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Foreword

During the last four decades Siegfried Heiler has had a great influence on the
development of Statistics in Germany and on the international community. On the
one hand, he has been an active researcher. On the other hand, he held leading
positions in statistical societies.

Siegfried has a wide research spectrum. His main research interests are in the
fields of time series analysis and robust statistics. In many cases his research was
motivated by empirical problems of relevance and he introduced new statistical
methods to deal with. One of the most important examples is the Berlin Method
that is inter alia used by the German Federal Statistical Office.

Over a long period Siegfried was very active in the German Statistical Society.
From 1980 to 1988 he was Chairman of the Section “Neuere Statistische Methoden”
renamed as “Statistical Theory and Methodology”. Moreover, he was President of
the Society from 1988 to 1992. This was the time of the German reunification and
as well an important time for the Society. During the board meeting in Konstanz
on January 19, 1990 there was an intensive discussion about the opportunity to
communicate with statisticians from the GDR. The integration and promotion of
this group was also topic of the board meeting in Trier on June 6, 1990. Due
to the difficult implementation of regulations of the Article 38 of the Unification
Treaty referring to science and research the German Statistical Society decided a
Memorandum on the Development of Statistics at the Universities of the new federal
states at the end of 1991. “Statistik im vereinten Deutschland” was also the main
topic of the Annual Meeting of the Society in Berlin in 1991.

Very early Siegfried detected the importance of computers for statistics and
particularly raised this point. In his time as President of the Society he intensified
the contacts with international statistical societies. After his term as President he
was Vice-President of the German Statistical Society from 1992 to 1996. Moreover,
Siegfried was a board member of the European Course in Advanced Statistics over
many years and its President from 1994 to 1997.
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viii Foreword

Siegfried has done much for the German Statistical Society and we are deeply
indebted to him for his numerous activities.
Happy Birthday, Siegfried!

Frankfurt, Germany Wolfgang Schmid
October 2013



Editorial

This edited book on recent advances in empirical economic and financial research
was proposed as a Festschrift for celebrating the 75th Birthday of Prof. (em.)
Siegfried Heiler, Department of Mathematics and Statistics, University of Konstanz,
Germany. The contributions are written by his former students, friends, colleagues
and experts whose research interests are closely related to his work. We are grateful
to all authors for submitting their work, which ensured that this issue reflects the
state of the art in the area. Our special acknowledgements go to Prof. Walter
Kramer, Department of Statistics at TU Dortmund, Germany, and the corresponding
colleagues of Springer-Verlag for kindly agreeing to publish this book in the Series
“Advanced Studies in Theoretical and Applied Econometrics”, which is a very
suitable host for the current issue.

We would also like to thank Prof. Dr. Roland Jeske, Faculty of Business
Administration, University of Applied Sciences Kempten, Germany, and a few
other former students of Siegfried Heiler, who have provided us with details on
his academic career and other useful information. Their kind help allowed us to
carry out this project smoothly while keeping it a secret until its publication on his
birthday.

Finally, we would like to thank Mr. Christian Peitz and Ms. Sarah Forstinger, both
in the Faculty of Business Administration and Economics, University of Paderborn,
Germany, for their invaluable help in editing this book. Mr. Peitz took over most
of the technical tasks and parts of the organization. Ms. Forstinger integrated all
single submissions into an entire LaTex file and, in particular, helped to retype two
submissions in Word format into LaTex.

Konstanz, Germany Jan Beran
Paderborn, Germany Yuanhua Feng
Hamburg, Germany Hartmut Hebbel

October 2013
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Introduction

Jan Beran, Yuanhua Feng and Hartmut Hebbel

This edited volume consists of 30 original contributions in the two closely related
research areas of empirical economic research and empirical financial research.
Empirical economic research, also called empirical economics, is an important
traditional sub-discipline of economics. The research activities in this area are
particularly reflected by the journal “Empirical Economics” published by Springer-
Verlag since 1976, and by the parallel series “Studies in Empirical Economics,”
which consists of 21 volumes published from 1989 to 2009 on different topics in
this area. In recent years research in empirical economics has experienced another
booming phase due to easy availability of very large data sets and the fast increase of
computer power. This trend is reflected by the fact that the Econometric Society has
published a new journal in quantitative/empirical economics, called “Quantitative
Economics,” since 2010. Stevenson and Wolfers (2012) note that the research in
economics after the global financial crisis in 2008 is showing “a long-running shift
toward a more empirical field, to the study of what hard data can tell us about the
way the world really works.” On the other hand, empirical financial research, also
called empirical finance, has a relatively short tradition but the development in this
area seems to be even faster than that of empirical economics, because, as indicated

J. Beran
Department of Mathematics and Statistics, University of Konstanz, Konstanz, Germany
e-mail: jan.beran @uni-konstanz.de

Y. Feng (<)

Faculty of Business Administration and Economics, University of Paderborn, Paderborn,
Germany

e-mail: yuanhua.feng @wiwi.upb.de

H. Hebbel

Helmut Schmidt University, University of the Federal Armed Forces Hamburg, 22043 Hamburg,
Germany

e-mail: hartmut.hebbel @hsu-hh.de

© Springer International Publishing Switzerland 2015 1
J. Beran et al. (eds.), Empirical Economic and Financial Research,

Advanced Studies in Theoretical and Applied Econometrics 48,

DOI 10.1007/978-3-319-03122-4_1


mailto:jan.beran@uni-konstanz.de
mailto:yuanhua.feng@wiwi.upb.de
mailto:hartmut.hebbel@hsu-hh.de

2 J. Beran et al.

by Campbell et al. (1996), “Financial economics is a highly empirical discipline,
perhaps the most empirical among the branches of economics ... ... for financial
markets are not mere figments of theoretical abstraction.” The rapidly growing
research in empirical finance is of course also pushed by the empirical success
of ARCH (autoregressive conditional heteroskedasticity, Engle, 1982), GARCH
(generalized ARCH, Bollerslev, 1986) and SV (stochastic volatility) models (Taylor,
1986), and a huge number of extensions with a wide range of applications in
financial research. A detailed review in this context may be found, for instance,
in Andersen and Bollerslev (1998). No doubt, empirical economic and financial
research are closely related disciplines. Firstly, there is a clear overlap between
statistical and econometric methods employed in both areas. Secondly, sometimes
topics from the two disciplines are or must be studied together. This is in particular
true when the impact of financial markets on economy is considered or when the
economic sources of financial market volatility are studied. See, e.g., the recent
study of Engle et al. (2008) on the latter topic. From a general point of view, finance
can also be viewed as a sub-discipline of economics and hence empirical finance
can be understood as a sub-area of empirical economics.

As an edited volume in honor of the 75th birthday of Siegfried Heiler, the
selected subject areas reflect the broad range of his research. He worked on different
topics of empirical economics since the late 1960s. One of his main areas was the
analysis of macroeconomic time series. The Berlin Method (BV, Berliner Verfahren,
Heiler, 1969, 1970) and further extended versions (Heiler, 1976, 1977) have become
standard methods of the German Federal Statistical Office since the early 1970s for
calculating major business-cycle indicators. Its fourth version (BV4) is used by the
German Federal Statistical Office since 1983 (see Heiler and Michels, 1994; Speth,
2006 and references therein), and also by the DIW-Berlin (German Institute for
Economic Research) and other institutes involved in empirical economic research.
Since then, further improvements of the BV have been worked out by Heiler and
his students. For instance, optimal decomposition of seasonal time series using
spline-functions is discussed by Hebbel and Heiler (1978, 1987a), smoothing of
time series in an error-in-variables model was studied by Hebbel and Heiler (1985),
decomposition of seasonal time series based on polynomial and trigonometric
functions is proposed in Hebbel and Heiler (1987b). Also a generalized BV has
been developed (see the next chapter for a detailed description and applications).
The application of local regression with polynomials and trigonometric functions as
local regressors is discussed in Heiler and Michels (1994), algorithms for selecting
the bandwidth based on this approach are developed in Heiler and Feng (1996,
2000) and Feng and Heiler (2000). Other significant contributions include robust
estimation of ARMA models (Allende and Heiler, 1992; Heiler, 1990) and related
topics in economic time series analysis.

Since the early 1990s, Prof. Heiler’s research focused on further developments
of nonparametric time series analysis, solving in particular the crucial problem
of bandwidth selection (see Heiler, 2001 for an overview). New algorithms for
bandwidth selection in nonparametric regression are published in Heiler and Feng
(1998), Beran et al. (2009), and Feng and Heiler (2009). Nonparametric time series
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models for empirical financial research may be found in Abberger et al. (1998),
Abberger and Heiler (2001, 2002), and Feng and Heiler (1998). Another area
Prof. Heiler was involved in is environmental statistics. Results in this context are
summarized, for instance, in Hebbel and Heiler (1988) and Heiler and Michels
(1986, 1989) (also see his contribution in Ghosh et al., 2007). In the early years
of his academic career, he also worked on some research topics in demography
(Heiler, 1978, 1982). At that time, Heiler (1978) already indicated possible effects
of the decline in the birthrate on the future of the German social security system.

The contributions to this volume are divided into three parts: (1) Empirical
Economic Research; (2) Empirical Financial Research; (3) New Econometric
Approaches. The first part, chapters “Decomposition of Time Series Using the
Generalised Berlin Method (VBV)” through “The Precision of Binary Measurement
Methods”, consists of methods most suitable for empirical research in economics.
Properties of the methods are discussed and applications are illustrated by real
data examples. This part also includes two case studies to show how a project in
empirical economics can be carried out using existing methods in the literature.
In the second part, chapters “On EFARIMA and ESEMIFAR Models” through
“Zillmer’s Population Model: Theory and Application”, different new models with
a clear emphasis on applications in empirical financial research are introduced.
Their theoretical properties and practical implementation are discussed in detail,
together with applications to real financial data. A case study on the development of
a currency crises monitoring system is also included. Finally, the third part, chap-
ters “Adaptive Estimation of Regression Parameters for the Gaussian Scale Mixture
Model” through “On a Craig—Sakamoto Theorem for Orthogonal Projectors”,
consists of general contributions to econometric and statistical methodology. Here
the emphasis is on the discussion of theoretical properties. In some contributions
theoretical results are confirmed by simulation studies.

The topics in the three parts are closely related to each other. Some contributions
may be logically allocated to more than one part. Moreover, topics in environ-
mental statistics and demography are also involved in some of the contributions,
but these are not indicated separately. From the methodological perspective the
contributions cover a wide range of econometric and statistical tools, including uni-
and multivariate time series analysis, different forecasting methods, new models
for volatility, correlations and high-frequency financial data, approaches in quantile
regression, panel data analysis, instrument variables, and errors in variables models.
The methodological characteristic was not a criterion for the allocation to Parts I, II,
and III. Hence, contributions to specific statistical methods may occur in any of
the three parts. Within each part, the contributions are, as far as possible, arranged
following a methodological structure. In Part I the contributions are given in the
following order (1) time series; (2) panel data; (3) other topics. Contributions in the
second part are arranged in the sequence (1) univariate time series; (2) multivariate
time series; (3) other financial data. The third part follows the sequence (1) cross-
sectional data; (2) univariate time series; (3) multivariate time series; and (4) general
econometric and statistical methods.
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This book covers theory, methods, and applications of empirical economic and
financial research. The purpose is to establish a connection between the well-
developed area of empirical economic research and the emerging area of empirical
financial research, and to build a bridge between theoretical developments in both
areas and their application in practice. Most of the contributions in this book
are originally published here. The book is a suitable reference for researchers,
practitioners, and graduate and post-graduate students, and provides reading for
advanced seminars in empirical economic and financial research.
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Decomposition of Time Series Using
the Generalised Berlin Method (VBYV)

Hartmut Hebbel and Detlef Steuer

Abstract The Generalised Berlin Method (Verallgemeinertes Berliner Verfahren,
or VBV) is a flexible procedure to extract multiple unobservable components from
a discrete or continuous time series. The finite number of observations doesn’t have
to be equidistant. For economic time series (mostly monthly or quarterly data) the
interesting components are trend (economic cycle) and season. For financial data
(daily, hourly, or even higher frequency data) two components are of interest: a
long-time component (length of support, i.e. 201 observations) and a short-time
component (length of support, i.e. 41-61 observations). The VBV has control
parameters to result in components satisfying subjective preferences in the shape
of these components. In a special case the solutions coincide with the known Berlin
Method (Berliner Verfahren, or BV) in its base version.

1 Introduction

The decomposition of time series (particularly economic) in various components or
their seasonal adjustment has a century long tradition. A large number of methods
and procedures were developed to handle these problems. As examples for such
methods and procedures a few shall be named: Census I, Census II, its variant
Census X-11, X-11-ARIMA, X-12-ARIMA (starting 1997) and X-13-ARIMA-
SEATS (starting 2006) in combination with RegARIMA and TRAMO (Time series
Regression with ARIMA noise, Missing values and Outliers) or SEATS (Signal
Extraction in ARIMA Time Series) program, see, for example, Shiskin et al. (1967),
Dagum (1980), Findley et al. (1998), Deutsche Bundesbank (1999), Ladiray and
Quenneville (2001), U.S. Census Bureau and Time Series Research Staff (2013),
Bell (1998), Gomez and Maravall (1998).

Another method belonging to this group of procedures, which were defined
initially by a series of algorithmic steps and later on translated into a model-based
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approach is SABL (Seasonal Adjustment at Bell Laboratories, see Cleveland et al.
1982).

Other exemplary methods are the Berliner Verfahren developed by Heiler in its
recent version BV 4.1 (see Nullau et al. 1969; Speth 2006) and the robust, data-
driven method of the Berliner Verfahren (Heiler and Feng 2004), further DAINTIES,
developed by the European Commission 1997 as a tool to harmonise methods across
the EU.

Furthermore worth to be noted are the model-based time discrete procedures by
Schlicht (1976), Pauly and Schlicht (1983), BAYSEA of Akaike (cf. Akaike 1980
and Akaike and Ishiguro 1980), the generalisation of Hebbel and Heiler (1987),
DECOMP (see Kitagawa 1985) and the software package STAMP (Structural Time
Series Analyser, Modeller and Predictor) (see Koopman et al. 2010) in version 9 in
2013.

We can only start to list the vast amount of relevant literature about seasonal
adjustment, see, e.g., Foldesi et al. (2007) or Edel et al. (1997) for a more complete
overview. All methods and procedures were discussed extensively and controversial.
Main points in these discussions were, if an approach in the time domain or in
the frequency should be chosen, if the components are smooth enough or flexible
enough for the respective application (see Statistisches Bundesamt 2013) or if
seasonal adjustment or a decomposition of a time series is the goal.

This paper summarises the theory of the generalised Berliner Verfahren and
its transfer to practical applications. VBV is a flexible method to decompose
continuous or discrete time series of all kinds in various components. During talks
and discussions in various working sessions and conferences with a multitude of
different institutions (Statistisches Bundesamt, Deutsche Bundesbank, economical
research institutes, environment agencies, partners in industry, universities) four
important goals for a decomposition method arose.

First a method is sought which works fully automatic to handle even huge
amounts of time series without manual intervention for tuning.

Second the method should work even with continuous variables observed at non-
equidistant points in time (missing data, irregular grid). Such behaviour is found in
particular in environmental or technical time series.

Third the method should find its foundation in a plausible model (demand for
model). That way a discussion may be transferred to the domain of model selection.
After selecting a proper model the method will result in reproducible outcomes
concerning the parameters defining the model.

Fourth an implementation of the method as a usable computer program is
required. Otherwise such a method wont be applied in practise (demand for
implementation).

While economic time series are defined by sampling some variable on a regular
time grid (daily, weekly, monthly, quarterly) and consequently missing data are very
rare, in technical settings measurements are often performed without relying on a
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regular time grid. Those time series are continuous by nature but often will only be
observed on an irregular time grid. So most of the data in these series are missing,
particularly all data in between two measurements.

The generalised Berlin Method (VBV), developed in the early 1980s, which is
based on polynomial and trigonometric splines, see Hebbel (1982), approximately
fulfils all those four requirements for a well-behaving method.

The idea to use spline functions for analysing time series was invented by Heiler.
The name was motivated by So6ll of the Statistisches Bundesamt Wiesbaden when
it could be shown that the base version of the Berliner Verfahren IV, used by
the Statistisches Bundesamt until the EU harmonised approaches throughout its
member states, is a special case of VBV.

Finally this article aims for giving a complete and comprehensive presentation
of VBV. Afterwards own experiments with VBV and modifications of VBV will be
possible without too much effort. There are of course a lot of papers on decomposing
time series using splines, e.g. Bieckmann (1987), Hebbel (1978, 1981, 1984, 1997),
Hebbel and Heiler (1985, 1987), Hebbel and Kuhlmeyer (1983), but these mostly
focused on a common smoothness parameter for trend and season. Furthermore
some of these papers discuss the topic on an abstract level in some general Hilbert-
or Banach-spaces only to derive the application as special case for some well-chosen
function space. Only in 1997 the decomposition using two smoothness parameters
for trend and season in some relevant function space was introduced. A general
solution was given there, but no further research was conducted.

VBV also is very capable to do chart analysis on finance data. Usual chart
analysis uses moving averages over (in most cases) 200 days, sometimes 30, 40,
or 90 days, which are then identified with the current observation, not, as statistical
theory would expect, with the mid-interval observation, seems plain wrong. In the
same way all the different support lines and formations are missing a theoretical
foundation. Most importantly classical chart technique is unable to give reliable
results for the latest observations (direction of trend, change in trend). All these
shortcomings are overcome by VBV if adequately used for time series of finance
data.

In other domains VBV already found its applications, e.g. in water quality
measurement, cf. Uhlig and Kuhbier (2001a,b), or in dendrology, cf. Heuer (1991).

2 Components and Base Model

For economic time series it is common to assume six different components: long-
term development (trend), long-term cycles of trend (economic cycle), seasonal
differences around the trend-cycles (season), calendar effects, an inexplicable rest
and some extreme values and outliers, cf. Heiler and Michels (1994, pp. 331 ff).
Those components are not observable directly.
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2.1 Components of an Econometric Time Series

Trend Trend is explained by effects which change only slowly and continuously.
Examples for such a long-term effect are slow changes in population or improve-
ments in productivity.

Economic Cycle Economic cycle names the medium-term up and down movement
of economic life. The phenomenons which are described by the whole multitude
of the theory of the economic cycle show themselves as multi-year, not repeating
fluctuations around the trend figure. The periods for these fluctuations are between
2 and 12 years, mostly 5-7 years.

Season All (nearly) regular periodic fluctuations with periods below 1 year (one
base period) are called seasonal effects or season. The cause of these seasonal effects
is mostly natural or institutional influences which unfold cyclically. Most important
is the earth moving around the sun in 365.25 days. As is well known this period
shows up in all kinds of natural variables like temperature, daily sunshine duration,
rainfall, etc. Equally well known is the 24 h day—night sequence showing up in a
lot of mostly ecological time series. More seldom the moon cycle shows up in data,
i.e. the tides. Institutional causes contain regular dates, e.g. quarterly, tax or interest
dates.

Calender Effects There are effects caused by the structure of the used calendar.
Months have different lengths, the number of working days changes from month to
month, holidays, etc. Sometimes a correction for these effects is possible. A simple
factor may be enough to correct for different month lengths or number of working
days. Nowadays these corrections are harder to perform, because working weekends
or clerical holidays is much more common.

Rest The rest component subsumes all irregular movements, which are caused by
inexplicable causes and do not work constantly in one direction. Most important are
short-lived, unexpected influences and variances like special weather conditions,
errors in the data collection processes, measurement errors and/or erroneous
reactions.

Extreme Values, Outliers Relevant irregular discrepancies caused by extraordi-
nary, often one-time events are called extreme values or outliers. Some examples are
strikes, catastrophes or unexpected political changes. We differentiate between:

» Additive outliers: In one isolated point in time we see one value completely out
of line with usual measurements.

* Innovative outliers: At some point in time a relevant change in the data generating
systems happens. Possible results are level changes which slowly return to the old
level, or which stay on the new level, or a change that defines a slowly increasing
deviation from the old data structure to something different (“crash”).
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There is an additional problem if there are outliers in more or less regular distances.
These may be caused by repeating events like fairs or holidays.

2.2 Components of the Decomposition Model

What is described in the following for economic time series is easily transferred into
other domains by changing the natural base period length of a “season”. The length
of the base period helps to distinguish between trend (long-term) and (economic)
cycle (medium-term).

We have to note that trend does not necessarily mean trend line. This often leads
to discussions after analysis. Therefore it is strongly recommended to discuss these
notions beforehand.

VBV assumes an additive composition of preferable three components in the
variable under investigation. If the composition is multiplicative, the logarithm must
be applied first.

2.2.1 Trend-Cycle (Short: Trend)

Often there are arguments against a strict distinction between trend and economic
cycle. Such a distinction would only seem appropriate, if there were different sets
of variables influencing trend and cycle. That is normally not the case. Therefore
these two components, the long-term and the medium-term economic variations, are
consolidated into one smooth component. In this paper the term smooth component
is used in the context of smoothing a time series and is therefore reserved for a
combined component of trend and season. Trend and cycle are one component in
the following description. That component may contain singular innovative outliers.
Splitting the component further would easily possible, cf. Michel (2008). Note that
level changes remain in this component. So we call that combined variable in the
following trend and it contains the mid-term and long-term course of a time series.

2.2.2 Season-Calendar (Short: Season)

For the above noted difficulties in identifying calendar components the Statistisches
Bundesamt refrains from splitting the two components for some time already. We
do alike in this paper. Additionally this combined component may contain cyclical
innovative outliers. This way it is allowed that the pattern we simply call season is
irregular and varying from one period to the next. This does not hinder splitting a
calendar component afterwards if needed.
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2.2.3 Rest- and Extreme Values (Short: Rest)

The third component is called rest for the sake of simplicity. It contains all irregular
movements and all additive outliers. If a model looks sensitive against such outliers
either the extreme values have to be removed before analysis or a robust approach of
the model should be used, which doesn’t require explicit removal of extreme values.

2.3 Base Model

Based on the above discussion a time series x(¢) with possibly continuous time
index ¢ in an interval [a,b] will be analysed and additively decomposed in the
unobservable important and interpretable components trend (and economic cycle)
x1(¢) and season (and calendar) x,(¢). The rest u(¢) contains the unimportant,
irregular unobservable parts, maybe containing additive outliers.

An “ideal” trend X;(¢) is represented by a polynomial of given degree p — 1
and an “ideal” season X;(t) is represented by a linear combination of trigonometric
functions of chosen frequencies (found by exploration) w; = 2x/S; with §; =
S/njandn; € Nfor j =1,...,q. Here § is the known base period and S; leads
to selected harmonics, which can be defined by Fourier analysis.

Therefore holds

p—1 q
)Zl(t)=2aj t/ and )Z‘z(t)=2(b1j cosw;t + byjsinw;t), te€la,b].
j=0 ji=1

In applications the components x;(#) and x,(¢) won’t exist in ideal represen-
tation. They will be additively superimposed by random disturbances u;(¢) and

uy(t). Only at some points in time ¢4, ..., ?, in the time interval [a, b] the sum x (¢)
of components is observable, maybe flawed by further additive errors €1, ..., &,.
The respective measurements are called yy, ..., y,.

Now we have following base model

x1(t) = %1() + ui (1)
X2(t) = X2(t) + ua(t)

Vi = x1(tx) + x2(t) +ex, k =1,...,n observation equation,

t €la,b] state equation

cf. Fig. 1.
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Fig. 1 Unknown original series x(z), trend x;(z), seasonal component x,(t), rest u(t) and
observations yj

3 Estimation Principle and Solutions

We are looking for appropriate estimations X1(¢), X2(¢) for unobservable com-
ponents x;(z), x»(¢) for all points in time in the interval [a, b] not only at the
observation points #1,...,%,. The solution for the trend component X;(¢) shall
replicate the medium and long-term course of the time series without being too
smooth or too “rough”. The seasonal estimator x,(¢) shall contain the important
oscillations during a standard period S. It shall be flexible enough to catch pattern
changes from period to period. In this component too much and too little smoothness
must be avoided.

3.1 Construction of the Estimation Principle

For evaluation of smoothness (in contrast to flexibility) the following smoothness
measures are constructed (actually these are roughness measures).

By differentiation D = f—t the degree of a polynomial is reduced by 1. Therefore
for a trend x;(¢) as polynomial of degree p — 1 always holds D?x;(¢) = 0. On the
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other hand, every function x; (¢) with this feature is a polynomial of degree p — 1.
Therefore

b
0i1(x)) = / |D”x; (¢)|*dt measure of smoothness of trend
a

is a measure of the smoothness of an appropriately chosen function x;.

For any sufficiently often differentiable and quadratically integrable function x;
in interval [a, b] Q1(x;) is zero iff x; is there a polynomial of degree p — 1, i.e.
x1(t) = f;o a;t/, a smoothest (ideal) trend. The larger the value of Q; for a
function x; in [a, b] the larger is the deviation of x, from a (ideal) trend polynomial
of degree p — 1.

Two times differentiation of the functions cos w; ¢ and sinw;# gives —w?

7 COsw it
and —w? sinw;¢ such that [T (D> + @?I) (I: identity) nullifies any linear
combination x,(¢) of all functions cosw;t and sinw;t, j = 1,...,qg. That is
because the following

(D? + a)f»I)(blk cos wit + by sinwyt) =

= b (0] —w}) cos it + by (0] —wp) sinwgr for  jk=1,....q,

nullifies for the case j = k the respective oscillation. This also proves the
exchangeability of the operators D? + wJZ-I, j=1,...,q.

If inversely ]_[3=1(D2 + w?l)xz(t) = 0 holds, the function x,(¢) is a linear
combination of the trigonometric functions under investigation. Consequently

b, 4 2
0s(x) = / (D? + a)jz»l)xz(t) dt measure of seasonal smoothness
a ]=l

is a measure for seasonal smoothness of the chosen function x,. For any sufficiently
often differentiable and quadratically integrable function x; in interval [a, b] Q2(x2)
is zero iff x; is there a linear combination of the trigonometric functions cos w; ¢ and
sinw;t, j =1,...,q,1.e x(t) = Z(;=1(b1j cosw;t + byjsinw;t), a smoothest
(ideal) seasonal component. The larger the value of Q, for a function x, in [a, b]
the larger is the deviation of x; from an ideal seasonal component.

The goodness of fit of trend and season at observation times is measured by the
usual least squares principle. With

n
O(x1,%x2;y) = Z lyk — x1(t) — x2(tx) | Goodness of fit
k=1

and vectors

i x1 (1) xa(t1)
y=<§), X| = : . X = : ,

Yn x1(tn) x2(t)
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is Q(x1,Xz;y) = 0 iff trend and season interpolate the data, i.e. yx = x;(#) +
x2(tk), k = 1,...,n. Normally this results in too unruly “figures” for trend and
season. Therefore a compromise between smoothness and fit must be sought. For
that we introduce a weighted sum of smoothness measures and goodness of fit which
must be minimised.

,‘31“,{; (A1 Qi(x1) + A2 02(x2) + Q(x1,X23y)) .

Trend and season must be functions which p-th, respectively, 2¢-th differenti-
ation exist and which are quadratic integrable in the Lebesgue-measure, i.e. stem
from the Sobolev-spaces H [a, b], respectively, Hy,»[a, b].

The parameters A; and A,, which must be given first, control smoothness of trend
and season. The larger the parameter, the smoother (in the sense of the above given
measurements) the respective component is chosen.

The minimum doesn’t change if the functional to minimise is multiplied by a
constant ¢? # 0 (factor of scale):

min (11 Q1 (x1)+A2 02(x2) + ¢? Q(XhXZ;Y)) with Ay = c?A;, Ay = c2A;.
X1,X2

With X; = ¢ x1, X, = ¢ x; and § = ¢y scaling and estimation may be interchanged
(cf. Sect. 3.3.1). Without restriction a constraint is possible, e.g. 1 = 1 (c? =
1//\1), Ar=1 (6’2 = 1//\2) orA; + A, + c? = 1 with Al,/lz,c’z € [0, 1]

The minimum remains constant, too, for all A;, A, with A; - A, = 1 (hyperbola,
therefore for inverse A1, A2). Choosing 2 =1/(A1-L) =1, wegetd; = 1/,
and /\2 = 1//\1

The extreme cases can easily be discussed looking at the minimisation problem
to solve.

e For A; — 0 and A, > O fixed, the optimisation is minimised with minimum
0 if season is smoothest (i.e. Q»(x;) = 0) and data are interpolated (i.e.
0(x1,X%2;y) = 0). Therefore the solutions consist of most flexible trend and
smoothest season.

e Incase of A, — Oand A; > O fixed we find in analogy solutions consisting of
smoothest trend and most flexible season. (Following from interpolation of data
with trend and season.)

¢ If at the same time A — oo and A, — oo holds, then the goodness of fit loses
its role in the minimisation. That way we get those smoothest trend and season
figures which approximate the data best in the sense of the measure for goodness
of fit. This is the same as a linear regression consisting of polynomial trend and
trigonometric season (as given above), estimated with least squares methodology.
(Base version of Berliner Verfahren IV, modified moving form.)

At least the first two extremal versions don’t give acceptable solutions to our
problem. In the first extremal case the trend is much to unruly, in the second the
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seasonal component has way too many oscillations. In the third case both trend and
season are smooth, but the goodness of fit will normally be very low. Therefore
the control parameters have to be chosen with care. For the special case if the base
model consists only of a polynomial Whaba (1990) uses cross validation to find
good parameter settings.

Now it becomes obvious that we look for an “optimum” in between least squares
solution and interpolation. This “optimum” can be found selecting good control
parameters. The problem therefore is a calibration problem, too.

If a so-called p-function is chosen instead of the quadratic “loss function”,
the problem is transformed in a rugged problem, which will only be solvable
numerically.

To characterise the solution of the minimisation problem we need some nota-
tions. For arbitrary (maybe complex-valued) functions x, y which are quadratically
integrable in interval [a, b] C R we write

b b
<x,y>=/ x(6) YO dt = (7.x) and ||x||2=<x,x>=/ () di

(The bar means conjugated complex). If differential operators

q
— DP - 2 2
Ty=D" and T,=[[(D*+w})
=1
are used, the target functional for a given data vector y € R, can be written as

S(x1,x2:y) = M ITuxt|* + 2 [ Tax2 > + ly — x1 — %o

For arbitrary given X € sz[a, b], X € qu’z[a, b] be y1 = x — X1, Y2 = X2 —X3.
Then follows

S(x1,x25y) = A{TixX1 + Toyr, Tixy + Tiyi) + Aa(Toxs + Tayz, Tako + Toya)+

+y-X—X -y -y (y—% —% -y —y2),
where X1, X; and yi, y» (like X1, X;) are defined as vectors of function values at

observation points t1, ..., ;.
Multiplication of the integrands gives

S(x1. x2:y) = S, %2:y) + M Tiyil? + Ll Toya | + |yi + y2I*+
+2Re(A(T1%1, Tyy1) + Ao (Taka, Tays) — (y — %1 — %) (y1 + ¥2))

because for a complex number z always holds z + z = 2 Re(z) (Re: real part).
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From that the following theorem follows easily

Theorem 1 (Characterisation Theorem) Functions X, X, are a solution of the
minimisation problem miny, x, S(x1, X2;y), i.e. it holds

S(x1,x21y) = S(X1,X25y) forall xi € Hpla,b], x2 € Hygpla, b]
iff

Re(A(T1%1. Tiy1) —(y—%1 —%2)'¥)) = forall Y1 € Hpla, b]

0
Re(lz(Tz)ez, Toy) —(y — %1 — ﬁz)/yz) =0 ) € quﬁz[a, b].

If )?il) , )%;1) and )?iz) , fcf) are two solutions, then the relation holds

=37+ Tiy1=0
X 5 with and y+y,=0,
£V =22 4y, Tyy2=0

i.e. y1, y2 is solution of miny, , S(x1, x2;0). Therefore we get a unique solution iff
foryr € Hysla, b, y» € Hyyola, b] with

Tiyr =0, Thyy=0 and yi+y,=0 always y; =0, y,=0

follows, i.e. if the null function is the only best approximating function for the null
vector.

From this characterisation theorem a representation theorem follows directly.

Theorem 2 (Representation Theorem) If wix, wor are a solution of the minimi-
sation problem above with respect to the unity vector ey € R, k = 1,...,n, then
X1, Xo, represented by

210 =) wi@y =wi(0)y
k=1 t €la,b],

£2(0) = ) wa )y = wa(D)y

k=1

is a solution of the minimisation problem with respect to the data vector' y =
ZZ:I Ve and is characterised by

b
M [ T T & e - V1 € Hyafa,b]
a for all

b T 4, Re H b
lz/ Toya(1) - Towar (1) dt = y5(ex — W) Y2 € Hygola, b],
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with wi = wix + wor , written as vectors and matrices

b
M [ T Ton® o By - ) a1 € Horle:t)
ab ra
12/ Toya(t) - Towa (1) dt % yy(1 — W) Y2 € Hagpla, bl

with unit matrix 1, where

wi(t) = (wii(t) -+ win()) . wo (1) = (war(t) -+ wan (1))

wi(t) wa(t)
W, = . , W= and W =W+ W,.

wi (i) wa(tn)’

The symbol < means equality in the real part.

3.2 Representation of Solutions

As we already noted in the introduction the solutions X; and X; for trend and
season are natural polynomial and trigonometric spline functions. For each point
in time with an observation #; polynomial and trigonometric function are changed
appropriately by the additional functions which are “cut” there

gt —1) =t — )"

q
gt =) =Y aj(bjsinw;(t — 1) — (t — ) cosw; (1 — 1))
j=l1
firt > tpbundOfirs <tk =1,...,n, mit
! b; —4 Z 1
a; = s i w;i =1,...,q4.
T 203 TS, (0F — 0})? ; T = w? - w? 1
i#] 17&/

To find a solution also the weight function w; and wy; of the representation theorem
are chosen as natural polynomial and trigonometric spline functions. Written as
vectors and matrices with

fl(t)/z (lt ...lp_l) gl(l)/: (gl(l‘ —t) - gt —ln))

ltl...tlp_l giti—t) - gi(ti —ty)
=l Gi=| :

1ln...l;f_l gl(tn_tl)"'gl(tn_tn)
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and

; . .
£,(1) = (coswit sinwit ...coswyt sinwyt )
coswify sinwily ... COs Wyl sinwgly
F =

CoS Wi, Sinwily, ... COSwyl, Sinwyl,

) = (g0 —t)...00 —t))

S —1n) ... g2 — 1)

G, : :
gZ(tn - tl) s gZ(tn - tn)

The following representations hold (with real-valued coefficient matrices)
wi(t) =f1(1) B1 +g1(¢)' A1, especially Wy = Fi By + G1A; with F/A; =0,
Wz(l)/ = fz(l)/Bz + gz(l)/Az , especially W, = F, B, + G, A,  with F2/A2 =0.

The constraints for A; and A, are typical for natural spline functions (special
smoothness at borders) and it holds the
spline-orthogonality relation

b
/ Tyyi(2) - Tywi (1) dt =y} Ay Y1 € Hypla, b]
a for all

b
/ Toys(t) - Tawa (1) dr = y5 A, Y2 € Hygala. b,
a

cf. Hebbel (2000). Following the representation theorem now holds

My A=y, =W)

v A /(1 W) bzw. AZZI—WzllAlzszz,
2y, A2 =Y, U —

because yj, y; arbitrary. Consequently holds

I
with side condition (5)A=o
F2

m:m&+%aA
%:B&+%®A

and therefore

By

FA:W:M+%:U]BK&

)‘f‘(%Gl-‘r}}—sz)A.
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After these considerations the following theorem holds:

Theorem 3 The solutions of the minimisation problem which are linear homoge-
neous in the data are given by

() =wi@)y, X)) =w)y,

where

Wi =008+ 04 = (60 0) Lae)(4)

wat) = £(1) By + - g2(1) A = ((0 £@)) 7 gz(t)/) (ﬁ)

and matrices B and A are solutions of

(0 F/)(B)_(O) res F'A=0
F H)\a) =\ P~ FB+HA=1
with identity matrix I and
— _ 1 1
F—(F1 Fz), H_I+A_1G1+A_2G2'
Remark 1 Note that G| and G, contain only zeros above the diagonal and therefore

H has the form of a lower triangular matrix with ones on the diagonal.
For the complete solution x(¢) = X;(¢) + x»(¢) holds

(1) =w)y,
where

wtY =wi) + w0 = (10 a0+ L£00') (5). 10 = (60 woey).

Especially fort = ¢y, ...,1t, the solutions are given in vector form as
X1 =Wy, x2=W,y and X=X +% =Wy
with
Wi=FiB+4+G4= ((F1 0) %Gl) (ﬁ)

W= Fbot Gt = (0 ) 62) (3)
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Remark 2 The theoretical-empirical rest component is given by

i(t) = y(t) = 21(t) = 22(1) = y(1) = £(t) = y(O) —w(@®)'y. € la.b].

But as only the observations y1, ..., y, at points in time ?1, ..., #, of the theoretical
measurement curve y(¢) exist, empirical rests can only be calculated at those points
in time:

w(ty) =y — x1(tx) — %2(tx), k=1,...,n,
or as vectors
i=y—X—-X%=y—-X=y-Wy=(U-W)y=Ay.
Because of F'A = 0 it holds especially
F'a=0 andespecially 1'a=0 resp. 1y =1%,
because F' has in its first column the vector of ones 1, i.e. the sum of the empirical

rests is zero just like in a regression model with constant term.

Remark 3 With respect to the linear independence of the columns of F, special
care is needed, especially for integer points in time (alias effect). At least in that
case should

O<wj=m, j=1,....q

hold. If the harmonic 7 is used it is to note that for integer observation times the
last column in F, contains only zeros. In such a case in the measure of smoothness
of the seasonal component the operator D> — 721 = (D — izI)(D + izI) could be
replaced with D — i1, which nullifies the function e = coswt = (—1)' in Z.
f,(¢) would only contain cos ¢ and not the null-function sin 7w¢. g,(¢ — #;) should
be modified analogously, cf. Hebbel (1997).

Remark 4 (Uniqueness and Matrix Properties) The system of equations above has
a unique solution iff F has full rank p +2¢q < n in the columns. In that case exactly
one solution of the spline optimisation problem exists. In this situation holds

(0 F')—1_< —(F'H™'F)~! (F'H'F)~"'F'H™! )
F H) “\H'F(F'H'F)™' H-'—H'F(F'H-'F)"'F'H!

=& 4)
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with

D=(FH'F)'", C=H'F(FFH'F)"'=H'FD
B=(F'H'F)Y'FPH™'", A=H'-H'F(FFH'F)"'F'H™!

=H '(I - FB).
We get immediately
F'C=1 F'A=0 and BF =1 AF =0
FD=HC FB+HA=1 DF=BH CF +AH=1

and especially
AHA=A" resp. AH A=A and AHA= A, BHA=0, AHC=0.

In particular AHAH = AH and HAHA = HA holds and therefore AH and HA are
idempotent with eigenvalues zero or one.
The inverse of

H=1+G with Gz;—lGlJr%G2

may be calculated as H~! = I + Y} (=G)¥, because (I + 31—\ (-=G)¥)(I +
G) = I — (—G)" and G" = 0. With each power of G the null diagonal moves
one diagonal further down. Nevertheless numerical problems may arise in the

calculation of A using this formula, if A;, A, are small.

Remark 5 Alternatively the solution of the system of equations

(¢ )G = () o (2 7)+ (6 @)D= (1)

can be represented with respect to the smoothest solution according to BV (cf. item
0 below limiting cases in this subsection). This way of calculating turned out to be
much more stable numerically. Multiplication with

(0 F’)—l _ (—(F’F)—1 (F'F)"'F’ ) _ (—(F’F)—l B*)

F 1) “\rE'r) 1-rEF-F)=0 B oa)
where B* = (F'F)™'F'and A* = I — F(F'F)™'F' = I — FB* (with property
A*A* = A*, B*A* = 0), results in

((]) I fﬁc)(ﬁ) - (ﬁ) esp (4 A*G)ﬁ _ 5:,(1 :1C=;A/)1*(1 —GA)
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therefore
A=+ A*G)™'4* with A*A =AA*= 4.

Remark 6 1f we choose a “symmetric” form for functions g (¢ —#¢) and g>(t — ),
such that the matrix H is symmetric and positive definite, then the estimation in the
base model comes out as best linear forecast if the rest processes possess special
covariance structures, see Hebbel (2000) and Michel (2008).

3.3 Properties of Solutions

The components found as solutions have interesting properties and many conse-
quences can be formulated.

3.3.1 Properties of Linearity

Solutions are linear homogeneous in the date. If
200 =wi@)y? . 2@ = wa)y?

are solutions found for the observed single time series y(i )i =1,...,k, then the
“aggregated” components

k k
0 =Y et O =w0)y. H0O =Y a) ) =w)y
i=1 i=1

are solutions for an “aggregated” observed time series y = Zle a;y®.

3.3.2 Spline Properties
The solutions

(1) = wi®)'y o wi(t) =fi(1)Bi + 1 2i(1) A
W1
Fa(t) = wa(t)'y wa(t) = £2(t) By + 1 g2(1)' A

are, just like the weight functions, natural spline functions, because obviously the
representation holds

with =

N

20 =RV P+ L 2i(0)a B =By i 31>
22(t) = B0 Pr+ £ ga(t) & B2 = Byy
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and with F'& = F'Ay = 0, s0 F{@ = 0 and F,a = 0, the necessary and sufficient
side condition for natural splines is fulfilled, s. Hebbel (2000).

()= wa (2 5D =()

the coefficients are a solution of
0 F'\(B\ _ (0)
(F H ) (o?) “\y/-

3.3.3 Weight Properties

For the (spline-) weight functions

ey = (60 0) e (%)

. 0 F'\(B _(0
w@' = ((0 £0y) Leo)(4) i (e n)(a) =)

the following properties hold:
* Independence of origin

Moving the origin along the time axis to fp € R doesn’t change weights.

For the transformation ¢ —> = 1 — 1o holds (t — to)) = Y /_ ()" (=t0)/ "
and therefore

1 ((1))(—10)1 ---(”51)(—to)"“
1 ---("Tl)(—to)”_l

1t—tg---(—1)""1)=(1¢---¢tP!
(Lt—ty-(t—to)?™ ") =(11---2P7") o

My, det M1=1

f1(7) =f£,(t) M, , especially F, = F{M,,
and

cosw;ty —sina)jto)

(coswj(t —19) sinw;(t —19)) = (cosw;t Sinwjt)(sina)'to cos 1o
j j

Mj, det Mp; =1
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and therefore

(coswif sinwii -+ cosw,l sinwyl) =
. . My o
= (coswif sinwit -+ coswyl  sinwyt)
O "um
2q
—_— —
My, det Mr=1

£,(7) = £(1)'M,, especially F, = FoM,.

Consequently holds
~ ~ M, 0
F = (Fl Fz) = (F1 Fz)( Ol Mz) =FM
N——
M, detM=1

and the transformation matrix M falls out of the weight vectors w;(7)" and w,(7)’,
so that it coincides with wy(¢) and w,(¢)’.

When calculating weights w;(¢)’, w2(¢)" the independence of the origin can be
used directly to move the origin, for example, in the middle of the interval [a, b] or
to design a local “moving” version of the method.

e Invariance and summation properties

Furthermore holds

wi(?)'F = (fi(t)’ 0) WiF = (F, 0)
wo(t) F = (0 £2(¢)) WF = (0 F)

WF =F.
Because f(¢)’ has a one in the first position and therefore F has a vector of ones

in the first column 1, in particular holds

wi(t)1=1 w1=1
wa(1)'1=0 W1 =0

wl=1,

i.e. the sum of trend weights always is one and the sum of season weights always is
Zero.

e Values of smoothness

If the components from w; or w, are inserted into the spline orthogonality
relation for y; or y,, then in matrix notation follows (note the symmetry of the
“smoothness matrices”)
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I

|
=
b

b
/nﬂmayﬂwﬁﬂdhzmﬂl ! =L AW

b and WA=AW,
/ Tsz(l) . Tsz(t)/ dt = WZ/AZ = ll—zl/Vz/A = %ZA/I/VQ

because W = W; + W,.
* Properties of symmetry and definiteness
Therefore for above “smoothness-matrices” holds

WA= LAGlA, W)A=LAG)A,

W'A  are symmetric and not negative definite.
From W = I — A follows after multiplication with A resp. A’ in each case W'A =
A—AA AW = A — A'A and therefore A = WA+ AA=AW + AA= A,
ie.

A is symmetric not negative definite,

because W'A + A’A has this property. Herewith W is symmetric, too, because it
isW=I1I-A=1-A =W andfrom0 < ZW'Az = 2W'(I — W)z =
W'z —2W'Waz,ie.2Wz > 2 W' Wz > 0 for any z € R, follows

W is symmetric not negative definite.

3.3.4 Property of Interpolation

If the data are interpolated by smoothest function consisting of a polynomial plus
trigonometric sum, that is y is of the form

y = FB, P arbitrary,
then holds, because of the invariance property of the weight function,
£1(10) =wi(@)y =wi(t) FB = (fi(1) 0) B =f1(1)' B
%) = wa0)'y = wa(t) FB = (1) 0) B =£:(1)' B2

and with this trend and season will be completely reconstructed independent of the
choice of A1, A,.
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3.3.5 Values of Smoothness of Solutions

The solutions X1(z) = wi(¢)y, X2(t) = w,(¢)'y have smoothness values (cf.
measurement of smoothness of weight functions)

b

01 = [ 1T (OPdr = Ly A'Giy = Ly Wiay = LRz 0.
a
b

0xi2) = [ ITska()Pdt = iy A'Gyuty = Ly Widy = i = 0.

If follows that estimations of components in observation points are always non-
negative correlated with the empirical rests @ = y — X. Furthermore holds

MOI(E) +2202(%) =yWAy=%a>0, W=W+W, x=%X+%
0%y =|y—X —% =|y—%’ =[G =00=y4'4y > 0

and therefore for the minimum

S(X1, %2:y) = 2101(X1) + 1202(%2) + O (X1, X5y) =X+ 00 =y =y Ay
=yy-yWy<yy.

3.3.6 Empirical Coefficient of Determination

Fromy = X + 0 and a=0 (e y = §) follows for empirical covariances or

variances (for X,y € R, defined as syy, = %x/ y — XYy and sf = sxx. The bar stands
for the arithmetical mean)

vy =xXx+da+2%a S§=S§+S§+2S§ﬁ
l= R4 W g oxn P oy
=Rty Ty =R gty

e o ¥ 1
Ri=—-. R'=3 und 0=R<Ri=l, 0=——=<3<-.
Yy Sy ¥y g ?

1. For R% =1lorR>=1list=0and®t = A,;Q;(X)+1,0:(%;) = 0. Therefore
we have an interpolation of data with a smoothest solution (with 7%, = 0,
TrX, = 0).



30 H. Hebbel and D. Steuer

2. For R? = Oresp. % = x1 = ylis sé = S?,Siﬁ =0resp. A1 Q1(X1)+1202(X2) =

0. Consequently X;(¢) =¥, X2(¢t) = 0 1is a solution (with 71 x; = 0, T»X, = 0,
x = yl), “consisting of no trend and no season”.

3.3.7 Properties of Monotonicity

To investigate the monotonicity of the functions

01(%1;A1,42) s Q2(%2;5A1,42), O, Xp;¥:A1,42),  and  S(X1, %25y; A1, A2)
we look at the partial derivatives in A1, A,. With the general rule of derivation

dM~(x) __ dM(x)

-1
i (xX)——

- . G
M~'(x) and especially = —%Gi

(because G = ﬁGl + %Gz) after Remark 5 holds

A
o = —(I+476)7' (-4 % - Gi JI+A4G)™'A* = LAG; A

The result is the “matrix of smoothness” of the weight function w; (¢).

 For the minimum S (X, X,;y) holds

39S (X1, X2; o
w = LyW/Ay = Q;(}) =0, i=1.2.
i 1

Therefore S(X1, X2;¥; A1, A2) is monotonically not falling in both directions A,
A>. Furthermore it is convex (cf. Hebbel 2000):
» For Q(X1,X3;y) holds (because of symmetry)

00 (X1, %X3:y) o 94 94 _ 2 _ .

= (Aa—ki—l—a—AiA)y——z YW/ Ady = 2XA0>0, i=12,

* For Q;(X;) resp. 4; Q;(%;) = Xja = %AGiA hold (because of symmetry) with
application of

I(AG, A)
an;

I(AG>A)

_2*2 W/ AW,
EY

= L W/AGI A+ -AGIAW; = 24 W/AW
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the relationships

d(xj) Larn | 280 48 I(X|0) 2o 42
o =—zXu+ T]XIAXI , s = EXIAXZ >0,

G16-A1) I I(X5m)
= =X A > O’ =
oAy aefX= s

1 A1 A 2 Al 4A
-5 XU+ X A%

and analogously

9 3z A n n d X A
—Qalk(l v = —%x’lu + %X&Axl <0, Qal/\(z ) %X/IAXZ >0,
90-(% o 00>(% P

1 2

3.3.8 Limiting Cases

The limiting cases which already were considered shortly in Sect.3.1. can now be
investigated more thoroughly. As a base we use the (spline-)representation

WO =H@OB+La@0d N A
z(t)=f;(t)’3;+i—lzz(t)’: with (2 Z>(ﬁ):(y) ﬂz(ﬁl)

and B = By, ii = Ay.

0. A1 = 00, Ay = o0 (smoothest trend and smoothest season in the sense of best
fit according to Q(X1,X,:y)): Because of

H=1+4G++6 —1

(7 @B =)~ DE)=C)
holds
2 = B@) B =75 () . Ra(0) — L) B = 250
with smoothness values

01(X5) =0, 02(%5)=0 and S(Xf, %y =yu" =a"0".
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Hereby
1INk R R R
Fﬁ*ig*;o also F'FB*=F'y, p*=(F'F)"'Fly, &* =y—Fp*

is the classical least squares estimator. Because of this property BV 4.1 in its base
version is a special case of the method introduced here.

1. Ay — 0, 2, > 0 fixed (most flexible trend and smoothest season in the
interpolation case): The results are independent of A,. From

)LlH:)klI—i—Gl—}—i—;Gz—)Gl, Tlu—>a(l) ie. a—0

(b i) (La)= ()= (2 &)= ()

(solution of the system of equations, e.g. following Remark 5 with (G| — I)
instead of G) follows

A (1 1 A 5(1 ~(1
210 = h@) B +a@)a = 2V0). 20 - o)A =20
with maximum and minimum smoothness values
(1 A(1) A 2 ) a1
Ql(x§ ))=X(1)oc(l), 0> (x( ))—0 and S(xp,xé),y)zo.

2. A, = 0, Ay > O fixed (smoothest trend and most flexible season in case of
interpolation): The results are independent of A;. From

MH =2l ++2G + G, — Gy, £0—-a?, e -0

~

(7 ) (fa) = ()= (2 6)(E) =)

(solution of the system of equations, e.g. following Remark 5 with (G, — I)
instead of G) follows

A 502 A2 A 502 N A2
) > BB =271, 820 = B BY + &)@ =27 (1)
with minimum and maximum smoothness values
~(2 NV ~(2) A 2) A2
Ql(x§ ))=O, Qz(xé ))=xg)a(2) and S(xp,xé),y)zo.

3. A1 = 00, A, > 0 fixed (smoothest trend): The results are dependent on A;.
Because of
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T

=I1+4Gi+ 16> 1416,
(2 )G =)= 1 e @) =)

(solution of the system of equations e.g., following Remark 4 or 5 with G =
A—IZGQ) holds

210 = @) BY =270, 220 > BB + Lea@)d® = £
with smoothness values
~(3 3 ~(3) A ~(3) ~(3 ~
01GM) =0, 0,6 = L2V and SGP 2Dy =y,

4. Ay — 00, A1 > 0 fixed (smoothest season): The results depend on A;. Because
of

H
(r )@ =)= 146 (G0) =)

(solution of the system of equations, e.g. following Remark 4 or 5 with G =
3-G1) holds

I+f—lG1+f—sz—>I+%G1

210 > B0 BY + La@)a® = 270). 20 > he)B =)0
with smoothness values

~(4 ~(4) A 4 4 4
015" = #2780, (&) =0 and SGEY 81y =ya®.

3.3.9 Property of Iteration

It is interesting to see what solution this method produces if it is applied on the
“smoothed” solution X = X; + X, instead of y etc. Afterm = 1,2, ... iterations we

get with “starting values” £ (1) = £1(1). £5”()) = $2() and 20 = y
A(m)(t) = W] (l) x(m=1) AIQ (x(m)) A(m)/A(m)
;m)(t) = Wz(l)/"(m—l) with 2,0 (x(m)) A(m)/,\(m)

2@y = 2" + 2" @) M O1E™) 4+ 2,0,(&) = gmrgom
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and 0 = =D _ £  Now holds
M O=52" @0 = wi@a™ 20 -2 ) = wa) 8™, 1€ fa,b].

Because of the minimum property it is easy to see that lim, . [0 |> = 0, that is
" — 0 converges. If i = 0 is already reached in step m the solutions remain in
a fixed point and are smoothest solutions in the sense of this method. Otherwise the
solution converge to the smoothest solutions in the sense of the method, see Hebbel
(2000) or Bieckmann (1987, p. 57 ff).

3.4 Choice of Smoothing Parameters

The choice of smoothing parameters A1, A, depends on the question how “smooth”
trend function x; and how “smooth” season function X, should be to give at the
same time a good fit to the data. Following the subsection on smoothness values of
the solutions holds

A1 Q1(R1) A2 Q2(%2)
—_—~—

’ ! ! ! / / / ! /
S(X1,X3y) = X0 + X0 +da=xXa+ua=yu=y

y+Xy<yy

resp.

/

Yy =%Xx+ 00+ 280 =%+ X0 + S(&1, X25y) =Xy + S(X1, %23y)

The part of variation explained by the fit X'X/y’y shall be large, therefore the parts
explained by weighted smoothness values X{a/y’y and x}0/y’y must be relatively
small. An obvious idea is to try to choose these two parts equal in size.

Generalised cross validation

ApA

min V(d1.22) = mtvaéﬁﬁ
n

doesn’t produce satisfactory results in the following examples. Its solution tends to
produce too rough seasonal components. Therefore it is recommended to choose
values near the minimum such that weighted smoothness values are of same size or
keep some predefined value.

4 Local, Moving Version

One can think of a lot of causes to modify the described method. May be it
is irritating for a user that figures for the past change if new values enter the
calculations. May be there occur numerical problems for long time series when
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very large matrices must be inverted. This problem may be avoidable if an iterative
approach to estimation is chosen. In the following we will use the property of
invariance against shifts in time, the same way BV 4.1 tries to avoid some of the
problems.

It’s natural, as in the Berliner Verfahren, to formulate the model not for the
complete, possible observation time interval, but only for smaller parts of support of
possible observation times, which “slides” over the time axis. This sliding technique
is useful especially for equidistant (in time) data and odd number of observations.
Estimations are performed for the first, second and finally last, moving window. As
seen in Sect. 3.2 the weight vectors wy(¢) and w,(¢) resp. weight matrices W, and
W, must be calculated and multiplied by the respective data vector for each moving
support window. Trend and season in these observational point then are given by

)A(l = le and )A(z = Wzy

in each support window.

The big advantage of this approach is that the weight matrices have to be
calculated only once (invariance against shift). While estimating “in the middle”
of the data there are m different supports areas around a point ¢ which can be used
for estimation in point 7. Any of the rows of the weight matrix W, resp. W, could
possibly be used to be multiplied with the data and generate an estimation. Naturally
the question arises, if there is a good choice between the columns. Should some row
be preferred?

The theory of filters suggests the use of a symmetric weight row. That way phase
shifts in the oscillations can be avoided. Symmetric rows, on the other hand, are
only found in the middle of the weight matrices W, resp. W, if m is odd. If m is
even, the mean of the two middle rows of the weight matrices could be used.

Nearing the edges we simply use the next row of weights, therefore at the edges
(of length k = ’"T_l) we have a usual regression estimation (different weight rows,
fixed data) and in the area away from the edges we have a sliding estimation (fixed
weight rows (same filter), different data (shifted by one unit of time each)).

Thus the estimators of trend (i = 1) and season (i = 2) (m odd) in points in time
t = 1,...,n can be written as follows:

w® w®

X (1) okt Weokk !
%i(k+1) Wol, e Woh 0 Vit
xi(n—k) 0 w(()l;)_k w(()i’)k Vit

Xi(n) @ (@) Vn

Welg oo Wik
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with weight matrix

WO W
W; = : : , i=1,2
wiwl
for a support area of length m = 2k + 1.

For choosing a suitable length of support we can use the experiences from using
the Berliner Verfahren. The choice of different lengths of support for different
components (for example, 27 for trend and 47 for season in the case of monthly
data see Speth 2006) seems inconsequential, just as the procedure at the edges.

At the edges we can’t choose weights according to filter criteria, because filters
are defined only for time intervals, not for points in time. Therefore it looks natural
to change to “regression estimation” there according to the construction of the
model. We recommend a support of length m = 25...31. In that case only the last
12—15 values are “intermediate”, because older values of components don’t change
any more if new data arrives.

S Examples for Decompositions with VBV

We want to show two exemplary decompositions of time series performed with VBV
as described in this paper. The source code implementing VBV in R (R Core Team
2013) is available from http://r-forge.r-project.org in package VBV.

5.1 Algorithm

The algorithm used follows the steps outlined below.

5.1.1 Parameter Settings
Time ¢ € [a, b] is measured in units that are natural to the problem (e.g. sec, min, h,
d, weeks, months, quarters).

e Observation times 71, ..., 1, with data y{,..., y,
¢ Order of polynomial of trend functionp,i. a. p = 2
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* Order of trigonometric polynomial of the seasonal function ny,...,n, € N for
base period S < b —a (withn; < %), results in “seasonal frequencies” w; =
2 - _ 1y — _ 2n—
Fnj,set = 52j=1"j7 ©=%n

« smoothness penalty parameter for trend A, ~

+ smoothness penalty parameter for season A, bzw. A, = 20*7!1,

5.1.2 Truncated Functions

* Elements of trend, in dependence of p, #

2p—1
qt—t)=(—-u)"", t>n
and O forr < 1
* elements of season, in dependence of w;,
q ~
&t —1n) = Z&j(bj sinw; (t — 1) — o(t — ) cosw; (t —Zk)), r> 1
j=1
and O for ¢ < f; with
1 . 1 1 1 n;
a; = , b= ——4y; —— and v; = -L.
’ (v; [Ti= (v? — vjz.))2 ! vj ! ; V2 —12 I n
i) iF#]
5.1.3 Vector Functions and Matrices
Preparation of
fio(t1)’
fo@' =1 ¢ - 7' 0 0 - 0 0),Fp= :
fi0(t,)’
for(11)
fo2(1) = (0 0 --- 0 coswt sinwit - coswyt sinwyt), Fpp = :

for (tn)
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and here, because of the independence of the origin the points in time ¢ (and
therefore the points in time #1,...,1,) can be replaced with { = ¢ — 7o with any
to, 1.e. fyp = %(a +b)orty = %(Zl + 1),

gi(h)
gi(1) =(g1t—1) gt —t)). G = :

g1(tn)'

&)
8(1) = (826 — 1) -+ &t — 1)) . G, = :

& (1)

and

F=Fo+Fp. G=3G +X—12G~2.
5.1.4 Intermediate Calculations
B* = (F'F)™'F', A*=1-FB* gives A= (I+A*G)™'A*.
5.1.5 Weight Functions and Weight Matrices

wit) = fi0(1)' B + &i1(1) A wi (1)’ wa (1)
esp. W, = : , W= :
wa(1) = o (1)'B + 82(1)'A wi(ty)' wa(ty)'

5.1.6 Solutions for Data-Vector

1) = wi(0)'y X1(11) %a(t1)
. = le s )22 = = WZy .

esp. X| = :
X(t) = wa(t)'y £1(t,) X2 (tn)

5.2 Decomposition of Unemployment Numbers in Germany

We use the last 103 observations of German monthly unemployment numbers
from the Federal Employment Agency (Statistik der Bundesagentur fiir Arbeit,
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Fig. 2 Decomposition of unemployment numbers in Germany (A; = 6, A, = 68)

statistik.arbeitsagentur.de, Statistik nach Themen, Zeitreihen) starting in January
2005. The parameters used in Fig.2 were A; = 6, A, = 68. These parameters
were chosen near to a solution from generalised cross validation but improved
using the constraint that the weighted smoothness values A;Q;(X;) = X{a and
A202(X2) = X are equal. The decomposition performed is the global version
using all observations at the same time.

As a reference we use the same data to fit a local model (see Fig. 3) with m = 31
and the same A, A, as above.
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Fig. 3 Decomposition of unemployment numbers in Germany—a local model with m = 31 and
A] . 6, Az = 68

5.3 Decomposition of the DAX Closings

We use the DAX closings since 2012-01-01 (from Yahoo Finance, created with
quantmod) to show an example of VBV in its local variant using moving windows
for local estimations (Fig. 4).

The parameters used were m = 201, § = 56, 1; = 10,000, 1, = 1,000.
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Fig. 4 Decomposition of the DAX closings (m = 201, § = 56, A; = 10,000, A, = 1,000)
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Time Series Segmentation Procedures to Detect,
Locate and Estimate Change-Points

Ana Laura Badagian, Regina Kaiser, and Daniel Peia

Abstract This article deals with the problem of detecting, locating, and estimating
the change-points in a time series process. We are interested in finding changes in
the mean and the autoregressive coefficients in piecewise autoregressive processes,
as well as changes in the variance of the innovations. With this objective, we
propose an approach based on the Bayesian information criterion (BIC) and binary
segmentation. The proposed procedure is compared with several others available
in the literature which are based on cusum methods (Inclan and Tiao, J Am Stat
Assoc 89(427):913-923, 1994), minimum description length principle (Davis et al.,
J Am Stat Assoc 101(473):229-239, 2006), and the time varying spectrum (Ombao
et al., Ann Inst Stat Math 54(1):171-200, 2002). We computed the empirical size
and power properties of the available procedures in several Monte Carlo scenarios
and also compared their performance in a speech recognition dataset.

1 Introduction

In this article we consider the problem of modelling a nonstationary time series by
segmenting it into blocks which are fitted by stationary processes. The segmentation
aims to: (1) find the periods of stability and homogeneity in the behavior of the
process; (2) identify the moments of change, called change-points; (3) represent
the regularities and features of each piece; and (4) use this information in order to
determine the pattern in the nonstationary time series.

Time series segmentation and change-point detection and location has many ap-
plications in several disciplines, such as neurology, cardiology, speech recognition,
finance, and others. Consider questions like: What are the main features of the brain
activity when an epileptic patient suffers a seizure? Is the heart rate variability
reduced after ischemic stroke? What are the most useful phonetic features to
recognizing speech data? Is the conditional volatility of the financial assets constant?
These questions can often be answered by performing segmentation analysis. The
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reason is that many series in these fields do not behave as stationary, but can be
represented by approximately stationary intervals or pieces.

Segmentation analysis aims to answer the following questions: Did a change
occur? When did the changes occur? If more than one change occurs, how can we
locate them? Whereas the first two questions refer to the problem of defining a
statistical criteria for detecting, estimating, and locating a change-point, the last one
is related with the difficult task of creating a strategy, implemented in an algorithm,
in order to search for multiple change-points.

When multiple change-points are expected, as its number and location are usually
unknown, the multiple searching issue is very intricate. It is a challenge to jointly
estimate the number of structural breaks and their location, and also provide a
estimation of the model representing each interval. This problem has received
considerably less attention than the detection and estimation of a single change-
point, due to the difficulty in handling the computations. Many algorithms exist to
calculate the optimal number and location of the change-points, some of them were
presented by Scott and Knott (1974), Inclan and Tiao (1994), Auger and Lawrence
(1989), Jackson et al. (2005), and Davis et al. (2006)

The main contributions of this paper are: (a) proposing a procedure based on
the BIC joint with the binary segmentation algorithm to look for changes in the
mean, the autoregressive coefficients, and the variance of perturbation in piecewise
autoregressive processes, by using a procedure; (b) comparing this procedure with
several others available in the literature, which are based on cusum methods (Inclan
and Tiao 1994; Lee et al. 2003), minimum description length (MDL) principle
(Davis et al. 2006), and the time varying spectrum (Ombao et al. 2002). For that,
we compute the empirical size and the power properties in several scenarios and we
apply them to a speech recognition dataset.

The article is organized as follows. In Sect.2 we present the change-point
problem. Following, in Sect.3, we briefly present cusum methods, Auto-PARM
and Auto-SLEX procedures. The final part of this section is dedicated to the
informational approach procedures and the proposed procedure based on BIC is
presented. Section 4 presents different algorithms that are useful to search for
multiple change-points. In Sect. 5 we compute and compare the size and the power
of the presented approaches. In Sect.6 they are applied to real data of speech
recognition, and finally, the final section presents the conclusions.

2 The Change-Point Problem

The problem we deal is the following. Suppose that x;, x2, ..., X7 is a time series
process with 7 change-points at the moments k', ...k, with 1 < k¥ < ... <

ky < T.The density function f (x;/6), with 6 the vector of parameters, is assumed
to be
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S (/00 t=1,... .k},
f/0), t=kf+1,... k3,

S (e /0) = : for ) # 0y # ... % Opyr.

f(x/Ons), t=ki+1,...,T.

The values of 6;, i = 1,2,...,m + 1 can be a priori known or unknown and the
goal is to detect and locate ki, k5,...,k,, and also estimate ¢;’s when they are
unknown.

Then, in general, the change-point problem consists of testing

Ho:X,~f(X,/9),t=1,...,T
H] Zx,'wf(x,/@l),t:l,...,kr, xt’\’f(.xt/ez),t:kr‘i‘l,...,k;,...(l)
Xy~ f () Onrt) t =K 1 T for Oy £ 0y % .. # Oy

If the distributions f (x,/601), f (x;/62),..., f (x;/6m + 1) belong to a common
parametric family, then the change-point problem in (1) is equivalent to test the null
hypothesis:

H()Z 91:92:...: m+l:9
Hl: 91::9](?‘#9](?‘_’_1::91{;#
i FE w1 = .= 0k, F Okpr1 = ... = 0Or. )

Most of the parametric methods proposed in the literature for change-point problems
consider a normal model. If the density function is constant over time, the change-
point problem consists on testing whether the mean or the variance registered a
change over the period analyzed.

3 Segmentation Procedures to Detect, Locate, and Estimate
Change-Points

There are many approaches for solving the problem of detecting, estimating, and
locating a change-point for independent or linear autocorrelated random variables
that can be based on parametric (Chen and Gupta 2001, 2011) and non-parametric
methods (Brodsky and Darkhovsky 1993; Heiler 1999, 2001). The main idea
consists of minimizing a loss function which involves some criteria or statistic
selected to measure the goodness of the segmentation performed. The computation
of those statistics is useful to detect a potential change-point, by comparing the
corresponding statistic computed under the hypothesis of no changes with the one
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assuming a change-point at the most likely period (Kitagawa and Gersch 1996; Chen
and Gupta 1997; Al Ibrahim et al. 2003; Davis et al. 20006).

3.1 Cusum Methods

One of the statistics most often used to segment a time series is the cumulative
sum or cusum (Page 1954). In fact, many procedures for change-point detection
are based on cusum statistics (Inclan and Tiao 1994; Lee et al. 2003; Kokoszka
and Leipus 1999; Lee et al. 2004 among others). The procedure in Inclédn and Tiao
(1994) is useful to test the null hypothesis of constant unconditional variance of a
Gaussian uncorrelated process x;, against the alternative of multiple change-points.
The test statistic is defined as:

IT = T/2 m]flx Dy 3)

where

k
D _Zt=l‘xl‘2 k
k=& 27 71
D=1 Xi

with 0 < k < T. The asymptotic distribution of the statistic IT is the maximum of
a Brownian bridge (B(k)):

“

IT —ppo,)) max{B(k) : k € [0, 1]}

This establishes a Kolmogorov—Smirnov type asymptotic distribution. The null
hypothesis is rejected when the maximum value of the function IT is greater than the

critical value and the change-point is located at period k = k where the maximum
is achieved:

k=1{k:IT>cv}.

where c.v. is the corresponding critical value.

3.2 Automatic Procedure Based on Parametric Autoregressive
Model (Auto-PARM)

In Davis et al. (2006) an automatic procedure called Auto-PARM is proposed
for modelling a nonstationary time series by segmenting the series into blocks of
different autoregressive processes.
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Let k; the breakpoint between the j-th and the (j + 1)-st AR processes, with
j=1,...,m,ko = 1and k,, < T. Thus, the j-th piece of the series is modelled
as:

X =xj, kj1=t<k;, @)
where {x,,j} is an AR(p;) process.

Xej =Y+ bpXi—rj + . By Xi—p,j O

where 0 ; := ()/j ity Pips crjz) is the parameter vector corresponding to this
AR(p;) process and the sequence {e; } is iid with mean 0 and variance 1. This model
assumes that the behavior of the time series is changing at various times. Such a
change might be a shift in the mean, a change in the variance, and/or a change in the
dependence structure of the process.

The best segmentation is the one that makes the maximum compression of the
data possible measured by the MDL principle of Rissanen (1989). MDL is defined

as!:

MDL (m, ki, ..., kn, pi,..., Pmt1) = (6)
m+1 m+1 P +2 m+1 T,
logm—i-(m—l—l)logT—}-Zlogpj—i-Z ]2 logTj—i-Z?]10g<27r6f).
j=1 j=1 j=1
where m is the number of change-points located at k1, k», . .., k;y, T} is the number

of observation in each segment j, p; is the order of the autoregressive model fitted
to the segment j, and 6]2 is the Yule Walker estimator of ajz» (Brockwell and Davis
1991).

3.3 Automatic Procedure Based on Smooth Localized Complex
EXponentials (Auto-SLEX) Functions

In Adak (1998), Donoho et al. (1998), Ombao et al. (2002), and Maharaj and
Alonso (2007) the segmentation is performed by using a cost function based on
the spectrum, called evolutionary spectrum, because the calculation is made by the
spectrum of each stationary interval. Ombao et al. (2002) created SLEX vectors
which are calculated by applying a projection operator on the Fourier vectors, to get
a basis which is simultaneously orthogonal and localized in time and frequency and
is useful to compute the spectrum of nonstationary time series.

For more details see Davis et al. (2006).
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The cost function of the block S; = [k, k;4+1] is given by

Cost (S) = Zlog&sj + B, (7N

Sj

where @s; is the SLEX periodogram, f is a penalty parameter generally equal to 1
(Donoho et al. 1998), and m ; is the number of breaks in the block. The cost for a
particular segmentation of the time series is the sum of the costs at all the blocks
defining that segmentation. The best segmentation is the one having the smallest
cost.

3.4 Informational Approach

Information criteria, which commonly are useful as a measure of goodness of fit of a
model, can be used to detect and estimate change-points. The first and most popular
of the information criteria is the Akaike information criterion (AIC), which was
introduced in 1973 for model selection in statistics. This criterion has found many
applications in time series, outliers detection, robustness and regression analysis.
AIC is defined as:

AIC = T log 6%,y + 2p.
where 61%“, is the maximum likelihood estimator of 02, and p is the number of free
parameters. A model that minimizes the AIC is considered the appropriate model.
The limitation of the minimum estimated AIC is that it is not an asymptotically
consistent estimator of the model order (Schwarz 1978).

Another information criterion was introduced by Schwarz in 1978, and com-
monly is referred to as BIC or SIC. The fundamental difference with the AIC is the
penalization function, which penalizes more the number of model parameters and
leads to an asymptotically consistent estimate of the order of the true model. BIC is
defined as

BIC = T log6i,y + plogT,

where 6]%,”, is the maximum likelihood estimator of o2, p is the number of free
parameters, and T is the length of the time series. In this setting, we have two
models corresponding to the null and the alternative hypotheses.

Let BICy(T") the BIC under Hy in (2) where no changes occur in the process
along whole the sample and BIC, (k) the criterion assuming that there is a change-
point at ¢ = k, where k could be, in principle, 1,2,...,T.

The rejection of H is based on the principle of minimum information criterion.
That is, we do not reject H if BICy(T') < min;BIC; (k), because the BIC computed
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assuming no changes is smaller than the BIC calculated supposing the existence of
a change-point at the most likely &, that is, in the value of k where the minimum
BIC is achieved. On the other hand, Hj is rejected if BICy(7") > BIC, (k) for some

k and estimate the position of the change-point k* by k such that
BIC(k) = miny—¢-7BIC; (k).

In Chen and Gupta (1997) a procedure which combine BIC and the binary seg-
mentation is proposed” to test for multiple change-points in the marginal variance,
assuming independent observations. In this article BIC is used for locating the
number of breaks in the variance of stock returns. Liu et al. (1997) modified the
BIC by adding a larger penalty function and Bai and Perron (1998) considered
criteria based on squared residuals. In the following section we present the approach
of Chen and Gupta (1997) for testing a single change-point in the variance of
independent normal data. In Al Ibrahim et al. (2003) the BIC is used to detect
change-points in the mean and autoregressive coefficients of an AR(1).

3.5 A Proposed Procedure to Detect Changes in Mean,
Variance, and Autoregressive Coefficients in AR Models

In this section, we propose an informational approach procedure for detecting
changes in mean, variance, and autoregressive coefficients for AR(p) processes. Let
X1, X2,..., X7 be the T consecutive observations from a Gaussian autoregressive
process of order p given by:

cr+ouxi—1+ ...+ oipxi—, + 016, —oo <t =<k
e+ uxim + +dopxi—p + 026, ki <t <k

X =

Cm + OmiXi—1 + .. F GupXi—p + Omer, ko1 <t < kp
Cm+1 + ¢m+1,1xt—1 + ...+ ¢m+1,p-xt—p + Om+1€¢, km <t <o

(®)
The null hypothesis is that
H() 1Cl = ... = Cm+1, ¢)11 =...= ¢)m+l,ls ¢1p = ... = ¢m+l,p and
6P=..=02,

Under the null hypothesis, the formula for the BIC, denoted as BIC,(T'), is given by:

2Binary segmentation is a searching procedure in order to detect multiple change-points in one
time series. We will explain it in Sect. 4.
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BIC,(T) = (T — p) &5 + (p +2)log(T — p), ©)
) 1 T A A A 2. o
where 6; = — thpﬂ (x, —C1 — Pr1x—1 —...—¢>px,_p) ,Co @1, ..., Pp are

the conditional maximum likelihood estimators of o2, ¢;, and the autoregressive
parameters, respectively.

The BIC, (k) for the piecewise AR(p) model under the alternative hypothesis is
given by:

BIC (k) = (ki — 1)log67 + ... + (T — k) log62 ., + (m + 1) (p +2)log T.
(10)

where 67 = TI_IZf‘ZZ(x[ — O = PuXimt — oo — PipXi—p) by =
T_;;%Zrlkmﬂ(xr = Cmt1l — Pt 11Xi—1 — v — Pmt1 pXi—p)?s CloevsCmt1s
q~51 Lyers ,¢~>m+ 1,p are the conditional maximum likelihood estimators of the variances,
012,...,031 T the constants, cj,..., ¢p+1 and the autoregressive parameters,
Q115 - - sPm+1,p, TESpECtively.

H, is not rejected if BICy(7T) < mingBIC (k) + ¢4, where ¢y, and « have the
relationship 1 — o = P[BICy(T) < mingBIC, (k) + ¢,/ Ho].

4 Multiple Change-Point Problem

When multiple change-points are expected, as its number and location are usually
unknown, it is a challenge to jointly estimate the number of structural breaks, their
location, and also provide a estimation of the model representing each interval.
Many algorithms exist to calculate the optimal number and location of the change-
points, some of them were presented by Scott and Knott (1974), Incldn and Tiao
(1994), Davis et al. (2006), and Stoffer et al. (2002).

Binary segmentation (Scott and Knott 1974; Sen and Srivastava 1975; Vostrikova
1981) addresses the issue of multiple change-points detection as an extension of the
single change-point problem. The segmentation procedure sequentially or iteratively
applies the single change-point detection procedure, i.e. it applies the test to the total
sample of observations, and if a break is detected, the sample is then segmented
into two sub-samples and the test is reapplied. This procedure continues until no
further change-points are found. This simple method can consistently estimate the
number of breaks (e.g., Bai 1997; Inclan and Tiao 1994) and is computationally
efficient, resulting in an O(T log T') calculation (Killick et al. 2012). In practice,
binary segmentation becomes less accurate with either small changes or changes
that are very close on time. Incldn and Tiao (1994) applied a such of modified binary
segmentation in its Iterative Cusums of Square (ICSS) algorithm, by sequentially
applying the statistic IT presented in Sect. 3.1.



Time Series Segmentation Procedures 53

In Davis et al. (2006) a genetic algorithm is used for detecting the optimal number
and location of multiple change-points by minimizing the MDL. These algorithms
make a population of individuals or chromosomes “to evolve” subject to random
actions similar to those that characterize the biologic evolution (i.e., crossover and
genetic mutation), as well as a selection process following a certain criteria which
determines the most adapted (or best) individuals who survive the process, and the
less adapted (or the “worst” ones), who are ruled out. In general, usual methods
for applying genetic algorithm encode each parameter using binary coding or gray
coding. Parameters are concatenated together in a vector to create a chromosome
which evolve to a solution of the optimization problem.

Finally, other algorithms set a priori the segmentation structure. For instance,
some procedures perform a dyadic segmentation to detect multiple change-points.
Under this structure, time series can be divided into a number of blocks which are a
power of 2. The algorithm begins setting the smallest possible size of the segmented
blocks or the maximum number of blocks. Ideally, the block size should be small
enough so that one can ensure the stationary behavior, but not too small to guarantee
good properties of the estimates. Stoffer et al. (2002) recommended a block size
greater or equal than 28, Then, the following step is to segment the time series in
28,27, ...,2', 29 blocks, which is equivalent to consider different resolution levels
j = 8,7,...,1,0, respectively. At each level j, we compare a well-defined cost
function computed in that level j (father block) with respect to that computed in the
level j — 1 (two children blocks). The best segmentation is that which minimizes
the cost function.

Some papers focusing on multiple change-point problem for autocorrelated data
are Andreou and Ghysels (2002) and Al Ibrahim et al. (2003). In Andreou and
Ghysels (2002) an algorithm similar to ICSS (Incldn and Tiao 1994) is applied to
detect multiple change-points in financial time series using cusum methods. In the
first step the statistic is applied to the total sample and if a change-point is detected,
the sampled is segmented and the test is applied again to each subsample up to five
segments. Other algorithms are applied in this paper, using a grid search approach
or methods based on dynamic programming. In Al Ibrahim et al. (2003) the binary
segmentation algorithm combined with the BIC is used for piecewise autoregressive
models.

Given the merits of binary segmentation saving a lot of computational time
and the better performance with respect to ICSS algorithm, in order to design
the simulation experiments, and, for empirical applications below, we propose to
combine the BIC statistic assuming the model in Eq. (8) with binary segmentation
(referred as BICBS).

5 Monte Carlo Simulation Experiments

In this section we evaluate the performance of the methods presented above, by
computing the empirical size and power under different hypotheses. We have used
four methods: ICSS (Inclan and Tiao 1994), BICBS (BIC for model in (8) with
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binary segmentation), Auto-PARM (Davis et al. 2006), and Auto-SLEX (Ombao
et al. 2002). In the tables below, where these procedures are compared, the results
for BICBS, which is the proposed procedure, are highlighted with bold font.

5.1 Empirical Size

First, we compute the empirical size, that is, how many times the corresponding
methodology incorrectly segments a stationary process. The length of the simulated
series is set equal to 4,096. Table 1 presents the results for 1,000 replications for
a Gaussian white noise with unitary variance, and for AR(1) and MA(1) stationary
processes.

All the procedures analyzed seems to appear undersized in finite samples.
Applying them to stationary processes we obtain only one block or segment in
most of the cases, and only a very small percentage of processes are segmented
in two blocks. For example, for ICSS, BICBS, and Auto-PARM the rate of
wrong segmented stationary processes is almost zero. The hypothesis that the type
of autocorrelation (i.e., autoregressive and moving average) could influence the
segmentation is rejected, given that the results for MA(1) and AR(1) processes are
similar leading to the conclusion that the type of serial correlation seems to be not
important for the size of these procedures.

5.2 Power for Piecewise Stationary Processes

We compute the power of the methods by counting how many times the corre-
sponding methodology correctly segments piecewise stationary processes in 1,000
replications. Two stationary segments or blocks are assumed. We observe if the
procedure finds the correct number of segments or blocks and if the changes occur
in a narrow interval centered on the correct breakpoint (k* £ 100). For a time
series of length 77 = 4096, we evaluate the performance of the procedures when
the data present serial correlation and the perturbation’s variance changes. The
simulated process is an AR(1) with autoregressive parameter ¢ € (—1, 1) changing
the perturbation variance from 1 to 2 in k* = 2048.

Table 1 Size of ICSS, BICBS, Auto-PARM, and Auto-SLEX

Processes ICSS BICBS Auto-PARM Auto-SLEX
White noise 0.000 0.04 0.000 0.000
AR(1) ¢ € (—1,1) 0.000 0.000 0.005 0.025

MA(1) 6 € (—1,1) 0.000 0.000 0.001 0.011
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Table 2 Power of the procedures segmenting piecewise autoregressive processes with ¢ €
(—1, 1), where the perturbation’s variance changes from 1 to 2 in# = 2048

Processes ICSS BICBS Auto-PARM Auto-SLEX
Precise detection 0.951 0.960 0.961 0.923
Oversegmentation 0.001 0.040 0.039 0.077
No segmentation 0.048 0.000 0.000 0.000

In Table 2 we present the results, where the autoregressive coefficient is generated
as¢ € (—1, 1), and the perturbation term is a white noise with unitary variance in the
first piece (f = 1,...,2048), shifting to 2 in the second piece (t = 2049, ...,4096).

All the procedures obtained excellent results when the perturbation’s term
variance changes, where the best results were for Auto-PARM and BICBS.

Finally, we analyze the performance of the tests detecting multiple change-points
in three processes. The first one is given by:

€&, 1 <t<1365
X = 2¢;, 1366 <t <2730 1rn
0.5¢;, 2731 <t <4096,

where we are interested in changes in the scale of the perturbation term, when the
process does not have autocorrelation. The second is:

0.5x—1 + ¢, 1<t <1365
Xy = O.8xt_1 + €, 1366 < ¢ < 2730 (12)
—0.5x,—1 + €, 2731 <t <4096,

where it is introduced first order autocorrelation in the process and the change-points
are due to the autoregressive coefficient. The third process is given by:

0.5x,—1 +¢, 1<t <1365
Xy = O.SX[_I + €r, 1366 < t < 2730 (13)
0.8x,—1 + 2¢;,, 2731 <t <4096,

where also is introduced autocorrelation in the data and there is both a change-point
in the autoregressive coefficient and another one in the variance of the perturbation.
It is assumed that €, ~ N(0,1) and xo = 0. The results are presented in Table 3.
When multiple change-points are present in the time series, some procedures
performed well only if the data have no serial correlation [process (11)]. That is the
case of ICSS, BICBS, and Auto-PARM. Auto-SLEX detected the change-point, but
with a big rate of oversegmentation. For autocorrelated data, the procedures with
the best performance were BICBS and Auto-PARM, with powers greater than 0.91.
ICSS has smaller power and often it does not segment or only finds one of the two
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Table 3 Proportion of detected change-points in piecewise stationary processes with two changes
presented in Eqs. (11)—(13)

ICSS BICBS Auto-PARM Auto-SLEX
Process with no autocorrelation as in (11)
Precise detection 0.999 0.910 1.000 0.626
One change-point 0.000 0.000 0.000 0.000
Oversegmentation 0.000 0.005 0.000 0.372
No segmentation 0.001 0.085 0.000 0.000
Process AR(1) as in (12)
Precise detection 0.673 0.992 0.995 0.029
One change-point 0.000 0.000 0.000 0.000
Oversegmentation 0.001 0.001 0.000 0.914
No segmentation 0.326 0.007 0.005 0.057
Process AR(1) in (13)
Precise detection 0.753 0.910 0.954 0.023
One change-point 0.206 0.028 0.045 0.000
Oversegmentation 0.013 0.062 0.001 0.945
No segmentation 0.000 0.000 0.000 0.032

change-points that the process exhibits. Finally, Auto-SLEX performed badly, again
detecting more than the right number of change-points.

In summary, Monte Carlo simulation experiments showed that Auto-PARM
and the proposed BICBS have the better performance, with high power in the
different simulation experiments. Thus, the proposed method provides an intuitive
and excellent tool to detect and locate the change-points and has the advantage with
respect to Auto-PARM of the simplicity, without the need of a complex searching
method as the genetic algorithm.

6 Application to a Speech Recognition Dataset

The performance of the procedures is illustrated by applying them to a speech
dataset consisting in the recordings of the word GREASY with 5,762 observations.
GREASY has been analyzed by Ombao et al. (2002) and Davis et al. (2006). The
resulting segmentations of the four procedures are presented in Fig. 1. Breakpoints
are showed with vertical dashed lines.

GREASY appears in the figure as nonstationary, but it could be segmented into
approximately stationary blocks. Note that in the behavior of the time series we
can identify blocks corresponding to the sounds G, R, EA, S, and Y (Ombao et al.
2002). Auto-SLEX was the procedure which found more breakpoints also for this
time series. The performance of ICSS, BICBS, and Auto-PARM seems to be better,
finding 6-13 change-points, most of them limiting intervals corresponding to the
sounds compounding the word GREASY.
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Fig. 1 Changepoints of GREASY estimated by ICSS, BICBS, Auto-PARM, and Auto-SLEX

Table 4 Standard deviation, AIC, BIC, and number of change-point in the segmentation by each
methodology

ICSS BICBS Auto-PARM Auto-SLEX
Std. dev. 51.97 52.44 118.32 137.84
AIC 4.0409 4.0409 4.0486 4.0898
BIC 4.0763 4.0759 4.1178 4.1712
# change-points 7 6 13 18

In order to compare the goodness of the segmentation, we compute the standard
deviation, Akaike and Bayesian Information criteria for the resulting segmentation
by each method. We present the results in Table 4, where the best values of the
statistics proposed are highlighted with italic font.

Although the segmentation with less standard deviation is reached by ICSS, the
information criteria selected as the best the segmentation performed by BICBS.
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Conclusions

In this paper we handled the problem of detecting, locating, and estimating
a single or multiple change-points in the marginal mean and/or the marginal
variance for both uncorrelated and serial correlated data. By combining the
BIC with binary segmentation we propose a very simple procedure, which
does not need a complex searching algorithms, with excellent performance in
several simulation experiments.
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Regularization Methods in Economic
Forecasting

Gunther Schauberger and Gerhard Tutz

Abstract Modern regularization techniques are able to select the relevant variables
and features in prediction problems where much more predictors than observations
are available. We investigate how regularization methods can be used to select
the influential predictors of an autoregressive model with a very large number of
potentially informative predictors. The methods are used to forecast the quarterly
gross added value in the manufacturing sector by use of the business survey data
collected by the ifo Institute. Also ensemble methods, which combine several
forecasting methods are exemplarily evaluated.

1 Introduction

Regularization methods are a major topic in current statistical research. Many
models and algorithms have been proposed that are designed to deal with complex
regression problems where conventional methods are severely restricted, as in the
case of correlated covariates or large data sets. Shrinkage methods like the Lasso
estimator allow for a biased but less variable estimation. Frequently, regularization
is combined with a dimension reduction of the covariates space. For a broad
introduction to regularization methods see, for example, Hastie et al. (2001).
Regularization methods can be very helpful in forecasting problems since a large
amount of available predictors that potentially can contribute to predictions, can
be handled easily. As a useful side effect, some regularization methods also
automatically perform variable selection, which enforces interpretability.

There is a wide body of literature on the analysis of time series and forecasting
methods with a small number of predictors, including Feng and Heiler (1998) and
Heiler and Feng (2000). Forecasting problems in which the number of covariates
exceeds the number of observations were mostly solved by factor forecasting. This
strategy was addressed, for example, by Bai and Ng (2002), Stock and Watson
(2006) and Stock and Watson (2011). Methods that perform variable selection
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have been discussed in the forecasting literature more rarely. Recently, Bai and
Ng (2009) and Buchen and Wohlrabe (2011) used the newly developed method
of boosting, whereas De Mol et al. (2008) studied shrinkage forecasting from a
Bayesian view. Bai and Ng (2008) used shrinkage methods to perform variable
selection for forecasting with targeted predictors. Shafik and Tutz (2009) and
Robinzonov et al. (2012) examined boosting for additive time series models from
a rather technical point of view. The objective of the present paper is to evaluate
exemplarily how modern shrinkage and selection methods can be used to improve
prediction accuracy.

2 Data and Model

The data we are considering were provided by the Munich ifo Institute. The
objective is to forecast the quarterly gross added value in the manufacturing sector
in Germany. Since 1949, the ifo Institute for Economic Research conducts the
ifo Business Survey. Based on these data, since 1972 it monthly releases the ifo
Business Climate Index, one of the most followed early indicators for economic
development in Germany. It is based on roughly 7,000 monthly responses from all
economic areas. As the two central questions of the survey, the companies are asked
for their assessments of the current business situation and their expectations for the
next 6 months. From these two questions the Business Climate Index is calculated.
These two and all other questions that are asked are measured on a 3-level scale (e.g.
“good”, “satisfactory” or “poor”). The companies that are part of the manufacturing
sector are classified into r = 68 branches. For every single branch and for each
question, a (metric) balance value is calculated as the difference of fractions of
positive and negative answers. In the case of a branch with 40 % positive, 50 %
undecided and 10 % negative answers, a balance value of 40 — 10 = 30 results.
For further information on the data pool of the ifo Business Survey, see Becker and
Wohlrabe (2007).

Since the time series of the gross added value is released once per quarter, the
arithmetic means of the monthly values corresponding to one quarter are used as
predictors. We only use the data from the manufacturing sector in the period from
1991 to0 2010. As forecasting series, the rate of change per quarter y, < % -100
and a forecasting horizon of 7 = 1 are used. The learning set for the first forecast
encompasses 40 observations from 1991 to 2000, the first forecast is calculated for
the first quarter of 2001. For every forecast, the information set is enlarged by one
observation and a new forecasting model is calculated.

The basic model that is used is the autoregressive model with exogenous
covariates, denoted as AR-X model,

rm ¢

q
E(y) =0+ Y aiyei+ .y v =xp. (1)

i=1 j=li=1
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Here, f denotes the parameter vector B = (g, a1, . . . , &g, yl(l), o y(y'm)) and
x; = (1, y—,.. .,y,_q,zfl), ... ,zf:"f)_q) is the number of used covariates. The
predictors that are included are the ¢ lags of the forecasting series y,—p,..., yi—
and the exogenous covariates x‘gj ), s =t,...,t —q + 1, where j refers to one
specific combination of the r branches and m questions. We choose g = 4 to cover
the period of one year. The exogenous covariates can be used from the current date
t since they are available long enough before the forecasting is released.

Assuming one question (2 = 1) to be the only exogenous covariate, the total
number of coefficients, that is, the dimension of 8, is 277 (r = 68, ¢ = 4; 1 +
4 + 4-68 = 277). For the largest setting from this study including five questions
from the ifo data pool, 1,365 coefficients have to be estimated. Therefore, one has a

rather low number of observations and a comparatively high number of predictors.

3 Regularization Methods

In the following, the regularization methods used in forecasting are shortly sketched.
To simplify notation, we assume the data to have the form (y, X), where y =
V1s...,yx)T denotes the response vector and X = (1, xi,...,x,), x; =
(X1, X j)T, denote the data matrix and the observations of the jth variable,
which are assumed to be standardized. Therefore, we represent the AR-X model
as a simple linear model and estimate the parameter vector 87 = (B, B1.. ... »)
from the model E(y) = By + Z?:l Bjx; or, equivalently, E(y) = XB.

3.1 L2-Boosting

L2-Boosting, as outlined by Biihlmann and Hothorn (2007), uses the method of
stepwise gradient descent for parameter estimation. It is based on AdaBoost, which
was proposed by Freund and Schapire (1996), and extended by Biihlmann and Yu
(2003). Generally, Boosting is an algorithm for a stepwise solution of the problem

ffx) = ar}g(nﬁin E(p(y. f(x))).

where p(.,.) is a differentiable loss function. In our case of L2-Boosting, the
quadratic loss

pra(v, /) = 3y = /T

is used. L2-Boosting uses the following algorithm:
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Step1 Initialize offset £ =, ﬁ[ol =0,m=0

Step2 m — m + 1: Compute residuals u; = y; — f"U(x;), i = 1,....n,
which is the negative gradient of the loss function (3.1).

Step3 Choose 8 by

n
A N 2
8 = argmin Z (ui - B x,-j)
0<j=<p i=1
as the variable that causes the greatest reduction of prediction by simple
regression of the variable on the residuals.

Step4 The parameter of variable 8 is updated by

Uy = f &) 403 By,

i=1

where v, 0 < v < 1, is a shrinkage factor which prevents overfitting.
Step S Iterate steps 2—4 untilm = M.

The maximal number of steps M has to be chosen sufficiently high. Afterwards,
the optimal number of Boosting steps m,, has to be chosen, it is the main
tuning parameter in the Boosting procedure. Like all the tuning parameters for the
regularization methods we used, m,,; will be chosen by ten-fold cross validation.
Boosting automatically performs variable selection as only those variables remain
in the model that have been chosen at least once by the iteration m,,,. Therefore, the
smaller m,, is chosen the more variables are excluded and the more parameters are
shrinked. Computation will be done by use of the R package mboost.

3.2 Lasso

The Lasso estimator has been proposed by Tibshirani (1996) and is described in
Hastie et al. (2009). It simultaneously shrinks the parameter estimates and performs
variable selection. It is defined by

2

~ lasso " P P
B = argmin Z y,-—,Bo—Zﬁjx,;i , where Z|,3j|§t
B

i=1 j=l1 j=1

or, equivalently, in Lagrange form by
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n

2
~ lasso . 1 P :
B :arg';mn EZ yl‘—,Bo—Z,Bjxij +AZ|:3j|
j=1 j=1

i=1

In contrast to the least squares estimator, the Lasso estimator is biased but more
robust. It tends to generate parameter estimates with lower variance and therefore
to reduce the prediction error. The tuning parameter A determines the amount of
regularization. With growing A the number of variables that are included in the
model reduces. For A = 0 (and p < n), the least squares estimator is obtained. For
A > 0, a unique solution for the parameter estimates can be computed also in the
p > n case.

3.3 Elastic Net

The Ridge estimator, proposed by Hoerl and Kennard (1970), is very similar to the
Lasso approach. Instead of penalizing the L1-norm of the parameter vector, the L.2-
norm is penalized. It is defined by

2

n P P
~ ridge .
B = arg‘;mn Z i — Bo— Z Bixij| ., where Z ,3? <t

i=1 j=1 j=1
or, in Lagrangian form, by

n

2
P »
~ ridge X
B :arggnm Slyi—=Bo=D Bixi| +1D B
i=1

i=1 j=l1

In contrast to the Lasso, Ridge does not perform variable selection, it is a shrinkage
method only. The higher the tuning parameter A, the more the parameter estimates
are shrinked towards zero.

Zou and Hastie (2005) proposed the Elastic Net estimator

~ elasticnet

n

2
P P
1
= argmin Do\ vi—Bo=D Bixi| +A((1—w)zp} +alp;))
j=1

i=1 j=l1

as a combination of the approaches of Lasso and Ridge, simultaneously penal-
izing the L1-norm and the L2-norm of the parameter vector. The total amount
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Lasso Elastic Net a = 0.2 Ridge

Fig. 1 Parameter paths for simulated data for estimating procedures Lasso, Ridge and Elastic Net
(o = 0.2). The x-axes represent the L1-norm of the parameter estimates. The axes above the plots
represent the current numbers of covariates in the model

of regularization is again controlled by the tuning parameter A. To control the
weighting of L1- and L2-penalty, the additional tuning parameter ¢, 0 < o < 1,
is used. « = 0 generates the Ridge estimator, @ = 1 generates the Lasso estimator.
For o # 0, Elastic Net can perform variable selection.

Figure 1 shows exemplarily the parameter paths for a simulated data set for
Lasso, Ridge and Elastic Net (¢ = 0.2). The paths represent the parameter estimates
of the corresponding method depending on the current value of the tuning parameter
A. The x-axis represents the L1-norm of the parameter vector. Therefore, A is
reduced along the x-axis with the ML estimates being seen at the right-hand side.
It can be seen that Ridge does not enforce variable selection and therefore all
parameter paths start at the same point. In contrast, Elastic Net with « = 0.2
performs variable selection, but not as strictly as Lasso. The parameter paths for
Elastic Net start for higher values of A.

For the estimation of Lasso or Elastic Net estimators, various algorithms have
been developed, e.g. by Efron et al. (2004) or Goeman (2010). We will use the
R package glmnet, an implementation of an algorithm using coordinate descent
proposed by Friedman et al. (2010).

3.4 Generalized Path Seeking

Friedman (2012) proposed to extend the Elastic Net to the so-called Generalized
Elastic Net. It is defined as

2
n

» » 2
ﬂ:arg’;m'n Z yi_,BO_Z,Bjxij +A’Z((y_1)ﬂ7]+(2_)/)|ﬂjl)
j=l

i=1 j=l1
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for] <y <2and

2
n

p 14
B = argmin Yoy —Bo=D Bixi| +2Y log((1=p)IB;1+v)
j=1

i=1 j=1

for 0 < y < 1. For 1 < y < 2, this matches the definition of Elastic Net as
defined above and bridges the penalties from Lasso (y = 1) to Ridge (y = 2).
For 0 < y < 1, this bridges the penalties from the so-called all-subset regression
(y — 0) to Lasso (y — 1). All-Subset regression is a penalty performing quite
strict variable selection by penalizing the number of nonzero parameters. Since
the penalties for 0 < y < 1 are non-convex, they usually are rather hard to
optimize. Friedman (2012) proposed an algorithm called Generalized Path Seeking
to easily approximate all penalties within the Generalized Elastic Net family without
repeatedly solving (possibly non-convex) optimization problems. Generally, this
algorithm is applicable for all penalties where

P (B)
d|B, |

>0 Vji=1,...,p

holds. This requirement is met for the Generalized Elastic Net where P(B) is
denoted as

P B2

2(()/—1)7’ +Q2=yIBih 1<y=2
P =17

leog((l—y)lﬂjl+y) 0<y<lL.

=

All parameters are initialized to be zero and are updated stepwise during the
algorithm. In every loop, for every variable it is checked how much the quadratic
loss can be reduced and how much the penalty term would increase simulta-
neously. The variable with the best compromise (i.e. the largest ratio) between
these two aspects is updated. For more details on this algorithm, see Friedman
(2012). The GPS algorithm (implementation for R available on http://www-
stat.stanford.edu/~jhf/R-GPS.html) can be used to approximate solutions for the
family of Generalized Elastic Net penalties using the penalties from the set y €
{0.0,0.1,0.2,...,1.9,2.0}.

3.5 Group Lasso

An important extension of the Lasso is the so-called Group Lasso, proposed by
Yuan and Lin (2006) and Meier et al. (2008). If the covariates are grouped within
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the data set (for example, all the dummy variables for one categorical predictors
form a group), it can be useful to focus selection on groups of variables. In our case,
the different lags for one covariate are seen as one group. Group Lasso deals with
groups in the data set as a whole. Either, the group is left out completely or every
covariate within the group is taken into the model. Group Lasso is defined as

L L
B= argmin (ny —Bol =) XiBil5+2) mnﬂlnz) ,

=1 =1

where X represents the predictor matrix for group 1 out of L groups. B; and K;
represent the parameter vector and the group size for group 1, ||a||, denotes the
Euclidian norm

lla|l, = V{a,a) = \Ja} +... +a

of an n-dimensional vector a. The Euclidian norm can only be zero if all the
components of the corresponding vector are zero. Therefore, a group only can
be excluded from the model as a whole. We apply Group Lasso by treating
all lags x,(j ) ... ,xt(j_)l_q corresponding to one covariate j as a group, also the
autoregressive terms are treated as a group. Group Lasso estimates will be computed

with help of the R package grplasso, see also Meier (2009).

3.6 Principal Components Regression

Principal Components Regression (PCR) is a well-established alternative to least
squares regression, described, e.g., in Kendall (1957). PCR uses the principal
components of the data matrix instead of the original covariates. The principal
components are linear combinations of the covariates that are orthogonal and are
chosen to capture as much variance within the data set as possible.

Principal components can be used for dimension reduction in regression. As
every principal component captures the maximal amount of variance within the data,
typically most of the information can be captured by a few principal components.
These principal components are used as regressors, the number of regressors is used
as tuning parameter in this case. This dimension reduction does not include variable
selection, as every principal component is a linear combination of all underlying
covariates. Principal components can be calculated by eigendecomposition where
the eigenvalues represent the amount of variance that is represented by the cor-
responding eigenvector. It should be mentioned that the extraction of the principal
components does not use the regression model which is called unsupervised learning
in the learning community.
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3.7 Partial Least Squares Regression

Partial Least Squares Regression (PLSR), first proposed by Wold (1975), is
strongly related to PCR. While principal components only maximize the fraction
of explained variance within the data matrix of the explanatory variables, partial
least squares creates linear combinations of the explanatory variables maximizing
the covariance of the data matrix and the response variable. Thus, it can be assured
that the information captured by the linear combinations is correlated to the response
variable.

Apart from that, PLSR has the same characteristics as PCR. It performs
dimension reduction without variable selection because linear combinations out
of the original variables are used as explanatory covariates. The number of linear
combinations is used as tuning parameter. PCR and PLSR will be calculated with
help of the functions pcr and plsr from the pls package, see also Mevik et al.
(2011).

4 Comparison of Forecasts

All the methods presented above will be used to fit model (1) as a forecasting model.
For benchmarking, we will use the AR-4 model

4
Vi = Z,Bi)’t—i + €.

i=1

with four autoregressive terms and the more general AR-p model

14
)31,‘:2,31‘)71‘—1'4‘61" jzla--'apmax

i=1

where p < pua is determined by AIC and p,,,, equals q from (1). In R, these
models are calculated by the function ar from the stats package.

To measure the forecasting accuracy, the most popular choice is the relative mean
squared forecasting error (RMSFE)

where y;, t = 1,..., T, is the predicted value for y,. The RMSFE is calculated as
the ratio of the mean squared forecasting errors of the corresponding method and the
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benchmark model yg, (AR-p). Additionally, we will use the geometric mean relative
absolute error (GMRAE)

1

T
GMRAE(5,) = (1"[ M)

VBt

as recommended by Armstrong and Collopy (1992). Here, corresponding forecasts
are directly compared to each other and therefore the mean growth rate of the abso-
lute forecasting error is compared to the benchmark forecast y 5 = (Jp1,- .., Vpr)-

Harvey et al. (1998) proposed the so-called HLN-Test as a test on equal
forecasting accuracy of two competing forecasts. It is based on the popular Diebold-
Mariano-Test (DM-Test), proposed by Diebold and Mariano (1995). The vector
d = (d,....dr),d, = (J:—y:)>*— (P —y;)?, contains the differences of quadratic
loss between the forecasts and the true values. The HLN-Test is used to test the null
hypothesis

Hy: E@d)=0

assuming equal forecasting accuracy for the competing forecasts. Following Harvey
et al. (1998), the test statistic (assuming a forecasting horizon i = 1) is

d
YV @
and will be compared to the 7" — 1 t-distribution.
Clements and Harvey (2007) stated that a similarly constructed test statistic (2)

can also be used to perform encompassing tests. Assuming two forecasting series
¥1; and y,, one wants to test the null hypothesis

—(T-1) @)

H() . A=0
referring to a combination of the two series,
JA’ct = (1 _A)y’\t + AyABrs 0< A <1

If the null hypothesis holds, it is assumed that yp, does not contain any additional
information to that from y,. Then, y, encompasses yg;. The test statistic DM is used
with d; defined by d; = (; — y1)* — (Br — ) — ).

5 Results

In the following, forecasting results for all the methods are given. The methods AR-
p and AR-4 are used as benchmarks: PLSR and PCR represent the more traditional
techniques of forecasting with dimension reduction by aggregating information into
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Table 1 Relative mean squared forecasting errors (RMSFE) of forecasting the gross added value
relative to the AR-p Model; lowest values per setting in boldface

Business Business Business All covariates®

situations expectations climate
AR-p 1.000 1.000 1.000 1.000
AR-4 1.062 1.062 1.062 1.062
Lasso 1.175 0.604 0.742 0.758
Elastic Net 0.969 0.713 0.844 0.690
Group Lasso 0.702 0.737 0.632 0.680
GPS 1.038 0.775 0.748 0.805
Boosting 1.130 0.618 0.648 0.612
PLSR 1.005 0.567 0.649 0.816
PCR 0.857 0.746 0.703 0.707

# All covariates encompass the variables business expectations, business situations, past and current
volume of orders and the current business climate

Table 2 Geometric mean relative absolute errors (GMRAE) of forecasting the gross added value
relative to the AR-p Model; lowest values per setting in boldface

Business Business Business All covariates®

situations expectations climate
AR-p 1.000 1.000 1.000 1.000
AR-4 1.006 1.006 1.006 1.006
Lasso 1.169 0.904 1.125 0.658
Elastic Net 0.943 0.846 0.912 0.902
Group Lasso 0.790 0.868 0.934 1.105
GPS 0.937 0.864 1.107 0.905
Boosting 0.997 0.960 0.784 1.048
PLSR 1.097 0.803 0.901 0.981
PCR 1.215 1.086 1.045 0.939

2All covariates encompass the variables business expectations, business situations, past and current
volume of orders and the current business climate

factor variables. Finally, the methods Lasso, Elastic Net, Group Lasso, GPS and
Boosting represent regularization methods with the feature of variable selection.
Tables 1, 2 and 3 show the results, namely the forecasting errors RMSFE and
GMRAE and the p-values for the HLN-Tests on equal forecasting accuracy. In
total, four different covariate settings were considered. The first three settings only
used one exogenous covariate from every branch, namely the covariates business
situations, business expectations and business climate. The last setting, denoted as
all covariates, uses all three covariates as well as the past and current volume of
orders simultaneously for all branches as exogenous covariates. In Tables 1 and 2



72 G. Schauberger and G. Tutz

Table 3 p-Values for HLN-Tests on equal forecasting accuracy of forecasting the gross added
value relative to the AR-p Model; lowest values per setting in boldface

Business Business Business All covariates®

situations expectations climate
AR-p 0.500 0.500 0.500 0.500
AR-4 0.953 0.953 0.953 0.953
Lasso 0.734 0.074 0.143 0.161
Elastic Net 0.461 0.091 0.256 0.115
Group Lasso 0.012 0.023 0.007 0.014
GPS 0.548 0.028 0.119 0.052
Boosting 0.687 0.039 0.072 0.075
PLSR 0.507 0.028 0.053 0.260
PCR 0.235 0.061 0.066 0.090

2All covariates encompass the variables business expectations, business situations, past and current

volume of orders and the current business climate
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Fig. 2 Boxplots for squared forecasting errors for different methods of forecasting of the gross
added value by use of the exogeneous covariate business expectations

values smaller than 1 denote better forecasting performance than AR-p. The best
method is given in boldface.

In general, the methods including exogenous covariates distinctly dominate the
benchmark methods AR-p and AR-4 in terms of RMSFE. Most of them also perform
better in terms of GMRAE. The regularization methods easily compete with PLSR
and PCR. The p-values for the HLN-Tests are most distinct for the Group Lasso. It
turns out to have a significant higher forecasting accuracy for all settings, even for
the setting business situations which turned out to be the one with the lowest gain
of additional information.

Figure 2 shows boxplots of the squared forecasting errors for the setting with
the business expectations as the only exogenous covariates. This setting turned out
to be the one with the most additional information when compared to the simple
autoregressive model. All methods including exogenous covariates decrease the
forecasting errors when compared to the benchmark models AR-p and AR-4. The
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regularization methods achieve remarkably more stable forecasts than PCR and
PLSR.

6 Ensemble Methods

As an extension, we consider the combination of the presented methods into one
joint forecast. Combining forecasts has become a well-accepted principle in the
forecasting community. In Clemen (1989), a comprehensive overview on combina-
tion methods and related literature is presented. Armstrong (2001) provides some
practical instructions for the correct combination of forecasts. More recently, Stock
and Watson (2006) presented and evaluated an extensive collection of combination
methods. The main issue addressed by forecasting combinations is to gain more
stable results than by restricting the forecast to one single method.

6.1 Methods

The combination methods we use differ with regard to their complexity. Simple

methods to combine a list of n time series, yy;,. .., Jus, for observation ¢ are the
Arithmetic Mean
1 n
Fo =23 Vi 3)
i=1
the Median
Vonti n uneven
Ver = 1( 2 » R 4)
3 (Y(g)t + J’(g+1)t) n even
and the Trimmed Mean
n—lan]
)/"\cr = Z Y(z)tv (5)
n—2- La |
i=lan]+1
where J(1):, Py, - - - » Yy represents the order statistic for observation ¢ and o

represents the proportion of the highest and lowest forecasts eliminated in the
trimmed mean. In our application, @ = 0.1 is used.

The three methods do not use any information from former forecasts and can
therefore also be used for rather small data sets. All the following methods try to
use some information on the forecasting accuracy of the single methods in former
forecasts.
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6.1.1 Weighted Means

One possibility to use information from the forecasting accuracy of the respective
methods is to use weighted means of the forecasted values. Using weights w;;, i =

n
l,...,n, where Y w; = 1, the combined forecast for observation 7 can be
i=1

calculated by
n
Yo = ZwityAit-
i=1

The weights can be calculated in numerous ways:.

6.1.2 Ridge-Weights

For the combination method Ridge-Weights, a linear model
E(y) =Bo+ Y JuBu s=1....1—1
i=1

is calculated by Ridge estimation. The estimated parameters ,3 T ,3,” are used
to calculate the weights by

Bis

n . °
> Bir
j=1

Wip =

6.1.3 Shrinkage-Forecast

The method of Shrinkage-Forcast, adapted from Stock and Watson (2004), uses the
Ridge-Weights from above and seeks to get a compromise between the method of
Ridge-Weights and the simple Arithmetic Mean. The weights are calculated by

Bir
n A
> Bir
j=

1
Wi = +(1—a)-.
n

Therefore, depending on the tuning parameter «, the weights will be a weighted
mean between the equal weights from the Arithmetic Mean and the Ridge-Weights.
We will use @ = 0.5 and o = 0.75 in our application.
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6.1.4 MSFE and MAFE

The forecasting accuracy of the single methods can be measured by the mean
squared forecasting error or the mean absolute forecasting error (MSFE and MAFE).
For method i, the MSFE for observations 1, ...,t — 1 is calculated by

t—1

1 R
mii—1 = : Z(ys - yt's)z,
s=1

whereas the MAFE is calculated by

1 t—1 R
mit—1 = : Z Iys - Yis|-
s=1

The forecasting accuracy is measured by the inverse of the respective error.
Therefore, the weights are calculated by

respectively. See also Stock and Watson (2004) for these combination methods.

6.1.5 HLN-Test

The last method of combining forecasts is the so-called HLN-Test method, proposed
by Kisinbay (2010). An algorithm is used that tests the single forecasting methods
against each other by the encompassing test (see Sect. 4) from Clements and Harvey
(2007). The algorithm has the following structure:

Step 1:  Calculate the MSFE m;—;, i = 1,...,n, (see above) for every forecast
and choose yp; such, that b = argmin(m;—;)

1

Step 2:  Test y;, against all other forecasts using the encompassing test and delete
all forecasts with no significant additional information (for a given level of
significance o)

Step 3: Repeat Step 2 with the forecast with the lowest MSFE within the
remaining forecasts

Step 4: Repeat with the third-best forecast and so on until there is no needless
forecast left

Last step:  Calculate the arithmetic mean from the remaining forecasts

For our application, o will be taken from the set @ € (0.01,0.05,0.1,0.2,0.3,0.4).
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6.2 Results

In Sect. 5, the business expectations turned out to be the most informative covariate.
Therefore, we used these forecasts and combined them by the afore-mentioned
methods. Figure 3 shows the boxplots of the squared forecasting errors for all
combination methods and the AR-p model as benchmark model.

Table 4 shows the RMSFE, the GMRAE and the p-values for the HLN-
tests on equal forecasting accuracy against the benchmark model AR-p. Both
Fig.3 and Table 4 show that the mean squared forecasting errors are reduced
significantly by most of the combination methods compared to the AR-p model.
The smallest p-values are found for the simple methods Arithmetic Mean, Median
and Trimmed Mean and by the methods MSFE and MAFE. Therefore, also very
simple methods seem to be able to improve the forecasting performance of
a combination of forecast over the performance of the single forecasts. How-
ever, the rather complicated method HLN-Test does not seem to be the best
choice.

The combination methods have also been applied to the forecasts where all
available covariates (setting All covariates) have been used. Table 5 shows the
accuracy measures for these combinations. Again, several methods have significant
improvement over the benchmark model with the simple methods among the best
ones.
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Fig. 3 Boxplots of squared forecasting errors for combinations of the forecasts of the gross added
value by use of the exogenous covariate business expectations
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Table 4 Accuracy measures for combinations of the forecasts of the gross added value by use of
the exogenous covariate business expectations; lowest values per setting in boldface

RMSFE GMRAE p-Value
Arithmetic mean 0.682 1.026 0.020
Median 0.647 1.032 0.021
Trimmed mean 0.686 1.072 0.022
Ridge-Weights 0.786 1.005 0.247
Shrinkage-Forecast (¢ = 0.5) 0.700 0.955 0.076
Shrinkage-Forecast (¢ = 0.75) 0.734 0.912 0.148
MSFE 0.665 1.024 0.025
MAFE 0.676 1.029 0.022
HLN-Test (¢ = 0.01) 0.681 1.080 0.099
HLN-Test (o« = 0.05) 0.683 1.082 0.101
HLN-Test (¢ = 0.1) 0.662 1.112 0.068
HLN-Test (@ = 0.2) 0.656 1.046 0.053
HLN-Test (¢ = 0.3) 0.695 0.973 0.066
HLN-Test (¢ = 0.4) 0.725 0.889 0.073

Table 5 Accuracy measures for combinations of the forecasts of the gross added value by use
of the exogenous covariates business expectations, business situations, past and current volume of
orders and the current business climate; lowest values per setting in boldface

RMSFE GMRAE p-Value
Arithmetic mean 0.698 0.839 0.039
Median 0.652 1.022 0.056
Trimmed mean 0.692 0.788 0.043
Ridge-Weights 0.679 0.933 0.078
Shrinkage-Forecast (¢« = 0.5) 0.684 0.873 0.056
Shrinkage-Forecast (¢ = 0.75) 0.680 0.882 0.067
MSFE 0.694 0.810 0.048
MAFE 0.699 0.827 0.042
HLN-Test (@ = 0.01) 0.779 0.941 0.194
HLN-Test (¢ = 0.05) 0.779 0.941 0.194
HLN-Test (@ = 0.1) 0.779 0.941 0.194
HLN-Test (@ = 0.2) 0.656 0.975 0.069
HLN-Test (¢ = 0.3) 0.765 0.963 0.073
HLN-Test (@ = 0.4) 0.784 0.770 0.102
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Concluding Remarks

We used several regularization methods to forecast the quarterly added value
in the manufacturing sector by using data provided by the Munich ifo Institute.
The used methods are well established in the statistical literature but are still
rarely used in the forecasting community. The methods turned out to be very
strong competitors for the established forecasting methods. Especially, Group
Lasso turned out to have a strong performance in terms of forecasting. Group
Lasso has also an advantage when it comes to interpretation of the forecasting
models. Because of its feature of group-wise variable selection, it can uncover
the sectors which do or do not have influence upon the gross added value. We
also found that ensemble methods can improve the accuracy of forecasting.
Especially in cases where none of the methods is obviously dominating,
combinations can provide more robust forecasts than a single method. In our
application, the weighted means with respect to previous forecasting errors
(MSFE or MAFE) and the simple methods of arithmetic mean, median and
trimmed mean turned out to perform best.
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Investigating Bavarian Beer Consumption

Michael Bruckner and Roland Jeske

Abstract This article investigates various influencing factors such as weather
conditions and economic factors which are considered to determine the monthly
beer consumption in Bavaria. Therefore, two regression models are used to identify
influencing factors. The results indicate that besides seasonal effects, sunshine
duration and beer price are the main influencing factors of the Bavarian beer
consumption.

1 Introduction

While many parts of Germany appear to be interchangeable concerning their
attitudes, behaviors, and mentalities, the image of Bavaria and Bavarian lifestyle
seems to be dominated by some outstanding properties and products such as King
Louis’ castles, FC Bayern Munich, some special rural dishes, and of course Bavarian
beer. This perception of Bavaria and the Bavarians by themselves but also from
abroad makes this country somehow special.

Hardly any item of food production is that important for Bavaria rather than beer
(Bayerischer Brauerbund 2012b). Bavarian beer consists of some 4,000 trademarks
(Bayerischer Brauerbund 2012c), standing for about three quarters of the German
total, while more than 600 production facilities of Bavarian beer amounting nearly
half of all German breweries (Bayerischer Brauerbund 2012a,d). Therefore, the
question arises what makes Bavarian beer special and what are possible influence
factors on Bavarian beer consumption.
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Fig. 1 Monthly beer consumption in Bavaria Jan 2000 to Oct 2011

2 Data

The concrete Bavarian beer consumption is not collected by German official
statistics. As compensation the monthly taxable sales volume of alcohol-containing
beer in Bavaria between January 2000 and October 2011 was considered.! Figure 1
shows this monthly beer consumption for the given time period. This time series
obviously seems to have a remarkable seasonal pattern. Therefore, a smoothing by
Berlin method (see, e.g., Heiler 1970) was added.

Even graphically the greater beer consumption during the summer is visible
while beer consumption during the winter months seems to decrease. Therefore,
one might expect some climatic influences on the Bavarian beer consumption. As
possible covariables, monthly sunshine duration, air temperature, wind velocity,
precipitation amount, and cloud coverage® were taken into consideration. Since
these climatic indicators were provided for 16 single Bavarian weather stations (see
Fig.2), simple averages of these indicators were calculated except for three stations
due to their exposed positions.

Another important aspect might be the influence of tourism since Bavaria is
one of the most popular regions in Germany for making holidays. In order to
measure this influence of tourism industry, the amount of overnight guests (only in

"'Source: Bavarian State Office for Statistics and Data Processing.

2Source: German Meteorological Service (DWD), Offenbach.
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Fig. 2 Weather stations in Bavaria (annotation: those marked with filled star were excluded)

hostels with capacity exceeding eight beds) and the monthly turnover development
in Bavarian gastronomy index were taken into consideration.’

Finally, the beer price index* was considered concerning its influences on beer
consumption.

In addition, a trend variable was considered in the first model in order to
accommodate the declining sales volumes. Last but not least due to the seasonal
fluctuations in beer consumption the season was modelled with 11 monthly dummy
variables.

3Both Sources: Bavarian State Office for Statistics and Data Processing.

“4Source: Bavarian State Office for Statistics and Data Processing.
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3 Considered Models

Focus was put on the following two models:

Model 1: At a first step a regression model with all mentioned covariables and
additional monthly dummies was performed by using OLS. This model was
reduced by variable selection in a top down modelling approach.

Model 2: A two-stage model was performed. At first a factor analysis of the
described covariables was performed in order to use these factors as independent
variables once again in an OLS approach.

Bruckner (2012) additionally performed a distributed lag model, which however
yielded worse results and therefore is not mentioned here.

4 Results

Concerning the unreduced model 1 several indicators turned out to be insignificant
such as trend, wind velocity, cloud coverage, precipitation amount as well as
overnight guests and gastronomy index. Surprisingly the latter two indicators did not
have a significant influence on beer consumption at all. This might be due to several
aspects. On the one hand, for both indicators it could be argued that non-negligible
carry-over effects and substitution effects exist. On the other hand, it might be due
to data’s quality. The gastronomy index is sampled more or less unchanged since
1995 neglecting any economic dynamics in the tourism sector. Concerning the time
series of the overnight guests it has to be seen critical that only accommodations
with nine beds and more are considered while a lot of Bavarian regions—as well as
areas in Rhineland-Palatine and along the German sea side—are highly dependent
on accommodations with less than nine beds.

The variable-reduced model was well fitted with an adjusted R> = 0.88
and consisted of three components: the sunshine duration, measuring the weather
impact, the beer price index as the structural component, and the season which
reflected the yearly fluctuations in the sales volumes. An increase in the sunshine
duration had a highly positive impact whereas increasing beer prices influenced the
beer consumption negatively (see Table 1).

Further investigations of the reduced model did not provide any indication of
multicollinearity: neither the variance inflation factors nor the condition index
or the proportions of variance showed abnormalities. Moreover the QQ-Plot of
standardized residuals did not stand for a violation of the Gaussian distributional
assumption (Fig. 3). Based on the Breusch—Pagan LM-test the null hypothesis that
homoscedasticity exists could not be denied (p = 0.709). Last but not least the
Durbin—Watson-Statistic with 2.5 turned out to be unobtrusive.

Secondly, a two-step model was performed. Here, in a first step, a princi-
pal component analysis (PCA) was made. Therefore the weather indicators, the
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Table 1 Regression results for reduced model 1

85

Variable Coefficient Standard error t-Statistic p-Value
(Constant) 2,478,441.79 95,928.560 —25.836 0.000
Sunshine duration 1,514.80 227.104 6.670 0.000
Price index of beer —9,836.85 941.213 —10.451 0.000
Dummies

January —278,381.49 36,086.80 —7.714 0.000
February —344,959.63 36,659.58 —9.410 0.000
March —187,062.61 39,299.06 —4.760 0.000
April —80,717.52 45,145.76 —1.788 0.076
May 78,888.10 47,933.45 1.646 0.102
June 86,285.07 50,075.33 1.723 0.087
July 132,762.14 49,223.26 2.697 0.008
August 97,830.88 47,421.77 2.063 0.041
September —59,581.67 42,145.73 —1.414 0.160
October —118,747.37 38,206.00 —3.108 0.002
November —163,985.57 36,814.49 —4.454 0.000

Fig. 3 QQ-plot of
standardized residuals
(model 1)
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gastronomy index, the overnight guests, and the beer price index were used as input
data. Within the PCA the Varimax-method was used as rotation-method in order to
derive orthogonal factors (see Table 2). Based on the screeplot (Fig. 4) three under-
lying factors could be identified: A weather factor, a factor of weather-depending
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Table 2 Rotated component matrix of factor analysis

Variable Component 1 Component 2 Component 3
Cloud coverage —0.899 —0.054 —0.009
Sunshine duration 0.790 0.446 —0.094
Wind velocity —0.663 —0.055 —0.154
Precipitation amount —0.364 0.867 0.018
Overnight guests 0.485 0.793 0.163
Air temperature 0.583 0.759 —0.023
Gastronomy index 0.392 0.681 —0.284
Beer price index 0.093 —0.019 0.974
Screeplot
.
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> ,

g 2
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factor

Fig. 4 Screeplot (model 2)

sectors, and a price factor. All together these three factors reproduced the original
variables to more than 80.6 % and thus were taken as dependent variables in the
downstream OLS approach.

That factor-regression model highlighted some interesting findings. On the one
hand, the factor which included the gastronomy index and the overnight guests
time series was insignificant whereas the weather and the beer price factor were
significant. Moreover the goodness of fit was not attached (adjusted R> = 0.88).
Thus model 2 supports the findings of model 1 (see Table 3).
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Table 3 Regression results for reduced model 2

Variable Coefficient Standard error t-Statistic p-Value
(Constant) 1,610,228.24 27,652.12 —58.232 0.000
Weather factor 42,136.72 9,251.18 4.555 0.000
Price factor —83,438.654 7,541.60 —11.064 0.000
Dummies

January —233,410.77 37,051.86 —6.3 0.000
February —276,163.53 37,085.74 —7.447 0.000
March —82,615.27 37,053.75 —2.23 0.028
April 41,327.88 38,946.50 1.061 0.291
May 247,524.36 38,187.62 6.482 0.000
June 278,741.32 38,872.58 7.171 0.000
July 323,514.30 38,525.30 8.397 0.000
August 272,128.94 39,233.64 6.936 0.000
September 42,616.72 39,313.60 1.084 0.280
October —59,115.55 38,321.19 —1.543 0.125
November —130,944.39 37,860.95 —3.459 0.001

5 Summary

Bavarian beer consumption can be fairly well described by linear regression mod-
elling. Both considered models show good performances and result in qualitatively
similar results: they indicate sunshine duration, beer price index, and seasonal
dummies as explaining variables. There is high evidence that sunshine duration has
a deep positive impact on Bavarian beer consumption, whereas beer price index
influences beer consumption negatively. The seasonal effects in both models point
out that the beer garden seasons led to over averaged beer consumption in Bavaria.
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The Algebraic Structure of Transformed Time
Series

Tucker McElroy and Osbert Pang

Abstract Invertible transformations are often applied to time series data to generate
a distribution closer to the Gaussian, which naturally has an additive group structure.
Estimates of forecasts and signals are then typically transformed back to the original
scale. It is demonstrated that this transformation must be a group homomorphism
(i.e., a transformation that preserves certain arithmetical properties) in order to
obtain coherence between estimates of quantities of interest in the original scale, and
that this homomorphic structure is ensured by defining an induced group structure
on the original space. This has consequences for the understanding of forecast
errors, growth rates, and the relation of signal and noise to the data. The effect of the
distortion to the additive algebra is illustrated numerically for several key examples.

1 Introduction

The analysis of time series data is often focused on producing estimates of signals,
forecasts, and/or growth rates, all of which are typically estimated by methodologies
that assume an additive group structure of the data. For example, many signal
extraction estimates assume that the sum of signal and noise equals the original data
process; forecasts have their performance evaluated by taking their difference with
the future value (this defines the forecast error). However, it is not uncommon for
data to be initially transformed by an invertible function so as to make a Gaussian
distribution more plausible. Any signal estimates, forecasts, or growth rates would
then be transformed back into the original scale by inverting the transformation.
This mapping necessarily distorts the additive group structure.

For example, many monthly retail series exhibit dramatic seasonal behavior and
hence are candidates for seasonal adjustment (Bell and Hillmer, 1984; McElroy,
2012). Due to the underlying linkage of retail to inflation, exponential growth is
not uncommon, and typically a logarithmic transformation is suitable for producing
a more symmetric, light-tailed marginal distribution. Seasonal adjustments, which
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are an application of signal extraction techniques, can then be produced using an
additive group structure. Inverting the initial transformation by exponentiation maps
the addition operator to the multiplication operator. That is, in the original data
scale the seasonal and nonseasonal estimates no longer sum to the data process, but
instead their product equals the data process.

This is the only transformation with an intuitive induced algebra on the original
space. All transformations induce a group structure on the original space, which can
be used to understand how the data process is decomposed into signal and noise,
or how growth rates are to be properly understood; however, multiplication is the
only familiar induced group structure.' The main result of this paper is to explicitly
derive the induced group structure, and study its impact on several examples, such
as the hyperbolic sine and logistic transformations.

Section 2 gives background concepts, with a brief discussion of the statistical
motivation for our results, which arise from time series data that have been affected
by the use of transformations. Section 3 contains our main results, and develops the
algebra of the parent space, which is induced by the additive group structure of the
transformed space. Section 4 continues the main examples and provides plots of
level curves for the new group operations. Section 5 gives two empirical examples
that compare the new group operator to addition in the parent space for the square
root and logistic transformations. Section 6 provides our conclusions and discusses
the implications for interpreting signal extractions, forecasts, and growth rates.

2 Statistical Background

Let us label the original domain of the data as the “parent space,” and all variables
will be written in bold. The “transformation space” arises from application of
a one-to-one mapping ¢, which is chosen so as to reduce heteroscedasticity,
skewness, and kurtosis in an effort to produce data that is closer to having a
Gaussian structure. For Gaussian time series variables, the additive group structure
is extremely natural: optimal mean square error estimates of quantities of interest
(such as future values, missing values, unknown signals, etc.) are linear in the data,
and hence are intimately linked to the addition operator. Errors in estimation are
assessed by comparing estimator and target via subtraction—this applies to signal
extraction, forecasting, and any other Gaussian prediction problem. Therefore the
additive operator is quite natural for relating quantities in the transformation space.

It is for the above reasons (the linearity of estimators when the data is Gaussian)
that the sum of signal and noise estimates equals the data process; no other algebraic
operation is natural for relating Gaussian signal and noise. Given an observed time
series {X;} in the parent space, say for 1 < t < n, the analyst would select ¢

I'The original use of the logarithm, as invented by John Napier, was to assist in the computation of
multiplications of numbers (McElroy, 2005).
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via exploratory analysis such that X, = ¢(X;) is representable as a sample from
a Gaussian process. Most of the classical results on signal extraction (Bell, 1984;
McElroy, 2008) and projection (Brockwell and Davis, 1991) are interpretable in
terms of a Gaussian distribution. More precisely, the estimates commonly used in
time series applications minimize the mean squared prediction error among all linear
estimators, and are also conditional expectations when the process is Gaussian. If ¢
does not produce a Gaussian distribution, at a minimum it should reduce skewness
and kurtosis in the marginal distributions.

Also, it is necessary that ¢ be invertible, and it will be convenient for it to be
a continuously differentiable function. Denoting the joint probability distribution
function (pdf) of the transformed data by py, .. x,(x1,- -+, x,), the joint pdf of the
original data is then

. 0o(x/)
DXy X (X1, 00+ Xn) = Pxye X, (X1,000, X5) - H[:l%'

ey
Of course, here x; = ¢(x;). If we select a parametric family to model py; .. x,,
e.g., a multivariate Gaussian pdf, then (1) can be viewed as a function of model
parameters rather than of observed data, and we obtain the likelihood. It is apparent
that the Jacobian factor does not depend on the parameters, and hence is irrelevant
for model fitting purposes. That is, the model parameter estimates are unchanged by
working with the likelihood in the parent space.

There may be estimates of interest in the transformation space, which are some
functions of the transformed data. Typically we have some quantity of interest Z
that we estimate via Z in the transformed space, perhaps computed as a linear
function of the transformed data (though the linearity of the statistic is not required
for this discussion). If we have a measure of the uncertainty in Z, we can compute
probabilities such as Pla < 7 < b] and Pla < Z-Z< b]. Since ¢ is invertible,
the former probability can be immediately converted into a confidence interval for
the parent space, via

Plo@ =72 ¢7'0)].

This assumes that ¢ is increasing (else the inequalities will be flipped around).
Then our estimate of Z = ¢~ '(Z) would be (p_l(Z ), with uncertainty interval
given by the above equation; a knowledge of the probability in the transformed
space immediately provides the probability in the parent space. However, when
uncertainty about an estimate is assessed in terms of its relation to a target quantity
Z, which may be stochastic, it is less obvious how to proceed. This is typically the
situation in time series analysis, where Z is often a signal or a future value of the
data process, and so is a stochastic quantity. If we apply the inverse transformation
toPla < 7Z-Z < b], we obtain

Ple@=e7'Z-2) =¢7'0)]. @)
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which tells us nothing of the relationship of Z to its estimate ¢_1(2 ). That is,
there should be some algebraic relation between Z and ¢! (Z ) such that a suitable
notion of their discrepancy can be assessed probabilistically, and (2) can become
interpretable in terms of natural quantities in the parent domain. Supposing that
some operator € were defined such that go_l(Z -7Z) = (p_l(Z) ® Z7', for an
appropriate notion of the inverse of Z, then we could substitute into (2) and obtain
a confidence interval for the statistical error. The next section develops the unique
operator @ possessing the requisite properties.

3 Algebraic Structure of the Parent Space

Given an additive operation in the transformed space, e.g., x; + X;—1, it is crucial
to define a corresponding composition rule & in the parent domain such that ¢ is
a group homomorphism. A group is a set together with an associative composition
law, such that an identity element exists and every element has an inverse (Artin,
1991). A homomorphism is a transformation of groups such that the laws of
composition are respected. The groups under consideration are #Z = (R, +) for
the transformed space, and 4 = (¢~ '(R), @) for the parent space. Consider the
situation of latent components in the transformed space, where X; = S, + N, is a
generic signal-noise decomposition. Then the components in the parent space are
@~ '(S;) = S, and ¢! (N,) = N,, which can be quantities of interest in their own
right. How do we define an algebraic structure that allows us to combine S, and Ny,
such that the result is always X;? What is needed is a group operator & such that

SSON, =X, =9 ' (S + Ni) =0 (@(S) + o(N))) .

This equation actually suggests the definition of @: any two elements a, b in the
parent group ¢ are summed via the rule

a®b=0¢"(p@+¢b). A3)

This definition “lifts” the additive group structure of % to ¢ such that: (1) ¢~ !(0) =
1 is the unique identity element of ¢; (2) ¢ has the associative property; (3) the
unique inverse of any a € ¢ is given by a=' = ¢~ !(—¢(a)). These properties
are verified below, and establish that ¢ is indeed a group. Moreover, the group is
Abelian and ¢ is a group isomorphism.

First, a @ ¢~ '(0) = ¢ '(¢(a) + 0) = a, which together with the reverse
calculation shows that ¢~!(0) is an identity; uniqueness similarly follows. Asso-
ciativity is a book-keeping exercise. For the inverse, note that a @ ¢~ ' (—¢(a)) =
¢ ' (p(a)—@(a)) = ¢ '(0) = 1. This shows that ¢ is a group, and commutativity
follows from (3) and the commutativity of addition; hence, ¢ is an Abelian group.
Finally, ¢ is a bijection as well as a homomorphism, i.e., it is an isomorphism.
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What goes wrong if we use another composition rule to define ¢? We would lose
the group structure, and more importantly we no longer have the important property
that (X;) = ¢(S;) + ¢(N,). For example, suppose that ¢(x) = sign(x) \/m, and
for illustration suppose that X;, S;, N; are all positive. But if an additive structure
is assigned to the parent space, then we would have X; = S, + N;, and as a
consequence /X; = +/S; + N; # /S, + +/N;. Instead, @ should be defined via
(for positive inputs a and b) the following: ad®b = a+b+2+/ab. Now this example
results in an unfamiliar operator for @, but when ¢ is the logarithm, we obtain
multiplication. Although some conceptual realignment is required, the requisite
algebraic structure is uniquely determined by ¢ and cannot be wished away.

Example 1: Logarithm

Suppose that ¢(x) = logx and the domain is all positive real numbers. Then
a® b = exp{loga + logbh} = a- b, i.e., the group operator is multiplication. The
identity element of ¢ is unity, and inverses of elements are their reciprocals. This is
a familiar case, and it works out nicely; the homomorphic property of the logarithm
is well known. In application, seasonal noise is viewed in the parent domain as
a “seasonal factor” that divides the data, with the residual being the seasonally
adjusted data.

Example 2: Box—Cox

Suppose that p(x) = sign(x)|x|l, which is essentially a Box—Cox transform (see
Box and Jenkins 1976) when A € (0, 1]. The case A = 1 is trivial, and A — 0 essen-
tially encompasses the case of logarithmic transformation. Typically the transform
is utilized on positive data, but we include the sign operator to ensure the homomor-
phic property, as well as invertibility of ¢. The composition law in ¢ is then

. . A . A . A . A /2
ad b = sign (31gn(a)|a| + sign(b)|b| ) . )mgn(a)lal + sign(b)|b| .

The identity is also zero, and a~! = sign(—a)|a|. When we restrict the spaces to

R, the rule simplifiestoa @ b = (a* + b*)l/ g (but then additive inverses are not
well defined, and % becomes a semi-group).

Example 3: Logistic

Suppose that ¢(x) = log(x)—log(1—x) defined on (0, 1), with inverse e* /(1 4¢*).
This transform is sometimes used for bounded data that represents a percentage or
rate. The composition law is



94 T. McElroy and O. Pang

adb= ab
~ 1—a—b+2ab

with identity element 1/2 and inverses a~' = 1 — a. This rule tells one way that
percentages may be composed so as to ensure the result is again a percentage.

Example 4: Hyperbolic Sine

The function ¢(x) = (e* — e~¥)/2 is the hyperbolic sine transformation, which
maps R to R, with inverse ¢! (y) = log(y + +/y? + 1). Then the composition law
is

a®b=9¢"" (("—e™)(1+e*")/2).

1

The identity element is zero, and inverses are the same as in %, i.e.,a” = —a.

Example 5: Distributional Transforms

Any random variable with continuous invertible cumulative distribution function
(cdf) F can be transformed to a standard Gaussian variable via ¢ = Z o F, where
& is the quantile function of the standard normal. Letting @ denote the Gaussian
cdfand Q = F~! the given variable’s quantile function, clearly ¢ ~' = Q o ®@. This
transform takes a random variable with cdf F in the parent domain to a Gaussian

variable, and the corresponding composition rule is
a®b= Q{2 (E[F@]+ E[FD)]}.
For example, F' might correspond to a )(2, student ¢, uniform, or Weibull distri-
bution. A y? variable on 2 degrees of freedom (i.e., an exponential variable) has
F(x) =1—e7*, with Q(u) = —log(1 — u). Then
a®b=—log{l—®(Z[1—e ]+ E[l —e "))}

defines the composition law.

4 Numerical Illustrations

In order to assess the degree of distortion that @ generates in quantities, in
comparison with the 4 operator, one can examine the level curves ¢ = a @ b for
various values of ¢, i.e.,
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Le={(@b):adb=c={(acda):aceco (R}

When ¢ is the identity mapping, the level curves are just the lines of slope —1, with
y intercepts given by various values of ¢. By plotting the various level curves L, in
comparison with the straight lines for the operator +, we can form a notion of the
extent of distortion involved to the group structure of Z.

To compute the level curves, we must calculate ¢ @ a™" in each case, which we
write as fc(a) for short; then the level curve is the graph of f.. For the logarithmic
transform, f.(a) = c/a. For the Box—Cox, the general formula is cumbersome.
For example, when a,¢ > 0 and A = 1/2 we obtain f.(a) = sign(s/c — /a) -
| /€ — /a|*. For the logistic, we have

1

c(l1—a)
a—c+2c(l—a)

fe(@) =

For hyperbolic sine, we have fe(a) = ¢~ !((e™® — e™)(1 + e7®)/2), which does
not simplify neatly. For distributional transforms,

Je(@) = Q{P (E[F(c)] — E[F(a)])} .

Various level curves are plotted in Figs. 1, 2, 3, and 4. We focus on values of
¢ =i/10for 1 <i < 10, and all values of a € [0, 1]. We consider Examples 1
and 2 in Fig. 1, Examples 3 and 4 in Fig. 2, and Example 5 in Figs. 3 and 4, where
the distributional transforms include student t with 2 degrees of freedom, )(2 with 1
degree of freedom, the uniform (on [0, 1]) distribution, and the Weibull with shape
parameter 1.5 and unit scale.

1.0
1.0

0.4 0.6 0.8
L L L
0.6 0.8

L

0.4

0.2
!
0.2

0.0
L
0.0
L

Fig. 1 Level curves L. for the logarithmic (left panel) and square root Box—Cox (right panel)
transformations. The red (dotted) lines are level curves for a + b, while the black (solid) lines are
level curves for a @ b, where ¢ = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0
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a a

Fig. 2 Level curves L. for the logistic (left panel) and hyperbolic sine (right panel) transforma-
tions. The red (dotted) lines are level curves for a + b, while the black (solid) lines are level curves
for a @ b, where ¢ = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0

1.0

0.6
L

0.4

0.2
L

0.0
1

Fig. 3 Level curves L, for the student t (left panel) and y? (right panel) transformations. The red
(dotted) lines are level curves for a + b, while the black (solid) lines are level curves for a @ b,
where ¢ = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0

We see that the level curves for the logistic and uniform transforms are similar
(though not identical, see Figs. 2 and 4), which is intuitive since they both map the
space [0, 1] into R. Also, the logarithmic (Fig. 1), y* (Fig.3), and Weibull (Fig. 4)
are quite similar. The hyperbolic sine (Fig.2) and student t (Fig. 3) both offer little
distortion, but have opposite curvature.
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Fig. 4 Level curves L. for the uniform (left panel) and Weibull (right panel) transformations. The
red (dotted) lines are level curves for a + b, while the black (solid) lines are level curves for a @ b,
where ¢ = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0

5 Empirical Illustrations

How much does the @ operator differ from addition in practice? To answer this
query we provide two data illustrations. In these examples, a data set {X,} that has
undergone some transformation ¢ will be seasonally adjusted using X-12-ARIMA
(Findley et al., 1998), being applied to X; = ¢(X,) in the transformed space. We
then demonstrate that the additive decomposition into seasonal and nonseasonal
components in the transformed space does not reproduce an additive decomposition
of these inverted components in the parent space. For this application, if X;
decomposes into a trend-cycle C;, seasonal S;, and irregular component /;, then
we have X; = C; + S; + I;. The nonseasonal component will be composed of the
trend-cycle and the irregular effect, so let us label the adjusted component N, as
N, = C; + I,. Note that while the signal-noise decomposition uses S; to denote
signal and N, to denote noise, for the additive seasonal decomposition described
here, the nonseasonal portion N, is the signal, and the seasonal component S; is the
noise. What we show is that although X, = N, + S, and X, = ¢~'(X,) are both
true, ¢~ (X;) can be quite a bit different from ¢! (N;) + ¢~'(S,) = N, + 8, when
¢ is not a linear transformation.

5.1 Example 1: Square Root Transform

The first example is the U.S. Census Bureau monthly series of total inventory of
nonmetallic mineral products in the USA, between the years 1992 and 2011. The
default square root transform in X-12-ARIMA is 0.25 4+ 2(/X; — 1), which is
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’[.'abl'e 1. Comparison of log Transform | (Adj.) log likelihood | AICC
likelihoods and AICCs for

three transforms of total None —1,353.0860 2,712.2800
inventory data Logarithm | —1,352.1446 2,710.3974
Square root | —1,350.8787 2,707.8655

a shifted and scaled version of the basic /X, square root transform, and the two
adjusted log likelihoods are identical. Using X-12-ARIMA’s automdl and transform
specs, we compare the square root transform to both a logarithmic transform and to
no transform at all. Typically, the model with the smallest AICC would be preferred
over other contenders, but since the same SARIMA (02 1)(0 1 1) model was found
to fit all three transforms of the data, the best transform would equivalently be
indicated by the highest log likelihood. Table 1 displays the log likelihoods (adjusted
for the transformations) along with the corresponding AICC. We see that the square
root transform yields the highest log likelihood in the parent space and also the
lowest value for AICC; this leads us to prefer the use of a square root transform for
this total inventory series.

We proceed by using X-12-ARIMA to obtain an additive decomposition of the
series { X, }, where X, is just the square root of X;. In checking the difference series
X, — (N; + S,), we note that the differences appear to be centered around 0, with
a maximum magnitude no greater than 5 x 10~'3; numerical error from rounding
and computer precision explains why this difference is not identically 0. Similar
results hold for the difference between X; and N; & S,, which is just the application
of (p_l to N; + S;. However, there are substantial discrepancies between X, and
N; + S;, as expected. For N, = ¢~'(N,) and S, = ¢~'(S,), Fig. 5 shows a plot of
the untransformed series X; along with N, 4+ S; on the top panel, and on the bottom
panel, we have the difference series obtained by subtracting N; +S; from X;. The top
panel of Fig. 5 confirms that the additive decomposition in transformed space does
not translate to an additive decomposition in parent space, and the bottom panel
shows that the deviations from O in this case are quite pronounced. Furthermore,
while the lower panel of Fig.5 indicates that the differences are roughly unbiased
(the series is centered around zero), it also displays a highly seasonal pattern
evincing some heteroskedasticity. We explain this behavior below.

Noting that the seasonal S; can be negative, it follows that S; can be negative as
well; however, if the original data X, is always positive, it follows that

S: &N, =S, + N, +sign(S;Ny) v/[S:[ [N/
Typically N; is positive as well, so that
S[ @ Nt - (S[ + Nt) - Sign(S[) vV |St| vV N[.

Thus, the discrepancy between @ and the addition operator is equal to the square
root of the product of the seasonal and nonseasonal, multiplied by the sign of the
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Total Inventory and Sum of Inverse Trans. of Nonseasonal & Seasonal
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Fig. 5 The top plot shows X, and N, + S, together, while the bottom plot displays X, — (N, +S;),
where X, is the series for U.S. total inventory of nonmetallic mineral products between 1992 and
2011. N; and S; are the signed squares of N, and S;, the nonseasonal and seasonal components
from an additive decomposition of X, = /X,

seasonal; we can expect this time series to be centered around zero, because S;
is centered around zero. This explains the seasonal behavior of the lower panel in
Fig.5.

5.2 Example 2: Logistic Transform

The second example is the monthly unemployment rate for 16—19-year-old individ-
uals of Hispanic origin between the years 1991 and 2011; the data was obtained
from the Bureau of Labor Statistics. For rate data, the logistic transform ¢(a) =
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’[.'abl'e 2 Comparison of log Transform | (Adj.) log likelihood | AICC
likelihoods and AICCs for

three transforms of None 506.2443 —1,006.3864
unemployment rate data Logarithm | 508.9064 —1,011.7107
Logistic 511.0460 —1,015.9900

log(a) — log(1 — a) is sometimes warranted, as it ensures fits and predictions
that are guaranteed to fall between O and 1. As in the previous example, we
use X-12-ARIMA’s automdl and transform specs to help us compare the logistic
transform to both a logarithmic transform and to no transform at all. Again, the
procedure selects the same SARIMA (0 1 1)(0 1 1) model for all three transforms,
so whichever transform has the highest log likelihood in the parent space will
also have the lowest AICC. Table 2 displays the log likelihoods (adjusted for
the transformations) along with the corresponding AICC, and we see that the
logistic transform does indeed result in a better model compared to the other two
transformations.

We proceed by performing a logistic transform on X, and then running X-12-
ARIMA on the transformed series to obtain an additive seasonal decomposition.
Checking the series of differences X; — (N, 4+ S;), we find that the magnitude of the
differences is bounded by 6 x 10715, These deviations from 0 are entirely explained
by numerical error produced from passing the data through X-12-ARIMA. Similar
results hold for X; — (N, & S,). But there are notable discrepancies between X, and
(N; +S:), as in the previous illustration, as shown in Fig. 6. The top panel shows that
the additive nature of the decomposition in transformed space is not preserved when
mapped back to the parent space, while the bottom panel shows that this discrepancy
(in the parent space) is a time series centered around —0.5. Also, the lower panel of
discrepancies X; —(N; +S;) exhibits seasonal structure; we explain this phenomenon
next.

For the logistic transform, the composition operator @ is defined as

st‘N[
I—Sf—Nf—}-ZS,'Nf’

St@Ntz

where S; and N, in the parent space are mapped using 1/(1+e~5) and 1/(14¢~)
from the transformed space. To explain the behavior of the lower panel in Fig. 6, we
calculate the difference:

S['N[

SSs®N, —(S; +Ny) = — (S, +N
N = (84N = e e — (8N

1
-2
1_(St+Nt)+ZSt'N[

1 1
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Unemployment Rate and Sum of Inverse Trans. of Nonseasonal & Seasonal
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Fig. 6 The rop panel shows X, and N, 4 S, together, while the bottom panel displays X, — (N, +
S:), where X, is the unemployment rate among 1619 year old Hispanic individuals between 1991
and 2011. N; and S; are the inverse transforms of the N, and S; from the additive decomposition
of X; =log(X;) —log(1 —X;)

Given that S; and N; are both restricted between 0 and 1, the second term in the final
expression above is a time series that fluctuates about zero (we cannot claim that
its expectation is zero). This explains why the discrepancies in parent space were
centered around —0.5. The second part of the sum helps account for the variation
around the —0.5 center in the discrepancies S; & N; — (S; + N;).
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6 Discussion

The primary applications of time series analysis are forecasting and signal extrac-
tion. In the transformed space, the data process is equal to signal plus noise, but their
proper relation is different in the parent space, being given by S, & N, = X,. Also,
for Gaussian time seriqs the forecast error is defined via X, ++1 — X:+1, which in the
parent space becomes X; 4 EBthil . If the transformation is logarithmic, the forecast
error in the parent space is the ratio of estimate and future value. Other relations can
be worked out for the logistic and distributional transformations.

There is also much applied interest in growth rates, which in the transformed
space is given by definition as X, — X, (these might also be computed in terms of
a signal of interest, say S; — S;,—;). For a logarithmic transform, the growth rate
becomes X,/X;_; in the parent space, which might be interpreted as a percent
increase over the previous value. But a growth rate for another transformation looks
much different, e.g., in the logistic case

X[(l _Xt—l)
Xo =X +2X,(1 = X;—p)

X, X =

Likewise, growth rate formulas can be written down for the other transformations,
although typically the expressions do not simplify so neatly as in the logarithmic
and logistic cases.

These new formulas for growth rates, forecast errors, and relations of signal
and noise to data can be counterintuitive. Only with the logarithmic transformation
we do attain a recognizable group operation, namely multiplication. In order
for ¢ to be a homomorphism of groups—which is needed so that quantities in
the parent space can be meaningfully combined—one must impose a new group
operator on the parent space, and oftentimes this operator @ results in unfamiliar
operations. However, there seems to be no rigorous escape from the demands of the
homomorphism, and familiarity can develop from intimacy.

To illustrate a particular conundrum resolved by our formulation, consider the
case alluded to in Sect.2, where Z represents a forecast or signal of interest in
the parent domain, and ¢~!(Z) is its estimate. Note that ™' (Z) = Z~', and the
corresponding error process is then ¢ ™! (2 ) @ Z~!. The probability (2) becomes

Pl @=¢" @ ez <¢7'0).

Hence the confidence interval for the statistical error (in the parent domain) is
expressed as [p~!(a), ¢~ '(b)], which exactly equals the probability that in the
transformed domain Z — Z lies in [a, b]. This type of interpretation is not possible
unless ¢ is a homomorphism, which the particular definition of ¢ guarantees.
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We can also manipulate Pla < Z-Z< b] to obtain an interval for Z:

>
IA

]P’[agZ—ZEb] P[Z— Z§Z—a]

=Plp(Z-h <Z=¢Z-a).

Although the last expression allows us to easily compute the interval for Z,
it is not directly expressed in terms of the parent estimate ¢~!(Z). Using the
homomorphism property, the interval can be written as

[w‘l(Z) b o' (D)@ a_l] .

In summary, the chief applications of time series analysis dictate that quantities
in the parent space of a transformation must satisfy certain algebraic relations, and
the proper way to ensure this structure is to define a group operator @ via (3).
As a consequence, the notions of statistical error (for forecasts, imputations, signal
extraction estimates, etc.) are altered accordingly, as are the definitions of growth
rates and the relations of signal and noise to data. Such relations are already intuitive
and well accepted when the transformation is logarithmic, but for other transforms
there remains quite a bit of novelty.

Disclaimer

This article is released to inform interested parties of research and to encourage
discussion. The views expressed on statistical issues are those of the authors and not
necessarily those of the U.S. Census Bureau.

References

Artin, M. (1991). Algebra. Upper Saddle River, NJ: Prentice Hall.

Bell, W. (1984). Signal extraction for nonstationary time series. The Annals of Statistics, 12, 646—
664.

Bell, W., & Hillmer, S. (1984). Issues involved with the seasonal adjustment of economic time
series. Journal of Business and Economic Statistics, 2, 291-320.

Box, G., & Jenkins, G. (1976). Time series analysis, forecasting and control. San Francisco:
Holden-Day.

Brockwell, P., & Davis, R. (1991). Time series: Theory and methods (2nd ed.). New York: Springer

Findley, D., Monsell, B., Bell, W., Otto, M., & Chen, B. (1998). New capabilities and methods of
the X-12-ARIMA seasonal adjustment program. Journal of Business and Economic Statistics,
16, 127-1717.



104 T. McElroy and O. Pang

McElroy, T. (2005). A to Z of mathematicians. New York: Facts on File.
McElroy, T. (2008). Matrix formulas for nonstationary ARIMA signal extraction. Econometric

Theory, 24, 1-22.
McElroy, T. (2012). An alternative model-based seasonal adjustment that reduces over-adjustment.

Taiwan Economic Forecast & Policy, 43, 35-73.



Reliability of the Automatic Identification
of ARIMA Models in Program TRAMO

Agustin Maravall, Roberto Lopez-Pavon, and Domingo Pérez-Caiete

Abstract In so far that—as Hawking and Mlodinow state—"‘there can be no model-
independent test of reality,” time series analysis applied to large sets of series needs
an automatic model identification procedure, and seasonal adjustment should not
be an exception. In fact, the so-called ARIMA model-based seasonal adjustment
method (as enforced in programs TRAMO and SEATS) is at present widely used
throughout the world by data producers and analysts. The paper analyzes the results
of the automatic identification of ARIMA models of program TRAMO. Specifically,
the question addressed is the following. Given that many ARIMA models are
possible, how likely is it that (default) use of TRAMO yields a satisfactory result?
Important requirements are proper detection of seasonality, of non-stationarity (i.e.,
of the proper combination of unit autoregressive roots), and of the stationary ARMA
structure, and eventual identification of either the correct model, or a relatively
close one that provides zero-mean normally identically independently distributed
residuals and good out-of-sample forecasts. A comparison with the default AMI
procedure in the present X12-ARIMA and DEMETRA + programs (based on older
versions of TRAMO) is made.

The simulation exercise shows a satisfactory performance of the default auto-
matic TRAMO procedure applied to very large sets of series; certainly, it can also
provide good benchmark or starting point when a careful manual identification is
intended.

1 Introduction

Seasonality, i.e., the seasonal component of a time series, is never directly observed,
nor does it have a generally accepted and precise definition, and these limitations
obscure proper treatment and analysis. In the early 1980s, a seasonal adjustment
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based on minimum mean squared error (MMSE) estimation of unobserved com-
ponents in linear stochastic time series models—namely, ARIMA models—was
proposed by Hillmer and Tiao (1982) and Burman (1980). The approach came to
be known as the ARIMA-model-based (AMB) seasonal adjustment. The proposal
seemed interesting because it would provide the analyst with a precise definition
of seasonality (as well as of the other unobserved components) by means of a
model consistent with the model identified for the observed series. The approach
would further permit model-derived diagnostics and parametric inference. Some
extensions of the approach are found in, for example, Pierce (1979), Bell and
Hillmer (1984), Maravall (1987), Gémez and Maravall (2001b), Bell and Martin
(2004), and McElroy (2008). However, application of the approach when many
series are to be treated was discarded because it seemed to imply exceedingly heavy
computational and time series analyst resources. Besides, many series need some
preadjustment before they can be assumed the output of an ARIMA process: perhaps
the series requires some transformation (such as the log), non-periodic calendar
effects—such as TD—may need removal, and the series may be contaminated
by outliers and/or by other special effects. Because not all users need to be time
series modeling experts, and because—even if they are—the number of series that
need treatment may be too big, an automatic model identification (AMI) procedure
is needed. The procedure should address both preadjustment of the series and
identification of the ARIMA model.

In the 1990s, Gémez and Maravall presented a first version of two linked
programs that enforced the AMB approach and contained an AMI option. The
first program, TRAMO (“Time series Regression with ARIMA Noise, Missing
Observations and Outliers”) performed preadjustment and ARIMA model identi-
fication. The second program, SEATS (“Signal Extraction in ARIMA Time Series”)
decomposed the series into unobserved components and, in particular, performed
seasonal adjustment (Gémez and Maravall, 1996).

The two programs are widely used throughout the world, most notably at
statistical offices, central banks, and agencies involved with analysis and production
of economic data; see, for example, European Statistical System (2009) and United
Nations (2011). Together with X12, they are part of the new X13-ARIMA-SEATS
program (U.S. Census Bureau 2012), and of the Eurostat-supported program
DEMETRA+ (Grudkowska 2012).

Over the years, the empirical performance of TRAMO and SEATS has been
discussed, and a large-scale analysis of their (early) AMI performance is contained
in Fischer and Planas (2000). (This work had led to a recommendation for its use
in official production; Eurostat 1998.) New versions of the programs have just
been released, and the new version of TRAMO (to be referred to as TRAMO+)
incorporates modifications and improvements in the AMI procedure. In what
follows, the performance of this procedure is analyzed in terms of the following
questions: if a series has been generated by an ARIMA model, will AMI properly
detect presence/absence of seasonality, stationarity or the lack thereof (i.e., unit
roots), the ARMA structure (i.e., model orders)? Will the identified model provide
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normally, identically, independently distributed (n.i.i.d.) residuals? Will the out-of-
sample forecast performance be acceptable?

Program TSW+- (the Windows version of TRAMO-SEATS+) has been used, in
all cases in an entirely automatic mode.

2 Summary of the Automatic Identification Procedure

2.1 The Regression-ARIMA Model

Let the observed time series be z = (z;,, 2y, ...,%,) Where 1 =1 <, <.+ <
tm = T. (There may be missing observations and the original observations may
have been log transformed.) The Reg-ARIMA model is

z=yB+x ey

where y, is a matrix with n regression variables, and B is the vector with the
regression coefficients. The variable x; follows a (possibly nonstationary) ARIMA
model. Hence, in (1), y,’ B represents the deterministic component, and x; the
stochastic one.

If B denotes the backward shift operator, such that B Izp =z j» the ARIMA
model for x; is of the type

Vi = 8(B)xi, 2
¢ (B) [vi — o] = 0(B)a;,  a, ~ niid(0, V,), 3)

where v; is the stationary transformation of x;, w, its mean, §(B) contains regular
and seasonal differences; ¢ (B) is a stationary autoregressive (AR) polynomial in B;
0(B) is an invertible moving average (MA) polynomial in B. For seasonal series, the
polynomials typically have a “multiplicative” structure. Letting s denote the number
of observations per year, in TRAMO+-, the polynomials in B factorize as

8(B) = (1-B)! (1 - B5)% =vive
where V and V; are the regular and seasonal differences, and
$(B) = ¢,(B)P,(B)=(1+¢1B+...+¢,B")(1 + ¢sB") 4)

6(B) = 6,(B)O, (B°) = (1 + 6,B + ... + 6,BY)(1 + 6,B") (5)



108 A. Maravall et al.

Stationarity and invertibility imply that all the roots of the polynomials in B in
the right-hand-side of (4) and (5) lie outside the unit circle. In what follows, the
variable x; will be assumed centered around its mean and the general expression for
the model will be the ARIMA (p, d, q)(ps, ds, gs)s model:

¢’17(B)q§pA (B‘v)vdvsdsxt = eq(B)QqA (Bs)ats (6)

wherep,q =0,1,2,3;d=0,1,2;d;, ps,qs =0, 1.

In what follows, the only regression variables will be the outliers that may
have been automatically identified by the program run in a default mode. Three
types of possible outliers are considered: additive outlier (AO), i.e., a single spike;
transitory change (TC), i.e., a spike that takes some time to return to the previous
level; and level shift (LS), i.e., a step function. TRAMO+ will pre-test for the
log/level transformation and perform automatic ARIMA model identification joint
with automatic outlier detection, estimate by exact maximum likelihood the model,
interpolate missing values, and forecast the series.

2.2 AMI in the Presence of Outliers

The algorithm iterates between the following two stages.

1. Automatic outlier detection and correction: The procedure is based on Tsay
(1986) and Chen and Liu (1993) with some modifications (see Gémez and
Maravall 2001a,b). At each stage, given the ARIMA model, outliers are detected
one by one, and eventually jointly estimated.

2. AMI: TRAMO+ proceeds in two steps: First, it identifies the differencing
polynomial §(B) that contains the unit roots. Second, it identifies the ARMA
model, i.e, ¢,(B), P, (B*), 8,(B), and O, (B*). A pre-test for possible presence
of seasonality determines the default model, used at the beginning of AMI and at
some intermediate stages (as a benchmark comparison). For seasonal series the
default model is the so-called Airline model, given by the equation

VVix, = (1 4+ 6iB)(1 + 6;B%)a, @)
i.e., the IMA(0, 1, 1)(0, 1, 1), model. For nonseasonal series the default model is
Vx; = (1+6B) + pu, ®)

i.e., the IMA (1,1) plus mean model.
Identification of the ARIMA model is performed with the series corrected for

the outliers detected at that stage. If the model changes, the automatic detection
and correction of outliers is performed again from the beginning.
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2.2.1 Identification of the Nonstationary Polynomial & (B)

To determine the appropriate differencing of the series, we discard standard unit root
tests. First, when MA roots are not negligible, the standard tests have low power.
Second, a run of AMI for a single series may try thousands of models, where the
next try depends on previous results. There is, thus, a serious data mining problem:
the size of the test is a function of prior rejections and acceptances, and its correct
value is not known.

We follow an alternative approach that relies on the superconsistency results of
Tiao and Tsay (1983), and Tsay (1984). Sequences of multiplicative AR(1) and
ARMA(1,1) are estimated, and instead of a fictitious size, the following value is
fixed “a priori”: How large the modulus of an AR root should be in order to accept
it as 1? By default, in the sequence of AR(1) and ARMA(1,1) estimations, when the
modulus of the AR parameter is above 0.91 and 0.97, respectively, it is made 1. Unit
AR roots are identified one by one; for MA roots invertibility is strictly imposed.

2.2.2 Identification of the Stationary ARMA Polynomials

Identification of the stationary part of the model attempts to minimize the Bayesian
information criterion given by

In(N — D)

mqumﬁ@+w+Q)N_D

where P = p+ ps, Q = q+¢,, and D = d + d;. The search is done sequentially:
for fixed regular polynomials, the seasonal ones are obtained, and vice versa. A
more complete description of the AMI procedure and of the estimation algorithms
can be found in Gémez and Maravall (1993, 1994, 2001a); Gémez et al. (1999); and
Maravall and Pérez (2012).

3 Performance of AMI on Simulated Series

3.1 Simulation of the Series

Monthly series of n.i.i.d.(0,1) innovations [a;] were simulated in MATLAB, and
(d + dy) arbitrary starting conditions were set (see Bell, 1984). For 50 ARIMA
models, 500 series with 120 observations (“short” series) and 500 “long” series
with 240 observations were generated. Thus two sets of 25,000 series each were
obtained. Each set was divided into three subsets as follows:
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* The first subset is formed by 8,500 series simulated with Airline-type models, as
in (7). The combinations of MA parameters (6, 6;) were (—0.9,—0.7),
(—-0.8,—0.4), (-0.7,—0.3), (—0.6,—0.4), (—0.6,0), (—0.5,—0.95), (—0.5,—0.5),
(-0.4,—-0.6), (—0.4,0), (-0.3,—0.7), (0,—0.7), (0,—0.5), (0.3,—0.6), (0.3,0),
(0.4,—0.8), and (0.5,—0.6).

* The second set contains 8,000 series simulated from the following non-seasonal

models.
Stationary models: x, = a;; (1 —0.7B)x, = a;; x; = (1 + 0.6B%)a;; (1 —
0.8B)x, = (1—0.5B)a;; (1= B +0.6B%)x; =a,;;(1-0.41B —0.37B%)x; =
(1—0.30B)a,; (1+0.3B2—0.5B%)x; = a,. Non-stationary models: Vx, = (1 —
0.7B)a;; Vx; = (1-0.3B)a;; Vx; = a;; (1-0.7B)Vx; = a,; (1-0.6 B)Vx, =
(14+0.5B40.7B%a,; (1—0.40B +0.42B*)Vx; = a;; (1+0.7B)Vx, = a,;
V2x; = (1 -0.8B)a;; V’x, = (1—-0.31B + 0.36B%)q,.

* The third set is formed by 8,500 seasonal series not of the Airline-type; it will be
referred to as the “Other-seasonal models” set.

Stationary models: (1 —0.6B)(1 —0.6B?)x, = a,;

(1-0.8B%)x; = (1-0.4B?)a,; (1-0.7B)(1-0.85B'%)x, = (1—-0.3B)a,;
(1-0.7B%)Vx, = (1 —0.4B +0.7B%)a;.

Non-stationary models: Vi>x; = (1—0.5B'%)a,; (1—1.4B +0.7B*)V5x, =
(1-0.5B)a,; (14+0.4B'*)Vox; = (1-0.5B'%)a,; VViox, = (1—-0.23B —
0.19B%)(1 — 0.56B8'%)a,; (1 —0.5B2)VV,x;, = (1 —0.4B)a;;
(1—=0.4B)VViyx; = (1+0.4B+0.4B%)(1—-0.4B'%)a;;(1—0.3B)VVx, =
(1 —=0.6B%)a,; (1 +03B)VVix; = (1 —0.6B)(1 — 0.3B%)a,; (1 +
0.4B?)VVx, = (1-0.5B)(1-0.5B"%)a;; (1—0.6B +0.5B*)VVx; =
(1-0.8B"%a;; (1+0.5B—0.3B*)VVix; =(1—-04B%)a,; (1+0.1B —
0.17B? — 0.34B*)VVpx, = (1 — 0.48B2)a,; (1 + 0.4B2)V2Viox, =
(1-0.4B)a,.

Therefore, 16 % of the models are stationary (40 % of them seasonal), and 84 %
are non-stationary (75 % of them seasonal). The models’ orders cover the following
ranges:
p=012,3d=0,1,2,¢g=0,1,2, p, =0,1;d;, = 0,159, =0, 1;
so that the maximum order of differencing is V> V}, and 384 models are possible.
Factorizing the AR polynomials, real and complex roots are present, with varying
moduli and frequencies. In particular, identification of unit roots implies identifica-
tion of one of the pairs (d, d12) = (0,0), (1,0), (2,0), (0, 1), (1, 1), and (2,1).

The complete set contains many models often found in practice. Non-seasonal
series are possibly over represented, yet it was thought important to detect reliably
which series have seasonality and which ones do not. Some models with awkward
structures are also included. As a simple example, the model with seasonal orders
(1,0,0);, and seasonal AR polynomial (1 + ¢,B'?) with ¢, > 0 displays
spectral holes at seasonal frequencies. Not being associated with seasonality, nor
with trend-cycle, the spectral peaks will generate a transitory component. Such an
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AR structure may appear, for example, when modeling SA series: the spectral holes
induced by seasonal adjustment are associated with negative autocorrelation for
seasonal lags in the seasonally adjusted series and are implied by “optimal” MMSE
estimation (see, for example, Gémez and Maravall, 2001b).

3.2 AMI Results

TSW+ was applied to the simulated series in automatic mode with no trading-day
pre-testing.

3.2.1 Preadjustment
Log-Level Test

The 50,000 simulated series were exponentiated, then the log/level (likelihood ratio)
test was applied to the total 100,000 series. Table 1 presents the results.

The test is accurate (averaging all groups, the error percentage is 0.4 %), and
shows a slight bias that favors levels. It can be seen that most errors occur for models
with d = 2 (often, appropriate for models with smooth trend-cycle component).

Seasonality Detection

Next, the series were pre-tested for possible presence of seasonality. The pre-test
is based on four separate checks. One is a x}; non-parametric rank test similar to
the one in Kendall and Ord (1990), one checks the autocorrelations for seasonal
lags (12 and 24) in the line of Pierce (1978), and uses a )(%; one is an F-test for the
significance of seasonal dummy variables similar to the one in Lytras et al. (2007),
and one is a test for the presence of peaks at seasonal frequencies in the spectrum of
the differenced series. The first three tests are applied at the 99 % critical value. The
fourth test combines the results of two spectrum estimates: one, obtained with an
AR(30) fit in the spirit of X12-ARIMA (Findley et al., 1998); the second is a non-
parametric Tuckey-type estimator, as in Jenkins and Watts (1968), approximated by
an F distribution.

Table 1 Errors in log/level

: . Series is in levels Series is in logs
test (in % of serics) Series length 120 240 120 240
Airline model 0.1 0.0 0.2 0.0
Other-seasonal 0.4 0.1 1.1 0.1
Non-seasonal 0.0 0.0 1.6 1.0

Total average 0.2 0.0 1.0 04
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The results of the four tests have to be combined into a single answer to the
question: Is there seasonality in the series? The tests are first applied to the original
series, and determine the starting model in AMI. Once the series has been corrected
for outliers, the tests are applied again to the “linearized” series; these are the results
reported in Table 2. The first four columns show the percentage of series (in each
of the six groups) for which the tests have made an error (not detecting seasonality
when there is some, or detecting seasonality when there is none). Leaving aside the
Airline model case, for which all tests are close to perfect, in all other cases the
spectral test performs worse. The “overall test” in column 5 combines the results of
the previous four tests, assigning weights broadly in accordance with their relative
performance: more weight is given to th