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Introduction

What is econometrics, and why study it?
Econometrics is the application of statistical methods to the quantification and 
critical assessment of hypothetical economic relationships using data. It is with 
the aid of econometrics that we discriminate between competing economic 
theories and put numerical clothing onto the successful ones. Econometric 
analysis may be motivated by a simple desire to improve our understanding 
of how the economy works, at either the microeconomic or macroeconomic 
level, but more often it is undertaken with a specific objective in mind. In 
the private sector, the financial benefits that accrue from a sophisticated 
understanding of relevant markets and an ability to predict change may be the 
driving factor. In the public sector, the impetus may come from an awareness 
that evidence-based policy initiatives are likely to have the greatest impact.

It is now generally recognised that nearly all professional economists, not 
just those actually working with data, should have a basic understanding 
of econometrics. There are two major benefits. One is that it facilitates 
communication between econometricians and the users of their work. 
The other is the development of the ability to obtain a perspective on 
econometric work and to make a critical evaluation of it. Econometric 
work is more robust in some contexts than in others. Experience with the 
practice of econometrics and a knowledge of the potential problems that 
can arise are essential for developing an instinct for judging how much 
confidence should be placed on the findings of a particular study.

Such is the importance of econometrics that, in common with intermediate 
macroeconomics and microeconomics, an introductory course forms part 
of the core of any serious undergraduate degree in economics and is a 
prerequisite for admission to a serious Master’s level course in economics 
or finance.

Aims
The aim of 20 Elements of econometrics is to give you an opportunity 
to develop an understanding of econometrics to a standard that will equip 
you to understand and evaluate most applied analysis of cross-sectional 
data and to be able to undertake such analysis yourself. The restriction to 
cross-sectional data (data raised at one moment in time, often through a 
survey of households, individuals, or enterprises) should be emphasised 
because the analysis of time series data (observations on a set of variables 
over a period of time) is much more complex. Chapters 11–13 of the 
textbook and this guide are devoted to the analysis of time series data, but, 
beyond very simple applications, the objectives are confined to giving you 
an understanding of the problems involved and making you aware of the 
need for a Master’s level course if you intend to work with such data.

Specifically the aims of the course are to:

•	 develop an understanding of the use of regression analysis and related 
techniques for quantifying economic relationships and testing economic 
theories

•	 equip you to read and evaluate empirical papers in professional journals

•	 provide you with practical experience of using mainstream regression 
programmes to fit economic models.
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Learning outcomes
By the end of this course you should be able to:

•	 describe and apply the classical regression model and its application to 
cross-sectional data

•	 describe and apply the:

Gauss-Markov conditions and other assumptions required in the 
application of the classical regression model

reasons for expecting violations of these assumptions in certain 
circumstances

tests for violations

potential remedial measures, including, where appropriate, the use 
of instrumental variables

•	 recognise and apply the advantages of logit, probit and similar models 
over regression analysis when fitting binary choice models

•	 use regression, logit and probit analysis to quantify economic 
relationships using standard regression programmes (Stata and 
EViews) in simple applications

•	 describe and explain the principles underlying the use of maximum 
likelihood estimation

•	 apply regression analysis to fit time series models using stationary time 
series, with awareness of some of the econometric problems specific to 
time series applications (for example, autocorrelation) and remedial 
measures

•	 recognise the difficulties that arise in the application of regression 
analysis to nonstationary time series, know how to test for unit roots, 
and know what is meant by cointegration.

How to make use of the text
The only reading required for this course is my text: 

C. Dougherty, Introduction to Econometrics (Oxford: Oxford University Press, 
2011) fourth edition [ISBN 9780199567089]. 

The syllabus is the same as that for EC220 Introduction to Econometrics, 
the corresponding internal course at the London School of Economics. 
The text has been written to cover it with very little added and nothing 
subtracted.

When writing a text, there is a temptation to include a large amount of 
non-core material that may potentially be of use or interest to students. 
There is much to be said for this, since it allows the same text to be used 
to some extent for reference as well as a vehicle for a taught course. 
However, my text is stripped down to nearly the bare minimum for two 
reasons. First, the core material provides quite enough content for an 
introductory year-long course and I think that students should initially 
concentrate on gaining a good understanding of it. Second, if the text 
is focused narrowly on the syllabus, students can read through it as a 
continuous narrative without a need for directional guidance. Obviously, 
this is particularly important for those who are studying the subject on 
their own, as is the case for most of those enrolled on 20 Elements of 
econometrics.
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An examination syllabus is provided as an appendix to this guide, but its 
function is mostly to indicate the expected depth of understanding of each 
topic, rather than the selection of the topics themselves.

How to make use of this guide
The function of this subject guide differs from that of other guides you 
may be using. Unlike those for other courses, this subject guide acts as 
a supplementary resource, with the textbook as the main resource. Each 
chapter forms an extension to a corresponding chapter in the textbook 
with the same title. You must have a copy of the textbook to be able to 
study this course. The textbook will give you the information you need to 
carry out the activities and achieve the learning outcomes in the subject 
guide.

The main purpose of the guide is to provide you with opportunities to 
gain experience with econometrics through practice with exercises. Each 
chapter of the guide falls into two parts. The first part begins with an 
overview of the corresponding chapter in the text. Then there is a checklist 
of learning outcomes anticipated as a result of studying the chapter in the 
text, doing the exercises in the guide, and making use of the corresponding 
resources on the website. Finally, in some of the chapters, comes a section 
headed ‘Further material’. This consists of new topics that may be included 
in the next edition of the text. The second part of each chapter consists of 
additional exercises, followed by answers to the starred exercises in the 
text and answers to the additional exercises.

You should organise your studies in the following way:

•	 first read this introductory chapter

•	 read the Overview section from the Review chapter of the subject guide

•	 read the Review chapter of the textbook and do the starred exercises

•	 refer to the subject guide for answers to the starred exercises in the text 
and for additional exercises

•	 check that you have covered all the items in the learning outcomes 
section in the subject guide.

You should repeat this process for each of the numbered chapters. Note 
that the subject guide chapters have the same titles as the chapters in the 
text. In those chapters where there is a further material section in the 
subject guide, this should be read after reading the chapter in the text. 

How to make use of the website
You should make full use of the resources available on the website: 
http://econ.lse.ac.uk/courses/ec220/. Here you will find PowerPoint 
slideshows that provide a graphical treatment of the topics covered 
in the textbook, data sets for practical work, statistical tables, and a 
downloadable copy of this guide. This material will also be found at the 
Online Resource Centres maintained by the publisher, Oxford University 
Press:  
www.oup.com/uk/orc/bin/9780199567089

At the LSE website, you will also have access to the additional teaching 
materials, mainly the weekly problem sets, used by the internal students. 
There are no password restrictions.
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Slideshows
The lectures for the LSE internal course EC220 Introduction to 
econometrics are given entirely in the form of PowerPoint slideshows. 
My function, as the lecturer, is to explain what is going on as we go 
through them. The slideshows on the website are identical, except that 
narrative boxes have been added to provide the explanations that I give 
in the lectures. Going through the website slideshows is thus just about 
a perfect substitute for attending lectures. This explains why I can use 
an underfilled 240-seat lecture theatre, despite the fact that about 300 
students are enrolled on my course. Most students simply never show up. 
Most prefer to go through the slideshows at a time of their own choosing 
and at their own pace.

In principle you will be able to acquire mastery of the subject by studying 
the textbook with the support of this guide and doing the exercises 
conscientiously. However, I strongly recommend that you do study all the 
slideshows as well. Some do not add much to the material in the textbook, 
and these you can skim through quickly. Some, however, provide a much 
more graphical treatment than is possible with print and they should 
improve your understanding. Some present and discuss regression results 
and other hands-on material that could not be included in the text for lack 
of space, and they likewise should be helpful.

Data sets
To use the data sets, you must have access to a proper statistics application 
with facilities for regression analysis, such as Stata or EViews. The student 
versions of such applications are adequate for doing all, or almost all, 
the exercises and of course are much cheaper than the professional ones. 
Product and pricing information can be obtained from the applications’ 
websites, the URL usually being the name of the application sandwiched 
between ‘www.’ and ‘.com’.

If you do not have access to a commercial econometrics application, you 
should use gretl. This is a sophisticated application almost as powerful 
as the commercial ones, and it is free. See the gretl manual on the OUP 
website for further information.

Whatever you do, do not be tempted to try to get by with the regression 
engines built into some spreadsheet applications, such as Microsoft Excel. 
They are not remotely adequate for your needs.

There are three major data sets on the website. The most important 
one, for the purposes of this guide, is the Consumer Expenditure Survey 
(CES) data set. You will find on the website versions in the formats used 
by Stata, EViews and gretl. If you are using some other application, you 
should download the text version (comma-delimited ASCII) and import it. 
Answers to all of the exercises are provided in the relevant chapters of this 
guide.

The exercises for the CES data set cover Chapters 1–10 of the text. For 
Chapters 11–13, you should use the Demand Functions data set, another 
major data set, to do the additional exercises in the corresponding 
chapters of this guide. Again you should download the data set in 
appropriate format. For these exercises, also, answers are provided

The third major data set on the website is the Educational Attainment and 
Earnings Function data set, which provides practical work for the first 10 
chapters of the text and Chapter 14. No answers are provided, but many 
parallel examples will be found in the text.
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Online study resources
In addition to the subject guide and the Essential reading, it is crucial that 
you take advantage of the study resources that are available online for this 
course, including the virtual learning environment (VLE) and the Online 
Library. 

You can access the VLE, the Online Library and your University of London 
email account via the Student Portal at: 
http://my.londoninternational.ac.uk

You should have received your login details for the Student Portal with 
your official offer, which was emailed to the address that you gave 
on your application form. You have probably already logged in to the 
Student Portal in order to register! As soon as you registered, you will 
automatically have been granted access to the VLE, Online Library and 
your fully functional University of London email account. 

If you forget your login details at any point, please email: 
uolia.support@london.ac.uk quoting your student number.

The VLE
The VLE, which complements this subject guide, has been designed to 
enhance your learning experience, providing additional support and a 
sense of community. It forms an important part of your study experience 
with the University of London and you should access it regularly.

The VLE provides a range of resources for EMFSS courses:

•	 Self-testing activities: Doing these allows you to test your own 
understanding of subject material.

•	 Electronic study materials: The printed materials that you receive from 
the University of London are available to download, including updated 
reading lists and references.

•	 Past examination papers and Examiners’ commentaries: These provide 
advice on how each examination question might best be answered.

•	 A student discussion forum: This is an open space for you to discuss 
interests and experiences, seek support from your peers, work 
collaboratively to solve problems and discuss subject material. 

•	 Videos: There are recorded academic introductions to the subject, 
interviews and debates and, for some courses, audio-visual tutorials 
and conclusions.

•	 Recorded lectures: For some courses, where appropriate, the sessions 
from previous years’ Study Weekends have been recorded and made 
available.

•	 Study skills: Expert advice on preparing for examinations and 
developing your digital literacy skills.

•	 Feedback forms.

Some of these resources are available for certain courses only, but we 
are expanding our provision all the time and you should check the VLE 
regularly for updates.

Making use of the Online Library
The Online Library contains a huge array of journal articles and other 
resources to help you read widely and extensively. 
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To access the majority of resources via the Online Library you will either 
need to use your University of London Student Portal login details, or you 
will be required to register and use an Athens login: 
http://tinyurl.com/ollathens

The easiest way to locate relevant content and journal articles in the Online 
Library is to use the Summon search engine.

If you are having trouble finding an article listed in a reading list, try 
removing any punctuation from the title, such as single quotation marks, 
question marks and colons.

For further advice, please see the online help pages: 
www.external.shl.lon.ac.uk/summon/about.php

Prerequisite for studying this subject
The prerequisite for studying this subject is a solid background in 
mathematics and elementary statistical theory. The mathematics requirement 
is a basic understanding of multivariate differential calculus. With regard 
to statistics, you must have a clear understanding of what is meant by the 
sampling distribution of an estimator, and of the principles of statistical 
inference and hypothesis testing. This is absolutely essential. I find that 
most problems that students have with introductory econometrics are not 
econometric problems at all but problems with statistics, or rather, a lack of 
understanding of statistics. That is why students of this subject are required 
to study 02 Introduction to economics and either 04a Statistics 1 or 
04b Statistics 2 and either 05a Mathematics 1 or 05b Mathematics 
2 or 174 Calculus before they can take this course. There are no short 
cuts. If you do not have this background, you should put your study of 
econometrics on hold and study statistics first. Otherwise there will be core 
parts of the econometrics syllabus that you do not begin to understand.

In addition, it would be helpful if you have some knowledge of economics. 
However, although the examples and exercises relate to economics, most 
of them are so straightforward that a previous study of economics is not a 
requirement.

Application of linear algebra to econometrics
At the end of this guide you will find a primer on the application of linear 
algebra (matrix algebra) to econometrics. It is not part of the syllabus for 
the examination, and studying it is unlikely to confer any advantage for 
the examination. It is provided for the benefit of those students who intend 
to take a further course in econometrics, especially at the Master’s level. 
The present course is ambitious, by undergraduate standards, in terms of 
its coverage of concepts and, above all, its focus on the development of an 
intuitive understanding. For its purposes, it has been quite sufficient and 
appropriate to work with uncomplicated regression models, typically with 
no more than two explanatory variables.

However, when you progress to the next level, it is necessary to generalise 
the theory to cover multiple regression models with many explanatory 
variables, and linear algebra is ideal for this purpose. The primer does not 
attempt to teach it. There are many excellent texts and there is no point 
in duplicating them. The primer assumes that such basic study has already 
been undertaken, probably taking about 20 to 50 hours, depending on the 
individual. It is intended to show how the econometric theory in the text 
can be handled with this more advanced mathematical approach, thus 
serving as preparation for the higher-level course.
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The examination
Important: the information and advice given here are based on the 
examination structure used at the time this guide was written. Please 
note that subject guides may be used for several years. Because of this 
we strongly advise you to always check both the current Regulations for 
relevant information about the examination, and the VLE where you 
should be advised of any forthcoming changes. You should also carefully 
check the rubric/instructions on the paper you actually sit and follow 
those instructions.

Remember, it is important to check the VLE for:

•	 up-to-date information on examination and assessment arrangements 
for this course

•	 where available, past examination papers and Examiners’ commentaries 
for the course which give advice on how each question might best be 
answered.
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Review: Random variables and sampling 
theory

Overview
The textbook and this guide assume that you have previously studied basic 
statistical theory and have a sound understanding of the following topics:

•	 descriptive statistics (mean, median, quartile, variance, etc.)

•	 random variables and probability

•	 expectations and expected value rules

•	 population variance, covariance, and correlation

•	 sampling theory and estimation

•	 unbiasedness and efficiency

•	 loss functions and mean square error

•	 normal distribution

•	 hypothesis testing, including:

t tests

Type I and Type II error

the significance level and power of a t test

one-sided versus two-sided t tests

•	 confidence intervals

•	 convergence in probability, consistency, and plim rules

•	 convergence in distribution and central limit theorems.

There are many excellent textbooks that offer a first course in statistics. 
The Review chapter of my textbook is not a substitute. It has the much 
more limited objective of providing an opportunity for revising some key 
statistical concepts and results that will be used time and time again in 
the course. They are central to econometric analysis and if you have not 
encountered them before, you should postpone your study of econometrics 
and study statistics first. 

Learning outcomes
After working through the corresponding chapter in the textbook, studying 
the corresponding slideshows, and doing the starred exercises in the 
textbook and the additional exercises in this guide, you should be able 
to explain what is meant by all of the items listed in the Overview.   You 
should also be able to explain why they are important. The concepts of 
efficiency, consistency, and power are often misunderstood by students 
taking an introductory econometrics course, so make sure that you aware 
of their precise meanings.
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Additional exercises
[Note: Each chapter has a set of additional exercises. The answers to 
them are provided at the end of the chapter after the answers to the 
starred exercises in the text.]

AR.1
A random variable X has a continuous uniform distribution from 0 to 2. 
Define its probability density function.

AR.2
Find the expected value of X in Exercise AR.1, using the expression given 
in Box R.1 in the text.

AR.3
Derive E(X 2) for X defined in Exercise AR.1, using the expression given in 
Box R.1.

AR.4
Derive the population variance and the standard deviation of X as defined 
in Exercise AR.1, using the expression given in Box R.1.

AR.5
Using equation (R.9), find the variance of the random variable X defined 
in Exercise AR.1 and show that the answer is the same as that obtained in 
Exercise AR.4. (Note: You have already calculated E(X) in Exercise AR.2 
and E(X 2) in Exercise AR.3.)

AR.6
Suppose that a random variable X has a normal distribution with unknown 
mean μ and variance σ2. To simplify the analysis, we shall assume that σ2 
is known. Given a sample of observations, an estimator of μ is the sample 
mean, X . When performing a (two-sided) 5 per cent test of the null 
hypothesis H0: μ = μ0, it is usual to choose the upper and lower 2.5 per 
cent tails of the distribution conditional on H0 as the rejection regions, as 
shown in the first figure opposite. However, suppose that someone instead 
chooses the central 5 per cent of the distribution as the rejection region, 
as in the second figure opposite. Give a technical explanation, using 
appropriate statistical concepts, of why this is not a good idea.
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Figure 1: Conventional rejection regions.

Figure 2: Central 5 per cent chosen as rejection region.

AR.7
Suppose that a random variable X has a normal distribution with unknown 
mean μ and variance σ2. To simplify the analysis, we shall assume that σ2 
is known. Given a sample of observations, an estimator of μ is the sample 
mean, X . An investigator wishes to test H0: μ = 0 and believes that the 
true value cannot be negative. The appropriate alternative hypothesis is 
therefore H1: μ > 0 and the investigator decides to perform a one-sided 
test. However, the investigator is mistaken because μ could in fact be 
negative. What are the consequences of erroneously performing a one-
sided test when a two-sided test would have been appropriate?

AR.8
A random variable X has a continuous uniform distribution over the 
interval from 0 to θ, where θ is an unknown parameter. The following 
three estimators are used to estimate θ, given a sample of n observations 
on X:
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(a) twice the sample mean

(b) the largest value of X in the sample

(c) the sum of the largest and smallest values of X in the sample.

Explain verbally whether or not each estimator is (1) unbiased (2) 
consistent.

AR.9
Suppose that a random variable X has a normal distribution with mean μ 
and variance σ 2. Given a sample of n independent observations, it can 

be shown that ( )∑ −
−

=
22

1
1 XX

n
s i is an unbiased estimator of σ 2. Is s 

either an unbiased or a consistent estimator of σ?

Answers to the starred exercises in the textbook

R.2
A random variable X is defined to be the larger of the two values when 
two dice are thrown, or the value if the values are the same. Find the 
probability distribution for X. 

Answer: 

The table shows the 36 possible outcomes. The probability distribution 
is derived by counting the number of times each outcome occurs and 
dividing by 36. The probabilities have been written as fractions, but they 
could equally well have been written as decimals.

 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 2 3 4 5 6

3 3 3 3 4 5 6
4 4 4 4 4 5 6
5 5 5 5 5 5 6

6 6 6 6 6 6 6

Value of X 1 2 3 4 5 6

Frequency 1 3 5 7 9 11

Probability 1/36 3/36 5/36 7/36 9/36 11/36

R.4
Find the expected value of X in Exercise R.2.

Answer: 

The table is based on Table R.2 in the text. It is a good idea to guess 
the outcome before doing the arithmetic. In this case, since the higher 
numbers have the largest probabilities, the expected value should clearly 
lie between 4 and 5. If the calculated value does not conform with the 
guess, it is possible that this is because the guess was poor. However, it 
may be because there is an error in the arithmetic, and this is one way of 
catching such errors.

green
red
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X p Xp

1 1/36 1/36

2 3/36 6/36

3 5/36 15/36

4 7/36 28/36

5 9/36 45/36

6 11/36 66/36

Total 161/36 = 4.4722

R.7
Calculate E(X 2) for X defined in Exercise R.2.

Answer: 

The table is based on Table R.3 in the text. Given that the largest values 
of X 2 have the highest probabilities, it is reasonable to suppose that the 
answer lies somewhere in the range 15–30. The actual figure is 21.97.

X X 2 p X 2p

1 1 1/36 1/36

2 4 3/36 12/36

3 9 5/36 45/36

4 16 7/36 112/36

5 25 9/36 225/36

6 36 11/36 396/36

Total 791/36 = 21.9722

R.10
Calculate the population variance and the standard deviation of X as 
defined in Exercise R.2, using the definition given by equation (R.8).

Answer: The table is based on Table R.4 in the textbook. In this case it 
is not easy to make a guess. The population variance is 1.97, and the 
standard deviation, its square root, is 1.40. Note that four decimal places 
have been used in the working, even though the estimate is reported to 
only two. This is to eliminate the possibility of the estimate being affected 
by rounding error.

X p  X – μ X  (X – μX )
2 (X – μX )

2p

1 1/36 –3.4722 12.0563 0.3349

2 3/36 –2.4722 6.1119 0.5093

3 5/36 –1.4722 2.1674 0.3010

4 7/36 –0.4722 0.2230 0.0434

5 9/36 0.5278 0.2785 0.0696

6 11/36 1.5278 2.3341 0.7132

Total 1.9715
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R.12
Using equation (R.9), find the variance of the random variable X defined 
in Exercise R.2 and show that the answer is the same as that obtained in 
Exercise R.10. (Note: You have already calculated μX in Exercise R.4 and 
E(X 2) in Exercise R.7.)

Answer: E(X 2) is 21.9722 (Exercise R.7). E(X ) is 4.4722 (Exercise R.4), 
so 2

Xµ  is 20.0006. Thus the variance is 21.9722 – 20.0006 = 1.9716. The 
last-digit discrepancy between this figure and that in Exercise R.10 is due 
to rounding error.

R.14
Suppose a variable Y is an exact linear function of X:

	 Y = λ + μX

where λ and μ are constants, and suppose that Z is a third variable. Show 
that ρXZ = ρYZ.

Answer:

We start by noting that ( ) ( )XXYY ii −=− µ . Then

	  ( )( ){ }
( ){ } ( ){ }

( )( ){ }
( ){ } ( ){ }
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R.16
Show that, when you have n observations, the condition that the 
generalized estimator (λ1X1 + ... + λnXn) should be an unbiased estimator 
of μX is λ1 + ... + λn = 1.

Answer: 

	 E(Z)	 = E(λ1X1 + … + λnXn)

			   = E(λ1X1) + … + E(λnXn)

			   = λ1E(X1) + … + λnE(Xn)

			   = λ1μX + … + λnμX

			   = (λ1 + … + λn)μX .

Thus E(Z) = μX requires λ1 + … + λn = 1.

R.19
In general, the variance of the distribution of an estimator decreases 
when the sample size is increased. Is it correct to describe the estimator as 
becoming more efficient?

Answer: 

No, it is incorrect. When the sample size increases, the variance of the 
estimator decreases, and as a consequence it is more likely to give accurate 
results. Because it is improving in this important sense, it is very tempting 
to describe the estimator as becoming more efficient. But it is the wrong 
use of the term. Efficiency is a comparative concept that is used when 
you are comparing two or more alternative estimators, all of them being 
applied to the same data set with the same sample size. The estimator 
with the smallest variance is said to be the most efficient. You cannot use 
efficiency as suggested in the question because you are comparing the 
variances of the same estimator with different sample sizes.
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R.21
Suppose that you have observations on three variables X, Y, and Z, and 
suppose that Y is an exact linear function of Z:

	 Y = a + bZ

where a and b are constants. Show that rXZ = rXY. (This is the counterpart 
of Exercise R.14.)

Answer:	

We start by noting that ( ) ( )ZZbYY ii −=− . Then

	

.

R.26
Show that, in Figures R.18 and R.22, the probabilities of a Type II error are 
0.15 in the case of a 5 per cent significance test and 0.34 in the case of a 
1 per cent test. Note that the distance between μ0 and μ1 is three standard 
deviations. Hence the right-hand 5 per cent rejection region begins 1.96 
standard deviations to the right of μ0. This means that it is located 1.04 
standard deviations to the left of μ1. Similarly, for a 1 per cent test, the 
right-hand rejection region starts 2.58 standard deviations to the right of 
μ0, which is 0.42 standard deviations to the left of μ1.

Answer:

For the 5 per cent test, the rejection region starts 3 – 1.96 = 1.04 standard 
deviations below μ1, given that the distance between μ1 and μ0 is 3 
standard deviations. See Figure R.18. According to the standard normal 
distribution table, the cumulative probability of a random variable lying 
1.04 standard deviations (or less) above the mean is 0.8508. This implies 
that the probability of it lying 1.04 standard deviations below the mean is 
0.1492. For the 1 per cent test, the rejection region starts 3 – 2.58 = 0.42 
standard deviations below the mean. See Figure R.22. The cumulative 
probability for 0.42 in the standard normal distribution table is 0.6628, so 
the probability of a Type II error is 0.3372. 

R.27
Explain why the difference in the power of a 5 per cent test and a 1 per 
cent test becomes small when the distance between μ0 and μ1 becomes 
large.

Answer:

The powers of both tests tend to one as the distance between μ0 and μ1 
becomes large. The difference in their powers must therefore tend to zero.

R.28
A researcher is evaluating whether an increase in the minimum hourly 
wage has had an effect on employment in the manufacturing industry in 
the following three months. Taking a sample of 25 firms, what should she 
conclude if:
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(a)	the mean decrease in employment is 9 per cent, and the standard error 
of the mean is 5 per cent

(b)	the mean decrease is 12 per cent, and the standard error is 5 per cent

(c)	the mean decrease is 20 per cent, and the standard error is 5 per cent

(d)	there is a mean increase of 10 per cent, and the standard error is 5 per 
cent?

Answer: 

There are 24 degrees of freedom, and hence the critical values of t at the 
5 per cent, 1 per cent, and 0.1 per cent levels are 2.06, 2.80, and 3.75, 
respectively.

(a)	The t statistic is –1.80. Fail to reject H0 at the 5 per cent level.

(b)	t = –2.40. Reject H0 at the 5 per cent level but not the 1 per cent level.

(c)	t = –4.00. Reject H0 at the 1 per cent level. Better, reject at the 0.1 per 
cent level.

(d)	t = 2.00. Fail to reject H0 at the 5 per cent level.

R.33
In Exercise R.28, a researcher was evaluating whether an increase in 
the minimum hourly wage has had an effect on employment in the 
manufacturing industry. Explain whether she might have been justified in 
performing one-sided tests in cases (a) – (d), and determine whether her 
conclusions would have been different.

Answer: 

First, there should be a discussion of whether the effect of an increase in 
the minimum wage could have a positive effect on employment. If it is 
decided that it cannot, we can use a one-sided test and the critical values 
of t at the 5 per cent, 1 per cent, and 0.1 per cent levels become 1.71, 
2.49, and 3.47, respectively.

1.	 The t statistic is –1.80. We can now reject H0 at the 5 per cent level.

2.	 t = –2.40. No change, but much closer to rejecting at the 1 per cent 
level.

3.	 t = –4.00. No change. Reject at the 1 per cent level (and 0.1 per cent 
level).

4.	 t = 2.00. Here there is a problem because the coefficient has the 
unexpected sign. In principle we should stick to our guns and fail to 
reject H0. However we should consider two further possibilities. One 
is that the justification for a one-sided test is incorrect (not very likely 
in this case). The other is that the model is misspecified in some way 
and the misspecification is responsible for the unexpected sign. For 
example, the coefficient might be distorted by omitted variable bias, to 
be discussed in Chapter 6.

R.37
A random variable X has unknown population mean μX and population 
variance 2

Xσ . A sample of n observations {X1, ..., Xn} is generated. Show 
that
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is an unbiased estimator of μX. Show that the variance of Z does not 
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tend to zero as n tends to infinity and that therefore Z is an inconsistent 
estimator, despite being unbiased.

Answer: 

The weights sum to unity, so the estimator is unbiased. However its 
variance is

	 .

This tends to 3/2
Xσ  as n becomes large, not zero, so the estimator is 

inconsistent.

Note: the sum of a geometric progression is given by
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as n becomes large.

Answers to the additional exercises

AR.1
The total area under the function over the interval [0, 2] must be equal to 
1. Since the length of the rectangle is 2, its height must be 0.5. Hence f(X) 
= 0.5 for 0 ≤  X ≤  2, and f(X) = 0 for X < 0 and X > 2.



20 Elements of econometrics

18

AR.2
Obviously, since the distribution is uniform, the expected value of X is 1. 
However we will derive this formally.

	

.

AR.3
The expected value of X2 is given by

	
.

AR.4
The variance of X is given by

	

.

The standard deviation is equal to the square root, 0.5774.

AR.5
From Exercise AR.3, E(X2) = 1.3333. From Exercise AR.2, the square of 
E(X) is 1. Hence the variance is 0.3333, as in Exercise AR.4.

AR.6
The following discussion assumes that you are performing a 5 per cent 
significance test, but it applies to any significance level.

If the null hypothesis is true, it does not matter how you define the 5 per 
cent rejection region. By construction, the risk of making a Type I error 
will be 5 per cent. Issues relating to Type II errors are irrelevant when the 
null hypothesis is true.

The reason that the central part of the conditional distribution is not used 
as a rejection region is that it leads to problems when the null hypothesis 
is false. The probability of not rejecting H0 when it is false will be lower. To 
use the obvious technical term, the power of the test will be lower.

The figure opposite shows the power functions for the test using the 
conventional upper and lower 2.5 per cent tails and the test using the 
central region. The horizontal axis is the difference between the true value 
and the hypothetical value μ0 in terms of standard deviations. The vertical 
axis is the power of the test. The first figure has been drawn for the case 
where the true value is greater than the hypothetical value. The second 
figure is for the case where the true value is lower than the hypothetical 
value. It is the same, but reflected horizontally.

The greater the difference between the true value and the hypothetical 
mean, the more likely it is that the sample mean will lie in a tail of the 
distribution conditional on H0 being true, and so the more likely it is that 
the null hypothesis will be rejected by the conventional test. The figures 
show that the power of the test approaches 1 asymptotically. However, if 
the central region of the distribution is used as the rejection region, the 
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probability of the sample mean lying in it will diminish as the difference 
between the true and hypothetical values increases, and the power of the 
test approaches zero asymptotically. This is an extreme example of a very 
bad test procedure.

Figure 3: Power functions of a conventional 5 per cent test and one using 
the central region (true value > μ0).

1.0

0.8

0.6

0.4

0.2

0.0

Figure 4: Power functions of a conventional 5 per cent test and one using 
the central region (true value < μ0).

AR.7
We will assume for sake of argument that the investigator is performing 
a 5 per cent significance test, but the conclusions apply to all significance 
levels.

If the true value is 0, the null hypothesis is true. The risk of a Type I error 
is, by construction, 5 per cent for both one-sided and two-sided tests. 
Issues relating to Type II error do not arise because the null hypothesis is 
true.

If the true value is positive, the investigator is lucky and makes the gain 
associated with a one-sided test. Namely, the power of the test is uniformly 
higher than that for a two-sided test for all positive values of μ. The power 
functions for one-sided and two-sided tests are shown in the first figure 
below.
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If the true value is negative, the power functions are as shown in the 
second figure. That for the two-sided test is the same as that in the first 
figure, but reflected horizontally. The larger (negatively) is the true value 
of μ, the greater will be the probability of rejecting H0 and the power 
approaches 1 asymptotically. However, with a one-sided test, the power 
function will decrease from its already very low value. The power is not 
automatically zero for true values that are negative because even for these 
it is possible that a sample might have a mean that lies in the right tail of 
the distribution under the null hypothesis. But the probability rapidly falls 
to zero as the (negative) size of μ grows.

Figure 5: Power functions of one-sided and two-sided 5 per cent tests 
(true value > 0).

Figure 6: Power functions of one-sided and two-sided 5 per cent tests 
(true value < 0).
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AR.8
(a)	It is evident that ( ) ( ) .

2
θ

== XEXE  Hence X2  is an unbiased estimator 

	 of θ. The variance of X  is 
n

X
2σ

. The variance of X2 is therefore 
n

X
2

4
σ

.

	 This will tend to zero as n tends to infinity. Thus the distribution of X2  
will collapse to a spike at θ and the estimator is consistent.

(b)	The estimator will be biased downwards since the highest value of X 
in the sample will always be less than θ. However, as n increases, the 
distribution of the estimator will be increasingly concentrated in a 
narrow range just below θ. To put it formally, the probability of 

	 the highest value being more than ε below θ will be 
n







 −

θ
ε1  and 

	 this will tend to zero, no matter how small ε is, as n tends to infinity. 
The estimator is therefore consistent. It can in fact be shown that 

	 the expected value of the estimator is θ
1+n

n
 and this tends to θ as n 

	 becomes large.

(c)	The estimator will be unbiased. Call the maximum value of X in the 
sample Xmax and the minimum value Xmin. Given the symmetry of the 
distribution of X, the distributions of Xmax and Xmin will be identical, 
except that that of Xmax will be to the right of 0 and that of Xmin will 
be to the left of θ. Hence, for any n, ( ) ( )maxmin 0 XEXE −=− θ  and 
the expected value of their sum is equal to θ. The estimator will be 
consistent for the same reason as explained in (b).

	 The first figure below shows the distributions of the estimators (a) 
and (b) for 1,000,000 samples with only four observations in each 
sample, with θ = 1. The second figure shows the distributions when the 
number of observations in each sample is equal to 100. The table gives 
the means and variances of the distributions as computed from the 
results of the simulations. If the mean square error is used to compare 
the estimators, which should be preferred for sample size 4? For sample 
size 100?

Figure 7: Sample size 4.
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Figure 8: Sample size 100

Sample size 4 Sample size 100

(a) (b) (a) (b)

mean 1.0000 0.8001 1.0000 0.9901

variance 0.0833 0.0267 0.0033 0.0001

estimated bias 0.0000 –0.1999 0.0000 –0.0099

estimated mean 
square error

0.0833 0.0667 0.0033 0.0002

It can be shown (Larsen and Marx, An Introduction to Mathematical 
Statistics and Its Applications, p.382, that estimator (b) is biased 
downwards by an amount θ/(n + 1) and that its variance is nθ 2/(n + 
1)2(n + 2), while estimator (a) has variance θ 2/3n. How large does n have 
to be for (b) to be preferred to (a) using the mean square error criterion?

The crushing superiority of (b) over (a) may come as a surprise, so 
accustomed are we to finding that the sample mean in the best estimator 
of a parameter. The underlying reason in this case is that we are estimating 
a boundary parameter, which, as its name implies, defines the limit of a 
distribution. In such a case the optimal properties of the sample mean are 
no longer guaranteed and it may be eclipsed by a score statistic such as the 
largest observation in the sample. Note that the standard deviation of the 
sample mean is inversely proportional to n , while that of (b) is inversely 
proportional to n (disregarding the differences between n, n +1 , and n + 
2). (b) therefore approaches its limiting (asymptotically unbiased) value 
much faster than (a) and is said to be superconsistent. We will encounter 
superconsistent estimators again when we come to cointegration in 
Chapter 13. Note that if we multiply (b) by (n + 1)/n, it is unbiased for 
finite samples as well as superconsistent.
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AR.9
We will refute the unbiasedness proposition by considering the more 
general case where Z2 is an unbiased estimator of θ 2. We know that

	 ( ){ } ( ) ( ) ( )ZEZEZEZE θθθθθ 222 2222 −=+−=− .

Hence

	  ( ) ( ){ }2

2
1 θ
θ

θ −−= ZEZE .

Z is therefore a biased estimator of θ except for the special case where Z 
is equal to θ for all samples, that is, in the trivial case where there is no 
sampling error.

Nevertheless, since a function of a consistent estimator will, under quite 
general conditions, be a consistent estimator of the function of the 
parameter, s will be a consistent estimator of σ. 
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Chapter 1: Simple regression analysis

Overview
This chapter introduces the least squares criterion of goodness of fit and 
demonstrates, first through examples and then in the general case, how 
it may be used to develop expressions for the coefficients that quantify 
the relationship when a dependent variable is assumed to be determined 
by one explanatory variable. The chapter continues by showing how the 
coefficients should be interpreted when the variables are measured in 
natural units, and it concludes by introducing R2, a second criterion of 
goodness of fit, and showing how it is related to the least squares criterion 
and the correlation between the fitted and actual values of the dependent 
variable.

Learning outcomes
After working through the corresponding chapter in the text, studying the 
corresponding slideshows, and doing the starred exercises in the text and 
the additional exercises in this guide, you should be able to explain what is 
meant by:

•	 dependent variable

•	 explanatory variable (independent variable, regressor)

•	 parameter of a regression model

•	 the nonstochastic component of a true relationship

•	 the disturbance term

•	 the least squares criterion of goodness of fit

•	 ordinary least squares (OLS)

•	 the regression line

•	 fitted model

•	 fitted values (of the dependent variable)

•	 residuals

•	 total sum of squares, explained sum of squares, residual sum of squares

•	 R2.

In addition, you should be able to explain the difference between: 

•	 the nonstochastic component of a true relationship and a fitted 
regression line, and

•	 the values of the disturbance term and the residuals.
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Additional exercises

A1.1
The output below gives the result of regressing FDHO, annual household 
expenditure on food consumed at home, on EXP, total annual household 
expenditure, both measured in dollars, using the Consumer Expenditure 
Survey data set. Give an interpretation of the coefficients.

A1.2
Download the CES data set from the website (see Appendix B of the text), 
perform a regression parallel to that in Exercise A1.2 for your category of 
expenditure, and provide an interpretation of the regression coefficients.

A1.3
The output shows the result of regressing the weight of the respondent, in 
pounds, in 2002 on the weight in 1985, using EAEF Data Set 22. Provide 
an interpretation of the coefficients. Summary statistics for the data are 
also provided.
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A1.4
The output shows the result of regressing the hourly earnings of the 
respondent, in dollars, in 2002 on height in 1985, measured in inches, 
using EAEF Data Set 22. Provide an interpretation of the coefficients, 
comment on the plausibility of the interpretation, and attempt to give an 
explanation. 

A1.5
A researcher has data for 50 countries on N, the average number of 
newspapers purchased per adult in one year, and G, GDP per capita, 
measured in US $, and fits the following regression (RSS = residual sum 
of squares)

	 N̂ 	=	 25.0 +	 0.020 G		 R2 = 0.06, RSS = 4,000.0

The researcher realises that GDP has been underestimated by $100 in 
every country and that N should have been regressed on G*, where 
G* = G + 100. Explain, with mathematical proofs, how the following 
components of the output would have differed:

•	 the coefficient of GDP

•	 the intercept

•	 RSS

•	 R2.

A1.6
A researcher with the same model and data as in Exercise A1.5 believes 
that GDP in each country has been underestimated by 50 percent and 
that N should have been regressed on G*, where G* = 2G. Explain, with 
mathematical proofs, how the following components of the output would 
have differed:

•	 the coefficient of GDP

•	 the intercept

•	 RSS

•	 R2.
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A1.7
A variable Yi is generated as 

	 Yi = β1 + ui	 (1.1)

where β1 is a fixed parameter and ui is a disturbance term that is 
independently and identically distributed with expected value 0 and 
population variance 2

uσ . The least squares estimator of β1 is Y , the 
sample mean of Y. Give a mathematical demonstration that the value of R2 
in such a regression is zero.

Answers to the starred exercises in the textbook

1.8
The output below shows the result of regressing the weight of the 
respondent in 1985, measured in pounds, on his or her height, measured 
in inches, using EAEF Data Set 21. Provide an interpretation of the 
coefficients.

Answer: 

Literally the regression implies that, for every extra inch of height, an 
individual tends to weigh an extra 5.2 pounds. The intercept, which 
literally suggests that an individual with no height would weigh –195 
pounds, has no meaning. The figure shows the observations and the fitted 
regression line.
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1.10
A researcher has international cross-sectional data on aggregate wages, W, 
aggregate profits, P, and aggregate income, Y, for a sample of n countries. 
By definition,

	 Yi = Wi + Pi.

The regressions

	 ii YaaW 21
ˆ +=

	 ii YbbP 21
ˆ +=

are fitted using OLS regression analysis. Show that the regression 
coefficients will automatically satisfy the following equations:

	 a2 + b2 = 1

	 a1 + b1 = 0.

Explain intuitively why this should be so.

Answer:
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The intuitive explanation is that the regressions break down income 
into predicted wages and profits and one would expect the sum of the 
predicted components of income to be equal to its actual level. The sum of 
the predicted components is [(a1 + a2Y) + (b1 + b2Y)], and in general this 
will be equal to Y only if the two conditions are satisfied.

1.12
Suppose that the units of measurement of X are changed so that the new 
measure, *X , is related to the original one by ii XX 21

* µµ += . Show that 
the new estimate of the slope coefficient is 22 µb , where b2 is the slope 
coefficient in the original regression.

Answer:
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1.13
Demonstrate that if X is demeaned but Y is left in its original units, the 
intercept in a regression of Y on demeaned X will be equal to Y .

Answer:

Let XXX ii −=*  and *
1b  and *

2b  be the intercept and slope coefficient in a 
regression of Y on *X . Note that 0* =X . Then

	  YXbYb =−= *
2

*
1

* .

The slope coefficient is not affected by demeaning:
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1.14
Derive, with a proof, the slope coefficient that would have been obtained 
in Exercise 1.5 if weight and height had been measured in metric units. 
(Note: one pound is 454 grams and one inch is 2.54 cm.)

Answer:

Let the weight and height be W and H in imperial units (pounds and 
inches) and WM and HM in metric units (kilos and centimetres). Then WM 
= 0.454W and HM = 2.54H. The slope coefficient for the regression in 
metric units, Mb2 , is given by
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In other words, weight increases at the rate of almost one kilo per 
centimetre. The regression output below confirms that the calculations are 
correct (subject to rounding error in the last digit).



Chapter 1: Simple regression analysis

31

1.15
Consider the regression model

	  iii uXY ++= 21 ββ .

It implies

	 uXY ++= 21 bb

and hence that

	
iii vXY += *

2
* b

where YYY ii −=* , XXX ii −=* , and uuv ii −= .

Demonstrate that a regression of *Y  on *X using (1.40) will yield the 
same estimate of the slope coefficient as a regression of Y on X. Note: 
(1.40) should be used instead of (1.28) because there is no intercept in 
this model.

Evaluate the outcome if the slope coefficient were estimated using (1.28), 
despite the fact that there is no intercept in the model.

Determine the estimate of the intercept if *Y  were regressed on *X with 
an intercept included in the regression specification.

Answer:

Let *
2b  be the slope coefficient in a regression of *Y  on *X  using (1.40). 

Then
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Let 
**

2b  be the slope coefficient in a regression of *Y  on *X  using (1.28). 
Note that *Y  and *X  are both zero. Then
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Let **
1b  be the intercept in a regression of *Y  on *X  using (1.28). Then

	 0***
2

***
1 =−= XbYb .

1.17
Demonstrate that the fitted values of the dependent variable are 
uncorrelated with the residuals in a simple regression model. (This result 
generalizes to the multiple regression case.)

Answer:

The numerator of the sample correlation coefficient for Ŷ  and e can be 
decomposed as follows, using the fact that 0=e :
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by (1.53). Hence the correlation is zero.
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1.22
Demonstrate that, in a regression with an intercept, a regression of Y on 

*X must have the same R2 as a regression of Y on X, where XX 21
* µµ += .

Answer:

Let the fitted regression of Y on *X  be written **
2

*
1

*ˆ
ii XbbY += . 22

*
2 / µbb =  

(Exercise 1.12). 

	

2

21
1

2

21
2

**
2

*
1 µ

µ
µ
µ bbbXbYXbYb −=−−=−= .

Hence

	
( ) iii YXbbbY ˆˆ

21
2

2

2

21
1

* =++−= µµ
µµ

µ .

The fitted and actual values of Y are not affected by the transformation 
and so R2 is unaffected.

1.24
The output shows the result of regressing weight in 2002 on height, using 
EAEF Data Set 21. In 2002 the respondents were aged 37–44. Explain why 
R2 is lower than in the regression reported in Exercise 1.5.

Answer:

The explained sum of squares (described as the model sum of squares in 
the Stata output) is actually higher than that in Exercise 1.5. The reason 
for the fall in R2 is the huge increase in the total sum of squares, no doubt 
caused by the cumulative effect of diversity in eating habits.

Answers to the additional exercises

A1.1
Expenditure on food consumed at home increases by 5.3 cents for each 
dollar of total household expenditure. Literally the intercept implies that 
$1,923 would be spent on food consumed at home if total household 
expenditure were zero. Obviously, such an interpretation does not make 
sense. If the explanatory variable were income, and household income 
were zero, positive expenditure on food at home would still be possible 
if the household received food stamps or other transfers. But here the 
explanatory variable is total household expenditure.
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A1.2
Housing has the largest coefficient, followed perhaps surprisingly by food 
consumed away from home, and then clothing. All the slope coefficients 
are highly significant, with the exception of local public transportation. 
Its slope coefficient is 0.0008, with t statistic 0.40, indicating that this 
category of expenditure is on the verge of being an inferior good.

EXP

n b2 s.e.(b2) R2 F

FDHO 868 0.0527 0.0027 0.3052 380.4

FDAW 827 0.0440 0.0021 0.3530 450.0

HOUS 867 0.1935 0.0063 0.5239 951.9

TELE 858 0.0101 0.0009 0.1270 124.6

DOM 454 0.0225 0.0043 0.0581 27.9

TEXT 482 0.0049 0.0006 0.1119 60.5

FURN 329 0.0128 0.0023 0.0844 30.1

MAPP 244 0.0089 0.0018 0.0914 24.3

SAPP 467 0.0013 0.0003 0.0493 24.1

CLOT 847 0.0395 0.0018 0.3523 459.5

FOOT 686 0.0034 0.0003 0.1575 127.9

GASO 797 0.0230 0.0014 0.2528 269.0

TRIP 309 0.0240 0.0038 0.1128 39.0

LOCT 172 0.0008 0.0019 0.0009 0.2

HEAL 821 0.0226 0.0029 0.0672 59.0

ENT 824 0.0700 0.0040 0.2742 310.6

FEES 676 0.0306 0.0026 0.1667 134.8

TOYS 592 0.0090 0.0010 0.1143 76.1

READ 764 0.0039 0.0003 0.1799 167.2

EDUC 288 0.0265 0.0054 0.0776 24.1

TOB 368 0.0071 0.0014 0.0706 27.8

A1.3
The summary data indicate that, on average, the respondents put on 25.7 
pounds over the period 1985–2002. Was this due to the relatively heavy 
becoming even heavier, or to a general increase in weight? The regression 
output indicates that weight in 2002 was approximately equal to weight 
in 1985 plus 23.6 pounds, so the second explanation appears to be the 
correct one. Note that this is an instance where the constant term can be 
given a meaningful interpretation and where it is as of much interest as 
the slope coefficient. The R2 indicates that 1985 weight accounts for 68 
percent of the variance in 2002 weight, so other factors are important.
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A1.4
The slope coefficient indicates that hourly earnings increase by 80 cents 
for every extra inch of height. The negative intercept has no possible 
interpretation. The interpretation of the slope coefficient is obviously 
highly implausible, so we know that something must be wrong with the 
model. The explanation is that this is a very poorly specified earnings 
function and that, in particular, we are failing to control for the sex of the 
respondent. Later on, in Chapter 5, we will find that males earn more than 
females, controlling for observable characteristics. Males also tend to be 
taller. Hence we find an apparent positive association between earnings 
and height in a simple regression. Note that R2 is very low.

A1.5
The coefficient of GDP: Let the revised measure of GDP be denoted 
G*, where G* = G + 100. Since 100* += ii GG  for all i, 100* += GG  and 
so GGGG ii −=− **  for all i. Hence the new slope coefficient is
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The coefficient is unchanged.

The intercept: The new intercept is ( ) 0.23100100 212
**

2
*
1 =−=+−=−= bbGbNGbNb

RSS: The residual in observation i in the new regression, *
ie , is given by

	 ( ) ( ) iiiiii eGbbbNGbbNe =+−−−=−−= 100100 221
**

2
*
1

* ,

the residual in the original regression. Hence RSS is unchanged.

R2: ( )∑ −
−= 2

2 1
NN

RSSR
i

 and is unchanged since RSS and ( )∑ −
2NNi   

are unchanged. 

Note that this makes sense intuitively. R2 is unit-free and so it is not 
possible for the overall fit of a relationship to be affected by the units of 
measurement.

A1.6
The coefficient of GDP: Let the revised measure of GDP be 
denoted G*, where G* = 2G. Since ii GG 2* =  for all i, GG 2* =  and so 

( )GGGG ii −=− 2**  for all i. Hence the new slope coefficient is
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where b2 = 0.020 is the slope coefficient in the original regression.

The intercept: The new intercept is 
 0,.252

2 12
2**

2
*
1 ==−=−=−= bGbNG

b
NGbNb

the original intercept.
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RSS: The residual in observation i in the new regression, *
ie , is given by

	
iiiiii eGbbNGbbNe =−−=−−= 2

2
2

1
**

2
*
1

*

the residual in the original regression. Hence RSS is unchanged.

R2: ( )∑ −
−= 2

2 1
NN

RSSR
i

 and is unchanged since RSS and ( )∑ −
2NNi  are 

unchanged. As in Exercise A1.6, this makes sense intuitively.

A1.7
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∑
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 and YYi =ˆ  for all i.
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Chapter 2: Properties of the regression 
coefficients and hypothesis testing

Overview
Chapter 1 introduced least squares regression analysis, a mathematical 
technique for fitting a relationship given suitable data on the variables 
involved. It is a fundamental chapter because much of the rest of the 
text is devoted to extending the least squares approach to handle more 
complex models, for example models with multiple explanatory variables, 
nonlinear models, and models with qualitative explanatory variables.

However, the mechanics of fitting regression equations are only part of 
the story. We are equally concerned with assessing the performance of our 
regression techniques and with developing an understanding of why they 
work better in some circumstances than in others. Chapter 2 is the starting 
point for this objective and is thus equally fundamental. In particular, it 
shows how two of the three main criteria for assessing the performance 
of estimators, unbiasedness and efficiency, are applied in the context of 
a regression model. The third criterion, consistency, will be considered in 
Chapter 8.

Learning outcomes
After working through the corresponding chapter in the text, studying the 
corresponding slideshows, and doing the starred exercises in the text and 
the additional exercises in this guide, you should be able to explain what is 
meant by:

•	 cross-sectional, time series, and panel data

•	 unbiasedness of OLS regression estimators

•	 variance and standard errors of regression coefficients and how they 
are determined

•	 Gauss–Markov theorem and efficiency of OLS regression estimators

•	 two-sided t tests of hypotheses relating to regression coefficients and 
one-sided t tests of hypotheses relating to regression coefficients

•	 F tests of goodness of fit of a regression equation

in the context of a regression model. The chapter is a long one and you 
should take your time over it because it is essential that you develop a 
perfect understanding of every detail.

Further material

Derivation of the expression for the variance of the naïve estimator in 
Section 2.3.

The variance of the naïve estimator in Section 2.3 and Exercise 2.9 is not 
of any great interest in itself but its derivation provides an example of how 
one obtains expressions for variances of estimators in general.

In Section 2.3 we considered the naïve estimator of the slope coefficient 
derived by joining the first and last observations in a sample and 
calculating the slope of that line:
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It was demonstrated that the estimator could be decomposed as
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and hence that E(b2) = β2.

The population variance of a random variable X is defined to be 
E([X – μX]

2) where μX = E(X). Hence the population variance of b2 is given 
by
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On the assumption that X is nonstochastic, this can be written as
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Expanding the quadratic, we have
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Each value of the disturbance term is drawn randomly from a distribution 
with mean 0 and population variance 2

uσ , so ( )2
nuE  and ( )2

1uE  are both 
equal to 2

uσ . un and u1 are drawn independently from the distribution, so 
E(unu1) = E(un)E(u1) = 0. Hence 
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Define ( )nXXA += 12
1 , the average of X1 and Xn, and 1XAAXD n −=−= . 
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Hence we obtain the expression in Exercise 2.9. There must be a shorter 
proof.

Additional exercises

A2.1
A variable Yi is generated as 

	 Yi = β1 + ui	

where β1 is a fixed parameter and ui is a disturbance term that is 
independently and identically distributed with expected value 0 and 
population variance 2

uσ . The least squares estimator of β1 is Y , the 
sample mean of Y. However a researcher believes that Y is a linear 
function of another variable X and uses ordinary least squares to fit the 
relationship

	 XbbY 21
ˆ +=

calculating b1 as XbY 2− , where X  is the sample mean of X. X may 
be assumed to be a nonstochastic variable. Determine whether the 
researcher’s estimator b1 is biased or unbiased, and if biased, determine 
the direction of the bias.

A2.2
With the model described in Exercise A2.1, standard theory states that the 
population variance of the researcher’s estimator b1 is

( ) 







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



−
+
∑ 2

2
2 1

XX
X

n
i

uσ
. In general, this is larger than the population 

variance of Y , which is 
n

u
2σ

. Explain the implications of the difference in 
the variances.

In the special case where 0=X , the variances are the same. Give an 
intuitive explanation.

A2.3
Using the output for the regression in Exercise A1.9 in the text, reproduced 
below, perform appropriate statistical tests.

. reg CHILDREN SM

      Source |       SS       df       MS              Number of obs =     540
-------------+------------------------------           F(  1,   538) =   63.60
       Model |   272.69684     1   272.69684           Prob > F      =  0.0000
    Residual |   2306.7402   538  4.28762118           R-squared     =  0.1057
-------------+------------------------------           Adj R-squared =  0.1041
       Total |  2579.43704   539  4.78559747           Root MSE      =  2.0707

------------------------------------------------------------------------------
    CHILDREN |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          SM |  -.2525473   .0316673    -7.98   0.000     -.314754   -.1903406
       _cons |   7.198478   .3773667    19.08   0.000     6.457186    7.939771
------------------------------------------------------------------------------
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A2.4
Using the output for the regression in Exercise A1.1, reproduced below, 
perform appropriate statistical tests.

A2.5
Using the output for your regression in Exercise A1.2, perform appropriate 
statistical tests.

A2.6
Using the output for the regression in Exercise A1.3, reproduced below, 
perform appropriate statistical tests.

A2.7
Using the output for the regression in Exercise A1.4, reproduced below, 
perform appropriate statistical tests.
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A2.8
With the information given in Exercise A1.5, how would the change in the 
measurement of GDP affect

•	 the standard error of the coefficient of GDP

•	 the F statistic for the equation?

A2.9
With the information given in Exercise A1.6, how would the change in the 
measurement of GDP affect

•	 the standard error of the coefficient of GDP

•	 the F statistic for the equation?

A2.10
[This is a continuation of Exercise 1.15 in the text.] A sample of data 
consists of n observations on two variables, Y and X. The true model is 

	
iii uXY ++= 21 bb

where β1 and β2 are parameters and u is a disturbance term that satisfies 
the usual regression model assumptions. In view of the true model,

	 uXY ++= 21 bb

where Y , X , and u  are the sample means of Y, X, and u. Subtracting the 
second equation from the first, one obtains 

	 **
2

*
iii uXY += b

where YYY ii −=* , XXX ii −=* , and uuu ii −=* . Note that, by 
construction, the sample means of *Y , *X , and *u are all equal to zero.

One researcher fits 

	 XbbY 21
ˆ += .	 (1)

A second researcher fits

	 **
2

*
1

*ˆ XbbY += .	 (2)

[Note: The second researcher included an intercept in the specification.] 

•	 Comparing regressions (1) and (2), demonstrate that YYY ii −= ˆˆ * .

•	 Demonstrate that the residuals in (2) are identical to the residuals in 
(1).

•	 Demonstrate that the OLS estimator of the variance of the disturbance 
term in (2) is equal to that in (1). 

•	 Explain how the standard error of the slope coefficient in (2) is related 
to that in (1).

•	 Explain how R2 in (2) is related to R2 in (1).

•	 Explain why, theoretically, the specification (2) of the second researcher 
is incorrect and he should have fitted

	 **
2

*ˆ XbY = 	 (3)

	 not including a constant in his specification.

•	 If the second researcher had fitted (3) instead of (2), how would this 
have affected his estimator of β2? Would dropping the unnecessary 
intercept lead to a gain in efficiency?
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A2.11
A variable Y depends on a nonstochastic variable X with the relationship

	 Y = β1 + β2X + u

where u is a disturbance term that satisfies the regression model 
assumptions. Given a sample of n observations, a researcher decides to 
estimate β2 using the expression
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(This is the OLS estimator of β2 for the model Y = β2X + u). It can be 
shown that the population variance of this estimator is 
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•	 Demonstrate that b2 is in general a biased estimator of β2.

•	 Discuss whether it is possible to determine the sign of the bias.

•	 Demonstrate that b2 is unbiased if β1 = 0. 

•	 What can be said in this case about the efficiency of b2, comparing it 
with the estimator  ( ) ( )
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•	 Demonstrate that b2 is unbiased if X  = 0.
What can be said in this case about the efficiency of b2, comparing it 
with the estimator 
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	 Explain the underlying reason for this conclusion.

•	 Returning to the general case where 01 ≠b  and 0≠X , suppose that 
there is very little variation in X in the sample. Is it possible that b2 
might be a better estimator than the OLS estimator?

A2.12
A variable Yi is generated as 

	 Yi = β1 + β2Xi + ui						      (1)

where β1 and β2 are fixed parameters and ui is a disturbance term that 
satisfies the regression model assumptions. The values of X are fixed 
and are as shown in the figure opposite. Four of them, X1 to X4, are close 
together. The fifth, X5, is much larger. The corresponding values that Y 
would take, if there were no disturbance term, are given by the circles on 
the line. The presence of the disturbance term in the model causes the 
actual values of Y in a sample to be different. The solid black circles depict 
a typical sample of observations.
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Discuss the advantages and disadvantages of dropping the observation 
corresponding to X5 when regressing Y on X. If you keep the observation in 
the sample, will this cause the regression estimates to be biased?

Answers to the starred exercises in the textbook

2.1
Demonstrate that ∑

=

+=
n

i
iiucb

1
11 b , where ci = 

n
1

 – ai X  and ai is defined 
in equation (2.21).

Answer: 
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2.5
An investigator correctly believes that the relationship between two 
variables X and Y is given by 

	 Yi = β1 + β2Xi + ui.

Given a sample of observations on Y, X, and a third variable Z (which is 
not a determinant of Y), the investigator estimates β2 as
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Demonstrate that this estimator is unbiased.

Answer: Noting that ( ) ,2 uuXXYY iii −+−=− b
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Hence
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2.6
Using the decomposition of b1 obtained in Exercise 2.1, derive the 
expression for 2

1bσ  given in equation (2.38).
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2.7
Given the decomposition in Exercise 2.2 of the OLS estimator of β2 in 
the model iii uXY += 2b , demonstrate that the variance of the slope 
coefficient is given by
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2.10
It can be shown that the variance of the estimator of the slope coefficient 
in Exercise 2.4,
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is given by
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where rXZ is the correlation between X and Z. What are the implications for 
the efficiency of the estimator?

Answer: 

If Z happens to be an exact linear function of X, the population variance

will be the same as that of the OLS estimator. Otherwise 
2

1

XZr
will be

greater than 1, the variance will be larger, and so the estimator will be less 
efficient.

2.13
Suppose that the true relationship between Y and X is iii uXY ++= 21 bb  
and that the fitted model is ii XbbY 21

ˆ += . In Exercise 1.12 it was shown 
that if ii XX 21

* µµ += , and Y is regressed on *X , the slope coefficient 

22
*
2 µbb = . How will the standard error of *

2b  be related to the standard 
error of b2?

Answer:

In Exercise 1.22 it was demonstrated that the fitted values of Y would be 
the same. This means that the residuals are the same, and hence 

2
us , the estimator of the variance of the disturbance term, is the same. The 

standard error of *
2b  is then given by
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2.15
A researcher with a sample of 50 individuals with similar education 
but differing amounts of training hypothesises that hourly earnings, 
EARNINGS, may be related to hours of training, TRAINING, according to 
the relationship

	 EARNINGS = β1 + β2TRAINING + u .

He is prepared to test the null hypothesis H0: β2 = 0 against the alternative 
hypothesis H1: β2 ≠  0 at the 5 per cent and 1 per cent levels. What should 
he report

1.	 if b2 = 0.30, s.e.(b2) = 0.12?

2.	 if b2 = 0.55, s.e.(b2) = 0.12?

3.	 if b2 = 0.10, s.e.(b2) = 0.12?

4.	 if b2 = –0.27, s.e.(b2) = 0.12?

Answer: 

There are 48 degrees of freedom, and hence the critical values of t at the 
5 per cent, 1 per cent, and 0.1 per cent levels are 2.01, 2.68, and 3.51, 
respectively.
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1.	 The t statistic is 2.50. Reject H0 at the 5 per cent level but not at the 1 
per cent level.

2.	 t = 4.58. Reject at the 0.1 per cent level.

3.	 t = 0.83. Fail to reject at the 5 per cent level.

4.	 t = –2.25. Reject H0 at the 5 per cent level but not at the 1 per cent 
level.

2.20
Explain whether it would have been possible to perform one-sided tests 
instead of two-sided tests in Exercise 2.15. If you think that one-sided tests 
are justified, perform them and state whether the use of a one-sided test 
makes any difference.

Answer: 

First, there should be a discussion of whether the parameter β2 in

	 EARNINGS = β1 + β2TRAINING + u

can be assumed not to be negative. The objective of training is to impart 
skills. It would be illogical for an individual with greater skills to be paid 
less on that account, and so we can argue that we can rule out β2 < 0. We 
can then perform a one-sided test. With 48 degrees of freedom, the critical 
values of t at the 5 per cent, 1 per cent, and 0.1 per cent levels are 1.68, 
2.40, and 3.26, respectively.

1.	 The t statistic is 2.50. We can now reject H0 at the 1 per cent level (but 
not at the 0.1 per cent level).

2.	 t = 4.58. Not affected by the change. Reject at the 0.1 per cent level.

3.	 t = 0.83. Not affected by the change. Fail to reject at the 5 per cent 
level.

4.	 t = –2.25. Fail to reject H0 at the 5 per cent level. Here there is a 
problem because the coefficient has an unexpected sign and is large 
enough to reject H0 at the 5 per cent level with a two-sided test.

In principle we should ignore this and fail to reject H0. Admittedly, the 
likelihood of such a large negative t statistic occurring under H0 is very 
small, but it would be smaller still under the alternative hypothesis  
H1: β2 >0.

However we should consider two further possibilities. One is that the 
justification for a one-sided test is incorrect. For example, some jobs 
pay relatively low wages because they offer training that is valued by 
the employee. Apprenticeships are the classic example. Alternatively, 
workers in some low-paid occupations may, for technical reasons, receive a 
relatively large amount of training. In either case, the correlation between 
training and earnings might be negative instead of positive.

Another possible reason for a coefficient having an unexpected sign is that 
the model is misspecified in some way. For example, the coefficient might 
be distorted by omitted variable bias, to be discussed in Chapter 6.

2.25
Suppose that the true relationship between Y and X is iii uXY ++= 21 bb  
and that the fitted model is ii XbbY 21

ˆ += . In Exercise 1.12 it was shown 
that if ii XX 21

* µµ += , and Y is regressed on *X , the slope coefficient 

22
*
2 µbb = . How will the t statistic for *

2b  be related to the t statistic for 
b2? (See also Exercise 2.13.)
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Answer:

From Exercise 2.13, we have ( ) ( ) 22
*
2 / s.e. s.e. µbb = . Since 22

*
2 µbb = , it 

follows that the t statistic must be the same.

Alternatively, since we saw in Exercise 1.22 that R2 must be the same, 
it follows that the F statistic for the equation must be the same. For a 
simple regression the F statistic is the square of the t statistic on the slope 
coefficient, so the t statistic must be the same.

2.28
Calculate the 95 per cent confidence interval for β2 in the price inflation/
wage inflation example:

	 p̂  =	 –1.21 +	 0.82w

 			   (0.05)		 (0.10) 
.

What can you conclude from this calculation?

Answer:

With n equal to 20, there are 18 degrees of freedom and the critical value 
of t at the 5 per cent level is 2.10. The 95 per cent confidence interval is 
therefore

	 0.82 – 0.10× 2.10 ≤  β2 ≤  0.82 + 0.10× 2.10

that is,

	 0.61 ≤  β2 ≤  1.03.

2.34
Suppose that the true relationship between Y and X is iii uXY ++= 21 bb  
and that the fitted model is ii XbbY 21

ˆ += . Suppose that ii XX 21
* µµ += , and 

Y is regressed on *X . How will the F statistic for this regression be related 
to the F statistic for the original regression? (See also Exercises 1.22, 2.13, 
and 2.24.)

Answer:

We saw in Exercise 1.22 that R2 would be the same, and it follows that F 
must also be the same.

Answers to the additional exercises

Note:
Each of the exercises below relates to a simple regression. Accordingly, the 
F test is equivalent to a two-sided t test on the slope coefficient and there 
is no point in performing both tests. The F statistic is equal to the square of 
the t statistic and, for any significance level, the critical value of F is equal 
to the critical value of t. Obviously a one-sided t test, when justified, is 
preferable to either in that it has greater power for any given significance 
level.

A2.1
First we need to show that ( ) 02 =bE .
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Hence, given that we are told that X is nonstochastic,
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since E(u) = 0. Thus

	 ( ) ( ) ( ) 12121 bb =−=−= bEXXbYEbE  

and the estimator is unbiased.

A2.2
If 0=X , the estimators are identical. XbY 2−  reduces to .Y

A2.3
The t statistic for the coefficient of SM is –7.98, very highly significant. The 
t statistic for the intercept is even higher, but it is of no interest. All the 
mothers in the sample must have had at least one child (the respondent), 
for otherwise they would not be in the sample. The F statistic is 63.60, 
very highly significant.

A2.4
The t statistic for the coefficient of EXP is 19.50, very highly significant. 
There is little point performing a t test on the intercept, given that it has 
no plausible meaning. The F statistic is 380.4, very highly significant.

A2.5
The slope coefficient for every category is significantly different from 
zero at a very high significance level, with the exception of local public 
transportation. The coefficient for the latter is virtually equal to zero and 
the t statistic is only 0.40. Evidently this category is on the verge of being 
an inferior good.

A2.6
A straight t test on the coefficient of WEIGHT85 is not very interesting 
since we know that those who were relatively heavy in 1985 will also be 
relatively heavy in 2002. The t statistic confirms this obvious fact. Of more 
interest would be a test investigating whether those relatively heavy in 
1985 became even heavier in 2002. We set up the null hypothesis that they 
did not, H0: β2 = 1, and see if we can reject it. The t statistic for this test is 

	

and hence the null hypothesis is not rejected. The constant indicates that 
the respondents have tended to put on 23.6 pounds over the interval, 
irrespective of their 1985 weight. The null hypothesis that the general 
increase is zero is rejected at the 0.1 per cent level.
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A2.7
The t statistic for height, 5.42, suggests that the effect of height on 
earnings is highly significant, despite the very low R2. In principle the 
estimate of an extra 86 cents of hourly earnings for every extra inch of 
height could have been a purely random result of the kind that one obtains 
with nonsense models. However, the fact that it is apparently highly 
significant causes us to look for other explanations, the most likely one 
being that suggested in the answer to Exercise A1.4. Of course we would 
not attempt to test the negative constant.

A2.8
The standard error of the coefficient of GDP. This is given by

( )∑ −
2**

*

GG

s

i

u ,

where *
us , the standard error of the regression,  

is estimated as 
2

2*

−
∑
n

ei . Since RSS is unchanged, *
us  = su. 

We saw in Exercise A1.5 that GGGG ii −=− ** for all i. Hence the new 
standard error is given 

by 
( )∑ −

2GG

s

i

u  and is unchanged.

2/ −
=

nRSS
ESSF  where ESS = explained sum of squares = 

2
** ˆˆ∑ 




 −YYi . 

Since ii ee =* , ii YY ˆˆ * =  and ESS is unchanged. We saw in Exercise A1.5 that 
RSS is unchanged. Hence F is unchanged.

A2.9
The standard error of the coefficient of GDP. This is given by 
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s

i

u , 

where *
us , the standard error of the regression, is estimated as 

2

2*

−
∑
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ei , 

where n is the number of observations. We saw in Exercise 1.6 that ii ee =*  
and so RSS is unchanged. Hence *

us  = su. Thus the new standard error is 
given by

	
( ) ( )

005.0
2
1

22 22
=

−
=

− ∑∑ GG

s

GG

s

i

u

i

u .

2/ −
=

nRSS
ESSF  where ESS = explained sum of squares = 

2
** ˆˆ∑ 




 −YYi . 

Since ii ee =* , ii YY ˆˆ * =  and ESS is unchanged. Hence F is unchanged.

A2.10
One way of demonstrating that YYY ii −= ˆˆ * :

	 ( )XXbXbbY iii −=+= 2
**

2
*
1

*ˆ

	 ( ) ( ) ( )XXbYXbXbYYXbbYY iiii −=−+−=−+=− 22221
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Demonstration that the residuals are the same:

	 ( ) ( ) iiiiii eYYYYYYe =−−−=−= ˆˆ *** .

Demonstration that the OLS estimator of the variance of the disturbance 
term in (2) is equal to that in (1):
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The standard error of the slope coefficient in (2) is equal to that in (1).
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Hence the standard errors are the same.

Demonstration that R2 in (2) is equal to R2 in (1):
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The reason that specification (2) of the second researcher is incorrect is 
that the model does not include an intercept.

If the second researcher had fitted (3) instead of (2), this would not in fact 
have affected his estimator of β2. Using (3), the researcher should have

estimated β2 as 

∑
∑= 2*

**
*
2

i

ii

X

YX
b  . However, Exercise 1.15 demonstrates 

that, effectively, he has done exactly this. Hence the estimator will be the 
same. It follows that dropping the unnecessary intercept would not have 
led to a gain in efficiency.

A2.11
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assuming that X is nonstochastic. Since E(ui) = 0,
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Thus b2 will in general be a biased estimator. The sign of the bias depends
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We have no information about either of these.

b2 is more efficient than 
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The expression for the variance of b2 has a smaller denominator if 0≠X .

If X = 0, the estimators are equally efficient because the population 
variance expressions are identical. The reason for this is that the 
estimators are now identical:
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If there is little variation in X in the sample, 
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may be small and hence the population variance of 
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may be large. Thus using a criterion such as mean square error, b2 may be 
preferable if the bias is small.

A2.12
The inclusion of the fifth observation does not cause the model to be 
misspecified or the regression model assumptions to be violated, so 
retaining it in the sample will not give rise to biased estimates. There 
would be no advantages in dropping it and there would be one major

disadvantage. 
 ( )∑
=

−
n

i
i XX

1

2
would be greatly reduced and hence the 

variances of the coefficients would be increased, adversely affecting the 
precision of the estimates.
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This said, in practice one would wish to check whether it is sensible to 
assume that the model relating Y to X for the other observations really 
does apply to the observation corresponding to X5 as well. This question 
can be answered only by being familiar with the context and having some 
intuitive understanding of the relationship between Y and X.
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Chapter 3: Multiple regression analysis

Overview
This chapter introduces regression models with more than one explanatory 
variable. Specific topics are treated with reference to a model with just 
two explanatory variables, but most of the concepts and results apply 
straightforwardly to more general models. The chapter begins by showing 
how the least squares principle is employed to derive the expressions for 
the regression coefficients and how the coefficients should be interpreted. 
It continues with a discussion of the precision of the regression coefficients 
and tests of hypotheses relating to them. Next comes multicollinearity, the 
problem of discriminating between the effects of individual explanatory 
variables when they are closely related. The chapter concludes with a 
discussion of F tests of the joint explanatory power of the explanatory 
variables or subsets of them, and shows how a t test can be thought of as a 
marginal F test.

Learning outcomes
After working through the corresponding chapter in the textbook, studying 
the corresponding slideshows, and doing the starred exercises in the text 
and the additional exercises in this guide, you should be able to explain:

•	 the principles behind the derivation of multiple regression coefficients 
(but you are not expected to learn the expressions for them or to be 
able to reproduce the mathematical proofs)

•	 how to interpret the regression coefficients

•	 the Frisch–Waugh–Lovell graphical representation of the relationship 
between the dependent variable and one explanatory variable, 
controlling for the influence of the other explanatory variables

•	 the properties of the multiple regression coefficients

•	 what factors determine the population variance of the regression 
coefficients

•	 what is meant by multicollinearity

•	 what measures may be appropriate for alleviating multicollinearity

•	 what is meant by a linear restriction

•	 the F test of the joint explanatory power of the explanatory variables

•	 the F test of the explanatory power of a group of explanatory variables

•	 why t tests on the slope coefficients are equivalent to marginal F tests.

You should know the expression for the population variance of a slope 
coefficient in a multiple regression model with two explanatory variables.

Additional exercises

A3.1
The output shows the result of regressing FDHO, expenditure on food 
consumed at home, on EXP, total household expenditure, and SIZE, 
number of persons in the household, using the CES data set. Provide an 
interpretation of the regression coefficients and perform appropriate tests.
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A3.2
Perform a regression parallel to that in Exercise A3.1 for your CES category 
of expenditure, provide an interpretation of the regression coefficients and 
perform appropriate tests. Delete observations where expenditure on your 
category is zero.

A3.3
The output shows the result of regressing FDHOPC, expenditure on food 
consumed at home per capita, on EXPPC, total household expenditure per 
capita, and SIZE, number of persons in the household, using the CES data 
set. Provide an interpretation of the regression coefficients and perform 
appropriate tests.

A3.4
Perform a regression parallel to that in Exercise A3.3 for your CES category 
of expenditure. Provide an interpretation of the regression coefficients and 
perform appropriate tests.

A3.5
The output shows the result of regressing FDHOPC, expenditure on food 
consumed at home per capita, on EXPPC, total household expenditure 
per capita, and SIZEAM, SIZEAF, SIZEJM, SIZEJF, and SIZEIN, numbers 
of adult males, adult females, junior males, junior females, and infants, 
respectively, in the household, using the CES data set. Provide an 
interpretation of the regression coefficients and perform appropriate tests.
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A3.6
Perform a regression parallel to that in Exercise A3.5 for your CES category 
of expenditure. Provide an interpretation of the regression coefficients and 
perform appropriate tests.

A3.7
A researcher hypothesises that, for a typical enterprise, V, the logarithm 
of value added per worker, is related to K, the logarithm of capital per 
worker, and S, the logarithm of the average years of schooling of the 
workers, the relationship being

	 uSKV +++= 321 bbb

where u is a disturbance term that satisfies the usual regression 
model assumptions. She fits the relationship (1) for a sample of 
25 manufacturing enterprises, and (2) for a sample of 100 services 
enterprises. The table provides some data on the samples.

(1)

Manufacturing 
sample

(2)

Services 
sample

Number of enterprises 25 100

Estimate of variance of u 0.16 0.64

Mean square deviation of K 4.00 16.00

Correlation between K and S 0.60 0.60

The mean square deviation of K is defined as ( )21∑ −
i

i KK
n

, where n is 

the number of enterprises in the sample and K  is the average value of K 
in the sample.

The researcher finds that the standard error of the coefficient of K is 0.050 
for the manufacturing sample and 0.025 for the services sample. Explain 
the difference quantitatively, given the data in the table.
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A3.8
A researcher is fitting earnings functions using a sample of data relating to 
individuals born in the same week in 1958. He decides to relate Y, gross 
hourly earnings in 2001, to S, years of schooling, and PWE, potential work 
experience, using the semilogarithmic specification

	 log Y = β1 + β2S + β3PWE + u

where u is a disturbance term assumed to satisfy the regression model 
assumptions. PWE is defined as age – years of schooling – 5. Since the 
respondents were all aged 43 in 2001, this becomes:

	 PWE = 43 – S – 5 = 38 – S.

The researcher finds that it is impossible to fit the model as specified. Stata 
output for his regression is reproduced below:

Explain why the researcher was unable to fit his specification.

Explain how the coefficient of S might be interpreted.

Answers to the starred exercises in the textbook

3.5
Explain why the intercept in the regression of EEARN on ES is equal to 
zero.

Answer: 

The intercept is calculated as . However, since the mean 
of the residuals from an OLS regression is zero, both 

________
EEARN  and  are 

zero, and hence the intercept is zero.

3.11
Demonstrate that e = 0 in multiple regression analysis. (Note: The proof 
is a generalisation of the proof for the simple regression model, given in 
Section 1.5.)

Answer: 

If the model is

	 Y = β1 + β2X2 + … + βkXk + u,

	 kk XbXbYb −−−= ...221 .
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For observation i, 

	 .

Hence

	

[ ] 0......

...

2222

221

=−−−−−−−=

−−−−=

kkkk

kk

XbXbXbXbYY

XbXbbYe

.

3.16
A researcher investigating the determinants of the demand for public 
transport in a certain city has the following data for 100 residents for the 
previous calendar year: expenditure on public transport, E, measured in 
dollars; number of days worked, W; and number of days not worked, NW. 
By definition NW is equal to 365 – W. He attempts to fit the following 
model

	 E = β1 + β2W + β3NW + u .

Explain why he is unable to fit this equation. (Give both intuitive and 
technical explanations.) How might he resolve the problem?

Answer: 

There is exact multicollinearity since there is an exact linear relationship 
between W, NW and the constant term. As a consequence it is not possible 
to tell whether variations in E are attributable to variations in W or 
variations in NW, or both. Noting that  = ,WWi +−

	  ( )( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( )( )
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iiii
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−

One way of dealing with the problem would be to drop NW from the 
regression. The interpretation of b2 now is that it is an estimate of the extra 
expenditure on transport per day worked, compared with expenditure per 
day not worked.

3.21
The researcher in Exercise 3.16 decides to divide the number of days not 
worked into the number of days not worked because of illness, I, and the 
number of days not worked for other reasons, O. The mean value of I in 
the sample is 2.1 and the mean value of O is 120.2. He fits the regression 
(standard errors in parentheses):

	 Ê 	=	 –9.6 + 2.10W +	 0.45O					    R2 = 0.72

			   (8.3)	  (1.98)		  (1.77)

Perform t tests on the regression coefficients and an F test on the goodness 
of fit of the equation. Explain why the t tests and F test have different 
outcomes.
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Answer: 

Although there is not an exact linear relationship between W and O, 
they must have a very high negative correlation because the mean value 
of I is so small. Hence one would expect the regression to be subject to 
multicollinearity, and this is confirmed by the results. The t statistics for 
the coefficients of W and O are only 1.06 and 0.25, respectively, but the F 
statistic,

	

is greater than the critical value of F at the 0.1 per cent level, 7.41.

Answers to the additional exercises

A3.1
The regression indicates that 3.7 cents out of the marginal expenditure 
dollar is spent on food consumed at home, and that expenditure on this 
category increases by $560 for each individual in the household, keeping 
total expenditure constant. Both of these effects are very highly significant, 
and almost half of the variance in FDHO is explained by EXP and SIZE. The 
intercept has no plausible interpretation.

A3.2
With the exception of LOCT, all of the categories have positive coefficients 
for EXP, with high significance levels, but the SIZE effect varies:

•	 Positive, significant at the 1 per cent level: FDHO, TELE, CLOT, FOOT, 
GASO.

•	 Positive, significant at the 5 per cent level: LOCT.

•	 Negative, significant at the 1 per cent level: TEXT, FEES, READ.

•	 Negative, significant at the 5 per cent level: SHEL, EDUC.

•	 Not significant: FDAW, DOM, FURN, MAPP, SAPP, TRIP, HEAL, ENT, 
TOYS, TOB.

At first sight it may seem surprising that SIZE has a significant negative 
effect for some categories. The reason for this is that an increase in 
SIZE means a reduction in expenditure per capita, if total household 
expenditure is kept constant, and thus SIZE has a (negative) income effect 
in addition to any direct effect. Effectively poorer, the larger household has 
to spend more on basics and less on luxuries. To determine the true direct 
effect, we need to eliminate the income effect, and that is the point of the 
re-specification of the model in the next exercise.
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EXP SIZE

n b2 s.e.(b2) b3 s.e.(b3) R2 F

FDHO 868 0.0373 0.0025 559.77 30.86 0.4967 426.8

FDAW 827 0.0454 0.0022 –53.06 27.50 0.3559 227.6

SHEL 867 0.1983 0.0067 –174.40 83.96 0.5263 479.9

TELE 858 0.0091 0.0010 36.10 12.08 0.1360 67.3

DOM 454 0.0217 0.0047 26.10 64.14 0.0585 14.0

TEXT 482 0.0057 0.0007 –33.15 9.11 0.1358 37.7

FURN 329 0.0138 0.0024 –47.52 35.18 0.0895 16.0

MAPP 244 0.0083 0.0019 25.35 24.33 0.0954 12.7

SAPP 467 0.0014 0.0003 –5.63 3.73 0.0539 13.2

CLOT 847 0.0371 0.0019 87.98 24.39 0.3621 239.5

FOOT 686 0.0028 0.0003 21.24 4.01 0.1908 80.5

GASO 797 0.0205 0.0015 94.58 18.67 0.2762 151.5

TRIP 309 0.0273 0.0042 –110.11 56.17 0.1238 21.6

LOCT 172 –0.0012 0.0021 54.97 23.06 0.0335 2.9

HEAL 821 0.0231 0.0032 –18.60 40.56 0.0674 29.6

ENT 824 0.0726 0.0042 –98.94 52.61 0.2774 157.6

FEES 676 0.0335 0.0028 –114.71 36.04 0.1790 73.4

TOYS 592 0.0089 0.0011 5.03 13.33 0.1145 38.1

READ 764 0.0043 0.0003 –15.86 4.06 0.1960 92.8

EDUC 288 0.0295 0.0055 –168.13 74.57 0.0937 14.7

TOB 368 0.0068 0.0014 14.44 16.29 0.0726 14.3

A3.3
Another surprise, perhaps. The purpose of this specification is to test 
whether household size has an effect on expenditure per capita on food 
consumed at home, controlling for the income effect of variations in 
household size mentioned in the answer to Exercise A3.2. Expenditure 
per capita on food consumed at home increases by 3.2 cents out of the 
marginal dollar of total household expenditure per capita. Now SIZE has a 
very significant negative effect. Expenditure per capita on FDHO decreases 
by $134 per year for each extra person in the household, suggesting that 
larger households are more efficient than smaller ones with regard to 
expenditure on this category, the effect being highly significant. R2 is much 
lower than in Exercise A3.1, but a comparison is invalidated by the fact 
that the dependent variable is different.

A3.4
Several categories have significant negative SIZE effects. None has a 
significant positive effect.

•	 Negative, significant at the 1 per cent level: FDHO, SHEL, TELE, SAPP, 
GASO, HEAL, READ, TOB.

•	 Negative, significant at the 5 per cent level: FURN, FOOT, LOCT, EDUC.

•	 Not significant: FDAW, DOM, TEXT, MAPP, CLOT, TRIP, ENT, FEES, 
TOYS.
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One explanation of the negative effects could be economies of scale, but 
this is not plausible in the case of some, most obviously TOB. Another 
might be family composition – larger families having more children. This 
possibility is investigated in the next exercise.

EXPPC SIZE

n b2 s.e.(b2) b3 s.e.(b3) R2 F

FDHO 868 0.0317 0.0027 –133.78 15.18 0.2889 175.7

FDAW 827 0.0476 0.0027 –59.89 68.15 0.3214 195.2

SHEL 867 0.2017 0.0075 –113.68 42.38 0.5178 463.9

TELE 858 0.0145 0.0014 –43.07 7.83 0.2029 108.8

DOM 454 0.0243 0.0060 –1.33 35.58 0.0404 9.5

TEXT 482 0.0115 0.0011 5.01 6.43 0.2191 67.2

FURN 329 0.0198 0.0033 –43.12 21.23 0.1621 31.5

MAPP 244 0.0124 0.0022 –25.96 13.98 0.1962 29.4

SAPP 467 0.0017 0.0004 –7.76 2.01 0.1265 33.6

CLOT 847 0.0414 0.0021 21.83 12.07 0.3327 210.4

FOOT 686 0.0034 0.0003 –3.87 1.89 0.1939 82.2

GASO 797 0.0183 0.0015 –42.49 8.73 0.2553 136.1

TRIP 309 0.0263 0.0044 –13.06 27.15 0.1447 25.9

LOCT 172 –0.0005 0.0018 –23.84 9.16 0.0415 3.7

HEAL 821 0.0181 0.0036 –178.20 20.80 0.1587 77.1

ENT 824 0.0743 0.0046 –392.86 118.53 0.2623 146.0

FEES 676 0.0337 0.0032 23.97 19.33 0.1594 63.8

TOYS 592 0.0095 0.0011 –5.89 6.20 0.1446 49.8

READ 764 0.0050 0.0004 –12.49 2.21 0.2906 155.9

EDUC 288 0.0235 0.0088 –108.18 47.45 0.0791 12.2

TOB 368 0.0057 0.0016 –48.87 37.92 0.1890 42.5

A3.5
It is not completely obvious how to interpret these regression results and 
possibly this is not the most appropriate specification for investigating 
composition effects. The coefficient of SIZEAF suggests that for each 
additional adult female in the household, expenditure falls by $95 per 
year, probably as a consequence of economies of scale. For each infant, 
there is an extra reduction, relative to adult females, of $126 per year, 
because infants consume less food. Similar interpretations might be given 
to the coefficients of the other composition variables.

A3.6
The regression results for this specification are summarised in the table 
below. In the case of SHEL, the regression indicates that the SIZE effect 
is attributable to SIZEAM. To investigate this further, the regression was 
repeated: (1) restricting the sample to households with at least one 
adult male, and (2) restricting the sample to households with either no 
adult male or just 1 adult male. The first regression produces a negative 
effect for SIZEAM, but it is smaller than with the whole sample and not 
significant. In the second regression the coefficient of SIZEAM jumps 
dramatically, from –$424 to –$793, suggesting very strong economies of 
scale for this particular comparison.
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As might be expected, the SIZE composition variables on the whole do not 
appear to have significant effects if the SIZE variable does not in Exercise 
A3.4. The results for TOB are puzzling, in that the apparent economies of 
scale do not appear to be related to household composition.

Category FDHOPC FDAWPC SHELPC TELEPC DOMPC TEXTPC FURNPC MAPPPC

EXP
0.0319

(0.0027)

0.0473

(0.0027)

0.2052

(0.0075)

0.0146

(0.0014)

0.0262

(0.0061)

0.0116

(0.0011)

0.0203

(0.0034)

0.0125

(0.0022)

SIZEAM
–159.63

(32.80)

29.32

(32.48)

–423.85

(90.57)

–48.79

(16.99)

–133.37

(83.47)

2.36

(13.07)

–69.54

(42.20)

–46.54

(28.26)

SIZEAF
–94.88

(37.99)

–22.82

(37.59)

–222.96

(105.22)

–56.23

(19.80)

–71.36

(95.81)

–15.66

(17.36)

–79.52

(54.43)

–19.74

(32.49)

SIZEJM
–101.51

(36.45)

1.85

(35.61)

53.70

(100.60)

–39.65

(18.80)

84.39

(84.30)

10.02

(14.59)

0.26

(47.01)

–22.34

(32.84)

SIZEJF
–155.58

(37.49)

–19.48

(36.67)

–6.32

(103.52)

–38.01

(19.33)

23.95

(82.18)

11.83

(14.05)

–36.24

(48.41)

–12.48

(29.21)

SIZEIN
–220.79

(85.70)

–24.44

(83.05)

469.75

(236.44)

–5.40

(44.12)

176.93

(183.84)

17.34

(34.47)

–25.96

(87.82)

–35.46

(78.95)

R2 0.2918 0.3227 0.5297 0.2041 0.0503 0.2224 0.1667 0.1988

F 59.1 65.1 161.4 36.4 4.0 22.6 10.7 9.8

n 868 827 867 858 454 482 329 244

Category SAPPPC CLOTPC FOOTPC GASOPC TRIPPC LOCTPC HEALPC ENTPC

EXP
0.0017

(0.0004)

0.0420

(0.0021)

0.0035

(0.0003)

0.0179

(0.0015)

0.0263

(0.0044)

–0.0005

(0.0019)

0.0182

(0.0037)

0.0740

(0.0046)

SIZEAM
–9.13

(4.17)

–27.91

(25.90)

–6.66

(3.93)

13.99

(18.49)

4.33

(54.53))

–33.64

(19.53)

–191.60

(44.43)

74.58

(56.32)

SIZEAF
–2.49

(4.99)

47.58

(30.29)

–9.31

(5.03)

–40.43

(21.37)

31.58

(66.29)

10.23

(24.15)

–46.92

(52.65)

24.53

(64.94)

SIZEJM
–8.93

(4.63)

19.87

(28.55)

–2.58

(4.28)

–62.37

(20.10)

–40.20

(65.07)

–50.45

(21.71)

–230.65

(50.63)

38.60

(61.24)

SIZEJF
–8.63

(4.64)

40.08

(29.42)

2.35

(4.35)

–64.07

(20.28)

–34.98

(70.51)

–21.49

(22.02)

–194.56

(51.80)

65.74

(63.12)

SIZEIN
–10.55

(11.44)

87.53

(66.80)

–8.35

(9.94)

–112.58

(46.57)

–51.85

(194.69)

19.04

(70.79)

–247.58

(113.55)

–16.49

(142.40)

R2 0.1290 0.3373 0.1987 0.2680 0.1472 0.0636 0.1665 0.2629

F 11.4 71.3 28.1 48.2 8.7 1.9 27.1 48.6

n 467 847 686 797 309 172 821 824
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Category FEESPC TOYSPC READPC EDUCPC TOBPC

EXP
0.0337

(0.0032)

0.0096

(0.0012)

0.0050

(0.0004)

0.0232

(0.0090)

0.0056

(0.0016)

SIZEAM
28.62

(39.84)

–17.99

(13.16)

–21.85

(4.79)

–135.34

(88.87)

–37.24

(17.19)

SIZEAF
32.68

(46.77)

–3.68

(15.82)

–4.22

(5.51)

–46.03

(103.88)

–56.54

(17.50)

SIZEJM
15.65

(44.40)

–2.59

(13.70)

–13.28

(5.27)

–106.39

(92.25)

–44.45

(18.53)

SIZEJF
32.07

(42.92)

3.07

(13.66)

–8.61

(5.40)

–119.36

(91.60)

–52.68

(22.87)

SIZEIN
–29.86

(95.20)

–18.08

(30.40)

–15.12

(11.86)

–149.87

(262.13)

–76.25

(53.68)

R2 0.1599 0.1468 0.2969 0.0808 0.1913

F 21.2 16.8 53.3 4.1 14.2

n 676 592 764 288 368

A3.7
The standard error is given by
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Data Factors

manufacturing 
sample

services 
sample

manufacturing 
sample

services 
sample

Number of 
enterprises

25 100 0.20 0.10

Estimate of 
variance of u

0.16 0.64 0.40 0.80

Mean square 
deviation of K

4 16 0.50 0.25

Correlation 
between K and S

0.6 0.6 1.25 1.25

Standard errors 0.050 0.025

The table shows the four factors for the two sectors. Other things being 
equal, the larger number of enterprises and the greater MSD of K would 
separately cause the standard error of b2 for the services sample to be 
half that in the manufacturing sample. However, the larger estimate of 
the variance of u would, taken in isolation, cause it to be double. The net 
effect, therefore, is that it is half.
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A3.8
The specification is subject to exact multicollinearity since there is an exact 
linear relationship linking PWE and S.

The coefficient of S should be interpreted as providing an estimate of 
the proportional effect on hourly earnings of an extra year of schooling, 
allowing for the fact that this means one fewer year of work experience.
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Chapter 4: Transformations of variables

Overview
This chapter shows how least squares regression analysis can be extended 
to fit nonlinear models. Sometimes an apparently nonlinear model can be 
linearised by taking logarithms. 2

1
bb XY =  and XeY 2

1
bb= are examples. 

Because they can be fitted using linear regression analysis, they have proved 
very popular in the literature, there usually being little to be gained from 
using more sophisticated specifications. If you plot earnings on schooling, 
using the EAEF data set, or expenditure on a given category of expenditure 
on total household expenditure, using the CES data set, you will see that 
there is so much randomness in the data that one nonlinear specification is 
likely to be just as good as another, and indeed a linear specification may 
not be obviously inferior. Often the real reason for preferring a nonlinear 
specification to a linear one is that it makes more sense theoretically. The 
chapter shows how the least squares principle can be applied when the model 
cannot be linearised.

Learning outcomes
After working through the corresponding chapter in the textbook, studying 
the corresponding slideshows, and doing the starred exercises in the text and 
the additional exercises in this guide, you should be able to:

•	 explain the difference between nonlinearity in parameters and nonlinearity 
in variables

•	 explain why nonlinearity in parameters is potentially a problem while 
nonlinearity in variables is not

•	 define an elasticity

•	 explain how to interpret an elasticity in simple terms

•	 perform basic manipulations with logarithms

•	 interpret the coefficients of semi-logarithmic and logarithmic regressions

•	 explain why the coefficients of semi-logarithmic and logarithmic 
regressions should not be interpreted using the method for regressions in 
natural units described in Chapter 1

•	 perform a RESET test of functional misspecification

•	 explain the role of the disturbance term in a nonlinear model

•	 explain how in principle a nonlinear model that cannot be linearised may 
be fitted

•	 perform a transformation for comparing the fits of models with linear and 
logarithmic dependent variables.

Further material

Box–Cox tests of functional specification
This section provides the theory behind the procedure for discriminating 
between a linear and a logarithmic specification of the dependent variable 
described in Section 4.5 of the textbook. It should be skipped on first reading 
because it makes use of material on maximum likelihood estimation. To keep 
the mathematics uncluttered, the theory will be described in the context of 
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the simple regression model, where we are choosing between

	 uXY ++= 21 bb

and

	 uXY ++= 21log bb .

It generalises with no substantive changes to the multiple regression model.

The two models are actually special cases of the more general model

	
uXYY ++=

−
= 21

1 bb
λ

λ

λ

with λ = 1 yielding the linear model (with an unimportant adjustment to 
the intercept) and λ = 0 yielding the logarithmic specification at the limit 
as λ tends to zero. Assuming that u is iid (independently and identically 
distributed) N(0, σ2), the density function for ui is

	
( )

2
22

1

2
1 iu

i euf σ

πσ

−
=

and hence the density function for Yλi is

	
( )

( )2
2122

1

2
1 ii XY

i eYf
bb

σ
λ

λ

πσ

−−−
= .

From this we obtain the density function for Yi
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The factor 
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∂ λ  is the Jacobian for relating the density function of Yλi to 

that of Yi. Hence the likelihood function for the parameters is
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and the log-likelihood is
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Substituting into the log-likelihood function, we obtain the concentrated 
log-likelihood

	
 ( ) ( ) ( )∑∑

==

−+−−−−−=
n

i

n

i
ii YnXY

n
nnL

11

2
2121 log1

2
1log

2
2log

2
,,log λββπλββ λ i



Chapter 4: Transformations of variables

67

The expression can be simplified (Zarembka, 1968) by working with *
iY  

rather than Yi, where *
iY  is Yi divided by YGM, the geometric mean of the Yi 

in the sample, for 
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With this simplification, the log-likelihood is
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and it will be maximised when β1, β2 and λ are chosen so as to minimise
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* bbλ the residual sum of squares from a least squares 

regression of the scaled, transformed Y on X. One simple procedure is to 
perform a grid search, scaling and transforming the data on Y for a range 
of values of λ and choosing the value that leads to the smallest residual 
sum of squares (Spitzer, 1982).

A null hypothesis λ = λ0 can be tested using a likelihood ratio test in the 
usual way. Under the null hypothesis, the test statistic ( )0loglog2 LL −

λ
 

will have a chi-squared distribution with one degree of freedom, where log 
Lλ is the unconstrained log-likelihood and L0 is the constrained one. Note 
that, in view of the preceding equation,

	 ( ) ( )λλ
RSSRSSnLL loglogloglog2 00 −=−

where RSS0 and RSSλ are the residual sums of squares from the constrained 
and unconstrained regressions with Y*.

The most obvious tests are λ = 0 for the logarithmic specification and 
λ = 1 for the linear one. Note that it is not possible to test the two 
hypotheses directly against each other. As with all tests, one can only 
test whether a hypothesis is incompatible with the sample result. In this 
case we are testing whether the log-likelihood under the restriction is 
significantly smaller than the unrestricted log-likelihood. Thus, while it 
is possible that we may reject the linear but not the logarithmic, or vice 
versa, it is also possible that we may reject both or fail to reject both.
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Example

RSS

λ

The figure shows the residual sum of squares for values of λ from –1 to 1 
for the earnings function example described in Section 4.5 in the text. The 
maximum likelihood estimate is –0.13, with RSS = 134.09. For the linear 
and logarithmic specifications, RSS was 336.29 and 135.72, respectively, 
with likelihood ratio statistics 540(log 336.29 – log 134.09) = 496.5 and 
540(log 135.72 – log 134.09) = 6.52. The logarithmic specification is 
clearly much to be preferred, but even it is rejected at the 5 per cent level , 
with χ2(1) = 3.84, and nearly at the 1 per cent level. 

Additional exercises

A4.1
Is expenditure on your category per capita related to total expenditure per 
capita? An alternative model specification.

Define a new variable LGCATPC as the logarithm of expenditure per capita 
on your category. Define a new variable LGEXPPC as the logarithm of total 
household expenditure per capita. Regress LGCATPC on LGEXPPC. Provide 
an interpretation of the coefficients, and perform appropriate statistical 
tests. 

A4.2
Is expenditure on your category per capita related to household size as well as 
to total expenditure per capita? An alternative model specification.

Regress LGCATPC on LGEXPPC and LGSIZE. Provide an interpretation of 
the coefficients, and perform appropriate statistical tests.

A4.3
A researcher is considering two regression specifications:

	 uXY ++= loglog 21 bb 	 (1)

and 

	 uX
X
Y

++= loglog 21 aa 	 (2)

where u is a disturbance term.
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Writing y = log Y, x = log X, and z = 
X
Ylog , and using the same sample

of n observations, the researcher fits the two specifications using OLS:

	 xbby 21ˆ += 	 (3)

and

	 xaaz 21ˆ += .	 (4)

•	 Using the expressions for the OLS regression coefficients, demonstrate 
that 122 += ab .

•	 Similarly, using the expressions for the OLS regression coefficients, 
demonstrate that b1 = a1.

•	 Hence demonstrate that the relationship between the fitted values of y, 
the fitted values of z, and the actual values of x, is iii zxy ˆˆ =− .

•	 Hence show that the residuals for regression (3) are identical to those 
for (4).

•	 Hence show that the standard errors of b2 and a2 are the same.

•	 Determine the relationship between the t statistic for b2 and the t 
statistic for a2, and give an intuitive explanation for the relationship.

•	 Explain whether R2 would be the same for the two regressions.

A4.4
Perform a RESET test of functional misspecification. Using your EAEF data 
set, regress WEIGHT02 on HEIGHT. Save the fitted values as YHAT and 
define YHATSQ as its square. Add YHATSQ to the regression specification 
and test its coefficient.

A4.5
Is a logarithmic specification preferable to a linear specification for an 
expenditure function?

Define CATPCST as CATPC scaled by its geometric mean and LGCATST 
as the logarithm of CATPCST. Regress CATPCST on EXPPC and SIZE and 
regress LGCATST on LGEXPPC and LGSIZE. Compare the RSS for these 
equations.

A4.6
A researcher hypothesises that a variable Y is determined by a variable 
X and considers the following four alternative regression specifications, 
using cross-sectional data:

	 Y = β1 + β2X + u	 (1)

	 log Y = β1 + β2X + u	 (2)

	 Y = β1 + β2log X + u	 (3)

	 log Y = β1 + β2log X + u .	 (4)

Explain why a direct comparison of R2, or of RSS, in models (1) and (2) is 
illegitimate. What should be the strategy of the researcher for determining 
which of the four specifications has the best fit?

A4.7
A researcher has data on a measure of job performance, SKILL, and 
years of work experience, EXP, for a sample of individuals in the same 
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occupation. Believing there to be diminishing returns to experience, the 
researcher proposes the model

	 ( ) ( ) uEXPEXPSKILL +++= 2
321 loglog bbb .

Comment on this specification.

A4.8

The output above shows the result of regressing the logarithm of hourly 
earnings on years of schooling, years of work experience, ASVABC score, 
and SA, an interactive variable defined as the product of S and ASVABC, 
for males in EAEF Data Set 21. The mean values of S, EXP, and ASVABC in 
the sample were 13.7, 17.9, and 52.1, respectively. Give an interpretation 
of the regression output.

Answers to the starred exercises in the textbook

4.8
Suppose that the logarithm of Y is regressed on the logarithm of X, the 
fitted regression being

	 ˆ XbbY loglog 21 += .

Suppose X* =λ X, where λ is a constant, and suppose that Ylog  is 
regressed on log X*. Determine how the regression coefficients are related 
to those of the original regression. Determine also how the t statistic for b2 
and R2 for the equation are related to those in the original regression.

Answer: 

Nothing of substance is affected since the change amounts only to a fixed 
constant shift in the measurement of the explanatory variable.

Let the fitted regression be

	 **
2

*
1 loglog XbbY +=ˆ  .

Note that 
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Hence 2
*
2 bb = . To compute the standard error of *

2b , we will also need *
1b .

	 ( )

.loglogloglog

loglog1logloglog

2122

1
2
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1
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Thus the residual *
ie  is given by

	  ( ) ( ) iiiiii eXbbbYXbbYe =+−−−=−−= λλ loglogloglogloglog 221
**

2
*
1

* .

Hence the estimator of the variance of the disturbance term is unchanged 
and so the standard error of *

2b  is the same as that for b2. As a 
consequence, the t statistic must be the same. R2 must also be the same:
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4.14

The output shows the results of regressing, LGS, the logarithm of S, on 
LGSM, the logarithm of SM, and LGSMSQ, the logarithm of SMSQ. Explain 
the regression results.

Answer: 

LGSMSQ = 2LGSM, so the specification is subject to exact multicollinearity. 
In such a situation, Stata drops one of the variables responsible.

4.16
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The output uses EAEF Data Set 21 to fit the nonlinear model

	
u

SIBLINGS
S +

+
+=

3

2
1 b

b
b

where S is the years of schooling of the respondent and SIBLINGS is 
the number of brothers and sisters. The specification is an extension 
of that for Exercise 4.1, with the addition of the parameter β3. Provide 
an interpretation of the regression results and compare it with that for 
Exercise 4.1.

Answer: 

As in Exercise 4.1, the estimate of β1 provides an estimate of the lower 
bound of schooling, 11.10 years, when the number of siblings is large. 
The other parameters do not have straightforward interpretations. The 
figure below represents the relationship. Comparing this figure with 
that for Exercise 4.1, it can be seen that it gives a very different picture 
of the adverse effect of additional siblings. The figure in Exercise 4.1, 
reproduced after it, suggests that the adverse effect is particularly large for 
the first few siblings, and then attenuates. This figure indicates that the 
adverse effect is more evenly spread and is more enduring. However, the 
relationship has been fitted with imprecision since the estimates of β2 and 
β3 are not significant.

Figure for Exercise 4.1
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Answers to the additional exercises

A4.1

The regression implies that the income elasticity of expenditure on food is 
0.38 (supposing that total household expenditure can be taken as a proxy 
for permanent income). In addition to testing the null hypothesis that the 
elasticity is equal to zero, which is rejected at a very high significance level 
for this and all the other categories except LOCT, one might test whether it 
is different from 1, as a means of classifying the categories of expenditure 
as luxuries (elasticity > 1) and necessities (elasticity < 1).

The table gives the results for all the categories of expenditure. 

Regression of LGCATPC on EXPPC

n b2 s.e.(b2) t (β2 = 0) t (β2 = 1) R2 RSS

FDHO 868 0.3763 0.0213 17.67 –29.28 0.2655 142.29

FDAW 827 1.3203 0.0469 28.15 6.83 0.4903 608.05

HOUS 867 1.1006 0.0401 27.45 2.51 0.4653 502.08

TELE 858 0.6312 0.0353 17.88 –10.45 0.2717 380.59

DOM 454 0.7977 0.1348 5.92 –1.50 0.0719 1325.21

TEXT 482 1.0196 0.0813 12.54 0.24 0.2469 560.37

FURN 329 0.8560 0.1335 6.41 –1.08 0.1117 697.33

MAPP 244 0.7572 0.1161 6.52 –2.09 0.1496 291.76

SAPP 467 0.9481 0.0810 11.70 –0.64 0.2275 522.31

CLOT 847 0.9669 0.0487 19.85 –0.68 0.3184 686.45

FOOT 686 0.7339 0.0561 13.08 –4.74 0.1999 589.34

GASO 797 0.7107 0.0379 18.75 –7.63 0.3062 366.92

TRIP 309 1.2434 0.1305 9.53 1.87 0.2283 527.42

LOCT 172 0.1993 0.1808 1.10 –4.43 0.0071 450.92

HEAL 821 0.8629 0.0716 12.05 –1.91 0.1505 1351.63

ENT 824 1.3069 0.0521 25.08 5.89 0.4336 754.86

FEES 676 1.5884 0.0811 19.59 7.26 0.3629 1145.09

TOYS 592 0.9497 0.0771 12.32 –0.65 0.2045 809.01

READ 764 1.1532 0.0641 17.99 2.39 0.2982 897.63

EDUC 288 1.2953 0.1600 8.10 1.85 0.1865 828.35

TOB 368 0.6646 0.0817 8.13 –4.11 0.1530 385.63
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The results may be summarised as follows:

•	 Significantly greater than 1, at the 1 per cent level: FDAW, ENT, FEES.

•	 Significantly greater than 1, at the 5 per cent level: HOUS, READ.

•	 Not significantly different from 1 DOM, TEXT, FURN, SAPP, CLOT, TRIP, 
HEAL, TOYS, EDUC.

•	 Significantly less than 1, at the 1 per cent level: FDHO, TELE, FOOT, 
GASO, LOCT, TOB.

•	 Significantly less than 1, at the 5 per cent level: MAPP.

A4.2

The income elasticity, 0.29, is now a little lower than before. The size 
elasticity is significantly negative, suggesting economies of scale and 
indicating that the model in the previous exercise was misspecified. t 
tests of the hypothesis that the income elasticity is equal to 1 produce the 
following results:

•	 Significantly greater than 1, at the 1 per cent level: FDAW, ENT, FEES.

•	 Significantly greater than 1, at the 5 per cent level: CLOT .

•	 Not significantly different from 1: HOUS, DOM, TEXT, TRIP, TOYS, 
READ, EDUC.

•	 Significantly less than 1, at the 1 per cent level: FDHO, TELE, FURN, 
MAPP, SAPP, FOOT, GASO, LOCT, HEAL, TOB.

•	 Significantly less than 1, at the 5 per cent level: none.
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Dependent variable LGCATPC

LGEXPPC LGSIZE

n b2 s.e.(b2) b3 s.e.(b3) R2 F RSS

FDHO 868 0.2867 0.0227 –0.2278 0.0254 0.3278 210.9 130.22

FDAW 827 1.4164 0.0529 0.2230 0.0588 0.4990 410.4 597.61

HOUS 867 1.0384 0.0446 –0.1566 0.0498 0.4714 385.2 496.41

TELE 858 0.4923 0.0378 –0.3537 0.0423 0.3268 207.5 351.81

DOM 454 0.8786 0.1470 0.2084 0.1520 0.0758 18.5 1319.71

TEXT 482 0.9543 0.0913 –0.1565 0.1005 0.2507 80.1 557.55

FURN 329 0.6539 0.1511 –0.4622 0.1677 0.1319 24.8 681.45

MAPP 244 0.5136 0.1381 –0.4789 0.1533 0.1827 26.9 280.41

SAPP 467 0.7223 0.0899 –0.5076 0.0973 0.2703 85.9 493.39

CLOT 847 1.1138 0.0539 0.3502 0.0597 0.3451 222.4 659.59

FOOT 686 0.6992 0.0638 –0.0813 0.0711 0.2015 86.2 588.21

GASO 797 0.6770 0.0433 –0.0785 0.0490 0.3084 177.0 365.73

TRIP 309 1.0563 0.1518 –0.3570 0.1510 0.2421 48.9 517.96

LOCT 172 –0.0141 0.1958 –0.5429 0.2084 0.0454 4.0 433.51

HEAL 821 0.6612 0.0777 –0.5121 0.0849 0.1868 93.9 1294.03

ENT 824 1.4679 0.0583 0.3771 0.0658 0.4554 343.2 725.85

FEES 676 1.7907 0.0940 0.4286 0.1042 0.3786 205.0 1117.00

TOYS 592 0.9522 0.0905 0.0054 0.1011 0.2045 75.7 809.01

READ 764 0.9652 0.0712 –0.4313 0.0768 0.3262 184.2 861.92

EDUC 288 1.2243 0.1882 –0.1707 0.2378 0.1879 33.0 826.85

TOB 368 0.4329 0.0915 –0.5379 0.1068 0.2080 47.9 360.58

A4.3
•	 Using the expressions for the OLS regression coefficients, demonstrate that 

122 += ab .
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•	 Similarly, using the expressions for the OLS regression coefficients, 
demonstrate that b1 = a1.

	 ( ) ( ) 122221 1 bxbyxayxaxyxaza =−=+−=−−=−= .

•	 Hence demonstrate that the relationship between the fitted values of y, the 
fitted values of z, and the actual values of x, is iii zxy ˆˆ =− .

	 ( ) iiiiiii xyxxbbxbbxaaz −=−+=−+=+= ˆ1ˆ 212121 .

•	 Hence show that the residuals for regression (3) are identical to those for 
(4).

Let ei be the residual in (3) and fi the residual in (4). Then

	 ( ) iiiiiiiiii eyyxyxyzzf =−=−−−=−= ˆˆˆ .
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•	 Hence show that the standard errors of b2 and a2 are the same.

The standard error of b2 is

	 s.e.(b2) = 
( ) ( )∑

∑
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i = s.e.(a2).

•	 Determine the relationship between the t statistic for b2 and the t statistic 
for a2, and give an intuitive explanation for the relationship.

	

( ) ( )2

2

2

2

s.e.
1

s.e.2 a
a

b
b

tb
+

==  .

The t statistic for b2 is for the test of H0: β2 = 0. Given the relationship, it 
is also for the test of H0: α2 = –1. The tests are equivalent since both of 
them reduce the model to log Y depending only on an intercept and the 
disturbance term.

•	 Explain whether R2 would be the same for the two regressions.

R2 will be different because it measures the proportion of the variance of 
the dependent variable explained by the regression, and the dependent 
variables are different.
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A4.4
In the first part of the output, WEIGHT02 is regressed on HEIGHT, using 
EAEF Data Set 21. The predict command saves the fitted values from the 
most recent regression, assigning them the variable name that follows 
the command., in this case YHAT. YHATSQ is defined as the square of 
YHAT, and this is added to the regression specification. Its coefficient is 
significant at the 1 per cent level, indicating, as one would expect, that the 
relationship between weight and height is nonlinear.
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A4.5
The RSS comparisons for all the categories of expenditure indicate that 
the logarithmic specification is overwhelmingly superior to the linear one. 
The differences are actually surprisingly large and suggest that some other 
factor may also be at work. One possibility is that the data contain many 
outliers, and these do more damage to the fit in linear than in logarithmic 
specifications. To see this, plot CATPC and EXPPC and compare with a plot 
of LGCATPC and LGEXPPC. (Strictly speaking, you should control for SIZE 
and LGSIZE using the Frisch–Waugh–Lovell method described in Chapter 3.)

RSS from Zarembka transformations

n RSS linear
RSS 

logarithmic

FDHO 868 197.58 130.22

FDAW 827 2993.63 597.61

HOUS 867 888.75 496.41

TELE 858 1448.27 351.81

DOM 454 61271.17 1319.71

TEXT 482 20655.14 557.55

FURN 329 6040.07 681.45

MAPP 244 1350.83 280.41

SAPP 467 3216.40 493.39

CLOT 847 1919.32 659.59

FOOT 686 1599.01 588.21

GASO 797 597.57 365.73

TRIP 309 3828.14 517.96

LOCT 172 2793.50 433.51

HEAL 821 2295.19 1294.03

ENT 824 6267.20 725.85

FEES 676 33224.88 1117.00

TOYS 592 4522.51 809.01

READ 764 2066.83 861.92

EDUC 288 44012.28 826.85

TOB 368 617.45 360.58

A4.6
In (1) R2 is the proportion of the variance of Y explained by the regression. 
In (2) it is the proportion of the variance of log Y explained by the 
regression. Thus, although related, they are not directly comparable. In 
(1) RSS has dimension the squared units of Y. In (2) it has dimension the 
squared units of log Y. Typically it will be much lower in (2) because the 
logarithm of Y tends to be much smaller than Y.

The specifications with the same dependent variable may be compared 
directly in terms of RSS (or R2) and hence two of the specifications may 
be eliminated immediately. The remaining two specifications should be 
compared after scaling, with Y replaced by Y* where Y* is defined as Y 
divided by the geometric mean of Y in the sample. RSS for the scaled 
regressions will then be comparable.
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A4.7
The proposed model

	
( ) ( ) uEXPEXPSKILL +++= 2

321 loglog bbb

cannot be fitted since

	 ( ) ( )EXPEXP log2log 2 =

and the specification is therefore subject to exact multicollinearity.

A4.8
Let the theoretical model for the regression be written

	 .

The estimates of β2 and β4 are negative, at first sight suggesting that 
schooling and cognitive ability have adverse effects on earnings, contrary 
to common sense and previous results with wage equations of this kind. 
However, rewriting the model as

	 ( ) uASVABCEXPSASVABCLGEARN +++++= 43521 bbbbb

it can be seen that, as a consequence of the inclusion of the interactive term, 
β2 represents the effect of a marginal year of schooling for an individual 
with an ASVABC score of zero. Since no individual in the sample had a score 
less than 25, the perverse sign of the estimate illustrates only the danger of 
extrapolating outside the data range. It makes better sense to evaluate the 
implicit coefficient for an individual with the mean ASVABC score of 52.1. 
This is (–0.024163 + 0.001986*52.1) = 0.079, implying a much more 
plausible 7.9 per cent increase in earnings for each year of schooling. The 
positive sign of the coefficient of SASVABC implies that the coefficient is 
somewhat higher for those with above-average ASVABC scores and somewhat 
lower for those with below average scores. For those with the highest score, 
66, it would be 10.7, and for those with the lowest score, 25, it would be 2.5.

Similar considerations apply to the interpretation of the estimate of β4 , the 
coefficient of ASVABC. Rewriting the model as 

	 ( ) uASVABCSEXPSLGEARN +++++= 54321 bbbbb

it can be seen that β4 relates to the effect on hourly earnings of a one-
unit increase in ASVABC for an individual with no schooling. As with β2, 
this is outside the data range in the sample, no individual having fewer 
than 8 years of schooling. If one calculates the implicit coefficient for an 
individual with the sample mean of 13.7 years of schooling, it comes to 
(–0.009544 + 0.001986*13.7) = 0.018.

As shown in the exercise, one way of avoiding nonsense parameter estimates 
is to measure the variables in question from their sample means. This has 
been done in the regression output below, where S1 and ASVABC1 are 
schooling and ASVABC measured from their sample means and SASVABC1 is 
their interaction. The only differences in the output are the lines relating to 
the coefficients of schooling, ASVABC, and the intercept, the point estimates of 
the coefficients of S and ASVABC being as calculated above.
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Chapter 5: Dummy variables

Overview
This chapter explains the definition and use of a dummy variable, a device 
for allowing qualitative characteristics to be introduced into the regression 
specification. Although the intercept dummy may appear artificial and 
strange at first sight, and the slope dummy even more so, you will become 
comfortable with the use of dummy variables very quickly. The key is to 
keep in mind the graphical representation of the regression model.

Learning outcomes
After working through the corresponding chapter in the textbook, studying 
the corresponding slideshows, and doing the starred exercises in the textbook 
and the additional exercises in this guide, you should be able to explain:

•	 how the intercept and slope dummy variables are defined

•	 what impact they have on the regression specification

•	 how the choice of reference (omitted) category affects the interpretation 
of t tests on the coefficients of dummy variables

•	 how a change of reference category would affect the regression results

•	 how to perform a Chow test

•	 when and why a Chow test is equivalent to a particular F test of the joint 
explanatory power of a set of dummy variables.

Additional exercises

A5.1
In Exercise A1.4 the logarithm of earnings was regressed on height using 
EAEF Data Set 21 and, somewhat surprisingly, it was found that height had a 
highly significant positive effect. We have seen that the logarithm of earnings 
is more satisfactory than earnings as the dependent variable in a wage 
equation. Fitting the semilogarithmic specification, we obtain

The t statistic for HEIGHT is even higher. In Exercise A1.4 it was hypothesised 
that the effect might be attributable to males tending to have greater earnings 
than females and also tending to be taller. The output below shows the result 
of adding a dummy variable to the specification, to control for sex. Comment 
on the results.
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A5.2
•	 Does ethnicity have an effect on household expenditure?

	 The variable REFRACE in the CES data set is coded 1 if the reference 
individual in the household, usually the head of the household, is 
white and it is coded greater than 1 for other ethnicities. Define 
a dummy variable NONWHITE that is 0 if REFRACE is 1 and 1 if 
REFRACE is greater than 1. Regress LGCATPC on LGEXPPC, LGSIZE, and 
NONWHITE. Provide an interpretation of the coefficients, and perform 
appropriate statistical tests. 

A5.3
•	 Does education have an effect on household expenditure?

	 The variable REFEDUC in the CES data set provides information on the 
education of the reference individual in the household. Define dummy 
variables EDUCDO (high-school drop out or less), EDUCIC (incomplete 
college), and EDUCCO (complete college) using the following rules:

EDUCDO = 1 if REFEDUC < 3, 0 otherwise

EDUCIC = 1 if REFEDUC = 4, 0 otherwise

EDUCCO = 1 if REFEDUC > 4, 0 otherwise.

	 Regress LGCATPC on LGEXPPC, LGSIZE, EDUCDO, EDUCIC, and 
EDUCCO. Provide an interpretation of the coefficients, and perform 
appropriate statistical tests. Note that the reference (omitted) category 
for the dummy variables is high school graduate with no college 
(REFEDUC = 3).

A5.4
Using the CES data set, evaluate whether the education dummies as 
a group have significant explanatory power for expenditure on your 
category of expenditure by comparing the residual sums of squares in the 
regressions in Exercises A4.2 and A5.3. 

A5.5
Repeat Exercise A5.3 making EDUCDO the reference (omitted) category. 
Introduce a new dummy variable EDUCHSD for high school diploma, since 
this is no longer the omitted category:

•	 EDUCHSD = 1 if REFEDUC = 3, 0 otherwise.

Evaluate the impact on the interpretation of the coefficients and the 
statistical tests.
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A5.6
•	 Does going to college have an effect on household expenditure?

	 Using the CES data set, define a dummy variable COLLEGE that is 0 if 
REFEDUC is 0–3 (no college education) and 1 if REFEDUC is greater 
than 3 (partial or complete college education). Regress LGCATPC on 
LGEXPPC and LGSIZE: (1) for those respondents with COLLEGE = 1, 
(2) for those respondents with COLLEGE = 0, and (3) for the whole 
sample. Perform a Chow test. 

A5.7
•	 How does education impact on household expenditure?

	 In Exercise A5.6 you defined an intercept dummy COLLEGE that 
allowed you to investigate whether going to college caused a shift 
in your expenditure function. Now define slope dummy variables 
that allow you to investigate whether going to college affects the 
coefficients of LGEXPPC and LGSIZE. Define LEXPCOL as the product of 
LGEXPPC and COLLEGE, and define LSIZECOL as the product of LGSIZE 
and COLLEGE. Regress LGCATPC on LGEXPPC, LGSIZE, COLLEGE, 
LEXPCOL, and LSIZECOL. Provide an interpretation of the coefficients, 
and perform appropriate tests. Include a test of the joint explanatory 
power of the dummy variables by comparing RSS in this regression 
with that in Exercise A4.2. Verify that the outcome of this F test is 
identical to that for the Chow test in Exercise A5.6.

A5.8
A researcher has data on hourly earnings in dollars, EARNINGS, years 
of schooling (highest grade completed), S, and sector of employment, 
GOV, for 1,355 male respondents in the US National Longitudinal Survey 
of Youth for 2002. GOV is defined as a dummy variable equal to 0 if the 
respondent was working in the private sector and 1 if the respondent 
was working in the government sector. 91 per cent of the private sector 
workers and 95 per cent of the government sector workers had at least 
12 years of schooling. The mean value of S was 13.5 for the private sector 
and 14.6 for the government sector. The researcher regresses LGEARN, the 
natural logarithm of EARNINGS

(1)	on GOV alone,

(2)	on GOV and S, and

(3)	on GOV, S, and SGOV

where the variable SGOV is defined to be the product of S and GOV, with 
the results shown in the following table. 

Standard errors are shown in parentheses and t statistics in square 
brackets. RSS = residual sum of squares.
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(1) (2) (3)

GOV

0.007

(0.043)

[0.16]

–0.121

(0.038)

[–3.22]

0.726

(0.193)

[3.76]

S —

0.116

(0.006)

[21.07]

0.130

(0.006)

[20.82]

SGOV — —

–0.059

(0.013)

[–4.48]

constant

2.941

(0.018)

[163.62]

1.372

(0.076)

[18.04]

1.195

(0.085)

[14.02]

R2 0.000 0.247 0.258

RSS 487.7 367.2 361.8

•	 Explain verbally why the estimates of the coefficient of GOV are 
different in regressions (1) and (2).

•	 Explain the difference in the estimates of the coefficient of GOV in 
regressions (2) and (3).

•	 The correlation between GOV and SGOV was 0.977. Explain the 
variations in the standard error of the coefficient of GOV in the three 
regressions.

A5.9
A researcher has data on the average annual rate of growth of 
employment, e, and the average annual rate of growth of GDP, x, both 
measured as percentages, for a sample of 27 developing countries and 23 
developed ones for the period 1985–1995. He defines a dummy variable 
D that is equal to 1 for the developing countries and 0 for the others. 
Hypothesising that the impact of GDP growth on employment growth is 
lower in the developed countries than in the developing ones, he defines a 
slope dummy variable xD as the product of x and D and fits the regression 
(standard errors in parentheses):

	 whole sample		 ê 	 =	 –1.45 +	 0.19x +	 0.78xD	 R2 = 0.61

								        (0.36)		 (0.10)		 (0.10)		 RSS = 50.23

He also runs simple regressions of e on x for the whole sample, for the 
developed countries only, and for the developing countries only, with the 
following results:

	 whole sample		 ê 	 =	 –0.56 +	 0.24x	 				    R2 = 0.04

								        (0.53)		 (0.16)					    RSS = 121.61

	 developed		 	 ê 	 =	 –2.74 +	 0.50x	 				    R2 = 0.35

	 countries					     (0.58)		 (0.15)					    RSS = 18.63

	 developing		  ê 	 =	 –0.85 +	 0.78x	 				    R2 = 0.51

	 countries					     (0.42)		 (0.15)					    RSS = 25.23
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•	 Explain mathematically and graphically the role of the dummy variable 
xD in this model.

•	 The researcher could have included D as well as xD as an explanatory 
variable in the model. Explain mathematically and graphically how it 
would have affected the model.

•	 Suppose that the researcher had included D as well as xD:

What would the coefficients of the regression have been?

What would the residual sum of squares have been?

What would the t statistic for the coefficient of D have been?

•	 Perform two tests of the researcher’s hypothesis. Explain why you 
would not test it with a t test on the coefficient of xD in regression (1).

A5.10
You are given the following data on 2,800 respondents in the U.S. National 
Longitudinal Survey of Youth with jobs in 2002:

hourly earnings in the respondent’s main job at the time of the 2002 
interview

educational attainment (highest grade completed)

mother’s and father’s educational attainment

ASVABC score

sex

ethnicity: black, Hispanic, or white, that is (not black nor Hispanic)

whether the main job in 2002 was in the government sector or the 
private sector.

•	 As a policy analyst, you are asked to investigate whether there is 
evidence of earnings discrimination, positive or negative, by sex or 
ethnicity in (1) the government sector, and (2) the private sector. 
Explain how you would do this, giving a mathematical representation 
of your regression specification(s).

•	 You are also asked to investigate whether the incidence of earnings 
discrimination, if any, is significantly different in the two sectors. 
Explain how you would do this, giving a mathematical representation 
of your regression specification(s). In particular, discuss whether a 
Chow test would be useful for this purpose.

A5.11
A researcher has data from the National Longitudinal Survey of Youth 
for the year 2000 on hourly earnings, Y, years of schooling, S, and years 
of work experience, X, for a sample of 1,774 males and 1,468 females. 
She defines a dummy variable MALE for being male, a slope dummy 
variable SMALE as the product of S and MALE, and another slope dummy 
variable XMALE as the product of X and MALE. She performs the following 
regressions (1) log Y on S and X for the entire sample, (2) log Y on S and 
X for males only, (3) log Y on S and X for females only, (4) log Y on S, 
X, and MALE for the entire sample, and (5) log Y on S, X, MALE, SMALE, 
and XMALE for the entire sample. The results are shown in the table, with 
standard errors in parentheses. RSS is the residual sum of squares and n is 
the number of observations.
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(1) (2) (3) (4) (5)

S
0.094

(0.003)

0.099

(0.004)

0.094

(0.005)

0.097

(0.003)

0.094

(0.005)

X
0.046

(0.002)

0.042

(0.003)

0.039

(0.002)

0.040

(0.002)

0.039

(0.003)

MALE – – –
0.234

(0.016)

0.117

(0.108)

SMALE – – – –
0.005

(0.007)

XMALE – – – –
0.003

(0.004)

constant
5.165

(0.054)

5.283

(0.083)

5.166

(0.068)

5.111

(0.052)

5.166

(0.074)

R2 0.319 0.277 0.363 0.359 0.359

RSS 714.6 411.0 261.6 672.8 672.5

n 3,242 1,774 1,468 3,242 3,242

The correlations between MALE and SMALE, and MALE and XMALE, were 
both 0.96. The correlation between SMALE and XMALE was 0.93.

•	 Give an interpretation of the coefficients of S and SMALE in regression 
(5).

•	 Give an interpretation of the coefficients of MALE in regressions (4) 
and (5).

•	 The researcher hypothesises that the earnings function is different for 
males and females. Perform a test of this hypothesis using regression 
(4), and also using regressions (1) and (5).

•	 Explain the differences in the tests using regression (4) and using 
regressions (1) and (5).

•	 At a seminar someone suggests that a Chow test could shed light on the 
researcher’s hypothesis. Is this correct?

•	 Explain which of (1), (4), and (5) would be your preferred 
specification.

A5.12
A researcher has data for the year 2000 from the US National Longitudinal 
Survey of Youth on the following characteristics of the respondents: hourly 
earnings, EARNINGS, measured in dollars; years of schooling, S; years of 
work experience, EXP; sex; and ethnicity (blacks, hispanics, and ‘whites’ 
(those not classified as black or hispanic). She drops the hispanics from 
the sample, leaving 2,135 ‘whites’ and 273 blacks, and defines dummy 
variables MALE and BLACK. MALE is defined to be 1 for males and 0 for 
females. BLACK is defined to be 1 for blacks and 0 for ‘whites’. She defines 
LGEARN to be the natural logarithm of EARNINGS. She fits the following 
ordinary least squares regressions, each with LGEARN as the dependent 
variable:

(1)	Explanatory variables S, EXP, and MALE, whole sample

(2)	Explanatory variables S, EXP, MALE, and BLACK, whole sample
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(3)	Explanatory variables S, EXP, and MALE, ‘whites’ only

(4)	Explanatory variables S, EXP, and MALE, blacks only

	 She then defines interactive terms SB = S*BLACK, EB = EXP*BLACK, 
and MB = MALE*BLACK, and runs a fifth regression, still with LGEARN 
as the dependent variable:

(5)	Explanatory variables S, EXP, MALE, BLACK, SB, EB, MB, whole sample.

The results are shown in the table. Unfortunately some of those for 
Regression 4 are missing from the table. RSS = residual sum of squares. 
Standard errors are given in parentheses.

1 2 3 4 5

whole 
sample

whole 
sample

‘whites’ 
only

blacks 
only

whole 
sample

S
0.124

(0.004)

0.121

(0.004)

0.122

(0.004)
V

0.122

(0.004)

EXP
0.033

(0.002)

0.032

(0.002)

0.033

(0.003)
W

0.033

(0.003)

MALE
0.278

(0.020)

0.277

(0.020)

0.306

(0.021)
X

0.306

(0.021)

BLACK —
–0.144

(0.032)
— —

0.205

(0.225)

SB — — — —
–0.009

(0.016)

EB — — — —
–0.006

(0.007)

MB — — — —
–0.280

(0.065)

constant
0.390

(0.075)

0.459

(0.076)

0.411

(0.084)
Y

0.411

(0.082)

R2 0.335 0.341 0.332 0.321 0.347

RSS 610.0 605.1 555.7 Z 600.0

n 2,408 2,408 2,135 273 2,408

•	 Calculate the missing coefficients V, W, X, and Y in Regression 4 (just 
the coefficients, not the standard errors) and Z, the missing RSS, giving 
an explanation of your computations.

•	 Give an interpretation of the coefficient of BLACK in Regression 2.

•	 Perform an F test of the joint explanatory power of BLACK, SB, EB, and 
MB in Regression 5.

•	 Explain whether it is possible to relate the F test in part (c) to a Chow 
test based on Regressions 1, 3, and 4.

•	 Give an interpretation of the coefficients of BLACK and MB in 
Regression 5.

•	 Explain whether a simple t test on the coefficient of BLACK in 
Regression 2 is sufficient to show that the wage equations are different 
for blacks and ‘whites’. 
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A5.13
As part of a workshop project, four students are investigating the effects of 
ethnicity and sex on earnings using data for the year 2002 in the National 
Longitudinal Survey of Youth 1979–. They all start with the same basic 
specification:

	 uEXPSY +++= 321log bbb

where Y is hourly earnings, measured in dollars, S is years of schooling 
completed, and EXP is years of work experience. The sample contains 
123 black males, 150 black females, 1,146 white males, and 1,127 white 
females. (All respondents were either black or white. The Hispanic 
subsample was dropped.) The output from fitting this basic specification 
is shown in column 1 of the table (standard errors in parentheses; RSS is 
residual sum of squares, n is the number of observations in the regression).

Basic Student C Student D

(1) (2) (3) (4a) (4b) (5a) (5b)

All All All Males Females Whites Blacks

S
0.126

(0.004)

0.121

(0.004)

0.121

(0.004)

0.133

(0.006)

0.112

(0.006)

0.126

(0.005)

0.112

(0.012)

EXP
0.040

(0.002)

0.032

(0.002)

0.032

(0.002)

0.032

(0.004)

0.035

(0.003)

0.041

(0.003)

0.028

(0.005)

MALE —
0.277

(0.020)

0.308

(0.021)
— — — —

BLACK —
–0.144

(0.032)

–0.011

(0.043)
— — — —

MALEBLAC — —
–0.290

(0.063)
— — — —

constant
0.0376

(0.078)

0.459

(0.076)

0.447

(0.076)

0.566

(0.124)

0.517

(0.097)

0.375

(0.087)

0.631

(0.172)

R2 0.285 0.341 0.346 0.287 0.275 0.271 0.320

RSS 659 608 603 452 289 609 44

n 2,546 2,546 2,546 1,269 1,277 2,273 273

Student A divides the sample into the four ethnicity/sex categories. He 
chooses white females as the reference category and fits a regression that 
includes three dummy variables BM, WM, and BF. BM is 1 for black males, 
0 otherwise; WM is 1 for white males, 0 otherwise, and BF is 1 for black 
females, 0 otherwise.

Student B simply fits the basic specification separately for the four 
ethnicity/sex subsamples. 

Student C defines dummy variables MALE, equal to 1 for males and 0 
for females, and BLACK, equal to 1 for blacks and 0 for whites. She also 
defines an interactive dummy variable MALEBLAC as the product of MALE 
and BLACK. She fits a regression adding MALE and BLACK to the basic 
specification, and a further regression adding MALEBLAC as well. The 
output from these regressions is shown in columns 2 and 3 in the table.
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Student D divides the sample into males and females and performs the 
regression for both sexes separately, using the basic specification. The 
output is shown in columns 4a and 4b. She also divides the sample into 
whites and blacks, and again runs separate regressions using the basic 
specification. The output is shown in columns 5a and 5b.

Reconstruction of missing output.

Students A and B left their output on a bus on the way to the workshop. 
This is why it does not appear in the table.

•	 State what the missing output of Student A would have been, as far 
as this is can be done exactly, given the results of Students C and D. 
(Coefficients, standard errors, R2, RSS.)

•	 Explain why it is not possible to reconstruct any of the output of 
Student B.

Tests of hypotheses. 

The approaches of the students allowed them to perform different tests, 
given the output shown in the table and the corresponding output 
for Students A and B. Explain the tests relating to the effects of sex 
and ethnicity that could be performed by each student, giving a clear 
indication of the null hypothesis in each case. (Remember, all of them 
started with the basic specification (1), before continuing with their 
individual regressions.) In the case of F tests, state the test statistic in 
terms of its components.

•	 Student A (assuming he had found his output)

•	 Student B (assuming he had found his output)

•	 Student C

•	 Student D.

If you had been participating in the project and had had access to the data 
set, what regressions and tests would you have performed?

Answers to the starred exercises in the textbook

5.2
The Stata output shows the result of regressing weight on height, first 
with a linear specification, then with a logarithmic one, including a 
dummy variable MALE, defined as in Exercise 5.1, in both cases. Give 
an interpretation of the equations and perform appropriate statistical 
tests. See Box 5.1 for a guide to the interpretation of dummy variable 
coefficients in logarithmic regressions.
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Answer: 

The first regression indicates that weight increases by 4.0 pounds for 
each inch of stature and that males tend to weigh 13.8 pounds more than 
females, both coefficients being significantly different from zero at the 0.1 
per cent level. The second regression indicates that the elasticity of weight 
with respect to height is 1.67, and that males weigh 9.8 per cent more 
than females, both effects again being significantly different from zero at 
the 0.1 per cent level.

The null hypothesis that the elasticity is zero is not worth testing, except 
perhaps in a negative sense, for if the result were not highly significant 
there would have to be something seriously wrong with the model 
specification. Two other hypotheses are of greater interest: the elasticity 
being equal to 1, weight growing proportionally with height, other 
dimensions being unchanged, and the elasticity being equal to 3, all 
dimensions increasing proportionally with height. The t statistics are 4.27 
and –8.37, respectively, so both hypotheses are rejected.

5.5
Suppose that the relationship 

	
iii uXY ++= 21 bb

is being fitted and that the value of X is missing for some observations. One 
way of handling the missing values problem is to drop those observations. 
Another is to set X = 0 for the missing observations and include a dummy 
variable D defined to be equal to 1 if X is missing, 0 otherwise. Demonstrate 
that the two methods must yield the same estimates of β1 and β2. Write 
down an expression for RSS using the second approach, decompose it into 
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the RSS for observations with X present and RSS for observations with X 
missing, and determine how the resulting expression is related to RSS when 
the missing-value observations are dropped.

Answer: Let the fitted model, with D included, be

	
iii DbXbbY 321

ˆ ++=

Then, if X is missing for observations m+1 to n,
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The normal equation for b3 will yield

	
missing13 Ybb −=

where missingY  is the mean value of Y for those observations for which X 
is missing. This relationship means that b1 and b2 may be chosen so as to 
minimise the first term in RSS. This, of course, is RSS for the regression 
omitting the observations for which X is missing, and hence b1 and b2 will 
be the same as for that regression.

5.7

The Stata output shows the result of a semilogarithmic regression of 
earnings on highest educational qualification obtained, work experience, 
and the sex of the respondent, the educational qualifications being a 
professional degree, a PhD, a Master’s degree, a Bachelor’s degree, an 
Associate of Arts degree, and no qualification (high school drop-out). The 
high school diploma was the reference category. Provide an interpretation 
of the coefficients and perform t tests.



20 Elements of econometrics

92

Answer: 

The regression results indicate that those with professional degrees earn 
159 per cent more than high school graduates, or 391 per cent more if 
calculated as 100(e1.592 – 1), the coefficient being significant at the 0.1 per 
cent level. For the other qualifications the corresponding figures are: 

•	 PhD	 30.9	 36.2	 not significant

•	 Masters	 62.8	 87.4	 0.1 per cent

•	 Bachelor’s	 50.5	 65.7	 0.1 per cent

•	 Associate’s	 17.1	 18.6	 5 per cent

•	 Drop-out	 –25.3	 –22.4	 1 per cent

Males earn 27.6 per cent (31.8 per cent) more than females, and every 
year of work experience increases earnings by 2.3 per cent.

The coefficients of those with professional degrees and PhDs should be 
treated cautiously since there were only six individuals in the former 
category and three in the latter. For the other categories the numbers of 
observations were: Masters 31; Bachelor’s 98; Associate’s 48; High school 
diploma (or GED) 297; and drop-out 46.

5.16
Is the effect of education on earnings different for members of a union? 
In the output below, COLLBARG is a dummy variable defined to be 1 for 
workers whose wages are determined by collective bargaining and 0 for 
the others. SBARG is a slope dummy variable defined as the product of S 
and COLLBARG. Provide an interpretation of the regression coefficients, 
comparing them with those in Exercise 5.9, and perform appropriate 
statistical tests.

Answer: 

In this specification, the coefficient of S is an estimate of the effect of 
schooling on the earnings of those whose earnings are not subject to collective 
bargaining (henceforward, for short, unionised workers, though obviously 
the category includes some who do not actually belong to unions), and the 
coefficient of SBARG is the extra effect in the case of those whose earnings 
are. Thus for the former, a year of schooling increases earnings by 12.3 per 
cent, while for the latter it is only 10.2 per cent (12.3–2.1). Does this make 
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sense? Probably, since qualifications and seniority are important for unionised 
workers and consequently the importance of schooling may be less. 

There appears to be a problem with the coefficient of COLLBARG, for it 
now seems to suggest that unionised workers earn a massive 36.7 per 
cent (actually, 44.3 per cent, when calculated properly) more than non-
unionised workers, controlling for other characteristics. In Exercise 5.7, it 
was only 7.9 per cent. The reason for the discrepancy is that the meaning 
of the coefficient has changed. It now estimates the difference when S = 0. 
Writing the model as

	 LGEARN = β1 + β2S + β3ASVABC + β4MALE + β5COLLBARG 
+ β6SBARG + u,

for non-unionised workers the specification is

	 LGEARN = β1 + β2S + β3ASVABC + β4MALE + u,

while for unionised workers it is

	 LGEARN = β1 + β2S + β3ASVABC + β4MALE + β5 + β6S + u.

Thus the extra earnings of unionised workers are given by β5 + β6S. None 
had no schooling and very few did not complete at least tenth grade. For S 
= 10, the expression works out at 15.7 per cent a more reasonable figure. 
For high school graduates, with S = 12, it is 11.4. For those with four-year 
college degrees, with S = 16, it is 0 (actually, –1.0).

Answers to the additional exercises

A5.1
The coefficient of the MALE dummy variable indicates that males earn 18 per 
cent more than females. The inclusion of the dummy variable has reduced 
the coefficient of HEIGHT, as expected, but the effect still remains significant 
at the 1 per cent level. Obviously the specification of the wage equation still 
remains very primitive. To check whether height really does have an effect on 
earnings, we need to start with a better specification with more controls.

A5.2

The regression indicates that, controlling for total household expenditure 
per capita and size of household, nonwhites spend 4.8 per cent less per 
year than whites on food consumed at home. However the effect is not 
significant. The coefficients of LGEXPPC and LGSIZE are not affected by the 
introduction of the dummy variable.

Summarizing the effects for all the categories of expenditure, one finds:

•	 Positive, significant at the 1 per cent level: TELE.
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•	 Positive, significant at the 5 per cent level: CLOT, LOCT.

•	 Negative, significant at the 1 per cent level: GASO, HEAL, TOYS, TOB.

•	 Negative, significant at the 5 per cent level: FDAW, FEES, READ.

•	 Not significant: FDHO, HOUS, DOM, TEXT, FURN, MAPP, SAPP, FOOT, 
TRIP, ENT, EDUC.

Under the hypothesis that nonwhites tend to live in urban areas, some 
of these effects may have more to do with residence than ethnicity – for 
example, the positive effect on LOCT and the negative one on GASO. The 
results for all the categories are shown in the table.

Dependent variable LGCATPC

LGEXP LGSIZE NONWHITE

n b2 s.e.(b2) b3 s.e.(b3) b4 s.e.(b4) R2 F

FDHO 868 0.2806 0.0232 –0.2299 0.0255 –0.0489 –0.0396 0.3290 141.2

FDAW 827 1.3920 0.0539 0.2135 0.0588 –0.2076 0.0902 0.5022 276.8

HOUS 867 1.0461 0.0456 –0.1538 0.0500 0.0628 0.0778 0.4718 256.9

TELE 858 0.5185 0.0384 –0.3456 0.0421 0.2233 0.0660 0.3357 143.8

DOM 454 0.8903 0.1496 0.2163 0.1532 0.1050 0.2415 0.0762 12.4

TEXT 482 0.9416 0.0928 –0.1603 0.1007 –0.1243 0.1611 0.2507 80.1

FURN 329 0.6290 0.1527 –0.4553 0.1678 –0.3008 0.2665 0.1353 17.0

MAPP 244 0.4976 0.1383 –0.4790 0.1530 –0.2963 0.2079 0.1895 18.7

SAPP 467 0.7361 0.0914 –0.4999 0.0978 0.1345 0.1583 0.2714 57.5

CLOT 847 1.1398 0.0548 0.3605 0.0597 0.2253 0.0919 0.3498 151.2

FOOT 686 0.7210 0.0648 –0.0763 0.0710 0.2003 0.1088 0.2019 58.8

GASO 797 0.6560 0.0435 –0.0817 0.0486 –0.2558 0.0753 0.3084 177.0

TRIP 309 1.0830 0.1544 –0.3412 0.1519 0.2489 0.2623 0.2444 32.9

LOCT 172 0.1035 0.2009 –0.5179 0.2064 0.6219 0.2837 0.0720 4.3

HEAL 821 0.6040 0.0783 –0.5312 0.0842 –0.5292 0.1325 0.2023 69.1

ENT 824 1.4588 0.0595 0.3736 0.0660 –0.0813 0.1010 0.4558 229.0

FEES 676 1.7527 0.0952 0.4145 0.1040 –0.3688 0.1608 0.3834 139.3

TOYS 592 0.9156 0.0891 0.0064 0.0992 –0.8145 0.1678 0.2351 60.3

READ 764 0.9427 0.0718 –0.4372 0.0767 –0.2576 0.1218 0.3301 124.8

EDUC 288 1.2415 0.1903 –0.1554 0.2393 0.1889 0.2968 0.1891 22.1

TOB 368 0.3373 0.0931 –0.5918 0.1057 –0.5791 0.1490 0.2396 38.2

A5.3	
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The dummies have been defined with high school graduate as the 
reference category. The other categories do not differ significantly in their 
expenditure on food consumed at home. Summarising the results for the 
other categories of expenditure, one finds:

Drop-outs				   Negative, 1 per cent: FDAW, HOUS, ENT.

						      Negative, 5 per cent: DOM, FEES.

Incomplete college	 Positive, 5 per cent: HOUS, CLOT, FEES, READ.

						      Negative, 1 per cent: FURN.

College graduates	 Positive, 1 per cent: HOUS, FEES, READ.

						      Positive, 5 per cent: CLOT, ENT.

						      Negative, 5 per cent: TEXT, GASO.

Note the clear positive effects of education on HOUS and FEES. Some of 
the other effects, especially those at the 5 per cent level, may be Type I 
errors, given that 63 coefficients were estimated. The results for all the 
categories are shown in the table.

Dependent variable LGCATPC

Category FDHO FDAW HOUS TELE DOM TEXT FURN

LGEXPPC
0.3081

(0.0251)

1.3646

(0.0582)

0.9286

(0.0487)

0.4803

(0.0420)

0.7955

(0.1624)

1.0184

(0.1011)

0.6882

(0.1657)

LGSIZE
–0.2131

(0.0263)

0.1902

(0.0605)

–0.2292

(0.0509)

–0.3554

(0.0438)

0.1185

(0.1622)

–0.1134

(0.1054)

–0.3810

(0.1736)

EDUCCO
–0.0121

(0.0367)

–0.0414

(0.0819)

0.2213

(0.0707)

0.0475

(0.0609)

–0.1051

(0.2204)

–0.3238

(0.1338)

–0.1363

(0.2091)

EDUCIC
–0.0225

(0.0363)

–0.0419

(0.0805)

0.1447

(0.0699)

–0.0701

(0.0604)

–0.0132

(0.2174)

–0.1985

(0.1338)

–0.6905

(0.2117)

EDUCDO
0.0711

(0.0379)

–0.2706

(0.0863)

–0.1986

(0.0733)

–0.0126

(0.0634)

–0.5092

(0.2491)

–0.1295

(0.1498)

–0.0752

(0.2563)

R2 0.3323 0.5053 0.4885 0.3294 0.0854 0.2601 0.1627

F 85.8 167.7 164.5 83.7 8.4 33.5 12.6

n 868 827 867 858 454 482 329
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Dependent variable LGCATPC

Category MAPP SAPP CLOT FOOT GASO TRIP LOCT

LGEXPPC
0.5184

(0.1460)

0.7213

(0.1008)

1.0312

(0.0597)

0.6416

(0.0713)

0.7082

(0.0478)

1.0008

(0.1640)

–0.0249

(0.2221)

LGSIZE
–0.4770

(0.1615)

–0.5029

(0.1013)

0.2932

(0.0617)

–0.1224

(0.0740)

–0.0597

(0.0507)

–0.3754

(0.1564)

–0.5511

(0.2150)

EDUCCO
–0.2045

(0.1872)

0.1459

(0.1270)

0.1956

(0.0844)

0.1006

(0.0994)

–0.1461

(0.0662)

0.2064

(0.1946)

–0.3096

(0.3552)

EDUCIC
–0.2087

(0.1856)

0.0372

(0.1345)

0.1631

(0.0828)

0.0879

(0.0967)

–0.0515

(0.0656)

–0.0627

(0.2095)

–0.2918

(0.3429)

EDUCDO
–0.2286

(0.2100)

0.1418

(0.1465)

–0.1043

(0.0878)

–0.1093

(0.1034)

–0.0332

(0.0710)

0.0730

(0.2844)

–0.4299

(0.3454)

R2 0.1897 0.2733 0.3546 0.2062 0.3127 0.2476 0.0558

F 11.1 34.7 92.4 35.3 72.0 19.9 2.0

n 244 467 847 686 797 309 172

Dependent variable LGCATPC

Category HEAL ENT FEES TOYS READ EDUC TOB

LGEXPPC
0.7415

(0.0859)

1.3521

(0.0633)

1.5815

(0.0980)

0.9226

(0.0994)

0.7957

(0.0756)

1.0811

(0.2117)

0.4799

(0.1002)

LGSIZE
–0.4494

(0.0880)

0.3037

(0.0669)

0.3291

(0.1027)

–0.0165

(0.1044)

–0.5327

(0.0773)

–0.2326

(0.2421)

–0.5200

(0.1098)

EDUCCO
–0.1277

(0.1218)

0.1941

(0.0891)

0.5806

(0.1277)

–0.0394

(0.1302)

0.4850

(0.1024)

0.0403

(0.2709)

–0.2872

(0.1643)

EDUCIC
–0.2038

(0.1202)

0.1495

(0.0878)

0.2874

(0.1282)

0.0489

(0.1280)

0.2075

(0.1022)

0.1109

(0.2652)

–0.2325

(0.1384)

EDUCDO
0.1640

(0.1277)

–0.2830

(0.0960)

–0.3972

(0.1610)

–0.1653

(0.1531)

–0.1996

(0.1142)

–0.6464

(0.3780)

–0.0795

(0.1376)

R2 0.1943 0.4705 0.4130 0.2004 0.3561 0.2000 0.2177

F 139.3 145.4 94.3 30.6 83.8 14.1 20.2

n 821 824 676 592 764 288 368

A5.4
For FDHO, RSS was 130.22 without the education dummy variables and 
129.35 with them. 3 degrees of freedom were consumed when adding 
them, and 868 – 6 = 862 degrees of freedom remained after they had 
been added. The F statistic is therefore

	
.

The critical value of F(3,1000) at the 5 per cent level is 2.61. The critical 
value of F(3,862) must be greater. Hence we do not reject the null 
hypothesis that the dummy variables have no explanatory power (that is, 
that all their coefficients are jointly equal to 0). Summarising the findings 
for all the categories of expenditure, we have:
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•	 Significant at the 1 per cent level: HOUS, ENT, FEES, READ.

•	 Significant at the 5 per cent level: FDAW, FURN, CLOT.

•	 Not significant: FDHO, TELE, DOM, TEXT, MAPP, SAPP, FOOT, GASO, 
TRIP, LOCT, HEAL, TOYS, EDUC, TOB.

We had already noticed that HOUS and FEES were affected by education. 
The F test indicates that ENT and READ are as well.

F test of dummy variables as a group

n RSS without dummies RSS with dummies F

FDHO 868 130.22 129.35 1.93

FDAW 827 597.61 590.15 3.46

HOUS 867 496.41 480.27 9.64

TELE 858 351.81 350.45 1.10

DOM 454 1319.71 1305.96 1.57

TEXT 482 557.55 550.54 2.02

FURN 329 681.45 657.26 3.96

MAPP 244 280.41 278.00 0.69

SAPP 467 493.39 491.38 0.63

CLOT 847 659.59 650.02 4.13

FOOT 686 588.21 584.68 1.37

GASO 797 365.73 363.46 1.65

TRIP 309 517.96 514.22 0.73

LOCT 172 433.51 428.78 0.61

HEAL 821 1294.03 1282.05 2.54

ENT 824 725.85 705.76 7.76

FEES 676 1117.00 1055.07 13.11

TOYS 592 809.01 806.35 0.64

READ 764 861.92 823.64 11.74

EDUC 288 826.85 814.60 1.41

TOB 368 360.58 356.14 1.50

A5.5
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The results have not been tabulated but are easily summarised:

•	 The analysis of variance in the upper half of the output is unaffected.

•	 The lines involving variables other than the dummy variables are 
unaffected.

•	 The line for EDUCHSD is identical to that for EDUCDO in the first 
regression, except for a change of sign in the coefficient.

•	 The constant is equal to the old constant plus the coefficient of 
EDUCDO in the first regression.

•	 The coefficients of the other dummy variables are equal to their values 
in the first regression minus the coefficient of EDUCDO in the first 
regression.

•	 One substantive change is in the standard errors of EDUCIC and 
EDUCCO, caused by the fact that the comparisons are now between 
these categories and EDUCDO, not EDUCHSD.

•	 The other is that the t statistics are for the new comparisons, not the 
old ones. The results of the t tests can be summarised as follows:

	 High school graduates	 Positive, 1 per cent: FDAW, HOUS, ENT.

								        Positive, 5 per cent: DOM, FEES.

	 Incomplete college		  Positive, 1 per cent: HOUS, CLOT, ENT, 
							       FEES, READ.

								        Positive, 5 per cent: FDAW, EDUC.

								        Negative, 1 per cent: HEAL.

								        Negative, 5 per cent: FDHO, FURN.

	 College graduates		  Positive, 1 per cent: HOUS, CLOT, ENT, 
							       FEES, READ.

								        Positive, 5 per cent: FDAW, ENT.

								        Negative, 5 per cent: HEAL.

A5.6

Not college College

Number 465 403

LGEXPPC
0.3049

(0.0343)

0.2905

(0.0330)

LGSIZE
–0.2656

(0.0372)

–0.1612

(0.0358)

constant 4.6001 4.6063

RSS 78.72 50.28

For FDHO, RSS for the logarithmic regression without college in Exercise 
A5.3 was 130.22. When the sample is split, 3 degrees of freedom are 
consumed because the coefficients of LGEXPPC and LGSIZE and the constant 
have to be estimated twice. The number of degrees of freedom remaining 
after splitting the sample is 868 – 6 = 862. Hence the F statistic is

	

The critical value of F(3,750) at the 5 per cent level is 2.62 and so we 
reject the null hypothesis of no difference in the expenditure functions at 
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that significance level. The difference would appear to be in the coefficient 
of LGSIZE since the coefficient of LGEXPPC and the constant are almost 
identical in the two subsamples.

•	 Summarizing the results of this Chow test for all the categories, we have:

•	 Significantly different at the 1 per cent level: HOUS, HEAL, FEES, READ.

•	 Significantly different at the 5 per cent level: FDHO, CLOT, ENT.

•	 Not significantly different: FDAW, TELE, DOM, FURN, MAPP, SAPP, 
FOOT, GASO, TRIP, LOCT, TOYS, EDUC, TOB.

The results for all the categories are shown in the table.

Chow test, dependent variable LGCATPC

Category FDHO FDAW HOUS TELE DOM TEXT FURN

Not college 465 433 464 457 218 237 159

LGEXPPC
0.3049

(0.0343)

1.4890

(0.0815)

0.9623

(0.0720)

0.5280

(0.0420)

0.7459

(0.2122)

0.9759

(0.1322)

0.7834

(0.1923)

LGSIZE
–0.2656

(0.0372)

0.2585

(0.0881)

–0.2080

(0.0780)

–0.3062

(0.0621)

–0.0456

(0.2181)

–0.1757

(0.1452)

–0.4231

(0.2214)

constant 4.6001 –8.3304 –1.4130 0.8870 –2.5890 –5.5377 –2.0445

RSS 78.72 358.33 340.28 212.03 605.45 283.11 290.64

College 403 394 403 401 236 245 170

LGEXPPC
0.2905

(0.0330)

1.3008

(0.0758)

0.9752

(0.0560)

0.4526

(0.0558)

0.9727

(0.2271)

1.0854

0.1422)

0.7428

(0.2628)

LGSIZE
–0.1612

(0.0358)

0.1617

(0.0810)

–0.2097

(0.0608)

–0.4089

(0.0599)

0.4225

(0.2308)

–0.0124

(0.1494)

–0.2786

(0.2725)

constant 4.6063 –6.4464 –1.2853 1.6655 –5.0236 –6.9385 –2.1895

RSS 50.28 236.87 144.52 139.11 707.01 268.54 378.58

RSS pooled 130.22 597.61 496.41 351.81 1319.71 557.55 681.45

F 2.72 1.11 6.87 0.54 0.82 1.70 1.97

Chow test, dependent variable LGCATPC

Category MAPP SAPP CLOT FOOT GASO TRIP LOCT

Not college 121 231 449 360 413 114 92

LGEXPPC
0.6788

(0.1725)

0.6002

(0.1298)

1.0484

(0.0869)

0.6881

(0.0954)

0.7900

(0.0679)

0.9014

(0.2128)

0.3660

(0.3284)

LGSIZE
–0.3263

(0.1932)

–0.6390

(0.1416)

0.3067

(0.0933)

–0.1024

(0.1053)

–0.0137

(0.0746)

–0.2712

(0.2068)

–0.2784

(0.3084)

constant –1.1756 –2.0133 –4.3273 –2.6024 –1.3232 –3.2983 0.8601

RSS 119.32 254.50 440.68 343.37 223.05 133.56 241.30

College 123 236 398 326 384 195 80

LGEXPPC
0.3514

(0.2408)

0.8463

(0.1383)

1.0554

(0.0701)

0.6271

(0.0947)

0.6000

(0.0601)

1.1030

(0.2292)

–0.2284

(0.2717)

LGSIZE
–0.6220

(0.2598)

–0.3766

(0.1405)

0.3018

(0.0752)

–0.1205

(0.1002)

–0.1112

(0.0657)

–0.4248

(0.2197)

–0.7192

(0.2973)

constant 2.0542 –4.5163 –4.1763 –1.8869 0.4481 –5.0135 6.5098

RSS 158.49 236.23 210.49 242.09 139.39 381.86 186.00

RSS pooled 280.41 493.39 659.59 588.21 365.73 517.96 433.51

F 0.74 0.83 3.62 1.06 2.39 0.50 0.80
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Chow test, dependent variable LGCATPC

Category HEAL ENT FEES TOYS READ EDUC TOB

Not college 431 426 302 285 381 110 229

LGEXPPC
0.7147

(0.1085)

1.4382

(0.0935)

1.5720

(0.1558)

0.9250

(0.1276)

0.7973

(0.1121)

1.4368

(0.2841)

0.4612

(0.1190)

LGSIZE
–0.7856

(0.1146)

0.3638

(0.1030)

0.2099

(0.1716)

–0.1862

(0.1454)

–0.7231

(0.1188)

0.4594

(0.4227)

–0.6178

(0.1382)

constant 0.2654 –7.8715 –10.7014 –4.1754 –3.1847 –9.5531 1.5046

RSS 650.95 456.84 571.48 371.23 505.95 290.38 219.89

College 390 398 374 307 383 178 139

LGEXPPC
0.7625

(0.1230)

1.3511

(0.0763)

1.7314

(0.1177)

0.9295

(0.1405)

0.9106

(0.0935)

0.9784

(0.2655)

0.5181

(0.1580)

LGSIZE
–0.0608

(0.1306)

0.2863

(0.0831)

0.4555

(0.1258)

0.1619

(0.1459)

–0.2896

(0.0972)

–0.4683

(0.2914)

–0.3423

(0.1710)

constant –1.0079 –6.7346 –11.8726 –4.4905 –4.2053 –3.9914 0.5080

RSS 601.75 256.02 497.88 431.92 318.62 523.69 134.98

RSS pooled 1294.03 725.85 1117.00 809.01 861.92 826.85 360.58

F 8.96 4.97 9.95 1.43 11.44 1.48 1.94

A5.7 

The regression results confirm the observation made in the Chow test 
that the only real difference between the expenditure functions for the 
two educational categories is in the coefficient of LGSIZE, which suggests 
that households where the reference person never went to college secure 
greater economies of scale in expenditure on food consumed at home. The 
difference is just significant at the 5 per cent level.

To perform the F test of the explanatory power of the intercept dummy 
variable and the two slope dummy variables as a group, we evaluate 
whether RSS for this regression is significantly lower than that without the 
dummy variables in Exercise A4.2. RSS has fallen from 130.22 to 129.00. 
3 degrees of freedom are consumed by adding the dummy variables, 
and 868 – 6 = 862 degrees of freedom remain after adding the dummy 
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variables. The F statistic is therefore

	

This is (just) significant at the 5 per cent level. This F test is of course 
equivalent to the Chow test in the previous exercise.

Full set of dummy variables, dependent variable LGCATPC

Category FDHO FDAW HOUS TELE DOM TEXT FURN

LGEXPPC
0.3049

(0.0322)

1.4890

(0.0760)

0.9622

(0.0629)

0.5280

(0.0537)

0.7459

(0.2164)

0.9759

(0.1294)

0.7834

(0.2028)

LGSIZE
–0.2656

(0.0349)

0.2585

(0.0821)

–0.2080

(0.0681)

–0.3062

(0.0583)

–0.0456

(0.2225)

–0.1757

(0.1421)

–0.4231

(0.2335)

COLLEGE
0.0062

(0.4732)

1.8840

(1.1077)

0.1277

(0.9215)

0.7786

(0.7936)

–2.4347

(3.0556)

–1.4009

(1.9370)

–0.1450

(3.2439)

LEXPCOL
–0.0144

(0.0483)

–0.1882

(0.1125)

0.0129

(0.0940)

–0.0754

(0.0810)

0.2268

(0.3108)

0.1095

(0.1946)

–0.0406

(0.3228)

LSIZECOL
0.1045

(0.0524)

–0.0969

(0.1208)

–0.0016

(0.1019)

–0.1028

(0.0874)

0.4681

(0.3177)

0.1633

(0.2086)

0.1445

(0.3498)

R2 0.3341 0.5010 0.4837 0.3280 0.0809 0.2586 0.1475

F 86.5 164.9 161.3 83.2 7.9 33.2 11.2

RSS 129.00 595.20 484.80 351.15 1312.47 551.65 669.22

n 868 827 867 858 454 482 329

Full set of dummy variables, dependent variable LGCATPC

Category MAPP SAPP CLOT FOOT GASO TRIP LOCT

LGEXPPC
0.6788

(0.1853)

0.6002

(0.1267)

1.0484

(0.0769)

0.6881

(0.0903)

0.7900

(0.0623)

0.9014

(0.2531)

0.3660

(0.3200)

LGSIZE
–0.3263

(0.2076)

–0.6390

(0.1383)

0.3067

(0.0826)

–0.1024

(0.0996)

–0.0137

(0.0685)

–0.2712

(0.2459)

–0.2784

(0.3005)

COLLEGE
3.2298

(2.9522)

–2.5030

(1.8906)

0.1510

(1.1229)

0.7155

(1.3430)

1.7713

(0.9056)

–1.7153

(3.2969)

5.6497

(4.0663)

LEXPCOL
–0.3274

(0.2925)

0.2461

(0.1901)

0.0070

(0.1143)

–0.0609

(0.1358)

–0.1900

(0.0917)

0.2016

(0.3301)

–0.5944

(0.4255)

LSIZECOL
–0.2957

(0.3205)

0.2624

(0.1996)

–0.0049

(0.1226)

–0.0182

(0.1465)

–0.0975

(0.1005)

–0.1537

(0.3190)

–0.4408

(0.4295)

R2 0.1903 0.2742 0.3535 0.2052 0.3146 0.2459 0.0591

F 11.2 34.8 92.0 35.1 72.6 19.8 2.1

RSS 277.81 490.74 651.17 585.46 362.44 515.43 427.30

n 244 467 847 686 797 309 172
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Full set of dummy variables, dependent variable LGCATPC

Category HEAL ENT FEES TOYS READ EDUC TOB

LGEXPPC
0.7147

(0.1091)

1.4382

(0.0840)

1.5720

(0.1424)

0.9250

(0.1302)

0.7973

(0.1010)

1.4368

(0.2930)

0.4612

(0.1195)

LGSIZE
–0.7856

(0.1152)

0.3638

(0.0925)

0.2099

(0.1568)

–0.1862

(0.1484)

–0.7231

(0.1071)

0.4594

(0.4360)

–0.6178

(0.1387)

COLLEGE
–1.2732

(1.6075)

1.1369

(1.2012)

–1.1711

(1.9023)

–0.3151

(1.8868)

–1.0205

(1.4461)

5.5617

(3.9637)

–0.9965

(1.9470)

LEXPCOL
0.0478

(0.1639)

–0.0870

(0.1220)

0.1595

(0.1916)

0.0045

(0.1897)

0.1133

(0.1468)

–0.4584

(0.3923)

0.0570

(0.1973)

LSIZECOL
0.7248

(0.1736)

–0.0775

(0.1336)

0.2456

(0.2083)

0.3481

(0.2063)

0.4335

(0.1540)

–0.9277

(0.5215)

0.2755

(0.2194)

R2 0.2127 0.4651 0.4051 0.2103 0.3554 0.2005 0.2205

F 44.0 142.3 91.2 31.2 83.6 14.1 20.5

RSS 1252.70 712.86 1069.36 803.16 824.57 814.07 354.87

n 821 824 676 592 764 288 368

A5.8
•	 Explain verbally why the estimates of the coefficient of GOV are different 

in regressions (1) and (2).

The second specification indicates that earnings are positively related to 
schooling and negatively related to working in the government sector. S 
has a significant coefficient in (2) and therefore ought to be in the model. 
If S is omitted from the specification the estimate of the coefficient of 
GOV will be biased upwards because schooling is positively correlated 
with working in the government sector. (We are told in the question that 
government workers on average have an extra year of schooling.) The bias 
is sufficiently strong to make the negative coefficient disappear.

•	 Explain the difference in the estimates of the coefficient of GOV in 
regressions (2) and (3).

The coefficient of GOV in the third regression is effectively a linear 
function of S: 0.726 – 0.059S. The coefficient of the GOV intercept dummy 
is therefore an estimate of the extra earnings of a government worker with 
no schooling. The premium disappears for S = 12 and becomes negative 
for higher values of S. The second regression does not take account of 
the variation of the coefficient of GOV with S and hence yields an average 
effect of GOV. The average effect was negative since only a small minority 
of government workers had fewer than 12 years of schooling.

•	 The correlation between GOV and SGOV was 0.977. Explain the 
variations in the standard error of the coefficient of GOV in the three 
regressions.

The standard error in the first regression is meaningless given severe 
omitted variable bias. For comparing the standard errors in (2) and (3), it 
should be noted that the same problem in principle applies in (2), given 
that the coefficient of SGOV in (3) is highly significant. However, part of 
the reason for the huge increase must be the high correlation between 
GOV and SGOV.



Chapter 5: Dummy variables

103

A5.9
1.	 The dummy variable allows the slope coefficient to be different for 

developing and developed countries. From equation (1) one may derive 
the following relationships:

	 developed countries	 ê  	= –1.45 + 0.19x 

	 developing countries	 ê  	= –1.45 + 0.19x + 0.78x 

									         = –1.45 + 0.97x.

ê

ê

e

2.	 The inclusion of D would allow the intercept to be different for the two 
types of country. If the model were written

				    e = β1 + β2x +δD + λDx + u,

	 the implicit relationships for the two types of country would be

	 developed countries	 e	 = β1 + β2x + u

	 developing countries	 e	 = β1 + β2x + δ + λx + u

									         = (β1 + δ) + (β2 + λ)x + u

e

e

3.	 When the specification includes both an intercept dummy and a 
slope dummy, the coefficients for the two categories will be the same 
as in the separate regressions (2) and (3). Hence the intercept and 
coefficient of x will be the same as in the regression for the reference 
category, regression (3), and the coefficients of the dummies will be 
such that they modify the intercept and slope coefficient so that they 
are equal to their counterparts in regression (4):
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	 ê  = –2.74 + 0.50x + 1.89D + 0.28xD.

	 Since the coefficients are the same, the overall fit for this regression 
will be the same as that for regressions (2) and (3). Hence RSS = 
18.63+25.23 = 43.86. The t statistic for the coefficient of x will be the 
square root of the F statistic for the test of the marginal explanatory 
power of D when it is included in the equation. The F statistic is

	
.

	 The t statistic is therefore 2.58.

4.	 One method is to use a Chow test comparing RSS for the pooled 
regression, regression (2), with the sum of RSS regressions (3) and (4):

	
.

	 The critical value of F(2,40) at the 0.1 per cent significance level 
is 8.25. The critical value of F(2,46) must be lower. Hence the null 
hypothesis that the coefficients are the same for developed and 
developing countries is rejected. 

	 We should also consider t tests on the coefficients of D and xD. We saw 
in (3) that the t statistic for the coefficient of D was 2.58, so we would 
reject the null hypothesis of no intercept shift at the 5 per cent level, 
and nearly at the 1 per cent level. We do not have enough information 
to derive the t statistic for xD. We would not perform a t test on the 
coefficient of xD in regression (1) because that regression is clearly 
misspecified.

A5.10
(a)	You should fit models such as 

uETHHISPETHBLACKMALEASVABCSLGEARN ++++++= 654321 bbbbbb

	 separately for the private and government sectors. To investigate 
discrimination, for each sector t tests should be performed on the 
coefficients of MALE, ETHBLACK, and ETHHISP and an F test on the 
joint explanatory power of ETHBLACK and ETHHISP.

(b)	You should combine the earnings functions for the two sectors, while 
still allowing their parameters to differ, by fitting a model such as

uGOVHISPGOVBLACKGOVMALEGOVASVGOVSGOV

ETHHISPETHBLACKMALEASVABCSLGEARN

+++++++

+++++=

654321

654321

δδδδδδ

bbbbbb

	 where GOV is equal to 1 if the respondent works in the government 
sector and 0 otherwise, and GOVS, GOVASV, GOVMALE, GOVBLACK, 
and GOVHISP are slope dummy variables defined as the product of 
GOV and the respective variables. To investigate whether the level of 
discrimination is different in the two sectors, one should perform t tests 
on the coefficients of GOVMALE, GOVBLACK, and GOVHISP and an F 
test on the joint explanatory power of GOVBLACK and GOVHISP.

	 A Chow test would not be appropriate because if it detected a 
significant difference in the earnings functions, this could be due 
to differences in the coefficients of S and ASVABC rather than the 
discrimination variables.
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A5.11
•	 Give an interpretation of the coefficients of S and SMALE in regression 

(5).

	 An extra year of schooling increases female earnings by 9.4 per cent. 
(Strictly, 100(e0.094–1) = 9.9 per cent) For males, an extra year of 
schooling leads to an increase in earnings 0.5 per cent greater than for 
females, i.e. 9.9 per cent.

•	 Give an interpretation of the coefficients of MALE in regressions (4) and 
(5).

	 (4): males earn 23.4 per cent more than females (controlling for other 
factors). (5): males with no schooling or work experience earn 11.7 per 
cent more than similar females.

•	 The researcher hypothesises that the earnings function is different for 
males and females. Perform a test of this hypothesis using regression (4), 
and also using regressions (1) and (5).

	 Looking at regression (4), the coefficient of MALE is highly significant, 
indicating that the earnings functions are indeed different. Looking at 
regression (5), and comparing it with (1), the null hypothesis is that 
the coefficients of the male dummy variables in (5) are all equal to 
zero.

	
.

	 The critical value of F(3,1000) at the 1 per cent level is 3.80. The 
corresponding critical value for F(3,3236) must be lower, so we reject 
the null hypothesis and conclude that the earnings functions are 
different.

•	 Explain the differences in the tests using regression (4) and using 
regressions (1) and (5).

	 In regression (4) the coefficient of MALE is highly significant. In 
regression (5) it is not. Likewise the coefficients of the slope dummies 
are not significant. This is (partly) due to the effect of multicollinearity. 
The male dummy variables are very highly correlated and as a 
consequence the standard error of the coefficient of MALE is much 
larger than in regression (4). Nevertheless the F test reveals that their 
joint explanatory power is highly significant.

•	 At a seminar someone suggests that a Chow test could shed light on the 
researcher’s hypothesis. Is this correct?

	 Yes. Using regressions (1) – (3),

	
.

	 The null hypothesis that the coefficients are the same for males 
and females is rejected at the 1 per cent level. The test is of course 
equivalent to the dummy variable test comparing (1) and (5).

•	 Explain which of (1), (4), and (5) would be your preferred specification.

	 (4) seems best, given that the coefficients of S and X are fairly similar 
for males and females and that introducing the slope dummies causes 
multicollinearity. The F statistic of their joint explanatory power is only 
0.72, not significant at any significance level.
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A5.12
•	 Calculate the missing coefficients V, W, X, and Y in Regression 4 (just the 

coefficients, not the standard errors) and Z, the missing RSS, giving an 
explanation of your computations.

	 Since Regression 5 includes a complete set of black intercept and 
slope dummy variables, the basic coefficients will be the same as for 
a regression using the ‘whites’ only subsample and the coefficients 
modified by the dummies will give the counterparts for the blacks only 
subsample. Hence V = 0.122 –- 0.009 = 0.113; W = 0.033 – 0.006 = 
0.027; X = 0.306 – 0.280 = 0.026; and Y = 0.411 + 0.205 = 0.616. 
The residual sum of squares for Regression 5 will be equal to the sum 
of RSS for the ‘whites’ and blacks subsamples. Hence Z = 600.0 – 555.7 
= 44.3.

•	 Give an interpretation of the coefficient of BLACK in Regression 2.

	 It suggests that blacks earn 14.4 per cent less than whites, controlling 
for other characteristics.

•	 Perform an F test of the joint explanatory power of BLACK, SB, EB, and 
MB in Regression 5.

	 Write the model as

									       
	 The null hypothesis for the test is if H0: β5 = β6 = β7 = β8 = 0, and the 

alternative hypothesis is H1: at least one coefficient different from 0.

	 The F statistic is 

	 This is significant at the 0.1 per cent level (critical value 4.65) and so 
the null hypothesis is rejected.

•	 Explain whether it is possible to relate the F test in part (c) to a Chow test 
based on Regressions 1, 3, and 4.

	 The Chow test would be equivalent to the F test in this case.

•	 Give an interpretation of the coefficients of BLACK and MB in Regression 5.

	 Re-write the model as

	 From this it follows that β5 is the extra proportional earnings of a 
black, compared with a white, when S = EXP = MALE = 0. Thus the 
coefficient of BLACK indicates that a black female with no schooling or 
experience earns 20.5 per cent more than a similar white female.

	 The interpretation of the coefficient of any interactive term requires 
care. Holding S = EXP = MALE = 0, the coefficients of MALE and 
BLACK indicate that black males will earn 30.6 +20.5 = 51.1 per cent 
more than white females. The coefficient of MB modifies this estimate, 
reducing it by 28.0 per cent to 23.1 per cent.

•	 Explain whether a simple t test on the coefficient of BLACK in Regression 
2 is sufficient to show that the wage equations are different for blacks and 
whites.

	 Regression 2 is misspecified because it embodies the restriction that 
the effect of being black is the same for males and females, and that 
is contradicted by Regression 5. Hence any test is in principle invalid. 
However, the fact that the coefficient has a very high t statistic is 
suggestive that something associated with being black is affecting the 
wage equation.

.

 ( ) .87654321 uBLACKMALEEXPSMALEEXPSLGEARN ++++++++= ββββββββ
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A5.13
Reconstruction of missing output

•	 State what the missing output of Student A would have been, as far 
as this is can be done exactly, given the results of Students C and D.  
(Coefficients, standard errors, R2, RSS.)

The output for Student A would have been the same as that in column 
(3) (coefficients, standard errors, R2), with the following changes:

the row label MALE should be replaced with WM,

the row label BLACK should be replaced with BF,

the row label MALEBLAC should be replaced with BM and the 
coefficient for that row should be the sum of the coefficients in 
column (3): 0.308 – 0.011 – 0.290 =  0.007, and the standard error 
would not be known. 

•	 Explain why it is not possible to reconstruct any of the output of 
Student B.

One could not predict the coefficients of either S or EXP in the four 
regressions performed by Student B. They will, except by coincidence, 
be different from any of the estimates of the other students because the 
coefficients for S and EXP in the other specifications are constrained in 
some way.  As a consequence, one cannot predict exactly any part of 
the rest of the output, either.

Tests of hypotheses

The question states that the tests should be based on the output in the 
table and the corresponding missing output for Students A and B.  
Hence tests using information from the variance-covariance matrix of 
the coefficients are not expected.

•	 Student A could perform tests of the differences in earnings between 
white males and white females, black males and white females, 
and black females and white females, through simple t tests on the 
coefficients of WM, BM, and BF.

He could also test the null hypothesis that there are no sex/ethnicity 
differences with an F test, comparing RSS for his regression with that of 
the basic regression:

This would be compared with the critical value of F with 3 and 2,540 
degrees of freedom at the significance level chosen and the null 
hypothesis of no sex/ethnicity effects would be rejected if the F statistic 
exceeded the critical value.

•	 In the case of Student B, with four separate subsample regressions, 
candidates are expected say that no tests would be possible because no 
relevant standard errors would be available.  We have covered Chow 
tests only for two categories. However, a four-category test could be 
performed, with

where RSS = 922 for the basic regression and X is the sum of RSS in 
the four separate regressions.

( ) ( )
2540/603

3/6039222540,3 −
=F

 ( ) ( )
2534/

9/9222534,9
X

XF −
=
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•	 Student C could perform the same t tests and the same F test as 
Student A, with one difference: the t test of the difference between 
the earnings of black males and white females would not be available.  
Instead, the t statistic of MALEBLAC would allow a test of whether 
there is any interactive effect of being black and being male on 
earnings.

•	 Student D could perform a Chow test to see if the wage equations of 
males and females differed:

RSS = 322 for males and 289 for females.  This would be compared 
with the critical value of F with 3 and 2,540 degrees of freedom at the 
significance level chosen and the null hypothesis of no sex/ethnicity 
effects would be rejected if the F statistic exceeded the critical value.  
She could also perform a corresponding Chow test for blacks and 
whites:

If you had been participating in the project and had had access to the data 
set, what regressions and tests would you have performed?

The most obvious development would be to relax the sex/ethnicity 
restrictions on the coefficients of S and EXP by including appropriate 
interactive terms.  This could be done by interacting these variables with 
the dummy variables defined by Student A or those defined by Student C.

 ( ) [ ]( )
[ ] 2540/289322

3/2893226592540,3
+

+−
=F

( ) [ ]( )
[ ] 2540/44609

3/446096592540,3
+

+−
=F
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Chapter 6: Specification of regression 
variables

Overview
This chapter treats a variety of topics relating to the specification of the 
variables in a regression model. First there are the consequences for the 
regression coefficients, their standard errors, and R2 of failing to include 
a relevant variable, and of including an irrelevant one. This leads to a 
discussion of the use of proxy variables to alleviate a problem of omitted 
variable bias. Next come F and t tests of the validity of a restriction, 
the use of which was advocated in Chapter 3 as a means of improving 
efficiency and perhaps mitigating a problem of multicollinearity. The 
chapter concludes by outlining the potential benefit to be derived from 
examining observations with large residuals after fitting a regression 
model. 

Learning outcomes
After working through the corresponding chapter in the textbook, studying 
the corresponding slideshows, and doing the starred exercises in the 
textbook and the additional exercises in this guide, you should be able to:

•	 derive the expression for the bias in an OLS estimator of a slope 
coefficient when the true model has two explanatory variables but the 
regression model has only one

•	 determine the likely direction of omitted variable bias, given data on 
the correlation between the explanatory variables

•	 explain the consequence of omitted variable bias for the standard 
errors of the coefficients and for t tests and F tests

•	 explain the consequences of including an irrelevant variable for the 
regression coefficients, their standard errors, and t and F tests

•	 explain how the regression results are affected by the substitution of a 
proxy variable for a missing explanatory variable

•	 perform an F test of a restriction, stating the null hypothesis for the test

•	 perform a t test of a restriction, stating the null hypothesis for the test.

Additional exercises

A6.1
A researcher obtains data on household annual expenditure on books, B, 
and annual household income, Y, for 100 households. He hypothesises 
that B is related to Y and the average cognitive ability of adults in the 
household, IQ, by the relationship

	 log B = β1 + β2log Y + β3log IQ + u	 (A)

where u is a disturbance term that satisfies the regression model 
assumptions. He also considers the possibility that log B may be 
determined by log Y alone:

	 log B = β1 + β2log Y + u	 (B)
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He does not have data on IQ and decides to use average years of schooling 
of the adults in the household, S, as a proxy in specification (A). It may be 
assumed that Y and S are both nonstochastic. In the sample the correlation 
between log Y and log S is 0.86. He performs the following regressions: 
(1) log B on both log Y and log S, and (2) log B on log Y only, with the 
results shown in the table (standard errors in parentheses):

(1) (2)

log Y
1.10

(0.69)

2.10

(0.35)

log S
0.59

(0.35)
–

constant
–6.89

(2.28)

–3.37

(0.89)

R2 0.29 0.27

•	 Assuming that (A) is the correct specification, explain, with a 
mathematical proof, whether you would expect the coefficient of log Y 
to be greater in regression (2).

•	 Assuming that (A) is the correct specification, describe the various 
benefits from using log S as a proxy for log IQ, as in regression (1), if 
log S is a good proxy.

•	 Explain whether the low value of R2 in regression (1) implies that log S 
is not a good proxy.

•	 Assuming that (A) is the correct specification, provide an explanation 
of why the coefficients of log Y and log S in regression (1) are not 
significantly different from zero, using two-sided t tests.

•	 Discuss whether the researcher would be justified in using one-sided t 
tests in regression (1).

•	 Assuming that (B) is the correct specification, explain whether you 
would expect the coefficient of log Y to be lower in regression (1).

•	 Assuming that (B) is the correct specification, explain whether the 
standard errors in regression (1) are valid estimates.

A6.2
Does the omission of total household expenditure or household size give rise 
to omitted variable bias in your CES regressions?

Regress LGCATPC (1) on both LGEXPPC and LGSIZE, (2) on LGEXPPC only, 
and (3) on LGSIZE only. Assuming that (1) is the correct specification, 
analyze the likely direction of the bias in the estimate of the coefficient of 
LGEXPPC in (2) and that of LGSIZE in (3). Check whether the regression 
results are consistent with your analysis.

A6.3
A researcher has the following data for 40 cities in the United Kingdom for 
the year 2002: T, annual total sales of cinema tickets per household, and 
P, the average price of a cinema ticket in the city. She believes that the true 
relationship is

	 log T = β1 + β2log P + β3log Y + u

where Y is average household income, but she lacks data on Y and fits the 
regression (standard errors in parentheses):
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	  ˆlogT  =	 13.74 +	 0.17 log P						      R2 = 0.01

				    (0.52)		 (0.23)

Explain analytically whether the slope coefficient is likely to be biased. 
You are told that if the researcher had been able to obtain data on Y, her 
regression would have been

	  ˆlogT  =	 –1.63 –	 0.48 log P +	1.83 log Y		  R2 = 0.44

				    (2.93)		 (0.21)			  (0.35)

You are also told that Y and P are positively correlated.

The researcher is not able to obtain data on Y but, from local authority 
records, she is able to obtain data on H, the average value of a house in 
each city, and she decides to use it as a proxy for Y. She fits the following 
regression (standard errors in parentheses):

	  ˆlogT  =	 –0.63 –	 0.37 log P +	1.69 log H		  R2 = 0.36

				    (3.22)		 (0.22)			  (0.38)

Describe the theoretical benefits from using H as a proxy for Y, discussing 
whether they appear to have been obtained in this example.

A6.4
A researcher has data on years of schooling, S, weekly earnings in dollars, 
W, hours worked per week, H, and hourly earnings, E (computed as W/H) 
for a sample of 1755 white males in the United States in the year 2000. 
She calculates LW, LE, and LH as the natural logarithms of W, E, and H, 
respectively, and fits the following regressions, with the results shown in the 
table below (standard errors in parentheses; RSS = residual sum of squares):

•	 Column 1: a regression of LE on S.

•	 Column 2: a regression of LW on S and LH, and

•	 Column 3: a regression of LE on S and LH.

The correlation between S and LH is 0.06.

(1) (2) (3) (4) (5)

Respondents All All All FT PT

Dependent variable LE LW LE LW LW

S
0.099

(0.006)

0.098

(0.006)

0.098

(0.006)

0.101

(0.006)

0.030

(0.049)

LH –
1.190

(0.065)

0.190

(0.065)

0.980

(0.088)

0.885

(0.325)

constant
6.111

(0.082)

5.403

(0.254)

5.403

(0.254)

6.177

(0.345)

7.002

(1.093)

RSS 741.5 737.9 737.9 626.1 100.1

observations 1755 1755 1755 1669 86

•	 Explain why specification (1) is a restricted version of specification (2), 
stating and interpreting the restriction.

•	 Supposing the restriction to be valid, explain whether you expect 
the coefficient of S and its standard error to differ, or be similar, in 
specifications (1) and (2).

•	 Supposing the restriction to be invalid, how would you expect the 
coefficient of S and its standard error to differ, or be similar, in 
specifications (1) and (2)?
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•	 Perform an F test of the restriction.

•	 Perform a t test of the restriction.

•	 Explain whether the F test and the t test could lead to different conclusions.

•	 At a seminar, a commentator says that part-time workers tend to be 
paid worse than full-time workers and that their earnings functions 
are different. Defining full-time workers as those working at least 35 
hours per week, the researcher divides the sample and fits the earnings 
functions for full-time workers (column 4) and part-time workers 
(column 5). Test whether the commentator’s assertion is correct.

•	 What are the implications of the commentator’s assertion for the test of 
the restriction?

A6.5
A researcher investigating whether government expenditure tends to 
crowd out investment has data on government recurrent expenditure, G, 
investment, I, and gross domestic product, Y, all measured in US$ billion, 
for 30 countries in 2005. She fits two regressions (standard errors in 
parentheses; t statistics in square brackets; RSS = residual sum of squares).

(1)	A regression of log I on log G and log Y:

	
 ˆlogI 	 =	 –2.44 –	  0.63 log G +	 1.60 log Y			   R2 = 0.98	 (1)

				    (0.26)		 (0.12)				   (0.12)					    RSS = 0.90

				    [9.42]		 [–5.23]			   [12.42]

(2) a regression of 







Y
Ilog  on 








Y
Glog 	

	

ˆ

log 







Y
I

	 =	 2.65 –	0.63 







Y
Glog 							       R2 = 0.48	 (2)

					     (0.23)		 (0.12)									        RSS = 0.99

					     [11.58]	 [–5.07]

	 The correlation between log G and log Y in the sample is 0.98. The 

	 table gives some further basic data on log G, log Y, and 







Y
Glog .

	

sample mean
mean square 

deviation

log G 3.75 2.00

log Y 5.57 1.95









Y
Glog –1.81 0.08

•	 Explain why the second specification is a restricted version of the first. 
State the restriction.

•	 Perform a test of the restriction.

•	 The researcher expected the standard error of the coefficient of 

	 







Y
Glog  in (2) to be smaller than the standard error of the coefficient 

	 of log G in (1). Explain why she expected this.

•	 However the standard error is the same, at least to two decimal places. 
Give an explanation.

•	 Show how the restriction could be tested using a t test in a 
reparameterised version of the specification for (1).
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A6.6
Is expenditure per capita on your CES category related to total household 
expenditure per capita?

The model specified in Exercise A4.2 is a restricted version of that in 
Exercise A4.1. Perform an F test of the restriction. Also perform a t test of 
the restriciton.

[A4.2: regress LGCATPC on LGEXPPC; A4.1: regress LGCAT on LGEXP and 
LGSIZE.]

A6.7
A researcher is considering two regression specifications:

	 uXY ++= loglog 21 bb 	 (1)

and 

	 uX
X
Y

++= loglog 21 aa 	 (2)

where u is a disturbance term. 	Determine whether (2) is a 
reparameterised or a restricted version of (1).

A6.8
Three researchers investigating the determinants of hourly earnings have 
the following data for a sample of 104 male workers in the United States 
in 2006: E, hourly earnings in dollars; S, years of schooling; NUM, score 
on a test of numeracy; and VERB, score on a test of literacy. The NUM 
and VERB tests are marked out of 100. The correlation between them is 
0.81. Defining LGE to be the natural logarithm of E, Researcher 1 fits the 
following regression (standard errors in parentheses; RSS = residual sum 
of squares):
 EGL ˆ 	 =	 2.02	 +	 0.063 S	 +	 0.0044 NUM	+	 0.0026 VERB

			   (1.81)		 (0.007)		  (0.0011)			  (0.0010)

Researcher 2 defines a new variable SCORE as the average of NUM and 
VERB. She fits the regression
 EGL ˆ 	 =	 1.72	 +	 0.050 S	 +	 0.0068 SCORE					     RSS = 2,045

			   (1.78)		 (0.005)		  (0.0010)

Researcher 3 fits the regression
 EGL ˆ 	 =	 2.02	 +	 0.063 S	 +	 0.0088 SCORE	 –	 0.0018 VERB	

			   (1.81)		 (0.007)		  (0.0022)				   (0.0012)

•	 Show that the specification of Researcher 2 is a restricted version of the 
specification of Researcher 1, stating the restriction.

•	 Perform an F test of the restriction.

•	 Show that the specification of Researcher 3 is a reparameterised version 
of the specification of Researcher 1 and hence perform a t test of the 
restriction in the specification of Researcher 2.

•	 Explain whether the F test in (b) and the t test in (c) could have led to 
different results.

•	 Perform a test of the hypothesis that the numeracy score has a greater 
effect on earnings than the literacy score.

•	 Compare the regression results of the three researchers.

RSS = 2,000

RSS = 2,000
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A6.9
It is assumed that manufacturing output is subject to the production 
function

	 	 (1)

where Q is output and K and L are capital and labour inputs. The cost of 
production is

	 C = ρK + wL	 (2)

where ρ is the cost of capital and w is the wage rate. It can be shown that, 
if the cost is minimised, the wage bill wL will be given by the relationship

	  constant	 (3)

(Note: You are not expected to prove this.)

A researcher has annual data for 2002 for Q, K, L, ρ, and w (all monetary 
measures being converted into US$) for the manufacturing sectors of 30 
industrialised countries and regresses log wL on log Q, log ρ, and log w.

•	 Demonstrate that relationship (3) embodies a testable restriction and 
show how the model may be reformulated to take advantage of it.

•	 Explain how the restriction could be tested using an F test.

•	 Explain how the restriction could be tested using a t test.

•	 Explain the theoretical benefits of making use of a valid restriction. 
How could the researcher assess whether there are any benefits in 
practice, in this case?

•	 At a seminar, someone suggests that it is reasonable to hypothesise that 
manufacturing output is subject to constant returns to scale, so that 
α + β = 1. Explain how the researcher could test this hypothesis (1) 
using an F test, (2) using a t test.

A6.10
A researcher hypothesises that the net annual growth of private sector 
purchases of government bonds, B, is positively related to the nominal 
rate of interest on the bonds, I, and negatively related to the rate of price 
inflation, P:

	 uPIB +++= 321 bbb

where u is a disturbance term. The researcher anticipates that β2 > 0 and 
β3 < 0. She also considers the possibility that B depends on the real rate of 
interest on the bonds, R, where R = I – P. Using a sample of observations 
for 40 countries, she regresses B

(1)	on I and P,

(2)	on R,

(3)	on I, and

(4)	on P and R,

with the results shown in the corresponding columns of the table below 
(standard errors in parentheses; RSS is the residual sum of squares). The 
correlation coefficient for I and P was 0.97.
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(1) (2) (3) (4)

I
2.17

(1.04)
—

0.69

(0.25)
—

P
–3.19

(2.17)
— —

–1.02

(1.19)

R —
1.37

(0.44)
—

2.17

(1.04)

constant
–5.14

(2.62)

–3.15

(1.21)

–1.53

(0.92)

–5.14

(2.62)

R2 0.22 0.20 0.17 0.22

RSS 967.9 987.1 1024.3 967.9

•	 Explain why the researcher was dissatisfied with the results of 
regression (1).

•	 Demonstrate that specification (2) may be considered to be a restricted 
version of specification (1).

•	 Perform an F test of the restriction, stating carefully your null 
hypothesis and conclusion.

•	 Perform a t test of the restriction.

•	 Demonstrate that specification (3) may also be considered to be a 
restricted version of specification (1).

•	 Perform both an F test and a t test of the restriction in specification (3), 
stating your conclusion in each case.

•	 At a seminar, someone suggests that specification (4) is also a restricted 
version of specification (1). Is this correct? If so, state the restriction.

•	 State, with an explanation, which would be your preferred 
specification.

Answers to the starred exercises in the textbook

6.4
The table gives the results of multiple and simple regressions of LGFDHO, 
the logarithm of annual household expenditure on food eaten at home, 
on LGEXP, the logarithm of total annual household expenditure, and 
LGSIZE, the logarithm of the number of persons in the household, using 
a sample of 868 households in the 1995 Consumer Expenditure Survey. 
The correlation coefficient for LGEXP and LGSIZE was 0.45. Explain the 
variations in the regression coefficients.

(1) (2) (3)

LGEXP 0.29 0.48
 –

(0.02) (0.02)

LGSIZE 0.49
–

0.63

(0.03) (0.02)

constant 4.72 3.17 7.50

(0.22) (0.24) (0.02)

R2 0.52 0.31 0.42
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Answer: 

If the model is written as

	 LGFDHO = β1 + β2LGEXP + β3LGSIZE + u,

the expected value of b2 in the second regression is given by
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We know that the covariance is positive because the correlation is positive, 
and it is reasonable to suppose that β3 is also positive, especially given 
the highly significant positive estimate in the first regression, and so b2 
is biased upwards. This accounts for the large increase in its size in the 
second regression. In the third regression,
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β2 is certainly positive, especially given the highly significant positive 
estimate in the first regression, and so b3 is also biased upwards. As a 
consequence, the estimate in the third regression is greater than that in 
the first.

6.7
A social scientist thinks that the level of activity in the shadow economy, 
Y, depends either positively on the level of the tax burden, X, or negatively 
on the level of government expenditure to discourage shadow economy 
activity, Z. Y might also depend on both X and Z. International cross-
section data on Y, X, and Z, all measured in US$ million, are obtained 
for a sample of 30 industrialised countries and a second sample of 30 
developing countries. The social scientist regresses (1) log Y on both log X 
and log Z, (2) log Y on log X alone, and (3) log Y on log Z alone, for each 
sample, with the following results (standard errors in parentheses):

Industrialised Countries Developing Countries

(1) (2) (3) (1) (2) (3)

log X
0.699

(0.154)

0.201

(0.112)
—

0.806

(0.137)

0.727

(0.090)
—

log Z
–0.646

(0.162)
—

–0.053

(0.124)

–0.091

(0.117)
—

0.427

(0.116)

constant
–1.137

(0.863)

–1.065

(1.069)

1.230

(0.896)

–1.122

(0.873)

–1.024

(0.858)

2.824

(0.835)

R2 0.44 0.10 0.01 0.71 0.70 0.33

X was positively correlated with Z in both samples. Having carried out 
the appropriate statistical tests, write a short report advising the social 
scientist how to interpret these results.

Answer: One way to organise an answer to this exercise is, for each 
sample, to consider the evidence for and against each of the three 
specifications in turn. The t statistics for the slope coefficients are given 
in the following table. * indicates significance at the 5 per cent level, 
** at the 1 per cent level, and *** at the 0.1 per cent level, using one-
sided tests. (Justification for one-sided tests: one may rule out a negative 
coefficient for X and a positive one for Y.)
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Industrialised Countries Developing Countries

(1) (2) (3) (1) (2) (3)

log X 4.54*** 1.79* — 5.88*** 8.08*** —

log Z –3.99*** — –0.43 –0.78 — 3.68***

Industrialised countries:

The first specification is clearly the only satisfactory one for this sample, 
given the t statistics. Writing the model as

	 log Y = β1 + β2log X + β3log Z + u,

in the second specification
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Anticipating that β3 is negative, and knowing that X and Z are positively 
correlated, the bias term should be negative. The estimate of β2 is indeed 
lower in the second specification. In the third specification, 
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and the bias should be positive, assuming β2 is positive. b3 is indeed less 
negative than in the first specification.

Note that the sum of the R2 statistics for the second and third specifications 
is less than R2 in the first. This is because the bias terms undermine 
the apparent explanatory power of X and Z in the second and third 
specifications. In the third specification, the bias term virtually neutralises 
the true effect and R2 is very low indeed.

Developing countries:

In principle the first specification is acceptable. The failure of the 
coefficient of Z to be significant might be due to a combination of a weak 
effect of Z and a relatively small sample.

The second specification is also acceptable since the coefficient of Z and its 
t statistic in the first specification are very low. Because the t statistic of Z 
is low, R2 is virtually unaffected when it is omitted.

The third specification is untenable because it cannot account for the 
highly significant coefficient of X in the first. The omitted variable bias is 
now so large that it overwhelms the negative effect of Z with the result 
that the estimated coefficient is positive.

6.10
A researcher has data on output per worker, Y, and capital per worker, K, 
both measured in thousands of dollars, for 50 firms in the textiles industry 
in 2001. She hypothesises that output per worker depends on capital 
per worker and perhaps also the technological sophistication of the firm, 
TECH:

	 Y	 = β1 + β2K + β3 TECH + u
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where u is a disturbance term. She is unable to measure TECH and decides 
to use expenditure per worker on research and development in 2001, 
R&D, as a proxy for it. She fits the following regressions (standard errors 
in parentheses):

	 Ŷ 	 =	 1.02 +	 0.32 K						      R2=0.749

			   (0.45)		 (0.04)

	 Ŷ 	 =	 0.34 +	 0.29K +	 0.05 R&D		 	 R2=0.750

			   (0.61)		 (0.22)		 (0.15)

The correlation coefficient for K and R&D is 0.92. Discuss these regression 
results

1.	 assuming that Y does depend on both K and TECH.

2.	 assuming that Y depends only on K.

Answer: 

If Y depends on both K and TECH, the first specification is subject to 
omitted variable bias, with the expected value of b2 being given by
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Since K and R&D have a high positive correlation, it is reasonable to 
assume that K and TECH are positively correlated. It is also reasonable 
to assume that β3 is positive. Hence one would expect b2 to be biased 
upwards. It is indeed greater than in the second equation, but not by 
much. The second specification is clearly subject to multicollinearity, 
with the consequence that, although the estimated coefficients remain 
unbiased, they are erratic, this being reflected in large standard errors. The 
large variance of the estimate of the coefficient of K means that much of 
the difference between it and the estimate in the first specification is likely 
to be purely random, and this could account for the fact that the omitted 
variable bias appears to be so small.

If Y depends only on K, the inclusion of R&D in the second specification 
gives rise to inefficiency. Since the standard errors in both equations 
remain valid, they can be compared and it is evident that the loss of 
efficiency is severe. As expected in this case, the coefficient of R&D is 
not significantly different from zero and the increase in R2 in the second 
specification is minimal.

6.13
The first regression shows the result of regressing LGFDHO, the logarithm 
of annual household expenditure on food eaten at home, on LGEXP, 
the logarithm of total annual household expenditure, and LGSIZE, the 
logarithm of the number of persons in the household, using a sample of 
868 households in the 1995 Consumer Expenditure Survey. In the second 
regression, LGFDHOPC, the logarithm of food expenditure per capita 
(FDHO/SIZE), is regressed on LGEXPPC, the logarithm of total expenditure 
per capita (EXP/SIZE). In the third regression LGFDHOPC is regressed on 
LGEXPPC and LGSIZE.
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1.	 Explain why the second model is a restricted version of the first, stating 
the restriction.

2.	 Perform an F test of the restriction.

3.	 Perform a t test of the restriction.

4.	 Summarise your conclusions from the analysis of the regression results.

Answer:

Write the first specification as

	 uLGSIZELGEXPLGFDHO +++= 321 bbb .
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Then the restriction implicit in the second specification is β3 = 1 – β2, for 
then

	 LGFDHO = β1 + β2LGEXP + (1 – β2)LGSIZE + u

	 LGFDHO – LGSIZE = β1 + β2(LGEXP – LGSIZE) + u

	 u
SIZE
EXP

SIZE
FDHO

++= loglog 21 bb

	 LGFDHOPC = β1 + β2LGEXPPC + u,

the last equation being the second specification. The F statistic for the null 
hypothesis H0: β3 = 1 – β2 is

	

The critical value of F(1,865) at the 0.1 per cent level is 10.9, and hence 
the restriction is rejected at that significance level. This is not a surprising 
result, given that the estimates of β2 and β3 in the unrestricted specification 
were 0.29 and 0.49, respectively, their sum being well short of 1, as 
implied by the restriction.

Alternatively, we could use the t test approach. The restriction may be 
written 0132 =−+ bb  and hence our test statistic is 132 −+= bbθ . From 
this we obtain 123 +−= bθb . Substituting for β3, the unrestricted version 
may be rewritten

	 ( ) uLGSIZELGEXPLGFDHO ++−++= 1221 bθbb .

Hence

	 LGFDHO – LGSIZE = β1 + β2(LGEXP – LGSIZE) + β LGSIZE + u,

that is,

	 LGFDHOPC = β1 + β2LGEXPPC + β LGSIZE + u.

We use a t test to see if the coefficient of LGSIZE is significantly different 
from zero. If it is not, we can drop the LGSIZE term and we conclude that 
the restricted specification is an adequate representation of the data. If it 
is, we have to stay with the unrestricted specification. From the output for 
the third regression, we see that t is –8.96 and hence the null hypothesis 
H0: β2 + β3 – 1 = 0 is rejected (critical value of t at the 0.1 per cent level 
is 3.31). Note that the t statistic is the square root of the F statistic and the 
critical value of t at the 0.1 per cent level is the square root of the critical 
value of F.

Answers to the additional exercises

A6.1
•	 Assuming that (A) is the correct specification, explain, with a 

mathematical proof, whether you would expect the coefficient of log Y to 
be greater in regression (2).

	 To simplify the algebra, throughout this answer log B, log Y, log S and 
log IQ will be written as B, Y, S and IQ, it being understood that these 
are logarithms.
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.

	 Hence

	

	 assuming that Y and IQ are nonstochastic. Thus b2 is biased, the 
direction of the bias depending on the signs of β3 and 

	 . We would expect the former to be positive and we 

	 expect the latter to be positive since we are told that the correlation 
between S and Y is positive and S is a proxy for IQ. So we would expect 
an upward bias in regression (2).

•	 Assuming that (A) is the correct specification, describe the various benefits 
from using log S as a proxy for log IQ, as in regression (1), if log S is a 
good proxy.

	 The use of S as a proxy for IQ will alleviate the problem of omitted 
variable bias. In particular, comparing the results of regression (1) with 
those that would have been obtained if B had been regressed on Y and 
IQ:

the coefficient of Y will be approximately the same

its standard error will be approximately the same

the t statistic for S will be approximately equal to that of IQ 

R2 will be approximately the same 

•	 Explain whether the low value of R2 in regression (1) implies that log S is 
not a good proxy.

	 Not necessarily. It could be that S is a poor proxy for IQ, but it could 
also be that the original model had low explanatory power.

•	 Assuming that (A) is the correct specification, provide an explanation 
of why the coefficients of log Y and log S in regression (1) are not 
significantly different from zero, using two-sided t tests.

	 The high correlation between Y and S has given rise to 
multicollinearity, the standard errors being so large that the coefficients 
are not significantly different from zero.
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•	 Discuss whether the researcher would be justified in using one-sided t tests 
in regression (1).

	 Yes. It is reasonable to suppose that expenditure on books should 
not be negatively influenced by either income or cognitive ability. 
(Note that one should not say that it is reasonable to suppose that 
expenditure on books is positively influenced by them. This rules out 
the null hypothesis.)

•	 Assuming that (B) is the correct specification, explain whether you would 
expect the coefficient of log Y to be lower in regression (1).

	 No. It would be randomly higher or lower, if S is an irrelevant variable.

•	 Assuming that (B) is the correct specification, explain whether the 
standard errors in regression (1) are valid estimates.

	 Yes. The inclusion of an irrelevant variable in general does not 
invalidate the standard errors. It causes them to be larger than those in 
the correct specification.

A6.2
The output below gives the results of a simple regression of LGFDHOPC 
on LGSIZE. See Exercise A5.2 for the simple regression of LGFDHOPC on 
LGEXPPC and Exercise A5.3 for the multiple regression of LGFDHOPC on 
LGEXPPC and LGSIZE.

If the model is written as

	 LGFDHOPC = β1 + β2LGEXPPC + β3LGSIZE + u,

the expected value of b2 in the second regression is given by
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We know that the numerator of the second factor in the bias term is 
negative because the correlation is negative:
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It is reasonable to suppose that economies of scale will cause β3 to be 
negative, and the highly significant negative estimate in the multiple 
regression provides empirical support, so b2 is biased upwards. This 
accounts for the increase in its size in the second regression. In the third 
regression,
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β2 is certainly positive, especially given the highly significant positive 
estimate in the first regression, and so b3 is biased downwards. As a 
consequence, the estimate in the third regression is lower than that in the 
first.

Similar results are obtained for the other categories of expenditure. The 
correlation between LGEXPPC and LGSIZE varies because the missing 
observations are different for different categories, but it is always at least 
–0.4.

Omitted variable bias, dependent variable LGCATPC

Multiple regression Simple regressions

n LGEXPPC LGSIZE LGEXPPC LGSIZE

FDHO 868 0.2867 –0.2278 0.3763 –0.3697

FDAW 827 1.4164 0.2230 1.3203 –0.5293

HOUS 867 1.0384 –0.1566 1.1006 –0.6731

TELE 858 0.4923 –0.3537 0.6312 –0.5955

DOM 454 0.8786 0.2084 0.7977 –0.1564

TEXT 482 0.9543 –0.1565 1.0196 –0.6386

FURN 329 0.6539 –0.4622 0.8560 –0.8142

MAPP 244 0.5136 –0.4789 0.7572 –0.8007

SAPP 467 0.7223 –0.5076 0.9481 –0.8840

CLOT 847 1.1138 0.3502 0.9669 –0.2236

FOOT 686 0.6992 –0.0813 0.7339 –0.4515

GASO 797 0.6770 –0.0785 0.7107 –0.4491

TRIP 309 1.0563 –0.3570 1.2434 –0.9050

LOCT 172 –0.0141 –0.5429 0.1993 –0.5367

HEAL 821 0.6612 –0.5121 0.8629 –0.8229

ENT 824 1.4679 0.3771 1.3069 –0.4213

FEES 676 1.7907 0.4286 1.5884 –0.6093

TOYS 592 0.9522 0.0054 0.9497 –0.5498

READ 764 0.9652 –0.4313 1.1532 –0.9210

EDUC 288 1.2243 –0.1707 1.2953 –0.9835

TOB 368 0.4329 –0.5379 0.6646 –0.7917

A6.3
•	 Explain analytically whether the slope coefficient is likely to be biased.

If the fitted model is

	  ˆlogT =b1 + b2log P,



20 Elements of econometrics

124

then 
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provided that any random component of log P is distributed independently 
of u. Since it is reasonable to assume b3 > 0, and since we are told that Y 
and P are positively correlated, the bias will be upwards. This accounts for 
the nonsensical positive price elasticity in the fitted equation.

•	 Describe the theoretical benefits from using H as a proxy for Y, discussing 
whether they appear to have been obtained in this example.

Suppose that H is a perfect proxy for Y:

	 log Y = λ + μlog H

Then the relationship may be rewritten

	 log T = β1 + β3λ + β2log P + β3 μlog H + u

The coefficient of log P ought to be the same as in the true relationship. 
However in this example it is not the same. However it is of the right 
order of magnitude and much more plausible than the estimate in the first 
regression. The standard error of the coefficient ought to be the same as in 
the true relationship, and this is the case.

The coefficient of log H will be an estimate of β3 μ, and since μ is unknown, 
β3 is not identified. However, if it can be assumed that the average 
household income in a city is proportional to average house values, it 
could be asserted that μ is equal to 1, in which case the coefficient of log 
H will be a direct estimate of β3 after all. The coefficient of log H is indeed 
quite close to that of log Y. The t statistic for the coefficient of log H ought 
to be the same as that for log Y, and this is approximately true, being a 
little lower. R2 ought to be the same, but it is somewhat lower, suggesting 
that H appears to have been a good proxy, but not a perfect one.

A6.4
•	 Explain why specification (1) is a restricted version of specification (2), 

stating and interpreting the restriction.

	 First note that, since E = W/H, LE = log(W/H) = LW – LH.

	 Write specification (2) as

	 .
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	 If one imposes the restriction β3 = 1, the model becomes specification 
(1):

	 LW – LH = β1 + β2S + u.

	 The restriction implies that weekly earnings are proportional to hours 
worked, controlling for schooling.

•	 Supposing the restriction to be valid, explain whether you expect 
the coefficient of S and its standard error to differ, or be similar, in 
specifications (1) and (2).

	 If the restriction is valid, the coefficient of S should be similar in the 
restricted specification (1) and the unrestricted specification (2). Both 
estimates will be unbiased, but that in specification (1) will be more 
efficient. The gain in efficiency in specification (1) should be reflected 
in a smaller standard error. However, the gain will be small, given the 
low correlation.

•	 Supposing the restriction to be invalid, how would you expect the 
coefficient of S and its standard error to differ, or be similar, in 
specifications (1) and (2)?

	 The estimate of the coefficient of S would be biased. The standard error 
in specification (1) would be invalid and so a comparison with the 
standard error in specification (2) would be illegitimate.

•	 Perform an F test of the restriction.

	 The null and alternative hypotheses are H1: β3 = 1 and H1: β3 ≠ 1.

.

	 The critical value of F(1,1000) at the 1 per cent level is 6.66. The 
critical value of F(1,1752) must be lower. Thus we reject the restriction 
at the 1 per cent level. (The critical value at the 0.1 per cent level is 
about 10.8.)

•	 Perform a t test of the restriction.

	 The restriction is so simple that it can be tested with no 
reparameterisation: a simple t test on the coefficient of LH in 
specification (2), H0: β3 = 1.

	 Alternatively, mechanically following the standard procedure, we 
rewrite the restriction as β3 – 1 = 0. The reparameterisation will be 

	 β = β3 – 1

	 and so

	 β3 = β + 1

	 Substituting this into the unrestricted specification, the latter may be 
rewritten

	 .

	 Hence

	 .

	 This is regression specification (3) and the restriction may be tested 
with a t test on the coefficient of LH, the null hypothesis being H0: β = 
β3 – 1 = 0. The t statistic is 2.92, which is significant at the 1 per cent 
level, implying that the restriction should be rejected.

55.8
1752/9.737

1/)9.7375.741()1752,1( =
−

=F
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•	 Explain whether the F test and the t test could lead to different 
conclusions.

The tests must lead to the same conclusion since the F statistic is the 
square of the t statistic and the critical value of F is the square of the 
critical value of t.

•	 At a seminar, a commentator says that part-time workers tend to be 
paid worse than full-time workers and that their earnings functions are 
different. Defining full-time workers as those working at least 35 hours 
per week, the researcher divides the sample and fits the earnings functions 
for full-time workers (column 4) and part-time workers (column 5). Test 
whether the commentator’s assertion is correct.

The appropriate test is a Chow test. The test statistic under the null 
hypothesis of no difference in the earnings functions is

	
.

The critical value of F(3,1000) at the 0.1 per cent level is 5.46. Hence 
we reject the null hypothesis and conclude that the commentator is 
correct.

•	 What are the implications of the commentator’s assertion for the test of 
the restriction?

The elasticity of LH is now not significantly different from 1 for either 
full-time or part-time workers, so the restriction is no longer rejected.

A6.5
•	 Explain why the second specification is a restricted version of the first. 

State the restriction.

	 Write the second equation as

	
u

Y
G

Y
I

+





+= loglog 21 bb .

	 It may be re-written as

	 ( ) uYGI +−++= log1loglog 221 bbb .

	 This is a special case of the specification of the first equation,

	 uYGI +++= logloglog 321 bbb

	 with the restriction 23 1 bb −= .	

•	 Perform a test of the restriction.

	 The null hypothesis is H0: 132 =+ bb . The test statistic is 

	
.

	 The critical value of F(1, 27) is 4.21 at the 5 per cent level. Hence we 
do not reject the null hypothesis that the restriction is valid.
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•	 The researcher expected the standard error of the coefficient of 







Y
Glog  in 

	 (2) to be smaller than the standard error of the coefficient of log G in (1). 
Explain why she expected this.

	 The imposition of the restriction, if valid, should lead to a gain in 
efficiency and this should be reflected in lower standard errors. 

•	 However the standard error is the same, at least to two decimal places. Give 
an explanation.

	 The standard errors of the coefficients of G in (1) and G/Y in (2) are 
given by

	
2
,

2

1
1.

)(MSD YG

u

rGn
s

−
 and 

)/(MSD 

2

YGn
su

	 respectively, where 2
us  is an estimate of the variance of the disturbance 

term, n is the number of observations, MSD is the mean square deviation 
in the sample, and rG,Y is the sample correlation coefficient of G and Y. 
n is the same for both standard errors and su will be very similar. We are 
told that rG,Y = 0.98, so its square is 0.96 and the second factor in the 
expression for the standard error of G is (1/0.04) = 25. Hence, other 
things being equal, the standard error of G/Y should be much lower than 
that of G. However the table shows that the MSD of G/Y is only 1/25 as 
great as that of G. This just about exactly negates the gain in efficiency 
attributable to the elimination of the correlation between G and Y .

•	 Show how the restriction could be tested using a t test in a reparameterised 
version of the specification for (1).

	 Define 132 −+= bbθ , so that the restriction may be written 0=θ . Then 
123 +−= bθb . Use this to substitute for β3 in the unrestricted model: 

	

( ) uYG

uYGI

++−++=

+++=

log1log

logloglog

221

321

bθbb

bbb

.

	 Then

	 ( ) uYYGYI ++−+=− logloglogloglog 21 θbb

	 and

	
uY

Y
G

Y
I

++





+=






 loglog 21 θbb .

	 Hence the restriction may be tested by a t test of the coefficient of log Y 
in a regression using this specification.
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A6.6

Write the first specification as

	 uLGSIZELGEXPLGFDHO +++= 321 bbb .

Then the restriction implicit in the second specification is β3 = 1 – β2, for then

	 LGFDHO = β1 + β2LGEXP + (1 – β2)LGSIZE + u

	 LGFDHO – LGSIZE = β1 + β2(LGEXP – LGSIZE) + u

	
u

SIZE
EXP

SIZE
FDHO

++= loglog 21 bb

	 LGFDHOPC = β1 + β2LGEXPPC + u,

the last equation being the second specification. The F statistic for the null 
hypothesis H0: β3 = 1 – β2 is

	

The critical value of F(1,865) at the 0.1 per cent level is 10.9, and hence the 
restriction is rejected at that significance level. This is not a surprising result, 
given that the estimates of β2 and β3 in the unrestricted specification were 
0.29 and 0.49, respectively, their sum being well short of 1, as implied by the 
restriction.

Summarising the results of the test for all the categories, we have:

•	 Restriction rejected at the 1 per cent level: FDHO, FDAW, HOUS, TELE, 
FURN, MAPP, SAPP, CLOT, HEAL, ENT, FEES, READ, TOB.

•	 Restriction rejected at the 5 per cent level: TRIP, LOCT.
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•	 Restriction not rejected at the 5 per cent level: DOM, TEXT, FOOT, 
GASO, TOYS, EDUC.

n RSS restricted RSS unrestricted F t

FDHO 868 142.29 130.22 80.18 –8.96

FDAW 827 608.05 597.61 14.39 3.79

HOUS 867 502.08 496.41 9.87 –3.14

TELE 858 380.59 351.81 69.94 –8.36

DOM 454 1325.21 1319.71 1.88 1.37

TEXT 482 560.37 557.55 2.42 –1.56

FURN 329 697.33 681.45 7.60 –2.76

MAPP 244 291.76 280.41 9.75 –3.12

SAPP 467 522.31 493.39 27.20 –5.22

CLOT 847 686.45 659.59 34.37 5.86

FOOT 686 589.34 588.21 1.31 –1.14

GASO 797 366.92 365.73 2.58 –1.60

TRIP 309 527.42 517.96 5.59 –2.36

LOCT 172 450.92 433.51 6.79 –2.60

HEAL 821 1351.63 1294.03 36.41 –6.03

ENT 824 754.86 725.85 32.81 5.73

FEES 676 1145.09 1117.00 16.92 4.11

TOYS 592 809.01 809.01 0.00 0.05

READ 764 897.63 861.92 31.53 –5.61

EDUC 288 828.35 826.85 0.52 –0.72

TOB 368 385.63 360.58 25.36 –5.04

For the t test, we first rewrite the restriction as 0132 =−+ bb . The test 
statistic is therefore 132 −+= bbθ . This allows us to write 123 +−= bθb . 
Substituting for β3, the unrestricted version becomes

	 ( ) uLGSIZELGEXPLGFDHO ++−++= 1221 bθbb .

Hence the unrestricted version may be rewritten

	 ( ) uLGSIZELGSIZELGEXPLGSIZELGFDHO ++−+=− θbb 21

that is,

	 LGFDHOPC = β1 + β2LGEXPPC + θ LGSIZE + u.

We use a t test to see if the coefficient of LGSIZE is significantly different 
from 0. If it is not, we can drop the LGSIZE term and we conclude that the 
restricted specification is an adequate representation of the data. If it is, 
we have to stay with the unrestricted specification.

From the output for the third regression, we see that t is –8.96 and hence 
the null hypothesis H0: β2 + β3 – 1 = 0 is rejected (critical value of t at the 
0.1 per cent level is 3.31). Note that the t statistic is the square root of the 
F statistic and the critical value of t at the 0.1 per cent level is the square 
root of the critical value of F. The results for the other categories are 
likewise identical to those for the F test.
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A6.7
(2) may be rewritten

	 ( ) uXY +++= log1log 21 aa

so it is a reparameterised version of (1) with β1 = α1 and β2 = α2 + 1.

A6.8
•	 Show that the specification of Researcher 2 is a restricted version of the 

specification of Researcher 1, stating the restriction.

Let the model be written

uVERBNUMSLGE ++++= 4321 bbbb

The restriction is β4 = β3 since NUM and VERB are given equal weights 
in the construction of SCORE. Using the restriction, the model can be 
rewritten

	  ( )
.2 321

321

uSCORES
uVERBNUMSLGE

+++=
++++=

βββ
βββ

•	 Perform an F test of the restriction.

	 The null and alternative hypotheses are H0: β4 = β3 and H1: β4 ≠ β3. The 
F statistic is

	

	 The critical value of F(1,100) is 3.94 at the 5 per cent level. Hence we 
do not reject the restriction at the 5 per cent level.

•	 Show that the specification of Researcher 3 is a reparameterised version of 
the specification of Researcher 1 and hence perform a t test of the restriction 
in the specification of Researcher 2.

	 The restriction may be rewritten 034 =− bb . The test statistic is 
therefore 34 bbθ −= . Hence 34 bθb += . Substituting for β4 in the 
unrestricted model, one has

	  ( )
( )

.2 321

321

3321

uVERBSCORES
uVERBVERBNUMS

uVERBNUMSLGE

++++=
+++++=

+++++=

θβββ
θβββ

βθβββ
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	 This is the specification of Researcher 3. To test the hypothesis that the 
restriction is valid, we perform a t test on the coefficient of VERB. The 
t statistic is –1.5, so we do not reject the restriction at the 5 per cent 
level.

•	 Explain whether the F test in (b) and the t test in (c) could have led to 
different results.

	 No, the F test and the t test must give the same result because the F 
statistic must be the square of the t statistic and the critical value of F 
must be the square of the critical value of t for any given significance 
level. Note that this assumes a two-sided t test. If one is in a position to 
perform a one-sided test, the t test would be more powerful.

•	 Perform a test of the hypothesis that the numeracy score has a greater effect 
on earnings than the literacy score.

	 One should perform a one-sided t test on the coefficient of VERB in 
regression 3 with the null hypothesis H0: θ = 0 and the alternative 
hypothesis H1: θ < 0. The null hypothesis is not rejected and hence one 
concludes that there is no significant difference.

•	 Compare the regression results of the three researchers.

	 The regression results of Researchers 1 and 3 are equivalent, the 
only difference being that the coefficient of VERB provides a direct 
estimate of β4 in the specification of Researcher 1 and (β4 – β3) in the 
specification of Researcher 3. Assuming the restriction is valid, there 
is a large gain in efficiency in the estimation of β3 in specification (2) 
because its standard error is effectively 0.0005, as opposed to 0.0011 in 
specifications (1) and (3).

A6.9
•	 Demonstrate that relationship (3) embodies a testable restriction and 

show how the model may be reformulated to take advantage of it.

	 The coefficients of log ρ and log w sum to 1. Hence the model should 
be reformulated as

	

w
QL ρ

ba
a

ba
loglog1log

+
+

+
=

	 (4)

	 (plus a disturbance term).

•	 Explain how the restriction could be tested using an F test.

	 Let RSSU and RSSR be the residual sums of squares from the 
unrestricted and restricted regressions. To test the null hypothesis that 
the coefficients of log ρ and log w sum to 1, one should calculate the F 
statistic

	 6
6

	 and compare it with the critical values of F(1,26).

•	 Explain how the restriction could be tested using a t test.

	 Alternatively, writing (3) as an unrestricted model

	 	 (5)

	 the restriction is 0132 =−+ γγ . Define 132 −+= γγθ . Then 
123 +−= γθγ and the unrestricted model may be rewritten as
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	 .

	 Hence

	 .

	 Hence

	 uw
w

QL +++= loglogloglog 21 θργγ

	 Thus one should regress log L on log Q, log 
w
ρ

, and log w and perform 
a t test on the coefficient of log w.

•	 Explain the theoretical benefits of making use of a valid restriction. How 
could the researcher assess whether there are any benefits in practice, in 
this case?

	 The main theoretical benefit of making use of a valid restriction is that 
one obtains more efficient estimates of the coefficients. The use of a 
restriction would eliminate the problem of duplicate estimates of the 
same parameter. Reduced standard errors should provide evidence of 
the gain in efficiency.

•	 At a seminar, someone suggests that it is reasonable to hypothesise that 
manufacturing output is subject to constant returns to scale, so that a + 
b = 1. Explain how the researcher could test this hypothesis (1) using an 
F test, (2) using a t test.

	 Under the assumption of constant returns to scale, the model becomes 

	

wQ
L ρa loglog = .

	 (5)

	 One could test the hypothesis by computing the F statistic

	
7

7

	 where RSSU and RSSR are for the specifications in (4) and (5) 
respectively.

	 Alternatively, one could perform a simple t test of the hypothesis that 
the coefficient of log Q in (4) is equal to 1.

A6.10
•	 Explain why the researcher was dissatisfied with the results of regression 

(1).

	 The high correlation between I and P has given rise to a problem of 
multicollinearity. The standard errors are relatively large and the t 
statistics low.

•	 Demonstrate that specification (2) may be considered to be a restricted 
version of specification (1).

	 The restriction is β3 = –β2. Imposing it, we have

	

.21

221

321

uR
uPI
uPIB

++=
+−+=
+++=

ββ
βββ
βββ
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•	 Perform an F test of the restriction, stating carefully your null hypothesis 
and conclusion.

	 The null hypothesis is H0: β3 = –β2. The test statistic is

	
.

	 The null hypothesis is not rejected at any significance level since F < 1.

•	 Perform a t test of the restriction

	 The unrestricted specification may be rewritten

 	

( )
( ) uRP

uPRP

uPIB

++++=

++++=

+++=

2321

321

321

bbbb

bbb

bbb

.

	 Thus a t test on the coefficient of P in this specification is a test of the 
restriction. The null hypothesis is not rejected, given that the t statistic 
is 0.86. Of course, the F statistic is the square of the t statistic and the 
tests are equivalent.

•	 Demonstrate that specification (3) may also be considered to be a 
restricted version of specification (1)

The restriction is β3 = 0.

•	 Perform both an F test and a t test of the restriction in specification (3), 
stating your conclusion in each case.

	

	 The critical value of F(1,37) at 5 per cent is approximately 4.08, so 
the null hypothesis that P does not influence B is not rejected. Of 
course, with t = –1.47, the t test, which is equivalent, leads to the same 
conclusion.

•	 At a seminar, someone suggests that specification (4) is also a restricted 
version of specification (1). Is this correct? If so, state the restriction.

	 No, it is not correct. As shown above, it is an alternative form of the 
unrestricted specification.

•	 State, with an explanation, which would be your preferred specification.

	 None of the specifications has been rejected. The second should be 
preferred because it should be more efficient than the unrestricted 
specification. The much lower standard error of the slope coefficient 
provides supportive evidence. The third specification should 
be eliminated on the grounds that price inflation ought to be a 
determinant.
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Chapter 7: Heteroscedasticity

Overview
This chapter begins with a general discussion of homoscedasticity and 
heteroscedasticity: the meanings of the terms, the reasons why the 
distribution of a disturbance term may be subject to heteroscedasticity, 
and the consequences of the problem for OLS estimators. It continues by 
presenting several tests for heteroscedasticity and methods of alleviating 
the problem. It shows how apparent heteroscedasticty may be caused 
by model misspecification. It concludes with a description of the use of 
heteroscedasticity-consistent standard errors. 

Learning outcomes
After working through the corresponding chapter in the textbook, studying 
the corresponding slideshows, and doing the starred exercises in the 
textbook and the additional exercises in this guide, you should be able to:

•	 explain the concepts of homoscedasticity and heteroscedasticity

•	 describe how the problem of heteroscedasticity may arise

•	 explain the consequences of heteroscedasticity for OLS estimators, their 
standard errors, and t and F tests

•	 perform the Goldfeld–Quandt test for heteroscedasticity

•	 perform the White test for heteroscedasticity

•	 explain how the problem of heteroscedasticity may be alleviated

•	 explain why a mathematical misspecification of the regression model 
may give rise to a problem of apparent heteroscedasticity

•	 explain the use of heteroscedasticity-consistent standard errors.

Additional exercises

A7.1
Is the disturbance term in your CES expenditure function heteroscedastic?

Sort the data by EXPPC, regress CATPC on EXPPC and SIZE, and perform 
a Goldfeld–Quandt test to test for heteroscedasticity in the EXPPC 
dimension. Repeat using the variables in logarithmic form.

A7.2
The observations for the occupational schools (see Chapter 5 in the 
textbook) in the figure below suggest that a simple linear regression of 
cost on number of students, restricted to the subsample of these schools, 
would be subject to heteroscedasticity. Download the data set from the 
heteroscedastic data sets folder on the website and use a Goldfeld–
Quandt test to investigate whether this is the case. If the relationship is 
heteroscedastic, what could be done to alleviate the problem?
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A7.3
A researcher hypothesises that larger economies should be more self-
sufficient than smaller ones and that M/G, the ratio of imports, M, to gross 
domestic product, G, should be negatively related to G:

	 uG
G
M

++= 21 bb

with β2 < 0. Using data for a sample of 42 countries, with M and G 
both measured in US$ billion, he fits the regression (standard errors in 
parentheses):

	
 

G
M̂

	 =	 0.37 –	0.000086 G							       R2 = 0.12	 (1)

				    (0.03)	(0.000036)

He plots a scatter diagram, reproduced as Figure 7.1, and notices that the 

ratio 
G
M

 tends to have relatively high variance when G is small. He also 

plots a scatter diagram for M and G, reproduced as Figure 7.2. Defining 
GSQ as the square of G, he regresses M on G and GSQ:

	  M̂ 	=	 7.27 +	 0.30 G –	 0.000049 GSQ			   R2 = 0.86	 (2)

			   (10.77)	 (0.03)		 (0.000009)

Finally, he plots a scatter diagram for log M and log G, reproduced as 
Figure 3, and regresses log M on log G:

	  log M̂ 	=	 –0.14 +	 0.80 log G						      R2 = 0.78	 (3)

				    (0.37)		 (0.07)

Having sorted the data by G, he tests for heteroscedasticity by regressing 
specifications (1) – (3) first for the 16 countries with smallest G, and then 
for the 16 countries with the greatest G. RSS1 and RSS2, the residual sums 
of squares for these regressions, are summarised in the following table.

Specification RSS1 RSS2

(1) 0.53 0.21

(2) 3178 71404

(3) 3.45 3.60
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Figure 7.1

Figure 7.2

Figure 7.3
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•	 Discuss whether (1) appears to be an acceptable specification, given 
the data in the table and Figure 7.1.

•	 Explain what the researcher hoped to achieve by running regression 
(2).

•	 Discuss whether (2) appears to be an acceptable specification, given 
the data in the table and Figure 7.2.

•	 Explain what the researcher hoped to achieve by running regression 
(3).

•	 Discuss whether (3) appears to be an acceptable specification, given 
the data in the table and Figure 7.3.

•	 What are your conclusions concerning the researcher’s hypothesis?

A7.4
A researcher has data on the number of children attending, N, and annual 
recurrent expenditure, EXP, measured in US$, for 50 nursery schools in a 
US city for 2006 and hypothesises that the cost function is of the quadratic 
form

	 EXP	 = β1 + β2N + β3NSQ + u

where NSQ is the square of N, anticipating that economies of scale will 
cause β3 to be negative. He fits the following equation:

	
 
EXP̂ 	=	 17,999 +	1,060 N –	1.29 NSQ					    R2=0.74	 (1)

				    (12,908)	(133)		 (0.30) 

Suspecting that the regression was subject to heteroscedasticity, the 
researcher runs the regression twice more, first with the 19 schools with 
lowest enrolments, then with the 19 schools with the highest enrolments. 
The residual sums of squares in the two regressions are 8.0 million and 
64.0 million, respectively.

The researcher defines a new variable, EXPN, expenditure per student, as 
EXPN = EXP/N, and fits the equation

	
 
EXPNˆ  	 =	 1,080  –	 1.25 N +	16,114 NREC		  R2=0.65	 (2)

					     (90)		  (0.25)		 (6,000)

where NREC = 1/N. He again runs regressions with the 19 smallest 
schools and the 19 largest schools and the residual sums of squares are 
900,000 and 600,000.

•	 Perform a Goldfeld–Quandt test for heteroscedasticity on both of the 
regression specifications.

•	 Explain why the researcher ran the second regression.

•	 R2 is lower in regression (2) than in regression (1). Does this mean that 
regression (1) is preferable?

A7.5
This is a continuation of Exercise A6.5.

•	 When the researcher presents her results at a seminar, one of the 
participants says that, since I and G have been divided by Y, (2) is 
less likely to be subject to heteroscedasticity than (1). Evaluate this 
suggestion.
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A7.6
A researcher has data on annual household expenditure on food, F, and 
total annual household expenditure, E, both measured in dollars, for 400 
households in the United States for 2010. The scatter plot for the data is 
shown as Figure 7.4. The basic model of the researcher is

	 uEF ++= 21 bb 		  (1)

where u is a disturbance term. The researcher suspects heteroscedasticity 
and performs a Goldfeld–Quandt test and a White test. For the Goldfeld–
Quandt test, she sorts the data by size of E and fits the model for the 
subsample with the 150 smallest values of E and for the subsample 
with the 150 largest values. The residual sums of squares (RSS) for 
these regressions are shown in column (1) of the table. She also fits the 
regression for the entire sample, saves the residuals, and then fits an 
auxiliary regression of the squared residuals on E and its square. R2 for this 
regression is also shown in column (1) in the table. She performs parallel 
tests of heteroscedasticity for two alternative models:

	 v
A
E

AA
F

++= 21
1 bb 	 (2)

	 wEF ++= loglog 21 bb 	 (3)

A is household size in terms of equivalent adults, giving each adult a 
weight of 1 and each child a weight of 0.7. The scatter plot for AF /  and 

AE /  is shown as Figure 7.5, and that for log F and log E as Figure 7.6. 
The data for the heteroscedasticity tests for models (2) and (3) are shown 
in columns (2) and (3) of the table.

Specification (1) (2) (3)

Goldfeld–Quandt test

RSS smallest 150 200 million 40 million 20.0

RSS largest 150 820 million 240 million 21.0

White test

R2 from auxiliary regression 0.160 0.140 0.001

•	 Perform the Goldfeld–Quandt test for each model and state your 
conclusions.

•	 Explain why the researcher thought that model (2) might be an 
improvement on model (1).

•	 Explain why the researcher thought that model (3) might be an 
improvement on model (1).

•	 When models (2) and (3) are tested for heteroscedasticity using the 
White test, auxiliary regressions must be fitted. State the specification 
of this auxiliary regression for model (2).

•	 Perform the White test for the three models.

•	 Explain whether the results of the tests seem reasonable, given the 
scatter plots of the data.



20 Elements of econometrics

140

Figure 7.4
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A7.7
Explain what is correct, mistaken, confused or in need of further 
explanation in the following statements relating to heteroscedasticity in a 
regression model:

•	 ‘Heteroscedasticity occurs when the disturbance term in a regression 
model is correlated with one of the explanatory variables.’

•	 ‘In the presence of heteroscedasticity ordinary least squares (OLS) is an 
inefficient estimation technique and this causes t tests and F tests to be 
invalid.’

•	 ‘OLS remains unbiased but it is inconsistent.’

•	 ‘Heteroscedasticity can be detected with a Chow test.’

•	 ‘Alternatively one can compare the residuals from a regression using 
half of the observations with those from a regression using the other 
half and see if there is a significant difference. The test statistic is the 
same as for the Chow test.’

•	 ‘One way of eliminating the problem is to make use of a restriction 
involving the variable correlated with the disturbance term.’

•	 ‘If you can find another variable related to the one responsible for the 
heteroscedasticity, you can use it as a proxy and this should eliminate 
the problem.’

•	 ‘Sometimes apparent heteroscedasticity can be caused by a 
mathematical misspecification of the regression model. This can 
happen, for example, if the dependent variable ought to be logarithmic, 
but a linear regression is run.’

Answers to the starred exercises in the textbook

7.5
The following regressions were fitted using the Shanghai school cost data 
introduced in Section 6.1 (standard errors in parentheses):

	 	=	 24,000 +	339N										          R2 = 0.39

				    (27,000)	(50)

	 	=	 51,000 –	 4,000OCC +	152N +	 284NOCC	 R2 = 0.68.

				    (31,000)	(41,000)		 (60)		  (76)

where COST is the annual cost of running a school, N is the number of 
students, OCC is a dummy variable defined to be 0 for regular schools and 
1 for occupational schools, and NOCC is a slope dummy variable defined 
as the product of N and OCC. There are 74 schools in the sample. With 
the data sorted by N, the regressions are fitted again for the 26 smallest 
and 26 largest schools, the residual sums of squares being as shown in the 
table.

26 smallest 26 largest

First regression 7.8× 1010 54.4× 1010

Second regression 6.7× 1010 13.8× 1010

Perform a Goldfeld–Quandt test for heteroscedasticity for the two 
models and, with reference to Figure 5.5, explain why the problem of 
heteroscedasticity is less severe in the second model.
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Answer: 

For both regressions RSS will be denoted RSS1 for the 26 smallest schools 
and RSS2 for the 26 largest schools. In the first regression, RSS2/RSS1 
= (54.4× 1010)/(7.8× 1010) = 6.97. There are 24 degrees of freedom in 
each subsample (26 observations, 2 parameters estimated). The critical 
value of F(24,24) is approximately 3.7 at the 0.1 per cent level, and so we 
reject the null hypothesis of homoscedasticity at that level. In the second 
regression, RSS2/RSS1 = (13.8× 1010)/(6.7× 1010) = 2.06. There are 22 
degrees of freedom in each subsample (26 observations, 4 parameters 
estimated). The critical value of F(22,22) is 2.05 at the 5 per cent level, 
and so we (just) do not reject the null hypothesis of homoscedasticity at 
that significance level.

Why is the problem of heteroscedasticity less severe in the second 
regression? The figure in Exercise A7.2 reveals that the cost function is 
much steeper for the occupational schools than for the regular schools, 
reflecting their higher marginal cost. As a consequence the two sets of 
observations diverge as the number of students increases and the scatter is 
bound to appear heteroscedastic, irrespective of whether the disturbance 
term is truly heteroscedastic or not. The first regression takes no account 
of this and the Goldfeld–Quandt test therefore indicates significant 
heteroscedasticity. In the second regression the problem of apparent 
heteroscedasticity does not arise because the intercept and slope dummy 
variables allow separate implicit regression lines for the two types of 
school.

Looking closely at the diagram, the observations for the occupational 
schools exhibit a classic pattern of true heteroscedasticity, and this would 
be confirmed by a Goldfeld–Quandt test confined to the subsample of 
those schools (see Exercise A7.2). However the observations for the 
regular schools appear to be homoscedastic and this accounts for the fact 
that we did not (quite) reject the null hypothesis of homoscedasticity for 
the combined sample.

7.6
The file educ.dta in the heteroscedastic data sets folder on the website 
contains international cross-sectional data on aggregate expenditure on 
education, EDUC, gross domestic product, GDP, and population, POP, for 
a sample of 38 countries in 1997. EDUC and GDP are measured in US$ 
million and POP is measured in thousands. Download the data set, plot a 
scatter diagram of EDUC on GDP, and comment on whether the data set 
appears to be subject to heteroscedasticity. Sort the data set by GDP and 
perform a Goldfeld–Quandt test for heteroscedasticity, running regressions 
using the subsamples of 14 countries with the smallest and greatest GDP.

Answer: 

The figure plots expenditure on education, EDUC, and gross domestic 
product, GDP, for the 38 countries in the sample, measured in $ billion 
rather than $ million. The observations exhibit heteroscedasticity. Sorting 
them by GDP and regressing EDUC on GDP for the subsamples of 14 
countries with smallest and greatest GDP, the residual sums of squares for 
the first and second subsamples, denoted RSS1 and RSS2, respectively, are 
1,660,000 and 63,113,000, respectively. Hence

	

The critical value of F(12,12) at the 0.1 per cent level is 7.00, and so we 
reject the null hypothesis of homoscedasticity.
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Figure 7.7 Expenditure on education and GDP ($ billion)

7.9
Repeat Exercise 7.6, using the Goldfeld–Quandt test to investigate whether 
scaling by population or by GDP, or whether running the regression in 
logarithmic form, would eliminate the heteroscedasticity. Compare the results 
of regressions using the entire sample and the alternative specifications.

Answer: 

Dividing through by population, POP, the model becomes

	

POP
u

POP
GDP

POPPOP
EDUC

++= 21
1 bb

with expenditure on education per capita, denoted EDUCPOP, 
hypothesised to be a function of gross domestic product per capita, 
GDPPOP, and the reciprocal of population, POPREC, with no intercept. 
Sorting the sample by GDPPOP and running the regression for the 
subsamples of 14 countries with smallest and largest GDPPOP, RSS1 = 
56,541 and RSS2 = 1,415,515. Now

	

Thus the model is still subject to heteroscedasticity at the 0.1 per cent 
level. This is evident in Figure 7.8.

Figure 7.8 Expenditure on education per capita and GDP per capita ($ per capita)
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Figure 7.9 Expenditure on education as a proportion of GDP and the reciprocal of 
GDP (measured in $ billion)

Dividing through instead by GDP, the model becomes

	

GDP
u

GDPGDP
EDUC

++= 21
1 bb

with expenditure on education as a share of gross domestic product, 
denoted EDUCGDP, hypothesised to be a simple function of the reciprocal 
of gross domestic product, GDPREC, with no intercept. Sorting the sample 
by GDPREC and running the regression for the subsamples of 14 countries 
with smallest and largest GDPREC, RSS1 = 0.00413 and RSS2 = 0.00238. 
Since RSS2 is less than RSS1, we test for heteroscedasticity under the 
hypothesis that the standard deviation of the disturbance term is inversely 
related to GDPREC:

	
.

The critical value of F(12,12) at the 5 per cent level is 2.69, so we do not 
reject the null hypothesis of homoscedasticity. Could one tell this from 
Figure 7.9? It is a little difficult to say.

Finally, we will consider a logarithmic specification. If the true relationship 
is logarithmic, and homoscedastic, it would not be surprising that the 
linear model appeared heteroscedastic. Sorting the sample by GDP, RSS1 
and RSS2 are 2.733 and 3.438 for the subsamples of 14 countries with 
smallest and greatest GDP. The F statistic is

	

Thus again we would not reject the null hypothesis of homoscedasticity.
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Figure 7.10 Expenditure on education and GDP, logarithmic

The third and fourth models both appear to be free from heteroscedasticity. 
How do we choose between them? We will examine the regression results, 
shown for the two models with the full sample:

In equation form, the first regression is

	 	 =	 0.048 –	 234.1
GDP

1
						      R2 = 0.13

					     (0.004)	 (98.8)

Multiplying through by GDP, it may be rewritten

	 	 = –234.1 + 0.048GDP.

It implies that expenditure on education accounts for 4.8 per cent of 
gross domestic product at the margin. The constant does not have any 
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sensible interpretation. We will compare this with the output from an OLS 
regression that makes no attempt to eliminate heteroscedasticity:

The slope coefficient, 0.048, is identical to three decimal places. This is 
not entirely a surprise, since heteroscedasticity does not give rise to bias 
and so there should be no systematic difference between the estimate 
from an OLS regression and that from a specification that eliminates 
heteroscedasticity. Of course, it is a surprise that the estimates are so close. 
Generally there would be some random difference, and of course the OLS 
estimate would tend to be less accurate. In this case, the main difference 
is in the estimated standard error. That for the OLS regression is actually 
smaller than that for the regression of EDUCGDP on GDPREC, but it is 
misleading. It is incorrectly calculated and we know that, since OLS is 
inefficient, the true standard error for the OLS estimate is actually larger.

The logarithmic regression in equation form is

	 	 =	 –5.03 +	1.17 log GDP	 R2 = 0.87

				    (0.82)	 (0.07)

implying that the elasticity of expenditure on education with regard to 
gross domestic product is 1.17. In substance the interpretations of the 
models are similar, since both imply that the proportion of GDP allocated 
to education increases slowly with GDP, but the elasticity specification 
seems a little more informative and probably serves as a better starting 
point for further exploration. For example, it would be natural to add the 
logarithm of population to see if population had an independent effect.

7.10
It was reported above that the heteroscedasticity-consistent estimate of 
the standard error of the coefficient of GDP in equation (7.13) was 0.18. 
Explain why the corresponding standard error in equation (7.15) ought to 
be lower and comment on the fact that it is not.

Answer: 

(7.15), unlike (7.13) appears to be free from heteroscedasticity and 
therefore should provide more efficient estimates of the coefficients, 
reflected in lower standard errors when computed correctly. However the 
sample may be too small for the heteroscedasticity-consistent estimator to 
be a good guide. 
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7.11
A health economist plans to evaluate whether screening patients on 
arrival or spending extra money on cleaning is more effective in reducing 
the incidence of infections by the MRSA bacterium in hospitals. She 
hypothesises the following model:

	
iiii uCSMRSA +++= 321 bbb 	

where, in hospital i, MRSA is the number of infections per thousand 
patients, S is expenditure per patient on screening, and C is expenditure 
per patient on cleaning. ui is a disturbance term that satisfies the usual 
regression model assumptions. In particular, ui is drawn from a distribution 
with mean zero and constant variance σ2. The researcher would like to 
fit the relationship using a sample of hospitals. Unfortunately, data for 
individual hospitals are not available. Instead she has to use regional data 
to fit

	
jjjj uCSMRSA +++= 321 bbb 	

where jMRSA , jS , jC , and ju  are the averages of MRSA, S, C, and u for 
the hospitals in region j. There were different numbers of hospitals in the 
regions, there being nj hospitals in region j. 

Show that the variance of ju  is equal to 
 

jn
2σ

 and that an OLS regression 
using the grouped regional data to fit the relationship will be subject to 
heteroscedasticity.

Assuming that the researcher knows the value of nj for each region, 
explain how she could re-specify the regression model to make it 
homoscedastic. State the revised specification and demonstrate 
mathematically that it is homoscedastic. Give an intuitive explanation of 
why the revised specification should tend to produce improved estimates 
of the parameters.

Answer:
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since the covariance terms are all 0. Hence
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To eliminate the heteroscedasticity, multiply observation j by jn . The 
regression becomes

	
jjjjjjjjj unCnSnnMRSAn +++= 321 bbb  

.

The variance of the disturbance term is now

	  ( ) ( ) ( ) 2
22
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===
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jjjjj n
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and is thus the same for all observations.

From the expression for  ( )juVar , we see that, the larger the group, the 
more reliable should be its observation (the closer its observation should 
tend to be to the population relationship). The scaling gives greater weight 
to the more reliable observations and the resulting estimators should be 
more efficient.
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Answers to the additional exercises

A7.1
The first step is to sort the data set by EXPPC. Then, if there were no 
zero-expenditure observations, the subsample regressions should use 
approximately the first and last 326 observations, 326 being three-eighths 
of 869. This procedure has been adopted anyway, on the assumption that 
the zero observations are distributed randomly and that the first and last 
326 observations capture about three-eighths of the available ones. The F 
statistic is then computed as 

	 ( )
( )knRSS

knRSS
knknF

−
−

=−−
11

22
12 /

/
),(

where n1 and n2 are the number of available observations and k is the number 
of parameters in the regression specification. However this procedure does 
not work well for those categories with many zero observations because there 
is a tendency for the number of zero observations to be relatively great for 
low EXPPC (LOCT being an understandable exception). It would have been 
better to have saved the data set under a new name for this exercise, with the 
zero observations dropped, and to have identified the smallest and largest 
three-eighths properly. However it is doubtful that the outcome would have 
been much different.
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The F statistic for the linear specification is

	
.

The corresponding F statistic for the logarithmic specification is 1.54. The 
critical value of F(300,200) at the 0.1 per cent level is 1.48. The critical 
value for F(322,323) must be lower. Thus in both cases the null hypothesis 
of homoscedasticity is rejected, but the problem appears to be much less 
severe for the logarithmic specification.

The logarithmic specification in general appears to be much less 
heteroscedastic than the linear one and for some categories the null 
hypothesis of homoscedasticity would not be rejected. Note that for a few 
of these RSS2 < RSS1 for the logarithmic specification.

Goldfeld–Quandt tests

linear logarithmic

n1 n2 RSS1x10–6 RSS2x10–6 F RSS1 RSS2 F

FDHO 326 325 65.76 221.57 3.38 40.07 61.95 1.54

FDAW 292 324 5.76 280.94 43.96 240.91 219.69 1.01

HOUS 324 326 192.79 2097.6 10.81 260.60 146.59 1.77*

TELE 320 324 6.05 75.29 12.29 134.51 112.27 1.18*

DOM 136 189 11.74 491.32 30.11 357.60 536.39 2.08

TEXT 151 206 0.13 15.86 89.43 163.28 284.78 2.38

FURN 86 155 7.64 69.07 5.02 175.07 301.58 3.10

MAPP 70 97 0.93 16.60 12.88 79.55 104.63 1.82

SAPP 141 203 0.30 1.09 2.52 172.05 190.50 1.59

CLOT 308 325 12.11 179.26 14.03 299.14 223.20 1.27*

FOOT 246 273 0.28 2.40 7.72 235.30 210.13 1.01*

GASO 283 311 12.20 59.98 4.47 163.61 110.68 1.35*

TRIP 59 173 0.90 122.07 46.26 125.87 250.34 5.83

LOCT 82 52 2.09 2.39 1.80 199.72 126.57 2.49*

HEAL 293 318 68.92 375.78 5.02 536.75 428.11 1.16*

ENT 298 323 15.48 861.87 51.37 298.52 251.60 1.09*

FEES 216 289 1.00 296.56 221.65 310.61 502.18 2.16

TOYS 206 237 3.49 20.25 5.04 298.88 303.10 1.17

READ 255 313 0.37 4.15 9.14 292.09 340.67 1.43

EDUC 107 106 2.98 300.44 101.77 233.77 337.45 1.43

TOB 146 125 4.38 9.09 2.42 148.74 122.19 1.42*

* indicates RSS2 < RSS1 

A7.2
Having sorted by N, the number of students, RSS1 and RSS2 are
2.02× 1010 and 22.59× 1010, respectively, for the subsamples of the 13 
smallest and largest schools. The F statistic is 11.18. The critical value of 
F(11,11) at the 0.1 per cent level must be a little below 8.75, the critical 
value for F(10,10), and so the null hypothesis of homoscedasticity is 
rejected at that significance level.

One possible way of alleviating the heteroscedasticity is by scaling through 
by the number of students. The dependent variable now becomes the 
unit cost per student year, and this is likely to be more uniform than total 
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recurrent cost. Scaling through by N, and regressing UNITCOST, defined 
as COST divided by N, on NREC, the reciprocal of N, having first sorted 
by NREC, RSS1 and RSS2 are now 349,000 and 504,000. The F statistic 
is therefore 1.44, and this is not significant even at the 5 per cent level 
since the critical value must be a little above 2.69, the critical value for 
F(12,12). The regression output for this specification using the full sample 
is shown.

In equation form, the regression is

	 	 =	 524.8 +	 10976
N
1

							      R2 = 0.03

					     (53.9)		 (12741)

Multiplying through by N, it may be rewritten

	  = 10976 + 524.8N.

The estimate of the marginal cost is somewhat higher than the estimate of 
436 obtained using OLS in Section 5.3 of the textbook.

A second possible way of alleviating the heteroscedasticity is to 
hypothesise that the true relationship is logarithmic, in which case the 
use of an inappropriate linear specification would give rise to apparent 
heteroscedasticity. Scaling through by N, and regressing LGCOST, the 
(natural) logarithm of COST, on LGN, the logarithm of N, RSS1 and RSS2 
are 2.16 and 1.58. The F statistic is therefore 1.37, and again this is not 
significant even at the 5 per cent level. The regression output for this 
specification using the full sample is shown.

The estimate of the elasticity of cost with respect to number of students, 
0.91, is less than 1 and thus suggests that the schools are subject to 
economies of scale. However, we are not able to reject the null hypothesis 
that the elasticity is equal to 1 and thus that costs are proportional to 
numbers, the t statistic for the null hypothesis being too low:
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A7.3
•	 Discuss whether (1) appears to be an acceptable specification, given the 

data in the table and Figure 7.1.

	 Using the Goldfeld–Quandt test to test specification (1) for 
heteroscedasticity assuming that the standard deviation of u is

	 inversely proportional to G, we have 
The critical value of F(14,14) at the 5 per cent level is 2.48, so we just 
reject the null hypothesis of homoscedasticity at that level. Figure 7.1 
does strongly suggest heteroscedasticity. Thus (1) does not appear to be 
an acceptable specification. 

•	 Explain what the researcher hoped to achieve by running regression (2).

	 If it is true that the standard deviation of u is inversely proportional to 
G, the heteroscedasticity could be eliminated by multiplying through by 
G. This is the motivation for the second specification. An intercept that 
in principle does not exist has been added, thereby changing the model 
specification slightly.

•	 Discuss whether (2) appears to be an acceptable specification, given the 
data in the table and Figure 7.2.

	
.

	 The critical value of F(13,13) at the 0.1 per cent level is about 6.4, so 
the null hypothesis of homoscedasticity is rejected. Figure 7.2 confirms 
the heteroscedasticity.

•	 Explain what the researcher hoped to achieve by running regression (3).

	 Heteroscedasticity can appear to be present in a regression in natural 
units if the true relationship is logarithmic. The disturbance term in 
a logarithmic regression is effectively increasing or decreasing the 
value of the dependent variable by random proportions. Its effect in 
absolute terms will therefore tend to be greater, the larger the value 
of G. The researcher is checking to see if this is the reason for the 
heteroscedasticity in the second specification.

•	 Discuss whether (3) appears to be an acceptable specification, given the 
data in the table and Figure 7.3.

     Obviously there is no problem with the Goldfeld–Quandt test, since 

	 . Figure 7.3 looks free from heteroscadasticity.

•	 What are your conclusions concerning the researcher’s hypothesis?

	 Evidence in support of the hypothesis is provided by (3) where, with 

	 , the elasticity is significantly lower than 1. Figures 

	 7.1 and 7.2 also strongly suggest that on balance larger economies 
have lower import ratios than smaller ones. 
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A7.4
•	 Perform a Goldfeld–Quandt test for heteroscedasticity on both of the 

regression specifications.

	 The F statistics for the G–Q test for the two specifications are 

	  and .

The critical value of F(16,16) is 2.33 at the 5 per cent level and 5.20 at 
the 0.1 per cent level. Hence one would reject the null hypothesis of 
homoscedasticity at the 0.1 per cent level for regression 1 and one 
would not reject it even at the 5 per cent level for regression 2.

•	 Explain why the researcher ran the second regression.

	 He hypothesised that the standard deviation of the disturbance term in 
observation i was proportional to Ni: σi = λNi for some λ. If this is the 
case, dividing through by Ni makes the specification homoscedastic, 
since
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	 and is therefore the same for all i. 

•	 R2 is lower in regression (2) than in regression (1). Does this mean that 
regression (1) is preferable?

	 R2 is not comparable because the dependent variable is different in the 
two regressions. Regression (2) is to be preferred since it is free from 
heteroscedasticity and therefore ought to tend to yield more precise 
estimates of the coefficients with valid standard errors.

A7.5
•	 When the researcher presents her results at a seminar, one of the 

participants says that, since I and G have been divided by Y, (2) is less 
likely to be subject to heteroscedasticity than (1). Evaluate this suggestion.

	 If the restriction is valid, imposing it will have no implications for 
the disturbance term and so it could not lead to any mitigation 
of a potential problem of heteroscedasticity. [If there were 
heteroscedasticity, and if the specification were linear, scaling through 
by a variable proportional in observation i to the standard deviation of 
ui in observation i would lead to the elimination of heteroscedasticity. 
The present specification is logarithmic and dividing I and G by Y does 
not affect the disturbance term.]

A7.6
•	 Perform the Goldfeld–Quandt test for each model and state your 

conclusions.

	 The ratios are 4.1, 6.0, and 1.05. In each case we should look for the 
critical value of F(148,148). The critical values of F(150,150) at the 5 
per cent, 1 per cent, and 0.1 per cent levels are 1.31, 1.46, and 1.66, 
respectively. Hence we reject the null hypothesis of homoscedasticity at 
the 0.1 per cent level (1 per cent is OK) for models (1) and (2). We do 
not reject it even at the 5 per cent level for model (3). 
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•	 Explain why the researcher thought that model (2) might be an 
improvement on model (1).

	 If the assumption that the standard deviation of the disturbance term is 
proportional to household size, scaling through by A should eliminate 
the heteroscedasticity, since 
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	 if the standard deviation of u = λA.

•	 Explain why the researcher thought that model (3) might be an 
improvement on model (1).

	 It is possible that the (apparent) heteroscedasticity is attributable 
to mathematical misspecification. If the true model is logarithmic, 
a homoscedastic disturbance term would appear to have a 
heteroscedastic effect if the regression is performed in the original 
units. 

•	 When models (2) and (3) are tested for heteroscedasticity using the White 
test, auxiliary regressions must be fitted. State the specification of this 
auxiliary regression for model (2).

	 The dependent variable is the squared residuals from the model 
regression. The explanatory variables are the reciprocal of A and its 
square, E/A and its square, and the product of the reciprocal of A and 
E/A. (No constant.)

•	 Perform the White test for the three models.

	 nR2 is 64.0, 56.0, and 0.4 for the three models. Under the null 
hypothesis of homoscedasticity, this statistic has a chi-squared 
distribution with degrees of freedom equal to the number of terms on 
the right side of the regression, minus one. This is two for models (1) 
and (3). The critical value of chi-squared with two degrees of freedom 
is 5.99, 9.21, and 13.82 at the 5, 1, and 0.1 per cent levels. Hence H0 is 
rejected at the 0.1 per cent level for model (1), and not rejected even 
at the 5 per cent level for model (3). In the case of model (2), there are 
five terms on the right side of the regression. The critical value of chi-
squared with four degrees of freedom is 18.47 at the 0.1 per cent level. 
Hence H0 is rejected at that level.

•	 Explain whether the results of the tests seem reasonable, given the scatter 
plots of the data.

	 Absolutely. In Figures 7.1 and 7.2, the variances of the dispersions of 
the dependent variable clearly increase with the size of the explanatory 
variable. In Figure 7.3, the dispersion is much more even.



20 Elements of econometrics

154

A7.7
•	 ‘Heteroscedasticity occurs when the disturbance term in a regression model 

is correlated with one of the explanatory variables.’

	 This is false. Heteroscedasticity occurs when the variance of the 
disturbance term is not the same for all observations.

•	 ‘In the presence of heteroscedasticity ordinary least squares (OLS) is an 
inefficient estimation technique and this causes t tests and F tests to be 
invalid.’

	 It is true that OLS is inefficient and that the t and F tests are invalid, 
but ‘and this causes’ is wrong. 

•	 ‘OLS remains unbiased but it is inconsistent.’

	 It is true that OLS is unbiased, but false that it is inconsistent.

•	 ‘Heteroscedasticity can be detected with a Chow test.’

	 This is false.

•	 ‘Alternatively one can compare the residuals from a regression using half 
of the observations with those from a regression using the other half and 
see if there is a significant difference. The test statistic is the same as for 
the Chow test.’

	 The first sentence is basically correct with the following changes 
and clarifications: one is assuming that the standard deviation 
of the disturbance term is proportional to one of the explanatory 
variables; the sample should first be sorted according to the size of 
the explanatory variable; rather than split the sample in half, it would 
be better to compare the first three-eighths (or one third) of the 
observations with the last three-eighths (or one third); ‘comparing 
the residuals’ is too vague: the F statistic is F(n’ – k,n’ – k) = RSS2/
RSS1 assuming n’ observations and k parameters in each subsample 
regression, and placing the larger RSS over the smaller.

	 The second sentence is false. 

•	 ‘One way of eliminating the problem is to make use of a restriction 
involving the variable correlated with the disturbance term.’

	 This is nonsense.

•	 ‘If you can find another variable related to the one responsible for the 
heteroscedasticity, you can use it as a proxy and this should eliminate the 
problem.’

	 This is more nonsense.

•	 ‘Sometimes apparent heteroscedasticity can be caused by a mathematical 
misspecification of the regression model. This can happen, for example, if 
the dependent variable ought to be logarithmic, but a linear regression is 
run.’

	 True. A homoscedastic disturbance term in a logarithmic regression, 
which is responsible for proportional changes in the dependent 
variable, may appear to be heteroscedastic in a linear regression 
because the absolute changes in the dependent variable will be 
proportional to its size.
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Chapter 8: Stochastic regressors and 
measurement errors

Overview
Until this point it has been assumed that the only random element in a 
regression model is the disturbance term. This chapter extends the analysis 
to the case where the variables themselves have random components. The 
initial analysis shows that in general OLS estimators retain their desirable 
properties. A random component attributable to measurement error, 
the subject of the rest of the chapter, is however another matter. While 
measurement error in the dependent variable merely inflates the variances 
of the regression coefficients, measurement error in the explanatory 
variables causes OLS estimates of the coefficients to be biased and 
invalidates standard errors, t tests, and F tests. The analysis is illustrated 
with reference to the Friedman permanent income hypothesis, the most 
celebrated application of measurement error analysis in the economic 
literature. The chapter then introduces instrumental variables (IV) 
estimation and gives an example of its use to fit the Friedman model. The 
chapter concludes with a description of the Durbin–Wu–Hausman test for 
investigating whether measurement errors are serious enough to warrant 
using IV instead of OLS. 

Learning outcomes
After working through the corresponding chapter in the textbook, studying 
the corresponding slideshows, and doing the starred exercises in the 
textbook and the additional exercises in this guide, you should be able to:

•	 explain the conditions under which OLS estimators remain unbiased 
when the variables in the regression model possess random 
components

•	 derive the large-sample expression for the bias in the slope coefficient 
in a simple regression model with measurement error in the 
explanatory variable

•	 demonstrate, within the context of the same model, that measurement 
error in the dependent variable does not cause the regression 
coefficients to be biased but does increase their standard errors

•	 describe the Friedman permanent income hypothesis and explain why 
OLS estimates of a conventional consumption function will be biased if 
it is correct

•	 explain what is meant by an instrumental variables estimator and state 
the conditions required for its use

•	 demonstrate that the IV estimator of the slope coefficient in a simple 
regression model is consistent, provided that the conditions required 
for its use are satisfied

•	 explain the factors responsible for the population variance of the IV 
estimator of the slope coefficient in a simple regression model

•	 perform the Durbin–Wu–Hausman test in the context of measurement 
error.
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Additional exercises

A8.1
A researcher believes that a variable Y is determined by the simple 
regression model

	 Y = β1 + β2X + u .

She thinks that X is not distributed independently of u but thinks that 
another variable, Z, would be a suitable instrument. The instrumental 
estimator of the intercept, , is given by 

	

where  is the IV estimator of the slope coefficient. [Exercise 8.12 in the 
textbook asks for a proof that  is a consistent estimator of β1.]

Explain, with a brief mathematical proof, why ,OLS
1b  the ordinary least 

squares estimator of β1, would be inconsistent, if the researcher is correct 
in believing that X is not distributed independently of u.

The researcher has only 20 observations in her sample. Does the fact that 
 is consistent guarantee that it has desirable small-sample properties? 

If not, explain how the researcher might investigate the small-sample 
properties.

A8.2
Suppose that the researcher in Exercise A8.1 is wrong and X is in fact 
distributed independently of u. Explain the consequences of using  
instead of OLS

1b  to estimate β1.

Note: The population variance of  is given by
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where μX is the population mean of X, 2
Xσ  is its population variance, rXZ is 

the correlation between X and Z, and 2
uσ  is the population variance of the 

disturbance term, u. For comparison, the population variance of the OLS 
estimator is
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when the model is correctly specified and the regression model 
assumptions are satisfied.

A8.3
A researcher investigating the incidence of teenage knife crime has the 
following data for each of 35 cities for 2008:

	 K = number of knife crimes per 1,000 population in 2008

	 N = number of teenagers per 1,000 population living in social 
deprivation in 2008.

The researcher hypothesises that the relationship between K and N is given 
by

	 uNK ++= 21 bb 	 (1)
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where u is a disturbance term that satisfies the usual regression model 
assumptions. However, knife crime tends to be under-reported, with the 
degree of under-reporting worst in the most heavily afflicted boroughs, so 
that

	 wKR += 	 (2)

where R = number of reported knife crimes per 1,000 population in 2008 
and w is a random variable with ( ) 0<wE  and ( ) 0,cov <Kw . w may be 
assumed to be distributed independently of u. Note that ( ) 0,cov <Kw  
implies ( ) 0,cov <Nw . Derive analytically the sign of the bias in the 
estimator of β2 if the researcher regresses R on N using ordinary least 
squares.

A8.4
Suppose that in the model

	 Y = β1 + β2X + u

where the disturbance term u satisfies the regression model assumptions, 
the variable X is subject to measurement error, being underestimated by a 
fixed amount α in all observations.

•	 Discuss whether it is true that the ordinary least squares estimator of β2 
will be biased downwards by an amount proportional to both α and β2.

•	 Discuss whether it is true that the fitted values of Y from the regression 
will be reduced by an amount αβ2.

•	 Discuss whether it is true that R2 will be reduced by an amount 
proportional to α.

A8.5
A researcher believes that the rate of migration from Country B to Country 
A, Mt, measured in thousands of persons per year, is a linear function of 
the relative average wage, RWt, defined as the average wage in Country A 
divided by the average wage in Country B, both measured in terms of the 
currency of Country A:

	 Mt = β1 + β2RWt + ut .	 (1)

ut is a disturbance term that satisfies the regression model assumptions. 
However, Country B is a developing country with limited resources 
for statistical surveys and the wage data for that country, derived 
from a small sample of social security records, are widely considered 
to be unrepresentative, with a tendency to overstate the true average 
wage because those working in the informal sector are excluded. As a 
consequence the measured relative wage, MRWt, is given by

	 MRWt = RWt + wt	 (2)

where wt is a random quantity with expected value less than 0. It may be 
assumed to be distributed independently of ut and RWt.

The researcher also has data on relative GDP per capita, RGDPt, defined 
as the ratio of GDP per capita in countries A and B, respectively, 
both measured in terms of the currency of Country A. He has annual 
observations on Mt, MRWt, and RGDPt for a 30–year period. The 
correlation between MRWt, and RGDPt in the sample period is 0.8. Analyse 
mathematically the consequences for the estimates of the intercept and the 
slope coefficient, the standard errors and the t statistics, if the migration 
equation (1) is fitted:
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•	 using ordinary least squares with MRWt as the explanatory variable.

•	 using OLS, with RGDPt as a proxy for RWt.

•	 using instrumental variables, with RGDPt as an instrument for MRWt.

A8.6
Suppose that in Exercise A8.5 RGDPt is subject to the same kind of 
measurement error as RWt, and that as a consequence there is an exact 
linear relationship between RGDPt and MRWt. Demonstrate mathematically 
how this would affect the IV estimator of β2 in part (3) of Exercise A8.5 
and give a verbal explanation of your result.

Answers to the starred exercises in the textbook

8.4
A variable Q is determined by the model

	 Q = β1 + β2X + v,

where X is a variable and v is a disturbance term that satisfies the 
regression model assumptions. The dependent variable is subject to 
measurement error and is measured as Y where

	 Y = Q + r

and r is the measurement error, distributed independently of v. Describe 
analytically the consequences of using OLS to fit this model if:

1.	 The expected value of r is not equal to zero (but r is distributed 
independently of Q).

2.	 r is not distributed independently of Q (but its expected value is zero).

Answer: Substituting for Q, the model may be rewritten

	 Y	 = β1 + β2X + v + r

		  = β1 + β2X + u

where u = v + r. Then
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provided that X is nonstochastic. (If X is stochastic, the proof that the 
expected value of the error term is zero is parallel to that in Section 8.2 
of the textbook.) Thus b2 remains an unbiased estimator of β2.
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However, the estimator of the intercept is affected if E(r) is not zero.

	 XbrvXXbuXXbYb 22122121 −+++=−++=−= bbbb .

Hence
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Thus the intercept is biased if E(r) is not equal to zero, for then ( )rE  is 
not equal to 0.

If r is not distributed independently of Q, the situation is a little bit 
more complicated. For it to be distributed independently of Q, it must 
be distributed independently of both X and v, since these are the 
determinants of Q. Thus if it is not distributed independently of Q, one of 
these two conditions must be violated. We will consider each in turn.

(a)	r not distributed independently of X. We now have

	

.

Since , b2 is an inconsistent estimator of β2. It follows that b1 will 
also be an inconsistent estimator of β1:

	 XbrvXb 2211 −+++= bb .

Hence
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and this is different from β1 if plim b2 is not equal to β2.

(b)	r is not distributed independently of v. This condition is not required 
in the proof of the unbiasedness of either b1 or b2 and so both remain 
unbiased. 

8.5
A variable Y is determined by the model

	 Y = β1 + β2Z + v,

where Z is a variable and v is a disturbance term that satisfies the 
regression model conditions. The explanatory variable is subject to 
measurement error and is measured as X where

	 X = Z + w

and w is the measurement error, distributed independently of v. Describe 
analytically the consequences of using OLS to fit this model if

(1)	the expected value of w is not equal to zero (but w is distributed 
independently of Z)

(2)	w is not distributed independently of Z (but its expected value is zero).
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Answer:

Substituting for Z, we have

	 Y = β1 + β2(X – w) + v = β1 + β2X + u

where u = v – β2w.
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It is not possible to obtain a closed-form expression for the expectation 
of the error term since both its numerator and its denominator depend 
on w. Instead we take plims, having first divided the numerator and the 
denominator of the error term by n so that they have limits:
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If E(w) is not equal to zero, b2 is not affected. The first three terms in the 
numerator are zero and
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remains inconsistent as in the standard case. If w is not distributed 
independently of Z, then the second term in the numerator is not 0. b2 
remains inconsistent, but the expression is now

	 –β2(σzw+ σ2  )w   

x
2 .

The OLS estimator of the intercept is affected in both cases, but like the 
slope coefficient, it was inconsistent anyway.

	 XbwvXXbuXXbYb 222122121 −−++=−++=−= bbbbb .

Hence

	 wvXbb  plim plim) plim( plim 22211 bbb −+−+= .

In the standard case this would reduce to
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If w has expected value μw, not equal to zero,
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8.9
A researcher investigating the shadow economy using international cross-
sectional data for 25 countries hypothesises that consumer expenditure on 
shadow goods and services, Q, is related to total consumer expenditure, Z, 
by the relationship

	 Q = β1 + β2Z + v

where v is a disturbance term that satisfies the regression model 
assumptions. Q is part of Z and any error in the estimation of Q affects the 
estimate of Z by the same amount. Hence

	 Yi = Qi + wi

and 

	 Xi = Zi + wi

where Yi is the estimated value of Qi, Xi is the estimated value of Zi, and 
wi is the measurement error affecting both variables in observation i. It is 
assumed that the expected value of w is 0 and that v and w are distributed 
independently of Z and of each other.

1.	 Derive an expression for the large-sample bias in the estimate of β2 
when OLS is used to regress Y on X, and determine its sign if this is 
possible. [Note: The standard expression for measurement error bias is 
not valid in this case.]

2.	 In a Monte Carlo experiment based on the model above, the true 
relationship between Q and Z is

	 Q = 2.0 + 0.2Z

	 A sample of 25 observations is generated using the integers 1, 2,..., 25 
as data for Z. The variance of Z is 52.0. A normally distributed random 
variable with mean 0 and variance 25 is used to generate the values 
of the measurement error in the dependent and explanatory variables. 
The results with 10 samples are summarised in the table below. 
Comment on the results, stating whether or not they support your 
theoretical analysis.

Sample b1 s.e.(b1) b2 s.e.(b2) R2 

1 –0.85 1.09 0.42 0.07 0.61

2 –0.37 1.45 0.36 0.10 0.36

3 –2.85 0.88 0.49 0.06 0.75

4 –2.21 1.59 0.54 0.10 0.57

5 –1.08 1.43 0.47 0.09 0.55

6 –1.32 1.39 0.51 0.08 0.64

7 –3.12 1.12 0.54 0.07 0.71

8 –0.64 0.95 0.45 0.06 0.74

9  0.57 0.89 0.38 0.05 0.69

10 –0.54 1.26 0.40 0.08 0.50

3.	 The figure below plots the points (Q, Z) and (Y, X) for the first sample, 
with each (Q, Z) point linked to the corresponding (Y, X) point. 
Comment on this graph, given your answers to parts 1 and 2.
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Answer: 

(1)	Substituting for Q and Z in the first equation,

	 (Y – w) = β1 + β2(X – w) + v.

Hence
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	 It is not possible to obtain a closed-form expression for the expectation 
of the error term since both its numerator and its denominator depend 
on w. Instead we take plims, having first divided the numerator and the 
denominator of the error term by n so that they have limits:

	

.

	 Since v and w are distributed independently of Z and of each other, 
cov(Z, v) = cov(Z, w) = cov(w, v) = 0, and so
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	 β2 clearly should be positive and less than 1, so the bias is positive.
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(2)	 222
wZX σσσ += , given that w is distributed independently of Z, and 

hence . Thus

	
.

	 The estimates of the slope coefficient do indeed appear to be 
distributed around this number.

	 As a consequence of the slope coefficient being overestimated, the 
intercept is underestimated, negative estimates being obtained in each 
case despite the fact that the true value is positive. The standard errors 
are invalid, given the severe problem of measurement error.

(3)	The diagram shows how the measurement error causes the 
observations to be displaced along 45° lines. Hence the slope of the 
regression line will be a compromise between the true slope, β2 and 1. 
More specifically, plim b2 is a weighted average of β2 and 1, the weights 
being proportional to the variances of Z and w:
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8.14
It is possible that the ASVABC test score is a poor measure of the kind of 
ability relevant for earnings. Accordingly, perform an OLS regression of 
the logarithm of hourly earnings on years of schooling, work experience, 
and ASVABC using your EAEF data set and an IV regression using SM, SF, 
SIBLINGS, and LIBRARY as instruments for ASVABC. Perform a Durbin–
Wu–Hausman test to evaluate whether ASVABC appears to be subject to 
measurement error.

Answer: The coefficient of ASVABC rises from 0.009 in the OLS 
regression to 0.025 in the IV regression with SM used as an instrument, 
the increase being consistent with the hypothesis of measurement error. 
However ASVABC is not highly correlated with any of the instruments and 
the standard error of the coefficient rises from 0.003 in the OLS regression 
to 0.015 in the IV regression. The chi-squared statistic, 1.32, is low and 
there is no evidence that the change in the estimate is anything other than 
random.
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8.15
What is the difference between an instrumental variable and a proxy 
variable (as described in Section 6.4)? When would you use one and when 
would you use the other?

Answer: An instrumental variable estimator is used when one has data 
on an explanatory variable in the regression model but OLS would give 
inconsistent estimates because the explanatory variable is not distributed 
independently of the disturbance term. The instrumental variable partially 
replaces the original explanatory variable in the estimator and the 
estimator is consistent.

A proxy variable is used when one has no data on an explanatory variable 
in a regression model. The proxy variable is used as a straight substitute 
for the original variable. The interpretation of the regression coefficients 
will depend on the relationship between the proxy and the original 
variable, and the properties of the other estimators in the model and the 
tests and diagnostic statistics will depend on the degree of correlation 
between the proxy and the original variable.
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Answers to the additional exercises

A8.1
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Consistency does not guarantee desirable small-sample properties. The 
latter could be investigated with a Monte Carlo experiment.

A8.2
Both estimators will be consistent (actually, unbiased) but the IV estimator 
will be less efficient than the OLS estimator, as can be seen from a 
comparison of the expressions for the population variances.

A8.3
The regression model is
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It is not possible to obtain a closed-form expression for the expectation 
since N and w are correlated. Hence, instead, we investigate the plim:
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since ( ) 0,cov =uN  and ( ) 0,cov <wN .

A8.4
•	 Discuss whether it is true that the ordinary least squares estimator of β2 will 

be biased downwards by an amount proportional to both α and β2.

	 It is not true. Let the measured X be X’, where X’ = X – α. Then
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	 Thus the measurement error has no effect on the estimate of the slope 
coefficient. 

•	 Discuss whether it is true that the fitted values of Y from the regression 
will be reduced by an amount αβ2.

	 The estimator of the intercept will be )(' 22 a−−=− XbYXbY . Hence 
the fitted value in observation i will be

	 iii XbXbYXbXbYXbXbY 222222 )()(')( +−=−+−−=+−− aaa

	 which is what it would be in the absence of the measurement error.

•	 Discuss whether it is true that R2 will be reduced by an amount 
proportional to α.

	 Since R2 is the variance of the fitted values of Y divided by the variance 
of the actual values, it will be unaffected.

A8.5
•	 Using ordinary least squares with MRWt as the explanatory variable.

	

	 (standard theory). Hence the bias is towards zero.

	

	 and so

	

	 where μw is the population mean of w. The first component of the bias 
will be positive and the second negative, given that μw is negative. It is 
not possible without further information to predict the direction of the 
bias. The standard errors and t statistics will be invalidated if there is 
substantial measurement error in MRW.

•	 Using OLS, with RGDPt as a proxy for RW.

	 Suppose RW = α1 + α2RGDP. Then the migration equation may be 
rewritten

	 Mt	 = β1 + β2(α1 + α2RGDPt) + ut 

		  = (β1 + α1β2) + α2β2RGDPt + ut .

	 In general it would not be possible to derive estimates of either β1 or 
β2. Likewise one has no information on the standard errors of either 
b1 or b2. Nevertheless the t statistic for the slope coefficient would be 
approximately equal to the t statistic in a regression of M on RW, if 
the proxy is a good one. R2 will be approximately the same as it would 
have been in a regression of M on RW, if the proxy is a good one. One 
might hypothesise that RGDP might be approximately equal to RW, in 

Answers to the additional exercises

A8.1
	

.

Consistency does not guarantee desirable small-sample properties. The 
latter could be investigated with a Monte Carlo experiment.

A8.2
Both estimators will be consistent (actually, unbiased) but the IV estimator 
will be less efficient than the OLS estimator, as can be seen from a 
comparison of the expressions for the population variances.

A8.3
The regression model is
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Hence	
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It is not possible to obtain a closed-form expression for the expectation 
since N and w are correlated. Hence, instead, we investigate the plim:
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which case α1 = 0 and α2 =1 and one can effectively fit the original 
model.

•	 Using instrumental variables, with RGDPt as an instrument for MRWt.

	 The IV estimator of β2 is consistent:
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	 Hence plim  = β2 if u and w are distributed independently of RGDP. 
Likewise the IV estimator of b1 is consistent:

	 .

	 Hence

	

	 since plim =  = β2 and plim u = plim w  = 0. The standard errors 
will be higher, and hence t statistics lower, than they would have been 
if it had been possible to run the original regression using OLS.

A8.6
Suppose RGDP = θ + φMRW. Then

.

The instrument is no longer valid because it is correlated with the 
measurement error. 
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Chapter 9: Simultaneous equations 
estimation

Overview
Until this point the analysis has been confined to the fitting of a single 
regression equation on its own. In practice, most economic relationships 
interact with others in a system of simultaneous equations, and when 
this is the case the application of ordinary least squares (OLS) to a single 
relationship in isolation yields biased estimates. Having defined what is 
meant by an endogenous variable, an exogenous variable, a structural 
equation, and a reduced form equation, the first objective of this chapter is 
to demonstrate this. The second is to show how it may be possible to use 
instrumental variables (IV) estimation, with exogenous variables acting 
as instruments for endogenous ones, to obtain consistent estimates of 
the coefficients of a relationship. The conditions for exact identification, 
underidentification, and overidentification are discussed. In the case of 
overidentification, it is shown how two-stage least squares can be used to 
obtain estimates that are more efficient than those obtained with simple 
IV estimation. The chapter concludes with a discussion of the problem of 
unobserved heterogeneity and the use of the Durbin–Wu–Hausman test in 
the context of simultaneous equations estimation.

Learning outcomes
After working through the corresponding chapter in the textbook, studying 
the corresponding slideshows, and doing the starred exercises in the 
textbook and the additional exercises in this guide, you should be able to:

•	 explain what is meant by

an endogenous variable

an exogenous variable

a structural equation

a reduced form equation

•	 explain why the application of OLS to a single equation in isolation is 
likely to yield inconsistent estimates of the coefficients if the equation is 
part of a simultaneous equations model 

•	 derive an expression for the large-sample bias in the slope coefficient 
when OLS is used to fit a simple regression equation in a simultaneous 
equations model

•	 explain how consistent estimates of the coefficients of an equation in 
a simultaneous equations model might in principle be obtained using 
instrumental variables

•	 explain what is meant by exact identification, underidentification, and 
overidentification

•	 explain the principles underlying the use of two-stage least squares, 
and the reason why it is more efficient than simple IV estimation

•	 explain what is meant by the problem of unobserved heterogeneity

•	 perform the Durbin–Wu–Hausman test in the context of simultaneous 
equations estimation.
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Further material

Box: Good governance and economic development

In development economics it has long been observed that there is a positive association 
between economic performance, Y, and good governance, R, especially in developing 
countries. However, quantification of the relationship is made problematic by the fact that 
it is unlikely that causality is unidirectional. While good governance may contribute to 
economic performance, better performing countries may also develop better institutions. 
Hence in its simplest form one has a simultaneous equations model

	 Y = β1 + β2R + u	 (1)

	 R = α1 + α2Y + v	 (2)

where u and v are disturbance terms. Assuming that the latter are distributed 
independently, an OLS regression of the first equation will lead to an upwards biased 
estimate of β2, at least in large samples. The proof is left as an exercise (Exercise A9.11). 
Thus to fit the first equation, one needs an instrument for R. Obviously a better-specified 
model would have additional explanatory variables in both equations, but there is a 
problem. In general any variable that influences R is also likely to influence Y and is 
therefore unavailable as an instrument.

In a study of 64 ex-colonial countries that is surely destined to become a classic, ‘The 
colonial origins of comparative development: an empirical investigation’, American 
Economic Review 91(5): 1369–1401, December 2001, Acemoglu, Johnson, and Robinson 
(henceforward AJR) argue that settler mortality rates provide a suitable instrument. Put 
simply, the thesis is that where mortality rates were low, European colonisers founded 
neo-European settlements with European institutions and good governance. Such 
settlements eventually prospered. Examples are the United States, Canada, Australia, and 
New Zealand. Where mortality rates were high, on account of malaria, yellow fever and 
other diseases for which Europeans had little or no immunity, settlements were not viable. 
In such countries the main objective of the coloniser was economic exploitation, especially 
of mineral wealth. Institutional development was not a consideration. Post-independence 
regimes have often been as predatory as their predecessors, indigenous rulers taking the 
place of the former colonisers. Think of the Belgian Congo, first exploited by King Leopold 
and more recently by Mobutu.

The study is valuable as an example of IV estimation in that it places minimal technical 
demands on the reader. There is nothing that would not be easily comprehensible to 
students in an introductory econometrics course that covers IV. Nevertheless, it gives 
careful attention to the important technical issues. In particular, it discusses at length 
the validity of the exclusion restriction. To use mortality as an instrument for R in the 
first equation, one must be sure that it is not a determinant of Y in its own right, either 
directly or indirectly (other than through R).

The conclusion of the study is surprising. According to theory (see Exercise A9.10), the 
OLS estimate of β2 will be biased upwards by the endogeneity of R. The objective of the 
study was to demonstrate that the estimate remains positive and significant even when 
the upward bias has been removed by using IV. However, the IV estimate turns out to 
be higher than the OLS estimate. In fact it is nearly twice as large. AJR suggest that this 
is attributable to measurement error in the measurement of R. This would cause the 
OLS estimate to be biased downwards, and the bias would be removed (asymptotically) 
by the use of IV. AJR conclude that the downward bias in the OLS estimate caused by 
measurement error is greater than the upward bias caused by endogeneity.
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Additional exercises

A9.1
In a certain agricultural country, aggregate consumption, C, is simply equal 
to 2,000 plus a random quantity z that depends upon the weather:

	 C = 2000 + z.

z has mean zero and standard deviation 100. Aggregate investment, I, is 
subject to a four-year trade cycle, starting at 200, rising to 300 at the top 
of the cycle, and falling to 200 in the next year and to 100 at the bottom 
of the cycle, rising to 200 again the year after that, and so on. Aggregate 
income, Y, is the sum of C and I:

	 Y = C + I.

Data on C and I, and hence Y, are given in the table. z was generated by 
taking normally distributed random numbers with mean zero and unit 
standard deviation and multiplying them by 100.

t C I Y t C I Y

1 1,813 200 2,013 11 1,981 200 2,181

2 1,893 300 2,193 12 2,211 100 2,311

3 2,119 200 2,319 13 2,127 200 2,327

4 1,967 100 2,067 14 1,953 300 2,253

5 1,997 200 2,197 15 2,141 200 2,341

6 2,050 300 2,350 16 1,836 100 1,936

7 2,035 200 2,235 17 2,103 200 2,303

8 2,088 100 2,188 18 2,058 300 2,358

9 2,023 200 2,223 19 2,119 200 2,319

10 2,144 300 2,444 20 2,032 100 2,132

An orthodox economist regresses C on Y, using the data in the table, and 
obtains (standard errors in parentheses):

	 Ĉ 	=	 512 +	0.68Y								       R2 = 0.67

			   (252)	(0.11)								       F = 36.49

Explain why this result was obtained, despite the fact that C does not 
depend on Y at all. In particular, comment on the t and F statistics.

A9.2
A small macroeconomic model of a closed economy consists of a 
consumption function, an investment function, and an income identity:

	 Ct = β1 + β2Yt + ut

	 It = α1 + α2rt + vt

	 Yt = Ct + It + Gt

where Ct is aggregate consumer expenditure in year t, It is aggregate 
investment, Gt is aggregate current public expenditure, Yt is aggregate 
output, and rt is the rate of interest. State which variables in the model are 
endogenous and exogenous, and explain how you would fit the equations, 
if you could.
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A9.3
The model is now expanded to include a demand for money equation and 
an equilibrium condition for the money market:

	 d
tM = δ1 + δ2Yt + δ3rt + wt

	
t

d
t MM =

where d
tM  is the demand for money in year t and tM  is the supply of 

money, assumed exogenous. State which variables are endogenous and 
exogenous in the expanded model and explain how you would fit the 
equations, including those in Exercise A9.2, if you could.

A9.4
Table 9.2 reports a simulation comparing OLS and IV parameter estimates 
and standard errors for 10 samples. The reported R2 (not shown in that 
table) for the OLS and IV regressions are shown in the table below.

Sample OLS R2 IV R2

1 0.59 0.16

2 0.69 0.52

3 0.78 0.73

4 0.61 0.37

5 0.40 0.06

6 0.72 0.57

7 0.60 0.33

8 0.58 0.44

9 0.69 0.43

10 0.39 0.13

We know that, for large samples, the IV estimator is preferable to the OLS 
estimator because it is consistent, while the OLS estimator is inconsistent. 
However, do the smaller OLS standard errors in Table 9.2 and the 
larger OLS values of R2 in the present table indicate that OLS is actually 
preferable for small samples (n = 20 in the simulation)?

A9.5
A researcher investigating the relationship between aggregate wages, W, 
aggregate profits, P, and aggregate income, Y, postulates the following 
model:

	 uYW ++= 21 bb 	 (1)

	 vKYP +++= 321 aaa 	 (2)

	 PWY += 	 (3)

where K is aggregate stock of capital and u and v are disturbance terms 
that satisfy the usual regression model assumptions and may be assumed 
to be distributed independently of each other. The third equation is an 
identity, all forms of income being classified either as wages or as profits. 
The researcher intends to fit the model using data from a sample of 
industrialised countries, with the variables measured on a per capita basis 
in a common currency. K may be assumed to be exogenous.
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•	 Explain why ordinary least squares (OLS) would yield inconsistent 
estimates if it were used to fit (1) and derive the large-sample bias in 
the slope coefficient.

•	 Explain what can be inferred about the finite-sample properties of OLS 
if used to fit (1).

•	 Demonstrate mathematically how one might obtain a consistent 
estimate of β2 in (1).

•	 Explain why (2) is not identified (underidentified).

•	 Explain whether (3) is identified.

•	 At a seminar, one of the participants asserts that it is possible to obtain 
an estimate of α2 even though equation (2) is underidentified. Any 
change in income that is not a change in wages must be a change in 
profits, by definition, and so one can estimate α2 as (1 – b2), where b2 
is the consistent estimate of β2 found in the third part of this question. 
The researcher does not think that this is right but is confused and says 
that he will look into it after the seminar. What should he have said? 

A9.6
A researcher has data on e, the annual average rate of growth of 
employment, x the annual average rate of growth of output, and p, the 
annual average rate of growth of productivity, for a sample of 25 countries, 
the average rates being calculated for the period 1995–2005 and 
expressed as percentages. The researcher hypothesises that the variables 
are related by the following model:

	 e = β1 + β2 x + u	 (1)

	 x = e + p.	 (2)

The second equation is an identity because p is defined as the difference 
between x and e. The researcher believes that p is exogenous. The 
correlation coefficient for x and p is 0.79.

•	 Explain why the OLS estimator of β2 would be inconsistent, if the 
researcher’s model is correctly specified. Derive analytically the large-
sample bias, and state whether it is possible to determine its sign.

•	 Explain how the researcher might use p to construct an IV estimator of 
β2, that is consistent if p is exogenous. Demonstrate analytically that the 
estimator is consistent.

•	 The OLS and IV regressions are summarised below (standard errors in 
parentheses). Comment on them, making use of your answers to the 
first two parts of this question.

	 OLS	 ê  =	 –0.52 +	 0.48x	 (3)

					     (0.27)		 (0.08)

	 IV		  ê  =	 0.37 +	 0.17x	 (4)

					     (0.42)		 (0.14)

•	 A second researcher hypothesises that both x and p are exogenous and 
that equation (2) should be written

	 e = x – p.	 (5)

	 On the assumption that this is correct, explain why the slope 
coefficients in (3) and (4) are both biased and determine the direction 
of the bias in each case.

•	 Explain what would be the result of fitting (5), regressing e on x and p.
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A9.7
A researcher has data from the World Bank World Development Report 
2000 on F, average fertility (average number of children born to each 
woman during her life), M, under-five mortality (number of children, per 
100, dying before reaching the age of 5), and S, average years of female 
schooling, for a sample of 54 countries. She hypothesises that fertility is 
inversely related to schooling and positively related to mortality, and that 
mortality is inversely related to schooling:

	 F	 = β1 + β2S + β3M + u	 (1)

	 M	 = α1 + α2S + v	 (2)

where u and v are disturbance terms that may be assumed to be distributed 
independently of each other. S may be assumed to be exogenous.

•	 Derive the reduced form equations for F and M.

•	 Explain what would be the most appropriate method to fit equation (1).

•	 Explain what would be the most appropriate method to fit equation (2).

	 The researcher decides to fit (1) using ordinary least squares, and 
she decides also to perform a simple regression of F on S, again using 
ordinary least squares, with the following results (standard errors in 
parentheses):

	 F̂ 	=	 4.08 – 0.17S +	 0.015M					     R2 = 0.83	 (3)

			   (0.61)	(0.04)		 (0.003)

	 F̂ 	=	 6.99 – 0.36S 								        R2 = 0.71	 (4)

			   (0.39)	(0.03)

•	 Explain why the coefficient of S differs in the two equations.

•	 Explain whether one may validly perform t tests on the coefficients of (4).

	 At a seminar someone hypothesises that female schooling may be 
negatively influenced by fertility, especially in the poorer developing 
countries in the sample, and this would affect (4). To investigate this, 
the researcher adds the following equation to the model:

	 S = δ1 + δ2F + δ3G + w	 (5)

	 where G is GNP per capita and w is a disturbance term. She regresses F 
on S (1) instrumenting for S with G (column (b) in the output below), 
and (2) using ordinary least squares, as in equation (4) (column (B) 
in the output below). The correlation between S and G was 0.70. She 
performs a Durbin–Wu–Hausman test to compare the coefficients.

•	 Discuss whether G is likely to be a valid instrument.

•	 What should the researcher’s conclusions be with regard to the test? 
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A9.8
Aggregate demand QD for a certain commodity is determined by its price, 
P, aggregate income, Y, and population, POP,

	 QD = β1 + β2P + β3Y + β4POP + uD

and aggregate supply is given by

	 QS = α1 + α2P + uS

where uD and uS are independently distributed disturbance terms.

•	 Demonstrate that the estimate of α2 will be inconsistent if ordinary 
least squares (OLS) is used to fit the supply equation, showing that the 
large-sample bias is likely to be negative.

•	 Demonstrate that a consistent estimate of α2 will be obtained if the 
supply equation is fitted using instrumental variables (IV), using Y as 
an instrument.

The model is used for a Monte Carlo experiment, with α2 set equal to 0.2 
and suitable values chosen for the other parameters. The table shows the 
estimates of α2 obtained in 10 samples using OLS, using IV with Y as an 
instrument, using IV with POP as an instrument, and using two-stage least 
squares (TSLS) with Y and POP. s.e. is standard error. The correlation 
between P and Y averaged 0.50 across the samples. The correlation 
between P and POP averaged 0.63 across the samples. Discuss the results 
obtained. 

OLS IV with Y IV with POP TSLS

coef. s.e. coef. s.e. coef. s.e. coef. s.e.

1 0.15 0.03 0.22 0.05 0.21 0.05 0.21 0.03
2 0.08 0.04 0.24 0.11 0.19 0.08 0.21 0.06
3 0.11 0.02 0.18 0.06 0.19 0.05 0.19 0.04
4 0.16 0.02 0.20 0.04 0.19 0.03 0.19 0.02
5 0.15 0.02 0.27 0.09 0.18 0.04 0.20 0.03
6 0.14 0.03 0.24 0.08 0.18 0.05 0.20 0.04
7 0.20 0.03 0.22 0.05 0.26 0.04 0.25 0.03
8 0.15 0.03 0.21 0.06 0.24 0.05 0.23 0.04
9 0.11 0.02 0.17 0.05 0.14 0.03 0.15 0.03
10 0.17 0.03 0.16 0.05 0.24 0.05 0.20 0.03

A9.9
A researcher has the following data for a sample of 1,000 manufacturing 
enterprises on the following variables, each measured as an annual 
average for the period 2001–2005: G, average annual percentage rate 
of growth of sales; R, expenditure on research and development; and A, 
expenditure on advertising. R and A are measured as a proportion of sales 
revenue. He hypothesises the following model:

	 GuARG +++= 321 bbb 	 (1)

	 RuGR ++= 21 aa 	 (2)

where uG and uR are disturbance terms distributed independently of each 
other.

A second researcher believes that expenditure on quality control, Q, 
measured as a proportion of sales revenue, also influences the growth of 
sales, and hence that the first equation should be written

	 GuQARG ++++= 4321 bbbb .	 (1*)
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A and Q may be assumed to be exogenous variables.

•	 Derive the reduced form equation for G for the first researcher.

•	 Explain why ordinary least squares (OLS) would be an inconsistent 
estimator of the parameters of equation (2).

•	 The first researcher uses instrumental variables (IV) to estimate α2 in 
(2). Explain the procedure and demonstrate that the IV estimator of α2 
is consistent.

•	 The second researcher uses two stage least squares (TSLS) to estimate 
α2 in (2). Explain the procedure and demonstrate that the TSLS 
estimator is consistent.

•	 Explain why the TSLS estimator used by the second researcher ought 
to produce ‘better’ results than the IV estimator used by the first 
researcher, if the growth equation is given by (1*). Be specific about 
what you mean by ‘better’.

•	 Suppose that the first researcher is correct and the growth equation 
is actually given by (1), not (1*). Compare the properties of the two 
estimators in this case.

•	 Suppose that the second researcher is correct and the model is given 
by (1*) and (2), but A is not exogenous after all. Suppose that A is 
influenced by G:

	 AuGA ++= 21 γγ 	 (3)

	 where uA is a disturbance term distributed independently of uG and uR. 
How would this affect the properties of the IV estimator of α2 used by 
the first researcher? 

A9.10
A researcher has data for 100 workers in a large organisation on hourly 
earnings, EARNINGS, skill level of the worker, SKILL, and a measure of the 
intelligence of the worker, IQ. She hypothesises that LGEARN, the natural 
logarithm of EARNINGS, depends on SKILL, and that SKILL depends on IQ.

	 LGEARN	 = β1 + β2SKILL + u	 (1)

	 SKILL	 = α1 + α2IQ + v	 (2)

where u and v are disturbance terms. The researcher is not sure whether u 
and v are distributed independently of each other.

•	 State, with a brief explanation, whether each variable is endogenous or 
exogenous, and derive the reduced form equations for the endogenous 
variables.

•	 Explain why the researcher could use ordinary least squares (OLS) to 
fit equation (1) if u and v are distributed independently of each other.

•	 Show that the OLS estimator of β2 is inconsistent if u and v are positively 
correlated and determine the direction of the large-sample bias.

•	 Demonstrate mathematically how the researcher could use instrumental 
variables (IV) estimation to obtain a consistent estimate of β2.

•	 Explain the advantages and disadvantages of using IV, rather than OLS, 
to estimate β2, given that the researcher is not sure whether u and v are 
distributed independently of each other.

•	 Describe in general terms a test that might help the researcher decide 
whether to use OLS or IV. What are the limitations of the test?

•	 Explain whether it is possible for the researcher to fit equation (2) and 
obtain consistent estimates.
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A9.11
This exercise relates to the box in the Further material section.

In general in an introductory econometrics course, issues and problems are 
treated separately, one at a time. In practice in empirical work, it is common 
for multiple problems to be encountered simultaneously. When this is the 
case, the one-at-a-time analysis may no longer be valid. In the case of the 
AJR study, both endogeneity and measurement error seem to be issues. This 
exercise looks at both together, within the context of that model.

Let S be the correct good governance variable and let R be the measured 
variable, with measurement error w. Thus the model may be written

	 uSY ++= 21 bb

	 vYS ++= 21 aa

	 wSR +=

It may be assumed that w has zero expectation and constant variance 2
wσ  

across observations, and that it is distributed independently of S and the 
disturbance terms in the equations in the model. Investigate the likely 
direction of the bias in the OLS estimator of β2 in large samples.

Answers to the starred exercises in the textbook

9.1
A simple macroeconomic model consists of a consumption function and an 
income identity:

	 C = β1 + β2Y + u

	 Y = C + I

where C is aggregate consumption, I is aggregate investment, Y is 
aggregate income, and u is a disturbance term. On the assumption that I is 
exogenous, derive the reduced form equations for C and Y.

Answer: 

Substituting for Y in the first equation,

	 C = β1 + β2(C + I) + u.

Hence
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9.2
It is common to write an earnings function with the logarithm of the 
hourly wage as the dependent variable and characteristics such as 
years of schooling, cognitive ability, years of work experience, etc as 
the explanatory variables. Explain whether such an equation should be 
regarded as a reduced form equation or a structural equation.

Answer:

In the conventional model of the labour market, the wage rate and 
the quantity of labour employed are both endogenous variables jointly 
determined by the interaction of demand and supply. According to this 
model, the wage equation is a reduced form equation.
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9.3
In the simple macroeconomic model

	 C = β1 + β2Y + u

	 Y = C + I,

described in Exercise 9.1, demonstrate that OLS would yield inconsistent 
results if used to fit the consumption function, and investigate the 
direction of the bias in the slope coefficient.

Answer:

The first step in the analysis of the OLS slope coefficient is to break it 
down into the true value and error component in the usual way:
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From the reduced form equation in Exercise 9.1 we see that Y depends on 
u and hence we will not be able to obtain a closed-form expression for the 
expectation of the error term. Instead we take plims, having first divided 
the numerator and the denominator of the error term by n so that they 
will possess limits as n goes to infinity.
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We next substitute for Y since it is an endogenous variable. We have two 
choices: we could substitute from the structural equation, or we could 
substitute from the reduced form. If we substituted from the structural 
equation, in this case the income identity, we would introduce another 
endogenous variable, C, and we would find ourselves going round in 
circles. So we must choose the reduced form. 
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On the assumption that I is exogenous, it is distributed independently of u 
and cov(I, u) = 0. So
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since the sample variances tend to the population variances as the 
sample becomes large. Since the variances are positive, the sign of the 
bias depends on the sign of (1 – β2). It is reasonable to assume that the 
marginal propensity to consume is positive and less than 1, in which 
case this term will be positive and the large-sample bias in OLS

2b will be 
upwards.

The OLS estimate of the intercept is also inconsistent:

	 YbuYYbCb OLS
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This is evidently biased downwards, as one might expect, given that the 
slope coefficient was biased upwards.

9.6
The table gives consumption per capita, C, gross fixed capital formation 
per capita, I, and gross domestic product per capita, Y, all measured in 
US$, for 33 countries in 1998. The output from an OLS regression of 
C on Y, and an IV regression using I as an instrument for Y, are shown. 
(C, I, and Y are designated cpop, gfcfpop, and gdppop, respectively, in the 
output.) Comment on the differences in the results. 

C I Y C I Y

Australia 15024 4749 19461 South Korea 4596 1448 6829

Austria 19813 6787 26104 Luxembourg 26400 9767 42650

Belgium 18367 5174 24522 Malaysia 1683 873 3268

Canada 15786 4017 20085 Mexico 3359 1056 4328

China–PR 446 293 768 Netherlands 17558 4865 24086

China–HK 17067 7262 24452 New Zealand 11236 2658 13992

Denmark 25199 6947 32769 Norway 23415 9221 32933

Finland 17991 4741 24952 Pakistan 389 79 463

France 19178 4622 24587 Philippines 760 176 868

Germany 20058 5716 26219 Portugal 8579 2644 9976

Greece 9991 2460 11551 Spain 11255 3415 14052

Iceland 25294 6706 30622 Sweden 20687 4487 26866

India 291 84 385 Switzerland 27648 7815 36864

Indonesia 351 216 613 Thailand 1226 479 1997

Ireland 13045 4791 20132 UK 19743 4316 23844

Italy 16134 4075 20580 USA 26387 6540 32377

Japan 21478 7923 30124
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Answer: 

Assuming the simple macroeconomic model

	 C = β1 + β2Y + u

	 Y = C + I,

where C is consumption per capita, I is investment per capita, and Y is 
income per capita, and I is assumed exogenous, the OLS estimator of the 
marginal propensity to consume will be biased upwards. As was shown in 
Exercise 9.3,
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Hence the IV estimate should be expected to be lower, but only by a small 
amount, given the data. With b2 estimated at 0.72, (1 – b2) is 0.28. 2

uσ
is estimated at 1.95 million and 2

Iσ is 7.74 million. Hence, on the basis of 
these estimates, the bias should be about 0.06. The actual difference in the 
OLS and IV estimates is smaller still. However, the actual difference would 
depend on the purely random sampling error as well as the bias, and it is 
possible that in this case the sampling error happens to have offset the bias 
to some extent.



Chapter 9: Simultaneous equations estimation

181

9.11
Consider the price inflation/wage inflation model given by equations (9.1) 
and (9.2):

	 puwp ++= 21 bb

	 wuUpw +++= 321 aaa .

We have seen that the first equation is exactly identified, U being used as 
an instrument for w. Suppose that TSLS is applied to this model, despite 
the fact that it is exactly identified, rather than overidentified. How will 
the results differ?

Answer: 

If we fit the reduced form, we obtain a fitted equation

	 Uhhw 21ˆ += .

The TSLS estimator is then given by

	

where  is the IV estimator using U. Hence the estimator is exactly the 
same. [Note: This is a special case of Exercise 8.16 in the textbook.]

Answers to the additional exercises

A9.1
The positive coefficient of Yt in the regression is attributable wholly to 
simultaneous equations bias. The three figures show this graphically.

The first diagram shows what the time series for Ct, It, and Yt would look 
like if there were no random component of consumption. The series for Ct 
is constant at 2,000. That for It is a wave form, and that for Yt is the same 
wave form shifted upward by 2,000. The second diagram shows the effect 
of adding the random component to consumption. Yt still has a wave form, 
but there is a clear correlation between it and Ct.
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In the third diagram, Ct is plotted against Yt, with and without the random 
component. The three large circles represent the data when there is no 
random component. One circle represents the five data points [C = 2,000, 
Y = 2,100]; the middle circle represents the ten data points [C = 2,000, 
Y = 2,200]; and the other circle represents the five data points [C = 
2,000, Y = 2,300]. A regression line based on these three points would 
be horizontal (the dashed line). The solid circles represent the 20 data 
points when the random component is affecting Ct and Yt, and the solid 
line is the regression line for these points. Note that these 20 data points 
fall into three groups: five which lie on a 45 degree line through the left 
large circle, 10 which lie on the 45 degree line through the middle circle 
(actually, you can only see nine), and five on the 45 degree line through 
the right circle.

If OLS is used to fit the equation,
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Note that at this stage we have broken down the slope coefficient 
into its true value plus an error term. The true value does not appear 
explicitly because it is zero, so we only have the error term. We cannot 
take expectations because both the numerator and the denominator are 
functions of z:
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	 Y = C + I = 2,000 + I + z

z is a component of C and hence of Y. As a second-best procedure, we 
investigate the large-sample properties of the estimator by taking plims. 
We must first divide the numerator and denominator by n so that they 
tend to finite limits:
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Substituting for Y from its reduced form equation,
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cov(I, z) = 0 because I is distributed independently of z. 2
zσ is equal to 

10,000 (since we are told that σz is equal to 100). Over a four-year cycle, 
the mean value of I is 200 and hence its population variance is given by

	 ( )[ ] 000,510001000
4
1 222 =−+++=Iσ .

Hence

	

The actual coefficient in the 20-observation sample, 0.68, is very close to 
this (probably atypically close for such a model).

The estimator of the intercept, whose true value is 2,000, is biased 
downwards because OLS

2b  is biased upwards. The standard errors of the 
coefficients are invalid because the regression model assumption B.7 is 
violated, and hence t tests would be invalid.

By virtue of the fact that Y = C + I, C is being regressed against a variable 
which is largely composed of itself. Hence the high R2 is inevitable, 
despite the fact that there is no behavioural relationship between C and 
Y. Mathematically, R2 is equal to the square of the sample correlation 
between the actual and fitted values of C. Since the fitted values of C are 
a linear function of the values of Y¸ R2 is equal to the square of the sample 
correlation between C and Y. The population correlation coefficient is 
given by
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Hence in large samples

	

R2 in the regression is exactly equal to this, the closeness probably being 
something of a coincidence.

Since regression model assumption B.7 is violated, the F statistic cannot be 
used to perform an F test of goodness of fit.
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A9.2
Ct, It, and Yt are endogenous, the first two being the dependent variables of 
the behavioural relationships and the third being defined by an identity. Gt 
and rt are exogenous.

Either It or rt could be used as an instrument for Yt in the consumption 
function. If it can be assumed that ut and vt are distributed independently, 
It can also be regarded as exogenous as far as the determination of Ct 
and Yt are concerned. It would be preferable to rt since it is more highly 
correlated with Yt. One’s first thought, then, would be to use TSLS, with 
the first stage fitting the equation
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Note, however, that the equation implies the restriction that the 
coefficients of It and Gt are equal. Hence all one has to do is to define a 
variable

	 Zt = It + Gt

and use Zt as an instrument for Yt in the consumption function.

The investment function would be fitted using OLS since rt is exogenous. 
The income identity does not need to be fitted.

A9.3
d
tM  is endogenous because it is determined by the second of the two 

new relationships. The addition of the first of these relationships makes rt 
endogenous. To see this, substituting for Ct and It in the income identity, 
using the consumption function and the investment function, one obtains

	

2

211

1
)(

b
aba
−

++++
= ttt

t
vur

Y .

This is usually known as the IS curve. Substituting for d
tM  in the first of 

the two new relationships, using the second, one has

	 tM  = δ1 + δ2Yt + δ3rt + wt.

This is usually known as the LM curve. The equilibrium values of both Yt 
and rt are determined by the intersection of these two curves and hence rt 
is endogenous as well as Yt. Gt remains exogenous, as before, and tM  is 
also exogenous.

The consumption and investment functions are overidentified and one 
would use TSLS to fit them, the exogenous variables being government 
expenditure and the supply of money. The demand for money equation 
is exactly identified, two of the explanatory variables, rt and Yt, being 
endogenous, and the two exogenous variables being available to act as 
instruments for them.

A9.4
The OLS standard errors are invalid so a comparison is illegitimate. They 
are not of any great interest anyway because the OLS estimator is biased. 
Figure 9.3 in the textbook shows that the variance of the OLS estimator 
is smaller than that of the IV estimator, but, using a criterion such as 
the mean square error, there is no doubt that the IV estimator should 
be preferred. The comment about R2 is irrelevant. OLS has a better fit 
but we have had to abandon the least squares principle because it yields 
inconsistent estimates. 
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A9.5
•	 Explain why ordinary least squares (OLS) would yield inconsistent 

estimates if it were used to fit (1) and derive the large-sample bias in the 
slope coefficient.

	 At some point we will need the reduced form equation for Y. 
Substituting into the third equation from the first two, and re-
arranging, it is
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	 Since Y depends on u, the assumption that the disturbance term be 
distributed independently of the regressors is violated in (1).
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	 after substituting for W from (1) and simplifying. We are not able to 
obtain a closed-form expression for the expectation of the error term 
because u influences both its numerator and denominator, directly 
and by virtue of being a component of Y, as seen in the reduced form. 
Dividing both the numerator and denominator by n, and noting that
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	 the covariance of u with the constants being zero. Since K is exogenous, 
cov(K, u) = 0. We are told that u and v are distributed independently 
of each other, and so cov(u, v) = 0. Hence
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	 From the reduced form equation for Y it is evident that (1 – α2 – β2) > 
0, and so the large-sample bias will be positive.
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•	 Explain what can be inferred about the finite-sample properties of OLS if 
used to fit (1).

	 It is not possible for an estimator that is unbiased in a finite sample 
to develop a bias if the sample size increases. Therefore, since the 
estimator is biased in large samples, it must also be biased in finite 
ones. The plim may well be a guide to the mean of the estimator in a 
finite sample, but this is not guaranteed and it is unlikely to be exactly 
equal to the mean.

•	 Demonstrate mathematically how one might obtain a consistent estimate 
of β2 in (1).

	 Use K as an instrument for Y:

	

	 after substituting for W from (1) and simplifying. We are not able to 
obtain a closed-form expression for the expectation of the error term 
because u influences both its numerator and denominator, directly 
and by virtue of being a component of Y, as seen in the reduced form. 
Dividing both the numerator and denominator by n, and noting that it 
can be shown that 
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	 since K is exogenous, and that
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	 we can write

	
.

	 cov(K, Y) is non-zero since the reduced form equation for Y reveals that 
K is a determinant of Y. Hence the instrumental variable estimator is 
consistent.

•	 Explain why (2) is not identified (underidentified).

	 (2) is underidentified because the endogenous variable Y is a regressor 
and there is no valid instrument to use with it. The only potential 
instrument is the exogenous variable K and it is already a regressor in 
its own right.

•	 Explain whether (3) is identified.

	 (3) is an identity so the issue of identification does not arise.

•	 At a seminar, one of the participants asserts that it is possible to obtain 
an estimate of α2 even though equation (2) is underidentified. Any 
change in income that is not a change in wages must be a change in 
profits, by definition, and so one can estimate α2 as (1 – b2), where b2 is 
the consistent estimate of β2 found in the third part of this question. The 
researcher does not think that this is right but is confused and says that 
he will look into it after the seminar. What should he have said? 
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	 The argument would be valid if Y were exogenous, in which case 
one could characterise β2 and α2 as being the effects of Y on W and 
P, holding other variables constant. But Y is endogenous, and so the 
coefficients represent only part of an adjustment process. Y cannot 
change autonomously, only in response to variations in K, u, or v.

	 The reduced form equations for W and P are
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	 Thus, for example, a change in K will lead to changes in W and P in the 
proportions β2 : (1 – β2), not β2 : α2. The same is true of changes caused 
by a variation in v. For a variation in u, the proportions would be 
(1 – α2) : α2.

A9.6
•	 Explain why the OLS estimator of β2 would be inconsistent, if the 

researcher’s model is correctly specified. Derive analytically the large-
sample bias, and state whether it is possible to determine its sign.

	 The reduced form equation for x is
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	 It is not possible to obtain a closed-form expression for the expectation 
of the estimator because the error term is a nonlinear function of u. 
Instead we investigate whether the estimator is consistent, first dividing 
the numerator and the denominator of the error term by n so that they 
tend to limits as the sample size becomes large.	
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	 since cov(p, u) = 0, p being exogenous. It is reasonable to assume that 
employment grows less rapidly than output, and hence β2, and so 
(1 – β2), are less than 1. The bias is therefore likely to be positive. 

•	 Explain how the researcher might use p to construct an IV estimator of 
β2, that is consistent if p is exogenous. Demonstrate analytically that the 
estimator is consistent.	

	 p is available as an instrument, being exogenous, and therefore 
independent of u, being correlated with x, and not being in the 
equation in its own right.
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	 Hence, dividing the numerator and the denominator of the error term 
by n so that they tend to limits as the sample size becomes large,
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	 since cov(p, u) = 0, p being exogenous, and cov(p, x) ≠ 0, x being 
determined partly by p.

•	 The OLS and IV regressions are summarised below (standard errors in 
parentheses). Comment on them, making use of your answers to the first 
two parts of this question.

	 OLS	 ê  =	 –0.52 +	 0.48x	 (3)

					     (0.27)		 (0.08)

	 IV		  ê  =	 0.37 +	 0.17x	 (4)

					     (0.42)		 (0.14)

The IV estimate of the slope coefficient is lower than the OLS estimate, as 
expected. The standard errors are not comparable because the OLS ones 
are invalid.

•	 A second researcher hypothesises that both x and p are exogenous and 
that equation (2) should be written

	 e = x – p	 (5)

	 On the assumption that this is correct, explain why the slope coefficients 
in (3) and (4) are both biased and determine the direction of the bias in 
each case.

	 If (5) is correct, (3) is a misspecification that omits p and includes 
a redundant intercept. From the identity, the true values of the 
coefficients of x and p are 1 and –1, respectively. For (3),
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	 x and p are positively correlated, so the bias will be downwards.
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	 For (4),
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	 Hence

	

	 and so again the bias is downwards.

•	 Explain what would be the result of fitting (5), regressing e on x and p.

	 One would obtain a perfect fit with the coefficient of x equal to 1, the 
coefficient of p equal to –1, and R2 = 1.

A9.7
•	 Derive the reduced form equations for F and M.

	 (2) is the reduced form equation for M. Substituting for M in (1), we 
have

	 F = (β1+α1β3) + (β2+α2β3)S + u + β3v.

•	 Explain what would be the most appropriate method to fit equation (1).

	 Since M does not depend on u, OLS may be used to fit (1).

•	 Explain what would be the most appropriate method to fit equation (2).

	 There are no endogenous explanatory variables in (2), so again OLS 
may be used.

•	 Explain why the coefficient of S differs in the two equations.

	 In (3), the coefficient is an estimate of the direct effect of S on fertility, 
controlling for M. In (4), the reduced form equation, it is an estimate 
of the total effect, taking account of the indirect effect via M (female 
education reduces mortality, and a reduction in mortality leads to a 
reduction in fertility). 

•	 Explain whether one may validly perform t tests on the coefficients of (4).

	 It is legitimate to use OLS to fit (4), so the t tests are valid.

•	 Discuss whether G is likely to be a valid instrument.

	 G should be a valid instrument since it is highly correlated with 
S, it may reasonably be considered to be exogenous and therefore 
uncorrelated with the disturbance term in (4), and it does not appear 
in the equation in its own right (though perhaps it should).

•	 What should the researcher’s conclusions be with regard to the test?

	 With 1 degree of freedom as indicated by the output, the critical value 
of chi-squared at the 5 per cent significance level is 3.84. Therefore we 
do not reject the null hypothesis of no significant difference between 
the estimates of the coefficients and conclude that there is no need to 
instrument for S. (4) should be preferred because OLS is more efficient 
than IV, when both are consistent.
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A9.8
•	 Demonstrate that the estimate of α2 will be inconsistent if ordinary least 

squares (OLS) is used to fit the supply equation, showing that the large-
sample bias is likely to be negative.

	 The reduced form equation for P is
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	 The OLS estimator of α2 is
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	 We cannot take expectations because uS is a determinant of both the 
numerator and the denominator of the error term, in view of the 
reduced form equation for P. Instead, we take probability limits, after 
first dividing the numerator and the denominator of the error term by n 
to ensure that limits exist.
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Substituting from the reduced form equation for P,
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	 assuming that Y and POP are exogenous and so cov(uS, Y) = cov(uS, 
POP) = 0. We are told that uS and uD are distributed independently, so 
cov(uS, uD) = 0. Since it is reasonable to suppose that α2 is positive and 
β2 is negative, the large-sample bias will be negative.

•	 Demonstrate that a consistent estimate of α2 will be obtained if the 
supply equation is fitted using instrumental variables (IV), using Y as an 
instrument.
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	 We cannot take expectations because uS is a determinant of both the 
numerator and the denominator of the error term, in view of the 
reduced form equation for P. Instead, we take probability limits, after 
first dividing the numerator and the denominator of the error term by n 
to ensure that limits exist.
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	 since cov(Y, us) = 0 and cov(P, Y) ≠ 0, Y being a determinant of P.

•	 The model is used for a Monte Carlo experiment ... Discuss the results 
obtained.

The OLS estimates are clearly biased downwards.

The IV and TSLS estimates appear to be distributed around the true 
value, although one would need a much larger number of samples 
to be sure of this.

The IV estimates with POP appear to be slightly closer to the true 
value than those with Y, as should be expected given the higher 
correlation, and the TSLS estimates appear to be slightly closer than 
either, again as should be expected.

The OLS standard errors should be ignored. The standard errors for 
the IV regressions using POP tend to be smaller than those using 
Y, reflecting the fact that POP is a better instrument. Those for the 
TSLS regressions are smallest of all, reflecting its greater efficiency. 

A9.9
•	 Derive the reduced form equation for G for the first researcher.
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•	 Explain why ordinary least squares (OLS) would be an inconsistent 
estimator of the parameters of equation (2).

	 The reduced form equation for G demonstrates that G is not distributed 
independently of the disturbance term uR, a requirement for the 
consistency of OLS when fitting (2).

•	 The first researcher uses instrumental variables (IV) to estimate α2 in 
(2). Explain the procedure and demonstrate that the IV estimator of α2 is 
consistent.

	 The first researcher would use A as an instrument for G. It is 
exogenous, so independent of uR; correlated with G; and not in the 
equation in its own right. The estimator of the slope coefficient is
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	 Hence
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	 since ( ) 0,cov =RuA , A being exogenous, and ( ) 0,cov ≠GA , A being a 
determinant of G. 
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•	 The second researcher uses two stage least squares (TSLS) to estimate α2 
in (2). Explain the procedure and demonstrate that the TSLS estimator is 
consistent.

	 The reduced form equation for G for the second researcher is
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	 It is fitted using TSLS. The fitted values of G are used as the instrument:
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	 Following the same method as in the third part of the question
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	 ( ) 0,ˆcov =RuG  because Ĝ  is a linear combination of the exogenous 
variables, and ( ) 0,ˆcov ≠GG .

•	 Explain why the TSLS estimator used by the second researcher ought to 
produce ‘better’ results than the IV estimator used by the first researcher, if 
the growth equation is given by (1*). Be specific about what you mean by 
‘better’.

	 The TSLS estimator of α2 should have a smaller variance. The variance 
of an IV estimator is inversely proportional to the square of the 
correlation of G and the instrument. Ĝ  is the linear combination of 
A and Q that has the highest correlation. It will therefore, in general, 
have a lower variance than the IV estimator using A. 

•	 Suppose that the first researcher is correct and the growth equation 
is actually given by (1), not (1*). Compare the properties of the two 
estimators in this case.

	 If the first researcher is correct, A is the optimal instrument because 
it will be more highly correlated with G (in the population) than the 
TSLS combination of A and Q and it will therefore be more efficient.

•	 Suppose that the second researcher is correct and the model is given 
by (1*) and (2), but A is not exogenous after all. Suppose that A is 
influenced by G:

	 AuGA ++= 21 γγ 	 (3)

	 where uA is a disturbance term distributed independently of uG and uR. 
How would this affect the properties of the IV estimator of α2 used by the 
first researcher?

	 ( )RuA,cov  would not be equal to 0 and so the estimator would be 
inconsistent.

A9.10
•	 State, with a brief explanation, whether each variable is endogenous or 

exogenous, and derive the reduced form equations for the endogenous 
variables.

	 In this model LGEARN and SKILL are endogenous. IQ is exogenous. The 
reduced form equation for LGEARN is

	 LGEARN = β1 + α1β2 + α2β2IQ + u + β2v.

	 The reduced form equation for SKILL is the structural equation.



Chapter 9: Simultaneous equations estimation

193

•	 Explain why the researcher could use ordinary least squares (OLS) to fit 
equation (1) if u and v are distributed independently of each other.

	 SKILL is not determined either directly or indirectly by u. Thus in 
equation (1) there is no violation of the requirement that the regressor 
be distributed independently of the disturbance term. 

•	 Show that the OLS estimator of β2 is inconsistent if u and v are positively 
correlated and determine the direction of the large-sample bias.

	 Writing L for LGEARN, S for SKILL,
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	 We cannot obtain a closed-form expression for the expectation of the 
error term since S depends on v and v is correlated with u. Hence 
instead we take plims, dividing the numerator and the denominator by 
n to ensure that the limits exist:
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	 Now

	

	 since α1 is a constant and IQ is exogenous. Hence the numerator of 
the error term is positive in large samples. The denominator, being a 
variance, is also positive. So the large-sample bias is positive.

•	 Demonstrate mathematically how the researcher could use instrumental 
variables (IV) estimation to obtain a consistent estimate of β2.

	 The researcher could use IQ as an instrument for SKILL:

	

.

	 We cannot obtain a closed-form expression for the expectation of the 
error term since S depends on v and v is correlated with u. Hence 
instead we take plims, dividing the numerator and the denominator by 
n to ensure that the limits exist:
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	 The numerator of the error term is zero because I is exogenous. The 
denominator is not zero because S is determined by I. Hence the IV 
estimator is consistent.

•	 Explain the advantages and disadvantages of using IV, rather than OLS, 
to estimate β2, given that the researcher is not sure whether u and v are 
distributed independently of each other.
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	 The advantage of IV is that, being consistent, there will be no bias in 
large samples and hence one may hope that there is no serious bias in 
a finite sample. One disadvantage is that there is a loss of efficiency 
if u and v are independent. Even if they are not independent, the IV 
estimator may be inferior to the OLS estimator using some criterion 
such as the mean square error that allows a trade-off between the bias 
of an estimator and its variance.

•	 Describe in general terms a test that might help the researcher decide 
whether to use OLS or IV. What are the limitations of the test?

	 Durbin–Wu–Hausman test. Also known as Hausman test. The test 
statistic is a chi-squared statistic based on the differences of all the 
coefficients in the regression. The null hypothesis is that SKILL is 
distributed independently of u and the differences in the coefficients 
are random. If the test statistic exceeds its critical value, given the 
significance level of the test, we reject the null hypothesis and conclude 
that we ought to use IV rather than OLS. The main limitation is lack of 
power if the instrument is weak.

•	 Explain whether it is possible for the researcher to fit equation (2) and 
obtain consistent estimates.

	 There is no reason why the equation should not be fitted using OLS.

A9.11
Substituting for Y from the first equation into the second, and 
re-arranging, we have the reduced form equation for S:
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Substituting from the third equation into the first, we have

	 wuRY 221 bbb −++= .

If this equation is fitted using OLS, we have
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The denominator of the bias term is positive. Hence the bias will be 
positive if (the component attributable to simultaneity) is greater than   
(the component attributable to measurement error), and negative if it is 
smaller.
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Chapter 10: Binary choice and limited 
dependent variable models, and 
maximum likelihood estimation

Overview
The first part of this chapter describes the linear probability model, 
logit analysis, and probit analysis, three techniques for fitting regression 
models where the dependent variable is a qualitative characteristic. Next 
it discusses tobit analysis, a censored regression model fitted using a 
combination of linear regression analysis and probit analysis. This leads 
to sample selection models and heckman analysis. The second part of the 
chapter introduces maximum likelihood estimation, the method used to fit 
all of these models except the linear probability model. 

Learning outcomes
After working through the corresponding chapter in the textbook, studying 
the corresponding slideshows, and doing the starred exercises in the 
textbook and the additional exercises in this guide, you should be able to:

•	 describe the linear probability model and explain its defects

•	 describe logit analysis, giving the mathematical specification

•	 describe probit analysis, including the mathematical specification

•	 calculate marginal effects in logit and probit analysis

•	 explain why OLS yields biased estimates when applied to a sample 
with censored observations, even when the censored observations are 
deleted

•	 explain the problem of sample selection bias and describe how the 
heckman procedure may provide a solution to it (in general terms, 
without mathematical detail)

•	 explain the principle underlying maximum likelihood estimation

•	 apply maximum likelihood estimation from first principles in simple 
models.

Further material

Limiting distributions and the properties of maximum likelihood 
estimators

Provided that weak regularity conditions involving the differentiability of 
the likelihood function are satisfied, maximum likelihood (ML) estimators 
have the following attractive properties in large samples:

(1) They are consistent.

(2) They are asymptotically normally distributed.

(3) They are asymptotically efficient.

The meaning of the first property is familiar. It implies that the probability 
density function of the estimator collapses to a spike at the true value. This 
being the case, what can the other assertions mean? If the distribution 
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becomes degenerate as the sample size becomes very large, how can it be 
described as having a normal distribution? And how can it be described as 
being efficient, when its variance, and the variance of any other consistent 
estimator, tend to zero?

To discuss the last two properties, we consider what is known as the 
limiting distribution of an estimator. This is the distribution of the 
estimator when the divergence between it and its population mean is 
multiplied by n . If we do this, the distribution of a typical estimator 
remains nondegenerate as n becomes large, and this enables us to say 
meaningful things about its shape and to make comparisons with the 
distributions of other estimators (also multiplied by n ).

To put this mathematically, suppose that there is one parameter of interest, 
θ, and that θ̂  is its ML estimator. Then (2) says that 

	  ( ) ( )2,0~ˆ σθ Nn −θ

for some variance 2σ . (3) says that, given any other consistent estimator 
θ
~

, ( )θθ −
~n  cannot have a smaller variance.

Test procedures for maximum likelihood estimation
This section on ML tests contains material that is a little advanced for an 
introductory econometrics course. It is provided because likelihood ratio 
tests are encountered in the sections on binary choice models and because 
a brief introduction may be of help to those who proceed to a more 
advanced course.

There are three main approaches to testing hypotheses in maximum 
likelihood estimation: likelihood ratio (LR) tests, Wald tests, and Lagrange 
multiplier (LM) tests. Since the theory behind Lagrange multiplier tests is 
relatively complex, the present discussion will be confined to the first two 
types. We will start by assuming that the probability density function of 
a random variable X is a known function of a single unknown parameter 
θ and that the likelihood function for θ given a sample of n observations 
on X, ( )nXXL ,...,| 1θ , satisfies weak regularity conditions involving its 
differentiability. In particular, we assume that θ is determined by the 
first-order condition dL/dθ = 0. (This rules out estimators such as that 
in Exercise A10.7) The null hypothesis is H0: θ = θ0, the alternative 
hypothesis is H1: θ ≠  θ0, and the maximum likelihood estimate of θ is θ̂ .

Likelihood ratio tests

A likelihood ratio test compares the value of the likelihood function at 
θθ ˆ=  with its value at 0θθ = . In view of the definition of θ̂ , ( ) ( )0

ˆ θθ LL ≥  

for all θ0. However, if the null hypothesis is true, the ratio ( ) ( )0
ˆ θθ LL  

should not be significantly greater than 1. As a consequence, the logarithm 
of the ratio, 
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( ) ( ) ( )0

0

logˆlog
ˆ

log θθ
θ
θ LL

L
L

−=
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








should not be significantly different from zero. In that it involves a 
comparison of the measures of goodness of fit for unrestricted and 
restricted versions of the model, the LR test is similar to an F test.

Under the null hypothesis, it can be shown that in large samples the test 
statistic
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has a chi-squared distribution with one degree of freedom. If there are 
multiple parameters of interest, and multiple restrictions, the number of 
degrees of freedom is equal to the number of restrictions.

Examples

We will return to the example in Section 10.6 in the textbook, where we 
have a normally-distributed random variable X with unknown population 
mean μ and known standard deviation equal to 1. Given a sample of n 
observations, the likelihood function is 

	 ( ) ( )
.
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The log–likelihood is
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and the unrestricted ML estimate is X=µ̂ . The LR statistic for the null 
hypothesis H0: μ = μ0 is therefore

.

If we relaxed the assumption σ = 1, the unrestricted likelihood function is
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and the log-likelihood is

	
( ) ( )∑

=

−−−







=

n

i
in XnnXXL

1

2
21 ˆ

ˆ2
1ˆlog

2
1log,...,|ˆ,ˆlog µ

σ
σ

π
σµ .

The first-order condition obtained by differentiating by σ is

	 ( ) 01log
1
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from which we obtain
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Substituting back into the log-likelihood function, the latter now becomes 
a function of μ only (and is known as the concentrated log-likelihood 
function or, sometimes, the profile log-likelihood function):
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As before, the ML estimator of μ is X . Hence the LR statistic is
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.

It is worth noting that this is closely related to the F statistic obtained 
when one fits the least squares model

	 Xi = μ + ui .

The least squares estimator of μ is X  and
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i XXRSS
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Returning to the LR statistic, we have

	

.

Note that we have used the approximation log(1 + a) = a which is valid 
when a is small enough for higher powers to be neglected.

Wald tests

Wald tests are based on the same principle as t tests in that they evaluate 
whether the discrepancy between the maximum likelihood estimate θ and 
the hypothetical value θ0 is significant, taking account of the variance in 
the estimate. The test statistic for the null hypothesis 0ˆ: 00 =−θθH  is

	 ( )
2
ˆ

2

0

ˆ

ˆ

θ
σ
θθ −

where 2
ˆˆ
θ

σ  is the estimate of the variance of θ evaluated at the maximum 
likelihood value. 2

ˆˆ
θ

σ  can be estimated in various ways that are 
asymptotically equivalent if the likelihood function has been specified 
correctly. A common estimator is that obtained as minus the inverse 
of the second differential of the log-likelihood function evaluated at 
the maximum likelihood estimate. Under the null hypothesis that the 
restriction is valid, the test statistic has a chi-squared distribution with one 
degree of freedom. When there are multiple restrictions, the test statistic 
becomes more complex and the number of degrees of freedom is equal to 
the number of restrictions.
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Examples

We will use the same examples as for the LR test, first, assuming that σ = 1 
and then assuming that it has to be estimated along with μ. In the first case 
the log-likelihood function is
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In the second example, where σ was unknown, the concentrated log-
likelihood function is
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The first derivative with respect to μ is
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The second derivative is
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Evaluated at the ML estimator X=µ̂ , ( ) 0
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Hence the Wald test statistic is 
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. Under the null hypothesis, this 

is distributed as a chi-squared statistic with one degree of freedom.

When there is just one restriction, as in the present case, the Wald statistic 
is the square of the corresponding asymptotic t statistic (asymptotic because 
the variance has been estimated asymptotically). The chi-squared test and 
the t test are equivalent, given that, when there is one degree of freedom, 
the critical value of the chi-squared statistic for any significance level is the 
square of the critical value of the normal distribution.
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LR test of restrictions in a regression model

Given the regression model
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with u assumed to be iid N(0, σ2), the log-likelihood function for the 
parameters is
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This is a straightforward generalisation of the expression for a simple 
regression derived in Section 10.6 in the textbook. Hence

	
( ) ZnnniXYL iik 21 2

12log
2

log,...1,,|,,...,log
σ

πσσbb −−−==

where

	

∑ ∑
= =











−−=

n

i

k

j
ijji XYZ

1

2

2
1 ββ .

The estimates of the β parameters affect only Z. To maximise the log-
likelihood, they should be chosen so as to minimise Z, and of course this 
is exactly what one is doing when one is fitting a least squares regression. 
Hence Z = RSS. It remains to determine the ML estimate of σ. Taking 
the partial differential with respect to σ, we obtain one of the first-order 
conditions for a maximum:
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From this we obtain 

	
n

RSS
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Hence the ML estimator is the sum of the squares of the residuals divided 
by n. This is different from the least squares estimator, which is the sum of 
the squares of the residuals divided by n – k, but the difference disappears 
as the sample size becomes large. Substituting for 2σ̂ in the log-likelihood 
function, we obtain the concentrated likelihood function
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We will re-write this as

	 ( )nRSSnL log2log1log
2

log UU −++−= π

the subscript U emphasising that this is the unrestricted log-likelihood. If 
we now impose a restriction on the parameters and maximise the log-
likelihood function subject to the restriction, it will be
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	 ( )nRSSnL log2log1log
2

log RR −++−= π

where UR RSSRSS ≥  and hence UR loglog LL ≤ . The LR statistic for a test 
of the restriction is therefore

	
( ) ( )
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R
URRU loglogloglog2

RSS
RSSnRSSRSSnLL =−=− .

It is distributed as a chi-squared statistic with one degree of freedom 
under the null hypothesis that the restriction is valid. If there is more than 
one restriction, the test statistic is the same but the number of degrees 
of freedom under the null hypothesis that all the restrictions are valid is 
equal to the number of restrictions.

An example of its use is the common factor test in Section 12.3 in the 
textbook. As with all maximum likelihood tests, it is valid only for large 
samples. Thus for testing linear restrictions we should prefer the F test 
approach because it is valid for finite samples.

Additional exercises

A10.1
What factors affect the decision to make a purchase of your category of 
expenditure in the CES data set?

Define a new variable CATBUY that is equal to 1 if the household makes 
any purchase of your category and 0 if it makes no purchase at all. Regress 
CATBUY on EXPPC, SIZE, REFAGE, and COLLEGE (as defined in Exercise 
A5.6) using: (1) the linear probability model, (2) the logit model, and (3) 
the probit model. Calculate the marginal effects at the mean of EXPPC, 
SIZE, REFAGE, and COLLEGE for the logit and probit models and compare 
them with the coefficients of the linear probability model.

A10.2
Logit analysis was used to relate the event of a respondent working 
(WORKING, defined to be 1 if the respondent was working, and 0 
otherwise) to the respondent’s educational attainment (S, defined as 
the highest grade completed) using 1994 data from the US National 
Longitudinal Survey of Youth. In this year the respondents were aged 
29–36 and a substantial number of females had given up work to raise a 
family. The analysis was undertaken for females and males separately, with 
the output shown below (first females, then males, with iteration messages 
deleted):



20 Elements of econometrics

202

95 per cent of the respondents had S in the range 9–18 years and 
the mean value of S was 13.3 and 13.2 years for females and males, 
respectively.

From the logit analysis, the marginal effect of S on the probability of 
working at the mean was estimated to be 0.030 and 0.020 for females 
and males, respectively. Ordinary least squares regressions of WORKING 
on S yielded slope coefficients of 0.029 and 0.020 for females and males, 
respectively.

As can be seen from the second figure below, the marginal effect of 
educational attainment was lower for males than for females over most of 
the range S ≥  9. Discuss the plausibility of this finding.

As can also be seen from the second figure, the marginal effect of 
educational attainment decreases with educational attainment for both 
males and females over the range S ≥  9. Discuss the plausibility of this 
finding.

Compare the estimates of the marginal effect of educational attainment 
using logit analysis with those obtained using ordinary least squares.

Figure 10.1 Probability of working, as a function of S
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Figure 10.2 Marginal effect of S on the probability of working

A10.3
A researcher has data on weight, height, and schooling for 540 
respondents in the US National Longitudinal Survey of Youth for the year 
2002. Using the data on weight and height, he computes the body mass 
index for each individual. If the body mass index is 30 or greater, the 
individual is defined to be obese. He defines a binary variable, OBESE, 
that is equal to 1 for the 164 obese individuals and 0 for the other 376. 
He wishes to investigate whether obesity is related to schooling and fits an 
ordinary least squares (OLS) regression of OBESE on S, years of schooling, 
with the following result (t statistics in parentheses):

	 OBESEˆ 	 =	 0.595 –	 0.021 S	 (1)

					     (5.30)		 (2.63)

This is described as the linear probability model (LPM). He also fits 

the logit model ( ) Ze
ZF

−+
=

1
1

, where F(Z) is the probability of being 

obese and SZ 21 bb += , with the following result (again, t statistics in 
parentheses):

	
 
Ẑ 	=	 0.588 –	 0.105 S	 (2)

			   (1.07)		 (2.60)

The figure below shows the probability of being obese and the marginal 
effect of schooling as a function of S, given the logit regression. Most 
(492 out of 540) of the individuals in the sample had 12 to 18 years of 
schooling.
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Figure 10.3

•	 Discuss whether the relationships indicated by the probability and 
marginal effect curves appear to be plausible.

•	 Add the probability function and the marginal effect function for the 
LPM to the diagram. Explain why you drew them the way you did.

•	 The logit model is considered to have several advantages over the LPM. 
Explain what these advantages are. Evaluate the importance of the 
advantages of the logit model in this particular case.

•	 The LPM is fitted using OLS. Explain how, instead, it might be fitted 
using maximum likelihood estimation:

Write down the probability of being obese for any obese individual, 
given Si for that individual, and write down the probability of not being 
obese for any non-obese individual, again given Si for that individual.

Write down the likelihood function for this sample of 164 obese 
individuals and 376 non-obese individuals.

Explain how one would use this function to estimate the 
parameters. [Note: You are not expected to attempt to derive the 
estimators of the parameters.]

Explain whether your maximum likelihood estimators will be the 
same or different from those obtained using least squares.

A10.4
A researcher interested in the relationship between parenting, age and 
schooling has data for the year 2000 for a sample of 1,167 married males and 
870 married females aged 35 to 42 in the National Longitudinal Survey of 
Youth. In particular, she is interested in how the presence of young children 
in the household is related to the age and education of the respondent. 
She defines CHILDL6 to be 1 if there is a child less than 6 years old in the 
household and 0 otherwise and regresses it on AGE, age, and S, years of 
schooling, for males and females separately using probit analysis. Defining the 
probability of having a child less than 6 in the household to be p = F(Z) where

	 Z = β1 + β2AGE + β3S

she obtains the results shown in the table below (asymptotic standard 
errors in parentheses).
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males females

AGE
–0.137

(0.018)

–0.154

(0.023)

S
0.132

(0.015)

0.094

(0.020)

constant
0.194

(0.358)

0.547

(0.492)

Z –0.399 –0.874

)(Zf 0.368 0.272

For males and females separately, she calculates

	 SbAGEbbZ 321 ++=  

where AGE  and S  are the mean values of AGE and S and b1, b2, and b3 
are the probit coefficients in the corresponding regression, and she further 
calculates

	 2

2
1

2
1)(

Z
eZf
−

=
π

 

where  The values of Z and )(Zf  are shown in the table.

•	 Explain how one may derive the marginal effects of the explanatory 
variables on the probability of having a child less than 6 in the 
household, and calculate for both males and females the marginal 
effects at the means of AGE and S.

•	 Explain whether the signs of the marginal effects are plausible. Explain 
whether you would expect the marginal effect of schooling to be higher 
for males or for females.

•	 At a seminar someone asks the researcher whether the marginal effect 
of S is significantly different for males and females. The researcher 
does not know how to test whether the difference is significant and 
asks you for advice. What would you say?

A10.5
A health economist investigating the relationship between smoking, 
schooling, and age, defines a dummy variable D to be equal to 1 for 
smokers and 0 for nonsmokers. She hypothesises that the effects of 
schooling and age are not independent of each other and defines an 
interactive term schooling*age. She includes this as an explanatory 
variable in the probit regression. Explain how this would affect the 
estimation of the marginal effects of schooling and age.

A10.6
A researcher has data on the following variables for 5,061 respondents in 
the US National Longitudinal Survey of Youth:

•	 MARRIED, marital status in 1994, defined to be 1 if the respondent was 
married with spouse present and 0 otherwise;

•	 MALE, defined to be 1 if the respondent was male and 0 if female;

•	 AGE in 1994 (the range being 29–37);

•	 S, years of schooling, defined as highest grade completed, and

•	 ASVABC, score on a test of cognitive ability, scaled so as to have mean 
50 and standard deviation 10.
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She uses probit analysis to regress MARRIED on the other variables, with 
the output shown:

Variable Mean Marginal effect

MALE 0.4841 -0.0467

AGE 32.52 0.0110

S 13.31 -0.0007

ASVABC 48.94 0.0097

The means of the explanatory variables, and their marginal effects 
evaluated at the means, are shown in the table.

•	 Discuss the conclusions one may reach, given the probit output and the 
table, commenting on their plausibility.

•	 The researcher considers including CHILD, a dummy variable defined 
to be 1 if the respondent had children, and 0 otherwise, as an 
explanatory variable. When she does this, its z-statistic is 33.65 and its 
marginal effect 0.5685. Discuss these findings.

A10.7
Suppose that the time, t, required to complete a certain process has 
probability density function

	 ( )baa −−= tetf )(  with t > β > 0

and you have a sample of n observations with times T1, ..., Tn.

Determine the maximum likelihood estimate of α, assuming that β is 
known.

A10.8
In Exercise 10.14 in the textbook, an event could occur with probability 
p. Given that the event occurred m times in a sample of n observations, 
the exercise required demonstrating that m/n was the ML estimator of p. 
Derive the LR statistic for the null hypothesis p = p0. If m = 40 and n = 
100, test the null hypothesis p = 0.5.

A10.9
For the variable in Exercise A10.8, derive the Wald statistic and test the 
null hypothesis p = 0.5.
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Answers to the starred exercises in the textbook

10.1
[This exercise does not have a star in the textbook, but an answer to it is 
needed for comparison with the answer to Exercise 10.3.]

The output shows the result of an investigation of how the probability of a 
respondent obtaining a bachelor’s degree from a four-year college is 
related to the score on ASVABC, using EAEF Data Set 21. BACH is a dummy 
variable equal to 1 for those with bachelor’s degrees (years of schooling at 
least 16) and 0 otherwise. ASVABC ranged from 22 to 65, with mean value 
50.2, and most scores were in the range 40 to 60. Provide an 
interpretation of the coefficients. Explain why OLS is not a satisfactory 
estimation method for this kind of model.

Answer: 

The slope coefficient indicates that the probability of earning a bachelor’s 
degree rises by 2.4 per cent for every additional point on the ASVABC 
score. While this may be realistic for a range of values of ASVABC, it is 
not for very low ones. Very few of those with scores in the low end of 
the spectrum earned bachelor’s degrees and variations in the ASVABC 
score would be unlikely to have an effect on the probability. The intercept 
literally indicates that an individual with a 0 score would have a minus 
92.3 per cent probability of earning a bachelor’s degree. Given the way 
that ASVABC was constructed, a score of 0 was in fact impossible. However 
the linear probability model predicts nonsense negative probabilities for all 
those with scores of 39 or less, of whom there were many in the sample.

The linear probability model also suffers from the problem that the 
standard errors and t and F tests are invalid because the disturbance 
term does not have a normal distribution. Its distribution is not even 
continuous, consisting of only two possible values for each value of 
ASVABC.

10.3
The output shows the results of fitting a logit regression to the data set 
described in Exercise 10.1 (with four of the iteration messages deleted). 
26.7 per cent of the respondents earned bachelor’s degrees. 
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The figure shows the probability of earning a bachelor’s degree as a 
function of ASVABC. It also shows the marginal effect function.

Figure 10.4

•	 With reference to the figure, discuss the variation of the marginal effect 
of the ASVABC score implicit in the logit regression.

•	 Sketch the probability and marginal effect diagrams for the OLS 
regression in Exercise 10.1 and compare them with those for the logit 
regression.

Answer: 

In Exercise 10.1 we were told that the mean value of ASVABC in the 
sample was 50.2. From the curve for the cumulative probability in the 
figure it can be seen that the probability of graduating from college for 
respondents with that score is only about 20 per cent. The question states 
that most respondents had scores in the range 40–60. It can be seen that 
at the top of that range the probability has increased substantially, being 
about 60 per cent. Looking at the curve for the marginal probability, 
it can be seen that the marginal effect is greatest in the range 50–65, 
and of course this is the range with the steepest slope of the cumulative 
probability. Exercise 10.1 states that the highest score was 65, where the 
probability would be about 90 per cent.

For the linear probability model in Exercise 10.1, the counterpart to the 
cumulative probability curve in the figure is a straight line using the 
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regression result. At the ASVABC mean it predicts that there is a 29% 
chance of the respondent graduating from college, considerably more than 
the logit figure, but for a score of 65 it predicts a probability of only 63%. 
It is particularly unsatisfactory for low ASVABC scores since it predicts 
negative probabilities for all scores lower than 38. The OLS counterpart 
to the marginal probability curve is a horizontal straight line at 0.023, 
showing that the marginal effect is underestimated for ASVABC scores 
above 50 and overestimated below that figure. (The maximum ASVABC 
score was 65.)

Figure 10.5

10.7
The following probit regression, with iteration messages deleted, was 
fitted using 2,726 observations on females in the National Longitudinal 
Survey of Youth using the LFP data set described in Appendix B. The data 
are for 1994, when the respondents were aged 29 to 36 and many of them 
were raising young families.

WORKING is a binary variable equal to 1 if the respondent was working 
in 1994, 0 otherwise. CHILDL06 is a dummy variable equal to 1 if there 
was a child aged less than 6 in the household, 0 otherwise. CHILDL16 is 
a dummy variable equal to 1 if there was a child aged less than 16, but 
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no child less than 6, in the household, 0 otherwise. MARRIED is equal to 1 if 
the respondent was married with spouse present, 0 otherwise. The remaining 
variables are as described in EAEF Regression Exercises. The mean values of the 
variables are given in the output below:

Calculate the marginal effects and discuss whether they are plausible. [The 
data set and a description are posted on the website.]

Answer: 

The marginal effects are calculated in the table below. As might be expected, 
having a child aged less than 6 has a large adverse effect, very highly 
significant. Schooling also has a very significant effect, more educated 
mothers making use of their investment by tending to stay in the labour force. 
Age has a significant negative effect, the reason for which is not obvious (the 
respondents were aged 29 – 36 in 1994). Being black also has an adverse 
effect, the reason for which is likewise not obvious. (The WORKING variable 
is defined to be 1 if the individual has recorded hourly earnings of at least 
$3. If the definition is tightened to also include the requirement that the 
employment status is employed, the latter effect is smaller, but still significant 
at the 5 per cent level.)

Variable Mean b Mean× b f(Z) bf(Z)

S 13.3100 0.0893 1.1886 0.2969 0.0265

AGE 17.6464 –0.0439 –0.7747 0.2969 –0.0130

CHILD06 0.3991 –0.5842 –0.2332 0.2969 –0.1735

CHILDL16 0.3180 –0.1359 –0.0432 0.2969 –0.0404

MARRIED 0.6229 –0.0077 –0.0048 0.2969 –0.0023

ETHBLACK 0.1306 –0.2781 –0.0363 0.2969 –0.0826

ETHHISP 0.0723 –0.0192 –0.0014 0.2969 –0.0057

constant 1.0000 0.6735 0.6735

Total 0.7685

10.9
Using the CES data set, perform a tobit regression of expenditure on your 
commodity on total household expenditure per capita and household size, and 
compare the slope coefficients with those obtained in OLS regressions including 
and excluding observations with 0 expenditure on your commodity.

Answer: 

The table gives the number of unconstrained observations for each category 
of expenditure and the slope coefficients and standard errors from an OLS 
regression using the unconstrained observations only, the OLS regression 
using all the observations, and the tobit regression. As may be expected, the 
discrepancies between the tobit estimates and the OLS estimates are greatest 
for those categories with the largest numbers of constrained observations. 
In the case of categories such as FDHO, SHEL, TELE, and CLOT, there is very 
little difference between the tobit and the OLS estimates.
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Comparison of OLS and tobit regressions

OLS, all cases OLS, no 0 cases tobit

n EXPPC SIZE EXPPC SIZE EXPPC SIZE

FDHO 868
0.0317

(0.0027)

–132.221

(15.230)

0.0317

(0.0027)

–133.775

(15.181)

0.0317

(0.0027)

–132.054

(15.220)

FDAW 827
0.0488

(0.0025)

5.342

(14.279)

0.0476

(0.0027)

–2.842

(15.084)

0.0515

(0.0026)

16.887

(14.862)

HOUS 867
0.2020

(0.0075)

–113.011

(42.240)

0.2017

(0.0075)

–113.677

(42.383)

0.2024

(0.0075)

–112.636

(42.256)

TELE 858
0.0147

(0.0014)

–40.958

(7.795)

0.0145

(0.0014)

–43.073

(7.833)

0.0149

(0.0014)

–40.215

(7.862)

DOM 454
0.0178

(0.0034)

16.917

(19.250)

0.0243

(0.0060)

–1.325

(35.584)

0.0344

(0.0055)

71.555

(31.739)

TEXT 482
0.0078

(0.0006)

7.896

(3.630)

0.0115

(0.0011)

5.007

(6.431)

0.0121

(0.0010)

28.819

(5.744)

FURN 329
0.0135

(0.0015)

5.030

(8.535)

0.0198

(0.0033)

–43.117

(21.227)

0.0294

(0.0033)

62.492

(19.530)

MAPP 244
0.0066

(0.0008)

3.668

(4.649)

0.0124

(0.0022)

–25.961

(13.976)

0.0165

(0.0024)

46.113

(14.248)

SAPP 467
0.0015

(0.0002)

–1.195

(1.197)

0.0017

(0.0004)

–7.757

(2.009)

0.0028

(0.0004)

4.247

(2.039)

CLOT 847
0.0421

(0.0021)

25.575

(11.708)

0.0414

(0.0021)

21.831

(12.061)

0.0433

(0.0021)

30.945

(11.946)

FOOT 686
0.0035

(0.0003)

0.612

(1.601)

0.0034

(0.0003)

–3.875

(1.893)

0.0041

(0.0003)

3.768

(1.977)

GASO 797
0.0212

(0.0015)

–16.361

(8.368)

0.0183

(0.0015)

–42.594

(8.732)

0.0229

(0.0016)

–7.883

(9.096)

TRIP 309
0.0210

(0.0018)

15.862

(10.239)

0.0263

(0.0044)

–13.063

(27.150)

0.0516

(0.0042)

92.173

(24.352)

LOCT 172
–0.0007

(0.0004)

–6.073

(2.484)

–0.0005

(0.0018)

–23.839

(9.161)

–0.0039

(0.0019)

–9.797

(9.904)

HEAL 821
0.0205

(0.0036)

–162.500

(20.355)

0.0181

(0.0036)

–178.197

(20.804)

0.0220

(0.0037)

–160.342

(21.123)

ENT 824
0.0754

(0.0044)

58.943

(24.522)

0.0743

(0.0046)

48.403

(26.222)

0.0806

(0.0045)

87.513

(25.611)

FEES 676
0.0329

(0.0025)

33.642

(14.295)

0.0337

(0.0032)

23.969

(19.334)

0.0452

(0.0031)

91.199

(17.532)

TOYS 592
0.0081

(0.0008)

9.680

(4.599)

0.0095

(0.0011)

–5.894

(6.205)

0.0117

(0.0011)

35.529

(6.381)

READ 764
0.0054

(0.0004)

–8.202

(1.998)

0.0050

(0.0004)

–12.491

(2.212)

0.0061

(0.0004)

–6.743

(2.233)

EDUC 288
0.0114

(0.0029)

17.678

(16.152)

0.0235

(0.0088)

–108.177

(47.449)

0.0396

(0.0072)

329.243

(42.401)

TOB 368
0.0013

(0.0009)

–17.895

(4.903)

0.0057

(0.0016)

–48.865

(8.011)

0.0007

(0.0019)

–13.939

(10.736)
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10.12
Show that the tobit model may be regarded as a special case of a selection 
bias model.

Answer: 

The selection bias model may be written 

	

	 *
ii YY = 	 for 0* >iB ,

	 Yi is not observed	 for 0* ≤iB 	

where the Q variables determine selection. The tobit model is the special 
case where the Q variables are identical to the X variables and B* is the 
same as Y*.

10.14
An event is hypothesised to occur with probability p. In a sample of 
n observations, it occurred m times. Demonstrate that the maximum 
likelihood estimator of p is m/n.

Answer: 

In each observation where the event did occur, the probability was p. In 
each observation where it did not occur, the probability was (1 – p). Since 
there were m of the former and n – m of the latter, the joint probability 
was .)1( mnm pp −−  Reinterpreting this as a function of p, given m and n, the 
log-likelihood function for p is

	 ( ) ( ) ( )pmnpmpL −−+= 1logloglog .

Differentiating with respect to p, we obtain the first-order condition for a 
minimum:

 	 ( ) 0
1d

logd
=

−
−

−=
p
mn

p
m

p
pL

.

This yields p = m/n. We should check that the second differential is 
negative and that we have therefore found a maximum. The second 
differential is

	 ( )
( )222

2

1d
logd

p
mn

p
m

p
pL

−
−

−−= .

Evaluated at p = m/n, 

	 ( )



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.

This is negative, so we have indeed chosen the value of p that maximises 
the probability of the outcome.
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10.18
Returning to the example of the random variable X with unknown mean 
μ and variance σ2, the log-likelihood for a sample of n observations was 
given by equation (10.34):

	
.)(

2
1...)(

2
11log

2
2log

2
log 22

12
2 






 −−−−−+−−= µµ

σ
σπ nXXnnL

The first-order condition for μ produced the ML estimator of μ and the first 
order condition for σ then yielded the ML estimator for σ. Often, the variance 
is treated as the primary dispersion parameter, rather than the standard 
deviation. Show that such a treatment yields the same results in the present 
case. Treat σ 2 as a parameter, differentiate log L with respect to it, and solve.

Answer:

	
.0)(

2
1...)(

2
11

2
log 22

1422 =





 −−−−−−−=

∂
∂ µµ

σσσ nXXnL

Hence

	 ( )22
1

2 )(...)(1 µµσ −++−= nXX
n

as before. The ML estimator of μ is X  as before.

10.19
In Exercise 10.4, log L0 is –1485.62. Compute the pseudo-R2 and confirm 
that it is equal to that reported in the output.

Answer: 

As defined in equation (10.43), 

	 pseudo-R2 = 1 – 
0log

log
L
L

 = 1 – 
6248.1485
0835.1403

−
−

 = 0.0556,

as appears in the output.

10.20
In Exercise 10.4, compute the likelihood ratio statistic 2(log L – log L0), 
confirm that it is equal to that reported in the output, and perform the 
likelihood ratio test.

Answer: 

The likelihood ratio statistic is 2(–1403.0835 + 1485.6248) = 165.08, 
as printed in the output. Under the null hypothesis that the coefficients 
of the explanatory variables are all jointly equal to 0, this is distributed 
as a chi-squared statistic with degrees of freedom equal to the number of 
explanatory variables, in this case 7. The critical value of chi-squared at 
the 0.1 per cent significance level with 7 degrees of freedom is 24.32, and 
so we reject the null hypothesis at that level.

Answers to the additional exercises

A10.1
In the case of FDHO and HOUS there were too few non-purchasing 
households to undertake the analysis sensibly (one and two, respectively).

The results for the logit analysis and the probit analysis were very similar. 
The linear probability model also yielded similar results for most of 
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the commodities, the coefficients being similar to the logit and probit 
marginal effects and the t statistics being of the same order of magnitude 
as the z statistics for the logit and probit. However for those categories 
of expenditure where most households made purchases, and the sample 
was therefore greatly imbalanced, the linear probability model gave very 
different results, as might be expected.

The total expenditure of the household and the size of the household were 
both highly significant factors in the decision to make a purchase for all 
the categories of expenditure except TELE, LOC and TOB. In the case of 
TELE, only 11 households did not make a purchase, the reasons apparently 
being non-economic. LOCT is on the verge of being an inferior good and 
for that reason is not sensitive to total expenditure. TOB is well-known not 
to be sensitive to total expenditure.

Age was a positive influence in the case of TRIP, HEAL, and READ and a 
negative one for FDAW, FURN, FOOT, TOYS, EDUC, and TOB.

A college education was a positive influence for TRIP, HEAL, READ and 
EDUC and a negative one for TOB.

Most of these effects seem plausible with simple explanations.

Linear probability model, dependent variable CATBUY

EXPPC x 10–4 SIZE REFAGE COLLEGE
cases with 
probability

n b2 t b3 t b4 t b5 t < 0 > 1

FDHO 868 –0.0002 –0.16 0.0005 0.52 –0.0001 –0.90 0.0017 0.68 0 288

FDAW 827 0.0518 5.63 0.0181 3.37 –0.0018 –3.98 0.0101 0.68 0 173

HOUS 867 0.0025 1.19 0.0000 0.02 –0.0000 –0.43 0.0029 0.83 0 181

TELE 858 0.0092 1.85 0.0060 2.06 0.0004 1.66 0.0123 1.53 0 136

DOM 454 0.0926 4.22 0.0433 3.39 0.0019 1.84 0.0850 2.40 0 0

TEXT 482 0.1179 5.51 0.0690 5.52 –0.0019 –1.80 0.0227 0.66 0 5

FURN 329 0.1202 5.75 0.0419 3.43 –0.0036 –3.61 –0.0050 –0.15 0 0

MAPP 244 0.0930 4.71 0.0540 4.69 0.0012 1.25 0.0049 0.15 0 0

SAPP 467 0.1206 5.59 0.0655 5.20 –0.0012 –1.18 0.0174 0.50 0 4

CLOT 847 0.0316 4.60 0.0121 3.02 –0.0008 –2.30 0.0028 0.25 0 176

FOOT 686 0.0838 4.75 0.0444 4.31 –0.0028 –3.29 –0.0283 –0.99 0 12

GASO 797 0.0658 5.56 0.0374 5.42 –0.0013 –2.25 0.0222 1.16 0 119

TRIP 309 0.2073 10.65 0.0599 5.27 0.0027 2.89 0.1608 5.11 0 5

LOCT 172 –0.0411 –2.32 –0.0040 –0.39 –0.0011 –1.29 0.0109 0.38 1 0

HEAL 821 0.0375 3.79 0.0162 2.81 0.0030 6.39 0.0466 2.91 0 137

ENT 824 0.0495 5.26 0.0255 4.64 –0.0017 –3.75 0.0350 2.30 0 207

FEES 676 0.1348 8.20 0.0615 6.41 –0.0029 –3.61 0.1901 7.15 0 121

TOYS 592 0.0908 4.78 0.0854 7.70 –0.0055 –5.96 0.0549 1.79 0 32

READ 764 0.0922 6.64 0.0347 4.28 0.0018 2.67 0.1006 4.48 0 105

EDUC 288 0.0523 2.82 0.1137 10.51 –0.0041 –4.61 0.1310 4.37 57 2

TOB 368 –0.0036 –0.17 0.0153 1.21 –0.0033 –3.12 –0.1721 –4.92 0 0
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Logit model, dependent variable CATBUY

EXPPC x 10–4 SIZE REFAGE COLLEGE

n b2 z b3 z b4 z b5 z

FDHO – – – – – – – – –

FDAW 827 3.6456 5.63 0.6211 3.43 –0.0338 –2.90 0.0141 0.03

HOUS – – – – – – – – –

TELE 858 1.2314 1.83 0.6355 2.10 0.0330 1.83 1.1932 1.46

DOM 454 0.3983 4.09 0.1817 3.37 0.0081 1.85 0.3447 2.34

TEXT 482 0.5406 5.22 0.3071 5.32 –0.0075 –1.68 0.0823 0.55

FURN 329 0.5428 5.44 0.1904 3.46 –0.0173 –3.68 –0.0227 –0.15

MAPP 244 0.4491 4.54 0.2648 4.57 0.0059 1.17 0.0300 0.18

SAPP 467 0.5439 5.30 0.2855 5.05 –0.0049 –1.11 0.0597 0.40

CLOT 847 4.7446 4.68 0.8642 3.16 –0.0213 –1.38 –0.1084 –0.19

FOOT 686 0.6281 4.49 0.3162 4.18 –0.0152 –2.86 –0.2277 –1.22

GASO 797 1.5214 5.18 0.7604 5.20 –0.0084 –1.07 0.2414 0.79

TRIP 309 1.0768 9.02 0.3137 5.22 0.0143 2.80 0.7728 4.74

LOCT 172 –0.2953 –2.31 –0.0294 –0.46 –0.0069 –1.28 0.0788 0.43

HEAL 821 1.1577 3.49 0.3510 2.83 0.0620 5.65 0.9372 2.64

ENT 824 2.6092 4.96 0.9863 4.45 –0.0209 –1.89 1.0246 2.01

FEES 676 1.5529 7.55 0.5275 6.10 –0.0140 –2.43 1.4393 6.24

TOYS 592 0.5087 4.38 0.5351 7.02 –0.0240 –4.85 0.2645 1.54

READ 764 1.8601 6.59 0.4632 4.78 0.0202 2.99 1.1033 3.97

EDUC 288 0.3311 3.21 0.6053 9.17 –0.0283 –5.05 0.7442 4.34

TOB 368 –0.0163 –0.18 0.0637 1.19 –0.0139 –3.09 –0.7260 –4.82
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Probit model, dependent variable CATBUY

EXPPC x 10–4 SIZE REFAGE COLLEGE

n b2 z b3 z b4 z b5 z

FDHO – – – – – – – – –

FDAW 827 1.6988 5.72 0.2951 3.55 –0.0172 –3.03 0.0182 0.09

HOUS – – – – – – – – –

TELE 858 0.5129 1.93 0.2630 2.14 0.0135 1.79 0.5130 1.59

DOM 454 0.2467 4.16 0.1135 3.42 0.0051 1.86 0.2160 2.36

TEXT 482 0.3257 5.32 0.1841 5.44 –0.0046 –1.69 0.0606 0.65

FURN 329 0.3348 5.54 0.1168 3.46 –0.0103 –3.64 –0.0145 –0.15

MAPP 244 0.2770 4.62 0.1628 4.65 0.0035 1.19 0.0174 0.18

SAPP 467 0.3252 5.43 0.1733 5.12 –0.0031 –1.11 0.0423 0.46

CLOT 847 2.0167 4.63 0.4036 3.31 –0.0086 –1.21 0.0428 0.16

FOOT 686 0.3296 4.48 0.1635 4.17 –0.0088 –2.89 –0.1105 –1.04

GASO 797 0.6842 5.25 0.2998 5.08 –0.0065 –1.62 0.1452 0.96

TRIP 309 0.6121 9.63 0.1791 5.05 0.0082 2.73 0.4806 4.98

LOCT 172 –0.1556 –2.31 –0.0141 –0.39 –0.0039 –1.28 0.0448 0.43

HEAL 821 0.4869 3.65 0.1506 2.69 0.0301 5.67 0.4195 2.54

ENT 824 1.3386 5.10 0.4519 4.53 –0.0116 –2.10 0.4932 2.09

FEES 676 0.8299 7.82 0.2806 6.36 –0.0088 –2.66 0.8151 6.59

TOYS 592 0.2849 4.48 0.3091 7.35 –0.0149 –5.08 0.1694 1.67

READ 764 0.7905 6.67 0.2188 4.58 0.0107 2.92 0.5887 4.20

EDUC 288 0.1917 3.11 0.3535 9.51 –0.0168 –5.12 0.4417 4.37

TOB 368 –0.0106 –0.18 0.0391 1.18 –0.0086 –3.10 –0.4477 –4.84
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Comparison of marginal effects

n EXPPC4 SIZE REFAGE COLLEGE

FDAW 827 LPM 0.0518** 0.0181** –0.0018** 0.0101

Logit 0.0240** 0.0041** –0.0002** 0.0001

Probit 0.0260** 0.0045** –0.0003** 0.0003

TELE 858 LPM 0.0092 0.0060* 0.0004 0.0123

Logit 0.0078 0.0040* 0.0002 0.0076

Probit 0.0087 0.0044* 0.0002 0.0087

DOM 454 LPM 0.0926** 0.0433** 0.0019 0.0850*

Logit 0.0993** 0.0453** 0.0020 0.0860*

Probit 0.0982** 0.0452** 0.0020 0.0860*

TEXT 482 LPM 0.1179** 0.0690** –0.0019 0.0227

Logit 0.1332** 0.0757** –0.0018 0.0203

Probit 0.1286** 0.0727** –0.0018 0.0239

FURN 329 LPM 0.1202** 0.0419** –0.0036** –0.0050

Logit 0.1265** 0.0444** –0.0040** –0.0053

Probit 0.1266** 0.0441** –0.0039** –0.0055

MAPP 244 LPM 0.0930** 0.0540** 0.0012 0.0049

Logit 0.0893** 0.0526** 0.0012 0.0060

Probit 0.0923** 0.0543** 0.0012 0.0058

SAPP 467 LPM 0.1206** 0.0655** –0.0012 0.0174

Logit 0.1350** 0.0709** –0.0012 0.0148

Probit 0.1291** 0.0688** –0.0012 0.0168

CLOT 847 LPM 0.0316** 0.0121** –0.0008* 0.0028

Logit 0.0071** 0.0013** 0.0000 –0.0002

Probit 0.0063** 0.0013** 0.0000 0.0001

FOOT 686 LPM 0.0838** 0.0444** –0.0028** –0.0283

Logit 0.0969** 0.0488** –0.0023** –0.0351

Probit 0.0913** 0.0453** –0.0024** –0.0306

* significant at 5 per cent level, ** at 1 per cent level, two-tailed tests
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Comparison of marginal effects (continued)

n EXPPC4 SIZE REFAGE COLLEGE

GASO 797 LPM 0.0658** 0.0374** –0.0013* 0.0222

Logit 0.0622** 0.0311** –0.0003 0.0099

Probit 0.0707** 0.0310** –0.0007 0.0150

TRIP 309 LPM 0.2073** 0.0599** 0.0027** 0.1608**

Logit 0.2408** 0.0702** 0.0032** 0.1728**

Probit 0.2243** 0.0656** 0.0030** 0.1761**

LOCT 172 LPM –0.0411* –0.0040 –0.0011 0.0109

Logit –0.0463* –0.0046 –0.0011 0.0124

Probit –0.0430* –0.0039 –0.0011 0.0124

HEAL 821 LPM 0.0375** 0.0162** 0.0030** 0.0466**

Logit 0.0318** 0.0096** 0.0017** 0.0257**

Probit 0.0339** 0.0105** 0.0021** 0.0292*

ENT 824 LPM 0.0495** 0.0255** –0.0017** 0.0350*

Logit 0.0229** 0.0086** –0.0002 0.0090*

Probit 0.0251** 0.0085** –0.0002* 0.0092*

FEES 676 LPM 0.1348** 0.0615** –0.0029** 0.1901**

Logit 0.1765** 0.0600** –0.0016* 0.1636**

Probit 0.1878** 0.0635** –0.0020** 0.1845**

TOYS 592 LPM 0.0908** 0.0854** –0.0055** 0.0549

Logit 0.1029** 0.1083** –0.0049** 0.0535

Probit 0.0974** 0.1057** –0.0051** 0.0579

READ 764 LPM 0.0922** 0.0347** 0.0018** 0.1006**

Logit 0.1084** 0.0270** 0.0012** 0.0643**

Probit 0.1124** 0.0311** 0.0015** 0.0837**

EDUC 288 LPM 0.0523** 0.1137** –0.0041** 0.1310**

Logit 0.0673** 0.1230** –0.0058** 0.1512**

Probit 0.0654** 0.1206** –0.0057** 0.1508**

TOB 368 LPM –0.0036 0.0153 –0.0033** –0.1721**

Logit –0.0040 0.0155 –0.0034** –0.1769**

Probit –0.0042 0.0153 –0.0034** –0.1751**

* significant at 5 per cent level, ** at 1 per cent level, two-tailed tests

A10.2
The finding that the marginal effect of educational attainment was lower 
for males than for females over most of the range S ≥  9 is plausible 
because the probability of working is much closer to 1 for males than for 
females for S ≥  9, and hence the possible sensitivity of the participation 
rate to S is smaller.

The explanation of the finding that the marginal effect of educational 
attainment decreases with educational attainment for both males and 
females over the range S ≥ 9 is similar. For both sexes, the greater is S, the 
greater is the participation rate, and hence the smaller is the scope for it 
being increased by further education. 
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The OLS estimates of the marginal effect of educational attainment 
are given by the slope coefficients and they are very similar to the logit 
estimates at the mean, the reason being that most of the observations on S 
are confined to the middle part of the sigmoid curve where it is relatively 
linear.

A10.3
•	 Discuss whether the relationships indicated by the probability and 

marginal effect curves appear to be plausible.

	 The probability curve indicates an inverse relationship between 
schooling and the probability of being obese. This seems entirely 
plausible. The more educated tend to have healthier lifestyles, 
including eating habits. Over the relevant range, the marginal effect 
falls a little in absolute terms (is less negative) as schooling increases. 
This is in keeping with the idea that further schooling may have less 
effect on the highly educated than on the less educated (but the 
difference is not large).

•	 Add the probability function and the marginal effect function for the LPM 
to the diagram. Explain why you drew them the way you did.

Figure 10.6

	 The estimated probability function for the LPM is just the regression 
equation and the marginal effect is the coefficient of S. They are shown 
as the dashed lines in the diagram.

•	 The logit model is considered to have several advantages over the LPM. 
Explain what these advantages are. Evaluate the importance of the 
advantages of the logit model in this particular case.

	 The disadvantages of the LPM are (1) that it can give nonsense fitted 
values (predicted probabilities greater than 1 or less than 0); (2) the 
disturbance term in observation i must be equal to either – 1 – F(Zi) 
(if the dependent variable is equal to 1) or – F(Zi) (if the dependent 
variable is equal to 0) and so it violates the usual assumption that 
the disturbance term is normally distributed, although this may not 
matter asymptotically; (3) the disturbance term will be heteroscedastic 
because Zi is different for different observations; (4) the LPM implicitly 
assumes that the marginal effect of each explanatory variable is 
constant over its entire range, which is often intuitively unappealing. 
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	 In this case, nonsense predictions are clearly not an issue. The 
assumption of a constant marginal effect does not seem to be a 
problem either, given the approximate linearity of the logit ( )ZF .

•	 The LPM is fitted using OLS. Explain how, instead, it might be fitted using 
maximum likelihood estimation:

•	 Write down the probability of being obese for any obese individual, given 
Si for that individual, and write down the probability of not being obese 
for any non-obese individual, again given Si for that individual.

	 Obese: ii Sp 21
O bb += ; not obese: 

•	 Write down the likelihood function for this sample of 164 obese 
individuals and 376 non-obese individuals.

	

•	 Explain how one would use this function to estimate the parameters. 
[Note: You are not expected to attempt to derive the estimators of the 
parameters.]

	 You would use some algorithm to find the values of β1 and β2 that 
maximises the function.

•	 Explain whether your maximum likelihood estimators will be the same or 
different from those obtained using least squares.

	 Least squares involves finding the extremum of a completely different 
expression and will therefore lead to different estimators.

A10.4
•	 Explain how one may derive the marginal effects of the explanatory 

variables on the probability of having a child less than 6 in the household, 
and calculate for both males and females the marginal effects at the 
means of AGE and S.

	 Since p is a function of Z, and Z is a linear function of the X variables, 
the marginal effect of Xj is 

	
j

jj Z
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∂

=
∂
∂

	 where βj is the coefficient of Xj in the expression for Z. In the case 
of probit analysis, p = F(Z) is the cumulative standardised normal 
distribution. Hence dp/dZ is just the standardised normal distribution.

	 For males, this is 0.368 when evaluated at the means. Hence the 
marginal effect of AGE is 0.368*–0.137 = –0.050 and that of S is 
0.368*0.132 = 0.049. For females the corresponding figures are 
0.272*–0.154= –0.042 and 0.272*0.094 = 0.026, respectively. So for 
every extra year of age, the probability is reduced by 5.0 per cent for 
males and 4.2 per cent for females. For every extra year of schooling, 
the probability increases by 4.9 per cent for males and 2.6 per cent for 
females.

•	 Explain whether the signs of the marginal effects are plausible. Explain 
whether you would expect the marginal effect of schooling to be higher for 
males or for females.
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	 Yes. Given that the cohort is aged 35–42, the respondents have passed 
the age at which most adults start families, and the older they are, the 
less likely they are to have small children in the household. At the same 
time, the more educated the respondent, the more likely he or she is 
to have started having a family relatively late, so the positive effect 
of schooling is also plausible. However, given the age of the cohort, 
it is likely to be weaker for females than for males, given that most 
females intending to have families will have started them by this time, 
irrespective of their education.

•	 At a seminar someone asks the researcher whether the marginal effect of 
S is significantly different for males and females. The researcher does not 
know how to test whether the difference is significant and asks you for 
advice. What would you say?

	 Fit a probit regression for the combined sample, adding a male 
intercept dummy and male slope dummies for AGE and S. Test the 
coefficient of the slope dummy for S.

A10.5
The Z function will be of the form

	 Z = β1 + β2A + β3S + β4AS

so the marginal effects are  and 

 Both factors depend on the values of A 

and/or S, but the marginal effects could be evaluated for a representative 
individual using the mean values of A and S in the sample.

A10.6
•	 Discuss the conclusions one may reach, given the probit output and the 

table, commenting on their plausibility.

	 Being male has a small but highly significant negative effect. This 
is plausible because males tend to marry later than females and the 
cohort is still relatively young.

	 Age has a highly significant positive effect, again plausible because 
older people are more likely to have married than younger people.

	 Schooling has no apparent effect at all. It is not obvious whether this is 
plausible.

	 Cognitive ability has a highly significant positive effect. Again, it is not 
obvious whether this is plausible.

•	 The researcher considers including CHILD, a dummy variable defined to 
be 1 if the respondent had children, and 0 otherwise, as an explanatory 
variable. When she does this, its z-statistic is 33.65 and its marginal effect 
0.5685. Discuss these findings.

	 Obviously one would expect a high positive correlation between being 
married and having children and this would account for the huge and 
highly significant coefficient. However getting married and having 
children are often a joint decision, and accordingly it is simplistic 
to suppose that one characteristic is a determinant of the other. The 
finding should not be taken at face value.
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A10.7
Determine the maximum likelihood estimate of α, assuming that β is known.

The loglikelihood function is

	 ( ) ( )∑ −−= baaba in TnTTL log,...,,log 1

Setting the first derivative with respect to α equal to zero, we have

	 ( ) 0
ˆ

=−−∑ b
a iTn

and hence

	
b

a
−

=
T

1ˆ .

The second derivative is 2ˆ/an− , which is negative, confirming we have 
maximised the loglikelihood function.

A10.8
From the solution to Exercise 10.14, the log-likelihood function for p is

	 ( ) ( ) ( )pmnpmpL −−+= 1logloglog .

Thus the LR statistic is

	

.

If m = 40 and n = 100, the LR statistic for H0: p = 0.5 is

	
.

We would reject the null hypothesis at the 5 per cent level (critical value 
of chi-squared with one degree of freedom 3.84) but not at the 1 per cent 
level (critical value 6.64).

A10.9
The first derivative of the log-likelihood function is 
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1

log
=

−
−

−=
p
mn

p
m

dp
pLd

and the second differential is
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	 The variance of the ML estimate is given by

	  ( )
( )

( ) .
d

logd
3

131

2

2

n
mnm

mnm
n

p
pL −

=







−

=







−

−−

The Wald statistic is therefore 
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Given the data, this is equal to 

Under the null hypothesis this has a chi-squared distribution with one 
degree of freedom, and so the conclusion is the same as in Exercise A.8.
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Chapter 11: Models using time series 
data

Overview
This chapter introduces the application of regression analysis to time 
series data, beginning with static models and then proceeding to dynamic 
models with lagged variables used as explanatory variables. It is shown 
that multicollinearity is likely to be a problem in models with unrestricted 
lag structures and that this provides an incentive to use a parsimonious 
lag structure, such as the Koyck distribution. Two models using the Koyck 
distribution, the adaptive expectations model and the partial adjustment 
model, are described, together with well-known applications to aggregate 
consumption theory, Friedman’s permanent income hypothesis in the case 
of the former and Brown’s habit persistence consumption function in the 
case of the latter. The chapter concludes with a discussion of prediction 
and stability tests in time series models.

Learning outcomes
After working through the corresponding chapter in the textbook, studying 
the corresponding slideshows, and doing the starred exercises in the 
textbook and the additional exercises in this guide, you should be able to:

•	 explain why multicollinearity is a common problem in time series 
models, especially dynamic ones with lagged explanatory variables

•	 describe the properties of a model with a lagged dependent variable 
(ADL(1,0) model)

•	 describe the assumptions underlying the adaptive expectations and 
partial adjustment models

•	 explain the properties of OLS estimators of the parameters of ADL(1,0) 
models

•	 explain how predetermined variables may be used as instruments in 
the fitting of models using time series data

•	 explain in general terms the objectives of time series analysts and those 
constructing VAR models

Additional exercises

A11.1
The output below shows the result of linear and logarithmic regressions of 
expenditure on food on income, relative price, and population (measured 
in thousands) using the Demand Functions data set, together with 
the correlations among the variables. Provide an interpretation of the 
regression coefficients and perform appropriate statistical tests.
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A11.2
Perform regressions parallel to those in Exercise A11.1 using your category 
of expenditure and provide an interpretation of the coefficients.

A11.3
The output shows the result of a logarithmic regression of expenditure 
on food per capita, on income per capita, both measured in US$ million, 
and the relative price index for food. Provide an interpretation of the 
coefficients, demonstrate that the specification is a restricted version of 
the logarithmic regression in Exercise A11.1, and perform an F test of the 
restriction.
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A11.4
Perform a regression parallel to that in Exercise A11.3 using your category 
of expenditure. Provide an interpretation of the coefficients, and perform 
an F test of the restriction.

A11.5
The output shows the result of a logarithmic regression of expenditure on 
food per capita, on income per capita, the relative price index for food, 
and population. Provide an interpretation of the coefficients, demonstrate 
that the specification is equivalent to that for the logarithmic regression in 
Exercise A11.1, and use it to perform a t test of the restriction in Exercise 
A11.3.

A11.6
Perform a regression parallel to that in Exercise A11.5 using your category 
of expenditure, and perform a t test of the restriction implicit in the 
specification in Exercise A11.4.
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A11.7
In Exercise 11.9 you fitted the model

( ) ( ) uLGPRCATLGPRCATLGDPILGDPILGCAT +−++−++= 11 54321 bbbbb

where CAT stands for your category of expenditure.

•	 Show that ( )32 bb +  and ( )54 bb +  are theoretically the long-run 
(equilibrium) income and price elasticities.

•	 Reparameterise the model and fit it to obtain direct estimates of these 
long-run elasticities and their standard errors.

•	 Confirm that the estimates are equal to the sum of the individual short-
run elasticities found in Exercise 11.9.

•	 Compare the standard errors with those found in Exercise 11.9 and 
state your conclusions.

A11.8
In a certain bond market, the demand for bonds, Bt, in period t is negatively 
related to the expected interest rate, e

ti 1+ , in period t + 1:

	
t

e
tt uiB ++= +121 bb  	 (1)

where ut is a disturbance term not subject to autocorrelation. The expected 
interest rate is determined by an adaptive expectations process:

	 ( )e
tt

e
t

e
t iiii −=−+ λ1

	 (2)

where it is the actual rate of interest in period t. A researcher uses the 
following model to fit the relationship:

	
tttt vBiB +++= −1321 γγγ 	 (3)

where vt is a disturbance term.

•	 Show how this model may be derived from the demand function and the 
adaptive expectations process.

•	 Explain why inconsistent estimates of the parameters will be obtained 
if equation (3) is fitted using ordinary least squares (OLS). (A 
mathematical proof is not required. Do not attempt to derive expressions 
for the bias.)

•	 Describe a method for fitting the model that would yield consistent 
estimates.

•	 Suppose that ut was subject to the first-order autoregressive process:

	
ttt uu ερ += −1

	 where εt is not subject to autocorrelation. How would this affect your 
answer to the second part of this question?

•	 Suppose that the true relationship was actually

	 ttt uiB ++= 21 bb  	 (1*)

with ut not subject to autocorrelation, and the model is fitted by 
regressing Bt on it and Bt–1, as in equation (3), using OLS. How would 
this affect the regression results?

•	 How plausible do you think an adaptive expectations process is for 
modelling expectations in a bond market?
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A11.9
The output shows the result of a logarithmic regression of expenditure 
on food on income, relative price, population, and lagged expenditure on 
food using the Demand Functions data set. Provide an interpretation of 
the regression coefficients, paying attention to both short-run and long-run 
dynamics, and perform appropriate statistical tests.

A11.10
Perform a regression parallel to that in Exercise A11.9 using your category 
of expenditure. Provide an interpretation of the coefficients, and perform 
appropriate statistical tests.

A11.11
In his classic study Distributed Lags and Investment Analysis (1954), Koyck 
investigated the relationship between investment in railcars and the 
volume of freight carried on the US railroads using data for the period 
1884–1939. Assuming that the desired stock of railcars in year t depended 
on the volume of freight in year t–1 and year t–2 and a time trend, and 
assuming that investment in railcars was subject to a partial adjustment 
process, he fitted the following regression equation using OLS (standard 
errors and constant term not reported):

	 tÎ  = 0.077 Ft–1 + 0.017Ft–2 – 0.0033t – 0.110Kt–1	 R2 = 0.85

where It = Kt – Kt–1 is investment in railcars in year t (thousands), Kt is the 
stock of railcars at the end of year t (thousands), and Ft is the volume of 
freight handled in year t (ton-miles).

Provide an interpretation of the equation and describe the dynamic 
process implied by it. (Note: It is best to substitute Kt – Kt–1 for It in the 
regression and treat it as a dynamic relationship determining Kt.)

A11.12
Two researchers agree that a model consists of the following relationships:

	 Yt = α1 + α2Xt + ut	 (1)

	 Xt = β1 + β2Yt–1 + vt	 (2)

	 Zt = γ1 + γ2Yt + γ3Xt + γ4Qt + wt	 (3)
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where ut, vt, and wt, are disturbance terms that are drawn from fixed 
distributions with zero mean. It may be assumed that they are distributed 
independently of Qt and of each other and that they are not subject to 
autocorrelation. All the parameters may be assumed to be positive and it 
may be assumed that α2β2 < 1.

•	 One researcher asserts that consistent estimates will be obtained if (2) 
is fitted using OLS and (1) is fitted using IV, with Yt–1 as an instrument 
for Xt. Determine whether this is true.

•	 The other researcher asserts that consistent estimates will be obtained 
if both (1) and (2) are fitted using OLS, and that the estimate of β2 will 
be more efficient than that obtained using IV. Determine whether this is 
true.

Answers to the starred exercises in the textbook

11.6

Year Y K L Year Y K L

1899 100 100 100 1911 153 216 145

1900 101 107 105 1912 177 226 152

1901 112 114 110 1913 184 236 154

1902 122 122 118 1914 169 244 149

1903 124 131 123 1915 189 266 154

1904 122 138 116 1916 225 298 182

1905 143 149 125 1917 227 335 196

1906 152 163 133 1918 223 366 200

1907 151 176 138 1919 218 387 193

1908 126 185 121 1920 231 407 193

1909 155 198 140 1921 179 417 147

1910 159 208 144 1922 240 431 161

Source: Cobb and Douglas (1928)

The table gives the data used by Cobb and Douglas (1928) to fit the 
original Cobb–Douglas production function:

	
tttt vLKY 32

1
bbb=

Yt, Kt, and Lt, being index number series for real output, real capital input, 
and real labour input, respectively, for the manufacturing sector of the 
United States for the period 1899–1922 (1899=100). The model was 
linearised by taking logarithms of both sides and the following regressions 
was run (standard errors in parentheses):

	  logYˆ  =	 –0.18 +	0.23 log K + 0.81 log L 		  R2 = 0.96

			   (0.43)	 (0.06)	         (0.15)

Provide an interpretation of the regression coefficients.

Answer:
The elasticities of output with respect to capital and labor are 0.23 and 
0.81, respectively, both coefficients being significantly different from zero 
at very high significance levels. The fact that the sum of the elasticities 
is close to one suggests that there may be constant returns to scale. 
Regressing output per worker on capital per worker, one has



Chapter 11: Models using time series data

231

	
 ˆ

log
L
Y

 =	 0.01 +	 0.25 
L
Klog  	  			   R2 = 0.63

			   (0.02)	 (0.04)

The smaller standard error of the slope coefficient suggests a gain in 
efficiency. Fitting a reparameterised version of the unrestricted model

	
 ˆ

log
L
Y

 =	 –0.18 +	0.23 
L
Klog  +	 0.04 log L		  R2 = 0.64

			   (0.43)	 (0.06)		  (0.09)

we find that the restriction is not rejected.

11.7
The Cobb–Douglas model in Exercise 11.6 makes no allowance for the 
possibility that output may be increasing as a consequence of technical 
progress, independently of K and L. Technical progress is difficult to 
quantify and a common way of allowing for it in a model is to include an 
exponential time trend:

	
t

t
ttt veLKY ρβββ 32

1=

where ρ is the rate of technical progress and t is a time trend defined to be 
1 in the first year, 2 in the second, etc. The correlations between log K, log 
L and t are shown in the table. Comment on the regression results.

	  ˆ
logY 	 =	 2.81 –	0.53 log K +	0.91 log L +	0.047 t				    R2 = 0.97

				    (1.38)	(0.34)			  (0.14)			  (0.021)

Answer:

The elasticity of output with respect to labour is higher than before, now 
implausibly high given that, under constant returns to scale, it should 
measure the share of wages in output. The elasticity with respect to capital 
is negative and nonsensical. The coefficient of time indicates an annual 
exponential growth rate of 4.7 per cent, holding K and L constant. This 
is unrealistically high for the period in question. The implausibility of the 
results, especially those relating to capital and time (correlation 0.997), 
may be attributed to multicollinearity.

11.16
The output below shows the result of fitting the model

	 LGFOOD = β1 + β2λLGDPI + β2λ(1 – λ)LGDPI(–1) 

	 + β2λ(1 – λ)2LGDPI(–2) + β3LGPRFOOD + u

using the data on expenditure on food in the Demand Functions data 
set. LGFOOD and LGPRFOOD are the logarithms of expenditure on food 
and the relative price index series for food. C(1), C(2), C(3), and C(4) 
are estimates of β1, β2, λ and β3, respectively. Explain how the regression 
equation could be interpreted as an adaptive expectations model and 
discuss the dynamics implicit in it, both short-run and long-run. Should 
the specification have included further lagged values of LGDPI?
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Answer: 

There is a discrepancy between the theoretical specification, which has 
two lagged values, and the regression specification, which has three. 
Fortunately, in this case it makes little difference. Here is the output for the 
regression with two lags:

Suppose that the model is

	 LGFOOD = β1 + β2LGDPIe + β3LGPRFOOD + u

where LGDPIe is expected LGDPI at time t + 1, and that expectations for 
income are subject to the adaptive expectations process

	 LGDPIe – LGDPIe = λ(LGDPI – LGDPIe).

The adaptive expectations process may be rewritten

	 LGDPIe = λLGDPI + (1 – λ)LGDPIe .

Lagging this equation one period and substituting, one has.

	 LGDPIe = λLGDPI + λ(1 – λ)LGDPI(–1) + (1 – λ)2LGDPIe(–1).
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Lagging a second time and substituting, one has

	 LGDPIe = λLGDPI + λ(1 – λ)LGDPI(–1) + λ(1 – λ)2LGDPI(–2) 

	 + (1 – λ)3LGDPIe(–2).

Substituting this into the model, one has the regression specification as 
stated in the question. The actual regression in the textbook includes a 
further lagged term.

The output implies that the estimate of the long-run income elasticity, β2, is 
0.50 (original and revised output). The estimate of λ, the speed of adjustment 
of expectations, is 0.92 (0.94 in the revised output). Hence the estimate 
of the short-run income elasticity, β2λ, is 0.46 (0.47 in the revised output). 
The price side of the model has been assumed to be static. The estimate of 
the price elasticity is –0.09 (–0.08 in the revised output). For the theoretical 
specification, the coefficient of the dropped unobservable term is β2(1 – λ)3. 
Given the estimates of β2 and λ, its estimate is 0.0003. Hence we are justified 
in neglecting it. For the revised output, its estimate is even lower, 0.0001.

11.18
A researcher is fitting the following supply and demand model for a 
certain commodity, using a sample of time series observations:

	

where Qdt is the amount demanded at time t, Qst is the amount supplied, 
Pt is the market clearing price, and udt and ust are disturbance terms that 
are not necessarily independent of each other.. It may be assumed that the 
market clears and so Qdt = Qst.

•	 What can be said about the identification of (a) the demand equation, 
(b) the supply equation?

•	 What difference would it make if supply at time t was determined 
instead by price at time 1−t ? That is,

	

•	 What difference would it make if it could be assumed that udt is 
distributed independently of ust?

Answer: 

The reduced form equation for Pt is

	
.

Pt is not independent of the disturbance term in either equation and so 
OLS would yield inconsistent estimates.

Provided that udt is not subject to autocorrelation, Pt–1 could be used as 
an instrument in the demand equation. Provided that ust is not subject to 
autocorrelation, OLS could be used to fit the second equation. It makes no 
difference whether or not udt is distributed independently of ust.

The first equation could, alternatively, be fitted using OLS, with the 
variables switched. From the second equation, Pt–1 determines Qt, and 
then, given Qt, the demand equation determines Pt:

	
.

The reciprocal of the slope coefficient provides a consistent estimator of β2.
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Answers to the additional exercises

A11.1
The linear regression indicates that expenditure on food increases by 
$0.032 billion for every extra $ billion of disposable personal income (in 
other words, by 3.2 cents out of the marginal dollar), that it increases 
by $0.403 billion for every point increase in the price index, and that it 
increases by $0.001 billion for every additional thousand population. The 
income coefficient is significant at the 1 per cent level (ignoring problems 
to be discussed in Chapter 12). The positive price coefficient makes no 
sense (remember that the dependent variable is measured in real terms). 
The intercept has no plausible interpretation.

The logarithmic regression indicates that the income elasticity is 0.59 
and highly significant, and the price elasticity is –0.12, not significant. 
The negative elasticity for population is not plausible. One would expect 
expenditure on food to increase in line with population, controlling for 
other factors, and hence, as a first approximation, the elasticity should be 
equal to 1. However, an increase in population, keeping income constant, 
would lead to a reduction in income per capita and hence to a negative 
income effect. Given that the income elasticity is less than 1, one would 
still expect a positive elasticity overall for population. At least the estimate 
is not significantly different from zero. In view of the high correlation, 
0.995, between LGDPI and LGPOP, the negative estimate may well be a 
result of multicollinearity.

A11.2

OLS logarithmic regressions

LGDPI LGP LGPOP R2

coef. s.e. coef. s.e. coef. s.e.

ADM –1.43 0.20 –0.28 0.10 6.88 0.61 0.975

BOOK –0.29 0.28 –1.18 0.21 4.94 0.82 0.977

BUSI 0.36 0.19 –0.11 0.27 2.79 0.51 0.993

CLOT 0.71 0.10 –0.70 0.05 0.15 0.36 0.998

DENT 1.23 0.14 –0.95 0.09 0.26 0.54 0.995

DOC 0.97 0.14 0.26 0.13 –0.27 0.52 0.993

FLOW 0.46 0.32 0.16 0.33 3.07 1.21 0.987

FOOD 0.59 0.08 –0.12 0.08 –0.29 0.26 0.992

FURN 0.36 0.28 –0.48 0.26 1.66 1.12 0.985

GAS 1.27 0.24 –0.24 0.06 –2.81 0.74 0.788

GASO 1.46 0.16 –0.10 0.04 –2.35 0.49 0.982

HOUS 0.91 0.08 –0.54 0.06 0.38 0.25 0.999

LEGL 1.17 0.16 –0.08 0.13 –1.50 0.54 0.976

MAGS 1.05 0.22 –0.73 0.44 –0.82 0.54 0.970

MASS –1.92 0.22 –0.57 0.14 6.14 0.65 0.785

OPHT 0.30 0.45 0.28 0.59 3.68 1.40 0.965

RELG 0.56 0.13 –0.99 0.23 2.72 0.41 0.996

TELE 0.91 0.13 –0.61 0.11 1.79 0.49 0.998

TOB 0.54 0.17 –0.42 0.04 –1.21 0.57 0.883

TOYS 0.59 0.10 –0.54 0.06 2.57 0.39 0.999
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The price elasticities mostly lie in the range 0 to –1, as they should, 
and therefore seem plausible. However the very high correlation 
between income and population, 0.995, has given rise to a problem of 
multicollinearity and as a consequence the estimates of their elasticities 
are very erratic. Some of the income elasticities look plausible, but that 
may be pure chance, for many are unrealistically high, or negative when 
obviously they should be positive. The population elasticities are even less 
convincing.

Correlations between prices, income and population

LGP, LGDPI LGP, LGPOP LGP, LGDPI LGP, LGPOP

ADM 0.61 0.61 GASO 0.05 0.03

BOOK 0.88 0.87 HOUS 0.49 0.55

BUSI 0.98 0.97 LEGL 0.99 0.99

CLOT –0.94 –0.96 MAGS 0.99 0.98

DENT 0.94 0.96 MASS 0.90 0.89

DOC 0.98 0.98 OPHT –0.68 –0.67

FLOW –0.93 –0.95 RELG 0.92 0.92

FOOD –0.60 –0.64 TELE –0.98 –0.99

FURN –0.95 –0.97 TOB 0.83 0.86

GAS 0.77 0.76 TOYS –0.97 –0.98

A11.3
The regression indicates that the income elasticity is 0.40 and the price 
elasticity 0.21, the former very highly significant, the latter significant at 
the 1 per cent level using a one-sided test. If the specification is

	
uPRELFOOD

POP
DPI

POP
FOOD

+++= logloglog 321 bbb

it may be rewritten

	

.log)1(

logloglog

2

321

uPOP

PRELFOODDPIFOOD

+−+

++=

β

βββ

This is a restricted form of the specification in Exercise A11.2:

	

uPOP
PRELFOODDPIFOOD

++
++=

log
logloglog

4

3321

b
bbbb

with β4 = 1 – β2. We can test the restriction by comparing RSS for the two 
regressions:

	

The critical value of F(1,40) at the 0.1 per cent level is 12.61. The critical 
value for F(1,41) must be slightly lower. Thus we reject the restriction. 
Since the restricted version is misspecified, our interpretation of the 
coefficients of this regression and the t tests are invalidated.
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A11.4
Given that the critical values of F(1,41) at the 5 and 1 per cent levels are 
4.08 and 7.31 respectively, the results of the F test may be summarised as 
follows:

Restriction not rejected: CLOT, DENT, DOC, FURN, HOUS 

Restriction rejected at the 5 per cent level: MAGS

Restriction rejected at the 1 per cent level: ADM, BOOK, BUSI, FLOW, 
FOOD, GAS, GASO, LEGL, MASS, OPHT, RELG, TELE, TOB, TOYS

However, for reasons that will become apparent in the next chapter, these 
findings must be regarded as provisional.

Tests of a restriction

RSSU RSSR F t

ADM 0.125375 0.480709 116.20 10.78

BOOK 0.223664 0.461853 43.66 6.61

BUSI 0.084516 0.167580 40.30 6.35

CLOT 0.021326 0.021454 0.25 –0.50

DENT 0.033275 0.034481 1.49 1.22

DOC 0.068759 0.069726 0.58 –0.76

FLOW 0.220256 0.262910 7.94 2.82

FOOD 0.016936 0.023232 15.24 –3.90

FURN 0.157153 0.162677 1.44 1.20

GAS 0.185578 0.300890 25.48 –5.05

GASO 0.078334 0.139278 31.90 –5.65

HOUS 0.011270 0.012106 3.04 1.74

LEGL 0.082628 0.102698 9.96 –3.16

MAGS 0.096620 0.106906 4.36 –2.09

MASS 0.143775 0.330813 53.34 7.30

OPHT 0.663413 0.822672 9.84 3.14

RELG 0.053785 0.135532 62.32 7.89

TELE 0.054519 0.080728 19.71 4.44

TOB 0.062452 0.087652 16.54 –4.07

TOYS 0.031269 0.071656 52.96 7.28

A11.5
If the specification is

	 ,logloglog 1321 uPOPPRELFOOD
POP
DPI

POP
FOOD

++++= γbbb

it may be rewritten

	

.log)1(
logloglog

12

321

uPOP
PRELFOODDPIFOOD
++−+

++=
γβ

βββ

This is equivalent to the specification in Exercise A11.1:

	

uPOP

PRELFOODDPIFOOD

++

++=

log

logloglog

4

321

β

βββ

with β4 = 1 – β2 + γ1. Note that this is not a restriction. (1) – (3) are just 
different ways of writing the unrestricted model.
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A t test of H0: γ1 = 0 is equivalent to a t test of H0: β4 = 1 – β2, that is, that 
the restriction in Exercise A11.3 is valid. The t statistic for LGPOP in the 
regression is –3.90, and hence again we reject the restriction. Note that 
the test is equivalent to the F test. –3.90 is the square root of 15.24, the F 
statistic, and it can be shown that the critical value of t is the square root 
of the critical value of F.

A11.6
The t statistics for all the categories of expenditure are supplied in the 
table in the answer to Exercise A11.4. Of course they are equal to the 
square root of the F statistic, and their critical values are the square roots 
of the critical values of F, so the conclusions are identical and, like those of 
the F test, should be treated as provisional.

A11.7
•	 Show that ( )32 bb +  and ( )54 bb +  are theoretically the long-run 

(equilibrium) income and price elasticities.

	 In equilibrium, LGCATLGCAT = , ( ) LGDPILGDPILGDPI =−= 1 and 
( ) LGPRCATLGPRCATLGPRCAT =−= 1 . Hence, ignoring the transient 

effect of the disturbance term,

	  

( ) ( ) .54321

54321

LGPRCATLGDPI

LGPRCATLGPRCATLGDPILGDPILGCAT

βββββ

βββββ

++++=

++++=

	 Thus the long-run equilibrium income and price elasticities are 

32 bbθ +=  and 54 bbφ += , respectively.

•	 Reparameterise the model and fit it to obtain direct estimates of these 
long-run elasticities and their standard errors.

	 We will reparameterise the model to obtain direct estimates of θ and 
φ and their standard errors. Write 23 bθb −=  and  54 ββφ +=  and 
substitute for β3 and β5 in the model. We obtain

( ) ( ) ( ) ( )
( )( ) ( )

( )( ) ( )
( ) ( ) uLGPRCATDLGPRCATLGDPIDLGDPI

uLGPRCATLGPRCATLGPRCAT

LGDPILGDPILGDPI

uLGPRCATLGPRCATLGDPILGDPILGCAT

+−++−++=

+−+−−+

−+−−+=

+−−++−−++=

11

11

11

11

421

4

21

44221

φbθbb

φb

θbb

bφbbθbb

	 where DLGDPI = LGDPI – LGDPI(–1) and DLGPRCAT = LGPRCAT – 
LGPRCAT(–1).

	 The output for HOUS is shown below. DLGPRCAT has been abbreviated 
as DLGP.
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•	 Confirm that the estimates are equal to the sum of the individual short-
run elasticities found in Exercise 11.9.

	 The estimates of the long-run income and price elasticities are 1.01 and 
–0.45, respectively. The output below is for the model in its original 
form, where the coefficients are all short-run elasticities. It may be seen 
that, for both income and price, the sum of the estimates of the short-
run elasticities is indeed equal to the estimate of the long-run elasticity 
in the reparameterised specification.

•	 Compare the standard errors with those found in Exercise 11.9 and state 
your conclusions.

	 The standard errors of the long-run elasticities in the reparameterised 
version are much smaller than those of the short-run elasticities in the 
original specification, and the t statistics accordingly much greater. Our 
conclusion is that it is possible to obtain relatively precise estimates of 
the long-run impact of income and price, even though multicollinearity 
prevents us from deriving precise short-run estimates.
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A11.8
•	 Show how this model may be derived from the demand function and the 

adaptive expectations process.

	 The adaptive expectations process may be rewritten

	 ( ) e
tt

e
t iii λλ −+=+ 11 .

	 Substituting this into (1), one obtains

	 ( ) t
e
ttt uiiB +−++= λbλbb 1221 .

	 We note that if we lag (1) by one time period,

	
1211 −− ++= t

e
tt uiB bb .

	 Hence

	
1112 −− −−= tt

e
t uBi bb .

	 Substituting this into the second equation above, one has

	 ( ) ( ) 1121 11 −− −−+−++= ttttt uuBiB λλλbλb .

	 This is equation (3) in the question, with γ1 = β1λ, γ2 = β2λ, γ3 = 1 – λ, 
and vt = ut – (1 – λ)ut–1.

•	 Explain why inconsistent estimates of the parameters will be obtained if 
equation (3) is fitted using ordinary least squares (OLS). (A mathematical 
proof is not required. Do not attempt to derive expressions for the bias.)	

	 In equation (3), the regressor Bt–1 is partly determined by ut–1. The 
disturbance term vt also has a component ut–1. Hence the requirement 
that the regressors and the disturbance term be distributed 
independently of each other is violated. The violation will lead to 
inconsistent estimates because the regressor and the disturbance term 
are contemporaneously correlated.

•	 Describe a method for fitting the model that would yield consistent 
estimates.

	 If the first equation in this exercise is true for time period t + 1, it is 
true for time period t:

	 ( ) e
tt

e
t iii 11 1 −− −+= λλ .

	 Substituting into the second equation in (a), we now have

	 ( ) ( ) t
e
tttt uiiiB +−+−++= −− 1

2
1221 11 λλλbλbb .

	 Continuing to lag and substitute, we have

	 ( ) ( ) ( ) .11...1 11
1

21221 t
e

st
s

st
s

ttt uiiiiB +−+−++−++= +−+−
−

− λλλβλλβλββ

	 For s large enough, ( )sλ−1  will be so small that we can drop the 
unobservable term e

sti 1+−  with negligible omitted variable bias. The 
disturbance term is distributed independently of the regressors and 
hence we obtain consistent estimates of the parameters. The model 
should be fitted using a nonlinear estimation technique that takes 
account of the restrictions implicit in the specification. 
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•	 Suppose that ut were subject to the first-order autoregressive process:

	
ttt uu ερ += −1

	 where εt is not subject to autocorrelation. How would this affect your 
answer to the second part of this question?

	 vt is now given by

	 vt = ut – (1 – λ)ut–1 = ρut–1 + εt – (1 – λ)ut–1 = εt – (1 – ρ – λ)ut–1. 

	 Since ρ and λ may reasonably be assumed to lie between 0 and 1, it is 
possible that their sum is approximately equal to 1, in which case vt is 
approximately equal to the innovation εt. If this is the case, there would 
be no violation of the regression assumption described in the second 
part of this question and one could use OLS to fit (3) after all.

•	 Suppose that the true relationship was actually

	
ttt uiB ++= 21 bb  	 (1*)

	 with ut not subject to autocorrelation, and the model is fitted by regressing 
Bt on it and Bt–1, as in equation (3), using OLS. How would this affect the 
regression results?	

	 The estimators of the coefficients will be inefficient in that Bt–1 is a 
redundant variable. The inclusion of Bt–1 will also give rise to finite 
sample bias that would disappear in large samples.

•	 How plausible do you think an adaptive expectations process is for 
modelling expectations in a bond market?

	 The adaptive expectations model is implausible since the expectations 
process would change as soon as those traders taking advantage of 
their knowledge of it started earning profits.

A11.9
The regression indicates that the short-run income, price, and population 
elasticities for expenditure on food are 0.14, –0.10, and –0.05, respectively, 
and that the speed of adjustment is (1 – 0.73) = 0.27. Dividing by 0.27, 
the long-run elasticities are 0.52, –0.37, and –0.19, respectively. The 
income and price elasticities seem plausible. The negative population 
elasticity makes no sense, but it is small and insignificant. The estimates of 
the short-run income and price elasticities are likewise not significant, but 
this is not surprising given that the point estimates are so small.

A11.10
The table gives the result of the specification with a lagged dependent 
variable for all the categories of expenditure.
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OLS logarithmic regression

LGDPI LGP LGPOP LGCAT(–1)
long-run 
effects

coef. s.e. coef. s.e. coef. s.e. coef. s.e. DPI P

ADM –0.38 0.18 –0.10 0.06 2.03 0.74 0.68 0.09 –1.18 –0.33

BOOK –0.36 0.20 –0.21 0.22 2.07 0.74 0.75 0.12 –1.46 –1.05

BUSI 0.10 0.13 0.03 0.18 0.78 0.45 0.72 0.11 0.33 0.09

CLOT 0.44 0.10 –0.40 0.07 0.01 0.32 0.43 0.09 0.77 –0.70

DENT 0.71 0.18 –0.46 0.16 –0.13 0.51 0.47 0.13 1.34 –0.87

DOC 0.23 0.14 –0.11 0.10 0.21 0.35 0.78 0.10 1.04 –0.52

FLOW 0.20 0.24 –0.31 0.27 0.07 0.98 0.75 0.11 0.81 –1.25

FOOD 0.14 0.09 –0.10 0.06 –0.05 0.19 0.73 0.11 0.53 –0.35

FURN 0.07 0.22 –0.07 0.22 0.82 0.91 0.68 0.12 0.21 –0.23

GAS 0.10 0.17 –0.06 0.03 –0.13 0.45 0.76 0.08 0.42 –0.26

GASO 0.32 0.11 –0.10 0.02 –0.59 0.25 0.80 0.06 1.56 –0.47

HOUS 0.30 0.05 –0.09 0.04 –0.13 0.10 0.73 0.05 1.11 –0.32

LEGL 0.40 0.14 0.10 0.09 –0.90 0.36 0.68 0.09 1.23 0.30

MAGS 0.57 0.21 –0.48 0.37 –0.56 0.44 0.55 0.12 1.27 –1.08

MASS –0.28 0.29 –0.23 0.11 1.08 0.89 0.75 0.12 –1.14 –0.93

OPHT 0.30 0.24 –0.28 0.33 –0.45 0.85 0.88 0.09 2.48 –2.25

RELG 0.34 0.09 –0.71 0.17 1.25 0.38 0.51 0.09 0.68 –1.44

TELE 0.15 0.14 0.00 0.12 0.68 0.37 0.81 0.12 0.77 0.02

TOB 0.12 0.14 –0.12 0.05 –0.31 0.43 0.71 0.11 0.43 –0.43

TOYS 0.31 0.11 –0.27 0.08 1.44 0.47 0.47 0.12 0.58 –0.51

A11.11
Given the information in the question, the model may be written

	 *
tK  = β1 + β2Ft–1 + β3Ft–2 + β4t + ut

	 Kt – Kt–1 = It = λ( *
tK  – Kt–1).

Hence

	 It = λβ1 + λβ2Ft–1 + λβ3Ft–2 + λβ4t – λKt–1 + λut.

From the fitted equation,

	 l	 = 0.110

	 b2	 = 
110.0
077.0

= 0.70

	 b3	 = 
110.0
017.0

= 0.15

	 b4	 = 
110.0
0033.0−

= –0.030.

Hence the short-run effect of an increase of 1 million ton-miles of freight 
is to increase investment in railcars by 7,000 one year later and 1,500 two 
years later. It does not make much sense to talk of a short-run effect of a 
time trend.

In the long-run equilibrium, neglecting the effects of the disturbance term, 
Kt and *

tK  are both equal to the equilibrium value K and Ft–1 and Ft–2 are 
both equal to their equilibrium value .F  Hence, using the first equation,

	 K  = β1 + (β2 + β3) F  + β4t.
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Thus an increase of one million ton-miles of freight will increase the stock 
of railcars by 940 and the time trend will be responsible for a secular 
decline of 33 railcars per year.

A11.12
•	 One researcher asserts that consistent estimates will be obtained if (2) is 

fitted using OLS and (1) is fitted using IV, with Yt–1 as an instrument for 
Xt. Determine whether this is true.

	 (2) may indeed be fitted using OLS. Strictly speaking, there may be 
an element of bias in finite samples because of noncontemporaneous 
correlation between vt and future values of Yt–1.

	 We could indeed use Yt–1 as an instrument for Xt in (1) because Yt–1 is a 
determinant of Xt but is not (contemporaneously) correlated with ut.

•	 The other researcher asserts that consistent estimates will be obtained if 
both (1) and (2) are fitted using OLS, and that the estimate of β2 will be 
more efficient than that obtained using IV. Determine whether this is true.

	 This assertion is also correct. Xt is not correlated with ut, and OLS 
estimators are more efficient than IV estimators when both are 
consistent. Strictly speaking, there may be an element of bias in finite 
samples because of noncontemporaneous correlation between ut and 
future values of Xt.
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Chapter 12: Properties of regression 
models with time series data

Overview
This chapter begins with a statement of the regression model assumptions 
for regressions using time series data, paying particular attention to the 
assumption that the disturbance term in any time period be distributed 
independently of the regressors in all time periods. There follows a general 
discussion of autocorrelation: the meaning of the term, the reasons why 
the disturbance term may be subject to it, and the consequences of it for 
OLS estimators. The chapter continues by presenting the Durbin–Watson 
test for AR(1) autocorrelation and showing how the problem may be 
eliminated. Next it is shown why OLS yields inconsistent estimates when 
the disturbance term is subject to autocorrelation and the regression 
model includes a lagged dependent variable as an explanatory variable. 
Then the chapter shows how the restrictions implicit in the AR(1) 
specification may be tested using the common factor test, and this leads to 
a more general discussion of how apparent autocorrelation may be caused 
by model misspecification. This in turn leads to a general discussion of 
the issues involved in model selection and, in particular, to the general-to-
specific methodology.

Learning outcomes
After working through the corresponding chapter in the textbook, studying 
the corresponding slideshows, and doing the starred exercises in the 
textbook and the additional exercises in this guide, you should be able to:

•	 explain the concept of autocorrelation and the difference between 
positive and negative autocorrelation

•	 describe how the problem of autocorrelation may arise

•	 describe the consequences of autocorrelation for OLS estimators, their 
standard errors, and t and F tests, and how the consequences change if 
the model includes a lagged dependent variable

•	 perform the Breusch–Godfrey and Durbin–Watson d tests for 
autocorrelation and, where appropriate, the Durbin h test

•	 explain how the problem of AR(1) autocorrelation may be eliminated

•	 describe the restrictions implicit in the AR(1) specification

•	 perform the common factor test

•	 explain how apparent autocorrelation may arise as a consequence 
of the omission of an important variable or the mathematical 
misspecification of the regression model.

•	 demonstrate that the static, AR(1), and ADL(1,0) specifications are 
special cases of the ADL(1,1) model

•	 explain the principles of the general-to-specific approach to model 
selection and the defects of the specific-to-general approach.
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Additional exercises

A12.1
The output shows the result of a logarithmic regression of expenditure 
on food on income, relative price, and population, using an AR(1) 
specification. Compare the results with those in Exercise A11.1.

A12.2
Perform Breusch–Godfrey and Durbin–Watson tests for autocorrelation 
for the logarithmic regression in Exercise A11.2. If you reject the null 
hypothesis of no autocorrelation, run the regression again using an AR(1) 
specification, and compare the results with those in Exercise A11.2.

A12.3
Perform an OLS ADL(1,1) logarithmic regression of expenditure on your 
category on current income, price, and population and lagged expenditure, 
income, price, and population. Use the results to perform a common factor 
test of the validity of the AR(1) specification in Exercise A12.1.

A12.4
A researcher has annual data on LIFE, aggregate consumer expenditure on 
life insurance, DPI, aggregate disposable personal income, and PRELLIFE, 
a price index for the cost of life insurance relative to general inflation, for 
the United States for the period 1959–1994. LIFE and DPI are measured 
in US$ billion. PRELLIFE is an index number series with 1992=100. She 
defines LGLIFE, LGDPI, and LGPRLIFE as the natural logarithms of LIFE, 
DPI, and PRELLIFE, respectively. She fits the regressions shown in columns 
(1) – (4) of the table, each with LGLIFE as the dependent variable. 
(Standard errors in parentheses; OLS = ordinary least squares; AR(1) is a 
specification appropriate when the disturbance term follows a first-order 
autoregressive process; d = Durbin–Watson d statistic; ρ̂ is the estimate of 
the autoregressive parameter in a first-order autoregressive process.)
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(1) (2) (3) (4) (5)

OLS AR(1) OLS OLS OLS

LGDPI
1.37

(0.10)

1.41

(0.25)

0.42

(0.60)

0.28

(0.17)
—

LGPRLIFE
–0.67

(0.35)

–0.78

(0.50)

–0.59

(0.51)

–0.26

(0.21)
—

LGLIFE(–1) — —
0.82

(0.10)

0.79

(0.09)

0.98

(0.02)

LGDPI(–1) — —
–0.15

(0.61)
— —

LGPRLIFE(–1) — —
0.38

(0.53)
— —

constant
–4.39

(0.88)

–4.20

(1.69)

–0.50

(0.72)

–0.51

(0.70)

0.12

(0.08)

R2 0.958 0.985 0.986 0.986 0.984

RSS 0.2417 0.0799 0.0719 0.0732 0.0843

B-G 23.48 — 0.61 0.34 0.10

d 0.36 1.85 2.02 1.92 2.05

ρ̂ —
0.82

(0.11)
— — —

•	 Discuss whether specification (1) is an adequate representation of the 
data.

•	 Discuss whether specification (3) is an adequate representation of the 
data.

•	 Discuss whether specification (2) is an adequate representation of the 
data.

•	 Discuss whether specification (4) is an adequate representation of the 
data.

•	 If you were presenting these results at a seminar, what would you 
say were your conclusions concerning the most appropriate of 
specifications (1) – (4)?

•	 At the seminar a commentator points out that in specification (4) 
neither LGDPI nor LGPRLIFE have significant coefficients and so 
these variables should be dropped. As it happens, the researcher has 
considered this specification, and the results are shown as specification 
(5) in the table. What would be your answer to the commentator?

A12.5
A researcher has annual data on the yearly rate of change of the consumer 
price index, p, and the yearly rate of change of the nominal money supply, 
m, for a certain country for the 51–year period 1958–2008. He fits the 
following regressions, each with p as the dependent variable. The first four 
regressions are fitted using OLS. The fifth is fitted using a specification 
appropriate when the disturbance term is assumed to follow an AR(1) 
process. p(–1) indicates p lagged one year. m(–1), m(–2), and m(–3) 
indicate m lagged 1, 2, and 3 years, respectively.
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(1) explanatory variable m.

(2) explanatory variables m, m(–1), m(–2), and m(–3).

(3) explanatory variables m, p(–1), and m(–1).

(4) explanatory variables m and p(–1).

(5) explanatory variable m.

The results are shown in the table. Standard errors are shown in 
parentheses. RSS is the residual sum of squares. B–G is the Breusch–Godfrey 
test statistic for AR(1) autocorrelation. d is the Durbin–Watson d statistic.

1 2 3 4 5

OLS OLS OLS OLS AR(1)

m
0.95

(0.05)

0.50

(0.30)

0.40

(0.12)

0.18

(0.09)

0.90

(0.08)

m(–1) —
0.30

(0.30)

–0.30

(0.10)
— —

m(–2) —
–0.15

(0.30)
— — —

m(–3) —
0.30

(0.30)
— — —

p(–1) — —
0.90

(0.20)

0.80

(0.20)
—

constant
0.05

(0.04)

0.04

(0.04)

0.06

(0.04)

0.05

(0.04)

0.06

(0.03)

RSS 0.0200 0.0150 0.0100 0.0120 0.0105

B–G 35.1 27.4 0.39 0.26 0.57

d 0.10 0.21 2.00 2.00 1.90

•	 Looking at all five regressions together, evaluate the adequacy of

specification 1.

specification 2.

specification 3.

specification 4.

•	 Explain why specification 5 is a restricted version of one of the other 
specifications, stating the restriction, and explaining the objective of 
the manipulations that lead to specification 5.

•	 Perform a test of the restriction embodied in specification 5.

•	 Explain which would be your preferred specification.

A12.6
Derive the short-run (current year) and long-run (equilibrium) effect 
of m on p for each of the five specifications in Exercise A12.5, using the 
estimated coefficients.

A12.7
A researcher has annual data on aggregate consumer expenditure on taxis, 
TAXI, and aggregate disposable personal income, DPI, both measured in 
$ billion at 2000 constant prices, and a relative price index for taxis, P, 
equal to 100 in 2000, for the United States for the period 1981–2005. 
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Defining LGTAXI, LGDPI, and LGP as the natural logarithms of TAXI, DPI, 
and P, respectively, he fits regressions (1) – (4) shown in the table. OLS = 
ordinary least squares; AR(1) indicates that the equation was fitted using a 
specification appropriate for first-order autoregressive autocorrelation; ρ̂  
is an estimate of the parameter in the AR(1) process; B–G is the Breusch–
Godfrey statistic for AR(1) autocorrelation; d is the Durbin–Watson d 
statistic; standard errors are given in parentheses. 

(1) (2) (3) (4)

OLS AR(1) OLS AR(1)

LGDPI
2.06

(0.10)

1.28

(0.84)

2.28

(0.05)

2.24

(0.07)

LGP — —
–0.99

(0.09)

–0.97

(0.11)

constant
–12.75

(0.68)

–7.45

(5.89)

–9.58

(0.40)

–9.45

(0.54)

ρ̂ —
0.88

(0.09)
—

0.26

(0.22)

B–G 17.84 — 1.47 —

d 0.31 1.40 1.46 1.88

R2 0.95 0.98 0.99 0.99

Figure 12.1 shows the actual values of LGTAXI and the fitted values from 
regression (1). Figure 12.2 shows the residuals from regression (1) and 
the values of LGP. 

•	 Evaluate regression (1).

•	 Evaluate regression (2). Explain mathematically what assumptions 
were being made by the researcher when he used the AR(1) 
specification and why he hoped the results would be better than those 
obtained with regression (1).

•	 Evaluate regression (3).

•	 Evaluate regression (4). In particular, discuss the possible reasons for 
the differences in the standard errors in regressions (3) and (4).

•	 At a seminar one of the participants says that the researcher should 
consider adding lagged values of LGTAXI, LGDPI, and LGP to the 
specification. What would be your view?

Figure 12.1



20 Elements of econometrics

248

Figure 12.2

A12.8
A researcher has annual data on I, investment as a percentage of gross 
domestic product, and r, the real long-term rate of interest for a certain 
economy for the period 1981–2009. He regresses I on r, (1) using ordinary 
least squares (OLS), (2) using an estimator appropriate for AR(1) residual 
autocorrelation, and (3) using OLS but adding I(–1) and r(–1) (I and r 
lagged one time period) as explanatory variables. The results are shown in 
columns (1), (2), and (3) of the table below. The residuals from regression 
(1) are shown in Figure 2.3.

Figure 12.3

He then obtains annual data on g, the rate of growth of gross domestic 
product of the economy, for the same period, and repeats the regressions, 
adding g (and, where appropriate, g(–1)) to the specifications as an 
explanatory variable. The results are shown in columns (4), (5), and (6) 
of the table. r and g are measured as per cent per year. The data for g are 
plotted in the figure.
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OLS AR(1) OLS OLS AR(1) OLS

(1) (2) (3) (4) (5) (6)

r
–0.87

(0.98)

–0.83

(1.05)

–0.87

(1.08)

–1.81

(0.49)

–1.88

(0.50)

–1.71

(0.52)

I(–1) — —
0.37

(0.16)
— —

–0.22

(0.18)

r(–1) — —
0.64

(1.08)
— —

–0.98

(0.64)

g — — —
1.61

(0.17)

1.61

(0.18)

1.92

(0.20)

g(–1) — — — — —
–0.02

(0.33)

ρ̂ —
0.37

(0.18)
— —

–0.16

(0.20)
—

constant
9.31

(3.64)

9.21

(3.90)

4.72

(4.48)

9.26

(1.77)

9.54

(1.64)

13.24

(2.69)

B–G 4.42 — 4.24 0.70 — 0.98

d 0.99 1.36 1.33 2.30 2.05 2.09

RSS 120.5 103.9 103.5 27.4 26.8 23.5

Note: standard errors are given in parentheses. ρ̂  is the estimate of the 
autocorrelation parameter in the AR(1) specification. B–G is the Breusch–
Godfrey statistic for AR(1) autocorrelation. d is the Durbin–Watson d 
statistic. 

•	 Explain why the researcher was not satisfied with regression (1).

•	 Evaluate regression (2). Explain why the coefficients of I(–1) and r(–1) 
are not reported, despite the fact that they are part of the regression 
specification.

•	 Evaluate regression (3).

•	 Evaluate regression (4).

•	 Evaluate regression (5).

•	 Evaluate regression (6).

•	 Summarise your conclusions concerning the evaluation of the different 
regressions. Explain whether an examination of the figure supports your 
conclusions

A12.9
In Exercise A11.5 you performed a test of a restriction. The result of this 
test will have been invalidated if you found that the specification was 
subject to autocorrelation. How should the test be performed, assuming 
the correct specification is ADL(1,1)?
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A12.10
Given data on a univariate process

	 ttt uYY ++= −121 bb

where |β2| < 1 and ut is iid, the usual OLS estimators will be consistent 
but subject to finite-sample bias. How should the model be fitted if ut is 
subject to an AR(1) process?

A12.11
Explain what is correct, incorrect, confused or incomplete in the following 
statements, giving a brief explanation if not correct.

•	 The disturbance term in a regression model is said to be autocorrelated 
if its values in a sample of observations are not distributed 
independently of each other.

•	 When the disturbance term is subject to autocorrelation, the ordinary 
least squares estimators are inefficient and inconsistent, but they are 
not biased, and the t tests are invalid.

•	 It is a common problem in time series models because it always occurs 
when the dependent variable is correlated with its previous values.

•	 If this is the case, it could be eliminated by including the lagged value 
of the dependent variable as an explanatory variable.

•	 However, if the model is correctly specified and the disturbance term 
satisfies the regression model assumptions, adding the lagged value 
of the dependent variable as an explanatory variable will have the 
opposite effect and cause the disturbance term to be autocorrelated.

•	 A second way of dealing with the problem of autocorrelation is to use 
an instrumental variable.

•	 If the autocorrelation is of the AR(1) type, randomising the order of the 
observations will cause the Breusch–Godfrey statistic to be near zero, 
and the Durbin–Watson statistic to be near 2, thereby eliminating the 
problem.

Answers to the starred exercises in the textbook

12.6
Prove that 2

uσ  is related to 2
εσ  as shown in (12.34), and show 

that weighting the first observation by 21 ρ−  eliminates the 
heteroscedasticity.

Answer: 

(12.34) is

	
2

2
2

1
1

εσρ
σ

−
=u

and it assumes the first order AR(1) process (12.26): ut = ρut–1 + εt. From 
the AR(1) process, neglecting transitory effects, uuu tt

σσσ ==
−1

 and so

	
2

2
2222

1
1

εε σ
ρ

σσρσ
−

=+= uu .

(Note that the covariance between ut–1 and εt is zero.) If the first 
observation is weighted by 21 ρ− , the variance of the disturbance term 
will be
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and it will therefore be the same as in the other observations in the sample.

12.9
The table gives the results of three logarithmic regressions using the 
Cobb–Douglas data for Yt, Kt, and Lt, index number series for real output, 
real capital input, and real labor input, respectively, for the manufacturing 
sector of the United States for the period 1899–1922, reproduced in 
Exercise 11.6 (method of estimation as indicated; standard errors in 
parentheses; d = Durbin–Watson d statistic; BG = Breusch–Godfrey test 
statistic for first-order autocorrelation):

1: OLS 2: AR(1) 3: OLS

log K
0.23

(0.06)

0.22

(0.07)

0.18

(0.56)

log L
0.81

(0.15)

0.86

(0.16)

1.03

(0.15)

log Y(–1) — —
0.40

(0.21)

log K(–1) — —
0.17

(0.51)

log L(–1) — —
–1.01

(0.25)

constant
–0.18

(0.43)

–0.35

(0.51)

1.04

(0.41)

ρ̂ —
0.19

(0.25)
—

R2 0.96 0.96 0.98

RSS 0.0710 0.0697 0.0259

d 1.52 1.54 1.46

B–G 0.36 — 1.54

The first regression is that performed by Cobb and Douglas. The second 
fits the same specification, allowing for AR(1) autocorrelation. The third 
specification uses OLS with lagged variables. Evaluate the three regression 
specifications.

Answer:

For the first specification, the Breusch–Godfrey LM test for autocorrelation 
yields statistics of 0.36 (first order) and 1.39 (second order), both 
satisfactory. For the Durbin–Watson test, dL and dU are 1.19 and 1.55 
at the 5 per cent level and 0.96 and 1.30 at the 1 per cent level, with 
24 observations and two explanatory variables. Hence the specification 
appears more or less satisfactory. Fitting the model with an AR(1) 
specification makes very little difference, the estimate of ρ being low. 
However, when we fit the general ADL(1,1) model, neither of the first two 
specifications appears to be an acceptable simplification. The F statistic for 
dropping all the lagged variables is

( ) 22
2

22
2

2

1
111 εε σσ
ρ

ρσρ =
−

−=




 − u
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.

The critical value of F(3,18) at the 0.1 per cent level is 8.49. The common 
factor test statistic is

	

and the critical value of chi-squared with two degrees of freedom is 13.82 
at the 0.1 per cent level. The Breusch–Godfrey statistic for first-order 
autocorrelation is 1.54. The Durbin–Watson statistic is lowish (the Durbin 
h statistic cannot be computed).

We come to the conclusion that Cobb and Douglas, who actually fitted a 
restricted version of the first specification, imposing constant returns to 
scale, were a little fortunate to obtain the plausible results they did.

12.10
Derive the final equation in Box 12.2 from the first two equations in the 
box. What assumptions need to be made when fitting the model?

Answer: 

This exercise overlaps Exercise 11.16. We start by reprising equations 
(11.30) – (11.33) in the textbook. We assume that the dependent variable 
Yt is related to e

tX 1+ , the value of X anticipated in the next time period 
(11.30):

	
t

e
tt uXY ++= + 121 bb .

To make the model operational, we hypothesise that expectations 
are updated in response to the discrepancy between what had been 
anticipated for the current time period, e

tX 1+ , and the actual outcome, Xt 
(11.31):

	 ( )e
tt

e
t

e
t XXXX −=−+ λ1 .

where λ may be interpreted as a speed of adjustment. We can rewrite this 
as (11.32)

	 ( ) e
tt

e
t XXX λλ −+=+ 11

.

 Hence we obtain (11.33)

	 ( ) t
e
ttt uXXY +−++= λbλbb 1221 .

This includes the unobservable e
tX  on the right side. However, lagging 

(11.32), we have

	 ( ) e
tt

e
t XXX 11 1 −− −+= λλ .

Hence

	 ( ) ( ) t
e
tttt uXXXY +−+−++= −− 1

2
21221 11 λbλλbλbb .

This includes the unobservable e
tX 1−  on the right side. However, continuing 

to lag and substitute, we have

( ) ( ) ( ) t
e

st
s

st
s

ttt uXXXXY +−+−++−++= −
+

−−
1

221221 11...1 λbλλbλλbλbb .
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Provided that s is large enough for ( ) 1
2 1 +− sλb  to be very small, this may 

be fitted, omitting the unobservable final term, with negligible omitted 
variable bias. We would fit it with a nonlinear regression technique 
that respected the constraints implicit in the theoretical structure of the 
coefficients. The disturbance term is unaffected by the manipulations. 
Hence it is sufficient to assume that it is well-behaved in the original 
specification.

12.12
Using the 50 observations on two variables Y and X shown in the diagram 
below, an investigator runs the following five regressions (estimation 
method as indicated; standard errors in parentheses; all variables as 
logarithms in the logarithmic regressions; d = Durbin–Watson d statistic; 
B–G = Breusch–Godfrey test statistic):

1 2 3 4 5

linear logarithmic

OLS AR(1) OLS AR(1) OLS

X
0.16

(0.01)

0.03

(0.05)

2.39

(0.03)

2.39

(0.03)

1.35

(0.70)

Y(–1) – – –
– –0.11

(0.15)

X(–1) – – –
– 1.30

(0.75)

ρ̂ ρ̂ –
1.16

(0.06)
–

–0.14

(0.15)
–

constant
–21.88

(3.17)

–2.52

(8.03)

–11.00

(0.15)

–10.99

(0.14)

–12.15

(1.67)

R2 0.858 0.974 0.993 0.993 0.993

RSS 7663 1366 1.011 0.993 0.946

d 0.26 2.75 2.17 1.86 21.95

B–G 39.54 – 0.85 – 1.03

Discuss each of the five regressions, explaining which is your preferred 
specification.
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Answer: 

The scatter diagram reveals that the relationship is nonlinear. If it is fitted 
with a linear regression, the residuals must be positive for the largest and 
smallest values of X and negative for the middle ones. As a consequence 
it is no surprise to find a high Breusch–Godfrey statistic, above 10.83, 
the critical value of χ2(1) at the 0.1% level, and a low Durbin–Watson 
statistic, below 1.32, the critical value at the 1 per cent level. Equally 
it is no surprise to find that an AR(1) specification does not yield 
satisfactory results, the Durbin–Watson statistic now indicating negative 
autocorrelation.

By contrast the logarithmic specification appears entirely satisfactory, 
with a Breusch–Godfrey statistic of 0.85 and a Durbin–Watson statistic of 
1.82 (dU is 1.59 at the 5 per cent level). Comparing it with the ADL(1,1) 
specification, the F statistic for dropping the lagged variables is

	

The critical value of F(2,40) at the 5 per cent level is 3.23. Hence 
we conclude that specification (3) is an acceptable simplification. 
Specifications (4) and (5) are inefficient, and this accounts for their larger 
standard errors.

12.13
Using the data on food in the Demand Functions data set, the following 
regressions were run, each with the logarithm of food as the dependent 
variable: (1) an OLS regression on a time trend T defined to be 1 in 1959, 
2 in 1960, etc., (2) an AR(1) regression using the same specification, 
and (3) an OLS regression on T and the logarithm of food lagged one 
time period, with the results shown in the table (standard errors in 
parentheses).

1: OLS 2: AR(1) 3: OLS

T 0.0181 0.0166 0.0024

(0.0005) (0.0021) (0.0016)

LGFOOD(–1) – – 0.8551

(0.0886)

constant 5.7768 5.8163 0.8571

(0.0106) (0.0586) (0.5101)

ρ̂ – 0.8551 –

(0.0886)

R2 0.9750 0.9931 0.9931

RSS 0.0327 0.0081 0.0081

d 0.2752 1.3328 1.3328

h – – 2.32

Discuss why each regression specification appears to be unsatisfactory. 
Explain why it was not possible to perform a common factor test.
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Answer: 

The Durbin–Watson statistic in regression (1) is very low, suggesting 
AR(1) autocorrelation. However, it remains below 1.40, dL for a 5 per cent 
significance test with one explanatory variable and 35 observations, in 
the AR(1) specification in regression (2). The reason of course is that the 
model is very poorly specified, with two obvious major variables, income 
and price, excluded.

With regard to the impossibility of performing a common factor test, 
suppose that the original model is written

	 LGFOODt = β1 + β2T + ut.

Lagging the model and multiplying through by ρ, we have

	 ρLGFOODt–1 = β1ρ + β2ρ (T – 1) + ρut–1.

Subtracting and rearranging, we obtain the AR(1) specification:

	 LGFOODt	 = β1(1 – ρ) + ρLGFOODt–1 + β2T – β2ρ (T – 1) + ut – ρut–1

			   = β1(1 – ρ) + β2ρ + ρLGFOODt–1 + β2(1 – ρ)T + εt

However, this specification does not include any restrictions. The 
coefficient of LGFOODt–1 provides an estimate of ρ. The coefficient of T 
then provides an estimate of β2. Finally, given these estimates, the intercept 
provides an estimate of β1. The AR(1) and ADL(1,1) specifications are 
equivalent in this model, the reason being that the variable (T – 1) is 
merged into T and the intercept.

Answers to the additional exercises

A12.1
The Durbin–Watson statistic in the OLS regression is 0.49, causing us to 
reject the null hypothesis of no autocorrelation at the 1 per cent level. 
The Breusch-Godfrey statistic (not shown) is 25.12, also causing the null 
hypothesis of no autocorrelation to be rejected at a high significance level. 
Apart from a more satisfactory Durbin–Watson statistic, the results for the 
AR(1) specification are similar to those of the OLS one. The income and 
price elasticities are a little larger. The estimate of the population elasticity, 
negative in the OLS regression, is now effectively zero, suggesting that 
the direct effect of population on expenditure on food is offset by a 
negative income effect. The standard errors are larger than those for the 
OLS regression, but the latter are invalidated by the autocorrelation and 
therefore should not be taken at face value. 

A12.2
All of the regressions exhibit strong evidence of positive autocorrelation. 
The Breusch–Godfrey test statistic for AR(1) autocorrelation is above the 
critical value of 10.82 (critical value of chi-squared with one degree of 
freedom at the 0.1% significance level) and the Durbin–Watson d statistic 
is below 1.20 (dL, 1 per cent level, 45 observations, k = 4). The Durbin–
Watson statistics for the AR(1) specification are generally much more 
healthy than those for the OLS one, being scattered around 2.
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Breusch–Godfrey and Durbin–Watson statistics, logarithmic OLS 
regression including population

B–G d B–G d

ADM 19.37 0.683 GASO 36.21 0.212

BOOK 25.85 0.484 HOUS 23.88 0.523

BUSI 24.31 0.507 LEGL 24.30 0.538

CLOT 18.47 0.706 MAGS 19.27 0.667

DENT 14.02 0.862 MASS 21.97 0.612

DOC 24.74 0.547 OPHT 31.64 0.328

FLOW 24.13 0.535 RELG 26.30 0.497

FOOD 24.95 0.489 TELE 30.08 0.371

FURN 22.92 0.563 TOB 27.84 0.421

GAS 23.41 0.569 TOYS 20.04 0.668

Since autocorrelation does not give rise to bias, one would not expect to 
see systematic changes in the point estimates of the coefficients. However, 
since multicollinearity is to some extent a problem for most categories, 
the coefficients do exhibit greater volatility than is usual when comparing 
OLS and AR(1) results. Fortunately, most of the major changes seem to be 
for the better. In particular, some implausibly high income elasticities are 
lower. Likewise, the population elasticities are a little less erratic, but most 
are still implausible, with large standard errors that reflect the continuing 
underlying problem of multicollinearity.

AR(1) logarithmic regression

LGDPI LGP LGPOP ρ̂ R2 d

coef. s.e. coef. s.e. coef. s.e. coef. s.e.

ADM –0.34 0.34 0.00 0.20 3.73 0.95 0.76 0.08 0.992 2.03

BOOK 0.46 0.41 –1.06 0.29 2.73 1.25 0.82 0.10 0.990 1.51

BUSI 0.43 0.24 0.19 0.25 2.45 0.70 0.69 0.10 0.997 1.85

CLOT 1.07 0.16 –0.56 0.15 –0.49 0.71 0.84 0.08 0.999 2.19

DENT 1.14 0.18 –1.01 0.15 0.69 0.73 0.56 0.13 0.996 1.86

DOC 0.85 0.25 –0.30 0.26 1.26 0.77 0.83 0.10 0.997 1.61

FLOW 0.71 0.41 –1.04 0.44 0.74 1.33 0.78 0.09 0.994 1.97

FOOD 0.47 0.12 –0.36 0.12 0.07 0.38 0.88 0.09 0.997 1.56

FURN 1.73 0.36 –0.37 0.51 –1.62 1.55 0.92 0.06 0.994 2.00

GAS –0.02 0.34 0.01 0.08 0.29 0.97 0.83 0.06 0.933 2.12

GASO 0.75 0.15 –0.14 0.03 –0.64 0.48 0.93 0.04 0.998 1.65

HOUS 0.27 0.08 –0.27 0.09 –0.03 0.54 0.98 0.00 0.9997 1.66

LEGL 0.89 0.2 –0.19 0.22 –0.54 0.80 0.77 0.10 0.989 1.90

MAGS 0.98 0.30 –1.24 0.39 –0.23 0.92 0.73 0.12 0.983 1.73

MASS 0.06 0.28 –0.72 0.11 1.31 0.97 0.94 0.04 0.944 1.95

OPHT 1.99 0.60 –0.92 0.97 –1.45 1.85 0.90 0.08 0.991 1.67

RELG 0.86 0.18 –1.15 0.26 2.00 0.56 0.66 0.10 0.999 2.08

TELE 0.70 0.20 –0.56 0.13 2.44 0.71 0.87 0.10 0.999 1.51

TOB 0.38 0.22 –0.35 0.07 –0.99 0.66 0.79 0.10 0.960 2.37

TOYS 0.89 0.18 –0.58 0.13 1.61 0.66 0.75 0.12 0.999 1.77
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A12.3
The table below gives the residual sum of squares for the unrestricted 
ADL(1,1) specification and that for the restricted AR(1) one, the fourth 
column giving the chi-squared statistic for the common factor test. 

Before performing the common factor test, one should check that the 
ADL(1,1) specification is itself free from autocorrelation using Breusch–
Godfrey and Durbin h tests. The fifth column gives the B–G statistic for 
AR(1) autocorrelation. All but one of the statistics are below the critical 
value at the 5 per cent level, 3.84. The exception is that for LEGL. The 
sixth and seventh columns of the table give the Durbin–Watson statistic 
for the ADL(1,1) specification and the standard error of the coefficient of 
the lagged dependent variable. With these, the h statistic is computed in 
the final column. It is below the critical value at the 5 per cent level for all 
categories other than TOB and TOYS. It should be remembered that both 
the Breusch–Godfrey and the Durbin h tests are large-sample tests and in 
this application, with only 44 observations, the sample is rather small.

Common factor test and tests of autocorrelation for ADL(1,1) model

RSSADL(1,1) RSSAR(1) chi-squared B–G d s.e.(Y–1) h

ADM 0.029792 0.039935 12.89 0.55 2.088384 0.136337 –0.69

BOOK 0.070478 0.086240 8.88 1.25 1.730606 0.107211 1.27

BUSI 0.032074 0.032703 0.85 0.57 1.857385 0.123219 0.82

CLOT 0.009097 0.010900 7.96 1.06 2.193770 0.130301 –1.28

DENT 0.019281 0.021841 5.49 1.22 2.176057 0.139732 –1.56

DOC 0.025598 0.028091 4.09 0.33 1.873228 0.124151 0.74

FLOW 0.084733 0.084987 0.13 0.01 1.994870 0.107631 0.02

FOOD 0.005562 0.006645 7.83 3.12 1.611264 0.107158 1.83

FURN 0.050880 0.058853 6.41 0.29 1.906398 0.098674 0.41

GAS 0.035682 0.045433 10.63 0.66 2.008735 0.098045 –0.04

GASO 0.006898 0.009378 13.51 2.91 2.216527 0.055174 –0.77

HOUS 0.001350 0.002249 22.46 0.77 1.970645 0.061153 0.11

LEGL 0.026650 0.034823 11.77 8.04 2.034047 0.099575 –0.15

MAGS 0.043545 0.051808 7.64 0.03 1.968159 0.114750 0.16

MASS 0.029125 0.033254 5.83 0.15 2.031238 0.089066 –0.13

OPHT 0.139016 0.154629 4.68 0.08 2.043001 0.116739 –0.23

RELG 0.013910 0.014462 1.71 0.32 1.963147 0.117603 0.20

TELE 0.014822 0.017987 8.52 0.97 1.680330 0.102083 1.44

TOB 0.021403 0.021497 0.19 3.45 2.363002 0.126486 –2.21

TOYS 0.015313 0.015958 1.82 2.60 1.667862 0.134172 2.42

For the common factor test, the critical values of chi-squared are 7.81 
and 11.34 at the 5 and 1 per cent levels, respectively, with 3 degrees of 
freedom. Summarising the results, we find:

•	 AR(1) specification not rejected: BUSI, DENT, DOC, FLOW, FURN, 
MAGS, MASS, OPHT, RELG, TOB, TOYS.

•	 AR(1) specification rejected at 5 per cent level: BOOK, CLOT, FOOD, 
GAS, TELE.

•	 AR(1) specification rejected at 1 per cent level: ADM, GASO, HOUS, 
LEGL.
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A12.4
•	 Discuss whether specification (1) is an adequate representation of the 

data.

	 The Breusch–Godfrey statistic is well in excess of the critical value 
at the 0.1 per cent significance level, 10.83. Likewise, the Durbin–
Watson statistic is far below 1.15, dL at the 1 per cent level with two 
explanatory variables and 36 observations. There is therefore strong 
evidence of either severe AR(1) autocorrelation or some serious 
misspecification. 

•	 Discuss whether specification (3) is an adequate representation of the 
data.

	 The only item that we can check is whether it is free from 
autocorrelation. The Breusch–Godfrey statistic is well under 3.84, the 
critical value at the 5 per cent significance level, and so there is no 
longer evidence of autocorrelation or misspecification. The Durbin h 
test leads to a similar conclusion:

	
.

•	 Discuss whether specification (2) is an adequate representation of the 
data.

	 Let the original model be written

	 LGLIFE = β1 + β2LGDPI + β3LGDPRLIFE + u,

	 ut = ρut–1 + εt.

	 The AR(1) specification is then

	 LGLIFE = β1(1 – ρ) + ρLGLIFE(–1) + β2LGDPI – β2 ρLGDPI(–1)

	 + β3LGDPRLIFE – β3 ρLGPRLIFE(–1) + εt.

	 This is a restricted version of the ADL(1,1) model because it 
incorporates nonlinear restrictions on the coefficients of LGDPI(–1) 
and LGPRLIFE(–1). In the ADL(1,1) specification, minus the product 
of the coefficients of LGLIFE(–1) and LGDPI is –0.82*0.42 = –0.34. 
The coefficient of LGDPI(–1) is smaller than this, but then its standard 
error is large. Minus the product of the coefficients of LGLIFE(–1) and 
LGPRLIFE is –0.82*–0.59 = 0.48. The coefficient of LGPRLIFE(–1) is 
fairly close, bearing in mind that its standard error is also large. The 
coefficient of LGLIFE(–1) is exactly equal to the estimate of ρ in the 
AR(1) specification.

	 The common factor test statistic is 

	
.

	 The null hypothesis is that the two restrictions are valid. Under the 
null hypothesis, the test statistic has a chi-squared distribution with 
2 degrees of freedom. Its critical value at the 5 per cent level is 5.99. 
Hence we do not reject the restrictions and the AR(1) specification 
therefore does appear to be acceptable.
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•	 Discuss whether specification (4) is an adequate representation of the data.

	 We note that LGLDPI(–1) and LGPRLIFE(–1) do not have significant t 
statistics, but since they are being dropped simultaneously, we should 
perform an F test of their joint explanatory power:

	
.

	 Since this is less than 1, it is not significant at any significance level and 
so we do not reject the null hypothesis that the coefficients of LGLDPI(–1) 
and LGPRLIFE(–1) are both 0. Hence it does appear that we can drop these 
variables. We should also check for autocorrelation. Both the Breusch–
Godfrey statistic and the Durbin h statistic:

	

	 indicate that there is no problem.

•	 If you were presenting these results at a seminar, what would you say were 
your conclusions concerning the most appropriate of specifications (1) – (4)?

	 There is no need to mention (1). (3) is not a candidate because we have 
found acceptable simplifications that are likely to yield more efficient 
parameter estimates , and this is reflected in the larger standard errors 
compared with (2) and (4). We cannot discriminate between (2) and (4).

•	 At the seminar a commentator points out that in specification (4) neither 
LGDPI nor LGPRLIFE have significant coefficients and so these variables 
should be dropped. As it happens, the researcher has considered this 
specification, and the results are shown as specification (5) in the table. What 
would be your answer to the commentator?

	 Comparing (3) and (5),

	
.

	 The critical value of F(4,29) at the 5 per cent level is 2.70, so it would 
appear that the joint explanatory power of the 4 income and price 
variables is not significant. However, it does not seem sensible to drop 
current income and current price from the model. The reason that they 
have so little explanatory power is that the short-run effects are small, life 
insurance being subject to long-term contracts and thus a good example 
of a category of expenditure with a large amount of inertia. The fact that 
income in the AR(1) specification has a highly significant coefficient is 
concrete evidence that it should not be dropped.

A12.5
•	 Looking at all five regressions together, evaluate the adequacy of

specification 1.

specification 2.

specification 3.

specification 4.



20 Elements of econometrics

260

Specification 1 has a very high Breusch–Godfrey statistic and a very 
low Durbin–Watson statistic. There is evidence of either severe 
autocorrelation or model misspecification.

Specification 2 also has a very high Breusch–Godfrey statistic and 
a very low Durbin–Watson statistic. Further, there is evidence of 
multicollinearity: large standard errors (although comparisons are 
very dubious given low DW), and implausible coefficients.

Specification 3 seems acceptable. In particular, there is no evidence 
of autocorrelation since the Breusch–Godfrey statistic is low and the 
Durbin h statistic is 0.

Specification 4: dropping m(–1) may be expected to cause omitted 
variable bias since the t statistic for its coefficient was –3.0 in 
specification 3. (Equivalently, the F statistic is

	

	 the square of the t statistic and similarly significant.)

•	 Explain why specification 5 is a restricted version of one of the other 
specifications, stating the restriction, and explaining the objective of the 
manipulations that lead to specification 5.

	 Write the original model and AR(1) process

	
ttt ump ++= 21 bb

	 ttt uu ερ += −1 .

	 Then fitting

	 ( ) ttttt mmpp ερbbρρb +−++−= −− 12211 1

	 removes the autocorrelation. This is a restricted version of specification 
3, with restriction that the coefficient of mt–1 is equal to minus the 
product of the coefficients of mt and pt–1.

•	 Perform a test of the restriction embodied in specification 5.

	 Comparing specifications 3 and 5, the common factor test statistic is

	
.

	 Under the null hypothesis that the restriction implicit in the 
specification is valid, the test statistic is distributed as chi-squared with 
one degree of freedom. The critical value at the 5 per cent significance 
level is 3.84, so we do not reject the restriction. Accordingly, 
specification 5 appears to be an adequate representation of the data.

•	 Explain which would be your preferred specification.

	 Specifications (3) and (5) both appear to be adequate representations 
of the data. (5) should yield more efficient estimators of the parameters 
because, exploiting an apparently-valid restriction, it is less susceptible 
to multicollinearity, and this appears to be confirmed by the lower 
standard errors.
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A12.6
The models are

1. 	 ttt ump ++= 21 bb
2. 	 tttttt ummmmp +++++= −−− 35241321 bbbbb
3. 	 ttttt upmmp ++++= −− 161321 bbbb
4. 	 tttt upmp +++= −1621 bbb
5. 	 ( ) ttttt mmpp εbbbbbb +−++−= −− 16221661 1  (writing ρ = β6).

Hence we obtain the following estimates of tt mp ∂∂ :

1.	 0.95

2.	 0.50

3.	 0.40

4.	 0.18

5.	 0.90.

Putting p and m equal to equilibrium values, and ignoring the disturbance 
term, we have

1.	 mp 21 bb +=

2.	 ( )mp 4321 bbbb +++=

3.	 ( )( )mp 321
61

1 bbb
b

++
−

=

4.	 ( )mp 21
61

1 bb
b

+
−

=

5.	 mp 21 bb += .
Hence we obtain the following estimates of mp dd :

1.	 0.95

2.	 0.95

3.	 1.00

4.	 0.90

5.	 0.90.

A12.7
•	 Evaluate regression (1).

	 Regression (1) has a very high Breusch–Godfrey statistic and a very 
low Durbin–Watson statistic. The null hypothesis of no autocorrelation 
is rejected at the 1 per cent level for both tests. Alternatively, the test 
statistics might indicate some misspecification problem.

•	 Evaluate regression (2). Explain mathematically what assumptions 
were being made by the researcher when he used the AR(1) specification 
and why he hoped the results would be better than those obtained with 
regression (1).

	 Regression (2) has been run on the assumption that the disturbance 
term follows an AR(1) process

	 ut = ρut–1 + εt .

	 On the assumption that the regression model should be

	 LGTAXIt = β1 + β2LGDPIt + ut,
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	 the autocorrelation can be eliminated in the following way: lag the 
regression model by one time period and multiply through by ρ

	 ρLGTAXIt–1 = β1ρ + β2ρLGDPIt–1 + ρut–1.

	 Subtract this from the regression model:

	 LGTAXIt – ρLGTAXIt–1 = β1(1 – ρ) + β2LGDPIt – β2ρLGDPIt–1 + ut – ρut–1.

	 Hence one obtains a specification free from autocorrelation:

	 LGTAXIt = β1(1 – ρ) + ρLGTAXIt–1 + β2LGDPIt – β2ρLGDPIt–1 + εt.

	 The Durbin–Watson statistic is still low, suggesting that fitting the 
AR(1) specification was an inappropriate response to the problem.

•	 Evaluate regression (3).

	 In regression (3) the Breusch–Godfrey statistic suggests that, for 
this specification, there is not a problem of autocorrelation (the 
Durbin–Watson statistic is indecisive). This suggests that the apparent 
autocorrelation in the regression (1) is in fact attributable to the 
omission of the price variable.

	 This is corroborated by the diagrams, which show that large negative 
residuals occurred when the price rose and positive ones when it fell. 
The effect is especially obvious in the final years of the sample period.

•	 Evaluate regression (4). In particular, discuss the possible reasons for the 
differences in the standard errors in regressions (3) and (4).

	 In regression (4), the Durbin–Watson statistic does not indicate 
a problem of autocorrelation. Overall, there is little to choose 
between regressions (3) and (4). It is possible that there was some 
autocorrelation in regression (3) and that it has been rectified by 
using AR(1) in regression (4). It is also possible that autocorrelation 
was not actually a problem in regression (3). Regressions (3) and (4) 
yield similar estimates of the income and price elasticities and in both 
cases the elasticities are significantly different from zero at a high 
significance level. If regression (4) is the correct specification, the 
lower standard errors in regression (3) should be disregarded because 
they are invalid. If regression (3) is the correct specification, AR(1) 
estimation will yield inefficient estimates; which could account for the 
higher standard errors in regression (4).

•	 At a seminar one of the participants says that the researcher should 
consider adding lagged values of LGTAXI, LGDPI, and LGP to the 
specification. What would be your view?

	 Specifications (2) and (4) already contain the lagged values, with 
restrictions on the coefficients of LGDPI(–1) and LGP(–1).

A12.8
•	 Explain why the researcher was not satisfied with regression (1).

	 The researcher was not satisfied with the results of regression (1) 
because the Breusch–Godfrey statistic was 4.42, above the critical 
value at the 5 per cent level, 3.84, and because the Durbin–Watson d 
statistic was only 0.99. The critical value of dL with one explanatory 
variable and 30 observations is 1.35. Thus there is evidence that the 
specification may be subject to autocorrelation.

•	 Evaluate regression (2). Explain why the coefficients of I(–1) and r(–1) 
are not reported, despite the fact that they are part of the regression 
specification.
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	 Specification (2) is equally unsatisfactory. The fact that the Durbin–
Watson statistic has remained low is an indication that the reason for 
the low d in (1) was not an AR(1) disturbance term. RSS is very high 
compared with those in specifications (4) – (6). The coefficient of I(–1) 
is not reported as such because it is the estimate ρ̂ . The coefficient of 
r(–1) is not reported because it is constrained to be minus the product 
of ρ̂  and the coefficient of I.

•	 Evaluate regression (3).

	 Specification (3) is the unrestricted ADL(1,1) model of which the 
previous AR(1) model was a restricted version and it suffers from the 
same problems. There is still evidence of positive autocorrelation, since 
both the Breusch–Godfrey statistic, 4.24, and the Durbin h statistic

	

	 are high and RSS is still much higher than in the three remaining 
specifications.

•	 Evaluate regression (4).

	 Specification (4) seems fine. The null hypothesis of no autocorrelation 
is not rejected by either the Breusch–Godfrey statistic or the Durbin–
Watson statistic. The coefficients are significant and have the expected 
signs.

•	 Evaluate regression (5).

	 The AR(1) specification (5) does not add anything because there 
was no evidence of autocorrelation in (4). The estimate of ρ is not 
significantly different from zero.

•	 Evaluate regression (6).

	 Specification (6) does not add anything either. t tests on the 
coefficients of the lagged variables indicate that they are individually 
not significantly different from zero. Likewise the joint hypothesis 
that their coefficients are all equal to zero is not rejected by an F test 
comparing RSS in (4) and (6):

	
.

	 The critical value of F(3,23) at the 5 per cent level is 3.03.

	 [There is no point in comparing (5) and (6) using a common factor 
test, but for the record the test statistic is

	
.

	 The critical value of chi-squared with 2 degrees of freedom at the 5 per 
cent level is 5.99.]
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•	 Summarise your conclusions concerning the evaluation of the different 
regressions. Explain whether an examination of the figure supports your 
conclusions.

	 The overall conclusion is that the static model (4) is an acceptable 
representation of the data and the apparent autocorrelation in 
specifications (1) – (3) is attributable to the omission of g. Figure 12.3 
shows very clearly that the residuals in specification (1) follow the same 
pattern as g, confirming that the apparent autocorrelation in the residuals 
is in fact attributable to the omission of g from the specification.

A12.9
In Exercise A11.5 you performed a test of a restriction. The result of this test 
will have been invalidated if you found that the specification was subject 
to autocorrelation. How should the test be performed, assuming the correct 
specification is ADL(1,1)?

If the ADL(1,1) model is written

	 log CAT = β1 + β2log DPI + β3log P + β4log POP + β5log CAT–1 

	 + β6log DPI–1 + β7log P–1 + β8log POP–1 + u,

the restricted version with expenditure per capita a function of income per 
capita is

	  

.loglog

loglogloglog

17
1

1
6

1

1
5321

uP
POP
DPI

POP
CATP

POP
DPI

POP
CAT

+++

+++=

−
−

−

−

−

ββ

ββββ

Comparing the two equations, we see that the restrictions are β4 = 1 – β2 
and β8 = – β5 – β6. The usual F statistic should be constructed and compared 
with the critical values of F(2, 28).

A12.10
Let the AR(1) process be written

	
ttt uu ερ += −1 .

As the specification stands, OLS would yield inconsistent estimates because 
both the explanatory variable and the disturbance term depend on ut–1. 
Applying the standard procedure, multiplying the lagged relationship by ρ 
and subtracting, one has

	 ( ) 1121211 1 −−−− −+−+−=− tttttt uuYYYY ρρbbρbρ .

Hence

	 ( ) ( ) tttt YYY ερbρbρb +−++−= −− 22121 1 .

It follows that the model should be fitted as a second-order, rather than 
as a first-order, process. There are no restrictions on the coefficients. OLS 
estimators will be consistent, but subject to finite-sample bias.
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A12.11
Explain what is correct. incorrect, confused or incomplete in the following 
statements, giving a brief explaination if not correct.

•	 The disturbance term in a regression model is said to be autocorrelated if 
its values in a sample of observations are not distributed independently of 
each other.

	 Correct.

•	 When the disturbance term is subject to autocorrelation, the ordinary 
least squares estimators are inefficient ...

	 Correct. 

•	 ...and inconsistent...

	 Incorrect, unless there is a lagged dependent variable.

•	 ...but they are not biased...

	 Correct, unless there is a lagged dependent variable.

•	 ...and the t tests are invalid.

	 Correct.

•	 It is a common problem in time series models because it always occurs 
when the dependent variable is correlated with its previous values.

	 Incorrect.

•	 If this is the case, it could be eliminated by including the lagged value of 
the dependent variable as an explanatory variable.

	 In general, incorrect. However, a model requiring a lagged dependent 
variable could appear to exhibit autocorrelation if the lagged 
dependent variable were omitted, and including it could eliminate the 
apparent problem.

•	 However, if the model is correctly specified and the disturbance term 
satisfies the regression model assumptions, adding the lagged value of the 
dependent variable as an explanatory variable will have the opposite effect 
and cause the disturbance term to be autocorrelated.

	 Nonsense.

•	 A second way of dealing with the problem of autocorrelation is to use an 
instrumental variable.

	 More nonsense.

•	 If the autocorrelation is of the AR(1) type, randomising the order of the 
observations will cause the Durbin–Watson statistic to be near 2...

	 Correct.

•	 ...thereby eliminating the problem.

	 Incorrect. The problem will have been disguised, not rectified.



Notes

20 Elements of econometrics

266



Chapter 13: Introduction to nonstationary time series

267

Chapter 13: Introduction to nonstationary 
time series

Overview
This chapter begins by defining the concepts of stationarity and 
nonstationarity as applied to univariate time series and, in the case of 
nonstationary series, the concepts of difference-stationarity and trend-
stationarity. It next describes the consequences of nonstationarity for 
models fitted using nonstationary time-series data and gives an account 
of the Granger–Newbold Monte Carlo experiment with random walks. 
Next the two main methods of detecting nonstationarity in time series 
are described, the graphical approach using correlograms and the more 
formal approach using Augmented Dickey–Fuller unit root tests. This leads 
to the topic of cointegration. The chapter concludes with a discussion of 
methods for fitting models using nonstationary time series: detrending, 
differencing, and error-correction models.

Learning outcomes
After working through the corresponding chapter in the textbook, studying 
the corresponding slideshows, and doing the starred exercises in the 
textbook and the additional exercises in this guide, you should be able to:

•	 explain what is meant by stationarity and nonstationarity.

•	 explain what is meant by a random walk and a random walk with drift

•	 derive the condition for the stationarity of an AR(1) process

•	 explain what is meant by an integrated process and its order of 
integration

•	 explain why Granger and Newbold obtained the results that they did

•	 explain what is depicted by a correlogram

•	 perform an Augmented Dickey–Fuller unit root test to test a time series 
for nonstationarity

•	 test whether a set of time series are cointegrated

•	 construct an error-correction model and describe its advantages over 
detrending and differencing.

Further material

Addition to the section Special case where the process is known 
to be a random walk with drift, p.498

We are talking about fitting the model

	
ttt YY εbb ++= −121

when β2 = 1 and so the model is a random walk with drift. (The heading 
of the subsection should reflect this. If you actually knew that the process 
was a random walk with drift, you would know β2 = 1 and would not 
need to estimate it.)
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Distributions of estimators of β2, models with and without trend, when the 
true model is a random walk

The solid lines in the figure show the distributions of b2 for the case 
where the model is fitted with the correct specification. The estimator 
is hyperconsistent, so the variance is inversely proportional to T 3. If the 
sample size is doubled, the variance is multiplied by 2–3, the standard 
deviation is multiplied by 2–1.5, and the height is multiplied by 21.5 = 2.83, 
at least approximately.

If a time trend is added to the specification by mistake, there is a loss of 
efficiency, but it is not as dramatic as in the other special case, described 
on page 498. The estimator is still superconsistent (variance inversely 
proportional to T 2). The distributions for the various sample sizes for this 
case are shown as the dashed lines in the figure.

Generalisation of the Augmented Dickey Fuller test for unit roots, 
p.499

In Section 13.3 it was shown how a Dickey–Fuller test could be used to 
detect a unit root in the process

	
 ttt tXX εγββ +++= −121

and an Augmented Dickey–Fuller test could be used for the same purpose 
when the process included an additional lagged value of X:

	  tttt tXXX εγβββ ++++= −− 23121 .

In principle the process may have further lags, the general form being

	
.

 
t

p

s
stst tXX εγββ +++= ∑

=
−+

1
11

One condition for stationarity is that the sum of the coefficients of the 
lagged X variables should be less than one. Writing our test statistic θ as

	
1

1
1 −=∑

=
+

p

s
sbθ

the null hypothesis of nonstationarity is H0: θ = 0 and the alternative 
hypothesis of stationarity is H1: θ < 0. Two issues now arise. One is how to 
reparameterise the specification so that we can obtain a direct estimate of 
θ. The other is how to determine the appropriate value of p.
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From the definition of θ, we have
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Substituting this into the original specification, we have
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Thus the reparameterised regression model may be written

	
tptptttt tXXXXX εγδδδθβ ++∆−∆−∆−+=∆ +−−−−− 11221111 ...

where 

	
∑

+=
+=

p

qs
sq

1
1bδ

and 1−−−− −=D qtqtqt XXX . The parameter of interest is, of course, the 
coefficient of Xt–1.

There now arises the question of how to determine the appropriate 
number of lagged values of X in the original specification or, equivalently, 
of XD in the reparameterised specification. Looking directly at the 
goodness of fit, as measured by R2 or RSS, does not provide an answer. 
We have seen that R2 will increase and RSS will decrease when additional 
variables, even irrelevant ones, are included in the regression specification. 

2R , ‘adjusted’ R2, discussed in Section 3.5, is one measure of goodness 
of fit that attempts to allow for this effect, but it is unsatisfactory. Newer 
measures are the Bayes Information Criterion (BIC) and the Akaike 
Information Criterion (AIC). The BIC (also known as the Schwarz 
Information Criterion) and the AIC have become popular for helping to 
determine the appropriate number of lags in time series analysis in general 
and unit root tests in particular. Indeed the latest version of EViews 
includes the BIC/Schwarz as the default option when testing for unit roots.

The BIC and AIC are defined by

	
T

T
k

T
RSS loglogBIC +=

and

	
T
k

T
RSS 2logAIC +=

where k is the number of parameters in the regression specification. 
For both information criteria, the optimal regression specification is the 
one that minimises the statistic. For both, the first term will decrease 
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when additional terms are included in the regression specification, but 
the second term will increase. Since log T >2 for T > 7, increasing the 
number of parameters is penalised more heavily in the BIC than the AIC, 
with the consequence that in time series analysis the BIC tends to produce 
specifications with fewer lags. It can be shown that the BIC provides 
consistent estimates of the lag length, while the AIC does not, but for finite 
samples neither has an obvious advantage and both are used in practice.

Addition to Section 13.5 Cointegration
Section 13.5 contains the following paragraph on page 507:

In the case of a cointegrating relationship, least squares estimators can be 
shown to be superconsistent (Stock, 1987). An important consequence is 
that OLS may be used to fit a cointegrating relationship, even if it belongs 
to a system of simultaneous relationships, for any simultaneous equations 
bias tends to zero asymptotically.

This cries out for an illustrative simulation, so here is one. Consider the 
model

	

where Yt and Xt are endogenous variables, Zt is exogenous, and εYt, εXt, 
and εZt are iid N(0,1) disturbance terms. We expect OLS estimators to 
be inconsistent if used to fit either of the first two equations. However, 
if ρ = 1, Z is nonstationary, and X and Y will also be nonstationary. So, 
if we fit the second equation, for example, the OLS estimator of α2 will 
be superconsistent. This is illustrated by a simulation where the first two 
equations are

	

	  Xttt YX ε++= 4.00.2 .

The distributions in the right of the figure below (dashed lines) are for the 
case ρ = 0.5. Z is stationary, and so are Y and X. You will have no difficulty 
in demonstrating that plim OLSa2  = 0.68. The distributions to the left of 
the figure (solid lines) are for ρ = 1, and you can see that in this case the 
estimator is consistent. But is it superconsistent? The variance seems to be 
decreasing relatively slowly, not fast, especially for small sample sizes. The 
explanation is that the superconsistency becomes apparent only for very 
large sample sizes, as shown in the second figure.
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Additional exercises

A13.1
The Figure 13.1 plots the logarithm of the US population for the period 
1959–2003. It is obviously nonstationary. Discuss whether it is more likely 
to be difference-stationary or trend-stationary. 

Figure 13.1 Logarithm of the US population
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A13.2
Figure 13.2 plots the first difference of the logarithm of the US population 
for the period 1959–2003. Explain why the vertical axis measures the 
proportional growth rate. Comment on whether the series appears to be 
stationary or nonstationary.

Figure 13.2 Logarithm of the US population, first difference

A13.3
The regression output below shows the results of ADF unit root tests on the 
logarithm of the US population, and its difference, for the period 1959–2003. 
Comment on the results and state whether they confirm or contradict your 
conclusions in Exercise 13.2.
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A13.4
A researcher believes that a time series is generated by the process

	 Xt = ρXt–1 + εt	

where εt is a white noise series generated randomly from a normal 
distribution with mean zero, constant variance, and no autocorrelation. 
Explain why the null hypothesis for a test of nonstationarity is that the 
series is nonstationary, rather than stationary.

A13.5
A researcher correctly believes that a time series is generated by the 
process

	 Xt = ρXt–1 + εt	

where εt is a white noise series generated randomly from a normal 
distribution with mean zero, constant variance, and no autocorrelation. 
Unknown to the researcher, the true value of ρ is 0.7. The researcher uses 
a unit root test to test the series for nonstationarity. The output is shown. 
Discuss the result of the test.



20 Elements of econometrics

274

A13.6
Test of cointegration. Perform a logarithmic regression of expenditure 
on your commodity on income, relative price, and population. Save the 
residuals and test them for stationarity. (Note: the critical values in the 
regression output do not apply to tests of cointegration. For the correct 
critical values, see the textbook.)

A13.7
A variable Yt is generated by the autoregressive process

	 Yt = β1 + β2Yt–1 + εt

where β2 = 1 and εt satisfies the regression model assumptions. A second 
variable Zt is generated as the lagged value of Yt:

	 Zt = Yt–1 .

Show that Y and Z are nonstationary processes. Show that nevertheless 
they are cointegrated.

A13.8
Xt and Zt are independent I(1) (integrated of order 1) time series. Wt is 
a stationary time series. Yt is generated as the sum of Xt, Zt, and Wt. Not 
knowing this, a researcher regresses Yt on Xt and Zt. Explain whether he 
would find a cointegrating relationship.

A13.9
Two random walks RAt and RBt, and two stationary processes SAt and SBt 
are generated by the following processes

	 RAt	= RAt–1 + ε1t

	 RBt	= RBt–1 + ε2t

	 SAt	= ρASAt–1 + ε3t	 0 < ρA < 1

	 SBt	= ρBSBt–1 + ε4t	 0 < ρB < 1
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where ε1t, ε2t, ε3t, and ε4t, are iid N(0,1) (independently and identically 
distributed from a normal distribution with mean 0 and variance 1).

•	 Two series XAt and XBt are generated as

	 XAt = RAt + SAt

	 XBt = RBt + SBt .

Explain whether it is possible for XAt and XBt to be stationary.

Explain whether it is possible for them to be cointegrated.

•	 Two series YAt and YBt are generated as

	 YAt = RAt + SAt

	 YBt = RAt + SBt .

Explain whether it is possible for YAt and YBt to be cointegrated.

•	 Two series ZAt and ZBt are generated as

	 ZAt = RAt + RBt + SAt	

	 ZBt = RAt – RBt + SBt .

Explain whether it is possible for ZAt and ZBt to be stationary.

Explain whether it is possible for them to be cointegrated.

Answers to the starred exercises in the textbook

13.1
Demonstrate that the MA(1) process

	 Xt = εt + α2εt–1

is stationary. Does the result generalise to higher-order MA processes?

Answer: 

The expected value of Xt is zero and therefore independent of time:

	 E(Xt) = E(εt + α2εt–1) = E(εt) + α2E(εt–1) = 0 + 0 = 0.

Since εt and εt–1 are uncorrelated,

	 22
2

22
1−

+=
tttX εε σaσσ

and this is independent of time. Finally, because

	 Xt–1 = εt–1 + α2εt–2,

the population covariance of Xt and Xt–1 is given by

	 2
21 εσaσ =

−tt XX .

This is fixed and independent of time. The population covariance between 
Xt and Xt–s is zero for all s > 1 since then Xt and Xt–1 have no elements in 
common. Thus the third condition for stationarity is also satisfied.

All MA processes are stationary, the general proof being a simple extension 
of that for the MA(1) case.

13.2
A stationary AR(1) process

	
ttt XX εbb ++= −121

with 12 <b , has initial value X0, where X0 is defined as
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Demonstrate that X0 is a random draw from the ensemble distribution for 
X.

Answer: 

Lagging and substituting, it was shown, equation (13.12), that
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With the stochastic definition of X0, we now have
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Given the generating process for X0, one has ( )
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−
=X . Hence X0 is a random draw from the ensemble 

distribution. Implicitly it has been assumed that the distributions of ε and 
X0 are both normal. This should have been stated explicitly.

13.7
Demonstrate that if the disturbance term in (13.30) is ut, where ut is 
generated by an AR(1) process, the appropriate specification for the 
Augmented Dickey–Fuller test is given by equation (13.32).

Answer: 

Let the process (13.29) be rewritten

	 Xt = λ1 + λ2Xt–1 + θt + ut ,

with ut subject to the AR(1) process

	 ut = ρut–1 + εt .

Lagging (13.29) one period and multiplying through by ρ, we have

	 ρXt–1 = λ1ρ + λ2ρXt–2 + ρθ(t–1) + ρut–1 .

Subtracting this from the equation for Xt, and rearranging, we obtain

	 Xt = λ1(1–ρ) + ρλ + (λ2 + ρ)Xt–1 – λ2ρXt–2 + θ(1–ρ)t + εt .
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Thus we obtain the model

	 Xt = β1 + β2Xt–1 + β3Xt–2 + γt + εt

with redefinitions of the parameters. The condition for stationarity is 
β2 + β3 < 1. The process will be non-explosively nonstationary if β2 + β3 
= 1. Subtracting Xt–1 from both sides, and adding and subtracting β3Xt–1 on 
the right side, we have

	 Xt – Xt–1 = β1 + β2Xt–1 – Xt–1 + β3Xt–1 – β3Xt–1 + β3Xt–2 + γt + εt .

Hence we obtain

	 DXt = β1 + (β2 + β3 – 1)Xt–1 – β3DXt–1 + γt + εt,

and the test is on the coefficient of Xt–1, with H0: β2 + β3 – 1 = 0 being the 
null hypothesis of nonstationarity and β2 + β3 – 1 < 0 being the alternative 
hypothesis of stationarity.

13.10
We have seen that the OLS estimator of δ in the model 

	 tt tY εδb ++= 1

is hyperconsistent. Show also that it is unbiased in finite samples, despite 
the fact that Yt is nonstationary.

Answer: 

Let d be the OLS estimator of δ. Following the analysis in Chapter 2, d may 
be decomposed as
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Answers to the additional exercises

A13.1
The population series exhibits steady growth and is therefore obviously 
nonstationary. The growth is partly due to an excess of births over deaths 
and partly due to immigration. The question is whether variations in these 
factors are likely to be offsetting in the sense that a relatively large birth/
death excess one year is somehow automatically counterbalanced by a 
relatively small one in a subsequent year, or that a relatively large rate of 
immigration one year stimulates a reaction that leads to a relatively small 
one later. Such compensating mechanisms do not seem to exist, so trend-
stationarity may be ruled out. Population is a very good example of an 
integrated series with the effects of shocks being permanently incorporated 
in its level. 
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A13.2
It is difficult to come to any firm conclusion regarding this series. At first 
sight it looks like a random walk. On closer inspection, you will notice 
that after an initial decline in the first few years, the series appears to be 
stationary, with a high degree of correlation. The series is too short to 
allow one to discriminate between the two possibilities.

A13.3
As expected, given that the series is evidently nonstationary, the coefficient 
of LGPOP(–1), –0.05, is close to zero and not significant.

When we difference the series, the coefficient of DLGPOP(–1) is –0.16 and 
not significant, even at the 5 per cent level. One possibility, which does not 
seem plausible, is that the population series is I(2). It is more likely that it 
is I(1), the first difference being stationary but highly autocorrelated.

A13.4
If the process is nonstationary, ρ = 1. If it is stationary, it could lie 
anywhere in the range –1 < ρ < 1. We must have a specific value for the 
null hypothesis. Hence we are forced to use nonstationarity as the null 
hypothesis, despite the inconvenience of having to compute alternative 
critical values of t.

A13.5
The model has been rewritten

	 Xt – Xt–1 = (ρ – 1)Xt–1 + εt

so that the coefficient of Xt–1 is zero under the null hypothesis of 
nonstationarity. We see that the null hypothesis is not rejected at any 
significance level, despite the fact that we know that the series is 
stationary. However, the estimate of the coefficient of Xt–1, –0.38, is not 
particularly close to zero. It implies an estimate of 0.67 for ρ, close to the 
actual value. This is a common outcome. Unit root tests generally have low 
power, making it generally difficult or impossible to discriminate between 
nonstationary processes and highly autocorrelated stationary processes.

A13.6
Where the hypothetical cointegrating relationship has a constant but no 
trend, as in the present case, the critical values of t are –3.34 and –3.90 
at the 5 and 1 per cent levels, respectively (Davidson and MacKinnon, 
1993). Hence the test indicates that we have a cointegrating relationship 
only for DENT and then only at the 5 per cent level. However, one knows 
in advance that the residuals are likely to be highly autocorrelated. Many 
of the coefficients are greater than 0.2 in absolute terms and perfectly 
compatible with a hypothesis of highly autocorrelated stationarity.
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Test of cointegration

b2 s.e. t b2 s.e. t

ADM –0.09 0.06 –1.69 GASO –0.08 0.05 –1.62

BOOK –0.17 0.08 –2.24 HOUS –0.31 0.12 –2.52

BUSI –0.23 0.09 –2.40 LEGL –0.26 0.10 –2.59

CLOT –0.41 0.13 –3.17 MAGS –0.39 0.13 –3.03

DENT –0.51 0.15 –3.51 MASS –0.07 0.05 –1.48

DOC –0.35 0.12 –2.99 OPHT –0.14 0.08 –1.86

FLOW –0.22 0.10 –2.14 RELG –0.17 0.07 –2.35

FOOD –0.29 0.11 –2.61 TELE –0.22 0.09 –2.35

FURN –0.32 0.10 –3.29 TOB –0.16 0.10 –1.66

GAS –0.24 0.09 –2.79 TOYS –0.17 0.09 –1.96

A13.7
The expected value of Yt is β1t + Y0, and thus it is not independent of t, 
one of the conditions for stationarity. Similarly for Zt. However

	 Yt – β1 – β2Zt = εt 

and is therefore I(0).

A13.8
	 Yt – Xt – Zt = Wt .

Since Wt is stationary, the left side of the equation is a cointegrating 
relationship.

A13.9
•	 Two series XAt and XBt are generated as

	 XAt = RAt + SAt

	 XBt = RBt + SBt

Explain whether it is possible for XAt and XBt to be stationary.

Explain whether it is possible for them to be cointegrated.

A combination of a nonstationary process and a stationary one is 
nonstationary. Hence both XA and XB are nonstationary.

Since the nonstationary components of XA and XB are unrelated, there 
is no linear combination that is stationary, and so the series are not 
cointegrated.

•	 Two series YAt and YBt are generated as

	 YAt = RAt + SAt

	 YBt = RAt + SBt

Explain whether it is possible for YAt and YBt to be cointegrated.

	 YAt – YBt = SAt – SBt

This is a cointegrating relationship for YAt and YBt since SAt – SBt is 
stationary.

•	 Two series ZAt and ZBt are generated as

	 ZAt = RAt + RBt + SAt	

	 ZBt = RAt – RBt + SBt



20 Elements of econometrics

280

Explain whether it is possible for ZAt and ZBt to be stationary.

No linear combination of RAt and RBt can be stationary since they are 
independent random walks, and so ZAt and ZBt are both nonstationary.

Explain whether it is possible for them to be cointegrated.

No linear combination of ZAt and ZBt can eliminate both RAt and RBt, so 
there is no cointegrating relationship.
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Chapter 14: Introduction to panel data

Overview
Increasingly, researchers are now using panel data where possible in 
preference to cross-sectional data. One major reason is that dynamics may 
be explored with panel data in a way that is seldom possible with cross-
sectional data. Another is that panel data offer the possibility of a solution 
to the pervasive problem of omitted variable bias. A further reason is that 
panel data sets often contain very large numbers of observations and the 
quality of the data is high. This chapter describes fixed effects regression 
and random effects regression, alternative techniques that exploit the 
structure of panel data.

Learning outcomes
After working through the corresponding chapter in the textbook, studying 
the corresponding slideshows, and doing the starred exercises in the 
textbook and the additional exercises in this guide, you should be able to:

•	 explain the differences between panel data, cross-sectional data, and 
time series data

•	 explain the benefits that can be obtained using panel data

•	 explain the differences between OLS pooled regressions, fixed effects 
regressions, and random effects regressions

•	 explain the potential advantages of the fixed effects model over pooled 
OLS

•	 explain the differences between the within-groups, first differences, 
and least squares dummy variables variants of the fixed effects model

•	 explain the assumptions required for the use of the random effects 
model

•	 explain the advantages of the random effects model over the fixed 
effects model when the assumptions are valid

•	 explain how to use a Durbin–Wu–Hausman test to determine whether 
the random effects model may be used instead of the fixed effects 
model

Additional exercises

A14.1
The NLSY2000 data set contains the following data for a sample of 
2,427 males and 2,392 females for the years 1980–2000: years of work 
experience, EXP, years of schooling, S, and age, AGE. A researcher 
investigating the impact of schooling on willingness to work regresses EXP 
on S, including potential work experience, PWE, as a control. PWE was 
defined as

	 PWE = AGE – S – 5.
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The following regressions were performed for males and females 
separately:

(1) an ordinary least squares (OLS) regression pooling the observations

(3) a within-groups fixed effects regression

(3) a random effects regression

The results of these regressions are shown in the table below. Standard 
errors are given in parentheses.

Males Females

OLS FE RE OLS FE RE

S
0.78

(0.01)

0.65

(0.01)

0.72

(0.01)

0.89

(0.01)

0.71

(0.02)

0.85

(0.01)

PWE
0.83

(0.003)

0.94

(0.001)

0.94

(0.001)

0.74

(0.004)

0.88

(0.002)

0.87

(0.002)

constant
–10.16

(0.09)
dropped

–10.56

(0.14)

–11.11

(0.12)
dropped

–12.39

(0.19)

R2 0.79 — — 0.71 — —

n 24,057 24,057 24,057 18,758 18,758 18,758

DWH 
c2(2)

10.76 1.43

•	 Explain why the researcher included PWE as a control.

•	 Evaluate the results of the Durbin–Wu–Hausman tests.

•	 For males and females separately, explain the differences in the 
coefficients of S in the OLS and FE regressions.

•	 For males and females separately, explain the differences in the 
coefficients of PWE in the OLS and FE regressions.

A14.2
Using the NLSY2000 data set, a researcher fits OLS and fixed effects 
regressions of the logarithm of hourly wages on schooling, years of work 
experience, EXP, ASVABC score, and dummies MALE, ETHBLACK, and 
ETHHISP for being male, black, or hispanic. Schooling was split into years 
of high school, SH, and years of college, SC. The results are shown in the 
table below, with standard errors placed in parentheses.



Chapter 14: Introduction to panel data

283

OLS FE RE

SH
0.026

(0.002)

0.005

(0.007)

0.016

(0.004)

SC
0.063

(0.001)

0.073

(0.004)

0.067

(0.002)

EXP
0.033

(0.0004)

0.032

(0.0003)

0.033

(0003)

ASVABC
0.012

(0.0003)
—

0.011

(0.001)

MALE
0.193

(0.004)
—

0.197

(0.009)

ETHBLACK
–0.040

(0.007)
—

–0.030

(0.015)

ETHHISP
0.047

(0.008)
—

0.033

(0.018)

constant
5.639

(0.028)
—

5.751

(0.051)

R2 0.0367 — —

DWH c2(3) — — 9.31

If an individual reported being in high school or college, the observation 
for that individual for that year was deleted from the sample. As a 
consequence, the observations for most individuals in the sample begin 
when the formal education of that individual has been completed. 
However, a small minority of individuals, having apparently completed 
their formal education and having taken employment, subsequently 
resumed their formal education, either to complete high school with a 
general educational development (GED) degree equivalent to the high 
school diploma, or to complete one or more years of college.

•	 Discuss the differences in the estimates of the coefficient of SH.

•	 Discuss the differences in the estimates of the coefficient of SC.

A14.3
A researcher has data on G, the average annual rate of growth of GDP 
2001–2005, and S, the average years of schooling of the workforce in 
2005, for 28 European Union countries. She believes that G depends on S 
and on E, the level of entrepreneurship in the country, and a disturbance 
term u:

	 G = β1 + β2S + β3E + u.	 (1)

u may be assumed to satisfy the usual regression model assumptions. 
Unfortunately the researcher does not have data on E.
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•	 Explain intuitively and mathematically the consequences of performing 
a simple regression of G on S. For this purpose S and E may be treated as 
nonstochastic variables.

	 The researcher does some more research and obtains data on G*, the 
average annual rate of growth of GDP 1996–2000, and S*, the average 
years of schooling of the workforce in 2000, for the same countries. 
She thinks that she can deal with the unobservable variable problem by 
regressing ∆G, the change in G, on ∆S, the change in S, where

	 ∆G = G – G*

	 ∆S = S – S*

	 assuming that E would be much the same for each country in the two 
periods. She fits the equation

	 ∆G = δ1 + δ2∆S + w	 (2)

	 where w is a disturbance term that satisfies the usual regression model 
assumptions.

•	 Compare the properties of the estimators of the coefficient of S in (1) 
and of the coefficient of ∆S in (2).

•	 Explain why in principle you would expect the estimate of δ1 in (2) not 
to be significant. Suppose that nevertheless the researcher finds that the 
coefficient is significant. Give two possible explanations.

Random effects regressions have potential advantages over fixed effect 
regressions.

•	 Could the researcher have used a random effects regression in the 
present case?

A14.4
A researcher has the following data for 3,763 respondents in the United 
States National Longitudinal Survey of Youth 1979– : hourly earnings 
in dollars in 1994 and 2000, years of schooling as recorded in 1994 and 
2000, and years of work experience as recorded in 1994 and 2000. The 
respondents were aged 14–21 in 1979, so they were aged 29–36 in 1994 
and 35–42 in 2000. 371 of the respondents had increased their formal 
schooling between 1994 and 2000, 210 by one year, 101 by two years, 47 
by three years, and 13 by more than three years, mostly at college level in 
non-degree courses. The researcher performs the following regressions:

(1)	the logarithm of hourly earnings in 1994 on schooling and work 
experience in 1994

(2)	the logarithm of hourly earnings in 2000 on schooling and work 
experience in 2000

(3)	the change in the logarithm of hourly earnings from 1994 to 2000 on 
the changes in schooling and work experience in that interval.

The results are shown in columns (1) – (3) in the table (t statistics in 
parentheses), and are presented at a seminar.
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(1) (2) (3) (4) (5)

Dependent 
variable

log earnings 
1994

log earnings 
2000

Change in 
log earnings

1994–2000

log earnings 
2000

Change in 
log earnings

1994–2000

Schooling
0.114

(30.16)

0.116

(28.99)
—

0.108

(24.53)
—

Experience
0.052

(18.81)

0.038

(14.59)
—

0.037

(14.10)
—

Cognitive 
ability score

— — —
0.004

(4.79)
—

Male
0.214

(12.03)

0.229

(11.77)
—

0.230

(11.88)
—

Black
–0.149

(–5.23)

–0.199

(–6.44)
—

–0.167

(–5.29)
—

Hispanic
0.039

(1.11)

0.053

(1.38)
—

0.071

(1.84)
—

Change in 
schooling

— —
0.090

(5.00)
—

–0.006

(–0.16)

Change in 
experience

— —
0.024

(2.75)
—

0.003

(0.15)

constant
4.899

(74.59)

5.023

(65.02)

0.102

(2.13)

4.966

(63.69)

0.389

(3.05)

R2 0.265 0.243 0.007 0.248 0.0002

n 3,763 3,763 3,763 3,763 371

•	 The researcher is unable to explain why the coefficient of the change 
in schooling in regression (3) is so much lower than the schooling 
coefficients in (1) and (2). Someone says that it is because he has left 
out relevant variables such as cognitive ability, region of residence, etc, 
and the coefficients in (1) and (2) are therefore biased. Someone else 
says that cannot be the explanation because these variables are also 
omitted from regression (3). Explain what would be your view. 

•	 He runs regressions (1) and (2) again, adding a measure of cognitive 
ability. The results for the 2000 regression are shown in column (4). 
The results for 1994 were very similar. Discuss possible reasons for the 
fact that the estimate of the schooling coefficient differs from those in 
(2) and (3).

•	 Someone says that the researcher should not have included a constant 
in regression (3). Explain why she made this remark and assess 
whether it is valid.

•	 Someone else at the seminar says that the reason for the relatively low 
coefficient of schooling in regression (3) is that it mostly represented 
non-degree schooling. Hence one would not expect to find the same 
relationship between schooling and earnings as for the regular pre-
employment schooling of young people. Explain in general verbal terms 
what investigation the researcher should undertake in response to this 
suggestion.
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•	 Another person suggests that the small minority of individuals 
who went back to school or college in their thirties might have 
characteristics different from those of the individuals who did not, and 
that this could account for a different coefficient. Explain in general 
verbal terms what investigation the researcher should undertake in 
response to this suggestion.

•	 Finally, another person says that it might be a good idea to look at the 
relationship between earnings and schooling for the subsample who 
went back to school or college, restricting the analysis to these 371 
individuals. The researcher responds by running the regression for 
that group alone. The result is shown in column (5) in the table. The 
researcher also plots a scatter diagram, reproduced below, showing 
the change in the logarithm of earnings and the change in schooling. 
For those with one extra year of schooling, the mean change in log 
earnings was 0.40. For those with two extra years, 0.37. For those with 
three extra years, 0.47. What conclusions might be drawn from the 
regression results? 

Answer to the starred exercise in the textbook 

14.9
(This exercise should have had a star.)

The NLSY2000 data set contains the following data for a sample of 2,427 
males and 2,392 females for the years 1980–2000: weight in pounds, 
years of schooling, age, marital status in the form of a dummy variable 
MARRIED defined to be 1 if the respondent was married, 0 if single, and 
height in inches. Hypothesizing that weight is influenced by schooling, 
age, marital status, and height, the following regressions were performed 
for males and females separately:

(1)	an ordinary least squares (OLS) regression pooling the observations

(2)	a within-groups fixed effects regression

(3)	a random effects regression.

The results of these regressions are shown in the table. Standard errors are 
given in parentheses.
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Males Females

OLS FE RE OLS FE RE

Years of 
schooling

–0.98

(0.09)

–0.02

(0.23)

–0.45

(0.16)

–1.95

(0.12)

–0.60

(0.27)

–1.25

(0.18)

Age
1.61

(0.04)

1.64

(0.02)

1.65

(0.02)

2.03

(0.05)

1.66

(0.03)

1.72

(0.03)

Married
3.70

(0.48)

2.92

(0.33)

3.00

(0.32)

–8.27

(0.59)

3.08

(0.46)

1.98

(0.44)

Height
5.07

(0.08)
dropped

4.95

(0.18)

3.48

(0.10)
dropped

3.38

(0.21)

constant
–209.52

(5.39)
dropped

–209.81

(12.88)

–105.90

(6.62)
dropped

–107.61

(13.43)

R2 0.27 — — 0.17 — —

n 17,299 17,299 17,299 13,160 13,160 13,160

DWH 
c2(3)

7.22 92.94

Explain why height is excluded from the FE regression.	

Evaluate, for males and females separately, whether the fixed effects or 
random effects model should be preferred.

For males and females separately, compare the estimates of the coefficients 
in the OLS and FE models and attempt to explain the differences.

Explain in principle how one might test whether individual-specific 
fixed effects jointly have significant explanatory power, if the number of 
individuals is small. Explain why the test is not practical in this case.

Answer: 
Height is constant over observations. Hence, for each individual,

	
0=− iit HEIGHTHEIGHT

for all t, where iHEIGHT is the mean height for individual i for the 
observations for that individual. Hence height has to be dropped from the 
regression model.

The critical value of chi-squared, with three degrees of freedom, is 7.82 
at the 5 percent level and 16.27 at the 0.1 percent level. Hence there is a 
possibility that the random effects model may be appropriate for males, 
but it is definitely not appropriate for females.

Males

The OLS regression suggests that schooling has a small (one pound less 
per year of schooling) but highly significant negative effect on weight. The 
fixed effects regression eliminates the effect, indicating that an unobserved 
effect is responsible: males with unobserved qualities that have a positive 
effect on educational attainment, controlling for other measured variables, 
have lower weight as a consequence of the same unobserved qualities. We 
cannot compare estimates of the effect of height since it is dropped from 
the FE regression. The effect of age is the same in the two regressions. 
There is a small but highly significant positive effect of being married, the 
OLS estimate possibly being inflated by an unobserved effect.
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Females

The main, and very striking, difference is in the marriage coefficient. 
The OLS regression suggests that marriage reduces weight by eight 
pounds, a remarkable amount. The FE regression suggests the opposite, 
that marriage leads to an increase in weight that is similar to that for 
males. The clear implication is that women who weigh less are relatively 
successful in the marriage market, but once they are married they put on 
weight.

For schooling the story is much the same as for males, except that the 
OLS coefficient is much larger and the coefficient remains significant at 
the 5 percent level in the FE regression. The effect of age appears to be 
exaggerated in the OLS regression, for reasons that are not obvious.

One might test whether individual-specific fixed effects jointly have 
significant explanatory power by performing a LSDV regression, 
eliminating the intercept in the model and adding a dummy variable for 
each individual. One would compare RSS for this regression with that for 
the regression without the dummy variables, using a standard F test. In the 
present case it is not a practical proposition because there are more than 
17,000 males and 13,000 females.

Answers to the additional exercises

A14.1
•	 Explain why the researcher included PWE as a control.

	 Clearly actual work experience is positively influenced by PWE. 
Omitting it would cause the coefficient of S to be biased downwards 
since PWE and S are negatively correlated.

•	 Evaluate the results of the Durbin–Wu–Hausman tests

	 With two degrees of freedom, the critical value of chi-squared is 5.99 
at the 5 percent level and 9.21 at the 1 percent level. Thus the random 
effects model is rejected for males but seemingly not for females.

•	 For males and females separately, explain the differences in the coefficients 
of S in the OLS and FE regressions.

	 For both sexes the OLS estimate is greater than the FE estimate. One 
possible reason is that some unobserved characteristics, for example 
drive, are positively correlated with both acquiring schooling, and 
seeking and gaining employment.

•	 For males and females separately, explain the differences in the coefficients 
of PWE in the OLS and FE regressions.

	 Since S and PWE are negatively correlated, these same unobserved 
characteristics would cause the OLS estimate of the coefficient of PWE 
to be biased downwards.

A14.2
First, note that the DWH statistic is significant at the 5 per cent level 
(critical value 7.82) but not at the 1 per cent level (critical value 11.35).

The coefficients of SH and SC in the OLS regression is an estimate of the 
impact of variations in years of high school and years of college among 
all the individuals in the sample. Most individuals in fact completed high 
school and so had SH = 12. However, a small minority did not and this 
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variation made possible the estimation of the SH coefficient. The majority 
of the remainder did not complete any years of college and therefore had 
SC = 0, but a substantial minority did have a partial or complete college 
education, some even pursuing postgraduate studies, and this variation 
made possible the estimation of the SC coefficient.

Most individuals completed their formal education before entering 
employment. For them,  for all t and hence  
for all t. As a consequence, the observations for such individuals provide 
no variation in the SH variable. Likewise they provide no variation in the 
SC variable. If all observations pertained to such individuals, schooling 
would be washed out in the FE regression along with other unchanging 
characteristics such as sex, ethnicity, and ASVABC score. The schooling 
coefficients in the FE regression therefore relate to those individuals 
who returned to formal education after a break in which they found 
employment.

The fact that these individuals account for a relatively small proportion 
of the observations in the data set has an adverse effect on the precision 
of the FE estimates of the coefficients of SH and SC. This is reflected in 
standard errors that are much larger than those obtained in the OLS 
pooled regression.

•	 Discuss the differences in the estimates of the coefficient of SH.

	 Most of the variation in SH in the FE regressions come from individuals 
earning the GED degree. This degree provides an opportunity for high 
school drop-outs to make good their shortfall by taking courses and 
passing the examinations required for this diploma. These courses 
may be civilian or military adult education classes, but very often they 
are programmes offered to those in jail. In principle the GED should 
be equivalent to the high school diploma, but there is some evidence 
that standards are sometimes lower. The results in the table appear to 
corroborate this view. The OLS regression indicates that a year of high 
school raises earnings by 2.6 per cent, with the coefficient being highly 
significant, whereas the FE coefficient indicates that the effect is only 
0.5 per cent and not significant.

•	 Discuss the differences in the estimates of the coefficient of SC.

	 Some of the variation in SC in the FE regressions comes from 
individuals entering employment for a year or two after finishing high 
school and then going to college, resuming their formal education. 
However, most comes from individuals returning to college for a 
year or two after having been employment for a number of years. 
A typical example is a high school graduate who has settled down 
in an occupation and who has then decided to upgrade his or her 
professional skills by taking a two-year associate of arts degree. 
Similarly one encounters college graduates who upgrade to masters 
level after having worked for some time. One would expect such 
students to be especially well motivated—they are often undertaking 
studies that are relevant to an established career, and they are 
often bearing high opportunity costs from loss of earnings while 
studying—and accordingly one might expect the payoff in terms of 
increased earnings to be relatively high. This seems to be borne out 
in a comparison of the OLS and FE estimates of the coefficient of SC, 
though the difference is not dramatic.
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	 On the surface, this exercise appeared to be about how one might use 
FE to eliminate the bias in OLS pooled regression caused by unobserved 
effects. Has the analysis been successful in this respect? Absolutely not. 
In particular, the apparent conclusion that high school education has 
virtually no effect on earnings should not be taken at face value. The 
reason is that the issue of biases attributable to unobserved effects has 
been overtaken by the much more important issue of the difference 
in the interpretation of the SH and SC coefficients discussed in the 
exercise. This illustrates a basic point in econometrics: understanding 
the context of the data is often just as important as being proficient at 
technical analysis.

A14.3
•	 Explain intuitively and mathematically the consequences of performing a 

simple regression of G on S. For this purpose S and E may be treated as 
nonstochastic variables.

	 If one fits the regression
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	 Taking expectations, and making use of the invitation to treat S and E 
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	 Hence the estimator is biased unless S and E happen to be uncorrelated 
in the sample. As a consequence, the standard errors will be invalid.

•	 Compare the properties of the estimators of the coefficient of S in (1) and of 
the coefficient of ∆S in (2).

	 Given (1), the differenced model should have been

	 ∆G = δ2∆S + w

	 where w = u – u*.

	 The estimator of the coefficient of ∆S in (2) should be unbiased, while 
that of S in (1) will be subject to omitted variable bias. However:

it is possible that the bias in (1) may be small. This would be the 
case if E were a relatively unimportant determinant of G or if its 
correlation with S were low.
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it is possible that the variance in ∆S is smaller than that of S. This 
would be the case if S were changing slowly in each country, or if 
the rate of change of S were similar in each country.

	 Thus there may be a trade-off between bias and variance and it is 
possible that the estimator of β2 using specification (1) could actually 
be superior according to some criterion such as the mean square 
error. It should be noted that the inclusion of δ1 in (2) will make the 
estimation of δ2 even less efficient.

•	 Explain why in principle you would expect the estimate of δ1 in (2) not 
to be significant. Suppose that nevertheless the researcher finds that the 
coefficient is significant. Give two possible explanations.

	 If specification (1) is correct, there should be no intercept in (2) and 
for this reason the estimate of the intercept should not be significantly 
different from zero. If it is significant, this could have occurred as a 
matter of Type I error. Alternatively, it might indicate a shift in the 
relationship between the two time periods. Suppose that (1) should have 
included a dummy variable set equal to 0 in the first time period and 1 
in the second. d1 would then be an estimate of its coefficient.

•	 Could the researcher have used a random effects regression in the present 
case?

	 Random effects requires the sample to be drawn randomly from a 
population and for unobserved effects to be uncorrelated with the 
regressors. The first condition is not satisfied here, so random effects 
would be inappropriate. 

A14.4
•	 The researcher is unable to explain why the coefficient of the change in 

schooling in regression (3) is so much lower than the schooling coefficients 
in (1) and (2). Someone says that it is because he has left out relevant 
variables such as cognitive ability, region of residence, etc, and the 
coefficients in (1) and (2) are therefore biased. Someone else says that 
cannot be the explanation because these variables are also omitted from 
regression (3). Explain what would be your view. 

	 Suppose that the true model is

	

uXETHHISPETHBLACK

MALEASVABCEXPSLGEARN

++++

++++=

8876

54321

βββ

βββββ

	 where X8 is some further fixed characteristic of the respondent. ASVABC 
and X8 are absent from regressions (1) and (2) and so those regressions 
will be subject to omitted variable bias. In particular, since ASVABC 
is likely to be positively correlated with S, and to have a positive 
coefficient, its omission will tend to bias the coefficient of S upwards. 

	 However, if the specification is valid for both 1994 and 2000 and 
unchanged, one can eliminate the omitted variable bias by taking first 
differences as in regression (3):

	 uEXPSLGEARN ∆+∆+∆=∆ 32 ββ .
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	 By fitting this specification one should obtain unbiased estimates of 
the coefficients of schooling and experience, and the former should 
therefore be smaller than in (1) and (2). Note that all the fixed 
characteristics have been washed out. The suggestion that ASVABC 
should have been included in (3) is therefore incorrect.

	 Note that (3) should not have included an intercept. This is discussed 
later in the question.

•	 He runs regressions (1) and (2) again, adding a measure of cognitive 
ability. The results for the 2000 regression are shown in column (4). The 
results for 1994 were very similar. Discuss possible reasons for the fact 
that the estimate of the schooling coefficient differs from those in (2) and 
(3).

	 The estimate of the coefficient of S differs from that in (2) because 
the omitted variable bias attributable to the omission of ASVABC in 
that specification has now been corrected. However it is still biased 
if X8 (representing other omitted characteristics) is a determinant 
of earnings and is correlated with S. This partial rectification of the 
omitted variable problem accounts for the fact that the coefficient of S 
in (4) lies between those in (2) and (3).

•	 Someone says that the researcher should not have included a constant in 
regression (3). Explain why she made this remark and assess whether it is 
valid.

	 Given the specification in (1) and (2), there should have been no 
intercept in the first differences specification (3). One would therefore 
expect the estimate of the intercept to be somewhere near zero in the 
sense of not being significantly different from it. Nevertheless, it is 
significantly different at the 5 percent level. However, suppose that the 
relationship shifted between 1994 and 2000, and that the shift could 
be represented by a dummy variable D equal to zero in 1994 and 1 
in 2000, with coefficient δ. Then (3) should have an intercept δ. Its 
estimate, 0.102, suggests that earnings grew by 10 percent from 1994 
to 2000, holding other factors constant. This seems entirely reasonable, 
perhaps even a little low.

	 Alternatively, the apparently significant t statistic might have arisen as 
a matter of Type I error. 

•	 Someone else at the seminar says that the reason for the relatively low 
coefficient of schooling in regression (3) is that it mostly represented 
non-degree schooling. Hence one would not expect to find the same 
relationship between schooling and earnings as for the regular pre-
employment schooling of young people. Explain in general verbal terms 
what investigation the researcher should undertake in response to this 
suggestion.

	 Divide S into two variables, schooling as of 1994 and extra schooling 
as of 2000, with separate coefficients. Then use a standard F test (or 
t test) of a restriction to test whether the coefficients are significantly 
different.

•	 Another person suggests that the small minority of individuals who 
went back to school or college in their thirties might have characteristics 
different from those of the individuals who did not, and that this could 
account for a different coefficient. Explain in general verbal terms 
what investigation the researcher should undertake in response to this 
suggestion.
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	 The issue is sample selection bias and an appropriate procedure would 
be that proposed by Heckman. One would use probit analysis with 
an appropriate set of determinants to model the decision to return to 
school between 1994 and 2000, and a regression model to explain 
variations in the logarithm of earnings of those respondents who do 
return to school, linking the two models by allowing their disturbance 
terms to be correlated. One would test whether the estimate of this 
correlation is significantly different from zero.

•	 Finally, another person says that it might be a good idea to look at the 
relationship between earnings and schooling for the subsample who went 
back to school or college, restricting the analysis to these 371 individuals. 
The researcher responds by running the regression for that group alone. 
The result is shown in column (5) in the table. The researcher also plots a 
scatter diagram, reproduced below, showing the change in the logarithm 
of earnings and the change in schooling. For those with one extra year 
of schooling, the mean change in log earnings was 0.40. For those with 
two extra years, 0.37. For those with three extra years, 0.47. What 
conclusions might be drawn from the regression results? 

The schooling coefficient is effectively zero! [These are real data, 
incidentally.] The scatter diagram shows why. Irrespective of whether 
the respondent had one, two, or three years of extra schooling, the gain 
is about the same, on average. (These are the only categories with large 
numbers of observations, given the information at the beginning of the 
question, confirmed by the scatter diagram.) So the results indicate that 
the fact of going back to school, rather than the duration of the schooling, 
is the relevant determinant of the change in earnings. The intercept 
indicates that this subsample on average increased their earnings between 
1994 and 2000 by 38.9 percent. (As a first approximation. The actual 
proportion would be better estimated as e0.389 – 1 = 0.476.) This figure is 
confirmed by the diagram, and it would appear to be much greater than 
the effect of regular schooling. One explanation could be sample selection 
bias, as already discussed. A more likely possibility is that the respondents 
were presented with opportunities to increase their earnings substantially 
if they undertook certain types of formal course, and they took advantage 
of these opportunities. 
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Chapter 15: Regression analysis with 
linear algebra primer

Overview
This primer is intended to provide a mathematical bridge to a master’s 
level course that uses linear algebra for students who have taken an 
undergraduate econometrics course that does not. Why should we make 
the mathematical shift? The most immediate reason is the huge double 
benefit of allowing us to generalise the core results to models with 
many explanatory variables while simultaneously permitting a great 
simplification of the mathematics. This alone justifies the investment 
in time – probably not more than ten hours – required to acquire the 
necessary understanding of basic linear algebra.

In fact, one could very well put the question the other way. Why do 
introductory econometrics courses not make this investment and use linear 
algebra from the start? Why do they (almost) invariably use ordinary 
algebra, leaving students to make the switch when they take a second 
course?

The answer to this is that the overriding objective of an introductory 
econometrics course must be to encourage the development of a solid 
intuitive understanding of the material and it is easier to do this with 
familiar, everyday algebra than with linear algebra, which for many 
students initially seems alien and abstract. An introductory course should 
ensure that at all times students understand the purpose and value of what 
they are doing. This is far more important than proofs and for this purpose 
it is usually sufficient to consider models with one, or at most two, 
explanatory variables. Even in the relatively advanced material, where we 
are forced to consider asymptotics because we cannot obtain finite-sample 
results, the lower-level mathematics holds its own. This is especially 
obvious when we come to consider finite-sample properties of estimators 
when only asymptotic results are available mathematically. We invariably 
use a simple model for a simulation, not one that requires a knowledge of 
linear algebra.

These comments apply even when it comes to proofs. It is usually 
helpful to see a proof in miniature where one can easily see exactly 
what is involved. It is then usually sufficient to know that in principle it 
generalises, without there being any great urgency to see a general proof. 
Of course, the linear algebra version of the proof will be general and often 
simpler, but it will be less intuitively accessible and so it is useful to have 
seen a miniature proof first. Proofs of the unbiasedness of the regression 
coefficients under appropriate assumptions are obvious examples.

At all costs, one wishes to avoid the study of econometrics becoming an 
extended exercise in abstract mathematics, most of which practitioners 
will never use again. They will use regression applications and as long as 
they understand what is happening in principle, the actual mechanics are 
of little interest.

This primer is not intended as an exposition of linear algebra as such. 
It assumes that a basic knowledge of linear algebra, for which there are 
many excellent introductory textbooks, has already been acquired. For the 
most part, it is sufficient that you should know the rules for multiplying 
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two matrices together and for deriving the inverse of a square matrix, and 
that you should understand the consequences of a square matrix having a 
zero determinant.

Notation
Matrices and vectors will be written bold, upright, matrices upper case, 
for example A, and vectors lower case, for example b. The transpose of a 
matrix will be denoted by a prime, so that the transpose of A is A', and the 
inverse of a matrix will be denoted by a superscript –1, so that the inverse 
of A is A–1. 

Test exercises
Answers to all of the exercises in this primer will be found at its end. If 
you are unable to answer the following exercises, you need to spend more 
time learning basic matrix algebra before reading this primer. The rules in 
Exercises 3–5 will be used frequently without further explanation.

1.	 Demonstrate that the inverse of the inverse of a matrix is the original 
matrix.

2.	 Demonstrate that if a (square) matrix possesses an inverse, the inverse 
is unique.

3.	 Demonstrate that, if A = BC, A' = C' B'.

4.	 Demonstrate that, if A = BC, A–1 = C–1 B–1, provided that B–1 and C–1 
exist.

5.	 Demonstrate that [A']–1 = [A–1]'.

The multiple regression model
The most obvious benefit from switching to linear algebra is convenience. 
It permits an elegant simplification and generalisation of much of the 
mathematical analysis associated with regression analysis. We will 
consider the general multiple regression model

 iikkii uXXY +++= ββ ...11 	 (1)

where the second subscript identifies the variable and the first the 
observation. In the textbook, as far as the fourth edition, the subscripts 
were in the opposite order. The reason for the change of notation here, 
which will be adopted in the next edition of the textbook, is that it is more 
compatible with a linear algebra treatment.

Equation (1) is a row relating to observation i in a sample of n 
observations. The entire layout would be
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(2)

This, of course, may be written in linear algebra form as

uXβy += 	 (3)

where
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with the first subscript of Xij relating to the row and the second to the 
column, as is conventional with matrix notation. This was the reason for 
the change in the order of the subscripts in equation (1).

Frequently, it is convenient to think of the matrix X as consisting of a set of 
column vectors:

[ ]kj xxxX ......1= 	 (5)

where
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xj is the set of observations relating to explanatory variable j. It is written 
lower case, bold, not italic because it is a vector.

The intercept in a regression model
As described above, there is no special intercept term in the model. If, as 
is usually the case, one is needed, it is accommodated within the matrix 
framework by including an X variable, typically placed as the first, with 
value equal to 1 in all observations
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The coefficient of this unit vector is the intercept in the regression model. 
If it is included, and located as the first column, the X matrix becomes
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The OLS regression coefficients
Using the matrix and vector notation, we may write the fitted equation

ikkii XbXbY ++= ...ˆ
11

	 (9)

as

Xby =ˆ 	 (10)

with obvious definitions of y and b. Then we may define the vector of 
residuals as

ˆ
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Xbyyye −=−= ˆ 	 (11)

and the residual sum of squares as

 ( ) ( )

XbXbXbyyy

XbXbyXbXbyyy

XbyXbyee

'''2'

''''''

''

+−=

+−−=

−−==RSS 	

(12)

(y' Xb = b' X' y since it is a scalar.) The next step is to obtain the normal 
equations 

 0=
∂
∂

jb
RSS 	 (13)

for j = 1, ..., k and solve them (if we can) to obtain the least squares 
coefficients. Using linear algebra, the normal equations can be written

 0'' =− yXXbX 	 (14)

The derivation is straightforward but tedious and has been consigned 
to Appendix A. X' X is a square matrix with k rows and columns. If 
assumption A.2 is satisfied (that it is not possible to write one X variable as 
a linear combination of the others), X’ X has an inverse and we obtain the 
OLS estimator of the coefficients:

 [ ] yX'XX'b 1−= 	 (15)

Exercises
6.	 If Y = β1 + β2X + u, obtain the OLS estimators of β1 and β2 using (15).

7.	 If Y = β2X + u, obtain the OLS estimator of β2 using (15).

8.	 If Y = β1 + u, obtain the OLS estimator of β1 using (15).

Unbiasedness of the OLS regression coefficients
Substituting for y from (3) into (15), we have

 [ ] ( )
[ ] [ ]

[ ] uX'XX'β

uX'XX'XβX'XX'

uXβX'XX'b

1

11

1

−

−−

−

+=

+=

+= 	

(16)

Hence each element of b is equal to the corresponding value of β plus a 
linear combination of the values of the disturbance term in the sample. 
Next,

 ( ) [ ]( )XuX'XX'βXb 1−+= EE 	
(17)

To proceed further, we need to be specific about the data generation 
process (DGP) for X and the assumptions concerning u and X. In Model 
A, we have no DGP for X: the data are simply taken as given. When we 
describe the properties of the regression estimators, we are either talking 
about the potential properties, before the sample has been drawn, or about 
the distributions that we would expect in repeated samples using those 
given data on X. If we make the assumption E(u|X)=0, then

( ) [ ] ( ) βXuX'XX'βXb =+= − EE 1 	 (18)

and so b is an unbiased estimator of β. It should be stressed that 
unbiasedness in Model A, along with all other properties of the regression 
estimators, are conditional on the actual given data for X.
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In Model B, we allow X to be drawn from a fixed joint distribution of the 
explanatory variables. The appropriate assumption for the disturbance 
term is that it is distributed independently of X and hence its conditional 
distribution is no different from its absolute distribution: E(u|X)= E(u) for 
all X. We also assume E(u)=0. The independence of the distributions of X 
and u allows us to write

 ( ) [ ]( )
[ ]( ) ( )

β
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=

+=

+=

−

−

EE
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1

1 	

(19)

The variance-covariance matrix of the OLS regression 
coefficients

We define the variance-covariance matrix of the disturbance term to be the 
matrix whose element in row i and column j is the population covariance 
of ui and uj. By assumption A.4, the covariance of ui and uj is constant and 
equal to σ 2

u if j = i and by assumption A.5 it is equal to zero if j ≠ i. Thus 
the variance-covariance matrix is
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that is, a matrix whose diagonal elements are all equal to σ 2
u and whose 

off-diagonal elements are all zero. It may more conveniently be written 
In

σ 2
u where In is the identity matrix of order n.

Similarly, we define the variance-covariance matrix of the regression 
coefficients to be the matrix whose element in row i and column j is the 
population covariance of bi and bj:

 ( ) ( )( ) ( )( ){ } ( )( ){ }jjiijjiiji bbEbEbbEbEbb ββ −−=−−=,cov .
	

(21)

The diagonal elements are of course the variances of the individual 
regression coefficients. We denote this matrix var(b). If we are using the 
framework of Model A, everything will be conditional on the actual given 
data for X, so we should refer to var(b|X) rather than var(b). Then
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(22)

If we are using Model B, we can obtain the unconditional variance of b 
using the standard decomposition of a variance in a joint distribution:
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( ) ( ){ } ( ){ }XbXbb EE varvarvar += 	 (23)

Now E(b|X)=β for all X, so var{E(b|X)}=var(β) = 0 since β is a constant 
vector, so

 ( ) [ ]{ }
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=

XX'

XX'b

E

E

u

u

σ

σ 	
(24)

the expectation being taken over the distribution of X.

To estimate var(b), we need to estimate σ 2
u. An unbiased estimator is 

provided by e'e/(n – k). For a proof, see Appendix B.

The Gauss–Markov theorem
We will demonstrate that the OLS estimators are the minimum variance 
unbiased estimators that are linear in y. For simplicity, we will do this 
within the framework of Model A, with the analysis conditional on the 
given data for X. The analysis generalises straightforwardly to Model 
B, where the explanatory variables are stochastic but drawn from fixed 
distributions.

Consider the general estimator in this class:

 Ayb* = 	 (25)

where A is a k by n matrix. Let

 [ ] X'XX'AC 1−−= 	 (26)

Then
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Unbiasedness requires

k0CX = 	 (28)

where 0 is a k by k matrix consisting entirely of zeros. Then, with
E(b*)=β, the variance-covariance matrix of b* is given by
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Now diagonal element i of CC' is the inner product of row i of C and 
column i of C'. These are the same, so it is given by

 ∑
=

k

s
ikc

1

2  
,

which is positive unless cis = 0 for all s. Hence minimising the variances of 
the estimators of all of the elements of β requires C = 0. This implies that 
OLS provides the minimum variance unbiased estimator.
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Consistency of the OLS regression coefficients
Since

 [ ] uX'XX'βb 1−+= 	 (30)

the probability limit of b is given by
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Now, if we are working with cross-sectional data with the explanatory 
variables drawn from fixed (joint) distributions, it can be shown that 
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and so plim b = β. Note that this is only an outline of the proof. For a 
proper proof and a generalisation to less restrictive assumptions, see 
Greene pp.64–65.

Frisch–Waugh–Lovell theorem
We will precede the discussion of the Frisch–Waugh–Lovell (FWL) theorem 
by introducing the residual-maker matrix. We have seen that, when we fit

uXβy += 	 (33)

using OLS, the residuals are given by

Xbyyye −=−= ˆ 	 (34)

Substituting for b, we have
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(35)

where

[ ] X'XX'XIM 1−−= 	 (36)

M is known as the ‘residual-maker’ matrix because it converts the values of 
y into the residuals of y when regressed on X. Note that M is symmetric, 
because M'=M, and idempotent, meaning that MM=M.

Now suppose that we divide the k variables comprising X into two 
subsets, the first s and the last k–s. (For the present purposes, it makes no 
difference whether there is or is not an intercept in the model, and if there 
is one, whether the vector of ones responsible for it is in the first or second 
subset.) We will partition X as

 [ ]21 XXX = 	 (37)

where X1 comprises the first s columns and X2 comprises the last k–s, and 
we will partition β similarly, so that the theoretical model may be written
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The FWL theorem states that the OLS estimates of the coefficients in β1 
are the same as those that would be obtained by the following procedure: 
regress y on the variables in X2 and save the residuals as ey. Regress each 
of the variables in X1 on X2 and save the matrix of residuals as eX1. If we 
regress ey on eX1, we will obtain the same estimates of the coefficients of 
β1 as we did in the straightforward multiple regression. (Why we might 
want to do this is another matter. We will come to this later.) Applying the 
preceding discussion relating to the residual-maker, we have

 yMe 2y = 	 (39)

where

 [ ] 'XX'XXIM 2
1

2222
−−= 	 (40)

and

12X XMe =1 	 (41)

Let the vector of coefficients obtained when we regress ey on eX1 be 
denoted b*

1 . Then
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(Remember that M2 is symmetric and idempotent.) Now we will derive an 
expression for b1 from the orthodox multiple regression of y on X. For this 
purpose, it is easiest to start with the normal equations:

 0'' =− yXXbX 	 (43)
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Hence, splitting the normal equations into their upper and lower 
components, we have

 0y'XbX'XbX'X 1221111 =−+ 	 (47)

and

 0y'XbX'XbX'X 2222112 =−+ 	 (48)

From the second we obtain

 1122222 bX'Xy'XbX'X −= 	 (49)

and so

[ ] [ ]1122
1

222 bX'Xy'XX'Xb −= − 	 (50)

Substituting for b2 in the first normal equation,

 [ ] [ ] 0y'XbX'Xy'XX'XX'XbX'X 11122
1

2221111 =−−+ − 	 (51)

Hence

[ ] [ ] y'XX'XX'Xy'XbX'XX'XX'XbX'X 2
1

22211112
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2221111
−− −=− 	(52)
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and so

 [ ][ ] [ ][ ]y'XX'XXI'XbX'XX'XXI'X 2
1

2221112
1

2221
−− −=− 	 (53)

Hence

 yM'XbXM'X 211121 = 	 (54)

and
 [ ] *

121
1

1211 byM'XXM'Xb == −
	 (55)

Why should we be interested in this result? The original purpose remains 
instructive. In early days, econometricians working with time series data, 
especially macroeconomic data, were concerned to avoid the problem 
of spurious regressions. If two variables both possessed a time trend, it 
was very likely that ‘significant’ results would be obtained when one was 
regressed on the other, even if there were no genuine relationship between 
them. To avoid this, it became the custom to detrend the variables before 
using them by regressing each on a time trend and then working with 
the residuals from these regressions. Frisch and Waugh (1933) pointed 
out that this was an unnecessarily laborious procedure. The same results 
would be obtained using the original data, if a time trend was added as an 
explanatory variable.

Generalising, and this was the contribution of Lovell, we can infer that, 
in a multiple regression model, the estimator of the coefficient of any one 
variable is not influenced by any of the other variables, irrespective of 
whether they are or are not correlated with the variable in question. The 
result is so general and basic that it should be understood by all students 
of econometrics. Of course, it fits neatly with the fact that the multiple 
regression coefficients are unbiased, irrespective of any correlations among 
the variables.

A second reason for being interested in the result is that it allows one 
to depict graphically the relationship between the observations on 
the dependent variable and those on any single explanatory variable, 
controlling for the influence of all the other explanatory variables. This is 
described in the textbook in Section 3.2.

Exercise
9.	 Using the FWL theorem, demonstrate that, if a multiple regression 

model contains an intercept, the same slope coefficients could be 
obtained by subtracting the means of all of the variables from the data 
for them and then regressing the model omitting an intercept.

Exact multicollinearity
We will assume, as is to be expected, that k, the number of explanatory 
variables (including the unit vector, if there is one), is less than n, the 
number of observations. If the explanatory variables are independent, 
the X matrix will have rank k and likewise X'X will have rank k and will 
possess an inverse. However, if one or more linear relationships exist 
among the explanatory variables, the model will be subject to exact 
multicollinearity. The rank of X, and hence of X'X, will then be less than k 
and X'X will not possess an inverse.

Suppose we write X as a set of column vectors xj, each corresponding to 
the observations on one of the explanatory variables:

 [ ]kj xxxX ......1= 	 (56)

where
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Then
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and the normal equations

 0yXXbX =− '' 	 (59)

may be written
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(60)

Now suppose that one of the explanatory variables, say the last, can be 
written as a linear combination of the others:

∑
−

=

=
1

1

k

i
iik xx λ 	 (61)

Then the last of the normal equations is that linear combination of the 
other k – 1. Hence it is redundant, and we are left with a set of k – 1 
equations for determining the k unknown regression coefficients. The 
problem is not that there is no solution. It is the opposite: there are too 
many possible solutions, in fact an infinite number. One coefficient could 
be chosen arbitrarily, and then the normal equations would provide 
a solution for the other k – 1. Some regression applications deal with 
this situation by dropping one of the variables from the regression 
specification, effectively assigning a value of zero to its coefficient.

Exact multicollinearity is unusual because it mostly occurs as a 
consequence of a logical error in the specification of the regression model. 
The classic example is the dummy variable trap. This occurs when a set of 
dummy variables Dj, j = 1, ..., s are defined for a qualitative characteristic 
that has s categories. If all s dummy variables are included in the 
specification, in observation i we will have
 1

1
=∑

=

s

j
ijD 	 (62)

since one of the dummy variables must be equal to 1 and the rest are all 
zero. But this is the (unchanging) value of the unit vector. Hence the sum 
of the dummy variables is equal to the unit vector. As a consequence, if the 
unit vector and all of the dummy variables are simultaneously included 
in the specification, there will be exact multicollinearity. The solution is 
to drop one of the dummy variables, making it the reference category, or, 
alternatively, to drop the intercept (and hence unit vector), effectively 
making the dummy variable coefficient for each category the intercept for 
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that category. As explained in the textbook, it is illogical to wish to include 
a complete set of dummy variables as well as the intercept, for then no 
interpretation can be given to the dummy variable coefficients.

Estimation of a linear combination of regression 
coefficients

Suppose that one wishes to estimate a linear combination of the regression 
parameters  ∑

=

k

j
jj

1
βλ

.

 

In matrix notation, we may write this as λ'β where
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(63)

The corresponding linear combination of the regression coefficients, λ'b, 
provides an unbiased estimator of λ'β. However, we will often be interested 
also in its standard error, and this is not quite so straightforward. We 
obtain it via the variance

 ( ) ( )( ){ }
( ){ }2

2var

βλ'bλ'

bλ'bλ'bλ'

−=

−=

E

EE 	
(64)

Since (λ'b – λ'β) is a scalar, it is equal to its own transpose, and so
(λ'b – λ'β)2 may be written

( ) { }{ }
( ){ } ( ){ }
( )( ) λ'βbβbλ'

'βbλ'βbλ'

'βλ'bλ'βλ'bλ'βλ'bλ'

−−=

−−=

−−=− 2 	

(65)

Hence, using the variance-covariance matrix for the regression coefficients, 
we have

 ( ) ( )( ){ }
( )( ){ }

[ ] 2

var

u

E

E

σλXX'λ'

λ'βbβbλ'

λ'βbβbλ'bλ'

1−=

−−=

−−= 	

(66)

The square root of this expression provides the standard error of λ'b after 
we have replaced σ 2

u by its estimator e'e/(n – k) in the usual way.

Testing linear restrictions
An obvious application of the foregoing is its use in testing a linear 
restriction. Suppose that one has a hypothetical restriction

0
1

λβλ =∑
=

k

j
jj

	
(67)

We can perform a t test of the restriction using the t statistic

 
( )bλ'
bλ'

s.e.
0λ−=t

	
(68)
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where the standard error is obtained via the variance-covariance matrix 
as just described. Alternatively, we could reparameterise the regression 
specification so that one of the coefficients is λ'β. In practice, this is 
often more convenient since it avoids having to work with the variance-
covariance matrix. If there are multiple restrictions that should be tested 
simultaneously, the appropriate procedure is an F test comparing RSS for 
the unrestricted and fully restricted models.

Weighted least squares and heteroscedasticity
Suppose that the regression model

 uXβy += 	 (69)

satisfies the usual regression model assumptions and suppose that we 
premultiply the elements of the model by the n by n matrix A whose 
diagonal elements are Aii, i = 1, ..., n, and whose off-diagonal elements are 
all zero:
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(70)

The model becomes

 AuAXβAy += 	 (71)

If we fit it using least squares, the point estimates of the coefficients are 
given by

[ ] AyA'X'AXA'X'b 1−=WLS 	 (72)

(WLS standing for weighted least squares). This is unbiased but 
heteroscedastic because the disturbance term in observation i is Aiiui and 
has variance  22

uiiA σ .

Now suppose that the disturbance term in the original model was 
heteroscedastic, with variance 2

iuσ  in observation i. If we define the matrix 
A so that the diagonal elements are determined by

 
2

1

iu

iiA
σ

= 	
(73)

the corresponding variance in the weighted regression will be 1 for 
all observations and the WLS model will be homoscedastic. The WLS 
estimator is then

[ ] CyX'CXX'b 1−=WLS 	 (74)

where
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(75)

The variance-covariance matrix of the WLS coefficients, conditional on the 
data for X, is
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(76)

since A has been defined so that 

 ( ) IA'uu'A =E 	 (77)

Of course, in practice we seldom know 2
iuσ , but if it is appropriate 

to hypothesise that the standard deviation is proportional to some 
measurable variable Zi, then the WLS regression will be homoscedastic if 
we define A to have diagonal element i equal to the reciprocal of Zi.

IV estimators and TSLS
Suppose that we wish to fit the model

 uXβy += 	 (78)

where one or more of the explanatory variables is not distributed 
independently of the disturbance term. For convenience, we will describe 
such variables as ‘endogenous’, irrespective of the reason for the violation 
of the independence requirement. Given a sufficient number of suitable 
instruments, we may consider using the IV estimator
 [ ] yW'XW'b 1IV −= 	 (79)

where W is the matrix of instruments. In general W will be a mixture of 
(1) those original explanatory variables that are distributed independently 
of the disturbance term (these are then described as acting as instruments 
for themselves), and (2) new variables that are correlated with the 
endogenous variables but distributed independently of the disturbance 
term. If we substitute for y,

[ ] ( )
[ ] uW'XW'β

uXβW'XW'b
1

1IV

−

−

+=

+= 	
(80)

We cannot obtain a closed-form expression for the expectation of the error 
term, so instead we take plims:
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Now if we are using cross-sectional data, it is usually reasonable to 

suppose that 
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case we can decompose the plim of the error term:
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Further, if the matrix of instruments has been correctly chosen, it can be 
shown that 

 
01 plim =







 uW'

n

	
(83)

and hence the IV estimator is consistent.

It is not possible to derive a closed-form expression for the variance of the 
IV estimator in finite samples. The best we can do is to invoke a central 
limit theorem that gives the limiting distribution asymptotically and work 
backwards from that, as an approximation, for finite samples. A central 
limit theorem can be used to establish that
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From this, we may infer, that as an approximation, for sufficiently large 
samples,
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We have implicitly assumed so far that W has the same dimensions as X 
and hence that W'X is a square k by k matrix. However, the model may be 
overidentified, with the number of columns of W exceeding k. In that case, 
the appropriate procedure is two-stage least squares. One regresses each 
of the variables in X on W and saves the fitted values. The matrix of fitted 
values is then used as the instrument matrix in place of W.

Exercises
10.	Using (79) and (85), demonstrate that, for the simple regression 

model

 iii uXY ++= 21 ββ

with Z acting as an instrument for X (and the unit vector acting as an 
instrument for itself),

XbYb IV
2

IV
1 −=

( )( )

( )( )∑
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= n

i
ii

n

i
ii

XXZZ

YYZZ
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1IV
2

and, as an approximation,

 ( )
( )

2

1

2

2
IV
2

1var
XZ

n

i
i

u

rXX
b ×

−
=

∑
=

σ

where Z is the instrument for X and rXZ is the correlation between X and Z.

11.	Demonstrate that any variable acting as an instrument for itself is 
unaffected by the first stage of two-stage least squares.

12.	Demonstrate that TSLS is equivalent to IV if the equation is exactly 
identified.

(84)



Chapter 15: Regression analysis with linear algebra primer

309

Generalised least squares
The final topic in this introductory primer is generalised least squares and 
its application to autocorrelation (autocorrelated disturbance terms). One 
of the basic regression model assumptions is that the disturbance terms in 
the observations in a sample are distributed identically and independently 
of each other. If this is the case, the variance-covariance matrix of the 
disturbance terms is the identity matrix of order n, multiplied by  2

uσ . We 
have encountered one type of violation, heteroscedasticity, where the 
values of the disturbance term are independent but not identical. The 
consequence was that the off-diagonal elements of the variance-covariance 
matrix remained zero, but the diagonal elements differed. Mathematically, 
autocorrelation is complementary. It occurs when the values of the 
disturbance term are not independent and as a consequence some, or all, 
of the off-diagonal elements are non-zero. It is usual in initial treatments 
to retain the assumption of identical distributions, so that the diagonal 
elements of the variance-covariance matrix are the same. Of course, in 
principle one could have both types of violation at the same time.

In abstract, it is conventional to denote the variance-covariance matrix 
of the disturbance term  2

uσΩ , where Ω is the Greek upper case omega, 
writing the model

 uXβy +=  ( ) 2
uE σΩuu' =with 	 (86)

If the values of the disturbance term are iid, Ω = I. If they are not iid, OLS 
is in general inefficient and the standard errors are estimated incorrectly. 
Then, it is desirable to transform the model so that the transformed 
disturbance terms are iid. One possible way of doing this is to multiply 
through by some suitably chosen matrix P, fitting

PuPXβPy += 	 (87)

choosing P so that E(Puu'P')=Iα where α is some scalar. The solution for 
heteroscedasticity was a simple example of this type. We had
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and the appropriate choice of P was
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(89)

In the case of heteroscedasticity, the choice of P is obvious, provided, of 
course, that one knows the values of the diagonal elements of Ω. The more 
general theory requires an understanding of eigenvalues and eigenvectors 
that will be assumed. Ω is a symmetric matrix since cov(ui, uj) is the same 
as cov(uj, ui). Hence all its eigenvalues are real. Let Λ be the diagonal 
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matrix with the eigenvalues as the diagonal elements. Then there exists a 
matrix of eigenvectors, C, such that

Λ=ΩCC' 	 (90)

C has the properties that CC' = I and C' = C–1. Since Λ is a diagonal 
matrix, if its eigenvalues are all positive (which means that it is what is 
known as a ‘positive definite’ matrix), it can be factored as Λ =Λ1/2 Λ1/2 
where Λ1/2 is a diagonal matrix whose diagonal elements are the square 
roots of the eigenvalues. It follows that the inverse of Λ can be factored as 
Λ–1 =Λ–1/2 Λ–1/2. Then, in view of (90),

[ ] IΛΛΛΛΛΛΛΛΩCCΛ 1/21/21/21/21/21/21/21/2 === −−−−−− ' 	 (91)

Thus, if we define P =Λ–1/2C', (91) becomes

PΩP' = I	 (92)

As a consequence, if we premultiply (86) through by P, we have

PuPXβPy += 	 (93)

or

*uβ*Xy* += 	 (94)

where y* = Py, X* = PX, and u* = Pu, and ( ) 2
uIσu*'*uE =  . An OLS 

regression of y*on X* will therefore satisfy the usual regression model 
assumptions and the estimator of β will have the usual properties. Of 
course, the approach usually requires the estimation of Ω, Ω being positive 
definite, and there being no problems in extracting the eigenvalues and 
determining the eigenvectors.

Exercise
13.	Suppose that the disturbance term in a simple regression model (with 

an intercept) is subject to AR(1) autocorrelation with  1<ρ , and 
suppose that the sample consists of just two observations. Determine 
the variance-covariance matrix of the disturbance term, find its 
eigenvalues, and determine its eigenvectors. Hence determine P and 
state the transformed model. Verify that the disturbance term in the 
transformed model is iid.



Chapter 15: Regression analysis with linear algebra primer

311

Appendix A: Derivation of the normal equations
We have seen that RSS is given by

 XbXbXbyyy '''2' +−=RSS 	 (A.1)

The normal equations are
 0=
∂
∂

jb
RSS 	

(A.2)

for j = 1, ..., k. We will show that they can be written

 0yXXbX =− '' 	 (A.3)

The proof is mathematically unchallenging but tedious because one 
has to keep careful track of the dimensions of all of the elements in the 
equations. As far as I know, it is of no intrinsic interest and once one has 
seen it there should never be any reason to look at it again.

First note that the term y'y in (A.1) is not a function of any of the bj and 
disappears in (A.2). Accordingly we will restrict our attention to the other 
two terms on the right side of (A.1). Suppose that we write the X matrix 
as a set of column vectors:

 [ ]kj xxxX ......1= 	 (A.4)

where
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(A.5)

Then
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We now consider the  XbXb ''  term. Using (A.4),
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(A.8)

The subset of terms including bj is

 ∑∑
==

+
k

p
jpjp

k

q
qjqj bbbb

11
x'xx'x

	 (A.9)

Hence
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Putting these results together,
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(A.11)

Hence the normal equation  0=
∂
∂

jb
RSS  is
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(A.12)

(Note that xp 'xj = xj 'xp and y' xj = xj 'y since they are scalars.) Hence
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Hence

 y'xXb'x jj = 	 (A.14)

since
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Hence, stacking the k normal equations,
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Hence
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Hence

 yXXbX '' = 	 (A.18)
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Appendix B: Demonstration that e'e/(n – k) is an unbiased 
estimator of σ 2u .

This classic proof is both elegant, in that it is much shorter than any proof 
not using matrix algebra, and curious, in that it uses the trace of a matrix, 
a feature that I have never seen used for any other purpose. The trace 
of a matrix, defined for square matrices only, is the sum of its diagonal 
elements. We will first need to demonstrate that, for any two conformable 
matrices whose product is square,

 ( ) ( )BAAB trtr = 	 (B.1)

Let A have n rows and m columns, and let B have m rows and n columns. 
Diagonal element i of AB is  ∑

=

m

p
piipba

1

. Hence
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Similarly, diagonal element i of BA is 
 ∑
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1
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What we call the symbols used to index the summations makes no 
difference. Re-writing p as i and i as p, and noting that the order of the 
summation makes no difference, we have  ( ) ( )ABBA trtr =  .

We also need to note that

( ) ( ) ( )BABA trtrtr +=+ 	 (B.4)

where A and B are square matrices of the same dimension. This follows 
immediately from the way that we sum conformable matrices.

By definition,

Xbyyye −=−= ˆ 	 (B.5)

Using

 [ ] yX'XX'b 1−= 	 (B.6)

we have
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where In is an identity matrix of dimension n and 

[ ] X'XX'XIM 1−−= n
	 (B.8)

Hence

 MuM'u'ee' = 	 (B.9)

Now M is symmetric and idempotent: M'=M and MM=M . Hence

Muu'ee' = 	 (B.10)

e' e is a scalar, and so the expectation of e' e and the expectation of the 
trace of e' e are the same. So
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(B.11)

The penultimate line uses  ( ) ( )BAAB trtr = . The last line uses the fact that 
the expectation of the sum of the diagonal elements of a matrix is equal to 
the sum of their individual expectations. Assuming that X, and hence M, is 
nonstochastic,
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(B.12)

The last step uses ( ) ( ) ( )BABA trtrtr +=+ . The trace of an identity 
matrix is equal to its dimension. Hence

 ( ) [ ]( )( )
[ ]( )( )

( )( )
( )kn

trn

trn

trnE

u
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−=

−=

−=
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I

XX'XX'

X'XX'Xee' 	

(B.13)

Hence ( )kn −/ee'  is an unbiased estimator of  2
uσ .
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Appendix C: Answers to the exercises
1.	 Given any square matrix C, another matrix D is said to be its inverse if 

and only if CD = DC = I. Thus, if B is the inverse of A, AB = BA = I. 
Now focus on the matrix B. Since BA = AB = I, A is its inverse. Hence 
the inverse of an inverse is the original matrix.

2.	 Suppose that two different matrices B and C both satisfied the 
conditions for being the inverse of A. Then BA = I and AC = I. 
Consider the matrix BAC. Using BA = I, BAC = C. However, using AC 
= I, BAC = B. Hence B = C and it is not possible for A to have two 
separate inverses.

3.	 Aij, and hence A'ji, is the inner product of row i of B and column j of 
C. If one writes D = C'B', Dji is the inner product of row j of C' and 
column i of B', that is, column j of C and row i of B. Hence Dji = Aij, so 
D = A' and C'B' = (BC)'.

4.	 Let D be the inverse of A. Then D must satisfy AD = DA = I. Now A 
= BC, so D must satisfy BCD = DBC = I. C–1B–1 satisfies both of these 
conditions, since BCC–1B–1=BIB–1 = I and C–1B–1BC = C–1IC = I. 
Hence C–1B–1 is the inverse of BC (assuming that B–1 and C–1 exist).

5.	 Let B = A–1. Then BA = AB = I. Hence, using the result from Exercise 
3, A'B' = B'A' = I' = I. Hence B' is the inverse of A'. In other words, 
[A–1]' = [A']–1. 

6.	 The relationship  uXY ++= 21 ββ  may be written in linear algebra 

form as  uXβy +=  where  [ ]x1X =  and 1 is the unit vector and 
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7.	 If  uXY += 2β , uXβy +=  where 
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8.	 If  uY += 1β , uXβy +=  where X = 1, the unit vector. Then 
X'X = 1'1 = n and its inverse is 1/n.

 YnYi === ∑y1'yX'
So

 [ ]

YYn
n

==

= −

1

yX'XX'b 1

9.	 We will start with Y. If we regress it on the intercept, we are regressing 
it on 1, the unit vector, and, as we saw in Exercise 8, the coefficient 
is Y. Hence the residual in observation i is Yi – Y. The same is true for 
each of the X variables when regressed on the intercept. So when we 
come to regress the residuals of Y on the residuals of the X variables, 
we are in fact using the demeaned data for Y and the demeaned data 
for the X variables.
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10.	The general form of the IV estimator is [ ] yW'XW'b 1IV −= . In the case 
of the simple regression model, with Z acting as an instrument for X 
and the unit vector acting as an instrument for itself,  [ ]z1W =  and 
 [ ]x1X = . Thus
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11.	By definition, if one of the variables in X is acting as an instrument 
for itself, it is included in the W matrix. If it is regressed on W, a 
perfect fit is obtained by assigning its column in W a coefficient of 1 
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and assigning zero values to all the other coefficients. Hence its fitted 
values are the same as its original values and it is not affected by the 
first stage of Two-Stage Least Squares.

12.	If the variables in X are regressed on W and the matrix of fitted values 
of X saved,

[ ] XW'WW'WX 1−=ˆ

If X is used as the matrix of instruments,
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Note that, in going from the second line to the third, we have used 
 [ ] 1111 ABCABC −−−− = , and we have exploited the fact that W'X is 
square and possesses an inverse.

13.	The variance-covariance matrix of u is
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and hence the characteristic equation for the eigenvalues is 
 ( ) 01 22 =−− ρλ

The eigenvalues are therefore 1 – ρ and 1 + ρ. Since we are told  1<ρ , 
the matrix is positive definite. 

Let 
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we have 
2

1
21 == cc . Thus 
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It may then be verified that PΩP' = I:
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The transformed model has 
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and parallel transformations for the X variables and u. Given that 
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none of its elements is the white noise ε in the AR(1) process, but 
nevertheless its elements are iid.
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Of course, this was the objective of the P transformation.
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Appendix 1: Syllabus for the 20 Elements 
of econometrics examination

This syllabus is intended to provide an explicit list of all the mathematical 
formulae and proofs that you are expected to know for the 20 Elements 
of Econometrics examination. You are warned that the examination is 
intended to be an opportunity for you to display your understanding of the 
material, rather than of your ability to reproduce standard items.

Review: Random variables and sampling theory	
Probability distribution of a random variable. Expected value of a random 
variable. Expected value of a function of a random variable. Population 
variance of a discrete random variable and alternative expression for it. 
Expected value rules. Independence of two random variables. Population 
covariance, covariance and variance rules, and correlation. Sampling and 
estimators. Unbiasedness. Efficiency. Loss functions and mean square 
error. Estimators of variance, covariance and correlation. The normal 
distribution. Hypothesis testing. Type II error and the power of a test. t 
tests. Confidence intervals. One-sided tests. Convergence in probability 
and plim rules. Consistency. Convergence in distribution (asymptotic 
limiting distributions) and the role of central limit theorems.

Formulae and proofs: This chapter is concerned with statistics, not 
econometrics, and is not examinable. However you are expected to know 
the results in this chapter and to be able to use them.

Chapter 1 Simple regression analysis
Simple regression model. Derivation of linear regression coefficients. 
Interpretation of a regression equation. Goodness of fit.

Formulae and proofs: You are expected to know, and be able to derive, the 
expressions for the regression coefficients in a simple regression model, 
including variations where either the intercept or the slope coefficient may 
be assumed to be zero. You are expected to know the definition of R2

 and 
how it is related to the residual sum of squares. You are expected to know 
the relationship between R2 and the correlation between the actual and 
fitted values of the dependent variable, but not to be able to prove it.

Chapter 2 Properties of the regression coefficients
Types of data and regression model. Assumptions for Model A. Regression 
coefficients as random variables. Unbiasedness of the regression 
coefficients. Precision of the regression coefficients. Gauss–Markov 
theorem. t test of a hypothesis relating to a regression coefficient. Type 
I error and Type II error. Confidence intervals. One-sided tests. F test of 
goodness of fit.

Formulae and proofs: You are expected to know the regression model 
assumptions for Model A. You are expected to know, though not be able 
to prove, that, in the case of a simple regression model, an F test on the 
goodness of fit is equivalent to a two-sided t test on the slope coefficient. 
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You are expected to know how to make a theoretical decomposition of 
an estimator and hence how to investigate whether or not it is biased. In 
particular, you are expected to be able to show that the OLS estimator 
of the slope coefficient in a simple regression model can be decomposed 
into the true value plus a weighted linear combination of the values of the 
disturbance term in the sample. You are expected to be able to derive the 
expression for the variance of the slope coefficient in a simple regression 
model. You are expected to know how to estimate the variance of the 
disturbance term, given the residuals, but you are not expected to be able 
to derive the expression. You are expected to understand the Gauss–Markov 
theorem, but you are not expected to be able to prove it.

Chapter 3 Multiple regression analysis
Multiple regression with two explanatory variables. Graphical 
representation of a relationship in a multiple regression model. 
Properties of the multiple regression coefficients. Population variance 
of the regression coefficients. Decomposition of their standard errors. 
Multicollinearity. F tests in a multiple regression model. Hedonic pricing 
models. Prediction.

Formulae and proofs: You are expected to know how, in principle, the 
multiple regression coefficients are derived, but you do not have to 
remember the expressions, nor do you have to be able to derive them 
mathematically. You are expected to know, but not to be able to derive, 
the expressions for the population variance of a slope coefficient and 
its standard error in a model with two explanatory variables. You are 
expected to be able to perform F tests on the goodness of fit of the 
model as a whole and for the improvement in fit when a group of 
explanatory variables is added to the model. You are expected to be able 
to demonstrate the properties of predictions within the context of the 
classical linear regression model. In particular, you are expected to be 
able to demonstrate that the expected value of the prediction error is 0, 
if the model is correctly specified and the regression model assumptions 
are satisfied. You are not expected to know the population variance of the 
prediction error.

Chapter 4 Transformation of variables
Linearity and nonlinearity. Elasticities and double-logarithmic models. 
Semilogarithmic models. The disturbance term in nonlinear models. 
Box–Cox transformation. Models with quadratic and interactive variables. 
Nonlinear regression.

Formulae and proofs: You are expected to know how to perform a Box–Cox 
transformation for comparing the goodness of fit of alternative versions of 
a model with Y and log Y as the dependent variable.

Chapter 5 Dummy variables
Dummy variables. Dummy classification with more than two categories. 
The effects of changing the reference category. Multiple sets of dummy 
variables. Slope dummy variables. Chow test. Relationship between Chow 
test and dummy group test.

Formulae and proofs: You are expected to be able to perform a Chow test 
and a test of the explanatory power of a group of dummy variables, and to 
understand the relationship between them.
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Chapter 6 Specification of regression variables
Omitted variable bias. Consequences of the inclusion of an irrelevant 
variable. Proxy variables. F test of a linear restriction. Reparameterization 
of a regression model (see the Further Material hand-out). t test of a 
restriction. Tests of multiple restrictions. Tests of zero restrictions.

Formulae and proofs: You are expected to be able to derive the expression 
for omitted variable bias when the true model has two explanatory 
variables and the fitted model omits one of them. You are expected to 
know how to perform an F test on the validity of a linear restriction, given 
appropriate data on the residual sum of squares. You are expected to 
understand the logic behind the t test of a linear restriction and to be able 
to reparameterize a regression specification to perform such a test in a 
simple context. You are expected to be able to perform F tests of multiple 
linear restrictions.

Chapter 7 Heteroscedasticity
Meaning of heteroscedasticity. Consequences of heteroscedasticity. 
Goldfeld–Quandt and White tests for heteroscedasticity. Elimination 
of heteroscedasticity using weighted or logarithmic regressions. Use of 
heteroscedasticity-consistent standard errors.

Formulae and proofs: You are expected to know how to perform the 
Goldfeld–Quandt and White tests for heteroscedasticity.

Chapter 8 Stochastic regressors and measurement errors
Stochastic regressors. Assumptions for models with stochastic regressors. 
Finite sample and asymptotic properties of the regression coefficients 
in models with stochastic regressors. Measurement error and its 
consequences. Friedman’s Permanent Income Hypothesis. Instrumental 
variables (IV). Asymptotic properties of IV estimators, including the 
asymptotic limiting distribution of  where  is the 
IV estimator of β2 in a simple regression model. Use of simulation to 
investigate the finite-sample properties of estimators when only asymptotic 
properties can be determined analytically. Application of the Durbin–Wu–
Hausman test

Formulae and proofs: You are expected to be able to demonstrate that, in 
a simple regression model, the OLS estimator of the slope coefficient is 
inconsistent when there is measurement error in the explanatory variable. 
You should know the expression for the bias and be able to derive it. You 
should be able to explain the consequences of measurement error in the 
dependent variable. You should know the expression for an instrumental 
variable estimator of the slope coefficient in a simple regression model and 
be able to demonstrate that it yields consistent estimates, provided that 
certain assumptions are satisfied. You should also know the expression for 
the asymptotic population variance of an instrumental variable estimator 
in a simple regression model and to understand why it provides only an 
approximation for finite samples. You are not expected to know the formula 
for the Durbin–Wu–Hausman test.
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Chapter 9 Simultaneous equations estimation
Definitions of endogenous variables, exogenous variables, structural 
equations and reduced form. Inconsistency of OLS. Use of instrumental 
variables. Exact identification, underidentification, and overidentification. 
Two-stage least squares (TSLS). Order condition for identification. 
Application of the Durbin–Wu–Hausman test.

Formulae and proofs: You are expected to be able to derive an expression 
for simultaneous equations bias in a simple regression equation and to 
be able to demonstrate the consistency of an IV estimator in a simple 
regression equation. You are expected to be able to explain in general 
terms why TSLS is used in overidentified models.

Chapter 10 Binary choice models and maximum 
likelihood estimation

Linear probability model. Logit model. Probit model. Tobit model. 
Selection bias model. Maximum likelihood estimation of the population 
mean and variance of a random variable. Maximum likelihood estimation 
of regression coefficients. Likelihood ratio tests.

Formulae and proofs: You are expected to know the expression for the 
probability of an event occurring in the logit model, and to know the 
expressions for the marginal functions in the logit and probit models. You 
would not be expected to calculate marginal effects in an examination, but 
you should be able to explain how they are calculated and to comment 
on calculations of them. You are expected to be able to derive a maximum 
likelihood estimator in a simple example. In more complex examples, 
you would only be expected to explain how the estimates are obtained, 
in principle. You are expected to be able to perform, from first principles, 
likelihood ratio tests in a simple context.

Chapter 11 Models using time series data
Static demand functions fitted using aggregate time series data. Lagged 
variables and naive attempts to model dynamics. Autoregressive 
distributed lag (ADL) models with applications in the form of the partial 
adjustment and adaptive expectations models. Error correction models. 
Asymptotic properties of OLS estimators of ADL models, including 
asymptotic limiting distributions. Use of simulation to investigate the finite 
sample properties of parameter estimators for the ADL(1,0) model. Use of 
predetermined variables as instruments in simultaneous equations models 
using time series data. (Section 11.7 of the textbook, Alternative dynamic 
representations ..., is not in the syllabus.)

Formulae and proofs: You are expected to be able to analyze the short-run 
and long-run dynamics inherent in ADL(1,0) models in general and the 
adaptive expectations and partial adjustment models in particular. You are 
expected to be able to explain why the OLS estimators of the parameters 
of ADL(1,0) models are subject to finite-sample bias and, within the 
context of the model ttt uYY ++= −121 bb  to be able to demonstrate that 
they are consistent.
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Chapter 12 Autocorrelation
Assumptions for regressions with time series data. Assumption of the 
independence of the disturbance term and the regressors. Definition 
of autocorrelation. Consequences of autocorrelation. Breusch–
Godfrey Lagrange multiplier, Durbin–Watson d, and Durbin h tests for 
autocorrelation. AR(1) nonlinear regression. Potential advantages and 
disadvantages of such estimation, in comparison with OLS. Cochrane–
Orcutt iterative process. Autocorrelation with a lagged dependent variable. 
Common factor test and implications for model selection. Apparent 
autocorrelation caused by variable or functional misspecification. General-
to-specific versus specific-to-general model specification.

Formulae and proofs: You are expected to know how to perform the 
tests for autocorrelation mentioned above and to know how to perform 
a common factor test. You are expected to be able to explain why the 
properties of estimators obtained by fitting the AR(1) nonlinear regression 
specification are not necessarily superior to those obtained using OLS.

Chapter 13 Introduction to nonstationary processes
Stationary and nonstationary processes. Granger–Newbold experiments 
with random walks. Unit root tests. Akaike Information Criterion and 
Schwarz’s Bayes Information Criterion. Cointegration. Error correction 
models.

Formulae and proofs: You are expected to be able to determine whether 
a simple random process is stationary or nonstationary. You would not 
be expected to perform a unit root test in an examination, but you are 
expected to understand the test and to be able to comment on the results 
of such a test.

Chapter 14 Introduction to panel data models
Definition of panel data set (longitudinal data set). Pooled OLS model. 
Definition of, and consequences of, unobserved heterogeneity. Within-
groups fixed effects model. First differences fixed-effects model. Least 
squares dummy variable model. Calculation of degrees of freedom in 
fixed effects models. Random effects model, with assumption required for 
the use of this model. F test for discriminating between fixed effects and 
pooled OLS as the appropriate specification. Durbin–Wu–Hausman test 
for discriminating between fixed effects and random effects models as the 
appropriate specification.

Formulae and proofs: You are expected to be able to demonstrate 
mathematically how the within-groups and first differences versions of 
the fixed effects approach eliminate unobserved heterogeneity, and to be 
able to explain how the least squares dummy variable model provides an 
alternative solution. You are expected to be able to explain mathematically 
why the random effects model is subject to a form of autocorrelation.
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Appendix 2: Sample examination paper

Important note: This Sample examination paper reflects the 
examination and assessment arrangements for this course in the academic 
year 2010−2011. The format and structure of the examination may have 
changed since the publication of this subject guide. You can find the most 
recent examination papers on the VLE where all changes to the format of 
the examination are posted.

Candidates should answer FOUR of the following SIX questions: 
QUESTION 1 of Section A (25 marks in total) and THREE questions 
from Section B (25 marks each). Candidates are strongly advised to 
divide their time accordingly. 

Extracts from statistical tables are given after the final question on this 
paper. 

Graph paper is provided at the end of this question paper. If used, it must 
be detached and fastened securely inside the answer book. 

A calculator may be used when answering questions on this paper and 
it must comply in all respects with the specification given with your 
Admission Notice. The make and type of machine must be clearly stated 
on the front cover of the answer book. 
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SECTION A 

Answer all parts of question 1 (25 marks in total.). 

1. (a) Consider a model: 

Y X ui i i= + +α β  ; i =1 6, ,��

  whereE u E u and E u u if i ji i i j( ) ; ( ) ( )= = = ≠0 02 2σ .

  The observations on X si '  are 

X1 X2 X3 X4 X5 X6

   1  2  3  4  5  6 

  The OLS estimator of ˆ is β β  and 

  V( � )
.

β
σ

=
2

17 5
 . 

  An alternative estimator of β  is 

[ ]~
β = + − −

1
8 6 5 2 1Y Y Y Y  . 

  Compare the sampling variance of ~β  with that of �β .      (5 marks)

(b) Show that the infinite distributed lag model ∑
∞

=
− ε+λβ+α=

0j
tjt

j
t XY can be written in terms 

of Xt and a single lag Yt-1.  What estimation problems does this model have?  
(5 marks)

(c) Explain what is meant when variables are cointegrated. Why is this considered to be 
important?            (5 marks)

(d) Let the regression equation be: 

t t ty x u ; t 1, 2, ,T= β + = … .

  where 2 2
t t s tE(u ) 0 ; E(u ) and E(u u ) 0 if s t= = σ = ≠ . X’s are fixed in repeated samples. 

Obtain the ordinary least squares estimator of β . Show that the OLS estimator of β  is 
linear and unbiased.          (5 marks) 

(e) Explain what you understand by the Durbin-Watson (DW) test. State the assumptions 
required for performing the DW test.       (5 marks)
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SECTION B 

Answer three questions from this section (25 marks each). 

2. Let the model be: 

 T,,2,1t;uXXY t2t21t10t �=+β+β+β=

0)u(E t =  for all t. A researcher suspects that the variance of the disturbance term is 
2

t t1Var(u ) X= σ .

(a) Explain how the researcher should proceed to test the null hypothesis 2
0 tH : Var(u ) = σ

against the alternative hypothesis 2
1 t t1H : Var(u ) X= σ .    (7 marks)

(b) If the researcher’s suspicion is correct then how will it affect the properties of the ordinary 
least squares estimators?         (3 mark)

(c) Suggest in detail an estimation procedure, which will give best linear unbiased estimates of 
the parameters when 2

t t1Var(u ) X= σ  .       (5 marks)

(d) Consider the model 

t t ty x u ; t 1, 2, ,T= α + = …

where 2 2 2
t t t s tE(u ) 0; E(u ) x ; E(u u ) 0 if s t= = σ = ≠ , for all s and t. tx  is an observed 

non-random variable. 

 The density function of tu is

2
2 2 1/2 t

t t 2
t

u1f (u ) (2 x ) exp
2 x

−
⎡ ⎤⎛ ⎞
⎢ ⎥= πσ − ⎜ ⎟σ⎢ ⎥⎝ ⎠⎣ ⎦

.

Derive the maximum likelihood estimators of α and 2σ .    (10 mark)

3. Explain and discuss the following: 

 (a) Difference stationary and trend stationary processes.      (9 marks) 

 (b) Effects on the properties of ordinary least squares estimator when relevant variables are
  excluded and irrelevant variables are included in the equation.   (8 marks) 

 (c) Dummy variables.          (8 marks)
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4. The following estimates were calculated from a sample of 7,634 women respondents from the 
General Household Survey 1995.  The dependent variable takes the value 1 if the woman was in 
paid employment, and 0 otherwise. 

OLS   Logit   Probit 

high   0.093   0.423   0.259 
    (0.015)  (0.071)  (0.043) 

noqual  –0.210  –0.898  –0.554 
    (0.013)  (0.056)  (0.035) 

age    0.038   0.173   0.107 
    (0.003)  (0.124)  (0.008) 

age2  –0.051  –0.230  –0.142 
    (0.003)  (0.069)  (0.009) 

mar    0.024   0.103   0.063 
    (0.009)  (0.057)  (0.035) 

Constant  –0.068  –2.587  –1.593 
     (0.049)  (0.225)  (0.137) 

Where high is 1 if the respondent has a higher educational qualification, 0 otherwise; noqual is 1 
if the respondent has no qualifications, 0 otherwise; age is age in years; age2 is ( ) 100ageage× ;
mar is 1 if married, 0 otherwise.  Conventionally calculated standard errors are in brackets for 
the ordinary least squares (OLS) results, asymptotic standard errors are in brackets elsewhere.  

(a) Explain how Probit estimates are calculated when the model has no intercept and only one 
explanatory variable.          (7 marks)

(b) Using all three sets of estimates, test the null hypothesis that the coefficient of mar is zero. 
Which test statistics would you consider more reliable?  Explain.  (8 marks) 

(c) Using OLS and Probit estimates, calculate the estimated probabilities of being in 
employment for a married woman aged 40 with a higher educational qualification. 
Comment on your results.         (6 marks)

(d) Test the null hypothesis that all the slope coefficients of the probit model are jointly equal 
to zero. It is given that 

Rln L 416.01= −

Uln L 321.25= −

where Rln L  and Uln L are the log of the likelihood from the restricted and the unrestricted 
probit models respectively.         (4 marks)
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5. (a) Explain what you understand by autocorrelation of the disturbance term in a regression 
model?  What are the causes of autocorrelation?     (5 marks)

(b) The following equation was estimated by Ordinary Least Squares using 37 annual 
observations of UK aggregate data.  The dependent variable ( tcloth ) is the log of 
expenditure on clothing at 1995 prices, tyd  is the log of aggregate disposable income at 
1995 prices, tpc  is the log of the price of clothing relative to all consumer prices, tps  is 
the log of the price of shoes relative to all consumer prices. 

tcloth    =   − 3.256   +  1.021 tyd   −  0.240 tpc    −   0.429 tps    +   te
    (1.531)     (0.118)   (0.132)        (0.185) 

standard errors in brackets, te  is an OLS residual, n = 37, 2R  =  0.992, F = 1,364.0, s = 
0.041, DW = 0.94. DW is the Durbin-Watson statistic. 

i. Test the hypothesis that the coefficient of tyd  is one.    (3 marks) 

ii. Construct a 95% confidence interval for the coefficient of tpc .  (3 marks) 

iii. Give any assumptions which your results in i. and ii. above require. (3 marks) 

iv. Using the statistics given above, would you conclude that any of the assumptions 
you have given in iii. above are not valid here? Give reasons.  (5 marks) 

v. What information do these estimates provide about the demand for clothing in the 
UK?            (6 marks)
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6. In the model  

t t ty x u= β +  ; t = 1,2,.......,T 

tx  is measured with error. Data is only available on *
tx , where 

*
t t tx x v= +  ; t = 1,2,......,T 

 and t tEu Ev 0= = , t t t t t tE(u v ) E(x u ) E(x v ) 0= = = . t ty , x and *
tx  have zero means. 

(a) If β̂  is the ordinary least squares(OLS) estimator from regressing ty on *
tx , show that β̂

is inconsistent.           (10 marks)

(b) Obtain an expression for ˆp lim( )β−β . Comment on the sign of this expression. 
(3 marks) 

(c) In the above given model, suppose tx  was measured without error , ty  was measured with 
error and data was only available on *

ty  where *
t t ty y w= +  and 

t t t t t t tE(w ) 0; E(u w ) E(x w ) E(y w ) 0= = = = .  Let β̂  be the OLS estimator of β  from 

regressing *
ty  on tx . Is β̂  consistent? Explain in detail.   (7 marks)

(d) Suppose in the given model, both ty and tx  are measured with errors and data is available 
only on *

ty  and *
tx  where *

ty  and *
tx  are defined above, respectively. Discuss whether the 

OLS estimator of β , from regressing *
ty  on *

tx  will be consistent or inconsistent. 
(5 marks) 

END OF PAPER
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