � and c are not identified under the Null, referred to as the Davies
(1987) problem. The stationarity properties of ut are determined by the positiveness
of 	 .
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For solving the cointegration problem and in order to test for the nonlinear
cointegration relation we apply the Engle and Granger (1987) residual-based two-
step procedure. At the first stage the residuals Ou D yt � Ǒ xx are estimated via OLS.
At the second stage we expand a first order Taylor series approximation to the STR
function due to the non-identification of � (� and c) in the case of a t-type test
(F -type test). The linearisation leads to

T1.	/ D 0:5C 0:25	.u2t�1 � c/: (7)

It might seem more appropriate to use a Taylor expansion of a higher order
since it captures the symmetric property far better than the line of the first order.
Nevertheless, this implies more terms and, respectively, more restrictions to be
tested, which might result in a loss of power.
Substituting (7) into (6) we obtain the following auxiliary regression

�yt D ı1 Out�1 C ı2 Ou3t�1 C!0�xt C
pX

iD1
 0
i�zt�i C et ; (8)

where we define ı1 
 
 � 0:25�	c and ı2 
 0:25�	 . In accordance with KSS we
assume that 
 D 0 so that a unit root behaviour around the equilibrium can occur.
Imposing 
 D 0 does not influence the F -type test as long as c ¤ 0. For the case
that c D 0 the test reduces to a t-type test.

3 Cointegration Tests

Setting the switch point c equal to zero finds theoretical justification in many
economic and financial applications. Preferably it is utilised in the context of an
ESTR function. However, this leads to the following auxiliary regression for the
t-type test, where ı1 and, respectively, Out�1 cancel out

�yt D ı2 Ou3t�1 C!0�xt C
pX

iD1
 0
i�zt�i C et ;

with the corresponding hypotheses

H0 W ı2 D 0 vs: H1 W ı2 < 0 :

The t-statistic is given by

t D Ou30

�1Q1�y
q
O�2NEC Ou30

�1 Q1 Ou3�1
(9)
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where Ou3�1 D
�Ou30; : : : ; Ou3T�1

�
, Q1 D IT � S.S0S/�1S0, S D �

�X; �Z�1; : : : ;
�Z�p

�
and �y D .�y1; : : : ; �yT /0.

Assuming that c ¤ 0 the auxiliary regression is given by (8). As we have two
restrictions in the F -type test case the corresponding couple of hypotheses for
testing for nonlinear cointegration are given by:

H0 W ı1 D ı2 D 0 vs. H1 W ı1 ¤ 0 or ı2 < 0 :

The F -type statistic has the form

FNEC D .RSS0 � RSS1/=2

RSS1=.T � 3 � p/ ; (10)

where RSS0 is the residual sum of squares obtained by imposing the two restrictions
given under the null hypothesis, ı1 D ı2 D 0 and RSS1 is the residual sum of squares
under the alternative. Since the alternative to a unit root is actually one-sided in the
direction of stable roots, like here ı2 is restricted to be less than zero, it might be
beneficial to take the one-sidedness of the alternative into account. For this purpose,
an approach that incorporates one-sided alternatives can be found in Abadir and
Distaso (2007).
In case of a non-cointegrated relation the series remain nonstationary and hence, the
limiting distribution of both the t-type and the F -type test will be non-standard
under the null hypothesis. Hence, the limiting distributions converge to some
functionals of Brownian motions. By similar arguments as in KSS we derive for
the t-type test

tNEC D

Z
B3dW

rZ
B6d˛

;

and for the F -type test

FNEC D 1

2

	Z
BdW



2
64

Z
B2d˛

Z
B4d˛

Z
B4d˛

Z
B6d˛

3
75

�1 2
64

Z
BdW

Z
B3dW

3
75 ;

where B and W are shorthand notations for

B.˛/ D W.˛/ �Wx.˛/
0
�R 1

0
Wx.˛/Wx.˛/

0d˛
��1 �

�R 1
0

Wx.˛/Wx.˛/d˛
�

where

W.˛/ and Wx.˛/ defined on ˛ 2 Œ0; 1� are independent scalar and k-vector standard
Brownian motions. For a proof hereof see KSS.
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4 Finite-Sample Properties

In order to examine the power results in dependence of the two major parameters 	
and � we conduct a Monte Carlo study. For this purpose, the model is simplified to
a bivariate ECM, where ˇx is assumed to be equal to one and

�yt D ��xt C �ut�1
h�
1C expf�	.u2t�1 � c/g

��1 � 0:5
i
C "t

�xt D �t ; ut D yt � ˇxxt
	
"t
�t



� iid N

�
0;
	
�21 0

0 �22


�
:

The parameter constellations under investigation are the following:

�Df0:5; 1g; �Df�1:0;�0:5;�0:3;�0:1g; 	Df0:8; 1; 2; 1000g; and �2Df1; 4g:

Because 	 does not only determine the smoothness of adjustment but determines
also how present the effect of the nonlinear error correction is, we expect the test
to have power finding a nonlinear cointegration relation, when 	 becomes larger.
Therefore, we vary 	 as is illustrated below, cf. Fig. 1. In accordance with KSS
we investigate the impact of the common factor restriction, � D 1, for serial
correlation in the disturbances. Therefore, we consider different parameter values
for � D f0:5; 1g and also we want to investigate the impact of different signal-to-
noise ratios and vary �22 D f1; 4g.

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ut−1

G
(u

t−
1,

 γ
, c

)=
1

1
+

ex
p (

−
γ (

u t
−12

−
c)

)

γ = 0.8
γ = 1
γ = 2
γ = 1000

Fig. 1 Transition function depending on a varying 	 with a c D 0
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As mentioned before, the codomain for the transition probabilities has been
scaled down to a half and to Œ0:5; 1�, respectively. 	 < 1 are frequently chosen
values in the ESTR context, which is why 	 is set equal to 0.8, compare the squared
line. The triangled and hashed lines show a still very smooth transition whereas the
circled line graphs a very fast transition at 	 D 1;000. Here the speedy transition
results in a 3-regime TAR approximation.
� determines how present the nonlinear cointegration is which is why we expect a
drop in the power for a sinking �. The values for � are taken from KSS.
In the following table the power results for our t- and F -type test are presented.
Additionally we compare these results to a linear cointegration test, wherefore we
conducted the Johansen procedure on the globally stationary D-LSTR process, cf.
Johansen (1988, 1991) in order to discriminate between a nonlinear and a linear
cointegration test. The table provides the power results for all possible combinations
of the before mentioned parameter constellations �2; �; 	; and �. The results are
displayed in Table 1 and Fig. 2.

4.1 Power Results

One can recognise a clear power loss for � > �1 when �2 D 1. In case that �2 D 4
the power loss begins for � > �0:3 for raw and demeaned data and for detrended
data at � > �0:5. A power loss for a sinking magnitude of � is quite plausible as
� < 1 determines how present cointegration is and thus ensures global stationarity.
The power patterns within a particular block of the same kind of data and for the
same � are however alike. Apparently the transition speed does not make a big
difference to the power when 	 varies among f0:8; 1; 2; 1;000g. The power gain for
a faster transition is marginal. This finding might be due to the possibly low amount
of observations in the outer regimes.

It is interesting to observe that the F -type test gains power when the data is
demeaned or detrended whereas the t-type test loses power. Regarding the graphs
in Fig. 2 it can be seen that the power for � D 0:5 dominates the power results
for � D 1 for both tests and all kinds of data sets and moreover, increases with
the variance of the innovations in the regressor x. This finding is analogue to KSS,
where the nonlinear tests have superior power when the common factor restriction
is violated, which is due to the increased correlation with the regression error, see
KSS. As expected Johansen’s linear cointegration test is beaten by the nonlinear
cointegration tests (t and F ) for all different kinds of data sets, see Table 1.
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Fig. 2 Power results for the t - and F -type test for 	 D 1

Conclusion
Our proposed D-LSTR function that nests discontinuous adjustment be-
haviour and is also able to mimic ESTR behaviour has better power than
a comparable linear cointegration test. Even though it can be stated for the
t- and F -type test that there is a significant power drop for the case when
� � �0:3 implying that the cointegration relation is quite weakly present

(continued)
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in the process, we can nevertheless conclude that our extension of the KSS
testing procedure offers reasonable power results. Compared to the t-type test
the F -type test provides even slightly better power results.
In addition to our approach it would be interesting to further discriminate
between different cases for c ¤ 0, what meant a wider inner regime of
nonstationarity.
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Fitting Constrained Vector Autoregression
Models

Tucker McElroy and David Findley

Abstract This paper expands the estimation theory for both quasi-maximum
likelihood estimates (QMLEs) and Least Squares estimates (LSEs) for potentially
misspecified constrained VAR(p) models. Our main result is a linear formula for
the QMLE of a constrained VAR(p), which generalizes the Yule–Walker formula
for the unconstrained case. We make connections with the known LSE formula and
the determinant of the forecast mean square error matrix, showing that the QMLEs
for a constrained VAR(p) minimize this determinant but not the component entries
of the mean square forecast error matrix, as opposed to the unconstrained case. An
application to computing mean square forecast errors from misspecified models is
discussed, and numerical comparisons of the different methods are presented and
explored.

1 Introduction

An extremely popular vector time series model is the Vector Autoregression of order
p, or VAR(p) for short. Constraining a particular coefficient to be zero can affect
the estimation of this model considerably, and is an important tool for assessing
the impact of related series on short-term forecasting. This paper expands the
estimation theory for both quasi-maximum likelihood estimates (QMLEs) and Least
Squares estimates (LSEs) for potentially misspecified constrained VAR(p) models.
Our main result is a linear formula for the QMLE of a constrained VAR(p), which
generalizes the Yule–Walker formula for the unconstrained case; then we connect
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this with the known LSE formula, concluding that the LSEs and QMLEs retain
certain forecasting optimality properties even when the fitted model is misspecified.

The QMLE for a constrained VAR(p) minimizes the Total Innovation Variance
(TIV)—i.e., the determinant of the forecast mean square error matrix—and the
LSE is asymptotically equivalent to the QMLE. Hence, these estimates pro-
vide the best possible parameters—for the given model—with respect to TIV,
even when the model is misspecified. TIV has a long history as an overall
assessment of predictive capacity (Wilks 1932; Whittle 1953), and is closely
connected to the Kullback–Leibler divergence between model and truth; this
determinant, once it is properly scaled, provides the data dependent portion of
the maximized Gaussian likelihood function. The topic has been treated by many
authors (including Akaike 1969, 1974), summarized in Taniguchi and Kakizawa
(2000); also see Maïnassara and Francq (2011).

Another feature of the QMLE for unconstrained VAR(p) models is that the
resulting fitted model is always stable, whereas this need not be true for LSEs.
Opinions vary over the desirability of this trait, as discussed in Lütkepohl (2005).
If the true data process is stationary, then ensuring the stability of our fitted model
is desirable. But if there may be co-integration or explosive behavior present in the
data, then using the QMLEs would be misleading—instead we would prefer to use
LSEs.

These results provide some motivation for considering QMLEs for fitting con-
strained VAR models; given that the formulas are just as simple and fast as the LSEs,
and the properties are quite similar, practitioners may be interested in computing
them. We also note that the same formulas used to compute QMLEs can be used to
determine the pseudo-true values (PTVs) that arise when a misspecified constrained
VAR(p) is fitted [via Whittle estimation or maximum likelihood estimation (MLE)]
to a data process. A PTV is defined informally as that parameter vector (or vectors,
as they may be non-unique) to which estimates converge in probability when
the model is misspecified. Having a quick way to compute PTVs is helpful for
simulation studies of the impact of model misspecification. For example, if one
wanted to gauge the Mean Squared Error (MSE) of forecasting from a misspecified
model, the PTVs could be plugged into the forecast filter, and the resulting forecast
errors determined from analytical calculations (we discuss this application later
in the paper). Since the VAR(p) model is often applied to do forecasting, we
also make some connections between the QMLEs for the constrained VAR(p) and
the unconstrained case, where the estimates are given by the Yule–Walker (YW)
formula. Whereas the YW estimates optimize each entry of the asymptotic one-
step ahead forecast MSE matrix, the PTVs in the constrained case only minimize
the determinant of this matrix, namely the TIV—which is a weaker property. This
suggests that the best we can hope for in the constrained VAR(p) case is to improve
forecast MSE in the entangled sense of TIV; while we may minimize TIV, we may
not be minimizing the diagonal entries of the forecast MSE matrix! This new and
somewhat surprising conclusion is explained in the paper.

Section 2 provides the general theory of the QMLE for constrained VAR
models, with connections to the Yule–Walker equations, and the implications to
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forecasting discussed. These results are compared to known formulas for the LSEs
(Lütkepohl 2005), with the outcome that we can make the same conclusions about
LSEs asymptotically. Section 3 provides numerical illustrations of the LSE, MLE,
and QMLE methods for the bivariate VAR(1), the point being to demonstrate
how forecasting performance diverges between the methods when the model is
misspecified. In this part of the paper we also discuss an application of PTVs to
computing h-step ahead forecast MSE from a misspecified model. A fuller version
of this paper is McElroy and Findley (2013), which contains the proofs of results,
as well as some additional examples.

2 Theoretical Results

In this section we provide a complete theory of QMLE fitting of constrained VAR
models. We begin with some general results about the QMLE method discussed in
Taniguchi and Kakizawa (2000), showing that it is sufficient to optimize the TIV.
Then we specialize to constrained VAR models, providing an exact solution, and
make comparisons to the LSE method.

2.1 General Theory of QMLE

We consider difference stationary processes, and generally follow the treatments of
vector time series in Brockwell et al. (1991), Taniguchi and Kakizawa (2000), and
Lütkepohl (2005). Included in our framework are the popular co-integrated VAR and
VARIMA models used by econometricians, as well as structural VARIMA models.
The formulas also cover the case of more unconventional processes that have long-
range dependence. For notation we use an underline for every matrix, which for the
most part are m �m. The identity matrix is denoted by 1m. Also in general capital
letters refer to composite objects and lowercase letters refer to components (such as
coefficients); Latin letters refer to random variables/vectors, and Greek letters refer
to deterministic quantities (like parameters). Matrix polynomial and power series
functions are defined as A.x/ D Pp

kD0 aj xj with p < 1 or p D 1 as the case
may be. We use B for the backshift operator, which sends a time series back in time:
BXt D Xt�1, working on all components of the vector at once. Then the action of
A.B/ on Xt is understood by linear extension. Also we introduce the following
convenient notation for any matrix power series A.x/: ŒA�j` .x/ D

Pj

kD` akxk .
Let us suppose that the data can be differenced to stationarity by application

of a degree d differencing polynomial �.B/; its application to the observed time
series fXtg yields a covariance stationary time series fWt g, i.e.,�.B/Xt DWt . The
operator �.B/ is referred to as the differencing operator, and in general contains
both stable and unstable elements that are not easily separated. As discussed in
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Lütkepohl (2005), the zeroes of det�.z/ include some on the unit circle of the
complex plane, and the rest outside.

The series fWt g is assumed to be stationary with mean vector m, and we further
suppose that it is purely non-deterministic. Its lag h autocovariance matrix will be
denoted

� .h/ D EŒ.WtCh �m/.Wt �m/0�:

The spectral density matrix of fWtg is denoted by F .�/, and is defined via F .�/ DP1
hD�1 � .h/e�i�h. Hence we have the relation� .h/ D .2�/�1 R ��� F .�/ ei�h d�.

We further assume that F .�/ has full rank for each �, which will ensure that the
forecast error covariance matrix, defined below, is nontrivial; this condition also
implies that

R �
�� log detF .�/ d� > �1.

We will consider any model for fWt g that is invertible, such that a Wold
Decomposition (Brockwell et al. 1991; Reinsel 1996) exists, which means that—
when the model is true—we can write

Wt D mC �.B/At ; (1)

where the series fAt g is mean zero and uncorrelated (but possibly dependent) over
time with positive definite covariance matrix � . Here �.B/ is a causal power
series with coefficient matrices  

k
. By the invertibility assumption, we mean the

assumption that det�.z/ ¤ 0 for jzj � 1 and

Z �

��
log det



�
�
e�i�� � 0 �ei�

��
d� D 0: (2)

Thus ��1.z/ is well defined for jzj � 1. If our model is correct for the data process,
such that (1) holds exactly, then we can write At D �.B/�1 ŒWt �m�, showing
that fAtg is the linear innovations process of fWtg. The filter � .B/�1 is called the
innovations filter of fWt g.

However, in general any model that we propose is misspecified, so we cannot
assume that (1) holds exactly. Let us consider any causal invertible model, i.e., one
with a Wold filter representation ��.B/, such that this Wold filter is parameterized
by a vector � 2 
 associated with the model coefficients, while accounting for
any coefficient constraints. Invertibility means that det��.z/ is nonzero for jzj � 1
for all � 2 
 , where 
 is assumed to be an open convex set. The filter ��.B/

therefore satisfies (2). In this paper we are principally interested in the so-called
separable models, where the parameter � does not depend on our parameterization
of the innovation variance � , the covariance of the putative innovations fAtg; for
the more general treatment of non-separable models, see Taniguchi and Kakizawa
(2000). By specializing to separable models, we can obtain a more focused result.

So assume that � is parameterized separately from the distinct entries of the
model’s innovation covariance matrix. Let � denote the vector vec� , so that �� refers
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to our model’s innovation covariance matrix. We require this matrix to belong to the
set SC of all positive definite matrices. Then the full vector of parameters can be
written as # D Œ� 0; � 0�0, so that the first set of parameters control the Wold filter
��.B/, and the second set of parameters parameterize the innovation covariance
matrix �� . Then the spectral density of this model can be written as

F # .�/ D ��.e
�i�/ �� � 0

�.e
i�/;

and furthermore from (2),

1

2�

Z �

��
log detF #.�/ d� D log det��:

This last expression is guaranteed to be positive, since the matrix belongs to SC.
Now because ��.B/ is invertible, the one-step ahead forecast filter for the

differenced series fWt g is well defined, and is given by B�1Œ� ��
1
1
.B/��.B/

�1,
as described in McElroy and McCracken (2012). The forecast errors when using
such a filter are then given by Et D ��.B/

�1 .Wt � m/, whose covariance results
in the following important matrix:

˝.�/ D E


EtE0

t

� D 1

2�

Z �

��
��.e

�i�/�1 F .�/��.e
i�/

�
d�: (3)

Here � is short for inverse transpose. Note that fEt g may not be exactly a white
noise, because our model is misspecified, or is imperfectly estimated. We label the
above matrix as the Forecast Error Variance (FEV) matrix, denoted by ˝.�/, the
dependence on the parameter � being explicit. Note that the FEV is always positive
definite, because of our assumption that F .�/ has full rank for all � (this can be
weakened to having less than full rank for a set of �s of Lebesgue measure zero,
which allows us to embrace the possibility of co-integration).

It is reasonable to seek models and parameter values � such that the FEV
is minimized in an appropriate sense. Because the diagonal entries of the FEV
represent forecast MSEs, it is plausible to minimize any of these diagonal entries, or
perhaps the trace of˝.�/. Another approach would be to minimize the determinant
of the FEV, although this quantity is difficult to interpret in terms of forecast
performance. Note that det˝.�/ is the TIV defined earlier, and is related to the
Final Prediction Error (FPE) of Akaike (1969), a scaled version of the determinant
of the estimated innovations variance matrix, based upon results of Whittle (1953).
Historically, the work of Akaike (1969) forms the basis for using the FEV
determinant as a fitting criterion for VAR models. Whittle (1953) refers to det˝.�/
as the Total Prediction Variance, adopting terminology from Wilks (1932); we
utilize the term Total Innovation Variance (TIV) instead, to emphasize its connection
to the innovations process. There are many articles that discuss VAR model selection
via the FPE criterion of Akaike (1969), and there have been numerous successful
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applications in industry and econometrics; see Akaike and Kitagawa (1999) for
additional applications.

We now provide a treatment of the connection of QMLE and TIV minimization
for separable models (they need not be VAR at this point, but rather any separable
model with causal invertible Wold representation), which connects Gaussian maxi-
mum likelihood estimation to minimization of the TIV. The Kullback–Leibler (KL)
discrepancy between a true process’ spectrum F and a putative model spectrum F #

is defined via

D .F #; F / D
1

2�

Z �

��
log detF #.�/C tr

n
F # .�/

�1 F .�/
o
d�:

See Taniguchi and Kakizawa (2000) for more exposition. This formula is also
valid when the multivariate periodogram I .�/ D n�1Pn

tD1 Wt e
�i�tPn

tD1 W0
t e
i�t

is substituted for F , yielding D.F #; I /. This quantity is related to �2 times the
multivariate Gaussian log likelihood, and is more convenient to work with in
empirical applications, since no matrix inversions are required for its calculation. In
fact, empirical estimates based on this criterion have similar asymptotic properties to
Gaussian maximum likelihood estimates. The definition of a QMLE is a parameter
#I such that # 7! D.F #; I / is minimized. The definition of a PTV is a parameter
#F such that # 7! D.F #; F / is minimized. The general theory of Taniguchi and
Kakizawa (2000) shows that, under suitable conditions on the process and the model
(requiring the uniqueness of #F ), that QMLEs are consistent and asymptotically
normal for PTVs, and are also efficient when the model is correctly specified. In
this case, the PTVs are identical with the true parameters of the process: since
F 2 fF # W # 2 
 � SCg, there exists some Q# such that F D F Q# , and the
PTVs are identical with this Q# .

Because QMLEs and MLEs are asymptotically equivalent when the underlying
process is Gaussian, PTVs are informative about what parameter estimates are
converging to when models are misspecified; this, along with their asymptotic effi-
ciency under correct model specification—and their relative ease of computation—
motivates interest in QMLEs (and also PTVs). Now the above formula for KL is
general, but in the case of a separable model we have an alternative formula:

D.F #; F / D log det�� C
1

2�

Z �

��
tr
n
��1
� ��.e

�i�/�1 F .�/� 0
�.e

i�/�1
o

D log det�� C tr
n
��1
� ˝.�/

o
: (4)

This derivation uses (3) and an interchange of integration and trace. In fact, this
derivation does not assume any particular model structure for F , so we can also

obtain an alternative formula for D.F #; I / as log det�� C tr
n
��1
�
Ő .�/

o
, where

Ő .�/ is an empirical version of the FEV defined via
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Ő .�/ D 1

2�

Z �

��
��.e

�i�/�1 I .�/ ��.e
i�/

�
d�:

We can then determine the PTVs and QMLEs by the same mathematics: by the
appropriate simplification of the derivation of Magnus and Neudecker (1999, p.
317), for any fixed � 2 
 the FEV matrix ˝.�/ minimizes � 7! D.F �;� ; F / over
all parameterizations such that �� 2 SC. This is appropriate for PTVs; for QMLEs,

we have Ő .�/ minimizing � 7! D.F �;�; I /. Recall that the FEV is in SC by our
full rank assumption on F ; in the case of the QMLEs, the empirical FEV can violate
this only in the trivial case that the data equals the zero vector.1 Then from (4) we
obtain

D
�
F�;vec˝.�/; F

� D log det˝.�/Cm:

This is a concentration of the likelihood, analogously to the procedure with
univariate time series, and relates KL to TIV. If we minimize the above expression
with respect to �, and then compute˝.�/ for that optimal �, then we have produced
the PTV # . Of course, the dimension m is irrelevant to this problem, as is the
presence of the logarithm. Therefore, the PTV �F , which we assume exists uniquely
in 
 , satisfies

�F D arg min
�2
 det˝.�/ �F D vec˝.�F /:

Our parameter space should be taken to be a compact convex subset ˝ of

 � vec .SC/ that contains #F D



� 0
F ; vec0˝.�F /

�0
. In the next section we

will demonstrate the existence and uniqueness of such PTVs for constrained VAR
models. The treatment for QMLEs follows identically: the concentrated empirical
KL equalsm plus the log determinant of the empirical FEV, and hence

�I D arg min
�2
 det Ő .�/ �I D vec˝.�I /:

In summary, we see that the QMLEs and PTVs for � are computed by minimizing
the empirical and theoretical TIVs, respectively, and then plugging these parameters
back into the empirical/theoretical FEV matrix. So whereas the TIV seems to be
a non-intuitive quantity in terms of forecast performance, it is actually the right
objective function if we wish to obtain statistically efficient parameter estimates in
the correct model case. Theorem 3.1.2 of Taniguchi and Kakizawa (2000) gives a

1For any vector a, we have a0 Ő .�/a D .2�n/�1
R �

�� ja0 ��1.e�i�/
Pn

tD1 Wt e
�i�t j2 d�, so that

the expression equals zero iff a0 ��1.e�i�/ �Pn
tD1 Wt e

�i�t D 0 almost everywhere with respect
to �; because both terms in this product are polynomials in e�i�, the condition is equivalent to one
or the other of them being zero. In the one case that a0 ��1.e�i�/ D 0, we at once deduce that a is
the zero vector; in the other case, we have that the discrete Fourier Transform

Pn
tD1 Wt e

�i�t D 0

for almost every �, which can only be true if the data is zero-valued.
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central limit theorem for the QMLEs; also see (3.4.25) in Lütkepohl (2005) for the
special case of a VAR model, assuming the model is correctly specified.

2.2 Constrained Versus Unconstrained VAR Models

2.2.1 Properties of the Unconstrained Case: Full Optimization

The previous subsection treated general separable models. We now focus on
unconstrained VAR models as a further special case. Let 
 be an m � mp
dimensional matrix consisting of the concatenation of the coefficient matrices of
˚.z/ D 1m�

Pp
jD1 
j zj . In terms of the notation of the previous section, � D vec


and ��.B/ D ˚.B/�1. The invertibility assumption given above then dictates
that ˚.z/ must belong to the set ±p of matrix polynomials such that the zeroes
of det˚.z/ satisfy jzj > 1.

It will be convenient to introduce a notation for the transposed autocovariance: let
R1WpC1;1WpC1 denote anm.pC1/ dimensional square matrix, which is block-Toeplitz
with jkth block matrix given by� .k�j / D � 0.j�k/. We can partitionR1WpC1;1WpC1
into its upper left p � p block � .0/ and its lower right mp dimensional block
R2WpC1;2WpC1, which is also block-Toeplitz (and equal to R1Wp;1Wp). The remaining
portions are denotedR1;2WpC1 and R2WpC1;1. Then it can be shown that

˝.�/ D � .0/�
pX

jD1


j
� .�j / �

pX

kD1
� .k/ 
0

k
C

pX

j;kD1


j
� .k � j / 
 0

k

D � .0/� 
 R2WpC1;1 �R1;2WpC1 
0 C 
 R1Wp;1Wp 
0 (5)

Our treatment looks at PTVs, but if we replace the true autocovariances � .h/ by
sample estimates (the inverse Fourier Transforms of the periodogram I ) and write
Ő .�/, we can apply the same mathematics as derived below, and obtain an identical

treatment of QMLEs.
Let us first examine the case of an unconstrained VAR(p) model: we show that the

PTV is the solution to the Yule–Walker (YW) equations (a known result), and also
that the PTV minimizes each entry of the FEV matrix, not merely its determinant,
the TIV (a new result). Noting that by definition �F is a zero of the derivative of the
TIV, we compute it via the chain rule:

@

@�`
det˝.�/ D

X

r;s

˝.r;s/.�/
@˝rs.�/

@�`
:

See Mardia et al. (1979). Here ˝.r;s/ is the co-factor of ˝ , while ˝rs is just the
r; sth entry of the FEV matrix. The chain rule tells us that a sufficient condition for
the gradient of the FPE to be zero is that the gradients of ˝rs are zero. That is,
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it is sufficient to find a solution that optimizes all the coefficient functions of the
FEV. This is a stronger property than just minimizing det˝ , since there might be
solutions that minimize the FPE but do not minimize all of the component functions.
In the case of a VAR(p) this stronger property holds, which is remarkable and useful.
The following result is a slight elaboration, for the perspective of KL discrepancy
minimization, of the results of Whittle (1963) for case of full rank fWt g.
Proposition 1 Let fWtg be stationary and invertible, with full rank spectral density
matrix. Then the PTV Q
 for a fitted VAR(p) satisfies the Yule–Walker equations

pX

jD1
Q

j
� .k � j / D � .k/; 1 � k � p; (6)

or Q
 R1Wp;1Wp D R1;2WpC1. Furthermore, the corresponding polynomial Q̊ .z/ 2 ±p
and �F D vec Q
 uniquely minimizes � 7! det˝.�/, with the FEV given by (5). The
PTV also minimizes � 7! ˝rs.�/ for every 1 � r; s � m. The PTV for the FEV is

��F D ˝.�F / D � .0/�R1;2WpC1 R�1
1Wp;1Wp R2WpC1;1: (7)

A parallel result holds for the QMLEs, in the manner described at the beginning of
this subsection. That is, the sample autocovariances are defined for 0 � h � n � 1
by

O� .h/ D n�1
n�hX

tD1

�
WtCh �W

� �
Wt �W

�0
;

and O� .�h/ D O� 0.h/; it is easily seen that these quantities are related to the
periodogram via

I .�/ D
n�1X

hD�nC1
O� .h/e�ih�:

We assume that p � n � 1. Then the QMLEs satisfy the empirical YW equations,
obtained by replacing � .h/ in (6) by O� .h/, and so forth. Convergence of QMLEs
to PTVs is guaranteed by results in Taniguchi and Kakizawa (2000).

2.2.2 Properties of Optimization for Constrained Models

Now let us consider the case where the VAR model has some constraints. We
next provide an explicit solution for the PTV and QMLE when elements of � are
constrained, which is a novel result.



460 T. McElroy and D. Findley

Note that � D vec
 is the full vector of parameters. If some of these are
constrained, we can write

vec
 D J  C a (8)

for a matrix J that is m2p � r , where r � m2p; here, a is an r-vector. The vector
 consists of all free parameters in 
. Unfortunately, there is no guarantee that the
PTVs/QMLEs for such a constrained VAR will result in a stable model, and we’ve
found through numerical experiments that this can indeed occur. The structure of J
is arbitrary (only that its entries are known quantities, and not parameters), so the
case that multiple entries of 
 are the same can also be entertained by (8). We next
state PTVs and QMLEs for 
 together with �� , with each formula being dependent
on the other—similarly to the OLS solution discussed in Lütkepohl (2005). The
PTV for 
 is still denoted by Q
, but it is computed in terms of the PTV Q , and

�F D vec Q
 D J Q C a. Likewise, Q� D ��F D ˝.�F / by the previous subsection’s
general results. Now we can state our result.

Proposition 2 Let fWtg be stationary and invertible, with full rank spectral density
matrix. Then the PTV . Q ; Q�/ for a fitted constrained VAR(p) with constraints of the
form (8) satisfies

Q D
�
J 0

h
R1Wp;1Wp ˝ Q��1

i
J
�

�1

J 0

nh
R0

1;2WpC1 ˝ Q��1
i

vec.1m/ �
h
R1Wp;1Wp ˝ Q��1

i
a
o

Q� D ˝ .�F / :

Remark 1 The fitted constrained VAR models need not satisfy the Riccati equa-
tions, which take the form � .0/ D 
 R1Wp;1Wp 
0 C � , and hence the resulting fitted
VAR model need not correspond to a stationary process. This phenomenon arises
due to taking unconstrained optimization of the TIV over all  2 R

r , whereas
only some subset of this space, in general, corresponds to stable VAR processes.
It is interesting that enforcing certain kinds of constraints of the type given by (8)
essentially forces the PTVs into a region of instability. The broader problem of
enforcing stability is not studied in this paper.

Remark 2 In general we cannot substitute the formula for Q� into the formula for
Q and simplify, because the algebra is intractable. In the special case that J is the

identity and a D 0 (the unconstrained case), the formula for Q simplifies to

h
R�1
1Wp;1Wp ˝ Q�

i h
R0
1;2WpC1 ˝ Q��1i vec.1m/ D vec

�
R1;2WpC1 R�1

1Wp;1Wp
�
;

which is the YW equation. To solve the coupled system, one could propose initial
guesses (such as the YW solutions) and iteratively solve the formulas on a computer,
hoping for contraction towards the PTV solution pair.

Substituting empirical estimates for the autocovariances, the same mathematics
produces formulas for the QMLEs. The empirical counterpart of the asymptotic
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story is exactly similar. We denote the parameter estimates by

O QMLE D
�
J 0 h OR1Wp;1Wp ˝ O��1

QMLE

i
J
��1

� J 0
nh OR0

1;2WpC1 ˝ O��1
QMLE

i
vec.1m/ �

h OR1Wp;1Wp ˝ O��1
QMLE

i
a
o

O�QMLE D ˝ .�I / ;

and �I D vec O

QMLE

D J O QMLE C a. These estimates need not result in a stable
fitted model (see Sect. 3).

Suppose that the true process is a VAR(p), and we fit a constrained VAR(p)
model. Then the QMLEs and PTVs can be computed iteratively via the formulas of
Proposition 2. In the special case that the true process is a constrained VAR(p) (i.e.,
the specified model is correct), then Wt DPp

jD1 Q
jWt�jC	t and (6) is true. Also,

plugging into (5) yields (7), so that Proposition 1 holds for this case. The formula (7)
for the FEV is the same as would be obtained using the constrained VAR formula,
because the unconstrained model reduces to the constrained model asymptotically.
We can use the empirical version of (7) to estimate the FEV consistently, and
substitute into the formula for O QMLE; however, these estimates are only consistent
for the true parameters under a correct model hypothesis, and need not tend to the
PTVs in the case that the model is wrong. Also see the discussion of the estimation
of the FEV via LSE methodology in Lütkepohl (2005).

A formula for LSEs for the constrained VAR(p) is given in Lütkepohl (2005),
which we translate into our own notation. Omitting mean effects, we let Z be a
pm � .n � p/ dimensional matrix, with columns given by ŒZp;ZpC1; � � � ; Zn�1�
and Zt D ŒW0

t ;W
0
t�1; � � � ;W0

t�pC1�
0. Note that when p is fairly large, some data

is being “thrown away.” Also let W be m � .n � p/ dimensional, given by W D
ŒWpC1;WpC2; � � � ;Wn�.

The method requires some plug-in estimate of the innovation variance, which we
generically denote by O� ; this might be estimated by a separate method, and then
plugged in below, as described in Lütkepohl (2005). The LSE formula for  is then

O LSE D
�
J 0

h
ZZ0 ˝ O��1

i
J
�

�1

J 0

nh
ZW 0 ˝ O��1

i
vec.1m/ �

h
ZZ0 ˝ O��1

i
a
o
:

If we were to plug in the QMLE for the innovation covariance matrix, the similarities
to the QMLE formula are striking. The above formula can be re-expressed in an
equivalent form. Letting vec O


LSE
D J O LSE C a, we find the equivalent expression

J 0 vec
�
O��1 h O


LSE
ZZ0 �W Z0i� D 0:

Now n�1 Z Z0 
 OR1Wp;1Wp and n�1 W Z0 
 OR0
1;2WpC1; the relations would have

been exact, except for some missing terms due to the data that gets thrown away by
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the LSE method. This approximation error is OP .1=n/, and has no impact on the
asymptotic behavior. On the other hand, we can re-express the QMLEs as

J 0 vec
�
O��1

QMLE

h O

QMLE

OR1Wp;1Wp � OR1;2WpC1
i�
D 0:

Notice that the expression in square brackets is identically zero if and only if the
QMLE satisfies the Yule–Walker equations [and when J is the identity—i.e., no
constraints in play—the above equation reduces to (6)]. So, if we use the QMLE for
the innovation variance in the LSE approach—or another estimate that is consistent
for the PTV—then the LSEs are approximate solutions to the above QMLE equation.
This tells us that their asymptotic behavior is the same, so that LSEs obey the same
Central Limit Theorem as the QMLEs, indicated in Taniguchi and Kakizawa (2000),
even when the VAR model is misspecified.

3 Numerical Illustrations

3.1 Finite-Sample Results

For constrained bivariate VAR(1) models, the chief fitting methods are MLE,
QMLE, or LSE. Explicit formulas are given in Sect. 2, which we here implement on
four bivariate VAR(1) processes described below. Let ˚ denote the first coefficient
matrix 


1
, with jkth entry denoted ˚jk. The ˚ matrices for the four examples are

	
1=2 1=3

1=3 1=2


 	
2=3 0

1 1=3


 	
:95 0

1 1=2


 	�:25 :5
�1 1:25



;

and in each case the innovation variance matrix is the identity. All four processes
are stable.

We investigate fitting three models—denoted A, B, and C—to each process
via QMLE and LSE. Model A is the unconstrained VAR(1), while model B has
the constraint that ˚12 D 0, and model C has the constraint that ˚11 D 0. So
model B is a misspecification for the first and fourth processes, while model C is a
misspecification for all four processes. For model A the PTVs correspond to the true
values, but for models B and C they can be quite different due to misspecification.
The PTVs for ˚ , for the four processes, respectively, are

	
:6739 0

1=3 1=2


 	
2=3 0

1 1=3


 	
:95 0

1 1=2


 	
:4244 0

�1 1:25



;
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for model B, and for model C are given by

	
0 :5942

1=3 1=2


 	
0 :5373

0 :6915


 	
0 :4914

0 :9668


 	
0 :1954

:2443 :7721



:

The PTVs for � are in all cases equal to 12; see additional discussion in McElroy and
Findley (2013). These quantities are computed from the formulas of Proposition 2.
We see that all the ˚ PTVs are stable for the first three processes, but is unstable for
model B fitted to the fourth process. However, for model C all PTVs are stable for
all four processes; the double zero for the second and third processes with model C
is quite interesting.

It is interesting to examine the PTVs in the cases of model B and model C, fitted
to the first process. Although these models are misspecified, their misspecification
in some sense chiefly pertains to the forecast performance of the first component of
the bivariate series; actually, their PTVs for the second component of the bivariate
series are correct! That is, utilizing the misspecified models B and C has no impact
on the asymptotic forecast performance of the second component series.

The example given by the fourth process begs the question: how often do unstable
PTV fits arise in practice? We drew a sample of a million bivariate VAR(1) processes
by allowing each entry of ˚ to be an independent normal variable, and found that
34 % of these processes were stable; of those, the proportion having stable PTVs
arising from fitting model B was only 26 %. This indicates that a high proportion
of stable VAR processes may have unstable PTVs when constrained models are
utilized. We next proceeded to simulate from these four processes, fitting all three
models via both QMLE and LSE methodologies. The results are summarized in
Tables 1, 2, 3, and 4. There we present the mean values of the estimates of ˚ ,
computed over 5,000 simulations of the given VAR processes, with sample sizes
of 100, 200, and 400. We also present mean values of the maximum and minimum
absolute eigenvalues of˚ . Only rarely did unstable estimates arise in practice for the
first three processes: this was assessed by computing the proportion of simulations
wherein the maximum eigenvalue exceeded one. This only occurred for the LSE
estimates in the case of sample size 100; the QMLE method always resulted in
stable fits, and the LSE estimates become “increasingly stable” as sample size was
increased. For the fourth process, models A and C produced stable fits in finite
sample, but virtually all the time model B produced an unstable VAR, as expected.

3.2 Gauging Forecast MSE

We now describe an application of the calculation of PTVs. Suppose that we wished
to study the impact of model misspecification on forecast performance, as a function
of an underlying process; see Schorfheide (2005) for motivation and discussion. So
we suppose that the true F is known for the process we are studying, and some
misspecified model is fit to the data. McElroy and McCracken (2012) provides
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expressions for the multi-step forecast error from a misspecified model; the forecast
error process is

�Œ��1.B/�.B/�h�1
0 ��1.B/ WtCh

if we are forecasting h steps ahead. Now the parameter estimates would enter into
the coefficients of � . Asymptotically, these estimates will converge to the PTVs.
The variance of the corresponding error process (where parameter estimates have
converged to the PTVs) is given by

1

2�

Z �

��
Œ��1.z/�.z/�h�1

0 ��1.z/ F .�/��.z/ Œ� 0.z/��.z/�h�1
0 d�:

This matrix depends on the data process in a double fashion: first through F in
the center of the integrand, and again through the PTVs involved in � , which
are previously computed as described in Sect. 3. As an example, consider the
bivariate VAR(1) models A, B, C of the previous subsection, fitted to any of the
first three true processes described above (we ignore the fourth process, because the
forecasting formulas do not apply to unstable model fits). The h-step ahead FEV
matrix simplifies to

� .0/� 
h
1
� .�h/� � .h/ 
0h

1
C 
h

1
� .0/ 
0h

1
:

Observe that this is a symmetric matrix, and its minimal value at h D 1 is given
by the innovation variance matrix � . Into this formula, we would substitute the
appropriate PTVs for 


1
and the true process’ autocovariances for � .h/ and � .0/.

The resulting entries of the FEV matrix are plotted in Fig. 1 with 1 � h � 100,
with matrix entries for the first diagonal in red (solid), the second diagonal in
green (dotted-dashed), and the off-diagonal in blue (dashed). Some of these plots
are identical, which occurs when model B is actually correctly specified.

For the first process, going across the top row of Fig. 1, we note that model A is
correctly specified, and both diagonal entries of the forecast variance matrix are the
same due to symmetry of ˚ . Misspecification, as shown for models B and C of the
top row, has no impact on the second diagonal (dotted-dashed), but increases the first
diagonal (solid) of the MSE matrix for short horizons. The reason for this behavior
is that the PTVs for models B and C are still correct for the second component of
the bivariate series, as mentioned above.

For the second process, both models A and B are correctly specified, and hence
the MSE plots are identical. Now there is a large discrepancy in forecast perfor-
mance between the first component series (solid) and the second (dotted-dashed).
The final panel for model C shows an interesting feature: forecast performance at
low horizons is actually worse than at longer horizons, which can happen for a
misspecified model. The third process has a similar story, although model C fares
competitively in the long run with the correctly specified models.
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Fig. 1 Asymptotic forecast MSE as a function of forecast horizon. In each panel, the entries of
the FEV matrix are plotted, with the first diagonal entry in red (solid), the second diagonal entry in
green (dotted-dashed), and the off-diagonal in blue (dashed). The first row of panels corresponds
to Process 1 of Sect. 3, while the second row of panels corresponds to Process 2 and the third row to
Process 3. The first column of panels corresponds to Model A of Sect. 2, while the second column
of panels corresponds to Model B and the third column to Model C
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Minimax Versions of the Two-Step
Two-Sample-Gauß- and t-Test

Wolf Krumbholz and Ingo Starke

Abstract Let ZG and Zt be the set of all two-step two-sample (TS) Gauß- and
t-tests obeying the classical two-point-condition on the operating characteristic,
respectively. Let further ZG;b � ZG and Zt;b � Zt be the subset of the
corresponding balanced tests. Starke (Der zweistufige Zwei-Stichproben-t-Test,
Logos, Berlin, 2009) developed an algorithm allowing to determine the minimax
versions ı�

b amongZG;b andZt;b having minimal maximal ASN (=Average Sample
Number).

We present for the first time an algorithm allowing to determine the overall
minimax version ı� among ZG . Furthermore, we investigate the magnitude of
the possible reduction of maximal ASN which could be achieved by passing from
the balanced to the overall minimax two-step TS-t-test ı�. These savings on ASN
maximum are compared to the enormous additional effort required by determining
ı� instead of Starke’s ı�

b in the t-test case.

1 Introduction

Vangjeli (2009) and Krumbholz et al. (2012) dealt with two-step variants of the
classical Gauß- and t-test and determined their minimax versions having minimal
maximum of the ASN (=Average Sample Number) among all of these tests obeying
the classical two-point-condition on the operating characteristic (OC).

Starke (2009) dealt with two-step variants of the two-sample-t-test (TS-t-test)
which became a frequently used tool applied in various disciplines covering
econometrics as well as biometrics. He confined himself to investigate only the
so-called balanced case in which both samples on each stage have the same size.
He developed and implemented an algorithm allowing to determine the minimax
version among all balanced two-step TS-t-tests obeying the two-point-condition on
their OC. Various examples show ASN maxima of his two-step minimax versions
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remaining always about 14 % below the constant sample sizes of the corresponding
one-step TS-t-tests. This considerable saving on sample size and sampling costs
yields a strong argument in favour of the two-step testing procedure.

Investigations in Kremer et al. (2009) and Starke (2009) allow to conclude
that the minimax version among all two-step TS-t-tests will always coincide with
the minimax version among either the balanced or one of the three different
close-by balanced two-step TS-t-tests. Thus, in order to determine the minimax
version among all TS-t-tests you have to determine Starke’s minimax version of the
balanced tests as well as the minimax versions of three different close-by balanced
tests. The calculation of each of these tests requires the solving of a rather complex
optimization problem with two integers (fixing the sample sizes on both stages),
three continuous variables (the critical values), and two constraints (the two-point-
condition on the OC). Starke’s algorithm will also work in the close-by balanced
cases. Of course, the OC of the balanced test then has to be substituted by the
OC of the different close-by balanced tests. Starke (2009) developed a constructive
formula, containing a five-dimensional integral, for the OC of the balanced TS-
t-test. We expect seven-dimensional integrals in the corresponding formulas for
the OCs of the close-by balanced TS-t-tests. But these formulas are not known at
present and would have to be determined at first. Unfortunately, these complex OCs
would occur in the most interior loop of the optimization algorithm leading to a
considerable increasing of computing time for each minimax close-by balanced test
in comparison with the minimax balanced test.

In the present paper, we investigate the magnitude of the reduction of the ASN
maximum which may be achieved by passing from the balanced to the overall
minimax TS-t-test. In order to reduce the complexity of our investigations we
decided to substitute the TS-t-tests by the corresponding TS-Gauß-tests. As a
favourable effect the OCs then can be written as one- or three-dimensional integrals
and Starke’s algorithm still works. Furthermore, all results of our investigation carry
over to the TS-t-tests in an obvious manner. At the end of the paper we are able to
give a recommendation concerning the question whether it is reasonable to invest
the described enormous effort to determine the overall minimax version of the TS-t-
test instead of Starke’s balanced minimax version in comparison with the magnitude
of the achievable saving on ASN maximum.

2 Minimax Versions of the Two-Step TS-t-test

Let X and Y be independent characteristics with

X � N .�x; �
2
x/; Y � N .�y; �

2
y /

and unknown variances �2x ; �
2
y > 0. We assume �x D �y and set � D �x D �y and

� D �x � �y
�

: (1)
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We shall deal with one- and two-step versions of the TS-t-test for testing

One-sided case: H0 W � � 0 against H1 W � � �0 (2)

Two-sided case: H0 W � D 0 against H1 W j� j � �0 (3)

for given �0 > 0 and levels ˛; ˇ for the errors of the first and second kind obeying
0 < ˇ < 1 � ˛ < 1. We omit the other one-sided case

H0 W � � 0 against H1 W � � ��0
which is treated completely analogously to (2).

One-step TS-t-test Let X1; : : : ; Xnx and Y1; : : : ; Yny denote independent iid-
samples on X and Y , respectively. Let NX;S2x and NY ; S2y denote the corresponding
sample means and sample variances. The one-step TS t-test ı D .nx; ny; k/ is given
by the test statistic

T .nx; ny/ D
NX � NYq

.nx � 1/ S2x C .ny � 1/ S2y

s
nx ny .nx C ny � 2/

nx C ny (4)

and the decision to acceptH0 iff

One-sided case: T .nx; ny/ � k ; k D tnxCny�2I 1�˛ (5)

Two-sided case: jT .nx; ny/j � k ; k D tnxCny�2I 1� ˛
2

(6)

holds (compare Heiler and Rinne, 1971, p. 96). Here trI	 denotes the 	 -quantile
of the central t distribution with r degrees of freedom. Furthermore, let us denote
the cdf of the noncentral t distribution with r degrees of freedom and noncentrality
parameter a by Fr;a. Then the operation characteristic (OC) of ı D .nx; ny; k/ is
given by:

One-sided case: L.�/ D P�
�
T .nx; ny/ � k

� D FnxCny�2 I a.�/ .k/ (7)

Two-sided case: L.�/ D P�
�jT .nx; ny/j � k

�

D FnxCny�2 I a.�/ .k/ � FnxCny�2I a.�/ .�k/ (8)

with noncentrality parameter

a.�/ D
s

nx ny

nx C ny � (9)
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The critical value k in (5) and (6) was chosen in order to fulfill the requirement
concerning the error of the first kind

L.0/ D 1 � ˛: (10)

The corresponding requirement, concerning the error of the second kind, is

L.�0/ � ˇ: (11)

Because .nx; ny; k/ is not uniquely determined by the so-called two-point-condition
(10) and (11), it seems reasonable to choose among these tests the one fulfilling

nx C ny ŠD min : (12)

It is well known that L.�0/, for given N D nx C ny , takes its minimum if in the
case of even N

nx D ny (13)

and in the case of odd N

jnx � ny j D 1 (14)

hold. Tests ı D .nx; ny; k/ with (13) are denoted as balanced and those with (14) as
close-by-balanced. Thus, the test ı obeying (10)–(12) always comes out to be either
balanced or close-by balanced.

Two-step TS-t-test The two-step TS-t-test is based on the iid-samples

X1; : : : ; Xnx;1 and Y1; : : : ; Yny;1

on the first stage and on the iid-samples

Xnx;1C1; : : : ; Xnx;1Cnx;2 and Yny;1C1; : : : ; Yny;1Cny;2

on the second stage, being independent of the samples on the first stage. We set

NX1 D 1

nx;1

nx;1X

iD1
Xi ; S2x;1 D

1

nx;1 � 1
nx;1X

iD1

�
Xi � NX1

�2

NY1 D 1

ny;1

ny;1X

iD1
Yi ; S2y;1 D

1

ny;1 � 1
ny;1X

iD1

�
Yi � NY1

�2

N1 D nx;1 C ny;1 (15)
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T1 D
NX1 � NY1q

.nx;1 � 1/ S2x;1 C .ny;1 � 1/ S2y;1

s
nx;1 ny;1 .N1 � 2/

N1
(16)

N2 D nx;2 C ny;2 (17)

Nx D nx;1 C nx;2 (18)

Ny D ny;1 C ny;2 (19)

N D N1 CN2 D Nx CNy (20)

D
X D 1

Nx

NxX

iD1
Xi ; S2x D

1

Nx � 1
NxX

iD1

�
Xi�

D
X
�2

D
Y D 1

Ny

NyX

iD1
Yi ; S2y D

1

Ny � 1
NyX

iD1

�
Yi�

D
Y
�2

T D
D
X � D

Yq
.Nx � 1/ S2x C .Ny � 1/ S2y

r
Nx Ny .N � 2/

N
(21)

The two-step TS-t-test

ı D
�
nx;1 ny;1 k1 k2
nx;2 ny;2 k3

�

with nxi ; nyi 2 N.i D 1; 2/I k1; k2; k3 2 RI k1 � k2 is defined by the procedure:

(i) Take the samples on the first stage and determine T1.

One-sided case Two-sided case
if T1 � k1, then acceptH0 if jT1j � k1, then accept H0

if T1 > k2, then acceptH1 if jT1j > k2, then accept H1

if k1 < T1 � k2, then go to (ii) if k1 < jT1j � k2, then go to (ii)

(ii) Take the samples on the second stage and determine T .

One-sided case Two-sided case
if T � k3, then accept H0 if jT j � k3, then accept H0

if T > k3, then accept H1 if jT j > k3, then accept H1
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Of course, in the two-sided case the critical values ki should be nonnegative .i D
1; 2; 3/. If k1 D k2, then ı coincides with the one-step test ı D .nx;1; ny;1; k1/. The
OC of the two-step ZS-t-test

ı D
�
nx;1 ny;1 k1 k2
nx;2 ny;2 k3

�

is defined by:

One-sided case: L.�/ D P�.T1 � k1/ C P�
�
T � k3; k1 < T1 � k2

�

Two-sided case: H.�/ D P�.jT1j � k1/ C P�
�jT j � k3; k1 < jT1j � k2

�
:

The following lemma allows to express the OCH of the two-sided test ı in terms
of the OCs of four different one-sided tests.

Lemma 1 For k1; k2; k3 � 0 let

ı1 D
�
nx;1 ny;1 k1 k2

nx;2 ny;2 k3

�
; ı2 D

�
nx;1 ny;1 �k2 �k1
nx;2 ny;2 k3

�

ı3 D
�
nx;1 ny;1 k1 k2
nx;2 ny;2 �k3

�
; ı4 D

�
nx;1 ny;1 �k2 �k1
nx;2 ny;2 �k3

�

be one-sided TS-t-tests. Let Li be the OC of ıi .1 � i � 4/. Then

H.�/ D P�
�jT1j � k1

� C L1.�/C L2.�/� L3.�/ �L4.�/ (22)

holds.

Proof Completely analogously to the proof of Lemma 1 in Krumbholz et al. (2012).

Remark A.1 The calculation of L.�/ for only one � is difficult because the noncen-
tral-t-distributed variables T1 and T are dependent. For the balanced case

nx;1 D ny;1 ; nx;2 D ny;2 (23)

Starke determined in Sect. 3.2 of Starke (2009) a constructive formula allowing to
write the main term

P�
�
T � k3; k1 < T1 � k2/

of L.�/ as a five-dimensional integral. He derived this formula by help of the total
probability decomposition and the independence of the normal-and �2-distributed
variables
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Ui D pnx;i
NXi � �x
�

; Vi D pny;i
NYi � �y
�

.i D 1; 2/

and

Wi D nx;i � 1
�2

S2x;i C
ny;i � 1
�2

S2y;i .i D 1; 2/:

Here NX2; NY2; S2x;2; S2y;2 are calculated analogously to NX1; NY1; S2x;1; S2y;1 from the
samples on the second stage. A corresponding formula for L.�/ in the general case
is not available so far. Starke’s method will lead to a seven-dimensional integral for
the main term of L.�/. The same will hold for the close-by balanced cases

nx;1 D ny;1 ; jnx;2 � ny;2j D 1 (24)

jnx;1 � ny;1j D 1 ; nx;2 D ny;2 (25)

and

nx;1 D ny;1 C 1; nx;2 D ny;2 � 1 _ nx;1 D ny;1 � 1; nx;2 D ny;2 C 1: (26)

In the following we call a balanced TS-t-test with (23) a test of type 1 and
close-by balanced tests with (24),. . . , (26) tests of type 2,. . . ,type 4, respectively.
For given parameter �0 and error levels ˛; ˇ, the two-point-condition (10) and (11)
of the one-step test is replaced by

One-sided case: L.0/ � 1 � ˛ ; L.�0/ � ˇ (27)

Two-sided case: H.0/ � 1 � ˛ ; H.�0/ � ˇ (28)

in the two-step case. Let Z denote the set of all TS-t-tests obeying (27) or (28). The
ASN of a TS-t-test

ı D
�
nx;1 ny;1 k1 k2
nx;2 ny;2 k3

�

is given by:

One-sided case: Nı.�/ D N1 CN2 P�
�
k1 < T1 � k2

�
(29)

Two-sided case: Nı.�/ D N1 CN2 P�
�
k1 < jT1j � k2

�
: (30)

We define

Nmax.ı/ D max
�

Nı.�/ (31)
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and call the test ı� 2 Z with

Nmax.ı
�/ D min

ı2Z Nmax.ı/ (32)

the minimax version of the two-step TS-t-test.

Remark A.2 Starke (2009) developed and implemented an algorithm allowing to
determine the one-sided as well as the two-sided minimax version ı�

1 of the balanced
two-step TS-t-tests. ı�

1 is given by

Nmax.ı
�
1 / D min

ı2Z1
Nmax.ı/ (33)

with Z1 denoting the set of all two-step TS-t-tests of type 1 according to (23)
fulfilling the two-point-condition (27) or (28).

In the following example for a typical constellation of ˛; ˇ and �0

– the balanced one-step TS-t-test,
– the minimax version ı�

1 of the balanced two-step TS-t-test

are determined. Furthermore, the corresponding Two-Sample-Gauß-Tests
(TS-Gaußtests) are determined. These TS-Gaußtests are obtained from the TS-t-
tests by replacing all the sample variances occurring in the test statistics (3), (14)
and (19) by the now known �2. Figure 1 shows the ASN-curves of these tests.

Example 0.1 ˛ D 0:05 ˇ D 0:10 �0 D 0:70
(i) One-sided case

(a) One-step
Balanced TS-t-test � D �36; 36; 1:6669�
Balanced TS-Gaußtest �G D

�
35; 35; 1:6449

�

Fig. 1 ASN of the one-sided (left) and two-sided (right) tests for ˛ D 0:05; ˇ D 0:10; �0 D 0:70
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(b) Two-step

Balanced TS-t-test ı�
1 D

�
23 23 0:7304 1:9989

16 16 1:7249

�

with Nmax .ı
�
1 / D 60:9306

Balanced TS-Gaußtest ı�
1;G D

�
22 22 0:7371 1:9374

18 18 1:7352

�

with Nmax .ı
�
1;G/ D 60:2574

(ii) Two-sided case

(a) One-step
Balanced TS-t-test � D �44; 44; 1:9879�
Balanced TS-Gaußtest �G D

�
44; 44; 1:9600

�

(b) Two-step

Balanced TS-t-test ı�
1 D

�
28 28 0:8917 2:3185

18 18 2:0145

�

with Nmax .ı
�
1 / D 74:8320

Balanced TS-Gaußtest ı�
1;G D

�
28 28 1:0400 2:2511

20 20 2:0299

�

with Nmax .ı
�
1;G/ D 74:3570

Remark A.3 The Nmax.ı
�
1 /-value in Example 0.1 remains in the one-sided case

15.37 % and in the two-sided case 14.96 % below the constant sample size nx C ny
of the corresponding one-step test �. Various examples showed down the line
corresponding savings about 14 %. Furthermore, we always observed ASN-maxima
taking their values in the one-sided and two-sided case in the interval .0; �0/ and
.��0; �0/, respectively. This shows that the Nmax-criterion comes out to be not too
pessimistic.

Because of Z1 � Z we get Nmax .ı
�
1 / � Nmax.ı

�/. Thus, the two-step
balanced minimax test must not coincide with the two-step overall minimax test.
For i D 2; 3; 4 let Zi be the set of all two-step close-by balanced TS-t-tests of type
i according to (24)–(26) which obey the two-point-condition (27) or (28). The test
ı�
i 2 Zi with

Nmax.ı
�
i / D min

ı2Zi
Nmax.ı/ (34)

is called the minimax version of the close-by balanced TS-t-test of type i .i D
2; 3; 4/.

Analogously to the one-step case, the two-step overall minimax test ı� always
comes out to be either a balanced or a close-by balanced test, i.e.

Nmax.ı
�/ D min

1�i�4 Nmax.ı
�
i / (35)

holds.
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In order to determine ı�, constructive formulas, like Starke’s for the OC of the
balanced TS-t-test, would have to be derived for the OCs of the three different
types of close-by balanced TS-t-tests. If Starke’s OC-formula is replaced by the
OC-formulas of the close-by balanced tests, Starke’s algorithm for ı�

1 would still
work and produce the corresponding tests ı�

i .2 � i � 4/. But the computing
time would increase dramatically. The reason for this is that in the most interior
loop of Starke’s optimization algorithm OC-values would have to be determined
in order to check constantly the two-point-condition. The calculation of only one
L.�/-value would require among other things to determine numerically a complex
seven-dimensional integral in the one-sided case and, because of Lemma 1, four
seven-dimensional integrals in the two-sided case.

In the next sections we shall examine whether the magnitude of the reduction
of Nmax.ı

�/ in comparison to Nmax.ı
�
1 / will justify the enormous additional effort

required to determine ı� instead of Starke’s ı�
1 . Therefore, because of (35), we shall

calculate for i D 1; : : : ; 4 all minimax versions of type i and pick out the overall
minimax version.

3 Minimax Versions of the Two-Step TS-Gaußtests

The one-step TS-Gaußtest ı D .nx; ny; k/ is defined completely analogously to the
one-step TS-t-test. Only the test statistic (3) must be replaced by

T .nx; ny/ D
s

nx ny

nx C ny
NX � NY
�

: (36)

The OC of ı D .nx; ny; k/ is now given by:

One-sided case: L.�/ D P�
�
T .nx; ny/ � k

� D ˚

�
k �

s
nx ny

nx C ny �
�

(37)

Two-sided case: L.�/ D P�
�jT .nx; ny/j � k

�

D ˚

�
k �

s
nx ny

nx C ny �
�
� ˚

�
� k �

s
nx ny

nx C ny �
�
:

(38)

Here, ˚ denotes the cdf of the N.0; 1/ distribution. The two-step TS-Gaußtest

ı D
�
nx;1 ny;1 k1 k2

nx;2 ny;2 k3

�
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is defined completely analogously to the two-step TS-t-test. Only the test statistic
on the first stage (13) has now to be replaced by

T1 D
r
nx;1 ny;1

N1

NX1 � NY1
�

(39)

and the test statistic on the second stage (19) by

T D
r
Nx Ny

N

D
X � D

Y

�
: (40)

For v1; u1; v2 2 R we set:

a.v1/ D k1
s
N1

ny;1
C v1

r
nx;1

ny;1
� �

p
nx;1

b.v1/ D k2
s
N1

ny;1
C v1

r
nx;1

ny;1
� �

p
nx;1

H.v1; u1; v2/ D k3
s

Nx N

nx;2 Ny
� u1

r
nx;1

nx;2

C Nx

Ny
p
nx;2

�
v1
p
ny;1 C v2

p
ny;2

�
� � Nxp

nx;2

I .v1; u1/ D
Z 1

�1
˚

�
H
�
v1; u1; v2

��
˚ 0 .v2/ dv2:

In Kremer et al. (2009) the following formula is proved.

Lemma 2 In the one-sided case the OC of the two-step TS-Gaußtest

ı D
�
nx;1 ny;1 k1 k2
nx;2 ny;2 k3

�

is given by

L.�/ D ˚

�
k1 � �

r
nx;1 ny;1

N1

�

C
Z 1

�1

�Z b.v1/

a.v1/
I .v1; u1/ ˚

0 .u1/ du1

�
˚ 0 .v1/ dv1: (41)

In the balanced case nx;1 D ny;1 D n1; nx;2 D ny;2 D n2 the three-dimensional
integral (41) simplifies to the one-dimensional integral



482 W. Krumbholz and I. Starke

L.�/ D ˚
�
k1 � �

r
n1

2

�
C

Z k2��
p

n1
2

k1��
p

n1
2

˚.H1.x// ˚
0.x/ dx (42)

with

H1.x/ D k3
r
n1 C n2
n2

� x
r
n1

n2
� �

n1 C n2p
2n2

: (43)

The formulas (41), (42) allow to calculate the OC of arbitrary one-sided two-step
TS-Gaußtests and thus especially the OC of the one-sided two-step balanced and
close-by balanced TS-Gaußtests.

4 Numerical Examples

In this section we shall determine for some constellations of ˛; ˇ; �0 the minimax
versions of the TS-Gaußtest in

– the one-sided one-step
– the one-sided two-step
– the two-sided one-step
– the two-sided two-step

case. Furthermore, the OC of the two-step overall minimax version and the ASN
of the one- and two-step minimax versions are plotted. These plots concerning
Examples 0.2 and 0.3 are given in Figs. 2 and 3 and Figs. 4 and 5, respectively.
In some cases the overall minimax version coincides with that of the balanced tests,
in other cases with that of a close-by balanced test.

Example 0.2 ˛ D 0:05 ˇ D 0:10 �0 D 0:75

0.0

0.2

0.4

0.6

0.8

1.0

θ

O
C

−0.5 0.0 0.5 1.0 1.5 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
20

30

40

50

60

70

θ

A
S

N

Fig. 2 OC of ı� (left) and ASN of .nx; ny; k/ and ı� (right) for �0 D 0:75; ˛ D 0:05; ˇ D 0:10

(one-sided case)
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Fig. 3 OC of ı� (left) and ASN of .nx; ny; k/ and ı� (right) for �0 D 0:75; ˛ D 0:05; ˇ D 0:10

(two-sided case)
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Fig. 4 OC of ı� (left) and ASN of .nx; ny; k/ and ı� (right) for �0 D 0:50; ˛ D 0:05; ˇ D 0:10

(one-sided case)
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Fig. 5 OC of ı� (left) and ASN of .nx; ny; k/ and ı� (right) for �0 D 0:50; ˛ D 0:50; ˇ D 0:10

(two-sided case)
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(i) One-sided case

(a) One-step

.nx; ny; k/ D .31; 30; 1:6449/

(b) Two-step

ı�
1 D

�
19 19 0:7299 1:9348

16 16 1:7382

�
with Nmax.ı

�
1 / D 52:5003

ı�
2 D

�
19 19 0:7077 1:9559

16 15 1:7281

�
with Nmax.ı

�
2 / D 52:4912

ı�
3 D

�
20 19 0:7488 1:9450

15 15 1:7281

�
with Nmax.ı

�
3 / D 52:5072

ı�
4 D

�
20 19 0:7247 1:9683

14 15 1:7181

�
with Nmax.ı

�
4 / D 52:5121

Minimax test: ı� D ı�
2

Saving of Nmax.ı
�/ in comparison to Nmax.ı

�
1 / W 0:017%.

(ii) Two-sided case

(a) One-step

.nx; ny; k/ D .38; 37; 1:9600/

(b) Two-step

ı�
1 D

�
24 24 1:0196 2:2515

18 18 2:0324

�
with Nmax.ı

�
1 / D 64:7823

ı�
2 D

�
24 24 1:0376 2:2337

19 18 2:0406

�
with Nmax.ı

�
2 / D 64:8007

ı�
3 D

�
25 24 1:0338 2:2623

17 17 2:0248

�
with Nmax.ı

�
3 / D 64:8006

ı�
4 D

�
25 24 1:0543 2:2421

17 18 2:0332

�
with Nmax.ı

�
4 / D 64:7835

Minimax test: ı� D ı�
1

Saving of Nmax.ı
�/ in comparison to Nmax.ı

�
1 / W 0%.

Example 0.3 ˛ D 0:05 ˇ D 0:10 �0 D 0:50
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(i) One-sided case

(a) One-step

.nx; ny; k/ D .69; 69; 1:6449/

(b) Two-step

ı�
1 D

�
43 43 0:7249 1:9459

35 35 1:7316

�
with Nmax.ı

�
1 / D 118:0914

ı�
2 D

�
43 43 0:7147 1:9557

35 34 1:7271

�
with Nmax.ı

�
2 / D 118:0889

ı�
3 D

�
44 43 0:7331 1:9508

34 34 1:7271

�
with Nmax.ı

�
3 / D 118:0957

ı�
4 D

�
44 43 0:7435 1:9412

34 35 1:7315

�
with Nmax.ı

�
4 / D 118:0997

Minimax test: ı� D ı�
2

Saving of Nmax.ı
�/ in comparison to Nmax.ı

�
1 / W 0:002%.

(ii) Two-sided case

(a) One-step

.nx; ny; k/ D .85; 84; 1:9600/

(b) Two-step

ı�
1 D

�
55 55 1:0425 2:2516

39 39 2:0294

�
with Nmax.ı

�
1 / D 145:7404

ı�
2 D

�
55 55 1:0511 2:2516

40 39 2:0330

�
with Nmax.ı

�
2 / D 145:7396

ı�
3 D

�
55 54 1:0351 2:2473

40 40 2:0328

�
with Nmax.ı

�
3 / D 145:7500

ı�
4 D

�
56 55 1:0581 2:2472

38 39 2:0298

�
with Nmax.ı

�
4 / D 145:7503

Minimax test: ı� D ı�
2

Saving of Nmax.ı
�/ in comparison to Nmax.ı

�
1 / W 0:0005%.
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Concluding Remark
In the last section we presented for the first time overall minimax-versions ı�
of the two-step ZS-Gaußtest. The numerical examples exhibit that savings on
minimal maximal ASN can be achieved by adding the close-by balanced tests
to the balanced tests. The magnitude of the saving onNmax.ı

�/ in comparison
to Nmax.ı

�
1 /, with ı�

1 being the balanced minimax-version, is very small and
remains below 0.02 %.
Similar amounts of saving could be expected for TS-t-tests and would not
justify the enormous effort required by passing from Starke’s balanced ZS-t-
test ı�

1 to the overall minimax test ı�.
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Dimensionality Reduction Models in Density
Estimation and Classification

Alexander Samarov

Abstract In this paper we consider the problem of multivariate density estima-
tion assuming that the density allows some form of dimensionality reduction.
Estimation of high-dimensional densities and dimensionality reduction models are
important topics in nonparametric and semi-parametric econometrics.We start with
the Independent Component Analysis (ICA) model, which can be considered as
a form of dimensionality reduction of a multivariate density. We then consider
multiple index model, describing the situations where high-dimensional data has
a low-dimensional non-Gaussian component while in all other directions the data
are Gaussian, and the independent factor analysis (IFA) model, which generalizes
the ordinary factor analysis, principal component analysis, and ICA. For each of
these models, we review recent results, obtained in our joint work with Tsybakov,
Amato, and Antoniadis, on the accuracy of the corresponding density estimators,
which combine model selection with estimation. One of the main applications
of multivariate density estimators is in classification, where they can be used to
construct plug-in classifiers by estimating the densities of each labeled class. We
give a bound to the excess risk of nonparametric plug-in classifiers in terms of
the MISE of the density estimators of each class. Combining this bound with the
above results on the accuracy of density estimation, we show that the rate of the
excess Bayes risk of the corresponding plug-in classifiers does not depend on the
dimensionality of the data.

1 Introduction

Complex data sets lying in multidimensional spaces are a commonplace occurrence
in many parts of econometrics. The need for analyzing and modeling high-
dimensional data often arises in nonparametric and semi-parametric econometrics,
quantitative finance, and risk management, among other areas. One of the important
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challenges of the analysis of such data is to reduce its dimensionality in order to
identify and visualize its structure.

It is well known that common nonparametric density estimators are quite
unreliable even for moderately high-dimensional data. This motivates the use of
dimensionality reduction models. The literature on dimensionality reduction is very
extensive, and we mention here only some publications that are connected to our
context and contain further references (Roweis and Saul 2000; Tenenbaum et al.
2000; Cook and Li 2002; Blanchard et al. 2006; Samarov and Tsybakov 2007).

In this paper we review several dimensionality reduction models analyzed in
Samarov and Tsybakov (2004, 2007), and Amato et al. (2010).

In Sect. 2 we consider the ICA model for multivariate density where the distri-
bution of independent sources are not parametrically specified. Following results
of Samarov and Tsybakov (2004), we show that the density of this form can be
estimated at one-dimensional nonparametric rate, corresponding to the independent
component density with the worst smoothness.

In Sect. 3 we discuss multiple index model, describing the situations where
high-dimensional data has a low-dimensional non-Gaussian component while in
all other directions the data are Gaussian. In Samarov and Tsybakov (2007) we
show, using recently developed methods of aggregation of density estimators, that
one can estimate the density of this form, without knowing the directions of the
non-Gaussian component and its dimension, with the best rate attainable when both
non-Gaussian index space and its dimension are known.

In Sect. 4 we consider estimation of a multivariate density in the noisy inde-
pendent factor analysis (IFA) model with unknown number of latent independent
components observed in Gaussian noise. It turns out that the density generated
by this model can be estimated with a very fast rate. In Amato et al. (2010) we
show that, using recently developed methods of aggregation Juditsky et al. (2005,
2008), we can estimate the density of this form at a parametric root-n rate, up to a
logarithmic factor independent of the dimension d .

In Sect. 5 we give a bound to the excess risk of nonparametric plug-in classifiers
in terms of the integrated mean square error (MISE) of the density estimators of
each class. Combining this bound with the results of previous sections, we show
that if the data in each class are generated by one of the models discussed there,
the rate of the excess Bayes risk of the corresponding plug-in classifiers does not
depend on the dimensionality of the data.

2 Nonparametric Independent Component Analysis

Independent Component Analysis (ICA) is a statistical and computational technique
for identifying hidden factors that underlie sets of random variables, measurements,
or signals, blind source separation. In the ICA model the observed data variables are
assumed to be (linear or nonlinear) mixtures of some unknown latent variables, and
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the mixing system is also unknown. The latent variables are assumed non-Gaussian
and mutually independent; they are called the independent components of the data.

Most of the existing ICA algorithms concentrate on recovering the mixing matrix
and either assume the known distribution of sources or allow for their limited,
parametric flexibility (Hyvarinen et al. 2001). Most ICA papers either use mixture of
Gaussian distributions as source models or assume that the number of independent
sources is known, or both. In our work, the ICA serves as a dimensionality reduction
model for multivariate nonparametric density estimation; we suppose that the
distribution of the sources (factors) and their number are unknown.

The standard (linear, noise-free, full rank) ICA model assumes that d -
dimensional observations X can be represented as

X D AU;

where A is an unknown nonsingular d � d -matrix, and U is an unobserved random
d -vector with independent components. The goal of ICA is to estimate the matrix
A, or its inverse B> D A�1, based on a sample X1; : : : ;Xn i.i.d. p.x/. When all
components of U, with a possible exception of one, are non-Gaussian, the mixing
matrix A is identifiable up to the scale and permutation of its columns.

The ICA model can be equivalently written in terms of the probability density of
the observed data:

p.x/ D jdet.B/j
dY

jD1
pj .x>ˇj /; x 2 Rd ; (1)

where ˇ1; : : : ; ˇd � unknown, linearly independent, unit-length d -vectors, det.B/
is the determinant of the matrix B D .ˇ1; : : : ; ˇd /; B

> D A�1, and pj .�/; j D
1; : : : ; d; are probability densities of the independent sources.

Most known ICA methods specify the parametric form of the latent component
densities pj and estimate B together with parameters of pj using maximum
likelihood or minimization of the empirical versions of various divergence criteria
between densities, see, e.g., Hyvarinen et al. (2001) and the references therein. In
general, densities pj are unknown, and one can consider ICA as a semiparametric
model in which these densities are left unspecified.

In Samarov and Tsybakov (2004) we show that, even without knowing
ˇ1; : : : ; ˇd , p.x/ can be estimated at one-dimensional nonparametric rate,
corresponding to the independent component density with the worst smoothness.
Our method of estimating ˇ1; : : : ; ˇd is based on nonparametric estimation of the
average outer product of the density gradient

T .p/ D EŒrp.X/r>p.X/�;

where rp is the gradient of p, and simultaneous diagonalization of this estimated
matrix and the sample covariance matrix of the data. After the directions have been
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estimated at root-n rate, the density (1) can be estimated, e.g. using the kernel
estimators for marginal densities, at the usual one-dimensional nonparametric rate.

The method of Samarov and Tsybakov (2004) can be applied to a generalization
of ICA where the independent components are multivariate. Our method estimates
these statistically independent linear subspaces and reduces the original problem to
the fundamental problem of identifying independent subsets of variables.

3 Multi-Index Departure from Normality Model

We consider next another important dimensionality reduction model for density:

p.x/ D 
d .x/g.B
>x/; x 2 Rd ; (2)

where B—unknown d � m matrix with orthonormal columns, 1 � m � d , g W
Rm ! Œ0;1/ unknown function, and 
d .�/ is the density of the standard d -variate
normal distribution.

A density of this form models the situation where high-dimensional data has a
low-dimensional non-Gaussian component (m << d ) while all other components
are Gaussian. Model (2) can be viewed as an extension of the projection pursuit
density estimation (PPDE) model, e.g. Huber (1985), and of the ICA model. A
model similar to (2) was considered in Blanchard et al. (2006).

Note that the representation (2) is not unique. In particular, if Qm is an m � m
orthogonal matrix, the density p in (2) can be rewritten as p.x/ D 
d .x/g1.B

>
1 x/

with g1.y/ D g.Qmy/ and B1 D BQm. However, the linear subspace M spanned
by the columns of B is uniquely defined by (2).

By analogy with regression models, e.g. Li (1991), Hristache et al. (2001), we
will call M the index space. In particular, if the dimension of M is 1, model (2) can
be viewed as a density analog of the single index model in regression. In general, if
the dimension of M is arbitrary, we call (2) the multiple index model.

When the dimension m and an index matrix B (i.e., any of the matrices,
equivalent up to an orthogonal transformation, that define the index space M ) are
specified, the density (2) can be estimated using a kernel estimator

Opm;B.x/ D 
d .x/


m.B>x/
1

nhm

nX

iD1
K

�
B>.Xi � x/

h

�
;

with appropriately chosen bandwidth h > 0 and kernel K W Rm ! R1. One
can show, see Samarov and Tsybakov (2007), that, if the function g is twice
differentiable, the mean integrated mean squared error (MISE) of the estimator Opm;B
satisfies:

MISE. Opm;B; p/ WD Ejj Opm;B � pjj2 D O.n�4=.mC4//; (3)
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if the bandwidth h is chosen of the order h
P� n�1=.mC4/. Using the standard

techniques of the minimax lower bounds, it is easy to show that the rate n�4=.mC4/

is the optimal MISE rate for this model and thus the estimator Opm;B with h
P�

n�1=.mC4/ has the optimal rate for this class of densities.
In Samarov and Tsybakov (2007) we show, using recently developed methods

of aggregation of density estimators, that one can estimate this density, without
knowing B and m, with the same rate O.n�4=.mC4// as the optimal rate attainable
when B and m are known. The aggregate estimator of Samarov and Tsybakov
(2007) automatically accomplishes dimension reduction because, if the unknown
true dimension m is small, the rate O.n�4=.mC4// is much faster than the best
attainable rate O.n�4=.dC4// for a model of full dimension. This estimator can
be interpreted as an adaptive estimator, but in contrast to adaptation to unknown
smoothness usually considered in nonparametrics, here we deal with adaptation to
unknown dimensionm and to the index space M determined by a matrix B .

4 IFA Model

In this section we consider an IFA model with unknown number and distribution of
latent factors:

X D ASC "; (4)

whereA is d�m unknown deterministic matrix,m < d , with orthonormal columns;
S is an m-dimensional random vector of independent components with unknown
distributions, and " is a normal Nd .0; �

2Id / random vector of noise independent
of S.

By independence between the noise and the vector of factors S, the target density
pX can be written as a convolution:

pX.x/ D
Z

Rm

d;�2.x� As/FS.d s/; (5)

where 
d;�2 denotes the density of a d -dimensional Gaussian distribution
Nd.0; �

2Id / and FS is the distribution of S.
Note that (5) can be viewed as a variation of the Gaussian mixture model which is

widely used in classification, image analysis, mathematical finance, and other areas,
cf., e.g., Titterington et al. (1985) and McLachlan and Peel (2000). In Gaussian
mixture models, the matrix A is the identity matrix, FS is typically a discrete
distribution with finite support, and variances of the Gaussian terms are usually
different.

Since in (5) we have a convolution with a Gaussian distribution, the density pX

has very strong smoothness properties, no matter how irregular the distribution FS
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of the factors is, whether or not the factors are independent, and whether or not the
mixing matrix A is known. In Amato et al. (2010), we construct a kernel estimator
Op�
n of pX such that

Ejj Op�
n � pXjj22 � C

.logn/d=2

n
; (6)

where C is a constant and jj � jj2 is the L2.Rd / norm. As in Artiles (2001) and
Belitser and Levit (2001), it is not hard to show that the rate given in (6) is optimal
for the class of densities pX defined by (5) with arbitrary probability distribution FS.

Though this rate appears to be very fast asymptotically, it does not guarantee
good accuracy for most practical values of n, even if d is moderately large. For
example, if d D 10, we have .logn/d=2 > n for all n � 105.

In order to construct our estimator, we first consider the estimation of pX when
the dimension m, the mixing matrix A, and the level of noise �2 are specified.
Because of the orthonormality of columns of A, A> is the demixing matrix:
A>X D S C A>", and the density of X can be written as

pX.x/ D
�

1

2��2

�.d�m/=2
exp

�
� 1

2�2
x>.Id � AA>/x

� mY

kD1
gk.a>

k x/;

where ak denotes the kth column ofA and gk.u/ D .pSk	
1/.u/ D
R
R
pSk .s/
1.u�

s/ds:
In Amato et al. (2010) we show that, using kernel estimators for gk , one can

construct an estimator for the density pX which has the mean integrated square
error (MISE) of the order .logn/1=2=n. Note that neitherm nor d affect the rate.

When the index matrix A, its rank m, and the variance of the noise �2 are
all unknown, we use a model selection type aggregation procedure called the
mirror averaging algorithm of Juditsky et al. (2008) to obtain fully adaptive density
estimator. We make a few additional assumptions.

Assumption 1 At most one component of the vector of factors S in (4) has a
Gaussian distribution.

Assumption 2 The columns of the matrix A are orthonormal.

Assumption 3 The number of factors m does not exceed an upper bound M ,
M <d .

Assumption 4 The M largest eigenvalues of the covariance matrix ˙X of the
observations X are distinct and the 4th moments of the components of X are finite.

Assumption 1, needed for the identifiability of A, is standard in the ICA
literature, see, e.g., Hyvarinen et al. (2001) Assumption 2 is rather restrictive but,
as we show below, together with the assumed independence of the factors, it allows
us to eliminate dependence of the rate in (6) on the dimension d . Assumption 3
means that model (4) indeed provides the dimensionality reduction. The assumption
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M < d is only needed to estimate the variance �2 of the noise; if �2 is known, we
can allow M D d . Assumption 4 is needed to establish root-n consistency of the
eigenvectors of the sample covariance matrix of X.

Under these assumptions, in Amato et al. (2010) we construct an estimator for the
density of the form (5) that adapts to the unknownm and A, i.e., has the same MISE
rate O..logn/1=2=n/, independent of m and d , as in the case when the dimension
m, the matrix A, and the variance of the noise �2 are known.

5 Application to Nonparametric Classification

One of the main applications of multivariate density estimators is in classification,
which is one of the important econometric techniques. These estimators can be used
to construct nonparametric classifiers based on estimated densities from labeled data
for each class.

The difficulty with such density-based plug-in classifiers is that, even for
moderately large dimensions d , standard density estimators have poor accuracy
in the tails, i.e., in the region which is important for classification purposes.
In this section we consider the nonparametric classification problem and bound
the excess misclassification error of a plug-in classifier in terms of the MISE
of class-conditional density estimators. This bound implies that, for the class-
conditional densities obeying the dimensionality reduction models discussed above,
the resulting plug-in classifier has nearly optimal excess error.

Assume that we have J independent training samples fXj1; : : : ; XjNj g of sizes

Nj , j D 1; : : : ; J , from J populations with densities f1; : : : ; fJ on Rd . We will
denote by D the union of training samples. Assume that we also have an observation
X 2 Rd independent of these samples and distributed according to one of the fj .
The classification problem consists in predicting the corresponding value of the
class label j 2 f1; : : : ; J g. We define a classifier or prediction rule as a measurable
function T .�/ which assigns a class membership based on the explanatory variable,
i.e., T W Rd ! f1; : : : ; J g: The misclassification error associated with a classifier T
is usually defined as

R.T / D
JX

jD1
�jPj .T .X/ 6D j / D

JX

jD1
�j

Z

Rd
I.T .x/ 6D j /fj .x/dx;

where Pj denotes the class-conditional population probability distribution with
density fj , and �j is the prior probability of class j . We will consider a slightly
more general definition:

RC .T / D
JX

jD1
�j

Z

C

I.T .x/ 6D j /fj .x/dx;
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whereC is a Borel subset of Rd . The Bayes classifier T � is the one with the smallest
misclassification error:

RC .T
�/ D min

T
RC .T /:

In general, the Bayes classifier is not unique. It is easy to see that there exists a
Bayes classifier T � which does not depend on C and which is defined by

�T �.x/fT �.x/.x/ D min
1�j�J �j fj .x/; 8 x 2 Rd :

A classifier trained on the sample D will be denoted by TD.x/. A key characteristic
of such a classifier is the misclassification error RC .TD/. One of the main goals in
statistical learning is to construct a classifier with the smallest possible excess risk

E .TD/ D ERC .TD/ �RC .T �/:

We consider plug-in classifiers OT .x/ defined by:

� OT .x/ Of OT .x/.x/ D min
1�j�J �j

Ofj .x/; 8 x 2 Rd

where Ofj is an estimator of density fj based on the training sample fXj1; : : : ; XjNj g.
The following proposition relates the excess risk E . OT / of plug-in classifiers to

the rate of convergence of the estimators Ofj , see Amato et al. (2010).

Proposition 1

E . OT / �
JX

jD1
�j E

Z

C

j Ofj .x/� fj .x/jdx

Assume now that the class-conditional densities follow, for example, the noisy

IFA model (5) with different unknown mixing matrices and that Nj
P� n for all

j . Let C be a Euclidean ball in Rd and define each of the estimators Ofj using the
mirror averaging procedure as in the previous section. Then, using results of that
section, we have

E
Z

C

j Ofj .x/� fj .x/jdx �
p
jC j Ek Ofj � fj k2;C D O

�
.logn/1=4p

n

�

as n ! 1, where jC j denotes the volume of the ball C and the norm k � k2;C is
defined as kf k22;C D

R
C
f 2.x/dx. Thus, the excess risk E . OT / converges to 0 at the

rate .logn/1=4=
p
n independently of the dimension d .
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Similarly, we can show, using the above proposition, that, if the class densities
follow other dimensionality reduction models considered in this paper, the rate of
the excess Bayes risk of the corresponding plug-in classifiers does not depend on
the dimensionality of the data.
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On a Craig–Sakamoto Theorem for Orthogonal
Projectors

Oskar Maria Baksalary and Götz Trenkler

Abstract The Craig–Sakamoto theorem asserts that real n� n symmetric matrices
A and B satisfy det.In�aA� bB/ D det.In�aA/det.In� bB/ for all real numbers
a and b if and only if AB D 0. In the present note a counterpart of the theorem for
orthogonal projectors is established. The projectors as well as the scalars involved
in the result obtained are assumed to be complex.

An essential result known as the Craig–Sakamoto theorem asserts that

MN D 0 , det.In � aM � bN/ D det.In � aM/det.In � bN/ 8a; b 2 R;

where M and N are n � n real symmetric matrices and In is the identity matrix of
order n. This algebraic result has an important statistical interpretation due to the
fact that when x is an n � 1 real random vector having the multivariate normal
distribution Nn.0; In/, then the quadratic forms x0Mx and x0Nx are distributed
independently if and only if MN D 0; cf. Rao and Mitra (1971, Theorem 9.4.1).
Actually, in econometrics the Craig–Sakamoto theorem (also called the Craig’s
theorem) is often formulated on purely statistical basis. For example, Theorem 4.5.5
in Poirier (1995) attributes to the Craig’s theorem the following characterization.
Let y be an n � 1 real random vector having the multivariate normal distribution
Nn.�;†/ and let K and L be real matrices of dimensions n � n and m � n,
respectively, of which K is symmetric. Then the linear form Ly is distributed
independently of the quadratic form y0Ky if and only if L†K D 0. Several
proofs of the Craig–Sakamoto theorem are available in the literature and history
of its development was extensively described; see, e.g., Carrieu (2010), Carrieu and
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Lassère (2009), Driscoll and Gundberg (1986), Driscoll and Krasnicka (1995), Li
(2000), Matsuura (2003), Ogawa (1993), Ogawa and Olkin (2008), Olkin (1997),
Poirier (1995), Rao and Mitra (1971), Reid and Driscoll (1988), Taussky (1958),
and Zhang and Yi (2012).

It is known that a necessary and sufficient condition for the quadratic form x0Mx
to be distributed as a chi-square variable is that symmetric M satisfies M D M2;
cf. Rao and Mitra (1971, Lemma 9.1.2). In the present note a counterpart of the
Craig–Sakamoto theorem for orthogonal projectors is established. In other words,
we derive necessary and sufficient conditions for two quadratic forms each of which
is distributed as a chi-square variable to be distributed independently. The projectors
as well as the scalars involved in the result obtained are assumed to be complex.

Let Cm;n denote the set of m � n complex matrices. The symbols L�, R.L/,
N .L/, and rk.L/ will stand for the conjugate transpose, column space (range), null
space, and rank of L 2 Cm;n, respectively. Further, for a given L 2 Cn;n we define
L D In � L. Another function of a square matrix L 2 Cn;n, which will be referred
to in what follows, is trace denoted by tr.L/.

A crucial role in the considerations of the present note is played by orthogonal
projectors in Cn;1 (i.e., Hermitian idempotent matrices of order n). It is known that
every such projector is expressible as LL� for some L 2 Cn;m, where L� 2 Cm;n is
the Moore–Penrose inverse of L, i.e., the unique solution to the equations

LL�L D L; L�LL� D L�; .LL�/� D LL�; .L�L/� D L�L: (1)

Then PL D LL� is the orthogonal projector onto R.L/. An important fact is
that there is a one-to-one correspondence between an orthogonal projector and
the subspace onto which it projects. This means, for example, that if PU is the
orthogonal projector onto the subspace U � Cn;1, then rk.PU / D dim.U / and
PU D PV , U D V .

In what follows we introduce a joint partitioned representation of a pair of
orthogonal projectors. Let P be an n � n Hermitian idempotent matrix of rank r .
By the spectral theorem, there exists a unitary U 2 Cn;n such that

P D U
�

Ir 0
0 0

�
U�: (2)

Representation (2) can be used to determine partitioning of any other orthogonal
projector in Cn;1, say Q. Namely, with the use of the same matrix U, we can write

Q D U
�

A B
B� D

�
U�; (3)

with B 2 Cr;n�r and Hermitian A 2 Cr;r , D 2 Cn�r;n�r satisfying
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A D A2 C BB�; R.B/ � R.A/; A�B D BD
�
; and R.B�/ � R.D/:

(4)

Other useful relationships linking the matrices A, B, and D read

rk.D/ D n � r C rk.B/� rk.D/ and PD D DC B�A�B; (5)

where PD is the orthogonal projector onto the column space of D. For the derivations
of the relationships in (4) and (5), as well as for a collection of further properties of
the matrices A, B, and D see, e.g., Baksalary and Trenkler (2009, Sect. 2).

The joint representation based on formulae (2) and (3) proved so far to be very
useful in various considerations; see, e.g., Baksalary and Trenkler (2009) where it
was used to characterize eigenvalues of various functions of a pair of orthogonal
projectors. The key feature of this representation is that it allows to derive formulae
for orthogonal projectors onto any subspace determined by the projectors P and
Q, and, in consequence, to characterize dimensions of those subspaces in terms of
ranks of matrices A, B, and D. The lemma below provides representations of the
orthogonal projectors onto column spaces of P Q and In � P �Q. The symbols PA

and PD used therein denote the orthogonal projectors onto the column spaces of A
and D, respectively.

Lemma 1 Let P and Q be the orthogonal projectors of the forms (2) and (3),
respectively. Then:

(i) the orthogonal projector onto R.P Q/ is given by

PP Q D U
�

0 0
0 PD

�
U�;

where dimŒR.P Q/� D n � r C rk.B/ � rk.D/;

(ii) the orthogonal projector onto R.In � P �Q/ is given by

PIn�P�Q D U
�

PA 0
0 PD

�
U�;

where dimŒR.In � P �Q/� D n � r C rk.A/C rk.B/� rk.D/.

Proof In the light of (4) and (5), it can be verified by exploiting the conditions in (1)
that the Moore–Penrose inverse of

P Q D U
�

0 0
�B� D

�
U�

is given by
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.P Q/� D U
�

0 �A�B
0 PD

�
U�:

Furthermore, it follows that the projector PP Q D P Q.P Q/� takes the form given in

point (i) of the lemma. The expression for the dimension of the subspace R.P Q/ is
obtained by combining the fact that rk.PP Q/ D rk.PD/ D rk.D/ with the left-hand
side identity in (5).

Point (ii) of the lemma is established in a similar way by utilizing

In � P�Q D U
��A �B
�B� D

�
U� and .In � P�Q/� D U

� �PA �A�B
�B�A� PD

�
U�:

Note that the representation of the projector PIn�P�Q was derived in Baksalary and
Trenkler (2009, Sect. 3). ut

The main result of the note is given in what follows.

Theorem 1 Let P;Q 2 Cn;n be orthogonal projectors. Then the following state-
ments are equivalent:

(i) PQ D 0,
(ii) rk.In � aP � bQ/ D rkŒ.In � aP/.In � bQ/� for all a; b 2 C,

(iii) R.In � aP � bQ/ D RŒ.In � aP/.In � bQ/� for all a; b 2 C,
(iv) tr.In � aP � bQ/ D trŒ.In � aP/.In � bQ/� for all a; b 2 C.

Proof Since

.In � aP/.In � bQ/ D In � aP � bQC abPQ;

it is clear that point (i) of the theorem yields its points (ii)–(iv).
To show that (ii)) (i) take a D 1 and b D 1, in which case the condition in point

(ii) of the theorem can be rewritten as rk.In � P�Q/ D rk.P Q/. From Lemma 1 it
follows that this equality is satisfied if and only if rk.A/ D 0. Hence, this part of the
proof is complete, for straightforward calculations confirm that A D 0 is equivalent
to PQ D 0 (note that A D 0) B D 0).

To demonstrate that also the condition in point (iii) yields (i), we again assume
that a D 1 and b D 1. In such a situation, from the equality in (iii) we obtain
R.In � P � Q/ D R.P Q/, which is fulfilled if and only if the projectors PP Q and
PIn�P�Q coincide. By Lemma 1 we conclude that this happens if and only if A D 0,
i.e., PQ D 0.

It remains to prove that also (iv) implies (i). Clearly, when a D 1 and b D 1,
then the condition in (iv) reduces to tr.PQ/ D 0. By exploiting representations (2)
and (3) it is seen that this identity is equivalent to tr.A/ D 0. Since A is Hermitian,
it is diagonalizable, which means that its trace equals zero only when A D 0. The
proof is thus complete. ut
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Recall that orthogonal projectors P and Q satisfy PQ D 0 if and only if PCQ is
an orthogonal projector. Further conditions equivalent to PQ D 0 include:

(i) R.Q/ � R.PQ/,

(ii) R.P/CR.Q/ D ŒR.P/\N .Q/�
?˚ ŒN .P/\R.Q/�,

(iii) R.P/\ ŒN .P/CR.Q/� D f0g,
(iv) N .P/

?˚ ŒR.P/ \N .Q/� D Cn;1,
(v) N .P/ D N .P/CR.Q/.

The inclusion in (i) was asserted in Baksalary and Trenkler (2011), whereas
the remaining four identities were established in Baksalary and Trenkler (2013,
Theorem 5).

The paper is concluded with the following open problem: are the equivalences
claimed in Theorem 1 satisfied only for orthogonal projectors, or are they valid also
for other classes of matrices? For example, from the identity

R.In � P �Q/ D R.PQ/˚R.P Q/;

provided in Baksalary and Trenkler (2013, equalities (4.4)), it follows that for a D 1
and b D 1, conditions (i)–(iii) of Theorem 1 are equivalent also when P and Q are
not assumed to be Hermitian (i.e., are oblique projectors). On the other hand, when
P and Q are oblique projectors, then tr.PQ/ D 0 does not imply PQ D 0, which
means that point (iv) of Theorem 1 does not yield its point (i). This fact can be
verified by exploiting the matrices

P D
0

@
1 0 1

0 0 0

0 0 0

1

A and Q D
0

@
0 0 0

0 0 0

0 1 1

1
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