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Introduction

Introduction

What is econometrics, and why study it?

Econometrics is the application of statistical methods to the quantification and
critical assessment of hypothetical economic relationships using data. It is with
the aid of econometrics that we discriminate between competing economic
theories and put numerical clothing onto the successful ones. Econometric
analysis may be motivated by a simple desire to improve our understanding
of how the economy works, at either the microeconomic or macroeconomic
level, but more often it is undertaken with a specific objective in mind. In

the private sector, the financial benefits that accrue from a sophisticated
understanding of relevant markets and an ability to predict change may be the
driving factor. In the public sector, the impetus may come from an awareness
that evidence-based policy initiatives are likely to have the greatest impact.

It is now generally recognised that nearly all professional economists, not
just those actually working with data, should have a basic understanding
of econometrics. There are two major benefits. One is that it facilitates
communication between econometricians and the users of their work.
The other is the development of the ability to obtain a perspective on
econometric work and to make a critical evaluation of it. Econometric
work is more robust in some contexts than in others. Experience with the
practice of econometrics and a knowledge of the potential problems that
can arise are essential for developing an instinct for judging how much
confidence should be placed on the findings of a particular study.

Such is the importance of econometrics that, in common with intermediate
macroeconomics and microeconomics, an introductory course forms part
of the core of any serious undergraduate degree in economics and is a
prerequisite for admission to a serious Master’s level course in economics
or finance.

Aims

The aim of 20 Elements of econometrics is to give you an opportunity
to develop an understanding of econometrics to a standard that will equip
you to understand and evaluate most applied analysis of cross-sectional
data and to be able to undertake such analysis yourself. The restriction to
cross-sectional data (data raised at one moment in time, often through a
survey of households, individuals, or enterprises) should be emphasised
because the analysis of time series data (observations on a set of variables
over a period of time) is much more complex. Chapters 11-13 of the
textbook and this guide are devoted to the analysis of time series data, but,
beyond very simple applications, the objectives are confined to giving you
an understanding of the problems involved and making you aware of the
need for a Master’s level course if you intend to work with such data.

Specifically the aims of the course are to:

* develop an understanding of the use of regression analysis and related
techniques for quantifying economic relationships and testing economic
theories

* equip you to read and evaluate empirical papers in professional journals

» provide you with practical experience of using mainstream regression
programmes to fit economic models.
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Learning outcomes

By the end of this course you should be able to:

* describe and apply the classical regression model and its application to
cross-sectional data

e describe and apply the:

o Gauss-Markov conditions and other assumptions required in the
application of the classical regression model

o reasons for expecting violations of these assumptions in certain
circumstances

o tests for violations

o potential remedial measures, including, where appropriate, the use
of instrumental variables

* recognise and apply the advantages of logit, probit and similar models
over regression analysis when fitting binary choice models

* use regression, logit and probit analysis to quantify economic
relationships using standard regression programmes (Stata and
EViews) in simple applications

* describe and explain the principles underlying the use of maximum
likelihood estimation

* apply regression analysis to fit time series models using stationary time
series, with awareness of some of the econometric problems specific to
time series applications (for example, autocorrelation) and remedial
measures

* recognise the difficulties that arise in the application of regression
analysis to nonstationary time series, know how to test for unit roots,
and know what is meant by cointegration.

How to make use of the text

The only reading required for this course is my text:

C. Dougherty, Introduction to Econometrics (Oxford: Oxford University Press,
2011) fourth edition [ISBN 9780199567089].

The syllabus is the same as that for EC220 Introduction to Econometrics,
the corresponding internal course at the London School of Economics.
The text has been written to cover it with very little added and nothing
subtracted.

When writing a text, there is a temptation to include a large amount of
non-core material that may potentially be of use or interest to students.
There is much to be said for this, since it allows the same text to be used
to some extent for reference as well as a vehicle for a taught course.
However, my text is stripped down to nearly the bare minimum for two
reasons. First, the core material provides quite enough content for an
introductory year-long course and I think that students should initially
concentrate on gaining a good understanding of it. Second, if the text

is focused narrowly on the syllabus, students can read through it as a
continuous narrative without a need for directional guidance. Obviously,
this is particularly important for those who are studying the subject on
their own, as is the case for most of those enrolled on 20 Elements of
econometrics.
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An examination syllabus is provided as an appendix to this guide, but its
function is mostly to indicate the expected depth of understanding of each
topic, rather than the selection of the topics themselves.

How to make use of this guide

The function of this subject guide differs from that of other guides you
may be using. Unlike those for other courses, this subject guide acts as

a supplementary resource, with the textbook as the main resource. Each
chapter forms an extension to a corresponding chapter in the textbook
with the same title. You must have a copy of the textbook to be able to
study this course. The textbook will give you the information you need to
carry out the activities and achieve the learning outcomes in the subject
guide.

The main purpose of the guide is to provide you with opportunities to

gain experience with econometrics through practice with exercises. Each
chapter of the guide falls into two parts. The first part begins with an
overview of the corresponding chapter in the text. Then there is a checklist
of learning outcomes anticipated as a result of studying the chapter in the
text, doing the exercises in the guide, and making use of the corresponding
resources on the website. Finally, in some of the chapters, comes a section
headed ‘Further material’. This consists of new topics that may be included
in the next edition of the text. The second part of each chapter consists of
additional exercises, followed by answers to the starred exercises in the
text and answers to the additional exercises.

You should organise your studies in the following way:

* first read this introductory chapter

* read the Overview section from the Review chapter of the subject guide
* read the Review chapter of the textbook and do the starred exercises

* refer to the subject guide for answers to the starred exercises in the text
and for additional exercises

* check that you have covered all the items in the learning outcomes
section in the subject guide.

You should repeat this process for each of the numbered chapters. Note
that the subject guide chapters have the same titles as the chapters in the
text. In those chapters where there is a further material section in the
subject guide, this should be read after reading the chapter in the text.

How to make use of the website

You should make full use of the resources available on the website:
http://econ.lse.ac.uk/courses/ec220/. Here you will find PowerPoint
slideshows that provide a graphical treatment of the topics covered

in the textbook, data sets for practical work, statistical tables, and a
downloadable copy of this guide. This material will also be found at the
Online Resource Centres maintained by the publisher, Oxford University
Press:

www.oup.com/uk/orc/bin/9780199567089

At the LSE website, you will also have access to the additional teaching
materials, mainly the weekly problem sets, used by the internal students.
There are no password restrictions.
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Slideshows

The lectures for the LSE internal course EC220 Introduction to
econometrics are given entirely in the form of PowerPoint slideshows.
My function, as the lecturer, is to explain what is going on as we go
through them. The slideshows on the website are identical, except that
narrative boxes have been added to provide the explanations that I give
in the lectures. Going through the website slideshows is thus just about
a perfect substitute for attending lectures. This explains why I can use

an underfilled 240-seat lecture theatre, despite the fact that about 300
students are enrolled on my course. Most students simply never show up.
Most prefer to go through the slideshows at a time of their own choosing
and at their own pace.

In principle you will be able to acquire mastery of the subject by studying
the textbook with the support of this guide and doing the exercises
conscientiously. However, I strongly recommend that you do study all the
slideshows as well. Some do not add much to the material in the textbook,
and these you can skim through quickly. Some, however, provide a much
more graphical treatment than is possible with print and they should
improve your understanding. Some present and discuss regression results
and other hands-on material that could not be included in the text for lack
of space, and they likewise should be helpful.

Data sets

To use the data sets, you must have access to a proper statistics application
with facilities for regression analysis, such as Stata or EViews. The student
versions of such applications are adequate for doing all, or almost all,

the exercises and of course are much cheaper than the professional ones.
Product and pricing information can be obtained from the applications’
websites, the URL usually being the name of the application sandwiched
between ‘www.” and ‘.com’.

If you do not have access to a commercial econometrics application, you
should use gretl. This is a sophisticated application almost as powerful
as the commercial ones, and it is free. See the gretl manual on the OUP
website for further information.

Whatever you do, do not be tempted to try to get by with the regression
engines built into some spreadsheet applications, such as Microsoft Excel.
They are not remotely adequate for your needs.

There are three major data sets on the website. The most important

one, for the purposes of this guide, is the Consumer Expenditure Survey
(CES) data set. You will find on the website versions in the formats used
by Stata, EViews and gretl. If you are using some other application, you
should download the text version (comma-delimited ASCII) and import it.
Answers to all of the exercises are provided in the relevant chapters of this
guide.

The exercises for the CES data set cover Chapters 1-10 of the text. For
Chapters 11-13, you should use the Demand Functions data set, another
major data set, to do the additional exercises in the corresponding
chapters of this guide. Again you should download the data set in
appropriate format. For these exercises, also, answers are provided

The third major data set on the website is the Educational Attainment and
Earnings Function data set, which provides practical work for the first 10
chapters of the text and Chapter 14. No answers are provided, but many
parallel examples will be found in the text.
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Online study resources

In addition to the subject guide and the Essential reading, it is crucial that
you take advantage of the study resources that are available online for this
course, including the virtual learning environment (VLE) and the Online
Library.

You can access the VLE, the Online Library and your University of London
email account via the Student Portal at:
http://my.londoninternational.ac.uk

You should have received your login details for the Student Portal with
your official offer, which was emailed to the address that you gave

on your application form. You have probably already logged in to the
Student Portal in order to register! As soon as you registered, you will
automatically have been granted access to the VLE, Online Library and
your fully functional University of London email account.

If you forget your login details at any point, please email:
uolia.support@london.ac.uk quoting your student number.

The VLE

The VLE, which complements this subject guide, has been designed to
enhance your learning experience, providing additional support and a
sense of community. It forms an important part of your study experience
with the University of London and you should access it regularly.

The VLE provides a range of resources for EMFSS courses:

* Self-testing activities: Doing these allows you to test your own
understanding of subject material.

* Electronic study materials: The printed materials that you receive from
the University of London are available to download, including updated
reading lists and references.

* Past examination papers and Examiners’ commentaries: These provide
advice on how each examination question might best be answered.

* A student discussion forum: This is an open space for you to discuss
interests and experiences, seek support from your peers, work
collaboratively to solve problems and discuss subject material.

* Videos: There are recorded academic introductions to the subject,
interviews and debates and, for some courses, audio-visual tutorials
and conclusions.

* Recorded lectures: For some courses, where appropriate, the sessions
from previous years’ Study Weekends have been recorded and made
available.

* Study skills: Expert advice on preparing for examinations and
developing your digital literacy skills.

e TFeedback forms.

Some of these resources are available for certain courses only, but we
are expanding our provision all the time and you should check the VLE
regularly for updates.

Making use of the Online Library

The Online Library contains a huge array of journal articles and other
resources to help you read widely and extensively.
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To access the majority of resources via the Online Library you will either
need to use your University of London Student Portal login details, or you
will be required to register and use an Athens login:
http://tinyurl.com/ollathens

The easiest way to locate relevant content and journal articles in the Online
Library is to use the Summon search engine.

If you are having trouble finding an article listed in a reading list, try
removing any punctuation from the title, such as single quotation marks,
question marks and colons.

For further advice, please see the online help pages:
www.external.shl.lon.ac.uk/summon/about.php

Prerequisite for studying this subject

The prerequisite for studying this subject is a solid background in
mathematics and elementary statistical theory. The mathematics requirement
is a basic understanding of multivariate differential calculus. With regard

to statistics, you must have a clear understanding of what is meant by the
sampling distribution of an estimator, and of the principles of statistical
inference and hypothesis testing. This is absolutely essential. I find that
most problems that students have with introductory econometrics are not
econometric problems at all but problems with statistics, or rather, a lack of
understanding of statistics. That is why students of this subject are required
to study 02 Introduction to economics and either 04a Statistics 1 or
04b Statistics 2 and either 05a Mathematics 1 or 05b Mathematics
2 or 174 Calculus before they can take this course. There are no short
cuts. If you do not have this background, you should put your study of
econometrics on hold and study statistics first. Otherwise there will be core
parts of the econometrics syllabus that you do not begin to understand.

In addition, it would be helpful if you have some knowledge of economics.
However, although the examples and exercises relate to economics, most
of them are so straightforward that a previous study of economics is not a
requirement.

Application of linear algebra to econometrics

At the end of this guide you will find a primer on the application of linear
algebra (matrix algebra) to econometrics. It is not part of the syllabus for
the examination, and studying it is unlikely to confer any advantage for
the examination. It is provided for the benefit of those students who intend
to take a further course in econometrics, especially at the Master’s level.
The present course is ambitious, by undergraduate standards, in terms of
its coverage of concepts and, above all, its focus on the development of an
intuitive understanding. For its purposes, it has been quite sufficient and
appropriate to work with uncomplicated regression models, typically with
no more than two explanatory variables.

However, when you progress to the next level, it is necessary to generalise
the theory to cover multiple regression models with many explanatory
variables, and linear algebra is ideal for this purpose. The primer does not
attempt to teach it. There are many excellent texts and there is no point
in duplicating them. The primer assumes that such basic study has already
been undertaken, probably taking about 20 to 50 hours, depending on the
individual. It is intended to show how the econometric theory in the text
can be handled with this more advanced mathematical approach, thus
serving as preparation for the higher-level course.
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The examination

Important: the information and advice given here are based on the
examination structure used at the time this guide was written. Please
note that subject guides may be used for several years. Because of this
we strongly advise you to always check both the current Regulations for
relevant information about the examination, and the VLE where you
should be advised of any forthcoming changes. You should also carefully
check the rubric/instructions on the paper you actually sit and follow
those instructions.

Remember, it is important to check the VLE for:

* up-to-date information on examination and assessment arrangements
for this course

* where available, past examination papers and Examiners’ commentaries
for the course which give advice on how each question might best be
answered.
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Review: Random variables and sampling theory

Review: Random variables and sampling
theory

Overview

The textbook and this guide assume that you have previously studied basic
statistical theory and have a sound understanding of the following topics:

* descriptive statistics (mean, median, quartile, variance, etc.)
* random variables and probability
* expectations and expected value rules
* population variance, covariance, and correlation
* sampling theory and estimation
* unbiasedness and efficiency
* Joss functions and mean square error
e normal distribution
* hypothesis testing, including:
o ttests
o Type I and Type II error
o the significance level and power of a t test

o one-sided versus two-sided t tests

* confidence intervals
* convergence in probability, consistency, and plim rules
* convergence in distribution and central limit theorems.

There are many excellent textbooks that offer a first course in statistics.
The Review chapter of my textbook is not a substitute. It has the much
more limited objective of providing an opportunity for revising some key
statistical concepts and results that will be used time and time again in

the course. They are central to econometric analysis and if you have not
encountered them before, you should postpone your study of econometrics
and study statistics first.

Learning outcomes

After working through the corresponding chapter in the textbook, studying
the corresponding slideshows, and doing the starred exercises in the
textbook and the additional exercises in this guide, you should be able

to explain what is meant by all of the items listed in the Overview. You
should also be able to explain why they are important. The concepts of
efficiency, consistency, and power are often misunderstood by students
taking an introductory econometrics course, so make sure that you aware
of their precise meanings.
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Additional exercises

[Note: Each chapter has a set of additional exercises. The answers to
them are provided at the end of the chapter after the answers to the
starred exercises in the text.]

ARA1
A random variable X has a continuous uniform distribution from 0 to 2.
Define its probability density function.
probability
density
0 2 X
AR.2
Find the expected value of X in Exercise AR.1, using the expression given
in Box R.1 in the text.
AR.3
Derive E(X?) for X defined in Exercise AR.1, using the expression given in
Box R.1.
AR.4
Derive the population variance and the standard deviation of X as defined
in Exercise AR.1, using the expression given in Box R.1.
AR5

Using equation (R.9), find the variance of the random variable X defined
in Exercise AR.1 and show that the answer is the same as that obtained in
Exercise AR.4. (Note: You have already calculated E(X) in Exercise AR.2
and E(X?) in Exercise AR.3.)

AR.6

Suppose that a random variable X has a normal distribution with unknown
mean x and variance 2. To simplify the analysis, we shall assume that o2

is known. Given a sample of observations, an estimator of x is the sample
mean, X. When performing a (two-sided) 5 per cent test of the null
hypothesis H: u = u,, it is usual to choose the upper and lower 2.5 per
cent tails of the distribution conditional on H as the rejection regions, as
shown in the first figure opposite. However, suppose that someone instead
chooses the central 5 per cent of the distribution as the rejection region,

as in the second figure opposite. Give a technical explanation, using
appropriate statistical concepts, of why this is not a good idea.
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Figure 2: Central 5 per cent chosen as rejection region.

AR.7

Suppose that a random variable X has a normal distribution with unknown
mean x and variance 2. To simplify the analysis, we shall assume that o2

is known. Given a sample of observations, an estimator of x is the sample
mean, X. An investigator wishes to test H: 1 = 0 and believes that the
true value cannot be negative. The appropriate alternative hypothesis is
therefore H : 1 > 0 and the investigator decides to perform a one-sided
test. However, the investigator is mistaken because u could in fact be
negative. What are the consequences of erroneously performing a one-
sided test when a two-sided test would have been appropriate?

AR.8

A random variable X has a continuous uniform distribution over the
interval from O to 6, where 6 is an unknown parameter. The following
three estimators are used to estimate 6, given a sample of n observations
on X:
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AR.9

(a) twice the sample mean
(b) the largest value of X in the sample
(c) the sum of the largest and smallest values of X in the sample.

Explain verbally whether or not each estimator is (1) unbiased (2)
consistent.

Suppose that a random variable X has a normal distribution with mean u
and variance o 2. Given a sample of n independent observations, it can

be shown that s* =

! 1 Z(X - X )2 is an unbiased estimator of 2. Is s
n—

either an unbiased or a consistent estimator of ¢?

Answers to the starred exercises in the textbook

R.2

R.4

A random variable X is defined to be the larger of the two values when
two dice are thrown, or the value if the values are the same. Find the
probability distribution for X.

Answer:

The table shows the 36 possible outcomes. The probability distribution
is derived by counting the number of times each outcome occurs and
dividing by 36. The probabilities have been written as fractions, but they
could equally well have been written as decimals.

green red | 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 2 3 4 5 6

3 3 3 3 4 5 6

4 4 4 4 4 5 6

5 5 5 5 5 5 6

6 6 6 6 6 6 6
Value of X 1 2 3 4 5 6
Frequency 1 3 5 7 9 11

Probability 1/36  3/36  5/36 7/36  9/36 11/36

Find the expected value of X in Exercise R.2.
Answer:

The table is based on Table R.2 in the text. It is a good idea to guess

the outcome before doing the arithmetic. In this case, since the higher
numbers have the largest probabilities, the expected value should clearly
lie between 4 and 5. If the calculated value does not conform with the
guess, it is possible that this is because the guess was poor. However, it
may be because there is an error in the arithmetic, and this is one way of
catching such errors.
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X P Xp

1 1/36 1/36
2 3/36 6/36
3 5/36 15/36
4 7/36 28/36
5 9/36 45/36
6 11/36 66/36

Total 161/36 = 4.4722

Calculate E(X?) for X defined in Exercise R.2.
Answer:

The table is based on Table R.3 in the text. Given that the largest values
of X2 have the highest probabilities, it is reasonable to suppose that the
answer lies somewhere in the range 15-30. The actual figure is 21.97.

X X? D X?p

1 1 1/36 1/36

2 4 3/36 12/36
3 9 5/36 45/36
4 16 7/36 112/36
5 25 9/36 225/36
6 36 11/36 396/36

Total 791/36 = 21.9722

Calculate the population variance and the standard deviation of X as
defined in Exercise R.2, using the definition given by equation (R.8).

Answer: The table is based on Table R.4 in the textbook. In this case it

is not easy to make a guess. The population variance is 1.97, and the
standard deviation, its square root, is 1.40. Note that four decimal places
have been used in the working, even though the estimate is reported to
only two. This is to eliminate the possibility of the estimate being affected
by rounding error.

X p X—puy X-n) K-u)p
1 1/36 -3.4722  12.0563 0.3349
2 3/36 —2.4722 6.1119 0.5093
3 5/36 -1.4722 2.1674 0.3010
4 7/36 -0.4722 0.2230 0.0434
5 9/36 0.5278 0.2785 0.0696
6 11/36 1.5278 2.3341 0.7132

Total 1.9715
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R.12

R.14

R.16

R.19

Using equation (R.9), find the variance of the random variable X defined
in Exercise R.2 and show that the answer is the same as that obtained in
Exercise R.10. (Note: You have already calculated 4, in Exercise R.4 and
E(X?) in Exercise R.7.)

Answer: E(X?) is 21.9722 (Exercise R.7). E(X) is 4.4722 (Exercise R.4),
so u; is 20.0006. Thus the variance is 21.9722 — 20.0006 = 1.9716. The
last-digit discrepancy between this figure and that in Exercise R.10 is due
to rounding error.

Suppose a variable Y is an exact linear function of X:
Y =7+ uX
where 1 and p are constants, and suppose that Z is a third variable. Show
thatp , = p,,.
Answer:

We start by noting that (

7)=
£l 1)z -Z)] E{u X, Xz, -Z)

" oIl 2] el w0l 2]
il - Xz, - )}

el x) ez, -

Show that, when you have n observations, the condition that the
generalized estimator (A X, + ... + 4 X ) should be an unbiased estimator
ofu isA + .. +4 =1,

Answer:

E(Z) =E(UX +..+1X)
=EQX)+ .. +EQX)
=LEX) + ... + LEX)
=g+ oo+ A,
=0, + ... +4)u,.

Thus E(Z) = u, requires A, + ... + 4 = 1.

In general, the variance of the distribution of an estimator decreases
when the sample size is increased. Is it correct to describe the estimator as
becoming more efficient?

Answer:

No, it is incorrect. When the sample size increases, the variance of the
estimator decreases, and as a consequence it is more likely to give accurate
results. Because it is improving in this important sense, it is very tempting
to describe the estimator as becoming more efficient. But it is the wrong
use of the term. Efficiency is a comparative concept that is used when

you are comparing two or more alternative estimators, all of them being
applied to the same data set with the same sample size. The estimator
with the smallest variance is said to be the most efficient. You cannot use
efficiency as suggested in the question because you are comparing the
variances of the same estimator with different sample sizes.



R.21

R.26

R.27

R.28
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Suppose that you have observations on three variables X, Y, and Z, and
suppose that Y is an exact linear function of Z:

Y=a+ bZ
where a and b are constants. Show that r,, = r, . (This is the counterpart
of Exercise R.14.)
Answer:

We start by noting that (Y,. -Y ): b(Z —Z ) Then

n

Zn:(Xi_)?XYi_f) Zb(Xi—YXZ,-—Z)

i=1 i=1

R e T R

i=1 i=1 i=1

(x, - Xz, - Z)

i=1

g

i=1 i=1

Show that, in Figures R.18 and R.22, the probabilities of a Type II error are
0.15 in the case of a 5 per cent significance test and 0.34 in the case of a

1 per cent test. Note that the distance between 4, and ., is three standard
deviations. Hence the right-hand 5 per cent rejection region begins 1.96
standard deviations to the right of . This means that it is located 1.04
standard deviations to the left of x,. Similarly, for a 1 per cent test, the
right-hand rejection region starts 2.58 standard deviations to the right of
1, which is 0.42 standard deviations to the left of 4.

Answer:

For the 5 per cent test, the rejection region starts 3 — 1.96 = 1.04 standard
deviations below x,, given that the distance between x, and y, is 3
standard deviations. See Figure R.18. According to the standard normal
distribution table, the cumulative probability of a random variable lying
1.04 standard deviations (or less) above the mean is 0.8508. This implies
that the probability of it lying 1.04 standard deviations below the mean is
0.1492. For the 1 per cent test, the rejection region starts 3 — 2.58 = 0.42
standard deviations below the mean. See Figure R.22. The cumulative
probability for 0.42 in the standard normal distribution table is 0.6628, so
the probability of a Type II error is 0.3372.

Explain why the difference in the power of a 5 per cent test and a 1 per
cent test becomes small when the distance between ., and x, becomes
large.

Answer:

The powers of both tests tend to one as the distance between yx, and x,
becomes large. The difference in their powers must therefore tend to zero.

A researcher is evaluating whether an increase in the minimum hourly
wage has had an effect on employment in the manufacturing industry in
the following three months. Taking a sample of 25 firms, what should she
conclude if:
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R.33

R.37

(a) the mean decrease in employment is 9 per cent, and the standard error
of the mean is 5 per cent

(b)the mean decrease is 12 per cent, and the standard error is 5 per cent
(c) the mean decrease is 20 per cent, and the standard error is 5 per cent

(d)there is a mean increase of 10 per cent, and the standard error is 5 per
cent?

Answer:

There are 24 degrees of freedom, and hence the critical values of t at the
5 per cent, 1 per cent, and 0.1 per cent levels are 2.06, 2.80, and 3.75,
respectively.

(a) The t statistic is —1.80. Fail to reject H at the 5 per cent level.
(b)t = -2.40. Reject H, at the 5 per cent level but not the 1 per cent level.

(c)t = -4.00. Reject H, at the 1 per cent level. Better, reject at the 0.1 per
cent level.

(d)t = 2.00. Fail to reject H, at the 5 per cent level.

In Exercise R.28, a researcher was evaluating whether an increase in

the minimum hourly wage has had an effect on employment in the
manufacturing industry. Explain whether she might have been justified in
performing one-sided tests in cases (a) — (d), and determine whether her
conclusions would have been different.

Answer:

First, there should be a discussion of whether the effect of an increase in
the minimum wage could have a positive effect on employment. If it is
decided that it cannot, we can use a one-sided test and the critical values
of t at the 5 per cent, 1 per cent, and 0.1 per cent levels become 1.71,
2.49, and 3.47, respectively.

1. The t statistic is —1.80. We can now reject H, at the 5 per cent level.

2. t = -2.40. No change, but much closer to rejecting at the 1 per cent
level.

3. t = -4.00. No change. Reject at the 1 per cent level (and 0.1 per cent
level).

4. t = 2.00. Here there is a problem because the coefficient has the
unexpected sign. In principle we should stick to our guns and fail to
reject H,. However we should consider two further possibilities. One
is that the justification for a one-sided test is incorrect (not very likely
in this case). The other is that the model is misspecified in some way
and the misspecification is responsible for the unexpected sign. For
example, the coefficient might be distorted by omitted variable bias, to
be discussed in Chapter 6.

A random variable X has unknown population mean z, and population
variance 0')2(. A sample of n observations {X, ..., X } is generated. Show
that
1 1 1 1 1
Z==—X+=-X,+=-X;+.+—X, +—X
2 4 8 2!

n-1 2,,_1 n

is an unbiased estimator of x,. Show that the variance of Z does not
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tend to zero as n tends to infinity and that therefore Z is an inconsistent
estimator, despite being unbiased.

Answer:

The weights sum to unity, so the estimator is unbiased. However its
variance is

I (R R T SRR S
Zz 4 16 4n—1 41171 X

This tends to 0')2( /3 as n becomes large, not zero, so the estimator is
inconsistent.

Note: the sum of a geometric progression is given by

n+l
l+a+a2+...+a"=1 a_.
l-a
Hence
1 1 1 1 1 1 1 1 1
—+—+—+..+ + =—|1l+—+ ...+ +
2 4 8 2mt 2t o20 2 272 ) 2
n-1
(L
_1>< 2 N 1
_2 1 2n—1
1——
2
1 I
__2Vl—l+2rl—1_
and
1 1 1 1 1 1 1 1
—+—+..+ + =—|1+—+..+ —
4 16 gmtoogqnt 4 4 472 ) 4!

as n becomes large.

Answers to the additional exercises

AR.1
The total area under the function over the interval [0, 2] must be equal to
1. Since the length of the rectangle is 2, its height must be 0.5. Hence f(X)
=0.5for0 < X< 2 andf(X) =0forX < 0andX > 2.
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Obviously, since the distribution is uniform, the expected value of X is 1.
However we will derive this formally.

E(X)= ij(X)dX = io.sx dX = {XTZ} g [ﬁ} - [ﬁ} =1.

0

The expected value of X? is given by

2

E(x?)=[x f(x)ax = io.sx2 dx = {X?}} = [2} - {%} ~13333.

0

The variance of X is given by

E([X -, )= i [X =, Pr(x)dx = jO.S[X “1Fax = j(o.sx2 — X +0.5)dx

0 0

3 2 2
XA A8 |- []=0.3333.
6 2 2o L6

The standard deviation is equal to the square root, 0.5774.

From Exercise AR.3, E(X?) = 1.3333. From Exercise AR.2, the square of
E(X) is 1. Hence the variance is 0.3333, as in Exercise AR.4.

The following discussion assumes that you are performing a 5 per cent
significance test, but it applies to any significance level.

If the null hypothesis is true, it does not matter how you define the 5 per
cent rejection region. By construction, the risk of making a Type I error
will be 5 per cent. Issues relating to Type II errors are irrelevant when the
null hypothesis is true.

The reason that the central part of the conditional distribution is not used
as a rejection region is that it leads to problems when the null hypothesis
is false. The probability of not rejecting H, when it is false will be lower. To
use the obvious technical term, the power of the test will be lower.

The figure opposite shows the power functions for the test using the
conventional upper and lower 2.5 per cent tails and the test using the
central region. The horizontal axis is the difference between the true value
and the hypothetical value y, in terms of standard deviations. The vertical
axis is the power of the test. The first figure has been drawn for the case
where the true value is greater than the hypothetical value. The second
figure is for the case where the true value is lower than the hypothetical
value. It is the same, but reflected horizontally.

The greater the difference between the true value and the hypothetical
mean, the more likely it is that the sample mean will lie in a tail of the
distribution conditional on H, being true, and so the more likely it is that
the null hypothesis will be rejected by the conventional test. The figures
show that the power of the test approaches 1 asymptotically. However, if
the central region of the distribution is used as the rejection region, the
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probability of the sample mean lying in it will diminish as the difference
between the true and hypothetical values increases, and the power of the
test approaches zero asymptotically. This is an extreme example of a very
bad test procedure.

1.0
0.8 -

conventional rejection region

(upper and lower 2.5% tails)
0.6 A N
0.4
0.2

rejection region central 5%
0.0 T ; T
0 1 2 3 4

Figure 3: Power functions of a conventional 5 per cent test and one using
the central region (true value > ).

1.0
10.8

conventional rejection region

(upper and lower 2.5% tails)
< {0.6
10.4
10.2

rejection region central 5%
T : T 0.0
-4 -3 -2 -1 0

Figure 4: Power functions of a conventional 5 per cent test and one using
the central region (true value < 1.).

AR.7

We will assume for sake of argument that the investigator is performing
a 5 per cent significance test, but the conclusions apply to all significance
levels.

If the true value is 0, the null hypothesis is true. The risk of a Type I error
is, by construction, 5 per cent for both one-sided and two-sided tests.
Issues relating to Type II error do not arise because the null hypothesis is
true.

If the true value is positive, the investigator is lucky and makes the gain
associated with a one-sided test. Namely, the power of the test is uniformly
higher than that for a two-sided test for all positive values of x. The power
functions for one-sided and two-sided tests are shown in the first figure
below.
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If the true value is negative, the power functions are as shown in the
second figure. That for the two-sided test is the same as that in the first
figure, but reflected horizontally. The larger (negatively) is the true value
of u, the greater will be the probability of rejecting H, and the power
approaches 1 asymptotically. However, with a one-sided test, the power
function will decrease from its already very low value. The power is not
automatically zero for true values that are negative because even for these
it is possible that a sample might have a mean that lies in the right tail of
the distribution under the null hypothesis. But the probability rapidly falls
to zero as the (negative) size of u grows.

1.0

0.8

one-sided 5% test
two-sided 5% test

0.6

0.4

0.2

0.0

0 1 2 3 4 5
Figure 5: Power functions of one-sided and two-sided 5 per cent tests
(true value > 0).

0.8
two-sided 5% test
0.6 q
0.4
0.2 4
one-sided 5% test
T T ; 0-6

4 3 2 -1 0

Figure 6: Power functions of one-sided and two-sided 5 per cent tests
(true value < 0).
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(a) It is evident that E(X ): E()? ): g Hence 2X is an unbiased estimator

2 2
of . The variance of X is G—X. The variance of 2X is therefore 40—X .
n n

This will tend to zero as n tends to infinity. Thus the distribution of 2X
will collapse to a spike at # and the estimator is consistent.

(b) The estimator will be biased downwards since the highest value of X

in the sample will always be less than §. However, as n increases, the
distribution of the estimator will be increasingly concentrated in a
narrow range just below 6. To put it formally, the probability of

the highest value being more than ¢ below 0 will be (1 - %J and

this will tend to zero, no matter how small ¢ is, as n tends to infinity.

The estimator is therefore consistent. It can in fact be shown that

n

the expected value of the estimator is 6 and this tends to 6 as n

n+1
becomes large.

(c) The estimator will be unbiased. Call the maximum value of X in the

25

20

15

10

sample X and the minimum value X__ . Given the symmetry of the
distribution of X, the distributions of X _ and X . will be identical,
except that that of X__ will be to the right of 0 and that of X . will
be to the left of 6. Hence, for any n, E(X,, )-0=60-E(X,, ) and
the expected value of their sum is equal to 8. The estimator will be
consistent for the same reason as explained in (b).

The first figure below shows the distributions of the estimators (a)

and (b) for 1,000,000 samples with only four observations in each
sample, with 0 = 1. The second figure shows the distributions when the
number of observations in each sample is equal to 100. The table gives
the means and variances of the distributions as computed from the
results of the simulations. If the mean square error is used to compare
the estimators, which should be preferred for sample size 4? For sample
size 100?

(b) (@)

0 0.5 1 1.5 2

Figure 7: Sample size 4.
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25
20
15 (b)
10
5 -
J (a)
0 T T
0 0.5 1 15
Figure 8: Sample size 100
Sample size 4 Sample size 100
(@ (b) (@ (b)
mean 1.0000 | 0.8001 | 1.0000 | 0.9901
variance 0.0833 | 0.0267 | 0.0033 | 0.0001
estimated bias 0.0000 | —0.1999 | 0.0000 | —0.0099
estimated mean | (g4 | (0667 | 0.0033 | 0.0002
square error

It can be shown (Larsen and Marx, An Introduction to Mathematical
Statistics and Its Applications, p.382, that estimator (b) is biased
downwards by an amount 6/(n + 1) and that its variance is n6%/(n +
1)2(n + 2), while estimator (a) has variance 68%/3n. How large does n have
to be for (b) to be preferred to (a) using the mean square error criterion?

The crushing superiority of (b) over (a) may come as a surprise, so
accustomed are we to finding that the sample mean in the best estimator
of a parameter. The underlying reason in this case is that we are estimating
a boundary parameter, which, as its name implies, defines the limit of a
distribution. In such a case the optimal properties of the sample mean are
no longer guaranteed and it may be eclipsed by a score statistic such as the
largest observation in the sample. Note that the standard deviation of the
sample mean is inversely proportional to Jn , while that of (b) is inversely
proportional to n (disregarding the differences betweenn,n +1, and n +
2). (b) therefore approaches its limiting (asymptotically unbiased) value
much faster than (a) and is said to be superconsistent. We will encounter
superconsistent estimators again when we come to cointegration in
Chapter 13. Note that if we multiply (b) by (n + 1)/n, it is unbiased for
finite samples as well as superconsistent.
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AR.9

We will refute the unbiasedness proposition by considering the more
general case where Z?2 is an unbiased estimator of §2. We know that

E{z -0) = E(z?)-208(z) + 0° =267 - 20E(2).
Hence
E(Z):Q—%E{(Z —9)2} :

Z is therefore a biased estimator of 8 except for the special case where Z
is equal to 6 for all samples, that is, in the trivial case where there is no
sampling error.

Nevertheless, since a function of a consistent estimator will, under quite
general conditions, be a consistent estimator of the function of the
parameter, s will be a consistent estimator of ¢.

23



20 Elements of econometrics

Notes

24



Chapter 1: Simple regression analysis

Chapter 1: Simple regression analysis

Overview

This chapter introduces the least squares criterion of goodness of fit and
demonstrates, first through examples and then in the general case, how

it may be used to develop expressions for the coefficients that quantify
the relationship when a dependent variable is assumed to be determined
by one explanatory variable. The chapter continues by showing how the
coefficients should be interpreted when the variables are measured in
natural units, and it concludes by introducing R?, a second criterion of
goodness of fit, and showing how it is related to the least squares criterion
and the correlation between the fitted and actual values of the dependent
variable.

Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and
the additional exercises in this guide, you should be able to explain what is
meant by:

* dependent variable

* explanatory variable (independent variable, regressor)

* parameter of a regression model

* the nonstochastic component of a true relationship

* the disturbance term

* the least squares criterion of goodness of fit

e ordinary least squares (OLS)

* the regression line

 fitted model

* fitted values (of the dependent variable)

e residuals

* total sum of squares, explained sum of squares, residual sum of squares
* R

In addition, you should be able to explain the difference between:

* the nonstochastic component of a true relationship and a fitted
regression line, and

e the values of the disturbance term and the residuals.

25
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Additional exercises

A11
The output below gives the result of regressing FDHO, annual household
expenditure on food consumed at home, on EXP, total annual household
expenditure, both measured in dollars, using the Consumer Expenditure
Survey data set. Give an interpretation of the coefficients.
reg FDHO EXP if FDHO>0
Source | SS df MS Number of obs = 868
————————————— e F( 1, 866) = 380.37
Model | 911005795 1 911005795 Prob > F = 0.0000
Residual | 2.0741e+09 866 2395045.39 R-squared = 0.3052
————————————— t-m— Adj R-squared = 0.3044
Total | 2.9851e+09 867 3443039.33 Root MSE = 1547.6
FDHO | Coef Std. Err. t P>t [95% Conf. Intervall]
_____________ +________________________________________________________________
EXP | .0527204 .0027032 19.50 0.000 .0474149 .058026
cons | 1922.939 96.50688 19.93 0.000 1733.525 2112.354
A1.2
Download the CES data set from the website (see Appendix B of the text),
perform a regression parallel to that in Exercise A1.2 for your category of
expenditure, and provide an interpretation of the regression coefficients.
A1.3
The output shows the result of regressing the weight of the respondent, in
pounds, in 2002 on the weight in 1985, using EAEF Data Set 22. Provide
an interpretation of the coefficients. Summary statistics for the data are
also provided.
reg WEIGHT02 WEIGHT85
Source | SS df MS Number of obs = 540
————————————— o F( 1, 538) = 1149.83
Model | 620662.43 1 620662.43 Prob > F = 0.0000
Residual | 290406.035 538 539.788169 R-squared = 0.6812
————————————— e bt Adj R-squared = 0.6807
Total | 911068.465 539 1690.294 Root MSE = 23.233
WEIGHTO02 | Coef Std. Err t P>\t [95% Conf. Interval]
_____________ +________________________________________________________________
WEIGHTS8S5 | 1.013353 .0298844 33.91 0.000 .9546483 1.072057
_cons | 23.61869 4.760179 4.96 0.000 14.26788 32.96951
sum WEIGHT85 WEIGHTO02
Variable | Obs Mean Std. Dev Min Max
_____________ +________________________________________________________
WEIGHTS8S5 | 540 155.7333 33.48673 89 300
WEIGHTO02 | 540 181.4315 41.11319 103 400
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Al1.4

A1.6

Chapter 1: Simple regression analysis

The output shows the result of regressing the hourly earnings of the
respondent, in dollars, in 2002 on height in 1985, measured in inches,
using FAEF Data Set 22. Provide an interpretation of the coefficients,
comment on the plausibility of the interpretation, and attempt to give an

explanation.
reg EARNINGS

Source

Model
Residual

—_ 4+ — — 4+ —

HEIGHT

1 6236.81652
538 196.60486

6236.81652
105773.415

Number of obs
F( 1, 538)
Prob > F
R-squared

Adj R-squared
Root MSE

540
31.72
0.0000
= 0.0557
= 0.0539
= 14.022

[95% Conf.

Interval]

.8025732
-34.67718

.1424952
9.662091

5.63
-3.59

0.000
0.000

.522658
-53.65723

1.082488
-15.69713

A researcher has data for 50 countries on N, the average number of
newspapers purchased per adult in one year, and G, GDP per capita,
measured in US $, and fits the following regression (RSS = residual sum

of squares)

N = 25.0 + 0.020 G

components of the output would have differed:

* the coefficient
* the intercept
* RSS

* R2

of GDP

R*> = 0.06, RSS = 4,000.0

The researcher realises that GDP has been underestimated by $100 in
every country and that N should have been regressed on G*, where
G* = G + 100. Explain, with mathematical proofs, how the following

A researcher with the same model and data as in Exercise A1.5 believes
that GDP in each country has been underestimated by 50 percent and
that N should have been regressed on G*, where G* = 2G. Explain, with
mathematical proofs, how the following components of the output would

have differed:

* the coefficient
* the intercept
* RSS

* R

of GDP
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Al1.7

A variable Y, is generated as

Yo=/p+uy

where g, is a fixed parameter and u, is a disturbance term that is

independently and identically distributed with expected value 0 and
population variance 0'3 . The least squares estimator of 5, is ¥, the

(1.1)

sample mean of Y. Give a mathematical demonstration that the value of R?
in such a regression is zero.

Answers to the starred exercises in the textbook

1.8

The output below shows the result of regressing the weight of the
respondent in 1985, measured in pounds, on his or her height, measured
in inches, using EAEF Data Set 21. Provide an interpretation of the

coefficients.

reg WEIGHT85

Source

Model
Residual

- 4+ — — 4+ —

HEIGHT

1 261111.383
538 733.517407

261111.383
394632.365

Number of obs = 540
F( 1, 538) = 355.97
Prob > F = 0.0000
R-squared = 0.3982
Adj R-squared = 0.3971
Root MSE = 27.084

Answer:

[95% Conf. Interval]

5.192973
-194.6815

.275238
18.6629

18.87 0.000

-10.43 0.000

4.6523 5.733646
-231.3426 -158.0204

Literally the regression implies that, for every extra inch of height, an

individual tends to weigh an extra 5.2 pounds. The intercept, which

literally suggests that an individual with no height would weigh -195
pounds, has no meaning. The figure shows the observations and the fitted

regression line.
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Chapter 1: Simple regression analysis

1.10

A researcher has international cross-sectional data on aggregate wages, W,
aggregate profits, P, and aggregate income, Y, for a sample of n countries.

By definition,
Y, =W, +P.
The regressions
Vf/,. =a, +a,Y,
P =b +by,

are fitted using OLS regression analysis. Show that the regression
coefficients will automatically satisfy the following equations:

a,+b,=1
a, +b, =0.
Explain intuitively why this should be so.
Answer:
a, +bz = Z(K _YXVVi _W)+ Z(Yr _YXP[ —P)

> -7f >y -7)
YW -TWwep-W-P) 3 -7 -V)

Sy -7) >y -¥f

a,+b, =7 —a,7)+(P-0,7)= (W + P)(a, + b, ¥ =7 ~7 =0.

The intuitive explanation is that the regressions break down income

into predicted wages and profits and one would expect the sum of the
predicted components of income to be equal to its actual level. The sum of
the predicted components is [(a, + a,Y) + (b, + b,Y)], and in general this
will be equal to Y only if the two conditions are satisfied.

1.12

Suppose that the units of measurement of X are changed so that the new
measure, X, is related to the original one by X, = 4, + s, X, . Show that
the new estimate of the slope coefficient is b, /u, , where b, is the slope
coefficient in the original regression.

Answer:

i(Xl*_‘Y*)(YI_?) i([ﬂl"‘;uin]_[M"',uz)?])(Yi _7)
b, == ==

>(x-x)

i=1 i=1

i"l (ﬂin _ﬂz)?)(yi _)7) luzii](Xi—)?)(Yi—f) b,

n n

Z(:uin_;uz)?)z /1222()(1'_‘?)2 ’

i=1 i=1

n

([/‘1 +/‘2Xi]_[ﬂ1 +/12A_/])2
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1.13

Demonstrate that if X is demeaned but Y is left in its original units, the
intercept in a regression of Y on demeaned X will be equal to Y .

Answer:

Let X, =X, - X and b and b, be the intercept and slope coefficient in a
regression of Yon X' . Note that X" =0. Then

*

b/ =Y -b,X=Y.

The slope coefficient is not affected by demeaning:

n

C2-x)n-7) Yl -F]-o)y-7)

_ =l =l _
b = = =b,.

So-xf 3y -x]o)?

i=1 i=1

1.14

Derive, with a proof, the slope coefficient that would have been obtained
in Exercise 1.5 if weight and height had been measured in metric units.
(Note: one pound is 454 grams and one inch is 2.54 cm.)

Answer:

Let the weight and height be W and H in imperial units (pounds and
inches) and WM and HM in metric units (kilos and centimetres). Then WM
= 0.454W and HM = 2.54H. The slope coefficient for the regression in
metric units, b)', is given by

S v, - )m, -wnr) Y 2.54(H, - 1) 0.454( - 7)
(M, -mm) S 254(H-H)
=0.179 X, 1) Z_W)=0.179b2 =0.929.

Z(Hi _]7)

In other words, weight increases at the rate of almost one kilo per
centimetre. The regression output below confirms that the calculations are
correct (subject to rounding error in the last digit).

b,

. g WM = 0.454*WEIGHT85
. g HM = 2.54*HEIGHT

. reg WM HM
Source | SS df MS Number of obs
————————————— e F( 1, 538)
Model | 53819.2324 1 53819.2324 Prob > F
Residual | 81340.044 538 151.189673 R-squared
————————————— Fom Adj R-squared
Total | 135159.276 539 250.759325 Root MSE
WM | Coef. Std. Err. t P>t | [95% Conf.
_____________ +_______________________________________________________
HM | .9281928 .0491961 18.87 0.000 .8315528
cons | -88.38539 8.472958 -10.43 0.000 -105.0295
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Chapter 1: Simple regression analysis

1.15

Consider the regression model
Y =B+ 5,X, +u,.

It implies
Y =p+BX+u

and hence that
Y= B,

where ¥ =Y, -Y, X, =X, -X,and v, =u, —u .

Demonstrate that a regression of ¥* on X" using (1.40) will yield the
same estimate of the slope coefficient as a regression of Y on X. Note:
(1.40) should be used instead of (1.28) because there is no intercept in
this model.

Evaluate the outcome if the slope coefficient were estimated using (1.28),
despite the fact that there is no intercept in the model.

Determine the estimate of the intercept if ¥~ were regressed on X with
an intercept included in the regression specification.

Answer:

Let b, be the slope coefficient in a regression of ¥~ on X" using (1.40).
Then

REDRADICEDI 0 I
DR D T

ok

Let b2 be the slope coefficient in a regression of Y “on X° using (1.28).
Note that Y" and X~ are both zero. Then

w Y- D)-T) Ty
b, —) > b
> -x7) > x;

Let b, be the intercept in a regression of ¥ on X~ using (1.28). Then

D .

b =Y -bX =0.
1.17

Demonstrate that the fitted values of the dependent variable are
uncorrelated with the residuals in a simple regression model. (This result
generalizes to the multiple regression case.)

Answer:

The numerator of the sample correlation coefficient for ¥ and e can be
decomposed as follows, using the fact that e =0 :

%é(ﬁ _;j(ei _E):%Zn:([bl +b2Xi]_[b1 +b2)?])ef

i=1

:lbzi(X[ —A_’)e[

no g
=0

by (1.53). Hence the correlation is zero.
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1.22
Demonstrate that, in a regression with an intercept, a regression of Y on
X" must have the same R? as a regression of Y on X, where X" = o+ X
Answer:
Let the fitted regression of Y on X~ be written Y =b, +b, X, . b =b, / u,
(Exercise 1.12).
s = aTe = = b b
b =Y -bX =¥ -b,x -H1%2 —p A% -
Hy Hy
Hence
ook M b b ~
Y, =b _#"'_2(/‘1 +/‘2Xi): Y.
Hy My
The fitted and actual values of Y are not affected by the transformation
and so R? is unaffected.
1.24

The output shows the result of regressing weight in 2002 on height, using
EAEF Data Set 21. In 2002 the respondents were aged 37-44. Explain why
R? is lower than in the regression reported in Exercise 1.5.

reg WEIGHTO02 HEIGHT

Source | SS df MS Number of obs = 540
————————————— Rl ettt e F( 1, 538) = 216.95
Model | 311260.383 1 311260.383 Prob > F = 0.0000
Residual | 771880.527 538 1434.72217 R-squared = 0.2874
————————————— Fom Adj R-squared = 0.2860
Total | 1083140.91 539 2009.53787 Root MSE = 37.878
WEIGHTO2 | Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
HEIGHT | 5.669766 .3849347 14.73 0.000 4.913606 6.425925
~cons | -199.6832 26.10105 -7.65 0.000 -250.9556 -148.4107
Answer:

The explained sum of squares (described as the model sum of squares in
the Stata output) is actually higher than that in Exercise 1.5. The reason
for the fall in R? is the huge increase in the total sum of squares, no doubt
caused by the cumulative effect of diversity in eating habits.

Answers to the additional exercises

A1.1

Expenditure on food consumed at home increases by 5.3 cents for each
dollar of total household expenditure. Literally the intercept implies that
$1,923 would be spent on food consumed at home if total household
expenditure were zero. Obviously, such an interpretation does not make
sense. If the explanatory variable were income, and household income
were zero, positive expenditure on food at home would still be possible
if the household received food stamps or other transfers. But here the
explanatory variable is total household expenditure.
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A1.3

Chapter 1: Simple regression analysis

Housing has the largest coefficient, followed perhaps surprisingly by food
consumed away from home, and then clothing. All the slope coefficients
are highly significant, with the exception of local public transportation.
Its slope coefficient is 0.0008, with ¢ statistic 0.40, indicating that this
category of expenditure is on the verge of being an inferior good.

EXP
n b s.e.(b,) R? F

FDHO 868 0.0527 0.0027 0.3052 380.4
FDAW 827 0.0440 0.0021  0.3530 450.0
HOUS 867 0.1935 0.0063 0.5239 951.9
TELE 858 0.0101 0.0009 0.1270 124.6
DOM 454  0.0225 0.0043 0.0581  27.9
TEXT 482 0.0049 0.0006 0.1119  60.5
FURN 329 0.0128 0.0023 0.0844  30.1
MAPP 244  0.0089 0.0018 0.0914 243
SAPP 467 0.0013 0.0003 0.0493 24.1
CLOT 847 0.0395 0.0018 0.3523  459.5
FOOT 686 0.0034 0.0003 0.1575 127.9
GASO 797 0.0230 0.0014 0.2528 269.0
TRIP 309 0.0240 0.0038 0.1128  39.0
LOCT 172 0.0008 0.0019  0.0009 0.2
HEAL 821 0.0226 0.0029 0.0672  59.0
ENT 824  0.0700 0.0040 0.2742 310.6
FEES 676 0.0306 0.0026  0.1667 134.8
TOYS 592 0.0090 0.0010 0.1143  76.1
READ 764  0.0039 0.0003 0.1799 167.2
EDUC 288 0.0265 0.0054 0.0776  24.1
TOB 368 0.0071 0.0014 0.0706  27.8

The summary data indicate that, on average, the respondents put on 25.7
pounds over the period 1985-2002. Was this due to the relatively heavy
becoming even heavier, or to a general increase in weight? The regression
output indicates that weight in 2002 was approximately equal to weight
in 1985 plus 23.6 pounds, so the second explanation appears to be the
correct one. Note that this is an instance where the constant term can be
given a meaningful interpretation and where it is as of much interest as
the slope coefficient. The R? indicates that 1985 weight accounts for 68
percent of the variance in 2002 weight, so other factors are important.
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Al1.4

The slope coefficient indicates that hourly earnings increase by 80 cents
for every extra inch of height. The negative intercept has no possible
interpretation. The interpretation of the slope coefficient is obviously
highly implausible, so we know that something must be wrong with the
model. The explanation is that this is a very poorly specified earnings
function and that, in particular, we are failing to control for the sex of the
respondent. Later on, in Chapter 5, we will find that males earn more than
females, controlling for observable characteristics. Males also tend to be
taller. Hence we find an apparent positive association between earnings
and height in a simple regression. Note that R? is very low.

A15

The coefficient of GDP: Let the revised measure of GDP be denoted
G*, where G* = G + 100. Since G, =G, +100 for alli, G* =G +100 and
so G, —G =G, -G for all i. Hence the new slope coefficient is

XS 7) TG T)
>@ -G) >G-6)
The coefficient is unchanged.

The intercept: The new intercept is b’ = N —b,G =N —b, (5 + 100) =b, —100b, =23.0

RSS: The residual in observation i in the new regression, e; , is given by

e =N, ~b —b,G, =N, ~(b, —100b, )-b,(G, +100) =

the residual in the original regression. Hence RSS is unchanged.

R% R* =1- Z (RSS ) and is unchanged since RSS and Z(N -N )
N. - N

are unchanged.

Note that this makes sense intuitively. R? is unit-free and so it is not
possible for the overall fit of a relationship to be affected by the units of
measurement.

A1.6

The coefficient of GDP: Let the revised measure of GDP be
denoted G*, where G* = 2G. Since G, =2G, foralli, G" =2G and so
G -G = 2(G,. — G) for all i. Hence the new slope coefficient is

(6 -6) (v -N)_ 32(6-G)(v.-N)

S -6 4G, -G )
226G -N) b,
4G,-G6) 2
where b, = 0.020 is the slope coefficient in the original regression.

* gy * Tk 37 b - e -
The intercept: The new interceptis b, =N —b,G =N —722G =N-b,G=b =250,

=0.010

the original intercept.
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RSS: The residual in observation i in the new regression, e; , is given by

e, =N,—b —b,G/ =N, —b, —%26; =e,

the residual in the original regression. Hence RSS is unchanged.

R*: R =1- RSS — and is unchanged since RSS and Z(Nl. -N )2 are

Z(Ni_ﬁ)

unchanged. As in Exercise Al.6, this makes sense intuitively.

A1.7

=
ZL

) _ and Y, =Y foralli.

2
R —_i
2

=
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Chapter 2: Properties of the regression coefficients and hypothesis testing

Chapter 2: Properties of the regression
coefficients and hypothesis testing

Overview

Chapter 1 introduced least squares regression analysis, a mathematical
technique for fitting a relationship given suitable data on the variables
involved. It is a fundamental chapter because much of the rest of the

text is devoted to extending the least squares approach to handle more
complex models, for example models with multiple explanatory variables,
nonlinear models, and models with qualitative explanatory variables.

However, the mechanics of fitting regression equations are only part of
the story. We are equally concerned with assessing the performance of our
regression techniques and with developing an understanding of why they
work better in some circumstances than in others. Chapter 2 is the starting
point for this objective and is thus equally fundamental. In particular, it
shows how two of the three main criteria for assessing the performance

of estimators, unbiasedness and efficiency, are applied in the context of

a regression model. The third criterion, consistency, will be considered in
Chapter 8.

Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and
the additional exercises in this guide, you should be able to explain what is
meant by:

* cross-sectional, time series, and panel data
* unbiasedness of OLS regression estimators

* variance and standard errors of regression coefficients and how they
are determined

* Gauss-Markov theorem and efficiency of OLS regression estimators

* two-sided t tests of hypotheses relating to regression coefficients and
one-sided t tests of hypotheses relating to regression coefficients

* F tests of goodness of fit of a regression equation

in the context of a regression model. The chapter is a long one and you
should take your time over it because it is essential that you develop a
perfect understanding of every detail.

Further material

Derivation of the expression for the variance of the naive estimator in
Section 2.3.

The variance of the naive estimator in Section 2.3 and Exercise 2.9 is not
of any great interest in itself but its derivation provides an example of how
one obtains expressions for variances of estimators in general.

In Section 2.3 we considered the naive estimator of the slope coefficient
derived by joining the first and last observations in a sample and
calculating the slope of that line:
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It was demonstrated that the estimator could be decomposed as

b, =4, +
S

and hence that E(b,) = §,.

The population variance of a random variable X is defined to be
E([X - ] 2) where u, =E (X). Hence the population variance of b2 is given

by

o7, = B([b, —ﬂ2]2)=E[Hﬂz &4 :?l}—/’zmﬂ{uj %, U

On the assumption that X is nonstochastic, this can be written as

ol :{;_ZE([L,” T,

Xn_Xl_

Expanding the quadratic, we have

-2
G,fz ={ ! E(un2 +ul —2unu1)

T2

{ L e )+ B ) 26 ).

Xn_Xl_

Each value of the disturbance term is drawn randomly from a distribution
with mean 0 and population variance o, so E (u f) and E(uf) are both

u

equal too, . u, and u, are drawn independently from the distribution, so
E(unul) = E(un)E(ul) = 0. Hence

2 2
2 2 Gu Gu

lo — — .
CoEeaP Ly gy

Define A:l(X1 +X,), the average of X, and X, and D=X, - A=A~ X,
Then '

S0, - X)W, — A A= X))

2 ex, - -yt - x0)]

:%[DZ +D? +2(D)D)]=2D"

— (X AP+ (A-X)

=(x, -4)"+(x, - 4)’

(x,-X+X-4a)+(x,-X+x-4)

=(x, - %)+ (€ - 4)+2(x, - X)X - 1)

(0 -X)+(-a)+2(x, - X)X -4)

(0, -X)+(x, -X)+2( - a)+2(x, + x, —2X)(¥ - 4)

=0, -X)+(x, - X +2(¥ - 4) +204-2X)(X -4)

=, - X))+ (x, - X) -2 - 4) = (¢, - X ) + (x, - X ) -2(4- XY
38 — (- XY+ O, - %)= (x4 x, -2X)
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Hence we obtain the expression in Exercise 2.9. There must be a shorter

proof.

Additional exercises

A2.1

A2.2

A2.3

A variable Y, is generated as

Vi=5+y

where f, is a fixed parameter and v is a disturbance term that is
independently and identically distributed with expected value 0 and
population variance 0'3 . The least squares estimator of f, is Y , the
sample mean of Y. However a researcher believes that Y is a linear
function of another variable X and uses ordinary least squares to fit the

relationship
Y=b +bX

calculating b, as Y —b,X , where X is the sample mean of X. X may
be assumed to be a nonstochastic variable. Determine whether the
researcher’s estimator b, is biased or unbiased, and if biased, determine
the direction of the bias.

With the model described in Exercise A2.1, standard theory states that the
population variance of the researcher’s estimator b, is

S0 1 X?
o, |—+

the variances.

. In general, this is larger than the population

X -X)

variance of Y , which is

u

n

. Explain the implications of the difference in

In the special case where X =0, the variances are the same. Give an
intuitive explanation.

Using the output for the regression in Exercise A1.9 in the text, reproduced
below, perform appropriate statistical tests.

reg CHILDREN SM

Source

Model
Residual

SS df MS Number of obs = 540
—————————————————————————————— F( 1, 538) = 63.60
272.69684 1 272.69684 Prob > F = 0.0000
2306.7402 538 4.28762118 R-squared = 0.1057
—————————————————————————————— Adj R-squared = 0.1041
2579.43704 539 4.78559747 Root MSE = 2.0707
Coef. Std. Err. t P>t [95% Conf. Interval]
-.2525473 .0316673 -7.98 0.000 -.314754 -.1903406
7.198478 .3773667 19.08 0.000 6.457186 7.939771
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A24

Using the output for the regression in Exercise Al.1, reproduced below,
perform appropriate statistical tests.

reg FDHO EXP if FDHO>0

Number of obs =

F( 1,
Prob > F
R-squared
Adj R-squared
Root MSE

866)

Source | SS
_____________ +
Model | 911005795
Residual | 2.0741e+09
_____________ +
Total | 2.9851e+09
FDHO Coef
EXP .0527204
cons 1922.939

df MS
1 911005795
866 2395045.39
867 3443039.33
std. Err. t P>t
.0027032 19.50 0.000
96.50688 19.93 0.000

[95% Conf.

.0474149
1733.525

Interval]

.058026
2112.354

A2.5

Using the output for your regression in Exercise Al.2, perform appropriate

statistical tests.

A2.6

Using the output for the regression in Exercise A1.3, reproduced below,
perform appropriate statistical tests.

reg WEIGHT02 WEIGHT85

Number of obs =

F( 1,
Prob > F
R-squared
Adj R-squared
Root MSE

538)

540
= 1149.83
= 0.0000
= 0.6812
= 0.6807
23.233

Source | SS
_____________ +
Model | 620662.43
Residual | 290406.035
_____________ +
Total | 911068.465
WEIGHTO02 Coef
WEIGHTS85 1.013353
_cons 23.61869

df MS
1 620662.43
538 539.788169
539 1690.294
Std. Err. t P>t |
.0298844 33.91 0.000
4.760179 4.96 0.000

.9546483
14.26788

1.072057
32.96951

A2.7

Using the output for the regression in Exercise Al.4, reproduced below,
perform appropriate statistical tests.

reg EARNINGS HEIGHT

Number of obs
F( 1, 538)
Prob > F
R-squared

Adj R-squared
Root MSE

= 540
= 29.39
= 0.0000
= 0.0518
= 0.0500

14.574

Source | SS
_____________ +
Model | 6242 .37244
Residual | 114276.055
_____________ +
Total | 120518.428
EARNINGS Coef
HEIGHT .8583752
cons -38.05756

df MS
1 6242.37244
538 212.409025
539 223.596341
Std. Err. t P>t
.1583393 5.42 0.000
10.70014 -3.56 0.000

[95% Conf.

.5473361
-59.07674

Interval]

1.169414
-17.03837
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A2.8

With the information given in Exercise A1.5, how would the change in the
measurement of GDP affect

e the standard error of the coefficient of GDP

* the F statistic for the equation?

A2.9

With the information given in Exercise A1.6, how would the change in the
measurement of GDP affect

¢ the standard error of the coefficient of GDP

* the F statistic for the equation?

A2.10

[This is a continuation of Exercise 1.15 in the text.] A sample of data
consists of n observations on two variables, Y and X. The true model is

Yi:ﬂ1+ﬂ2Xi+ui

where #, and f, are parameters and u is a disturbance term that satisfies
the usual regression model assumptions. In view of the true model,

Y=0+pBX+u
where Y, X, and u# are the sample means of Y, X, and u. Subtracting the
second equation from the first, one obtains

Y, =BX, +u

i

construction, the sample means of ¥, X", and " are all equal to zero.

where ¥, =Y, -Y, X, =X, - X, and u, =u, —i . Note that, by

One researcher fits

Y=b +b,X. €))
A second researcher fits

Y =b +bX". 2
[Note: The second researcher included an intercept in the specification.]
* Comparing regressions (1) and (2), demonstrate that f,* = };, -Y.

¢ Demonstrate that the residuals in (2) are identical to the residuals in

1).

e Demonstrate that the OLS estimator of the variance of the disturbance
term in (2) is equal to that in (1).

* Explain how the standard error of the slope coefficient in (2) is related
to that in (1).

* Explain how R? in (2) is related to R? in (1).

* Explain why, theoretically, the specification (2) of the second researcher
is incorrect and he should have fitted

P obxt ©)

not including a constant in his specification.

e If the second researcher had fitted (3) instead of (2), how would this
have affected his estimator of £,? Would dropping the unnecessary
intercept lead to a gain in efficiency?
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A2.11
A variable Y depends on a nonstochastic variable X with the relationship
Y= +pX+u
where u is a disturbance term that satisfies the regression model

assumptions. Given a sample of n observations, a researcher decides to
estimate f, using the expression

Xy,
— i=l1

> ¥

i=1

b,

(This is the OLS estimator of f, for the model Y = X + u). It can be

shown that the population variance of this estimator is ;2

I —
n

2
2 X
i=1

* Demonstrate that b, is in general a biased estimator of f,.
* Discuss whether it is possible to determine the sign of the bias.
* Demonstrate that b, is unbiased if #, = 0.

* What can be said in this case about the efficiency of b,, comparing it
with the estimator < (Y ¥ 6 7
i i Y
,-Z:; ) )?

Z(Xi _/\7)2

¢ Demonstrate that b, is unbiased if X =o0.
What can be said in this case about the efficiency of b,, comparing it
with the estimator

S0 -7,
Z(Xi - )?)2

Explain the underlying reason for this conclusion.

* Returning to the general case where £, #0 and X #0, suppose that
there is very little variation in X in the sample. Is it possible that b,
might be a better estimator than the OLS estimator?

A2.12

A variable Y, is generated as

Y= B+ BX M
where §, and f, are fixed parameters and u, is a disturbance term that
satisfies the regression model assumptions. The values of X are fixed

and are as shown in the figure opposite. Four of them, X, to X,, are close
together. The fifth, X, is much larger. The corresponding values that Y
would take, if there were no disturbance term, are given by the circles on
the line. The presence of the disturbance term in the model causes the
actual values of Y in a sample to be different. The solid black circles depict
a typical sample of observations.
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Y
o
[ ]
[ ]
7
.O"
[ ]
N [ ]
‘-’O"
Bl
0 ] R — ]
0 X X, X; X, X; X

Discuss the advantages and disadvantages of dropping the observation
corresponding to X, when regressing Y on X. If you keep the observation in
the sample, will this cause the regression estimates to be biased?

Answers to the starred exercises in the textbook

2.1

2.5

N 1 —
Demonstrate that b, = 8, + Y cu, , wherec, = — —a, X and q, is defined
in equation (2.21). i=1 n

Answer:

b =Y -b,X =(p, +,82/\_’+L7)—)?(,82 + Zn:aiui]

1 _.n n
=B +;Z”i _Xzaiui =B +zciui .
i1 i1 i=1

An investigator correctly believes that the relationship between two
variables X and Y is given by

Y= B+ B+ u
Given a sample of observations on Y, X, and a third variable Z (which is
not a determinant of Y), the investigator estimates B, as

S0, 2)6-7)
S(-7)0 1)

Demonstrate that this estimator is unbiased.

Answer: Noting that ¥, -7 = 8,(X, - X )+u, -,
b, = Z(Zi—f)(}’i—?): Z(Zi —Z),BZ(XI.—)?)+Z(Z,.—Z) (”i _7’)
Z(Z,.—Z)(Xi—)?) Z(Z,.—Z)(Xi—)?)

Z(Z,. _Z)(”i _17).
> -7)x-X)

=p,+
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2.6

2.7

2.10

Hence

Using the decomposition of b, obtained in Exercise 2.1, derive the
expression for Gfl given in equation (2.38).

n 1 _
Answer: b =, + ) cu,,wherec,= — —a, X . Hence
i=l1 n

i=1

2 —
Glf, :EI:(ZCiuiJ :|2sz61‘2 =G;(n%—2£zai +)?22aizj,
i=1 n n g i=1

From Box 2.2, iai =0 and Zn:a,z= - ! :
i=1 i=1 (Xi _ )?)z
i=1
Hence
o[ 1 X?
Oy =0,| —+—
n (Xl _ y)Z

Given the decomposition in Exercise 2.2 of the OLS estimator of 8, in
the model Y, = 8, X; +u;, demonstrate that the variance of the slope
coefficient is given by

Answer:

n X
by=p,+Y.du, ,where d,=——"— and E(b,)= j3,. Hence
i=1 2

=

n 2 n n XZ 0_2 n
a;:E(;d,ﬂij DD . i B TR
’* ] (2]
j=1 J=1

It can be shown that the variance of the estimator of the slope coefficient

in Exercise 2.4,
S, -7)6-7)
Z(Zi _Z)(Xi _)?)
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is given by

2
o 2 _ O-u x 1
by T n 2

;(X,.—)?)z "xz

where r, is the correlation between X and Z. What are the implications for
the efficiency of the estimator?

Answer:
If Z happens to be an exact linear function of X, the population variance

. . . |
will be the same as that of the OLS estimator. Otherwise ——will be
I'xz
greater than 1, the variance will be larger, and so the estimator will be less
efficient.

2.13

Suppose that the true relationship between Yand Xis Y, = g, + 5, X, +u;,
and that the fitted model is ¥, =b, + b, X, . In Exercise 1.12 it was shown
that if X, =y, + u,X,, and Y is regressed on X", the slope coefficient
b, =b, [ 1, . How will the standard error of b, be related to the standard
error of b,?

Answer:

In Exercise 1.22 it was demonstrated that the fitted values of Y would be
the same. This means that the residuals are the same, and hence

s’ , the estimator of the variance of the disturbance term, is the same. The
standard error of b, is then given by

(b*) 52 52
s.e. = o = o
’ \/Z(X,-*—)?*)z \/Z(ﬂ1+u2X,-—ﬂ1—ﬂz)7)2

2.15

A researcher with a sample of 50 individuals with similar education

but differing amounts of training hypothesises that hourly earnings,
EARNINGS, may be related to hours of training, TRAINING, according to
the relationship

EARNINGS = f, + f§,TRAINING + u .

He is prepared to test the null hypothesis H: #, = 0 against the alternative
hypothesis H: , # O at the 5 per cent and 1 per cent levels. What should
he report

1. if b, = 0.30, s.e.(b,) = 0.12?
2. if b, = 0.55, s.e.(b,) = 0.12?
3. if b, = 0.10, s.e.(b,) = 0.12?
4. ifb, = -0.27,s.e.(b,) = 0.12?
Answer:

There are 48 degrees of freedom, and hence the critical values of t at the
5 per cent, 1 per cent, and 0.1 per cent levels are 2.01, 2.68, and 3.51,
respectively.
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2.20

2.25

1. The t statistic is 2.50. Reject H, at the 5 per cent level but not at the 1
per cent level.

2. t = 4.58. Reject at the 0.1 per cent level.
3. t = 0.83. Fail to reject at the 5 per cent level.

4. t = -2.25. Reject H at the 5 per cent level but not at the 1 per cent
level.

Explain whether it would have been possible to perform one-sided tests
instead of two-sided tests in Exercise 2.15. If you think that one-sided tests
are justified, perform them and state whether the use of a one-sided test
makes any difference.

Answer:
First, there should be a discussion of whether the parameter g, in
EARNINGS = , + B,TRAINING + u

can be assumed not to be negative. The objective of training is to impart
skills. It would be illogical for an individual with greater skills to be paid
less on that account, and so we can argue that we can rule out g, < 0. We
can then perform a one-sided test. With 48 degrees of freedom, the critical
values of t at the 5 per cent, 1 per cent, and 0.1 per cent levels are 1.68,
2.40, and 3.26, respectively.

1. The t statistic is 2.50. We can now reject H, at the 1 per cent level (but
not at the 0.1 per cent level).

2. t = 4.58. Not affected by the change. Reject at the 0.1 per cent level.

3. t = 0.83. Not affected by the change. Fail to reject at the 5 per cent
level.

4. t = -2.25. Fail to reject H_ at the 5 per cent level. Here there is a
problem because the coefficient has an unexpected sign and is large
enough to reject H at the 5 per cent level with a two-sided test.

In principle we should ignore this and fail to reject H . Admittedly, the
likelihood of such a large negative ¢ statistic occurring under H is very
small, but it would be smaller still under the alternative hypothesis
H:p,>0.

However we should consider two further possibilities. One is that the
justification for a one-sided test is incorrect. For example, some jobs

pay relatively low wages because they offer training that is valued by

the employee. Apprenticeships are the classic example. Alternatively,
workers in some low-paid occupations may, for technical reasons, receive a
relatively large amount of training. In either case, the correlation between
training and earnings might be negative instead of positive.

Another possible reason for a coefficient having an unexpected sign is that
the model is misspecified in some way. For example, the coefficient might
be distorted by omitted variable bias, to be discussed in Chapter 6.

Suppose that the true relationship between Yand Xis ¥, = g, + 5, X, +u,
and that the fitted model is ¥, =b, + b, X, . In Exercise 1.12 it was shown
that if X, = u, +u,X,, and Y is regressed on X", the slope coefficient
b, =b, /1, . How will the t statistic for b, be related to the t statistic for
b,? (See also Exercise 2.13.)
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Answer:

From Exercise 2.13, we have s.e.(b;): s.e.(b,)/ u, . Since b =b, /u, , it
follows that the t statistic must be the same.

Alternatively, since we saw in Exercise 1.22 that R? must be the same,

it follows that the F statistic for the equation must be the same. For a
simple regression the F statistic is the square of the t statistic on the slope
coefficient, so the t statistic must be the same.

Calculate the 95 per cent confidence interval for f, in the price inflation/
wage inflation example:

p = -121+ 0.82w
(0.05)  (0.10)
What can you conclude from this calculation?
Answer:

With n equal to 20, there are 18 degrees of freedom and the critical value
of t at the 5 per cent level is 2.10. The 95 per cent confidence interval is
therefore

0.82-0.10x2.10 < g, < 0.82 + 0.10x 2.10
that is,
0.61 < g, < 1.03.

Suppose that the true relationship between Yand Xis ¥, = 8, + 5, X, +u,

and that the fitted model is Y, =b, +b,X,. Suppose that X, =y, + ,X,, and
Yis regressed on X . How will the F statistic for this regression be related
to the F statistic for the original regression? (See also Exercises 1.22, 2.13,
and 2.24.)

Answer:

We saw in Exercise 1.22 that R?> would be the same, and it follows that F
must also be the same.

Answers to the additional exercises

Note:

A2.1

Each of the exercises below relates to a simple regression. Accordingly, the
F test is equivalent to a two-sided ¢ test on the slope coefficient and there
is no point in performing both tests. The F statistic is equal to the square of
the ¢ statistic and, for any significance level, the critical value of F is equal
to the critical value of t. Obviously a one-sided t test, when justified, is
preferable to either in that it has greater power for any given significance
level.

First we need to show that E(b,)=0.

Z()(,.—)?)(Yi—?) Z(Xi_)?)(ﬂl+ui_ﬂl_l7) Z(Xi_)?)(”i_ﬁ)
b, =— = — = - .

Z(Xi_)?)z Z‘_:(Xi_/\_/)2 . Z(Xi_/\_/)z
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Hence, given that we are told that X is nonstochastic,

Z(Xi— )_() (“;_ L_’) 1 _ _
E(,)=E Z(x\’i—)?)z :Z(X—Y)ZE(ZCY[_X)(%_“)J

:ﬁz_:(& - X)E(, ~i1)=0

since E(u) = 0. Thus
E(bl )= E(? _bz)?)z ﬂ1 - )?E(b2)= ﬂl
and the estimator is unbiased.

A2.2
If X =0, the estimators are identical. ¥ —5,X reducesto Y.

A2.3

The t statistic for the coefficient of SM is —7.98, very highly significant. The
t statistic for the intercept is even higher, but it is of no interest. All the
mothers in the sample must have had at least one child (the respondent),
for otherwise they would not be in the sample. The F statistic is 63.60,
very highly significant.

A2.4

The t statistic for the coefficient of EXP is 19.50, very highly significant.
There is little point performing a t test on the intercept, given that it has
no plausible meaning. The F statistic is 380.4, very highly significant.

A2.5

The slope coefficient for every category is significantly different from
zero at a very high significance level, with the exception of local public
transportation. The coefficient for the latter is virtually equal to zero and
the ¢ statistic is only 0.40. Evidently this category is on the verge of being
an inferior good.

A2.6

A straight t test on the coefficient of WEIGHTS85 is not very interesting
since we know that those who were relatively heavy in 1985 will also be
relatively heavy in 2002. The ¢ statistic confirms this obvious fact. Of more
interest would be a test investigating whether those relatively heavy in
1985 became even heavier in 2002. We set up the null hypothesis that they
did not, H.: #, = 1, and see if we can reject it. The t statistic for this test is
101341
©0.0299

=045

and hence the null hypothesis is not rejected. The constant indicates that
the respondents have tended to put on 23.6 pounds over the interval,
irrespective of their 1985 weight. The null hypothesis that the general
increase is zero is rejected at the 0.1 per cent level.
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A2.7
The t statistic for height, 5.42, suggests that the effect of height on
earnings is highly significant, despite the very low R2. In principle the
estimate of an extra 86 cents of hourly earnings for every extra inch of

height could have been a purely random result of the kind that one obtains

with nonsense models. However, the fact that it is apparently highly
significant causes us to look for other explanations, the most likely one
being that suggested in the answer to Exercise Al.4. Of course we would
not attempt to test the negative constant.

A2.8
The standard error of the coefficient of GDP. This is given by

*

s 5

Y6 -Gf

where s, , the standard error of the regression,

e’ o : .
- Since RSS is unchanged, s, =s,.
n—

is estimated as

We saw in Exercise A1.5 that G, —G " =G, — G for all i. Hence the new
standard error is given

by ——=«_____ and is unchanged.

ESS

—\2
F =——— where ESS = explained sum of squares = Z(Yi* - Y*) )
RSS/n-2

Since e, =¢,, ¥, =

i i

RSS is unchanged. Hence F is unchanged.

A2.9
The standard error of the coefficient of GDP. This is given by

* . . . *2
where s, , the standard error of the regression, is estimated as Zei s
n-2
where n is the number of observations. We saw in Exercise 1.6 that e, = e,
and so RSS is unchanged. Hence s, = 5. Thus the new standard error is

given by
- - 0005
>lc,-26) % |Xl6-c)f
— \2
F= % where ESS = explained sum of squares = Z(Yz _)}*) ‘
n —

Since e, =¢,, ¥, =7, and ESS is unchanged. Hence F is unchanged.

A2.10
One way of demonstrating that ¥, =Y, - :

7= b +biX = by(x, - X)

Y~V =(b, +b,X,) -7 =(V =5, X )+ b,X, -7 =b, (X, - X).

i

Y, and ESS is unchanged. We saw in Exercise A1.5 that
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Demonstration that the residuals are the same:
e =¥, =¥ =(1,~7)- {7, -7)=e,

Demonstration that the OLS estimator of the variance of the disturbance
term in (2) is equal to that in (1):

2 2
DD
Sll :—:_:Su.

n-2 n-2

The standard error of the slope coefficient in (2) is equal to that in (1).
%2 2 2

s s
A2 A2
oL = % X o

(G LG (O

Hence the standard errors are the same.

Demonstration that R? in (2) is equal to R? in (1):

<M:z@xﬁf
S -7f

A A

Y =Y,-Y and Y =Y. Hence ¥
DAY .
S Xl-vf

The reason that specification (2) of the second researcher is incorrect is
that the model does not include an intercept.

=0.Y =Y-Y =0.Hence

If the second researcher had fitted (3) instead of (2), this would not in fact
have affected his estimator of g,. Using (3), the researcher should have

XY,
S

i

estimated g, as b; = . However, Exercise 1.15 demonstrates

that, effectively, he has done exactly this. Hence the estimator will be the
same. It follows that dropping the unnecessary intercept would not have
led to a gain in efficiency.

A2.11
ZXiYi ZXi(ﬂl+ﬂ2Xi+ui) ﬂlZXi ZXiui
b2 — i:,]l — i=1 - — nizl +ﬂ2 + i:’Il .
> X! > X} > X! > X}
i=1 i=1 i=1 i=1
Hence

ﬂlin ZX:'”[ ﬂlin ZX:'E(”[)
Ho)=E g AT, T

O P I L
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assuming that X is nonstochastic. Since E(u,) = 0,

ﬁ1 Z X,
_ i=1
S
i=1

Thus b, will in general l:;e a biased estimator. The sign of the bias depends
on the signs of #, and ZX i

i=1

E(bz) + 5.

We have no information about either of these.

>, - )@ -7)

b, is more efficient than iz unless X = 0 since its
> (x, - X)
i=1 n — —
o2 Z(Xi_X)(Yi_Y)_

- , whereas that of = is

ZX? é(Xi_)?)z

i=1

population variance is

2 2
(¢ (&)

S(x, - )?)2_ 3 X2 - nX?
P i-1

The expression for the variance of b, has a smaller denominator if X =#0.

If X = 0, the estimators are equally efficient because the population
variance expressions are identical. The reason for this is that the
estimators are now identical:

S -D0-7) Ya0-7) Yy Ty Yy,
i=1 _ =l _ =l =l _ =l

Seon $w So S ix
i=1 i=1 i=1 i=1 i=1

since » X, =nX =0.

i=1
If there is little variation in X in the sample, ZH:(X - X )2
i=1
may be small and hence the population variance of Z(X =X )(Y, -y )
i=1
Zn:(X i X )2
i=1

may be large. Thus using a criterion such as mean square error, b, may be
preferable if the bias is small.

A2.12

The inclusion of the fifth observation does not cause the model to be
misspecified or the regression model assumptions to be violated, so
retaining it in the sample will not give rise to biased estimates. There
would be no advantages in dropping it and there would be one major

disadvantage. Z(X - X )Zwould be greatly reduced and hence the
i=1

variances of the coefficients would be increased, adversely affecting the
precision of the estimates.
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This said, in practice one would wish to check whether it is sensible to
assume that the model relating Y to X for the other observations really
does apply to the observation corresponding to X, as well. This question
can be answered only by being familiar with the context and having some
intuitive understanding of the relationship between Y and X.
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Chapter 3: Multiple regression analysis

Overview

This chapter introduces regression models with more than one explanatory
variable. Specific topics are treated with reference to a model with just
two explanatory variables, but most of the concepts and results apply
straightforwardly to more general models. The chapter begins by showing
how the least squares principle is employed to derive the expressions for
the regression coefficients and how the coefficients should be interpreted.
It continues with a discussion of the precision of the regression coefficients
and tests of hypotheses relating to them. Next comes multicollinearity, the
problem of discriminating between the effects of individual explanatory
variables when they are closely related. The chapter concludes with a
discussion of F tests of the joint explanatory power of the explanatory
variables or subsets of them, and shows how a t test can be thought of as a
marginal F test.

Learning outcomes

After working through the corresponding chapter in the textbook, studying
the corresponding slideshows, and doing the starred exercises in the text
and the additional exercises in this guide, you should be able to explain:

* the principles behind the derivation of multiple regression coefficients
(but you are not expected to learn the expressions for them or to be
able to reproduce the mathematical proofs)

* how to interpret the regression coefficients

* the Frisch-Waugh-Lovell graphical representation of the relationship
between the dependent variable and one explanatory variable,
controlling for the influence of the other explanatory variables

* the properties of the multiple regression coefficients

* what factors determine the population variance of the regression
coefficients

* what is meant by multicollinearity

* what measures may be appropriate for alleviating multicollinearity

* what is meant by a linear restriction

* the F test of the joint explanatory power of the explanatory variables

* the F test of the explanatory power of a group of explanatory variables
* why t tests on the slope coefficients are equivalent to marginal F tests.

You should know the expression for the population variance of a slope
coefficient in a multiple regression model with two explanatory variables.

Additional exercises

A3.1

The output shows the result of regressing FDHO, expenditure on food
consumed at home, on EXP, total household expenditure, and SIZE,
number of persons in the household, using the CES data set. Provide an
interpretation of the regression coefficients and perform appropriate tests.
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reg FDHO EXP SIZE if FDHO>0

Source

Model
Residual

1.4826e+09
1.5025e+09

- 4+ — — 4+ —

2 741314291

Number of obs =

F( 2,
Prob > F
R-squared
Adj R-squared
Root MSE

865)

868
426.78
0.0000
= 0.4967
= 0.4955
1317.9

.0372621
559.7692
884.5901

865 1736978.64
867 3443039.33
Std. Err t
.0024547 15.18
30.85684 18.14
100.1537 8.83

0.000
0.000
0.000

.0324442
499.2061
688.0173

.04208
620.3322
1081.163

A3.2

Perform a regression parallel to that in Exercise A3.1 for your CES category
of expenditure, provide an interpretation of the regression coefficients and
perform appropriate tests. Delete observations where expenditure on your

category is zero.

A3.3

The output shows the result of regressing FDHOPC, expenditure on food
consumed at home per capita, on EXPPC, total household expenditure per
capita, and SIZE, number of persons in the household, using the CES data
set. Provide an interpretation of the regression coefficients and perform
appropriate tests.

reg FDHOPC EXPPC SIZE if

Source

Model
Residual

-+ — — 4+ —

142127276
349895173

FDHO>0

2 71063638.2

Number of obs
F( 2, 865)
Prob > F
R-squared

Adj R-squared
Root MSE

= 868
175.68
0.0000
= 0.2889
= 0.2872
= 636.01

[95% Conf.

Interval]

.0316606
-133.775
1430.123

865 404503.09
867 567499.942
Std. Err t
.0026915 11.76
15.18071 -8.81
67.10582 21.31

0.000
0.000
0.000

.0263779
-163.5703
1298.413

.0369432
-103.9797
1561.832

A3.4

Perform a regression parallel to that in Exercise A3.3 for your CES category
of expenditure. Provide an interpretation of the regression coefficients and
perform appropriate tests.

A3.5

The output shows the result of regressing FDHOPC, expenditure on food
consumed at home per capita, on EXPPC, total household expenditure
per capita, and SIZEAM, SIZEAF, SIZEJM, SIZEJF, and SIZEIN, numbers
of adult males, adult females, junior males, junior females, and infants,
respectively, in the household, using the CES data set. Provide an
interpretation of the regression coefficients and perform appropriate tests.
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A3.7

reg FDHOPC

Source | SS
_____________ +
Model | 143547989
Residual | 348474460
_____________ +
Total | 492022449
FDHOPC Coef
EXPPC .0319472
SIZEAM -159.6329
SIZEAF -94.88238
SIZEJM -101.5105
SIZEJF -155.5774
SIZEIN -220.7865
_cons 1411.313

6 23924664.9

861 404732.242
867 567499.942
Std. Err t
.0027125 11.78
32.79751 -4.87
37.98996 -2.50
36.45485 -2.78
37.49424 -4.15
85.70005 -2.58
73.13575 19.30

Chapter 3: Multiple regression analysis

EXPPC SIZEAM SIZEAF SIZEJM SIZEJF SIZEIN if FDHO>0

Number of obs = 868
F( o, 86l) = 59.11
Prob > F = 0.0000
R-squared = 0.2918
Adj R-squared = 0.2868
Root MSE = 636.19
P>t [95% Conf. Intervall]
0.000 .0266234 .037271
0.000 -224.0053 -95.26049
0.013 -169.4462 -20.31861
0.005 -173.0613 -29.9597
0.000 -229.1682 -81.98661
0.010 -388.992 -52.58108
0.000 1267.768 1554.859

Perform a regression parallel to that in Exercise A3.5 for your CES category
of expenditure. Provide an interpretation of the regression coefficients and

perform appropriate tests.

A researcher hypothesises that, for a typical enterprise, V, the logarithm
of value added per worker, is related to K, the logarithm of capital per
worker, and S, the logarithm of the average years of schooling of the

workers, the relationship being

V=p+p0K+p5,S+u

where u is a disturbance term that satisfies the usual regression
model assumptions. She fits the relationship (1) for a sample of
25 manufacturing enterprises, and (2) for a sample of 100 services

enterprises. The table provides some data on the samples.

9] 2

Manufacturing Services

sample sample

Number of enterprises 25 100
Estimate of variance of u 0.16 0.64
Mean square deviation of K 4.00 16.00
Correlation between K and S 0.60 0.60

1 —
The mean square deviation of K is defined as —Z (K ,—K )2 , where n is
ne

the number of enterprises in the sample and K is the average value of K

in the sample.

The researcher finds that the standard error of the coefficient of K is 0.050
for the manufacturing sample and 0.025 for the services sample. Explain
the difference quantitatively, given the data in the table.
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A3.8

A researcher is fitting earnings functions using a sample of data relating to
individuals born in the same week in 1958. He decides to relate Y, gross
hourly earnings in 2001, to S, years of schooling, and PWE, potential work

experience, using the semilogarithmic specification
logY =4 +p,S+ pPWE +u

where u is a disturbance term assumed to satisfy the regression model
assumptions. PWE is defined as age — years of schooling — 5. Since the

respondents were all aged 43 in 2001, this becomes:

PWE =43-S-5=38-S.

The researcher finds that it is impossible to fit the model as specified. Stata

output for his regression is reproduced below:

reg LGY S PWE

Source | SS df MS
_____________ +______________________________
Model | 237.170265 1 237.170265
Residual | 1088.66373 5658 .192411405
_____________ +______________________________
Total | 1325.834 5659 .234287682
LGY | Coef Std. Err. t P>t
_____________ +________________________________________
S | .1038011 .0029566 35.11 0.000
PWE | (dropped)
cons | .5000033 .0373785 13.38 0.000

Explain why the researcher was unable to fit his specification.

Explain how the coefficient of S might be interpreted.

Number of obs = 5660
F( 1, 5658) = 1232.62
Prob > F = 0.0000
R-squared = 0.1789
Adj R-squared = 0.1787
Root MSE = .43865

[95% Conf. Intervall]

.0980051 .1095971

.4267271 .5732795

Answers to the starred exercises in the textbook

3.5

Explain why the intercept in the regression of EEARN on ES is equal to

Z€ro.

Answer:

The intercept is calculated as EE4RN— b, ES . However, since the mean
of the residuals from an OLS regression is zero, both EEARN and ES are

zero, and hence the intercept is zero.

3.11

Demonstrate that ¢ = 0 in multiple regression analysis. (Note: The proof
is a generalisation of the proof for the simple regression model, given in

Section 1.5.)

Answer:

If the model is
Y=8+BX,+..+BX +u
b=Y-b,X,-..-bX,.
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For observation i,

e, =Y, —Y, =Y, —b —b,X,, —...—b X,,.
Hence
e=Y-b -b,X,—..-b X,
—V -V -b,X,—..-b X, |-5,X, —..—=b, X, =0

3.16

A researcher investigating the determinants of the demand for public
transport in a certain city has the following data for 100 residents for the
previous calendar year: expenditure on public transport, E, measured in
dollars; number of days worked, W; and number of days not worked, NW.
By definition NW is equal to 365 — W. He attempts to fit the following
model

E=4+BW+BNW+u.
Explain why he is unable to fit this equation. (Give both intuitive and
technical explanations.) How might he resolve the problem?
Answer:

There is exact multicollinearity since there is an exact linear relationship
between W, NW and the constant term. As a consequence it is not possible
to tell whether variations in E are attributable to variations in W or
variations in NW, or both. Noting that NW, - NW = -W, +W,

e ) ) 3ol o
Y- ) 3 (ow, - [~ (S v, -7 (vw, - )f

S -E) ) w-w) -3 F)(W,+W) (7, 7). +7)
Y -w) S -w ) (o, -7)w

b, =

0
0
One way of dealing with the problem would be to drop NW from the
regression. The interpretation of b, now is that it is an estimate of the extra
expenditure on transport per day worked, compared with expenditure per
day not worked.

3.21

The researcher in Exercise 3.16 decides to divide the number of days not
worked into the number of days not worked because of illness, I, and the
number of days not worked for other reasons, O. The mean value of I in
the sample is 2.1 and the mean value of O is 120.2. He fits the regression
(standard errors in parentheses):

E = 9.6 +2.10W + 0.450 R? = 0.72
(8.3) (1.98) (1.77)

Perform t tests on the regression coefficients and an F test on the goodness
of fit of the equation. Explain why the t tests and F test have different
outcomes.
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Answer:

Although there is not an exact linear relationship between W and O,

they must have a very high negative correlation because the mean value
of I is so small. Hence one would expect the regression to be subject to
multicollinearity, and this is confirmed by the results. The ¢ statistics for
the coefficients of W and O are only 1.06 and 0.25, respectively, but the F
statistic,

0722 1547

F(2,97) = o

is greater than the critical value of F at the 0.1 per cent level, 7.41.

Answers to the additional exercises

A3.1

A3.2

The regression indicates that 3.7 cents out of the marginal expenditure
dollar is spent on food consumed at home, and that expenditure on this
category increases by $560 for each individual in the household, keeping
total expenditure constant. Both of these effects are very highly significant,
and almost half of the variance in FDHO is explained by EXP and SIZE. The
intercept has no plausible interpretation.

With the exception of LOCT, all of the categories have positive coefficients
for EXP, with high significance levels, but the SIZE effect varies:

* Positive, significant at the 1 per cent level: FDHO, TELE, CLOT, FOOT,
GASO.

* Positive, significant at the 5 per cent level: LOCT.
* Negative, significant at the 1 per cent level: TEXT, FEES, READ.
* Negative, significant at the 5 per cent level: SHEL, EDUC.

« Not significant: FDAW, DOM, FURN, MAPP, SAPP, TRIP, HEAL, ENT,
TOYS, TOB.

At first sight it may seem surprising that SIZE has a significant negative
effect for some categories. The reason for this is that an increase in

SIZE means a reduction in expenditure per capita, if total household
expenditure is kept constant, and thus SIZE has a (negative) income effect
in addition to any direct effect. Effectively poorer, the larger household has
to spend more on basics and less on luxuries. To determine the true direct
effect, we need to eliminate the income effect, and that is the point of the
re-specification of the model in the next exercise.
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EXP SIZE
n b, s.e.(b,) b, s.e.(b,) R? F
FDHO 868 0.0373 0.0025 559.77 30.86 0.4967 426.8
FDAW 827 0.0454 0.0022 -53.06 27.50 0.3559 227.6
SHEL 867 0.1983 0.0067 | -174.40 83.96 0.5263 479.9
TELE 858 0.0091 0.0010 36.10 12.08 0.1360 67.3
DOM 454 | 0.0217 | 0.0047 26.10 64.14 | 0.0585 14.0
TEXT 482 0.0057 0.0007 -33.15 9.11 0.1358 37.7
FURN 329 0.0138 0.0024 —47.52 35.18 0.0895 16.0
MAPP 244 0.0083 0.0019 25.35 24.33 0.0954 12.7
SAPP 467 0.0014 0.0003 -5.63 3.73 0.0539 13.2
CLOT 847 0.0371 0.0019 87.98 24.39 0.3621 239.5
FOoT 686 0.0028 0.0003 21.24 4.01 0.1908 80.5
GASO 797 0.0205 0.0015 94.58 18.67 0.2762 151.5
TRIP 309 0.0273 0.0042 | -110.11 56.17 0.1238 21.6
LOCT 172 | -0.0012 0.0021 54.97 23.06 0.0335 2.9
HEAL 821 0.0231 0.0032 -18.60 40.56 0.0674 29.6
ENT 824 0.0726 0.0042 -98.94 52.61 0.2774 157.6
FEES 676 0.0335 0.0028 | -114.71 36.04 0.1790 73.4
TOYS 592 0.0089 0.0011 5.03 13.33 0.1145 38.1
READ 764 0.0043 0.0003 -15.86 4.06 0.1960 92.8
EDUC 288 0.0295 0.0055 | -168.13 74.57 0.0937 14.7
TOB 368 0.0068 0.0014 14.44 16.29 0.0726 14.3

A3.3

Another surprise, perhaps. The purpose of this specification is to test
whether household size has an effect on expenditure per capita on food
consumed at home, controlling for the income effect of variations in
household size mentioned in the answer to Exercise A3.2. Expenditure
per capita on food consumed at home increases by 3.2 cents out of the
marginal dollar of total household expenditure per capita. Now SIZE has a
very significant negative effect. Expenditure per capita on FDHO decreases
by $134 per year for each extra person in the household, suggesting that
larger households are more efficient than smaller ones with regard to
expenditure on this category, the effect being highly significant. R? is much
lower than in Exercise A3.1, but a comparison is invalidated by the fact
that the dependent variable is different.

A34

Several categories have significant negative SIZE effects. None has a
significant positive effect.

* Negative, significant at the 1 per cent level: FDHO, SHEL, TELE, SAPP,
GASO, HEAL, READ, TOB.

* Negative, significant at the 5 per cent level: FURN, FOOT, LOCT, EDUC.

* Not significant: FDAW, DOM, TEXT, MAPP, CLOT, TRIP, ENT, FEES,
TOYS.
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One explanation of the negative effects could be economies of scale, but
this is not plausible in the case of some, most obviously TOB. Another
might be family composition - larger families having more children. This
possibility is investigated in the next exercise.

EXPPC SIZE
n b, s.e.(b,) b, s.e.(b,) R? F
FDHO 868 | 0.0317 | 0.0027 | -133.78 15.18 | 0.2889 175.7
FDAW 827 | 0.0476 | 0.0027 | -59.89 68.15 | 0.3214 195.2
SHEL 867 | 0.2017 | 0.0075 | -113.68 42.38 | 0.5178 463.9
TELE 858 | 0.0145| 0.0014 | -43.07 7.83 | 0.2029 108.8
DOM 454 | 0.0243 | 0.0060 -1.33 35.58 | 0.0404 9.5
TEXT 482 | 0.0115| 0.0011 5.01 6.43 | 0.2191 67.2
FURN 329 | 0.0198 | 0.0033 | -43.12 21.23 | 0.1621 31.5
MAPP 244 | 0.0124 | 0.0022 | -25.96 13.98 | 0.1962 29.4
SAPP 467 | 0.0017 | 0.0004 -7.76 2.01 | 0.1265 33.6
CLOT 847 | 0.0414 | 0.0021 21.83 12.07 | 0.3327 210.4
FOOT 686 | 0.0034 | 0.0003 -3.87 1.89 | 0.1939 82.2
GASO 797 | 0.0183 | 0.0015 | -42.49 8.73 | 0.2553 136.1
TRIP 309 | 0.0263 | 0.0044 | -13.06 27.15 | 0.1447 25.9
LOCT 172 | -0.0005 | 0.0018 | -23.84 9.16 | 0.0415 3.7
HEAL 821 | 0.0181 | 0.0036 | -178.20 20.80 | 0.1587 77.1
ENT 824 | 0.0743 | 0.0046 | -392.86 | 118.53 | 0.2623 146.0
FEES 676 | 0.0337 | 0.0032 23.97 19.33 | 0.1594 63.8
TOYS 592 | 0.0095| 0.0011 -5.89 6.20 | 0.1446 49.8
READ 764 | 0.0050 | 0.0004 | -12.49 2.21 | 0.2906 155.9
EDUC 288 | 0.0235 | 0.0088 | -108.18 47.45 | 0.0791 12.2
TOB 368 | 0.0057 | 0.0016 | -48.87 37.92 | 0.1890 42.5

A3.5

It is not completely obvious how to interpret these regression results and
possibly this is not the most appropriate specification for investigating

composition effects. The coefficient of SIZEAF suggests that for each

additional adult female in the household, expenditure falls by $95 per
year, probably as a consequence of economies of scale. For each infant,
there is an extra reduction, relative to adult females, of $126 per year,
because infants consume less food. Similar interpretations might be given
to the coefficients of the other composition variables.

A3.6

The regression results for this specification are summarised in the table
below. In the case of SHEL, the regression indicates that the SIZE effect
is attributable to SIZEAM. To investigate this further, the regression was

repeated: (1) restricting the sample to households with at least one

adult male, and (2) restricting the sample to households with either no
adult male or just 1 adult male. The first regression produces a negative
effect for SIZEAM, but it is smaller than with the whole sample and not

significant. In the second regression the coefficient of SIZEAM jumps

dramatically, from -$424 to -$793, suggesting very strong economies of
scale for this particular comparison.
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As might be expected, the SIZE composition variables on the whole do not
appear to have significant effects if the SIZE variable does not in Exercise

A3.4. The results for TOB are puzzling, in that the apparent economies of
scale do not appear to be related to household composition.

Category | FDHOPC | FDAWPC | SHELPC | TELEPC | DOMPC | TEXTPC | FURNPC | MAPPPC
. 0.0319 0.0473 0.2052 0.0146 0.0262 0.0116 0.0203 0.0125
(0.0027) | (0.0027) | (0.0075) | (0.0014) | (0.0061) | (0.0011) | (0.0034) | (0.0022)
-159.63 29.32 | -423.85 -48.79 | -133.37 2.36 -69.54 —46.54

SIZEAM
(32.80) (32.48) (90.57) (16.99) (83.47) (13.07) (42.20) (28.26)
SIZEAF —94.88 -22.82 | -222.96 -56.23 -71.36 -15.66 —-79.52 -19.74
(37.99) (37.59) | (105.22) (19.80) (95.81) (17.36) (54.43) (32.49)
-101.51 1.85 53.70 -39.65 84.39 10.02 0.26 -22.34

SIZEJM
(36.45) (35.61) | (100.60) (18.80) (84.30) (14.59) (47.01) (32.84)
SIZEJF -155.58 -19.48 -6.32 -38.01 23.95 11.83 -36.24 -12.48
(37.49) (36.67) | (103.52) (19.33) (82.18) (14.05) (48.41) (29.21)
SIZEIN -220.79 —24.44 469.75 -5.40 176.93 17.34 —-25.96 -35.46
(85.70) (83.05) | (236.44) (44.12) | (183.84) (34.47) (87.82) (78.95)
R? 0.2918 0.3227 0.5297 0.2041 0.0503 0.2224 0.1667 0.1988
F 59.1 65.1 161.4 36.4 4.0 22.6 10.7 9.8
868 827 867 858 454 482 329 244
Category SAPPPC | CLOTPC | FOOTPC | GASOPC TRIPPC | LOCTPC | HEALPC ENTPC
£Xp 0.0017 0.0420 0.0035 0.0179 0.0263 | -0.0005 0.0182 0.0740
(0.0004) | (0.0021) | (0.0003) | (0.0015) | (0.0044) | (0.0019) | (0.0037) | (0.0046)
-9.13 -27.91 -6.66 13.99 4.33 -33.64 | -191.60 74.58

SIZEAM
(4.17) (25.90) (3.93) (18.49) | (54.53)) (19.53) (44.43) (56.32)
-2.49 47.58 -9.31 —40.43 31.58 10.23 -46.92 24.53

SIZEAF
(4.99) (30.29) (5.03) (21.37) (66.29) (24.15) (52.65) (64.94)
-8.93 19.87 -2.58 -62.37 -40.20 -50.45 | -230.65 38.60

SIZEJM
(4.63) (28.55) (4.28) (20.10) (65.07) (21.71) (50.63) (61.24)
-8.63 40.08 2.35 -64.07 -34.98 -21.49 | -194.56 65.74

SIZEJF
(4.64) (29.42) (4.35) (20.28) (70.51) (22.02) (51.80) (63.12)
SIZEIN -10.55 87.53 -8.35 | -112.58 -51.85 19.04 | -247.58 -16.49
(11.44) (66.80) (9.94) (46.57) | (194.69) (70.79) | (113.55) | (142.40)
R? 0.1290 0.3373 0.1987 0.2680 0.1472 0.0636 0.1665 0.2629
F 11.4 71.3 28.1 48.2 8.7 1.9 27.1 48.6
n 467 847 686 797 309 172 821 824
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A3.7

Category FEESPC | TOYSPC | READPC | EDUCPC TOBPC
Exp 0.0337 0.0096 0.0050 0.0232 0.0056
(0.0032) | (0.0012) | (0.0004) | (0.0090) | (0.0016)
28.62 -17.99 -21.85 | -135.34 -37.24
SIZEAM
(39.84) (13.16) (4.79) (88.87) (17.19)
32.68 -3.68 -4.22 -46.03 -56.54
SIZEAF
(46.77) (15.82) (5.51) | (103.88) (17.50)
15.65 -2.59 -13.28 | -106.39 —44.45
SIZEJM
(44.40) (13.70) (5.27) (92.25) (18.53)
32.07 3.07 -8.61 | -119.36 -52.68
SIZEJF
(42.92) (13.66) (5.40) (91.60) (22.87)
-29.86 -18.08 -15.12 | -149.87 -76.25
SIZEIN
(95.20) (30.40) (11.86) | (262.13) (53.68)
R? 0.1599 0.1468 0.2969 0.0808 0.1913
F 21.2 16.8 53.3 4.1 14.2
n 676 592 764 288 368
The standard error is given by
1 1 1
s.e.(b2 ) =5, X—=X x .
Jn IMSD(K) J-rls
Data Factors
manufacturing services manufacturing services
sample sample sample sample
Number of 25 100 0.20 0.10
enterprises
Estimate of 0.16 0.64 0.40 0.80
variance of u
Mean square
deviation of K 4 16 0-50 0.25
Correlation
between K and S 0.6 0.6 1.25 1.25
Standard errors 0.050 0.025

The table shows the four factors for the two sectors. Other things being
equal, the larger number of enterprises and the greater MSD of K would
separately cause the standard error of b, for the services sample to be
half that in the manufacturing sample. However, the larger estimate of
the variance of u would, taken in isolation, cause it to be double. The net
effect, therefore, is that it is half.
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A3.8

The specification is subject to exact multicollinearity since there is an exact
linear relationship linking PWE and S.

The coefficient of S should be interpreted as providing an estimate of
the proportional effect on hourly earnings of an extra year of schooling,
allowing for the fact that this means one fewer year of work experience.
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Chapter 4: Transformations of variables

Overview

This chapter shows how least squares regression analysis can be extended
to fit nonlinear models. Sometimes an apparently nonlinear model can be
linearised by taking logarithms. Y = ,.X”> and Y = f,¢”" are examples.
Because they can be fitted using linear regression analysis, they have proved
very popular in the literature, there usually being little to be gained from
using more sophisticated specifications. If you plot earnings on schooling,
using the EAEF data set, or expenditure on a given category of expenditure
on total household expenditure, using the CES data set, you will see that
there is so much randomness in the data that one nonlinear specification is
likely to be just as good as another, and indeed a linear specification may
not be obviously inferior. Often the real reason for preferring a nonlinear
specification to a linear one is that it makes more sense theoretically. The
chapter shows how the least squares principle can be applied when the model
cannot be linearised.

Learning outcomes

After working through the corresponding chapter in the textbook, studying
the corresponding slideshows, and doing the starred exercises in the text and
the additional exercises in this guide, you should be able to:

* explain the difference between nonlinearity in parameters and nonlinearity
in variables

* explain why nonlinearity in parameters is potentially a problem while
nonlinearity in variables is not

* define an elasticity

* explain how to interpret an elasticity in simple terms

* perform basic manipulations with logarithms

* interpret the coefficients of semi-logarithmic and logarithmic regressions

* explain why the coefficients of semi-logarithmic and logarithmic
regressions should not be interpreted using the method for regressions in
natural units described in Chapter 1

» perform a RESET test of functional misspecification
* explain the role of the disturbance term in a nonlinear model

* explain how in principle a nonlinear model that cannot be linearised may
be fitted

* perform a transformation for comparing the fits of models with linear and
logarithmic dependent variables.

Further material

Box—Cox tests of functional specification

This section provides the theory behind the procedure for discriminating
between a linear and a logarithmic specification of the dependent variable
described in Section 4.5 of the textbook. It should be skipped on first reading
because it makes use of material on maximum likelihood estimation. To keep
the mathematics uncluttered, the theory will be described in the context of
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the simple regression model, where we are choosing between
Y=08+0,X+u

and
logY=0+6,X+u.

It generalises with no substantive changes to the multiple regression model.

The two models are actually special cases of the more general model

Yt -1
Y, = ) =4 +6,X+u

with 1 = 1 yielding the linear model (with an unimportant adjustment to
the intercept) and 4 = 0 yielding the logarithmic specification at the limit
as / tends to zero. Assuming that u is iid (independently and identically
distributed) N(0, ¢*), the density function for u, is

1

e 20°

f(ui):

o+\2r7

and hence the density function for Y, is

1 —L-p-px)y
e 20

f(Y/u):

oN2m

From this we obtain the density function for Y,

1 1
*72(),/1,*4 -BX; )2 aY . *j(yzlfﬂfﬂz)(l )Z
S)=——e sl L v
o2rm oY, | ov2rm
0Y,| . . . . .
The factor |—+ is the Jacobian for relating the density function of Y, to

i

that of Y. Hence the likelihood function for the parameters is

[Te > [T

i=1 i=1

1 ! u - ! (Yx.*ﬂlfﬂr&y n
L(ﬂl,ﬂz,a,ﬂ):( ]

o227

and the log-likelihood is

n n

1 -
10gL(ﬂlﬂﬂ2:o-92’): —glog27z0'2 _zzo_z (Y/ii _ﬁl _ﬂZ‘Xvi)2 -'_ZlogYi/1 :

i=1 i=1

—~Llog2n-nlogo -3 (1, ~ i~ f.X,) +(- 1) log¥,
O ia

i=1

From the first order condition 610_gL
o

n 1
_;_"F;(Yﬁ - B _ﬂin)z =0

=0, we have

giving

n

6’ :%Z(Yﬁ _ﬁl _:Bzxi)z-

i=1

Substituting into the log-likelihood function, we obtain the concentrated
log-likelihood

n

1 n
IOgL(ﬂlugzsl):_%Ingﬂ_SIOg;Z(Y/u - B _ﬂzxi)z _§+(1_1)210gyi
i=1

i=1
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The expression can be simplified (Zarembka, 1968) by working with ¥,
rather than Y, where Y;" is Y, divided by Y,,,, the geometric mean of the Y,
in the sample, for

M

n

Slog?, = Ylog(t, / Yy, )= Y log ¥, ~ log ¥y, )
i-1 i-1

i=1

1
:Zn:logYI, —nlog Yy :anlogYI, —nlog(ﬁ)’i}n
i1 i=1

i=1
:ZlogK - log(HYij :ZIOgK. —ZlogY, =0.
i=1 i=1 i=1 i=1
With this simplification, the log-likelihood is

1 u *
log L(B,. . A)= [logzmlogfl]—glogz(ni —B - BX,)
i=1

n
2
and it will be maximised when f, §, and / are chosen so as to minimise

Z (Y =B - BX, )2 the residual sum of squares from a least squares
i=1

regression of the scaled, transformed Y on X. One simple procedure is to
perform a grid search, scaling and transforming the data on Y for a range
of values of A and choosing the value that leads to the smallest residual
sum of squares (Spitzer, 1982).

A null hypothesis 2 = 1 can be tested using a likelihood ratio test in the
usual way. Under the null hypothesis, the test statistic 2(10g L, -log Lo)
will have a chi-squared distribution with one degree of freedom, where log
L, is the unconstrained log-likelihood and L, is the constrained one. Note
that, in view of the preceding equation,

2logL, ~logL, )= n(log RSS, ~logRSS, )

where RSS_ and RSS, are the residual sums of squares from the constrained
and unconstrained regressions with Y*.

The most obvious tests are 1 = 0 for the logarithmic specification and

/. =1 for the linear one. Note that it is not possible to test the two
hypotheses directly against each other. As with all tests, one can only
test whether a hypothesis is incompatible with the sample result. In this
case we are testing whether the log-likelihood under the restriction is
significantly smaller than the unrestricted log-likelihood. Thus, while it
is possible that we may reject the linear but not the logarithmic, or vice
versa, it is also possible that we may reject both or fail to reject both.
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Example

400

RSS

300 4

200 4

100 -

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 08 A 1

The figure shows the residual sum of squares for values of A from -1 to 1
for the earnings function example described in Section 4.5 in the text. The
maximum likelihood estimate is —0.13, with RSS = 134.09. For the linear
and logarithmic specifications, RSS was 336.29 and 135.72, respectively,
with likelihood ratio statistics 540(log 336.29 — log 134.09) = 496.5 and
540(log 135.72 — log 134.09) = 6.52. The logarithmic specification is
clearly much to be preferred, but even it is rejected at the 5 per cent level ,
with y?(1) = 3.84, and nearly at the 1 per cent level.

Additional exercises

A4d.1

A4.2

A4.3

Is expenditure on your category per capita related to total expenditure per
capita? An alternative model specification.

Define a new variable LGCATPC as the logarithm of expenditure per capita
on your category. Define a new variable LGEXPPC as the logarithm of total
household expenditure per capita. Regress LGCATPC on LGEXPPC. Provide
an interpretation of the coefficients, and perform appropriate statistical
tests.

Is expenditure on your category per capita related to household size as well as
to total expenditure per capita? An alternative model specification.

Regress LGCATPC on LGEXPPC and LGSIZE. Provide an interpretation of
the coefficients, and perform appropriate statistical tests.

A researcher is considering two regression specifications:
logY =8, +p,logX +u (1

and

log§:a1 ta,logX +u (2)

where u is a disturbance term.
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Writingy = log Y, x = log X, and z = log§ , and using the same sample

of n observations, the researcher fits the two specifications using OLS:
y=b, +b,x 3)
and

i=a, +ax 4

* Using the expressions for the OLS regression coefficients, demonstrate
that b, =a, +1.

* Similarly, using the expressions for the OLS regression coefficients,
demonstrate that b, = a,.

* Hence demonstrate that the relationship between the fitted values of y,
the fitted values of z, and the actual values of x, is p, —x, =2Z,.

* Hence show that the residuals for regression (3) are identical to those
for (4).
* Hence show that the standard errors of b, and a, are the same.

* Determine the relationship between the t statistic for b, and the t
statistic for a,, and give an intuitive explanation for the relationship.

* Explain whether R? would be the same for the two regressions.

Ad.4

Perform a RESET test of functional misspecification. Using your EAEF data
set, regress WEIGHT02 on HEIGHT. Save the fitted values as YHAT and
define YHATSQ as its square. Add YHATSQ to the regression specification
and test its coefficient.

A4.5

Is a logarithmic specification preferable to a linear specification for an
expenditure function?

Define CATPCST as CATPC scaled by its geometric mean and LGCATST
as the logarithm of CATPCST. Regress CATPCST on EXPPC and SIZE and
regress LGCATST on LGEXPPC and LGSIZE. Compare the RSS for these
equations.

A4.6

A researcher hypothesises that a variable Y is determined by a variable
X and considers the following four alternative regression specifications,
using cross-sectional data:

Y=p +pX+u &)
logY =4 +pX+u 2)
Y =p +plogX+u (3)
logY =8 +plogX+u. @

Explain why a direct comparison of R?, or of RSS, in models (1) and (2) is
illegitimate. What should be the strategy of the researcher for determining
which of the four specifications has the best fit?

A4.7

A researcher has data on a measure of job performance, SKILL, and
years of work experience, EXP, for a sample of individuals in the same
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occupation. Believing there to be diminishing returns to experience, the
researcher proposes the model

SKILL = B, + j3, log(EXP)+ j3, log(EXP? )+ u.

Comment on this specification.

A4.8

reg LGEARN S EXP ASVABC SA

Source | SS df MS Number of obs =
————————————— e e e e e F( 4, 265)
Model | 30.0320896 4 7.5080224 Prob > F
Residual | 62.7338804 265 .236731624 R-squared
————————————— o Adj R-squared
Total | 92.76597 269 .344854907 Root MSE
LGEARN | Coef. Std. Err. t P>t [95% Conf.
_____________ +_______________________________________________________
S | -.0241627 .0761646 -0.32 0.751 -.1741275
EXP | .0259103 .0086572 2.99 0.003 .0088646
ASVABC | -.0095437 .0175083 -0.55 0.586 -.0440169
SA | .0019856 .0013398 1.48 0.140 -.0006524
cons | 1.874952 .9344235 2.01 0.046 .0351132

The output above shows the result of regressing the logarithm of hourly
earnings on years of schooling, years of work experience, ASVABC score,
and SA, an interactive variable defined as the product of S and ASVABC,
for males in EAEF Data Set 21. The mean values of S, EXP, and ASVABC in
the sample were 13.7, 17.9, and 52.1, respectively. Give an interpretation
of the regression output.

Answers to the starred exercises in the textbook

4.8

70

Suppose that the logarithm of Y is regressed on the logarithm of X, the
fitted regression being

logf}:b, +b,logX .

Suppose X' =1X, where A is a constant, and suppose that logY is
regressed on log X". Determine how the regression coefficients are related
to those of the original regression. Determine also how the t statistic for b,
and R? for the equation are related to those in the original regression.

Answer:

Nothing of substance is affected since the change amounts only to a fixed
constant shift in the measurement of the explanatory variable.

Let the fitted regression be
logl?zbl* +bylog X"
Note that

log X, —log X" =log AX, —1210gX; =log AX, —lZIOgﬂXj
n j=1 n Jj=1

=log A +log X, —lzn:(logﬂ,+long):10gXi —lilog)(j
n n

j=1 Jj=1

=log X, —log X.

270
= 31.72
0.0000
0.3237
0.3135
.48655

Interval]
.1258021
.0429561
.0249295
.0046237
3.714791
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Hence b, =b, . To compute the standard error of b, , we will also need b; .

* T < *7* PEE— 1 2
b =logY —b,logX =logY—b2—Z(log/1+long)

J=1

=logY —-b,logA—b,logX =b, —b, log .

Thus the residual

e, is given by

e =log¥, —b —b)log X, =logY, — (b, — b, log1)—b,(log X, +log 1) =e,.

Hence the estimator of the variance of the disturbance term is unchanged
and so the standard error of b, is the same as that for b,. As a
consequence, the t statistic must be the same. R? must also be the same:

*2
Ze,.

D.e
€

R* =1- =1- =R?,
Z(logY[—logY) Z(long.—logY)
414
reg LGS LGSM LGSMSQ
Source | SS daf MS Number of obs = 536
————————————— b F( 1, 534) = 56.99
Model | 1.62650898 1 1.62650898 Prob > F = 0.0000
Residual | 15.2402109 534 .028539721 R-squared = 0.0904
————————————— Fom Adj R-squared = 0.0947
Total | 16.8667198 535 .031526579 Root MSE = .1689%4
LGS | Coef Std. Err t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
LGSM | (omitted)
LGSMSQ | .100341 .0132915 7.55 0.000 .0742309 .1264511
_cons | 2.11373 .0648636 32.59 0.000 1.986311 2.241149
The output shows the results of regressing, LGS, the logarithm of S, on
LGSM, the logarithm of SM, and LGSMSQ, the logarithm of SMSQ. Explain
the regression results.
Answer:
LGSMSQ = 2LGSM, so the specification is subject to exact multicollinearity.
In such a situation, Stata drops one of the variables responsible.
4.16 nl (S = {betal} + {beta2}/({beta3} + SIBLINGS)) if SIBLINGS>0
(obs = 529)
Iteration 0: residual SS = 2962.929
Iteration 1: residual SS = 2951.616
Iteration 13: residual SS = 2926.201
Source | SS daf MS
————————————— e Number of obs = 529
Model | 206.566702 2 103.283351 R-squared = 0.0659
Residual | 2926.20078 526 5.56311936 Adj R-squared = 0.0624
————————————— Fom Root MSE = 2.358627
Total | 3132.76749 528 5.93327175 Res. dev. = 2406.077
S | Coef Std. Err t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
/betal | 11.09973 1.363292 8.14 0.000 8.421565 13.7779
/beta2 | 17.09479 18.78227 0.91 0.363 -19.80268 53.99227
/betal3 | 3.794949 3.66492 1.04 0.301 -3.404729 10.99463

Parameter betal taken as

constant term in model & ANOVA table
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The output uses EAEF Data Set 21 to fit the nonlinear model

B,

S=f +—2 4y
B, + SIBLINGS

where S is the years of schooling of the respondent and SIBLINGS is
the number of brothers and sisters. The specification is an extension
of that for Exercise 4.1, with the addition of the parameter f,. Provide
an interpretation of the regression results and compare it with that for
Exercise 4.1.

Answer:

As in Exercise 4.1, the estimate of §, provides an estimate of the lower
bound of schooling, 11.10 years, when the number of siblings is large.
The other parameters do not have straightforward interpretations. The
figure below represents the relationship. Comparing this figure with

that for Exercise 4.1, it can be seen that it gives a very different picture
of the adverse effect of additional siblings. The figure in Exercise 4.1,
reproduced after it, suggests that the adverse effect is particularly large for
the first few siblings, and then attenuates. This figure indicates that the
adverse effect is more evenly spread and is more enduring. However, the
relationship has been fitted with imprecision since the estimates of §, and
/. are not significant.

16

Years of schooling
=

Siblings

Years of schooling
IS

Siblings

Figure for Exercise 4.1
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Answers to the additional exercises

AdA1
. g LGEXPPC =LGEXP -LGSIZE
. g LGFDHOPC=LGFDHO-LGSIZE

(1 missing value generated)

. reg LGFDHOPC LGEXPPC

Number of obs

F( 1,

866)

Prob > F
R-squared

Adj R-squared

Root MSE

[95% Conf.

.3345414

868
313.04
0.0000
0.2655
0.2647
.40535

Interval]

.4180246

Source | SS df MS
_____________ +______________________________
Model | 51.4364294 1 51.4364294
Residual | 142.293979 866 .164311754
_____________ +______________________________
Total | 193.730408 867 .223449145
LGFDHOPC | Coef Std. Err. t P>t
_____________ +________________________________________________________________
LGEXPPC | .376283 .0212674 17.69 0.000
_cons | 3.700667 .1978924 18.70 0.000

3.312263

4.089072

The regression implies that the income elasticity of expenditure on food is
0.38 (supposing that total household expenditure can be taken as a proxy
for permanent income). In addition to testing the null hypothesis that the
elasticity is equal to zero, which is rejected at a very high significance level
for this and all the other categories except LOCT, one might test whether it
is different from 1, as a means of classifying the categories of expenditure
as luxuries (elasticity > 1) and necessities (elasticity < 1).

The table gives the results for all the categories of expenditure.

Regression of LGCATPC on EXPPC

n b, se.(b) |t(B,=0)|t(B,=1) R? RSS
FDHO 868 | 0.3763 | 0.0213 17.67 -29.28 | 0.2655 | 142.29
FDAW 827 | 1.3203 | 0.0469 28.15 6.83 | 0.4903 | 608.05
HOUS 867 | 1.1006 | 0.0401 27.45 2.51 | 0.4653 | 502.08
TELE 858 | 0.6312 | 0.0353 17.88 -10.45| 0.2717 | 380.59
DOM 454 | 0.7977 | 0.1348 5.92 -1.50 | 0.0719 | 1325.21
TEXT 482 | 1.0196 | 0.0813 12.54 0.24 | 0.2469 | 560.37
FURN 329 | 0.8560 | 0.1335 6.41 -1.08 | 0.1117 | 697.33
MAPP 244 | 0.7572 | 0.1161 6.52 -2.09 | 0.1496 | 291.76
SAPP 467 | 0.9481 | 0.0810 11.70 -0.64 | 0.2275| 52231
CLOT 847 | 0.9669 | 0.0487 19.85 -0.68 | 0.3184 | 686.45
FOOT 686 | 0.7339 | 0.0561 13.08 -4.74 | 0.1999 | 589.34
GASO 797 | 0.7107 | 0.0379 18.75 -7.63 | 0.3062 | 366.92
TRIP 309 | 1.2434 | 0.1305 9.53 1.87 | 0.2283 | 527.42
LOCT 172 | 0.1993 | 0.1808 1.10 -4.43 | 0.0071 | 450.92
HEAL 821 | 0.8629 | 0.0716 12.05 -1.91 | 0.1505 | 1351.63
ENT 824 | 1.3069 | 0.0521 25.08 5.89 | 0.4336 | 754.86
FEES 676 | 1.5884 | 0.0811 19.59 7.26 | 0.3629 | 1145.09
TOYS 592 | 0.9497 | 0.0771 12.32 -0.65 | 0.2045 | 809.01
READ 764 | 1.1532 | 0.0641 17.99 2.39 | 0.2982 | 897.63
EDUC 288 | 1.2953 | 0.1600 8.10 1.85| 0.1865| 828.35
TOB 368 | 0.6646 | 0.0817 8.13 -4.11 | 0.1530 | 385.63
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A4.2

The results may be summarised as follows:

* Significantly greater than 1, at the 1 per cent level: FDAW, ENT, FEES.

* Significantly greater than 1, at the 5 per cent level: HOUS, READ.

* Not significantly different from 1 DOM, TEXT, FURN, SAPP, CLOT, TRIP,
HEAL, TOYS, EDUC.

* Significantly less than 1, at the 1 per cent level: FDHO, TELE, FOOT,
GASO, LOCT, TOB.

» Significantly less than 1, at the 5 per cent level: MAPP.

. reg LGFDHOPC

Source

Model
Residual

LGEXPPC
LGSIZE

—_ 4+ — — 4+ —

LGEXPPC LGSIZE

SS df MS Number of obs = 868
—————————————————————————————— F( 2, 865) = 210.94
63.5111789 2 31.7555894 Prob > F = 0.0000
130.219229 865 .150542462 R-squared = 0.3278
—————————————————————————————— Adj R-squared = 0.3263
193.730408 867 .223449145 Root MSE = .388
Coef. Std. Err. t P>t | [95% Conf. Interval]
.2866812 .0226824 12.64 0.000 .2421622 .3312003
-.2278489 .0254412 -8.96 0.000 -.2777826 -.1779152
4.720269 .2209996 21.36 0.000 4.286511 5.154028

The income elasticity, 0.29, is now a little lower than before. The size
elasticity is significantly negative, suggesting economies of scale and
indicating that the model in the previous exercise was misspecified. ¢
tests of the hypothesis that the income elasticity is equal to 1 produce the
following results:

* Significantly greater than 1, at the 1 per cent level: FDAW, ENT, FEES.

» Significantly greater than 1, at the 5 per cent level: CLOT .
* Not significantly different from 1: HOUS, DOM, TEXT, TRIP, TOYS,

READ, EDUC.

* Significantly less than 1, at the 1 per cent level: FDHO, TELE, FURN,
MAPP, SAPP, FOOT, GASO, LOCT, HEAL, TOB.

* Significantly less than 1, at the 5 per cent level: none.
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Dependent variable LGCATPC
LGEXPPC LGSIZE
n b, s.e.(b,) b, s.e.(b,) R? F RSS
FDHO 868 | 0.2867 | 0.0227 | -0.2278 | 0.0254 | 0.3278 | 210.9 | 130.22
FDAW 827 | 1.4164 | 0.0529 | 0.2230 | 0.0588 | 0.4990 | 410.4 | 597.61
HOUS 867 | 1.0384 | 0.0446 | -0.1566 | 0.0498 | 0.4714 | 385.2 | 496.41

TELE 858 | 0.4923 | 0.0378 | —0.3537 | 0.0423 | 0.3268 | 207.5 | 351.81
DOM 454 | 0.8786 | 0.1470 | 0.2084 | 0.1520 | 0.0758 18.5 | 1319.71
TEXT 482 | 0.9543 | 0.0913 | -0.1565 | 0.1005 | 0.2507 80.1 557.55

FURN 329 | 0.6539 | 0.1511 | -0.4622 | 0.1677 | 0.1319 24.8 | 681.45
MAPP 244 | 0.5136 | 0.1381 | -0.4789 | 0.1533 | 0.1827 26.9 | 28041
SAPP 467 | 0.7223 | 0.0899 | -0.5076 | 0.0973 | 0.2703 85.9 | 493.39
CLOT 847 | 1.1138 | 0.0539 | 0.3502 | 0.0597 | 0.3451 222.4 | 659.59
FOOT 686 | 0.6992 | 0.0638 | -0.0813 | 0.0711 | 0.2015 86.2 | 588.21
GASO 797 | 0.6770 | 0.0433 | -0.0785 | 0.0490 | 0.3084 | 177.0 | 365.73

TRIP 309 1.0563 | 0.1518 | -0.3570 | 0.1510 | 0.2421 48.9 | 517.96
LOCT 172 | -0.0141 | 0.1958 | -0.5429 | 0.2084 | 0.0454 4.0 | 433.51
HEAL 821 0.6612 | 0.0777 | -0.5121 | 0.0849 | 0.1868 93.9 | 1294.03
ENT 824 | 1.4679 | 0.0583 | 0.3771 | 0.0658 | 0.4554 | 343.2 725.85
FEES 676 | 1.7907 | 0.0940 | 0.4286 | 0.1042 | 0.3786 | 205.0 | 1117.00
TOYS 592 | 0.9522 | 0.0905 | 0.0054 | 0.1011 | 0.2045 75.7 | 809.01

READ 764 | 0.9652 | 0.0712 | -0.4313 | 0.0768 | 0.3262 184.2 | 861.92
EDUC 288 1.2243 | 0.1882 | -0.1707 | 0.2378 | 0.1879 33.0 | 826.85

TOB 368 | 0.4329 | 0.0915 | -0.5379 | 0.1068 | 0.2080 47.9 | 360.58
A4.3
* Using the expressions for the OLS regression coefficients, demonstrate that
b, =a, +1.
g = Z:,:](xi _f)(zi _E) B Z:l:l(xi _')_C)([yi _xi]_[y_f])
2= n _ - n —
Zi:l (xi - x)2 Zi:l (xi - x)Z

Z:Zl(xi _)_C)(yi _J_)) Z:I:I(xi _3?)2

= - =b,—1.

PINCEE DI A

* Similarly, using the expressions for the OLS regression coefficients,
demonstrate that b, = a,.

a,=z—a,x=(y-%)-a,x=y—(a, +1)x =y —b,X =b,.

* Hence demonstrate that the relationship between the fitted values of y, the
fitted values of z, and the actual values of x, is p, —x, =zZ,.

z,=a, +a,x; =b +(b2 —l)x,. =b +b,x, —x, =y, —x,.

* Hence show that the residuals for regression (3) are identical to those for
4.
Let e, be the residual in (3) and f, the residual in (4). Then

fi=z,-Z2,=y,~x _(j’i _xi)zyi -yi=e.
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* Hence show that the standard errors of b, and a, are the same.

The standard error of b, is

S et fn-2) \/fo (n—2)
s.e.(b,) = — = —— = s.e.(a,).
\/ Z(xi_x) Z(xi_x)

* Determine the relationship between the t statistic for b, and the t statistic
for a,, and give an intuitive explanation for the relationship.

b, a, +1
f, =—2 =2

2 s.e.(bz) s.e.(az) )

The t statistic for b, is for the test of H: #, = 0. Given the relationship, it
is also for the test of H: a, = —1. The tests are equivalent since both of
them reduce the model to log Y depending only on an intercept and the
disturbance term.

* Explain whether R? would be the same for the two regressions.

R? will be different because it measures the proportion of the variance of
the dependent variable explained by the regression, and the dependent
variables are different.
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Ad.4

In the first part of the output, WEIGHTO?Z2 is regressed on HEIGHT, using
EAEF Data Set 21. The predict command saves the fitted values from the
most recent regression, assigning them the variable name that follows

the command., in this case YHAT. YHATSQ is defined as the square of
YHAT, and this is added to the regression specification. Its coefficient is
significant at the 1 per cent level, indicating, as one would expect, that the
relationship between weight and height is nonlinear.

reg WEIGHT02 HEIGHT

Source | SS df MS Number of obs = 540
————————————— Fmmm F( 1, 538) = 216.95
Model | 311260.383 1 311260.383 Prob > F = 0.0000
Residual | 771880.527 538 1434.72217 R-squared = 0.2874
————————————— Fom Adj R-squared = 0.2860
Total | 1083140.91 539 2009.53787 Root MSE = 37.878
WEIGHTO02 | Coef Std. Err t P>\t [95% Conf. Intervall]
_____________ +________________________________________________________________
HEIGHT | 5.669766 .3849347 14.73 0.000 4.913606 6.425925

_cons | -199.6832 26.10105 -7.65 0.000 -250.9556 -148.4107

predict YHAT
(option xb assumed; fitted values)

g YHATSQ = YHAT*YHAT

reg WEIGHTO02 HEIGHT YHATSQ

Source | SS daf MS Number of obs = 540
————————————— e e F( 2, 537) = 114.87
Model | 324546.101 2 162273.05 Prob > F = 0.0000
Residual | 758594.809 537 1412.65328 R-squared = 0.2996
————————————— Fmm Adj R-squared = 0.2970
Total | 1083140.91 539 2009.53787 Root MSE = 37.585
WEIGHTO02 | Coef. Std. Err. t P>\t [95% Conf. Intervall]
_____________ +________________________________________________________________
HEIGHT | -7.240152 4.22697 -1.71 0.087 -15.54358 1.063271
YHATSQ | .0062029 .0020226 3.07 0.002 .0022296 .0101761

cons | 460.3737 216.7846 2.12 0.034 34.52394 886.2234
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A4)5

A4.6

The RSS comparisons for all the categories of expenditure indicate that

the logarithmic specification is overwhelmingly superior to the linear one.
The differences are actually surprisingly large and suggest that some other
factor may also be at work. One possibility is that the data contain many
outliers, and these do more damage to the fit in linear than in logarithmic
specifications. To see this, plot CATPC and EXPPC and compare with a plot
of LGCATPC and LGEXPPC. (Strictly speaking, you should control for SIZE
and LGSIZE using the Frisch-Waugh-Lovell method described in Chapter 3.)

RSS from Zarembka transformations
RSS
n RSS linear logarithmic

FDHO 868 197.58 130.22
FDAW 827 2993.63 597.61
HOUS 867 888.75 496.41
TELE 858 1448.27 351.81
DOM 454 61271.17 1319.71
TEXT 482 20655.14 557.55
FURN 329 6040.07 681.45
MAPP 244 1350.83 280.41
SAPP 467 3216.40 493.39
CLOT 847 1919.32 659.59
FOOT 686 1599.01 588.21
GASO 797 597.57 365.73
TRIP 309 3828.14 517.96
LOCT 172 2793.50 433.51
HEAL 821 2295.19 1294.03
ENT 824 6267.20 725.85
FEES 676 33224.88 1117.00
TOYS 592 4522.51 809.01
READ 764 2066.83 861.92
EDUC 288 44012.28 826.85
TOB 368 617.45 360.58

In (1) R? is the proportion of the variance of Y explained by the regression.
In (2) it is the proportion of the variance of log Y explained by the
regression. Thus, although related, they are not directly comparable. In
(1) RSS has dimension the squared units of Y. In (2) it has dimension the
squared units of log Y. Typically it will be much lower in (2) because the
logarithm of Y tends to be much smaller than Y.

The specifications with the same dependent variable may be compared
directly in terms of RSS (or R%) and hence two of the specifications may
be eliminated immediately. The remaining two specifications should be
compared after scaling, with Y replaced by Y* where Y* is defined as Y
divided by the geometric mean of Y in the sample. RSS for the scaled
regressions will then be comparable.
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A4.7
The proposed model

SKILL = B, + B, log(EXP)+ 3, log(EXP? )+ u
cannot be fitted since
log(EXP? )= 2log(EXP)
and the specification is therefore subject to exact multicollinearity.

A4.8

Let the theoretical model for the regression be written
LGEARN = B, + B,S + B,EXP + B, ASVABC + BS54 +u.

The estimates of §, and f, are negative, at first sight suggesting that
schooling and cognitive ability have adverse effects on earnings, contrary
to common sense and previous results with wage equations of this kind.
However, rewriting the model as

LGEARN = f3, + (B, + B ASVABC)S + B;EXP + 8, ASVABC + u

it can be seen that, as a consequence of the inclusion of the interactive term,
/3, represents the effect of a marginal year of schooling for an individual

with an ASVABC score of zero. Since no individual in the sample had a score
less than 25, the perverse sign of the estimate illustrates only the danger of
extrapolating outside the data range. It makes better sense to evaluate the
implicit coefficient for an individual with the mean ASVABC score of 52.1.
This is (-0.024163 + 0.001986*52.1) = 0.079, implying a much more
plausible 7.9 per cent increase in earnings for each year of schooling. The
positive sign of the coefficient of SASVABC implies that the coefficient is
somewhat higher for those with above-average ASVABC scores and somewhat
lower for those with below average scores. For those with the highest score,
66, it would be 10.7, and for those with the lowest score, 25, it would be 2.5.

Similar considerations apply to the interpretation of the estimate of f, , the
coefficient of ASVABC. Rewriting the model as

LGEARN = f3, + 3,S + B,EXP + (B, + B5S)ASVABC +u

it can be seen that , relates to the effect on hourly earnings of a one-
unit increase in ASVABC for an individual with no schooling. As with 3,
this is outside the data range in the sample, no individual having fewer
than 8 years of schooling. If one calculates the implicit coefficient for an
individual with the sample mean of 13.7 years of schooling, it comes to
(-0.009544 + 0.001986%13.7) = 0.018.

As shown in the exercise, one way of avoiding nonsense parameter estimates
is to measure the variables in question from their sample means. This has
been done in the regression output below, where S1 and ASVABCI are
schooling and ASVABC measured from their sample means and SASVABCI is
their interaction. The only differences in the output are the lines relating to
the coefficients of schooling, ASVABC, and the intercept, the point estimates of
the coefficients of S and ASVABC being as calculated above.
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reg LGEARN

Source

Model
Residual

S1 EXP ASVABCl SASVABC1

—_ 4+ — — 4+ —

4 7.50802256

30.0320902
62.7338798

Number of obs
F( 4, 265)
Prob > F
R-squared

Adj R-squared
Root MSE

270
31.72
0.0000
= 0.3237
0.3135
= .48655

S1

EXP
ASVABC1
SASVABC1

[95% Conf.

Interval]

.0793138
.0259103
.0177037
.0019856
2.465968

265 .236731622
269 .344854907
Std. Err t
.0171164 4.63
.0086572 2.99
.0040138 4.41
.0013398 1.48
.163862 15.05

.0456124
.0088646
.0098007
-.0006524
2.143331

.1130153
.0429561
.0256067
.0046237
2.788605
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Chapter 5: Dummy variables

Overview

This chapter explains the definition and use of a dummy variable, a device
for allowing qualitative characteristics to be introduced into the regression
specification. Although the intercept dummy may appear artificial and
strange at first sight, and the slope dummy even more so, you will become
comfortable with the use of dummy variables very quickly. The key is to
keep in mind the graphical representation of the regression model.

Learning outcomes

After working through the corresponding chapter in the textbook, studying
the corresponding slideshows, and doing the starred exercises in the textbook
and the additional exercises in this guide, you should be able to explain:

* how the intercept and slope dummy variables are defined
* what impact they have on the regression specification

* how the choice of reference (omitted) category affects the interpretation
of t tests on the coefficients of dummy variables

* how a change of reference category would affect the regression results
* how to perform a Chow test

* when and why a Chow test is equivalent to a particular F test of the joint
explanatory power of a set of dummy variables.

Additional exercises

A5.1

In Exercise Al.4 the logarithm of earnings was regressed on height using
EAEF Data Set 21 and, somewhat surprisingly, it was found that height had a
highly significant positive effect. We have seen that the logarithm of earnings
is more satisfactory than earnings as the dependent variable in a wage
equation. Fitting the semilogarithmic specification, we obtain

reg LGEARN HEIGHT

Source | SS df MS Number of obs = 540
————————————— Fmm e e F( 1, 538) = 51.03
Model | 16.1740421 1 16.1740421 Prob > F = 0.0000
Residual | 170.533601 538 .316976954 R-squared = 0.0866
————————————— et etes Adj R-squared = 0.0849
Total | 186.707643 539 .34639637 Root MSE = .56301

LGEARN | Coef. Std. Err. t P>\t [95% Conf. Intervall]
_____________ +________________________________________________________________
HEIGHT | .0408707 .0057216 7.14 0.000 .0296313 .0521101

_cons | .0261041 .3879608 0.07 0.9406 -.7359995 .7882078

The t statistic for HEIGHT is even higher. In Exercise A1.4 it was hypothesised
that the effect might be attributable to males tending to have greater earnings
than females and also tending to be taller. The output below shows the result

of adding a dummy variable to the specification, to control for sex. Comment

on the results.
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A5.3

A5.4

A5.5

. reg LGEARN HEIGHT MALE

I

540
29.15
0.0000
0.0979
0.0946
.56003

ntervall]

.0414462
.3217269

Source | SS df MS Number of obs
————————————— e F( 2, 537)
Model | 18.2862762 2 9.14313809 Prob > F
Residual | 168.421367 537 .313633831 R-squared
————————————— e Adj R-squared
Total | 186.707643 539 .34639637 Root MSE
LGEARN | Coef. Std. Err. t P>t [95% Conf.
_____________ +________________________________________________________________
HEIGHT | .0250793 .0083318 3.01 0.003 .0087125
MALE | .1831165 .0705615 2.60 0.010 .0445061
_cons | 1.003213 .5391573 1.86 0.063 -.0559024

2.062329

Does ethnicity have an effect on household expenditure?

The variable REFRACE in the CES data set is coded 1 if the reference
individual in the household, usually the head of the household, is
white and it is coded greater than 1 for other ethnicities. Define

a dummy variable NONWHITE that is 0 if REFRACE is 1 and 1 if
REFRACE is greater than 1. Regress LGCATPC on LGEXPPC, LGSIZE, and
NONWHITE. Provide an interpretation of the coefficients, and perform
appropriate statistical tests.

Does education have an effect on household expenditure?

The variable REFEDUC in the CES data set provides information on the
education of the reference individual in the household. Define dummy
variables EDUCDO (high-school drop out or less), EDUCIC (incomplete
college), and EDUCCO (complete college) using the following rules:

o EDUCDO = 1 if REFEDUC < 3, 0 otherwise
o EDUCIC = 1 if REFEDUC = 4, 0 otherwise

o EDUCCO = 1 if REFEDUC > 4, 0 otherwise.

Regress LGCATPC on LGEXPPC, LGSIZE, EDUCDO, EDUCIC, and
EDUCCO. Provide an interpretation of the coefficients, and perform
appropriate statistical tests. Note that the reference (omitted) category
for the dummy variables is high school graduate with no college
(REFEDUC = 3).

Using the CES data set, evaluate whether the education dummies as

a group have significant explanatory power for expenditure on your
category of expenditure by comparing the residual sums of squares in the
regressions in Exercises A4.2 and A5.3.

Repeat Exercise A5.3 making EDUCDO the reference (omitted) category.
Introduce a new dummy variable EDUCHSD for high school diploma, since
this is no longer the omitted category:

EDUCHSD = 1 if REFEDUC = 3, 0 otherwise.

Evaluate the impact on the interpretation of the coefficients and the
statistical tests.
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A5.6

* Does going to college have an effect on household expenditure?

Using the CES data set, define a dummy variable COLLEGE that is O if
REFEDUC is 0-3 (no college education) and 1 if REFEDUC is greater
than 3 (partial or complete college education). Regress LGCATPC on
LGEXPPC and LGSIZE: (1) for those respondents with COLLEGE = 1,
(2) for those respondents with COLLEGE = 0, and (3) for the whole
sample. Perform a Chow test.

A5.7
* How does education impact on household expenditure?

In Exercise A5.6 you defined an intercept dummy COLLEGE that
allowed you to investigate whether going to college caused a shift

in your expenditure function. Now define slope dummy variables

that allow you to investigate whether going to college affects the
coefficients of LGEXPPC and LGSIZE. Define LEXPCOL as the product of
LGEXPPC and COLLEGE, and define LSIZECOL as the product of LGSIZE
and COLLEGE. Regress LGCATPC on LGEXPPC, LGSIZE, COLLEGE,
LEXPCOL, and LSIZECOL. Provide an interpretation of the coefficients,
and perform appropriate tests. Include a test of the joint explanatory
power of the dummy variables by comparing RSS in this regression
with that in Exercise A4.2. Verify that the outcome of this F test is
identical to that for the Chow test in Exercise A5.6.

A5.8

A researcher has data on hourly earnings in dollars, EARNINGS, years

of schooling (highest grade completed), S, and sector of employment,
GOV, for 1,355 male respondents in the US National Longitudinal Survey
of Youth for 2002. GOV is defined as a dummy variable equal to O if the
respondent was working in the private sector and 1 if the respondent

was working in the government sector. 91 per cent of the private sector
workers and 95 per cent of the government sector workers had at least

12 years of schooling. The mean value of S was 13.5 for the private sector
and 14.6 for the government sector. The researcher regresses LGEARN, the
natural logarithm of EARNINGS

(1)on GOV alone,
(2)on GOV and S, and
(3)on GOV, S, and SGOV

where the variable SGOV is defined to be the product of S and GOV, with
the results shown in the following table.

Standard errors are shown in parentheses and t statistics in square
brackets. RSS = residual sum of squares.
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€)) (2) (3)

0.007 -0.121 0.726
GOV (0.043) (0.038) (0.193)
[0.16] [-3.22] [3.76]

0.116 0.130
S — (0.006) (0.006)
[21.07] [20.82]

-0.059
SGOV — — (0.013)
[-4.48]

2.941 1.372 1.195
constant (0.018) (0.076) (0.085)
[163.62] [18.04] [14.02]

R? 0.000 0.247 0.258
RSS 487.7 367.2 361.8

* Explain verbally why the estimates of the coefficient of GOV are
different in regressions (1) and (2).

* Explain the difference in the estimates of the coefficient of GOV in
regressions (2) and (3).

* The correlation between GOV and SGOV was 0.977. Explain the
variations in the standard error of the coefficient of GOV in the three
regressions.

A researcher has data on the average annual rate of growth of
employment, e, and the average annual rate of growth of GDB x, both
measured as percentages, for a sample of 27 developing countries and 23
developed ones for the period 1985-1995. He defines a dummy variable
D that is equal to 1 for the developing countries and O for the others.
Hypothesising that the impact of GDP growth on employment growth is
lower in the developed countries than in the developing ones, he defines a
slope dummy variable xD as the product of x and D and fits the regression
(standard errors in parentheses):

whole sample ¢ = -1.45+ 0.19x+ 0.78xD R?=0.61
(0.36) (0.10) (0.10) RSS=50.23

He also runs simple regressions of e on x for the whole sample, for the
developed countries only, and for the developing countries only, with the
following results:

whole sample ¢ = -0.56 + 0.24x R*=0.04
(0.53) (0.16) RSS =121.61
developed e = -2.74+ 0.50x R*=0.35
countries (0.58) (0.15) RSS = 18.63
developing e = -0.85+ 0.78x R? =0.51
countries (0.42) (0.15) RSS = 25.23
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* Explain mathematically and graphically the role of the dummy variable
xD in this model.

* The researcher could have included D as well as xD as an explanatory
variable in the model. Explain mathematically and graphically how it
would have affected the model.

* Suppose that the researcher had included D as well as xD:
o What would the coefficients of the regression have been?
o What would the residual sum of squares have been?

o What would the t statistic for the coefficient of D have been?

* Perform two tests of the researcher’s hypothesis. Explain why you
would not test it with a t test on the coefficient of xD in regression (1).

A5.10

You are given the following data on 2,800 respondents in the U.S. National
Longitudinal Survey of Youth with jobs in 2002:

o hourly earnings in the respondent’s main job at the time of the 2002
interview

o educational attainment (highest grade completed)

o mother’s and father’s educational attainment

o ASVABC score

o sex

o ethnicity: black, Hispanic, or white, that is (not black nor Hispanic)

o whether the main job in 2002 was in the government sector or the
private sector.

* As a policy analyst, you are asked to investigate whether there is
evidence of earnings discrimination, positive or negative, by sex or
ethnicity in (1) the government sector, and (2) the private sector.
Explain how you would do this, giving a mathematical representation
of your regression specification(s).

* You are also asked to investigate whether the incidence of earnings
discrimination, if any, is significantly different in the two sectors.
Explain how you would do this, giving a mathematical representation
of your regression specification(s). In particular, discuss whether a
Chow test would be useful for this purpose.

A5.11

A researcher has data from the National Longitudinal Survey of Youth

for the year 2000 on hourly earnings, Y, years of schooling, S, and years
of work experience, X, for a sample of 1,774 males and 1,468 females.
She defines a dummy variable MALE for being male, a slope dummy
variable SMALE as the product of S and MALE, and another slope dummy
variable XMALE as the product of X and MALE. She performs the following
regressions (1) log Y on S and X for the entire sample, (2) log Y on S and
X for males only, (3) log Y on S and X for females only, (4) log Y on S,

X, and MALE for the entire sample, and (5) log Y on S, X, MALE, SMALE,
and XMALE for the entire sample. The results are shown in the table, with
standard errors in parentheses. RSS is the residual sum of squares and n is
the number of observations.

85



20 Elements of econometrics

86

(D 2 3 4) 5)
S 0.094 0.099 0.094 0.097 0.094
(0.003) (0.004) (0.005) (0.003) (0.005)
5 0.046 0.042 0.039 0.040 0.039
(0.002) (0.003) (0.002) (0.002) (0.003)
0.234 0.117
MALE - - -
(0.016) (0.108)
0.005
SMALE - - - -
(0.007)
0.003
XMALE - - - -
(0.004)
5.165 5.283 5.166 5.111 5.166
constant
(0.054) (0.083) (0.068) (0.052) (0.074)
R? 0.319 0.277 0.363 0.359 0.359
RSS 714.6 411.0 261.6 672.8 672.5
n 3,242 1,774 1,468 3,242 3,242

The correlations between MALE and SMALE, and MALE and XMALE, were
both 0.96. The correlation between SMALE and XMALE was 0.93.

* Give an interpretation of the coefficients of S and SMALE in regression

(5).

* Give an interpretation of the coefficients of MALE in regressions (4)
and (5).

* The researcher hypothesises that the earnings function is different for
males and females. Perform a test of this hypothesis using regression
(4), and also using regressions (1) and (5).

* Explain the differences in the tests using regression (4) and using
regressions (1) and (5).

* At a seminar someone suggests that a Chow test could shed light on the
researcher’s hypothesis. Is this correct?

e Explain which of (1), (4), and (5) would be your preferred
specification.

A5.12

A researcher has data for the year 2000 from the US National Longitudinal
Survey of Youth on the following characteristics of the respondents: hourly
earnings, EARNINGS, measured in dollars; years of schooling, S; years of
work experience, EXP; sex; and ethnicity (blacks, hispanics, and ‘whites’
(those not classified as black or hispanic). She drops the hispanics from
the sample, leaving 2,135 ‘whites’ and 273 blacks, and defines dummy
variables MALE and BLACK. MALE is defined to be 1 for males and O for
females. BLACK is defined to be 1 for blacks and O for ‘whites’. She defines
LGEARN to be the natural logarithm of EARNINGS. She fits the following
ordinary least squares regressions, each with LGEARN as the dependent
variable:

(1)Explanatory variables S, EXP, and MALE, whole sample
(2)Explanatory variables S, EXP, MALE, and BLACK, whole sample



(3)Explanatory variables S, EXP, and MALE, ‘whites’ only

(4)Explanatory variables S, EXP, and MALE, blacks only

Chapter 5: Dummy variables

She then defines interactive terms SB = S*BLACK, EB = EXP*BLACK,
and MB = MALE*BLACK, and runs a fifth regression, still with LGEARN
as the dependent variable:

(5)Explanatory variables S, EXP, MALE, BLACK, SB, EB, MB, whole sample.

The results are shown in the table. Unfortunately some of those for

Regression 4 are missing from the table. RSS = residual sum of squares.

Standard errors are given in parentheses.

1 2 3 4 5
whole whole ‘whites’ blacks whole
sample sample only only sample

S 0.124 0.121 0.122 v 0.122
(0.004) (0.004) (0.004) (0.004)
0.033 0.032 0.033 0.033
EXP w
(0.002) (0.002) (0.003) (0.003)
0.278 0.277 0.306 0.306
MALE X
(0.020) (0.020) (0.021) (0.021)
-0.144 0.205
BLACK — — —
(0.032) (0.225)
-0.009
SB — — — —
(0.016)
-0.006
EB — — — —
(0.007)
-0.280
MB — — — —
(0.065)
0.390 0.459 0.411 0.411
constant Y
(0.075) (0.076) (0.084) (0.082)
R? 0.335 0.341 0.332 0.321 0.347
RSS 610.0 605.1 555.7 Z 600.0
n 2,408 2,408 2,135 273 2,408

* Calculate the missing coefficients V, W, X, and Y in Regression 4 (just

the coefficients, not the standard errors) and Z, the missing RSS, giving
an explanation of your computations.

Give an interpretation of the coefficient of BLACK in Regression 2.

Perform an F test of the joint explanatory power of BLACK, SB, EB, and
MB in Regression 5.

Explain whether it is possible to relate the F test in part (c) to a Chow
test based on Regressions 1, 3, and 4.

Give an interpretation of the coefficients of BLACK and MB in
Regression 5.

Explain whether a simple t test on the coefficient of BLACK in
Regression 2 is sufficient to show that the wage equations are different
for blacks and ‘whites’.
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A5.13

As part of a workshop project, four students are investigating the effects of
ethnicity and sex on earnings using data for the year 2002 in the National
Longitudinal Survey of Youth 1979-. They all start with the same basic
specification:

logY =g, + 5,5+ BEXP+u

where Y is hourly earnings, measured in dollars, S is years of schooling
completed, and EXP is years of work experience. The sample contains

123 black males, 150 black females, 1,146 white males, and 1,127 white
females. (All respondents were either black or white. The Hispanic
subsample was dropped.) The output from fitting this basic specification

is shown in column 1 of the table (standard errors in parentheses; RSS is
residual sum of squares, n is the number of observations in the regression).

Basic Student C Student D
(D (2) 3) (4a) (4b) (5a) (5b)
All All All Males Females Whites Blacks
S 0.126 0.121 0.121 0.133 0.112 0.126 0.112
(0.004) | (0.004) | (0.004) | (0.006) (0.006) (0.005) (0.012)
Exp 0.040 0.032 0.032 0.032 0.035 0.041 0.028
(0.002) | (0.002) | (0.002) | (0.004) (0.003) (0.003) (0.005)
0.277 0.308
MALE — — — — —
(0.020) | (0.021)
-0.144 | -0.011
BLACK — — — — —
(0.032) | (0.043)
-0.290
MALEBLAC — — — — — —
(0.063)
0.0376 | 0.459 0.447 0.566 0.517 0.375 0.631
constant
(0.078) | (0.076) | (0.076) | (0.124) (0.097) (0.087) (0.172)
R? 0.285 0.341 0.346 0.287 0.275 0.271 0.320
RSS 659 608 603 452 289 609 44
n 2,546 2,546 2,546 1,269 1,277 2,273 273

Student A divides the sample into the four ethnicity/sex categories. He
chooses white females as the reference category and fits a regression that
includes three dummy variables BM, WM, and BF. BM is 1 for black males,
0 otherwise; WM is 1 for white males, 0 otherwise, and BF is 1 for black
females, O otherwise.

Student B simply fits the basic specification separately for the four
ethnicity/sex subsamples.

Student C defines dummy variables MALE, equal to 1 for males and 0

for females, and BLACK, equal to 1 for blacks and O for whites. She also
defines an interactive dummy variable MALEBLAC as the product of MALE
and BLACK. She fits a regression adding MALE and BLACK to the basic
specification, and a further regression adding MALEBLAC as well. The
output from these regressions is shown in columns 2 and 3 in the table.
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Student D divides the sample into males and females and performs the
regression for both sexes separately, using the basic specification. The
output is shown in columns 4a and 4b. She also divides the sample into
whites and blacks, and again runs separate regressions using the basic
specification. The output is shown in columns 5a and 5b.

Reconstruction of missing output.

Students A and B left their output on a bus on the way to the workshop.
This is why it does not appear in the table.

* State what the missing output of Student A would have been, as far
as this is can be done exactly, given the results of Students C and D.
(Coefficients, standard errors, R?, RSS.)

* Explain why it is not possible to reconstruct any of the output of
Student B.

Tests of hypotheses.

The approaches of the students allowed them to perform different tests,
given the output shown in the table and the corresponding output

for Students A and B. Explain the tests relating to the effects of sex

and ethnicity that could be performed by each student, giving a clear
indication of the null hypothesis in each case. (Remember, all of them
started with the basic specification (1), before continuing with their
individual regressions.) In the case of F tests, state the test statistic in
terms of its components.

* Student A (assuming he had found his output)
* Student B (assuming he had found his output)
e Student C
e Student D.

If you had been participating in the project and had had access to the data
set, what regressions and tests would you have performed?

Answers to the starred exercises in the textbook

5.2

The Stata output shows the result of regressing weight on height, first
with a linear specification, then with a logarithmic one, including a
dummy variable MALE, defined as in Exercise 5.1, in both cases. Give
an interpretation of the equations and perform appropriate statistical
tests. See Box 5.1 for a guide to the interpretation of dummy variable
coefficients in logarithmic regressions.
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reg WEIGHT85 HEIGHT MALE

Source | SS df MS Number of obs = 540
————————————— e F( 2, 537) = 191.56
Model | 273040.775 2 136520.388 Prob > F = 0.0000
Residual | 382702.973 537 712.668479 R-squared = 0.41064
————————————— Fmm— Adj R-squared = 0.4142
Total | 655743.748 539 1216.59322 Root MSE 26.696
WEIGHT85 | Coef Std. Err t P>|t| [95% Conf. Interval]
_____________ +________________________________________________________________
HEIGHT | 4.006225 .3971644 10.09 0.000 3.226039 4.786412
MALE | 13.7615 3.363568 4.09 0.000 7.154131 20.36886
~cons | -121.2502 25.70087 -4.72 0.000 -171.7367 -70.76363
reg LGWEIGHT LGHEIGHT MALE

Source | SS df MS Number of obs = 540
————————————— o F( 2, 537) = 224.03
Model | 11.3390838 2 5.66954189 Prob > F = 0.0000
Residual | 13.5897932 537 .025306877 R-squared = 0.4549
————————————— e Adj R-squared = 0.4528
Total | 24.928877 539 .046250236 Root MSE = .15908
LGWEIGHT | Coef Std. Err t P>t | [95% Conf. Interval]
_____________ +________________________________________________________________
LGHEIGHT | 1.675851 .1581459 10.60 0.000 1.36519 1.986511
MALE | .0975722 .0199191 4.90 0.000 .0584432 .1367012
_cons | -2.077515 .6590635 -3.15 0.002 -3.372173 -.782856

Answer:

The first regression indicates that weight increases by 4.0 pounds for

each inch of stature and that males tend to weigh 13.8 pounds more than
females, both coefficients being significantly different from zero at the 0.1
per cent level. The second regression indicates that the elasticity of weight
with respect to height is 1.67, and that males weigh 9.8 per cent more
than females, both effects again being significantly different from zero at
the 0.1 per cent level.

The null hypothesis that the elasticity is zero is not worth testing, except
perhaps in a negative sense, for if the result were not highly significant
there would have to be something seriously wrong with the model
specification. Two other hypotheses are of greater interest: the elasticity
being equal to 1, weight growing proportionally with height, other
dimensions being unchanged, and the elasticity being equal to 3, all
dimensions increasing proportionally with height. The ¢ statistics are 4.27
and -8.37, respectively, so both hypotheses are rejected.

Suppose that the relationship
Y =5 +5X +u,

is being fitted and that the value of X is missing for some observations. One
way of handling the missing values problem is to drop those observations.
Another is to set X = 0 for the missing observations and include a dummy
variable D defined to be equal to 1 if X is missing, 0 otherwise. Demonstrate
that the two methods must yield the same estimates of 5, and f,. Write
down an expression for RSS using the second approach, decompose it into
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the RSS for observations with X present and RSS for observations with X
missing, and determine how the resulting expression is related to RSS when
the missing-value observations are dropped.

Answer: Let the fitted model, with D included, be
Y, =b, +b,X, +b,D,

Then, if X is missing for observations m+1 to n,

RSS =i(Yl _)}i)z = i(Yl —(b] +b X, +b3Di))2

i=1

(Y, — (b + b, X, +b,D,)f + 3 (Y, ~ (b, + b, X, +b,D, )

i=m+1

(%, = (b, + by, )P + (% (b, +5,)

i=m+l1

I
.F4§

I
'[Vﬂi

The normal equation for b, will yield

b, =b -7,

missing
where Znissmg is the mean value of Y for those observations for which X

is missing. This relationship means that b, and b, may be chosen so as to
minimise the first term in RSS. This, of course, is RSS for the regression
omitting the observations for which X is missing, and hence b, and b, will
be the same as for that regression.

reg LGEARN EDUCPROF EDUCMAST EDUCPHD EDUCBA EDUCAA EDUCDO EXP MALE

Source | SS df MS Number of obs =
————————————— Fm F( 8, 531)
Model | 57.6389757 8 7.20487196 Prob > F
Residual | 129.068668 531 .243067171 R-squared
————————————— Fomm Adj R-squared
Total | 186.707643 539 .34639637 Root MSE
LGEARN | Coef. Std. Err. t P>t [95% Conf.
_____________ +_______________________________________________________
EDUCPROF | 1.59193 .2498069 6.37 0.000 1.101199
EDUCPHD | .3089521 .4943698 0.62 0.532 -.6622084
EDUCMAST | .6280672 .0993222 6.32 0.000 .4329546
EDUCBA | .5053643 .0561215 9.00 0.000 .3951168
EDUCAA | .170838 .0765684 2.23 0.026 .0204238
EDUCDO | -.2527803 .08179 -3.09 0.002 -.413452
EXP | .0230536 .0050845 4.53 0.000 .0130654
MALE | .2755451 .0437642 6.30 0.000 .189573
_cons | 2.125885 .0915997 23.21 0.000 1.945943

The Stata output shows the result of a semilogarithmic regression of
earnings on highest educational qualification obtained, work experience,
and the sex of the respondent, the educational qualifications being a
professional degree, a PhD, a Master’s degree, a Bachelor’s degree, an
Associate of Arts degree, and no qualification (high school drop-out). The
high school diploma was the reference category. Provide an interpretation
of the coefficients and perform t tests.

540
29.64
= 0.0000
0.3087
0.2983
= .49302

Interval]
2.082661
1.280113
.8231798
.6156118
.3212522

-.0921085
.0330419
.3615173
2.305828

91



20 Elements of econometrics

92

5.16

Answer:

The regression results indicate that those with professional degrees earn
159 per cent more than high school graduates, or 391 per cent more if
calculated as 100(e*?2 — 1), the coefficient being significant at the 0.1 per
cent level. For the other qualifications the corresponding figures are:

* PhD 30.9 36.2 not significant
e Masters 62.8 87.4 0.1 per cent

* Bachelor’'s 50.5 65.7 0.1 per cent

e Associate’s 17.1  18.6 5 per cent

e Drop-out -25.3 -22.4 1 per cent

Males earn 27.6 per cent (31.8 per cent) more than females, and every
year of work experience increases earnings by 2.3 per cent.

The coefficients of those with professional degrees and PhDs should be
treated cautiously since there were only six individuals in the former
category and three in the latter. For the other categories the numbers of
observations were: Masters 31; Bachelor’s 98; Associate’s 48; High school
diploma (or GED) 297; and drop-out 46.

Is the effect of education on earnings different for members of a union?
In the output below, COLLBARG is a dummy variable defined to be 1 for
workers whose wages are determined by collective bargaining and 0 for
the others. SBARG is a slope dummy variable defined as the product of S
and COLLBARG. Provide an interpretation of the regression coefficients,
comparing them with those in Exercise 5.9, and perform appropriate
statistical tests.

gen SBARG=S*COLLBARG

reg LGEARN S EXP MALE COLLBARG SBARG

Source | SS df MS Number of obs
————————————— e F( 5, 534)
Model | 61.1824375 5 12.2364875 Prob > F
Residual | 125.525206 534 .235065928 R-squared
————————————— Fmmm Adj R-squared
Total | 186.707643 539 .34639637 Root MSE
LGEARN | Coef. Std. Err. t P>t [95% Conf.
_____________ +_______________________________________________________
S | .1234328 .0097343 12.08 0.000 .1043107
EXP | .0272315 .0049725 5.48 0.000 .0174635
MALE | .2658057 .0430621 6.17 0.000 .1812137
COLLBARG | .3669224 .3020525 1.21 0.225 -.2264344
SBARG | -.0209955 .0216824 -0.97 0.333 -.0635887
_cons | .4964114 .1684306 2.95 0.003 .1655436
Answer:

In this specification, the coefficient of S is an estimate of the effect of
schooling on the earnings of those whose earnings are not subject to collective
bargaining (henceforward, for short, unionised workers, though obviously
the category includes some who do not actually belong to unions), and the
coefficient of SBARG is the extra effect in the case of those whose earnings
are. Thus for the former, a year of schooling increases earnings by 12.3 per
cent, while for the latter it is only 10.2 per cent (12.3-2.1). Does this make

= 540
52.06
= 0.0000
0.3277
= 0.3214
= .48484

Interval]
.142555
.0369995
.3503977
.9602792
.0215977
.8272792
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sense? Probably, since qualifications and seniority are important for unionised
workers and consequently the importance of schooling may be less.

There appears to be a problem with the coefficient of COLLBARG, for it
now seems to suggest that unionised workers earn a massive 36.7 per

cent (actually, 44.3 per cent, when calculated properly) more than non-
unionised workers, controlling for other characteristics. In Exercise 5.7, it
was only 7.9 per cent. The reason for the discrepancy is that the meaning
of the coefficient has changed. It now estimates the difference when S = 0.
Writing the model as

LGEARN = g, + p,S + B, ASVABC + ,MALE + i, COLLBARG
+ B.SBARG + 1,
for non-unionised workers the specification is
LGEARN = 5, + p,S + B, ASVABC + ,MALE + u,
while for unionised workers it is
LGEARN = g, + .S + pASVABC +  MALE + f, + .S + u.

Thus the extra earnings of unionised workers are given by , + .S. None

had no schooling and very few did not complete at least tenth grade. For S
= 10, the expression works out at 15.7 per cent a more reasonable figure.
For high school graduates, with S = 12, it is 11.4. For those with four-year
college degrees, with S = 16, it is 0 (actually, -1.0).

Answers to the additional exercises

A5.1

A5.2

The coefficient of the MALE dummy variable indicates that males earn 18 per
cent more than females. The inclusion of the dummy variable has reduced
the coefficient of HEIGHT, as expected, but the effect still remains significant
at the 1 per cent level. Obviously the specification of the wage equation still
remains very primitive. To check whether height really does have an effect on
earnings, we need to start with a better specification with more controls.

868
141.22
0.0000
0.3290
0.3267
.38788

Interval]

.3261667

-.1798866

.0287821

Source | SS df MS Number of obs
————————————— e F( 3, 864)
Model | 63.7409923 3 21.2469974 Prob > F
Residual | 129.989416 864 .150450713 R-squared
————————————— e Adj R-squared
Total | 193.730408 867 .223449145 Root MSE
LGFDHOPC | Coef. Std. Err. t P>t | [95% Conf.
_____________ +________________________________________________________________
LGEXPPC | .2806382 .0231967 12.10 0.000 .2351098
LGSIZE | =-.2299126 .0254882 -9.02 0.000 -.2799386
NONWHITE | -.0489442 .0396015 -1.24 0.217 -.12667006
_cons | 4.784606 .226982 21.08 0.000 4.339105

The regression indicates that, controlling for total household expenditure
per capita and size of household, nonwhites spend 4.8 per cent less per
year than whites on food consumed at home. However the effect is not
significant. The coefficients of LGEXPPC and LGSIZE are not affected by the
introduction of the dummy variable.

Summarizing the effects for all the categories of expenditure, one finds:

* DPositive, significant at the 1 per cent level: TELE.

5.230107
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A5.3

* DPositive, significant at the 5 per cent level: CLOT, LOCT.

* Negative, significant at the 1 per cent level: GASO, HEAL, TOYS, TOB.
* Negative, significant at the 5 per cent level: FDAW, FEES, READ.
* Not significant: FDHO, HOUS, DOM, TEXT, FURN, MAPP, SAPP, FOOT,

TRIP, ENT, EDUC.

Under the hypothesis that nonwhites tend to live in urban areas, some
of these effects may have more to do with residence than ethnicity — for
example, the positive effect on LOCT and the negative one on GASO. The

results for all the categories are shown in the table.

Dependent variable LGCATPC

LGEXP LGSIZE NONWHITE
n b, s.e.(b,) b, s.e.(b,) b, s.e.(b,) R? F

FDHO 868 | 0.2806 | 0.0232 | —0.2299 | 0.0255 | -0.0489 | -0.0396 | 0.3290 | 141.2
FDAW 827 | 1.3920 | 0.0539 | 0.2135 | 0.0588 | -0.2076 | 0.0902 | 0.5022 | 276.8
HOUS 867 | 1.0461 | 0.0456 | —0.1538 | 0.0500 | 0.0628 | 0.0778 | 0.4718 | 256.9
TELE 858 | 0.5185 | 0.0384 | —0.3456 | 0.0421 | 0.2233 | 0.0660 | 0.3357 | 143.8
DOM 454 | 0.8903 | 0.1496 | 0.2163 | 0.1532 | 0.1050 | 0.2415 | 0.0762 | 12.4
TEXT 482 | 0.9416 | 0.0928 | -0.1603 | 0.1007 | -0.1243 | 0.1611 | 0.2507 | 80.1
FURN 329 | 0.6290 | 0.1527 | -0.4553 | 0.1678 | -0.3008 | 0.2665 | 0.1353 | 17.0
MAPP 244 | 0.4976 | 0.1383 | -0.4790 | 0.1530 | -0.2963 | 0.2079 | 0.1895 | 18.7
SAPP 467 | 0.7361 | 0.0914 | -0.4999 | 0.0978 | 0.1345 | 0.1583 | 0.2714 | 57.5
CLOT 847 | 1.1398 | 0.0548 | 0.3605 | 0.0597 | 0.2253 | 0.0919 | 0.3498 | 151.2
FOOT 686 | 0.7210 | 0.0648 | -0.0763 | 0.0710 | 0.2003 | 0.1088 | 0.2019 | 58.8
GASO 797 | 0.6560 | 0.0435 | -0.0817 | 0.0486 | —0.2558 | 0.0753 | 0.3084 | 177.0
TRIP 309 | 1.0830 | 0.1544 | -0.3412 | 0.1519 | 0.2489 | 0.2623 | 0.2444 | 329
LOCT 172 | 0.1035 | 0.2009 | -0.5179 | 0.2064 | 0.6219 | 0.2837 | 0.0720 4.3
HEAL 821 | 0.6040 | 0.0783 | -0.5312 | 0.0842 | -0.5292 | 0.1325 | 0.2023 | 69.1
ENT 824 | 1.4588 | 0.0595 | 0.3736 | 0.0660 | —-0.0813 | 0.1010 | 0.4558 | 229.0
FEES 676 | 1.7527 | 0.0952 | 0.4145 | 0.1040 | -0.3688 | 0.1608 | 0.3834 | 139.3
TOYS 592 | 0.9156 | 0.0891 | 0.0064 | 0.0992 | -0.8145 | 0.1678 | 0.2351 | 60.3
READ 764 | 0.9427 | 0.0718 | -0.4372 | 0.0767 | -0.2576 | 0.1218 | 0.3301 | 124.8
EDUC 288 | 1.2415 | 0.1903 | -0.1554 | 0.2393 | 0.1889 | 0.2968 | 0.1891 | 22.1
TOB 368 | 0.3373 | 0.0931 | -0.5918 | 0.1057 | -0.5791 | 0.1490 | 0.2396 | 38.2

. g EDUCDO=0

. g EDUCHSD=0

. g EDUCIC=0

. g EDUCCO=0

. replace EDUCDO=1 if REFEDUC<3
(179 real changes made)
. replace EDUCDO=1 if REFEDUC==

(3 real changes made)

. replace
(284 real
. replace
(195 real
. replace
(121 real
. replace

EDUCHSD=1 if REFEDUC==
changes made)
EDUCIC=1 if REFEDUC==
changes made)
EDUCCO=1 if REFEDUC==
changes made)
EDUCCO=1 if REFEDUC==

(87 real changes made)




. reg LGFDHOPC LGEXPPC LGSIZE EDUCDO EDUCIC EDUCCO
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Source | SS df MS Number of obs = 868
————————————— o F( 5, 862) = 85.80
Model | 64.3787428 5 12.8757486 Prob > F = 0.0000
Residual | 129.351666 862 .150059937 R-squared = 0.3323
————————————— tom Adj R-squared = 0.3284
Total | 193.730408 867 .223449145 Root MSE = .38738
LGFDHOPC | Coef Std. Err. t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
LGEXPPC | .3080939 .0251357 12.26 0.000 .2587596 .3574283
LGSIZE | -.2131035 .026315 -8.10 0.000 .2647525 -.1614545
EDUCDO | .071095 .0378941 1.88 0.061 .0032805 .1454705
EDUCIC | -.0224779 .0362653 -0.62 0.536 .0936565 .0487007
EDUCCO | -.0120779 .0367104 -0.33 0.742 .0841301 .0599743
_cons | 4.502385 .24474 18.40 0.000 4.022029 4.982741
The dummies have been defined with high school graduate as the
reference category. The other categories do not differ significantly in their
expenditure on food consumed at home. Summarising the results for the
other categories of expenditure, one finds:
Drop-outs Negative, 1 per cent: FDAW, HOUS, ENT.
Negative, 5 per cent: DOM, FEES.
Incomplete college Positive, 5 per cent: HOUS, CLOT, FEES, READ.
Negative, 1 per cent: FURN.
College graduates Positive, 1 per cent: HOUS, FEES, READ.
Positive, 5 per cent: CLOT, ENT.
Negative, 5 per cent: TEXT, GASO.
Note the clear positive effects of education on HOUS and FEES. Some of
the other effects, especially those at the 5 per cent level, may be Type I
errors, given that 63 coefficients were estimated. The results for all the
categories are shown in the table.
Dependent variable LGCATPC
Category FDHO FDAW HOUS TELE DOM TEXT FURN
0.3081 1.3646 0.9286 0.4803 0.7955 1.0184 0.6882
LGEXPPC
(0.0251) | (0.0582) | (0.0487) | (0.0420) | (0.1624) | (0.1011) | (0.1657)
LGSIZE -0.2131 | 0.1902 | -0.2292 | -0.3554 | 0.1185 | -0.1134 | -0.3810
(0.0263) | (0.0605) | (0.0509) | (0.0438) | (0.1622) | (0.1054) | (0.1736)
-0.0121 | -0.0414 | 0.2213 0.0475 | -0.1051 | -0.3238 | -0.1363
EDUCCO
(0.0367) | (0.0819) | (0.0707) | (0.0609) | (0.2204) | (0.1338) | (0.2091)
EDUCIC -0.0225 | -0.0419 | 0.1447 | -0.0701 | -0.0132 | -0.1985 | —0.6905
(0.0363) | (0.0805) | (0.0699) | (0.0604) | (0.2174) | (0.1338) | (0.2117)
0.0711 | -0.2706 | -0.1986 | -0.0126 | -0.5092 | -0.1295 | —0.0752
EDUCDO
(0.0379) | (0.0863) | (0.0733) | (0.0634) | (0.2491) | (0.1498) | (0.2563)
R? 0.3323 0.5053 0.4885 0.3294 0.0854 0.2601 0.1627
F 85.8 167.7 164.5 83.7 8.4 335 12.6
868 827 867 858 454 482 329
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A5.4

Dependent variable LGCATPC
Category MAPP SAPP CLOT FOOT GASO TRIP LOCT
0.5184 0.7213 1.0312 0.6416 0.7082 1.0008 | -0.0249
LGEXPPC
(0.1460) | (0.1008) | (0.0597) | (0.0713) | (0.0478) | (0.1640) | (0.2221)
LGSIZE -0.4770 | -0.5029 | 0.2932 | -0.1224 | -0.0597 | -0.3754 | -0.5511
(0.1615) | (0.1013) | (0.0617) | (0.0740) | (0.0507) | (0.1564) | (0.2150)
-0.2045 | 0.1459 0.1956 0.1006 | -0.1461 | 0.2064 | -0.3096
EDUCCO
(0.1872) | (0.1270) | (0.0844) | (0.0994) | (0.0662) | (0.1946) | (0.3552)
EDUCIC -0.2087 | 0.0372 0.1631 0.0879 | -0.0515 | -0.0627 | -0.2918
(0.1856) | (0.1345) | (0.0828) | (0.0967) | (0.0656) | (0.2095) | (0.3429)
-0.2286 | 0.1418 | -0.1043 | -0.1093 | -0.0332 | 0.0730 | —0.4299
EDUCDO
(0.2100) | (0.1465) | (0.0878) | (0.1034) | (0.0710) | (0.2844) | (0.3454)
R? 0.1897 0.2733 0.3546 0.2062 0.3127 0.2476 0.0558
F 11.1 34.7 92.4 35.3 72.0 19.9 2.0
244 467 847 686 797 309 172
Dependent variable LGCATPC
Category HEAL ENT FEES TOYS READ EDUC TOB
0.7415 1.3521 1.5815 0.9226 0.7957 1.0811 0.4799
LGEXPPC
(0.0859) | (0.0633) | (0.0980) | (0.0994) | (0.0756) | (0.2117) | (0.1002)
LGSIZE -0.4494 | 0.3037 0.3291 | -0.0165 | -0.5327 | -0.2326 | —0.5200
(0.0880) | (0.0669) | (0.1027) | (0.1044) | (0.0773) | (0.2421) | (0.1098)
-0.1277 | 0.1941 0.5806 | -0.0394 | 0.4850 0.0403 | -0.2872
EDUCCO
(0.1218) | (0.0891) | (0.1277) | (0.1302) | (0.1024) | (0.2709) | (0.1643)
EDUCIC -0.2038 | 0.1495 0.2874 0.0489 0.2075 0.1109 | -0.2325
(0.1202) | (0.0878) | (0.1282) | (0.1280) | (0.1022) | (0.2652) | (0.1384)
0.1640 | -0.2830 | -0.3972 | -0.1653 | -0.1996 | -0.6464 | —0.0795
EDUCDO
(0.1277) | (0.0960) | (0.1610) | (0.1531) | (0.1142) | (0.3780) | (0.1376)
R? 0.1943 0.4705 0.4130 0.2004 0.3561 0.2000 0.2177
F 139.3 145.4 94.3 30.6 83.8 14.1 20.2
821 824 676 592 764 288 368

For FDHO, RSS was 130.22 without the education dummy variables and
129.35 with them. 3 degrees of freedom were consumed when adding
them, and 868 — 6 = 862 degrees of freedom remained after they had
been added. The F statistic is therefore

(130.22-129.35)/3

F(3.862) =
(3:862) 129.35/862

1.93

The critical value of F(3,1000) at the 5 per cent level is 2.61. The critical
value of F(3,862) must be greater. Hence we do not reject the null
hypothesis that the dummy variables have no explanatory power (that is,
that all their coefficients are jointly equal to 0). Summarising the findings
for all the categories of expenditure, we have:
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* Significant at the 1 per cent level: HOUS, ENT, FEES, READ.
* Significant at the 5 per cent level: FDAW, FURN, CLOT.

« Not significant: FDHO, TELE, DOM, TEXT, MAPP, SAPP, FOOT, GASO,
TRIP, LOCT, HEAL, TOYS, EDUC, TOB.

We had already noticed that HOUS and FEES were affected by education.
The F test indicates that ENT and READ are as well.

F test of dummy variables as a group
n RSS without dummies RSS with dummies F

FDHO | 868 130.22 129.35 1.93
FDAW | 827 597.61 590.15 3.46
HOUS | 867 496.41 480.27 9.64
TELE | 858 351.81 350.45 1.10
DOM | 454 1319.71 1305.96 1.57
TEXT | 482 557.55 550.54 2.02
FURN | 329 681.45 657.26 3.96
MAPP | 244 280.41 278.00 0.69
SAPP | 467 493.39 491.38 0.63
CLOT | 847 659.59 650.02 4.13
FOOT | 686 588.21 584.68 1.37
GASO | 797 365.73 363.46 1.65
TRIP 309 517.96 514.22 0.73
LOCT | 172 433.51 428.78 0.61
HEAL | 821 1294.03 1282.05 2.54
ENT 824 725.85 705.76 7.76
FEES 676 1117.00 1055.07 13.11
TOYS | 592 809.01 806.35 0.64
READ | 764 861.92 823.64 11.74
EDUC | 288 826.85 814.60 1.41
TOB 368 360.58 356.14 1.50

A5.5

. reg LGFDHOPC LGEXPPC LGSIZE EDUCHSD EDUCIC EDUCCO

Source | SS daf MS Number of obs = 868
————————————— Fmm F( 5, 862) = 85.80
Model | 64.3787428 5 12.8757486 Prob > F = 0.0000
Residual | 129.351666 862 .150059937 R-squared = 0.3323
————————————— Fm Adj R-squared = 0.3284
Total | 193.730408 867 .223449145 Root MSE = .38738
LGFDHOPC | Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
LGEXPPC | .3080939 .0251357 12.26 0.000 .2587596 .3574283
LGSIZE | =-.2131035 .026315 -8.10 0.000 -.2647525 -.1614545
EDUCHSD | -.071095 .0378941 -1.88 0.061 -.1454705 .0032805
EDUCIC | -.0935729 .0417098 -2.24 0.025 -.1754375 -.0117083
EDUCCO | -.0831729 .0435852 -1.91 0.057 -.1687184 .0023727

_cons | 4.57348 .2363932 19.35 0.000 4.109506 5.037454
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A5.6

The results have not been tabulated but are easily summarised:
* The analysis of variance in the upper half of the output is unaffected.

* The lines involving variables other than the dummy variables are
unaffected.

* The line for EDUCHSD is identical to that for EDUCDO in the first
regression, except for a change of sign in the coefficient.

* The constant is equal to the old constant plus the coefficient of
EDUCDO in the first regression.

* The coefficients of the other dummy variables are equal to their values
in the first regression minus the coefficient of EDUCDO in the first
regression.

* One substantive change is in the standard errors of EDUCIC and
EDUCCO, caused by the fact that the comparisons are now between
these categories and EDUCDO, not EDUCHSD.

* The other is that the t statistics are for the new comparisons, not the
old ones. The results of the t tests can be summarised as follows:

High school graduates Positive, 1 per cent: FDAW, HOUS, ENT.
Positive, 5 per cent: DOM, FEES.

Positive, 1 per cent: HOUS, CLOT, ENT,
FEES, READ.

Positive, 5 per cent: FDAW, EDUC.

Incomplete college

Negative, 1 per cent: HEAL.
Negative, 5 per cent: FDHO, FURN.

Positive, 1 per cent: HOUS, CLOT, ENT,
FEES, READ.

Positive, 5 per cent: FDAW, ENT.

College graduates

Negative, 5 per cent: HEAL.

Not college College
Number 465 403
0.3049 0.2905

LGEXPPC
(0.0343) (0.0330)
-0.2656 -0.1612

LGSIZE

(0.0372) (0.0358)
constant 4.6001 4.6063
RSS 78.72 50.28

For FDHO, RSS for the logarithmic regression without college in Exercise
A5.3 was 130.22. When the sample is split, 3 degrees of freedom are
consumed because the coefficients of LGEXPPC and LGSIZE and the constant
have to be estimated twice. The number of degrees of freedom remaining
after splitting the sample is 868 — 6 = 862. Hence the F statistic is

(130.22 -[78.72 +50.28])/3

F(3,862) =
(3.862) (78.72 + 50.28)/862

2.72.

The critical value of F(3,750) at the 5 per cent level is 2.62 and so we
reject the null hypothesis of no difference in the expenditure functions at
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that significance level. The difference would appear to be in the coefficient
of LGSIZE since the coefficient of LGEXPPC and the constant are almost
identical in the two subsamples.

* Summarizing the results of this Chow test for all the categories, we have:
 Significantly different at the 1 per cent level: HOUS, HEAL, FEES, READ.
* Significantly different at the 5 per cent level: FDHO, CLOT, ENT.

* Not significantly different: FDAW, TELE, DOM, FURN, MAPP, SAPP,
FOOT, GASO, TRIP, LOCT, TOYS, EDUC, TOB.

The results for all the categories are shown in the table.

Chow test, dependent variable LGCATPC

Category FDHO FDAW HOUS TELE DOM TEXT FURN

Not college 465 433 464 457 218 237 159

0.3049 1.4890 0.9623 0.5280 0.7459 0.9759 0.7834
(0.0343) | (0.0815) | (0.0720) | (0.0420) | (0.2122) | (0.1322) | (0.1923)

LGEXPPC

-0.2656 | 0.2585 | -0.2080 | -0.3062 | -0.0456 | -0.1757 | -0.4231
(0.0372) | (0.0881) | (0.0780) | (0.0621) | (0.2181) | (0.1452) | (0.2214)

LGSIZE

constant 4.6001 -8.3304 | -1.4130 0.8870 | —-2.5890 | -5.5377 | -2.0445

RSS 78.72 358.33 340.28 212.03 605.45 283.11 290.64
College 403 394 403 401 236 245 170
0.2905 1.3008 0.9752 0.4526 0.9727 1.0854 0.7428
LGEXPPC
(0.0330) | (0.0758) | (0.0560) | (0.0558) | (0.2271) | 0.1422) | (0.2628)
-0.1612 0.1617 | -0.2097 | -0.4089 | 0.4225 | -0.0124 | -0.2786
LGSIZE

(0.0358) | (0.0810) | (0.0608) | (0.0599) | (0.2308) | (0.1494) | (0.2725)

constant 4.6063 | —6.4464 | -1.2853 1.6655 | -5.0236 | —-6.9385 | -2.1895

RSS 50.28 236.87 144.52 139.11 707.01 268.54 378.58
RSS pooled | 130.22 597.61 496.41 351.81 1319.71 557.55 681.45
F 2.72 1.11 6.87 0.54 0.82 1.70 1.97

Chow test, dependent variable LGCATPC

Category MAPP SAPP CLOT FOOT GASO TRIP LOCT
Not college 121 231 449 360 413 114 92
0.6788 0.6002 1.0484 0.6881 0.7900 0.9014 0.3660
LGEXPPC
(0.1725) | (0.1298) | (0.0869) | (0.0954) | (0.0679) | (0.2128) | (0.3284)
LGSIZE -0.3263 | -0.6390 | 0.3067 | -0.1024 | -0.0137 | -0.2712 | -0.2784
(0.1932) | (0.1416) | (0.0933) | (0.1053) | (0.0746) | (0.2068) | (0.3084)
constant -1.1756 | -2.0133 | —4.3273 | -2.6024 | -1.3232 | -3.2983 0.8601
RSS 119.32 254.50 440.68 343.37 223.05 133.56 241.30
College 123 236 398 326 384 195 80
0.3514 0.8463 1.0554 0.6271 0.6000 1.1030 | -0.2284
LGEXPPC
(0.2408) | (0.1383) | (0.0701) | (0.0947) | (0.0601) | (0.2292) | (0.2717)
-0.6220 | -0.3766 | 0.3018 | -0.1205 | -0.1112 | -0.4248 | -0.7192
LGSIZE

(0.2598) | (0.1405) | (0.0752) | (0.1002) | (0.0657) | (0.2197) | (0.2973)

constant 2.0542 | -4.5163 | —4.1763 | -1.8869 | 0.4481 -5.0135 6.5098

RSS 158.49 236.23 210.49 242.09 139.39 381.86 186.00

RSS pooled | 280.41 493.39 659.59 588.21 365.73 517.96 433.51

F 0.74 0.83 3.62 1.06 2.39 0.50 0.80
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Chow test, dependent variable LGCATPC
Category HEAL ENT FEES TOYS READ EDUC TOB
Not college 431 426 302 285 381 110 229
0.7147 1.4382 1.5720 0.9250 0.7973 1.4368 0.4612
LGEXPPC
(0.1085) | (0.0935) | (0.1558) | (0.1276) | (0.1121) | (0.2841) | (0.1190)
LGSIZE -0.7856 0.3638 0.2099 -0.1862 | -0.7231 0.4594 -0.6178
(0.1146) | (0.1030) | (0.1716) | (0.1454) | (0.1188) | (0.4227) | (0.1382)
constant 0.2654 | -7.8715 | -10.7014 | —4.1754 | -3.1847 | -9.5531 1.5046
RSS 650.95 456.84 571.48 371.23 505.95 290.38 219.89
College 390 398 374 307 383 178 139
0.7625 1.3511 1.7314 0.9295 0.9106 0.9784 0.5181
LGEXPPC
(0.1230) | (0.0763) | (0.1177) | (0.1405) | (0.0935) | (0.2655) | (0.1580)
LGSIZE -0.0608 0.2863 0.4555 0.1619 -0.2896 | -0.4683 | -0.3423
(0.1306) | (0.0831) | (0.1258) | (0.1459) | (0.0972) | (0.2914) | (0.1710)
constant -1.0079 | -6.7346 | -11.8726 | —4.4905 | —4.2053 | -3.9914 0.5080
RSS 601.75 256.02 497.88 431.92 318.62 523.69 134.98
RSS pooled | 1294.03 725.85 1117.00 809.01 861.92 826.85 360.58
F 8.96 4.97 9.95 1.43 11.44 1.48 1.94
A5.7
. g LEXPCOL=LGEXPPC*COLLEGE
. g LSIZECOL=LGSIZE*COLLEGE
. reg LGFDHOPC LGEXPPC LGSIZE COLLEGE LEXPCOL LSIZECOL
Source | SS df MS Number of obs = 868
————————————— ettt b F( 5, 862) = 86.52
Model | 64.7346606 5 12.9469321 Prob > F = 0.0000
Residual | 128.995748 862 .149647039 R-squared = 0.3341
————————————— et Adj R-squared = 0.3303
Total | 193.730408 867 .223449145 Root MSE = .38684
LGFDHOPC | Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
LGEXPPC | .3049338 .0321514 9.48 0.000 .2418296 .3680379
LGSIZE | -.2656279 .0348931 -7.61 0.000 -.3341134 -.1971425
COLLEGE | .0061575 .4731701 0.01 0.990 -.9225429 .9348578
LEXPCOL | -.01441e68 .0482914 -0.30 0.765 -.1091992 .0803657
LSIZECOL | .1044654 .0524109 1.99 0.047 .0015975 .2073333
_cons | 4.600129 .3078594 14.94 0.000 3.995887 5.204371

The regression results confirm the observation made in the Chow test

that the only real difference between the expenditure functions for the
two educational categories is in the coefficient of LGSIZE, which suggests
that households where the reference person never went to college secure
greater economies of scale in expenditure on food consumed at home. The
difference is just significant at the 5 per cent level.

To perform the F test of the explanatory power of the intercept dummy
variable and the two slope dummy variables as a group, we evaluate
whether RSS for this regression is significantly lower than that without the
dummy variables in Exercise A4.2. RSS has fallen from 130.22 to 129.00.
3 degrees of freedom are consumed by adding the dummy variables,

and 868 — 6 = 862 degrees of freedom remain after adding the dummy
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variables. The F statistic is therefore

(13022-129.00)/3 _, 7
(129.00)/862 '

F(3,862) =

This is (just) significant at the 5 per cent level. This F test is of course
equivalent to the Chow test in the previous exercise.

Full set of dummy variables, dependent variable LGCATPC
Category FDHO FDAW HOUS TELE DOM TEXT FURN
0.3049 1.4890 | 0.9622 | 0.5280 | 0.7459 | 0.9759 | 0.7834
LGEXPPC
(0.0322) | (0.0760) | (0.0629) | (0.0537) | (0.2164) | (0.1294) | (0.2028)
LGSIZE -0.2656 | 0.2585 | -0.2080 | -0.3062 | -0.0456 | -0.1757 | -0.4231
(0.0349) | (0.0821) | (0.0681) | (0.0583) | (0.2225) | (0.1421) | (0.2335)
0.0062 1.8840 | 0.1277 | 0.7786 | —2.4347 | -1.4009 | -0.1450
COLLEGE
(0.4732) | (1.1077) | (0.9215) | (0.7936) | (3.0556) | (1.9370) | (3.2439)
-0.0144 | -0.1882 | 0.0129 | -0.0754 | 0.2268 0.1095 | —0.0406
LEXPCOL
(0.0483) | (0.1125) | (0.0940) | (0.0810) | (0.3108) | (0.1946) | (0.3228)
0.1045 | -0.0969 | —-0.0016 | -0.1028 | 0.4681 0.1633 | 0.1445
LSIZECOL
(0.0524) | (0.1208) | (0.1019) | (0.0874) | (0.3177) | (0.2086) | (0.3498)
R? 0.3341 0.5010 | 0.4837 | 0.3280 | 0.0809 | 0.2586 | 0.1475
F 86.5 164.9 161.3 83.2 7.9 33.2 11.2
RSS 129.00 | 595.20 | 484.80 | 351.15 | 131247 | 551.65 669.22
n 868 827 867 858 454 482 329
Full set of dummy variables, dependent variable LGCATPC
Category MAPP SAPP CLOT FOOT GASO TRIP LOCT
0.6788 | 0.6002 1.0484 | 0.6881 0.7900 | 0.9014 | 0.3660
LGEXPPC
(0.1853) | (0.1267) | (0.0769) | (0.0903) | (0.0623) | (0.2531) | (0.3200)
LGSIZE -0.3263 | -0.6390 | 0.3067 | -0.1024 | -0.0137 | -0.2712 | -0.2784
(0.2076) | (0.1383) | (0.0826) | (0.0996) | (0.0685) | (0.2459) | (0.3005)
3.2298 | -2.5030 | 0.1510 | 0.7155 1.7713 | -1.7153 | 5.6497
COLLEGE
(2.9522) | (1.8906) | (1.1229) | (1.3430) | (0.9056) | (3.2969) | (4.0663)
-0.3274 | 0.2461 0.0070 | —0.0609 | -0.1900 | 0.2016 | -0.5944
LEXPCOL
(0.2925) | (0.1901) | (0.1143) | (0.1358) | (0.0917) | (0.3301) | (0.4255)
-0.2957 | 0.2624 | -0.0049 | -0.0182 | -0.0975 | -0.1537 | -0.4408
LSIZECOL
(0.3205) | (0.1996) | (0.1226) | (0.1465) | (0.1005) | (0.3190) | (0.4295)
R? 0.1903 0.2742 0.3535 0.2052 | 0.3146 | 0.2459 | 0.0591
F 11.2 34.8 92.0 35.1 72.6 19.8 2.1
RSS 277.81 490.74 | 651.17 | 585.46 | 362.44 | 515.43 | 427.30
n 244 467 847 686 797 309 172
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Full set of dummy variables, dependent variable LGCATPC
Category HEAL ENT FEES TOYS READ EDUC TOB
0.7147 1.4382 1.5720 0.9250 0.7973 1.4368 0.4612
LGEXPPC
(0.1091) | (0.0840) | (0.1424) | (0.1302) | (0.1010) | (0.2930) | (0.1195)
LGSIZE -0.7856 | 0.3638 0.2099 | -0.1862 | -0.7231 | 0.4594 | -0.6178
(0.1152) | (0.0925) | (0.1568) | (0.1484) | (0.1071) | (0.4360) | (0.1387)
-1.2732 | 1.1369 | -1.1711 | -0.3151 | -1.0205 | 5.5617 | —0.9965
COLLEGE
(1.6075) | (1.2012) | (1.9023) | (1.8868) | (1.4461) | (3.9637) | (1.9470)
0.0478 | -0.0870 | 0.1595 0.0045 0.1133 | -0.4584 | 0.0570
LEXPCOL
(0.1639) | (0.1220) | (0.1916) | (0.1897) | (0.1468) | (0.3923) | (0.1973)
0.7248 | -0.0775 | 0.2456 0.3481 0.4335 | -0.9277 | 0.2755
LSIZECOL
(0.1736) | (0.1336) | (0.2083) | (0.2063) | (0.1540) | (0.5215) | (0.2194)
R? 0.2127 0.4651 0.4051 0.2103 0.3554 0.2005 0.2205
F 44.0 142.3 91.2 31.2 83.6 14.1 20.5
RSS 1252.70 | 712.86 | 1069.36 | 803.16 824.57 814.07 354.87
n 821 824 676 592 764 288 368

* Explain verbally why the estimates of the coefficient of GOV are different
in regressions (1) and (2).

The second specification indicates that earnings are positively related to
schooling and negatively related to working in the government sector. S
has a significant coefficient in (2) and therefore ought to be in the model.
If S is omitted from the specification the estimate of the coefficient of
GOV will be biased upwards because schooling is positively correlated
with working in the government sector. (We are told in the question that
government workers on average have an extra year of schooling.) The bias
is sufficiently strong to make the negative coefficient disappear.

* Explain the difference in the estimates of the coefficient of GOV in
regressions (2) and (3).

The coefficient of GOV in the third regression is effectively a linear
function of S: 0.726 — 0.059S. The coefficient of the GOV intercept dummy
is therefore an estimate of the extra earnings of a government worker with
no schooling. The premium disappears for S = 12 and becomes negative
for higher values of S. The second regression does not take account of

the variation of the coefficient of GOV with S and hence yields an average
effect of GOV. The average effect was negative since only a small minority
of government workers had fewer than 12 years of schooling.

* The correlation between GOV and SGOV was 0.977. Explain the
variations in the standard error of the coefficient of GOV in the three
regressions.

The standard error in the first regression is meaningless given severe
omitted variable bias. For comparing the standard errors in (2) and (3), it
should be noted that the same problem in principle applies in (2), given
that the coefficient of SGOV in (3) is highly significant. However, part of
the reason for the huge increase must be the high correlation between
GOV and SGOV.
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A5.9

1. The dummy variable allows the slope coefficient to be different for
developing and developed countries. From equation (1) one may derive
the following relationships:

developed countries e =-1.45+ 0.19x
developing countries e = -1.45 4+ 0.19x + 0.78x
=-1.45 + 0.97x.
e €=-1.45+0.97x
developing
countries
developed €=-1.45 + 0.19x
countries
/ X
-1.45

2. The inclusion of D would allow the intercept to be different for the two
types of country. If the model were written

e=pf, + px+oD + ADx + u,
the implicit relationships for the two types of country would be
developed countries e =p + fx+u
developing countries e =p +fx+J+ A +u
=@, +)+ B, +Mx+u

e e=(pr+ &)+ (Bt 4)x

developing
countries

developed €= i+ fox
countries

Pi+d X
B

3. When the specification includes both an intercept dummy and a
slope dummy, the coefficients for the two categories will be the same
as in the separate regressions (2) and (3). Hence the intercept and
coefficient of x will be the same as in the regression for the reference
category, regression (3), and the coefficients of the dummies will be
such that they modify the intercept and slope coefficient so that they
are equal to their counterparts in regression (4):
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e =-2.74 + 0.50x + 1.89D + 0.28xD.

Since the coefficients are the same, the overall fit for this regression
will be the same as that for regressions (2) and (3). Hence RSS =
18.63+25.23 = 43.86. The t statistic for the coefficient of x will be the
square root of the F statistic for the test of the marginal explanatory
power of D when it is included in the equation. The F statistic is

(50.23 - 43.86)/1)
43.86/46

=6.6808.

F(1,46) =

The t statistic is therefore 2.58.

One method is to use a Chow test comparing RSS for the pooled
regression, regression (2), with the sum of RSS regressions (3) and (4):

(121.61 - 43.86)/2)

F(2,46) =
(2:46) 43.86/46

=40.8-

The critical value of F(2,40) at the 0.1 per cent significance level
is 8.25. The critical value of F(2,46) must be lower. Hence the null
hypothesis that the coefficients are the same for developed and
developing countries is rejected.

We should also consider t tests on the coefficients of D and xD. We saw
in (3) that the t statistic for the coefficient of D was 2.58, so we would
reject the null hypothesis of no intercept shift at the 5 per cent level,
and nearly at the 1 per cent level. We do not have enough information
to derive the ¢ statistic for xD. We would not perform a t test on the
coefficient of xD in regression (1) because that regression is clearly
misspecified.

(a) You should fit models such as

LGEARN = f3, + 3, + B ASVABC + B,MALE + B, ETHBLACK + 8, ETHHISP + u

separately for the private and government sectors. To investigate
discrimination, for each sector t tests should be performed on the
coefficients of MALE, ETHBLACK, and ETHHISP and an F test on the
joint explanatory power of ETHBLACK and ETHHISP.

(b) You should combine the earnings functions for the two sectors, while

still allowing their parameters to differ, by fitting a model such as

LGEARN = f3, + 3,S + B, ASVABC + B,MALE + B, ETHBLACK + f3, ETHHISP
+08,GOV + 8,GOVS + 5,GOVASV + 8,GOVMALE + 5,GOVBLACK + 5,GOVHISP + u

where GOV is equal to 1 if the respondent works in the government
sector and 0 otherwise, and GOVS, GOVASV, GOVMALE, GOVBLACK,
and GOVHISP are slope dummy variables defined as the product of
GOV and the respective variables. To investigate whether the level of
discrimination is different in the two sectors, one should perform ¢ tests
on the coefficients of GOVMALE, GOVBLACK, and GOVHISP and an F
test on the joint explanatory power of GOVBLACK and GOVHISP.

A Chow test would not be appropriate because if it detected a
significant difference in the earnings functions, this could be due
to differences in the coefficients of S and ASVABC rather than the
discrimination variables.
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A5.11

* Give an interpretation of the coefficients of S and SMALE in regression
(5).

An extra year of schooling increases female earnings by 9.4 per cent.
(Strictly, 100(e%%**-1) = 9.9 per cent) For males, an extra year of
schooling leads to an increase in earnings 0.5 per cent greater than for
females, i.e. 9.9 per cent.

* Give an interpretation of the coefficients of MALE in regressions (4) and
(5).

(4): males earn 23.4 per cent more than females (controlling for other
factors). (5): males with no schooling or work experience earn 11.7 per
cent more than similar females.

* The researcher hypothesises that the earnings function is different for
males and females. Perform a test of this hypothesis using regression (4),
and also using regressions (1) and (5).

Looking at regression (4), the coefficient of MALE is highly significant,
indicating that the earnings functions are indeed different. Looking at
regression (5), and comparing it with (1), the null hypothesis is that
the coefficients of the male dummy variables in (5) are all equal to
Zero.

(714.6-672.5)/3 _
672.5/3236

67.5.

F(3,3236) =

The critical value of F(3,1000) at the 1 per cent level is 3.80. The
corresponding critical value for F(3,3236) must be lower, so we reject
the null hypothesis and conclude that the earnings functions are
different.

* Explain the differences in the tests using regression (4) and using
regressions (1) and (5).

In regression (4) the coefficient of MALE is highly significant. In
regression (5) it is not. Likewise the coefficients of the slope dummies
are not significant. This is (partly) due to the effect of multicollinearity.
The male dummy variables are very highly correlated and as a
consequence the standard error of the coefficient of MALE is much
larger than in regression (4). Nevertheless the F test reveals that their
joint explanatory power is highly significant.

* At a seminar someone suggests that a Chow test could shed light on the
researcher’s hypothesis. Is this correct?

Yes. Using regressions (1) — (3),

(714.6-[411.0+261.6D/3 _ -,

F(3,3236) =
( ) (411.0+261.6)/3236

The null hypothesis that the coefficients are the same for males
and females is rejected at the 1 per cent level. The test is of course
equivalent to the dummy variable test comparing (1) and (5).

* Explain which of (1), (4), and (5) would be your preferred specification.

(4) seems best, given that the coefficients of S and X are fairly similar
for males and females and that introducing the slope dummies causes
multicollinearity. The F statistic of their joint explanatory power is only
0.72, not significant at any significance level.
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* Calculate the missing coefficients V, W, X, and Y in Regression 4 (just the
coefficients, not the standard errors) and Z, the missing RSS, giving an
explanation of your computations.

Since Regression 5 includes a complete set of black intercept and

slope dummy variables, the basic coefficients will be the same as for

a regression using the ‘whites’ only subsample and the coefficients
modified by the dummies will give the counterparts for the blacks only
subsample. Hence V = 0.122 — 0.009 = 0.113; W = 0.033 - 0.006 =
0.027; X = 0.306 — 0.280 = 0.026; and Y = 0.411 + 0.205 = 0.616.
The residual sum of squares for Regression 5 will be equal to the sum
of RSS for the ‘whites’ and blacks subsamples. Hence Z = 600.0 — 555.7
= 44.3.

* Give an interpretation of the coefficient of BLACK in Regression 2.

It suggests that blacks earn 14.4 per cent less than whites, controlling
for other characteristics.

* Perform an F test of the joint explanatory power of BLACK, SB, EB, and
MB in Regression 5.

Write the model as
LGEARN = f3, + 3,S + B,EXP + B,MALE + B, BLACK + B,SB + f3,EB + B,MB +u

The null hypothesis for the testis if H: f, = f, = , = p, = 0, and the
alternative hypothesis is H : at least one coefficient different from 0.

610.0 - 600.0)/4 2400
600.0/2400 240

=10.0.

The F statistic is #(4,2400) = (

This is significant at the 0.1 per cent level (critical value 4.65) and so
the null hypothesis is rejected.

* Explain whether it is possible to relate the F test in part (c) to a Chow test
based on Regressions 1, 3, and 4.

The Chow test would be equivalent to the F test in this case.
* Give an interpretation of the coefficients of BLACK and MB in Regression 5.
Re-write the model as
LGEARN = B, + 3,8 + B,EXP + B,MALE + (3, + j3,S + 3,EXP+ BMALE)BLACK +u.

From this it follows that g, is the extra proportional earnings of a
black, compared with a white, when S = EXP = MALE = 0. Thus the
coefficient of BLACK indicates that a black female with no schooling or
experience earns 20.5 per cent more than a similar white female.

The interpretation of the coefficient of any interactive term requires
care. Holding S = EXP = MALE = 0, the coefficients of MALE and
BLACK indicate that black males will earn 30.6 +20.5 = 51.1 per cent
more than white females. The coefficient of MB modifies this estimate,
reducing it by 28.0 per cent to 23.1 per cent.

* Explain whether a simple t test on the coefficient of BLACK in Regression
2 is sufficient to show that the wage equations are different for blacks and
whites.

Regression 2 is misspecified because it embodies the restriction that
the effect of being black is the same for males and females, and that
is contradicted by Regression 5. Hence any test is in principle invalid.
However, the fact that the coefficient has a very high t statistic is
suggestive that something associated with being black is affecting the
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Reconstruction of missing output

State what the missing output of Student A would have been, as far
as this is can be done exactly, given the results of Students C and D.
(Coefficients, standard errors, R?, RSS.)

The output for Student A would have been the same as that in column
(3) (coefficients, standard errors, R,), with the following changes:

o the row label MALE should be replaced with WM,
o the row label BLACK should be replaced with BF,

o the row label MALEBLAC should be replaced with BM and the
coefficient for that row should be the sum of the coefficients in
column (3): 0.308 — 0.011 - 0.290 = 0.007, and the standard error
would not be known.

Explain why it is not possible to reconstruct any of the output of
Student B.

One could not predict the coefficients of either S or EXP in the four
regressions performed by Student B. They will, except by coincidence,
be different from any of the estimates of the other students because the
coefficients for S and EXP in the other specifications are constrained in
some way. As a consequence, one cannot predict exactly any part of
the rest of the output, either.

Tests of hypotheses

The question states that the tests should be based on the output in the

table and the corresponding missing output for Students A and B.
Hence tests using information from the variance-covariance matrix of
the coefficients are not expected.

Student A could perform tests of the differences in earnings between
white males and white females, black males and white females,

and black females and white females, through simple t tests on the
coefficients of WM, BM, and BF.

He could also test the null hypothesis that there are no sex/ethnicity
differences with an F test, comparing RSS for his regression with that of
the basic regression:

922 - 603)/3
F(3.2540)= ( 603/254)0

This would be compared with the critical value of F with 3 and 2,540
degrees of freedom at the significance level chosen and the null
hypothesis of no sex/ethnicity effects would be rejected if the F statistic
exceeded the critical value.

In the case of Student B, with four separate subsample regressions,
candidates are expected say that no tests would be possible because no
relevant standard errors would be available. We have covered Chow
tests only for two categories. However, a four-category test could be
performed, with

F(9,2534)= (622-%)/9
X /2534

where RSS = 922 for the basic regression and X is the sum of RSS in
the four separate regressions.
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* Student C could perform the same t tests and the same F test as
Student A, with one difference: the t test of the difference between
the earnings of black males and white females would not be available.
Instead, the t statistic of MALEBLAC would allow a test of whether
there is any interactive effect of being black and being male on
earnings.

* Student D could perform a Chow test to see if the wage equations of
males and females differed:

(659 —[322+289])/3
[322 + 289]/ 2540

F(3,2540)=

RSS = 322 for males and 289 for females. This would be compared
with the critical value of F with 3 and 2,540 degrees of freedom at the
significance level chosen and the null hypothesis of no sex/ethnicity
effects would be rejected if the F statistic exceeded the critical value.
She could also perform a corresponding Chow test for blacks and
whites:

659 —[609 + 44])/3
[609 + 44]/2540

F(3,2540)= (

If you had been participating in the project and had had access to the data
set, what regressions and tests would you have performed?

The most obvious development would be to relax the sex/ethnicity
restrictions on the coefficients of S and EXP by including appropriate
interactive terms. This could be done by interacting these variables with
the dummy variables defined by Student A or those defined by Student C.
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Chapter 6: Specification of regression
variables

Overview

This chapter treats a variety of topics relating to the specification of the
variables in a regression model. First there are the consequences for the
regression coefficients, their standard errors, and R? of failing to include
a relevant variable, and of including an irrelevant one. This leads to a
discussion of the use of proxy variables to alleviate a problem of omitted
variable bias. Next come F and t tests of the validity of a restriction,

the use of which was advocated in Chapter 3 as a means of improving
efficiency and perhaps mitigating a problem of multicollinearity. The
chapter concludes by outlining the potential benefit to be derived from
examining observations with large residuals after fitting a regression
model.

Learning outcomes

After working through the corresponding chapter in the textbook, studying
the corresponding slideshows, and doing the starred exercises in the
textbook and the additional exercises in this guide, you should be able to:

* derive the expression for the bias in an OLS estimator of a slope
coefficient when the true model has two explanatory variables but the
regression model has only one

* determine the likely direction of omitted variable bias, given data on
the correlation between the explanatory variables

* explain the consequence of omitted variable bias for the standard
errors of the coefficients and for t tests and F tests

* explain the consequences of including an irrelevant variable for the
regression coefficients, their standard errors, and t and F tests

* explain how the regression results are affected by the substitution of a
proxy variable for a missing explanatory variable

» perform an F test of a restriction, stating the null hypothesis for the test

» perform a ¢ test of a restriction, stating the null hypothesis for the test.

Additional exercises

A6.1

A researcher obtains data on household annual expenditure on books, B,
and annual household income, Y, for 100 households. He hypothesises
that B is related to Y and the average cognitive ability of adults in the
household, IQ, by the relationship

logB =, + p,logY + f.logIQ + u (A)

where u is a disturbance term that satisfies the regression model
assumptions. He also considers the possibility that log B may be
determined by log Y alone:

logB=p + plogY +u (B)

109



20 Elements of econometrics

110

A6.2

A6.3

He does not have data on IQ and decides to use average years of schooling
of the adults in the household, S, as a proxy in specification (A). It may be
assumed that Y and S are both nonstochastic. In the sample the correlation
between log Y and log S is 0.86. He performs the following regressions:

(1) log B on both log Y and log S, and (2) log B on log Y only, with the
results shown in the table (standard errors in parentheses):

(1) (2)
1.10 2.10
logY
(0.69) (0.35)
0.59
log S -
(0.35)
-6.89 -3.37
constant
(2.28) (0.89)
R? 0.29 0.27

* Assuming that (A) is the correct specification, explain, with a
mathematical proof, whether you would expect the coefficient of log Y
to be greater in regression (2).

* Assuming that (A) is the correct specification, describe the various
benefits from using log S as a proxy for log IQ, as in regression (1), if
log S is a good proxy.

* Explain whether the low value of R? in regression (1) implies that log S
is not a good proxy.

* Assuming that (A) is the correct specification, provide an explanation
of why the coefficients of log Y and log S in regression (1) are not
significantly different from zero, using two-sided ¢ tests.

* Discuss whether the researcher would be justified in using one-sided t
tests in regression (1).

* Assuming that (B) is the correct specification, explain whether you
would expect the coefficient of log Y to be lower in regression (1).

* Assuming that (B) is the correct specification, explain whether the
standard errors in regression (1) are valid estimates.

Does the omission of total household expenditure or household size give rise
to omitted variable bias in your CES regressions?

Regress LGCATPC (1) on both LGEXPPC and LGSIZE, (2) on LGEXPPC only,
and (3) on LGSIZE only. Assuming that (1) is the correct specification,
analyze the likely direction of the bias in the estimate of the coefficient of
LGEXPPC in (2) and that of LGSIZE in (3). Check whether the regression
results are consistent with your analysis.

A researcher has the following data for 40 cities in the United Kingdom for
the year 2002: T, annual total sales of cinema tickets per household, and
P, the average price of a cinema ticket in the city. She believes that the true
relationship is

log T = p, + plogP + plogY +u

where Y is average household income, but she lacks data on Y and fits the
regression (standard errors in parentheses):
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logT = 13.74 + 0.17 log P R? =0.01
(0.52)  (0.23)

Explain analytically whether the slope coefficient is likely to be biased.
You are told that if the researcher had been able to obtain data on Y, her
regression would have been

log7 = -1.63- 0.48logP + 1.83logY R?=0.44
(2.93) (0.21) (0.35)
You are also told that Y and P are positively correlated.

The researcher is not able to obtain data on Y but, from local authority
records, she is able to obtain data on H, the average value of a house in
each city, and she decides to use it as a proxy for Y. She fits the following
regression (standard errors in parentheses):

log7 = -0.63— 0.37logP + 1.69 log H R?=0.36
(3.22) (0.22) (0.38)

Describe the theoretical benefits from using H as a proxy for Y, discussing
whether they appear to have been obtained in this example.

A6.4

A researcher has data on years of schooling, S, weekly earnings in dollars,

W, hours worked per week, H, and hourly earnings, E (computed as W/H)
for a sample of 1755 white males in the United States in the year 2000.

She calculates LW, LE, and LH as the natural logarithms of W, E, and H,
respectively, and fits the following regressions, with the results shown in the
table below (standard errors in parentheses; RSS = residual sum of squares):

* Column 1: a regression of LE on S.
* Column 2: a regression of LW on S and LH, and
* Column 3: a regression of LE on S and LH.

The correlation between S and LH is 0.06.

(D (2) 3 4) 5)
Respondents All All All FT PT
Dependent variable LE w LE w w
0.099 0.098 0.098 0.101 0.030
s (0.006) | (0.006) (0.006) (0.006) (0.049)
1.190 0.190 0.980 0.885
H - (0.065) (0.065) (0.088) (0.325)
6.111 5.403 5.403 6.177 7.002
constant
(0.082) | (0.254) (0.254) (0.345) (1.093)
RSS 741.5 737.9 737.9 626.1 100.1
observations 1755 1755 1755 1669 86

* Explain why specification (1) is a restricted version of specification (2),
stating and interpreting the restriction.

* Supposing the restriction to be valid, explain whether you expect
the coefficient of S and its standard error to differ, or be similar, in
specifications (1) and (2).

* Supposing the restriction to be invalid, how would you expect the
coefficient of S and its standard error to differ, or be similar, in

specifications (1) and (2)? "
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A6.5

e Perform an F test of the restriction.
e Perform at test of the restriction.
* Explain whether the F test and the ¢ test could lead to different conclusions.

* At a seminar, a commentator says that part-time workers tend to be
paid worse than full-time workers and that their earnings functions
are different. Defining full-time workers as those working at least 35
hours per week, the researcher divides the sample and fits the earnings
functions for full-time workers (column 4) and part-time workers
(column 5). Test whether the commentator’s assertion is correct.

* What are the implications of the commentator’s assertion for the test of
the restriction?

A researcher investigating whether government expenditure tends to
crowd out investment has data on government recurrent expenditure, G,
investment, I, and gross domestic product, Y, all measured in US$ billion,
for 30 countries in 2005. She fits two regressions (standard errors in
parentheses; t statistics in square brackets; RSS = residual sum of squares).

(1)A regression of log I on log G and log Y:

logl = -2.44- 0.63logG+ 1.60logY R2=0.98 (1)
(0.26) (0.12) (0.12) RSS = 0.90
[9.42] [-5.23] [12.42]

(2) a regression of log[ij on log(gJ
- Y Y
1 G )
log ¥ = 2.65-0.63 log i R*=0.48 (2)

(0.23) (0.12) RSS = 0.99
[11.58] [-5.07]
The correlation between log G and log Y in the sample is 0.98. The

table gives some further basic data on log G, log Y, and log(g) .

mean square
sample mean deviation
log Y 5.57 1.95
G
1og(7J -1.81 0.08

* Explain why the second specification is a restricted version of the first.
State the restriction.

e Perform a test of the restriction.

* The researcher expected the standard error of the coefficient of
log(gj in (2) to be smaller than the standard error of the coefficient

of log G in (1). Explain why she expected this.

* However the standard error is the same, at least to two decimal places.
Give an explanation.

e Show how the restriction could be tested using a t test in a
reparameterised version of the specification for (1).
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A6.6

Is expenditure per capita on your CES category related to total household
expenditure per capita?

The model specified in Exercise A4.2 is a restricted version of that in
Exercise A4.1. Perform an F test of the restriction. Also perform a t test of
the restriciton.

[A4.2: regress LGCATPC on LGEXPPC; A4.1: regress LGCAT on LGEXP and

LGSIZE.]
A6.7
A researcher is considering two regression specifications:
logY =, + B, log X +u (D
and
Y
log}:oz1 +a,log X +u (2)

where u is a disturbance term. Determine whether (2) is a
reparameterised or a restricted version of (1).

A6.8

Three researchers investigating the determinants of hourly earnings have
the following data for a sample of 104 male workers in the United States
in 2006: E, hourly earnings in dollars; S, years of schooling; NUM, score
on a test of numeracy; and VERB, score on a test of literacy. The NUM
and VERB tests are marked out of 100. The correlation between them is
0.81. Defining LGE to be the natural logarithm of E, Researcher 1 fits the
following regression (standard errors in parentheses; RSS = residual sum

of squares):
LGE = 2.02 + 0.063S + 0.0044 NUM + 0.0026 VERB RSS = 2,000
(1.81) (0.007) (0.0011) (0.0010)

Researcher 2 defines a new variable SCORE as the average of NUM and
VERB. She fits the regression

LGE = 1.72 + 0.050S + 0.0068 SCORE RSS = 2,045
(1.78)  (0.005) (0.0010)

Researcher 3 fits the regression

LGE = 2.02 + 0.063S + 0.0088 SCORE — 0.0018 VERB RSS = 2,000
(1.81) (0.007) (0.0022) (0.0012)

* Show that the specification of Researcher 2 is a restricted version of the
specification of Researcher 1, stating the restriction.

e Perform an F test of the restriction.

* Show that the specification of Researcher 3 is a reparameterised version
of the specification of Researcher 1 and hence perform a ¢ test of the
restriction in the specification of Researcher 2.

* Explain whether the F test in (b) and the t test in (c) could have led to
different results.

* Perform a test of the hypothesis that the numeracy score has a greater
effect on earnings than the literacy score.

* Compare the regression results of the three researchers.
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It is assumed that manufacturing output is subject to the production
function

QO=4K“L’ 1
where Q is output and K and L are capital and labour inputs. The cost of
production is

C = pK + wL (2)

where p is the cost of capital and w is the wage rate. It can be shown that,
if the cost is minimised, the wage bill wL will be given by the relationship

logw + constant 3)

logwL = ! logQ + « log p +
a+pf a+pf a+

(Note: You are not expected to prove this.)

A researcher has annual data for 2002 for Q, K, L, p, and w (all monetary
measures being converted into US$) for the manufacturing sectors of 30
industrialised countries and regresses log wL on log Q, log p, and log w.

* Demonstrate that relationship (3) embodies a testable restriction and
show how the model may be reformulated to take advantage of it.

* Explain how the restriction could be tested using an F test.
* Explain how the restriction could be tested using a t test.

* Explain the theoretical benefits of making use of a valid restriction.
How could the researcher assess whether there are any benefits in
practice, in this case?

* At a seminar, someone suggests that it is reasonable to hypothesise that
manufacturing output is subject to constant returns to scale, so that
o + p = 1. Explain how the researcher could test this hypothesis (1)
using an F test, (2) using a t test.

A6.10

A researcher hypothesises that the net annual growth of private sector
purchases of government bonds, B, is positively related to the nominal
rate of interest on the bonds, I, and negatively related to the rate of price
inflation, P:

B=p +p,1+p,P+u

where u is a disturbance term. The researcher anticipates that g, > 0 and
B, < 0. She also considers the possibility that B depends on the real rate of
interest on the bonds, R, where R = I — P. Using a sample of observations
for 40 countries, she regresses B

(Don I and P,
(2)onR,

(3)on I, and
(don P andR,

with the results shown in the corresponding columns of the table below
(standard errors in parentheses; RSS is the residual sum of squares). The
correlation coefficient for I and P was 0.97.



€3] (2) ©)) 4
; 2.17 0.69
(1.04) (0.25)
-3.19 -1.02
P — —
(2.17) (1.19)
1.37 2.17
R — —
(0.44) (1.04)
-5.14 -3.15 -1.53 -5.14
constant
(2.62) (1.21) (0.92) (2.62)
R? 0.22 0.20 0.17 0.22
RSS 967.9 987.1 1024.3 967.9
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* Explain why the researcher was dissatisfied with the results of
regression (1).

* Demonstrate that specification (2) may be considered to be a restricted
version of specification (1).

* Perform an F test of the restriction, stating carefully your null
hypothesis and conclusion.

e Perform at test of the restriction.

* Demonstrate that specification (3) may also be considered to be a
restricted version of specification (1).

* Perform both an F test and a ¢ test of the restriction in specification (3),
stating your conclusion in each case.

* At a seminar, someone suggests that specification (4) is also a restricted
version of specification (1). Is this correct? If so, state the restriction.

* State, with an explanation, which would be your preferred
specification.

Answers to the starred exercises in the textbook

6.4

The table gives the results of multiple and simple regressions of LGFDHO,
the logarithm of annual household expenditure on food eaten at home,
on LGEXP, the logarithm of total annual household expenditure, and
LGSIZE, the logarithm of the number of persons in the household, using
a sample of 868 households in the 1995 Consumer Expenditure Survey.
The correlation coefficient for LGEXP and LGSIZE was 0.45. Explain the
variations in the regression coefficients.

(1 (2) (3)
LGEXP 0.29 0.48
0.02) | (0.02) -
LGSIZE 0.49 0.63
(0.03) - (0.02)
constant 4.72 3.17 7.50
0.22) | (0.24) | (0.02)
R 0.52 0.31 0.42
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6.7

Answer:
If the model is written as
LGFDHO = f, + B,LGEXP + f3LGSIZE + u,

the expected value of b, in the second regression is given by

" (LGEXP, - LGEXP|LGSIZE, - LGSIZE)

E(b,)=p, + p; RV
> (LGEXB - LGEXP)

We know that the covariance is positive because the correlation is positive,
and it is reasonable to suppose that f, is also positive, especially given

the highly significant positive estimate in the first regression, and so b,

is biased upwards. This accounts for the large increase in its size in the
second regression. In the third regression,

S (LGEXP, - LGEXP\LGSIZE, - LGSIZE) .

E(b3):ﬂ3+ﬂz JEE—y
> (LGSIZEl. - LGSIZE)

p, is certainly positive, especially given the highly significant positive
estimate in the first regression, and so b, is also biased upwards. As a
consequence, the estimate in the third regression is greater than that in
the first.

A social scientist thinks that the level of activity in the shadow economy;

Y, depends either positively on the level of the tax burden, X, or negatively
on the level of government expenditure to discourage shadow economy
activity, Z. Y might also depend on both X and Z. International cross-
section data on Y, X, and Z, all measured in US$ million, are obtained

for a sample of 30 industrialised countries and a second sample of 30
developing countries. The social scientist regresses (1) log Y on both log X
and log Z, (2) log Y on log X alone, and (3) log Y on log Z alone, for each
sample, with the following results (standard errors in parentheses):

Industrialised Countries Developing Countries
(1) (2) (3) (1) (2) (3)
0.699 0.201 0.806 0.727

log X — —

(0.154) | (0.112) (0.137) | (0.090)

—-0.646 -0.053 | -0.091 0.427
log Z — —

(0.162) (0.124) | (0.117) (0.116)

-1.137 | -1.065 1.230 -1.122 | -1.024 2.824
constant

(0.863) | (1.069) | (0.896) | (0.873) | (0.858) | (0.835)
R? 0.44 0.10 0.01 0.71 0.70 0.33

X was positively correlated with Z in both samples. Having carried out
the appropriate statistical tests, write a short report advising the social
scientist how to interpret these results.

Answer: One way to organise an answer to this exercise is, for each

sample, to consider the evidence for and against each of the three

specifications in turn. The ¢ statistics for the slope coefficients are given

in the following table. * indicates significance at the 5 per cent level,

** at the 1 per cent level, and *** at the 0.1 per cent level, using one-
sided tests. (Justification for one-sided tests: one may rule out a negative
coefficient for X and a positive one for Y.)
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Industrialised Countries Developing Countries
(M (2) (3) () (2) (3)
logX 4‘54*7':7': 1"79:’: _ 5.88*7':* 8'087':** _
log Z —3.99%** — -0.43 -0.78 — 3.68%**

Industrialised countries:

The first specification is clearly the only satisfactory one for this sample,
given the t statistics. Writing the model as

logY =f, + plogX + plog Z + u,
in the second specification
Z(logXi —@XlogZi —@)
2 (log X - @)2

E(bz) :ﬂz +ﬂ3

Anticipating that 3, is negative, and knowing that X and Z are positively
correlated, the bias term should be negative. The estimate of §, is indeed
lower in the second specification. In the third specification,

Z(IOgXi _@Xlogzi _@)
Z(lOgZi _@)Z

E(b3) = ﬁs +,B2

and the bias should be positive, assuming /3, is positive. b, is indeed less
negative than in the first specification.

Note that the sum of the R? statistics for the second and third specifications
is less than R? in the first. This is because the bias terms undermine

the apparent explanatory power of X and Z in the second and third
specifications. In the third specification, the bias term virtually neutralises
the true effect and R? is very low indeed.

Developing countries:

In principle the first specification is acceptable. The failure of the
coefficient of Z to be significant might be due to a combination of a weak
effect of Z and a relatively small sample.

The second specification is also acceptable since the coefficient of Z and its
t statistic in the first specification are very low. Because the t statistic of Z
is low, R? is virtually unaffected when it is omitted.

The third specification is untenable because it cannot account for the
highly significant coefficient of X in the first. The omitted variable bias is
now so large that it overwhelms the negative effect of Z with the result
that the estimated coefficient is positive.

6.10

A researcher has data on output per worker, Y, and capital per worker, K,
both measured in thousands of dollars, for 50 firms in the textiles industry
in 2001. She hypothesises that output per worker depends on capital

per worker and perhaps also the technological sophistication of the firm,
TECH:

Y =p, +pK+ B,TECH + u
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6.13

where u is a disturbance term. She is unable to measure TECH and decides
to use expenditure per worker on research and development in 2001,
R&D, as a proxy for it. She fits the following regressions (standard errors
in parentheses):

A

Y = 1.02+ 0.32K R?>=0.749
(0.45)  (0.04)
Y = 0.34+ 0.29K + 0.05 R&D R?>=0.750

(0.61) (0.22) (0.15)

The correlation coefficient for K and R&D is 0.92. Discuss these regression
results

1. assuming that Y does depend on both K and TECH.
2. assuming that Y depends only on K.
Answer:

If Y depends on both K and TECH, the first specification is subject to
omitted variable bias, with the expected value of b, being given by
S (k, - K)rECH, ~TECH)
E(by) =B, + Py —\2 ’
Z (K i—K )
Since K and R&D have a high positive correlation, it is reasonable to
assume that K and TECH are positively correlated. It is also reasonable
to assume that /3, is positive. Hence one would expect b, to be biased
upwards. It is indeed greater than in the second equation, but not by
much. The second specification is clearly subject to multicollinearity,
with the consequence that, although the estimated coefficients remain
unbiased, they are erratic, this being reflected in large standard errors. The
large variance of the estimate of the coefficient of K means that much of
the difference between it and the estimate in the first specification is likely
to be purely random, and this could account for the fact that the omitted
variable bias appears to be so small.

If Y depends only on K, the inclusion of R&D in the second specification
gives rise to inefficiency. Since the standard errors in both equations
remain valid, they can be compared and it is evident that the loss of
efficiency is severe. As expected in this case, the coefficient of R&D is
not significantly different from zero and the increase in R? in the second
specification is minimal.

The first regression shows the result of regressing LGFDHO, the logarithm
of annual household expenditure on food eaten at home, on LGEXP,

the logarithm of total annual household expenditure, and LGSIZE, the
logarithm of the number of persons in the household, using a sample of
868 households in the 1995 Consumer Expenditure Survey. In the second
regression, LGFDHOPC, the logarithm of food expenditure per capita
(FDHO/SIZE), is regressed on LGEXPPC, the logarithm of total expenditure
per capita (EXP/SIZE). In the third regression LGFDHOPC is regressed on
LGEXPPC and LGSIZE.
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reg LGFDHO LGEXP LGSIZE

Source | SS df MS Number of obs = 868
————————— Fmm e F( 2, 865) = 460.92
Model | 138.776549 2 69.3882747 Prob > F = 0.0000
Residual | 130.219231 865 .150542464 R-squared = 0.5159
————————— Fm Adj R-squared = 0.5148
Total | 268.995781 867 .310260416 Root MSE = .388
LGFDHO | Coef Std. Err t P>\t [95% Conf. Intervall
_________ +____________________________________________________________________
LGEXP | .2866813 .0226824 12.639 0.000 .2421622 .3312003
LGSIZE | .4854698 .0255476 19.003 0.000 .4353272 .5356124
_cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027

Source | SS daf MS Number of obs = 868
————————— Fmm e F( 1, 866) = 313.04
Model | 51.43643064 1 51.43064364 Prob > F = 0.0000
Residual | 142.293973 866 .164311747 R-squared = 0.2655
————————— fommm Adj R-squared = 0.2647
Total | 193.73041 867 .223449146 Root MSE = .40535
LGFDHOPC | Coef Std. Err t P>t [95% Conf. Interval]
_________ +____________________________________________________________________
LGEXPPC | .376283 .0212674 17.693 0.000 .3345414 .4180246
_cons | 3.700667 .1978925 18.700 0.000 3.312262 4.089072

Source | SS df MS Number of obs = 868
————————— R ettt e e F( 2, 865) = 210.94
Model | 63.5111811 2 31.7555905 Prob > F = 0.0000
Residual | 130.219229 865 .150542461 R-squared = 0.3278
————————— Fmmm Adj R-squared = 0.3263
Total | 193.73041 867 .223449146 Root MSE = .388
LGFDHOPC | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_________ +____________________________________________________________________
LGEXPPC | .2866813 .0226824 12.639 0.000 .2421622 .3312004
LGSIZE | -.2278489 .0254412 -8.956 0.000 -.2777826 -.1779152
_cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027

. Explain why the second model is a restricted version of the first, stating

the restriction.

. Perform an F test of the restriction.
3.
4.

Perform a t test of the restriction.

Summarise your conclusions from the analysis of the regression results.

Answer:

Write the first specification as

LGFDHO = f3, + 8,LGEXP + B,LGSIZE +u.
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Then the restriction implicit in the second specification is f, = 1 - §,, for
then

LGFDHO = fi, + B,LGEXP + (1 - B,)LGSIZE + u

LGFDHO - LGSIZE = f8, + B,(LGEXP - LGSIZE) + u

log%zﬂ1 + 5, log%+u

LGFDHOPC = fi, + ,LGEXPPC + u,
the last equation being the second specification. The F statistic for the null
hypothesis H: f, = 1 -, is

(142.29 —130.22)/1

F(1,865) =
(1.565) 130.22/865

=80.2.

The critical value of F(1,865) at the 0.1 per cent level is 10.9, and hence
the restriction is rejected at that significance level. This is not a surprising
result, given that the estimates of $, and f, in the unrestricted specification
were 0.29 and 0.49, respectively, their sum being well short of 1, as
implied by the restriction.

Alternatively, we could use the t test approach. The restriction may be
written S, + f, —1=0 and hence our test statisticis 8 = S, + §, —1 . From
this we obtain g; = 6 - f, +1. Substituting for f3,, the unrestricted version
may be rewritten

LGFDHO = B, + B,LGEXP +(0 — 8, +1)LGSIZE +u.

Hence

LGFDHO — LGSIZE = f3, + j3,(LGEXP — LGSIZE) + f LGSIZE + u,
that is,

LGFDHOPC = 3, + j3,LGEXPPC + f LGSIZE + u.

We use a t test to see if the coefficient of LGSIZE is significantly different
from zero. If it is not, we can drop the LGSIZE term and we conclude that
the restricted specification is an adequate representation of the data. If it
is, we have to stay with the unrestricted specification. From the output for
the third regression, we see that t is -8.96 and hence the null hypothesis
H: p, + p,—1 = 0is rejected (critical value of t at the 0.1 per cent level
is 3.31). Note that the ¢t statistic is the square root of the F statistic and the
critical value of t at the 0.1 per cent level is the square root of the critical
value of F.

Answers to the additional exercises

A6.1

* Assuming that (A) is the correct specification, explain, with a
mathematical proof, whether you would expect the coefficient of log Y to
be greater in regression (2).

To simplify the algebra, throughout this answer log B, log Y, log S and
log IQ will be written as B, Y, S and IQ, it being understood that these
are logarithms.
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> (B, -BYY,-F)_ (g + Y, + IO, +u, - p, - B, - 10|, - T)
S -vf S -vf
S (8., - 7 Wv, - F)+ S (B,10, - B,10)Y, - T)+ 3o, ~a )y, - F)
> -7)
> (0, ~To), - 7) ¥ lu,~aky, -F)
Y -rf S -vf

y =

:ﬂz"'ﬁs

Hence

_ Yl -10fr-7) 1 V.
E(bz)_ﬂ2+ﬁ3 Z(YI—Y)Z +Z<Yi_7)2 E(Z(ui—uXYi—Y))

=B, + Z(l; (; 1?);3‘;_Y)+ 5 (Kl— o > E((u, - @)y, - 7))
>lo -10fv,-7) i

St-rf X7
Z(]Qi —@XYI_ _Y)

Sy -7)

assuming that Y and IQ are nonstochastic. Thus b, is biased, the
direction of the bias depending on the signs of $, and

Z(IQ[ - EXY, -Y ) We would expect the former to be positive and we

:,Bz +ﬂ3

:ﬂz +133

expect the latter to be positive since we are told that the correlation
between S and Y is positive and S is a proxy for IQ. So we would expect
an upward bias in regression (2).

* Assuming that (A) is the correct specification, describe the various benefits
from using log S as a proxy for log IQ, as in regression (1), if log S is a
good proxy.

The use of S as a proxy for IQ will alleviate the problem of omitted
variable bias. In particular, comparing the results of regression (1) with
those that would have been obtained if B had been regressed on Y and

1Q:

o the coefficient of Y will be approximately the same

o its standard error will be approximately the same

o the t statistic for S will be approximately equal to that of IQ

o R2will be approximately the same
* Explain whether the low value of R? in regression (1) implies that log S is
not a good proxy.

Not necessarily. It could be that S is a poor proxy for IQ, but it could
also be that the original model had low explanatory power.

* Assuming that (A) is the correct specification, provide an explanation
of why the coefficients of log Y and log S in regression (1) are not
significantly different from zero, using two-sided t tests.

The high correlation between Y and S has given rise to
multicollinearity, the standard errors being so large that the coefficients
are not significantly different from zero.
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* Discuss whether the researcher would be justified in using one-sided t tests

in regression (1).

Yes. It is reasonable to suppose that expenditure on books should
not be negatively influenced by either income or cognitive ability.
(Note that one should not say that it is reasonable to suppose that
expenditure on books is positively influenced by them. This rules out
the null hypothesis.)

* Assuming that (B) is the correct specification, explain whether you would

expect the coefficient of log Y to be lower in regression (1).

No. It would be randomly higher or lower, if S is an irrelevant variable.

* Assuming that (B) is the correct specification, explain whether the

standard errors in regression (1) are valid estimates.

Yes. The inclusion of an irrelevant variable in general does not
invalidate the standard errors. It causes them to be larger than those in
the correct specification.

The output below gives the results of a simple regression of LGFDHOPC
on LGSIZE. See Exercise A5.2 for the simple regression of LGFDHOPC on
LGEXPPC and Exercise A5.3 for the multiple regression of LGFDHOPC on
LGEXPPC and LGSIZE.

reg LGFDHOPC LGSIZE

Source | SS df MS Number of obs = 868
————————————— e F( 1, 866) = 221.53
Model | 39.4632274 1 39.4632274 Prob > F = 0.0000
Residual | 154.267181 866 .178137622 R-squared = 0.2037
————————————— Fom Adj R-squared = 0.2028
Total | 193.730408 867 .223449145 Root MSE = .42206
LGFDHOPC | Coef. Std. Err. t P>t [95% Conf. Intervall]
_____________ +________________________________________________________________
LGSIZE | -.3696776 .0248373 -14.88 0.000 -.418426 -.3209293

_cons | 7.498327 .0249932 300.01 0.000 7.449272 7.547381

If the model is written as

LGFDHOPC =

B, + B,LGEXPPC + BLGSIZE + u,

the expected value of b, in the second regression is given by

E(bz):ﬂz

Y (LGEXPPC, — LGEXPPC)LGSIZE, - LGSIZE)

+ s ———v
> (L GEXPPC, - LGEXPPC)

We know that the numerator of the second factor in the bias term is

negative because

the correlation is negative:

cor LGEXPPC LGSIZE if FDHO>0

(obs=868)
|  LGEXPPC LGSIZE
_____________ +__________________
LGEXPPC | 1.0000
LGSIZE | -0.4411 1.0000
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It is reasonable to suppose that economies of scale will cause f, to be
negative, and the highly significant negative estimate in the multiple
regression provides empirical support, so b, is biased upwards. This
accounts for the increase in its size in the second regression. In the third
regression,

LGEXPPC, — LGEXPPC \LGSIZE, — LGSIZE
E(b;)= B + B, Z( X )

S (LGsizE, - LGSIZE)

f, is certainly positive, especially given the highly significant positive
estimate in the first regression, and so b, is biased downwards. As a
consequence, the estimate in the third regression is lower than that in the
first.

Similar results are obtained for the other categories of expenditure. The
correlation between LGEXPPC and LGSIZE varies because the missing
observations are different for different categories, but it is always at least
-0.4.

Omitted variable bias, dependent variable LGCATPC
Multiple regression Simple regressions
n LGEXPPC LGSIZE LGEXPPC | LGSIZE
FDHO 868 0.2867 -0.2278 0.3763 | -0.3697
FDAW 827 1.4164 0.2230 1.3203 | -0.5293
HOUS 867 1.0384 -0.1566 1.1006 | -0.6731
TELE 858 0.4923 -0.3537 0.6312 | -0.5955
DOM 454 0.8786 0.2084 0.7977 | -0.1564
TEXT 482 0.9543 -0.1565 1.0196 | -0.6386
FURN 329 0.6539 -0.4622 0.8560 | -0.8142
MAPP 244 0.5136 -0.4789 0.7572 | -0.8007
SAPP 467 0.7223 -0.5076 0.9481 | -0.8840
CLOT 847 1.1138 0.3502 0.9669 | -0.2236
FOOT 686 0.6992 -0.0813 0.7339 | -0.4515
GASO 797 0.6770 -0.0785 0.7107 | -0.4491
TRIP 309 1.0563 -0.3570 1.2434 | -0.9050
LOCT 172 | -0.0141 | -0.5429 0.1993 | -0.5367
HEAL 821 0.6612 -0.5121 0.8629 | -0.8229
ENT 824 1.4679 0.3771 1.3069 | -0.4213
FEES 676 1.7907 0.4286 1.5884 | -0.6093
TOYS 592 0.9522 0.0054 0.9497 | -0.5498
READ 764 0.9652 -0.4313 1.1532 | -0.9210
EDUC 288 1.2243 -0.1707 1.2953 | -0.9835
TOB 368 0.4329 -0.5379 0.6646 | -0.7917

* Explain analytically whether the slope coefficient is likely to be biased.
If the fitted model is
logT =b, + b,log P,
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then
> liog 7, ~log Plog7, ~log7)
> (log 7, ~log PJ

3 (log P, ~log P8, + B, log P, + j, log ¥, +u,~ , — B, 1og P— B, log ¥ —ii

2

) > (log £, ~Tog PJ
> llog 7, ~log PJiog ¥, ~log¥) 3 {log, ~log P, ~)
> (log 7, ~log PJ 3 (log 7, ~log PJ

:ﬂz +ﬂ3

Hence
3 (log , ~log PJiog ¥; ~Tog¥)
S (log P, ~log P)

BCov(log?,log P)
Var(log P)

E(bz):ﬁz + 55

E(by)=p, +

provided that any random component of log P is distributed independently
of u. Since it is reasonable to assume b, > 0, and since we are told that Y
and P are positively correlated, the bias will be upwards. This accounts for
the nonsensical positive price elasticity in the fitted equation.

* Describe the theoretical benefits from using H as a proxy for Y, discussing
whether they appear to have been obtained in this example.

Suppose that H is a perfect proxy for Y:
logY =2 + ulog H

Then the relationship may be rewritten
log T =p, + B+ plogP + p,ulogH + u

The coefficient of log P ought to be the same as in the true relationship.
However in this example it is not the same. However it is of the right
order of magnitude and much more plausible than the estimate in the first
regression. The standard error of the coefficient ought to be the same as in
the true relationship, and this is the case.

The coefficient of log H will be an estimate of /5, 1, and since x is unknown,
f, is not identified. However, if it can be assumed that the average
household income in a city is proportional to average house values, it
could be asserted that x is equal to 1, in which case the coefficient of log
H will be a direct estimate of f, after all. The coefficient of log H is indeed
quite close to that of log Y. The ¢ statistic for the coefficient of log H ought
to be the same as that for log Y, and this is approximately true, being a
little lower. R? ought to be the same, but it is somewhat lower, suggesting
that H appears to have been a good proxy, but not a perfect one.

* Explain why specification (1) is a restricted version of specification (2),
stating and interpreting the restriction.

First note that, since E = W/H, LE = log(W/H) = LW - LH.
Write specification (2) as
LW =B, + B,S+ B, LH +u.
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If one imposes the restriction f, = 1, the model becomes specification
(D):
IW-LH=p +fS + u

The restriction implies that weekly earnings are proportional to hours
worked, controlling for schooling.

Supposing the restriction to be valid, explain whether you expect
the coefficient of S and its standard error to differ, or be similar; in
specifications (1) and (2).

If the restriction is valid, the coefficient of S should be similar in the
restricted specification (1) and the unrestricted specification (2). Both
estimates will be unbiased, but that in specification (1) will be more
efficient. The gain in efficiency in specification (1) should be reflected
in a smaller standard error. However, the gain will be small, given the
low correlation.

Supposing the restriction to be invalid, how would you expect the
coefficient of S and its standard error to differ, or be similar, in
specifications (1) and (2)?

The estimate of the coefficient of S would be biased. The standard error
in specification (1) would be invalid and so a comparison with the
standard error in specification (2) would be illegitimate.

Perform an F test of the restriction.

The null and alternative hypotheses are H;: f, = 1 and H: g, # 1.

F(1,1752) = (741.5-737.9)/1 =85

737.9/1752
The critical value of F(1,1000) at the 1 per cent level is 6.66. The
critical value of F(1,1752) must be lower. Thus we reject the restriction

at the 1 per cent level. (The critical value at the 0.1 per cent level is
about 10.8.)

Perform a t test of the restriction.

The restriction is so simple that it can be tested with no
reparameterisation: a simple t test on the coefficient of LH in
specification (2), H: g, = 1.

Alternatively, mechanically following the standard procedure, we
rewrite the restriction as , - 1 = 0. The reparameterisation will be

B=p-1
and so
p=p+1

Substituting this into the unrestricted specification, the latter may be
rewritten

LW = p, +,BZS+(0+1)LH+u.
Hence
LW —-LH =, +,S+6LH +u.

This is regression specification (3) and the restriction may be tested
with a t test on the coefficient of LH, the null hypothesis being H: § =
f,—1 = 0. The t statistic is 2.92, which is significant at the 1 per cent
level, implying that the restriction should be rejected.

125



20 Elements of econometrics

126

A6.5

* Explain whether the F test and the t test could lead to different

conclusions.

The tests must lead to the same conclusion since the F statistic is the
square of the t statistic and the critical value of F is the square of the
critical value of t.

At a seminar, a commentator says that part-time workers tend to be

paid worse than full-time workers and that their earnings functions are
different. Defining full-time workers as those working at least 35 hours
per week, the researcher divides the sample and fits the earnings functions
for full-time workers (column 4) and part-time workers (column 5). Test
whether the commentator’s assertion is correct.

The appropriate test is a Chow test. The test statistic under the null

hypothesis of no difference in the earnings functions is

(737.9-626.1-100.1)/3 ~939
(626.1+100.1)/1749

F(3,1749) =

The critical value of F(3,1000) at the 0.1 per cent level is 5.46. Hence
we reject the null hypothesis and conclude that the commentator is
correct.

What are the implications of the commentator’s assertion for the test of
the restriction?

The elasticity of LH is now not significantly different from 1 for either
full-time or part-time workers, so the restriction is no longer rejected.

Explain why the second specification is a restricted version of the first.
State the restriction.

Write the second equation as
I G
log—=p,+ B, logl — |+u
g Y B+ 5, g( Y) .

It may be re-written as

logl =, + f3,logG +(1-f3,)logY +u -

This is a special case of the specification of the first equation,
logl=p,+p,logG+ B, logY +u

with the restriction f; =1- 5, .

Perform a test of the restriction.

The null hypothesis is H: S, + B, =1. The test statistic is

0.99-0.90)/1
F(1,27)=W=2 7

The critical value of F(1, 27) is 4.21 at the 5 per cent level. Hence we
do not reject the null hypothesis that the restriction is valid.
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* The researcher expected the standard error of the coefficient of log(%j in
(2) to be smaller than the standard error of the coefficient of log G in (1).
Explain why she expected this.

The imposition of the restriction, if valid, should lead to a gain in
efficiency and this should be reflected in lower standard errors.

* However the standard error is the same, at least to two decimal places. Give
an explanation.

The standard errors of the coefficients of G in (1) and G/Y in (2) are
given by

S, 1 and Szf
nMSD(G) 1-rZ2, nMSD(G/Y)

respectively, where s> is an estimate of the variance of the disturbance
term, n is the number of observations, MSD is the mean square deviation
in the sample, and r; is the sample correlation coefficient of G and Y.

n is the same for both standard errors and s will be very similar. We are
told that r,, = 0.98, so its square is 0.96 and the second factor in the
expression for the standard error of G is (1/0.04) = 25. Hence, other
things being equal, the standard error of G/Y should be much lower than
that of G. However the table shows that the MSD of G/Y is only 1/25 as
great as that of G. This just about exactly negates the gain in efficiency
attributable to the elimination of the correlation between G and Y .

*  Show how the restriction could be tested using a t test in a reparameterised
version of the specification for (1).

Define 6= f, + 8, —1, so that the restriction may be written 6 =0. Then
B, =0 - B, +1. Use this to substitute for f, in the unrestricted model:

logl =2 +pB,logG+ B, logY +u
=p, + f,logG+ (60—, +1)log¥ +u.

Then
logl —logY = p, +,32(10gG—10gY)+ AlogY +u

and
10g(§j =0 + ﬂz(gJ +0logY +u.

Hence the restriction may be tested by a t test of the coefficient of log Y
in a regression using this specification.
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868
460.92
0.0000
0.5159
0.5148

.388

.3312003
.5356124
5.154027

868
313.04
0.0000
0.2655
0.2647
.40535

Interval]

.4180246
4.089072

A6.6

reg LGFDHO LGEXP LGSIZE

Source | SS daf MS Number of obs
————————— +-————— F( 2, 865)

Model | 138.776549 2 69.3882747 Prob > F
Residual | 130.219231 865 .150542464 R-squared
————————— e Adj R-squared

Total | 268.995781 867 .310260416 Root MSE

LGFDHO | Coef Std. Err P>t [95% Conf.
_________ +____________________________________________________________________

LGEXP | .2866813 .0226824 12.639 0.000 .2421622

LGSIZE | .4854698 .0255476 19.003 0.000 .4353272

_cons | 4.720269 .2209996 21.359 0.000 4.286511

reg LGFDHOPC LGEXPPC

Source | SS df MS Number of obs =
————————— - F( 1, 866)

Model | 51.4364364 1 51.4364364 Prob > F
Residual | 142.293973 866 .164311747 R-squared
————————— e Adj R-squared

Total | 193.73041 867 .223449146 Root MSE
LGFDHOPC | Coef. sStd. Err t P>t [95% Conf.
_________ +____________________________________________________________________
LGEXPPC | .376283 .0212674 17.693 0.000 .3345414

_cons | 3.700667 .1978925 18.700 0.000 3.312262

Write the first specification as
LGFDHO = f3, + B,LGEXP + f3,LGSIZE + u.

Then the restriction implicit in the second specification is 5, = 1 - f3,, for then
LGFDHO = i, + B,LGEXP + (1 - f,)LGSIZE + u
LGFDHO - LGSIZE = f, + f,(LGEXP — LGSIZE) + u
FDHO EXP
—— =0+ p,log——+
8 gzp PP
LGFDHOPC = i, + f,LGEXPPC + u,
the last equation being the second specification. The F statistic for the null
hypothesis H: g, = 1 -, is

(142.29-130.22)/1

F(1,865) =
( ) 130.22/865

80.2.

The critical value of F(1,865) at the 0.1 per cent level is 10.9, and hence the
restriction is rejected at that significance level. This is not a surprising result,
given that the estimates of 5, and f, in the unrestricted specification were
0.29 and 0.49, respectively, their sum being well short of 1, as implied by the
restriction.

Summarising the results of the test for all the categories, we have:

* Restriction rejected at the 1 per cent level: FDHO, FDAW, HOUS, TELE,
FURN, MAPP, SAPP, CLOT, HEAL, ENT, FEES, READ, TOB.

* Restriction rejected at the 5 per cent level: TRIP, LOCT.
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* Restriction not rejected at the 5 per cent level: DOM, TEXT, FOOT,
GASO, TOYS, EDUC.

n RSS restricted ~ RSS unrestricted F t
FDHO 868 142.29 130.22 80.18 -8.96
FDAW 827 608.05 597.61 14.39 3.79
HOUS 867 502.08 496.41 9.87 -3.14
TELE 858 380.59 351.81 69.94 -8.36
DOM 454 1325.21 1319.71 1.88 1.37
TEXT 482 560.37 557.55 2.42 -1.56
FURN 329 697.33 681.45 7.60 -2.76
MAPP 244 291.76 280.41 9.75 -3.12
SAPP 467 522.31 493.39 27.20 -5.22
CLOT 847 686.45 659.59 34.37 5.86
FOOT 686 589.34 588.21 1.31 -1.14
GASO 797 366.92 365.73 2.58 -1.60
TRIP 309 527.42 517.96 5.59 -2.36
LOCT 172 450.92 433.51 6.79 -2.60
HEAL 821 1351.63 1294.03 36.41 -6.03
ENT 824 754.86 725.85 32.81 5.73
FEES 676 1145.09 1117.00 16.92 4.11
TOYS 592 809.01 809.01 0.00 0.05
READ 764 897.63 861.92 31.53 -5.61
EDUC 288 828.35 826.85 0.52 -0.72
TOB 368 385.63 360.58 25.36 -5.04

For the t test, we first rewrite the restriction as 8, + #, —1=0. The test
statistic is therefore 8 = 8, + 3, —1. This allows us to write g, =6—- 5, +1.
Substituting for f,, the unrestricted version becomes

LGFDHO = 3, + B,LGEXP +(0 — B, +1)LGSIZE +u.

Hence the unrestricted version may be rewritten

LGFDHO - LGSIZE = B, + j3, (LGEXP - LGSIZE)+ OLGSIZE +u

that is,
LGFDHOPC = ﬁl + ,b’zLGEXPPC + 6 LGSIZE + u.

We use a t test to see if the coefficient of LGSIZE is significantly different
from 0. If it is not, we can drop the LGSIZE term and we conclude that the
restricted specification is an adequate representation of the data. If it is,
we have to stay with the unrestricted specification.

From the output for the third regression, we see that t is —-8.96 and hence
the null hypothesis H: 5, + f,— 1 = 0 is rejected (critical value of t at the
0.1 per cent level is 3.31). Note that the ¢ statistic is the square root of the
F statistic and the critical value of t at the 0.1 per cent level is the square
root of the critical value of F. The results for the other categories are
likewise identical to those for the F test.
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reg LGFDHOPC LGEXPPC LGSIZE

Source | SS df MS Number of obs = 868
————————— e F( 2, 865) = 210.94
Model | 63.5111811 2 31.7555905 Prob > F = 0.0000
Residual | 130.219229 865 .150542461 R-squared = 0.3278
————————— e Adj R-squared = 0.3263
Total | 193.73041 867 .223449146 Root MSE = .388
LGFDHOPC | Coef. Std. Err. t P>t [95% Conf. Intervall]
_________ +____________________________________________________________________
LGEXPPC | .2866813 .0226824 12.639 0.000 .2421622 .3312004
LGSIZE | =-.2278489 .0254412 -8.956 0.000 -.2777826 -.1779152
_cons | 4.720269 .220999%6 21.359 0.000 4.286511 5.154027

A6.7

(2) may be rewritten
logY =q, +(0(2 +l)10gX+u
so it is a reparameterised version of (1) with f, = a, and g, = «, + 1.

A6.8

* Show that the specification of Researcher 2 is a restricted version of the
specification of Researcher 1, stating the restriction.

Let the model be written
LGE = B, + 3,5 + B;NUM + B,VERB +u

The restriction is g, = f, since NUM and VERB are given equal weights
in the construction of SCORE. Using the restriction, the model can be
rewritten

LGE = 3, + ,S + B(NUM + VERB)+u
=0, + B,S +25,SCORE +u.

* Perform an F test of the restriction.

The null and alternative hypotheses are H: f, = , and H,: B, # f,. The
F statistic is
(2045-2000)/1

F(1,100) =
(1,100) 2000/100

2.25.

The critical value of F(1,100) is 3.94 at the 5 per cent level. Hence we
do not reject the restriction at the 5 per cent level.

* Show that the specification of Researcher 3 is a reparameterised version of
the specification of Researcher 1 and hence perform a t test of the restriction
in the specification of Researcher 2.

The restriction may be rewritten S, — 3, = 0. The test statistic is
therefore 6 = g, — f;. Hence S, = 6+ f;. Substituting for f, in the
unrestricted model, one has
LGE = B, + B,S + B,NUM + (6 + 3, WERB + u

=B, + B,S + B(NUM + VERB)+ OVERB + u

=p, + 5,8 +25,SCORE + OVERB + u.
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This is the specification of Researcher 3. To test the hypothesis that the
restriction is valid, we perform a t test on the coefficient of VERB. The
t statistic is 1.5, so we do not reject the restriction at the 5 per cent
level.

e Explain whether the F test in (b) and the t test in (c) could have led to
different results.

No, the F test and the t test must give the same result because the F
statistic must be the square of the ¢ statistic and the critical value of F
must be the square of the critical value of t for any given significance
level. Note that this assumes a two-sided t test. If one is in a position to
perform a one-sided test, the t test would be more powerful.

* Perform a test of the hypothesis that the numeracy score has a greater effect
on earnings than the literacy score.

One should perform a one-sided t test on the coefficient of VERB in
regression 3 with the null hypothesis H: ¢ = 0 and the alternative
hypothesis H: & < 0. The null hypothesis is not rejected and hence one
concludes that there is no significant difference.

e Compare the regression results of the three researchers.

The regression results of Researchers 1 and 3 are equivalent, the

only difference being that the coefficient of VERB provides a direct
estimate of f, in the specification of Researcher 1 and (f, - $,) in the
specification of Researcher 3. Assuming the restriction is valid, there

is a large gain in efficiency in the estimation of f, in specification (2)
because its standard error is effectively 0.0005, as opposed to 0.0011 in
specifications (1) and (3).

A6.9

* Demonstrate that relationship (3) embodies a testable restriction and
show how the model may be reformulated to take advantage of it.

The coefficients of log p and log w sum to 1. Hence the model should
be reformulated as

4

1 o
log O +
y g0

Yol
logL = log—
g p B gw

a+
(plus a disturbance term).

* Explain how the restriction could be tested using an F test.

Let RSS,, and RSS, be the residual sums of squares from the
unrestricted and restricted regressions. To test the null hypothesis that
the coefficients of log p and log w sum to 1, one should calculate the F
statistic
(RSS, —RSS,)/1

RSS,, /26

and compare it with the critical values of F(1,26).

F(1,26) =

e Explain how the restriction could be tested using a t test.

Alternatively, writing (3) as an unrestricted model

logwL =y,logQ+y,logp+y, logw+u, (5)

the restriction is y, +y; —1=0. Define § =y, +y, —1. Then
v, =0 —y, +1and the unrestricted model may be rewritten as
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logwL =y, logQ+7, 10g,0+(¢9—)/2 +1)logw+u .
Hence
logwL —logw =1y, logQ+;/2(logp—logw)+910g w+u-
Hence
logL=y,logQ+y, log§+6’log w+u
Thus one should regress log L on log Q, log %, and log w and perform

a t test on the coefficient of log w.

Explain the theoretical benefits of making use of a valid restriction. How
could the researcher assess whether there are any benefits in practice, in
this case?

The main theoretical benefit of making use of a valid restriction is that
one obtains more efficient estimates of the coefficients. The use of a
restriction would eliminate the problem of duplicate estimates of the
same parameter. Reduced standard errors should provide evidence of
the gain in efficiency.

* At a seminar, someone suggests that it is reasonable to hypothesise that

manufacturing output is subject to constant returns to scale, so that o +
B = 1. Explain how the researcher could test this hypothesis (1) using an
F test, (2) using a t test.

Under the assumption of constant returns to scale, the model becomes

5
log£:a10g£. 2
(0] w

One could test the hypothesis by computing the F statistic

(RSS, — RSS,)/1

F(1,27) =
¢.27) RSS,, 127

where RSS, and RSS, are for the specifications in (4) and (5)
respectively.

Alternatively, one could perform a simple ¢ test of the hypothesis that
the coefficient of log Q in (4) is equal to 1.

Explain why the researcher was dissatisfied with the results of regression
(1).

The high correlation between I and P has given rise to a problem of
multicollinearity. The standard errors are relatively large and the t
statistics low.

Demonstrate that specification (2) may be considered to be a restricted
version of specification (1).

The restriction is f, = —f,. Imposing it, we have
B=p+p,1+p,P+u

=p+ Bl —p,P+u
=0+ B.R+u.
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Perform an F test of the restriction, stating carefully your null hypothesis
and conclusion.

The null hypothesis is H: f, = —f,. The test statistic is

(987.1-967.9)/1

F(1,37)=
1.37) 967.9/37

0.73.

The null hypothesis is not rejected at any significance level since F < 1.
Perform a t test of the restriction
The unrestricted specification may be rewritten
B=p+pB,I+p,P+u
=B, +B,(P+R)+p,P+u
=B, +(B, + )P+ B, R+u.

Thus a t test on the coefficient of P in this specification is a test of the
restriction. The null hypothesis is not rejected, given that the ¢ statistic
is 0.86. Of course, the F statistic is the square of the t statistic and the
tests are equivalent.

Demonstrate that specification (3) may also be considered to be a
restricted version of specification (1)

The restriction is g, = 0.

Perform both an F test and a t test of the restriction in specification (3),
stating your conclusion in each case.

(1024.3-967.9)/1 _

F(,37)=
37) 967.9/37

2.16.

The critical value of F(1,37) at 5 per cent is approximately 4.08, so

the null hypothesis that P does not influence B is not rejected. Of
course, with t = —1.47, the t test, which is equivalent, leads to the same
conclusion.

At a seminar; someone suggests that specification (4) is also a restricted
version of specification (1). Is this correct? If so, state the restriction.

No, it is not correct. As shown above, it is an alternative form of the
unrestricted specification.

State, with an explanation, which would be your preferred specification.

None of the specifications has been rejected. The second should be
preferred because it should be more efficient than the unrestricted
specification. The much lower standard error of the slope coefficient
provides supportive evidence. The third specification should

be eliminated on the grounds that price inflation ought to be a
determinant.
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Chapter 7: Heteroscedasticity

Overview

This chapter begins with a general discussion of homoscedasticity and
heteroscedasticity: the meanings of the terms, the reasons why the
distribution of a disturbance term may be subject to heteroscedasticity,
and the consequences of the problem for OLS estimators. It continues by
presenting several tests for heteroscedasticity and methods of alleviating
the problem. It shows how apparent heteroscedasticty may be caused

by model misspecification. It concludes with a description of the use of
heteroscedasticity-consistent standard errors.

Learning outcomes

After working through the corresponding chapter in the textbook, studying
the corresponding slideshows, and doing the starred exercises in the
textbook and the additional exercises in this guide, you should be able to:

* explain the concepts of homoscedasticity and heteroscedasticity
* describe how the problem of heteroscedasticity may arise

* explain the consequences of heteroscedasticity for OLS estimators, their
standard errors, and t and F tests

* perform the Goldfeld-Quandt test for heteroscedasticity
» perform the White test for heteroscedasticity
* explain how the problem of heteroscedasticity may be alleviated

* explain why a mathematical misspecification of the regression model
may give rise to a problem of apparent heteroscedasticity

* explain the use of heteroscedasticity-consistent standard errors.

Additional exercises

A7.1

Is the disturbance term in your CES expenditure function heteroscedastic?

Sort the data by EXPPC, regress CATPC on EXPPC and SIZE, and perform
a Goldfeld—Quandt test to test for heteroscedasticity in the EXPPC
dimension. Repeat using the variables in logarithmic form.

A7.2

The observations for the occupational schools (see Chapter 5 in the
textbook) in the figure below suggest that a simple linear regression of
cost on number of students, restricted to the subsample of these schools,
would be subject to heteroscedasticity. Download the data set from the
heteroscedastic data sets folder on the website and use a Goldfeld—
Quandt test to investigate whether this is the case. If the relationship is
heteroscedastic, what could be done to alleviate the problem?
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A researcher hypothesises that larger economies should be more self-
sufficient than smaller ones and that M/G, the ratio of imports, M, to gross
domestic product, G, should be negatively related to G:

M

—=0,+5,G+u

G - Btp

with g, < 0. Using data for a sample of 42 countries, with M and G
both measured in US$ billion, he fits the regression (standard errors in
parentheses):

% = 0.37 -0.000086 G R?=10.12 @D
(0.03) (0.000036)
He plots a scatter diagram, reproduced as Figure 7.1, and notices that the

ratio M tends to have relatively high variance when G is small. He also

plots a scatter diagram for M and G, reproduced as Figure 7.2. Defining
GSQ as the square of G, he regresses M on G and GSQ:

M= 727 + 0.30 G- 0.000049 GSQ R*=0.86 2)
(10.77) (0.03)  (0.000009)

Finally, he plots a scatter diagram for log M and log G, reproduced as
Figure 3, and regresses log M on log G:

logM = -0.14 + 0.801log G R2=0.78 3)
0.37)  (0.07)

Having sorted the data by G, he tests for heteroscedasticity by regressing
specifications (1) — (3) first for the 16 countries with smallest G, and then
for the 16 countries with the greatest G. RSS, and RSS,, the residual sums
of squares for these regressions, are summarised in the following table.

Specification RSS, RSS,
1) 0.53 0.21
2 3178 71404
3) 3.45 3.60
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* Discuss whether (1) appears to be an acceptable specification, given
the data in the table and Figure 7.1.

* Explain what the researcher hoped to achieve by running regression
2.

* Discuss whether (2) appears to be an acceptable specification, given
the data in the table and Figure 7.2.

* Explain what the researcher hoped to achieve by running regression
3.

* Discuss whether (3) appears to be an acceptable specification, given

the data in the table and Figure 7.3.

* What are your conclusions concerning the researcher’s hypothesis?

A researcher has data on the number of children attending, N, and annual
recurrent expenditure, EXP, measured in US$, for 50 nursery schools in a
US city for 2006 and hypothesises that the cost function is of the quadratic
form

EXP =p + BN+ BNSQ+u
where NSQ is the square of N, anticipating that economies of scale will
cause S, to be negative. He fits the following equation:
EXP = 17,999 +1,060 N -1.29 NSQ R2=0.74 )
(12,908) (133) (0.30)

Suspecting that the regression was subject to heteroscedasticity, the
researcher runs the regression twice more, first with the 19 schools with
lowest enrolments, then with the 19 schools with the highest enrolments.
The residual sums of squares in the two regressions are 8.0 million and
64.0 million, respectively.

The researcher defines a new variable, EXPN, expenditure per student, as
EXPN = EXP/N, and fits the equation

EXPN = 1,080 - 1.25N + 16,114 NREC R*>=0.65 (2)
(90) (0.25)  (6,000)

where NREC = 1/N. He again runs regressions with the 19 smallest
schools and the 19 largest schools and the residual sums of squares are
900,000 and 600,000.

* Perform a Goldfeld-Quandst test for heteroscedasticity on both of the
regression specifications.

* Explain why the researcher ran the second regression.

* R?is lower in regression (2) than in regression (1). Does this mean that
regression (1) is preferable?

This is a continuation of Exercise A6.5.

* When the researcher presents her results at a seminar, one of the
participants says that, since I and G have been divided by Y, (2) is
less likely to be subject to heteroscedasticity than (1). Evaluate this
suggestion.
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A7.6

A researcher has data on annual household expenditure on food, F, and
total annual household expenditure, E, both measured in dollars, for 400
households in the United States for 2010. The scatter plot for the data is
shown as Figure 7.4. The basic model of the researcher is

F=p+pB,E+u D

where u is a disturbance term. The researcher suspects heteroscedasticity
and performs a Goldfeld—-Quandt test and a White test. For the Goldfeld—
Quandt test, she sorts the data by size of E and fits the model for the
subsample with the 150 smallest values of E and for the subsample

with the 150 largest values. The residual sums of squares (RSS) for

these regressions are shown in column (1) of the table. She also fits the
regression for the entire sample, saves the residuals, and then fits an
auxiliary regression of the squared residuals on E and its square. R? for this
regression is also shown in column (1) in the table. She performs parallel
tests of heteroscedasticity for two alternative models:

F 1 E
Z:ﬂlz+ﬁzz+v (2)
logF=p,+p,logE+w (3)

A is household size in terms of equivalent adults, giving each adult a
weight of 1 and each child a weight of 0.7. The scatter plot for '/ A and
E/ A is shown as Figure 7.5, and that for log F and log E as Figure 7.6.
The data for the heteroscedasticity tests for models (2) and (3) are shown
in columns (2) and (3) of the table.

Specification (D (2) 3)
Goldfeld-Quandt test

RSS smallest 150 200 million | 40 million 20.0
RSS largest 150 820 million | 240 million 21.0
White test

R? from auxiliary regression 0.160 0.140 0.001

e Perform the Goldfeld—Quandt test for each model and state your
conclusions.

* Explain why the researcher thought that model (2) might be an
improvement on model (1).

* Explain why the researcher thought that model (3) might be an
improvement on model (1).

* When models (2) and (3) are tested for heteroscedasticity using the
White test, auxiliary regressions must be fitted. State the specification
of this auxiliary regression for model (2).

e Perform the White test for the three models.

* Explain whether the results of the tests seem reasonable, given the
scatter plots of the data.
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A7.7

Explain what is correct, mistaken, confused or in need of further
explanation in the following statements relating to heteroscedasticity in a
regression model:

* ‘Heteroscedasticity occurs when the disturbance term in a regression
model is correlated with one of the explanatory variables.’

* ‘In the presence of heteroscedasticity ordinary least squares (OLS) is an
inefficient estimation technique and this causes t tests and F tests to be
invalid.’

* ‘OLS remains unbiased but it is inconsistent.’
* ‘Heteroscedasticity can be detected with a Chow test.’

* ‘Alternatively one can compare the residuals from a regression using
half of the observations with those from a regression using the other
half and see if there is a significant difference. The test statistic is the
same as for the Chow test.’

* ‘One way of eliminating the problem is to make use of a restriction
involving the variable correlated with the disturbance term.’

* ‘If you can find another variable related to the one responsible for the
heteroscedasticity, you can use it as a proxy and this should eliminate
the problem.’

* ‘Sometimes apparent heteroscedasticity can be caused by a
mathematical misspecification of the regression model. This can
happen, for example, if the dependent variable ought to be logarithmic,
but a linear regression is run.’

Answers to the starred exercises in the textbook

1.5

The following regressions were fitted using the Shanghai school cost data
introduced in Section 6.1 (standard errors in parentheses):

COST = 24,000 + 339N R? = 0.39
(27,000) (50)

COST = 51,000 — 4,0000CC + 152N + 284NOCC  R? = 0.68.
(31,000) (41,0000 (60)  (76)

where COST is the annual cost of running a school, N is the number of
students, OCC is a dummy variable defined to be O for regular schools and
1 for occupational schools, and NOCC is a slope dummy variable defined
as the product of N and OCC. There are 74 schools in the sample. With
the data sorted by N, the regressions are fitted again for the 26 smallest
and 26 largest schools, the residual sums of squares being as shown in the
table.

26 smallest | 26 largest
First regression 7.8x10% 54.4x 10
Second regression 6.7 x 10 13.8x 10"

Perform a Goldfeld—-Quandt test for heteroscedasticity for the two
models and, with reference to Figure 5.5, explain why the problem of
heteroscedasticity is less severe in the second model.
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Answer:

For both regressions RSS will be denoted RSS, for the 26 smallest schools
and RSS, for the 26 largest schools. In the first regression, RSS,/RSS,

= (54.4x10%)/(7.8x10'%) = 6.97. There are 24 degrees of freedom in
each subsample (26 observations, 2 parameters estimated). The critical
value of F(24,24) is approximately 3.7 at the 0.1 per cent level, and so we
reject the null hypothesis of homoscedasticity at that level. In the second
regression, RSS,/RSS, = (13.8x10'%)/(6.7x10'") = 2.06. There are 22
degrees of freedom in each subsample (26 observations, 4 parameters
estimated). The critical value of F(22,22) is 2.05 at the 5 per cent level,
and so we (just) do not reject the null hypothesis of homoscedasticity at
that significance level.

Why is the problem of heteroscedasticity less severe in the second
regression? The figure in Exercise A7.2 reveals that the cost function is
much steeper for the occupational schools than for the regular schools,
reflecting their higher marginal cost. As a consequence the two sets of
observations diverge as the number of students increases and the scatter is
bound to appear heteroscedastic, irrespective of whether the disturbance
term is truly heteroscedastic or not. The first regression takes no account
of this and the Goldfeld—Quandt test therefore indicates significant
heteroscedasticity. In the second regression the problem of apparent
heteroscedasticity does not arise because the intercept and slope dummy
variables allow separate implicit regression lines for the two types of
school.

Looking closely at the diagram, the observations for the occupational
schools exhibit a classic pattern of true heteroscedasticity, and this would
be confirmed by a Goldfeld—Quandt test confined to the subsample of
those schools (see Exercise A7.2). However the observations for the
regular schools appear to be homoscedastic and this accounts for the fact
that we did not (quite) reject the null hypothesis of homoscedasticity for
the combined sample.

The file educ.dta in the heteroscedastic data sets folder on the website
contains international cross-sectional data on aggregate expenditure on
education, EDUC, gross domestic product, GDP, and population, POP, for
a sample of 38 countries in 1997. EDUC and GDP are measured in US$
million and POP is measured in thousands. Download the data set, plot a
scatter diagram of EDUC on GDP, and comment on whether the data set
appears to be subject to heteroscedasticity. Sort the data set by GDP and
perform a Goldfeld—Quandt test for heteroscedasticity, running regressions
using the subsamples of 14 countries with the smallest and greatest GDP.

Answer:

The figure plots expenditure on education, EDUC, and gross domestic
product, GDP, for the 38 countries in the sample, measured in $ billion
rather than $ million. The observations exhibit heteroscedasticity. Sorting
them by GDP and regressing EDUC on GDP for the subsamples of 14
countries with smallest and greatest GDP, the residual sums of squares for
the first and second subsamples, denoted RSS, and RSS,, respectively, are
1,660,000 and 63,113,000, respectively. Hence

RSS
F(12,12)= 2 = 63113000:38 02
RSS, 1660000

The critical value of F(12,12) at the 0.1 per cent level is 7.00, and so we
reject the null hypothesis of homoscedasticity.
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Repeat Exercise 7.6, using the Goldfeld—Quandt test to investigate whether
scaling by population or by GDE or whether running the regression in
logarithmic form, would eliminate the heteroscedasticity. Compare the results
of regressions using the entire sample and the alternative specifications.

Answer:

Dividing through by population, POP, the model becomes

EDUC

1

GDP

u

ror PP

OP

+ 5,

+
POP POP

with expenditure on education per capita, denoted EDUCPOP,
hypothesised to be a function of gross domestic product per capita,
GDPPOP, and the reciprocal of population, POPREC, with no intercept.

Sorting the sample by GDPPOP and running the regression for the

subsamples of 14 countries with smallest and largest GDPPOP, RSS, =
56,541 and RSS, = 1,415,515. Now

F(12,12) =

RSS,

RSS, 1415515

56541

25.04.

Thus the model is still subject to heteroscedasticity at the 0.1 per cent

level. This is evident in Figure 7.8.
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Figure 7.8 Expenditure on education per capita and GDP per capita ($ per capita)
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Figure 7.9 Expenditure on education as a proportion of GDP and the reciprocal of
GDP (measured in $ billion)

Dividing through instead by GDP, the model becomes
EDUC

u

1
+ 6, +——
GDP d GDP 2z GDP

with expenditure on education as a share of gross domestic product,
denoted EDUCGDP, hypothesised to be a simple function of the reciprocal
of gross domestic product, GDPREC, with no intercept. Sorting the sample
by GDPREC and running the regression for the subsamples of 14 countries
with smallest and largest GDPREC, RSS, = 0.00413 and RSS, = 0.00238.
Since RSS, is less than RSS,, we test for heteroscedasticity under the
hypothesis that the standard deviation of the disturbance term is inversely
related to GDPREC:

R .
F(12,12) _ R85, _0.00413 1.
RSS, 0.00238

The critical value of F(12,12) at the 5 per cent level is 2.69, so we do not
reject the null hypothesis of homoscedasticity. Could one tell this from
Figure 7.9? It is a little difficult to say.

Finally, we will consider a logarithmic specification. If the true relationship
is logarithmic, and homoscedastic, it would not be surprising that the
linear model appeared heteroscedastic. Sorting the sample by GDP, RSS,
and RSS, are 2.733 and 3.438 for the subsamples of 14 countries with
smallest and greatest GDP. The F statistic is

RSS, 3.438

F(12,12) = = =
RSS, 2.733

1.26.

Thus again we would not reject the null hypothesis of homoscedasticity.
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The third and fourth models both appear to be free from heteroscedasticity.
How do we choose between them? We will examine the regression results,
shown for the two models with the full sample:

reg EDUCGDP GDPREC

Number of obs =

F( 1,
Prob > F
R-squared
Adj R-squared
Root MSE

36)

[95% Conf.
-434.4236
.0410169

Number of obs
F( 1, 36)
Prob > F
R-squared

Adj R-squared
Root MSE

[95% Conf.

1.010582
-6.678554

38
5.62
0.0233
0.1349
0.1109
.01549

33.74086
.0559016

38
246.20
0.0000
0.8724
0.8689
.45954

Interval]

1.310607
3.371853

Source | SS df MS
_________ +______________________________
Model | .001348142 1 .001348142
Residual | .008643037 36 .000240084
_________ +______________________________
Total | 009991179 37 .000270032
EDUCGDP | Coef Std. Err t P>t
_________ +____________________________________________________________________
GDPREC | -234.0823 98.78309 -2.370 0.023
_cons | .0484593 .0036696 13.205 0.000
reg LGEE LGGDP
Source | SS af MS
_________ +______________________________
Model | 51.9905508 1 51.9905508
Residual | 7.6023197 36 .211175547
_________ +______________________________
Total | 59.5928705 37 1.61061812
LGEE | Coef Std. Err t P>t
_________ +____________________________________________________________________
LGGDP | 1.160594 .0739673 15.691 0.000
cons | =-5.025204 .8152239 -6.164 0.000
In equation form, the first regression is
EDUC 1
——— = 0.048- 234.1—— R>*=10.13
GDP GDP

(0.004) (98.8)

Multiplying through by GDP, it may be rewritten
= -234.1 + 0.048GDP

EDUC

It implies that expenditure on education accounts for 4.8 per cent of

gross domestic product at the margin. The constant does not have any
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sensible interpretation. We will compare this with the output from an OLS
regression that makes no attempt to eliminate heteroscedasticity:

reg EDUC GDP

= 38
509.80
= 0.0000
= 0.9340
= 0.9322
= 1440.0

Interval]

.052383

Source | SS df MS Number of obs
————————— e F( 1, 36)
Model | 1.0571e+09 1 1.0571e+09 Prob > F
Residual | 74645819.2 36 2073494.98 R-squared
————————— Fom Adj R-squared
Total | 1.1317e+09 37 30586911.0 Root MSE
EDUC | Coef. Std. Err. t P>t | [95% Conf.
_________ +____________________________________________________________________
GDP | .0480656 .0021288 22.579 0.000 .0437482
cons | -160.4669 311.699 -0.515 0.610 -792.6219

471.688

The slope coefficient, 0.048, is identical to three decimal places. This is
not entirely a surprise, since heteroscedasticity does not give rise to bias
and so there should be no systematic difference between the estimate
from an OLS regression and that from a specification that eliminates

heteroscedasticity. Of course, it is a surprise that the estimates are so close.

Generally there would be some random difference, and of course the OLS
estimate would tend to be less accurate. In this case, the main difference
is in the estimated standard error. That for the OLS regression is actually
smaller than that for the regression of EDUCGDP on GDPREC, but it is
misleading. It is incorrectly calculated and we know that, since OLS is
inefficient, the true standard error for the OLS estimate is actually larger.

The logarithmic regression in equation form is
log EDUC = -5.03 +1.17 log GDP  R? = 0.87
(0.82) (0.07)

implying that the elasticity of expenditure on education with regard to
gross domestic product is 1.17. In substance the interpretations of the
models are similar, since both imply that the proportion of GDP allocated
to education increases slowly with GDB but the elasticity specification
seems a little more informative and probably serves as a better starting
point for further exploration. For example, it would be natural to add the
logarithm of population to see if population had an independent effect.

It was reported above that the heteroscedasticity-consistent estimate of
the standard error of the coefficient of GDP in equation (7.13) was 0.18.
Explain why the corresponding standard error in equation (7.15) ought to
be lower and comment on the fact that it is not.

Answer:

(7.15), unlike (7.13) appears to be free from heteroscedasticity and
therefore should provide more efficient estimates of the coefficients,
reflected in lower standard errors when computed correctly. However the
sample may be too small for the heteroscedasticity-consistent estimator to
be a good guide.
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A health economist plans to evaluate whether screening patients on
arrival or spending extra money on cleaning is more effective in reducing
the incidence of infections by the MRSA bacterium in hospitals. She
hypothesises the following model:

MRSA; = B, + B,S; + B;C; +u,

where, in hospital i, MRSA is the number of infections per thousand
patients, S is expenditure per patient on screening, and C is expenditure
per patient on cleaning. u. is a disturbance term that satisfies the usual
regression model assumptions. In particular, u, is drawn from a distribution
with mean zero and constant variance ¢°. The researcher would like to

fit the relationship using a sample of hospitals. Unfortunately, data for
individual hospitals are not available. Instead she has to use regional data
to fit

MRSA; =B, + B,S, + B,C; +u;

where MRS4; , S_j, C_j, and Z are the averages of MRSA, S, C, and u for
the hospitals in region j. There were different numbers of hospitals in the
regions, there being n, hospitals in region j. ,

. — . o .
Show that the variance of u; is equal to ;o and that an OLS regression
using the grouped regional data to fit the relationship will be subject to
heteroscedasticity.

Assuming that the researcher knows the value of n, for each region,
explain how she could re-specify the regression model to make it
homoscedastic. State the revised specification and demonstrate
mathematically that it is homoscedastic. Give an intuitive explanation of
why the revised specification should tend to produce improved estimates
of the parameters.

Answer:

Varlu, )= Var(liuﬂ(J . [HIJT Var(gujkj = [nl]ngar(u )

N k= j

since the covariance terms are all 0. Hence

2
Var(ui)z (;J njaz = 0—2.

J n;

To eliminate the heteroscedasticity, multiply observation j by ,/n; . The
regression becomes

'\/n_jMRSAj :ﬁl'\/n_j—"_ﬂZ\/n_jS_j-'—ﬂ?a\/ZC_j-’—\/Zu_j .

The variance of the disturbance term is now

2

o ) ), 2

and is thus the same for all observations.

From the expression for Var(uj), we see that, the larger the group, the
more reliable should be its observation (the closer its observation should
tend to be to the population relationship). The scaling gives greater weight
to the more reliable observations and the resulting estimators should be
more efficient.
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Answers to the additional exercises

A7.1

The first step is to sort the data set by EXPPC. Then, if there were no
zero-expenditure observations, the subsample regressions should use
approximately the first and last 326 observations, 326 being three-eighths
of 869. This procedure has been adopted anyway, on the assumption that
the zero observations are distributed randomly and that the first and last
326 observations capture about three-eighths of the available ones. The F
statistic is then computed as

Fln, —kon — k)= RSS, /(n, — k)

RSS, /(n, — k)
where n, and n, are the number of available observations and k is the number
of parameters in the regression specification. However this procedure does
not work well for those categories with many zero observations because there
is a tendency for the number of zero observations to be relatively great for
low EXPPC (LOCT being an understandable exception). It would have been
better to have saved the data set under a new name for this exercise, with the
zero observations dropped, and to have identified the smallest and largest
three-eighths properly. However it is doubtful that the outcome would have
been much different.

.0914138
-74.66197
1329.845

325
20.11
= 0.0000
= 0.1111
= 0.1055
= 829.53

Interval]

.0376806
-56.84019

sort EXPPC
reg FDHOPC EXPPC SIZE in 1/326 if FDHO>O0
Source | SS df MS Number of obs =
————————————— e F( 2, 323)
Model | 20263081.5 2 10131540.8 Prob > F
Residual | 65763256.7 323 203601.414 R-squared
————————————— Fom Adj R-squared =
Total | 86026338.3 325 264696.425 Root MSE
FDHOPC | Coef Std. Err t P>t [95% Conf.
_____________ +________________________________________________________________
EXPPC | .0634414 .0142184 4.46 0.000 .035469
SIZE | -103.9873 14.90612 -6.98 0.000 -133.3126
cons | 1104.826 114.3772 9.66 0.000 879.8079
reg FDHOPC EXPPC SIZE in 544/869 if FDHO>0
Source | SS df MS Number of obs
————————————— - F( 2, 322)
Model | 27679828.3 2 13839914.1 Prob > F
Residual | 221573281 322 688115.778 R-squared
————————————— Fom Adj R-squared
Total | 249253109 324 769299.719 Root MSE
FDHOPC | Coef Std. Err t P>t [95% Conf.
_____________ +________________________________________________________________
EXPPC | .0263627 .0057528 4.58 0.000 .01504148
SIZE | -147.5727 46.11894 -3.20 0.002 -238.3052
cons | 1578.133 178.0577 8.86 0.000 1227.829

1928.436
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The F statistic for the linear specification is

221.57/322

F(322,323) = =3.
65.76/323

The corresponding F statistic for the logarithmic specification is 1.54. The
critical value of F(300,200) at the 0.1 per cent level is 1.48. The critical
value for F(322,323) must be lower. Thus in both cases the null hypothesis
of homoscedasticity is rejected, but the problem appears to be much less
severe for the logarithmic specification.

The logarithmic specification in general appears to be much less
heteroscedastic than the linear one and for some categories the null
hypothesis of homoscedasticity would not be rejected. Note that for a few
of these RSS, < RSS, for the logarithmic specification.

Goldfeld—Quandt tests
linear logarithmic
n, n, | RSSx10° | RSSx10° F RSS, RSS, F
FDHO 326 | 325 65.76 221.57 3.38 40.07 | 6195 | 1.54
FDAW 292 | 324 5.76 280.94 43.96 | 240.91 | 219.69 | 1.01
HOUS 324 | 326 192.79 2097.6 10.81 | 260.60 | 146.59 | 1.77*
TELE 320 | 324 6.05 75.29 12.29 | 134.51 | 112.27 | 1.18*
DOM 136 189 11.74 491.32 30.11 | 357.60 | 536.39 | 2.08
TEXT 151 206 0.13 15.86 89.43 | 163.28 | 284.78 | 2.38
FURN 86 155 7.64 69.07 5.02 | 175.07 | 301.58 | 3.10
MAPP 70 97 0.93 16.60 12.88 | 79.55 | 104.63 | 1.82
SAPP 141 203 0.30 1.09 2.52 | 172.05 | 190.50 | 1.59
CLOT 308 | 325 12.11 179.26 14.03 | 299.14 | 223.20 | 1.27*
FOOT 246 | 273 0.28 2.40 7.72 | 235.30 | 210.13 | 1.01*
GASO 283 311 12.20 59.98 4.47 | 163.61 | 110.68 | 1.35*
TRIP 59 173 0.90 122.07 46.26 | 125.87 | 250.34 | 5.83
LOCT 82 52 2.09 2.39 1.80 | 199.72 | 126.57 | 2.49*
HEAL 293 318 68.92 375.78 5.02 | 536.75 | 428.11 | 1.16*
ENT 298 323 15.48 861.87 51.37 | 298.52 | 251.60 | 1.09*
FEES 216 289 1.00 296.56 221.65 | 310.61 | 502.18 | 2.16
TOYS 206 | 237 3.49 20.25 5.04 | 298.88 | 303.10 | 1.17
READ 255 313 0.37 4.15 9.14 | 292.09 | 340.67 | 1.43
EDUC 107 106 2.98 300.44 101.77 | 233.77 | 337.45 | 1.43
TOB 146 125 4.38 9.09 2.42 | 148.74 | 122.19 | 1.42*

* indicates RSS, < RSS,

A7.2

Having sorted by N, the number of students, RSS, and RSS, are

2.02x 101 and 22.59 x 10'°, respectively, for the subsamples of the 13
smallest and largest schools. The F statistic is 11.18. The critical value of
F(11,11) at the 0.1 per cent level must be a little below 8.75, the critical
value for F(10,10), and so the null hypothesis of homoscedasticity is
rejected at that significance level.

One possible way of alleviating the heteroscedasticity is by scaling through
by the number of students. The dependent variable now becomes the
unit cost per student year, and this is likely to be more uniform than total
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recurrent cost. Scaling through by N, and regressing UNITCOST, defined
as COST divided by N, on NREC, the reciprocal of N, having first sorted
by NREC, RSS, and RSS, are now 349,000 and 504,000. The F statistic

is therefore

1.44, and this is not significant even at the 5 per cent level

since the critical value must be a little above 2.69, the critical value for
F(12,12). The regression output for this specification using the full sample

is shown.

reg UNI

Model

TCOST NREC

| SS df MS Number of obs = 34
. F( 1, 32) = 0.74
| 27010.3792 1 27010.3792 Prob > F = 0.3954
| 1164624.44 32 36394.5138 R-squared = 0.0227
oo Adj R-squared = -0.0079
| 1191634.82 33 36110.1461 Root MSE = 190.77
| Coef. Std. Err. t P>t [95% Conf. Interval]
+ ____________________________________________________________________
| 10975.91 12740.7 0.861 0.395 -14976.04 36927.87
| 524.813 53.88367 9.740 0.000 415.0556 634.5705

In equation form, the regression is

COST

N

Multiplying

= 524.8 + 10976% R?>=0.03

(53.9) (12741)
through by N, it may be rewritten

COST = 10976 + 524.8N.

The estimate of the marginal cost is somewhat higher than the estimate of
436 obtained using OLS in Section 5.3 of the textbook.

A second possible way of alleviating the heteroscedasticity is to

hypothesise

that the true relationship is logarithmic, in which case the

use of an inappropriate linear specification would give rise to apparent
heteroscedasticity. Scaling through by N, and regressing LGCOST, the
(natural) logarithm of COST, on LGN, the logarithm of N, RSS, and RSS,
are 2.16 and 1.58. The F statistic is therefore 1.37, and again this is not
significant even at the 5 per cent level. The regression output for this
specification using the full sample is shown.

reg LGC

Model

OST LGN

| SS df MS Number of obs = 34
e F( 1, 32) = 100.98
| 14.7086057 1 14.7086057 Prob > F = 0.0000
|  4.66084501 32 .145651406 R-squared = 0.7594
Fom Adj R-squared = 0.7519
| 19.3694507 33 .58695305 Root MSE = .381¢64
| Coef. Std. Err. t P>t [95% Conf. Intervall]
+ ____________________________________________________________________
| .909126 .0904681 10.049 0.000 . 7248485 1.093404
| 6.808312 .5435035 12.527 0.000 5.701232 7.915393

The estimate of the elasticity of cost with respect to number of students,

0.91, is less

than 1 and thus suggests that the schools are subject to

economies of scale. However, we are not able to reject the null hypothesis
that the elasticity is equal to 1 and thus that costs are proportional to
numbers, the t statistic for the null hypothesis being too low:
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A7.3

* Discuss whether (1) appears to be an acceptable specification, given the
data in the table and Figure 7.1.

Using the Goldfeld—Quandt test to test specification (1) for
heteroscedasticity assuming that the standard deviation of u is
inversely proportional to G, we have F(14,14) = % =2.52.

The critical value of F(14,14) at the 5 per cent lex}el1 is 2.48, so we just
reject the null hypothesis of homoscedasticity at that level. Figure 7.1
does strongly suggest heteroscedasticity. Thus (1) does not appear to be

an acceptable specification.

* Explain what the researcher hoped to achieve by running regression (2).

If it is true that the standard deviation of u is inversely proportional to
G, the heteroscedasticity could be eliminated by multiplying through by
G. This is the motivation for the second specification. An intercept that
in principle does not exist has been added, thereby changing the model
specification slightly.

* Discuss whether (2) appears to be an acceptable specification, given the
data in the table and Figure 7.2.

71404

F(I313) === =22.47.

The critical value of F(13,13) at the 0.1 per cent level is about 6.4, so
the null hypothesis of homoscedasticity is rejected. Figure 7.2 confirms
the heteroscedasticity.

* Explain what the researcher hoped to achieve by running regression (3).

Heteroscedasticity can appear to be present in a regression in natural
units if the true relationship is logarithmic. The disturbance term in
a logarithmic regression is effectively increasing or decreasing the
value of the dependent variable by random proportions. Its effect in
absolute terms will therefore tend to be greater, the larger the value
of G. The researcher is checking to see if this is the reason for the
heteroscedasticity in the second specification.

* Discuss whether (3) appears to be an acceptable specification, given the
data in the table and Figure 7.3.
Obviously there is no problem with the Goldfeld—Quandt test, since

3.60
F(14,14) = 345 1.04 . Figure 7.3 looks free from heteroscadasticity.

*  What are your conclusions concerning the researcher’s hypothesis?
Evidence in support of the hypothesis is provided by (3) where, with
t= % =-2.86, the elasticity is significantly lower than 1. Figures

7.1 and 7.2 also strongly suggest that on balance larger economies
have lower import ratios than smaller ones.
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A7.4

A7.5

A7.6

Perform a Goldfeld-Quandt test for heteroscedasticity on both of the
regression specifications.

The F statistics for the G-Q test for the two specifications are

64/16 900/16
F(16,16)=———=8.0 and F(16,16) = ———=1.5.

( ) 8/16 ( ) 600/16
The critical value of F(16,16) is 2.33 at the 5 per cent level and 5.20 at
the 0.1 per cent level. Hence one would reject the null hypothesis of
homoscedasticity at the 0.1 per cent level for regression 1 and one
would not reject it even at the 5 per cent level for regression 2.

Explain why the researcher ran the second regression.

He hypothesised that the standard deviation of the disturbance term in
observation i was proportional to N;: o, = AN, for some A. If this is the
case, dividing through by N, makes the specification homoscedastic,
since

Var{;’; J: %Var(ui): %(ANi)Z =X

i i i

and is therefore the same for all i.

R? is lower in regression (2) than in regression (1). Does this mean that
regression (1) is preferable?

R? is not comparable because the dependent variable is different in the
two regressions. Regression (2) is to be preferred since it is free from
heteroscedasticity and therefore ought to tend to yield more precise
estimates of the coefficients with valid standard errors.

When the researcher presents her results at a seminar, one of the
participants says that, since I and G have been divided by Y, (2) is less
likely to be subject to heteroscedasticity than (1). Evaluate this suggestion.

If the restriction is valid, imposing it will have no implications for

the disturbance term and so it could not lead to any mitigation

of a potential problem of heteroscedasticity. [If there were
heteroscedasticity, and if the specification were linear, scaling through
by a variable proportional in observation i to the standard deviation of
u, in observation i would lead to the elimination of heteroscedasticity.
The present specification is logarithmic and dividing I and G by Y does
not affect the disturbance term.]

Perform the Goldfeld—Quandt test for each model and state your
conclusions.

The ratios are 4.1, 6.0, and 1.05. In each case we should look for the
critical value of F(148,148). The critical values of F(150,150) at the 5
per cent, 1 per cent, and 0.1 per cent levels are 1.31, 1.46, and 1.66,
respectively. Hence we reject the null hypothesis of homoscedasticity at
the 0.1 per cent level (1 per cent is OK) for models (1) and (2). We do
not reject it even at the 5 per cent level for model (3).
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Explain why the researcher thought that model (2) might be an
improvement on model (1).

If the assumption that the standard deviation of the disturbance term is
proportional to household size, scaling through by A should eliminate
the heteroscedasticity, since

E(vz)zE[ [%}ZJ=%E(L!2)= 2

if the standard deviation of u = JA.

Explain why the researcher thought that model (3) might be an
improvement on model (1).

It is possible that the (apparent) heteroscedasticity is attributable
to mathematical misspecification. If the true model is logarithmic,
a homoscedastic disturbance term would appear to have a
heteroscedastic effect if the regression is performed in the original
units.

When models (2) and (3) are tested for heteroscedasticity using the White
test, auxiliary regressions must be fitted. State the specification of this
auxiliary regression for model (2).

The dependent variable is the squared residuals from the model
regression. The explanatory variables are the reciprocal of A and its
square, E/A and its square, and the product of the reciprocal of A and
E/A. (No constant.)

Perform the White test for the three models.

nR? is 64.0, 56.0, and 0.4 for the three models. Under the null
hypothesis of homoscedasticity, this statistic has a chi-squared
distribution with degrees of freedom equal to the number of terms on
the right side of the regression, minus one. This is two for models (1)
and (3). The critical value of chi-squared with two degrees of freedom
is 5.99, 9.21, and 13.82 at the 5, 1, and 0.1 per cent levels. Hence H, is
rejected at the 0.1 per cent level for model (1), and not rejected even
at the 5 per cent level for model (3). In the case of model (2), there are
five terms on the right side of the regression. The critical value of chi-
squared with four degrees of freedom is 18.47 at the 0.1 per cent level.
Hence H| is rejected at that level.

Explain whether the results of the tests seem reasonable, given the scatter
plots of the data.

Absolutely. In Figures 7.1 and 7.2, the variances of the dispersions of
the dependent variable clearly increase with the size of the explanatory
variable. In Figure 7.3, the dispersion is much more even.
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A7.7

‘Heteroscedasticity occurs when the disturbance term in a regression model
is correlated with one of the explanatory variables.’

This is false. Heteroscedasticity occurs when the variance of the
disturbance term is not the same for all observations.

‘In the presence of heteroscedasticity ordinary least squares (OLS) is an
inefficient estimation technique and this causes t tests and F tests to be
invalid.’

It is true that OLS is inefficient and that the t and F tests are invalid,
but ‘and this causes’ is wrong.

‘OLS remains unbiased but it is inconsistent.’

It is true that OLS is unbiased, but false that it is inconsistent.
‘Heteroscedasticity can be detected with a Chow test.’

This is false.

‘Alternatively one can compare the residuals from a regression using half
of the observations with those from a regression using the other half and
see if there is a significant difference. The test statistic is the same as for
the Chow test.’

The first sentence is basically correct with the following changes

and clarifications: one is assuming that the standard deviation

of the disturbance term is proportional to one of the explanatory
variables; the sample should first be sorted according to the size of
the explanatory variable; rather than split the sample in half, it would
be better to compare the first three-eighths (or one third) of the
observations with the last three-eighths (or one third); ‘comparing
the residuals’ is too vague: the F statistic is F(n’ - k,n’— k) = RSS,/
RSS, assuming n’ observations and k parameters in each subsample
regression, and placing the larger RSS over the smaller.

The second sentence is false.

‘One way of eliminating the problem is to make use of a restriction
involving the variable correlated with the disturbance term.’

This is nonsense.

‘If you can find another variable related to the one responsible for the
heteroscedasticity, you can use it as a proxy and this should eliminate the
problem.’

This is more nonsense.

‘Sometimes apparent heteroscedasticity can be caused by a mathematical
misspecification of the regression model. This can happen, for example, if
the dependent variable ought to be logarithmic, but a linear regression is

’

run.

True. A homoscedastic disturbance term in a logarithmic regression,
which is responsible for proportional changes in the dependent
variable, may appear to be heteroscedastic in a linear regression
because the absolute changes in the dependent variable will be
proportional to its size.
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Chapter 8: Stochastic regressors and
measurement errors

Overview

Until this point it has been assumed that the only random element in a
regression model is the disturbance term. This chapter extends the analysis
to the case where the variables themselves have random components. The
initial analysis shows that in general OLS estimators retain their desirable
properties. A random component attributable to measurement error,

the subject of the rest of the chapter, is however another matter. While
measurement error in the dependent variable merely inflates the variances
of the regression coefficients, measurement error in the explanatory
variables causes OLS estimates of the coefficients to be biased and
invalidates standard errors, t tests, and F tests. The analysis is illustrated
with reference to the Friedman permanent income hypothesis, the most
celebrated application of measurement error analysis in the economic
literature. The chapter then introduces instrumental variables (IV)
estimation and gives an example of its use to fit the Friedman model. The
chapter concludes with a description of the Durbin-Wu-Hausman test for
investigating whether measurement errors are serious enough to warrant
using IV instead of OLS.

Learning outcomes

After working through the corresponding chapter in the textbook, studying
the corresponding slideshows, and doing the starred exercises in the
textbook and the additional exercises in this guide, you should be able to:

* explain the conditions under which OLS estimators remain unbiased
when the variables in the regression model possess random
components

* derive the large-sample expression for the bias in the slope coefficient
in a simple regression model with measurement error in the
explanatory variable

* demonstrate, within the context of the same model, that measurement
error in the dependent variable does not cause the regression
coefficients to be biased but does increase their standard errors

* describe the Friedman permanent income hypothesis and explain why
OLS estimates of a conventional consumption function will be biased if
it is correct

* explain what is meant by an instrumental variables estimator and state
the conditions required for its use

* demonstrate that the IV estimator of the slope coefficient in a simple
regression model is consistent, provided that the conditions required
for its use are satisfied

* explain the factors responsible for the population variance of the IV
estimator of the slope coefficient in a simple regression model

* perform the Durbin-Wu-Hausman test in the context of measurement
error.
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Additional exercises

A8.1

A8.2

A8.3

A researcher believes that a variable Y is determined by the simple
regression model

Y= +pX+u.
She thinks that X is not distributed independently of u but thinks that
another variable, Z, would be a suitable instrument. The instrumental
estimator of the intercept, 4", is given by

b =Y -blV X,

where b)" is the IV estimator of the slope coefficient. [Exercise 8.12 in the
textbook asks for a proof that &," is a consistent estimator of 3,.]

Explain, with a brief mathematical proof, why »°"°, the ordinary least
squares estimator of §,, would be inconsistent, if the researcher is correct
in believing that X is not distributed independently of u.

The researcher has only 20 observations in her sample. Does the fact that
b is consistent guarantee that it has desirable small-sample properties?
If not, explain how the researcher might investigate the small-sample
properties.

Suppose that the researcher in Exercise A8.1 is wrong and X is in fact
distributed independently of u. Explain the consequences of using b,
instead of 5" to estimate ;.

Note: The population variance of 5" is given by

2 2
o
O-;IV :(1+ﬂ_XXLJ_"

1

where g, is the population mean of X, o is its population variance, r,, is
the correlation between X and Z, and o is the population variance of the
disturbance term, u. For comparison, the population variance of the OLS
estimator is

2 2
2 /uX O-u
o5 {”—ZJ—

Oy n

when the model is correctly specified and the regression model
assumptions are satisfied.

A researcher investigating the incidence of teenage knife crime has the
following data for each of 35 cities for 2008:

K = number of knife crimes per 1,000 population in 2008

N = number of teenagers per 1,000 population living in social
deprivation in 2008.
The researcher hypothesises that the relationship between K and N is given
by
K=p +pF,N+u (D
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where u is a disturbance term that satisfies the usual regression model
assumptions. However, knife crime tends to be under-reported, with the
degree of under-reporting worst in the most heavily afflicted boroughs, so
that

R=K +w (2

where R = number of reported knife crimes per 1,000 population in 2008
and w is a random variable with E(w)<0 and cov(w,K)<0.w may be
assumed to be distributed independently of u. Note that cov(w,K)<0
implies cov(w, N ) <0 . Derive analytically the sign of the bias in the
estimator of f, if the researcher regresses R on N using ordinary least
squares.

A8.4
Suppose that in the model

Y= +pX+u
where the disturbance term u satisfies the regression model assumptions,

the variable X is subject to measurement error, being underestimated by a
fixed amount « in all observations.

* Discuss whether it is true that the ordinary least squares estimator of f,
will be biased downwards by an amount proportional to both & and £,

* Discuss whether it is true that the fitted values of Y from the regression
will be reduced by an amount af,.

* Discuss whether it is true that R? will be reduced by an amount
proportional to a.

A8.5

A researcher believes that the rate of migration from Country B to Country
A, M, measured in thousands of persons per year, is a linear function of
the relative average wage, RW, defined as the average wage in Country A
divided by the average wage in Country B, both measured in terms of the
currency of Country A:

M =g, + BRW, +u,. ¢!
u, is a disturbance term that satisfies the regression model assumptions.
However, Country B is a developing country with limited resources
for statistical surveys and the wage data for that country, derived
from a small sample of social security records, are widely considered
to be unrepresentative, with a tendency to overstate the true average
wage because those working in the informal sector are excluded. As a
consequence the measured relative wage, MRW,, is given by

MRW, = RW, + w, 2

where w, is a random quantity with expected value less than 0. It may be
assumed to be distributed independently of u, and RW,.

The researcher also has data on relative GDP per capita, RGDP, defined

as the ratio of GDP per capita in countries A and B, respectively,

both measured in terms of the currency of Country A. He has annual
observations on M,, MRW,, and RGDP, for a 30-year period. The
correlation between MRW,, and RGDP, in the sample period is 0.8. Analyse
mathematically the consequences for the estimates of the intercept and the
slope coefficient, the standard errors and the t statistics, if the migration
equation (1) is fitted:
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A8.6

* using ordinary least squares with MRW, as the explanatory variable.
* using OLS, with RGDP, as a proxy for RW..

* using instrumental variables, with RGDP, as an instrument for MRW..

Suppose that in Exercise A8.5 RGDP, is subject to the same kind of
measurement error as RW, and that as a consequence there is an exact
linear relationship between RGDP, and MRW . Demonstrate mathematically
how this would affect the IV estimator of 8, in part (3) of Exercise A8.5
and give a verbal explanation of your result.

Answers to the starred exercises in the textbook

8.4

158

A variable Q is determined by the model

Q=8 +pX+v,
where X is a variable and v is a disturbance term that satisfies the
regression model assumptions. The dependent variable is subject to
measurement error and is measured as Y where

Y=Q+r

and r is the measurement error, distributed independently of v. Describe
analytically the consequences of using OLS to fit this model if:

1. The expected value of r is not equal to zero (but r is distributed
independently of Q).

2. ris not distributed independently of Q (but its expected value is zero).
Answer: Substituting for Q, the model may be rewritten
Y =8, +pX+Vv+r
= ﬂl + ﬂzX +u
where u = v + r. Then
Z(Xl.—)? ui—ﬁ) Z(Xi—)? vi—\7)+Z(Xi—)?Xri—F)

b,=p,+ Z(Xi _)?)2 =p,+ Z(Xi _)?)2

Z(Xi -X \Z —\7)+Z(X,. —)?Xri —F)
> (x, - Xf

:m+§@i3¥dzw—fww%z@ﬁfn-w

:m+§&%}yz@ﬁfmwwnz@ﬁfwnw>

E(bz):E B+

provided that X is nonstochastic. (If X is stochastic, the proof that the
expected value of the error term is zero is parallel to that in Section 8.2
of the textbook.) Thus b, remains an unbiased estimator of f,.
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However, the estimator of the intercept is affected if E(r) is not zero.
by=Y -b,X=B+p,X+u—-bX=p+pX+v+7-bX.

Hence

E(b)= B, + B, X + EF)+ E(F)- E(b, X)
=B, + p,X + E(v)+ E(F)- XE(b,)
=B, +E(F).

Thus the intercept is biased if E(r) is not equal to zero, for then £ (F ) is
not equal to O.

If r is not distributed independently of Q, the situation is a little bit

more complicated. For it to be distributed independently of Q, it must

be distributed independently of both X and v, since these are the
determinants of Q. Thus if it is not distributed independently of Q, one of
these two conditions must be violated. We will consider each in turn.

(a)r not distributed independently of X. We now have
plile(X,. —)?Xv,. —\7)+ plile(X,. —)?Xr,. —17)
n n

plimLZ(Xi —)?)2
n

plimb, = 5, +

GX
:ﬂ2+ 2r :

Ox

Since o, # 0, b, is an inconsistent estimator of f,. It follows that b, will
also be an inconsistent estimator of f:

b= +pX+v+7—bX.

Hence
plimb, = B, + B, X + plimv + plim 7 — X plim b,
= ﬂl +)?(152 _plimbz)

and this is different from g, if plim b, is not equal to S,.

(b)r is not distributed independently of v. This condition is not required
in the proof of the unbiasedness of either b, or b, and so both remain
unbiased.

A variable Y is determined by the model
Y=p+B2Z+v,

where Z is a variable and v is a disturbance term that satisfies the
regression model conditions. The explanatory variable is subject to
measurement error and is measured as X where

X=Z+w

and w is the measurement error, distributed independently of v. Describe
analytically the consequences of using OLS to fit this model if

(1) the expected value of w is not equal to zero (but w is distributed
independently of Z)

(2)w is not distributed independently of Z (but its expected value is zero).
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Answer:
Substituting for Z, we have
Y=ﬂ1+ﬂ2(X—w)+v=ﬁl+,b’2X+u

whereu =v-pfw.

z (X o= X u, - LT)
[r— 2 .
Z (X =X )
It is not possible to obtain a closed-form expression for the expectation
of the error term since both its numerator and its denominator depend

on w. Instead we take plims, having first divided the numerator and the
denominator of the error term by n so that they have limits:

by=p5,+

plim - 3" (x, - X, - 17)
n
plile(Xi —)?)2
n

cov(X,u) B, + cov([Z +w],[v— B,w])
var(X) - var(X)

plimb, = S, +

:ﬂz"'

cov(Z,v)— B, cov(Z,w) + cov(w,v) — 5, cov(w, w) )
var(X)

=p+

If E(w) is not equal to zero, b, is not affected. The first three terms in the
numerator are zero and

_ 2
plimb, = B, +%

X

remains inconsistent as in the standard case. If w is not distributed
independently of Z, then the second term in the numerator is not 0. b,
remains inconsistent, but the expression is now

_ﬂ Z(sz+ 62‘1’)
- 5 -

Ox

plim b, =, +

The OLS estimator of the intercept is affected in both cases, but like the
slope coefficient, it was inconsistent anyway.

by=Y-bX=p+BX+u—-bX=p+pX+v-Lw-bX-
Hence
plimb, = g, +(f, —plimb,)X + plimv — B,plimw .
In the standard case this would reduce to
plimb, = S, +(f, —plimb, )X
2
o, =
= ﬁl + ﬂz _2X .
Ox
If w has expected value y, , not equal to zero,
ol —
plim by =, + fB,| —- X —p,, |-
Ox
If w is not distributed independently of Z,

2
. Gw+0w v
plimb, = B, + B, 25— X.

X
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A researcher investigating the shadow economy using international cross-

sectional data for 25 countries hypothesises that consumer expenditure on
shadow goods and services, Q, is related to total consumer expenditure, Z,
by the relationship

Q=p+BZ+vV
where v is a disturbance term that satisfies the regression model

assumptions. Q is part of Z and any error in the estimation of Q affects the
estimate of Z by the same amount. Hence

Y= Q+w
and
Xl. = ZL. +w,

where Y, is the estimated value of Q, X is the estimated value of Z, and

w, is the measurement error affecting both variables in observation i. It is
assumed that the expected value of w is 0 and that v and w are distributed
independently of Z and of each other.

1. Derive an expression for the large-sample bias in the estimate of f,
when OLS is used to regress Y on X, and determine its sign if this is
possible. [Note: The standard expression for measurement error bias is
not valid in this case.]

2. In a Monte Carlo experiment based on the model above, the true
relationship between Q and Z is

Q=20+ 0.2Z

A sample of 25 observations is generated using the integers 1, 2,..., 25
as data for Z. The variance of Z is 52.0. A normally distributed random
variable with mean 0 and variance 25 is used to generate the values
of the measurement error in the dependent and explanatory variables.
The results with 10 samples are summarised in the table below.
Comment on the results, stating whether or not they support your
theoretical analysis.

Sample b, s.e.(b)) b, s.e.(b,) R?
1 -0.85 | 1.09 0.42 0.07 0.61
2 -0.37 | 1.45 0.36 0.10 0.36
3 -2.85 | 0.88 0.49 0.06 0.75
4 -2.21 | 1.59 0.54 0.10 0.57
5 -1.08 | 1.43 0.47 0.09 0.55
6 -1.32 1.39 0.51 0.08 0.64
7 -3.12 | 1.12 0.54 0.07 0.71
8 -0.64 | 0.95 0.45 0.06 0.74
9 0.57 | 0.89 0.38 0.05 0.69
10 -0.54 | 1.26 0.40 0.08 0.50

3. The figure below plots the points (Q, Z) and (Y, X) for the first sample,
with each (Q, Z) point linked to the corresponding (Y, X) point.
Comment on this graph, given your answers to parts 1 and 2.
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Answer:

(1) Substituting for Q and Z in the first equation,

Y-w)=p+pX-w) +v.
Hence

Y=8+BX+v+(-p,)w

=0 +5,X+u

whereu =v + (1 - B, )w. So
z (X o= X u, - LT)

> -xf
It is not possible to obtain a closed-form expression for the expectation
of the error term since both its numerator and its denominator depend

on w. Instead we take plims, having first divided the numerator and the
denominator of the error term by n so that they have limits:

by=p5,+

plile(X, - X fu, —LT)
n

plimb, =3, + ]
plim—Z(X, - )7)2
n
_ cov(X,u) _ COV([Z +wl,v+(1-4, )w])
=Pt Var(X ) =P+ Var(X )
B+ cov(Z,v)+ (1-5, )COV(Z,W)+ cov(w,v)+ (1 -5, )cov(w,w)
- Var(X) '

Since v and w are distributed independently of Z and of each other,
cov(Z,v) = cov(Z, w) = cov(w,v) = 0, and so

2
. o
pllm bz = :Bz +( _ﬂz)_~

2
Oy

f, clearly should be positive and less than 1, so the bias is positive.
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(2) o} =0, + 0., given that w is distributed independently of Z, and
hence o} =52+25=77. Thus

=0.46-

plimp, =02+ 1=0:2x25
77

The estimates of the slope coefficient do indeed appear to be
distributed around this number.

As a consequence of the slope coefficient being overestimated, the
intercept is underestimated, negative estimates being obtained in each
case despite the fact that the true value is positive. The standard errors
are invalid, given the severe problem of measurement error.

(3)The diagram shows how the measurement error causes the
observations to be displaced along 45° lines. Hence the slope of the
regression line will be a compromise between the true slope, $, and 1.
More specifically, plim b, is a weighted average of §, and 1, the weights
being proportional to the variances of Z and w:

2

. o
phmbz :ﬂz + (1_132)ﬁ
o, +0,

z

— z w
T2 2!32+ 2 2’
o, +o0, o, +0oy

8.14

It is possible that the ASVABC test score is a poor measure of the kind of
ability relevant for earnings. Accordingly, perform an OLS regression of
the logarithm of hourly earnings on years of schooling, work experience,
and ASVABC using your EAEF data set and an IV regression using SM, SF,
SIBLINGS, and LIBRARY as instruments for ASVABC. Perform a Durbin—
Wu-Hausman test to evaluate whether ASVABC appears to be subject to
measurement error.

Answer: The coefficient of ASVABC rises from 0.009 in the OLS
regression to 0.025 in the IV regression with SM used as an instrument,
the increase being consistent with the hypothesis of measurement error.
However ASVABC is not highly correlated with any of the instruments and
the standard error of the coefficient rises from 0.003 in the OLS regression
to 0.015 in the IV regression. The chi-squared statistic, 1.32, is low and
there is no evidence that the change in the estimate is anything other than
random.
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ivreg LGEARN S EXP MALE ETHBLACK ETHHISP

Instrumental variables

Source

Model
Residual

(ASVABC=SM SF SIBLINGS LIBRARY)

Number of obs =

F( 6o,
Prob > F
R-squared
Adj R-squared
Root MSE

533)

540
= 49.22
= 0.0000
= 0.3379
= 0.3304
= .51561

ASVABC

S

EXP

MALE
ETHBLACK
ETHHISP

[95% Conf.

Interval]

-.0040312
.0116542
.008207
.1550943
-.2780065
-.2150479
-.6761426

.0547341
.1373624
.0380498
.3605035
.3729615
.3065325
.5563371

Instrumented:
Instruments:

(2SLS) regression

SS df MS
72.3086993 6 12.0514499
141.701688 533 .265856826
214.010387 539 .397050811
Coef std. Err t
.0253515 .0149574 1.69
.0745083 .0319962 2.33
.0231284 .0075958 3.04
.2577989 .0522823 4.93
.0474775 .1656892 0.29
.0457423 .1327565 0.34
-.0599028 .3136999 -0.19

ASVABC

S EXP MALE ETHBLACK ETHHISP

estimates store IV1

reg LGEARN

Source

Model
Residual

S EXP ASVABC MALE ETHBLACK ETHHISP

Number of obs =

F( o,
Prob > F
R-squared
Adj R-squared
Root MSE

533)

540
52.66
0.0000
0.3722
0.3651
= .50207

EXP
ASVABC
MALE
ETHBLACK
ETHHISP

[95% Conf.

Interval]

.0869572
.019652
.0024498
.198997
-.2698892
-.247474
-.1153537

.1307298

.039407
.0146717
.3743738
.0290745
.1461829

.582199

estimates store

164

SS df MS
79.6526724 6 13.2754454
134.357715 533 .252078265
214.010387 539 .397050811

Coef std. Err t
.1088435 .0111413 9.77
.0295295 .0050282 5.87
.0085607 .0031108 2.75
.2866854 .0446382 6.42

-.1204073 .0760945 -1.58

-.0506455 .1001965 -0.51
.2334226 .1775463 1.31
OLS1
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hausman IV1 OLS1, constant

-—-——- Coefficients ----
| (b) (B) (b-B) sqrt (diag (V_b-V B))
| vl OLS1 Difference S.E.
_____________ +________________________________________________________________
ASVABC | .0253515 .0085607 .0167907 .0146303
S | .0745083 .1088435 -.0343352 .0299938
EXP | .0231284 .0295295 -.0064011 .0056933
MALE | .2577989 .2866854 -.0288865 .0272189
ETHBLACK | .0474775 -.1204073 .1678848 .147182
ETHHISP | .0457423 -.0506455 .0963878 .0870917
_cons | -.0599028 .2334226 -.2933254 .2586212

b = consistent under Ho and Ha; obtained from ivreg
B = inconsistent under Ha, efficient under Ho; obtained from regress

Test: Ho: difference in coefficients not systematic

chi2 (7) = (b-B)'[(V_b-V B)"(-1)] (b-B)
= 1.32
Prob>chi2 = 0.9880

cor ASVABC SM SF SIBLINGS LIBRARY

(obs=540)
| ASVABC SM SF SIBLINGS LIBRARY
_____________ +_____________________________________________
ASVABC | 1.0000
SM | 0.3931 1.0000
SF | 0.3854 0.6236 1.0000
SIBLINGS | -0.1999 -0.2688 -0.2664 1.0000
LIBRARY | 0.2663 0.3577 0.3256 -0.1504 1.0000

8.15

What is the difference between an instrumental variable and a proxy
variable (as described in Section 6.4)? When would you use one and when
would you use the other?

Answer: An instrumental variable estimator is used when one has data
on an explanatory variable in the regression model but OLS would give
inconsistent estimates because the explanatory variable is not distributed
independently of the disturbance term. The instrumental variable partially
replaces the original explanatory variable in the estimator and the
estimator is consistent.

A proxy variable is used when one has no data on an explanatory variable
in a regression model. The proxy variable is used as a straight substitute
for the original variable. The interpretation of the regression coefficients
will depend on the relationship between the proxy and the original
variable, and the properties of the other estimators in the model and the
tests and diagnostic statistics will depend on the degree of correlation
between the proxy and the original variable.
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Answers to the additional exercises
AS8.1

b =Y - b X
=B+, X +u—-bSX

Therefore plim 5" = g, — (plim b9 — A, )plim X
#p.
However bY =Y -b)V X

=B, +p, X+u—-b'X
:ﬂl _(bzw _ﬁz))?‘H/_’-

Therefore plimb =g, — (plimb)¥ — A, )plim X
=B

Consistency does not guarantee desirable small-sample properties. The
latter could be investigated with a Monte Carlo experiment.

A8.2

Both estimators will be consistent (actually, unbiased) but the IV estimator
will be less efficient than the OLS estimator, as can be seen from a
comparison of the expressions for the population variances.

A8.3

The regression model is
R=B,+BN+u+w.
Hence
SN, = N)u, +w, —it =)
S-N

It is not possible to obtain a closed-form expression for the expectation
since N and w are correlated. Hence, instead, we investigate the plim:

OLS
bz = 182 +

1 N, -N ui+w,.—17—W)
lZ(N,. _N)Z
n

cov(N,u)+ cov(N, w)
Var(N )

plim by = B, + plim

=ﬁz+

<p,

since cov(N ,u)=0 and COV(N ,w)<0.

A8.4

* Discuss whether it is true that the ordinary least squares estimator of 5, will
be biased downwards by an amount proportional to both o and f,,.

It is not true. Let the measured X be X’, where X’ = X — . Then
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Sei-xT  Tle-fFof Xl -X)
Thus the measurement error has no effect on the estimate of the slope
coefficient.

pors _ 20X N1 -T) 3 —a-¥-ally -F)_ ¥y, -X)r-7)

* Discuss whether it is true that the fitted values of Y from the regression
will be reduced by an amount ofs,.

The estimator of the intercept will be ¥ —b,X'=Y —b,(X —a) . Hence
the fitted value in observation i will be

Y—b,(X—a)+b,X,'=Y —b,(X —a)+b,(X, —a)=Y —b, X +b, X,
which is what it would be in the absence of the measurement error.

* Discuss whether it is true that R? will be reduced by an amount
proportional to a.

Since R? is the variance of the fitted values of Y divided by the variance
of the actual values, it will be unaffected.

A8.5
* Using ordinary least squares with MRW, as the explanatory variable.
2 2
. o, o
phmb;)LS:ﬂZ_ﬂZ 2 2 :ﬂ2 2 o 2
Ory t0O, Ory +0O,

(standard theory). Hence the bias is towards zero.

b =M —b2"S MRW

41 B, WVm_b;LS[m wj

=B, +(B, - b2 )R+ 7w - bW
and so

2 2
. o — o
pllmblOLS :ﬂl +ﬁ2 2 2 RW—ﬁZ 2 e 2 ILIW

Orw TO, Orw T0O,,

where £ is the population mean of w. The first component of the bias
will be positive and the second negative, given that _ is negative. It is
not possible without further information to predict the direction of the
bias. The standard errors and t statistics will be invalidated if there is
substantial measurement error in MRW.

* Using OLS, with RGDP, as a proxy for RW.

Suppose RW = a, + a,RGDP. Then the migration equation may be
rewritten

M, =B, + Ba, + a,RGDP) + u,
= (8, + a,,) + a,B,RGDP_+ u..

In general it would not be possible to derive estimates of either §, or
p,- Likewise one has no information on the standard errors of either
b, or b,. Nevertheless the t statistic for the slope coefficient would be
approximately equal to the t statistic in a regression of M on RW, if
the proxy is a good one. R? will be approximately the same as it would
have been in a regression of M on RW, if the proxy is a good one. One
might hypothesise that RGDP might be approximately equal to RW, in
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A8.6
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which case a; = 0 and a, =1 and one can effectively fit the original
model.

Using instrumental variables, with RGDP, as an instrument for MRW..

The IV estimator of /3, is consistent:

v _ Z(Mi - A_/[_XRGDP; - RGDP) s >, - Byw, - Mzw)(RGDP,. —RGDP)
* S (Mrw, - MrW |RGDP, -RGDP) "* S (MRW, - MRW |RGDP, - RGDP)

Hence plim b4," = f, if u and w are distributed independently of RGDP.
Likewise the IV estimator of b, is consistent:

b =M —b) MRW =, + B, RW+u —b) RW—b)w .
Hence
plimbY = B, + B, RW+plimu — plim b}’ RW — plim b} plim w
=4

since plim = b," = §, and plimu = plimw = 0. The standard errors
will be higher, and hence t statistics lower, than they would have been
if it had been possible to run the original regression using OLS.

Suppose RGDP = 0 + ¢MRW. Then

S (M, - M)RGDP, - RGDP) S (M, = M JgMRW, - MR )

= _ bOLS

~ S (MrW, ~MRW\RGDP, ~RGDP) 3. (MRW, - MRW \gMRW, — gMRW )~

The instrument is no longer valid because it is correlated with the
measurement error.
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Chapter 9: Simultaneous equations
estimation

Overview

Until this point the analysis has been confined to the fitting of a single
regression equation on its own. In practice, most economic relationships
interact with others in a system of simultaneous equations, and when

this is the case the application of ordinary least squares (OLS) to a single
relationship in isolation yields biased estimates. Having defined what is
meant by an endogenous variable, an exogenous variable, a structural
equation, and a reduced form equation, the first objective of this chapter is
to demonstrate this. The second is to show how it may be possible to use
instrumental variables (IV) estimation, with exogenous variables acting
as instruments for endogenous ones, to obtain consistent estimates of

the coefficients of a relationship. The conditions for exact identification,
underidentification, and overidentification are discussed. In the case of
overidentification, it is shown how two-stage least squares can be used to
obtain estimates that are more efficient than those obtained with simple
IV estimation. The chapter concludes with a discussion of the problem of
unobserved heterogeneity and the use of the Durbin-Wu-Hausman test in
the context of simultaneous equations estimation.

Learning outcomes

After working through the corresponding chapter in the textbook, studying
the corresponding slideshows, and doing the starred exercises in the
textbook and the additional exercises in this guide, you should be able to:

* explain what is meant by

o an endogenous variable
© an exogenous variable
° a structural equation

o areduced form equation

* explain why the application of OLS to a single equation in isolation is
likely to yield inconsistent estimates of the coefficients if the equation is
part of a simultaneous equations model

* derive an expression for the large-sample bias in the slope coefficient
when OLS is used to fit a simple regression equation in a simultaneous
equations model

* explain how consistent estimates of the coefficients of an equation in
a simultaneous equations model might in principle be obtained using
instrumental variables

* explain what is meant by exact identification, underidentification, and
overidentification

* explain the principles underlying the use of two-stage least squares,
and the reason why it is more efficient than simple IV estimation

* explain what is meant by the problem of unobserved heterogeneity
» perform the Durbin-Wu-Hausman test in the context of simultaneous

equations estimation.
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Further material

Box: Good governance and economic development

In development economics it has long been observed that there is a positive association
between economic performance, ¥, and good governance, R, especially in developing
countries. However, quantification of the relationship is made problematic by the fact that
it is unlikely that causality is unidirectional. While good governance may contribute to
economic performance, better performing countries may also develop better institutions.
Hence in its simplest form one has a simultaneous equations model

Y= +pR+u @)
R=a +aY+v 2

where u and v are disturbance terms. Assuming that the latter are distributed
independently, an OLS regression of the first equation will lead to an upwards biased
estimate of £, at least in large samples. The proof is left as an exercise (Exercise A9.11).
Thus to fit the first equation, one needs an instrument for R. Obviously a better-specified
model would have additional explanatory variables in both equations, but there is a
problem. In general any variable that influences R is also likely to influence ¥ and is
therefore unavailable as an instrument.

In a study of 64 ex-colonial countries that is surely destined to become a classic, ‘The
colonial origins of comparative development: an empirical investigation’, American
Economic Review 91(5): 1369—1401, December 2001, Acemoglu, Johnson, and Robinson
(henceforward AJR) argue that settler mortality rates provide a suitable instrument. Put
simply, the thesis is that where mortality rates were low, European colonisers founded
neo-European settlements with European institutions and good governance. Such
settlements eventually prospered. Examples are the United States, Canada, Australia, and
New Zealand. Where mortality rates were high, on account of malaria, yellow fever and
other diseases for which Europeans had little or no immunity, settlements were not viable.
In such countries the main objective of the coloniser was economic exploitation, especially
of mineral wealth. Institutional development was not a consideration. Post-independence
regimes have often been as predatory as their predecessors, indigenous rulers taking the
place of the former colonisers. Think of the Belgian Congo, first exploited by King Leopold
and more recently by Mobutu.

The study is valuable as an example of IV estimation in that it places minimal technical
demands on the reader. There is nothing that would not be easily comprehensible to
students in an introductory econometrics course that covers IV. Nevertheless, it gives
careful attention to the important technical issues. In particular, it discusses at length
the validity of the exclusion restriction. To use mortality as an instrument for R in the
first equation, one must be sure that it is not a determinant of ¥ in its own right, either
directly or indirectly (other than through R).

The conclusion of the study is surprising. According to theory (see Exercise A9.10), the
OLS estimate of /3, will be biased upwards by the endogeneity of R. The objective of the
study was to demonstrate that the estimate remains positive and significant even when
the upward bias has been removed by using IV. However, the IV estimate turns out to
be higher than the OLS estimate. In fact it is nearly twice as large. AJR suggest that this
is attributable to measurement error in the measurement of R. This would cause the
OLS estimate to be biased downwards, and the bias would be removed (asymptotically)
by the use of IV. AJR conclude that the downward bias in the OLS estimate caused by
measurement error is greater than the upward bias caused by endogeneity.
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Additional exercises

A9.1

In a certain agricultural country, aggregate consumption, C, is simply equal
to 2,000 plus a random quantity z that depends upon the weather:

C = 2000 + z.

z has mean zero and standard deviation 100. Aggregate investment, I, is
subject to a four-year trade cycle, starting at 200, rising to 300 at the top
of the cycle, and falling to 200 in the next year and to 100 at the bottom
of the cycle, rising to 200 again the year after that, and so on. Aggregate
income, Y, is the sum of C and I:

Y=C+1

Data on C and I, and hence Y, are given in the table. z was generated by
taking normally distributed random numbers with mean zero and unit
standard deviation and multiplying them by 100.

t C 1 Y t C I Y
1 1,813 | 200 | 2,013 | 11 | 1,981 | 200 | 2,181
2 1,803 | 300 | 2,193 | 12 | 2,211 | 100 | 2,311
3 2,119 | 200 | 2,319 | 13 | 2,127 | 200 | 2,327
4 1,967 | 100 | 2,067 | 14 | 1,953 | 300 | 2,253
5 1,997 | 200 | 2,197 | 15 | 2,141 | 200 | 2,341
6 | 2050 | 300 | 2350 | 16 | 1,836 | 100 | 1,936
7 | 2035 | 200 | 2235 | 17 | 2103 | 200 | 2,303
8 | 2088 | 100 | 2188 | 18 | 2058 | 300 | 2,358
9 2023 | 200 | 2223 | 19 | 2,119 | 200 | 2,319
10 | 2,144 | 300 | 2,444 | 20 | 2,032 | 100 | 2,132

An orthodox economist regresses C on Y, using the data in the table, and
obtains (standard errors in parentheses):

C = 512 +0.68Y R? = 0.67
(252) (0.11) F = 36.49

Explain why this result was obtained, despite the fact that C does not
depend on Y at all. In particular, comment on the t and F statistics.

A9.2

A small macroeconomic model of a closed economy consists of a
consumption function, an investment function, and an income identity:

Ctzﬂl +ﬁ2Yt+ut

I =a +o5r +v,

Y=C+I+G,
where C, is aggregate consumer expenditure in year t, I, is aggregate
investment, G, is aggregate current public expenditure, Y, is aggregate
output, and r is the rate of interest. State which variables in the model are

endogenous and exogenous, and explain how you would fit the equations,
if you could.
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A9.3

A9.4

A9.5

The model is now expanded to include a demand for money equation and
an equilibrium condition for the money market:

d _
M, —61+52Y[+63rt+wt

M =M,
where M ¢ is the demand for money in year t and M, is the supply of
money, assumed exogenous. State which variables are endogenous and
exogenous in the expanded model and explain how you would fit the
equations, including those in Exercise A9.2, if you could.

Table 9.2 reports a simulation comparing OLS and IV parameter estimates
and standard errors for 10 samples. The reported R? (not shown in that
table) for the OLS and IV regressions are shown in the table below.

Sample OLS R? IVR?
1 0.59 0.16
2 0.69 0.52
3 0.78 0.73
4 0.61 0.37
5 0.40 0.06
6 0.72 0.57
7 0.60 0.33
8 0.58 0.44
9 0.69 0.43
10 0.39 0.13

We know that, for large samples, the IV estimator is preferable to the OLS
estimator because it is consistent, while the OLS estimator is inconsistent.
However, do the smaller OLS standard errors in Table 9.2 and the

larger OLS values of R? in the present table indicate that OLS is actually
preferable for small samples (n = 20 in the simulation)?

A researcher investigating the relationship between aggregate wages, W,
aggregate profits, P, and aggregate income, Y, postulates the following
model:

W=p+pBY+u (D)
P=a, +a,Y +a;K +v (2)
Y=w+P 3

where K is aggregate stock of capital and u and v are disturbance terms
that satisfy the usual regression model assumptions and may be assumed
to be distributed independently of each other. The third equation is an
identity, all forms of income being classified either as wages or as profits.
The researcher intends to fit the model using data from a sample of
industrialised countries, with the variables measured on a per capita basis
in a common currency. K may be assumed to be exogenous.
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* Explain why ordinary least squares (OLS) would yield inconsistent
estimates if it were used to fit (1) and derive the large-sample bias in
the slope coefficient.

* Explain what can be inferred about the finite-sample properties of OLS
if used to fit (1).

* Demonstrate mathematically how one might obtain a consistent
estimate of f, in (1).

* Explain why (2) is not identified (underidentified).
* Explain whether (3) is identified.

* At a seminar, one of the participants asserts that it is possible to obtain
an estimate of a, even though equation (2) is underidentified. Any
change in income that is not a change in wages must be a change in
profits, by definition, and so one can estimate «, as (1 - b,), where b,
is the consistent estimate of f, found in the third part of this question.
The researcher does not think that this is right but is confused and says
that he will look into it after the seminar. What should he have said?

A9.6

A researcher has data on e, the annual average rate of growth of
employment, x the annual average rate of growth of output, and p, the
annual average rate of growth of productivity, for a sample of 25 countries,
the average rates being calculated for the period 1995-2005 and
expressed as percentages. The researcher hypothesises that the variables
are related by the following model:

e=p +p,x+u @8]
x=e+p. 2)

The second equation is an identity because p is defined as the difference
between x and e. The researcher believes that p is exogenous. The
correlation coefficient for x and p is 0.79.

* Explain why the OLS estimator of £, would be inconsistent, if the
researcher’s model is correctly specified. Derive analytically the large-
sample bias, and state whether it is possible to determine its sign.

* Explain how the researcher might use p to construct an IV estimator of
f,, that is consistent if p is exogenous. Demonstrate analytically that the
estimator is consistent.

* The OLS and IV regressions are summarised below (standard errors in
parentheses). Comment on them, making use of your answers to the
first two parts of this question.

OLS ¢ = -0.52+ 0.48x 3)
(0.27)  (0.08)
v é = 037+ 0.17x (€

(0.42) (0.14)

* A second researcher hypothesises that both x and p are exogenous and
that equation (2) should be written

e=Xx-p. (5)

On the assumption that this is correct, explain why the slope
coefficients in (3) and (4) are both biased and determine the direction
of the bias in each case.

* Explain what would be the result of fitting (5), regressing e on x and p.
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A9.7

A researcher has data from the World Bank World Development Report
2000 on E average fertility (average number of children born to each
woman during her life), M, under-five mortality (number of children, per
100, dying before reaching the age of 5), and S, average years of female
schooling, for a sample of 54 countries. She hypothesises that fertility is
inversely related to schooling and positively related to mortality, and that
mortality is inversely related to schooling:

F =B +BS+BM+u ey
M=o +aS+vV 2)

where u and v are disturbance terms that may be assumed to be distributed
independently of each other. S may be assumed to be exogenous.

* Derive the reduced form equations for F and M.
* Explain what would be the most appropriate method to fit equation (1).
* Explain what would be the most appropriate method to fit equation (2).

The researcher decides to fit (1) using ordinary least squares, and
she decides also to perform a simple regression of F on S, again using
ordinary least squares, with the following results (standard errors in

parentheses):

F = 4.08-0.17S + 0.015M R? =0.83 3)
(0.61)(0.04) (0.003)

F = 6.99-0.365 R*=0.71 @)

(0.39)(0.03)
* Explain why the coefficient of S differs in the two equations.
* Explain whether one may validly perform t tests on the coefficients of (4).

At a seminar someone hypothesises that female schooling may be
negatively influenced by fertility, especially in the poorer developing
countries in the sample, and this would affect (4). To investigate this,
the researcher adds the following equation to the model:

S=0,+0F+5G+w (5)

where G is GNP per capita and w is a disturbance term. She regresses F
on S (1) instrumenting for S with G (column (b) in the output below),
and (2) using ordinary least squares, as in equation (4) (column (B)

in the output below). The correlation between S and G was 0.70. She
performs a Durbin-Wu-Hausman test to compare the coefficients.

-—-—— Coefficients ----
| (b) (B) (b-B) sqrt (diag (V_b-V_B))
| v OLS Difference S.E.
_____________ +_____________________________________________________________
S | -.2965323 -.3637397 .0672074 .0347484
cons | 6.162605 6.992907 -.8303019 .4194891
b = consistent under Ho and Ha; obtained from ivreg

B = inconsistent under Ha, efficient under Ho; obtained from regress

Test: Ho: difference in coefficients not systematic
chi2( 1) = (b-B)'[(V_b-V_B)"(-1)] (b-B)
= 3.31
Prob>chi2 = 0.1158

* Discuss whether G is likely to be a valid instrument.

* What should the researcher’s conclusions be with regard to the test?
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Aggregate demand Q, for a certain commodity is determined by its price,
P, aggregate income, Y, and population, POP,

Q,=p, +BP+pBY+ BPOP+ u,
and aggregate supply is given by
Q,=a, +aP +u
where v, and u, are independently distributed disturbance terms.

¢ Demonstrate that the estimate of a, will be inconsistent if ordinary
least squares (OLS) is used to fit the supply equation, showing that the
large-sample bias is likely to be negative.

¢ Demonstrate that a consistent estimate of «, will be obtained if the
supply equation is fitted using instrumental variables (IV), using Y as
an instrument.

The model is used for a Monte Carlo experiment, with a, set equal to 0.2
and suitable values chosen for the other parameters. The table shows the
estimates of a, obtained in 10 samples using OLS, using IV with Y as an
instrument, using IV with POP as an instrument, and using two-stage least
squares (TSLS) with Y and POP. s.e. is standard error. The correlation
between P and Y averaged 0.50 across the samples. The correlation
between P and POP averaged 0.63 across the samples. Discuss the results
obtained.

OLS IVwithY IV with POP TSLS

coef. s.e. coef. s.e. coef. s.e. coef. s.e.
1 0.15 0.03 0.22 0.05 0.21 0.05 0.21 0.03
2 0.08 0.04 0.24 0.11 0.19 0.08 0.21 0.06
3 0.11 0.02 0.18 0.06 0.19 0.05 0.19 0.04
4 0.16 0.02 0.20 0.04 0.19 0.03 0.19 0.02
5 0.15 0.02 0.27 0.09 0.18 0.04 0.20 0.03
6 0.14 0.03 024 0.08 0.18 0.05 020 0.04
7 0.20 0.03 0.22 0.05 0.26 0.04 0.25 0.03
8 0.15 0.03 0.21 0.06 0.24 0.05 0.23 0.04
9 0.11 0.02 0.17 0.05 0.14 0.03 0.15 0.03
10 0.17 0.03 0.16 0.05 0.24 0.05 0.20 0.03

A researcher has the following data for a sample of 1,000 manufacturing
enterprises on the following variables, each measured as an annual
average for the period 2001-2005: G, average annual percentage rate

of growth of sales; R, expenditure on research and development; and A,
expenditure on advertising. R and A are measured as a proportion of sales
revenue. He hypothesises the following model:

G=p,+ PR+ B, A+u, (€Y
R=a, +a,G+u, (2)

where u, and u, are disturbance terms distributed independently of each
other.

A second researcher believes that expenditure on quality control, Q,
measured as a proportion of sales revenue, also influences the growth of
sales, and hence that the first equation should be written

G=p +B,R+ A+ B,0+ug. 1%

175



20 Elements of econometrics

176

A and Q may be assumed to be exogenous variables.
* Derive the reduced form equation for G for the first researcher.

* Explain why ordinary least squares (OLS) would be an inconsistent
estimator of the parameters of equation (2).

* The first researcher uses instrumental variables (IV) to estimate a, in
(2). Explain the procedure and demonstrate that the IV estimator of a,
is consistent.

* The second researcher uses two stage least squares (TSLS) to estimate
a, in (2). Explain the procedure and demonstrate that the TSLS
estimator is consistent.

* Explain why the TSLS estimator used by the second researcher ought
to produce ‘better’ results than the IV estimator used by the first
researcher, if the growth equation is given by (1*). Be specific about
what you mean by ‘better’.

* Suppose that the first researcher is correct and the growth equation
is actually given by (1), not (1*). Compare the properties of the two
estimators in this case.

* Suppose that the second researcher is correct and the model is given
by (1*) and (2), but A is not exogenous after all. Suppose that A is
influenced by G:

A=y, +y,G+u, 3

where u, is a disturbance term distributed independently of u, and u,.
How would this affect the properties of the IV estimator of «, used by
the first researcher?

A9.10

A researcher has data for 100 workers in a large organisation on hourly
earnings, EARNINGS, skill level of the worker, SKILL, and a measure of the
intelligence of the worker, IQ. She hypothesises that LGEARN, the natural
logarithm of EARNINGS, depends on SKILL, and that SKILL depends on IQ.

LGEARN =, + B,SKILL + u 1)
SKILL =a +alQ+v (2)

where u and v are disturbance terms. The researcher is not sure whether u
and v are distributed independently of each other.

* State, with a brief explanation, whether each variable is endogenous or
exogenous, and derive the reduced form equations for the endogenous
variables.

* Explain why the researcher could use ordinary least squares (OLS) to
fit equation (1) if u and v are distributed independently of each other.

* Show that the OLS estimator of f, is inconsistent if u and v are positively
correlated and determine the direction of the large-sample bias.

* Demonstrate mathematically how the researcher could use instrumental
variables (IV) estimation to obtain a consistent estimate of f3,.

* Explain the advantages and disadvantages of using IV, rather than OLS,
to estimate f,, given that the researcher is not sure whether u and v are
distributed independently of each other.

* Describe in general terms a test that might help the researcher decide
whether to use OLS or IV. What are the limitations of the test?

* Explain whether it is possible for the researcher to fit equation (2) and
obtain consistent estimates.
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A9.11

This exercise relates to the box in the Further material section.

In general in an introductory econometrics course, issues and problems are
treated separately, one at a time. In practice in empirical work, it is common
for multiple problems to be encountered simultaneously. When this is the
case, the one-at-a-time analysis may no longer be valid. In the case of the
AJR study, both endogeneity and measurement error seem to be issues. This
exercise looks at both together, within the context of that model.

Let S be the correct good governance variable and let R be the measured
variable, with measurement error w. Thus the model may be written

Y=0+B,S+u
S=a,+a,Y+v
R=S+w

It may be assumed that w has zero expectation and constant variance o’
across observations, and that it is distributed independently of S and the
disturbance terms in the equations in the model. Investigate the likely
direction of the bias in the OLS estimator of f, in large samples.

Answers to the starred exercises in the textbook

9.1

A simple macroeconomic model consists of a consumption function and an
income identity:

C=8,+phY+u
Y=C+I

where C is aggregate consumption, I is aggregate investment, Y is
aggregate income, and u is a disturbance term. On the assumption that I is
exogenous, derive the reduced form equations for C and Y.

Answer:

Substituting for Y in the first equation,
C=p,+p4C+D +u

Hence
C= b + Pl + 2

-5, 1=-5, 1-p4,

and

B I u

Y=C+1I= + + .
l_ﬁz l_ﬁz l_ﬁz

9.2

It is common to write an earnings function with the logarithm of the
hourly wage as the dependent variable and characteristics such as
years of schooling, cognitive ability, years of work experience, etc as
the explanatory variables. Explain whether such an equation should be
regarded as a reduced form equation or a structural equation.

Answer:

In the conventional model of the labour market, the wage rate and
the quantity of labour employed are both endogenous variables jointly
determined by the interaction of demand and supply. According to this
model, the wage equation is a reduced form equation.
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9.3
In the simple macroeconomic model
C=p+pY+u
Y=C+]1,

described in Exercise 9.1, demonstrate that OLS would yield inconsistent
results if used to fit the consumption function, and investigate the
direction of the bias in the slope coefficient.

Answer:

The first step in the analysis of the OLS slope coefficient is to break it
down into the true value and error component in the usual way:

bOLSZZ(Yi_?XCi_g)_ﬂ +Z(Yz_7 “i_ﬁ).
DY (2 ) Y ()

From the reduced form equation in Exercise 9.1 we see that Y depends on
u and hence we will not be able to obtain a closed-form expression for the
expectation of the error term. Instead we take plims, having first divided
the numerator and the denominator of the error term by n so that they
will possess limits as n goes to infinity.

.1 = _
plimbOLs=ﬁ +pllng(Yl_Y ui_u)zﬂ +COV(Y,u)
2 2 2

plimiz (Yl. -Y )2 var(Y) -

We next substitute for Y since it is an endogenous variable. We have two
choices: we could substitute from the structural equation, or we could
substitute from the reduced form. If we substituted from the structural
equation, in this case the income identity, we would introduce another
endogenous variable, C, and we would find ourselves going round in
circles. So we must choose the reduced form.

covﬂ b + ! PR },u}
1_152 l_ﬁz l_ﬁz
Var( A + ! 0 j
l_ﬁz l_ﬂz l_ﬂz

(COV(I , u) +cov(u, u))

plim bzOLS =4, +

=p + ? 2
(1_1%] Var(l + u)

~ o cov([ ,u)+ var(u) .
=B, +(1 ﬂz’var(1)+ var(u )+ 2 cov(l,u)

On the assumption that I is exogenous, it is distributed independently of u
and cov(l, u) = 0. So

2
o

plimby"s = B, +(1- B,)———
o, +0

u
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since the sample variances tend to the population variances as the
sample becomes large. Since the variances are positive, the sign of the
bias depends on the sign of (1 —4,). It is reasonable to assume that the
marginal propensity to consume is positive and less than 1, in which
case this term will be positive and the large-sample bias in " will be
upwards.

The OLS estimate of the intercept is also inconsistent:

b =C —b2SY = B, + B,Y +i —bOY .

Hence

plim 5% = B, + (B, — plim 52" )plim ¥
2
o, .=
:ﬁl_(l_ﬂz) 2 zplle_
o; +0,
This is evidently biased downwards, as one might expect, given that the
slope coefficient was biased upwards.

The table gives consumption per capita, C, gross fixed capital formation
per capita, I, and gross domestic product per capita, Y, all measured in
USS$, for 33 countries in 1998. The output from an OLS regression of
ConY, and an IV regression using I as an instrument for Y, are shown.
(C, I, and Y are designated cpop, gfcfpop, and gdppop, respectively, in the
output.) Comment on the differences in the results.

C I Y C I Y
Australia 15024 4749 19461 | South Korea 4596 1448 6829
Austria 19813 6787 26104 | Luxembourg 26400 9767 42650
Belgium 18367 5174 24522 | Malaysia 1683 873 3268
Canada 15786 4017 20085 | Mexico 3359 1056 4328
China-PR 446 293 768 | Netherlands 17558 4865 24086
China-HK 17067 7262 24452 | New Zealand 11236 2658 13992
Denmark 25199 6947 32769 | Norway 23415 9221 32933
Finland 17991 4741 24952 | Pakistan 389 79 463
France 19178 4622 24587 | Philippines 760 176 868
Germany 20058 5716 26219 | Portugal 8579 2644 9976
Greece 9991 2460 11551 | Spain 11255 3415 14052
Iceland 25294 6706 30622 | Sweden 20687 4487 26866
India 291 84 385 Switzerland 27648 7815 36864
Indonesia 351 216 613 Thailand 1226 479 1997
Ireland 13045 4791 20132 | UK 19743 4316 23844
Italy 16134 4075 20580 | USA 26387 6540 32377
Japan 21478 7923 30124
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Number of obs = 33
F( 1, 31) = 1331.29
Prob > F = 0.0000
R-squared = 0.9772
Adj R-squared = 0.9765
Root MSE = 1389.0
[95% Conf. Intervall]
.6894845 .7711287
-525.397 1284.371
Number of obs = 33
F( 1, 31) = 1192.18
Prob > F = 0.0000
R-squared = 0.9770
Adj R-squared = 0.9762
Root MSE = 1396.9
[95% Conf. Interval]
.6759566 .7608252
-330.6982 1532.59

reg cpop gdppop
Source | SS df MS
_________ +______________________________
Model | 2.5686e+09 1 2.5686e+09
Residual | 59810749.2 31 1929379.01
_________ +______________________________
Total | 2.6284e+09 32 82136829.4
cpop | Coef Std. Err t P>|t]
_________ +____________________________________________________________________
gdppop | .7303066 .0200156 36.487 0.000
cons | 379.4871 443.6764 0.855 0.399
ivreg cpop (gdppop=gfcfpop)
Instrumental variables (2SLS) regression
Source | SS df MS
_________ +______________________________
Model | 2.5679e+09 1 2.5679e+09
Residual | 60494538.1 31 1951436.71
_________ +______________________________
Total | 2.6284e+09 32 82136829.4
cpop | Coef Std. Err t P>t |
_________ +____________________________________________________________________
gdppop | .7183909 .0208061 34.528 0.000
cons | 600.946 456.7973 1.316 0.198
Instrumented: gdppop
Instruments: gfcfpop
Answer:

Assuming the simple macroeconomic model

C=p+pY+u
Y=C+]1,

where C is consumption per capita, I is investment per capita, and Y is
income per capita, and I is assumed exogenous, the OLS estimator of the
marginal propensity to consume will be biased upwards. As was shown in

Exercise 9.3,

2

O-M

plimby"s = B, +(1- B,)——— .
GI +O'u

Hence the IV estimate should be expected to be lower, but only by a small
amount, given the data. With b, estimated at 0.72, (1 - b,) is 0.28. ol

is estimated at 1.95 million and o; is 7.74 million. Hence, on the basis of
these estimates, the bias should be about 0.06. The actual difference in the
OLS and IV estimates is smaller still. However, the actual difference would
depend on the purely random sampling error as well as the bias, and it is
possible that in this case the sampling error happens to have offset the bias

to some extent.
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Consider the price inflation/wage inflation model given by equations (9.1)
and (9.2):

p = IBI + IBZ w+ up

w=a,+a,p+aU+u,.

We have seen that the first equation is exactly identified, U being used as
an instrument for w. Suppose that TSLS is applied to this model, despite
the fact that it is exactly identified, rather than overidentified. How will
the results differ?

Answer:

If we fit the reduced form, we obtain a fitted equation
w=h, +h,U.

The TSLS estimator is then given by

pTSLS _ Z(ﬁ}i _%pr _l_j) Z(hl + U, —h _hZUXpi _ﬁ)
2

) Z("A‘)t _@Xwi _W): Z(hl +h2Ui _hl _hZUXWi _W)
> mv,-T)p,~p)
th(Ui —UXWI- —w)

where p)Y is the IV estimator using U. Hence the estimator is exactly the
same. [Note: This is a special case of Exercise 8.16 in the textbook.]

IV
_b2

Answers to the additional exercises

A9.1

The positive coefficient of Y, in the regression is attributable wholly to
simultaneous equations bias. The three figures show this graphically.

The first diagram shows what the time series for C, I,, and Y, would look
like if there were no random component of consumption. The series for C,
is constant at 2,000. That for I, is a wave form, and that for Y, is the same
wave form shifted upward by 2,000. The second diagram shows the effect
of adding the random component to consumption. Y, still has a wave form,
but there is a clear correlation between it and C,.

2,500
Z/\-\/\-\/n/-\-\/n/\-\/n/‘\\
2,000
C
1,500
1,000
500
! .6 a o Ps) )
e a o o o o o ) b S
o o T o © ®
0 T T T T
0 5 10 15 20
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In the third diagram, C, is plotted against Y, with and without the random
component. The three large circles represent the data when there is no
random component. One circle represents the five data points [C = 2,000,
Y = 2,100]; the middle circle represents the ten data points [C = 2,000,
Y = 2,200]; and the other circle represents the five data points [C =
2,000, Y = 2,300]. A regression line based on these three points would

be horizontal (the dashed line). The solid circles represent the 20 data
points when the random component is affecting C, and Y, and the solid
line is the regression line for these points. Note that these 20 data points
fall into three groups: five which lie on a 45 degree line through the left
large circle, 10 which lie on the 45 degree line through the middle circle
(actually, you can only see nine), and five on the 45 degree line through
the right circle.

If OLS is used to fit the equation,

S -7)c,-C) S, -7)[2000+2]-[2,000+2]) (v, -¥)z -2)

OLS __ _ _
bO™s = = =

Yy-r) Y(y-r) S(v-v)

Note that at this stage we have broken down the slope coefficient

into its true value plus an error term. The true value does not appear
explicitly because it is zero, so we only have the error term. We cannot
take expectations because both the numerator and the denominator are
functions of z:
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Y=C+1=2000+1+z

z is a component of C and hence of Y. As a second-best procedure, we
investigate the large-sample properties of the estimator by taking plims.
We must first divide the numerator and denominator by n so that they
tend to finite limits:

o1 = _
plim b5 = phm;Z(Yi _ YXZi —2) _ cov(Y, z)
OLS = -

plim % Z(Yl - 17)2 var(Y)

Substituting for Y from its reduced form equation,

i BOLS — cov([2,000+ 7 + 2z} z) cov(l,z)+ var(z) o
P P Var(Z,OOO +1+ z) - var([)+ Var(z)+ ZCOV(I, z) N o} +o!

z

cov(l, z) = 0 because I is distributed independently of z. ¢’ is equal to
10,000 (since we are told that ¢, is equal to 100). Over a four-year cycle,
the mean value of I is 200 and hence its population variance is given by

o} :%[0+ 100* + 0+(—100)2]:5,000,

Hence

10,000

lim 5O = -0,
PG = 15,000

The actual coefficient in the 20-observation sample, 0.68, is very close to
this (probably atypically close for such a model).

The estimator of the intercept, whose true value is 2,000, is biased
downwards because bY"* is biased upwards. The standard errors of the
coefficients are invalid because the regression model assumption B.7 is
violated, and hence t tests would be invalid.

By virtue of the fact that Y = C + I, C is being regressed against a variable
which is largely composed of itself. Hence the high R? is inevitable,
despite the fact that there is no behavioural relationship between C and

Y. Mathematically, R? is equal to the square of the sample correlation
between the actual and fitted values of C. Since the fitted values of C are
a linear function of the values of Y, R? is equal to the square of the sample
correlation between C and Y. The population correlation coefficient is

given by
_cov(CY) _ cov([2,000+2}[2,000+17 +z])
Pex Jvar(C)var(v)  fvar([2,000 + z])var([2,000 + 1 + =])
var(z) o’

B Jvar(z)var([7 +z]) B \/o-zz (0-12 +o-zz)
Hence in large samples

, 10,000°

= = 0.67.
10,000[10,000 +5,000]

R? in the regression is exactly equal to this, the closeness probably being
something of a coincidence.

Since regression model assumption B.7 is violated, the F statistic cannot be
used to perform an F test of goodness of fit.
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A9.2

C, I, and Y, are endogenous, the first two being the dependent variables of

the behavioural relationships and the third being defined by an identity. G,
and r, are exogenous.

Either I or r, could be used as an instrument for Y, in the consumption
function. If it can be assumed that u, and v, are distributed independently,
I, can also be regarded as exogenous as far as the determination of C,

and Y, are concerned. It would be preferable to r, since it is more highly
correlated with Y. One’s first thought, then, would be to use TSLS, with
the first stage fitting the equation

Y, = + + + .
1_ﬁ2 1_:32 1_ﬁ2 1_ﬁ2
Note, however, that the equation implies the restriction that the

coefficients of I, and G, are equal. Hence all one has to do is to define a
variable

Z =1 +G,
and use Z, as an instrument for Y, in the consumption function.

The investment function would be fitted using OLS since r, is exogenous.
The income identity does not need to be fitted.

A9.3
M is endogenous because it is determined by the second of the two
new relationships. The addition of the first of these relationships makes r,
endogenous. To see this, substituting for C, and I, in the income identity,

using the consumption function and the investment function, one obtains

v :(a1+,6’1)+a2rt+ut+vt

' l_ﬂz

This is usually known as the IS curve. Substituting for M/ in the first of
the two new relationships, using the second, one has

M, =6, +0,Y +dr +w.
This is usually known as the LM curve. The equilibrium values of both Y,
and r, are determined by the intersection of these two curves and hence r,

is endogenous as well as Y. G, remains exogenous, as before, and M, is
also exogenous.

The consumption and investment functions are overidentified and one
would use TSLS to fit them, the exogenous variables being government
expenditure and the supply of money. The demand for money equation
is exactly identified, two of the explanatory variables, r, and Y, being
endogenous, and the two exogenous variables being available to act as
instruments for them.

A9.4

The OLS standard errors are invalid so a comparison is illegitimate. They
are not of any great interest anyway because the OLS estimator is biased.
Figure 9.3 in the textbook shows that the variance of the OLS estimator
is smaller than that of the IV estimator, but, using a criterion such as

the mean square error, there is no doubt that the IV estimator should

be preferred. The comment about R? is irrelevant. OLS has a better fit
but we have had to abandon the least squares principle because it yields
inconsistent estimates.
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* Explain why ordinary least squares (OLS) would yield inconsistent

estimates if it were used to fit (1) and derive the large-sample bias in the
slope coefficient.

At some point we will need the reduced form equation for Y.

Substituting into the third equation from the first two, and re-

arranging, it is
1

Yz—(a] + B +a3K+u+v),
l-a,-p,

Since Y depends on u, the assumption that the disturbance term be
distributed independently of the regressors is violated in (1).

S - -w) W T, -)
A A 2]

OLS _ i _ i
by =

i i

after substituting for W from (1) and simplifying. We are not able to
obtain a closed-form expression for the expectation of the error term
because u influences both its numerator and denominator, directly
and by virtue of being a component of Y, as seen in the reduced form.
Dividing both the numerator and denominator by n, and noting that

plile(Yi - Y)2 = Var(Y)
n-;

as a consequence of a law of large numbers, and that it can also be

shown that

plile(Yi —Y u, —it)=cov(Y,u)
n

i

we can write

1 —
plim—Z(Yi —Y u, i)
: 7 Y,
plim b2 = g, + — " =5 +—Cizg(y”)‘) :

plile(Yi —7)2
n<

i

Now

l-a,-p,
1

_l_az_ﬂz

cov(Y,u): cov[ (al + B, +o, K +u+ v),uJ

(a3 cov(K , u) + var(u) + cov(v, u))

the covariance of u with the constants being zero. Since K is exogenous,
cov(K, u) = 0. We are told that u and v are distributed independently
of each other, and so cov(u, v) = 0. Hence

1 o’

u

l1-a, - B, plim Var(Y) .

plimby™ = B, +

From the reduced form equation for Y it is evident that (1 - a, - f,) >
0, and so the large-sample bias will be positive.
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* Explain what can be inferred about the finite-sample properties of OLS if

used to fit (1).

It is not possible for an estimator that is unbiased in a finite sample

to develop a bias if the sample size increases. Therefore, since the
estimator is biased in large samples, it must also be biased in finite
ones. The plim may well be a guide to the mean of the estimator in a
finite sample, but this is not guaranteed and it is unlikely to be exactly
equal to the mean.

Demonstrate mathematically how one might obtain a consistent estimate
of B,in (1).

Use K as an instrument for Y:

Z(K,-—I?XWI,—W) Z(Ki_l? ”[‘L_’)
bZIV= i

2] S (g R ol o3 g

i i

after substituting for W from (1) and simplifying. We are not able to
obtain a closed-form expression for the expectation of the error term
because u influences both its numerator and denominator, directly
and by virtue of being a component of Y, as seen in the reduced form.
Dividing both the numerator and denominator by n, and noting that it
can be shown that

plim — 3" (K, - K Ju, - 7)=cov(K.u)=0

n-;

since K is exogenous, and that

i

plile<Ki —I?XYi —Y):COV(K,Y)
n

we can write

. v coviK,u
plimb," = f, +#:ﬁz .

cov(K Y )

cov(K, Y) is non-zero since the reduced form equation for Y reveals that
K is a determinant of Y. Hence the instrumental variable estimator is
consistent.

Explain why (2) is not identified (underidentified).

(2) is underidentified because the endogenous variable Y is a regressor
and there is no valid instrument to use with it. The only potential
instrument is the exogenous variable K and it is already a regressor in
its own right.

Explain whether (3) is identified.
(3) is an identity so the issue of identification does not arise.

At a seminar, one of the participants asserts that it is possible to obtain
an estimate of a, even though equation (2) is underidentified. Any
change in income that is not a change in wages must be a change in
profits, by definition, and so one can estimate a,, as (1 - b,), where b, is
the consistent estimate of f5, found in the third part of this question. The
researcher does not think that this is right but is confused and says that
he will look into it after the seminar. What should he have said?



A9.6

Chapter 9: Simultaneous equations estimation

The argument would be valid if Y were exogenous, in which case
one could characterise 8, and a, as being the effects of Y on W and
P, holding other variables constant. But Y is endogenous, and so the
coefficients represent only part of an adjustment process. Y cannot
change autonomously, only in response to variations in K, u, or v.

The reduced form equations for W and P are

W=p, JrL(oz1 + oK vu+v)+u
l-—a, -5,

! (ﬂl ta,fr, —a, B + a3 K +(1 _az)"‘ +ﬂ2")

_1_az -5,

a,
l-a, - p,
1

=—(a1 -, +a,p +a3(l_ﬂz)K+azu+(1_:B2)V)-
l-a, - p,

P=a, + (o, + B, + @K +u+v)+a K +v

Thus, for example, a change in K will lead to changes in W and P in the
proportions g, : (1 -4,), not 8, : a,. The same is true of changes caused
by a variation in v. For a variation in u, the proportions would be
1-a):a,

Explain why the OLS estimator of 5, would be inconsistent, if the
researcher’s model is correctly specified. Derive analytically the large-
sample bias, and state whether it is possible to determine its sign.

The reduced form equation for x is

P +p+u
X=—
1-p,

Thus
Z('xi _f)(ei _é) Z(xi _f)(ﬂl + fox; +u; = f _ﬂzf_ﬁ)

R S~
:ﬂ +Z(xi_f)(ui_l’7)
’ Z(xi_f)z .

It is not possible to obtain a closed-form expression for the expectation
of the estimator because the error term is a nonlinear function of u.
Instead we investigate whether the estimator is consistent, first dividing
the numerator and the denominator of the error term by n so that they
tend to limits as the sample size becomes large.

plimj’Z(l_l‘%[ﬁl +p,+u, =B _ﬁ_b_‘]](”i _E)
plile(xi —)7)2
n
. plim%Z(pi —pu, —it)+ plim%Z(ui ~u)
=5 plile(xi -x)
n

1 cov(p,u)+ Var(u)_ 1
1-4, Var(x) _IB2+1_IB2 !

plim 6" = B, +

2
u
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since cov(p, u) = 0, p being exogenous. It is reasonable to assume that
employment grows less rapidly than output, and hence f,, and so
(1-4,), are less than 1. The bias is therefore likely to be positive.

* Explain how the researcher might use p to construct an IV estimator of
p,, that is consistent if p is exogenous. Demonstrate analytically that the
estimator is consistent.

p is available as an instrument, being exogenous, and therefore
independent of u, being correlated with x, and not being in the
equation in its own right.

bV = Z(pi _ﬁ)(ei _é) _ Z(pi _ﬁ)(ﬁ| +ﬂ2xi +u, _ﬁ] _ﬁzf_ﬁ)
o 2P Pk %) > (p - plx, - %)
:ﬂz +Z(pi_ﬁ)(u;_ﬁ)

> (p =P, -%)

Hence, dividing the numerator and the denominator of the error term
by n so that they tend to limits as the sample size becomes large,

.1 — _
W pllm;Z(pi—p “i_u)
plimb," =4, + =0, +

1 2 cov(p,x)
plim =" (p, - p)x, - %) P
n

since cov(p, u) = 0, p being exogenous, and cov(p, x) # 0, x being
determined partly by p.

* The OLS and IV regressions are summarised below (standard errors in
parentheses). Comment on them, making use of your answers to the first
two parts of this question.

OLS é = -0.52+ 0.48x 3)
(0.27)  (0.08)
v é = 037+ 0.17x ()

(0.42) (0.14)

The IV estimate of the slope coefficient is lower than the OLS estimate, as
expected. The standard errors are not comparable because the OLS ones
are invalid.

* A second researcher hypothesises that both x and p are exogenous and
that equation (2) should be written
e=x-p (5)
On the assumption that this is correct, explain why the slope coefficients

in (3) and (4) are both biased and determine the direction of the bias in
each case.

If (5) is correct, (3) is a misspecification that omits p and includes
a redundant intercept. From the identity, the true values of the
coefficients of x and p are 1 and -1, respectively. For (3),

Z(xi _)?xpi _1_7)
Z(xi —)?)2

x and p are positively correlated, so the bias will be downwards.

Ep)=1-1x
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For (4),
Bl — Z(pi _ﬁxei _é) _ Z(pi _ﬁX[xi _pi]_[f_ﬁ])
’ Z(p[_ﬁ xi_)?) Z(p/_ﬁ xi_)?)
D R
Z(pi_p)(‘xi_x) lZ(pi_ﬁ)(xi_f)
Hence
bV 1 var(p)
plim by = . p)

and so again the bias is downwards.
* Explain what would be the result of fitting (5), regressing e on x and p.

One would obtain a perfect fit with the coefficient of x equal to 1, the
coefficient of p equal to -1, and R? = 1.

A9.7
e Derive the reduced form equations for F and M.

(2) is the reduced form equation for M. Substituting for M in (1), we
have

F= @ +ap)+ B,+ap)S +u+ py.

* Explain what would be the most appropriate method to fit equation (1).
Since M does not depend on u, OLS may be used to fit (1).

* Explain what would be the most appropriate method to fit equation (2).

There are no endogenous explanatory variables in (2), so again OLS
may be used.

* Explain why the coefficient of S differs in the two equations.

In (3), the coefficient is an estimate of the direct effect of S on fertility,
controlling for M. In (4), the reduced form equation, it is an estimate
of the total effect, taking account of the indirect effect via M (female
education reduces mortality, and a reduction in mortality leads to a
reduction in fertility).

e Explain whether one may validly perform t tests on the coefficients of (4).
It is legitimate to use OLS to fit (4), so the t tests are valid.
* Discuss whether G is likely to be a valid instrument.

G should be a valid instrument since it is highly correlated with

S, it may reasonably be considered to be exogenous and therefore
uncorrelated with the disturbance term in (4), and it does not appear
in the equation in its own right (though perhaps it should).

e What should the researcher’s conclusions be with regard to the test?

With 1 degree of freedom as indicated by the output, the critical value
of chi-squared at the 5 per cent significance level is 3.84. Therefore we
do not reject the null hypothesis of no significant difference between
the estimates of the coefficients and conclude that there is no need to
instrument for S. (4) should be preferred because OLS is more efficient
than IV, when both are consistent.
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* Demonstrate that the estimate of o, will be inconsistent if ordinary least

squares (OLS) is used to fit the supply equation, showing that the large-
sample bias is likely to be negative.

The reduced form equation for P is

P:;(ﬁl_al+ﬁ3Y+ﬂ4P0P+uD_“s).
a, - B,

The OLS estimator of a, is

OLS—Z(E_I_)XQi_é) Z(Pf_}_)xal+0‘23+“5i—a1—0!21_’—t75)

5 = =

> (p~Py >(n-P)
Z(R -P Ug; _L_’s) -
> (7 ~Py

We cannot take expectations because u, is a determinant of both the
numerator and the denominator of the error term, in view of the
reduced form equation for P. Instead, we take probability limits, after
first dividing the numerator and the denominator of the error term by n
to ensure that limits exist.

=a, +

1 5] n
o pllm;z(])i_quSi_uS) COV(P,MS)
plima, ” =a, + 1 —v st Var(P) .
phm—Z(P,- -P)
n

Substituting from the reduced form equation for P,

cov( ! (ﬁ] -a,+ B,Y + B,POP+u, _”s)a”sj

. a, - p
plimad™ =a, + : 2 var?)
a, =B, Var(US) 1 O-js
=a, =a, -
Var(P) a,-p, o

assuming that Y and POP are exogenous and so cov(ug, Y) = cov(u,,
POP) = 0. We are told that u  and u, are distributed independently, so
cov(u,, u,) = 0. Since it is reasonable to suppose that a, is positive and
f, is negative, the large-sample bias will be negative.

Demonstrate that a consistent estimate of o, will be obtained if the
supply equation is fitted using instrumental variables (IV), using Y as an
instrument.

alV_Z(Yi_?XQi_Q)_Z(Yi_?XaI+a2pi+u5i_al_a2}_)_z’73)
© XW-v)r-P) > -7 -P)
Z(Yi_?xu&'_ﬁé')

X -rlp-P)

We cannot take expectations because u, is a determinant of both the
numerator and the denominator of the error term, in view of the
reduced form equation for P. Instead, we take probability limits, after
first dividing the numerator and the denominator of the error term by n
to ensure that limits exist.

=a, +
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.1 = _
plima“’ Y phmZZ(Yi _YX”SI‘ _“s)_a . COV(Y,u)
2 T, =

T L B
n

since cov(Y, u) = 0 and cov(P, Y) # 0, Y being a determinant of P.

The model is used for a Monte Carlo experiment ... Discuss the results
obtained.

o The OLS estimates are clearly biased downwards.

o The IV and TSLS estimates appear to be distributed around the true
value, although one would need a much larger number of samples
to be sure of this.

o The IV estimates with POP appear to be slightly closer to the true
value than those with Y, as should be expected given the higher
correlation, and the TSLS estimates appear to be slightly closer than
either, again as should be expected.

o The OLS standard errors should be ignored. The standard errors for
the IV regressions using POP tend to be smaller than those using
Y, reflecting the fact that POP is a better instrument. Those for the
TSLS regressions are smallest of all, reflecting its greater efficiency.

Derive the reduced form equation for G for the first researcher.

1
G=——— (B +a,f, + By A+ug + Pruy)
l1-a,p,

Explain why ordinary least squares (OLS) would be an inconsistent
estimator of the parameters of equation (2).

The reduced form equation for G demonstrates that G is not distributed
independently of the disturbance term u,, a requirement for the
consistency of OLS when fitting (2).

The first researcher uses instrumental variables (IV) to estimate a., in
(2). Explain the procedure and demonstrate that the IV estimator of a,, is
consistent.

The first researcher would use A as an instrument for G. It is
exogenous, so independent of u,; correlated with G; and not in the
equation in its own right. The estimator of the slope coefficient is

v _ Z(Ai _ZXR" _ﬁ) _ Z(Ai —ZX[&I +a,G, +uRi]_[a1 +0!25+L7])
" X446, -G) S (4 -4)G,-G)
Z(Ai — Afuy —uy)

Z(A,. _ZXGi _6)

=a, +

Hence

%Z(Ai —ZXuR,- —L7R) cov(A,MR)

plima)’ =a, +plim =a, + =a,
lz (A,- 3 ZXGi _5) cov(4,G)
n

since cov(A, Up ) =0, A being exogenous, and cov(A, G) #0,A being a
determinant of G.
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* The second researcher uses two stage least squares (TSLS) to estimate a,

in (2). Explain the procedure and demonstrate that the TSLS estimator is
consistent.

The reduced form equation for G for the second researcher is

G:;(ﬂl +ta,f, + PiA+ B0+ ug + Pouty ).
l1-a,p,

It is fitted using TSLS. The fitted values of G are used as the instrument:
z(c},. - é)(Ri _R®)
TSLS __ .
TS =

Z(@ - EJ(G,. -G)

Following the same method as in the third part of the question

. covlG,u
plima,” =a, + ~N=qa,
covlG,G

cov(G, Up )= 0 because G is a linear combination of the exogenous
variables, and cov|G,GJ#0.

Explain why the TSLS estimator used by the second researcher ought to
produce ‘better’ results than the IV estimator used by the first researcher; if
the growth equation is given by (1*). Be specific about what you mean by
‘better’.

The TSLS estimator of a, should have a smaller variance. The variance
of an IV estimator is inversely proportional to the square of the
correlation of G and the instrument. G is the linear combination of

A and Q that has the highest correlation. It will therefore, in general,
have a lower variance than the IV estimator using A.

Suppose that the first researcher is correct and the growth equation
is actually given by (1), not (1*). Compare the properties of the two
estimators in this case.

If the first researcher is correct, A is the optimal instrument because
it will be more highly correlated with G (in the population) than the
TSLS combination of A and Q and it will therefore be more efficient.

Suppose that the second researcher is correct and the model is given

by (1*) and (2), but A is not exogenous after all. Suppose that A is
influenced by G:

A=y, +y,G+u, 3
where u, is a disturbance term distributed independently of u, and u,.

How would this affect the properties of the IV estimator of o, used by the
first researcher?

cov(4,u, ) would not be equal to 0 and so the estimator would be
inconsistent.

State, with a brief explanation, whether each variable is endogenous or
exogenous, and derive the reduced form equations for the endogenous
variables.

In this model LGEARN and SKILL are endogenous. IQ is exogenous. The
reduced form equation for LGEARN is

LGEARN = B, + a5, + a,p,JQ + u + f,.

The reduced form equation for SKILL is the structural equation.
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* Explain why the researcher could use ordinary least squares (OLS) to fit
equation (1) if u and v are distributed independently of each other.

SKILL is not determined either directly or indirectly by u. Thus in
equation (1) there is no violation of the requirement that the regressor
be distributed independently of the disturbance term.

 Show that the OLS estimator of f, is inconsistent if u and v are positively
correlated and determine the direction of the large-sample bias.

Writing L for LGEARN, S for SKILL,

BOLS _ S8, -5NL,-L) (S, -5\ +B.S, +u1-15,+ B.S +u])

’ S(s,-85fF 3(s,-Sf
Z(Si —5)(“,- _17)
= ﬁz + —\2 :
Z (Si -8 )
We cannot obtain a closed-form expression for the expectation of the
error term since S depends on v and v is correlated with u. Hence

instead we take plims, dividing the numerator and the denominator by
n to ensure that the limits exist:

1 —
plim—Z(S,. -8 u, —17)
plim "% = g, +—1— —=4, +—C°V(S§“)
plim—Z(Si —S) var(S)
n

Now
cov(S,u) = cov([ot1 +a,10+ v],u) = cov(v,u)

since a, is a constant and IQ is exogenous. Hence the numerator of
the error term is positive in large samples. The denominator, being a
variance, is also positive. So the large-sample bias is positive.

* Demonstrate mathematically how the researcher could use instrumental
variables (IV) estimation to obtain a consistent estimate of f3,.

The researcher could use IQ as an instrument for SKILL:

S -T2, -L) (1, =T)B + B.S, +u,1-1B, + B,S +))

v _ _
b, =

2(1,--1_)(51--5)_ Z([z‘_l_xsi_§)
i +Z(I,—I_ ui—ﬁ).
23 (1, -1)s, - 3)

We cannot obtain a closed-form expression for the expectation of the
error term since S depends on v and v is correlated with u. Hence
instead we take plims, dividing the numerator and the denominator by
n to ensure that the limits exist:

o g plim%Z(Ii—f u, — 1)

plim = + = .

S pim Y -1)s,-5) VTS
n

cov(l,u)

The numerator of the error term is zero because I is exogenous. The
denominator is not zero because S is determined by I. Hence the IV
estimator is consistent.

* Explain the advantages and disadvantages of using IV, rather than OLS,
to estimate f3,, given that the researcher is not sure whether u and v are
distributed independently of each other.
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The advantage of IV is that, being consistent, there will be no bias in
large samples and hence one may hope that there is no serious bias in
a finite sample. One disadvantage is that there is a loss of efficiency

if u and v are independent. Even if they are not independent, the IV
estimator may be inferior to the OLS estimator using some criterion
such as the mean square error that allows a trade-off between the bias
of an estimator and its variance.

* Describe in general terms a test that might help the researcher decide
whether to use OLS or IV. What are the limitations of the test?

Durbin-Wu-Hausman test. Also known as Hausman test. The test
statistic is a chi-squared statistic based on the differences of all the
coefficients in the regression. The null hypothesis is that SKILL is
distributed independently of u and the differences in the coefficients
are random. If the test statistic exceeds its critical value, given the
significance level of the test, we reject the null hypothesis and conclude
that we ought to use IV rather than OLS. The main limitation is lack of
power if the instrument is weak.

* Explain whether it is possible for the researcher to fit equation (2) and
obtain consistent estimates.

There is no reason why the equation should not be fitted using OLS.

Substituting for Y from the first equation into the second, and
re-arranging, we have the reduced form equation for S:

o ta,pitvtasu
l-a,p,

Substituting from the third equation into the first, we have

Y=0+B,R+u—p,w.

S

If this equation is fitted using OLS, we have

cov(R,[u— p,w]) cov([S + wl.[u— B,w])

lim bY% = B, + =B, +
P ? % Var(R) % Var(S + w)
_ 0‘2763 _ﬂzai _ 0(270'3 _ﬂzavzv
- ﬂz + 2 2 - ﬁz 2( 2 2 _2 2
(o +O'W V4 (O'v+0!20'u)+6w

1
1_0‘2/32

The denominator of the bias term is positive. Hence the bias will be
positive if (the component attributable to simultaneity) is greater than
(the component attributable to measurement error), and negative if it is
smaller.

where y =
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Chapter 10: Binary choice and limited
dependent variable models, and
maximum likelihood estimation

Overview

The first part of this chapter describes the linear probability model,

logit analysis, and probit analysis, three techniques for fitting regression
models where the dependent variable is a qualitative characteristic. Next
it discusses tobit analysis, a censored regression model fitted using a
combination of linear regression analysis and probit analysis. This leads

to sample selection models and heckman analysis. The second part of the
chapter introduces maximum likelihood estimation, the method used to fit
all of these models except the linear probability model.

Learning outcomes

After working through the corresponding chapter in the textbook, studying
the corresponding slideshows, and doing the starred exercises in the
textbook and the additional exercises in this guide, you should be able to:

* describe the linear probability model and explain its defects

* describe logit analysis, giving the mathematical specification

* describe probit analysis, including the mathematical specification
* calculate marginal effects in logit and probit analysis

* explain why OLS yields biased estimates when applied to a sample
with censored observations, even when the censored observations are
deleted

* explain the problem of sample selection bias and describe how the
heckman procedure may provide a solution to it (in general terms,
without mathematical detail)

* explain the principle underlying maximum likelihood estimation

* apply maximum likelihood estimation from first principles in simple
models.

Further material

Limiting distributions and the properties of maximum likelihood
estimators

Provided that weak regularity conditions involving the differentiability of
the likelihood function are satisfied, maximum likelihood (ML) estimators
have the following attractive properties in large samples:

(1) They are consistent.
(2) They are asymptotically normally distributed.
(3) They are asymptotically efficient.

The meaning of the first property is familiar. It implies that the probability
density function of the estimator collapses to a spike at the true value. This
being the case, what can the other assertions mean? If the distribution
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becomes degenerate as the sample size becomes very large, how can it be
described as having a normal distribution? And how can it be described as
being efficient, when its variance, and the variance of any other consistent
estimator, tend to zero?

To discuss the last two properties, we consider what is known as the
limiting distribution of an estimator. This is the distribution of the
estimator when the divergence between it and its population mean is
multiplied by Jn . If we do this, the distribution of a typical estimator
remains nondegenerate as n becomes large, and this enables us to say
meaningful things about its shape and to make comparisons with the
distributions of other estimators (also multiplied by\/; ).

To put this mathematically, suppose that there is one parameter of interest,
0, and that @ is its ML estimator. Then (2) says that

Jnlé-0)~ N(0.5?)

for some variance o> (3) says that, given any other consistent estimator
o, \/; 0 — 0) cannot have a smaller variance.

Test procedures for maximum likelihood estimation

This section on ML tests contains material that is a little advanced for an
introductory econometrics course. It is provided because likelihood ratio
tests are encountered in the sections on binary choice models and because
a brief introduction may be of help to those who proceed to a more
advanced course.

There are three main approaches to testing hypotheses in maximum
likelihood estimation: likelihood ratio (LR) tests, Wald tests, and Lagrange
multiplier (LM) tests. Since the theory behind Lagrange multiplier tests is
relatively complex, the present discussion will be confined to the first two
types. We will start by assuming that the probability density function of

a random variable X is a known function of a single unknown parameter
6 and that the likelihood function for ¢ given a sample of n observations
onX, L(0 | X\5n X, ) , satisfies weak regularity conditions involving its
differentiability. In particular, we assume that @ is determined by the
first-order condition dL/d@ = 0. (This rules out estimators such as that

in Exercise A10.7) The null hypothesis is H: 6 = 6, the alternative
hypothesis is H;: § # 0,, and the maximum likelihood estimate of @ is 6.

Likelihood ratio tests

A likelihood ratio test compares the value of the likelihood function at
0 = 0 with its value at 6 = 6,. In view of the definition of 4, L(&jz L(6,)

for all 6. However, if the null hypothesis is true, the ratio L(é)/L(HO)
should not be significantly greater than 1. As a consequence, the logarithm
of the ratio,

log{%g}ﬂ = log L(é)— log L(HO )

should not be significantly different from zero. In that it involves a
comparison of the measures of goodness of fit for unrestricted and
restricted versions of the model, the LR test is similar to an F test.

Under the null hypothesis, it can be shown that in large samples the test
statistic

LR =2{log L(6) - 10g L(, )



has a chi-squared distribution with one degree of freedom. If there are
multiple parameters of interest, and multiple restrictions, the number of
degrees of freedom is equal to the number of restrictions.

Examples

We will return to the example in Section 10.6 in the textbook, where we
have a normally-distributed random variable X with unknown population
mean x and known standard deviation equal to 1. Given a sample of n
observations, the likelihood function is

1 —x-af 1 —,-up
X X,)=| —e 2 XX ——e 2 )
! [«/27[ J [\/27r J

The log-likelihood is

L(i

N 1 J N
logL(,u|Xl,...,Xn):nlog(—J——Z(Xl_ —/1)2

V) 245

and the unrestricted ML estimate is 2= X . The LR statistic for the null
hypothesis H: i = p, is therefore

. 2[[,@[%} L L e S }]

PN I

—e X | ——
627 o227

L(a,6

and the log-likelihood is

B

1 ~\2
X —
2A2i:1( i /J)_

log L(f,6 | X, X, ) = nlog(;]—nlog&—

V2r

The first-order condition obtained by differentiating by o is
OlogL n 13 2
P Z:,( )
from which we obtain
6 =Ly (x, - af .
noio

Substituting back into the log-likelihood function, the latter now becomes
a function of x only (and is known as the concentrated log-likelihood
function or, sometimes, the profile log-likelihood function):

1
o | ntogd LS (x|
logL(,u|X1,...,Xn)—nlog(ﬂJ nlog(n;(Xi ,u)] 2

As before, the ML estimator of z is X . Hence the LR statistic is
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=
SR

| 1 =\
LR =2 nlog[— —nlogl — (XA—X)
\/27ZJ (” i1 '

- n(loan:(Xi ~ ) ~log (¥, _)?)Zj '

i=1 i=1

It is worth noting that this is closely related to the F statistic obtained
when one fits the least squares model
Xl. =putu.
The least squares estimator of u is X and RSS = Z(X =X )2.
i=1
If one imposes the restriction u = y, , we have RSS, = Z(X L= Mo )2 and
the F statistic =l

(Xi _:uo)z _ZH:(Xi _)?)2

F(l,n-1)== B

(i(x,. -X) j/(n ~1)

n

i=1
Returning to the LR statistic, we have

n n n

Z(Xi—,uo)z Z(Xi_ﬂo)Z_Z(Xi_)_()z

LR = nlog=———— =nlog| 1+ = —

>, 7] S, -1

i=1

n n

;(Xi _ﬂ0)2 _Z(Xi _)_()2

: — = F=F.

i(Xi_)?)z n

i=1

IR

Note that we have used the approximation log(1 + a) = a which is valid
when a is small enough for higher powers to be neglected.

Wald tests

Wald tests are based on the same principle as t tests in that they evaluate
whether the discrepancy between the maximum likelihood estimate # and
the hypothetical value 6, is significant, taking account of th:a variance in
the estimate. The test statistic for the null hypothesis H,:0-6, =0 is

where 6—; is the estimate of the variance of ¢ evaluated at the maximum
likelihood value. 6'2 can be estimated in various ways that are
asymptotically equivalent if the likelihood function has been specified
correctly. A common estimator is that obtained as minus the inverse

of the second differential of the log-likelihood function evaluated at

the maximum likelihood estimate. Under the null hypothesis that the
restriction is valid, the test statistic has a chi-squared distribution with one
degree of freedom. When there are multiple restrictions, the test statistic
becomes more complex and the number of degrees of freedom is equal to
the number of restrictions.

n 1 1< 2
——|—| nlogl — |—nlog| — X -
> g( fzﬁj g(nil( l #o)j
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Examples

We will use the same examples as for the LR test, first, assuming that ¢ = 1
and then assuming that it has to be estimated along with x. In the first case
the log-likelihood function is

1 1
log L{g| Xy, X, ) = nlog(EJ_EZ(X" —u).
i1

The first differential is Z(X , —u) and the second is — n, so the estimate of
i=1
the variance is 1 . The Wald test statistic is therefore n()? = M, )2 .

n
In the second example, where ¢ was unknown, the concentrated log-
likelihood function is

N2 n 2
1 n 1 n 2 2 n
=nlog —— |- ~log———log Y. (X, - pu) |-=.
n 08[ ,—zﬂJ 5 Ogn 5 Og[i_l( i ,U) J 2

The first derivative with respect to x is

1
log L(ut| X, X, ) = nlog[LJ—nlog{lZn‘,(Xf —ﬂ)sz -

n

dlogL:n ;(Xi_:u) .
WSy

i=1

The second derivative is

P L)
W { (Xi—ﬂ)z}z

Evaluated at the ML estimator =X , Z(X ., —u)=0 and hence
i=1

d’logL n’

2 n
d’u (Xi _ﬂ)z

i=1

A2
.. . . o .
giving an estimated variance — , gIven
n

6 =13 (x,-X)
nois

et 2
X -
Hence the Wald test statistic is % . Under the null hypothesis, this
O /n
is distributed as a chi-squared statistic with one degree of freedom.

When there is just one restriction, as in the present case, the Wald statistic
is the square of the corresponding asymptotic t statistic (asymptotic because
the variance has been estimated asymptotically). The chi-squared test and
the ¢ test are equivalent, given that, when there is one degree of freedom,
the critical value of the chi-squared statistic for any significance level is the
square of the critical value of the normal distribution.
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LR test of restrictions in a regression model

Given the regression model
k
Y= B+ 2B X,
j=2

with u assumed to be iid N(0O, ¢2), the log-likelihood function for the
parameters is

2
) l 1 n k
g L(B,s.cr B0 | Yo X, i = 1,..m) = nlog(—] -—> [Y,. - p - Zﬂjxij) ,

ov2rx 20° I =2

This is a straightforward generalisation of the expression for a simple
regression derived in Section 10.6 in the textbook. Hence

VA

logL(ﬁ'1 e B0 | Y, X0 = 1,...n)= -n loga—glogZH—

2
o

where

Z:i(x _131 _ZﬂinjJ .

The estimates of the f parameters affect only Z. To maximise the log-
likelihood, they should be chosen so as to minimise Z, and of course this
is exactly what one is doing when one is fitting a least squares regression.
Hence Z = RSS. It remains to determine the ML estimate of ¢. Taking

the partial differential with respect to o, we obtain one of the first-order
conditions for a maximum:

6logL(ﬂl,...,ﬁk,a):_£+L3RSS:0'
oo o o

From this we obtain
. RSS
62

n

Hence the ML estimator is the sum of the squares of the residuals divided
by n. This is different from the least squares estimator, which is the sum of
the squares of the residuals divided by n - k, but the difference disappears
as the sample size becomes large. Substituting for & in the log-likelihood
function, we obtain the concentrated likelihood function

1
log L(Bss B | Y X i = 1,..,m) = —nlog[l%sj2 —ﬁlog27r -
n

RSS
2 2Z/n
n RSS n n
= P02 Mygeng M
2 BT TR

= —g(logRSS +1+log2x —logn).

We will re-write this as
n
logL, = —E(log RSS,, +1+1log2z —logn)

the subscript U emphasising that this is the unrestricted log-likelihood. If
we now impose a restriction on the parameters and maximise the log-
likelihood function subject to the restriction, it will be
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logL, = —%(logRSSR +1+ log27r—logn)

where RSS, > RSS, and hence logL, <logL, . The LR statistic for a test
of the restriction is therefore

RSS,

2(log Ly, — Ly ) = n(log RSS, —log RSS,, )= nlog 55,

It is distributed as a chi-squared statistic with one degree of freedom
under the null hypothesis that the restriction is valid. If there is more than
one restriction, the test statistic is the same but the number of degrees

of freedom under the null hypothesis that all the restrictions are valid is
equal to the number of restrictions.

An example of its use is the common factor test in Section 12.3 in the
textbook. As with all maximum likelihood tests, it is valid only for large
samples. Thus for testing linear restrictions we should prefer the F test
approach because it is valid for finite samples.

Additional exercises

A10.1

What factors affect the decision to make a purchase of your category of
expenditure in the CES data set?

Define a new variable CATBUY that is equal to 1 if the household makes
any purchase of your category and O if it makes no purchase at all. Regress
CATBUY on EXPPC, SIZE, REFAGE, and COLLEGE (as defined in Exercise
A5.6) using: (1) the linear probability model, (2) the logit model, and (3)
the probit model. Calculate the marginal effects at the mean of EXPPC,
SIZE, REFAGE, and COLLEGE for the logit and probit models and compare
them with the coefficients of the linear probability model.

A10.2

Logit analysis was used to relate the event of a respondent working
(WORKING, defined to be 1 if the respondent was working, and 0O
otherwise) to the respondent’s educational attainment (S, defined as

the highest grade completed) using 1994 data from the US National
Longitudinal Survey of Youth. In this year the respondents were aged
29-36 and a substantial number of females had given up work to raise a
family. The analysis was undertaken for females and males separately, with
the output shown below (first females, then males, with iteration messages
deleted):
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logit WORKING S if MALE==

Logit Estimates Number of obs = 2726
chi2 (1) = 70.42

Prob > chi2 = 0.0000

Log Likelihood = -1586.5519 Pseudo R2 = 0.0217
WORKING | Coef. Std. Err. Z P>|z| [95% Conf. Interval]
_________ +____________________________________________________________________
S | .1511872 .0186177 8.121 0.000 .1146971 .1876773

cons | -1.049543 .2448064 -4.287 0.000 -1.529355 -.5697314

logit WORKING S if MALE==

Logit Estimates Number of obs = 2573
chi2 (1) = 75.03

Prob > chi2 = 0.0000

Log Likelihood = -802.65424 Pseudo R2 = 0.0446
WORKING | Coef. Std. Err. z P> z| [95% Conf. Intervall]
_________ +____________________________________________________________________
S | .2499295 .0306482 8.155 0.000 .1898601 .3099989

cons | =-.9670268 .3775658 -2.561 0.010 -1.707042 -.2270113

95 per cent of the respondents had S in the range 9-18 years and
the mean value of S was 13.3 and 13.2 years for females and males,
respectively.

From the logit analysis, the marginal effect of S on the probability of
working at the mean was estimated to be 0.030 and 0.020 for females
and males, respectively. Ordinary least squares regressions of WORKING
on S yielded slope coefficients of 0.029 and 0.020 for females and males,
respectively.

As can be seen from the second figure below, the marginal effect of
educational attainment was lower for males than for females over most of
the range S > 9. Discuss the plausibility of this finding.

As can also be seen from the second figure, the marginal effect of
educational attainment decreases with educational attainment for both
males and females over the range S > 9. Discuss the plausibility of this
finding.

Compare the estimates of the marginal effect of educational attainment
using logit analysis with those obtained using ordinary least squares.

1.0
0.8
males
> 06
% females
Qo
[
204
0.2
0.0 T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20
S

Figure 10.1 Probability of working, as a function of S
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Figure 10.2 Marginal effect of S on the probability of working

A10.3

A researcher has data on weight, height, and schooling for 540
respondents in the US National Longitudinal Survey of Youth for the year
2002. Using the data on weight and height, he computes the body mass
index for each individual. If the body mass index is 30 or greater, the
individual is defined to be obese. He defines a binary variable, OBESE,
that is equal to 1 for the 164 obese individuals and O for the other 376.

He wishes to investigate whether obesity is related to schooling and fits an
ordinary least squares (OLS) regression of OBESE on S, years of schooling,
with the following result (¢ statistics in parentheses):

OBESE = 0.595- 0.021S €))
(5.30) (2.63)

This is described as the linear probability model (LPM). He also fits

the logit model F(Z ):1%, where F(Z) is the probability of being
+e

obese and Z = 3, + 3,5, with the following result (again, t statistics in
parentheses):
7 = 0.588- 0.105S @)
(1.07) (2.60)

The figure below shows the probability of being obese and the marginal
effect of schooling as a function of S, given the logit regression. Most
(492 out of 540) of the individuals in the sample had 12 to 18 years of
schooling.
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Figure 10.3

* Discuss whether the relationships indicated by the probability and
marginal effect curves appear to be plausible.

* Add the probability function and the marginal effect function for the
LPM to the diagram. Explain why you drew them the way you did.

* The logit model is considered to have several advantages over the LPM.
Explain what these advantages are. Evaluate the importance of the
advantages of the logit model in this particular case.

* The LPM is fitted using OLS. Explain how, instead, it might be fitted
using maximum likelihood estimation:

o Write down the probability of being obese for any obese individual,
given S, for that individual, and write down the probability of not being
obese for any non-obese individual, again given S, for that individual.

o Write down the likelihood function for this sample of 164 obese
individuals and 376 non-obese individuals.

o Explain how one would use this function to estimate the
parameters. [Note: You are not expected to attempt to derive the
estimators of the parameters.]

o Explain whether your maximum likelihood estimators will be the
same or different from those obtained using least squares.

A10.4

A researcher interested in the relationship between parenting, age and
schooling has data for the year 2000 for a sample of 1,167 married males and
870 married females aged 35 to 42 in the National Longitudinal Survey of
Youth. In particular, she is interested in how the presence of young children

in the household is related to the age and education of the respondent.

She defines CHILDL6 to be 1 if there is a child less than 6 years old in the
household and 0 otherwise and regresses it on AGE, age, and S, years of
schooling, for males and females separately using probit analysis. Defining the
probability of having a child less than 6 in the household to be p = F(Z) where

Z=p + BAGE + B,S

she obtains the results shown in the table below (asymptotic standard
errors in parentheses).



Chapter 10: Binary choice

males females
-0.137 -0.154

AGE
(0.018)  (0.023)
< 0.132 0.094
(0.015)  (0.020)
0.194 0.547
constant
(0.358)  (0.492)
zZ -0.399  -0.874
1(Z) 0.368 0.272

For males and females separately, she calculates

Z =b, +b, AGE +b,S

where AGE and S are the mean values of AGE and S and b, b., and b,

172
are the probit coefficients in the corresponding regression, and she further

calculates
1 7

62
2z

dF — _
where f(Z)= 2z The values of Z and f(Z) are shown in the table.

f(Z)=

* Explain how one may derive the marginal effects of the explanatory
variables on the probability of having a child less than 6 in the
household, and calculate for both males and females the marginal
effects at the means of AGE and S.

* Explain whether the signs of the marginal effects are plausible. Explain
whether you would expect the marginal effect of schooling to be higher
for males or for females.

* At a seminar someone asks the researcher whether the marginal effect
of S is significantly different for males and females. The researcher
does not know how to test whether the difference is significant and
asks you for advice. What would you say?

A10.5

A health economist investigating the relationship between smoking,
schooling, and age, defines a dummy variable D to be equal to 1 for
smokers and O for nonsmokers. She hypothesises that the effects of
schooling and age are not independent of each other and defines an
interactive term schooling*age. She includes this as an explanatory
variable in the probit regression. Explain how this would affect the
estimation of the marginal effects of schooling and age.

A10.6

A researcher has data on the following variables for 5,061 respondents in
the US National Longitudinal Survey of Youth:

*  MARRIED, marital status in 1994, defined to be 1 if the respondent was
married with spouse present and O otherwise;

* MALE, defined to be 1 if the respondent was male and O if female;
* AGE in 1994 (the range being 29-37);
* S, years of schooling, defined as highest grade completed, and

* ASVABC, score on a test of cognitive ability, scaled so as to have mean
50 and standard deviation 10.
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She uses probit analysis to regress MARRIED on the other variables, with
the output shown:

. probit MARRIED MALE AGE S ASVABC

Probit estimates Number of obs = 5061

LR chi2 (4) = 229.78

Prob > chi2 = 0.0000

Log likelihood = -3286.1289 Pseudo R2 = 0.0338

MARRIED | Coef Std. Err z P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________

MALE | -.1215281 .036332 -3.34 0.001 -.1927375 -.0503188

AGE | .028571 .0081632 3.50 0.000 .0125715 .0445705

S | =-.0017465 .00919 -0.19 0.849 -.0197587 .0162656

ASVABC | .0252911 .0022895 11.05 0.000 .0208038 .0297784

_cons | -1.816455 .2798724 -6.49 0.000 -2.364995 -1.267916

Variable Mean Marginal effect

MALE 0.4841 -0.0467
AGE 32.52 0.0110
S 13.31 -0.0007
ASVABC 48.94 0.0097

The means of the explanatory variables, and their marginal effects
evaluated at the means, are shown in the table.

* Discuss the conclusions one may reach, given the probit output and the
table, commenting on their plausibility.

* The researcher considers including CHILD, a dummy variable defined
to be 1 if the respondent had children, and 0 otherwise, as an
explanatory variable. When she does this, its z-statistic is 33.65 and its
marginal effect 0.5685. Discuss these findings.

A10.7

Suppose that the time, t, required to complete a certain process has
probability density function

ft)=ce P witht > >0

and you have a sample of n observations with times T, ..., T .

n
Determine the maximum likelihood estimate of @, assuming that £ is
known.

A10.8

In Exercise 10.14 in the textbook, an event could occur with probability
p. Given that the event occurred m times in a sample of n observations,
the exercise required demonstrating that m/n was the ML estimator of p.
Derive the LR statistic for the null hypothesisp = p,. If m = 40 and n =
100, test the null hypothesis p = 0.5.

A10.9

For the variable in Exercise A10.8, derive the Wald statistic and test the
null hypothesis p = 0.5.
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Answers to the starred exercises in the textbook

10.1

[This exercise does not have a star in the textbook, but an answer to it is
needed for comparison with the answer to Exercise 10.3.]

The output shows the result of an investigation of how the probability of a
respondent obtaining a bachelor’s degree from a four-year college is
related to the score on ASVABC, using EAEF Data Set 21. BACH is a dummy
variable equal to 1 for those with bachelor’s degrees (years of schooling at
least 16) and O otherwise. ASVABC ranged from 22 to 65, with mean value
50.2, and most scores were in the range 40 to 60. Provide an
interpretation of the coefficients. Explain why OLS is not a satisfactory
estimation method for this kind of model.

reg BACH ASVABC

Source | SS df MS Number of obs = 540
————————————— - F( 1, 538) = 176.96
Model | 27.4567273 1 27.4567273 Prob > F = 0.0000
Residual | 83.476606 538 .155160978 R-squared = 0.2475
————————————— Fom Adj R-squared = 0.2461
Total | 110.933333 539 .205813234 Root MSE = .3939
BACH | Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
ASVABC | .0235898 .0017733 13.30 0.000 .0201063 .0270734
_cons | -.922749 .0926474 -9.96 0.000 -1.104744 -.740754
Answer:

The slope coefficient indicates that the probability of earning a bachelor’s
degree rises by 2.4 per cent for every additional point on the ASVABC
score. While this may be realistic for a range of values of ASVABC, it is

not for very low ones. Very few of those with scores in the low end of

the spectrum earned bachelor’s degrees and variations in the ASVABC
score would be unlikely to have an effect on the probability. The intercept
literally indicates that an individual with a 0 score would have a minus
92.3 per cent probability of earning a bachelor’s degree. Given the way
that ASVABC was constructed, a score of 0 was in fact impossible. However
the linear probability model predicts nonsense negative probabilities for all
those with scores of 39 or less, of whom there were many in the sample.

The linear probability model also suffers from the problem that the
standard errors and t and F tests are invalid because the disturbance
term does not have a normal distribution. Its distribution is not even
continuous, consisting of only two possible values for each value of
ASVABC.

10.3

The output shows the results of fitting a logit regression to the data set
described in Exercise 10.1 (with four of the iteration messages deleted).
26.7 per cent of the respondents earned bachelor’s degrees.
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logit BACH ASVABC

Iteration O: log likelihood = -324.62306
Iteration 5: log likelihood = -238.70933
Logistic regression Number of obs = 540
LR chi2 (1) = 171.83
Prob > chi2 = 0.0000
Log likelihood = -238.70933 Pseudo R2 = 0.2647
BACH | Coef Std. Err z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
ASVABC | .1891621 .0192466 9.83 0.000 .1514395 .2268847
cons | -11.21198 1.096405 -10.23 0.000 -13.36089 -9.063065

The figure shows the probability of earning a bachelor’s degree as a
function of ASVABC. It also shows the marginal effect function.
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Figure 10.4

* With reference to the figure, discuss the variation of the marginal effect
of the ASVABC score implicit in the logit regression.

* Sketch the probability and marginal effect diagrams for the OLS
regression in Exercise 10.1 and compare them with those for the logit
regression.

Answer:

In Exercise 10.1 we were told that the mean value of ASVABC in the
sample was 50.2. From the curve for the cumulative probability in the
figure it can be seen that the probability of graduating from college for
respondents with that score is only about 20 per cent. The question states
that most respondents had scores in the range 40-60. It can be seen that
at the top of that range the probability has increased substantially, being
about 60 per cent. Looking at the curve for the marginal probability,

it can be seen that the marginal effect is greatest in the range 50-65,
and of course this is the range with the steepest slope of the cumulative
probability. Exercise 10.1 states that the highest score was 65, where the
probability would be about 90 per cent.

For the linear probability model in Exercise 10.1, the counterpart to the
cumulative probability curve in the figure is a straight line using the
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10.7

regression result. At the ASVABC mean it predicts that there is a 29%
chance of the respondent graduating from college, considerably more than
the logit figure, but for a score of 65 it predicts a probability of only 63%.
It is particularly unsatisfactory for low ASVABC scores since it predicts
negative probabilities for all scores lower than 38. The OLS counterpart

to the marginal probability curve is a horizontal straight line at 0.023,
showing that the marginal effect is underestimated for ASVABC scores
above 50 and overestimated below that figure. (The maximum ASVABC
score was 65.)
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Figure 10.5

The following probit regression, with iteration messages deleted, was
fitted using 2,726 observations on females in the National Longitudinal
Survey of Youth using the LFP data set described in Appendix B. The data
are for 1994, when the respondents were aged 29 to 36 and many of them
were raising young families.

Chapter 10: Binary choice

probit WORKING S AGE CHILDLO6 CHILDL16 MARRIED ETHBLACK ETHHISP if MALE==0

Iteration O: log likelihood = -1485.6248
Iteration 1: log likelihood = -1403.9344
Iteration 2: log likelihood = -1403.0839
Iteration 3: log likelihood = -1403.0835
Probit estimates Number of obs = 2726
LR chi2 (7) = 165.08
Prob > chi2 = 0.0000
Log likelihood = -1403.0835 Pseudo R2 0.0556
WORKING | Coef. Std. Err. b4 P>|z]| [95% Conf. Intervall]
_________ +____________________________________________________________________
S | .0892571 .0120629 7.399 0.000 .0656143 L1129
AGE | -.0438511 .012478 -3.514 0.000 -.0683076 -.0193946
CHILDLO6 | -.5841503 .0744923 -7.842 0.000 -.7301525 -.4381482
CHILDL16 | -.1359097 .0792359 -1.715 0.086 -.2912092 .0193897
MARRIED | -.0076543 .0631618 -0.121 0.904 -.1314492 .1161407
ETHBLACK | -.2780887 .081101 -3.429 0.001 -.4370436 -.1191337
ETHHISP | -.0191608 .1055466 -0.182 0.856 -.2260284 .1877068
_cons | .673472 .2712267 2.483 0.013 .1418775 1.205066

WORKING is a binary variable equal to 1 if the respondent was working
in 1994, 0 otherwise. CHILDLO6 is a dummy variable equal to 1 if there
was a child aged less than 6 in the household, 0 otherwise. CHILDL16 is
a dummy variable equal to 1 if there was a child aged less than 16, but
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no child less than 6, in the household, 0 otherwise. MARRIED is equal to 1 if
the respondent was married with spouse present, 0 otherwise. The remaining
variables are as described in EAEF Regression Exercises. The mean values of the
variables are given in the output below:
. sum WORKING S AGE CHILDLO6 CHILDL16 MARRIED ETHBLACK ETHHISP if MALE==0

Variable | Obs Mean Std. Dev. Min Max
_________ +_____________________________________________________
WORKING | 2726 .7652238 .4239366 0 1
S | 2726 13.30998 2.444771 0 20

AGE | 2726 17.64637 2.24083 14 22
CHILDLO6 | 2726 .3991196 .4898073 0 1
CHILDL16 | 2726 .3180484 .4658038 0 1
MARRIED | 2726 .6228907 .4847516 0 1
ETHBLACK | 2726 .1305943 .3370179 0 1
ETHHISP | 2726 .0722671 .2589771 0 1

Calculate the marginal effects and discuss whether they are plausible. [The
data set and a description are posted on the website.]

Answer:

The marginal effects are calculated in the table below. As might be expected,
having a child aged less than 6 has a large adverse effect, very highly
significant. Schooling also has a very significant effect, more educated
mothers making use of their investment by tending to stay in the labour force.
Age has a significant negative effect, the reason for which is not obvious (the
respondents were aged 29 — 36 in 1994). Being black also has an adverse
effect, the reason for which is likewise not obvious. (The WORKING variable
is defined to be 1 if the individual has recorded hourly earnings of at least

$3. If the definition is tightened to also include the requirement that the
employment status is employed, the latter effect is smaller, but still significant
at the 5 per cent level.)

Variable Mean b Meanxb 2 bf(Z)
S 13.3100 0.0893 1.1886 0.2969 0.0265
AGE 17.6464 -0.0439 -0.7747 0.2969 -0.0130

CHILDO6 0.3991  -0.5842 -0.2332  0.2969  -0.1735
CHILDL16 0.3180  -0.1359 -0.0432  0.2969  -0.0404
MARRIED 0.6229  -0.0077 -0.0048 0.2969  -0.0023
ETHBLACK  0.1306  -0.2781 -0.0363 0.2969  -0.0826
ETHHISP 0.0723  -0.0192 -0.0014  0.2969  -0.0057
constant 1.0000 0.6735 0.6735

Total 0.7685

10.9

Using the CES data set, perform a tobit regression of expenditure on your
commodity on total household expenditure per capita and household size, and
compare the slope coefficients with those obtained in OLS regressions including
and excluding observations with 0 expenditure on your commodity.

Answer:

The table gives the number of unconstrained observations for each category
of expenditure and the slope coefficients and standard errors from an OLS
regression using the unconstrained observations only, the OLS regression
using all the observations, and the tobit regression. As may be expected, the
discrepancies between the tobit estimates and the OLS estimates are greatest
for those categories with the largest numbers of constrained observations.
In the case of categories such as FDHO, SHEL, TELE, and CLOT, there is very
210 little difference between the tobit and the OLS estimates.
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Comparison of OLS and tobit regressions

OLS, all cases OLS, no 0 cases tobit
n EXPPC SIZE EXPPC SIZE EXPPC SIZE

0.0317 | -132.221 0.0317 | -133.775 0.0317 | -132.054
FDHO 868

(0.0027) | (15.230) | (0.0027) | (15.181) | (0.0027) | (15.220)

0.0488 5.342 0.0476 -2.842 0.0515 16.887
EDAW 827

(0.0025) | (14.279) | (0.0027) | (15.084) | (0.0026) | (14.862)

0.2020 | -113.011 0.2017 | -113.677 | 0.2024 | -112.636
HOUS 867

(0.0075) | (42.240) | (0.0075) | (42.383) | (0.0075) | (42.256)

0.0147 -40.958 0.0145 -43.073 0.0149 -40.215
TELE 858

(0.0014) (7.795) (0.0014) (7.833) (0.0014) (7.862)

0.0178 16.917 0.0243 -1.325 0.0344 71.555
DOM 454

(0.0034) | (19.250) | (0.0060) | (35.584) | (0.0055) | (31.739)

0.0078 7.896 0.0115 5.007 0.0121 28.819
TEXT 482

(0.0006) (3.630) (0.0011) (6.431) (0.0010) (5.744)

0.0135 5.030 0.0198 -43.117 0.0294 62.492
FURN 329

(0.0015) (8.535) (0.0033) | (21.227) | (0.0033) | (19.530)

0.0066 3.668 0.0124 -25.961 0.0165 46.113
MAPP 244

(0.0008) (4.649) (0.0022) | (13.976) | (0.0024) | (14.248)

0.0015 -1.195 0.0017 -7.757 0.0028 4.247
SAPP 467

(0.0002) (1.197) (0.0004) (2.009) (0.0004) (2.039)

0.0421 25.575 0.0414 21.831 0.0433 30.945
CLOT 847

(0.0021) | (11.708) | (0.0021) | (12.061) | (0.0021) | (11.946)

0.0035 0.612 0.0034 -3.875 0.0041 3.768
FOOT 686

(0.0003) (1.601) (0.0003) (1.893) (0.0003) (1.977)

0.0212 -16.361 0.0183 -42.594 0.0229 -7.883
GASO 797

(0.0015) (8.368) (0.0015) (8.732) (0.0016) (9.096)

0.0210 15.862 0.0263 -13.063 0.0516 92.173
TRIP 309

(0.0018) | (10.239) | (0.0044) | (27.150) | (0.0042) | (24.352)

-0.0007 -6.073 -0.0005 | -23.839 | -0.0039 -9.797
LOCT 172

(0.0004) (2.484) (0.0018) (9.161) (0.0019) (9.904)

0.0205 | -162.500 | 0.0181 -178.197 | 0.0220 | -160.342
HEAL 821

(0.0036) | (20.355) | (0.0036) | (20.804) | (0.0037) | (21.123)

0.0754 58.943 0.0743 48.403 0.0806 87.513
ENT 824

(0.0044) | (24.522) | (0.0046) | (26.222) | (0.0045) | (25.611)

0.0329 33.642 0.0337 23.969 0.0452 91.199
FEES 676

(0.0025) | (14.295) | (0.0032) | (19.334) | (0.0031) | (17.532)

0.0081 9.680 0.0095 -5.894 0.0117 35.529
TOYS 592

(0.0008) (4.599) (0.0011) (6.205) (0.0011) (6.381)

0.0054 -8.202 0.0050 -12.491 0.0061 -6.743
READ 764

(0.0004) (1.998) (0.0004) (2.212) (0.0004) (2.233)

0.0114 17.678 0.0235 | -108.177 | 0.0396 329.243
EDUC 288

(0.0029) | (16.152) | (0.0088) | (47.449) | (0.0072) | (42.401)

0.0013 -17.895 0.0057 -48.865 0.0007 -13.939
TOB 368

(0.0009) (4.903) (0.0016) (8.011) (0.0019) | (10.736)
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10.12

Show that the tobit model may be regarded as a special case of a selection
bias model.

Answer:

The selection bias model may be written
B =5,+).6,0,+¢
j=2

k
Yo =B B, +u,
=
Y, =Y for B, >0,
Y, is not observed  for B; <0

where the Q variables determine selection. The tobit model is the special
case where the Q variables are identical to the X variables and B* is the
same as Y*.

10.14

An event is hypothesised to occur with probability p. In a sample of
n observations, it occurred m times. Demonstrate that the maximum
likelihood estimator of p is m/n.

Answer:

In each observation where the event did occur, the probability was p. In
each observation where it did not occur, the probability was (1 — p). Since
there were m of the former and n — m of the latter, the joint probability
was p"(1—- p)"™. Reinterpreting this as a function of p, given m and n, the
log-likelihood function for p is

log L(p) = mlog p +(n— m)log(1 - p).

Differentiating with respect to p, we obtain the first-order condition for a
minimum:

dlogL(p):ﬂ_n—m ~0

dp p l-p

This yields p = m/n. We should check that the second differential is
negative and that we have therefore found a maximum. The second
differential is

d’logL(p)  m n-m

de p2 (1_p)2 .

Evaluated at p = m/n,

d2]ogL(p) _ﬁ_ n—m :_nz[l 1 j
2

G
n

This is negative, so we have indeed chosen the value of p that maximises
the probability of the outcome.
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10.19

Returning to the example of the random variable X with unknown mean
u and variance ¢, the log-likelihood for a sample of n observations was
given by equation (10.34):

n n 1 1 1
logL=——log2r ——logo? +—| ——(X, —pu)* —...—— (X, — p)* |.
g 5 log 5 log 62[ 2( ) 2( )]

The first-order condition for x produced the ML estimator of ¢ and the first
order condition for ¢ then yielded the ML estimator for ¢. Often, the variance
is treated as the primary dispersion parameter, rather than the standard
deviation. Show that such a treatment yields the same results in the present
case. Treat o2 as a parameter, differentiate log L with respect to it, and solve.

Answer:
dlogL n 1 1 2 1 2
= —| ——(X, - - ——(X - =0.
602 20_2 0_4 ( 2( 1 /J) 2( n /’l)
Hence

ot = (X, = ) et (X, ~ 00

as before. The ML estimator of u is X as before.

In Exercise 10.4, log L is -1485.62. Compute the pseudo-R* and confirm
that it is equal to that reported in the output.

Answer:
As defined in equation (10.43),
logl

| _ ~1403.0835
log L, ~1485.6248

as appears in the output.

pseudo-R? =1 - = 0.0556,

10.20

In Exercise 10.4, compute the likelihood ratio statistic 2(log L —log L),
confirm that it is equal to that reported in the output, and perform the
likelihood ratio test.

Answer:

The likelihood ratio statistic is 2(-=1403.0835 + 1485.6248) = 165.08,

as printed in the output. Under the null hypothesis that the coefficients
of the explanatory variables are all jointly equal to 0, this is distributed

as a chi-squared statistic with degrees of freedom equal to the number of
explanatory variables, in this case 7. The critical value of chi-squared at
the 0.1 per cent significance level with 7 degrees of freedom is 24.32, and
so we reject the null hypothesis at that level.

Answers to the additional exercises

A10.1

In the case of FDHO and HOUS there were too few non-purchasing

households to undertake the analysis sensibly (one and two, respectively).

The results for the logit analysis and the probit analysis were very similar.
The linear probability model also yielded similar results for most of

Chapter 10: Binary choice
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the commodities, the coefficients being similar to the logit and probit
marginal effects and the t statistics being of the same order of magnitude
as the z statistics for the logit and probit. However for those categories
of expenditure where most households made purchases, and the sample
was therefore greatly imbalanced, the linear probability model gave very
different results, as might be expected.

The total expenditure of the household and the size of the household were
both highly significant factors in the decision to make a purchase for all
the categories of expenditure except TELE, LOC and TOB. In the case of
TELE, only 11 households did not make a purchase, the reasons apparently
being non-economic. LOCT is on the verge of being an inferior good and
for that reason is not sensitive to total expenditure. TOB is well-known not
to be sensitive to total expenditure.

Age was a positive influence in the case of TRIP, HEAL, and READ and a
negative one for FDAW, FURN, FOOT, TOYS, EDUC, and TOB.

A college education was a positive influence for TRIP, HEAL, READ and
EDUC and a negative one for TOB.

Most of these effects seem plausible with simple explanations.

Linear probability model, dependent variable CATBUY

EXPPC x 10 SIZE REFAGE COLLEGE ;fj;i;;gly
n b, t b, t b, t b, t <0 >1
FDHO 868 -0.0002 -0.16 0.005 052 -0.0001 -0.90 00017 068 0 288
FDAW 827 00518 563 00181 337 -0.0018 -398 00101 068 0 173
HOUS 867 00025 119 00000 002 -0.0000 -0.43 00029 083 0 181
TELE 858 0.0092 185 00060 206 00004 166 00123 153 0 136
DOM 454 00926 422 00433 339 00019 184 00850 240 0 0
TEXT 482 01179 551 00690 552 -0.0019 -1.80 00227 066 0 5
FURN 320 01202 575 00419 343 -0.0036 -3.61 -0.0050 -0.15 0 0
MAPP 244 00930 471 00540 469 00012 125 00049 015 0 0
SAPP 467 01206 559 00655 520 -00012 -1.18 00174 050 0 4
CLOT ~ 847 00316 460 00121 3.02 -0.0008 -2.30 00028 025 0 176
FOOT 686 00838 475 00444 431 -0.0028 -3.29 -0.0283 -0.99 0 12
GASO 797 0.0658 556 00374 542 -0.0013 -2.25 00222 116 0 119
TRIP 309 02073 10.65 00599 527 00027 289 01608 511 0 5
LOCT 172 -0.0411 -232 -0.0040 -0.39 -0.0011 -1.29 00109 038 1 0
HEAL 821 00375 379 00162 281 00030 639 00466 291 0 137
ENT 824 00495 526 00255 464 -0.0017 -3.75 00350 230 0 207
FEES 676 01348 820 00615 641 -0.0029 -361 01901 715 0 121
TOYS 592 0.0908 478 00854 7.70 -0.0055 -5.96 00549 179 0 32
READ 764 00922 6.64 00347 428 00018 267 01006 448 0 105
EDUC 288 00523 282 01137 1051 -0.0041 -461 01310 437 57 2
TOB 368 -0.0036 -0.17 00153 121 -0.0033 -3.12 01721 492 0 0
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Logit model, dependent variable CATBUY

EXPPC x 10* SIZE REFAGE COLLEGE

n b, Z b, Z b, Z b, Z
FDHO - - - - - - - - -
FDAW 827 3.6456 5.63 0.6211 3.43 -0.0338 -2.90 0.0141 0.03
HOUS - - - - - - - - -
TELE 858 1.2314 1.83 0.6355 2.10 0.0330 1.83 1.1932 1.46
DOM 454 0.3983 4.09 0.1817 3.37 0.0081 1.85 0.3447 2.34
TEXT 482  0.5406 5.22 0.3071 5.32 -0.0075 -1.68 0.0823 0.55
FURN 329 0.5428 544 0.1904 3.46 -0.0173 -3.68 -0.0227 -0.15
MAPP 244  0.4491 454 0.2648 4.57 0.0059 1.17  0.0300 0.18
SAPP 467 0.5439 5.30 0.2855 5.05 -0.0049 -1.11 0.0597 0.40
CLOT 847 47446 4.68 08642 3.16 -0.0213 -1.38 -0.1084 -0.19
FOOT 686  0.6281 4.49 03162 4.18 -0.0152 -2.86 -0.2277 -1.22
GASO 797  1.5214 5.18 0.7604 520 -0.0084 -1.07 0.2414 0.79
TRIP 309 1.0768 9.02 0.3137 5.22  0.0143 2.80 0.7728 4.74
LOCT 172 -0.2953 -2.31 -0.0294 -0.46 -0.0069 -1.28 0.0788 0.43
HEAL 821 1.1577 3.49 0.3510 2.83  0.0620 5.65 0.9372 2.64
ENT 824 26092 496 09863 4.45 -0.0209 -1.89 1.0246 2.01
FEES 676 15529 755 05275 6.10 -0.0140 -2.43  1.4393 6.24
TOYS 592 0.5087 4.38 05351 7.02 -0.0240 -4.85 0.2645 1.54
READ 764  1.8601 6.59 0.4632 4.78  0.0202 2.99 1.1033 3.97
EDUC 288 0.3311 3.21 0.6053 9.17 -0.0283 -5.05 0.7442 4.34
TOB 368 -0.0163 -0.18 0.0637 1.19 -0.0139 -3.09 -0.7260 -4.82
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Probit model, dependent variable CATBUY

EXPPC x 10 SIZE REFAGE COLLEGE

n b, 2 b, Z b, 2 b, Z
FDHO - - - - - - - - -
FDAW 827 1.6988 5.72 0.2951 3.55 -0.0172 -3.03  0.0182 0.09
HOUS - - - - - - - - -
TELE 858 0.5129 193 0.2630 2.14  0.0135 1.79 0.5130 1.59
DOM 454  0.2467 4.16 0.1135 3.42 0.0051 1.86 0.2160 2.36
TEXT 482 0.3257 5.32 0.1841 5.44 -0.0046  -1.69 0.0606 0.65
FURN 329 0.3348 5.54 0.1168 3.46 -0.0103 -3.64 -0.0145 -0.15
MAPP 244 0.2770 4.62 0.1628 4.65 0.0035 1.19 0.0174 0.18
SAPP 467 0.3252 543 0.1733 5.12 -0.0031 -1.11 0.0423 0.46
CLOT 847  2.0167 4.63 0.4036 3.31 -0.0086 -1.21  0.0428 0.16
FOOT 686 0.3296 4.48 0.1635 4.17 -0.0088 -2.89 -0.1105 -1.04
GASO 797 0.6842 5.25 0.2998 5.08 -0.0065 -1.62 0.1452 0.96
TRIP 309 0.6121 9.63 0.1791 5.05 0.0082 2.73 0.4806 4.98
LOCT 172 -0.1556 -2.31 -0.0141 -0.39 -0.0039 -1.28  0.0448 0.43
HEAL 821 0.4869 3.65 0.1506 2.69 0.0301 5.67 0.4195 2.54
ENT 824 13386 5.10 0.4519 4.53 -0.0116 -2.10  0.4932 2.09
FEES 676 0.8299 7.82 0.2806 6.36 -0.0088 -2.66 0.8151 6.59
TOYS 592 0.2849 448 03091 7.35 -0.0149 -5.08 0.1694 1.67
READ 764  0.7905 6.67 0.2188 4.58 0.0107 292 0.5887 4.20
EDUC 288 0.1917 3.11 0.3535 9.51 -0.0168 -5.12 0.4417 4.37
TOB 368 -0.0106 -0.18 0.0391 1.18 -0.0086 -3.10 -0.4477 -4.84
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Comparison of marginal effects
n EXPPC4 SIZE REFAGE COLLEGE
FDAW 827 LPM 0.0518**  0.0181**  —-0.0018** 0.0101
Logit  0.0240**  0.0041** -0.0002** 0.0001
Probit  0.0260**  0.0045**  —0.0003** 0.0003
TELE 858 LPM 0.0092 0.0060* 0.0004 0.0123
Logit 0.0078 0.0040* 0.0002 0.0076
Probit 0.0087 0.0044* 0.0002 0.0087

DOM 454 LPM 0.0926**  0.0433** 0.0019 0.0850*
Logit 0.0993**  0.0453** 0.0020 0.0860*
Probit  0.0982**  0.0452** 0.0020 0.0860*

TEXT 482 LPM 0.1179**  0.0690** -0.0019 0.0227
Logit 0.1332**  0.0757** -0.0018 0.0203
Probit  0.1286**  0.0727** -0.0018 0.0239
FURN 329 LPM 0.1202**  0.0419**  -0.0036**  -0.0050
Logit 0.1265**  0.0444**  -0.0040**  -0.0053
Probit  0.1266**  0.0441**  -0.0039**  -0.0055
MAPP 244 LPM 0.0930**  0.0540** 0.0012 0.0049
Logit 0.0893**  0.0526** 0.0012 0.0060
Probit  0.0923**  0.0543** 0.0012 0.0058
SAPP 467 LPM 0.1206**  0.0655** -0.0012 0.0174
Logit 0.1350**  0.0709** -0.0012 0.0148
Probit  0.1291**  0.0688** -0.0012 0.0168
CLOT 847 LPM 0.0316**  0.0121**  -0.0008* 0.0028
Logit 0.0071**  0.0013** 0.0000 -0.0002
Probit  0.0063**  0.0013** 0.0000 0.0001
FOOT 686 LPM 0.0838**  0.0444**  -0.0028**  -0.0283
Logit 0.0969**  0.0488**  -0.0023**  —0.0351
Probit  0.0913**  0.0453** -0.0024**  -0.0306

* significant at 5 per cent level, ** at 1 per cent level, two-tailed tests
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Comparison of marginal effects (continued)

n EXPPC4 SIZE REFAGE COLLEGE
GASO 797 LPM 0.0658**  0.0374** -0.0013* 0.0222
Logit 0.0622**  0.0311** -0.0003 0.0099
Probit 0.0707**  0.0310** -0.0007 0.0150
TRIP 309 LPM 0.2073**  0.0599** 0.0027** 0.1608**
Logit 0.2408**  0.0702** 0.0032** 0.1728%**
Probit 0.2243**  0.0656** 0.0030** 0.1761**
LOCT 172 LPM -0.0411~ —-0.0040 -0.0011 0.0109
Logit —0.0463* —0.0046 -0.0011 0.0124
Probit  -0.0430* -0.0039 -0.0011 0.0124
HEAL 821 LPM 0.0375**  0.0162** 0.0030** 0.0466**
Logit 0.0318**  0.0096** 0.0017** 0.0257**
Probit 0.0339**  0.0105** 0.0021** 0.0292*
ENT 824 LPM 0.0495**  0.0255**  -0.0017** 0.0350*
Logit 0.0229**  0.0086** -0.0002 0.0090*
Probit 0.0251**  0.0085**  —0.0002* 0.0092%*
FEES 676 LPM 0.1348**  0.0615**  -0.0029** 0.1901**
Logit 0.1765**  0.0600** -0.0016* 0.1636**
Probit 0.1878**  0.0635**  -0.0020** 0.1845**
TOYS 592 LPM 0.0908**  0.0854**  -0.0055** 0.0549
Logit 0.1029**  0.1083**  -0.0049** 0.0535
Probit 0.0974**  0.1057**  -0.0051** 0.0579
READ 764 LPM 0.0922**  0.0347** 0.0018** 0.1006**
Logit 0.1084**  0.0270** 0.0012** 0.0643**
Probit 0.1124**  0.0311** 0.0015** 0.0837**
EDUC 288 LPM 0.0523**  0.1137**  -0.0041** 0.1310**
Logit 0.0673**  0.1230**  -0.0058** 0.1512**
Probit 0.0654**  0.1206**  -0.0057** 0.1508**
TOB 368 LPM -0.0036 0.0153 -0.0033**  -0.1721**
Logit —-0.0040 0.0155 -0.0034**  -0.1769**
Probit —-0.0042 0.0153 -0.0034**  -0.1751**

* significant at 5 per cent level, ** at 1 per cent level, two-tailed tests

A10.2

The finding that the marginal effect of educational attainment was lower

for males than for females over most of the range S > 9 is plausible

because the probability of working is much closer to 1 for males than for
females for S > 9, and hence the possible sensitivity of the participation
rate to S is smaller.

The explanation of the finding that the marginal effect of educational
attainment decreases with educational attainment for both males and

females over the range S > 9 is similar. For both sexes, the greater is S, the
greater is the participation rate, and hence the smaller is the scope for it
being increased by further education.



The OLS estimates of the marginal effect of educational attainment

are given by the slope coefficients and they are very similar to the logit
estimates at the mean, the reason being that most of the observations on S
are confined to the middle part of the sigmoid curve where it is relatively
linear.

A10.3

Discuss whether the relationships indicated by the probability and
marginal effect curves appear to be plausible.

The probability curve indicates an inverse relationship between
schooling and the probability of being obese. This seems entirely
plausible. The more educated tend to have healthier lifestyles,
including eating habits. Over the relevant range, the marginal effect
falls a little in absolute terms (is less negative) as schooling increases.
This is in keeping with the idea that further schooling may have less
effect on the highly educated than on the less educated (but the
difference is not large).

Add the probability function and the marginal effect function for the LPM
to the diagram. Explain why you drew them the way you did.

0.7 0.000
0.6 +— -0.004
. “\probability
8 05 T -0.008
Q S
[s] LNy -
= ERNN 3
S 04 \ -0.012 &
o s
Y ©
S £
203 0.016 2
= ©
S Y £
Qo
S 0.2 s -0.020
O e e e e e e e e e e e e e e e e A e e e MY
marginal effec/
0.1 -0.024
0 e S R S S — -0.028
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
years of schooling
Figure 10.6

The estimated probability function for the LPM is just the regression
equation and the marginal effect is the coefficient of S. They are shown
as the dashed lines in the diagram.

The logit model is considered to have several advantages over the LPM.
Explain what these advantages are. Evaluate the importance of the
advantages of the logit model in this particular case.

The disadvantages of the LPM are (1) that it can give nonsense fitted
values (predicted probabilities greater than 1 or less than 0); (2) the
disturbance term in observation i must be equal to either — 1 - F(Z)

(if the dependent variable is equal to 1) or — F(Z) (if the dependent
variable is equal to 0) and so it violates the usual assumption that

the disturbance term is normally distributed, although this may not
matter asymptotically; (3) the disturbance term will be heteroscedastic
because Z is different for different observations; (4) the LPM implicitly
assumes that the marginal effect of each explanatory variable is
constant over its entire range, which is often intuitively unappealing.
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A104

In this case, nonsense predictions are clearly not an issue. The
assumption of a constant marginal effect does not seem to be a
problem either, given the approximate linearity of the logit F (Z )

The LPM is fitted using OLS. Explain how, instead, it might be fitted using
maximum likelihood estimation:

Write down the probability of being obese for any obese individual, given
S, for that individual, and write down the probability of not being obese
for any non-obese individual, again given S, for that individual.

Obese: p° =p, + f3,S,; not obese: p° =1-p - B,S,

Write down the likelihood function for this sample of 164 obese
individuals and 376 non-obese individuals.

LB, poldata) = [Tp° T1rM°=T108+55) []0-5 -5S.)

OBESE NOT OBESE OBESE NOT OBESE

Explain how one would use this function to estimate the parameters.
[Note: You are not expected to attempt to derive the estimators of the
parameters. ]

You would use some algorithm to find the values of f, and f$, that
maximises the function.

Explain whether your maximum likelihood estimators will be the same or
different from those obtained using least squares.

Least squares involves finding the extremum of a completely different
expression and will therefore lead to different estimators.

Explain how one may derive the marginal effects of the explanatory
variables on the probability of having a child less than 6 in the household,
and calculate for both males and females the marginal effects at the
means of AGE and S.

Since p is a function of Z, and Z is a linear function of the X variables,
the marginal effect of X is

& _dp 0Z g,
ox, dzox, dz"’
where f, is the coefficient of X; in the expression for Z. In the case
of probit analysis, p = F(Z) is the cumulative standardised normal
distribution. Hence dp/dZ is just the standardised normal distribution.

For males, this is 0.368 when evaluated at the means. Hence the
marginal effect of AGE is 0.368*-0.137 = —-0.050 and that of S is
0.368%0.132 = 0.049. For females the corresponding figures are
0.272*%-0.154= -0.042 and 0.272*0.094 = 0.026, respectively. So for
every extra year of age, the probability is reduced by 5.0 per cent for
males and 4.2 per cent for females. For every extra year of schooling,
the probability increases by 4.9 per cent for males and 2.6 per cent for
females.

Explain whether the signs of the marginal effects are plausible. Explain
whether you would expect the marginal effect of schooling to be higher for
males or for females.



A10.5

Yes. Given that the cohort is aged 35-42, the respondents have passed
the age at which most adults start families, and the older they are, the
less likely they are to have small children in the household. At the same
time, the more educated the respondent, the more likely he or she is

to have started having a family relatively late, so the positive effect

of schooling is also plausible. However, given the age of the cohort,

it is likely to be weaker for females than for males, given that most
females intending to have families will have started them by this time,
irrespective of their education.

* At a seminar someone asks the researcher whether the marginal effect of

S is significantly different for males and females. The researcher does not
know how to test whether the difference is significant and asks you for
advice. What would you say?

Fit a probit regression for the combined sample, adding a male
intercept dummy and male slope dummies for AGE and S. Test the
coefficient of the slope dummy for S.

The Z function will be of the form

Z=p+BA+BS+BAS

op dp oZ
; DL _D I _ r(Z) B, + B.S
so the marginal effects are oA d7Z od S(Z) P, + B4S) and
op dp oZ
—=——=f( + 3, A) . Both factors depend on the values of A
S~ 47 &S J ()P + BaA) P

and/or S, but the marginal effects could be evaluated for a representative
individual using the mean values of A and S in the sample.

A10.6

* Discuss the conclusions one may reach, given the probit output and the

table, commenting on their plausibility.

Being male has a small but highly significant negative effect. This
is plausible because males tend to marry later than females and the
cohort is still relatively young.

Age has a highly significant positive effect, again plausible because
older people are more likely to have married than younger people.

Schooling has no apparent effect at all. It is not obvious whether this is
plausible.

Cognitive ability has a highly significant positive effect. Again, it is not
obvious whether this is plausible.

The researcher considers including CHILD, a dummy variable defined to
be 1 if the respondent had children, and O otherwise, as an explanatory
variable. When she does this, its z-statistic is 33.65 and its marginal effect
0.5685. Discuss these findings.

Obviously one would expect a high positive correlation between being
married and having children and this would account for the huge and
highly significant coefficient. However getting married and having
children are often a joint decision, and accordingly it is simplistic

to suppose that one characteristic is a determinant of the other. The
finding should not be taken at face value.

Chapter 10: Binary choice

221



20 Elements of econometrics

A10.7

Determine the maximum likelihood estimate of o, assuming that f is known.

The loglikelihood function is

logL(a ,B,Tl,...,Tn):nloga —aZ(Ti -B)

Setting the first derivative with respect to a equal to zero, we have

23 -p)=0

and hence
1

a== .
r-p
The second derivative is —n/a?, which is negative, confirming we have
maximised the loglikelihood function.

A10.8

From the solution to Exercise 10.14, the log-likelihood function for p is
log L(p) = mlog p +(n —m)log(l - p)*

Thus the LR statistic is

Lk =2 o 1= 12| |- o o -t ,)

) Z[m log[ mp/on J - m)]og( 11—_n; /On B .

If m = 40 and n = 100, the LR statistic for H: p = 0.5 is

LR =2| 40log 04 + 601log 06 =4.03.
0.5 0.5

We would reject the null hypothesis at the 5 per cent level (critical value
of chi-squared with one degree of freedom 3.84) but not at the 1 per cent
level (critical value 6.64).

A10.9

The first derivative of the log-likelihood function is

dlogL(p):ﬂ_n—m _0

dp p 1-p

and the second differential is

a 10gL(p)_ m  n—m
2 -T2

ar P’ (1-p)

Evaluated at p = m/n,

d*logL(p) _nz_n—m:_nz(l ! j:_ "’

)
n
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The variance of the ML estimate is given by

()] () "

The Wald statistic is therefore

n)] (2-n]

mn—m) ~ lmn-—m
i’l3 nn n
(0.4-0.5)
Given the data, this is equal to 1— =4.17.
—x0.4%x0.6
100

Under the null hypothesis this has a chi-squared distribution with one

degree of freedom, and so the conclusion is the same as in Exercise A.8.
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Chapter 11: Models using time series
data

Overview

This chapter introduces the application of regression analysis to time
series data, beginning with static models and then proceeding to dynamic
models with lagged variables used as explanatory variables. It is shown
that multicollinearity is likely to be a problem in models with unrestricted
lag structures and that this provides an incentive to use a parsimonious
lag structure, such as the Koyck distribution. Two models using the Koyck
distribution, the adaptive expectations model and the partial adjustment
model, are described, together with well-known applications to aggregate
consumption theory, Friedman’s permanent income hypothesis in the case
of the former and Brown’s habit persistence consumption function in the
case of the latter. The chapter concludes with a discussion of prediction
and stability tests in time series models.

Learning outcomes

After working through the corresponding chapter in the textbook, studying
the corresponding slideshows, and doing the starred exercises in the
textbook and the additional exercises in this guide, you should be able to:

* explain why multicollinearity is a common problem in time series
models, especially dynamic ones with lagged explanatory variables

* describe the properties of a model with a lagged dependent variable
(ADL(1,0) model)

* describe the assumptions underlying the adaptive expectations and
partial adjustment models

* explain the properties of OLS estimators of the parameters of ADL(1,0)
models

* explain how predetermined variables may be used as instruments in
the fitting of models using time series data

* explain in general terms the objectives of time series analysts and those
constructing VAR models

Additional exercises

A11.1

The output below shows the result of linear and logarithmic regressions of
expenditure on food on income, relative price, and population (measured
in thousands) using the Demand Functions data set, together with

the correlations among the variables. Provide an interpretation of the
regression coefficients and perform appropriate statistical tests.
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Dependent Variable:

Sample: 1959 2003

FOOD
Method: Least Squares

Included observations:

45

Variable Coefficient Std. Error t-Statistic Prob.
C -19.49285 88.86914 -0.219343 0.8275
DPI 0.031713 0.010658 2.975401 0.0049
PRELFOOD 0.403356 0.365133 1.104681 0.2757
POP 0.001140 0.000563 2.024017 0.0495
R-squared 0.988529 Mean dependent var 422.0374
Adjusted R-squared 0.987690 S.D. dependent var 91.58053
S.E. of regression 10.16104 Akaike info criteri7.559685
Sum squared resid 4233.113 Schwarz criterion 7.720278
Log likelihood -166.0929 F-statistic 1177.745
Durbin-Watson stat 0.404076 Prob (F-statistic) 0.000000
Dependent Variable: LGFOOD
Method: Least Squares
Sample: 1959 2003
Included observations: 45
Variable Coefficient Std. Error t-Statistic Prob.
C 5.293654 2.762757 1.916077 0.0623
LGDPI 0.589239 0.080158 7.351014 0.0000
LGPRFOOD -0.122598 0.084355 -1.453361 0.1537
LGPOP -0.289219 0.258762 -1.117706 0.2702
R-squared 0.992245 Mean dependent var 6.021331
Adjusted R-squared 0.991678 S.D. dependent var 0.222787
S.E. of regression 0.020324 Akaike info criter-4.869317
Sum squared resid 0.016936 Schwarz criterion -4.708725
Log likelihood 113.5596 F-statistic 1748.637
Durbin-Watson stat 0.488502 Prob (F-statistic) 0.000000
Correlation Matrix
LGFOOD LGDPI LGPRFOOD LGPOP
LGFOOD 1.000000 0.995896 -0.613437 0.990566
LGDPI 0.995896 1.000000 -0.604658 0.995241
LGPRFOOD -0.613437 -0.604658 1.000000 -0.641226
LGPOP 0.990566 0.995241 -0.641226 1.000000

A11.2

Perform regressions parallel to those in Exercise A11.1 using your category
of expenditure and provide an interpretation of the coefficients.

A11.3

The output shows the result of a logarithmic regression of expenditure
on food per capita, on income per capita, both measured in US$ million,
and the relative price index for food. Provide an interpretation of the
coefficients, demonstrate that the specification is a restricted version of
the logarithmic regression in Exercise A11.1, and perform an F test of the

restriction.
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Dependent Variable: LGFOODPC
Method: Least Squares
Sample: 1959 2003

Included observations: 45

Variable Coefficient Std. Error t-Statistic Prob.

C -5.425877 0.353655 -15.34231 0.0000

LGDPIPC 0.280229 0.014641 19.14024 0.0000
LGPRFOOD 0.052952 0.082588 0.641160 0.5249
R-squared 0.927348 Mean dependent var-6.321984
Adjusted R-squared 0.923889 S.D. dependent var 0.085249
S.E. of regression 0.023519 Akaike info criter-4.597688
Sum squared resid 0.023232 Schwarz criterion -4.477244
Log likelihood 106.4480 F-statistic 268.0504
Durbin-Watson stat 0.417197 Prob (F-statistic) 0.000000

A114

Perform a regression parallel to that in Exercise A11.3 using your category
of expenditure. Provide an interpretation of the coefficients, and perform
an F test of the restriction.

A11.5

The output shows the result of a logarithmic regression of expenditure on
food per capita, on income per capita, the relative price index for food,
and population. Provide an interpretation of the coefficients, demonstrate
that the specification is equivalent to that for the logarithmic regression in
Exercise A11.1, and use it to perform a t test of the restriction in Exercise
All.3.

Dependent Variable: LGFOODPC
Method: Least Squares
Sample: 1959 2003

Included observations: 45

Variable Coefficient Std. Error t-Statistic Prob.

C 5.293654 2.762757 1.916077 0.0623

LGDPIPC 0.589239 0.080158 7.351014 0.0000
LGPRFOOD -0.122598 0.084355 -1.453361 0.1537
LGPOP -0.699980 0.179299 -3.903973 0.0003
R-squared 0.947037 Mean dependent var-6.321984
Adjusted R-squared 0.943161 S.D. dependent var 0.085249
S.E. of regression 0.020324 Akaike info criter-4.869317
Sum squared resid 0.016936 Schwarz criterion -4.708725
Log likelihood 113.5596 F-statistic 244 .3727
Durbin-Watson stat 0.488502 Prob (F-statistic) 0.000000

A11.6

Perform a regression parallel to that in Exercise A11.5 using your category
of expenditure, and perform a t test of the restriction implicit in the
specification in Exercise A11.4.
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A11.7
In Exercise 11.9 you fitted the model
LGCAT = f, + B,LGDPI + B, LGDPI(~1)+ 8,LGPRCAT + B,LGPRCAT(~1)+ u
where CAT stands for your category of expenditure.

* Show that (8, + #,) and (8, + f3;) are theoretically the long-run
(equilibrium) income and price elasticities.

* Reparameterise the model and fit it to obtain direct estimates of these
long-run elasticities and their standard errors.

* Confirm that the estimates are equal to the sum of the individual short-
run elasticities found in Exercise 11.9.

* Compare the standard errors with those found in Exercise 11.9 and
state your conclusions.

A11.8

In a certain bond market, the demand for bonds, B,, in period t is negatively

related to the expected interest rate, i;,,, in period t + 1:

.o 1
Bt :ﬂl +ﬂ21t+1 +u, L

where u, is a disturbance term not subject to autocorrelation. The expected
interest rate is determined by an adaptive expectations process:

i, —i¢ = Ali, —if) )

where i, is the actual rate of interest in period t. A researcher uses the
following model to fit the relationship:

B, =y, + 0, + 7B +v, 3

where v, is a disturbance term.

* Show how this model may be derived from the demand function and the
adaptive expectations process.

* Explain why inconsistent estimates of the parameters will be obtained
if equation (3) is fitted using ordinary least squares (OLS). (A
mathematical proof is not required. Do not attempt to derive expressions
for the bias.)

* Describe a method for fitting the model that would yield consistent
estimates.

* Suppose that u, was subject to the first-order autoregressive process:

U, =pu, +¢&
where ¢, is not subject to autocorrelation. How would this affect your
answer to the second part of this question?

* Suppose that the true relationship was actually

B, =B, + B0, +u, 1%

with u, not subject to autocorrelation, and the model is fitted by
regressing B, on i, and B,_, as in equation (3), using OLS. How would
this affect the regression results?

* How plausible do you think an adaptive expectations process is for
modelling expectations in a bond market?
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A11.9

The output shows the result of a logarithmic regression of expenditure

on food on income, relative price, population, and lagged expenditure on
food using the Demand Functions data set. Provide an interpretation of
the regression coefficients, paying attention to both short-run and long-run
dynamics, and perform appropriate statistical tests.

Dependent Variable: LGFOOD

Method: Least Squares

Sample (adjusted) : 1960 2003

Included observations: 44 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C 1.487645 2.072156 0.717921 0.4771

LGDPI 0.143829 0.090334 1.592194 0.1194
LGPRFOOD -0.095749 0.061118 -1.566613 0.1253
LGPOP -0.046515 0.189453 -0.245524 0.8073

LGFOOD (-1) 0.727290 0.113831 6.389195 0.0000
R-squared 0.995886 Mean dependent var 6.030691
Adjusted R-squared 0.995464 S.D. dependent var 0.216227
S.E. of regression 0.014564 Akaike info criter-5.513937
Sum squared resid 0.008272 Schwarz criterion -5.311188
Log likelihood 126.3066 F-statistic 2359.938
Durbin-Watson stat 1.103102 Prob (F-statistic) 0.000000

A11.10

Perform a regression parallel to that in Exercise A11.9 using your category
of expenditure. Provide an interpretation of the coefficients, and perform
appropriate statistical tests.

A11.11

In his classic study Distributed Lags and Investment Analysis (1954), Koyck
investigated the relationship between investment in railcars and the
volume of freight carried on the US railroads using data for the period
1884-1939. Assuming that the desired stock of railcars in year t depended
on the volume of freight in year t—1 and year t-2 and a time trend, and
assuming that investment in railcars was subject to a partial adjustment
process, he fitted the following regression equation using OLS (standard
errors and constant term not reported):

I, =0.077 F_, +0.017F_,-0.0033t-0.110K R?>=0.85
where I, = K, - K,_, is investment in railcars in year t (thousands), K is the
stock of railcars at the end of year t (thousands), and F, is the volume of
freight handled in year t (ton-miles).
Provide an interpretation of the equation and describe the dynamic

process implied by it. (Note: It is best to substitute K, — K,_, for I in the
regression and treat it as a dynamic relationship determining K_.)

A11.12
Two researchers agree that a model consists of the following relationships:
Y=o +aX +u (@D)]
X =B +BY  +v, (2)
Z, =y, +70Y +7.X +7Q +w 3)
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where u,, v, and w,, are disturbance terms that are drawn from fixed
distributions with zero mean. It may be assumed that they are distributed
independently of Q, and of each other and that they are not subject to
autocorrelation. All the parameters may be assumed to be positive and it
may be assumed that .8, < 1.

e One researcher asserts that consistent estimates will be obtained if (2)
is fitted using OLS and (1) is fitted using IV, with Y, | as an instrument
for X.. Determine whether this is true.

* The other researcher asserts that consistent estimates will be obtained
if both (1) and (2) are fitted using OLS, and that the estimate of f, will
be more efficient than that obtained using IV. Determine whether this is
true.

Answers to the starred exercises in the textbook

11.6

Year Y K L Year Y K L

1899 100 100 100 1911 153 216 145
1900 101 107 105 1912 177 226 152
1901 112 114 110 1913 184 236 154
1902 122 122 118 1914 169 244 149
1903 124 131 123 1915 189 266 154
1904 122 138 116 1916 225 298 182
1905 143 149 125 1917 227 335 196
1906 152 163 133 1918 223 366 200
1907 151 176 138 1919 218 387 193
1908 126 185 121 1920 231 407 193
1909 155 198 140 1921 179 417 147
1910 159 208 144 1922 240 431 161

Source: Cobb and Douglas (1928)

The table gives the data used by Cobb and Douglas (1928) to fit the
original Cobb-Douglas production function:

Y, =B KLy,

Y, K, and L, being index number series for real output, real capital input,
and real labour input, respectively, for the manufacturing sector of the
United States for the period 1899-1922 (1899=100). The model was
linearised by taking logarithms of both sides and the following regressions
was run (standard errors in parentheses):

logY = -0.18 +0.23 log K + 0.81log L R*=0.96
(0.43) (0.06) (0.15)
Provide an interpretation of the regression coefficients.

Answer:

The elasticities of output with respect to capital and labor are 0.23 and
0.81, respectively, both coefficients being significantly different from zero
at very high significance levels. The fact that the sum of the elasticities

is close to one suggests that there may be constant returns to scale.
Regressing output per worker on capital per worker, one has



Chapter 11: Models using time series data
log% = 0.01+ 0.25 10g§ R? =0.63
(0.02) (0.04)
The smaller standard error of the slope coefficient suggests a gain in
efficiency. Fitting a reparameterised version of the unrestricted model
log% = -0.18 +0.23 log§ + 0.04logL R? = 0.64
(0.43) (0.06) (0.09)

we find that the restriction is not rejected.

11.7

The Cobb-Douglas model in Exercise 11.6 makes no allowance for the
possibility that output may be increasing as a consequence of technical
progress, independently of K and L. Technical progress is difficult to
quantify and a common way of allowing for it in a model is to include an
exponential time trend:

Y, = ﬂthﬂz Lf?}eptvt

where p is the rate of technical progress and t is a time trend defined to be
1 in the first year, 2 in the second, etc. The correlations between log K, log
L and t are shown in the table. Comment on the regression results.

logY = 2.81-0.53log K +0.91 log L + 0.047 ¢ R2 =0.97
(1.38)(0.34) (0.14) (0.021)
Correlation
LGK LGL TIME
LGK 1.000000 0.909562 0.996834
LGL 0.909562 1.000000 0.896344
TIME 0.996834 0.896344 1.000000
Answer:

The elasticity of output with respect to labour is higher than before, now
implausibly high given that, under constant returns to scale, it should
measure the share of wages in output. The elasticity with respect to capital
is negative and nonsensical. The coefficient of time indicates an annual
exponential growth rate of 4.7 per cent, holding K and L constant. This

is unrealistically high for the period in question. The implausibility of the
results, especially those relating to capital and time (correlation 0.997),
may be attributed to multicollinearity.

11.16

The output below shows the result of fitting the model

LGFOOD = g, + B,ALGDPI + B,A(1 — 2)LGDPI(-1)

+ pA( = A)’LGDPI(-2) + ,LGPRFOOD + u
using the data on expenditure on food in the Demand Functions data
set. LGFOOD and LGPRFOOD are the logarithms of expenditure on food
and the relative price index series for food. C(1), C(2), C(3), and C(4)
are estimates of 8, f8,, A and f,, respectively. Explain how the regression
equation could be interpreted as an adaptive expectations model and

discuss the dynamics implicit in it, both short-run and long-run. Should
the specification have included further lagged values of LGDPI?
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Dependent Variable: LGFOOD

Method: Least Squares

Sample (adjusted) : 1962 2003

Included observations: 42 after adjusting endpoints

Convergence achieved after 25 iterations

LGFOOD=C (1) +C(2) *C(3) *LGDPI + C(2)*C(3)*(1-C(3
*C(3)*(1-C(3))"2*LGDPI(-2) + C(2)*C(3)
C(4) *LGPRFOOD

)) *LGDPI (-1) + C(2)
*(1-C(3))"3*LGDPI(-3) +

Coefficient Std. Error t-Statistic Prob.

C(1) 2.339513 0.468550 4.993091 0.0000
C(2) 0.496425 0.012264 40.47818 0.0000
C(3) 0.915046 0.442851 2.066264 0.0457
Cc(4) -0.089681 0.083250 -1.077247 0.2882
R-squared 0.989621 Mean dependent var 6.049936
Adjusted R-squared 0.988802 S.D. dependent var 0.201706
S.E. of regression 0.021345 Akaike info criter-4.765636
Sum squared resid 0.017313 Schwarz criterion -4.600143
Log likelihood 104.0784 Durbin-Watson stat 0.449978

Answer:

There is a discrepancy between the theoretical specification, which has
two lagged values, and the regression specification, which has three.
Fortunately, in this case it makes little difference. Here is the output for the
regression with two lags:

Dependent Variable: LGFOOD

Method: Least Squares

Sample (adjusted): 1961 2003

Included observations: 43 after adjustments

Convergence achieved after 12 iterations

LGFOOD=C (1) +C(2) *C(3) *LGDPI+C(2) *C(3) * (1-C(3) ) *LGDPI (-1)+C(2) *C(3)
*(1-C(3))"2*LGDPI (-2) +C (4) *LGPRFOOD

CoefficientStd. Errort-Statistic Prob.

C(1) 2.284907 0.442211 5.167010 0.0000

C(2) 0.498528 0.010365 48.09538 0.0000

C(3) 0.935943 0.435255 2.150333 0.0378

C(4) -0.081671 0.079897 -1.022200 0.3130
R-squared 0.990526 Mean dependent var 6.040261
Adjusted R-squared 0.989798 S.D. dependent var 0.209146
S.E. of regression 0.021125 Akaike info criter-4.788308
Sum squared resid 0.017404 Schwarz criterion -4.624475
Log likelihood 106.94806 Hannan-Quinn crite-4.727892
F-statistic 1359.242 Durbin-Watson stat 0.466341
Prob (F-statistic) 0.000000

Suppose that the model is
LGFOOD = f, + f,LGDPI* + ,LGPRFOOD + u

where LGDPI* is expected LGDPI at time t + 1, and that expectations for
income are subject to the adaptive expectations process

LGDPI* — LGDPI* = A(LGDPI — LGDPF).

The adaptive expectations process may be rewritten
LGDPI* = ALGDPI + (1 — A)LGDPI¢.

Lagging this equation one period and substituting, one has.
LGDPI* = ALGDPI + A(1 - A)LGDPI(-1) + (1 - A)°LGDPI*(-1).
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Lagging a second time and substituting, one has
LGDPIF = ALGDPI + /(1 — A)LGDPI(-1) + A(1 — 2)*2LGDPI(-2)
+ (1 - 1)’LGDPI(-2).

Substituting this into the model, one has the regression specification as
stated in the question. The actual regression in the textbook includes a
further lagged term.

The output implies that the estimate of the long-run income elasticity, f,, is
0.50 (original and revised output). The estimate of 4, the speed of adjustment
of expectations, is 0.92 (0.94 in the revised output). Hence the estimate

of the short-run income elasticity, £/, is 0.46 (0.47 in the revised output).
The price side of the model has been assumed to be static. The estimate of
the price elasticity is —0.09 (-0.08 in the revised output). For the theoretical
specification, the coefficient of the dropped unobservable term is £,(1 - 2)°.
Given the estimates of f5, and /, its estimate is 0.0003. Hence we are justified
in neglecting it. For the revised output, its estimate is even lower, 0.0001.

11.18

A researcher is fitting the following supply and demand model for a
certain commodity, using a sample of time series observations:

th = ﬂl + :BZPz tuy
th zal + 0.’21)[ +ust

where Q, is the amount demanded at time ¢, Q_ is the amount supplied,

P is the market clearing price, and u, and u,, are disturbance terms that

are not necessarily independent of each other.. It may be assumed that the

market clears and so Q, = Q.

* What can be said about the identification of (a) the demand equation,
(b) the supply equation?

*  What difference would it make if supply at time t was determined
instead by price at time ¢ —1? That is,

O, =a,+a,b_ +uy

¢ What difference would it make if it could be assumed that u, is
distributed independently of u_?

Answer:

The reduced form equation for P, is

po 1
a, =B,

P, is not independent of the disturbance term in either equation and so
OLS would yield inconsistent estimates.

(ﬁl o) tuy _ust)-

Provided that u, is not subject to autocorrelation, P_, could be used as

an instrument in the demand equation. Provided that u_ is not subject to
autocorrelation, OLS could be used to fit the second equation. It makes no
difference whether or not u,, is distributed independently of u_.

The first equation could, alternatively, be fitted using OLS, with the
variables switched. From the second equation, P,_, determines Q, and
then, given Q, the demand equation determines P

P =ﬂi2(Qt By -uy)

The reciprocal of the slope coefficient provides a consistent estimator of f3,.
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Answers to the additional exercises

The linear regression indicates that expenditure on food increases by
$0.032 billion for every extra $ billion of disposable personal income (in
other words, by 3.2 cents out of the marginal dollar), that it increases

by $0.403 billion for every point increase in the price index, and that it
increases by $0.001 billion for every additional thousand population. The
income coefficient is significant at the 1 per cent level (ignoring problems
to be discussed in Chapter 12). The positive price coefficient makes no
sense (remember that the dependent variable is measured in real terms).
The intercept has no plausible interpretation.

The logarithmic regression indicates that the income elasticity is 0.59
and highly significant, and the price elasticity is —0.12, not significant.
The negative elasticity for population is not plausible. One would expect
expenditure on food to increase in line with population, controlling for
other factors, and hence, as a first approximation, the elasticity should be
equal to 1. However, an increase in population, keeping income constant,
would lead to a reduction in income per capita and hence to a negative
income effect. Given that the income elasticity is less than 1, one would
still expect a positive elasticity overall for population. At least the estimate
is not significantly different from zero. In view of the high correlation,
0.995, between LGDPI and LGPOP, the negative estimate may well be a
result of multicollinearity.

A11.2

OLS logarithmic regressions
LGDPI LGP LGPOP R?
coef. s.e. coef. s.e. coef. s.e.
ADM -1.43 0.20 -0.28 0.10 6.88 0.61 0.975
BOOK -0.29 0.28 -1.18 0.21 4.94 0.82 0977
BUSI 0.36 0.19 -0.11 0.27 2.79 0.51 0.993
CLOT 0.71 0.10 -0.70  0.05 0.15 0.36  0.998
DENT 1.23 0.14 -0.95 0.09 0.26 0.54 0.995
DOC 0.97 0.14 0.26 0.13 -0.27 0.52  0.993
FLOW 0.46 0.32 0.16 0.33 3.07 1.21  0.987
FOOD 0.59 0.08 -0.12 0.08 -0.29 0.26 0.992
FURN 0.36 0.28 -0.48 0.26 1.66 1.12  0.985
GAS 1.27 0.24 -024 0.06 -2.81 0.74 0.788
GASO 1.46 0.16 -0.10 0.04 -2.35 0.49 0.982
HOUS 0.91 0.08 -0.54 0.06 0.38 0.25 0.999
LEGL 1.17 0.16  -0.08 0.13 -1.50 0.54 0.976
MAGS 1.05 0.22  -0.73 0.44 -0.82 0.54 0.970
MASS -1.92 0.22 -0.57 0.14 6.14 0.65 0.785
OPHT 0.30 0.45 0.28 0.59 3.68 1.40 0.965
RELG 0.56 0.13 -0.99 0.23 2.72 0.41  0.996
TELE 0.91 0.13 -0.61 0.11 1.79 0.49 0.998
TOB 0.54 0.17 -0.42 0.04 -1.21 0.57 0.883
TOYS 0.59 0.10 -0.54 0.06 2.57 0.39 0.999
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The price elasticities mostly lie in the range O to —1, as they should,

and therefore seem plausible. However the very high correlation

between income and population, 0.995, has given rise to a problem of
multicollinearity and as a consequence the estimates of their elasticities
are very erratic. Some of the income elasticities look plausible, but that
may be pure chance, for many are unrealistically high, or negative when
obviously they should be positive. The population elasticities are even less

convincing.
Correlations between prices, income and population
LGP, LGDPI LGP, LGPOP LGP, LGDPI LGP, LGPOP
ADM 0.61 0.61 GASO 0.05 0.03
BOOK 0.88 0.87 HOUS 0.49 0.55
BUSI 0.98 0.97 LEGL 0.99 0.99
CLOT -0.94 -0.96 MAGS 0.99 0.98
DENT 0.94 0.96 MASS 0.90 0.89
DOoC 0.98 0.98 OPHT -0.68 -0.67
FLOW -0.93 -0.95 RELG 0.92 0.92
FOOD -0.60 -0.64 TELE -0.98 -0.99
FURN -0.95 -0.97 TOB 0.83 0.86
GAS 0.77 0.76 TOYS -0.97 -0.98
A11.3

The regression indicates that the income elasticity is 0.40 and the price
elasticity 0.21, the former very highly significant, the latter significant at
the 1 per cent level using a one-sided test. If the specification is

FOOD
POP

log =B +5 logf—; + f;log PRELFOOD + u

it may be rewritten

log FOOD = p, + B, log DPI + f3, log PRELFOOD
+(1-4,)log POP +u.

This is a restricted form of the specification in Exercise A11.2:

log FOOD =p, + p, log DPI + 3, log PRELFOODg,
+p, log POP +u

with g, = 1 - f,. We can test the restriction by comparing RSS for the two
regressions:

(0.023232-0.016936) /1

F(1,41) =
(141 0.016936/41

=15.24.

The critical value of F(1,40) at the 0.1 per cent level is 12.61. The critical
value for F(1,41) must be slightly lower. Thus we reject the restriction.
Since the restricted version is misspecified, our interpretation of the
coefficients of this regression and the t tests are invalidated.
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A11.4

Given that the critical values of F(1,41) at the 5 and 1 per cent levels are
4.08 and 7.31 respectively, the results of the F test may be summarised as
follows:

Restriction not rejected: CLOT, DENT, DOC, FURN, HOUS
Restriction rejected at the 5 per cent level: MAGS

Restriction rejected at the 1 per cent level: ADM, BOOK, BUSI, FLOW,
FOOD, GAS, GASO, LEGL, MASS, OPHT, RELG, TELE, TOB, TOYS

However, for reasons that will become apparent in the next chapter, these
findings must be regarded as provisional.

Tests of a restriction

RSS, RSS, F t
ADM 0.125375 0.480709 116.20 10.78
BOOK 0.223664 0.461853 43.66 6.61
BUSI 0.084516 0.167580 40.30 6.35
CLOT 0.021326 0.021454 0.25 -0.50
DENT 0.033275 0.034481 1.49 1.22
DOC 0.068759 0.069726 0.58 -0.76
FLOW 0.220256 0.262910 7.94 2.82
FOOD 0.016936 0.023232 15.24 -3.90
FURN 0.157153 0.162677 1.44 1.20
GAS 0.185578 0.300890 25.48 -5.05
GASO 0.078334 0.139278 31.90 -5.65
HOUS 0.011270 0.012106 3.04 1.74
LEGL 0.082628 0.102698 9.96 -3.16
MAGS 0.096620 0.106906 4.36 -2.09
MASS 0.143775 0.330813 53.34 7.30
OPHT 0.663413 0.822672 9.84 3.14
RELG 0.053785 0.135532 62.32 7.89
TELE 0.054519 0.080728 19.71 4.44
TOB 0.062452 0.087652 16.54 -4.07
TOYS 0.031269 0.071656 52.96 7.28

A11.5

If the specification is
log FPOO(;D =0+ 5, log% + B, log PRELFOOD + y,POP +u,

it may be rewritten

log FOOD = B, + B, log DPI + 3, log PRELFOOD
+(1- 4, +y,)1og POP +u.

This is equivalent to the specification in Exercise A11.1:

log FOOD = 3, + B, log DPI + f3, log PRELFOOD
+B,1og POP +u

with g, = 1 -8, + y,. Note that this is not a restriction. (1) — (3) are just
different ways of writing the unrestricted model.
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Attest of H:y = 0isequivalent to a t test of H: §, = 1§, that is, that
the restriction in Exercise A11.3 is valid. The t statistic for LGPOP in the
regression is —3.90, and hence again we reject the restriction. Note that
the test is equivalent to the F test. —=3.90 is the square root of 15.24, the F
statistic, and it can be shown that the critical value of t is the square root
of the critical value of F.

A11.6

The ¢ statistics for all the categories of expenditure are supplied in the
table in the answer to Exercise A11.4. Of course they are equal to the
square root of the F statistic, and their critical values are the square roots
of the critical values of F, so the conclusions are identical and, like those of
the F test, should be treated as provisional.

A11.7

e Show that (B, + ;) and (B, + f3;) are theoretically the long-run
(equilibrium) income and price elasticities.
In equilibrium, LGCAT = LGCAT , LGDPI = LGDPI(~1)= LGDPI and

LGPRCAT = LGPRCAT(~1)= LGPRCAT . Hence, ignoring the transient
effect of the disturbance term,

LGCAT = B, + B,LGDPI + B,LGDPI + B, LGPRCAT + 3, LGPRCAT
=B, +(B, + B, )JLGDPI +(B, + B, )JLGPRCAT.

Thus the long-run equilibrium income and price elasticities are

0=p,+p, and ¢ =, + B, respectively.

* Reparameterise the model and fit it to obtain direct estimates of these
long-run elasticities and their standard errors.

We will reparameterise the model to obtain direct estimates of § and
¢ and their standard errors. Write g; =6—-, and ¢=p,+p, and
substitute for f, and g, in the model. We obtain

LGCAT = B, + B,LGDPI + (6 — 8, )LGDPI(~1)+ B,LGPRCAT + (¢ — 3, JLGPRCAT (1) +u
= B, + p,(LGDPI — LGDPI(~1))+ 6LGDPI(~1)
+ B,(LGPRCAT — LGPRCAT(~1))+ gLGPRCAT(~1)+u
= 8, + ,DLGDPI + OLGDPI(~1)+ 8, DLGPRCAT + JLGPRCAT (- 1)+ u
where DLGDPI = LGDPI — LGDPI(-1) and DLGPRCAT = LGPRCAT —
LGPRCAT(-1).

The output for HOUS is shown below. DLGPRCAT has been abbreviated
as DLGP.
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Dependent Variable: LGHOUS

Method: Least Squares

Sample (adjusted) : 1960 2003

Included observations: 44 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C 0.020785 0.144497 0.143844 0.8864
DLGDPI 0.329571 0.150397 2.191340 0.0345
LGDPI (-1) 1.013147 0.006815 148.6735 0.0000
DLGP -0.088813 0.165651 -0.536144 0.5949
LGPRHOUS (-1) -0.447176 0.035927 -12.44689 0.0000

R-squared 0.999039 Mean dependent var 6.379059
Adjusted R-squared 0.998940 S.D. dependent var 0.421861
S.E. of regression 0.013735 Akaike info criter-5.631127
Sum squared resid 0.007357 Schwarz criterion -5.428379
Log likelihood 128.8848 F-statistic 10131.80
Durbin-Watson stat 0.536957 Prob (F-statistic) 0.000000

Confirm that the estimates are equal to the sum of the individual short-
run elasticities found in Exercise 11.9.

The estimates of the long-run income and price elasticities are 1.01 and
—0.45, respectively. The output below is for the model in its original
form, where the coefficients are all short-run elasticities. It may be seen
that, for both income and price, the sum of the estimates of the short-
run elasticities is indeed equal to the estimate of the long-run elasticity
in the reparameterised specification.

Dependent Variable: LGHOUS

Method: Least Squares

Sample (adjusted) : 1960 2003

Included observations: 44 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

c 0.020785 0.144497 0.143844 0.8864

LGDPI 0.329571 0.150397 2.191340 0.0345

LGDPI (-1) 0.683575 0.147111 4.646648 0.0000
LGPRHOUS -0.088813 0.165651 -0.536144 0.5949
LGPRHOUS (-1) -0.358363 0.165782 -2.161660 0.0368
R-squared 0.999039 Mean dependent var 6.379059
Adjusted R-squared 0.998940 S.D. dependent var 0.421861
S.E. of regression 0.013735 Akaike info criter-5.631127
Sum squared resid 0.007357 Schwarz criterion -5.428379
Log likelihood 128.8848 F-statistic 10131.80
Durbin-Watson stat 0.536957 Prob (F-statistic) 0.000000

Compare the standard errors with those found in Exercise 11.9 and state
your conclusions.

The standard errors of the long-run elasticities in the reparameterised
version are much smaller than those of the short-run elasticities in the
original specification, and the t statistics accordingly much greater. Our
conclusion is that it is possible to obtain relatively precise estimates of
the long-run impact of income and price, even though multicollinearity
prevents us from deriving precise short-run estimates.
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A11.8

* Show how this model may be derived from the demand function and the
adaptive expectations process.

The adaptive expectations process may be rewritten
i, =i, +(1-A)c.

Substituting this into (1), one obtains

B, =+ Boli, + By (1= )i +u,.

We note that if we lag (1) by one time period,

B_ =p+ B0 +u,,.

Hence

Boi; =B, - —u,,.

Substituting this into the second equation above, one has
B, = A+ poAi, +(1-2)B,, +u, —(1- A, , -

This is equation (3) in the question, with y, = /4,7, = A, 7, =11,
andv, =u, - (1-ANu,,.

* Explain why inconsistent estimates of the parameters will be obtained if
equation (3) is fitted using ordinary least squares (OLS). (A mathematical
proof is not required. Do not attempt to derive expressions for the bias.)

In equation (3), the regressor B,_, is partly determined by u,_,. The
disturbance term v, also has a component u_,. Hence the requirement
that the regressors and the disturbance term be distributed
independently of each other is violated. The violation will lead to
inconsistent estimates because the regressor and the disturbance term
are contemporaneously correlated.

* Describe a method for fitting the model that would yield consistent
estimates.

If the first equation in this exercise is true for time period t + 1, it is
true for time period t:

i =2, +(1-2)c,.
Substituting into the second equation in (a), we now have
. . 2.
Bt = IBI + ﬁZﬁ’lt + ﬁzi(l - ﬂ')lt—l + (1 - ’1) Ly tu,.,
Continuing to lag and substitute, we have
1—s+1 t°

B, =B+ Byi, + oAl = )i+t B A= A) i +(1=A)0C,,, +u

For s large enough, (1 - l)s will be so small that we can drop the
unobservable term i, ., with negligible omitted variable bias. The
disturbance term is distributed independently of the regressors and
hence we obtain consistent estimates of the parameters. The model
should be fitted using a nonlinear estimation technique that takes
account of the restrictions implicit in the specification.
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* Suppose that u, were subject to the first-order autoregressive process:

u,=pu,, +é

where ¢ is not subject to autocorrelation. How would this affect your
answer to the second part of this question?

v, is now given by
v,=u-A-Du_, =pu_ +e-1A-Du_ =¢-10-p-Nu,_,.

Since p and 1 may reasonably be assumed to lie between 0 and 1, it is
possible that their sum is approximately equal to 1, in which case v, is
approximately equal to the innovation ¢ If this is the case, there would
be no violation of the regression assumption described in the second
part of this question and one could use OLS to fit (3) after all.

* Suppose that the true relationship was actually

B, =B, + Byi, +u, a9

with u, not subject to autocorrelation, and the model is fitted by regressing
B, oni and B,_, as in equation (3), using OLS. How would this affect the
regression results?

The estimators of the coefficients will be inefficient in that B_ is a
redundant variable. The inclusion of B, will also give rise to finite
sample bias that would disappear in large samples.

* How plausible do you think an adaptive expectations process is for
modelling expectations in a bond market?

The adaptive expectations model is implausible since the expectations
process would change as soon as those traders taking advantage of
their knowledge of it started earning profits.

A11.9

The regression indicates that the short-run income, price, and population
elasticities for expenditure on food are 0.14, —0.10, and —0.05, respectively,
and that the speed of adjustment is (1 — 0.73) = 0.27. Dividing by 0.27,
the long-run elasticities are 0.52, —0.37, and -0.19, respectively. The
income and price elasticities seem plausible. The negative population
elasticity makes no sense, but it is small and insignificant. The estimates of
the short-run income and price elasticities are likewise not significant, but
this is not surprising given that the point estimates are so small.

A11.10

The table gives the result of the specification with a lagged dependent
variable for all the categories of expenditure.
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OLS logarithmic regression

LGDPI LGP LGPOP LGCAT(-1) long-run
effects
coef. s.e. coef. s.e. coef. s.e. coef. s.e. DPI P

ADM -0.38 0.18 -0.10 0.06 2.03 0.74 0.68 0.09 -1.18 -0.33
BOOK -0.36 0.20 -0.21 0.22 2,07 0.74 0.75 0.12 -1.46 -1.05
BUSI 0.10 0.13 0.03 0.18 0.78 0.45 0.72 0.11 0.33 0.09
CLOT 044 0.10 -040 0.07 0.01 0.32 0.43 0.09 0.77 -0.70
DENT 0.71 0.18 -0.46 0.16 -0.13 0.51 0.47 0.13 1.34 -0.87
DOC 0.23 0.14 -0.11 0.10 0.21 0.35 0.78 0.10 1.04 -0.52
FLOW 0.20 0.24 -0.31 0.27 0.07 0.98 0.75 0.11 0.81 -1.25
FOOD 0.14 0.09 -0.10 0.06 -0.05 0.19 0.73 0.11 0.53 -0.35
FURN 0.07 0.22 -0.07 0.22 082 0.91 0.68 0.12 0.21 -0.23
GAS 0.10 0.17 -0.06 0.03 -0.13 0.45 0.76 0.08 0.42 -0.26
GASO 032 0.11 -0.10 0.02 -0.59 0.25 0.80 0.06 1.56  -0.47
HOUS 0.30 0.05 -0.09 0.04 -0.13 0.10 0.73 0.05 1.11  -0.32
LEGL 0.40 0.14 0.10 0.09 -0.90 0.36 0.68 0.09 1.23 0.30
MAGS 0.57 0.21 -048 0.37 -0.56 0.44 0.55 0.12 1.27  -1.08
MASS -0.28 0.29 -0.23 0.11 1.08 0.89 0.75 0.12 -1.14 -0.93
OPHT 030 0.24 -028 033 -045 0.85 0.88 0.09 248 -2.25
RELG 034 0.09 -071 0.17 1.25 0.38 0.51 0.09 0.68 -1.44
TELE 0.15 0.14 0.00 0.12 0.68 0.37 0.81 0.12 0.77 0.02
TOB 0.12 0.14 -0.12 0.05 -0.31 0.43 0.71 0.11 043 -043
TOYS 0.31 0.11 -0.27 0.08 144 0.47 0.47 0.12 0.58 -0.51

A11.11
Given the information in the question, the model may be written
K, =B +BF  +BF ,+Bt+u
K-K_ =1=AK, -K_).

Hence
I=2p, +pF_ +IBF , +Bt—IK_ +u.
From the fitted equation,
[ =0.110
b, = 0.077 = 0.70
0.110
b = 0017 e
0.110
b, = 00033 _ 4 030.
0.110

Hence the short-run effect of an increase of 1 million ton-miles of freight
is to increase investment in railcars by 7,000 one year later and 1,500 two
years later. It does not make much sense to talk of a short-run effect of a
time trend.

In the long-run equilibrium, neglecting the effects of the disturbance term,
K, and K; are both equal to the equilibrium value K and F_ andF_, are
both equal to their equilibrium value . Hence, using the first equation,

K =p+@,+p)F +pt
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Thus an increase of one million ton-miles of freight will increase the stock
of railcars by 940 and the time trend will be responsible for a secular
decline of 33 railcars per year.

A11.12

* One researcher asserts that consistent estimates will be obtained if (2) is
fitted using OLS and (1) is fitted using IV, with Y_, as an instrument for
X. Determine whether this is true.

(2) may indeed be fitted using OLS. Strictly speaking, there may be
an element of bias in finite samples because of noncontemporaneous
correlation between v, and future values of Y.

We could indeed use Y, , as an instrument for X, in (1) because Y, , is a
determinant of X, but is not (contemporaneously) correlated with u,.

* The other researcher asserts that consistent estimates will be obtained if
both (1) and (2) are fitted using OLS, and that the estimate of f5, will be
more efficient than that obtained using IV. Determine whether this is true.

This assertion is also correct. X, is not correlated with u,, and OLS
estimators are more efficient than IV estimators when both are
consistent. Strictly speaking, there may be an element of bias in finite
samples because of noncontemporaneous correlation between u, and
future values of X.
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Chapter 12: Properties of regression
models with time series data

Overview

This chapter begins with a statement of the regression model assumptions
for regressions using time series data, paying particular attention to the
assumption that the disturbance term in any time period be distributed
independently of the regressors in all time periods. There follows a general
discussion of autocorrelation: the meaning of the term, the reasons why
the disturbance term may be subject to it, and the consequences of it for
OLS estimators. The chapter continues by presenting the Durbin-Watson
test for AR(1) autocorrelation and showing how the problem may be
eliminated. Next it is shown why OLS yields inconsistent estimates when
the disturbance term is subject to autocorrelation and the regression
model includes a lagged dependent variable as an explanatory variable.
Then the chapter shows how the restrictions implicit in the AR(1)
specification may be tested using the common factor test, and this leads to
a more general discussion of how apparent autocorrelation may be caused
by model misspecification. This in turn leads to a general discussion of
the issues involved in model selection and, in particular, to the general-to-
specific methodology.

Learning outcomes

After working through the corresponding chapter in the textbook, studying
the corresponding slideshows, and doing the starred exercises in the
textbook and the additional exercises in this guide, you should be able to:

* explain the concept of autocorrelation and the difference between
positive and negative autocorrelation

* describe how the problem of autocorrelation may arise

* describe the consequences of autocorrelation for OLS estimators, their
standard errors, and t and F tests, and how the consequences change if
the model includes a lagged dependent variable

» perform the Breusch-Godfrey and Durbin-Watson d tests for
autocorrelation and, where appropriate, the Durbin h test

* explain how the problem of AR(1) autocorrelation may be eliminated
* describe the restrictions implicit in the AR(1) specification
» perform the common factor test

» explain how apparent autocorrelation may arise as a consequence
of the omission of an important variable or the mathematical
misspecification of the regression model.

* demonstrate that the static, AR(1), and ADL(1,0) specifications are
special cases of the ADL(1,1) model

* explain the principles of the general-to-specific approach to model
selection and the defects of the specific-to-general approach.

243



20 Elements of econometrics

244

Additional exercises

A12.1

The output shows the result of a logarithmic regression of expenditure
on food on income, relative price, and population, using an AR(1)
specification. Compare the results with those in Exercise A11.1.

Dependent Variable: LGFOOD

Method: Least Squares

Sample (adjusted) : 1960 2003

Included observations: 44 after adjusting endpoints
Convergence achieved after 14 iterations

Variable Coefficient Std. Error t-Statistic Prob.

C 2.945983 3.943913 0.746969 0.4596

LGDPI 0.469216 0.118230 3.968687 0.0003

LGPRFOOD -0.361862 0.122069 -2.964413 0.0052

LGPOP 0.072193 0.379563 0.190200 0.8501

AR (1) 0.880631 0.092512 9.519085 0.0000

R-squared 0.996695 Mean dependent var 6.030691

Adjusted R-squared 0.996356 S.D. dependent var 0.216227

S.E. of regression 0.013053 Akaike info criter-5.732970

Sum squared resid 0.006645 Schwarz criterion -5.530221

Log likelihood 131.1253 F-statistic 2940.208

Durbin-Watson stat 1.556480 Prob (F-statistic) 0.000000
Inverted AR Roots .88

A12.2

Perform Breusch—-Godfrey and Durbin—-Watson tests for autocorrelation
for the logarithmic regression in Exercise A11.2. If you reject the null
hypothesis of no autocorrelation, run the regression again using an AR(1)
specification, and compare the results with those in Exercise A11.2.

A12.3

Perform an OLS ADL(1,1) logarithmic regression of expenditure on your
category on current income, price, and population and lagged expenditure,
income, price, and population. Use the results to perform a common factor
test of the validity of the AR(1) specification in Exercise A12.1.

A12.4

A researcher has annual data on LIFE, aggregate consumer expenditure on
life insurance, DPI, aggregate disposable personal income, and PRELLIFE,
a price index for the cost of life insurance relative to general inflation, for
the United States for the period 1959-1994. LIFE and DPI are measured
in US$ billion. PRELLIFE is an index number series with 1992=100. She
defines LGLIFE, LGDPI, and LGPRLIFE as the natural logarithms of LIFE,
DPI, and PRELLIFE, respectively. She fits the regressions shown in columns
(1) — (4) of the table, each with LGLIFE as the dependent variable.
(Standard errors in parentheses; OLS = ordinary least squares; AR(1) is a
specification appropriate when the disturbance term follows a first-order
autoregressive process; d = Durbin-Watson d statistic; p is the estimate of
the autoregressive parameter in a first-order autoregressive process.)
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D 2 3) 4) 5)
OLS AR(1) OLS OLS OLS
1.37 1.41 0.42 0.28
LGDPI —
(0.10) (0.25) (0.60) (0.17)
-0.67 -0.78 -0.59 -0.26
LGPRLIFE _
(0.35) (0.50) (0.51) (0.21)
0.82 0.79 0.98
LGLIFE(-1) — —
(0.10) (0.09) (0.02)
-0.15
LGDPI(-1) — — — —
(0.61)
0.38
LGPRLIFE(-1) — — — —
(0.53)
-4.39 -4.20 -0.50 -0.51 0.12
constant
(0.88) (1.69) (0.72) (0.70) (0.08)
R? 0.958 0.985 0.986 0.986 0.984
RSS 0.2417  0.0799  0.0719  0.0732  0.0843
B-G 23.48 — 0.61 0.34 0.10
d 0.36 1.85 2.02 1.92 2.05
R 0.82
p —_— —_— —_— —_—
(0.11)

* Discuss whether specification (1) is an adequate representation of the
data.

* Discuss whether specification (3) is an adequate representation of the
data.

* Discuss whether specification (2) is an adequate representation of the
data.

» Discuss whether specification (4) is an adequate representation of the
data.

* If you were presenting these results at a seminar, what would you
say were your conclusions concerning the most appropriate of
specifications (1) — (4)?

* At the seminar a commentator points out that in specification (4)
neither LGDPI nor LGPRLIFE have significant coefficients and so
these variables should be dropped. As it happens, the researcher has
considered this specification, and the results are shown as specification
(5) in the table. What would be your answer to the commentator?

A12.5

A researcher has annual data on the yearly rate of change of the consumer
price index, p, and the yearly rate of change of the nominal money supply,
m, for a certain country for the 51-year period 1958-2008. He fits the
following regressions, each with p as the dependent variable. The first four
regressions are fitted using OLS. The fifth is fitted using a specification
appropriate when the disturbance term is assumed to follow an AR(1)
process. p(-1) indicates p lagged one year. m(-1), m(-2), and m(-3)
indicate m lagged 1, 2, and 3 years, respectively.
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(1) explanatory variable m.

(2) explanatory variables m, m(-1), m(-2), and m(-3).
(3) explanatory variables m, p(-1), and m(-1).

(4) explanatory variables m and p(-1).

(5) explanatory variable m.

The results are shown in the table. Standard errors are shown in
parentheses. RSS is the residual sum of squares. B-G is the Breusch-Godfrey

test statistic for AR(1) autocorrelation. d is the Durbin—-Watson d statistic.

1 2 3 4 5
OLS OLS OLS OLS AR(1)
0.95 0.50 0.40 0.18 0.90
m
(0.05) (0.30) (0.12) (0.09) (0.08)
0.30 -0.30
m(-1) — — —
(0.30) (0.10)
2 -0.15
m - — — — —
(0.30)
O3 0.30
m — — — — —
(0.30)
0.90 0.80
p(-1) — — —
(0.20) (0.20)
0.05 0.04 0.06 0.05 0.06
constant
(0.04) (0.04) (0.04) (0.04) (0.03)
RSS 0.0200 | 0.0150 | 0.0100 | 0.0120 | 0.0105
B-G 35.1 27.4 0.39 0.26 0.57
d 0.10 0.21 2.00 2.00 1.90

* Looking at all five regressions together, evaluate the adequacy of
o specification 1.
o specification 2.
o specification 3.
o specification 4.

* Explain why specification 5 is a restricted version of one of the other
specifications, stating the restriction, and explaining the objective of
the manipulations that lead to specification 5.

* Perform a test of the restriction embodied in specification 5.

* Explain which would be your preferred specification.

A12.6
Derive the short-run (current year) and long-run (equilibrium) effect
of m on p for each of the five specifications in Exercise A12.5, using the
estimated coefficients.

A12.7
A researcher has annual data on aggregate consumer expenditure on taxis,
TAXI, and aggregate disposable personal income, DPI, both measured in
$ billion at 2000 constant prices, and a relative price index for taxis, P,
equal to 100 in 2000, for the United States for the period 1981-2005.
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Defining LGTAXI, LGDPI, and LGP as the natural logarithms of TAXI, DPI,
and P, respectively, he fits regressions (1) — (4) shown in the table. OLS =
ordinary least squares; AR(1) indicates that the equation was fitted using a
specification appropriate for first-order autoregressive autocorrelation; p
is an estimate of the parameter in the AR(1) process; B-G is the Breusch—
Godfrey statistic for AR(1) autocorrelation; d is the Durbin-Watson d
statistic; standard errors are given in parentheses.

€3] (2) (3 4
OLS AR(1) OLS AR(1)
2.06 1.28 2.28 2.24
LGDPI
(0.10) (0.84) (0.05) (0.07)
-0.99 -0.97
LGP — —
(0.09) (0.11)
-12.75 -7.45 -9.58 -9.45
constant
(0.68) (5.89) (0.40) (0.54)
. 0.88 0.26
P — —
(0.09) (0.22)
B-G 17.84 — 1.47 —
d 0.31 1.40 1.46 1.88
R? 0.95 0.98 0.99 0.99

Figure 12.1 shows the actual values of LGTAXI and the fitted values from
regression (1). Figure 12.2 shows the residuals from regression (1) and
the values of LGP.

* Evaluate regression (1).

* Evaluate regression (2). Explain mathematically what assumptions
were being made by the researcher when he used the AR(1)
specification and why he hoped the results would be better than those
obtained with regression (1).

* Evaluate regression (3).

* Evaluate regression (4). In particular, discuss the possible reasons for
the differences in the standard errors in regressions (3) and (4).

* At a seminar one of the participants says that the researcher should
consider adding lagged values of LGTAXI, LGDPI, and LGP to the
specification. What would be your view?

20
1.5 4
1.0 q
3
=
o
~
0.5 4
0.0 e e e I S e e B s e LS e e e e e L R
%’T’/ 1984 1987 1990 1993 1996 1999 2002 2005
-0.5
—e—actual values —o—fitted values, regression (1)
Figure 12.1
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Figure 12.2

A researcher has annual data on I, investment as a percentage of gross
domestic product, and r, the real long-term rate of interest for a certain
economy for the period 1981-2009. He regresses I on r, (1) using ordinary
least squares (OLS), (2) using an estimator appropriate for AR(1) residual
autocorrelation, and (3) using OLS but adding I(-1) and r(-1) (I and r
lagged one time period) as explanatory variables. The results are shown in
columns (1), (2), and (3) of the table below. The residuals from regression
(1) are shown in Figure 2.3.

981 2009

-o— g —O-residuals

Figure 12.3

He then obtains annual data on g, the rate of growth of gross domestic
product of the economy, for the same period, and repeats the regressions,
adding g (and, where appropriate, g(-1)) to the specifications as an
explanatory variable. The results are shown in columns (4), (5), and (6)
of the table. r and g are measured as per cent per year. The data for g are
plotted in the figure.
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OLS AR(1) OLS OLS AR(1) OLS

(1) (2) 3) 4 (5) (6)

-0.87 -0.83 -0.87 -1.81 -1.88 -1.71

-
(0.98) (1.05) (1.08) (0.49) (0.50) (0.52)
0.37 -0.22
I(-1) — — — —
(0.16) (0.18)
0.64 -0.98
r(=1) — — — —
(1.08) (0.64)
1.61 1.61 1.92
& (0.17) (0.18)  (0.20)
-0.02
g(-1) — — — — —
(0.33)
0.37 -0.16
p (0.18) (0.20)
9.31 9.21 4.72 9.26 9.54 13.24
constant
(3.64) (3.90) (448 (1.77) (164 (2.69
B-G 4.42 — 4.24 0.70 — 0.98
d 0.99 1.36 1.33 2.30 2.05 2.09
RSS 120.5 103.9  103.5 27.4 26.8 23.5

Note: standard errors are given in parentheses. p is the estimate of the
autocorrelation parameter in the AR(1) specification. B-G is the Breusch—
Godfrey statistic for AR(1) autocorrelation. d is the Durbin-Watson d
statistic.

A12.9

Explain why the researcher was not satisfied with regression (1).

Evaluate regression (2). Explain why the coefficients of I(-1) and r(-1)
are not reported, despite the fact that they are part of the regression
specification.

Evaluate regression (3).
Evaluate regression (4).
Evaluate regression (5).
Evaluate regression (6).

Summarise your conclusions concerning the evaluation of the different
regressions. Explain whether an examination of the figure supports your
conclusions

In Exercise A11.5 you performed a test of a restriction. The result of this
test will have been invalidated if you found that the specification was
subject to autocorrelation. How should the test be performed, assuming
the correct specification is ADL(1,1)?
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A12.10

Given data on a univariate process
Y, =B+ Y +u,
where |f,| < 1 and u, is iid, the usual OLS estimators will be consistent

but subject to finite-sample bias. How should the model be fitted if u, is
subject to an AR(1) process?

A12.11

Explain what is correct, incorrect, confused or incomplete in the following
statements, giving a brief explanation if not correct.

* The disturbance term in a regression model is said to be autocorrelated
if its values in a sample of observations are not distributed
independently of each other.

*  When the disturbance term is subject to autocorrelation, the ordinary
least squares estimators are inefficient and inconsistent, but they are
not biased, and the t tests are invalid.

e It is a common problem in time series models because it always occurs
when the dependent variable is correlated with its previous values.

 If this is the case, it could be eliminated by including the lagged value
of the dependent variable as an explanatory variable.

* However, if the model is correctly specified and the disturbance term
satisfies the regression model assumptions, adding the lagged value
of the dependent variable as an explanatory variable will have the
opposite effect and cause the disturbance term to be autocorrelated.

* A second way of dealing with the problem of autocorrelation is to use
an instrumental variable.

* If the autocorrelation is of the AR(1) type, randomising the order of the
observations will cause the Breusch—-Godfrey statistic to be near zero,
and the Durbin-Watson statistic to be near 2, thereby eliminating the
problem.

Answers to the starred exercises in the textbook

12.6

Prove that o is related to o as shown in (12.34), and show
that weighting the first observation by 4/1- p* eliminates the
heteroscedasticity.
Answer:
(12.34) is
ol =
l-p

and it assumes the first order AR(1) process (12.26): u, = pu,_, + ¢, From
the AR(1) process, neglecting transitory effects, o, =0, =0, and so

2 1 2

.= o, .
I-p

2 3

(Note that the covariance between u, , and ¢, is zero.) If the first
observation is weighted by +/1— p? , the variance of the disturbance term
will be
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(i) o2 =l1-p) s 02 o

I-p

and it will therefore be the same as in the other observations in the sample.

The table gives the results of three logarithmic regressions using the
Cobb-Douglas data for Y,, K,, and L , index number series for real output,
real capital input, and real labor input, respectively, for the manufacturing
sector of the United States for the period 1899-1922, reproduced in
Exercise 11.6 (method of estimation as indicated; standard errors in
parentheses; d = Durbin—-Watson d statistic; BG = Breusch—-Godfrey test
statistic for first-order autocorrelation):

1: OLS 2: AR(1) 3:0LS

0.23 0.22 0.18
log K

(0.06) (0.07) (0.56)

0.81 0.86 1.03
log L

(0.15) (0.16) (0.15)
log Y(-1) 0.40
o p— —_ J—

& (0.21)
log K(_1) 0.17
o p— J— J—

& (0.51)
log L(-1) -1.01
O - — —

& (0.25)

-0.18 -0.35 1.04
constant
(0.43) (0.51) (0.41)
0.19
» (0.25)
R? 0.96 0.96 0.98
RSS 0.0710 0.0697 0.0259
d 1.52 1.54 1.46
B-G 0.36 — 1.54

The first regression is that performed by Cobb and Douglas. The second
fits the same specification, allowing for AR(1) autocorrelation. The third
specification uses OLS with lagged variables. Evaluate the three regression
specifications.

Answer:

For the first specification, the Breusch-Godfrey LM test for autocorrelation
yields statistics of 0.36 (first order) and 1.39 (second order), both
satisfactory. For the Durbin-Watson test, d, and d, are 1.19 and 1.55

at the 5 per cent level and 0.96 and 1.30 at the 1 per cent level, with

24 observations and two explanatory variables. Hence the specification
appears more or less satisfactory. Fitting the model with an AR(1)
specification makes very little difference, the estimate of p being low.
However, when we fit the general ADL(1,1) model, neither of the first two
specifications appears to be an acceptable simplification. The F statistic for
dropping all the lagged variables is
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(0.0710-0.0259) /3

F@3,18) =
G18) 0.0259/18

=1045-

The critical value of F(3,18) at the 0.1 per cent level is 8.49. The common
factor test statistic is

23 logg'oﬁ: 22.77

0259

and the critical value of chi-squared with two degrees of freedom is 13.82
at the 0.1 per cent level. The Breusch—-Godfrey statistic for first-order
autocorrelation is 1.54. The Durbin-Watson statistic is lowish (the Durbin
h statistic cannot be computed).

We come to the conclusion that Cobb and Douglas, who actually fitted a
restricted version of the first specification, imposing constant returns to
scale, were a little fortunate to obtain the plausible results they did.

12.10

Derive the final equation in Box 12.2 from the first two equations in the
box. What assumptions need to be made when fitting the model?

Answer:

This exercise overlaps Exercise 11.16. We start by reprising equations
(11.30) - (11.33) in the textbook. We assume that the dependent variable
Y isrelated to X/, , the value of X anticipated in the next time period
(11.30):

Y, =5, +ﬂ2X:+1 tu, -
To make the model operational, we hypothesise that expectations
are updated in response to the discrepancy between what had been

anticipated for the current time period, X/,,, and the actual outcome, X,
(11.31):

e
t+12

X, - xe=a(x, - x7).

t+1

where 1 may be interpreted as a speed of adjustment. We can rewrite this
as (11.32)

Xte+1 :Mt +(1_1)Xte
Hence we obtain (11.33)
Yr :ﬂl +ﬂ2Mt +ﬂ2(l—ﬂ)X[€ +u,.

This includes the unobservable X, on the right side. However, lagging
(11.32), we have

Xze :Mt—l + (1 _A)Xzefl :
Hence

Y, =B+ B AX, + B A1- )X, + B (1= AV X¢, +u, .

This includes the unobservable X/, on the right side. However, continuing
to lag and substitute, we have

Yt :ﬂl +ﬂ2Mt +ﬂ2ﬂ’(l_ﬂ')Xt—l +"'+ﬂ2ﬂ‘(l_ﬁ')SXt—s +182(1_/1)H1Xte—s +u,-
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Provided that s is large enough for £, (1 — )" to be very small, this may
be fitted, omitting the unobservable final term, with negligible omitted
variable bias. We would fit it with a nonlinear regression technique

that respected the constraints implicit in the theoretical structure of the
coefficients. The disturbance term is unaffected by the manipulations.
Hence it is sufficient to assume that it is well-behaved in the original

specification.

Using the 50 observations on two variables Y and X shown in the diagram
below, an investigator runs the following five regressions (estimation
method as indicated; standard errors in parentheses; all variables as
logarithms in the logarithmic regressions; d = Durbin-Watson d statistic;

B-G = Breusch-Godfrey test statistic):

Y
140 .
120
100 .
80 .
60 | L] L]
40 .
20 i . .. LY
0 -t '.7 .l.l ' ' ' ' '
0 100 200 300 400 500 600 700 X
1 2 3 4 5
linear logarithmic
OLS AR(1) OLS AR(D) OLS
¥ 0.16 0.03 2.39 2.39 1.35
(0.01) (0.05) (0.03) (0.03) (0.70)
YD) - -0.11
(0.15)
- 1.30
X1 - - -
(0.75)
1.16 -0.14
pe (0.06) (0.15)
-21.88 -2.52 -11.00 -10.99 -12.15
constant
(3.17) (8.03) (0.15) (0.1 (1.67)
R? 0.858 0.974 0.993 0.993  0.993
RSS 7663 1366 1.011  0.993  0.946
d 0.26 2.75 2.17 1.86 21.95
B-G 39.54 - 0.85 - 1.03

Discuss each of the five regressions, explaining which is your preferred

specification.
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Answer:

The scatter diagram reveals that the relationship is nonlinear. If it is fitted
with a linear regression, the residuals must be positive for the largest and
smallest values of X and negative for the middle ones. As a consequence
it is no surprise to find a high Breusch-Godfrey statistic, above 10.83,

the critical value of y2(1) at the 0.1% level, and a low Durbin—-Watson
statistic, below 1.32, the critical value at the 1 per cent level. Equally

it is no surprise to find that an AR(1) specification does not yield
satisfactory results, the Durbin-Watson statistic now indicating negative
autocorrelation.

By contrast the logarithmic specification appears entirely satisfactory,
with a Breusch-Godfrey statistic of 0.85 and a Durbin-Watson statistic of
1.82 (d, is 1.59 at the 5 per cent level). Comparing it with the ADL(1,1)
specification, the F statistic for dropping the lagged variables is

(1.084-1.020)/2
1.020/46

1.44 .

F(2,46) =

The critical value of F(2,40) at the 5 per cent level is 3.23. Hence

we conclude that specification (3) is an acceptable simplification.
Specifications (4) and (5) are inefficient, and this accounts for their larger
standard errors.

12.13

Using the data on food in the Demand Functions data set, the following
regressions were run, each with the logarithm of food as the dependent
variable: (1) an OLS regression on a time trend T defined to be 1 in 1959,
2 in 1960, etc., (2) an AR(1) regression using the same specification,

and (3) an OLS regression on T and the logarithm of food lagged one
time period, with the results shown in the table (standard errors in

parentheses).
1: OLS 2: AR(1) 3: OLS
T 0.0181 0.0166 0.0024
(0.0005) (0.0021) (0.0016)
LGFOOD(-1) - - 0.8551
(0.0886)
constant 5.7768 5.8163 0.8571
(0.0106) (0.0586) (0.5101)
p - 0.8551 -
(0.0886)
R? 0.9750 0.9931 0.9931
RSS 0.0327 0.0081 0.0081
d 0.2752 1.3328 1.3328
h - - 2.32

Discuss why each regression specification appears to be unsatisfactory.
Explain why it was not possible to perform a common factor test.
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Answer:

The Durbin—-Watson statistic in regression (1) is very low, suggesting
AR(1) autocorrelation. However, it remains below 1.40, d, for a 5 per cent
significance test with one explanatory variable and 35 observations, in
the AR(1) specification in regression (2). The reason of course is that the
model is very poorly specified, with two obvious major variables, income
and price, excluded.

With regard to the impossibility of performing a common factor test,
suppose that the original model is written

LGFOOD, = f, + p,T + u,.
Lagging the model and multiplying through by p, we have

pLGFOOD, _, = fpp + Bp(T-1) + pu_,.
Subtracting and rearranging, we obtain the AR(1) specification:

LGFOOD, = f,(1-p) + pLGFOOD,, + ,T = Bp (T-1) + u,-pu,_,

=p,(1-p) + Bp + pLGFOOD_, + B,(1 -p)T + ¢,

However, this specification does not include any restrictions. The
coefficient of LGFOOD, , provides an estimate of p. The coefficient of T
then provides an estimate of f3,. Finally, given these estimates, the intercept
provides an estimate of B The AR(1) and ADL(1,1) specifications are

equivalent in this model, the reason being that the variable (T - 1) is
merged into T and the intercept.

Answers to the additional exercises

A121

The Durbin-Watson statistic in the OLS regression is 0.49, causing us to
reject the null hypothesis of no autocorrelation at the 1 per cent level.
The Breusch-Godfrey statistic (not shown) is 25.12, also causing the null
hypothesis of no autocorrelation to be rejected at a high significance level.
Apart from a more satisfactory Durbin-Watson statistic, the results for the
AR(1) specification are similar to those of the OLS one. The income and
price elasticities are a little larger. The estimate of the population elasticity,
negative in the OLS regression, is now effectively zero, suggesting that
the direct effect of population on expenditure on food is offset by a
negative income effect. The standard errors are larger than those for the
OLS regression, but the latter are invalidated by the autocorrelation and
therefore should not be taken at face value.

A12.2

All of the regressions exhibit strong evidence of positive autocorrelation.
The Breusch-Godfrey test statistic for AR(1) autocorrelation is above the
critical value of 10.82 (critical value of chi-squared with one degree of
freedom at the 0.1% significance level) and the Durbin-Watson d statistic
is below 1.20 (d, 1 per cent level, 45 observations, k = 4). The Durbin-
Watson statistics for the AR(1) specification are generally much more
healthy than those for the OLS one, being scattered around 2.
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Breusch-Godfrey and Durbin-Watson statistics, logarithmic OLS
regression including population

B-G d B-G d
ADM 19.37 0.683 GASO 36.21 0.212
BOOK 25.85 0.484 HOUS 23.88 0.523
BUSI 24.31 0.507 LEGL 24.30 0.538
CLOT 18.47 0.706 MAGS 19.27 0.667
DENT 14.02 0.862 MASS 21.97 0.612
DOC 24.74 0.547 OPHT 31.64 0.328
FLOW 24.13 0.535 RELG 26.30 0.497
FOOD 24.95 0.489 TELE 30.08 0.371
FURN 22.92 0.563 TOB 27.84 0.421
GAS 23.41 0.569 TOYS 20.04 0.668

Since autocorrelation does not give rise to bias, one would not expect to
see systematic changes in the point estimates of the coefficients. However,
since multicollinearity is to some extent a problem for most categories,
the coefficients do exhibit greater volatility than is usual when comparing
OLS and AR(1) results. Fortunately, most of the major changes seem to be
for the better. In particular, some implausibly high income elasticities are
lower. Likewise, the population elasticities are a little less erratic, but most
are still implausible, with large standard errors that reflect the continuing
underlying problem of multicollinearity.

AR(1) logarithmic regression

LGDPI LGP LGPOP P R? d

coef. s.e. coef. s.e. coef. s.e. coef. s.e.

ADM -0.34 0.34 0.00 0.20 3.73 0.95 0.76 0.08 0.992 2.03

BOOK  0.46 0.41 -1.06  0.29 2.73 1.25 0.82 0.10 0.990 1.51

BUSI 0.43 0.24 0.19 0.25 2.45 0.70 0.69 0.10 0.997 1.85

CLOT 1.07 0.16 -0.56 0.15 -049 0.71 0.84 0.08 0.999 2.19

DENT 1.14 0.18 -1.01 0.15 0.69 0.73 0.56 0.13 0.996 1.86

DOC 0.85 0.25 -0.30 0.26 1.26 0.77 0.83 0.10 0.997 1.61

FLOW  0.71 041 -1.04 0.44 0.74 1.33 0.78 0.09 0.994 1.97

FOOD 0.47 0.12 -0.36 0.12 0.07 0.38 0.88 0.09 0.997 1.56

FURN 1.73 0.36 -0.37 0.51 -1.62 1.55 0.92 0.06 0.994 2.00

GAS -0.02 0.34 0.01 0.08 0.29 0.97 0.83 0.06 0.933 2.12

GASO 0.75 0.15 -0.14 0.03 -0.64 048 0.93 0.04 0.998 1.65

HOUS 0.27 0.08 -0.27 0.09 -0.03 0.54 0.98 0.00 0.9997 1.66

LEGL 0.89 0.2 -0.19 0.22 -0.54 0.80 0.77 0.10 0.989 1.90

MAGS  0.98 030 -1.24 039 -0.23 0.92 0.73 0.12 0.983 1.73

MASS 0.06 028 -0.72 0.11 1.31 0.97 0.94 0.04 0.944 1.95

OPHT 1.99 060 -0.92 097 -1.45 1.85 0.90 0.08 0.991 1.67

RELG 0.86 0.18 -1.15 0.26 2.00 0.56 0.66 0.10 0.999 2.08

TELE 0.70 0.20 -0.56 0.13 2.44 0.71 0.87 0.10 0.999 1.51

TOB 0.38 0.22  -0.35 0.07 -0.99 0.66 0.79 0.10 0.960 2.37

TOYS 0.89 0.18 -0.58 0.13 1.61 0.66 0.75 0.12 0.999 1.77
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A12.3

The table below gives the residual sum of squares for the unrestricted
ADL(1,1) specification and that for the restricted AR(1) one, the fourth
column giving the chi-squared statistic for the common factor test.

Before performing the common factor test, one should check that the
ADL(1,1) specification is itself free from autocorrelation using Breusch—
Godfrey and Durbin h tests. The fifth column gives the B-G statistic for
AR(1) autocorrelation. All but one of the statistics are below the critical
value at the 5 per cent level, 3.84. The exception is that for LEGL. The
sixth and seventh columns of the table give the Durbin—-Watson statistic
for the ADL(1,1) specification and the standard error of the coefficient of
the lagged dependent variable. With these, the h statistic is computed in
the final column. It is below the critical value at the 5 per cent level for all
categories other than TOB and TOYS. It should be remembered that both
the Breusch—-Godfrey and the Durbin h tests are large-sample tests and in
this application, with only 44 observations, the sample is rather small.

Common factor test and tests of autocorrelation for ADL(1,1) model

RSS, o RSS z 1) chi-squared B-G d se.(Y ) h
ADM  0.029792 0.039935 12.89 0.55 2.088384 0.136337 -0.69
BOOK 0.070478 0.086240 8.88 1.25 1.730606 0.107211 1.27
BUSI  0.032074 0.032703 0.85 0.57 1.857385 0.123219 0.82
CLOT  0.009097 0.010900 7.96 1.06 2.193770 0.130301 -1.28
DENT 0.019281 0.021841 5.49 1.22 2.176057 0.139732 -1.56
DOC 0.025598 0.028091 4.09 0.33 1.873228 0.124151 0.74
FLOW  0.084733 0.084987 0.13 0.01 1.994870 0.107631 0.02
FOOD 0.005562 0.006645 7.83 3.12 1.611264 0.107158 1.83
FURN  0.050880 0.058853 6.41 0.29 1.906398 0.098674 0.41
GAS 0.035682 0.045433 10.63 0.66 2.008735 0.098045 -0.04
GASO 0.006898 0.009378 13.51 2.91 2.216527 0.055174 -0.77
HOUS 0.001350 0.002249 22.46 0.77 1.970645 0.061153 0.11
LEGL  0.026650 0.034823 11.77 8.04 2.034047 0.099575 -0.15
MAGS 0.043545 0.051808 7.64 0.03 1.968159 0.114750 0.16
MASS 0.029125 0.033254 5.83 0.15 2.031238 0.089066 -0.13
OPHT 0.139016 0.154629 4.68 0.08 2.043001 0.116739 -0.23
RELG  0.013910 0.014462 1.71 0.32 1.963147 0.117603 0.20
TELE  0.014822 0.017987 8.52 0.97 1.680330 0.102083 1.44
TOB 0.021403 0.021497 0.19 3.45 2.363002 0.126486 -2.21
TOYS 0.015313 0.015958 1.82 2.60 1.667862 0.134172 2.42

For the common factor test, the critical values of chi-squared are 7.81
and 11.34 at the 5 and 1 per cent levels, respectively, with 3 degrees of
freedom. Summarising the results, we find:

* AR(1) specification not rejected: BUSI, DENT, DOC, FLOW, FURN,
MAGS, MASS, OPHT, RELG, TOB, TOYS.

* AR(1) specification rejected at 5 per cent level: BOOK, CLOT, FOOD,
GAS, TELE.

* AR(1) specification rejected at 1 per cent level: ADM, GASO, HOUS,
LEGL.
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A12.4

* Discuss whether specification (1) is an adequate representation of the

data.

The Breusch—-Godfrey statistic is well in excess of the critical value
at the 0.1 per cent significance level, 10.83. Likewise, the Durbin—
Watson statistic is far below 1.15, d, at the 1 per cent level with two
explanatory variables and 36 observations. There is therefore strong
evidence of either severe AR(1) autocorrelation or some serious
misspecification.

Discuss whether specification (3) is an adequate representation of the
data.

The only item that we can check is whether it is free from
autocorrelation. The Breusch-Godfrey statistic is well under 3.84, the
critical value at the 5 per cent significance level, and so there is no
longer evidence of autocorrelation or misspecification. The Durbin h
test leads to a similar conclusion:

h=(1-0.5%x2.02) /Lz =-0.07.
1-35%0.10

Discuss whether specification (2) is an adequate representation of the
data.

Let the original model be written

LGLIFE = f, + B,LGDPI + B, LGDPRLIFE + u,

u =pu_, te.

The AR(1) specification is then

LGLIFE = (1 - p) + pLGLIFE(-1) + 8,LGDPI - 3, pLGDPI(~1)
+ B,LGDPRLIFE — 3, pLGPRLIFE(-1) + ¢,.

This is a restricted version of the ADL(1,1) model because it
incorporates nonlinear restrictions on the coefficients of LGDPI(-1)
and LGPRLIFE(-1). In the ADL(1,1) specification, minus the product
of the coefficients of LGLIFE(-1) and LGDPI is —0.82%0.42 = —0.34.
The coefficient of LGDPI(-1) is smaller than this, but then its standard
error is large. Minus the product of the coefficients of LGLIFE(-1) and
LGPRLIFE is -0.82*—0.59 = 0.48. The coefficient of LGPRLIFE(-1) is
fairly close, bearing in mind that its standard error is also large. The
coefficient of LGLIFE(-1) is exactly equal to the estimate of p in the
AR(1) specification.

The common factor test statistic is

0.799

e

35log 3.69

The null hypothesis is that the two restrictions are valid. Under the
null hypothesis, the test statistic has a chi-squared distribution with
2 degrees of freedom. Its critical value at the 5 per cent level is 5.99.
Hence we do not reject the restrictions and the AR(1) specification
therefore does appear to be acceptable.
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* Discuss whether specification (4) is an adequate representation of the data.

We note that LGLDPI(-1) and LGPRLIFE(-1) do not have significant t
statistics, but since they are being dropped simultaneously, we should
perform an F test of their joint explanatory power:

(0.732-0.719)/2

F(2,29) =
(2.29) 0.719/29

0.26.

Since this is less than 1, it is not significant at any significance level and

so we do not reject the null hypothesis that the coefficients of LGLDPI(-1)
and LGPRLIFE(-1) are both 0. Hence it does appear that we can drop these
variables. We should also check for autocorrelation. Both the Breusch-
Godfrey statistic and the Durbin h statistic:

h=(1-0.5%x1.92) /3—52 =0.28
1-35%0.09

indicate that there is no problem.

If you were presenting these results at a seminar, what would you say were
your conclusions concerning the most appropriate of specifications (1) — (4)?

There is no need to mention (1). (3) is not a candidate because we have
found acceptable simplifications that are likely to yield more efficient
parameter estimates , and this is reflected in the larger standard errors
compared with (2) and (4). We cannot discriminate between (2) and (4).

At the seminar a commentator points out that in specification (4) neither
LGDPI nor LGPRLIFE have significant coefficients and so these variables
should be dropped. As it happens, the researcher has considered this
specification, and the results are shown as specification (5) in the table. What
would be your answer to the commentator?

Comparing (3) and (5),

(0.843-0.719)/4

F(4,29) =
(4:29) 0.719/29

=1.25.

The critical value of F(4,29) at the 5 per cent level is 2.70, so it would
appear that the joint explanatory power of the 4 income and price
variables is not significant. However, it does not seem sensible to drop
current income and current price from the model. The reason that they
have so little explanatory power is that the short-run effects are small, life
insurance being subject to long-term contracts and thus a good example
of a category of expenditure with a large amount of inertia. The fact that
income in the AR(1) specification has a highly significant coefficient is
concrete evidence that it should not be dropped.

* Looking at all five regressions together, evaluate the adequacy of

o specification 1.
o specification 2.
o specification 3.

o specification 4.
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o Specification 1 has a very high Breusch-Godfrey statistic and a very
low Durbin—Watson statistic. There is evidence of either severe
autocorrelation or model misspecification.

o Specification 2 also has a very high Breusch-Godfrey statistic and
a very low Durbin-Watson statistic. Further, there is evidence of
multicollinearity: large standard errors (although comparisons are
very dubious given low DW), and implausible coefficients.

o Specification 3 seems acceptable. In particular, there is no evidence
of autocorrelation since the Breusch—Godfrey statistic is low and the
Durbin h statistic is 0.

o Specification 4: dropping m(-1) may be expected to cause omitted
variable bias since the ¢ statistic for its coefficient was —3.0 in
specification 3. (Equivalently, the F statistic is

0.0120 -0.0100)/1
0.0100/ 46

F(1,46)= ( =0.2x46=9.2

the square of the t statistic and similarly significant.)

Explain why specification 5 is a restricted version of one of the other
specifications, stating the restriction, and explaining the objective of the
manipulations that lead to specification 5.

Write the original model and AR(1) process

P =P+ Bm, +u,
u,=pu, +&,.

Then fitting
p. =p (1 - ,0)+ PP+ Pom, = PBrpm,, + &,

removes the autocorrelation. This is a restricted version of specification
3, with restriction that the coefficient of m_, is equal to minus the
product of the coefficients of m, and p,_,.

Perform a test of the restriction embodied in specification 5.

Comparing specifications 3 and 5, the common factor test statistic is

RSS _
nlog, R 1=501og 0.0105 =5010g1.05=50%x0.05=2.5
RSS 0.0100

U

Under the null hypothesis that the restriction implicit in the
specification is valid, the test statistic is distributed as chi-squared with
one degree of freedom. The critical value at the 5 per cent significance
level is 3.84, so we do not reject the restriction. Accordingly,
specification 5 appears to be an adequate representation of the data.

Explain which would be your preferred specification.

Specifications (3) and (5) both appear to be adequate representations
of the data. (5) should yield more efficient estimators of the parameters
because, exploiting an apparently-valid restriction, it is less susceptible
to multicollinearity, and this appears to be confirmed by the lower
standard errors.
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The models are

1. p,=p+p5,m, +u,

2. po =P+ Bom + fym_ + fam_, + fsm, 3 +u,
3.
4
5

p, =B+ Bym, + Bym,_ + Bep, | +u,

- Py :ﬂl +ﬁ2mt +:B6pt—1 +u,
- =h (1 _ﬂ6)+ﬂ6pt—l + fym, = By Bem,; + &, (writing p = B-

Hence we obtain the following estimates of dp, /0m, :

1. 0.95
2. 0.50
3.
4
5

0.40

. 0.18
. 0.90.

Putting p and m equal to equilibrium values, and ignoring the disturbance
term, we have

1.
2.

3.

4.

5.

p=p+ B,m
p=5 +(ﬂ2 + 55 "'184)ﬁ

~ g A B )

1 —lﬁs (131 + ﬂzm)

p=p + pBym.

ﬁ:

Hence we obtain the following estimates of dp/dm :

1.

A12.7

AR

0.95
0.95
1.00
0.90
0.90.

Evaluate regression (1).

Regression (1) has a very high Breusch-Godfrey statistic and a very
low Durbin—-Watson statistic. The null hypothesis of no autocorrelation
is rejected at the 1 per cent level for both tests. Alternatively, the test
statistics might indicate some misspecification problem.

Evaluate regression (2). Explain mathematically what assumptions
were being made by the researcher when he used the AR(1) specification
and why he hoped the results would be better than those obtained with
regression (1).

Regression (2) has been run on the assumption that the disturbance
term follows an AR(1) process

u =pu_, te.
On the assumption that the regression model should be
LGTAXI, = f3, + B,LGDPI, + u,
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the autocorrelation can be eliminated in the following way: lag the
regression model by one time period and multiply through by p

pLGTAXI |, = B.p + B,pLGDPI_| + pu, ..

Subtract this from the regression model:

LGTAXI, - pLGTAXI,_, = ,(1 - p) + B,LGDPIL - B,pLGDPI_, + u, - pu, .
Hence one obtains a specification free from autocorrelation:

LGTAXI, = B,(1 - p) + pLGTAXI,_, + B,LGDPI - f,pLGDPI | + ¢,.

The Durbin—Watson statistic is still low, suggesting that fitting the
AR(1) specification was an inappropriate response to the problem.

Evaluate regression (3).

In regression (3) the Breusch-Godfrey statistic suggests that, for

this specification, there is not a problem of autocorrelation (the
Durbin-Watson statistic is indecisive). This suggests that the apparent
autocorrelation in the regression (1) is in fact attributable to the
omission of the price variable.

This is corroborated by the diagrams, which show that large negative
residuals occurred when the price rose and positive ones when it fell.
The effect is especially obvious in the final years of the sample period.

Evaluate regression (4). In particular, discuss the possible reasons for the
differences in the standard errors in regressions (3) and (4).

In regression (4), the Durbin—-Watson statistic does not indicate

a problem of autocorrelation. Overall, there is little to choose
between regressions (3) and (4). It is possible that there was some
autocorrelation in regression (3) and that it has been rectified by
using AR(1) in regression (4). It is also possible that autocorrelation
was not actually a problem in regression (3). Regressions (3) and (4)
yield similar estimates of the income and price elasticities and in both
cases the elasticities are significantly different from zero at a high
significance level. If regression (4) is the correct specification, the
lower standard errors in regression (3) should be disregarded because
they are invalid. If regression (3) is the correct specification, AR(1)
estimation will yield inefficient estimates; which could account for the
higher standard errors in regression (4).

At a seminar one of the participants says that the researcher should
consider adding lagged values of LGTAXI, LGDPI, and LGP to the
specification. What would be your view?

Specifications (2) and (4) already contain the lagged values, with
restrictions on the coefficients of LGDPI(-1) and LGP(-1).

Explain why the researcher was not satisfied with regression (1).

The researcher was not satisfied with the results of regression (1)
because the Breusch—Godfrey statistic was 4.42, above the critical
value at the 5 per cent level, 3.84, and because the Durbin-Watson d
statistic was only 0.99. The critical value of d, with one explanatory
variable and 30 observations is 1.35. Thus there is evidence that the
specification may be subject to autocorrelation.

Evaluate regression (2). Explain why the coefficients of I(-1) and r(-1)
are not reported, despite the fact that they are part of the regression
specification.
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Specification (2) is equally unsatisfactory. The fact that the Durbin—
Watson statistic has remained low is an indication that the reason for
the low d in (1) was not an AR(1) disturbance term. RSS is very high
compared with those in specifications (4) — (6). The coefficient of I(-1)
is not reported as such because it is the estimate p . The coefficient of
r(=1) is not reported because it is constrained to be minus the product
of p and the coefficient of I.

Evaluate regression (3).

Specification (3) is the unrestricted ADL(1,1) model of which the
previous AR(1) model was a restricted version and it suffers from the
same problems. There is still evidence of positive autocorrelation, since
both the Breusch-Godfrey statistic, 4.24, and the Durbin h statistic

h=(1-0.5d) |—"— 20335 |— 2 355
1-no} 1-29(0.16)

are high and RSS is still much higher than in the three remaining
specifications.

Evaluate regression (4).

Specification (4) seems fine. The null hypothesis of no autocorrelation
is not rejected by either the Breusch-Godfrey statistic or the Durbin—
Watson statistic. The coefficients are significant and have the expected
signs.

Evaluate regression (5).

The AR(1) specification (5) does not add anything because there
was no evidence of autocorrelation in (4). The estimate of p is not
significantly different from zero.

Evaluate regression (6).

Specification (6) does not add anything either. ¢t tests on the
coefficients of the lagged variables indicate that they are individually
not significantly different from zero. Likewise the joint hypothesis
that their coefficients are all equal to zero is not rejected by an F test
comparing RSS in (4) and (6):

(274-23.5)/3

FG23) =723

1.27.

The critical value of F(3,23) at the 5 per cent level is 3.03.

[There is no point in comparing (5) and (6) using a common factor
test, but for the record the test statistic is

nlog, RSS, =29log ﬁ=3.81.
RSS 23.5

e
U

The critical value of chi-squared with 2 degrees of freedom at the 5 per
cent level is 5.99.]

263



20 Elements of econometrics

264

* Summarise your conclusions concerning the evaluation of the different
regressions. Explain whether an examination of the figure supports your
conclusions.

The overall conclusion is that the static model (4) is an acceptable
representation of the data and the apparent autocorrelation in
specifications (1) — (3) is attributable to the omission of g. Figure 12.3
shows very clearly that the residuals in specification (1) follow the same
pattern as g, confirming that the apparent autocorrelation in the residuals
is in fact attributable to the omission of g from the specification.

A12.9

In Exercise A11.5 you performed a test of a restriction. The result of this test
will have been invalidated if you found that the specification was subject

to autocorrelation. How should the test be performed, assuming the correct
specification is ADL(1,1)?

If the ADL(1,1) model is written
log CAT = g, + p,log DPI + p,log P + f,log POP + f.log CAT |
+ plog DPI | + ﬂ7log P + BJlog POP_ + u,

the restricted version with expenditure per capita a function of income per
capita is

CAT DPI CAT
log——= 0, + B, loge——+ B, log P+ . lo =
8 50P B+ B, 8 0P By log P+ fs gPORl
DPI
+ 6 1o L+ B logP, +u.
Be gPOPfl B log P,

Comparing the two equations, we see that the restrictions are f, = 1 - §,
and f, = - f, - p,. The usual F statistic should be constructed and compared
with the critical values of F(2, 28).

A12.10

Let the AR(1) process be written
u,=pu, +&.

As the specification stands, OLS would yield inconsistent estimates because
both the explanatory variable and the disturbance term depend on u,_,.
Applying the standard procedure, multiplying the lagged relationship by p
and subtracting, one has

Y, = pY, = B,(1=p)+ B,Y, = BypY,  +u, —pu,,.
Hence
Y, =pB (l_p)"'(ﬂz +p)Yt—1 -B.pY,_, +e,.

It follows that the model should be fitted as a second-order, rather than
as a first-order, process. There are no restrictions on the coefficients. OLS
estimators will be consistent, but subject to finite-sample bias.
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Explain what is correct. incorrect, confused or incomplete in the following
statements, giving a brief explaination if not correct.

The disturbance term in a regression model is said to be autocorrelated if
its values in a sample of observations are not distributed independently of
each other.

Correct.

When the disturbance term is subject to autocorrelation, the ordinary
least squares estimators are inefficient ...

Correct.

...and inconsistent...

Incorrect, unless there is a lagged dependent variable.
...but they are not biased...

Correct, unless there is a lagged dependent variable.
...and the t tests are invalid.

Correct.

It is a common problem in time series models because it always occurs
when the dependent variable is correlated with its previous values.

Incorrect.

If this is the case, it could be eliminated by including the lagged value of
the dependent variable as an explanatory variable.

In general, incorrect. However, a model requiring a lagged dependent
variable could appear to exhibit autocorrelation if the lagged
dependent variable were omitted, and including it could eliminate the
apparent problem.

However, if the model is correctly specified and the disturbance term
satisfies the regression model assumptions, adding the lagged value of the
dependent variable as an explanatory variable will have the opposite effect
and cause the disturbance term to be autocorrelated.

Nonsense.

A second way of dealing with the problem of autocorrelation is to use an
instrumental variable.

More nonsense.

If the autocorrelation is of the AR(1) type, randomising the order of the
observations will cause the Durbin—-Watson statistic to be near 2...

Correct.
...thereby eliminating the problem.

Incorrect. The problem will have been disguised, not rectified.
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Chapter 13: Introduction to nonstationary
time series

Overview

This chapter begins by defining the concepts of stationarity and
nonstationarity as applied to univariate time series and, in the case of
nonstationary series, the concepts of difference-stationarity and trend-
stationarity. It next describes the consequences of nonstationarity for
models fitted using nonstationary time-series data and gives an account
of the Granger-Newbold Monte Carlo experiment with random walks.
Next the two main methods of detecting nonstationarity in time series
are described, the graphical approach using correlograms and the more
formal approach using Augmented Dickey-Fuller unit root tests. This leads
to the topic of cointegration. The chapter concludes with a discussion of
methods for fitting models using nonstationary time series: detrending,
differencing, and error-correction models.

Learning outcomes

After working through the corresponding chapter in the textbook, studying
the corresponding slideshows, and doing the starred exercises in the
textbook and the additional exercises in this guide, you should be able to:

* explain what is meant by stationarity and nonstationarity.
* explain what is meant by a random walk and a random walk with drift
* derive the condition for the stationarity of an AR(1) process

* explain what is meant by an integrated process and its order of
integration

* explain why Granger and Newbold obtained the results that they did
* explain what is depicted by a correlogram

* perform an Augmented Dickey-Fuller unit root test to test a time series
for nonstationarity

* test whether a set of time series are cointegrated

* construct an error-correction model and describe its advantages over
detrending and differencing.

Further material

Addition to the section Special case where the process is known
to be a random walk with drift, p.498

We are talking about fitting the model
Y=p+ B +¢,

when £, = 1 and so the model is a random walk with drift. (The heading
of the subsection should reflect this. If you actually knew that the process
was a random walk with drift, you would know , = 1 and would not
need to estimate it.)
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Distributions of estimators of §,, models with and without trend, when the
true model is a random walk

The solid lines in the figure show the distributions of b, for the case
where the model is fitted with the correct specification. The estimator

is hyperconsistent, so the variance is inversely proportional to T2. If the
sample size is doubled, the variance is multiplied by 273, the standard
deviation is multiplied by 2-1°, and the height is multiplied by 2! = 2.83,
at least approximately.

If a time trend is added to the specification by mistake, there is a loss of
efficiency, but it is not as dramatic as in the other special case, described
on page 498. The estimator is still superconsistent (variance inversely
proportional to T?2). The distributions for the various sample sizes for this
case are shown as the dashed lines in the figure.

Generalisation of the Augmented Dickey Fuller test for unit roots,

In Section 13.3 it was shown how a Dickey-Fuller test could be used to
detect a unit root in the process

X, =B+ B, X, +rtte,

and an Augmented Dickey—Fuller test could be used for the same purpose
when the process included an additional lagged value of X:

Xl :ﬂl +ﬂ2X1—1 +133X1—2 +yite,.

In principle the process may have further lags, the general form being

P
Xt :ﬁl +Zﬁs+lXt—s +}/f+€,'

s=1

One condition for stationarity is that the sum of the coefficients of the
lagged X variables should be less than one. Writing our test statistic 6 as

P
azzﬂsﬂ _1
s=1

the null hypothesis of nonstationarity is H;: # = 0 and the alternative
hypothesis of stationarity is H,: # < 0. Two issues now arise. One is how to
reparameterise the specification so that we can obtain a direct estimate of
6. The other is how to determine the appropriate value of p.
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From the definition of 0, we have
)4
B, =9+1_Zﬁs+l :
s=2

Substituting this into the original specification, we have

p p
X, =5 +(9+1_Zﬁs+1jX” +Zﬂs+lXt—s +ytte, .

5=2 §=2

Hence
r r
Xz _Xt—l = ﬂl + eXr—l _Xt—lzﬂs-H + zﬁs+1Xt—s +yite,
s=2 s=2
p P p p
= ﬂl + gXt—l _XHZﬂm + erzzﬂm _thzzﬂm + ZﬂmXH +yi+ &
s=2 s=2 s=2 s=2
P P )
= ﬁl + eXt—l _Z:Bs+l(Xt—l _Xt—l)_ Xt—ZZﬂS-H + Zﬁs+1Xt—s +yite,
§=2 s=3 5=3
P P
= ﬂl + HXH _Zﬁm(XH _thz)_ Zﬂm(Xzfz - Xt73)_"'_ﬂp(thp+l _Xt—p)"" yite,
s=2 5=3

Thus the reparameterised regression model may be written

AX, =B+ 0K, —S6AX, —6,AX, ..~ 8, AX, . +7yi+é,
where
P
(3q = :E: /3;+1
s=q+1

and AX, , =X, - X
coefficient of X .

o1 - The parameter of interest is, of course, the

There now arises the question of how to determine the appropriate
number of lagged values of X in the original specification or, equivalently,
of AX in the reparameterised specification. Looking directly at the
goodness of fit, as measured by R? or RSS, does not provide an answetr.

We have seen that R? will increase and RSS will decrease when additional
variables, even irrelevant ones, are included in the regression specification.
R?, ‘adjusted’ R?, discussed in Section 3.5, is one measure of goodness

of fit that attempts to allow for this effect, but it is unsatisfactory. Newer
measures are the Bayes Information Criterion (BIC) and the Akaike
Information Criterion (AIC). The BIC (also known as the Schwarz
Information Criterion) and the AIC have become popular for helping to
determine the appropriate number of lags in time series analysis in general
and unit root tests in particular. Indeed the latest version of EViews
includes the BIC/Schwarz as the default option when testing for unit roots.

The BIC and AIC are defined by

BIC= log@ + ElogT
T T

and
RSS 2k
AIC=log—— +—
T T
where k is the number of parameters in the regression specification.
For both information criteria, the optimal regression specification is the
one that minimises the statistic. For both, the first term will decrease
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when additional terms are included in the regression specification, but

the second term will increase. Since log T >2 for T > 7, increasing the
number of parameters is penalised more heavily in the BIC than the AIC,
with the consequence that in time series analysis the BIC tends to produce
specifications with fewer lags. It can be shown that the BIC provides
consistent estimates of the lag length, while the AIC does not, but for finite
samples neither has an obvious advantage and both are used in practice.

Addition to Section 13.5 Cointegration

Section 13.5 contains the following paragraph on page 507:

In the case of a cointegrating relationship, least squares estimators can be
shown to be superconsistent (Stock, 1987). An important consequence is
that OLS may be used to fit a cointegrating relationship, even if it belongs
to a system of simultaneous relationships, for any simultaneous equations
bias tends to zero asymptotically.

This cries out for an illustrative simulation, so here is one. Consider the
model

Yt 2181 +ﬂ2Xt +1832t + &y,
X, =a +a,Y, +¢&y,

Zt :pZt—l + &y

where Y, and X, are endogenous variables, Z, is exogenous, and ¢, ¢,
and ¢, are iid N(0,1) disturbance terms. We expect OLS estimators to

be inconsistent if used to fit either of the first two equations. However,
if p = 1, Z is nonstationary, and X and Y will also be nonstationary. So,

if we fit the second equation, for example, the OLS estimator of a, will
be superconsistent. This is illustrated by a simulation where the first two
equations are

Y, =1.0+0.8X, +0.5Z, + &y,
X, =2.0+04Y, +¢,,

The distributions in the right of the figure below (dashed lines) are for the
case p = 0.5. Z is stationary, and so are Y and X. You will have no difficulty
in demonstrating that plim aZO L5 = 0.68. The distributions to the left of
the figure (solid lines) are for p = 1, and you can see that in this case the
estimator is consistent. But is it superconsistent? The variance seems to be
decreasing relatively slowly, not fast, especially for small sample sizes. The
explanation is that the superconsistency becomes apparent only for very
large sample sizes, as shown in the second figure.
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Additional exercises

A13.1

The Figure 13.1 plots the logarithm of the US population for the period
1959-2003. It is obviously nonstationary. Discuss whether it is more likely
to be difference-stationary or trend-stationary.

12.7
12.6
12,5
124
123
12.2
121

12
1.9

1.8

Figu

./././././././.ﬂ
1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 2003
re 13.1 Logarithm of the US population
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A13.2

Figure 13.2 plots the first difference of the logarithm of the US population
for the period 1959-2003. Explain why the vertical axis measures the
proportional growth rate. Comment on whether the series appears to be
stationary or nonstationary.
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Figure 13.2 Logarithm of the US population, first difference

A13.3

The regression output below shows the results of ADF unit root tests on the
logarithm of the US population, and its difference, for the period 1959-2003.
Comment on the results and state whether they confirm or contradict your
conclusions in Exercise 13.2.

Augmented Dickey-Fuller Unit Root Test on LGPOP

Null Hypothesis: LGPOP has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Fixed)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -2.030967 0.5682
Test critical valuesl$ level -4.186481
% level -3.518090
10% level -3.189732

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D (LGPOP)

Method: Least Squares

Sample (adjusted) : 1961 2003

Included observations: 43 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
LGPOP (-1) -0.047182 0.023231 -2.030967 0.0491

D (LGPOP (-1)) 0.687772 0.058979 11.66139 0.0000
C 0.574028 0.281358 2.040209 0.0481
Q@TREND (1959) 0.000507 0.000246 2.060295 0.0461

R-squared 0.839263 Mean dependent var 0.011080
Adjusted R-squared 0.826898 S.D. dependent var 0.001804
S.E. of regression 0.000750 Akaike info criter-11.46327
Sum squared resid 2.20E-05 Schwarz criterion -11.29944
Log likelihood 250.4603 F-statistic 67.87724
Durbin-Watson stat 1.164933 Prob (F-statistic) 0.000000
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Augmented Dickey-Fuller Unit Root Test on DLGPOP

Null Hypothesis: DLGPOP has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Fixed)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -2.513668 0.3203
Test critical valuesl% level -4.192337
% level -3.520787
10% level -3.191277

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D (DLGPOP)

Method: Least Squares

Sample (adjusted) : 1962 2003

Included observations: 42 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

DLGPOP (-1) -0.161563 0.064274 -2.513668 0.0163

D (DLGPOP (-1)) 0.294717 0.117766 2.502573 0.0167

C 0.001714 0.000796 2.152327 0.0378

@TREND (1959) -1.32E-07 9.72E-06 -0.013543 0.9893

R-squared 0.320511 Mean dependent var-0.000156

Adjusted R-squared 0.266867 S.D. dependent var 0.000827

S.E. of regression 0.000708 Akaike info criter-11.57806

Sum squared resid 1.90E-05 Schwarz criterion -11.41257

Log likelihood 247.1393 F-statistic 5.974780

Durbin-Watson stat 1.574084 Prob (F-statistic) 0.001932

A13.4

A researcher believes that a time series is generated by the process

X =pX_  +e
where ¢ is a white noise series generated randomly from a normal
distribution with mean zero, constant variance, and no autocorrelation.

Explain why the null hypothesis for a test of nonstationarity is that the
series is nonstationary, rather than stationary.

A13.5

A researcher correctly believes that a time series is generated by the
process

X =pX_  +e
where ¢ _is a white noise series generated randomly from a normal
distribution with mean zero, constant variance, and no autocorrelation.
Unknown to the researcher, the true value of p is 0.7. The researcher uses

a unit root test to test the series for nonstationarity. The output is shown.
Discuss the result of the test.
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Augmented Dickey-Fuller Unit Root Test on X

ADF Test Statistic -2.528841 1% Critical Value*-3.6289
5% Critical Value -2.9472
10% Critical Value -2.6118

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D (X)

Method: Least Squares

Sample (adjusted) : 2 36

Included observations: 35 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

X (-1) -0.379661 0.150132 =-2.528841 0.0164

C 0.222066 0.203435 1.091580 0.2829
R-squared 0.162331 Mean dependent var-0.052372
Adjusted R-squared 0.136947 S.D. dependent var 1.095782
S.E. of regression 1.017988 Akaike info criteri2.928979
Sum squared resid 34.19792 Schwarz criterion 3.017856
Log likelihood -49.25714 F-statistic 6.395035
Durbin-Watson stat 1.965388 Prob (F-statistic) 0.016406

A13.6

Test of cointegration. Perform a logarithmic regression of expenditure
on your commodity on income, relative price, and population. Save the
residuals and test them for stationarity. (Note: the critical values in the
regression output do not apply to tests of cointegration. For the correct
critical values, see the textbook.)

A13.7
A variable Y, is generated by the autoregressive process
Ytzﬁl +ﬁ2Yt—l +£t
where g, = 1 and ¢, satisfies the regression model assumptions. A second
variable Z is generated as the lagged value of Y :
Z=Y,_.
Show that Y and Z are nonstationary processes. Show that nevertheless
they are cointegrated.

A13.8

X, and Z are independent I(1) (integrated of order 1) time series. W, is
a stationary time series. Y, is generated as the sum of X, Z,, and W.. Not
knowing this, a researcher regresses Y, on X, and Z . Explain whether he
would find a cointegrating relationship.

A13.9

Two random walks RA, and RB,, and two stationary processes SA and SB,
are generated by the following processes

RA,=RA_, + ¢,
RB,=RB_, + ¢,
SA,=pSA_ +te, 0<p, <1
SB,=p,SB_, +¢, 0<p, <1
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where ¢ , ¢,, ¢, and ¢,, are iid N(0,1) (independently and identically

distributed from a normal distribution with mean 0 and variance 1).
* Two series XA, and XB, are generated as

XA, =RA, + SA,

XB, = RB, + SB..
Explain whether it is possible for XA, and XB, to be stationary.
Explain whether it is possible for them to be cointegrated.
* Two series YA, and YB, are generated as

YA, =RA, + SA,

YB, = RA, + SB..
Explain whether it is possible for YA and YB, to be cointegrated.
* Two series ZA, and ZB, are generated as

ZA =RA + RB, + SA,

ZB. = RA —RB, + SB,.
Explain whether it is possible for ZA, and ZB, to be stationary.

Explain whether it is possible for them to be cointegrated.

Answers to the starred exercises in the textbook

13.1
Demonstrate that the MA(1) process
X =¢ +og,
is stationary. Does the result generalise to higher-order MA processes?
Answer:
The expected value of X, is zero and therefore independent of time:
EX) = E(e, + ae,_) = E(e) + aE(e, ) =0+ 0=0.

Since ¢, and ¢_, are uncorrelated,

oy =0, +a,0;

and this is independent of time. Finally, because
Xt—l = gt—l + azgr-z’

the population covariance of X, and X, is given by

2
£

Oxx B =0,0

This is fixed and independent of time. The population covariance between
X, and X__is zero for all s > 1 since then X, and X_| have no elements in
common. Thus the third condition for stationarity is also satisfied.

All MA processes are stationary, the general proof being a simple extension
of that for the MA(1) case.

13.2
A stationary AR(1) process

Xt :ﬁl +ﬂ2Xt—1 +é,

with | ,BZ| <1, has initial value X, where X is defined as
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13.7

A [
SRS (3

Demonstrate that X is a random draw from the ensemble distribution for
X.

Answer:

Lagging and substituting, it was shown, equation (13.12), that

1_ t
X, =p X, + f, %"'ﬂzﬂgl +~--+ﬂ225z72 +Br6 tE, .
2

With the stochastic definition of X, we now have

t ﬂ 1 1_ﬂt t—
X, :ﬂz(l—lﬂz + @50 + B l—ﬂz + P, 1‘91 +"'+ﬂ228t72 + 56, e,

1 _
__A + B /7250+ e+t Bie, , + Bog, &,
l_ﬁz 1_132

and

1
var(X,)= var(ﬁz’ /ﬁgo +B e v+ Ble, L+ Bog, + 8,J
P2

2t

=12 2082+( 22”2+...+ﬂ2“+ﬂ22+1)ag2
l_ﬂz

2 2 2
2 y 1=p; 2 O,

g s e T

By

Given the generating process for X, one has E(x, ): - and
2 2
var(X, )= lo-—€2 . Hence X is a random draw from the ensemble
P2
distribution. Implicitly it has been assumed that the distributions of ¢ and
X, are both normal. This should have been stated explicitly.

Demonstrate that if the disturbance term in (13.30) is u,, where u, is
generated by an AR(1) process, the appropriate specification for the
Augmented Dickey-Fuller test is given by equation (13.32).

Answer:

Let the process (13.29) be rewritten
X =A4+21X +0t+u,

with u, subject to the AR(1) process
u =pu , te.

Lagging (13.29) one period and multiplying through by p, we have
pX_ = Ap + 2pX , + p0(t-1) + pu,_, .

Subtracting this from the equation for X, and rearranging, we obtain

X, =2,(A=p) + pd + (4, + p)X_ —2pX_, + 0(Q-p)t + ¢,.
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Thus we obtain the model

X =P+ BX, +BX, +t+e
with redefinitions of the parameters. The condition for stationarity is
B, + B, < 1. The process will be non-explosively nonstationary if 5, + f,
= 1. Subtracting X, from both sides, and adding and subtracting £.X, | on
the right side, we have

Xt _Xt—l = ﬁl + ﬂZXt—l _Xt—l + ﬂ3Xt—l _ﬂ3Xt—1 + ﬁ3Xt—2 + oyt + -
Hence we obtain
A, =p + B, +p,-DX_ -BAX  +yt+e,

and the test is on the coefficient of X, , with H: , + f, -1 = 0 being the
null hypothesis of nonstationarity and 8, + f, — 1 < 0 being the alternative
hypothesis of stationarity.

13.10
We have seen that the OLS estimator of ¢ in the model

Y =8 +d+s¢,

is hyperconsistent. Show also that it is unbiased in finite samples, despite
the fact that Y, is nonstationary.

Answer:

Let d be the OLS estimator of d. Following the analysis in Chapter 2, d may
be decomposed as

__(e-o0s1)

ZT:(S ~0.5T)

s=1

Since a, is deterministic,

Answers to the additional exercises

A13.1

The population series exhibits steady growth and is therefore obviously
nonstationary. The growth is partly due to an excess of births over deaths
and partly due to immigration. The question is whether variations in these
factors are likely to be offsetting in the sense that a relatively large birth/
death excess one year is somehow automatically counterbalanced by a
relatively small one in a subsequent year, or that a relatively large rate of
immigration one year stimulates a reaction that leads to a relatively small
one later. Such compensating mechanisms do not seem to exist, so trend-
stationarity may be ruled out. Population is a very good example of an
integrated series with the effects of shocks being permanently incorporated
in its level.
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A13.2

It is difficult to come to any firm conclusion regarding this series. At first
sight it looks like a random walk. On closer inspection, you will notice
that after an initial decline in the first few years, the series appears to be
stationary, with a high degree of correlation. The series is too short to
allow one to discriminate between the two possibilities.

A13.3

As expected, given that the series is evidently nonstationary, the coefficient
of LGPOP(-1), —0.05, is close to zero and not significant.

When we difference the series, the coefficient of DLGPOP(-1) is —0.16 and
not significant, even at the 5 per cent level. One possibility, which does not
seem plausible, is that the population series is I1(2). It is more likely that it

is I(1), the first difference being stationary but highly autocorrelated.

A13.4

If the process is nonstationary, p = 1. If it is stationary, it could lie
anywhere in the range -1 < p < 1. We must have a specific value for the
null hypothesis. Hence we are forced to use nonstationarity as the null
hypothesis, despite the inconvenience of having to compute alternative
critical values of t.

A13.5

The model has been rewritten
X-X_ =@(p-1DX +e

t

so that the coefficient of X, is zero under the null hypothesis of
nonstationarity. We see that the null hypothesis is not rejected at any
significance level, despite the fact that we know that the series is
stationary. However, the estimate of the coefficient of X, |, -0.38, is not
particularly close to zero. It implies an estimate of 0.67 for p, close to the
actual value. This is a common outcome. Unit root tests generally have low
power, making it generally difficult or impossible to discriminate between

nonstationary processes and highly autocorrelated stationary processes.

A13.6

Where the hypothetical cointegrating relationship has a constant but no
trend, as in the present case, the critical values of t are —3.34 and -3.90
at the 5 and 1 per cent levels, respectively (Davidson and MacKinnon,
1993). Hence the test indicates that we have a cointegrating relationship
only for DENT and then only at the 5 per cent level. However, one knows
in advance that the residuals are likely to be highly autocorrelated. Many
of the coefficients are greater than 0.2 in absolute terms and perfectly
compatible with a hypothesis of highly autocorrelated stationarity.
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Test of cointegration

b, s.e. t b, s.e. t
ADM -0.09 0.06 -1.69 GASO -0.08 0.05 -1.62
BOOK  -0.17 0.08 -224 HOUS -0.31 0.12 -2.52
BUSI -0.23 0.09 -2.40 LEGL -0.26 0.10 -2.59

CLOT -0.41 0.13 -3.17 MAGS -0.39 0.13 -3.03
DENT -0.51 0.15 -3.51 MASS  -0.07 0.05 -1.48
DOC -0.35 0.12 -299 OPHT -0.14 0.08 -1.86
FLow  -0.22 0.10 -2.14 RELG -0.17 0.07 -2.35
FOOD -0.29 0.11 -2.61 TELE -0.22 0.09 -2.35
FURN -0.32 0.10 -3.29 TOB -0.16 0.10 -1.66
GAS -0.24 0.09 -2.79 TOYS -0.17 0.09 -1.96

A13.7

The expected value of Y, is ft + Y, and thus it is not independent of t,
one of the conditions for stationarity. Similarly for Z,. However

Yo=B =Pz =¢
and is therefore 1(0).
A13.8
Y-X-Z=W,.

Since W, is stationary, the left side of the equation is a cointegrating
relationship.

A13.9
* Two series XA, and XB, are generated as
XA, =RA, + SA
XB, = RB, + SB,
Explain whether it is possible for XA, and XB, to be stationary.
Explain whether it is possible for them to be cointegrated.

A combination of a nonstationary process and a stationary one is
nonstationary. Hence both X, and X, are nonstationary.

Since the nonstationary components of X, and X, are unrelated, there
is no linear combination that is stationary, and so the series are not
cointegrated.

* Two series YA and YB, are generated as
YA = RA, + SA,
YB, = RA, + SB,
Explain whether it is possible for YA and YB, to be cointegrated.
YA - YB, = SA, - SB,
This is a cointegrating relationship for YA and YB, since SA - SB, is
stationary.
* Two series ZA, and ZB, are generated as
ZA =RA_+ RB, + SA,
7B, = RA -RB, + SB,
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Explain whether it is possible for ZA, and ZB, to be stationary.

No linear combination of RA, and RB, can be stationary since they are
independent random walks, and so ZA, and ZB, are both nonstationary.

Explain whether it is possible for them to be cointegrated.

No linear combination of ZA and ZB, can eliminate both RA and RB,, so
there is no cointegrating relationship.
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Chapter 14: Introduction to panel data

Overview

Increasingly, researchers are now using panel data where possible in
preference to cross-sectional data. One major reason is that dynamics may
be explored with panel data in a way that is seldom possible with cross-
sectional data. Another is that panel data offer the possibility of a solution
to the pervasive problem of omitted variable bias. A further reason is that
panel data sets often contain very large numbers of observations and the
quality of the data is high. This chapter describes fixed effects regression
and random effects regression, alternative techniques that exploit the
structure of panel data.

Learning outcomes

After working through the corresponding chapter in the textbook, studying
the corresponding slideshows, and doing the starred exercises in the
textbook and the additional exercises in this guide, you should be able to:

* explain the differences between panel data, cross-sectional data, and
time series data

* explain the benefits that can be obtained using panel data

* explain the differences between OLS pooled regressions, fixed effects
regressions, and random effects regressions

* explain the potential advantages of the fixed effects model over pooled
OLS

* explain the differences between the within-groups, first differences,
and least squares dummy variables variants of the fixed effects model

* explain the assumptions required for the use of the random effects
model

* explain the advantages of the random effects model over the fixed
effects model when the assumptions are valid

* explain how to use a Durbin-Wu-Hausman test to determine whether
the random effects model may be used instead of the fixed effects
model

Additional exercises

A14.1

The NLSY2000 data set contains the following data for a sample of

2,427 males and 2,392 females for the years 1980-2000: years of work
experience, EXP, years of schooling, S, and age, AGE. A researcher
investigating the impact of schooling on willingness to work regresses EXP
on S, including potential work experience, PWE, as a control. PWE was
defined as

PWE = AGE -S - 5.
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The following regressions were performed for males and females

separately:

(1) an ordinary least squares (OLS) regression pooling the observations

(3) a within-groups fixed effects regression

(3) a random effects regression

The results of these regressions are shown in the table below. Standard
errors are given in parentheses.

Males Females
OLS FE RE OLS FE RE
S 0.78 0.65 0.72 0.89 0.71 0.85
(0.01) (0.01) (0.01) (0.01) (0.02) (0.01)
0.83 0.94 0.94 0.74 0.88 0.87
PWE
(0.003) | (0.001) | (0.001) | (0.004) | (0.002) | (0.002)
-10.16 -10.56 | -11.11 -12.39
constant dropped dropped
(0.09) (0.14) (0.12) (0.19)
R? 0.79 — — 0.71 — —
n 24,057 | 24,057 | 24,057 | 18,758 | 18,758 | 18,758
DWH
2(2) 10.76 1.43

* Explain why the researcher included PWE as a control.
e Evaluate the results of the Durbin-Wu-Hausman tests.

* For males and females separately, explain the differences in the
coefficients of S in the OLS and FE regressions.

* For males and females separately, explain the differences in the
coefficients of PWE in the OLS and FE regressions.

A14.2

Using the NLSY2000 data set, a researcher fits OLS and fixed effects
regressions of the logarithm of hourly wages on schooling, years of work
experience, EXP, ASVABC score, and dummies MALE, ETHBLACK, and
ETHHISP for being male, black, or hispanic. Schooling was split into years
of high school, SH, and years of college, SC. The results are shown in the
table below, with standard errors placed in parentheses.
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OLS FE RE
0.026 0.005 0.016
SH
(0.002) (0.007) (0.004)
. 0.063 0.073 0.067
(0.001) (0.004) (0.002)
0.033 0.032 0.033
EXP
(0.0004) (0.0003)  (0003)
0.012 0.011
ASVABC —
(0.0003) (0.001)
0.193 0.197
MALE —
(0.004) (0.009)
-0.040 -0.030
ETHBLACK —
(0.007) (0.015)
0.047 0.033
ETHHISP —
(0.008) (0.018)
5.639 5.751
constant —
(0.028) (0.051)
R? 0.0367 — —
DWH c2(3) — — 9.31

If an individual reported being in high school or college, the observation
for that individual for that year was deleted from the sample. As a
consequence, the observations for most individuals in the sample begin
when the formal education of that individual has been completed.
However, a small minority of individuals, having apparently completed
their formal education and having taken employment, subsequently
resumed their formal education, either to complete high school with a
general educational development (GED) degree equivalent to the high
school diploma, or to complete one or more years of college.

e Discuss the differences in the estimates of the coefficient of SH.

e Discuss the differences in the estimates of the coefficient of SC.

A14.3

A researcher has data on G, the average annual rate of growth of GDP
2001-2005, and S, the average years of schooling of the workforce in
2005, for 28 European Union countries. She believes that G depends on S
and on E, the level of entrepreneurship in the country, and a disturbance
term u:

G=p+BS+BE+u €Y)

u may be assumed to satisfy the usual regression model assumptions.
Unfortunately the researcher does not have data on E.
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* Explain intuitively and mathematically the consequences of performing
a simple regression of G on S. For this purpose S and E may be treated as
nonstochastic variables.

The researcher does some more research and obtains data on G*, the
average annual rate of growth of GDP 1996-2000, and S*, the average
years of schooling of the workforce in 2000, for the same countries.
She thinks that she can deal with the unobservable variable problem by
regressing AG, the change in G, on AS, the change in S, where

AG = G-G*

AS =S -§*

assuming that E would be much the same for each country in the two
periods. She fits the equation

AG =6, + 6AS +w 2

where w is a disturbance term that satisfies the usual regression model
assumptions.

* Compare the properties of the estimators of the coefficient of S in (1)
and of the coefficient of AS in (2).

* Explain why in principle you would expect the estimate of ¢, in (2) not
to be significant. Suppose that nevertheless the researcher finds that the
coefficient is significant. Give two possible explanations.

Random effects regressions have potential advantages over fixed effect
regressions.

* Could the researcher have used a random effects regression in the
present case?

A144

A researcher has the following data for 3,763 respondents in the United
States National Longitudinal Survey of Youth 1979- : hourly earnings

in dollars in 1994 and 2000, years of schooling as recorded in 1994 and
2000, and years of work experience as recorded in 1994 and 2000. The
respondents were aged 14-21 in 1979, so they were aged 29-36 in 1994
and 35-42 in 2000. 371 of the respondents had increased their formal
schooling between 1994 and 2000, 210 by one year, 101 by two years, 47
by three years, and 13 by more than three years, mostly at college level in
non-degree courses. The researcher performs the following regressions:

(1)the logarithm of hourly earnings in 1994 on schooling and work
experience in 1994

(2)the logarithm of hourly earnings in 2000 on schooling and work
experience in 2000

(3)the change in the logarithm of hourly earnings from 1994 to 2000 on
the changes in schooling and work experience in that interval.

The results are shown in columns (1) — (3) in the table (¢ statistics in
parentheses), and are presented at a seminar.
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(1 (2) (3) 4 (5)
Change in Change in
Dependent | log earnings | log earnings log earnings log earnings log earnings
variable 1994 2000 2000
1994-2000 1994-2000
0.114 0.116 0.108
Schooling — —
(30.16) (28.99) (24.53)
0.052 0.038 0.037
Experience — —
(18.81) (14.59) (14.10)
Cognitive . L o 0.004 .
ability score (4.79)
0.214 0.229 0.230
Male — —
(12.03) (11.77) (11.88)
-0.149 -0.199 -0.167
Black — —
(-5.23) (-6.44) (-5.29)
) 0.039 0.053 0.071
Hispanic — —
(1.1 (1.38) (1.84)
Change in 0090 -0.006
schooling (5.00) (-0.16)
Change in 0.024 0.003
experience (2.75) (0.15)
4.899 5.023 0.102 4.966 0.389
constant
(74.59) (65.02) (2.13) (63.69) (3.05)
R? 0.265 0.243 0.007 0.248 0.0002
n 3,763 3,763 3,763 3,763 371

The researcher is unable to explain why the coefficient of the change
in schooling in regression (3) is so much lower than the schooling
coefficients in (1) and (2). Someone says that it is because he has left
out relevant variables such as cognitive ability, region of residence, etc,
and the coefficients in (1) and (2) are therefore biased. Someone else
says that cannot be the explanation because these variables are also
omitted from regression (3). Explain what would be your view.

He runs regressions (1) and (2) again, adding a measure of cognitive
ability. The results for the 2000 regression are shown in column (4).
The results for 1994 were very similar. Discuss possible reasons for the
fact that the estimate of the schooling coefficient differs from those in
(2) and (3).

Someone says that the researcher should not have included a constant
in regression (3). Explain why she made this remark and assess
whether it is valid.

Someone else at the seminar says that the reason for the relatively low
coefficient of schooling in regression (3) is that it mostly represented
non-degree schooling. Hence one would not expect to find the same
relationship between schooling and earnings as for the regular pre-
employment schooling of young people. Explain in general verbal terms
what investigation the researcher should undertake in response to this
suggestion.
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change in log earnings

Another person suggests that the small minority of individuals

who went back to school or college in their thirties might have
characteristics different from those of the individuals who did not, and
that this could account for a different coefficient. Explain in general
verbal terms what investigation the researcher should undertake in
response to this suggestion.

Finally, another person says that it might be a good idea to look at the
relationship between earnings and schooling for the subsample who
went back to school or college, restricting the analysis to these 371
individuals. The researcher responds by running the regression for
that group alone. The result is shown in column (5) in the table. The
researcher also plots a scatter diagram, reproduced below, showing
the change in the logarithm of earnings and the change in schooling.
For those with one extra year of schooling, the mean change in log
earnings was 0.40. For those with two extra years, 0.37. For those with
three extra years, 0.47. What conclusions might be drawn from the
regression results?

08 00 Cum————EE B0 0 © O
© oo cuumosmom00 MO O
©

change in schooling

Answer to the starred exercise in the textbook

14.9

(This exercise should have had a star.)

The NLSY2000 data set contains the following data for a sample of 2,427
males and 2,392 females for the years 1980-2000: weight in pounds,
years of schooling, age, marital status in the form of a dummy variable
MARRIED defined to be 1 if the respondent was married, O if single, and
height in inches. Hypothesizing that weight is influenced by schooling,
age, marital status, and height, the following regressions were performed
for males and females separately:

(1)an ordinary least squares (OLS) regression pooling the observations

(2)a within-groups fixed effects regression

(3)a random effects regression.

The results of these regressions are shown in the table. Standard errors are
given in parentheses.
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Males Females
OLS FE RE OLS FE RE
Years of -0.98 -0.02 -0.45 -1.95 ~0.60 -1.25
schooling  (0.09) (0.23) (0.16) 0.12) 0.27) (0.18)
1.61 1.64 1.65 2.03 1.66 1.72
Age (0.04) (0.02) (0.02) (0.05) (0.03) (0.03)
3.70 2.92 3.00 -8.27 3.08 1.98
Married
(0.48) (0.33) (0.32) (0.59) (0.46) (0.44)
. 5.07 4.95 3.48 3.38
Height (0.08) dropped (0.18) (0.10) dropped (0.21)
-209.52 -209.81 -105.90 -107.61
constant dropped dropped
(5.39) (12.88) (6.62) (13.43)
R? 0.27 — — 0.17 — —
n 17,299 17,299 17,299 13,160 13,160 13,160
o 722 o294

Explain why height is excluded from the FE regression.

Evaluate, for males and females separately, whether the fixed effects or
random effects model should be preferred.

For males and females separately, compare the estimates of the coefficients
in the OLS and FE models and attempt to explain the differences.

Explain in principle how one might test whether individual-specific
fixed effects jointly have significant explanatory power, if the number of
individuals is small. Explain why the test is not practical in this case.

Answer:
Height is constant over observations. Hence, for each individual,

HEIGHT, — HEIGHT, =0

for all t, where HEIGHT, is the mean height for individual i for the
observations for that individual. Hence height has to be dropped from the
regression model.

The critical value of chi-squared, with three degrees of freedom, is 7.82
at the 5 percent level and 16.27 at the 0.1 percent level. Hence there is a
possibility that the random effects model may be appropriate for males,
but it is definitely not appropriate for females.

Males

The OLS regression suggests that schooling has a small (one pound less
per year of schooling) but highly significant negative effect on weight. The
fixed effects regression eliminates the effect, indicating that an unobserved
effect is responsible: males with unobserved qualities that have a positive
effect on educational attainment, controlling for other measured variables,
have lower weight as a consequence of the same unobserved qualities. We
cannot compare estimates of the effect of height since it is dropped from
the FE regression. The effect of age is the same in the two regressions.
There is a small but highly significant positive effect of being married, the
OLS estimate possibly being inflated by an unobserved effect.

287



20 Elements of econometrics

288

Females

The main, and very striking, difference is in the marriage coefficient.
The OLS regression suggests that marriage reduces weight by eight
pounds, a remarkable amount. The FE regression suggests the opposite,
that marriage leads to an increase in weight that is similar to that for
males. The clear implication is that women who weigh less are relatively
successful in the marriage market, but once they are married they put on
weight.

For schooling the story is much the same as for males, except that the
OLS coefficient is much larger and the coefficient remains significant at
the 5 percent level in the FE regression. The effect of age appears to be
exaggerated in the OLS regression, for reasons that are not obvious.

One might test whether individual-specific fixed effects jointly have
significant explanatory power by performing a LSDV regression,
eliminating the intercept in the model and adding a dummy variable for
each individual. One would compare RSS for this regression with that for
the regression without the dummy variables, using a standard F test. In the
present case it is not a practical proposition because there are more than
17,000 males and 13,000 females.

Answers to the additional exercises

A14.1

* Explain why the researcher included PWE as a control.

Clearly actual work experience is positively influenced by PWE.
Omitting it would cause the coefficient of S to be biased downwards
since PWE and S are negatively correlated.

* Evaluate the results of the Durbin-Wu-Hausman tests

With two degrees of freedom, the critical value of chi-squared is 5.99
at the 5 percent level and 9.21 at the 1 percent level. Thus the random
effects model is rejected for males but seemingly not for females.

* For males and females separately, explain the differences in the coefficients
of S in the OLS and FE regressions.

For both sexes the OLS estimate is greater than the FE estimate. One
possible reason is that some unobserved characteristics, for example
drive, are positively correlated with both acquiring schooling, and
seeking and gaining employment.

* For males and females separately, explain the differences in the coefficients
of PWE in the OLS and FE regressions.

Since S and PWE are negatively correlated, these same unobserved
characteristics would cause the OLS estimate of the coefficient of PWE
to be biased downwards.

A14.2

First, note that the DWH statistic is significant at the 5 per cent level
(critical value 7.82) but not at the 1 per cent level (critical value 11.35).

The coefficients of SH and SC in the OLS regression is an estimate of the
impact of variations in years of high school and years of college among
all the individuals in the sample. Most individuals in fact completed high
school and so had SH = 12. However, a small minority did not and this



Chapter 14: Introduction to panel data

variation made possible the estimation of the SH coefficient. The majority
of the remainder did not complete any years of college and therefore had
SC = 0, but a substantial minority did have a partial or complete college
education, some even pursuing postgraduate studies, and this variation
made possible the estimation of the SC coefficient.

Most individuals completed their formal education before entering
employment. For them, SH = SH. for all t and hence SH ~SH:=0
for all t. As a consequence, the observations for such individuals provide
no variation in the SH variable. Likewise they provide no variation in the
SC variable. If all observations pertained to such individuals, schooling
would be washed out in the FE regression along with other unchanging
characteristics such as sex, ethnicity, and ASVABC score. The schooling
coefficients in the FE regression therefore relate to those individuals
who returned to formal education after a break in which they found
employment.

The fact that these individuals account for a relatively small proportion
of the observations in the data set has an adverse effect on the precision
of the FE estimates of the coefficients of SH and SC. This is reflected in
standard errors that are much larger than those obtained in the OLS
pooled regression.

* Discuss the differences in the estimates of the coefficient of SH.

Most of the variation in SH in the FE regressions come from individuals
earning the GED degree. This degree provides an opportunity for high
school drop-outs to make good their shortfall by taking courses and
passing the examinations required for this diploma. These courses

may be civilian or military adult education classes, but very often they
are programmes offered to those in jail. In principle the GED should
be equivalent to the high school diploma, but there is some evidence
that standards are sometimes lower. The results in the table appear to
corroborate this view. The OLS regression indicates that a year of high
school raises earnings by 2.6 per cent, with the coefficient being highly
significant, whereas the FE coefficient indicates that the effect is only
0.5 per cent and not significant.

* Discuss the differences in the estimates of the coefficient of SC.

Some of the variation in SC in the FE regressions comes from
individuals entering employment for a year or two after finishing high
school and then going to college, resuming their formal education.
However, most comes from individuals returning to college for a
year or two after having been employment for a number of years.

A typical example is a high school graduate who has settled down

in an occupation and who has then decided to upgrade his or her
professional skills by taking a two-year associate of arts degree.
Similarly one encounters college graduates who upgrade to masters
level after having worked for some time. One would expect such
students to be especially well motivated—they are often undertaking
studies that are relevant to an established career, and they are

often bearing high opportunity costs from loss of earnings while
studying—and accordingly one might expect the payoff in terms of
increased earnings to be relatively high. This seems to be borne out
in a comparison of the OLS and FE estimates of the coefficient of SC,
though the difference is not dramatic.
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A14.3

On the surface, this exercise appeared to be about how one might use
FE to eliminate the bias in OLS pooled regression caused by unobserved
effects. Has the analysis been successful in this respect? Absolutely not.
In particular, the apparent conclusion that high school education has
virtually no effect on earnings should not be taken at face value. The
reason is that the issue of biases attributable to unobserved effects has
been overtaken by the much more important issue of the difference

in the interpretation of the SH and SC coefficients discussed in the
exercise. This illustrates a basic point in econometrics: understanding
the context of the data is often just as important as being proficient at
technical analysis.

* Explain intuitively and mathematically the consequences of performing a

simple regression of G on S. For this purpose S and E may be treated as
nonstochastic variables.

If one fits the regression
G=b,+b,S,

then

Z(S,. —EXG,. _(_;)
> (s, -5)
~ Z(S,. —EX(ﬁl +B,S, + B,E, +l/li)—(ﬂ1 +,Bz§+/5‘3f+z7))
> (s, -5)
(s, -Se, -E) (s, - S)u, -7)

RS R D I O

Taking expectations, and making use of the invitation to treat S and E
as nonstochastic,

Z(Si_EXEi_E)+Z(Si_§)E(“i_L7)
(s, -5) (s, -Sf

. > (s, -5)E - E)

S Z(Si_§)2

Hence the estimator is biased unless S and E happen to be uncorrelated
in the sample. As a consequence, the standard errors will be invalid.

b, =

E(bz):ﬁz + B

Compare the properties of the estimators of the coefficient of S in (1) and of
the coefficient of AS in (2).

Given (1), the differenced model should have been
AG = 0,AS +w
where w = u — u*.

The estimator of the coefficient of AS in (2) should be unbiased, while
that of S in (1) will be subject to omitted variable bias. However:

o it is possible that the bias in (1) may be small. This would be the
case if E were a relatively unimportant determinant of G or if its
correlation with S were low.
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o it is possible that the variance in AS is smaller than that of S. This
would be the case if S were changing slowly in each country, or if
the rate of change of S were similar in each country.

Thus there may be a trade-off between bias and variance and it is
possible that the estimator of /5, using specification (1) could actually
be superior according to some criterion such as the mean square
error. It should be noted that the inclusion of ¢, in (2) will make the
estimation of d, even less efficient.

Explain why in principle you would expect the estimate of J, in (2) not
to be significant. Suppose that nevertheless the researcher finds that the
coefficient is significant. Give two possible explanations.

If specification (1) is correct, there should be no intercept in (2) and

for this reason the estimate of the intercept should not be significantly
different from zero. If it is significant, this could have occurred as a
matter of Type I error. Alternatively, it might indicate a shift in the
relationship between the two time periods. Suppose that (1) should have
included a dummy variable set equal to O in the first time period and 1
in the second. d, would then be an estimate of its coefficient.

Could the researcher have used a random effects regression in the present
case?

Random effects requires the sample to be drawn randomly from a
population and for unobserved effects to be uncorrelated with the
regressors. The first condition is not satisfied here, so random effects
would be inappropriate.

The researcher is unable to explain why the coefficient of the change in
schooling in regression (3) is so much lower than the schooling coefficients
in (1) and (2). Someone says that it is because he has left out relevant
variables such as cognitive ability, region of residence, etc, and the
coefficients in (1) and (2) are therefore biased. Someone else says that
cannot be the explanation because these variables are also omitted from
regression (3). Explain what would be your view.

Suppose that the true model is

LGEARN = B, + f3,S + B,EXP + 3, ASVABC + B, MALE
+ B.ETHBLACK + f3, ETHHISP + B X ; +u

where X, is some further fixed characteristic of the respondent. ASVABC
and X, are absent from regressions (1) and (2) and so those regressions
will be subject to omitted variable bias. In particular, since ASVABC

is likely to be positively correlated with S, and to have a positive
coefficient, its omission will tend to bias the coefficient of S upwards.

However, if the specification is valid for both 1994 and 2000 and
unchanged, one can eliminate the omitted variable bias by taking first
differences as in regression (3):

ALGEARN = B,AS + B,AEXP + Au .
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By fitting this specification one should obtain unbiased estimates of
the coefficients of schooling and experience, and the former should
therefore be smaller than in (1) and (2). Note that all the fixed
characteristics have been washed out. The suggestion that ASVABC
should have been included in (3) is therefore incorrect.

Note that (3) should not have included an intercept. This is discussed
later in the question.

* He runs regressions (1) and (2) again, adding a measure of cognitive
ability. The results for the 2000 regression are shown in column (4). The
results for 1994 were very similar. Discuss possible reasons for the fact
that the estimate of the schooling coefficient differs from those in (2) and
(3).

The estimate of the coefficient of S differs from that in (2) because
the omitted variable bias attributable to the omission of ASVABC in
that specification has now been corrected. However it is still biased

if X, (representing other omitted characteristics) is a determinant

of earnings and is correlated with S. This partial rectification of the
omitted variable problem accounts for the fact that the coefficient of S
in (4) lies between those in (2) and (3).

* Someone says that the researcher should not have included a constant in
regression (3). Explain why she made this remark and assess whether it is
valid.

Given the specification in (1) and (2), there should have been no
intercept in the first differences specification (3). One would therefore
expect the estimate of the intercept to be somewhere near zero in the
sense of not being significantly different from it. Nevertheless, it is
significantly different at the 5 percent level. However, suppose that the
relationship shifted between 1994 and 2000, and that the shift could
be represented by a dummy variable D equal to zero in 1994 and 1

in 2000, with coefficient J. Then (3) should have an intercept 4. Its
estimate, 0.102, suggests that earnings grew by 10 percent from 1994
to 2000, holding other factors constant. This seems entirely reasonable,
perhaps even a little low.

Alternatively, the apparently significant ¢ statistic might have arisen as
a matter of Type I error.

* Someone else at the seminar says that the reason for the relatively low
coefficient of schooling in regression (3) is that it mostly represented
non-degree schooling. Hence one would not expect to find the same
relationship between schooling and earnings as for the regular pre-
employment schooling of young people. Explain in general verbal terms
what investigation the researcher should undertake in response to this
suggestion.

Divide S into two variables, schooling as of 1994 and extra schooling
as of 2000, with separate coefficients. Then use a standard F test (or

t test) of a restriction to test whether the coefficients are significantly
different.

* Another person suggests that the small minority of individuals who
went back to school or college in their thirties might have characteristics
different from those of the individuals who did not, and that this could
account for a different coefficient. Explain in general verbal terms
what investigation the researcher should undertake in response to this
suggestion.
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The issue is sample selection bias and an appropriate procedure would
be that proposed by Heckman. One would use probit analysis with

an appropriate set of determinants to model the decision to return to
school between 1994 and 2000, and a regression model to explain
variations in the logarithm of earnings of those respondents who do
return to school, linking the two models by allowing their disturbance
terms to be correlated. One would test whether the estimate of this
correlation is significantly different from zero.

* Finally, another person says that it might be a good idea to look at the
relationship between earnings and schooling for the subsample who went
back to school or college, restricting the analysis to these 371 individuals.
The researcher responds by running the regression for that group alone.
The result is shown in column (5) in the table. The researcher also plots a
scatter diagram, reproduced below, showing the change in the logarithm
of earnings and the change in schooling. For those with one extra year
of schooling, the mean change in log earnings was 0.40. For those with
two extra years, 0.37. For those with three extra years, 0.47. What
conclusions might be drawn from the regression results?

The schooling coefficient is effectively zero! [These are real data,
incidentally.] The scatter diagram shows why. Irrespective of whether

the respondent had one, two, or three years of extra schooling, the gain

is about the same, on average. (These are the only categories with large
numbers of observations, given the information at the beginning of the
question, confirmed by the scatter diagram.) So the results indicate that
the fact of going back to school, rather than the duration of the schooling,
is the relevant determinant of the change in earnings. The intercept
indicates that this subsample on average increased their earnings between
1994 and 2000 by 38.9 percent. (As a first approximation. The actual
proportion would be better estimated as e®*# — 1 = 0.476.) This figure is
confirmed by the diagram, and it would appear to be much greater than
the effect of regular schooling. One explanation could be sample selection
bias, as already discussed. A more likely possibility is that the respondents
were presented with opportunities to increase their earnings substantially
if they undertook certain types of formal course, and they took advantage
of these opportunities.
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Chapter 15: Regression analysis with
linear algebra primer

Overview

This primer is intended to provide a mathematical bridge to a master’s
level course that uses linear algebra for students who have taken an
undergraduate econometrics course that does not. Why should we make
the mathematical shift? The most immediate reason is the huge double
benefit of allowing us to generalise the core results to models with
many explanatory variables while simultaneously permitting a great
simplification of the mathematics. This alone justifies the investment

in time — probably not more than ten hours — required to acquire the
necessary understanding of basic linear algebra.

In fact, one could very well put the question the other way. Why do
introductory econometrics courses not make this investment and use linear
algebra from the start? Why do they (almost) invariably use ordinary
algebra, leaving students to make the switch when they take a second
course?

The answer to this is that the overriding objective of an introductory
econometrics course must be to encourage the development of a solid
intuitive understanding of the material and it is easier to do this with
familiar, everyday algebra than with linear algebra, which for many
students initially seems alien and abstract. An introductory course should
ensure that at all times students understand the purpose and value of what
they are doing. This is far more important than proofs and for this purpose
it is usually sufficient to consider models with one, or at most two,
explanatory variables. Even in the relatively advanced material, where we
are forced to consider asymptotics because we cannot obtain finite-sample
results, the lower-level mathematics holds its own. This is especially
obvious when we come to consider finite-sample properties of estimators
when only asymptotic results are available mathematically. We invariably
use a simple model for a simulation, not one that requires a knowledge of
linear algebra.

These comments apply even when it comes to proofs. It is usually

helpful to see a proof in miniature where one can easily see exactly

what is involved. It is then usually sufficient to know that in principle it
generalises, without there being any great urgency to see a general proof.
Of course, the linear algebra version of the proof will be general and often
simpler, but it will be less intuitively accessible and so it is useful to have
seen a miniature proof first. Proofs of the unbiasedness of the regression
coefficients under appropriate assumptions are obvious examples.

At all costs, one wishes to avoid the study of econometrics becoming an
extended exercise in abstract mathematics, most of which practitioners
will never use again. They will use regression applications and as long as
they understand what is happening in principle, the actual mechanics are
of little interest.

This primer is not intended as an exposition of linear algebra as such.

It assumes that a basic knowledge of linear algebra, for which there are
many excellent introductory textbooks, has already been acquired. For the
most part, it is sufficient that you should know the rules for multiplying
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two matrices together and for deriving the inverse of a square matrix, and
that you should understand the consequences of a square matrix having a
zero determinant.

Notation

Matrices and vectors will be written bold, upright, matrices upper case,
for example A, and vectors lower case, for example b. The transpose of a
matrix will be denoted by a prime, so that the transpose of A is A', and the
inverse of a matrix will be denoted by a superscript —1, so that the inverse
of Ais A,

Test exercises

Answers to all of the exercises in this primer will be found at its end. If
you are unable to answer the following exercises, you need to spend more
time learning basic matrix algebra before reading this primer. The rules in
Exercises 3-5 will be used frequently without further explanation.

1. Demonstrate that the inverse of the inverse of a matrix is the original
matrix.

2. Demonstrate that if a (square) matrix possesses an inverse, the inverse
is unique.

3. Demonstrate that, if A = BC,A' = C' B

4. Demonstrate that, if A = BC, A! = C B!, provided that B! and C!
exist.

5. Demonstrate that [A']"! = [A™1]".

The multiple regression model

The most obvious benefit from switching to linear algebra is convenience.
It permits an elegant simplification and generalisation of much of the
mathematical analysis associated with regression analysis. We will
consider the general multiple regression model

Y=BXy+..+BX, +u, 1)
where the second subscript identifies the variable and the first the
observation. In the textbook, as far as the fourth edition, the subscripts
were in the opposite order. The reason for the change of notation here,

which will be adopted in the next edition of the textbook, is that it is more
compatible with a linear algebra treatment.

Equation (1) is a row relating to observation i in a sample of n
observations. The entire layout would be

Y, ] [BXy+e+ BX,++BXy | [u
A R S i ®
V| Bt B Xyt s B | L,

This, of course, may be written in linear algebra form as

y=Xp+u 3)

where
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_Yl— _Xn le Xlk_ _ﬂ1_ _”1—
y=|Y [ X=X, .. X, .. X,|,B=|B |.andu=|u, 4
7, _an v Xy Xnk_ B, | u, |

with the first subscript of X, relating to the row and the second to the
column, as is conventional with matrix notation. This was the reason for
the change in the order of the subscripts in equation (1).

Frequently, it is convenient to think of the matrix X as consisting of a set of
column vectors:

X:[x, X, xk] (5)
where
_le_
x, =| X, (6)
X,

X, is the set of observations relating to explanatory variable j. It is written
lower case, bold, not italic because it is a vector.

The intercept in a regression model

As described above, there is no special intercept term in the model. If, as
is usually the case, one is needed, it is accommodated within the matrix
framework by including an X variable, typically placed as the first, with
value equal to 1 in all observations

1

x, =1 )

1

The coefficient of this unit vector is the intercept in the regression model.
If it is included, and located as the first column, the X matrix becomes

1 X, . X, .. X,|
X=|1 X, o« X, « X, =l x, = x, . x/] @)
I X, . X, . X,

The OLS regression coefficients

Using the matrix and vector notation, we may write the fitted equation

Y, =b, X, +.tb X, )
as
y=Xb (10)

with obvious definitions of y and b. Then we may define the vector of
residuals as
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e=y-y=y-Xb (11

and the residual sum of squares as
RSS =e¢'e=(y —Xb)'(y — Xb)
=y'y-y'Xb-b'X'y +b'X'Xb (12)
=y'y—2y'Xb+b'X'Xb
(y' Xb = b' X' y since it is a scalar.) The next step is to obtain the normal
equations

ORSS _, (13)
ob.

J

forj =1, ..., k and solve them (if we can) to obtain the least squares
coefficients. Using linear algebra, the normal equations can be written

X'Xb-X'y=0 (14)

The derivation is straightforward but tedious and has been consigned

to Appendix A. X' X is a square matrix with k rows and columns. If
assumption A.2 is satisfied (that it is not possible to write one X variable as
a linear combination of the others), X’ X has an inverse and we obtain the
OLS estimator of the coefficients:

b=[X'X]"X"y (15)

Exercises

6. If Y = 8, + B, X +u, obtain the OLS estimators of 8, and 3, using (15).
7. If Y = B X+ u, obtain the OLS estimator of 3, using (15).
8. If Y = B, + u, obtain the OLS estimator of f3, using (15).

Unbiasedness of the OLS regression coefficients
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Substituting for y from (3) into (15), we have

b=[X'X]"'X"(XB +u)
=[xX'X]"' X' Xp +[X'X] "' X"u (16)
=p+[X'X]"'X'u

Hence each element of b is equal to the corresponding value of B plus a
linear combination of the values of the disturbance term in the sample.
Next,

E(b[X)=p+E(x X' X"u|x) 17)

To proceed further, we need to be specific about the data generation
process (DGP) for X and the assumptions concerning u and X. In Model

A, we have no DGP for X: the data are simply taken as given. When we
describe the properties of the regression estimators, we are either talking
about the potential properties, before the sample has been drawn, or about
the distributions that we would expect in repeated samples using those
given data on X. If we make the assumption E(u|X) =0, then

Eb[X)=p+[X'X]" X' Eu[X)=p (18)
and so b is an unbiased estimator of . It should be stressed that

unbiasedness in Model A, along with all other properties of the regression
estimators, are conditional on the actual given data for X.
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In Model B, we allow X to be drawn from a fixed joint distribution of the
explanatory variables. The appropriate assumption for the disturbance
term is that it is distributed independently of X and hence its conditional
distribution is no different from its absolute distribution: E(u|X)= E(u) for
all X. We also assume E(u)=0. The independence of the distributions of X
and u allows us to write

E(b[X)=p+E(x'X]" x"u|x)
—p+E(x x]" x")E(w) (19)
=B

The variance-covariance matrix of the OLS regression
coefficients

We define the variance-covariance matrix of the disturbance term to be the
matrix whose element in row i and column j is the population covariance
of u, and u. By assumption A.4, the covariance of u, and u; is constant and
equal to o}, if j = i and by assumption A.5 it is equal to zero if j # i. Thus
the variance-covariance matrix is

o o }
0 o
0 0 o/ .. 0 0 O

(20)
0 0 0 ..o 0 O

0 o 0
_ 0 ol

that is, a matrix whose diagonal elements are all equal to 4> and whose
off-diagonal elements are all zero. It may more conveniently be written
IHU,Z, where I is the identity matrix of order n.

Similarly, we define the variance-covariance matrix of the regression
coefficients to be the matrix whose element in row i and column j is the
population covariance of b, and b;:

COV(bi’bj): E{(bi ~Eb, ))(bj _E(bj ))}: E{(bi - B )(bj -5, )} @D

The diagonal elements are of course the variances of the individual
regression coefficients. We denote this matrix var(b). If we are using the
framework of Model A, everything will be conditional on the actual given
data for X, so we should refer to var(b|X) rather than var(b). Then

var(b|X) = E((b— E(b)\b - E(b))' [X)
= E(b-p)b-p)'|X)
= B([x X" xu)(x x]" x"u) X)
— E(x X]" X uu X[x' X |x) (22)
=[x X]" X" Efuw [X)X[X' X]"
=[x X]"'x'1, o XX X[
=[x'x]"o;

If we are using Model B, we can obtain the unconditional variance of b
using the standard decomposition of a variance in a joint distribution:
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var(b) = E{var(b [X)}+ var{E(b X)) (23)
Now E(b|X) =8 for all X, so var{E(b|X)}=var(f}) = 0 since P is a constant

vector, so

rw | A2
Var(b): E{[X X] o, } (24)
= ajE{[x' XJ! }
the expectation being taken over the distribution of X.
To estimate var(b), we need to estimate a,f. An unbiased estimator is
provided by e'e/(n - k). For a proof, see Appendix B.
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The Gauss—Markov theorem

We will demonstrate that the OLS estimators are the minimum variance
unbiased estimators that are linear in y. For simplicity, we will do this
within the framework of Model A, with the analysis conditional on the
given data for X. The analysis generalises straightforwardly to Model
B, where the explanatory variables are stochastic but drawn from fixed
distributions.

Consider the general estimator in this class:

b* = Ay (25)
where A is a k by n matrix. Let

C=A-[XX]"'X"' (26)
Then

b* = ([x'X]" X"+C)y
~ (X x]" x+C)(Xp +u) 27)
=B+CXp+[X'X]"X'u+Cu

Unbiasedness requires

CX=0, (28)

where 0 is a k by k matrix consisting entirely of zeros. Then, with
E(b*) =8, the variance-covariance matrix of b* is given by

E{b*-B)b*-p) } = £{([xX]" X+ Chur ([x X[ x4} |
([x' X]! x'+c)1 ol ([x' X]! x'+c)' 29)

([x' x]" x'+CX [x'x]" x'+C)' ol
~([x'x]" +cC) o

Now diagonal element i of CC' is the inner product of row i of C and
column i of C'. These are the same, so it is given by

k
2
Cu |
s=1

which is positive unless ¢, = 0 for all s. Hence minimising the variances of
the estimators of all of the elements of p requires C = 0. This implies that
OLS provides the minimum variance unbiased estimator.
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Consistency of the OLS regression coefficients
Since
b=p+[X'X]"'X'u (30)
the probability limit of b is given by

plimb = + plim [X' X]fl X'u

“1 }11 } (31)
=p+plim: | —X'X| —X'u
n

n

Now, if we are working with cross-sectional data with the explanatory
variables drawn from fixed (joint) distributions, it can be shown that

-l .1
plim {l X' X} has a limiting matrix and that plim—X'u=0,
n n

Hence we can decompose
1 " 1 oo

plim{ {— X' X} -X u} = plim {— X' X} plim—X'u=0 (32)
n n n n

and so plim b = B. Note that this is only an outline of the proof. For a
proper proof and a generalisation to less restrictive assumptions, see
Greene pp.64-65.

Frisch-Waugh-Lovell theorem

We will precede the discussion of the Frisch—-Waugh-Lovell (FWL) theorem
by introducing the residual-maker matrix. We have seen that, when we fit

y=Xp+u (33)
using OLS, the residuals are given by
e=y-y=y-Xb B4

Substituting for b, we have

e=y-X[X'X]"'X'y

~[r-xlxex] x ]y (35)
= My

where

M =1-X[X'X]"' X' (36)

M is known as the ‘residual-maker’ matrix because it converts the values of
y into the residuals of y when regressed on X. Note that M is symmetric,
because M'=M, and idempotent, meaning that MM =M.

Now suppose that we divide the k variables comprising X into two
subsets, the first s and the last k—s. (For the present purposes, it makes no
difference whether there is or is not an intercept in the model, and if there
is one, whether the vector of ones responsible for it is in the first or second
subset.) We will partition X as

X=[X1 Xz] (37)

where X, comprises the first s columns and X, comprises the last k—s, and
we will partition B similarly, so that the theoretical model may be written

y:[X1 X2{§1}+u (38)

2
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The FWL theorem states that the OLS estimates of the coefficients in f§,
are the same as those that would be obtained by the following procedure:
regress y on the variables in X, and save the residuals as e . Regress each
of the variables in X, on X, and save the matrix of residuals as e,,. If we
regress e on e,,, we will obtain the same estimates of the coefficients of
B, as we did in the straightforward multiple regression. (Why we might
want to do this is another matter. We will come to this later.) Applying the
preceding discussion relating to the residual-maker, we have

e, =M,y (39)
where

M, =1-X,[X,'X,]"X,’ (40)
and

ey, =M, X, 41

Let the vector of coefficients obtained when we regress e on e,, be
denoted b}. Then
* -1
b, = [eXI'eXI] ey '€,
:[XI'MZ'MZXI]AXI'MZ'MZy (42)
= [XI'MZXITI X' M,y
(Remember that M, is symmetric and idempotent.) Now we will derive an

expression for b, from the orthodox multiple regression of y on X. For this
purpose, it is easiest to start with the normal equations:

X'Xb-X'y=0 (43)

A}
We partition b as B'} .X'is Eﬁl l , and we have the following:
2 2

X'X=|: ' '
XZ Xl XZ XZ

X,'X, X,'X, |b, X,'X,b, +X,'X,b,
X'Xb = = (45)
X,'X;, X,'X, b, X,'X,b, +X,'X,b,

X '
X'y{ ‘,y} (46)
X,'y
Hence, splitting the normal equations into their upper and lower
components, we have

X, 'X, Xl'ij| 44

X,'X,b, +X,'X,b, - X,'y=0 “47)
and

X,'X,b, +X,'X,b, -X,'y=0 (48)
From the second we obtain

X,'X,b, =X,'y-X,'X,b, (49)
and so

b, =[X,"'X,]"'[X,'y-X,"'X,b, ] (50)
Substituting for b, in the first normal equation,

X, X,b, X, X XX X,y - X, X b, |- X, 'y =0 (51)
Hence

Xl'xlbl —XI'XZ[XZ'XZ]AXZ'XIbI =X1'y—X1'X2[X2'X2]71X2'y (52)
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and so

Xl'[I—Xz[Xz'XZ]_IXZ']XIbI :Xl'[I—Xz[Xz'XZ]_IXZ']y (53)
Hence

X,'M,X,b, =X,"'M,y (54)
and

b, =[X,"M,X,|"'X,"M,y=b] (55)

Why should we be interested in this result? The original purpose remains
instructive. In early days, econometricians working with time series data,
especially macroeconomic data, were concerned to avoid the problem

of spurious regressions. If two variables both possessed a time trend, it
was very likely that ‘significant’ results would be obtained when one was
regressed on the other, even if there were no genuine relationship between
them. To avoid this, it became the custom to detrend the variables before
using them by regressing each on a time trend and then working with

the residuals from these regressions. Frisch and Waugh (1933) pointed
out that this was an unnecessarily laborious procedure. The same results
would be obtained using the original data, if a time trend was added as an
explanatory variable.

Generalising, and this was the contribution of Lovell, we can infer that,

in a multiple regression model, the estimator of the coefficient of any one
variable is not influenced by any of the other variables, irrespective of
whether they are or are not correlated with the variable in question. The
result is so general and basic that it should be understood by all students
of econometrics. Of course, it fits neatly with the fact that the multiple
regression coefficients are unbiased, irrespective of any correlations among
the variables.

A second reason for being interested in the result is that it allows one

to depict graphically the relationship between the observations on

the dependent variable and those on any single explanatory variable,
controlling for the influence of all the other explanatory variables. This is
described in the textbook in Section 3.2.

Exercise

9. Using the FWL theorem, demonstrate that, if a multiple regression
model contains an intercept, the same slope coefficients could be
obtained by subtracting the means of all of the variables from the data
for them and then regressing the model omitting an intercept.

Exact multicollinearity

We will assume, as is to be expected, that k, the number of explanatory
variables (including the unit vector, if there is one), is less than n, the
number of observations. If the explanatory variables are independent,

the X matrix will have rank k and likewise X'X will have rank k and will
possess an inverse. However, if one or more linear relationships exist
among the explanatory variables, the model will be subject to exact
multicollinearity. The rank of X, and hence of X'X, will then be less than k
and X'X will not possess an inverse.

Suppose we write X as a set of column vectors x,, each corresponding to
the observations on one of the explanatory variables:

X=[x, ~ x, . x] (56)

J
where
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Xy
xnj
Then
o]
X'=1x, (58)
RO

and the normal equations
X'Xb-X'y=0 (59)

may be written

[x,'Xb]| [x,"y
x,'Xb |-|x,"y =0 (60)
_Xk'Xb_ _xk'y_

Now suppose that one of the explanatory variables, say the last, can be
written as a linear combination of the others:

k-1
X, = Z A.X; (61)
i=1

Then the last of the normal equations is that linear combination of the
other k — 1. Hence it is redundant, and we are left with a set of k — 1
equations for determining the k unknown regression coefficients. The
problem is not that there is no solution. It is the opposite: there are too
many possible solutions, in fact an infinite number. One coefficient could
be chosen arbitrarily, and then the normal equations would provide

a solution for the other k — 1. Some regression applications deal with
this situation by dropping one of the variables from the regression
specification, effectively assigning a value of zero to its coefficient.

Exact multicollinearity is unusual because it mostly occurs as a
consequence of a logical error in the specification of the regression model.
The classic example is the dummy variable trap. This occurs when a set of
dummy variables D,, j = 1, ..., s are defined for a qualitative characteristic
that has s categories. If all s dummy variables are included in the
specification, in observation i we will have

S D, =1 (62)
j=1

since one of the dummy variables must be equal to 1 and the rest are all
zero. But this is the (unchanging) value of the unit vector. Hence the sum
of the dummy variables is equal to the unit vector. As a consequence, if the
unit vector and all of the dummy variables are simultaneously included

in the specification, there will be exact multicollinearity. The solution is

to drop one of the dummy variables, making it the reference category, or,
alternatively, to drop the intercept (and hence unit vector), effectively
making the dummy variable coefficient for each category the intercept for
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that category. As explained in the textbook, it is illogical to wish to include
a complete set of dummy variables as well as the intercept, for then no
interpretation can be given to the dummy variable coefficients.

Estimation of a linear combination of regression
coefficients

Suppose that one wishes to estimate a linear combination of the regression
k
parameters
Z 4,8,
Jj=

In matrix notation, we may write this as A'p where

A

py (63)

ﬂ’k i

The corresponding linear combination of the regression coefficients, A'b,
provides an unbiased estimator of A'f. However, we will often be interested
also in its standard error, and this is not quite so straightforward. We
obtain it via the variance

var(A'b)= E{(l'b ~E(W'b))’ }

(64)
= E{()Jb -MB) }
Since (M'b — M'B) is a scalar, it is equal to its own transpose, and so
(M'b — \'B)* may be written
(A'b-AB) = {A'b-N B DB}
= (b-p)in (b-p) (65)
='(b-p)b-p)'2
Hence, using the variance-covariance matrix for the regression coefficients,
we have
var(M'b)=E{M'(b—B)b—B)' %}
=1 E{b-p)b-B)'} (66)

=V [X'X]"ro?

The square root of this expression provides the standard error of A'b after
2 . . .
we have replaced o, by its estimator e'e/(n — k) in the usual way.

Testing linear restrictions

An obvious application of the foregoing is its use in testing a linear
restriction. Suppose that one has a hypothetical restriction

k
Z AiB; =2 67)
Jj=1
We can perform a t test of the restriction using the ¢ statistic
Mb-21
(=P (68)
s.e.()u'b)
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where the standard error is obtained via the variance-covariance matrix
as just described. Alternatively, we could reparameterise the regression
specification so that one of the coefficients is A'f. In practice, this is

often more convenient since it avoids having to work with the variance-
covariance matrix. If there are multiple restrictions that should be tested
simultaneously, the appropriate procedure is an F test comparing RSS for
the unrestricted and fully restricted models.

Weighted least squares and heteroscedasticity

Suppose that the regression model
y=Xp+u (69)
satisfies the usual regression model assumptions and suppose that we

premultiply the elements of the model by the n by n matrix A whose
diagonal elements are A, i = 1, ..., n, and whose off-diagonal elements are

all zero:
(4, .. 0 .. 0]

A=l 0 .. 4, .. 0 (70)
| 0 0 A,

The model becomes

Ay = AXB +Au (71)
If we fit it using least squares, the point estimates of the coefficients are
given by

b™S =[X'A'AX] ' X'A' Ay (72)

(WLS standing for weighted least squares). This is unbiased but
heteroscedastic because the disturbance term in observation i is A u, and
has variance A,fgj.

Now suppose that the disturbance term in the original model was
heteroscedastic, with variance & f in observation i. If we define the matrix
A so that the diagonal elements are determined by

1
4; = > (73)
o

u

the corresponding variance in the weighted regression will be 1 for
all observations and the WLS model will be homoscedastic. The WLS
estimator is then

™S =[x CX] "' X'Cy (74
where
- i
— 0 0
C=A'A=| 0 .. — .. 0 (75)
O'u’
=
0 0 —_—
o,

The variance-covariance matrix of the WLS coefficients, conditional on the

data for X, is
306



Chapter 15: Regression analysis with linear algebra primer

Var(b WLS ) E {(b wLS (b WLS )Xb wLS E(b WLS ))v}
E{(bWLS _BXbWLS _B)v}
E{( [X'A'AX]" X' A AuX[X' A'AX]' XA Au)' }

E{[ "A'AX] ' X'A' Aun' A'AX[X'A' AX ] }
=[X'A'AX] ' X' A" AE(uu')A' AX[X' A" AX] (76)
=[X"A'AX]"' X' AT AX[X' AT AX]
=[x ex]'x ex[x'ex| o
=[xcx]!
since A has been defined so that
AE(uu')A'=1 (77)

Of course, in practice we seldom know ai , but if it is appropriate

to hypothesise that the standard deviation is proportional to some
measurable variable Z, then the WLS regression will be homoscedastic if
we define A to have diagonal element i equal to the reciprocal of Z.

IV estimators and TSLS
Suppose that we wish to fit the model
y=Xp+u (78)

where one or more of the explanatory variables is not distributed
independently of the disturbance term. For convenience, we will describe
such variables as ‘endogenous’, irrespective of the reason for the violation
of the independence requirement. Given a sufficient number of suitable
instruments, we may consider using the IV estimator

C=[wx]wry (79)
where W is the matrix of instruments. In general W will be a mixture of
(1) those original explanatory variables that are distributed independently
of the disturbance term (these are then described as acting as instruments
for themselves), and (2) new variables that are correlated with the

endogenous variables but distributed independently of the disturbance
term. If we substitute fory,
b =[W'X]" W' (X +u
[W'X]" W (Xp +u) ©0)
=B+[W'X]"'W'u

We cannot obtain a closed-form expression for the expectation of the error
term, so instead we take plims:

1 | (81)
plimb" =B +plim {—W'X} —W'u

n n
Now if we are using cross-sectional data, it is usually reasonable to

-1
. 1
suppose that plim {{— w! X} } and plim {l w! u} both exist, in which
n n

case we can decompose the plim of the error term:
-1
plimb" =B+ plim {{l w! X} } plim {l w! u} (82)
n n
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Further, if the matrix of instruments has been correctly chosen, it can be
shown that (83)

.1
plim{—W'u;=0
n
and hence the IV estimator is consistent.

It is not possible to derive a closed-form expression for the variance of the
IV estimator in finite samples. The best we can do is to invoke a central
limit theorem that gives the limiting distribution asymptotically and work
backwards from that, as an approximation, for finite samples. A central
limit theorem can be used to establish that

ol —p)—ts N[O, {af olim B w x} " plim E w! W}plim [l X' W}l }]

n

From this, we may infer, that as an approximation, for sufficiently large
samples,

b ~ N{B,{U" plim [lw' x} plim F W'W}plim F X'W} H (85)
n n n n

We have implicitly assumed so far that W has the same dimensions as X
and hence that WX is a square k by k matrix. However, the model may be
overidentified, with the number of columns of W exceeding k. In that case,
the appropriate procedure is two-stage least squares. One regresses each
of the variables in X on W and saves the fitted values. The matrix of fitted
values is then used as the instrument matrix in place of W.

Exercises

10. Using (79) and (85), demonstrate that, for the simple regression
model

Y, =5+ 5 X, +u,

with Z acting as an instrument for X (and the unit vector acting as an

instrument for itself),

b =Y -bVX

Zn:(zi—z)(Yi _7)

v _ =l
b, = .

Z(Zi—ZXX,. _)_()

i=1

and, as an approximation,

var(bzlv )= na—’fx%
(Xi _)?)2 T

i=1

where Z is the instrument for X and r, is the correlation between X and Z.

11. Demonstrate that any variable acting as an instrument for itself is
unaffected by the first stage of two-stage least squares.

12. Demonstrate that TSLS is equivalent to IV if the equation is exactly
identified.

(84)
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Generalised least squares

The final topic in this introductory primer is generalised least squares and
its application to autocorrelation (autocorrelated disturbance terms). One
of the basic regression model assumptions is that the disturbance terms in
the observations in a sample are distributed identically and independently
of each other. If this is the case, the variance-covariance matrix of the
disturbance terms is the identity matrix of order n, multiplied by &’. We
have encountered one type of violation, heteroscedasticity, where the
values of the disturbance term are independent but not identical. The
consequence was that the off-diagonal elements of the variance-covariance
matrix remained zero, but the diagonal elements differed. Mathematically,
autocorrelation is complementary. It occurs when the values of the
disturbance term are not independent and as a consequence some, or all,
of the off-diagonal elements are non-zero. It is usual in initial treatments
to retain the assumption of identical distributions, so that the diagonal
elements of the variance-covariance matrix are the same. Of course, in
principle one could have both types of violation at the same time.

In abstract, it is conventional to denote the variance-covariance matrix
of the disturbance term 2, where () is the Greek upper case omega,
writing the model

y=Xp+u with E(uu')= Qo> (86)
If the values of the disturbance term are iid, Q@ = L. If they are not iid, OLS
is in general inefficient and the standard errors are estimated incorrectly.
Then, it is desirable to transform the model so that the transformed
disturbance terms are iid. One possible way of doing this is to multiply
through by some suitably chosen matrix P, fitting

Py = PXg + Pu (87)

choosing P so that E(Puu'P') =Ia where « is some scalar. The solution for
heteroscedasticity was a simple example of this type. We had

o, 0 0

28
Q=0 0'3, 0 (88)

0 0 O'li
and the appropriate choice of P was

s _

— 0 0

o,
P=| O (89)

0

In the case of heteroscedasticity, the choice of P is obvious, provided, of
course, that one knows the values of the diagonal elements of Q. The more
general theory requires an understanding of eigenvalues and eigenvectors
that will be assumed. Q is a symmetric matrix since cov(u,, uj) is the same
as cov(uj, u). Hence all its eigenvalues are real. Let A be the diagonal
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matrix with the eigenvalues as the diagonal elements. Then there exists a
matrix of eigenvectors, C, such that

C'QC=A (90)

C has the properties that CC' = I and C' = CL. Since A is a diagonal
matrix, if its eigenvalues are all positive (which means that it is what is
known as a ‘positive definite’ matrix), it can be factored as A =A"? A
where A'? is a diagonal matrix whose diagonal elements are the square
roots of the eigenvalues. It follows that the inverse of A can be factored as
A=A A2 Then, in view of (90),

A—I/Z [CvQC]A—l/Z — A—l/ZAA—I/Z — A—1/2A1/2Al/2A—1/2 =1 (91)
Thus, if we define P=A"2C', (91) becomes

PQP' = (92)
As a consequence, if we premultiply (86) through by P, we have

Py = PXB +Pu (93)
or

y*=X*Bp+u* %94

where y* = Py, X* = PX, and u* = Pu, and E(u*u*'): Is . An OLS
regression of y*on X* will therefore satisfy the usual regression model
assumptions and the estimator of p will have the usual properties. Of
course, the approach usually requires the estimation of , Q being positive
definite, and there being no problems in extracting the eigenvalues and
determining the eigenvectors.

Exercise

310

13. Suppose that the disturbance term in a simple regression model (with
an intercept) is subject to AR(1) autocorrelation with | p| <1, and
suppose that the sample consists of just two observations. Determine
the variance-covariance matrix of the disturbance term, find its
eigenvalues, and determine its eigenvectors. Hence determine P and
state the transformed model. Verify that the disturbance term in the
transformed model is iid.
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Appendix A: Derivation of the normal equations

We have seen that RSS is given by
RSS =y'y —2y'Xb +b'X'Xb (A.1)

The normal equations are

ORSS _
5 (A.2)
J

forj =1, ..., k. We will show that they can be written
X'Xb-X'y=0 (A.3)

The proof is mathematically unchallenging but tedious because one

has to keep careful track of the dimensions of all of the elements in the
equations. As far as I know, it is of no intrinsic interest and once one has
seen it there should never be any reason to look at it again.

First note that the term y'y in (A.1) is not a function of any of the b, and
disappears in (A.2). Accordingly we will restrict our attention to the other
two terms on the right side of (A.1). Suppose that we write the X matrix
as a set of column vectors:

X:[xl . xk] (A.4)
where
_xlj_
X, =, (A.5)
R
Then
b
y’Xb:[y'x1 VX, y’xk]bj :[y'xlbl+...+y'ijj+...+y'xkbk] (A.6)
b |
Hence
oy'Xb |
P A X .
b Yy X, (A.7)

J

We now consider the p'X'Xp term. Using (A.4),

b'X'Xb = [xlb1 +..+X,b; +...+x,€b,(]'[x1b1 +o.tX,b; +...+xkbk]

. (A.8)
= Z bP b’I XP ' X‘I
p=1 g=1

The subset of terms including b, is

. e 4N : (A.9)
ijquj Xy + prbjxp X

q=1 p=1
Hence

ob'X'Xb

k k k
T:quxi'xq +prxp'xj :zszxp'xj (A.10)
j g=1 p=1 p=1
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Putting these results together,

'v 1 1Y k

ORSS _oly'y —2y'Xb+b XXb]:_zy'XﬂLzszxp'xj (A1D)

ab/ abl ‘ p=1
Hence the normal equation ORSS _ 0 is

j

k
2b,%,'%, =X,y (A.12)
P

(Note that x 'x; = X,'x_and y' X, = X'y since they are scalars.) Hence

k
xj'{prxp}:xj'y (A.13)
p=1
Hence
x;'Xb=x"y (A.14)
since
_bl_
.
Xb=[x, .. x, . x]b,|=X x5, (A.15)
p=1
| O |

Hence, stacking the k normal equations,

[x,'Xb]| [x,'"y]
x,'Xb |=|x,"y (A.16)
_xk'Xb_ _xk'y_
Hence
_Xl'_ _xl'_
xj' Xb = xj' y (A.17)
RY% RYN
Hence
X'Xb=X'y (A.18)
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Appendix B: Demonstration that e'e/(n — ) is an unbiased
estimator of ¢2.

This classic proof is both elegant, in that it is much shorter than any proof
not using matrix algebra, and curious, in that it uses the trace of a matrix,
a feature that I have never seen used for any other purpose. The trace

of a matrix, defined for square matrices only, is the sum of its diagonal
elements. We will first need to demonstrate that, for any two conformable
matrices whose product is square,

r(AB)=1r(BA) (B.1)

Let A have n rows and m columns, and let B have m rows and n columns.
. . . m
Diagonal element i of AB is Za_ p - Hence
p - pt
p=l1

tr(AB)= Z[f a,,pbpij (B.2)

i=l \ p=1

Similarly, diagonal element i of BA is Zbl.pa . Hence

p=1

o(BA)= f[z bl.pap[J (B.3)
i=1 \ p=l1

What we call the symbols used to index the summations makes no
difference. Re-writing p as i and i as p, and noting that the order of the
summation makes no difference, we have tr(BA)z tr(AB) .

We also need to note that
(A +B)=1r(A)+r(B) (B.4)

where A and B are square matrices of the same dimension. This follows
immediately from the way that we sum conformable matrices.

By definition,

e=y-y=y-Xb (B.5)
Using

b=[X'X]"X"y (B.6)
we have

e=y - X[X'X]"'X'y (B.7)

=XpB+u—X[X'X]"'X"(XB +u)
=1u-X[X'X]"'X'u

=Mu
where I is an identity matrix of dimension n and
M=1, - X[X'X]"'X' (B.8)
Hence
e'e=u'M'Mu (B.9)

Now M is symmetric and idempotent: M'=M and MM =M . Hence
e'e=u'Mu (B.10)

e' e is a scalar, and so the expectation of €' e and the expectation of the
trace of e' e are the same. So
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Ele'e)= Elrr(ee)}

{tr(u'Mu)}

{rr(Muw)} (.11
= tr{E(Muu')}

1]
SRS

The penultimate line uses tr(AB): tr(BA)- The last line uses the fact that
the expectation of the sum of the diagonal elements of a matrix is equal to
the sum of their individual expectations. Assuming that X, and hence M, is
nonstochastic,

E(e'e)=tr{ME(uu')}
2

1
(M) (B.12)

tr(M
Guztr
— o2l - XX X]*1 x)

=2 (1) rlxx ] )

The last step uses tr(A + B) = tr(A) + tr(B)- The trace of an identity
matrix is equal to its dimension. Hence

Ele'e)=c2n - r(X[x'X]" X))

( —”( 'X 'X]_l)) (B.13)
(n—er(1,))
(

n—k
. . 2
Hence e'e /(n - k) is an unbiased estimator of T, .

2
u
2
O-u
2
u

~—

(e}
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Appendix C: Answers to the exercises

1. Given any square matrix G, another matrix D is said to be its inverse if
and only if CD = DC = L. Thus, if B is the inverse of A, AB = BA = L
Now focus on the matrix B. Since BA = AB = I, A is its inverse. Hence
the inverse of an inverse is the original matrix.

2. Suppose that two different matrices B and C both satisfied the
conditions for being the inverse of A. Then BA = I and AC = L.
Consider the matrix BAC. Using BA = I, BAC = C. However, using AC
= I, BAC = B. Hence B = C and it is not possible for A to have two
separate inverses.

3. Ay and hence A, is the inner product of row i of B and column j of
C. If one writes D = C'B', D, is the inner product of row j of C' and
column 7 of B', that is, column j of C and row i of B. Hence D,= Aij, o)
D = A'and C'B' = (BQC)".

4. Let D be the inverse of A. Then D must satisfy AD = DA = I. Now A
= BC, so D must satisfy BCD = DBC = I. CB-! satisfies both of these
conditions, since BCC'B-'=BIB! = I and C'B'BC = C'IC = 1.
Hence C-'B-! is the inverse of BC (assuming that B-! and C! exist).

5. Let B = Al. Then BA = AB = I. Hence, using the result from Exercise
3,A'B' = B'A' = I' = 1. Hence B' is the inverse of A'. In other words,
[A—l]v — [A']_l.

6. The relationship Y = 3, + #,X +u may be written in linear algebra

form as y = Xp+u where X =[1 x] and 1 is the unit vector and

Xl

x=| X, |. Then

X

n

ot S B

The determinant of X'X is ny_ X — (Z X, )2 =ny X} -n’X’ Hence

] = 1 F: X} —n/\_’} |

B - n)? n

nz X} -n’X?
We also have
1' Y
X'y: y = z !
x'y ZX:'Y:'

So
b=[X'X]"X"y

1 > X? -nX| nY
nZ:Xl.2 -n*X?| —nX n ZX,-Y,'
1 {n?ZXf —n)?ZXin}

nZ:Xiz—nz)?2 —nzﬁ-anXiY[
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Thus

Z(Xi _)?XYZ'_?)
Z(Xf_)?)z

2

and
LYY X XY XY,
- Xl -x)

b, may be written in its more usual form as follows:

b,

V(XX TaX? XY XY,
i > (x,-X)
7> (x, - X - X3 X, - nT)
: > (x,-X)

b,

7. fY=8,X+u, y=Xp+u where X=x=| X, |. Then

X'X=x'x=) X;
. oo .
The inverse of X'X is W . In this model, X'y =x'y = ZXiYi

So

b=[X'X]"X"y

Xy
=S

8. If Y=2 +u, y=Xp+u where X = 1, the unit vector. Then
X'X = 1'1 = n and its inverse is 1/n.
X'yzl'y:ZYi =nY
So

b=[X'X]"X"y
_Layoy
n
9. We will start with Y. If we regress it on the intercept, we are regressing
it on 1, the unit vector, and, as we saw in Exercise 8, the coefficient
is Y. Hence the residual in observation i is Y, — Y. The same is true for
each of the X variables when regressed on the intercept. So when we
come to regress the residuals of Y on the residuals of the X variables,
we are in fact using the demeaned data for Y and the demeaned data
for the X variables.
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10. The general form of the IV estimator is p'V = [W' X]’l W'y . In the case
of the simple regression model, with Z acting as an instrument for X
and the unit vector acting as an instrument for itself, W = [1 z] and
X=[t x]. Thus

e o B B4

The determinant of W'X is n)_Z X, —(ZZiXZXi): ny Z,X,-n’ZX
Hence

wrx]" = 1 F: ZX; - n)?} ‘

nZZl.X,.—nzZ_X -nZ n

We also have

wy L2

So

b =[W'X]'w'y

1 >z,X, -nX| nY
nZZl.X,.—nZZ_X —-nZ n ZZl.Yi
- 1 {n?Z ZX,-nXy ZI,YI.:I

ny Z,X,-n’ZX -n’ZY +ny.ZY,

1 YY ZX, -XY 77,
Z(Zi _ExXi _)?){ Z(Zi _ZXYz _?) :I

Thus

v Z(Zi—zxyi_y)
S a4 'y

and

LY YY Z,X, -XY ZY,
v

) Z(Z,.—ZXX,.—)?)

b,V may be written in its more usual form as follows:

7(> 2,x, -nZX )+ 7nZX - XY 2,Y,
Z(Z,. —Z)(Xi _)?)
TRz, -Z)x, - X)-X(E 2, -nZ7)
>z, -Z)x, -X)
:y_Y(Z(Zf—Z)(Y,-—Y)) v

_vVv_pVy
a2 o I

11. By definition, if one of the variables in X is acting as an instrument
for itself, it is included in the W matrix. If it is regressed on W, a
perfect fit is obtained by assigning its column in W a coefficient of 1

v _
b =
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and assigning zero values to all the other coefficients. Hence its fitted
values are the same as its original values and it is not affected by the
first stage of Two-Stage Least Squares.

. If the variables in X are regressed on W and the matrix of fitted values

of X saved,
X=WWWw]|'wx

If X is used as the matrix of instruments,

b =[x Ky
— [ Wiw W]t wex] X wwe wl wey
=[WX]"W WX W] X WWW]'wW'y
=[wWx]"w'y
=p"

Note that, in going from the second line to the third, we have used
[ABC|" =C'B'A™", and we have exploited the fact that W'X is
square and possesses an inverse.

13. The variance-covariance matrix of u is

L)

and hence the characteristic equation for the eigenvalues is
(1-2)7-p*=0

The eigenvalues are therefore 1 —p and 1 + p. Since we are told |p| <l
the matrix is positive definite.

Let c=| ' [.IfA =1 — /P, the matrix A — AI is given by
o)

A—M:P)p}
p P
and hence the equation

[A-Mf=0

yields

pc, +pc, =0

Hence, also imposing the normalisation

cle=c +ci =1

1 1
we have ¢, =—= and ¢, =——, or vice versa.
V2 o2
Ify=1+p,
A—M:Tp p}
P —p
and hence [A —M]c =0
yields
—pe, +pey =0

Hence, also imposing the normalisation

ce=c +c; =1
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1 1
| .
we have 01=Cz=E-ThUS C= _‘/i f
V2 V2
and
1 0 1 1 1 1
P=A2C'= Ji-p \/E \/E :L I-p 1-p
o L | TRl
J1+p \/E \/E Ji+p A+ p
It may then be verified that PQP' = I:

[ 1 1 11 Jl-p  l+4p
1 yl=p Ji-p |1 pl 1 Ji=p 1+ p :l \/l—p \/l—p \/1—,0 \/1+p
1R 1 p 1] 1 1 2l 1 1 p—1  1+p

JI+p  Jl+p I-p l+p _\/l+p \/1+p __\/l—p \/1+p

- o -
_UNI=p Almp | Nl-p (l4p
2 ! 1 —V1-p JI+p
_1/1+p w/1+p_
_1[{2 0] [1 0
200 2] |01
The transformed model has
1
(yl_yZ)
*zL l_p

\/5 (y1+J/2)

JI+p
and parallel transformations for the X variables and u. Given that

1

—(”1_”2)
u"‘:L I=p

V2 1 (u, +u,)

J1+p

none of its elements is the white noise ¢ in the AR(1) process, but
nevertheless its elements are iid.

Var(uf ): % 1_1 {var(u, )+ var(u, )- 2 cov(u, ,u, )}

=E${of +o! —2paf}= o

{var(u1 )+ Var(u2 )+ 2 cov(u] Uy )}

Var(u;):%lﬂo

2
u

:%E{Gf +o) +2paj}:a
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* 1 1
coV(u1 ,uz)—E 5 COV{(u] —u, ), (”u +u, )}
I-p
:% 11 : {var(u, )+ cov(u,,u, )—coviu,,u, ) var(u, )}
-p
-0
Hence

E(u*u*)=1Io?

Of course, this was the objective of the P transformation.
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Appendix 1: Syllabus for the 20 Elements
of econometrics examination

This syllabus is intended to provide an explicit list of all the mathematical
formulae and proofs that you are expected to know for the 20 Elements
of Econometrics examination. You are warned that the examination is
intended to be an opportunity for you to display your understanding of the
material, rather than of your ability to reproduce standard items.

Review: Random variables and sampling theory

Probability distribution of a random variable. Expected value of a random
variable. Expected value of a function of a random variable. Population
variance of a discrete random variable and alternative expression for it.
Expected value rules. Independence of two random variables. Population
covariance, covariance and variance rules, and correlation. Sampling and
estimators. Unbiasedness. Efficiency. Loss functions and mean square
error. Estimators of variance, covariance and correlation. The normal
distribution. Hypothesis testing. Type II error and the power of a test. t
tests. Confidence intervals. One-sided tests. Convergence in probability
and plim rules. Consistency. Convergence in distribution (asymptotic
limiting distributions) and the role of central limit theorems.

Formulae and proofs: This chapter is concerned with statistics, not
econometrics, and is not examinable. However you are expected to know
the results in this chapter and to be able to use them.

Chapter 1 Simple regression analysis

Simple regression model. Derivation of linear regression coefficients.
Interpretation of a regression equation. Goodness of fit.

Formulae and proofs: You are expected to know, and be able to derive, the
expressions for the regression coefficients in a simple regression model,
including variations where either the intercept or the slope coefficient may
be assumed to be zero. You are expected to know the definition of R?and
how it is related to the residual sum of squares. You are expected to know
the relationship between R? and the correlation between the actual and
fitted values of the dependent variable, but not to be able to prove it.

Chapter 2 Properties of the regression coefficients

Types of data and regression model. Assumptions for Model A. Regression
coefficients as random variables. Unbiasedness of the regression
coefficients. Precision of the regression coefficients. Gauss—Markov
theorem. t test of a hypothesis relating to a regression coefficient. Type

I error and Type II error. Confidence intervals. One-sided tests. F test of
goodness of fit.

Formulae and proofs: You are expected to know the regression model
assumptions for Model A. You are expected to know, though not be able
to prove, that, in the case of a simple regression model, an F test on the
goodness of fit is equivalent to a two-sided ¢ test on the slope coefficient.
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You are expected to know how to make a theoretical decomposition of

an estimator and hence how to investigate whether or not it is biased. In
particular, you are expected to be able to show that the OLS estimator

of the slope coefficient in a simple regression model can be decomposed
into the true value plus a weighted linear combination of the values of the
disturbance term in the sample. You are expected to be able to derive the
expression for the variance of the slope coefficient in a simple regression
model. You are expected to know how to estimate the variance of the
disturbance term, given the residuals, but you are not expected to be able
to derive the expression. You are expected to understand the Gauss—Markov
theorem, but you are not expected to be able to prove it.

Chapter 3 Multiple regression analysis

Multiple regression with two explanatory variables. Graphical
representation of a relationship in a multiple regression model.
Properties of the multiple regression coefficients. Population variance
of the regression coefficients. Decomposition of their standard errors.
Multicollinearity. F tests in a multiple regression model. Hedonic pricing
models. Prediction.

Formulae and proofs: You are expected to know how, in principle, the
multiple regression coefficients are derived, but you do not have to
remember the expressions, nor do you have to be able to derive them
mathematically. You are expected to know, but not to be able to derive,
the expressions for the population variance of a slope coefficient and

its standard error in a model with two explanatory variables. You are
expected to be able to perform F tests on the goodness of fit of the
model as a whole and for the improvement in fit when a group of
explanatory variables is added to the model. You are expected to be able
to demonstrate the properties of predictions within the context of the
classical linear regression model. In particular, you are expected to be
able to demonstrate that the expected value of the prediction error is O,
if the model is correctly specified and the regression model assumptions
are satisfied. You are not expected to know the population variance of the
prediction error.

Chapter 4 Transformation of variables

Linearity and nonlinearity. Elasticities and double-logarithmic models.
Semilogarithmic models. The disturbance term in nonlinear models.
Box—Cox transformation. Models with quadratic and interactive variables.
Nonlinear regression.

Formulae and proofs: You are expected to know how to perform a Box-Cox
transformation for comparing the goodness of fit of alternative versions of
a model with Y and log Y as the dependent variable.

Chapter 5 Dummy variables

Dummy variables. Dummy classification with more than two categories.
The effects of changing the reference category. Multiple sets of dummy
variables. Slope dummy variables. Chow test. Relationship between Chow
test and dummy group test.

Formulae and proofs: You are expected to be able to perform a Chow test
and a test of the explanatory power of a group of dummy variables, and to
understand the relationship between them.
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Chapter 6 Specification of regression variables

Omitted variable bias. Consequences of the inclusion of an irrelevant
variable. Proxy variables. F test of a linear restriction. Reparameterization
of a regression model (see the Further Material hand-out). t test of a
restriction. Tests of multiple restrictions. Tests of zero restrictions.

Formulae and proofs: You are expected to be able to derive the expression
for omitted variable bias when the true model has two explanatory
variables and the fitted model omits one of them. You are expected to
know how to perform an F test on the validity of a linear restriction, given
appropriate data on the residual sum of squares. You are expected to
understand the logic behind the ¢ test of a linear restriction and to be able
to reparameterize a regression specification to perform such a test in a
simple context. You are expected to be able to perform F tests of multiple
linear restrictions.

Chapter 7 Heteroscedasticity

Meaning of heteroscedasticity. Consequences of heteroscedasticity.
Goldfeld—-Quandt and White tests for heteroscedasticity. Elimination
of heteroscedasticity using weighted or logarithmic regressions. Use of
heteroscedasticity-consistent standard errors.

Formulae and proofs: You are expected to know how to perform the
Goldfeld—-Quandt and White tests for heteroscedasticity.

Chapter 8 Stochastic regressors and measurement errors

Stochastic regressors. Assumptions for models with stochastic regressors.
Finite sample and asymptotic properties of the regression coefficients

in models with stochastic regressors. Measurement error and its
consequences. Friedman’s Permanent Income Hypothesis. Instrumental
variables (IV). Asymptotic properties of IV estimators, including the
asymptotic limiting distribution of n (bév —f,) where b)Y is the

IV estimator of 8, in a simple regression model. Use of simulation to
investigate the finite-sample properties of estimators when only asymptotic
properties can be determined analytically. Application of the Durbin—-Wu-
Hausman test

Formulae and proofs: You are expected to be able to demonstrate that, in

a simple regression model, the OLS estimator of the slope coefficient is
inconsistent when there is measurement error in the explanatory variable.
You should know the expression for the bias and be able to derive it. You
should be able to explain the consequences of measurement error in the
dependent variable. You should know the expression for an instrumental
variable estimator of the slope coefficient in a simple regression model and
be able to demonstrate that it yields consistent estimates, provided that
certain assumptions are satisfied. You should also know the expression for
the asymptotic population variance of an instrumental variable estimator
in a simple regression model and to understand why it provides only an
approximation for finite samples. You are not expected to know the formula
for the Durbin-Wu-Hausman test.
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Chapter 9 Simultaneous equations estimation

Definitions of endogenous variables, exogenous variables, structural
equations and reduced form. Inconsistency of OLS. Use of instrumental
variables. Exact identification, underidentification, and overidentification.
Two-stage least squares (TSLS). Order condition for identification.
Application of the Durbin-Wu-Hausman test.

Formulae and proofs: You are expected to be able to derive an expression
for simultaneous equations bias in a simple regression equation and to
be able to demonstrate the consistency of an IV estimator in a simple
regression equation. You are expected to be able to explain in general
terms why TSLS is used in overidentified models.

Chapter 10 Binary choice models and maximum
likelihood estimation

Linear probability model. Logit model. Probit model. Tobit model.
Selection bias model. Maximum likelihood estimation of the population
mean and variance of a random variable. Maximum likelihood estimation
of regression coefficients. Likelihood ratio tests.

Formulae and proofs: You are expected to know the expression for the
probability of an event occurring in the logit model, and to know the
expressions for the marginal functions in the logit and probit models. You
would not be expected to calculate marginal effects in an examination, but
you should be able to explain how they are calculated and to comment

on calculations of them. You are expected to be able to derive a maximum
likelihood estimator in a simple example. In more complex examples,

you would only be expected to explain how the estimates are obtained,

in principle. You are expected to be able to perform, from first principles,
likelihood ratio tests in a simple context.

Chapter 11 Models using time series data

Static demand functions fitted using aggregate time series data. Lagged
variables and naive attempts to model dynamics. Autoregressive
distributed lag (ADL) models with applications in the form of the partial
adjustment and adaptive expectations models. Error correction models.
Asymptotic properties of OLS estimators of ADL models, including
asymptotic limiting distributions. Use of simulation to investigate the finite
sample properties of parameter estimators for the ADL(1,0) model. Use of
predetermined variables as instruments in simultaneous equations models
using time series data. (Section 11.7 of the textbook, Alternative dynamic
representations ..., is not in the syllabus.)

Formulae and proofs: You are expected to be able to analyze the short-run
and long-run dynamics inherent in ADL(1,0) models in general and the
adaptive expectations and partial adjustment models in particular. You are
expected to be able to explain why the OLS estimators of the parameters
of ADL(1,0) models are subject to finite-sample bias and, within the
context of the model Y, = B, + B,Y,_, +u, to be able to demonstrate that
they are consistent.
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Chapter 12 Autocorrelation

Assumptions for regressions with time series data. Assumption of the
independence of the disturbance term and the regressors. Definition

of autocorrelation. Consequences of autocorrelation. Breusch—

Godfrey Lagrange multiplier, Durbin-Watson d, and Durbin h tests for
autocorrelation. AR(1) nonlinear regression. Potential advantages and
disadvantages of such estimation, in comparison with OLS. Cochrane-
Orcutt iterative process. Autocorrelation with a lagged dependent variable.
Common factor test and implications for model selection. Apparent
autocorrelation caused by variable or functional misspecification. General-
to-specific versus specific-to-general model specification.

Formulae and proofs: You are expected to know how to perform the

tests for autocorrelation mentioned above and to know how to perform

a common factor test. You are expected to be able to explain why the
properties of estimators obtained by fitting the AR(1) nonlinear regression
specification are not necessarily superior to those obtained using OLS.

Chapter 13 Introduction to nonstationary processes

Stationary and nonstationary processes. Granger—-Newbold experiments
with random walks. Unit root tests. Akaike Information Criterion and
Schwarz’s Bayes Information Criterion. Cointegration. Error correction
models.

Formulae and proofs: You are expected to be able to determine whether

a simple random process is stationary or nonstationary. You would not
be expected to perform a unit root test in an examination, but you are
expected to understand the test and to be able to comment on the results
of such a test.

Chapter 14 Introduction to panel data models

Definition of panel data set (longitudinal data set). Pooled OLS model.
Definition of, and consequences of, unobserved heterogeneity. Within-
groups fixed effects model. First differences fixed-effects model. Least
squares dummy variable model. Calculation of degrees of freedom in
fixed effects models. Random effects model, with assumption required for
the use of this model. F test for discriminating between fixed effects and
pooled OLS as the appropriate specification. Durbin-Wu-Hausman test
for discriminating between fixed effects and random effects models as the
appropriate specification.

Formulae and proofs: You are expected to be able to demonstrate
mathematically how the within-groups and first differences versions of

the fixed effects approach eliminate unobserved heterogeneity, and to be
able to explain how the least squares dummy variable model provides an
alternative solution. You are expected to be able to explain mathematically
why the random effects model is subject to a form of autocorrelation.
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Appendix 2: Sample examination paper

Important note: This Sample examination paper reflects the
examination and assessment arrangements for this course in the academic
year 2010—2011. The format and structure of the examination may have
changed since the publication of this subject guide. You can find the most
recent examination papers on the VLE where all changes to the format of
the examination are posted.

Candidates should answer FOUR of the following SIX questions:
QUESTION 1 of Section A (25 marks in total) and THREE questions
from Section B (25 marks each). Candidates are strongly advised to
divide their time accordingly.

Extracts from statistical tables are given after the final question on this
paper.

Graph paper is provided at the end of this question paper. If used, it must
be detached and fastened securely inside the answer book.

A calculator may be used when answering questions on this paper and
it must comply in all respects with the specification given with your
Admission Notice. The make and type of machine must be clearly stated
on the front cover of the answer book.
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SECTION A

Answer all parts of question 1 (25 marks in total.).

328

(a)

(b)

(©)

(d)

(e)

Consider a model:

Y, =oa+BX, +u;; 1=1, - ,6
whereE(u,)=0; E(u})=0c" and E(uju))=0if i j.
The observations on X,'s are

X, X, X, X, X, X

1 2 3 4 5 6

The OLS estimator of f is B and

2
()

17.5°

V()=
An alternative estimator of 3 is

B: [Ys +Ys-Y, _Yl] :

Compare the sampling variance of E with that of ﬁ . (5 marks)

Show that the infinite distributed lag model Y, = o + BZ ijH. + ¢, can be written in terms
=0
of X; and a single lag Y;. What estimation problems does this model have?
(5 marks)

Explain what is meant when variables are cointegrated. Why is this considered to be
important? (5 marks)

Let the regression equation be:

y, =Bx,+u, ; t=12,...,T.
where E(u,)=0; E(uf) =o" and E(u,u,)=0if s #t. X’s are fixed in repeated samples.

Obtain the ordinary least squares estimator of 3. Show that the OLS estimator of f3 is
linear and unbiased. (5 marks)

Explain what you understand by the Durbin-Watson (DW) test. State the assumptions
required for performing the DW test. (5 marks)



Appendix 2: Sample examination paper

SECTION B

Answer three questions from this section (25 marks each).

2. Let the model be:
Yt = Bo +BIXH +B2X12 +tu, ; t= 1a2,“',T

E(u,) =0 for all t. A researcher suspects that the variance of the disturbance term is
Var(u,) =c°X,,.

(a)  Explain how the researcher should proceed to test the null hypothesis H, : Var(u,) = ¢
against the alternative hypothesis H, : Var(u,) = ¢°X,, . (7 marks)

(b) If the researcher’s suspicion is correct then how will it affect the properties of the ordinary
least squares estimators? (3 mark)

(c) Suggest in detail an estimation procedure, which will give best linear unbiased estimates of
the parameters when Var(u,) =c°X,, . (5 marks)

(d) Consider the model
y,=ox,+u,; t=12,...,T

where E(u,)=0; E(u})=0"x;; E(uu,)=0 if s#t, forall s and t. x, is an observed
non-random variable.

The density function of u, is

2
f(u,)=(2nc’x;})™"? exp{—%[hj } .
207 x

Derive the maximum likelihood estimators of o and . (10 mark)

3. Explain and discuss the following:
(a) Difference stationary and trend stationary processes. (9 marks)

(b) Effects on the properties of ordinary least squares estimator when relevant variables are
excluded and irrelevant variables are included in the equation. (8 marks)

(c) Dummy variables. (8 marks)
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The following estimates were calculated from a sample of 7,634 women respondents from the
General Household Survey 1995. The dependent variable takes the value 1 if the woman was in
paid employment, and 0 otherwise.

OLS Logit Probit
high 0.093 0.423 0.259
(0.015) (0.071) (0.043)
noqual -0.210 —0.898 —0.554
(0.013) (0.056) (0.035)
age 0.038 0.173 0.107
(0.003) (0.124) (0.008)
age2 —0.051 —0.230 —0.142
(0.003) (0.069) (0.009)
mar 0.024 0.103 0.063
(0.009) (0.057) (0.035)
Constant —0.068 —2.587 —1.593
(0.049) (0.225) (0.137)

Where high is 1 if the respondent has a higher educational qualification, 0 otherwise; noqual is 1

if the

respondent has no qualifications, 0 otherwise; age is age in years; age2 is (age X age)/ 100;

mar is 1 if married, 0 otherwise. Conventionally calculated standard errors are in brackets for
the ordinary least squares (OLS) results, asymptotic standard errors are in brackets elsewhere.

(a)

(b)

(©)

(d)

Explain how Probit estimates are calculated when the model has no intercept and only one
explanatory variable. (7 marks)

Using all three sets of estimates, test the null hypothesis that the coefficient of mar is zero.
Which test statistics would you consider more reliable? Explain. (8 marks)

Using OLS and Probit estimates, calculate the estimated probabilities of being in
employment for a married woman aged 40 with a higher educational qualification.
Comment on your results. (6 marks)

Test the null hypothesis that all the slope coefficients of the probit model are jointly equal
to zero. It is given that

InL, =—416.01
InL, =-321.25

where InL; and InL are the log of the likelihood from the restricted and the unrestricted
probit models respectively. (4 marks)



(a)

(b)
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Explain what you understand by autocorrelation of the disturbance term in a regression
model? What are the causes of autocorrelation? (5 marks)

The following equation was estimated by Ordinary Least Squares using 37 annual
observations of UK aggregate data. The dependent variable ( cloth, ) is the log of

expenditure on clothing at 1995 prices, yd, is the log of aggregate disposable income at
1995 prices, pc, is the log of the price of clothing relative to all consumer prices, ps, is
the log of the price of shoes relative to all consumer prices.

cloth, = -3.256 + 1.021yd, — 0.240pc, — 0.429ps, + e,
(1.531) (0.118) (0.132) (0.185)

standard errors in brackets, e, is an OLS residual, n =37, R? = 0.992,F=1,364.0,s =
0.041, DW = 0.94. DW is the Durbin-Watson statistic.

1. Test the hypothesis that the coefficient of yd, is one. (3 marks)
ii.  Construct a 95% confidence interval for the coefficient ofpc, . (3 marks)

iii.  Give any assumptions which your results in i. and ii. above require. (3 marks)

iv.  Using the statistics given above, would you conclude that any of the assumptions
you have given in iii. above are not valid here? Give reasons. (5 marks)

v.  What information do these estimates provide about the demand for clothing in the
UK? (6 marks)
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In the model

y, =Bx,+u, t=12,...,T

. . . . *
X, 1s measured with error. Data is only available on x, , where

X, =X, +V, ; t=1.2,.7T

and Eu, =Ev, =0, E(u,v,) =E(x,u,) =E(x,v,)=0. y,,x, and x, have zero means.

(a)

(b)

(©)

(d)

If [3 is the ordinary least squares(OLS) estimator from regressing y, on X, , show that ﬁ
is inconsistent. (10 marks)

Obtain an expression for p lim(B —B) . Comment on the sign of this expression.
(3 marks)

In the above given model, suppose x, was measured without error , y, was measured with
error and data was only available on y, where y; =y, +w, and
E(w,)=0;E(u,w,)=E(x,w,)=E(y,w,)=0. Let [?) be the OLS estimator of B from
regressing y; on Xx,. Is [3 consistent? Explain in detail. (7 marks)

Suppose in the given model, both y, and x, are measured with errors and data is available

only on y, and x, where y; and x, are defined above, respectively. Discuss whether the

OLS estimator of f, from regressing y, on x, will be consistent or inconsistent.
(5 marks)

END OF PAPER



Appendix 2: Sample examination paper

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

X
The function tabulated is ®(x) = % f e~ di, O(x) is
27 J —o

the probability that a random variable, normally distributed
with zero mean and unit variance, will be less than or equal
to x. When x < o use ®O(x) = 1 —P(—x), as the normal
distribution with zero mean and unit variance is symmetric
about zero.

x D(x) x D(x) x D(x)
000 0°5000 0'40 0-6554 080 07881
‘0L ‘5040 ‘41 6591 ‘81 ‘7910
‘02 ‘5080 ‘42 6628 ‘82 7939
‘03 ‘5120 ‘43 6664 83 7967
‘04 ‘5160 ‘44 6700 84 7995
0'05 0°5199 045 06736 085 0-8023
‘06 5239 46 6772 ‘86 -8os1
‘07 5279 ‘47 6808 -87 -8078
‘08 ‘5319 ‘48 6844 ‘88  -8106
‘09 '5359 ‘49 6879 ‘89 8133
010 0°5398 0'50 06915 0-go 0-8159
‘IX 5438 ‘51 +6950 -9 8186
‘12 ‘5478 ‘52 6985 ‘92 8212
‘I3 ‘5517 ‘53 7019 ‘93 8238
‘14 ‘53357 ‘54 7054 ‘94 8264
015 0°5596 055 07088 095 0-8289
‘16 5636 ‘56 7123 ‘96  -8313
‘17 5675 ‘57 7157 ‘97 8340
‘18 ‘5714 ‘58 7190 ‘g8  -83653
‘19 °5753 59 7224 ‘99 8389
020 0°5793 060 07257 100 08413
21 5832 ‘61 7291 -or  -8438
22 5871 62 7324 ‘02 8461
‘23 ‘5910 ‘63 7357 ‘03 8485
24 5948 64 7389 ‘04 8508
025 0°5987 065 07422 105 08531
26 6026 ‘66 7454 ‘06 8534
‘27 6064 67 7486 ‘07 8577
28  -6103 ‘68 7517 ‘08 ‘8599
29 6141 ‘69 7549 ‘09 8621
030 06179 0770 07580 110 08643
‘3T 6217 7L 7611 ‘xx  -8665
‘32 ‘62535 72 7642 ‘12 -8686
33 6293 73 7673 ‘I3 8708
‘34 6331 74 7704 ‘14 8729
035 06368 075 07734 115 08749
36 6406 76 7764 ‘16 8770
37 6443 77 7794 ‘17 8790
‘38 6480 78 7823 ‘18 ‘8810
‘39 6517 79 7852 ‘g -8330
0°'40 06554 080 07881 120 0'8849

X

120
‘12X
‘22
23
24

125

1°40
-41
42
‘43

145
-46
47
-48
49

I'50
e
‘52
‘53
‘54

I°55
-56
57
-58
*59

1-60

® (x)
0 X
O(x) x O x  D(x)
0-8849 160 09452 200 097725
-8869 61 9463 ‘ox ‘97778
-8388 ‘62 ‘9474 ‘02 97831
‘8907 63 0484 ‘03 97882
‘8925 64 9495 ‘04 97932
08944 165 0°9505 205 0'97982
8962 ‘66  -9515 ‘06 -98030
‘8980 67 ‘0525 ‘07 98077
8997 68 -9535 ‘08 98124
‘goI15 69 ‘9545 ‘09 98169
0'9032 170 0°9554 210 098214
'g049 71 0564 ‘Ix 98257
*go66 72 ‘9573 ‘12 +98300
‘9082 73 ‘9582 ‘I3 98341
'9099 74 9591 ‘14 ‘98382
09115 175 0©0°9599 2'15 098422
‘QI3I 76 <9608 ‘X6 98461
9147 77 9616 ‘17 98500
‘9162 78 9625 ‘18  -98537
9177 79 9633 ‘19 98574
0'9192 180 09641 220 0-98610
9207 ‘81 9649 2T 98643
‘9222 ‘82 -9656 22 98679
'9236 83 9664 23 98713
‘9251 ‘84 9671 ‘24 98745
0:9265 1-85 09678 225 098778
9279 ‘86 -9686 26 98809
9292 ‘87 9693 27 -98840
9306 -88  -9699 28  -98870
‘9319 ‘89 9706 29 98899
0'9332 1'90 0°9713 2:30 098928
‘9345 ‘9X 9719 3r 98956
‘9357 ‘92 9726 32 98983
'9370 ‘93 9732 33 ‘99010
‘9382 ‘94 9738 ‘34 '99036
0'9394 195 0'9744 2'35 099061
"9406 ‘96 ‘9750 36 99086
‘0418 ‘97 9756 37 991X
'9429 ‘98 9761 38 99134
‘9441 ‘99 9767 39 99158
0'9452 2:00 0°9772 2°40 099180
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x

2:40
41
42
43
44

2'45
-46
47
48
‘49

2'50
51
‘52
"53
‘54

255

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

(=)

0'99180
*99202
‘99224
*99245
99266

0°99286
‘99305
‘99324
*99343
99361

099379
'99396
*99413
"99430
‘99446

. 0°09461

x D(x)
2'55 099461
56 09477
‘57 '99492
‘58  -99506
‘59 99520
2:60 099534
‘61 ‘99547
62 -993560
‘63 ‘99573
‘64 99585
2:65 099598
‘66  -9g609
‘67 90621
‘68 99632
‘69 99643
2770 099653

x D(x)
2770 0°99653
7T 99664
72 '99674
73 99683
74 99693
2775 099702
76 99711
77 99720
78  -99728
79 99736
2-80 099744
81 99752
‘82 99760
83 99767
84 99774
2:85 099781

x D(x)
285 099781
‘86  -g9788
‘87 99795
‘88  -g98o1
‘89 99807
2'g0 0°99813
‘91 99819
‘92 99825
‘93 99331
‘94 99836
2'95 0°99841
‘96 -99846
'97 99851
‘98 -99856
‘99 99861
300 0°99865

x D(x)
300 0°99865
‘or 99869
‘02 99874
03 99878
‘04 -99882
305 0'99886
‘06 -99889
07 99893
‘08  -99896
‘09 '99900
3'I0 0°99903
‘IT 99906
‘I2 ‘99910
I3 "99913
‘14 '99916
315 099918

x
315
-16
17
18
19

320
21
22
23
24

325

26
27
-28
-29

330

O(x)

099918
'99921
‘99924
‘99926
*99929

0'99931
‘99934
'99936
99938
'99940

0'99942
'09944
99946
‘99948
*99950

0'99952

The critical table below gives on the left the range of values of x for which ®(x) takes the value on the right,
correct to the last figure given; in critical cases, take the upper of the two values of ®(x) indicated.

il’Zﬁ 09990
3138 09991
(1 09992
3174
3215 09993
©'9994

©'9994
0'9995
0'9996
0'9997
0'9998
©'9999

3263
3'320
3389
3480
3615

iyaz 0799990
e
3701 099992
3826 ©'99993
3867 099994

©'99995

0'09995
©'99996
0'99997
0'99998
0'99999
100000

3'916
3'976
4'055
4173
4417

13 105

e . . .
When x > 3°3 the formula 1 —®(x) = 50«/7—71 |:1 —= +x_A—F+?— is very accurate, with relative error

less than 945/x%.

TABLE 5. PERCENTAGE POINTS OF THE
NORMAL DISTRIBUTION

This table gives percentage points x(P) defined by the
equation

L = Jm e 41,
100 oz Ja@)
If X is a variable, normally distributed with zero mean and P/100
unit variance, P/100 is the probability that X > x(P). The o
. : x{P)
lower P per cent points are given by symmetry as — x(P),
and the probability that | X| > x(P) is 2P/100.
P x(P) P x(P) P x(P) P x(P) P x(P) P x(P)
50 ©°0000 50 16449 30 1-8808 20 2'053%7 10 2-3263 010 3:0902
45 o0°1257 48 16646 2.9 1'8957 19 2°0749 09 23656 009 31214
40 0°'2533 46 16849 28 19110 1-8 2-0969 08 2:4089 0-08 3'I559
35 03853 4'4 17060 277 1°9268 Iy 2'1201 07 2'4573 007 31047
30 0'5244 42 177279 26 1°9431 16 21444 06 25121 006 32389
25 06745 4'0 17507 2’5 1-9600 I'5 2°1701 05 25758 0'05 32905
20 08416 38 17744 2'4 109774 I'4 21973 04 26521 o'o1 37190
15 10364 36 177991 2'3 1°9954 13 22262 03 27478 0005 3-8906
10 12816 34 1-8250 22 2°0141 12 2°2571 02 28782 0001 42649
5 16449 32 18322 2'I 2°0335 I'T 2°2004 0'I 3'0902 0°0005 4'4172
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TABLE 8. PERCENTAGE POINTS OF THE x*-DISTRIBUTION

This table gives percentage points xZ(P) defined by the P/100
equation
P 1 ©

e = -1 -2z g
= x-le .
100 2"2T() J e

If Xis a variable distributed as ¥? with v degrees of freedom, T
P/100 is the probability that X > x2(P). v

For v > 100, V2 X is approximately normally distributed
with mean vzv— 1 and unit variance.

(The above shape applies for v = 3 only. When v < 3 the mode is
at the origin.)

P 99'95 99'9 99'5 99 97'5 95 go 8o 70 6o
V=1 0-0%3927 o0f1571 0'0%3927 00%1571 ©0'0%9821 0003932 001579 006418 01485 02750
2 ©'00I000 ©0°00200I 001003 002010 0'05064 o'1026 0°2107 0°4463 07133 1022
3 001528 002430 007172 01148 02158 03518 05844 1:005 1'424 1-869
4 006392 o'0go8o  0'2070 0°2971 0°4844 07107 1-064 1-649 2°195 2753
5 01581 0'2102 0°4117 0°5543 08312 1145 1-610 2'343 3000 3655
6 0°2994 03811 06757 o-8721 1°237 1°635 2204 3070 3-828 4570
7 04849 0'5985 09893 1239 1-690 2'167 2833 3822 4671 5'493
8 07104 08571 1344 1646 2'180 2'733 3'490 4594 5'527 6423
9 09717 1152 1735 2088 27700 3325 4'168 5380 6393 7°357
10 1265 1°479 2'156 2'558 3247 @ 3940 4865 6179 7267 8-295
1x 1587 1-834 2603 3'053 3816 4575 5578 6989 8148 9237
12 1934 2214 3'074 3571 4°404 5226 6:304 7-807 9034 1018
13 2°305% 2617 3'565 4107 5°009 5892 7:042 8634 9926  11°13
i4 2-697 3-041 4075 4660 5629 6571 7790 9467 1082 12°08
15 3-108 3483 4601 5°229 6262 7-261 8547 10°31 1172 13°03
16 3'530 3°042 5°142 5812 6908 7:962 9'312 1115 12°62 1398
17 3-980 4416 5697 6-408 7°564 8672 10°09 12°'00 1353 14°94
18 4'439 4903 6265 7°015 8231 9°390 1086 12:86 14°44 15-89
19 4912 5407 6-844 7:633 8907 1012 11°65 1372 15°35 16-85
20 5°398 5'021 7°434 8-260 9:591 10-83 12°44 1458 16-27 17-81
21 5-896 6:447 8-034 8:897 10-28 1I°59 13°24 15°44 1718 18-77
22 6°404 6-083 8643 9542 . 1008 1234 1404 16°31 1810 1973
23 6-924 7°529 9260 10°20 11°69 1309 1485 17°19 1902 2069
24 7°453 8-083 9-886 10-86 12°40 1385 1566 1806 1994 2165
25 7'991 8-649 10°52 11°52 13°12 1461 16°47 1894 2087 . 2262
26 8538 9°222 1116 12°20 1384 15°38 1729 1982 2179 2358
27 9093 9:803 11-81 12-88 14°57 1615 18-11 2070 2272 2454
28 9'656 10°39 12°46 13°56 15°31 1693 18-94 21°59 2365 25°51
29 1023 1099 1312 1426 16-05 1771 1977 2248 2458 2648
30 10-80 11°59 1379 14°95 1679 18:49 2060 2336 2551 2744
32 11°98 1281 15°13 16-36 1829 2007 22°27 2515 27:37 29:38
34 1318 14°06 16-50 1779 19'81 21°66 23°95 26-94 29°24 31°31
36 14°40 1532 1789 19°23 21'34 23°27 2564 2873 31°12 3325
38 1564 16-61 1929 2069 22°88 24-88 27°34 30°54 32°99 35°19
40 16°91 1792 2071 22°16 24°43 2651 2905 32°34 34°87 3713
50 2346 2467 27'99 2971 32°36 3476 3769 4145 44°31 46-86
6o 3034 3174 3553 37°48 4048 43'19 46°46 50°64 5381 5662
70 37'47 3904 4328 45°44 4876 5174 5533 59-90 6335 66-40
80 4479 46°52 51°17 53'54 5715 6039 6428 69-21 7292 7619
go 5228 54'16 59-20 6175 6565 69-13 73°29 7856 8251 85°099
100 59°90 61-92 67°33 7006 7422 77°93 8236 8795 92°13 9581
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TABLE 8. PERCENTAGE POINTS OF THE ¥>-~DISTRIBUTION

This table gives percentage points ¥2(P) defined by the
equation P/100

P 1 ©
—_—= a1 =1 g,
0 22T} J i)
If X is a variable distributed as x? with ¥ degrees of freedom,
P/100 is the probability that X = x2(P). (The above shape applies for v > 3 only, When v < 3 the mode is
For v > 100, ¥2X is approximately normally distributed at the origin.)
with mean v2v—1 and unit variance.

X2(P)

P 50 40 30 20 10 5 25 I o5 ox 005
v=1x 0'4549 077083 1074 1642 2706 3-841 5'024 6635 7879  10°83 12°12
2 1:386 1-833 2408 3°219 4605 5°991 7-378 9210 10°60 13-82 1520

3 2°366 2'946 3663 4642 6251 7-813 9348 1134 1284 16-27 1773

4 3357 4045 4878 598 7779 9488 1114 1328 1486 1847 2000

5 4351 5°132 6-064 7-289 9236 11°07 1283 15°09 1675 20°52 22°T1

[ 5348 6211 7231 8558 1004 12°59 14°45 16-81 1855 2246 24°10

7 6°346 7:283 8:383 9803 12702 1407 16-01 1848 2028 2432 2602

8 7°344 8351 9'524 11'03 13736 1551 1753 20°09 21°95 26°12 27-87

9 8343 9414 10°66 12°24 1468 16°92 19-02 2167 23°59 27-88 29°67

I0 9°342  10°47 1178 13°44 15°09 1831 20°48 2321 25°19 29°59 31°42
I 10°34 11I°53 12°90 1463 1728 1968 21°92 2472 2676 3126 33°14
12 11°34 1258 14°01 15-81 18'55 21'03 2334 2622 2830 32°91 3482
I3 12°34 1364 1512 1698 19'81 2236 2474 277°69 29'82 34'53 3648
I4 13°34 1469 1622 1815 21°06 2368 26°12 29'14 31°32 36°12 3811

I5  14'34 1573 1732 1931 22°31 25000 2749 3058 328 3770 3972
16 15°34 1678 18-42 20°47 2354 26-30 2885 32°00 3427 39'25 41°31
17 1634 1782 1951 2061 2477 2759 3019 334 3572 4079 4288
18 17°34 18-87 2060 2276 25'99 28-87 31°53 34-81 3716 4231 44°43
19 1834 19091 2169 2390 2720 3014 3285 3619 3858 4382 4597

20 1934 2095 2277 2504 2841 3141 3417 3757 4000 4531 4750
21 2034 21°99 23-86 2617 2962 3267 3548 38-93 41740 4680 4901
22 21'34 2303 24'94 2730 30-81 3392 3678 40°29 4280 4827 50°51
23 2234 24707 26-02 2843 32°01 3517 38-08 41°64 4418 4973 52°00
24 2334 2511 27710 2955 3320 3642 3936 4298 4556 5118 5348

25 2434 2614 2817 3068 3438 3765 4065  44'31 4693 5262 5495
26 2534 2718 29225 3179 3556 3889 4192 4564 4829 5405 5641
27 2634 2821 3032 3291 3674 4011 4319 4696 4964 5548 57:86
‘28 2734 2925  31°39 3403 3792 4134 4446 4828 5099 5689 5930
29 2834 3028 3246 3514 3909 4256 4572  49'59 5234 5830 6073

30 2034 3132 3353 3625 4026 4377 4698 5089 5367 5970 6216
32 3134 3338 3566 3847 4258 4619 4948 5349 5633 6249 6500
34 3334 3544 3780 4068 4490 4860 5197 56006 5896 6525 6780
36 3534 3750 3992 42838  g7ar 5100 5444 5862 6158 6799 7059
38 3734 3956 4205 4508 4951 5338 5690 6116 6418  j070 7335

40 3934 4162 4416 4727 5181 5576 5934 6369 66777 7340 7609
50 4933 5189 5472 5816 6317 6750 7142 7615 7949 8666  89'36
60 5933 6213 6523 6897 7440 7908 8330 8338 9195 9961 1027
70 6933 7236 7569 7971 8553 9053 9502 1004 1042 1123 1156
8o 79°33 8257 86:12 9041 96°58 10179 1066 112°3 116-3 1248 1283

90 8933 9276 9652 101°I 1076 1131 1181 124°1 128-3 1372 140-8
100 99°33 102°9 106°9 1117 1185 1243 1296 1358 140'2 149°4 153°2
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TABLE 10. PERCENTAGE POINTS OF THE #-DISTRIBUTION

This table gives percentage points £,(P) defined by the
equation

i__1_1‘(—§-v+%)f”° dt
100 v T(F)  Jue) (1 +22/n)ivn’

Let X, and X, be independent random variables having a
normal distribution with zero mean and unit variance and a
x2-distribution with v degrees of freedom respectively; then
t = X,/VX,/v has Student’s z-distribution with » degrees of
freedom, and the probability that t > t,(P) is P/100. The
lower percentage points are given by symmetry as —¢,(P),
and the probability that || = £,(P) is 2P/100.

P 40 30 25 20 15
V=1 0°3249 07265 1’0000  1°3764 1°963
2 02887 06172 08165 1-o607  1-386
3 02767 05844 07649 09783 1250
4 o'2707 05686  o7407 09410 1190
5 02672 05594 07267 09195 1156
6 02648 05534 07176 09057 1'134
7 02632 05491 o7111  o-8gbo 1’119
8 02619 0'5459 07064 08889  1°108
9 02610  0'5435 07027 08834 1'100
10 02602 05415 06998 o'8791 17093
Iz 025906 05399 06974 08755 1088
12 02500 05386 06955 08726 1°083
13 02586 05375 06938 08702 1079
14 02582 05366 06924 08681 1076
15 02579 05357 06912 08662 1-074
16 02576 05350 ©0'6gor 08647 1071
17 0'2573 05344 06892 08633 1-069
8 o'2571 05338 06884 08620 1067
19 02569 05333 06876 0860 1066
20 02567 05320 06870 08600 1064
21 02566 05325 06864 08501 1°063
22 02564 05321 06858 08583 1061
23 02563 05317 06853 083575 1060
24 02562 035314 06848 08569 1059
25 02561 o0'5312 06844 083562 1°058
26 02560 05309 06840 08557 1058
27 0’2559 05306 06837 08351 1°057
28 02558 0'5304 06834 08546 1056
29 02557 05302 06830 08342 1055
30 02556 o'5300 06828 08538 1055
32 02555 05297 06822 08530 1054
34 02553 05294 06818 08523 1°052
36 o'2552 0'5291 06814 08517 1°052
38 0'2551 05288 068i0 08512 1051
40 02550 05286 06807 08507 1050
50 02547 05278 06794 08489 1°047
60 02545 05272 06786 08477 1°045
120 02539 05258 06765 08446 1041
[¢o) 02533 ©0'5244 06745 08416 1036

P/100

0 t,(P)

The limiting distribution of ¢ as v tends to infinity is the
normal distribution with zero mean and unit variance. When
v is large interpolation in v should be harmonic.

10 5 2'5 I o5 oI 005
3078  6°314 1271 3182 6366 3183 6366
1886 2920 4303 6965 9925 2233 3160
1638 2353 3182  4'541 5841 10°21 1292
1533 2132 2776 3747 4604 7173 8610
1476 2015 2'571 3365 4032 5893 6869
1'440 1'943 2'447 3143 3707 5208 5959
1415 1895 2365 2998 3499 4785 5408
1'397 1860 2:306  2'896 3'355 4501  5°04I
1'383 1833 2262  28ar 3250 4297 47781
1372 1812 2228 2764 3169 4144 4587
1363 17796 2201 2718 3106 4025  4'437
1356 1782 2179 2681 3055 3930 4318
1'350 1771 2'160 2:650 3012 3852 4221
1345 1761 2145 2624 2977 3787 4140
1341 1753 2131 2602 2:947 3733 4073
1337 1746  2'120 2583 2:921 3686 4013
1°333 1740 2'110  2:'567 2:898 3646  3-965
11330 1734 2'101 2552 2878 3610 3922
1328 1729 2'093 2'539 2861 3579 3883
1°325  I'725 2086 2:528 2845 3552 3850
171323 1721 2080 2518 283r 3527 3819
1°321 1717 2'074 2508 2819 3505 3792
1°319 I'714 2069 2500 2807 3485 3768
1318 1711 20064 2492 2797 3467 3745
11316 1708 2060 2485 2787 3450 3725
1315 1706 2056 2:479 2779 3435 3707
1314 I'703 2052 2°473 2771 3421 3690
1313 I'701 2048  2:467 2763 3408 3674
1311 1699 2:045 2:462 27756 3396 3659
1310 1°697 2:042 2:457 2750 3385 3646
1309 1694 2037 2449 2738 3365 3622
11307 1691 2-032 2441 2728 3348  3-6ox
1306 1688 2028 2434 2719 3333 3582
1304 1686 2-024 2429 2712 3319 3566
1303 1684 27021 2423 2704 3307  3'551
1209 1°676 27009 2403 2678 3261 3496
1296 1°67: 2000 2:390 2660 3232 3460
11289 1658 1980 2358 2617 3160 3373
1-282  1'645 1-96o  2°326 2576 3090 3291
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TABLE 12(a). 10 PER CENT POINTS OF THE F-DISTRIBUTION

The function tabulated is F(P) = F(P|v,, v,) defined by the
equation

P _ TGu) o [0 Fc

ro0 = TGv) Ty vy pva Py kI F)IO dF,
for P = 10, 5, 2'5, 1, 0’5 and o'1. The lower percentage
points, that is the values F'(P) = F’'(P|v,, v,) such that the
probability that F' < F'(P) is equal to P/100, may be found
by the formula

F'(Plvy, v5) = 1/F(P|v,, ).

P/100

0 F(P)

(This shape applies only when v; > 3. When v; < 3 the mode is

v, = I 2 3 4 5 6
v =1 398 4950 5359 5583 5724 5820
2 83526 9000 9162 9243 9293 9°326
3 5538 5462 5301 5343 5309 5283
4 4545 4325 4191 4107 4051 4-010
5 49060 378 3619 3520 3453  3'405
6 3776 3463 3289 3181 3108 3055
7 3589 3257 3074 2961 2883 2827
8 3458 3113 2°924 2-806 2726 2°668
9 3360 3006 2-813 2693 2°611 2°551
10 3285 2'924 2728 2605 2'522 2:461
II 3225 2-860 2660 2'536 2°451 2:389
iz 3177 2807 2606 2480 2'394 2°331
13 3136 2763 2560 2434 2347 2283
I4 3102 2726 2°522 2'395 2°307 2°243
5 3073 2'695 2490 2361 2273 2208
16 3-048 2-668 2462 2°333 2°244 2178
17 3026 2645 2437 2308 2218 2°152
18 3-007 2:624 2°416 2286 2:196 2'130
I9 2°990 2606 2397 2266 2176 2°109
20 2975 2589 2380 2249 2158 2°091
2T 2-961 2°575 2°365 2°233 2°142 2°073
22  2'949 2'561 2°351 2°219 2128 2-060
23 2937 2549  2°339 2207  2°I115 27047
24 2'927 2°538 2'327 2°195 2'103 2'035
25 2918 2'528 2°317 2°184 2°092 2:024
26 2-909 2'519 2307 2174 2'082 2'014
27 2-9or 2°511 2°299 2-165 2°073 2-003
28 2-894 2°503 2291 27157 2°064 1:996
29 2887 2°495 2283 2°149 2°057 1988
30 2:881 2489 2276 2'142 2°049 1-980
32 2869 2°477 2263 2°129 2°036 1-967
34 2859 2°466 2252 2118 2°024 1955
36 2850 2°456 2243 2108 2°014 1°045
38 2842 2448 2234 2099 2°005 1'935
40 2833 2°440 2226 2091 1°997 1°927
60 2791 2393 2°177 2°041 1946 1-875
I20 2748 2°347 2°130 1°992 1-896 1-824
®w 27706 2°303 2084 1'943 1-847 17774

at the origin.)

7

58-91
9'349
5266
3'979

3368
3014
2785
2624
2505

2414
2342
2283
2234
2193

2158
2:128
2°102
2'079
2058

2°040
2°023
2:008
1°995
1983

1°971
1-961
1'052
1°943
1935

1:927
1-913
1-9or
1-891
1-881

1-873
1-819
1767
1717

59'44
9'367
5252
3955

3'339
2983
2752
2'589
2:469

2°377
2:304
2:245
2195
2'154

2°119
2°088
2°061
2'038
2017

1-999
1:982
1967
1-953
1°041

1-929
1919
1-909
1-900
1-892

1-884
1-870
1858
1-847
1-838

1-829
1775
1722
1-670

I0

60°19
9:392
5'230
3'920

3297
2937
2703
2538
2°416

2°323
2248
2-188
2138
2°095

2'059
2028
2°001
1977
1956

1937
1'920
1904
1:890
1-877

1-866
1-855
1-845
1-836
1-827

1-819
1-8o03
1793
1781
1772

1763
17707
1-652
1'599

12

6071
9408
5216
3-896

3268
2:905
2668
2°502
2379

2284
2'209
2147
2:097
2'054

2017
1-985
1958
1933
1°9I2

1-892
1-875
1-859
1-845
1°832

1-820
1:809
1°799
1790
1-781

1773
1758
1-745
1734
1724

1715
1-657
1601
1:546

24
62:00
9°450
5176
3-831

3°191
2-818
2575
2°404
2277

2178
2°100
2:036
1°983
1-938

1-899
1-866
1-836
1-810
1787

1767
1748
1731
1716
1-7702

1689
1677
1-666
1-656
1-647

1638
1622
1608
1'595
1'584

1574
I'SII
1°447
1383

6333
9'491
5'134
3761

3'105
2722
2°471
2293
2159

2°'055
1°972
1°9o4
1846
1797

1755
1718
1-686
1-657
1631

1-607
1'586
1567
I'549
1533

1'518
1'504
1°491
1478
1467

1°456
1°437
1°419
1°404
1°390

1°377
1°291
1°193
1°000
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Appendix 2: Sample examination paper

TABLE 12(b). S PER CENT POINTS OF THE F-DISTRIBUTION

X
IfF = ‘f—l / 72 , where X, and X, are independent random
1/ Vs

variables distributed as x? with »; and v, degrees of freedom
respectively, then the probabilities that F > F(P) and that
F < F'(P) are both equal to P/100. Linear interpolation in
vy and v, will generally be sufficiently accurate except when P/100
either v, > 12 or v, > 40, when harmonic interpolation
should be used.

0 F(P

(This shape applies only when v; = 3. When v, < 3 the mode is
at the origin.)

v = I 2 3 4 5 6 7 8 10 12 24 0

vV, =1 1614 199°'5 2157 2246 230°2 2340 2368 2389 2419 243°9 249°1 2543
z 1831 1900 1916 1925  19°30  19'33 1935  10°37  I0°40 1941  19'45  19'50
3 1013 9°552 9277 9°117 9013 8-941 8-887 8-845 8786 8745 8-639 8526
4 7709 6944 6501 6:388 6256 6163 6094 6041 5964 5912 5774 5628
5 6608 5786 5409 5192 5050 4950 4876 4818 4735 4678 4527 4365
6 5987 5143 4757 4534 4387 4284 4207 4147 4060 4000 3841 3:669
7 5591 4737 4347 4120 3972 3866 3787 3726 3637 3575 3410 3230
8 5318 4450 4066 3838 3687 3581 3500 3438 3347 3284 3115 2928
9 5117 4256 3863 3633 3482 3374 3203 3230 3137 3073 2900 2707

10 4965 4103 3708 3478 3326 3217 3135 3072 2978 2913 2737  2'538
ix 4844 3982 3587 3357 3204 3095 3012 2948 2854 2788 2609  2'404
12 4747 3885 3490 3259 3106 2996 2913 2849 2753 2687 2505 2296
I3 4667 3806 3411 3°179 3-025 2°915 2:832 2767 2:671 2604 2°420 2206
14 4600 3739 3°344 3112 2°958 2-848 2764 2:699 2602 2'534 2°349 2°131

I5  4'543 3682 3287 3056 2'90I 2790 2707 2641 2'544 2°475 2288 2:066
16 4494 3634 3239 3007 2852 2741 2657 2501 2'494 2425 2235  2°0I0
I7 4451 3'592 3°197 2:965 2-810 2699 2:614 2°548 2'450 2°381 2°190 1-960
18 4414 3°555 3-160 2:928 2773 2661 2:577 2'510 2°412 2:342 2°150 1°917
19 4381 3522 3127 2-893 2740 2628 2544 2477 2378 2:308 2°114 1-878

20 4'351 3493 3°008 2:866 2711 2'599 2°514 2°447 2°348 2278 2082 1-843
2I  4°323 3:467 3072 2-840 2-685 2573 2488 2°420 2321 2°250 2054 1-812
22 4'301 3°443 3'049 2:817 2°661 2°549 2°464 2°397 2°297 2226 2028 1783
23 4279 3°422 3028 2796 2'640 2'528 2'442 2375 2275 2204 2°005 1757
24 4260 3403 3009 2776 2621 2'508 2423 2355 2255 2'183 1984 1733

25  4'242 3383 2:991 2759 2603 2°490 2°405 2:337 2236 2°165 1-964 1711
26 4223 3369 2975 27743 2-587 2°474 2388 2°321 2220 2°148 1'946 1-691
27 4210 3°354 2:960 2728 2'572 2°459 2:373 2°305 2°204 2'132 1930 1672
28 4196 3°340 2'047 2714 2558 2°445 2:359 2°291 2°190 2°118 1-915 1654
29 4183 3328 2°934 2701 2545 2°432 2°346 2278 2°177 2°104 1901 1-638

30 4171 3316 2'922 2+690 2:534 2°421 2°334 2266 2163 2°092 1-887 1°622
32  4'149 3'295 2°901 2:668 2°512 2°399 2°313 2°244 2°142 2°070 1-864 1'504
34 4130 3276 2883 2:650 2°494 2-380 2'294 2'225 2°123 2°050 1-843 1°569
36 4113 3259 2:866 2634 2°477 2364 2277 2°209 2-106 2033 1-824 1°547
38 4098 3°245 2852 2:619 2°463 2°349 2262 2°104 2°091 2-017 1-808 1-527

40 4085 3232 2:839 2606 2°449 2336 2'249 2'180 2077 2°003 1793 1°500
60 4001 3°150 2758 2'525 2°368 2°254 2°167 2'097 1993 1917 1+/700 1°389
120 3'920 3:072 2-680 2°447 2200 2°175 2087 2'016 1-91I0 1-834 1-608 1254
® 3841 2996 2603 2°372 2°214 2'099 2'010 1938 1-831 1752 1517 1'000
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20 Elements of econometrics

TABLE 12(d). 1 PER CENT POINTS OF THE F-DISTRIBUTION

X, [X
IfF = 71 / ;3, where X, and X, are independent random
1 2

variables distributed as ¥? with v; and v, degrees of freedom
respectively, then the probabilities that F > F(P) and that
F < F'(P) are both equal to P/100. Linear interpolation in
vy or v, will generally be sufficiently accurate except when P/100
either vy > 12 or »; > 40, when harmonic interpolation
should be used.

0 F{P)

(This shape applies only when v; > 3. When »; < 3 the mode is
at the origin.)

n = I 2 3 4 5 6 7 8 10 12 24 o]

Vg =1I 4052 4999 5403 5625 5764 5859 5928 5981 6056 6106 6235 6366
2 9850 99-c0 9917 9925 99'30 9933 9936 99'37 9940 9942 9946 99'50
3 3412 3082 20°46 2871 2824 2791 2767 27°49 2723 27°05 2660 26-13
4 2120 18-00 16-69 15-98 15°52 15°21 1498 14-80 1455 14°37 13°93 13°46
5 1626 13°27 12°06 11°39 10°97 10°67 10°46 10°29 10°05 9-888 9°466 9°020
6 1375 1092 9780 9:148 8746 8:466 8:260 8-102 7:874 7718 7°313 6-880
7 1225 9347 8451 7847 7460 7191 6993 6840 6620 6469 6074 5650
8 1126 8649 7°591 7006 6-632 6-371 6°178 6-029 5-814 5667 5279 4859
9 1056 8022 6'992 6422 6057 5802 5:613 5°467 5257 5°IIT 4729 4°311

I0 1004 7559 6552 5994 5636 5386 5200 5057 4849 4706 4327  3°909
XX 9646 7-206 6°217 5668 5°316 5-069 4-886 4744 4°539 4397 4021 3°602
12 9330 6927 5953 5°412 5064 4821 4640 4499 4296 4155 3780 3361
13 9o74 6701 5739 5205 486z 4620 4441 4302 4100 3960 3587 3165
14 8862 6515 5564 5035 4695 4456 4278 4140 3939 3800 3427 3004

15 8683 6359 5417 4893 4556 4318 4142 4004 3805 3666 3204 2868
16 8531 6226 5202 4773  4'437 4202 4026 3890 3691 3553 37181 2753
17 8400 6112 5185 4669 4336 4102 3927  379T  3'593  3'455 3084 2653
18 8285 6013 5002 4579 4248 4015 3841 37705, 3508 3371 27999  2°566
19 8185 5926 5010 4500  417T 3939 3765 3631 3434 3297 2925 2489

20 8096 5849 4938 4431 4103 3871 3699 3564 3368 3231 2859 2421
2x 8017 5780 4874 4369 4042 3-812 3-640 3°506 3°310 3173 2-8o1 2:360
22 7945 5719 4817 4313 398 3758 3587 3453 3258 3121 2749  2°305
23 7881 5664 4765 4264 3939 37710 3'539  3'406 3211 3074 27702 2256
24 7'823 5614 4718 4218 3-895 3667 3°496 3°363 3168 3'032 2659 2°211

25 7770 5568 4675 4177 3855 3627 3457 3324 37129 2993 2620 2169
26 7721 5'526 4637 4°140 3-818 3°591 3421 3-288 3:004 2:958 2585 2°131
27 7677 5488 4601 4°106 3785 3'558 3-388 3256 3-062 2°926 2'552 2°09%7
28 7636 5453 4568 4074 3754 3528 3358 3226 3032 2896 2522 2064
29 7598 5420 4538 4045 3725 3'499 37330 3'198 3005 2868 2495 2034

30 7562 5390 4510 4018 3699 3473  3'304 3173 2979 2843 2469  2-006
32 7499 5336 4459 3969 3652 3427 3258 3127 293¢ 2798 2423 1°956
34 7444 52890 4416 3927 3611 3386 3218 3087 2804 2758 2383 1911
36 7396 5248 4377 3890 3574 3351 3183 3052 2859 27723 2347 1872
38 7353 5211 4343 3858 3542 3319 3152 3021 2828 26092 2316 1837

40 7°314 5179 4313 3-828 3°514 3291 3°124 2°993 2-8o1 2-665 2288 1-803
60 7077 4977 4126 3649 3339 3119 2953 2823 2632 2496 2115 1-601

120 6851 4787 3'949 3480 3°174 2°956 2792 2663 2°472 2336 1'950 1-381
o 6635 4605 3782 3°319 3-017 2802 2:639 2°511 2:321 2183 1791 1:000
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Appendix 2: Sample examination paper

Durbin-Watson test statistic 4 : 1% significance points of 4, and 4.

k=1 =2 k=3 k=4 k=5

" dy, 4y 4,4y a, dy a, dy 4y dy
15| 0.81 1.07} 0.70 1.25] 0.59 1.46{ 0.49 1.70{ 0.39 1.96
16 | 0.84 1.09] 0.74 1.25| 0.63 1.44 0.53 1.66| 0.44 1.90
17 { 0.87 1.10} 0.77 1.25] 0.67 1.43| 0.57 1.63| 0.48 1.85
18 | 0.90 1.12{ 0.80 1.26] 0.71 1.42| 0.61 1.60] 0.52 1.80
19| 0.93 1.13] 0.83 1.26; 0.74 141} 0.65 1.58| 0.56 1.77
20 | 0.95 1.15| 0.86 1.27; 0.77 1.41{ 0.68 1.57| 0.60 1.74
21 | 0.97 1.16] 0.89 1.27/ 0.80 1.41} 0.72 1.55| 0.63 1.71
22 1 1.00 1.17{ 0.91 1.28] 0.83 1.40{ 0.75 1.54] 0.66 1.69
23 | 1.02 1.19] 0.94 1.29; 0.86 1.40{ 0.77 1.53] 0.70 1.67
24 | 1.04 1.20{ 0.96 1.30{ 0.88 1.41| -0.80 1.53| 0.72 1.66
25| 1.05 1.21} 0.98 1.30{ 0.90 1.41] 0.83 1.52] 0.75 1.65
26 | 1.07 1.22] 1.00 1.31} 0.93 1.41} 0.85 1.52] 0.78 1.64
27 | 1.09 1.23] 1.02 1.32| 0.95 1.41] 0.88 1.51] 0.81 1.63
10 1.24; 1.04 1.32] 0.97 1.41] 0.90 1.51] 0.83 1.62

28 | L.

29 | 1.12 1.25} 1.05 1.33] 0.99 1.42} 0.92 1.51}] 0.85 1.61
30 | 1.13 1.26] 1.07 1.34/ 1.01 1.42| 0.94 1.51| 0.88 1.61
31 1.15 1.27) 1.08 1.34] 1.02 1.42| 0.96 1.51] 0.90 1.60
32| 1.16 1.28/ 1.10 1.35{ 1.04 1.43] 0.98 1.51| 0.92 1.60
33 | 1.17 1.29] 1.11 1.36{ 1.05 1.43| 1.00 1.51f 0.94 1.59
341 1.18 1.30{ 1.13 1.36{ 1.07 1.43| 1.01 1.51; 0.95 1.59
35( 1.19 1.31] 1.14 1.37) 1.08 1.44| 1.03 1.51] 0.97 1.59
36 | 1.21 1.32) 1.15 1.38] 1.10 1.44] 1.04 1.51} 0.99 1.59
37| 1.22 1.32{ 1.16 1.38] 1.11 1.45] 1.06 1.51 1.00 1.59

38| 1.23 1.33) 1.18 1.39] 1.12 1.45] 1.07 1.52| 1.02 1.58|
391 1.24 1.34; 1.19 1.39] 1.14 1.45] 1.09 1.52 1.03 1.58
40 | 1.25 1.34] 1.20 1.40{ 1.15 1.46] 1.10 1.52| 1.05 1.58
45 | 1.29 1.38] 1.24 1.42] 1.20 1.48] 1.16 1.53] 1.11 1.58
50| 1.32 1.40[ 1.28 1.45| 1.24 1.49| 1.20 1.54 1.16 1.59
55| 1.36 1.43] 132 1.47| 1.28 1.51] 1.25 1.55| 1.21 1.59
60 | 1.38 1.45| 1.35 1.48| 1.32 1.52| 1.28 1.56] 1.25 1.60
65| 1.41 147, 1.38 1.50; 1.35 1.53] 1.31 1.57 1.28 1.61
70 | 1.43 1.49] 140 1.52] 1.37 1.55| 1.34 1.58; 1.31 1.61
751 1.45 1.50]. 1.42 1.53] 1.39 1.56] 1.37 1.59] 1.34 1.62
80 | 1.47 1.52| 1.44 1.54| 1.42 1.57 1.39 1.60] 1.36 1.62
85| 1.48 1.53] 1.46 155 1.43 1.58] 1.41 1.60| 1.39 1.63
90 | 1.50 1.54] 1.47 1.56; 1.45 1.59{ 1.43 1.61| 141 1.64
951 1.51 1.55| 1.49 1.57 1.47 1.60] 1.45 1.62] 1.42 1.64
100 1.52 1.56] 1.50 1.58] 1.48 1.60] 1.46 1.63] 1.44 1.65

n =number of observations
&’ =number of explanatory variables



20 Elements of econometrics

Durbin-Watson test statistic 4 : 5% significance points of 4, and 4.

k=1

k=2

k=3

¥ =4

k=5

dy

dy

4

dy

dy

dy

4,

dy

a,

dy

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
45
50
55
60
65
70
75
80
85
90
95
100

1.08
1.10
1.13
1.16
1.18
1.20
1.22
1.24
1.26
1.27
1.29
1.30
132
133

1.34

1.35
1.36
1.37
1.38
1.39

11.40

1.41
1.42
1.43
1.43
1.44
1.48
1.50
1.53
1.55
1.57
1.58
1.60
1.61
1.62
1.63
1.64
1.65

1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.45
1.46
1.47
1.48
1.48
1.49
1.50
1.50
1.51
1.51
1.52
1.52
1.53
1.54
1.54
1.54
1.57
1.59
1.60
1.62
1.63
1.64
1.65
1.66
1.67
1.68
1.69
1.69

0.95
0.98
1.02
1.05
1.08
1.10
1.13
1.15
1.17
1.19
1.21
1.22
1.24
1.26
1.27
1.28
1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.43
1.46
1.49
1.51
1.54
1.55
1.57
1.59
1.60
1.61
1.62
1.63

1.54
1.54
1.54
1.53
1.53
1.54
1.54
1.54
1.54
1.55
1.55
1.55
1.56
1.56
1.56
1.57
1.57
1.57
1.58
1.58
1.58
1.59
1.59
1.59
1.60
1.60
1.62
1.63
1.64
1.65
1.66
1.67
1.68
1.69
1.70
1.70
1.71
1.72

0.82
0.86
0.90
0.93
0.97
1.00
1.03
1.05
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.21
1.23
1.24
1.26
1.27
1.28
1.29
131
1.32

133

1.34
1.38
1.42
1.45
1.48
1.50
1.52
1.54
1.56
1.57
1.59
1.60
1.61

1.75
1.73
N
1.69
1.68
1.68
1.67
1.66
1.66
1.66
1.66

1.65

1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.65
1.66
1.66
1.66
1.66
1.67
1.67
1.68
1.69
1.70
1.70
1.71
1.72
1.72
1.73
1.73
1.74

0.69
0.74
0.78
0.82
0.86
0.90
0.93
0.96
0.99
1.01
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.19
1.21
1.22
1.24
1.25
1.26
1.27
1.29
1.34
1.38
1.41
1.44
1.47
1.49
1.51
1.53
1.55
1.57
1.58
1.59

1.97
1.93
1.90
1.87
1.85
1.83
1.81
1.80
1.79
1.78
1.77
1.76
1.76
1.75
1.74
1.74
1.74
1.73
1.73
1.73
1.73
1.73
1.72
1.72
1.72
1.72
1.72
1.72
1.72
1.73
1.73
1.74
1.74
1.74
1.75
1.75
1.75
1.76

0.56
0.62
0.67
0.71
0.75
0.79
0.83
0.86
0.90
0.93
0.95
0.98
1.01
1.03
1.05
1.07
1.09
1.11
1.13
1.15
1.16
1.18
1.19
1.21
1.22
1.23
1.29
1.34
1.38
1.41
1.44
1.46
1.49
1.51
1.52
1.54
1.56
1.57

2.21
2.15
2.10
2.06
2.02
1.9
1.96
1.94
1.92
1.90
1.89
1.88
1.86
1.85
1.84
1.83
1.83
1.82
1.81
1.81
1.80
1.80
1.80
1.79
1.79
1.79
1.78
1.77
1L.77
1.77
1.77
1.77
1.77
1.77
1.77
1.78
1.78
1.78
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n =number of observations

k" =number of explanatory variables
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